
WANG

Multi-Station
User's Reference

vs
Multi-Station

User's Reference

1st Edition - December 1983
Copyright © Wang Laboratories, Inc., 1983
800-1149-01

WANG
WANG LABORATORIES, INC., ONE INDUSTRIAL AVENUE, LOWELL, MA 01851 •TEL. (617) 459-5000, TWX 710-343-6769, Telex 94-7421

Disclaimer of Warranties
and Limitation of Liabilities

The staff of Wang Laboratories, Inc., has taken due care in preparing
this manual; however, nothing contained herein modifies or alters in any
way the standard terms and conditions of the Wang purchase, lease, or
license agreement by which this software package was acquired, nor
increases in any way Wang's liability to the customer. In no event shall
Wang Laboratories, Inc., or its subsidiaries be liable for incidental or con
sequential damages in connection with or arising from the use of the soft
ware package, the accompanying manual, or any related materials.

NOTICE:

All Wang Program Products are licensed to customers in accordance
with the terms and conditions of the Wang Laboratories, Inc. Standard
Program Products License; no ownership of Wang Software is trans
ferred and any use beyond the terms of the aforesaid License, without the
written authorization of Wang Laboratories, Inc., is prohibited.

PREFACE

This manual provides reference information for the VS Multi-Station.
The VS Multi_-Station package allows you to customize the keyboard and to
simultaneously display up to four interactive tasks on the workstation
screen. The Multi-Station also includes a Glossary language, which allows
you to write programs that you can assign to Glossary key combinations.

Chapter 1 provides an overview of the Multi-Station facilities. It
also includes a sample application to demonstrate the combined use of the
features.

Chapter 2 describes how to use a Multi-Station. It describes the
processes of loading Multi-Station microcode, managing windows and
glossaries, and the differences between Multi-Station operation and
standard workstation operation.

Chapter 3 describes the PERSON utility, which allows you to define a
customized workstation personality. Chapter 4 describes the Glossary
language.

Appendix A describes system administration procedures. It describes
the steps that a system administrator must take to convert a workstation
to a Multi-Station.

Appendix B includes the GETPARM requests for the utilities included
in the Multi-Station package. Appendices C and D provide the hexadecimal
codes for the ASCII and WISCII character sets, respectively.

Appendix E provides a sample Glossary language source file. Appendix
F provides a list of the words reserved by the Glossary language.
Appendix G provides the hexadecimal values for the AID characters, used
by one of the Glossary language subroutines.

This manual provides information for progranuners, operators, and
system administrators. It assumes familiarity with the VS environment,
described in the VS Programmer's Introduction (800-1101), and the VS
Procedure Language, described in the VS Procedure Language Reference
(800-1205). System administrators should already be familiar with the
discussion of the GENEDIT utility in the VS System Administrator's
Reference (800-1144). Readers wishing to write Glossary language
programs should be familiar with the VS programming environment,
described in the VS Program Development Tools Reference (800-1307), and
one of the VS languages, described in the following manuals:

VS Assembly Language Reference
VS BASIC Language Reference
VS COBOL Reference
VS FORTRAN Reference
VS PL/I Language Reference

iii

(800-1200)
(800-1202)
(800-1201)
(800-1208)
(800-1209)

CHAPTER

CHAPTER

CHAPTER

1

1.1
1.2
1.3
1.4
1.5
1.6
1. 7

2

2.1
2.2
2.3
2.4
2.5

2.6

3

3.1
3.2
3.3
3.4

3.5
3.6
3.7
3.8
3.9

CONTENTS

INTRODUCTION TO THE VS MULTI-STATION

Overview . • 1-1
Windowing . 1-2
Personal Keyboard Definition•• 1-2
The VS Glossary Language•...•....... 1-3
Enhanced Control of Workstation Features 1-4
International Options 1-4
A Sample Multi-Station Application 1-4

USING A VS MULTI-STATION

Introduction . • . 2-1
Loading Workstation Personalities 2-1
Managing Windows . 2-2
Running Independent Microcode Programs 2-6
Using Glossaries . • 2-6

Invoking Compiled Glossaries•......... 2-6
Glossary-by-Example • 2-7

Changes in VS Menu Operation 2-7

THE PERSON UTILITY

Introduction .•••..•....•.....•........•......••.•..•
Running the Personality Editor ..•.........••..•.....
Defining the Keyboard •....•......................•.•
Managing Glossaries•............................

Editing and Compiling Glossary Programs ...••....•
Compiling the Source File
Appending a Glossary-by-Example•

Modifying the Character Set •.......................•
Setting the Default Window Configuration ...•........
Selecting Workstation Features .••....•..............
Defining Accent Key Combinations•.............
Modifying the Default Capitalization Rules

3-1
3-3
3-6

3-14
3-15
3-15
3-15
3-16
3-17
3-18
3-21
3-22

CHAPTER 4 THE GLOSSARY LANGUAGE

4 . 1 Introduction . . • . . • . • • • . . • . . • 4-1
4.2 Program Format . • • 4-1

Names . . • • • . . . • . • . . • • . . • . • 4-2
Constants . . • . . • . • • • • 4-2
Conunents . • . • . . • • . . • • • • • • 4-2
Keywords . . • • • . • . • . • . • . . • • . . • . • . . • . . • • . • • 4-3

v

4.3

4.4

4.5

4.6
4.7

4.8

4.9

APPENDIX A

CONTENTS (continued)

Pun.ctua ti on•...••............••.•..........
Compiler-Directing Statements ..••.••••••••••.•..•

Program Structure ••..•.•••..••••••.•..••...••••••.•.
Subroutine Procedures .•.•••.•.•....••...••••.•...
Fun.ction Procedures•..•..••......•.....
Glossary Procedures••.....•.•••.•..•.......
Auto-Start Procedures ...••.........•.......•.....

Program Control .•...................................
The Assigrunent Statement•.............
The CALL Statement ...••............•.............
The DECLARE Statement•.......•.....
The DO Statement ...•.............................
The END Statement•......•...•..•.............
Function Calling•.............
The IF Statement•.....•..•..•.........
The LEAVE Statement••.•••.........•......
The PROCEDURE Statement .•.......•................
The RETURN' Statement ...•.......•.................
The STOP Statement ...•...........................

Data Types and Declaration •.......••............•...
Data Types••................
Constants and Variables•.•.•...•.............
Declaration ..•..•..•.•...•.•...••..•..•..........

Express ions ..•..••.......•........•...•.............
General Built-In Functions•...•.................

BINARY•.......•.....•.....................
BYTE•.....•.•...................
CllAR ••••••••••••••••••••••••••••••.••••••••••••••
INDEX ••
LENGTH••.•.....•.....•.•...•........•......
RANK •••
SUBSTR •.•.•..•.......••......•.•.................
VERIFY ••..•

Accessing the Workstation•..........•.........
Keystroke Syntax•.....•...••.....•..........
Workstation Subroutines
Workstation Functions•.................

Programmer's Notes .•..............•......••.........
Boolean Values in Glossary Procedures
Simultaneity in Glossaries•.................

SYSTEM ADMINISTRATION

4-3
4-3
4-4
4-6
4-6
4-6
4-7
4-7
4-8
4-8
4-8
4-9

4-10
4-10
4-11
4-11
4-12
4-12
4-12
4-12
4-13
4-14
4-14
4-15
4-18
4-18
4-18
4-19
4-19
4-19
4-19
4-20
4-20
4-21
4-21
4-23
4-24
4-26
4-26
4-27

A.1 Introduction . . . • . . . • . . . • • . . • . • • A-1
A.2 System Requirements . . • . . • • • A-1
A.3 Configuring a VS Workstation as a Multi-Station A-1
A. 4 Task Restrictions . . • . • . . • • • A-4

vi

CONTENTS (continued)

APPENDIX B MULTI-STATION UTILITY GETPARM REQUIREMENTS

B.1 Introduction to GETPARMs ..•.....••.•.........•••.... B-1
B. 2 Structure of a GETPARM • . • . . • • • . . . • B-1
B.3 VS Multi-Station Utility GETPARM Requests B-2

APPENDIX C THE ASCII CHARACTER SET C-1

APPENDIX D THE WISC!! CHARACTER SET D-1

APPENDIX E A SAMPLE GLOSSARY PR(:x:;RAM•.................. E-1

APPENDIX F GLOSSARY LANGUAGE KEYWORDS F-1

APPENDIX G AID CHARACTER REPRESENTATIONS G-1

INDEX • Index-1

vii

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

1-1
1-2
2-1
2-2
2-3
2-4
3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8
3-9

3-10
A-1

Table 3-1
Table 4-1
Table G-1

FIGURES

Changing the Meaning of Workstation Keys •........•..
Incorporating Personality Features ···············~··
Sample Window Configurations
Next Window Key Operation•.............•..
Get Next Window Key Operation•........•..
Look Left Key Operation•....•...................
PERSON Processing .•................................•
The Initial Personality Definition Screen
The Personality Editor Main Menu
An Example Keyboard Definition Screen
The Glossary Management Screen
The Character Set Definition Screen•...........
The Window Configuration Selection Screen•..
The Optional Features Screen•.•
The Accent Combinations Screen
The Fold-over Definition Screen
Sample GENEDIT Screens

TABLES

1-6
1-8
2-3
2-4
2-5
2-5
3-2
3-4
3-5
3-7

3-14
3-17
3-18
3-19
3-22
3-23
A-3

Window Status Features . • 3-20
Glossary Language Key Function Syntax•...•... 4-21
AID Character Representations G-1

viii

CHAPTER 1
INTRODUCTION TO THE VS MULTI-STATION

1.1 OVERVIEW

The VS Multi-Station package transforms a standard VS workstation
into a personalized, multiwindowed workstation. The VS Multi-Station
enhances productivity by allowing you to customize the keyboard and to
process multiple interactive tasks simultaneously.

The VS Multi-Station supports the following features, which combine
to create an efficient, productive, and personal workstation environment:

• Windowing -- Allows you to run and display up to four interactive
programs concurrently.

• Personal keyboard definition
and the function of each key.

Enables you to define the meaning

• An expanded set of key functions Provides you with added
feature options when assigning functions to workstation keys.

• A Glossary language -- Allows you to define new, expanded key
functions that operate under program control. Glossary programs
can automate repetitive keyboard operations and can perform
conditional and text-manipulating operations. After you define a
Glossary program, any user can invoke the program.

• Enhanced control of workstation features -- Allows you to control
the alarm, blinking fields, and tab operation and to select
type-ahead capability.

• International options -- Allow you to alter the character set,
define key combinations for accented characters, and modify the
default capitalization rules.

The number of windows a particular Multi-Station has is determined
when the system is configured. You define all other Multi-Station
features through an interactive and easy-to-use utility known as the
Personality Editor. The collection of features you select in the
Personality Edi tor is called your workstation personality. Your
workstation personality can be loaded whenever you log on to any
Multi-Station and can be changed at any time. Thus, the Multi-Station
features are part of your workstation personality and are not a fixed
part of the workstation.

1-1

1.2 WINDOWING

A VS Multi-Station can have up to four windows. Each window is an
independent VS task, from which you can run any VS data processing
program. For example, you can simultaneously run the EDITOR, the DISPLAY
utility, a compiler, and the Symbolic Debugger from separate windows of a
Multi-Station.

You can dynamically adjust the number and the size of the displayed
windows. Each window can occupy an entire screen, or portions of several
windows can be displayed simultaneously. Portions of a program screen
outside the boundaries of a window scroll into view as the cursor moves
into them. You can set the default window configuration through the
Personality Edi tor and can change it at any time by pressing special
window function keys.

VS Word Processing or VS Alliance® can also run from window one of
a Multi-Station. However, you cannot access the other windows while VS
Word Processing or VS Alliance is in use. The tasks in the other windows
continue processing until they must modify the screen.

1.3 PERSONAL KEYBOARD DEFINITION

The Multi-Station Personality Editor offers you total control of the
meaning and the function of each key on the keyboard. You can relocate
standard workstation keys. For example, you can reverse the locations of
the Enter and New Line keys to be consistent with the corresponding word
processing key locations or can modify the QWERTY key sequence to AZERTY.

You can also incorporate new key functions supported only by the
Multi-Station. Some of these functions support other Multi-Station
features; others are improved versions of existing key functions. A
swnmary of the new key functions follows:

• Window operation keys -- You can define keys that display the
next or the previous workstation window and move a window up,
down, left, or right.

• Data transfer keys
information from one
different window.

You can define keys that can copy
location to another on the same or a

• Glossary keys -- You can dedicate a workstation key to a specific
Glossary function, rather than having to press the Glossary key
and another key.

• Enhanced key operations -- The Multi-Station supports new key
functions such as an Insert Mode key that operates in a manner
similar to the word processing insert mode and a Back Line key
that is the inverse of the standard New Line key.

Alliance is a registered trademark of Wang Laboratories, Inc.

1-2

1.4 THE VS GLOSSARY LANGUAGE

The VS Multi-Station Glossary language combines the decision
processing and the text manipulation of a programming language with the
capability to issue and accept keystrokes. The Glossary language allows
users to define single key functions that perform complex or repetitive
operations easily. In many ways, Multi-Station glossaries are similar to
the familiar word processing glossaries; however, Multi-Station glossaries
are substantially more powerful.

The VS Multi-Station also incorporates a glossary-by-example facility,
which allows you to record and reissue a series of keystrokes. You can
also append a glossary-by-example to a Glossary program for subsequent
editing through the Personality Editor. PERSON automatically translates
the glossary-by-example keystrokes into the appropriate syntax for the
Glossary language. Thus, you can specify keystrokes in a Glossary
program by typing them on the workstation.

The structure and form of the Glossary language resemble a simplified
PL/I. The Glossary language, however, is much easier to learn because
Glossary programs have only the character and integer data types and do
not use file I/O. The Glossary language includes standard PL/I built-in
functions for text string manipulation. It also includes a set of
functions and procedures (subroutines) that is designed specifically for
workstation applications. A program can control the keyboard, check the
current window, manipulate the cursor, and highlight screen locations
through Glossary language features.

A Glossary program is composed of a collection of procedures. Each
Glossary key function is defined as a single procedure. The Glossary
program is edited and compiled through the VS EDITOR or the Personality
Editor and attached to your workstation personality. You invoke Glossary
programs by pressing the Glossary key and the defined key (just as in VS
Word Processing) or by pressing a single key dedicated to the Glossary
key combination through the Personality Editor.

Because a Glossary program is part of a workstation personality, it
can be invoked from any window. The Multi-Station also supports global
glossaries, which run in all windows at once, and auto-start glossaries,
which automatically run when the personality is loaded. Global glossaries
can perform such operations as logging off all windows. An auto-start
glossary, for example, can automatically log you on to all the windows on
the Multi-Station.

1-3

1.5 ENHANCED CONTROL OF WORKSTATION FEATURES

The VS Multi-Station controls such workstation features as the alarm,
the keyboard click, and the blinking of error fields through your
workstation personality. The Multi-Station also allows you to control
the operation of the tab keys and to specify whether or not the cursor
wraps at the screen edges. The Multi-Station supports two new workstation
features: type-ahead and window status. The type-ahead option stores all
keystrokes in a buffer, allowing you to continue typing while waiting for
system response. The window status feature is designed for the
Multi-Station and optionally displays the status and the number of the
active window.

Because these features are part of your workstation personality, they
can be automatically set whenever you log on to any Multi-Station or
return from VS Word Processing or VS Alliance. The Multi-Station places
traditionally hardware-oriented features under user-modifiable software
control.

1.6 INTERNATIONAL OPTIONS

The VS Multi-Station allows you to tailor the workstation to your
native language. By modifying the character set, you can customize the
keyboard for your language. The Multi-Station also allows you to define
accented characters as combinations of an accent key and the key to be
accented. Thus, the Multi-Station does not have to dedicate a key to
each accented character. The VS supports uppercase-only fields; the
Multi-Station allows International users to control the automatic
conversion of characters entered into such fields.

The International features are interactively selected through the
Personality Editor and are part of your workstation personality. The
Multi-Station reduces the effect of native language on a system. Each
user can define the Multi-Station to operate within the desired language.
Multilingual users can define a personality for each language to run on
the same workstation.

1.7 A SAMPLE MULTI-STATION APPLICATION

The Multi-Station offers a large set of features, which are best
understood when seen in practice. To demonstrate the coordinated use of
the Multi-Station package, this section considers the case where you are
a user who programs in VS BASIC and uses VS Word Processing. This section
demonstrates how you can change the keyboard layout to accommodate
personal typing habits and how you can write and install glossaries that
log on and off all the windows and that run the EDITOR with BASIC supplied
as the default language.

1-4

Users of VS Word Processing have certain typing habits when they
return to the VS data processing environment. The data processing
equivalent of the Execute key is the Enter key, but the Enter key is
located in the position of the word processing Return key. The Return
key in word processing performs a function similar to the New Line key.
VS utilities and the Conunand Processor tend to use PF4 to display a
previous screen and PF5 to display the next screen of information. To
provide consistency with the word processing environment, you can change
the keyboard in the following way:

• Reverse the positions of the Enter and New Line keys

• Convert the Back Tab key to PF4 and the Erase key to PF5

• Convert the infrequently-used + and - keys on the numeric keypad
to Back Tab and Erase, respectively

The Multi-Station has three windows, so you also need keys to display
the next and the previous window. To form a parallel to the word
processing keys, you can place the Next Window key on the shifted Erase
key (next screen) and the Previous Window key on the shifted Back Tab key.
You also need a few keys to change the size of the windows, and place
these on the shifted values of the numeric keypad. Thus, you also want
to make the following keyboard changes:

• Convert the shifted Back Tab key to the Previous Window key

• Convert the shifted Erase key to the Next Window key

• Convert the 5, 6, 2, and 3 keys on the numeric keypad to window
moving keys.

You change the keyboard through the PERSON utility, described in
Chapter 3. However, an overview of the process of keyboard definition is
provided here.

When you run the PERSON utility, you create a new personality that is
based on the standard 2256C personality. You then edit the keyboard
layout and change each key to. the desired new value. Figure 1-1
demonstrates the process of changing the meaning of a key.

1-5

Locate the cursor at the key to be changed and press PF9.

Locate the cursor at the new key function and press ENTER.

Figure 1-1. Changing the Meaning of Workstation Keys

1-6

When you have redefined all the keys, you can load the new personality
into the workstation. Then, you select the Glossaries entry from the
PERSON main menu and edit a new Glossary source file. PERSON links to
the VS EDITOR, and you enter the following source text. The Glossary
language is described in Chapter 4.

I* The following procedure automatically logs on all workstations */
I* whenever the personality is loaded. The procedure first */
I* checks to make sure that the window is displaying the logon */
I* screen. It then issues a HELP to ensure that the cursor is */
I* located at the User ID field and enters MGL on window 1 and */
I* ML concatenated with the window number on the other windows. *I
I* The procedure then enters the password and logs on. *I

auto_logon: procedure options (main);
if substr(screen(l), 41, 5) = "Logon" then do;

call playout("(-help!-)");

end;

if window = 1 then do;
· call playout ("MGL");

end; else do;
call playout("ML"!! char(window));

end;
call playout("(-tab-)PASSWORD(-enter-)");

end auto_logon;

I* The following procedure logs off the current window or all the */
I* windows when invoked globally. It first exits any program by */
I* issuing a series of PF16 keys until the Conunand Processor is */
I* displayed (identified by the value 'Workstation' on Row 4). */
I* The procedure then issues a PF16 and an Enter, logging off the */
I* window. */

auto_logoff: procedure options C'k');
do while Csubstr(screen(4), 2, 11) i= 'Workstation');

call playout ("(-pf-16-)");
call waitforunlock;

end;
call playout ("(-pf-16-)(-enter-)");

end auto_logoff;

I* The following procedure runs the EDITOR from the Conunand */
I* Processor. It then enters BASIC as the language and erases *I
I* any text remaining in the field from a default value. */

edit_in_BASIC: procedure options('B');
call playout("(-pf-1-)EDITOR(-enter-)

B.ASICC-erase-)");
end edit_in_BASIC;

After entering the source file, you can compile the source and load it
into the workstation by pressing PF9 from the EDITOR special menu. When
you exit the EDITOR, you return to the PERSON utility. When exiting the
PERSON utility, you save the changes made to the personality. You can
then modify your Logon procedure to load the new personality each time
you log on.

1-7

You now have a customized workstation personality that is loaded
automatically at each logon. If you wish to make further keyboard
modifications or add new Glossary programs, you can edit the existing
personality at any time through the PERSON utility.

The above application illustrates one of many possible ways of
incorporating a set of Multi-Station features into a personality. You
can incorporate all Multi-Station features into the personality through
the PERSON utility, but you can also incorporate a glossary and window
sizes in other ways. Figure 1-2 provides an overview of all the ways you
can incorporate options in a personality.

PERSON

PERSON

FOLDOVER
TABLE

CHARACTER
SET

PERSONALITY

KEYBOARD
LAYOUT

ACCENTS
l---.1------- PERSON

WINDOW
CONFIGURATION

PERSON

PERSON~ MWSSAVE

GLOSSARY OPTIONAL
FEATURES

PERSON

ANOTHER
SOURCE

FILE

Figure 1-2.

Load through
PERSON

GLOSSARY
OBJECT

FILE

Compile
through PERSON

or GLOSSARY

GLOSSARY
SOURCE

FILE

GLOSSARY
BY-EXAMPLE

Incorporating Personality Features
1-8

PERSON

CHAPTER 2
USING A VS MULTI-STATION

2 .1 INTRODUCTION

While a personalized Multi-Station is more convenient to use than a
standard workstation, its use involves several different procedures. The
VS Multi-Station package consists of workstation microcode, the PERSON
utility, a Glossary language compiler, and several support utilities.
This chapter describes the coordinated use of the Multi-Station facilities
to produce an effective workstation environment.

Assuming that your workstation is configured as a Multi-Station with
a set number of windows (system administrators should refer to Appendix A
for installation instructions) , you need the following items to use a
Multi-Station:

• A separate User ID for each window
• A workstation personality

Your system administrator can assign additional User IDs through the
SECURITY utility; refer to the VS System Administrator's Reference for
details on the SECURITY utility. You define a workstation personality
through the PERSON utility, described in Chapter 3. This chapter
describes the use of the remainder of the Multi-Station features.

2.2 LOADING WORKSTATION PERSONALITIES

When a Multi-Station is initialized at IPL-time, it is given a default
personality that is identical to that of a 2256C workstation except that
the pseudoblank character <•> displays as a Dec Tab character <~>. The
Multi-Station does not acquire the characteristics defined in your
workstation personality until you load the personality file into the
workstation. A personality file remains loaded until you replace it with
another personality or power off the workstation, or until the system is
initialized. Thus, an unused Multi-Station may or may not have the
default personality loaded when you log on.

2-1

The Multi-Station package includes three utilities that allow you to
load or save your personality file under different conditions. While you
can always load your personality by running the PERSON utility (refer to
Chapter 3), you can also load your personality through the MWSRSTR
utility or through the MWSLOAD utility. The MWSSAVE utility allows you
to save the personality loaded in the workstation (including the current
window configuration) in a separate file.

The MWSRSTR utility allows you to specify and load a workstation
personality. When MWSRSTR processing begins, it requests you to enter
the file, library, and volume names of the personality file you want to
load. When you have identified the file, MWSRSTR loads the specified
personality into the workstation.

The MWSLOAD utility loads your default personality file without any
user interaction. MWSLOAD assumes that your default personality file
resides in a file identified by your User ID located in the MWS library
on your System Volume.

MWSRSTR is useful when you want to load a personality that is
different from your default personality. MWSLOAD is appropriate when you
want to easily load your default personality. For example, MWSLOAD is
typically run as part of a Logon procedure.

The MWSSAVE utility allows you to save the personality that is
currently loaded in the workstation in a separate file. When MWSSAVE
processing begins, it requests you to enter the file, library, and volume
names of the output personality file. When you have identified the file,
MWSSAVE saves the personality in the specified file location.

Ref er to Appendix B for details about MWSSAVE and MWSRSTR GETPARM
requirements and to the VS Procedure Language Reference for details about
Procedure language syntax.

2.3 MANAGING WINDOWS

Each Multi-Station has a fixed number of windows that is determined
by the system configuration. You can display the windows simultaneously
or separately. In either case, each window is a full-powered VS task,
regardless of how much of the screen is displayed. If less than the full
screen is displayed, the Multi-Station ensures that you can always see
the cursor (unless you indicate otherwise). Through the window function
keys defined in Chapter 3, you can move the physical window on the screen
or move the contents of the window within the boundaries of the window.
Figure 2-1 demonstrates several window configurations.

2-2

Wang VS Conmand Processor • • •

Workstation 48 Ready 10:53 am Wednesday November 9, 1983

Hello vs Multi-Station User
Welcome to OFFICE

Press (HELP) at Any Tlme to Interrupt Your Program or to Stop
Processing of the Current Coomand.

Use the Function Keys to Select a C011111and:

(1 l lllJN Program or Procedure
(2) SET usage Constants
(3) SHOW Program Completion Report

(4 l Manage QUEUES
(5) Manage FILES/LIBRAllIES
(6 l Manage DEVICES
(8) Manage COMMUNICATIONS

(9 l Enter ~llD PROCESSING
(11) Enter DPEllATOll Mode
(12 l SUBMIT Procedure

(13) Send MESSAGE To Operator
(15 l PllINT COlllAND Screen
(16) LOGOFF

Example A

Hello vs Multi-Statton user
llelc.- to OFFICE

Press (HELP) at Any Tllll! to Int~rrup~ Your ~rogram or to Stop

t1rsor and press <ENTER> to Di:;plilv File Attributes gr S1flect·
to Library Display (7) llenalle

(8) Scratch
-------------------t Screen PROCESSIN

••• wang vs Integrated Program Develo_..t Editor - Version 6. TOR Hode
re ts no current Input file. edure
re are 2 lines In the edited text. (The file has been
nation of TESTOOOl COlllPleted.

lease select the desired function and press the appropriate PF k

- Res""" text editing
- Set workstation defaults and Editor/compiler
- Act hate the nonna 1 menu
- Edit another file
- Create a new fll e fr,.. the edited text

Example C

••• Flleti

L lbrary HLHLIB on Vol- JUllQUE Cont~

(l)llenu

~

(J)Posltlon

.E1lJlDillll f.11.IDlla PAOCEDURE LOGOll FOR a vs Multi-Station

~g ~~~a= :'',.".·~~~ii. 1=~~ ~~~E OUT - LOGOll
_IQ
. TEST

SET SPOOLVOL = JUllQUE, SPOOLSYS = JUNQU
111111 lllSLOAD
RETUAll

- Gl ossar; es SAM System Actlvl
• Keyboard layout 11 : 26 am Tuesday
_ Window shes and locations
_ Character set Task Statistics (Net)
• Opt! ona l features
• Accent cOllblnatlons
_ Uppercase fold-over table

_ Put this personality In a new file
_ Edit a different personality file

Example B

.,, Wang VS Integrated Program Devel
Input File is MLH in Library Gl
There are 781 1 mes in the ed1 ted

_ MENUMLH
_ MGLLOGON

OUTPUT

SAM 0.09.30 Ii A N G Per
7:48 pm Thurs

!1l0isp !21First !3llast (4) Prev !S!Next
!9lMod (lOlChng !llllns (12l0el (13!Move (tem Act

012100 11a1 tFor · procedure !Request).
012200 declare
012300 Request char;
012400
012500
012600
012700

Key = get key;
do while !Key 1 = Request);

call playout ! Keyl;

Example D

key to

sk Stat

._ ___ ..

Figure 2-1. Sample Window Configurations

In Example A,
is displayed at a
a quarter of the

each window occupies a full screen, and only one window
time. In Example B, each of the four windows occupies
screen. Note that the active window has a bold border.

In Example C, the three windows resemble a set of three pages spread on a
desk. The active window is always on top. Example D demonstrates a
configuration of four windows where three windows are stacked as in
Example C, but a fourth window displays a selected line of information
(such as the status of an on-going compilation, the time, or the Received
message list of a task running VS Office).

2-3

The particular window configuration for a Multi-Station is a matter
of personal choice. If you define a default window configuration in your
workstation personality (refer to Chapter 3 for instructions), the
windows are displayed in the default configuration when you load the
personality. Otherwise, each window is displayed as a full screen as in
Example A. You can always dynamically adjust the window sizes and
locations through window function keys defined on the keyboard or issued
through a glossary.

NOTE

Your workstation personality must include window function
keys or glossary definitions to access more than one window.

Window function keys allow you to move a window about the physical
screen or move the contents of the window relative to the window. Other
window function keys enable you to change the size of the displayed
window. All the window function keys are defined in Chapter 3; however,
a few of the keys are described in this section to demonstrate the
available window operations.

The Next Window key makes the next higher-numbered window the active
window, complete with its window boundaries. Figure 2-2 depicts the
result of a Next Window key operation on a Multi-Station with three
windows.

Before

(3)Pl»ltlon (8)Flnd
(15)Print l161Exlt

.--~---~~~~~~~~~~~~-----.CplilWIOOO~:o
Press {HELP) at My Tl• to Interrupt Your Progr .. or to Sta 000200

Procnslng of the Current Comnand. 000210

editing HlH in KIS on 'OFFICE

_ Glossaries
• Keyboard layout
• Window sizes and locations
_ Clllracter set

000220
080300
000400

After

(3)Posltion (B)Flnd
(15)Print (16)Exi

f;Q]J,m_JJ.
__ ____ ..._,----------~ 00010

Press (HELP) at Any Time to Interrupt Your Program or to Sto 00020
Processing of the Current C-..nd. 00021

use the Function Keys to Select a Comnand:

1) RUN ProgrM or Procedure
21 SET Usage Constants
3 I SHOW Program COllP 1 et ion Report

(9) Enter ICJRD PROCESS I
(11 I Enter OPERATOR Hade
(12 J SUBMIT Procedure

00022
00030
00040

_ Optional features
_ Accent combinations - Accent combinations
_ u,pp1tr·case fold-over table - Uppercase fold-over table

_ Put this personality In a new file - Put this personality in a new file
_ Edit a different personaHty file - Edit a different personality file

Figure 2-2. Next Window Key Operation

2-4

The Get Next Window key also makes the next higher-numbered window the
active window, but moves the window into the window size and the location
of the current window. Figure 2-3 demonstrates the operation of a Get
Next Window key.

Before

editing MLH In IMS on OFFICE

04700 Search: procedure I Request, Hat
04800 dee l are
04900 Request char,
05000 Hatch fixed,
05100 Direction fixed,
05200 Col.- fixed;
05300
05400 declare Equal fixed;
05500
05600 If rat* (Re_,.tl > 127 then

- Glossaries
_ Keyboard layout
_ WlndOll sizes and locations
_ Character set
_ Opt Iona 1 features
- Accent c,..,lnatlons
_ Uppercase fold-over table

_ Put this personality In a new file
_ Edit a different personality file

(10) REPLACE Into ws (11) External COPY (13) Help (l6) Exit

After

lJDlsp 12JFlrst (3)Last (4JPrev IS)Next (6)D01111 17)Up (B)Find
9)Hod llO)Chntl lll)Ins (IZJDel l13)11ove 114)Copy (15lCol 116)Menu

04700 Search: procedure (Request. Hatch, Direction, Col.-J return

_ Glossaries ar,
_ Keyboard layout txed,
_ Window sizes and locations lxed,
_ Character set I xed:
_ Optional features
_ Accent c,..,lnatlons lxed;
_ Uppercase fold-over table

_ Put this personality In a new file
_ Edit a different personality file

) > 127 then

Equal ; ~ i ·and (Request = substr (Screen (cursorrowJ, C

If Hatch = Equal then
retum (ColU1111):

Figure 2-3. Get Next Window Key Operation

displays
of what

of the

The Look Left key
window to the left
demonstrates the operation

Before

First (3Jlast (4)Prev Next (p n
Chnt (ll)Ins (12JDel (U)llove (14)Copy (15)Col l16)Henu

ch: procedure (Request, Hatch, Direction, ColLJmll returns
are

Request char,
Hatch f lxed,
Direction fixed,
Col.- fixed:

the previously
is currently
Look Left key.

obscured contents of
displayed. Figure

After

l)Dlsp (Z)Flrst (3)Last (4)Prev (5lNext (6)D011n (7)Up
9)Hod (IO)Chnt (11)Ins (12)Del (13lllove (14)Capy (lS)Col (

04700 Search: procedure !Request. Hatch, Direction, Colum
04800 declare
04900 Request char,
osooo Hatch fixed,
05100 Direction fixed,
):~~:: Col.- fixed;

Figure 2-4. Look Left Key Operation

2-5

the
2-4

A large number of window functions is available for window
manipulation. While dedicating each function to a key through the PERSON
utility would reserve a large portion of the keyboard for window
management, you can use a Glossary program to issue the window function
keys without reserving keyboard locations. You can write a separate
Glossary procedure for each window function key you want to use or write
a Glossary procedure that performs one of several functions, depending on
an additional keystroke that you enter. Refer to Chapter 4 for details
on the Glossary language; the Glossary program in Appendix E contains an
example window management procedure.

2.4 RUNNING INDEPENDENT MICROCODE PROGRAMS

VS Word Processing and VS Alliance load their own microcode,
replacing any workstation personality you loaded in the workstation. As
a result, you must run these programs from window one of the
Multi-Station. Because they load their own microcode, the Multi-Station
is controlled by the current microcode loaded by the program, and you
cannot access the other windows. Any processes that are running in
windows two through four continue processing until they need to update
the screen. When you return from VS Word Processing or VS Alliance, the
Multi-Station automatically loads the personality in effect when you ran
them.

2.5 USING GLOSSARIES

The Multi-Station includes two types of glossary facilities:
compiled glossaries and glossary-by-example. Compiled glossaries are a
permanent part of the workstation personality and perform many glossary
functions. Glossary-by-example allows you to create a temporary glossary
that performs one function. Each Multi-Station can have one permanent
and one temporary glossary.

Section 2.5.1 discusses the process of invoking compiled glossaries.
(Chapter 3 descibes the process of incorporating a Glossary program into
the workstation personality and Chapter 4 describes the Glossary
language.) Section 2. 5. 2 describes the process of creating and using a
glossary-by-example.

2.5.1 Invoking Compiled Glossaries

When a compiled glossary program is attached to a workstation
personality, all of the individual glossary functions are available to
the Multi-Station user. You can run any glossary in the active window or
in all windows simultaneously. You run a glossary in the active window
by pressing the Glossary key followed by the key that identifies the
function; you run a glossary in all the Multi-Station's windows by
pressing the Global Glossary key followed by the key that identifies the
function.

You can cancel an executing glossary by pressing the Reset key. If
the glossary is running in each window, you must press Reset in each
window. When a glossary executes a STOP statement C ref er to Section
4.4.11), you can continue the glossary's execution by pressing the
Glossary key followed by PF16.

2-6

2.5.2 Glossary-by-Example

A glossary-by-example allows you to store a sequence of keystrokes in
the workstation and to reissue the sequence at any time. A Multi-Station
can store one glossary-by-example at a time. The glossary-by-example is
available as long as the current personality is loaded in the workstation
and can be executed any number of times. Thus, a glossary-by-example is
particularly useful for automating repetitive keyboard operations in a
single workstation session. If you want to permanently store the
glossary-by-example, you can attach it t:o your Glossary source program,
as described in Chapter 3.

The Multi-Station reserves 2048 bytes for the compiled glossary and
the glossary-by-example. Because the two types of glossaries share the
same space, the maximum size of either type of glossary depends on the
present size of the other type. For example, if your compiled glossary
occupies 2000 bytes, your glossary-by-example cannot exceed 48 bytes.

You create a glossary-by-example by pressing the Glossary key
followed by PF7 (the word processing Note key). If you selected the
Status feature descibed in Chapter 3, the Note symbol (!!) is displayed
in the status column while the Multi-Station is recording keystrokes.
The Multi-Station places every keystroke you enter in the glossary-by
example until you press the Reset key or the Help and Reset key. After
you have created the glossary-by-example, you can execute the keystrokes
in the active window by pressing the Glossary key twice or in all windows
by pressing the Global Glossary key followed by the Glossary key.

2.6 CHANGES IN VS MENU OPERATION

VS menus that allow you to select an option by positioning the cursor
to a nonmodifiable numeric field containing a hexadecimal 04 <~>, 05 (_),
or OB <•> operate differently on a Multi-Station. Such menus include,
for example, the Manage Files and Libraries screens, PERSON screens, and
some Wang OFFICE screens.

On a standard workstation, you select options on such screens by
using the Tab, Back Tab, cursor control, and Horne keys to position the
cursor to the entry and pressing ENTER. On a Multi-Station, however, you
can also use the space bar and back space key to move the cursor among
the entries. In addition, you can type the first letter of any
corresponding option to move the cursor to the entry, provided that the
first letter is located two positions to the right of the menu pick.
Thus, a Multi-Station automatically converts many VS menus to word
processing style menus.

2-7

CHAPTER 3
THE PERSON UTILITY

3.1 INTRODUCTION

The PERSON utility, also called the Personality Editor, allows you to
define and maintain your workstation personality. The Personality Editor
manages each element of the personality through the following functions:

• Creates and maintains workstation personalities

• Allows you to customize the keyboard

• Allows you to edit and compile Glossary language programs and to
incorporate them in the workstation personality

• Allows you to modify the character set

• Allows you to set the default window configuration

• Allows you to select workstation features such as keyboard click
and type-ahead

• Allows you to define accent key combinations

• Allows you to modify the default capitalization rules

Through PERSON, you can edit all or some of the elements in a single
session. Because you define the personality by modifying a standard or
an existing personality, you need only define the elements that you wish
to change. The Personality Editor merges all your definitions with the
default selections and creates a single workstation personality.

The changes you make in the edited personality do not take effect
until you load the updated personality into the workstation. (Refer to
Chapter 2 for details on loading workstation personalities.) Through
PERSON, you can load the personality that you are editing at any stage,
allowing you to test your changes before you save them.

3-1

An overview of PERSON processing is provided in Figure 3-1.

Define
Source
Personality

Glossaries

Keyboard
layout

Select Default
Window
Configuration

Character Set

Optional
Features

Accent
Combinations

Modify Default
Capitalization

Edit a Different
Personality File

Put Edited
Personality
ina New File

Load Edited
Personality

Copy a Personality
into the Edited
Personality

Exit
PERSON

Figure 3-1.

Define
Source File

Display Keyboard
Section Containing
Key to be Changed

Select
Source of
Window Sizes

Place Cursor
at Key to be
Changed

Edit/Compile

Compile

Append a
Glossary
by-Example

Modify Key
Value or Function

link to
VSEDfTOR

Modify Codes
orCharacters ----------------------

Define Accent
Characters

Define Characters
that Can Receive
Accents

Modify Resulting Uppercase

Define Characters
Resulting from
the Combinations

Code or Character 1------------------...i
Corresponding to Each Value

NO

Define File

Keep or Discard
Changes to
Previous File

Define
Personality
to be Copied

NO

Keep or Discard
Changes

Define New File _______ __,_

PERSON Processing

3-2

3.2 RUNNING THE PERSONALITY EDITOR

You run PERSON like any VS utility, that is, through the Conunand
Processor RUN command C PFl) or a VS Procedure language RUN statement.
You enter PERSON in the FILE parameter; you do not have to specify a
library or volume name because the VS searches the @SYSTEM@ library on
the System Volume when the specified file name cannot be located in the
indicated library and volume location. Because the Personality Editor is
intended for interactive use, you cannot write a procedure to supply
values to any of PERSON's screens.

NOTE

You must have at least 304K of Segment 2 address space in
order to use the Glossary editing features of the PERSON
utility. You need only about 144K to run PERSON if you do
not want to edit a Glossary file.

The Personality Edi tor uses word processing style menus. If the
workstation is already configured as a Multi-Station (refer to Appendix
A), you move to an option with the space bar or by typing the first
letter of the entry, and select the option by pressing ENTER. If the
workstation is not a Multi-Station, you move to an option with the Tab,
Home, or cursor control keys, and select the option by pressing ENTER.
The PF key values for PERSON utility options correspond to similar word
processing functions.

Workstation personalities reside in VS files, typically named with
your User ID and located in the MWS library on the System Volume.
However, a personality file can reside in any VS file location. When
PERSON processing begins, the utility searches the MWS library on the
System Volume for a personality file named with your User ID. If such a
file does not exist, PERSON requests you to identify the personality you
want to edit on the Initial Personality Definition screen, shown in Figure
3-2. You can either create a new personality based on one of four
provided prototypes or edit an existing file. You can also press PF13 to
display more information or press PF16 to exit PERSON.

3-3

Figure 3-2. The Initial Personality Definition Screen

The four prototype personalities are:

• The personality currently loaded in the workstation

• The standard 2256C personality

• The WISCII personality (a 256 font-position character set used by
model 4230 workstations)

• The full-featured personality (an example personality based on
commonly-used keyboard modifications)

NOTE

You are editing only a ~ of your personality; the changes
are not permanent until you replace the personality file at
the end of the editing session.

3-4

After you identify the personality you want to edit, PERSON displays
the main menu, shown in Figure 3-3. The main menu allows you to edit
each of the seven personality elements. Pressing PF13 displays more
information; pressing PF16 terminates PERSON processing.

Figure 3-3. The Personality Editor Main Menu

From the main menu, you can also load the personality you are editing
into the workstation by pressing PFlO. PERSON loads the personality
without replacing the file, allowing you to test your changes before you
save them. By pressing PFll, you can copy one of the prototypes or a
specified existing personality into the edited personality. When you
press PFll, the copied personality entirely overwrites the personality
you are editing. This feature is useful when you want to replace an
existing personality with a different existing personality.

The main menu also provides two personality file maintenance
functions. Because PERSON always edits your default personality if it
exists, you can specify a different personality file from the main menu.
If you have changed the current personality, PERSON asks whether to keep
or discard the changes before it edits the new personality. You can also
place the current edited personality in a new file; this option allows
you, for example, to easily create several similar personalities.

3-5

3.3 DEFINING THE KEYBOARD

When you select the Keyboard Layout entry from the main menu, PERSON
allows you to interactively define the keyboard. PERSON successively
displays a representation of each unshifted and shifted section of the
keyboard in the following order:

1. Unshifted main keyboard (alphabetic) section

2. Shifted main keyboard section

3. Unshifted keypads section

4. Shifted keypads section

5. Unshifted PF keys section

6. Shifted PF keys section

7. Unshif ted extended universal section (found on 4230 and on some
Ergo 3 workstations)

8. Shifted extended universal section (found on 4230 and on some
Ergo 3 workstations)

You can move to the next keyboard section by pressing PF5 or to the
previous section by pressing PF4. When you press PF5 from the last
keyboard section, PERSON displays the first section. The Personality
Edi tor displays key representations for all types of VS keyboards; you
should define only those keys that correspond to the workstation you are
using. For example, if you have a Model 2256C workstation, you define
the numeric portion of the keypad section through the shifted and
unshifted keypad section; if you have a Model 4230 workstation, you
define the universal keys using the universal section and the numeric
keys using the numeric section. In either case, you define the cursor
key area through the keypad section.

You can modify the function of any key on the keyboard. To modify a
key, you display the appropriate keyboard section and position the cursor
next to the key representation. You can move within the keys in the
keyboard representation with all cursor control keys (e.g., left, tab,
and new line).

There are two types of workstation keys: alphanumeric keys, which
write characters, and function keys, which perform workstation functions.
You can redefine keys in two ways, depending on the type of the original
key. For alphanumeric keys, you can enter new alphanumeric values by
typing the new value on the key representation. For example, you can
change a QWERTY keyboard to an AZERTY keyboard by typing the new key value
in the appropriate location. Note that the changes do not take effect
until you load the edited personality.

3-6

NOTE

You should take care when changing alphanumeric key values,
because you can inadvertently remove a letter from the
keyboard if you load a personality that does not contain a
key for that letter. If this occurs, you should load one of
the prototype personalities to recover the full character
set.

For function keys or to assign a function to an alphanumeric key, you
assign a key a new function by pressing PF9 when the cursor is located at
that key's representation. Because one of the available functions allows
you to assign an ASCII value to the key, pressing PF9 also allows you to
assign an alphanumeric value to a function key.

When you press PF9, PERSON displays a set of key functions. An
example Keyboard Definition screen is displayed after you press PF9 as
shown in Figure 3-4. You select a function by positioning the cursor
next to the entry and pressing Enter. You can select from two pages of
key functions; you can display the second set of functions by pressing
PF4 or PF5 from the first screen.

Figure 3-4. An Example Keyboard Definition Screen

3-7

You can assign the following functions to workstation keys:

Function

add col
left

ADD col
left

add col
right

ADD col
right

add row
down

ADD row
down

add row
up

ADD row

Description

Adds one colwnn to the left of the window, increasing the
window size.

Adds ten columns to the left of the window, increasing the
window size.

Adds one column to the right of the window, increasing the
window size.

Adds ten columns to the right of the window, increasing
the window size.

Adds one row to the bottom of the window, increasing the
window size.

Adds three rows to the bottom of the window, increasing
the window size.

Adds one row to the top of the window, increasing the
window size.

Adds three rows to the top of the window, increasing the
up window size.

again Repeats the previous keystroke or glossary invocation
from the keyboard. For glossaries, the Again key only
reinvokes the glossary and does not repeat any keystrokes
you entered while the glossary was executing.

anchor Causes the workstation to ignore commands issued by
executing programs to move the cursor. Thus, you can
keep selected information visible in a window, regardless
of the progress of the executing program.

ascii x Types the ASCII character x. This option allows you to
assign a character value to any key.

back line Moves the cursor to the first tab stop on a previous
1 ine. If the screen contains no tab stops on previous
lines, the cursor moves to the first tab stop on the last
line of the screen that contains a tab stop.

back space Moves the cursor one column to the left and types a blank
(or pseudoblank).

back tab Moves the cursor to the beginning of the previous tab
stop. If the screen contains no previous tab stops, the
cursor moves to the last tab stop on the screen.

3-8

Function

buffered
help

caps lock

caps
unlock

cursor
to 1,1

del row
down

DEL row
down

del col
left

DEL col
left

del col
right

DEL col
right

del row
up

DEL row
up

delete

down

enter

Description

Issues a HELP command, which returns you to the Command
Processor or to the Operator's Console, depending on the
screen from which you pressed the key. If type-ahead is
enabled (ref er to Section 3. 7), the keystroke is
processed when all previous keystrokes in the type-ahead
buff er have been processed.

Converts typed lowercase characters to uppercase, even
when typed in a field that accepts lowercase characters.
The Caps Lock function affects only the alphabetic
characters.

Allows uppercase and lowercase keyboard entry.

Moves the cursor to row 1 and column 1.

Deletes one row from the bottom of the window, decreasing
the window size.

Deletes three rows from the bottom of the window,
decreasing the window size.

Deletes one column from the left of the window, decreasing
the window size.

Deletes ten columns from the left of the window,
decreasing the window size.

Deletes one column from the right of the window,
decreasing the window size.

Deletes ten columns from the right of the window,
decreasing the window size.

Deletes one row from the top of the window, decreasing the
window size.

Deletes three rows from the top of the window, decreasing
the window size.

Removes the character at the cursor location, shifts each
character in the field one position to the left, and adds
a blank (or pseudoblank) at the right edge of the field.

Moves the cursor down one row. If wraparound is enabled
(refer to Section 3.7) and the cursor is on row 24, the
cursor moves to row 1.

The standard ENTER key.

3-9

Function

erase

freeze
screen

full size
wnd

get next
wnd

get prev
wnd

global
glossary

glossary

help and
reset

hex xx

home

insert

Description

Erases the contents of the modifiable field beginning
from the cursor location. The field is filled with
blanks or pseudoblanks, as appropriate.

Disables any screen updates in this window until the Reset
key is pressed.

Expand the current window to full screen size.

The contents of the next higher-numbered window are moved
into the current window; if present, window borders do
not move. If you do not have window borders, a Get Next
Window command is identical to a Next Window command.

The contents of the next lower-numbered window are moved
into the current window; if present, window boundaries do
not move. If you do not have window boundaries, a Get
Previous Window command is identical to a Previous Window
command.

Executes in all windows the Glossary program referenced by
the next key pressed.

Executes in the current window the Glossary program
referenced by the next key pressed.

Performs a reset operation (clearing the type-ahead
buff er) and issues a HELP command.

Types the ASCII character represented by the indicated
hexadecimal code. You can enter a value ranging from 00
to 7F. This function allows you to directly type
characters that are not normally part of the keyboard.
Ref er to Appendices C and D for the hexadecimal codes for
each displayable character.

Moves the cursor to the first tab stop on the screen.

Inserts a blank (or pseudoblank) at the cursor location,
pushing each character to the right one position to the
right. The last character in the field is deleted; if
the deleted character is not a blank or pseudoblank, the
workstation alarm sounds.

3-10

Function

insert
mode

invisible
window

invoke
gl x

left

look down

look left

look right

look up

mov wnd
down

MOV wnd
down

Description

Places the workstation in insert mode or, if the
workstation is already in insert mode, cancels it. When
in insert mode, the keystrokes automatically push the text
ahead of them. Nonblank characters at the end of the
modifiable field are lost. While in insert mode, the Back
Space key performs a shift left and delete operation. If
you have selected the window status option (ref er to
Section 3.7), the Multi-Station displays a circumflex
character (A) while you are in insert mode.

Makes the active window invisible (zero size). If you
selected the window status option in the workstation
features (ref er to Section 3. 7) , an invisible window
displays as a degree symbol (0

) • You can restore an
invisible window with the Recall Size key. If you press
the invisible window key twice when removing the window,
the Recall Size key does not restore the window. You can
always restore an invisible window through the add and
full size window function keys.

Invokes the indicated glossary in a single keystroke. The
specified glossary value must range from 1 to 9.

Moves the cursor one column to the left. If wraparound
is enabled and the cursor is at column l, the cursor
moves to column 80 of the previous row. If wraparound is
enabled and the cursor is at column 1 of row l, the
cursor moves to row 24, coltunn 80.

Moves a previously obscured lower portion of the screen
into view when you are working within a window that is
smaller than a full screen.

Moves a previously obscured left portion of the screen
into view when you are working within a window that is
smaller than a full screen.

Moves a previously obscured right portion of the screen
into view when you are working within a window that is
smaller than a full screen.

Moves a previously obscured upper portion of the screen
into view when you are working within a window that is
smaller than a full screen.

Moves the current window down one row on the physical
screen, without changing the contents of the window.

Moves the current window down three rows on the physical
screen, without changing the contents of the window.

3-11

Function

mov wnd
left

MOV wnd
left

mov wnd
right

MOV wnd
right

mov wnd
up

MOV wnd
up

new line

next
window

pf-xx

pick up

previous
window

Description

Moves the current window one column to the left on the
physical screen, without changing the contents of the
window.

Moves the current window ten columns to the left on the
physical screen, without changing the contents of the
window.

Moves the current window one column to the right on the
physical screen, without changing the contents of the
window.

Moves the current window ten columns to the right on the
physical screen, without changing the contents of the
window.

Moves the current window up one row on the physical
screen, without changing the contents of the window.

Moves the current window up three rows on the physical
screen, without changing the contents of the window.

Moves the cursor to the first tab stop at or following
the start of the next 1 ine. If the screen contains no
other tab stops on subsequent lines, the cursor moves to
the first tab stop.

Makes the next higher-numbered window the active window.
For example, if the active window is window two, pressing
a next window key makes window three the active window.
If you have three windows and press next window while
window three is active, window one becomes active.

Issues a PF key, with xx in the range 1 to 32.

Places the characters from the cursor to the end of the
row in the pick-up buff er. Thus, the pickup buff er
cannot exceed 80 characters in length.

Makes the next lower-nwnbered window the active window.
For example, if the active window is window two, pressing
a previous window key makes window one the active
window. If you have three windows and press the previous
window key when window one is active, window three
becomes active.

3-12

Function Description

put down Places the contents of the pick-up buff er in the
modifiable field, beginning at the cursor. You can put
down the contents of the pick-up bu~f er any nwnber of
times and on any window. If the contents of the pick-up
buff er exceed the length of the modifiable field, only as
much of the buff er as will fit is put down in the field.
Lowercase text that is put down when the workstation is
in Caps Lock mode is automatically capitalized.

recall Within a modifiable field, returns the portion of the
field to the right of the cursor to its state when you
entered it. Once you leave a field and type something
else, you can no longer recall the prior field's former
contents.

recall wnd Restores a window to its former size. When you modify a
window size, the Multi-Station saves the most recent
size. However, when window size changes involve multiple
operations, recal 1 wnd can only restore the most recent
window size.

reset

rigkt

space

tab

up

Clears the type-ahead buffer,
high-intensity fields, and
glossaries.

sets blinking fields to
cancels any executing

Moves the cursor one column to the right. If wraparound
is enabled and the cursor is at column 80, the cursor
moves to column 1 of the next row. If wraparound is
enabled and the cursor is coltunn 80 of row 24, the cursor
moves to row 1 and column 1.

Types a blank or a pseudoblank, as appropriate.

Moves the cursor to the beginning of the next modifiable
field, numeric-protected field, or soft tab stop. Soft
tab stops include such tabs as the tabs defined within
the VS EDITOR for program formatting. If the screen
contains no more tab stops, the cursor moves to the first
tab stop on the screen.

Moves the cursor up one row. If wraparound is enabled
(refer to Section 3. 7) and the cursor is on row l, the
cursor moves to row 24.

3-13

3.4 MANAGING GLOSSARIES

When you select the Glossaries entry from the main menu, PERSON
allows you to edit and compile glossaries through the VS EDITOR, directly
compile an existing Glossary source file, and to append saved keystrokes
(glossary-by-example) to Glossary source code. The Glossary Management
screen, shown in Figure 3-5, requests you to identify the Glossary source
code that you want to edit or compile. The file name defaults to your
User ID residing in the GL library on the System Volume but you can
change the value to the name of any source code file. You must also
indicate whether you are editing and compiling the source code, just
compiling the source code, or appending the glossary-by-example. Section
3.4.1 discusses editing and compiling the source file; Section 3.4.2
describes the process of directly compiling an existing source file.
Section 3.4.3 describes appending a glossary-by-example.

Because Glossary object programs cannot exceed 2048 bytes in length,
the Glossary Manangement screen also displays the amount of space that is
used and the number of characters remaining for glossary definition.

The Glossary Management screen also allows you to load the edited
personality (including the most recently compiled Glossary program) by
pressing PFlO. You can copy the compiled Glossary program from one of
the four prototype personalities, from a specified personality, or from a
previously compiled Glossary object file if you press PFll. Pressing
PF13 displays a screen of more information; pressing PF16 returns control
to the main menu.

Figure 3-5. The Glossary Management Screen

3-14

3.4.1 Editing and Compiling Glossary Programs

When you select the edit and compile option from the Glossary
Management screen, PERSON links to the VS EDITOR. If the specified
Glossary source file exists, PERSON immediately displays the EDITOR main
menu. If the specified file does not exist, PERSON displays the EDITOR
Input screen, allowing you to respecify the file name from within the
EDITOR. Refer to the VS Program Development Tools Reference for details
on the use of the VS EDITOR.

You create and modify the Glossary source code using the VS EDITOR
functions. After you have completed your editing, pressing PF9 from the
EDITOR special menu compiles and, if the compilation is successful, loads
the object file into the edited personality. The object file is placed
in a file named with your User ID in the GLOBJ 1 ibrary on the System
Volume. You can also press PFlO to compile the source code. You create
or replace the source file with the EDITOR Create (PF5) and Replace CPF6)
functions. The compiled glossary is loaded into the workstation
personality that you are currently editing; the glossary is not a
permanent part of the personality until you save the entire personality
and does not operate until you load the edited personality into the
workstation.

3.4.2 Compiling the Source File

When you select the Compile option, you can directly compile the
source file specified on the Glossary Management screen. You cannot
specify any compilation options; no source listing is produced. The
object file is placed in a file with the same name as the source file in
the GLOBJ library on the System volume. If errors occur, the error
listing is placed in a file with a file name created by appending "ERRS"
to the first four characters of the source file name in your default
print file library.

If the compilation completed without errors, PERSON loads the
resulting object program into the Glossary area of the current
workstation personality. If errors were found, PERSON displays the
compilation return code on the Glossary Management screen and does not
update the workstation personality.

3.4.3 Appending a Glossary-by-Example

When you select the Append the glossary-by-example option, PERSON
translates the keystrokes that you have stored in the workstation into
the appropriate syntax for the Glossary language and places them at the
end of the source file indicated on the Glossary Management screen. (You
cannot append a glossary-by-example if you are running PERSON from a
workstation that is not configured as a Multi-Station because you can
only store a glossary-by-example on a Multi-Station.) PERSON places the
keystrokes in a procedure labelled GlossaryByExample with an options
clause that specifies the Glossary key.

3-15

NOTE

Unless you modify the key specification in the OPTIONS
clause, you cannot invoke a glossary-by-example.

Refer to Chapter 2 for details on creating glossaries-by-example.
When the keystrokes have been appended, PERSON displays a completion
message on the Glossary Management screen. If no glossary-by-example is
currently stored in the workstation, PERSON displays an error message.

3.5 MODIFYING THE CHARACTER SET

When you select the Character Set option from the main menu, PERSON
allows you to interactively define the workstation's character set.
After you modify the character set, the characters are displayed on the
screen according to your selections. For example, changing the character
"a" to "b" causes all occurrences of "a" on the screen to be displayed as
"b". However, you are only changing the way the character is displayed
on the screen; the actual character code is not changed.

PERSON displays a Character Set Definition screen, shown in Figure
3-6, when you select the Character Set option. The Character Set
Definition screen displays 8 groups of 3 columns, each containing 16
entries. The first column in each group represents the character code
sent by or to the VS (the index character). The second column represents
the hexadecimal code displayed on the screen. The third column represents
either the displayed ASCII value for the index character or the
workstation value, depending on the screen mode.

When you first display the Character Set Definition screen, the
second column in each group is modifiable (Hexadecimal mode). Pressing
PFS from the Character Set Def ini ti on changes the screen mode
successively from Hexadecimal mode to Display mode and then to ASCII
mode. Pressing PF5 when the screen is in ASCII mode updates the
character set and returns the screen to Hexadecimal mode. Note that if
you return to the main menu and then reselect the Character Set option,
the Character Set Definition screen is first displayed in the mode in
which you exited the option.

You can modify the character set in Hexadecimal or ASCII mode. You
modify the character by typing the new hexadecimal code or the new
character in the modifiable field that corresponds to the index character
to be changed and pressing ENTER or PF5 successively. The character
displayed in the ASCII column is not changed until the character set is
updated. When the screen is in Display mode the displayed character
corresponds to the character set currently loaded in the workstation
rather than to the hexadecimal code in the second column.

3-16

Figure 3-6. The Character Set Definition Screen

You can load the personality with the current version of the character
set into the workstation by pressing PFlO from the Character Set
Definition screen. You can also copy the character set from an existing
or prototype personality by pressing PFll. (Note that the prototype
full-featured personality uses the WISCII character set.) You can display
instructions by pressing PF13 or return to the main menu by pressing PF16.

3.6 SETTING THE DEFAULT WINDOW CONFIGURATION

Although you can always dynamically adjust the window sizes and
locations through the window function keys defined in Section 3. 3, this
option allows you to define a default window configuration that is loaded
with your personality. When you select the Window Sizes and Locations
option from the main menu, PERSON displays the Window Configuration
Selection screen, shown in Figure 3-7.

3-17

Figure 3-7. The Window Configuration Selection Screen

The Window Configuration Selection screen allows you to define your
own window configuration or to copy a window configuration from an
existing personality. To define your own window configuration, you use
the window function keys (or any glossaries you have defined to perform
window management functions) to display the desired configuration. After
you have arranged the default configuration, you select the Personality
Now in This Workstation option from the Window Configuration screen.

You can also copy the window configuration from the prototype 2256C,
WISC!!, or full-featured personalities, or from a specified existing file
by selecting the corresponding screen options. You can load the current
personality into the workstation by pressing PFlO or display information
about the prototype personalities by pressing PF13. You can also return
to the main menu without setting a default window configuration by
pressing PF16. After you set the window configuration, PERSON displays
the main menu.

3.7 SELECTING WORKSTATION FEATURES

When you select the Optional features option from the main menu, you
can control such features as the alarm and the keyboard click through
your workstation personality. PERSON displays the Optional Features
screen, shown in Figure 3-8, when you select this option. The Optional
Features screen displays which features are currently selected and allows
you to modify the selections. You select an option by moving to the
option with the space bar or the first character of the option and then
pressing the Insert key. You remove an option by pressing the Delete key
when the cursor is located at that option. You cannot modify the
Optional features if you are not running PERSON on a Multi-Station.

3-18

Figure 3-8. The Optional Features Screen

The Optional Features screen allows you to control the following
workstation features:

Feature

Blinker

Clicker

Beeper

Description

Determines whether fields with the blink attribute set
are displayed as blinking fields or as bright fields. If
you select this option, blinking fields blink.

Determines whether the keys click when you press them.
If you select the option, the keys click. On Model 4230
workstations, the volume of the key click is no longer
under software control. On other workstations, however,
the volume of the click is still controlled by the
Clicker control on the back of the workstation.

Determines whether the workstation alarm sounds when an
error occurs. If you select this option, the alarm sounds
when an error occurs. On Model 4230 workstations, the
volume of the alarm is no longer under software control.
On other workstations, however, the volume of the alarm
is still controlled by the Tone control on the back of
the workstation.

3-19

Feature

Auto
tab-in

Auto
tab-out

Status

Description

Determines whether the workstation automatically tabs to
the next modifiable field when you begin typing. If you
select this option, the workstation automatically adds
the tab.

Determines whether the workstation automatically tabs to
the next modifiable field when you fill the previous
modifiable field. Standard worltstations have this
feature. The workstation issues a tab after a completed
field if you select this option.

Displays the window status in rows 1 through 9 of column
80. Table 3-1 sununarizes the status symbols displayed
for the indicated states.

Cursor-wrap Determines whether the cursor wraps at the screen edges.
If you select this option, the cursor moves, for example,
from row 3, colwnn 80 to row 4, colwnn 1 when you press
the Right key and from row 24, column 5 to row l, column 5
when you press the Down key.

Type-ahead Determines whether the workstation stores keys that you
enter while the keyboard is locked. If you select this
option, the keystrokes are stored in a buff er and
processed successively. This feature allows you to
continue typing while you are waiting for system response.

Status

Active window

Keyboard
locked

Entries in
type-ahead
buff er

Insert mode

Caps Lock
mode

Glossary key
pressed

Invisible
window

Table 3-1. Window Status Symbols

Row Displayed Symbol 4230 Displayed Symbol

1 l, 2, 3, 4 l, 2, 3, 4

2 • •
2 • r

3

4

5 §

6 0

3-20

Table 3-1. Window Status Symbols (continued)

Status Row Dis:Qlayed Symbol 4230 Dis:elayed Symbol

Entries in 7 i /\
pick-up buff er

Anchor key 8 ±
pressed

Glossary 9 ASCII value ASCII value
executing

After you select or remove each optional feature with the Insert or
Delete key, pressing ENTER updates the edited personality with your
selections. You can press PFlO to load the personality inunediately. You
can also press PFll to copy the optional features selections from a
prototype or specified existing personality. Pressing PF13 displays
instructions; pressing PF16 returns control to the main menu.

3.8 DEFINING ACCENT KEY COMBINATIONS

When you select the Accent Combinations option from the main menu,
you can define accented characters as combinations of an accent key and a
character key. You invoke an accent combination by pressing the accent
key (note that the keyboard must have a key dedicated to the particular
accent key) and the key to be accented. For example, you generate a
lowercase a by pressing a key assigned (through Keyboard Layout) the
hexadecimal value 07 and a ~owercase a. In this way, the Multi-Station
does not have to dedicate a key to each accented character combination,
freeing the keyboard to perform other functions.

PERSON displays the Accent Combination screen, shown in Figure 3-9,
when you select this option from the main menu. The Accent Combination
screen allows you to modify a table of accent key and character
combinations. You can define the accent keys used, the characters that
can be accented, and the characters resulting from the accent
combination. You can modify the default table in Hexadecimal or ASCII
mode. Pressing PFS displays the Accent Combination screen successively
in Hexadecimal and ASCII modes, updating the table each time PFS is
pressed. You modify the table by positioning the cursor at the value you
want to change, entering the new value in hexadecimal or ASCII (depending
on the current screen mode), and pressing ENTER or PFS.

You can load the edited personality with the current accent
combinations immediately by pressing PFlO. You can also press PFll to
copy the accent table from a prototype or specified existing
personality. Pressing PF13 displays instructions; pressing PF16 returns
control to the main menu.

3-21

Figure 3-9. The Accent Combinations Screen

3.9 MODIFYING THE DEFAULT CAPITALIZATION RULES

When you select the Uppercase Fold-over Table option from the main
menu, you can modify the way in which the workstation automatically
capitalizes text you enter in uppercase-only fields. You can also
indicate that a character cannot be automatically capitalized by setting
the uppercase value equal to its lowercase value. PERSON allows you to
modify the uppercase result of al 1 characters in the character set;
typically, however, only the lowercase accented characters require any
modification.

PERSON displays the Fold-over Definition screen, shown in Figure
3-10, when you select the Uppercase Fold-over Table option. The
Fold-over Definition screen displays 8 groups of 3 columns, each
containing 16 entries. The first column in each group represents the
character code entered on the workstation (the index character); the
second column represents the corresponding hexadecimal code sent by the
workstation to the screen and the VS. The third column represents the
displayed value for the resulting value.

3-22

Figure 3-10. The Fold-over Definition Screen

When you first display the Fold-over Definition screen, the second
column in each group is modifiable (Hexadecimal mode). Pressing PF5 from
the Fold-over Definition screen changes the screen mode successively from
Hexadecimal mode to ASCII mode and updates the table. If you return to
the main menu and then reselect the Uppercase Fold-over option, the
Character Set Definition screen is first displayed in the mode in which
you exited the option.

You can modify the capitalization in Hexadecimal or ASCII mode. You
modify the character by typing the hexadecimal code or the character
corresponding to the desired uppercase result in the modifiable field
corresponding to the index character to be changed and pressing ENTER or
PFS successively. The character displayed in the ASCII column is not
changed until you update the table.

You can only modify the values corresponding to the ASCII character
set because the VS uses the ASCII character set. However, if you have a
Model 4230 workstation, which uses the WISCII character set, you can
assign any WISCII value to any ASCII character position. Refer to
Appendix C for the hexadecimal codes corresponding to the ASCII character
set and to Appendix D for the hexadecimal codes corresponding to the
WISCII character set.

You can load the personality with the current version of the
character set into the workstation by pressing PFlO from the Fold-over
Definition screen. You can also copy the table from an existing or
prototype personality by pressing PFll. You can display instructions by
pressing PF13 or return to the main menu by pressing PF16.

3-23

CHAPTER 4
THE GLOSSARY LANGUAGE

4.1 INTRODUCTION

The VS Glossary language is a simple, block-structured language that
allows you to write programs that process workstation keystrokes and
text. Through the Glossary language, you can receive, manipulate, and
send keystrokes to the workstation. Because Glossary contains operators
and functions, you can perform a full set of programming operations on
the keystrokes.

The Glossary language resembles a greatly-simplified PL/I. Thus,
PL/I programmers can write Glossary language programs almost immediately;
programmers in other languages can learn the Glossary language quickly
due to its simple structure.

Although your workstation personality contains only one object
program, the block structure of the Glossary language allows a single
program to perform a variety of functions. Each glossary function is
written as a single procedure (subroutine). The program consists of a
collection of procedures; refer to Section 4.3 for details on the
structure of a Glossary program.

4.2 PROGRAM FORMAT

A Glossary language source program consists of a sequence of variable
or procedure names, constants, comments, keywords, punctuation marks, and
compiler-directing statements arranged on lines that conform to the VS
EDITOR source format. The items that make up a program are Jmown as
tokens. The VS EDITOR reserves 8 columns for line numbers, allowing 72
columns of space on each line for programming. The line nwnbers used by
the VS EDITOR are used only for editing convenience and have no
significance in the source file.

Tokens must be organized into valid Glossary language syntax as
described in this chapter. Tokens are separated by one or more blanks or
by punctuation; the actual number of separating blanks is not significant,
allowing you to format your program text for readability. You can include
blank lines in your Glossary program.

4-1

4.2.1 Names

You can assign names to variables and procedures. Names consist of a
sequence of letters, digits, and the underscore character and must begin
with a letter. Names cannot contain embedded blanks or hyphens. A name
can contain any number of characters, but the compiler checks only the
first 32 characters. You can use both uppercase and lowercase text in
variable or procedure names; however, because the compiler maps all
values (including keyword specifications) to lowercase, you cannot define
distinct names with values that differ only in case. Example Glossary
language names follow:

F.

a
TEXT
Key
OFFset
Move Down

The Glossary language has a set of reserved words, listed in Appendix

4.2.2 Constants

Constants are a sequence of characters that represent specific
values. Numeric constants can range in value from -32768 to 32767;
character string constants represent alphanumeric values and are enclosed
in matching quotation marks. Differences in uppercase and lowercase are
significant in character string constants. Refer to Section 4.3 for more
information on constants and data types. The Glossary language compiler
considers the following values to be constants:

5
"this is a string constant"
'(-down-)'

4.2.3 Comments

Comments allow you to annotate the program text. The /* sequence
signals the beginning of a commment, and the */ sequence indicates its
end. Comments are equivalent to a space and can span one or more program
lines. You can place a comment in any location where you can place a
space. A comment can include any characters C including /*) except */.
Example program comments follow.

a = b; /* this is a comment */
if I* so is this */ a= b then call playout (a);

4-2

4.2.4 Keywords

The Glossary language contains a number of names, which when placed
in a statement, indicate a specific language function or option. By
placing keywords together, you construct statements, which indicate
programming instructions. Glossary language keywords are case
insensitive. Thus, THEN, Then, or then are all equivalent keyword
specifications. The Glossary language keywords are described in the
context of their containing statements; Appendix F contains a list of
Glossary language keywords.

4.2.5 Punctuation

Glossary program text is separated with punctuation marks under
certain conditions. When used, a punctuation mark serves as a separator
and eliminates the need for a blank to separate the tokens. Punctuation
marks include operator symbols (refer to Section 4.5 for a complete list
of Glossary language operators), the semicolon (;), colon (:), the comma
(,), and parentheses [()].

4.2.6 Compiler-Directing Statements

The VS Glossary language contains compiler-directives that alter the
program format or perform compile-time operations on the source
listings. All Compiler-directing statements begin with the % character
and must begin in column 1 of the source file. The available statements
are described as follows:

Statement

%include id

%define id text

%page

%noprint

%print

Description

Inserts the text of the file identified by id at
this location in the source file. The value id
should represent a file name in the same library
as the source file. If the value does not
reflect a file name, the compiler generates a
request for the file location at compilation
time. You can nest %include statements; that is,
a file that is included can itself contain a
%include statement.

Substitutes the value text for the value id from
this point on in the text. You must separate the
value text from id by at least one blank. The
text can extend to the end of the line, with
trailing blanks removed.

Issues a page feed when printing the program
listing.

Does not print the text following this statement
when printing the source listing.

Resumes printing the source listing (if such
printing has been suppressed by %noprint)

4-3

Statement

%pmap

%nopmap

%control

%nocontrol

4.3 PROORAM STRUCTURE

Description

Enables the preparation of object listing from
this point in the text.

Disables the preparation of object listing from
this point in the text.

Enables the printing of compiler directives from
this point in the text.

Disables the printing of compiler directives from
this point in the text. The compiler directives
are not printed by default.

A Glossary language program consists of a collection of procedures
and optional global declarations. A procedure is a group of statements
that falls between a PROCEDURE statement and a corresponding END
statement, and resembles a BASIC or FORTRAN subroutine, a COBOL Procedure
Division, or PL/I procedure. Declarations are recognized as global by
falling outside of any containing procedures. Only DECLARE statements
can reside outside of a procedure in a Glossary language program.

Each procedure has a name that is determined by the label on the
PROCEDURE statement. The name of the procedure is implicitly declared·as
a procedure name when used as a procedure label. The procedure's END
statement can optionally specify the procedure name; the compiler checks
the name if it is supplied. In the following example, procedure A is
identified by a PR<:X!EDURE statement and ends with a labeled END statement.

A: PROCEDURE;

END A;

A Glossary program does not execute each procedure sequentially from
beginning to end. Glossary procedures are only executed when another
procedure calls them or you invoke them by pressing designated
workstation keys (refer to Section 4.3.3). Thus, a single Glossary
program that is loaded into your workstation can perform a variety of
functions.

Each procedure is a self-contained program, consisting of declarations
and executable statements. Procedures can contain other procedures; such
procedures are ref erred to as nested procedures. The following example
demonstrates nested procedures:

4-4

A: Procedure;
C: Procedure;

End C;
B: Procedure;

End B;
End A;

Procedures define blocks in which variables are known. A variable is
known in the procedure in which it is declared and in any procedures that
are nested within the declaring procedure. If a nested procedure
redeclares the variable, the nested procedure can no longer reference the
original variable. The range of procedures in which a variable is known
is the scope of the variable. In the fol lowing example, character
variable A is known in procedures B and C, but not in procedures D and E.

B: Procedure;
declare A char;

C: Procedure;

End B;

End C;
D: Procedure;

declare A fixed;

End D;

E: Procedure;

End E;

Because global declarations do not fall within a procedure, they are
known to all procedures within the Glossary source file that physically
follow the declaration.

Like subroutines in other languages, you can also pass values to
Glossary language procedures, allowing you to override scope restrictions.
Because the Glossary language only passes the value of the variable, the
called procedure cannot directly modify the variable in the calling
procedure through the argument list. The number and the type of the
arguments in the procedure call must match the number and the type of
procedure parameters. An example procedure call with an argument list
follows:

CALL A CB, c, 10);

The Glossary language contains four types of procedures: subroutines,
functions, glossaries, and auto-start glossaries. You invoke each type
of procedure differently. Subsections 4.3.1 through 4.3.4 describe
subroutine, function, glossary, and auto-start procedures, respectively.

4-5

4.3.1 Subroutine Procedures

A subroutine procedure cannot be directly invoked from the
workstation but is invoked by a CALL statement that specifies the
procedure name and, optionally, an argument list. A subroutine procedure
can only return values to the calling procedure by modifying common
variables. A subroutine procedure cannot contain an OPTIONS or a RETURNS
clause. In the following example, procedures A and B are subroutine
procedures and must be invoked by a CALL statement.

B: PROCEDURE(x,y);

END B;
A: PROCEDURE;

CALL B(Key,Buffer);

END A;

4.3.2 Function Procedures

Function procedures must contain a RETURNS clause in the procedure
declaration. Functions produce a single value in the expression from
which they are called. If the function appeares on the right side of an
assigrunent statement, the resulting value is assigned to the variable on
the left. Functions are called by a reference to the procedure name with
its optional argument list. Because the Glossary language passes
arguments by value, function procedures represent the only way of
returning a value to a calling procedure.

The RETURNS clause identifies the data type of the value that the
procedure returns; the data type is specified as fixed, character, or
character(*). You cannot specify a specific length for character values
because it is computed when you invoke the procedure. The following
example illustrates the calling and declaration of function procedures:

lowercase: procedure(buffer) returns(char(*));
dcl buff er

End lowercase;
A: Procedure;

declare text char(50);

text = lowercase(keybuffer);

End A;

4.3.3 Glossary Procedures

Glossary procedures are identified by the OPTIONS clause and are
invoked when the user presses the Glossary key followed by the key
indicated in the OPTIONS clause. A CALL statement can also invoke a
Glossary procedure. You must specify the key in the OPTIONS clause as a
keystroke string in the format described in Section 4.8.1 (e.g., (-pf-1-)
or as a character string of length one (e.g., 'B').

4-6

NOTE

You will not be able to invoke the glossary unless the key
specified in the OPTIONS clause is defined in your
personality's keyboard layout. Also, if you use PF7 (Note),
PF16, or the Glossary key as the key in the OPTIONS clause,
you will not be able to create (PF7, PF16) or use (Glossary
key) glossaries-by-example.

A Glossary procedure cannot contain an argument list. The following
example illustrates a Glossary procedure that you invoke by pressing the
Glossary key followed by B.

Run_BACKUP: Procedure Options ('B');
call playout ('(-pf-1-)!!BACKUP!! (-enter-)');

End Run_BACKUP;

4.3.4 Auto-Start Procedures

An auto-start procedure is identified by the OPTIONSCMAIN) clause.
You can invoke an auto-start procedure in all windows whenever you load
the personality into the workstation. A Glossary program can contain
only one auto-start procedure. An Auto-start procedure is typically used
to log on all the windows on a Multi-Station or to initialize global
variables. An Auto-start procedure can also be called by other procedures
but cannot contain an argument list. An example Auto-start procedure
declaration follows; ref er to Appendix E for an example auto-start
glossary that logs on all of a user's windows.

Auto_Logon: Procedure Options(Main);

End Auto_Logon;

4.4 PROGRAM CONTROL

The Glossary language supports the following statements that allow you
to govern the flow of program control and to assign values to variables:

PROCEDURE
DECLARE
Assignment
IF ... THEN ••• [ELSE]
DO (statement grouping)
DO (iterative)
DO WHILE(expression)
DO FOREVER
CALL
Function calling
LEAVE
RETURN
STOP
END

4-7

This section discusses each Glossary language statement in a separate
subsection; the subsections are arranged alphabetically by statement
name. Each - subsection begins with the general format of the statement
and follows with a description and syntax examples.

4.4.l The Assigrunent Statement

variable_name = expression;

The assignment statement places the value of the expression on the
right of the equals sign in the indicated variable. The data type of the
receiving variable must match the expression's result because the
Glossary language performs no automatic data type conversions. For
assignments to a variable with the CHARACTER data type, the expression
result is truncated or padded on the right with blanks to match the
declared length of the variable name. Example assignment statements
follow:

X = A + B;
Y = SUBSTR(x,1,3);
Key = Getkey;

4.4.2 The CALL Statement

CALL proc_name [Carg_list)]

The CALL statement invokes the indicated procedure and passes any
specified arguments to the procedure. The referenced procedure must not
be a function procedure. You can call only procedures that precede the
CALL statement in the source listing; that is, you cannot call procedures
that have not yet been defined. A procedure cannot call itself. When
the procedure is called, the arguments are moved into the static
locations reserved for the procedure parameters. Example CALL statements
follow.

CALL Key_Process (Key);
Call Test;

4.4.3 The DECLARE Statement

{D~} name type [{i:ii~!i::~ue>}] [' name type [{i:ii~!i::~ue)}J · ·];
The DECLARE statement assigns a data type to a name. A DECLARE

statement that is within a procedure defines a name within the scope of
that procedure. A DECLARE statement that has no containing procedure
performs a global declaration. Ref er to Section 4. 3 for information on
scoping rules and refer to Section 4.5 for information on data types and
declaration.

4-8

You can also specify an initial value for the variable through the
INITIAL attribute. For FIXED variables, the initial value can be any
signed or unsigned numeric constant. For CHARACTER variables, the
initial value can be a character string constant or an implied (without
the concatenation operator) concatenation of character string constants.
Example variable initializations follow:

INITIAL (5)
INITIAL ('stuff')
INITIAL ('(-pf-1-)')
INITIAL ('implicitly ' 'concatenated' 'strings')
INITIAL(' (-pf-1-) BACKUP (-enter-) (-pf-1-)')

Example declaration statements follow:

declare A char(S);
dcl B fixed initial(5), C character(lQ), D char init('(-enter-)');

4.4.4 The DO Statement

The Glossary langauge supports four forms of the DO statement.

Form 1:
Form 2:
Form 3:
Form 4:

DO;
DO index var = value 1 to value_2;
DO WHILE (expression);
DO FOREVER;

Form 1 allows you to group a sequence of statements. A statement
grouping DO signals the beginning of a group of statements. The end of
the group is signalled by a corresponding END statement. A statement
grouping DO statement is required when more than one statement is to be
processed after a THEN or an ELSE clause. An example of a statement
grouping DO statement follows:

IF A = B THEN DO;
CALL PLAYOUT C'C-pf-1-)');
CALL WAITFORUNLOCK;

END;

Form 2 allows you to repeat the sequence of statements between the DO
statement and its corresponding END statement a specified number of times.
Form 2 is known as an iterative DO statement and corresponds to a BASIC
FOR ... NEXT loop, a FORTRAN DO ... CONTINUE loop, or a PL/I iterative DO
loop. The index variable must be declared with the fixed data type and
can be used within the DO-loop. The starting index value Cvalue_l) is
increased by one each time the loop is processed. You cannot specify the
increment step as you can in some other languages. If value_2 is less
than value_l, the loop is never executed. Unlike PL/I iterative DO
statements, the Glossary language reevaluates value_2 each time the loop
is executed. An example iterative DO statement follows:

DO I = 1 to 10;
A = A +I;

END;

4-9

Form 3 of the statement allows you to process the group of statements
between the DO statement and its corresponding END statement, while a
specified relation is true. The specified relation must produce a fixed
value and is interpreted as a logical result. The relation is tested
before the loop is executed. The DO WHILE construction corresponds to
its PL/I equivalent. An example DO WHILE group follows:

DO WHILE (A < B);
A = A+l;

END;

Form 4 of the statement allows you to continue processing a DO group
until an unrelated exit condition arises. If you do not include an exit
condition within the DO-group, you create an infinite loop. The DO
FOREVER construction is equivalent to a DO WHILE(l) statement.

An example DO FOREVER group follows:

DO FOREVER;
Key = GetKey;
If GetKey = '(-PF-1-)' then leave;

END;

4.4.5 The END Statement

END [procedure_name]

The END statement signals the end of a DO-group or a procedure. If
you specify a procedure name, the compiler checks the value for
consistency. You must have an END statement for each DO-group and
procedure in the program. An END statement is associated with the
nearest open DO-group or procedure unless it is labelled. The name is
not required to end a procedure. Example END statements follow.

END Key_Process;
END;

4.4.6 Function Calling

Variable= function_name [(argument_list)] ;

You invoke function procedures by specifying the name of the function
and its optional argument list on the right-hand side of an assigrunent
statement or in an expression. You can call any function that precedes
the calling procedure or that is a Glossary language built-in function.
When the function is called, the arguments are moved into the static
locations reserved for the function's parameters. Example function calls
follow.

A = GETKEY; I* Returns the key the user entered */
B = Test(Z, 1); I* Returns a value computed using Z and 1 */

4-10

4.4.7 The IF Statement

IF relation THEN statement [ELSE statement;]

The IF statement allows you to conditionally process a statement (or
group of statements if you specify a DO-group) according to a specified
relation. The specified relation must produce a fixed value and is
interpreted as a logical result. If the relation is true, the statement
specified in the THEN clause is executed. If the relation is false,
execution continues with the evaluation of any ELSE clause. If no ELSE
clause is present, the next statement in the procedure is processed.
Example IF statements follow:

if A=B then call getkey;
IF CX/2 < 3) THEN DO;

END;
ELSE DO;

END;

4.4.8 The LEAVE Statement

LEAVE;

The LEAVE statement transfers control outside its containing DO-loop
(not DO-group). The LEAVE statement is only allowed in iterative DO, DO
WHILE, and in DO FOREVER constructions. When a LEAVE statement is
encountered, control passes out of the nearest containing DO-loop,
regardless of the location of the LEAVE statement. For example, if a
LEAVE is located in a DO-group that is within a DO-loop, control passes
out of the DO-loop. Example LEAVE statements follow:

do forever;
if a<b then leave;

end;

do i = 0 to 10;
a = a +i;
if a > 100 then do;

a = 100;
leave; I* leaves the do i loop */

end;
end;

4-11

4.4.9 The PROCEDURE Statement

name: {~URE}[(parameter_ list l J [OPTIONS{< :~!ng >}] [RETURNS (type l J ;

The PROCEDURE statement defines a program block that is one of the
four types of procedures described in Section 4. 3. The name used to
label the PROCEDURE statement is assigned as the name of the procedure.
If you specify a parameter list, calls to the procedure must pass it a
corresponding list of arguments. You cannot specify a parameter list or
the RETURNS attribute if you specify the OPTIONS clause. The string
parameter in the OPTIONS clause must be one character long. Example
PROCEDURE statements follow:

A: PROCEDURE;
B: Procedure Options (main);
C: Procedure (x,y) returns (char(*));
D: Procedure (a,b,c,10);
E: Proc options('3');

4.4.10 The RETURN Statement

RETURN [(result)];

The RETURN statement returns control to the procedure that called the
current procedure. You can only specify a result when returning from a
function procedure. If you return a result, its data type must match
that specified in the function's PROCEDURE statement RETURNS clause. All
function procedures must execute a RETURN statement before an END
statement. Example RETURN statements follow:

RETURN;
RETURN (x);

RETURN ('string');

4.4.11 The STOP Statement

STOP;

The STOP statement suspends execution until the user presses the
Glossary key followed by PF16 or runs another glossary. An example STOP
statement follows:

STOP;

4.5 DATA TYPES AND DECLARATION

The data type determines which Glossary language operations can be
performed on a value and the amount of space the value reserves in the
object program. Values can be named as variables or used as constants.
You must assign all variable names a data type through the DECLARE
statement. This section discusses the data types supported by the
Glossary language, constants and variables, and the declaration process.

4-12

4.5.1 Data Types

The Glossary language contains two distinct data types: fixed
integer and character string. Integer and Boolean values are declared
with the FIXED data type; character values are declared with the
CHARACTER data type.

FIXED Data

Values with the FIXED data type can only contain integer values. The
Glossary language stores FIXED values as signed 16 bit numbers,
equivalent to PL/I FIXED BINARY(15) values or COBOL BINARY integers.
Thus, the Glossary language can represent integers ranging from -2 1 5 to
2 15-1 or from -32768 to 32767.

CHARACTER Data

The CHARACTER data type represents alphanumeric data. A CHARACTER
value can contain any value in the VS character set, including spaces and
quotation marks. You specify CHARACTER values within matching single or
double quotation marks. You can place quotation marks in the CHARACTER
value by specifying the quotation mark twice. CHARACTER values are often
referred to as character strings; example character strings follow.

'Tristan'
"He said, ""Don't go"""
'value'

The length attribute determines the maximum number of characters that
the character string can contain. The string always has the declared
length, regardless of the number of characters in the string. Character
strings assigned to variables with a longer declared length than the
string are padded on the right with blanks; character strings assigned to
variables with too small a declared length are truncated on the right.
For example, a value of 'text' is interpreted as follows by character
values with the indicated declared lengths:

Declared Length

3
4

10

Result

'tex'
'text'
'text¥>¥>¥>¥>~¥>'

CHARACTER values are limited to 255 characters in length. A
character string can have a length of zero; such a string is referred to
as a null string and is represented as ' ' or "" If you are specifying a
string that exceeds the line length of the VS EDITOR, you can use the
concatenation operator or a space (refer to Section 4.6) to continue the
string. Key function specifications (refer to Section 4.8.1) compile into
a single character. For example, the string "(-pf-1-) (-enter-) (-pf-1-)"
is three characters long.

4-13

Boolean Data

Boolean values are represented as the least significant bit of a FIXED
value. In general, even integer values are interpreted as a Boolean 0 and
odd integer values are interpreted as a Boolean 1. The result of a
successful logical operation is a -1; the result of an unsuccessful
logical operation is a 0. Programs that depend on receiving a +l as the
result of a successful logical operation can convert the value to a +1 by
anding the result with 1. Refer to the Search procedure in .Appendix E
for an example that converts the result of a relational operator.

4.5.2 Constants and Variables

The Glossary language supports two data representations: constants
and variables. Arrays and structures are not supported.

A constant is a value in a Glossary language program that does not
have an associated data name and that does not change in value.
Constants can have the CHARACTER or FIXED data type. Numeric values have
the FIXED data type; character strings have the CHARACTER data type. You
cannot explicitly declare constants with a data type; the compiler
assigns the data type to the constant when it allocates the constant' s
storage. The compiler assigns the length of the character string
constant as the length of the string. Glossary language constants and
their implicitly assigned data types are illustrated in the following
example:

N = .A*S; I*
C = "enter" I*

5 is a FIXED constant */
"enter" is a CHARACTER(5) constant */

.A data name that represents a single item with a declared data type
and with a value that you can change is a Glossary language variable. A
Glossary language variable can have the FIXED or CHARACTER data type.

4.5.3 Declaration

Each programmer-defined name in a Glossary language program, except
procedure names and names created through %define, must be explicitly
declared with a data type through the DECLARE statement. The data types
supported by the Glossary language are described in Section 4. 3. 2; this
section describes the declaration process.

The DECLARE statement associates a data type with a variable name
and, optionally, can assign an initial value. The general form of the
DECLARE statement is:

{~}name type [{i~i~:~:~ue>}] [,name type [{i:ii~:~::~ue>}] ...] ;

4-14

The data type must follow the name. If you omit the data type, the
compiler issues an error messsage and does not assign a default data type.
A single DECLARE statement can assign data types and initial values to as
many variables as desired; each name, data type, and, if specified,
initial value combination is separated from other name declarations by
commas. PL/I programmers should note that you cannot factor attributes
in the Glossary language.

You declare integer and Boolean variables by specifying the type
FIXED. Example FIXED variable declarations follow:

DECLARE A FIXED;
DECLARE CURSOR_COLUMN_COUNT FIXED, CURSOR_ROW_COUNT FIXED;

You declare character string variables by specifying the type
CHARACTER or its abbreviation CHAR. If you specify a string length, it
must immediately follow the CHARACTER keyword and must be an integer
constant enclosed in parentheses. If you omit the string length, the
string has length one. Example string variable declarations follow:

DECLARE LINE_BUFFER CHAR(80);
DECLARE FIELD CHARACTER;
DECLARE A CHARACTER, B CHARACTER (10), C CHARACTER(5);

You can optionally declare an initial value: a numeric constant for
a FIXED variable, a character string for CHARACTER variables. If you do
not initialize the variable, the Glossary language automatically
initializes FIXED variables to 0 and CHARACTER variables to spaces.

Variable declarations are subject to the scoping rules described in
Section 4.2.

4.6 EXPRESSIONS

The Glossary language contains arithmetic, relational, and string
operators to allow you to change or compare values. You can apply
Glossary operators to constants, to variable references, functions, and
built-in functions, and to other expressions. Operators can precede the
operand (prefix operators) or link two operands (infix operators). The
Glossary language supports the following operators:

4-15

Symbol Function Class

Sign change Pref ix arithmetic
+ Addition Inf ix arithmetic

Subtraction Inf ix arithmetic

* Multiplication Infix arithmetic
I Division Inf ix arithmetic
mod Modulo Inf ix arithmetic
= Equal to Inf ix relational
t=, <> Not equal to Inf ix relational
>, t<= Greater than Inf ix relational
(, t>= Less than Inf ix relational
>=, t< Greater than or equal to Inf ix relational
<=, t> Less than or equal to Inf ix relational
! ! Concatenation Inf ix string (character)
&, and Boolean and Inf ix string (fixed)
t, not Boolean not Pref ix string (fixed)
' or Boolean or Inf ix string Cf ixed) . ,

Because expressions can contain more than one operator and evaluation
order affects the result, Glossary assigns operator priority to determine
the order of expression evaluation. The Glossary language operators are
listed from highest to lowest priority as follows; operators that appear
on the same line have the same priority:

- (prefix), t, not
*, /,mod
+, -
! !
-, t=, (,), <=, >=, <>, t<, t>, t<=, t>=
&, and
! , or

Inf ix operations having the same priority are evaluated from
left-to-right; prefix operations with equal priority are evaluated from
right-to-left.

You can alter the evaluation order by enclosing portions of the
expression in parentheses. The operations within parentheses are
performed prior to those outside parentheses; nested parentheses are
evaluated from the inside out. Within parentheses, evaluation order is
determined by standard operator priority. In the following example,
which demonstrates evaluation order, variables A through E have values 1
through 5, respectively:

Expression Result

x = A+B x = 3
x = A+B*C x = 7
x -- A+CB*C) x = 7
x = CA+B)*C x = 9
x = (A* CB+c)) +D x = 9
x = A*B/C*D x = 2
x = A*B/(C*D) x = 0
x = A+B>C*E x = 0

4-16

The arithmetic operators perform the standard algebraic functions on
values with the FIXED data type. The Glossary language does not contain
an exponential operator. Arithmetic operators require integer operands
and always produce integer results.

The relational operators compare operands with the same data type.
Divisions that produce fractional results are truncated to the next
smaller integer. Regardless of the data types of the operands, however,
the result of a relational operator is a fixed number with a value of 0
for unsuccessful comparisons and -1 CFFFFh) for successful comparisons.

Relational operators compare fixed and character operands differently.
Fixed values are compared algebraically. Character values are compared
left-to-right, one character at a time, only for equality or inequality.
If the string lengths differ, the shorter value is extended on the right
with blanks to the length of the longer value. Boolean values are
logically limited to one bit; relational operators compare only the least
significant bit of the fixed value. The value is considered true if the
bit is 0 and false if it is 1.

For example, the following expressions have the indicated results:

Operand Values Expression Result

A=35; B=42 A > B 0

A='CAT'; B='DOG' A 1'= B -1

A = 5; DO WHILE(A); The loop is executed.

The Glossary language supports one string operator: concatenate,
which is an infix operator with two character operands. The concatenate
operator, ! ! , joins two strings, producing a single string result. The
length of the resulting string is the sum of the lengths of the input
strings. The resulting string cannot exceed 255 characters. The
Glossary compiler also assumes a concatenate operation whenever two
string constants are separated by one or more spaces or comments. The
following example illustrates the operation of the concatenate operator.

Operand Values

A='CAT'; B='DOG'

Expression

A ! ! B
"CAT" "DOG"

Result

'CATDOO'
"CATDOG"

The logical operators, & (and), (or), and 1' (not), perform Boolean
operations on fixed operands. The & and ! operators are infix operators
requiring two operands, while the 1' operator is a pref ix operator that
requires only one operand.

The & and ! operators compare each bit in the fixed operands. The &
operator generates a true bit (1) only if the corresponding bits in each
operand are 1; the ! operator generates a true bit if either operand has
a 1 in the tested bit.

4-17

Examples of the & and operators follow:

Operand 1 Operand 2 & Result ! Result

0 0 0 0
1 -1 1 -1
1 0 0 1
7 5 5 7

The t prefix operator logically negates Cone's complement) the value
of the operand. Thus, true values are converted to false results.
Examples of t operations follow:

Operand

0
-1

5

t Result

-1
0

-6

4.7 GENERAL BUILT-IN FUNCTIONS

The Glossary language incorporates a set of built-in functions that
allows you to perform general text manipulation and value testing. Each
built-in function is described separately in the following subsections.
The subsection begins with the general form of the function followed by a
description and examples.

4.7.1 BINARY

BINARY(string_ value)

The BINARY built-in function converts an input character string to a
value with the FIXED data type. For example, an input string of "80" is
converted to the numeric value of 80. BINARY converts the null string,
or any string that does not represent a numeric value, to a value of 0.
Example results of the BINARY built-in function follow:

Example

BINARY(I 72 I)
BINARY(I 4. 5 I)
BINARY("")

4.7.2 BYTE

Result

72
4
0

BYTE(numeric value)

The BYTE built-in function converts a small positive integer (ranging
from 0 to 255) into a 1-byte ASCII character. Example results of the
BYTE built-in function follow:

Example Result

BYTEC65) 'A'

4-18

4.7.3 CHAR

CHAR(numeric_value)

The CHAR built-in function converts the input numeric value to a
character string representation. If the input number is negative, the
output character string begins with a minus sign. Example results of the
CHAR built-in function follow:

Example

CHAR(-321)
CHAR(29)

4.7.4 INDEX

Result

'-321'
'29'

INDEX(Searched_string, Substring)

The INDEX built-in function searches the first input string for an
exact occurrence of the second input string. If the second string is
embedded in the first string, INDEX returns its starting location as an
integer constant. If the search was unsuccessful, INDEX returns 0.
Example results of the INDEX built-in function follow:

Example

INDEX('abcdefg', 'de')
INDEX(I 123 I, I 5 I)

4.7.5 LENGTH

LENGTH(string)

Result

4
0

The LENGTH built-in function returns the length of the input string
as an integer constant. For string variables, LENGTH returns the
declared length. Example results of the LENGTH built-in function follow:

Example

LENGTH(b)
LENGTH (' abc ')
LENGTH(' abc' ! ! "def")

4.7.6 RANK

RANK(string)

Result

5 (the variable b was declared as CHAR(5))
3
6

The RANK built-in function returns the ASCII character code (as an
integer constant) of the first character of the input string. Example
results of the RANK built-in function follow:

Example

RANK('A')
RANKC'AB')

Result

65
65

4-19

4.7.7 SUBSTR

You can use SUBSTR as either a function or pseudovariable. The
syntax for using SUBSTR as a function follows:

SUBSTR(string, first, length)

When you use SUBSTR as a function (e.g., on the right of an
assignment statement) , SUBSTR returns the portion of the input string
from the indicated starting location for the designated length. If the
designated length exceeds the remaining length of the string, the
resulting string is padded on the right with blanks. Example results of
the SUBSTR function follow:

Example Result

SUBSTRC'abcde', 2, 2)
SUBSTRC "ABC", 2, 3)

'be'
"BC II

The second form of the SUBSTR function allows you to replace the
indicated portion of the string with a specified value.

SUBSTR(destination_string, first, length) = value;

When you use SUBSTR on the left of an assigrunent statement, SUBSTR
places the indicated value in the portion of the destination string
beginning at the indicated starting location (first) for the designated
length. The value is padded on the right with blanks, if necessary.
PL/I programmers should note that the length cannot be omitted. If the
specified length exceeds the length of the subject string, the entire
string is used. Example results of SUBSTR assignment follow; in each
case the original value of the destination string is "xxxxxxxxxx".

Statement

SUBSTR(string, 3, 5) = 'aaa';
SUBSTR(string, l, 3) = 'yyy';

4.7.8 VERIFY

Resulting Destination String

'xxaaa xxx'
'yyyxxxxxxx'

VERIFYCSearched_string, Set_string)

The VERIFY built-in function compares the first input string byte-for
byte with the second string and returns the byte position (as an integer
constant) of the first byte in the first string that does not occur in
the second string. If the string lengths differ, the shorter string is
padded on the right with blanks to match the length of the second
string. If all of the characters in the first string are found in the
second string, VERIFY returns 0. Example results of the VERIFY built-in
function follow.

Example

VERIFYC'abc','def')
VERIFY('l.36x','0123456789.')

Result

1
5

4-20

4.8 ACCESSING THE WORKSTATION

The Glossary language incorporates a set of functions and subroutines
that allow you to control the workstation. You can write to and read
from the screen in a variety of manners and conununicate workstation
information to and from the program. The language also includes a syntax
for specifying keystrokes. This section describes the Glossary language
workstation interface.

4.8.1 Keystroke Syntax

The Glossary language has a specific syntax for keystrokes that allows
you to specify both workstation key functions and any alphanwneric string
that corresponds to a value typed on the workstation. You can specify any
Multi-Station key function through the Glossary language, whether or not
you dedicate a key to the function through the PERSON utility. Note, that
a key specified in the OPTIONS clause must be defined on the keyboard in
order to invoke the glossary.

Keystrokes that correspond to data entered on the workstation are
specified as character strings. For example, the string "BACKUP" is
equivalent to typing the text on the screen.

You distinguish key functions f rorn ordinary keystrokes by enclosing
the functions in parentheses and setting them off by dashes. Thus, the
general form for a key function entry is as follows:

(-function name-)

A key function specification is equivalent to one character in a character
string. As a result, you can specify a single character string as
"(-pf-1-)BACKUP(-enter-)". Table 4-1 relates the Glossary language syntax
for each Multi-Station key function; refer to Chapter 3 for definitions
of all the key functions.

Table 4-1. Glossary Language Key Function Syntax

Key Function Syntax

add col left I (-ad-lf-) I

ADD col left I {-AD-lf-) I

add col right ' C -ad-rt-) '
ADD col right ' {-AD-rt-) '
add row down I (-ad-dn-) I

ADD row down I (-AD-dn-) I

add row up ' (-ad-up-) '
ADD row up ' (-AD-up-) '
again '{-again-)'
anchor ' C -anchor-) '
ASCII x 'x'
back line '{-bklin-)'
back space ' C -bkspc-) '
back tab I { -bktab-) I

help I {-help-) I

caps lock '{-lock-)'
'\

4-21

Table 4-1. Glossary Language Key Function Syntax (Continued)

Key Function Syntax

caps unlock ' (-unlock-) '
cursor to 1,1 '(-1,1-)'
del row down I (-dl-dn-) I

DEL row down I (-DL-dn-) I

del col left I (-dl-lf-) I

DEL col left I (-DL-lf-) I

del col right I (-dl-rt-) I

DEL col right '(-DL-rt-)'
del row up I (-dl-Up-) I

DEL row up ' (-DL-up-) '
delete ' (-delet-) '
down '(-down-)'
enter ' (-enter-) '
erase ' (-erase-) '
freeze screen ' (-freez-) '
full size wnd '(-full-)'
get next wnd ' (-get-n-)'
get prev wnd I (-get-p-) I

global glossary not allowed
glossary I (-gl-) I

help and reset I (-help!-) I

hex xx '(-Oxxh-)'
home '(-home-)'
insert ' (-insrt-) '
insert mode 'C-insmd-)'
invisible window '(-invis-)'
invoke gl x not allowed
left I (-left-) I

look down I (-lk-dn-) I

look left I (-lk-lf-) I

look right I (-lk-rt-) I

look up I (-lk-Up-) I

mov wnd down ' C -mv-dn-) '
MOV wnd down I (-MV-dn-) I

mov wnd left '(-mv-lf-)'
MOV wnd left I (-MV-lf-) I

mov wnd right ' (-mv-rt-) '
MOV wnd right '(-MV-rt-)'
mov wnd up ' (-mv-up-) '
MOV wnd up '(-MV-up-)'
new line '(-nline-)'
next window ' C -n-wnd-) '
pf xx ' (-pf-xx-) ' or I (-pf-X-) I

pick up ' C -pi cup-) '
prev window I (-p-wnd-) I

put down ' C -putdn-) '
recall '(-rclsz-)'
reset ' (-reset-) '
right I (-right-) I

space ' (-space-) '
tab I (-tab-) I

up I (-Up-) I

4-22

4.8.2 Workstation Subroutines

The Glossary language incorporates a number of subroutines that
control the keyboard. You can invoke these subroutines directly with the
CALL statement. The available subroutines are described as follows in
alphabetical order:

CALL DELAY(value);

When the DELAY subroutine is called, the Glossary processor pauses for
the approximate amount of time you specify in the value argument. The
value is expressed as an integer value in tens of milliseconds. Example
calls to the DELAY subroutine follow:

Call Delay(lOO); /*pause for 1 second*/
Call delay(x/2);

Highlight

CALL HIGHLIGHT(Row, Column, Length);

The HIGHLIGHT subroutine causes the area of the screen represented by
the argument list to blink. Note that the Highlight subroutine overrides
the Blink specification in the PERSON utility. The row and column
specifications represent the first screen location to be highlighted; the
length determines the number of additional characters on that row which
should also be highlighted. Example calls to the HIGHLIGHT subroutine
follow:

Call highlight(l,10,70);
call HIGHLIGHT(3,CursorCol,l);

Playout

CALL PLAYOUT(string);

The PLAYOUT subroutine allows the procedure to issue keystrokes. You
specify the keystrokes to be issued as string constants or variables in
the call to PLAYOUT. A single call to PLAYOUT can specify up to 255
keystrokes. Each keystroke is a unique character string. Keystroke
character strings can be separated by blanks or the concatenate operator
within the argument list. If you specify the keystroke as a variable
reference, you must use the concatenate operator to specify additional
keystrokes in the call; additional keystrokes that you specify as
constants do not require the concatenate operator and can be separated by
blanks (or a comment, which is equivalent to a blank). PLAYOUT sends
each separate keystroke to the screen in a manner equivalent to a user
typing the keys directly on the keyboard. Example calls to PLAYOUT
follow:

CALL PLAYOUT ('(-pf-1-)BACKUP(-tab-)@SYSTEM@(-tab-)SYSTEM');
CALL PLAYOUT ('A' !!substr(screen(5),l,2));

4-23

SendPFKey

CALL SENDPFKEY(aid_value);

The SENDPFKEY subroutine issues the PF key represented by its AID
value. You specify the AID value as an integer value. Refer to Appendix
G for a list of the AID values for each PF key. Example calls to the
SENDPFKEY subroutine follow:

CALL SENDPFKEY(65);
CALL SendPFKey(66);

I* Issues PFl */
I* Issues PF2 */

WaitForUnlock

CALL WAITFORUNLOCK;

The WAITFORUNLOCK subroutine causes the procedure to stop executing
until the keyboard is unlocked. The subroutine is useful for ensuring
that the system has responded to previous writes to the screen before
reading from it. For example, the following Glossary program (invoked
while in the VS EDITOR) could produce unexpected results if the call to
WAITFORUNLOCK were omitted because the system may not have completed
writing 'abc' before the next call to playout attempts to read what was
written.

a: proc;
call playout('(-pf-11-)abc(-enter-)');
call waitforunlock;
call playout('(-pickup-)');

end a;

4.8.3 Workstation Functions

The Glossary language includes a set of special built-in functions
that are designed specifically to extract workstation information for the
program. The provided functions are describes as follows in alphabetical
order:

Clock

CLOCK;

The clock function returns a time in tens of milliseconds. The
receiving variable must have the fixed data type. An example statement
that uses the CLOCK built-in function follows:

A = clock;

4-24

CursorChar

CURSORCHAR

The CURSORCHAR function returns the character at the current cursor
location. If you assign the value to a variable, the receiving variable
must have the character data type. Example references to the CURSORCHAR
function follow:

'A = CursorChar;
B = ''A'!!CursorChar;

CursorCol

Form 1: variable_name = CURSORCOL;

Form 2: · CURSORCOL = expression;

Form 1 of the CURSORCOL function allows you to extract the current
colwnn location of the cursor and place it in a variable with the fixed
data type. Form 2 of the CURSORCOL function moves the cursor to the
coltunn indicated by the specified integer-valued expression. Examples of
the CURSORCOL function follow:

CURSORCOL = 5;
X = CursorCol;

Cursor Row

I* Moves the cursor to column 5 */

Form 1: variable_name = CURSORROW;

Form 2: CURSORROW = expression;

Form 1 of the CURSORROW function allows you to extract the current
row location of the cursor and place it in a variable with the fixed data
type. Form 2 of the CURSORROW function moves the cursor to the row
indicated by the specified integer-valued expression. Examples of the
CURSORROW function follow:

CURSORROW = 5;
X = CursorRow;

GetKey

GETKEY

I* Moves the cursor to row 5 */

The GETKEY function causes the procedure to wait for the user to
enter a keystroke and then returns the keystroke to the program. Thus,
you can set a variable equal to the key that a user entered. Example
GETKEY references follow:

Key = GetKey;
NewKeys = GetKey!!'l';

4-25

Screen

SCREEN Crow_nwnber);

The SCREEN function returns the contents of the screen on the
specified row. If used in an assignment statement, the receiving variable
must have the character data type; if the receiving variable has a length
less than 80, normal string truncation occurs. You can also use the
SCREEN function anywhere a character string reference is valid. SCREEN
always returns the entire screen line; the SUBSTR function allows you to
extract a portion of the line. Example references to the SCREEN function
follow:

A = SCREEN Cl);
PickUp = substr(screen(4),22,3);

TypingRate

TYPINGRATE = numeric_expression;

The TYPINGRATE function allows you to set the approximate typing rate
of a PLAYOUT operation. The numeric expression must evaluate to an
integer constant that expresses the rate in tens of milliseconds per
character. The TYPINGRATE function is simulating different typing
rates. An example reference to TYPINGRATE follows:

Typingrate = 100/2;

Window

WINDOW

The WINDOW function returns the value of the current window as a
fixed integer. Example references to the WINDOW built-in function follow:

call playout ("ML"!! char(window));
b = window;

4.9 PROGRAMMER'S NOTES

4.9.1 Boolean Values in Glossary Procedures

Boolean values are represented in Glossary procedures as variables
with the FIXED data type. The Glossary language uses -1 CFFFFh) to
indicate True (success) and 0 to indicate False (failure). Thus, a
comparison of equal values yields -1 and a comparison of unequal values
yields 0. To convert the result to the usual PL/I values CO for false, 1
for true) , AND the result with 1. The AND, OR, and NOT operations are
performed in a bit-wise fashion on values of FIXED type.

4-26

4.9.2 Simultaneity in Glossaries

A single Glossary procedure can run independently in each window
simultaneously. Auto-start glossaries (the procedure containing the
options(main) clause) and glossaries invoked through the Global Glossary
key run in all windows. The variables in a Glossary program are equally
accessible to all windows because they have the equivalent of the PL/I
STATIC storage class. As a result, values set by a procedure running in
one window can be destroyed by a procedure running in another window.
However, except for using the same variables, there is no way for what is
happening in one window to affect what is happening in another.

Each window runs its glossary, executing a certain number of
instructions Ci ts time-slice) , and then switches to another window in a
round-robin fashion. If a glossary exceeds its time-slice, stops
(through the STOP statement or the Reset key), or is forced to wait
(waitforunlock, getkey, delay, or playout), a glossary in another window
can begin executing. If a glossary is waiting, it wi 11 automatically
resume after the waiting condition is satisfied. If it is stopped, you
can either invoke a fresh glossary on top of it or you can restart the
glossary from where it was stopped by pressing the Glossary key followed
by PF16 while its window is active.

Independently of what is occurring in other windows, you can invoke a
Glossary procedure by pressing the Glossary key (and stop the glossary by
pressing Reset) in the active window. You can also change the active
window by pressing the Get Next Window, Get Previous Window, Next Window
or Previous Window keys, which act directly, and bypassing the GetKey
function. It is often hard to predict the results if a glossary is
playing out window switching commands and they are also being
simultaneously entered from the keyboard.

4-27

APPENDIX A
SYSTEM ADMINISTRATION

A.l INTRODUCTION

The system configuration determines which workstations can support
the VS Multi-Station software and how many windows a particular
Multi-Station has. This appendix describes the system requirements, the
procedure for configuring Multi-Stations, and the impact of Multi-Stations
on the number of available tasks.

A.2 SYSTEM REQUIREMENTS

The VS Multi-Station package runs on the following VS systems:

VS-25
VS-45
VS-50, VS-60, or VS-80 with a 22Vl7 !OP at Revision 1 (Rl) or higher
VS-85, VS-90, or VS-100 with a 22V27 !OP at R3 or higher

The VS Multi-Station package operates on the following workstations:

2256C
5300/VS-IIS64 Ergo 3
2866C4 Ergo 2
Wang PC in VS emulation mode with PC-PM041 local conununications
4230

The VS Multi-Station package requires Release 6.20 or later of the VS
Operating System.

A.3 CONFIGURING A VS WORKSTATION AS A MULTI-STATION

You define a workstation as a Multi-Station through the GENEDIT
utility. The VS System Administrator's Reference describes the general
use of the GENEDIT utility; this section describes the steps you must
follow to configure the system with Multi-Stations and assumes
familiarity with GENEDIT.

A-1

You can consider a Multi-Station to be one physical device that is
connected to up to four logical tasks. Through GENEDIT, you assign a
port and a device type to a device number (task). A Multi-Station with
four windows is defined as four separate device numbers. However,
because the Multi-Station is only one physical device, each device number
is assigned to the same port.

The device type of the Multi-Station depends only on the window number
represented by that particular task. All Multi-Stations, regardless of
the workstation model, have the device type MULTIWSx, where x ranges from
0 to 3. The task with device type MULTIWSO corresponds to window 1;
MULTIWS2 corresponds to window 3. You must assign the device types in
ascending order; for example, a Multi-Station with two windows must have
device types MULTIWSO and MULTIWSl. You cannot define a Multi-Station
with only device types MULTIWSl and MULTIWS2. Note that the device
numbers do not have to be consecutive; three windows on a Multi-Station
can have, for example, device numbers 7, 23, and 11. You should also
note that because IOPs typically have only twice as many device numbers
as ports, you may have unused ports on an IOP that supports a large
number of Multi-Stations with a large number of windows.

NOTE

You cannot define the main Operator's Console (device number
0 and port number 0) as a Multi-Station.

You must initialize the system to activate the modified configuration
file. When the system initialization is complete, each configured
Multi-Station contains a default personality that readily identifies it
as Multi-Station by its use of the Dec Tab character instead of a
pseudoblank.

The following example illustrates the process of configuring a system
with three Multi-Stations with differing numbers of windows:

Device Number Device TyPe Port Number

1 MULTIWSO 1
4 MULTIWSl 1
5 MULTIWS2 1
7 MULTIWS3 1
8 MULTIWSO 2
9 MULTIWSO 3

11 MULTIWSl 3
12 MULTIWS2 3

The Multi-Station attached to port number 1 has four windows, with
device numbers 1, 4, 5, and 7. The Multi-Station attached to port 2 has
one window, with device number 8. The Multi-Station attached to port 3
has three windows, identified by device numbers 9, 11, and 12,
respectively.

A-2

Figure A-1 shows two sample screens from GENEDIT that contain the
configuration for a serial IOP that controls workstations, Multi-Stations,
and printers.

Figure A-1. Sample GENEDIT Screens

A-3

A.4 TASK RESTRICTIONS

Although a Multi-Station only occupies one port on an IOP, it
reserves as many tasks as it has windows. The maximwn number of tasks on
the system is unchanged, but the number of physical workstations that can
be supported is directly reduced by each additional window on a
Multi-Station. For example, if a system could previously support 32
workstations and configures 3 Multi-Stations, each with four windows, the
newly-configured system can support only 23 workstations. The effect on
system performance of four programs running on a Multi-Station with four
windows is roughly comparable to that of those programs running on four
individual workstations.

A-4

APPENDIX B
MULTI-STATION UTILITY GETPARM REQUIREMENTS

B. l INTRODUCTION TO GETPARMS

The VS Operating System supports a supervisor call routine (SVC), the
GETPARM SVC, that solicits and accepts runtime parameter information, and
displays and awaits acknowledgement of runtime messages. GETPARM
generated prompts are displayed on the workstation screen during normal
execution. These prompts solicit parameter information from you or from
a controlling procedure. Values entered from either source are
verified. If the values entered are not acceptable, the GETPARM SVC
responds with an error message.

GETPARM processing is distinguished from other methods of obtaining
runtime information primarily because it can interface with a procedure.
(Ref er to the VS Procedure Language Reference.) A procedure is the
preferred source of information for a GETPARM request; GETPARM prompts
never appear on the workstation screen when they are satisfied by a
Procedure language ENTER statement. Therefore, you can precisely control
the interaction between a user and an executing program. GETPARM
requests are used wherever possible by the VS system programs to solicit
parameter information. GETPARM processing enables you to run system
programs with little or no user interaction by supplying most or all of
the required program parameters from procedures.

B.2 THE STRUCTURE OF A GETPARM

Each GETPARM request in a program is identified with a parameter
reference name C prname). The prname for each request is, in general,
unique within that program. System programs generally observe certain
conventions when identifying GETPARM requests with prnames; for example,
a GETPARM request soliciting information for an input file is usually
identified with the prname INPUT, while a GETPARM soliciting parameters
for an output file is named OUTPUT.

Many GETPARM requests for information contain one or more modifiable
fields into which you or a procedure can enter information. Each field
is labeled with a keyword. When a GETPARM request is displayed, the
keyword for each field provides a description of the information to be
supplied for that field. Certain conventions are conunonly used in
keyword naming. For example, a request for a file name often uses the
keyword FILE. Also, many GETPARM requests solicit a PF key response
C such as 16 = Exit Program) . No keyword is associated with a PF key
choice; only the PF key number itself is specified.

B-1

APPENDIX D
THE WISCII CHARACTER SET

0000 0

0001 1

0010 2

0011 3

0100 4

0101 5

0110 6

0111 7

1000 8

1001 9

1010 A

1011 B

1100 c

1101 D

1110 E

1 1 1 1 F

~
:::J

~
0
c:

"C
"'5
0

.s:::.
en

"C
c:
co

"C

~
CD en
CD c::

1 2 3 4 5 6 7 8 9 A B C D E F

SPACE Q @ P p 0 A a G 9 p p £

1 A Q a q t A a U ij D t5 f

" 2 B R b r .,.. A a i i y y ¥

3 c s c s

$ 4 D T d t - A. a

% 5 E u e u '-- - -
& 6 F V f v I A a i i u ~

7 G W g w • ! t L·L l·I U u

8 H X h x !! .£ re N n 0 o
9 I Y i y 1 <; y 6 Q © TM

* J z j z ! :l:oOo®Q

+ K k l • 0 0

< L \ - E:
= M] m } ± E e 6 o « »

> N l n e <E re §

I ? 0 0 ¢

0-1

APPENDIX E
A S~PLE GLOSSARY PROORAM

The following example Glossary program contains a variety of
functions and illustrates the power of the Glossary language:

I* GLOBAL KEY NAMES *I
I* Accessible from all procedures. *I

%define One One I (-1,1-) I

%define AddDown3 I (-Al)-dn-) I

%define AddLef tlO I (-AD-lf-) I

%define AddRightlO I (-Al)-rt-) I

%define AddUp3 I (-Al)-up-) I

%define De1Down3 I (-DL-dn-) I

%define DelLef tlO I (-DL-lf-) I

%define DelRightlO ' C-DL-rt-) '
%define De1Up3 ' (-DL-up-) '
%define MovDown3 I (-MV-dn-) I

%define MovLef tlO I (-MV-lf-) I

%define MovRightlO '(-MV-rt-)'
%define MovUp3 ' (-MV-up-) '
%define AddDownl I (-ad-dn-) I

%define AddLef tl I (-ad-lf-) I

%define AddRightl '(-ad-rt-)'
%define AddUpl ' (-ad-up-) '
%define Again ' (-again-) '
%define Anchor ' (-anchr-) '
%define BackLine I (-bklin-) I

%define BackSpace ' (-bkspc-) '
%define BackTab I (-bktab-) I

%define Delete ' (-delet-) '
%define DelDownl I (-dl-dn-) I

%define DelLef tl I (-dl-lf-) I

%define DelRightl I (-dl-rt-) I

%define DelUpl I (-dl-Up-) I

%define Down '(-down-)'
%define Enter ' (-enter-) '
%define Erase '(-erase-)'
%define Freeze ' (-freez-) '
%define Full I (-full-) I

%define GetNext '(-get-n-)'
%define GetPrev I (-get-p-) I

E-1

I* GLOBAL KEY NAMES *I
I* (continued) *I

%define GI '(-gl-)'
%define Help I (-help-) I

%define OhHelp I (-help!-) I

%define Home '(-home-)'
%define InsertMode ' (-insmd-) '
%define Insert ' (-insrt-) '
%define Invisible ' (-invis-) '
%define Left I (-left-) I

%define LookDownl I (-lk-dn-) I

%define LookLef tl I (-lk-lf-) I

%define LookRightl I (-lk-rt-) I

%define LookUpl I (-lk-up-) I

%define CapsLock '(-lock-)'
%define MovDownl ' (-rnv-dn-) '
%define MovLef tl '(-mv-lf-)'
%define MovRightl ' (-rnv-rt-) '
%define MovUpl ' (-rnv-up-) '
%define Next Window ' (-n-wnd-) '
%define NewLine '(-nline-)'
%define PrevWindow I (-p-wnd-) I

%define PFl I (-pf-1-) I

%define PF2 I (-pf-2-) I

%define PF3 I (-pf-3-) I

%define PF4 I (-pf-4-) I

%define PF5 I (-pf-5-) I

%define PF6 I (-pf-6-) I

%define PF7 I (-pf-7-) I

%define PF8 I (-pf-8-) I

%define PF9 I (-pf-9-) I

%define PFlO I (-pf-10-) I

%define PFll I (-pf-11-) I

%define PF12 I (-pf-12-) I

%define PF13 I (-pf-13-) I

%define PF14 I (-pf-14-) I

%define PF15 I (-pf-15-) I

%define PF16 I (-pf-16-) I

%define PF17 I (-pf-17-) I

%define PF18 I (-pf-18-) I

%define PF19 I (-pf-19-) I

%define PF20 I (-pf-20-) I

%define PF21 ' (-pf-21-) '
%define PF22 I (-pf-21-) I

%define PF23 I (-pf-23-) I

%define PF24 I (-pf-24-) I

%define PF25 I (-pf-25-) I

%define PF26 I (-pf-26-) I

%define PF27 I (-pf-27-) I

%define PF28 I (-pf-28-) I

%define PF29 I (-pf-29-) I

%define PF30 I (-pf-30-) I

%define PF31 I (-pf-31-) I

%define PF32 I (-pf-32-) I

E-2

I* GLOBAL KEY NAMES *I
I* (continued) *I

%define Pickup '(-picup-)'
%define Put Down I (-putdn-) I

%define RecallSize ' (-rclsz-) '
%define Recall ' (-recal-) '
%define Reset ' (-reset-) '
%define Right I (-right-) I

%define Space ' (-space-) '
%define Tab I (-tab-) I

%define Caps Unlock ' (-unloc-) '
%define Up I (-up-) I

I* GLOBAL V A R I A B L E S *I
I* Accessible from all procedures. *I

declare Key char; I* Generic character buff er *I
declare Key Rank fixed; I* Rank of the current char *I

declare CurrentRow fixed; I* Saved cursor coordinates *I
declare CurrentCol fixed; I* These are saved by the *I
declare EndRow fixed; I* CursorSave routine and *I
declare EndCol fixed; I* restored by CursorRestore. *I

declare PickupBuff er char C 80); I* Secondary pickup buff er *I
declare PickupSize fixed; I* Current pickup text size *I

declare Linel char (6); I* Editor line number 1 *I
declare Line2 char (6); I* Editor line number 2 *I

declare Address char (6); I* Current debugger address *I

declare Total fixed; I* Arithmetic accumulator *I

declare HexText char (6); I* Hex/decimal conversion *I
declare Counter fixed; I* work areas *I
declare Digit fixed;

declare Column fixed; I* Generic column save area *I

E-3

I*

*I

This routine searches right (Direction = 1) or left (-1) for a
match (1) or a mismatch (0) of the requested character starting
in the specified column, and returns the column number in which
the character was found, or returns zero if no match.

Search: procedure (Request, Match, Direction, Column) returns (fixed);
declare

Request char,
Direction fixed,

declare Equal fixed;

Match fixed,
Column fixed;

if rank (Request) > 127 then
return (0);

do forever;

I* If a control character,
I* it will never be found.

*I
*I

Equal = 1 and (Request = substr (Screen Ccursorrow), Column, 1));

if Match = Equal then
return (Column);

Column = Column + Direction;

I* Result is the exclusive or */
I* of the match flag and the */
I* comparison result. *I

if Column < 1 ! Column > 80 then /* Search a single line only *I
return (0);

end;

end Search;

I*

*I

This routine searches left from the current cursor position
to the last nonblank character.

SearchLeft: procedure options ('1');

Column= Search(' ', Q, -1, cursorcol);

if Column < 80 then
cursorcol = Column + 1;

I* Set cursor only if the
I* character was found.

end SearchLeft;

I*

*I

This routine searches right from the current cursor position
to the first nonblank character.

SearchRight: procedure options ('3');

Column= Search(' ', 0, l, cursorcol);

if Column > 1 then
cursorcol = Column - l;

end SearchRight;

I* Set cursor only if the
I* character was found.

E-4

*I
*I

*I
*I

I*
These routines save and restore the current cursor position.
Note the use of the saved positions in the "Names" routine.

*I
CursorSave: procedure options (Anchor);

CurrentRow = cursorrow;
CurrentCol = cursorcol;

end CursorSave;

CursorRestore: procedure options (Home);

call WaitForUnlock;
cursorrow = CurrentRow;
cursorcol = CurrentCol;

end CursorRestore;

I*
These routines set the cursor to column l, (in the Editor) column 48,
and column 80, respectively.

*I
LeftMargin: procedure options ('4');

cursorcol = l;
end LeftMargin;

MidScreen: procedure options ('5');

cursorcol = 48;

end MidScreen;

RightMargin: procedure options ('6');

cursorcol = 80;

end RightMargin;

E-5

I*
This routine waits for the requested character and echoes
all other keystrokes to the workstation. It also saves the
ending cursor row and column.

*I
WaitFor: procedure (Request);
declare

Request char;

Key = getkey;
do while (Keyt= Request);

call playout (Key);
Key = getkey;
end;

EndRow = cursorrow;
EndCol = cursorcol;

end WaitFor;

I*

I*
I*
I*
I*

I*
I*

Get a keystroke. *I
If it's not the one being *I
waited for, just echo it *I
back, and keep waiting. *I

Save cursor coordinates *I
for the calling routine. *I

This routine updates a running display once every 5 seconds.
*I
Wait: procedure options ('w');

do forever;
call playout (Enter);
call delay (500);
end;

end Wait;

I* Loop until cancelled. */
I* Strike ENTER. *I
I* Wait 5 seconds CZ80 time) */
I* and repeat until cancelled */

E-6

I*

*I

This routine provides a second, variable-length pickup buffer.
The pickup string is from the cursor position at the moment of
invocation, up to the cursor position when ENTER is struck.

Remember: procedure options (Pickup);
declare Start fixed;

Start = cursorcol;
call WaitFor (Enter);

PickupSize = EndCol - Start + 1;

I* Pickup from here... *I
I* to current cursor column. */

PickupBuffer = substr (Screen CEndRow),, Start, PickupSize);

end Remember;

I*

*I

This routine plays out the contents of the pickup buff er
created by the "Remember" routine above.

PlayBack: procedure options (PutDown);

call CursorSave;
call playout (substr (PickupBuffer, 1, PickupSize));
call CursorRestore;

end PlayBack;

E-7

I*
These routines implement a simple column adding facility.

*I
Zero: procedure options ('0');

Total = O;
end Zero;

Count: procedure options('+');
declare

Check fixed;

do forever;
Check = O;

I* Clear the accumulator *I

I* Check for invalid input *I

Check= binary Csubstr (Screen (cursorrow), cursorcol, 5));

if Check = 0 then
stop;

Total = Total + Check;
cursorrow = cursorrow + 1;
call waitforunlock;
end;

end Count;

I*

I* If invalid input, stop. *I

I* Accumulate the total */
I* Go to next row */
I* Wait for screen to settle */

This routine implements a simple column numbering facility.
*I
Number: procedure options('#');

do forever;
call CursorSave;

Total = Total + l;
if Total < 10 then

cursorcol = cursorcol + l;

call playout (char (Total));

cursorcol = CurrentCol;
cursorrow = cursorrow + l;
call waitforunlock;

if cursorrow < CurrentRow then
stop;

end;

end Nwnber;

I* Remember starting column

I* Increment total
I* If only one digit in it,
I* right-justify it.

I* Play out the total

*I

*I
*I
*I

*I

I* Return to starting column */
I* Move down to next row. */
I* Wait for screen to settle. */

I* If cursor has wrapped
I* around, stop.
I* Else, do the next line.

E-8

*I
*I
*I

I*

*I

This routine switches the case of the character(s) at the
current cursor position from lowercase to uppercase.

UpCase: procedure options (Up);

KeyRank =Search(' ', 0, l, cursorcol);
if KeyRank t= 0 then

cursorcol = KeyRank;

do while (cursorchar t=' ');
KeyRank =rank (cursorchar);

if KeyRank >=rank ('a') and KeyRank <=rank ('z') then
call playout (byte (KeyRank - rank(' ')));

else
cursorcol = cursorcol + l;

end;

end UpCase;

I*

*I

This routine switches the case of the character(s) at the
current cursor position from uppercase to lowercase.

DownCase: procedure options (Down);

KeyRank =Search(' ', 0, 1, cursorcol);
if KeyRank t= 0 then

cursorcol = KeyRank;

do while (cursorchar t= ' ');
KeyRank =rank (cursorchar);

if KeyRank >=rank ('A') and KeyRank <=rank ('Z') then
call playout (byte (KeyRank +rank(' ')));

else
cursorcol = cursorcol + 1;

end;

end DownCase;

E-9

I*

*I

This routine is called from all Editor glossaries to ensure
that the glossaries only work in the Editor modes for which
they are appropriate. This depends on Editor version 6.9.10
or higher which does not display the word 'mode' in the upper
right corner.

StopifNotEditor: procedure;

call WaitForUnlock;

if substr (Screen (1), 74, 7) t= 'Display' then
stop;

end StopifNotEditor;

I*

*I

This routine puts the Editor into Modify mode if it isn't already.
Note that the current cursor position is saved for later use by
the calling routine.

ModifyMode: procedure;

call CursorSave;
I* Save the cursor. Other
I* routines depend on this.

*I
*I

if substr (Screen (1), 75, 6) = 'Modify' then
return;

call StopifNotEditor;

call playout (PF9);
call WaitForUnlock;

end ModifyMode;

I* Must be in the Editor. *I

I* Invoke Modify mode. */
I* Wait until WS settles down */

E-10

I*

*I

This routine splits a single Editor line into two. Position the
cursor at the text to be split. Press (-gl-)s. The text to the
right of the cursor is picked up and erased and a new line is
inserted. Position the cursor to the desired text position on the
new line and press ENTER to drop the text onto the new line.

Split: procedure options ('s');

call ModifyMode;

call playout (PickUp Erase Enter PFll);

CurrentRow = CurrentRow + l;
call CursorRestore;

call WaitFor (Enter);
call playout (PutDown Enter PFl);

end Split;

I*

*I

This routine merges two Editor lines. Position the cursor on the
second line, at the text which is to be joined to the first line.
Type (-gl-)t. The text of the second line is joined to the first
following the first nonblank.

Join: procedure options ('t');

call ModifyMode;

call playout (Pickup Up);

cursorcol =Search(' ', 0, -1, 79);

call playout (Right PutDown Enter NewLine PF12 Enter);

end Join;

E-11

I*

*I

This routine performs a (somewhat) WP-style delete function.
Position the cursor to the first character to be deleted,
type (-gl-)(-delete-), and type the letter after the end of the
text to be deleted. If the letter is not found, try again.

WPDelete: procedure options (Delete);

Key = getkey; I* Search for boundary char. */
if 0 t= Search (Key, l, l, cursorcol) then

do while (cursorchar t= Key); I* Delete the required */
call playout (Delete); /* characters. */
end;

end WPDelete;

I*
This routine copies text lines downward until the cursor hits
a nonblank character. If the cursor character at invocation
is blank, one key is accepted as the text to be copied.

*I
Propogate: procedure options C'p');

if cursorchar = ' ' then do;
Key = getkey;
call playout (Key);
call playout (Left);
end;

call playout CPickUp Down);

do while Ccursorchar - ' ');
call playout CPutDown Down);
end;

call CursorRestore;

end Propogate;

I*

I*
I*
I*
I*

I*
I*

I*
I*

I*

If the cursor character is
a blank, get one from the
keyboard, and use that for
the output text.

Pick up the string and go
down one row.

Repeat until a non-blank
is encountered.

Restore the cursor.

This routine duplicates the current Editor line.
*I
Duplicate: procedure options ('i');

call StopifNotEditor;
cursorcol = 9;

call playout (Pickup PFll PutDown Enter PFl PF9);

end Duplicate;

E-12

*I
*I
*I
*I

*I
*I

*I
*I

*I

I*

*I

This routine swaps the current Editor line with the line below it.
It requires a blank line somewhere on the screen for temporary use.

Swap: procedure options CPF14);
declare Row fixed;

call CursorSave;
call playout (Pickup);

do Row = 5 to 24;
if substr (Screen (Row), cursorcol, 81-cursorcol) = ' ' then do;

cursorrow = Row;
call playout (PutDown);
call CursorRestore;
call playout (Down Pickup Up PutDown);
cursorrow = Row;
call playout (PickUp Erase);
call CursorRestore;
call playout (Down PutDown);
call CursorRestore;
return;
end;

end;

end Swap;

I*

*I

This routine checks if the parentheses on a line are balanced.
It is NOT smart enough to check for them within quotes.

Balance: procedure options('(');
declare Count fixed,

Lcol fixed,
Rcol fixed;

Count = O;
do Column = 9 to 80;

if substr (Screen (cursorrow), Colwnn, 1) = '(' then do;
Lcol = Column;
Count = Count + 1; /* Count left parentheses */
end;

if substr (Screen (cursorrow), Colwnn, 1) = ')' then do;
Reel = Colwnn;
Count = Count - 1; /* Count right parentheses */
end;

end;

if Count > 0 then
cursorcol = Rcol;

if Count < 0 then
cursorcol = Lcol;

end Balance;

I*
I*
I*
I*
I*

E-13

Call the discrepancy to *I
the user's attention. *I
Point to the rightmost or *I
leftmost parenthesis that *I
is unbalanced. *I

I*

*I

This routine marks positions in the Editor for later use
with the FIND, MOVE, COPY and DELETE commands.

PickRange: procedure options ('8');

Linel = substr (Screen (cursorrow), 2, 6);
call highlight (cursorrow, 2, 6);
Line2 = Linel;

call WaitFor (Enter);
Line2 = substr (Screen (cursorrow), 2, 6);
call highlight (cursorrow, 2, 6);

end PickRange;

I*
This routine uses the LINE markers saved by the above routine
to invoke the FIND, MOVE, COPY and DELETE commands. It waits for
the specific command key and then plays out the line numbers into
the prompt fields.

*I
Doit: procedure options ('7');
declare

Offset fixed;

call StopifNotEditor; I* Must be in the Editor

Key = getkey; I* Wait for pf key
Offset= index (Delete PF9 PFll PF12, Key);

if Off set = O then
stop;

else
call playout (substr (PF12 PF8 PF14 PF13, Offset, 1));

call playout (Erase!! Line!);

if Linel t= Line2 then
call playout (Tab Erase ! !

else if
Key t= PF9 then
call playout (Tab Erase);

call playout (Enter);
call WaitForUnlock;

I* Clear the prompt field
I* Play out the first line

Line2);
I* If the line numbers are
I* the same, only do one.
I* If copy, clear 2nd field

I* Do the command.

*I

*I

*I
*I

*I
*I
*I

*I

I* Handle "Invalid Range" */
if substr (Screen (3), 10, 1) = 'I' then

call playout (Home Erase !! Line2 !!
Tab Erase !! Linel !! Enter);

end Dolt;

E-14

I*

*I

This procedure indents a line 3 characters without messing up
the comments starting in column 40.

Indent: procedure options (Right);

call CursorSave;

if substr (Screen (cursorrow), 48, 2) = '/*' then do;
cursorcol = 45;
call Lineup (-3);
end;

cursorcol = 9;
call Lineup C 3) ;
call CursorRestore;

end Indent;

I*

*I

This procedure "exdents" a line 3 characters without messing up
the comments starting in column 40.

Exdent: procedure options (Left);

call CursorSave;

cursorcol = 9;
call Lineup C-3);

if substr (Screen (cursorrow), 45, 2) = '/*' then do;
cursorcol = 45;
call Lineup (3);
end;

call CursorRestore;

end Exdent;

I*

*I

This routine finds the correct level of indentation beneath
the current source line.

Findindentation: procedure options (Tab);

if substr (Screen (cursorrow), 9, 70) = ' ' then
cursorrow = cursorrow - 1;

call CursorSave;

CurrentCol = 3 +Search(' ', 0, 1, 9);
CurrentRow = CurrentRow + 1;

call CursorRestore;

end Findindentation;
E-15

I*

*I

This routine is called from "Align" to move the current text
line a specified amount to the left (-) or to the right (+).

Lineup: procedure (Count);
declare

I* Line up a single text line */

Count fixed;

declare Loop fixed;

if Count = 0 then
return;

if Count < 0 then do;
Count = -Count;
Key = Delete;
end;

else
Key = Insert;

do Loop = l to Count;
call playout (Key);
end;

end LineUp;

I*

I*
I*

I*
I*
I*

I*

I*
I*
I*

If nothing to move,
just return.

If count is negative, the
text is moving to the left
so use the delete key.

Else, must use insert.

Play out the required
number of inserts or
deletes.

This routine aligns text lines left or right of their current
position. Set the cursor to the starting row to be aligned,
type (-gl-)a, move the cursor left or right the number of
columns to be added or deleted, and up or down the number of
rows to be aligned, and press ENTER.

*I

Align: procedure options ('a');
declare Amount fixed,

Row fixed;

call ModifyMode;

call WaitFor (Enter);
Amount = EndCol - CurrentCol;

if Amount > 0 then
cursorcol = CurrentCol;

else
cursorcol = EndCol;

do Row = CurrentRow to EndRow;
cursorrow = Row;
call Lineup (Amount);
end;

call CursorRestore;

end Align;

I* Get into modify mode
I* Wait for X,Y coordinate
I* for number of rows to do,
I* and left or right shift.

I* Correct cursor position
I* if aligning from left to
I* right.

I* From the starting position
I* to the ending row, do left
I* or right shifts.

I* Restore the cursor.

E-16

*I
*I

*I
*I
*I

*I

*I
*I
*I

*I
*I
*I
*I

*I
*I
*I

*I
*I
*I

*I

I*

*I

This routine justifies multiple lines of text by adding blanks
between words. The scanning direction alternates between lines.

Justify: procedure options ('j');
declare Row fixed, Width fixed,

Start fixed, Spaces fixed,
Direction fixed;

call CursorSave;
call WaitFor ('(-enter-)');

Direction = l;
Width = EndCol - CurrentCol;

do Row = CurrentRow to End.Row;
Direction = -Direction;
cursorrow = Row;

if Direction = 1 then
Start = CurrentCol;

else
Start = EndCol;

I* Let operator mark the
I* last row and column.

I* Start from left to right
I* Calculate the text width

I* Justify requested rows
I* in alternate directions.
I* Set to the current row.

I* Choose the appropriate
I* limit column.

Spaces= Search(' ' l, Direction, Start);

*I
*I

*I
*I

*I
*I
*I

*I
*I

I* Look for interword spaces */
if Spaces t= 0 I* and some text to justify. */
and substr (Screen (Row), CurrentCol, Width) t= ' ' then do;

do while (substr (Screen (Row), CurrentCol, 1) = ' ');
cursorcol = EndCol;
call playout (Insert);
cursorcol = CurrentCol;
call playout (Delete);
end;

I* Remove leading spaces.

do while Csubstr (Screen (Row), EndCol, 1) = ' ');
Spaces= Search(' ' 0, Direction, Spaces+ Direction);
Spaces= Search(' ', l, Direction, Spaces);

if Spaces <= CurrentCol
or Spaces >= EndCol then

Spaces = Start;
else do;

cursorcol = EndCol;
call playout (Delete);
cursorcol = Spaces;
call playout
end;

end;
end;

end;

call CursorRestore;

end Justify;

(Insert);

I* Skip intervening spaces
I* and check if another pass
I* is needed for this line.
I* Else, create an extra
I* interword space.

I* Restore original cursor

E-17

*I

*I
*I
*I
*I
*I

*I

,.,,

.,,,
This routine converts the hexadecimal number at the cursor
into its decimal equivalent •

HexToDecimal: procedure options ('d');
declare

Last fixed;
I* Locate the hex number */

HexText = substr (Screen (cursorrow), cursorcol, 6);
Last = verify (HexText, '0123.456789ABCDEF');
if Last = 0 then

Last = 7;

Counter = O;
Last = Last - l;
do Digit = 1 to Last;

Counter = Counter .,, 16 + index
subs tr

end;

call playout (char (Counter));

I* If all hex, then 6 digits */

I* Loop backwards thru digits */
I* converting them to base 10 */

('0123456789ABCDEF',
(HexText, Digit, 1)) - 1;

I* Play out the result *I

end HexToDecimal;

,.,,

"'I

This routine converts the decimal number at the cursor
position to its hexadecimal equivalent.

DecimalToHex: procedure options ('x');

I* Fetch the binary number */
Counter= binary (substr (Screen (cursorrow), cursorcol, 6));

Digit = 4; /* Max nwnber of hex digits */
do while (Digit >= l);

substr (HexText, Digit, 1) = substr ('0123456789ABCDEF',
1 + (15 and Counter), 1);

Counter = Counter I 16;
Digit = Digit - 1; /* Convert to base 16 */
end;

call playout (HexText); /* Play out the result */

end DecimalToHex;

E-18

I*
These routines perform window movement and sizing.

*I
WindowManager: procedure options CPF2);

Perform: procedure (Operations);
declare

Operations char (8);

declare Direction fixed;

do forever;
Key = getkey;
Direction = index (Up

LookUpl
Key);

if Direction = 0 then
leave;

I* Perform individual sizing
I* operations using the arrow
I* keys.

Down Left Right
LookDownl LookLef tl LookRightl,

I* If key is invalid, return
I* it to the caller.

call playout Csubstr (Operations, Direction, 1));
end;

end Perform;

*I
*I
*I

*I
*I

I* Start of window manager */
Key = getkey;
do while (1);

if Key = InsertMode then do; /* Full size window */
call playout (Full); stop; end;

else
if Key = Recall then do; /* Recall prior size */

call playout (RecallSize); stop; end;
else
if Key = Erase then do; /* Delete the window */

call playout (Invisible); stop; end;
else
if Key = Insert then /* Make window grow */

call Perform (AddUpl AddDownl AddLeftl AddRightl
AddUp3 AddDown5 AddLeftlO AddRightlO);

else
if Key = Delete then /* Make window shrink */

call Perform (DelUpl DelDownl DelLeftl DelRightl
De1Up3 De1Down3 DelLeftlO DelRightlO);

else
if Key = PF12 then /* Make window move */

call Perform CMovUpl MovDownl MovLeftl MovRightl

else
Key = getkey;

end;

end WindowManager;

MovUp3 MovDown3 MovLeftlO MovRightlO);

I* Invalid key. Get another. */

E-19

I* The following procedure automatically logs on all workstations *I
I* whenever the personality is loaded. The procedure first */
I* checks to make sure that the window is displaying the logon */
I* screen. It then issues a HELP to ensure that the cursor is */
I* located at the User ID field and enters MGL on window 1 and */
I* ML concatenated with the window number on the other windows. */
I* The procedure then enters the password and logs on. *I

auto_logon: procedure options (main);
if substr(screen(l), 41, 5) = "Logon" then do;

call playout("(-help!-)");
if window = 1 then do;

call playout("MGL");
end; else do;

call playout ("ML"! ! char(window));
end;
call playout("(-tab-)PASSWORDC-enter-)");

end;
end auto_logon;

I* The following procedure logs off the current window or all the */
I* windows when invoked globally. It first exits any program by */
I* issuing a series of PF16 keys until the Command Processor is */
I* displayed (identified by the value 'Workstation' on Row 4). */
I* The procedure then issues a PF16 and an Enter, logging off the */
I* window. */

auto_logoff: procedure options ('k');
do while Csubstr(screen(4), 2, 11) t= 'Workstation');

call playout ("(-pf-16-)");
call waitforunlock;

end;
call playout (" (-pf-16-)(-enter-)");

end auto_logoff;

E-20

APPENDIX F
GLOSSARY LANGUAGE KEYWORDS

The following words are reserved for use by the Glossary compiler and
should not be used as identifiers in your program.

AND
CALL
DCL
DECLARE
DO
ELSE
END
IF
LEAVE
NOT
OR
RETURN
STOP
THEN

F-1

APPENDIX G
AID CHARACTER REPRESENTATIONS

Table G-1. AID Character Representations

AID Function Hexadecimal Value ASCII Equivalent

ENTER key 40 @

PFl 41 A
PF2 42 B
PF3 43 c
PF4 44 D
PF5 45 E
PF6 46 F
PF7 47 G
PF8 48 H
PF9 49 I
PFlO 4A J
PFll 4B K
PF12 4C L
PF13 40 M
PF14 4E N
PF15 4F 0
PF16 50 p

PF17 61 a
PF18 G2 b
PF19 63 c
PF20 64 d
PF21 GS e
PF22 G6 f
PF23 G7 g
PF24 68 h
PF25 G9 i
PF26 GA j
PF27 GB k
PF28 6C 1
PF29 GD m
PF30 GE n
PF31 GF 0

PF32 70 p

G-1

0 - 9

2256C personality, 3-3, 3-18
2256C workstation, 3-6, A-1
2866C4 Ergo 2 workstation, A-1
4230 workstation, 3-6, 3-19, A-1
5300/VS-IIS64 Ergo 3 workstation,

3-6, A-1

%Control statement, 4-4
%define statement, 4-3, 4-14
%include statement, 4-3
%nocontrol statement, 4-4
%nopmap statement, 4-4
%noprint statement, 4-3
%page statement, 4-3
%pmap statement, 4-4
%print statement, 4-3

A

Accented characters, 1-1, 1-4,
3-1, 3-21

Accent key, 1-4, 3-21
Active window, 3-20
Add/ADD col left keys, 3-8, 4-21
Add/ADD col right keys, 3-8, 4-21
Add/ADD row down keys, 3-8, 4-21
Add/ADD row up keys, 3-8, 4-21
Again key, 3-8, 4-21
AID value, 4-24, G-1
Alarm, 1-1, 1-4, 3-18, 3-19
Alarm volwne, 3-19
Alphanumeric keys, 3-6
Anchor key, 3-8, 4-21
AND operator, 4-16, 4-17, 4-26,

F-1
Append the Glossary-by-Example

option, 3-15
Argument list, 4-5, 4-6, 4-7,

4-10, 4-23
Arithmetic operators, 4-15, 4-16
Arrays, 4-14
ASCII character 4-18
ASCII character code, 4-19

INDEX

Index-1

ASCII character set, 3-23, C-1
ASCII mode, 3-16, 3-21, 3-23
ASCII value, 3-16
ASCII x key, 3-8, 4-21
Assignment statement, 4-7, 4-8,

4-10, 4-20
Auto-start glossaries, 1-3, 4-5,

4-7, 4-27
Auto-tab in, 3-20
Auto-tab out, 3-20
AZERTY, 1-2, 3-6

Back Line key, 1-2, 3-8, 4-21
Back Space key, 2-7, 3-8, 3-11,

4-21
Back Tab key, 2-7, 3-8, 4-21
BASIC subroutine, 4-4
Beeper, 3-19
BINARY, 4-18
Blink attribute, 3-19
Blinker, 3-19
Blinking fields, 1-1, 1-4, 3-19,

4-23
Blocks, 4-5, 4-12
Boolean data, 4-13, 4-14, 4-15,

4-26
Boolean operators, 4-16, 4-17,

4-26
Buffered Help key, 3-9, 4-21
Built-in functions, 1-3, 4-10,

4-15, 4-18 to 4-20
BYTE, 4-18

CALL statement, 4-6, 4-7, 4-8,
4-23, F-1

Caps Lock key, 3-9, 4-21
Caps Lock mode, 3-13, 3-20
Caps Unlock key, 3-9, 4-21
CHAR function, 4-19
Character code, 3-16
CHARACTER data type, 4-6, 4-8,

4-9, 4-12, 4-13, 4-14
CHARACTER(*), 4-6

INDEX (continued)

Character set, 1-1, 3-1, 3-16
Character strings, 4-14
Character string constants, 4-2,

4-9
Character string variables, 4-15
Circtunflex character, 3-11
Clicker, 3-19
Clicker volume, 3-19
Clock function, 4-24
COBOL BINARY, 4-13
COBOL Procedure Division, 4-4
Colon, 4-3
Comma, 4-3
Comments, 4-1, 4-2
Compiled glossaries, 2-6
Compiler-directing statements,

4-1, 4-3
Compiling Glossary programs, 3-1,

3-14, 3-15
Concatenation operator, 4-13,

4-17, 4-23
Constants, 4-1, 4-2, 4-12, 4-14
%control statement, 4-4
CursorChar function, 4-25
CursorCol function, 4-25
CursorRow function, 4-25
cursor control keys, 2-7
Cursor to l,l key, 3-9, 4-22
Cursor wrap, 1-4, 3-20

D

Data type, 4-6, 4-8, 4-12 to 4-15
Declaration, 4-12, 4-14
DECLARE statement, 4-4, 4-7, 4-8,

4-12, 4-14, F-1
Dec Tab character, A-2
Default capitalization rules,

1-1, 1-3, 3-22, 3-23
Default window configuration,

2-4, 3-1, 3-17
%define statement, 4-3, 4-14
Degree symbol, 3-11, 3-20
Del/DEL col left keys, 3-,, 4-22
Del/DEL col right keys, 3-9, 4-22
Del/DEL row down keys, 3-9, 4-22
Del/DEL row up keys, 3-9, 4-22
Delay subroutine, 4-23, 4-27
Delete key, 3-9, 3-18, 4-22
Device number, A-2
Device type, A-2

Index-2

Digits, 4-2
Display mode, 3-16
DO FOREVER statement, 4-7, 4-9,

4-10, 4-11
Do group, 4-9, 4-10, 4-11
DO statement, 4-7, 4-9, F-1
DO WHILE statement, 4-7, 4-9,

4-10, 4-11
Down key, 3-9, 4-22

Edit and Compile option, 3-15
Editing Glossary programs, 3-1,

3-3, 3-14, 3-15
EDITOR (VS), 1-3, 3-13, 3-14,

3-15, 4-13, 4-24
Embedded blanks, 4-2
END statement, 4-7, 4-10, F-1
Enter key, 3-9, 4-22
Erase key, 3-10, 4-22
Ergo 3 workstation, 3-6, A-1
Evaluation order, 4-16
Exponential operator, 4-17
Expression, 4-10, 4-15
Extended universal section, 3-6

F

Factored attributes, 4-15
FIXED BINARY(15), 4-13
FIXED data type, 4-6, 4-9, 4-11,

4-12, 4-14, 4-15, 4-18,
4-26

Foldover table, 1-1, 3-22, 3-23
FORTRAN subroutine, 4-4
Freeze screen, 3-10, 4-22
Full Size Wnd key, 3-10, 4-22
Full-featured personality, 3-3,

3-18
Function calling, 4-7, 4-10
Function keys, 3-6, 3-8 to 3-13
Function procedure, 4-5, 4-6,

4-8, 4-12, 4-15

GENEDIT utility, 2-1, A-1 to A-3
Get Next Wnd key, 2-4, 3-10, 4-22
Get Prev Wnd key, 3-10, 4-22
GetKey function, 4-25, 4-27

INDEX (continued)

GETPARM, 2-2, B-1, B-2
GL library, 3-14
Global declarations, 4-4, 4-5
Global glossaries, 1-3
Global Glossary key, 2-6, 2-7,

3-10, 4-22, 4-27
Global variables, 4-6, 4-7
GLOBJ library, 3-15
Glossary key, 1-1, 2-7, 3-10,

4-6, 4-7, 4-12, 4-22
Glossary language, 1-1, 1-3, 2-1,

2-6, 3-1, 4-1 to 4-27, E-1
to E-20

Glossary procedure, 4-5, 4-6
Glossary program, 1-1, 2-7
Glossary status, 3-20
Glossary-by-example, 1-3, 2-6,

2-7, 3-14, 3-15, 4-7

H

Hardware requirements, A-1
Help key, 3-10, 4-22
Help and Reset key, 3-10, 4-22
Hex xx key, 3-10, 4-22
Hexadecimal code, 3-16, 3-22
Hexadecimal mode, 3-16, 3-21,

3-23
Highlight subroutine, 4-23
Home key, 2-7, 3-10, 4-22
Hyphens, 4-2

IF statement, 4-7, 4-11, F-1
Implied concatenation, 4-9, 4-13,

4-17, 4-23
%include statement, 4-3
Increment step, 4-9
Index character, 3-16, 3-22, 3-23
INDEX function, 4-19
Index variable, 4-9
Infix operator, 4-15, 4-16, 4-17
INITIAL attribute, 4-9, 4-14
Initial value, 4-9, 4-14
Insert mode, 3-20
Insert Mode key, 1-1, 3-11, 4-22
Integer operands, 4-17
International options, 1-1, 1-4,

3-1, 3-16, 3-22, 3-21, 3-23
Invisible window, 3-20

Index-3

Invisible Window key, 3-11, 3-20,
4-22

Invoke GL x key, 3-11, 4-22
Invoking glossaries, 2-6, 3-8
IOP, A-2
Iterative DO, 4-9, 4-11

K

Key combinations, 1-1, 3-1, 3-21
Key functions, 1-1, 1-3, 3-6 to

3-13, 4-13, 4-21, 4-22
Keyboard click, 1-4, 3-1, 3-18
Keyboard definition, 1-1, 1-2,

3-1, 3-6 to 3-13
Keyboard locked status, 3-20
Keypads section, 3-6
Keystroke syntax, 4-13, 4-21,

4-22
Keyword (Procedure language),

B-1, B-2
Keywords (Glossary language),

4-1, 4-3

L

Label, 4-4
LEAVE statement, 4-7, 4-11, F-1
Left key, 3-11, 4-22
Length attribute, 4-13, 4-1'5
LENGTH function, 4-19
Letters, 4-2
Line numbers, 4-1
Loading personalities, 2-1 to

2-2, 3-1, 3-15, 3-15, 4-7
Logical operators, 4-17
Look Down key, 3-11, 4-22
Look Left key, 2-5, 3-11, 4-22
Look Right key, 3-11, 4-22
Look Up key, 3-11, 4-22

M

Main keyboard section, 3-6
Managing glossaries, 3-14
Managing windows, 2-2
Menus, 2-7
Microcode, 2-1, 2-6
MWS library, 3-3
MWSLOAD, 2-2
MWSRSTR, 2-2, B-2

INDEX (continued)

MWSSAVE, 2-2, B-2
Modifying the character set,

3-16, 3-17
Modulo, 4-16
Mov/MOV wnd down key, 3-11, 4-22
Mov/MOV wnd left key, 3-11, 4-22
Mov/MOV wnd right key, 3-12, 4-22
Mov/MOV wnd up key, 3-12, 4-22
MULTIMWSx, A-2

N

Names, 4-1, 4-2, 4-8, 4-14, 4-15
Nested %include statement, 4-3
Nested parentheses, 4-16
Nested procedures, 4-4, 4-5
New Line key, 1-2, 3-12, 4-22
Next Wnd key, 2-4, 3-12, 4-22
%nocontrol statement, 4-4
%nopmap statement, 4-4
%noprint statement, 4-3
NOT operator, 4-16, 4-17, 4-26
Note symbol, 2-7
Null string, 4-13, 4-18
Numeric constants, 4-2, 4-9
Numeric values, 4-14
Numeric-protected field, 3-13

One's complement, 4-18
Operator priority, 4-16
Operator symbols, 4-3
Operators, 4-15, 4-16
Optional features, 1-1, 3-1,

3-18, 3-21
OPTIONS clause, 4-6, 4-7, 4-12
OPTIONSCMAIN) clause, 4-7, 4-12,

4-27
OR operator, 4-16, 4-17, 4-26,

F-1

p

Padding, 4-8, 4-13
Page feed, 4-3
%page statement, 4-3
Parentheses, 4-3
Passing values, 4-5
Passing-by-value, 4-5, 4-6
PC, A-1

Index-4

PC-PM041 local communications
option, A-1

PERSON (Personality Editor), 1-1,
1-2, 1-3, 2-1, 2-2, 3-1 to
3-23, 4-21

Personality, 1-1, 2-1, 3-1 to
3-23, 4-1

Personality file, 2-2, 3-3
PF keys, 3-12, 4-22
PF keys section, 3-6
PF7 key, 4-7
PF16 key, 4-7
Pick Up key, 3-12, 4-22
Pick-up buffer, 3-12, 3-13, 3-20
PL/I, 1-3, 4-1, 4-4
PL/I procedure, 4-4
Playout subroutine, 4-23, 4-26,

4-27
Port, A-2
%pmap statement, 4-4
Prefix operator, 4-15, 4-16, 4-17
Previous Wnd key, 3-12, 4-22
%print statement, 4-3
Priority (operator), 4-16
Prname, B-1, B-2
Procedure, 1-3, 2-2, 3-3, 4-1,

4-2, 4-4, 4-10
Procedure language, 2-2, 3-3, B-1
Procedure name, 4-1
Procedure parameters, 4-8
PRCCEDURE statement, 4-4, 4-7,

4-12
Program control, 4-7
Program format, 4-1 to 4-4
Program structure, 4-4
Prototype personality, 3-3, 3-5,

3-7, 3-14, 3-17, 3-18, 3-21
Pseudovariable, 4-20
Punctuation marks, 4-1, 4-3
Put Down key, 3-13, 4-22

Quotation marks, 4-13
QWERTY, 1-2, 3-6

R

RANK subroutine, 4-19
Recall key, 3-13, 4-22
Recall Wnd key, 3-11, 3-13, 4-22

INDEX (continued)

Relational operators, 4-15, 4-16,
4-17

Relocating keys, 1-2
Reserved words, 4-2, F-1
Reset key, 2-6, 2-7, 3-13, 4-22
RETURN statement, 4-7, 4-12, F-1
RETURNS clause, 4-6, 4-7, 4-12
Right key, 3-13, 4-22
Round robin, 4-27
Row location, 4-25

Scope of variables, 4-5, 4-8
Screen function, 4-26
Scrolling, 1-2
SECURITY utility, 2-1
Segment 2 address space, 3-3
Semicolon, 4-3
SendPFKey subroutine, 4-24
Separators, 4-3
Simultaneity, 4-27
Soft tab stop, 3-13
Software requirements, A-1
Space bar, 2-7
Space key, 3-13, 4-22
Status, 1-4, 2-7, 3-11, 3-20
Status symbols, 3-20, 3-21
STOP statement, 2-6, 4-7, 4-12,

4-27, F-1
String length, 4-13, 4-15
String manipulation, 1-3
String operators, 4-15, 4-16
Structures, 4-14
Subroutine procedure, 1-3, 4-5,

4-6
SUBSTR function, 4-20
System configuration, A-1
System requirements, A-1

T

Tab key, 1-1, 2-7, 3-13, 4-22
Tab stop, 3-8
Task, 1-2, 2-2, A-2, A-4
Time, 4-24
Time-slice, 4-27
Tokens, 4-1, 4-3
Truncation, 4-8, 4-13, 4-17
Type-ahead, 1-1, 1-4, 3-1, 3-9,

3-10, 3-20

Index-5

Type-ahead buffer, 3-20
TypingRate subroutine, 4-26

Underscore characters, 4-2
Up key, 3-13, 4-22
Uppercase Foldover table, 3-22
Uppercase-only fields, 3-22
User ID, 2-1, 3-3, 3-14, 3-15

v

Variable name, 4-1, 4-14
Variable references, 4-15
Variables, 4-2, 4-12, 4-14
VERIFY function, 4-20
VS Alliance, 1-2, 1-4, 2-6
VS EDITOR, 1-3, 3-13, 3-14, 3-15,

4-13, 4-24
VS menus, 2-7
VS Word Processing, 1-2, 1-4, 2-6

w

WaitForUnlock subroutine, 4-24,
4-27

Window configuration, 2-2, 2-4,
3-1

Window function, 4-26
Window function keys, 1-2, 2-6,

3-6 to 3-13, 3-17
Window location, 3-17
Window nwnber, A-2
Window one, 1-2
Window size, 3-6 to 3-13, 3-17
Windowing, 1-1, 1-2
WISCII character set, 3-17, 3-23,

D-1
WISCII personality, 3-3, 3-18
Word processing glossaries, 1-3
Word processing style menus, 2-7,

3-3
Workstation access, 4-21
Workstation features, 1-1, 3-1,

3-18 to 3-21
Workstation subroutines, 4-23,

4-24
Wraparound, 3-11, 3-13

WANG Customer Comment Form Publication Number ___ ...;;;8...;;;0...;;;0_-1,;;,..1,;;,..4_9;...-...;;;0.....;1

Title ________ V__;S;..._M__;;;U_;.,,L....;..T---l-....;...S...;_:TA_;;.:r_1_o_N_U;..._S_E_R_'S..;;__R....;..E __ FE....;...R....;...E_N_C_E
Help Us Help You ...

We've worked hard to make this document useful, readable, and technically accurate. Did we succeed? Only you can tell us!
Your comments and suggestions will help us improve our technical communications. Please take a few minutes to let us
know how you feel.

How did you receive this publication? How did you use this Publication?

D Support or D Don't know D Introduction D Aid to advanced
Sales Rep to the subject knowledge

D Wang Supplies D Other D Classroom text D Guide to operating
Division (student) instructions

D From another D Classroom text D As a reference
user (teacher) manual

D Enclosed D Self-study D Other
with equipment text

Please rate the quality of this publication in each of the following areas.

EXCELLENT GOOD FAIR POOR

Technical Accuracy - Does the system work the way the manual says it does? D D D D

Readability - Is the manual easy to read and understand? D D D D

Clarity - Are the instructions easy to follow? D D D D

Examples - Were they helpful, realistic? Were there enough of them? D D D D

Organization - Was it logical? Was it easy to find what you needed to know? D D D D

Illustrations - Were they clear and useful? D D D D

Physical Attractiveness - What did you think of the printing, binding, etc? D D D D

VERY
POOR

D

D

D

D

D

D

D

Were there any terms or concepts that were not defined properly? D Y D N If so, what were they?---------

After reading this document do you feel that you will be able to operate th~ equipment/software? D Yes D No

D Yes, with practice

What errors or faults did you find in the manual? (Please include page numbers)------------------

Doyouhaveanyothercommentsorsuggestions?~-----------------------------

Name __________________ _ Street ____________________ _

Title __________________ _

Dept/Mail Stop ___________ _ State/Country _______________ ~

Company ________________ _ Zip Code _____ Telephone--------

Thank you for your help.

All comments and suggestions become the property of Wang Laboratories. Inc. Printed in U.S.A. 14-3140 7-83-SC

WANG

Fold

BUSINESS REPLY CARD
FIRST CLASS PERMIT NO. 16 LOWELL. MA

POSTAGE WILL BE PAID BY ADDRESSEE

WANG LABORATORIES, INC.
TECHNICAL PUBLICATIONS

111111

ONE INDUSTRIAL AVENUE
LOWELL, MASSACHUSETTS 01861

Fold

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

a)

~
"'C

~
"'C

Cl c:
0 ca
5
u

WANG

ONE INDUSTRIAL AVENUE
LOWELL, MASSACHUSETTS 01851
TEL. (617) 459-5000
TWX 710-343-6769, TELEX 94-7421

Printed in U.S.A.
800-1149-01

12-83-7M

	000
	001
	002
	003
	004
	005
	006
	007
	008
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	A-01
	A-02
	A-03
	A-04
	B-01
	D-01
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	E-07
	E-08
	E-09
	E-10
	E-11
	E-12
	E-13
	E-14
	E-15
	E-16
	E-17
	E-18
	E-19
	E-20
	F-01
	G-01
	Index-01
	Index-02
	Index-03
	Index-04
	Index-05
	replyA
	replyB
	xBack

