2236 DE TERMINAL

COMPANY PROPRIETARY STATEMENT

This document is the property of Wang Laboratories, Inc. All information contained herein is considered Company Proprietary, and its use is restricted solely to assisting you in servicing Wang products. Neither this document nor its contents may be disclosed, copied, revealed, or used in whole or in part for any other purpose without the prior written permission of Wang Laboratories, Inc. This document must be returned upon request of Wang Laboratories, Inc.

PREFACE

This document is the Product Maintenance Manual (PMM) for the Wang 2236 DE Terminal. The manual is organized in accordance with Customer Engineering Technical Documentation's approved PMM outline. The scope of this manual reflects the type of maintenance philosophy selected for this product.

The purpose of this manual is to provide the Wang-trained Customer Engineer (CE) with sufficient instructions to operate, troubleshoot, and repair the 2236 DE Terminal. The manual will be updated on a regular schedule or as necessary. Such updates will be published either as Publication Update Bulletins (PUBs) or as full revisions.

Third Edition (October, 1985)

This edition of the 2236 DE Terminal PMM manual obsoletes document 729-0476 and 729-0476-1. Use of the material in this document is authorized only for the purpose stated in the Preface, above.
© Copyright 1979, Wang Laboratories, Inc.

CUSTOMER ENGINEERING

PUBLICATION UPDATE BULLETIN

```
DATE: 12/21/83 3401
PUB to 729-0476
2236DE TERMINAL
REASON FOR CHANGE:
THIS PUB UPDATES THE 2236DE TERMINAL SN \(\ddagger 181\) TO INCLUDE THE ILLUSTRATED PARTS BREAKDOWN (IPB) AND THE PARTS LIST.
```

SECTION SUBJECT PAGE
1.0 General Description 1
1.1 CRT and Keyboard 2
1.2 Chassis Controls 5
1.3Specifications5
2.0 Site Preparation 6
3.0 Unpacking and Installation 6
3.1 Voltage and Frequency Selection 7
3.2Voltage Checks and fdjustments9
3.3Video Display Adjustments13
3.4Terminal Interconnection15
3.5Terminal Controllers15
3.6Terminal Controliers17
3.7 18
Baud Rate SelectionController Switch Settings
4.0 . Power-Up Diagnostics 18
5.0 Preventive Maintenance 20
6.0 Major Assembly Removal and Replacement 21
6.1 CRT Anode Discharge Procedure 21
6.2Terminal Electronics PCB Removal21
6.3CRT Chassis Assembly Removal22
6.4Monitor Electronics PCB Removal23
6.5 KEYTRONICS Keyboard Assembly Removal 23
6.6 Power Transformer Removal 23
7.0 Standard Features 27
7.1 Character Display Attributes 27
7.2
7.37.48.0
9.0Alternate Graphics Set Selection28
Box Graphics 29
Screen Dump 30
Cable Part Numbers 31
Illustrated Parts Breakdown 33
10.0 Schematics 43

LIST OF ILLUSTRATIONS

FIGURE TITLE PAGE
1 KEYTRONICS Keyboard 423
CRT Outline 8
CRT and Cover 10
Voltage Select Switch 10
Jumper Locations (210-7592 PCB) and Baud Rate Selection Switch 11
Close-Up of R66 and R72 12
210-7456 PCB 14
Rear of Terminal 16
Terminal Display 19
210-7592 PCB 24
7592 PCB in Chassis 25
Rear View of Chassis with 7592 PCB Removed 26
Frontispiece (Assembly Part Number 177-3236DE) 35
External Covers Assembly 37
12" Monitor and 2236DE Workstation Chassis Assembly 41
LIST OF TABLES
TABLE TITLE PAGE
A Baud Rate Settings 18
B Power-Up Diagnostic Definitions 20

2236DE INTERACTIVE TERMINAL
This Newsletter contains information necessary to unpack, install, and maintain the 2236DE Interactive Terminal. Also contained in this newsletter is a description of the 2236 DE including electrical and physical specifications, and an explanation of the various features found on the 2236 DE.

1. GENERAL DESCRIPTION

The 2236DE Interactive Terminal is a 280 -based intelligent CRT/Workstation. It consists of a 12 -inch (30.4 cm) diagonal measure CRT, a KEYTRONIC capacitive-type keyboard, a 12 -Inch Monitor Electronics PCB (210-7456), and a Terminal PCB (210-7592) contajining a Z 30 microprocessor and the remaining workstation electronica. By locating most of the CRT electronics on one terminal board, production, installation, and maintenance procedures have been simplified.
notice:
This document is the property of Wang Laboratories, Inc Information contained herein is considered company propri etary information and its use is restricted solely to the purpose of assisting you in servicing Wang products Repro duction of all or any part of this document is prohibited v :thout the consent of Wang Laboratories.

The 2236DE replaces the 2236D terminal on the VP/MVP product line. It offers several features not found on the 2236D Terminal. These features include character display attributes (highlighted displays, reverse video, etc.), alternate graphics set selection, box graphics, and screen dump. These features are explained in detail in Section 7 of this newsletter.

Power-up diagnostics are another feature of the 2236DE terminal. These diagnostic routines are run automatinally whenever the terminal is turned on. Refer to Section 4 for further information.

The 2236D terminal will continue to be supported in the field; however, it will no longer be manufactured. It is not possible to upgrade a 2236D to a 2236DE.

1.1 CRT and Keyboard

The 2236DE CRT displays a full 128 character set, including upper and lower case keyboard characters, foreign language characters, special symbols, and underscore. Each character can be assigned one or more display attributes such as high- or low-intensity display, blinking, reverse video, or underscore. The CRT can also display box graphics separate from character sets.

The KEYTRONIC keyboard (See Figure 1) operates in either of two modes, selected by a toggle switch labeled "A/A" and "A/a". In the "A/A" mode, alphabetic characters are displayed as upper-case whether shifted or unshifted, and numeric keys produce symbols and special characters. In the "A/a" mode, the keyboard functions as a standard typewriter keyboard. All keys on the keyboard, except RESET and EDIT, repeat after an initial delay, if held down.

The RETURN and FN keys are located in the alphanumeric section of the keyboard. The RETURN key is used to signal the CPU that entry of a particular data-field is complete. The FN key is a special function key used with 2200VP/MVP CPU configurations.

The Program Control Keys (for program control and execution) are as follows:

RESET	stops program listing and execution immediately, clears CRT screen and returns control to the user.
HALT/STEP causes program execution to halt at completion of	
CONTINUE	continues program exeution after a STOP verb has been executed or the HALT/STEP key has been touched.
CLEAR	clears program text and variable areas. LOAD RUN\quadloads specified programs from storage into memory. initiates execution of the program.

The numeric keypad is a standard 10-key pad. Digits can be entered by using the numeric keys in either the numeric or the alphanumeric section of the keyboard.

The 16 Special Function Keys, located at the top of the keyboard, can be used in conjunction with the SHIFT key to provide a total of 32 special functions. These keys are user-definable; their meanings can be changed under software control. They are also used by the 2200VP/MVP System Bootstrap during Master Initialization to load the BASIC-2 Interpreter and Operating System.

The EDIT key is used to enter and exit the Edit mode. When in Edit mode, the Special Function Keys operate as follows:

RECALL	Used to recall a program line or Immediate Mode statement from memory for edit.
	Moves cursor five spaces to the left.
\checkmark	Moves cursor a single space to the left.
	Moves cursor five spaces to the right.
\rightarrow	Moves cursor a single space to the right.
INSERT	Expands a line for additional text and data entry by inserting a space character at current CRT cursor position.
DELETE	Deletes the character at current cursor positior

FIGURE 1 KEYTRONIC Keyboard

ERASE Erases that portion of the line from the current CRT cursor position to the end of the line.
BEGIN Moves cursor to the beginning of current text line. END Moves sursor to the end of current text line. Moves cursor up to the previous CRT line (current text must occupy more than one CRT line). Moves cursor down to the next line on the CRT (current text must occupy more than one CRT line).

1.2 Chassis Controls

There are four controls located on the terminal. The Brightness and Contrast controls are on the lower right side of the terminal front panel. These controls are used to adjust the video display.

Two controls, labeled Tone and Clicker, are located on the back of the terminal chassis. The Tone control is used to adjust the volume of the audio alarm, which is programmed to sound whenever an illegal operation is attempted. The Clicker control is used to adjust the volume of the clicker, a sound emitted when a key is stroked, indicating an acceptable keycode has been entered. (See Figure 8.)

1.3 Specifications

Following are the specifications for the 2236 DE Terminal:

Physical Specifications:

Height	13.50 inches $(34.3 \mathrm{~cm})$
Depth	20.50 inches $(52 \mathrm{~cm})$
Width	19.75 inches $(50.2 \mathrm{~cm})$
Weight	$511 \mathrm{bs}(23.1 \mathrm{~kg})$

Electrical Specifications:

Power Requirements

Heat Output

115 or $230 \pm 10 \%$
50 or $60 \mathrm{~Hz} \pm .5 \mathrm{~Hz}$
40 Watts
140 BTU/hr

Electrical Specifications: (Cont'd)	
Fusing	2 A e $115 \mathrm{~V} / 60 \mathrm{~Hz}$
	1 A e $230 \mathrm{~V} / 50 \mathrm{~Hz}$
Display Specifications:	
Size	12 in . diagonal (30.4 cm)
Capacity	24 lines, 80 char. per line
Character Size:	
Height	0.16 in. (0.41 cm)
Width	0.09 in. (0.23 cm)
Operating Environment:	```50 to }9\mp@subsup{0}{}{\circ}\textrm{F}(1\mp@subsup{0}{}{\circ}\mathrm{ to }3\mp@subsup{2}{}{\circ}\textrm{C} 20% to 80% relative humidity (noncondensing)```
Transmission Rate:	Manually selectable at 300 , 600, 1200, 2400, 4800, 9600 , or 19,200 baud.

2. SITE PREPARATION

The 2236 DE is designed to operate in a normal office environment; radical changes in temperature or humidity can adversely affect the terminal (Operating Environment, Section 1.3). The 2236DE should be located in an environment similar to that of the central processor and a separate grounded outlet should be provided for it. Refer to the 2200MVP Maintenance Manual (03-0071-1), Section 2 for more details.

3. UNPACKING AND INSTALLATION

The 2236DE is shipped completely assembled. An 8 foot (2.4 m) AC power cord and one 25 foot (7.6 m) direct-connection (signal) cable is supplied with each terminal. Longer direct-connection cables can be ordered if desired. Refer to Section 8 for cable part numbers.

Before unpacking the terminal, check the packing sifr to ensure that the proper equipment has been delivered. After checking the packing slip, inspect the shipping carton for damage (crushed corners, punctures, etc.). If the carton appears undamaged, carefully remove the terminal and inspect it for damage. If damage is discovered, file an appropriate claim promptly with the carrier involved and notify the WLI Distribution Center (Dept. \#90), Quality Assurance Dept., Tewksbury, MA 01876. Inform them of the extent of damage and arrange for equipment replacoment, if necessary.

After inspecting the terminal exterior, trace the outline of the exposed portion of the CRT screen with a grease pencil. This outline is used in Section 3.3 for video diplay adjustments. (See Figure 2.)

Remove the terminal cover as follows: (See Figure 3.)
a. Remove the three Phillips screws located under the plastic strip on the keyboard and remove the keyboard plate.
b. Remove the Phillips screws on the left and right side of the termiral cover.
c. Lift the cover up and away from the terminal; take care not to hit or nick the CRT, or strain the Brightness/Contrast wires.
d. Remove the Brightness and Contrast control wires from the clamp on the side of the cover. Lay the cover on its side next to the terminal. Do not unplug the Brightness and Contrast Molex connector from the cross-brace at the top of the CRT.
e. Remove foam packing material from front of 210-7456 PCB.

Visually inspect the inside of the terminal for metal shavings, solder splashes, loose connections, and improperly seated PCBs. Do not replace the cover at this time.

3.1 Voltage and Frequency Selection

The 2236DE operates on either 115 or 230 VAC and at either 50 or 60 Hz . Before connecting the terminal to a power source, check the serial

FIGURE 2 CRT Outline
tag attached to the terminal. Set the voltage-select switch on the lower right side of the CRT monitor to the appropriate position (115 or 230) and ensure that jumper $J 11$ on the $210-7592 \mathrm{PCB}$ is in position, if required. Install J 11 if the terminal is to operate at 60 Hz , remove J 11 if the terminal is to operate at 50 Hz . (See Figures 4 and 5.)

3.2 Voltage Checks and Adjustments

The power supply is located on the $210-7592$ PCB. Five jumpers, labeled J14, J15, J16, J17, and J18, connect the power supply voltage to the logic circuits. Remove these five jumpers before performing the initial voltage checks and adjustments, which are performed as follows: (See Figures 5 and 6.)

**NOTE"*

Use only one hand when working inside an electronic chassis that is powered-up. This avoids the risk of grounding oneself to the chassis with one hand while touching an electrical connection with the other, causing severe shock.
a. Place the terminal in its permanent location.
b. Ensure that the terminal ON/OFF switch on the rear of the chassis is in the OFF position. Plug in the AC power cord.
c. Power-up the terminal.
d. Connect the Common lead of a DVM to $a \pm O V$ location on the 210-7592 PCB. (Negative side of capacitor C19, for example.)
e. Place the DVM probe against pin 1 of the $J 14$ connector; a reading of +12 VDC $\pm .12$ should be obtained. Adjust R72 to obtain the proper reading if voltage is out of limits.
f. Place the DVM probe against pin 1 of the $J 15$ connector; a reading of $+5 \mathrm{VDC} \pm .05$ should be obtained. Adjust R66 to obtain the proper reading if voltage is out of limits.
g. Place the DVM probe against pin 2 of the $J 16$ connector; a reading of +20 VDC ± 3.0 should be obtained. This voltage is non-adjustable, replace PCB if voltage is out of limits.
h. Place the DVM probe against pin 2 of the $J 17$ connector; a reading of $-5 V D C \pm .25$ should be obtained. This voltage is

-11
$\because 311 \longrightarrow$

FIGURE 4 Voltage Select Switch

L10
HEX LED
LOCATION

non-adjustable, replace $P C B$ if voltage is out of limits.
i. Place the DVM probe against pin 1 of the $J 18$ connector; a reading of -12 VDC $\pm .60$ should be obtained. This voltage is non-adjustable, replace $P C B$ if voltage is out of limits.
j. If voltages are within limits, power-down the terminal and reinstall the five jumpers.
k. To check voltage under load conditions, power-up the terminal and recheck voltage readings according to the previous steps. Adjust voltages as necessary.

3.3 Video Display Adjustments

The following adjustments should not be attempted by anyone not familiar with CRT servicing procedures and precautions. Avoid prolonged close-range exposure to unshielded portions of the CRT to prevent injury from unnecessary exposure to X-ray radiation. Refer to Figures 2 and 7 when performing the following procedures.

Access to most display adjustment controls on the 7456 PCB is through the front of the terminal, using a non-conductive adjustment tool. Enter the following program on the 2236 DE to display the letters HO over the entire CR' screen before performing the display adjustments:

$$
\begin{aligned}
& 1 \text { FOR A = } 1 \text { TO } 960 \\
& 2 \text { PRINT "HO"; } \\
& 3 \text { NEXT A }
\end{aligned}
$$

a. Adjust the brightness potentiometer (POT) located on the terminal cover until the video raster appears on the screen.
b. If the character rows on the CRT are of unequal height, adjust the Vertical Linearity POT (R18) on the 210-7456 PCB.
c. Adjust the Vertical Size POT (R24) on the 7456 PCB if a gap greater or less than $3 / 4^{\prime \prime} \pm 1 / 4^{\prime \prime}$ exists between the top edge of the raster and the pencil line (from Section 3) on the CRT face.
d. Adjust the Width Coil (Z2) on the 7456 PCB if the horizontal size of the raster is not $7-3 / 4^{\prime \prime} \pm 1 / 4^{\prime \prime}$.

e. If the random character pattern is not iorizontally aligned within the CRT display raster, adjust the Phase POT (R35) on the 7456 PCB to center the character set.
f. Adjust the Focus POT, R28, on the 7456 PCB for best focus.

Once these adjustments have been made, power-down the terminal. Wash the grease pencil markings off the CRT face with a cloth dampened in a mild detergent solution. Perform Power-Up Diagnostics, as described in Section 4. If the diagnostics are successful, reassemble terminal and proceed as follows.

3.4 Terminal Interconnection

An RS-232-C and an AMP connector are located on the back of the terminal chassis. (See Figure 8.) As viewed from the rear of the terminal, the RS-232-C connector is on the right side, and connects the terminal to a CPU I/O controller (or a modem, for remote applications). The AMP connector is located beside the RS-232-C and connects the terminal directly to a printer. (Refer to Paragraph 7.4, Screen Dump.)

When used with a direct-connection cable, the 2236 DE can be located up to 2,000 feet. from a CPU. (Refer to Section 8, Cable Part Numbers.) This cable must be connected properly between the terminal and the controller. One end of the cable is labeled TER, the other is labeled MUX. Connect the end labeled TER to the RS-232-C connector. Do not connect the cable in reverse. The 2236 DE can also be connected remotely to a CPU, via modems and telephone lines.

3.5 Terminal Controllers

The 2236DE is attached locally to a CPU by means of either of two devices: a $22 C 32$ Triple Controller that connects the 2236DE to either a 2200VP or a 2200MVP system, or a 2236 MXD Terminal Processor that connects the 2236DE to a 2200 MVP system. By using a combination of two 2236MXDs and one 22C32, a total of nine terminals can be connected to an MVP System; only one 2236DE terminal can be connected to a VP system.

BAUD RATE SELECTION
(PLUG REMOVED)

FIGURE 8 Rear of Terminal

The $22 C 32$ and 2236MXD handle I/O operations between the terminal and CPU and act as buffers for data transmitted to/from the terminal. Communications between the terminal and the CPU by means of either a 2236MXD or $22 C 32$ is asynchronous, full-duplex. The 2236MXD offers selectable line speeds ranging from 300 to 19.2 K Baud; the $22 C 32$ Triple Controller has a fixed communication rate of 19.2 K Baud.

There are no modems capable of handing a 19.2 K transmission rate, at this time. Because of this, the $22 C 32$ Triple Controller, with its fixed 19.2 K Baud rate, cannot support remote workstation applications. A 2236MXD controller must be used because of its selectable line speeds.

3.6 Controller Switch Settings

Refer to Paragraphs 3.3.2 through 3.4 .2 of the 2200MVP Maintenance Manual (03-0071-1) for information concerning device address and baud rate settings for the 2236MXD. PROMs used on the 2236 MXD must be R5 or above, the 210-7290-1 PCB must be at Rev. 1 or greater, and the 210-7291-1 PCB must be at Rev. 2 or greater in order to use a 2236DE terminal with a 2236MXD controller.

Because the $22 C 32$ Triple Controller has a fixed baud rate of 19.2 K , only device address switches, located on the lower right side of the 210-7515 PCB, are set in the controller. There are three switch banks on the 7515 PCB, the bottom right-most bank is used to set the terminal device address. Set these switches as follows:

3.7 Baud Rate Selection

The baud rate selection switches for the 2236DE are located on the 210-7592 PCB. Access these switches by removing the large plug on the back of the terminal. (See Figures 5 and 8.) Switch One must be ON and Switch Two must be OFF; these two switches determine the number of data bits and type of parity used. Ensure that the baud rate switch settings at the terminal are the same as those at the controller or modem. Set the baud rate switches according to Table A.

Table A: Baud Rate Settings

Baud Rate	Switch 1	Switch 2	Switch 3	Switch 4	Switch 5
300	ON	OFF	ON	ON	ON
600	ON	OFF	OFF	ON	ON
1200	ON	OFF	ON	OFF	ON
2400	ON	OFF	OFF	OFF	ON
4800	ON	OFF	ON	ON	OFF
9600	ON	OFF	OFF	ON	OFF
19,200	ON	OFF	ON	OFF	OFF

4. POWER-UP DIAGNOSTICS

Whenever the 2236 DE terminal is powered-up, diagnostic routines resident in the Z 80 micrcode are performed. If the diagnostics pass, the power-up message is displayed (see Figure 9) and control passes to the main microcode. The power-up message is displayed for three seconds and is cleared when the first character is received from the CPU. However, if the CPU is powered-up before the terminal CRT is sufficiently warmed-up, the terminal power-up message may not appear. If this occurs, power-down then imediately power-up the terminal.

If a failure is detected by the diagnostics, an audio alarm is activated and control is not passed to the main microcode. A HEX LED (WLI \#340-0015) installed at location L10 on the 7592 PCB (see Figure 6) will display the failing diagnostic phase. Table B lists the diagnostic displays and possible causes of failure.

Figure 9: Terminal Display

* If the \# symbol is displayed, either the baud rate switches are incorrect or a problem exists in the terminal. If "???00BPS" is displayed, the baud rate switches are in an illegal setting. In this state the baud rate is undefined.

HEX LED DISPLAY	DISPLAY MEANING	TROUBLE LOCATIONS
0000	Z80 or PROM malfunction, or address decoding logic malfunction.	L2, L8, L9, L16, L17, L18, L19
0001	Z80 Reset and Conditional Jump Test	L2, L8, L9, L16, L17, L18, L19, L44
0010	Z80 Register and Processor Test	L9, L2, L44
0011	Memory Select Test	L8, L9, L19
0100	Data Bus Test	L9, L44, L51
0101	Address Bus Tr Tt	L8, L9, L19
0110	RAM Test	L4, L5
0111	RAM Test	L4, L5
1000	Not Used	
1001	PROM Test	L16, L17, L18, L56
1010	Keyboard Table PROMs Test	L16, L17, L18, L56
1011	Vertical Retrace Interrupt Test	L52, L79, L96

At power-up, the hardware blanks the Hex display. If either the 280 (L9) and PROMs (L16, 17, 18), or the address decoding (L8, 19) logic: are malfunctioning, the display could stay blanked. If any test fails in a predicted manner, the Hex display remains at the value of the failed test. After all tests are completed, the diagnostic loads a " 0 " into the display and passes sontrol to the main microcode.

5. PREVENTIVE MAINTENANCE

Preventive maintenance on the 2236DE is scheduled for every six months. It consists of inspecting the terminal for worn parts, adjusting the termiral controls as needed, general cleaning of the terminal, and updating the terminal with the appropriate ECNs.

Routine maintenance consists of cleaning the terminal cover, keyboard, and CRT face with a mild detergent solution when necessary.

6. MAJOR ASSEMBLY REMOVAL AND REPLACEMENT.

This section discusses removal and replacement procedures for several major workstation assemblies. (See Figures 10, 11 and 12.) Before removing the following assemblies, ensure that the power switch is OFF and the AC power cord is unplugged. Remove the terminal cover as described in Section 3.

6.1 CRT Anode Discharge Procedure

Even with power removed, the terminal cathode ray tube can hold a charge of several thousand volts. To eliminate the risk of accidental CRT discharge, which can reult in serious injury, discharge the CRT anode as follows: (See Figure 12)
a) Attach one end of a length of insulated wire to the metal shaft of a plastic-handled, heavy-duty screwdriver.
b) Attach* the other end of the wire to CHASSIS GROUND.
c) Using a non-conductive tool such as a plastic alignment tool, carefully raise the edge of the rubber anode cap high enough to insert the screwdriver.
d) Taking care not to touch the metal shaft of the screwdriver or any metal part of the terminal, discharge the CRT anode by touching the anode clip with the grounded screwdriver.
e) After discharging the CRT, remove the grounding wire and reseat the rubber anode cap.

6.2 Terminal Electronics PCB Removal

Remove the Terminal Electronics PCB (210-7592) as follows:
(See Figures 10, 11, and 12.)
a) Unplug all Molex connectors on the PCB.

* Attach wire by means of alligator clips. If no clips are available, strip 3/4" of insulation from each end of the wire. Tightly wrap one end around the screwdriver shaft, secure the other end to CHASSIS GROUND, NOT LOGIC GROUND.
b) Unplug the keyboard, printer, and CPU ribbon cables.
c) Remove the four Phillips-head screws holding the PCB to the CRT chassis support rods.
d) Lift the board up and out of the terminal.

To replace or reinstall the Terminal Electronics PCB, reverse the above procedure.
6.3 CRT Chassis Assembly Removal

Remove the CRT Chassis Assembly (270-0372) as follows: (See Figure 12)

**NOTE"\#

In a 2236DE Terminal, replace a defective CRT chassis with a Wang CRT Chassis Assembly only.
a) Unplug all Molex connectors on the 210-7592 PCB.
b) Unplug the keyboard, printer, and CPU ribbon cables from the 210-7592 PCB.
c) Unplug the Brightness/Contrast Molex connector from the cross-brace at the top of the CRT chassis.
d) Remove the four Phillips-head screws holding the 7592 PCB support rods to the CRT chassis.
e) Lift the 7592 PCB, still attached to the support rods, up and out of the terminal.
f) Remove the four screws and star washers securing the CRT chassis to the Cerminal. The Monitor Electronics PCB (7456) is part of this chassis.
g) Carefully lift the CRT Chassis Assembly up and out of the terminal.
h) Reverse the above procedure to install a new assembly.
i) Adjust 21 on the 7456 PCB to acheive an 80×24 character display on the CRT.
j) Perform the video diplay adjustments found in Section 3.3.

6.4 Monitor Electronics PCB Removal

Remove the Monitor Electronics PCB (7456) by grasping the front of the PCB and pulling with a slow steady pressure, moving the PCB gently from side-to-side. Insert the Monitor PCB by reversing this procedure.

6.5 KEYTRONICS Keyboard Assembly Removal

Remove the KEYTRONICS Keyboard Assembly (725-2618) as follows:
a) Remove the four Phillips-head screws securing the keyboard to the chassis. Check that all four washers located between the keyboard and the chassis are accounted for.
b) Unplug the keyboard ribbon cable from the keyboard PCB.
c) Remove screw connecting keyboard ground strap to terminal chassis.
d) Lift the keyboard up and away from the chassis.

To replace or reinstall the keyboard, reverse the above procedure.

6.6 Power Transformer Removal

Remove the Power Transformer (410-0116) from the chassis as follows:
a) Unplug the Molex connector joining the transformer to the 7592 PCB.
b) Remove the four Phillips-head screws and washers securing the transformer to the chassis.
c) Lift the transformer up and out of the chassis.

To replace or reinstall the transformer, reverse the above procedure.

FIGURE 10 210-7592 PCB

FIGURE 11 7592. PCB in Chassis

FIGURE 12 Rearview of Chassis with 7592 PCB Removed

This section explains four standard features found on the 2236DE Terminal. These features are: Character Display Attributes, Alternate Graphics Set Selection, Box Graphics, and Screen Dump.

7.1 Character Display Attributes

Character display attributes can be selected for any character on the screen. They allow the user to highlight certain informaticn. These attributes are as follows:
a. Bright -- characters are displaved in high intensity.
b. Blink -- characters appear to blink.
c. Reverse Video -- background is white, characters are black.
d. Underscore -- characters are displayed with an underscore.

The display attribute to be used is selected by sending a command of the following form to the CRT:

$$
\begin{array}{ll}
\operatorname{HEX}(0204 \mathrm{xx} \text { yy OE) } & \text { (Activates attribute) } \\
\mathrm{HEX}(0204 \mathrm{xx} \text { yy OF) } & \text { (Terminates attribute) }
\end{array}
$$

$$
\begin{aligned}
& \text { where } x x= 00 \text { if not bright, no blink } \\
& 02 \text { if bright } \\
& 04 \text { if blink } \\
& 0 B \text { if bright, blink (not supported by 2236DE) } \\
& y y= 00 \text { if not reverse video, no underscore } \\
& 02 \text { if reverse video } \\
& 04 \text { if underscore } \\
& 0 B \text { if reverse video, underscore }
\end{aligned}
$$

The selected display attribute is activated by $\operatorname{HEX}(O E)$ as in activating expanded print on certain Wang printers. If the selection sequence ends with HEX(OE), the selected display attribute begins immediately and remains in effect until the HEX(OF) command is given. Thus, it is possible to apply these display attributes to a portion of
a line or to several lines. Termination of the display attribute is accomplished by either carriage return (HEX(OD)) or HEX(OF).

The following is a summary of rules governing character attributes:
a. $\operatorname{HEX}(0204 \mathrm{xx}$ yy 0 F$)$ selects but does not activate the specified display attribute.
b. $H E X(0204 \mathrm{xx}$ yy OE$)$ selects and activates the specified display attribute. HEX(OD) does not turn off the attribute.
c. $\operatorname{HEX}(O F)$ is used to terminate the display attribute.
d. CLEAR, RESET, and Screen Clear (HEX(03)) select normal display.
e. $H E X(O E)$ reactivates the selected display attribute. The attribute remains in effect until the occurrence of a HEX(OF) or a $\operatorname{HEX}(O D)$ (carriage return).
f. Alternate attributes apply only to codes equal to HEX(10). Carriage return, line feed, non-destructive space, etc., preserve their meanings. PRINT AT() can be used to position the cursor. The third argument of PRINT AT(), used to blank sections of the screen, will work differently depending upon which attribute is currently selected.
g. $\operatorname{HEX}(20)$ is a destructive space. PRINT TAB() and zoned format PRINT statements (PRINT,) position the cursor with $\operatorname{HEX}(20) s$, their effects vary with the currently active display attribute.
h. The operating system considers all codes $\operatorname{HEX}(00)-\operatorname{HEX}(O F)$ to occupy no space on output medium. So alternate attribute selection sequences can be included in programs without concern that the operating system may create automatic carriage returns at undesirable times.
i. The USA Model 2236DE uses Normal/Underline as the default selection for codes $\operatorname{HEX}(80)-\operatorname{HEX}(\mathrm{FF})$.

7.2 Alternate Graphics Set Selection

This feature allows the user to redefine the meaning of characters HEX (80) to HEX $!$ FF). Use of the alternate character set provides up to 128 additional characters. The upper characters in the alternate character set are defined as graphics characters. When displayed, graphics characters are expanded to fill the entire character
position, enabling continuous lines (bars) to be displayed. The graphics character set consists of characters representing all combinations of sixths of a character space. The following sequence is used for alternate graphics set selection:

HEX(02 02 xx OF)

$$
\text { where: } \begin{aligned}
\mathrm{xX}= & 00 \text { if codes } \operatorname{HEX}(90) \text { to } \operatorname{HEX}(\mathrm{FF}) \text { are used to } \\
& \text { underscore the normal characters } \operatorname{HEX}(10) \text { to } \operatorname{HEX}(7 F) . \\
= & 02 \text { if the alternate character set is to be used for } \\
& \text { codes } \operatorname{HEX}(80) \text { to } \operatorname{HEX}(F F) .
\end{aligned}
$$

The rules governing character set selection are as follows:
a. $\operatorname{HEX}(020200 \mathrm{OF})$ selects the upper character set to be the normal characters, $\operatorname{HEX}(10)$ to $\operatorname{HEX}(7 \mathrm{~F})$ with underline.
b. HEX (02 02020 F$)$ selects the alternate character set for codes HEX(80) to HEX(FF), including character graphics symbols.
c. Power On, CLEAR, and RESET select the default mode for codes HEX(80) to HEX(FF).
d. The standard 2236DE uses normal character/underline as the default selection for codes $\operatorname{HEX}(80)$ to $\operatorname{HEX}(F F)$.

7.3 Box Graphics

This feature allows the user to display continuous horizontal and vertical lines, enabling information to be separated by lines or boxes. The horizontal line unit is displayed between character lines. It is the length of a character space and is positioned from the middle of one character space to the middle of the next. Vertical lines are drawn through the middle of a character space, coexisting with the character at that location. The vertical line unit is the height of a character space.

The Box Graphics feature allows the user to consider the CRT as having two separate displays (a box graphics display and a character display) located on one screen. In normal character mode, characters
and their attributes are modified while box graphics remain intact (Screen Clear clears both characters and box graphics). Characters and their attributes are undisturbed during a box graphics sequence. Because character mode and box graphic mode are independent of each other, it is easy to update portions of either display.

The BASIC-2 command "BOX (height, width)" allows users to implement the box feature. The first expression specifies the height of the box, the second specifies the width. The sign of the argument determines whether lines are drawn or erased: lines are drawn if the sign is positive, lines are erased if the sign is negative. If the box height is zero, a horizontal line is drawn or erased. A width of zero causes a vertical line to be drawn or erased. The box function positions the box so that the upper left hand corner is at the current cursor position. The CRT cursor does not move while a box is drawn.

The third argument of PRINT AT() is useful for clearing portions of the display. Though slower than screen clear, the statement "PRINT $\operatorname{AT}(0,0,)^{n}$ is useful for clearing the characters from the screen without disturbing the box graphics.

7.4 Screen Dump

This feature allows the user to obtain a hard-copy record of the CRT display through a local printer. The local printer must be directly connected to the 2236 DE through the printer connector located on the back of the terminal (printer address $=20416$).

Screen Dump is activated by depressing the EDIT key for two seconds. The Screen Dump sequence is as follows:
a. EDIT key is depressed and held (immediate click).
b. After two seconds, a second click is sounded to indicate that the screen dump has been activated. Normal edit functions are invoked if key is released before second click.
c. CRT and Printer buffers are no longer serviced. (Present print job interrupted)
d. Carriage Return is transmitted to printer.
e. "Top-of-Form" command is transmitted to printer.
f. The screen contents are printed. (Non-printable characters appear as "\#")
g. "Top-of-Form" command is transmitted to printer.
h. Normal processing resumes.

The keyboard remains active during a screen dump. Depressing any key causes the screen dump to cease and normal processing to resume. If a user is printing through the terminal printer, the screen dump will be inserted in the printout. Even though screen dumps cause a page eject before and after the dump, minor problems could occur depending on the type of document being printed.

8. CABLE PART NUMBERS

Direct-connection cables (non-extendable) are available in 100 foot (30.5 m) increments for distances up to 2000 feet (609.6 m). Modem cables are available in 12 foot (3.7 m), 25 foot (7.6 m), and 50 foot (15.2 m) lengths; however, combined cable distance from Wang equipment to a modem should not exceed a maximum of 50 feet (15.1 m) according to EIA standards. Cable numbers and lengths are as follows:

Length

25 feet	$220-2236-25$
50 feet	$220-2236-50$
100 feet	$220-2236-1$
200 feet	$220-2236-2$
300 feet	$220-2236-3$
400 feet	$220-236-4$
500 feet	$220-2236-5$
600 feet	$220-2236-6$
700 feet	$220-2236-7$
800 feet	$220-2236-8$
900 feet	$220-2236-9$
1000 feet	$220-2236-10$
1250 feet	$220-2236-11$
1500 feet	$220-2236-12$
1750 feet	$220-2236-13$
2000 feet	$220-2236-14$

Part No.

220-2236-25
220-2236-50
220-2236-1
220-2236-2
220-2236-3
220-2236-4
220-2236-5
220-2236-6
220-2236-7
220-2236-9
220-2236-10
220-2236-11
220-2236-12
220-2236-14

THIS PAGE IS INTENTIONALLY LEFT BLANK

SECTION 9

ILLUSTRATED PARTS BREAKDOWN

9.1 SCOPE

The following Illustrated Parts Breakdowns (IPB) provide reference to assemblies that are identified for maintenance procedures. IPB's included in this manual are:

- Figure 13. Frontispiece (Assembly Part Number 177-3236DE)
- Figure 14. External Covers Assembly
- Figure 15. 12" Monitor and 2236DE Workstation Chassis Assembly
this page is intentionally left blank

FIGURE 13 FRONTISPIECE (ASSEMBLY PART NO. 177-3236DE)

ITEM NO. PART NO. DESCRIPTION

1	$449-0289$
2	$615-0398$
3	$452-1068$
4	$449-0459$
5	$449-0548$
6	$655-0157$
7	$652-0036$
8	$653-0022$
9	$220-0160$
10	$725-2618$
11	$279-1026$
12	$650-4105$

COVER, MACH (OPEN VENTS) PROGRAM STRIP PLATE FINISHING WLDMENT BEZEL, 12" CRT PLATE LOGO, WORKSTATION KNOB, ALCO
3/8"-32, NUT LOCK WASHER CABLE ASSEMBLY, BRIGHTNESS POT KEYBD DW STANDARD
BASE ASSEMBLY
10-32x11/8 TRUSS HD PHL

FIGURE 14 EXTERNAL COVERS ASSEMBLY

THIS PAGE IS INTENTIONALLY LEFT BLANK

ITEM NO. PART NO.

210-7592-1A
270-0579
651-0037
451-3857
270-3092
340-0108
270-0372
651-0053
PART OF 7
PART OF 7
380-3011
350-2073
462-0413
270-3104
650-2087
210-7456
451-1121
451-4472
478-0448
651-0037
651-0037
452-4042
465-1643
651-0037
451-4473
PART OF 57
PART OF 57
325-2117
654-1288
451-3856
652-0032
410-2005
652-2004
220-1740
270-0576
451-1100
650-3120
220-3086
320-0300
325-0033
360-9003
360-9002
336-0032
336-0035
652-2005
220-3085
451-3996

DESCRIPTION

PCA 2236DW SINGLE BD THERM ELEC HEATSINK ASSEMBLY \#8x3/8" SLTD HEX S.T.SCREW
SIDE PANEL (R.H.)
YOKE ASSEMBLY

CRT

12" MONITOR ASSEMBLY \#10x3/8"HEX HD S.T. SCREW

20KV DIODE

ANODE CONNECTOR
SPACER
FLYBACK TRANSFORMER ASSEMBLY
4-40x1/4" SCREW
PCA 12" MONITOR ELEC
CHASSIS, 12"
NECKSAVER BRACKET
NECKSAVER BRACKET INSULATOR
\#8x3/8" SLTD HEX S.T. SCREW
\#8×3/8" SLTD HEX S.T. SCREW
CARD GUIDE
GROUNDING SPRING
\#8x3/8" SLTD HEX S.T. SCREW
SUPPORT BRACKET

SWITCH SLIDE DPDT 115-220
SNAP BUSHING
SIDE PANEL (L.H.)
8-32 LOCKNUT KEPS
LINE FILTER
HEX NUT
A.C. CABLE

2236DE WK/ST CHASSIS ASSEMBLY
CRT CHASSIS
6-32×3/8" SCREW
FLAT CABLE ASSEMBLY 2236E
SQ. MAGNETIC SPEAKER
TOGGLE SWITCH
LOCKWASHER
HEXNUT
100 OHM POT
250 OHM POT
4-40 LOCKNUT KEPS
FLAT CABLE ASSEMBLY RS/232
SCREENED REAR PANEL

ITEM NO.

48
49
50
51
52
53
54
55
56
57
58
59

PART NO.

650-2082 360-0000 360-1025-SB 458-0423 220-1076 653-3000 650-3120 653-4002 650-4160 270-3139 458-0436
458-0437

DESCRIPTION

4-40×1/4" FLAT HD SCREW FUSE HOLDER FUSE 2 1/2 AMP 250V REAR PANEL STATIC GROUND POWER CORD ASSEMBLY
FLAT WASHER \#6
6-32x3/8" SCREW
FLAT WASHER \#8
8-32×1/2" SCREW
TRANSFORMER ASSEMBLY
SUPPORT ROD L.H.
SUPPORT ROD R.H.

FIGURE 15 12" MONITOR \& 2236DE WK/ST CHASSIS ASSEMBLY

THIS PAGE IS INTENTIONALLY LEFT BLANK

SCHEMATICS

Schematics when available will be found on the last fiche of the set.

210-7456 210-7592 725-2613

Electronics for 9" and 12" Monitor (1 of 1) Single Board Terminal Electronics (8 of 8) KEYTRONICS Keyboard (1 of 1)

THIS PAGE IS INTENTIONALLY LEFT BLANK

SECTION 10

SCHEMATICS

Schematics when available will be found on the last fiche of the set.

210-7456
210-7592
725-2613

Electronics for 9" and 12" Monitor (1 of 1) Single Board Terminal Electronics (8 of 8) KEYTRONICS Keyboard (1 of 1)

LABORATORIES. INC

