
vs
Symbolic Debugger. Reference

Release 7 Series

vs
Symbolic Debugger Reference
Release 7 Series

1st Edition - October 1988
Copyright ©Wang Laboratories, Inc., 1 988
715-1144

f.$i§CI
WANG LABORATORIES, INC.
ONE INDUSTRIAL AVENUE, LOWELL, MA 01851 TEL. (508) 459-5000, TELEX 172108

Disclaimer of Warranties and Limitation of Liabilities

The staff of Wang Laboratories, Inc., has taken due care in preparing this manual. However,
nothing contained herein modifies or alters in any way the standard terms and conditions of the
Wang purchase, lease, or license agreement by which the product was acquired, nor increases in
any way Wang's liability to the customer. In no event shall Wang or its subsidiaries be liable for
incidental or consequential damages in connection with or arising from the use of the product,
the accompanying manual, or any related materials.

Software Notice

All Wang Program Products (software) are licensed to customers in accordance with the terms
and conditions of the Wang Standard Software License. No title or ownership of Wang software
is transferred, and any use of the software beyond the terms of the aforesaid license, without the
written authorization of Wang, is prohibited.

Warning

This equipment generates, uses, and can radiate radio frequency energy and, if not installed and
used in accordance with the instructions manual, may cause interference to radio communica
tions. It has been tested and found to comply with the limits for a Class A computing device,
pursuant to Subpart J of Part 15 of FCC rules, which are designed to provide reasonable protec
tion against such interference when operated in a commercial environment. Operation of this
equipment in a residential area is likely to cause interference, in which case the user, at his own
expense, will be required to take whatever measures may be required to correct the interference.

-~

r

CONTENTS

HOW TO USE THIS MANUAL

CHAPTER 1 INTRODUCTION TO THE VS SYMBOLIC DEBUGGER

1.1 Introduction • . . • • • • • • • . . • • . • • • • • • • • • • • • . . • • • . . • • • 1-1
1. 2 How the Debugger Works • • • • • • • • • • • • • • • • • • . . . • • • • • • . . • • . 1-2

Symbolic Information in the Program File ••••••••••...••• 1-2
Program Listing Display ••...•.••••.••••••••••...••.••••• 1-3

1. 3 Debugger Features • . • • . • • • • • • • • • • • . . • . • • • • • • • • • • • • • • • • . • • • • 1-4
1.4 Debugger Functions ••••..••••.•••.••••••••••••••••••••.•••• 1-4
1.5 Accessing the Debugger ••.•...•••.••••••••••••.•..••••••.•• 1-5
1. 6 Exiting the Debugger . • . • • • • . . • • . . . • . . • • • • • • • • • • • . • • • . . . • • • 1-6
1.7 Overview of Debugging •••••....•.•••••••••••..•••..•••.•••• 1-7

The Debugger Workstation Screen ••.••.•••••••••.•••..•••• 1-7
Debugger Windows • . • • • 1-8
Managing the Program Listing • • . • • • • • • • • • • . • • • • . . • • • • • • • • 1-9
Managing Traps • . • . • . • • . . • . . • . . . • • • • • • • • • . . • • • • • • • • • • . . . • 1-10
Monitoring Data Values and Displaying Program

Information • . • • • • • • . • • . . . • • • • • • • . • • • • . • • • • • • • • • • • . • . . • 1-11
1.8 Debugger Help Text ..•••.•••.....•••••••••••...••••••••..•• 1-12
1.9 Debugger Training Facility ••.•.•.••••.•••••..•••.••••..••• 1-14

Using the Training Screen for a Selected Command .••••••• 1-16
Minimal Editing on the Training Screen ••••...••••••.•••• 1-17

1.10 Security ••..••••.••......••..•....•..•••••.•••••..••••.••. 1-17
1.11 Compilers That Support Symbolic Debugging •••••••••.••••••• 1-18

Debugging in the Presence of Optimized Code ••••••••.•••• 1-18
1.12 Comparison to the Previous Debugger ••••••••••..•••••••••.• 1-18
1.13 Notation Conventions •••..••..•••••••..•••••••....••••••••• 1-19

Special Notation Used in Command Specifications •••••.••• 1-19
Common Command Components ..••••.•••••••••••••••••.•.•••• 1-20

1.14 Current Window and Current Cursor Position •..•••••••••.••• 1-21
1.15 Operating Environment ••..••..•••••••.••••••••••.•••••••••• 1-21

iii

CHAPTER 2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

CHAPTER 3

3.1
3.2
3.3
3.4

CHAPTER 4

4.1
4.2
4.3
4.4

CONTENTS C continued)

THE DEBUGGER USER INTERFACE

Summary of Commands ••••••••••••••
Screen Management Commands
Debugging Commands ••••••••••••

The Debugger Workstation Screen •
The Control Section ••••••••••..••••••
The Window Section

Windows•..
Text Editing Rules for Windows •••••.
The Listing Window ..•••.•
The Trap Window
The Data Window
The Display Window ••.
The Menu Window.. . •••..•••••••

Command Invocation
Syntax Rules for Entering Commands

PF Keys ••.••••••••.••.•••••••••
Assigning
Examining
Changing a
Removing a

Commands to PF Keys
PF Key Assignments

PF Key Assignment
PF Key Assignment

During Execution

Macros • • • . ••••••.
Differences Between Predefined Commands and Macros
Examining Macro Definitions ••••••••
Removing a Macro Definition

Default Startup Files ••••••
The System Startup File ••••••
The User Startup File

EASY MODE

Introduction •••••••
EASY Function Keys
Limitations of EASY
Exiting EASY Mode •••••.

SCREEN MANAGEMENT

Introduction
Positioning the Cursor
Scrolling Text
Searching Text

.

Specifying a Search String
Locating the Search String
Pattern Matching

iv

..............

.......

.......

2-1
2-2
2-3
2-5
2-6
2-8
2-9
2-9
2-9

2-11
2-13
2-15
2-15
2-16
2-17
2-17
2-18
2-19
2-19
2-20
2-20
2-20
2-21
2-21
2-21
2-22
2-22

3-1
3-2
3-3
3-3

4-1
4-1
4-2
4-2
4-2
4-3
4-4

~ --

.~
"~.

r

CONTENTS <continued)

4. 5 Marking Lines • • • • • • • . • 4-8
How to Mark Lines and Ranges •••.••••••..•.••••...••••••• 4-8
How to Clear Marks . • • • • • • • • . • • • • • • • • • • • . • . . • • • • • • • • • • . • . 4-8

4. 6 Managing Windows • . . • • • • • • • • • • • 4-9
Full Window and Partial Window Formats ••..•••••••••••••• 4-9
Window Management Functions ••••.•••••••••...••••.••..••• 4-11
Moving Between Windows .••••••••..••••••••.•••••••••••••• 4-12
Window Context • 4-12

4. 7 Displaying VS Files • • • . • . • • . • • • • . • • • • • • • . . • • • • • • • • • • • • • • • • 4-13
4.8 Displaying PF Key Assignments ••••••••••••.••...•••.••••••• 4-13
4.9 Displaying Help Text ..•...•••••••••••••.•••••..••.•••••••. 4-13
4 .10 Printing Data ••..••.•••••..•.••••••••••••••....••••••••.•• 4-13
4 .11 Assigning Commands to PF Keys •••••.••.•••••••••••.•••••.•• 4-14
4 .12 Defining Macros •••••••••.••••••••••••••••••••••••••••••••• 4-15

CHAPTER 5 USING DEBUGGING COMMANDS

5.1 Sample Subject Program ••..•.•••••••••••.•••••••••••••••••• 5-1
5. 2 Performing Debugging Actions . . • • • . . • • • • • • . • . . • • • • . • • • • • . • • 5-4

Setting Traps • • • • . . . • • • • • • • . • • • . . . • • • • • • • • • . . • • • • • • • • . . • 5-4
Monitoring the Values of Specified Program

Variables • • • . • • • . • . • . . . • • . • • • • • • • • • • • • • • • • • • • . . • • • • • • • 5-7
Displaying Program Information •••••••••.••••.••..••••••• 5-9

5.3 Modifying the Trap Window ••••••••.•••••••.•••••••••••••••• 5-10
Activating and Deactivating Traps ••••••.•..•.••••••••••• 5-11
Managing the Count . • • • • • • • • . . • • • . • • • • . . . • • • . • • • • • • • • 5-12
Deleting One or More Traps .••••..•••.••••••..••.•••••.•• 5-13

5.4 Modifying the Data Window •••.••••..••••••••..•.••..•..•.•• 5-14
Modifying Program Values ••••••.••••••••...••.••...•••••• 5-15
Deleting an Entry in the Data Window .•••••...•..•••••••• 5-15

5.5 Displaying a Partial Window Format •.••••..•.•.•••.•••••••• 5-16

CHAPTER 6 DEBUGGING WITH SHARED SUBROUTINE LIBRARIES AND
MSMAPed FILES

6 .1 Introduction • • • • • . • • • • • • . • • . • • • • • • • • . • . • . • • • • • • • • • • • • 6-1
6. 2 Chapter Glossary • • • • . • • . • • • • • • • • • • • . • • • • • • • . . . • • • • • • • • • • • • 6-1
6.3 Debugging SSLs and MSMAPed Files •••••••••••••••••••••••••• 6-2

How to Specify Section Names as Command Operands •••••••• 6-2
How to Specify the Program Name Prefix •••..••••••••••..• 6-3

6.4 The Display of Program Names •••••••••.•••••••.•.••••••••.• 6-3
6.5 Debugging a Program That References an SSL: Two

Sample Displays • • . . . • • . • • • • . • • • • • • • • • • • • • • . . . • . . • • • • • • • • 6-3

v

CHAPTER 7

7.1
7.2
7.3

7.4

CONTENTS <continued)

DEBUGGER COMMAND SET

Introduction .•••••••••••••••.••
Command Classes ••••••.
How to Enter Commands ••••••••••••••

How to Enter Set-and-Query Commands
How to Enter Action Commands ••••••
How to Enter Informative Commands

Debugger Commands •••••••••••••••••••

APPENDIX A TRANSITION FROM THE PREVIOUS DEBUGGER TO THE NEW
DEBUGGER

A.l
A.2

A.3

A.4

A.5

A.6

A. 7

Introduction
Main Screen

Continue
Scrolling
Traps ••••••.••••
Inspect & Modify •••••
Select Section
Dump •••••••••••••• • • • • • • •
Print Program Screen
Print Debug Screen •..•••
Cancel Processing •••..••••

Trap Screen ••••.••••••••••••••.•
Breakpoint (Address) Trap
Single-Step Trap •••••.•.
Memory Modification Trap

Inspect & Modify Screen
Displaying Variables
Inspecting Memory ••••
Inspecting Registers ••••..
CALL/LINK/SVC Trace
Display Program Screen

Inspect & Modify Screen With Modified Menu
Displaying Variables •••••. • ••••.•
Modifying Variables .••••••
Scrolling Variables •••••• • •••••

Memory Screen ••••••••••••.••
Displaying Program Memory
Modifying Program Memory

Registers Screen •••••••••••••
Modifying Register Contents
Modifying the PCW ••••••••••.••••••

vi

7-1
7-1
7-2
7-2
7-3
7-3
7-4

A-1
A-1
A-1
A-2
A-2
A-3
A-3
A-3
A-4
A-4
A-4
A-4
A-5
A-6
A-7
A-8
A-8
A-8
A-8
A-9
A-9
A-9

A-10
A-10
A-10
A-11
A-11
A-12
A-13
A-13
A-13

·~

APPENDIX B GLOSSARY

APPENDIX C DEBUGGER ERROR MESSAGES

APPENDIX D DEBUGGER COMMAND ABBREVIATIONS

vii

Figure 1-1
Figure 1-2
Figure 1-3
Figure 1-4
Figure 1-5
Figure 1-6
Figure 1-7
Figure 1-8
Figure 1-9
Figure 2-1
Figure 2-2
Figure 2-3
Figure 2-4
Figure 3-1
Figure 4-1
Figure 5-1
Figure 5-2
Figure 5-3
Figure 5-4
Figure 5-5
Figure 5-6
Figure 6-1
Figure 6-2

Table 4-1

FIGURES

Interaction of the Debugger With the Operating System •••••
Structure ot the Debugger Workstation Screen ••••••••••••••
The Listing Window
The Trap Window .•.•••••••••...•.•••..•••••••••••....•.••••
The Data Window .•.•••••.•.•.••.•.••••••••••.•.••••••••••••
The Debugger Help Menu ••••••••••••••••••••••••••••••••••••
Debugger Help Text Screen Flow ••••••••••••••••.•••••••••••
The Debugger Commands Screen ••••••••••••••••••••••••••••••
The Frame Command Screen ••••••••••••.••••••••••••..•••••••
The Debugger Workstation Screen .•••••••••••....•••••••••••
The Listing Window
The Trap Window•........•...........•...
The Data Window ••.•...•....•••••.•...••••••••••......•••••
The Easy Interface Screen •...•••••••••••..•...•••••••••••.
Sample Three-Window Display •••••••••.•••••••••••.•••••••••
Sample Subject Program Listing •.••••••••••••••••••••••••••
Output From Sample Subject Program •••••••••••.••••••••••••
Initial Window Display •....••••••••••••.••••••••••••••••••
Results in Trap Window •••••••••.•••••••••••.•.•••••••••••.
Results in Data Window ••••••••••••••••••••••••••••••••••••
Partial Window Format Display •••••••••••••••••••••••••••••
Example: Data Displayed by the PROGRAMS Command •••••••••.
Example: Display of SSL Data Items •••••••••••••••••••••••

TABLES

Pattern Matching Symbols •••••••••••••••••••••••..•••••••••

viii

/~
1-2
1-7
1-9

1-10
1-11
1-12
1-13
1-15
1-16

2-6
2-10
2-11
2-13
3-1

4-11
5-2
5-3
5-4

5-10
5-14
5-16

6-4
6-5

~
'--

'

4-5

r

r

HOW TO USE THIS MANUAL

INTENDED AUDIENCE

This manual is written for VS programmers who need to use the VS
Symbolic Debugger. Familiarity with the VS Operating System is
assumed.

ORGANIZATION

This manual is organized in the following way:

•

•

•

•

•

•

Chapter 1 provides an overview of the VS Symbolic Debugger. It
describes the features and functions of the Debugger and the
debugging process. It also compares the Debugger with the
previous Debugger and describes its operating environment.

Chapter 2 describes the Debugger user interface. It summarizes
all the commands and describes the screen display, command
invocation, PF keys, macro instructions, menus, and startup files.

Chapter 3 describes how to use the EASY command to enable you to
use the Debugger in a simplified mode that is PF-key driven and
designed for the new or infrequent user.

Chapter 4 describes how to manage the debugging environment. It
describes cursor and text movement, creating and manipulating
windows, displaying files, modifying text, and modifying PF key
assignments.

Chapter 5 describes various debugging activities, using many of
the debugging functions.

Chapter 6 describes debugging with shared subroutine libraries and
MSMAPed files.

ix

• Chapter 7 describes all of the Debugger commands in reference
format. The commands are organized alphabetically in this chapter.

• Appendix A describes how to perform, with the new Debugger, the
functions that you performed with the previous Debugger.

• Appendix B provides a list of Debugger terms with definitions.

• Appendix C describes the Debugger error messages.

• Appendix D lists the shortest abbreviation that can be substituted
for the full command name for each Debugger command.

RELATED DOCUMENTS

This manual refers to the following manuals:

• vs System User's Introduction (715-0417)

• vs System Security Reference (715-1736)

• vs Advanced Security Features Guide (715-1268)

• VS Principles of Operation (715-0422)

• vs Editor Reference (715-1143)

x

CHAPTER 1
INTRODUCTION TO THE VS SYMBOLIC DEBUGGER

1.1 INTRODUCTION

Debugging is the process of locating and correcting programming errors
in a program. The OS SYMBOLIC DEBUGGER (Debugger) provides a means of
referencing elements of a program using the actual data names and
control structures of the language in which the program is written.
The Debugger allows you to reference variables by the names used in
the program (symbolic names) instead of using addresses to search
through memory.

The Debugger enables you to monitor the behavior of a program while it
is running. In addition, you can set stopping mechanisms called
traps, inspect and modify values of variables, and alter the flow of
execution of the program.

Specifically, the Debugger enables you to perform the following tasks:

• Interrupt the execution of a program
• Inspect a program's code, data, and internal state
• Reference variables by their symbolic program names
• Change specified data values in program memory
• Modify a program's control flow

The Debugger can be used with any object program running on the VS.
If the program has been produced by a compiler, which produced a
program listing and symbolic information about the program, the
Debugger provides full symbolic debugging support. Symbolic support
means that the Debugger accepts references to program components by
their symbolic names.

However, if symbolic information is not present, machine level
debugging using offsets with commands instead of symbolic values is
still available. An offset is a hexadecimal value that represents the
number of bytes from a specified starting address.

Introduction to the VS Symbolic Debugger 1-1

Note: In cases where confusion might arise, the current version of
the Debugger is referred to as the new Debugger, and the previous
version as the previous Debugger. Otherwise, the current version is
referred to as the Debugger.

1.2 HOW THE DEBUGGER WORKS

1.2.1

The Debugger functions as an operating system service on the VS. The
Debugger does not run as an independent program on the system, but in
association with a program for which you have explicitly requested
debugging assistance. This program is called the subject program.
When the Debugger runs, it always runs as a task subordinate to the
subject program task. Figure 1-1 shows the how the Debugger interacts
with the operating system:

BEFORE DEBUGGING REQUESTED

SUBJECT
PROGRAM

OPERATING
SYSTEM

AFTER DEBUGGING REQUESTED

SUBJECT
PROGRAM

OPERATING
SYSTEM

Fiqure 1-1. Interaction of the Debugger With the Operating System

Symbolic Information in the Program File

The OS translators optionally incorporate information in the program
file during translation. This information enables symbolic or named
examination of the program data elements.

1-2 Introduction to the VS Symbolic Debugger

1.2.2

When you compile a program, you have a choice of whether to include
symbolic information. You include symbolic information by specifying
YES for both the SOURCE option and the SYMBOLIC option on the Compiler
or Assembler Options screen. If you choose to include the
information, the OS programming languages place symbolic information
into the Symbolic block of the program file during assembly or
compilation. This information is used by the Debugger when it is
invoked to debug at the symbolic level.

Program Listing Display

When you run the Debugger, it attempts to display the subject program
listing. Any of the following conditions can prevent the listing from
being displayed:

•

•

•
•

You did not specify YES for the SYMBOLIC option for compilation or
assembly (from the Compiler Options or the Assembler Options
screen).

Note: Since the Eile name for the program listing is maintained
in the subject program's Symbolic block, Eull symbolic debugging
requires a YES response to both the SYMBOLIC option and the SOURCE
option (Erom the Compiler Options screen or the Assembler Options
screen). IE you specify YES Eor the SYMBOLIC option and NO for
the SOURCE option, partial symbolic debugging only is available;
partial symbolic debugging allows you to examine variables in the
subject program only.

The execution of the program was interrupted during the processing
of a routine for which the source code is not available (such as a
system external subroutine).

The Debugger could not access the program listing .

The Linker removed symbolic information from the program file •

Introduction to the VS Symbolic Debugger 1-3

1.3 DEBUGGER FEATURES

1.4

The Debugger functions as a powerful and flexible tool to help you
locate and correct errors in your source program. A summary of the
significant Debugger features follows:

Full s}'lllbolic support -- The Debugger provides full symbolic
debugging support for all OS languages.

Full machine-level support -- The Debugger provides full
machine-level support using addresses instead of symbolic names when
symbolic information is not available, or when you are debugging an
Assembler program.

Flexibility -- The Debugger allows you to debug at the symbolic
level or at the machine level without changing modes. In addition,
the PF keys and the startup file can be customized to meet
individual needs.

Extensive conunand set -- The new Debugger provides a more extensive
set of commands than the previous version, which makes debugging
simpler and more efficient.

EASY command for simplified Debugger operation -- The EASY command
allows you to run the Debugger in a simplified mode that is designed
for the new or infrequent user. Refer to Chapter 3 for more details
on using EASY.

DEBUGGER FUNCTIONS

The Debugger performs a number of functions that facilitate program
debugging. A summary of the significant Debugger functions follows:

Control program execution -- The Debugger provides commands to
suspend program execution, resume program execution, and resume
program execution for a fixed number of statements before suspending
again.

Set traps -- The Debugger enables you to set traps. Traps suspend
program execution at specified locations when certain conditions are
met. You can then use other debugging commands to examine or modify
data.

Display various program information -- The Debugger enables you to
display program information, such as variables and portions of
memory, at certain stages of program execution to help reveal errors.

1-4 Introduction to the VS Symbolic Debugger

Modify program data -- The Debugger enables you to modify program
values, excluding those values in protected memory.

Note: In the previous Debugger, it was possible to modify variables
when executing in system code. As a result of enhanced security in
OS Operating System Release 7.10, you must now be executing in user
code in order to modify program variables.

If your program is interrupted while in system code, single step your
program to the next executable statement. Then modify the desired
values in memory using the ALTER command.

1.5 ACCESSING THE DEBUGGER

Only the operating system can create a Debugger task. The operating
system does this in response to an explicit request to debug a subject
program.

The Debugger can be accessed by the user or by a subprogram, at any of
the following times:

Before program execution -- You can request the Debugger at the
start of program execution if you run the program from the Command
Processor menu. First, select the Run command (PFl) from the
Command Processor menu. The system displays the Run screen, which
prompts you to enter the file, library, and volume names of the
program. Next, enter that information and press PFl. The system
then invokes the Debugger for the subject program and displays the
program listing starting at the initial entry point.

During program execution You can request the Debugger after you
have interrupted program execution by pressing the system HELP key
(the key marked HELP in the upper left corner of the keyboard).
When you press the HELP key, the system displays the modified
Command Processor menu. From that menu, you can access the Debugger
by pressing PFlO. The Debugger displays the program listing
starting from the point at which execution was interrupted.

You can follow the same method if a program halts at some unscheduled
point (e.g., cancel, program check, etc.).

Introduction to the VS Symbolic Debugger 1-5

Whenever the Debugger is requested, the operating system performs the
following actions:

1. Pauses subject program execution

2. Creates a Debugger subtask for the subject program (if one does
not already exist)

3. Passes control to the Debugger

At this point, the debugging session is in effect.

To provide the symbolic features of the Debugger for a program, you
must satisfy the following conditions:

• The program must be compiled with YES specified for the SYMBOLIC
option on the Compiler Options screen or the Assembler Options
screen.

• The Linker option to retain syrobolic debugging information from
the program must be set to YES. The source listing for the
program to be debugged must be available. A source listing is
available if it meets all of the following conditions:

The source listing is in a file class that is accessible to the
user.

The source listing is on a volume that is currently mounted.

The source listing is not in exclusive use by another user.

1.6 EXITING THE DEBUGGER

You can exit the Debugger by either of the following methods:

• Execute the CANCEL command. The Debugger then displays the Cancel
screen, from which you can terminate the debugging session.

• Press the HELP key (the key marked HELP in the upper left corner
of the keyboard). The Debugger then displays the modified Command
Processor menu, from which you can terminate the debugging session.

1-6 Introduction to the VS Symbolic Debugger

~ '·-.

1.7

1.7.1

r

OVERVIEW OF DEBUGGING

This section provides a general overview of debugging and introduces
several key Debugger features.

The Debugger Workstation Screen

The Debugger interface operates from a screen called the Debugger
Workstation screen. The structure of the Debugger Workstation screen
is shown in Figure 1-2.

CoRM .. 9n~1 .· 'S~a·~~.~ . i,J!.f.6:~~(~:~; ~:rtt>
(entr.y c>'f: C.QITDllands. o.r m.a,cr(J~)
(errdr and·· i nf:onnat.lon1i1l' me~sa:ge's'l'

' : . . .
."")'~f·;.\~.·~

;:· f'>~·, \' ~~
'\

· lJs~j:ng window,. trap.·w1ndow, :dat~ ;w~' m:low~. · d~:s~li~~· :wUi9~w,, mgti~.r;w;if p(j~w, ..
. ()p co,mbfoati~en~'_£of· :partial .w;:t11:JJ,Ws

Fiqure 1-2. Structure of the Debugger Workstation Screen

Introduction to the VS Symbolic Debugger 1-7

1.7.2

The Debugger Workstation screen is divided into two sections: the
Control section and the Window section. The Control section, which
occupies the first three lines, contains the following items:

• A status line that displays information about the topmost window
in the Window section.

• A command line that is the primary input mechanism to the
Debugger. You enter commands on the command line.

• A message line where the Debugger displays error or informational
messages.

The Window section occupies the remainder of the screen and contains a
portion of the information that is the subject of the current
debugging action. Within the Window section, you can display one or
more windows that contain various types of program information. For
example, you can display a portion of the subject program on which to
set traps, and a menu of PF key assignments to use to set the traps.

If you want to examine more than one window at a time, you can divide
the Window section into two or more windows, each with a reduced
number of lines.

Debugger Windows

The Debugger consists of three predefined windows on which you operate
to debug a program. They are summarized as follows:

Listing window -- Shows the section of the program listing at which
control is currently paused. You can scroll the listing forward,
backward, and horizontally.

Trap window -- Shows the existing traps and provides basic
information about each trap. You can activate, deactivate, and
modify the counts of traps.

Data window -- Shows the current values of specified data items.
You can switch the display format for a specific data item between
symbolic format and hexadecimal format.

In addition, the Debugger provides commands that enable you to perform
the following window related tasks:

Manipulate windows -- Manipulate the size and contents of windows to
view specific portions of data.

Display PF key assignments -- Display the current PF key assignments
in the menu window.

1-8 Introduction to the VS Symbolic Debugger

r

r

Display a OS file -- Display a specified OS file on an additional
window called the display window. One window is used for this
purpose; a subsequent display of a different file replaces the
contents of the display window.

Invoke Easy mode -- Invoke a simplified version of the Debugger for
the new or infrequent user.

1.7 .3 Managing the Program Listing

The first window displayed when you enter the Debugger, or whenever
execution of the Debugger resumes, is the listing window (Figure 1-3).
The listing window shows the portion of the program listing at which
control is currently paused. The menu window is also displayed by
default on the bottom four lines of the Window section .

. ,Li,S.tinQ. .Code Sec.tian COBDEMO ~ta_tement # 1 PCW OOJOOOOS 27000000
'Command:

·'.·'type 11EASY ON"' .for s-;mplified .debugqirig.
:QOOOl 00010.0 IDENUFI.CATION OIVlSION.
000:02 000200
00003: 000300 PROGRAM-ID. CQBQEMO~

. PP0.0.4 - 00040"0/ AUTHOR. Bi 11 Johnson.
00005 000500 DATE-WRITTEN. ·Olt31/XX; tooo.os ooosooit · · · · · ·
)~gg.g~ g,~g~~~- ENVIRONMENT DIV! St ON.

; ,QQ009 000900.INPUT--OUTPUT SECTION.
\ -; ... ·.,t:·;g(f,Q~;q gp_1;q,op; .f·~~£,,.CONTRO.L.
! . , ·<\GP..01 l ·aanon, ' . S.ELECT THE"".WORKSTAHON -· .::·o~.oj.i . ootzo'.ct; · · · ··

4\ssi.GN ro· .
H.~S'RI(Ei•. ·. ·•foJ!SPlAY"

I ;>·: .. QQQi1l' ,, O,,O_l~P.9::· ,
. . ,;:::. ,J,lqeE'S$.ttp9.,E rs· RANDOM •.
,'. ' .oo~m4: QO;TAO.Ollr'.··
.. \llQ:Q;if1_?· tf0t59Jl :.ElAT,A D·IVlSIPN.
, ;~:'01JmT:6 00'1 B(JO · .. .flLE SECTION,.

Figure 1-3. The Listing Window

Introductio~ to the VS Symbolic Debugger 1-9

1.7.4

The line of the program at which control is paused appears highlighted
in the listing window. You can scroll and search through the program
listing to locate data names and statements that are of interest. For
detailed information about the listing window, refer to Section 2.3.2.

Managing Traps

Traps halt program· execution at desired locations in the subject
program to help reveal programming errors. Generally, you set one or
more traps to interrupt execution at locations where you want to
examine program data or the program state.

The Debugger supports a variety of trap features. The most common
trap use is to set a trap on a particular statement or range of
statements in the subject program. After you have indicated the
target statement(s) of the trap in the program, you set the trap by
executing the appropriate trap command. After program execution has
halted at a trap and after you have examined the information of
interest, you can then resume the program by executing the CONTINUE
command or the STEP command.

The Debugger maintains a complete list of all existing traps, called
the trap list, in the trap window (Figure 1-4).

Figure 1-4. The Trap Window

Existing traps can be deactivated and later reactivated, or deleted.
The Debugger automatically updates the trap list to reflect any
changes. Any command that sets a trap defines the conditions under
which the trap is to be taken and activates the trap.

1-10 Introduction to the VS Symbolic Debugger

1.7.5

A maximum of 99 traps can be defined at one time; however, certain
conditions may exist under which not all 99 traps can be active. The
number of traps that can be active at one time varies with the nature
of the traps. Memory modification traps (set by executing the MODTRAP
command) for lengths greater than 8 require more storage space than
other traps. For detailed information about the trap window, refer to
Section 2.3.3.

Monitoring Data Values and Displaying Program Information

The data window (Figure 1-5) contains the names and current values of
program entities (variables, registers, etc.) that you specify. The
Debugger monitors all entries in the data window, and always displays
the current value of each entry.

Data Code Se.ctlon COBDEMO· State·ment # 1 ~CW OCJl.00008 27000000
Coimland: · · ·

~UBl. = itO.
. Sect:ion

SUB2 = +O.
·Se~fi:on

= tOBDEMO

= COBDEMO

Memory 100008 48 ·. =
too_oo·a 000,0 JJFOQ0.60 71CPJlA~ 5,830GQ8~ OQ~Jna~.E

· f(JOQl8 OOJO SABOCOOO BOOOOQO.O 9680F040 8500.QUOC
'1'0'0028 .0020 SOFOFOOB :18AF5C)l0 A000S830i so·ccsa2o·

Figure 1-5. The Data Window

All entries in the data window are updated to contain their current
values whenever they are displayed. Entries remain in the data window
until you remove them by executing the DELETE command. For detailed
information about the data window, refer to Section 2.3.4.

Introduction to the VS Symbolic Debugger 1-11

1.8 DEBUGGER HELP TEXT

The Debugger enables you to examine Help text through the HELP
command. Help text consists of on-line Debugger information about the
following topics:

• Debugging concepts
• Command syntax, notation, and abbreviations
• Default startup files
• Screen management commands
• Debugging commands

When you execute the HELP command, the Debugger accesses the OS INFO
utility, which displays the Debugger Help menu (Figure 1-6). To
access help information about a topic, position the cursor within the
topic number of the desired section and press ENTER.

1.0
, ' . . '

pijpµgge'r\ H~lp ... Menu'

1
• For help~.°'n •• ,arw,~f :~~~\ '~fu,q~,~~.t;~· ;lltt~~.',,~·~]·ow. pc)s·:ithin<th~.
cursor- w:1.th1 n '.~fte, F'OPJC lll:llJ!PffeP: ,q;f: ·,tf:le, .denred s·ec!.ti:on iCi.f:l'd
1Pr:e.ss ~.ENT~R) ... · .· ·.·· . ·· · ·

~•ti 'tntr:cid¥~tf~.ll t.o: :.~h,e ,Y:S ~M~PJ..lC :_~EB~~GE~'. '

3_ .. ;Q :~yntax: R.~Oes·~ .. Nbfa;ti'·.on':,,Oo~v .. en.tfdp~s.i .antf(~~~t~vt.~:~~):i G,ofeman~s.····

· 4:~o. t·di· Mode; :(s:fmP.1+fi';e:c:f' .C)'~bµ9,9~#: lrfo'q~;)' ·
,·,:. ·,.·: ·\··:·,:· .· .•

S'· O. · oe:f:~~Jt ~1e~fft.~P .·"F.~i 11~'si ::
s.~,o . -~<.:reen Man~gemen~:.:CoWta?d.s;,
7 .11 .De~u,S'9fn$· Cornmancf's ..

._,,,<

~P~Wt:ion :cur":s·o'r<and p.r'e.$:s E.NTER· ;·~cf :i:o·q~J.Ei '~',s:~~,ti'.on\6,r' :~~pfo.,,: or ;s·iHe~tr:
1 ft~ ~~;t~tn ,to o.:~W.9,g~r·· ·· t:9.l -Fi'.n(f ·~~__..,.~---~---..~------..--.--.

-,;·

PH ,Prev/Fi·rst IM 'Down {:.HH. Si:il'i"t':JC:r,~ery:·

Figure 1-6. The Debugger Help Menu

1-12 Introduction to the VS Symbolic Debugger

The topics that appear on the Debugger Help menu are summarized as
follows:

Introduction to the OS SYMBOLIC DEBUGGER -- Displays a menu of
conceptual informational topics about the Debugger.

Syntax Rules, Notation Conventions, and Abbreviated Conunands
Displays a menu of syntax rules, notation conventions, and
abbreviated commands.

Easy -- Displays information about the Easy command that allows you
to run the Debugger in a simplified mode that is designed for the
new or infrequent user.

Default Startup Files -- Displays information about the system
startup file and the optional use of a user startup file.

Screen Management Commands -- Displays a menu of the screen
management commands. That information includes the syntax of each
command and a short description.

Debugging Commands -- Displays a menu of the debugging commands.
That information includes the syntax of each command and a short
description.

Figure 1-7 shows the general screen flow for Debugger Help text.

2.0 3.0

INTRODUCTION SYNTAX RULES.
TO THE VS NOTATION
SYMBOLIC CONVENTIONS.
DEBUGGER AND ABBREVIATED

l COMMANDS

t

Figure 1-7.

1.0

DEBUGGER HELP MENU

~

..
4.0

DEFAULT
STARTUP
FILES

I
APPROPRIATE SUBTOPICS

Debugger Help Text

5.0 6.0

SCREEN DEBUGGING
MANAGEMENT COMMANDS
COMMANDS

I I
Screen Flow

Introduction to the VS Symbolic Debugger 1-13

To select a topic, position the cursor within the topic number of the
section and press ENTER. The OS INFO utility automatically takes you
to the portion of the Help text with that topic number. You can
continue searching through the Help text by positioning the cursor on
a topic number and pressing ENTER.

When you use a topic number to go to another portion of the Help text,
you can return to the previous reference by pressing PFl. By pressing
PFL repeatedly, you can revert to the reference numbers you invoked in
reverse sequence until you arrive at the Debugger Help menu.

You can scroll through the Help text by using the following PF keys:

PF Key

4 (20)

5 (21)

4

5

6

7

Description

First -- Positions you at the beginning of the Help text for
the Debugger, i.e., 1.0 Debugger Help menu.

Last -- Positions you at the end of Help text for the
Debugger.

Prev Positions you at the previous screen of Help text.

Next Positions you at the next screen of Help text.

Down Positions you one line lower in the Help text.

Up -- Positions you one line higher in the Help text.

When you finish using the Help text, press PF16 to return to the
previous display.

Note: It is also possible to view Debugger Help text directly from
the OS INFO utility. For more information about this feature, refer
to the OS System User's Introduction.

1.9 DEBUGGER TRAINING FACILITY

The Debugger Training facility assists you in the creation of
minimally valid command strings. A minimally valid command string
satisfies only the fundamental criteria for a valid command string.

The Debugger Training facility enables you to enter a command and its
associated operands in the command line without regard to syntax. A
fill-in-the-blank template automatically arranges the operands in the
correct syntax. This allows you to make full use of the Debugger
commands without regard to syntax.

1-14 Introduction to the VS Symbolic Debugger

r

r

There are two ways to reach the Training screen for a particular
command (Figure 1-9):

• Enter TRAINING [command] on the command line. The [command]
operand can be abbreviated to the shortest unique abbreviation.
If any ambiguous abbreviations are encountered, the Debugger
selects the first command containing the abbreviation. Invalid
abbreviations cause the Debugger to display the Debugger Command
screen (Figure 1-8).

• Enter TRAINING on the command line without an operand. The
Debugger then displays the Debugger Commands screen (Figure 1-8).
This method allows you to view all of the available commands.

Th~ t.omrrf!J.n.g· .. ~creens li.sted below proVi de as.slstane,;e! i;n ¢reating -a ¢olJll11and li fl~·
Tab. ~o·; tb:e-. des i. red co01111and :and press. ENTE.R :

·•: A~1t'.i·~ate
·•· ·A·i'·ter' ·

.Iii Count
·• :C.Ors·or

• First •·Left

~: ~-~~:~fQ~
•: ~t;~'.f.~.PJit~s
•Stea~;

. ~ o'a:ta
11 lle~~tivat.e>
~. · oeµµgf it~ ...

·• F:1 oat:re9.ts:te·rs:'
:•' F~aril~ , ..
• Fr"eez;e
.• ; i=:ur1·
• G·o~t.o .

... : t i'.'n klevels.
• µ,i~s\t:f n e:

:111 ~:t:~:~}og · •· toa:a··· ·
• Locate ·• tao~e1

•: ¢;~s~e.
• ·~l::~fa,:t'

····Define
• Delete
II oiagnosti c

:.• Help.
•:Hex

, •. rYta~1< ·
ii Match

• el<rs-l!'.
•r ~~~.q.~~~:<i~lom~
•· Co'lumn·
·• .C!>r):t:icnu:e

·• o;sp1 ay
11ib_tjirip:.
ll Easy

• Hi s:tory
·• Indi:catars
• tnsld~-- ... ·

• Mentq.rJl
..... M~nu
• Mpc:ttrap
.- Ne~.t • Find •.Last

:setect+:

Figure 1-8. The Debugger Connnands Screen

The following functions are available from the Debugger Commands
screen.

PF Key

ENTER

4

Function

Select a Command -- Selects the command at which the cursor
is positioned. The Debugger then displays the Training
screen for the selected command (Figure 1-9).

Previous -- Scrolls backwards to display the previous screen
of commands.

Introduction to the VS Symbolic Debugger 1-15

1.9.1

5

16

Next -- Scrolls forward to display the next screen of
commands.

Return -- Cancels the Training Facility and returns to the
previous Debugger screen.

Using the Training Screen for a Selected Command

Either of the steps described in Section 1.9 display the Training
screen for a particular command (Figure 1-9). This screen provides a
short description of the command, a choice of available operands, and
corresponding blanks in which to enter those operands.

In this section, the FRAME command is used as an example of a Training
command. This section, therefore, will reference the Frame Command
screen. The Debugger Training facility can support the rest of the
Debugger commands in the same way.

. s:r~~~r. lt··w;R~Z~~}~-f~~f~:~t~1i!~~~li~~.f'~lf,,frg;~~~i6i~ . · ··
';en:tfr;~-~-~~e:M;~_ ~,rr~~/C)ifi: ~tn·g1 :s::q_;r~~n~. < ~fp;~~t.. , .. ; .. .J:illf?fk, J?'~rrn.~,,~s_, morre th,in
:o·n·e:::~1:nij.o!W°'·*a,•:.b"~i,·C:f~·~:rsm~ect·a~1: -~ ·-e:tqi'e' '.1•:a:•.~J)-~'. ;~~if<~t-·ar.-ea; .• - · · ·

,"_J'
'~- t ,

Figure 1-9. The Frame Conunand Screen

1-16 Introduction to the VS Symbolic Debugger

1.9.2

The following functions are available from the Frame Command screen.

PF Key

ENTER

1

16

Function

Create Command -- Creates the selected command in the proper
syntax, based on the entered operands, and places it in the
command line of the Debugger.

Return to Debugger Commands -- Returns you to the Debugger
Commands screen (Figure 1-8) without creating a command.

Return -- Returns to the previous Debugger screen.

On the Frame Command screen, the Debugger displays

• A brief description of the command and its functions.

• A fill-in-the-blank template in which to enter the operands for
the command line. The default operand is filled in.

• A list of the possible operand values.

On the Frame Command screen, the default operand is PARTIAL. To
execute the FRAME PARTIAL command for the Debugger, press ENTER. The
other possible operand value is FULL. To execute the FRAME FULL
command, type FULL over PARTIAL and delete the extra characters.

Minimal Editing on the Training Screen

Minimal editing is defined as the fundamental validation process of
the entered operand. It is done by the Debugger on the Training
screen for the selected command. The Debugger will reject any attempt
to enter a value besides the available listed operands. Operand
fields that must contain a limited number of values or a range of
values are edited accordingly. However, free formatted operands are
not validated until executed from the command line. The Debugger does
not verify which section names are in the program or which trap
statements are valid. If you make a mistake, the Debugger does not
display an error message until you attempt to execute an invalid
command string from the command line.

1.10 SECURITY

Generally, you should not use the Debugger in a production
environment, since a majority of the programs operate on sensitive
data. For example, security problems could arise if an operator could
use the Debugger to read money-card passwords. The OS System Security
Reference contains detailed information about security on the VS.

Introduction to the VS Symbolic Debugger 1-17

1.11 COMPILERS THAT SUPPORT SYMBOLIC DEBUGGING

The Debugger supports symbolic debugging to the maximum extent
provided by the following OS compilers:

• BASIC Compiler
• C Compiler
• COBOL 74 Compiler
• COBOL 85 Compiler
• FORTRAN 77 Compiler
• PL/I Compiler
• RPG II Compiler

The OS ASSEMBLER provides no support for symbolic data names, but
BREAK traps can be set by positioning the cursor in the listing window.

1.11.1 Debugging in the Presence of Optimized Code

A number of OS compilers allow you to specify that your program
undergo object code optimization. Certain aspects of object code
optimization may interfere with the Debugger's ability to correctly
utilize symbolic information. For example, a compiler might not store
a variable's value when it is incremented, but keep that value in a
register. As a result, the Debugger will display the incorrect value
of that variable.

It may be necessary to recompile a program without specifying object
code optimization in order to successfully perform symbolic debugging
on that program.

1.12 COMPARISON TO THE PREVIOUS DEBUGGER

The following list summarizes the major differences between the new
Debugger and the previous Debugger. Appendix A describes how to use
the new Debugger to perform the tasks that you performed with the
previous Debugger.

User interface -- The user interface of the new Debugger is
command-driven and can be customized to user requirements; the user
interface of the previous Debugger is menu-driven and cannot be
customized.

Trap management The new Debugger provides extended and more
comprehensive trap management.

Multiple value display -- The new Debugger enables you to display
multiple program values that are updated each time the subject
program is halted; the previous Debugger provides- snapshots of
single values only.

1-18 Introduction to the VS Symbolic Debugger

·~.· ••• ·

~ ' , __

1.13

1.13.1

Symbolic memory modification traps -- The new Debugger includes
memory modification traps on the symbolic level in addition to the
machine level.

Symbolic RPG II indicator support -- The new Debugger enables you to
display RPG II indicators symbolically.

Shared subroutine libraries and MSMAPed files -- The new Debugger
lets you debug shared subroutine libraries and MSMAPed files along
with your main program.

PF key assignment -- The new Debugger enables you to assign one or
more selected Debugger commands to specified PF keys.

Macros -- The new Debugger enables you to build special commands
called macros.

Help text -- The new Debugger provides on-line Help text through the
OS INFO facility.

Note: In the previous Debugger, it was possible to modify variables
when executing in system code. As a result oE enhanced security in
OS Operating System Release 7.10, you must now be executing in user
code in order to modify program variables.

If your program is interrupted while in system code, single step your
program to the next executable statement. Then modify the desired
values in memory with the ALTER command.

NOTATION CONVENTIONS

Special Notation Used in Command Specifications

The special notation used in the command specifications shown in
Chapter 7 is as follows:

1. All words in uppercase letters are Debugger keywords.

2. All lowercase words are user-supplied.

3. A horizontal list of several elements, such as

x y z

indicates that each element is to be specified in that order, one
after the other.

Introduction to the VS Symbolic Debugger 1-19

4. The use of brackets ([]) signifies that the enclosed item(s) are
optional depending on the debugging requirements. When brackets
contain a vertical list of two or more items, one or none of the
items can be used.

5. Brackets are not part of Debugger commands and are not included
when you enter commands. All other punctuation, when included in
the format, is required.

6. The operands n and m denote positive integers that you specify.

7. The operand "text" (not including quotes) denotes a text operand.

8. The volume.library.file operands denote a file specification.
You can assign a full file specification in the format
volume.library.filename, or specify only the file name if .you want the
Debugger to use the appropriate default volume and library names set
in the usage constants. For information about setting usage
constants, refer to the OS System User's Introduction.

1.13.2 Common Command Components

Some of the Debugging commands described in Chapter 7 use the
syntactic components described in the following list:

Address

hex-off set

hexval

Some of the Debugging commands described in Chapter 7
use addresses as operands. Addresses in the subject
program can be specified in either of the following
ways:

absolute form: hexadecimal number

Example: 100598

base-index-displacement form:
[disp]([ix,]b)

Disp refers to a hexadecimal off set; ix and b refer
to general registers. The address is the sum of the
contents of the one or two registers and disp.

Example: 2A(R7,RA)

A hexadecimal number that represents a byte off set
from a specified base location; the first byte at
that base location has a hexadecimal offset of O.

A sequence of hexadecimal characters.

1-20 Introduction to the VS Symbolic Debugger

·~·············.·.· \::

", __

1.14

rel op Any of the following relational operators:

= Equal
= or <) Not equal

) Greater than
< Less than
>= Greater than or equal to
<= Less than or equal to

Note: For the Not equal operator, an up-arrow (T) can be substituted
£or the caret symbol (A) before the equal sign. Either the up-arrow
or the caret symbol is on the 6-key, shifted (not PF6). For keyboards
that do not provide the up-arrow or the caret £or the shifted 6-key,
you can substitute the less than/greater than relational operator
combination (<>).

section-name

statement-id

The name of a section in the subject program.

The ordinal number of a program statement as defined
by the source language.

CURRENT WINDOW AND CURRENT CURSOR POSITION

The current window is the window in which the cursor is currently
located. If the cursor is not in a window, the current window is the
window in which the cursor was located when you last pressed ENTER or
a PF key.

The current cursor position is the column and line location in the
current window. If the cursor is not in a window, the current cursor
position is the column and line location of the last cursor position
before you last pressed ENTER or a PF key.

You can display the current cursor position on the status line if you
execute the STATUS command with CURSOR as an operand, prior to a text
search.

1.15 OPERATING ENVIRONMENT

The Symbolic Debugger runs on Release 7.10 and all subsequent releases
of the OS Operating System. The Symbolic Debugger will not run on any
operating system releases prior to Release 7.10.

To debug within shared subroutine libraries (SSLs), Version 1.05 (or
greater) of the debugger is required. Symbolic Debugger 1.05 will not
run on any operating system releases prior to Release 7.20.

Introduction to the VS Symbolic Debugger 1-21

1'~ u

.. ~ .. ,.· ., y
'-··

CHAPTER 2
THE DEBUGGER USER INTERFACE

The Debugger user interface is the means by which you enter input to
the Debugger and the way resultant output is displayed. The Debugger
is command driven; the commands entered on the command line (or
executed by PF key or macro) are the primary input mechanism, and the
screen display is the primary output mechanism. This chapter
describes the following aspects of the Debugger user interface:

• Summary of commands
• Screen layout
• Windows
• Command invocation
• PF keys

•
•

Macros
Startup files

2.1 SUMMARY OF COMMANDS

Each Debugger command belongs to one of the following categories:

Screen management conunands -- Commands that enable you to perform
screen management functions such as scrolling text, searching text,
marking lines, and displaying windows

Debuqqinq cormnands -- Commands that enable you to perform debugging
actions on program data displayed in windows

Reference information about all of the Debugger commands is provided
in Chapter 7. However, since commands of both types are referenced
frequently prior to that chapter, the following section provides a
summary of commands.

The Debugger User InterEace 2-1

2.1.1 Screen Management Commands

The following list provides a brief description of each screen
management command. Refer to Chapter 7 for reference descriptions of
the screen management commands.

Command for Simplified Debugger Operation

EASY Allows you to run the Debugger in a simplified mode
that is designed for the new or infrequent user.

Commands for Positioning the Cursor

CURSOR
COLUMN
ROW

Performs several cursor related functions.
Moves the cursor to the specified text column.
Moves the cursor to the specified text row.

Commands for Scrolling Text

FIRST
LAST
LEFT
RIGHT
PREVIOUS
NEXT
GOTO
NOTE

Scrolls to the first line in the window.
Scrolls to the last line in the window.
Scrolls to the left.
Scrolls to the right.
Scrolls backward.
Scrolls forward.
Scrolls to the specified line.
Saves the window position and cursor location.

Commands for Searching Text

CASE

FIND
MATCH
SEARCH
LOCATE

Specifies case sensitive or case insensitive
searching.
Sets string for string searching.
Sets string for pattern matching.
Locates· search string (searching one direction only).
Locates search string (searching ahead, then back).

Commands for Marking and Clearing Lines

MARK
CLEAR

Marks specified line or range of lines.
Removes one or more marks.

Commands for Managing Windows

FRAME
WINDOW
DATA
TRAPS
LISTING
CLOSE
FULL

Specifies full or partial window format.
Displays a different window.
Displays the data window.
Displays the trap window.
Displays the listing window.
Closes the menu window or the display window only.
Makes the current window fill the screen.

2-2 The Debugger User InterEace

2.1.2

Commands for Displaying Debugger Program Information

DISPLAY
HELP
MENU
POSITION
TRAINING

VERSION

Displays the specified file on the display window.
Accesses the Info facility to display Help text.
Displays current PF key assignments.
Displays current row and column position of cursor.
Assists in the creation of minimally valid command
strings.
Displays the version number of the current Debugger.

Commands for Modifying the Debugger Command Set

ASSIGN
DEFINE
HISTORY

LOAD
RECALL

Assigns the specified command(s) to the named PF key.
Defines a specified macro.
Controls the recording of commands entered at the
command line.
Loads a command file.
Recalls and displays a command that was entered at
the command line.

Commands for Outputting Information

PRINT
SNAPSHOT
DUMP

Prints entire window or marked portion of window.
Prints an image of the Debugger Workstation screen.
Creates a memory dump.

Command to Restore the Program Screen

.SCREEN Redisplays the program screen.

Command to Exit the Debugger

CANCEL Exits from the Debugger.

Debugging Commands

The following list provides a brief description of each debugging
command. For reference descriptions of the debugging commands, refer
to Chapter 7.

Commands for Controlling Program Execution

CONTINUE
STEP

Resumes program execution
Executes a fixed number of statements or
instructions.

Commands for Changing the Section of Reference

SECTION
PROGRAMS

Selects a new default section of reference.
Displays a list of SSLs and MSMAPed files currently
mapped with the main program.

The Debugger User InterEace 2-3

Commands for Setting Traps

BREAK Sets a trap on a particular statement or instruction.
INSIDE Sets a trap covering the interior of a range.
OUTSIDE Sets a trap covering the exterior of a range.
LINKLEVELS Sets a trap on all LINK SVC or UNLINK SVC

instructions.
MODTRAP Sets a trap on an address, variable, or register.
OPCODE Sets a trap covering all instances of an instruction.

Commands for Modifying Traps

ACTIVATE
DEACTIVATE
COUNT

Activates a trap.
Deactivates a trap.
Changes the count for a trap.

Command for Deleting Traps or Data Displays

DELETE Deletes a trap or data display.

Commands for Displaying and Modifying High-level Values

VARIABLE
ATTRIBUTES
HEX
INDICATORS
ALTER
FREEZE

Displays the current value of a variable.
Displays information about a specified variable.
Changes the format of a displayed variable.
Displays all RPG indicators.
Changes a program value.
Specifies whether an entry in the data window is to
be updated to its current value.

Commands for Displaying and Modifying Memory

MEMORY
ALTER
FREEZE

Displays a portion of memory.
Modifies a specified value.
Specifies whether an entry in the data window is to
be updated to its current value.

Commands for Displaying and Modifying Program State

REGISTERS
FLOATREGISTERS
STATE
ALTER
FREEZE

STACKTRACE
DIAGNOSTIC

PROCEDURES
CODE SECTIONS
STATICSECTIONS

Displays one or more general registers.
Displays one or more floating-point registers.
Displays components of the program state.
Modifies a specified value.
Specifies whether an entry in the data window is to
be updated to its current value.
Displays the call chain.
Displays the full text of a runtime diagnostic
message.
Displays all subprogram names in the program.
Displays all code sections in the program.
Displays all static sections in the program.

2-4 The Debugger User Interface

~ \...__ .

Commands for Displaying Subject Program Information

STATUS
LISTFILE

Displays requested information in the status line.
Allows you to select an alternate copy of a listing
file during a debugging session.

Command for Debugging Non-Symbolic Data

DEBUG FILE Allows you to query and reset linkage and Debugger
information in non-symbolic programs by using the
symbolic and linkage information in a fully symbolic
copy of the same program.

Command to Reset Default Values

SET Allows you to reset the default values of
MEMORYLENGTH and VARECHO that were set when you
initially invoked the Debugger.

2.2 THE DEBUGGER WORKSTATION SCREEN

The Debugger Workstation screen (Figure 2-1) is displayed when you
access the Debugger. The Debugger Workstation screen serves as the
foundation for all Debugging functions; it is from this screen that
you display and manage all Debugger windows.

Note: IE you are a new or infrequent user, at this point you may want
to access the Easy interEace to the Debugger by typing "EASY ON" in
the command line 0£ the Workstation screen. Chapter 3 describes the
Easy interface.

The Debugger User Interface 2-5

. ·~ .

.. 4.t s t~i,~9 · ·.· Po~ij s~.c;1tilop1 :~.OJlO,~MO; , · :s~~a\t.emen£ • # · l ;P,~\f:o.ttto:ooea:: ~ttfo:Q,~o:b).
•· ·· .. :conim~"f;J:r·EA§Y :i'ON .' / ·: ... · . ·••.. ·.·. . •. · ·•· · . ·:'type· 11,EASY' ·,()f'l•/ f~or 's.,tinp Hlied ··d.sbugging. ·:
, : o·Q,OOjl ·- ·:0·001o:c1 IBENH;Fr.qA~1mN D:IVf!:SIQN .• ··:,·· -
; >r , ., ; oopo~. · :eo·o2op :J~RO.GRAM~:I o~. ·· .·. , ·' _··. . . : .

. , : -ou·o,03 :. ,·ao.oaoo. 'PROGR~~~lD;~: • ·.·· COBO EMO·~ , ' :
-eQpo.~;. '.opo4oo Aul~98-.:;, .· · .. -; · .. ! ;~~rn: :4,9lfr• Sofl,~
OQQ.Q§.· ;QO.Q§Q,Q;. MTE:~WRIUEN~ O!ll3,:l/XX,~

' ll0.006' -OM.6.00'* , .. · .. · .. -. _ >'· __ . .. , :
(fQP~Ql ·Q9Q19P1 .ENY:lRONt~lENT. ·orv~.s!ON.
OU.008 .000800: · .. ·.
(lQoo·g,: ·· -,ro:a~foh: · ifNPlJJT·~utgur s:ecr ratt.

,:·o:od·w·, :OO:i'b.Ob: r.:i·WE:~CPNt·Rl:>L. -.- •. ·. ' . , . : .··. : ' . ,
, -~·.j;l(JQJ) .00)\0Jl, . .. ·s·~'.~·EC'f TH~~WPRK$TAJtOtf
. POQl2, p.ol~?OO. ·-•·. .

-_· :A-sst.m¥ ,fo: 0 wsFtLE;"''• ··- · : .. ·o~·setAvi•
Q00;1~ oo raoo · -

Figure 2-1. The Debugger Workstation Screen

As Figure 2-1 illustrates, the Debugger Workstation screen is divided
into two sections: the Control section and the Window section.

2.2.1 The Control Section

The Control section provides window status information, enables you to
·enter commands, and displays error and informational messages. It

consists of the following lines:

• Status line
• Command line
• Message line

2-6 The Debugger User InterEace

-~

r

The Status Line

The status line in the Control section displays user-requested
information about the current debugging session relative to the
topmost window. If other windows are present, each window has its own
status line. You select the status items to be displayed in a window
by executing the STATUS command from that window. STATUS can take
several operands that indicate the desired contents of the status
line. Those operands are summarized as follows:

Operand

CODESECTION
COLUMNS
CURSOR
LINES
MARK
MEMORY
NAME
OFF
PCW
PROGRAM

STATEMENT
TASK ID
TIME
USER ID
WINDOW

Description

The name of the current code section
The visible column numbers of the file
The cursor location (after executing SEARCH or LOCATE)
The lines that are currently visible
The lines that are currently marked
The amount of memory available for debugging
The name of the current window
Turns the status display off for this window
Program control word information
The program being executed during the current debugging
session
The name of the statement at which control is paused
The number of the current user task
The current system time
The user ID of the current user
The current window number

Each window can have a different set of STATUS operands. You can
specify as many operands as will fit on the command line in any
order. The name and value of the specified operands appear on the
status line of the window for which they are specified. Status items
are not displayed if their contents are not meaningful or have
undefined values. For example, MARK is not displayed unless there are
actually lines marked. Therefore, the combined length of the status
items chosen can exceed the screen width.

If you are displaying more than one window, the status display for the
window nearest the top of the screen refers to that window. Status
lines for lower windows are displayed as the first line of the
window. If you want to add an extra line to a window for display, you
can disable the status display by executing STATUS with the OFF
operand, with the cursor positioned in the appropriate window. STATUS
OFF, when executed for the topmost window, leaves the status line
blank but does not add an additional line to the window display.

The Debugger User Interface 2-7

2.2.2

The Command Line

The command line is the primary input mechanism to the Debugger.
Since this line is the first modifiable field on the screen, you can
use the HOME key to move the cursor to the command line. Most
commands return the cursor to the command line after the command has
been executed. For information about how to enter commands on the
command line, refer to Section 2.4.

The Message Line

The message line is the location at which the Debugger displays error
or informational messages. These include error messages about
commands and general information about the execution of commands.

The Window Section

The Window section of the Debugger Workstation screen can display a
maximum of 21 lines of information. For example, if you display the
full listing window, 21 lines of the subject program from the point at
which control was paused are displayed in the Window section. When
you display a partial window format for two or more windows, the
number of lines shown for each window is reduced according to your
specifications. For more information about the partial window format,
refer to Section 4.6.1 and Section 5.5.

A Debugger window exists for each of the following entities:

• The subject program listing
• A list of the current traps
• Specified monitored program data
• Specified arbitrary VS files
• A list of PF key assignments

You can use the screen management commands (refer to Chapter 4) to
perform operations such as scrolling, searching, and marking in the
Window section, and the Debugging commands (refer to Chapter 5) to
perform debuggin9 operations.

If you display an arbitrary VS file in a window, there is no limit on
the size of the file other than to stay within normal VS constraints.

2-8 The Debugger User InterEace

~ ·,,__ __ ...,.

2.3 WINDOWS

2.3.1

2.3.2

The following windows are the main Debugger windows. These windows
are predefined and always appear in the Debugger:

• The listing window
• The trap window
• The data window

This section describes the format and contents of the main Debugger
windows. The Debugger also creates the following additional windows:

• The display window (described in Section 2.3.5) which displays a
requested VS file

• The menu window (described in Section 2.3.6) which displays the
current PF key assig~ents

• The easy mode window (described in Chapter 3) that appears when
the Debugger is operating in Easy mode

Text Editing Rules for Windows

The following rules govern the availability of text editing (the
ability to enter data in modifiable fields) in windows:

• The text in the listing window (Figure 2-2) is not modifiable •

• The text in the trap window (Figure 2-3) is not modifiable.
However, all changes made to traps through the ACTIVATE,
DEACTIVATE, and COUNT commands are subsequently reflected on the
trap window.

• The text in the data window (Figure 2-4) is modifiable. The
modified value in the data window is not changed in program memory
unless you execute the ALTER command. For more information about
ALTER, refer to Chapter 7.

• The text in the display window and the menu window is not
modifiable.

The Listing Window

The first window displayed on the Debugger Workstation screen when you
access the Debugger is the listing window (Figure 2-2). The listing
window shows the portion of the subject program listing at which
control is currently paused. The menu window also appears by default
with the listing window, on the last four lines of the Window section.

The Debugger User Interface 2-9

•. -··· i'~

·' _. t:.:i0.s'.ti·os· ~.Q~f~ ;$~q~~H'-;" · c.o.aogMo. s·t.~;t,'.~m~~:td!'. :1 · ·'Pcftiofa:oq·a.o:a:· ~~p-P6.Q:o:61/ <·" · ·, i · .>~ , : ~-):··f;.C.
,.¢omnfand:: ..•.... -. . . __ _ . > . . .··.· . ..<-:· ,._~,
;J1p~8-9P'.~.EAS~9~-~q~fr~i:'Ke~+~~~i.~X~,~~t4~ii·¥v~g~o2·~,;,~ ·. ,. '. :.'.• ' ·(• . ~. ·;· . ':),',_. ·: fg~;;:'.'~)~'~.ii
,.;'OOOOZ 0002'QO · · •·· _· ._··.· ..•• '---- . · • <·· •'':

0

; ·:: .-··• . '

. Q~O_Q9~. · ·9,ob,3.0.0 :_pgqG.)~At.rl-r~·b,,, C,9QD~f1p;.;. · . ·:~ ·; .. JS?<>.~
·QOPQ4 .OP-04PO ~U'.tffl~~ ~.· ; . '' . Bill ;~'.Q~Q'.$on -~
OQQQ~ ooo:s:oo -. ·PA.J:EWWRtrTEN .~ · .011~1~Kx:~ .
. ·0:0·006· potl5-00·11r·- _ • _ . _· __ .
OJ)'00-1 ; 0·00700 ENVlRONMENT Dl:VlSlON.
Jrao·o:s o-0os_oo _ ... _ _ _. _
'0000:9 t100QOO ._lN~UT~OU]'PIJl SECTION•
·O(lbJ_o. 0,0,1tl:OO -FI.LE~CO.NTRO,L.~ · _ · .. · .. ·.
O.QOtl' 9QJt~Q; S~Lget THE~WQRK~JA:r·~~©N
:oQOl.2 QOl?QO, _ -... ..

; ' AS~:!GN_TO .. llWSF.lLE"t. ".DlSP~AY' 1

o·oo.l3; ·. ,0(}1'300' · ·
ACCESS MOD~ JS RANo:oM.

o:pp~1A ·0:0.1400-~. _· _·
. , 0001~ '.9Q:l$Q9 .QA;rA. Qt_\/1$,I'ON ...

0'0016 00l600' FtL£,,SECUON •'- '

Figure 2-2. The Listing Window

The listing is initially positioned so that the statement at which
control is paused appears highlighted in the listing window.

For programs that consist of a number of modules linked together, each
program module has its own listing. The name of the VS listing file
for each code section in the program is determined by the Debugger,
from information contained in the program file. On any given entry
into the Debugger, the listing that is displayed is the one for the
code section in which control is paused. If you change the current
program section by executing the SECTION command, the listing for the
new section is displayed in the listing window, replacing the listing
for the previous section.

The listing can be scrolled and searched freely. Since the text and
statement numbers are intelligible to the Debugger, you can use them
as arguments for many commands.

You can access the listing window from other windows by either of the
following methods:

• Execute LISTING.
• Execute WINDOW with an operand of 3.

2-10 The Debugger User Interface

2.3.3 The Trap Window

The trap window (Figure 2-3) displays a list of all current traps.
You can access the trap window from other windows by either of the
following methods:

• Execute TRAPS.
• Execute WINDOW with an operand of 1.

~ . ,'

i :-·-,-~· .h<

f:ti·ts
2
0,
0
·a
0

]&,pe·.
B.re'ak
IosHie:
6ii£~:ide
,Mo:a~fiap
Qp,c.<;>de,•

Figure 2-3. The Trap Window

After you create a trap, the trap is entered in the trap window. If
you set the trap from a window other than the trap window, the trap
appears by itself when you access the trap window, although other
previously set traps may exist. To view other traps, scroll the
display backward. If you set a trap while displaying the trap window,
the new trap is appended to the end of the list.

Each trap, whether active or inactive, is represented by a line in the
trap list. An entry for each new trap is appended to the end of the
list when the trap is created.

The Debugger User InterEace 2-11

The trap window contains the following information for each trap:

Status -- The status of the trap entry. The status can be one of
the following items:

Active -- Indicates a trap that is operational and has not been
taken.

Taken -- Indicates a trap that has just been taken.

Inactive -- Indicates a trap that is not operational.

Each newly created trap is displayed with an ACTIVE status. You can
change the status of desired traps by executing the ACTIVATE command
or the DEACTIVATE command. For information about how to execute those
commands, refer to Section 5.3.1.

Count -- The count associated with the trap. The count is the
number of times that the condition for the trap is to be encountered
before the trap is taken. The default (1) interrupts execution the
first time the specified trap condition is met. Each newly created
trap is assigned a count of 1. For information about managing the
count of a trap, refer to Section 5.3.2.

Note: The counts for INSIDE, OUTSIDE, and MODTRAP traps are set at 1
and cannot be changed with the COUNT command.

Hits -- The number of times the trap has been encountered by the
subject program. When the Hits value equals the Count value, the
trap is taken.

Type The type of trap (BREAK, INSIDE, etc.).

Operands -- The operands associated with the trap.

Note: IE the link level £or the subject program changes, the Debugger
displays an asterisk (*) before each trap that corresponds to a prior
link level. Traps with an asterisk are not changed in any way but are
no longer operational until the appropriate link level is returned to.

For information about modifying the trap window, refer to Section 5.3;
for reference information about commands for setting traps, refer to
Chapter 7.

2-12 The Debugger User Interface

~
. 1_ - .

2.3.4 The Data Window

~ The data window (Figure 2-4) contains specified data names, the
current values of the data names, and other requested program
information. The value fields of all entries in the data window are
monitored by the Debugger to always contain current values.

You can access the data window from other windows by either of the
following methods:

• Execute DATA.
• Execute WINDOW with an operand of 2.

c ,,, 'Sl!JB'T" . +o-- _,
>:\~~dt~i;~; . . .i="¢()B()EMQ

'<}~~?. c=' +(l , ' , .
. '/~~¢:~ii~n . -i;;' COBDEMO

1
• .i.~;,~:~o:ty 1oofl"da:~4~<= · ·· > .·. · · .

· .·:·':;''if·;· ~"o:a· ~:luto(f ~'.~7.?~0QO(),O ncor1~0. ·ss~.ocos4 :ematns~E
: .,,i'.E-<., ~iJ~: ::gz~g·:: ,; 6gS~gi~g~ ,~g~~gg,~;g jggg~ggg: ,~5&g~:g~,5

·;··;>.·t~:'· .. _,··~---~· ... _ ,,,,- ",>".' :, ... - .. : ··-~· -.,_ ·r; ,,,,-~··,,"·> ,- ._, -.-- .. :---- .. -;-•.~ .. _,,,,;,-~.~~:- '-·~~

--.< ~~·~-~~ .. -~.:. ~-··--

Figure 2-4. The Data Window

You use the VARIABLE command to enter variables in the data window;
you use other various debugging commands to display information about
program entities.

The information about variables that appears in the data window
consists of background text and data value text. Other entries (such
as program registers and procedures) appear in the format best sufted
to the particular entity.

The Debugger User Interface 2-13

Background Text

Background text refers to the names of entities that have been placed
in the data window through commands that display program information.
For example, if EMPLOYEE-NAME is some declared variable in the
program, when the command VARIABLE EMPLOYEE-NAME is executed, a line
such as the one that follows is appended to the Data list:

EMPLOYEE-NAME = Johnson, Bill'

The data name EMPLOYEE-NAME and the equal sign constitute the
background text in this example.

Data Value Text

Data value text represents the actual data values. For example, if in
the previous example, EMPLOYEE-NAME is a 24 character string, the data
value part of that entry is

"Johnson, Bill II

The Debugger regards data values as fields of text in the data
window. They have special significance; it is in them that the
Debugger places the updated values of the associated data items each
time control returns from the subject program. It is also from these
fields that the Debugger obtains modifications to the program's data
values.

You can alter the value of a field by changing the value and executing
the ALTER command (after either positioning the cursor or marking the
line); the value of the data item in the subject program is then
changed to the new value.

Display of Variable Types

You can display variables of static storage class at any point;
variables of other storage classes such as parameter, automatic, or
dynamic, may or may not be available.

Variables of dynamic storage are resolved at runtime. Examples of
dynamic storage variables are parameters, PL/I automatic variables,
and FORTRAN dynamic variables.

The display of inactive variables that have dynamic storage has a
special form. If a dynamic variable is being monitored and control
returns from the subprogram in which the variable is declared, the
display of the variable is not removed. It is changed to the
following form:

variable-name is not available

2-14 The Debugger User Interface

2.3.5

2.3.6

r·

If the subprogram is re-entered, the display of the most recent
instance of that variable is resumed.

For reference information about modifying data values in the subject
program, refer to the description of the ALTER command in Chapter 7.

The Display Window

In the course of a debugging session, you may want to display one or
more arbitrary VS files. To perform this task, you execute the
DISPLAY command with the appropriate file operands. The Debugger then
creates a new window called the display window, and displays the
file. The display window can be a full window or a partial window
format depending on the status of the FRAME command.

You can display one file at a time in the display window. When you
display a subsequent file, any previous file display is discarded.

To terminate the file display and close the window, you execute the
CLOSE command with the cursor positioned at any location within the
display window. For more information about displaying VS files, refer
to Section 4.7.

The Menu Window

To display all of the current PF key assignments in a non-modifiable
window called the menu window, execute the MENU command. The menu
window can be a full window or a partial window format depending on
the status of the FRAME command. The menu window appears by default
in the last four lines of the Window section when you access the
Debugger.

When you execute MENU with FRAME FULL in effect, the menu window is
displayed as a full window with both unshifted and shifted PF keys
visible. When you execute MENU with FRAME PARTIAL in effect, the menu
window may be displayed as a partial window format, depending on the
position of the cursor. If you display the partial window format, the
entire set of PF key assignments may not be visible on the menu
window. You can scroll the window display to view all assignments.

To remove the menu window, execute the CLOSE command with the cursor
positioned at any location in the menu window.

The Debugger User Inter£ace 2-15

2.4 COMMAND INVOCATION

You can execute Debugger commands or macros by using either the
command line or PF keys that are assigned to commands. For
information about macros, refer to Section 2.6.

Typically, the cursor position has meaning for the executed command or
macro. The current cursor position is transmitted from the
workstation to the Debugger each time you press ENTER or a PF key.
You can position the cursor on a particular column of a line in a
window or on the command line.

In most situations, the Debugger positions the cursor on the command
line following the execution of a command. However, some commands
position the cursor at some location in the window to indicate the
result. For example, the SEARCH command positions the cursor at the
first instance of the search string. In such cases, you can use the

·workstation HOME key to move the cursor to the command line.

To execute any Debugger command or macro from the command line,
perform the following steps:

1. Enter the command and any desired operands on the command line.
Follow the syntax rules described in Section 2.4.1.

2. If the command requires cursor positioning or line marking perform
the appropriate function.

3. Press ENTER.

To execute any Debugger command or macro instruction that is assigned
to a PF key, perform the following steps:

1. If the command requires cursor positioning or line marking perform
the appropriate function.

2. Press the PF key assigned to the command.

2-16 The Debugger User Interface

2.4.1 Syntax Rules for Entering Commands

The syntax rules for entering commands are as follows:

1. You can enter commands in lowercase, uppercase, or mixed modes.

2. Operands to a command are entered on the command line next to the
command, separated by one or more spaces.

3. Any operand that contains a space or a semicolon must be quoted.
Single or double quote delimiters can be used; embedded quotes
within quotes must have double quote delimiters. This rule does
not apply to the ASSIGN and DEFINE commands since both commands
take the remainder of the command line as a single operand.

4. You can enter two or more commands at once separated by semicolons
(;). The commands are executed in the specified order when you
press ENTER. This rule does not apply to the ASSIGN and DEFINE
commands for the same reason described in rule 3.

5. You can shorten commands (not macros) to the nearest unique
abbreviation; the case (upper case or lower case) of commands is
ignored. The BREAK command, for example, can be shortened to B.
The shortest abbreviation varies with the command in question;
Appendix D contains a list that shows the shortest unique
abbreviation for each command. If the Debugger encounters
ambiguous or unknown command names, it displays an error message
and takes no action.

6. Macros must be spelled out fully and have the correct case.

Note: A macro that has the same name as a command or a command
abbreviation overrides that command or abbreviation.

2.5 PF KEYS

A total of 32 PF keys are available for use with the Debugger; 16
unshifted keys and 16 shifted keys. PF keys are indicated in this
manual in the form PFn, where n is any integer from 1 to 32.

Note: PF keys 33 through 256 are accessible through the ASSIGN
command but are reserved for future use.

PF keys 1 through 16 are unshifted and are executed simply by pressing
the key. PF keys 17 through 32 are called shifted keys since they use
the uppercase versions of PF keys 1 through 16.

The Debugger User Interface 2-17

2.5.1

To access PF keys 17 through 32, hold down the SHIFT key and press the
appropriate key. You determine the correct key to press by
subtracting 16 from the shifted number. For example, to execute PF25,
you press PF9 (25 - 16 = 9) while simultaneously holding down the
SHIFT key.

Default command assignments are provided for all 32 PF keys in the
system startup file (refer to Section 2.7.1). You can view current
assignments by executing the MENU command. In addition, you can
exercise either of the following options to change PF key assignments:

• Assign one or more commands to any PF key by executing the ASSIGN
command (refer to section 2.5.1). The default PF key assignment
is overridden for the current session only.

• Place a user startup file in your input library to override PF key
assignments in the system startup file when the Debugger is
invoked. At any time during the debugging session, you can reload
the user startup file by executing LOAD DEBSTART to restore all
initial contents. For information about user startup files, refer
to Section 2.7.2.

When a PF key is pressed, its assigned command is executed. If you
assigned two or more commands to a PF key, they are executed one at a
time in the order in which they are specified.

Assigning Commands to PF Keys

You can assign one or more commands to a PF key by either of the
following methods:

• Enter ASSIGN followed by the command(s) (each command separated by
a semicolon) that you want to assign, and then press the PF key to
which the commands are to be assigned. For example, to assign a
command to mark the first line of the window to PFl, you would
enter

ASSIGN FIRST; MARK

and press PFl. This assigns the command string FIRST; MARK to
PFl, removing any commands previously assigned to PFl.

• Enter ASSIGN followed by the number of the PF key you want to
assign the command(s) to, and the commands (each command separated
by a semicolon) to be as~igned. Then, press ENTER. To do the
previous example by this method, you would enter

ASSIGN 1 FIRST; MARK

and press ENTER.

2-18 The Debugger User Interface

2.5.2

2.5.3

Note: Validation of the assigned command string occurs during the
execution of the string, not at the time you assign the string. For
example, if you execute ASSIGN l MAKI<, the Debugger assigns the
command string MAKK to PFl even though MAKI< is not a valid command.
When you execute PFl, the Debugger informs you that the command string
(MAKI<) is invalid.

Examining PF Key Assignments

You can determine which commands are currently assigned to a PF key by
either of the following methods:

• Enter ASSIGN and press the PF key. The PF key assignment is
displayed on the command line. To change the assignment, you
enter the new assignment over the previous one and p+ess the PF
key.

• Enter ASSIGN followed by the number of the PF key and press
ENTER. The PF key assignment is displayed on the command line
following the PF key number. To change the assignment, you enter
the new assignment over the previous one and press ENTER.

The system startup file contains default command assignments for
all 32 PF keys. To examine each default assignment, refer to
Section 2.7.1.

Changing a PF Key Assignment During Execution

As a rule, if a command takes an operand and it is assigned to a PF
key, you cannot change the operand in the process of executing the
command. The exception is the subset of commands that set a condition
in the debugging environment, such as FIND and MATCH. For all other
commands, to use an operand different from the one specified by the
command, you have the following three options:

• Redefine the PF key with the desired change (using the ASSIGN
command) before you perform the operation.

• Enter the command on the command line with the change instead of
using the PF key.

• Assign variations of the command to different PF keys.

After you execute ASSIGN, the system assigns the specified command(s)
to the indicated PF key, removing any prior command string assigned to
that key.

The Debugger User Interface 2-19

2.5.4 Removing a PF Key Assignment

To remove a PF key assignment, reassign the key as one or more
spaces. For example, if you execute ASSIGN 2 ' ', the previous
command assignment of PF2 is removed and no commands are assigned to
that key. For reference information about assigning commands to PF
keys, refer to the ASSIGN command in Chapter 7.

2.6 MACROS

2.6.1

In addition to assigning one or more commands to a PF key, you can
assign one or more commands to a name of your choice. A command of
this type is called a macro; the process is c~lled "defining a macro".

You define a macro by entering DEFINE followed by the name of the
macro and the command(s) you want to assign. Then, you press ENTER.
For example, to define a macro called FULLDISP that displays the file
DISPFILE in a full display window, you enter the following
information, then press ENTER:

DEFINE FULLDISP FRAME FULL; DISPLAY INVOL.INLIB.DISPFILE

Whenever you execute FULLDISP, the string of commands associated with
that macro is executed. Once a macro has been defined, you can go a
step further and assign that macro to a PF key if desired, as
explained in Section 2.5.1.

Note: Validation of the defined command string occurs during the
execution of the string, not at the time you assign the string. For
example, if you execute DEFINE M5 MAKK 5, the Debugger defines the
macro M5 as the command string MAKK 5, even though MAKK 5 is not a
valid command. When you execute M5, the Debugger informs you that the
command string (MAKI< 5) is invalid.

In certain cases, it is useful to use a macro as a shorter name for a
command with a long name. For example, since STATICSECTIONS has a
minimum abbreviation of 5 letters, you might want to define a macro
called "st" as a shorter abbreviation for that command.

Differences Between Predefined Commands and Macros

There are two significant differences between predefined commands and
macros. First, commands are insensitive to case and can be
abbreviated if the abbreviation is unambiguous. Macros are case
sensitive; th~s MAC is different from Mac or mac. Second, macros must
always be fully spelled out.

2-20 The Debugger User Interface

·~

2.6.2

2.6.3

Since macros are a sophisticated feature, this behavior minimizes the
possibility of undesirable reactions between macros and commands.

Note: A macro that has the same name as a command or a command
abbreviation overrides that command or abbreviation.

Examining Macro Definitions

To examine the current definition of a macro, execute DEFINE followed
by the macro name. If a definition exists for the specified macro,
that definition is displayed on the command line. You can either
change the displayed definition or enter a new one. If no definition
exists, only the entered command is displayed on the command line.
You can enter a macro definition if desired.

Removing a Macro Definition

Removing a macro definition also removes the macro from your Debugger
command set. To remove the definition of a macro, redefine the macro
as itself. For example, if you execute DEFINE FULLDISP FULLDISP, the
previous macro definition of FULLDISP is removed, and the macro
FULLDISP no longer exists.

2.7 DEFAULT STARTUP FILES

A default startup file contains defaults for PF key assignments and
various other options to be used by the Debugger. A system startup
file is supplied with the Debugger. The system startup file is
automatically loaded, executed, and closed at the start of each
debugging session.

Using the VS Editor, you can create a user startup file which when
executed, overrides the system startup file. If a user startup file
with the correct volume, library, and file names exists on the system,
the Debugger executes that file in addition to the system startup
file. In this case, PF key assignments and commands in the user
startup file override the same PF key assignments in the system
startup file, and any additional functions are included. Any PF key
assignments or commands in the system startup file that were not
overridden remain operational.

In addition to PF key assignments, other startup types of commands
(STATE, REGISTERS, etc.), and macro definitions can be included in a
default startup file.

The Debugger User InterEace 2-21

2.7.1 The System Startup File

The system startup file (called DEBSTART) that is supplied with the
Debugger has the following attributes:

VOLUME = SYSVOL
LIBRARY = @SYSTEM@
FILE = DEBSTART

When you invoke the Debugger initially, it reads the system startup
file to establish the default PF keys and to perform any other
specified initialization. The Debugger then looks for a user startup
file; if one exists, it is executed in addition to the system startup
file. The following list shows the PF key assignments in the system
startup file.

(1) MARK (17) CLEAR
(2) FIRST (18) DATA
(3) LAST (19) LISTING
(4) PREVIOUS (20) TRAPS
(5) NEXT (21) STATE
(6) PREVIOUS 1 (22) REGISTERS
(7) NEXT 1 (23) FLOATREGISTERS
(8) FIND (24) ALTER
(9) SEARCH (25) SEARCH BACKWARD
(10) STEP 1 (26·) STEP INSTRUCTION 1
(11) BREAK (27) CODE SECTIONS
(12) DELETE (28) STATICSECTIONS
(13) HELP (29) STACKTRACE
(14) CONTINUE (30) DUMP
(15) DEACTIVATE (31) ACTIVATE
(16) CLOSE (32) CANCEL

If you have changed a number of command assignments (via the ASSIGN
command), and then want to go back to the original assignments of the
system startup file, you execute LOAD SYSVOL.@SYSTEM@.DEBSTART. The
system startup file is reloaded and the original PF key assignments
are reinstated. For reference information about ASSIGN, refer to
Chapter 7.

2.7.2 The User Startup File

Using the VS Editor, you can create a user startup file for the
Debugger to use in addition to the system startup file. Your user
startup file can be a slightly edited version of the system startup
file or a completely different +ile. Typical uses of the user startup
file are to load a personal set of PF key or macro definitions, or to
execute a set of commands repeatedly.

2-22 The Debugger User Interface

~

The Debugger will not execute a user startup file unless it is an
80-byte consecutive file. The Debugger verifies and then executes
each line of the user startup file separately. Any invalid lines
cause the Debugger to halt execution of the file and inform you with a
message. If the file is not an 80-byte consecutive file, an error
message stating that the file is not a startup file is displayed.

You create a user startup file through the VS Editor. All commands
must appear in the first 72 bytes of the record. You can create files
with line numbers in the correct columns by specifying PL/I, FORTRAN,
Assembly language, or the procedure interpreter as the source language
to the Editor. If you specify BASIC, COBOL, COBOL85, or RPG II as the
source language, and do not specify NO for the NUMBER option, the
Editor will create an invalid startup file, since the line numbers
precede the text for these languages. For more information about
creating files, refer to the VS Editor Reference.

PF key assignments in a loaded user startup file override the same PF
key assignments in the system startup file. Any PF keys or commands
defined in the system startup file that are not redefined by the user
startup file remain active.

For the Debugger to recognize a user startup file and execute it after
the system startup file, you must name the user startup file DEBSTART,
and place it in your INLIB on the INVOL.

It is also possible to load a user startup file by executing the LOAD
command with the volume, library, and file names as operands. For
reference information about how to load files, refer to the LOAD
command in 'Chapter 7.

The Debugger User Interface 2-23

~ ·, '~
'-'_,

CHAPTER 3
EASY MODE

3.1 INTRODUCTION

The EASY command enables you to use the Debugger in a simplified mode
that is PF-key driven and designed for the new or infrequent user. To
begin using EASY, type EASY ON, on the Debugger command line and press
ENTER. The system then displays the Easy Interface screen shown in
Figure 3-1.

-Li sting Cod~ , S,~c,tf.ori COBDEf10' ;$.ta;t·~m~m:t'. #r l :: '~~rb ~-•: .
. Command:
J.ype· . 0 &\SY- 0.FF.W. 1for: no:rnnal. :debuqqirng.. _ _ "'' 1,.,.

:P.rocess leve.1
, .-f>revfous .Addres:s

Tra s
._,st.atus
Cou~t Htts fype

· · · .9p~rand~ -.

oo·oo
::z 000006.

';e~irn~t!;~~r1r~:~f ~!i!~;~!~§~~~~~il~:~~~=~~=i:;~;~~~~·
· t4~} Pr.ev: :·Qr.~}J3reak~~~~~;\(yl~'.}; 9ui11p f:lS')>1~~h~p:s:hot -<~Pr~;ht;($:c:r:een} t t6~l"G:i(r\'«ceJ.

\'.;·,·!

Figure 3-1. The Easy Interface Screen

Easy Mode 3-1

3.2 EASY FUNCTION KEYS

The Easy mode of Debugger operation enables you to use PF keys to
perform many standard debugging operations. The following list
describes each of the operatiops that you can access by using PF keys
from the Easy interface screen. Note that these are not the only
Debugger operations that you can access through EASY.

PF Key Function

PFl CONTINUE

PF2 FIRST

PF3 LAST

PF4 PREVIOUS

PFS NEXT

PF6 VARIABLE

PF7 SECTION

PFS BREAK

PFlO MEMORY

PF12 DELETE

PF13 DUMP

PF15 SNAPSHOT

3-2 Easy Mode

Description

Allows you to continue the execution of your
program after it has halted at a breakpoint or
trap.

Allows you to display the first seven source
lines in the window.

Allows you to display the last seven source
lines in the window.

Allows you to display the previous seven source
lines in the window.

Allows you to display the next seven source
lines in the window.

Allows you to display specified program
variables in the window. The current value of
the variable is always displayed.

Allows you to display the source code of a
specific code section.

Allows you to set a trap or a breakpoint to halt
the execution of your program.

Allows you to display a specified range of the
subject program's memory in the window.

Allows you to delete specified traps from the
trap window, or specified entries from the data
window.

Allows you to obtain a dump of the modifiable
data area. This function creates a print file
of the program's variables, buffers, and control
blocks.

Allows you to print the Debug screen currently
displayed.

~ .. _.

PF Key Function Description

PF16 CANCEL Allows you to cancel the Debugging session and
return to the Command Processor screen or to
the program where the interrupt occurred.

3.3 LIMITATIONS OF EASY

Easy does not provide you with the use of the entire Debugger command
set. The commands that modify PF key assignments and manipulate
windows are disabled. However, you can execute any of the remaining
commands at the command line. In addition, commands are assigned to
only 16 PF keys, instead of all 32 PF keys. Finally, the CLOSE
command works differently.

The following list describes each of the commands that work differently
while you are using the Easy interface.

ASSIGN -- You cannot reassign PF keys while you are in Easy mode.
When you attempt to reassign PF keys, the system displays the
following error message:

"PF key assignments cannot be modified in simplified mode."

CLOSE -- The cursor must be positioned outside the easy mode window
when using CLOSE. When you attempt to close the window with the
cursor position inside the easy mode window, the system displays the
following error message:

"CLOSE is not legal in the easy mode window."

DATA, DISPLAY, FRAME, LISTING, MENU, TRAPS, and WINDOW -- These
commands are not valid while you are in Easy mode. When you attempt
to use any of these commands, the system displays the following
error message:

"The Debugger window structure cannot be altered while in
simplified mode."

3.4 EXITING EASY MODE

To exit Easy mode and return to normal Debugging, type EASY OFF on the
command line and press ENTER.

Easy Mode 3-3

CHAPTER 4
SCREEN MANAGEMENT

4.1 INTRODUCTION

The Debugger provides a variety of screen management commands that
enable you to perform tasks such as those that follow:

• Position the cursor

• Scroll text

• Search text

• Mark lines

• Manage windows

• Display information

• Output information

• Assign commands to PF keys

This chapter describes how to perform these tasks. Its objective is
to provide a general set of guidelines for using commands and various
operands to perform common screen management tasks. Familiarity with
the tasks described in this chapter will enable you to successfully
understand and use the screen management commands described in
Chapter 7.

This chapter does not provide complete information about syntax and
usage of the commands described; refer to Chapter 7 for that
information.

4.2 POSITIONING THE CURSOR

The current cursor position is transmitted from the workstation to the
Debugger each time ENTER or a PF key is pressed. You can position the
cursor on a particular column of a selected row within a window, or on
the command line.

Screen Management 4-1

Many commands automatically return the cursor to the command line
after they are executed. For those commands that leave the cursor
within the current window after they are executed, you can press the
HOME key to automatically move the cursor to the command line.

The Debugger includes several screen management commands for
positioning the cursor at desired locations. For reference
information about those commands, refer to Chapter 7.

4.3 SCROLLING TEXT

4.4

4.4.1

The FIRST, LAST, PREVIOUS, and NEXT commands perform forward and
backward scrolling. FIRST displays the first portion of the window
display and LAST displays the last portion of the window display.
PREVIOUS scrolls backward through the displayed data and NEXT scrolls
forward. Both PREVIOUS and NEXT accept a numeric operand that
indicates the number of lines to be scrolled.

The LEFT and RIGHT commands perform horizontal scrolling. LEFT
scrolls the window display a specified number of columns to the left,
which is indicated by a numeric operand. RIGHT scrolls the window
display a specified number of columns to the right, which is also
indicated by a numeric operand.

For reference information about commands for scrolling text, refer to
Chapter 7.

SEARCHING TEXT

When you search for text, you first specify a string to be searched
for, called the search string, and then execute the SEARCH command or
the LOCATE command to locate it. The search string is specified by
either the FIND command or the MATCH command and serves as the search
string for both SEARCH and LOCATE. Each window can have one search
string.

The string that was last specified by either FIND or MATCH serves as
the search string. If a search string was last specified by FIND, the
search criteria for FIND are applied in any subsequent search. If a
search string was last specified by MATCH, the search criteria for
MATCH are applied in any subsequent search.

Specifying a Search String

The FIND command specifies a search string for a simple text search.
For example, assume that SECTION-1 is some section in the subject
program. If you execute FIND SECTION-I, SECTION-1 becomes the search
string.

4-2 Screen Management

4.4.2

The MATCH command specifies a more sophisticated search string (also
called a regular expression) for pattern matching. Pattern matching
involves searching for match strings using both text and symbols as
the search criteria. MATCH enables you to specify an approximation of
the string you want to locate, for which a number of different strings
within the text may match.

Regular expressions use certain special symbols to indicate the
desired type of search. The brackets ([]) and the asterisk(*) are
examples of special symbols. The brackets describe a character class;
[abc] stands for a single character that is either "a", "b", or "c".
The asterisk means to repeat the preceding expression zero or more
times; a* means zero or more letter a's. For reference information
about additional special symbols, refer to Chapter 7.

The status of the CASE command applies only to· a search string
specified by FIND. CASE ANY indicates that the search should ignore
the case of the text; CASE EXACT indicates that the search should be
case sensitive. A search string specified by MATCH is always case
sensitive regardless of the status of the CASE command.

The search string specified by either the FIND command or the MATCH
command is saved until a new search string is specified; only one
search string can exist per window. The current search string for the
window is the last one that was specified by either command. For
example, if you issue a search string through the MATCH command and
then issue a search string through the FIND command, the string issued
by FIND is the current search string.

Locating the Search String

After you have established a search string, you execute either SEARCH
FORWARD or SEARCH BACKWARD to perform a search. SEARCH FORWARD
searches forward from the current cursor position; SEARCH BACKWARD
searches backward from the current cursor position. If a search
string is found, the Debugger positions the cursor to the first
character of the found string. If the search string is not found, a
message is displayed.

You can use the LOCATE command to search first forward and then
backward. LOCATE searches forward for the search string, and if it is
not found, then searches backward from the starting point. In this
way if the search string is not found, you know that it does not exist
anywhere in the file.

To find all occurrences of a particular string, specify the search
string using FIND or MATCH, then execute SEARCH (from the first line
of the window) or LOCATE repeatedly until no more occurrences of the
string are found. For reference information about commands for
searching text, refer to Chapter 7.

Screen Management 4-3

4.4.3 Pattern Matching

Pattern matching is an advanced type of search made possible by the
MATCH command (MATCH ON). It enables you to locate strings with
variable components. When MATCH is set to OFF, pattern matching is
not in effect, and any search is a simple, literal search.

Pattern matching uses certain symbols as wild cards for specifying
characters and positions within the search string. The symbols are
punctuation marks and other common symbols, such as a period(.),
brackets ([]), and the asterisk (*) (refer to Table 4-1). You use
these symbols together with the usual characters to specify the object
of your search, the find-string. (You can specify the find-string
with the FIND, SEARCH, or LOCATE command.) The ON setting for the
MATCH command causes any of the pattern matching symbols of the
find-string to be interpreted according to their meaning within
pattern matching, instead of their literal representation.

Some of the pattern matching symbols represent the repetition of
characters, some represent one or more members of a class, some
represent the location of the expression within a string (first or
last), and two symbols serve as escape characters. For example, if
MATCH is set to ON and a pair of brackets is used to enclose abc in a
find-string [abc], the pattern matching interpretation is "Find every
string that is an a, b, or c."

Your setting of the CASE command (CASE ANY or CASE EXACT) affects
pattern matching just as it does simple searches. If CASE ANY is in
effect, both "a" and "A" match a pattern in which."a" or "A" is
indicated. The examples in Table 6-1 are the result of a setting of
CASE EXACT.

Pattern matching in the Debugger is done on a line by line basis.
There is no facility for matching a string that occurs partly on one
line and partly on the next line.

4-4 Screen Management

Symbol

any

[]

Table 4-1. Pattern Matching Symbols

Description

A character that does not have one of the following
special meanings stands for itself.

A period represents any single character.

Brackets represent a character group from which one
character must be chosen for the match. Characters,
character ranges, and the caret symbol (description
follows) can be combined within a single set of square
brackets. In addition, you can use more than one set of
brackets in a pattern matching expression.

Examples

[abc] represents a single character that is either
lowercase a, b, or c.

[A-Z] represents one character in the set of
uppercase letters A through z.

[A-Za-z] represents a single alphabetic character.
The letter can be uppercase (A-Z) or lowercase (a-z).

[A-Z] [A-Z] [A-Z] represents any three consecutive
uppercase letters.

The caret symbol, when it appears as the first character
inside brackets, represents a single character not in the
character class. The caret represents the word "not" when
it is in this position.

When it appears at the beginning of an expression, the
caret symbol indicates that the text must start at the
beginning of the line in order to match.

Note: The caret symbol (A) may appear as an up-arrow (f)

or some other character, depending on the workstation
being used.

(continued)

Screen Management 4-5

Symbol

Table 4-1. Pattern Matching Symbols (continued)

Description

Examples

[A0-9] represents any single character not in the set
0 through 9.

[AA-Za-z0-9] represents any single character that is
not alphabetic or numeric.

[ABEGIN] represents any single character that is not
the uppercase letter B, E, G, I, or N.

ABEGIN matches the string BEGIN only when that string
starts at the beginning of the line.

* The asterisk indicates that the preceding character or
expression can be repeated zero or more times.

Examples

.• indicates zero or more characters.

[A-K]* represents zero or more uppercase letters in
the range A-K.

+ The plus sign indicates that the preceding character or
expression can be repeated one or more times.

Examples

.+ indicates one or more characters.

[0-9]+ represents one or more digits that can range
from 0 through 9 inclusive.

? The question mark indicates that the preceding expression
cannot appear at all or can appear only once.

4-6 Screen Management

Example

mp? indicates that a lowercase p can appear zero or
one time to qualify for a match. For example, "m"
and "mp" are matches; "mpp" is not a match (because
lowercase p appears more than once).

(continued)

Table 4-1. Pattern Matching Symbols (continued)

Symbol Description

$ The dollar sign at the end of an expression indicates that
the search string must appear at the end of a line in
order to match.

Example

END$ matches the string END only when that string
appears at the end of a line.

I The slash is used as an escape character; that is, the
slash removes any special meaning Erom the following
single character only. If the following single character
has no special meaning, the slash is ignored. The
backslash (\) used in place of the slash produces the same
result.

Examples

/*ab.* represents an expression that begins with *ab
followed by zero or more characters. The slash
indicates that the special use of the following
asterisk should be ignored within pattern matching.
Thus, the search is made for an actual asterisk
followed by "ab". The second asterisk has its unique
use within pattern matching; the repetition zero or
more times, of the preceding character. The period
represents any character.

[0-9)/+ represents any single digit followed by a
plus sign. The slash removes the unique meaning
within pattern matching of the plus sign.

Screen Management 4-7

4.5 MARKING LINES

4.5.1

4.5.2

Most debugging functions act upon a single line or a range of lines.
You can indicate a single line or delimit a series of lines by marks.
Most line-oriented commands act on the line that contains the cursor
only if no lines are marked. For example, you delete a single line by
positioning the cursor at any location within the line and executing
DELETE. However, you can also delete the line by first marking it and
then executing DELETE. The marked line is deleted without regard to
the position of the cursor.

How to Mark Lines and Ranges

To mark a line, position the cursor at any location on the line and
execute the MARK command. You can position the cursor by using
commands for scrolling text. As a result of executing MARK, a
triangle appears in the first column to the left of the specified line.

An alternate way to mark a single line is to execute MARK followed by
the number of the line to be marked.

To mark a range of lines, first position the cursor on the line to
serve as one range boundary and execute MARK. The Debugger marks the
specified line. Then, position the cursor on the line to serve as the
other range boundary and execute MARK again. The Debugger marks all
lines from the initially marked line to the line at which the cursor
is positioned, including that line.

To mark all lines in the window, execute the MARK ALL command.

Only one range of marked lines can exist at one time in a window.
When a line or range of lines is already marked, and MARK is again
executed, the Debugger marks all lines between the existing range and
the new line.

Note: MARK operates on one entire entry in the data window; if you
execute MARK on one line of an entry, the entire entry is marked.
Only one entry can be marked at a time. Thus, if an entry is marked
in the data window, and MARK is executed against another entry in the
data window, the previously marked entry is cleared.

How to Clear Marks

The CLEAR command removes marks from one or more marked lines. To
unmark a single line (if that line is the only one marked), position
the cursor at that line and execute CLEAR. The Debugger removes the
corresponding mark.

4-8 Screen Management

~

To unmark a portion of a marked range of lines, position the cursor at
the desired location within the range and execute either CLEAR NEXT or
CLEAR PREVIOUS. CLEAR NEXT removes marks from all lines that follow
the current cursor line; CLEAR PREVIOUS removes marks from all lines
that precede the current cursor line.

To unmark an entire range of lines, execute the CLEAR or CLEAR ALL
command. The Debugger removes all marks from the range. To unmark an
entire range of lines regardless of the position of the cursor,
execute the CLEAR ALL command.

For reference information about commands for marking and clearing
lines, refer to Chapter 7.

4.6 MANAGING WINDOWS

4.6.1

The following windows are the main Debugger windows, which are
predefined and always appear in the Debugger:

• The listing window
• The trap window
• The data window

The CLOSE command (which removes a window) has no effect on the
predefined Debugger windows.

The Debugger optionally builds the following windows that are not
predefined:

Menu window Displays the current PF key assignments.

Display window -- Displays a requested VS file.

Easy mode window -- Appears when the Debugger is operating in Easy
mode.

The CLOSE command operates on the menu window and the display window.

Full Window and Partial Window Formats

The following two formats of window display are supported:

Full window format -- Each accessed window occupies the entire
21-line window section area.

Partial window format -- Each accessed window can occupy all or a
portion of the window section, depending on the cursor position when
the command to access the window is executed.

Screen Management 4-9

Ful I Window Format

Full window format provides the maximum possible viewing area. This
format is set by executing the FRAME FULL command. If that format is
in effect and a window is accessed or created (via the MENU or DISPLAY
commands), all other windows are hidden by the new one; i.e., one full
window is displayed at a time.

Partial Window Format

Partial window format (the default format) enables you to display
multiple windows using the position of the cursor to determine
location and size. This format is set by executing the FRAME PARTIAL
command.

In partial window format, if the cursor is on the command line and you
execute a command to access a window, the accessed window occupies the
full window section, the same as for the FRAME FULL setting. However,
if the cursor is somewhere in the window section when you enter a
command, the accessed window is displayed at the line of the cursor,
and extends downward either to the bottom of the window section, or to
the top of the next lower window if one exists. Only the upper
boundary of a new window is selected by the cursor; the lower boundary
is determined automatically. Figure 4-1 shows a sample 3-window
display.

4-10 Screen Management

r

4.6.2

.'._H:&j(~~·IJ-9.: t_od~· :Se~s:ti on COBDEMQ . Stat~ment. # i PCW ,.0010.Moa 2:1000000
, ' :~:ctrtt.m.~'nd.:; · ·

PIC 9fl} VALVE ZERO.
PIC 9(1) VALl.IE: ZERP.
PJG 9(4) VAPJF. 12. . . CQMP ~·
PIC 9t6)V99 VAWE' n4Zl6:.:S5·~
PIC X.(16') VALUE. i•SUNLIGH1r AT 01\WN"

·vs.. ·Symbolic: ·Debugger fo); COJjyr~gh.t Wang· 1986
(?J Next . . . · f9J . :Search'
(6) Previ.OU.$ (Uf) . $~~p 1
:p) .Ne~t 1. (ll} B'r'ealf
le.> fhid .. · · (lia:> Qel~te· .
(:2J). Stal!:!:. .. . {.?,~:) s~~rc:l:I. B,ackwa:rd
·c?2l ~~gts1t~rs ·. . (.26'). :s·'tep Instructifon
·<:2al FTO'aitre.~r;,:s:t'ers ('ZJ:J :_'e,bdes~c-Uons
{~41 Al~~t.··· · (2·8}) .'S~:~t.1 cs'ect:ic'ons.

Figure 4-1. Sample Three-Window Display

For reference information about commands for managing windows, refer
to Chapter 7.

Window Management Functions

The Debugger enables you to display and manage one or more windows in
the Window section. When you display more than one window, each
window appears as a separate partial window format. The partial
window format is accessed by executing the FRAME PARTIAL command. The
number of lines displayed for each window is reduced depending on the
number of windows being displayed simultaneously. Note that Debugger
windows have no relation to VS Multistation windows.

A maximum of five windows can appear at one time, although the amount
of each window that you can display simultaneously is limited by the
available space in the Window section. Windows can exist without
being displayed but they must be displayed in order to use them
interactively.

Screen Management 4-11

4.6.3

4.6.4

Each displayed window has a status line unless you disable the status
line for a window by executing the STATUS OFF command. In that case,
you gain an extra line of display in that window. This does not apply
to the topmost window; no information appears where the status line
was if you execute STATUS OFF from that window.

Moving Between Windows

You can move directly between the predefined Debugger windows by using
the appropriate command as follows:

• To move to the listing window, execute the LISTING command.
• To move to the trap window, execute the TRAPS command.
• To move to the data window, execute the DATA command.

To move between windows sequentially, you execute the WINDOW command.
Each window is assigned a number by the system. The Trap Window is
assigned to the number 1, the Data Window to the number 2, and the
listing window to the number 3. Any additionally created windows
(menu or display) are numbered sequentially increasing from 4 in their
order of creation.

If you close a window (only the menu window or the display window can
be closed) by executing the CLOSE command, the following window (if
one exists) takes the number of the closed window.

Once you have accessed the final window in the series, the initial
window is redisplayed when you execute the WINDOW command from that
window, beginning the sequence again.

You can execute WINDOW with a numeric operand that specifies the
number of the window to be brought into view. For example, to access
the DATA window, you execute WINDOW 2; to access a window that is
fifth in the sequence, you execute WINDOW 5. If WINDOW is executed
with no operand, the next higher numbered window is brought into view;
if WINDOW is executed from Window 5, Window 1 is brought into view.

Window Context

A collection of information called the window context is associated
with each window. The window context consists of the following
attributes that are unique to that window:

• Case setting
• Current search string
• Contents of the status display
• Range of marked lines

4-12 Screen Management

When you display a file on the display window, certain context
information is copied from the last window selected. This information
includes the search string, which is modifiable. The case setting is
not copied, nor are any line marks.

4.7 DISPLAYING VS FILES

4.8

You can display a requested VS file on the display window. To display
a file, execute the DISPLAY command followed by the volume, library,
and file names of the file you want to display. The Debugger then
displays the file on the display window and numbers that window one
number greater than the highest window number.

You can display one file at a time only; when you display a subsequent
file, the current file is removed. To terminate a file display, you
execute the CLOSE command from the display window.

DISPLAYING PF KEV ASSIGNMENTS

To display the current PF key assignments, execute the MENU command.
The Debugger displays the menu window either in its entirety or
partially, depending on the status of the FRAME command and the
location of the cursor. The menu window lists the command assignments
for PF keys 1 through 32. If the menu window is displayed partially,
you can scroll the display by executing the NEXT command with the
cursor positioned in the menu window.

To remove the menu window, execute the CLOSE command with the menu
window as the current window. For conceptual information about the
menu window, refer to Section 2.3.6.

4.9 DISPLAYING HELP TEXT

Help text provides on-line reference information about the Debugger.
To display Help text, execute the HELP command. The Debugger then
accesses the VS INFO utility which displays the Debugger Help menu.
The Debugger Help menu enables you to locate desired help
information. For conceptual information about Help text, refer to
Section 1.8.

4.10 PRINTING DATA

The Debugger enables you to print a hardcopy of specified data. To
print a hardcopy of a marked range of lines, position the cursor in
the window that contains the marked lines and execute the PRINT
command. The Debugger then queues the marked range to the appropriate
printer.

Screen Management 4-13

To print the entire contents of a window, first execute the CLEAR ALL
command to remove any marks, then execute the PRINT command. You can
get the same result by marking all lines in the window (execute MARK
ALL) and then executing PRINT.

4.11 ASSIGNING COMMANDS TO PF KEYS

To simplify the debugging process, you can assign a single command or
string of commands to any PF key except ENTER. When the PF key is
subsequently pressed, the assigned commands are executed one at a
time, as if they were entered on the command line.

To assign one or more commands to a PF key, execute the ASSIGN command
using either of the following methods:

• Enter ASSIGN followed by the command(s) you want. to assign, and
then press the PF key to which the commands are to be assigned.

• Enter ASSIGN followed by the number of the PF key you want to
assign the commands to, and the commands to be assigned. Then,
press ENTER.

For example, to assign the CLEAR command to PFl by the latter method,
you execute the following command:

ASSIGN 1 CLEAR

If you are assigning more than one command, follow each command by a
semicolon (you can optionally include spaces). For example, to assign
a series of commands to position the cursor at column 20 of line 40 to
PF2, you execute the following command:

ASSIGN 2 GOTO 40; COLUMN 20

Note: Validation of the assigned command string occurs during the
execution of the string, not at the time you assign the string. For
example, if you execute ASSIGN l MAK.K, the Debugger assigns the
command string MAKK to PFl even though MAKI< is not a valid command.
When you execute PFl, the Debugger informs you that the command string
(MAKI<) is invalid.

For conceptual information about assigning commands to PF keys, refer
to Section 2.5.1.

4-14 Screen Management

4.12 DEFINING MACROS

To further simplify the debugging process, you can assign a single
command or string of commands to a macro. When the macro is
subsequently executed, the assigned commands are executed one at a
time, as if they were entered on the command line.

To define a macro, enter DEFINE followed by the name o~ the macro and
the command(s) you want to assign. Then, press ENTER. For example,
to define a macro called MYTRAPS that sets a BREAK trap on line 48 of
the subject program and sets a MODTRAP trap on variable SUB!, you
enter the following information, then press ENTER:

DEFINE MYTRAPS BREAK 48; MODTRAP VARIABLE SUB!

Whenever you execute MYTRAPS, the string of commands associated with
that macro is executed. For conceptual information about defining
macros, refer to Section 2.6.

Note: Validation of the defined command string occurs during the
execution of the string, not at the time you assign the string. For
example, if you execute DEFINE M5 MAKI< 5, the Debugger deEines the
macro M5 as the command string MAKI< 5, even though MAKI< 5 is not a
valid command. When you execute M5, the Debugger informs you that the
command string (MAKI< 5) is invalid.

Screen Management 4-15

CHAPTER 5
USING DEBUGGING COMMANDS

5.1

This chapter describes how to use various debugging commands to
perform common debugging actions. In addition, it shows the results
of those actions when they are performed against a sample subject
program.

The objective of this chapter is to provide information about using
the appropriate debugging commands and associated operands to perform
desired actions. Familiarity with the activities described will allow
you to successfully understand and use the reference debugging command
descriptions in Chapter 7. Those descriptions enable you to perform
more sophisticated debugging operations.

This chapter does not describe each debugging command and does not
give examples of each possible use of command syntax. Sufficient
information is provided to give a general description of the command
being referenced. In addition, this chapter does not specify which
method to use in executing the command; you can execute commands by
entering them on the command line or by pressing the appropriate PF
key.

SAMPLE SUBJECT PROGRAM

The COBOL program shown in Figure 5-1 is used as the sample subject
program for debugging commands described in this chapter. The first
column of values in Figure 5-1 contains the compiler-generated
statement numbers that the Debugger uses. The second column of values
contains sequence line numbers within the text of the program; the
sequence line numbers have no significance to the Debugger.

Using Debugging Commands 5-1

00001 000100 IDENTIFICATION DIVISION.
00002 000200
00003 000300 PROGRAM-ID. COBDEMO.
00004 000400 AUTHOR. Bill Johnson.
00005 000500 DATE-WRITTEN. 01/31/XX.
00006 000600*
00007 000700 ENVIRONMENT DIVISION.
00008 000800
00009 000900 INPUT-OUTPUT SECTION.
00010 001000 FILE-CONTROL.
00011 001100 SELECT THE-WORKSTATION
00012 001200
00013 001300

ASSIGN TO "WSFILE", "DISPLAY"
ACCESS MODE IS RANDOM.

00014 001400*
00015 001500 DATA DIVISION.
00016 001600 FILE SECTION.
00017 001700 FD THE-WORKSTATION
00018 001800 LABEL RECORDS ARE OMITTED.
00019 001900 01 CRTREC PIC X(1924).
00020 002000
00021
00022
00023
00024

002100 WORKING-STORAGE SECTION.
002200 01 TWO-OCCURS-LEVELS
002300 03 FILLER

USAGE IS DISPLAY-WS.
PIC X(45)

002400 ROW 5 COLUMN 24
00025 002500
00026 002600
00027 002700
00028 002800
00029 002900
00030 003000
00031 003100
00032 003200
00033 003300
00034 003400
00035 003500
00036 003600
00037 003700
00038 003800
00039 003900

01

VALUE IS "TABLE DISPLAY: 3
03 FILLER OCCURS 3 TIMES

05 FILLER OCCURS 6 TIMES
SOURCE IS LEVEL-2 OBJECT

TWO-LEVEL-TABLE.
03 LEVEL-1 OCCURS 3 TIMES.

05 LEVEL-2 OCCURS 6 TIMES.
07 TABLE-ENTRY.

09 FILLER PIC
09 FIRST-INDEX PIC
09 COMMA-LITERAL PIC
09 SECOND-INDEX PIC
09 RIGHT-PAREN PIC

ROWS * 6 COLUMNS".
ROW 7.
ROW 1 COLUMN

IS LEVEL-2.

X(6).
9(1).
X(l).
9(1).
X(l).

8

11 SUBl PIC 9(1) VALUE ZERO.
17 SUB2 PIC 9(1) VALUE ZERO.
77 NUMBER-EMPLOYEES PIC 9(4) VALUE 12

PIC X(lO)

COMP.

00040 004000
00041 004100
00042 004200
00043 004300
00044 004400
00045 004500*

77 TOTAL-COST PIC 9(6)V99 VALUE 174236.55.
11 FORECAST

00046 004600 PROCEDURE DIVISION.
00047 004700 DISPLAYIT.

PIC X(l6) VALUE "SUNLIGHT AT DAWN".

00048 004800 PERFORM INITl VARYING SUBl FROM 1 BY 1 UNTIL SUBl > 3.
00049 004900 MOVE 372 TO NUMBER-EMPLOYEES.
00050 005000 MOVE 987654.33 TO TOTAL-COST.

Fiqure 5-1. Sample Subject Proqram Listinq

5-2 Using Debugging Commands

~

00051

r 00052
00053
00054
00055
00056
00057
00058
00059
00060
00061

005100 MOVE "SLEET BY TONIGHT" TO FORECAST.
005200 DISPLAY AND READ TWO-OCCURS-LEVELS ON THE-WORKSTATION.
005300 STOP RUN.
005400 INITl.
005500 PERFORM !NIT-TABLE VARYING SUB2 FROM 1 BY 1 UNTIL SUB2) 6.
005600 !NIT-TABLE.
005700 MOVE "ENTRY(" TO TABLE-ENTRY (SUBl, SUB2).
005800 MOVE SUBl TO FIRST-INDEX (SUBl, SUB2) .
005900 MOVE II II TO COMMA-LITERAL (SUBl, SUB2). ,
006000 MOVE SUB2 TO SECOND-INDEX (SUBl, SUB2).
006100 MOVE II) II TO RIGHT-PAREN (SUBl, SUB2) .

Figure 5-1. Sample Subject Program Listing (continued)

The sample subject program produces the screen shown in Figure 5-2.
That screen consists of the screen title, starting on row 5, column
24, and a 2-dimensional table (3 rows by 6 columns) starting on row 7,
column 8. Each entry is 10 bytes in length and contains the value
"ENTRY(m,n)", where m is the row number of the entry and n is the
column number.

The source field is LEVEL-2, an entry of the table (TWO-LEVEL-TABLE)
with two levels of OCCURS. The first level (LEVEL-1) occurs three
times and indicates the number of repetitions of fields down the
screen. The second level (LEVEL-2) occurs six times and indicates the
number of repetitions of fields across the screen.

In the PROCEDURE DIVISION, the paragraph INIT-TABLE, coded on
statements 56 through 61, is performed 18 times, initializing each
entry to the value "ENTRY(m,n)" using two nestings of the PERFORM
VARYING statement. The DISPLAY AND READ of the USAGE IS DISPLAY-WS
screen format TWO-OCCURS-LEVELS, coded on statement 52, maps the table
onto the screen (six entries across and three entries down), producing
the screen shown in Figure 5-2.

/
r ·.··.,
' . ~,; . : .. ': ., ~ ' l

11 ,'.< ·r .. A.''a· L•E· ·. •.o· ".s::p-'· ;.i~·'·!···'.·.>,'3· ... ;"'· o. w· ·• .. s>~. :6·· ·_ .~. ·~•i•;·M· .. l'.·1 c-! ·\<· .· .t!i J. . """':''" ·•· ...• ~, ..• ~9~~-,.'~r

H.: .r~:'~~:: rg&;]!~'((l. ... l,)L~~ltftY(l , ?) E;~J.~Y'(T.,.3) .ENiRY(Tii~~, g~tfR:'tt~ .:-5).: :.;~t.R~3·~l~".§:>;:
!:> · ; .. :1\' :J§~mJ!~:(.?~~.J·) .:~t':l!!\.RY (4:,:?;,) :~Nrn:f C;?·~:3J :ENTRY.Cp1f~J . ~.~TRY~· Z,;5'); . ~gN,;y~¥l;'g.,16~·
f: .~--~·:[,\ .. :.tijN.if:R¥'.~.'3~!1 :tJ ·. gN.TR;?(3l2)'. :£NliRY"G$'~-3'.) ENTRY:(~-r~~· ·;.N'.f~rf{~l ,5)'. ~mR~~~S:i.6 1~

;:' ! ·-~~/ :<

Figure 5-2. Output From Sample Subject Program

Using Debugging Commands 5-3

5.2 PERFORMING DEBUGGING ACTIONS

Debugging consists mainly of the following tasks:

• Setting traps
• Monitoring the values of specified program entities
• Displaying program information

5.2.1 Setting Traps

Traps halt execution of the subject program when certain conditions
occur. This section describes how to set five types of debugging
traps. The results of setting these traps in the trap window is shown
in Figure 5-4.

The initial window display (Figure 5-3) shown on the Debugger
Workstation screen appears as it would if you loaded the program for
interactive debugging. The display on the listing window begins from
the first entry point of the subject program. The menu window
occupies the last four lines of the Window Section.

Lfsti n.g C.ode Sect{on .· GOBP,EMO ·seat:~m~o;t I{ l p'Q~f ,QOJ'.Qp()o~ '~o/QPPPPR
Cornmand:
Type. ".EASY ON 11 for s·impltfi.ed dehuggi'ng ..

00001. OOPJOO XQ.ENTI'f:lCATIOf\f DIVISION •.
00002 00'0200
00003 000300. . P~Q~RAM.;;;JD',, COBDEMO;
Q0004 000400 AUTHOR·. stn ·Joknsqn •
. 00005 .000500 ·oATE~WRlTTEN. 0 l:l~l /XX,. .
oOObfr 000600~ . .
·aa,opi 00070{) EN\/lR.ONMENT tl,IViStf)N .•
00008 000800
0.0009 000900; :lNPUT~oqr.PU:t' ~SECtroN~
00010 .ootouo· FltE~CONl'R'OL;,, ..
O,QOlJ 00110:0 SE,LECJ TH.~~WQRKSJJAUON
000·12 00l200 ' .

ASSIGN TO' "WS'FlLE'", ii[)!-SPLAY 11

00013 001300

ACCESS.· MOOE IS RANDOM;
.Q0'014 00140Qlll' .
;00·0·15 00150'0 DATA PlVlS"!'ON.
00016 OOi600 'F.il.E" SECfibfiL ... · . '··.

Figure 5-3. Initial Window Display

5-4 Using Debugging Commands

~
q'.'

'

Setting a Break Trap

The BREAK command sets a trap at a specified location in the subject
program. That location can be a program statement, address, or
offset. For reference information about BREAK, refer to Chapter 7.

You may want to set a BREAK trap in the subject program at
statement 48. That trap is set by executing the following command:

BREAK 48

where 48 specifies the statement number.

The Debugger enters the following information in the trap window:

Status
Active

Count
1

Hits
0

Type
Break

Operands
48 COBDEMO

Note that statement numbers appear as they are displayed in the
listing file (Figure 5-3).

You can set the same trap by positioning the cursor at any location on
statement 48 and executing BREAK with no operand. While this trap is
active, each time the program encounters the first instruction of that
statement, the trap is taken and control is transferred to the
Debugger.

Setting an INSIDE Trap

The INSIDE command sets traps at all points inside of a specified
range or a marked range, including the boundary statements. The range
is indicated by program statements, addresses, or offsets. For
reference information about INSIDE, refer to Chapter 7.

You may want to set INSIDE traps in the subject program from statement
57 to statement 59. That series of traps is set by executing the
following command:

INSIDE 57 59

where 57 and 59 specify the boundary statement numbers.

The Debugger enters the following information in the trap window:

Status
Active

Count
1

Hits
0

Type
Inside

Operands
57 59 COBDEMO

You can set the same trap by marking the appropriate lines and
executing INSIDE with no operand. While this trap is active, each
time the program encounters any instruction within the specified
range, the trap is taken and control is transferred to the Debugger.

Using Debugging Commands 5-5

Setting an OUTSIDE Trap

The OUTSIDE command sets traps at all points outside of a specified
range or a marked range. The range is indicated by program
statements, addresses, or offsets. For reference information about
OUTSIDE, refer to Chapter 7.

You may want to set OUTSIDE traps in the subject program from
statement 57 to statement 61. That series of traps is set by first
executing the MARK command (twice) to mark that range of statements,
and then executing OUTSIDE with no operand. The Debugger enters the
following information in the trap window:

Status
Active

Count
1

Hits
0

Type
Outside

Operands
57 61 COBDEMO

You can set the same trap by executing OUTSIDE 57 61. While this trap
is active, each time the program encounters any instruction outside of
the specified range, the trap is taken and control is transferred to
the Debugger.

Setting a MODTRAP Trap

The MODTRAP command sets a trap that monitors a specified program
address, variable, or general register. You indicate the entity to be
monitored by specifying the appropriate operand. Each time the value
of the operand changes (subject to the relop clause if included with
the REGISTER operand), the trap is taken. For reference information
about MODTRAP, refer to Chapter 7.

You may want to trap the subject program each time the value of
variable SUBl changes. That trap is set by executing MODTRAP as
follows:

MODTRAP VARIABLE SUBl

The Debugger enters the following information in the trap window:

Status
Active

Count
1

Hits
0

Type
Mod trap

Operands
Variable SUBl

While this trap is active, each time the value of variable SUBl
changes, the trap is taken and control is transferred to the Debugger.

5-6 Using Debugging Commands

r 5.2.2

Setting an OPCODE Trap

The OPCODE command sets a trap that is taken at any execution of a
specified machine instruction. That instruction can be a mnemonic
name or a hexadecimal value. For reference information about OPCODE,
refer to Chapter 7.

You may want to set an OPCODE trap in the subject program on machine
instruction JSCI. That trap is set by executing either of the
following commands:

OPCODE JSCI

or

OPCODE HEX 61

If the first form is used, the Debugger enters the following
information in the trap window:

Status
Active

Count
1

Hits
0

Type
Opcode

Operands
JSCI

While this trap is active, each time the appropriate program opcode is
encountered, the trap is taken and control is transferred to the
Debugger.

Monitoring the Values of Specified Program Variables

When program execution is interrupted for a trap, it is often
desirable to examine the value of program variables at that point.
The VARIABLE command displays in the data window, program variables
that you specify, and monitors the value of each variable. For
reference information about VARIABLE, refer to Chapter 7.

You may want to monitor variables SUBl and SUB2 in the subject
program. Those variables are entered in the data window, each as a
separate entry, by executing the following commands:

VARIABLE SUBl; VARIABLE SUB2

The Debugger enters the following information in the data window:

SUBl = +O
Section

SUB2 = +O
Section

= COBDEMO

= COBDEMO

Using Debugging Commands 5-7

You could perform the same function by positioning the cursor at the
first character of the desired variable in any window, and executing
VARIABLE with no operand for each entry.

All contents of the data window remain present for the current session
unless deleted. Each variable present always contains its current
value.

Displaying Additional Attributes With Variables

In addition to displaying the most current value of a variable in the
data window, you can specify a number of attributes to be appended to
the display for each variable. Those attributes apply only to the
corresponding variable, and are set by executing the ATTRIBUTES
command and any of the following operands:

OFF -- Disables the display of attributes.

SECTION -- Displays the code section of the variable.

SIZE -- Displays the number of storage bytes that the variable
occupies.

ADDRESS Displays the starting address of the variable.

TYPE -- Displays the data type of the variable (integer, character,
etc.).

STORAGE -- Displays the storage class of the variable (parameter,
static, etc.).

You may want to show the section and data type of each subsequent
variable entered in the data window. This is done by executing the
following command:

ATTRIBUTES SECTION TYPE

The Debugger appends the section and data type of each subsequent
variable entered in the Data Window to the end of the entry.

5-8 Using Debugging Commands

5.2.3 Displaying Program Information

In addition to displaying the current values of program variables in
the data window, you can display parts of program memory. That topic
is described in this section. Besides program memory, you can display
information about the following program items:

• RPG indicators (INDICATORS command)
• General registers (REGISTERS command)
• Floating-point registers (FLOATREGISTERS command)
• Program state (STATE command)
• Active JSI, LINK, and SVC instructions (STACKTRACE command)
• The last runtime diagnostic message (DIAGNOSTIC command)
• Subprograms that exist in the current section (PROCEDURES command)
• All code sections (CODESECTIONS command)
• All static sections (STATICSECTIONS command)

For reference information about the corresponding commands, refer to
Chapter 7.

Displaying Program Memory

To determine the cause of program failures, you may have to display
portions of program memory. To display a part of the subject
program's memory, you execute the MEMORY command followed by the
desired operands. For reference information about MEMORY, refer to
Chapter 7.

You may want to display the value at address 100008 in the subject
program's memory. That value is displayed by executing the following
command:

MEMORY 100008 48

where 100008 is the specified address, and 48 is the decimal length.

The following entry is a sample of the information that could appear
on the data window as a result:

Memory 100008 48 =
100008 0000 77F00060 71C011AC 5830C084 OD3018BE
100018 0010 SABOCOOO BOOOOOOO 9680F040 8500000C
100028 0020 50FOF008 18AF5010 A0005830 BOCC5820

"w •• 0 q ••• XO ••• 0 •• 11

"Z •.• • • • • • • .@. • • ."

"P ••••• P ••• xo .. x 11

Using Debugging Commands 5-9

5.3 MODIFYING THE TRAP WINDOW

Figure 5-4 shows the results of the trap setting operations described
in Section 5.2.1 in the trap window.

. . .tf~p$. Cp~e ~~~:.L,f~fn . CO'f3UEf1Q~ ·. S:f~,~.etneo:~,,#:;l' A'q\~fQ·Q~t~gQ:Q~··~~itQ,~9~~9}·.
· ~C.PiritttM~J;, . . ·. . •·· ·· .. ·.·.. · :·"

Coun.t
1 . ,r··
1 . .l.
.1
1

,,

~¥~!1k:
"In$.i~~:~ •
:tJu·~s;i;cta .

. f1qtf~nari
. ·o·p~¢:od.~:.

Figure 5-4. Results in Trap Window

The columns in the trap window contain the following information:

Status -- The status of the trap entry. The status can be one of
the following items:

Active -- Indicates a trap that is operational and has not
been taken.

- Taken -- Indicates a trap that has just been taken.

- Inactive -- Indicates a trap that is not operational.

Each newly created trap is displayed with an Active status. You can
change the status of desired traps by executing the ACTIVATE command
or the DEACTIVATE command. For information about how to execute
those commands, refer to Section 5.3.1.

Count -- The count associated with the trap. The count is the
number of times that the condition for the trap is to be encountered
before the trap is taken. The default (1) interrupts execution the
first time the specified trap condition is met. Each newly created
trap is assigned a count of 1. For information about managing the
count of a trap, refer to Section 5.3.2.

Note: The counts Eor INSIDE, OUTSIDE, and MODTRAP traps are set at
1 and cannot be changed with the COUNT command.

5-10 Using Debugging Commands

5.3.1

Hits -- The number of times the trap has been encountered by the
subject program. When the Hits value equals the Count value, the
trap is taken.

Type The type of trap (BREAK, INSIDE, etc.).

Operands -- The operands associated with the trap.

Note: IE the link level for the subject program changes, the Debugger
displays an asterisk (*) before each trap that corresponds to a
different link level. Traps with an asterisk are not changed in any
way but are no longer operational until the appropriate link level is
again in effect.

You can perform the following types of modifications.on existing traps:

• Activate and deactivate traps
• Change the count of a trap
• Delete traps

Activating and Deactivating Traps

Traps can be active or inactive. An active trap (with Active status)
is an existing trap that is taken when all the conditions associated
with it are satisfied in the subject program. A trap that has been
taken (with Taken status) remains active. An inactive trap (with
Inactive status) is an existing trap that does not operate against the
subject program even if all its conditions are satisfied. It is
useful to make certain traps inactive when they are not needed in
debugging, rather than to delete them. This enables you to quickly
use those traps again by making them active, rather than recreating
each trap.

Traps are activated by executing the ACTIVATE command; traps are
deactivated by executing the DEACTIVATE command. The following rules
apply when you execute ACTIVATE or DEACTIVATE:

• If any traps are marked, those traps are activated or deactivated.

• If no traps are marked, the trap at which the cursor is positioned
is activated or deactivated.

• If no traps are marked and the cursor is outside of the trap
window (assuming the trap window is the current window), the last
trap in the list is activated or deactivated. If there are no
traps in the trap window, an error message is displayed.

Using Debugging Commands 5-11

5.3.2

Within the trap window shown in Figure 5-4, you may want to change the
status of the INSIDE and OUTSIDE traps to Inactive. To change the ~

status, first mark both traps using the MARK command, and then execute 7
DEACTIVATE. The status for those traps is changed as follows:

Status Count Hits Type Operands
Active 1 0 Break 48 COBDEMO
Inactive 1 0 Inside 57 59 COBDEMO
Inactive 1 0 Outside 57 61 COBDEMO
Active 1 0 Mod trap Variable SUBl
Active 1 0 Opcode JSCI

You can perform the same function by positioning the cursor at the
desired trap and entering DEACTIVATE. The Debugger will not take the
inactive traps until you activate them again.

To reactivate those traps, follow the same process, but execute
ACTIVATE instead of DEACTIVATE. The Debugger removes the Inactive
status from the specified traps. The Debugger takes a reactivated
trap when all conditions associated with the trap have been satisfied.

For reference information about activating and deactivating traps,
refer to Chapter 7.

Managing the Count

Every trap has an associated count. The count is the number of times
that the conditions for a trap must be satisfied before the trap is
taken. For example, if the count for a trap is 3, the conditions for
the trap must be satisfied three times before the trap is taken.

The second column in the trap window, titled Count, displays the count
of each existing trap. All traps are initially set with a default
count of 1, meaning that the trap is taken on the first valid instance
after the program is resumed.

The third column in the trap window, titled Hits, indicates the number
of times the corresponding trap has been encountered by the subject
program. To determine how many more times a trap must be encountered
before it is taken, you subtract the Hits value from the Count value.
The Hits value is 0 when you create a trap, and is reset to 0 after
the associated trap is taken.

For example, assume you set a BREAK trap on statement 48 in the
subject program and set the Count field for that trap to 5. Since the
trap has not yet been encountered by the subject program, the value
displayed in the Hits field is o.

5-12 Using Debugging Commands

5.3.3

When the subject program is resumed, statement 48 is executed twice
before the Debugger resumes control again for some reason such as a
subsequent trap taken. The Count field remains at 5 but the Hits
field now contains a 2, since the statement has been encountered twice
since the trap was set.

Changing the Count

To change the count of a trap, you indicate the desired trap(s) using
the cursor or marking, and execute COUNT followed by the desired
operand. The operand is the number to which you want to change the
count. Note that COUNT has no effect on INSIDE, OUTSIDE, or MODTRAP
traps. COUNT operates on traps according to the following rules:

• If no traps are marked, COUNT operates on the trap at which the
cursor is positioned.

• If any traps are marked, those trap counts are changed.

• If no traps are marked and the cursor is positioned outside of the
trap window, COUNT operates on the last trap in the list.

You may want to change the count of the BREAK trap to 3. You do this
by positioning the cursor at any location on the BREAK trap (or
marking the trap) and then executing COUNT 3. The count is changed as
shown below:

Status Count Hits Type Operands
Active 3 0 Break 48 COBDEMO
Inactive 1 0 Inside 57 59 COBDEMO
Inactive 1 0 Outside 57 61 COBDEMO
Active 1 0 Mod trap Variable SUBl
Active 1 0 Opcode JSCI

The Hits field is reset to zero whenever the Count field changes.

Deleting One or More Traps

To delete one or more traps from the trap window, execute the DELETE
command. For traps, DELETE operates according to the following rules:

• If any traps are marked, those traps are deleted.

• If no traps are marked, the trap at which the cursor is positioned
is deleted.

• If no traps are marked and the cursor is outside of the trap
window (assuming the trap window is the current window) the last
trap is deleted.

Using Debugging Commands 5-13

Within the trap window displayed in Figure 5-4, you may want to delete
the INSIDE trap. This is done by positioning the cursor at that trap
and executing DELETE. An alternate way of performing the same
function is to first mark the trap and then execute DELETE. The
Debugger removes the INSIDE trap, and modifies the trap window as
follows:

Status Count Hits Type Operands
Active 3 0 Break 48 COBDEMO
Inactive 1 0 Outside 57 61 COBDEMO
Active 1 0 Mod trap Variable SUBl
Active 1 0 Opcode JSCI

Later, you may want to delete all traps and create new ones. This is
done by first marking all traps by executing the MARK ALL command, and
then executing DELETE. The Debugger then removes all traps from the
trap window.

For reference information about deleting traps, refer to Chapter 7.

5.4 MODIFYING THE DATA WINDOW

The results of the variable and data display operations described in
Sections 5.2.2 and 5.2.3 are shown in the data window in Figure 5-5.

Figure 5-5. Results in Data Window

5-14 Using Debugging Commands

·~r
1

5.4.1

5.4.2

You can perform the following types of operations on information that
appears in the data window:

• Modify the values of variables in modifiable program memory (if
not in privileged code)

• Modify registers, program state, etc. (if not in privileged code)

• Delete entries

Modifying Program Values

Several Debugging commands display the current values of specified
modifiable program entities (variables, registers, portions of memory,
portions of the program state). These commands include VARIABLE,
REGISTERS, FLOATREGISTERS, STATE, and MEMORY.

Each command displays the current value of the specified program entry
in the data window, and monitors the value of each entry. The values
for all displayed entries are always the current values. To change
the value of a desired entry, enter the new value and execute the
ALTER command.

In the data window displayed in Figure 5-5, you may want to change the
value of the variable SUBl to 3 in program memory. To change the
value, enter 3 over the previous value and execute ALTER. The
Debugger then locates the memory associated with the variable and
changes it to reflect the new value. You can modify only one entry at
a time.

For reference information about modifying program values (the ALTER
command), refer to Chapter 7.

Deleting an Entry in the Data Window

You can delete one entry at a time from the data window. To delete an
entry, indicate the entry (via the cursor or marking) and execute the
DELETE command. DELETE operates according to the following rules in
the data window:

• If an entry is marked, that entry is deleted. If a mark appears
at any line within an entry, the entire entry is deleted.

• If no entry is marked, the entire entry at which the cursor is
positioned is deleted.

• If no entry is marked, and the cursor is outside of the data
window (assuming the data window is the current window), the last
entry is deleted.

Using Debugging Commands 5-15

5.5 DISPLAYING A PARTIAL WINDOW FORMAT

By displaying a partial window format for two or more windows, you can
manage several windows at once. Partial window format is set by
executing the FRAME PARTIAL command and using the position of the
cursor to determine window location and size.

For example, you may want to display the listing window, the data
window, and the trap window together, starting from an original full
window display of the listing window.

First, execute the FRAME PARTIAL command. Then, position the cursor
within the listing window at the location at which you want to begin
display of the trap window, and execute the TRAPS command. The
display of the listing window is terminated at that location; the trap
window is displayed from that location to the bottom of the Window
section.

Next, position the cursor at the location in the trap window at which
you want to begin display of the data window. Then, execute the DATA
command. The display of the trap window is terminated at that
location; the data window is displayed from that location to the
bottom line of the Window section.

The results of the partial window format display described in this
section are shown in Figure 5-6.

Figure 5-6. Partial Window Format Display

5-16 Using Debugging Commands

~r
I

The following commands, when executed, generate the window display
shown in Figure 5-6:

LISTING
FRAME PARTIAL
CURSOR DOWN 8 (or position the cursor to Row 8)
TRAPS
CURSOR DOWN 15 (or position the cursor to Row 15)
DATA

An alternative method of specifying the above commands is to create
and execute the following macro:

DEFINE WINDDISP LISTING;FRAME PARTIAL;CURSOR DOWN S;TRAPS;CURSOR DOWN
lS;DATA

For conceptual information about the partial window format, refer to
Section 4.6.1; for reference information about the partial window
format, refer to Chapter 7.

Using Debugging Commands 5-17

~

' ···~ ', ,,·· '

CHAPTER 6
DEBUGGING WITH SHARED SUBROUTINE LIBRARIES AND MSMAPed FILES

6.1 INTRODUCTION

6.2

Some of your programs may contain references to shared subroutine
libraries (SSLs) or to files mapped in via the MSMAP system routine.
This chapter describes how to debug those SSLs and MSMAPed files along
with the program that references them.

Shared subroutine libraries (SSLs) are handled in Version 1.05 (or
greater) of the debugger, which requires Operating System 7.20.

CHAPTER GLOSSARY

To understand this chapter, you should be familiar with the following
terms:

Program
Name: A name that refers to one of three kinds of files:

• The main program.

• A shared subroutine library (SSL). An SSL is a single
VS file containing a collection of subroutines that can
be shared by multiple programs running concurrently.
For more information about SSLs, refer to the VS Linker
Reference.

• An MSMAPed file. An MSMAPed file is one that is loaded
by the main program via an MSMAP call. For more
information about MSMAPed files, refer to the Operating
System Services Reference.

Note: The Debugger requires that every mapped Eile have
a unique path name. Thus, if you map the same file into
your main program twice, the Debugger recognizes one or·
the other instance of the mapped program, but not both.

Debugging With Shared Subroutine Libraries and MSMAPed Files 6-1

Alias:

Context:

A logical name of up to 40 characters that is assigned to a
shared subroutine library. The system security
administrator assigns an alias to each SSL using the SSL
utility, which is described in the VS System
Administrator's Reference.

The code section that is currently displayed. During a
debugging session, the context defaults to the section
containing the address where execution has paused, such as
at a breakpoint. You can change the context with the
SECTION command.

6.3 DEBUGGING SSLs AND MSMAPed FILES

6.3.1

You can use the Debugger to debug not only your main program but also
any SSLs or MSMAPed files that your program references. You can, for
example

• Display a section of code in an SSL or MSMAPed file with the
SECTION command

• Display parts of the memory of an SSL or MSMAPed file with the
MEMORY command

• Display lists of static sections, code sections, or subroutines in
an SSL or MSMAPed file with the STATICSECTIONS, CODESECTIONS, or
PROCEDU~ES command

• Set a trap in an SSL or MSMAPed file with the BREAK, INSIDE,
MODTRAP, or OUTSIDE command

• Establish and access an alternate program file for an SSL or
MSMAPed file with the DEBUGFILE command

How to Specify Section Names as Command Operands

To specify a section name as a command operand, use the syntax

[program name/]section name

For example

MATHLIB/#COSINE

Note that the program name prefix is optional. If you omit the
program name, the Debugger uses the name of the program in the current
context by default. Thus, to refer to a section that is not in the
program containing the current context, you must include the program
name prefix.

6-2 Debugging With Shared Subroutine Libraries and MSMAPed Files

6.3.2

6.4

If, for example, the current context is within an SSL, and you wish to
refer to a section name in the main program, you must include the main
program name pref ix in the section name specification.

Conversely, if the current context is within the main program, and you
wish to refer to a section name in an SSL, you must include the SSL
program name pref ix in the section name specification. In this case,
you can use either the SSL's file name or its alias. Both the file
name and the corresponding alias appear on the "Programs" data display.

How to Specify the Program Name Prefix

A program name specified as a path name consists of the volume and
library names as well as the file name. You can usually omit the
volume and library names, however, specifying only the file name. You
must include library (or library and volume) names only if duplicate
names exist.

Consider, for example, the following three files:

• LIBPAK.MYLIBS.STRLIB
• LIBPAK.MYLIBS.MATHLIB
• LIBPAK.OURLIBS.MATHLIB

You can specify the first file as STRLIB alone. However, you must
specify the second and third files as MYLIBS.MATHLIB and
OURLIBS.MATHLIB, respectively.

THE DISPLAY OF PROGRAM NAMES

In its status line and data window displays, the Debugger
distinguishes between SSLs or MSMAPed files and the main program file
in the following way:

• When the context is within an SSL or an MSMAPed file, the program
name is always displayed.

• When the context is in the main program, the program name never
appears. Even if you enter the main program name, it is not
displayed on the screen.

6.5 DEBUGGING A PROGRAM THAT REFERENCES AN SSL: TWO SAMPLE
DISPLAYS

This section comprises two sample data window displays, Figures 6-1
and 6-2, that demonstrate how the Debugger interprets commands when
the subject program references an SSL. In Figures 6-1 and 6-2, the
numbers to the left of the screens refer to the numbered explanatory
paragraphs that follow each screen.

Debugging With Shared Subroutine Libraries and MSMAPed Files 6-3

When a programmer executes the PROGRAMS command, followed by the
CODESECTIONS command, the Debugger creates in the data window a
display similar to that in Figure 6-1.

':,.

' \~ ... ~:· - ~. ;'

1----.., :.u ~ ti!n'g. tode' S·ec'.t}10rr StR~NGP.~CJ<iAGi#h\l?R~NO~ f s:~'a.',~~m.~n:t\ .fi,5 :2fi:; : .. P:.C\ir 'lOl5.~QO.aa1: ?elt:Q•;
'.comm-and:::: .:· : ' ~. \: \<<. ;:< ~' . :; p di' ,' '•; .. ; ;(. '> . '· ... ·' '' ,,·\> ' : ; ' ''.

':1 _. 'd ;· 10' - ;_.,. > ·;';;, ::• >-I-~:·., y ;

·. ~fn~i l · . . ;~~t~~~I·~f,,~< ~ . :~ .. .,: . ·;;~· s: . .. : · ·· ... ·.
: 0·90~·6'.: ... : 2 · FilePat~. '? ~br.:ka,il'(;Nva]:µme): !l! ''·;:•1 .. :! ! ',:s,tr'.t;ri~ft'(Jinft>harsiJ· ... ·
00027 ... ·.·. . .2 · . · . ". 11 .JLstH'.lt:raf'I HS:Pi 11~?:; _ •.. r • > "' ,,;::, . · · .. _.· :~ "
Traps: •'C'odei 'Sectfi•on.:s11ttNGPAC:K'AGEZ#A'B~ENO:. ~ .. &iiaib'8nl~lrft~il !·24:. P-6W:~T06E00.8

1

6' 2:7.'QO{ · ..

2-~-. · ; .. -i~~i~$F ·. · .. ····• ~qq«t·····::i"~::,,.~~t~E5.~~~~l~~~~~~;Jr~~~\~'!;••• t· .··. X? ·· ,
' .. <:Oa'b' ... : £ad fti.i Secti on«'SJ:RI;NGEA'CK:~GEWIAPPEf\JD~\':Sffl.ai'Ue'men:tJ::#~'.'2~,(',,]P,.CWi. 'l;06:EUOB'61';iVODBL

!-~-. ,, ... ·:~~~;i~li!~M~~~~r~~~~1~~1J .•.. . .. ·· ······ .. ,· 'f < :; . . ·:; • : ' • .. :··; :r<

5 . , . , .. ~I6PAK·MYl,JBS:!.ST~L~;e:, . · ,

6
:MSMAP~~-~ P.rosr~m!J.;. .··-.···· .··.· ·

-~~, .-1 · ·• . LU~PAK.M'fLt.SS;. MATHt::.is

CodeSeC:tJo~s
:#.S.SPJE$J:

Figure 6-1. Example: Data Displayed by the PROGRAMS Command

Explanation oE Figure 6-1
1. The Debugger was entered while the user program was executing in

an SSL. Thus, the section name in the status line includes the
program name prefix (which in this case is an alias).

2. The programmer set a trap at line 24 with the BREAK command.
Since the breakpoint is within an SSL, the section name includes
the program name pref ix.

3. The PROGRAMS command displays the main program name and all
program names associated with it.

4. The main program name is always displayed, whether or not SSLs are
linked in.

5. Then the file names and corresponding aliases of any SSL program
files that were linked and loaded with the main program are
displayed.

6. Last, the names of any programs that were mapped via MSMAP are
displayed.

6-4 Debugging With Shared Subroutine Libraries and MSMAPed Files

·~

-r

If the programmer then enters the following commands:

ATTRIBUTES ADDRESS SECTION
VARIABLE FLVSTRING.NVOLUME
PROCEDURES

a display similar to the one in Figure 6-2 appears in the data window.

Note: The ATTRIBUTES command is a global setting that affects all
subsequent VARIABLE commands.

Figure 6-2. Example: Display of SSL Data Items

Explanation oE Figure 6-2
1. Because the context is within an SSL, the section name is prefixed

by the SSL's alias.

2. Again, the program name is displayed when the context is in an SSL.

Note: that iE the context were in the main program, the programmer
would have to enter PROCEDURES STRINGPACKAGE to display this list
of procedures; without the operand STRINGPACKAGE, the display would
list procedures in the main program rather than in the SSL
STRINGPACKAGE.

Debugging With Shared Subroutine Libraries and MSMAPed Files 6-5

CHAPTER 7
DEBUGGER COMMAND SET

7 .1 INTRODUCTION

7.2

This chapter describes each of the Debugger commands in alphabetical
order. In addition, the chapter contains

• Descriptions of the three command classes (Section 7.2)
• Instructions on entering the commands of each class (Section 7.3)

COMMAND CLASSES

The Debugger commands are grouped into three classes for the purposes
of describing how the commands work and how to enter them. The
following list describes each command class:

Command Class

Set-and-Query

Action

Informative

Function

Sets a new value or queries the current setting.

Performs an action, often on marked lines of text.
If none are marked, acts on the current cursor line.

Displays information on the message line or in a
window created for this purpose.

Directions for entering each command class follow this section. The
class of each command is listed in its description later in this
chapter.

Debugger Command Set 7-1

7.3 HOW TO ENTER COMMANDS

7.3.1 How to Enter Set-and-Query Commands

To Query the Setting

By PF Key
1. Press the PF key to which the command is assigned. The command is

displayed in the command line with its current setting, if any.
The cursor is displayed immediately after the command name.

2. After reading the setting, you can press ENTER to clear the command
line or issue another command without pressing ENTER. (Issuing
another command overwrites the display in the command line.)

At the Command Line
1. Type the command and press ENTER. If a setting was previously set,

it is automatically displayed in the command line immediately after
the command.

2. After reading the setting, you can press ENTER to clear the command
line or issue another command without pressing ENTER. (Issuing
another command overwrites the display in the command line.)

To Specify a Setting

By PF Key
1. Press the PF key to which the command is assigned. The command is

displayed in the command line with its current setting, if any.
The cursor is displayed immediately after the command name.

2. Type the new setting. (If a setting is already displayed, type the
new setting over it.)

3. If only one window is open, press ENTER. If more than one window
is open, move the cursor to the window for which the command is
intended (it can be anywhere within the window) and press ENTER.

At the Command Line
1. Type the command and press ENTER. If a setting was previously set,

it is automatically displayed in the command line immediately after
the command.

2. Type the new setting. (If a setting is already displayed, type the
new setting over it.)

3. If only one window is open, press ENTER. If more than one window
is open, move the cursor to the window for which the command is
intended (it can be anywhere within the window) and press ENTER.

7-2 Debugger Command Set

7.3.2 How to Enter Action Commands

Many action commands require the use of the MARK command to designate
the text to be affected. In these cases, the MARK command is used
first, then the action command is invoked. If an Action command
requires the use of the MARK command, that is specified in its
description in this chapter. Directions for using the MARK command are
given in Section 4.5.

By PF Key
1. If required, mark the text first with the MARK command.

2. If you are specifying an operand for the command, enter the operand
in the command line.

3. If only one window is open, go to step 4. Otherwise, move the
cursor to the window to be affected. The cursor can be anywhere
within the window.

4. Press the PF key to which the command is assigned. The command is
immediately executed.

At the Co'llll1Jand Line

7.3.3

1. If required, mark the text first with the MARK command.

2. Type the command with any operands, if required. If only one
window is open, press ENTER. If more than one window is open, move
the cursor to the window for which the command is intended (it can
be anywhere within the window), and press ENTER.

How to Enter Informative Commands

By PF Key
1. If only one window is open, go to step 3.

2. Move the cursor to the window to be affected. The cursor can be
anywhere within the window.

3. Press the PF key to which the command is assigned. The command is
immediately executed.

At the Command Line
1. Type the command with any operands, if required. If only one

window is open, go to step 3.

2. Move the cursor to the window to be affected. The cursor can be
anywhere within the window.

3. Press ENTER.

Debugger Command Set 7-3

7.4 DEBUGGER COMMANDS

This section describes each of the Debugger commands in alphabetical
order. The following information is presented for each command:

• Description
• Format
• Command class
• Syntax rules (if applicable)
• General rules (if applicable)
• Related commands (if applicable)

The notation conventions described in Section 1.13 apply to the
commands described in this section. See Section 2.1 for a listing of
the debugger commands arranged in functional categories.

7-4 Debugger Command Set

ACTIVATE

~ Description

Format

The ACTIVATE command activates one or more specified traps. When a
trap is activated, its status is set to Active. You indicate the
trap(s) to be activated either by positioning the cursor or marking
traps~

ACTIVATE

Co'llllDand Class
Action

General Rules
1. If any traps are marked, those traps are activated.

2. If no traps are marked, and the cursor is positioned at a trap,
that trap is activated.

3. If no traps are marked, and the cursor is not positioned at a trap,
ACTIVATE activates the last trap in the trap window.

4. If ACTIVATE is executed and no traps are present in the trap
window, an error message is displayed.

Debugger Command Set 1-5

ALTER

Description

Format

To change a program value, you enter the new value in the data window,
and execute the ALTER command. ALTER works on one entry at a time;
you can alter one or more values within the entry. Although it is
possible to edit value fields in the data window, the actual program
value for edited data items is not changed unless you execute ALTER.
If ALTER is not executed, no changes are made, and the contents of the
data window are restored to their current values the next time you
access that window.

Note: In the previous Debugger, it was possible to modiEy variables
when executing in system code. As a result oE enhanced security in VS
Operating System Release 7.10, you must now be executing in user code
in order to modiEy program variables.

IE your program is interrupted while in system code, single step your
program to the next executable statement. Then modiEy the desired
values in memory with the ALTER command.

ALTER

Command Class
Action

General Rule
1. The ALTER command cannot be applied to displays produced by the

CODESECTIONS, DIAGNOSTIC, PROCEDURES, STACKTRACE, or
STATICSECTIONS commands or to entries that have been frozen.

7-6 Debugger Command Set

ASSIGN

Description
The ASSIGN command assigns one or more commands to a PF key or
displays the current PF key assignment.

Format l
ASSIGN [text] (Press a PF key)

Format 2
ASSIGN n [text] (Press ENTER)

Co111111and Class
Set-and-Query

Syntax Rules
1. The operand n indicates the PF key to be assigned.

2. The operand text indicates the command(s) you assign to the
specified PF key. If two or more commands are entered, each
command must be separated by a semicolon (;).

Note: Validation oE the assigned command string occurs during the
execution oE the string, not at the time you assign the string. For
example, iE you execute ASSIGN 1 MAKK, the Debugger assigns the
command string MAKK to PFl even though MAKK is not a valid command.
When you execute PFl, the Debugger informs you that the command string
(MAKK) is invalid.

General Rules
1. PF key assignments made through ASSIGN are valid from every window.

2. ASSIGN overrides a corresponding PF key assignment for the current
session only.

3. Any PF key other than ENTER can be pressed using Format 1; only
ENTER can be pressed using Format 2.

4. If the text operand is omitted, then the current string assigned
to the specified PF key (either that which is pressed using Format
1 or entered as n using Format 2) is displayed on the command line.

5. If ASSIGN is entered with no operand and ENTER is pressed, an
error message is displayed; if ASSIGN is entered with no operand
and a PF key is pressed, the current PF key assignment is
displayed.

Debugger Command Set 7-7

ASSIGN (continued)

Special. Considerations
ASSIGN CC!n?lot be executed by PF key.

Related Command
MENU

7-8 Debugger Comma~d Set

I~___,

-~ ..
- ' "---"

ATTRIBUTES

Description
The ATTRIBUTES command specifies the statistics to be displayed about
each variable that appears in the data window. After you specify
information by executing ATTRIBUTES and the desired operands, those
statistics appear following each subsequent variable display in the
data window. Existing displays are not changed.

Format l
ATTRIBUTES [STORAGE] (TYPE] [SECTION] [ADDRESS] [SIZE]

Format 2
ATTRIBUTES OFF

Command Class
Set-and-Query

Syntax Rules
1. The operand STORAGE indicates the storage class of the

corresponding variable (parameter, static, etc.).

2. The operand TYPE indicates the data type of the variable (integer,
character, etc.).

3. The operand SECTION displays the code section for the
corresponding variable.

4. The operand ADDRESS indicates the starting address of the
corresponding variable.

5. The operand SIZE indicates the number of storage bytes that the
corresponding variable occupies.

6. The operand OFF suppresses the display of attributes for all
variables.

General Rules

Exa11lp1es

1. The default operand for ATTRIBUTES is SECTION.

2. If no operands are chosen, the current attributes are displayed.

1. Command:

Displays:

SUBl = +1
Section
Size

ATTRIBUTES SECTION SIZE
VARIABLE SUBl

= COBDEMO
= 1 byte

Debugger Command Set 7-9

BREAK

Description

Format

The BREAK command sets a trap at a specified program location, called
the breakpoint. When this trap is active and execution of the subject
program is resumed, the trap is taken when control reaches the
breakpoint.

BREAK [statement-id [[program-name/]section-name]]
[ADDRESS address] .
[OFFSET hex-offset [section-name]]

Co1llllland Class
Action

Syntax Rules

Example

1. The keywords and operands associated with BREAK specify the
location at which to set the trap. Their forms and definitions
are described in Section 1.13.

2. The ADDRESS and OFFSET forms set a trap on the instruction at the
specified address or offset.

3. The operand "address" can be either an absolute address or the
base-index-displacement form of the address. If the
base-index-displacement form is used, the address is not
re-evaluated unless the trap is deleted and then recreated.

4. If no operands are specified, BREAK applies to the first statement
in the current section that is marked. If there is more than one
statement on a line, the first statement of the line is chosen.
If no statements are marked, BREAK applies to the statement at
which the cursor is positioned in the listing window. If none of
these conditions are met, the Debugger displays an error message.

1. BREAK 52

The Debugger sets the trap at the first statement on line 52.

7-10 Debugger Command Set

CANCEL

Description
The CANCEL command exits from the Debugger and cancels the subject
program. After you execute CANCEL, the Debugger displays the Cancel
screen. From that screen, you can either confirm the cancel or resume
debugging.

Format
CANCEL

Command Class
Action

Debugger Command Set 7-11

CASE

Description

Format

The CASE command is used to specify whether the case of letters must
match a search string specified through the FIND command. The case
indicates the condition of the letters with regard to capitalization;
uppercase means capitalized and lowercase means not capitalized. CASE
applies only to the current window.

A search that is case sensitive (CASE EXACT) locates a match only if
the case of each letter as well as the letters themselves match the
search string. A search that is not case sensitive (CASE ANY) locates
a match whenever the letters match, regardless of their case.

To change the setting of CASE for a search, you must specify the case
before you use the SEARCH or LOCATE commands.

CASE [ANY]
[EXACT]

Command Class
Set-and-Query

Syntax Rules
1. The operand ANY indicates a case insensitive search in which the

case of the letters in the search string is not a criterion for a
match.

2. The operand EXACT indicates a case sensitive search in which the
case of the letters in the search string is also a criterion for a
match.

General Rules
1. CASE applies only to search strings specified through the FIND

command.

2. When CASE is assigned to a PF key, operands cannot be changed
during the operation.

3. CASE with no operand displays the current case setting.

Related Commands
FIND, LOCATE, MATCH, SEARCH

7-12 Debugger Command Set

CLEAR

Description

Format

The CLEAR command selectively or totally removes marks, depending on
the operand you specify.

CLEAR [ALL]
[NEXT]
[PREVIOUS]

Command Class
Set-and-Query

Syntax Rules
1. The operand ALL indicates all marks.

2. The operand NEXT indicates all marks that exist for lines
following the line at which the cursor is positioned, excluding
that line.

3. The operand PREVIOUS indicates all marks that exist for lines
preceding the line at which the cursor is positioned, excluding
that line.

General Rules
1. CLEAR affects only the designated window.

2. When CLEAR is assigned to a PF key, operands cannot be changed
during the operation.

3. CLEAR with no operand performs the same function as CLEAR ALL.

Related Command
MARK

Debugger Command Set 7-13

CLOSE

Description

Format

The CLOSE command removes the display window or the menu window from
the Window section. After you execute CLOSE, the current window is
removed and if a subsequent display or menu window exists, that window
is assigned to the number of the closed window.

CLOSE

Co111111and Class
Action

General Rule
CLOSE has no effect on the listing window, the trap window, or the
data window. If you attempt to execute CLOSE on those windows, an
error message is displayed.

7-14 Debugger Command Set

·~··.·
.) '-._

CODESECTIONS

Description
The CODESECTIONS command displays in the data window, a list of all
code sections in the subject program.

Format
CODESECTIONS [program-name]

Co'lllIIJilnd Class
Action

Exa11lp1e
Command: CODESECTIONS

Displays:

CODESECTIONS =
COBDEMO
WC3DNR3
WC3SMV2

Debugger Command Set 7-15

COLUMN

Description

Format

The COLUMN command positions the cursor on a specified column within
the current window. Typically, COLUMN is used in conjunction with the
ROW command to move the cursor to a specified column within a
designated row.

COLUMN [n]

Co'llllBand Class
Action

Syntax Rule
1. The operand n indicates a column number. Any value for n that is

less than 1 defaults to l; any value for n that is greater than
the width of the window defaults to the window width limit.

General Rules
1. COLUMN operates with the ·cursor positioned in the current row.

2. Because COLUMN operates relative to text; left or right scrolling
may occur depending on the operand entered.

3. If COLUMN is executed with no operands, the default for n is 1.
The cursor is positioned at the left margin on column 1.

Related Commands
CURSOR, ROW

7-16 Debugger Command Set

~

'

CONTINUE

Description

Format

The CONTINUE command resumes execution of the subject program after it
has been interrupted for a trap. Execution resumes either from the
next instruction or at a specified location. For example, when you
have finished examining the program state after a trap has interrupted
execution, you execute CONTINUE with no operand to resume execution
from the next instruction.

CONTINUE [statement-id]
[ADDRESS address]
[OFFSET hex-offset [section-name]]

Command Class
Action

Syntax Rule
1. The keywords and operands associated with CONTINUE specify an

alternate location at which to resume program execution. Their
forms and definitions are described in Section 1.13.

2. The address operand can be either an absolute address or the
base-index-displacement form of the address.

General Rules

Examples

1. If no operand is specified, execution resumes at the next
executable statement following the point at which execution was
paused (the current address contained in the PCW).

2. If an operand is specified, the program address of the subject
program is first changed to the value indicated by the operand,
and then execution is resumed at that address.

3. All active traps remain available to be taken after program
execution has resumed.

1. CONTINUE

The most common use of CONTINUE is to specify the command without
any operands, as shown in this example. Program execution
continues until completion or when conditions for a subsequent
trap are met.

2. CONTINUE 49

The subject program resumes execution at the first statement on
line 49.

Debugger Command Set 7-17

COUNT

Description

Format

The COUNT command changes the count for a specified trap. The count
is the number of times that the condition for the trap is to be
encountered before the trap is taken. For example, if the count for a
trap is 3, the conditions for the trap must be satisfied three times
before the trap is taken.

Newly created traps have a count of 1, meaning that the trap is taken
on the first instance after the program is resumed. COUNT specifies
an alternate count for a chosen trap.

The count for each trap is shown in the trap window. To change the
count for a trap, indicate the desired trap(s) using the cursor or
marking, and execute COUNT followed by the desired operand. The
operand is the number to which you want to change the count.

COUNT n

Command Class
Action

Syntax Rule
1. The operand n specifies a count for the corresponding trap.

General Rules
1. All commands for setting traps create them with a count of 1.

2. COUNT with no operand causes an error message to be displayed.

3. COUNT has no effect on traps set by the INSIDE, OUTSIDE, or
MODTRAP commands.

4. If any traps are marked in the trap window, COUNT operates on each
marked trap.

5. If no traps are marked, but the cursor is positioned on a trap,
COUNT changes the count for that trap.to n.

6. If no traps are marked and the cursor is not positioned on a trap,
COUNT changes the count of the last trap in the trap window to n.

7. Whenever the count for a trap is changed, the HITS field for that
trap is automatically set to o.

7-18 Debugger Command Set

COUNT (continued)

Example
1. COUNT 5

For the following trap (set by the BREAK command at statement 60 with
a count of S) the trap is taken after its conditions have been
satisfied five times in the subject program.

Status
Active

Count
5

Hits
0

Type
Break

Operands
60 COBDEMO

Debugger Command Set 7-19

CURSOR

Description

Format

The CURSOR command positions the cursor at a specified location on the
Debugger Workstation screen (columns 1-80, rows 1-24). The cursor
only is moved; the window text does not scroll except in certain
situations when the FIRST or LAST operands are specified.

CURSOR SAVE
RESTORE
FIRST
LAST
UP [n]
DOWN (n]
LEFT (n]
RIGHT [n]

Command Class
Action

Syntax Rules
1. The operand SAVE saves the most recent cursor position.

2. The operand RESTORE positions the cursor at the location recorded
by CURSOR SAVE.

3. The operand FIRST positions the cursor at the first nonblank
character of the current row.

4. The operand LAST positions the cursor at the last nonblank
character of the current row.

5. The operand UP [n] positions the cursor up n rows. If you do not
specify n, UP positions the cursor up 1 row.

6. The operand DOWN [n] positions the cursor down n rows. If you do
not specify n, DOWN positions the cursor down 1 row.

7. The operand LEFT (n] positions the cursor left n columns. If you
do not specify n, LEFT positions the cursor left 1 column.

8. The operand RIGHT [n] positions the cursor right n columns. If
you do not specify n, RIGHT positions the cursor right 1 column.

7-20 Debugger Command Set

CURSOR (continued)

General Rules
1. When CURSOR is executed by PF key, operands cannot be changed

during the operation.

2. If CURSOR is executed with no operands, no action is taken.

3. If the cursor is positioned in the Control section of the Debugger
Workstation screen, CURSOR SAVE performs no function.

Related Commands
COLUMN, ROW

Debugger Command Set 7-21

DATA

Description ~
The DATA command accesses the data window. On the data window, you
can display chosen variables, portions of memory, registers, and other
various program data.

Format
DATA

Command Class
Action

Related Commands
DISPLAY, FRAME, LISTING, MENU, TRAPS, WINDOW

7-22 Debugger Command Set

DEACTIVATE

Description

Format

The DEACTIVATE command deactivates one or more specified traps. When
a trap is deactivated, its status is set to Inactive. You indicate
the trap(s) to be deactivated either by positioning the cursor or by
marking traps.

DEACTIVATE

Co'/llllliJnd Class
Action

General Rules
1. If any traps are marked, those traps are deactivated.

2. If no traps are marked, and the cursor is positioned at a trap,
that trap is deactivated.

3. If no traps are marked,. and the cursor is not positioned at a
trap, DEACTIVATE deactivates the last trap in the trap window.

4. If DEACTIVATE is executed and no traps are present in the trap
window, an error message is displayed.

Debugger Command Set 7-23

DEBUGFILE

Description

Format

The DEBUGFILE command enables you to query and reset linkage and
debugger information in an alternate program file. This command is
useful when you are debugging large program files that do not fit into
memory with all of the symbolic and linkage information.

DEBUGFILE [alternate program file name][program name]

ComBa.nd Class
Set-and-Query

General Rules
1. When your program will not fit into memory with the symbolic and

linkage information, you must use the Linker to create two program
files: one program file linked with the symbolic and linkage
information, and an alternate program file linked without the
symbolic and linkage information. It is essential to repeat this
step each time you make modifications so that all offsets within
the sections, e.g., listing files, etc., remain synchronized.

2. When debugging Shared Subroutine Libraries (SSLs), you can specify
the alternate program file for a specific program name. This
enables you to specify alternate program files for your SSLs in
your DEBSTART file. See Chapter 6 for information on debugging
SSLs.

3. When the program is unlinked, the DEBUGFILE command settings are
not remembered by the Debugger. You must reissue the command if
you wish to query the alternate program after an unlink.

4. When DEBUGFILE is executed by PF key, operands cannot be changed
during the operation.

5. If the system displays the following message in the listing window:

"PCW is not defined for any known section."

and the PCW contains a valid Program Code Section address, you can
use the DEBUGFILE command to access the alternate program file
that contains the linkage information for the program.

If the system displays the following message:

"Section XXXXXX:X is non-symbolic."

you can use the DEBUGFILE command to access the alternate program
file that contains the symbolic information for that section.

7-24 Debugger Command Set

·r

DEFINE

Description

Format

The DEFINE command defines a macro or displays the current macro
definition.

DEFINE macro-name [macro-definition]

Co'l/lllJilnd Class
Set-and-Query

Syntax Rules
1. The operand macro-name indicates any valid identifier name that

starts with a letter.

2. The operand macro-definition indicates the commands to be assigned
to the macro-name.

Note: Validation of the defined command string occurs during the
execution of the string, not at the time you assign the string. For
example, if you execute DEFINE M5 MAKK 5, the Debugger defines the
macro M5 as the command string MAKK 5, even though MAKK 5 is not a
valid command. When you execute M5, the Debugger informs you that the
command string (MAKI< 5) is invalid.

General Rules
1. The macro-name can be a maximum of 32 alphanumeric characters,

always beginning with a letter.

2. Macro definitions made through DEFINE are valid from every window.

3. A macro that has the same name as a command or a command
abbreviation disables the command or abbreviation.

4. DEFINE can be executed only at the command line using ENTER, or
through a command file. If DEFINE is entered on the command line
and a PF key is pressed instead of ENTER, an error message is
displayed and no action is taken.

5. If the operand macro-definition is not specified, then the current
definition of the specified macro (if any) is displayed on the
command line.

Debugger Command Set 7-25

D'EFINE (continued)

6. If a macro-definition is specified, that macro-name is set to that
definition, replacing any previous macro-definition associated
with that macro-name.

7. DEFINE with no operand performs no function.

8. The maximum number of nested macro levels (macros that call
macros) is 16.

9. A macro definition can be removed by redefining the macro as
itself. For example, if you execute DEFINE FULLDISP FULLDISP, the
previous macro definition of FULLDISP is removed, and the macro
FULLDISP no longer exists.

7-26 Debugger Command Set

'·

DELETE

Description

Format

The DELETE command deletes specified traps from the trap window or
specified entries from the data window.

DELETE

CoDUnd Class
Informative

General Rules
1. If DELETE is executed against any window other than the trap

window or the data window, an error message is displayed.

2. When you execute DELETE, entries are deleted according to the
following hierarchy:

a. If any lines are marked, the corresponding entry is deleted.
Note that an entire entry (which may span a number of lines) is
deleted if one or more lines in the entry are marked.

b. If no lines are marked, the entry at which the cursor is
positioned is deleted.

c. If no entries are marked and the cursor is outside of the
current window, the last entry of the current window is deleted.

3. When an entry is deleted, the following entries (if any) move up
in the list.

4. Only one entry at a time can be deleted from the data window due
to the marking rules. (Refer to the MARK command, described later
in this section, for more information about the marking rules.)

Debugger Command Set 7-27

DIAGNOSTIC

Description

Format

The DIAGNOSTIC command displays the full text of the last runtime
diagnostic message reported against the subject program, if any
message exists. The message is displayed in the data window.

DIAGNOSTIC

Co111111a.nd Class
Action

General Rule
1. If a runtime diagnostic message does not exist, a message, which

states that fact, is displayed.

7-28 Debugger Command Set

DISPLAY

Description

Format

The DISPLAY command displays any VS file in the display window. To
display a file, execute the DISPLAY command followed by the volume,
library, and file name (separated by periods) of the file you want to
display. The Debugger displays the file in the display window and
numbers that window one number greater than the previous window.

You can display only one file at a time. To cancel a file display,
execute the CLOSE command from the display window.

DISPLAY [[volume.] library.] file

Command Class
Action

Syntax Rule
1. The volume, library, and file operands specify the file to be

displayed.

General Rules
1. If the volume and/or library specifications are omitted, the input

volume and the input library are used.

2. The volume, library, and file names must be separated by periods;
no embedded spaces are allowed.

3. When DISPLAY is executed by PF key, operands cannot be changed
during the operation.

Related Co'/llllJands
CLOSE, DATA, FRAME, LISTING, MENU, TRAPS, WINDOW

Debugger Command Set 7-29

DUMP

Description

Format

The DUMP command creates a file that contains a core dump of current
user memory. The file is assigned a default system name which takes
the form DUMPnnnn where nnnn represents the next higher number of all
such files in your library.

DUMP

Command Class
Action

General Rule
1. The dump file is placed in your spool library on the spool volume.

7-30 Debugger Command Set

EASY

Description

Forma.t

The EASY command enables you to run the Debugger in a simplified mode
that is designed for the new or infrequent user. Chapter 3 presents a
detailed description of EASY.

EASY [ON]
[OFF]

Command Class
Action

Syntax Rules
1. The operand ON causes the Debugger to function in a simplified

mode.

2. The operand OFF returns the Debugger to its natural state.

Debugger Command Set 7-31

FIND

Description

Format

The FIND command specifies a string, the find-string, that is to be
used in string searching, or queries the current setting for the
find-string.

The command FIND text sets the find-string to the value text. If a
succeeding search command is given without a find-string operand,
"text" is the string that will be searched for. This value of the
find-string remains in effect until another FIND text command is
given, or until a SEARCH, LOCATE, or CHANGE command is given with a
find-string operand.

FIND [text]

Command Class
Set-and-Query

Syntax Rules
1. The operand text indicates the text entered as the search string.

2. If the FIND command is assigned to a PF key without an operand,
you can set the find-string in the following way:

General Rules

Type the find-string in the command line without enclosing
quotes.

Press the PF key to which FIND is assigned.

1. When you specify a search string that includes punctuation or
embedded spaces, the following rules apply:

a. If the string contains one or more embedded spaces or a
semicolon, it must be enclosed in quotation marks. Single or
double quotation marks can be used.

Examples: FIND 'example one'
or
FIND "example one"

b. If the string contains double quotation marks, it must be
enclosed by single quotation marks.

Example: FIND 'This is an "example section"'

7-32 Debugger Command Set

"---

r
FIND (continued)

2. The CASE command applies to the search string specified by the
FIND command.

3. FIND with no operand displays the current value of the find-string
in the command line as part of the FIND command.

4. The maximum length of a search string specified by FIND is 256
characters or the end of the command line.

Related Co1lllllands
CASE, LOCATE, MATCH, SEARCH

Debugger Command Set 7-33

FIRST

Description

Format

The FIRST command scrolls the display so that the first line of text
is positioned at the top of the current window.

FIRST

Co11111J8.11d Class
Action

Related Commands
GOTO, LAST, LEFT, NEXT, PREVIOUS, RIGHT

7-34 Debugger Command Set ·

FLOATREGISTERS

Description
The FLOATREGISTERS command displays in the data window the values of
all floating-point registers of the subject program.

Format
FLOATREGISTERS

CoBlllJand Class
Informative

Exaatple
Command: FLOATREGISTERS

Displays:

Floatregisters =
(FO) = 41 70000000000000
(F2) = 00 00000000000000
(F4) = 00 00000000000000
(F6) = 00 00000000000000

Debugger Command Set 7-35

FRAME

Description

Format

The FRAME command is used to control the size of windows. FRAME FULL
specifies the full Window section as the window size (21 lines), and
enables the display of one window at a time. FRAME PARTIAL specifies
partial window format of the same width as a full window. The length
of a partial window, which can range from 1 to 21 lines, is determined
by the position of the cursor when you access the window, and the
current screen display.

When you access a window with FRAME FULL in effect, the entire window
is displayed and any previous window is no longer displayed. When you
access a window with FRAME PARTIAL in effect, if the cursor is on the
command line, the accessed window occupies the full screen, the same
as for the FRAME FULL setting.

However, with FRAME PARTIAL in effect, if the cursor is somewhere in
the Window section when you access a window, that window is displayed
starting at the current cursor location. The display of the previous
window remains but is terminated where the new window begins. The
accessed window extends downward either to the bottom of the Window
section, or to the top of the next lower window if one exists. Only
the upper boundary of a new.window is selected by the cursor; the
lower boundary is determined automatically.

FRAME [FULL]
[PARTIAL]

CoBll/liJnd Class
Set-and-Query

Syntax Rules
1. The operand FULL specifies full display of accessed windows.

2. The operand PARTIAL specifies partial display of accessed windows.

General Rules
1. The status of FRAME affe~ts all windows.

2. When FRAME is assigned to a PF key, operands cannot be changed
during the operation.

J. FRAME with no operand displays the current setting.

Related Commands
DATA, DISPLAY, FULL, LISTING, MENU, TRAPS, WINDOW

7-36 Debugger Command Set

FREEZE

Description

Format

The FREEZE command is used to specify whether a particular marked
entry in the data window is to be updated to its current value. A
FREEZE setting exists for every entry in the data window.

FREEZE [ON]
[OFF]

Command Class
Set-and-Query

Syntax Rules
1. The operand ON causes the Debugger to maintain the data window

entry value. No updating of the value takes place, regardless of
the entry's current value.

2. The operand OFF causes the Debugger to update the data window
entry with the current program value.

Related Comaand
MARK

Debugger Command Set 7-37

FULL

Description

Format

The FULL command expands the size of the current window to the full
size of the Window section (21 lines). If other windows were
displayed at the time, they are no longer visible but can still be
accessed.

FULL

Command Class
Action

Related Commands
DATA, DISPLAY, FRAME, LISTING, MENU, TRAPS, WINDOW

7-38 Debugger Command Set

GOTO

f"'· Description

Format

Note: In this command description, the terms "line" and "line number"
are used in the context oE a window; neither term has any relevance to
a program statement number.

The GOTO command scrolls to the specified line within the current
window. If the line is within the current display, the cursor is
positioned to that line. If the line is not within the current
display, the line is displayed at the top of the window with the
cursor positioned at column 1 (except for GOTO LAST).

GOTO [n]
[FIRST]
[LAST]
[MARK]
(NOTE]

Co'llllllalld Class
Action

Syntax Rules
1. The operand n indicates any specified line number.

2. The operand FIRST indicates the first line of text.

3. The operand LAST indicates the last line of text.

4. The operand MARK indicates the first line in a marked range.

5. The operand NOTE is used in conjunction with the NOTE command.
NOTE records the location of a particular line of text. GOTO NOTE
scrolls the text so that the line recorded by the NOTE command is
displayed at that same position.

General Rules
1. GOTO with no operand performs no function.

2. When GOTO is executed by PF key, operands cannot be changed during
the operation.

3. GOTO LAST displays the last line of text on the last line of the
window.

Related. Co'/lllDands
FIRST, LAST, LEFT, NEXT, NOTE, PREVIOUS, RIGHT

Debugger Command Set 7-39

HELP

Description

Format

The HELP command displays on-line information about the Debugger,
called Help text. Help text describes the entire debugging
environment. To display Help text, execute the HELP command. The
Debugger then accesses the VS INFO utility which displays the Help
menu. The Help menu lists options for locating desired help
information.

HELP

Co'lllllli1nd Class
Informative

General Rules
1. To navigate through the Help text, position the cursor on the

first digit of any desired topic number and press ENTER.

2. Press PF16 to exit from Help text. The Debugger returns to the
display from which the HELP command was executed.

Related Co1111Da.nd
MENU

7-40 Debugger Command Set

HEX

("· Description
The HEX command changes the display format of a variable in the data
window. The display format can be either symbolic or hexadecimal. If
the display format is symbolic, execution of HEX changes it to
hexadecimal; if the display format is hexadecimal, execution of HEX
changes it to symbolic.

Format
HEX

Command Class
Action

General Rule
1. When you execute HEX, the display formats of variables are changed

according to the following hierarchy:

a. If any lines are marked, the display format of the variable for
the corresponding entry is changed.

b. If no lines are marked, the display format of the variable at
which the cursor is positioned is changed.

c. If no lines are marked and the cursor is positioned outside of
the data window, the display format of the variable on the last
line is changed.

2. If you are executing this command through a PF key, you should
first mark the desired entry in the data window or position the
cursor at any location within the range of the entry.

Debugger Command Set 7-41

HISTORY

Description

Format

The HISTORY command controls the recording of commands entered at the
command line, or queries the current setting. This enables you to ·
easily repeat (with the RECALL command) a command you had previously
typed.

HISTORY [ON]
[OFF]

Co'/111JJand Class
Set-and-Query

Syntax Rules
1. The operand ON provides a record of all commands entered at the

command line, including macros.

2. Commands entered by PF keys are not recorded, nor are the
following commands: ASSIGN, DEFINE, HISTORY, and RECALL.

Related Co1llllla.11d
RECALL

7-42 Debugger Command Set

INDICATORS

Description
The INDICATORS command displays in the data window the values of
specified RPG II indicators. All indicators of the specified class
found in the symbolic section are displayed, seven indicators to a
line.

Format l
INDICATORS [class [selector]]

Format 2
Il\DICATORS ALL

J

Co1111DMJd Class
Informative

Syntax Rules
1. The operand "class" indicates one of the following classes.

EXTERNAL (Ul-U8)
GENERAL (01-99)
HALT (Hl-H9)
KEYS (KO-K9, KA-KG)
LEVEL (LO-L9)
MISCELLANEOUS (LR, MR, lP)
OVERFLOW (OA-OG, OV)
SHIFTKEYS (Sl-S9, SA-SG)

2. The operand "selector" indicates the valid selection values for a
subrange of indicators, which are shown in parenthesis following
each class in Syntax Rule 1.

3. The operand ALL indicates that each class listed under Syntax Rule
1 is to be displayed.

General Rules
1. INDICATORS is valid only when the current code section is an

RPG II code section.

2. If no indicators are found for the specified class, no display is
created and a message is issued.

3. The word OFF is displayed next to all OFF indicators (internal
value 00).

4. The word ON is displayed (brightly) next to all ON indicators
(internal value FO).

5. The 2-character hexadecimal values of incorrectly defined
indicator values (not 00 or FO) are displayed in blinking mode.

Debugger Command Set 7-43

INDICATORS C continued)

Examples
1. Command: INDICATORS

Displays:

General Indicators 01 through 99 in section RPGOBJ
02 = OFF 03 = OFF 04 = 3A 06 = OFF 29 = OFF
49 = OFF 50 = OFF 51 = OFF 76 = OFF 77 = EE
79 = OFF

Halt Indicators in section RPGOBJ
HO = ON

Key Indicators in section RPG OBJ
KO = OFF Kl = OFF K2 = OFF
K6 = OFF K7 = OFF KB = OFF
KC = OFF KD = OFF KE = OFF

K3
K9
KF

Miscellaneous Indicators in section
LR = OFF lP = ON

= OFF K4 = OFF

= OFF KA = OFF
= OFF KG = OFF
RPGOBJ

30 = 10FF
78 = 'oFF

KS = OFF
KB = OFF

In this example, the display of indicators HO and IP (underlined)
would appear highlighted since they have the value ON. The
indicators 04 and 77 would appear blinking since they have illegal
values.

2. Command: INDICATORS GENERAL 44 66

Displays: ~

General Indicators 44 through 66 in section RPGOBJ
49 = OFF 50 = OFF 51 = OFF

7-44 Debugger Command Set

INSIDE

Description

Format

The INSIDE command sets a trap at all points inside a specified range
or a marked range. When this trap is active, the trap is taken if
execution of the subject program is resumed and control reaches any
point within the marked range.

Note: The INSIDE command functions as an instruction level trap, not
as a statement level trap. For example, the Debugger may interrupt
the subject program a number of times at the same statement, because
the statement contains multiple instructions.

INSIDE [statement-id-1 statement-id-2 [program-name/]section-name]]
[ADDRESS address-1 address-2]
[OFFSET hex-offset-1 hex-offset-2 [program-name/[section-name]]

Co'lllllliJnd Class
Informative

Syntax Rules
1. The keywords and operands associated with INSIDE specify the

range to trap. Their forms and definitions are described in
Section 1.13.

2. The operands address-1 and address-2 can be either an absolute
address or the base-index-displacement form of the address. If
the base-index-displacement form is used, address-1 and address-2
are not re-evaluated unless the trap is deleted and then recreated.

General Rules
1. INSIDE includes the range boundaries; that is, the trap is taken

on either boundary statement and on any statement within the
boundaries.

2. INSIDE requires either operands or marked lines to be executed.

3. If no operands are specified, INSIDE applies to the range of lines
in the current section that are marked.

4. If marks are used, the range covers all statements included within
the marks, including the marks that establish the boundaries.
There must be statement number information for both the first and
last marked lines.

Debugger Command Set 7-45

INSIDE (continued)

Example

5. If the statement-id form is used, the range includes every
instruction from the first instruction of statement-id-1 to the
last instruction of statement-id-2, inclusive.

6. If the ADDRESS form is used, the range includes every instruction
from the instruction at address-1 to the instruction at address-2,
inclusive.

7. If the OFFSET form is used, the range includes every statement
from the hex-offset-1 (within the section-name if specified) to
the hex-offset-2 (within the section-name if specified), inclusive.

8. If the operand section-name is not specified, the current section
name is used.

9. Statement-id-1 must be less than statement-id-2; address-1 must be
less than address-2 and both addresses must be halfword aligned;
hex-off set-1 must be less than hex-offset-2 and both off sets must
be halfword aligned.

1. INSIDE 20 30

The Debugger traps at all statements within the range of 20 to 30
inclusive.

7-46 Debugger Command Set

LAST

r' Description
The LAST command scrolls the display so that the last display line
appears on the last line of the current window.

Format
LAST

Comaand Class
Action

Related Commands
FIRST, GOTO, LEFT, NEXT, PREVIOUS, RIGHT

Debugger Command Set 7-47

LEFT

Description

Format

The LEFT command moves the entire current window display the specified
number of columns to the left. LEFT is used alternately with the
RIGHT command to view a window display that is wider than the physical
screen. You use RIGHT to display columns to the right of the limit,
and LEFT to scroll back in the opposite direction.

LEFT [n]

Command Class
Action

Syntax Rule
1. The operand n indicates the number of columns to move the display

to the left. Any value is accepted; values less than 1 or greater
than the screen width are truncated accordingly.

General Rules
1. LEFT with no operand displays the text beginning from the left

margin.

2. When LEFT is executed by PF key, operands cannot be changed during
the operation.

3. When the leftmost margin is displayed on the window, LEFT no
longer has any effect when executed.

Related Command
RIGHT

7-48 Debugger Command Set

LINK LEVELS

Description

Format

The LINKLEVELS command sets a trap on all LINK SVC instructions and
UNLINK SVC instructions in the subject program. If you specify
LINKLEVELS ON, control is transferred to the Debugger each time the
link level changes, and you are informed on the message line.

LINKLEVELS ON
OFF

Command Class
Action

Syntax Rules
1. The operand ON causes control to be transferred to the Debugger

each time the link level changes, and a message to be displayed on
the message line.

2. The operand OFF suppresses the transfer of control to the Debugger
each time the link level changes.

General Rules
1. The default operand for LINKLEVELS is OFF.

Debugger Command Set 7-49

LISTFILE

Description ~
The LISTFILE command allows you to access and display an alternate
copy of the listing file during a debugging session. For example, if
the volume containing a listing file is not mounted, you can issue the
LISTFILE command to access a copy of the listing file on a volume that
is currently mounted.

Format
LISTFILE [[[volume.] library.] file]

Comsa.nd Class
Set-and-Query

General Rule
1. When LISTFILE is executed by PF key, you cannot change the

operands during the operation.

7-50 Debugger Command Set

I
I

I
__J

LISTING

Description
The LISTING command accesses the listing window.

Format
LISTING

Co111111iJnd Class
Action

Related Co'111111and.s
DATA, DISPLAY, FRAME, MENU, TRAPS, WINDOW

Debugger Command Set 7-51

LOAD

Description

Format

The LOAD command loads and executes a specified command file. A
command file contains a series of commands that are executed by the
Debugger in their order of appearance. You can execute a command file
as many times as desired. A command file can itself execute LOAD to
load other command files.

LOAD [[volume.] library.] file

Command Class
Action

Syntax Rule
1. The volume, 'library, and file operands specify the file to be

loaded.

General Rules

/

1. When LOAD is assigned to a PF key, operands cannot be changed
during the operation.

2. The volume, library, and file names must be separated by periods;
no embedded spaces are allowed.

3. If the volume and/or library specifications are omitted, the input
volume, and the input library are used.

7-52 Debugger Command Set

LOCATE

Description

Format

The LOCATE command searches the text for an instance of a specified
string or pattern. If text is specified it becomes the new
find-string, otherwise the previous find-string is used. LOCATE
searches from the current cursor position forward until an instance of
the find-string is located. If the end of the file is reached without
locating a find-string, the search is then reversed, until the
find-string is located or the beginning of the file is reached.

When an instance is found, the cursor is positioned on its first
character. If no instance is found, a message is displayed, and the
file is not scrolled.

If the CASE EXACT command is in effect, an instance of the string must
also match the find-string with regard to the capitalization of each
letter. If CASE ANY is in effect the letters are compared without
regard to capitalization.

If the MATCH ON command is in effect, the find-string is interpreted
as a pattern. It is compared to strings in the text according to
pattern matching rules. If MATCH OFF is in effect, strings in the
text are compared to the find-string just as it is.

LOCATE [text]

Command Class
Action

General Rules
1. When LOCATE is assigned to a PF key, operands cannot be changed

during the operation.

2. If the search strin9 is not located, no action is taken.

Related Co'lllllJands
CASE, FIND, MATCH, SEARCH

Debugger Command Set 7-53

MARK

Description

Format

The MARK command marks a line or a range of lines to be used by
another command. Each line that is marked is identified by a triangle
in the left margin.

Each window can have a marked range of lines; however, only one range
of lines can exist within a window.

After you mark the desired lines, you can execute subsequent commands
that use the marked lines. Some commands automatically clear marks
after they are executed, but most commands do not. You can clear
marks by executing the CLEAR command.

You can modify commands assigned to PF keys that use marks, to
automatically remove the marks following command execution. This is
done by adding the CLEAR ALL command to the PF key assignments. For
example, the command PRINT; CLEAR ALL creates a print file from the
marked lines, and then clears all marks from the associated window.

MARK [n]
[ALL]
[FIRST]
[LAST]

Comaand Class
Action

Syntax Rules
1. The operand n indicates the nth line to be marked.

2. The operand ALL indicates all lines in the window. This operand
is not allowed in the data window.

3. The operand FIRST indicates the first line in the window.

4. The operand LAST indicates the last line in the window.

General Rules
1. MARK with no

positioned.
the top line

operand marks the line at which the cursor is
If the cursor is positioned outside of the window,
of the current window is marked.

2. If a range is marked and you execute MARK with the cursor
positioned outside of the existing range but within the window,
the Debugger marks all lines from the boundary of the existing
range to the current cursor line, including that line.

7-54 Debugger Command Set

MARK (continued)

3. Only one entry can be marked at a time in the data win.dew. If an
entry is marked and MARK is executed on another entry, the m13.rks
are cleared from the previous entry.

Related Command
CLEAR

Debugger Command Set 7-55

MATCH

Description

Format

The MATCH command enables pattern matching, a method of representing
the find-string with some literal characters and with some symbolic
characters. This method of representation enables you to locate
strings with variable components. For more information about pattern
matching and the symbolic characters, refer to Section 4.4.3.

You specify the find-string with the FIND, SEARCH, or LOCATE command.
You can make the search case sensitive with the CASE command.

When MATCH is enabled, any symbolic characters within the find-string
are interpreted according to their particular meaning within the
pattern matching rules. When MATCH is set to OFF, any symbolic
characters are interpreted according to their literal meaning.

MATCH [ON]
[OFF]

Comma.nd Class
Set-and-Query

Related Co'//lllliJIJds
FIND, LOCATE, SEARCH

7-56 Debugger Command Set

~
~

MEMORY

Description

Format

The MEMORY command displays in the data window, the value of a
specified range of the subject program's memory.

MEMORY [address [length]]
[OFFSET hex-offset [base] [length]]

where:

base = [program-name/]section-name or (absolute address) or (Rx)

where:

R = a general register and x denotes a general register number

Command Class
Informative

Syntax Rules
1. The keywords and operands (aside from "length") associated with

MEMORY, specify the location in the subject program from which to
display memory. Their forms and definitions are described in
Section 1.13.

2. The operand "length" specifies the decimal number of bytes to be
displayed. The maximum value is 4096 bytes; if a larger value is
specified, a warning message is displayed. The default number of
bytes is 4.

General Rules
1. The default for the operand "section" is the current section.

2. If MEMORY is assigned to a PF key, and is executed through that
key, it has the following special behavior:

If the command line is not blank, the text within the line is
executed as the MEMORY command.

Thus, an alternate way to display a portion of memory is to enter
its address (or general register) and length on the command line,
and then press the PF key assigned to the MEMORY command.

3. If MEMORY is executed with no operands, but the cursor is
positioned on a displayed value that represents an address in the
subject program, the four bytes starting at that address are
displayed.

Debugger Command Set 7-57

MEMORY (continued)

Examples
1. Command: MEMORY 8FD010

Displays:

MEMORY 8FD010 =
8FD010 00 002FF200 " I "

Since no length was specified, the default length of 4 was used.

2. Command: MEMORY 4(RF) 64

Displays:

MEMORY
2E4DDC
2E4DEC
2E4DFC
2E4EOC

Related Command
SET

4(RF)
0000
0010
0020
0030

64 =
oooooooc
002E4E20
002E5020
002Fl6FC

7-58 Debugger Command Set

00000054
002F2010
802E4E5C
C02Fl83E

2A010402 002E4EAO " TU N "
0013DC28 40038816 .. Nz (@ "
70138212 002E4E28 .. p N p N("
00000000 00000000 " I I > "

·....._ __ _

MENU

Description

Format

The MENU command displays the menu window, which contains a menu of
the current PF key assignments. The menu window is displayed either
in a full window if FRAME FULL is in effect, or in a partial window if
FRAME PARTIAL is in effect (assuming the cursor is positioned within
the Window section).

When you execute MENU with FRAME FULL in effect, the menu window is
displayed as a full window with both unshifted and shifted PF keys
visible. When you execute MENU with FRAME PARTIAL in effect, the menu
window may be displayed as a partial window, depending on the position
of the cursor. If displayed as a partial window, the entire set of PF
key assignments may not be visible in the menu window. You can scroll
the window display to view all assignments.

The menu window remains in view until it is closed or replaced by
another window. To remove the menu window, execute the CLOSE command
with the menu window as the current window.

MENU

Comaand Class
Action

General Rule
1. MENU displays the PF key assignments for examination only; to

modify the assignments you must execute the ASSIGN command.

Related Comaands
ASSIGN, CLOSE, DATA, DISPLAY, FRAME, LISTING, TRAPS, WINDOW

Debugger Command Set 7-59

MODTRAP

Description ~
The MODTRAP command sets a trap that monitors a specified program

Format

variable, program address, or a general register of the subject
program. When this trap is active and the subject program is resumed,
the trap is taken each time the value of the specified variable,
address, or general register (subject to the relop clause if included)
changes.

MODTRAP [VARIABLE var-name]
[ADDRESS address [length]]
[OFFSET hex-offset [program-name/]section-name [length]]
[REGISTER greg [relop hexval]]

CoBllBand Class
Action

Syntax Rules
1. The operand var-name indicates the name of a subject program

variable.

2. The operand address indicates the address on which the trap is
set. The address operand can be either an absolute address or the
base-index-displacement form of the address (as shown in Section
1.13). If the base-index-displacement form is used, the address
is not re-evaluated unless the trap is deleted and then recreated.

3. The operand length indicates the length of the specified address.
Any operand greater than 256 is replaced by 256 bytes. If the
length operand is not specified, the default length is 4 bytes.

4. The operand section must refer to a static section, not a code
section.

5. The operand greg identifies the name of the 32-bit general
register to be monitored by the Debugger. Valid names are RO
through R15, RA through RF, and 0 through 15.

6. The operand relop is described in Section 1.13.2.

7. The operand hexval indicates a hexadecimal value of eight
characters or less.

7-60 Debugger Command Set

MODTRAP C continued)

8. The relop greg-value expression specifies the condition under
which the trap is to be taken. For example, in the following
format, the trap is taken on Rl when the value of Rl becomes
greater than 10.

MODTRAP Rl > 10

9. If relop greg-value is not specified, the trap is taken on any
attempt to put data in the specified general register that is
different from the current contents of that general register.

10. Any variable with a length greater than 256 bytes is partially
monitored; only the first 256 bytes are monitored.

Examples
1. MODTRAP VARIABLE SUBl

The trap is taken each time the value of SUBl changes.

2. MODTRAP REGISTER R4 = 3

The trap is taken whenever the value for general register 4 is
equal to 3.

Debugger Command Set 7-61

NEXT

Description

Format

The NEXT command scrolls the current window display forward a
specified number of lines.

NEXT [n]

Co'111111i1Dd Class
Action

Syntax Rule
1. The operand n indicates the number of lines to scroll forward.

General Rules
1. If no operand is specified, the default for n is the number of

lines minus 2 if five or more lines are visible in the window, or
the number of lines if less than five lines are visible in the
window.

2. When NEXT is executed by PF key, operands cannot be changed during
the operation.

3. If the operand n specifies a scroll that reaches the end of the
window display, the last line of the window display is shown at
the top of the window.

Related Co'lllllla.nds
FIRST, GOTO, LAST, LEFT, PREVIOUS, RIGHT

7-62 Debugger Command Set

r

r

NOTE

Description

Format

The NOTE command saves the window position and cursor location so you
can restore them later with the GOTO command.

NOTE records the location of a line in the current window. You can
later invoke the GOTO NOTE command in that window. GOTO NOTE causes
the text that includes that line to be displayed in the window and the
cursor to be restored to where it was when NOTE was invoked.

NOTE

Command Class
Action

Related Command
GOTO

Debugger Command Set 7-63

OPCODE

Description

Format

The OPCODE command sets a trap that monitors all instances of a
specified machine instruction in the entire subject program. When
this trap is active, the trap is taken if execution of the subject
program is resumed and reaches any instance of the specified
instruction.

OPCODE [inst-mnemonic]
[HEX hexval]

ComDand Class
Action

Syntax Rules

Examples

1. Inst-mnemonic indicates the mnemonic name of a valid VS
instruction.

2. Hexval indicates a sequence of two hexadecimal characters.

3. OPCODE traps operate only on the opcode byte of VS instructions.
OPCODE traps do not recognize extended mnemonics such as BL, BO,
and RTZ.

In the following examples, the mnemonic name AH is used. This is the ~
instruction to Add Halfword. Its hexval is 4A. Hexadecimal values of '9
operation codes have a 2-character length. The two examples are
equivalent.

1. OPCODE AH

The Debugger sets a trap on all instances of the AH machine
instruction.

2. OPCODE HEX 4A

The Debugger sets a trap on all instances of the hexadecimal 4A
instruction.

7-64 Debugger Command Set

OUTSIDE

Description

Format

The OUTSIDE command sets a trap at all points outside a specified
range. When this trap is active, the trap is taken if execution of
the subject program is resumed and control reaches any point outside
the specified range.

Note: The OUTSIDE command functions as an instruction level trap, not
as a statement level trap. For example, the Debugger may interrupt
the subject program a number of times at the same statement, because
the statement contains multiple instructions.

OUTSIDE [statement-id-1 statement-id-2 [program-name/]section-name]]
[ADDRESS address-1 address-2]
[OFFSET hex-offset-1 hex-offset-2 [program-name/]section-name]]

Co'llllll.and Class
Action

Syntax Rules
1. The keywords and operands associated with OUTSIDE specify the

range to exclude from traps. Their forms and definitions are
described in Section 1.13.

2. The operands address-1 and address-2 can be either an absolute
address or the base-index-displacement form of the address. If
the base-index-displacement form is used, address-1 and address-2
are not re-evaluated unless the trap is deleted and then recreated.

General Rules
1. OUTSIDE does not include the range boundaries; that is, the trap

is not taken on either marked boundary statement, but is taken on
any statement outside of the boundaries.

2. OUTSIDE requires either operands or marked lines to be executed.

3. If marks are used, the range covers all statements excluded by the
marks. There must be statement number information for both the
first and last marked lines.

4. If no operands are specified, OUTSIDE applies to the range of
statements in the current section that are not marked. If no
statements are marked, OUTSIDE with no operands applies to the
statement at which the cursor is positioned.

Debugger Command Set 7-65

OUTSIDE <continued)

Example

5. If the statement-id form is used, the range includes every
instruction from the first instruction of statement-id-! to the
last instruction of statement-id-2, inclusive.

6. If the ADDRESS form is used, the range includes every instruction
from the instruction at address-! to the instruction at address-2,
inclusive.

7. If the OFFSET form is used, the range includes every statement
from the hex-offset-! to the hex-offset-2, inclusive.

8. If the operand section-name is not specified, the current section
name is used.

9. Statement-id-! must be less than statement-id-2; address-! must be
less than address-2 and both addresses must be halfword aligned;
hex-off set-1 must be less than hex-offset-2 and both off sets must
be halfword aligned.

1. OUTSIDE 20 30

The Debugger traps all statements outside the range of 20 to 30.

7-66 Debugger Command Set

r·

POSITION

Description
The POSITION command displays the current cursor position on the
message line. The current cursor position consists of the line number
and column number of the cursor within the current window. That
information remains displayed until the next command is issued.

Format
POSITION

Command Class
Informative

Related Comsand
STATUS

Debugger Command Set 7-67

PREVIOUS

Description

Format

The PREVIOUS command scrolls the current window display backward a
specified number of lines.

PREVIOUS [n]

Co'111111i1nd Class
Action

Syntax Rule
1. The operand n indicates the number of lines to scroll backward.

General Rules
1. If no operand is specified, the default for n is the number of

lines minus 2 if five or more lines are visible in the window, or
the number of lines if less than five lines are visible in the
window.

2. When PREVIOUS is assigned to a PF key, operands cannot be changed
during the operation.

Related Commands
FIRST, GOTO, LAST, LEFT, NEXT, RIGHT

7-68 Debugger Command Set

·...__ __

PRINT

Description

Format

The PRINT command creates a print file from a marked range of lines,
or from the entire contents of the current window, and prints the
file. To create a print file from a portion of the current window,
first mark the range of lines to print by executing the MARK command.
Then execute PRINT with the appropriate file specification. The
resultant print file contains the marked range.

To create a print file that contains the entire contents of the
current window, execute the PRINT command either with no lines marked
or with all lines marked. The resultant print file contains the
entire contents of the window.

PRINT [[[volume.] library.] file]

CoBlllJiJnd Class
Action

Syntax Rule
1. The volume, library, and file operands specify the file to be

printed.

General Rules
1. If the library and/or volume specifications are omitted, the spool

volume, and the spool library are used.

2. If the file specification is omitted, a system file name is
assigned.

3. The volume, library, and file names must be separated by periods;
no embedded spaces are allowed.

4. If no lines are marked, PRINT creates a print file that contains
the entire contents of the current window.

Related Cams.and
MARK

Debugger Command Set 7-69

PROCEDURES

Description

Format

The PROCEDURES command displays in the data window a list of all
subprogram names in all code sections of the subject program. The
list does not contain subprograms from code sections that were not
included in the Symbolic section of the subject program by the VS
translators. For a programming language such as PL/I, which allows
statically nested subprograms, any subprograms that are internal to
another subprogram are indented by one blank character.

Because not all translators provide symbolic support for subprogram
names, some sections will not have subprogram information. However,
each section at the minimum contains a line of text indicating the
source language and runtime code range for that section.

PROCEDURES [program-name]

Command Class
Informative

General Rule

Example

1. If no subprograms exist, the Debugger creates a display conveying
that information.

In the following example, the subject program consists of a PL/I ~
object module and a BASIC object module linked together. Subprogram J
INTINTPROC in the PL/I section, is contained in subprogram INTPROC,
which is in turn contained in subprogram OADDRSTAT. The BASIC section
has no subprogram information.

Command: PROCEDURES

Displays:

PROCEDURES =
Section #ADDRESS
Source language is PL/I code range is 100008 to 1012CO

OADDRCODE
OADDRSTAT

INTPROC
INTINTPROC

OADDRACON
OADDRIMM
OADDRAUTO
OADDRPARM

Section FDTOCH
Source language is BASIC code range is 1012CO to 1020EB
Procedure information is not available for this section

7-70 Debugger Command Set

PROGRAMS

Description

Format

The PROGRAMS command displays in the data window a list of all the
SSLs currently mapped with the main program. This list also displays
all files mapped in via the MSMAP system routine.

The PROGRAMS command is supported in Version 1.05 (or greater) of the
debugger.

The PROGRAMS command is described in detail in Section 6.5.

PROGRAMS

Co11111li1.11d Class
Informative

Example
Command: PROGRAMS

Displays:

Programs =
Main program:

WORK.TSTRUN.DEBTEST
SSL aliases:

STRINGPACKAGE
MSMAPed programs:

LIBPAK.MATHRTM.MATHLIB

CodeSections for STRINGPACKAGE =
#APPEND

Debugger Command Set 7-71

RECALL

Description

Format

The RECALL command recalls a command that was entered at the command
line and displays it in the command line.

When the HISTORY command is set to ON, RECALL displays the nth command
(from the beginning), or the most recent command containing "text,"
or, if neither n nor text is specified, the most recently entered
command. When executed without an operand several times in a row, the
RECALL command moves backward through the history list, displaying
each prior command until the first command is displayed.

RECALL pertains to

• Only commands entered at the command line when HISTORY ON is in
effect

• All commands except ASSIGN, DEFINE, HISTORY, and RECALL

When the command is displayed, you can then execute it, with or
without modifications, or erase it from the command line.

RECALL [n]
[text]

Command Class
Action

General Rule
1. RECALL does not recall commands executed by PF keys.

Related Command
HISTORY

7-72 Debugger Command Set

REGISTERS

Description
The REGISTERS command displays, in the data window, the values of all
general registers of the subject program.

Format
REGISTERS

Co'11l1Ba1Jd Class
Informative

Example
1. Command: REGISTERS

Displays:

Registers =
(RO) 002E4D9C 002E3F24
(R4) 802E4B6C 00160DA2
(RS)~. 00000044 00000110
(RC) 00130F68 40038816

00000045 30000000
00248F1C 00000044
002E3F28 002EE708
002E5020 002E3F24

Debugger Command Set 7-73

RIGHT

Description

Format

The RIGHT command moves the current window display the specified
number of columns to the right. RIGHT is used alternately with the
LEFT command to view a window display that is wider than the physical
width of the screen. You use RIGHT to display columns to the right of
the limit, and LEFT to scroll back in the opposite direction.

RIGHT [n]

Comaand Class
Action

Syntax Rule
1. The operand n indicates the number of columns to move the display

to the right. Any value is accepted; values less than 1 or
greater than the screen width are truncated accordingly.

General Rules
1. RIGHT with no operand displays the text so that the rightmost

margin is visible.

2. When RIGHT is executed by PF key, operands cannot be changed
during the operation.

3. When the rightmost margin is displayed on the window, RIGHT no
longer has any effect when executed.

Related Co'/11111a.Dd
LEFT

7-74 Debugger Command Set

ROW

Description

Format

The ROW command positions the cursor on a specified row within the
current window. Typically, ROW is used in conjunction with the COLUMN
command to move the cursor to a specified row within a designated
column.

ROW [n]

Comaand Class
Action

Syntax Rule
1. The operand n indicates the row at which you want to position the

cursor. Any value for n that is less than l defaults to l; any
value for n that is greater than the width of the window defaults
to the window width limit.

General Rules
1. ROW operates with the cursor positioned in the current column.

2. If ROW is executed with no operands, the default for n is 1.

Related Co1111llilnds
COLUMN, CURSOR

Debugger Command Set 7-75

SCREEN

Description

Format

The SCREEN command redisplays the subject program screen until you
press ENTER or any PF key.

SCREEN

Comnand Class
Action

General Rules
1. When SCREEN is executed, the entire Debugger screen, including the

top three lines, is replaced by the subject program's screen. The
subject program's screen appears exactly as it is presented by the
subject program.

2. The Debugger Workstation screen is redisplayed by pressing ENTER
or any PF key (no commands assigned to a PF key are executed).

7-76 Debugger Command Set

SEARCH

Description

Format

The SEARCH command searches for an instance of a specified string or
pattern. If text is specified it becomes the new find-string,
otherwise the previous find-string is used. SEARCH searches from the
current cursor position forward, or backward, for an instance of the
find-string. When an instance is found, the cursor is positioned on
the first character of it. If no instance is found, a message to that
effect is displayed and the file is not scrolled.

If the CASE EXACT command is in effect, an instance of the string must
exactly match the find-string with regard to the capitalization of the
letters. If CASE ANY is in effect, letters are compared without
regard to capitalization.

If the MATCH ON command is in effect, the find-string is interpreted
as a pattern. It is compared to strings in the text according to
pattern matching rules (refer to Section 4.4.3). If MATCH OFF is in
effect, strings in the text are compared to the find-string just as
it is.

SEARCH [FORWARD] [text]
[BACKWARD] [text]

Co1111Dand Class
Action

Syntax Rules
1. The operand FORWARD specifies a search forward from the current

cursor position.

2. The operand BACKWARD specifies a search backward from the current
cursor position.

General Rules
1. SEARCH with no operand performs the same function as SEARCH

FORWARD.

2. When SEARCH is assigned to a PF key, operands cannot be changed
during the operation.

3. If the search string is not found, no action is taken.

Related Co1lll.Bands
CASE, FIND, LOCATE, MATCH

Debugger Command Set 7-77

SECTION

Description

Format

The current section is the code section at which control is currently
paused. The SECTION command changes the current code section to the
named code section of the program listing, making that section the
current section. Note that section names are eight characters long.

SECTION [program-name/]section-name [statement-id]

Comnand Class
Set-and-Query

Syntax Rules
1. The operand section-name indicates the name of a code section in

the subject program.

2. The operand statement-id indicates the ordinal number of a program
statement.

General Rules
1. An active section is a section that is currently on the call chain.

2. If statement-id is specified and the section is not active, the
listing is positioned such that the specified statement is at the
top of the window.

3. If statement-id is not specified, and the specified section is
active, the most recent active statement in the section appears at
the top of the window.

4. If statement-id is not specified, and the specified section is not
active, the first statement of the section appears at the top of
the window.

5. If SECTION is executed with no operand, the name of the current
section is displayed on the command line.

7-78 Debugger Command Set

SECTION <continued)

Examples
1. SECTION COBDEMO

If COBDEMO is active, the most recent active statement in the
section appears at the top of the listing window.

If COBDEMO ·is not active, the first statement of the section
appears at the top of the listing window.

2. SECTION COBDEMO 40

The Debugger moves statement 40 in COBDEMO to the top of the
Listing Window and displays a portion of the program !is.ting from
that point.

Debugger Command Set 7-79

SET

Description

Format

The SET command allows you to query and reset the default values for
MEMORYLENGTH and the VARECHO flag during a debugging session.

SET MEMORYLENGTH [set value]
VARECHO [set value]

Co'll111la.nd Class
Set-and-Query

General Rules
1. The default valu~ for MEMORYLENGTH, initially set to 4, can be

reset to any integer between 1 and 4096.

2. The default for the VARECHO flag is initially set to OFF and can
be reset to ON to echo the variable commands on the command line.

3. The current values for MEMORYLENGTH or VARECHO can be displayed on
the command line by issuing the SET command without specifying a
new default value.

4. To reset a default value, enter SET followed by either
MEMORYLENGTH or VARECHO and the corresponding value and press
ENTER.

7-80 Debugger Command Set

~ ·--

SNAPSHOT

Description

Format

The SNAPSHOT command creates a print file that contains the image of
the Debugger Workstation screen.

SNAPSHOT [file path]

Command Class
Action

General Rule
1. You can specify only the file name or the library and file names.

The Debugger uses the library and volume provided by your usage
constants for spoolib and spoolvol.

You can also omit the file name altogether. In that case, a
default system name, spoolvol.spoolib.@DEBnnnn, is automatically
generated. The nnnn of @DEBnnnn represents decimal digits.

Debugger Command Set 7-81

STACKTRACE

Description ~
The STACKTRACE command displays in the data window the addresses of '------·

Format

the currently active JSI, SVC, and LINK instructions. For the current
link level, STACKTRACE displays the absolute addresses, code sections
and offsets, and line numbers when possible.

STACKTRACE [ALL]
[n]

Co'11111land Class
Informative

Syntax Rules
1. The operand ALL indicates a list of all active calls, including

all link levels above the current link level.

2. The operand n indicates the number of stack frames that you want
to display. This feature is useful when debugging large programs
where the number of active stack frames can be very high,
requiring you to page through several displays to view specific
stack frames. The most recent stack frames are always displayed.

General Rule
1. If ALL is not specified, only the active calls at the current link

level are shown.

7-82 Debugger Command Set

, __

r

STACKTRACE (continued)

Example

Command: STACKTRACE

Displays:

STACKTRACE =
Procedure called from 127D92
Statement 423 Off set 0016SA in section #EDITOR

SaveArea at 3E6BAO contains:
(RO) S03E5230 003E6CC4 OOOOOFF3 FFFFFFF3
(R4) C03E6DlC 003E6DOS 00000001 003FODS3
(RS) 00000000 003E6CSB 00000000 003E6C04
(RC) 003FOADO 0012BFE4 003FF1SS

Procedure called from 126S36
Statement 92 Off set 00012E in section #EDITOR

SaveArea at 3E6CC4 contains:
(RO) S03E5230 003EA5AC 003E6DOS 00000000
(R4) 003E9DBO 003FD4C4 003FD4DO 003FD529
(RS) 003FD512 003FD4B4 S03FD52B 003E6Dl4
(RC) 003FOADO 0012BFE4 003FF1SS

Program NEWDEBUG linked from 10EA12

SaveArea at 3E6DD4 contains:
(RO) S03E5230 00000000 00000000 003FDSOS
(R4) 003FD52C 003FD4C4 003FD4DO 003FD529
(RS) 003FD512 003FD4B4 S03FD52B 003FD49S
(RC) 003FF1CO 0010E9SO 003FF1SS

Procedure called from 100B2A

SaveArea at 3FD7EO contains:
(RO) 003E5230 00201011 003FDS24 003FDF30
(R4) 003FDF3S 00100B20 003FDF40 003FDFES
(RS) 00000002 00000054 003FDFEO 003FDS2S
(RC) 003FDC7S 00100D14 B01002SO

Procedure called from 100140

SaveArea at 3FDB9C contains:
(RO) 003E5230 00100040 003FDC60 OOlOOOOS
(R4) 00000110 0002FBDO 000262BO 00011030
(RS) 00000001 0001E25S 003FDBEO 003FDC34
(RC) 003FFFSO 00100040 003FDC30

Debugger Command Set 7-83

STATE

Description -~
The STATE command displays in the data window the value of the
components of the subject program's state (other than register values).

Format
STATE

Comaand Class
Informative

Example
Command: STATE

Displays:

State =
PCW = 7012A3B8 00000000

Program Address = 12A3B8 Interrupt Code = 70

Condition Code
Fixed Point Overflow Interrupt Mask
Decimal Overflow Interrupt Mask
Exponent Underflow Interrupt Mask
Significance Loss Interrupt Mask

Process Level = 0
Previous Address = 000000
Stack Backlink Pointer = 3FE884 /
Program Static Base = 3FF1AC

7-84 Debugger Command Set

= 00
= 0
= 0
= 0
= 0

STATICSECTIONS

Description
The STATICSECTIONS command displays in the data window a list of all
static sections in the subject program.

Format
STATICSECTIONS [program-name]

Comsand Class
Informative

~Xa:lllple

Command: STATICSECTIONS

Displays:

COBDEMO

Debugger Command Set 7-85

STATUS

Description
The STATUS command displays user-requested information about the
current debugging session. That information refers to the current
window only. STATUS can take several operands that indicate the
desired contents of the status line.

Format l
STATUS [CODESECTION] [COLUMNS] [CURSOR] [LINES] [MARK] [MEMORY]

[NAME] [PCW] [PROGRAM] [STATEMENT] [TASKID] [TIME]
[USERID] [WINDOW] .

Format 2
STATUS OFF

Comsand Class
Set-and-Query

Syntax Rules
1. The operand CODESECTION indicates the name of the current code

section.

2. The operand COLUMNS indicates the visible column numbers of the
file.

3. The operand CURSOR indicates the cursor position after either the
SEARCH or LOCATE command has been successfully .executed.

4. The operand LINES indicates the lines of the current window that
are currently visible.

5. The operand MARK indicates the lines that are currently marked.

6. The operand MEMORY indicates the amount of memory available for
debugging.

7. The operand NAME indicates the name of the current window.

8. The operand OFF suppresses the status display for the current
window.

9. The operand PCW provides Program Control Word information.

10. The operand PROGRAM indicates the program name.

11. The operand STATEMENT indicates the number of the statement at
which control is paused.

12. The operand TASKID indicates the task identification number of the
subject program.

7-86 Debugger Command Set

STATUS (continued)

13. The operand TIME indicates the current time.

14. The operand USERID indicates the user ID.

15. The operand WINDOW indicates the current window number.

General Rules

Example

1. The default operands for STATUS are CODESECTION, STATEMENT, and
PCW.

2. If STATUS is entered with no operands, the current operands are
displayed.

3. When STATUS is assigned to a PF key, operands cannot be changed
during the operation.

4. You can specify, in any order, as many operands as will fit on the
command line.

5. Status items are not displayed if their contents are not
meaningful or have undefined values.

6. If you are displaying more than one window, the status display for
the window nearest the top of the Window section refers to that
window. Status lines for lower windows are displayed as the first
line of the window.

When STATUS NAME CODESECTION STATEMENT is in effect for the listing
window, the following information is a sample of what could appear on
the status line of that window:

Listing CodeSection COBDEMO Statement# 49

Debugger Command Set 7-87

STEP

Description

Format

The STEP command executes the subject program in increments.
Incremental execution means that a certain number of program
statements {or instructions) are executed and then the program is
automatically paused, with control returned to the Debugger.

STEP [INSTRUCTION] [n]

Command Class
Action

Syntax Rule
1. The INSTRUCTION operand specifies that the operand n represents

the number of machine instructions in the subject program to be
executed before execution is paused. If INSTRUCTION is not
specified, n represents the number of source statements to be
executed before execution is paused.

General Rules
1. The specified number of statements or instructions is executed

immediately upon execution of STEP. When those statements or
instructions have run, execution halts and control returns to the
Debugger.

2. When STEP n is executed, and another trap is taken before n
statements {or instructions) have been executed, control returns
to the Debugger. A message is displayed that the trap has. been
taken and the STEP n command is terminated.

Exa111ples
1. STEP 2

The subject program resumes execution for two source program
statements and pauses execution following the second statement.
Control is then passed to the Debugger.

2. STEP INSTRUCTION 3

The subject program resumes execution for three machine
instructions and pauses execution following the third instruction.

7-88 Debugger Command Set

.~ ' ... ___ _

·~
'· .

TRAINING

Description

Format

The TRAINING command assists you in the creation of minimally valid
command strings. When you execute the TRAINING command with no
operands, a selection screen appears listing each of the Debugger
commands. A command is chosen by tabbing the cursor to the select
field located to the left of the field and pressing the ENTER key.

A fill-in-the-blank template is displayed for the command, including a
description of the command and its operands. Once the desired
operands have been filled in, you press ENTER and the Debugger creates
a command line with the entered information.

The Training Facility is described in detail in Section 1.9.

TRAINING [command-name]

Comsand Class
Action

Syntax Rules
1. The command-name operand enables you to skip past the Debugger

Command screen directly to the desired command.

2. The command-name operand can be abbreviated to the shortest unique
abbreviation. If any ambiguous abbreviations are encountered, the
Debugger will select the first command containing the
abbreviation. Invalid abbreviations cause the Debugger to display
the Debugger Command screen.

Related Comsand
HELP

Debugger Command Set 1-89

TRAPS

Description
The TRAPS command. accesses the trap window.

Format
TRAPS

Command Class
Action

Related Commands.
DATA, DISPLAY, FRAME, LISTING,. MENU, WINDOW

7-90 Debugge.r Command Set

~____ ..

VARIABLE

Description

Format

The VARIABLE command displays specified program variables in the data
window, and monitors the value of each variable so that the current
value is always displayed.

VARIABLE [identifier]

Co'1111D.and Class
Informative

Syntax Rule
1. The operand identifier can be any character string that comprises

a valid data name in the source language of the current code
section. Identifiers include pointers, subscripts, containing
structure names, containing subprogram names, and containing block
names.

General Rules
1. The identifier operand must be defined in the current section.

2. Use of VARIABLE can be simplified by positioning the cursor at the
first character of an identifier. If VARIABLE is executed with no
operand but the cursor is positioned at that location, that
identifier is used as the operand. The identifier selected from
the cursor position includes all characters up to the first blank
encountered.

3. If VARIABLE is assigned to a PF key, and is executed through that
key, it has the following special behavior:

If the command line is not blank, the text within the line is the
operand for the VARIABLE command.

Thus, an alternate way to display a variable is to enter its name
on the command line (or position the cursor at the variable), then
press the PF key to which the VARIABLE command is assigned.

4. If the value displayed by VARIABLE is too long to fit on one line,
it is formatted on successive lines.

5. Automatic variables require that the procedure or function name
precede the variable name. For example, to display automatic
variable K in procedure #MAIN, the command would be

VARIABLE MAIN.K

Debugger Command Set 7-91

VARIABLE (continued)

ExlJ1llples
1. Command: VARIABLE SUB2

Displays:

SUB2 = +O

2. Command: VARIABLE FORECAST

Displays:

FORECAST = SUNLIGHT AT DAWN

3. Command: VARIABLE MAIN.K

Displays:

MAIN.K = 2

7-92 Debugger Command Set

/'

_j

VERSION

DescriptiQn
The VERSION command displays on the message line, the version number
of the currently installed Debugger.

Format
VERSION

Comsand Class
Informative

Debugger Command Se.t 7.-93

WINDOW

Description

Format

The WINDOW command accesses an existing window. The Debugger numbers
windows sequentially in the following way:

• The trap window is assigned the number 1.

• The data window is assigned the number 2 •

• The listing window is assigned the number 3 •

• Additional windows (the display window or the menu window) are
numbered sequentially starting at 4, in their order of access.

If an additionally accessed window is closed, the following window (if
present) moves up in the sequence to take the place of that window and
is assigned that number. The trap, data, and listing windows cannot
be closed.

To access a specific window, execute WINDOW followed by the number of
the window to be displayed.

WINDOW [n]

Coma.a.nd Class
Action

Syntax Rule
1. The operand n represents the number of the window.

General Rules
1. WINDOW affects all windows.

2. When WINDOW is assigned to a PF key, operands cannot be changed
during the operation.

3. WINDOW with no operand displays the next sequentially numbered
window. If the last window is the current window when WINDOW with
no operand is executed, the first window (trap window) is
displayed.

Related Co11111li1nds
DATA, DISPLAY, FRAME, FULL, LISTING, MENU, TRAPS

7-94 Debugger Command Set

APPENDIX A
TRANSITION FROM THE PREVIOUS DEBUGGER TO THE NEW DEBUGGER

A.1 INTRODUCTION

This appendix is intended for VS users who are familiar with the
previous Debugger. It describes how to use the new Debugger to
perform the tasks that you used to perform with the previous
Debugger. The information is organized on a screen-by-screen basis
according to the screens of the previous Debugger.

Note: IE you are a new or infrequent Debugger user, you may want to
use Easy mode for simplified Debugger operation. Chapter 3 describes
Easy mode in detail.

A.2 MAIN SCREEN

Upon entry, the previous Debugger always displayed a menu which listed
the main debugging functions. This menu is referred to as the Main
screen in this appendix. From the Main screen you could perform
several debugging functions and access other debugging menus for trap
management and the Inspect and Modify functions.

A.2.1 Continue

Previous Debugger
PFl, the Continue key, caused the user program to resume execution.

New Debugger
The CONTINUE command causes the user program to resume execution. It
also accepts operands which specify an alternate program restart
address (absolute addresses, statement numbers, or offsets within a
named section). This command is assigned to PF14.

Transition From the Previous Debugger to the New Debugger A-1

A.2.2 Scrolling

Previous Debugger ~
PF2 and PF3, the Previous and Next keys, caused the listing, displayed '-
in the top seven lines of the screen, to scroll five lines backward or
forward.

New Debugger
Scrolling the listing window, and other Debugger windows, is
accomplished by using the PREVIOUS and NEXT commands. These commands
take optional numeric operands which specify the number of lines to
scroll. If no operands are specified, the selected window is scrolled
n lines, where n is 2 less than the total number of lines displayed.
Several scrolling commands are assigned to PF keys, as follow:

PF4 PREVIOUS
PFS NEXT
PF6 PREVIOUS 1
PF7 NEXT l

In addition, the new Debugger also provides the following two commands
to scroll the listing so that the first line of the listing appears at
the top of the ·window or the last line of the listing appears at the
bottom of the window:

PF2 FIRST
PF3 LAST

A.2.3 Traps

Previous Debugger
PF4, the Trap key, put the user in Trap mode, which displayed the Trap
screen.

New Debugger
Refer to Section A.3 for a discussion of the Trap screen and the
corresponding functions in the new Debugger.

A-2 Transition From the Previous Debugger to the New Debugger

A.2.4 Inspect & Modify

Previous Debugger
PFS, the Inspect & Modify key, put the user in Inspect & Modify mode,
which displayed the Inspect & Modify screen.

New Debugger
Refer to Section A.4 for a discussion of the Inspect & Modify screen
and the corresponding functions in the new Debugger.

A.2.5 Select Section

Previous Debugger
PF6, the Select Section key, allowed the user to switch the section
being examined, which changed the contents of the listing window and
the defaults supplied on other screens.

New Debugger
The SECTION command allows the user to switch the default section,
changing the contents of the listing window accordingly. The SECTION
command also takes an optional operand which indicates the line number
at which to position the listing, defaulting to the most recent
display of that section, if previously displayed.

A.2.6 Dump

Previous Debugger
PF13, the Dump key, took a task dump of user memory and stored it in a
print file in the user's spool library, or in the library #PRT on the
system volume, if the spool library was not set. It did not display
the name of the file created, which was of the form DUMPxxxx.

New Debugger
The DUMP command creates a Dump just as the previous Debugger did.
Similarly, it does not display the name of the Dump file created, and
the file name takes the same form, DUMPxxxx.

Transition From the Previous Debugger to the New Debugger A-3

A.2. 7 Print Program Screen

Previous Debugger
PF14, the Print Program Screen key, created a print file of the
contents of the user program screen in the user's print library (or
#PRT if not set).

New Debugger
This function is not directly available in the new Debugger. It may
be invoked by pressing HELP to go to the modified Command Processor
menu, and then pressing PF14.

A.2.8 Print Debug Screen

Previous Debugger
PFlS, the Print Debug Screen key, created a print file of the contents
of the Main screen in the user's print library (or #PRT if not set).

New Debugger
The SNAPSHOT command creates a different type of print file than the
previous Debugger created, but it does include all the contents of the
Debugger screen.

A.2.9 Cancel Processing

Previous Debugger
PF16, the Cancel Processing key, caused the user program to be
cancelled, and to terminate the debugging session.

New Debugger
The CANCEL command, assigned to PF32, behaves exactly as PF16 did in
the previous Debugger.

A.3 TRAP SCREEN

When you pressed PF4 on the Main screen, the Debugger entered Trap
mode and displayed the Trap screen. This screen offered three
different types of traps to set, either singly or jointly. The three
types of traps were

• Breakpoin~ (address) trap
• Single step trap
• Memory modification trap

The new Debugger enables you to set the same types of traps with the
commands BREAK, STEP, and MODTRAP.

A-4 Transition From the Previous Debugger to the New Debugger

A.3.1 Breakpoint (Address) Trap

Previous Debugger
A breakpoint trap was specified by filling in one or more fields of
the Breakpoint Trap section of the Trap screen. Four fields were
associated with breakpoints: Line Number, Section, Offset, and Count.

Line Number

Section

Off set

Count

New Debugger

This field was only used when the section specified in
the Section field contained symbolic statement
information. Specifying a line number within a section
caused a breakpoint trap to be set on the address of the
first instruction of that statement.

This field specified the section within which the offset
of Line Number was to be used. This was restricted to
code sections and had to be used with Line Numbers.
Offsets were allowed.

This field was used to specify either an offset within
the section specified in the Section field, or, if that
field was blank, an absolute address.

This field was used to specify the count of the
breakpoint trap, that is, how many times the breakpoint
was hit before the trap was taken.

The BREAK command set a breakpoint trap on a symbolic statement, at an
absolute address, and at an offs~t within a section.

To set a breakpoint on a symbolic statement, the command is

BREAK nnn ssssssss

where nnn is the line number and ssssssss is the section name. Note
the section name need not be specified if it is the current section,
just as with the previous Debugger.

To set a breakpoint at an absolute address, the command is

BREAK ADDRESS aaaaaa

where aaaaaa is an absolute address specification in either a 6-digit
hex value or a base-index-displacement value (as in the Assembler).

Transition From the Previous Debugger to the New Debugger A-5

To set a breakpoint at an offset within a section, the command is

BREAK OFFSET xxxxxx ssssssss

where xxxxxx is the offset and ssssssss is the section name. Note the
section name need not be specified if it is the current section, just
as with the previous Debugger.

The new Debugger lets you set a breakpoint trap very easily if there
is a listing displayed in the listing window. Simply position the
cursor on the statement (or instruction, if the source language is
Assembler), and press the PF key to which BREAK has been assigned
(PFll is the default).

A.3.2 Single-Step Trap

Previous Debugger
The single-step trap executed either a fixed number of high level
language statements or machine level instructions. There were two
fields associated with single stepping: Symbolic Statement (S) or
Instruction (A), and Count.

S or A

Count

New Debugger

This field was used to select either symbolic statement (S)
or instruction level (A) traps. If "S" were specified and
the source language were Assembler, the value would be
automatically changed to "A" since symbolic statements at
the Assembler level are instructions.

This field was'used to specify the number of steps, that is,
the number of statements or instructions that were to be
executed before stopping.

The STEP command not only sets both types of single step traps, but
also resumes program execution immediately. With the previous
Debugger, you had to return to the Main screen before resuming program
execution.

To step n symbolic statements, the command STEP n is used. To step n
instructions, the command STEP INSTRUCTION n is used.

Two single-step STEP commands are assigned to PF keys as follow:

PFlO STEP 1
PF26 STEP INSTRUCTION 1

A-6 Transition From the Previous Debugger to the New Debugger

A.3.3 Memory Modification Trap

Previous Debugger
The memory modification trap caused the program to trap when one
specified byte of storage changed value. That byte could be specified
either as an offset within a static section or as an absolute
address. Two fields were associated with memory modification traps:
Section and Offset.

Section

Off set

New Debugger

This field specified either the static section to be used as
a base for the offset specified by the Offset field, or, if
blank, indicated that the Offset field was to be treated as
an absolute address.

This field specified the offset within the section specified
by the Section field, or, if the Section field were blank,
the absolute address of the byte to be monitored.

The MODTRAP command sets modification traps, both on memory and on
general registers. The size of the value is no longer restricted to
one byte, and symbolic (data name) traps are also available.

To set a modiEication trap on a specific address, the command is

MODTRAP ADDRESS aaaaaa !!!!

where aaaaaa is an absolute address and !!!! is the number of bytes,
which is optional. The default is 4.

To set a modification trap on an oEEset within a section, the command
is

MODTRAP OFFSET xxxxxx ssssssss !!!!

where xxxxxx is a hex offset value, ssssssss is a static section name,
and !!!! is the number of bytes. The static section name and the number
of bytes are both optional. If the static section name is omitted, it
defaults to the current section (the same as the previous Debugger).
If the number of bytes is omitted, it defaults to 4.

To set a modiEication trap on a program variable, the command is

MODTRAP VARIABLE vvvvvvv

where vvvvvvvv is a variable name in the user program, specified in
the same manner as on the Inspect & Modify screen (for more
information, refer to the next section).

Transition From the Previous Debugger to the New Debugger A-7

A.4 INSPECT & MODIFY SCREEN

When you pressed PFS on the Main screen, the Debugger entered Inspect
& Modify mode and displayed the Inspect & Modify screen. This screen
enabled the display of program variables. You could specify the
variable, which was then displayed on the same screen. However, the
menu was modified to provide functions for changing the form of the
display and modifying the variable.

The Inspect & Modify screen also provided access to other screens to
display the contents of memory, general and floating-point registers,
and the PCW.

A.4.1 Displaying Variables

Previous Debugger
After you specified the Name and Section fields, the ENTER key caused
these fields to be used to obtain the value of the program variable.
Either the value was displayed on the screen with the modified menu
(refer to A.5) or an error condition was reported.

New Debugger
(Refer to Section A.5.1.)

A.4.2 Inspecting Memory

Previous Debugger
PFlO displayed the Inspect & Modify Memory screeri (refer to
Section·A.6).

New Debugger
(Refer to Section A.6.)

A.4.3 Inspecting Registers

Previous Debugger
PFll displayed the Inspect & Modify Registers screen (refer to
Section A.7).

New Debugger
(Refer to Section A.7.)

A-8 Transition From the Previous Debugger to the New Debugger

A.4.4 CALL/LINK/SVC Trace

Previous Debugger
PF12 displayed the CALL/LINK/SVC Trace screen which showed the save
area associated with the most recent call or SVC issued. From this
screen, pressing ENTER displayed the next save area, and so on, until
the last save area was displayed. PFl was used to return to the
Inspect & Modify screen. Only machine-level save information was
displayed.

New Debugger
The STACKTRACE command creates a display in the data window containing
all save areas, with symbolic information where available (line
nwnbers in sections rather than absolute addresses, offsets for
nonsymbolic or Assembler sections).

A.4.5 Display Program Screen

Previous Debugger
PF14 caused the user program screen to be displayed, exactly as it
appeared when the program was last executing. Pressing any PF key
returned the display to the Inspect & Modify menu.

New Debugger
The SCREEN command displays the user program screen. You can return
to the Debugger by pressing any key. This command is not assigned to
a PF key.

A.5 INSPECT & MODIFY SCREEN WITH MODIFIED MENU

When you pressed ENTER from the Inspect & Modify screen and a variable
was displayed, it was displayed on the same screen but the menu
choices changed, enabling you to manipulate the variable. From this
menu, you could

• Display the variable in its data type format or in hexadecimal
notation

• Modify it

• Display portions of it, if the variable were too large to display
on the screen

Transition From the Previous Debugger to the New Debugger A-9

A.5.1 Displaying Variables

Previous Debugger
PF6 enabled you to display the variable either in its data type format
or in hexadecimal notation.

New Debugger
The HEX command alternately toggles the selected variable display
between hex and symbolic format. Since the data window may contain
more than one variable display, one specific entry must be selected.
This can be done with either the MARK command or by positioning the
cursor.

A.5.2 Modifying Variables

Previous Debugger
PF7 made the display modifiable.

New Debugger
Modifying variables is handled differently in the new Debugger.
Rather than entering a Modify mode to make changes to variables, the
entries in the data window are always modifiable. However, any
modifications that you make are not read until you execute the ALTER
command.

Only one variable (or other modifiable entry) can be changed at a
time. First, you use the cursor or the MARK command to select an
entry, then you enter a new value and execute the ALTER command.
ALTER is assigned to PF24.

Note that the ALTER command does not put you in Alter mode, but
instead acts on the values that you typed into the selected entry
before you execute the ALTER command (either by PF key or at the
command line).

A.5.3 Scrolling Variables

Previous Debugger
PF4 and PFS enabled you to display portions of a variable that was too
large to be displayed at one time.

New Debugger
The new Debugger creates entries in the data window for the whole
variable specified. You use the scrolling commands PREVIOUS and NEXT
in the data window to view whatever portion of the variable interests
you.

A-10 Transition From the Previous Debugger to the New Debugger

. ..___ __

A.6 MEMORY SCREEN

The Memory screen enabled you to view program memory, in code, data,
or certain protected segments, and to modify the data segment.

A.6.1 Displaying Program Memory

Previous Debugger
After filling in the various fields for the Memory screen, pressing
ENTER updated the display to reflect those values. The fields of the
Memory screen were

OFFSET Hex offset from specified base address (SECTION, BASEADDR,
or none)

LENGTH Hex number of bytes displayed (maximum is hex 100 (decimal
256))

SECTION Section name used as a base address; if specified, the
BASEADDR field cannot be used

BASEADDR The hexadecimal base address; if specified, the SECTION
field cannot be used

There were three different methods to specify the starting address to
be displayed:

1. Base address only (either absolute address or contents of a
register)

2. Base address (either absolute address or contents of a register)
plus offset

3. Section name (code or static) plus offset

The first method was achieved by filling in either the absolute
address or Rx (where x was 0-9, A-F) in the BASEADDR field and
pressing ENTER. The second was achieved the same way, with the
additional specification of a hex value in the OFFSET field. The
third was done by specifying a section name in the SECTION field
rather than using the BASEADDR field.

Transition From the Previous Debugger to the New Debugger A-11

New Debugger
The MEMORY command allows you to display portions of program memory in
the data window. Rather than filling in a SIZE field, the size is the
last operand specified in the command. If not specified, the size
defaults to 4. The three methods of specificatio~ that were available
in the previous Debugger are also available in the new Debugger, as
follows:

1. To specify a base address only, enter the command

MEMORY addr ref [length]

where addr ref is either an absolute address or a register (Rx) as
before, or a base-index-displacement combination which takes the
form ([disp]([ix,]b)). The base-index-displacement specification
is a new feature.

2. To specify a base address plus offset, enter the command

MEMORY OFFSET hex val (addr ref)[length]

where hex val is a hex value and addr ref is as described in
method 1.

3. To specify an offset within a section, enter the command

MEMORY OFFSET hex val section name [length]

where hex val is a hex value and section name is the name of either a
code or a static section.

A.6.2 Modifying Program Memory

Previous Debugger
After displaying a portion of memory, pressing PF3 caused the mode to
change to Modify Memory mode. You could then type the desired values
and press ENTER. Pressing ENTER caused the data to be accepted and
exited from the Modify Memory mode.

New Debugger
Modifying memory displays is similar to modifying variable displays.
All memory displays in the data window are modifiable, but the screen
is not read unless the ALTER command is executed. The target entry of
the ALTER command is selected either by marking an entry or by using
the cursor (if no entry is marked).

A-12 Transition From the Previous Debugger to the New Debugger

.... _,

A.7

Note that the ALTER command does not put you in Alter mode, but
instead acts on the values typed into the selected entry before the
ALTER command is executed (either by PF key or at the command line).

REGISTERS SCREEN

The Registers screen displayed the contents of the general registers,
floating-point registers, and the PCW. It also enabled you to modify
these entities.

A.7.1 Modifying Register Contents

Previous Debugger
Pressing PF3 caused the mode to change to Modify Register mode where
you could alter the values of the general and floating-point
registers. You did this by typing the desired values in the
respective fields and pressing ENTER.

New Debugger
The REGISTERS and FLOATREGISTERS commands allow you to display the
contents of general and floating-point registers in the data window.
Modifying registers is similar to modifying variable and memory
displays. Register displays (general and floating-point) in the data
window are modifiable, but the screen is not read unless the ALTER
command is executed.

Note that there are separate entries for the general and
floating-point registers. The target entry of the ALTER command is
selected either by marking an entry or by using the cursor (if no
entry is marked).

Note also, that the ALTER command does not put the user in Alter mode,
but instead acts on the values typed into the selected entry before
the ALTER command is executed (either by PF key or at the command
line).

A. 7 .2 Modifying the PCW

Previous Debugger
Pressing PF4 caused the Modify PCW screen to be displayed where the
contents of the PCW and certain flags were presented in modifiable
fields. Entering the desired values and pressing ENTER changed the
values accordingly, and returned the user to the Registers screen.

Transition From the Previous Debugger to the New Debugger A-13

New Debugger
The STATE command allows you to display the PCW, along with other
related information concerning the current program state, in the data ~
window. Modifying the PCW is similar to modifying variable and memory
displays and registers. The display of the PCW in the data window is
modifiable, but the screen is not read unless the ALTER command is
executed. The target entry of the ALTER command is selected either by
marking an entry or by using the cursor (if no entry is marked).

Note that the ALTER command does not put the user in Alter mode, but
instead acts on the values typed into the selected entry before the
command is executed (either by PF key or at the command line).

A-14 Transition From the Previous Debugger to the New Debugger

APPENDIX B
GLOSSARY

address

A 6-digit hexadecimal value that describes a program code or data
location.

base address

An address that indicates the virtual address of the first byte of a
program file.

code section

The section in the program file that contains executable instructions
for the program.

command line

The second line of the Control section, which serves as the primary
input mechanism to the Debugger. You enter commands on the Command
line.

control section

The first three lines of the Debugger Workstation screen. The Control
section contains the status, message, and command lines.

count

The number of times that the condition for a trap is to be encountered
before the trap is taken.

data value text

Actual data values (not the names).

Glossary B-1

debugging commands

Commands that enable you to perform debugging actions on program data
displayed in windows.

default startup file

A file that contains defaults for PF key assignments and various other
options to be used by the Debugger. A system startup file is supplied
with the Debugger; you can specify a user startup file to be loaded
after the system startup file.

ful I window format

A format specified by the FRAME command in which each accessed window
occupies the entire 21-line Window section.

help text

On-line reference information about the Debugger displayed through the
VS INFO utility. To access Help text for the Debugger, execute the
HELP command.

hexadecimal notation

A method for expressing numbers in base 16. Digits are 0-9, A-F.

hits

The number of times a trap has been encountered by the subject
program. When the Hits value equals the Count value, the trap is
taken.

macro

A special command defined by specifying a name of your choice and one
or more commands to be assigned to that name. The name and definition
together are called a macro; macros are executed in the same way as
commands.

menu

A list of the current PF key assignments that is displayed in the menu
window.

message line

The third line of the Control section, which serves as the location
where the Debugger displays error or informational messages.

B-2 Glossary

·~

~·

partial window

A window that is displayed with a reduced number of lines in order to
display one or more additional partial windows.

partial window format

A format specified by the FRAME command in which each accessed window
can occupy all or a portion of the Window section, depending on the
cursor position when the command to access the window is executed.

prname

The screen label needed in VS Procedure language to qualify references
to the fields or PF keys of a particular screen interaction.

procedure

A VS Procedure language program.

program control word (PCW)

A doubleword that contains the address of the next instruction to be
executed and various status bits. The PCW is described in more detail
in VS Principles of Operation.

regular expression

A search string specified by the MATCH command that uses special
symbols to indicate the desired type of search.

relocation

The process of adjusting an address referencing value to reflect the
movement of the location being referenced due to the context changes
between input and output files.

screen management commands

Commands that enable you to perform screen management functions such
as scrolling text, searching text, marking lines, and displaying
partial windows.

search string

A string that you specify by the FIND or MATCH command that you then
look for by the SEARCH or LOCATE command.

Glossary B-3

section

The basic building block of a program. The Linker composes the output
file from sections selected from input files, static subroutine
libraries, and shared subroutine libraries. There are two main
section types: code sections contain the instructions for the
program; static sections contain information required by the operating
system to build and initialize memory for the data portion of a
program run.

segment

One of two portions which make up a program. The code segment is the
instruction portion and the static segment is the data portion. Each
segment is composed of zero or more sections of the appropriate
section type.

status line

The first line of the Control section, or the header line for windows
displayed in partial format, which displays information about the
topmost window.

subject program

A program for which you have explicitly requested debugging assistance.

symbolic data ~

Data that makes symbolic debugging possible. It is inserted in a
program file by the compiler.

symbolic name

The program name of a subject program variable.

symbolic reference

Use of a particular symbol in a place other than where it is defined.
An internal symbolic reference refers to a symbol defined in the same
section. An external symbolic reference refers to a symbol defined in
another section.

symbolic support

The Debugger's ability to accept references to program components by
their symbolic names.

trap

A stopping mechanism set in the subject program to inspect and modify
program variables, and to alter the flow of execution of the program.

B-4 Glossary

trap list

The list of traps displayed in the trap window.

undefined symbol

A symbol that has symbolic references but does not have a
corresponding section name or an entry point name in the program.

window

A specified area within the Window section that contains a particular
type of program information. For example, the trap window contains
trap information.

window context

A collection of information associated with each window. The window
context consists of the following attributes that are unique to that
window: case setting, current search string, contents of the status
display, range of marked lines.

window section

The section of the Debugger Workstation screen in which windows are
displayed. The Window section extends from line 4 to the bottom of
the Debugger Workstation screen.

Glossary B-5

APPENDIX C
DEBUGGER ERROR MESSAGES

C.1 DEBUGGER ERROR MESSAGES

This appendix lists the error messages for the Debugger. Each message
includes a brief description. In each message, the expression (text)
represents the command or text string that the message is about. The
command or text string is specified when the message is displayed.

A General Register must be specified.

The MODTRAP REGISTER command was specified without a register operand.

A range of lines must be marked for this command.

The INSIDE or OUTSIDE command was specified without operands, and no
lines were marked in the listing window.

A stack frame error has occurred.

An illegal back chain has been detected in the user's call chain.

A subscript value specified is too big.

The integer value specified for a subscript is greater than the upper
bound for the array.

A subscript value specified is too small.

The integer value specified for a subscript is smaller than the lower
bound for the array.

Debugger Error Messages C-1

A variable must be specified.

The MODTRAP VARIABLE command was specified without a variable operand. '~

Address of indicator <indname> is invalid. Contact your system administrator at
once.

This indicator cannot be addressed correctly due to either an internal
error, compiler error, or system error.

Address specified is not in user memory.

The address of the variable specified for MODTRAP VARIABLE, or the
address specified for MODTRAP ADDRESS is not in user memory.

Address2 may not be less than Address1 .

For the INSIDE and OUTSIDE comm·ands, the first address specified must
be less than the second.

ALTER is not permitted when paused in privileged code.

The user program is currently executing in privileged code (SVC, OMS,
etc.) and therefore cannot ALTER any memory values or components of
the program state.

An error occurred while attempting to allocate trap table space.

There is insufficient memory to create further trap entries.

An incorrect number of operands have been used.

The number of operands specified is incorrect for any of the known
combinations of operands for this command. An example would be the
MODTRAP REGISTER command (which takes either 2 or 4 operands) when
specified with 3 operands.

An integer value was expected as a subscript.

A non-integer value was found in a subscript field.

An internal trap error has occurred.

An internal error was detected.

C-2 Debugger Error Messages

An invalid address was specified.

The specified value for an address contains too many digits.

An invalid base register was specified.

The specified value is not a valid general register specification.
Valid values are: O, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, A, B, C, D, E, F, all optionally preceded by the letter R or the
letter r.

An invalid character is present in Float Register <n> dexb.

Invalid characters were entered in the specified field of a
FLOATREGISTERS display for the ALTER command.

An invalid character is present in General Register <n> dexb.

Invalid characters were entered in the specified field of a REGISTERS
display for the ALTER command.

An invalid character is present in dexb at location dexb.

Invalid characters were entered in the specified field of a MEMORY
display for the ALTER command.

An invalid character is present in the Condition Code field dexb.

A character specified for this attempted ALTER is illegal for the
Condition Code field of the STATE display.

An invalid character is present in the Decimal Overflow field <texb.

A character specified for this attempted ALTER is illegal for the
Decimal Overflow field of the STATE display.

An invalid character is present in the Exponent Underflow field dexb.

A character specified for this attempted ALTER is illegal for the
Exponent Underflow field of the STATE display.

Debugger Error Messages C-3

An invalid character is present in the Fixed Point Overflow field <text>.

A character specified for this attempted ALTER is illegal for the
Fixed Point Overflow field of the STATE display.

An invalid character is present in the Program Address field dexb.

A character specified for this attempted ALTER is illegal for the
Program Address field of the STATE display.

An invalid character is present in the Significance Loss field dexb.

A character specified for this attempted ALTER is illegal for the
Significance Loss field of the STATE display.

An invalid displacement was specified.

The specified value for a displacement value contains an invalid
character.

An invalid index register was specified.

The specified value is not a valid general register specification.
Valid values are: O, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, A, B, C, D, E, F, all optionally preceded by the letter R or the
letter r.

An invalid register was specified.

This message is self-explanatory.

An invalid relational operator was specified.

The spec~fied value is not a valid relational operator. Valid values
are: =, =, <, >, < =, > =.

An undefined CONVERT error has occurred.

An internal error was detected.

An undefined file open error has occurred. Error code is <n>.

A file could not be opened and the error code is unknown to the
Debugger.

C-4 Debugger Error Messages

An undefined TRAP .related error has occurred.

An internal error was detected.

CLOSE is not legal in the <window-name> window.

CLOSE was executed in the listing, data, trap, or easy mode menu
window; CLOSE is not a valid command for those windows.

<CodeSection> has no symbolic information.

The specified code section has no symbolic information available.

Comparisons are not allowed in this command.

The MODTRAP VARIABLE command was spe·cified with additional operands,
and it is assumed that the user meant to specify a comparison.

Current section is not an RPGll code section.

The INDICATORS command can be executed only when the current code
section is an RPG II code section.

Current window is not the data window.

The HEX command can only be executed with the cursor positioned in the
data window.

Default length used instead of dexb

The second operand <text> of the MEMORY command could not be converted
to a valid length specification, so the default length of 4 was used
instead.

DELETE is only legal in the data and trap windows.

DELETE was executed in either the menu, display, or listing window.

DISPLAY requires a file name.

No file name operand was specified for the DISPLAY command.

Debugger Error Messages C-5

Extraneous text found past end of complete variable reference.

A complete variable reference (possibly including subscripts) is
followed by additional text.

File already in use.

The specified file is currently in use and could not be opened.

File <filespec> does not exist.

The specified file name was not found.

<File name> is invalid.

Either illegal characters or more than eight characters were specified
for the file name.

File name is not a val id Debugger command file.

The specified file does not meet the qualifications required for a
valid command file.

File or volume is being used exclusively.

The specified file could not be opened because either the volume is
mounted for exclusive use, or the file is open for exclusive use.

File or volume possession conflict.

The specified ~ile is currently open in non-shared use by another user.

File specification is invalid.

The file specification is invalid for some unknown reason.

File specified already exists.

This message is self-explanatory.

File dexb is not a valid private startup file.

The specified private default startup file is invalid.

C-6 Debugger Error Messages

File <texb is not a val id system startup file.

The specified system default startup file is invalid.

diletype> files may not be printed.

Only consecutive files and print files can be printed. The specified
file is a program, word processing, or indexed file.

Help file <helpfilename> is not available.

The Debugger Help file could not be found.

Illegal character detected.

A character specified for this attempted ALTER is illegal for the data
type of this variable.

Illegal character detected in comparand field.

The comparand field for the MODTRAP REGISTER command contains an
invalid hexadecimal character. Valid characters are: 0 through 15, A
through F.

Illegal command detected in record <n> of file <filespec>: <texb

While loading a command file, an unknown command was encountered.

Illegal value of <texb specified for indicator <indname>.

Invalid characters were entered in the specified field of an
INDICATORS display for the ALTER command.

lnsuff icient access rights to access the file.

The specified file could not be opened because the user lacks the
access rights to that file.

Insufficient memory for search pattern.

There is not enough memory to compile the specified search string.

Debugger Error Messages C-7

Internal error attempting to modify variable.

An internal error was detected.

Invalid address specified <n>.

An illegal address was specified for the MEMORY command.

Invalid characters in variable name.

Invalid characters are present in the data name operand for the
VARIABLE command or the MODTRAP command.

Invalid decimal characters used.

The specified value contains illegal decimal digits. Valid values
are: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Invalid decimal data specified; possibly two decimal points.

The character string specified contains all legal decimal data
characters, but in an incorrect format.

Invalid hex characters used in address specification.

The specified value for an address value contains an invalid character.

Invalid object format.

The object format bits of the program file contain an unknown value.
Current legal values are 'OOO'b and 'OOl'b.

Invalid program address specified.

Through either the ALTER command or the CONTINUE address command, an
attempt was made to set the program control word (PCW) to an invalid
value.

Invalid Run block length.

The Run block length field of the program file contains an invalid
value.

C-8 Debugger Error Messages

lnval id Symbolic block length.

The Symbolic block length field of the program file contains an
invalid value.

Left parenthesis expected.

The data name can only be followed by a subscript reference, starting
with a left parenthesis. A different character was found.

Library name is invalid.

Either illegal characters were specified or there are more than eight
characters specified for the library name.

Library not found on volume.

The specified library was not found on the specified volume.

Memory location is non-modifiable.

A memory display which is not part of the user's data segment was the
target of the ALTER command.

No diagnostic present for this program.

There is no diagnostic present for this program. As a result, no
DIAGNOSTIC display was created.

No Linkage block is avai I able to display procedure names.

The user program contains no LINKAGE information. As a result, no
procedure information is available.

No PF key specified.

The ASSIGN command with no operands was specified and the ENTER key
was pressed.

No dexb indicators found.

No indicators of the specified class were found.

Debugger Error Messages C-9

Only <n> attributes will be accepted.

A limit of <n> attributes can be displayed, but the user has specified ~
more than <n>. Rather than ignore the command completely, the first
<n> attributes have been accepted and the rest ignored.

Only consecutive and print files are acceptable.

The only type of files that are legal for the LISTFILE command are
consecutive and print. Program, indexed, or WP files are not accepted.

Only ON or OFF are legal operands for the LINKLEVELS command.

An illegal operand was specified for LINKLEVELS.

Please specify a variable name.

The VARIABLE command was specified without operands.

Recursive macro expansion detected.

A macro definition has been expanded in an illegal circular pattern
that creates an infinite loop. For example, the following macro
definitions would create an infinite loop:

DEFINE A B
DEFINE B C
DEFINE C A

Right parenthesis expected.

The data name can only be followed by a subscript reference ending
with a right parenthesis. A different character or end-of-text was
found.

Section specified is not a static section.

The section name for a MODTRAP OFFSET command must be a static
section, since code sections are not modifiable.

Separator in illegal position.

Either the file specification started with a delimiter, or two
delimiters were found in a row.

C-10 Debugger Error Messages

Syntax error in search pattern.

The specified search string contains an invalid sequence of characters.

dexb is not a known attribute.

An illegal operand was specified for the ATTRIBUTES command.

dexb is not a valid FRAME operand.

An illegal operand was specified for the FRAME command.

dexb is not a valid macro name.

The first operand of the DEFINE command is not a valid macro name.
Macro names must start with a letter and can be followed by one or
more letters, digits, or the underscore.

dexb is not a valid operand for the STEP command.

An illegal operand was specified for the STEP command.

dexb is not a valid operand for the STACKTRACE command.

An illegal operand was specified for STACKTRACE.

dexb is not a valid PF key.

The first operand specified for the ASSIGN command is not an integer
value in the range 1-256.

dexb is not defined.

An unknown command or macro name was entered.

The ACTIVATE command requires that at least one trap be set.

ACTIVATE was executed when no traps were set.

The ALTER command is only valid in the data window.

ALTER can be executed only with the cursor positioned in the data
window.

Debugger Error Messages C-11

The CODESECTIONS command does not accept any operands.

The specified operand was not accepted because the command does not
function with operands.

The COUNT command accepts only one operand.

COUNT was specified with too many operands.

The COUNT command requires a count value operand.

COUNT was specified without operands.

The COUNT command requires that at least one trap be set.

COUNT was executed when no traps were set.

The COUNT operand is not a valid unsigned integer value.

This message is self-explanatory.

The COUNT operand must be greater than zero.

COUNT was specified with an operand less than zero.

The cursor must be positioned if an entry is not marked.

The ALTER command requires that either an entry be marked, or the
cursor be positioned.

The Debugger window structure cannot be altered while in simplified mode.

You may not issue the following commands while you are using Easy
mode: DATA, LISTING, TRAPS, and WINDOW.

The DEACTIVATE command requires that at least one trap be set.

DEACTIVATE was executed when no traps were set.

The DEBUGFILE command only takes 1 operand.

DEBUGFILE was specified with too many operands.

C-12 Debugger Error Messages

The DEFINE command may not be used with a PF key.

DEFINE was executed and a PF key was pressed.

The exponent given is too large for the target value.

This message is self-explanatory.

The exponent given is too small for the target value.

This message is self-explanatory.

The length has been reduced to the limit of 256.

A length which is greater than 256 bytes was specified for the MODTRAP
ADDRESS command. Rather than ignore the command completely, the
length has been truncated to 256.

The LISTFILE command only takes 1 operand.

LISTFILE was specified with too many operands.

The LISTI NG command does not accept any operands.

The specified operand was not accepted because the command does not
f~nction with operands.

The LOAD command requires a file name.

No file name operand was specified for LOAD.

The maximum macro expansion depth of 16 has been exceeded.

The maximum number of nested macro levels (macros that invoke macros)
is 16. That limit was exceeded.

The MEMORY command requires an address operand.

MEMORY was specified without an operand.

The OPCODE command requires at least one operand.

OPCODE was specified without operands.

Debugger Error Messages C-13

The section specified was not found.

The section name specified for the MEMORY OFFSET command was not found. ~

The trap limit of <n> has been exceeded.

The limit of <n> traps has been exceeded. In order to create more
traps, one or more existing traps must be deleted from the list.

The value of the displacement field is too large.

The specified value for a displacement value is greater than the limit
of 4095.

The volume table of contents CVTOC) is full.

The specified output file could not be opened because there is
insufficient space left in the VTOC of the volume specified.

There is no line number information for this line.

This statement number does not appear in the statement number subblock
for this code section.

There is no status display for <texb.

An illegal operand was specified for the STATUS command.

There were too few subscripts specified.

The specified array reference does not contain a sufficient number of
subscripts needed for the specified data name.

There were too many subscripts specified.

The specified array reference contains more subscripts than needed for
the specified data name.

This entry is not modifiable.

The ALTER command was executed and the target entry was a
non-modifiable type of entry (CODESECTIONS, DIAGNOSTIC, PROCEDURES,
STACKTRACE, STATICSECTIONS).

C-14 Debugger Error Messages

This variable is not an array but subscripts were given.

Subscripts were specified for a scalar data name.

This variable name is not present in the current section.

The specified data name was not found in the symbolic section for the
currently selected code section.

Too many characters in comparand field.

The limit of eight characters for a comparand field for the MODTRAP
REGISTER command has been exceeded.

Too many digits specified.

More digits were specified for this numeric data item than it can hold.

Too many operands specified for the STEP command.

There can be a maximum of two operands for the STEP command,
INSTRUCTION, and a count value n, but more were found.

Too many pattern groupings.

There can be a maximum of 32 pattern groupings and more were found.

Trap limit reached. Delete or deactivate other traps.

The limit for the number of microcode traps has been reached.
Creation of this trap is not possible without deleting or deactivating
an already existing trap entry.

Unable to find Linkage information for this section.

There is no linkage information available for this code section.

Unable to find Symbolic information for this section.

This code section contains no symbolic information.

Debugger Error Messages C-15

Unable to open file on an unlabeled volume.

The volume specified contains no VTOC. As a result, the specified
file was not found.

Unable to reset program address.

An invalid restart address is specified for the CONTINUE command.

Unknown symbolic subblock found.

An invalid symbolic subblock has been detected in the current symbolic
section.

Value given could not be converted to float binary.

Either invalid characters were detected or the specified value cannot
be converted to floating-point binary.

Value given could not be converted to float decimal.

Either invalid characters were detected or the specified value cannot
be converted to floating-point decimal.

Value given could not be converted to integer.

Either invalid characters were detected or the specified value cannot
be converted to an integer.

Value is unsigned, but a sign character was specified.

This data name is specified to be an unsigned value but a sign
character was entered.

VARIABLE, ADDRESS, OFFSET, or REGISTER must be specified.

An unknown keyword was found as the first operand of the MODTRAP
command. Only VARIABLE, ADDRESS, OFFSET, and REGISTER are accepted.

Volume full.

The specified output file could not be opened because there is
insufficient space left on the volume specified.

C-16 Debugger Error Messages

Volume is not mounted.

The specified volume is not currently mounted.

Volume name is invalid.

Either illegal characters were specified or there are more than six
characters specified for the volume name.

Debugger Error Messages C-17

APPENDIX D
DEBUGGER COMMAND ABBREVIATIONS

The following list contains the shortest unique abbreviation for each
corresponding screen management or debugging command.

Command Abbreviation

ACTIVATE AC
ALTER AL
ASSIGN AS
ATTRIBUTES AT
BREAK B
CANCEL CAN
CASE CAS
CLEAR CLE
CLOSE CLO
CODESECTIONS COD
COLUMN COL
CONTINUE CON
COUNT cou
CURSOR cu
DATA DA
DEACTIVATE DEA
DEBUG FILE DEB
DEFINE DEF
DELETE DEL
DIAGNOSTIC DIA
DISPLAY DIS
DUMP DU
EASY E
FIND FIN
FIRST FIR
FLOATREGISTERS FL
FRAME FRA
FREEZE FRE
FULL FU
GOTO G

Debugger Command Abbreviations D-1

Cormnand Abbreviation

HELP HEL ~ .
HEX HEX
HISTORY HI
INDICATORS IND
INSIDE INS
LAST LA
LEFT LE
LINKLEVELS LIN
LISTFILE LISTF
LISTING LISTI
LOAD LOA
LOCATE LOC
MARK MAR
MATCH MAT
MEMORY MEM
MENU MEN
MODTRAP MO
NEXT NE
NOTE NO
OPCODE OP
OUTSIDE OU
POSITION PO
PREVIOUS PRE
PRINT PRI
PROCEDURES PROC
PROGRAMS PROG ·~
RECALL REC

-~-

REGISTERS REG
RIGHT RI
ROW RO
SCREEN SC
SEARCH SEA
SECTION SEC
SET SET
SNAPSHOT SN
STACKTRACE STAC
STATE STATE
STATICSECTIONS STAT I
STATUS STATU
STEP STE
TRAINING TRAI
TRAPS TRAP
VARIABLE VA
VERSION VE
WINDOW w

D-2 Debugger Command Abbreviations

A

Abbreviating commands, 2-17, D-1,
D-2

Absolute address, 1-20
Action commands, 7-3
ACTIVATE, 5-11, 5-12, 7-5
Activating traps, 5-11, 5-12, 7-5
Address, 1-20, B-1

starting, displaying, 7-9
Alias, 6-2, 6-3
ALTER, 5-15, 7-6
Altering program values, 2-14, 7-6
Alternate program file, 7-24
ASSIGN, 2-18, 2-19, 4-14, 7-7, 7-8

in Easy mode, 3-3
Assigning commands to PF keys,

2-18, 2-19, 4-14, 7-7, 7-8
Asterisk

as pattern matching symbol, 4-3,
4-6

in a trap window, 5-11
ATTRIBUTES, 5-8, 7-9

B

Base address, B-1
Base-index-displacement address,

1-20
Brackets

as notation convention, 1-20
as pattern matching symbol, 4-3,

4-5

INDEX

BREAK, 5-5, 7-10
in Easy mode, 3-2
and SSLs, MSMAPed files, 6-2

BREAK trap, 5-5, 7-10
Breakpoint, 7-10

c
CANCEL, 7-11

in Easy mode, 3-3
Cancelling the subject program,

7-11
Capital letters, see Uppercase

letters
Caret, 4-5
CASE, 7-12

pattern matching and, 4-4
Case sensitivity

macros and, 2-17
search strings and, 4-3

Classes of commands, 7-1 to 7-3
CLEAR, 4-8, 4-9, 7-13
Clearing

lines, 2-2
marks, 4-8, 4-9

CLOSE, 2-15, 4-13, 7-14
in Easy mode, 3-3

Closing
the display window, 2-15
the menu window, 2-15, 4-13
windows, 7-14

Code section(s)
defined, B-1
displaying, 7-9
list of, displaying, 7-15

lndex-1

INDEX (continued)

.CODESECTIONS, 7-15
and SSLs, MSMAPed files, 6-2

COLUMN, 7-16
Command(s)

abbreviations, D-1, D-2
action, 7-1, 7-3
by category, 2-1 to 2-5
classes of, 7-1 to 7-3
components, see Operands
debugging, 2-3 to 2-5. See also

Screen management commands
entering, 2-16, 2-17, 7-2, 7-3
informative, 7-1, 7-3
multiple, to enter, 2-17
record of, to keep, 7-42
screen management, 2-2, 2-3, B-3.

See also Debugging commands
set-and-query, 7-1, 7-2
syntax rules for entering, 2-17

Command file, 7-52
Command line, 2-8, B-1

moving the cursor to, 2-8
Command operand, see Operand(s)
Command set, modifying, see

Modifying the command set
Compilers that support debugging,

1-18
Context, 6-2
CONTINUE, 7-17

in Easy mode, 3-2
control section, B-1
conventions, notation, 1-19
COUNT, 5-12, 5-13, 7-18, 7-19
Count, 7-18, 7-19, B-1

changing, 7-18, 7-19
Current cursor position, 1-21, 7-67
Current section, 7-78, 7-89
Current window, 1-21
CURSOR, 7-20, 7-21
Cursor

displaying the position of, 1-21,
7-67

positioning, 2-2, 4-1, 4-2, 7-16,
7-75

saving the position of, 7-20, 7-63

D

DATA, 2-13, 4-12, 7-22
and Easy mode, 3-3

Data
altering the value of, 2-14, 7-6
displaying the value of, 1-11
symbolic, B-4

Data value text, 2-14, B-1
Data window, 1-11, 2-13

accessing, 2-13, 7-22
deleting entries from, 5-15, 7-27
modifying, 5-14, 5-15
updating the value of, 7-37

DEACTIVATE, 5-11, 5-12, 7-23
Deactivating traps, 5-11, 5-12, 7-23
DEBUGFILE, 7-24

and SSLs, MSMAPed files, 6-2
Debugger commands, see Command(s)
Debugger, previous, 1-18, 1-19,

A-lff
Debugger workstation screen, see

Workstation screen
Debugging commands, 2-3 to 2-5, B-1.

See also Screen management
commands

Default startup file, B-2
Default values, resetting, 2-5
DEFINE, 2-17, 2-20, 2-21, 4~15,

7-25, 7-26
Defining macros, 2-20, 4-15, 7-25,

7-26
DELETE, 5-13, 5-14, 5-15, 7-27

in Easy mode, 3-2
Deleting

commands for, 2-4
entries from the data window,

5-15, 7-27
marks, 4-8, 4-9
traps, 5-13, 5-14, 7-27

DIAGNOSTIC, 7-28
Diagnostic messages, displaying,

7-28
DISPLAY, 2-15, 4-13, 7-29

and Easy mode, 3-3
Display, scrolling, 7-34, 7-48

lndex-2

INDEX (continued)

Display window, 2-15
closing, 7-14

Displaying
code sections, lists of, 7-15
the current cursor position, 7-67
data values, 1-11
the Debugger version number, 7-93
diagnostic messages, 7-28
floating-point register values,

7-35
general register values, 7-73
Help text, 4-13, 7-40
high-level values, 2-4
listing file, alternate copy of,

7-50
macros, 7-25, 7-26
memory, 2-4, 5-9, 7-57, 7-58
the menu window, 4-13
MSMAPed files, lists of, 7-71
multiple windows, 4-11, 4-12,

5-16 to 5-18
PF key assignments, 2-15, 4-13,

7-7, 7-8, 7-59
program information, 2-3
the program listing, 1--9, 1-10,

2-9, 2-10
the program screen, 2-3
program state, 2-4
program variables, 2-14, 5-7,

5-8, 7-91, 7-92
RPGII indicator values, 7-43, 7-44
SSLs, lists of, 7-71
static sections, lists of, 7-85
the status of the debugging

session, 7-86
subject program information, 2-5
subprogram names, 7-70
the time, 7-86, 7-87
traps, 2-11, 2-12
variables, 2-14, 5-7, 5-8, 7-91,

7-92
VS files, 2-15, 4-13, 7-29

Dollar sign, 4-7
DUMP, 7-30

in Easy mode, 3-2

E

EASY, 3-1, 7-31
OFF, 3-~

Easy mode, 3-1 to 3-3
exiting, 3-3
PF key assignments, 3-2

Ending a debugging session, 1-6
Entering

commands, 2-16, 2-17, 7-2, 7-3
multiple commands, 2-17
variables in the data window, 2-13

Error messages, C-lff
Executing

command files, 7-52
commands, 2-16, 2-17, 7-2, 7-3
macros, 2-16
programs in increments, 7-88

Execution, see Program execution
Exiting

the Debugger, 1-6, 2-3, 7-11
Easy mode, 3-3

Expanding a window, 7-38

F

File, default startup, B-2
File name, specifying, 1-20
FIND, 4-2, 4-3, 7-32
Find string, specifying, 7-32, 7-33
FIRST, 4-2, 7-34

in Easy mode, 3-2
FLOATREGISTERS, 7-35
Floating-point registers, displaying

the value of, 7-35
FRAME, 2-15, 4-10, 4-11, 7-36

and Easy mode, 3-3
PARTIAL, 5-16 to 5-18

FREEZE, 7-37
FULL, 7-38
Full window format, 4-10, B-2

G

General registers, displaying the
values of, 7-73

GOTO, 7-39

lndex-3

INDEX (continued)

H

Hardcopy, printing, 4-13, 4-14
HELP, 1-12 to 1-14, 4-13, 7-40
Help text, 1-12 to 1-14, 4-13, B-2
HEX, 7-41
Hexadecimal format, 7-41, B-2
Hex-offset, 1-20
Hexval, 1-20
HISTORY, 7-42
Hit, B-2

INDICATORS, 7-43, 7-44
Informative commands, entering, 7-3
INSIDE, 7-45, 7-46

and SSLs, MSMAPed files, 6-2
traps, setting, 5-5

Invoking the Debugger, 1-5, 1-6

L

LAST, 4-2, 7-47
in Easy mode, 3-2

LEFT, 4-2, 7-48
Lines

clearing, see Clearing lines
marking, see Marking lines

LINKLEVELS, 7-49
List, trap, B-4
LISTFILE, 7-50
LISTING, 2-10, 4-12, 7-51

and Easy mode, 3-3
Listing, see Program listing
Listing file, alternate copy of,

7-50
Listing window, 1-9, 1-10, 2-9,

2-10, 7-51
LOAD, 7-52
Loading command files, 7-52
LOCATE, 4-2, 4-3, 7-53
Locating a search string, 4-3

M

m, 1-20
Macro(s)

abbreviation and, 2-17, 2-20
case sensitivity and, 2-17, 2-20
defined, B-2
defining, 2-20, 4-15, 7-25, 7-26
examining the definition of, 2-21,

7-25, 7-26
example, 5-18
executing, 2-16
precedence of, 2-17, 2-21
removing the definition of, 2-21,

7-26
Mapped files, debugging, 6-lff
MARK, 4-8, 7-3, 7-54, 7-55
Mark(s), clearing, 4-8, 7-13
Marking lines, 2-2, 4-8, 4-9, 7-54,

7-55
ranges of, 4-8

MATCH, 4-2 to 4-4, 7-56
MEMORY, 5-9, 7-57., 7-58

in Easy mode, 3-2
and SSLs, MSMAPed files, 6-2

Memory, displaying, 2-4, 5-9, 7-57,
7-58

MEMORYLENGTH, 7-80
MENU, 2-15, 2-18, 4-13, 7-59

and Easy mode, 3-3
Menu, defined, B-2
Menu window, 2-15

closing, 4-13, 7-14, 7-59
displaying, 4-13, 7-59

Message line, 2-8, B-2
Modifying

the command set, 2-3
the data window, 5-14, 5-15
high-level values, 2-4
memory, 2-4
program state, 2-4
program values, 5-14, 5-15
text, 2-9
the trap window, 5-10 to 5-14

MODTRAP, 7-60, 7-61

lndex-4

and SSLs, MSMAPed files, 6-2
traps, setting, 5-6

INDEX (continued)

Monitoring variable values, 5-7,
5-8

Moving the cursor, 4-1, 4-2
to a specified column, 7-16
to a specified location, 7-20,

7-21
to a specified row, 7-75

MSMAPed files
debugging, 6-lff
defined, 6-1
list of, displaying, 7-71

Multiple commands, entering, 2-17
Multiple windows, 4-10 to 4-13

N

n, 1-20
Name, symbolic, B-4
NEXT, 4-2, 7-62

in Easy mode, 3-2
Non-symbolic data, commands for

debugging, 2-5
Not equal operator, substitutes

for, 1-21
Notation conventions, 1-19
Notation, hexadecimal, B-2
NOTE, 7-63

0

Offset, 1-1
On-line help, 7-40
OPCODE, 7-64

trap, setting, 5-7
Operands, descriptions of, 1-20,

1-21
Optimized code, debugging and, 1-18
Outputting information, 2-3
OUTSIDE, 7-65, 7-66

p

and SSLs, MSMAPed files, 6-2
trap, setting, 5-6

Partial window
defined, B-2
format, 4-10, 4-11, B-2

Pattern(s), searching for, 7-53
Pattern matching, 4-3ff, 7-56

enabling, 7-56
symbols, 4-5 to 4-7

PCW, see Program control word
Period, 4-5
PF key(s), 2-17 to 2-20

assigning commands to, 2-18,
2-19, 4-14, 7-7, 7-8

in Easy mode, 3-2
changing assignments to, 2-18,

2-19
default assignments to, 2-18, 2-22
displaying assignments to, 2-15,

2-18, 2-19, 4-13, 7-7, 7-8, 7-58
removing assignments from, 2-20
17 through 32, accessing, 2-18

Plus sign, 4-6
POSITION, 7-67
PREVIOUS, 4-2, 7-68

in Easy mode, 3-2
PRINT, 4-13, 4-14, 7-69
Print file, creating and printing,

7-69
Printing data, 4-13, 4-14
Prname, B-2
Procedure, B-3
PROCEDURES, 7-70

and SSLs, MSMAPed files, 6-2
Program control word, B-3
Program execution, controlling, 2-3
Program file, alternate, 7-24
Program function keys, see PF key(s)
Program listing

displaying, 1-9, 1-10, 2-9, 2-10
preventing display of, 1-3

Program memory, displaying, 5-9
Program name(s)

defined, 6-1
display of, 6-3
specifying, 6-3

Program screen, redisplaying, 2-3
Program state, modifying and

displaying, commands for, 2-4
Program, subject, defined, 1-2, B-3
Program values, modifying, 5-14,

5-15, 7-6
PROGRAMS, 7-71

lndex-5

INDEX (continued)

Q

Querying a command setting, 7~2

Question mark, 4-6

R

RECALL, 7-72
Reference, symbolic, B-4
REGISTERS, 7-73
Regular expression, 4-3, B-3
Relocation, B-3
relop, 1-21
Removing

macro definitions, 2-21
marks, 4-8, 4-9
PF key assignments, 2-20

Resetting
default values, 2-5
MEMORYLENGTH default values, 7-80
VARECHO default values, 7-80

RIGHT, 4-2, 7-74
ROW, 7-75
RPG II indicators, displaying the

value of, 7-43, 7-44

s
Saving the cursor position, 7-20
SCREEN, 7-76
Screen, workstation, see

Workstation screen
Screen management commands

defined, B-3
summary of, 2-2, 2-3. See also
Debugging commands

Scrolling text; 4-2
backward, 7-68
commands for, 2-2
to the first line, 7-34
forward, 7-62
to the last line, 7-47
left, 7-48
right, 7-74
to a specified line, 7-39

SEARCH, 4-2, 4-3, 7-77

Search string(s)
and case sensitivity, 4-3, 7-12
defined, B-3
locating, 4-3
specifying, 4-2, 4-3
with variable components, 4-4

Searching text, 2-2, 4-2
SECTION, 7-78, 7-79

in Easy mode, 3-2
and SSLs, MSMAPed files, 6-2

Section, B-3
code, B-1
control, B-1
current, 7-78, 7-79
names, syntax for specifying, 6-2
of reference, changing, 2-3

section_name, 1-21
Security, 1-17
Segment, B-3
SET, 7-80
Set-and-query commands, 7-2
Setting traps, 5-4 to 5-7

with BREAK, 7-10
commands for, 2-4
with INSIDE, 7-45, 7-46
with LINKLEVELS, 7-49
with MODTRAP, 7-60, 7-61
with OPCODE, 7-64
with OUTSIDE, 7-65

Shared subroutine library(ies)
debugging, 6-lff
defined, 6-1
list of, displaying, 7-71

Simplified debugging, commands for,
2-2

Size of a variable, displaying, 7-9
Slash, 4-7
SNAPSHOT, 7-81

in Easy mode, 3-2
SSLs, see Shared subroutine

library(ies)
STACKTRACE, 7-82, 7-83
Starting address, displaying, 7-9
Startup file(s), 2-21 to 2-23

lndex-6

default, B-2. See also System
startup file;

User startup file

INDEX (continued)

STATE, 7-84
statement_id, 1-21
Static sections, displaying a list

of, 7-85
STATICSECTIONS, 7-85

and SSLs, MSMAPed files, 6-2
STATUS, 2-7, 7-86, 7-87

OFF, 4-12
Status line, 2-7, B-3

disabling, 2-7
STEP, 7-88
Storage class, displaying, 7-9
String, search, B-3
String search, 7-77

specifying the find string for,
7-32, 7-33

Subject program, 1-2, B-3
cancelling, 7-11
displaying information about, 2-5
screen, redisplaying, 7-76

Subprogram names, displaying, 7-70
Support, symbolic, B-4
Symbol, undefined, B-4
Symbolic data, B-4
Symbolic format, 7-41
Symbolic name, B-4
Symbolic reference, B-4
Symbolic support, B-4
Syntax rules, 2-17
System startup file, 2-22

overriding, 2-21
PF key assignments in, 2-22

T

Terminating a debugging session, 1-6
Text

modifying, 2-9
scrolling, see Scrolling text
searching, 2-2, 4-2

text, 1-20
TIME, 7-86, 7-87
TRAINING, 1-14 to 1-17, 7-89
TRAPS, 2-11, 4-12, 7-90

and Easy mode, 3-3

Trap(s), 1-10, 1-11, 2-4
activating, 5-11, 5-12, 7-5
active, 2-12
BREAK, 5-5, 7-10
count of, 2-12, 5-12, 5-13
current, displaying, 2-11, 2-12
deactivating, 5-11, 5-12, 7-23
defined, B-4
deleting, 5-13, 5-14, 7-27
hits, 2-12
inactive, 2-12
INSIDE, 5-5, 7-45, 7-46
LINKLEVELS, 7-49
listing all current, 2-11
maximum allowed, 1-11
MODTRAP, 5-6, 7-60, 7-61
OPCODE, 5-7, 7-64
OUTSIDE, 5-6, 7-65, 7-66
resuming execution after, 7-17
status of, 2-12, 5-11, 5-12
taken, 2-12

Trap list, 1-10, B-4
Trap window, 1-10, 1-11, 2-11, 2-12

accessing, 2-11, 7-90
modifying, 5-10 to 5-14

u
Undefined symbol, B-4
Unmarking lines, 4-8, 4-9
Up-arrow, 4-5
Uppercase letters, 1-19
User startup file, 2-18, 2-22, 2-23

v
Values, modifying, 2-14, 5-14,

5-15, 7-6
VARECHO, 7-80
VARIABLE, 2-13, 5-7, 5-8, 7-91, 7-92

in Easy mode, 3-2
Variable(s)

changing the display format of,
7-41
displaying, 5-7, 5-8, 7-91, 7-92

VERSION, 7-93

lndex-7

INDEX (continued)

VS file(s)

w

cancelling display of, 4-13, 7-29
displaying, 2-15, 4-13, 7-29

Wildcard, see Pattern matching
WINDOW, 2-10, 2-11, 2-13, 7-94

and Easy mode, 3-3
Window(s), 1-8 to 1-11, 2-2, 2-9ff,

4-9 to 4-13, B-4
accessing, 7-94
adding an extra line to, 2-7
closing, 7-14
context, B-4
current, 1-21
data, see Data window
display, see Display window
expanding, 7-38
format, full, B-2
format, partial, B-2
length of, determining, 5-16, 5-17
listing, see Listing window
menu, see Menu window
modifying text in, 2-9
moving between, 4-12
multiple, 4-10 to 4-13
numbering of, 4-12, 7-14, 7-94
partial, B-2
position, saving, 7-63
section, 2-8ff, D-4
size of, controlling, 7-36
trap, see Trap window

Workstation screen, l-7ff, 2-5ff
command line, 1-8, 2-8

control section, 1-8, 2-6 to 2-8
message line, 1-8, 2-8
status line, 2-7
window section, 1-8 to 1-11, 2-8ff

$, 4-7
*, in the trap window, 5-11
*, as pattern matching symbol, 4-3,

4-6
., 4-5
+, 4-6
?, 4-6

], as pattern matching symbol,
4-3, 4-5

], as notation convention, 1-20
I, 4-7
t, 4-5 ...

, 4-5

lndex-8

~·

WANG Customer Comment Form Publication Number _____ 7_1_5_-_1_1_4_4

Title _______ v_s_s_Y_M_B_O_L_IC_D_E_B_U_G_G_E_R_R_E_F_ER_E_N_C_E_R_EL_E_A_S_E_7_S_E_R_l_ES

Help Us Help You ...

We've worked hard to make this document useful, readable, and technically accurate. Did we succeed? Only you can tell usl
Your comments and suggestions will help us improve our technical communications. Please take a few minutes to let us
know how you feel.

How did you receive this publication? How did you use this Publication?

0 Support or 0 Don't know 0 Introduction 0 Aid to advanced
Sales Rep to the subject knowledge

0 Wang Supplies 0 Other 0 Classroom text 0 Guide to operating
Division (student) instructions

0 From another 0 Classroom text 0 As a reference
user (teacher) manual

0 Enclosed 0 Self-study 0 Other
with equipment text

Please rate the quality of this publication in each of the following areas.

EXCELLENT GOOD FAIR POOR

Technical Accuracy - Does the system work the way the manual says it does? 0 0 0 0

Readability - Is the manual easy to read and understand? 0 0 0 0

Clarity- Are the instructions easy to follow? 0 0 0 0

Examples - Were they helpful, realistic? Were there enough of them? 0 0 0 0

Organization - Was it logical? Was it easy to find what you needed to know? 0 0 0 0

Illustrations - Were they clear and useful? 0 0 0 0

Physical Attractiveness - What did you think of the printing, binding, etc? 0 0 0 0

VERY
POOR

0

0

0

0

0

0

0

Were there any.terms or concepts that were not defined properly? 0 Y 0 N If so, what were they?---------

After reading this document do you feel that you will be able to operate the equipment/software? 0 Yes 0 No
0 Yes, with practice

What errors or faults did you find in the manual? (Please include page numbers)-----------------

Doyouhaveanyothercommentsorsuggestions? ___________________________ _

Name _________________ _ Street ____________________ _

Title _________________ _ City ___________________ _

Dept/Mail Stop ___________ _ State/Country ______________ _

Company ________________ _ Zip Code ______ Telephone---------

Thank you for your help.

All comments and suggestions become the property of Wang Laboratories. Inc. Printed in U.S.A. 14-3140A 2-88

WANG

Fold

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 16 LOWELL, MA

POSTAGE WILL BE PAID BY ADDRESSEE

Wang Laboratories, Inc.
Technical Publications Dept.
M/S 012-260
One Industrial Avenue
Lowell, Massachusetts 01851-9971

111 •••••• 111 .. 1 •• 1.1 •••• 111.1 •• 1.1 •• 1 ••• 1 ••• 111.1 •• 1

Fol(!

NO POSTAGE
NECESSARY IF
MAILED IN THE
UNITED STATES

WANG
To Order by Phone, Call:

1-(800)225-0234
Telex 172108

Order Form for Wang Manuals and Documentation

©Customer Number (If Known)

@Bill To: Ship To:

@Customer Contact: ©Date Purchase Order Number
() (~
Phone Name

@Taxable @Tax Exempt Number ©Credit Th is Order to
Yes D A Wang Salesperson
No 0 Please Complete Salesperson's Name Employee No. ROB No.

r@ Document Number Description Quantity @Unit Price Total Price

© Sub Total

Authorized Signature Date Less Any
Applicable

D Check this box if you would like a free copy of
Discount

WangDirect Software & Literature Catalog
Sub Total

(711-0BBBA)

Ordering Instructions
1 . If you have purchased supplies from Wang before. and

know your Customer Number, please write ii here.
2. Provide appropriate Billing Address and Shipping Address.
3. Please provide a phone number and name, should ii be

necessary for WANG to contact you about your order.
4. Your purchase order number and date.
5. Show whether order is taxable or not.
6. If tax exempt. please provide your exemption number.

Wang Terms and Conditions
1. TAXES - Prices are exclusive of all sales. use, and like

taxes.
2. DELIVERY - Delivery will be F.0.8. Wang·s plant.

Customer will be billed for freight charges; and unless
customer specifies otherwise. all shipments will go best
way surface as determined by Wang. Wang shall not
assume any liability in connection with the shipment nor
shall the carrier be construed to be an agent of Wang.
If the customer reQuests that Wang arrange for insurance
the customer will be billed for the insurance charges.

Local State Tax

Total Amount

7. If you wish credit for th is order to be given to a WANG
salesperson. please complete.

8. Show part numbers, description and Quantity for each
product ordered.

9. Pricing extensions and totaling can be completed at your
option: Wang will refigure these prices and add freight on
your invoice.

1 O. Signature of authorized buyer and date.

3. PAYMENT - Terms are net 30 days from date ot invoice.
Unless otherwise stated by customer. partial shipments will
generate partial invoices.

4. PRICES - The prices shown are subject to change without
notice. Individual document prices may be found in the
WangOirect Software & Literature Catalog (711-0888A)

5. LIMITATION OF LIABILITY - In no event shall Wang be liable
for loss of data or for special. incidental or consequential
damages in connection with or arising out of the use of or
information contained in any manuals or documentation
furnished hereunder.

Printed in U.S.A. 14-3141 A 2-88

WANG

Fold

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 16 LOWELL, MA

POSTAGE WILL BE PAID BY ADDRESSEE

Wang Direct
Wang Laboratories, Inc.
M/S 017-110
800 Chelmsford Street
Lowell, Massachusetts 01851-9972

I

111." "I 111 .. I 111. I 11" 111. 1 .. 1.1 .. 1 ••• I 111.11. I 1. I

Fold

NO POSTAGE
NECESSARY IF
MAI LED IN THE
UNITED STATES

I
I
I
I
I
I
I
I

~ I
I
I ai
I :§
I "O
12
10
I "O
I g>
I .Q

I~
18

(

(

ONE INDUSTRIAL A VENUE, LOWELL, MA 01851
TEL. (508) 459-5000, TELEX 172108

Printed in U.S.A. 715-1144 10-88

