
IEEE-488
Interface

Reference Manual

Victor Institute
3240 8. Higuera Suite A

San Luis Obispo, CA 93401

COPYRIGHT

© 1983 by VICTOR®.

All rights reserved. This publication contains proprietary information
which is protected by copyright. No part of this publication may be
reproduced, transcribed, stored in a retrieval system, translated into
any language or computer language, or transmitted in any form what
soever without the prior written consent of the publisher. For informa
tion contact:

VICTOR Publications
380 El Pueblo Road
Scotts Valley, CA 95066
(408) 438-6680

TRADEMARK

VICTOR is a registered trademark of Victor Technologies, Inc.

NOTICE

VICTOR makes no representations or warranties of any kind
whatsoever with respect to the contents hereof and specifically dis
claims any implied warranties of merchantability or fitness for any
particular purpose. VICTOR shall not be liable for errors contained
herein or for incidental or consequential damages in connection with the
furnishing, performance, or use of this publication or its contents.

VICTOR reserves the right to revise this publication from time to time
and to make changes in the content hereof without obligation to notify
any person of such revision or changes.

First VICTOR printing March, 1983.

ISBN 0-88182-023-7 Printed in U.S.A.

II COMMUNICATIONS

CONTENTS

1. Overview 1-1

2. Background on the IEEE 488 Interface 2-1
2.1 Overview ...2-1
2.2 Overview of Generic Interfaces ... 2-1
2.3 Related Publications . .. 2-2

3. Technical Background .. 3-1
3.1 Basic Specifications and Limitations 3-1
3.2 Functional Explanation ... 3-1
3.3 Supported Functions ... 3-2

4. Implementation of IEEE 488 Communications........ 4-1
4.1 Data Lines .. 4-1
4.2 Control Lines .. 4-1

4.2.1 Handshake Lines 4-2
4.2.2 General Interface Management Lines 4-5

4.3 Notification of Service Request 4-13 ;
4.3.1 Service Request (SRQ) >. i...............................4-13
4.3.2 Polling of Devices: .'I .. 4-13

4.4 Specifications of Device Capabilities ,Vt.................. .4-14

5. High-Level IEEE 488 Functions,.,--- 5-1
5.1 Overview of Functions ..5-1

5.1.1 Getting Control Over a Device..................................... 5-1
5.1.2 Fundamental Device Communications5-2

, 5.1.3 Device Polling and Resetting .;..................................... 5-2
5.2 Advanced IEEE Bus Functions 5-3
5.3 Calling Sequences for High-Level Routines5-4

5.3.1 Parameters Used..5-4
5.3.2 Routines Available ... 5-6

IEEE Bl

5.4 High-Level Support from Programming Languages 5-19
5.4.1 Assembly Language and PL/M 5-20
5.4.2 Interpretive BASIC and GW BASIC..................... 5-20
5.4.3 Compiled BASIC ..5-24
5.4.4 Pascal .. 5-25

5.5 Set-up and Check-out of the IEEE 488 Interface5-27
5.6 Check-out Exercises 5-29

EXHIBITS
3a: Devices on an IEEE 488 Bus .. -.3-1
3b: Functions Supported by IEEE 488 ... 3-3
4a: Handshake Lines...4-3
4b: Data Handshake .. 4-4
4c: General Interface Management Lines v. 4-6
4d: Addresses for Talk and Listen Functions 4-8
5a: Interpretive BASIC Function Values 5-23
5b: IEEE Bus Cables 5-28

IV COMMUNICA TIONS

CHAPTERS

1. Overview

2. Background on the IEEE 488 Interface

3. Technical Background

4. Implementation of IEEE 488 Communications

5. High-Level IEEE 488 Functions

IEEE

IMPORTANT SOFTWARE
DISKETTE INFORMATION

For your own protection, do not use this product until you have made a
backup copy of your software diskette(s). The backup procedure is described
in the user’s guide for your computer.

Please read the DISKID file on your new software diskette. DISKID contains
important information including:

► The product name and revision number.

► The part number of the product.

► The date of the DISKID file.

► A list of the files on the diskette, with a description and revision number
for each one.

► Configuration information (when applicable).

► Release notes giving special instructions for using the product.

► Information not contained in the current manual, including updates,
additions, and deletions.

To read the DISKID file onscreen, follow these steps:

1. Load the operating system.

2. Remove your system diskette and insert your new software diskette.

3. Enter —

TYPE DISKID

and press Return.

4. The contents of the DISKID file is displayed on the screen. If the file
is large (more than 24 lines), the screen display will scroll. Type ALT-S
to freeze the screen display; type ALT-S again to continue scrolling.

VI COMMUNICA TIONS

OVERVIEW

The IEEE 488 communications interface is a powerful mechanism for
device communication and control. This parallel interface is used to
communicate with various devices (such as data acquisition and control
products, measurement devices, plotters, and printers) that conform to
the ANSI Standard MC1.1. The IEEE 488 communication protocol is
also referred to as the General Purpose Interface Bus (GP1B) and the
Hewlett-Packard Interface Bus (HP IB).

The IEEE 488 package consists of high-level functions compatible with
those offered by HP BASIC. These functions let application programs
custom-write drivers to control IEEE 488 compatible devices. Each
function lets control and data messages be exchanged with the desired
device.

The first part of this manual discusses communication interfaces in
general, and the IEEE 488 interface specifically. Next, the terminology
and communication considerations involved in using the IEEE 488
communication protocol are explained. Finally, the manual presents
specific information on available high-level device communication and
control functions, along with installation information and a communica
tion programming example.

IEEE 1-1

2
BACKGROUND ON THE IEEE 488
INTERFACE

OVERVIEW 2.1

The IEEE 488 interface manages communications between your com
puter (or another controller) and peripheral devices such as printers,
plotters and laboratory instruments. This generalized interface is a way
to physically connect these devices; it includes a communication pro
tocol for sending and retrieving data and control information between
interconnected devices.

Devices are connected by using digital communication over a parallel
bus. Specifications dictate the maximum number of devices on the bus,
maximum length of the data bus, and the maximum data rate. The
standard specification of this communication technique is IEEE 488
(1978) and ANSI MCI.I.

OVERVIEW OF GENERIC INTERFACES 2.2

Any interface system has two major elements: the message to be trans
ferred and the method for transporting that message. For a generalized
device communication interface, the types and contents of messages
cannot be limited. Many devices must use the interface, and a variety of
application programs must use these devices. The method of transfer
ring information, however, must be standardized—drivers and hard
ware must be operational with any device that conforms to the standard
interface definition.

IEEE 2-1

Interface standards define:

► Physical connectors for the communication line or bus.

► Electrical levels and timing for the line or bus.

► Communication protocol for message passing.

Interface standards allow the development of standard controller hard
ware that can be connected to any device compatible with a particular
interface. Specification of the communication protocol lets software
drivers (such as the IEEE 488 package) give application programs a
straightforward way to control and communicate with peripherals. The
communication driver can consider such application-irrelevant
(although critical) considerations as data validity and error recovery,
data pacing, and coordination and control of all the devices on the bus.

2.3 RELATED PUBLICATIONS

More information on the IEEE 488 interface standard can be found in
the following publications:

Digital Interface for Programmable Instrumentation, IEEE Standards,
345 E. 47th Street, New York, NY 10017.

ANSI Standards, ANSI, 1430 Broadway, New York, NY 10018.

2-2 COMMUN1CA TIONS

3
TECHNICAL BACKGROUND

BASIC SPECIFICATIONS
AND LIMITATIONS

3.1

3

The IEEE 488 interface has the following capabilities and limitations:

► Up to 15 devices can be connected to one contiguous bus.

► Up to 20 meters of total line or bus length (in a star or linear bus) can
be used.

► Your computer is capable of a maximum transfer rate of 2000 bytes
per second.

FUNCTIONAL EXPLANATION 3.2

You can look at the IEEE 488 bus as a common trunk or communication
line that has many devices attached to it (as shown in Exhibit 3a).

Exhibit 3a: Devices on an IEEE 488 Bus

IEEE 3-1

The 16 lines shown in Exhibit 3a consist of eight data lines capable of
sending one byte of information at a time; and eight control lines that
coordinate the attached devices. Since up to 15 devices can be con
nected to the bus, control lines are needed to keep all of the devices from
trying to communicate at the same time. The control lines also decide
when data is available on the data lines and other protocol considera
tions. Besides the 16 lines used in communication, there are 8 electrical
ground lines (not used for communication purposes).

Each device on the bus falls into one or more of the following categories:

► Listener: Receives data from the bus. Examples are printers, tape
recorders, and plotters. Since one device must do the talking, there
can be up to 14 Listeners on the bus.

► Talker: Transmits data to the other devices on the bus. Examples are
tape readers and signal generators. To avoid garbled messages, only
one device can talk at a time.

► Controller: An intelligent device that controls the bus by selecting
the communicating devices. Only one device—the computer—can
be Controller.

3.3 SUPPORTED FUNCTIONS

The IEEE 488 standard lists features or capabilities supported by
devices on the bus. Any device can use a set of features from the
functions listed in Exhibit 3b.

3-2 COMMUNICA TIONS

Exhibit 3b: Functions Supported by IEEE 488

NOTE: For more information, refer to Chapter 4.

FUNCTION
IEEE

MNEMONIC _____________ COMMENTS_____________

Talker, T These two functions are required for Talkers.
Extended Talker TE
Listener, L These two functions are required for Listeners.
Extended Listener LE
Source Handshake SH Required for transmitting data messages.
Acceptor
Handshake

AH Required for receiving data messages.

Remote/Local RL Lets a device choose between two sources of
received data. Local data is retrieved from the
front panel of the device. Remote data is
received from the IEEE bus.

Service Request SR Lets a device make an asynchronous request
for service from the Controller.

Parallel Poll PP Lets a device identify itself when it requires
service or when the Controller is asking for a
response. PP differs from SR in that PP
requires that the Controller regularly conduct a
PP. The device cannot spontaneously request
the Controller’s attention.

Device Clear DC Resets a device to its unique idle state.

Device Trigger DT When sent by a Talker, DT lets a device begin
operation. This allows devices on the bus to be
synchronized to each other and/or to an
external event.

Controller C A Controller sends addresses that determine
which devices will be allowed to talk or sends
universal commands to any device on the bus.
A Controller can also conduct parallel polling
to service devices on the bus, and can clear
the bus.

Drivers E Specifies the electrical interface used by a
device.

IEEE 3-3

IMPLEMENTATION OF IEEE 488
COMMUNICATIONS

DATA LINES 4.1

Data messages to and from devices are transferred by a two-way 8-bit
bus that uses 7-bit ASCII code. (Some devices use other data encryption
mechanisms for data representation.) Data lines transfer device-specific
messages to and from each device, present addresses used in referencing
specific devices, and are used for interface commands.

ASCII data is sent down the bus one byte at a time. Each of the eight data
lines contains one bit of each byte.

The computer sends all data with space parity (i.e., a parity bit value of
zero) and does not check parity on received data. (Received data is set to
zero.)

CONTROL LINES 4.2

The eight control lines consist of three handshake lines and five general
interface management lines.

The handshake lines coordinate the presentation of data, and give
answers to the following questions:

► Is there any data on the bus?

► Is the destination device prepared for more data?

► Was the data sent on the bus received in total by the destination
device?

IEEE 4-1

The general interface management lines coordinate the attention of
devices on the bus. General interface management lines control the
following situations:

► A demand for a device to pay attention.

► A device requesting service of the Controller.

► The Controller resetting the communication session.

► The Controller putting a device in remote programming mode.

► The Controller conducting a parallel poll to check on device status.

► Flagging the end of a message.

J] 4.2.1 HANDSHAKE LINES

The three handshake lines ensure validity of data transmission between
sender (Talker) and receiver (Listener). The following items are

■ addressed:

► Rate of Data Transfer: This must be set to the speed of the slowest
device in the communication so that Talkers don’t transmit faster
than Listeners can receive, and so that Listeners accept data only
when new values are available.

► Multiple Listeners: Up to 14 Listeners can be involved at once.

The handshake lines are described in Exhibit 4a.

4-2 COMMUNICATIONS

Exhibit 4a: Handshake Lines

LINE 1 MNEMONIC ,__________COMMENTS_________

Data Valich DAV Controlled by the Talker or

1 f Controller, This line indicates that
data is available on the data lines
and lets receivers accept data only
when new data is available.

Not Ready for Data NRFD Controlled by the Listeners. This
line tells the data transmitter (Talker)
that a device is not ready for the
next byte of data. This line helps
keep the transmission rate set to the
speed of the slowest device receiving
the communication.

Not Data Accepted NDAC Controlled by the Listeners. This ____
line ensures the valid reception of MW
data. Along with NRFD, it further fcH
paces the data transfer rate.

IEEE 4-3

Exhibit 4b illustrates the timing of data transmission and the three
handshake signals. Note the reverse logic: high levels represent “false”
values. If the Data Valid line is low, the data on the bus is valid.

Exhibit 4b: Data Handshake

DATA LINES

DAV
(Data Valid)

NRFD
(Not Ready For Data)

ND AC
(Not Data Accepted)

NOTES ->

'ATA NOT VALID

DATA VALID

NOT READY FOR

DATA. ACCEPTED

NOT DATA ACCEPTED NOT DATA ACCEPTED

NOT READY

DATA ON

DATA NOT VALID.

DATA ON BUS

DATA VALID

(1)(2)(3)(4) (5) (6)(7) (8)(9)(IO)

When you send data to a device, the line handshaking done by the
interface takes place in the following steps:

1. The Talker or Controller puts the first or next byte of data onto the
data lines of the IEEE bus.

2. The devices that listen for the data byte become ready for data.
(NRFD becomes “ready for data” only when the slowest receiving
device is ready.)

3. All appropriate listening devices are ready; Listeners now wait for
the Talker. The transmitter of the data asserts DAV to indicate that
valid data is on the data lines.

4-4 COMMUNICA TIONS

4. Receivers that listen to this data byte read it and then become no
longer ready for data. (Since they are processing this data byte, they
are not ready for the next byte.)

5. Receivers of data complete internal storing of the data and become
ready for the next byte. This is signalled by NDAC going false (the
data is accepted). New data is not accepted until the slowest device is
ready for the next byte.

6. Since all receivers have acknowledged receipt of the data, the sender
can prepare to put the next data byte on the data bus. The Talker
responds to this condition by flagging data as no longer valid (DAV
high).

7. The receivers see that data is no longer valid (as an acknowledgment
to their receipt of the data). They respond by dropping the NDAC
line, indicating that data (the next byte) is not yet accepted.

8. When all receivers of data have successfully received the byte, steps
1-7 are repeated for each byte being sent.

GENERAL INTERFACE MANAGEMENT LINES 4.2.2

The general interface management lines further control and coordinate
messages on the bus. These lines are used for the following control
functions:

► Addressing and selecting specific devices to coordinate and choose
communicating entities.

► Broadcasting the mode of the interface as being in Command mode
(where devices must pay attention to demands from the Controller)
or in Data mode (where only the receivers of the data pay attention to
data).

► Resetting devices into a predefined idle state. The idle state is defined
by device-specific attributes.

IEEE 4-5

► Controlling devices by enabling remote programming, lock-out or
enable of front panel switches, or by issuing a synchronizing pulse
(enabling multiple devices to perform simultaneous operations).

The general interface management lines are described in Exhibit 4c.

Exhibit 4c: General Interface Management Lines

LINE MNEMONIC , __________COMMENTS_________

Attention ATN Used only by the Controller. Tells all
devices that the data on the bus is to
be interpreted as data (Data mode)
or as a command (Command mode).

Interface Clear IFC Used by the Controller. Resets and
idles the IEEE bus and its
communications.

Service Request SRQ Used by a device to request service
from the Controller.

Remote Enable REN Used only by the Controller. Puts a
device into Remote Programming
mode (i.e., it accepts commands
from the communications bus).

End or Identify EOI When used by a Talker, EOI flags the
last data byte in a message. EOI is
also used by the Controller (with
ATN) to parallel-poll devices. When
a parallel poll is requested, each data
line is set by groups of devices to
indicate if any of those devices
require service.

ATN

All devices constantly check the Attention (ATN) line. When true (low),
the interface is in Command mode. In this mode, all devices must accept
the data (handshake) presented on the IEEE bus and decode the com
mand being sent. When ATN is false (high), the interface is in Data mode.
In this case, the Talker passes data to the selected Listeners. (Listeners
are selected by addressing them in Command mode.) In Data mode,
device-dependent data (such as programming information for the

4-6 COMMUNICA TIONS

device, collected data from the device, or plotter commands) is sent over
the bus. The content of this data is defined by the devices being con
trolled, not specified by IEEE protocol.

Command Mode (ATN true)
There are four basic types of commands in the IEEE protocol:

1. Commands that select the addresses for Talk and Listen devices.

2. Universal commands that request all devices on the bus to perform
basic operations (if they are able to perform that operation).

3. Addressed commands that request selected device(s) to perform
basic operations.

4. Secondary commands used with one of the above to support multiple
units on a single IEEE device.

Each device has an address (or addresses) that identifies it to the Con
troller, except for devices that only monitor the bus. (A monitoring
device is transparent.) These addresses are used by the Controller when
determining the Talk and Listen devices. Most devices have an address
preset when manufactured; this address can be modified by jumpers, an
address selection switch, or a control on the device.

You can modify the five low-order bits of the address to reset a device’s
address on the bus. This value can be from 0 to 30 decimal (00000 to
11110, binary). Each address is combined with bits 6 and 7 in two ways to
provide a uniqueTalk and Listen address for that device (bit 8 is reserved
for parity, and is unused). Bit 7 indicates the Talk address, and bit 6 the
Listen address, as listed in Exhibit 4d.

IEEE 4-7

Exhibit 4d: Addresses for Talk and Listen Functions

ADDRESS BITS
543 2 1 TALK LISTEN HEX DECIMAL

00000 @ SPACE 00 00
0000 1 A I 01 01
000 1 0 B 02 02
000 1 1 C # 03 03
00100 D $ 04 04
00101 E % 05 05
00110 F & 06 06
0 0 111 G 07 07
0 1000 H (08 08
0 1001 I) 09 09
0 10 10 J * 0A 10
0 10 11 K + OB 11
01100 L OC 12
0 110 1 M — OD 13
0 1110 N OE 14
0 1111 0 / OF 15
1 0 0 0 0 P 0 10 16
1 000 1 Q 1 11 17
10 0 10 R 2 12 18
10011 S 3 13 19
10100 T 4 14 20
10101 U 5 15 21
10110 V 6 16 22
10 111 W 7 17 23
11000 X 8 18 24
11001 Y 9 19 25
110 10 Z 1A 26
110 11 [« IB 27
11100 \ < 1C 28
1110 1] = ID 29
11110 A } IE 30
11111 __ ? IF 31

4-8 COMMUNICA TIONS

Device addresses can range only from zero to 30. Address 31 is used for
two special functions: Untalk (address _) and Unlisten (address ?).
Untalk is a shut-up command that tells a device not to talk. Unlisten tells
the receiver(s) no longer to receive data.

Your computer is initially defined as address 0 (TALK at “@”, LISTEN
at “ "). This setting can be queried or changed by the application
program. Any address switches other than the first five bits are typically
used to set a device to Talk or Listen only, or for device-specific test
features.

Additional addressing capabilities are provided by some IEEE bus
devices. Some devices have extended addressing, which allows address
ing of sub-units within the device by secondary commands (i.e., address
a particular I/O unit on a Controller, or a selected board for special
functions). You can also use secondary commands to extend the number
of commands available under the IEEE protocol (such as the PPE and
PPD commands).

Other devices support multiple addresses as opposed to extended ad
dresses. This multiple feature lets the base device be addressed as two
Talk and two Listen addresses. The low-order bit is not switchable, and
the device will accept both values. For example, setting switches to 1,0,
1, 1 would answer to polls for 16 and 17 hex or 22 and 23 decimal.

Universal Commands
Universal commands are broadcast to all devices on the bus. These
commands include Untalk and Unlisten (where the address of 31, deci
mal, selects no device for Talking or Listening). Five other universal
commands exist, in which the data on the bus selects the function
(Untalk and Unlisten place the address, 31, on the data bus).

UNTALK (UNT)
Decimal 95, ASCII

Deselects the current Talker. The sender is also deselected when
another device is selected to Talk, or when ATN is asserted.

IEEE 4-9

UNLISTEN (UNL)
Decimal 63, ASCII ?

Deselects the current Listener(s). The receiver(s) no longer accept
data.

DEVICE CLEAR (DCL)
Decimal 20, ASCII DC4

All devices supporting DCL return to a device-specific idle state.
Devices respond to this command whether supported or not. Actual
function and status of each device type is defined by device specifica
tions.

LOCAL LOCKOUT (LLO)
Decimal 17, ASCII DC1

Disables front- or rear-panel device control on devices that recognize
the command. Devices respond to this whether it is supported or not.
To re-enable the reset/local selection at the device, the REN line
must be set false.

SERIAL POLL ENABLE (SPE)
Decimal 24, ASCII CAN

Sets a serial poll mode for all supporting Talker devices. When these
devices are addressed to talk, they return a status byte (rather than
data).

SERIAL POLL DISABLE (SPD)
Decimal 25, ASCII EM

Ends the serial poll mode begun by SPE. Devices will output data
(rather than the status byte) when they become Talkers.

PARALLEL POLL UNCONFIGURE COMMAND (PPU)
Decimal 21, ASCII NAK

Undoes the parallel poll configure command. All devices are re
turned to their idle, unconfigured state.

4-10 COMMUNICA TIONS

The following four universal commands use a single control line. No data
is required on the data bus.

INTERFACE CLEAR (IFC)

Used by the system Controller to halt all communications on the bus.
Talkers and Listeners are deselected, and Serial Poll is disabled. All
devices must constantly monitor the IFC control line.

REMOTE ENABLE (REN)

Used by the system Controller to re-enable devices that were put
into local operation. All devices must monitor the bus for remote
programming.

ATTENTION (ATN)

Used by the system Controller to set all devices in Command mode
(when all monitor the bus for commands) or Data mode (when a
Talker and Listener(s) exchange data).

END OR IDENTIFY (EOI)

When ATN is true (Command mode), EOI executes a parallel poll
conducted by the system Controller. To respond to a parallel poll,
each device puts a value on a pre-defined data line. Each one-bit
value indicates whether that device requires service. When ATN is
false, EOI is used by the sender (Talker) to flag the end of the data
message.

Addressed Commands
These general interface management commands present control func
tions to specific device(s). All devices selected as Listeners will perform
the commands.

GROUP EXECUTE TRIGGER (GET)
Decimal 8, ASCII BS

If a device supports this feature, GET provides a trigger to
synchronize its operation with other devices or with external events.
When a device receives the GET command, it performs its set func
tion.

IEEE 4-11

SELECTED DEVICE CLEAR (SDC)
Decimal 4, ASCII EOT

Much as device clear (DCL) resets all devices to a device-dependent
idle state, SDC sets the device(s) selected as Listener to that idle
state.

GO TO LOCAL (GTL)
Decimal 1, ASCII SOH

Listener(s) leave the remote programming state and get information
from the front control panel. They return to Remote Programming
mode when further information is sent.

PARALLEL POLL CONFIGURE (PPC)
Decimal 5, ASCII ENQ

Tells a device that a configuration for a parallel poll is about to occur.
PPE is used for the actual configuration.

Secondary Commands
PARALLEL POLL ENABLE (PPE)
Decimal 96-111, ASCII ‘ and a-o

Assigns a DIO (data) line to a device for transmission of its response to a
parallel poll. Most devices use jumpers or local switches to select their
parallel poll data line assignment. For devices without this feature, the
PPC is required for parallel polling. The Parallel Poll Unconfigure com
mand (PPU) resets the configuration provided by the PPC command.

PARALLEL POLL DISABLE (PPD)
Decimal 112, ASCII p

Keeps devices addressed by the PPC command from answering the
parallel poll.

TAKE CONTROL (TCT)
Decimal 9, ASCII HT

Allows a selected Listener to become the new bus Controller. Since
your computer is always the bus (system) Controller of the IEEE 488
interface, this command is not used.

4-12 COMMUNICA TIONS

NOTIFICATION OF SERVICE REQUEST 4.3

Sometimes a device needs to tell the Controller that it needs some
attention. To do this, the device can set a line indicating that it needs
service or it can wait until the Controller asks if service is required.

SERVICE REQUEST (SRQ) 4.3.1

The service request (SRQ) line is set by a device on the bus to tell the
Controller that it needs service. A device might set SRQ because it is
ready to transmit data or because an error condition has occurred.

The SRQ doesn’t tell the Controller which device needs attention. If there
is more than one device on the bus, the Controller must poll the devices
to determine which one asked for service.

4

POLLING OF DEVICES 4.3.2

A serial poll lets the Controller ask a device if it requires service or
retrieve status information from that device. A talking device returns its
status byte when serially polled. From this, the Controller can tell if the
device needs service (or any other status information about that device).
Typically, the Controller serially polls each device on the bus to update
all device-state information.

The Controller issues a parallel poll as simultaneous true ATN and EOI
lines; it retrieves status information from all devices on the bus at once.
In response to a parallel poll, each device returns a single bit of status
(telling the Controller whether the device requires service) on the data
(DIO) lines. One or more devices can be assigned to each DIO line. This
lets the Controller use a parallel poll to isolate a group of devices in
which one or more may require service.

IEEE 4-13

4.4 SPECIFICATIONS OF DEVICE
CAPABILITIES

The encoding scheme presented in this section defines the IEEE capabil
ity set supported by a communicating device. Since the IEEE bus allows
a wide variety of devices, you should know both the communication
limitations and functional limitations of each device. There are eleven
functional groups for IEEE communication; each group specifies ranges
of capabilities.

Two new abbreviations appear in this section—MLA (My Listen Ad
dress) and MTA (My Talk Address). These refer to the Talk and Listen
addresses under which your computer operates.

SOURCE HANDSHAKE (SH)

SHO: No capability
SHI: Full capability

ACCEPTOR HANDSHAKE (AH)

AHO: No capability
AHI: Full capability

TALKER (T) and EXTENDED TALKER (TE)

BASIC
TALKER,

SERIAL
POLL

TALK ONLY
MODE

UNADDRESSED
IF MLA

TO NO NO NO NO
T1 YES YES YES NO
T2 YES YES NO NO
T3 YES NO YES NO
T4 YES NO NO NO
T5 YES YES YES YES
T6 YES YES NO YES
T7 YES NO YES YES
T8 YES YES NO YES

4-14 COMMUNICA TIONS

LISTENER (L) and EXTENDED LISTENER (LE)

BASIC
LISTENER

LISTEN
ONLY MODE

UNADDRESSED
IF MTA

LO NO NO NO
LI YES YES NO
L2 YES NO NO
L3 YES YES YES
L4 YES NO YES

PARALLEL POLL (PP)

PPO: No capability
PPI: Remote configuration
PP2: Local configuration

SERVICE REQUEST (SR)

SRO: No capability
SRI: Full capability

REMOTE LOCAL (RL)

RLO: No capability
RL1: Full capability
RL2: No local lockout

DEVICE CLEAR

DCO: No capability
DC1: Full capability
DC2: Omit selective device CLEAR

DEVICE TRIGGER (DT)

DTO: No capability
DTI: Full capability

DRIVER ELECTRONICS (E)

El: Open collector
E2: Tri-state

IEEE 4-15

CONTROLLER (C)

A Controller is specified by one or more of Cl to C4, and one of the
range C5 to C28.

System Controller
Send IFC and Take Charge

Send REN
Respond to SRQ

Send Interface Messages
Receive Control

Pass Control
Pass Control to Self

Parallel Poll

I Take Control
Synchronously

CO N N N N N N N N N N
Cl Y - - - - - - - -
C2 Y - - - - - -
C3 Y - - - - - - -
C4 Y - - - - - -

C5 Y Y Y Y Y Y
C6 Y Y Y Y Y N
C7 Y Y Y Y N Y
C8 Y Y Y Y N N
C9 Y Y Y N Y Y
CIO Y Y Y N Y N
Cll Y Y Y N N Y
C12 Y Y Y N N N

C13 Y Y N N Y Y
C14 Y Y N N Y N
C15 Y Y N N N Y
C16 Y Y N N N N
C17 Y N Y Y Y Y
C18 Y N Y Y Y N
C19 Y N Y Y N Y
C20 Y N Y Y N N

C21 Y N Y N Y Y
C22 Y N Y N Y N
C23 Y N Y N N Y
C24 Y N Y N N N
C25 Y N N N Y Y
C26 Y N N N Y N
C27 Y N N N N Y
C28 Y N N N N N

4-16 COMM UNI CA TIONS

Your computer is the bus Controller. To ensure the integrity of the
IEEE bus, the computer never passes control (i.e., issues aTCT) to
another device. As Controller, the computer has none of the non
Controller capabilities (SRO, RLO, PPO, DCO, OTO). Your computer
does have the following capabilities:

► Complete Source and Acceptor Handshake (SHI, AHI).

► Basic Talker and Listener (T8, L4).

► Active System Controller Ability with service request response
(Cl, C2, C3, C4, C25).

Your computer is initially set up as device address 0 (TALK at “@”,
LISTEN at “ ”). This address can be queried or changed by the
application program.

IEEE 4-17

HIGH-LEVEL IEEE 488
FUNCTIONS

This chapter explains the routines used to communicate with devices on
the IEEE 488 bus interface. It also gives instructions on how to set up an
IEEE 488 bus, and provides programming examples.

OVERVIEW OF FUNCTIONS 5.1

In this section, the functions marked with an asterisk are the ones you’ll
use most often (unmarked functions are used in unusual applications).

GETTING CONTROL OVER A DEVICE 5.1.1

♦REMOTE: Tells a device to accept remote programming from the
IEEE bus. This is accomplished through the remote enable (REN)
command, if the remote programming is to be a universal command; or
by directing specific devices to Listen for non-universal applications.

♦LOCAL LOCKOUT: Disables a device’s control switch to keep it from
interfering with the control signals. A typical use of this feature is in
setting a device in Remote and Local Lockout—the Local Lockout
ensures that remote programming is not interfered with. This command
uses the LLO bus command.

♦LOCAL: For a single device, a Go to Local enables that device to get
input from its panel switches. With a universal command, the REN line
is made false to disable remote programming for all devices.

IEEE 5-1

5.1.2 FUNDAMENTAL DEVICE COMMUNICATIONS

*OUTPUT: Sends data bytes or programming information to a device(s)
using the Data mode to transfer the message. Examples include plotter
commands or printer output. The contents and values of the data are
strictly device-dependent. Parity bit values of zero (space) are sent on all
data bytes.

*ENTER: Retrieves data bytes from a device using the Data mode to
transfer the message. Examples include data from a signal generator, or
acquisition devices. The contents and values of the data are strictly
device-dependent. Data parity is not checked, and is returned as 0 to the
application.

*TRIGGER: Causes the Controller to send a GET command. This
group-execute trigger starts operations in one or more devices and
synchronizes them to each other and/or an external event. When fin
ished, ATN remains true (see RESUME).

5.1.3 DEVICE POLLING AND RESETTING

*SPOLL: Lets the application perform a serial poll (SP) of a specific
device. The status returned by the device is strictly device-dependent.

*PPOLL: Does a parallel poll (ATN and EOI lines both true) and returns
the response byte to the requesting program.

*CLEAR: Returns selected device(s) to the idle state. Uses the Device
Clear (DCL) for universal commands or Selected Device Clear (SDC) to
clear a single device.

ABORTIO: Stops all communications. Untalks any active Talkers. Uses
the IFC command.

RESET: Provides a hardware reset of the entire IEEE 488 bus.

5-2 COMMUNICA TIONS

♦TIMEOUT: Lets the program set timeouts to prevent the computer
from waiting for non-responsive or absent devices. The application can
set the time limit in which a device must respond (before the device is
considered malfunctioning and reported to the application). This func
tion also lets the application query the present timeout value.

ADVANCED IEEE BUS FUNCTIONS 5.2

♦STATUS: Retrieves the present status of the IEEE interface. Status
values are listed and explained in the routine’s calling sequence.

SEND: These functions allow application programmers to create their
own commands. (Explanations of available commands are given in
previous sections.) Calling sequences for the SEND functions are ex
plained in Section 5.3, “Calling Sequences for IEEE 488 High-Level
Routines.”

DIRECT BUS I/O: For advanced users only. This lets the program write
and read bus data and control lines without considering the present state
or protocol. A direct write or read of bus lines is performed. A possible
use of this function is a diagnostic program manipulating the bus directly.
CAUTION: If used carelessly, this function can cause loss of data or
(under certain conditions) hardware damage.

END OF LINE: Lets the knowledgeable programmer select an end of
line sequence that is automatically inserted at the end of each transmit
ted data sequence by the IEEE drivers. A second end of line sequence is
used to recognize the end of input data. You can ask for the currently
active end of line sequences.

CONTROLLER ADDRESS: The computer is initially configured to be
at device address 0—TALK “@” and LISTEN “ ”. This function lets
the application reset the computer’s address to any other valid device
address (0 to 30), and ask for the value of the computer’s address.

RESUME: Sets ATN false and puts the bus into Data mode. This is
useful after functions such as Clear, which leaves the bus in Control

IEEE 5-3

mode (ATN true). Resume is required only in special cases, since normal
data transfer statements (Output, Enter, and Transfer) automatically set
ATN false.

5.3 CALLING SEQUENCES FOR HIGH-LEVEL
ROUTINES

This section defines the calling sequences for the routines available to
the application programmer. The parameters and calls are described in a
language-independent style. Mechanisms exist for interfacing these
routines to any computer-supported language (as explained in Section
5.4, “High-Level Support for Programming Languages”).

5.3.1 PARAMETERS USED

DEVICE SELECTOR

Value: Integer

Chooses the device(s) affected by the function. The integer must be in
the range 00 to 30. If the integer is 31, DEVICE SELECTOR is a
“Universal Address” (the command affects all devices on the bus).

DEVICE COUNT

Value: Integer

Used with a multiple device selector or multiple device secondary
address. The integer is the number of devices to address, or the number
of device secondary addresses to send. The integer must be in the range 1
to 31.

MULTIPLE DEVICE SELECTOR

Value: Array of 31 (maximum) Integers

Chooses multiple specific devices (as opposed to universal) affected by
this command. The array contains 1 to 31 integer values (as specified by
the first parameter) in contiguous array positions 1 to n. These are device
selectors. Device selectors of value 31 (universal) are illegal.

5-4 COMMUNICA TIONS

DEVICE SECONDARY ADDRESS

Value: Integer

Chooses the secondary address used with the selected device. The
secondary address is specific to the device and represents particular
functions performed by that device. The integer must be in the range 0 to
31.

MULTIPLE DEVICE SECONDARY ADDRESS

Value: Array of 31 (maximum) Integers

Chooses a secondary address for the multiple specific devices affected
by this command. The array contains 1 to 31 integer values in contiguous
array positions 1 to n. (These are device secondary addresses.)

OUTPUT COUNT

Value: Integer

Used with an output buffer. The integer value is the number of bytes
contained in a message to send.

OUTPUT BUFFER

Value: Pointer (Segment and Offset)

This is the memory location of a buffer that contains data to send on the
interface. Data length is determined by the OUTPUT COUNT parame
ter. Parity bits on the data are stripped (providing space parity) before
transmission.

INFORMATION TYPE

Value: Integer

This determines the state of the ATN line during output. If the value is 1,
the output is a command and the ATN bit on the control lines is set high.
Otherwise, the output information is data, and the ATN bit is set low.

IEEE 5-5

INPUT COUNT

Value: Integer

Used with an input buffer. INPUT COUNT is the maximum number of
data bytes that can be received. When a data transfer is finished, INPUT
COUNT contains the actual data length retrieved.

INPUT BUFFER

Value: Pointer (Segment and Offset)

This is the memory location of a buffer that contains the data to be sent
from the desired device. Parity bits are masked off (set to zero) by the
drivers (and not checked) before being returned to the application.

RETURN STATUS

Value: Integer

Returns the success or error status of the requested function.

5.3.2 ROUTINES AVAILABLE

Routines of general interest are marked with an asterisk. Unmarked
routines are available for extraordinary or advanced application require
ments.

REMOTE *

Parameters: DEVICE SELECTOR, RETURN STATUS

If DEVICE SELECTOR is a universal address (31 decimal), the REN
line is set to true, enabling all devices to accept programming from the
communications bus; devices do not go into Remote state until they are
addressed to listen. If DEVICE SELECTOR is a device address, that
device is instructed to the IEEE bus by using the following sequence: (1)
REN is set true; (2) an Unlisten command is sent, disabling all other
Listeners; and (3) a Listen is sent to the specified device. ATN is left true.
(Use Resume if Data mode is desired.)

5-6 COMMUNICA TIONS

Returns: RETURN STATUS of 0 means success
1 means bad parameter
2 means communication error

MULTIPLE REMOTE *

Parameters: DEVICE COUNT, MULTIPLE DEVICE SELECTOR,
RETURN STATUS

Similar to Remote, except that this routine lets you address multiple
devices to Listen. A universal device address is not allowed. Devices are
instructed to listen by using the following sequence: (1) REN is set true;
(2) an Unlisten command is sent to disable all other Listeners; and (3)
Listens are sent to the specified devices. ATN is left true.

Returns: RETURN STATUS of 0 means success
1 means bad parameter
2 means communication error

LOCAL LOCKOUT *

Parameters: RETURN STATUS

Sends a Local Lockout (LLO) to prevent all previously addressed
devices on the bus from using their reset/return to local mode capabili
ties. This ensures that the interface has exclusive control over the
device. ATN is left true.

Returns: RETURN STATUS of 0 means success
1 means bad parameter
2 means communication error

LOCAL *

Parameters: DEVICE SELECTOR, RETURN STATUS

If DEVICE SELECTOR is a universal address (31 decimal), remote
enable (REN) is set false. All devices allow you to control them through
their local switches. If DEVICE SELECTOR is a single device address,
all devices except that device are unlistened. Then the specified device is
selected to listen, and a Go to Local (GTL) command is sent to that
device. In this case, only that device is set to expect local operator
commands. ATN is left true.

IEEE 5-7

NOTE: A GTL is necessary before you can establish local control of a
device set to Remote and Local Lockout.

Returns: RETURN STATUS of 0 means success
1 means bad parameter
2 means communication error

MULTIPLE LOCAL *

Parameters: DEVICE COUNT, MULTIPLE DEVICE SELECTOR,
RETURN STATUS

Similar to Local, except that this routine lets you place multiple single
devices in Local mode. A universal device address is not allowed. A
UNL command is sent to unlisten all devices, the specified devices are
addressed to listen, and then a Go to Local (GTL) command sets them to
expect local operator commands. ATN is left true.

NOTE: A GTL is needed before establishing local panel control of a
device that has been set to Remote and Local Lockout.

Returns: RETURN STATUS of 0 means success
1 means bad parameter
2 means communication error

OUTPUT*

Parameters: DEVICE SELECTOR, OUTPUT COUNT, OUTPUT
BUFFER, RETURN STATUS

If DEVICE SELECTOR is a universal address, OUTPUT goes to all
devices addressed to Listen. Otherwise, the following sequence sends
the data to the particular device selected:

1. Send the Controller’s Talk address.

2. Send a UNL command.

3. Address the specified device to Listen.

4. Output the data.

(If you select a universal device, steps 2 and 3 are unnecessary.)

Data bytes are retrieved from the output buffer for a length specified by
OUTPUT COUNT. An end of line sequence is sent after the last byte
transferred.

5-8 COMMUNICA TIONS

If you are using a device that requires a secondary address, you must use
SEND SCG followed by OUTPUT with a universal device selector. You
can also use SEND SCG followed by SEND CMD or SEND DATA,
depending on the type of information you want to output. If any other
sequence is used, the secondary address is not sent to the device.

Returns: RETURN STATUS of 0 means success
1 means bad parameter
2 means communication eiror

MULTIPLE OUTPUT *

Parameters: DEVICE COUNT, MULTIPLE DEVICE SELECTOR,
OUTPUT COUNT, OUTPUT BUFFER, INFORMATION
TYPE, RETURN STATUS

Same as OUTPUT, except that DEVICE SELECTOR cannot be a
universal address or a device requiring a secondary address. The output
data is sent to all devices specified by using the same sequence as
OUTPUT.

If you want to output to several devices, some of which need a second
ary address, use SEND SCG, MULTIPLE SEND SCG to set the
devices to Listen and send the secondary address. You can use SEND
LISTEN or MULTIPLE SEND LISTEN for devices that do not need a
secondary address. Follow these with calls to OUTPUT, SEND CMD,
or SEND DATA as specified in OUTPUT.

Returns: RETURN STATUS of 0 means success
1 means bad parameter
2 means communication error

ENTER *

Parameters: DEVICE SELECTOR, INPUT COUNT, INPUT BUF
FER, RETURN STATUS

If DEVICE SELECTOR is a universal address, data is retrieved from
any device set to Talk. Otherwise, the device is selected to Talk, the
Controller is selected to Listen, ATN is set false to resume Data mode,
and data is retrieved from the specified device and placed in the input
buffer. A maximum data length of INPUT COUNT is placed into the
buffer. When finished, INPUT COUNT contains the actual data count
retrieved from the device.

IEEE 5-9

When a return status of 3 occurs (too much data to fit in the user’s
buffer), you can retrieve the next group of bytes by doing another Enter
with a universal address specified. If more data is not wanted, an
ABORTIO is recommended.

Returns: RETURN STATUS of 0 means success
1 means bad parameter
2 means communication error
3 means too much data was sent
from the device for the size of
the input buffer

INPUT COUNT equal to the number of bytes (characters) of
data received.

INPUT BUFFER equal to the data bytes received from the
device selected.

TRIGGER *

Parameters: DEVICE SELECTOR, RETURN STATUS

Sends a GET command. If the device, selected is universal, devices
previously addressed to Listen are sent the command. Otherwise, all
other devices are unlistened and only the device selected operates on the
GET. Trigger leaves ATN true, and a Resume can be used to placed the
bus in Data mode.

Returns: RETURN STATUS of 0 means success
1 means bad parameter
2 means communication error

MULTIPLE TRIGGER *

Parameters: DEVICE COUNT, MULTIPLE DEVICE SELECTOR,
RETURN STATUS

Same as Trigger, except that multiple devices can be specified as the
receiver of the GET. A universal address cannot be used.

Returns: RETURN STATUS of 0 means success
1 means bad parameter
2 means communication error

5-10 COMMVNICA TIONS

SPOLL *

Parameters: DEVICE SELECTOR, POLL BYTE, RETURN STATUS

A serial poll of the .specified device is conducted by unlistening all other
devices, sending a Serial Poll Enable (SPE) resuming Data mode,
retrieving the poll byte, and sending a Serial Poll Disable (SPD). The
resulting status is returned as an integer value in POLL BYTE. A
universal address cannot be used.

Returns: RETURN STATUS of 0 means success
1 means bad parameter
2 means communication error

POLL BYTE is the status returned by the polled device (its
value is device-dependent).

PPOLL *

Parameters: POLL BYTE, RETURN STATUS

Conducts a parallel poll of all devices on the bus. The resulting status
byte (from all devices) is returned in the integer, POLL BYTE.

•> .<

Returns: RETURN STATUS of 0 means success
1 means bad parameter
2 means communication error

POLL BYTE is the resulting value from the parallel poll. It
contains the 8-bit (byte) value from the data lines.

CLEAR *

Parameters: DEVICE SELECTOR, RETURN STATUS

If the device selector is a universal address, the Device Clear (DCL)
command is issued, resetting every device on the bus. If DEVICE
SELECTOR is a single device address, all other devices are unlistened
and a Selected Device Clear (SDC) is issued to the specified device.
Leaves ATN true.

Returns: RETURN STATUS of 0 means success
1 means bad parameter
2 means communication error

IEEE 5-11

MULTIPLE CLEAR *

Parameters: DEVICE COUNT, MULTIPLE DEVICE SELECTOR,
RETURN STATUS

Same as Clear, except that the Selected Device Clear (SDC) is sent to
each chosen device. A universal address cannot be used.

Returns: RETURN STATUS of 0 means success
1 means bad parameter
2 means communication error

ABORTIO

Parameters: None

Stops all communications activity and Untalks any active Talkers. Is
sues an IFC to clear all communications on the bus.

RESET '' ; ‘

Parameters: None

Resets the IEEE interface to its initial power-on state. All IEEE driver
parameters are reset to their initial (default) values. IFC and then REN
are sent. . >’ I--' “

The IEEE default values follow: ’ ’ '

Controller - 0.
Timeout - 0 (wait forever).
End of input — 0 specifying <cr><lf> (end of line in).
End of output - <crxlf> (end of line out).
Length of end of output - 2.
End of output condition = 0 (No EOI at the end of the data).

TIMEOUT *

Parameters: FUNCTION, MILLISECONDS, RETURN STATUS

Lets the application manipulate the timeout value. The timeout value is
the number of milliseconds (specified as an integer from 0 to 32,767 in the
MILLISECONDS parameter) that the IEEE driver waits before a
device is considered malfunctioning.

5-12 COMMUNICA TIONS

If FUNCTION is 0, then the TIMEOUT call asks for the set timeout
value (returned in MILLISECONDS). If FUNCTION is 1, then the
timeout value is set to MILLISECONDS. A MILLISECONDS value of
0 means that the driver should wait forever.

When a timeout does occur, a communication error is returned to the
active caller in the RETURN STATUS parameter. The initial timeout
value is 0 (wait forever).

Returns: RETURN STATUS of 0 means success
1 means bad parameter

MILLISECONDS (value depends on FUNCTION).

STATUS*

parameters: SERVICE REQUEST

Retrieves interface status information into Service Request.

SERVICE REQUEST remains at the status of the SRQ line, indicating
whether a device on the bus requires the Controller’s attention.

Returns: SERVICE REQUEST 0 - no current SRQ
1 — SRQ line is true

SEND CMD \

Parameters: OUTPUT COUNT, OUTPUT BUFFER, RETURN
STATUS

The data specified in OUTPUT BUFFER is sent as a control message,
allowing the user to create custom command sequences as required.
ATN is left true. You should already have done any needed device
addressing.

Returns: RETURN STATUS of 0 means success
1 means bad parameter
2 means communication error

IEEE 5-13

SEND DATA

Parameters: OUTPUT COUNT, OUTPUT BUFFER, RETURN
STATUS

The data specified in OUTPUT BUFFER is sent as a data message,
letting you create custom data sequences without any control from the
IEEE driver. If no end of line sequence is desired, you must use END
OF LINE OUT to set the parameters correctly. If this is not done, an end
of line sequence is sent automatically. The computer is addressed to
Talk; any other device addressing should have been done.

Returns: RETURN STATUS of 0 means success
1 means bad parameter
2 means communication error

SEND TALK

Parameters: DEVICE SELECTOR, RETURN STATUS

Sends a Talk command to the selected device. ATN is left true. DEVICE
SELECTOR cannot be a universal address.

'■■'•in ■

Returns: RETURN STATUS of 0 means'Success
1 means bad parameter
2 means communication error

SEND LISTEN

Parameters: DEVICE SELECTOR, RETURN STATUS

A Listen command is sent to the selected device. ATN is left true.
DEVICE SELECTOR cannot be a universal address.

Returns: RETURN STATUS of 0 means success
1 means bad parameter
2 means communication error

MULTIPLE SEND LISTEN

Parameters: DEVICE COUNT, MULTIPLE DEVICE SELECTOR,
RETURN STATUS

Listen commands are sent to the selected devices. ATN is left true.
DEVICE SELECTOR cannot be a universal command.

5-14 COMMUNICA T1ONS

Returns: RETURN STATUS of 0 means success
1 means bad parameter
2 means communication error

SEND SCG

Parameters: DEVICE SELECTOR, DEVICE SECONDARY AD
DRESS, RETURN STATUS

Send Secondary Command Group. The device specified by DEVICE
SELECTOR is addressed to Listen and sent the DEVICE SECOND
ARY ADDRESS as a secondary command address. ATN is left true.

Returns: RETURN STATUS of 0 means success
1 means bad parameter
2 means communication error

MULTIPLE SEND SCG

Parameters: DEVICE COUNT, MULTIPLE DEVICE SELECTOR,
MULTIPLE DEVICE SECONDARY ADDRESS,
RETURN STATUS

Multiple Send Secondary Command Group. Each device specified in
MULTIPLE DEVICE SELECTOR is addressed to Listen and is then
sent to the corresponding DEVICE SECONDARY ADDRESS in the
MULTIPLE DEVICE SECONDARY ADDRESS array as a secondary
command address. A device is not unlistened by addressing subsequent
devices in the array. ATN is left true.

Returns: RETURN STATUS of 0 means success
1 means bad parameter
2 means communication error

SEND UNL

Parameters: RETURN STATUS

Sends an Unlisten command. ATN is left true.

Returns: RETURN STATUS of 0 means success
1 means bad parameter
2 means communication error

IEEE 5-15

SEND UNT

Parameters: RETURN STATUS

Sends an Untalk command. ATN is left true.

Returns: RETURN STATUS of 0 means success
1 means bad parameter
2 means communication error

SEND MLA

Parameters: RETURN STATUS

Sends My Listen Address (the address of your computer). ATN is left
true. Use RESUME to enter Data mode.

Returns: RETURN STATUS of 0 means success
1 means bad parameter
2 means communication error

SEND MTA

Parameters: RETURN STATUS

Sends My Talk Address (the address of your computer). ATN is left true.
Use RESUME to enter Data mode. . „ s

Returns: RETURN STATUS of 0 means success
1 means bad parameter
2 means communication error

DIRECT BUS IO

Parameters: FUNCTION, WHICH LINE, POLL BYTE, RETURN
STATUS

FUNCTION indicates whether this is a read or write of the control or
data lines.

FUNCTION of 0 is a read: The value of POLL BYTE (a single byte) is
retrieved from the control or data lines as indicated by the integer
parameter, WHICH LINE (0--control, 1 -data lines). ATN is left false
when data lines are read; ATN is unchanged for control lines.

5-16 COMMVNICA TIONS

FUNCTION of 1 is a write: The value of POLL BYTE (always a single
byte) is given to the control or data lines as indicated by WHICH LINE
(0-control, I -data lines). ATN is left false when data lines are written.

CAUTION: Only experienced programmers should use this function.
Careless use can garble your communication session or damage hard
ware.

The format of POLL BYTE for control lines is:

To set SRQ, you can set bit 5 on or write a decimal 32 to the lines.

Returns: RETURN STATUS of 0 means success
1 means bad parameter

POLL BYTE, depending on FUNCTION.

END OF LINE OUT

Parameters: FUNCTION, EOI, EOL LENGTH, EOL DATA,
RETURN STATUS

This function lets you manipulate the end of line sequence which the
IEEE driver inserts at the end of each data line. If FUNCTION is 0, the
call asks for the values of the end of line parameters. If FUNCTION is I,
the call sets the end of line sequence as specified.

The parameters are:

EOI Integer. If 0, no EOI line setting at end of data. If 1,
EOI line is set true at the end of data. This value is
initially set at 0 (no EOI).

IEEE 5-17

EOL LENGTH Integer. Length of the end of line sequence. Ini
tially 2 for a carriage return/line feed sequence.

EOL DATA Integer array having a length of 7. The end of line
sequence is inserted by the driver at end of data.
This parameter is initially set to <crxlf>
(hexadecimal OD, OA) and five nulls.

NOTE: This integer array specifies the end of line
sequence up to the length specified in EOL
LENGTH.

Returns: RETURN STATUS of 0 means success
1 means bad parameter

EOI, EOL LENGTH, EOL DATA (depending on call).

END OF LINE IN

Parameters: FUNCTION, EOL, RETURN STATUS

This routine lets the application program specify the sequence used as ah
input data terminator. This end of line, sequence is used by the IEEE
driver to determine when an Enter is complete. If 0, FUNCTION asks
for the current END OF LINE IN sequence. If 1, FUNCTION sets the
END OF LINE IN sequence as indicated.

EOL is the selection for the input end of line sequence:

EOL - 0 Carriage Return/Line Feed
1 EOI line flags end of data
2 Either CR/LF or EOI is required

Initially, EOL is set to 0 (default value is the carriage return/line feed
sequence).

Returns: RETURN STATUS of 0 means success
1 means invalid parameter

EOL, depending on FUNCTION

5-18 COMMUNICA TIONS

CONTROLLER ADDRESS

Parameters: FUNCTION, DEVICE SELECTOR, RETURN STATUS

This function lets you manipulate the computer’s device address. If
FUNCTION is 0, the call asks for the value of the Controller’s device
address. If FUNCTION is 1, the call sets the device address. DEVICE
SELECTOR specifies the device address; it cannot be a universal ad
dress.

The initial value of the computer’s address is 0.

Returns: RETURN STATUS of 0 means success
1 means bad parameter

DEVICE SELECTOR, depending on FUNCTION.

RESUME

Parameters: None
l’; . {.I i I

Sets ATN false, putting the bus into Data mode.

s

HIGH-LEVEL SUPPORT FROM 5.4
PROGRAMMING LANGUAGES

The IEEE 488 High-Level drivers are accessible from all supported
languages except COBOL and FORTRAN. Sets of High-Level modules
are provided to overcome incompatibility in the procedure call/return
mechanisms in these languages. A particular selection of High-Level
modules must match the application language being used.

You must use the operating system included in this package when using
the IEEE High-Level package. This operating system is the only one
that supports the IEEE Low-Level drivers in the BIOS. Following
application development, one of the following modules must be linked
into your program (except in the case of interpretive BASIC and GW
BASIC).

IEEE 5-19

5.4.1 ASSEMBLY LANGUAGE AND PL/M

Module: IEEEASM.LIB

Using assembly language, push the segment and offset of each parame
ter on the stack and perform a CALL of the desired high-level routine.
Each segment and offset pushed on the stack points to the variable’s data
structure (16-bit integer, character string, or array of 31 consecutive
16-bit integers). For return variables, the variable itself is modified by
the routines.

After you have compiled your routine, you must link it. Enter the
IEEEASM.LIB module when an additional library is requested by the
linker. This library contains the IEEE high-level routines plus the mod
ule that these routines use to access the BIOS low-level routines.

5.4.2 INTERPRETIVE BASIQAKD GW BASIC

Module: IEEEBAS.COM

Before the IEEE 488 interface can tie accessed from interpretive BASIC
or GW BASIC, you must load the IEEE/BASIC interface module. To do
this, type:

IEEEBAS

before running BASIC. This loads the module into memory and displays
the message:

IEEE 488/BASIC interface ready - version x.x

The interface must be loaded before you try to access the IEEE interface
from a BASIC program. However, you only need to load it once during
an operating session.

5-20 COMMUNICA TIONS

IEEEBAS.COM

After the IEEE/BASIC interface is loaded, programs written in MS-
BASIC or GW BASIC can access devices on the bus by using the CALL
statement. Before you can use CALL, however, you must define the
segment and offset of the IEEE 488 interface entry point with the DEF
SEG statement. The entry address of the IEEE/BASIC interface is
found in interrupt vector table entry 221 (the four bytes of memory
starting at address 0:884). By PEEKing these four bytes, you can con
struct the entry address of the IEEE routines. The following sample
code illustrates this procedure.

CALL IEEE(PARANIETER1 ,...,PARAMETERn,FUNCTION)

After you execute these statements, call the IEEE interface from BASIC
with a statement in this form:

5 ' GET IEEE 488 ENTRY POINT FROM INTERRUPT VECTOR
ENTRY 881

10 DEF SEG = 0
80 L0W0FF = PEEK(884)
30 HIOFF = PEEK(886)
40 L0WSEG = PEEK(886)
60 HISEG = PEEK(887)
60 SEG = (856*HISEG) + L0WSEG
70 IEEE = (856*HIOFF) + L0W0FF
80 DEF SEG - SEG ' Define segment for CALL

' Low byte of offset address
' High byte of offset address

' Low byte segment address
' High byte segment address

' Full segment address
' Full offset address

where:

FUNCTION is the number of the desired IEEE interface function.

PARAMETER 1, ,PAR AMETERn are the parameters required by
this function.

IEEE 5-21

To initialize a Hewlett-Packard 7470A plotter, for example, you must
send the sequence 1 IN;' as data to the plotter on the bus. The following
BASIC program sends this sequence (assuming that the plotter is at bus
address 5).

100 INF0% = 0
110 0UTPUT% - 6 ' Output command
120 DEVICE% - 5 ' 7470A plotter bus address
130 MSG$ = "IN;"
140 CNT% = LEN(MSG$)
150 RETSTAT% = 0
160 CALL IEEE(DEVICE%, CNT%, M8G$, INF0%, RETSTAT%,

0UTPUT%)

This example also shows two other important points. First, all the
numeric variables must be defined as integers, either by appending a
percent sign to their names, or by using the DEFINTstatement. Second,
parameters must be passed as variables for the interface to work cor
rectly. ''

Exhibit 5a lists function values for interpretive BASIC.

5-22 COMMUNICA TIONS

Exhibit 5a: Interpretive BASIC Function Values

FUNCTION NUMBER HIGH-LEVEL FUNCTION

0 REMOTE
1 MULTIPLE REMOTE
2 LOCAL LOCKOUT
3 LOCAL
4 MULTIPLE LOCAL
5 OUTPUT
6 MULTIPLE OUTPUT
7 ENTER
8 TRIGGER
9 MULTIPLE TRIGGER

10 SPOLL
11 PPOLL
12 CLEAR
13 MULTIPLE CLEAR
14 ABORTIO
15 RESET
16 TIMEOUT
17 STATUS
18 4 SEND CMD
19 SEND DATA
20 SEND TALK
21 SEND LISTEN
22 MULTIPLE SEND LISTEN
23 SEND SCG
24 MULTIPLE SEND SCG
25 SEND UNL
26 SEND UNT
27 SEND MLA
28 SEND MTA
29 DIRECT BUS IO
30 END OF LINE OUT
31 END OF LINE IN
32 CONTROLLER ADDRESS
33 RESUME

IEEE 5-23

5.4.3 COMPILED BASIC

Module: IEEECBAS.LIB

This library contains the following:

► IEEE interface module that allows access to the high-level routines
from compiled BASIC.

► IEEE high-level routines.

► An interface from the high-level routines to the low-level BIOS
routines.

Use the following format in a CALLS statement when you want to use
IEEE 488 with compiled BASIC:

CALLS IEEE (parameterl,...parameterN, function)

where:

IEEE is the routine in the IEEECBAS library that interfaces to
IEEE high-level routines.

parameter 1,...parameterN are the parameters specific to the high-
level routine being accessed.

function is the number assigned to the high-level routine. See Exhibit
5a for a list of these numbers.

After writing your program, use the following procedure to link your
routine and the IEEE routines (filename is the name of your routine).

LINK <filename>
Run File [A:filename]:(user discretion)
List File [nul.MAP]: (user discretion)
Libraries [.LIB]: IEEECBAS.LIB

5-24 COMMUNICA T1ONS

PASCAL 5.4.4

Module: IEEEPAS.LIB

Any IEEE high-level routines that you use must be declared as external
procedures in your program. Following is a list of the external
declarations for each of the high-level routines. In these declarations,
the following are assumed to be user-declared types:

Device—array: Array [0..31] of Integer;
Do1_array : Array [0..6] of Integer;
Procedure IEEE—ABORTIO; External;

Procedure IEEE—CLEAR (VARS device—selector,
return—status : Integer); External;

Procedure IEEE—MULTIPLE—CLEAR (VARS device—count; Integer;
VARS multiple—device—selector :

device—array;
VARS return—status : Integer);

External;
Procedure IEEE—CONTROLLER—ADDRESS (VARS function, device—selector,

return—status : Integer);
External;

Procedure IEEE—DIRECT—BUS—IO (VARS function, poll—byte, return—status :
Integer); External;

Procedure IEEE—END—OF—LINE—IN (VARS function, input—terminator,
return—status : Integer);
External;

Procedure IEEE—END—OF—LINE—OUT (VARS function, output—condition :
, Integer;

VARS output—terminator : eol array;
VARS return—status : Integer);

External;
Procedure IEEE—LOCAL (VARS device—selector, return status : Integer);

External;
Procedure IEEE—MUTIPLE—LOCAL (VARS device—count; Integer;

VARS multiple—device—selector :
Device—array;

VARS return—status : Integer);
External;

Procedure IEEE—LOCAL—LOCKOUT (VARS return—status : Integer);
External;

5

IEEE 5-25

Procedure IEEE_OUTPUT (VARS device-selector, output-count: Integer;
VARS output—buffer : String;
VARS return—status : Integer); External;

Procedure IEEE-MULTIPLE-OUTPUT (VARS device_count: Integer;
VARS multiple—device—selector :

Device array y
VARS count: Integer;
VARS output—buffer : String;
VARS info-type : Integer;
VARS return—status : Integer);

External;
Procedure IEEE—PPOLL (VARS poll—byte,

return—status : Integer); External;
Procedure IEEE—REMOTE (VARS device—selector,

return—status : Integer); External;
Procedure IEEE_MULTIPLE—REMOTE (VARS device_count: Integer;

VARS multiple-device—selector:
device array;
VARS return—status : Integer);

External;
Procedure IEEE—RESET; External;
Procedure IEEE—RESUME; External;
Procedure IEEE—SEND—CMD (VARS output—count: Integer;

VARS output—buffer ; String;
VARS return—status : Integer); External;

Procedure IEEE—SEND—DATA. (VARS outputs count: Integer;
VARS output-buffer: String;
VARS return—status : Integer); External;

Procedure IEEE—SEND—LISTEN (VARS devlce_x.selector,
return—status : Integer); External;

Procedure IEEE—MULTIPLE—SEND—LISTEN (VARS device—count: Integer;
VARS multiple—device—selector :

device array;
VARS return—status : Integer);

External;
Procedure IEEE—SEND—MLA (VARS return—status : Integer); External;
Procedure IEEE—SEND—MTA (VARS return—status : Integer); External;
Procedure IEEE—SEND—SCG (VARS device—selector, secondary address,

return—status : Integer); External;
Procedure IEEE_MULTIPLE—SEND—SCG (VARS device—count: Integer;

VARS multiple—device—selector,
multiple—secondary—address :
device array

VARS return^status : Integer);
External;

Procedure IEEE—SEND—TALK (VARS device—selector,
return—status,: Integer); External;

Procedure IEEE—SEND—UNL (VARS return—status : Integer); External;
Procedure IEEE—SEND—UNT (VARS return—status : Integer); External;

5-26 COMMUNICATIONS

Procedure IEEE—SPOLL (VARS device..selector, poll—byte,
return__status : Integer); External;

Procedure IBEE_STATUS (VARS service—request: Integer); External;
Procedure IEEE—TIMEOUT (VARS function, milliseconds,

return—status : Integer); External;
Procedure IEEE—TRIGGER (VARS device—selector,

return—status : Integer); External;
Procedure IEEE—MULTIPLE—TRIGGER (VARS device—count: Integer;

VARS multiple—device—selector :
device—array;

VARS return—status : Integer);
External;

If you are using several IEEE routines, you can include EXTER
NAL.PAS in your program by using the $INCLUDE metacommand
instead of typing the declarations listed. (The EXTERNAL.PAS file is
on your IEEE 488 diskette.) If you do this, calls to the IEEE interface
can be made by typing the name of the procedure you want to access,
followed by the parameters:

IEEE_procedure_name(pdrameter_ 1,...Parameter_N);

Build your program and compile it. When you link your program, pro
ceed normally until the linker asks if additional libraries will be used.
Respond by entering IEEEPAS. The IEEEPAS library contains the
high-level routines and an interface from these routines to the BIOS
routines.

5

SET-UP AND CHECK-OUT 5.5
OF THE IEEE 488 INTERFACE

First, gather the devices you want to put on the IEEE 488 communica
tions bus. (Follow manufacturer instructions on the set-up and installa
tion of the devices.) Specify a bus address for each device, ensuring that
each address is unique. If any device must be at address zero (the one to
which your computer defaults), be sure your application uses the CON
TROLLER ADDRESS function to give the computer a different (and
unique) device address. (You must do this each time the software is
loaded, or after a RESET function is done.) Determine which devices
are to use which data lines during a parallel poll and set those values
(either on the device itself, or by using software commands).

IEEE 5-27

Next, attach the devices using the IEEE cables (see Exhibit 5b). Attach
the large male connector to the parallel port in the rear of the computer.
The smaller male connector is to be attached to a device on the bus.

Additional devices can be attached by connecting Standard IEEE
Cables (included with IEEE-compatible devices or available from the
vendor). Many devices can be connected to the bus (up to a maximum
total cable length of 20 meters and a maximum of 15 devices), in any
configuration (daisy chain, linear, or star). The final result, though, is
always a continuous bus.

Because the principal cable is included with this product, one Standard
IEEE Cable remains after all devices are interconnected.

Exhibit 5b: IEEE Bus Cables

TWISTED PAIR

TWISTED PAIR

TWISTED PAIR

TWISTED PAIR

TWISTED PAIR

2
3

19
2 -
3 -
4 -
5 -
6-
7-
8-
9-
10
28-

29
13-
33
15
17
34
35
16
36
27-
20

13
14
15
16

-7
19
10

-22
-8
-20
-5

 12

17
II
23
-9
21

■24

6
18

- DAV -
—GND—
- D101 -
- DI02 -
- DI03 -
- D104 -
- D105 —
- DI06 —
- D107 —
- D108 —
—NRFD-

GND—
— SRQ —
—GND—
—NDAC-
—GND—
— EOI -

 SHIELD

-REN—
—ATN —
—GND—
— IFC -
—GND—
-GND—

TWISTED PAIR

5-28 COMMUNICATIONS

CHECK-OUT EXERCISES 5.6

Now your IEEE bus and devices are ready to be tested. Here are two
trial application programs to help you get familiar with the interface.

The first example shows how to receive information from the plotter. To
begin, set the variables needed by the IEEE 488 interface.

INPUT.COUNT% = 7

' Initialize plotter

' Puts plotter in power on state
' Puts plotter in power on ID

DEF SEG = 0
LOWOFF = PEEK(884)
HIOFF -- PEEK(885)
L0W8EG -- PEEK(886)
HI8EG -- PEEK(887)
SEG --- (2B6*HISEG) + L0W8EG
IEEE = (266*HI0FF) 4- LOWOFF
DEF SEG -- SEG

RETSTAT% -- 0
CALL IEEE(PLOTTER%, PLOTTER,BTATUS%, RETSTAT%,.SERIAL,POLL%)

' Set up to get high level address
' Low byte of offset address
' High byte of offset address
' Low byte of segment address
' High byte of segment address
' Full segment address
' Full offset address
' Define segment for CALL

INITIALIZE.PLOTTERS = "IN;1
OUTPUT.ID $ = "01;"

PLOTTERS - 6
OUTPUT % --- 6
SERIAL.POLL% -- 10
ENTER% --- 7
INF0% -- 0
PLOTTER.STATUS% = 0
RET8TAT% = 0
CNT% =0

' Address of the 7470a plotter
' Number associated with output routine
' Number associated with serial poll
' Number associated with enter
' Tells IEEE 488 to output data
' Status returned from a serial poll
' Status returned from IEEE 488 routines ,
' Will be assigned to length of *
' messages to output ‘
’ Length of plotter ID
' Storage for the ID

0NT% --- LEN(INITIALIZE,PLOTTERS)
CALL IEEE(PLOTTER%, CNT%, INITIALIZE.PLOTTERS, INF0%, RETSTAT%, OUTPUTS)

' Retrieve the s poll Integer

10 ' This example shows how to receive information from the plotter.
80 ' First we will do a serial poll on the plotter to determine
SO ' its status and then we will ask It to Identity Itself.
40 '
SO ’IEEE necessary variables
SO '
70
80
90
100
110
118
120
ISO
140
ISO
160 DIM IDENTIFICATIONS (7)
170 '
180 '...Plotter messages
190 '
200
210
220 '
230 ' ...Main program
240 '
260
260
270
280
290
300
310
320
330 '
340 ' ...Enter data
360 '
360
370
380
390
400
410

IEEE 5-29

480 ' Display the plotter status
430 PRINT ' The current plotter status Is " PLOTTER.STATUS%
440 ' Command the plotter to send ID
430 RET8TAT% -- 0
460 CNT% -- LEN(OUTPUT.IDI)
470 CALL IEEE(PLOTTER%, CNT%, 0UTPUT.lv K, INF0%, RET8TAT%, 0UTPUT%)
480 ' Retrieve the plotter ID
490 RETBTAT% =0
SOO CALL IEEE(PL0TTER%, INPUT.COUNT%, IDENTIFICATION%, RET8TAT%, ENTERS
610 ’ Convert to ASCII
680 IDS -- ""
630 FOR I = 0 TO INPUT.COUNT% - 1
540 IDS -- IDS + CHR$(IDENTIFICATION%(I))
660 NEXT I
660 • Display on screen
670 PRINT "You are talking to a"; IDS; "plotter."
680 END

10 ' This example draws two triangles back to back using
80 'ithe 7470A plotter ,
30 ' ’It -» ’

40 'IEEE necessary variables
50 '
60 PLOTTER% =6 ' Address of the 7470a plotter
70 OUTPUT =6 t 0 '•Number associated with output routine
60 INF0% == 0 ' Tells IEEE 488 to output data
90 RETSTAT% = 0 ' Status returned from IEEE routines
100 CNT%.= 0 . •. ' Will be assigned to length of
110 ' messages to output
120 'Plotter messages
130 «
140 SELECT.PEN.1S.= "SP1;" ' Select pen from left stall
ISO INITIALIZE.PLOTTERS -- "IN;" ' Puts plotter in power on state
160 POSITION.PEN S = "PA2000.1600;" ' Plots Absolute at given xy
170 ' position
180 PEN. DOWN I -- "PD;" ' Lowers the pen '
190 ' Plots Absolute to given xy
800 DRAWTRIANGLE.IS -- "PAG,1600,8000.3600.8000.1600;"
810 PEN.UPS -- "PU;" ' Lifts the pen
880 P0SITI0N.PEN.2S = "PA2600.1600;" ' Moves to beginning of triangle 8
830 ' Draws the 8nd triangle at given Iocs
240 DRAWTRIANGLE.8S -- "PA4600,1500,8600,3600,8600,1600;"
260 STORE.PENS = "SP;" ' SP without parameters will
260 ' store the pen
870 •

280 ’Main program
290 >

300 DEF SEG -- 0 ' Set up to get high level address
310 LOWOFF = PEEK(884) ' Low byte offset address
320 HIOFF = PEEK(885) ! High byte offset address
330 L0W8EG = PEEK(886) ' Low byte segment address
340 HISEG = PEEK(887) ' High byte segment address
360 SEG = (866*HISEG) + LOWSEG ' Full segment address
360 IEEE = (256*HI0FF) -1- LOWOFF ' Full offset address
370 DEF SEG -- SEG
380 >

390 'Perform plots
400 •

410 ' Initialize plotter
480 CNT% = LEN (INITIALIZE.PLOTTERS);

5-30 COMMUNICA TIONS

0UTPUT.lv

430
440
450
460
470
480
490
500
510
520
530
540
560
660
570
680
690
600
610
620
630
640
660
660
670
680
690
700
710
720
730
740
760
760

5-31IEEE

CALL IEEE(PL0TTER%, CNT%, INITLALIZE.PLOTTERS, INF0%, RETSTAT%, OUTPUT%)
' Select a new pen to use

RETSTAT% =0 ' Re-lnltialize return status
CNT% -- LBN(SELECT.PEN.ll)
CALL IEEE(PL0TTER%, CNT%, SELECT,PBN.l I, INF0%, RET8TAT%, 0UTPUT%)

' Put pen at lower left corner
RETSTAT% --0
CNT% = LEN(PO8rri0N.PBN|)
CALL IEEE(PL0TTER%, CNT%,P08ITI0N.PENS, INF0%, RETSTAT%, 0UTPUT%)

’ ’ Put the pen down
RETSTAT% -- 0
CNT% = LEN(PEN.DOTOl) ,
CALL IEEE(PLOTTER%, CNT%, PENJDOWNt, INF0%, RET8TAT%, OUTPUT%)

' Draw the first triangle
RETSTAT% =0
CNT% - LEN(DRAWTRIANGLE.ll)
CALL IEEE(PLOTTER%, CNT%, DRAWTRLANGLE.il, INF0%, RETSTAT%, 0UTPUT%)

• ' Raise the pen to move to new triangle
RETSTAT%=0 . 4
CNT% = LBN(PBN.UPl) ' -
CALL IEEB(PLOTTBR%, CNT%, PEN.UP I, INF0%, RET8TAT%, OUTPUTS)

' Move to new triangle lower left corner
BBTSTAT% = 0.
CNT% -- LEN(P0SHT0N.PEN.2|)
CALL IEEB(PL0TTER%, CNT%, P08ITI0N.PEN.2l, INF0%, BETSTAT%, OUTPUTS)

' Draw the 2nd triangle
BETSTAT% =0
CNT% = LEN(DRAWTBIANGLE.2$)
CALL IEEE(PLOTTER%, 0NT%, DRAWTRLANGLE.21, INF0%, RETSTAT%, OUTFkJT%)

'Store the pen
RBTSTAT% = 0
0NT% -- LEN(STORB.PBNI)
CALL IEBB(PLOTTBR%, CNT%, STOBE.PENtz, INFO%,RETSTAT%, OUTPUT%) ‘
END .r .. *-.* ”• • i'

■ a.}- r ■ .. -

DRAWTRLANGLE.il

