
Systems
Programmer’s

Tool Kit II
Volume II

Systems
Programmer’s

Tool Kit II
Volume II

COPYRIGHT
(c) 1983 by VICTOR (R).
(c) 1983 by Microsoft (R) Corporation.

Published by arrangement with Microsoft Corporation, whose
software has been customized for use on various desktop
microcomputers produced by VICTOR. Portions of the text
hereof have been modified accordingly.

All rights reserved. This publication contains proprietary
information which is protected by copyright. No part of this
publication may be reproduced, transcribed, stored in a retrieval
system, translated into any language or computer language, or
transmitted in any form whatsoever without the prior written
consent of the publisher. For information contact:

VICTOR Publications
380 El Pueblo Road ' ;; .
Scotts Valley, California 9 506-6
(408) 438-6680

TRADEMARKS
VICTOR is.a registered trademark of Victor Technologies, Inc.
MS- is a trademark of Microsoft Corporation.
Microsoft is a registered trademark of Microsoft Corporation.
CP/M is a registered trademark of Digital Research, Inc.

NOTICE
VICTOR makes no representations or warranties of any kind
whatsoever with respect to the contents hereof and specifically
disclaims any implied warranties gf merchantability or fitness
for any particular purpose. VICTOR shall not be liable for
errors contained herein or for incidental or consequential
damages in connection^,Mth the furnishing, performance, or use of
this publication or its5contents.

VICTOR reserves the right to revise this publication from time to
time and to make changes in thd content hereof without obligation
to notify any person of such revision or changes.

First VICTOR release November, 1983.

ISBN 0-88182-086-5 Printed in U.S.A.

IMPORTANT SOFTWARE DISKETTE INFORMATION

For your own protection, do not use this product until you have
made a backup copy of your software diskette(s). The backup,
procedure is described in the user's guide for your computer.<

Please read the DISKID file on your new software diskette.
DISKID contains important information including:
o The part number of the diskette assembly.

o The software library disk number (for internal use only).

o The product name and version number,. *b-

o The date of the DISKID file.
o A list of files on the diskette, with aversion number ,4 date,

and description for each one'.

o Configuration information (when applicable).

o Notes giving special instructions for using the product.

o Information not contained in the current manual, including
updates, any known bugs, additions, and deletions.

To read the DISKID file onscreen, follow these steps: ;"■* r

1. Load the operating system.

2. Remove your system diskette and insert your new software
diskette.

3. Enter— .

TYPE DISKID ' '.’•
4. The contents of the DISKID file .is displayed on the. screen.

If the file is large (more than ••24/-lilies) , the-'.tscr^<sn display
will scroll. Type ALT-S to freeze the screen display; type
ALT-S again to continue scrolling.

OONTEWIS

1. SYSTEM CALLS
1.1 Introduction...................... 1-1
1.2 Programming Considerations 1-1

1.2.1 Calling From Macro
Assembler................ 1-1

1.2.2 Calling From a High-Level
Language................ 1-2

1.2.3 Returning Control to
MS-DOS.......... 1-2

1.2.4 Console and Printer
Input/Output Calls . . .1-3

1.2.5 Disk I/O System Calls . . . 1-4
1.3 File Control Block (FCB).......... 1-4

1.3.1 Fields of the FCB........ 1-6
1.3.2 Extended FCB.............1-8
1.3.3 Directory Entry 1-9
1.3.4 Fields of the FCB.......... 1-10

1.4 System Call Descriptions 1-12
1.4.1 Programming Examples . . . 1-13

1.5 Xenix-Compatible Calls........ 1-14
1.6 Interrupts 1-16

20H Program Terminate...... 1-18
21H Function Request........ 1-19
22H Terminate Address...... 1-20
23H ALT-C Exit Address...... 1-20
24H Fatal Error Abort Address . 1-21
2EH Absolute Disk Read...... 1-26
26H Absolute Disk Write 1-27
27H Terminate But Stay

Resident...............1-30

v

1.7 Function Requests................ 1-31
1.7.1 CP/M-Compatible Calling

Sequence................ 1-32
1.7.2 Treatment of Registers . . 1-32
1.7.3 Function Request

Descriptions 1-32
OOH Terminate Program.......... 1-37
01H Read Keyboard and Echo . . . 1-39
02H Display Character 1-40
03H Auxiliary Input............ 1-41
04H Auxiliary Output 1-42

i , 05H Print Character............ 1-43
. 06H Direct Console I/O.......... 1-45
07H Direct Console Input 1-46
08H Read Keyboard.............. 1-48
09H Display String.............. 1-49
OAH Buffered Keyboard Input . . 1-50
OBH Check Keyboard Status . . . 1-53
OCH Flush Buffer, Read

Keyboard1-54
ODH Disk Reset.................. 1-56
OEH Select Disk 1-57
OFH Open File.................. 1-58
10H Close File............ . . 1-60
11H Search for First Entry . . . 1-62
12H Search fqr Next Entry . . . 1-64
13H Delete File . .* 1-66
14H Sequential Read 1-68
131 Sequential Write 1-70
16H Create File 1-71
17H Rename - File- 1-73
19H Current Disk . . . ■.*.... 1-75
1AH Set Disk Transfer1 Address . 1-76
21H Random Read 1-77
22H Random Write................ 1-80
23H File Size . . » ;• . . 1-83

vi

24H Set Relative Record 1-85
25H Set Vector 1-87
27H Random Block Read..........1-89
28H Random Block Write . . . r. . 1-91
29H Parse File Name'.. 1-94
2AH Get Date...................1-97
2BH Set Date...................1-98
2CH Get Time.................... 1-100
2DH Set Time.................... 1-101
2EH Set/Reset Verify Flag . . . 1-103
2FH Get Disk Transfer Address . 1-105
30H Get DOS Version Number . . . 1-105
31H Keep Process............ . 1-106
33H ALT-G Check.......... 1-107
35H Get Interrupt Vector 1-109
36H Get Disk Free Space 1-110
38H Return Country-Dependent

Information.............. 1-111
39H Create Sub-Directory 1-115
3AH Remove a Directory Entry . . 1-116
3BH Change Current Diredtbry . . 1-117
3CH Create a File ."I 1-118
3DH Open a File1-119
3EH Close a File Handle 1-121
3FH Read From File/Device ... 1-122
40H Write to a Fild’ or Device . 1-123
41H Delete a Directory Entry . . 1-125
42H Move File Pointer 1-126
43H Change Attributes..........1-127
44H I/O Control for Devices . . 1-129
45H Duplicate a File Handle, . . 1-134
46H Force a Duplicate of

Handle 1-135
47H Return Text of Current

Directory .' / . V . . . 1-136
48H Allocate Memory *?.<'? / . . . 1-137

vii

49H Free Allocated Memory . . . 1-138
4AH Modify Allocated Memory

Blocks.................... 1-139
4BH Load.and Execute a Program . 1-140
4CH Terminate a Process 1-144
4DH Retrieve the Return Code

of a Child................ 1-145
4EH Find Match File............ 1-146
4FH Step Through a Directory

Matching Files 1-148
54H Return Current Setting of

Verify.....................1-149
56H Move a Directory Entry . . . 1-149
57H Get/Set Date/Time of File . 1-151

1.8 Macro Definitions for MS-DOS System
Call Examples (00H-57H) 1-152

2. MS-DOS 2.1 DEVICE DRIVERS
2.1 Introduction................... . 2-1
2.2 Device Headers 2-3

2.2.1 Pointer to Next Device
Field 2-4

2.2.2 Attribute Field 2-4
2.2.3 Strategy and Interrupt

Routines............ 2-6
2.2.4 Name Field 2-6

2.3 How to Create a Device Driver . . . 2-7
2.4 Installation of Device Drivers . . 2-8
2.5 Request Header..................2-8

2.5.1 Unit Code 2-9
2. 5.2 Command Code Field........2-10
2.5.3 MEDIA CHECK and BUILD BPB . 2-10
2.5.4 Status Word.............. 2-12

viii

ix,

2.6 Function Call Parameters.......... 2-17
2.6.1 INIT................ 2-17
2.6.2 MEDIA CHECK............ 2-18
2.6.3 BUILD BPB 2-19
2.6.4 Media Descriptor Byte . . . 2-20
2.6.5 READ OR WRITE 2-21
2.6.6 NON DESTRUCTIVE READ NO

WAIT...................2-22
2.6.7 STATUS 2-22
2.6.8 FLUSH...................2-23

2.7 The CLOCK Device.................. 2-24
2.8 Example of Device Drivers 2-24

2.8.1 Block Device Driver 2-24
2.8.2 Character Device Driver . . 2-45

3. MS-DOS TECHNICAL INFORMATION
3.1 MS-DOS Initialization 3-1
3.2 The Command Processor............ 3-1
3.3 MS-DOS Disk Allocation.......... 3-2
3.4 MS-DOS Disk Directory............ 3-3
3.5 File Allocation Table 3-7

3.5.1 Using the File
Allocation Table 3-9

3.6 MS-DOS Standard Disk Formats . . . 3-10

4. MS-DOS CONTROL BLOCKS AND WORK AREAS
4.1 MS-DOS Program Segment 4-1

5. .EXE FILE STRUCTURE AND LOADING 5-1
r.H -

APPENDIXES

Appendix A: BIOS IOCTL Sequences..........A-l
A.I Specific Implementation for VICTOR

Disk Drivers..................... A-2
A.2 Specific Implementation for

Interface Port Access A-3

INDEX Index-1

FIGURES

1- 1: Example of System Call Description . . 1-13
2- 1: Sample Device Header.................. 2-3
2-2: Request Header.........................2-9

TABLES

1-1: Fields of File Control Block (FCB) . . 1-5
1-2: Fields of Directory Entry............ 1-9
1-3: MS-DOS Interrupts, Numeric Order . . . 1-17
1-4: MS-DOS Interrupts, Alphabetic

Order............................... 1-17
1-5: MS-DOS Function Requests, Numeric

Order 1-33
1-6: MS-DOS Function Requests, Alphabetic

Order 1-35
A-l: Definition of Serial Port 10 Control

Parameter Block A-5

: A

OVERVIEW

The Systems Programmer's Tool Kit, II, Volume II
consists of the complete MS-DOS 2.1 Reference
Manual. Like Volume I of this Kit, which
discusses Macro Assembler and the Utilities, this
manual is written for the high-level systems
programmer.

Chapter One — System Calls — is the main section
in this Volume. This chapter is divided into such
areas as Programming Considerations, the File
Control Block (FCB), System Call Description,
Interrupts (ranging from 20H to 27H), and Function
Requests (ranging from OOH to 57H). Other
chapters are devoted to:

o MS-DOS Device Drivers, including a discussion
of device headers, and instructions for
creating and installing the drivers;

o MS-DOS Technical Information, such as
initialization, the command processor, and disk
allocation;

o MS-DOS Control Blocks and Work Areas; and

o .EXE File Structure and Loading.

1. SYSTEM CALLS

1.1 INTRODUCTION

MS-DOS provides two types of system calls:
interrupts and function requests. This chapter
describes the environments from which these
routines can be called, how to call them, and the
processing performed by each.

1.2 PROGRAMMING OCNSIDERATIONS

Having the system calls mean you don't have to
invent your own ways to perform these primitive
functions. Consequently, it is easier to write
machine-independent programs.

1.2.1 CALLING FROM MACRO ASSEMBLER

The system calls can be invoked from Macro
Assembler simply by moving any required data into
registers and issuing an interrupt. Some of the
calls destroy registers, so you may have to save
registers before using a system call. The system
calls can be used in macros and procedures to make
your programs more readable; this technique is
used to show examples of the calls.

1-1

1.2.2 CALLING FROM A HIGH-LEVEL LANGUAGE

The system calls can be invoked from any high-
level language whose modules can be linked with
assembly-language modules.

Calling from MS-BASIC: Different techniques are
used to invoke system calls from the compiler and
interpreter. Compiled modules can be linked with
assembly-language modules; from the interpreter,
the CALL statement or USER function can be used to
execute the appropriate 8086 object code.

Calling from MS-Pascal: In addition to linking
with an assembly-language module, MS-Pascal
includes a function (DOSXQQ) that can be used
directly from a Pascal program to call a function
request.

Calling from MS-FORTRAN: Modules compiled with
MS-FORTRAN can be linked with assembly-language
modules.

1.2.3 RETURNING CONTROL TO MS-DOS

Following completion of your program, control can
be returned to MS-DOS in any of four ways:

1. Call Function Request 4CH

MOV AH,4CH
INT 21H

This is the preferred method.

1-2

2. Call Interrupt 20H:

INT 20H

3. Jump to location 0 (the beginning of the
Program Segment Prefix):

JMP. 0

Location 0 of the Program Segment Prefix
contains an INT 20H instruction, so this
technique is simply one step removed from the
first.

4. Call Function Request OOH:

MOV AH,OOH
INT 21H

This causes a jump to location 0, so it is
simply one step removed from technique 3, or
two steps removed from technique 1.

1.2.4 CONSOLE AND PRINTER INPOT/OUTPUT CALLS

The console and printer system calls let you read
from and write to the console device and print on
the printer without using any machine-specific
codes. You can still take advantage of specific
capabilities (display attributes such as
positioning the cursor or erasing the screen,
printer attributes such as double-strike or
underline, etc.) by using constants for these
codes and reassembling once with the correct
constant values for the attributes.

1-3

1.2.5 DISK I/O SYSTEM CALLS

Many of the system calls that perform disk input
and output require placing values into or reading
values from two system control blocks: the File
Control Block (FCB) and directory entry.

1.3 FILE CONTROL BLOCK (FCB)

The Program Segment Prefix includes room for two
FCBs at offsets 5CH and 6CH. The system call
descriptions refer to unopened and opened FCBs.
An unopened FCB is one that contains only a drive
specifier and filename, which can contain wild
card characters (* and ?). An opened FCB contains
all fields filled by the Open File system call
(Function OFH). Table 1-1 describes the fields of
the FCB.

1-4

Table 1-1: Fields of File Control Block (FCB)

NAME
SIZE

(BYTES)
OFFSET

HEX DECIMAL

Drive number 1 OOH 0

Filename 8 01-08H 1-8

Extension 3 09-0BH 9-11

Current block 2 0CH,0DH 12,13

Record size 2 0EH,0FH 14,15

File size 4 10-13H 16-19

Date of last write 2 14H,15H 20,21

Time of last write 2 16H,17H 22,23

Reserved 8 18-1FH 24-31

Current record 1 20H 32

Relative record 4 21-24H 33-36

1-5

1.3.1 FIELDS OF THE FCB

Drive Number (offset OOH): Specifies the disk
drive; 1 means drive A: and 2 means drive 8:. If
the FCB is to be used to create or open a file,
this field can be set to 0 to specify the default
drive; the Open File system call Function (OFH)
sets the field to the number of the default
drive.

Filename (offset 01H): Eight characters, left-
aligned and padded (if necessary) with blanks. If
you specify a reserved device name (such as CON),
do not put a colon at the end.

Extension (offset 09H): Three characters, left-
aligned and padded (if necessary) with blanks.
This field can be all blanks (no extension).

Current Block (offset OCH): Points to the block
(group of 128 records) that contains the current
record. This field and the Current Record field
(offset 20H) make up the record pointer. This
field is set to 0 by the Open File system call.

Record Size (offset OEH): The size of a logical
record, in bytes. Set to 128 by the Open File
system call. If the record size is not 128 bytes,
you must set this field after opening the file.

File Size (offset 10H): The size of the file, in
bytes.

The first word of this 4-byte field is the low-
order part of the size.

1-6

Date of Last Write (offset 14H): The date the
file was created or last updated. The year
(excluding the century), month, and day are mapped
into two bytes as follows:

Offset 15H
| Y | Y | Y | Y |
15

Y | Y | Y | M |
9 8 BIT

Offset 14H
| M | M | M | D |
7 5 4

D | D | D | D |
0 BIT

Time of Last Write (offset 16H): The time the
file was created or last updated. The hour,
minutes, and seconds are mapped into two bytes as
follows:

Reserved (offset 18H):

Offset 17H
1 « | H | H |
15

H |i H |
11

M
10

M 1 M 1
8 BIT

Offset 16H
| M | M | M |

7 5
s 1

4
1 s |1 S 11 s 11 s |

0 BIT

These fields are reserved
for use by MS-DOS.

Current Record (offset 20H): Points to one of the
128 records in the current block. This field and
the Current Block field (offset OCH) make up the
record pointer. This field is not initialized by
the Open File system call. You must set it before
doing a sequential read or write to the file.

1-7

Relative Record (offset 21H): Points to the
currently selected record, counting from the
beginning of the file (starting with 0). This
field is not initialized by the Open File system
call. You must set it before doing a random read
or write to the file. If the record size is less
than 64 bytes, both words of this field are used;
if the record size is 64 bytes or more, only the
first three bytes are used.

Note: If you use the FCB at offset 5CH to the
Program Segment Prefix, the last byte of the
Relative Record field is the first byte of the
unformatted parameter area that starts at offset
80H. This is the default Disk Transfer Address.

1.3.2 FCB

The Extended File Control Block is used to create
or search for directory entries of files with
special attributes. It adds the following 7-byte
prefix to the beginning of the FCB:

SIZE OFFSET
NAME (BYTES) (DECIMAL)

Flag byte (255, or FFH) 1 -7

Reserved 5 -6

Attribute byte: 1 -1
02H = Hidden file
04H = System file

1-8

1.3.3 DIRECTORY ENTRY

A directory contains one entry for each file on
the disk. Each entry is 32 bytes; Table 1-2
describes the fields of an entry.

Table 1-2: Fields of Directory Entry

NAME
SIZE
(BYTES)

OFFSET
HEX DECIMAL

Filename 8 00-07H 0-7

Extension 3 08-0AH 8-10

Attributes 1 OBH 11

Reserved 10 00-1A 12-21

Time of last write 2 16H,17H 22,23

Date of last write 2 18H,19H 24,25

Reserved 2 1AH,1BH 26,27

File size 4 1C-1FH 28-31

1-9

1.3.4 FIELDS CF THE FCB

Filename (offset OOH): Eight characters, left-
aligned and padded (if necessary) with blanks.
MS-DOS uses the first byte of this field for two
special codes:

OOH (0) End of allocated directory
ESH (229) Free (that is, unused) directory entry

Extension (offset 08H): Three characters, left-
aligned and padded (if necessary) with blanks.
This field can be all blanks (no extension).

Attributes (offset OBH): Attributes of the
directory entry:

VALUE
DEC MEANINGHEX BINARY

01H 0000 0001 1 Read-only file
02H 0000 0010 2 Hidden file
04H 0000 0100 4 System file

(These attributes are
changeable with CHGMOD)

08H 0000 1000 8 This directory entry is the
Volume's ID

OAH 0001 0000 10 This directory entry is a
sub-directory's name

20H 0020 0000 32 Archive Bit (set when a file
is written to, reset via
function 43H)

1-10

Reserved (offset OCH): Reserved for MS-DOS.

Time of Last Write (offset 16H): The time the
file was created or last updated. The hour,
minutes, and seconds are mapped into two bytes as
follows:

Offset 17H
I H | H | H |
15

H | H | M |

11 10

Offset 16H
|m|m|m|s|s|s|

7 5 4

M | M |

8

S | S |
0

Date of Last Write (offset 18H): The date the
file was created or last updated. The year,
month, and day are mapped into two bytes as
follows:

Offset 19H
| Y | Y | Y |
15

Offset 18H
| M | M | M |

7 5

Y | Y | Y

D | D | D
4

I Y | M |
9 8

| D | D |
0

File Size (offset 1CH): The size of the file, in
bytes. The first word of this 4-byte field is the
low-order part of the size.

1-11

1.4 SYSTEM OMUL. DESCRIPTIONS

Many system calls require that parameters be
loaded into one or more registers before the call
is issued; most calls return information in the
registers (usually a code that describes the
success or failure of the operation). The
description of system calls 00H-2EH includes the
following:

o A drawing of the 8088 registers that shows
their contents before and after the system
call.

o A more complete description of the register
contents required before the system call.

o A description of the processing performed.

o A more complete description of the register
contents after the system call.

o An example of its use.

The description of system calls 2FH-57H includes
the following:

o A drawing of the 8088 registers that shows
their contents before and after the system
call.

o A more complete description of the register
contents required before the system call.

o A description of the processing performed.

o Error returns from the system call.

o An example of its use.

1-12

Figure 1-1 is an example of how each system call
is described. Function 27H, Random Block Read, is
shown.

Figure 1-1: Example of System Call Description

Call
AH - 27H
DS :DX
Opened FCB

CX
Number of blocks to read

Return
AL
0 - Read completed successfully
1 = EOF
2 - End of segment
3 - EOF, partial record

CX
Number of blocks read

1.4.1 PIWRAMMING EXAMPLES

A macro is defined for each system call, .then used
in some examples. In addition, a few other macros
are defined for use in the examples. The use of
macros allows the examples to be more complete
programs, rather than isolated uses of the system
calls. All macro definitions are listed at the
end of the chapter.

The examples are not intended to represent good
programming practice. In particular, error
checking and good human interface design have been

1-13

sacrificed to conserve space. You may, however,
find the macros a convenient way to include system
calls in your assembly language programs.

A detailed description of each system call
follows. They are listed in numeric order; the
interrupts are described first, then the function
requests.

Note: Unless otherwise stated, all numbers in the
system call descriptions — both text and code —
are in hex.

1.5 XENIX-OCMPATIBEJE CALLS

MS-DOS 2.1 supports hierarchical (i.e., tree-
structured) directories, similar to those found in
the Xenix operating system. (For information on
tree-structured directories, refer to Volume I of
this Option.) The following system calls are
compatible with the Xenix system:

Function 39H
Function 3AH
Function 3BH
Function 3CH
Function 3DH
Function 3FH
Function 40H
Function 41H
Function 42H
Function 43H
Function 44H
Function 45H
Function 46H
Function 4BH
Function 4CH
Function 4DH

Create Sub-Directory
Remove a Directory Entry
Change the Current Directory
Create a File
Open a File
Read From File/Device
Write to a File or Device
Delete a Directory Entry
Move a File Pointer
Change Attributes
I/O Control for Devices
Duplicate a File Handle
Force a Duplicate of a Handle
Load and Execute a Program
Terminate a Process
Retrieve the Return Code of a Child

1-14

There is no restriction in MS-DOS 2.1 on the depth
of a tree (the length of the longest path from
root to leaf) except in the number of allocation
units available. The root directory will have a
fixed number of entries. For non-root
directories, the number of files per directory is
only limited by the number of allocation units
available.

Pre-2.1 disks will be readable by MS-DOS 2.1 and
appear as having only a root directory with files
in it and no subdirectories.

Implementation of the tree structure is simple.
The root directory is the pre-2.1 directory.
Subdirectories of the root have a special
attribute set indicating that they are
directories. The subdirectories themselves are
files, linked through the FAT as usual. Their
contents are identical in character to the
contents of the root directory.

Pre-2.1 programs that use system calls not
described in this chapter will be unable to make
use of files in other directories. Those files
not necessary for the current task can be placed
in other directories.

1-15

Attributes, as described in the section on
directories, apply to the tree-structured
directories in the following manner:

ATTRIBUTE MEANING/FUNCTION

volume id Present at the root. Only one file
may have this set.

directory Indicates that the directory entry is
itself a directory. Cannot be changed
with 438.

read-only Meaningless for a directory.

archive Meaningless for a directory.

hidden/
system

Prevents directory entry from being
found. Function 3B8 will still work.

1.6 INTERRUPTS

MS-DOS reserves interrupts 208 through 3FH for its
own use. The table of interrupt routine addresses
(vectors) is maintained in locations 80H-FCH.
Table 1-3 lists the interrupts in numeric order;
Table 1-4 lists the interrupts in alphabetic order
(of the description). User programs should only
issue Interrupts 20H, 21H, 25H, 26H, and 27H.
(Function Requests 4CH and 31H are the preferred
method for Interrupts 20H and 27H for versions of
MS-DOS that are 2.0 and higher.)

Note: Interrupts 22H, 238, and 248 are not
interrupts that can be issued by user programs;
they are simply locations where a segment and
offset address are stored.

1-16

INTERRUPT

Table 1-3: MS-DOS Interrupts, Numeric Order

HEX DEC ________ DESCRIPTION_______

20H 32 Program Terminate
21H 33 Function Request
22H 34 Terminate Address
23H 35 <ALT-C> Exit Address
24H 36 Fatal Error Abort Address
251 37 Absolute Disk Read
26H 38 Absolute Disk Write
27H 39 Terminate But Stay Resident

28-40H 40-64 RESERVED — DO NOT USE

INTERRUPT

Table 1-4: MS-DOS Interrupts, Alphabetic Order

DESCRIPTION HEX DEC

Absolute Disk Read 25i 37
Absolute Disk Write 26H 38
<ALT-C> Exit Address 23H 35
Fatal Error Abort Address 24H 36
Function Request 21H 33
Program Terminate 20H 32
RESERVED — DO NOT USE 28-40H 40-64
Terminate Address 22H 34
Terminate But Stay Resident 27H 39

1-17

Program Terminate (Interrupt 20H)

Call
CS

Segment address of Program
Segment Prefix

Return
None

Interrupt 20H causes the current process to
terminate and returns control to its parent
process. All open file handles are closed and the
disk cache is cleaned. This interrupt is almost
always used in old .OOM files for termination.

The CS register must contain the segment address
of the Program Segment Prefix before you call this
interrupt.

The following exit addresses are restored from
the Program Segment Prefix:

EXIT ADDRESS OFFSET

Program Terminate OAH
ALT-C OEH
Critical Error 12H

All file buffers are flushed to disk.

Note: Close all files that have changed in length
before issuing this interrupt. If a changed file
is not closed, its length is not recorded
correctly in the directory. See Functions 10H and
3EH for a description of the Close File system
calls.

1-18

Interrupt 20H is provided for compatibility with
versions of MS-DOS prior to 2.0. New programs
should use Function Request 4CH, Terminate a
Process.

Macro Definition: terminate macro
int 20H
endm

Example:

;CS must be equal to PSP values given at program start
;(ES and DS values)

INT 20H
xThere is no return from this interrupt

Function Request (Interrupt 2111)

Call
AH
Function number
Other registers as specified

in individual function

Return
As specified in individual function

The AH register must contain the number of the
system function. See Chapter 1.7, "Function
Requests," for a description of the MS-DOS system
functions.

Note: No macro is defined for this interrupt,
because all function descriptions in this chapter
that define a macro include Interrupt 21H.

1-19

Exanple:

To call the Get Time function:

MOV ah,2CH ;Get Time is Function 2CH
int 21H ;THIS INTERRUPT

Interrupts 22H to 248

The following are not true interrupts, but rather
storage locations for a segment and offset
address. The interrupts are issued by MS-DOS
under the specified circumstance. You can change
any of these addresses with Function Request 25H
(Set Vector) if you prefer to write your own
interrupt handlers.

Interrupt 22H — Terminate Address

When a program terminates, control transfers to
the address at offset OAH of the Program Segment
Prefix. This address is copied into the Program
Segment Prefix, from the Interrupt 22H vector,
when the segment is created.

Interrupt 238 — ALT-C Exit Address

If the user types ALT-C during keyboard input or
display output, control transfers to the INT 23H
vector in the interrupt table. This address is
copied into the Program Segment Prefix, from the
Interrupt 238 vector, when the segment is created.

If the ALT-C routine preserves all registers, it
can end with an IRET instruction (return from
interrupt) to continue program execution. When

1-20

the interrupt occurs, all registers are set to the
value they had when the original call to MS-DOS
was made. There are no restrictions on what an
ALT-C handler can do — including MS-DOS function
calls — so long as the registers are unchanged if
IRET is used.

If Function 09H or OAH (Display String or Buffered
Keyboard Input) is interrupted by ALT-C the three-
byte sequence 03H-0DH-0AH (ETX-CR-LF) is sent to
the display and the function resumes at the
beginning of the next line.

If the program creates a new segment and loads a
second program that changes the ALT-C address,
termination of the second program restores the
ALT-C address to its value before execution of the
second program.

Interrupt 24H — Fatal Error Abort Address

If a fatal disk error occurs during execution of
one of the disk I/O function calls, control
transfers to the INT 24H vector in the vector
table. This address is copied into the Program
Segment Prefix, from the Interrupt 24H vector,
when the segment is created.

BP:SI contains the address of a Device Header
Control Block from which additional information
can be retrieved.

Note: Interrupt 24H is not issued if the failure
occurs during execution of Interrupt 251 (Absolute
Disk Read) or Interrupt 26H (Absolute Disk
Write). These errors are usually handled by the
MS-DOS error routine in COMMAND.COM that retries
the disk operation, then gives the user the choice

1-21

COMMAND.COM

of aborting, retrying the operation, or ignoring
the error. The following topics give you the
information you need about interpreting the error
codes, managing the registers and stack, and
controlling the system's response to the error in
order to write your own error-handling routines.

Error Codes

When an error-handling program gains control from
Interrupt 24H, the AX and DI registers can contain
codes that describe the error. If Bit 7 of AH is
1, the error is either a bad image of the File
Allocation Table or an error occurred on a
character device. The device header passed in
BP:SI can be examined to determine which case
exists. If the attribute byte high order bit
indicates a block device, then the error was a bad
FAT. Otherwise, the error is on a character
device.

1-22

The following are error codes for Interrupt 24H:

ERROR
CODE DESCRIPTION

0 Attempt to write on write-protected disk
1 Unknown unit
2 Drive not ready
3 Unknown command
4 Data error
5 Bad request structure length
6 Seek error
7 Unknown media type
8 Sector not found
9 Printer out of paper
A Write fault
B Read fault
C General failure

1-23

The user stack will be in effect (the first item
described here is at the top of the stack), and
will contain the following from top to bottom:

IP MS-DOS registers from
OS issuing INT 24H
FLAGS

AX User registers at time of original
BX INT 21H request
CX
DX
SI
DI
BP
DS
ES

IP From the original INT 21H
CS from the user to MS-DOS
FLAGS

The registers are set such that if an 1RET is
executed, MS-DOS will respond according to (AL) as
follows:

(AL)=0 ignore the error
--1 retry the operation
=2 terminate the program via IMP 23H

1-24

Notes:

1. Before giving this routine control for
disk errors, MS-DOS perforins five
retries.

2. For disk errors, this exit is taken only for
errors occurring during an Interrupt 21H. It
is not used for errors during Interrupts 25H
or 26H.

3. This routine is entered in an interrupts-
disabled state.

4. The SS, SP, DS, ES, BX, CX, and DX registers
must be preserved.

5. This interrupt handler should refrain from
using MS-DOS funtion calls. If necessary, it
may use calls 01H through OCH. Use of any
other call will destroy the MS-DOS stack and
will leave MS-DOS in an unpredictable state.

6. The interrupt handler must not change the
contents of the device header.

7. If the interrupt handler will handle errors
rather than returning to MS-DOS, it should
restore the application program's registers
from the stack, remove all but the last three
words on the stack, then issue an IBET. This
will return to the program immediately after
the INT 21H that experienced the error. Note
that if this is done, MS-DOS will be in an
unstable state until a function call higher
than OCH is issued.

1-25

Absolute Disk Read (Interrupt 2 SI)

Call
AL

Drive number
DS:BX

Disk Transfer Address
CX
Number of sectors

DX
Beginning relative sector

Return
AL
Error code if CF=1

Flags
CF = 0 if successful

= 1 if not successful

The registers must contain the following:

AL Drive number (0=A, 1-B, etc.).
BX Offset of Disk Transfer Address

(from segment address in DS).
CX Number of sectors to read.
DX Beginning relative sector.

This interrupt transfers control to the MS-DOS
BIOS. The number of sectors specified in CX is
read from the disk to the Disk Transfer Address.
Its requirements and processing are identical to
Interrupt 26H, except data is read rather than
written.

Note: All registers except the segment registers
are destroyed by this call. Be sure to save any
registers your program uses before issuing the
interrupt.

1-26

The system pushes the flags at the time of the
call; they are still there upon return. (This is
necessary because data is passed back in the
flags.) Be sure to pop the stack upon return to
prevent uncontrolled growth.

If the disk operation was successful, the Carry
Flag (CF) is 0. If the disk operation was not
successful, CF is 1 and AL contains the MS-DOS
error code (see Interrupt 24H earlier in this
section for the codes and their meaning).

Macro Definition:
abs_disk_read macro disk,buffer,num_sectors,start

mov al,disk
mov bx,offset buffer
mov ex,num_sector s
mov dh,start
int 25H
endm

See Absolute Disk Write in the next section for an
example.

Absolute Disk Write (Interrupt 268)

Call
AL

Drive number
DS :BX
Disk Transfer Address

CX
Number of sectors

DX
Beginning relative
sector

1-27

Return
AL

Error code if CF = 1
FLAGS
CF = 0 if successful

1 if not successful

The registers must contain the following:

AL Drive number (0=A, 1-8, etc.).
BX Offset of Disk Transfer Address

(from segment address in DS).
CX Number of sectors to write.
DX Beginning relative sector.

This interrupt transfers control to the MS-DOS
BIOS. The number of sectors specified in CX is
written from the Disk Transfer Address to the
disk. Its requirements and processing are
identical to Interrupt 25H, except data is written
to the disk rather than read from it.

Note: All registers except the segment registers
are destroyed by this call. Be sure to save any
registers your program uses before issuing the
interrupt.

The system pushes the flags at the time of the
call; they are still there upon return. (This is
necessary because data is passed back in the
flags.) Be sure to pop the stack upon return to
prevent uncontrolled growth.

If the disk operation was successful, the Carry
Flag (CF) is 0. If the disk operation was not
successful, CF is 1 and AL contains the MS-DOS
error code (see Interrupt 24H for the codes and
their meaning).

1-28

Macro Definition:

abs_disk_write macro
MOV
MOV
MOV
MOV
int
endm

disk,buffer,num_sector s,star t
al,disk
bx,offset buffer
ex,num_sectors
dh,start
26H

Example:

The following program copies the contents of a
single-sided disk in drive A: to the disk in
drive B:, verifying each write. It uses a buffer
of 32K bytes:

off equ 0
on equ 1

prompt db "Source in A, target in B",13,10
db "Any key to start. $"

start dw 0
buffer db 64 dup (512 dup (?)) ;64 sectors

int_26H: display prompt
read_kbd
verify on
mov ex,19

;see Function 09H
;see Function 08H
;see Function 2EH
;copy 19 groups of

64 sectors

1-29

copy: push ex ;save the loop counter
abs_disk_read 0,buffer,64,start
abs_disk_write 1,buffer,64,start
add start,64 ;do the next 64 sectors
pop ex ;restore the loop

counter
loop copy
verify off ;see Function 2EH

Terminate But Stay Resident (Interrupt 27H)

Call
CS:DX
First byte following
last byte of code

Return
None

The Terminate But Stay Resident call is used to
make a piece of code remain resident in the system
after its termination. Typically, this call is
used in .COM files to allow sane device-specific
interrupt handler to remain resident to process
asynchronous interrupts.

DX must contain the offset (from the segment
address in CS) of the first byte following the
last byte of code in the program. When Interrupt
27H is executed, the program terminates but is
treated as an extension of MS-DOS; it remains
resident and is not overlaid by other programs
when it terminates.

This interrupt is provided for compatibility with
versions of MS-DOS prior to 2.0. New programs
should use Function 31H, Keep Process.

1-30

Macro Definition: stay_resident macro last_instruc
mov dx,offset last—instrue
inc dx
int 27H
endm

Exanple:

;CS must be equal to PSP values given at program start
;(ES and DS values)
mov DX,LastAddress
int 27H

;There is no return from this interrupt

1.7 FUNCTION BEQUESTS

Most of the MS-DOS function calls require input to
be passed to them in registers. After setting the
proper register values, the function may be
invoked in one of the following ways:

1. Place the function number in AH and execute a
long call to offset 50H in your Program
Segment Prefix. Note that programs using this
method will not operate correctly on versions
of MS-DOS that are lower than 2.0.

2. Place the function number in AH and issue
Interrupt 21H. All of the examples in this
chapter use this method.

3. An additional method exists for programs that
were written with different calling
conventions. This method should be avoided
for all new programs. See Chapter 1.7.1.

1-31

1.7.1 CP/M(R)-COMPATIBLE CALLING SEQUENCE

A different sequence can be used for programs that
must conform to CP/M calling conventions:

1. Move any required data into the appropriate
registers (just as in the standard sequence).

2. Move the function number into the CL register.

3. Execute an intrasegment call to location 5 in
the current code segment.

This method can only be used with functions OOH
through 24H that do not pass a parameter in AL.
Register AX is always destroyed when a function is
called in this manner.

1.7.2 TREATMENT OF REGISTERS

When MS-DOS takes control after a function call,
it switches to an internal stack. Registers not
used to return information (except AX) are
preserved. The calling program’s stack must be
large enough to accommodate the interrupt system
— at least 128 bytes in addition to other needs.

1.7.3 FUNCTION REQUEST DESCRIPTIONS

The macro definitions for MS-DOS system calls OOH
through 2EH can be found in Chapter 1.8.

Table 1-5 lists the function requests in numeric
order; Table 1-6 lists the function requests in
alphabetic order of the description.

1-32

Table 1-5: MS-HDOS Function Requests, Numeric
Order

FUNCTION
NUMBER FUNCTION NAME

OOH
01H
02H
03H
04H
05H
06H
07H
08H
09H
OAH
OBH
OCH
ODH
OEH
OFH
10H
11H
12H
13H
14H
15H
16H
17H
19H
LAH
21H
22H
23H

Terminate Program
Read Keyboard and Echo
Display Character
Auxiliary Input
Auxiliary Output
Print Character
Direct Console I/O
Direct Console Input
Read Keyboard
Display String
Buffered Keyboard Input
Check Keyboard Status
Flush Buffer, Read Keyboard
Disk Reset
Select Disk
Open File
Close File
Search for First Entry
Search for Next Entry
Delete File
Sequential Read
Sequential Write
Create File
Rename File
Current Disk
Set Disk Transfer Address
Randan Read
Randan Write
File Size

1-33

FUNCTION
NUMBER FUNCTION NAME

24H Set Relative Record
251 Set Vector
27H Random Block Read
28H Random Block Write
29H Parse File Name
2AH Get Date
2BH Set Date
2CH Get Time
2DH Set Time
2EH Set/Reset Verify Flag
2FH Get Disk Transfer Address
30H Get DOS Version Number
31H Keep Process
33H ALT-C Check
351 Get Interrupt Vector
36H Get Disk Free Space
38H Return Country-Dependent Information
39H Create Sub-Directory
3AH Remove a Directory Entry
3BH Change Current Directory
3CH Create a File
3DH Open a File
3EH Close a File Handle
3FH Read From File/Device
40H Write to a File/Device
41H Delete a Directory Entry
42H Move a File Pointer
43H Change Attributes
44H I/O Control for Devices
451 Duplicate a File Handle
46H Force a Duplicate of a Handle
47H Return Text of Current Directory
48H Allocate Memory

1-34

FUNCTION
NUMBER FUNCTION NAME

49H Free Allocated Memory
4AH Modify Allocated Memory Blocks
4BH Load and Execute, a Program
4CH Terminate a Process
4DH Retrieve the Return Code of a Child
4EH Find Match File
4FH Step Through a Directory Matching Files
54H Return Current Setting of Verify
56H Move a Directory Entry
57H Get/Set Date/Time of File

Table 1-6: MS-DOS Function Requests, Alphabetic
Order

NUMBERFUNCTION NAME

Allocate Memory 48H
Auxiliary Input 03H
Auxiliary Output 04H
Buffered Keyboard Input OAH
Change Attributes 43H
Change the Current Directory 3BH
Check Keyboard Status OBH
Close a File Handle 3EH
Close File 10H
ALT-C Check 33H
Create a File 3CH
Create File 16H
Create Sub-Directory 39H
Current Disk 19H
Delete a Directory Entry 41H
Delete File 13H

1-35

FUNCTION NAME NUMBER

Direct Console Input 07H
Direct Console I/O 06H
Disk Reset ODH
Display Character 02H
Display String 09H
Duplicate a File Handle 45H
File Size 23H
Find Match File 4EH
Flush Buffer, Read Keyboard OCH
Force a Duplicate of a Handle 46H
Free Allocated Memory 49H
Get Date 2AH
Get Disk Free Space 36H
Get Disk Transfer Address 2FH
Get DOS Version Number 30H
Get Interrupt Vector 331
Get Time 2CH
Get/Set Date/Time of File 57H
I/O Control for Devices 44H
Keep Process 31H
Load and Execute a Program 4BH
Modify Allocated Memory Blocks 4AH
Move a Directory Entry 56H
Move a File Pointer 42H
Open a File 3DH
Open File OFH
Parse File Name 29H
Print Character 031
Randan Block Read 27H
Randan Block Write 28H
Randan Read 21H
Randan Write 22H
Read Fran File/Device 3FH
Read Keyboard 08H

1-36

FUNCTION NAME NUMBER

Read Keyboard and Echo 01H
Remove a Directory Entry 3AH
Rename File 17H
Retrieve the Return Code of a Child 4DH
Return Current Setting of Verify 54H
Return Country-Dependent Information 38H
Return Text of Current Directory 47H
Search for First Entry 11H
Search for Next Entry 12H
Select Disk OEH
Sequential Read 14H
Sequential Write 131
Set Date 2BH
Set Disk Transfer Address 1AH
Set Relative Record 24H
Set Time 2DH
Set Vector 231
Set/Reset Verify Flag 2EH
Step Through a Directory Matching 4FH
Terminate a Process 4CH
Terminate Program OOH
Write to a File/Device 40H

Terminate Program (Function OOH)

Call
AH = OOH
CS

Segment address of
Program Segment Prefix

Return
None

1-37

Function OOH is called by Interrupt 20H; it
perforins the same processing.

The CS register must contain the segment address
of the Program Segment Prefix before you call this
interrupt.

The following exit addresses are restored from the
specified offsets in the Program Segment Prefix:

Program terminate OAH
ALT-C OEH
Critical error 12H

All file buffers are flushed to disk.

Warning: Close all files that have changed in
length before calling this function. If a changed
file is not closed, its length is not recorded
correctly in the directory. See Function 10H for
a description of the Close File system call.

Macro Definition: terminate_program macro
xor ah, ah
int 21H
endm

example:

;CS must be equal to PSP values given at program
start
;(ES and DS values)
mov ah,0
int 21H

;There are no returns from this interrupt

1-38

Read Keyboard and Echo (Function 01H)

Call
AH = 01H

Return
AL

Character typed

Function 01H waits for a character to be typed at
the keyboard, then echos the character to the
display and returns it in AL. If the character is
ALT-C, Interrupt is executed.

Macro Definition: read_kbd_and_echo macro
mov ah, 01H
int 21H
endm

Example:

The following program both displays and prints
characters as they are typed. If Return is
pressed, the program sends Line Feed/Carriage
Return to both the display and the printer:

func_01H: read kbd and echo
print char al

THIS FUNCTION
see Function
05H

cup al,ODH
jne func_01H
pr int char 10

is it a CR?
no, print it
see Function
OSH

display char 10 see Function
02H

jmp func_01H get another
character

1-39

Display Character (Function 02H)

Call
AH = 02H
DL
Character to be displayed

Return
None

Function 02H displays the character in DL. If
ALT-C is typed, Interrupt 23H is issued.

Macro Definition: display char macro character
mov dl,character
mov ah,02H
int 21H
endm

Example:

The following program converts lowercase
characters to uppercase before displaying them:

func_02H: read_ kbd
cmp al,"a"
jl uppercase
crop al,"z"
jg uppercase
sub al,20H

uppercase: display char al
jmp func_02H:

7 see Function 08H

;don't convert

;don't convert
;convert to ASCII
;code for uppercase
;THIS FUNCTION
;get another
;character

1-40

Auxiliary Input (Function 03H)

Call
AH -- 03H

Return
AL

Character from auxiliary device

Function 03H waits for a character from the
auxiliary input device (AUXIN), then returns the
character in AL. This system call does not return
a status or error code.

If an ALT-C has been typed at console input,
Interrupt 23H is issued.

Macro Definition: aux_input macro
mov ah,03H
int 21H
endm

Example:

The following program prints characters as they
are received from the auxiliary device. It stops
printing when an end-of-file character (ASCII 26,
or ALT-2) is received:

func_03H: auX—input 5THIS FUNCTION
crop al,lAH ;end of file?
je continue 5yes, all done
print_char al ;see Function 05H
jmp func_03H ;get another character

continue: ■

1-41

Auxiliary Output (Function 04H)

Call
AH = 04H
DL
Character for auxiliary device

Return
None

Function 04H sends the character in DL to the
auxiliary output (AUXOUT) device. This system
call does not return a status or error code.

If a ALT-C has been typed at console input,
Interrupt 23H is issued.

Macro Definition: aux output macro character
mov dl,character
mov ah,04H
int 21H
endm

1-42

Exanple:

The following program gets a series of strings of
up to 80 bytes from the keyboard, sending each to
the auxiliary device. It stops when a null string
(CR■only) is typed:

string db 81 dup(?) ;see Function OAH

func__04H: ge t_str ing 80, str ing ;see Function OAH
crop string[l],0 ;null string?
je continue ;yes, all done
xor ex, ex
mov cl, byte ptr string[1] ;get string length
mov bx,0 ?set index to 0

send__it: auX—output string[bx+2] ;THIS FUNCTION
inc bx 5 bump index
loop send—it ;send another character
jmp funC—04H ;get another string

continue: .

Print Character (Function 091)

Call
AH = 091
DL
Character for printer

Return
None

Function 091 prints the character in DL on the
standard printer device. If ALT-C has been typed
at console input, Interrupt 23H is issued.

1-43

Macro Definition: print okar macro character
mov dl,character
mov ah, 051
int 21H
endm

Example:

The following program prints a walking test
pattern on the printer. It stops if ALT-C is
pressed.

line_num db 0

func_05H: MOV ex, 60 ;print 60 lines
start_JLine: mov bl,33

add bl,1ine_num
push ex
mov ex,80

;first printable ASCII
;character (!)
;to offset one character
save number-of-lines counter
loop counter for line

printuit: print__char bl
inc bl
emp blf126

jl no__reset
MOV bl,33

;THIS FUNCTION
,-move to next ASCII character
;last printable ASCII
;character (~)
;not there yet
;start over with (!)

no_reset: loop pr int__it
print__char 13
print_char 10
inc linejnum
pop ex
loop startJLine;

;print another character
;carriage return
;line feed
xto offset 1st char, of line
;restore #-of~lines counter
;print another line

1-44

Direct Console I/O (Function OKI)

Call
AH = 06H
DL
FFH = Check for keyboard

input.
Otherwise = display DC on

screen.

Return
AL

If DL = FFH (255) before call,
then Zero flag set means AL has
character from keyboard.
Zero flag not set means there was
not a character to get, and AL = 0

The processing depends on the value in DL when the
function is called:

DL is FFH (255) — If a character has been
typed at the keyboard, it is returned in AL
and the Zero flag is 0; if a character has
not been typed, the Zero flag is 1.

DL is not FFH — The character in DL is
displayed.

This function does not check for ALT-C.

Macro Definition: dir_console_io macro switch
mov dl,switch
mov ah,06H
int 21H
endm

1-45

Example:

The following program sets the system clock to 0
and continuously displays the time. When any
character is typed, the display stops changing;
when any character is typed again, the clock is
reset to 0 and the display starts again;

time db ’’ 00:00:00.00” ,13,10,” $" ;see Function 09H
;for explanation of $

ten db 10

func_06H: set__time 0,0,0,0
read__clock: get_time

convert ch,ten,time
convert cl,ten,time[3]
conver t dh,ten,time[6]
convert dl,ten,time[9]
display time
dir_console_io FFH
jne stop
jmp read__clock

stop: read—kbd
jmp f unc_0 6H

;see Function 2DH
;°see Function 2CH
;see end of chapter
;see end of chapter
;see end of chapter
;see end of chapter
;see Function 09H
;THIS FUNCTION
;yes, stop timer
;no, keep timer
;running
;see Function 08H
;start over

Direct Console Input (Function 07H)

Call
AH = 07H

Return
AL

Character from keyboard

Function 07H waits for a character to be typed,
then returns it in AL. This function does not

1-46

echo the character or check for ALT-C. (For a
keyboard input function that echoes or checks for
ALT-C, see Functions 01H or 08H.)

Macro Definition: dir_console__input macro
mov ah,07H
int 21H
endm

Example:

The following program prompts for a password (8
characters maximum) and places the characters into
a string without echoing them:

password db 8 dup(?)
prompt db ’’Password: $”

func_07H: display prompt
mov ox,8
xor bx,bx

get_pass: dir__console_input
cmp al,ODH
je continue
mov password [bx],al
inc bx
loop get_pass

continue: .

;see Function 09H for
;explanation of $

;see Function 09H
;maximum length of password
;so BL can be used as index
;THIS FUNCTION
;was it a CR?
;yes, all done
xno, put character in string
;bump index
;get another character
;BX has length of password+1

1-47

Read Keyboard (Function 08H)

Call
AH = 08H

Return
AL

Character from keyboard

Function 08H waits for a character to be typed,
then returns it in AL. If ALT-C is pressed,
Interrupt 23H is executed. This function does not
echo the character. (For a keyboard input
function that echoes the character or checks for
ALT-C, see Function 01H.)

Macro Definition: read kbd macro
mov ah,08H
int 21H
endm

Example:

The following program prompts for a password (8
characters maximum) and places the characters into
a string without echoing them:

password db 8 dup(?)
prompt db "Password: $" ;see Function 09H

;for explanation of $

func_08H: display prompt
mov ex,8
xor bx,bx

get_pass: read_kbd
crop al,0DH
je continue

;see Function 09H
;maximum length of password
;BL can be an index
;THIS FUNCTION
;was it a CR?
7yes, all done

1-48

mov password[bx],al ;no, put char, in string
inc bx jburnp index
loop get_pass ;get another character

continue: . ;BX has length of password+1

Display String (Function 09H)

Call
AH = 09H
DS:DX

String to be displayed

Return
None

DX must contain the offset (from the segment
address in DS) of a string that ends with
The string is displayed (the $ is not displayed).

Macro Definition: display macro string
lea dx,string
mov ah,09H
int 21H
endm

1-49

Example:

The following program displays the hexadecimal
code of the key that is typed:

;explanation of $

table db "0123456789ABCDEF"

sixteen db 16
result db " - OOH",13,10,"$" ;see text for

func_09H:r ead_kbd_and_echo
convert al,sixteen,result[3]
display result
jmp func_09H

5 see Function 01H
;see end of chapter
;THIS FUNCTION
;do it again

Buffered Keyboard Input (Function OAH)

Call
AH = OAH

- DS:DX
Input buffer

Return
None

1-50

DX must contain the offset (from the segment
address in DS) of an input buffer of the following
form:

BYTE CONTENTS

1 Maximum number of characters in buffer,
including the CR (you must set this value).

2 Actual number of characters typed, not
counting the CR (the function sets this
value).

3-n Buffer; must be at least as long as the
number in byte 1.

This function waits for characters to be typed.
Characters are read from the keyboard and placed
in the buffer beginning at the third byte until
Return is typed. If the buffer fills to one less
than the maximum, additional characters typed are
ignored and ASCII 7 (BEL) is sent to the display
until Return is pressed. The string can be edited
as it is being entered. If ALT-C is typed,
Interrupt 23H is issued.

The second byte of the buffer is set to the number
of characters entered (not counting the CR).

endm

Macro Definition: get string macro limit,string
lea dx,string
MOV string,limit
MOV ah,OAR
int 21H

1-51

Exanple:

The following program gets a 16-byte (maximum)
string from the keyboard and fills a 24-line by
80-character screen with it: -

buffer_____ label byte___
maX—length db 7 7 maximum length
charS—entered db 7 ;number of chars.
string db 17 dup (?) ;16 chars + CR
strings per line dw 0 ;hcw many strings

or If db 13,10,"$”
;fit on line

func_0AH: get—string 17,buffer ;THIS FUNCTION
xor bx,bx

mov bl,charS-entered
mov buffer[bx+2],"$”
mov al,80
cbw
div charS—entered

xor ah, ah
mov stringsjoer_line,ax
mov ex,24

;so byte can be
5 used as index
7 get string length
?see Function 09H
;columns per line

7 times string fits
;on line
;clear remainder
?save col. counter
?row counter

display—screen: push ex
mov ex, str ingsjoer—line

-save it
;get col. counter

display-line: display string
loop display-line
display erIf
pop ex
loop display-screen

;see Function 09H

7 see Function 09H
7 get line counter
;display 1 more line

1-52

Check Keyboard Status (Function OBH)

Call
AH = OBH

Return
AL

255 (FFH) - characters in type-ahead
buffer
0 = no characters in type-ahead

buffer

Checks whether there are characters in the type-
ahead buffer. If so, AL returns FFH (255); if
not, AL returns 0. If ALT-C is in the buffer,
Interrupt 23H is executed.

Macro Definition: check kbd status macro
mov ah,OBH
int 21H
endm

1-53

Exanple

The following program continuously displays the
time until any key is pressed.

time db "00:00:00.00",13,10,”$"
ten db 10

func_0BH: get_time
convert ch,ten,time
convert cl,ten,time[3]
convert dh,ten,time[6]
convert dl,ten,time[9]
display time
check_kbd_status
crop al,FFH
je all—done
jmp func_0BH

;see Function 2CH
;see end of chapter
;see end of chapter
;see end of chapter
;see end of chapter
;see Function 09H
;THIS FUNCTION
;has a key been typed?
ryes, go home
;no, keep displaying
;time

Flush Buffer, Read Keyboard (Function OCH)

Call
AH = OCH
AL

1, 6, 7, 8, or 0AH = The
corresponding function
is called.
Any other value -- no
further processing.

Return
AL

0 = Type-ahead buffer was
flushed; no other
processing performed.

1-54

The keyboard type-ahead buffer is emptied.
Further processing depends on the value in AL when
the function is called:

1, 6, 7, 8, or OAH — The corresponding MS-DOS
function is executed.

Any other value — No further processing; AL
returns 0.

Macro Definition: flush_and_read_kbd macro switch
mov al,switch
mov ah, OCH
int 21H
endm

Example:

The following program both displays and prints
characters as they are typed. If Return is
pressed, the program sends carriage return/line
feed to both the display and the printer.

func_0CH: flush and read kbd 1 ;THIS FUNCTION
;see Function ORpr int_char al

crop al,ODH ;is it a CR?
jne func OCH ;no, print it
print_char 10 ;see Function 05H
display char 10 ;see Function 02H
imp func OCH ;get another character

1-55

Disk Beset (Function ODH)

Call
AH -- ODH

Return
None

Function ODH is used to ensure that the internal
buffer cache matches the disks in the drives.
This function writes out dirty buffers (buffers
that have been modified), and marks all buffers in
the internal cache as free.

Function ODH flushes all file buffers. It does
not update directory entries; you must close files
that have changed to update their directory
entries (see Function 10H, Close File). This
function need not be called before a disk change
if all files that changed were closed. It is
generally used to force a known state of the
system; ALT-C interrupt handlers should call this
function.

Macro Definition: disk reset macro disk
mov ah,ODH
int 21H
endm

Example:

mov ah,ODH
int 21H

;There are no errors returned by this call.

1-56

Select Disk (Function OM)

Call
AH = OEH
DL
Drive number
(0 = A:, 1 = B:, etc.)

Return
AL
Number of logical drives

The drive specified in DL (0 = A:, 1 = B:, etc.)
is selected as the default disk. The number of
drives is returned in AL.

Macro Definition: select_disk macro disk
MOV dl,disk[-64]
MOV ah,OEH
int 21H
endm

Example:

The following program selects the drive not
currently selected in a 2-drive system:

func_0EH: current—disk ;see Function 19H
cmp al,OOH ;drive A: selected?
je select b ;yes, select B
select-disk "A" ;THIS FUNCTION
jmp continue

select_b: select-disk "B" ;THIS FUNCTION
continue: .

1-57

Open File (Function OFH)

Call
AH = OFH
DS:DX
Unopened FCB

Return
AL

0 - Directory entry found
255 (FFH) - No directory entry found

DX must contain the offset (from the segment
address in DS) of an unopened File Control Block
(FCB). The disk directory is searched for the
named file.

If a directory entry for the file is found, AL
returns 0 and the FCB is filled as follows:

If the drive code was 0 (default disk), it is
changed to the actual disk used (1 = A:, 2 = B:,
etc.). This lets you change the default disk
without interfering with subsequent operations on
this file.

The Current Block field (offset OCH) is set
to zero.

The Record Size (offset OEH) is set to the
system default of 128.

The File Size (offset 10H), Date of Last
Write (offset 14H), and Time of Last Write
(offset 16H) are set from the directory
entry.

1-58

Before performing a sequential disk operation on
the file, you must set the Current Record field
(offset 20H). Before performing a randan disk
operation on the file, you must set the Relative
Record field (offset 21H). If the default record
size (128 bytes) is not correct, set it to the
correct length.

If a directory entry for the file is not found, AL
returns FFH (255).

Macro Definition: open macro fcb
mov dx,offset fcb
mov ah, OFH
int 21H
endm

Example:

The following program prints the file named
TEXTFILE.ASC that is on the disk in drive B:. If
a partial record is in the buffer at end-of-file,
the routine that prints the partial record prints
characters until it encounters an end-of-file mark
(ASCII 26, or ALT-2):

fcb

buffer

db 2,"TEXTFILEASC"
db 2 5 dup (?)
db 128 dup (?)

func_0FH: set_dta buffer 5 see Function 1AH
open fcb ;THIS FUNCTION

read-line: read_seq fcb ;see Function 14H
crop al, 028
je all-done
cmp al,OOH

;end of file?
ryes, go home
;more to cone?

1-59

jg check—more ?no, check for partial

pr intuit:

MOV ex,128
xor si,si
print—char buffer [si]

;record
;yes, print the buffer
7 set index to 0
;see Function 0A

check—more:

inc si
loop print—it
jmp read_line
crop al,03H

;bump index
;pr int next eharac ter
7 read another record
;part. record to print?

find—eof:

jne all—Zone
mov ex,128
xor si,si
cirp buffer [si] ,26

;no
ryes, print it
;set index to 0
;end-of-file mark?

all—done:

je all_done
print—char buffer[si]
inc si

loop find_eof
close feb

ryes
;see Function 05H
?bump index to next
;character

rsee Function 10H

Close File (Function 10H)

Call
AH = 10H
DS:DX
Opened FCB

Return
AL

0 = Directory entry found
FFH (255) = No directory entry found

DX must contain the offset (to the segment address
in DS) of an opened FCB. The disk directory is
searched for the file named in the FCB. This
function must be called after a file is changed to
update the directory entry.

1-60

If a directory entry for the file is found, the
location of the file is compared with the
corresponding entries in the FCB. The directory
entry is updated, if necessary, to match the FCB,
and AL returns 0.

If a directory entry for the file is not found, AL
returns FFH (255).

Macro Definition: close macro fob
mov dx,offset fcb
mov ah,10H
int 21H
endm

Example:

The following program checks the first byte of the
file named MODI.BAS in drive B: to see if it is
FFH, and prints a message if it is:

message
fcb

db "Not saved in ASCII format",13,10,"$"
db 2, "MODI BAS"
db 25 dup (?)

buffer db 128 dup (?)

function: set_dta buffer ;see Function 1AH
open fcb ;see Function OFH
read_seq fcb 5see Function 14H
cmp buffer,FFH ;is first byte FFH?
jne all done ;no
display message ;see Function 09H

all done: close fcb ;THIS FUNCTION

1-61

Search for First Entry (Function 11H)

Call
AH = 11H
DS:DX
Unopened FCB

' ReturnT. ■ '. . .
0 - Directory entry found
FFH (255) = No directory entry found

DX must contain the offset (from the segment
address in DS) of an unopened FCB. The disk
directory is searched for the first matching name.
The name can have the ? wild card character to
match any character. To search for hidden or
system files, DX must point to the first byte of
the extended FCB prefix.

If a directory entry for the filename in the FCB
is found, AL returns 0 and an unopened FCB of the
same type (normal or extended) is created at the
Disk Transfer Address.

If a directory entry for the filename in the FCB
is not found, AL returns FFH (255).

1-62

Notes:

If an extended FCB is used, the following search
pattern is used:

1. If the FCB attribute is zero, only normal file
entries are found. Entries for volume label,
sub-directories, hidden, and system files will
not be returned.

2. If the attribute field is set for hidden or
system files, or directory entries, it is to
be considered as an inclusive search. All
normal file entries plus all entries matching
the specified attributes are returned. To
look at all directory entries except the
volume label, the attribute byte may be set to
hidden + system + directory (all 3 bits on).

3. If the attribute field is set for the volume
label, it is considered an exclusive search,
and only the volume label entry is returned.

Macro Definition: search-first macro fob
mov dx,offset fob
mov ah,11H
int 21H
endm

Example:

The following program verifies the existence of a
file named REPORT.ASM on the disk in drive B::

yes db . "FILE EXISTS.$"
no db "FILE DOES NOT EXIST.$"
fcb db 2,"REPORT ASM"

db 25 dup (?)

1-63

db 128 dup (?)buffer

func_llH: set_dta buffer
search first fcb

;see Function 1AH
;THIS FUNCTION
;directory entry found?
;no
;see Function 09H

crop
je
display
jmp

al,FFH
not—there
yes
continue

not_there: display no ;see Function 09H
continue: display crlf ;see Function 09H

Search for Next Entry (Function 12H)

Call
AH = 12H
DS:DX
Unopened FCB

Return
AL
0 - Directory entry found
FFH (255) - No directory entry found

DX must contain the offset (from the segment
address in DS) of an FCB previously specified in a
call to Function 11H. Function 12H is used after
Function 11H (Search for First Entry) to find
additional directory entries that match a filename
that contains wild card characters. The disk
directory is searched for the next matching name.
The name can have the ? wild card character to
match any character. To search for hidden or
system files, DX must point to the first byte of
the extended FCB prefix.

1-64

If a directory entry for the filename in the FCB
is found, AL returns 0 and an unopened FCB of the
same type (normal or extended) is created at the
Disk Transfer Address.

If a directory entry for the filename in the FCB
is not found, AL returns FFH (2 55).

Macro Definition: search_next macro fcb
mov dx,offset fcb
mov ah,12H
int 21H
endm

Example:

The following program displays the number of files
on the disk in drive B:

;counter

message db "No files" ,10,13,"$’’
files db 0
ten db 10
fcb db 2,"???????????"

db 2 5 dup (?)
buffer db 128 dup (?)

func_12H: set dta buffer ;see Function IM
search first fcb ;see Function 11H
crop al,FFH ,'directory entry found?
je all-done ;no, no files on disk
inc files ;yes, increment file

;counter
search__dir: search next fcb ;THIS FUNCTION

cmp al,FFH ;directory entry found?
je done ;no
inc files ;yes, increment file

1-65

done:
all_done:

jmp search_dir ;check again
convert files,ten,message ;see end of chapter
display . message ;see Function 09H

Delete File (Function 13H)

Call
AH = 13H
DS:DX
Unopened FCB

Return
0 = Directory entry found
FFH (255) = No directory entry found

DX must contain the offset (from the segment
address in DS) of an unopened FCB. The directory
is searched for a matching filename. The filename
in the FCB can contain the ? wild card character
to match any character.

If a matching directory entry is found, it is
deleted from the directory. If the ? wild card
character is used in the filename, all matching
directory entries are deleted. AL returns 0.

If no matching directory entry is found, AL
returns FFH (255).

Macro Definition: delete macro fcb
mov dx,offset fcb
mov ah,13H
int 21H
endm

1-66

Example:

;message.
convert files,ten,message ;see end of chapter

all_done: display message ;see Function 09H

The following
drive B: last

program deletes files on the disk in
written before December 31, 1982:

year
month
day
files
ten
message

fcb

buffer

dw
db
db
db

db
db

db
db
db

1982
12
31
0
10

"NO FILES DELETED.",13,10,"$"
;see Function 09H for
;explanation of $

2,"???????????"
25 dup (?)
128 dup (?)

func_13H:

compare:

next:

set_dta buffer ,-see Function 1AH
search—first fcb ,-see Function 11H
cmp al,FFH ,-directory entry found?
je all_done ;no, no more files on disk
convert—date buffer ,-see end of chapter
cup ex,year ;next several lines
jg next ,-check date in directory
cmp dl,month ;entry against date
jg next ;above & check next file

’cmp dh,day ,-if date in directory
jge next ,-entry isn’t earlier,
delete buffer ;THIS FUNCTION
inc files ;bump deleted-files counter
search—next fcb ,-see Function 12H
cmp al,OOH ,-directory entry found?
je compare ;yes, check date
cmp files,0 ;any files deleted?
je all—done ;no, display NO FILES

1-67

Sequential Read (Function 148)

Call
AH = 14H
DS:DX
Opened FCB

Return

0 = Read completed successfully
1 = EOF
2 - OTA too small
3 - EOF, partial record

OX must contain the offset (from the segment
address in DS) of an opened FCB. The record
pointed to by the current block (offset OCH) and
Current Record (offset 20H) fields is loaded at
the Disk Transfer Address, then the Current Block
and Current Record fields are incremented.

The record size is set to the value at offset OEH
in the FCB. AL returns a code that describes the
processing:

CODE MEANING_____________________________

0 Read completed successfully.

1 End-of-file, no data in the record.

2 Not enough room at the Disk Transfer Address
to read one record without exceeding the
segment's boundaries; read canceled.

3 End-of-file; a partial record was read and
padded to the record length with zeros.

1-68

Macro Definition: read_seq macro fcb
MOV dx,offset fcb
mov ah,14H
int 21H
endm

Example:

The following program displays the file named
TEXTFILE.ASC that is on the disk in drive B:; its
function is similar to the MS-DOS TYPE command.
If a partial record is in the buffer at end of
file, the routine that displays the partial record
displays characters until it encounters an end-of-
file mark (ASCII 26, or ALT-2):

fcb

buffer

db 2, "TEXTFILEASC”
db 25 dup (?)
db 128 dup (?),"$"

func__14H: set_dta buffer ;see Function 1AH
open fcb ;see Function OFH

read—line: read—seq fc ;THIS FUNCTICW
cmp al,02H ;end-of-file?
je all—done ;yes
cmp al,02H ;end-of-file with partial

;record?
jg check__more ;yes
display buffer ;see Function 09H
jmp read—line ;get another record

check—more: cmp al,03H partial record in buffer?
jne all—done ;no, go home
xor si,si ;set index to 0

1-69

f ind__eof: crop
je

buffer[si],26 7 is character EOF?
all done ;yes, no more to display

all_done:

display_char buffer[si] >see Function 02H
inc si ;buinp index to next

;character
jmp find_eof ;check next character
close fcb 7 see Function 10H

Sequential Write (Function 15H)

Call
AH = 15H
DS:DX
Opened FCB

Return
AL

OOH = Write completed successfully
01H = Disk full
02H -- DTA too small

DX must contain the offset (from the segment
address in DS) of an opened FCB. The record
pointed to by Current Block (offset OCH) and
Current Record (offset 20H) fields is written from
the Disk Transfer Address, then the current block
and current record fields are incremented.

The record size is set to the value at offset OEH
in the FCB. If the Record Size is less than a
sector, the data at the Disk Transfer Address is
written to a buffer; the buffer is written to disk
when it contains a full sector of data, or the
file is closed, or a Reset Disk system call
(Function ODH) is issued.

1-70

AL returns a code that describes the processing:

POPE MEANING________________________

0 Transfer completed successfully.

1 Disk full; write canceled.

2 Not enough room at the Disk Transfer
Address to write one record without
exceeding the segment's boundaries; write
canceled.

Macro Definition: write seg macro fob
mov dx,offset fob
mov ah, 191
int 21H
endm

See Create File (next function) for an example.

Create File (Function 16H)

Call
AH = 16H
DS-.DX
Unopened FCB

Return
AL

OOH = Empty directory found
FFH (255) - No empty directory

available

DX must contain the offset (from the segment
address in DS) of an unopened FCB. The directory
is searched for an empty entry or an existing
entry for the specified filename.

1-71

If an empty directory entry is found, it is
initialized to a zero-length file, the Open File
system call (Function OFH) is called, and AL
returns 0. You can create a hidden file by using
an extended FCB with the attribute byte (offset
FCB-1) set to 2.

If an entry is found for the specified filename,
all data in the file is released, making a zero­
length file, and the Open File system call
(Function OFH) is issued for the filename (in
other words, if you try to create a file that
already exists, the existing file is erased, and a
new, empty file is created).

If an empty directory entry is not found and there
is no entry for the specified filename, AL returns
FFH (255).

Macro Definition: create macro fob
mov dx,offset fcb
wov ah,16H
int 21H
endin'

Example:

The following program creates a file named DIR.IMP
cxi the disk in drive B: that contains the disk
number (1 = A:, 2 = B:, etc.) and filename from
each directory entry on the disk:

recordssize equ 14 7offset of Record Size
;field of FCB

fcbl db 2, "DIR IMP"

1-72

db 25 dup (?)
fcb2 db 2," ???????????”

db 25 dup (?)
buffer db 128 dup (?)

func_16H: set dta buffer ;see Function 1AH
search_first fcb2 ;see Function 11H
cmp al,FFH ,'directory entry found?
je all done ;no, no files on disk
create fcbl ;THIS FUNCTION
MOV fcbl[record_size] ,12

;set record size to 12
write__it: write__seq fcbl ;see Function ID

search_next fcb2
cmp altFFH
je all-done
jmp write_it

;see Function 12H
;directory entry found?
;no, go home
;yes, write the record

all_done: close fcbl ;see Function 10H

Rename File (Function 17H)

Call
AH = 17H
DS :DX
Modified FCB

Return
AL

OOH - Directory entry found
FFH (255) - No directory entry
found or destination already
exists

1-73

DX must contain the offset (from the segment
address in DS) of an FCB with the drive number and
filename filled in, followed by a second filename
at offset 11H. The disk directory is searched for
an entry that matches the first filename, which
can contain the ? wild card character.

If a matching directory entry is found, the
filename in the directory entry is changed to
match the second filename in the modified FCB (the
two filenames cannot be the same name). If the ?
wild card character is used in the second
filename, the corresponding characters in the
filename of the directory entry are not changed.
AL returns 0.

If a matching directory entry is found, the
filename in the directory entry is changed to
match the second filename in the modified FCB
(the two filenames cannot be the same name). If
the ? wild card character is use in the second
filename, the corresponding characters in the
filename of the directory entry are not changed.
AL returns 0.

Macro Definition: rename macro fcb,newname
mov dx,offset fcb
mov ah,178
int 21H
endm

1-74

Example:

The following program prompts for the name of a
file and a new name, then renames the file:

fcb db 37 dup (?)1

promptl db "Filename: $"
prompt2 db "New name: $"
reply db 17 dup(?)
crlf db 13,10,"$"

rename fcb

func_17H: display promptl
get string 15,reply

;see Function
;see Function

display crlf •see Function
parse reply[2],fcb ;see Function
display prompt2 ?see Function
get string 15,reply ;see Function
display crlf ;see Function
parse reply[2],fcb[16]

;see Function

09H
OAH
09H
29H
09H
OAH
09H

29H
;THIS FUNCTION

Current Disk (Function 19H)

Call
AH = 19H

Return
AL
Currently selected drive
(0 = A, 1 = B, etc.)

AL returns the currently selected drive (0 = A:,
1 = B:, etc.).

1-75

Macro Definition: current_disk macro
nov ah,19H
int 21H
endm

Example:

The following program displays the currently
selected (default) drive in a 2-drive system:

message db "Current disk is $" ;see Function 09H

;for explanation of $
or If db 13,10,."$"

func_19H: display message ;see Function 09H
current^ disk ;THIS FUNCTION
cmp ’ al,OOH ;is it disk A?
jne disk—b ;nor it’s disk B:
display^ char "A” ;see Function 02H
jmp all—done

disk_b: display^ char "B" ;see Function 02H
all_done: d isplay ” crlf ;see Function 09H

Set Disk Transfer Address (Function 1AH)

Call
AH = 1AH
DS :DX
Disk Transfer Address

Return
None

1-76

DX must contain the offset (from the segment
address in DS) of the Disk Transfer Address. Disk
transfers can neither wrap around from the end of
the segment to the beginning nor overflow into
another segment.

Note: If you do not set the Disk Transfer
Address, MS-DOS defaults to offset
Program Segment Prefix.

8OH in the

Macro Definition: set_dta macro buffer
mov dx,offset buffer
mov ah,lAH
int 21H
endm

See Randan Read (next function) for an example.

Randan Read (Function 21H)

Call
AH = 21H
DS :DX
Opened FCB

Return
AL

OOH = Read completed successfully
01H = EOF
02H = DTA too small
03H - EOF, partial record

1-77

DX must contain the offset (from the segment
address in DS) of an opened FCB. The Current
Block (offset OCH) and Current Record (offset 20H)
fields are set to agree with the Relative Record
field (offset 21H), then the record addressed by
these fields is loaded at the Disk Transfer
Address.

AL returns a code that describes the processing:

CODE MEANING____________________

0 Read completed successfully.

1 End-of-file; no data in the record.

2 Not enough roan at the Disk Transfer Address
to read one record; read canceled.

3 End-of-file; a partial record was read and
padded to the record length with zeros.

Macro Definition: read_ran macro fob
mov dx,offset fob
mov ah,21H
int 21H
endm

1-78

Example:

The following program prompts for a letter,
converts the letter to its alphabetic sequence
(A = 1, B = 2, etc.), then reads and displays the
corresponding record from a file named
ALJPHABET.DAT on the disk in drive B:. The file
contains 26 records; each record is 28 bytes long:

record_size equ 14

relative_record equ 33

;offset of Record Size
;field of FCB
;offset of Relative Record
;field of FCB

fob db 2,"ALPHABETDAT"
db 25 dup (?)

buffer db 34 dup(?),"$"
prompt db "Enter letter: $
crlf db 13,10,"$"

func_21H: set_dta buffer ;see Function 1AH
open
MOV

fcb
fcb[record size]

;see Function OFH
,28 ;set record size

get_char: display
read_kbd
cmp
je
sub

MOV

display
reader an
display
display
jmp

prompt ;see Function 09H
_and__echo ;see Function 01H
"al,0DH ;just a CR?

all—done ;yes, go home
al,41H ;convert ASCII code

;to record #
fcb[relative—record],al ;set relative

;record
crlf ;see Function 09H
fcb ;THIS FUNCTION
buffer ;see Function 09H
crlf ;see Function 09H
get char ;get another char.

all done: close fcb ;see Function 10H

1-79

Randan Write (Function 22H)

Call
AH = 22H
DS:DX
Opened FCB

Return
AL

OOH = Write completed successfully
01H = Disk full
02H = OTA too small

DX must contain the offset from the segment
address in DS of an opened FCB. The Current Block
(offset OCH) and Current Record (offset 20H)
fields are set to agree with the Relative Record
field (offset 21H), then the record addressed by
these fields is written from the Disk Transfer
Address. If the record size is smaller than a
sector (5L2 bytes), the records are buffered until
a sector is ready to write.

AL returns a code that describes the processing:

CODE MEANING___________________

0 Write completed successfully.

1 Disk is full.

2 Not enough room at the Disk Transfer Address
to write one record; write canceled.

1-80

Macro Definition: write_ran macro fob
MOV dx,offset fob
MOV ah,22H
int 21H
endm

Example:

The following program prompts for a letter,
converts the letter to its alphabetic sequence
(A = 1, B = 2, etc.), then reads and displays the
corresponding record from a file named
ALPHABET.DAT on the disk in drive B:. After
displaying the record, it prompts the user to
enter a changed record. If the user types a new
record, it is written to the file; if the user
just presses RETURN, the record is not replaced.

The file contains 26 records; each record is 28
bytes long:

record__size equ 14 ;offset of Record Size
;field of FCB

relative_ record equ 33 ;offset of Relative Record
;field of FCB

fcb db 2,"ALPHABETDAT"
db 25 dup (?)

buffer db 26 dup(?),13,10,"$"
promptl db "Enter letter: $"
prompt2 db "New record (RETURN for no change): $"
or If db 13,10,"$"
reply db 28 dup (32)
blanks db 26 dup (32)

1-81

func__22H: set_dta buffer ;see Function 1AH
open fob
mov fcb[record—size]

;see Function OFH
,32 ;set record size

get_char: display promptl
r ead_kbd_and_echo
cup al,0DH
je all—done
sub al,416

;see Function 09H
;see Function 01H
; just a CR?
;yes, go home
;convert ASCII
;code to record #

MOV fcb[relative—record],al
;set relative record

display orIf ;see Function 09H
read_ran fob ;see Function 21H
display buffer see Function 09H
display crlf ;see Function 09H
display prompts ;see Function 09H
get—string 27,reply ;see Function OAH
display crlf ;see Function 09H
cmp replyll],0 ;was anything typed

;besides CR?
je get—char ;no

;get another char.
xor bx,bx ;to load a byte
MOV bl,reply[1] ;use reply length as

;counter
move—string blanks,buffer,26 ;see chapter end
move—string reply[2],buffer,bx ;see chapter end
write-ran fob ;THIS FUNCTION
jmp get char ;get another character

all—done: close fob 5 see Function 10H

1-82

File Size (Function 23H)

Call
AH -- 23H
DS :DX

Unopened FCB

Return
AL

OOH = Directory entry found
FFH (255) = No directory entry found

DX must contain the offset (from the segment
address in DS) of an unopened FCB. You must set
the Record Size field (offset OEH) to the proper
value before calling this function. The disk
directory is searched for the first matching
entry.

If a matching directory entry is found, the
Relative Record field (offset 21H) is set to the
number of records in the file, calculated from the
total file size in the directory entry (offset
1CH) and the Record Size field of the FCB (offset
OEH). AL returns 00.

If no matching directory is found, AL returns FFH
(255).

Note: .If the value of the Record Size field of
the FCB (offset OEH) doesn’t match the actual
number of characters in a record, this function
does not return the correct file size. If the
default record size (128) is not correct, you must
set the Record Size field to the correct value
before using this function.

1-83

Macro Definition: file_size macro fcb
mov dx,offset fcb
MOV ah,23H
int 21H
endm

Example:

The following program prompts for the name of a
file, opens the file to fill in the Record Size
field of the FCB, issues a File Size system call,
and displays the file size and number of records
in hexadecimal:

fcb db 37 dup (?)
prompt db "Pile name: $"
msgl db "Record length: ",13,10,"$"
msg 2
crlf
reply
sixteen

db "Records; "
db • 13,10,"?"
db 17 dup(?)
db 16

,13,10,"$"

func_23H: display prompt
get—string 17, reply
crop reply[l] ,0
jne get-length
jmp all—done

;see Function 09H
;see Function OAH
;just a OR?
;no, keep going
;yes, go home

get_length: display crlf
parse reply[2],fcb
open fcb
file—size fcb
mov si,33

mov di,9

;see Function 09H
;see Function 29H
;see Function OFH
;THIS FUNCTION
;offset to Relative
; Record field
;reply in msg_2

convert—it: crop fcb[si],0
je .show_it
convert fcb[si],sixteen

;digit to convert?
;no, prepare message

,msg_2 [di]

1-84

show_it:

all_done:

inc si ;bump n-o-r index
inc di ;bump message index
jmp convert_it ;check for a digit
convert fcb[14],sixteen,msg_l[15]
display msg_l ;see Function 09H
display msg_2 ;see Function 09H
jmp func_23H ;get a filename
close fob ; see Function 1014

Led Relative Record (Function 24H)

Call
AH = 24H
DS :DX
Opened FCB

Return
None

DX must contain the offset (from the segment
address in DS) of an opened FCB. The Relative
Record field (offset 21H) is set to the same file
address as the Current Block (offset OCH) and
Current Record (offset 20H) fields.

Macro Definition:
set—relative^record macro fcb

MOV dx,offset fcb
mov ah,24H
int 21H
endm

1-85

Example:

The following program copies a file using the
Randan Block Read and Random Block Write system
calls. It speeds the copy by setting the record
length equal to the file size and the record count
to 1, and using a buffer of 32K bytes. -It
positions the file pointer by setting the Current
Record field (offset 20H) to 1 and using Set
Relative Record to make the Relative Record field
(offset 21H) point to the same record as the
combination of the Current Block (offset OCR) and
Current Record (offset 20H) fields:

current—record equ 32 ;

file_size equ 16 ;

offset of Current Record
field of FCB
offset of File Size
field of FCB

fcb db
filename db
promptl db ’
prompt2 db '
crlf db
file—length dw
buffer db

37 dup (?)
17 dup(?)

’File to copy: $"
’Name of copy: $”
13,10,”$”
?

32767 dup(?)

5 see Function 09H for
;explanation of $

func_24H: set__dta buffer ;see Function 1AH
display promptl ;see Function 09H
get—string 15, filename ;see Function OAH
display crlf ;see Function 09H
parse filename(2],fcb ;see Function 29H
open fcb ;see Function OFH
mov fcb[current—record],0 ;set Current Record

;field
set—relative^record fcb ;THIS FUNCTION
mov ax, word ptr fcb[file—size] 5get file size

1-86

MOV f i le_leng th, ax

set_relative_record fcb
mov axFfile_length

ran_block_wri te fcb,l,ax
close fcb

;save it for
;ran_block_wri te
;see Function 27H
;see Function 09H
;see Function OAH
;see Function 09H
;see Function 29H
;see Function 16H

,0 ;set Current Record
;field
;THIS FUNCTION
;get original file
;length
;see Function 28H
;see Function 10H

r an_bloc k_r ead fcb,l,ax
display prompt2
get_str ing 15,filename
display crlf
parse filename[2],fcb
create fcb
mov fcb [cur renter ecord]

Set Vector (Function 2D)

Call
AH = 25H
AL

Interrupt number
DS:DX

Interrupt-handling routine

Return
None

Function 2D should be used to set a particular
interrupt vector. The MS-DOS operating system can
then manage the interrupts on a per-process basis.
Note that programs should never set interrupt
vectors by writing them directly in the low memory
vector table.

1-87

DX must contain the offset (to the segment address
in DS) of an interrupt-handling routine. AL must
contain the number of the interrupt handled by the
routine. The address in the vector table for the
specified interrupt is set to DS:DX.

Macro Definition: “ ----------------- ----------------- ----------------- —-------------- —---------—------------— “

set—vector macro inter r upt, seg_addr, of f_addr
mov al,interrupt
push ds
mov ax,seg_addr
MOV ds,ax
mov dx,off_addr
mov ah,251
int 21H
pop ds
endm

Example:

Ids dx,intvector
mov ah,251
mov al,intnumber
int 21H
-There are no errors returned

1-88

Randan Block Read (Function 2711)

Call
AH = 27H
DS :DX
Opened FCB

CX
Number of blocks to read

Return
AL

OOH = Read completed successfully
01H -- EOF
02H = End of segment
03H = EOF, partial record

CX
- Number of blocks read

DX must contain the offset (to the segment address
in DS) of an opened FCB. CX must contain the
number of records to read; if it contains 0, the
function returns without reading any records (no
operation). The specified number of records —
calculated from the Record Size field (offset OEH)
— is read starting at the record specified by the
Relative Record field (offset 21H). The records
are placed at the Disk Transfer Address.

1-89

AL returns a code that describes the processing:

(WE MEANING___________________

0 Read completed successfully.

1 End-of-file; no data in the record.

2 Not enough room at the Disk Transfer Address
to read one record without closing the
segment's boundary; read canceled.

3 End-of-file; a partial record was read and
padded to the record length with zeros.

CX returns the number of records read; the Current
Block (offset OCH), Current Record (offset 20H),
and Relative Record (offset 21H) fields are set to
address the next record.

fob,count,rec_size
dx,offset fob
ex,count
word ptr fcb[14],rec size
ah,278
21H

Macro Definition:
ran block read macro

roov
MOV
MOV
mov
int
endm

See Random Block Write (next function) for an
example.

1-90

Random Block Write (Function 28H)

Call
AH = 28H
DS :DX
Opened FCB

CX
Number of blocks to write
(0 -- set File Size field)

Return
AL

OOH = Write completed successfully
01H = Disk full
02H = End of segment

CX
Number of blocks written

DX must contain the offset (to the segment address
in DS) of an opened FCB; CX must contain either
the number of records to write or 0. The
specified number of records (calculated from the
Record Size field, offset OEH) is written from the
Disk Transfer Address. The records are written to
the file starting at the record specified in the
Relative Record field (offset 21H) of the FCB. If
CX is 0, no records are written, but the File Size
field of the directory entry (offset 1CH) is set
to the number of records specified by the Relative
Record field of the FCB (offset 21H); allocation
units are allocated or released, as required.

1-91

AL returns a cede that describes the processing:

POPE MEANING______________________

0 Write completed successfully.

1 Disk full. No records written.

2 Not enough room at the Disk Transfer Address
to read one record without crossing the
segments boundaries; read canceled.

CX returns the number of records written; the
Current Block (offset OCH), Current Record (offset
20H), and Relative Record (offset 21H) fields are
set to address the next record.

Macro Definition:
ran block write macro

mov
MOV
mov
mov
int
endm

fob,count,rec size
dx,offset feb
ex,count
word ptr fcb[14],rec_size
ah,288
21H

Example:

The following program copies a file (whose side is
up to 32K bytes) using the Random Block Read and
Random Block Write system calls. It speeds the
copy by specifying a record count equal to the
file size and a record length of 1, and using a
buffer of 32K bytes; the file is copied quickly
with one disk access each to read and write

1-92

(compare to the sample program of Function 27H,
that specifies a record count of 1 and a record
length equal to file size):

current_record equ
file__size equ

32 ,-offset of
16 ;offset of

Current Record field
File Size field

fob
filename
promptl
prompt2
crlf
num_recs
buffer

db 37 dup (?)
db 17 dup(?)
db "File to copy: $
db "Name of copy: $
db 13,10,"$"
dw ?
db 32767 dup(?)

n .;see Function 09H for
;explanation of $

func_28H: setjdta buffer
display promptl
get_jstring 15, filename
display crlf
parse filename [2],
open fcb
mov fcb[current_

set_relative__record fcb
mov ax, word ptr

mov num_recs,ax

r an__block__r ead fcb, num
display prompt2
get_string 15, filename
display crlf
parse filename[2],
create fcb
mov fcb[current^

;see Function 1AH
;see Function 09H
;see Function OAH
;see Function 09H
fcb ;see Function 29H

;see Function OFH
record],0

;set Current Record
;field
;see Function .24H

fcb[file_size]
;get file size
save it for

; ran__block_wr ite
_recs,1 ;THIS FUNCTION

;see Function 09H
;see Function OAH
;see Function 09H

fcb ;see Function 29H
;see Function 16H

record],0 ;set Current
;Record field

1-93

set_relative_record fcb ;see Function 24H
mov ax, file_length ;get size of original
ran_block_write fcb,num_recs,l ;see Function 28H
close fcb ;see Function 10H

Parse File Name (Function 29H)

Call
AH = 29H
AL
Controls parsing (see text)

DS: SI
String to parse

ES:DI
Unopened FCB

Return
AL

OOH = No wild card characters
01H = Wild card characters used
FFH (255) = Drive letter invalid

DS: SI
First byte past string that was
parsed

ES:DI
Unopened FCB

SI must contain the offset (to the segment address
in DS) of a string (command line) to parse; DI
must contain the offset (to the segment address in
ES) of an unopened FCB. The string is parsed for
a filename of the form d:filename.ext; if one is
found, a corresponding unopened FCB is created at
ES:DI.

1-94

Bits 0-3 of AL control the parsing and processing.
Bits 4-7 are ignored:

BIT VALUE MEANING________________

0 0 All parsing stops if a file separator
is encountered.

1 Leading separators are ignored.
1 0 The drive number in the FCB is set

to 0 (default drive) if the string
does not contain a drive number.

1 The drive number in the FCB is not
changed if the string does not
contain a drive number.

2 1 The filename in the FCB is not
changed if the string does not
contain a filename.

0 The filename in the FCB is set to
8 blanks if the string does not
contain a filename.

3 1 The extension in the FCB is not
changed if the string does not
contain an extension.

0 The extension in the FCB is set to
3 blanks if the string does not
contain an extension.

If the filename or extension includes an asterisk
(*), all remaining characters in the name or
extension are set to question mark (?).

Filename separators:

+ / " [] \ < > | space tab

1-95

Filename terminators include all the filename
separators plus any control character. A filename
cannot contain a filename terminator; if one is
encountered, parsing stops.

If the string contains a valid filename:

1. AL returns 1 if the filename or extension
contains a wild card character (* or ?); AL
returns 0 if neither the filename nor
extension contains a wild card character.

2. DS:SI point to the first character following
the string that was parsed.

ES:DI point to the first byte of the unopened
FOB.

If the drive letter is invalid, AL returns FFH
(255). If the string does not contain a valid
filename, ES:DI+1 points to a blank.

Macro Definition:
parse macro string,fcb

lea si, string
lea di,fcb
push es
push ds
pop es
mov al,0FH ;bits 0, 1, 2, 3 on
mov ah,29H
int 21H
pop es
endm

1-96

Example:

The following program verifies the existence of
the file named in reply to the prompt:

feb db 37 dup (?)
prompt db "Filename: $"
reply db 17 dup(?)
yes db "FILE EXISTS",13,10,"$"
no db "FILE DOES NOT EXIST",13,10,"$"

func__29H: display
get_string
parse
search__f irs
emp
je
display
jmp

prompt
15, reply
reply[2],fcb
st feb
al,FFH
not—there
yes
continue

;see Function 09H
;see Function OAH
;THIS FUNCTION
;see Function 11H
;dir. entry found?
;no
;see Function 09H

not_there: display no
continue:

Get Date (Function 2AH)

Call
AH = 2AH

Return
CX

Year (1980 - 2099)
DH
Month (1 - 12)

DL
Day (1 - 31)

AL
Day of week (0=Sun., 6=Sat.)

1-97

This function returns the current date set in
MS-DOS as binary numbers in CX and DX:

CX Year (1980-2099)
DH Month (1 = January, 2 = February, etc.)
DL Day (1-31)
AL Day of week (0 = Sunday, 1 = Monday, etc.)

Macro Definition:
get date macro

mov ah,2AH
int 21H
endm

See Set Date (next function) for an example.

Set Date (Function 2BH)

Call
AH = 2BH
CX

Year (1980 - 2099)
DH
Month (1 - 12)

DL
Day (1 - 31)

Return
AL

OOH = Date was valid
FFH (255) — Date was invalid

1-98

Registers CX and DX must contain a valid date in
binary:

CX Year (1980-2099)
DH Month (1 = January, 2 - February, etc.)
DL Day (1-31)

If the date is valid, the date is set and AL
returns 0. If the date is not valid, the function
is canceled and AL returns FFH (255).

Macro Definition:
set_date macro year, month,day

MOV cx,year
MOV dh,month
MOV dl,day
MOV ah,2BH
int 21H
endm -

Example:

The following program gets the date, increments
the day, increments the month or year, if
necessary, and sets the new date:

month db 31,28,31,30,31,30,31,31,30,31,30,31

get date ;see Function 2AH
inc dl ;increment day
xor bx,bx ;so BL can be used as index
MOV bl,dh ;move month to index register
dec bx ;month table starts with 0
cmp dl,month[bx] ;past end of month?
jle month ok ;no, set the new date
MOV dl,l ;yes, set day to 1
inc dh ;and increment month

1-99

cmp dh,12 ;past end of year?
jle month_ok ;no, set the new date
mov dh,l xyes, set the month to 1

inc ex ;increment year
monthok: set_date cx,dh,dl ;THIS FUNCTION

Get Time (Function 2CH)

Call
AH = 2CH

Return
CH

Hour (0 - 23)
CL
Minutes (0 - 39)

DH
Seconds (0 - 39)

DL
Hundredths (0 - 99)

This function returns the current time set in
MS-DOS as binary numbers in CX and DX:

CH Hour (0-23)
CL Minutes (0-59)
DH Seconds (0-59)
DL Hundredths of a second (0-99)

Macro Definition:
get time macro

mov ah,2CH
int 21H
endm

1-100 .

Example:

The following program continuously displays the
time until any key is pressed:

time db "00:00:00.00",13,10,"$"
ten db 10

func__2CH: get-time
convert ch,ten,time
convert cl,ten,time[3]
convert dh,ten,time[6]
convert dl,ten,time[9]
display time
cheekykbd—status
cmp al,FFH
je all_done
jmp func_2CH

;THIS FUNCTION
;see end of chapter
;see end of chapter
;see end of chapter
;see end of chapter
;see Function 09H
;see Function 0BH
;has a key been pressed?
;yes, terminate
;no, display time

Set Time (Function 2EH)

Call
AH = 2DH
CH

Hour (0 - 23)
CL
Minutes (0 - 59)

DH
Seconds (0 - 59)

DL
Hundredths (0 - 99)

Return
AL

OOH = Time was valid
FFH (255) = Time was invalid

1-101

Registers CX and DX must contain a valid time in
binary:

CH Hour (0-23)
CL Minutes (0-59)
DH Seconds (0-59)
DL Hundredths of a second (0-99)

If the time is valid, the time is set and AL
returns 0. If the time is not valid, the function
is canceled and AL returns FFH (255).

endm

Macro Definition •
set-time macro hour,minutes, seconds hundredths

MOV ch,hour
MOV cl,minutes
MOV dh,seconds
MOV dl,hundredths
MOV ah,2DH
int 21H

Example:

The following program sets the system clock to 0
and continuously displays the time. When a
character is typed, the display freezes; when
another character is typed, the clock is reset to
0 and the display starts again:

time
ten

func_2DH:
read_clock:

db "00:00:00.00",13,10,"$"
db 10

set-time 0,0,0,0
get—time
convert ch,ten,time
convert cl,ten,time[3]

;THIS FUNCTION
;see Function 2CH
;see end of chapter
;see end of chapter

1-102

stop:

convert dh, ten, time [6]
conver t dl,ten,time[9]
display time
dir__console__io FFH
cmp al,OOH
jne stop
jmp read_clock
read kdd
jmp func_2DH

;see end of chapter
;see end of chapter
;see Function 09H
;see Function 06H
;was a char, typed?
;yes, stop the timer
;no keep timer on
;see Function 08H
;keep displaying time

Set/Reset Verify Flag (Function 2EH)

Call
AH = 2EH
AL

OOH = Do not verify
01H = Verify

Return
None

AL must be either 1 (verify after each disk write)
or 0 (write without verifying). MS-DOS checks
this flag each time it writes to a disk.

The flag is normally off; if necessary, you can
turn it on when writing critical data to disk.
Because disk errors are rare and verification
slows writing, you will probably want to leave it
off at other times.

Macro Definition:
verify macro switch

mov al,switch
mov ah,2EH
int 21H
endm

1-103

Example

A: to the disk in drive

off

The following program copies the contents of a
single-sided disk in drive

verify

B:, verifying each write. It uses
bytes:

a buffer of 32K

on
off

equ 1
equ 0

prompt

start
buffer

func_2DH:

copy:

disk_ read

db "Source in A, target in B",13,10
db "Any key to start. $"
dw 0
db 64 dup (512 dup(?)) ;64 sectors

display prompt ;see Function 09H
read__kbd ;see Function 08H
verify on ;THIS FUNCTION
mov ex,19 ;copy 64 sectors

;19 times
push ex ? save counter
abS—disk—read 0,buffer,64 ,start

;see Interrupt 2 Si
abS—disk—write 1,buffer,64,start

7 see Interrupt 26H
add start, 64 ;do next 64 sectors
pop ex ; restore counter
loop copy ;do it again
verify off ;THIS FUNCTION
0,buffer,64,start xsee Interrupt 2 Si
abs_disk—write 1,buffer,64,start

;see Interrupt 26H
add start,64 ;do next 64 sectors
pop ex ; restore counter
loop copy ?do it again

1-104

Get Disk Transfer Address (Function 2FH)

Call
AH = 2FH .

Return
ES:BX

Points to Disk Transfer Address

Function 2FH returns the DMA transfer address.

Error returns:
None.

Example:

MOV ah,2FH
int 21H

;es:bx has current EMA transfer address

Get DOS Version Number (Function 30H)

Call
AH = 30H

Rejturn
AL
Major version number

AH
Minor version number

1-105

This function returns the MS-DOS version number.
On return, AL.AH will be the two-part version
designation; i.e., for MS-DOS 1.28, AL would be 1
and AH would be 28. For pre-1.28, MS-DOS AL = 0.
Note that version 1.1 is the same as 1.10, not the
same as 1.01.

Error returns:
None.

Exanple:

mov ah,30H
int 21H

; al is the major version number
; ah is the minor version number
; bh is the OEM number
; bl:ex is the (24 bit) user number

Keep Process (Function 31H)

Call
AH = 31H
AL
Exit code

DX
Memory size, in paragraphs

Return
None

This call terminates the current process and
attempts to set the initial allocation block to a
specific size in paragraphs. It will not free up
any other allocation blocks belonging to that
process. The exit code passed in AX is
retrievable by the parent via Function 4DH.

1-106

This method is preferred over Interrupt 27H and
has the advantage of allowing more than 64K to be
kept.

Error returns:
None.

Example:

MOV al, exitcode
MOV dx, parasize
MOV ah, 31H
Ind 21H

ALT-C Check (Function 33H)

Call
AH = 33H
AL

Function
OOH = Request current state
01H = Set state

DL (if setting)
OOH -- Off
O1H = On

Return
DL (if requesting current state)

OOH = Off
01H = On

1-107

MS-DOS ordinarily checks for an ALT-C on the
controlling device only when doing function call
operations 01H-0CH to that device. Function 33H
allows the user to expand this checking to include
any system call. For example, with the ALT-C
trapping off, all disk I/O will proceed without
interruption; with ALT-C trapping on, the ALT-C
interrupt is given at the system call that
initiates the disk operation.

Note: Programs that wish to use calls 06H or 07H
to read ALT-C as data must ensure that the ALT-C
check is off.

Error return:
AL = FF

The function passed in AL was not in the
range 0:1.

Example:

MOV dl,val
mov ah,338
mov al,func
int 218

;If al was 0, then dl has the current
;value of the ALT-C check

1-108

Get Interrupt Vector (Function 3 SI)

Call
AH = 35H
AL

Interrupt number

Return
ES:BX

Pointer to interrupt routine

This function returns the interrupt vector
associated with an interrupt. Note that programs
should never get an interrupt vector by reading
the low memory vector table directly.

Error returns:
None.

Example:

MOV ah, 3 SI
mov al, interrupt

int 21H
; es:bx now has long pointer to interrupt routine

1-109

Get Disk Free Space (Function 36H)

Call
AH = 36H
DL

Drive (0 - Default,
1 = A, etc.)

Return
BX

Available clusters
DX
Clusters per drive

CX
Bytes per sector

AX
FFFF if drive number is invalid;
otherwise sectors per cluster

This function returns free space on disk along
with additional information about the disk.

Error returns:
AX = FFFF

The drive number given in DL was
invalid.

Example:

mov ah,36H
mov dl,Drive ;0 = default, A = 1
int 2LH

bx = Number of free allocation units on drive
; dx - Total number of allocation units on drive
; ex = Bytes per sector
- ax = Sectors per allocation unit

1-110

Return Country-Dependent Information (Function
388)

Call
AH = 38H
DS :DX

Pointer to 32-byte memory area
AL

Function code. In MS-DOS 2.0,
must be 0

Return
Carry set:
AX

2 = file not found
Carry not set:

DX:DS filled in with country data

The value passed in AL is either 0 (for current
country) or a country code. Country codes are
typically the international telephone prefix code
for the country.

If DX = -1, then the call sets the current country
(as returned by the AL=0 call) to the country code
in AL. If the country code is not found, the
current country is not changed.

Note: Applications must assume 32 bytes of
information. This means the buffer pointed to by
DS:DX must be able to accommodate 32 bytes.

This function is fully supported only in versions
of MS-DOS 2.01 and higher. It exists in MS-DOS
2.0, but is not fully implemented.

1-111

This function returns, in the block of memory
pointed to by DS:DX, the following information
pertinent to international applications:

+■------------------ -------------------------------------F
| WORD Date/time format |
+---------------------------- +

5 BYTE ASCIZ string
currency symbol

+------------ ---------------- +
I 2 BYTE ASCIZ string
I thousands separator

4 1-
2 BYTE ASCIZ string
decimal separator

+-------------------------------------- f
2 BYTE ASCIZ string
date separator

4-------- --F
2 BYTE ASCIZ string
time separator

+ f
| 1 BYTE Bit field |

1 BYTE
Currency places

+---------------------------- 4
1 BYTE
time format

+---------------------------- F

DWORD
Case Mapping call

+---------------------------- +
2 BYTE ASCIZ string
data list separator

+---------------------------- F

1-112

The format of most of these entries is ASCIZ (a
NUL terminated ASCII string), but a fixed size is
allocated for each field for easy indexing into
the table.

The date/time format has the following values:

0 - USA standard h:m:s m/d/y
1 - Europe standard h:m:s d/m/y
2 - Japan standard y/m/d h:m:s

The bit field contains 8 bit values. Any bit not
currently defined must be assumed to have a random
value.

Bit 0 = 0 If currency symbol precedes the
currency amount.

- 1 If currency symbol comes after
the currency amount.

Bit 1 = 0 If the currency symbol immediately
precedes the currency amount.

= 1 If there is a space between the
currency symbol and the amount.

The time format has the following values:

0-12 hour time
1-24 hour time

The currency places field indicates the number of
places which appear after the decimal point on
currency amounts.

1-113

The Case Mapping call is a FAR procedure which
will perform country specific lower-to-uppercase
mapping on character values from 80H to FFH. It
is called with the character to be mapped in AL.
It returns the correct uppercase code for that
character, if any, in AL. AL and the FLAGS are
the only registers altered. You can pass this
routine codes below 80H; however, characters are
not affected in this range. When there is no
mapping, AL is not altered.

Error returns:
AX
2 - file not found

The country passed in AL was not found
(no table for specified country).

Example:

Ids dx, blk
mov ah, 38H
mov al, Country^code
int 21H

;AX = Country code of country returned

1-114

Create Subdirectory (Function 39H)

Call
AH = 39H
DX:DS

Pointer to pathname

Return
Carry set:
AX

3 = path not found
5 - access denied

Carry not set:
No error

Given a pointer to an ASCI2 name, this function
creates a new directory entry at the end.

Error returns:
u AX

3 = path not found
The path specified was invalid or
not found.

5 = access denied
The directory could not be created
(no roan in parent directory), the
directory/file already existed or a
device name was specified.

Example:

Ids
mov
int

dx, name
ah, 39H
21H

1-115

Remove a Directory Entry (Function 3AH)

Call
AH = 3AH
DS :DX

Pointer to pathname

Return
Carry set:
AX

3 = path not found
5 -- access denied
16 = current directory

Carry not set:
No error

Function 3AH is given an ASCI2 name of a
directory. That directory is removed from its
parent directory.

Error returns:
AX
3 = path not found

The path specified was invalid or not
found.

5 = access denied
The path specified was not empty, not
a directory, the root directory, or
contained invalid information.

16 = current directory
The path specified was the current
directory on a drive.

Example:

Ids
mov
int

dx, name
ah, 3AH
21H

1-116

Change the Current Directory (Function 3BH)

Call
AH = 3BH
DS:DX

Pointer to pathname

Return
Carry set:
AX

3 = path not found
Carry not set:
No error

Function 3BH is given the ASCIZ name of the
directory which is to become the current
directory. If any member of the specified
pathname does not exist, then the current
directory is unchanged. Otherwise, the current
directory is set to the string.

Error returns:
AX
3 = path not found

The path specified in DS:DX either
indicated a file or the path was
invalid.

Example:

Ids dx, name
mov ah, 3BH
int 21H

1-117

Create a File (Function 3CH)

Call
AH = 3CH
DS:DX

Pointer to pathname
CX

File attribute

Return
Carry set:
AX

5 = access denied
3 = path not found
4 = too many open files

Carry not set:
AX is handle number

Function 3CH creates a new file or truncates an
old file to zero length in preparation for
writing. If the file did not exist, then the file
is created in the appropriate directory and the
file is given the attribute found in CX. The file
handle returned has been opened for read/write
access.

Error returns:
AX

3 = path not found
The path specified was invalid.

4 = too many open files
The file was created with the
specified attributes, but there were
no free handles available for the
process, or the internal system tables
were full.

1-118

5 = access denied
The attributes specified in CX
contained one that could not be
created (directory, volume ID), a file
already existed with a more inclusive
set of attributes, or a directory
existed with the same name.

Example:

Ids dx, name
mov ah, 3CH
mov ex, attribute
int 21H

; ax now has the handle

Open a File (Function 3DH)

Call
AH = 3DH
AL
Access
0 = File opened for reading
1 = File opened for writing
2 = File opened for both
reading and writing

Return
Carry set:
AX

2 - file not found
4 = too many open files
5 = access denied

12 = invalid access
Carry not set:
AX is handle number

1-119

Function 3DH associates a 16-bit file handle with
a file.

The following values are allowed:

ACCESS FUNCTION_____________

0 file is opened for reading
1 file is opened for writing
2 file is opened for both reading

and writing.

DS:DX point to an ASCI2 name of the file to be
opened.

The read/write pointer is set at the first byte of
the file and the record size of the file is 1
byte. The returned file handle must be used for
subsequent I/O to the file.

Error returns:
AX
2 - file not found

The path specified was invalid or not
found.

4 = too many open files
There were no free handles available
in the current process or the internal
system tables were full.

5 - access denied
The user attempted to open a directory
or volume-id, or open a read-only file
for writing.

12 = invalid access
The access specified in AL was not in
the range 0:2.

1-120

Example:

Ids dx, name
mov ah, 3DH
mov al, access
int 21H

; ax has error or file handle
; If successful open

Close a File Handle (Function 3EH)

Call
AH = 3EH
BX
File handle

Return
Carry set:
AX

6 = invalid handle
Carry not set:
No error

If BX is passed a file handle (like that returned
by Functions 3DH, 3CH, or 45H), Function 3EH
closes the associated file. Internal buffers are
flushed.

Error return:
AX
6 = invalid handle

The handle passed in BX was not
currently open.

1-121

Example:

MOV bx, handle
mov ah, 3EH
int 21H

Read Fran File/bevice (Function 3FH)

Call
AH = 3FH
DS:DX

Pointer to buffer
CX
Bytes to read

BX
File handle

Return
Carry set:
AX
Number of bytes read
5 = error set
6 = invalid handle

Carry not set:
AX - number of bytes read

Function 3FH transfers count bytes from a file
into a buffer location. It is not guaranteed that
all "count" bytes will be read; for example,
reading from the keyboard will read at most one
line of text. If the returned value is zero, then
the program has tried to read from the end of
file.

All I/O is done using normalized pointers; no
segment wraparound will occur.

1-122

Error returns:
AX
5 = access denied

The handle passed in BX was opened in
a mode that did riot allow reading.

6 = invalid handle
The handle passed in BX was not
currently open.

Example:

Ids dx. buf
mov ex, count
MOV bx, handle
MOV ah, 3FH
int 21H

r ax has number of bytes read

Write to a File or Device (Function 40H)

Call
AH - 40H
DS:DX

Pointer to buffer
CX
Bytes to write

BX
File handle

Return
Carry set:
AX
Number of bytes written
5 = access denied
6 = invalid handle

Carry not set:
AX = number of bytes written

1-123

Function 40H transfers "count" bytes from a buffer
into a file. It should be regarded as an error if
the number of bytes written is not the same as the
number requested.

The write system call with a count of zero (CX =
0) will set the file size to the current position.
Allocation units are allocated or released as
required.

All I/O is done using normalized pointers; no
segment wraparound will occur.

Error returns:
AX
5 --- access denied

The handle was not opened in a mode that
allowed writing.

6 = invalid handle
The handle passed in BX was not currently
open.

Example:

Ids dx, buf
rov ox. count
MOV bx, handle
MOV ah, 40H
int 21H

;ax has number of bytes written

1-124

Delete a Directory Entry (Function 41H)

Call
AH = 41H
DS:DX

Pointer to pathname

Return
Carry set:
AX

2 - file not found
5 - access denied

Carry not set:
No error

Function 41H removes a directory entry associated
with a filename.

Error returns:
AX
2 = file not found

The path specified was invalid or not
found.

5 - access denied
The path specified was a directory or
read-only.

Example:

Ids dx, name
mov ah, 41H
int 21H

1-125

Move File Pointer (Function 42H)

Call
AH -- 42H
CX:DX

Distance to move, in bytes
AL
Method of moving:
(see text)

BX
File handle

Return
Carry set:
AX

1 = invalid function
6 = invalid handle

Carry not set:
DX:AX = new pointer location

Function 42H moves the read/write pointer
according to one of the following methods:

METHOD FUNCTION__________________

0 The pointer is moved to offset bytes from
the beginning of the file.

1 The pointer is moved to the current
location plus offset.

2 The pointer is moved to the end of file
plus offset.

Offset should be regarded as a 32-bit integer with
CX occupying the most significant 16 bits.

1-126

Error returns:
AX
1 - invalid function

The function passed in AL was not in
the range 0:2.

6 - invalid handle
The handle passed in BX was not
currently open.

Exanple:

MOV dx, offsetlow
MOV ex, offsethigh
MOV al, method
MOV bx, handle
MOV ah, 42H
int 21H

7 dx:ax has the new location of the pointer

Change Attributes (Function 43H)

Call
AH = 43H
DS :DX

Pointer to pathname
CX (if AL = 01)

Attribute to be set
AL

Function
01 Set to CX
00 Return in CX

1-127

Return
Carry set:
AX

1 - invalid function
3 = path not found
5 = access denied

Carry not set:
CX attributes (if AL = 00)

Given an ASCIZ name, Function 42H will set/get the
attributes of the file to those given in CX.

A function code is passed in AL:

AL ______________FUNCTION_______________________

0 Return the attributes of the file in CX.
1 Set the attributes of the file to those in CX.

Error returns:
AX
1 = invalid function

The function passed in AL was not in
the range 0:1.

3 - path not found
The path specified was invalid.

5 = access denied
The attributes specified in CX
contained one that could not be
changed (directory, volume ID).

Example:

Ids dx, name
mov ex, attribute
MOV al, func
int ah, 43H
int 21H

1-128

I/O Control for Devices (Function 44H)

Call
AH = 44H
BX

Handle
BL

Drive (for calls AL = 4, 5
0 = default, 1 = A, etc.)

DS :DX
Data or buffer

CX
Bytes to read or write

AL
Function code; see text

Return
Carry set:
AX

1 = invalid function
5 = access denied
6 = invalid handle

13 = invalid data
Carry not set:
AL - 2,3,4,5
AX = Count transferred
AL = 6,7

00 = Not ready
FF = Ready

Function 44H sets or gets device information
associated with an open handle, or sends/receives
a control string to a device handle or device.

1-129

The following values are allowed for function:

REQUEST FUNCTION____________________

0 Get device information (returned in DX)
1 Set device information (as determined

by DX)
2 Read CX number of bytes into DS:DX from

device control channel
3 Write CX number of bytes from DS:DX to

device control channel
4 Same as 2 only drive number in BL

Odefault, A:=l, B:=2,...
5 Same as 3 only drive number in BL

Odefault, A:=l, B:--2,...
6 Get input status
7 Get output status

This function can be used to get information about
device channels. Calls can be made on regular
files, but only calls 0, 6 and 7 are defined in
that case (AL=0,6,7). All other calls return an
invalid function error.

Calls AL=0 and AL=1
The bits of DX are defined as follows for
calls AL--0 and AL=1. Note that the upper byte
MUST be zero on a set call.

1-130

ISDEV = 1 if this channel is a device
- 0 if this channel is a disk file (Bits 8-15

- O in this case)

If ISDEV = 1

EOF = 0 if
RAW = 1 if

- 0 if
ISCLK - 1 if
ISNUL - 1 if
ISCOT -- 1 if
ISCIN = 1 if
SPECL - 1 if

End Of File on
this device is
this device is
this device is
this device is
this device is
this device is
this device is

input
in Raw mode
cooked
the clock device
the null device
the console output
the console input
special

CTRL = 0 if this device can not do control
strings via calls AL=2 and AL=3.

CTRL - 1 if this device can process
control strings via calls AL=2
and AL=3.

NOTE that this bit cannot be set.

If ISDEV = 0
EOF = 0 if channel has been written
Bits 0-5 are the block device number for

the channel (O - A:, 1 = B:, ...)

Bits 15,3-13,4 are reserved and should not
be altered.

Calls 2..5:
These four calls allow arbitrary control
strings to be sent or received from a device.
The call syntax is the same as the read and
write calls, except for 4 and 5, which take a
drive number in BL instead of a handle in BX.

1-131

An invalid function error is returned if the
CTRL bit (see above) is 0.

An access denied is returned by calls AL=4,5
if the drive number is invalid.

Calls 6,7:
These two calls allow the user to check if a
file handle is ready for input or output.
Status of handles open to a device is the
intended use of these calls, but status of a
handle open to a disk file is allowed, and is
defined as follows:

Input:
Always ready (AL=FF) until EOF
reached, then always not ready (AL=0)
unless current position changed via
LSEEK.

Output:
Always ready (even if disk full).

IMPORTANT

The status is defined at the time
the system is CALLED. On future
versions, by the time control is
returned to the user from the
system, the status returned may NOT
correctly reflect the true current
state of the device or file.

1-132

Error, returns:
AX
1 - invalid function

The function passed in AL was not in
the range 0:7.

5 = access denied (calls AL=4..7)
6 = invalid handle

The handle passed in BX was not
currently open.

13 = invalid data

Example:

MOV bx, Handle
(or mov bl, drive for calls ALM, 5

0-default,A:-1...)
MOV dx, Data

(or Ids dx, buf and
mov ex, count for calls AL=2,3,4,5)
mov ah, 44H
mov al, func
int 21H

; For calls AL=2,3,4,5 AX is the number of bytes
; transferred (same as READ and WRITE).
; For calls ALM,7 AL is status returned, AL-0 if
; status is not ready, AL=0FFH otherwise.

1-133

Duplicate a File Handle (Function 45H)

Call
AH = 45H
BX

File handle

Return
Carry set:
AX

4 - too many open files
6 = invalid handle

Carry not set:
AX = new file handle

Function 45H takes an already opened file handle
and returns a new handle that refers to the same
file at the same position.

Error returns:
AX
4 = too many open files

There were no free handles available
in the current process or the internal
system tables were full.

6 = invalid handle
The handle passed in BX was not
currently open.

Example:

MOV
mov
int

bx, fh
ah, 45H
21H

ax has the returned handle

1-134

Force a Duplicate of a Handle (Function 4QI)

Call
AH = 46H
BX
Existing file handle

CX
New file handle

Return
Carry set:
AX

4 = too many open files
6 = invalid handle

Carry not set:
No error

Function 46H takes an already opened file handle
and returns a new handle that refers to the same
file at the same position. If there was already a
file open on handle CX, it is closed first.

Error returns:
AX
4 - too many open files

There were no free handles available in
the current process or the internal
system tables were full.

6 = invalid handle
The handle passed in BX was not
currently open.

Exanple:

MOV bx, fh
MOV ex, newfh
MOV ah, 46H
int 21H

1-135

Return Text of Current Directory (Function 47H)

Call
AH -- 47H
DS: SI

Pointer to 64-byte memory area
DL
Drive number

Return
Carry set:
AX
15 = invalid drive

Carry not set:
No error

Function 47H returns the current directory for a
particular drive. The directory is root-relative
and does not contain the drive specifier or
leading path separator. The drive code passed in
DL is 0=default, 1=A:, 2-8:, etc.

Error returns:
AX
15 = invalid drive

The drive specified in DL was invalid.

Example:

MOV ah, 47H
Ids si,area
mov dl,drive
int 21H

; ds:si is a pointer to 64 byte area that
; contains drive current directory.

1-136

Allocate Memory (Function 48H)

Call
AH = 48H
BX

Size of memory to be allocated

Return
Carry set:
AX

7 - arena trashed
8 - not enough memory

BX
Maximum size that could be allocated

Carry not set:
AX:0

Pointer to the allocated memory

Function 48H returns a pointer to a free block of
memory that has the requested size in paragraphs.

Error return:
AX
7 = arena trashed

The internal consistency of the memory
arena has been destroyed. This is due
to a user program changing memory that
does not belong to it.

8 - not enough memory
The largest available free block is
smaller than that requested or there
is no free block.

1-137

Example:

mov bx,size
MOV ah,48H
int 21H

; ax:0 is pointer
; if alloc fails,

to allocated memory
bx is the largest block available

Free Allocated Memory (Function 49H)

Call
AH = 49H
ES
Segment address of memory
area to be freed

Return
Carry set:
AX

7 = arena trashed
9 = invalid block

Carry not set:
No error

Function 49H returns a piece of memory to the
system pool that was allocated by Function Request
49H.

Error return:
AX
7 = arena trashed

The internal consistency of the memory
arena has been destroyed. This is due
to a user program changing memory that
does not belong to it.

9 = invalid block
The block passed in ES is not one
allocated via Function Request 49H.

1-138

Example:

wav es,block
mov ah,49H
int 21H

Modify Allocated Memory Blocks (Function 4AH)

Call
AH = 4AH
ES

Segment address of memory area
BX

Requested memory area size

Return
Carry set:
AX

7 = arena trashed
8 = not enough memory
9 - invalid block

BX
Maximum size possible

Carry not set:
No error

Function 4AH will attempt to grow/shrink an
allocated block of memory.

1-139

Error return:
AX
7 = arena trashed

The internal consistency of the memory
arena has been destroyed. This is due
to a user program changing memory that
does not belong to it.

8 = not enough memory
There was not enough free memory after
the specified block to satisfy the
grow request.

9 - invalid block
The block passed in ES is not one
allocated via this function.

Example:

mvv es,block
mov bx,newsize
mov ah,4AH
int 21H

; if setblock fails for growing, BX will have the
; maximum size possible

Load and Execute a Program (Function 4BII)

Call
AH = 4BH
DS:DX

Pointer to pathname
ES:BX

Pointer to parameter block
AL

00 = Load and execute program
03 - Load program

1-140

Return
Carry set:
AX

1 - invalid function
2 - file not found
8 = not enough memory

10 - bad environment
11 = bad format

Carry not set:
No error

This function allows a program to load another
program into memory and (default) begin execution
of it. DS:DX points to the ASCI2 name of the file
to be loaded. ES:BX points to a parameter block
for the load.

A function code is passed in AL:

AL FUNCTION_____________________

0 Load and execute the program. A program
header is established for the program and the
terminate and ALT-C addresses are set to
the instruction after the EXEC system call.

3 Load (do not create) the program header, and
do not begin execution. This is useful in
loading program overlays.

1-141

For each value of AL, the block has the
following format:

AL = 0 -> load/execute program

+----------------------------+
WORD segment address of
environment.

+----------------------------+
DWORD pointer to command
line at 80H

+----------------------------

DWORD pointer to default
FCB to be passed at 5CH

+---------------------------- ■+
DWORD pointer to default
FCB to be passed at 6CH

+---------------------------

AL = 3 -> load overlay

4------------—------------------------——------------ b
WORD segment address where
file will be loaded.

+---------------------------- +
WORD relocation factor to
be applied to the image.

+---------------------------- F

All open files of a process are duplicated in the
child process after an EXEC. This is extremely
powerful; the parent process has control over the
meanings of stdin, stdout, stderr, stdaux and
stdprn. The parent could, for example, write a
series of records to a file, open the file as
standard input, open a listing file as standard
output and then EXEC a sort program that takes its
input from stdin and writes to stdout.

1-142

Also inherited (or passed from the parent) is an
"environment." This is a block of text strings
(less than 32K bytes total) that convey various
configuration parameters. The format of the
environment is as follows:

(paragraph boundary)
4------------------------ -------------------- ---------—
| BYTE ASCIZ string 1 |

H--- +
| BYTE ASCIZ string 2 |

4--- +

| BYTE ASCIZ string n |
■ 4-----------------------------4-

| BYTE of zero |
4--4-

Typically the environment strings have the form:

parameter-value

Use the SET command to manipulate the environment.

For example, COMMAND.COM might pass its execution
search path as:

PATH=A:\BIN;B:\BASIC\LIB

A zero value of the environment address causes the
child process to inherit the parent's environment
unchanged.

1-143

COMMAND.COM

Error returns:
AX
1 = invalid function

The function passed in AL was not 0, 1
or 3.

2 = file not found
The path specified was invalid or not
found.

8 = not enough memory
There was not enough memory for the
process to be created.

10 = bad environment
The environment was larger than 32Kb.

11 = bad format
The file pointed to by DS:DX was an
EXE format file and contained
information that was internally
inconsistent.

Example:

Ids dx, name
les bx, blk
mov ah, 4BH
mov al, func
int 218

Terminate a Process (Function 4CH)

Call
AH = 4CH
AL

Return code

Return
None

1-144

Function 4CH terminates the current process and
transfers control to the invoking process. In
addition, a return code may be sent. All files
open at the time are closed.

This method is preferred over all others
(Interrupt 20H, JMP 0) and has the advantage that
CS:0 does not have to point to the Program Header
Prefix.

Error returns:
None.

Example:

mov al, code
mov ah, 4CH
int 21H

Retrieve the Return Code of a Child (Function 4CH)

Call
AH = 4DH

Return
AX

Exit code

1-145

Function 4DH returns the Exit code specified by a
child process. It returns this Exit code only
once. The low byte of this code is that sent by
the Exit routine. The high byte is one of the
following:

0 - Terminate/abort
1 - ALT-C
2 - Hard error
3 - Terminate and stay resident

Error returns:
None.

Example:

MOV ah, 4DH
int 21H

; ax has the exit code

Find Match File (Function 4EH)

Call
AH = 4EH
DS :DX

Pointer to pathname
CX

Search attributes

Return
Carry set:
AX

2 - file not found
18 = no more files

Carry not set:
No error

1-146

Function 4EH takes a pathname with wild-card
characters in the last component (passed in
VS:OX), a set of attributes (passed in CX) and
attempts to find all files that match the pathname
and have a subset of the required attributes. A
datablock at the current EMA is written that
contains information in the

find_buf_reserved DB
find_buf_attr DB
find_buf_time DW
find_buf_date EW
find_buf_size_l DW
find_buf_size_h DW
find_buf_pname DB
find buf ENDS

following form:

21 DUP (?); Reserved*
? ; attribute found
? ; time
? ; date
? low (size)
? ; high(size)
13 DUP (?) ; packed name

♦Reserved for MS-DOS use on subsequent find nexts

To obtain the subsequent matches of the pathname,
see the description of Function 4FH.

Error returns:
AX
2 = file not found

The path specified in DS:DX was an
invalid path.

18 = no more files
There were no files matching this
specification.

Example:

mov ah, 4EH
Ids dx, pathname
mov ex, attr
int 21H

; dma address has datablock

1-147

Step Through a Directory Matching Files (Function
4FH)

Call
AH = 4FH

Return
Carry set:
AX

18 = no more files
Carry not set:
No error

Function 4FH finds the next matching entry in a
directory. The current EMA address must point at
a block returned by Function 4EH (see Function
4EH).

Error returns:
AX
18 = no more files

There are no more files matching this
pattern.

Example:

; dma points at area returned by Function 4FH
mov ah, 4FH
int 21H

; next entry is at dma

1-148

Return Current Setting of Verify After Write Flag
(Function 5M)

Call
AH = 54H

Return
AL
Current verify flag value

The current value of the verify flag is returned
in AL.

Error returns:
None.

Exanple:

MOV ah, 54H
int 21H

; al is the current verify flag value

Move a Directory Entry (Function 56H)

Call
AH = 56H
DS:DX

Pointer to pathname of
existing file

ES:DI
Pointer to new pathname

1-149

Return
Carry set:
AX

2 = file not found
5 -- access denied
17 = not same device

Carry not set:
No error

Function 56H attempts to rename a file into
another path. The paths must be on the same
device.

Error returns:
AX
2 -- file not found

The filename specifed by DS:DX was
not found.

5 = access denied
The path specified in DS:DX was a
directory or the file specified by
ES:DI exists or the destination
directory entry could not be created.

17 = not same device
The source and destination are on
different drives.

Example:

Ids dx, source
les di, dest
mov ah, 56H
int 21H

1-150

Get/Set Date/Time of File (Function 57H)

Call
AH = 57H
AL

00 - get date and time
01 = set date and time

BX
File handle

CX (if AL = 01)
Time to be set

DX (if AL = 01)
Date to be set

Return
Carry set:
AX

1 - invalid function
6 = invalid handle

Carry not set:
No error
CX/DX set if function 0

Function 57H returns or sets the last-write time
for a handle. These times are not recorded until
the file is closed.

A function code is passed in AL:

AL FUNCTION_____________________

0 Return the time/date of the handle in CX/DX
1 Set the time/date of the handle to CX/DX

1-151

Error returns:
AX
1 = invalid function

The function passed in AL was not in
the range 0:1.

6 - invalid handle
The handle passed in BX was not
currently open.

Example:

MOV ah, 57H
mov al, func
mov bx, handle

; if al = 1 then the next two are mandatory
mov ex, time
mov dx, date
int 21H

; if al = 0 then cx/dx has the last write
; time/date for the handle.

1.8 MACRO DEFINITIONS ECU MS-DOS SYSTEM CALL
EXAMPIES

Note: These macro definitions apply to system
call examples OOH through 57H.

.*******************

; Interrupts
******************** r

1-152

endm

;ABS__DISK_READ
abs_disk_read macro disk,buffer,num_sectors,first_sector

mov
mov
mov
mov
int
popf
endm

al,disk
bx,offset buffer
ex,nuM-Sectors
dx,first sector
231 interrupt 25H

abs_d is k__wr i te
mov
mov
mov
mov
int
popf
endm

macro disk,buffer,num
al,disk
bx,offset buffer
ex,num_sectors
dx,first sector
26H

;ABS_DISK_WRITE
sectors,first^sector

;interrupt 26H

stay_resident
mov
inc
int

macro last_instruc ; STAY_RES IDENT
dx,offset last__instruc
dx
27H ;interrupt 27H

.*******************

; Functions
•★★★★***★*★★★**★*★*★

read_kbd_and__echo macro ; READ_KBD_AND_ECW
mov ah,l ;function 1
int 21H
endm

1-153

display—char macro character
MOV
MOV
int
endm

dl,character
ah,2
21H

auX— input macro
MOV ah,3
int
endm

auX—output macro

21H

MOV ah, 4
int
endm

;;page

21H

pr int—char macro character
MOV dl,character
MOV ah, 5
int
endm

21H

dir console io macro switch
MOV
MOV
int
endm

dl,switch
ah, 6
21H

dir—console—input
MOV
int
endm

macro
ah,7
21H

read—kbd macro
MOV
int
endm

ah;8
21H

,-DISPLAy-CRAR

function 2

;AUX-INPOT
;function 3

; AUX—COTPOT
;function 4

; PRINT—QIAR

;function 5

;DIR—CONSOLE—10

;function 6

; DIR—CONSOLE—INPUT
;function 7

;READ—KBD
;function 8

1-154

display macro
mov
mov
int
endm

string
dx,offset string
ah, 9
21H

get string macro limit,string
mov str ing, limit
mov dx,offset string
mov ah,OAH
int 21H
endm

check_kbd—status macro
mov ah,QBH
int 21H
endm

flush_and_read_kbd macro switch
mov al,switch
mov ah,OCH
int 21H
endm

resetsdisk macro
mov ah,ODH
int 21H
endm

upage
select_disk macro disk

mov dl,disk [-65]
mov ah,OEH
int 21H
endm

;DISPLAY

;function 9

;GET_STRING

;function OAH

? CHECK_KBD_STATUS
;function OBH

; FLUSH_AND_READ_KBD

;function OCH

;RESET DISK
;function ODH

;SELECT_DISK

;function OEH

1-155

open macro fcb
dx,offset fcb
ah,OFH
21H

;OPEN

;function OFH
MOV
MOV
int
endm

r
close macro fcb ;CLOSE

MOV dx,offset fcb
MOV
int
endm

ah,10H
21H

;function ION

r
search first macro fcb ;SEARCH_FIRST

MOV dx,offset fcb
MOV
int
endm

ah, UN
21H

;function 11H

r
search next macro fcb ;SEARCH_NEXT

MOV dx,offset fcb
MOV
int
endm

ah,12H
21H

;function 12H

?
delete macro fcb ;DELETE

MOV dx,offset fcb
MOV
int
endm

ah,13H
21H

;function 13H

r
read seq macro fcb ;READ_SEQ

MOV dx,offset fcb
MOV
int
endm

ah,14H
21H

;function 14H

1-156

write_seq macro fcb
dx,offset fcb
ah,151
21H

;WRITE_SEQ

/function 158
MOV
MOV
int
endm

r
create macro fcb /CREATE

MOV dx,offset fcb
MOV
int
endm

r

ah,16H
21H

/function 168

rename macro fcb,newname /RENAME
MOV dx,offset fcb
MOV
int
endm

r
current-disk macro

ah,17H
21H

/function 178

/CURRENT_DISK
mov
int
endm

ah,198
218

/function 198

r
set dta macro buffer /SET_DTA

mov dx,offset buffer
mov
int
endm

r
alloc_table macro

ah,1^8
218

/function 1A8

;ALLOC_TABLE
mov
int
endm

ah,IBB
218

/function IBB

1-157

read_ran macro
MOV
MOV
int
endm

fcb
dx,offset fcb
ah ,2m
21H

;REM)JRAN

; function 218

write__ran macro
MOV
MOV
int
endm

fcb
dx,offset fcb
ah,228
2m

;WRITE_RAN

; function

i

228

filejsize macro
MOV
MOV
int
endm

fcb
dx,offset fcb
ah,238
2m

;FILE_SIZE

;function 238

se t_r elative__r ecord
MOV
MOV
int
endm

•r ;page

macro fcb
dx,offset fcb
ah,248
2m

; SET_RELATIVE_RECORD

;function 248

set__vector macro
push
MOV
MOV
MOV
MOV
MOV
int
endm

interrupt, seg_addr
ds
ax,seg_addr
ds,ax
dx,off_addr
al,interrupt
ah,258
218

,off_addr ;

;function

SET_VECTOR

2R

1-158

create__prog_seg macro seg_addr
dx,seg_addr
ah,26H
21H

; CREATE_PROG_SEG

;function 26H
MOV
npv
int
endm

ran_block read
MOV
MOV
MOV
MOV
int
endm

macro fcb,count,rec
dx,offset fcb
ex,count
word ptr fcb[14]
ah,27H
21H

_size ;RAN_BLOCK_READ

,rec_size
;function 27H

ran__block__write
MOV
MOV
MOV
MOV
int
endm

macro fcb, count ,rec_size ; RANJBDOCK__WRITE
dx,offset fcb
ex,count
word ptr fcb[14] ,rec_size
ah,28H ;function 28H
21H

parse macro
MOV
MOV
push
push
pop
MOV
MOV
int

POP
endm

filename,fcb ; PARSE
si,offset filename
di,offset fcb
es
ds
es
al,15
ah,29H ;function 29H
21H
es

get_date macro
MOV
int
endm

ah,2AH
21H

;GET_DATE
;function 2AH

1-159

; ;page
set_date macro year,month,day ; SET-DATE

mov ex, year
MOV dh,month
mov dl,day
mov ah,2BH ;function 2BH
int 21H
endm

get-time macro ; GETjriME
mov ah,2CH ;function 2CH
int 21H
endm

»
; SET-TIME

set-time macro hour, minutes, secondshundredths
mov ch,hour
mov cl,minutes
mov dh,seconds
mov dl,hundredths
mov ah,2DH ;function 2DH
int 2m
endm

verify macro switch ; VERIFY
mov al,switch
mov ah,2EH ;function 2EH
int 21H
endm

1-160

; General

move string macro source ,destination,num_bytes

;MOVE_STRING
push es
NOV ax, ds
NOV es,ax
assume es:data
lea si, source
lea di, destination
NOV cx,num__bytes

rep novs es:destination,source
assume es:nothing
pop es
endm

convert macro value, base destination ;CWVERT

local table, start
jmp start

table db "01234 56789ABCDEF"

start: NOV al,value
xor ah,ah
xor bx,bx
div base
NOV bl, al
NOV al,cs:table[bx]
NOV destination,al
NOV bl, ah
NOV al,cs:table[bx]

NOV destination[1],al
endm

1-161

;;page
convert

calc:

mult.:

no_mult:

conver t

to_binary macro str ing,number,value

ten
start:

; CCNVERTJ1?O_B INARY
local ten ,star t,calc,mult,no_mult
jmp start
db 10
mov value,0
xor ex,ex
mov cl,number
xor si,si
xor ax,ax
mov al,string[si]
sub al, 48
cmp ex, 2
jl no mult
push ex
dec ex
mul cs:ten

loop mult
pop ex
add value,ax
inc si
loop
endin

calc

date macro dir_~entry
mov dx,word ptr dir entry [25]
mov cl, 5
shr dl,cl
mov dh,dir entry[25]
and dh,lfh
xor ex,ex
mov cl,dir entry[26]
shr cl,l
add
endm

ex,1980

1-162

2. MS-DOS 2.1 DEVICE DRIVERS

2.1 INTRODIJCTION

A device driver is a binary .OCM file with all of
the code in it to manipulate the hardware and
provide a consistent interface to MS-DOS. In
addition, it has a special header at the
beginning that identifies it as a device driver,
defines the strategy and interrupt entry points,
and describes various attributes of the supported
device.

Note: For device drivers, the file must not
use the ORG 1008 (like .CCM files). Because it
does not use the Program Segment Prefix, the
device driver is simply loaded; therefore, the
file must have an origin of zero (ORG 0 or no ORG
statement).

There are two kinds of device drivers:

o Character device drivers

o Block device drivers

Character devices are designed to perform serial
character I/O like CON, AUX, and PRN (that is,
LST). These devices are named (i.e., CON, AUX,
CLOCK, etc.), and users may open channels (handles
or FCBs) to do I/O to them.

2-1

Block devices are similar in capability to the
disk drives on the system. They can perform
random I/O in pieces called blocks (such as a
physical sector size). These devices are not
named as the character devices are, and therefore
cannot be opened directly. Instead, they are
identified via the drive letters (A:, B:, C:,
and so on).

Block devices also have units. A single driver
may be responsible for one or more disk drives.
For example, block device driver ALPHA may be
responsible for drives A:,B:,C: and D:.
Consequently, it has four units (0-3) defined;
therefore, it takes up four drive letters. The
position of the driver in the list of all drivers
determines Mich units correspond to which driver
letters. If driver ALPHA is the first block
driver in the device list, and it defines 4 units
(0-3), then they will be A:,B:,C: and D:. If BETA
is the second block driver and defines three units
(0-2), then they will be E:,F: and G:, and so on.
MS-DOS 2.1 is not limited to 16 block device
units, as previous versions were. The theoretical
limit is 63 (2^ - 1), but it should be noted that

after 26 the drive letters are unconventional
characters (such as], \, and ").

Note: Character devices cannot define multiple
units because they have only one name.

2-2

2.2 DEVICE HEADERS

A device header is required at the beginning of a
device driver. Figure 2-1 shows a device header.

Figure 2-1: Sample Device Header

(Refer to text for explanation)

+-- +
DWORD pointer to next device
(Must be set to -1)

4---------------------------- -- ---------- j-
WORD attributes
Bit 15 = 1 if char device, 0 if block
if bit 15 is 1

Bit 0 = 1 if current sti device
Bit 1 = 1 if current sto output
Bit 2 = 1 if current NUL device
Bit 3 = 1 if current CLOCK dev
Bit 4 = 1 if special
Bits 5-12 Reserved; must be set

to 0
Bit 14 is the IOCTL bit
Bit 13 is the NON IBM FORMAT bit

H-- F
WORD pointer to device strategy

entry point
-I-- 1-
WORD pointer to device interrupt

entry point
+-- +

8-BYTE character device name field
Character devices set a device name.
For block devices the first byte is
the number of units.

H .— ------------- - b

2-3

The device entry points are words. They must be
offsets from the same segment number used to point
to this table. For example, if XXXsYYY points to
the start of this table, then XXX:strategy and
XXX:interrupt are the entry points.

2.2.1 POINTER TO NEXT DEVICE FIELD

The pointer to the next device header field is a
double word field (offset followed by segment)
that is set by MS-DOS to point at the next driver
in the system list at the time the device driver
is loaded. This field must be set to -1 prior to
load (when it is on the disk as a file) unless
there is more than one device driver in the file.
If there is more than one driver in the file, the
first word of the double word pointer should be
the offset of the next driver's Device Header.

Note: If there is more than one device driver in
the .COM file, the last driver in the file must
have its pointer to the next Device Header field
set to -1.

2.2.2 ATTRIBUTE FIELD

The attribute field is used to tell the system
whether this device is a block or character device
(bit 15). Most other bits are used to give
selected character devices certain special
treatment. (Note that these bits mean nothing on
a block device.) For example, assume you have a
new device driver, and you want it to be the
standard input and output. Besides installing the
driver, you must tell MS-DOS that you want the new
driver to override the current standard input and
standard output (the 00N device). This is

2-4

accomplished by setting the attributes to the
desired characteristics, so you would set bits 0
and 1 to 1 (note that they are separate).
Similarly, a new CLOCK device could be installed
by setting that attribute. (Refer to Chapter 2.7
for more information.) Although there is a NUL
device attribute, the NUL device cannot be
reassigned. This attribute exists so that MS-DOS
can determine if the NUL device is being used.

The SPECIAL bit indicates that this device is the
only one which will accept INT 29 (optimized
console output) requests, bypassing the normal
console I/O layers which standarize, but slow
down, console output. This should only be used
for a CON replacement.

The NON IBM FORMAT bit applies only to block
devices and affects the operation of the BUILD BPB
(Bios Parameter Block) device call. This should
be set to 1 unless your driver is for IBM
compatible floppies. (Refer to Chapter 2.5.3 for
further information on this call.)

The other bit of interest is the IOCTL bit, which
has meaning chi character and block devices. This
bit tells MS-DOS whether the device can handle
control strings (via the IOCTL system call,
Function 44H).

If a driver cannot process control strings, it
should initially set this bit to 0. This tells
MS-DOS to return an error if an attempt is made
(via Function 44H) to send or receive control
strings to this device. A device which can
process control strings should initialize the
IOCTL bit to 1. For drivers of this type, MS-DOS

2-5

will make calls to the IOCTL INPUT and OUTPUT
device functions to send and receive IOCTL
strings.

The IOCTL functions allow data to be sent and
received by the device for its own use (for
example, to set baud rate, stop bits, and forms
length), instead of passing data over the device
channel as does a normal read or write. The
interpretation of the passed information is up to
the device, but it must not be treated as a normal
I/O request.

2.2.3 STRATEGY AND INTERRUPT ROUTINES

These tw fields are the pointers to the entry
points of the strategy and interrupt routines.
They are word values, so they must be in the same
segment as the Device Header. The strategy entry
is used for MS-DOS to pass a Request Header
(explained later) to the driver. The interrupt
routine services and returns the requests. The
strategy handler is responsible for queuing (and
the interrupt routine dequeuing) if over one
request is supported by the driver concurrently.

2.2.4 NAME FIEUD

This is an 8-byte field that contains the name of
a character device or the number of units of a
block device. If it is a block device, the number
of units can be put in the first byte. This is
optional, because MS-DOS will fill in this
location with the value returned by the driver's
INIT code. Refer to Chapter 2.4 for more
information.

2-6

2.3 HOW TO CREATE A DEVICE DRIVER

To create a device driver that MS-DOS can
install, you must write a binary file with a
Device Header at the beginning of the file. For •
device drivers, the code should be originated
at 0 instead of 10OH. The link field (pointer to
next Device Header) should be -1, unless there is
more than one device driver in the file. The
attribute field and entry points must be set
correctly.

If it is a character device, the name field should
be filled in with the name of that character
device. The name can be any legal 8-character
filename (but need not match the driver’s .COM
filename).

MS-DOS always processes installable device
drivers before handling the default devices, so to
install a new 00N device, simply name the device
CCN. For CON, remember to set the standard input
device and standard output device bits in the
attribute word on a new CON device. The scan of
the device list stops on the first match, so the
installable device driver takes precedence.

Note: Because MS-DOS can install the driver
anywhere in memory, care must be taken in any far
memory references. You should not expect that
your driver will always be loaded in the same
place every time.

2-7

2.4 INSTALLATION OF DEVICE DRIVERS

MS-DOS 2.1 allows new device drivers, specified in
your CONFIG.SYS file, to be installed dynamically
at boot time. This is accomplished by INIT code in
the BIOS, which reads and processes the CONFIG.SYS
file.

MS-DOS calls upon the device drivers to perform
their function in the following manner:

MS-DOS makes a far call to strategy entry,
and passes (in a Request Header) the
information describing the functions of the
device driver.

This structure allows you to program an
interrupt-driven device driver. For example, you
may want to perform local buffering in a printer.

2.5 REQUEST HEADER

When MS-DOS calls a device driver to perform a
function, it passes a Request Header in ES:BX to
the strategy entry point. This is a fixed length
header, followed by data pertinent to the
operation being performed. Note that it is
the device driver's responsibility to preserve
the machine state (for example, save all registers
on entry and restore them on exit). There is
enough room on the stack when strategy or
interrupt is called to do about 20 pushes. If
more stack is needed, the driver should set up
its own stack.

The following figure illustrates a Request Header.

2-8

Figure 2-2: Request Header

2.5.1 UNIT CODE

The unit code field identifies which unit in
your device driver the request is for. For
example, if your device driver has 3 units
defined, then the possible values of the unit code
field would be 0, 1, and 2.

REQUEST HEADER ->
------------ ---F
BYTE length of record
Length in bytes of this
Request Header

4..-------------- —------------------------------ ------------ s-
BYTE unit code
The subunit the operation
is for (minor device).
No meaning on character
devices.

+------------- --+
| BYTE command code |

H-- -------------- F
| WORD status |
+-- +

8 bytes RESERVED

2-9

2.5.2 COMMAND CODE FIEUD

The command code field in the Request header can
have the following values:

COMMAND
CODE ______________ FUNCTION________________

0
1

INIT
MEDIA CHECK (Block only, no operation
for character)

2 BUILD BPB (Block only, no operation
for character)

3 IOCTL INPUT (Only called if device has
IOCTL)

4
5

INPUT (read)
NON-DESTRUCTIVE INPUT NO WAIT
(Character devices only)

6
7
8
9

. 10
11
12

INPUT STATUS (Character devices only)
INPUT FLUSH (Character devices only)
OUTPUT (write)
OUTPUT (write) with verify
OUTPUT STATUS (Character devices only)
OUTPUT FLUSH (Character devices only)
IOCTL OUTPUT (Only called if device
has IOCTL)

2.5.3 MEDIA CHECK AND BUILD BPB

MEDIA CHECK and BUILD BPB are used with block
devices only.

2-10

MS-DOS calls MEDIA CHECK first for a drive unit.
MS-DOS passes its current media descriptor byte
(refer'to Chapter 2.6.4). MEDIA CHECK returns one
of the following results:

o Media Not Changed — current DPB and media byte
are OK.

o Media Changed — Current DPB and media are
wrong. MS-DOS invalidates any buffers for this
unit and calls the device driver to build the
BPB with media byte and buffer.

o Not Sure — If there are dirty buffers (buffers
with changed data, not yet written to disk) for
this unit, MS-DOS assumes the DPB and media
byte are OK (media not changed). If nothing is
dirty, MS-DOS assumes the media has changed.
It invalidates any buffers for the unit, and
calls the device driver to build the BPB with
media byte and buffer.

o Error — If an error occurs, MS-DOS sets the
error code accordingly.

MS-DOS will call BUILD BPB under the following
conditions:

o If Media Changed is returned

o If Not Sure is returned, and there are no dirty
buffers

2-11

The BUILD BPB call also gets a pointer to a
one-sector buffer. What this buffer contains is
determined by the NCN IBM FORMAT bit in the
attribute field. If the bit is zero (device is
IBM format-compatible), then the buffer contains
the first sector of the first FAT. The FAT ID
byte is the first byte of this buffer. NOTE: The
BPB must be the same, as far as location of the
FAT is concerned, for all possible media because
this first FAT sector must be read before the
actual BPB is returned. If the NCN IBM FORMAT bit
is set, then the pointer points to one sector of
scratch space (which may be used for anything).

2.5.4 STATUS WORD

The following figure illustrates the status
word in the Request Header.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
4------ 4------ 4---+—4--- +—4 F----- 4--------1-—+—+h---- 4—-4-—4-—4-
E B D
R RESERVED U 0 ERROR CODE (bit 15 on)
R S N

4------ 4------ 4-—4-—4-—4-—4 1—.—4------ -iF—+—4-—4-—4-—4-—4-—4----- 1-

The status word is zero on entry and is set by
the driver interrupt routine on return.

Bit 8 is the done bit. When set, it means the
operation is complete. For MS-DOS 2.1, the
driver sets it to 1 when it exits.

2-12

Bit 15 is the error bit. If it is set, then the
low 8 bits indicate the error. The errors are:

0 Write protect violation
1 Unknown Unit
2 Drive not ready
3 Unknown command
4 CRC error
5 Bad drive request structure length
6 Seek error
7 Unknown media
8 Sector not found
9 Printer out of paper
A Write fault
B Read Fault
C General failure

Bit 9 is the busy bit, which is set only by status
calls.

For output on character devices: If bit 9 (BUSY)
is 1 on return, a write request (if made) would
wait for completion of a current request. If the
busy bit is 0, there is no current request, and a
write request (if desired) could start
immediately.

For input on character devices with a buffer: If
bit 9 is 1 on return, a read request would go to
the physical device. If it is 0 on return, then
there are characters in the device buffer and a
read would return quickly. It also indicates that
something has been typed. MS-DOS assumes all
character devices have an input type-ahead buffer.
Devices that do not have a type-ahead buffer
should always return busy=0 so that MS-DOS will
not continuously wait for something to get into a
buffer that does not exist.

2-13

One of the functions defined for each device is
INIT. This routine is called only once when the
device is installed. The INIT routine returns a
location (VS:OX), which is a pointer to the first
free byte of memory after the device driver
(similar to "Keep Process" or "Terminate but Stay
Resident"). This pointer method can be used to
delete initialization code that is only needed
once, saving memory space.

Block devices are installed the same way and also
return a first free byte pointer as described
previously. Additional information is also
returned (see Chapter 2.6.1 for details on INIT).

o The number of units is returned. This
determines logical drive names. If the
current maximum logical drive letter is F at
the time of the install call, and the INIT
routine returns 4 as the number of units, then
they will have logical names G, H, I and J.
This mapping is determined by the position of
the driver in the device list, and by the
number of units on the device (stored in the
first byte of the device name field).

o A pointer to a BPB (BIOS Parameter Block)
pointer array is also returned. There is one
table for each unit defined.

2-14

The format of the BIOS Parameter Block (PBP) is
as follows:

WORD bytes per sector

BYTE sectors per allocation unit (cluster)

WORD number of reserved sectors

BYTE number of FATS

WORD number of entries in the root directory

WORD number of sectors in logical image of
device

BYTE media descriptor (see below)

WORD number of FAT sectors

These blocks will be used to build an internal
DOS data structure for each of the units.
The pointer passed to the DOS from the driver
points to an array of n WORD pointers to BPBs,
where n is the number of units defined. In
this way, if all units are the same, all of
the pointers can point to the same BPB, saving
space. This array must be protected
(below the free pointer set by the return)
since an internal DOS structure will be built
starting at the byte pointed to by the free
pointer. The sector size defined must be less
than or equal to the maximum sector size defined
at default BIOS INIT time — that is, when the
BIOS was built. If it isn't, the install will
fail.

2-15

o The last thing that INIT of a block device
must pass back is the media descriptor byte.
This byte means nothing to MS-DOS, but is
passed to devices so that they know what
parameters MS-DOS is currently using for a
particular drive unit.

Block devices may take several approaches; they
may or may not be intelligent. An unintelligent
device defines a unit (and therefore an internal
DOS structure) for each possible media drive
combination. For example, unit 0 = drive 0
single side, unit 1 - drive 0 double side. For
this approach, media descriptor bytes do not mean
anything. An intelligent device allows multiple
media per unit. In this case, the BPB table
returned at INIT must define space large enough
to accommodate the largest possible media
supported. Intelligent drivers will use the media
descriptor byte to pass information about what
media is currently in a unit.

2-16

Media descriptor bytes are only used to
distinguish between media of a particular device
type. Media descriptor bytes have been defined
for the following media:

FLOPPY SINGLE/DOUBLE SECTORS MEDIA DESCRIPTOR
DEVICE SIDED PER TRACK BYTE

density)

5 1/4" SS 8 FEh
5 1/4" ss 9 FCh
5 1/4" DS 8 FFh
5 1/4" DS 9 FDh
8" SS 6 FEh
8" SS 26 (with 4 FDh

reserved
sectors)

8" DS 8 (with double FEh

2.6 FUNCTION CALL PARAMETERS

All strategy routines are called with ES:BX
pointing to the Request Header. The interrupt
routines get the pointers to the Request Header
from the queue that the strategy routines
store them in. The command code in the Request
Header tells the driver which function to perform.

Note: All DWORD pointers are stored offset first,
then segment.

2.6.1 INIT

Command code - 0

INIT - ES:BX ->

2-17

4-- F
| 13-BYTE Request Header (see Ch. 2.5)|
+------- --------------------------------F
| BYTE # of units |
d--F
| DWORD break address |
+--------------------------------------- F
DWORD pointer to BPB array
(Not set by character devices)

d------ —----—-------------------- •------ F

The number of units, break address, and BPB
pointer are set by the driver. On entry, the
DWORD that is to be set to the BPB array (on block
devices) points to the character after the
on the line in CONFIG.SYS that loaded this device.
This allows drivers to scan the CONFIG.SYS
invocation line for arguments.

Note: If there are multiple device drivers in a
single .COM file, the ending address returned by
the last INIT called will be the one MS-DOS uses.
All of the device drivers in a single .COM file
should return the same ending address.

2.6.2 MEDIA CHECK

Command Code - 1

MEDIA CHECK - ES:BX ->
-I---F
| 13-BYTE Request Header •

4---F
| BYTE media descriptor from DPB |

4---F
| BYTE returned |

-F---------------------- 4-

2-18

In addition to setting the status word, the driver
must set the return byte to one of the following:

-1 Media has been changed
0 Don't know if media has been changed
1 Media has not been changed

If the driver can return -1 or 1 (by having a
door-lock or other interlock mechanism) MS-DOS
performance is enhanced because MS-DOS does not
need to reread the FAT for each directory access.

2.6.3 BUILD BPB (BIOS Parameter Block)

Command code = 2

BUILD BPB - ES:BX ->

| 13-BYTE Request Header |
4--------------------------------------- F
| BYTE media descriptor from DPB |
4--------------------------------------- F

DWORD transfer address
(Points to one sector worth of
scratch space or first sector
of FAT depending on the value
of the NON IBM FORMAT bit)

4———————--- -----———----——I-
| DWORD pointer to BPB |
+-------------------------------- -----+

2-19

If the NON IBM FORMAT bit of the device is set,
then the MORO transfer address points to a one
sector buffer, which can be used for any purpose.
If the NON IBM FORMAT bit is 0, then this buffer
contains the first sector of the first FAT and the
driver must not alter this buffer.

If IBM compatible format is used (NON IBM FORMAT
BIT = 0), then the first sector of the first FAT
must be located at the same sector on all possible
media. This is because the FAT sector will be
read BEFORE the media is actually’ determined. Use
this mode if all you want is to read the FAT ID
byte.

In addition to setting status word, the driver
must set the Pointer to the BPB on return.

2.6.4 MEDIA DESCRIPTOR BYTE

The last two digits of the FAT ID byte are called
the media descriptor byte. Currently, the media
descriptor byte has been defined for a few media
types, including 5-1/4" and 8" standard disks.

Although these media bytes map directly to FAT ID
bytes (which are constrained to the 8 values
F8-FF), media bytes can, in general, be any value
in the range 0-FF.

2-20

2.6.5 READ OR WRITE

Command codes = 3, 4, 8, 9, and 12

READ or WRITE - ES:BX (Including IOCTL) ->
-------------------------------------- f*

| 13-BYTE Request Header |
+-----——-----—------------------------ s-
| BYTE media descriptor from DPB \
-------------------------------------- h

| DWORD transfer address-------------- j
H ,---
| WORD byte/sector count |
+------------------------------------- +
WORD starting sector number
(Ignored on character devices)

+--------------------------------------

In addition to setting the status word, the driver
must set the sector count to the actual number of
sectors (or bytes) transferred. No error check is
performed on an IOCTL I/O call. The driver must
correctly set the return sector (byte) count to
the actual number of bytes transferred.

THE FOLLOWING APPLIES TO BLOCK DEVICE DRIVERS:

Under certain circumstances the BIOS may be asked
to perform a write operation of 64K bytes, which
seems to be a "wrap around" of the transfer
address in the BIOS I/O packet. This request
arises due to an optimization added to the write
code in MS-DOS. It will only manifest on user
writes that are within a sector size of 64K bytes
on files "growing" past the current EOF. The BIOS
CAN ignore the balance of the write that "wraps
around" if it so chooses. However, the returned
byte/sector count must reflect this. For example,
a write of 1Q000H bytes worth of sectors with a

2-21

transfer address of XXX:1 could ignore the last
two bytes. A user program can never request an
I/O of more than FFFFH bytes and cannot wrap
around (even to 0) in the transfer segment.
Therefore, in this case, the last two bytes can be
ignored.

2.6.6 NON DESTRUCTIVE READ NO WAIT

Command code = 5

NON DESTRUCTIVE READ NO WAIT - ES:BX ->
4-----—-- —-------------------b
| 13-BYTE Request Header |
+--F
| BYTE read from device |
+--F

If the character device returns busy bit = 0
(characters in buffer), then the next character
that would be read is returned. This character is
not removed from the input buffer (hence the term
"Non Destructive Read"). Basically, this call
allows MS-DOS to look ahead one input character.

2.6.7 STATUS

Command codes - 6 and 10

STATUS Calls - ES:BX ->
4---- -—--------------------------------- 1-
| 13-BYTE Request Header |
+--------------------------------------+

2-22

All the driver must do is set the status word and
the busy bit as follows:

o For output on character devices: If bit 9 (the
busy bit is 1 on return, a write request (if
made) would wait for completion of a current
request. If it is 0, there is no current
request and a write request (if made) would
start immediately.

o For input on character devices with a buffer:
A return of 1 in the busy bit means a read
request (if made) would go to the physical
device. If it is 0 on return, then there are
characters in the devices buffer and a read
would return quickly. A return of 0 also
indicates that the user has typed something.
MS-DOS assumes that all character devices have
an input type-ahead buffer. Devices that do
not have a type-ahead buffer should always
return busy = 0 so that the DOS will not hang
waiting for something to get into a buffer
which doesn’t exist.

2.6.8 FLUSH

Command codes = 7 and 11

FLUSH Calls - ES:BX ->
4-------------------------------------- +
| 13-BYTE Request Header |
+------------------------------------- +

The FLUSH call tells the driver to flush
(terminate) all pending requests. This call is
used to flush the input queue on character
devices.

2-23

2.7 THE CLOCK DEVICE

One of the most popular add-on boards is the real
time clock board. To allow this board to be
integrated into the system for TIME and DATE,
there is a special device (determined by the
attribute word) called the CLOCK device. The
CLOCK device defines and performs functions like
any other character device. Most functions will
be: "set done bit, reset error bit, return." When
a read or write to this device occurs, exactly 6
bytes are transferred. The first two bytes are a
word, vhich is the count of days since 1-1-80.
The third byte is minutes; the fourth, hours; the
fifth, hundredths of seconds; and the sixth,
seconds. Reading the CLOCK device gets the date
and time; writing to it sets the date and time.

2.8 EXAMPLE OF DEVICE DRIVERS

All loadable device drivers should not use their
device name as their filename. (References to a
filename, if that name is a device driver, will
always reference the device.)- For example, for:

device - plotdrvr.exe (or)

The device name in its header should be
"PL0TTER_".

2-24

After receiving an initialize call from MS-DOS,
loadable device drivers should print this sign-on
message:

Driver <DEVICENAME> installed for <hardwarename>

where: DEVICENAME is the name of the device
driver file, and hardwarename is the name
of the physical device.

For example:

Driver PLOTTER installed for parallel port.

To override the standard (default) drivers for
console, auxilliary I/O list, or clock, you should
name your loadable device drivers as CM, AUX,
PRN, or CLOCK, respectively.

The following examples illustrate a block device
driver and a character device driver program.

2.8.1 BLOCK DEVICE DRIVER

****************** A BLOCK DEVICE ******************

TITLE 5 1/4" DISK DRIVER FOR SCP DISK-MASTER

5 Th is driver is intended by a Hardware OEM to
;drive up to four 5
;l/4" drives hooked to the Seattle Computer
;Products DISK MASTER disk controller. All
;standard IBM PC formats are supported.

2-25

;DISK+4

FALSE
TRUE

EQU
EQU

0
NOT FALSE

;The I/O port address of the DISK MASTER
DISK EQU OEOH
;DISK+0

1793 Command/Status
;DISK+1
r 1793 Track
;DISK+2

1793 Sector
•DISK+3
f 1793 Data

; Aux Command/Status
;DISK+ 5
; Wait Sync

;Back side select bit
BACKBIT EQU 04H
;5 1/4" select bit
SMALBIT EQU 10H
;Double Density bit
DDBIT EQU 08H

;Done bit in status register
DONEBIT EQU 01H

;Use table below to select head step speed.
Step times for 5" drives
are double that shown in the table

Step value 1771 1793

0 6ms 3ms
1 6ms 6ms
2 10ms 10ms
3 20ms 15ms

2-26

STPSPD EQU 1

NUMERR EQU ERROUT-ERRIN

CR EQU ODH
LF EQU OAH

CODE SEGMENT
ASSUME CS:CODE , DS: NOTHING, ES :NOTHING,SS: NOTHING
t
r
r DEVICE IHEADER
r
DRVDEV LABEL WORD

DW -1,-1
DW 0000 ;IBM format-compatible, Block
DW STRATEGY
DW DRV?IN

DRVMAX DB 4

•JUMP TABLE FOR COMMAND HANDLING

DRVTBL LABEL WORD
DW DRV$INIT
DW MEDIA$CHK
DW GET$BPB
DW CMDERR
DW DRV?READ
DW EXIT
DW EXIT
DW EXIT
DW DRV?WRIT
DW DRV?WRIT
DW EXIT
DW EXIT
DW EXIT

2-27

STRATEGY

PTRSAV DD 0

STRATP PROC
STRATEGY:

MOV
MOV
RET

STRATP ENDP

FAR

WORD PTR [PTRSAV],BX
WORD PTR [PTRSAV+2],ES
;JUST SAVE REQUEST HEADER

; MAIN ENTRY

CMDLEN = 0 ;LENGTH OF THIS COMMAND
UNIT = 1 ;SUB UNIT SPECIFIER
CMDC = 2 ;COMMAND CODE
STATUS -- 3 ;STATUS
MEDIA - 13 ;MEDIA DESCRIPTOR
TRANS - 14 ;TRANSFER ADDRESS
COUNT -- 18 ;COUNT OF BLOCKS OR CHARACTERS
START = 20 ;FIRST BLOCK TO TRANSFER

DRV? IN: >
PUSH SI
PUSH AX
PUSH CX
PUSH DX
PUSH DI
PUSH BP
PUSH DS
PUSH ES
PUSH BX

2-28

ASSUME

; EXIT -

ASSUME
CMDERRP

CMDERR:

LDS BX, [PTRSAV] ;GET POINTER TO I/O PACKET

MOV AL,BYTE PTR [BX] .UNIT ,-UNIT CODE
MOV AH,BYTE PTR [BX].MEDIA ;MEDIA DESCRIP
MOV CX,WORD PTR [BX].COUNT ;COUNT
MOV
PUSH

DX,WORD PTR
AX

[BX].START ;START SECTOR

MOV
CMP

AL,BYTE PTR
AL,11

[BX] .CMDC ;Command code

JA
CBW

CMDERRP ;Bad command

SHL AX, 1 ;2 times command =
;word table index

MOV SI,OFFSET DRVTBL
ADD SI, AX ;Index into table
POP AX 7Get back media

;and unit

LES DI, DWORD PTR [BX] .TRANS
; ES: DI =TRANSFER ADDRESS

PUSH CS
POP DS

DS: CODE

JMP WORD PTR [SI] ;GO DO COMMAND

■ ALL ROUTINES RETURN THROUGH THIS PATH

DS: NOTHING

POP AX ;Clean stack

MOV AL, 3 ;UNKNOWN COMMAND ERROR
JMP SHORT ERR$EXIT

2-29

ERR$CNT:LDS BX,[PTRSAV]
SUB WORD PTR [BX] .COUNT,CX

;# OF SUCCESS. I/Os

ERR$EXIT:
;AL has error code

MOV
JMP

. AH,10000001B ;MARK ERROR RETURN
SHORT ERR1

EXITP PROC FAR

EXIT: MOV AH,00000001B
ERR1: LDS BX, [PTRSAV]

MOV WORD PTR [BX] .STATUS,AX
;MARK OPERATION COMPLETE

POP BX
POP ES
POP DS
POP BP
POP DI
POP DX
POP CX
POP AX
POP SI
RET ; RESTORE REGS AND RETURN

EXITP ENDP

CURDRV DB -I

TRKTAB DB -1,-1,-1,-1

SECCNT DW 0

DRVLIM as 8 ;Number of sectors on device
SECLIM — 13 ; MAXIMUM SECTOR
HDLIM =5 15 . ; MAXIMUM HEAD

2-30

ASSUME DS:CODE
TEST AH,00000100B ;TEST IF MEDIA REMOVABLE
JZ MEDIA$EXT

;WARNING - preserve order of drive and curhd!

DRIVE DB 0 ; PHYSICAL DRIVE CODE
CURHD DB 0 ;CURRENT HEAD
CURSEC DB 0 ;CURRENT SECTOR
CURTRK DW 0 ;CURRENT TRACK

MEDIA$CHK: ;Always indicates Don't know

XOR DI,DI ;SAY I DON'T KNOW
MEDIA$EXT:

LDS BX,[PIRSAV]
MOV WORD PTR [BX] .TRANS,DI
JMP EXIT

BUILD$BPB:
ASSUME DS:CODE

MOV AH,BYTE PTR ES: [DI] ;GET FAT ID BYTE
CALL GETBP ;TRANSLATE

SETBPB: LDS BX,[PTRSAV]
MOV [BX] .MEDIA,AH
MOV [BX] .COUNT,DI
MOV [BX].COUNT+2,CS
JMP EXIT

BUILDBP:
ASSUME DS: NOTHING
;AH is media byte on entry
DI points to correct BPB on return

PUSH AX
PUSH CX
PUSH DX
PUSH BX
MOV CL,AH ;SAVE MEDIA BYTE
AND CL,0F8H ;NORMALIZE

2-31

ENTRY:

CMP CL,0F8H ,-GOOD MEDIA BYTE?
JZ GOODID
MOV AH,0FEH ;DEFAULT TO 8-SECTOR,

;SINGLE-SIDED
GOODID:

MOV AL,I ;NUMBER OF FAT SECTORS
MOV BX,64*256+8 ;DIR ENTRIES/SECTOR MAX
MOV CX,40*8 ;SIZE OF DRIVE
MOV DX,01*2 56+1 ;HEAD LIMIT 8- SEC/ALL UNIT
MOV DI,OFFSET DRVBPB
TEST AH,00000010B ;TEST FOR 8 OR 9 SECTOR
JNZ HASS ;NZ = HAS 8 SECTORS
INC AL ;INC NUMBER FAT SECTORS
INC BL ,-INC SECTOR MAX
ADD CX, 40 ;INCREASE SIZE

HAS8: TEST AH,00000001B ;TEST FOR 1 OR 2 HEADS
JZ HAS1 ;Z = 1 HEAD
ADD ex,ex ;DOUBLE SIZE OF DISK
MOV BH,112 ;INCREASE # DIR ENTRIES
INC DH ,-INC SEC/ALL UNIT
INC DL ;INC HEAD LIMIT

HAS1: MOV BYTE PTR [DI].2,DH
MOV BYTE PTR [DI] . 6,BH
MOV WORD PTR [DI].8,CX
MOV BYTE PTR [DI].10,AH
MOV BYTE PTR [DI].11,AL
MOV BYTE PTR [DI].13,BL
MOV BYTE PTR [DI] .15,DL
POP BX
POP DX
POP CX
POP AX
RET

r

• DISK I/O HANDLERS

2-32

; AL = DRIVE NUMBER (0-3)
; AH = MEDIA DESCRIPTOR
; CX = SECTOR COUNT

DX = FIRST SECTOR
; DS = CS
; ES:DI = TRANSFER ADDRESS
;EXIT:
; IF SUCCESSFUL CARRY FLAG = 0
; ELSE CF=1 AND AL CONTAINS ERROR CODE,

CX # sectors NOT transferred

DRV?READ:
ASSUME DS:CODE

JCXZ DSKOK
CALL SETUP
JC DSK$IO
CALL DISKRD
□MP SHORT DSK$IO

DRV$WRIT:
ASSUME DS:CODE

JCXZ DSKOK
CALL SETUP
JC DSK$IO
CALL DISKWRT

ASSUME DS:NOTHING
DSK$IO: JNC DSKOK

JMP ERR$CNT
DSKOK: JMP EXIT

SETUP:
ASSUME DS:CODE
;Input same as above
;On output
; ES:DI = Trans addr
; DS:BX Points to BPB
; Carry set if error (AL is error code (MS-DOS))
; else
; [DRIVE] = Drive number (0-3)

2-33

; [SECCNT] - Sectors to transfer
; [CUBSEC] = Sector number of start of I/O
; [CURED] = Head number of start of I/O
; [CURTRK] = Track # of start of I/O
; All other registers destroyed

XCHG EX,DI ;ES:BX = TRANSFER ADDRESS
CALL GETER ;DS:DI = PTR TO B.P.B
MOV SI,CX
ADD St,DX
CMP SI,WORD PTR [DI].DRVLIM

; COMPARE AGAINST DRIVE MAX
JBE INRANGE
MOV AL,8
STC
RET

INRANGE:
MOV [DRIVE] ,AL
MOV [SECCNT],CX ,-SAVE SECTOR COUNT
XCHG AX,DX ;SET UP LOGICAL SECTOR

;FOR DIVIDE
XOR DX,DX
DIV WORD PTR [DI] .SECLIM

; DIVIDE BY SECTORS PER
TRACK

INC DL
MOV [CURSEC] ,DL ,-SAVE CURRENT SECTOR
MOV CX,WORD PTR [DI] .HDLIM ;# HEADS
XOR DX,DX ;DIVIDE TRACKS BY HEADS PER CYL
DIV CX
MOV [CURED],DL ;SAVE CURRENT HEAD
MOV [CURTRK] ,AX ,-SAVE CURRENT TRACK

SEEK:
PUSH BX ;Xaddr
PUSH DI ;BPB pointer
CALL CHKNEW ;Unload head if change drives
CALL DRIVESEL
MOV BL, [DRIVE]

2-34

XOR BH,BH ;BX drive index
ADD BX,OFFSET TRKTAB ;Get current track
MOV AX,[CURTRK]
MOV DL,AL ?Save desired track
XCHG AL,DS:[BX] ;Make desired track current
OUT DISK+1,AL ;Tell Controller current track
CMP AL,DL ;At correct track?
JZ SEEKRET ;Done if yes
MOV BH,2 ;Seek retry count
CMP AL,-I ;Position Known?
JNZ NOHOME ;If not home head

TRYSK:
CALL HOME
JC SEEKERR

NOHOME:
MOV AL,DL
OUT DISK+3,AL Desired track
MOV AL,1CH+STPSPD ;Seek
CALL DCOM
AND AL,98H ;Accept not rdy, seek, & CRC errors
JZ SEEKRET
JS SEEKERR ;No retries if not ready
DEC BH errors
JNZ TRYSK

SEEKERR:
MOV BL, [DRIVE]
XOR BH,BH ;BX drive index
ADD BX,OFFSET TRKTAB ;Get current track
MOV BYTE PTR DS:[BX],-l

;Make current track
;unknown

CALL GETERRCD
MOV CX, [SEOCNFT] ;Nothing transferred
POP BX ;BPB pointer
POP DI ;Xaddr
RET

2-35

SEEKRET:
POP BX
POP DI
CLC
RET

;BPB pointer
;Xaddr

READ

DISKRD:
ASSUME DS:CODE

MOV CX,[SECCNT]
RDLP:

CALL PRESET
PUSH BX
MOV BL, 10 ;Retry count
MOV DX,DISK+3 ;Data port

RDAGN:
MOV AL,80H 5 Read coirmand
CLI ;Disable for 1793
OUT DISK,AL ; Output read command
MOV BP, DI 5Save address for retry
JMP SHORT RLOOPENTRY

RLOOP:
STOSB

RLOOPENTRY:
IN AL,DISK+5 ;Wait for DRQ or INTRO
SHR AL,1
IN AL,DX ;Read data
JNC RLOOP
STI ;Ints OK now
CALL GETSTAT
AND AL,9CH
JZ RDPOP ;Ok
MOV DI,BP ;Get back transfer
DEC BL
JNZ RDAGN

2-36

CMP AL,10H ;Record not found?
JNZ GOT_OODE ;No
MOV AL,1 ;Map it

GOT CODE:
CALL GETERRCD
POP BX
RET

RDPOP:
POP BX
LOOP RDLP
CLC
RET

WRITE

DISKWRT:
ASSUME DS:CODE

MOV CX,[SECCNT]
MOV SI,DI
PUSH ES
POP DS

ASSUME DS:NOTHING
WRLP:

CALL PRESET
PUSH BX
MOV BL,10 ;Retry count
MOV DX,DISK+3 ;Data port

WRAGN:
MOV AL,0A0H ; Write command
CLI ;Disable for 1793
OUT DISK,AL Output write command
MOV BP,SI ;Save address for retry

2-37

WRLOOP:

PRESET:
ASSUME

CLC
RET

WRPOP:

IN AL,DISK+5
SHR AL,I
LODSB ;Get data
OUT DX,AL ; Write data
JNC WRLOOP
STI ;Ints OK now
DEC SI
CALL GETSTAT
AND AL,0FCH
JZ WRPOP ;Ok
MOV SI,BP ;Get back tr.
DEC BL
JNZ WRAGN
CALL GETERRCD
POP BX
RET

POP BX
LOOP WRLP

DS:NOTHING
MOV AL,[CURSEC]
CMP AL,CS:[BX].SECLIM
JBE GOTSEC
MOV DH,[CURED]
INC DH
CMP DH,CS:[BX].HDLIM
JB SETHEAD ;Select new head
CALL STEP ;Go on to next track
XOR DH,DH ;Select head zero

2-38

SETHEAD:
MOV [CURHD],DH
CALL DRIVESEL
MOV AL,1 ;First sector
MOV [CURSEC],AL ;Reset CURSEC

GOTSEC:
OUT DISK+2,AL ;Tell controller which sector
INC [CURSEC] ;We go on to next sector
RET

STEP:
ASSUME DS:NOTHING

MOV AL,58H+STPSPD ;
CALL DCOM ;Step in w/ update, no verify
PUSH BX ; .
MOV BL,[DRIVE]
XOR BH,BH ;BX drive index
ADD BX,OFFSET TRKTAB ;Get current track
INC BYTE PTR CS:[BX] ;Next track
POP BX
RET

HOME:
ASSUME DS:NOTHING

MOV BL,3
TRYHOM:

MOV AL,OCH+STPSPD 5Restore with verify
CALL DCOM
AND AL,98H
JZ RET3
JS HOMERR ;No retries if not ready
PUSH AX 5Save real error code
MOV AL,58H+STPSPD ;
CALL DCOM 5Step in w/ update no verify
DEC BL ;
POP AX ;Get back real error code
JNZ TRYHOM

HOMERR:
STC

2-39

RET3: RET

CHKNEW:
ASSUME DS:NOTHING

MOV AL, [DRIVE] ;Get disk drive number
MOV AH,AL
XCHG AL,[CURDRV];Make new drive current.
CMP AL,AH ;Changing drives?
JZ RET1 ;No

; If changing drives, unload head so the head load
;delay one-shot will fire again. Do it by seeking
;to the same track with the H bit reset.

f
IN AL,DISK+1 ;Get current track number
OUT DISK+3,AL ?Make it the track to seek
MOV AL,10H ;Seek and unload head

DCOM:
ASSUME DS:NOTHING

OUT DISK,AL
PUSH AX
AAM ;Delay 10 microseconds
POP AX

GETSTAT a
IN AL,DISK+4
TEST AL,DONEBIT
JZ GETSTAT
IN AL,DISK

RET1: RET

2-40

DRIVESEL:
ASSUME DS:NOTHING
;Select the drive based on current info
;Only AL altered

MOV AL, [DRIVE]
OR AL,SMALBIT + DDB IT ;5 1/4" IBM PC disks
CMP [CURED], 0
JZ GOTHEAD
OR AL,BACKBIT ;Select side 1

GOTHEAD:
OUT DISK+4,AL ;Select drive and side
RET

GETERRCD:
ASSUME DS: NOTHING

PUSH CX
PUSH ES
PUSH DI
PUSH CS
POP ES ;Make ES the local segment
MOV CS: [LSTERR] ,AL ?Terminate with error code
MOV CX,NUMERR ;# error conditions
MOV DI,OFFSET ERRIN ;Point to error cond
REPNE SCASB
MOV AL,NUMERR-1 [DI] ;Get translation
STC :Flag error condition
POP DI
POP ES
POP CX
RET ?and return

2-41

DW DRVBPB
DW DRVBPB
DW DRVBPB

**

;BPB FOR AN IBM FLOPPY DISK, VARIOUS PARAMETERS ARE
;PATCHED BY GETBP TO REFLECT THE TYPE OF MEDIA
;INSERTED
;This is a nine sector single side BPB
DRVBPB:

DW 512 ;Physical sector size in bytes
DB 1 ;Sectors/allocation unit
DW 1 -Reserved sectors for DOS
DB 2 ;# of allocation tables
DW 64 ;Number directory entries
DW 9*40 ;Number 512-byte sectors
DB 11111100B -Media descriptor
DW 2 -Number of FAT sectors
DW 9 ;Sector limit
DW 1 -Head limit

INITAB DW DRVBPB -Up to four units

;ON WRITE-PROTECT DISK

ERRIN: ;DISK ERRORS RETURNED FROM 1793 CONTROLLER
DB 80H -NO RESPONSE
DB 40H ;Write protect
DB 20H ;Write Fault
DB 10H -SEEK error
DB 8 -ORC error
DB 1 ;Mapped from 10H

-(record not found) on READ
LSTERR DB 0 -ALL OTHER ERRORS

ERROUT: ;RETURNED ERROR CODES FOR ABOVE
DB 2 -NO RESPONSE
DB 0 ; WRITE ATTEMPT

2-42

DB OAH ;WRITE FAULT
DB 6 ;SEEK FAILURE
DB 4 ;BAD CRC
DB 8 ; SECTOR NOT FOUND
DB 12 ;GENERAL ERROR

DRV$INIT:

r
; Determine

r

physical drives from CONFIG.SYS

ASSUME DS:CODE
PUSH DS
IDS SI,[PTRSAV]

ASSUME DS:NOTHING
IDS SI,DWORD PTR [SI.COUNT]

;DS:SI POINTS TO CONFIG.SYS
SCAN_LOOP:

CALL SCAN-SWITCH
MOV AL,CL
OR AL,AL
JZ SCAN4
CMP AL,"s"
JZ SCAN4

WERROR: POP DS
ASSUME DS:CODE

MOV DX,OFFSET ERRMSG2
WERROR2: MOV AH,9

INT 21H
XOR AX,AX
PUSH AX ;No units
JMP SHORT ABORT

BADNDRV:
POP DS
MOV DX,OFFSET ERRMSG1
JMP WERROR2

2-43

• PUT SWITCH IN CL, VALUE IN BX

SCAN4:
ASSUME DS:NOTHING
;BX is number of floppies

OR BX,BX
JZ BADNDRV ;User error
CMP BX,4
JA BADNDRV ;User error
POP DS

ASSUME DS:CODE
PUSH BX ;Save unit count

ABORT: LDS BX,[PTRSAV]
ASSUME DS NOTHING

POP AX
MOV BYTE PTR [BX] .MEDIA,AL ;Unit count
MOV [DRVMAX] ,AL
MOV WORD PTR [BX].TRANS,OFFSET DRV$INIT

,-SET BREAK ADDRESS
MOV [BX] ,TRANS+2,CS
MOV WORD PTR [BX] .COUNT,OFFSET INITAB

;SET POINTER TO BPB ARRAY
MOV [BX].COUNT+2,CS
JMP EXIT

SCAN-SWITCH:
XOR BX,BX
MOV CX,BX
LODSB
CMP AL, 10
JZ NUMRET
CMP AL,"-"
JZ GOT SWITCH
CMP AL,"/"
JNZ SCAN-SWITCH

GOT—S WITCH:
CMP BYTE PTR [SI+1]
JNZ TERROR
LODSB

2-44

OR AL,20H ; CONVERT TO LOWER CASE
MOV CL,AL ; GET SWITCH
LODSB ; SKIP

/
; GET NUMBER POINTED TO BY [SI]

• WIPES OUT AX,DX ONLY BX RETURNS NUMBER

GETNUM1: LODSB
SUB AL,"0"
JB CHKRET
CMP AL,9
JA
CBW

CHKRET

XCHG AX,BX
MOV DX, 10
MUL DX
ADD BX,AX
JMP GETNUM1

CHKRET: ADD AL,"0"
CMP AL," "
JBE NUMRET
CMP AL,"-"
JZ NUMRET
CMP AL,"/"
JZ

TERROR:
NUMRET

POP DS ; GET RID OF RETURN ADDRESS
JMP WERROR

NUMRET: DEC
RET

SI

ERRMSG1 DB "SMLDRV: Bad number of drives"
DB 13,10,"$"

ERRMSG2 DB "SMLDRV: Invalid parameter"
DB

CODE ENDS
END

13,10,"$"

2-45

2.8.2 CHARACTER OEVICE DRIVER

The following program illustrates a character
device driver program.

****************2^ character device****************

TITLE VT52 CONSOLE FOR 2.0

CR=13
BACKSP=8
ESO1BH
BRKADR=6CH

ASNMAX=200

CODE SEGMENT BYTE

;CARRIAGE RETURN
;BACKSPACE

;006C BREAK VECTOR
ADDRESS
;SIZE OF KEY ASSIGNMENT
BUFFER

ASSUME CS:CODE,DSsNOTHINGfES :NOTHING

; C 0 N - CONSOLE DEVICE DRIVER

CONDEV: ;HEADER FOR DEVICE "CON"
DW
DW
DW
DW
DB

-1,-1
1000000000010011B ,-OON IN AND OUT
STRATEGY
ENTRY
'CON '

; COMMAND JUMP TABLES
CONTBL:

DW CON$INIT
DW EXIT

2-46

gg
88

8B
8S

8B
gg

8g
8g

8B
8g

88
gg

 33
88

88
88

88

EXIT
CMDERR
CON$READ
OON$BDND
EXIT
C0N$FLSH
CON$WRIT
OON$WRIT
EXIT
EXIT

DB

'A'
cuu ;cursor up
'B'
CUD ;cursor down
'C*
CUF ;cursor forward
'D'
CUB ;cursor back

CUH ?cursor position
'J'
ED ;erase display
'K'
EL ;erase line
•Y'
CUP ;cursor position
' j *
PSCP 5 save cursor position
’ k'
PRCP ;restore cursor position
•y’
PM ;reset mode
'x'
SM ;set mode
00

2-47

PAGE

Device entry point

CMDLEN -- 0 ;LENGTH OF THIS COMMAND
UNIT 1 ;SUE UNIT SPECIFIER
CMD 2 ;COMMAND CODE
STATUS = 3 ;STATUS
MEDIA 13 ; MEDIA DESCRIPTOR
TRANS 14 ; TRANSFER ADDRESS
COUNT 18 ;COUNT OF BLOCKS OR CHARACTERS
START' 20 ;FIRST BLOCK TO TRANSFER

PTRSAV DO 0

STRATP PROC FAR

STRATEGY:
MOV WORD PTR CS: [PTRSAV] ,BX
MOV WORD PTR CS: [PTRSAV+2] ,ES
RET

STRATP ENDP

ENTRY:
PUSH SI
PUSH AX
PUSH CX
PUSH DX
PUSH DI
PUSH BP
PUSH DS
PUSH ES
PUSH BX

LDS BX,CS: [PTRSAV] ;PTR TO I/O PACKET

MOV CX,W0RD PTR DS: [BX] .COUNT

2-48

MOV
CBW
MOV
ADD
ADD
CMP
JA

AL,BYTE PTR DS:[BX].CMD

SI,OFFSET CONTBL
SI, AX
SI, AX
AL,11
CMDERR

LES DI,DWORD PTR DS:[BX].TRANS

PUSH
POP

CS
DS

ASSUME DS: CODE

JMP WORD PTR [SI] ;GO DO COMMAND

PAGE

SUBROUTINES SHARED BY MULTIPLE DEVICES

THROUGH THIS PATH

UNKNOWN COMMAND ERROR

MARK ERROR RETURN

DEVICE BUSY EXIT

r

; EXIT - ALL ROUTINES RETURN

BUS§EXIT:
MOV
JMP

AH,00000011B
SHORT ERR1

CMDERR:
MOV AL,3

ERR$EXIT:
MOV
JMP

AH,10000001B
SHORT ERR1

2-49

BREAK:
MOV CS:ALTAH,3 ;INDICATE BREAK KEY SET

INTRET: IRET

EXITP PROC FAR

EXIT: MOV AH,00000001B
ERR1: IDS BX,CS: [PTRSAV]

MOV WORD PTR [BX].STATUS,AX ;MARK
;OPERATION COMPLETE

POP BX
POP ES
POP DS
POP BP
POP DI
POP DX
POP CX
POP AX
POP SI
RET ;RESTORE REGS AND RETURN

EXITP ENDP
f
r
t BREAK KEY HANDLING

PAGE

r
t WARNING - Variables are very order dependent,

so be careful when adding new ones!

WRAP DB 0 ; 0 = WRAP, 1 = NO WRAP
STATE DW SI
MODE DB 3
MAXCOL DB 79
COL DB 0
ROW DB 0
SAVOR DW 0
ALTAH DB 0 ;Special key handling

2-50

r

•CHROUT - WRITE OUT CHAR IN AL USING CURRENT ATTRIBUTE

r
ATTRW LABEL WORD
ATTR DB 00000111B ;CHARACTER ATTRIBUTE
BPAGE DB 0 ;BASE PAGE
base dw 0b800h

chrout: cmp al, 13
jnz trylf
MOV [col] ,0
jmp short setit

try If: cmp al, 10
jz If
cmp al,7
jnz tryback

tor cun:
MOV bx,[attrw]
and bl,7
MOV ah, 14
int lOh

ret 5: ret

tryback •
cmp al,8
jnz outchr
cmp [col],0
jz ret5
dec [col]
jmp short setit

outchr:
MOV bx,[attrw]
MOV cx,l
MOV ah, 9
Int lOh

2-51

inc
mov
cmp
jbe
cmp
jz
dec
ret

outchrl:
mov

If: inc
cup
jb
mov
call

setit: mov
mov
xor
mov
int
ret

[col]
al,[col]
al,[maxcol]
setit
[wrap] ,0
outchrl
[col]

[col],0
[row]
[row],24
setit
[row],23
scroll

dh,row
dl,col
bh,bh
ah,2
lOh

scroll: call
crop
jz
crop
jz
mov
jmp

myscroll:
mov
mov
mov
mov
mov
mov
xor
mov

getmod
al,2
myscroll
al,3
myscroll
al, 10
torom

bh,[attr]
bl,' '
bp, 80
ax,[base]
es,ax
ds,ax
di,di
si,160

2-52

MOV
cld
CMP
jz

ex,23*80

ax,0b800h
colorcard

sret:

rep
MOV
MOV
rep
push
pop
ret

movsw
ax,bx
ex, bp
stosw
cs
ds

colorcard:
MOV dx,3dah

wait2: in
test
jz
MOV
MOV

al,dx
al, 8
wait2
al,25b
dx,3d8h

out
rep
MOV
MOV
rep
MOV
MOV

dx,al ;turn off video
movsw
ax,bx
ex,bp
stosw
al,29k
dx,3d8h

out
jmp

dx,al turn on video
sret

GETWOD: MOV AH,15
INT
MOV
DEC

16 ;get column information
BPAGE,BH
AH

MOV
RET

WORD PTR MODE,AX

r
r
r CONSOLE READ ROUTINE

2-53

CON$READ:
JCXZ CON$EXIT

CON$LODP:
PUSH CX ;SAVE COUNT
CALL (MIN ;GET CHAR IN AL
POP ex
STOSB ;STORE CHAR AT ES:DI
LOOP CON$LOOP

CON$EXIT:
JMP EXIT

INPUT SINGLE CHAR INTO AL

CHRIN: XOR

XCHG
OR
JNZ

AX, AX

AL,ALT AH
AL,AL
KEYRET

; GET CHARACTER & ZERO ALTAH

INAGN:

ALT10:

KEYRET:

XOR
INT

OR
JZ
OR
JNZ
MOV
RET

AH,AH
22

AX,AX
INAGN
AL,AL
KEYRET
ALTAH,AH

; Check for non~key after BREAK

; SPECIAL CASE?

;STORE SPECIAL KEY

r
r
7 KEYBOARD NON DESTRUCTIVE READ, NO WAIT

OON$RDND:
MOV
OR
JNZ

AL,[ALTAH]
AL,AL
RDEXIT

2-54

RD1: MOV AH,1
INT 22
JZ CONBUS
OR AX,AX
JNZ RDEXIT
MOV AH,0
INT .22
JMP C0N$RDND

RDEXIT: LDS BX,[PTRSAV]
MOV [BX].MEDIA,AL

EXVEC: JMP EXIT
CONBUS: JMP BUS$EXIT

; KEYBOARD FLUSH ROUTINE

CON$FLSH:
MOV [ALTAH],0 ;Clear out holding buffer

PUSH DS
XOR BP, BP
MOV DS,BP ;Select segment 0
MOV DS-.BYTE PTR 41AH,1EH ;Reset KB queue head

;pointer
MOV DS:BYTE PTR 41CH,1EH xReset tail pointer
POP DS
JMP EXVEC

CONSOLE WRITE ROUTINE

OON$WRIT:

JCXZ EXVEC
PUSH CX
MOV AH,3 ;SET CURRENT CURSOR POSITION
XOR BX,BX
INI 16

2-55

MOV
POP

WORD PTR [COL],DX
CX

OON$LP: MOV AL,ES:[DI] ;GET CHAR
INC DI
CALL OUTC ; OUTPUT CHAR
LOOP OON$LP ;REPEAT UNTIL ALL THROUGH
JMP EXVEC

COUT: STI
PUSH DS
PUSH CS
POP DS
CALL OUTC
POP
IRET

DS

OUTC: PUSH AX
PUSH CX
PUSH DX
PUSH SI
PUSH DI
PUSH ES
PUSH BP
CALL . VIDEO
POP BP
POP ES
POP DI
POP SI
POP DX
POP CX
POP
RET

AX

; OUTPUT SINGLE CHAR IN AL TO VIDEO DEVICE

VIDEO: MOV SI,OFFSET STATE

2-56

JMP [SI]

SI: CMP
JNZ
MOV
RET

AL,ESC
SIB
WORD PTR

;ESCAPE SEQUENCE?

[SI],OFFSET S2

SIB: CALL CHROUT
S1A: MOV WORD PTR [STATE] ,OFFSET SI

RET

S2: PUSH AX
CALL GETMOD
POP AX
MOV BX,OFFSET CMDTABL-3

S7A: ADD BX,3
CMP BYTE PTR [BX],0
JZ S1A
CMP BYTE PTR [BX],AL
JNZ S7A
JMP WORD PTR [BX+1]

MOVCUR: CMP BYTE PTR [BX] ,AH
JZ SETCUR
ADD BYTE PTR [BX] ,AL

SETCUR: MOV DX,WORD PTR COL
XOR BX,BX
MOV AH,2
INT 16
JMP S1A

CUP: MOV WORD PTR [SI],OFFSET CUP1
RET

CUP1: SUB AL,32
MOV BYTE PTR [ROW],AL
MOV WORD PTR [SI],OFFSET CUP2
RET

CUP2: SUB AL,32
MOV BYTE PTR [COL],AL

2-57

JMP SETCUR

SM: MOV WORD PTR [SI],OFFSET S1A
RET -

CUH: MOV
JMP

WORD PTR COL,0
SETCUR

CUF: MOV AH,MAXOOL
MOV AL,1

CUF1: MOV BX,OFFSET COL
JMP MOVCUR

CUB: MOV AX,00FFH
JMP CUF1

CUU: MOV AX,00FFH
CUU1: MOV BX,OFFSET ROW

JMP MOVCUR

CUD: MOV AX, 23*2 561-1
JMP CUU1

PSCP: MOV AX,WORD PTR COL
MOV SAVCR,AX
JMP SETCUR

PRCP: MOV AX,SAVOR
MOV WORD PTR COL,AX
JMP SETCUR

ED: CMP BYTE PTR [ROW],24
JAE ELI

MOV CX,WORD PTR COL
MOV DR, 24
JMP ERASE

2-58

ELI: MOV BYTE PTR [COL] ,0
EL: MOV CX rWORD PTR [COL]
EL2: MOV DH,CH
ERASE: MOV DL,MAXOOL

MOV BH,ATTR
MOV AX,060OH
INT 16

ED3: JMP SETCUR

RM: MOV WORD PTR [SI] , OFFSET RM1
RET

RM1: XOR ex, ex
MOV CH,24
JMP EL2

CON$INIT:
int llh
and al,00110000b
cmp al,00110000b
jnz iscolor
mov [base],0b000h ;look for bw card

iscolor •

cmp al,00010000b ;look for 40 col mode
ja setbrk
mov [mode] ,0
MOV [maxcol],39

setbrk:
XOR BX,BX
MOV DS,BX
MOV BX,BRKADR
MOV WDRD PTR [BX] ,OFFSET BREAK
MOV WDRD PTR [BX+2],CS

MOV BX,29H*4
MOV WDRD PTR [BX] , OFFSET COTT
MOV WDRD PTR [BX+2] ,CS
LDS BX,CS: [PTRSAV]
MOV WDRD PTR [BX] .TRANS,OFFSET CON$INIT

2-59

;SET BREAK ADDRESS
MOV [BX].TRANS+2,CS
JMP EXIT

CODE ENDS
END

2-60

3. MS-DOS TECHNICAL INFORMATION

3.1 MS-DOS INITIALIZATICN

MS-DOS initialization consists of several steps.
Typically, a RDM (Read Only Memory) bootstrap
obtains control, and then reads the boot sector
off the disk. The boot sector then reads the
following files:

o 10.SYS

o MSDOS.SYS

Once these files are read, the boot process
begins.

3.2 THE COMMAND PROCESSOR

The command processor supplied with MS-DOS (file
COMMAND.OOM) consists of three parts:

1. A resident part resides in memory. This part
contains routines to process Interrupts 23H
(ALT-C Exit Address) and 24H (Fatal Error
Abort Address), as well as a routine to reload
the transient part, if needed. All standard
MS-DOS error handling is done within this part
of COMMAND.COM. This includes displaying
error messages and processing the Abort,
Retry, or Ignore messages.

3-1

COMMAND.COM

2* An initialization part is given control during
initialization; it contains the AUTOEXEC file
processor setup routine. The initialization
part determines the segment address at which
programs can be loaded. It is overlaid by the
first program CCM4AND.COM loads because it is
no longer needed.

3. A transient part is loaded at the high end of
memory. This part contains all of the
internal command processors and the batch file
processor. The transient part of the command
processor produces the system prompt (such as
A>), reads the command from keyboard (or batch
file) and causes it to be executed. For
external commands, this part builds a command
line and issues the EXEC system call (Function
Request 4BH) to load and transfer control to
the program.

3.3 MS-DOS DISK AUJOCATICN

The MS-DOS area is formatted as follows:

o Reserved area — variable size

o First copy of file allocation table — variable
size

o Second copy of file allocation table —
variable size (optional)

o Additional copies of file allocation table —
variable size (optional)

o Root directory — variable size

o File data area

3-2

CCM4AND.COM

Allocation of space for a file in the data area is
not pre-allocated. The space is allocated one
cluster at a time. A cluster (or allocation unit)
consists of one or more consecutive sectors; all
of the clusters for a file are "chained" together
in the File Allocation Table (FAT). (Refer to
Chapter 3.5.) There is usually a second copy of
the FAT kept, for data integrity. Should the disk
develop a bad sector in the middle of the first
FAT, the second can be used. This avoids loss of
data due to an unusable disk.

3.4 MS-DOS DISK DIRECTORY

FORMAT builds the root directory for all disks.
The directory's location on disk and the maximum
number of entries are dependent on the media.

Since directories other than the root directory
are regarded as files by MS-DOS, there is no limit
to the number of files they may contain.

All directory entries are 32 bytes in length, and
are in the following format (note that byte
offsets are in hexadecimal):

0-7 Filename. Eight characters, left aligned
and padded, if necessary, with blanks.
The first byte of this field indicates the
file status as follows:

OOH The directory entry has never been
used. This is used to limit the
length of directory searches, for
performance reasons.

3-3

2EH The entry is for a directory. If
the second byte is also 2EH, then
the cluster field contains the
cluster number of this directory's
parent directory (00008 if the
parent directory is the root
directory). Otherwise, bytes 018
through 0AH are all spaces, and the
cluster field contains the cluster
number of this directory.

ESH The file was used, but it has been
erased.

Any other character is the first character
of a filename.

8-OA Filename extension.

0B File attribute. The attribute byte is
mapped as follows (values are in
hexadecimal):

01 File is marked read-only. An attempt
to open the file for writing using
the Open File system call (Function
Request ZV8) results in an error code
being returned. This value can be
used along with other values below.
Attempts to delete the file with the
Delete File system call (138) or
Delete a Directory Entry (418) will
also fail.

02 Bidden file. The file is excluded
from normal directory searches.

04 System file. The file is excluded
from normal directory searches.

3-4

08 The entry contains the volume label
in the first 11 bytes. The entry
contains no other usable information
(except date and time of creation),
and may exist only in the root
directory.

10 The entry defines a sub-directory,
and is excluded from normal directory
searches.

20 Archive bit. The bit is set to "on"
whenever the file has been written to
and closed.

Note: The system files (IO.SYS and
MSDOS.SYS) are marked as read-only,
hidden, and system files. Files can
be marked hidden when they are
created. Also, the read-only, hidden,
system, and archive attributes may be
changed through the Change Attributes
system call (Function Request 43H).

00-15 Reserved.

16-17 Time the file was created or last updated.
The hour, minutes, and seconds are mapped
into two bytes as follows:

Offset 17H
|h|h|h|h|h|m|m|m|

7 4 3 2 0

Offset 16H
|m|m|m|s|s|s|s|s|

7 5 4 0

3-5

where:

18-19

H is the binary number of hours (0-23)
M is the binary number of minutes

(0-59)
S is the binary number of two-second

increments

Date the file was created or last updated.
The year, month, and day are mapped into
two bytes as follows:

Offset 19H
|y|y|y|y|y|y|y|m|

7 io

Offset 18H
|m|m|m|d|d|d|d|d|
7 5 4 0

where:

Y is 0-119 (1980-2099)
M is 1-12
D is 1-31

1A-1B Starting cluster; the cluster number of
the first cluster in the file.

The first cluster for data space on all
disks is cluster 002.

The cluster number is stored with the
least significant byte first.

3-6

Note: Refer to Chapter 3.5.1, for details
about converting cluster numbers to
logical sector numbers.

1C-1F File size in bytes. The first word of
this four-byte field is the low-order part
of the size.

3.5 FILE ALLOCATION TABLE (EAT)

The following information is included for system
programmers who wish to write installable device
drivers. This section explains how MS-DOS uses
the File Allocation Table to convert the clusters
of a file to logical sector numbers. The driver
is then responsible for locating the logical
sector on disk. Programs must use the MS-DOS file
management function calls for accessing files;
programs that access the FAT are not guaranteed to
be upwardly compatible with future releases of
MS-DOS.

The File Allocation Table is an array of 12-bit
entries (1-1/2 bytes) for each cluster on the
disk. The first two FAT entries map a portion of
the directory; these FAT entries indicate the size
and format of the disk.

The second and third bytes currently always
contain FFH.

The third FAT entry, which starts at byte offset
4, begins the mapping of the data area (cluster
002). Files in the data area are not always
written sequentially on the disk. The data area
is allocated one cluster at a time, skipping over
clusters already allocated. The first free
cluster found will be the next cluster allocated,

3-7

regardless of its physical location on the disk.
This permits the most efficient utilization of
disk space because clusters made available by
erasing files can be allocated for new files.

Each FAT entry contains three hexadecimal
characters:

000 If the cluster is unused and available.

FF7 The cluster has a bad sector in it.
MS-DOS will not allocate such a cluster.
CHKDSK counts the number of bad clusters
for its report. These bad clusters are
not part of any allocation chain.

FF8-FFF Indicates the last cluster of a file.

XXX Any other characters that are the
cluster number of the next cluster in
the file. The cluster number of the
first cluster in the file is kept in
the file’s directory entry.

The File Allocation Table always begins on the
first section after the reserved sectors. If the
FAT is larger than one sector, the sectors are
contiguous. Two copies of the FAT are usually
written for data integrity. The FAT is read into
one of the MS-DOS buffers whenever needed (open,
read, write, etc.). For performance reasons, this
buffer is given a high priority to keep it in
memory as long as possible.

3-8

3.5.1 USING THE FILE ALLOCATION TABLE

Use tiie directory entry to find the starting
cluster of the file. Next, to locate each
subsequent cluster of the file:

1. Multiply the cluster number just used by 1-1/2
(each FAT entry is 1-1/2 bytes long).

2. The whole part of the product is an offset
into the FAT, pointing to the entry that maps
the cluster just used. That entry contains
the cluster number of the next cluster of the
file.

3. Use a MOV instruction to move the word at the
calculated FAT offset into a register.

4. If the last cluster used was an even number,
keep the low-order 12 bits of the register by
ANDing it with FFF; otherwise, keep the high-
order 12 bits by shifting the register right 4
bits with a SHR instruction.

5. If the resultant 12 bits are FF8H to FFFH the
file contains no more clusters. Otherwise,
the 12 bits contain the cluster number of the
next cluster in the file.

3-9

To convert the cluster to a logical sector number
(relative sector, such as that used by Interrupts
25H and 26H and by DEBUG):

1. Subtract 2 from the cluster number.

2. Multiply the result by the number of sectors
per cluster.

3. Add to this result the logical sector number
of the beginning of the data area.

3.6 MS-DOS STANDARD DISK FORMATS

On an MS-DOS disk, the clusters are arranged on
disk to minimize head movement for multi-sided
media. All of the space on a track (or cylinder)
is allocated before moving on to the next track.
This is accomplished by using the sequential
sectors on the lowest-numbered head, then all the
sectors on the next head, and so on until all
sectors on all heads of the track are used. The
next sector to be used will be sector 1 on head 0
of the next track.

3-10

4. MS-DOS CONTROL BLOCKS AND WORK AREAS

4.1* MS-DOS PROGRAM SEGMENT

When an external command is typed, or when you
execute a program through the EXEC system call,
MS-DOS determines the lowest available free memory
address to use as the start of the program. This
area is called the Program Segment.

The first 256 bytes of the Program Segment are set
up by the EXEC system call for the program being
loaded into memory. The program is then loaded
following this block. An .EXE file with minalloc
and maxalloc both set to zero is loaded as high as
possible.

At offset 0 within the Program Segment, MS-DOS
builds the Program Segment Prefix control block.
The program returns from EXEC by one of four
methods:

1. A long jump to offset 0 in the Program Segment
Prefix

2. By issuing an INT 20H with CS:0 pointing at
the PSP

3. By issuing an INT 21H with register AH=0 with
CS:0 pointing at the PSPS, or 4CH and no
restrictions on CS

4. By a long call to location 50H in the Program
Segment Prefix with AH=0 or Function Request
4CH

4-1

Note: It is the responsibility of all programs to
ensure that the CS register contains the segment
address of the Program Segment Prefix when
terminating via any of these methods, except
Function Request 4CH. For this reason, using
Function Request 4CH is the preferred method.

All four methods result in transferring control to
the program that issued the EXEC. During this
returning process, Interrupts 22H, 23H, and 24H
(Terminate Address, ALT-C Exit Address, and Fatal
Error Abort Address) addresses are restored from
the values saved in the Program Segment Prefix of
the terminating program. Control is then given to
the terminate address. If this is a program
returning to CCMMAND.CCM, control transfers to its
resident portion. If a batch file was in process,
it is continued; otherwise, CCMVIAND.CCM performs a
checksum on the transient part, reloads it if
necessary, then issues the system prompt and waits
for you to type the next command.

When a program receives control, the following
conditions are in effect:

1. For all programs:

The segment address of the passed environment
is contained at offset 2CH in the Program
Segment Prefix.

The environment is a series of ASCII strings
(totaling less than 32K) in the form:

NAME=parameter

4-2

Each string is terminated by a byte of zeros,
and the set of strings is terminated by
another byte of zeros. The environment built
by the command processor contains at least a
COMSPEC= string (the parameters on COMSPEC
define the path used by MS-DOS to locate
COMMAND.COM on disk). The last PATH and
PROMPT commands issued will also be in the
environment, along with any environment
strings defined with the MS-DOS SET command.

The environment that is passed is a copy of
the invoking process environment. If your
application uses a "keep process" concept, you
should be aware that the copy of the
environment passed to you is static. That is,
it will not change even if subsequent SET,
PATH, or PROMPT commands are issued.

Offset 50H in the Program Segment Prefix
contains code to call the MS-DOS function
dispatcher. By placing the desired function
request number in AH, a program can issue a
far call to offset 50H to invoke an MS-DOS
function, rather than issuing an Interrupt
21H. Since this is a call and not an
interrupt, MS-DOS may place any code
appropriate to making a system call at this
position. This makes the process of calling
the system portable.

The Disk Transfer Address (DTA) is set to 8OH
(default DTA in the Program Segment Prefix).

4-3

COMMAND.COM

File control blocks at 5CH and 6CH are
formatted from the first two parameters typed
when the command was entered. If either
parameter contained a pathname, then the
corresponding FCB contains only the valid
drive number. The filename field will not be
valid.

An unformatted parameter area at 81H contains
all the characters typed after the command
(including leading and imbedded delimiters),
with the byte at 80H set to the number of
characters. If the <, >, or parameters were
typed on the command line, they (and the
filenames associated with them) will not
appear in this area; redirection of standard
input and output is transparent to
applications.

Offset 6 (one word) contains the number of
bytes available in the segment.

Register AX indicates whether or not the drive
specifiers (entered with the first two
parameters) are valid, as follows:

o AL=FF if the first parameter contained an
invalid drive specifier (otherwise AL=00)

o AH=FF if the second parameter contained an
invalid drive specifier (otherwise AH=00)

Offset 2 (one word) contains the segment
address of the first byte of unavailable
memory. Programs must not modify addresses
beyond this point unless they were obtained by
allocating memory via the Allocate Memory
system call (Function Request 48H).

4-4

2. For Executable (.EXE) programs:

DS and ES registers are set to point to the
Program Segment Prefix.

CS, IP, SS, and SP registers are set to the
values passed by MS-LINK.

3. For Executable (.COM) programs:

All four segment registers contain the
segment address of the initial allocation
block that starts with the Program Segment
Prefix control block.

All of user memory is allocated to the
program. If the program invokes another
program through Function Request 4BH, it must
first free some memory through the Set Block
(4AH) function call, to provide space for the
program being executed.

The Instruction Pointer (IP) is set to 100H.

The Stack Pointer register is set to the end
of the program's segment. The segment size at
offset 6 is reduced by 100H to allow for a
stack of that size.

A word of zeros is placed on top of the stack.
This is to allow a user program to exit to
COMMAND.COM by doing a RET instruction last.
This assumes, however, that the user has
maintained his stack and code segments.

4-5

COMMAND.COM

5. .EXE FIDS STRUCTURE AND LOADING

The .EXE files produced by MS-LINK consist of two
parts:

o Control and relocation information

o The load module

The control and relocation information is at the
beginning of the file in an area called the
header. The load module immediately follows the
header.

The header is formatted as follows. (Note that
offsets are in hexadecimal.)

OFFSET CONTENTS___________________

00-01 Must contain 4DH, 5AH.

02-03 Number of bytes contained in last page;
this is useful in reading overlays.

04-05 Size of the file in 512-byte pages,
including the header.

06-07 Number of relocation entries in table.

08-09 Size of the header in 16-byte paragraphs.
This is used to locate the beginning of
the load module in the file.

5-1

OA-OB Minimum number of 16-byte paragraphs
required above the end of the loaded
program.

OC-OD Maximum number of 16-byte paragraphs
required above the end of the loaded
program. If both minalloc and maxalloc
are 0, then the program will be loaded as
high as possible.

0E-0F Initial value to be loaded into stack
segment before starting program execution.
This must be adjusted by relocation.

10-11 Value to be loaded into the SP register
before starting program execution.

12-13 Negative sum of all the words in the
file (checksum).

14-15 Initial value to be loaded into the IP
register before starting program
execution.

16-17 Initial value to be loaded into the CS
register before starting program
execution. This must be adjusted by
relocation.

18-19 Relative byte offset from beginning of
run file to relocation table.

1A-1B The number of the overlay as generated
by MS-LINK.

The relocation table follows the formatted area
described above. This table consists of a
variable number of relocation items. Each
relocation item contains two fields: a two-byte

5-2

offset value, followed by a two-byte segment
value. These two fields contain the offset into
the load module of a word which requires
modification before the module is given control.
The following steps describe this process:

1. The formatted part of the header is read into
memory. Its size is 1BH.

2. A portion of memory is allocated depending on
the size of the load module and the allocation
numbers (OA-OB and OC-OD). MS-DOS attempts to
allocate FFFFH paragraphs. This will always
fail, returning the size of the largest free
block. If this block is smaller than minalloc
and loadsize, there will be no memory error.
If this block is larger than maxalloc and
loadsize, MS-DOS will allocate (maxalloc +
loadsize). Otherwise, MS-DOS will allocate
the largest free block of memory.

3. A Program Segment Prefix is built in the
lowest part of the allocated memory.

4. The load module size is calculated by
subtracting the header size from the file
size. Offsets 04-05 and 08-09 can be used for
this calculation. The actual size is
downward-adjusted based on the contents of
offsets 02-03. Based on the setting of the
high/lcw loader switch, an appropriate segment
is determined at which to load the load
module. This segment is called the start
segment.

5. The load module is read into memory beginning
with the start segment.

5-3

6. The relocation table items are read into a
work area.

7. Each relocation table item segment value is
added to the start segment value. This
calculated segment, plus the relocation item
offset value, points to a word in the load
module to which is added the start segment
value. The result is placed back into the
word in the load module.

8. Once all relocation items have been processed,
the SS and SP registers are set from the
values in the header. Then, the start segment
value is added to SS. The ES and DS registers
are set to the segment address of the Program
Segment Prefix. The start segment value is
added to the header CS register value. The
result, along with the header IP value, is the
initial OS;IP to transfer to before starting
execution of the program.

5-4

APPENDIX A: BIOS IOCTL SEQUENCES

MS-DOS 2.1 is able to pass information to and from
device drivers through the I/O Control (IOCTL)
function call.

The data structure used allows data to be
transferred in both directions with a single IOCTL
call. When the call is made, the DS:DX register
pair should be a pointer to the structure, as
follows:

DS:OX --> Type | Status | Device driver information

The elements of the data structure have the
following definition:

o Type — WORD value that defines the operation
to be performed.

o Status — WORD value that indicates the return
status of the operation.

o Device driver information — The device­
dependent information that is being transferred
to or from the device driver.

All future IOCTL enhancements should use this data
structure.

A-l

A.1 SPECIFIC IMPLEMENTATICN FOR VICTOR DISK
DRIVERS

Get_Disk_Drive_Physical_Info: This function is
used to get physical information about the disk
drives on a particular system. The registers
should get the following values:

AH — IOCTL function number (44h)
AL — IOCTL device driver read request

value (4)
BL — drive (0 = A, 1 = B, etc.)
CX — length in bytes of this request

structure (6)
DS:DX — pointer to data structure

For this function, the data structure is:

DS:DX —> Type | Status | Disk—Type | Disk—Location

Disk—Type and Disk—Location are both BYTE values.
The DOS will return from the IOCTL function with
carry set if there are bad values in the registers
(e.g., an invalid drive value). If carry is
clear, then the request was successful.

When the request is made, the elements of the data
structure should have the following values:

Type --- lOh
Status = Any Value
Disk—Type = Any Value
Disk—Location = Any Value

A-2

After returning from the request, the elements of
the data structure have the following values:

Type - unchanged
Status - 0 if the request type was

correct (i.e., if Type was
10 h on entry)

Disk-Type - 0 if the drive is a floppy
drive

- 1 if the drive is a hard drive
volume

Disk—Location (meaningful only if Disk Type
is floppy)

- 0 if drive is on the left side
of the machine

- 1 if drive is on the right
side of the machine

To implement other IOCTL device channel functions,
define Type to have a different value. A Type
value of 10h should always indicate an IOCTL
Get_Disk_Drive_Physical—info request. Currently,
Type values of 0 - F are reserved for future use.

A.2 SPECIFIC IMPLEMENTATION FOR INTERFACE PORT
ACCESS

TYPE

For port access via IO Control, the type is always
11 hexadecimal. The parameter block types
determine which port type is being accessed (i.e.,
parallel or serial).

A-3

STATUS

Status is returned to reflect if an error
occurred. An error could occur when an incorrect
type or an invalid function is being requested.
Status contains the code describing the cause of
the error. If an error does not occur, status is
returned as false (0). Currently, the only codes
used for serial port access are:

01 -when an invalid function is being requested.
-1 -when an invalid type is being requested.

PARAMETER BLOCK

The first word of the parameter block for port
access should always be the parameter block type.
This is used to notify the driver of the structure
of the parameter block that follows.

Parameter block, type (WORD)
-Describes the type
of port being
accessed.
Serial -- 0
Parallel = 1

SERIAL

The structure definition of the serial port IO
control parameter block is as follows:

Baud (2 bytes)

These bytes must be set according to Table A-l.

A-4

Table A-l: Definition of Serial Port 10 Control
Parameter Block

BAUD LOW BYTE HIGH BYTE

50 lah 06h
75 llh 04h
110 c6h 02h
134.5 44h 02h
150 08h 02h
200 86h Olh
300 04h Olh
600 82h OOh
1.2k 41h OOh
1.8k 26h OOh
2.0k 27h OOh
2.4k 20h OOh
3.6k 15h OOh
4.8k lOh OOh
9.6k 08h OOh
19.2k 04h OOh

For the following, refer
Reference Manual for the

to the Technical
bit format of the bytes.

CR control (byte) Control register 0

Interrupt enable (byte) Control register 1

Interrupt mode (byte) Control register 2
(channel A)

Interrupt vector (byte) Control register 2
(channel B)

Receiver (byte) Control register 3

Sampling (byte) Control register 4

A-5

Transmitter (byte) Control register 5

SYNC character (byte) Control register 6

SYNC character (byte) Control register 7

Via 10 control, two operations can be performed on
the serial ports. You can set the port for a
certain configuration and you may request the
current port configuration. 10 control functions
2 and 3 (read and write) perform the operations
respectively. When a request is made to set the
port, the configuration information is saved.
Then if the current configuration is requested the
parameter block last used to set the port is
returned to you.

To use 10 control, the following register
initializations have to be made before performing
an MS-DOS INT 21h:

AH = I0CTL function number (44h)
AL = I0CTL write request (3) or IOCTL read

request (2)
CX = length in bytes of information structure

(9)
DS:DX = pointer to the information structure

PARALLEL

The driver for the parallel port is the currently
used driver; but functionally is added to return
extended statuses such as printer out of paper,
and printer offline.

A-6

The parameter block has the following structure:

prameter block type WORD,

status code WORD

Only the status codes listed are implemented, but
other codes may be added as necessary.

0 Online and ready
1 Offline
2 Out of paper

To use 10 control, the following register
initializations have to be made before performing
an MS-DOS 21h.

AH - IOCTL function number (44h)
AL - IOCTL read request (=2)
CX - Length in bytes of information

structure
DS:DX - pointer to the information structure

A-7

INDEX

Absolute Disk Read (Interrupt 25H), 1-26
Absolute Disk Write (Interrupt 26H), 1-27 to 1-28
Allocate Memory (Function 48H), 1-137
ALT-C Check (Function 338), 1-107 to 1-108
ALT-C Exit Address (Interrupt 238),

1-120 to 1-121, 3-1
Archive bit, 3-5
ASCIZ, 1-112 to 1-113
Attribute field, 2-4 to 2-5
Attributes, 1-16
AUTOEXEC file, 3-2
Auxiliary Input (Function 03H), 1-41
Auxiliary Output (Function 048), 1-42

BASIC, 1-2
BIOS, 1-28, 2-8, 2-21
BIOS Parameter Block, 2-14 to 2-15, 2-19
Bit 8, 2-12
Bit 9, 2-13
Block devices, 2-2, 2-10, 2-14 2-16, 2-21

example, 2-24 to 2-44
Boot sector, 3-1
BPB, 2-10 to 2-12
BPB pointer, 2-14
Buffered Keyboard Input (Function 0AH),

1-50 to 1-51
BUILD BPB, 2-5, 2-10, 2-12
Busy bit, 2-13, 2-22 to 2-23

Case mapping, 1-114
Change Attributes (Function 438), 1-127 to 1-28
Change Current Directory (Function 3B8), 1-117
Character device, 2-1, 2-5 to 2-6

Example, 2-45 to 2-59
Check Keyboard Status (Function 0B8), 1-53 to 1-54

Index-1

CLOCK device, 2-5, 2-24
Close a File Handle (Function 3EH), 1-121 to 1-122
Close File (Function 10H), 1-60 to 1-61
Cluster, 3-3, 3-6 to 3-10
Command code field, 2-10
Command processor, 3-1
COMMAND.CCM, 3-1 to 3-2
CCMSPEC=, 4-3
CON device, 2-7
CONFIG.SYS, 2-8, 2-18
Console input/output calls, 1-3
Control blocks, 4-1
Control information, 5-1
CP/M-compatible calling sequence, 1-32
Create a File (Function 3CH), 1-118 to 1-119
Create File (Function 16H), 1-71 to 1-72
Create Sub-Directory (Function 39H), 1-115
Current Disk (Function 19H), 1-75 to 1-76

DATE, 2-24
Delete a Directory Entry (Function 41H), 1-125
Delete File (Function 13H), 1-66 to 1-67
Device drivers, 3-7

Creating, 2-7
Example, 2-24, 2-45
Installing, 2-7 to 2-8
Intelligent, 2-16
Unintelligent, 2-16

Device header, 2-3
Direct Console I/O (Function 06H), 1-45 to 1-46
Direct Console Input (Function 07H), 1-46 to 1-47
Directory entry, 1-9
Disk allocation, 3-2 to 3-3
Disk Directory, 3-3 to 3-4
Disk errors, 1-25
Disk format, MS-DOS, 3-7
Disk I/O System calls, 1-4
Disk Reset (Function ODH), 1-56
Disk Transfer Address, 1-68, 4-3

Index-2

Display Character (Function 02H), 1-40
Display String (Function 09H), 1-49 to 1-50
Done bit, 2-12
Driver, 2-3
DS:DX register, A-l
Duplicate a File Handle (Function 45H), 1-134

Error codes, 1-22
Error handling, 3-1
Example block device driver, 2-24 to 2-44
Example character device driver, 2-45 to 2-59
.EXE files, 5-1
Extended File Control Block, 1-8

FAT, 1-15, 2-12, 2-15, 3-3, 3-7 to 3-8
FAT ID byte, 2-12, 2-20
Fatal Error Abort Address (Interrupt 24H),

1-21 to 1-22, 3-1
FCB, 1-4
File Allocation Table, 1-15, 3-3, 3-7 to 3-8
File Control Block, 1-4 to 1-6, 1-8, 1-58

Extended, 1-8
Fields, 1-9, 1-10,
Opened, 1-4
Unopened, 1-4

File Size (Function 23H), 1-83 to 1-85
Filename separate, 1-95
Filename terminators, 1-96
Find Match File (Function 4EH), 1-146 to 1-147
FLUSH, 2-23
Flush Buffer (Function OCH), 1-54 to 1-55
Force a Duplicate of Handle (Function 46H), 1-135
FORMAT, 3-3
FORTRAN, 1-2
Free Allocated Memory (Function 49H),

1-138 to 1-139
Function call parameters, 2-17 to 2-18
Function Request (Interrupt 21H), 1-19, 4-3

Index-3

Function Requests
Function OOH, 1-37 to 1-38
Function 01H, 1-39
Function 02H, 1-40
Function 03H, 1-41
Function 04H, 1-42 to 1-43
Function 05H, 1-43 to 1-44
Function 06H, 1-45 to 1-46
Function 07H, 1-46 to 1-47
Function 08H, 1-48 to 1-49
Function 09H, 1-49 to 1-50
Function OAH, 1-50 to 1-51
Function OBH, 1-53 to 1-54
Function OCH, 1-54 to 1-55, 1-168
Function ODH, 1-56
Function OEH, 1-57
Function OFH, 1-58 to 1-59
Function 10H, 1-60 to 1-61
Function 11H, 1-62 to 1-63
Function 12H, 1-64 to 1-66
Function 13H, 1-66 to 1-67
Function 14H, 1-68 to 1-70
Function 151, 1-70 to 1-71
Function 16H, 1-71 to 1-72
Function 17H, 1-73 to 1-74
Function 19H, 1-75 to 1-76
Function 1AH, 1-76 to 1-77
Function 21H, 1-77 to 1-78
Function 22H, 1-80 to 1-82
Function 23H, 1-83 to 1-85
Function 24H, 1-85 to 1-87
Function 25H, 1-87 to 1-88
Function 27H, 1-89 to 1-90
Function 28H, 1-91 to 1-93
Function 29H, 1-94
Function 2AH, 1-97 to 1-98
Function 2BH, 1-98 to 1-99
Function 2CH, 1-100 to 1-101
Function 2DH, 1-101 to 1-102

Index-4

Function 2EH, 1-103
Function 218, 1-105
Function 30H, 1-105 to 1-106
Function 318, 1-106 to 1-107
Function 338, 1-107 to 1-108
Function 358, 1-109
Function 368, 1-110
Function 388, 1-111 to 1-114
Function 398, 1-115
Function 3A8, 1-116
Function 388, 1-117
Function 3CH, 1-118 to 1-119
Function 3D8, 1-119 to 1-120
Function 388, 1-121 to 1-122
Function 318, 1-122 to 1-123
Function 408, 1-123 to 1-124
Function 418, 1-125
Function 428, 1-126 to 1-127
Function 438, 1-127 to 1-128
Function 448, 1-129
Function 458, 1-134
Function 468, 1-135
Function 478, 1-136
Function 488, 1-137 to 1-138
Function 498, 1-138 to 1-139
Function 4A8, 1-139 to 1-140
Function 488, 1-140 to 1-141
Function 4CH, 1-144 to 1-145
Function 4D8, 1-145 to 1-146
Function 4E8, 1-146 to 1-147
Function 418, 1-148
Function 548, 1-149
Function 568, 1-149 to 1-150
Function 578, 1-151 to 1-152

Get Date (Function 2AH), 1-97 to 1-98
Get Disk Free Space (Function 36H), 1-110
Get Disk Transfer Address (Function 218), 1-105

Index-5

Get DOS Version Number (Function 308),
1-10 5 to 1-106

Get Interrupt Vector (Function 358), 1-109
Get Time (Function 2CB), 1-100 to 1-101
Get/Set Date/Time of File (Function 578),

1-151 to 1-152

Beader, 5-1
Bidden files, 1-63, 3-5
Hierarchical directories, 1-14
Bigh-level languages, 1-2

I/O Control (I0CTL), A-l
I/O Control for Devices (Function 448), 1-129, 2-5
INIT, 2-8, 2-14
Initial allocation block, 1-106
Installable device drivers, 2-8
Instruction Pointer, 4-5
Intelligent device driver, 2-16
Interface port access, A-3
Internal stack, 1-32
Interrupt entry point, 2-1 •
Interrupt handlers, 1-20
Interrupt-handling routine, 1-88
Interrupts, 1-16
Interrupt 208, 1-18, 1-38

. Interrupt 218, 1-19, 1-31
Interrupt 228, 1-20
Interrupt 236, 1-20, 1-39, 1-45, 1-48, 1-51
Interrupt 248, 1-21
Interrupt 258, 1-26
Interrupt 268, 1-27 to 1-28
Interrupt 278, 1-30

IO.SYS, 3-5
IOCTL bit, 2-5 to 2-6

Keep Process (Function 318), 1-106 to 1-107

Index-6

Load and Execute a Program (Function 4BH),
1-140 to 1-141

Load module, 5-1 to 5-2
Local buffering, 2-8
Logical sector, 3-7
Logical sector numbers, 3-7

Macro, 1-13
MEDIA CHECK, 2-11
Media descriptor byte, 2-11 2-16, 2-20
Modify Allocated Memory Blocks (Function 4AH),

1-139 to 1-140
Move a Directory Entry (Function 56H),

1-149 to 1-150
Move File Pointer (Function 42H), 1-126 to 1-127
MS-DOS initialization, 3-1
MS-LINK, 5-1, 5-2
MSDOS.SYS, 3-1, 3-5
Multiple media, 2-16
Name field, 2-6
NON DESTRUCTIVE READ NO WAIT, 2-22
Non IBM format, 2-12
Non IBM format bit, 2-5, 2-12
NUL device, 2-5

Offset 50H, 1-31
Open a File (Function 3DH), 1-119 to 1-120
Open File (Function 0FH), 1-58 to 1- 59

Parallel port driver, A-6
Parse File Name (Function 29H), 1-94
Pascal, 1-2
PATH, 4-3
Pointer to Next Device field, 2-4
Port access (via IO Control), A-3
Print Character (Function 05H), 1-43 to 1-44
Printer input/output call, 1-3
Program segment, 4-1

Index-7

Program Segment Prefix, 1-3, 1-20, 1-21, 1-31,
4-1, 4-2

Program Terminate (Interrupt 20H), 1-18, 1-38
PROMPT, 4-3

Random Block Read (Function 27H), 1-89 to 1-90
Random Block Write (Function 286), 1-91 to 1-93
Random Read (Function 21H), 1-77 to 1-78
Random Write (Function 226), 1-80 to 1-82
Read From File/Device (Function 3F6),

1-122 to 1-123
Read Keyboard (Function 086), 1-48 to 1-49
Read Keyboard and Echo (Function 016), 1-39
Read Only Memory, 3-1
READ or. WRITE, 2-21 to 2-22
Record Size, 1-70
Registers, 1-32
Relocation information, 5-1
Relocation item offset value, 5-4
Relocation table, 5-4
Remove a Directory Entry (Function 3A6), 1-116
Rename File (Function 176), 1-73 to 1-74
Request Reader, 2-8 to 2-9
Retrieve the Return Code of a Child

(Function 4D6), 1-145 to 1-146
Return Country-Dependent Info. (Function 386),

1-111 to 1-114
Return Current Setting (Function 546), 1-149
Return Text of Current Directory (Function 476),

1-136
Returning control to MS-DOS, 1-2 to 1-3
ROM, 3-1
Root directory, 1-15, 3-3

Search for First Entry (Function 116),
1-62 to 1-63

Search for Next Entry (Function 126), 1-64 to 1-66
Select Disk (Function 0E6), 1-57
Sequential Read (Function 146), 1-68 to 1-70

Index-8

Sequential Write (Function 151), 1-70 to 1-71
Serial port IO, A-4
SET, 4-3
Set Date (Function 2BH), 1-98 to 1-99
Set Disk Transfer Address (Function 1AH),

1-76 to 1-77
Set Relative Record (Function 24H), 1-85 to 1-87
Set Time (Function 2DH), 1-101 to 1-102
Set Vector (Function 25H), 1-87 to 1-88
Set/Reset Verify Flag (Function 2EH), 1-103
Start segment value, 5-3
STATUS, 2-22 to 2-23
Status word, 2-12
Step Through Directory (Function 4FH), 1-148
Strategy entry point, 2-1
Strategy routines, 2-6
System files, 1-64, 3-5
System prompt, 3-2

Terminate a Process (Function 4CH), 1-144 to 1-145
Terminate Address (Function 4CH), 4-2
Terminate Address (Interrupt 22H), 1-20, 3-2
Terminate But Stay Resident (Interrupt 27H), 1-30
Terminate Program (Function OOH), 1-37 to 1-38
TIME, 2-24
Type-ahead buffer, 2-23

Unintelligent device driver, 2-16 ,
Unit code, 2-9
User stack, 1-24

Volume label, 3-5

Wild card characters, 1-62, 1-64, 1-94
Write to a File/Device (Function 40H),

1-123 to 1-124

Xenix-compatible calls, 1-14

Index-9

