
dBASE II
User’s Guide

Victor Institute
3240 8. Higuera Suite A

San Luis Obispo, CA 93401

COPYRIGHT

** © 1983 by Victor.®
© 1981 by Ashton-Tate. .

-

Published by arrangement with Ashton-Tate, whose software has been cus
tomized for use on various desktop microcomputers produced by VICTOR.

■ Pbrtions of the text hereof have been modified accordingly.
. -

' All rights reserved. This publication contains proprietary information which
is protected by copyright. No part of this publication may be reproduced,
transcribed, stored in a retrieval system, translated into any language or
computer language, or transmitted in any form whatsoever without the prior
written consent of the publisher. For information contact:

, VICTOR Publications
■ r 380 El Pueblo Road

. , Scotts Valley, CA 95066
' (408)438-6680

TRADEMARKS

VICTOR is a registered trademark of Victor Technologies, Inc.
dBASE II is a trademark of Ashton-Tate.
MS-DOS is a trademark of Microsoft Corporation.

^CP/M-86 is a registered trademark of Digital Research, Inc.

NOTICE

/ VICTOR makes no representations or warranties of any kind whatsoever with
t. respect to the contents hereof and specifically disclaims any implied warranties

of merchantability or fitness for any particular purpose. VICTOR shall not
<•; Ibe.liable for errors contained herein or for incidental or consequential damages
’ ■ in connection with the furnishing, performance, or use of this publication or

its contents; ?

VICTOR resetves^e right to revise this publication from time to time and
to make changes in the content hereof without obligation to notify any person
of such revision or changes.

- First VICTOR printing May, 1983.

- ---- -

ISBN 0-88182-000-8 Printed in U.S.A.

II dBASE II User's Guide

CONTENTS
:'yr;.;-, .■ •'

Introduction.. IX
How to Use this Manual................. X

User’s Guide..............................;............. X
<,i Reference Manual............X

Manual Conventions.................. XI
First, Backup Your dBASE II Diskette X II
Backup Your Work.. . X II
How to Call Up dBASE II on Your System......................... .. XII

1. Creating and Working With a Database '•
1.1 Creating a Database (CREATE)i.....; 1-1

Entering the Record Structure........................... ;.,,f.-l-2
Entering Data into a New Database....................... . 1-4
Modifying Data (EDIT)■..................... .?.... 1-5

Full-Screen Editing Features... 1-6
1.2 Commands and the Error Correction Dialog ,

(USE, LIST, DISPLAY) 1-8
! 1.3 Using Expressions and Relational Operators (LIST) k/.z..; 1-10

1.4 Looking at Your Data Records (DISPLAY).......L. 1-13
1.5 Positioning Yourself in the Database < v,; . r

(GO or GOTO and SKIP) . . .X........ 5
1.6 Using the Interactive ? Command (?).. 17
1.7 Adding Records to a Database (APPEND, INSERT)..1-18

Adding Expressions to Commands ,
2.1 Using Expressions for Selection and Control xi..'.,....■?........... 2-1
2.2 Constants and Variables (STORE)............... 2-2

Constants.. 2-2
Variables...................... ;‘2-3

2.3 dBASE II Operators................................... 2-7
Arithmetic Operators...................... 2-7

Contents III

Relational Operators.. 2-8
Logical Operators...2-9
The $ Substring Logical Operator...2-11
String Operators...............2-13

2.4 Changing an Empty Database Structure (MODIFY).................2-14
2.5 Duplicating Databases and Structures (COPY)2-16

-1 2.6 Adding and Deleting Fields
with Data in the Database (COPY, USE, APPEND).......... 2-20

2.7 CP/M-86, MS-DOS, and Other
Non-dBASE H Data Files (COPY, APPEND)2-23

2.8 Renaming Database Fields (COPY, APPEND) 2-25
2.9 Modifying Data Rapidly (REPLACE, CHANGE) 2-26
2.10 Organizing Your Databases (SORT, INDEX)....................... 2-28
2.11 Finding the Information You Want (FIND, LOCATE)............2-31
2.12 Summarizing Data (REPORT).. 2-34
2.13 Automatic Counting and Summing (COUNT, SUM)............. 2-37
2.14 Summing Data and Eliminating Details (TOTAL)................ 2-38

3. Creating and Working with Command Files
3.1 Setting Up a Command File

; * .. (Writing Your First Program)............... 3-1
.3.2 Making Choices (IF..ELSE) 3-3

Simple Decisions... 3-4
*’ Two Choices.......................... 3-5

- Multiple Choice.......... 3-5
■ • ? 3.3 Repeating a Process (DO WHILE..)............................... . 3-6

3.4 Procedures (Subsidiary Command Files)....... 3-7
3.5 Data Input During a Run

(WAIT, INPUT, ACCEPT)... 3-9
3.6 Formatting Screen and Printer Displays

(@..SAY..GET)... 3-10
3.7 Working with Multiple Databases

(SELECT PRIMARY/SECONDARY).. 3-14
3.8 Some Useful Commands and Functions.......... 3-15
3.9 About Writing Command Files.. 3-16

IV dBASE II User's Guide

V.

4. Using Functions and Creating Formats
4.1 Functions.................. 4-1
4.2 Changing the Working Environment.. 4-4
4.3 Merging Records from Two Databases (UPDATE) 4-5
4.4 Merging Entire Databases (JOIN)... 4-5
4.5 Full-Screen Editing and Formatting

(@.. SAY.. GET.. PICTURE) 4-6
4.6 Formatting the Printed Page (SET FORMAT TO PRINT,

@..SAY..USING) .. 4-8
Setting Up and Printing a Form..4-9

5. Database Basics
5.1 Database Organization (SORT, INDEX)..................... 5-3
5.2 Records, Files, and Data Types... . 5-5

Data Types........ 5-6
Field Names................. . ..5-6

5.3 Summary: Commands Grouped by Function...........................5-7
File Structure...5-7
File Operations.. 5-9
Organizing Databases... 5-10
Combining Databases.....................I.................... 5-10
Editing, Updating, Changing Data !............. .<>... 5-11
Using Variables.. 5-12
Interactive Input. 5-13
Searching.. 5-14
Output...5-14
Programming..5-15

Appendix A: A Working Accounting SystemA-l

-f . '■

Contents V

EXHIBITS
la: Full-Screen Editing Commands... ' 1-7
lb: Relational Operators... 1-10

AH 2a: Arithmetic Operators... 2-8
2b: Logical Operators... . 2-9
2c: String Operators............. 2-13

■'< 4a: dBASE II Functions. ...4-2
5a: A File Handling System........... 5-1

e ; 5b: A Database Management System................................... 5-2
5c: Data in a Relational Database.. 5-3
5d: Capacity of a dBASE II Record in Characters............................ 5-5
5e: Character Size of a Sample Record .. 5-5

VI dBASE II User's Guide

CHAPTERS

1. Creating and Working With a Database

2. Adding Expressions to Commands .

3. Creating and Working with Command Files.......... 7

4. Using Functions and Creating Formats

5. Database Basics----------

Appendix A: A Working Accounting System... ...

Chapters VII

IMPORTANT SOFTWARE
DISKETTE INFORMATION
For your own protection, do not use this product until you have made a backup

. copy of your Software diskette(s). The backup procedure is described in the
user’s guide for your computer.

Please read the DISKID file on your new software diskette. DISKID contains
important information including:

► The part number of the diskette assembly.

► The software library disk number (for internal use only).

► The date of the DISKID file.

► A list of files on the diskette, with version number, date, and description for
each one.

► Configuration information (when applicable).

► Notes giving special instructions for using the product.

► Information not contained in the current manual, including updates, any
known bugs, additions, and deletions.

L H-To read the DISKID file onscreen, follow these steps:

1. Load the operating system.

2° Remove your system diskette and insert your new software diskette.

3. Enter—

TYPE DISKID

4. The contents of the DISKID file is displayed on the screen. If the file is large
(more than 24 lines), the screen display will scroll. Type ALT-8 to freeze the
screen display; type ALT-8 again to continue scrolling.

VIII dBASE II User’s Guide

INTRODUCTION
f

dBASE H is a powerful and versatile database management program that can
perform valuable tasks for you. dBASE II can—

► Manage small and medium-sized databases made up of files that you create
with easy to remember English-like commands.

► Work as a programming language that uses command files (programs) you
create with dBASE II commands.

► Work as an interactive computer language, using your input from the keyboard.

► Work as a text editor to modify the command files you write in dBASE IL

► Generate and print business forms that you create with full-screen editing
commands.

► Generate and print reports containing data from your databases. dBASE II
automatically does multiplication, division, sub-totals, and totals every time
you make a report. <

Using dBASE II, you will soon be able to create complete database systems.
You can add, delete, edit, display, and print data from your database, with a
minimum of data duplication on file. dBASE II gives you a large measure of
program/data independence; when you change your data you don’t have to
change your programs, and vice versa.

In short, dBASE II will solve many of your data management problems in
one software package.

Introduction IX

HOW TO USE THIS MANUAL

Two volumes explain the use of dBASE II—the User’s Guide and the Reference
Manual. New users can get started quickly with die practice exercises in the
User’s Guide; the Reference Manual is a complete description of dBASE II
for new and experienced users alike. The two volumes are not meant to stand
alone, although you may find that one suits your needs best.

USER’S GUIDE

The User’s Guide is a training manual or tutorial for the dBASE II database
management program. It describes operations in the order you use them to
create a database. General formats are presented for the dBASE H commands,
and their functions and uses are explained in the text. Then hands-on exercises
show you how to use the commands to create and manipulate sample data
files. Enter the commands as you read the instructions, and you can imme
diately operate dBASE II on your computer.

The introductory User’s Guide does not fully describe every command, and
does not discuss all the advanced commands. If you feel that you don’t under
stand a command or expression, look it up in the Reference Manual.

REFERENCE MANUAL

The Reference Manual describes dBASE II operations in functional groups
such as files, expressions, and command syntax. Chapters 9-12 are a glossary
of detailed descriptions of dBASE II commands in alphabetical order, with
examples that supplement those in the User’s Guide.

X dBASE II User’s Guide

MANUAL CONVENTIONS

This User’s Guide uses the following conventions:

► In text, all-uppercase is used for the names of commands, files, and data
fields.

► In the sample entries and in command formats, what you type in at the
keyboard is boldface.

—• dBASE II commands and keywords are all-uppercase.

— The names of variables, such as files and data fields, are all-lowercase.

This style-—uppercase for dBASE II keywords and lowercase for user-sup
plied variables—is also used in the working accounting system in Appendix
A.

► The hands-on exercises are illustrated as screen displays with a green
background.

— In the screen displays, everything you type (including commands, key
words, names of files and data fields) is all-lowercase. (You can enter
commands in any combination of upper- and lowercase.)

—- dBASE II replies, except for actual data, are all-uppercase, just as they
are on your computer.

Command formats use the following typographic conventions:

► Square brackets [] enclose optional parts of commands.

► Angle brackets < > in commands enclose general terms that you replace
with real information. For example, for <filename> in a command format,
you enter the name of a database file when you type in the command.

► The bracketed word <enter> means press the Return or Enter key on your
keyboard. Do not type the word “enter” or the angle bracket symbols.

Introduction XI

FIRST, BACKUP YOUR dBASE H
DISKETTE

Before you begin the User’s Guide exercises or any other work with dBASE
II, make a copy of the dBASE II distribution diskette. (Use the DCOPY utility.)
Store the original diskette in a safe place and use the copy.

BACKUP YOUR WORK

In working with dBASE II or any computer program, it is essential that you
keep current backups of the files you create. You should backup your work
frequently, at least once or twice a day, as insurance against accidental loss or
damage. For short sessions on your computer, one backup per session may be
enough. In general, however, make backups much more frequently than that.

Compare the cost of doing the backups with the cost of the loss of your data;
you can rewrite disks, so the cost of backups is low. What’s your entire account
ing database worth? The importance of keeping backups can’t be over
emphasized.

HOW TO CALL UP dBASE H ON YOUR
SYSTEM

dBASE II is ready for use with your system, and you can begin using the
program immediately. First load your operating system. Then insert the copy
of your dBASE II diskette into either drive and log onto that drive. If you are
using the CP/M-86 operating system, clear the disk system by entering ALT-
C. Then, at the system prompt A> or B>, for both MS-DOS and CP/M-86,
type—

dBASE

followed by a Return. You can use any combination of upper- and lowercase
to enter dBASE II commands.

IL..
XII dBASE II User’s Guide

In CP/M-86, dBASE II asks for the date (see Reference Chapter I). If you
enter a date, dBASE II records it in your files as the latest access (when you
last added to or deleted, from the file). The access date is useful for keeping
track of updates. If you want dBASE II to ignore the date, just press <enter>
or Return.

In MS-DOS, dBASE II does not display a date request because the operating
system asks for the date when you load the system.

dBASE II then loads into memory, displays a sign-on message and shows its
prompt, a dot (.), to indicate that it is ready to accept commands. From this
point you can manipulate databases with the interactive dBASE II commands
or you can enter and run programs with the programming function of dBASE
n. To learn how to create a database file, turn to User’s Guide Chapter 1.

Introduction XIII

CREATING AND WORKING
WITH A DATABASE

This chapter leads you through the steps to create a database file and enter
data into it. The basic dBASE II commands are described, and example exer
cises give you practice using the commands.

For most commands, this User’s Guide explains one function that enables you
to do a few more things with your database. The User’s Guide does not cover
all that a command can do. To find out a command’s complete potential, look
it up in Reference Chapters 9 through 12.

CREATING A DATABASE (CREATE) 1.1

Before you create a new database, you should know the categories of infor
mation you will record about the items in the database. In dBASE II, the
information categories are called data fields; the items or individual listings
in the database are called records. (See Reference Chapter 2.)

First you must tell dBASE II the name of each data field, what type of data
each field will contain, how long each field is, and how many decimal places
to allow for numeric data. This information—the names and the lengths of
the data fields, and the data type of each field—is called the record structure.

In the first practice exercise you will create a database of names for a mailing
list. The records in the mailing list file will contain these five data fields:

NAME (15 characters maximum)
ADDRESS (20 characters maximum)
CITY (20 characters maximum)
STATE (2 characters)
ZIP CODE (5 characters)

Creating and Working With a Database 1-1

To begin creating a database, type—

CREATE

followed by a Return. dBASE II responds with—

ENTER FILENAME:

Because this practice database is a list of names, enter the file name NAMES.
Then press Return, and dBASE II creates an empty file called NAMES .DBF
dBASE II supplies the .DBF, which is the default file extension for database
files (see Reference Chapter 2).

. create
ENTER FILENAME: names
ENTER RECORD STRUCTURE
AS FOLLOWS:

FIELD NAME,TYPE,WIDTH,DECIMAL PLACES
001

ENTERING THE RECORD STRUCTURE

dBASE II displays the field number (001), and you enter the name, type,
width, and decimal places for the data field.

A field name can be up to 10 characters long, and can be upper- and/or
lowercase. The name must start with a letter and can contain digits and embed
ded colons, but cannot contain spaces. Abbreviate as little as possible to keep
the meaning of the field name clear.

Next specify the type of data with a single letter: C for Character, N for
Numeric, and L for Logical. All fields in this example contain character data.

Field width can be any length up to 254 characters. In numeric fields with
decimal places, the decimal point counts as a character position.

1-2 dBASE II User’s Guide

You know what names to give the data fields, the type of data each field will
contain, and the field widths. Now type the information into the record struc
ture, Here’s what the screen looks like when you’re finished:

. create
ENTER FILENAME: names
ENTER RECORD STRUCTURE
AS FOLLOWS:

FIELD
001
002
003
004
005

NAME,TYPE,WIDTH,DECIMAL PLACES
name ,6/15
address,c,20
city,c,20
state,c,2
zip code,c,5

BAD NAME FIELD
005
006

zip:code,c,5
<return>

Notice that the example contains an error at field 5—a space was used in the
field name. dBASE II told you what the error was and gave you a chance to
correct it.

Notice also that the data type for ZIP:CODE was specified as character, even
though you may think of zip codes as numbers. In dBASE II the ZIPrCODE
field is not numeric because numeric fields can be added by a command such
as TOTAL. Adding up ZIP.CODE would be a waste of time. You can still
use the relational operators (greater than, less than, equal or not equal to) with
character data, so you can do ZIP:CODE sorting anyway.

When dBASE II asks you for the specifications for a sixth field, hit Return to
end the structure input. dBASE II saves the structure, then asks if you want
to enter data in it. The newly created NAMES.DBF database is immediately
ready for data entry, so type y.

Creating and Working With a Database 1-3

ENTERING DATA INTO A NEW DATABASE

After you type y in response to INPUT DATA NOW? the screen clears, and
dBASE II displays the record number and all the field names in the upper left
comer of the screen. The cursor is at the first character position of the first
field.

RECORD 00001

NAME :
ADDRESS:
CITY
STATE : :
ZIP:CODE:

Colons indicate the length of each data field. When you fill a field or hit
Return, the cursor jumps down to the next field. You can move the cursor up
to a previous field by holding the ALT (Alternate-function) key down and
pressing the letter E once: ALT-E. When you finish with the last field, dBASE
II presents the next empty record.

Enter the following names and addresses. You’ll be using this file to demon
strate the powerful features of dBASE II.

ALAZAR, PAT 123 Crater Rd., Everett, WA 98206
BROWN, JOHN 456 Minnow Pl., Burlington, MA 01730
CLINKER, DUANE 789 Charles Dr., Los Angeles, CA 90036
DESTRY, RALPH 234 Mahogany St., Deerfield, FL 33441
EMBRY, ALBERT 345 Sage Ave., Palo Alto, CA 94303
FORMAN, ED 456 Boston St., Dallas, TX 75220
GREEN,TERRY 567 Doheny Dr., Hollywood, CA 90046
HOWSER, PETER 678 Dusty Rd., Chicago, IL 60631

If you make any mistakes that you can’t correct by backspacing and retyping,
read the next section on EDIT.

1-4 dBASE II User's Guide

If you accidentally get back to the dBASE II dot prompt, type—

USE Names
APPEND

Then continue with your entries. (USE and APPEND are explained later in
this chapter and in the Reference.)

To stop entering data after you’ve entered the last ZIP:CODE, hit <enter>
or Return while you are on the first character of the first field of the next
record. If you have typed in some data or moved the cursor in the ninth record,
enter ALT-Q to discard that record.

Then dBASE II leaves the data entry mode and presents its dot prompt (.) to
show you that it’s ready for your commands.

If you want to stop now, type QUIT followed by a Return.

You must type QUIT every time you end a dBASE II session to close all files
properly. Unless you exit dBASE II with QUIT, you may damage your database.

MODIFYING DATA (EDIT)

Errors made while entering data in your database can be corrected quickly
and easily in the full-screen EDIT mode.

To enter EDIT mode, type—-

USE <fi!ename>
EDIT <n>

where: filename is the name of the database you want to edit, and n is the
number of the record you want to edit.

Creating and Working With a Database 1-5

To try full-screen editing with the NAMES database, type—

USE NAMES
EDIT 3

RECORD 00003

NAME :CLINKER, DUANE :
ADDRESS:789 Charles Dr.
CITY :Los Angeles :
STATE :CA:
ZIP:CODE:90036:

Full-Screen Editing Features
dBASE II brings up the entire record. You can type over the data in the record,
and you can use the full-screen editing commands to change the data. The
full-screen editing commands are Alternate-function characters, such as
ALT-C (move to the next record) and ALT-R (move to the previous record).

Turn to Chapter 7 of the Reference for a summary of the full-screen editing
commands. Try some of them, such as ALT-D and ALT-A to move the cursor
forwards and backwards. Notice that some Alternate characters have different
functions when you use them in different modes (EDIT mode, APPEND mode,
MODIFY mode).

1-6 dBASE II User’s Guide

Exhibit la illustrates the keyboard labels of the full-screen editing com
mands. To use one of these commands, hold down the ALT key while pressing
the appropriate key.

Exhibit la: Full-Screen Editing Commands

MOVE BACK
ONE FIELD

PREVIOUS
RECORD

DELETE
FIELD

DELETE
DATA

MOVE AHEAD
ONE
CHARACTER

MOVE DOWN
ONE FIELD

NEXT
RECORD

INSERT/
OVERWRITE

INSERT
FIELD

DELETE
CHARACTER

To exit full-screen editing and save the changes you made, enter ALT-W.

To abort full-screen editing, enter ALT-Q. ALT-Q abandons the changes on
the screen when you exit and returns you to the interactive dBASE II dot
prompt.

Creating and Working With a Database 1-7

1.2 COMMANDS AND THE ERROR
CORRECTION DIALOG
(USE, LIST, DISPLAY)

dBASE II commands are easy to learn and remember; they are English-like,
so learning a new command is like increasing your vocabulary (and your
repertoire) by another word. The general form for most dBASE II commands
is—

VERB SCOPE NOUN CONDITION

The first word in a dBASE II command is a verb that names the action to be
taken; examples are LIST, DISPLAY, and USE. The scope limits the range of
records affected by the verb’s action; examples are ALL or the NEXT 3. The
noun, which is the object of the verb’s action, may be a file, a field, a record,
or a variable. The condition specifies the nouns acted on, and is usually a
dBASE II expression in a FOR or WHILE phrase.

You can type in commands, in any combination of upper- and lowercase,
when dBASE II displays its dot prompt (.). Command lines can be up to 254
characters long. To extend a command beyond the 80-character screen line,
type a semicolon (;) as the last character on the line (no space after it). The ;
tells dBASE II to use the next line as part of the command.

Here are three basic commands that you will use often.

To tell dBASE II which database you want to work with, type—

USE <filename>

To look at the record you are on, type—

DISPLAY

To see all the records in the database, type—

LIST

LIST scrolls the file; you can stop and start the scrolling with ALT-S.

1-8 dBASE II User's Guide

You can abbreviate dBASE II commands to the first four letters of the com
mand. If you use more letters, all must be correct. For example, DISPLAY,
DISP and DISPLA are valid commands; DISPY is not.

After you enter a command, dBASE II scans the command line and prompts
you with error messages when mistakes are detected. The error correction
dialog gives you a chance to make corrections without retyping the entire line.

To try the error correction dialog, type EDUT 3.

. edut 3
♦♦♦UNKNOWN COMMAND
edut 3
CORRECT AND RETRY (Y/N)?y
CHANGE FROM:u
CHANGE TO :i
edit 3
MORE CORRECTIONS (Y/N)?n

dBASE II repeats the unrecognized command. If you press the Return key,
dBASE II discards the command line and gives you the dot prompt again. To
correct and retry the command, enter y to begin the error correction dialog.

In response to CHANGE FROM: type in enough of the wrong part of the
command so that it is unambiguous, then hit <enter> or Return.

In response to CHANGE TO: type in the replacement for the material you
want changed, followed by <enter> or Return.

This example changed only a single letter in a short command, but you’ll find
the error correction feature most useful for testing and debugging long com
mand lines.

Tip: Use the ERASE command to erase the screen and position the dot prompt
at the upper left corner of the screen so that you can start new commands with
a clean slate.

Creating and Working With a Database 1-9

1.3 USING EXPRESSIONS AND
RELATIONAL OPERATORS (LIST)

1
One of the most powerful features of dBASE II is the ability to expand and
“tailor” the commands. You can add phrases and expressions to define exactly
what the commands do.

Conditional expressions, such as those beginning with FOR and WHILE,
restrict the action of the command to the records or fields that meet the given
condition. (The use of expressions is fully explained in Chapter 2.)

In dBASE II expressions, you use “operators” to define the conditions that
the data must meet. There are several kinds of operators, described in Chapter
2 and in Reference Chapter 3. The relational operators in expressions are listed
in Exhibit lb.

Exhibit lb: Relational Operators

OPERATOR

<> or #

MEANING

Less than.

Greater than.

Equal to.

Less than or equal to.

Greater than or equal to.

Not equal to.

The relational operators mean exactly what the explanation in Exhibit lb says.
They compare two parts of an expression and generate a logical value as a
result (True or False). If the expression is true, the command is performed. If
the expression is false, the command is not performed.

The LIST command displays the records in the database (you can stop and
start scrolling with ALT-S). The full form of the command is—

LIST [OFF] [FOR <expression>]

1-10 dBASE II User’s Guide

The optional OFF shuts off the display of record numbers.

If you include a FOR phrase, dBASE II lists only the records for which the
expression is true.

Now try using LIST with FOR to select files for display. Type the following,
using single quotes around the character data (for more on data types, see
Chapter 2):

USE Names
LIST
LIST OFF
LIST FOR Zip:Code = ’9'
LIST OFF FOR Zip:Code < 'S'
LIST FOR Name - ' GREEN'

Notice that when you enter only part of the contents of the field, dBASE II
compares only that part. You don’t have to give Mr. Green’s full name, for
example; although you might have used it if your database contained several
GREENs.

Creating and Working With a Database 1-11

. list

. use names

00001 ALAZAR, PAT 123 Crater Rd. Everett WA 98206
00002 BROWN, JOHN 456 Minnow Pl. Burlington MA 01730
00003 CLINKER, DUANE 789 Charles Dr. Los Angeles CA 90036
00004 DESTRY, RALPH 234 Mahogany St. Deerfield FL 33441
00005 EMBRY, ALBERT 345 Sage Avenue Palo Alto CA 94303
00006 FORMAN, ED 456 Boston St. Dallas TX 75220
00007 GREEN, TERRY 567 Doheny Dr. Hollywood CA 90046
00008 HOWSER, PETER 678 Dusty Rd. Chicago IL 60631

° list
ALAZAR,

off
PAT 123 Crater Rd. Everett WA 98206

BROWN, JOHN 456 Minnow Pl. Burlington MA 01730
CLINKER, DUANE 789 Charles Dr. Los Angeles CA 90036
DESTRY, RALPH 234 Mahogany St. Deerfield FL 33441
EMBRY, ALBERT 345 Sage Avenue Palo Alto CA 94303
FORMAN, ED 456 Boston St. Dallas TX 75220
GREEN, TERRY 567 Doheny Dr. Hollywood CA 90046
HOWSER, PETER 678 Dusty Rd. Chicago IL 60631

. list
00001

for zip:code= ’9
ALAZAR, PAT 123 Crater Rd. Everett WA 98206

00003 CLINKER, DUANE 789 Charles Dr. Los Angeles CA .90036
00005 EMBRY, ALBERT 345 Sage Avenue Palo Alto CA .94303
00007 GREEN, TERRY 567 Doheny Dr. Hollywood CA 90046

. list
00002

for zip:codec’8
BROWN, JOHN 456 Minnow Pl. Burlington MA 01730

00004 DESTRY, RALPH 234 Mahogany St. Deerfield FL 33441
00006 FORMAN, ED 456 Boston St. Dallas TX .75220
00008 HOWSER, PETER 678 Dusty Rd. Chicago IL 60631

. list
00007

for name = ' GREEN
GREEN, TERRY 567 Doheny Dr. Hollywood CA .90046

In addition to precisely selecting data from your database, the LIST command
can provide you with system information.

LIST STRUCTURE shows you the structure of the database in USE.

LIST FILES shows the names of the database files (files with extension .DBF)
on the logged drive. LIST FILES ON <drive> shows the database files on
the drive you name (no colon after the drive name).

1-12 dBASE II User’s Guide

. use names

. list structure
STRUCTURE FOR FILE:. NAMES.DBF

DATE OF LAST UPDATE: 00/00/00
PRIMARY USE DATABASE

NUMBER OF RECORDS: 00010

FLD NAME TYPE WIDTH
001 NAME C 015
002 ADDRESS C 020
003 CITY c 020
004 STATE c 002
005 ZIP:CODE c 005
T0TAL 00063

DEC

. list files
DATABASE FILES #RCDS LAST UPDATE
NAMES DBF 00010 00/00/00
MIND DBF 00007 00/00/00
KEYFILE DBF 00211 00/00/00
CHECKS DBF 00783 00/00/00
TEMP DBF 00010. 00/00/00
M0NEY0UT DBF 00000 00/00/00
ORDERS DBF 00000 00/00/00

LOOKING AT YOUR DATA RECORDS 1.4
(DISPLAY)

The DISPLAY command is similar to LIST. Its full form is—

[ALL]
DISPLAY [Record n] [OFF][FOR <expression>]

[NEXT n]

The three options following the keyword DISPLAY—ALL, Record n, or NEXT
n—are the scope of the command. Specifying Record n displays only record
number n; NEXT n displays the next n records, including the current record.
DISPLAY ALL is the same as LIST, except that LIST scrolls the records
the database up the screen, while DISPLAY ALL shows you the database
groups of 15 records (you press any key to display the next 15 records).

Creating and Working With a Database 1-13

.S .S

Type the following:

DISPLAY ALL
DISPLAY Record 3
DISPLAY NEXT 4

. display all
00001
00002

ALAZAR, PAT
BROWN, JOHN

123 Crater Rd.
456 Minnow Pl.

Everett
Burlington

WA 98206
MA 01730

00003 CLINKER, DUANE 789 Charles Dr. Los Angeles CA 90036
00004 DESTRY, RALPH 234 Mahogany St. Deerfield FL 33441
00005 EMBRY, ALBERT 345 Sage Avenue Palo Alto CA 94303
00006 FORMAN, ED 456 Boston St. Dallas TX 75220
00007 GREEN, TERRY 567 Doheny Dr. Hollywood CA 90046
00008 H0WSER, PETER 678 Dusty Rd. Chicago IL 60631

. display record 3
00003 CLINKER, DUANE 789 Charles Dr. Los Angeles CA 90036

. display next 4
00003 CLINKER, DUANE 789 Charles Dr. Los Angeles CA 90036
00004 DESTRY, RALPH 234 Mahogany St. Deerfield FL 33441
00005 EMBRY, ALBERT 345 Sage Avenue Palo Alto CA 94303
00006 FORMAN, ED 456 Boston St. ' Dallas TX 75220

As with LIST, you can include an optional FOR clause to select specific data
by using logical expressions.

The DISPLAY command can also be used like the LIST command for system
functions. DISPLAY STRUCTURE is the same as LIST STRUCTURE, and
DISPLAY FILES is the same as LIST FILES.

You can use the word LIKE and the wild-card characters * and ? to LIST or
DISPLAY file names or data fields. The general form to use is—

DISPLAY FILES LIKE <wild-card>

For example, DISPLAY FILES LIKE *.COM ON B displays all the .COM
files on drive B. See your operating system User’s Guide for details on wild
card characters.

1-14 dBASE II User’s Guide

POSITIONING YOURSELF IN THE 1.5
DATABASE (GO or GOTO and SKIP)

dBASE II has an invisible record pointer, an imaginary “finger” that marks
your position in the database. When you first open a file with the USE com
mand, the pointer is on the first record. You can move from record to record
with the GO and SKIP commands. For practice, type the following:

USE Names
GO TOP
DISPLAY
GO BOTTOM
DISPLAY
GOTO 5
DISPLAY
8
DISPLAY

. use names

. go top

. display
00001 ALAZAR, PAT 123 Crater Rd. Everett WA 98206

. go bottom.

. display
00008 HOWSER, PETER 678 Dusty Rd. Chicago IL 60631

. goto 5

. display
00005 EMBRY, ALBERT 345 Sage Avenue Palo Alto CA 94303

. 8

. display
00008 HOWSER, PETER 678 Dusty Rd. Chicago IL 60631

Creating and Working With a Database 1-15

GO TOP (or GOTO TOP) moves you to the first record in the database. GO
BOTTOM moves you to the last record. You can go to a specific record by
using GOTO, GO, or even just <number>.

SKIP moves you to the next record. SKIP ± n moves you forward or backward
n records. You can also use SKIP ± <variable/expression>, with the number
of records skipped determined by the value of the variable or expression.

To see how SKIP works, type the following:

DISPLAY
SKIP-3
DISPLAY
SKIP
DISPLAY

. display
00008 HOWSER, PETER 678 Dusty Rd. Chicago

. skip-3
RECORD:00005

IL 60631

. display
00005 EMBRY, ALBERT 345 Sage Avenue Palo Alto

° skip
RECORD:00006

CA .94303

. display
00006 FORMAN, ED 456 Boston St. Dallas TX 75220

1-16 dBASE II User's Guide

USING THE INTERACTIVE ? COMMAND 1.6
(?)

With the ? command you can use your computer in the interactive calculator
mode. You type a question mark and a space, followed by the quantity or
mathematical function you want evaluated. dBASE II provides the answer on
the next line. The ? command answers a mathematical operation to the same
number of decimal places as the maximum in the numbers entered. Using ??
puts the answer on the same line with the command. Type the following:

? 73/3.0000
? 73.00/3
? 73/3

? 73/3.0000
24.3333
? 73.00/3
24.33
? 73/3
24

You can also think of ? as meaning: “What is ...?", with the dots replaced by
a dBASE II expression, variable (a field name or a memory variable), function
or a list of these separated by commas. Type the following:

USE Names
6
? ZipzCode
? Name
SKIP
? Name
GO BOTTOM
? City

Creating and Working With a Database 1-17

1

. use names

. 6

. ? zip:code
75220
. ? name
FORMAN, ED
. ? state
TX
. skip
RECORD:00007
. ? name
GREEN, TERRY .
. go bottom
. ? city
Chicago

Chapter 2 shows you how to use the ? to access other dBASE II functions,
and how to display CRT prompts from a command file.

1.7 ADDING RECORDS TO A DATABASE
(APPEND, INSERT)

To add data records to a database, first choose the file you want to expand by
typing USE <filename>. Then type APPEND:

USE Names
APPEND

. use names

. append

RECORD #: 00009

NAME
ADDRESS:
CITY
STATE :. :
ZIP:CODE:

1-18 dBASE II User's Guide

dBASE II displays a new blank record (with the number that follows the last
existing record in the file) and the fields for that database. If you fill in the
record, dBASE II adds it to the end of the file (appended).

APPEND shows field lengths with colons. The cursor is at the first position
where you can enter data. If you fill the entire field, the cursor automatically
moves down to the next field. If your data does not fill the field, hit <enter>
or Return to move to the next field.

If there is no data to be entered in a field, use <enter> to move the cursor to
the next field. Character fields are automatically filled with blanks; numeric
fields show a zero. When entering numeric data with no digits after the dec
imal, you do not need to type the decimal. dBASE II automatically puts in the
decimal point and the number of following zeros specified in the record structure.

You can insert records into a specific location in a database (to keep the file
alphabetical, for example) by using the INSERT command—

INSERT [BEFORE] [BLANK]

Entering INSERT inserts a blank record just after the current record. Specify
ing BEFORE inserts the record just before the current record. In either case,
dBASE II prompts you for data input as with the APPEND and CREATE
commands. If you specify BLANK, an empty record is inserted and there are
no prompts.

For practice with APPEND and INSERT, add the following names alphabet
ically to the NAMES.DBF database:

EDMUNDS, JIM
INDERS, PER
JENKINS, TED

392 Vicarious Way, Atlanta, GA
321 Sawtelle Blvd., Tucson, AZ
210 Park Avenue, New York, NY

30328
85702
10016

The sequence of commands is—

USE Names
5
INSERT BEFORE
APPEND

(Then enter the data for the first name.)
(Then enter the data for the last names.)

Creating and Working With a Database 1-19

In the INSERT mode, when you fill the last field, dBASE II returns to the
command mode (dot prompt).

To exit the APPEND mode, position the cursor at the start of a new
record, then hh<enten> If you are in the middle of a record, ALT-Q
will let you exit and the current record will be lost.

In APPEND and INSERT modes, you can exit from inside a record; ALT-W
saves what you have entered and returns you to the command mode.

1.8 CLEANING UP A DATABASE
(DELETE, RECALL, PACK)

You can delete records in both EDIT mode and command mode. In EDIT,
you use ALT-U to mark a record for deletion. In the interactive command
mode, you can mark the current record for deletion by typing DELETE. Rather
than erasing the data, DELETE and ALT-U mark each record with an asterisk.
You can see the asterisks when you LIST or DISPLAY the deleted records.
dBASE II ignores these records, and does not use them in any processing.

To mark more than one record, use the form DELETE <scope>, where the
scope is the same as for other dBASE H commands—ALL, Record n, or
NEXT n.

To make the scope of the deletions conditional, use—

DELETE [scope] [FOR <expression>]

where: expression is a condition or set of conditions that must be met. (See
Chapter 2 for more on expressions.)

You can easily recover records marked for deletion. To restore records, use
the following command:

RECALL [scope] [FOR <expression>]

This operates the same way DELETE does, with the scope and condition
optional. If a conditional expression is used, it does not have to be the same
expression used to mark the records for deletion.

1-20 dBASE II User's Guide

At some point, however, you may want to clean up your files to clarify displays
or to make more room for storage. To do this, type—

PACK

PACK erases all records marked for deletion, and tells you how many records
are left in the database.

BE CAREFUL: Once you use PACK, the records are lost forever.

To see how these commands work, type the following:

USE Names
LIST
DELETE RECORD 2
DELETE RECORD 4
LIST
RECALL RECORD 4
LIST
PACK
LIST

Creating and Working With a Database 1-21

The next screen shows the first few records in NAMES.DBF as you perform
these commands.

list
00001 ALAZAR, PAT 123 Crater Rd.

456 Minnow Pl.
Everett
Burlington

WA 98206
MA 0173000002 BROWN, JOHN

00003 CLINKER, DUANE 789 Charles Dr. Los Angeles CA 90036
00004 DESTRY, RALPH 234 Mahogany St. Deerfield FL 33441
00005 EDMUNDS, JIM

. delete record 2
00001 DELETION!S)
. delete record 4
00001 DELETION!S)
. list

392 Vicarious Way Atlanta GA 30328

00001 ALAZAR, PAT 123 Crater Rd. Everett WA 98206
00002 *BR0WN, JOHN 456 Minnow Pl. Burlington MA 01730
00003 CLINKER, DUANE 789 Charles Dr. Los Angeles CA 90036
00004 *DESTRY, RALPH 234 Mahogany St. Deerfield FL 33441
00005 EDMUNDS, JIM

. recall record 4
00001 RECALL!S)
. list

392 Vicarious Way Atlanta GA 30328

00001 ALAZAR, PAT 123 Crater Rd. Everett WA 98206
00002 *BR0WN, JOHN 456 Minnow Pl. Burlington MA 01730
00003 CLINKER, DUANE 789 Charles Dr. Los Angeles CA 90036
00004 DESTRY, RALPH 234 Mahogany St. Deerfield FL 33441
00005 EDMUNDS, JIM 392 Vicarious Way

. pack
PACK COMPLETE, 00004 RECORDS COPIED
. list

Atlanta GA 30328

00001 ALAZAR, PAT 123 Crater Rd. Everett WA 98206
00002 CLINKER, DUANE 789 Charles Dr. Los Angeles CA 90036
00003 DESTRY, RALPH 234 Mahogany St. Deerfield FL 33441
00004 EDMUNDS, JIM 392 Vicarious Way Atlanta GA 30328

You can use DELETE to erase entire files. Type DELETE FILE
<drive:filename>. Watch out, though—unlike records, deleted files are not
recoverable. The data is gone forever.

1-22 dBASE II User’s Guide

Before going on to Chapter 2, please CREATE these two files; you will need
them for other examples.

. create
ENTER FILENAME: moneyout
ENTER RECORD STRUCTURE
AS FOLLOWS:
FIELD NAME,TYPE,WIDTH,DECIMAL PLACES
001 Check:Date,C,7
002 Check:Nmbr,C,5
003 Client,C,3
004 JobNumber,N,3
005 Name,C,20
006 Descrip,C,20
007 Amount,N,9,2
008 Bill:Date,C,7
009 Bill:Nmbr,C,7
010 Hours,N,6,2
Oil Emp:Nmbr,N,3
012

. create
ENTER FILENAME: orders
ENTER RECORD STRUCTURE
AS FOLLOWS:
FIELD NAME,TYPE,WIDTH,DECIMAL PLACES
001 CustNmbr,C,9
002 Item,C,20
003 Qty,N,4
004 Price,N,7,2
005 Amount,N,9,2
006 BackOrdr,L,1
007 OrdrDate,C,6
008

Creating and Working With a Database 1-23

ADDING EXPRESSIONS TO
COMMANDS

Chapter 1 introduced expressions, and Chapter 2 explains in detail how to use
expressions in dBASE II commands. Also Chapter 2 introduces dBASE II
operators and more commands. You’ll get practice using both expressions and
operators as you work your way up to developing command files.

If you’re still uncertain about how to write expressions after you’ve finished
this chapter, read a beginning programming text. Most texts discuss expres
sions in the first chapters. Also, read Reference Chapter 3.

Understanding and using expressions may be the most important part of learn
ing how to use dBASE II effectively. Expressions give you the fine control
you need to manipulate your data quickly and easily. And just as important,
in order to write application command files, you must first master handling
expressions. Then you must learn only two more things about programming—
how to make decisions and how to repeat a sequence of commands, both
covered in Chapter 3.

USING EXPRESSIONS FOR SELECTION 2.1
AND CONTROL

If you check the descriptions of commands in Reference Chapters 9-12, you’ll
see that many dBASE II commands can be modified in the form—

COMMAND [FOR <expression>]

The <expression> states the conditions the data must meet in order to be
affected by the command.

Adding Expressions to Commands 2-1

Expressions give you a flexibility that you do not get with other database
management systems. Experienced programmers can write a program (a dBASE
II command file) in as little as one-tenth the time it would take them using
BASIC or even higher-level languages such as COBOL, FORTRAN and
PL/1.

To take advantage of this power, you need to understand how to work with
expressions and operators, and how to combine the modified commands into
command files that will perform the same tasks again and again. The next few
pages will get you started, but experience is the best teacher. Go through the
examples and key them into your computer; you can change names as you go
to reflect your own needs.

2.2 CONSTANTS AND VARIABLES (STORE)

Expressions help select and manipulate the data in your database (see DIS-
PLAY). The quantity that you manipulate in the database or in the expression
can be either a constant or a variable.

CONSTANTS

Constants are data items that do not change, no matter where they appear in
a database or within computer operations. They are literal values™they are
exactly what they represent. Examples of constants are numerals such as 3
and the logical values T and E

Characters and character strings (all the printable characters plus spaces) can
also be constants, but they are handled differently from other constants.

Strings are a collection of characters (including spaces, digits and symbols)
that you can handle, modify, manipulate and otherwise use as data. A substring
is a portion of any specific string.

2-2 dBASE II User's Guide

If you want a character or collection of characters (such as words, phrases, or
other strings) to be treated as a string constant, you must enclose it in single
or double quotes or in square brackets. Then dBASE II understands that it is
to deal with the characters as a constant.

Here are the rules for working with character strings:

1. Character strings that appear in expressions must be enclosed in matching
single or double quote marks or square brackets.

2. Character strings may contain any of the printable characters (including
the space).

3. If you want to use the ampersand (&) as a character, you must place it
between two spaces because it is also the dBASE II Macro function (described
in Reference Chapter 4).

To see how to use characters as constants, get dBASE II up on your computer
and USE NAMES. Then type—

? 'Name'
? Name

In response to the first “What is...?” (the ? command), the computer responds
with NAME because that is the value of the constant. When you eliminate the
single quotes, the computer first checks to see if the word is a command. It
isn’t, so then the computer checks to see if it is the name of a variable.

VARIABLES

Variables are data items that can change. Frequently they are the names of
database fields whose contents can change. In this case, the computer found
that our database had a field called Name, so it gave us the data that was in
that field at that time. Now type the following:

SKIP 3
? Name

Adding Expressions to Commands 2-3

2

. use names

. ? 'name'
Name
. ? name
ALAZAR, PAT
. skip 3
RECORD:00004
. ? name
DESTRY, RALPH

Now type USE followed by a Return. Since you do not specify a file name,
dBASE II closes all files.

If you type ? Name again, the computer tells you that you made an error. In
this case, you tried to use a variable that did not exist because you were no
longer using a database with a matching field name.

Variables can be memory variables rather than field names. dBASE II reserves
an area of memory for storing up to 64 variables, each with a maximum length
of 254 characters, and with a maximum total of 1536 characters for all the
variables. You can think of dBASE H’s memory variables as 64 pigeon-holes
where you can temporarily tuck data while working out a problem.

Variable names can be any legal dBASE II identifier (start with a letter, up to
ten characters long, optional embedded colon and numbers, no spaces).

You can use a memory variable for storing temporary data or for keeping input
data separate from field variables. In one session, for example, you might
store the date in a variable called DATE. During the session, you could get it
by asking for DATE, then place it into any date field in any database without
having to re-enter it (see GETDATE.PRG in Appendix A).

To get data (character, numeric or logical) into a memory variable, you use
the STORE command. The full form is—

STORE <expression> TO <memory variable>

2-4 dBASE II User’s Guide

For some practice with memory variables, type the following:

STORE "How’s it going so far?" TO Message
STORE 10 TO Hours
STORE 17.35 TO Pay:Rate
? Pay:Rate*Hours
? Message

. store “How’s it going so far?“ to message
How’s it going so far?
. store 10 to hours

10
. store 17.35 to pay:rate

17.35
. ? pay:rate*hours

173.50
. ? message
How’s it going so far?

In the first line, you have to use double quotes around the character string (a
constant) because you need the single quote as an apostrophe inside the string.

If this isn’t clear yet, try experimenting with and without the quotes to get the
distinction between constants and variables. To start you off, type the following:

STORE 99 TO Variable
STORE 33 TO Another
STORE Variabie/Another TO Third
STORE '99' TO Constant
? Variabie/Another
? Variable/3
? Constant/3
DISPLAY MEMORY

Adding Expressions to Commands 2-5

2

. store 99 to variable
99

. store 33 to another
33

. store variable/another to third
3

. store '99' to constant
99

. ? variable/another
3

. ? variable/3
33

. ? constant/3
♦♦♦SYNTAX ERROR***

?
? CONSTANT/3

display memory
MESSAGE (C) How's it going so far?
HOURS (N) 10
PAY:RATE (N) 17.35
VARIABLE (N) 99
ANOTHER (N) 33
THIRD (N) 3
CONSTANT (C) 99
T0TAL 07 VARIABLES USED 00054 BYTES USED

Entering data into a variable automatically tells dBASE II the data type—digits
store as numeric data, digits inside quotes store as characters. You cannot mix
data types in dBASE II operations. A syntax error occurred in the previous
example because a character string was divided by a number.

The last command in the previous example is another form of DISPLAY that
you’ll find useful. You can also LIST MEMORY.

You can eliminate a memory variable by typing RELEASE <name>, or you
can get rid of all the memory variables by typing RELEASE ALL.

2-6 dBASE II User's Guide

Type the following (you may want to ERASE the screen first):

DISPLAY MEMORY
RELEASE Another
DISPLAY MEMORY
RELEASE ALL
DISPLAY MEMORY

When naming variables, try to make the meaning obvious.

Another tip: If you use only nine characters for database field names, when
you want to use the name as a memory variable, you can do so by putting an
M in front of it. What it stands for will be clearer when you come back to
clean up your programs than if you invented a completely new and different
name.

dBASE H OPERATORS 2.3

Operators are manipulations that you tell dBASE II to perform on your data.
Some of them will be familiar; others may take practice.

ARITHMETIC OPERATORS

Arithmetic operators should be the most familiar. They generate arithmetic
results, as listed in Exhibit 2a.

Adding Expressions to Commands 2-7

Exhibit 2a: Arithmetic Operators

OPERATOR MEANING

() Parentheses for grouping.

* Multiplication.

/ Division.

+ Addition.

— Subtraction.

dBASE II evaluates, arithmetic operators in a sequence of precedence. The
order is—parentheses; multiply and divide; add and subtract. Operators with
equal precedence are evaluated from left to right. Here are some examples:

17/33*72 + 8 = 45.09
17/(33*72 + 8) = 0.00644
17/33*(72 + 8) = 41.21

(Divide, multiply then add.)
(Multiply, add then divide.)
(Divide, add then multiply.)

RELATIONAL OPERATORS

Relational operators make comparisons, and then generate logical results based
on whether die comparison is True or False. The relational operators are listed
in Exhibit lb.

USE Names
LIST FOR Zip:Code < = ' 70000'
LIST FOR Address <> ' 123'
LIST FOR Name - ' HOWSER'

Practice using arithmetic and relational operators in expressions by typing the
following:

2-8 dBASE II User’s Guide

. list for zip:code < --- '70000'
00003 DESTRY, RALPH 234 Mahogany St. Deerfield FL 33441
00004 EDMUNDS, JIM 392 Vicarious Way Atlanta GA 30328
00008 HOWSER, PETER 678 Dusty Rd. Chicago IL 60631
00010 JENKINS, TED 210 Park Avenue New York NY 10016
. list for address <>• '123'
00002 CLINKER, DUANE 789 Charles Dr. Los Angeles CA 90036
00003 DESTRY, RALPH 234 Mahogany St. Deerfield FL 33441
00004 EDMUNDS, JIM 392 Vicarious Way Atlanta GA 30328
00005 EMBRY, ALBERT 345 Sage Avenue Palo Alto CA 94303
00006 FORMAN, ED 456 Boston St. Dallas TX 75220
00007 GREEN, TERRY 567 Doheny Dr. Hollywood CA 90046
00008 HOUSER, PETER 678 Dusty Rd. Chicago IL 60631
00009 INDERS, PER 321 Sawtelle Blvd. Tucson AZ 85702
00010 JENKINS, TED 210 Park Avenue New York NY 10016
. list for name — 'howser'
00008 HOWSER, PETER 673 Dusty Rd. Chicago IL 60631

LOGICAL OPERATORS

The logical operators generate logical results (True or False). They are listed
in Exhibit 2b in the order of precedence within an expression (.NOT. is applied
before .AND., and so on).

Exhibit 2b: Logical Operators

OPERATOR MEANING

()

.NOT.

.AND.

.OR.

$

Parentheses for grouping.

Boolean not (unary operator).

Boolean and.

Boolean or.

Substring logical operator.

Adding Expressions to Commands 2-9

For example, the command:

LIST FOR (JobNumber=730 .OR. JobNumber=731);
.AND. (Bill:Date > -- ' 791001' .AND.;

Bill-Date <-- '791031')

This LIST command would display all tiie October, 1979 records for
costs billed against job numbers 730 and 731 in MONEYOUT.DBF,
if it had records in it. Note how the command line was extended with sem-
icolons. When the example command is entered, dUBASE II asks the following
questions about each record:

1. Is JobNumber equal to 730 (T or F)?

2. Is JobNumber equal to 731 (T or F)?

3. Is BilkDate greater than or equal to ' 791001' (T or F)?

4. Is Bill-Date less than or equal to ' 791031' (T or F)?

dBASE II then performs three logical tests (.OR., .AND., .AND.) before
deciding whether to display the record. Parentheses function as logical oper
ators just as they do in arithmetic expressions.

Because of the first .AND., dBASE II displays records only when the condi
tions in both parenthetical statements are true—when JOBNUMBER is 730
or 731. Then dBASE II must check the contents of the BILL-DATE field to
evaluate the second sub-expression. If the contents of the field are between
791001 and 791031, inclusive, this expression is true, too, and the record will
be displayed. Otherwise, the complete expression is false and dBASE II skips
to the next record, where it performs the same evaluation.

Try using some logical operators with NAMES.DBF. Type the following (the
word ALL is optional):

USE Names
DISPLAY ALL FOR Zip:Code > ' 5' .AND. ZlpzCode < ' 9'
DISPLAY ALL FOR Name < ' F'
DISPLAY ALL FOR Address > '400' .AND. Address < '700'
DISPLAY ALL FOR Address > '400' .OR. Address < '700'

2-10 dBASE II User's Guide

. use names

. display all for zip: code > '5' .and. zip : code < ' 9'
00006 FORMAN, ED 456 Boston St. Dallas TX 75220
00008 H0WSER, PETER 678 Dusty Rd. Chicago IL 60631
00009 INDERS, PER 321 Sawtelle Blvd. Tucson AZ 85702

. display all for name! < ' r
00001 ALAZAR, PAT 123 Crater Rd. Everett WA 98206
00002 CLINKER, DUANE 789 Charles Dr. Los Angeles CA 90036
00003 DESTRY, RALPH - 234 Mahogany St. Deerfield FL 33441
00004 EDMUNDS, JIM 392 Vicarious Way Atlanta GA 30328
00005 EMBRY, ALBERT 345 Sage Avenue Palo Alto CA 94303

. display all for address :> ’400' .and . address < ' 700'
00006 FORMAN, ED 456 Boston St. Dallas TX 75220
00007 GREEN, TERRY 567 Doheny Dr. Hollywood CA 90046
00008 H0WSER, PETER 678 Dusty Rd. Chicago IL 60631

. display all for address :> '400' .or. address < '700'
00001 ALAZAR, PAT 123 Crater Rd. Everett WA 98206
00002 CLINKER, DUANE 789 Charles Dr. Los Angeles.CA 90036
00003 DESTRY, RALPH 234 Mahogany St. Deerfield FL 33441
00004 EDMUNDS, JIM 392 Vicarious Way Atlanta GA 30328
00005 EMBRY, ALBERT 345 Sage- Avenue Palo Alto CA 94303
00006 FORMAN, ED 456 Boston St. Dallas TX 75220
00007 GREEN, TERRY 567 Doheny Dr. Hollywood CA 90046
00008 H0WSER, PETER 678 Dusty Rd. Chicago IL 60631
00009 INDERS, PER 321 Sawtelle Blvd. Tucson AZ 85702
00010 JENKINS, TED 210 Park Avenue New York NY 10016

Notice that the conditional expression in the last DISPLAY command selected
all the records instead of a few. To guard against this kind of non-selective
“selection,” think through your expressions carefully.

THE $ SUBSTRING LOGICAL OPERATOR ~~ ~

The $ substring logical operator has powerful search capabilities. The format

<substring> $ <string>

Adding Expressions to Commands 2-11

The $ operator searches for the substring on the left within the string on the
right. Either or both terms may be string variables or string constants. To see
how this works, type the following:

USE Names
LIST FOR 'EE' $ Name
LIST FOR '7' $ Address
LIST FOR 'CA' $ State
? 'oo' $ 'Hollywood'
GO 5
DISPLAY
? State $ "CALIFORNIA"

. use names

. list for 'ee' $ name
00007 GREEN, TERRY 567 Doheny Dr. Hollywood CA90046
. list
00002

for '7' N address
CLINKER, DUANE 789 Charles Dr. Los Angeles CA90036

00007 GREEN, TERRY 567 Doheny Dr. Hollywood CA90046
00008 H0WSER, PETER 678 Dusty Rd. Chicago IL60631
. list
00002

for 'ca' § state
CLINKER, DUANE 789 Charles Dr. Los Angeles CA90036

00005 EMBRY, ALBERT 345 Sage Avenue Palo Alto CA94303
00007 GREEN, TERRY 567 Doheny Dr. Hollywood CA90046

. ? ’oo' V ’hollywood'

.T.

. go 5

. display
00005 EMBRY, ALBERT 345 Sage Avenue Palo Alto CA94303
. ? state $ ‘CALIFORNIA‘
.T.

If you include the state as well as the city in a database’s ADDRESS field,
you could use the substring function in an expression to select the state you
want. For example, to call out names within a specific state, you could type
the following:

COMMAND FOR XX 5 Address

where: XX is the abbreviation for the state you want.

2-12 dBASE II User’s Guide

STRING OPERATORS

String operators generate string results, concatenating or joining character
strings as listed in Exhibit 2c.

Exhibit 2c: String Operators

OPERATOR

+

MEANING

Concatenates strings exactly.

Concatenates strings and moves blanks.

Both + and - join two strings. The plus sign joins the strings exactly as they
are found. The minus sign moves the trailing blanks in each string to the end
of the output string. The blanks are not eliminated, but they do not show up
between the strings being joined.

To see how concatenation works, type the following:

USE Names
? Name + Address
? Name - Address
? ' The name in this record is ' + Name;
- ' and the address is ' + Address

. use names

. ? name + address
ALAZAR, PAT 123 Crater Rd.
. ? name — address
ALAZAR, PAT123 Crater Rd.
. ? ’The name in this record is ’ 4- namei-' ;

arid' the address is ' + address’
The name in this record is ALAZAR;

PAT and the address is 123 Crater Rd.

Adding Expressions to Commands 2-13

To eliminate trailing blanks, you can use the TRIM function. The format is—

STORE TRIM(<variable>) TO <variable>

As an example, to eliminate the blanks following the characters of the name,
you could have typed STORE TRIM (Name) TO Name.

To eliminate all of the trailing blanks in the example, type STORE TRIM(Name
— Address) TO Example.

2.4 CHANGING AN EMPTY DATABASE
STRUCTURE (MODIFY)

WARNING: The MODIFY STRUCTURE command destroys the database.
Please follow instructions carefully.

When there is no data in your database, the MODIFY command is the fastest
and easiest way to add, delete, rename, resize or otherwise change the database
structure. MODIFY destroys any data in the database, so don’t use it after
you’ve entered data. Later you’ll learn a way to do so, safely.

You’ll work with the empty file MONEYOUT.DBF created at the end of
Chapter 1. A possible change would be to rename JOBNUMBER to JOB:NMBR
so that the abbreviation is consistent with EMPrNMBR and BILLrNMBR.
Type the following:

USE MoneyOut
LIST STRUCTURE
MODIFY STRUCTURE
y (in response to the question)

2-14 dBASE II User’s Guide

. use moneyout

. list structure
STRUCTURE FOR FILE: MONEYOUT.DBF
NUMBER OF RECORDS: 00000
DATE OF LAST UPDATE: 00/00/00
PRIMARY USE DATABASE

. modify structure
MODIFY ERASES ALL DATA RECORDS... PROCEED? (Y/N) y

FLD NAME TYPE WIDTH DEC
001 Check:Date C 007
002 Check:Nmbr C 005
003 Client C 003
004 JobNumber N 003
005 Name C 020
006 Descrip C 020
007 Amount N 009 002
008 Bill:Date C 007
009 Bill:Nmbr C 007
010 Hours N 006 002
Oil Emp:Nmbr
T0TAL

N 003
00091

la MODIFY mode, dBASE II erases the screen and lists the first 16 (or fewer)
fields in the database. For this example, use ALT-X to move down one field.
Then type in the new field name over the old one (use a space to blank out
the extra letter).

You can exit MODIFY in either of two ways. ALT-W saves the changes to the
database structure on disk and resumes normal dBASE II operation (the dot
prompt displays). ALT-Q quits MODIFY mode without making the changes.
ALT-Q does not destroy the original database, but it is always safest to have
a backup file (see the next section).

Adding Expressions to Commands 2-15

2.5 DUPLICATING DATABASES AND
STRUCTURES (COPY)

You can easily duplicate a file without going back to the operating system.
Type the following:

2
USE Names
COPY TO Temp
USE Temp
DISPLAY STRUCTURE
LIST

. use names

. copy to temp
00010 RECORDS COPIED
. use temp
. display structure
STRUCTURE FOR FILE:TEMP.DBF
NUMBER OF RECORDS: 00010

T0TAL 00063

DATE OF LAST UPDATE:
PRIMARY USE DATABASE

00/00/00

FLD NAME TYPE WIDTH DEC
001 NAME C 015
002 ADDRESS ■ C 020
003 CITY C 020
004 STATE c 002
005 ZIP:CODE c 005

. list
00001 ALAZAR, PAT 123 Crater Rd. Everett WA 98206
00002 CLINKER, DUANE 789 Charles Dr. Los Angeles CA 90036
00003 DESTRY, RALPH 234 Mahogany St. Deerfield FL 33441
00004 EDMUNDS, JIM 392 Vicarious Way Atlanta GA 30328
00005 EMBRY, ALBERT 345 Sage Avenue Palo Alto CA 94303
00006 FORMAN, ED 456 Boston St. Dallas TX 75220
00007 GREEN, TERRY 567 Doheny Dr. Hollywood CA 90046
00008 HOWSER, PETER 678 Dusty Rd. Chicago IL 60631
00009 INDERS, PER 321 Sawtelle Blvd. Tucson AZ 85702
00010 JENKINS, TED 210 Park Avenue New York NY 10016

2-16 dBASE II User’s Guide

WARNING: When you COPY to an existing file name, dBASE II writes over
the file and destroys the old data.

COPY TO TEMP created a new database called TEMP.DBF, identical to
NAMES.DBF, with the same structure and data.

The COPY command can be expanded even further—

COPY [STRUCTURE] TO <filename> [FIELD <llst>]

With an expanded COPY command, you can copy only the structure or just
part of the structure to another file. Type the following:

USE Names
COPY STRUCTURE TO Temp
USE Temp
DISPLAY STRUCTURE

. use names

. copy structure to temp

. use temp

. display structure
STRUCTURE FOR FILE: TEMP.DBF
NUMBER OF RECORDS: 00000
DATE OF LAST UPDATE: 00/00/00
PRIMARY USE DATABASE
FLD NAME TYPE WIDTH DEC
001. NAME C 015
002 ADDRESS C 020
003 CITY C 020
004 STATE C 002
005 ZIP:CODE C 005
T0TAL 00063

Adding Expressions to Commands 2-17

You can copy a portion of the structure by listing only the fields you want in
the new database. Type—

USE Names
COPY STRUCTURE TO Temp FIELDS Name, State
USE Temp
DISPLAY STRUCTURE

2
. use names
. copy structure to temp fields name, state
. use temp
. display structure
STRUCTURE FOR FILE: TEMP.DBF
NUMBER OF RECORDS: 00000
DATE OF LAST UPDATE: 00/00/00
PRIMARY USE DATABASE
FLD NAME TYPE WIDTH DEC
001 NAME C 015
002 STATE C 002
T0TAL 00018

Advanced programmers can use COPY to give their programs access to a
database structure. Type—

USE Names
COPY STRUCTURE TO New EXTENDED
USE New
LIST

2-18 dBASE II User's Guide

. use names

. copy to new structure extended
00005 RECORDS COPIED
. use new
. display structure
STRUCTURE FOR FILE: NEW.DBF
NUMBER OF RECORDS: 00005
DATE OF LAST UPDATE: 00/00/00
PRIMARY USE DATABASE

WIDTH DECrirrn
001 FIELD : NAME C 010
002 FIELD .TYPE C 001
003 FIELD : LEN N 003
004 FIELD:DEC N 003
T0TAL 00018
. list
00001 NAME C 15 0
00002 ADDRESS C 20 0
00003 CITY C 20 0
00004 STATE C 2 0
00005 ZIP:CODE C 5 0

The NEW. DBF database records describe the NAMES database structure, and
an application program has direct access to this information (see REVIEW.PRG,
Appendix A).

Alternatively, a file with the same structure as NEW. DBF could be embedded
in a program so that a program operator could enter the structure for a file
without learning dBASE IL The program would then create the database with
the following command:

CREATE <datafile> FROM <structurefile>

Adding Expressions to Commands 2-19

2.6 ADDING AND DELETING FIELDS
WITH DATA IN THE DATABASE
(COPY, USE, APPEND)

As you expand your applications for dBASE II, you’ll probably want to add
or delete fields in your databases.

MODIFY STRUCTURE used alone destroys the data in your database, but
you can use it with COPY and APPEND to add and delete fields at will.

The strategy for changing the structure of a filled database is to copy the
structure to a temporary file, and then bring the data from the old file into the
new structure.

As an example, use the NAMES and ORDERS files to list the orders placed
by a given customer. You could easily make the list if the NAMES file had a
customer number field to match the ORDERS file. To do so without destroying
the records you already have, type the following:

USE Names
COPY STRUCTURE TO Temp
USE Temp
MODIFY STRUCTURE
y (in answer to the prompt)

Use the full-screen editing features (see Reference Chapter 7) to move down
to the first blank field. Type in the changes in the appropriate columns (name
is CUSTNMBR, data type is C, length is 9). Now type ALT-W to save the
changes and exit to the dBASE II dot prompt.

DISPLAY STRUCTURE and check that it’s right. If it’s not right, MODIFY
STRUCTURE again. Then you can add the data from NAMES by typing—

APPEND FROM Names

You could also have changed field sizes because the APPEND command
transfers data to fields with matching names.

2-20 dBASE II User’s Guide

. display structure
STRUCTURE FOR FILE: TEMP.DBF

NUMBER OF RECORDS: OOO1O
DATE OF LAST UPDATE: 00/00/00
PRIMARY USE DATABASE
FLD NAME TYPE WIDTH DEC
001 NAME C 015
002 ADDRESS C 020
003 CITY C 020
004 STATE C 002
005 ZIP:CODE C 005
006 CUSTNMBR C 009
T0TAL 00072

2.

Your new file TEMP. DBF should now have the new field you wanted to add
and all of the old data. DISPLAY STRUCTURE, then LIST to make sure
that the TEMP file is correct.

If the data is correct, you can finish up by typing—

COPY TO Names
USE Names

The COPY command writes over both the old structure and the old data.
After displaying and listing the new NAMES file, you can DELETE FILE
Temp.

Adding Expressions to Commands 2-21

To summarize, use the following sequence to add or delete fields in a database:

USE <oldfile>
COPY STRUCTURE TO <newfile>
USE <newfile>
MODIFY STRUCTURE
APPEND FROM <oldfile>
COPY TO <oldfile>

. use names

. copy structure to temp

. use temp

. modify structure
MODIFY ERASES ALL DATA RECORDS...PROCEED? (Y/N) y

. append from names
00010 RECORDS ADDED

. copy to names
00010 RECORDS COPIED

. use names

. display structure
STRUCTURE FOR FILE: NAMES.DBF
NUMBER OF RECORDS: 00010
DATE OF LAST UPDATE: 00/00/00
PRIMARY USE DATABASE
FLD NAME TYPE WIDTH DEC
001 NAME C 015
002 ADDRESS C 020
003 CITY C 020
004 STATE c 002
005 ZIP:CODE c 005
006 CUSTNMBR c 009
♦♦TOTAL** 00072

2-22 dBASE II User's Guide

CP/M-86, MS-DOS, AND OTHER 2.7
NON-dBASE II DATA FILES
(COPY, APPEND)

You can change dBASE II information into a form compatible with other
processors and systems (such as BASIC, Pascal, FORTRAN, PL/1). dBASE
II can also read data files created with these processors.

With CP/M-86 and MS-DOS, the System Data Format (abbreviated as SDF
in dBASE II) includes a carriage return and line feed after every line of text.
To create a compatible data file (for word processing, for example) from one
of your databases, you use another form of the COPY command. Type—

USE Names
COPY TO SysData SDF

This command creates a file called SYSDATA. TXT. Now, QUIT dBASE II
and use your word processor to look at the file. You’ll find that you can work
with it exactly as if you had created it under CP/M-86 or MS-DOS.

The System Data Format also allows dBASE II to work with data from
CP/M-86 or MS-DOS files. However, the data must match the structure of
the database that uses it.

2

Adding data to an existing file from a system file takes only seconds. For
example, if you use a word processor to create a file called NEWDATA.TXT,
you can add it to the NAMES .DBF file with the APPEND SDF command.
The spacing of the data must match the structure of the database.

The NEWDATA.TXT file might contain the following information:

FREITAG, JEAN 54 Munchkin Ave. Houston TX77006
GOULD, NICOLE 73 Radnor Way Radnor PA19089
PETERS, ALICE 676 Wacker Dr. Chicago IL60606
GREEN, FRANK 1 Spicer Ave. Tampa FL33622

(15) (20) (20) (2) (5)

Adding Expressions to Commands 2-23

2

Then you can add the data from NEWDATA to NAMES by typing—

USE Names
APPEND FROM NewData.TXT SDF

While dBASE II automatically generates extensions for files it creates, you
must specify the .TXT extension when APPENDing from a system data file.

The procedure is similar for non-dBASE II files that use different delimiters.
One common data file format uses commas between fields and single quotes
around strings to delimit the data. To create or use these types of data files,
use the word DELIMITED instead of SDF. To see how this works, type—

COPY TO Temp DELIMITED

Then go back to your operating system to look at your data.

If your system has a different delimiter, you can specify it in the command
DELIMITED WITH <delimiter>. For example, if your system uses only
commas and nothing around strings, use—

DELIMITED WITH ,

The full forms of COPY and APPEND for working with system data files
are-—

[SDF]
COPY [<scope>] TO <filename> [FIELD <list>] [STRUCTURE] [FOR <expression>]

[DELIMITED [WITH <dellmlter>]]

APPEND FROM <filename.TXT> [SDF] [FOR <expression>]
[DELIMITED [WITH <dellmiter>]]

You can make both APPEND and COPY selective by using a conditional
expression, and you can specify the scope of COPY as for other dBASE II
commands.

With the APPEND command, any fields used in the FOR expression must
exist in the database where the data is being transferred.

2-24 dBASE II User's Guide

RENAMING DATABASE FIELDS 2.8
(COPY, APPEND)

APPEND transfers data from one file to another for matching fields. If a field
name in the FROM file is not in the file in USE, the data is not transferred
from that field.

However, the full form does allow you to transfer only data, and you can use
this feature to rename the fields in a database. If you want to rename the
CUSTNMBR field to CUSTCODE in NAMES.DBF, type—

USE Names
COPY TO Temp SDF
MODIFY STRUCTURE
APPEND FROM Temp.TXT SDF

(data only to Temp.TXT)

(after changing field name)

Now when you DISPLAY STRUCTURE, the last field will be called CUST
CODE. Don’t forget to change the name of the CUSTNMBR field in your
ORDERS database so that the fields match.

. use names

. copy to temp sdf
00014 RECORDS COPIED
. modify structure
MODIFY ERASES ALL DATA RECORDS... PROCEED? (Y/N) Y

. append from temp.txt sdf
00014 RECORDS ADDED

Data in a .TXT file created using the SDF (or DELIMITED) option is kept
in columns spaced like the fields were in the original file. While you can edit
a .TXT file with your word processor, this can be dangerous. Do not change
field positions or sizes. dBASE II saves data by position, not by name. If you
change the field sizes when you modify the structure, you will destroy your
database when you bring the saved data back into it.

When you COPY data to a .TXT file, you can use the full command to specify
the scope, fields, and conditions (see Chapter 1).

Adding Expressions to Commands 2-25

2.9 MODIFYING DATA RAPIDLY
(REPLACE, CHANGE)

Changes can be made rapidly to any or all of the records using the following
command:

REPLACE [<scope>] <fieid> WITH <data> [, <fleld> WITH <data>,...]
[FOR <expression>]

This is an extremely powerful command because it REPLACES a field-that-
you-name WITH whatever-you-write-in. You can REPLACE more than one
field by using a comma after the first combination, then listing the new fields
and data as shown in the center brackets in the command format.

The data named in the REPLACE command can be specific new information
(including blanks), or it can be an operation, such as deducting state sales
tax from all your bills because you have a resale number (REPLACE ALL
Amount WITH Amount/1.06).

You can also make the replacement conditional by specifying your conditions
in a FOR phrase.

To show how this works, add some data to both the NAMES and ORDERS
database files.

First, USE NAMES then type EDIT 1. Now enter 1001 in the CUSTCODE
field, using the full-screen editing features to get into position. Use ALT-C
to move to the next record. Customer codes should be entered as four-digit
numbers, with the record number as the last two digits (1001, 1002, 1003,
and so on).

Now USE ORDERS and APPEND the following order information (do not
type the column headings):.

(Oust) (Item) (Qty) (Price)
1012 38567 5 .83
1003 83899 34 .12
1009 12829 7 .17
1012 73833 23 1.47

2-26 dBASE II User's Guide

Then enter the following commands:

USE Orders
REPLACE All Amount WITH Qty*Price
LIST

. use orders

. replace all amount with qty*prioe
00004 REPLACEMENT(S)
. list
00001 1012 38567 5 0°. 83 4.15
00002 1003 83899 34 0.12 4.08
00003 1009 12829 7 0.17 1.19
00004 1012 73833 23 1.47 33.81

You’ll also find REPLACE useful in command files to fill in a blank record
that you have appended to a file. You can use data from memory variables
in your program to fill in the blank fields.

You can make changes to a few fields in a large number of records rapidly
by using—

CHANGE [<scope>] FIELD <llst> [FOR <expression>]

The scope is the same as for other dBASE II commands. At least one field
must be named; you can list several field names separated by commas. This
command finds the first record that meets the conditions in the FOR expression,
then displays the record name and contents with a prompt. To change the data
in the field, type in the new information. To leave it the way it was, hit
<enter> or Return. If the field is blank and you want to add data, type a
space.

Once you have looked at all the listed fields within a record, you are presented
with the first field of the next record that meets the conditions you set. To
return to dBASE II, hit the Escape key.

Adding Expressions to Commands 2-27

. use names

. change field custcode

RECORD: 00001

CUSTCODE:
CHANGE? <sp>
TO 1001

CUSTCODE: 1001
CHANGE?<Return>

RECORD: 00002

CUSTCODE:
CHANGE?

2.10 ORGANIZING YOUR DATABASES
(SORT, INDEX)

Frequently, data records are entered in no particular order, as in the NAMES
database. Later you may want to reorganize your data without re-entering all
the records. With dBASE II you can organize a database by SORTing and
INDEXing it.

Files can be SORTed in ascending or descending order. The full command
is—

SORT ON <fieldname> TO <filename> [DESCENDING]

The fieldname is the key on which the file is sorted and may be character or
numeric (not logical). SORT works in ascending order, but you can specify
the descending option.

To sort on several keys, start with the least important key, then use a series
of sorts leading up to the major key. During sorting, dBASE II moves only
as many records as it must.

2-28 dBASE II User's Guide

To SORT the NAMES file so that the customers are in alphabetical order,
type—

USE Names
SORT ON Name TO Temp
USE Temp
LIST OFF
COPY TO Names

. use names

. sort on name to temp
SORT COMPLETE
. use temp
. keep list off
ALAZAR, PAT 123 Crater Rd. Everett WA 982061001
CLINKER, DUANE 789 Charles Dr. Los Angeles CA 900361002
DESTRY, RALPH 234 Mahogany St. Deerfield FL 334411003
EDMUNDS, JIM 392 Vicarious Way Atlanta GA 303281004
EMBRY, ALBERT 345 Sage Avenue Palo Alto CA 943031005
FORMAN, ED 456 Boston St. Dallas TX 752201006
FREITAG, JEAN 854 Munchkin Ave. Houston TX 770061011
GOULD, NICOLE 73 Radnor Way Radnor PA 190891012
GREEN, FRANK 441 Spicer Ave. Tampa FL 336221014
GREEN, TERRY 567 Doheny Dr. Hollywood CA 900441007
HOUSER, PETER 678 Dusty Rd. Chicago IL 606311008
INDERS, PER 321 Sawtelle Blvd. Tucson AZ 857021009
JENKINS, TED . 210 Park Avenue New York NY 100161010
PETERS, ALICE 676 Wacker Dr. Chicago IL 606061013
. copy to names
00014 RECORDS COPIED

Do not SORT a database to itself. A powerline “glitch” could destroy your
entire database. Instead, SORT to a temporary file, then COPY it back to the
original file after you’ve confirmed the data.

A database can also be INDEXed so that it appears to be sorted. INDEXed
files allow you to locate records quickly (typically within two seconds with
floppy diskettes).

Adding Expressions to Commands 2-29

The form of the INDEX command is—

INDEX ON <key (variable/expression)> TO <index filename>

The INDEX command creates a file with the new name and the extension
.NDX. Only the data within the key is sorted, although it appears that the
entire database has been sorted. The key may be a variable name or a complex
expression up to 100 characters long. It cannot be a logical field. To organize
the customer database by ZIP code, type—

USE Names
INDEX ON Zip:Code TO Zips
USE Names INDEX Zips
LIST

You can INDEX a database on multiple keys. For example, you could index
the NAMES database on three keys by typing—

INDEX ON Name + CustCode + State TO Compound

Numeric fields must be converted to character type by using the STR function
(described in more detail later). If CUSTCODE were a numeric field with 5
positions and 2 decimal places, the conversion would be performed like this:

INDEX ON Name + STR(CustCode,5,2) + State TO Compound

To take advantage of the speed built into an INDEX file, you must specify it
as part of the USE command—

USE <database name> INDEX cindex filename>

To keep your INDEX files up to date, you must USE them with the database
file whenever you work with the database. You can USE up to seven INDEX
files at one time with a database.

With the INDEX file in USE, any records that you APPEND will automatically
be indexed, except for appended blanks. After the APPEND BLANK com
mand, data that you add with the REPLACE command can be added to the
index by using the command INDEX with no qualifiers.

2-30 dBASE II User’s Guide

Changes made to key fields when you EDIT, REPLACE or PACK the database
are reflected in the index file in USE. Other index files for the same database
will not be correct.

Positioning commands (GO, GO BOTTOM, and so on) with an INDEX file
in use move you to positions on the index. GO BOTTOM, for example,
positions you at the last record in the index rather than the last record in the
database.

A major benefit of an INDEXed file is that you can use the FIND command
(described next) to locate records in seconds, even with large databases.

FINDING THE INFORMATION YOU 2.11
WANT (FIND, LOCATE)

If you know what data you are looking for, you can use the FIND command
(but only when your database is indexed, and the INDEX file is in USE).

Simply type—

FIND <character string>

where: the character string (with no quote marks) is all or part of the contents
of a field. The string can be as short as you like, but should be long enough
to make it unique. For example, the letters “th” occur in a large number of
words; “theatr” is much more limited.

Adding Expressions to Commands 2-31

Type the following:

USE Names INDEX Zips
FIND 10
DISPLAY
FIND 9
DISPLAY
DISPLAY Next 3

2

.use names index zips

.find 9

.display

.find 10

.display
00013 JENKINS, TED 210 Park Avenue New York NY 10016 1010

00002 CLINKER, DUANE 789 Charles Dr. Los Angeles CA 90036 1002
.display next 3
00002 CLINKER, DUANE 789 Charles Dr. Los Angeles CA 90036 1002
00010 GREEN, TERRY 567 Doheny Dr. Hollywood CA ,90044 1007
00005 EMBRY, ALBERT 345 Sage Avenue Palo Alto CA 94303 1005

If the key is not unique, dBASE II finds the first record that meets your
specifications. This may or may not be the one you’re looking for. If no record
exists with the key you are looking for, dBASE II displays NO FIND.

FIND can also be used with files INDEXed on multiple keys. A disadvantage
of a compound key (which may not be a disadvantage in your application) is
that you must use the keys inclusively from the left when you access the data.
That is, you can use the FIND command and just the NAME, or the NAME
and CUSTCODE, or all three fields, but not the STATE or CUSTCODE
alone. To do that, you would either have to use the LOCATE command
(described next), or have another file indexed on the STATE or CUSTCODE
field as the primary key.

When looking for specific kinds of data, use—

LOCATE [<scope>] [FOR <expression>]

2-32 dBASE II User’s Guide

Use the LOCATE command when you are looking for specific data in a file
that is not indexed on the key you are interested in (for example, you want
to LOCATE a state in a file that is indexed on zip codes).

If you want to search the entire database between your pointer and the end
of the file, you do not have to specify ALL, or position the pointer at the
start of the file (GO TOP) before the LOCATE command. If you are looking
for data in a character field, enclose the data in single quotes.

For an example of LOCATE, type the following:

USE Names
LOCATE FOR Name- ' GOU'
DISPLAY
LOCATE FOR Zlp:Code>' 8' .AND. Name < ' G'
DISPLAY Name, Zlp:Code

If a record isJbund that meets the conditions in your expression, dBASE n
signals you with: RECORD n. You can display or edit the record once it is
located.

If there may be more than one record that meets your conditions, type CON
TINUE to get the next record number—

CONTINUE
CONTINUE
CONTINUE

If dBASE II cannot find your record within the scope that you defined, it
displays END OF LOCATE or END OF FILE ENCOUNTERED.

Adding Expressions to Commands 2-33

2

. use names

. locate for name=’gou'
RECORD:00008
. display
00008 GOULD, NICOLE 73 Radnor Way Radnor PA 190891012
. locate for zip:code>’8' .and. name < ’G’
RECORD:00001
. display name, zip:code
00001 ALAZAR, PAT 98206
. continue
RECORD:00003
. continue
RECORD:00005
. continue
END OF FILE ENCOUNTERED

2.12 SUMMARIZING DATA (REPORT)

In most applications you will want data summaries of records that meet certain
specifications. With the REPORT command you can format and print out
tabulated data quickly and easily.

First select the database you want the report from, then create the custom
format by typing—

USE <database>
REPORT

dBASE II then presents a series of prompts to create a format for the report.
You specify the database fields you want, the report and column headings,
which columns should be totalled, and so on. The standard defaults are a
page offset of 8 columns from the left edge of the paper, 56 lines per page,
and a page width of 80 characters.

The NAMES and ORDERS databases used as examples so far don’t have
enough data in them to show you how powerful dBASE II can be, so now

2-34 dBASE II User's Guide

you will use MONEYOUT.DBF and other databases that are part of an existing
business system. (The entire system is given in Appendix A, including data
base structures and the command files that run it.)

For some realism in your practice sessions, you can create a database that
you would actually use in your business. Enter data in it, then substitute it
for MONEYOUT in the examples.

. use moneyout

. report
ENTER REPORT FORM NAME: JobCosts
ENTER OPTIONS, M = LEFT MARGIN, L=LINES/PAGE, W = PAGE WIDTH
PAGE HEADING? (Y/N) Y
ENTER PAGE HEADING: COST SUMMARY
DOUBLE SPACE REPORT? (Y/N) n
ARE TOTALS REQUIRED? (Y/N) y
SUBTOTALS IN REPORT? (Y/N) n
COL WIDTH,CONTENTS
001 10,Check:Date
ENTER HEADING: DATE
002 22,Name
ENTER HEADING: SUPPLIER
003 22,Descrip
ENTER HEADING: DESCRIPTION
004 12,Amount
ENTER HEADING: AMOUNT
ARE TOTALS REQUIRED? (Y/N) y
005 <Return>

PAGE NO. 00001

After you define all the contents of the report, hit <enter> or Return when
prompted with the next field number. dBASE II immediately starts the report
to show you what you have specified, and goes through the entire database
if you let it. To stop the report, hit the Escape key.

At the same time, dBASE II saves the format in a file with the extension
.FRM. You can use it again without having to repeat the dialog. The full
form of the command is—

REPORT FORM <formname> [<scope>]
[FOR <expression>] [TO PRINT]

Adding Expressions to Commands 2-35

where: formname is the name of the REPORT form file (extension FRM). If
the form file does not exist, dBASE II creates it. If no scope is specified, the
scope defaults to ALL.

With an existing form file you can make a report on a selected part of the
data by including a FOR phrase. For example, by typing—

REPORT FORM JobCosts FOR Job:Nmbr= 770

you get a listing of all the job costs for job number 770 without having to
redefine the format.

.report form jobcosts for job:nmbr=770

COST SUMMARY

PAGE NO. QQQD-L

DATE SUPPLIER DESCRIPTION AMOUNT
810113 LETTER FONT TYPE 177.00
810113 ABLE PRINTER MAILER 605.00
810113 MARSHALL, RALPH TYPE 37.10
810113 MARSHALL, RALPH LAYOUT 200.00
810113 SHUTTERBUGS, INC PHOTOGRAPHY 565.00
810113 MAGIC TOUCH RETOUCHING 56.00
T0TAL 1640.10

You can change the heading in your report by typing-—

SET HEADING TO <character string>

The string can be up to 60 characters and spaces, but no quote marks.

You can prepare the entire report as a hardcopy by adding TO PRINT at the
end of the command.

The report capability can be used for just about any business report, from
accounts payable (FOR Check:Nmbr= ' '), to auto expenses (FOR
Job:Nmbr= '4 ') to anything else you need.

2-36 dBASE II User’s Guide

AUTOMATIC COUNTING AND 2.13
SUMMING (COUNT, SUM)

la some applications, you won’t need to see the actual records, but will want
to know how many meet certain conditions, or what the total is for some
specified condition. (How many widgets do we have in stock? How many are
on back order? What is the total of our accounts payable?)

For counting, use—

COUNT [<scope>] [FOR <expression>]
[TO cmemory variable>]

The COUNT command can be used with none, some or all of the modifiers.
Unqualified, it counts all the records in the database. The scope can be limited
to one or a specified number of records.

The result of the count can be stored in a memory variable, which is created
when the command is executed if it did not already exist.

To get totals, use—

SUM <fieid(s)> [<scope>][FOR <expression>]
[TO < memory variable(s)>]

You can list up to five numeric fields to sum in the database in USE. If more
than one field is to be totalled, separate the field names by commas. You can
limit the records being totalled by using the scope and/or conditional expres
sions after the FOR (such as Client < > ' SEM' .AND. Amount > 10...).

If memory variables are used (separated by commas), remember that totals
are stored based on position. If you don’t want to store the last fields in
memory variables but do want to see what the amounts are, there’s no problem:
simply name the first few variables that you want. If there’s a gap (you want
to save the first, third and fourth field totals out of six), name memory variables
for the first four fields, then RELEASE the second one after the SUM is done.

Adding Expressions to Commands 2-37

. use moneyout

. count for amount <100 to small
COUNT = 00067
. sum amount for job:nmbr = 770 to cost
1640.10
. display memory
SMALL (N) 67
COST (N) 1640 °10
T0TAL 02 VARIABLES USED 00012 BYTES USED

2.14 SUMMING DATA AND ELIMINATING
DETAILS (TOTAL)

TOTAL works like the subtotal capability in the REPORT command, except
that the results are placed in a database rather than being printed out. The
form of the TOTAL command is—

TOTAL ON <key> TO <database> [FIELDS <list>]
[FOR <condltions>]

The database containing the data being TOTALed must be presorted or indexed
on the key used in the TOTAL command.

The TOTAL command is usefill for eliminating detail and providing sum
maries. The screen shows what happens with MONEYOUT—-

USE MoneyOut
INDEX ON Job:Nmbr TO Jobs
USE MoneyOut INDEX Jobs
TOTAL ON Job:Nmbr TO Temp FIELDS Amount FOR

Job:Nmbr >699;
.AND. Job:Nmbr < 800

USE Temp
LIST

The new database has one entry for each job number, and a total for all the
costs against that job number in our MONEYOUT database.

2-38 dBASE II User’s Guide

TOTAL transfers all the fields if the database named did not exist, but uses
the structure of an existing database. One problem with the new database is
that only two of the fields contain useful information. This can be handled
with one more command line. You can limit the fields in the new database
by creating it first, before you enter the TOTAL command—

COPY TO Temp FIELDS Job:Nmbr, Amount

Now when you TOTAL to TEMP, the new database contains only the job
numbers and totals. Try it with your database. 2:

This technique can summarize quantities of parts, accounts receivable or any
other ordered (SORTed or INDEXed) information.

. use moneyout

. index on job’.nmbr to jobs
00093 RECORDS INDEXED
. use moneyout index jobs
. total on job:nmbr to temp fields amount for job:nmbr > 699;

.and. job:nmbr < 800
00025 RECORDS COPIED
. use temp
. list
00011 810129 3148 SML 779 138.00 LETTER FONT TYPE
810129 2633 0.00 0
00012 810129 3152 SML 782 59.49 MAGIC TOUCH BACKGROUND
TONE 810129 429 0 .00 0
00013 810129 3148 SMM 784 46.00 LETTER FONT TYPE
810129 3003 0.00 0
00014 810129 3148 DOC 786 251.00 LETTER FONT TYPE
810129 2764 0.00 0

(Partial listing)

Adding Expressions to Commands 2-39

CREATING AND WORKING WITH
COMMAND FILES

Once you understand how to write expressions (covered in Chapter 2), you
are very close to being able to write programs. There are four basic program
ming structures you can use to get a computer to do what you want—

► Sequence

► Choice/Decision

► Repetition

► Procedures

You’ve already seen that dBASE ll processes your commands sequentially in
the order you give them. This section explains how you make choices (IF.. .ELSE),
how you can make the computer repeat a sequence of commands (DO WHILE..),
and how to use subfiles of commands (procedures).

Then examples will show you how to use these simple tools to write command
files (programs) that will solve your applications problems.

SETTING UP A COMMAND FILE
(WRITING YOUR FIRST PROGRAM)

3.1

The commands introduced so far can accomplish a great deal, yet they only
scratch the surface of the capabilities of dBASE II. Its full power emerges
when you set up command files. Then the commands you enter once can be
repeated over and over.

When you create a command file, you are programming the computer. Pro
gramming with English-like commands of dBASE H is simple. Also, dBASE
II is a relational database management system in which you work with incre
ments of data and information, rather than bits and bytes.

Creating and Working with Command Files 3-1

A dBASE H command file, like a computer program, lists commands that you
want performed; command files must have a .PRG file extension. When you
run a command file, dBASE ll starts at the top of the list and processes the
commands one at a time through the end.

Other computer languages operate the same way. In BASIC the sequence is
visible because each program line is numbered. In other languages (dBASE
II among them), the sequence is implied and the computer processes the first
line on the page, then the second line, and so on. Some languages use sepa
rators such as colons between command statements; dBASE II uses the carriage
return that terminates each command line.

The only time the sequence is not followed is when the computer is specifically
told to do something else. Usually, this “branching” is based on stated con
ditions; the computer must make a decision based on expressions or conditions
that you have set up in the command file.

For practice, create a command file.

You use the dBASE II command MODIFY COMMAND to create command
files. You can also create command files with a text editor (such as ED in
CP/M-86 or EDEIN in MS-DOS) or with a word processor such as WordStar
in program mode, but using dBASE II is easy and fast.

Type—

MODIFY COMMAND Test

This command puts dBASE II into MODIFY COMMAND mode. The screen
clears for you to write a command file (a series of commands) using the full
screen editing features (described in Chapter 2 and in Reference Chapter 7).

Enter the following short program:

USE Names
COPY Structure TO Temp FIELDS Name, ZipCode
USE Temp
APPEND FROM Names
COUNT FOR Name -- 'O' TOO
DISPLAY MEMORY
? ' We have just successfully completed our first command file.

3-2 dBASE II User’s Guide

Save the TEST.PRG command file by entering ALT-W to store the file and
return to the dot prompt. Then run the TEST program by typing—

DO Test

OOPS! The TEST.PRG command file crashes if you entered it exactly as
shown here. To correct the error (ZipCode should be Zip:Code), type MOD
IFY COMMAND Test again. dBASE II brings up the command file and you
can make the change using full-screen operations.

Once you are writing command files of your own, you’ll find the built-in editor
(MODIFY COMMAND mode) is one of the most convenient features of
dBASE IL. 3

The command file created here is trivial, but it shows you how you can perform
a sequence of commands from a file with a single command. Running com
mand files is similar to using .COM files (MS-DOS) or .CMD files (CP/M-
86) in your operating system.

To run a dBASE II command file from the operating system (from the A> or
B> prompt), type—

dBASE <filename>

where: filename is the name of a command file, including the .PRG extension.

MAKING CHOICES (IF..ELSE) 3.2

Choices and decisions are made in dBASE II with IF. .ELSE. .ENDIF. You use
these words much as you do in ordinary English: IF I’m hungry, I’ll eat, (OR)
ELSE I won’t. With the dBASE II program, you use the identical construction,
but you must use words that the program understands.

Creating and Working with Command Files 3-3

3

SIMPLE DECISIONS

If only a single decision is to be made, you can drop the ELSE and use this
form:

IF condition [.AND. cond2 .OR. cond3]
do this command
[cmd2]
[....]

ENDIF

The condition can be a series of expressions (to a maximum of 254 characters)
that can be logically evaluated as true or false. Use the logical operators (see
Chapter 2) to tie them together. Using the MONEYOUT file, the following
decision could be set up:

IF JobtNmbr -- ' 730' .AND. Amount. > 99.99;
.OR. Supplier - ' MAGIC TOUCH';
.OR. BilkDate > '791231'

do this command
[cmd 2]
l - I

ENDIF

If all the conditions are met, dBASE II performs the commands listed between
the IF and the ENDIF (in sequence), then goes to the statement following the
ENDIF. If the conditions are not met, dBASE II skips to the first command
following the ENDIF.

3-4 dBASE II User’s Guide

TWO CHOICES

If there are two alternate courses of action that depend on the condition(s),
use the IE .ELSE statement this way:

IF condition(s)
do command(s) 1

ELSE
do command(s) 2

ENDIF

dBASE II does either the first set of commands or the second set, then skips
to the command following the ENDIF.

MULTIPLE CHOICE

Frequently, you must choose from a list of alternatives. An example might be
the use of a screen menu to select one of several different procedures that you
want to perform.

For multiple choice, use the IF. .ELSE. .IF construction. This is the same IF. .ELSE
described earlier, but you use it in several levels (called nesting), as shown
here:

IF conditions 1
do commands 1

ELSE
IF conditions 2

do commands 2
ELSE

IF conditions 3
do commands 3

ELSE

ENDIF 3
ENDIF 2

ENDIF 1

Creating and Working with Command Files 3-5

This structure can be nested as far as needed to choose the one correct set of
commands from the list of alternatives. Nested IFs are used frequently in the
working accounting system, Appendix A.

Remember that each IF must have a corresponding ENDIF or your program
will bomb. Notice that the ENDIFs in the example are followed by numbers
or labels. dBASE II does not read the rest of the line after an ENDIF, so you
can add identification labels like the ones in the example to help remember
which IF the ENDIF matches.

3
3.3 REPEATING A PROCESS (DO WHILE..)

Repetition is one of the major advantages of a computer. It can perform a task
over and over without getting bored or making mistakes. Repetition is handled
in most computer languages with the DO WHILE construction—

DO WHILE conditions
do command(s)

ENDDO

While the conditions you specify are logically true, the commands listed will
be performed. Remember that these commands must eventually change the
conditions, or the loop will continue forever.

When you know how many times you want the process repeated, you can use
the IE .ELSE. .ENDIF structure lite this:

STORE 1 TO Index
DO WHILE Index <11

IF Item 303 ' '
SKIP
LOOP <

ENDIF blank
DO ProcessA
STORE Index+1 TO Index

ENDDO ten times

* Start counter at 1
* Process 10 records
* If there is no data.
* skip the record and
* go back to the DO WHILE,
* without doing ProcessA
* Do file ProcessA.PRG
* Increase counter by 1

3-6 dBASE II User’s Guide

In this example, if there is data in the ITEM field, dBASE II performs the
instructions in the command file PROCESSA.PRG, then returns to where it
was in this command file. It increases the value of the variable INDEX by 1,
then tests to see if this value is less than 11. If it is, dBASE II proceeds through
the DO WHILE instructions again. When the counter passes 10, dBASE II
skips the loop and performs the next instruction after the ENDDO.

The LOOP instruction is used to stop a sequence and cause dBASE II to go
back to the start of the DO WHILE that contains the instruction.

In this case, if the ITEM field is blank, the record is not processed because
the LOOP command moves dBASE II back to the DO WHILE Index <11.
The record with the blank is not counted, since the program bypasses the
command line that adds 1 to the counter.

The problem with LOOP is that it short-circuits program flow, so that it’s
difficult to follow program logic. The best practice is to avoid using the LOOP
instruction entirely.

PROCEDURES (SUBSIDIARY COMMAND 3.4
FILES)

Being able to create standard procedures that can be used in many programs
simplifies computer programming. In BASIC, you can store standard proce
dures in command files that can be called by other command files.

Creating and Working with Command Files 3-7

PROCESS A is another command file (with a .PRO extension). The contents
of this command file might be—

IF Status = M
DO PayMar

ELSE
IF Status --- S

DO PaySingle
ELSE

IF Status --- H
DO PayHouse

ENDIF
ENDIF

ENDIF
RETURN

Once again, you can call out additional procedures which can themselves call
other files. Up to 16 command files can be open at a time, so if a file is in
USE, dBASE II can open up to 15 other files. Some dBASE II commands use
additional files in their operation (REPORT, INSERT, COPY, SAVE, RESTORE
and PACK use one additional file; SORT uses two additional files).

A file is closed when the end of the file is reached, or when the RETURN
command is issued by a command file. The RETURN command returns con
trol to the command file that called it (or to the keyboard if the file was run
directly). Ending a command file with the RETURN command is not strictly
necessary, but it is good programming practice.

Notice that the command lines are indented in the examples; each IF is indented
the same amount as the ELSE and/or ENDIF that matches it. You don’t have
to indent your command files, but you’ll find that indenting keeps the program
logic clear, especially when you have nested structures within other structures.
Using all uppercase for the dBASE II commands, and both upper- and low
ercase for the variables helps, too.

3-8 dBASE II User's Guide

DATA INPUT DURING A RUN 3.5
(WAIT, INPUT, ACCEPT)
For many applications, the command files have to obtain additional data from
the operator, rather than using only what is in the databases. Your command
files can be set up so that they prompt the operator with messages that indicate
the kind of information that is needed. One good example is a menu of func
tions from which one is selected. Another use might be to help ensure that
accounting data is entered correctly.

You can use the WAIT, INPUT, or ACCEPT commands to get data from the
operator. The action of each command suits it for slightly different situations.

The form of the WATT command is—-

WAIT [TO memory variable]

WAIT halts command file processing and displays a WAITING prompt until
the operator inputs a single character from the keyboard. Processing continues
after any key is pressed (as with the dBASE II DISPLAY command). If a
variable is also specified, the input character is stored in it. If the input is a
non-printable character (such as <enter>, a control character, and so on), a
blank is entered into the variable.

The form of the INPUT command is—

INPUT [' prompt'] TO memory variable

INPUT accepts any data type from the keyboard to a named memory variable,
creating that variable if it did not exist. If you include the optional prompting
message (in single or double quotes, but both delimiters the same), it appears
on the screen followed by a colon showing where the data is to be typed in.
The data type of the variable (character, numeric or logical) is determined by
the type of data that is entered. Character strings, as always, must be entered
in quotes or square brackets.

The form of the ACCEPT command is—

ACCEPT [' prompt'] TO memory variable

Creating and Working with Command Files 3-9

The ACCEPT command accepts character data without the need for delimiters.
ACCEPT is very useful for long input strings.

Tips on which to use when:

► WAIT can be used for rapid entry (reacts instantly to an input), but should
not be used when a wrong entry can do serious damage to your database.

► ACCEPT is useful for long strings of characters because it does not require
quotes. ACCEPT should also be used for single character entry when the
need to hit < enter> can improve data integrity.

► INPUT accepts numeric and logical data as well as characters, and can be
used like ACCEPT.

3.6 FORMATTING SCREEN AND PRINTER
DISPLAYS SAY..GET)

The ?, ACCEPT and INPUT commands can all be used to place prompts to
the operator on the screen. Their common drawback for this purpose is that
the prompts appear just below the last line already on the screen.

Another command—the @ command—lets you position your prompts and
get your data from any position you select on the screen—

@<coordinates> [SAY <' prompt' >]

The @ command positions the prompt (entered in quotes or square brackets)
at the screen coordinates you specify. The coordinates are the row (or line)
and column on the CRT, with 0,0 being the upper left “home” position. If
you specify 9,34 as the coordinates, the prompt starts on row 10 in column
35.

The SAY part of the command is optional; it tells dBASE II what to say (or
display) at the coordinates you name. Without a SAY phrase, the @ command
erases the line (or portion of the line) on the screen. To see how @ with SAY
displays a prompt, and how @ without SAY erases the line beginning at the
column you name, bring dBASE II up and type—

3-10 dBASE II User's Guide

ERASE
@20,30 SAY 'What?'
@ 5,67 SAY ' Here...'
@ 11,11 SAY "That’s all."
@20, 0
@ 5, 0
@ 11,16

Instead of just showing a prompt, the @ command with SAY can show the
value of an expression with one or more variables. The form is—

@ <coordinates>[SAY<jexpresslon>]

To see how @ evaluates and displays an expression (doing string concatenation
in this example), type the following in dBASE II:

USE Names
@ 13,9 SAY Zip:Code
@ 13,6 SAY State
SKIP 3
@ 23,5 SAY Name + Address + ', ' + State

The @ command can be expanded further to display the value of variables
you are using (such as memory variables or field names in a database) at
whatever screen position you specify. The GET phrase displays the current
value of a variable.

Using the @ command, you can display a label (or prompt) with the SAY
phrase, and fill in specific data with the GET phrase. The format is—

@ <coordinates>[SAY <expression>][GET <variable>]

To see how the GET phrase works, type the following:

ERASE
USE Names
@ 5,0 SAY ' Customer Name' GET Name
@ 10,0 SAY "Home Address" GET Address
@ 15, 0 SAY ' State' GET State
@ 15,10 GET Zlp:Code

Creating and Working with Command Files 3-11

Stay in dBASE IL There’s more to come.

Notice that the preceding example displayed the values of the variables (with
and without prompts) at different places on the screen.

After you format the screen with @..SAY. .GET, you (or an operator) can input
or correct data in the variables on the screen. First, type—

READ

The cursor positions itself on the first field you entered. You can type in new
data, or leave it the way it was (with the variable you named in the GET
phrase) by hitting <enter> or Return. When you leave this field, the cursor
moves to the second variable you entered.

Change the data in the remaining two fields. When you finish with the last
one, you are back in dBASE H. Now type DISPLAY. The record now has the
new data you entered.

As you can see, GET works somewhat like the INPUT and ACCEPT com
mands. However, it is much more powerful than either because it allows you
to enter many variables.

With the formatting facility of the @ command, you can design input forms
so that the screen looks like the paper forms used before. Any new data entered
will be stored in the database.

A database may have a dozen or more fields (up to 32), but for any given data
entry procedure, you may be entering data in only half a dozen of those.
Rather than using APPEND, which would list all the fields in the database on
the screen, you can use APPEND BLANK to create a record with empty
fields, then GET only the data you want.

The NAMES file is not the best example (see the accounting system in Appen
dix A) but it shows how to selectively get data into a database with a large
structure.

3-12 dBASE II User’s Guide

For more practice with command files, create a file called TRIAL.PRG with
the following command in it:

ERASE
? ' This procedure allows you to add new records to the'
? ' NAMES.DBF database selectively. We will be adding'
? ' only the Name and the Zip:Code now.'
?
? ' Type S to stop the procedure,'
? ' <enter> to continue.'
WAIT TO Continue

USE Names
DO WHILE Continue <> 'S' .AND. Continue <> 's'

APPEND BLANK
ERASE
@10,0 SAY "NAME" GET Name
@ 10,30 SAY "ZIP CODE" GETZIp:Code
READ

? ' S to stop the procedure,'
? ' <enter> to continue.'

WAIT TO Continue
ENDDO
RETURN

When you’re back to the operating system, type dBASE Trial (type DO Trial
at the dot prompt). Enter data into several records as TRIAL.PRG runs. After
you finish, LIST the file to see what you’ve added.

As you can see, data entry is simple and uncluttered.

You can customize the screen by placing prompts and variable input fields
wherever you want them. However, you must use the ERASE or CLEAR
GETS command after every 64 GETs. Use the CLEAR command if you do
not want to change the screen.

Creating and Working with Command Files 3-13

3.7 WORKING WITH MULTIPLE DATABASES
(SELECT PRIMARY/SECONDARY)

To begin working with a database file, you type USE <filename> to tell
dBASE II which file you’re interested in. Then you proceed to enter data, edit,
and so forth. If you want to work on a different database, USE NewFile.
dBASE II closes the first file and opens the second one. You can use any
number of files this way, both from your terminal and in command files, but
you can USE only one file at a time. You can also close a file without opening
a new one by typing USE with no filename.

3 When you USE a file, dBASE H “rewinds” it to the beginning and positions
you on the first record in the file. In most cases, this is exactly what you want.
In some applications, however, you will want to access another file or files
without losing your place in the first file.

dBASE II has an advanced feature that permits you to work in two separate
active areas at the same time: PRIMARY and SECONDARY. You switch
between them with the SELECT command.

You are in the PRIMARY area when you first USE a file. To work on another
database without losing your position in the first one, type in SELECT SEC
ONDARY, then USE newfile. To get back to the original work area, type
SELECT PRIMARY, then continue working with that database.

The two work areas can be used independently. Any commands that move
data and records operate only in the area in USE.

Information, however, can be transferred from one area to the other using P.
and S. as prefixes for variables. If you are in the PRIMARY area, use the S.
prefix for variables you need from the SECONDARY area; use the P. prefix
for variables you need from the PRIMARY area.

As an example, the SELECT SECONDARY command is used in the NAME
TEST. PRG file in the accounting system in Appendix A. Individual records
in a file in the PRIMARY area are checked against all the records in another
file in the SECONDARY area. The same command is also used in the TIME-
CALC.PRG, DEPTRANS.PRG, and PAYROLL.PRG files.

While you may not think of an application now, keep the SELECT SECOND
ARY command in mind; you’ll find it useful.

3-14 dBASE II User's Guide

SOME USEFUL COMMANDS AND 3.8
FUNCTIONS

► MODIFY COMMAND <filename> lets you modify the named command
file directly from dBASE II using the normal full-screen editing features.

► BROWSE displays up to 19 records and as many fields as will fit on the
screen. To see fields off the right edge of the screen use ALT-B to scroll
right. Use ALT-Z to scroll left.

► CLEAR resets dBASE II, clearing all variables and closing all files.

► RESET is used after a disk swap to reset the CP/M-86 operating system bit
map. Please read the detailed description in the Reference section before
using it.

► NOTE or * allows you to insert comments in a command file; the comments
are not displayed when the command file is executed. You can insert notes
to the programmer without confusing the operator. There must be at least
one space between the word or symbol and the comment, and the note
cannot be on the same line as a command. REPEAT: commands and com
ments must be on separate lines.

► REMARK allows you to store comments in a command file; they are dis
played as prompts to the operator when the file is used. There must be at
least one space between the word and the remark, and the remark cannot
be on a command line.

► RENAME <oldfile> to <newfile> changes file names in the directory.
Do NOT try to rename a file in USE.

► You can use the ? command to call out the following functions:

is the record number function; it provides the value of the current record
number.

* is the deleted record function; it returns a True value if the record is
deleted, False if not deleted.

EOF is the end of file function. It is True if the end of the file in USE has
been reached, False otherwise.

Creating and Working with Command Files 3-15

3.9 ABOUT WRITING COMMAND FILES

Briefly, here’s the approach to use to begin your own programming:

Start by defining the problem in ordinary English. Make it a general statement.

Now define it further. What inputs will you have? What form do you want the
outputs and reports in?

Next, take a look at the exceptions. What are the starting conditions? What
happens if a record is missing?

Once you’ve defined what you wnat to do, describe the details in modified
English. Many texts call it “pseudocode.” All this means is that you use
English terms that are somewhat similar to the instructions that the computer
program understands.

You might write your outline like this:

Use the cost database
Print out last month’s unpaid invoices
Write a check for each unpaid invoice

Add a bit more detail, and it looks like this:

USE CostBase
Print out last month’s unpaid invoices using

the SUMMARY.FRM file
Start at the beginning of the database
And go through the end:
If the invoice has not been paid

Pay the invoice
And enter it in the database

Do this for every record

3-16 dBASE II User’s Guide

In perhaps two more steps, this outline could be translated into a command
file like this:

USE CostBase
* Print a hardcopy summary for December, 1980.
REPORT FORM Summary FOR Bill:Date >= ’801201'
.AND. Bill:Date <-- '801201' TO PRINT

GOTO TOP
DO WHILE .NOT. EOF

IF Check:Nmbr+'
DO WriteCheck
DO Update

ENDIF
SKIP
ENDDO

* Go to the first record
* Repeat for the entire file
* If invoice isn't paid,
* write a check, then
* update the records

* Go to the next record
3

The term “top-down, step-wise refinement” can be applied to this procedure,
meaning “Start at the top, then divide and conquer.”

At this stage in our example, we haven’t done the SUMMARY.FRM file or
the WRITECHECK.PRG and UPDATE.PRG files, but it doesn’t matter. In
fact, we’re probably better off not worrying about these details because we
can concentrate on the overall problem solution. We can come back after we’ve
tested our overall solution and clean up these procedures then.

You can still test a partial program like this by using what programmers call
stubs. For the command files that you’ve named in the program, enter three
items: a message that lets you know the program reached it, WAIT, and RETURN.
When dBASE II goes to these procedure files,the message will display, then
dBASE II returns and continues with the rest of the program after you hit any
key.

Creating and Working with Command Files 3-17

USING FUNCTIONS AND CREATING
FORMATS

By now you should be writing command files that can perform useful work
for you. This chapter introduces more functions and commands, and explains
how to display and print out your data in exactly the format you want.

FUNCTIONS 4

Functions are special-purpose operations that you can use in dBASE II expres
sions; functions perform tasks that are difficult or impossible using regular
arithmetic, logical and string operations. dBASE II functions fall into these
same three categories, based on the results they generate.

You call up a function by typing ? followed by a space and the function itself;
the function consists of a key phrase or symbol plus the variable or expression
you want the function to evaluate. Functions can be called from the keyboard
or within command files. You must include parentheses around the variable,
string, or expression in the function, as shown in Exhibit 4a.

Don’t worry about memorizing the functions now. Scan the descriptions so
that you know where to look when you need one of them in a command file.
See Reference Chapter 3 for more about functions.

Using Functions and Creating Formats 4-1

Exhibit 4a: dBASE II Functions

!(<variabie/struig>)

Lower- to uppercase function—changes all the characters from ’ a ’.. ’ z' in a string or string
variable to uppercase. Any other characters in the string are unaffected. The ! function is used
in the accounting system (Appendix A) to put keyboard inputs in a standard form in the files; a
standard form makes searching for data simpler, since all the data is stored in uppercase, regardless
of how it was entered.

$(<exp/variable/string>, <start>, <Iength>)

Substring function—selects characters from a string or character variable, starting at the specified
position and continuing for the specified length.

As an example, if you have a variable called DATE whose value is 810823, the function $(Date,5,2)
gives you 23° To convert these numerals to a number, you can use VAL($(Date,5,2))°

An example of the $ function is in the DATETESTPRG file in Appendix A, where groups of
two characters are taken from a 6-character date field, converted to integers (using the VAL(.°.)
function), then evaluated to see if they are in the correct range.

Don’t confuse this with the substring logical operator described in Chapter 2.

@(<variablel/stringl>, <variable!/string!>)

Substring search function. You might think of this as “Where is string 1 AT in string!?” The @
function produces the character position at which the first string or character variable starts in the
second string or character variable. If the first string does not occur, a value of 0 is returned.

&

Macro substitution function. When the L symbol is used in front of a memory variable name,
dBASE II replaces the name with the value of the variable (must be character data). The & is
useful when you must use complex expressions frequently, to pass parameters between command
files, or in a command file when the value of the parameter will be supplied when the program
is run.
In the REPORTMENU.PRG file in Appendix A, the L is used to get the name of the required
database:

? ’ Which file do you want to review? ’
ACCEPT TO Database
USE &Database

The & can also be used as an abbreviation of a command. If you STORE ' Delete Record' to
D, the command &D 5 then deletes record 5 when the program runs.

If the Macro symbol is not followed by a valid string variable, it is skipped.

See Reference Chapter 4 for more information on Macro substitution.

4-2 dBASE II User’s Guide

CHR (<number>)

The character function—yields the ASCII character equivalent of the number. For example, ?
CHR(27) + ”E” clears the screen, CHR(27) + ”p” produces reverse video and ? CHR(27) +
"q" cancels it.

To get underlining on your printer, try joining a character string, the carriage return and the
underline like this: ? ' string' + CHR(13) + __. You could even set up a command
file that uses the LEN function to find out how long the string is, then produces that many underline
strokes.

FILE(< " filename" /variable/expression>)

File function—verifies the existence of a file. It yields a Thie value if the file exists on the disk,
False if it does not. For a specific file name, use the quote marks. The name of a string variable
does not require the quote marks. You can also use any valid string expression. For example,
FILEf’B:” + Database) tells you whether the file name stored in the memory variable Database
is on drive B (see REPORTMENU.PRG in Appendix A).

INT(<variable/exp>)

Integer function—rounds off a number with a decimal, but does it by throwing away everything
to the right of the decimal. The term inside the parentheses (you must use the parentheses) can
be a number, the name of a variable, or a complex expression. For example, INT(123.86) yields
123, while INT(-123.86) yields -123.

For variables and expressions, the expression is first evaluated, then an integer is formed from
the results. A call to a variable yields a truncated integer formed from the current value of that
variable. For example, if you are on record 7 of MONEYOUT.DBF, a call to INT(Amount)
produces 2333, the integer part of $2,333.75.

The integer function rounds a value to any number of decimal places. INT(value* 10 + 0.5)/10
rounds to the nearest decimal place because of the order of precedence of operations (parentheses,
then integer, then divide). To round to two places, use 100 in place of the 10s. For 3 places, use
1000, and so on.

LEN(<variable/string>)

String length function—tells you how many characters are in the string you name. LEN can be
useful when the program must decide how much storage to allocate for information with no
operator intervention. However, if a character field variable name is used, this function returns
the size of the field, not the length of the contents (since any unused positions are filled with
blanks).

STR(<exp/variable/niunber>, <length>, <decimals>)

Integer to string function—converts a number or the contents of a numeric variable into a string
with the specified length and the specified number of digits to the right of the decimal point. The
specified length must be large enough to encompass at least all the digits plus the decimal point.
If the numeric value is shorter than the specified field, the remaining portion is filled with blanks.
If the decimal precision is not specified, 0 is assumed.

Using Functions and Creating Formats 4-3

The STR function is used in Appendix A to simplify displays. Numbers are converted to strings,
then concatenated with (joined to) other strings of characters for displays.

TRIM

Trim function—eliminates the trailing blanks in the contents of a string variable. This is done by
typing:

STORE TRIM (<varlabie>) TO <newvariable>

TYPE(<exp>)

Data type function—yields a C, N or L, depending on whether the data type of the expression is
Character, Numeric or Logical.

VAL(<variabie/strmg/substring>)

String to integer function—converts a character string or substring made up of digits, a sign and
up to one decimal point into the equivalent numeric quantity. VAL(’ 123') yields the number
123. With MONEYOUT.DBF, VAL(Job:Nmbr) yields the numeric value of the contents of the
job number field, since all Job Numbers are stored as characters. You can also use VAL with the
substring operator: VAL($(<string>)).

4.2 CHANGING THE WORKING
ENVIRONMENT

You can change the dBASE II working environment (the way dBASE II inter
acts with your system setup) using simple SET commands from the keyboard
or within command files. Examples of parameters you can change are—

► CRT screen controls (such as output of @ command formats to the screen,
full-screen operations, echo of output to the screen, display of colons around
formatted variables, and dual intensity display);

► Printer settings (such as left margin, and form feeds and special headings
for the REPORT command);

► Advanced programming features (such as linking PRIMARY and SEC
ONDARY files, and creating an output file from CRT display).

4-4 dBASE II User's Guide

You can adjust these parameters back and forth “on the fly,” or set them up
once at the beginning of your command file. In many applications, the defaults
will be just what you need.

You use the SET command to change parameters in your command files or in
interactive commands. All the forms of the SET command are listed and
described in Exhibit 12a of the Reference.

MERGING RECORDS FROM TWO 4.3
DATABASES (UPDATE)

You can transfer data from one database file to another with the following
command:

UPDATE FROM <database> ON <key> [ADD <field list>]
[REPLACE <field list>]

You must presort both databases on the key field before the UPDATE.

dBASE II rewinds both files to the beginning, then compares key fields. If
they are identical, data from the FROM database is either added numerically
to data in the USE file, or is used to replace data in the USE file for the fields
specified in the field list. When fields do not match, those records are skipped.

The UPDATE command can be used to keep inventory current. In the account
ing system in Appendix A, it is used in PAYROLL.PRG and CHECK
STUB.PRG. It’s useful and worth experimenting with.

MERGING ENTIRE DATABASES (JOIN) 4.4

JOIN is one of the most powerful commands in dBASE II. It combines two
databases (the USE files in the PRIMARY and SECONDARY work areas) to
create a third database. The form of the command is—

JOIN TO <newfile> FOR <expression> [FIELD <llst>]

Using Functions and Creating Formats 4-5

JOIN positions dBASE II on the first record of the primary USE file and
evaluates each of the records in the secondary USE file. Each time the expres
sion yields a true result, a record is added to the newfile. This process is
repeated until all records from the files have been compared.

If you are in the primary area when you issue the JOIN command, prefix
variable names from the secondary USE file with S.. If you are in the sec
ondary area, prefix variables from the primary USE file with P.. (See the next
example.)

To use the command, enter this sequence of instructions:

USE Inventory
SELECT SECONDARY
USE Orders
JOIN TO NewFile FOR RPart:Number=Part:Number;

FIELD Customer,Item,Amount,Cost

This sequence creates a new database called NEWFILE.DBF with four fields:
CUSTOMER, ITEM, AMOUNT and COST. The structure of these fields (data
type, size) are the same as in the two joined databases. (Notice that the P.
prefix is used to call a variable from the work area not in USE.)

4.5 FULL-SCREEN EDITING AND
FORMATTING (@..SAY. .GET .PICTURE)

dBASE II has powerful formatting commands that position information pre
cisely where you want it. You saw this formatting facility in action in Chapter
3 when you were introduced to the @ command—

@ <coordinates> [SAY ['prompt']] [GET <variable>]

The @ command positions prompts and variables (and their values) at the
specified location on the screen. When you list a series of @ commands, and
then follow them with READ, you can control the format of the entire screen.

4-6 dBASE II User's Guide

To refresh your memory, you might create and run the following command
file fragment:

STORE "
STORE "
STORE "

" TO MDate
" TO MBalance
" TO MDraw

@ 5,5 SAY "Set date MM/DD/YY " GET MDate
@ 10,5 SAY "What is the balance? " GET MBalance
@ 15,5 SAY "How much is requested?" GET MDraw
READ
ERASE
@ 5,5 SAY "Should we do an evaluation?" GET MEvaiuate
READ

The @ command can also be used without the SAY phrase, as—

@ <coordinates [GET <variable>]

followed by a READ in the command file. This command form displays only
the colons marking the field length for the variable.

With SET SCREEN ON, you do not have to enter line numbers in numerical
order. It’s good practice, however, always to enter them in order since they
must be in order for PRINT formatting.

The command can also be expanded for special formatting like this:

@ <coordinates> SAY [expression] GET <variable>
[PICTURE < 'format'>]

During a READ, you fill in the optional PICTURE phrase using the format
symbols listed in Exhibit 9a of the Reference.

Using Functions and Creating Formats 4-7

For example, the command—

@ 5,1 SAY "Today’s date is" GET Date PICTURE ' 99/99/99'

would display—-

Today' s date is: / / :

assuming that the DATE variable was blank. In this example, only digits can
be entered, because the format characters are 9s (see Reference Chapter 9).

4
4.6 FORMATTING THE PRINTED PAGE

(SET FORMAT TO PRINT, @. .SAY. .USING)

When you SET FORMAT TO PRINT, the @ command sends its information
to the printer instead of the screen. The GET and PICTURE phrases are
ignored, and the READ command cannot be used.

Data to be printed on checks, purchase orders, invoices or other standard
forms can first be organized on the screen with this command, then printed
exactly as you see it—

@ <coordinates> SAY variable/expression/' string' [USING format]

For printing, the coordinates must be in order. That is, the lines must be in
increasing order (print line 7 before line 9, and so on). On any given line, the
columns must be in order (print column 15 before column 63, and so on).

As in the SCREEN mode, the GET phrase can be used to output the current
value of a variable that you name, the result of an expression, or a literal string
prompt message.

The optional USING phrase specifies which characters are printed as well as
where they appear on the page. The symbols used in USING phrases are listed
in Exhibit 9a of the Reference.

4-8 dBASE II User’s Guide

For example, the command @ 10,50 SAY Hours*Rate USING ’ $$$$$$$.99 ’
could be used for both the screen and the printer since it has no GET phrase.
For Hours — 8 and Rate = 12.73, it would print or display $$$$101.84. The
leading zeros are useful for printing checks that are difficult to alter.

SETTING UP AND PRINTING A FORM

To set up a form, use measurements based on your printer spacing (lines per
inch vertically and characters per inch horizontally).

The “Outgoing Cash Menu” used in an earlier command file might have
another selection item called "4 = Write checks”. The next example shows
how to do part of the WRITECHECK command file.

To start with, you must input the date. The following command lines accept
the date to a variable called MDATE, and check to see whether it is (probably)
right:

ERASE
SET TALK OFF
STORE " " TO MDate
STORE T TO NoDate
DO WHILE NoDate

@ 5»5 SAY "Set date MM/DD/YY" GET MDate PICTURE
"99/99/99"

READ

ERASE

IF UAL($(MDate #1»2)) < 1?
.OR. UAL($(MDate 11,2)) > 12?
.OR. UAL($(MDate,4 ,2)) < IS
.OR. UAL($(MDate»4,2)) > 315
.OR. UAL($(MDate>7 >2)) <> 83

STORE " " TO MDate
Z 7»§ SAY "**** BAD DATE t PLEASE RE-ENTER. ***
STORE T TO NoDate

ELSE
STORE F TO NoDate

ENDIF
ENDDO because we now have a valid date

Using Functions and Creating Formats 4-9

In English, the preceding commands set the value of MDATE to eight blanks.
Then the @..SAY command displays—

Set date MM/DD/YY: / / :

When the date is entered, it is checked by the IF to see whether the month is
in the range 1-12, day is in the range 1-31, and year — 83. dBASE II performs
these three steps:

1. The substring function $ takes the two characters representing the month,
day or year (e.g., for month it starts in the 4th position and takes 2 characters).

2. The VAL function converts this to an integer.

3. This integer is then compared against the allowed values.

If the value is out of range, MDATE is set to blanks again and an error message
comes up. When a date within the allowed range is entered, the program
continues.

The printout for the check itself could be the next portion of the program.
Using the measurements of the checks, this is the list of commands—

@ 8,3 SAY Script *
*

*

*

*

*

*

A character variable that
prints the amount in script.
This is filled in by another
procedure called Chng2Scrpt.
We stubbed this for now like this:
STORE ' Script Stub' TO Script
RETURN

@11,38 SAY Vendr:Nmbr
@11,50 SAY MDate
@11,65 SAY Amount
@ 13,10 SAY Vendor
@14,10 SAY Address
@15,10 SAY Clty:State
@ 15,35 SAY ZIP
@ 17,10 SAY Who

4-10 dBASE II User’s Guide

You can check this out on your screen before you print it, then switch from
SCREEN to PRINT modes with the SET command. The values for the vari
ables are provided elsewhere in your command file.

Longer forms are no problem—simply start numbering over again every 24
lines (use 0 to 23).

Using Functions and Creating Formats 4-11

5
DATABASE BASICS

A database management system (DBMS) like dBASE II is considerably dif
ferent from a simple file handling system. File handling systems are usually
configured like the schematic diagram in Exhibit 5a.

Exhibit 5a: A File Handling System

PAYROLL
FILES

PAYROLL
PROGRAMS ◄— - —►

PAYROLL
OUTPUT

ACCOUNTING ACCOUNTING ------► ACCOUNTING
FILES PROGRAMS -OUTPUT

INVENTORY
FILES

◄ “ —“ — ► INVENTORY
PROGRAMS

◄ —------ ►
INVENTORY
OUTPUT

5

In a system like the one outlined in Exhibit 5a, the payroll programs process
the payroll files* The accounting programs process the accounting files. And
the inventory programs process the inventory files. To get reports that combine
data from different files, you would have to write a new program and it wouldn’t
necessarily work: data might be incompatible from file to file, or may be buried
so deeply within the other programs that getting it out is more trouble than
it’s worth.

In contrast to a file handling system, a database management system integrates
the data and makes it much easier to get useful information from your records,
rather than just reams of data. Conceptually, a DBMS looks something like
Exhibit 5b.

Database Basics 5-1

Exhibit 5b: A Database Management System

DATABASE

Data is monitored and manipulated by the DBMS, not the individual appli
cations programs. Every applications system has access to all the data. In a
file handling system, this kind of access would require a great deal of dupli
cated data. Aside from the potential for entry errors, data integrity is extremely
hard to maintain when the same data is supposed to be duplicated in different
files: it never is.

To generate a new processing system in a file handling system, you would
have to write a new program and set up new files. Using a DBMS, you write
a new access program, but you do not have to restructure the data because the
DBMS takes care of that task.

In a file handling system, if you add a new kind of data to a record (for example,
salary history in a personnel file) you have to modify all your file handling
programs. With a DBMS, however, additions and changes have no effect on
the programs that don’t need to use the new information; unaffected programs
don’t see it and don’t know that it’s there.

Database management systems come in two flavors: hierarchical and rela
tional. These terms refer to the way the DBMS keeps track of data.

5-2 dBASE II User’s Guide

In a hierarchical system, the relationships between the data elements are main
tained with sets, linked lists, and pointers telling the system where to go next.
Hierarchical systems tend to become extremely complex and difficult to main
tain. Very quickly, you can end up with lists of lists of lists and pointers to
pointers to pointers.

A relational database management system like dBASE II is a great deal sim
pler. Data is represented as it is; the relation between data elements can be
represented in a two-dimensional table like the one in Exhibit 5c.

Exhibit 5c: Data in a Relational Database

INVOICE
NUMBER SUPPLIER DESCRIPTION AMOUNT NUMBER

2386 Graphic Process Prints 23.00 BBQ-747

78622 Brown Engraving Litho plates 397.42 TFS-901

M1883 Air Freight, Inc. Shipping 97.00 SPT-233

Each row across Exhibit 5c represents an entry in the database; in a DBMS,
each row is a record. Each column represents a single item of data for a record;
in a DBMS a column is a field of the record. Each entry in the table must be
a single value (no arrays, no sets, etc.). All the entries in a column must be
the same type. Each record (row) is unique, and the order of records doesn’t
matter. In real databases, records don’t get any more complicated than the
ones in Exhibit 5c, but they do get larger.

DATABASE ORGANIZATION
(SORT, INDEX)

5.1

Once you’ve got your database set up, you’ll want to access your data in an
ordered manner. With some databases, the order in which you enter the data
is the order in which you want to get your information out. In most cases,
however, you’ll want the information you extract to be organized differently.

Database Basics 5-3

5

With dBASE II you can organize data using the SORT command or the INDEX
command (see Chapter 2).

The SORT command moves entire records around to set up a new database
arranged in ascending or descending order on any field that you specify (name,
ZIP code, state, and so on). The field on which you SORT the database is
called the key.

One drawback of sorting is that you may want to access the database on one
field for one application, and on another field for a different application.
Another drawback is that any new records you add are not in the SORT order;
if you want to maintain the order, you must SORT the database again every
time you enter data.

Also, finding data in a sorted database is relatively slow, since dBASE II must
search the database sequentially.

INDEX sets up a file using only the keys that you are interested in, rather than
the entire database. A key is a database field (or combination of fields) that
makes up the “subject” of the database. In an inventory system, the part
number might be the subject, and the amount on hand, cost, and location
might be the descriptive fields. In a personnel database, names or employee
numbers would probably make the best keys.

With an indexed database, only the keys are organized, with pointers to the
record to which they belong. dBASE II uses a structure called B-trees for
indexes. A B-tree is similar to a binary tree, but uses storage more efficiently
and is a great deal faster.

If you need your data organized on several different fields for different appli
cations, you can set up several index files (one for each of the fields) and use
the appropriate index file whenever required. You could have index files ordered
by supplier name, by customer number, by ZIP code or any other key, all for
a single database.

New entries to a database are automatically added to the index file(s) being
used.

Another advantage of indexed databases is the rapid location of data that you
are interested in. A FIND command (described in Chapter 2) typically takes
2 seconds with a medium to large indexed database.

5-4 dBASE II User’s Guide

RECORDS, FILES, AND DATA TYPES 5.2

dBASE II limits you to 65,535 records per file, but with the memory and mass
storage capabilities of your computer, the record capacity is really no limitation
at all.

A dBASE II record can be as large as 32 fields and 1000 characters long
(whichever comes first). The character size of a record is illustrated in Exhibit
5d.

Exhibit 5d: Capacity of a Record in Characters

...etc.... 1000

You can think of the capacity of a record as a 1000 character-long strip that
you can segment any way you want (up to the maximums) or shorten if you
don’t need to use it all. You can have four fields that use the full 1000 characters
(254 characters maximum per field). Or you can have one record only one
character (and one field) long. Or anything in between.

In Exhibit 5c, each record has five fields and the total record length is 58
characters, as illustrated in Exhibit 5e.

Exhibit 5e: Character Size of a Sample Record

NUMBER SUPPLIER DESCRIPTION
JOB

AMOUNT NUMBER

43 44 51 52 58

INVOICE

Database Basics 5-5

DATA TYPES

Each field must contain a single type of data, and in dBASE II data types
are—

► Character: all the printable ASCII characters, including the integers, sym
bols and spaces.

► Numeric: positive and negative numbers as large as 1.8 x 1063 and as small
as 1.0 x IO"63. Accuracy is to ten digits, or down to the penny for dollar
amounts as high as $99,999,999.99.

► Logical: these are true/false (yes/no) values that occupy a field one character
long. dBASE II recognizes T, t, Y and y as TRUE, while F, f, N and n are
recognized as FALSE.

5
FIELD NAMES

Each data field has a name—the name can be up to 10 characters (no spaces)
long, must start with a letter, and can include digits and an embedded colon.

Here are some examples of valid and invalid field names:

A
A123456789
Job:Number
A123,B456
Reading:

(Valid)
(Valid)
(Valid: upper- and lowercase okay)
(Illegal comma)
(Illegal: colon not embedded)

Use enough characters to make the name meaningful. JOB:NMBR is a lot
better than NO. and infinitely better than J.

dBASE n File Extensions: Conventions for dBASE II file names and exten
sions are described in Reference Chapter 2.

dBASE II Expressions: The use of expressions is covered in Chapter 2 and
in Reference Chapter 3.

5-6 dBASE II User’s Guide

dBASE II Operators: Reference Chapter 3 describes the use of dBASE II
operators (arithmetic, logical, relational, and string operators).

dBASE II Functions: See Reference Chapter 3 and User’s Guide Chapter 4
for a summary of the dBASE II functions.

SUMMARY: COMMANDS GROUPED BY 5.3
FUNCTION

The following abbreviations are used in this summary:

<exp> — expression
<var> — variable
<str> — string
<coord> — coordinates

Angled brackets < > enclose items that you specify when you enter the
command (such as <filename> and <exp>).

Square brackets [..] enclose optional items. In some cases, options are nested
(i.e., they themselves have other options).

For an alphabetical list of dBASE II commands, see Reference Chapters 9-12
or Reference Appendix B.

FILE STRUCTURE

CREATE

Defines an entirely new file structure.

CREATE <newfile> FROM <oldfile>

Creates a new file whose structure is described in the records of the old
file.

Database Basics 5-7

USE <oldfile>
COPY TO <newfile> STRUCTURE

Combined, these two commands create a new file with the same
structure as an old file.

USE <oldfile>
COPY TO <newfile> STRUCTURE EXTENDED

Combined, these commands create a new file that contains the structure
of the old file as data.

CREATE <newfile> FROM <oldfile>

Creates a new file whose structure is defined by the records in the old
file.

DISPLAY STRUCTURE
LIST STRUCTURE

Both show the structure of the file in USE.

MODIFY STRUCTURE

Changes file names, sizes, and overall structure, but destroys data in the
database.

To change structure with data in the database—

USE <oldfile>
COPY TO <newfile>
USE <newfile>
MODIFY STRUCTURE
APPEND FROM <oldfile>
COPY TO <oldfile>
USE <oldfile>
DELETE FILE <newfile>

5-8 dBASE II User’s Guide

To rename fields with data in the database—

USE <oldfile>
COPY TO <newfile> SDF
MODIFY STRUCTURE
APPEND FROM <newfile>.TXT SDF
DELETE FILE <newfile>

FILE OPERATIONS

USE <filename>

Opens a file.

USE cnewfilo

Closes the old file and opens the new. 5

USE

Closes all files.

RENAME <oldname> TO <newname>

Changes name of old file. You must not rename an open file.

COPY TO <filename>

Creates a backup file.

CLEAR

Closes all files and erases all memory variables.

SELECT [PRIMARY][SECONDARY]

Allows two files to be independently open at the same time. Data can be
transferred with P. and S. prefixes.

Database Basics 5-9

DISPLAY FILES [ON <d>]

Lists databases on logged-in drive (or drive specified). You can use
LIST instead.

DISPLAY FILES LIKE <wildcard> [ON <d>]

Shows other types of files on drives.

QUIT

Closes both active areas, all files, and terminates dBASE n operation.

ORGANIZING DATABASES

SORT ON <key> TO <newfile>

Generates a database sorted on the key.

INDEX ON <key> TO <riewfile>

Creates an index file for the database in USE. You can use multiple keys
for both commands.

REINDEX

Rebuilds index file(s) using original key(s).

COMBINING DATABASES

COPY TO <newfile>

Creates a duplicate of the file in USE.

APPEND FROM <otherfiie>

Adds records to the file in USE.

5-10 dBASE II User’s Guide

UPDATE FROM <otherfile> ON <key>

Adds to totals or replaces data in the file in USE. Both files must be
sorted on the <key>.

JOIN

Creates a third file from two other files.

EDITING, UPDATING, CHANGING DATA

DISPLAY, LIST, BROWSE

Let you examine the records.

DELETE

Marks a record so it is not used by dBASE II.

RECALL

Unmarks record.

PACK

Erases deleted records.

EDIT

Lets you make changes to specific records.

REPLACE <field WITH data>

Global replacement of data in fields; can be conditional as with most
dBASE II commands.

CHANGE..FIELD

Edit based on field, rather than record. Make multiple changes to a
database.

Database Basics 5-11

@ <coord> GET <var>

Formats console screen or printer output.

READ

Displays the formatted variable, and lets you change it.

INSERT [BEFORE][BLANK]

Inserts a record in a database.

UPDATE FROM <otherflle> ON <key>

Adds to totals or replaces data in file in USE from another file.

MODIFY COMMAND <filename>

Allows you to change your command files without using your text
editor.

USING VARIABLES

(Up to 64 memory variables plus any number of field names are allowed.)

LIST MEMORY, DISPLAY MEMORY

Both show the variables, their data types, and their contents.

&

Returns the contents of a character memory variable (i.e., provides a
literal character string).

STORE <value> TO <var>

Sets up or changes variables.

RELEASE <var>

Cancels the named variable.

5-12 dBASE II User's Guide

SAVE MEMORY TO <filename>

Stores memory variables to the named file (with .MEM extension).

RESTORE FROM <filename>

Reads memory variables back into memory (destroys any other existing
memory variables).

INTERACTIVE INPUT

WAIT

Stops screen scrolling, continues after any key is pressed.

WAIT TO <var>

Accepts character to memory variable.

INPUT [' prompt'] TO <var>

Accepts any data type to a memory variable (creates it if it did not
exist). Character input must be in quotes.

ACCEPT [' prompt'] TO <var>

Same as INPUT, but no quotes around character input.

@<coord> SAY ['prompt'] GET <var> [PICTURE]
READ

Displays memory variable, replaces it with new input.

TEXT
ENDTEXT

Displays all text between TEXT and ENDTEXT.

Database Basics 5-13

SEARCHING

5

SKIP [±<exp>]

Moves forward or backward a specific number of records.

GO[TO] <number>, GO TOR GO BOTTOM

Moves you to a specific record, the first record, or the last record in the
database.

FIND <str>

Works with indexed file in USE; very fast.

LOCATE FOR <exp>
CONTINUE

Searches entire database.

OUTPUT

?, DISPLAY, LIST

Show expressions, records, variables, structures.

REPORT [FORM <formname>]

Creates a custom format for output, then presents data in that form
when called.

@<coord> SAY <var/exp/str>

Formats output to screen or to printer. [USING <format>] can be
added to provide PICTURE format for the printer.

5-14 dBASE II User's Guide

PROGRAMMING

(Programs stored in COMMAND FILES with .PRG extension.)

DO <filename>

Starts the program.

IF <conditions>
perform commands

ELSE
perform other commands

ENDIF

Makes choices, single or multiple (when nested).

DO WHILE <conditions>
perform commands

ENDDO

<Conditions> must be changed by something in the loop eventually.

Database Basics 5-15

A WORKING ACCOUNTING SYSTEM

This appendix contains an accounting system of command files like ones that
you can create following the instructions in this User’s Guide. The system
includes some programming techniques that you may find useful in your own
data management.

This appendix illustrates the use of dBASE II commands, and demonstrates
how to set up menus, how to find data and merge files, and how to set up the
inputs to the system. You will find a number of interesting solutions to the
problems of keeping a cash journal, doing payrolls, and managing databases so
that information is available and data integrity is not compromised. The
programs are self-documented with comments throughout.

To create your own databases, of course, you start by using the CREATE
command. Database structures that you might find useful are listed at the
beginning of'the appendix. COSTBASE.DBF, for example, started life as
MONE YOUT. DBF, but field names and sizes are changed (with and without
data in the database).

Check the database structures, then see how they are used in the programs. The
field names and their individual structures are the same for all the databases to
allow for file merges and other uses. Data from one database will, fit into
corresponding fields in another; with common names the transfer is straightfor
ward.

These command files were written using the procedures recommended in the
User’s Guide. First define the problem in a general sense. Gradually keep
dropping down in levels of detail, using ordinary English at first, then pseu
docode, putting terms that dBASE II understands in uppercase when you get to
that level.

The indentation and mixture of upper- and lowercase letters makes writing the
command files a lot easier because you can see groupings of the structures that
you are using.

Appendix A: A Working Accounting System A-l

The diagram on this page shows the calling pattern for the accounting
system. Command files (.PRG extension) use the DO command to call
other files. In the diagram, arrows represent possible calls; files on the left
end of an arrow can call files on the right end of that arrow. For example,
the control module for the system (ACCOUNTS.PRG) can call any of six
command files—COSTMENU, PAYMENU, DEPMENU, IOMENU,
INVMENU, or REPMENU. Each of these files can call other command
files.

Calling Sequence for Files in the Accounting System

A-2 dBASE II User's Guide

CONTENTS

Database Structures ... A-5

Report Files A-8

System Constants A-10

Command Files
ACCOUNTS .. A-ll
COSTMENU............................... A-12
USETAX A-15
COSTBILLS A-18
COSTTIME .. A-20
COSTUPDATE .. A-23

PAYMENU ... A-25
PAYBILLS........ ..A-27
PAYFIND .. A-32
PAYEMPS A-34
PAYROLL .. . A-36

DEPMENU ... A-44
DEPOSITS A-47
DEPPRINT A-48
DEPTRANS A-49

IOMENU A-50
IOPOST... A-52
IOREVIEW................... ;................. A-55

INVMENU ...A-57
INVOICES A-59

REPORTMENU A-62
JOBCOSTS A-64
JOBSINDX A-68

Contents A-3

FINDBILLS .. A-69
REVIEW...A-72
REVHDR ...A-78
REVMRGN.. A-79
SALESTAX.. A-80

TIMECALC .. A-83
PRINTOUT..................... A-86
GETDATE...A-87
DATETEST A-88
NAMETEST A-89
CHECKSTUB ... A-91

A-4 dBASE II User’s Guide

STRUCTURE FOR FILE: B :COSTBASE.DBF
FLD NAME TYPE WIDTH DEC
001 CHECK:DATE C 007
002 CHECK:NMBR C 005
003 CLIENT C 003
004 JOB:NMBR N 003
005 AMOUNT N 009 002
006 NAME C 020
007 DESCRIP C 020
008 BILL:DATE C 007
009 BILL:NMBR C 007
010 HOURS N 006 002
011 EMP:NMBR N 003
** TOTAL *< 00091
(Indexed on NAME to B; $SUPP. NDX)

STRUCTURE FOR FILE: B:POSTFILE.DBF
FLD NAME TYPE WIDTH DEC
001 CHECK:DATE C 007
002 CHECK:NMBR C 005
003 CLIENT ,C 003
004 JOB:NMBR N 003
005 NAME C 020
006 DESCRIP C 020
007 AMOUNT N 009 002
008 BILL:DATE C 007
009 BILL:NMBR C 007
010 HOURS N 006 002
011 EMP:NMBR N 003
»* TOTAL ** 00093

STRUCTURE FOR FILE: B:BILLINGS.DBF
FLD NAME TYPE WIDTH DEC
001 INV:NMBR C 006
002 CLIENT C 003
003 JOB:NMBR N 003
004 INV:DATE C 006
005 TAXABLE N 009 002
006 SALES:TAX N 009 002
007 TAXFREE N 009 002
008 PO:NMBR G 008
009 DESCRIP C 027
010 MORE L 001
** TOTAL ## 00082
(Indexed on INV:NMBR to B:,BILLINGS. NDX)

A-5

STRUCTURE FOR FILE: B:INVOICES.DBF
FLD NAME TYPE WIDTH DEC
001 INV:NMBR C 006
002 CLIENT C 004
003 INV:DATE C 007
004 TAXABLE N 009
005 SALES:TAX ' N 009 002
006 TAXFREE N 009 002
007 AMOUNT N 009 002
008 AMT:ROD N 009 002
009 DATE:ROD C 007

TOTAL 00070
(Indexed on INV:NMBR to B: INVOICES., NDX)

STRUCTURE FOR FILE; B:DEPOSITS.DBF
FLD NAME TYPE WIDTH DEC
001 DEP:DATE C 007
002 PAYER C 020
003 PAY:NMBR C 007
004 DEPOSIT N 009 002
005 INV:NMBR C 006
006 ! COMMENTS C 021 002
** TOTAL 00071

STRUCTURE FOR FILE: B:CHECKFIL.DBF
FLD NAME TYPE WIDTH DEC
001 CHECK:DATE C 006
002 CHECK:NMBR C 005
003 AMOUNT N 009
004 BILL:NMBR N 007
005 NAME C 020
006 EMP:NMBR N 003
007 CLIENT C 003
008 JOB:NMBR N 003
009 DESCRIP C 020
010 BALANCE N 009
** TOTAL 00087

(Indexed on IO:NMBR TO B:INSERTS.NDX)

STRUCTURE FOR FILE: B:INSERTS.DBF
FLD NAME TYPE WIDTH DEC
001 10:NMBR C 005
002 MAGAZINE 014
003 ISSUE C 006
004 CLIENT C 003
005 JOB:NMBR N 003
006 AD 015
007 SPACE C 013
008 GROSS:COST N 009 002
009 NET:COST N 009 002
010 TIMES C 003
011 10:DATE c 006
** TOTAL 00087

A-6

STRUCTURE FOR FILE: B:H0LD81.DBF
FLD NAME TYPE WIDTH DEC
001 CHECK:DATE C 004
002 MARKER C 001
003 PAYROLL N 009 002
004 FICA N 008 002
005 FICASAL N 009 002
006 FIT N 009 002
007 ' SDI N 007 002
008 SDISAL N 009 002
009 SIT N 009 002
010 UISAL N 009 002
** TOTAL 00075

STRUCTURE FOR FILE: B:: PERSONNE.DBF
FLD NAME TYPE WIDTH DEC
001 EMP:NMBR N 003
002 NAME C 020
003 ADDRESS C 024
004 CITY:STATE C 020
005 ZIP C 005
006 PH:NMBR C 013
007 SS:NMBR c 009
008 M: S: H c 001
009 DEDUCTS N 002
010 PAY:RATE N 007 002
011 FICA N 008 002
012 YTDFICA N 008 002
013 FIT N 009 002
014 YTDFIT N 009 002
015 SDI N 007 002
016 YTDSDI N 007 002
017 SIT N 009 002
018 YTDSIT N 009 002
019 NET:PAY N 009 002
020 QDTSAL N 009 002
021 YTDSAL N 009 002
022 PAID L 001
023 START:DATE C 006
024 RATIO N 005 003
*» TOTAL *< 00209

STRUCTURE FOR FILE: B:SUPPLIER.DBF
FLD NAME TYPE WIDTH DEC
001 SUPPLEIER C 030
002 ADDRESS C 024
003 CITY C 016
004 STATE C 002
005 ZIP C 005
006 PHONE:NMBR C 008
007 AREA:CODE C 003
*» TOTAL I# 00089
(Indexed on SUPPLIER to B:SUPPLIER. NDX)

A-7

The agency accounting system uses three standard report forms. The
first one is for media and is filled out completely- The remaining two
are skeletons, showing only the answers to the questions asked by
dBASE II.

ENTER REPORT FORM NAME: Media
ENTER OPTIONS, M=LEFT MARGIN, L=LINES/PAGE, W=PAGE WIDTH
M=50 <enter>
PAGE HEADING? (Y/N) n
DOUBLE SPACE REPORT? (Y/N) n
ARE TOTALS REQUIRED? (Y/N) y
SUBTOTALS IN REPORT? (Y/N) n
COL WIDTH,CONTENTS
001 6,10:NMBR
ENTER HEADING: 10 #
002 15,MAGAZINE
ENTER HEADING: MAGAZINE
003 7,ISSUE
ENTER HEADING: ISSUE
004 6,CLIENT+STR(JOB:NMBR,3)
ENTER HEADING: JOB #
005 15,AD
ENTER HEADING: AD
006 9,GROSS:COST
ENTER HEADING: $GROSS
ARE TOTALS REQUIRED? (Y/N) y
007 Center-

The above dialog generates this report form:

PAGE NO. 00001

...(etc.)...

10 # MAGAZINE ISSUE JOB # AD $GROSS

2787 EDN JAN 7 SPI678 FLAT MAN 3225.00
2788 MICROWAVES JAN POM772 FISHERMAN GUNNS 2500.00
2789 MICROWAVES MAR POM639 COP: GUNNS 2500.00
2790 ELECTRONICS JAN PSS754 NICE LITTLE BK 5900.00
2791 BYTE FEB SFT789 BILGE PUMP 2932.00

A-8

The other two report forms are:

JOBCOSTS.FRM
n
n
y

9,BILL:DATE
DATE
22,NAME
SUPPLIER .
17,DESCRIP
DESCRIPTION
12,AMOUNT
AMOUNT
Y

BILLED.FRM

Y

8,INV:DATE
DATE
8,INV:NMBR
INVOICE
17,DESCRIP
DESCRIPTION
10,TAXABLE
TAXABLE
Y
10 , SALES:TAX
SALES TAX
Y
10,TAXFREE
TAX-FREE
Y

A-9

SYSTEM CONSTANTS

System constants are kept in a file called B:Constant.MEM. These are
called out, used and updated where appropriate from within a number of
programs within this accounting system. Constants are kept in a single
file so that when any of them change (new tax rates, new year, etc.),
they need be changed in only one location to update the entire system.

NEXTCHECK
MBALANCE

(C)
(N)

3565
23921.18

THISYEAR (N) 81
MINYEAR (N) 79

NEXT:10 (C) 2885

NEXT:INV co 10623

FICACUT (N) 0.0665
FICAEND (N) 29700.00
MAXFICA (N) 1975.05
SDICUT (N) 0.006
SDIEND (N) 14900.00
MAXSDI (N) 89.40
UIEND (N) 6000
COMPLETED co
PREVDATE co 810814
MAXEMPL (N) 14

Keep checkbook current in PAYBILLS, PAYROLL,
and DEPOSITS command files.

Used by GETDATE, DATECHECK and PAYROLL files.

Next insertion order number (IOPOST.PRG).

Next invoice number (INVOICES.PRG).

Entire grouping is used in the PAYROLL file.
Easy to update every year because the values
are not sprinkled throughoutxthe programs.

Highest employee number. Used in
TIMECALC program.

A-10

»****«****#**»**«»*»»*»»»ACCOUNTS COMMAND FILE**************************
* THIS IS THE CONTROL MODULE FOR ALL THE PROCEDURES USED IN THE
* ACCOUNTING FUNCTIONS. (MENU DRIVEN). The operator is given a choice.
* of major functions. The menu selection here calls up menus of sub-
* functions to as many levels as necessary. A package of utility
* functions is also provided as part of the overall system for file
* maintenance, etc.5**** It***»*»**»»»*****»*
SELECT PRIMARY
CLEAR
SET TALK OFF
SET EJECT OFF
SET MARGIN TO 38
SET RAW ON

STORE T TO Accounting
DO WHILE Accounting

ERASE

? ’1> ENTER BILLS & TIME SHEET 6> REPORTS & PRINTOUTS'
? ’ Job cost & billing summaries’
? ’2> PAY BILLS & SALARIES Find & Edit bills by name’
? ' Review/print databases’
? ’3> DEPOSITS & CHECKBOOK'

? ’4> MEDIA INSERTION ORDERS’

? '5> CLIENT BILLINGS & INVOICES’

? ' Pick a number (Q to QUIT)'
WAIT TO Action
DO CASE

CASE Action - ”Q"
ERASE
QUIT

CASE Action = ”1"
DO Costmenu

CASE Action - ”2’’
DO Paymenu

CASE Action = ’’3''
DO Depmenu

CASE Action - "4"
DO lomenu

CASE Action - "5"
DO Invmenu

CASE Action - "6"
DO Repmenu

ENDCASE
STORE T TO Accounting

ENDDO Accounting

A-ll

»»»<*»»»*»**»*«»»»*«»**COSTMENU COMMAND FILE**************************
* This is one level down from the Accounts.PRG control module.
* Selections are refinements that relate to costs for client-related
* jobs or agency overhead.
* The main database is called CostBase.Dbf and is kept on disk B.
* Costs are not entered directly into the CostBase, however, because
* this leads to data contamination and all sorts of problems fixing the
* errors. Instead, supplier bills and agency time sheets are posted
* into an interim file called PostFile.Dbf. In here, they can be
* reviewed and edited as necessary.
* When all the cost entries are confirmed as being correct, they
* are transferred to the CostBase by using the update procedure
* (selection 5).»«*«*»»*«*»#»#«»»««**««*»***«*»»«*«**#**»#»»**»»<**#***«**»****«*##***»*

STORE T TO Posting
DO WHILE Posting

ERASE
5 2,20 SAY ’ 1>
@ 4,20 SAY • 2>
e 6,20 SAY ' 3>
e 8,20 SAY ’ 4>
e 10., 20 SAY ’ 5>
6 12,20 SAY ' 6>
e 14,20 SAY ' 7>
S 16,20 SAY ’
WAIT TO Action
ERASE

UNTAXED ITEMS USED BY AGENCY5
ENTER SUPPLIER BILLS’
ENTER EMPLOYEE TIME SHEETS’
EDIT the POSTFILE5
REVIEW/PRINT the POSTFILE’
UPDATE THE COSTBASE'
WIPE OUT DELETED RECORDS IN POSTFILE'

<RETURN>'

DO CASE
CASE Action - "1"

ERASE
6 4,10 SAY ' This program accepts bills for items, that the'
? ' agency bought without paying sales tax, but'
? ' will use internally, rather than for a job'
? ' that will be billed to a client. This would'
? ' include equipment bought out of state and'
? ' locally bought materials NOT used in client'
7 5 jobs and NOT taxed.'

? ' DO NOT ENTER ANY OTHER SILLS."

? 'Do you want to continue (Y or N)7
WAIT TO GoAhead
IF !(GoAhead) - 'Y'

DO UseTax
ELSE

RELEASE All
ENDIF

A-12

CASE Action = "2”
ERASE
s 4,10 SAY ’CHECK ALL THE BILLS BEFORE ENTERING THEM.’
? ' If any of the bills are for items used by’
? ' the agenoy but sales tax was not paid,*
? ’ select OPTION 1 from the entry menu.’
? ’ <Return> to continue.’

WAIT
DO CostBills

CASE Action - "Z"
DO CostTime

CASE Action = ’’4’’
STORE "Y" TO Changing
DO WHILE !(CHANGING) s ’ Y '

USE B:PostFile
IF EOF

? 'There are no entries in the. POSTING file.’
? ’<Return> to continue.’
WAIT
STORE "N" TO Changing

ELSE
GO BOTTOM
ERASE
s 3,10 SAY ’EDITING BILLS ENTERED.’
S 5,10 SAY 'There are ’+STR(#,5)+* file entries.’
S 6,10 SAY 'Which entry do you want to EDIT?’
ACCEPT TO Number
IF VAL(Number) <-- 0 .OR. VAL(Number) > #

? ’Out of range: do you want to continue (Y or N)
WAIT TO Changing

ELSE
Edit ^Number
REPLACE Name WITH !(Name) , Descrip WITH;

!(D), C with !(Client), ;
Bill:Nmbr WITH !(B:N)

? 'Do you want to edit any other entries (Y or N)
WAIT TO Changing

ENDIF value out of range
ENDIF (eof)

ENDDO Changing
RELEASE All

CASE Action - ”5”
STORE 'Y* TO Reviewing
DO WHILE !(Reviewing)=’Y’

USE B:Postfile
COUNT FOR .NOT. * TO Any
IF Any - 0

? 'No unposted entries in the POSTING file.’

A-13

? ’<Return> to continue.1
WAIT
STORE "N" TO Reviewing

ELSE
ERASE
? 'There are '-STR(Any,5)+’ unposted entries.
? 'Do you want to print them, too (Y or N)?’
WAIT TO Output
IF !(Output)-'Y'

SET PRINT ON
ENDIF
? • JOB NAME DESCRIP';
+'TION AMOUNT DATE NUMBER'

STORE 'OFF' TO Condition
STORE *0' TO Number
DO Printout
? "That’s all the unposted entries."
? 'Want to see them again (Y or N)?'
? '(To see deleted records, choose "Edit".)'
WAIT TO Reviewing

ENDIF
ENDDO Reviewing
RELEASE all

CASE Action - "6"
DO CostUpdate

CASE Action = "7"
? 'This destroys all records in the PostFile.'
? 'Do you want to do this (Y or N)?
WAIT TO WipeOut
IF ’(WipeOut) - 'Y'

USE B:PostFile
PACK

ENDIF
RELEASE All

OTHERWISE ■ •
RELEASE All
RETURN

ENDCASE
STORE T TO Posting

ENDDO (POSTING)

A-14

»»»**»**#»»«»»«»*»»»»*USETAX COMMAND FILE**************************
* This file accepts inputs for supplier bills when the agency has
* brought an item without paying a use tax on it.
* The item or items are added to the Invoices file (not Billings),
* then are used by the SalesTax program so that the Quarterly Sales Tax
* report can be prepared by the computer.
* A temporary file called GetBills is used for data entry because
* the operator can decide to quit on an incomplete * entry, which is
* marked for deletion. When the data is APPENDed to the PostFile, these
* entries are eliminated (the APPEND command does not transfer records
* marked for deletion). An entry must include at least the name of a
* supplier and the amount of the bill. If these are not both supplied,
* the entry is flagged for correction or deletion.*<**»«*#*■»***«**»*»***»<**«*#*«■***»»*»**»**<»*»»**«**»*»»*»»»»*»»*«*<*»*

ERASE
S 5,20 SAY ’AGENCY USE TAX PROCEDURE’

USE B:PostFile
COPY STRUCTURE TO GetBills

USE GetBills
STORE »Y» TO Bills
DO WHILE ’(Bills) <> ’F’

APPEND BLANK
STORE STROZ, 5) TO Number
REPLACE Client WITH ’OFC’
STORE T TO Entering
DO WHILE Entering

ERASE
e 1,0 SAY 'ENTER ONLY UNTAXED ITEMS NOT USED FOR CLIENT JOBS
s 3,0 SAY ' RECORD NUMBER:' + Number
e 4,0 SAY ' . CLIENT:' + Client + ':'
s 5,0 SAY ’ JOB NUMBER’ GET Job:Nmbr
s 6,0 SAY ’ AMOUNT’ GET Amount
s 7,0 SAY ’ BILL NUMBER’ GET Bill:Nmbr
s 8,0 SAY ' BILL DATE’ GET Bill:Date
s 9,0 SAY ’ SUPPLIER NAME’ GET Name
READ
REPLACE Name WITH ’(Name),Descrip WITH 'USE TAX ENTRY’:

Bill:Nmbr WITH ’(Bill:Nmbr)
6 7,17 SAY Bill:Nmbr
S 9,17 SAY Name
0 10,17 SAY Descrip

STORE ' ' TO Getting
IF Job:Nmbr <=0 .OR. Job:Nmbr > 99

@ 12,0
? ' The JOB NUMBER entry is wrong.'
? ’ Agency jobs are from 1 through 99.’
? ’ F if FINISHED,' '
ACCEPT ' <RETURN> to change.’ TO Getting

ELSE
IF AMOUNT = 0 .OR. Name <= ' '

A-15

? ’ AMOUNT or NAME missing.’
? ' F if FINISHED,’
ACCEPT ' <Return> to change.’ TO Getting

ELSE
S 12,5 SAY ’ C to CHANGE,’
@ 13,5 SAY ' F if FINISHED
ACCEPT ' <Return> to continue.’ TO Bills
IF .'(Bills)-’C'

STORE T TO Entering
ELSE

STORE F TO Entering
ENDIF

ENDIF Amount or name
ENDIF client or job number

IF !(Getting)- ’F’
DELETE RECORD &Number
STORE F TO Entering
STORE ’F’ TO Bills

ENDIF
ENDDO Entering

ENDDO Bills

STORE ’Bill:Date’ TO DATE
DO DateTest

COUNT FOR .
IF Any - 0

.NOT. * * TO Any

WAIT
ELSE '

No valid entries to add to the files
<Return> to the menu.’

RESTORE FROM B:Constant

* The following loop transfers the bills just entered into the
* Invoices file. The amount of the bill is entered in the ’’Taxable
* column. The job number is entered into the Invoice Number column
* Since invoice have 5 digits, while job numbers are under 1000, we
* use this to separate the two types of entries Later in the
* SalesTax.PRG file. PRIMARY and SECONDARY work areas are used to
* step through the GetBills file one entry at a time.

* Following checks names against a list of suppliers to catch
* spelling and abbreviation inconsistencies.
DO NameTest

ERASE
S 3,25 SAY ’ *** DO NOT INTERRUPT ***’
S 5,25 SAY ’ UPDATING THE POSTING FILE’
USE B ; PostFile
APPEND FROM GetBills

A-16

USE GetBills
SELECT SECONDARY
USE B:Invoices
SELECT PRIMARY
DO WHILE .NOT. EOF

IF »
SKIP

ELSE
SELECT SECONDARY
APPEND BLANK
REPLACE Inv :Nmbr WITH STR(Job:Nmbr,3) , Inv:Date WITH Bill:Date,;

Taxable WITH P.Amount, Date:Rcd WITH ’USE TAX’
SELECT PRIMARY
SKIP

ENDIF
ENDDO

ENDIF
USE
DELETE FILE GetBills
RELEASE All
RETURN

A-17

<<*«***»«»»#**»*»*»****COSTBILL COMMAND k'ILL*************************
* This file accepts inputs for supplier bills. A temporary file called
* GetBills is used for data entry because the operator can decide to
* quit on an incomplete entry, which is marked for deletion. When the
* data is APPENDed to the PostFile, these entries are eliminated (the
* APPEND command does not transfer records marked for deletion). An
* entry must include at least the name of a supplier and the amount of
* the bill. If these are not both supplied, the entry is flagged for
* correction or deletion.

ERASE
S 5,20 SAY 'SUPPLIER BILLS'
USE B:PostFile
COPY STRUCTURE TO GetBills

USE GetBills
STORE •Y’ TO Bills
DO WHILE ’(Bills) <> »F»

APPEND BLANK
STORE STR(#,5) to Number

STORE T TO Entering
DO WHILE Entering

ERASE
e 1,0 SAY ’ RECORD NUMBER: '-Number
S 3,0 SAY ' CLIENT’ GET Client
e 4,0 SAY ' JOB NUMBER' GET Job:Nmbr
e 5,0 SAY » AMOUNT’ GET Amount
e 6,0 SAY ' BILL NUMBER' GET BILL:Nmbr
s 7,0 SAY ’ BILL DATE’ GET Bill:Date
s 8,0 SAY ’ SUPPLIER' NAME’ GET Name
e 9,0 SAY ' DESCRIPTION’ GET Descrip
READ
REPLACE Client WITH !(Client), Name WITH !(Name),Descrip;

WITH !(Descrip), Bill:Nmbr WITH !(Bill:Nmbr)
5 3,17 SAY Client
6 8,17 SAY Name
& 9,17 SAY Descrip

STORE ' ' TO Getting
IF $(Client,1,1) - ' ' .OR. $(Client,2,1) = ' ' .OR.

$(Client,3,1) = ' '; .OR. Job:Nmbr <= 0
S 12,0
? ' CLIENT or JOB NUMBER wrong. '
? ' F if FINISHED,'
ACCEPT ' <Return> to change.' TO Getting

ELSE
IF Amount = 0 .OR. Name <= ' '

? ' AMOUNT or NAME missing.'

? ' F if FINISHED,'

A-18

ACCEPT ’ <Return> to change.’ TO Getting

@ 12,5 SAY ' C to CHANGE,’
@ 13,5 SAY ' F if FINISHED,'
ACCEPT ' .<RETURN> to continue.' TO Bills

IF !(Bills) = 'C'
STORE T TO Entering

ELSE
STORE F TO Entering

ENDIF
ENDIF amount or name

ENDIF client or job number

IF !(Getting)= 'F»
DELETE RECORD &Number
STORE F TO Entering
STORE 'F' TO Bills

ENDIF
ENDDO Entering

ENDDO Bills

COUNT FOR .NOT- # TO Any
IF Any - 0

? 'No entries to add to the Cost Base.'
? ' (Return) to the menu.'
USE
WAIT

ELSE

RESTORE FROM B:Constant
STORE 'Bill:Date' TO Date
DO DateTest

* Following checks names against a
"list of supliers to catch spelling and
* abbreviation inconsistencies.

DO NameTest

ERASE
g 3,25 SAY ' *** DO NOT INTERRUPT ***'
S 5,25 SAY ' UPDATING THE POSTING FILE’
USE B:PostFile
APPEND FROM GetBills

ENDIF

USE
DELETE FILE GetBills
RELEASE All
RETURN

A-19

«*******************»COSTTIME COMMAND FILE**************************
* Accepts time sheet entries for employees using a temporary file
* called GetTime. For data entry.
* GetTime is used because the operator can decide to quit on an
* incomplete entry. In that case, the entry is marked for deletion, and
* when the data is APPENDed to the PostFile, these entries are
* eliminated (the APPEND command does not transfer records marked for
* deletion).
* After all entries are made, entries are checked for the correct
* range of employee numbers and to see that hours have been entered.
* Using GetTime, we can check the entries without having to go through
* the entire PostFile.
* After verifying that the dates are in the right format and
* checking the names against our Suppliers file, the billing amounts are
* computed.
* The records are then transferred to the CostFile and the
* temporary file GetTime is deleted.
* CostTime is called by Costmenu.
»»*»»»**»*»***»*«*»*»*«*»*»*«************«*»*»**************************

* The following sequence of IF statements flags all entry errors,
* then gives the operator the choice of fixing them or ending the
* procedure.

S 0,25 SAY ' TIME SHEETS '

RESTORE FROIb-BxConstant
USE B:PostFile
COPY STRUCTURE TO GetTime

USE GetTime
STORE 'Y' TO Time
DO WHILE ’(Time) O'F'

APPEND BLANK
STORE STR(#,5) TO Number
STORE T TO Entering

READ

DO WHILE Entering
ERASE
STORE
& 1,0

F TO Entering
SAY ' RECORD NUMBER: '-Number

S 3,0 SAY ' DATE WORKED’ GET Bill:Date
6 4,0 SAY ' CLIENT' GET Client
S 5,0 SAY ' JOB NUMBER' GET Job:Nmbr
S 6,0 SAY ' HOURS WORKED' GET Hours
S 7,0 SAY ' EMPLOYEE NUMBER’ GET Emp - Nmbr
S 8,0 SAY ' EMPLOYEE NAME' GET Name

REPLACE Check:Nmbr WITH ' ', Check:Date WITH Bill-Date,;
Client WITH !(CLlM77, Name WITH .'(Name)

S 4,17 SAY Client
S 8,17 SAY Name

A-20

IF$(Client, 1,1) =’ ’.OR. $(Client,2,1) ' .OR. $(Client,3, 1) '
? ' CLIENT must have three letters. '
STORE TO TO Entering

ENDIF

IF Job:Nmbr <100
? ’ JOB # is not for a client job.’
? ’ Is this right (Y or N)?
WAIT TO Ask
IF !(Ask) <> 'Y'

STORE TO TO Entering
ENDIF

ENDIF
IF Hours - 0

? ’ HOURS must be entered.
STORE TO TO Entering

ENDIF

IF (Emp:nmbr <- 0) .OR. (Empsnmbr >- 100)
? ' EMPLOYEE # out of range.
STORE T TO Entering

ENDIF

IF $(Name,1,1) - ' '
? ’ NAME must not start with a blank.’
STORE T TO Entering

ENDIF

IF Entering

? ' F if FINISHED,’
ACCEPT ' <Return> to change' TO Time
* If the operator decides to quit on an incomplete entry, it is
* marked for deletion so that it is not transferred to the
* PostFile.
IF !(Time) - 'F'

DELETE RECORD LNumber
STORE F TO Entering

ENDIF
ELSE

? ' C to CHANGE, '
? ’ F if FINISHED,’
ACCEPT ’ <Return> to continue’ TO Time
IF !(Time) - ’C’

STORE T TO Entering
ENDIF

ENDIF
ENDDO ENTERING

ENDDO Time

A-21

COUNT FOR .NOT. » TO Any
IF Any = 0

ERASE
& 3,0 SAY * No entries to add to the CostFile. ’
? ’ <Return> to the menu. *
USE
WAIT

ELSE

* The test for the date needs the name of the data field to be
* tested.
STORE ’Bill:Date’ TO Date
DO Datetest

* Checks names against a list of suppliers to catch spelling and
* abbreviation inconsistencies.
DO NameTest

* Verified match between employee name and number, then computes the
* amount to be billed for the employee’s time based on his salary.
DO Time Calc

ERASE
S 3,25 SAY » ”• DO NOT INTERRUPT »«*"
S 5,25 SAY " UPDATING THE POSTING FILE"
USE B:PostFile
APPEND FROM GetTime

ENDIF

DELETE FILE GetTime
RELEASE All
RETURN

A-22

COSTUPDA COMMAND FILE ***************************
* Records from the COSTFILE are added to the COSTBASE. This step is
* so critical to data integrity that we: use a password to prevent
* accidental access; verify dates; check the names of suppliers; and
* compute time charges if necessary. Notice that these are done by
* simply calling the utility command files.
* The PostFile has all its records marked for deletion after they
* have been posted (can still be recovered).
**

SET TALK OFF

e 4,12 SAY *«******************************"**"*»»**»**»*"
@ 6,12 SAY. ’MAKE CERTAIN EVERYTHING IN THE POSTFILE IS CORRECT’
e 8,12 SAY ' BEFORE ENTERING THE CODE TO CONTINUE’
A 10 12 SAY ’»»»»»»»«»»»***«»»*»**»******»***»*»»*»»»*»*»*»»*»»’
SET CONSOLE OFF
ACCEPT TO Lock
SET CONSOLE ON

IF '(Lock) <> ’H’
5 12,12 SAY • UNAUTHORIZED ACCESS ATTEMPTED.’
6 14,12 SAY "YOU HAVE 6 SECONDS BEFORE THE EXPLOSION.’
STORE 1 TO X
DO WHILE X < 150

STORE X + 1 TO X
ENDDO
RELEASE Lock
RETURN

ELSE
ERASE
S 5,20 SAY 'Checking .bills in the POSTING File:’
USE B:PostFile
COUNT FOR .NOT. » TO NONE
IF None - 0

& 6,20 SAY ’No new entries in the POSTING file.’
S 7,20 SAY ’<Return> to continue.’
WAIT

ELSE
GO TOP
RESTORE FROM B:Constant
STORE 'Bill:Date’ TO Date
DO DateTest
Do NameTest
Do TimeCalc
ERASE
S 5,20 SAY ’ »** DO NOT INTERRUPT ***'
S 6,20 SAY 'Posting COSTS to the Costbase.*
* Save the number of the last record in Costbase
USE B:CostBase
GO BOTTOM
STORE # TO LastReco

A-23

USE B:Costbase INDEX B:$Supp
APPEND FROM B:PostFile

USE B:PostFile
DELETE ALL

ENDIF
ENDIF

RELEASE ALL
RETURN

A-24

»*<«*##•«*»»**»»»###»»#PAYMENU command FILE***********************
* This program is called by the Accounts.PRG file and provides
* choices as to which checks are to be prepared for posting and
* printing.
* Paying salaries has -another menu level to allow partial payments to
* selected employees (e.g., leave of absence, when an employee does not
* work a full two week stretch, etc.)
* The checkbook balance and next check number must be confirmed
* before either of the procedures can be performed.**5»* it**
RESTORE FROM B:Constant
ERASE
@ 3, 0 SAY .'CHECK NUMBER: '+NEXTCHECK+' BALANCE: '+STR(MBalance,9,2)
?
? ’ Do these match the checkbook?
? ' C to CONTINUE,’
? ' <Return> to change.'
?
WAIT TO Continue

IF .’(Continue) <> »C»
RELEASE All
RETURN

ENDIF

STORE T TO Paying
DO WHILE Paying

ERASE
S 5,20 SAY ' 1> PAY BILLS
s 7,20 SAY ' 2> PAY SALARIES
S 10,20 SAY ' <RETURN>'
WAIT TO Action

IF Action = '1 '
USE B:PostFile

* Can abort if any entries in the Postfile.
COUNT FOR .NOT. * TO Any
IF Any = 0

DO PayBills
ELSE

? 'The POSTING file has ’-STR(Any,5)+’ bills in it.'
? 'Do you still want to pay bills now (Y or N)?'
WAIT TO Continue
IF !(Continue) = ’Y’

DO PayBills
ELSE

RELEASE All
ENDIF

ENDIF
ELSE

IF Action - '2'
DO PayEmps

A-25

ELSE
RELEASE All
RETURN

ENDIF 2
ENDIF 1
STORE T TO Paying

ENDDO Paying

A-26

******** PAYBILLS COMMAND FILE **********
* Before this procedure can be accessed, the check number and
* balance must be verified in the PAYMENU command file, which calls it.
* This is one of the longer files, but the individual portions of'
* it are not too complicated. Repetitive procedures in the main loop
* (controlled by the variable ’’Finished”) could have been put in
* separate command files to make this file easier to understand and
* maintain, but this way it minimizes disk accesses and increases speed.
* This file finds bills to be paid in the CostBase, generates the
* next check number, writes a check in the CheckFil and maintains the
* checkbook balance.
* The next check number and checkbook balance are recalled from a
* file called Constant.MEM. The final values for both of these are
* stored in. the same file after all the bills have been paid.
* The date is entered once at the start of the procedure, then is
* automatically inserted into each entry. The date is checked to see
* that it is in the YYMMDD format, and that the values are within
* possible limits (month from 1 to 12, day from 1 to 31 , year=ThisYear).
* Entries must include at least the name of the party being paid.
* Balances are automatically computed and shown to the operator.
* If several entries are made against a single check number (the
* operator has this option), these are added and shown as a single item
* in the printout.
**

RESTORE FROM B:Constant
DO Set Date

SELECT PRIMARY
USE B:CostBase INDEX B:$Supp

* Initialize. ’’New” is used to determine whether the program should
* generate a new check number or use the old one (where several bills to
* a single supplier are being paid). "Finished” is the control variable
* that determines whether we should run through the procedure again, or
* are done paying bills.
STORE ’N’ TO New
STORE ’N’ TO Finished
DO WHILE I(Finished) <> ’F•

STORE."C" TO Entering
DO WHILE !(Entering) - 'C'

ERASE
5 3, 0 SAY ’CHECK NUMBER: ’+NextCheck*’ BALANCE; ’+STR(MBalance,9,2)
? CHR(7)
@ 4,0
ACCEPT ' MAKE CHECK TO ' TO MName
ACCEPT ' INVOICE NUMBER ' TO MBillzNmbr
ACCEPT ’ ENTER AMOUNT ' TO Temp
STORE ’(MName) TO MName
STORE I(MBill:Nmbr) TO MBill:Nmbr
STORE VAL(Temp) TO MAmount
STORE MAmount*1.Ob TO MAmount
6 6,19 SAY MName
e 7,19 SAY MBill;Nmbr
g 8,19 SAY MAmount

A-27

@11, 0 SAY ’ C TO CHANGE, '
? ' <Return> to continue.’
WAIT TO Entering

ENDDO Entering

IF LEN(MName) > 10
STORE $(MName,1,10) TO Key

ELSE
STORE MName TO key

ENDIF

IF Key > ’ ’
STORE- T TO Looking
S 11, 0 SAY "I'M LOOKING, I'M LOOKING!!"
S 12,0
S 13,0
STORE 0 TO Start
FIND &Key
IF # = 0

?
? " GEE, I CAN’T FIND THE NAME. Please check the spelling."
? " Or maybe it hasn't been posted to the COSTBASE yet."
? '<Return> to continue.'
WAIT
ERASE

ELSE
DO PayFind

ENDIF there is an unpaid bill for the supplier

* "Start" is brought in from PayFind.PRG. If we started at the first
* entry for a name (had only the name), Start-0. If we had more than
* the name, Start contains the record number we started on. Since this
* could be in the middle of the listing, we use "Counter" so that we can
* come back to the top of the listing for the name once.

IF Start > 0
STORE 0 TO Counter

ELSE
STORE 1 TO Counter

ENDIF

STORE ’ ' TO Confirm
DO WHILE !(Confirm) <> 'P’ .AND. .NOT. Looking

e 9,0
? 'RECORD NAME AMOUNT BILL //' ;

+• DATE’

DISPLAY ' '+Name, Amount, Bill:Nmbr, Bill:Date

? CHR(7)
? ' P to PAY this bill.'
?.' Q to QUIT without paying,'

? ' <Return> to continue.'
ACCEPT ' ' TO Confirm

A-28

IF I(Confirm) = ’Q *
IF ’(New) - ’S'

STORE STR(VAL(NextCheck)+1,4) TO NextCheck
ENDIF
STORE ' ' TO New
STORE T TO Looking

ELSE
IF !(CONFIRM) -

STORE STR(# , 5) TO Found
REPLACE Check:Date WITH Date, Check:Nmbr WITH NextCheck
STORE (MBalance-Amount) TO MBalance

SELECT SECONDARY
USE B:Checkfil
APPEND BLANK
REPLACE Check:Date WITH P.Check:Date, Name WITH P.Name,;

Check:Nmbr WITH P.Check:Nmbr, Balance WITH MBalance,;
Amount WITH P.Amount, Bill:Nmbr WITH P.Bill:Nmbr

SELECT PRIMARY
ERASE
@ 3, 0 SAY 'CHECK WRITTEN: '+NextCheck+;

' NEW BALANCE: '+STR(MBalance,9,2)

DISPLAY 'PAYMENT MADE: '+Check:Date , Name, Amount, Bill:Nmbr
Bill:Date OFF

? ' S for SAME SUPPLIER (Repeats check #)'
? CHR(7)
ACCEPT ' <Return> to continue.' TO New
IF !(New) <> 'S'

STORE STR(VAL(NextCheck)+1,4) TO NextCheck
ELSE

STORE ' ' TO Confirm
ENDIF

ENDIF

IF !(New) - "S” .OR. !(Confirm) <> 'P’

If Confirm <> 'P1, we rejected the first unpaid bill that was
shown. Rather than going back to the beginning, the loop below SKIPs
to the next INDEXed name until we find an unpaid bill, or go beyond
the records for the name we are paying.

The same applies if we want to pay another bill to the same
supplier (News'S'). Since we are in the file on the name we want
we SKIP to the next record until we find an unpaid bill or run out
of records for that name.

If we had only the name and started with the first unpaid bill we
stop now since we have looked at all the unpaid bills for that
supplier.

If we could have entered the list of records for this supplier in
the middle (more than the name provided), we look at the unpaid bills
between where we are and the end of the list, then go up to the first
entry for that name and check all of the unpaid bills that we had

A-29

* previously skipped past. This is controlled by Counter.
* After the second FIND in the command file (below), we stop
* looking when the record number we are on is greater than or equal to
* the number of the record we start on (Start).

SKIP
DO WHILE Check:Nmbr <> ' ' .AND. Name-Key .AND. .NOT. EOF

SKIP
ENDDO

* We enter this loop when we reach the end of the records with
* names that match the one we are looking for. If we started with the
* first unpaid bill, the record number is greater than Start (because
* Start-0) and Counter-1 (because we set it to that value). The second
* IF below is True and we terminate the search.
* If Start>0, Counter-0 the first time we run out of records with a
* matching name, so the program does the ELSE commands below.
* Start is still >0 and Count is now 1, so the last term in the
* first IF applies. On this second pass when we get to a record number
* >=Start, we drop into the loop and do the IF to terminate the search
* because we have now looked at all the unpaid bills for the name we
* entered.

IF EOF .OR. Name <> Key .OR. (# >= Start .AND. Start <> 0;
.AND. Counter >0)

IF (# >- Start .AND. Counter > 0)
STORE T TO Looking
s 4,0
? chr(27)+chr(74)
? ' We have now looked at all the entries
? ’ for ’+MName
? ’ <Return> to continue.’
? CHR(7)
IF !(New)-'S' .

STORE STR(VAL(NextCheck)+1,4) TO Next Check
STORE 'N' to New

ENDIF
WAIT I

ELSE
STORE Counter + 1 TO Counter
S 13, 0
@ 16, 0 SAY "I’M WORKING AS FAST AS I CAN — HANG UN!
FIND LKey
DO WHILE Check:Nmbr O’’

SKIP
ENDDO

ENDIF
ENDIF

ENDIF is it the right record
ENDIF (Q)

ENDDO Confirm the record
ENDIF (Key)

IF ’(New) <> ’S’
e 4,0
? Chr(27)+Chr(74)

A-30

? ' F if FINISHED,
? CHR(7)
ACCEPT ' <Return> to continue.’ TO Finished

ENDIF
ENDDO Finished

RELEASE MName, MBill:Nmbr, Key, MAmount, Start, Found, Looking, New, Change,;
Entering, Counter, Temp, Abort, Continue, Finished, Confirm, Date

SAVE TO B:Constant

USE B:Checkfil
COUNT FOR .NOT. * TO Any
ERASE
e 3,0
IF ANY = 0

? ’ No new checks in the checkfile.’
? ’ <Return> to continue.’
WAIT

ELSE
? 'There are '-STR(Any,5)+' new checks in the CheokFile.'
? 'Do you want to print the checkstubs now (Y or N)?’

WAIT TO Hardcopy
IF ’(Hardcopy) -- »Y’

DO NameTest
DO CheckStub

ENDIF
ENDIF

RELEASE All
RETURN

A-31

»*<*»**»»**«*»»«»»*«»*»»»<payfind command FII.F**************************
* This file is called by the PAYBILLS command file after we have
* found at least one cost entry for the supplier that we are looking for.
* This file now looks for either the first unpaid bill for the
* supplier (if only the name was specified) or looks for a complete match
* (if more than the name was specified.)
* If an unpaid bill meeting the criteria is found, Looking is set to
* False. Otherwise it remains True.
* If only the name was used, at this point we. are at the first unpaid
* bill for the supplier name.
* If more than the name was specified for the search, we could be
* anywhere in the indexed list of records for this supplier. If we do not
* want to pay this particular bill, or we want to pay more bills for this
* supplier, we use a short cut in the PAYBILLS command file so that we do
* not have to start at the first record for the name every time. To do
* this, we store the record number that we start at to a variable called
* Start if we have more than the name to look for. Otherwise, Start =0
»»»*«*»»»»»«»**»**««»«*««**»****************»«««******************»*»*

STORE T TO Looking
IF MBill:Nmbr > ' ' .OR. MAmount > 0
* If we have more than the name, we first check for the bill
* number. If this is not found or if the bill has already been paid,
* the confirming procedure is skipped (Looking set TRUE).
* In this case, we may have entered the list of supplier bills in
* middle of the indexed list. In a later procedure, we may need to go
* back to the top and look at the names we skipped. To do this, if we
* find a record here, we store its number to "Start”.

IF MBill:Nmbr > ' '
DO WHILE Name-Key .AND. .NOT. EOF .AND. Looking

IF Bill:Nmbr <> MBillzNmbr
. SKIP
ELSE

STORE F TO Looking
ENDIF

ENDDO

* If we’re on a new name or the end of the file, Looking is TRUE
* because we have not found the supplier we were looking for.
* Otherwise, we have a matching bill number to confirm.
IF Looking

? ’ This BILL NUMBER is not in the costbase.'
? ’<Return> to continue.’
WAIT

ELSE
IF Check:Nmbr O’’

STORE T TO Looking
? ’ This bill paid on ’+Check:Date+’, check '+Check:Nmbr
? ’<Return> to continue.’
WAIT

ENDIF
ENDIF

ELSE

A-32

* If no bill number, look for the amount and an unpaid bill. If not
* found, skip the confirmation procedure.

DO WHILE Name=Key .AND. .NOT. EOF .AND. Looking
IF Amount <> MAmount .OR. Check:Nmbr <> ' ’

SKIP

STORE F TO Looking
ENDIF

ENDDO
* If we’re on a new name or the end of the file, Looking is TRUE.
* Otherwise, we have an unpaid bill to confirm.

IF Looking
? ' No unpaid bill for this amount and this supplier.'
? ’<Return> to continue.’
WAIT

ENDIF
ENDIF

* If we found a matching record, store its number to Start
IF .NOT. Looking

STORE # TO Start
ENDIF

ELSE
* If we have only the name, find the next unpaid bill

DO WHILE Name-Key .AND. .NOT. EOF .AND. Looking
IF Check:Nmbr <> '

SKIP

STORE F TO Looking
ENDIF

ENDDO

* If we’re on a new name or the end of the file, Looking is TRUE
* because we did not find the supplier we were looking for. Otherwise,
* we have an unpaid bill to confirm.

IF Looking
? ' There are no unpaid bills for this supplier.’
? ’<Return> to continue.'
WAIT

ENDIF
ENDIF

RETURN

A-33

«*»»*«**#*«*<*»*«***»*»»»*payej4ps COMMAND FILE**************************
* Does normal payroll processing or exceptions. Called by Paymenu.
»*»»**»»»»**»»**»*»*»«»»*»***»»*»»»*»*****»****»»******»**»*»**»»*»****«
SET TALK OFF
STORE T TO Salaries
DO WHILE Salaries

DO Payroll
CASE Action - "2”

ERASE

ERASE
s 3,20 SAY ' PAYROLL FUNCTIONS
e 6,20 SAY ' 1> NORMAL PAYROLL
e 7,20 SAY ' 2> PARTIAL PAYMENT(S)
6 8,20 SAY '
e 10,20 SAY ’
WAIT TO Action
DO CASE

CASE Action

3> SKIP EMPLOYEE(SQ
<RETURN>'

? 'This procedure allows you to pay less than a full'
? 'salary if for some reason an employee skipped days'
? 'of work that are not to be paid for. Do you want to'
? 'continue (Y or N)?'
WAIT TO Continue
IF ’(Continue) = 'Y'

RESTORE FROM B:Constant
USE B:Personne
? 'Select the employee number for partial payment:'
? ' (Type 0 to quit.)'

?' NO. NAME % OF PAY'
LIST Name, Ratio»100 FOR .NOT. *

INPUT 'Which number(0 to quit)? ' TO Wipe
STORE INT(Wipe) TO Wipe
DO WHILE Wipe <> 0

GO Wipe
? 'How many days were worked'
? 'since the last regular payday?'
? 'Use decimals if needed (1 hour = 0.1333.)’
7
INPUT TO Worked
STORE Worked/11.0000 TO NewRatio
REPLACE Ratio WITH NewRatio

DISP Name, Ratio«100

INPUT 'Next (0 to quit)? ' TO Wipe
• STORE INT(Wipe) TO Wipe
ENDDO

ELSE
LOOP

ENDIF

A-34

RELEASE All

? ’Do you want to SKIP any employees (Y or N) ? ’
WAIT TO Skip
IF !(Skip) <> 'Y'

DO Payroll
ENDIF
RELEASE Skip

CASE Action - "Z"
ERASE

? 'This procedure allows you to skip a paycheck in the payroll’
? 'procedure. Do you want to continue (Y or N)?’
WAIT TO Continue
IF !(Continue) - 'Y'

RESTORE FROM ^-Constant
USE B:Personne
? 'Select the number of the employee to skip:’
? ’ (Type 0 to quit.)’
?’NO. NAME SKIP’

LIST Name, Paid FOR .NOT. *

INPUT ’Which number (0 to quit)? ’ TO Wipe
STORE INT(Wipe) TO Wipe
DO WHILE Wipe <> 0

GO Wipe
REPLACE Paid WITH T

? ’ NO. NAME SKIP’

DISP Name, Paid

INPUT ’Next? (’’0”to quit) ' TO Wipe
STORE INT(Wipe) TO Wipe

ENDDO
ENDIF
RELEASE All
7
? ’Do you want to pay a partial salary’
? ’to any employees (Y or N)?
WAIT TO Part
IF !(Part) <> 'Y’

DO Payroll
ENDIF
RELEASE' Part

OTHERWISE -
RELEASE ALL •
RETURN

ENDCASE

STORE T TO Salaries
ENDDO Salaries

A-35

»»»**********«*»«»»#****payroll command file**************************
* This command file generates payroll check stubs showing all
* deductions; gets the next check number and writes a check in the
* CheckFile, showing the new balance; and stores the salaries and
* deductions in a database called Hold81. This file is used to store
* the monthly, quarterly and annual FIT, FICA, SDI and SIT deductions.
* The deductions are not picked up from tax tables because there are so
* few employees. Instead, they are obtained from the individual
* employee records in the Personnel database.
* Constants.MEM keeps track of the FICA and SDI percentages and
* their maximums, as well as the constant for ThisYear. Changes can be
* thus made in a single spot and will be correct in all the programs in
* the accounting system.
* The file is quite long, but breaks down into simpler modules:
* I: Get the date and End of Month, Quarter and Year flags.
* II: Compute all deductions and net pay for an individual
* employee, place this in the employee record in Personne.DBF
* III: Operator verifies deductions and payroll stub is printed.
* IV: Paycheck is written to the Checkfil and all amounts are
* placed into the Bold81 summary file.
* V: When all individuals have been paid, the Hold81 summary file
* is updated if it is the end of month, quarter or year.
* VI: Print out the summary file and data so that the physical
* checkbook can be updated (computer does not print our checks).
* VII: Delete transient constants, save others back to
* Constant.MEM for system use*
* Payroll is called by Payemps.
»»**«««<«*««»«»*«**»«*«»«««»««»*««*»<*»*#<**<**»**■#*»«»*««»«*»»»»*««*«**

»»*»«»#«»»«**««»#»«**»«»****»***»**«
*** I. Get date and pay period flags **

RESTORE FROM B:Constant
DO GetDate

STORE ’Y’ TO GetWhen
DO WHILE .’(GetWhen) - "Y"

ERASE
6 1,18 SAY "PAYROLL PROCESSING”
STORE " " TO EOY
S 4,8 SAY 'Want to change the date?' GET Date
S 5,8 SAY '(Press <Return> if okay.).
READ
5 7, 6 SAY "Is it the end of the YEAR?" GET EOY
6 7,35 SAY "(Y or N)"
? CHR(7)
READ
STORE !(EOY) TO EOY
IF EOY - "Y"

STORE "Y" TO EOQ
STORE "Y" TO EOM

ELSE
STORE "N” TO EOY
STORE " " TO EOQ
& 8, 3 SAY "Is it the end of the QUARTER?" GET EOQ

A-36

@8,35 SAY "(Y or N)”
? CHR(7)
READ
STORE !(EOQ) TO'EOQ
IF EOQ - "Y"

STORE "Y" TO EOM
ELSE

STORE "N” TO EOQ
STORE " " TO EOM
@9, 5 SAY "Is it the end of the MONTH?” GET EOM
@9,35 SAY "(Y or N)”
? CHR(7)
READ
STORE !(EOM) TO EOM
IF EOM <> ”Y”

STORE ”N" TO EOM
ENDIF

ENDIF quarter
ENDIF year

ERASE
S 4,25 SAY $(Date ,1, 2) + ’/’ + $(Date,3»2)+’/’+$(Date,5,2)
S 6,0 SAY ’’End of YEAR: •’ +EOY+” End of QUARTER: ”+EOQ+;

” End of MONTH: ”+EOM
STORE ” ” TO GetWhen

H 8,6 say 'The above information MUST be correct. '
? CHR(7)

* 2nd chance at date and flags
ACCEPT ' Any CHANGES (Y or N)?’ TO GetWhen

STORE ’B:Hold’+STR(ThisYear,2) TO Header
* Computer now does a date and flag check

IF ’(GetWhen) <> 'Y'
IF $(Date,5,2X’26’ .AND. EOM = ’Y’

7
? "Check the info again. It’s the end of the month, but the”
? ’date is ’+Date-’. Do you want to make changes (Y or N)?’
7 CHR(7)
WAIT TO GetWhen

ENDIF
IF EOY - 'Y'

SELECT SECONDARY
USE LHeader
GO BOTTOM
IF Marker - ’Y’

? CHR(7)
? ’You blew it —the end of the year has been done!’
WAIT
RELEASE All
STORE T TO Paying
RETURN

ENDIF

A-37

ENDIF
ENDIF

ENDDO GetWhen
RELEASE GetWhen

*** II: Calculate deductions and net pay for each individual ***
* Compute .deductions. Deductions for FICA, FIT, SDI and SIT are kept in
* the individual employee's Personnel record, rather tharr getting them
* from tax tables, because there are so few employees. (You have to
* decide what should and should not be computerized.) The "YTDxxx"
* variables are the year totals for these items. Limits and percentages
* for FICA and SDI are obtained from a file called Constant.MEM. These
* are the variables FICACut, FICAMax, FICAEnd’, SDICut, SDIMax and SDIEnd.

SELECT PRIMARY

USE B:Personne
REPLACE All FICA WITH (Pay:Rate*FICACUT+O.005);

SDI WITH (Pay:Rate *SDICUT+0.005)

STORE 0 TO Count
GO TOP
DO WHILE .NOT. EOF

IF Paid .OR. *
SKIP

ELSE
STORE Count + 1 TO Count

*** Save the employee record in case the procedure is ended ***
STORE STR(#,5) TO Payee
COPY Record &Payee TO Bak

*** Deductions for partial salary based on number of days worked ***
*** Ratio is computed in PayMenu.PRG
IF Ratio < 1.0000

REPLACE Pay trate WITH Pay:Rate*Ratio, FICA WITH FICA*Ratio,
FIT; WITH FIT*Ratio, SDI WITH SDI*Ratio, SIT WITH
SIT*Ratio

ENDIF

* Deductions and total are computed then stored in the employee record
* FedTemp, Statemp and EmpTemp are used to carry forward values for
* salaries subject to FICA, SDI and state unemployment insurance to
* HoldL 1, the summary file.

IF YTDSAL > FICAEnd
STORE 0 TO FedTemp
REPLACE FICA WITH 0

IF (YTDSal + Pay:Rate) <=FICAEnd
REPLACE YTDFICA WITH (YTDFICA + FICA)
STORE Pay:Rate TO FedTemp

ELSE
REPLACE FICA WITH (MAXFICA - YTDFICA), YTDFICA WITH

A-38

MAXFICA
STORE (FICAEnd - YTDSal) TO FedTemp

ENDIF
ENDIF

IF YTDSal > SDIEnd
STORE 0 TO StaTemp
REPLACE SDI WITH 0

IF (YTDSAL + Pay:Rate) <= SDIEnd
REPLACE YTDSDI WITH (YTDSDI + SDI)
STORE Pay:Rate TO StaTemp

ELSE
. REPLACE SDI WITH (MAXSDI - YTDSDI), YTDSDI WITH MAXSDI
STORE (SDIEnd-.YTDSal) TO StaTemp

ENDIF
ENDIF

* In California, the employer pays an Unemployment Insurance
* contribution on employee salary up to the amount of UIEnd. There is
* nothing deducted from the employee salary for this, so we keep track
* only of the employer obligation as UlSal.

IF YTDSal > UIEnd
STORE 0 TO EmpTemp

IF (YTDSal + PayiRate) <= UIEnd
STORE Pay;Rate TO EmpTemp

STORE (UIEnd - YTDSal) TO EmpTemp
ENDIF

ENDIF

REPLACE Net:Pay WITH (Pay:Rate-FICA-FIT-SDI-SIT)
REPLACE YTDFIT WITH (YTDFIT + FIT)
REPLACE YTDSIT WITH (YTDSIT + SIT)
REPLACE QTDSal WITH (YTDSal + Pay:Rate)
REPLACE YTDSal WITH (YTDSal + Pay:Rate)

I*,***
*«#***«#***#*»*»*» ni: Print employee stub **»*»<***»

ERASE
SET PRINT ON

'+$(Date,3,2)+’/’+$(Date,5,2)+'/’+$(Date,1,2) +': ’+Name;
’+$(SS:Nmbr,1,3)+'-’+$(SS:Nmbr, 4,2)+'-’+$(SS:Nmbr,6,4)

? ' GROSS PAY: $'-STR(Pay:Rate,7,2)+'
-STR(Net:Pay,7,2)

' NET PAY: ;

? ' THIS CHECK:

THIS YEAR:

FICA FIT SDI SIT’
’+STR(FICA,6,2)+’ ’+STR(FIT,7,2);
’+STR(SDI,5,2)+’ ' +STR(SIT,7,2)

’+STR(YTDFICA,7,2)+’ ’+STR(YTDFIT,8,2);
’+STR(YTDSDI,6,2) +’ ’+STR(YTDSIT,7,2)

TOTAL SALARY THIS QUARTER: $’-STR(QTDSal,9,2)

A-39

TOTAL SALARY THIS YEAR: $'-STR(YTDSal,9,2)

?

* Pagefeed after every six employee stubs -
IF Count >-- 6

? CHR(12)
STORE 0 TO Count

ENDIF
SET PRINT _FF

IF EOQ - 'Y’ .AND. Paid
REPLACE YTDSal WITH 0

ENDIF

»»»»*?**»*****»*«*»»«I***
************ IV: Record paycheck in Checkfil and Hold81 ************

* Now a check is "written" in the CheckFil.
SELECT SECONDARY
USE B:Checkfil
APPEND BLANK
REPLACE Check:Nmbr WITH NextCheck, Check:Date WITH Date,;

Name WITH P. NAME, Amount WITH Net: Pay, Emp.’Nmbr;
WITH P.Emp:Nmbr, Client WITH 'OFC, Job:Nmbr WITH 31,;
Descrip WITH 'SALARY’, Balance WITH (MBalance - Amount)

STORE (MBalance - Amount) TO MBalance
STORE STR(VAL (NextCheck)+1,4) TO NextCheck

ERASE
& 3,25 SAY "** DO NOT INTERRUPT **"
s 5,25 SAY "UPDATINC MASTER RECORD"
? CHR(7)

* We keep an aggregate record of payroll and deductions. The
* amounts for each employee are added to the amounts already in the last
* record in the file represented by "Header". (This was set up at the
* start of the "GetWhen" loop earlier, and has the name "B:Hold81" or
* "B:Hold82" or whatever "ThisYear" is.)
* This last record is either a blank (if this is the first payroll
* of the month), or has data from previous salary payments made during
* the current month. At the end of the month, quarter and year, totals
* and a new blank record (except at the end of the year) are added.
* This is done in the next loop.

USE &Header

* If this is a new year, there are no records in the file so we add
* a blank record. Otherwise, we go to the last record in the file.

IF EOF
APPEND BLANK

ELSE
GO BOTTOM

ENDIF

A-40

REPLACE Check:Date WITH Date, Payroll WITH (Payroll+Pay : Rate) , ;
FICA WITH (FICA+P.FICA)', FICASal WITH (FICASal + FedTemp),;
FIT WITH (FIT + P.FIT), SDI WITH (SDI+P.SDI), ;
SDISal WITH (SDISal + Statemp), SIT WITH (SIT + P.SIT),;
UlSal WITH (UlSal + EmpTemp)

SELECT PRIMARY

*** Reset the employee record if he was paid for part time. The Bak ***
*** file is not deleted here, as each copy command above wipes out ***
*** the previous contents. ***

IF Ratio <> 1.0000
REPLACE Ratio WITH 1.0000
UPDA FROM Bak ON Emp:Nmbr REPL Pay:Rate,FICA,FIT,SDI,SIT,Net:Pay

ENDIF
ENDIF (Paid ,0R.»)

SKIP
ENDDO personnel file

»*" V: Personnel records are reset and Holdxx is updated ****
STORE ' 'TO Completed
REPLACE All Paid WITH F

USE LHeader
GO BOTTOM
IF EOM -'Y'

REPLACE Marker WITH 'M'

* If it’s the end of the quarter, we total the amounts for the
* previous three months to a new record and mark it with a ’Q’.

IF EOQ = 'Y'
STORE STR(#,5) TO Number
TOTAL ON Marker TO Quarter FOR # >= (VAL(Number)-2)
APPEND FROM Quarter
DELETE FILE Quarter .

DO CASE
CASE $(Date,3,2) - ’03’

REPLACE Check:Date WITH ’1ST’
CASE $(Date,3,2) - ’06’

REPLACE Check:Date WITH ’2ND’
CASE $(Date,3,2) - ’09’

REPLACE Check:Date WITH ’3RD’
CASE $(Date,3,2) = ’12’

REPLACE Check:Date WITH ’4TH’
ENDCASE

REPLACE Marker WITH ’Q’

A-41

* If it’s the end of the year, we total all the quarterly amounts to a
* new record and mark it with a 'Y'.

IF EOY = 'Y'
TOTAL ON Marker TO Annual FOR Marker - ’Q*
APPEND FROM Annual
REPLACE Marker WITH 'Y', Check:Date WITH ’END’
DELETE FILE Annual

ENDIF
.ENDIF (EOS = ’ Y’)

* If it's the end of a month but not the end of the year, we add a new
* blank record for next month's payroll records.

IF EOY <> ’Y'
APPEND BLANK

ENDIF
ENDIF (EOM - 'y’)

»»«»«»*#»«<»»*«»«»«**«*«»**»***«*#»»»»<»»#**«*««««*»**«»***<*<******
****** VI: Print payroll summary, transfer checks to costbase ******
USE B’.CheckFil
COUNT FOR .NOT. « TO Any
IF Any-0

? ' No new checks written.'
? ' <Return> to continue.'
WAIT

ELSE
USE &Header
ERASE
6 12,25 SAY "CHECK THE PRINTER, THEN PRESS <RETURN>."
? CHR(7)
WAIT
ERASE
SET PRINT ON
SET MARGIN TO 45
7 ’ MASTER PAYROLL FILE SUMMARY; ’+$(Date,3,2)

+$(Date,5,2)+'/'+$(Date,1,2)

?'DATE PAYROLL FICA FICASAL FIT SDI SDISAL
'SIT UlSal'

LIST OFF
SET MARGIN TO 38
? CHR(12)
SET PRINT OFF

ERASE
€ 3,25 SAY "*** DO NOT INTERRUPT »**"
@5,25 SAY " UPDATING THE COSTBASE"
? CHR(7)

A-42

USE B:CostBase INDEX B:$Supp
APPEND FROM B:Checkfil

DO CheckStub
ENDIF

if**
****** VII: Dump transient variables, save necessary ones ******
RELEASE Payee,Number,Date,Ratio,Aborted,Printed,EOX,EOQ,EOM,Any,Header,;

Count, FedTemp, StaTemp, EmpTemp, Marker, Paying, Salaries
SAVE TO B:Constant

USE
RELEASE All.
DELETE FILE Bak
RETURN

A-43

********** DEPMENU COMMAND FILE **********
* Select deposits or perform housekeeping on the checkbook.
* Depmenu is called by Accounts.
«»*»**««**»««**

STORE TO TO Incoming
DO WHILE Incoming

ERASE
e
e
s

5,20
7,20
9,20

SAY ’
SAY ’
SAY '

1> ENTER MONEY COMING IN
2>
3>

CHANGE OUR CHECK NUMBER
CHANGE CHECKBOOK BALANCE

?

WAIT TO

DO CASE
CASE

Action

Action = ’ 1

<RETURN>’

DO Deposits
CASE Action = ’2'

RESTORE FROM B : Constant
ERASE
§ 5,0 SAY ’This is the next check number’ GET NextCheck
S 6,0 SAY ’To leave it unchanged, use the <return>.’
@7,0 SAY ’To change it, just type in the new number.’
READ
SAVE TO BrConstant
RELEASE All

CASE Action - 'Z'
RESTORE FROM B:Constant
STORE ’Y’ TO Change
DO WHILE !(Change) - •Y’

ERASE
@ 5,0 SAY’ The current balance is:’ GET MBalance
? ’To leave it unchanged, use the <return>.’
? ’To change it, just type in the new value.’
.READ

?
? ' Want to change your mind (Y or N)?’
WAIT TO Change

ENDDO
RELEASE Change
SAVE TO B:Constant
RELEASE All

OTHERWISE
RELEASE All
RETURN

- ENDCASE
ERASE
STORE T TO Incoming

ENDDO Incoming

A-44

»»»»»**»«»****»*«»* DEPOSITS COMMAND FILE ***»**<<<»»»»«*»<«»*«»»»
» This file records any money coming in a file called Deposits. If
* the money is in payment of an invoice, the amount and date of
* payment are entered against that invoice in the Invoice file.
* The checkbook balance is kept current for each entry.
* At the end of the session, deposits are printed out individually,
* then the total of deposits plus the new checkbook balance are printed,
z*****************************I********************»*»**»******»*«»»**»«

RESTORE FROM B:Constant

ERASE
S 5,20 SAY ’ ENTERING INCOME’
@ 7, 5 SAY 'The STARTING BALANCE is '+STR(MBalance,9,2)

? ' If this does not match the checkbook,’
? ’ <Return> to the main menu to change.'

? ' C to CONTINUE.’
?
WAIT TO Continue
IF ’(Continue) <> ’C'

RELEASE All
RETURN

ENDIF
RELEASE Continue

DO GetDate

SELECT PRIMARY
USE B:Deposits
COPY STRUCTURE TO GetDep

USE GetDep
STORE ’Y’ TO Depositing
DO WHILE ’(Depositing) O'F’

APPEND BLANK
STORE STR(#,5) TO Number
REPLACE Dep-.Date WITH Date

ERASE
* Next loop is used when there has been an error in the entry
* (defined as no client or no rate). The operator is shown the
* previous entries and can make any changes required.
STORE ’T’ TO Incorrect
DO WHILE ! (Incorrect) <> ’F’

@ 3, 0 SAY ’ If a check covers more than one agency invoice,’
& 4, 0 SAY ’ enter each invoice and amount separately.’

& 6,0 SAY ' RECORD NUMBER; ’-Number
@ 7,0 SAY ’ HOW MUCH’ GET Deposit
@ 8,0 SAY 'OUR INVOICE NO’ GET Inv:Nmbr
§ 9,0 SAY ’ CHECK FROM’ GET Payer
S 10,0 SAY ’THEIR CHECK NO’ GET Pay:Nmbr
S 11,0 SAY ’ Comments' GET Comments

A-45

? CHR(7)
READ

REPLACE Payer WITH I(Payer), Comments WITH {(Comments)
e 9,15 SAY Payer
€ 11,15 SAY Comments

IF Payer <> ’ ’ .AND. Deposit > 0
6 17,5 SAY ' C to CHANGE,’
S 18,5 SAY '<Return> to continue.’

? CHR(7)
WAIT TO Depositing
IF !(Depositing)-’C’

STORE ’T’ TO Incorrect
ERASE

ELSE
STORE (MBalance + Deposit) TO MBalance
6 17, 5 SAY ’ F if FINISHED,’

? CHR (7).
WAIT TO Depositing

STORE ’F’ TO Incorrect
ENDIF

ELSE
6 15,5 SAY ’CHECK WRITER or AMOUNT missing.’

? ’ F if FINISHED,’
? ’ <Return> to correct the record.’
? CHR(7)
WAIT TO Depositing '
ERASE
IF !(Depositing)- ’F’

DELETE RECORD &Number
STORE ’F’TO Incorrect

ELSE
ERASE
STORE ’T’ TO Incorrect

ENDIF
ENDIF

ENDDO Incorrect
ENDDO Depositing

RELEASE Change, Date, NoDate, Depositing, Number, Update, New, Incorrect
SAVE TO B:Constant

COUNT FOR .NOT. * TO Any
ERASE
IF Any - 0

? 'No deposits to add to the file.’
? ’Press any key to continue.’
? CHR(7)
USE

A-46

WAIT
ELSE

DO DepPrint

* The next portion of’this program uses the Primary and Secondary
* work areas to record payments received agaihst agency invoices
* in the record for that invoice in the Invoices file. Both work
* areas are necessary so that we can compare each record in the
* GetDep file against all of the records in the Invoices file.
DO DepTrans
USE B’.Deposits
APPEND FROM GetDep

ENDIF there are deposits to add to the file

DELETE FILE GetDep
RELEASE All
RETURN

A-47

»»•»»*»*•* DEPPRINT COMMAND FILE ***«»»♦*»*
* Prints valid deposits in the GetDep file. It is called by
« Deposits.
*»»*****•**««*«**••*•«**»***•**»*»•««•«•*«••*•«•*««*««**«•»«*••«*•*««••«

S 5,10 SAY ’To print the deposits you just entered,’
S 6,10 SAY ’press <Return>.’
? CHR(7)
WAIT
SET PRINT ON
? ' DATE PAID BY AMOUNT INV # COMMENTS:'

GO TOP
STORE 0 TO Count
DO WHILE .NOT. EOF

DISPLAY OFF DepzDate, Payer, Deposit, Inv:Nmbr, Comments FOR .NOT. *
SKIP
STORE Count+1 TO Count
IF Count-10

STORE 0 TO Count
WAIT

ENDIF
ENDDO ’
SUM Deposit TO Temp

? ' The Total deposit is ’ + STR(Temp,9,2)
?
? ' The final balance is ’ + STR(Mbalance,9,2)

SET PRINT OFF

RELEASE Count, Temp
RETURN

A-48

********** DEPTRANS COMMAND FILE *«»*****«»
» Applies deposits from the GetDep file against the matching invoices
* in the Invoices file as payments are received against them.
* Deptrans is called by deposits.

GO TOP
ERASE
DO WHILE .NOT. EOF

STORE STRU.5) TO Number
@ 6,20 SAY ’RECORD NUMBER '.Number
? CHR(7) + CHR(27) + CHR(74)
IF Inv:Nmbr=' ' .OR. *

SKIP
ELSE

e 7,20 SAY 'INVOICE NUMBER '+Inv:Nmbr
STORE Inv:Nmbr TO Key

SELECT SECONDARY
USE B:Invoices INDEX B; Invoices
FIND &Key
STORE T TO Again
STORE 'T' TO Decision
IF # s 0

DO WHILE Again
S 9,15 SAY 'THIS INVOICE NUMBER IS NOT IN THE INVOICE FILE. '
@ 11,15 SAY ' E to EDIT it.
@ 12,15 SAY ' C to CONTINUE.
?
? CHR(7)
WAIT TO Decision
IF ’(Decision) = ’E•

SELECT PRIMARY
EDIT ^Number
SELECT SECONDARY
STORE F TO Again

ELSE
IF ’(Decision) - 'C'

STORE F TO Again
ELSE

STORE T TO Again
ENDIF C

ENDIF E
ENDDO (Again)

REPLACE Amt:Red WITH (Amt:Red . Deposit), Date:Rcd WITH Dep:Date
ENDIF 0
SELECT PRIMARY .
* We do not skip to the next record if the record was edited.
* This allows us to run the edited record thru the process again.
IF !(Decision) <> 'E'

SKIP ’
ENDIF

ENDIF no invoice number or record deleted
ENDDO the transfer

A-49

I********************** IOMENU COMMAND FILE ****************************
* Selects the appropriate action to be taken with insertion orders
* (instructions from our ad agency to magazine publishers). lomenu
* is called by Accounts.
K***

STORE T TO Inserting
DO WHILE Inserting

ERASE

STORE "Y” TO Changing
DO WHILE !(Changing)= ’ Y'

USE B:Inserts

e 7,20 SAY ' 1> ENTER INSERTION ORDERS’
s 9,20 SAY ’ 2> EDIT INSERTION ORDERS’
e 11,20 SAY ' 3> REVIEW/PRINT INSERTION ORDERS
e 12,20 SAY ’
e 14,20 SAY '
WAIT TO Action

DO CASE
CASE Action

DO lOPost
CASE Action

BY CLIENT & MAGAZINE'
<RETURN>'

- "1"

IF EOF
? * There are no entries in the INSERTION ORDER file.’
STORE "N" TO Changing

STORE 10:Nmbr TO First
GO BOTTOM
STORE 10:Nmbr TO Last
ERASE
e 3,15 SAY 'EDITING INSERTION ORDERS ’+First+’thru '+Last
6 5,15 SAY ’ "W to SAVE, *Q to CANCEL changes you make.'
e 6,15 SAY '*R for PREVIOUS, AC for NEXT*record if MORE - T'

ACCEPT 'Which ORDER NUMBER do you want to EDIT?' TO Order
USE B:Inserts INDEX B:Inserts
FIND LOrder
IF #=0

? 'That insertion order is not in the file.’
? 'Do you want to continue (Y or N)?'
WAIT TO Changing

ELSE
STORE STR(#,5) TO Number
Edit LNumber
REPLACE Client WITH !(Client), Ad WITH !(Ad),Magazine WITH;

!(Magazine)

? 'Do you want to edit any other insertion orders (Y or N)?'
WAIT TO Changing

ENDIF
ENDIF

A-50

ENDDO Changing
RELEASE All

CASE Action - ’3’
DO lOReview

OTHERWISE
RELEASE All
RETURN

ENDCASE
STORE T TO Inserting

ENDDO Inserting

A-51

******»»**»«»*«**«**«*»««* IOPOST COMMAND FILE »»»»»*»»»*»»»♦«»»»»*«»»*«
* Gets information for insertion orders (instructions to magazine
* publishers from our ad agency). Works much like Postbills and
* Posttime. lopost is called by lomenu.
#*****•**«»««»»»**«#**»»»«*»»»»»#»«*»****»»»**»****»********************

RESTORE FROM B:Constant

DO GetDate

USE 8:Inserts
COPY STRUCTURE TO Getlnserts
USE Getlnserts

STORE ' ' TO New
STORE 'Y' TO Inserting
DO WHILE I(Inserting)<>'F’

APPEND BLANK
STORE STR(// ,5) TO Number
REPLACE I0:Date WITH Date, IO:Nmbr WITH Next:IO

ERASE
* Next loop is'used when there has been an error in the entry
* (defined as no client or no rate).
STORE 'T' TO Incorrect
DO WHILE !(Incorrect) <> 'F'

ERASE
S 4,0 SAY ' INSERTION ORDER: '+I0:Nmbr
S 4,30 SAY ' DATE’: ’ +Date

S 6,0 SAY ' RECORD NUMBER: ’-Number
IF ’(New) - 'S'

SAY ' OUR CLIENT ; + MClientS 7,0
ELSE

S 7,0 SAY ' OUR CLIENT '' GET MClient

READ

STORE ’(MClient) TO MClient
ENDIFWWW e 8,0 SAY ' JOB NUMBER ' GET Job ;Nmbr
@ 9,0 SAY ' AD DESCRIPTION ' GET Ad
A 10,0 SAY ' HOW MUCH SPACE ' GET Space
6 12,0 SAY ' WHIWHI0RG12SNE ' GET Hagaeine
6 13,0 SAY 'GROSS SPACE COST ' GET Gross:Cost
@ 14,0 SAY ' DISCOUNT RATE ' GET Times

REPLACE Net:Cost WITH Gross;Cost*0.8500, Client WITH MClient,;
Ad WITH !(Ad), Magazine WITH !(Magazine), Issue WITH !(Issue)

S 7,18 SAY Client
S 9,18 SAY Ad
S 11,18 SAY Magazine
S 12,18 SAY Issue
@ 15,0 SAY ’ NET SPACE COST ' GET NetsCost

IF Client <> ' ' .AND. Gross:Cost > 0 .AND. Job:Nmbr > 99

A-52

@ 18,5 SAY ’ C to CHANGE,’
@ 19,5 SAY ’<RETURN> to continue.’

WAIT TO New
IF ! (New)= ' C'

STORE ’T’ TO Inconnect
ELSE

s 17, 5 SAY ’ F if FINISHED,’
g 18, 5 SAY ’ S for SAME insertion order,’
g 19, 5 SAY ’<Return> for NEXT insertion order,’
§ 21, 0 SAY '
ACCEPT TO New

IF ’(New) <> 'S’
IF VAL(Next:10) < 9999

STORE STR(VAL(Next:10)+1,4) TO Next:IO
ELSE

STORE ’ 1001 ’ TO Next:10
ENDIF

END IF
STORE »F* TO Incorrect

ENDIF
STORE New TO Inserting

ELSE

? ’ CLIENT, JOB or RATE missing.’

? ’ F if FINISHED,'
? ' <Return> to correct the record.’

WAIT TO Inserting
IF •(Inserting)- ’F’

DELETE RECORD &Number
STORE ’F• TO Incorrect

ELSE
STORE ’T’ TO Incorrect

ENDIF
ENDIF

ENDDO Incorrect
ENDDO Inserting

RELEASE Date, NoDate, Inserting, Number, Update, New, Incorrect
SAVE TO B:Constant

COUNT FOR .NOT. * TO Any
ERASE
IF Any - 0

? 'No insertions to add to the file.'
? 'Press any key to continue.'
USE

A-53

WAIT
ELSE

@ 5,10 SAY 'To print the insertions you just entered,'
@ 6,10 SAY 'press <Return>.'
WAIT TO Number
*’’Number" determines the starting record number for the printout

SET PRINT ON
? '10 # MAGAZINE ISSUE JOB AD ';

+'SPACE GROSS NET X DATE'

* "Output" and "Condition" needed in
* the Printout Command file
STORE 'Y' TO Output
STORE 'OFF' TO Condition
DO Printout

ERASE
@5,20 SAY 'UPDATING THE INSERTION ORDER FILE’
USE B:Inserts INDEX B:Inserts
APPEND FROM Getlnserts

ENDIF '

DELETE FILE Getlnserts
RELEASE All
RETURN

A-54

*********************** IOREVIEW command file *»»»*****»*»»***»»*»«*****
* Provides insertion order displays and printout.
* The operator can select all the insertions for the client, or can
* select only those for a particular magazine.
* loreview is called by Lomenu.
****»*****»»**#**»»*****»«*»*»»#»*»»»»»*»**«»»»»*****»*********•**»*****

SET TALK OFF
USE B: Inserts

STORE ' ' TO Again
DO WHILE '.(Again) <> ’F’

STORE ’ ' TO MClient
STORE ' ' TO Magazine
STORE ’ ' TO Hardcopy
STORE ' ' TO Other
ERASE
@ 2,11 SAY ' MEDIA SUMMARY:’
S 4,11 SAY ’ENTER CLIENT CODE’ GET MClient
S 5,11 SAY ' MAGAZINE NAME?’ GET MMagazine
S 6,11 SAY ’ P to PRINT* GET Hardcopy
READ
IF MClient - ' '

s 9, 0 SAY ' '
? ' CLIENT missing . '
? ' F if Finished ,'
? ' <Return> to continue.’
WAIT TO Again

ELSE
STORE !(MClient) TO MClient
STORE !(MMagazine) TO MMagazine
STORE !(Hardcopy) TO Hardcopy
s 4,29 SAY MClient
@ 5,29 SAY MMagazine
@ 6,29 SAY Hardcopy
@9,0 SAY ’ '

ACCEPT ’Type C to CHANGE any entries’ TO Changes
IF !(Changes) - ’C’

STORE ’ ' TO Again
ERASE

ELSE
IF MMagazine >’ ’

STORE TRIM(MMagazine) TO MMagazine
STORE ’.AND. Magazine-MMagazine’ TO Condition

STORE CHR(O) TO Condition
ENDIF

IF !(Hardcopy) = ’P'
STORE 'TO PRINT’ TO Hardcopy

ELSE
STORE CHR(0) TO Hardcopy

ENDIF Hardcopy

A-55

SET HEADING TO MEDIA SUMMARY FOR &MClient &MMagazine
REPORT FORM Media iHardcopy FOR Client=MClient ^Condition

? ' F if Finished,’
? ’ <Return> to continue.’
WAIT TO Again
ERASE

ENDIF okay to do the report
ENDIF

ENDDO Again

ERASE
RELEASE All
RETURN

A-56

*#***»***>**«**»»»»*«*< INVMENU COMMAND FILE ******»»»*»»»**»*****«*»«»»
* Functions are selected by the menu. This procedure works with two
* data files, BILLINGS and INVOICES. BILLINGS keeps track of the
* amount billed to a client by individual job number, while INVOICES
* is a summary of the total billed on any given invoice. This latter
*< file can be used to set up an accounts receivable system, as it has
* fields for storing how much has been received in payment against an
* invoice and when that amount was received (filled in by the
* Deposits.PRG file). Invmenu is called by Accounts.
»»»*»**»*■»*»»«»ft***********************************ft********************
ERASE
STORE T TO Invoicing
DO WHILE Invoicing

@ 5,20 SAY ' 1> BILL CLIENTS BY JOB’
@ 7,20 SAY ’ 2> EDIT INVOICES and BILLINGS’
s 9,20 SAY ’ 3> REVIEW/PRINT INVOICES and BILLINGS’
6 12,20 SAY ' <RETURN>’
WAIT TO Action
DO CASE

CASE Action = ’1’
DO Invoices

CASE Action - «2’
STORE ’Y’ TO Changing
DO WHILE ‘(Changing) - ’Y’

ERASE
? ’ J to edit individual job billings,’
? ’ <Return> to edit the summary invoices.’
WAIT TO Which
IF ’(Which) - ’J’

STORE 'Billings’ TO Database
ELSE

STORE ’Invoices" TO Database
ENDIF
USE B:^Database
STORE Inv:Nmbr TO First
GO BOTTOM
STORE Inv:Nmbr TO Last
ERASE
s 3,10 SAY 'EDITING ’+!(Database)
Q 3,35 SAY First*’thru '+Last
s 5,10 SAY ’*W to SAVE, *Q to CANCEL changes you make.’
@ 6,10 SAY ’*R for PREVIOUS, ~C for NEXT record.’
S 8,10 SAY ’Which INVOICE NUMBER do you want to EDIT?’
IF ’(Which) - ’J’

s 9,10 SAY ’This takes you to the FIRST ENTRY for that number.’
Z 10,10 SAY ’Use "C to look at the rest of them.’

ENDIF
ACCEPT TO Invoice
USE B:&Database INDEX B:&Database
FIND &Invoice
IF #x0

7
? 'That invoice number is not in the file.’
? 'Do you want to continue (Y or N)?’
WAIT TO Changing

A-57

ELSE
STORE STR(# , 5) TO Number
Edit &Number
REPLACE Sales:Tax WITH 0.06*Taxable
REPLACE Client WITH ’(Client)
IF ’(Which) - ’J’

REPLACE Descrip WITH !(Descrip),PO:Nmbr WITH !(POrNmbr)
ENDIF
? 'Do you want to edit any other invoices (Y or N)?'
WAIT TO Changing

ENDIF
ENDDO Changing
RELEASE All

CASE Action = ’3’
ERASE
6 4, 0 SA Y ’ '
? ' 1 to see individual job billings,’
? ' <Return> to see the summary invoices.’
WAIT TO Which
IF ’(Which) - ’J’

STORE ’Billings' TO Database
ELSE

STORE 'Invoices' TO Database
• ENDIF
USE B:&Database
STORE 'Y' TO Reviewing
DO WHILE !(Reviewing)=’Y’

GO BOTTOM
STORE STR(#,5) TO Last
ERASE
S 5,10 SAY ’The ’+!(Database)+’ file has ’-Last-’ entries.'
5 7,10 SAY ’<Return> to see the entire file, or’
6 8,10 SAY 'enter the record number to start on.'
ACCEPT TO Number •
? 'Do you want to print the file now (Y or N)?'
WAIT TO Output
IF !(Output)=’Y’

SET PRINT ON
ENDIF

STORE CHR(O) TO Condition
Do Printout
SET PRINT OFF
? 'Do you want to see it again (Y or N)?'
WAIT TO Reviewing
ERASE

ENDDO Reviewing
RELEASE All

OTHERWISE
RELEASE All
RETURN

ENDCASE
ERASE
STORE T TO Invoicing

ENDDO Invoicing

A-58

«»**#«******«»#»* INVOICES COMMAND FILE **************************
* This file accepts inputs for invoices to clients. Individual projects
* and items are stored in the Billings data file. Any number of items
* may be entered using a single invoice number. Invoice numbers are
* automatically generated by the computer and stored in the
* Constant.Mem file.
* After all the job billings have been entered, they are summarized
* by invoice number and the data is stored in the Invoices file.
* A printout of items billed and invoice totals is provided.
* Invoices is called by Invemenu.
****»*»»*«»»»*«»»**»*»*****»*»»*««****»**»*»*»«***»******»**»»*»******»*

RESTORE FROM BsConstant
DO GetDate
USE B:Billings
COPY STRUCTURE TO GetCosts
USE GetCosts
STORE ' ' TO Billing
DO WHILE ! (Billing) O’F’

APPEND BLANK
STORE STR(#,5) TO Number
REPLACE Inv:Date WITH. Date, Inv:Nmbr WITH Next.'Inv
ERASE
STORE ’T’ TO Entering
DO WHILE ’(Entering) <> 'F'

ERASE
@ 3, 0 SAY ’INVOICE NUMBER '+Next:Inv
s 3,30 SAY ' DATE ’+Inv:Date
@ 5,0 SAY ’ RECORD NUMBERs ’-Number
IF ’(Billing) - 'S'

S 7,0 SAY ’ CLIENT:’+ MClient
REPLACE Client WITH MClient

ELSE
S 7,0 SAY ’ CLIENT ' GET Client

ENDIF

S 8,0 SAY ’ JOB NUMBER ’ GET Job:Nmbr
0 9,0 SAY ’TAXABLE AMOUNT ' GET Taxable
5 10,0 SAY ’TAXFREE AMOUNT ’ GET TaxFree
@ 11,0 SAY ' P. 0. NUMBER ’ GET P0:Nmbr
s 12,0 SAY ' DESCRIPTION ' GET Descrip
READ
STORE ’(Client) TO MClient
REPLACE Client WITH MClient,Descrip WITH !(Descrip),;

P0:Nmbr WITH !(PO:Nmbr)
6 7, 16 SAY Client
& 11,16 SAY PO:Nmbr
S 12,16 SAY Descrip
IF Taxable >0

REPLACE Sales:Tax WITH 0.06»Taxable
s 13,0 SAY ' SALES TAX'GET Sales:Tax

ENDIF

IF Job:Nmbr < 100
S 16,0 SAY ’ JOB not 3 digits.'

A-59

ENDIF
IF MClient <> ' ' .AND. (Taxable > 0 .OR. TaxFree > 0)

§ 17,0 SAY ' C to CHANGE this entry.’
? ’ <Return> to continue.’
WAIT TO New
IF !(New)=’C’

ACCEPT TO New

STORE ’Ti TO Entering
ELSE

@ 16, 0 SAY ’ F if FINISHED,
S 17, 0 SAY ’ S for SAME invoice number,’
@ 18, 0 SAY ’ <Return> for NEXT invoice number
e 19, 0 SAY ’ ’

IF !(New) <> 'S’
STORE STR(VAL(Next:Inv)+3,5) TO Next:Inv

ENDIF
STORE ’F’ TO Entering

ENDIF
STORE New TO Billing

ELSE
@ 17,0 SAY ’ CLIENT or AMOUNT missing.’

? ’ F if FINISHED,’
? ’ <Return> to correct the record.’
WAIT TO Billing
IF .'(Billing)- ’F'

DELETE RECORD &Number
STORE ’F’ TO Entering

ELSE
STORE ’T» TO Entering

ENDIF
ENDIF

ENDDO Entering
ENDDO Billing

RELEASE Billing, Entering, MClient, Task, Number, Date, New
SAVE TO B:Constant

PACK
GO TOP
ERASE
IF EOF

? ’No invoices to add to the file.’
? ’Press any key to continue.’
WAIT

ELSE
@5,20 SAY ’*»** DO NOT INTERRUPT **«*’
@ 7,20 SAY ’UPDATING BILLINGS AND INVOICES’
* Costs entered are totalled by invoice number to Scratch because
* several job costs can be entered against each invoice number.
* Amounts are adjusted for one client who always pays promptly and
* takes a 2% discount. Each invoice is totalled. Temp has only
* summary data needed for a printout.

A-60

USE B:Invoices
COPY STRUCTURE TO Scratch
USE GetCosts
ERASE
s 5,10 SAY ’When ready to print the billings you just added,'
& 6,10 SAY 'press <Return>
TOTAL ON Inv:Nmbr TO Scratch FIELDS Taxable, Sales:Tax, TaxFree
WAIT TO Number

SET PRINT ON
? 'ENTRIES BY JOB NUMBER:'

? ’INV # JOB DATE TAXABLE TAX TAXFREE P.O.# DESCRIPTION'

* "Output" is needed in the Printout Command file
STORE ’Y’ TO Output
STORE 'OFF' TO Condition
DO Printout
* One of our clients always pays promptly and takes a 2%
* discount. We do this after the original entries were printed out:
REPLACE Taxable WITH 0.980*Taxable, TaxFree WITH 0.980*TaxFree,

Sales:Tax; WITH 0.980*Sales:Tax FOR Client - ’SPI’

? 'Updating the BILLINGS database now.'
USE B:Billings INDEX B:Billings
APPEND FROM GetCosts

USE Scratch
REPLACE All Amount WITH (Taxable + Sales:Tax + TaxFree)
COPY TO Temp FIELDS Inv:Date, Inv:Nmbr, Taxable, Sales:Tax,;

TaxFree, Amount
REPLACE Taxable WITH 0.980*Taxable, TaxFree WITH 0.980*TaxFree,

Sales:Tax; WITH 0.980*Sales:Tax , Amount WITH 0.980*Amount
FOR Client = 'SPI'

USE Temp
STORE 'Y» TO Output
SET PRINT ON

? 'TOTALS BY INVOICE NUMBER:'

? 'DATE INV# TAXABLE TAX TAXFREE TOTAL'

DO Printout

? 'Updating the INVOICES database now.'
USE B:Invoices INDEX B:Invoices
APPEND FROM Scratch

ENDIF
USE
DELETE FILE Scratch
DELETE FILE Temp
DELETE FILE GetCosts
RELEASE All
RETURN

A-61

********** REPMENU COMMAND FILE **********
* This command file is a called by the ACCOUNTS.PRG control module.
* It provides detailed choices that relate to reports that the user
* might choose to see or print from the cost database. The functions
* are set up as sub-sub-procedures under the control of this module.
*****tt***

ERASE
STORE T TO Reporting
DO WHILE Reporting

@ 3,20 SAY ’
6 5,20 SAX '
5 7,20 SAY '
6 9,20 SAY '
& 11,20 SAY '
e 12,20 SAY '
6 13,20 SAY '

Q 17,20 SAY '
WAIT TO Action

1> COSTS BY JOB’'
2> FIND & EDIT BILLS’
3> REVIEW A DATABASE’
4> Quarterly Sales Tax Summary’
5> RE-INDEX THE COSTBASE ON JOB NUMBERS’

Make sure you won’t need the computer’’
for a while: this takes a long time.’

<RETURN>’

DO CASE
CASE Action = ’ 1 ’

USE B:Postfile
COUNT FOR .NOT. » TO Any
IF Any > 0

6 15, 0 SAY CHR(27)+CHR(74)
? ’There are ’+STR(Any,5)+’ entries in the Postfile.’
? 'Do you still want to do the Job Costs (Y or N) . ’
WAIT TO Continue
IF !(Continue) = ’Y’

DO JobCosts
ENDIF

ELSE
DO JobCosts

ENDIF
RELEASE Any

CASE Action = '2’
DO FindBills

CASE Action = ’3’
ERASE
DISPLAY FILES ON B
?

? 'Which file do you want to review?’
ACCEPT TO Database
IF FILE("B: "-.-DATABASE) > 0

USE B:^Database
DO Review

■ ELSE
* Erases to end of screen
e 17,0 SAY CHR(27)+CHR(74)
6 17,0 SAY !(Database) + " isn't on the list, is it?
Check "; + 'your spelling, then hit <Return>’

A-62

? 'and try again.
WAIT

ENDIF
CASE Action = ’4’

DO SalesTax
CASE Action = '5'

DO Jobslndx
OTHERWISE

RELEASE All
RETURN

ENDCASE
ERASE
STORE T TO Reporting

ENDDO Reporting

Or not, as the case may be.'

A-63

»««»»»»»»» JOBCOSTS COMMAND FILE *»<»****»*
* Provides summaries of costs by client and job number. This can
* also be used to summarize all office categories, since they fall
* into these fields.
* REPORTS ARE BY JOB NUMBER. Client code is used only in the
* heading. The report is actually prepared based on the job
* number, so accuracy is critical.
* This file works with a partially indexed costbase, so "Unindexed"
* is used to keep track of how many records are not in the index. If
* this gets beyond a specific number, the operator is prompted to
* reindex the Costbase.
* Jobcosts is called by Repmenu.
«*»»**«***«**«#*»**»*»*»***

SET TALK OFF
RESTORE FROM BsConstant
DO GETDATE

STORE 0 TO Unindexed
STORE ' ' TO Again
DO WHILE !(Again) <> 'F'

STORE ' ' TO MClient
STORE ' ' TO MJob:Nmbr
STORE ' ' TO Hardcopy
STORE 'N' TO Number
ERASE
s 2,11 SAY ’ JOB COST SUMMARY :'
s 4,11 SAY ’ENTER CLIENT CODE ' GET MClient
s 5,11 SAY ’ ENTER JOB NUMBER ’ GET MJob:Nmbr
s 6,11 SAY ’ P to PRINT ' GET Hardcopy
s 7,11 SAY
READ

'SHOW BILL NUMBERS ' GET Number

IF MClient - ’ ' .OR. MJob:Nmbr- ' '
@9,0
? ' CLIENT or JOB NUMBER missing.’
? ' F if Finished,'
? ' <Return> to continue.’
WAIT TO Again

ELSE
S 8,0 SAY CHR(27)+CHR(74)
ACCEPT ’ OPTIONAL JOB DESCRIPTION ’ TO Message
STORE TRIM(!(Message)) TO Message
STORE .’(MClient) TO MClient
STORE ’(Hardcopy) TO Hardcopy
STORE !(Number) TO Number
S 4,30 SAY MClient
S 6,30 SAY Hardcopy
S 7,30 SAY Number
s 9,30 SAY Message

?
ACCEPT "Type C- to CHANGE any entries' TO Changes
IF .’(Changes) - 'C

STORE ' ’ TO Again

A-64

ERASE
ELSE

ERASE
IF ’(Hardcopy) = 'P'

STORE ’TO PRINT' TO Hardcopy
SET PRINT ON

ENDIF Hardcopy

IF Number = ' Y ’
STORE 'Bill #' TO Other

ELSE
STORE CHR(O) TO Other

ENDIF

? $(Date,3f2)+'/,+$(Date,5,2)+'/'+$(Date,1,2)+': COST SUMMARY FOR ';
+'&MClient-&MJob:Nmbr'

? ' ' + Message
?
? ’DATE NAME DESCRIPTION AMOUNT’;

+' LOther'

USE B:CostBase INDEX B:$Jobs
IF Number - 'Y'

STORE ',Bill:Nmbr' TO Other
ELSE

STORE CHR(O) TO Other
ENDIF

STORE 0 TO Sum
STORE 0 TO HowMany
STORE 0 TO LineCnt
STORE 0 >TO Spacer
FIND &MJob:Nmbr
IF // <> 0

DO WHILE Job:Nmbr = VAL(MJob:Nmbr) .AND. .NOT. EOF
DISPLAY Next 1 Bill:Date,Name,Descrip+' ',Amount LOther OFF
STORE Sum + Amount TO Sum
STORE LineCnt + 1 TO LineCnt
STORE Spacer + 1 TO Spacer

IF Spacer = 10

STORE 0 TO Spacer
ENDIF

IF LineCnt = 50
? CHR(12)
STORE 0 TO LineCnt

' STORE 0 TO Spacer
? 'DATE NAME DESCRIPTION';

+' AMOUNT'

ENDIF
SKIP

ENDDO

A-65

ENDIF

GO TOP
STORE VAL(Name) TO LastReco
USE B:Costbase
STORE 0 TO Unindexed
GO LastReco
SKIP
DO WHILE .NOT. EOF

DISPLAY Next 1 Bill:Date, Name, Descrip*' ' , Amount;
FOR Job:Nmbr - VAL(MJob:Nmbr) OFF

IF Job:Nmbr = &MJob:Nmbr
STORE Sum + Amount TO Sum
STORE LineCnt + 1 TO LineCnt
STORE Spacer + 1 TO Spacer

IF Spacer = 10

STORE 0 TO Spacer
ENDIF

IF Line On lx- 50
? CHR(12r-—
STORE 0 TO LineCnt
STORE 0 TO Spacer
? 'DATE NAME DESCRIPTION';

+ ’ AMOUNT’

ENDIF
ENDIF
STORE Unindexed * 1 TO Unindexed
SKIP

ENDDO

? ' TOTAL COSTS TO DATE: ' -;
STR(Sum,9,2)

STORE LineCnt + 2 TO LineCnt
STORE 0 TO Spacer
IF LineCnt = 40

? CHR(12)
STORE 0 TO LineCnt

ELSE
?

ENDIF

USE BzBillings
? 'BILLED TO DATE FOR &MClient-&MJob:Nmbr'

? 'DATE INV# DESCRIPTION TAXABLE'*;
’ TAX TAX FREE'

STORE LineCnt * 4 TO LineCnt

A-66

STORE 0 TO Sum
STORE 0 TO T
STORE 0 TO S
STORE 0 TO F
DO WHILE .NOT. EOF

IF Job:Nmbr - &MJob:Nmbr
DISPLAY Next 1 InviDate, Inv:Nmbr, Descrip,STR(Taxable,9,2)+' ';

STR(Sales:Tax,9,2)+' ',TaxFree FOR Job:Nmbr - &MJob:Nmbr OFF
STORE T + Taxable TO T
STORE S + Sales:Tax TO S
STORE F + TaxFree TO F
STORE Sum + Taxable + Sales:Tax + TaxFree TO Sum
STORE LineCnt + 1 TO LineCnt
STORE Spacer + 1 TO Spacer
IF Spacer - 10

?
STORE 0 TO Spacer

ENDIF
IF LineCnt - 50

? CHR(12)
STORE 0 TO LineCnt
STORE 0 TO Spacer
? 'DATE INV# DESCRIPTION TAXABLE TAX TAX FREE’

ENDIF "
ENDIF
SKIP

ENDDO

? ' SUB-TOTALS : '+ STR(T,9,2) + ' ' ;
+ STR(S,9,2)+' ' + STR(F,9,2)

? » TOTAL BILLED TO DATE: '
STR(Sum,9,2)

? CHR(12)
SET PRINT OFF

? ' F if Finished , '
? ' <Return> to continue.'
WAIT TO Again

ENDIF okay to do the report
ENDIF

ENDDO Again
IF Unindexed > 50

ERASE
6 5,0
? ' There are ' - STR(Unindexed,9) + ' unindexed records'
? ' in the Costbase. To speed up the JobCosts procedure,’
? ' please reindex from the next menu.'
? '<Return> to continue.'
WAIT

ENDIF

RELEASE All
RETURN

A-67

»»*«»»»»*»**»*»*** JOBSINDX COMMAND FILE ***************************
* Indexes the costbase on job numbers to B:Jobs.NDX.
* The method of indexing here allows us to use the index to help find
* job numbers for the JotCosts command files, but allows us to do so
* without having to index the Costbase every time we add a bill.
* The strategy is: before we index the Costbase on job numbers, we
* first store the number of the last record in a record with a job number
* of zero. When the file is indexed, this record is at the top of the
* indexed file ($Jobs) so that we can find it whenever we want to.
* Jobsindx is called by Repmenu.
*«***«*H»*«*»»*»»*»»»»*»»»»*»»»»»*I*************************************

USE B:Costbase
GO BOTTOM
STORE STR(0,5) TO Temp
GO TOP
IF Job:Nmbr - 0

REPLACE Name WITH Temp
ELSE

DO WHILE !(Code) <> ’H•
? "Uh, Oh—trouble. Don’t touch anything"
ACCEPT 'and call Hal.’ TO Code

ENDDO
ENDIF

DELETE FILE B:$Jobs.NDX
ERASE
@5,0 SAY ’There are ’ + Temp + ' records to index.’
SET TALK ON
INDEX ON Job:Nmbr TO B:$Jobs
SET TALK OFF

RELEASE Temp
RETURN

A-68

****»#****«#***«**<»*#* FINDBILL COMMAND FILE **************************

* Now look for a match on the first 10 characters of the name. This
* finds the first entry for that supplier, then looks for bill

* This procedure finds specific bills that we are looking for, then
* allows us to edit them.
* The bill can be specified by bill number and/or amount. If you
* decide not to pay a bill that was found specifying more than one item,
* you will be presented theOrest of the entries for the supplier based
* on name only. Findbills is called by Repmenu.
****»»K***

SELECT PRIMARY
USE B:CostBase INDEX B:$Supp

STORE ’N• TO Finished
DO WHILE ’(Finished) <> 'F'

* ’’Entering” controls a closed loop that allows the operator to
* change the entry if he or she spots an error.
STORE "C" TO Entering
DO WHILE ’(Entering) - ’C’

ERASE
s 4,0
ACCEPT ' NAME OF SUPPLIER ' TO MName
ACCEPT ' INVOICE NUMBER ’ TO MBill:Nmbr
ACCEPT ' ENTER AMOUNT ’ TO Temp
STORE ’(MName) TO MName
STORE !(MBill:Nmbr) TO MBill:Nmbr
STORE VAL(Temp) TO MAmount
STORE MAmount*1 .00 TO MAmount
S 6,19 SAY MName
S 7,19 SAY MBill:Nmbr
e 8,19 SAY MAmount
s 11, 0 SAY ’ 'O' to CHANGE, '
? ' <Return> to continue.'

* OneByOne is used so that we look at the entire listing for a
* once. If we could have started in the middle of the list and
* the bill is not the one we want, we go up to the first listing
* then go through all the entries for the name, one by one. Used
* in the last loop in this file.
IF Bill:Nmbr > ' ' .OR. Amount <> 0

STORE 0 TO OneByOne

STORE 1 TO OneByOne
ENDIF

WAIT TO Entering
ENDDO Entering

STORE T TO Looking
S 11, 0 SAY "I'M LOOKING, I'M LOOKING!!"
e 12,0
s 13,0

A-69

* number or amount if we specified them. If not specified, it skips
* through all the entries for the name.

IF LEN(MName) >10
STORE $(MName,1,10) TO Key

ELSE
STORE MName TO Key

ENDIF

FIND &Key
e 11, o
IF # = 0

? " GEE, I CAN’T FIND THE NAME. Please check the spelling."
? " Or maybe it hasn’t been posted to the COSTBASE yet."
? '<Return> to continue.’
WAIT
ERASE

ELSE
* Found at least one entry with a matching name.
STORE T TO Looking
IF MBill:Nmbr - ' ’ .AND. MAmount - 0

STORE F TO Looking
ELSE

* If we have more than the name, we first check for the
* bill number.
IF MBill:Nmbr > ’ ’

DO WHILE Name-Key .AND. .NOT. EOF .AND. Looking
IF Bill:Nmbr <> MBill:Nmbr

SKIP
ELSE

STORE F TO Looking
ENDIF

ENDDO •
* If we're on a ~ew name or the end of the file, Looking
* is TRUE because we have not found the supplier we were
* looking for. Otherwise, we have a matching bill number
* to confirm.
IF Looking

? ' This BILL NUMBER is not in the costbase.’
? '<Return> to continue.'
WAIT

ENDIF
ELSE

» If no bill number, look for the amount.
DO WHILE Name-Key .AND. .NOT. EOF .AND. Looking

IF Amount <> MAmount
SKIP

ELSE
STORE F TO Looking

ENDIF
ENDDO

A-70

* If we’re on a new name or the end of the file, Looking is
* TRUE. Otherwise, we have an unpaid bill to confirm.
IF Looking

? ' No bill for this amount and this supplier.’
? ’<Returh> to continue.’
WAIT

ENDIF ' .
ENDIF we have the bill number

ENDIF we have only the name
ENDIF there is an unpaid bill for the supplier
STORE 'N' TO Changing
DO WHILE !(Changing) <> ’Y’ .AND. .NOT. Looking

S 12,0
DISPLAY
? CHR(7)
? ' E to EDIT this record,’
? ’ Q to QUIT this supplier,’
ACCEPT ’ <Return> to continue.’ TO Changing

IF ! (Changing) -- ’Q8
STORE T TO Looking

ELSE
IF !(Changing) - »E»

STORE STR(#, 5) TO Found
EDIT ^Number
ERASE

ELSE
* If the first record is not the one we want, we skip through
* the rest of the entries for the name. We first go on from
* where we were in the listing (if we had more than the name),
* then go back to the first entry and look at those we had
* skipped. If we had only the name, OneByOne = 1 snd we go
* through the list only once.
SKIP
IF EOF .OR. Name <> Key

IF OneByOne = 0
FIND &Key
STORE 1 TO OneByOne

ELSE
S 11, 0 SAY CHR(27) + CHR(74)
? "We’ve gone through all the entries for ’’ + MName+’.’
? ’<Return> to continue.’
STORE T TO Looking
WAIT

ENDIF
ENDIF we’ve gone through the list

ENDIF is it the right record
ENDIF

ENDDO Changing the record

? ’ F if FINISHED finding bills,’
? ’ <Return> to continue.’
? CHR(7)
WAIT TO Finished
ENDDO Finished

A-71

»*»**»*»»»«»*«>»*****»*»* REVIEW.PRG FILE *****************************
* This is used to list entries in any .DBF file. The database must be
* named in the command file calling the procedure. Records may be
* listed conditionally, with or without the record numbers.
* Records are listed in groups of 10 with a line space between each
* group. Processing can be continuous, or can stop after every group.
* The listing can start on a specified record number.
* The files can be re-listed as many times as desired.
* Printing is optional. The "CHR(X)" commands are for a Diablo 1650
* printer. Review.PRG is called by RepMenu.
««***«*»***«*»*«»«»**«»**«»»***»**«***«***»*»*»*«»***»»*»**»*»***«****

STORE ’Y’ TO Reviewing
DO WHILE (Reviewing)= ’ Y’

COPY STRUCTURE EXTENDED TO Temp
GO BOTTOM
STORE STR(#,5) TO Last
ERASE
?
? 'The ’ +! (Database)*’ database has ’-Last*’ entries. They will be shown’
? ’in the groups of 10 records, 50 records to a page if printed.’
? ’Enter new values for defaults or press <Return>:’
? ‘
? ’»*• DISPLAY [Field list] [FOR <expression>] [OFF] *»*'

STORE 1 TO First
STORE 1 TO PageCnt
STORE VAL(Last) TO.RecoCnt

DO WHILE ! (Changing) - 'C

STORE ’ N ’ TO Pause
STORE ’ N ’ TO Partial
STORE ’ N ’ TO Conditions
STORE ’ N • TO Tally
STORE 'O’ TO Changing

? ’ <Return> to continue.’
WAIT TO Changing

S 8,10 SAY •START ON RECORD NUMBER '' GET First_____ 9,10 SAY ' STOP ON RECORD NUMBER '' GET RecoCnt
10,10 SAY ’ START PAGE NUMBERS ON 1' GET PageCnt
11,10 SAY '•PAUSE EVERY 10 RECORDS '' GET Pause
12,10 SAY • SHOW SELECTED FIELDS '' GET Partial

e 1Z,10 SAY •DISPLAY FOR EXPRESSION '' GET Conditions
& 14 , 10 SAY • SHOW RECORD NUMBERS '' GET Tally

?
C to CHANGE the defaults,’•

IF !(Changing) = ’C’
* Clear to end of screen
6 15,0 SAY CHR(27)+CHR(74)
READ

ELSE
IF First > VAL(Last) .OR. First <= 0 .OR. RecoCnt > VAL(Last);

.OR. RecoCnt <= 0

A-72

s 15,0 SAY CHR(27)+CHR(74)
S 16,0 SAY 'Sorry, wrong number: '-! (Database)*' contains ' + ;

’records 1 through’+Last+’
? ’<Return> to correct your entry.’
WAIT
s 15,0 SAY CHR(27)+CHR(74)
STORE ’C’ TO Changing
STORE 1 TO First
STORE VAL(Last) TO RecoCnt

ENDIF
ENDIF
* Clear to end of screen
@ 15,0 SAY CHR(27)+CHR(74)

ENDDO (Changing)

IF !(Partial)a ’Yf
6 11,0 SAY CHR(27)*CHR(74)
6 11,0 SAY ’The ' + ! (Database)-*' database consists of these FIELDS:'
USE Temp

STORE ’ ' TO Choices
DO WHILE .NOT. EOF

STORE Choices-*TRIM(Field :Name) +', ’ TO Choices
SKIP

ENDDO
STORE $(Choices,2,LEN(Choices)-3) TO Choices

STORE ’Y’ TO Unfinished
DO WHILE ’(Unfinished) = '33'

s 13, 0 SAY Choices

USE B:&Database

? ’List FIELDS to display (<return> to show all).’

ACCEPT ' DISPLAY ' TO Partial
STORE !(Partial) TO Partial
■STORE Partial TO String
STORE LEN(String) TO Size

IF Size =0 .OR. (Size-1 .AND. Partial-’ ')
STORE CHR(O) TO Partial
STORE ’N' TO Unfinished

A-73

ELSE

? ’Want to change it (Y or N)?'
WAIT TO Unfinished
IF .’(Unfinished) - 'Y'

& 12, 0 SAY CHRC27) + CHRC74)

Q 10,0 SAY CHR(27) + CHR(74)
? '*** Checking fields -['+Partial+’] : ’

STORE 0 TO F
STORE 0 TO Counter
DO WHILE Size >0

STORE Counter ♦ 1 to Counter
?? ' *'*STR(Counter,2)
STORE S(',', String) TO Hark
IF Hark - 1 .OR. Hark - Size

? 'Uh, oh—-trouble: comma cannot be at the
♦'start or end of a list of values.'

? ’<Return> and try again.’
STORE 0 TO Size
STORE 'Y' TO Unfinished
WAIT

ELSE
IF Hark > 0

STORE (Hark - 1) TO Size
ENDIF

STORE T TO Blank
STORE 1 TO Start
DO WHILE Blank .AND. (.NOT. Start > Size)

IF $(String, Start, 1)=' ' -
STORE (Start + 1) TO Start

STORE (.NOT. Blank) TO Blank
ENDIF

ENDDO

IF Start > Size
? ’How on earth can I find a blank field?'
? '<Return> and try again.'
STORE 0 TO Size
STORE 'Y' TO Unfinished
WAIT

STORE (F + 1) TO F
IF F < 10

STORE STR(F,1) TO Suffix

STORE STR(F,2)’TO Suffix
ENDIF
STORE 'FIELD'+Suffix TO Field
STORE TRIH($String,Start,(Size-Start+1))) TO LField

IF Hark > 0

A-74

STORE TRIM($(String, (Size + 2))) TO String
STORE LEN(String) TO Size

ELSE
STORE »N» TO Unfinished
STORE 0 TO Size

ENDIF Mark > 0
ENDIF Start > Size

ENDIF Mark = 1 or' Size
ENDDO Size

ENDIF Unfinished Y
ENDIF Size

ENDDO Unfinished

IF LEN(Partial) > 0
* DO headings

? "WE'D DO THE HEADINGS HERE."
WAIT

ENDIF

ELSE
STORE CHR(O) TO Partial

ENDIF Partial

IF !(Conditions) - ’Y’
STORE 'Y' TO Unfinished
DO WHILE !(Unfinished) - »Y»

6 11, 0 SAY CHR(27)+CHR(74)
S 11, 0 SAY 'Specify the EXPRESSION or <Return> to skip.'

? 'DISPLAY &Partial FOR '
ACCEPT TO Expression
?
? 'Do you want to change the expression (Y or N)?'
WAIT TO Unfinished

ENDDO

IF Expression > ' <
STORE 'FOR '---Expression TO Conditions

ELSE
STORE CHR(O) TO Conditions

ENDIF

STORE CHR(O) TO Conditions
ENDIF

IF!(Tally) <> 'Y'
STORE 'OFF' TO Tally

ELSE
STORE CHR(O) TO Tally

ENDIF

STORE [DISPLAY Next 1 ^Partial ^Conditions 4Tally] TO Command
6 11, 0 SAY CHR(27)+CHR(74)
@11, 0 SAY '*»* '+CDISPLAY &Partial ^Conditions &Tally]+» ***'

A-75

? ’is the command that will be performed on the ’ +.’(Database) +' database.'
? ' C to CHANGE it,'
? ’ Q to QUIT with no action,’
? ’ <Return> to review the database.'
WAIT TO Abort

IF !(Abort) - 'Q’
STORE CHR(O) TO Reviewing

ELSE
IF !(Abort) <> 'C'

ERASE
? 'Enter a one-line heading or press <Return> to skip.'
ACCEPT TO Message
STORE ’(Message) TO Message

STORE 0 TO Count
STORE 0 TO PageMark
STORE STRCFirst,5) TO Number
GO LNumber
ERASE
? ’Do you want to print the listing now(Y or N)?'
ACCEPT TO Hardcopy
IF !(Hardcopy)=’Y’

SET PRINT ON
DO RevMrgn

ENDIF

ERASE
? Message
? ’Page '+ STR(PageCnt,3)

IF Tally - 'OFF'
?? ’ starts on Recond #'-STR(#,5)

IF .NOT.(Partial > ' ’ .OR. Conditions > ’ ')
DO RevHdr

ENDIF
ENDIF

DO WHILE .NOT. EOF .AND. # <- RecoCnt
&Connnand

IF ’(Conditions) > CHR(O)
IF ^Expression

STORE (Count +1) TO Count
ENDIF

ELSE
STORE (Count + 1) TO Count

ENDIF
SKIP

IF Counts 10
STORE 0 TO Count
* Inserts a space every ten records, then waits.
* The printer is turned off so that "WAIT" does not

A-76

* print on the hardcopy.
?
SET PRINT OFF
IF !(Pause) = 'Y'

WAIT *
ENDIF

IF ’(Hardcopy) = ’Y’
SET PRINT ON

ENDIF

* The following routine prints 50 entries to a page,
* then moves to the next page and prints a heading

STORE (PageMark + 1) TO PageMark
IF PageMark - 5

? CHR(12)
STORE (PageCnt + 1) TO PageCnt
IF INT(PageCnt/7) - PageCnt/7

ENDIF

? Message
? 'Page '+STR(PageCnt,3)

IF Tally - 'OFF'
?? ' starts on Record #'-STR(#,5)

IF .NOT.(Partial > ' ' .OR. Conditions > ' ')
DO RevHdr

ENDIF
ENDIF

STORE 0 TO PageMark
ENDIF PageMark = 5

ENDIF Count - 10
ENDDO
* Formfeed on Diablo 1650 printer
? CHR(12)
SET PRINT OFF
SET RAW ON
SET MARGIN TO 38
? 'Do you want to see the '+!(Database)+' again (Y opr N)?'

WAIT TO Reviewing
ELSE

STORE 'Y' TO Reviewing
ENDIF Abort C

ENDIF Abort Q

ENDDO Reviewing
USE
DELETE FILE Temp
RELEASE All
RETURN

A-77

*********************** REVHDR COMMAND FILE ****************************
* Used by Review.PRG to print headings for different database listings.

IF !(Database)=’INSERTS
? '10# MAGAZINE . ISSUE JOB AD SPACE ’+;

' GROSS NET X DATE’
ELSE

IF !(Database)-'BILLINGS'
? ' INV3 JOB DATE TAXABLE TAX NO:TAX PO# DESCRIPTION’

ELSE
IF !(Database)=’INVOICES'

? 'INV# CLT DATE TAXABLE TAX NO:TAX ’+;
'TOTAL AMT:RCD DATE’

ELSE
IF !(Database)='COSTBASE'

? 'DATE CHECK JOB AMOUNT NAME '+;
'DESCRIPTION DATE BILL# HOURS EMP’

ELSE
IF !(Database)='DEPOSITS’

? 'DATE RECEIVED FROM CHECK AMOUNT
'INV# COMMENTS’

ENDIF
ENDIF

ENDIF
ENDIF

ENDIF

A-78

*»***»*•*»**«»»*#*****»*** revmrgn command file *»»****»»<»*«**»*»»*»***
* Used by Review.PRG to set margins for different database listings.***»*»»***»#*****»#*»»*»**»*«*«»»» if*************************************

IF ! (Databases ’INSERTS'
SET MARGIN TO 38

ELSE
IF !(Database)='COSTBASE'

SET MARGIN TO Z6
ELSE

SET MARGIN TO 45
ENDIF

ENDIF
RETURN

A-79

************************* SALESTAX COMMAND FILE ************************
* This file summarizes the invoice file for a specified period.
* It shows the invoices and the type of billing (taxable or service)
* along with the totals for the two types and the total sales tax
* liability for the period.
* It also includes materials and equipment subject to a use tax that
* has not been paid. These are entered in the invoices database when
* they come in as well as in the Postfile. Salestax is called by
* Repmenu.

USE B:Invoices
ERASE
? ’This file summarizes the data you need to prepare the End-of-Quarter'
? ’report to the State Board of Equalization for SALES TAX collected by’
? 'bought with our resale number without paying a use tax.’

STORE 'C TO Dating
DO WHILE !(Dating) - ’C?

STORE ’YYMMDD' TO Start
STORE 'YYMMDD’ TO Finish
s 0 SAY 'This summary is for the period FROM ’ GET Start
@ 7,45 SAY ' TO ’ GET Finish
READ
§ 9,0 SAY ' ’
? ' C to CHANGE,’
? ’<Return> to continue.’
WAIT TO Dating
6 7,0
? CHR(27) + CHR(74)

ENDDO Dating

ERASE
S 5,10 SAY *********** DO NOT INTERRUPT **********
S 7,10 SAY ’COMPUTING THE QUARTERLY SALES TAX REPORT’

COPY TO Temp FIELDS Inv:Nmbr, Inv:Date,Taxable,Sales:Tax,TaxFree,Amount;
FOR Inv: Date >-- Start .AND. Inv:Date <- Finish
USE Temp
SORT ON Inv:Nmbr TO Temp2
USE Temp2
REPLACE INV:nmbr WITH ’ USED’ FOR VAL(Inv:Nmbr) < 1000

STORE $(Start,3,2)+’/’+$(Start,5,2)+’/’+$(Start,1,2) TO Start
STORE $(Finish,3,2)+’/’+$(Finish,5,2)+’/’+$(Finish,1,2) TO Finish

S 5,0
SET MARGIN TO 45
SET PRINT ON
STORE 1 TO PageCnt
? ’SALES TAX SUMMARY FROM ’+Start+’ TO ’+Finish+’: Page ’+STR(PageCnt,3)

? ’INV# DATE TAXABLE TAX SERVICE TOTAL’

A-80

STORE 0 TO Count
STORE 0 TO Page-Mark
GO TOP
DO WHILE .NOT. EOF

DISPLAY Inv:Nmbr,Inv:l5ate,Taxable,Sales:Tax,TaxFree,’ ’+STR(Amount,9,2) OFF
STORE (COUNT + 1) TO Count
SKIP
IF Count-10

STORE 0 TO Count
* Inserts a spaoe every ten records, then waits. The printer
* is turned off so that "WAIT" does not print on the hardcopy.
* ? The following routine prints 50 entries to a page, then moves
* to the next page and prints a heading

STORE (PageMark + 1) TO PageMark
IF PageMark - 5

STORE 0 TO PageMark
? CHR(12)
STORE (PageCnt - 1) TO PageCnt

* Compensates for an offset caused by the 7 lines/inch
* printing
IF INT(PageCnt/7) - PageCnt/7

?
ENDIF

? ’SALES TAX SUMMARY FROM ’ + Start + ’ TO ’ + Finish*' : Page ' +;
STR(PageCnt,3)

* Print totals of all the invoices
GO TOP

? 'INV# DATE TAXABLE TAX SERVICE TOTAL'

ENDIF
ENDIF

ENDDO

SET PRINT OFF

? ' COMPUTING TOTALS NOW.’

REPLACE All Inv:Nmbr WITH ' ' FOR VALCInv :Nmbr) > 1000
TOTAL ON Inv:Nmbr TO Other
USE Other
REPLACE All Inv:Date WITH ’TOTAL’
REPLACE All Inv:Nmbr WITH 'SALES’ FOR Inv;Nmbr - ' '
SUM Taxable TO Used FOR Inv:Nmbr - ’ USED'
SUM Amount TO Sold
STORE Sold + Used TO Gross
SUM Sales:Tax TO Collected
SUM TaxFree TO Service
STORE Collected + Service TO Exempt
STORE Gross - Exempt TO Subject
STORE 0.06*SUBJECT + 0.005 TO Payable

A-81

SET PRINT ON
DO WHILE .NOT. EOF

DISPLAY Inv:Nmbr,Inv:Date,Taxable,Sales:Tax,TaxFree,’ ’+STR(Amount,9,2) OFF
STORE Count + 1 TO Count
SKIP

ENDDO
IF PageMark > Z

* Formfeed if not enough room to
* print the following list
? CHR(12)

ENDIF

? ’ENTER THE FOLLOWING DATA ON THE BOARD OF EQUALIZATION FORM:’
?
* The following segment is not the final, but the state auditor is in
* right now and I’ve got to get the info out to him and to the state for
* this month. The final version will include all lines in the form,
* to allow for changes in the way we do our business. Obviously, this
* is also the place to print the form if you want to do that° Since the

SET PRINT OFF

* form is used only once every three months , we won’t automate it

+ STR(SOLD,9,2)
+ STR(Used,9,2)
+ STR(Gross,9,2)

* entirely.

? ' • LINE
? ' LINE
? ’ LINE,

1>
2>
3>

TOTAL GROSS SALES: ’
SUBJECT TO USE TAX: ’
TOTAL TRANSACTIONS: '

? ’ LINE 9> SALES TAX INCLUDED: ’ + STR(Collected,9,2)
? ' LINE 10> ADVERTISING SERVICES: ' + STR(Service,9,2)
? ’ LINE 11> TOTAL EXEMPTIONS: ' + STR(Exempt,9,2)
? ' LINE 12> SUBJECT TO STATE TAX: ' + STR(Subject,9,2)
? ’ LINE 13> AMOUNT OF STATE TAX: ’ + STR(0.05*Subject+0.005,9,2)
? ' LINE 14# SUBJECT TO. LOCAL TAX: ' + STR(Subject,9,2)

? ' LINE 19> AMOUNT OF LOCAL TAX: ' + STR(0.01*Subject+0.005,9,2)9
? ’ LINE 21 > TOTAL TAXES: ’ + STR(Payable,9,2)

? ' LINE 28> TOTAL DUE AND PAYABLE: ’ + STR(Payable,9.2)
? CHR(12)
SET MARGIN TO 38

RELEASE All
USE
DELETE FILE Temp
DELETE FILE Temp2
DELETE FILE Other
RETURN

A-82

********************** TIMECALC COMMAND FILE ****»***»*****»»»»«*»*»****
* Verifies that employee name and number match., then calculates billing
* charges for employee time. Called by Costupdate and CostTime.
**********************»**********»******************************»<»**»*»

SET TALK OFF
ERASE
SELECT PRIMARY
RESTORE FROM B:Constant

GO TOP
DO WHILE .NOT. EOF

ERASE
& 4,20 SAY ' ** DO NOT INTERRUPT ** '
S 5,20 SAY ' PROCESSING TIME CHARGES '

IF * .OR. Job:Nmbr - Z1 .OR. CheckiNmbr <>
SKIP

ELSE
REPLACE Client WITH ’(Client), Name WITH ’.(Name)
STORE STR(#,4) TO Number
@ 7,20 SAY ’ Record // ’^Number
S 8,20 SAY ’ '-.-Name
? CHR(7)
IF Emp:Nmbr<=0 .OR. Emp:Nmbr>MaxEmpl .OR. Hours = 0

ERASE
REPLACE Hours WITH Hours*1.00
REPLACE Emp;Nmbr WITH Emp:Nmbr*1
@ 4.0 SAY ' ’
DISPLAY
8 6,3 SAY 'HOURS-'
@ 6,18 SAY '-EMPLOYEE NUMBER.’

? 'Press ANY KEY to correct the EMPLOYEE NUMBER,'
? 'or press H to correct the HOURS.'
WAIT TO Decision
IF ’(Decision) <> ’H’

S 6,14 GET Emp.-Nmbr
ELSE

e 6,8 GET Hours
ENDIF
READ

ELSE
SELECT SECONDARY
USE BiPersonne
STORE T TO Looking
DO WHILE Looking .AND. .NOT. EOF

IF $(Name,1,10)=$(P.Name,1,10)
IF Emp:Nmbr=P.Emp.’Nmbr

SELECT PRIMARY
* Formula optimistically assumes 65 billable
* hours out of 75 hours possible in two weeks.
» Eff. mult.-Z.23
REPLACE Amount WITH Pay:Rate*2.8*Hours/65
SELECT SECONDARY

A-83

STORE F TO Looking
ELSE

SELECT PRIMARY
STORE T TO Fixing
DO WHILE Fixing

ERASE
@ 4,0 SAY ' '
DISPLAY
@ 6,16 SAY '-EMPLOYEE NUMBER'

? 'The correct Employee Number is'
?? S.Emp:Nmbr
?? ' for '+S.Name
? 'Press ANY KEY to change the EMPLOYEE NUMBER'
? 'press N to change the NAME.'
WAIT TO Choice
IF !(Choice) <> 'N'

@ 6,12 GET Emp:Nmbr
READ
STORE F TO Fixing

@5,25 GET Name
REPLACE Name WITH ! (NAME)
READ
STORE F TO Fixing

ENDIF Employee number
ERASE

ENDDO Fixing
SELECT SECONDARY
GO TOP

ENDIF Numbers match
ELSE

SKIP
ENDIF

IF EOF
ERASE
SELECT PRIMARY
@ 4,0 SAY ' ’
DISPLAY
@ 6,16 SAY '-EMPLOYEE NUMBER'

? 'This name is not listed in the Personnel file,'
? 'so time charges were not calculated.'
? 'Press any key to change the name, or write the'
? 'record number down and press D to DELETE.'
WAIT TO Change
IF !(CHANGE)<> 'D'

@5,25 GET Name
REPLACE Name WITH !(Name)
READ
SKIP-1

ELSE
ERASE
DELETE

A-84

DISPLAY

? ’THIS RECORD HAS BEEN DELETED.’
WAIT

ENDIF Change
SELECT SECONDARY

ENDIF no name
ENDDO Looking
SELECT PRIMARY
SKIP

ENDIF
ENDIF deleted

ENDDO billing calculations

RELEASE All
RETURN

A-85

»»»***»»*»»»**«»**»»*** PRINTOUT COMMAND FILE **************************
* This file is used by several other command files. It prints out a
* listing of the records in a file without the record number. The
* output is spaced every 10 records and the printer is positioned back
* at the left margin after the printout.
* The calling command file determines where the printout starts by
* specifying a value for the variable "Number".
* This does not show the record numbers. To do so, use the
* Review.PRG file.
* Printout is called by lopost and Invoices.I*******,***********************************,»»*»»»**»*»*»«*«

IF VAL(Number) > 0
GOTO RECORD LNumber

ELSE
GO TOP

ENDIF

STORE 0 TO Count
DO WHILE .NOT. EOF

IF »
SKIP

ELSE
DISPLAY ^Condition
SKIP
STORE Count+1 TO Count
IF Count-10

STORE 0 TO Count
* Spaces one line every 10 records, then waits. Turns
* the printer off so that "WAIT" does not print.
?
SET PRINT OFF
WAIT
IF !(Output)- 'Y'

SET PRINT ON
ENDIF

ENDIF
ENDIF

ENDDO
* The next 2 lines reposition the printer at the left margin.
?
SET PRINT OFF

RELEASE Count, Output
RETURN

A-86

I******************** GETDATE COMMAND FILE *****************************
* Confirms that the date is entered as YYMMDD by checking to see that
* the entries for each item are in the correct range. The year is
* checked against a constant stored in the B:Constant.MEM file.
* Getdate is called by Deposits, Paybills and lopost.
»*******»*»**«»*»»»*»«*»»*«»»*»»**»*»*«**«***»*»»«*»*»**»»*»*»»»»»*»

STORE "T" TO NoDate
DO WHILE !(NoDate) <> 'F'

ERASE
STORE ’YYMMDD’ TO Date
s 5,10 SAY "Enter TODAY’S date" GET Date
? CHR(7)
READ

IF VAL($(Date,1,2)) <> ThisYear;
.OR. VAL($(Date,3,2)) < 1 .OR. VAL($(Date,3,2)) > 12;
.OR. VAL($(Date,5,2)) < 1 .OR. VAL($(Date,5,2)) > 31

s 10,25 SAY ’DATE ERROR’
STORE 0 TO X
DO WHILE X < 50

STORE X + 1 TO X
ENDDO

ELSE

S 10,0 SAY ' C to CHANGE the date,’
? ’<Return> to continue.’
WAIT TO Change
IF ’(Change) <> ’C’

STORE ’F’ to NoDate
ENDIF

ENDIF
ENDDO NoDate

RELEASE NoDate, Change X
RETURN

A-87

* w#**##**#*#***#**#*#* datetest command file **************************
* This file verifies the Bill:Date and Check:Date to see that they are
* in the right format. If incorrect, the operator may edit them.
* Datetest is called by Usetax, Costupda, Costtime, & Costbills.
a****************z**

ERASE
GO TOP

* The variable DATE brings in the NAME of the date field to be checked
* from the command files where this is used.
DO WHILE .NOT. EOF

e 6,30 SAY ’ VERIFYING ’+Date+’ '

IF »
SKIP

ELSE
IF Lvate <> ' '

STORE STR (#,5) TO Found
STORE T TO NoDate
DO WHILE NoDate

S 8,30 SAY ’ RECORD ’+Found
S 9,30 SAY ’ ’+$(4Date,1,2)+'/’+$(&Date,3,2)+’/’+$(&Date,5,2)
? CHR(7)
* The macro symbol is used to get the contents of the
* date field being checked without creating a new variable.
IF VAL($(&Date,1;2)) > ThisYear .OR. VAL($(&Date,1,2)) < MinYear;

.OR. VAL($(&Date,3,2)) < 1 .OR. VAL($(&Date,3,2)) > 12;

.OR. VAL($(&Date ,5,2)) < 1 .OR. VAL($(&Date,5,2)) > 31

?
? ' DATE ERROR: Must be YYMMDD '
ACCEPT ’Enter new Date' TO Temp
REPLACE &Date WITH Temp
ERASE

ELSE
STORE F TO NoDate
SKIP

ENDIF
ENDDO NoDate
RELEASE Temp, NoDate

ELSE
SKIP

ENDIF date is not blank

* Delay to allow date being checked to be read (quickly)
STORE 0 TO X
DO WHILE X < 5

STORE (X + 1) TO X
ENDDO

ENDIF deleted or posted
ENDDO
RELEASE All
RETURN

A-88

I********************** NAMETEST COMMAND FILE *«»*<*’***«**»»»»**»*****»»
* Checks names in the file in USE against the Suppliers file and gives
* the operator the options of editing, adding them to the Suppliers file
» or ignoring them- If a name is edited, it is presented again.
* Nametest is called by Paybills, Usetax, Costupda, CostTime and
* Costbills,
z***»*«***«***»*«»***»*«

GO TOP
DO WHILE .NOT. EOF

IF »
SKIP

ELSE
STORE STR (#,5) TO Number
STORE !(Name) TO Name
ERASE
s ^,25 SAY ’CHECKING NAMES '
s 6,25 SAY ’RECORD ’^Number
s 7,25 SAY Name
? CHRC7)
STORE $(Name ,1,10) to Key
SELECT SECONDARY
USE B:Supplier INDEX B:Supplier
FIND &Key
STORE T TO Again
STORE ’T’ TO Decision
IF # = 0

DO WHILE Again
9,20 SAY 'THIS SUPPLIER NAME IS NOT IN THE SUPPLIERS FILE

s 11,20 SAY ’ E to EDIT it.
s 12,29 SAT ' A to ADD it to the SUPPLIERS file.
e 13,20 SAT ’ C to CONTINUE.

WAIT TO Decision
IF !(Decision) - ’A'

APPEND
SKIP-1
REPLACE Name WITH !(Name),Address WITH !(Address),City WITH;

’(City)
STORE F TO Again

ELSE
IF !(Decision) - 'E'

SELECT PRIMARY
EDIT LNumber
REPLACE Name WITH !(Name)
SELECT SECONDARY
STORE F TO Again

ELSE
IF .’(Decision) - 'O’

STORE F TO Again
ELSE

STORE T TO Again
ENDIF C

ENDIF E
ENDIF A

A-89

ENDDO (Again)
ENDIF 0
SELECT PRIMARY
IF J(Decision) <> 'E'

SKIP
ENDIF

ENDIF deleted
ENDDO
RELEASE All
RETURN

A-90

*********************** CHEKSTUB command file *************************
* Prints out check numbers, amounts, and balances from the CheckFile when
* SALARIES and BILLS are paid. When more than one bill is paid by a
* single check, the program totals all the bills against that check if
* they are entered in consecutive order (which they are in the two command
* files). Records are marked for deletion, but can be reviewed and
* retrieved. Chekstub is called by Payroll and Paybills.
**

ERASE
@5,10 SAY '»** DO NOT INTERRUPT »»*'
S 6,10 SAY ' JUST GETTING ORGANIZED’

USE B:Checkfil
TOTAL ON Check: Nmbr TO Scratch FOR .NOT.*
COUNT FOR .NOT. * TO Entries

USE Scratch
UPDATE FROM B:Checkfil ON Check:Nmbr REPLACE Balance
COUNT FOR .NOT. » TO Checks -

IF Entries > Checks
USE B:Checkfil
ERASE
@ 4,0 SAY ’ ’
SET PRINT ON
? ’ THESE INDIVIDUAL BILLS WERE PAID:'

? ’ Date Check Name Amount #’
?
LIST ’ ’+Check:Date , ChecJk:Nmbr, Name, Amount, Bill: Nmbr- OFF;

FOR .NOT.*

ENDIF

USE Scratch
STORE ’Y’ TO Doing
DO WHILE !(Doing)=’Y’

ERASE
SET PRINT ON
? ' MAKE THE FOLLOWING ENTRIES IN THE CHECK BOOK:'

? ’ Date Check Name Amount Balance’

LIST ’ ’+Check:Date, Check:Nmbr , Name, Amount, Balance OFF
?
?

SET PRINT OFF
? 'Do you want to print it again (Y or N)?’
WAIT TO Doing

ENDDO

A-91

INDEX

For each index listing, entries from the User’s Guide are given first and
are preceded by “UG”. Entries from the Reference Manual are preceded by
“Ref.” and are given last

SPECIAL CHARACTERS

" or ' string delimiter, UG 2-3, 2-5,
3-9, Ref. 3-2, 9-11, 10-20

! format character, Ref. 9-9
! lowercase-to-uppercase function,

UG 4-2, Ref 3-8
* format character, Ref 9-9
* or <> (not equal operator),

UG 1-10, Ref 3-13
* record number function, UG 3-15,

Ref 3-3
5 format character, Ref 9-9
$ substring function, UG 4-2,

Ref 3-4
$ substring logical operator,

UG 2-11, Ref 3-13, 3-15
L Macro substitution function,

UG 2-3, 4-2, Ref 4-1
() parentheses for grouping, UG 2-8,

2- 9, 2-10, Ref 3-1.3, 3-15
* command (comment line),

UG 3-15, Ref 2-5, 10-16, 10-33
* deleted record function, UG 3-15,

Ref 3-6
* format character, Ref 9-9
* multiplication, UG 2-8, Ref 3-13,

3- 15
+ addition, UG 2-8, Ref 3-13, 3-15
-I- and — string concatenation,

UG 2-13, Ref 3-13, 3-15
— subtraction, UG 2-8, Ref 3-13,

3-15
/ division, UG 2-8, Ref 3-13, 3-15

--- equal to, UG 1-10, 2-8, Ref 3-13,
3-15

< and < --- (less-than and less-than-or-
equal-to), UG 1-10, 2-8,
Ref 3-13

> and >« (greater-than and greater-
than-or-equal-to), UG 1-10, 2-8,
Ref 3-13

<> or # (not equal to), UG 1-10,
Ref 3-13

(dBASE II prompt), UG XIII,
Ref 1-3

9 format character, Ref. 9-9
<enter>, UG XI
? command, UG 1-17, 3-10,

Ref 6-3, 9-1
@ command, UG 3-10 to 3-13, 4-7

to 4-11, Ref 2-5, 6-3, 9-3 to
9-10, 11-5

(D substring search function, UG 4-2,
Ref 3-8

A (format character), Ref. 9-9
abbreviations for commands, UG 1-9,

Ref 8-4
ACCEPT command, UG 3-10,

Ref 6-6, 9-11
accounting programs, UG 5-1
accounting system:

example, UG Appendix A
list of hies, UG A-2

accuracy, numeric, Ref. C-l

Index Index-1

adding data, UG 1-18, 2-20, Ref. 6-1
addition operator, UG 2-8, Ref. 3-13,

3-15
ALL, definition, Ref. 8-3
Alternate characters (ALL-O, etc.),

UG 1-4, 1-6, 1-7, Ref. 7-1 to
7-4, 10-32

ampersand, see & under Special
Characters

.AND. (Boolean and), UG 2-9,
Ref. 3-13, 3-15

APPEND BLANK command,
UG 2-30, 3-12

APPEND command, UG 1-5, 1-18,
Ref. 6-4, 7-3, 9-13 to 9-17

adding data, UG 1-18, Ref 6-2
foreign data files, UG 2-23, Ref. 5-1
key field changes, UG 2-30
MODIFY STRUCTURE, UG 2-20,

2- 25 ' /
renaming database fields, UG 2-25

arithmetic operations, UG 2-8,
Ref. 3-12

arithmetic operators, UG 2-8,
Ref. 3-13, 3-15

ascending SORT, UG 2-28, Ref. 12-12
ASCII collating sequence, Ref. 12-12

at-sign command, see @ command
under Special Characters

B*-trees (INDEX), UG 5-4
backups, UG XII
basic programming structures, UG 2-1,

3- 1
BEFORE phrase, Ref. 10-22
BELL parameter, Ref. 9-10, 12-5
BLANK phrase, UG 1-19, 3-12,

Ref. 9-13, 10-22
Boolean operators, UG 2-9, Ref. 3-1,

3-13, 3-15
brackets, UG XI, 3-9, Ref. XVI, 8-2
BROWSE command, UG 3-15,

Ref. 6-3, 7-4, 9-18

CANCEL command, Ref. 6-6, 9-19
CARRY parameter, Ref 10-23, 12-5
CHANGE command, UG 2-26, Ref 6-2,

9-20
char string, definition, Ref 8-2
character, definition, UG 2-2
character data type, UG 1-2, 1-3, 5-6,

Ref 2-3
character data with ACCEPT, UG 3-10,

Ref 9-11
character equivalent function (CHR),

UG 4-3, Ref 3-8
character string, UG 2-2, Ref 3-2, C-l
CHR (number-to-ASCII character

function), UG 4-3, Ref 3-8
cleanup, database, UG 1-20
CLEAR command, UG 3-15, 5-7,

Ref. 9-21
CLEAR GETS command, UG 3-13,

Ref 9-7
clear screen (ERASE), UG 1-9, 2-7,

3-13, Ref 6-6, 9-7, 10-7
closing database files, UG 1-5,

Ref 11-4
COLON parameter, Ref 9-10, 12-5
command file, UG 2-1, 3-1 to 3-9, A-l,

Ref 2-4, 9-35, 10-31
commands, Ref 6-6
and DO command, UG 3-6, 3-8,

Ref. 9-35
indenting for readability, UG 3-8,

A-l
name extension (.PRG), UG 3-2,

Ref. 2-4
nested, UG 3-8, Ref 2-4, 8-5

‘ planning for, UG 3-16
procedures in, UG 3-7
samples, UG Appendix A,

Ref Appendix A
command summary, UG 5-7 to 5-15,

Ref Chapters 9-12

Index-2 dBASE II User's Guide

commands:
classes of, UG 5-7 to 5-15, Ref. 6-1

to 6-6
language rules for, UG 1-8, Ref. 8-4,

8-5
list of, Ref. Appendix B
lower- or uppercase letters for,

UG XI, 1-8, Ref. 8-4
comments, UG 3-15, Ref. 2-5, 10-33
comparison operators, UG 1-10, 2-8,

Ref. 3-13
concatenation, UG 2-13, 3-11,

Ref. 3-13, 3-15
conditional execution, UG 3-3,

Ref. 10-14
CONFIRM parameter, Ref. 12-6
CONSOLE parameter, Ref. 12-6
constant:

definition, UG 2-2, Ref. 3-2
system, UG A-9

constraints of dBASE II, Ref. C-l
CONTINUE command, UG 2-33,

Ref. 6-4, 9-22, 10-29
control characters (Alternate charac

ters), UG 1-4, 1-6, Ref. 1-3, 7-1
to 7-4

conventions, typographic, UG XI,
Ref. XVI

COPY command, UG 2-16 to 2-25,
Ref. 5-1, 6-1, 6-4, 9-23 to 9-26,
11-1

correction dialog, error, UG 1-8,
Ref. 1-3

COUNT command, UG 2-37, Ref. 6-3,
6-5, Ref. 9-27

CP/M-86:
bit map resetting, Ref. 11-27
conventions, Ref. 2-1, 5-1
data files, UG 2-23
default drive, Ref. 12-8

CREATE command, UG 1-1 to 1-5,
Ref. 6-1, 6-2, 7-3, 9-13, 9-29

creating a database, UG 1-1, Ref. 9-29

creating files, UG 1-1, 3-2, Ref. 6-1
cstring, definition, Ref. 8-2
current-record pointer. UG 1-15,

Ref. 6-3, 10-11, 12-11
cursor control, UG 1-6, Ref. 7-2

data:
adding, UG 1-18, 2-20, Ref. 6-2
changes in> fields, Ref. 9-20, 10-1,

11-14
display, UG 1-13, Ref. 6-3, 9-32
editing, UG 1-5, 2-26, 5-11, Ref. 6-2
entry, UG 1-4
field name, UG 1-2, 5-6, Ref. 2-2
files, foreign, UG 2-23, Ref. 5-1
input checking, UG A-86
interactive entry. UG 3-1, 3-9
record format, UG 1-2, Ref. 2-2
search for, UG 2-31, Ref. 10-8,

10-29
summary of, UG 2-34, 2-38,

Ref. 11-16, 12-15
system format, UG 2-23, Ref. 5-1,

9-13,9-23
type function (TYPE), UG 4-4
types, UG 1-2, 5-6, Ref. 2-3

database:
creation of, UG 1-1, Ref. 9-29
files (.DBF), UG 1-2, Ref. 2-1
indexed, UG 2-29 to 2-31,

Ref. 10-15 to 10-19
management system, UG 5-1, 5-2
modification of structure, UG 2-14

to 2-22, Ref. 10-31
organization of, UG 2-28, 5-3, 5-10
renaming fields, UG 2-25
structure, UG 1-2, 2-14 to 2-19, >

5-10, Ref. 2-1
databases:

combination of, UG 4-5, 5-10,
Ref. 10-25, 12-18, 12-20

duplication of, UG 2-16
date request, UG XIII, Ref. 1-2

Index Index-3

