
To: f°'llen Moyi--is
Re: Victor 9000 & DP101

Running DP101 pY-oduces the following eYY-Ol'" message:

Error in numbeY of sectors per cluster

II II II bytes per sector

Ille£1al number of FATS: (0 on flooppy)
C32 on haYd disk)

The data in the boot area is not the same as returned by DOS
function 54.

I show function 54 to be "Get ver·i fy status ··-· r~:ttui"tH":'d in AL.."
assembling and yunning:

MDV AHp54
INT 21
INT 20

returns "0" in AL..

Getting out my friendly set of disk tools, I find the following
data that may be of help.

Di" i ve No
Unit
St-ctor Size
Cluster S:izf:•

Hard DiskCC)

512
1 E.
0(2)

Floppy CA)

(2)

0

4
01 Media Description By

Available space for DArA

F.:eseY ved Sect 01" s

2497 Clusters
20455424 Bytes
1

594 Clusters
1215512 Bytes
1

File Allocation Tables
~3•~cb:•rs pt:~l" FAT
Directory Sectors
Max. Directoyy Entries

-. ..::.

8
20
312

8
128

The following data is from the Victor Tech F.:ef Manual

MS-DOS allocates space on a single-sided diskette CSS) and a
double sided CDS) diskette as follows:

Track !Zl Sect ot- 0 Disk L..abt.•l
St?c to·,,- s 1. -- _: T•..Jo •:opi es of the FAT, two sectors

FAT CSS)
Sectors 1--A Twi:::i copit.•s () f th€:' F"AT v two sec toi" !S

per

per·

Sectors 3-10
Sectors 5-12
Sectors 11-
Sectors 13-

FAT CDS>
Directory CSS)
Directory CDS)
Data Region CSSl
Data Region CDS>

**
Victor 9000 Hard-Disk Label Format

FIELD NAME DATA

Label_Type WORD

Device_ID WORD

TYPE CONTENTS

0000=unqualified
0001=Current Revision

0001=current revision

Serial_number ByteC16l ASCII

Sector_Size WORD 512

IPL_VECTOR
Disk Address
Load_Address
Load_Length
Cod_Entry

Primary_Boot_Volume

Control_Parems
Cylinders

Heads
1st reduced
current cyl.
1st write
precomp cyl.
ECC Data burst
Options
Interleave
Spares

DWORD
WORD
WORD
PTR

WORD

BYTEC16l
BYTECHi)
BYTE Clo)
BYTE
BYTECHil
BYTECLo)
BYTECHi)
BYTECLo)
BYTE
BYTE
BYTE
BYTEC6)

Available_Media_List
Region_Count BYTE
Region_Descr <var)
Region_PA DWORD
Region_Size DWORD

Working_Media_List
Region_Count
Region_Descr
Region_PA
Region_Size

BYTE
Cvarl
DWORD
DWORD

Logical Address
Paragraph Number
Paragraph Count

Memory Address

Virtual Volume #

<For Tandem TM603SE>
00H
E6H C=230)
06H C=6)
00H
80H C=128)
00H
80H C=128)
0BH C=11)
02h (=2)
05H C=5, note that 0 means 5)
00H

Number of Regions
Variable by region count
Phisical Address
Block Count

Number of Regions
Variable by region count
Phisical Address
Block Count

Virtual_Volume_List
Volume_Count BYTE
Volume_Address DWORD

Number of Virtual Volumes
Virtual volume "label Logical
Address

The above table describes those elements found in the hard-disk
label, following is a discussion of the meaning of the entries
themselves:

* Label Type - this defines the state of the driver
layout and the revision number of the label

Device ID - Classification identifying the arrangement,
for example, the drive Mfg, controller revision number.
This allows for the identification of compatible
controller/drives.

* Serial Number - the serial number of the unit is stored
here.

* Sector Size - the physical atomical unit of storage on
the media

* Initial Program Load Vector CIPL> - this is a
descriptor identifying the boot program and it's
location on disk. This information is generated from
the primary boot volume label via the utility HDSETUP.

* Disk Address - The logical disk address of the
boot program image

* Load Address - the paragraph address of the memory
where the boot program is to load. A zero entry
indicates a default load at the highest RAM
location. * Load Length - The length of the boot program in
paragraphs.

* Code Entry - a long memory address of the starting
entry of the boot program. segment of zero
defaults to the segment of the loaded program.

* Primary Boot Volume - the logical address of the
virtual volume label containing the IPL vector and
configueration information.

* Controller Parameters - a list of controller dependent
information, for use in device reset and configuration.

* Available Media List - a list Df permanent useable
areas of the disk. This is derived from the available
media list and from the format function of the HDSETUP
utility.

* Physical Address - the disk address of the region * Region Size - the number of physical blocks in the
region.

* Working Media List - a list of the working areas of the
disk. This is derived from the AVailable Media List
and from the format function of the HDSETUP utility.
* Physical Address - disk address of the region
* Region Size - the number of physical blocks in the

region

* Virtual Volume List - a list of the logical disk
addresses of all virtual volume labels.

Victor 9000 Hard-Disk Virtual Volume Label Format

The Virtual Volume Label provides information on the structure of
the Virtual Volume. Generally the operating system references
this label, while the HDSETUP utility will create and reference
it. The Virtual Volume Label appears as follows:

FIELD NAME

Label_Type
Volume_Name
IPL_Vector

Disk Address
Load_Address
Load_Length
Code_Entry

DATA

WORD
BYTEC16)

DWORD
WORD
WORD
PTR

Volume_Capacity DWORD
Data_Start DWORD
Host_Block_Size WORD
Allocation_Unit WORD
Number_Of_Directory_Entries

WORD
Reserved BYTEC16)

Configuration_Information

TYPE CONTENTS

0000=nul
ASCII

Virtual Address
Paragraph Number
Paragraph_Count
Memory Address

of physical blocks
Virtual Address
MS-DOS = 512 bytes
of physical blocks

Entry count
Future expansion - set to nulls

Assignment_Count BYTE # of assignment mappings
Assignment Cvar) Variable by assignment count
Device_Unit WORD Physical Unit Number
Volume_Index WORD Index into virtual volume list

The above table describes those elements found in the hard-disk
Virtual Volume label, following is a discussion of the meanings
of the entries themselves.

* Label Type - this defines the type of operating
enviorment that the virtual volume is configured for.
It is used for type checking when assigning volumes to

drives. * Volume Name - the name of the virtual volume as defined
by the user.

* Initial Program Load Vector - this is a descriptor
identifying the boot program and it's location within
the virtual volume. This field is used to generate the
IPL vector on the drive label when configuering the
primary boot volume. * Disk Address - the virtual disk address of the

boot program image. * Load Address - the paragraph address of the
memory where the boot program is to load. A zero
entry indicates a default load to the highest RAM
location. * Load Length - the length of the boot program in
paragraphs * Code Entry - a long memory address to the starting
entry of the boot program. Segment of zero
defaults to the segment of the loaded program.

* Volume Capacity - the number of actual blocks that
comprise the virtual volume. * Data Start - the offset in blocks into the virtual
volume for the start of the data space. * Host Block Size - The atomical unit used by the host in
data transfer Qperations. * Allocation Unit CALI> - this operating system dependent
field means the storage allocation size used by the
host in the virtual volume. It is used in determining
disk parameter tables and disk definitions. * Number of Directory Entries - this operating system
dependent field means the number of entries in the
hosts directory. It is used in determine disk parameter
tables and disk definitions. * Configueration Information - a list of the drive
assignments for a system at boot time. It is used to
map logical drives to virtual volumes. This filed is
referenced via the label of the booted drive.

The above spelling errors are mine - not Victors. Besidex the
memap you downloaded, this should give you all the info I can
fins on the Victor disks.

Victor does have their own Super-Bies which I will upload also.

If you need any additional
I'll see what I can find.
here.

Franz Hirner

information, please let me know and
My home tel is 349-3602 or leave word

Hardware
Reference

Manual

COPYRIGHT

TRADEMARKS

NOTICE

© 1983 by VICTOR.®

Portions reprinted by permission of Intel Corporation INTEL,
©1978and 1981.

Portions reprinted by permission of Motorola, Inc.,
®1978.

Portions reprinted by permission of Synertec, Inc., ©1980.

All rights reserved. This publication contains proprietary infor
mation which is protected by copyright. No part of this publication
may be reproduced, transcribed, stored in a retrieval system,
translated into any language or computer language, or transmitted
in any form whatsoever without the prior written consent of the
publisher. For information contact:

VICTOR Publications
380 El Pueblo Road
Scotts Valley, CA 95066
(408) 438-6680

VICTOR is a registered trademark of Victor Technologies, Inc.

VICTOR makes no representations or warranties of any kind
whatsoever with respect to the contents hereof and specifically
disclaims any implied warranties of merchantability or fitness for
any particular purpose. VICTOR shall not be liable for errors
contained herein or for incidental or consequential damages in
connection with the furnishing, performance, or use of this
publication or its contents.

VICTOR reserves the right to revise this publication from time to
time and to make changes in the content hereof without obligation
to notify any person of such revision or changes.

Second VICTOR printing April, 1983.

ISBN 0-88182-065-2 Printed in U.S.A.

CONTENTS

1. System Description 1
Processor Unit ... ·.................................. 2
Display Unit .. 2
Keyboard Unit .. 2

2. Processor Unit Main Logic Board .. 3
8088 Central Processing Unit (CPU) .. 3

Execution Unit . 5
Bus Interface Unit .. 5
General Registers 6
Segment Registers 7
Instruction Pointer ... 8
Flags .. 8
8080/8085 Register and Flag Correspondence 9
Memory ... 10

Storage Organization .. 10
Segmentation 11
Physical Address Generation ... 13
Dynamically Relocatable Code 16
Stack Implementation . 17
Dedicated and Reserved Memory Locations 18
8086/8088 Memory Access .. 18

Input/Output ... 18
Memory Mapped 1/0 .. 18
Direct Memory Access ... 19
Wait and Test .. 19

Processor Control and Monitoring Interrupts 19
External Interrupts . 21
Internal Interrupts .. 22
Interrupt Pointer Table .. 23
Interrupt Procedures ... 25
Breakpoint Interrupt .. 27
System Reset .. 27
Processor Halt .. 28

Addressing Modes .. 28
Register and Immediate Operands .. 28
Memory Addressing Modes ... 29
Effective Address .. 29
Direct Addressing ... 30
Register Indirect Addressing .. 30
Based Addressing ... 31.
Indexed Addressing 32
Based Indexed Addressing .. 33
String Addressing .. 34
1/0 Port Addressing ... 35

Boot ROM ... 35
Input/Output (1/0) Functions .. 35

Serial Ports .. 36
Parallel Port ... 36

Ill

Control Port ... 36
Audio Section .. 36
Keyboard Interface ... 38

Disk Interface ... 38
Expansion Bus 39
Display .. 39

Screen Buffer 40
Font Pointer ... 40
Attribute Bits .. 41
Reverse Video ... 41
Display High/Low Intensity .. 41
Display Underline/Strikeover .. 41
Nondisplay Attribute .. 41
Software Attribute 41

Font Cell 42.
Display Brightness 43
Display Contrast 43

High Resolution Mode .. 43
Disk Drive Assembly 44

Functional Description ... 44
Reading Data .. 44

Header Search 44
Data Transfer .. 44

Writing Data .. 46
Verification 46
Formatting ... 46
Positioning ... 47.
Speed Control ... 47

Physical Description ... 47
Motor Speed Control .. 47
Data Encoding Technique-GCR .. 49
Read Channel ... 49
Write Channel ... 50
Sector Format ... 50
Track Format .. 51
Physical Bus Interface ... 51

Power Supply ... 51

3. Display Unit 53

4. Keyboard Unit 55

Appendixes A. 8088 Instruction Set ... 57
Introduction ... 57
Data Transfer Instructions ... 58

General Purpose Data Transfers ... 59
MOV destination, source 59
PUSH source 59
POP destination 59
XCHG destination, source .. 59
XLAT translate-table . 59
IN accumulator, port ... 59
OUT port, accumulator 59

Address Object Transfers .. 59
LEA destination, source 60
LOS destination, source ··'················ 60

IV

LES destination, source .. 60
Flag Transfers ... 60

LAHF .. 60
SAHF .. 62
PUSHF ... 62
POPF .. 62

Arithmetic Instructions ... 63
Arithmetic Data Formats .. 63
Arithmetic Instructions and Flags .. 65
Addition . 66

ADD destination, source 66
ADC destination, source 66
INC destination 66
AAA .. 66
DAA .. 66

Subtraction .. 66
SUB destination, source ... 66
SBB destination, source ... 66
DEC destination .. 66
NEG destination .. 66
CMP destination, source .. 67
AAS .. 67
DAS .. 67

Multiplication ... 67
MUL source ... 67
IMUL source ... 67
AAM ... 68

Division .. 68
DIV source .. 68
IDIV source ... 68
AAD ... 68
CBW ... 69
CWD ... 69

Logical ... 69
NOT destination .. 70
AND destination, source .. 70
OR destination, source .. 70
XOR destination, source ... 70
TEST destination, source ... 70

Shifts .. 70
SHL/SAL destination, count ... 70
SHR destination, source ... 70
SAR destination, count ... 71

Rotates .. 71
ROL destination, count ... 71
RCL destination, count ... 71
RCR destination, count ... 71

String Instructions .. 71
REP /REPE/REPZ/REPNE/REPNZ .. 73
MOVS destination-string, source-string 73
MOVSB/MOVSW .. 73
CMPS destination string, source-string 74
SCAS destination-string ... 74
LOOS source-string .. 74
STOS destination-string ... 74

Program Transfer Instructions ... 74

v

Unconditional Transfers ... 76
CALL procedure-name 76
RET optional-pop-value .. n
JMP target .. 77

Conditional Transfers 77
Iteration Control 78

LOOP short-label 78
LOOPE/LOOPZ short-label 78
LOOPNE/LOOPNZ short-label ... 78•
JCXZ short-label ... 79 •

Interrupt Instructions . 79
INT interrupt-type .. 79
INTO .. 79
IRET ... 79

Processor Control Instructions .. 79
Flag Operations .. 80

CLC .. 80
CMC ... 80
STC .. 80
CLO .. 80
STD .. 80
CLI ... 80
STI ... 80·

External Synchronization .. 81.
HLT .. 81
WAIT .. 81
ESC external-opcode, source 81
LOCK ... 81

NO OPERATION: NOP 81
Instruction Set Reference Information 81
B. Expansion Bus Definition .. 83

C. Memory Mapped 1/0 Address and Bit Assignments 89

D. The Display System .. 95
Introduction ... 95 ·
High Resolution Mode .. 97
Brightness and Contrast Control 97
Circuit Description 98
CRTC Device Operation Overview .. 99

Interface Signals to the CPU ... 99
Bidirectional Data Bus (100-107) ... 99
Read/Write (R/W) ... 100 ·
Chip Select (CS) .. 100
Register Select (RS) .. 100
Enable (E) ... 100
Reset (RES) .. 100

Interface Signals to Display Circuits 100
Character Clock (CLK) .. 100
Horizontal Sync (HSYNC) .. 100
Vertical Sync (VSYNC) .. 100
Display Timing (DISPTMG) ... 100
Refresh Memory Address MAO-MA13 : 100
Raster Address (RAO-RA4) ... 101
Cursor Display (CUDISP) .. 101
Light Pen Strobe (LBSTB) ... 101

VI

Internal Registers .. 101
Address Register (AR) .. 101

Horizontal Total Register (RO) ... 101
Horizontal Displayed Register (RI) ... 101
Horizontal Sync Position Register (R2) 101
Sync Width Register (R3) ... 101

Vertical Total Register (R4) ... 101
Vertical Total Adjust Register (RS) 102
Vertical Displayed Register (R6) 102
Vertical Sync Position Register (R7) 103
Interlace Skew Register (RS) ... 103
Interlace Mode Program Bits (V,S) 103
Skew Program Bit (C1, CO, D1, DO) 103
Maximum Raster Address Register (R9) 104
Cursor Start Raster Register (R10) 105
Cursor End Raster Register (R11) 105
Start Address Registers (R12, R13) 105
Cursor Registers (R14, R15) ... 105
Light Pen Registers (R16, R17) ... 105
Restrictions on Programming Internal Registers 106

Noninterlace Mode Display .. 106
Interlace Sync Mode Display ... 106
Interlace Sync and Video Mode Display 106
Cursor Control ... 107

E. Audio System Hardware .. 109
Input Signal Conditioning .. 109
Output Conditioning and Power Amplifier 109
SSDA Device Operation ... 110

Overview .. 110
Initialization ... 11 O
Transmitter Operation ... 111
Receiver Operation .. 111
Synchronization .. 111
Receiving Data ... 112

Input/Output Functions ... 112
SSDA Interface Signals for CPU .. 112

SSDA Bidirectional Data (IDO-ID7) 112
SSDA Enable (PHASE2) .. 113
Read/Write (R/W) ... 113
Chip Select (CS) .. 113
Register Select (RS) .. 113
Interrupt Request (IRQ) ... 113
Reset Input ... 113

Clock Inputs ... 113
Transmit Clock (Tx Clk) .. 113
Receive Clock (Rx Clk) ... 114

Serial Input/Output Lines .. 114
Receive Data (Rx Data) .. 114
Transmit Data (Tx Data) ... 114

SSDA Registers ... 114
Control Register 1 (C1) ... 115

Receiver Reset (Rx Rs), C1 Bit 0 115
Transmitter Reset (Tx Rs), C1 Bit 1 115
Strip Synchronization Characters (Strip-Sync),

C1 Bit 2 ... 115

VII

Clear Synchronization (Clear Sync), C1 Bit 3 115
Transmitter Interrupt Enable (TIE), C1 Bit 4 115
Receiver Interrupt Enable (RIE), C1 Bit 5 115
Address Control 1 (AC1) and Address Control 2 (AC2),

C1 Bits 6 and 7 .. 115
Control Register 2 (C2) ... 115

Peripheral Control 1 (PC1) and Peripheral Control 2
(PC2), C2 Bits 0 and 1 ... 116

1-Byte/2-Byte Transfer (1-Byte/2-Byte), C2 Bit 2 116
Word Length Selects (WS1, WS2, WS3),

C2 Bits 3, 4 and 5 .. 116
Transmit Sync-Code on Underflow (Tx Sync),

C2 Bit 6 ... 116
Error Interrupt Enable (EIE), C2 Bit 7 116

Control Register 3 (C3) ... 116
External/Internal Sync Mode Control (E/1 Sync),

C3 Bit 0 ... 116
One-Sync-Character/Two-Sync Character Mode
Control (1 Sync/2 Sync), C3 Bit 1 117
Clear CTS Status (Clear CTS), C3 Bit 2 117
Clear Transmit Underflow Status (CTUF), C3 Bit 3 117

Sync-Code Register ... 117
Parity for Sync Character .. 117

Transmitter .. 117
Receiver .. 118

During Synchronization .. 118
After Synchronization is Established 118

Receive Data First-In First-Out Register (Rx Data FIFO) ... 118
Transmit Data First-In First-Out Register (TX data FIFO) ... 119
Status Register ... 119

Receiver Data Available (RDA), S Bit O 119
Transmitter Data Register Available (TORA), S Bit 1 119
Data Carrier Detect (DCD), S Bit 2 120
Clear-to-Send (CTS), S Bit 3 ... 120
Transmitter Underflow (TUF), S Bit 4 120
Receiver Overrun (Rx Ovrn), S Bit 5 120
Receiver Parity Error (PE), S Bit 6 120
Interrupt Request (IRQ), S Bit 7 .. 120

Status Register ... 120
IRQ Bit 7 ... 120
Bits 6 to O ... 120
PE Bit 6 ... 120
RX Ovrn Bit 5 · ... 121
TUF Bit 4 .. 121
CTS Bit 3 .. 121
DCD Bit 2 ... 121
TORA Bit 1 ... 121
RDA Bit 0 .. 121

Control Register 1 . 121
AC2, AC1 Bits 7, 6 .. 121
RIE Bit 5 , .. 121
TIE Bit 4 .. 121
Clear Sync Bit 3 ... 121
Strip Sync Bit 2 . 121
Tx Rs Bit 1 ... 121
Rx Rs Bit 0 .. · 121

VIII

Control Register 2 .. 121
CTUF Bit 3 ... 121
Clear CTS Bit 2 .. 121
1 Sync/2 Sync Bit 1 .. 121
E/1 Sync Bit 0 ... 121

Control Register 3 121
EIE Bit 7 .. 121
Tx Sync Bit 6 ... 121
WS3, WS2, WS1 Bits 5, 4 and 3 121
1-Byte/2-Byte Bit 2 ... 122
PC2, PC1 Bits 1 and O .. 122

Codec Device Operation .. 122
The Delta Modulator .. 122
The Companding Algorithm 123

F. Keyboard Specifications ... 125
Mechanical Specifications .. 125

Key Total Travel .. 125
Actuation Force ... 125
Reliability .. 125
Key Spacing ... 125
Key Sideplay ... , 125
Key Top Dimension ... 125
Key Surface ... 125
Key Switch Pressures ... 125

Electrical Specifications .. 125
Input Power .. 125
Rollover .. 125
Connector .. 125

Logical Specifications ... 126
Protocol Definition ... 126
Reserved Keyboard Codes ... 127

Environmental Specifications .. 127
Operating Temperature ... 127
Storage Temperature ... 127
Humidity ... 127
Material ... 127
Keyboard Approvals .. 127
Vibration ... 127
Shock ... 127

Keyboard Layout ... 127
Keyboard Timing Diagram .. 127

G. Communications Controller Specification 129
Introduction .. 129

Features ... 129
Pin Description .. 130
Protocols .. 134

Asynchronous Protocol ... 135
Synchronous Character-Oriented Protocols 135
Synchronous Bit-Oriented Protocols .. 135

Functional Description .. 137
Transmitter ... 137

Asynchronous Mode .. 139
COP Synchronous Modes ... 140
SDLC (/HDLC BOP Synchronous) Mode 141

IX

Receiver 142
Asynchronous Mode .. 144
Synchronous Modes .. 145
SDLC (/HDLC BOP Synchronous) Mode 146

Bus Interface Controller .. 147
Bus Control Logic .. 147
Interrupt Control Logic .. 148
OMA Control Logic ... 152
Clock and Reset Control Logic .. 154

Programming The MPSC2 ... 154
MPSC2 Registers .. 154

Control Register O .. 155
Control Register 1 .. 157
Control Register 2 (Channel A) ... 159
Control Register 2 (Channel B) ... 161
Control Register 3 .. 161
Control Register 4 .. 163
Control Register 5 .. 164
Control Register 6 .. 167
Control Register 7 .. 167
Status Register O .. 168
Status Register 1 .. 170
Status Register 2 .. 172

MPSC2 Programming Examples .. 173
Application Hints .. 193

Designing with the MPSC2 .. 193
8080/86-Type Processors ... 193
Other Processor Types .. 193

Using the MPSC2 with OMA Controllers 195
Vectored Interrupts Without Using PRT 195
To OMA or Not to OMA ... 195
Handling an SDLC Underrun Fault .. 197
Sending Synchronous Pad Characters 197
Transmitting Bisync Transparent Mode 197
Vectoring the MPSC2 in Non-Vectored Mode 197

H. 6522 Versatile Interface Specification 199
Absolute Maximum Ratings ... 200
Electrical Characteristics .. 200
Read Timing Characteristics ... 201
Write Timing Characteristics ... 202
Peripheral Interface Characteristics .. 203
Pin Descriptions ... 206

RES (Reset) .. 206
o/2 (Input Clock) .. 206
R/W (Read/Write) .. 206
DBO-DB7(Data Bus) .. 206
CS1, CS2 (Chip Selects) .. 207
RSO-RS3 (Register Selects) ... 207
IRQ (Interrupt Request) .. 207
PAO-PA7 (Peripheral A Port) ... 207
CA1, CA2 (Peripheral A Control Lines) 207
PBO-PB7 (Peripheral B Port) ... 208
CB1, CB2 (Peripheral B Control Lines) 208

Functional Description ... 209

x

Port A and Port B Operation ... 209
Handshake Control of Data Transfers 209
Read Handshake .. 211
Write Handshake .. 212
Timer Operation .. 212
Timer 1 One-Shot Mode .. 214

Timer 1 Free-Run Mode ... 215
Timer 2 Operation ... 216
Timer 2 One-Shot Mode ... 216
Timer 2 Pulse Counting Mode .. 216
Shift Register Operation .. 216
Interrupt Operation .. 217

SR Disabled (000) ... 218
Shift In Under Control of T2 (001) .. 218
Shift In Under Control of +2 (010) .. 218
Shift In Under Control of External Clock (011) 218
Shift Out Free-Running at T2 (100) .. 219
Shift Out Under Control of T2 (101) 219
Shift Out Under Control of +2 (110) .. 219
Shift Out under Control of External CB1 Clock (111) 220

I. Assemoly Language Reference Data ... 223
8086 Register Model ... 223
Operand Summary .. 224
Second Instruction Byte Summary ... 224
Memory Segmentation Model ... 225
Instruction Set Data .. 225

Key to Flag Effects .. 226
Data Transfer ... 226

MOV Move ... 226
PUSH Push ... 227
POP Pop ... 227
XCHG Exchange .. 227
IN Input to AL/ AX from ... 227
OUT Output from AL/ AX to .. 228
XLAT Translate Byte to AL ... 228
LEA Load EA to Register .. 228
LOS Load Pointer to OS .. 228
LES Load Pointer to ES ... 228
LAHF Load AH with Flags .. 228
SAHF Store AH into Flags .. 228
PUSHF Push Flags .. 229
POPF Pop Flags ... 229

Arithmetic ... 229
ADD Add .. 229
ADC Add with Carry .. 229
INC Increment .. 230
AAA ASCII Adjust for Add .. 230
DAA Decimal Adjust for Add .. 230
SUB Subtract ... 230
SBB Subtract with Borrow ... 231
DEC Decrement ... 231
NEG Change Sign ... 231
CMP Compare ... 231
AAS ASCII Adjust for Subtract .. 232
DAS Deicmal Adjust for Subtract ... 232
MUL Multiply (Unsigned) ... 232

XI

IMUL Integer Multiply (Signed) ... 232
AAM ASCII Adjust for Multiply .. 232
DIV Divide (Unsigned) ... 232
IDIV Integer Divide (Signed) ... 233
AAD ASCII Adjust for Divide ... 233
CBW Convert Byte to Word .. 233
CWD Convert Word to Double Word 233

Logic ... 233
NOT Invert .. 233
SHL/SAL Shift Logical/ Arithmetic Left 233
SHR Shift Logical Right ... 233
SAR Shift Arithmetic Right .. 234
ROL Rotate Left ... 234
ROR Rotate Right .. 234
RCL Rotate Through Carry Left .. 234
RCR Rotate Through Carry Right ... 234
AND And .. 235
TEST And Function to Flags, No Result 235
OR Or ... 235
XOR Exclusive Or .. 236

String Manipulation .. 236
REP Repeat .. 236
MOVS Move String .. -. 236
CMPS Compare String .. 236
SCAS Scan String .. 237
LOOS Load String .. 237
STOS Store String .. 237

Control Transfer ... 237
CALL Call ... 237
JMP Unconditional Jump ... 237
RET Return from Call .. 238
JE/JZ Jump on Equal/Zero .. 238
JL/ JNGE Jump on Less/Not Greater or Equal 239
JLE/JNG Jump on Less or Equal/Not Greater 239
JB/JNAE Jump on Below/Not Above or Equal 239
JBE/JNA Jump on Below or Equal/Not Above 239
JP/JPE Jump on Parity/Parity Even 239
JO Jump on Overflow ... 239
JS Jump on Sign ... 239
JNE/JNZ Jump on Not Equal/Not Zero 239
JNL/JGE Jump on Not Less/Greater or Equal 239
JNLE/JG Jump on Not Less or Equal/Greater 240
JNB/JAE Jump on Not Below/ Above or Equal 240
JNBE/ JA Jump on Not Below or Equal/ Above 240
JNP/JPO Jump on Not Parity/Parity Odd 240
JNO Jump on Not Overflow .. 240
JNS Jump on Not Sign .. 240
LOOP Loop CX Times ... 240
LOOPZ/LOOPE Loop While Zero/Equal 241
LOOPNZ/LOOPNE Loop While Not Zero/Not Equal 241
JCXZ Jump on CX Zero .. 241
INT Interrupt ... 241
INTO Interrupt on Overflow ... 241
IRET lnterrupJ Return ... 242

Processor Control .. 242
CLC Clear Carry ...•.............. 242

XII

STC Set Carry .. 242
CMC Complement Carry ... 242
NOP No Operation ... 242
CLO Clear Direction 242
STD Set Direction .. 243
CU Clear Interrupt ... 243
STI Set Interrupt 243
HLT Halt ... 243
WAIT Wait .. 243
LOCK Bus Lock Prefix .. 243
ESC Escape (to External Device) ... 243

Processor Reset Register Initialization ... 244
8088 Reserved Locations ... 244
Mnemonic Index .. 244
8088 Instruction Set Matrix .. 245
Mnemonic Index .. 245

J. Sample SIRIUS 1 Software Drivers ... 247
Keyboard .. 247

Hardware Bit Definitions ... 247
External Routines ... 248
Keyboard Stateware .. 248
Keyboard Support Routines .. 249

CRT .. 250
Controller Chip Register .. 250
Cursor-Display Mode Control ... 250
Cursor Positioning ... 251
Video Contrast and Brightness ... 251
Display RAM/Font Cells ... 252
Hardware Initialization ... 252

Sound/Codec ... 253
Variables and Hardware Definitions ... 253
Bell Control .. 253
Volume Control .. 254

Serial 1/0 ... 254
PPORT -Centronics Interface Routines 257

XIII

FIGURES

1 Typical Arrangement of Main Units 1
2 Main Logic Block Diagram 3
3 Overlapped Instruction Fetch and Execution 4
4 Execution and Bus Interface Units 5
5 General Registers 6
6 Segment Registers 7
7 Flags ... 9
8 8080/8085 Register Subset .. 10
9 Storage Organization 1 O

1 O Instruction and Variable Storage 11
11 Storage of Word Variables 11
12 Storage of Pointer Variables .. 11
13 Segment Locations in Physical Memory 12
14 Currently Addressable Segments 12
15 Logical and Physical Addresses 14
16 Physical Address Generation .. 14
17 Dynamic Code Relocation .. 16
18 Stack Operation 17
19 Reserved and Dedicated Memory Locations 18
20 Interrupt Sources 20
21 Interrupt Processing Sequence ... 20
22 Processing Simultaneous Interrupts 24
23 Interrupt Pointer Table ... 25
24 Memory Address Computation ... 29
25 Direct Addressing 30
26 Register Indirect Addressing ... 31
27 Based Addressing 31
28 Accessing a Structure with Based Addressing 32
29 Indexed Addressing 32
30 Accessing an Array with Indexed Addressing 33
31 Based Indexed Addressing 33
32 Accessing a Stack Array with Based Indexed

Addressing 34
33 String Operand Addressing 34
34 1/0 Port Addressing .. 35
35 Audio Section Block Diagram 37
36 Display System Block Diagram 39
37 Display Operation 40
38 Font Cell Example 42
39 Block Diagram of a Font Cell 43
40 Disk Drive Assembly 44
41 Disk Track and Sector Layout .. 48
42 Sector Format 50
43 Processor Unit ... 52
A-1 String Operation Flow 61
A-2 Flag Storage Formats .. 62
B-1 Expansion Connector 87
B-2 Expansion Bus Interface Timing 88
D-1 Display System Organization 95

xv

XVI

D-2
D-3
F-1
G-2.1
G-2.2
G-2.3
G-2.4
G-3.1
G-3.2
G-3.4
G-4.1
G-4.2
G-4.3

G-4.4
G-4.5
G-4.6
G-4.7
G-4.8
G-4.9
G-5.1
G-5.2
G-5.3
G-5.4
G-5.5
G-5.6
G-5.7
G-5.8
G-5.9
G-5.1 O
G-5.11
G-5.12
G-5.13

G-5.14
G-5.15
G-5.16
G-5.17
G-5.18
G-5.19
G-6.1

G-6.2
G-6.3
G-6.4
G-6.5
G-6.6

H-1
H-2
H-3
H-4
H-5a
H-5b
H-5c
H-5d

Screen Buffer Word Format .. 96
Cursor Control .. 107
Keyboard Timing Diagram .. 128
Functional Pinout ... 130
Pin Configuration ... 130
SYNC Output, External Synchronization 134
SYNC Output, Internal Synchronization 134
Asynchronous Data Character Format 136
BISYNC Message Format ... 136
Basic SDLC Frame .. 136
Block Diagram ... 137
Block Diagram MPSC2 Transmitter 138
Data Format Example for Less Than

8 Bits/Character ... 142
Block Diagram MPSC2 Receiver 143
Bus Interface Controller .. 148
MPSC2 Interrupt Conditions .. 150
Interrupt Timing .. 151
OMA Data Transfer Timing ... 152
Wait Mode Timing .. 153
Control Register O .. 155
Control Register 1 .. 157
Control Register 2 (Channel A) .. 159
Control Register 2 (Channel B) .. 161
Control Register 3 .. 161
Control Register 4 .. 163
Control Register 5 .. 164
Control Register 6 .. 167
Control Reaister 7 .. 167
Status Register O ... 168
Status Register 1 ... 170
Status Register 2 ... 172
Asynchronous Initialization for Polled Transmit

and Receive .. 175
Asynchronous Receive .. 175
Asynchronous Transmit ... 176
Bisync Initialization Transmit ... 181
Bisync Initialization Receive .. 184
SDLC Initialization Transmit .. 188
SDLC Initialization Receive ... 192
uPD7201 Interface to 8080 Standard System Bus

(Non-OMA) .. 193
6800/6502 to MPSC2 Adapter .. 193
6800/6502 to MPSC2 Adapter .. 194
I NT A Generator for 2-80 ... 194
OMA Interface .. 195
Priority Resolution Circuit for

Nondaisychained Devices ... 196
SY6522 Block Diagram ... 199
Test Load (for All Dynamic Parameters) 201
Read Timing Characteristics ... 201
Write Timing Characteristics ... 202
CA2 Timing for Read Handshake, Pulse Mode 203
CA2 Timing for Read Handshake, Handshake Mode 204
CA2, CB2 Timing for Write Handshake, Pulse Mode 204
CA2, CB2 Timing for Write Handshake,

Handshake Mode ... 204
H-5e Peripheral Data Input Latching Timing 205
H-5f Timing for Shift Out with Internal or

External Shift Clocking .: ... 205
H-5g Timing For Shift In with Internal or

External Shift Clocking ... 205
H-5h External Shift Clock Timing ... 206 .
H-5i Pulse Count Input Timing .. 206 .
H-6 SY6522 Internal Register Summary 207
H-7 Peripheral A Port Output Circuit 208
H-8 Peripheral B Port Output Circuit 208
H-9 Output Register B (ORB), Input Register B (IRB) 210
H-10 Output Register A (ORA), Input Register A (IRA) 210
H-11 Data Direction Registers (DDRB, DORA) 211
H-12 Read Handshake Timing (Port A, only) 211
H-13 Write Handshake Timing ... 212
H-14 CA1, CA2, CB1, CB2 Control ... 213
H-15 T1 Counter Registers .. 213
H-16 T1 Latch Registers .. 213
H-17 Auxiliary Control Register .. 214
H-18 Timer 1 and Timer 2 One-Shot Mode Timing 214
H-19 Timer 1 Free-Run Mode Timing 215
H-20 T2 Counter Registers .. 216
H-21 Timer 2 Pulse Counting Mode .. 217
H-22 SR and ACR Control Bits .. 217
H-23 Shift Register Input Modes .. 219
H-24 Shift Register Output Modes ... 220
H-25 Interrupt Flag Register (IFR) .. 220
H-26 Interrupt Enable Register (IER) ... 221

XVII

TABLES

1 Implicit Use of General Registers 7
2 Logical Address Sources . 15
3 Interrupt Priorities 23
4 CPU State Following RESET 28
5 Effective Address Calculation Time 30
6 Sector Components . 50
7 Track Format 51

A-1 Data Transfer Instructions .. 58
A-2 Arithmetic Instructions . 63
A-3 Arithmetic Interpretation of 8-bit Numbers 63
A-4 Bit Manipulation Instructions 69
A-5 String Instructions . 72
A-6 String Instruction Register and Flag Use 72
A-7 Program Transfer Instructions 75
A-8 Interpretation of Conditional Transfers 78
A-9 Processor Control Instructions 80
B-1 Expansion Bus Pin Definition 83
B-2 Expansion Bus Loading 86
B-3 Inputs Driven with Open Collector Drivers 86
B-4 Inputs Direct to System 8259 86
C-1 8259A (PIG IODO) 89
C-2 8253 (TIMER-IOD1) .. 89
C-3 7201 (COMM. CTLR IOD2) ... 90
C-4 HD46505S (CRTC CSO) .. 90
C-5 6522 (VIA 1 CS1) 91
C-6 6522 (VIA 2 CS2) 91
C-7 6852 (SSDA CS3) .. 92
C-8 6522 (VIA 3 CS4) .. 92
C-9 6522 (VIA 4 CS5) .. 93
C-10 6522 (VIA 6 CS6) ... 93
C-11 6522 (VIA 5 CS?) .. 94
D-1 Recommended Values for CRTC Register Initialization .. 99
D-2 Pulse Width of Vertical Sync Signal 102
D-3 Pulse Width of Horizontal Sync Signal 102
D-4 Interlace Mode (DO, D1) 103
D-5 DISPTMG Skew Bit (D7, D6) 103
D-6 Cursor Skew Bit (D5, D4) 103
D-7 Cursor Display Mode (D6, D5) 105
D-8 Programmed Values into the Registers 106
D-9 Output Raster Address in Interlace Sync

and Video Mode 107
E-1 SSDA Programming Model 114
E-2 Strip Sync Control Bit 118
E-3 Word Length Select ... 122
E-4 SM/DTR Output Control ... 122
E-5 Definitions and Functions of Pins 124
F-1 Pin Assignment .. 126
F-2 Switching Characteristics .. 127
G-4.1 Transmitter Control and Status Registers 139

XIX

xx

G-42
G-4.3
G-4.4
G-4.5
G-5.1
G-5.2
G-5.3
G-5.4
G-5.5
G-5.6
G-5.7
G-5.8
G-5.9
G-5.10
G-5.11

G-5.12
G-5.13
H-1
H-2
H-3
H-4
H-5

Receiver Control and Status Registers 143
Read/Write Selection .. 148
Bus Interface Controller Control and Status Registers ... 149
Vectored Interrupt Mode ... 150
Control Registers ... 154
Status Registers ... 155
OMA Mode Selection ... 160
OMA/Interrupt Priorities .. 160
Interrupt Acknowledge Sequence Response 160
Received Bits/Character ... 162
Stop Bits ... 163
Synchronous Formats ... 164
Clock Rates ... : 164
Transmited Bits/Character .. 166
Transmitted Bits/Character for 5 Characters

and Less ... 166
Residue Codes ... 171
Condition Affects Vector Modifications 173
Absolute Maximum Ratings ... 200
Electrical Characteristics ... 200
Read Timing Characteristics ... 201
Write Timing Characteristics ... 202
Peripheral Interface Characteristics 203

1
SYSTEM DESCRIPTION

1. SYSTEM DESCRIPTION

The system is designed for maximu.m operator comfort.and
comfort and ease of use. The system is composed of three modules,
and occupies the desk space normally needed for an office
typewriter. Its modules are: the processor unit, the display unit, and
the keyboard unit. Coiled cables interconnect these stand-alone
modules, allowing easy positioning and mobility. A standard
configuration is shown in Figure 1 .

Figure 1: Typical Arrangement of Main Units

DISPLAY UNIT

~
PROCESSOR UNIT

~

The system can be connected to a wide variety of peripherals and
accommodates local and long distance communications. Standard
interfaces include a parallel port (Centronics or IEEE-488),
programmable RS-232(V-24) channels, an internal control port, and an
audio controller for digitized voice and tone output.

1

PROCESSOR UNIT

DISPLAY UNIT

KEYBOARD UNIT

2

The processor unit physically supports the display unit, as shown in
Figure 1. The main logic, disk drives, and power supply are housed in
the processor unit. The two integral single-sided 5 1 I 4-inch floppy
disk drives store up to 1 .2 megabytes of information. The system
incorporates a minimum 128K bytes of random access memory
(RAM), expandable to 512K bytes.

The display unit swivels and tilts to permit optimum adjustment of the
viewing angle, and the unit incorporates a 12-inch antiglare screen to
prevent eye strain. The display is 25 lines; each line has 80
characters. Characters are formed in a 10-x-16 tent cell, providing a
high resolution display. A bit-mapped graphics mode with 800-x-400-
dot matrix screen resolution is available under software control.
Software also controls the overall screen brightness, character
contrast, and audio volume.

The keyboard unit is designed for comfort and ease of operation. It is
completely software definable and features several keys that are
specifically designed for special-function use in application programs.
The keyboard contains separate typewriter and numeric/calculator
keypad configurations, double-size general-function keys, special
function keys, and editing and cursor-control keys. A cluster of keys
is also used to manipulate screen brightness, character contrast, and
audio volume.

2
PROCESSOR UNIT

2. PROCESSOR UNIT

The heart of the processor unit is the Intel 8088 microprocessor.
This processor is a version of the Intel 16-bit 8086 processor
that contains an 8-bit bus interface. The 8088 is software
compatible with the 8086, and thus supports 16-bit operations,
including multiply and divide. The processor has a 20-bit physical
address space, providing 1 megabyte of addressable memory 1/0.

As indicated earlier, the processor unit is the module that physically
supports the display unit. It contains three basic assemblies: the main
logic board, the disk drive assembly, and the power supply.

MAIN LOGIC BOARD As shown in Figure 2, the main logic board is comprised of the
central processing unit (CPU) section, the input/ output (I I 0) section,
the display section, the disk interface section, and the expansion bus.

8088 CENTRAL
PROCESSING UNIT
(CPU)

Figure 2: Main Logic Block Diagram

BOOT
ROM

EXPANSION
BUS

r~s-;1
DISK ------+--! DRIVE I

INTERFACE ~S~MBL_J

CPU
8088

DISPLAY
SYSTEM 1---------------l PLUS
MEMORY

INTERRUPT
CONTROLLER l/OSYSTEM

r--:i
1--~KE'"""'YB~OA-'-R""""D P-'"O~RT---t---1KEiJ3N~~RDI

....... --.-....... -~-_... L __1

_ PARALLEL AUDIO
SERIAL PORT PORT
PORTS C0~1;i'i-OL

Microprocessors execute programs by cycling through the following
four steps:

1. Fetch the next instruction from memory.
2. Read an operand (if required by the instruction).
3. Execute the instruction.
4. Write the result (if required by the instruction).

3

4

These steps have historically been performed in a series or with a
single bus cycle fetch overlap. The architecture of the 8088 CPU
allocates the same steps to two separate processing units within the
CPU. The execution unit (EU) executes instructions. The bus interface
unit (BIU) fetches instructions, reads operands, and writes results.

The two units operate independently of each other, thus allowing
overlap of instruction-fetch activity and instruction-execution activity.
The time required to fetch instructions "disappears" because it no
longer impacts instruction execution time; the next instruction to be
executed by the EU has always already been fetched by the BIU.
Figure 3 provides an example which illustrates this overlap and
compares it to traditional microprocessor operation. In the example,
overlapping reduces the elapsed time required to execute three
instructions, and, during that execution time, allows two additional
instructions to be fetched.

Figure 3: Overlapped Instruction Fetch and Execution

I----------ELAPSED TIME---------

SECOND{ CPU ~lill
GENERATION

MICROPROCESSOR
BUS.

Jr EU ~~J~?~~]

MICROPR~~~~~~~ BIU Wfi§f j

l BUS~ ll!f~~RHlll ~~~~] fFETCH1 EJll -~~~E~I

~ ~ ~ ~ ~

INSTRUCTION STREAM

~ 1st INSTRUCTION (ALREADY FETCHED):
~ EXECUTIVEANDWRITERESULT

~ 2nd INSTRUCTION:
~ EXECUTEONLY

lll1l11Tll11T11 3rd INSTRUCTION: lllilWWlllll READ OPERAND AND EXECUTE

~ 4th INSTRUCTION:
~ (UNOEFINEO)

rw@@l::iml ~ih~~~~l~~gTION:

Execution Unit

Bus Interface Unit

All registers and data paths in the EU are 16 bits wide, providing for
fast internal transfers. CPU status and control flags are maintained in
the EU by a 16-bit arithmetic/logic unit (ALU) that manipulates the
general registers and the instruction operands (Figure 4).

Figure 4: Execution and Bus Interface Units

EXECUTION UNIT (EU)

GENERAL
REGISTERS

FLAGS

BUS INTERFACE UNIT IBIU)

SEGMENT
REGISTERS

ADDRESS
GENERATION

ANO BUS
CONTROL

MUL TIPLEXEO BUS

The EU is not connected to the outside world via the system bus. It
obtains instructions from a queue maintained by the BIU. When an
instruction requires access to memory or to a peripheral device, the
EU sends a request to the BIU to store or obtain the data. The BIU
performs an address relocation that gives the EU access to a full
megabyte of memory space.

The BIU performs all bus operations for the EU. Upon demand from
the EU, the BIU transfers data between the CPU and the memory or
an I I 0 device.

While the EU is executing instructions, the BIU fetches instructions
from memory. The instructions are stored in an internal RAM array
called the instruction stream queue. The 8088 instruction queue holds
up to four bytes of the instruction stream. The queue size is sufficient
to allow the BIU to keep the EU supplied with fetched instructions
without monopolizing the system bus. The BIU fetches another
instruction byte whenever: (1) one byte in the queue is empty and (2)
there is no active request for bus access (Figure 3).

5

General Registers

8

The instruction queue usually contains at least one byte of the
instruction stream; the EU does not have to wait for instructions to be
fetched. The instructions In the queue are those stored in the memory
locations immediately adjacent to and higher than the instruction
currently being executed. That is, the queue contains the next logical
instructions, as long as execution proceeds serially. If the EU
executes an instruction that transfers control to another location, the
BIU resets the queue, fetches the instruction from the new address,
passes it immediately to the EU, and then begins refilling the queue
from the new location.

The BIU suspends instruction fetching whenever the EU requests a
memory or I I 0 read or write. A fetch already in progress is
completed before the EU's bus request is executed.

The 8088 has eight 16-bit general registers (Figure 5). The general
registers are divided into two sets of four registers: the data registers
called the H&L group (H&L stands for "high and low"), and the
pointer and index registers which are called the P&I group.

Figure 5: General Registers

H I l

DATA {

15

GROUP

8 7 0
AX

- TH"" --,-- 'AL -
BX _BH'_1_8L_
ex

-CH' I er--
DX --'DH I 15L

ACCUMULATOR

BASE

COUNT

DATA

15 0

SP
STACK
POINTER

POINTER BP BASE
AND POINTER

INDEX SOURCE
GROUP SI INDEX

DI DESTINATION
INDEX

The data registers are unique in that their upper (high) and lower
halves are separately addressable. Each data register can be used
interchangeably as a 16-bit register or as two 8-bit registers.
However, the CPU registers are always accessed as 16-bit units.
Data registers can be used without constraint in most arithmetic and
logic operations. Certain instructions use specified registers implicitly
(see Table 1), allowing compact, powerful encoding.

Segment Registers

Table 1: lmpllclt Use of General Registers

REGISTER OPERATIONS

AX Word multiply, word divide, word 1/0

AL Byte multiply, byte divide, byte 1/0, translate, decimal
arithmetic

AH Byte multiply, byte divide

BX Translate

CX String operations, loops

CL Variable shift and rotate

DX Word multiply, word divide, indirect 1/0

SP Stack operations

SI String operations

DI String operations

The pointer and index registers can also participate in most arithmetic
and logic operations. All eight general registers fit the definition of
"accumulator," as used with first and second generation
microprocessors. The P&I registers (except for the BP register) are
also used implicitly in some instructions, as shown in Table 1 .

One megabyte of memory space is divided into logica~ segments of
up to 64K bytes each. The CPU has direct access to four segments
at a time. The starting location (the base address) of each segment,
is contained in the segment registers (see Figure 6). The CS register
points to the current code segment; instructions are fetched from this
segment. The SS register points to the current stack segment; stack
operations are performed on locations in this segment. The DS
register points to the current data segment and generally contains
program variables. The ES register points to the current extra.

The segment registers can be accessed by programs and
manipulated with several instructions.

Figure 6: Segment Registers

15

cs
0

CODE
SEGMENT i-----------1

OS DATA
1----------1 SEGMENT

S STACK
1------S----I SEGMENT

s EXTRA
----E---- SEGMENT

7

Instruction Pointer

Flags

8

The 16-bit instruction pointer (IP) is similiar to the program counter
(PC) in the 8080/8085 CPUs. The IP points to the next instruction. It
is updated by the BIU so that it contains the offset (distance in bytes)
of the next instruction from the beginning of the current code
segment. During normal execution, the IP contains the offset of the
next instruction to be fetched by the BIU. Whenever the IP is saved
on the stack, it is automatically adjusted to point to the next
instruction to be executed. Programs do not have direct access to the
IP; however, instructions cause the IP to change and to be saved on
and restored from the stack.

The 8088 has six 1-bit status flags that the EU posts (Figure 7). The
flags reflect specified properties of the result of an arithmetic or logic
operation. Different instructions affect the status flags differently.
Another group of instructions is available that allows a program to
alter its execution, depending on the result of a prior operation. This
result is indicated by the state of these flags. Examples of conditions
reflected by the flags are described below:

• The auxiliary carry flag (AF) is set when a carry out of the low
nibble into the high nibble or a borrow from the high nibble into the
low nibble of an 8-bit quantity (low-order byte of a 16-bit quantity)
has occurred. This flag is used by decimal arithmetic instructions.

• The carry flag (CF) is set when a carry out of, or a borrow into,
the high-order bit of the result (8- or 16-bit) has occurred. This flag
is used by instructions that use the CF to add and subtract
multibyte numbers. Rotate instructions also isolate a bit in memory
or in a register by placing it in the CF.

• The overflow flag (OF) is set when an arithmetic overflow has
occurred; that is, a significant digit has been lost (i.e., the
size of the result exceeded the capacity of its destination location).
An interrupt on overflow instruction is available to generate an
interrupt in an arithmetic overflow.

• The sign flag (SF) is set when a result's high-order bit is a 1.
Negative binary numbers are represented in the 8088 in standard
two's complement notation. SF indicates the sign of the result
(O=positive, 1 =negative).

• The parity flag (PF) is set when the result has even parity (an
even number of 1-bits).

• The zero flag (ZF) is set when the result of the operation is O.

Three additional control flags (Figure 7) can be set and cleared by
programs to alter processor operations:

• Setting the direction flag (OF) causes string instructions to auto
decrement (to process strings from high addresses to low
maskable) interrupt requests. Clearing IF disables these interrupts.
IF has no affect on nonmaskable interrupts generated externally or
internally.

8080/8085 Regl1ter
and Flag
Corre1pondence

Ill> Setting the trap flag (TF) puts the processor into single-step mode
for debugging. In this mode, the CPU automatically generates an
internal interrupt after each instruction, allowing a program to be
inspected as it executes each instruction.

Figure 7: Flags

CONTROL STATUS
FLAGS FLAGS

ZF mF Fl E! CARRY

~PARITY
AUXILIARY CARRY

'-----ZERO
------SIGN

-------OVERFLOW

-------- INTERRUPT-ENABLE
---------DIRECTION

~---------TRAP

The registers, the flags, and the program counter in the 8080/8085
CPUs have counterparts in the 8088 CPU (see Figure 8). The A
register (accumulator) in the 8080/8085 corresponds to the AL
register in the 8088. The 8080/8085 H&L, B&C, and D&E registers
correspond to registers BH, BL, CH, CL, DH, and DL, respectively, in
the 8088. The 8080/8085 stack pointer (SP) and program counter
(PC) correspond to the 8088 SP and IP.

The AF, CF, PF, SF, and ZF flags are the same in both CPU families.
The remaining 8088 flags and registers are unique to the 8088. The
8080/8085 to 8088 mapping allows direct translation of most existing
8080 I 8085 program code into 8088 program code.

9

Memory

10

Figure 8: 8080/8085 Register Subset

ACCUMULATOR

BASE

COUNT

DATA

STACK
POINTER

BP BASE
POINTER

SI SOURCE
INDEX

DI
DESTINATION
INDEX

cs CODE
SEGMENT

OS DATA
SEGMENT

SS
STACK
SEGMENT

ES EXTRA
SEGMENT

PC~I~~ INSTRUCTION
~~POINTER

"""'""""""""""""""""""""""""""""""""'"""""'~

The 8088 has 1,048,576 bytes of address space. This section
describes how memory is functionally organized and used.

STORAGE ORGANIZATION The 8088 memory storage space is
organized as an array of 8-bit bytes (see Figure 9). Instructions, byte
data, and word data may be stored at any byte address, regardless of
alignment. This technique saves storage space because code can be
densely packed in memory (see Figure 10).

Figure 9: Storage Organization

LDWMEMOFIY HIGH MEMORY
DOOOOH 00001H 00002H •• FFFFEH FFFFFH

' " II I II ' " II II I I ,, II II : ':II II I 111 II I II I 7 07 07 ' , 07 0

~---- 1 MEGABYTE----....

Figure 10: Instruction and Variable Storage

19H 1AH 1BH 1CH 1DH 1EH 1FH 20H 21H 22H 23H

The most-significant byte in word data is always stored in the higher
memory location (see Figure 11). This storage convention is
"invisible" to the user except when the user monitors the system bus
or reads memory dumps. A special class of data is stored as double
words (i.e., two consecutive words) called pointers, which are used to
address data and code outside the currently-addressable segments.
The lower-addressed word of a pointer contains an offset value, and
the higher-addressed word contains a segment base address. Each
word is stored conventionally with the higher-addressed byte
containing the most significant eight bits of the word (see Figure 12).

Figure 11: Storage of Word Variables

724H 72SH

012 sis HEX

1-- --1----1----1---- ----
0000 I 0010 0101 I 0101 BINARY

VALUE OF WORD STORED AT 724H: SS02H

Figure 12: Storage of Pointer Variables

4H SH 6H 7H

6 s
t---- ----

0110 0101

0 0 4 c ---- ------------
0000 0000 0100 1100

VALUE OF POINTER STORED AT 4H:
SEGMENT BASE ADDRESS: 3B4CH
OFFSET:65H

3 B ---- ___ _,
0011 1011

HEX

BINARY

11

12

SEGMENTATION 8088 programs view the megabyte of memory
space as a group of segments defined by the application. A segment
is a logical unit of memory up to 64K bytes long. Each segment
contains contiguous memory locations and is an independent,
separately-addressable unit. Software assigns each segment a base
address, which is the segment's starting location in the memory
space. All segments begin on 16-byte memory boundaries. The
segments can be disjoint, partially overlapped, or fully overlapped
(see Figure 13). A physical memory location can be mapped into
(contained in) one or more logical segments.

Figure 13: Segment Locations in Physical Memory

FULLY
SEGMENTD OVERLAPPED

SEGMENTC DISJOINT

CONTIGUOUS LOGICAL
SEGMENTS

SEGMENTE

I I
I I

i i i i I? PHYSICAL
MEMOF4Y

OH !OOOOH 20000H 30000!-I

The segment registers contain (point to) the base address values of
the four currently addressable segments (see Figure 14). Programs
access code and data in other segments by changing the segment
registers to point to the segments containing the needed code or
data.

Figure 14: Currently Addressable Segments

~· 000--~ B lcl
CODE: CS:~--1 D LJ
STACK: SS: 0--- --, I

1 I E D
=~ .. ~:: L- "lf] '

: L_tJID
L__ :

OH

Individual applications define and use segments differently. The
currently-addressable segments provide a generous work space: 64K
bytes for code, a 64K byte stack, and 128K bytes of data storage.
Many applications can be written that simply initialize the segment
registers and then forget them. However, large applications should be
designed with careful consideration given to segment definition.

The segmented structure of the 8088 memory space supports
modular software design and discourages the development of huge,
monolithic programs.

The segments can be used to advantage in many programming
situations-for example, when programming an editor for several on
line terminals. A 64K text buffer (probably an extra segment) could be
assigned to each terminal. A single program could maintain all the
buffers by simply changing register ES to point to the buffer of the
terminal requiring service.

PHYSICAL ADDRESS GENERATION There are two kinds of
memory location addresses: physical and logical. A physical address
Is a 20-bit value that identifies each byte location in the megabyte
memory space. Physical-address range varies from OH through
FFFFFH. All exchanges between the CPU and memory components
use physical addresses.

Programs use logical addresses, which allow code to be developed
before the code is assigned physical addresses. This technique
facilitates dynamic management of memory resources.

A logical address consists of two values: a segment-base value and
an offset value. The segment-base value for any memory location is
the value that defines the first byte of the segment. The offset value
is the number of bytes from the beginning of the segment to the
target location. Segment-base and offset values are unsigned 16-bit
quantities. The lowest addressed byte in a segment has an offset
value of O. Different logical addresses can map to the same physical
location, as shown in Figure 15. The physical memory location 2C3H
shown in Figure 15 is contained in two different overlapping
segments, one beginning at 2BOH and the other at 2COH.

13

14

Figure 15: Logical and Physical Addresses

PHYSICAL
ADDRESS

LOGICAL
ADDRESSES

r

SEGMENT
BASE

'-.. SEGMENT
BASE

OF I ET
(3H)

.. 1

OFFSET
(13H)

,

>

1

2C4H

2C3H

2C2H

2C1H

2COH

2BFH

2BEH

2BDH

2BCH

2BBH

2BAH

2B9H

2BBH

2B7H

2B6H

2B5H

2B4H

2B3H

2B2H

2

2

B1H

BOH

"

When the BIU accesses memory to fetch an instruction, or to obtain
or store a variable, it generates a physical address from a logical
address. It does this by (1) shifting the segment-base value four bit
positions, and (2) adding the offset value, as illustrated in Figure 16.
This addition process results in modulo 64K addressing, which
causes addresses to wrap around from the end of a segment to the
beginning of the same segment.

Figure 16: Physical Address Generation

SHIFT LEFT 4 BITS
1 2 3 4 ~~~} BASE

15 O LOGICAL
ADDRESS

2 3 4 I
0 0 2 2 OFFSET

19 0
15 0

15 0

1 2 3 6 2 PHYSICAL ADDRESS

19 0

TO MEMORY

The BIU obtains the logical address of a memory location from
different sources, depending on the type of reference that is being
made (see Table 2). Instructions are always fetched from the current
code segment. The IP contains the offset of the target instruction
from the beginning of the segment. Stack instructions always operate
on the current stack segment. The SP contains the offset of the top
of the stack. Most memory operands reside in the current data
segment, although the program can instruct the BIU to access a
variable in one of the other currently addressable segments. The
offset of a memory variable is calculated by the EU; the calculation is
based on the addressing mode specified in the instruction, and the
result is called the operand's effective address (EA).

Table 2: Logical Address Sources

DEFAULT ALTERNATE
TYPE OF SEGMENT SEGMENT

MEMORY REFERENCE BASE BASE OFFSET

Instruction fetch cs NONE IP

Stack operation SS NONE SP

Variable (except following) OS CS, ES.SS Effective address

String source OS CS, ES,SS SI

String destination ES NONE DI

BP used as base register SS CS, OS, ES Effective Address

Strings are addressed differently than other variables. The source
operand of a string instruction usually lies in the current data
segment; however, another currently-addressable data segment may
be specified. The source operand's offset is taken from register SI
(the source index register). The destination operand of a string
instruction always resides in the current extra segment, and its offset
is taken from DI (the destination index register). The string
instructions automatically adjust SI and DI as they process the strings
one byte or word at a time.

When register BP (the base pointer register) is designated as a base
register in an instruction, the variable is assumed to reside in the
current stack segment. Using register BP is a convenient way to
address data on the stack. The BP register can be used to access
data in any of the other currently addressable segments.

Programmers usually find the segment assumptions of the BIU
convenient to use. A programmer can, however, direct the BIU to
access a variable in any of the currently-addressable segments by
preceding an instruction with a segment override prefix. This 1-byte
machine instruction tells the BIU which segment register to use to
access a variable referenced in the following instructions. The only
exception to this is a string instruction's destination operand, which
must be located in the extra segment.

15

16

DYNAMICALLY RELOCATABLE CODE Dynamically relocatable-or
position-independent-programming is made possible by the
segmented memory structure of the 8088. The dynamic relocation
technique makes effective use of available memory by taking
advantage of the system's multiprogramming/ multitasking capabilities.
Inactive programs can be written to disk, making the space they
occupied available to other programs. A disk-resident program can be
read back into any available memory location and restarted. When a
program needs a large contiguous block of storage and only
nonadjacent fragments are available, other program segments can be
compacted to free up a contiguous space (Figure 17).

Figure 17: Dynamic Code Relocation

BEFORE RELOCATION AFTER RELOCATION

CODE
SEGMENT

STACK
SEGMENT

Lj cs
SS

cs
SS

fri OS
DATA

ES SEGMENT

OS !-----
ES ~

CODE
SEGMENT

STACK
SEGMENT

DATA
SEGMENT

EXTRA EXTRA
SEGMENT SEGMENT

c::J FREE SPACE

To be dynamically relocatable, all offsets in the program must be
relative to fixed values contained in the segment registers. This allows
the program to be moved anywhere in memory as long as the
segment registers are updated to point to the new base addresses. A
dynamically relocatable program must not load or alter its segment
registers and must not transfer directly to a location outside the
current code segment.

STACK IMPLEMENTATION Stacks in the 8088 are implemented in
memory. They are located by the SS (the stack segment register) and
the SP (the stack pointer register). A system may have an unlimited
number of stacks. Each may be the maximum length of a segment,
64K bytes.

Attempting to expand a stack beyond 64K bytes overwrites the
beginning of the stack. Only one stack is directly addressable at a
time: this stack is the current stack, often referred to simply as "the"
stack. SS contains the base address of the current stack. SP contains
the offset of the top of the stack from the stack segment's base
address. The stack's base address (contained in SS) is not the
"bottom" of the stack.

Stacks are 16 bits wide. Instructions that operate on a stack add and
remove stack items one word at a time. An item is pushed onto the
stack (see Figure 18) by decrementing SP by 2 and writing the item
at the new TOS (top of stack). An item is popped off the stack by
copying it from TOS then incrementing SP by 2. In other words, the
stack grows down in memory toward its base address. Stack
operations never move or erase items on the stack. The TOS
changes only as a result of updating the stack pointer.

Figure 18: Stack Operation

EXISTING
STACK

1062 00 11 t 1060 22 33
::olS

105E 44 55
~~

105B 66 77 O"-mo
105A 88 99

TOS 1058 AA BB

PUSH AX

~-,

TOS

00

22

44

66

88

AA

34

45

1062

1060

105E

1058

105A

1058

1056

1054

105 2 89

r
11

33

55

77

99

BB

12 14
67

AB

11050~

~SS

'-----1 00 06 SP

I
I
I
I
I
I

.J

STACK OPERATION FOR CODE SEQUENCE

PUSH AX
POP AX
POP BX

POP AX
POP BX

AX~-,
I

BX~.,,
I I

1062 00 11 I I
1060 22 33 I I
105E 44 55 I I
105C 66 77 I I

TOS
105A 88 99 I I
105B AA BB _J I
1056 34 12

_ _J

1054 45 67

1052 89 AB

11050~

~SS

17

Input/Output

18

DEDICATED AND RESERVED MEMORY LOCATIONS Two areas
in extremely low and high memory-OH through 7FH (128 bytes) and
FFFFOH through FFFFFH (16 bytes)-are dedicated to specific
processor functions or are reserved for use by hardware and software
products (Figure 19). These areas are reserved for interrupt and
system reset processing, and should not be used for any other
purpose.

FIGURE 19: Reserved and Dedicated Memory

.-------------. FFFFFH

RESERVED

1------------1~m~~
DEDICATED

1------------1~~~~~~

1------------1 ~~~
RESERVED

1------------11~~
DEDICATED

------------"OH MEMORY

8086/8088 MEMORY ACCESS The 8088 always accesses memory
in bytes. Word operands are accessed in two bus cycles, regardless
of their alignment. Instructions are also fetched one byte at a time.
Although word operand alignment does not affect performance,
locating 16-bit data on even addresses ensures maximum throughput
if the system is transferred to an 8086.

MEMORY-MAPPED 1/0 1/0 devices may be placed in the 8088
memory space. The CPU cannot tell the difference between 1/0
devices as long as each device responds as a memory component.

Memory-mapped 1/0 provides programming flexibility. Instructions that
normally reference memory may be used to access an 1/0 port
located in the memory space. The move (MOV) instruction, for
example, can transfer data between any 8088 register and a port.
AND, OR, and TEST instructions may be used to manipulate bits in
1/0 device registers. Memory-mapped 1/0 takes advantage of the
8088 memory addressing modes. For example, a group of terminals
can be treated as an array in memory with an index register selecting
a terminal in the array.

All mnemonics ©Intel Corporation 1981

Processor Control
And Monitoring -
Interrupts

However, a price is paid for the added programming flexibility that
memory-mapped 1/0 provides. Dedicating part of the memory space
to I/ O devices reduces the number of addresses available for
memory (although with a megabyte of memory space this should
rarely be a constraint). Also, memory reference instructions take
longer to execute and are less compact than simpler IN and OUT
instructions.

DIRECT MEMORY ACCESS The 8088 provides hold (HOLD) and
hold acknowledge (HLDA) signals that are compatible with traditional
OMA controllers. By activating HOLD, a OMA controller can request
use of the bus for direct transfer of data between an 1/0 device and
memory. The CPU responds by completing the current bus cycle (if
one is in progress) and then issuing HLDA, which grants the bus to
the OMA controller. The CPU does not attempt to use the bus until
HOLD goes inactive.

WAIT AND TEST The 8088 can be synchronized to an external
event with the WAIT (wait for TEST) instruction and the TEST input
signal. When the EU executes a WAIT instruction, the result depends
on the state of the TEST input line. If TEST is not connected to or
receiving an external signal, the processor enters an idle state and
repeatedly retests the TEST line at 5-clock intervals. If TEST is
connected to an external signal source, execution continues with the
instruction following the WAIT.

The TEST input is connected to a "byte ready" signal from the
floppy disk controller. This allows the processor to synchronize data
transfer operations.

Microcomputer system design requires that 1/0 devices such as
keyboards, displays, sensors, and other components receive efficient
servicing to ensure that the microcomputer can perform a large
number of system tasks with little or no effect on throughput.

One desirable method for ensuring efficient servicing is to allow the
microprocessor to execute its main program, stopping to service
peripheral devices only when told to do so by the device itself. In
effect, this method provides an external asynchronous input which
informs the processor to complete whatever instruction is currently
being executed and to fetch a new routine to service the requesting
device. Once this servicing is complete, the processor resumes
exactly where it left off.

The 8088 interrupt system is a simple and versatile interrupt system.
Every interrupt is assigned a type code that identifies it to the CPU.
The 8088 can handle up to 256 different interrupt types. Interrupts
may be initiated by devices external to the CPU, or they may be
triggered by software interrupt instructions and, under certain
conditions, by the CPU itself, as illustrated in Figure 20. Figure 21
illustrates the basic response of the 8088 to an interrupt. The next
sections elaborate on the information presented in Figure 21 .

All mnemonics e Intel Corporation 1981

19

20

Figure 20: Interrupt Sources

NON-MASKABLE
INTERRUPT
REQUEST

NMI
r------- --------.,
1
I
I
I
I
I
I
I

SINGLE
STEP

(TF•1)

I

I I
~~~~~u_ ___________ J 

INTR 

Figure 21: Interrupt Processing Sequence 

All mnemonics© Intel Corporation 1981 

8259A 
MASKABLE 
INTERRUPT 
REQUEST 



EXTERNAL INTERRUPTS External devices can use two lines in the 
8088 to signal interrrupts: interrupt request (INTR) and nonmaskable 
interrupt (NMI). The INTR line is driven by an 8259A programmable 
interrupt controller (PIC). The PIC is a flexible circuit controlled by 
software commands from the 8088. 

The PIG appears as a set of 1/0 ports to the software and connects 
to devices that need interrupt services. It accepts interrupt requests 
from the attached devices and determines which service request has 
the highest priority. If the device selected for service has a higher 
priority than the one currently being serviced, the PIC activates the 
8088 INTR line. 

The CPU response to the active INTR line is based on the state of 
the interrupt-enable flag (IF). The currently-executing instruction is 
completed before the interrupt becomes active. 

Occasionally, an interrupt request is not recognized until after the 
following instruction. Repeat, LOCK, and segment override prefixes 
are considered part of the instructions they prefix. Therefore, no 
interrupt is recognized between execution of a prefix and an 
instruction. 

A move (MOV) to a segment register instruction and a POP segment 
register instruction are treated similarly (no interrupt is recognized 
until after the following instruction). This mechanism protects a 
program that is changing to a new stack (by updating SS and SP). 
The processor pushes the CS and IP flags into the wrong area of 
memory if an interrupt is recognized after SS has been changed, but 
before SP has been altered. 

If a segment register and another value must be updated together, 
first the segment register must be changed, and then the instruction 
changing the other value must be given. 

An interrupt request is recognized in the middle of an instruction in 
two instances-WAIT and repeated string instructions. In these cases, 
interrupts are accepted after any completed primitive operation or wait 
test cycles. 

IF is clear when the interrupts signaled on INTR are masked or 
disabled, in which case the CPU ignores the interrupt request and 
processes the next instruction. The INTR signal is not latched by the 
CPU. It must be held active until a response is received or the 
request is withdrawn. When IF is set-enabling interrupts on INTR
the CPU recognizes the interrupt request and processes it. Interrupt 
requests arriving on INTR are enabled by executing a set interrupt
enable flag (STI) instruction, and disabled by executing a clear 
interrupt-enable flag (CLI) instruction. Writing commands to the 8259A 
(the PIC chip) selectively masks some of these requests. STI and 
IRET instructions re-enable interrupts only after the end of the 
following instruction, which reduces excessive stack buildup. 

All mnemonics © Intel Corporation 1981 

21 



22 

The CPU acknowledges an interrupt request by executing two 
consecutive interrupt acknowledge (INTA) bus cycles. Bus hold 
requests are not honored until INTA cycles are completed. The first 
INTA cycle signals to the 8259A that the request has been honored. 
The 8259A responds during the second INTA cycle by placing the 
interrupt byte containing the interrupt type (0-255) associated with the 
requesting device on the data bus. (Type assignment is made when 
the 8259A is initialized by software in the 8088.) The CPU uses this 
type code to call the indicated interrupt procedure. 

A nonmaskable interrupt (NMI) request can arrive on another CPU 
line from an external source. This edge-triggered line signals to the 
CPU that a catastrophic event-such as the imminent loss of power, 
a memory error detection, or a bus parity error-has occurred. 
Interrupt requests arriving on NMI cannot be disabled. They are 
latched by the CPU and have a higher priority than an interrupt 
requested on INTR (level-triggered). NMI is first recognized when an 
interrupt request arrives on both lines during execution of an 
instruction. Nonmaskable interrupts are predefined as type 2. The 
processor does not need a type code to call the NMI procedure and 
does not run the INTA bus cycles in response to an NMI request. 

The time required for the CPU to recognize an external request is 
determined by the number of clock cycles remaining to complete the 
instruction currently being executed. This delay is referred to as 
interrupt latency. The longest possible interrupt latency occurs when 
an interrupt request arrives during multiplication, divison, variable-bit 
shift, or rotate instruction execution. In the most extreme case, 
interrupt latency spans two instructions, rather than one. 

INTERNAL INTERRUPTS Execution of an interrupt (INT) instruction 
generates an immediate interrupt. The interrupt type code identifies 
the procedure needed to process the interrupt. Since any type code 
can be specified, software interrupts can be used to test interrupt 
procedures that are written to service external devices. 

When the overflow flag (OF) is set, an interrupt on overflow (INTO) 
instruction (a type 4 interrupt) is initiated immediately after the 
completion of the currently executing instruction. The CPU generates 
a type O interrupt following execution of a divide (DIV) instruction or 
an integer divide (IDIV) instruction when the calculated quotient is 
larger than the specified destination. When the trap flag (TF) is set, 
the CPU automatically generates a type 1 interrupt after every 
instruction. This single-step execution, which is a powerful debugging 
tool, is discussed in more detail later. 

All internal interrupts (INT, INTO, divide-error, and single step) share 
these characteristics: 

.,. The interrupt type code is contained in the instruction or is 
predefined . 

.,. No INTA bus cycles are run. 

All mnemonics © Intel Corporation 1981 



... Except for single-step interrupts, internal interrupts cannot be 
disabled . 

... Internal interrupts (except single-step) have higher external 
interrupts (see Table 3). When interrupt requests arrive on NMI 
and/ or INTR during execution of an instruction that causes an 
internal interrupt (e.g., a divide error), the internal interrupt is 
processed first. 

Table 3: Interrupt Priorities 

INTERRUPT 

Divide error, INT n, INTO 

NMI 

INTR 

Single-step 

PRIORITY 

Highest 

Lowest 

INTERRUPT POINTER TABLE The interrupt pointer (or interrupt 
vector) table links an interrupt type code and its associated service 
procedure. The interrupt pointer table occupies the first 1 K bytes of 
low memory. There may be up to 256 entries in the table, one for 
each interrupt type that can occur in the system. Each entry in the 
table is a double-word pointer containing the address of the 
procedure servicing interrupts of that type. The higher-addressed 
word of the segment contains the procedure. The lower-addressed 
word contains the procedure's offset from the beginning of the 
segment. Each entry is four bytes long; the CPU calculates the 
location of the correct entry for a given interrupt type by simply 
multiplying the type number by 4. 

In applications that do not recognize interrupt types, space at the high 
end of the table can be used for other purposes. 

The 8088 activates an interrupt procedure by executing the equivalent 
of an intersegment indirect CALL instruction after pushing the flags 
onto the stack. The address contained in the interrupt pointer table 
element located at n x 4 (where "n" represents the type number) is 
the target of the CALL. The CPU saves the address of the next 
instruction by pushing CS and IP onto the stack. It transfers control to 
the interrupt procedure by replacing the second and first words of the 
table element. 

The processor activates the interrupt procedures in priority order 
when multiple interrupt requests arrive simultaneously. Figure 22 
shows how procedures would be activated in an extreme case. The 
processor is running in single-step mode with external interrupts 
enabled. INTR is activated during execution of a divide instruction. 
The instruction generates a divide error interrupt. Except for INTR, the 
interrupts are recognized in the order of their priorities (see Figure 
23). INTR is not recognized until after the following instruction 
because recognition of the earlier interrupts cleared IF. It an earlier 
response to INTR is desired, interrupts can be re-enabled in any of 
the interrupt response routines. 

All mnemonics© Intel Corporation 1981 

23 



24 

All main-line code is executed in single-step mode (Figure 22). The 
processing speed (full speed or single-step mode speed) can be 
selected in each occurrence of the single-step routine because of the 
order of interrupt processing. 

Figure 22: Processing Simultaneous Interrupts 

~ 
~ 

DIVIDE 
INSTRUCTION INTR 

DIVIDE ERROR RECOGNIZED 

1 
PUSH FLAGS 
PUSHCS&IP 
CLEARIF&TF 

EXECUTE NEXT 
INSTRUCTION 1 SINGLE STEP RECOGNIZED 

l 
{ PUSH FLAGS 

PUSHCS&IP 
CLEARIF&TF 

DIVIDE ERROR 
PROCEDURE ] 

l SINGLE STEP* 
PROCEDURE 

POPCS&IP 
POP FLAGS j 

TF=1,IF=1 J POPCS&IP 
POP FLAGS 

INTR RECOGNIZED 

l TF=O, IF=O J 
PUSH FLAGS 
PUSHCS&IP 
CLEARIF&TF 

EXECUTE NEXT 
INSTRUCTION l SINGLE STEP RECOGNIZED 

T 
I 
I 
I 
I 
I 
I 
I 
I 

BESET IN THE 
STIP PROCEDURE 

*TFCAN 
SINGLE 
IFSING 
THE DIV 
PROCE 

LE STEPPING OF 
IDE ERROR OR INTR 

DURE IS DESIRED 

1 
INTR 

PROCEDURE 

1 
POPCS&IP 
POP FLAGS 

TF=1,IF=1 J 

All mnemonics o Intel Corporation 1981 

l 
PUSH FLAGS 
PUSHCS&IP 
CLEARIF&TF 

1 
SINGLE STEP* 
PROCEDURE 

I 
POPCS&IP 
POP FLAGS 

TF=O,IF=O J 



Figure 23: Interrupt Pointer Table 

AVAILABLE 
INTERRUPT 
POINTERS 
(224) 

RESERVED 

3FFH I- TYPE 255 POINTER: -, 
SFCH (AVAILABLE) 

TYPE33 POINTER: 
(AVAILABLE) 

... 

TYPE 32 POINTER: 
(AVAILABLE) 

- 080H1--------t 

~ (AVAILABLE) r 07FH.___Tv_P-E3_1 _PO-IN-TE_R_: --t 

INTERRUPTl POINTERS 
(27) 'r r 

- 014H 
I-

TYPE 5 POINTER: _ 
(RESERVED) 

DEDICATED 
INTERRUPT 
POINTERS 
(5) 

010H 

OOCH 

008H 

004H 

OOOH 

t-
TYPE 4 POINTER: _ 

(OVERFLOW) 

tr-avVe~M ~~~~10N" 

I- ~'S'~-~~~r.r:L~ -

I- rv/iMt~~~~~R: -

I- ~FJi8&~~~1J:' -
i.--16BITS--I 

CS BASE ADDRESS 

IP OFFSET 

INTERRUPT PROCEDURES Flags CS and IP are pushed onto the 
stack and flags TF and IF are cleared when an interrupt service 
procedure is entered. The procedure can re-enable external interrupts 
with the set-interrupt-enable flag (STI) instruction, allowing itself to be 
interrupted by a request on INTR. Interrupts are not actually enabled 
until the instruction following STI has executed. An interrupt procedure 
can always be interrupted by a request arriving on NMI. The interrupt 
procedure can also be interrupted by software- or processor-initiated 
inter.rupts occuring within the procedure. (Programmers should ensure 
that the type of interrupt being serviced does not inadvertently occur 
during the interrupt procedure. For example, attempting to divide by O 
in the divide error (type 0) interrupt procedure results in the 
procedure being reentered endlessly.) Sufficient stack space must be 
available to accommodate the maximum depth of interrupt nesting 
that occurs in the system. 

Prior to procedure termination, any registers used by the interrupt 
procedures should be saved before they are updated and restored. 
External interrupts for all sections except those sections of code that 
cannot be interrupted without risking erroneous results should be 
enabled. Interrupt requests on INTR can be lost if external interrupts 
are disabled for too long in a procedure. 

All mnemonics© Intel Corporation 1981 

25 



28 

Interrupt procedures with an interrupt return (IRET) instruction should 
be terminated. The IRET instruction assumes that the stack is in the 
same condition as when the procedure was entered. It pops the top 
three stack words into IP, CS, and the flags, and returns to the 
instruction that was to be executed when the interrupt procedure was 
activated. 

The actual processing done by the procedure is application 
dependent. When servicing an external device, the procedure sends a 
command to the device, instructing it to remove its interrupt request. 
It can then read status information from the device, determine the 
cause of the interrupt, and act accordingly. 

A software-initiated interrupt procedure can be used as a service 
routine (supervisor call) for other programs in the system. In this 
case, the procedure is activated when a program, rather than an 
external device, needs attention. (The "attention" might be to search 
a file for a record, send a message to another program, request an 
allocation of free memory, etc.) Software interrupt procedures can be 
used to advantage in systems that dynamically relocate programs 
during execution. Since the interrupt pointer table is at a fixed storage 
location, procedures can call each other through the table by issuing 
software interrupt instructions. This provides a stable communication 
exchange, independent of procedure addresses. Interrupt procedures 
can be moved if the interrupt pointer table is always updated, 
providing linkage from the calling program via the interrupt type code. 

The 8088 is in single-step mode when the trap flag (TF) is set. In this 
mode, the processor automatically generates type 1 interrupt 
processing. The CPU automatically pushes the flags onto the stack 
and then clears TF and IF. The processor is not in single-step mode 
when the single-step interrupt procedure is entered. The old flag 
image is restored from the stack when the single-step procedure 
terminates, placing the CPU back into single-step mode. 

Single stepping is a valuable debugging tool. A single-step procedure 
acts as a window into the system, through which operations can be 
observed on an instruction-by-instruction basis. A single-step interrupt 
procedure prints or displays register contents, instruction pointer 
values, key memory variables, etc., as they change after each 
instruction. This permits the exact flow of a program to be traced in 
detail. The point at which discrepancies occur can be identified by a 
single-step routine. A single-step routine can be used to accomplish 
the following: 

.., Writing a message when a specified memory location or I I 0 port 
changes value (or equals a specified value) 

.., Providing diagnostics selectively (for instance, only for certain 
instruction addresses) 

.., Letting a routine execute a number of times before providing 
diagnostics 

All mnemonics o Intel Corporation 1981 



The 8088 does not have instructions for setting or clearing TF. TF 
can be changed by modifying the flag image on the stack. The 
PUSHF and POPF instructions push and pop the flags. (TF can be set 
by ORing the flag image with 0100H. Clear TF by ANDing it with 
FEFFH.) After TF is set, the first single-step interrupt occurs after the 
first instruction following the IRET from the single-step procedure has 
been executed. 

If the processor is single stepping, it processes an interrupt (either 
internal or external) as follows: 

1. Control is passed normally (flags, CS and IP are pushed) to the 
procedure designated for handling the type of interrupt that has 
occurred. 

2. Before the first instruction of that procedure is executed, the 
single-step interrupt is recognized and control is passed normally 
(flags, CS and IP are pushed) to the type 1 interrupt procedure. 

3. When single-step procedure terminates, control returns to the 
previous interrupt procedure. Figure 23 illustrates this process in a 
case where two interrupts occur when the processor is in single
step mode. 

BREAKPOINT INTERRUPT A type 3 interrupt is a breakpoint 
interrupt. A breakpoint is any place in a program where normal 
execution is arrested so that some sort of special processing may be 
performed. Breakpoints are inserted into programs during debugging 
to display registers, memory locations, etc., at crucial points in the 
program. 

The INT 3 (breakpoint) instruction is one byte long, which facilitates 
planting a breakpoint anywhere in a program. The processor can be 
placed in single-step mode by using a breakpoint procedure. 

Breakpoint instructions can insert new instructions (patch) into a 
program without recompiling or reassembling it. This can be done by 
saving an instruction byte and replacing it with an INT 3 (CCH) 
machine instruction. The breakpoint procedure contains new machine 
instructions-code to restore the saved instruction byte and 
decrement IP on the stack before returning control to the program. 
The displaced instruction is executed after the patch instructions. 

NOTE: Undertake patching a program with caution. This action 
requires machine-instruction programming and can add new bugs to 
a program. Also note that a patch is only a temporary measure to be 
used in exeptional conditions. The affected code should be updated 
and retranslated as soon as possible. 

SYSTEM RESET The 8088 RESET line provides an orderly way to 
start or restart an executing system. When the processor detects the 
positive-going edge of a pulse on RESET, it terminates all activities 
until the signal goes low, at which time it initializes the system as 
shown in Table 4. 

AU mnemonics c Intel Corporation 1981 

27 



Addressing Modes 

28 

Table 4: CPU State Followlng Reset 

CPU COMPONENT 

Flags 
Instruction Register 

CS Register 
DS Register 
SS Register 
ES Register 

Queue 

CONTENT 

Clear 
OOOOH 
FFFFH 
OOOOH 
OOOOH 
OOOOH 
Empty 

Since the code segment register contains FFFFH and the instruction 
pointer contains OH, the processor executes its first instruction 
following system reset from absolute memory location FFFFOH. This 
location normally contains an intersegment direct JMP instruction 
whose target is the actual beginning of the system program. External 
(maskable) interrupts are disabled by system reset. As soon as the 
system is initialized, the system software should re-enable interrupts 
to the point where they can be processed. 

PROCESSOR HALT When the halt (HLT) instruction is executed, the 
8088 enters the halt state. This condition may be interpreted as "stop 
all operations until an external interrupt occurs or the system is 
reset." No signals are floated during the halt state, and the content of 
the address and data buses is undefined. A bus hold request arriving 
on the HOLD line is acknowledged normally while the processor is 
halted. 

The halt state can be used when an event prevents the system from 
functioning correctly. An example might be a power-fail interrupt. After 
recognizing that loss of power is imminent, the CPU could use the 
remaining time to move registers, flags and vital variables to a 
battery-powered CMOS RAM area and then halt until the return of 
power was signaled by an interrupt or system reset. 

The 8088 accesses instruction operands in many different ways. 
Operands can be in registers, instructions, memory, or 1/0 ports. 
Memory address and 1/0 port operands can be calculated several 
ways. These addressing modes extend the flexibility and convenience 
of the instruction set. This section briefly describes register and 
immediate operands, and then covers the 8088 memory and 1/0 
addressing modes in detail. 

REGISTER AND IMMEDIATE OPERANDS The quickest, most 
compact executing instructions specify only register operands. This is 
because register address is encoded in instructions in a very few bits, 
and the operation is performed entirely within the CPU (no bus cycles 
are run). Registers can be source operands and/ or destination 
operands. 

All mnemonics© Intel Corporation 1981 



Immediate operands are constant data 8- or 16-bits long, contained in 
an instruction that is available directly from the instruction queue and 
can be accessed quickly. Like a register operand, no bus cycles are 
needed to obtain an immediate operand. Immediate operands are 
limited; they are constant values and can only serve as source 
operands. 

MEMORY ADDRESSING MODES Memory operands must be 
transferred to or from the CPU over the bus. The EU has direct 
access to register and immediate operands. When the EU needs to 
read or write a memory operand, it passes an offset value to the BIU. 
The BIU adds the offset to the (shifted) content of a segment register, 
producing a 20-bit physical address. Then it executes the bus 
cycle( s) needed to access the operand. 

EFFECTIVE ADDRESS The operand's effective address (EA) is the 
offset calculated by EU for a memory operand. EA is an unsigned 16-
bit number expressing the operand's distance in bytes from the 
beginning of the segment in which it resides. 

The EU calculates the EA in several different ways. Information 
encoded in the second byte of the instruction tells the EU how to 
calculate the EA of each memory operand. A compiler or assembler 
derives this information from the statement or instruction written by 
the programmer. Assembly language programmers have access to all 
addressing modes. 

Figure 24 shows that the execution unit calculates the EA by adding 
a displacement, the content of a base register, and the content of an 
index register. The variety of 8088 memory addressing modes results 
from combinations of these three components in a given instruction. 

Figure 24: Memory Address Computation 

ENCODED 
INTHE 
INSTRUCTION 

EXPLICIT { INTHE 
INSTRUCTION 

ASSUMED 
UNLESS 
OVERRIDDEN 
BY PREFIX 

SINGLE INDEX 

All mnemonics @Intel Corporation 1981. 

DOUBLE INDEX 

::51 
o·=i I 

EFFECTIVE JEU 
ADDRESS 

l 
J 

29 



30 

The displacement, an 8- or 16-bit number contained in the instruction, 
is derived from the position of the operand name (a variable or label) 
in the program. A programmer can modify this value or specify the 
displacement. 

A programmer can specify that BX or BP serve as a base register 
whose content is to be used in the EA computation. SI or DI can be 
specified as an index register. The displacement value can change 
the contents of the base and index registers can change during 
execution. This makes it possible for one instruction, as determined 
by current values in the base and/ or index registers, to access 
different memory locations. 

It takes time for EU to calculate a memory operand's EA. The more 
elements in the calculation, the longer it takes. Table 5 shows the 
time required to compute an effective address for any combination of 
displacement, base register, and index register. 

Table 5: Effective Address Calculation Time 

EA COMPONENTS 

Displacement Only 
Base or Index Only (BX.BP.SI.DI) 
Displacement 

+ 
Base or Index (BX,BP,Sl,01) 
Base BP+DI, BX+SI 

+ 
Index BP+SI, BX+DI 
Displacement BP+Dl+DISP 

+ BX+Sl+DISP 
Base 

+ BP+Sl+DISP 
Index BX+Dl+DISP 
•Add 2 clocks for segment override. 

CLOCKS* 

6 
5 

9 
7 

8 

11 

12 

DIRECT ADDRESSING Direct addressing (see Figure 25) is the 
simplest memory addressing mode. No registers are involved; the EA 
is taken directly from the displacement field of the instruction. Direct 
addressing is used to access simple variables (scalars). 

Figure 25: Direct Addressing 

.__0P_c_oo_E_._M_o_o_R1_M_.__01_sP_LA-+-C~~~ J 

EA 

All mnemonics ©Intel Corporation 1981. 



REGISTER INDIRECT ADDRESSING The effective address of a 
memory operand can be taken from one of the base or index 
registers, as shown in Figure 26. When the value in the base of the 
index register is updated appropriately, one instruction can operate on 
many different memory locations. The load effective address (LEA) 
and arithmetic instructions change the register value. 

Figure 26: Register Indirect Addressing 

OPCODE MOD AIM 

BX 
OR----<1 

BP 
OR--.._. EA 

51 ----OR---
DI 

NOTE: Any 16-bit general register can be used for register indirect 
addressing with the JMP or CALL instructions. 

BASED ADDRESSING In based addressing (Figure 27), the effective 
address is the sum of a displacement value and the content of 
register BX or register BP. Specifying BP as a base register directs 
the BIU to obtain the operand from the current stack segment (unless 
a segment override prefix is present). Therefore, based addressing 
with BP is a convenient way to access stack data. 

Based addressing provides a straightforward way of addressing 
structures located at different places in memory (see Figure 28 ). A 
base register can be pointed at the base of the structure, and 
elements of the structure can be addressed by their displacements 
from the base. Different copies of the same structure can be 
accessed by changing the base register. 

Figure 27: Based Addressing 

OPCODE MOD RIM 

All mnemonics ©Intel Corporation 1981 . 

31 



32 

Figure 28: Accessing a StrucUe with Based Addressing 

HIGH ADDRESS 

DISPLACEMENT 
AGE STATUS (RATE) 

RATE 
VAC SICK 

DEPT DIV 

EMPLOYEE 

AGE STATUS 

RATE 
VAC SICK 
DEPT DIV 

EMPLOYEE 
______ ...... 

LOW ADDRESS 

INDEXED ADDRESSING In indexed addressing, the effective 
address is calculated by the sum of a displacement plus the content 
of an index register (SI or DI) as shown in Figure 29. Indexed 
addressing is often used to access elements in an array (see Figure 
30). The displacement locates the beginning of the array, and the 
value of the index register selects one element (the first element is 
selected if the index register contains 0). All array elements are the 
same length, so simple arithmetic on the index register selects any 
element. 

Figure 29: Indexed Addressing 

OPCODE MOD RIM 

All mnemonics @Intel Corporation 1981. 



Flgl.u'e 30: Accessing an Array with Indexed Addressing 

r DISPLACEMENT 
I 
I 
I IND I 
I 
I 
I 
L..-------

HIGH ADDRESS 

J41WOR~ 
LOW ADDRESS 

DISPLACEMENT 1 
I 
I 

INDEX R GISTER : 
2 I 

I 
EA I _______ J 

BASED INDEXED ADDRESSING Based indexed addressing 
generates an effective address that is the sum of a base register, an 
index register, and a displacement (see Figure 31 ). Two address 
components can be varied at execution time, making based indexed 
addressing a very flexible mode. Based indexed addressing provides 
a convenient way for a procedure to address an array allocated on a 
stack (see Figure 32). Register BP can contain the offset of a 
reference point on the stack, typically the top of the stack after the 
procedure has saved registers and allocated local storage. The offset 
of the beginning of the array from the reference point can be 
expressed by a displacement value, and an index register can be 
used to access individual array elements. 

Based indexed addressing can access arrays contained in structures 
and matrices (two-dimension arrays). 

Figure 31: Based Indexed Addressing 

OPCODE MOD R/M 

All mnemonics @Intel Corporation 1981 

33 



34 

Figure 32: Addressing a Stack Array with Based Indexed Addressing 

HIGH ADDRESS 

PARM2 
PARMt 

l•1WDRD•I 

LOWER ADDRESS 

DISPLACEMENT 

I s ~-., 

STRING ADDRESSING String instructions do not use the normal 
memory addressing modes to access their operands. Instead, the 
index registers are used implicitly as shown in Figure 33. When a 
string instruction is executed, SI is assumed to point to the first byte 
or word of the source string, and DI is assumed to point to the first 
byte or word of the destination string. In a repeated string operation, 
the CPUs automatically adjust SI and DI to obtain subsequent bytes 
or words. 

Figure 33: String Operand Addressing 

I OPCODE I 

SI t----1 SOURCE EA I 
DI t----1 DESTINATION EA I 

All mnemonics ©Intel Corporation 1981 



1/0 PORT ADDRESSING When an 1/0 port is memory mapped, 
any of the memory operand addressing modes can be used to 
access the port. For example, a group of terminals can be accessed 
as an array. String instructions can also transfer data to memory
mapped ports with an appropriate hardware interface. 

The two addressing modes that can be used to access ports located 
in the 1/0 space are illustrated in Figure 34. In direct port addressing, 
the port number is an 8-bit immediate operand. This allows fixed 
access to ports numbered 0-255. Indirect port addressing is similar to 
register indirect addressing of memory operands. The port number is 
taken from register DX and ranges from O to 65,535. By previously 
adjusting the content of register DX, one instruction can access any 
port in the 1/0 space. A group of adjacent ports can be accessed 
using a simple software loop that adjusts the value in DX. 

Figure 34: 1/0 Porl Addressing 

OPCODE DATA 

PORT ADDRESS 

DIRECT PORT ADDRESSING 

DX PORT ADDRESS 

INDIRECT PORT ADDRESSING 

Boot ROM The boot ROM has up to 16K of memory. When the 8088 is reset or 
powered on, the microprocessor goes to the highest memory area 
and begins to execute code in the boot ROM. The boot ROM 
performs basic initialization of all hardware in the machine. It then 
tries to read the boot software in the disk drives, which contains the 
operating system. The boot software is loaded into the processor's 
system random access memory (RAM). When this process is 
completed, the boot ROM jumps into the operating system and begins 
executing in the operating system. 

INPUT/OUTPUT (1/0) The 1/0 function consists of serial ports, a parallel port, a control 
FUNCTIONS port, an audio input/ output function, and a keyboard port. 

35 



Serial Ports 

Parallel Port 

Control Port 

Audio Section 

36 

The standard configuration includes two full-duplex, serial 
communications ports. The serial ports are independent and are 
controlled by a single chip, the NEC 7201 . These ports support the 
RS-232 standard serial interface and can be programmed for 
asynchronous and for more advanced protocols (e.g., SDLC and IBM 
binary synchronous communications). Each port is capable of running 
with an internally generated bit clock (or clocks) supplied by an 
external source (usually the MODEM). The clock selection is made 
under software control. There is a programmable bit clock generator 
for each channel to provide clocking if the internal mode is selected 
(channels O and 1 of the 8253 timer chip are used for this purpose). 

The parallel port is a dual function port supporting parallel Centronics 
and IEEE 488 interfaces. It is software configurable so as to support 
these interfaces. The Centronics interface is an 8-bit parallel output 
interface to standard printers and other devices; the IEEE 488 
interface is an instrumentation interface. Initially developed by 
Hewlett-Packard, the IEEE 488 interface allows for multiple 
independent devices and for better control and more advanced 
functions than does the Centronics port. The parallel port is buffered 
with the standard IEEE 488 drivers. 

The control port is a series of stake pins on the main logic assembly 
that contain 1/0 lines from a 6522 1/0 chip. There are two complete 
8-bit 1/0 control ports. Each pin can be configured for input or output 
(to drive one standard TTL load). 

Each 8-bit port has two handshake control lines. The only pin on the 
control port dedicated to another function is the most significant bit 
(MSB) of port B. This pin is dedicated to the audio clock that controls 
the sample rate for the audio. When the Codec audio is in use, the 
MSB is active. 

The control port also has a light pen connection which connects to 
the CRT controller chip and to +12V, -12V, +5V, and ground signals. It 
supplies minimum power to an external device. 

The audio section can generate voice, tones, bells, or other sounds 
through the speaker in the processor unit. The sounds are stored in a 
specially coded digitized form in the computer memory. The volume 
level of sounds generated by the processor unit can be controlled 
through software or directly with special keys on the keyboard. With 
additional hardware, the audio section also supports input from 
external analog sources, allowing digital recording of sounds for future 
playback. 

As shown in Figure 35, the sound output function acts basically as a 
pipeline from the CPU to the speaker. Sound in digital byte form is 
stored in the CPU memory. The CPU transfers the sound bytes to the 
synchronous serial data adapter (SSDA). The SSDA converts the 
bytes into a serial bit stream of data to feed to the coder I decoder 
(Codec). The Codec converts the serial data into a varying analog 
signal. The analog signal is sent through a low pass filter to remove 
any high frequency noise generated in the digital-to-analog 
conversion in the Codec. The filtered analog signal is sent into a 
volume-control section. The volume-control section switches the 



analog signal at a variable on-to-off rate, allowing the sound level to 
be controlled. The analog signal is finally sent through an audio 
amplifier to the speaker in the processor unit. 

Figure 35: Audio Section Block Diagram 

VOLUME PULSES 

SAMPLE CLOCK 

LOW PASS 
FILTER 

AUDIO INPUT 

VOLUME 
CONTROL 

AMP 

The synchronous serial data adapter (SSDA) is the major interface 
between the CPU and the audio section. The main function of the 
SSDA in playback mode is the buffering and conversion of 8-bit bytes 
into a serial bit stream for the Codec. In the record mode, the SSDA 
also converts a serial bit stream from the Codec into bytes for the 
CPU. 

The SSDA is a 6852 1/0 chip. The SSDA's control and data resisters 
are memory-mapped in the CPU's high memory space. The SSDA 
contains a 3-byte FIFO register buffer. The FIFO allows the CPU to fill 
the SSDA with three bytes of data and then perform other processing 
while the SSDA shifts bits out to the Codec. This reduces processor 
overhead while the processor is playing or recording sounds. The 
SSDA first shifts the data to the Codec's least significant bit. The 
SSDA control registers then tell the CPU that the FIFO is ready for 
more data. The SSDA also provides playback/ record (decode/ 
encode) control via its "DTR" output. 

The CPU controls the sound quality of the audio section with the shift 
clock sent to the SSDA and the Codec. The shift clock is generated 
in one of the CPU's 6522 1/0 chips. The PB7 output from the 6522 is 
controlled by an internal timer, which provides adjustable clock 
frequency. The higher the frequency of the shift clock, the better the 
sound quality. Because faster shift clocks require more memory to 
store the sound bytes, a trade off must be made between sound 
quality and memory storage. A shift clock of 16Khz will produce 
telephone quality reproduction of the original sound with each second 
requiring 2K bytes of storage. 

The Codec converts digital data into analog signal in the playback 
mode and analog signal into digital data in the record mode. The 
Codec uses a technique known as delta modulation to convert the 
serial bit stream into analog output. The digital data's O's and 1 's are 
commands to the integrator in the Codec to make its analog output 
signal "go up" or "go down" respectively. The serial bit stream 
represents the direction for the analog output signal. 

37 



Keyboard Interface 

DISK INTERFACE 

38 

To increase dynamic range, continuously variable slope delta
modulation (CVSD) is used. An outstanding characteristic of CVSD is 
its ability, with fairly simple circuitry, to transmit intelligible voice 
sounds at relatively low data rates. CVSD increases the dynamic 
range by "companding" (compressing-expanding), which gives small 
signals a higher relative gain. The CVSD scheme detects three or 
more consecutive O's or 1 's in the data stream. When this occurs, the 
gain of the integrator is adjusted to ramp faster to track larger signals. 
Up to a limit, the more consecutive 1 's or O's, the larger the obtained 
ramp amplitude, and the better the reproduction of the original sound. 

The low pass filter removes unwanted high frequency noise generated 
in the CODEC. The filter is set for a 3KHz cutoff frequency. This limits 
sounds to the normal voice bandwidth. 

Volume is controlled by varying the duty factor of the analog signal 
from the filter. The CPU controls the volume level by switching the 
analog signal on and off at a frequency above the audible range. A 
minimum of 20KHz is recommended. The CPU uses a 6522's shift 
register in a recirculating output mode to generate the duty cycle for 
the volume control. This allows selection of seven different volume 
levels (and also off). 

The final stage is a four watt audio power amplifer which drives the 
speaker mounted in the disk drive subassembly. A large speaker can 
be attached to produce more sound output. , 

There are six signals, or lines, going to the keyboard from the 
processor. A +5V supply and a ground signal power the keyboard. A 
shield line shields the keyboard from static and interference. There 
are three signal lines: ready, data, and acknowledge. 

The ready, data, and acknowledge lines control communications 
between the keyboard and the processor. The keyboard sends data 
to the microprocesser serially. The keyboard acknowledges or signals 
to the processor that a key signal has been received and is ready to 
be sent to the processor. It does this with a keyboard ready line. 
When the processor is ready, it handshakes the data in via the 
acknowledge line and the data comes across on the keyboard data 
line. 

The keyboard uses the serial shift register capabilities of a 6522 
interface chip to communicate with the microprocessor. This function 
is handled automatically by the 6522 until the whole key identifier has 
been received into the shift register. Then the processor reads the 
key identifier, and handshakes the final check bit sequence. 

See Chapter 4, "Keyboard Unit," for a more detailed description of the 
keyboard interface. 

The signals sent to the disk interface are 8-bit data lines, read/write 
signals, selection logic signals, and addressing and control signals. 
They control, send information to, and receive information from the 
disk drive assembly. A connector on the main logic assembly 
connects to the drive assembly through a cable. The main logic 
assembly and microprocessor control the drives with these signals 
while receiving and sending data to the drive assembly. 



EXPANSION BUS 

DISPLAY 

The main logic board supports expansion of the system through four 
female 50-pin edge connectors. These connectors provide an 
interface for memory expansion boards and special control boards. 
Some of the control boards are highspeed network systems, hard disk 
controller interfaces, and I IO expansion boards for use with science
related applications. The expansion bus has a set of data lines, 
addressing lines, control lines, and power lines capable of driving any 
expansion interface. Additional expansion capabilities provide 
external-device access to memory internal to the main logic 
assembly. 

Standard raster scanning techniques are used to display 
information on the screen. The most common mode of operation is 
the text mode, which displays 80 character cells horizontally by 25 
lines vertically. This means that an electron beam, scanning 
horizontally, divides the screen into scan lines. The lines are scanned 
from left to right and top to bottom. 

As the beam scans left to right, the CRT controller generates 
addresses for the screen buffer RAM. The CRT controller selects 
words from the screen buffer memory, determining the type of 
character and the attributes to be displayed. A character cell is 1 O 
dots wide by 16 scan lines high in the text mode. These characters 
are RAM-mapped and programmable. 

The lower 128K bytes of RAM (as well as the 4K bytes from FOOOO to 
FOFFF) is dual port memory. One port of the lower 128K bytes of 
RAM is used by the display hardware to refresh the raster-scan 
display. The dual-port memory is managed by an arbitrator circuit that 
guarantees one refresh access to the display RAM every character 
cell time. The arbitrator circuit adds a wait-state to any 8088 memory 
cycle if this is necessary to isolate it from the display-refresh cycle. 
The display circuit manages the memory-refresh in the dual port on
board dynamic RAM. 

Figure 36: Display System Block Diagram 

CRT CONTROLLER 

FONT 
ROW 

ADDRESS 

SCREEN 
ADDRESS 

SCREEN BUFFER 

VIDEO 
SHIFT 

REGISTER 

ATTRIBUTES 

· ATTRIBUTE ~- VIDEO 
ADDER 

39 



Screen Buffer 

40 

The screen buffer is a section of memory 2000 words in length (it is 
mapped at addresses FOOOO through FOFFF). 

The words are arranged linearly. The first word in the screen buffer 
defines the top leftmost character on the screen. The next word in 
the screen buffer defines the next character on the screen, reading 
left to right, and etc. All of the characters on the screen are defined 
in the screen buffer prior to display. 

Figure 37: Display Operation 

CRT SCREEN 

SCREEN BUFFER WORDS 
MSB 15 11 10 0 LSB 

!ATTRIBUTES• I . FONT CELL CODE • I 
(0 1 0 0'010 0 0 1 0 1 1 0 1 0 0 0 11 
!0 1 0 0'0!0 0 0 1 0 1 1 0 1 0 0 1 01 

' I 

64KBLOCK I 
ALWAYS LOWER 128K FONT CELL CODE 

~"""""' 
00C40 •••••• •••••• • • • • 

• • • • • • • • ••••• 
• • • • • • • • • • • • • • • • • • • • • • • • 

WORD ADDRESS 
(Alwa s=O) 

RASTER ROW 

-SHIFT 
OUT TO 
VIDEO 

FONT POINTER The words in the screen buffer are broken into two 
pieces. The lower 11 bits comprise the font pointer. The upper five 
bits are attribute bits. The font pointer contains binary address 
information. Up to 2048 characters, or font cells, can be displayed 
on the screen. 



ATTRIBUTE BITS There are five attribute codes associated with 
each character. Four of these attribute bits are used for reverse 
video, underline/strikeover, high/low-intensity, and nondisplay. The 
other bit is available for user software or external hardware. 

Each character on the screen is affected by the attributes in the 
upper 5 bits. Each attribute bit is independent of the other bits. 

Reverse Video The reverse video attribute displays black characters 
on a white background. This affects all the dots in every character, 
including underline and other modes. 

Display High/Low Intensity The high/ low intensity attribute displays 
a character in high intensity (enhanced mode), or in low intensity. 

Display Underllne/Strlkeover The underline/ strikeover attribute 
works in conjunction with the font cell control bit mentioned above. 
One bit in a font cell word determines where the underline/ strikeover 
occurs (this is discussed later, in "Font Cell"). Underline creates a 
solid line through the character cell; thus, text underlining is 
programmable. It can also be used as a strikeover if the underline 
control bit is in the middle of the character rows. The strikeover is 
displayed on the screen and superimposed on the character when 
the attribute is turned on. 

Nondlsplay Attribute The nondisplay attribute suppresses dot information 
so that the character is not displayed on the screen. 

Software Attribute The software is available for software application 
program use to identify special fields on the screen, mark the end of 
lines, or mark special text in an editor. It is not used for display 
generation functions. 

The character and attribute bits are organized into words. The lower 
11 bits of each word define which of the 2048 possible characters 
(font cells) is placed at that location on the screen. The upper five 
bits identify attributes. These words are on even address boundaries. 
The 80-character-by-25-line display occupies 2000 words ( 4000 
bytes) of the screen memory. 

The five attribute bits are sent to the video control section. The video 
control section adds the reverse video, intensity, cursor, underline, 
and nondisplay functions, according to the attribute bits. 

The lower 11 bits are the font cell code. The font cell code has other 
address bits added to it-five lower bits and four upper bits-to 
generate a font cell address. The first four of the five lower bits, one 
through four, are the raster row. Using this binary code, 16 raster 
rows-the number of raster rows in a standard character-can be 
addressed. 

The lower bit, bit 0, is the byte address bit. It is always a zero 
because words in memory for the font cell are being addressed. 

41 



Font Cell 

42 

The upper four bits select the 64K block of memory in which the font 
cells are located. The font cell RAM is limited to the lowest 128K of 
memory, so bit 17 through bit 19 are always zero. 

When bit 16 is zero, it selects the lower 64K of memory. When bit 16 
is one, it selects the next block of 64K of memory. This 15-bit 
address, bits 19 to 5, is the base of the font cell address. The display 
hardware then appends this address to the raster row being scanned. 
It takes the addressed word out 01 the font cell memory and passes it 
to the video shift register. The word is then processed through 
attribute control and out to the display. 

Characters are generated using a high-density dot matrix 
technique resulting in a high-resolution display of characters on the 
screen. This technique uses a font cell as the basic structure within 
which characters are developed for display. The font cell is a 
sequential block of 16 words that are accessed to form a dot matrix 
16 bits wide and 16 raster rows high. 

The first word's least significant bit (LSB) is displayed at the top 
leftmost position of the font cell display. The second word's LSB is 
displayed at the leftmost position on the second line, and so forth, 
through all 16 scan lines. Ten dots of the 16-bit wide cell are 
displayed on each line. The remaining six dots of each word, which 
are most significant bits (MSBs), are not displayed. 

The underline/ strikeover control bit is the MSB of each font. 

In normal mode, a bit value of 1 displays a white dot, and a bit value 
of O displays a black dot (in reverse video mode, the reverse is 
displayed). A word, which consists of 16 bits, defines the condition of 
each dot in the matrix (see Figure 38 ). 

Figure 38: Font Cell Example 
LSB MSB 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 ©©©©©© © 0 0 0 0 0 0 0 0 

2 0 0 ©© 0 0 0 © <D 0 0 0 0 0 0 0 

3 0 0 © <D 0 0 0 <D <D 0 0 0 0 0 0 0 

4 0 0 <D <D 0 0 0 © <D 0 0 0 0 0 0 0 

5 0 0 © <D 0 0 0 <D <D 0 0 0 0 0 0 0 

6 0 0 ©<D<D<D<D<D 0 0 0 0 0 0 0 0 

7 0 0 <D <D 0 0 0 <D <D 0 0 0 0 0 0 0 

8 0 0 <D <D 0 0 0 <D <D 0 0 0 0 0 0 0 

9 0 0 <D <D 0 0 0 © <D 0 0 0 0 0 0 0 

10 0 0 <D <D 0 0 0 © <D 0 0 0 0 0 0 0 

11 0 <D <D <D <D <D <D <D 0 0 0 0 0 0 0 0 

12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

• = Underllne/Strikeover Bil 



Display Brightness 

Display Contrast 

HIGH RESOLUTION 
MODE 

Figure 39: Block Diagram of a Font Cell 

r 
16WORDS 

LSB 

•••••• •• •• •• •• •• •• •• • • ••••• •• •• •• •• •• •• •• • • •••••• 

MSB 

NOT USED 
IN TEXT MODE 

UNDERLINE/STRIKEOUT 
CONTROL BIT 

To summarize, the CRT controller chip generates word addresses in 
the screen buffer memory. A portion of each word contains the 
attributes, which are passed to the video output section. Another 
portion of each word is the font cell code, which, when combined with 
other bits, generates a font cell address. The word at this font cell 
address is loaded into a video shift register which turns the parallel 
word into serial bits and passes it to the video output section, where 
it is combined with the attribute functions. The CRT controller chip 
also generates the horizontal/vertical signals that go to the display. 

Overall display brightness is software adjustable. Brightness may be 
adjusted to one of eight different levels by setting the brightness 
control bits (PB2, PB3, and PE4 of the 6522 at E8040) to the binary 
value corresponding to the desired level. The binary values range 
from zero to seven, in order of_ increasing brightness. 

Display contrast is also software adjustable. The contrast function 
controls the difference in intensity between high- and low-intensity 
characters. Only the intensity of the low-intensity characters is varied 
by the contrast function. Contrast may be adjusted to one of eight 
levels by setting the binary value of the desired level in the three 
contrast control bits (PBS, PB6, and PB? of the 6522 at E8040). The 
binary values range from zero to seven, in order of increasing 
contrast (a binary value of zero causes no difference in contrast). 

A bit-mapped high-resolution mode is configured for 800 by 400 dots 
of bit-addressable display. In this mode, the reverse video, high/low
intensity, and nondisplay attributes apply to fixed 16- by 16-dot cells 
on the screen, and the underline/ strikeover attribute is disabled. 

The high-resolution mode makes special use of the font cell graphics. 
The output line (HIRES) controls the font cell width. When high, this 
line enables the 16-dot matrix, which displays all 16 bits of each font 
cell word. In this mode, the screen is organized into a 50-column by 
25-line display. 

43 



DISK DRIVE 
ASSEMBLY 

44 

To use the bit-mapped display mode, the screen buffer is filled with 
font cell pointers which address successive font cells, by column. For 
example, if line 1/column1 addresses font cell N, line 2/column 1 
would address font cell N+1, and line 25/ column 1 would address 
font cell N+24. Line 1 I column 2 would address font cell N+25, and so 
forth. Line 25/column 50 which would address font cell N+1249. The 
font cell memory is directly manipulated, without further modification 
to the screen buffer. 

In high-resolution mode, the programmer's view of the screen is 
20,000 contiguous words of bit-mapped dots organized into 16-bit 
wide columns, going from top to bottom, and left to right as word 
addresses increase. 

As shown in Figure 40, the disk drive assembly is comprised of two 
floppy disk drive mechanisms, a disk drive interface board, and a 
chassis which also contains a speaker. The disk drive assembly 
provides the system with a minimum of 12 million bytes (formatted) of 
auxiliary storage. 

Figure 40: Disk Drive Assembly 



FUNCTIONAL 
DESCRIPTION 

Reading Data 

The standard drive units are 5-1 /4 inch, 80-track mechanisms, which 
operate with single-sided media Track density is 96 tracks per inch, and 
recording density is maintained at approximately 8000 bits per inch on all 
tracks. 

The disk drive interface board provides all the low level operations 
required to convert binary information for storage on and retrieval 
from diskette. Status and drive control interface to the drives is also 
provided on the disk drive interface board. 

The processing unit maintains functional control of the disk drive assembly. 

The 8088 CPU transfers data from the disk to memory as byte-by
byte read operations. Before the data is transferred, the drive motor 
for the drive containing the disk is started, and the head is positioned 
to the correct track. The GCR read circuit provides sync detection 
and separation. (Sync is a special GCR pattern that does not occur in 
normal data fields. The sync pattern consists of 1 O ones during a byte 
time; other GCR patterns cannot contain more than 8 ones during a 
byte time.) When the GCR read circuit detects a sync mark, it starts a 
counter that causes an interrupt to be sent to the CPU, if sync 
remains present for 6 byte times. This interrupt to the CPU, which is 
called SYN and is on the highest level interrupt input line to the 
interrupt controller, informs the CPU that a header sync mark has 
been detected. 

HEADER SEARCH When a sync interrupt occurs while the CPU is 
searching for a sector, the CPU enters the controller software that will 
compare the sector header information with the sector requested (the 
sector header contains the data block ID, track numbers, the sector 
number, and the checksum). This compare function is performed by 
the CPU on a byte-by-byte basis. The GCR read circuit provides a 
data byte every 21 .3 microseconds. In order to be able to keep up 
with the high data rate, the CPU uses a special instruction (WAIT) 
that stops processing until a byte-ready strobe occurs on the test 
input. The CPU then continues processing by reading the latched 
data byte and comparing it with the requested sector information. 

If the sector is not the correct sector, the CPU returns from the 
interrupt and continues processing until the next header sync 
interrupt. Once the desired sector header has been found, the data 
transfer can begin. 

DATA TRANSFER Before the CPU can read the data block of a 
sector, the clock recovery circuitry must be resynchronized. This is 
required because the data block is updated and can be written at any 
random phase relative to the header information. The data block sync 
mark is only 5 bytes long and is not detected by the header sync 
mark detection circuit (header sync marks must be at least 6 bytes in 
length). The CPU polls the sync input line until the data block sync is 
detected and then verifies that the byte following sync-the data 
block 10 byte-is correct. If it is not correct. a "not data block 10 
error" is generated, and no data is transferred, Using the WAIT 

45 



Writing Data 

Verification 

Formatting 

46 

instruction, the CPU then transfers the following 512 bytes of sector 
information to the present destination in memory. As the CPU moves 
the data to memory, it also computes the checksum. This resulting 
checksum is then compared with the checksum recorded in the data 
block. If the checksums match, the data transfer is correct; otherwise, 
error recovery by the CPU is needed. 

Data transfer from memory to disk is performed by the CPU in much 
the same manner as for read operations. The disk drive motor is . 
started and set to the proper speed, and the head is positioned at the 
correct track by the controller software. The CPU does a header 
search using the method described earlier in "Reading Data." When 
the desired header is matched, the CPU starts an update operation of 
the data portion of the sector and, before turning on the write current, 
times the GAP1 area. The 5-byte data block sync area is written. 
Next the 10-byte data block, and then 512 bytes of sector data are 
written from the preset location in memory. As the data is written, the 
CPU also creates the 2-byte checksum, which is written at the end of 
the data section. 

The CPU also controls the trim erase timing of the read/ write head. 
The purpose of trim erase is to erase any remaining portion of the old 
data section that was recorded from the sides of the new data 
section. At the end of the update, the write current is turned off, and, 
about 31 byte times later, the trim erase is turned off. 

In order to ensure reliable data storage, all sector updates are 
followed by a verify operation. A verify operation is similar to a read 
operation, except that the data in memory is compared to the read 
disk data being transferred to memory. If any of the bytes do not 
compare correctly with the data in memory, an error is flagged, and 
an error recovery is performed by the CPU. 

A blank or new diskette must be formatted before it can be used. 
(Some programs, such as DCOPY, perform the formatting function 
implicitly.) Formatting is done by writing control information and 
dummy data blocks to all 80 tracks on the disk (see the "Track 
Format" and "Sector Format" sections under "Physical Description"). 
The format is a variable number of sectors per zone in soft sectored 
format. In order to achieve maximum speed tolerance on each 
diskette, the CPU performs an adaptive format procedure. Diskette 
speed variation (from unit to unit) causes the number of bytes on a 
track to vary. During format this problem is solved by always 
providing a fixed number of unused bytes to allow for the worst case 
speed. Instead of allowing the unused bytes to be wasted, the format 
procedure measures the size of the first track in each zone and then 
adjusts the gap to the size of the sector format. This causes the 
physical sector size to remain constant regardless of diskette speed 
during format. This method allows the maximum possible tolerance to 
speed variation without requiring a gap at the end of the track to 
allow for speed variation. The technique makes better use of 
the unused space by distributing it and using the additional intersector 
time to achieve stabilization of the clock recovery circuitry. 

Refer to "Speed Control" and "Motor Speed Control" for more details 
on speed control. 



Positioning 

Speed Control 

PHYSICAL 
DESCRIPTION 

Motor Speed Control 

The head positioning mechanism for each drive is a four-phase 
stepper motor. The disk drive interface has drivers for each stepper 
motor which are controlled directly by the CPU. By properly 
sequencing the four phases of the stepper motor, the CPU can move 
the head of each drive in or out. All timing and control is done in 
software by the CPU. To reduce power consumption, the stepper 
motors are energized only when the drive is active: otherwise they are 
turned off by the CPU. The independent stepper drivers allow the 
CPU to perform overlapping seeks, resulting in higher system 
performance. 

In order to attain maximum data capacity, the media passes under 
the head at a constant linear velocity. To attain this, the rotational 
period is varied as the radius of the track changes. The disk 
rotational speed is selected by the CPU. The actual speed control is 
performed by a single chip computer on the disk drive interface 
board. The CPU communicates with the speed control processor 
(SCP) by an eight-bit port. On system powerup, the SCP uses a 
default speed table that allows the system to boot. Once the 
operating system software is loaded, the CPU writes a new speed 
table to the SCP that allows it to operate with the current 512-byte 
sectors. The SCP can be programmed with up to 15 different speeds. 

The disk interface board contains the circuitry necessary to control 
both of the integrated system disk drives. This circuitry consists of 
drive motor speed control, read/write head positioning, data decoding 
and encoding, read channel electronics, and write channel 
electronics. The interface board receives functional control from the 
processor unit through a dedicated I I 0 bus. 

The traditional approach to storing data on floppy disks is to write 
data (using some encoding scheme) at a fixed rate, while rotating the 
disk at a constant speed. This results in several undesirable 
characteristics. Three major undesirable characteristics that were 
addressed are wasted capacity, large variation in the read signal 
amplitude, and low system tolerance to motor speed variation. 

Since the circumference of the outermost track on the floppy is larger 
than the circumference of the innermost track (and, in fact, larger 
than all other tracks) the recording density on the outermost track is 
lower than on the innermost. The major limiting factor in recording on 
magnetic media is bit density (actually, flux reversal density), which 
means that the outer tracks contain less data than the inner tracks, 
unless adjustment is made to accommodate this problem. 

Also, when the disk is rotated at a constant speed or RPM, the linear 
velocity of the head relative to the media varies from track to track. 
Since the amplitude of the recorded signal is partly a function of 
speed, the signal amplitude varies greatly from the outermost track 
(where it is highest) to the innermost track. This results in a read 
channel that has a lower signal-to-noise ratio than would be 
obtainable if all tracks were recorded with a constant amplitude 
signal. 

47 



48 

These two problems are overcome by setting disk rotation speed 
according to the track circumference. This is done in a way 
that maintains a nearly constant bit density and a nearly constant 
linear velocity, hence a constant amplitude signal. 

Figure 41: Disk Track and Sector Layout 

MORE STORAGE CAPACITY 
ON OUTER TRACKS 

Data written to the disk is organized into groups of 512 bytes (plus a 
number of synchronization and control information bytes). These 
groups are called sectors. Although the circumference of each track 
differs slightly, it is not possible to take advantage of the potential 
difference in capacity without using sectors of varying size. Therefore, 
the speed is changed only when this results in enough additional 
capacity for an extra sector. The disk is thus divided into groups of 
tracks, called zones. Each zone, when being read or written, causes 
the disk to rotate at a slightly different speed. 

The third problem-low system tolerance to motor speed variations
is caused by a phenomena called bit shift or pulse crowding. Bit shift 
occurs during recording at moderately high densities. This introduces 
timing errors in the data transitions during subsequent reads. The 
clock recovery circuitry interprets these variations as motor speed 
error, which reduces the system's tolerance to speed variations of the 
drive motor. 

This problem has been reduced by improving the motor speed 
control and using an encoding technique that is more tolerant of bit 
shift error. The disk rotational speed control is accomplished by using 
a crystal-controlled, closed-loop servo system. The servo system 
actually consists of two interacting closed servo loops. 

The first servo loop is a fast acting inner loop, which is an analog 
circuit that provides excellent short-term stability. This circuit uses a 
charge-pump technique, which converts tach pulses from the drive 
motor to a voltage. This voltage is compared to a reference voltage, 
and any difference generates a correction in motor speed. 



Data Encoding 
Technlque-GCR 

Read Channel 

The second servo loop (the outer loop) digitally counts a fixed 
number of tach pulses from the motor, and measures the period of 
time that this takes. It then compares this time with the expected 
time. Any difference results in a modification of the reference voltage 
for the inner loop. This is accomplished using a single-chip 
microprocessor (an 8048), which uses the 5 Mhz system clock and 
two (8-bit) digital-to-analog converters (one per drive). Since this 
outer loop is crystal-referenced, it provides absolute long term stability 
and virtually eliminates unit to unit speed differences. 

The microprocessor contains a set of speed control tables. These 
tables are initialized to default values at power-on and are reloadable 
by the processor unit. 

To record data on magnetic media, like floppies, the data first has to 
be converted from the internal computer format into a form that can 
be stored and retrieved. This is true because data in the internal 
format may contain long sequences of like bits-either ones or 
zeroes. If data is recorded with more than a few bit times having no 
changes (flux reversals), the characteristics of the read channel make 
it impossible to read back the same signal that was recorded. Also, 
the data is written at a constant frequency (bit rate), but no clock 
signal is written. This means that the clock information must be re
created during subsequent read operations. Even though the disk 
speed is closely controlled (to within 2%), data transitions are required 
periodically to resynchronize the clock recovery circuitry. 

An encoding technique called group code recording (GCR) 
is used to convert the data from internal representation to an 
acceptable form. GCR converts each ( 4-bit) nibble into a 5-bit code 
that guarantees a recording pattern that never has more than two 
zeroes together. Then data is recorded on the disk by causing a flux 
reversal for each "one" bit and no flux reversal for each "zero" bit. 

The read channel consists of a magnetic pickup (read/write head), 
an amplifier section, a clock recovery section, a serial to parallel 
converter, and a 10-bit to 8-bit (GCR to internal form) conversion 
section. 

The read/write head picks up a low amplitude (approximately 2 to 8 
millivolts) signal from the disk. This signal is amplified differentially (to 
minimize the effects of common mode noise), and pass-band filtered 
(to reduce noise at frequencies other than those of interest). The 
linear output from the filter is passed to the differentiator, which 
generates a wave form whose zero crossovers correspond to the 
peaks of the read signal (these peaks occur approximately where the 
flux reversals take place during the write). Then this signal is fed to 
the comparator and digitizer circuitry. The comparator and digitizer 
circuitry generate a 1-microsecond read data pulse, corresponding to 
each peak of the read signal. These pulses serve two purposes: first, 
each of these pulses represents a "one" bit and so sets the serial 
data latch (to one); second, these pulses are used by the clock 
recovery circuit to keep a phase-locked loop (PLL) synchronized to 
the data being read from the disk. At each clock cycle (bit time), the 
serial data latch is shifted into the serial to parallel converter, and the 
serial data latch is reset (to zero). 

49 



Write Channel 

Sector Format 

50 

When 1 O bits have been shifted into the serial to parallel converter, 
the data is converted back into the original 8-bit byte. This data byte 
is latched, and a signal is sent to the processor unit that a byte is 
ready to be read. 

The write channel consists of an 8-bit to 10-bit (internal form to GCR) 
code conversion section, a parallel to serial converter, write/ erase 
current control, and the read/write head. The write circuitry is 
configured so that it is impossible to enable the write current if the 
diskette is write-protected. The write circuitry also initializes to read 
mode at power-up, and is prevented from writing until the power has 
stabilized. 

Figure 42 illustrates sector format; Table 6 describes the parts of the 
sector: 

Figure 42: Sector Format 

HEADER HAD TAK SEC CHK- GAP DATA DATA DATA CHK- GAP 
SYNC ID ID ID SUM I SYNC ID BYTES SUM 2 

i.._ _..L.._ .. __.. 
...... -. I'"" --..!"'"" .. ,"' .. ,"' .. I .. I" .. 

15 BYTS 10 BYTS 5 BYTS 
1 512 BYTS 2 BYTS 25 BYTS 

BYTS 

Table 6: Sector Components 

COMPONENT 

Header sync 

Sector header 
(header ID, track ID, sector 
ID, and checksum) 

Gap 1 

Data Sync 

Data field 
(data sync, data ID, data 
bytes, and checksum) 

Gap2 

DESCRIPTION 

This sync mark synchronizes the PLL and causes sync 
detect interrupts to be sent to the CPU. 

This area of 4 bytes contains sector indentification 
information. 

This gap allows time for the CPU to process the sector 
header in formation and for the read/write head to clear 
the header for an update. 
This sync mark synchronized the PLL and indicates the 
start of the data field. 
This is the useful data content of the sector for error 
detection if a 2-byte checksum is used. 

This gap allows for speed variation during an update so 
that the next sector sync mark is not overwritten. 



Track Format Table 7 presents track format: 

Table 7: Track Format 

TRACK NUMBERS 
ZONE LOWER HEAD UPPER 

NUMBER (STANDARD) HEAD 

0 
1 
2 
3 
4 
5 
6 
7 
8 

0-3 
4-15 

16-26 
27-37 
38-48 
49-59 
60-70 
71-79 

unused 

(unused) 
0-7 
8-18 

19-29 
30-40 
41-51 
52-62 
63-74 
75-79 

SECTORS ROTATIONAL 
PER TRACK PERIOD (MS) 

19 
18 
17 
16 
15 
14 
13 
12 
11 

237.9 
224.5 
212.2 
199.9 
187.6 
175.3 
163.0 
149.6 
144.0 

Physical Bus Interface The disk drive interface board connects to the CPU board via a 50-
pin ribbon cable. This cable carries the data bus, address lines, and 
control signals needed to interface to the three 6522's on the 
interface board. All the 1/0 ports of the CPU System are memory
mapped, allowing more efficient I IO operations. 

POWER SUPPLY The power supply for is designed for operational and equipment 
safety, single-switch operation, and data protection. 

The power supply is a 4 voltage regulator with one +5V output, two 
+12V outputs, and one -12V output. Overall feedback regulates all 
outputs by sensing the +5V. The -12V output and one of the +12V 
outputs have independent series regulators. 

The power supply provides 6 amps of +5V +2%, 2 amps of +12V 
±5%, 1.5 amps of +12V ±5%, and .2 amp of -12V ±5%. The 
operating range is 90-137Vac or 190-270Vac. The range may be 
selected and strapped by jumper wire. The power supply operates at 
47-63 Hz. All power levels are regulated with overvoltage and · 
overcurrent protection. 

Line filters provide noise/ ripple suppression and conducted/ radiated 
radio frequency energy reduction. 

When the power supply is shorted or overloaded, fold-back limiting 
occurs, preventing overheating. The unit withstands shorted output for 
an indefinite period and transients of up to 6000V peak. The power 
supply absorbs transients without causing any deviation at the output. 

As shown in Figure 43, the power supply is in a shielded case, 
housed in the rear of the processor unit. The power supply module 
contains a fuse, a power switch and a line filter connector which 
connects to the AC power mains. It powers the processor unit, 
installed options, the display unit, and the keyboard unit. A 4-inch fan, 
mounted in the right rear of the processor unit, provides cooling air 
flow. 

51 



Figure 43: Processor Unit 

52 



3 
DISPLAY UNIT 



3. DISPLAY UNIT 

The video display unit is supported by a swivel ramp and fits on top 
of the processor unit. The swivel ramp permits the video display unit 
to be swiveled right or left and to be tilted up or down. A fabric grid 
on the face of the CRT reduces glare and reflection and increases 
character contrast. 

A coiled cord with a locking connector plugs the video display unit 
into the processor unit. The cord carries power and video signals, 
sync signals, and brightness control signals to the video display unit. 

The video display system uses +12V power at approximately 1.2 
amps. The horizontal sweep rate is approximately 15KHz. A vertical 
refresh rate of 76 Hz, or 76 frames per second, prevents visual flicker. 

An interlace method of display is used. Each frame contains half the 
picture. This is very similar to what happens ori a conventional 
television and permits a high-resolution 400-line vertical capability. 

Display brightness and contrast are both software adjustable. 
Brightness, controlled by signals sent from the processor unit's 
display section, may be varied to two intensities. Contrast is controlled 
on the main logic board of the processor unit. The user may select 
eight levels of contrast from the keyboard. 

53 



4 
KEYBOARD UNIT 



4. KEYBOARD UNIT 

The function of the keyboard is to generate and send coded electrical 
signals to the processor unit as each key is depressed or released. 
The keyboard is entirely reconfigurable. 

The keyboard unit is approximately 19 inches wide, 1.8 inches high, 
and 6.4 inches deep. It is connected to the rear of the processor unit 
by a coiled cord. 

The key switch is a high reliability capacitive-type switch on the 
keyboard. There is no mechanical contact. The signal is detected 
electrically, so the switch has a very long life. 

Key surfaces are sculpted for comfortable typing. Key caps are 
removable and interchangeable, facilitating service and allowing the 
keyboard to be customized. 

The keyboard unit is organized into five key groups. The central key 
group is arranged in a standard typewriter configuration. A 
numeric/ calculator keypad is located at the far right of the keyboard. 
The general function keys across the top row are double-sized and 
can be defined for specific purposes by applications programs. A 
single column of specific function keys are located on the far left of 
the keyboard. Editing and cursor-control function keys are located in 
a double column between the typewriter keyboard and the 
numeric/ calculator keypad groups. 

The coiled cord is the conduit for all of the keyboard unit's inputs and 
outputs. The keyboard unit receives power and ground signals, a 
shield signal which protects the keyboard from static discharge and 
radiating noise, and three handshake or data control signals which 
control data transfer from the keyboard to the processor unit. 

The comunication between the processor unit and the keyboard unit 
is serial. The transmission is in 9-bit words. The first eight bits are the 
data byte, with the least significant bit transmitted first. The last bit is 
a stop bit. 

The keyboard returns key numbers and key status through the eight 
data bits. The most significant bit of the key number returned by the 
keyboard unit is status which flags a key "close" or a key "open." 
The least significant seven bits are the key number. 

A single-chip microprocessor in the keyboard unit scans the keyboard 
for key closures and communicates with the processor unit. Keyboard 
status communicated to the processor unit is completely independent 
of key condition. The microprocessor reports an event, such as a key 
making or breaking contact, and the processor unit determines what 
that key's function is, based on application program definition. 

55 



58 

The keyboard unit processor has an event buffer. It buffers events in 
case activity is going on in the processor unit that prevents it from 
servicing all the event signals coming in. 

The communication protocol is accomplished through the use of three 
signal lines. The first control line passes the data serially. The second 
control line from the keyboard indicates to the processor unit that an 
event signal is ready, and the processor unit acknowledges this, using 
the third signal as a handshake. This return line from the processor 
unit to the keyboard unit is called the acknowledge line. It tells the 
keyboard that the processor unit has taken the bit and is making the 
appropriate handshake. 

A protocol is defined for handling overflow problems (when the 
keyboard unit overflows its buffer). The protocol allows the keyboard 
to enter a "hold-off" state, thus permitting the processor to complete 
an activity without losing any event signals. 

The keyboard can be made to time-out and retransmit event signals 
in case of an error or a problem in the handshake. The keyboard 
processor supports N-key rollover, which means that status is 
reported as the keys are depressed and as they are released. As 
long as the event queue doesn't overflow and the processor unit 
keeps up with the event queue, an unlimited number of keys can be 
rapidly depressed. 



APPENDIXES 



INTRODUCTION 

Appendix A 8088 INSTRUCTION SET 

The 8086 and 8088 execute exactly the same instructions. This 
instruction set includes equivalents to the instruction typically found in 
previous microprocessors, such as the 8080/8085. Significant new 
operations include: 

.,.. Multiplication and division of signed and unsigned binary numbers 
as well as unpacked decimal numbers 

.,.. Move, scan, and compare operations for strings up to 64K bytes in 
length 

.,.. Nondestructive bit testing 

.,.. Byte translation from one code to another 

.,.. Software-generated interrupts 

.,.. A group of instructions that can help coordinate the activities of 
multiprocessor systems 

These instructions treat different types of operands uniformly. Nearly 
every instruction can operate on either byte or word data. Register, 
memory, and immediate operands may be specified interchangeably 
in most instructions (except, of course, that immediate values may 
only serve as source and not destination operands). In particular, 
memory variables can be added to, subtracted from, shifted, 
compared, and so on, in place, without moving them in and out of 
registers. This saves instructions, registers, and execution time in 
assembly language programs. In high-level languages, where most 
variables are memory based, compilers, such as PL/M-86, can 
produce faster and shorter object programs. 

The 8086/8088 instruction set can be viewed as existing at two 
levels: the assembly level and the machine level. To the assembly 
language programmer, the 8086 and 8088 appear to have a repertoire 
of about 100 instructions. One MOV (move) instruction, for example, 
transfers a byte or a word from a register or a memory location or an 
immediate value to either a register or a memory location. The 8086 
and 8088 CPUs, however, recognize 28 different MOV machine 
instructions ("move byte register to memory," "move word immediate 
to register," etc.). The ASM-86 assembler translates the assembly
level instructions written by a programmer into the machine-level 
instructions that are actually executed by the 8086 or 8088. 
Compilers such as PL/M-86 translate high-level language statements 
directly into machine-level instructions. 

The two levels of the instruction set address two different 
requirements: efficiency and simplicity. The numerous-there are 
about 300 in all-forms of machine-level instructions allow these 
instructions to make very efficient use of storage. For example, the 

All mnemonics with ©Intel Corporation 1981 

57 



DATA TRANSFER 
INSTRUCTIONS 

58 

machine instruction that increments a memory operand is three or 
four bytes long because the address of the operand must be encoded 
in the instruction. To increment a register, however, does not require 
as much information, so the instruction can be shorter. In fact, the 
8086 and 8088 have eight different machine-level instructions that 
increment a different 16-bit register; these instructions are only one 
byte long. 

If a programmer had to write one instruction to increment a register, 
another to increment a memory variable, etc., the benefit of compact 
instructions would be offset by the difficulty of programming. The 
assembly-level instructions simplify the programmer's view of the 
instruction set. The programmer writes one form of the INC 
(increment) instruction and the ASM-86 assembler examines the 
operand to determine which machine-level instruction to generate. 

This section presents the 8086/8088 instruction set from two 
perspectives. First, the assembly-level instructions are described in 
functional terms. The assembly-level instructions are then presented 
in a reference table that breaks out all permissible operand 
combinations with execution times and machine instruction length, 
plus the effect that the instruction has on the CPU flags. 

The 14 data transfer instructions (Table A-1) move single bytes and 
words between memory and register as well as between register AL 
or AX and 1/0 ports. The stack manipulation instructions are included 
in this group as are instructions tor transferring flag contents and for 
loading segment registers. 

Table A-1: Data Transfer Instructions 

GENERAL PURPOSE 

MOV Move byte or word 
PUSH Push word onto stack 
POP Pop word off stack 
XCHG Exchange byte or word 
XLAT Translate byte 

IN 
OUT 

LEA 
LOS 
LES 

LAHF 
SAHF 
PUSHF 
POPF 

INPUT/OUTPUT 

Input byte or word 
Output byte or word 

ADDRESS OBJECT 

Load effective adress 
Load pointer using OS 
Load pointer using ES 

FLAG TRANSFER 

Load AH register from flags 
Store AH register in flags 
Push flags onto stack 
Pop flags off stack 

All mnemonics @Intel Corporation 1981. 



GENERAL PURPOSE 
DATA TRANSFERS 

MOY deaf/nation, 
source 

PUSH source 

POP destination 

XCHG destination, 
source 

XLAT translate-fable 

IN accumulator, port 

OUT port, 
accumulator 

ADDRESS OBJECT 
TRANSFERS 

MOV transfers a byte or a word from the source operand to the 
destination operand. 

PUSH decrements SP (the stack pointer) by two and then transfers a 
word from the source operand to the top of stack now pointed by SP. 
PUSH often is used to place parameters on the stack before calling a 
procedure; more generally, it is the basic means of storing temporary 
data on the stack. 

POP transfers the word at the current top of stack (pointed to by SP) 
to the destination operand, and then increments SP by two to point to 
the new top of stack. POP can be used to move temporary variables 
from the stack to registers or memory. 

XCHG (exchange) switches the contents of the source and 
destination (byte or word) operands. When used in conjunction with 
the LOCK prefix, XCHG can test and set a semaphore that controls 
access to a resource shared by multiple processors. 

XLAT (translate) replaces a byte in the AL register with a byte from a 
256-byte, user-coded translation table. Register BX is assumed to 
point to the beginning of the table. The byte in AL is used as an 
index into the table and is replaced by the byte at the offset in the 
table corresponding to Al's binary value. The first byte in the table 
has an offset of 0. For example, if AL contains 5H, and the sixth 
element of the translation table contains 33H, then AL will contain 
33H following the instruction. XLAT is useful for translating characters 
from one code to another, the classic example being ASCII to 
EBCDIC or the reverse. 

IN transfers a byte or a word, respectively, to the AL register or AX 
register, from an input port. The port number may be specified either 
with an immediate byte constant, allowing access to ports numbered 
O through 255, or with a number previously placed in the DX register, 
allowing variable access (by changing the value in DX) to ports 
numbered from O through 65,535. 

OUT transfers a byte or a word from the AL register or the AX 
register, respectively, to an output port. The port number may be 
specified either with an immediate byte constant, allowing access to 
ports numbered O through 255, or with a number previously placed in 
register DDX, allowing variable access (by changing the value in DX) 
to ports numbered from O through 65,535). 

These instructions manipulate the addresses of variables rather than 
the contents or values of variables. They are most useful for list 
processing, based variables, and string operations. 

All mnemonics ©Intel Corporation 1981 

59 



LEA destination, 
source 

LOS destination, 
source 

LES destination, 
source 

FLAG TRANSFERS 

LAHF 

60 

LEA (Load Effective Address) transfers the offset of the source 
operand (rather than its value) to the destination operand. The source 
operand must be a memory operand, and the destination operand 
must be a 16-bit general register. LEA does not affect any flags. The 
XLAT and string instructions assume that certain registers point to 
operands; LEA can be used to lead these registers (e.g., loading BX 
with the address of the translate table used by the XLAT instruction). 

LOS (Load pointer using OS) transfers a 32-bit pointer variable from 
source operand, which must be a memory operand, to the destination 
operand and register OS. The offset word of the pointer is transferred 
to the destination operand, which may be any 16-bit general register. 
The segment word of the pointer is transferred to register OS. 
Specifying SI as the destination operand is a convenient way to 
prepare to process a source string that is not in the current data 
segment (string instructions assume that the source string is located 
in the current data segment and that SI contains the offset of the 
string). 

LES (Load pointer using ES) transfers a 32-bit pointer variable from 
the source operand, which must be a memory operand, to the 
destination operand and register ES. The offset word of the pointer is 
transferred to the destination operand, which may be any 16-bit 
general register. The segment word of the pointer is transferred to 
register ES. Specifying DI as the destination operand is a convenient 
way to prepare to process a destination string that is not in the 
current extra segment. (The destination string must be located in the 
extra segment, and DI must contain the offset of the string.) 

LAHF (Load .register AH from Flags) copies SF, ZF, AF, PF and CF 
(the 8080/8085 flags) into bits 7, 6, 4, 2 and 0, respectively, of 
register AH (see Figure A-1 ). The content of bits 5, 3 and 1 is 
undefined; the flags themselves are not affected. LAHF is provided 
primarily for converting 8080/8085 assembly language programs to 
run on an 8086 or 8088. 

All mnemonics •Intel Corporation 1981. 



Figure A-1: String Operation Flow 

I 
I 

,, 

{
Sl/Dl.CX 
AND OF WOULD 
TYPICALLY BE 
INITIALIZED HERE 

STRING 

BYTE 
BYTE 

WORD 
WORD 

NORMAL 
·SYSTEM 

INTERRUPT 
SERVICE 

OF DELTA 

0 1 
1 -1 
0 2 
1 -2 

PREFIX z 
REPE 1 
REPZ 1 

REP NE 0 
REP NZ 0 

l--YE-S _<;>_____.~: , ' 

PRESENT 

rBSENT 

r-----1 
I INST~~~\10N I l _____ J 

All mnemonics with ©Intel Corporation 1981 

61 



SAHF 

PUSHF 

POPF 

62 

SAHF (Store register AH into Flags) transfers bits 7, 6, 4, 2, and O 
from register AH into SF, ZF, AF, PF, and CF, respectively, replacing 
whatever values these flags previously had. OF, OF, IF and TF are not 
affected. This instruction is provided for 8080/8085 compatibility. 

PUSHF decrements SP (the stack pointer) by two and then transfers 
all flags to the word at the top of stack pointed to be SP (see Figure 
A-1 ). The flags themselves are not affected. 

POPF transfers specific bits from the word at the current top of stack 
(pointed to by register SP) into the 8086/8088 flags, replacing 
whatever values the flags previously contained (Figure A-2). SP is 
then incremented by two to point to the new top of stack. PUSHF and 
POPF allow a procedure to save and restore a calling program's 
flags. They also allow a program to change the setting of TF (there is 
no instruction for updating this flag directly). The change is 
accomplished by pushing the flags, altering bit 8 of the memory 
image, and then popping the flags. 

Figure A-2: Flag Storage Formats 

LAHF, Is I z I u I A I u I p I u I I 
SAHF 17 6 5 4 3 2 1 0 
~ 8080/8085 FLAGS~I 
I I 
I I 

PUSHF I u 1 u 1 u , u 1 o , D ,i , T 1 s 1 z , u, A , u, P 1 u 1 cl 
POPF 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

U = UNDEFINED; VALUE IS INDETERMINATE 
0 = OVERFLOW FLAG 
D = DIRECTION FLAG 
I = INTERRUPT ENABLE FLAG 
T =TRAP FLAG 
S =SIGN FLAG 
Z =ZERO FLAG 
A = AUXILIARY CARRY FLAG 
P = PARITY FLAG 
C = CARRY FLAG 

All mnemonics ©Intel Corporation 1981 



ARITHMETIC 
INSTRUCTIONS 

ARITHMETIC DATA 
FORMATS 

8086 and 8088 arithmetic operations (Table A-2) may be performed 
on four types of numbers: unsigned binary, signed binary (integers), 
unsigned packed decimal and unsigned unpacked decimal (see Table 
A-3). Binary numbers may be 8 or 16 bits long. Decimal numbers are 
stored in bytes, two digits per byte for packed decimal and one digit 
per byte for unpacked decimal. The processor always assumes that 
the operands specified in arithmetic instructions contain data that 
represent valid numbers for the type of instruction being performed. 
Invalid data may produce unpredictable results. 

Table A-2: Arithmetic Instructions 

ADDITION 

ADD Add byte or word 
ADC Add byte or word with carry 
INC Increment byte or word by 1 
AAA ASCII adjust for addition 
DAA Decimal adjust for addition 

SUBTRACTION 

SUB Subtract byte or word 
SBB Subtract byte or word with borrow. 
DEC Decrement byte or word by 1 
NEG Negate byte or word 
CMP Compare byte or word 
AAS ASCII adjust for subtraction 
DAS Decimal adjust for subtraction 

MULTIPLICATION 

MUL Multiply byte or word unsigned 
IMUL Integer multiply byte or word 
AAM ASCII adjust for multiply 

DIVISION 

DIV Divide byte or word unsigned 
IDIV Integer divide byte or word 
AAD ASCII adjust for division 
CBW Convert byte to word 
CWD Convert word to doubleword 

Table A-3: Arithmetic Interpretation of 8-Blt Numbers 

UNSIGNED SIGNED UNPACKED PACKED 
HEX BIT PATIERN BINARY BINARY DECIMAL DECIMAL 

07 00000111 7 +7 7 7 

89 10001001 137 -119 Invalid 89 

cs 11000101 197 -59 Invalid Invalid 

All mnemonics e Intel Corporation 1981 

63 



64 

Unsigned binary numbers may be either 8 or 16 bits long; all are 
considered in determining a number's magnitude. The value range of 
an 8-bit unsigned binary number is 0-255; 16 bits can represent 
values from O through 65,535. Addition, subtraction, multiplication, and 
division operations are available for unsigned binary numbers. 

Signed binary numbers (integers) may be either 8 or 16 bits long. The 
high-order (leftmost) bit is interpreted as the number's sign: 
O = positive, and 1 = negative. Negative numbers are represented in 
standard two's complement notation. Since the high-order bit is used 
for a sign, the range of an 8-bit integer is -128 through +127; 16-bit 
integers may range from -32,768 through +32,767. The value zero has 
a positive sign. Multiplication and division operations are provided for 
signed binary numbers. Addition and subtraction are performed with 
the unsigned binary instructions. Conditional jump instructions, as well 
as an "interrupt on overflow" instruction, can be used following an 
unsigned operation on an integer to detect overflow into the sign bit. 

Packed decimal numbers are stored as unsigned byte quantities. The 
byte is treated as having one decimal digit in each half-byte (nibble); 
the digit in the high-order half-byte is the most significant. 
Hexadecimal values 0-9 are valid in each half-byte, and the range of 
a packed decimal number is 0-99. Addition and subtraction are 
performed in two steps. First an unsigned binary instruction is used to 
produce an intermediate result in register AL. Then an adjustment 
operation is performed which changes the intermediate value in AL to 
a final correct packed decimal result. Multiplication and division 
adjustments are not available for packed decimal numbers. 

Unpacked decimal numbers are stored as unsigned byte quantities. 
The magnitude of the number is determined from the low-order half
byte; hexadecimal values 0-9 are valid and are interpreted as decimal 
numbers. The high-order half-byte must be zero for multiplication and 
division; it may contain any value for addition and subtraction. 
Arithmetic on unpacked decimal numbers is performed in two steps. 
The unsigned binary addition, subtraction, and multiplication 
operations are used to produce an intermediate result in register AL. 
An adjustment instruction then changes the value in AL to a final 
correct unpacked decimal number. Division is performed similarly, 
except that the adjustment is carried out on the numerator operand in 
register AL first, and then a following unsigned binary division 
instruction produces a correct result. 

Unpacked decimal numbers are similar to the ASCII character 
representations of the digits 0-9. Note, however, that the high-order 
half-byte of an ASCII numeral is always 3H. Unpacked decimal 
arithmetic may be performed on ASCII numeric characters under the 
following conditions: 

..,. The high-order half-byte of an ASCII numeral must be set to OH 
prior to multiplication or division . 

..,. Unpacked decimal arithmetic leaves the high-order half-byte set to 
OH; it must be set to 3H to produce a valid ASCII numeral. 

All mnemonics ©Intel Corporation 1981 



ARITHMETIC 
INSTRUCTIONS AND 
FLAGS 

The 8086/8088 arithmetic instructions post certain characteristics of 
the result of the operation to six flags. Most of these flags can be 
tested by following the arithmetic instruction with a conditional jump 
instruction; the INTO (interrupt on overflow) instruction also may be 
used. The various instructions affect the flags differently, as explained 
in the instruction descriptions. However, they follow these general 
rules: 

.,.. CF (Carry Flag): If an addition results in a carry out of the high
order bit of the result, then CF is set; otherwise CF is cleared. If a 
subtraction results in a borrow into the high-order bit of the result, 
then CF is set; otherwise CF is cleared. Note that a signed carry is 
indicated by CF=OF. CF can be used to detect an unsigned 
overflow. Two instructions, ADC (add with carry) and SBB (subtract 
with borrow), incorporate the c~rry flag in their operations and can 
be used to perform multibyte (e.g., 32-bit, 64-bit) addition and 
subtraction . 

.,.. AF (Auxiliary Carry Flag): If an addition results in a carry out of the 
low-order half-byte of the result, then AF is set; otherwise AF is 
cleared. If a subtraction results in a borrow into the low-order half
byte of the result, then AF is set; otherwise AF is cleared. The 
auxiliary carry flag is provided for the decimal adjust instructions 
and ordinarily is not used for any other purpose . 

.,.. SF (Sign Flag): Arithmetic and logical instructions set the sign flag 
equal to the high-order bit (bit 7 or 15) of the result. For signed 
binary numbers, the sign flag will be O for positive results and I for 
negative results (so long as overflow does not occur). A 
conditional jump instruction can be used following addition or 
subtraction to alter the flow of the program depending on the sign 
of the result. Programs performing unsigned operations typically 
ignore SF since the high-order bit of the result is interpreted as a 
digit rather than a sign . 

.,.. ZF (Zero Flag): If the result of an arithmetic or logical operation is 
zero, then ZF is set; otherwise ZF is cleared. A conditional jump 
instruction can be used to alter the flow of the program if the 
result is or is not zero . 

.,.. PF (Parity Flag): If the low-order eight bits of an arithmetic or 
logical result contain an even number of 1-bits, then the parity flag 
is set; otherwise it is cleared. 

PF is provided for 8080/8085 compatibility; it also can be used to 
check ASCII characters for correct parity . 

.,.. OF (Overflow Flag): If the result of an operation is too large a 
positive number, or too small a negative number to fit in the 
destination operand (excluding the sign bit), then OF is set; 
otherwise OF is cleared. OF thus indicates signed arithmetic 
overflow; it can be tested with a conditional jump or the INTO 
(interrupt on overflow) instruction. OF may be ignored when 
performing unsigned arithmetic. 

All mnemonics ©Intel Corporation 1981 

65 



ADDITION 

ADD destination, 
source 

ADC destination, 
source 

INC destination 

AAA 

DAA 

SUBTRACTION 

SUB destination, 
source 

SBB destination, 
source 

DEC destination 

NEG destination 

66 

The sum of the two operands, which may be bytes or words, replaces 
the destination operand. Both operands may be signed or unsigned 
binary numbers (see AAA and DAA). ADD updates AF, CF, OF, PF, 
SF, and ZF. 

ADC (Add with Carry) sums the operands, which may be bytes or 
words, adds one if CF is set, and replaces the destination operand 
with the result. Both operands may be signed or unsigned binary 
numbers (see AAA and DAA). ADC updates AF, CF, OF, PF, SF, and 
ZF. Since ADC incorporates a carry from a previous operation, it can 
be used to write routines to add numbers longer than 16 bits. 

INC (Increment) adds one to the destination operand. The operand 
may be a byte or a word and is treated as an unsigned binary 
number (see AAA and DAA). INC updates AF, OF, PF, SF, and ZF; it 
does not affect CF. 

AAA (ASCII Adjust for Addition) changes the contents of register AL 
to a valid unpacked decimal number; the high-order half-byte is 
zeroed. AAA updates AF and CF; the content of OF, PF, SF, and ZF is 
undefined following execution of AAA. 

DAA (Decimal Adjust for Addition) corrects the result of previously 
adding two valid packed decimal operands (the destination operand 
must have been register AL). DAA changes the content of AL to a 
pair of valid packed decimal digits. It updates AF, CF, PF, SF, and ZF; 
the content of OF is undefined following execution of DAA. 

The source operand is subtracted from the destination operand, and 
the result replaces the destination operand. The operands may be 
bytes or words. Both operands may be signed or unsigned binary 
numbers (see AAS and DAS). SUB updates AF, CF, OF, PF, SF, and ZF. 

SBB (Subtract with Borrow) subtracts the source from the destination, 
subtracts one if CF is set, and returns the result to the destination 
operand. Both operands may be bytes or words. Both operands may 
be signed or unsigned binary numbers (see AAS and DAS). SBB 
updates AF, CF, OF, PF, SF, and ZF. Since it incorporates a borrow 
from a previous operation, SBB may be used to write routines that 
subtract numbers longer than 16 bits. 

DEC (Decrement) subtracts one from the destination, which may be a 
byte or a word. DEC updates AF, OF, PF, SF, and ZF; it does not 
affect CF. 

NEG (Negate) subtracts the destination operand, which may be a 
byte or a word, from O and returns the result to the destination. This 
forms the two's complement of the number, effectively reversing the 
sign of an interger. If the operand is zero, its sign is not changed. 
Attempting to negate a byte containing -128 or a word containing 
-32,768 causes no change to the operand and sets OF. NEG updates 
AF, CF, OF, PF, SF, and ZF. CF is always set except when the 
operand is zero, in which case it is cleared. 

All mnemonics ©Intel Corporation 1981 



CMP destination, 
source 

AAS 

DAS 

MULTIPLICATION 

MUL source 

IMUL source 

CMP (Compare) subtracts the source from the destination, which may 
be bytes or words, but does not return the result. The operands are 
unchanged, but the flags are updated and can be tested by a 
subsequent conditional jump instruction. CMP updates AF, CF, OF, PF, 
SF, and ZF. The comparison reflected in the flags is that of the 
destination to the source. If a CMP instruction is followed by a JG 
(Jump if Greater) instruction, for example, the jump is taken if the 
destination operand is greater than the source operand. 

AAS (ASCII Adjust for Subtraction) corrects the result of a previous 
subtraction of two valid unpacked decimal operands (the destination 
operand must have been specified as register AL). AAS changes the 
content of AL to a valid unpacked decimal number; the high-order 
half-byte is zeroed. AAS updates AF and CF; the content of OF, PF, 
SF, and ZF is undefined following execution of AAS. 

DAS (Decimal Adjust for Subtraction) corrects the result of a previous 
subtraction of two valid packed decimal operands (the destination 
operand must have been specified as register AL). DAS changes the 
content of AL to a pair of valid packed decimal digits. DAS updates 
AF, CF, PF, SF, and ZF; the content of OF is undefined following 
execution of DAS. 

MUL (Multiply) performs an unsigned multiplication of the source 
operand and the accumulator. If the source is a byte, then it is 
multiplied by register AL, and the double-length result is returned in 
AH and AL. If the source operand is a word, then it is multiplied by 
register AX, and the double-length result is returned in registers DX 
and AX. The operands are treated as unsigned binary numbers (see 
AAM). If the upper half of the result (AH for byte source, DX for word 
source) is nonzero, CF and OF are set; otherwise they are cleared. 
When CF and OF are set. they indicate that AH or DX contains 
significant digits of the result. The content of AF, PF, SF, and ZF is 
undefined following execution of MUL. 

IMUL (Integer Multiply) performs a signed multiplication of the source 
operand and the accumulator. If the source is a byte, then it is 
multiplied by register AL, and the double-length result is returned in 
AH and AL. If the source is a word, then it is multiplied by register 
AX, and the double-length result is returned in registers DX and AX. If. 
the upper half of the result (AH for byte source, DX for word source) 
is not the sign extension of the lower half of result, CF and OF are 
set; otherwise they are cleared. When CF and OF are set, they 
indicate that AH or DX contains significant digits of the result. The 
content of AF, PF, SF, and ZF is undefined following execution of 
IMUL. 

All mnemonics ©Intel Corporation 1981. 

87 



AAM 

DIVISION 

DIV source 

IDIV source 

AAD 

68 

AAM (ASCII Adjust for Multiply) corrects the result of a previous 
multiplication of two valid unpacked decimal operands. A valid 2-digit 
unpacked decimal number is derived from the content of AH and AL 
and is returned to AH and AL. The high-order half-bytes of the 
multiplied operands must have been OH for AAM to produce a correct 
result. AAM updates PF, SF, and ZF; the content of AF, CF, and OF is 
undefined following execution AAM. 

DIV (divide) performs an unsigned division of accumulator (and its 
extension) by the source operand. If the source operand is a byte, it 
is divided into the double-length dividend assumed to be in registers 
AL and AH. The single-length quotient is returned in AL, and the 
single-length remainder is returned in AH. If the source operand is a 
word, it is divided into the double-length dividend in registers AX and 
DX. The single-length quotient is returned in AX, and the single-length 
remainder is returned in DX. If the quotient exceeds the capacity of 
its destination register (FFH for byte source, FFFFFH for word source), 
as when division by zero is attempted, a type O interrupt is generated, 
and the quotient and remainder are undefined. Nonintegral quotients 
are truncated to integers. The content of AF, CF, OF, PF, SF, and ZF 
is undefined following execution of DIV. 

IDIV (Integer Divide) performs a signed division of the accumulator 
(and its extension) by the source operand. If the source operand is a 
byte, it is divided into the double-length dividend assumed to be in 
registers AL and AH; the single-length quotient is returned in AL, and 
the single-length remainder is returned in AH. For byte integer 
division, the maximum positive quotient is +127(7FH) and the 
minimum negative quotient is 127(81 H). If the source operand is a 
word.it is divided into the double-length dividend in registers AX and 
DX; the single-length quotient is returned in AX, and the single-length 
remainder is returned in DX. For word integer division, the maximum 
positive quotient is +32,767 (7FFFH) and the minimum negative 
quotient is 32,767 (8001 H). If the quotient is positive and exceeds the 
maximum, or is negative and is less than the minimum, the quotient 
and remainder are undefined, and a type 0 interrupt is generated. In 
particular, this occurs if division by 0 is attempted. Nonintegral 
quotients are truncated (toward 0) to integers, and the remainder has 
the same sign as the dividend. The content of AF, CF, OF, PF, SF, 
and ZF is undefined following IDIV. 

AAD (ASCII Adjust for Division) modifies the numerator in AL before 
dividing two valid unpacked decimal operands so that the quotient 
produced by the division will be a valid unpacked decimal number. 
AH must be zero for the subsequent DIV to produce the correct 
result. The quotient is returned in AL, and the remainder is returned in 
AH; both high-order half-bytes are zeroed. AAD updates PF, SF, and 
ZF; the content of AF, CF, and OF is undefined following execution of 
AAD. 

All mnemonics ©Intel Corporation 1981 



caw 

CWD 

BIT MANIPULATION 
INSTRUCTIONS 

LOGICAL 

CBW (Convert Byte to Word) extends the sign of the byte in register 
AL throughout register AH. CBW does not affect any flags. CBW can 
be used to produce a double-length (word) dividend from a byte prior 
to performing byte division. 

CWD (Convert Word to Doubleword) extends the sign of the word in 
register DX. CWD does not affect any flags. CWD can be used to 
produce a double-length ( doubleword) dividend from a word prior to 
performing word division. 

The 8086 and 8088 provide three groups of instructions (Table A-4) 
for manipulating bits within both bytes and words: logical, shifts, and 
rotates. 

Table A-4: Bit Manupulatlon Instructions 

LOGICALS 

NOT "Not" byte or word 
AND "And" byte or word 
OR "Inclusive or" byte or word 
XOR "Exclusive or" byte or word 
TEST "Test" byte or word 

SHL/SAL 
SHA 
SAR 

SHIFTS 

Shift logical/ arithmetic left byte or word 
Shift logical right byte or word 
Shift arithmetic right byte or word 

ROTATES 

AOL Rotate left byte or word 
ROA Rotate right byte or word 
RCL Rotate through carry left byte or word 
RCA Rotate through carry right byte or word 

The logical instructions include the boolean operators "not," "and," 
"inclusive or", and "exclusive or", plus a TEST instruction that sets 
the flags, but does not alter either of its operands. 

AND, OR, XOR and TEST affect the flags as follows: The overflow 
(OF) and carry (CF) flags are always cleared by logical instructions, 
and the content of the auxiliary carry (AF) flag is always undefined 
following execution of a logical instruction. The sign (SF), zero (ZF) 
and parity (PF) flags are always posted to reflect the result of the 
operation and can be tested by conditional jump instructions. The 
interpretation of these flags is the same as for arithmetic instructions. 
SF is set if the result is negative (high-order bit is 1 }, and is cleared if 
the result is positive (high-order bit is 0). ZF is set if the result is zero; 
it is otherwise cleared. PF is set if the result contains an even number 
of 1-bits (has even parity) and is cleared if the number of 1-bits is 
odd (the result has odd parity). Note that NOT has no effect on the 
flags. 

All mnemonics ©Intel Corporation 1981 

69 



NOT destination 

AND deaflnaflon, 
source 

OR deaflnatlon, 
source 

XOR deaflnaUon, 
source 

TEST deaflnaflon, 
source 

SHIFTS 

NOT inverts the bits (forms the one's complement) of the byte or 
word operand. 

AND performs the logical "and" of the two operands (byte or word) 
and returns the result to the destination operand. A bit in the result is 
set if both correspondence bits of the original operands are set; 
otherwise the bit is cleared. 

OR performs the logical "inclusive or" of the two operands (byte or 
word) and returns the result to the destination operand. A bit in the 
result is set if either or both corresponding bits in the original 
operands are set; otherwise the result bit is cleared. 

XOR (Exclusive Or) performs the logical "exclusive or" of the two 
operands and returns the result to the destination operand. A bit in 
the result is set if the corresponding bits of the original operands 
contain opposite values (one is set, the other is cleared); otherwise 
the result bit is cleared. 

TEST performs the logical "and" of the two operands (byte or word), 
updates the flags, but does not return the result-i.e., neither operand 
is changed. If a TEST instruction is followed by a JNZ (Jump if Not 
Zero) instruction, the jump will be taken if there are any 
corresponding 1-bits in both operands. 

The bits in bytes and words may be shifted arithmetically or logically. 
Up to 255 shifts may be performed, according to the value of the 
count operand coded in the instruction. The count may be specified 
as the constant 1 , or as register CL, allowing the shift count to be a 
variable supplied at execution time. Arithmetic shifts may be used to 
multiply and divide binary numbers by powers of two (see note in 
description of SAR). Logical shifts can be used to isolate bits in bytes 
or words. 

Shift instructions affect the flags as follows: AF is always undefined 
following a shift operation. PF, SF, and ZF are updated normally, as in 
the logical instructions. CF always contains the value of the last bit 
shifted out of the destination operand. The content of OF is always 
undefined following a multibit shift. In a single-bit shift, OF is set if the 
value of the high-order (sign) bit was changed by the operation; if the 
sign bit retains its original value, OF is cleared. 

SHL/SAL destination, SHL and SAL (Shift Logical Left and Shift Arithmetic Left) perform the 
count same operation and are physically the same instruction. The 

destination byte or word is shifted left by the number of bits specified 
in the count operand. Zeros are shifted in on the right. If the sign bit 
retains its original value, then IF is cleared. 

SHR deatlnaflon, SHA (Shift Logical Right) shifts the bits in the destination operand 
source (byte or word) to the right by the number of bits specified in the count 

operand. Zeros are shifted in on the left. If the sign bit retains its 
original value, then OF is cleared. 

All mnemonics •Intel Corporation 1981 

70 



SAR destination, 
count 

ROTATES 

ROL destination, 
count 

ROR destination, 
count 

RCL destination, 
count 

RCR destination, 
count 

STRING 
INSTRUCTIONS 

SAR (Shift Arithmetic Right) shifts the bits in the destination operand 
(byte or word) to the right by the number of bits specified in the count 
operand. Bits equal to the original high-order (sign) bit are shifted in 
on the left, preserving the sign of the original value. Note that SAR 
does not produce the same result as the dividend of an equivalent 
IDIV instruction if the destination operand is negative and 1-bits are 
shifted out. For example, shifting -5 right by one bit yields -3, while 
integer division of -5 by 2 yields -2. The difference in the instructions 
is that IDIV truncates all numbers toward zero, while SAR truncates 
positive numbers toward zero and negative numbers toward negative 
infinity. 

Bits in bytes and words also may be rotated. Bits rotated out of an 
operand are not lost as in a shift, but are circled back into the other 
end of the operand. As in the shift instructions, the number of bits to 
be rotated is taken from the count operand, which may specify either 
a constant of 1 , or the CL register. The carry flag may act as an 
extension of the operand in two of the rotate instructions, allowing a 
bit to be isolated in CF and then tested by a JC (Jump if Carry) or 
JNC (Jump if Not Carry) instruction. 

Rotates affect only the carry and overflow flags. CF always contains 
the value of the last bit rotated out. On multibit rotates, the value of 
OF is always undefined. In single-bit rotates, OF is set if the operation 
changes the high-order (sign) bit of the destination operand. If the 
sign bit retains its original value, OF is cleared. 

ROL (Rotate Left) rotates the destination byte or word left by the 
number of bits specified in the count operand. 

ROR (Rotate Right) operates similar to ROL except that the bits in the 
destination byte or word are rotated right instead of left. 

RCL (Rotate through Carry Left) rotates the bits in the byte or word 
des~ination operand to the left by the number of bits specified in the 
count operand. The carry flag (CF) is treated as "part of" the 
destination operand; that is, its value is rotated into the low-order bit 
of the destination, and is itself replaced by the high-order bit of the 
destination. 

RCR (Rotate through Carry Right) operates exactly like RCL except 
that the bits are rotated right instead of left. 

Five basic string operations, called primitives, allow strings of bytes or 
words to be operated on, one element (byte or word) at a time. 
Strings of up to 64k bytes may be manipulated with these instructions. 
Instructions are available to move, compare, and scan for a value, as 
well as for moving string elements to and from the accumulator (see 
Table A-5). These basic operations may be preceded by a special 
one-byte prefix that causes the instruction to be repeated by the 
hardware, allowing long strings to be processed much faster than 
would be possible with a software loop. The repetitions can be 
terminated by a variety of conditions, and a repeated operation may 
be interrupted and resumed. 

All mnemonics ©Intel Corporation 1981 

71 



72 

Table A-5: String Instructions 

REP Repeat 
REPE/REPZ 
REPNE/REPNZ 
MOVS 
MOVSB/MOVSW 
CMPS 

Repeat while equal/zero 
Repeat while not equal/ not zero 
Move byte or word string 
Move byte or word string 
Compare byte or word string 
Scan byte or word string SCAS 

LOOS Load byte or word string 
STOS Store byte or word string 

The string instructions operate quite similarly in many respects; the 
common characteristics are covered here and in Table A-6 and 
Figure A-2 rather than in the descriptions of the individual instructions. 
A string instruction may have a source operand, a destination 
operand, or both. The hardware assumes that a source string resides 
in the current data segment; a segment prefix byte may be used to 
override this assumption. A destination string must be in the current 
extra segment. The assembler checks the attributes of the operands 
to determine if the elements of the strings are bytes or words. The 
assembler does not, however, use the operand names to address the 
strings. Rather, the content of register SI (source index) is used as an 
offset to address the current element of the source string, and the 
content of register DI (destination index) is taken as the offset of the 
current destination string element. These registers must be initialized 
to point to the source/ destination strings before executing the string 
instruction; the LOS, LES, and LEA instructions are useful in this 
regard. 

Table A-6: String Instruction Register and Flag Use 

SI 

DI 

ex 
AL/AX 

OF 

ZF 

Index (offset) for source string 

Index (offset) for destination 

Repetition counter 

Scan value 
Destination for LOOS 
Source for STOS 

O=auto-increment SI, DI 
1 =auto-decrement SI, DI 

Scan/ compare terminator 

The string instructions automatically update SI and/ or DI in 
anticipation of processing the next string element. The DF (direction 
flag) setting determines whether the index registers are auto 
decremented (DF=1 ). If byte strings are being processed, SI and/ or 
DI is adjusted by 1 ; the adjustment is 2 for word strings. 

All mnemonics ©Intel Corporation 1981 



REP/REPE/REPZ/ 
REPNE/REPNZ 

MOVS destlnat/on
strlng, source-string 

MOVSB/MOVSW 

If a Repeat prefix has been coded, then register CX (count register) is 
decremented by 1 after each repetition of the string instruction; 
therefore, CX must be initialized to the number of repetitions desired 
before the string instruction is executed. If ex is o, the string 
instruction is not executed, and control goes to the following 
instruction. 

REP (Repeat), REPE (Repeat While Equal), REPZ (Repeat While Zero), 
REPNE (Repeat While Not Equal), and REPNZ (Repeat While Not 
Zero) are five mnemonics for two forms of the prefix byte that 
controls repetition of a subsequent string instruction. The different 
mnemonics are provided to improve program clarity. The repeat 
prefixes do not affect the flags. 

REP is used in conjunction with the MOVS (Move String) and STOS 
(Store String) instructions and is interpreted as "repeat while not end
of-string" (CX not 0). REPE and REPZ operate identically and are 
physically the same prefix byte as REP. These instructions are used 
with the CMPS (Compare String) and SCAS (Scan String) instructions 
and require ZF (posted by these instructions) to be set before 
initiating the next repetition. REPNE and REPNZ are two mnemonics 
for the same prefix byte. These instructions function the same as 
REPE and REPZ, except that the zero flag must be cleared or the 
repetition is terminated. Note that ZF does not need to be initialized 
before executing the repeated string instruction. 

Repeated string sequences are interruptable; the processor will 
recognize the interrupt before processing the next string element. 
System interrupt processing is not affected in any way. Upon return 
from the interrupt, the repeated operation is resumed from the point of 
interruption. Note, however, that execution does not resume properly if 
a second or third prefix (i.e., segment override or LOCK) has been 
specified in addition to any of the repeat prefixes. The processor 
"remembers" only one prefix in effect at the time of the interrupt-the 
prefix that immediately precedes the string instruction. After returning 
from the interrupt, processing resumes at this point, but any additional 
prefixes specified are not in effect. If more than one prefix must be 
used with a string instruction, interrupts may be disabled for the 
duration of the repeated execution. However, this will not prevent a 
nonmaskable interrupt from being recognized. Also, the time that the 
system is unable to respond to interrupts may be unacceptable if long 
strings are being processed. 

MOVS (Move String) transfers a byte or a word from the source string 
(addressed by SI) to the destination string (addressed by DI) and 
updates SI and DI to point to the next string element. When used in 
conjunction with REP, MOVS performs a memory-to-memory block 
transfer. 

MOVSB and MOVSW are alternate mnemonics for the move string 
instruction. These mnemonics are coded without operands; they 
explicitly tell the assembler that a byte string (MOVSB) or a word 
string (MOVSW) is to be moved (when MOVS is coded, the assembler 
determines the string type from the attributes of the operands). These 
mnemonics are useful when the assembler cannot determine the 
attributes of a string-e.g., when a section of code is being moved. 

All mnemonics *Intel Corporation 1981 

73 



CMPS destination
string, source-string 

SCAS 
destination-string 

LOOS source-string 

STOS 
destination-string 

PROGRAM 
TRANSFER 
INSTRUCTIONS 

74 

CMPS (Compare String) subtracts the destination byte or word 
(addressed by DI) from the source byte or word (addressed by SI). 
CMPS affects flags without altering either operand, updates SI and DI 
to point to the next string element, and updates AF, CF, OF, PF, SF, 
and ZF to reflect the relationship of the destination element to the 
source element. For example, if a JG (Jump if Greater) instruction 
follows CMPS, the jump is taken if the destination element is greater 
than the source element. If CMPS is prefixed with REPE or REPZ, the 
operation is interpreted as "compare while not end-of-string (CX not 
zero) and strings are equal (ZF=1 )." If CMPS is preceded by REPNE 
or REPNZ, the operation is interpreted as "compare while not end-of
string (CX not zero) and strings are not equal (ZF=O)." Thus, CMPS 
can be used to find matching or differing string elements. 

SCAS (Scan String) subtracts the destination string element (byte or 
word) addressed by DI from the content of AL (byte string) or AX 
(word string) and updates the flags, but does not alter the destination 
string or the accumulator. SCAS also updates DI to point to the next 
string element and AF, CF, OF, PF, SF, and ZF to reflect the 
relationship of the scan value in AL/ AX to the string element. If SCAS 
is prefixed with REPE or REPZ, the operation is interpreted as "scan 
while not end-of-string (CX not 0) and string-element scan value 
(ZF=1 )." This form may be used to scan for departure from a given 
value. If SCAS is prefixed with REPNE or REPNZ, the operation is 
interpreted as "scan while not end-of-string (CX not 0) and string
element is not equal to scan-value (ZF=O)." This form may be used to 
locate a value in a string. 

LOOS (Load String) transfers the byte or word string element 
addressed by SI to register AL or AX, and updates SI to point to the 
next element in the string. This instruction is not ordinarily repeated 
since the accumulator would be overwritten by each repetition, and 
only the last element would be retained. However, LOOS is very 
useful in software loops as part of a more complex string function 
built up from string primitives and other instructions. 

STOS (Store String) transfers a byte or word from register AL or AX 
to the string element addressed by DI and updates DI to point to the 
next location in the string. As a repeated operation, STOS provides a 
convenient way to initialize a string to a constant value (e.g., to blank 
out a print line). 

The sequence of execution of instructions in an 8086/8088 program 
is determined by the content of the code segment register (CS) and 
the instruction pointer (IP). The CS register contains the base address 
of the current code segment, the 64k portion of memory from which 
instructions are presently being fetched. The IP is used as an offset 
from the beginning of the code segment; the combination of CS and 
IP points to the memory location from which the next instruction is to 
be fetched. (Recall that under most operating conditions, the next 
instruction to be executed has already been fetched from memory 
and is waiting in the CPU instruction queue.) The program transfer 

All mnemonics ©Intel Corporation 1981 



instructions operate on the instruction pointer and on the CS register; 
changing the content of these causes normal sequential execution to 
be. altered. When a program transfer occurs, the queue no longer 
contains the correct instruction, and the BIU obtains the next 
instruction from memory using the new IP and CS values, passes the 
instruction directly to the EU, and then begins refilling the queue from 
the new location. 

Four groups of program transfers are available in the 8086/8088: 
unconditional transfers, conditional transfers, iteration control 
instructions and interrupt-related instructions (see Table A-7). Only the 
interrupt-related instructions affect any CPU flags. As will be seen, 
however, the execution of many of the program transfer instructions is 
affected by the states of the flags. 

Table A-7: Program Transfer Instructions 

UNCONDITIONAL TRANSFERS 

CALL 
RET 
JMP 

JA/JNBE 
JAE/JNB 
JB/JNAE 
JBE/JNA 
JC 
JE/JZ 
JG/JNLE 
JGE/JNL 
JL/JNGE 
JLE/JNG 
JNC 
JNE/JNZ 
JNO 
JNP/JPO 
JNS 
JO 
JP/JPE 
JS 

LOOP 
LOOPE/LOOPZ 
LOOPNE/LOOPNZ 
JCXZ 

INT 
INTO 
IRET 

Call procedure 
Return from procedure 
Jump 

CONDITIONAL TRANSFERS 

Jump if above/ not below or equal 
Jump if above or equal/not below 
Jump if below/not above or equal 
Jump if below or equal/ not above 
Jump if carry 
Jump if equal/zero 
Jump if greater/not less or equal 
Jump if greater or equal/not less 
Jump if less/not greater or equal 
Jump if less or equal/ not greater 
Jump if not carry 
Jump if not equal/not zero 
Jump if not overflow 
Jump if not parity/parity odd 
Jump if not sign 
Jump if overflow 
Jump if parity/parity even 
Jump if sign 

ITERATION CONTROLS 

Loop 
Loop if equal/zero 
Loop if not equal/ not zero 
Jump if register CX=O 

INTERRUPTS 

Interrupt 
Interrupt if overflow 
Interrupt return 

All mnemonics ©Intel Corporation 1981 

75 



UNCONDITIONAL 
TRANSFERS 

CALL 
procedure-name 

76 

The unconditional transfer instructions may transfer control to a target 
instruction within the current code segment (intrasegment transfer) or 
to a different code segment (intersegment transfer). The ASM-86 
assembler terms an intrasegment target NEAR and an intersegment 
target FAR. The transfer is made unconditionally any time the 
instruction is executed. 

CALL activates an out-of-line procedure, saving information on the 
stack to permit a RET (return) instruction in the procedure to transfer 
control back to the instruction following the CALL. The assembler 
generates one of two types of CALL instruction; the type depends on 
whether the programmer has defined the procedure name as NEAR 
or FAR. For control to return properly, the type of CALL instruction 
must match the type of RET instruction that exits from the procedure. 
(The potential for a mismatch exists if the procedure and the CALL 
are contained in separately assembled programs.) Different forms of 
the CALL instruction allow the address of the target procedure to be 
obtained from the instruction itself (direct CALL) or from a memory 
location or register referenced by the instruction (indirect CALL). In 
the following descriptions, bear in mind that the processor 
automatically adjusts IP to point to the next instruction to be executed 
before saving it on the stack. 

For an intrasegment direct CALL, SP (the stack pointer) is 
decremented by two and IP is pushed onto the stack. The relative 
displacement (up to +32k) of the target procedure from the CALL 
instruction is then added to the instruction pointer. This form of the 
CALL instruction is self-relative and is appropriate for position
independent (dynamically relocatable) routines in which the CALL and 
its target are in the same segment and are moved together. 

An intrasegment indirect CALL may be made through memory or 
through a register. SP is decremented by two and IP is pushed onto 
the stack. The offset of the target procedure is obtained from the 
memory word or 16-bit general register referenced in the instruction 
and replaces IP. 

For an intersegment direct CALL, SP is decremented by two, and CS 
is pushed onto the stack. CS is replaced by the segment word 
contained in the instruction. SP again is decremented by two. IP is 
pushed onto the stack and is replaced by the offset word contained 
in the instruction. 

For an intersegment indirect CALL (which only may be made through 
memory), SP is decremented by two, and CS is pushed onto the 
stack. CS is then replaced by the content of the second word of the 
doubleword memory pointer referenced by the instruction. SP again is 
decremented by two, and IP is pushed onto the stack and is replaced 
by the content of the first word of the doubleword pointer referenced 
by the instruction. 

All mnemonics ©Intel Corporation 1981 



RET 
opflonal-pop-nlue 

JMP Target 

CONDITIONAL 
TRANSFERS 

RET (Return) transfers control from a procedure back to the 
instruction following the CALL that activated the procedure. The 
assembler generates either an intrasegment RET, if the programmer 
has defined the procedure NEAR, or an intersegment RET, if the 
procedure has been defined as FAR. RET pops the word at the top of 
the stack (pointed to by register SP) into ttie instruction pointer and 
increments SP by two. If RET is intersegment, the word at the new 
top of stack is popped into the CS register, and SP is again 
incremented by two. If an optional pop value has been specified, RET 
adds that value to SP. This feature may be used to discard 
parameters pushed onto the stack before the execution of the CALL 
instruction. 

JMP unconditionally transfers control to the target location. Unlike a 
CALL instruction, JMP does not save any information on the stack, 
and no return to the instruction following the JMP is expected. Like 
CALL, the address of the target operand may be obtained from the 
instruction itself (direct JMP) or from memory or a register referenced 
by the instruction (indirect JMP). 

An intrasegment direct JMP changes the instruction pointer by adding 
the relative displacement of the target from the JMP instruction. If the 
assembler can determine that the target is within 127 bytes of the 
JMP, it automatically generates a two-byte form of this instruction 
called a SHORT JMP; otherwise, it generates a NEAR JMP that can 
address a target within +32k. lntrasegment direct JMPS are self
relative and are appropriate in position-independent (dynamically 
relocatable) routines in which the JMP and its target are in the same 
segment and are moved together. 

An intrasegment indirect JMP may be made either through memory or 
through a 16-bit general register. In the first case, the content of the 
word referenced by the instruction replaces the instruction pointer. In 
the second case, the new IP value is taken from the register named 
in the instruction. 

An intersegment direct JMP replaces IP and CS with values contained 
in the instruction. 

An intersegment indirect JMP may be made only through memory. 
The first word of the doubleword pointer referenced by the instruction 
replaces IP, and the second word replaces CS. 

The conditional transfer instructions are jumps that may or may not 
transfer control depending on the state of the CPU flags at the time 
the instruction is executed. These 18 instructions (see Table A-8) 
each test a different combination of flags for a condition. If the 
condition is true, then control is transferred to the target specified in 
the instruction. If the condition is false, then control passes to the 
instruction that follows the conditional jump. All conditional jumps are 
SHORT, that is, the target must be in the current code segment and 
within -128 to +127 bytes of the first byte of the next instruction (JMP 
OOH jumps to the first byte of the next instruction). Since the jump is 
made by adding the relative displacement of the target to the 
instruction pointer, all conditional jumps are self-relative and are 
appropriate for position-independent routines. 

All mnemonics @Intel Corporation 1981. 

77 



ITERATION 
CONTROL 

LOOP short-label 

LOOPE/LOOPZ 
short-label 

LOOPNE/LOOPNZ 
short-label 

JCXZ short-label 

78 

Table A-8: Interpretation of Condltlonal Transfers 

MNEMONIC 

JA/JNBE 
JAE/JNB 
JB/JNAE 
JBE/JNA 
JC 
JE/JZ 
JG/JNLE 
JGE/JNL 
JL/JNGE 
JLE/JNG 
JNC 
JNE/JNZ 
JNO 
JNP/JPO 
JNS 
JO 
JP/JPE 
JS 

CONDITION TESTED 

(CF or ZF)=O 
CF=O 
CF=1 
(CF or ZF)=1 
CF=1 
ZF=1 
((SF xor OF) or ZF)=O 
(SF xor OF)=O 
(SF xor OF)=1 
((SF xor OF) or ZF)=1 
CF=O 
ZF=O 
OF=O 
PF=O 
SF=O 
OF=1 
PF=1 
SF=1 

"JUMP IF ... " 

above/not below or equal 
above or equal/ not below 
below/not above or equal 
below or equal/ not above 
carry 
equal/zero 
greater I not less or equal 
greater or equal/ not less 
less/ not greater or equal 
less or equal/ not greater 
not carry 
not equal/not zero 
not overflow 
not parity I parity odd 
not sign 
overflow 
parity I parity equal 
sign 

NOTE: "above" and "below" refer to the relationship of two unsigned values; 
"greater" and "less" refer to the relationship of two signed values. 

The iteration control instructions can be used to regulate the 
repetition of software loops. These instructions use the ex register as 
a counter. Like the conditional transfers, the iteration control 
instructions are self-relative and may only transfer to targets that are 
within -128 to +127 bytes of themselves, i.e., they are SHORT 
transfers. 

LOOP decrements ex by 1 and transfers control to the target 
operand if ex is not O; otherwise the instruction following LOOP is 
executed. 

LOOPE and LOOPZ (Loop While Equal and Loop While Zero) are 
different mnemonics for the same instruction (similar to the REPE and 
REPZ repeat prefixes). ex is decremented by 1, and control is 
transferred to the target operand if ex is not O and if ZF is set; 
otherwise the instruction following LOOPE or LOOPZ is executed. 

LOOPNE and LOOPNZ (Loop While Not Equal and Loop While Not 
Zero) are also synonyms for the same instruction. ex is decremented 
by 1 , and control is transferred to the target operand if ex is not O 
and ZF is clear; otherwise the next sequential instruction is executed. 

JeXZ (Jump If ex Zero) transfers control to the target operand if ex 
is 0. This instruction is useful at the beginning of a loop to bypass the 
loop if ex has a zero value, i.e., to execute the loop zero times. 

•All mnemonics ©Intel Corporation 1981. 



INTERRUPT 
INSTRUCTIONS 

I NT Interrupt-type 

INTO 

IRET 

PROCESSOR 
CONTROL 
INSTRUCTIONS 

The interrupt instructions allow interrupt service routines to be 
activated by programs as well as by external hardware devices. The 
effect of software interrupts is similar to hardware-initiated interrupts. 
However, the processor does not execute an interrupt acknowledge 
bus cycle if the interrupt originates in software or with an NMI. The 
effect of the interrupt instructions on the flags is covered in the 
description of each instruction. 

INT (Interrupt) activates the interrupt procedure specified by the 
interrupt-type operand. INT decrements the stack pointer by two, 
pushes the flags onto the stack, and clears the trap flag (TF) and 
interrupt-enable flag (IF) to disable single-step and maskable 
interrupts. The flags are stored in the format used by the PUSHF 
instruction. SP is decremented again by two, and the CS register is 
pushed onto the stack. The address of the interrupt pointer is 
calculated by multiplying interrupt-type by four; the second word on 
the interrupt pointer replaces CS. SP again is decremented by two, 
and IP is pushed onto the stack and is replaced by the first word of 
the interrupt pointer. If interrupt-type=3, the assembler generates a 
short (1 byte) form of the instruction, known as the breakpoint 
interrupt. 

Software interrupts can be used as supervisor calls-requests for 
service from an operating system. A different interrupt-type can be 
used for each type of service that the operating system could supply 
for an application program. Software interrupts also may be used to 
check out interrupt service procedures written for hardware-initiated 
interrupts. 

INTO (Interrupt on Overflow) generates a software interrupt if the 
overflow flag (OF) is set; otherwise control proceeds to the following 
instruction without activating an interrupt procedure. INTO addresses 
the target interrupt pointer at location 10H; it clears the TF and IF 
flags and otherwise operates like INT. INTO may be written following 
an arithmetic or logical operation to activate an interrupt procedure if 
overflow occurs. 

IRET (Interrupt Return) transfers control back to the point of 
interruption by popping IP, CS, and the flags from the stack. IRET 
thus affects all flags by restoring them to previously saved values. 
IRET is used to exit any interrupt procedure, whether activated by 
hardware or software. 

These instructions (see Table A-9) allow programs to control various 
CPU functions. One group of instructions updates flags, and another 
group is used primarily for synchronizing the 8086 or 8088 with 
external events. A final instruction causes the CPU to do nothing. 
Except for the flag operations, none of the processor control 
instructions affect the flags. 

All mnemonics ©Intel Corporation 1981 

79 



FLAG OPERATIONS 

CLC 

CMC 

STC 

CLO 

STD 

CLI 

STI 

80 

Table A-9: Processor Control Instructions 

STC 
CLC 
CMC 
STD 
CLO 
STI 
cu 

HLT 
WAIT 
ESC 
LOCK 

NOP 

FLAG OPERATIONS 

Set carry flag 
Clear carry flag 
Complement carry flag 
Set direction flag 
Clear direction flag 
Set interrupt-enable flag 
Clear interrupt-enable flag 

EXTERNAL SYNCHRONIZATION 

Halt until interrupt or reset 
Wait for TEST pin active 
Escape to external processor 
Lock bus during next instruction 

NO OPERATION 

No operation 

CLC (Clear Carry flag) zeroes the carry flag (CF) and affects no other 
flags. It (and CMC and STC) is useful in conjunction with the RCL 
and RCR instructions. 

CMC (Complement Carry flag) toggles CF to its opposite state and 
affects no other flags. 

STC (Set Carry flag) sets CF to 1 and affects no other flags. 

CLO (Clear Direction flag) zeroes OF, causing the string instructions 
to auto-increment the SI and/ or DI index registers. CLO does not 
affect any other flags. 

STD (Set Direction flag) sets OF to 1. causing the string instructions 
to autodecrement the SI and/ or DI index registers. STD does not 
affect any other flags. 

CLI (Clear Interrupt-enable flag) zeroes IF. When the interrupt-enable 
flag is cleared, the 8086 and 8088 do not recognize an external 
interrupt request that appears on the INTR line; in other words, 
maskable interrupts are disabled. A nonmaskable interrupt appearing 
on the NMI line, however, is honored, as is a software interrupt. CLI 
does not affect any other flags. 

STI (Set Interrupt-enable flag) sets IF to 1. enabling processor 
recognition of maskable interrupt requests appearing on the INTR line. 
Note however, that a pending interrupt will not actually be recognized 
until the instruction following STI has executed. STI does not affect 
any other flags. 

All mnemonics @Intel Corporation 1981 



EXTERNAL 
SYNCHRONIZATION 

HLT HLT (Halt) causes the 8086/8088 to enter the halt state. The 
processor leaves the halt state upon activation of the RESET line, 
upon receipt of a nonmaskable interrupt request on NMI or, if 
interrupts are enabled, upon receipt of a maskable interrupt request 
on INTR. HLT does not affect any flags. It may be used as an 
alternative to an endless software loop in situations where a program 
must wait for an interrupt. 

WAIT WAIT causes the CPU to enter the wait state while its TEST line is 
not active. WAIT does not affect any flags. 

ESC external-opcode, ESC (Escape) provides a means for an external processor to obtain 
source an opcode and possibly a memory operand from the 8086 or 8088. 

The external opcode is a 6-bit immediate constant that the assembler 
encodes in the machine instruction it builds (see Table A-10). An 
external processor may monitor the system bus and capture this 
opcode when the ESC is fetched. If the source operand is a register, 
the processor does nothing. If the source operand is a memory 
variable, the processor obtains the operand from memory and 
discards it. An external processor may capture the memory operand 
when the processor reads it from memory. 

LOCK LOCK is a 1-byte prefix that causes the 8086/8088 (configured in 
maximum mode) to assert its bus LOCK signal while the following 
instruction executes. LOCK does not affect any flags. 

NO OPERATION:NOP NOP (No Operation) causes the CPU to do nothing. NOP does not 
affect any flags. 

INSTRUCTION SET Appendix I provides detailed operational information for the 
REFERENCE 8086/8088 instruction set. 
INFORMATION 

All mnemonics ©Intel Corporation 1981 . 

81 



Appendix B EXPANSION BUS DEFINITION 

The Expansion Bus is basically a buffered extension of the systems 
8088 processor plus additional control and timing signals required to 
interface the system. The expansion bus consists of-

Ill> A multiplexed buffered data bus, BDO-BD7 

Ill> A buffered address bus, AS-A 19 

Ill> Various timing, control, interrupt, and power lines 

Table B-1: Expansion Bus Pin Definition 

PIN SIGNAL 1/0 DESCRIPTION 

50 A19 10 Buffered Address Bits 8 to 19: These lines are 
1 A18 10 driven from the 8088 during normal operation and 

49 A17 10 are valid from the falling edge of ALE to the rising 
2 A16 10 edge of the next ALE. If an external device takes 

48 A15 10 control of the system via HOLD and HOLD 
3 A14 10 ACKNOWLEDGE, these lines are tri-stated. 

47 A13 10 
4 A12 10 

46 A11 10 
5 A10 10 

45 A9 10 
6 AB 10 

29 BD7 10 Time Multiplexed Buffered Address/Data 
22 BD6 10 Bus: During normal operation, the lower 8 bits of 
28 805 10 address, ADO-AD7. are valid on the falling edge 
23 BD4 10 of ALE. 
27 BD3 10 
24 802 10 
26 BD1 10 
25 BOO 10 

9 ALE 0 Buffered Address Latch Enable: Processor signal 
which indidates BDO-BD7 contain valid 
addresses. Typically used to latch low-order 8 bits 
of address. 

11 RD 0 Buffered Read Strobe: Processor signal indicating 
a read cycle. 

14 WR 0 Buffered Write Strobe: Processor signal indicating 
a write cycle. 

8 DEN 0 Buffered Data Enable: Provided by the processor 
for use as an enable for transceivers. 

33 DLATCH 0 Data Latch: The falling edge of this signal may be 
used to strobe data generated from a processor 
read access. 

30 EXTIO External 10: Control line which prevents internal 
data bus buffers from conflicting with external 
buffers when mapping external 10 into address 
space EOOOO to EFFFF. CSEN should be used 
as a control signal to disable internal buffers via 
EXTIO and enable external buffers if using 
address space EOOOO to EFFFF. Addresses used 
by the system cannot be disabled by EXTIO. 

83 



19 CSEN 0 Chip Select Enable: This line is synchronized to 
PHASE2. It is true from a falling edge of PHASE2 
to the next falling edge of PHASE2, when address 
space EOOOO to EFFFF is accessed. 

40 CLK15B 0 15-Mhz Clock: Signal from which all system timing 
is derived. Its period is 66.6 nanoseconds with a 
50%±10% duty cycle. 

38 CLK5 0 5-Mhz Clock: Signal is in phase with the 8088 
clock input. Its period is 200 nanoseconds with a 
33% duty cycle. 

20 PHASE2 0 1-Mhz Clock Signal is asynchronous with CLK5. 
Its period is 1 microsecond with a 40/60% duty 
cycle. Useful to interface 6800-type 1/0 circuits. 

21 XACK External Acknowledge: This line is normally high 
and may be pulled low by external devices 
resulting in pulling the 8088 Ready input low, 
generating wait states. This line is resynchronized 
by the system logic. 

17 HOLD Input to the 8088. This is an external request for 
control of the system buses. 

Table B-1: Expansion Bus Pin Definition (Concluded) 

PIN SIGNAL 1/0 DESCRIPTION 

18 HLDA 0 Buffered Hold Acknowledge: System response to 
"HOLD" request. When true (high) the following 
signals are tri-stated: 

A8-A19 
BDO-BD7 
ALE 
101'M 
RD 
WR 
DT/R 
DEN 
sso 
INTA 

DLATCH is controlled by external logic. 

41 READY 0 Status Line: This line reflects the synchronized 
"ready" input to the 8088. 

10 101M" 0 Buffered 8088 Status Line: Distinguishes between 
a memory or I/ 0 bus cycle. 

7 sso 0 Buffered 8088 Status Line. 

12 DT/R 0 Buffered Data Transmit/Receive: Processor signal 
typically used to control the direction of system 
transceivers. 

The combination of 10/M, DT /A, and SSO provide 
current bus cycle status: 

84 



10/M DT/R sso DESCRIPTION 

0 0 0 Instruction fetch 
0 0 1 Read from memory 
0 1 0 Write from memory 
0 1 1 Passive (no bus cycle) 
1 0 0 Interrupt acknowledge 
1 0 1 Read from I/ 0 
1 1 0 Write to 1/0 
1 1 1 Halt 

1S NMI Non-Maskable Interrupt: An edge-triggered input 
which causes a type-2 interrupt. A transition from 
high to low initiates the interrupt at the end of the 
current instruction. 

16 IRQ Interrupt Request: This input should be driven with 
an open collector driver; it is "collector ORed" 
with five 6S22s and one 68S2 and is pulled to +S 
volts through a 3.3K ohm resistor. A low level on 
any of these circuits generates a high level input 
to the system 82S9 at IR3 level. 

43 IR4 Interrupt Request Level 4: Direct access to IR4 of 
the system 82S9. 

42 IRS Interrupt Request Level S: Direct access to IRS of 
the system 82S9. 

13 RESET 0 System Reset: Generated at power on or from the 
Reset switch. 

PIN SIGNAL DESCRIPTION 

44 Ground 
39 Ground 
3S Ground 
31 Ground 
37 +Svolts 

2SO ma/ expansion board 36 +Svolts 
34 +12 volts 2SO ma/ expansion board 
32 -12 volts SO ma/ expansion board 

85 



86 

Table 8-2: Expansion Bus Loading 

NORMAL 
USAGE INTERNAL EXTERNAL 

SIGNAL 1/0 LOAD DRIVE 

Tri-Stated Lines 

AS-19 0 4 4 
BD0-7 10 5 4 

ALE 0 5 4 
RD 0 4 4 
WR 0 4 4 
DEN 0 4 4 
10/M 0 2 4 
sso 0 1 4 
DT/R 0 4 4 

TIL Outputs 

DLATCH 0 4• 
CSEN 0 4• 

C1 K158 0 1· 
C1K5 0 4• 

PHASE2 0 1· 
HLDA 0 1 • 

READY 0 4 
RESET 0 4 

NOTE: All loads are 7 4LSXX loads of .4ma. External drive. as specified, is for each of the four slots available. 
Care must be taken to ensure adequate drive for other expansion modules which may be installed in 
the system. 

• u required, buffer through one common IC package, such as 7 4LS04. 

Table 8-3: Inputs Driven with Open Collector Drivers 

INTERNAL 
SIGNAL LOAD 

EXTIO 2 
XACK 1 
HOLD 1 
NMi 1 
IRQ 1 

Table 8-4: Inputs Direct to System 8259 

IR4 
IRS 

PULLUP 
PROVIDED 

2.2K 
2.2K 
2.2K 
2.2K 
3.3K 



Figure B-1: Expansion Connector 

BOO-- 25 26 -- 801 
802- 24 27 -803 
804-- 23 28 -805 

806- 22 29 -807 

ZACK- 21 30 -- EXTIO 
PHASE 2- 20 31 - Ground 

CSEN- 19 32 -- -12 volts 
HLOA-- 18 33 -- DLATCH 
HOLD -- 17 34 -- +12 volts 

IRQ- 16 35 -- Ground 
NMI-- 15 36 - +5 volts 

WR-- 14 37 -- +5 volts 
Reset - 13 38 -CLKS 

DT/R- 12 39 - Ground 

RD- 11 40 -CLK15B 

10/M -- 10 41 -- Ready 

ALE-- 9 42 -- IRS 
DEN- 8 43 -- IR4 

SSO- 7 44 -- Ground 

A 8-- 6 45 -A 9 

A10- 5 46 -- A11 

A12- 4 47 -A13 

A14 -- 3 48 -- A15 
A16- 2 49 -A17 

A18 -- 50 -- A19 

87 



CD 
CD 

NOTES 

[!) =~iiRl1Mfi1M115s.MULTIPLEXED 
r.1 CSEN IS AC.Till JllGN FOR A COMPLETE 
L:.J PHASE Z/l'llX!lrT CYCLE WHEN 

ACCESSING ADDRESS SPACE 
EOOOO TO EFFFF. 

[!] H1-N9:? .M;ENt~M'i,c T.;''1tlE 2 is 
L0-400 t H NANO SEC 

IF USED FOR TIMING 110 CIRCUITS, 
i~: m:,:::~y~E SYNCRONIZED 

!!J 1N PHASE WITN AND TRAILING,BY 3 TO 5 
NANO SEC, TNE INPUT CLOCK TO THE BOBB . 

(!] 10 t 10!1 .DUTY CYCLE. 

CLK15B 

0 

CSEN 

0 
ALE 

[!JaD0-807 (AO-A7 OUT) 

[!JaDO-BD7 (DATA IN REQ) 

[!JaDO-BD7 (DATA OUT AVAILABLE! 
(WRITE CYCLE 

BDO•BD7•IMEMORY DATA OUT 
8088 READ CYCLE) 

DLAiCii 

CLK5 

ALE 

iiACi llNPUT) 

RDY IOUTPUTI 

I T1 REF ONLY I T2 

15 MHZ : PERIOD 88.88 NANO SEC. 
0 

1---1--+-+---as NANO SEC, MAX 

1----!--ol-- 100 NANO SEC. MAX 

118 NANO SEC. MAX --1---
J ~ .. --.. -C-.-MA-.------JU 

I 

T4 

EXPANSION BUS 
INTERFACE TIMING 

'Tl m c: 
; 
m • !\> 
m 
>C 

1 
:::s • 0 
:::s 
m 
c: • -:::s 
CD' ;. 
n 
CD 

-t 
3 
:; 

CD 



Appendix C MEMORY MAPPED 1/0 ADDRESS AND BIT 
ASSIGNMENTS 

Table C-1: 8259A (PIC IODO) 
Address: EOOOO-E0001 

INTERRUPT 
LEVEL 

IRO 
IR1 
IR2 
IR3 
IR4 
IR5 
IR6 
IR7 

SIGNAL 
NAME 

SYN 
COMM 
TIMER 

PARALLEL 
IR4 
IR5 

KBINT 
VINT 

Table C-2: 8253 (TIMER-IOD1) 
Address: E0020-E0023 

1/0 SIGNAL 
NAME NAME 

CLK2 100KHZ 
GATE2 +5 v 
OUT2 TIMER 
GLK1 1.25 MHZ 

GATE1 +5 v 
OUT1 MUX SERIAL B 
CLKO 1.25 MHZ 

GATEO +5 v 
OUTO MUX SERIAL A 

DESCRIPTION 

SYNC DETECT 
SERIAL COMMUNICATIONS (7201) 
8253 TIMER 
ALL 6522 IRQ (INCLUDING DISK) 
EXPANSION IR4 
EXPANSION IR5 
KEYBOARD DATA READY 
VERTICAL SYNC OR 
NONSPECIFIC INTERRUPT 

DESCRIPTION 

CLOCK INPUT (FOR TIME OF DAY) 

INTERRUPT FOR TIME OF DAY 
CLOCK INPUT FOR SERIAL PORT B 

TO SERIAL PORT B MUX 
CLOCK INPUT FOR SERIAL PORT A 

TO SERIAL PORT A MUX 

89 



90 

Table C-3: 7201 (COMM.CTLR 1002) 
Address: E0040-E0043 

1/0 SIGNAL 
NAME NAME 

RXCA JS-17 
TXCA JS-15 
RXDA JS-3 
TXDA JS-2 
CTSA JS-5 
RTSA JS-4 
DCDA JS-8 
DTRA JS-20 
RXCB J9-17 
TXCB J9-15 
RXDB J9-3 
TXDB J9-2 
CTSB J9-5 
RTSB J9-4 
DCDB J9-8 
DTRB J9-20 

Table C-4: HD46505S (CRTC CSO) 
Address: E8000-E8001 

INTERRUPT 
LEVEL 

MA13 
MA12 

SIGNAL 
NAME 

HIRES 
DOT ADDA 

DESCRIPTION 

RECEIVE CLK A 
TRANSMIT CLK A 
RECEIVE DATA A 
TRANSMIT DATA A 
CLEAR TO SEND A 
REQUEST TO SEND A 
DATA CARRIER DETECT A INPUT 
DATA TERMINAL READY A 
RECEIVE CLK B 
TRANSMIT CLK B 
RECEIVE DATA B 
TRANSMIT DATA B 
CLEAR TO SEND B 
REQUEST TO SEND B 
DATA CARRIER DETECT B INPUT 
DATA TERMINAL READY B 

DESCRIPTION 

HIRES ENABLE OUTPUT 
32K WORD PAGE SELECT OUTPUT 
(1 =UPPER) 



Table C-5: 6522 (VIA 1 CS1) 
Address: E8020-E802F 

1/0 
NAME 

PAO 
PA1 
PA2 
PA3 
PA4 
PAS 
PA6 
PA7 
CA1 
CA2 
PBO 
PB1 
PB2 
PB3 
PB4 
PBS 
PB6 
PB7 
CB1 
CB2 

SIGNAL 
NAME 

D101 
DI02 
DI03 
Dl04 
DI05 
DI06 
DI07 
DIOS 
NRFD 
NDAC 
DAV 
EOI 
REN 
ATN 
IFC 

SRO 
NRFD 
NDAC 
N.C. 

CODEC VOL 

DESCRIPTION 

Parallel data bit 0, IN/OUT 
Parallel data bit 1, IN/OUT 
Parallel data bit 2, IN/OUT 
Parallel data bit 3, IN/OUT 
Parallel data bit 4, IN/OUT 
Parallel data bits. IN/OUT 
Parallel data bit 6, IN/OUT 
Parallel data bit 7, IN/OUT 
Parallel NRFD interrupt input 
Parallel NDAC interrupt input 
Parallel DAV, IN/OUT 
Parallel EOI, IN/OUT 
Parallel REN, IN/OUT 
Parallel ATN, IN/OUT 
Parallel IFC, IN/OUT 
Parallel SRO, IN/OUT 
Parallel NRFD, IN/OUT 
Parallel NDAC, IN/OUT 

Pulse width control CODEC Vol output (TZ) 

Table C-6: 6522 (VIA 2 CS2) 
Address: E8040-E804F 

1/0 
NAME 

PAO 
PA1 
PA2 
PA3 
PA4 
PAS 
PA6 
PA7 
CA1 
CA2 
PBO 
PB1 
PB2 
PB3 
PB4 
PBS 
PBS 
PB7 
CB1 
CB2 

SIGNAL 
NAME 

INT/EXTA 
INT/EXTB 

RIA 
DSRA 

RIB 
DSRB 

KBDATA 
VERT 

NC 
SRO/BUSY 

TALK/LISTEN 
KBACKCTL 

BRTO 
BRT1 
BRT2 

CONTO 
CONT1 
CONT2 
KBR DY 

KBDATA 

All mnemonics ©Intel Corporation 1981 

DESCRIPTION 

Serial A clock select (LOW=INT) 
Serial B clock select (LOW=INT) 
Serial A ring indicate (JS-22) 
Serial A data set ready (JS-6) 
Serial B ring indicate (J9-22) 
Serial B data set ready (J9-6) 
Data from keyboard 
Vertical signal input (from CRTC) 

Parallel port IN/OUT 
Parallel port direction, control, output 
Keyboard acknowledge, control, output 
LSB of brightness control, output 
Intermediate bit of brightness control, output 
MSB of brightness control, output 
LSB of contrast control, output 
Intermediate bit of contrast control, output 
MSB of contrast control, output 
Key data ready, input 
Shift register input 

91 



92 

Table C-7: 6852 (SSDA CS3) 
Address: E8060-E806F 

1/0 
NAME 

AXCLK 

TXCLK 

RXDATA 
TXDATA 
SM/OTA 

DCD 
CTS 

SIGNAL 
NAME 

Table C-8: 6522 (VIA 3 CS4) 
Address: E8080-E808 

1/0 
NAME 

PAO 
PA1 
PA2 
PA3 
PA4 
PAS 
PA6 
PA7 
CA1 
CA2 
PBO 
PB1 
PB2 
PB3 
PB4 
PBS 
PB6 
PB7 
CB1 
CB2 

SIGNAL 
NAME 

JS-16 
JS-18 
JS-20 
JS-22 
JS-24 
JS-26 
JS-28 
JS-30 
JS-12 
JS-14 
JS-32 
JS-34 
JS-36 
JS-38 
JS-40 
JS-42 
JS-44 
JS-46 
JS-48 
JS-SO 

DESCRIPTION 

Inverted input from PB7 of VIA3 
(CODEC CLOCK) 
Inverted input from PB7 of VIA3 
(CODEC CLOCK) 
Input digital data from CODEC 
Digital data output to CODEC 
Encode/Decode control for CODEC 
(Low=Decode, or transmit) 
Inverted input from SM/OTA of this chip 
Input from SM/OTA of this chip 

DESCRIPTION 

Control Port 
Control Port 
Control Port 
Control Port 
Control Port 
Control Port 
Control Port 
Control Port 
Control Port 
Control Port 
Control Port 
Control Port 
Control Port 
Control Port 
Control Port 
Control Port 
Control Port 
CODEC Clock Output 
Control Port 
Control Port 



Table C-9: 6522 (VIA 4 CSS) 
Address: E80AO-E80AF 

1/0 
NAME 

PAO 
PA1 
PA2 
PA3 
PA4 
PA5 
PAS 
PA7 
CA1 
CA2 
PBO 
PB1 
PB2 
PB3 
PB4 
PB5 
PBS 
PB7 
CB1 
CB2 

SIGNAL 
NAME 

LOMSO 
LOMS1 
LOMS2 
LOMS3 
STOA 
STOB 
STOC 
STOD 
DSO 

MODE 
L1MSO 
L1MS1 
L1MS2 
L1MS3 
ST1A 
ST1B 
ST1C 
ST10 
DS1 
N.C. 

DESCRIPTION 

Drive O motor speed, outputs (also 
used as a data bus to load 8048 
parameters during motor speed 
controller initialization) 

Drive 0 stepper phase, outputs 

Door O sense interrupt, input 
Write sync 

Drive 1 motor speed, outputs 

Drive 1 stepper phase, outputs 

Door 1 sense interrupt, input 

Table C-10: 6522 (VIA 6 CS6) 
Address: E80CO-E80CF 

1/0 SIGNAL 
NAME NAME DESCRIPTION 

PAO LEDO A LED, drive A, output 
PA1 TAKO DO Track o. drive A sense, input 
PA2 LED1A LED. drive B. output 
PA3 TRKOD1 Track O, drive B sense, input 
PA4 Side Select Dual side select, output 
PA5 Drive Select Select drive A/ 8, output 
PAS WPS Write protect sense, input 
PA7 SYNC Disk sync detect, input 
CA1 GCREAR GCR error input 
CA2 DAW Disk read/write CTRL, output 

*PBO RDYO Motor speed status, drive A 
*PB1 RDY1 Motor speed status, drive B 
PB2 SCRESET Motor speed controller (8048) reset, output 
PB3 DS1 Door B sense, input 
PB4 DSO Door A sense. input 
PBS Single/Double sided 
PBS Stepper enable A 
PB7 Stepper enable B 
CB1 N.C. 
CB2 Erase Erase head On/Off, output 

·Also used as handshake lines during speed controller inftialization. 

93 



94 

Table C-11: 6522 (VIA 5 CS7) 
Addre11: E80EO-E80EF 

1/0 SIGNAL 
NAME NAME 

PAO EO 
PA1 E1 
PA2 12 
PA3 E2 
PA4 E4 
PAS ES 
PA6 17 
PA7 E6 

CA1 BADY 
CA2 RDYO 

PBO WOO 
PB1 WD1 
PB2 WD2 
PB3 WD3 
PB4 WD4 
PBS WD5 
PB6 WD6 
PB7 WD7 

CB1 N.C. 
CB2 RDY1 

DESCRIPTION 

Disk data inputs 

Byte ready input 
Motor speed status interrupt, drive O 

Disk data outputs 

Motor speed status interrupt, drive 1 



INTRODUCTION 

Appendix D THE DISPLAY SYSTEM 

The display hardware is a memory-mapped raster scan system. 
The display RAM physically occupies 4K bytes, starting at FOOOOH, 
plus from 4K to 40K bytes of the lower 128 bytes in the 8088 
memory map. The display RAM is organized in two separate banks, 
which operate in a pipelined fashion (see Figure 0-1 ). The first bank 
is the screen bufgfer; it contains the characters which are to be dis
played on the screen. The screen buffer also contains attribute infor
mation for each character location. The character selection code 
(called the font cell pointer), together with the character row number 
(0-15) is used as the address for the second bank, which contains 
patterns for the characters (font cells). To generate video, the font 
cell patterns are accessed and latched into the video shift register. 

Figure D-1: Display System Organization 

CRT 
CONTROLLER 

2 BITS 
HIOH RESOLUTION 
ANO BANK SELECT 

11 BITS.SCREEN 
BUFFER ADDRESS 

• BITS.CHARACTER ROW 

SCREEN 
BUFFER 
RAM 

i2KWOR~J 

5 BITS·AnAIBUTES 

! I BITS-FONT CELL POINTER 

OOH,1ATAIK ..... 
12·20JC WORDSI 

10116 BITS 

~---- VIOEO 
CONTROL 

The display hardware is capable of 80 columns by 25 lines of text. 
The text character cells are 10 dots wide by 16 lines high. These 
character cells are RAM-mapped and programmable. There is also a 
5-bit attribute code associated with each character. Four of these 
attribute bits are used for reverse-video, underline/ strikeover, 
highlight, and nondisplay. The other bit is available for user software 
or external hardware. The display hardware can also be configured 
for a high-resolution mode: 800 by 400 dots of bit-addressable 
display. In this mode, the reverse-video, double intensity, and 
nondisplay attributes apply to fixed (16-by-16-dot) cells on the screen. 
and the underline/ strikeover attribute is not operative. 

95 



96 

The character and attribute bits are organized into words called the 
screen buffer. The lower 11 bits of each word define which of the 
2048 possible characters is to be placed at that location of the 
screen. These 11 bits are collectively called the font cell pointer. The 
upper five bits of the word are the attributes. The MSB (bit 15) is the 
reverse-video bit. Bit 14 is the low-intensity bit; bit 13 is the underline 
bit; and bit 12 is the nondisplay bit. The remaining bit is uncommitted. 

The screen buffer words are on even-address boundaries. The 
physical memory of the screen buffer is located, in system address 
space, at FOOOO to FOFFF. The BO-character by 25-line display 
occupies 2000 words (4000 bytes) of the available 2048 words in the 
screen buffer. Logically, the screen buffer is mapped to include 
locations FOOOO to F1 FFF. Therefore, addressing location FOOOO 
accesses the same physical word as addressing location F1000. The 
logical beginning of the display screen is selected by a pair of 
registers in the CRT controller chip (this is a word address). This 
register pair may be programmed to move the starting address (line 
one, column one) of the display to any word of the screen buffer. 
When the control register pair is used in this manner, the screen 
buffer functions as a 2048-word circular buffer. Using this technique, 
line scrolling in the text mode may be accomplished by adding 80 to 
the contents of the screen start register and blanking the 80 words 
following the previous end of screen. In both these operations, to 
keep the address within the screen buffer address space, it is also 
necessary to logically AND the resulting address with F1 FFF. 

Figure D-2: Screen Buffer World Format 

15 0 

x x x x x x x x x x x x x x x x 

L--------------FONT CELL POINTER-----------------1 

-- RESERVED 

-- NON-DISPLAY 

-- UNDERLINE 

-- LOW-INTENSITY 

-- REVERSE-VIDEO 



HIGH RESOLUTION 
MODE 

BRIGHTNESS AND 
CONTRAST 
CONTROL 

The actual dot patterns of each character are stored in the font cell 
memory. Each 10-dot-by-16-line character cell is stored in 16 
consecutive words. This group of 16 words is called a font cell. The 
lower 10 bits of each word contain the 1 O dots of a scan line of the 
character picture. The upper-left bit of a character would be the LSB 
of the first word in the 16 consecutive words that define a font cell. 
Bit 15 of each font cell word is reserved for the underline/ strikeover 
flag bit (in text mode, only). If bit 15 is set and the underline/ 
strikeover attribute (bit 13) from the screen buffer is set, then that 
scan line will be white; otherwise, the lower 1 O bits in that word will 
be displayed. The nondisplay bit can be used to create "secret" 
( nondisplayed) characters or fields. If a minimum (128-character) set 
is defined, the font cells would occupy 4K bytes of memory. The font 
cells can be located anywhere within the first 128K bytes of RAM, but 
may not cross the 64K boundary. 

The 800-by-400-dot, bit-mapped, high-resolution display is a special
case use of the cell graphics. The output line, called HIRES (from the 
CRT controller), controls the character cell width. When this line is 
high, the character cells are 16 dots wide instead of the usual 1 O 
dots. The screen is then organized as 50 columns by 25 lines of 16-
by-16-dot font cells. This is accomplished by writing new values into 
the control registers of the CRT controller. The full 16 bits of each 
font cell word are used to describe the picture of each character. The 
screen buffer is organized so that each of the 1250 characters on the 
screen is a different character, as described earlier in this manual. 
High-resolution software then operates directly on the font cell 
memory for display bit manipulation. 

Programming Note: The HIRES/TEXT control and the DOTSEL 
control (which select whether the beginning address of the font cell 
memory is to be in the first or the second 64K of system memory) 
are manipulated via the two high-order address bits in the CRTC 
display address register pair, R12 and R13. This address interacts 
with the cursor register pair, R14 and R15, and the light pen register 
pair, R16 and R17. Specifically, if the light pen register pair is used 
and/ or the cursor-display function is desired, then the software must 
(1) add the cursor address to the current settings of HIRES/TEXT 
and DOTSEL and (2) subtract or mask these bits when interpreting a 
light pen interrupt. 

The overall display brightness and the contrast between high and low 
intensity characters are software adjustable. 

Brightness may be adjusted to one of eight different levels by setting 
the brightness control bits (PB2, PB3, and PB4 of the 6522 at E8040) 
to the binary value corresponding to the desired level. The binary
value range from zero to seven selects increasing brightness levels. 

The contrast function controls the difference in intensity between 
highlighted characters and normal intensity characters. Only the 
intensity of the normal intensity characters is varied by the contrast 
function. The contrast function selects one of eight levels by setting 
the binary value of the desired level in the three contrast control bits 

97 



CIRCUIT 
DESCRIPTION 

98 

(PBS, PB6, and PB7 of the 6522 at E8040). A value range of zero to 
seven selects increasing differences between the normal and 
highlighted characters, with zero causing no difference. 

The lower 128K bytes of RAM is a dual-port memory system. One 
port is used by the display hardware to refresh the raster-scan 
display. The other port is used by the 8088 microprocessor for read 
and write operations. The dual-port memory is managed by an 
arbitrator circuit that guarantees one refresh access to the display 
RAM every character cell time. The arbitrator circuit adds a wait state 
to any 8088 memory cycle if this is necessary to isolate it from the 
display-refresh cycle. This results in an average of one wait state 
(200 nsec) for every five processor memory access cycles. Processor 
and memory cycles are normally four clock periods (200 nsec). This 
could cause a decrease of approximately 5% in system bus 
performance. However, due to the 8088 instruction lookahead queue, 
this decrease in bus performance rarely translates into decreased 
system performance. 

The display-refresh addresses are generated by the HD46505S CRT
controller chip ( CRTC). Of the 14 address lines from the CRTC, 11 
(MAO-MA10) are used to address the 2K words of screen buffer RAM. 
The 16 data lines output by the screen buffer are latched and divided 
into 11 lines of character address information and 5 lines of character 
attributes. The attribute bits are sent, via a set of character sync 
registers, to the video control section. The 11 lines of the character 
address are combined with 4 lines of character-row address and 
MA12 (DOTSEL) from the CRTC. This address is then multiplexed 
down to 8 font cell address lines. The 14th character address line 
(MA13) is used to select the high-resolution mode. The 16-bit data 
output word from each font cell word is latched and sent to a 16-bit 
shift register. Either 1 O or 16 dots of the shift register are shifted out 
to the video control section. The video control section adds the 
reverse video, highlight, underline, and nondisplay attribute bits and 
the cursor output from the CRTC. The result is sent to the video 
display, along with horizontal and vertical sync pulses. 

The display circuit manages the memory refresh in the 128K bytes of 
on-board dynamic RAM. The horizontal and vertical retrace intervals 
are used for memory refresh. Display-refresh cycles occuring during 
retrace intervals cause 8 bits from the refresh-address counter to be 
sent to all 128K of dynamic RAM, rather than the normal display
address lines. The display CAS signal is inhibited for a RAS-only 
memory refresh: The memory-refresh counter is clocked after each 
refresh cycle. In every 64 microsecond horizontal display period, 15 
memory-refresh cycles occur. Every 2 ms, 480 memory-refresh 
addresses are generated, exceeding the 128-address-per-2ms 
specified requirement of 16K dynamic RAM. 



CRTC DEVICE 
OPERATION 

INTERFACE SIGNALS 
TO THE CPU 

Bldirectlonal Data Bus 
(IDO-ID7) 

The CRTC consists of an internal register group, horizontal and 
vertical timing circuits, a linear address generator, a cursor-control 
circuit, and a light-pen-detection circuit. Horizontal and vertical timing 
circuits generate RAO-RA4 , DISPTMG, SYNC, and VSYNC. RAO-RA4 
are raster (row) address signals and are used as address bits 1 to 4 
for the font cell accesses. DISPTMG, HSYNC, and VSYNC signals are 
sent to the video control circuit. This horizontal and vertical timing 
circuit consists of an internal counter and comparator circuit. 

The linear address generator generates refresh memory address 
MAO-MA11 to be used for refreshing the screen. The light-pen
detection circuit detects the light pen position on the screen. When 
the light pen strobe signal is received, the light pen register latches 
the address generated by the linear address generator to save the 
position of the pen on the screen. The cursor control circuit controls 
the position of the cursor, its height, and its blink rate. 

The CRTC provides 13 interface signals to the CPU and 25 interface 
signals to the display circuits. 

Table D-1: Recommended Values For CRTC Register lnltlallzation 

REGISTER 

RO 
R1 
R2 
R3 
R4 
R5 
R6 
R7 
RB 
R9 

R10 
R11 
R12 
R13 
R14 
R15 

CHARACTER 
MODE 

5C 
50 
51 
CF 
19 
06 
19 
19 
03 
OE 
60 
OF 
00 
00 
00 
00 

NOTE: All values are In hexadecimal. 

HIGH 
RESOLUTION 

MODE 

3A 
32 
34 
C9 
19 
06 
19 
19 
03 
OE 
20 
OF 
20 
00 
00 
00 

The bidirectional data bus is used for data transfer betweeen the 
CRTC and the 8088. The data bus outputs are 3-state buffers and 
remain in the high-impedance state except when the 8088 performs a 
CRTC read operation. 

99 



Read/Write (R/W) 

Chip Select (CS) 

Register Select (RS) 

Enable (E) 

Reset (RES) 

INTERFACE SIGNALS 
TO DISPLAY 
CIRCUITS 

Character Clock 
(CLK) 

Horizontal Sync 
(HSY NC) 

Vertical Sync 
(VSYNC) 

Display Timing 
(DISPTMG) 

Refresh Memory 
Address MAO-MA 13 

100 

The R/W signal controls the direction of data transfer between the 
CRTC and the 8088. When R/W is high, CRTC data is transferred to 
the 8088. When R/W is low, 8088 data is transferred to the CRTC. 

The CS signal is used to address the CRTC. When CS is low, it 
enables R/W operation to CRTC internal registers. This signal is 
derived from decoded address signals of the the 8088. 

The RS signal is used to select the address register and the 18 
control registers of the CRTC. When RS is low, the address register is 
selected; when RS is high, control registers are selected. This signal 
is the lowest bit (AO) of the 8088 address bus. 

The E signal is used as strobe signal in 8088 R/W operations with 
the CRTC internal registers. This signal is PHASE2. 

The Reset signal (RES) is an input signal used to reset the CRTC. 
When RES is low, it forces the CRTC into the following status: 

.,.. All the counters in the CRTC are cleared, and the device stops the 
display operation 

.,.. All the outputs go low 

.,.. Control registers in the CRTC are not affected 

CLK is a standard clock input signal which defines character timing 
for the CRTC display operation. This signal is provided by the 
memory controller. 

HSYNC is an active high-level signal which provides horizontal 
synchronization for the display device. 

VSYNC is an active high-level signal which provides vertical 
synchronization for the display device. 

DISPTMG is an active high-level signal which defines the display 
period in horizontal and vertical raster scanning. It is necessary to 
enable the video signal only when DISPTMG is high. 

MAO-MA11 are refresh memory address signals which are used to 
access the screen buffer in order to refresh the CRT screen 
periodically. 

MA 11 is unused. 

MA12 selects the 64K memory bank to be used for font cell memory. 

When MA12 equals 0, it selects system RAM starting at location O; 
when MA 12 equals 1 , it selects system RAM starting at location 
10000H. 

When MA13 equals 0, it selects text mode when MA13 equals one, it 
selects bit-mapped HIRES mode. · 



Raster Address 
(RAO-RA4) 

Cursor Dlsplay 
(CUDISP) 

Light Pen Strobe 
(LPSTB) 

INTERNAL 
REGISTERS 

ADDRESS REGISTER 
(AR) 

HORIZONTAL TOTAL 
REGISTER (RO) 

HORIZONTAL 
DISPLAYED 
REGISTER (R1) 

HORIZONTAL SYNC 
POSITION REGISTER 
(R2) 

SYNC WIDTH 
REGISTER (R3) 

VERTICAL TOTAL 
REGISTER (R4) 

RAO-RA4 are row-address signals which are used to select the row of 
the current character in the font cell memory to be displayed. 

CUDISP is an active high-level video signal which is used to display 
the cursor on the CRT screen at the current display location. This 
output is inhibited while DISPTMG is low. This output is mixed with 
the video signal and is provided to the CRT display circuits. 

LPSTB is an active high-level input signal which accepts a strobe 
pulse detected by the light pen and control circuit. When this signal is 
activated, the memory address (MAO-MA11 ), along with the current 
settings of HIRES and DOTADR, are stored in the 14bit light-pen 
register. The stored memory address needs to be corrected in 
software, taking the delay time of the display device, light pen, and 
light-pen-control circuits into account. 

AR is a 5-bit register used to select among the 18 internal control 
registers (RO-R17). The value of AR is the address of one of 18 
internal control registers. Data values from 18 to 31 do nothing. 
Access to RO-R17 requires writing the address of the corresponding 
control register into this register. 

The contents of RO program the total number of horizontal character
clock periods per line, including the retrace period. The data is 8-bit, 
and its value should be programmed according to the selected mode 
of the display. The programmed value must be one less than the 
number of character intervals required. When programming for 
interlace mode, the value must be even. 

R1 is used to program the number of displayed characters per 
horizontal line. Data is 8-bit, and any value smaller than that in RO is 
valid. 

The contents of R2 program the horizontal sync position in units of 
the character-clock period. Data is 8-bit, and any value less than RO 
is valid. The value programmed should be one less than the sync 
position desired. The effect of increasing the value in R2 is to shift all 
characters displayed on the CRT screen to the left. When the value is 
decreased, character positions shift to the right. 

The contents of R3 set the horizontal sync pulse width and the 
vertical sync pulse width. The horizontal sync pulse width is 
programmed in the lower 4 bits, in units of the character-clock period 
(0 is invalid). The vertical sync pulse width is programmed in the 
upper 4 bits, in units of the horizontal period. When 0 is programmed 
in the upper 4 bits, 16 horizontal periods are specified. 

R4 is used to program the total number of horizontal scans per frame, 
including the vertical retrace period. This is a 7-bit value and should 
be programmed according to the selected display mode. The 
programmed value should be one less than the number desired. 

101 



VERTICAL TOTAL 
ADJUST REGISTER 
(RS) 

VERTICAL 
DISPLAYED 
REGISTER (R6) 

102 

The contents of RS select the total number of horizontal scans per 
field. This register allows fine control of the deflection frequency. 

R6 is used to determine the number of displayed character rows on 
the CRT screen. This is a 7 -bit value, and any number that is smaller 
than that in RS is valid. 

Table D-2: Pulse Width of Vertical Sync Signal 

vsw PULSE WIDTH 
21 26 2s 24 (#Rows) 

0 0 0 0 16H 
0 0 0 1 1 
0 0 1 0 2 
0 0 1 1 3 
0 1 0 0 4 
0 1 0 1 5 
0 1 1 0 6 
0 1 1 1 7 
1 0 0 0 8 
1 0 0 1 9 
1 0 1 0 10 
1 0 1 1 11 
1 1 0 0 12 
1 1 0 1 13 
1 1 1 0 14 
1 1 1 1 15 

NOTE: H=horizontal period. 

Table D-3: Pulse Width of Horizontal Sync Signal 

HSW PULSE WIDTH 
23 22 21 20 (# Characters) 

0 0 0 0 (not used) 
0 0 0 1 1CH 
0 0 1 0 2 
0 0 1 1 3 
0 1 0 0 4 
0 1 0 1 5 
0 1 1 0 6 
0 1 1 1 7 
1 0 0 0 8 
1 0 0 1 9 
1 0 1 0 10 
1 0 1 1 11 
1 1 0 0 12 
1 1 0 1 13 
1 1 1 0 14 
1 1 1 1 15 

NOTE: CH=character period; HSW=O cannot be used. 



VERTICAL SYNC 
POSITION REGISTER 
(R7) 

INTERLACE AND 
SKEW REGISTER 
(RB) 

INTERLACE MODE 
PROGRAM BITS 
(V, S) 

The contents of R7 set the vertical sync position on the screen, in 
units of the horizontal character line period. Data is 7 -bit, and any 
number that is equal to or less than the vertical total register can be 
programmed. The value programmed should be one less than the 
position desired. Increasing the value shifts the display upward. 
Decreasing the values shifts the display downward. 

RS programs the raster-scan mode and the skew (delay) of CUDISP 
and DISPTMG. 

The raster-scan mode is selected by the V and S bits. 

Table D-4: Interlace Mode (DO, D1) 

V BIT S BIT RASTER-SCAN MODE 

0 0 Noninterlace mode 
1 0 Noninterlace mode 
0 1 Interlace sync mode 
1 1 Interlace sync and video mode 

SKEW PROGRAM BIT The C1 , CO, D1 , and DO bits are used to program the skew (delay) of 
(C1, co, D1, DO) CUDISP and DISPTMG. 

The skews of the two signals are programmed separately. 

Table D-5: DISPTMG Skew Bit (D7, D6) 

D1 BIT 

0 
0 
1 
1 

DO BIT 

0 
1 
0 
1 

DISPTMG SIGNAL 

Zero skew 
One-character skew 
Two-character skew 
No output 

Table D-6: Cursor Skew Bit (D5, D4) 

C1 BIT CO BIT NON SKEW 

0 0 Zero skew 
0 1 One-character skew 
1 0 Two-character skew 
1 1 No output 

103 



MAXIMUM RASTER 
ADDRESS REGISTER 
(R9) 

104 

The skew function is used to delay the CUDISP and DISPTMG 
signals for optimum screen-memory access, dot-matrix memory, and 
video signal timing. 

R9 is used to program the maximum raster address (5 bits). This 
register defines the number of rasters (lines) per character, including 
intercharacter spaces. Programming is as follows: 

• Noninterlace Mode 

In the following tabulation, the value parameter is set at 4. 

RASTER ADDRESS 

0 
1 
2 
3 
4 

RESULTING FORMAT 

NOTE: The number of rasters produced in the character 
format is 5 (one more than the value programmed). 

• Interlace Sync Mode 

In the following tabulation, the value parameter is 4. 

RASTER ADDRESS 

0 
0 
1 
1 
2 
2 
3 
3 
4 
4 

RESULTING FORMAT 

NOTE: - - - - - - - and ....... denote alternate fields. 

The total number of rasters in the character is 10. The number is 
found by doubling the sum of one plus the value programmed. 

• Interlace Sync and Video Mode 

The total number of rasters in the character format is one more 
than the value parameter, as in the noninterlace mode, but the 
rasters alternate fields. In the following tabulation, a value 
parameter of 4 is set. 



CURSOR START 
RASTER REGISTER 
(R10) 

CURSOR END 
RASTER REGISTER 
(R11) 

START ADDRESS 
REGISTERS 
(R12, R13) 

CURSOR REGISTERS 
(R14, R15) 

LIGHT PEN 
REGISTERS (R16, 
R17) 

RASTER ADDRESS 

0 
1 
2 
3 
4 

RESULTING FORMAT 

NOTE: - - - - - - - and . . . . . . . denote alternate fields. 

RIO programs the cursor-start raster (line) address and the cursor
display mode. The lower 5 bits (DO-D4) are cursor-start, and the next 
2 bits (05, D6) are cursor-mode. 

Table D-7: Cursor Dlsplay Mode (D6, 05) 

D5 06 CURSOR DISPLAY MODE 

0 0 Steady cursor 
0 1 Cursor off 
1 0 Blinking cursor, 16-field period 
1 1 Blinking cursor, 32-field period 

R11 sets the cursor-end raster (line) address. 

R12 and R13 are used to program the first (word) address of the 
screen buffer memory to be displayed. This word will display as line 
one/ column one on the display screen. 

The two read/write registers R14 and R15 store the cursor location. 
The upper 2 bits (D6, D7) of R14 must always be set to "O". 

The read-only registers R16 and R17 are used to latch the detection
time address of the light pen. The upper 2 bits (D6, D7) of R16 are 
always "O". The value latched may need to be corrected by software 
to allow for light pen system delays. 

105 



RESTRICTIONS ON 
PROGRAMMING 
INTERNAL 
REGISTERS 

NON INTERLACE 
MODE DISPLAY 

INTERLACE SYNC 
MODE DISPLAY 

INTERLACE SYNC 
AND VIDEO MODE 
DISPLAY 

106 

The following restrictions on programming internal registers apply: 

... OtNhdt(Nht + 1 )t=256 

... OtNvdt(Nvt + 1 )t=128 

... Ot=N hspt=N ht 

... Ot=Nvspt=Nvt* 

.,. O=tNCSTART=tNCEND=tNr (noninterlace, interlace sync mode) 
O=tNCSTARTtNCEND=tNr+1 (interlace sync and video mode) 

... 2=tNr=t30 

.,. 3=tNht (except non interlace mode) 
5=tNht (noninterlace mode only) 

*in interlace mode, pulse width is changed +1 /2 by the raster time when the 
vertical sync signal extends over two fields. 

NOTES: The values programmed in the internal registers of the CRTC are used 
directly to control the CRT. Consequently, the display may flicker if the contents 
of the registers are changed asynchronously to the display operation. The 
registers should be changed only during the horizontal or vertical retrace period. 

Alternate fields are identical. The values of raster addresses (RAO
RA4) are counted, starting at zero. 

In the interlace sync mode, raster addresses in the even field and the 
odd field are the same. The same character pattern is displayed in 
both fields with the displayed position in the odd field 1 /2 raster 
space down from that in the even field. 

In interlace sync and video mode, when the raster number is even, 
the output raster address is different from when the raster number is 
odd. 

Table D-8: Programmed Values into the Registers 

REGISTER 

RO 
R1 
R2 
R3 
R4 
RS 
R6 
R7 
RS 
R9 
R10 
R11 
R12 
R13 
R14 
R15 
R16 
R17 

REGISTER NAME 

Horizontal total 
Horizontal displayed 
Horizontal sync position 
Sync width 
Vertical total 
Vertical total adjust 
Vertical displayed 
Vertical sync position 
Interlace and skew 
Maximum raster address 
Cursor start raster 
Cursor end raster 
Start address ( H) 
Start address (L) 
Cursor (H) 
Cursor (L) 
Light pen (H) 
Light pen ( L) 

NOTE: NhdtNht, NvdtNvt 

VALUE 

Nht 
Nhd 
Nhsp 
Nvsw, Nhsw 
Nvt 
Nadj 
Nvd 
Nvsp 

Nn 

0 
0 



CURSOR CONTROL 

Table D-9: Output Raster Address In Interlace Sync and Video 
Mode 

TOTAL NUMBER OF RASTERS FIELD 

IN THE CHARACTER FORMAT EVEN ODD 

Even Even Odd 
Address Address 

Odd 
Even Line Even Odd 

Address Address 

Odd Line Odd Even 
Address Address 

NOTE: Internal line address begins from zero. 

NOTE: A wide disparity in the number of ON dots in even fields versus that in odd 
fields causes unequal average beam currents during alternate fields. This causes 
CAT final-anode voltage to differ during atternate fields. Since the deflection factor is 
a function of this vottage, the two fields will have somewhat different widths. 
Characters will be distorted, particularty near the edges of the screen. Programming 
for an odd number of rasters per character line is a good way to reduce this type of 
problem. 

Figure 0-3 shows display patterns in which various values are stored 
in the cursor-start-raster register and the cursor-end-raster register. 
Values in the cursor-start-raster register and the cursor-end-raster 
register must meet the following conditions: cursor-start-rastert= 
cursor end raster registert= maximum raster address. 

Figure D-3: Cursor Control 
0---, ___ _ 
2------------
J------
4-----------------
5----------------------
6-----------·---------
7---------
8- ---------

9-0-0-0-0-0-0-0-0-0-0-

10-------------

Cursor Start Address = 9 
Cursor End Address = 9 

0--------------------
1 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -
2-0-0-0-0-0-0-0-0-0-0-
3-0-0-0-0-0-0-0-0-0-0-
4-0-0-0-0-0-0-0-0-0-0-
5-0-0-0-0-0-0-0-0-0-0-
6---

7------------
8 
9 

10--------

0------------
1---------·---
2~-----------
3 

4 

s~-----------
6~-----------
7------------
6------------
9-0-0-0-0-0-0-0-0-0-0-

10 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -

Cursor Start Address = 9 
Cursor End Address = 1 O 

107 



INPUT SIGNAL 
CONDITIONING 

OUTPUT 
CONDITIONING AND 
POWER AMPLIFIER 

Appendix E AUDIO SYSTEM HARDWARE 

Audio output from and (optionally) input to the system are provided by 
a built-in coder/decoder (CODEC), which uses a Continuously
Variable-Slope Delta modulation (CVSD) technique. This device 
produces audio output by converting a single-bit, digital-bit stream to 
an analog output. 

The bit-stream interface is provided by the 6852-SSDA chip which 
converts 8-bit data bytes from the processor to a bit-serial data 
stream for the CODEC. The SSDA also provides encode/decode 
control, via the DTR output, and a 3-byte FIFO buffer which reduces 
the real-time processor servicing requirements. 

Additional control of the audio section is provided by VIA 1 and VIA 3. 
The signals provided are Codec Clock and Volume Control. The 
encode/decode line, controlled by DTR from the SSDA, selects the 
desired audio function (input or output). Codec clock is a PB7 output 
(of VIA 3), a timer-generated signal which determines Codec sampling 
rate (normally about 16KHz). Volume control, a CB2 output (of VIA 1 ), 
is a timer-controlled recirculating shift register output and is an eight
step, pulse-width-modulated ultra-audio signal. 

The microphone amplifier utilizes half of an LM358 and a JFET in a 
variable-gain amplifier used as a compressor. The attack time of the 
compressor is about 50 milliseconds; release time is 250 mS. Input 
signal amplitude range for acceptable record quality is about 5 to 75 
mVRMS. The second stage, 1 /2 of a LM358, is a 3-pole butterworth 
low-pass filter with a cutoff-frequency of about 3 KHz. This filter 
eliminates "aliasing" in the CVSD modulator. 

Following the CVSD, the output (playback) signal is low-pass filtered 
by another active, 3 KHz cutoff butterworth filter (1 /4 LM324). 
Following this stage, a CA4066B and its attendant drivers provide 
software-controlled volume control by varying the duty-factor of signal 
CODEC VOL. The frequency of this signal (including the produced 
sidebands) must be high enough to be above audible range; a 
minimum of 20 KHz is recommended. Playback power amplification is 
provided by an LM383. This stage also provides some roll-off to 
alleviate the above problem. The power stage will produce 4 watts of 
audio; thus, an external speaker should be used if above-normal 
sound levels are programmed. since the internal speaker is rated at 
only 300 milliwatts. 

109 



SSDA DEVICE 
OPERATION 

OVERVIEW 

INITIALIZATION 

110 

At the bus interface, the SSDA appears as two addressable memory 
locations. Internally, there are seven registers: two read-only and five 
write-only registers. The read-only registers are Status and Receive 
Data; the write-only registers are Control 1, Control 2, Control 3, 
Sync-Code and Transmit Data. The serial interface consists of serial 
input and output lines with independent clocks and four 
peripheral/modem control lines. 

Data to be transmitted is transferred directly into the 3-byte Transmit 
Data First-In First-Out (FIFO) register from the data bus. Availability of 
the input to the FIFO is indicated by a bit in the Status register; once 
data is entered, it moves through the FIFO to the last empty location. 
Data at the output of the FIFO is automatically transferred from the 
FIFO to the Transmitter Shift register as the shift register becomes 
available to transmit the next character. If data is not available from 
the FIFO (underflow condition), the Transmitter Shift register is 
automatically loaded with either a sync code or an all 1 's character. 
The transmit section should be programmed to not append parity onto 
the transmitted word. 

For use in the S1 audio system, the SSDA should normally be 
programmed to use 8-bit, no parity, and External Sync mode. Then 
the DTR control selects the input or output function. However, for 
completeness and any special functions, all modes of SSDA operation 
are discussed in the following sections. 

The method of serial data accumulating in the receiver depends on 
the synchronization mode selected. In External Sync mode, used for 
parallel-serial operation, the receiver is synchronized by the DCD 
(Data Carrier Detect) input and transfers successive bytes of data to 
the input of the Receiver FIFO. The Single-Sync-Character mode 
requires a match between the Sync-Code register and one incoming 
character before data transfer to the FIFO begins. In Two-Sync
Character mode, two sync codes must be received in sequence to 
establish synchronization. Subsequent to synchronization in any mode, 
data is accumulated in the shift register. Availability of a word at the 
FIFO output is indicated by a bit in the Status register. 

The SSDA and its internal registers are selected by the address bus 
and the Read/Write (R/W) and Enable control lines. To configure the 
SSDA, Control registers are selected and the appropriate bits set. The 
Status register can be selected to read status. 

The transmitter and receiver clock inputs are tied together. Signals to 
the microprocessor are the Data bus and Interrupt Request (IRQ). 

During a power-up sequence, system reset sets the SSDA in an 
internally-latched reset condition to prevent erroneous output 
transitions. The Sync-Code register, Control register 2, and Control 
register 3 should be loaded prior to the programmed release of the 
Transmitter and/ or Receiver Reset bits. The bits in Control register 1 
should be cleared after the Reset line has gone high. 



TRANSMITTER 
OPERATION 

Data is transferred to the transmitter section in parallel form via the 
data bus and the Transmit Data FIFO. The Transmit Data FIFO is a 3-
byte register whose status is indicated by the Transmitter Data 
Register Available status bit (TORA) and its associated interrupt 
enable bit. Data is transferred through the FIFO on negative edges of 
PHASE2 pulses. Two data transfer modes are provided in the SSDA: 
the 1-byte transfer mode provides for writing data to the transmitter 
section (and reading from the receiver section) one byte at a time; 
the 2-byte transfer mode provides for writing two data characters in 
succession. 

Data automatically transfers from the last register location in the 
Transmit Data FIFO (when it contains data) to the Transmitter Shift 
register during the last half of the last bit of the previous character. A 
character is transferred into the Shift register by the Transmitter 
Clock. Data is transmitted LSB first. 

When the Shift register becomes empty and data is not available for 
transfer from the Transmit Data FIFO, an underflow results, and a 
character is inserted into the transmitter data stream. This character 
will be either all 1 's or the contents of the Sync-Code register, 
depending on the state of the Transmit Sync-Code-On-Underflow 
control bit. 

Transmission is initiated by clearing the Transmitter Reset bit in 
Control register 1. When the Transmitter Reset bit is cleared, the first 
full positive half-cycle of the Transmit Clock initiates the transmit 
cycle; the transmission of data (or underflow characters) begins on 
the negative edge of the Transmit Clock pulse which started the 
cycle. If the Transmit Data FIFO has not been loaded, an underflow 
character is transmitted. When the Transmitter Reset bit (Tx Rs) is 
set, the Transmit Data Fl FO is cleared and the TORA status bit is 
cleared. After one PHASE2 clock has occurred, the Transmit Data 
FIFO becomes available for new data and TORA is inhibited. 

RECEIVER Data and a pre-synchronized clock are provided to the SSDA receiver 
OPERATION section by means of the Receive Data (Rx Data) and Receive Clock 

(Rx Clk) inputs. The data is a continuous bit stream; character 
boundaries cannot be identified within the stream. The Receiver Shift 
register outputs are high when it is in the reset state. 

SYNCHRONIZATION The SSDA provides three operating modes related to character 
synchronization: One-Sync-Character mode, Two-Sync-Character 
mode, and External Sync mode. The External Sync mode requires 
synchronization and control of the receiving section through the Data 
Carrier Detect (DCD) input. The external synchronization source could 
consist of a direct control line from the transmitting end of the serial 
data link or from external logic designed to detect the start of a 
message block. The One-Sync-Character mode searches on a bit-by
bit basis until a match is achieved between the data in the Shift 
register and the Sync-Code register. A match indicates that character 
synchronization is complete and will be retained for the message 
block. In the Two-Sync-Character mode, the receiver searches for the 
first sync-code match on a bit-by-bit basis and then looks for a 
second successive sync-code character prior to establishing 
character synchronization. If the second sync-code character is not 
received, the bit-by-bit search for the first sync-code resumes. 

111 



RECEIVING DATA 

INPUT /OUTPUT 
FUNCTIONS 

SSDAINTERFACE 
SIGNALS FOR CPU 

SSDA Bldlrectlonal 
Data (IDO-ID7) 

112 

Sync-codes received prior to the completion of synchronization (one 
or two character) are not transferred to the Receive Data FIFO. 
Redundant sync-codes received during the preamble or sync-codes 
which occur as fill characters can automatically be stripped from the 
data by setting the Strip-Sync control bit to minimize system loading. 
Character synchronization is retained until cleared by means of the 
Clear-Sync bit. This bit also inhibits the synchronization search 
routine. 

Once synchronization has been achieved, subsequent characters are 
automatically transferred into the Receive Data FIFO and clocked 
through the FIFO to the last empty location by PHASE2 pulses. The 
Receiver Data Available status-bit (RDA) indicates when data is 
available to be read from the last FIFO location (number 3) when in 
the 1-byte transfer mode. The 2-byte transfer mode causes the RDA 
status bit to indicate that data is available when the last two FIFO 
register locations are full. Available data in the Receive Data FIFO 
triggers an interrupt request if the Receiver Interrupt Enable bit (RIE) 
is set. The CPU should then read the SSDA Status register, which 
indicates whether data is available for the CPU to read from the 
Receive Data FIFO register. The IRQ and RDA status bits are reset 
by a read from the FIFO. 

If more than one character has been received and is resident in the 
Receive Data FIFO, subsequent PHASE2 clocks cause the FIFO to 
update and the RDA and IRQ status-bits to again be set. The read
data operation for the 2-byte transfer mode requires a PHASE2 clock 
intervening between reads to allow the FIFO data to shift. 

The other status bit which pertains to the receiver section is Receiver 
Overrun. The Overrun status bit is automatically set when a character 
is transferred to the Receive Data FIFO while the first register of the 
Receive Data FIFO is full. Overrun causes an interrupt if Error 
Interrupt Enable (EIE) has been set. The transfer of the overrunning 
character into the FIFO causes the previous character in the FIFO 
input register location to be lost. The Overrun status bit is cleared by 
reading the Status register (when the overrun condition is present) 
followed by a Receive Data FIFO register read. Overrun cannot occur 
and be cleared without providing an opportunity to detect its 
occurrence via the Status register. 

The SSDA interfaces to the CPU with an 8-bit bidirectional data bus 
(IDO-ID7), a chip-select line, a register-select line, an interrupt-request 
line, a read/write line, an enable line, and a reset line. These signals 
permit the CPU to have complete control over the SSDA. 

The bidirectional data lines (DO-D7) allow for data transfer between 
the SSDA and the CPU. The data bus output drivers are three-state 
devices that remain in the high-impedance (off) state except when 
the CPU performs an SSDA read operation. 



SSDA Enable 
(PHASE2) 

Read/Write (R/W) 

Chip Select (CS) 

Register Select (RS) 

Interrupt Request 
(IRQ) 

Reset Input 

CLOCK INPUTS 

Transmit Clock 
(Tx Clk) 

The Enable signal, PHASE2, is a high impedance TTL-compatible 
input that enables the bus input/ output data buffers, clocks data to 
and from the SSDA, and moves data through the FIFO Registers. This 
signal is the continuous System PHASE2 1 Mhz clock. 

The Read/Write line is a high-impedance input that is TTL-compatible 
and is used to control the direction of data flow through the SSDA's 
input/output data bus interface. When Read/Write is high (CPU read 
cycle), SSDA output drivers are turned on if the chip is selected and 
a selected register is read. When it is low, the SSDA output drivers 
are turned off and the CPU writes into a selected register. The 
Read/Write signal is also used to select read-only or write-only 
registers within the SSDA. 

The Chip Select line is a high impedance TTL-compatible input line 
used to address the SSDA. The SSDA is selected when CS is low. 
Transfers of data to and from the SSDA are performed under the 
control of the Enable signal, Read/Write, and Register Select. 

The Register Select line is a high impedance input that is TTL
compatible. A high level is used to select Control registers C2 and 
C3, the Sync Code register, and the Transmit/Receive Data registers. 
A low level selects the Control 1 and Status registers (see Table 1 ). 
This line is driven by the AO bit of the system address bus. 

Interrupt Request is a TTL-compatible, open-drain (no internal pullup), 
active-low output that is used to interrupt the CPU. The Interrupt 
Request remains low until cleared by the CPU. 

The Reset input provides a means of resetting the SSDA from an 
external source. In the low state, the Reset input causes the following: 

1111- The Receiver Reset (Rx Rs} and Transmitter Reset (Tx Rs) bits are 
set, causing both the receiver and transmitter sections to be held 
in a reset condition. 

1111- Peripheral Control bits PC1 and PC2 are reset to zero, causing the 
SM/DTR output to be high. 

1111- The Error Interrupt Enable (EIE) bit is reset. 

1111- An internal synchronization mode is selected. 

1111- The Transmitter Data Register Available (TORA) status bit is 
cleared and inhibited. 

When Reset returns high (the inactive state), the transmitter and 
receiver sections remain in the reset state until the Receiver Reset 
and Transmitter Reset bits are cleared via the bus under software 
control. The Control Register bits affected by Reset (Rx Rs, Tx Rs, 
PC1, PC2, EIE, and E/1 Sync) cannot be changed when Reset is low. 

Separate high impedance TTL-compatible inputs are driven by a 
common source for clocking transmitted and received data. The 
source is the CB2 signal from the Control Port VIA. 

The Transmit clock input is used to clock out of transmitted data. The 
transmitter shifts data on the negative transition· of the clock. 

113 



Receive Clock 
(Rx Clk) 

SERIAL 
INPUT/OUTPUT 
LINES 

Receive Data 
(Rx Data) 

Transmit Data 
(Tx Data) 

SSDA REGISTERS 

The Receive clock input is used to clock in received data. The clock 
and data must be synchronized externally. The receiver samples the 
data on the positive transition of the clock. 

The Receive Data line is a high impedance TTL-compatible input 
through which data is received in a serial format. Data rates may be 
from O to 600 kbs. 

The Transmit Data output line transfers serial data to a modem or 
other peripheral. Data rates may be from O to 600 kbs. 

Seven registers in the SSDA can be accessed by means of the bus. 
The registers are defined as read-only or write-only according to the 
direction of information flow. The Register Select input (RS) selects 
two registers in each state, one being read-only and the other write
only. The Read/Write input (R/W) defines which pair is actually 
accessed. Four registers (two read-only and two write-only) can be 
addressed via the bus at any particular time. These registers and the 
required adressing are defined in Table E-1. 

Table E-1: SSDA Programming Model 

INPUTS CONTROL REGISTER CONTENT 

REGISTER RS R/W AC2 AC1 BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 
--

Status (S) 0 x x Interrupt Receiver Receiver Transmitler Clear- Data Carrier Transmitter Receiver 
Request Parity Overrun Underflow to-Send Detect Data Data 

(IROJ Error (RX Ovrn) (TUF) 1rn1 (~) Register Available 
Available (RDA) 
(TORA) 

Control 0 0 x x Address Address Receiver Transmitter Clear Strip Sync Transmitter Receiver 
(C1) Control 2 Control 1 Interrupt Interrupt Sync Characters Reset Reset 

(AC 2) (AC 1) Enable (TIE) (Strip Sync) (Tx Rs) (Rx Rs) 
(RIE) 

Receive x x 07 06 05 D4 03 D2 01 DO 
Data FIFO 

Control 2 0 0 0 Error Transmit Word Word Word 1-Byte/2-Byte Peripheral Peripheral 
(C2) Interrupt Sync Code Length Length Length Transfer Control 2 Control 1 

Enable on Underflow Select 3 Select 2 Select 1 (1-Byte/ (PC 2) (PC 1) 
(EIE) (TX Sync) (WS 3) (WS 2) (WS 1) 2-Byte) 

Control 3 0 0 Not Used Not Used Not Used Not Used Clear Clear CTS One-Sync- External/ 
Transmitter Stat!!!_ Character/ Internal 
Underflow (Clear CTS) Two-Sync- Sync Mode 

Status Character Control 
(CTUF) Mode Control (Ell Sync) 

(1 Sync/ 
2 Sync) 

Sync Code 0 0 07 06 05 D4 D3 02 D1 DO 

Transmit 0 07 D6 D5 D4 D3 02 01 DO 

X = Don't care. 

114 



CONTROL REGISTER 
1 (C1) 

Receiver Reset 
(Rx Rs), C1 Bit 0 

Transmitter Reset 
(Tx Rs), C1 Bit 1 

Strip Synchronization 
Characters (Strip
Sync), C1 Bit 2 

Clear Synchronization 
(Clear-Sync), C1 Bit 3 

Transmitter Interrupt 
Enable (TIE), C1 Bit 4 

Receiver Interrupt 
Enable (RIE), C1 Bit 5 

Address Control 1 
(AC1) and Address 
Control 2 (AC2), C1 
Bits 6 and 7 

CONTROL REGISTER 
2 (C2) 

Control register 1 is an 8-bit write-only register that can be directly 
addressed from the data bus. Control register 1 is addressed when 
RS equals zero. 

The Receiver Reset control bit provides both a reset and inhibit 
function to the receiver section. When Rx Rs is set, it clears the 
receiver control logic, sync logic, error logic, Rx Data FIFO Control, 
Parity Error status bit, and DCD interrupt. The Receiver Shift register 
is set to "ones." The Rx Rs bit must be cleared after the occurrence 
of a low level on Reset in order to enable the receiver section of the 
SSDA. 

The Transmitter Reset control bit provide$ both a reset and inhibit to 
the transmitter section. When Tx Rs is set, it clears the transmitter 
control section, Transmitter Shift register, Tx Data FIFO Control (the 
Tx Data FIFO can be reloaded after one PHASE2 clock pulse), the 
Transmitter Underflow status bit, and the CTS interrupt, and inhibits 
the TORA status bit (in the one-sync-character and two-sync
character models). The Tx Rs bit must be cleared after the 
occurrence of a low level on Reset in order to enable the transmitter 
section of the SSDA. If the Tx FIFO is not preloaded, it must be 
loaded immediately after the Tx Rs release to prevent a transmitter 
underflow condition. 

If the Strip-Sync bit is set, the SSDA automatically strips all received 
characters which match the contents of the Sync-Code register. The 
characters used for synchronization (one or two characters of sync) 
are always stripped from the received data stream. 

The Clear-Sync control bit provides the capability of dropping receiver 
character synchronization and inhibiting resynchronization. The Clear
Sync bit is set to clear and inhibit receiver synchronization in all 
modes and is reset to zero to enable resynchronization. 

TIE enables both the Interrupt Request output (IRQ) and Interrupt 
Request status bit to indicate a transmitter service request. When TIE 
is set and the TORA status bit is high, the IRQ output goes low (the 
active state), and the IRQ status bit goes high. 

RIE enables both the Interrupt Request output (IRQ) and the Interrupt 
Request status bit to indicate a receiver service request. When RIE is 
set and the RDA status bit is high, the IRQ output goes low (the 
active state), and the IRQ status bit goes high. 

AC1 and AC2 select one of the write-only registers (Control 2, Control 
3, Sync-Code, or Tx Data FIFO), as shown in Table G-1, when RS 
equals one and R/W equals zero. 

Control register 2 is an 8-bit write-only register which can be 
programmed from the bus when the Address Control bits in Control 
register 1 (AC1 and AC2) are reset and RS equals one and R/W 
equals zero. 

115 



Peripheral Control 1 
(PC1) and Peripheral 
Control 2 (PC2), 
C2 Bits 0 and 1 

1-Byte/2-Byte Transfer 
(1-Byte/2-Byte), 
C2 Bit 2 

Word Length Selects 
(WS1, WS2, WS3), 
C2 Bits 3, 4, and 5 

Transmit Sync-Code 
on Underflow 
(Tx Sync), C2 Bit 6 

Error Interrupt Enable 
(EIE), C2 Bit 7 

CONTROL REGISTER 
3 (C3) 

External/Internal Sync 
Mode Control (E/1 
Sync), C3 Bit 0 

116 

The Peripheral Control 1 bit (PC1 ) and the Peripheral Control 2 bit 
(PC2) control the direction of data transfer and the selected CODEC 
function (Encode for receive; Decode for transmit). Control is 
accomplished by setting PC2 and setting PC1 to 00 for enabling the 
input (receive) function or to a 01 to enable the output (transmit) 
function. The DTR output is connected directly to the CTS input of 
the SSDA. Its complement is connected to the DCD input of the 
SSDA, as well as to the Encode/Decode select (pin 10) of the 
CODEC. 

When 1-Byte/2-Byte is set, the TORA and RDA status bits indicate 
the availability of their respective data FIFO registers for a single byte 
data transfer. If 1 Byte/2 Byte is reset, the TORA and RDA status bits 
indicate when two bytes of data can be moved without a second 
status-read. An Enable pulse must occur between data transfers. 

Word Length Select bits WS1 , WS2, and WS3 select the word length 
(including parity) for the 7, 8, and 9 bits, as shown in Table G-1. 

When Tx Sync is set, the transmitter automatically sends a sync
character when data is not available for transmission. If Tx Sync is 
reset, the transmitter transmits a Mark character (including the parity 
bit position) on underflow. If the Tx Sync bit is set when the underflow 
is detected, a pulse approximately the width of a Tx Clk high-period 
occurs on the underflow output. Internal parity generation is inhibited 
during underflow except for sync-code fill-character transmission in 
8-bit-plus parity word lengths. 

When EIE is set, the IRQ status bit goes high and the IRQ output 
goes low if -

~ A receiver overrun occurs. The interrupt is cleared by reading the 
Status Register and reading the Rx Data FIFO. 

~ The transmitter has underflowed (in the Tx Sync On Underflow 
Mode). The interrupt is cleared by writing a "1 " into the Clear 
Underflow, C3 bit 3, or Tx Reset. 

When EIE is a 0, the IRQ status bit and the IRQ output are disabled 
for the preceding error conditions. A low level on the Reset input 
resets EIE to "O." 

Control register 3 is a 4-bit write-only register that can be 
programmed from the bus when RS equals one and R/W equals zero 
and when Address Control bits AC1 equals one and AC2 equals zero. 

When the E/1 Sync Mode bit is high, the SSDA is in External Sync 
mode, and the receiver synchronization logic is disabled. 
Synchronization can be achieved by means of the DCD input. The 
DCD input is controlled directly by the OTA output, whose operation 
is described earlier in "Control Register 2, bits PCO and PC1 ." Both 
the transmitter and receiver sections operate as parallel-to-serial 
converters in External Sync mode. The Clear-Sync bit in Control 
register 1 acts as a receiver sync inhibit when high to provide a bus
controllable inhibit. The Sync-Code Register can serve as a 



One-Sync
Character/Two-Sync
Character Mode 
Control (1 Sync/2 
Sync), C3 Bit 1 

Clear CTS Status 
(Clear CTS), C'3 Bit 2 

Clear Transmit 
Underflow Status 
(CTUF), C3 Bit 3 

SYNC-CODE 
REGISTER 

PARITY FOR SYNC 
CHARACTER 

Transmitter 

transmitter fill-character register and a receiver match register in this 
mode. A low on the Reset input resets the E/1 Sync Mode bit, 
placing the SSDA in Internal Sync mode. 

When the 1 Sync/2 Sync bit is set, the SSDA synchronizes on a 
single match between the received data and the contents of the 
Sync-Code register. When the 1 Sync/2 Sync bit is reset, two 
successive sync characters must be received prior to receiver 
synchronization. If the second sync character is not detected, the bit
by-bit search resumes from the first bit in the second character. Refer 
to the section of the Sync Code register for more detailed description. 

When a "1 " is written into the Clear CTS bit, the stored status and 
interrupt are cleared. Subsequently, the CTS status bit reflects the 
state of the CTS input. The Clear CTS control bit does not affect the 
CTS input or its inhibit of the transmitter section. The Clear CTS 
command bit is self-clearing, so writing a "O" into this bit 
accomplishes nothing. 

When a "1" is written into the CTUF status bit, the CTUF bit and its 
associated interrupt are reset. The CTUF command bit is 
self-clearing. 

The Sync-Code register is an 8-bit register for storing the 
programmable sync code required for received data character 
synchronization in the One-Sync-Character and Two-Sync-Character 
modes. The Sync-Code register also provides for stripping the 
sync/fill characters from the received data (a programmable option) 
and for automatic insertion of fill characters in the transmitted data 
stream. The Sync-Code register is not used for receiver character 
synchronization in the External Sync mode; instead, it provides 
storage of receiver match and transmit fill characters. 

The Sync-Code register can be loaded when AC2 and AC1 are a "1" 
and a "O", respectively, and if R/W equals zero and RS equals one. 

The Sync-Code Register may be changed after the detection of a 
match with the received data (the first sync-code having been 
detected) to synchronize with a double-word sync pattern. (This sync
code change must occur prior to the completion of the second 
character.) The sync-match (SM) output can be used to interrupt the 
CPU system to indicate that the first eight bits have matched. The 
service routine would then change the Sync Code register to the 
second half of the pattern. Alternately, One Sync-Character mode can 
be used for sync-codes of more than 8 bits by using software to 
check the second and subsequent bytes after reading them from the 
FIFO. 

The Transmitter does not generate parity for the sync character 
except in 9-bit mode: 

9-bit (8-bit + parity) generates an 8-bit sync character + parity 

8-bit (7-bit + parity) generates an 8-bit sync character (no 
parity) 

7-bit (6-bit + parity) generates a 7-bit sync character (no parity) 

117 



Receiver 

RECEIVE DATA 
FIRST-IN FIRST-OUT 
REGISTER (Rx Data 
FIFO) 

118 

DURING SYNCHRONIZATION The Receiver automatically strips 
the sync character(s) (there are two sync characters if 2-sync mode 
is selected) used to establish synchronization. Parity is not checked 
for these sync characters. 

AFTER SYNCHRONIZATION IS ESTABLISHED When the "strip
sync" bit is selected, the sync characters (fill characters) are stripped, 
and parity is not checked for the stripped sync (fill) characters. When 
the strip-sync bit is not selected (low), the sync character is assumed 
to be normal data and is transferred into FIFO after parity checking (if 
a parity format is selected). 

Table E-2: Strip Sync Control Bit 

STRIP SYNC 
(C1 BIT 2) 

0 

0 

•Subsequent to synchronization. 

WSO-WS2 
(DATA FORMAT; 

C2 BIT 3-5) 

x 

With parity 

Without parity 

OPERATION 

No transfer of sync-code. 
No parity check of sync-code. 

*Transfer data and sync-codes. 
Parity check. 

*Transfer data and sync-codes. 
No parity check. 

Care should be exercised in selecting the sync character in the 
following situations: 

... When Data format is (6 + parity) or (7 + parity) 

... When Strip sync is not selected (low) 

... When sync code is used as a fill character, and synchronization 
is established 

The transmitter sends a sync character with parity, but the receiver 
checks the parity as if it were normal data. Therefore, the sync 
character should be chosen to match the parity check selected for 
the receiver in the special cases described in Table E-2. 

The Receive Data FIFO register consists of three 8-bit registers and 
is used for buffer storage of received data. Each 8-bit register has an 
internal status bit that monitors its full or empty condition. Data is 
always transferred from a full register to an adjacent empty register. 
The transfer from register to register occurs on PHASE2 pulses. The 
RDA status bit is high when data is available in the last location of 
the Rx Data FIFO. 

In an Overrun condition, the overrunning character is transferred into 
the full first stage of the Fl FO register and causes the loss of that 
data character. Successive overruns continue to overwrite the first 



TRANSMIT DATA 
FIRST-IN FIRST-OUT 
REGISTER (TX DATA 
FIFO) 

STATUS REGISTER 

Receiver Data 
Available (RDA), 
S Bit 0 

Transmitter Data 
Register Available 
(TORA), S Bit 1 

register of the FIFO. This destruction of data is indicated by the 
Overrun status bit. The Overrun bit is set when the overrun occurs 
and remains set until the Status Register is read and a read of the Rx 
Data FIFO occurs. 

Unused data bits for short word lengths (including the parity bit) 
appear as zeros on the data bus when the Rx Data FIFO is read. 

The Transmit Data FIFO register consists of three Shift registers used 
for buffer storage of data to be transmitted. Each 8-bit register has an 
internal status bit which monitors its full or empty condition. Data is 
always transferred from a full register to an adjacent empty register. 
The transfer is clocked by pulses. The TORA status bit is high if the 
Tx Data FIFO is available for data. 

Unused data bits for short word lengths are handled as "don't cares." 
The parity bit is not transferred over the data bus since the SSDA 
generates parity at transmission. 

When an Underflow occurs, the Underflow character is either the 
contents of the sync-code register or an all-ones character. The 
Underflow is stored in the Status register until cleared and appears on 
the Underflow output as a pulse approximately the width of a Tx Clk 
high period. 

The Status register is an 8-bit read-only register. It provides the real
time status of the SSDA and the associated serial data channel. 
Reading the Status register is nondestructive. The method of clearing 
status bits depends upon the function each bit represents and is 
treated separately for each bit in the register, as described in the 
following sections. 

The Receiver Data Available status bit indicates when receiver data 
can be read from the Rx Data FIFO. The presence Of Receiver data 
is in the last register (#3) of the FIFO causes RDA bit to be high for 
the 1-byte transfer mode. In the 2-byte transfer mode, a high RDA bit 
indicates that the last two registers (#2 and #3) are full. The second 
character can be read without a second status read (to determine 
whether the character is available). Status must be read on a byte
by-byte basis if receiver data error checking is desired. The RDA 
status bit is reset automatically when data is not available. 

The TORA status bit indicates that data can be loaded into the Tx 
Data FIFO register. An empty first register (#1) of the Tx Data FIFO is 
indicated by a high-level TORA status bit in the 1-byte transfer mode. 
The first two registers (#1 and #2) must be empty for TORA to be 
high when in the 2-byte transfer mode. The Tx Data FIFO can be 
loaded with two bytes without an intervening status read. TORA is 
inhibited by the Tx reset or reset. Upon Tx Reset, the Tx Data FIFO is 
cleared and then released on the PHASE2 clock pulse. The Tx Data 
FIFO can then be loaded with up to three data characters, even 
though TORA is inhibited. This feature allows preloading data prior to 
the release of Tx Reset. A high-level CTS input inhibits the TORA 
status bit in either sync mode (One-Sync-Character mode or Two
Sync-Character mode). CTS does not affect TORA in External Sync 
mode. Thus the SSDA is allowed to operate under the control of the 

119 



Data Carrier Detect 
(DCD), S Bit 2 

Clear-to-Send 
(CTS), S Bit 3 

Transmitter Underflow 
(TUF), S Bit 4 

Receiver Overrun 
(Rx Ovrn), S Bit 5 

Receiver Parity Error 
(PE), S Bit 6 

Interrupt Request 
(IRQ), S Bit 7 

STATUS REGISTER 

IRQ Bit 7 

Bits 6 to O 

120 

CTS input with TORA indicating the status of the Tx Data FIFO. The 
CTS input does not clear the Tx Data FIFO in any operating mode. 

A positive transition on the DCD input is stored in the SSDA until 
cleared by reading both Status and Rx Data FIFO. A "1" written into 
Rx Rs also clears the stored DCD status. The DCD status bit, when 
true, indicates that the DCD input has gone high. The reading of both 
Status and Receive Data FIFO allows Bit 2 of subsequent Status 
reads to indicate the state of the DCD input until the next positive 
transition. 

A positive transition on the CTS input is stored in the SSDA until 
cleared by writing a "1 " into the Clear CTS control bit or the Tx Rs 
bit. The CTS status bit, when true, indicates that the CTS input has 
gone high. The Clear CTS command (a "1" into C3 Bit 2) allows Bit 3 
of subsequent Status reads to indicate the state of the CTS input until 
the next positive transition. 

When data is not available for the transmitter, an underflow occurs 
and is so indicated in the Status register (in the Tx Sync on underflow 
mode). The underflow status bit is cleared by writing a "1" into the 
Clear Underflow (CTUF) control bit or the Tx Rs bit. TUF indicates 
that a sync character will be transmitted as the next character. A TUF 
is indicated on the output only when the contents of the Sync-Code 
Register is to be transferred (transmit sync code on underflow equals 
one). 

Overrun indicates that data has been received when the Rx Data 
FIFO is full, resulting· in data loss. The Rx Ovrn status bit is set when 
Overrun occurs. The Tx Ovrn status bit is cleared by reading Status 
followed by reading the Rx Data FIFO or by setting the Rx Rs control 
bit. 

The Parity Error status bit indicates that parity for the character in the 
last register of the Rx Data FIFO did not agree with selected parity. 
The parity error is cleared when the character to which it pertains is 
read from the Rx Data FIFO or when Rx Rs occurs. The DCD input 
does not clear the Parity Error or Rx Data FIFO status bits. 

The Interrupt Request status bit indicates when the IRQ output is in 
the active state (IRQ output equals zero). The IRQ status bit is 
subject to the same interrupt enables (RIE, TIE, and EIE) as the IRQ 
output. The IRQ status bit simplifies status inquiries for polling 
systems by providing a single-bit indication of service requests. 

The IRQ flag is cleared when the source of the IRQ is cleared. The 
source is determined by the enables in the Control registers. TIE, RIE, 
EIE. 

Indicate the SSDA status at a point in time, and can be reset as 
follows: 

PE Bit 6 Read Rx Data FIFO, or a "1" into Rx Rs (C1 Bit 0). 



CONTROL 
REGISTER 1 

AC2, AC1 Bits 7, 6 

RIE Bit 5 

TIE Bit 4 

Clear Sync Bit 3 

Strip Sync Bit 2 

Tx R1 Bit 1 

Rx RI Bit 0 

CONTROL 
REGISTER 2 

Rx Ovm Bit 5 Read Status and then Rx Data FIFO or a "1" into Rx 
Rs (C1 Bit 0). 

TUF Bit 4 A "1" into CTUF (C3 Bit-3) or into Tx Rs (C1 Bit 1 ). 

CTS Bit 3 A "1" into Clear CTS (C3 Bit 2) or a "1" into Tx Rs (C1 
Bit 1 ). 

DCD Bit 2 Read Status and then Rx Data FIFO or a "1" into Rx Rs 
(C1 Bit 0). 

TDRA Bit 1 Write into Tx Data FIFO. 

RDA Bit 0 Read Rx Data in FIFO. 

Used to access other registers, as shown above. 

When "1 ", enables interrupt on RDA (S Bit 0). 

When "1 ", enables interrupt on TORA (S Bit 1 ). 

When "1 ", clears receiver character synchronization. 

When "1 ", strips all sync codes from the received data stream. 

When "1 ", resets and inhibits the transmitter section. 

When "1 ", resets and inhibits the receiver section. 

CTUF Bit 3 When "1 ", clears TUF (S Bit 4), and IRQ if enabled. 

Clear CTS Bit 2 When "1 ", clears CTS (S Bit 3), and IRQ if enabled. 

1 Sync/2 Sync Bit 1 When "1 ", selects the one-sync-character mode; when "O", selects 
the two-sync character mode. 

E/1 Sync Bit 0 When "1 ", selects the external sync mode; when "O", selects the 
internal sync mode. 

CONTROL 
REGISTER 2 

EIE Bit 7 

Tx Sync Bit 6 

WS3, 2, 1 Bits 5 to 3 

When "1 ",enables the PE, Rx Ovrn, TUF, CTS, and DCD interrupt 
flags (S Bits 6 through 2). . 

When "1 ", allows sync code contents to be transferred on underflow, 
and enables the TUF Status bit and output. When "O", an all mark 
character is transmitted on underflow. 

121 



1-Byte/2-Byte, Bit 2 

PC2, PC1, 
Bits 1 and O 

CODEC DEVICE 
OPERATION 

THE DELTA 
MODULATOR 

122 

Table E-3: Word Length Select 

BIT 5 
WS3 

0 
0 
0 

*O 
1 
1 
1 
1 

BIT 4 
WS2 

0 
0 
1 
1 
0 
0 
1 
1 

•This is the mode which should always be used. 

BIT 3 
WS1 

0 
1 
0 
1 
0 
1 
0 
1 

WORD LENGTH 

6 bits + even parity 
6 bits + odd parity 
7 bits, no parity 
8 bits, no parity 
7 bits + even parity 
7 bits + odd parity 
8 bits + even parity 
8 bits + odd parity 

When "1 ", enables the TORA and RDA bits to indicate when a 1-byte 
transfer can occur; when "O", the TORA and RDA bits indicate when 
a 2-byte transfer can occur. 

Table E-4: SM/DTR Output Control 

BIT 1 
PC2S 

0 
1 

BIT 0 
PC1 

0 
0 

SM/DTR OUTPUT AT PIN 5 

1 Select audio output 
O Select audio input 

The Continuously-Variable-Slope-Delta modulator (CVSD) is a simple 
alternative to more complex conventional conversion techniques in 
systems requiring digital communication of analog signals. The human 
voice is analog, but digital transmission of any signal over great 
distance is attractive. Signal/ noise ratios do not vary with distance in 
digital transmission, and multiplexing, switching, and repeating 
hardware is more economical and easier to design. However, 
instrumentation Analog-to-Digital converters do not meet the 
communications requirements. The CVSD Analog-to-Digital is well 
suited to the requirements of digital communications and is an 
economically efficient means of digitizing voice inputs for 
transmission. 

The innermost control loop of a CVSD converter is a simple delta 
modulator. A delta modulator consists of a comparator in the forward 
path and an integrator in the feedback path of a simple control loop. 
The inputs to the comparator are the analog input signal and the 
integrator output. The comparator output reflects the sign of the 
difference between the input voltage and the integrator output. That 
sign bit is the digital output and also controls the direction of ramp in 
the integrator. The comparator is normally clocked, producing 
synchronous and band-limited digital bit-stream. 



THE COMPANDING 
ALGORITHM 

If the clocked serial bit-stream is transmitted, received, and delivered 
to a similar integrator at a remote point, the remote integrator output 
is a copy of the transmitting control loop integrator output. To the 
extent that the transmitting integrator tracks the input signal, the 
remote receiver reproduces that input signal. Low-pass filtering at the 
receiver output eliminates most of the quantizing noise if the clock 
rate of the bit stream is an octave or more above the upper band 
limit of the input signal. Input bandwidth cuts off above 3 kHz, so 
clock rates from 8 kHz up are possible. Thus, the delta modulator 
digitizes and transmits the analog input to a remote receiver. The 
serial, unframed nature of the data is ideal for communications 
networks. With no input at the transmitter, a continuous one/zero 
alternation is transmitted. If the two integrators are made leaky, then, 
during any loss of contact, the receiver output decays to zero and 
receive restart begins without framing when the receiver re-acquires. 
Similarly, a delta modulator is tolerant of sporadic bit errors. 

The fundamental advantages of the delta modulator are its simplicity 
and the serial format of its output. Its limitations are those caused by 
a limited digital bit rate. The analog input must be band-limited and 
amplitude-limited. The frequency limitations are governed by the 
Nyquist information rate relationships, and the amplitude capabilities 
are set by the gain and dynamic range of the integrators. 

The frequency limits are bounded on the upper end; that is, for any 
input bandwidth there exists a clock frequency larger than that 
bandwidth transmits the signal with a specific noise level. However, 
the amplitude limits are bounded on both upper and lower ends. For 
any given signal level, one specific gain achieves an optimum noise 
level. Unfortunately, the basic delta modulator has a small dynamic 
range over which the noise level is constant. 

The continuously-variable-slope circuitry provides increased dynamic 
range by adjusting the gain of the integrator. For a given clock 
frequency and input bandwidth, the additional circuitry increases the 
delta modulator's dynamic range. External to the basic delta 
modulator is an algorithm which monitors the past few outputs of the 
delta modulator in a simple shift register. The register is 2 bits long. 
The accepted CVSD algorithm simply monitors the contents of the 
shift register and indicates if it contains all ones or zeros. This 
condition is called coincidence. When it occurs, it indicates that the 
gain of the integrator is too small. The coincidence output charges a 
single pole low-pass filter. The voltage output of this "syllabic filter" 
controls the integrator gain through a pulse amplitude modulator 
whose other input is the sign bit or up/ down control. 

The simplicity of the all-ones/ all-zeros algorithm should not be taken 
lightly. Many other control algorithms using shift registers have been 
tried. The key to the accepted algorithm is that it provides a measure 
of the average power or level of the input signal. Other techniques 
provide more instantaneous information about the shape of the input 
curve. The purpose of the algorithm is to control the gain of the 
integrator and to increase the dynamic range. Thus, a measure of the 
average input level is what is needed. 

123 



124 

The algorithm is repeated in the receiver, and thus the level data is 
recovered in the receiver. Because the algorithm only operates on the 
past serial data, it changes the nature of the bit stream without 
changing the channel bit rate. 

The effect of the algorithm is to compand the input signal. If the bit 
stream from a CVSD encoder is played into a basic delta modulator, 
the output of the delta modulator reflects the shape of the input 
signal, but all of the output will be at an equal level. Thus, the 
algorithm is needed at the output to restore the level variations. The 
bit stream on the channel behaves as if it came from a standard 
delta modulator with a constant level input. 

The delta modulator encoder with the CVSD algorithm provides an 
efficient method for digitizing voice signals in a manner which is 
especially convenient for digital communications requirements. 

Table E-5: Definitions and Functions of Pins 

PIN NUMBER 

Pin 
Pin 2 
Pin 3 

Pin 4 

Pin 5 
Pin 6 
Pin 7 
Pin 8 
Pin 9 
Pin 10 

Pin 11 

PIN FUNCTION 

VDD (+5 volts) 
Audio Ground. Connection to DI A ladders and comparator. 
Audio Out. Recovered audio out. Presents approximately 100 kilo
ohm source. Zero signal reference is VDD/2. 
AGC (not used). A logic "low" level appears at this output when the 
recovered signal excursion reaches one-half of full scale value. 
Audio Input. Externally AC coupled. 
N/C 
N/C 
Ground Logic Ground 
Clock Input 
Encode/Decode. A low level selects the encode mode; a high level, 
the decode mode. 
Alternate Plain Text (not used). A low level at this input causes a 
quieting pattern to be transmitted without affecting the internal 
operation of the CVSD. 

Pin 12 Digital Data Input 
Pin 13 Force Zero (not used). A low level at this input forces the 

transmitted output, the internal logic, and the recovered audio 
output of the CVSD into the "quieting" condition. 

Pin 14 Digital Data Output 



MECHANICAL 
SPECIFICATIONS 

APPENDIX F KEYBOARD SPECIFICATIONS 

KEY TOTAL TRAVEL Range .150 in-200 In ±.01 O (3.8 mm-5 mm) 
.170 in (4.3 mm) Preferred 

Key Pretravel 
(when applicable) 

.100 in minimum (2.5 mm) 

ACTUATION FORCE Standard Key Range 1.5-2.5 oz ±30% 
(42.5-70 grams) 

RELIABILITY 

KEY SPACING 

KEY SIDEPLAY 

KEY TOP 
DIMENSION 

KEY SURFACE 

KEY SWITCH 
PRESSURES 

ELECTRICAL 
SPECIFICATIONS 

INPUT POWER 

ROLLOVER 

CONNECTOR 

Preferred 

Range 
Preferred 

1.5 oz ±30% (42.5 grams) 

Special Key 

>100 million cycles 

Range 
Preferred 

.018 in (.5 mm) 
2 ° rotational 

Range 
Preferred 

3-5 oz (85-142 grams) 
3 oz (85 grams) 

.70-.80 in (18-20 mm) 

.75 in (19 mm) 

.47-.60 in (12-15 mm) 

.51 in (13 mm) 

Concave, textured (mat) unless position marked otherwise, low 
reflection, low glare. 

Keytop shall be capable of withstanding 3 lbs (1.4 kg) pull without 
coming loose and 11 lbs (5 kg) in the direction of actuation without 
any damage to the key switch. 

+5VDC ± 5% @ 250 ma 

N Key 

Type: AMP 87551-7 or equivalent 

Spacing: 0.1 in, 7 pin header 

125 



LOGICAL 
SPECIFICATIONS 

PROTOCOL 
DEFINITION 

126 

Table F-1: Pin Assignment 

PIN(S) 

1, 7 
2, 3 

4 

5 

6 

NAME 

+SV 

GROUND 

KBACK 

KBR DY 

KBDATA 

+5 volts at 250 ma 

System Ground 

FUNCTION 

TTL Input. Driven by terminal processor. Transitions 
indicate acknowledgement of KBRDY transitions. 

TTL Output. Driven low by the keyboard to initiate 
handshake of each data bit of a transmission. Driven 
high after receipt of the negative edge of the KBACK 
line. 

TTL Output. Changed after the positive edge of the 
KBACK line. Data must change no later than the 
negative edge of KBRDY. The exception to this is the 
stop bit. Transfer of the stop bit is as follows: 

1 ) Data line driven low at or before negative edge of 
KBRDY. 

2) Data line and KRBDY driven high following the 
negative edge of KBACK. 

3) Keyboard enters the Idle state afterthe positive 
edge of KBACK. 

The communication between the terminal processor and the keyboard 
is serial. The transmission is in 9-bit words. The first eight bits are the 
data byte, transmitted LSB first. The last bit is a stop bit. 

The keyboard will return key numbers and key status through the 
eight data bits. The MSB of the key number returned by the keyboard 
is status which flags a key close or key open. An MSB of one 
indicates a key close, and an MSB of zero indicates a key open. The 
least significant 7 bits are the key number. 

The stop bit is a zero from KBRDY low to KBACK low. The stop bit 
goes high before KBRDY goes high and remains high until the next 
transfer. 

The keyboard indicates it has an event in its buffer with the KBRDY 
line. If transmission is idle, the keyboard can signal an event by 
taking the KBRDY line low. The high to low transition of KBRDY 
should flag an interrupt in the terminal processor. The keyboar,...,.d=-"'""..,,...,..., 
should raise the KBRDY line on the negative transition of the KBACK 
line. Each event in the keyboard buffer will cause a transition of the 
KBRDY line. The ke')'.board transmission becomes idle after the 
positive edge of the KBACK line following the stop bit. 

The keyboard times out the processor response to KBRDY low for 
250 milliseconds. If the processor does not respond with a negative 
transition of KBACK clock within this time, the keyboard will drive 
KBRDY high and then restart the current transmission. This will allow 
the terminal processor to resynchronize to the keyboard data stream. 



RESERVED 
KEYBOARD CODES 

Table F-2: Switching Characteristics 

PARAMETER FUNCTION DESCRIPTION 

TDVRL 
TRLCL 
TAHKL 

HEX 

KB data valid to KBRDY low 
KBRDY low to KBACK low 
KBACK high to KBRDY low 
(except after stop bit) 

FUNCTION 

REQUIRED TIMING 
MAX MIN 

250ms 

1ms 

DESCRIPTION 

0 

0 

FEH 
FFH 

Overflow 
Dead 

Key queue overflow. Keys have been lost. 
Keyboard dead or not connected. 

ENVIRONMENTAL 
SPECIFICATIONS 

OPERATING 0° C-50° c 
TEMPERATURE 

STORAGE -40° C-+60° c 
TEMPERATURE 
HUMIDITY 0-95% noncondensing 

MATERIAL Self-extinguishable 

KEYBOARD Keyboard meets UL and VOE requirements for approval. 
APPROVALS 

VIBRATION To be determined 

SHOCK Operating: 1 OG peak 1 /2 sinusoid: 1 Oms duration 
Nonoperating: 1 OOG peak 1 /2 sinusoid: 1 Oms duration 

KEYBOARD LAYOUT Key layouts vary from model to model in relation to the targeted 
application. The layout is broken into typewriter keys, command keys, 
and calculator keys. The typewriter pad has 58 possible key positions. 
The whole keyboard has a total of 104 possible key positions. The 
typewriter pad is sculptured; other pads are sloped. The layout uses 
one common PC Board, while the actual number of key positions 
occupied varies from model to model. 

KEYBOARD TIMING Figure F-1 illustrates keyboard timing. 
DIAGRAM 

127 



Figure F-1: Keyboard Timing Diagram 

128 



APPENDIX G COMMUNICATIONS 
~ONTROLLER SPECIFICATIONS 

G-1 INTRODUCTION The NEC uPD7201 Multiprotocol Serial Communications Controller 
(MPSC2) is a versatile device designed to give you high-level control 
of your data communication protocols with maximum flexibility and 
minimum processor overhead. The MPSC2 contains two complete full 
duplex channels in a 40-pin package and incorporates a variety of 
sophisticated features to simplify your protocol management. 

G-1.1 FEATURES .,. Implements the three basic data/communications protocols 
- Asynchronous 
- Character-oriented synchronous (monosync, bisync, external 

sync) 
- Bit-oriented synchronous (SDLC/HDLC) 

.,. Provides extensive error checking 
- Parity 
- CRC-16 
- CRC-CCITT 
- Break/ Abort detection 
- Framing Error detection 

.,. Enhanced data reliability 
- Double-buffered transmitters 
- Quadruply-buffered receivers 
- Programmable transmitter underrun handling 

.,. Simplified system design 
- Simple interface to most microprocessors 
- Automatic Interrupt vectoring for most microprocessors 
- Four OMA channels for maximum throughput with standard 

8237 /8257-type OMA controllers 
- Single-phase TTL clock 
- Single +5 volt supply 

129 



G-2 PIN 
DESCRIPTION 

130 

This section describes the various pin functions available on the 
MPSC2• Some pin numbers are used twice because of their 
programmability and dual functionality. Those pins that have more 
than one function are marked with an * in the following descriptions. 
Refer to Section G-5 for detailed information on selecting pin 
functions. 

Figure G-2.1 Functional Plnout 

DATA BUS 

DATABUS { 
CONTROL 

INTERRUPT 
CONTROL 

DMA 
CONTROL 

DRORxA 

DROTxA -

DRORxB -

DROTxB 

ma 
HAo 

CLK -

RESET -

jil'D 
7201 

Figure G-2.2 Pin Conflgura,lon 

eLK C 
RESET 
i5Cc5A c 3 
~ . 
crecm c s 
~ ran , 
TxDB 8 

µPO 
7201 

TxDA } 

TXCi 

RxDA \ 

iiXcA I 

iYNCAJ 

iii'SA l Ci'SA 
l;ITRA 

DCDA 

TllDB } 

fX9 

RxDB l 
RxCB 1 
SYNCS 

Vee 

Rx DA 
~ 

TRANSMITTER 

RECEIVER 

MODEM 
CONTROL 

TRANSMITTER 

RECEIVER 

MODEM 
CONTROL 

32 WlllTA/DRORxA 
31 J !TniA/~ 
30 J l'l'rO/DROTxB 
29 J PFIT/DRORxB 
28 J mT 

ffiTTA 
tm!W/RJJ 
BIA 
e/15" 
es 

22 l'!ll 
.__ ____ 21_,J W1I 

CHANNEL A 

CHANNELB 



12-19 D0-D7 Data Bus (bidirectional three-state) 
The data bus lines are connected to the system data bus. Data or 
status from the MPSC2 is output on these lines when CS and RD are 
active and data or commands are latched into the MPSC2 on the 
rising edge of WR when CS is active. 

23 CS Chip Select (input, active low) 
Chip select allows the MPSC2 to transfer data or commands during a 
read or write cycle. 

25 B/ A Channel Select (input) 
A low selects channel A and a high selects channel B for access 
during a read or write cycle. 

24 Cl D Control/ Data Select (input) 
This input, with RD, WR and B/ A, selects the data registers (CID = 
0) on the control and status registers (CID = 1) for access over the 
data bus. 

22 RD Read (input, active low) 
This input (with either CS during a read cycle or HAI during a OMA 
cycle) notifies the MPSC2 to read data or status from the device. 

21 WR Write (input, active low) 
This input (with either CS during a read cycle or HAI during a OMA 
cycle) notifies the MPSC2 to write data or control information to the 
device. 

2 RESET Reset (input, active low) 
A low on this input (one complete CLK cycle minimum) initializes the 
MPSC2 to the following conditions: receivers and transmitters disabled, 
TxDA and TxDB set to marking (high), and Modem Control Outputs 
DTRA, DTRB, RTSA, RTSB set high. Additionally, all interrupts are 
disabled, and all interrupt and OMA requests are cleared. After a 
reset, you must rewrite all control registers before restarting operation. 

1 CLK System Clock (input) 
A TTL-level system clock signal is applied to this input. The system 
clock frequency must be at least 4.5 times the data clock frequency 
applied to any of the data clock inputs TxCA, TxCB, RxCA or RxCB. 

28 INT Interrupt Request (output, open drain, active low) 
INT is pulled low when an internal interrupt request is accepted. 

27 INTA Interrupt Acknowledge (input, active low) 
The processor generates two or three INTA pulses (depending on the 
processor type) to signal all peripheral devices that an interrupt 
acknowledge sequence is taking place. During the interrupt 
acknowledge sequence, the MPSC2, if so programmed, places 
information on the data bus to vector the processor to the appropriate 
interrupt service location. 

29* PRI Interrupt Priority In (input, active low) 
This input informs the MPSC2 whether the highest priority device is 
requesting interrupt and is used with PRO to implement a priority 
resolution "daisy chain" when there is more than one interrupting 

131 



132 

device. The state of PRI and the programmed interrupt mode 
determine the MPSC2's response to an interrupt acknowledge 
sequence. 

30* PRO Interrupt Priority Out (output, active low) 
This output is active when HAI is active and the MPSC2 is not 
requesting interrupt (INT is inactive). The active state informs the next 
lower priority device that there are no higher priority interrupt requests 
pending during an interrupt acknowledge sequence. 

11 *, 32* WAITA WAITS Wait (outputs, open drain) 
These outputs synchronize the processor with the MPSC2 when block 
transfer mode is used. You may program it to operate with either the 
receiver or transmitter, but not both simultaneously. WAIT is normally 
inactive. For example, if the processor tries to perform an 
inappropriate data transfer such as a write to the transmitter when the 
transmitter buffer is full, the WAIT output for that channel is active 
until the MPSC2 is ready to accept the data. The CS, C/O, B/ A, RD, 
and WR inputs must remain stable while WAIT is active. 

11*, 29*, 30*, 32* DRQTxA, ORQTxB, ORQRxA, ORQRxB 
OMA Request (outputs, active high) 
When these lines are active, they indicate to a OMA controller that a 
transmitter or receiver is requesting a OMA data transfer. 

26* HAI Hold Acknowledge In (input, active low) 
This input notifies the MPSC2 that the host processor has 
acknowledged the OMA request and has placed itself in the hold 
state. The MPSC2 then performs a OMA cycle for the highest priority 
outstanding OMA request, if any. 

31 * HAO Hold Acknowledge Out ( ootput, active low) 
This output, with HAI, implements a priority daisy chain for multiple 
OMA devices. HAO is active when HAI is active and there are no 
OMA requests pending in the MPSC2. 

8, 37 TxDA, TxDB Transmit Data (outputs, marking high) 
Serial data from the MPSC2 is output on these pins. 

7, 36 TxCA, TxCB Transmitter Clocks (inputs, active low) 
The transmit clock controls the rate at which data is shifted out at 
TxD. You may program the MPSC2 so that the clock rate is 1 x, 16x, 
32x, or 64x the data rate. Data changes on the falling edge of TxC. 
TxC features a Schmitt-trigger input for relaxed rise and fall time 
requirements. 

9, 34 RxDA, RxDB Receiver Data (inputs, marking high) 
Serial data to the MPSC2 is input on these pins. 

4, 35 RxCA, RxCB Receiver Clocks (inputs, active low) 
The receiver clock controls the sampling and shifting of serial data at 
RxD. You may program the MPSC2 so that the clock rate is 1 x, 16x, 
32x, or 64x the data rate. RxD is sampled on the rising edge of RxC. 
RxC features a Schmitt-trigger input for relaxed rise and fall time 
requirements. 



26*, 31 * DTRA, DTRB Data Terminal Ready (outputs, active low) 
The DTR pins are general-purpose outputs which may be set or reset 
with commands to the MPSC2• 

1 O, 38* RTSA, RTSB Request to Send (outputs, active low) 
When you operate the MPSC2 in one of the synchronous modes, 
RTSA and RTSB are general-purpose outputs that you may set or 
reset with commands to the MPSC2. In asynchronous mode, RTS is 
active immediately as soon as it is programmed on. However, when 
programmed off, ATS remains active until the transmitter is completely 
empty. This feature simplifies the programming required to perform 
modem control. 

3, 5 DCDA, DCDB Data Carrier Detect (inputs, active low) 
Data carrier detect generally indicates the presence of valid serial 
data at RxD. You may program the MPSC2 so that the receiver is 
enabled only when DCD is low. You may also program the MPSC2 so 
that any change in state that lasts longer than the minimum specified 
pulse width causes an interrupt and latches the DCD status bit to the 
new state. 

6, 39 CTSA, CTSB Clear to Send (inputs, active low) 
Clear to send generally indicates that the receiving modem or 
peripheral is ready to receive data from the MPSC2. You may program 
the MPSC2 so that the transmitter is enabled only when CTS is low. 
As with DCD, you may program the MPSC2 to cause an interrupt and 
latch the new state when CTS changes state for longer than the 
minimum specified pulse width. 

10, 33* SYN CA, SYNCB Synchronization (inputs/ outputs, active low) 
The function of the SYNC pin depends upon the MPSC2 operating 
mode. In asynchronous mode, SYNC is an input that the processor 
can read. It can be programmed to generate an interrupt in the same 
manner as DCD and CTS. 

In external sync mode, SYNC is an input which notifies the MPSC2 

that synchronization has been achieved (see Figure G-2.3 for detailed 
timing). Once synchronization is achieved, hold SYNC low until 
synchronization is lost or a new message is about to start. 

In internal synchronization modes (monosync, bisync, SDLC), SYNC is 
an output which is active wherever a SYNC character match is made 
(see Figure G-2.4 for detailed timing). There is no qualifying logic 
associated with this function. Regardless of character boundaries, 
SYNC is active on any match. 

133 



G-3 PROTOCOLS 

134 

Figure G-2.3 SYNC Output, External Synchronization 

LAST BIT 1st BIT 2nd BIT 
OF §9lilC OF DATA OF DATA 

CHARACTER CHARACTER CHARACTER 

DATA 

~ 
\ ~MUST BE DRIVEN LOW 

WITHIN 100 M8C OF RISING 
EDGE OF AXc THAT SAMPLES 

THE 2nd BIT OF THE FIRST 
DATA CHARACTER 

Figure G-2.4 SYNC Output, Internal Synchronization 

DATA 

LAST BIT 
OF SVNCHRONI· 

ZATION 

FIRST BIT OF 
NON.SYNC 
PATTERN 

A protocol defines a set of rules for transmitting information and 
control from one place to another. In parallel protocols as you might 
find on a microprocessor bus, dedicated "control" lines handle 
functions such as timing, type of information, and error checking. 
Since the object of serial data communications is to minimize the 
number of wires, the protocol used must place all of this control 
information in the serial data stream. 

The basic protocol unit or frame can be built into increasingly 
complex protocols by defining special control characters and fields, 
and by grouping frames together into larger units. Virtually all 
communications protocols currently in use are based on one of three 
basic protocols: Asynchronous, Synchronous Character- or Count
Oriented Protocols (COPs), and Bit-Oriented Protocols (BOPs). 



G-3.1 
ASYNCHRONOUS 
PROTOCOL 

G-3.2 
SYNCHRONOUS 
CHARACTER 
ORIENTED 
PROTOCOLS 

G-3.3 
SYNCHRONOUS 
BIT-ORIENTED 
PROTOCOLS 

In asynchronous protocol, each character transmitted has its own 
framing information in the form of a start and stop bit(s). Each 
character is a "message" in itself and may be asynchronous with 
respect to any others. You can implement error detection by adding a 
parity bit to each character. The transmitter makes the parity bit 1 or 
O so that the character plus parity contains an even or odd number of 
ones for even parity or odd parity, respectively. Figure G-3.1 illustrates 
the asynchronous data format. 

In synchronous character-oriented protocols (COPs), the start and 
stop bits associated with each character are eliminated. A 
synchronization (sync) character that is not part of the data is 
transmitted before the data to establish proper framing. The 
synchronization character is usually 8 or 16 bits long. Monosync and 
IBM Bisync are typical examples of COPs (Figure G-3.2). Since the 
framing information is presented only at the beginning, the transmitter 
must insert fill characters to maintain synchronization. Sync 
characters are commonly used for this purpose. 

As with the asynchronous protocol, a parity bit may be used with 
each character to provide error checking. A more reliable check is 
performed by calculating a special 16-bit block check character 
called a Cyclic Redundancy Check (CRC) for the entire data block 
and transmitting this character at the end of the data. The most 
commonly used CRC polynomial for COPs is called CRC-16. 

A disadvantage of the character-oriented protocol is having to use 
special characters such as SYNC to define various portions of a 
message when you send non-character binary data ("transparent 
data" in bisync terminology). To do this, you must transmit special 
OLE sequences and selectively exclude certain characters from the 
CRC calculation for both the transmitter and receiver. The MPSC2 

features special circuitry to simplify this operation. 

Synchronous Bit-Oriented Protocols (BOPs) use a special set of rules 
to distinguish between data and framing characters. This eliminates 
some of the problems associated with COPs. The most common 
BOPs in use are the almost-identical HDLC and SDLC protocols 
shown in Figure G-3.3. 

The rules for SDLC (henceforth we will refer only to SDLC although 
the same information applies to HDLC as well) are quite simple. The 
basic transmission unit is called a frame and is delineated by a 
special flag character 01111110 (flags cannot be used as filler like the 
COP sync character). The data or information field may consist of 
any number of bits; not necessarily an integral number of n-bit 
characters. Since data could contain the 0111111 O pattern, the 
transmitter performs the following operation: if five consecutive ones 
are transmitted, the transmitter inserts a zero bit before the next data 
bit. Likewise, the receiver must delete any zero that follows five 
consecutive ones. Six consecutive ones indicate a flag character and 
eight or more ones indicate a special abort condition. 

Error checking is done with a 16-bit CRC character inserted between 
the end of the information field and the End Of Frame flag. The CRC
CCITT polynomial is generally used. The end of a frame is 

135 



136 

determined by counting 16 bits (CRC) back from the End Of Frame 
flag. Special circuitry in the receiver must inform the processor of the 
boundary between the end of the information field and the beginning 
of the CRC when the information field is not an integral number of n
bit characters. The MPSC2 performs all of the above functions 
necessary to implement Bit-Oriented Protocols. 

Figure 0-3.1 Asynchronous Data Character Format 

.... 
nAUCW OOD.tVD. llftUMltOllDU 

' ~ F - -- -- - - - '.:!''!"'.:·:: - - - - -- -- - -T- 1-1 D•-::·-- ____ L.J . LS9 : : ; : l : ! : :n STo. nan.SITO• 

II - - - - - Sf~:ir - - - - - - - - - - - - - - - - - - - - - - - ~j : • 1 lll&WCIMAllCfH 

-i : 
LS8•LlA$1$IQIU,1Cat1T•1I 1-. 

Figure 0-3.2 BISYNC Message Format 

------ DIRECTION OF S&RIAL DATA FLDW 

Figure 0-3.4 Basic SDLC Frame 

1------------,AAME----------~ 

BEGINNING 
FLAG 

01111110 

•••Tl 
ADDRESS 

a BITS 
CONTROL 
eam 

INFORMATION 
ANYNUllBEA 

OFlllTS 

FRAMI 
CHECll 
1&81TS 

ENDING 
FLAG 

01111110 ••m 



G-4 FUNCTIONAL 
DESCRIPTION 

The MPSC2 provides two complete serial communications controllers 
in a single package implementing the following functions: 

Parallel-to-Sertal and Serial-to-Parallel data conversion. 

Buffering of outgoing and incoming data, allowing the processor 
time to respond. · 

Insertion and deletion of framing bits and characters. 

Calculation and checking of Parity and CRC error checking. 

Informing the processor when and what action needs to be taken. 
Interfacing with the outside world over discrete modem control 
lines. 

The MPSC2 can be logically divided into the following functional 
groups (Figure G-4.1 ): 

Two identical serial 1/0 controller channels, each consisting 
of a Transmitter section and a Receiver section, and a common 
Processor Interface that connects the MPSC2 with the host 
processor and provides overall d~vice control. 

Figure G-4.1 Block Diagram 

PllOCEISOA 
INTERFACE 

I S8AIALDATA 

I DATACLDCU 

-ANDIYllC 
CONTROLS 

I IRAIALDATA 

I DATACLOCIC$ 

-AND SYNC 
CDNTllDl.S 

G-4.1 TRANSMITTER The MPSC2 Transmitter performs all the functions necessary to 
convert parallel data to the appropriate serial bit streams required by 
various protocols. The major components of the transmitter are shown 
in Figure G-42. Control and status register fields pertinent to the 
operation of the transmitter are summarized in Table G-4.1. 

The primary data flow through the transmitter begins at the internal 
data bus. There, characters written to the MPSC2 are placed in the 
buffer register. When any character present in the shift register has 
been transferred out, or if the shift register is empty, the contents of 
the buffer register are transferred to the shift register and output with 
the least significant bit first. Then, a Transmitter Buffer Becoming 

137 



138 

Empty indication (flag) is given. This double buffering allows the 
processor one full character time from this flag to respond with the 
next character without interrupting data transmission. You should note 
that it is the transfer of a character from the data buffer to the shift 
register rather than the empty condition itself that causes the 
Transmitter Buffer Becoming Empty indication. At initialization or after 
a Reset Transmitter Interrupt/OMA Pending Command is issued to 
control register 0 (CAO) you must write one character to the buffer to 
reset this flag. The Transmitter Buffer Empty bit in status register O 
(SRO), always reflects the presence or absence of a character in the 
buffer. 

After a hardware or software reset, the transmitter data output (TxD) 
is in high (marking) state. You can pull TxD low (spacing) any time by 
setting the Send Break bit (CR5 bit 4). TxD remains low until the 
Send Break bit is reset and any data currently being transmitted is 
destroyed. 

Figure G-4.2 Block Diagram MPSC2 Transmitter 

INl'UllUL DATA BUS 
~~~~ .--~~....., ~~~----. 

TRANSMIT IMll'T REOtSTIA
I

6 BITS : 11 Bl'fS

SOU: ZERO
INIEATION LOGIC

SOLCSVNC

CRC DINIRATOA

A .. GORITHM
SIL"'1'

TRANSlmER
BUFFER EMPTY

EXTERNAL/STATUS
CHANGE

ASVNC
DATA

SHIFT
CLOCK

CONTROL AND STATUS
AIGISTEAS

TAANIMITTl!A CONTROL
LOGIC

ZBIT
OELAV

.. NO
IRE.AK

CLOCK I---'--- i'iC
DIVIDER

DIVISOR
SELECT

G-4.1.1 Asynchronous
Mode

Table G-4.1 Transmitter Control and Status Registers

CONTROL
llEGISTEll

STATUS
REGISTER

0

D7 l De

CRCCONTROL

Clock
Mode

OTR 1 Bits/Char

D1 Da

T...,1
Undorrun/

mM

Os J D4 Da D2

COMMAND

.....
Svnc/A1Ync

Format
S.lect

Mode Select

1 - Transmitter CFIC
Break Enable Type

SVNC1

SVNC2

··~ 1 Enables

Da D4 D3 Di

Trim
CTS Buffer

Empty

D1 l Do

REGISTER POINTER

Ttant.] Ext/Status
Int Int

Enable Enable

PeritY
Control

RTS l CRC
Enable

o, I Do

l All Async
Characters

S.n1

You can change the number of bits transmitted for each character at
any time by modifying the bits/char field (CR5, 0 5-06) before you load
the character into the buffer.

The rate at which data is shifted out is determined by the transmitter
clock input (TxC) and the clock mode field (CR4 Bits 6-7). You can
select a clock divisor so that the data clock (TxC) rate is equal to 1 x,
16x, 32x, or 64x the actual data rate. This field also controls the
receiver clock and must be set to 1 x for synchronous modes (see
Section G-4.2.2 for use in asynchronous mode). Each new bit is
shifted out on the falling edge of TxC.

The following is a general discussion of the operation of the MPSC2 in
various protocol modes. For a detailed description of the registers and
examples, see Chapter G-5.

After you select asynchronous mode, initialize the various parameters
(number of bits/character, number of stop bits, etc.) and enable the
transmitter (CR5 bit 3 = 1). TxD remains in the high (marking) state.
When the first character is written to the data buffer, it is transferred
to the shift register and the Transmitter Buffer Becoming Empty flag is
set. A parity bit, if enabled, and the specified number of stop bits
(1, 1 % or 2) are appended to the character. The character plus the
start bit are shifted out serially through a one-bit delay. After the
character has been completely sent, the next character is loaded into
the shift register and the process continues. When no more
characters are available, TxD remains high and the All Async

139

G-4.1.2 COP
Synchronous Modes

140

Characters Sent flag (SR1 bit 0) is set until the next character is
loaded. The transmitter may be disabled at any time (CR5 bit 3 = 0);
however, transmission of the character currently being sent, if any, is
completed. Disabling the transmitter does not reset the Transmitter
Buffer Becoming Empty flag or any resultant interrupts or DMA
requests. You can clear this flag either by writing a character to the
data buffer for later transmission or by issuing a Reset Transmitter
Interrupt/OMA Pending Command.

The modem control output ATS (Request To Send) may be set or
reset at any time with CR5 bit 1 . ATS immediately goes to the active
state (low) when this bit is set. When reset, ATS does not go high
until the shift register and the data buffer are empty.

The function of the modem control input, CTS (Clear To Send),
depends upon the Auto Enables Control (CR3 bit 5). When Auto
Enables is reset, any transition of CTS sets the External/Status
Change flag but has no affect upon transmission. When Auto Enables
is set, character transmission cannot begin until CTS goes low. If CTS
goes high, any character currently being transmitted is completed and
the transmitter is then disabled until CTS again goes low. The CTS
flag, SRO bit 5, reflects the inverted state of the external CTS pins,
that is, CTS flag = 1 when CTS = low.

The MPSC2 gives you three distinct COP operating modes: monosync
(8-bit sync character), bisync (16-bit sync character), and external
sync (the transmitter operates in the same manner as Monosync).
When bisync mode is selected, you should program the eight least
significant bits (first byte) of the sync character into CR6 and the
eight most significant bits (second byte) into CR7. For monosync and
external sync modes you should program CR6 with the 8-bit sync
character.

During operation in COP modes, the MPSC2 transmitter may be in any
one of the following phases:

Disabled Phase: Transmitter Enable is off (CR5, 03=0) or CTS is
low when the auto enables function is used;

Idle Phase:

Data Phase:

CRC Phase:

Sync characters are being sent;

Data from the processor is being transmitted;

(If CRC is used) when the CRC check
characters are being transmitted.

After selecting the desired protocol and initializing parameters, the
transmitter enters and remains in the Disabled Phase, with TxD high
until the Transmitter Enable bit is set. Once this is done the
transmitter enters the Idle Phase, transmits the first sync character
and continues to send sync characters until a character is written into
the transmit buffer. When the first data character is loaded into the
data buffer and the current sync character has been sent, the
trasnmitter enters Data Phase and sends data characters while
setting the Transmitter Buffer Becoming Empty flag each time it is
ready for the next character.

G-4.1.3 SDLC (/HDLC
BOP Synchronous)
Mode

During the Data Phase, the transmitter may run out of data to send
for one of two reasons: (1) The processor is busy and is not able to
provide the next data characters within a message, or (2) the data
portion of the message is complete and it is time to enter the CRC
Phase (or the Idle Phase if CRC is not used). The MPSC2
automatically handles both of these conditions through a mechanism
called the Idle/ CRC Latch, the state of which may be read from
SRO D6•

When the transmitter is initialized the ldle/CRC Latch is set, indicating
that the transmitter will enter the Idle Phase and begin sending sync
characters when there is no data to Send. Entering this phase also
sets the Transmitter Buffer Becoming Empty flag (if not already set) to
indicate with SRO D6 = 1 , that the Idle Phase has been entered.

However, if you reset the ldle/CRC Latch with a Reset ldle/CRC
Latch command to CRO, a lack of data causes the MPSC2 to enter
the CRC Phase and begin sending the 16-bit CRC character
calculated up to that point. Entering the CRC Phase sets the
ldle/CRC Latch which, in turn, sets the External/Status Change flag
indicating that the MPSC2 is sending CRC. After you reset the flag,
you may send the next data character to the transmitter and it will be
sent immediately following the CRC, or you may do nothing. In either
case, the Idle/ CRC Latch is now set again so the transmitter enters
the Idle Phase when no further data is available.

You can disable the transmitter during any phase of operation. If the
transmitter is disabled during the Idle or Data Phases the MPSC2
finishes sending the current character and goes to the Disabled
Phase (TxD high). If disabled during the CRC Phase, a 16-bit CRC is
sent; however, the remainder of the CRC is supplanted by sync with
bit positions matching.

The CRC Generator may be programmed to either of two polynomials,
CRC-16 (x16 + x1s + x2 + 1) or CRC-CCITT (x1s + x12 + xs + 1). The
CRC Generator may be reset to 0 at any time by issuing a Reset
CRC Generator Command to CRO. Since it is sometimes necessary
to exclude certain characters from the CRC calculation, the MPSC2
features a CRC enable/ disable control (CR5 D0) that may be
changed just prior to loading a character into the transmitter buffer to
include or exclude that and subsequent characters in the CRC
calculation.

In SDLC mode, the MPSC2 transmitter operates similarly to monosync
transmission with the following exceptions:

WR6 is not used for the transmitter sync character. SDLC flags (sync)
are generated internally.

Data and CRC are passed through zero insertion logic before
transmission. This logic inserts a O bit after transmitting five
contiguous ones to distinguish information from framing flags.

A special Send SDLC Abort Command is available in CRO. Issuing
this command causes at least 8 but less than 14 ones to be

141

G-4.2 RECEIVER

142

transmitted, destroying any data in the transmitter shift register and
buffer. After sending the abort, the transmitter enters Idle Phase.

Resetting the CRC generator initializes it to all ones rather than
zeroes and the result bits are inverted before transmission.

The MPSC2 receiver reverses the process performed by the
transmitter. It converts the serial data stream of the various protocols
back to parallel data for the processor. The major components of the
receiver are shown in Figure G-4.4. Control and status registers
pertinent to the operation of the receiver are summarized in Table
G-4.2.

The primary data path through the receiver begins at the receiver
data input RxD. Data passes through a two-bit time delay and into the
receiver shift register (the sync data path is described later). The
point of entry into the shift register and hence the number of bits per
character is determined by the mode of operation and the
Bits/Character field of CR3 (06-01). You can change this field at any
time provided that the character that is currently being assembled has
not yet reached the new number of bits/ character. If the number of
bits/ character specified is less than eight, the character appears
right-justified in the data buffer (with the parity bit, if parity is enabled)
and the left side is filled with ones (see Figure G-4.3).

Figure G-4.3 Data Format Example for Le11 Than 8
Bits/Character

D1

5 BITS/CHARACTER; PARITY ENABLED

Do

Figure G-4.4 Block Diagram MPSC2 Receiver

-...,
--n•TUlauMU

--.....

1~
I

IYMCMltONOUI , ..

CllC•UULt

Table G-4.2 Receiver Control and Status Registers

CONTROL
AIGISTEA

STATUS
AIGISTIA

o, I ...
CRCCONTROL

Bin/Ow

Clock Mode

°' De

._,
Abort

SOU: End
CACI

of Fttme Frerrung• ·-
I

1

o, 04 Os 02 o, Do

COMM ANO REGISTER POINTER

Aeceivet Ext/Status
Interrupt Interrupt
Conuol ·-.... ·- - SO\.C Syl'ICChar A_,_ ·-· Sync Hunt CAC Addrea ·- Ertabl" - ·-· Seeref'lmode Inhibit

..... Svnc/AtYnc
FormetSelect ModtSelect Control

CAC
Type

SYNC1

SYNCZ

Os 04 °' 02 I o, Do

Sync/Hunt A•'-1
OCD Ctlatectlf - Av1ilable

A- Patity SDl..Cl·Fiefd
0-U• ·- AllodueC-.....

143

Once the character has been assembled in the shift register, it is
passed to a three-character First In-First Out buffer (FIFO) and the
Received Character Available flag (and SRO 0 0) is set to inform the
processor that a character is available. The three-character buffer
allows the processor up to four character times to service the
receiver without losing data. This feature enhances data reliability at
high speeds while relaxing software timing requirements. The
Received Character Available flag is reset when all characters in the
buffer have been read, i.e., the buffer is empty.

As each character is transferred to the buffer, it is checked for errors
or special conditions and that information is placed in a parallel FIFO
error buffer so that the status associated with each character can be
read with that character through status register 1 . Reading a
character from the data buffer moves the next character and its
status to the top of the FIFO. You should read the status first, if it is
of interest, and then the data.

The rate at which data is shifted into the receiver is controlled by the
receiver clock input (RxC) and the clock mode field (CR4 0 6 .. 01). This
field also controls the transmitter clock mode. In any of the
synchronous modes, you must select the 1 x clock mode. In
asynchronous mode you may select a divisor such that clock rate
(RxC) equals 1x, 16x, 32x, or 64x the actual data rate. However, if
you select the 1 x mode, the clock must be externally synchronized
with the data (see Section G-4.1.3). RxD is always sampled on the
rising edge of RxC.

The data carrier detect (DCD) input works the same way as CTS
except that it enables the receiver when auto enables is set.

G-4.2.1 Asynchronous After initializing and enabling the MPSC2 Receiver, the receiver logic
Mode begins sampling the RxD input for a high-to-low (marking-to-spacing)

transition on each rising edge of Axe. When the transition is found,
the receiver waits ~ bit time, (for example, eight clock periods if the
clock mode is 16x) and samples again to ensure that RxD is still low,
improving the MPSC2's noise immunity. If RxD is still low, the MPSC2

assumes this is the middle of the start bit and one bit time later
begins to sample RxD to assemble the required number of data and
parity (if enabled) bits.

144

Once the character is assembled, the MPSC2 waits one more bit time
and again samples RxD. If RxD is not high, the stop bit is missing
and a Framing Error is indicated when the character is passed to the
data buffer. If a Framing Error has occurred, the MPSC2 receiver waits
~ bit time before beginning to sample again to avoid interpreting the
Framing Error as a new start bit.

Note that in the 1 x Clock mode, the receiver simply waits one clock
period after the first high-to-low transition is detected and then begins
assembling the character. It is for this reason that data and clock
must be synchronized in this mode.

The Break/ Abort bit, 0 7 of SRO is set when a null character plus
Framing Error is detected (i.e. RxD is low for more than one full
character time). Break detection also sets the External/Status Change

G-4.2.2 COP
Synchronous Modes

flag. When RxD returns high and the break has ended, D7 is reset to
O and the External Status Change flag is once again set. After the
break, a single null character is present in the data buffer. It should
be read and discarded.

Tl')~ following errors may occur during operation and are flagged in
status register 1 .

Framing Error
Parity Error

Overrun Error

See above discussion.

If parity is enabled and a parity error occurs, the
Parity Error bit D4 is set. Once a Parity Error has
occurred, the Parity Error bit remains set for
subsequent characters until reset by an Error
Reset command to CAO. You need only check
the end of a message or block to determine if a
parity error occurred.

If the data buffer is full with three characters
and a fourth character is received, the last
character in the buffer is overwritten and the
Overrun Error bit D5 is set. Like Parity Error,
Overrun Error remains set until the Error Reset
command is issued.

The MPSC2 gives you three distinct COP operating modes: (1)
monosync (8-bit sync character), (2) bisync (16-bit character), and (3)
external sync (the SYNC pin is used as an input to inform the MPSC2

that synchronization has been achieved externally).

When monosync mode is selected, CR7 should be programmed with
the 8-bit sync character to be matched by the receiver.

In bisync mode CR6 should contain the least significant bits (first
byte) and CR7 should contain the most significant bits (second byte)
of the 16-bit character to be matched.

In external sync mode, no sync character is required by the receiver.
During operation in the COP modes, the MPSC2 receiver is in one of
two phases: (1) Sync Hunt Phase or (2) Data Phase. The receiver
automatically enters Sync Hunt Phase when it is enabled (CR3, D0).

In monosync mode, the incoming data stream passes through and is
compared to the sync character in CR7. When a match is found, the
receiver switches to Data Phase and begins to pass data to the shift
register. If you determine at any time that synchronization has been

· lost, you may re-enter the Sync Hunt Phase by setting the Enter Hunt
Phase bit (D4) in CR3. When the Hunt Phase is entered or left, the
External/Status Change flag is set. When SRO D4 (Sync/Hunt) = one,
it indicates that the receiver is in Hunt Phase.

Operation is similar in bisync mode, however, when a match is found,
CR6 is also checked against the shift register contents and the Hunt
Phase is left only if the bytes match. In both monosync and bisync
modes, the SYNC pin is used as an output which goes momentarily
low any time a sync pattern is detected whether the receiver is in
Hunt or Data Phase. See Figure G-2.3 for a detailed timing diagram.

145

You can inhibit the transfer of sync characters to the data register by
setting the Sync Char Load Inhibit bit (CR3, D1). Since the CRC
calculation on sync is not inhibited by this bit, you should use it only
to strip leading sync characters from a message if you are using
CRC Block Check.

Because of the 8-bit delay between the shift register and the CRC
checker, CRC status (SR1, D8) Is not valid immediately after the CRC
character is received. CRC status is valid 16 bit times after the last
CRC character is transferred to the receive buffer, or 20 bit times
after the last CRC bit is shifted in at RxD.

G-4.2.3 SDLC (/HDLC The MPSC2 provides you with high-level processing capability for
BOP Synchronous) handling bit-oriented protocols. When you· select SDLC Mode, CR7
Mode must be programmed with the SDLC Flag character 01111110.

146

When operating in SDLC mode, the receiver can be in one of three
phases: Hunt Phase, Address Search Phase, or Data Phase.

The receiver automatically enters Hunt Phase when first enabled. The
incoming data stream passes through the one-bit delay and enters
the Sync Comparison/Zero Deletion logic where the following three
operations are performed.

First, whenever a O bit follows five consecutive ones, that 0 Is deleted
from the data stream. Second, If six consecutive ones are received, a
Flag Character Received indication is given internally. Third, If eight or
more ones are received, an abort Is indicated and the External/ Status
Change Flag is set. Flags and aborts are not transferred to the
receiver shift register.

Once a flag Is detected, the receiver leaves Hunt Phase (setting the
External/Status Change Flag) and, if Address Search Mode (CR3-D2)

Is enabled, it enters Address Search Phase. Once this phase Is
entered, the MPSC2 receiver compares the first 8-bit non-flag
character with the contents of control register 6. If the two values
match, or the received character is the global address 11111111 , the
receiver immediately enters Data Phase and character assembly
begins with this character. If no match is found and the value Is not
the global address, the receiver remains in Address Search Phase
and no data characters are assembled until a flag followed by the
correct address is encountered. If Address search Mode Is not
enabled, Data Phase is entered Immediately and character assembly
begins with the first non-flag character. Since all messages are
framed with flag characters, you can skip an incoming message at
any time simply by setting the Enter Hunt Phase bit (D,) in CR3.

Once in Data Phase, characters are assembled according to the
number of bits or characters specified until the next End of Frame
flag is encountered. The receiver then sets the Special Receive
Condition flag and transfers the character currently being assembled
to the receiver buffer regardless of the number of bits actually
assembled. A special residue code placed in the status buffer (SR1)
uses the number of bits assembled to Indicate the boundary between
the data and CRC characters (see Section G-5.1 for a mare detailed

G-4.3 BUS
INTERFACE
CONTROLLER

G-4.3.1 Bus Control
Logic

description of the residue code). If Address Search Mode is enabled,
the receiver once again enters Address Search Phase.

Unlike the COP mode of operation, data from the Sync
Comparison/Zero Deletion logic passes directly to the CRC checker.
As a result, when the End of Frame Flag is detected, the CRC
calculation is complete and the error status is passed to the status
buffer along with the residue code. The CRC checker is automatically
reset to all ones at this time.

The bus interface controller is the interface between the transmitter
and receiver sections and the processor bus. The major components
of this section are shown in Figure G-4.5. The control and status
registers pertinent to the operation of the control section are
illustrated in Table G-4.4.

The bus interface controller can be divided into four major
components:

Bus Control Logic
Interrupt Control Logic
OMA Control Logic
Clock and Reset Control Logic

All of these components interact to provide a flexible high
performance interface between the bus architecture defined by your
processor and application and the various internal elements that
make up the MPSC.2

The bus control logic determines the direction and internal source or
destination of data and control transfers between the MPSC2 and the
processor bus. During operation of the MPSC2, the bus control logic
may operate in any of three distinct modes: Processor Read/Write,
Interrupt Acknowledge, and OMA Cycle. These last two modes are
described in detail in Sections G-4.3.2 and G-4.3.3.

Processor Read/Write mode is the normal mode of operation. The
processor transfers data or commands and status to or from the
MPSC2 with its instruction set. The MPSC2 is enabled for Processor
Read/Write mode when the chip select (CS) input is made active
(low). The direction of the transfer is controlled by enabling either the
read (RD) or write (WR) inputs. The B/ A input determines the
source/ destination channel for the transfer and the C/ D input
specifies whether the transfer is character data or control/ status
information. These inputs are generally connected to the two low
order address lines. Figure 6.1 illustrates a typical connection
between a processor and the MPSC2.

147

G-4.3.2 lntenupl
Control Logic

148

Table G-4.3 Read/Write leleclon

Cl BIA C/15 iii iii OPERATION

1 x x x x NO OPIRATION. THE MPSC2 IS DUILICTID.

0 x x 1 1 NO OPIRATION. THE MPSC2 IS DUIL&CT&D.

0 0 0 1 0 WRITE A CHAR TO CHANNEL A TRANSMITTER.

0 0 0 0 1 READ A CHAR FROM CHANNEL A RECIVER.

0 0 1 1 0 WRIT& A CONTROL SVTI TO CHANNIL A.

0 0 1 0 1 READ • STATUS BYTE FROM CHANNEL A.

0 1 0 1 0 WRIT& A CHAR TO CHANNEL B TRANSMITTIR.

0 1 0 0 1 READ A CHAR FROM CHANNEL B RICllVIR.

0 1 1 1 0 WRITI A CONTROL BYTE TO CHANNIL I,

0 1 1 0 1 READ A STATUS BYTE FROM CHANNIL 8.

0 x x 0 0 ILLEGAL.

The interrupt control logic performs two functions: it prioritizes various
internal input requests, and places the appropriate information on the
data bus during an Interrupt Acknowledge cycle {if you enabled the
MPSC2s vectored interrupt feature).

Figure G-4.1 Bui Interface Controller

.. _... _.}
~-+-+-+-+-...._--·--:::=.. j~'

Ill ...
L..J:t:i======= =Tf }-..

" ..
~-~.:: -· - -

table G-4.4 Bus Interface Controller Control and Status
Registers

CONTROL
REGISTER D1 I De Da l D, 1 D3 !>z l D1 1 Do

CRO

CRZA l 0

CRZB

COMMAND• v---
INTERRUPT VECTOR

REGISTER POINTER

Prl- l DMAM_S_

c ... nnel
R
End af
lnterrUpt

STATUS
REGISTER

CRO

CRZB

°' 1 De l D5 l D4 l D3 I Dz D1 Do

lntam!Pt
Pending

INTERRUPT VECTOR

Each MSPC2 channel can generate four different types of interrupt
requests:

Received Character Available

Special Received Condition (character received but with an error or
SDLC End of Frame flag received)

Transmitter Buffer Empty

External input (CTS, DCD, SYNC, Internal Status (Sync,ldle/CRC
Latch) Change)

When any of these requests occurs, the interrupt control logic
determines whether to accept the request at that time, issue an
interrupt request by setting the INT output low when the request is
accepted, and, if Vectored Interrupt mode is enabled, place the
interrupt information on the data bus during the times that the
interrupt acknowledge input (INTA) is activated by the processor.

As an example, assume that the channel A DCD input has just
changed state causing an External/Status Change interrupt request.
The following sequence occurs:

If all the following conditions are true:

External/Status Change interrupts are enabled

No higher priority interrupt requests are pending

PRI is active

The MPSC2 is not acknowledging a pending lower priority interrupt
request

Then the interrupt control logic accepts the interrupt request and sets
INT active and PRO inactive.

If Vectored Interrupt mode is enabled, the MPSC2 may place
information on the data bus in response to a series of INTA pulses as
shown in the following chart.

149

150

Table G-4.5 Vectored lntenupt Mode

lntemipt INTACycle -·- Piii I 2 3 -·- 0 CO MIX ICALL Cll'I VlCl'Oll 0
I CO HIX ICAU. OPI 111-Z 111-Z -·- a Hl·Z V9CfOR 0
1 Hl·Z Hl·Z Hl-Z - a Hl·Z VICTOR .
I Hl-Z Hl·Z .

When operating in the 8080/5 modes, the MPSC2 issues an 8080-
type CALL CD vv Hex instruction where vv is the contents of control
register 28 (modified by the cause of the interrupt if the Status
Affects Vector feature is enabled). In particular, an MPSC2

programmed for 8085 Master mode always places the CALL opcode
on the data bus regardless of whether that MPSC2 has a pending
interrupt request. To avoid problems caused by momentary bus
contention, you should never program more than one device to
operate in this mode.

In 8086 mode, the MPSC2 places the vector on the data bus during
the second interrupt acknowledge to vector the processor to the
approximate location in low memory.

Figure G-4.6 MPSC1 Interrupt Conditions

--

Figure G-4.7 illustrates the action of the interrupt control logic during
an interrupt acknowledge sequence.

Figure G-4.7 Interrupt Timing

INTERNAL
INTIRRUPT-ttf.SECU&NCE ----------'

"'"°'

RIGISTl!RPOINT&R ---"'''
2B SPECIPllD Q)

PllUOllUTY RESOl.Y& -

____ ____ ,
INTERNAL

INTIRRUPT·IN.SERVICI --------'

~-

At the beginning of the first Interrupt Acknowledge cycle, the interrupt
prioritization logic is frozen to permit any late interrupt requests by
higher priority devices to ripple through and- resolve internal priorities
before the second interrupt pulse.

At the end of the second INTA pulse, the INT output is released by
the acknowledging device and the interrupt prioritization logic is re
enabled with an Interrupt In Service flag set. As long as this flag is
set, PRO is held high and only internal interrupt requests with a
priority higher than the one currently being serviced are accepted.

While the interrupt is being serviced, the processor issues an End of
Interrupt (EOI) command to the MPSC2 to reset the interrupt control
logic to its previous state. This scheme permits nested interrupts to
be serviced and the priority daisy chain to be properly maintained.

When the MPSC2 is operated in Non-vectored Interrupt mode, the
interrupt control logic operates in a similar manner except that INTA
is not used and no vector information is placed on the data bus.
Rather, the interrupt acknowledge sequence is simulated by reading
the vector (modified if Status Affects Vector is enabled) in status
register 2B.

151

G-4.3.3 OMA Control
Logic

152

The function of the OMA logic is somewhat similar to that of the
interrupt control logic in that service requests must be accepted,
prioritized, and information placed on (or, in this case, accepted from
as well) the data bus at the appropriate times. However, the purpose
of the OMA control logic is to enable the MPSC2 to avoid interrupting
the processor to make a data transfer. This is accomplished by
activating an external controller to move the data directly from the
MPSC2 to memory, or vice versa.

The OMA control logic accepts requests from four sources: (1)
Received Data Available in channel A, (2) Transmitter Buffer
Becoming Empty in channel A., (3) Data Available in channel B, and
(4) Transmitter Buffer Becoming Empty in channel B. When an
internal OMA request is made by one of the above sources and OMA
mode is enabled for that channel, the appropriate OMA request output
(e.g. DRQRxA when received data is available in channel A) is made
active. This causes the external OMA controller to request control of
the processor bus with a hold request. The MPSC2's daisy chain
output, HAO, is at this point locked in the inactive (high) state.

Some time later, the external OMA controller gains control of the
processor bus as the processor asserts its hold acknowledge output.

The OMA Controller now places the source or destination address on
the address bus and asserts the 1/0 read or write control line for a
data transfer from or to the MPSC2, respectively. The MPSC2 also
receives the processor hold acknowledge signal possibly through
higher priority MPSC2s not requesting OMA, at its HAI input. When
HAI is asserted, the OMA control logic freezes all internal requests,
determines which one has the highest priority, and performs the
transfer when 1/0 read or write is received from the OMA controller
at RD or WR. Once the transfer is complete, the prioritization logic is
re-enabled and new or pending requests can be serviced. Figure G-
4.8 illustrates some of the timing details of a OMA transfer.

Figure G-4.8 OMA Data Transfer Timing

~

;m _________ _

iillORWli ----------'--,..-----~

: PROOROTY RUOLYIT-: I
@

From the above explanation you should note two points. First, in the
case of multiple OMA requests from one MPSC2, both the MPSC2 and
the external OMA controller establish priorities independently to
determine which request to service first. As a result, you MUST
connect the MPSC2's OMA request outputs to the OMA controller so
that both make the same priority decisions. For example, when using
the MPSC2 with an 8257-type OMA controller and the priority bit
(CR2A-D2) = 0, you must set the controller to the fixed priority mode
(as opposed to rotating priority), and connect the MPSC2s DRORxA
output to the 8257's DAO O input, DROTxA to DAO 1 , and so on.

The second point is that many OMA controllers, such as the 8257,
may begin the transfer by asserting RD or WR before the MPSC2 can
receive HAI through the daisy chain and resolve request priorities.
Because of this, you should always derive HLDA to the OMA
Controller from HAI of the MPSC2(s) to which it is connected.
Additionally, a delay circuit from HAI to HLDA is recommended.
Figure G-6.5 shows a typical MPSC2/DMA interface which conforms
to these points.

The mechanism that controls the WAIT outputs of the MPSC2 is
related to the OMA logic. When enabled, the wait logic pulls the WAIT
line active when the processor attempts to perform a data transfer
operation at an inappropriate time. If WAIT is connected to the
processor's WAIT (or READY} input, it waits until the line is released
by the MPSC2 before completing the data transfer. Since the
processor is dedicated to either a read or write operation at any one
time, only one WAIT output is required for each channel. You may
assign it to operate with either the transmitter or the receiver. Figure
G-4.9 illustrates the basic wait feature timing.

Figure G-4.9 Walt Mode Timing

- lllLECTl!D

_

~ --- ___ ./ ___ '\@
llllolfWll

WlllTll OR ll!lml

153

G-4.3.4 Clock and
Reset Control Logic

G-5 PROGRAMMING
THE MPSC2

G-5.1 THE MPSC2

REGISTERS

154

The clock input of the MPSC2 controls the various timing states of the
MPSC2 and is usually connected to the processor clock. The clock is
not used by the bus control logic and data transfers need not be
synchronized to it in any way. The receiver and transmitter sections
use the clock, and it must be at least 4.Sx the highest data clock
frequency you plan to use. The OMA control logic also uses the
clock, and it should be the same clock seen by the external OMA
Controller.

The RESET input is used at power-up and at any other time that you
wish to reset the MPSC2 to its initial state. After a reset, all
transmitters and receivers are disabled, any pending interrupt and
OMA requests are cleared, and the modem control outputs OTA and
ATS are reset (high). When you reset the MPSC2, you must hold the
RESET input low for at least one complete clock cycle.

The software operation of the MPSC2 is very straightforward. Its
consistent register organization and high-level command structure
help to minimize the number of operations required to implement
complex protocol designs. Programming is further simplified by the
MPSC2s extensive interrupt and status reporting capabilities.

This section is divided into two parts. The first is a detailed
description of the commands, bits, and fields in the various MPSC2

control and status registers. The second part provides programming
examples and flowcharts for the MPSC2's various operating modes to
assist you in developing software for your specific application.

The MPSC2 interfaces to the system software with a number of
control and status registers associated with each channel. Commonly
used commands and status bits are accessed directly through control
and status registers 0. Other functions are accessed indirectly with a
register pointer to minimize the address space that must be dedicated
to the MPSC2•

Table G-S.1 Control Registers

CONTROL
REGISTER FUNCTION

0 FREQUENTLY USED COMMANDS AND REGISTER POINTER CONTROL

1 INTERRUPT CONTROL

2 PROCESSOR/BUSINTERFACECDNTROL

3 RECEIVER CONTROL

4 MODE CONTROL

5 TRANSMITTER CONTROL

8 SYNC/ADDRESS CHARACTER

7 SYNC CHARACTER

G-5.1.1 Control
Register O

Table G-5.2 Status Registers

STATUS
REGISTER FUNCTION

0 BUFFER AND •EXTERNAUITATUS" STATUS , RECEIVED CHARACTER ERROR AND SPECIAL CONDITION STATUS

2
(CHANNEL INTERRUPT VECTOR
BONLYI

All control and status registers except CR2 are separately maintained
for each channel. Control and status registers 2 are linked with the
overall operation of the MPSC2 and have different meanings when
addressed through different channels.

When initializing the MPSC2, control register 2A (and 28 if desired)
should be programmed first to establish the MPSC2 processor I bus
interface mode. You may then program each channel to be used
separately, beginning with control register 4 to set the protocol mode
for that channel. The remaining registers may then be programmed in
any order.

Figure G· 5.1 Control Register O

0., I Da Os I 04 I D3 Oz l 01 l Do

CRC CONTROL COMMAND lllQ18Tl!R POINTIR
COMMAND

Register Pointer (Do-D2)

The register pointer specifies which register number is accessed at
the next Control Register Write or Status Register Read. After a
hardware or software reset, the register pointer is set to O. Therefore,
the first control byte goes to control register 0. When the register
pointer is set to a value other than 0, the next control or status
(CID= 1) access is to the specified register, after which the pointer is
reset to O. You can freely combine other commands in control register
0 with setting the register pointer.

155

156

Commands commonly used during the operation of the MPSC2 are
grouped in control register 0. They are:

Null (000)

This command has no effect and is used when you wish to set only
the register pointer or issue a CRC command.

Send Abort (001)

When operating in SOLC mode, this command causes the MPSC2 to
transmit the SOLC abort code, issuing 8 to 13 consecutive ones. Any
data currently in the transmitter or the transmitter buffer is destroyed.
After sending the abort, the transmitter reverts to the Idle Phase
(flags).

Reset External/Status Interrupts (010)

When the External/Status Change flag is set, the condition bits 0 0-02

of status register O are latched to allow you to capture short pulses
that may occur. The Reset External/Status Interrupts Command
clears a pending interrupt and re-enables the latches so that new
interrupts may be sensed.

Channel Reset (011)

This command has the same effect on a single channel as an
external reset at pin 2. A channel reset command to channel A resets
the internal interrupt prioritization logic. This does not occur when you
issue a Channel Reset command to channel B. You must reinitialize
all control registers associated with the channel that you reset. After a
channel reset, you must wait at least four system clock cycles before
writing new commands or controls to that channel.

Enable Interrupt on Next Character (100)

When operating the MPSC2 in Interrupt on First Received Character
mode, you may issue this command at any time (generally at the end
of a message), to re-enable the interrupt logic for the next received
character.

Reset Pending Transmitter Interrupt/OMA Request (101)

You can reset a pending Transmitter Buffer Becoming Empty interrupt
or OMA request without sending another character by issuing this
command (typically at the end of a message). A new Transmitter
Buffer Becoming Empty interrupt or OMA request is not made until
another character has been loaded and transferred to the transmitter
shift register or when, if operating in synchronous or SOLC mode, the
CRC character has been completely sent and the first sync or flag
character loaded into the transmitter shift register.

Error Reset (110)

This command resets a Special Receive Condition interrupt. It also
re-enables the Parity and Overrun Error latches that allow you to

G-5.1.2 Control
Register 1

check for these errors at the end of a message.

End of Interrupt (111)(Channel A only)

Once an interrupt request has been issued by the MPSC2, all lower
priority internal and external interrupts in the daisy chain are held off
to permit the current interrupt to be serviced while allowing higher
priority interrupts to occur. At some point in your interrupt service
routine (generally at the end), you must issue the End of Interrupt
command to channel A to re-enable the daisy chain and allow any
pending lower priority internal interrupt requests to occur.

CRC Control Commands (Ds-D1)

These commands control the operation of the CRC generator I
checker logic.

Null (00)

This command has no effect and is used when issuing other
commands or setting the register pointer.

Reset Receiver CRC Checker (01)

This command resets the CRC checker to O when the channel is in a
synchronous mode and resets to all ones when In SDLC mode.

Reset Transmitter CRC Generator (1 O)

This command resets the CRC generator to O when the channel is in
a synchronous mode and resets to all ones when in SDLC mode.

Reset ldle/CRC Latch (11)

This command resets the ldle/CRC latch so that when a transmitter
underrun condition occurs (that is, the transmitter has no more
characters to send), the transmitter enters the CRC Phase of
operation and begins to send the 16-bit CRC character calculated up
to that point. The latch is then set so that if the underrun condition
persists, idle characters are sent following the CRC. After a hardware
or software reset, the latch is in the set state.

Figure G-5.2 Control Register 1

D7 De De D4 l D3 Dz D1 Do

WAIT WAITON RECEIVER CONDITION TRANSMITTER IXT/STATUI FUNCTION JI RICllVIR INTERRUPT APPICTI INTERRUPT INT ENABLE ENABLI TRANSMITTER MODE VICTOll ENABLE

External/Status Interrupt Enable (Do)

157

158

When this bit is set to one, the MPSC2 issues an interrupt whenever
any of the following occur:

transition of DCD input

transition of CTS input

transition of SYNC input

entering or leaving synchronous Hunt Phase break detection or
termination

SDLC abort detection or termination

ldle/CRC latch becoming set (CRC being sent)

Transmitter Interrupt Enable (D1)

When this bit is set to one, the MPSC2 issues an interrupt when:

the character currently in the transmitter buffer is transferred to the
shift register (Transmitter Buffer Becoming Empty) or,

the transmitter enters Idle Phase and begins transmitting sync or
flag characters.

Status Affects Vector (02)

When this bit is set to 0, the fixed vector programmed in CR2B during
MPSC2 initialization is returned in an interrupt acknowledge sequence.
When this bit is set to 1 , the vector is modified to reflect the condition
that caused the interrupt. See Section G-5.1.12 for a detailed
explanation of the MPSC2's vectored interrupt feature.

Receiver Interrupt Mode (03-04)

This field controls how the MPSC2's interrupt/OMA logic handles the
character received condition.

Receiver Interrupts/OMA Request Disabled (00)

The MPSC2 does not issue an interrupt or a OMA request when a
character has been received.

Interrupt on First Received Character Only (01)

(and issue a OMA Request)

In this mode, the MPSC2 issues an interrupt only for the first
character received after an Enable Interrupt on First Character
Command (CAO) has been given. If the channel is in OMA mode, a
OMA request is issued for each character received including the first.
This mode is generally used when using the MPSC2 in OMA or Block
Transfer mode to signal the processor that the beginning of an
incoming message has been received.

Interrupt (and issue a OMA Request) (10)

On All Received Characters
Parity Error is a Special Receive Condition

G-5.1.3 Control
Register 2
(Channel A)

In this mode, an interrupt (and OMA request if OMA mode is
selected) is issued whenever there is a character present in the
receiver buffer. A parity error is considered a special receive
condition.

Interrupt (and issue a OMA request) (11)

On All Received Characters
Parity Error is not a Special Receive Condition

This mode is the same as above except that a parity error is not
considered a special receive condition. The following are considered
special receive conditions and, when status affects vector is enabled,
cause an interrupt vector different from that caused by a received
character available condition:

Receiver Overrun Error

Parity Error (if specified)

SOLC End of Message (final flag received)

Wait on Receiver/Transmitter (05)

If the Wait function is enabled for block mode transfers, setting this bit
to O causes the MPSC2 to issue a wait (WAIT output goes low) when
the processor attempts to write a character to the transmitter while
the transmitter buffer is full. Setting this bit to 1 causes the MPSC2 to
issue a wait when the processor attempts to read a character from
the receiver while the receiver buffer is empty.

Wait Function Enable (07)

Setting this bit to 1 enables the wait function as described above and
in Section 4.3.3.

Figure G-5.3 Control Register 2 (Channel A)

D7 D8 D& l D4 l D3 D2 D1 I DO

PIN 10 • INTERRUPT VECTOR MODE PRIORITY DMAMODE
fi'llR!ltRTSB SELECT

OMA Mode Select (00-01)

Setting this field establishes whether channels A and B are used in
OMA mode (i.e. data transfers are performed by a OMA controller) or
in non-OMA mode where transfers are performed by the processor in
either Polled, Interrupt, or Block Transfer modes. The functions of
some MPSC2 pins are also controlled by this field.

159

160

Table G-5.3 DMA Mode Selection

c-,,_,...,
D1 Da A • 11 • a 30 31 II

0 0 - - 1IX1'ftl 8'lli 1lli 1lllii 1'II wm'A'
0 1 CIMA N- DRQTllA ll1J ..!!!!.. PlllJ 11115 DRQRxA

1 0 DMA DMA DRQTllA ll1J DRGli.I DRQTxB ~ DRQRxA

1 . 1 lllogol - - - - - - -

This bit allows you to select the relative priorities of the various
interrupt and OMA conditions according to your application.

Table G-&A OMA/Interrupt Priorities

- DMA Priority - lnterruPtP•lorltyR-

Dz CHA CHB

0 R11A > TxA >Rd> Td > lxTA > lxTB
INT INT

1 RxA >Rd> TllA > Txl> lxTA>hO

0 RxA TxA RaA > Rd> T•B > EaTA > ExTB
DMA INT

It.A > Rxl > Tx8 > ExTA > ExTB I RllA TllA

0 BllA TllA Rd TxB RxA > Rllll > ExTA > ExTB
DMA DMA

I RxA Rx8 TxA Tx• RICA> Rxl > ExTA > laTI

Interrupt Vector Mode (03-05)

This field determines how the MPSC2 responds to an interrupt
acknowledge sequence from the processor. See Section 4.3.2 for a
detailed description of the MPSC2 response in these modes.

Table G-5.S Interrupt Acknowledge Sequence Response

Ds J D4 l D3 M-
$tatusR 28Mdl-tV--hw•--
C--Aff_ V_ 110-lod

0 0 0 Nan-V-M D4 D3 Dz

0 0 1 Non-VICI°'" D4 D3 Dz

0 1 0 -v- Dz D1 Do
0 1 1 lllogol -
I a 0 -- D4 D3 Dz

1 0 1 -- D4 D1 D2

1 1 0 8086 D3 D1 Do

1 1 1 -

G-5.1A Control
Register 2
(Channel B)

G-5.1.5 Control
Register 3

Pin 10 SYNCB/RTSB Select (D1)

Programming a O into this bit selects RTSB as the function of pin 10.
A one selects SYNCB as the function.

Figure G-5.4 Control Register 2 (Channel B)

Dz

INTERRUPT VECTOll

G-lnterrupt Vector (00-07)

When the MPSC2 is used in Vectored Interrupt mode, the contents of
this register are placed on the bus during the appropriate portion of
the interrupt acknowledge sequence. Its value is modified if status
affects vector is enabled. You can read the value of CR2B at any
time. This feature is particularly useful in determining the cause of an
interrupt when using the MPSC2 in Non-vectored Interrupt mode.

Figure G-5.S Control Register 3

D7 1 De D& D4 D3 D2 D1 DO

NUMBER DF RECllVED AUTO INTER HUNT RECllVER ADDRESS SVNC RICllVER
BITS/CHARACTIR ENABUS PHASE CRC ENABLE SEARCH CHARACTER INABLE

MODE L0A0 INHIBIT

Receiver Enable (0 0)

After the channel has been completely initialized, setting this bit to 1
allows the receiver to begin operation. You may set this bit to O at
any time to disable the receiver.

Sync Character Load Inhibit (D,)

In a synchronous mode, this bit inhibits the transfer of sync
characters to the receiver buffer, thus performing a "sync stripping"
operation. When using the MPSC2's CRC checking ability, you should
use this feature only to strip leading sync characters preceding a
message since the load inhibit does not exclude sync characters
embedded in the message from the CRC calculation. Synchronous
protocols using other types of block checking such as checksum or
LRC are free to strip embedded sync characters with this bit.

Address Search Mode (D2)

161

162

In SDLC Mode, setting this bit places the MPSC2 in Address Search
mode where character assembly does not begin until the 8-bit
character (secondary address field) following the starting flag of a
message matches either the address programmed into CR6 or the
global address 11111111.

Receiver CRC Enable (0 3)

This bit enables and disables (1 = enable) the CRC checker in COP
mode to allow you to selectively include or exclude characters from
the CRC calculation. The MPSC2 features a one-character delay
between the receiver shift register and the CRC checker so that the
enabling or disabling takes effect with the last charcter transferred
from the shift register to the receiver buffer. Therefore, you have one
full character time in which to read the character and decide whether
it should be included in the CRC calculation.

Enter Hunt Phase (04)

Although the MPSC2 receiver automatically enters Sync Hunt Phase
after a reset, there are times when you may wish to reenter it, such
as when you have determined that synchronization has been lost or,
in SDLC mode, to ignore the current incoming message. Writing a 1
into this bit at any time after initialization causes the MPSC2 to reenter
Hunt Phase.

Auto Enables (05)

Setting this bit to 1 causes the DCD and CTS inputs to act as enable
inputs to the receiver and transmitter, respectively.

Number of Received Bits/Character (06-07)

This field specifies the number of data bits assembled to make each
character.

You may change the value on the fly while a character is being
assembled and if the change is made before the new number of bits
has been reached, it affects that character. Otherwise the new
specifications take effect on the next character received.

Table G-5.6 Received Bits/Character

D7 I De BITS/CHARACTER

;, 0 5

0 1 7

1 0 . 8

1 1 8

G-5.1.6 Control
Register 4 Figure G-5.6 Control Register 4

117 1 De DI 1 D4 D3 l Dz D1 Do

Cl.OCK RAT& SYNC MODI
NUMBER OP STOP BITS PARllY PARITY

SYNC MODI IVEN/000 ENABLE

Parity Enable (00)

Setting this bit to 1 adds an extra data bit containing parity
information to each transmitted character. Each received character is
expected to con•ain this extra bit and the receiver parity checker is
enabled.

Parity Even/Odd (01)

Programming a O into this bit when parity is enabled causes the
transmitted parity bit to take on the value required for odd parity. The
received character is checked for odd parity. Conversely, a 1 in this
bit signifies even parity generation and checking.

Number of Stop Bits/Sync Mode (D2-D3)

This field specifies whether the channel is used in synchronous (or
SDLC) mode or in asynchronous mode. In asynchronous mode, this
field also specifies the number of bit times used as the stop bit length
by the transmitter. The receiver always checks for one stop bit.

Table G-5.7 Stop Illa

D3 I Dz MOOE

0 0 SYNCHRONOUS MODES

0 1 ASYNCHRONOUS 1 BIT TIME 11 STOP BITl

1 0 ASYNCHRONOUS 1~ BIT TIMES ms STOP BITSl

1 1 ASYNCHRONOUS 2 BIT TIMES 12 STOP BITS)

Sync Mode (04-05)

When the Stop Bits/Sync Mode field is programmed for synchronous
modes 02 03 = 00), this field specifies the particular synchronous
format to be used. This field is ignored in asynchronous mode.

163

G-5.1.7 Control
Register 5

164

Table G-5.8 Synchronous Formats

Ds I D4 MODE

0 0 8-BIT INTERNAL SYNCHRONIZATION CHARACTER (MONOSVNC)

0 1 18-BIT INTERNAL SYNCHRONIZATION CHARACTER (BISYNC)

1 0 SDLC

1 1 EXTERNAL SYNCHRONIZATION (SYNC PIN BECOMES AN INPUT!

Clock Rate (Ds-D1)

This field specifies the relationship between the transmitter and
receiver clock inputs (TxC, RxC) and the actual data rate at TxD and
RxD. When operating in a synchronous mode you must specify a 1 x
clock rate. In asynchronous modes, any of the rates may be
specified, however, with a 1 x clock rate the receiver cannot determine
the center of the start bit. In this mode, you must externally
synchronize the sampling (rising) edge of RxC with the data.

Table G-5.9 Clock Rates

CLOCK CLOCK
RATE 1 RATE 2

07 I D& CLOCK RATE

0 0 CLOCK RATE• 1x DATA RATE

0 1 CLOCK RATE"' 16x DATA RATE

1 0 CLOCK RATE• 32x DATA RATE

1 1 CLOCK RATE• 64x DATA RATE

Figure G-5.7 Control Register 5

D7 DI] °' D4 03 02 01 Do

NUMBER OF TRANSMITTIO llNO TRANBMlnER
CllC

TRANSMITTER
OTR POLYNOMIAL ii'i'i

BITS/CHAllACTlll BREAK ENABLE
SELECT CRC ENABLE

Transmitter CRC Enable (0 0)

A 1 or a O enables or disables, respectively, CRC generator
calculation. The enable or disable does not take effect until the next
character is transferred from the transmitter buffer to the shift register,
thus allowing you to include or exclude specific characters from the

CAC calculation. By setting or resetting this bit just before loading the
next character, it and subsequent characters are included or
excluded from the calculation. If this bit is O when the transmitter
becomes empty, the MPSC2 goes to the Idle Phase, regardless of the
state of the ldle/CAC latch.

ATS (01)

In synchronous and SOLC modes, setting this bit to 1 causes the
ATS pin to go low while a O causes it to go high. In asynchronous
mode, setting this bit to O does not cause ATS to go high until the
transmitter is completely empty. This feature facilitates programming
the MPSC2 for use with asynchronous modems.

CAC Polynomial Select (02)

This bit selects the polynomial used by the transmitter and receiver
for CAC generation and checking. A 1 selects the CAC-16 polynomial
(x1s + x15 + x2 + 1). AO selects the CRC-CCITI Polynomial
(x16 + x12 + x5 + 1). In SOLC mode, you must select CRC-CCITI. You
may use either polynomial in other synchronous modes.

Transmitter Enable (03)

After a reset, the transmitted data output (TxD) is held high (marking)
and the transmitter is disabled until this bit is set.

In asynchronous mode, TxD remains high until data is loaded for
transmission.

In synchronous and SDLC modes, the MPSC2 automatically enters
Idle Phase and sends the programmed sync or flag characters.

When the transmitter is disabled in asynchronous mode, any
character currently being sent is completed before TxD returns to the
marking state.

If you disable the transmitter during the Data Phase in synchronous
mode, the current character is sent, then TxD goes high (marking).

In SDLC mode, the current character is sent, but the marking line
following is zero-inserted. That is, the lines goes low for one bit time
out of every five.

You should never disable the transmitter during the SDLC Data Phase
unless a reset is to follow immediately. In either case, any
character in the butter register is held.

Disabling the transmitter during the CRC Phase causes the
remainder of the CRC character to be bit-substituted with sync
(or flag). The total number of bits transmitted is correct and TxD
goes high after they are sent.

If you disable the transmitter during the Idle Phase, the remainder
of sync (flag) character is sent, then TxD goes high.

165

166

Send Break (04)

Setting this bit to 1 immediately forces the transmitter output
(TxD) low {spacing). This function overrides the normal transmitter
output and destroys any data being transmitted although the
transmitter is still in operation. Resetting this bit releases the
transmiter output.

Transmitted Bits/ Character (Ds-Ds)

This field controls the number of data bits transmitted in each
character. You may change the number of bits/ character by
rewriting this field just before you load the first character to use
the new specification.

Table G-5.10 Tran1mltted 1118/Character

-IT .,_,-
BITS Piii llTI NII

CHAllACTlll 1 CMAllMmlll

De Ila llTllCllAllACTll

0 0 I 011 LISI 1111 llLOWI

0 1 7

1 0 •
1 1 I

Normally each character is sent to the MPSC2 right-justified and
the unused bits are ignored. However, when sending five bits or
less the data should be formatted as shown below to inform the MPSC2

of the precise number of bits to be sent.

Table G-5.11 Tran1mltted lltl/Character for 5 Charactere
and Le11

"7 °' °' o. 03 112 01 Do -lllOPllTllCHAMCTlll

1 1 1 1 0 0 0 Do 1

1 1 1 0 0 0 01 Do 2

1 I 0 0 0 Oz 01 Do 3

1 0 0 0 D1 Dz D1 Do •
0 0 0 D• Da Dz D1 Do I

OTA (Data Terminal Ready) (01)

When this bit is 1, the DTR output is low (active). Conversely,
when this bit is 0, DTR is high.

G-6.1.8 Control
Register 8

G-5.1.9 Control
Register 7

Figure G-5.8 Control Register 6

D1

llVflC 8YTI ,

Sync Byte 1 (Do-Dr)

Sync byte 1 is used in the following modes:

Monosync:

Bisync:

External Sync:

SDLC:

8-bit sync character transmitted during the
Idle Phase

Least significant (first) 8 bits of the 16-bit
transmit and receive sync character
Sync character transmitted during the Idle
Phase
Secondary address value matched to
Secondary Address field of the SDLC frame
when the MPSC2 is in Address Search Mode

Figure G-5.9 Control Register 7

D1

SYNC BYTE 2

Sync Byte 2 (Do-01)

Sync Byte 2 is used in the following modes:

Monosync: 8-bit sync character matched by the
Receiver

Bisync: Most significant (second) 8 bits of the 16-bit
transmit and receive sync characters

SDLC: You must program the flag character,
0111111 O, into control register 7 for flag
matching by the MPSC2 receiver

167

0-5.1.10 Statue
Register O

168

Figure 0-5.10 Status Register O

.,, Dt Ds D4 l>3 Da 0, Do

Bre•k/ T,.,._lttw ·-· A-

Abo'1
ldlo/CAC ffi , iiCii Buffw -... Ch-._

A-

Received Character Available (00}

When this bit is set, it indicates that one or more characters are
available in the receiver buffer for the processor to read. Once all
of the available characters have been read, the MPSC2 resets
this bit until a new character is received.

Interrupt Pending (D1-Channel A Only)

The interrupt pending bit is used with the interrupt vector register
(status register 2) to make it easier to determine the MPSC2's
interrupt status, particularly in Non-vectored Interrupt mode where
the processor must poll each device to determine the interrupt
source. In this mode, interrupt pending is set when you read
status register 28, the PRI input is active (low) and the MPSC2 is
requesting interrupt service.

You need not analyze the status registers of both channels to
determine if an interrupt is pending. If status affects vector is
enabled and interrupt pending is set. the vector you read from
SR2 contains valid condition information.

In Vectored Interrupt mode, interrupt pending is set during the
interrupt acknowledge cycle (on the leading edge of the 2nd
INTA pulse) when the MPSC2 is the highest priority device
requesting interrupt service (PRI is active). In either mode, if there
are no other pending interrupt requests, interrupt pending is reset
when the End of Interrupt command is issued.

Transmitter Buffer Empty (02}

This bit is set whenever the transmitter buffer is empty, except
during the transmission of CRC (the MPSC2 uses the buffer to
facilitate this function). After a reset, the buffer is considered
empty and transmit buffer empty is set.

External/Status Flags

The following status bits reflect the state of the various conditions
that cause an external/status interrupt. The MPSC2 latches all
external/ status bits whenever a change occurs that would cause
an external/status interrupt (regardless of whether this interrupt is
enabled). This allows you to capture transient status changes on
these lines with relaxed software timing requirements (see
Appendix A for detailed timing specifications).

When you operate the MPSC2 in interrupt-driven mode for
external/ status interrupts, you should read status register O when
this interrupt occurs and issue a Reset External/Status Interrupt
command to reenable the interrupt and the latches. To poll
these bits without interrupts, you can issue the Reset
External/Status Interrupt command to first update the status to
reflect the current values.

This bit reflects the inverted state of the DCD input. When DCD is
low, the DCD status bit is high. Any transition on this bit causes an
External/Status Interrupt request.

Sync Status (04)

The meaning of this bit depends on the operating mode of the
MPSC2•

Asynchronous mode: Sync status reflects the inverted state of the
SYNC input. When SYNC is low, sync status is high. Any transition on
this bit causes an External/Status Interrupt request.

External Synchronization mode: sync status operates in the same
manner as asynchronous mode. The MPSC2s receiver
synchronization logic is also tied to the sync status bit in external
synchronization mode and a low-to-high transition (SYNC input going
low) informs the receiver that synchronization has been achieved and
character assembly begins (see Appendix A for detailed timing
information).

A low-to-high transition on the SYNC input indicates that
synchronization has been lost and is reflected both in sync status
becoming zero and the generation of an External/Status interrupt. The
receiver remains in Receive Data Phase until you set the Enter Hunt
Phase bit in Control Register 3.

Monosync, Bisync, SDLC modes: In these modes, sync status
indicates whether the MPSC2 receiver is in the Sync Hunt or Receive
Data Phase of operation. A O indicates that the MPSC2 is in the
Receive Data Phase and a one indicates that the MPSC2 is in the
Sync Hunt Phase, as after a reset or setting the Enter Sync Hunt
Phase bit. As in the other modes, a transition on this bit causes an
External/Status interrupt to be issued. You should note that entering
Sync Hunt Phase after either a reset or when programmed causes an
External/Status Interrupt request which you may clear immediately
with a Reset External/Status Interrupt command.

CTS (05)

This bit reflects the inverted state of the CTS input. When CTS is low,
the CTS status bit is high. Any transition on this bit causes an
External/Status Interrupt request.

ldle/CRC (06)

169

G-5.1.11 Status
Register 1

170

This bit indicates the state of the Idle/ CRC latch used in synchronous
and SOLC modes. After reset this bit is 1, indicating that when the
transmitter is completely empty, the MPSC2 enters Idle Phase and
automatically transmits sync or flag characters.

A zero indicates that the latch has been reset by the Reset Idle/ CRC
Latch command. When the transmitter is completely empty, the
MPSC2 sends the 16-bit CRC character and sets the latch again. An
External/Status interrupt is issued when the latch is set, indicating
that CRC is being sent. No interrupt is issued when the latch is reset.

Break/ Abort (D1)

In asynchronous mode, this bit indicates the detection of a break
sequence (a null character plus framing error, that occurs when the
RxD input is held low (spacing) for more than 1 character time).
Break/ Abort is reset when RxD returns high (marking).

In SDLC mode, Break/ Abort indicates the detection of an abort
sequence when 7 or more ones are received in sequence. It is reset
when a zero is received.

Any transition of the Break/ Abort bit causes an External/Status
Interrupt.

Figure G-5.11 Status Register 1

CllC
,_ -

All Sent (00)

-1 - IDLC-C..

In asynchronous mode, this bit is set when the transmitter is empty
and reset when a character is present in the transmitter buffer or shift
register. This feature simplifies your modem control software routines.
In synchronous and SOLC modes, this bit is always set to 1.

SDLC Residue Code (01-03)

Since the data portion of an SDLC message can consist of any
number of bits and not necessarily an integral number of characters,
the MPSC2 features special logic to determine and report when the
End of Frame flag has been received, the boundary between the data
field, and the CRC character in the last few data characters that were
just read.

When the end of frame condition is indicated, that is, status register 1
D1 = 1 and Special Receive Condition interrupt (if enabled), the last
bits of the CRC character are in the receiver buffer. The residue code
for the frame is valid in the status register 1 byte associated with that
data character (remember SR1 tracks the received data in its own
buffer).

The meaning of the residue code depends upon the number of
bits/ characters specified for the receiver. The previous character
refers to the last character read before the End of Frame, etc.

Table G-5.12 Residue Codes

D3 Dz D, -Ch- 2nc1PrevlaaoCh.....,

1 0 0 c c c c c c c c CCCCCDDD

0 1 0 cccccccc CCCCDDDD

1 1 0 cccccccc CCCDDDDD

0 0 1 cccccccc CCDDDDDD

1 0 1 cccccccc CDDDDDDD

0 1 1 c c c c c c c c D D DD D D D D lnoreoiduel

1 1 1 c c c c c C C D DDDDDDDD

0 0 0 CCCCCCDD DDDDDDDD

D3 Dz Dt Previous CharMter ZnclP-laaoChar_,

1 0 0 ccccccc CCCCCDD

0 1 0 ccccccc CCCCDDD

1 1 0 ccccccc CCCDDDD

0 0 1 ccccccc CCDDDDD

1 0 1 ccccccc CDDDDDD

0 1 1 ccccccc DDDDDDD (noreoiduel

0 0 0 cc·ccccD DDDDDDD

6 Bits/Character

D3 Dz Dt Previous Ch•racter 2nd Prevlou1 Character

1 0 0 cccccc CCCCCD

0 1 0 cccccc CCCCDD

1 1 0 cccccc CCCDDD

0 0 1 cccccc CCDDDD

1 0 1 cccccc CDDDDD

0 0 0 cccccc DDDDDD (nof'ftklue)

5 Blts/Char•cter

D3 Dz D, 2nd Prwiou1 Charector 3rd Prevlou1 Chancter

1 0 0 cc cc c DD DD D (no residue!

0 1 0 CCC CD DD DD D

1 1 0 CCC DD DD DD D

0 0 1 CC DD D DD DD D

0 0 0 CDDDD DD DD D

Special Receive Condition Flags

The status bits described below (Parity error [if Parity is a Special
Receive condition is enabled], Receiver Overrun Error, CRC/Framing
Error, and End of SDLC Frame), all represent Special Receive
conditions.

When any of these conditions occurs and interrupts are enabled, the
MPSC2 issues an interrupt request. In addition, if you enabled
Condition Affects Vector mode, the vector generated (and the

171

G-5.1.12 Status
Register 2

172

contents of SR2B for non-vectored interrupts) is different from that of
a Received Character Available condition. Thus, you need not analyze
SR1 with each character to determine that an error has occurred.

As a further convenience, the Parity Error and Receiver Overrun Error
flags are latched, that is, once one of these errors occurs, the flag
remains set for all subsequent characters until reset by the Error
Reset command. With this facility, you need only read SR1 at the end
of a message to determine if either of these errors occurred
anywhere in the message. The other flags are not latched and follow
each character available in the receiver buffer.

Parity Error (04)

This bit is set and latched when parity is enabled and the received
parity bit does not match the sense (odd or even) calculated from the
data bits.

Receiver Overrun Error (0 5)

This error occurs and is latched when the receiver buffer already
contains three characters and a fourth character is completely
received, overwriting the last character in the buffer.

CRC/Framing Error (06)

In asynchronous mode, a framing error is flagged (but not latched)
when no stop bit is detected at the end of a character (i.e. RxD is low
1 bit time after the center of the last data or parity bit). When this
condition occurs, the MPSC2 waits an additional % bit time before
sampling again so that the framing error is not interpreted as a new
start bit.

In synchronous and SDLC modes, this bit indicates the result of the
comparison between the current CRC result and the appropriate
check value and is usually set to 1 since a message rarely indicates
a correct CRC result until correctly completed with the CRC check
character. Note that a CRC error does not result in a Special Receive
Condition interrupt.

End of SDLC Frame (0 7)

This flag is used only in SDLC mode to indicate that the End of
Frame flag has been received and that the CRC error flag and
residue code is valid. You can reset this flag at any time by issuing
an Error Reset command. The MPSC2 also automatically resets this
bit for you on the first character of the next message frame.

Figure G-5.12 Status Register 2

De D& Dz Do

G-5.2 MPSC2

PROGRAMMING
EXAMPLES

Interrupt Vector (00-07 - Channel B Only)

Reading status register 26 returns the interrupt vector that you
programmed into control register 28. If Condition Affects Vector mode
is enabled, the value of the vector is modified as follows:

Table G-5.13 Condition Affects Vector Modifications

B085M- D4 D3 D2
CONDITION

BG86M- D2 o, Do

, 1 1 No•---...
0 0 0 Chann1l 8 Transmitter Buffer Empty

0 0 1 Ch1nn1I 8 lxnrnal/Stmtt11 Change

0 I 0 Chann1I 8 Received Ch1reac... Available

0 I I CllanMl 8 8-ial A-Condition

1 0 0 Channel A Tr1Mlftittw 9uffer ltnpty

I 0 1 Chonnal A lxtornal/Sutu1 Chango J
1 1 0 Channel A Received ChM'8Gt8r Available

1 1 1 Cll__.A.,_lal--ion

As you can see, code 111 can mean either channel A Special
Receive condition or no interrupt pending. You can easily distinguish
between the two by examining the Interrupt Pending bit (D,) of status
register 0, channel A. Remember, in Non-vectored Interrupt mode you
must read the vector register first for Interrupt Pending to be valid.

ASYNC.01

Init:
********** .Asynchronous Mode ***************

ISSUE Channel Beset Co:mma.n.d (CBO)
BET Bus Interface Options (CR2A)
BET Interrupt Vector (CB2B)-1f used
BET Operating Mode (CM):

.Asynchronous Mode, Parity Select, # of Stop Bits, Clock
Bate

BET Receive Enable, Auto Enables, Receive Cba.racter Length
(CR2)
BET 'n'a.nsmit Enable, Modem Controls, 'n'a.nsmit Char,
Length (CB.6)
I88UE Reset Bxternal/Bta.tus Interrupt Command
BET 'n'a.nsmit Interrupt Enable, Receive Interrupt on Ever,y

Character, External Interrupt Enable, Wait Mode DiBa.ble.
**** End Of Initialization******

Send:
ISSUE First Byte 'lb MP8C
RETURN 'lb Main Program OB Halt

Interrupt:
CABE Interrupt 'lYPe DO:

173

174

Character Received:
READ Character from MP8C
PROCESS Character
ISSUE End Of Interrupt Command
RETURN From Interrupt

Specia.l Receive Condition:
READ SBl
ISSUE Error Reset Command
CALL Specia.l Error Routine
ISSUE End Of Interrupt Command
RETURN From Interrupt

Transmitter Buffer Empty:
IF Last Character Transferred was End of Message

THEN ISSUE Reset Tra.nsmit Interrupt/DMA Pending
Command

ELSE
Tra.nsfer Next Character to MP8C
ISSUE End Of Interrupt Command
RETURN From Interrupt

External/Status Change:
READ SBl
CALL Specia.l Condition Routine
ISSUE End Of Interrupt Command
RETURN From Interrupt

**** END CASE ****

~rmina.te Transmit:
RESET Transmit Enable, BTS (CRS)
RETURN

~rmina.te Receive:
RESET Receive Enable (CRl)
RESET DTR (CRS)

ABYNC.01

RETURN

END

Figure G-5.13 Asynchronous lnHlallzatlon for Polled Transmit and
Receive Receive

AIVNCHRONOUI MODE, PARITY INPORMAnON.
STOP BITW INPORMATION CLOCK llATI

A&OUUT TO AND. TRANSMIT INAllU
TAANIMIT CMAAACHA Ll!NGTH.

DATA ftRMUrlAL RIADV

TRANSMIT INT&ARUPTIDMA &NAiii.i.
STATUI AFFICft VICTOR. INTERRUPT

ON ALL AICllVI CHARACTERS, DISABLE
WAIT FUNCTION, IXT!:RNAL INTIARU" INMLI

CHANNEL
AISET

Figure G-5.14 Asynchronous Receive

...

CR2·A

...

Cll5

......

•••

IN A TYPICAL POI.LID INVIAONMINT.
THI MPSC2 II INITIALIZID AND

THIN PIRIODICALL V CHICKID '0A
COMl'LITION OP A TAANallT OA

Al!CllVI OPERATION.

AIClllVE &NAIU, AUTO INAllLU,
AIC&IVI CNAAACTIA LINOTH

AIC&IVIA AND TAAHSMITTIA ARI BOTH
INITIALIZIO. AUTO INABLI! HF UllOI WILL

l!NABLI THE TAANllllTTIR IP eft II ACTIVE
AND THI A&C&IYIA IF ~ II ACnYE

175

176

Figure G-S.15 Asynchronous Transmit

RESET EXT.
STATUS INTERRUPTS

•1p AUTO ENABLE WAS SIT IDS• 1 IN CONTROL REGISTER 3t
THIS STEP MAY BE OMITTED

SYNC.PM
***********SYNCHRONOUS OPERATION EXAMPLE***********
****This example uses the Block 'lra.nsfer Mode***

lnit:
ISSUE Channel Reset Command
SET Interface Option (CR2A)
SET Interrupt Vector (CR2B)
SET Parity Mode, Sync Mode, lx Clock (CR4)
SET Sync Character 1 (CR6)
SET Sync Character 2 (CR7)
RETURN

Initiate 'lra.nsmit:
ISSUE Reset External/Status Interrupt Command
SET External Interrupt Enable, 'lra.nsmit Interrupt Enable

Wait Enable, Wait on 'lra.nsmit (CRl)
SET 'lra.nsmit Enable, # of Bits/Character, RTS,

CRC Po1ynomial Select.

****'lra.nsmitter iS now en.a.bled 8Jld will a.utoma.tioally begin
sending Sync oha.racters****

WAIT Several Character Times (a. good idea. to help system ga.tn
synchronization)
Next Mess~e:

ISSUE Reset 'lra.nsmit CRC Command

Send Character:
GET Cba.ra.cter
If Chara.ct.er Is 'lb Be Included In CRC
THEN

SET CRC Genera.tor On (CBB)
EISE

SET CRC Genera.tor Oft' (CBB)
END IF
WRITE Character 'lb MP8C (Processor will ''Wa.it" until

'n>a.nsmitter buffer is empty)
IF Character Was Not The Last
THEN

GOTO Send Cha.ra.oter (do next character)
EISE

SET ORO Genera.tor On (CBB)
ISSUE Reset Idle/ORO Latch Command
WAIT For External/Status Interrupt Indica.ting CBC Being
Sent
IF Next Message Is Rea.d;y 'lb Be Transmitted
THEN

GOTO Next Message (Next mess~e will be sent
immediately following CBC)

ELSE
WAIT For 'ntansmit Buffer Interrupt indica.ting Tra.:Wng

Sync Being Sent
SET Transmitter Enable O~ RTS Oft' (CB6)

END IF
END IF
****End of 'ntansmit Routine****

SYNC.PRG

****Receive Routine****

Receive Message:
BET Externa.1/Status Interrupt Enable, Receive Interrupt

On First Character Mode, Wait Ena.bled, Wa.it on
Receive (CRl)

SET Receiver Enable On, Sync Character Load Inhibit,
of Bits/Cha.ra.cter (CRl)

SET DTR On (CBB)
ISSUE Reset External Status Interrupt Command
ISSUE Enable Interrupt On Next Received. Character

Command
ISSUE Error Reset Command.

****Receiver is now enabled and in the Hunt Phase****
WAIT For External/Status Interrupt (indica.ttng

synchro:niza.tion has been a.chieved)
Issue Error Reset Command
WAIT For Received Cha.ra.cter Ava.ila.ble Interrupt (first

non-sync oha.ra.cter is now a.va.lla.ble)
ISSUE Reset CBC Checker Command
SET Sync Chara.cter Load Inhibit Oft'

177

178

Get Character:
GET Character from MP8C (processor will "Wait" until a.t

least 1 character :Is a.va.ila.ble)

IF Character Is 'lb Be In.Cluded In CBC Calculation
THEN

'l\lrn. CBC Checker On (CR3)
ELSE

BET CBC Checker Oft' (CR3)
ENDIJ.i'
IF Chara.cter Is Pa.rt of Message Data.
THEN

SAVE Character In Memo:ey
END IF
IF Character Was NOT End Of Messa.ge
THEN

GOTO READ Character
END IF

*** End Of Messa.ge***
BET CBC Checker On
READ 2 CBC Cba.ra.cters
READ 2 Character (these characters Jn8i1 be pa.rt of the

next messa.ge but must be read before CBC will be valid)
READ SRl (th:ls must be done immediately so that next

character status will not overwrite)
IF Parity OR overrun OR CBC = Error
THEN

GOTO Error Processor
END IF

IJ.i' More Messages Are 'lb Be Beceived
THEN

GOTO Get Next Messa.ge

SYNC.PRG

El.BE
SET DTR Off
SET Receive Enable Off

BET External/Status Interrupt.a Off, Receiver Interrupt
Mode D:lsabled (CRl)
RETURN

END
RETURN

CHANNEL
RESET

SET BUS
INTERFACE

CAO

CR2

CR2·B

SET INTERRUPT
VECTOR IF USEO

CR4

SET BASIC PROTOCOL
PARAMETERS'

SET AUTO
ENABLES IF USED

SET SYNC
CHARACTER 1

SET SYNC
CHARACTER 2

CR3

CR&

CR7

CRD

RESET EXTERNAL
STATUS INTERRUPTS

SET INTERRUPT
PARAMETERS

CR1

ISSUE TRANSMIT
PARAMETERS; PAR ITV

INFORMATION, SYNC MODE
INFORMATION. X1 CLOCK

IF THIS BIT IS SET,
TRANSMISSION BEG.INS

AFTER ffi IS DETECTED

EXTERNAL INTERRUPT MONITORS
THE STATUS OF THE ffi

INPUT AS WELL AS THE STATUS OF
TX UNDERRUNIEOM

179

180

TRANSMIT MODE IS FULLY ~---~
INITIALIZED AND READ TO
SEND FIRST CHARACTER

ISSUE END OF NO
INTERRUPT COMMAND

CR&

SETCRCAND
MOOEM PARAMETERS

RESETCRC
GENERATOR

CAO

EXECUTE HALT
QR OTHER PROGRAM

llN INTERRUl'T

GET BYTE fRDM
MEMORY

UPDATE CPU
POINTERS

TURNQNCRC
CHECKER

SEND BYTE

NO

REQUEST TO SEND,
TRANSMIT ENABLE,

BISYNC CRC, TRANSMIT
CHARACTER LENGTH

THE CRC GENERATOR IS
RESET BY ISSUING A RESET

TRANSMIT CRC GENERATOR COMMAND

THE FIRST DATA TRANSFER
TD THE MPSC2 CAN BEGIN WHEN

THE EXT/STATUS INTERRUPT HAS
OCCURRED ICTSSTATUSBITSET

IN AUTO ENABLE MQOEJ

TURN Off
CRCCHECKER

Figure G-6.16 Blayne Initialization Transmit

RESET TX
UNDERRUN LATCH

UPDATE
CPU REGISTERS

THIS BIT IS SET IF THE TRANSMIT
t----"4 BUFFER IS NDT SERVICED BEFORE

LAST CHARACTER IS SENT OUT

DISABLE INTERRUPTS AND
UPDATE MODEM CONTROLS

RETURN
FROM

INTERRUPT

IP INTERRUPT ERROR OCCURS

TRANSFER SRO
TO CPU

EXECUTE
ERROR

ROUTINE

RETURN
FROM

INTERRUPT

DETERMINE NATURE
OF INTERRUPT

181

182

RESETS INTERNAL
INTERRUPT PRIORITY

WRITE DESIRED
INTERRUPT VECTOR

STATUS AFFECTS
VECTOR, EXTERNAL
INTERRUPT ENABLE,
RECEIVE INTERRUPT

ON FIRST CHARACTER

CRO

CHANNEL RESET
RESET CRC CHECKER

CR2·A

SET BUS
INTERFACE

CR2·B

SET INTERRUPT
VECTOR

CR4

THIS MUST BE
DONE IN TWO BYTES

SET BASIC 110
PARAMETERS

PARITY INFORMATION,
____ .,. SYNC MODES INFORMATION

X1 CLOCK MODE

CR&

SET PARAMETERS ----... CRC DATA TERMINAL READY

SET SYNC
CHARACTER 1

SET SYNC
CHARACTER 2

CR&

CR7

CRO

RESET EXTERNAL
STATUS INTERRUPTS

SET INTERRUPT
PARAMETERS

CONTINUED

CR1

SCA ..
CHARACTER

WAITE RIOllTIA :I IS ISSUED
TO ENASLI THI AECEtvEA.
AICEIVIR ENABLE, SYNC

CHARACTER LOAD INHIBIT,
ENTER HUNT MODE, AUTO
ENABLE, RECEIVER WORD

LENGTH
EXECUTE HALT OR
OTHIR PROGRAM

BISYNC TRANSMIT
WHEN INTERRUPT ON FIRST

CHARACTER OCCURS.

RESETTING THIS INTERRUPT MODE
PROVIDIS SIMP\.I! PROGRAM LOOP BACK

ENTRY FOR THE NEXT'TRANIACTION

RECEIVE MOOE II FULLY INITIALIZED
AND THE CPU IS WAITING FOR THE
INTERRUPT ON FIRST CHARACTER

DURING THE HUNT MODE, THE MPSC2 DETECTS
TWO CONTIGUOUS CHARACTERS TO &STABLISH
SYNC. AFTER SYNC HAS BEIN ESTABLISH&D THE
Cl'tJ WILL ISSUE A DATA READ FROM THE CPU.

TURN OFF SYNC THtl BIT WAS SET TO INHIBIT THI!
CHARACTER LOAD INHIBIT TRANSFER OF SYNC CHARACTERS TO

THE RECEIVE BUFFER

RECEIVE CONTINUED

183

184

Figure G-5.17 Blsfnc lnltlallzatlon Receive

RESET
CRCCHECKER

ISSUE
END OF

INTERRUPT
COMMAND

READING STATUS REGISTER 1
READ STATUS WILL SHOW THE ERROR STATUS
INFORMATION FOR THE PREVIOUS DATA BLOCK

SEND REPLY
YES OR TAKE

APPROPRIATE ACTION

SET CRC ERROR
SEND ACK FLAGS IN MEMORY

REPLY FLAG

DISABLE INTERRUPT
AND UPDATE

MODEM CONTROLS

********************BJ)LC OPE~ON'" E:KAllPLE********************

****This example uses DMA. 'lra.nsfer Mode****

Initialize:
ISSUE Channel Reset Command
SET Interface Option (CR2.A)
SET Interrupt Vector (CB2B)
SET SDLC Mode, lx Clock (CR4)
SET BJ)LC Flag (CR7)= 01111110
BET BJ)LC Secondary Address (CB6)
RETURN

Initiate 'lra.nsmit:
ISSUE Reset ExternaJ. Status Interrupt Comma.nd
SET ExternaJ. Interrupt Enable, 'lra.nsmit Interrupt/DMA.
Enable (CRl)
SET 'lra.nsmit Enable, RTS, CRC-OCITT PoJynomial (CR5)

****The 'Jl>a.nsmitter iS now enabled and will automattcaJJy begin
sending Flag characterB****

Send Message:
SET DMA. Controller to Beginning of Messe&e, # of Characters
in Message.
ISSUE Reset 'lra.nsmit ORO Generator Comm.and
SET 8 Bits/Character (CR5)
WRITE Address byte to 114PSC
SET# of Bits/Character (CR5)
ISSUE Reset EOM/ORO Latch Command

****The MPSC will now tra.nsmit the message until the DKA.
Controller completes the required number of transfers****

WAIT for External/Status Cha.nge Interrupt (signifies ORO
being sent)
IF N'" ext Message Ready to be 'lra.nsmitted
THEN"

GOTO Send Message (since MP8C will autom&ticaJJy iSsue a
DMA request when reac\Y, set DMA controller to address
byte preceding m~e and skip the write)
EIBE

IBBUE RESET External/Status Interrupt Command
ISSUE RESET 'Jl>a.nsmit Interrupt/DKA. Pendlllg Command
RETURN'

****End of 'lra.nsmit Routine****

Receive Messe&e:
SET External/Status Interrupt Enable, Receive Interrupt on
First Character (CRl)
SET Receiver Enable On, 8 Bits/Character, Receive ORO On,
Address Search Mode On (CB3)
SET DTR On, CRC-OCITT (ORB)
IBBUE Reset External/Status Int.errupt Command
ISSUE Enable Interrupt On N'"ext Character Comm.and

185

186

****Receiver iS now enabled. and in the Hunt Phase****

WAIT for External/Status Interrupt (indicating that a Flag
character has been received)
ISSUE Reset External/Status Interrupt Command
RETORN From Interrupt

****Receiver iS now in the Address Sea.rob. Phase****

Next Message:
WAIT for Character Received Interrupt (indicating that a.n address
match or global ad.dress has occurred)
GET Address Character (for later processing)
SET DMA Controller
SET # of Bits/Character (CB.3)

****Receiver is now in the Data Phase a.nd Will transfer all
succeeding characters until the End of Frame Flag****

WAIT for Special Receive Condition Interrupt (indicating :tlag
received)
READ SRl to Obtain ORO Status a.nd Residue Code
SET DMA Controller Off
IF More Messages Me 'lb Be Received.
THEN

GOTO Next Message
EI8E

SET DTROff
SET Receive Enable Off
RETURN

END IF

TM I EXTERNAL INTllHIUPT MOOE MONITORS
THISTATUSOPmiAHOIR!l.ASWIUASTHI
STATUS OF TX UNDIRRUNllOM \.ATCH. A
TRAN811T INT&RRUPT OCCURS WHEN TME
TRANllllT BUFPIR BICOMll EMPTY. THI
EXTIANAL illN PIN CAN BE USED FOR BLOCK
MODE TRANIPERB OR THI DAO PINS IWMICH
ARE IXTIRNALI CAN IE USED IN OMA OPERA·
TION AS WILL.

ISSUE
CHANNEL

RESET

SET INTERFACE
OPTION

SET INTERRUPT
v'ECTOA IF USED

SET BASIC
INTERFACE

PARAMETERS

SET INTERRUPT
PARAMETERS

SET TRANSMIT
PARAMETERS

RESET
EXTERNAL STATUS

INTERRUPTS

RESET TRANSMIT
CRC GENERATOR

TO ALL 1'1

INITIALIZE
OMA CONTROLLER

CA2·A

CA2·8

CRO

CRO

FOR BLOCK MODE OPERATION

EXECUTE HALT
OA~EOTMEA

PROGRAM

PARITY INPORMATION
SYNC MODI, SDLC MODE,

X1 CLOCK.

SET ll:XTIAHAL INTERRUPT ENABLE,
STATUS APPICTS VECTOR. TRANS
MIT INTERRUPT DMA ENABLE OR
WAIT MODI ENABLE.

SET TRANSMITTER ENABLE. Rn, SDLC-C:RC,
TRANDAIT ENABLE. TRANSMIT WOAD
LENGTH, DTA. SDl..C MOOE MUST 8& .
DEFINED BEFORE INITIALIZING THE
TRANAUT·CRC GENERATOR.

ntl TRANSMITTER IS NOW INITIALIZED ANO
ENABLED. AT THIS POINT THE MPSC2 Wll..L
START IENOING FLAG CHARACTERS AS
SOON AS Cii GOES l..OW.

187

188

Figure G-5.18 SDLC lnltlallzatlon Transmit

AL THOUGH THERE tS NO RESTRICTION
AS TO WHEN THE TRANSMIT UNDERAUNI
IOM BIT CAN BE RESIT, IT IS GOOD
PRACTICE TO RESET THE BIT AFTER THE
FIRST OATA CHARACTER IS SENT. THIS
WILL ALLOW CAC AND FLAG TO BE
SINT SHOULD AN UNDEAAUN CONDITION
OCCUR.

REPEAT THE
PROCESS FOR

NEXT MESSAGE

WHEN INTERRUPT OCCURS

CPU R&SPONDS BY
SENDING PIRST

CHARACTIA

RESET TX UND&AAUN/
ECMLATCH

CAD

SET DMA CONTROLLIA TO
BEGIN ADDRISS AND

BLOCK SIZE

l!XICUTI HALT
OR SOME OTHER PROGRAM

WHEN INTERRUPT OCCURS fDAQI

AT THIS POINT THI MPSC2 IS UNDER OMA
CONTROL AND WILL TRANSMIT DATA
UNTIL &ND OF FRAME. OR THIA& ts AN
ERROR CONDITION. WHEN THI LAST
CHARACTER IS SENT THE MPSC2 SINDS
CRC, SEND CLOSING FLAG AND INT&A•
AUPTS THE CPU WITH THI DATA
BUFFER EMPTY BIT SIT.

ISSUE RESET
TX INTERRUPT

PINDING COMMAND

CPU TRIES TO GIT ITS
SILICON TOGETHER

AND DOES RESET

THE FIRST INTERRUPT WILL OCCUR WHEN
THE tr§ PIN BECOMES ACTIVE. AT WHICH
POINT THI MPSC2 WILL START TRANS·
MITTING FLAG CHARACTERS. THE CPU
WILL RESPOND TO THIS INTERRUPT av
ISSUING THI FIRST BYTE IAODAESS
FIELDf TO THI MPSC2.

RIDEFINE INTERRUPT
MODE. UPDATE MODEM

CONTROL OUTPUTS
AND DISABLE
TRANSMITTER

STATUS AFFECTS VECTOR, EXTERNAL
INTERRUPT ENABLE. RECEIVE INTEA·!.----o-t

AUPT ON FIRST CHARACTER ONLV

THlS ADDRESS IS MATCHED AGAINST
THE MESSAGE ADDRESS IN AN SDLC i----...

POLLED OPERATION

THIS FLAG DETECTS THE
ST ART ANO END OF

FRAME IN AN SDLC OPERATION

ISSUE
CHANNEL

RESET

CRO

PARITY INFORMATION,
SVNC MODE.SDLC MODE.

)(1 CLOCK MOOE

IN THIS MODE, ONLY THE
ADDRllS FIELD t1 CHARACTIR
ONLYI IS TRANSFERRED TD THI
CPU. ALL SUBSEQUENT FllLDS
!CONTROL, INFOAMA TION ITC.I
ARI TRANSFERRED ON A DMA
11AS1S. STATUS AFFECTS VECTOR
IN CHANNEL 8 ONLY.

SIT RECEIVER ENABL& ON, 8-lllT,
RECEIVE CRC ON, ADDRllS

SEARCH MODE ON

189

190

SET SDLC MODE,
CRC,BTR

CR&

CAB

_,ERUET
llCTERNAIJSTATUS

INTIRllUl'T
COMMAND

CAO

lllUI INABLE
INTERllUl'T ON

NEXT CHARACTER •
COMMANO

INITIALIZE
DMA CDNTllOLLEll

EXECUTE HALT
OR SDMI OTHER

PROGRAM

ON IXTlllNAIJSTATU8 INTERllUP1'
INDICATING THAT A PLAG WAS

RICllVID

-.iERBIT
EXTERNAL
INTlllRUl'T
COMMAND

CAD

USED TO PROVIDE SIMPLE
LOOP-llACIC INTRV POINT FOR

NEXT TRANSACTION

SDLC lllCllVE MODE IS PULLY
INITIAUZED AND THI MJllC2
IS -ITING l'OR THI OPINING
FLAG FOl.LOWBD 8V A MATCHING
ADDRaa FIELD ON WHICH THE
MPSC2 WILL INTEllllUl'T THE CPU

WHEN INTERRUPT ON FIRSf
CHARACTER OCCURS

GET ADDRESS
CHARACTER FOR

LATER PROCESSING

ENABLEDMA
CONTROLLER

CRZ

ENABLEDMA
FUNCTION IN

MPSCZ

CR3

SET NUMBER OF
BITS/CHARACTER

THE MPSCZ IS- IN THI
ADDR .. SEARCH PHASI!.
DURING THIS PHASE THE
MPICZ INTERRUPTS WHEN
THI PROG-ED ADDRISS
MATCHES THE MESSAGI.

THE WSC2 RECEIVER IS_ IN
THE GATA PHASE MIO WILL
TMNSFIR ALL SUCCEEDING
CHARACTERS av THE DMA CONTROLLER
UNTIL THE END OF FROM FLAG.

191

192

Figure G-5.19 SDLC lnltlallzatlon Receive

GOTO ERROR
ROUTINE

WHEN SPECIAL RECEIVE CONDITION
INTERRUPT OCCURS INDICATING

FLAG RECEIVED

YES

EXIT DMA MODE

READ STATUS
REGISTER 1

ISSUE ERROR
RESET COMMAND

DURING THE OMA OPERATION, THE
MPSC2 MONITORS THE iiCD INPUT
AND THE ABORT SEOUENCE IN
THE DATA STREAM. IF EITHER
OF THESE CONDITIONS OCCURS, THE
MPSC2 WILL INTERRUPT THE CPU
WITH EXTERNAL STATUS ERROR.
THE SPECIAL RECEIVE CONDITION
INTERRUPT IS CAUSED BY RECEIVE
OVERRUN ERROR.

DETECTION OF END OF
FRAME (FLAG) CAUSES
AN INTERRUPT AND
DEACTIVATES THE DRQ
FUNCTION. RESIDUE CODES
INDICATE THE BIT STRUCTURE
OF THE LAST TWO BYTES OF
THE MESSAGE, WHICH WERE
TRANSFERRED TO MEMORY
UNDER DMA CONTROL. ERROR
RESET IS ISSUED TO CLEAR
THE SPECIAL CONDITION.

GET NEXT YES
MESSAGE

REDEFINE
INTERRUPT MODES.

SYNC MODE. AND SDLC
MODE DISABLE

G-6 APPLICATION
HINTS

G-6.1 DESIGNING
WITH THE MPSC2

G-6.1.1 8080/86-Type
Processors

G-6.1.2 Other
Processor Types

Designing the MPSC2 into your system is generally straightforward
and requires a minimal number of external devices.

The bus interface used by the MPSC2 is directly compatible with
8080/86-type buses. Figure G-6.1 illustrates the basic interconnection
scheme for these processors. This configuration supports polled,
interrupt driven, and block mode operation.

figure G-6.1 uPD7201 Interface to 8080 Standard System Bus
(Non-OMA)

ADDRESS BUS

CONTROL BUS

DATA BUS

8

CLK

,.J'D7Z01

You may also connect the MPSC2 to uPD780 (Z-80) and 6800/6502-
type processors with a few additional gates. Figures G-6.2 and G-6.3,
respectively, illustrate the circuits necessary to derive the correct
signals. In both cases the MPSC2 can be used in Non-vectored mode
with minimal software overhead.

figure G-8.2 uPD780 (Z-80) to MPSC2 Adapter

RD
RD

iOiffi TOMPSC2

WR
WR

193

194

Figure G-8.3 6800/6502 to MPSC1 Adapter

TOMPSC2

The MPSC2 can also be used in Vectored Interrupt mode with the
uPD780 operated in Interrupt Mode 0. In this mode, the uPD780
handles interrupt requests in much the same manner as an 8080
processor, that is, an interrupt acknowledge sequence is executed
during which the processor expects the next instruction to come from
the interrupting device. The 8080 INT A signal is generated by
combining M1 and IORQ from the uPD780. There is one key
difference that must be noted. In accepting a multibyte instruction
such as the CALL generated by the MPSC2, the 8080 issues a
separate INTA pulse for each byte. The uPD780, however, issues an
INTA on the first byte only. Succeeding bytes are accessed with
memory read cycles. In order for the MPSC2 to operate properly, a
circuit such as the one shown in Figure G-6.4 should be used to
derive the proper INTA sequence.

Figure G-8A INTA Generator for Z-80

Ml
IORO

D 0 --tD

7417• 74LS74
1/2 1/2

MEMRQ -------------+--

Vee

>

G-6.2 USING THE
MPSC2 WITH OMA
CONTROLLERS

Most other types of processors may be readily accommodated. The
bus control inputs RD, WR, CS, CID, B/ A, and INTA have no timing
requirements with respect to the system clock (CLK) and there is no
hold time requirement for data after the trailing edge of WR. The only
timing constraint you must observe is that the address lines C/D,
B/ A, and CS must be stable by the leading edge of RD or WR.

You can greatly increase the data handling capacity of your serial
l/O subsystem by using the MPSC2 with a OMA controller such as
the uPD8257 or uPD8237, to permit direct transfer of data between
the MPSC2 and memory. Figure 6.5 illustrates a typical MPSC2/DMA
configuration. In using the MPSC2 in this manner, you should be
aware of a few special considerations:

To minimize the number of pins required to implement four OMA
channels, the MPSC2 does not use the usual DRQ I DACK pins for
each channel but rather only DRQ with a single Hold Acknowledge
input, HAI. This arrangement eliminates three pins and in addition
permits daisychained MPSC2s operating in OMA mode. However, it
does require that the MPSC2 and the OMA controller reach
independent agreement on which OMA request is to be serviced in
the case of multiple requests to the same controller.

To ensure that this agreement does occur, you should program the
OMA controller for a fixed priority arrangement that agrees with the
OMA priority you programmed into the MPSC2 (see Seeton G-5.1).
You must also allow sufficient time for the MPSC2 to determine its
internal request priority before the OMA controller begins the data
transfer. Activating the OMA controller's Hold Acknowledge input
through the delay circuit shown in Figure G-6.5 provides this time
delay.

Figure G-6.5 OMA Interface

.... 1---------1

.... 1---------1

.... 1---------1

"""'"

;;;;
.,
;;;;

......

.,..,

-'1----r' "::·

...

"'t----~ ...

FR011•ll10AIT'I' ltllOL\tl"
LOGIC OA Jim JIN 7ii'it
11J~ILINOTCM.tll

l'•OMHLO&Oll
"llCllDllllO~

llNVllU!OI

195

G-6.3 VECTORED
INTERRUPTS
WITHOUT USING PRI

G-6.4 TO DMA OR
NOT TO DMA •••

196

There are circumstances when you may wish to use the MPSC2's
Vectored Interrupt feature and you cannot use PAI to inform the
MPSC2 whether it is the highest priority device requesting service.
These situations can occur when both channels are being used in
OMA mode (the PAI pin becomes OAQRxB) or when using other
peripherals that are incompatible with daisychaining. To retain the
Vectored Interrupt feature, you can pull PAI low if available (this is
done automatically when both channels are OMA). Program the
MPSC2 for either 8080 Master or 8086 Vector mode, and gate INTA
to the highest priority device with a circuit similar to Figure G-6.6.

Figure G-6.6 Priority Resolution Circuit for Non-dalsychalned
Devices

..

,_Li:--: f.NLGl

"' 1'1LS1'1

~
11Z~SCM

L~
I

....., J_
1/tr.LS'I• ll•HLSOO l

....,_
0 "' tlt7&08 74LS1•

'

...
n

f-. .-- ..
Ot ,. ,.

74'.11a

t---1•• ., l!i .. ., .. Iii

J
t--< •• INLG llO

t--J-o iii r,j
Iii

L...., Ai
L...--....IAi'

Ol'89Z14

iO ...
fiti

""' 1li'
, ... Ir,

i
(:n

DW"ATODIVICl7

Nil TO OIVICI I '

i1n' •ll'OM DEYICI a ILDWUT PRIDAITYI

llff llROM DIVICI 7 IHIOHIST IHHOIUTVI

1. iNi'iiiiV'ia:DtC ODID flGAT ADDAllll HOM P«OCEllOA
2. Do·l1WiiiiVi9 • lfd'IR•~ IN llRYICI; INAm-1! HIQHIA

PAIOAJTV INTIRA """ Do · illf'IDVIEI • INOOP INTIRAuPT: l!NABLI LOWIA

""" PRIORITY INTIRA
S. ITLQ • INAaLE TMll LIVIL GAOUP UNPUTI: INLO - llL\8LE

NIXT LIVtl. OAOU9 IO\m'UTI • IXfrAHICON PINS
4. DIVICUSHOULO H f'ROQRAMMID fOR MAITIR MOOI OP

ltn'A RllSPON&l, r,._, TMIY SHOULD IGUI THI COMf'UTI
CM.L INSl'AUCTION POA IOD IYITIMI

You should note that an 8259-type interrupt controller programmed for
Master Mode does not set its Slave Enable outputs until the second
INTA pulse and so is incompatible with the MPSC2's interrupt
acknowledge timing.

When operating an MPSC2 channel in OMA mode, there are normally
some interrupts in parallel with OMA requests. Here are the rules:

Interrupt on Each Character Mode: Both an interrupt and OMA
request are made when a character is received.

Interrupt on First Character. The first character received (after issuing
an Enable Interrupt On Next Character) generates both an interrupt

G-6.5 HANDLING AN
SDLC UNDERRUN
FAULT

G-6.6 SENDING
SYNCHRONOUS PAD
CHARACTERS

G-6.7
TRANSMITTING
BISYNC TRANS
PARENT MODE

G-6.8 VECTORING
THE MPSC1 IN NON
YECTORED MODE

and a OMA request. Subsequent characters cause only a OMA
request to be issued. As an exception, a Special Receive condition
always causes both an interrupt and a OMA request.

Transmitter Buffer Becoming Empty: Only OMA requests are issued
when the MPSC2 is transmitting under OMA r.nntr"''

Since SOLC-type protocols do not allow flags to be imbedded within a
message as filler, a fault condition can sometimes occur where the
transmitter runs out of data to send. This situation is particularly
common in interrupt-driven systems that are heavily task-loaded. You
can use the MPSC2s Idle/ CRC latch feature to detect these underrun
faults and abort the message before an erroneous End of Frame flag
is sent. This is accomplished by issuing a Reset ldle/CRC Latch
command to the MPSC2 immediately after loading it with the first
character of the message. If an underrun condition occurs, the
MPSC2 automatically begins to send the CRC character calculated up
to that point and issues an External/Status Change interrupt to
indicate that the CRC is being sent. Since your software routine
knows that the end of the message has not been reached, an
underrun is indicated and your routine can immediately abort the
message with a Send Abort command.

If you want to send one or more pad characters between
synchronous messages, you can do it two ways with the MPSC2:

When the MPSC2 issues an External/Status interrupt to indicate that
CRC is being sent, you can begin loading your pad characters into
the transmitter.

Instead of loading pad characters in response to the above interrupt,
you can simply change the programmed sync character on the fly,
and the MPSC2 will transmit pads when it enters Idle Phase after
sending CRC.

Because of the ability to change the sync registers (CR6, CR7) on
the fly, the MPSC2 is truly compatible with bisync protocol's
Transparent mode. On entering this mode, program CR6 with the OLE
character and, if an underrun condition occurs, the correct OLE-SYN
sequence is transmitted. On leaving Transparent mode you should
reset CR6 back to SYN.

If you're using the MPSC2 in Non-vectored Interrupt mode, you can
still use the Condition Affects Vector feature to direct your software to
the correct routine. The following example, written in 8080 assembler,
assumes that the MPSC2 has been programmed for either 8085
master or slave mode (03-0s modified) and that CR2B was
programmed with a zero.

MPSCINT:
PUSH B
PUSH 0
PUSH H
PUSH PSW

;Save state so registers are free for
;your service routine

197

198

MVI A,2
OUT MPSCBC
IN MPSCBC
LXI H, JMPTBL
MVI D,O
MOVE.A
DADD
PCHL

JMPTBL JMP TBEB
NOP
JMP EXTB
NOP
JMP RCVB

NOP
JMP SPRB
NOP

END

;Set channel B register pointer to 2

;Register .A = modified vector
;HL- vector jump table
;DE = offset into table

;HL- jump table + offset
;Jump to jump table entry

;Channel B transmitter buffer empty

;External/Status change

;Received character available

;Special receive condition

;Repeat for channel A interrupts

APPENDIX H 6522 VERSATILE INTERFACE SPECIFICATION

.... Two 8-Bit Bi-directional 1/0 Ports

.... Two 16-Bit Programmable Timer/Counters
""' Serial Data Port
.... Single + 5V Power Supply
.... ITL Compatible
.... CMOS Compatible Peripheral Control Lines
""' Expanded "Handshake" Capability Allows Positive Control of

Data Transfers Between Processor and Peripheral Devices
.... Latched Output and Input Registers
.... 1 MHz and 2 MHz Operation

The SY6522 Versatile Interface Adapter (VIA) is a very flexible
1/0 control device. In addition, this device contains a pair of very
powerful 16-bit interval timers, a serial-to-parallel/parallel-to-serial shift
register and input data latching on the peripheral ports. Expanded
handshaking capability allows control of bi-directional data transfers
between VIA's in multiple processor systems.
Control of peripheral devices is handled primarily through two 8-bit
bi-directional ports. Each line can be programmed as either an input
or an output. Several peripheral 1/0 lines can be controlled directly
from the interval timers for generating programmable frequency
square waves or for counting externally generated pulses. To
facilitate control of the many powerful features of this chip, an
interrupt flag register, an interrupt enable register and a pair of
function control registers are provided.

Figure H-1: SV6522 Block Diagram

DATA
BUS

INTERRUPT
CONTROL

FLAGS
llFRI

ENABLE
llERI

PERWHERAL
IPCAI

AUXILIARY
IACRJ

FUNCTION
CONTROL

LATCH : LATCH
IT1L·HI I ITIL LI -------4-------

COUNTER I COUNTER
IT1C·HI 1 ITIC·lt

TIMER 1

TIMER2

LATCH
IT2LU

~C::.~~A ! cg~~l~A

INPUT LATCH
llRAI

OUTPUT
tORAI

OATAOIR.
IOORAI

PORT A

PORTS

HANDSHAKE
CONTROL

SHIFT REO.
tSRI

PORT A

•------ce1
i------ca2

PORT B REGISTERS

INPUT LATCH
llRBI

OUTPUT
IORBI

OAT A DIR.
IODRBI

PORTB

199

200

ABSOLUTE MAXIMUM RATINGS

This device contains circuitry to protect the inputs against damage
due to high static voltages. However, it is advised that normal
precautions be taken to avoid application of any voltage higher than
maximum rated voltages.

Rating Symbol Value Unit

Supply voltage Vee -0.3 to +7.0 v
Input Voltage V1N -0.3 to +7.0 v
Operating Temperature

Range TA 0 to +70 oc
Storage Temperature

Range T51g -55to +150 oc

ELECTRICAL CHARACTERISTICS
Nee 5.0V ±50/o, TA= 0-70° C unless otherwise noted)

gy....., ~ Mill. Mu. Ueit

VIH Input High Voltage (all except f2) 2.4 Vee v
VcH Qadc High Voltage 2.4 Vee v
V1L Input low Voltage -0.3 0.4 v
l1N Input Leakage Current - V1N = 0 to & Vdc - :!:2.5 p.A

RJW. WE!, RSO, RS1, RS2, RS3, CS1, CS2,
CA1,+2

ITS1 Off.state Input Current - VIN = .4 to 2.4V - :!:10 p.A
Vee= Max. 00 to 07

llH Input High Current - V1H = 2.4V -100 - p.A
PAO-¥A7, CA2, PBO-PB7, CB1, CB2

l1L Input Low Current - V1L = 0.4 Vdc - -1.6 mA
PAO-¥A7,CA2,PllO-PB7,CB1,CB2

VOH Output Hi_. Voltage 2.4 - v
Vee=mln, lia.i =-10011Adc
PAfH>A7, CA2, PBO-P87, CB1, CB2

VoL Output Low Voltage - 0.4 v
Vee• min, lia.i • 1.6 mAdc

IOH Output High Current (Sourcing)
VoH =2.4V -100 - 11A
VOH = 1.5V IPBO-PB71 -1.0 - mA

loL Output Low Current {S'"mking) 1.6 - mA
VoL =0.4Vdc

IOFF Output Leakage Current {Off state) - 10 11A nm
C1N Input Capacitance - TA = 25°C, f = 1 MHz

{R/1111, RB, RSO, RS1, RS2, RS3, CS1, CS2, -
00-07, PA0¥A7, CA1, CA2,PBO-P871

7.0 pf

ICB1,CB2l - 10 pf
1+2 Input) - 20 pf

CouT Output Capacitance - TA = 25°C, f • 1 MHz - 10 pf

Po Power Oissipatlan - 700 mW

Figure H-2: Test Load (for all Dynamic Parameters)

Vee

Figure H-3: Read Timing Characteristics

..
CLOCK

CHIP SELECTS,
REGISTER SELECTS,
R/91

PERIPHERAL
DATA

DATABUS ----------'"'I.
'••

READ TIMING CHARACTERISTICS (FIGURE H-3)

SY6522 SY6522A

Symbol Parameter Min. Max. Min. Max.

Tcv CyeleTime 1 50 0.5 50

TACR Address Set·Up Time 1SO - 90 -

TcAR Address Hold Time 0 - 0 -
TpcR Peripheral Data Set·Up Time 300 - 300 -

TcoR Data Sus Delay Time - 340 - 200

THR Data Sus Hold Time 10 - 10 -
NOTE: tr, tf "" 10 to 30ns.

Unit

/JS

ns

ns

ns

ns

ns

201

202

Figure H-4: Write Timing Characteristics

..
CLOCK

CHIP SELECTS,
REGISTER SELECTS

""'

DATA
BUS

PHUPHIAAL
DATA

WRITE TIMING CHARACTERISTICS (FIGURE 4)

SY6522 SY8522A

Symbol Parameter Min. Max. Min. Max.

Tcv Cycle Time 1 50 0.50 50

Tc •2 Pulse Width 0.44 25 0.22 25

TAcw Address Set·Up Time 180 - 90 -
TcAw Address Hold Time 0 - 0 -
Twcw R/W Set·Up Time 180 - 90 -
Tcww R/W Hold Time 0 - 0 -
Tocw Data Bus Set·Up Time 300 - 200 -
THw Data Bus Hold Time 10 - 10 -
TcPW Peripheral Data Delay Time - 1.0 - 1.0

TCMOs Peripheral Data Delay Time
to CMOS Levels - 2.0 - 2.0

NOTE: tr, tf • 10 to 30ns.

Unit

'" II.•

ns

ns

ns

ns

ns

ns

11.S

p.s

PERIPHERAL INTERFACE CHARACTERISTICS

Symbol Characteristic Min. Max. Unit

tr. tf Rise and Fall Time for CAI, CB1, CA2, and CB2 - 1.0 µ.s
Input Signals

TcA2 Delay Time, Clock Negative Transition to CA2 Negative
Transition (read handshake or pulse mode) - 1.0 µ.s

TRS1 Delay Time, Clock Negative Transition to CA2 Positive
Transition (pulse mode) - 1.0 µ.s

TRS2 Delay Time, CA 1 Active Transition to CA2 Positive
Transition (handshake mode) - 2.0 µ.s

TwHs Delay Time, Clock Positive Transition to CA2 or CB2
Negative Transition (write handshake) 0.05 1.0 µ.s

Tos Delay Time, Peripheral Data Valid to CB2 Negative
Transition 0.20 1.S µ.s

TRS3 Delay Time, Clock Positive Transition to CA2 or CB2
Positive Transition (pulse mode) - 1.0 µ.s

TRS4 Delay Time, CA I or CB1 Active Transition to CA2 or
CB2 Positive Transition (handshake mode) - 2.0 µ.s

T21 Delay Time Required from CA2 Output to CA 1
Active Transition (handshake mode) 400 - ns

T1L Set·up Time, Peripheral Data Valid to CA 1 or CB1
Active Transition (input latching) 300 - ns

TsR1 Shift-Out Delay Time - Time from 4>2 Falling Edge
to CB2 Data Out - 300 ns

TsR2 Shift-In Setup Time - Time from CB2 Data In to
4>2 Rising Edge 300 - ns

TsR3 External Shift Clock (CB1) Setup Time Relative To
4>2 Trailing Edge 100 Tcv ns

T1PW Pulse Width - PBS Input Pulse 2 - µ.s

T1cw Pulse Width - CBI Input Clock 2 - µ.s

lips Pulse Spacing - PBS Input Pulse 2 - µ.s

lies Pulse Spacing - CB 1 Input Pulse 2 - µ.s

Figure H-Sa: CA2 Timing for Read Handshake, Pulse Mode

CA2

.,

READ IRA
OPERATION

··oATA TAKEN"

fcAl

Figure

-

5a, 5b

5a

5b

Sc,Sd

5c,5d

Sc

Sd

5d

Se

Sf

Sg

Sg

Si

Sh

Si

Sh

203

204

F19ure H-5b: CA2 Timing for Read Handshake, Handshake Mode

CA2

••

READ IRA
OPERATION

"DATA TAKEN ..

CA1
"DATA READY" ----:,-----: x:--f

LACTIVE
TRANSITION

Figure H-5c: CA2, CB2 Timing for Write Handshake, Pulse Mode

••

WAITE ORA.ORB
OPERATION

CA2.CllZ
""DATA READY"'

PA.PB
PERIPHERAL
DATA

Figure H-Sd: CA2, CB2 Timing for Write Handshake, Handshake Mode

1 \ _____ ;_-,._{_ ~F'L
WRIT£ ORA, ORB
OPERATION

CA2.C82
··oATA READV''

PA.PB
PERIPHERAL
DATA

CA1.C81
""DATA TAKEN'" ~-------:Si-=-·-_

ACTIVE :J
TRANSITION

Figure H-Se: Peripheral Data Input Latching Timing

PA.Piii
f'ERIPHEAAL
IM'UTOATA

CA1,CB1
INPUT LATCHING
CONTROL ~~~~-·=x~~~~~~-

LACTIVE
TRANSITION

Figure H-Sf: Timing for Shift Out with Internal or External Shift Clocking

.,

CB2
SHIFT DATA
IOUTPUTI

CBI
SHIH CLOCK
(INPUT OR
OUTPUT I

DELAY TIME MEASURED FROM THE FIRST oz
FALLING EDGE AFTER C81 FALLING EDGE.

Figure H-Sg: Timing for Shift In with Internal or External Shift Clocking

.,

CB2
SHIFT DATA
llNPUTI

CB1
SHIFT CLOCK
llNPUTOR
OUTPUT)

SETUP TIME MEASURED TO THE FIRST OJ
RISING EDGE AFTER CB1 RISING EDGE.

205

PIN DESCRIPTIONS

Figure H-5h: External Shift Clock Timing

C81
SHIFT CLOCK
IN..UT

Figure H-5i: Pulse Count Input Timing

...
PULSE COUNT
INfUT __ _J[.... ~-~-----

RES (RESET) The reset input clears all internal registers to logic O (except T1
and T2 latches and counters and the Shift Register). This places all
peripheral interface lines in the input state, disables the timers, shift
register, etc. and disables interrupting from the chip.

cj>2 (INPUT CLOCK) The input clock is the system cj>2 clock and is used to trigger all
data transfers between the system processor and the SY6522.

R/W (READ/WRITE) The direction of the data transfers between the SY6522 and the
system processor is controlled by the R/W line. If R/W is low, data
will be transferred out of the processor into the selected SY6522
register (write operation). If R/W is high and the chip is selected,
data will be transferred out of the SY6522 (read operation).

DB0-087 (DATA BUS) The eight bi-directional data bus lines are used to transfer data
between the SY6522 and the system processor. During read cycles,
the contents of the selected SY6522 register are placed on the data
bus lines and transferred into the processor. During write cycles,
these lines are high-impedance inputs and data is transferred from
the processor into the selected register. When the SY6522 is
unselected, the data bus lines are high-impedance.

206

CS1, CS2
(CHIP SELECTS)

RSO-RS3
(REGISTER SELECTS)

IRQ
(INTERRUPT REQUEST)

PAO-PA7
(PERIPHERAL A PORT)

CA1, CA2
(PERIPHERAL A
CONTROL LINES)

The two chip select inputs are normally connected to processor
address lines either directly or through decoding. The selected SY6522
register will be accessed when CS1 is high and CS2 is low.

The four Register Select inputs permit the system processor to select
one of the 16 internal registers of the SY6522, as shown in Figure H-6.

Figure H-6: SY6522 Internal Register Summary

Register RS Coding Register OescriDtion
Number RS3 RS2 RSt RSO Desig. Write Reed

0 0 0 0 0 ORB/IRB Output Register "B" Input Register "B"

1 0 0 0 1 ORA/IRA Ouiput Register "A .. Input Register "A"

2 0 0 1 0 DDRB Data Direction Register "B"

3 0 0 1 1 DORA Data Direction Register "A"

4 0 1 0 0 T1CL Tl Low-Order Latches T1 Low-Order Counter

5 0 1 0 1 T1CH T1 High·Order Counter

6 0 1 1 0 T1L·L T1 Low-Order Latches

7 0 1 1 1 T1L-H Tl High-Order Latches

8 1 0 0 0 T2C-L T2 Low-Order Latches T2 Low-Order Counter

9 1 0 0 1 T2CH T2 High-Order Counter

10 1 0 1 0 SR Shift Register

11 1 0 1 1 ACR Auxiliary Control Register

12 1 1 0 0 PCR Peripheral Control Register

13 1 1 0 1 IFR Interrupt Flag Register

14 1 1 1 0 IER Interrupt Enable Register

15 1 1 1 1 ORA/IRA Same as Reg 1 Except No "Handshake ..

The Interrupt Request output goes low whenever an internal
Interrupt Flag is set and the corresponding interrupt enable bit is a
logic 1. This output is "open-drain" to allow the interrupt request
signal to be "wire-or'ed" with other equivalent signals in the system.

The Peripheral A port consists of 8 lines which can be individually
programmed to act as inputs or outputs under control of a Data
Direction Register. The polarity of output pins is controlled by an
Output Register and input data may be latched into an internal
register under control of the CA 1 line. All of these modes of operation
are controlled by the system processor through the internal control
registers. These lines represent one standard TTL load in the input
mode and will drive one standard TTL load in the output mode.
Figure H-7 illustrates the output circuit.

The two Peripheral A control lines act as interrupt inputs or as
handshake outputs. Each line controls an internal Interrupt Flag with
a corresponding interrupt enable bit. In addition, CA 1 controls the
latching of data on Peripheral A port input lines. CA 1 is a high-impedance
input only while CA2 represents one standard TTL load in the input
mode. CA2 will drive one standard TTL load in the output mode.

207

PBO-PB7
(PERIPHERAL B PORT)

CB1, CB2
(PERIPHERAL B
CONTROL LINES)

208

Figure H-7: Peripheral A Port Output Circuit

l/OCONTROL~
OUTPUT DATA~

I

+SV

INPUTOATA ------...J

The Peripheral B port consists of eight bi-directional lines which
are controlled by an output register and a data direction register in
much the same manner as the PA port. In addition, the polarity of
the PB7 output signal can be controlled by one of the interval timers
while the second timer can be programmed to count pulses on the
PB6 pin. Peripheral B lines represent one standard TTL load in the
input mode and will drive one standard TTL load in the output mode.
In addition, they are capable of sourcing 1.0mA at 1.5VDC in the
output mode to allow the outputs to directly drive Darlington
transistor circuits. Figure H-8 is the circuit schematic.

The Peripheral B control lines act as interrupt inputs or as
handshake outputs. As with CA 1 and CA2., each line controls an
Interrupt Flag with a corresponding interrupt enable bit. In addition,
these lines act as a serial port under control of the Shift Register.
These lines represent one standard TTL load in the input mode and
will drive one standard TTL load in the output mode. Unlike PBO-PB7,
CB1 and CB2 cannot drive Darlington transistor circuits.

Figure H-8: Peripheral B Port Output Circuit

INPUT/
OUTPUT ----o-"'

CONTROL

+SV

PBO-PB7, ,,__ __ CB1,CB2

INPUTDATA -----------'

FUNCTIONAL
DESCRIPTION

PORT A AND PORT B Each 8-bit peripheral port has a Data Direction Register (DORA,
OPERATION DDRB) for specifying whether the peripheral pins are to act as inputs

or outputs. A "O" in a bit of the Data Direction Register causes the
corresponding peripheral pin to act as an input. A "1 " causes the
pin to act as an output.

HANDSHAKE
CONTROL OF
DATA TRANSFERS

Each peripheral pin is also controlled by a bit in the Output Register
(ORA, ORB) and an Input Register (IRA, IRB). When the pin is
programmed as an output, the voltage on the pin is controlled by
the corresponding bit of the Output Register. A "1" in the Output
Register causes the output to go high, and a "O" causes the output
to go low. Data may be written into Output Register bits corresponding
to pins which are programmed as inputs. In this case, however, the
output signal is unaffected.

Reading a peripheral port causes the contents of the Input Register
(IRA, IRB) to be transferred onto the data bus. With input latching
disabled, IRA will always reflect the levels on the PA pins. With input
latching enabled, IRA will reflect the levels on the PA pins at the
time latching occurred (via CA 1).

The IRB register operates similar to the IRA register. However,
for pins programmed as outputs there is a difference. When reading
IRA, the level on the pin determines whether a "O" or a "1" is sensed.
When reading IRB, however, the bit stored in the output register,
ORB, is the bit sensed. Thus, for outputs which have large loading
effects and which pull an output "1" down or which pull an output
"O" up, reading IRA may result in reading a "O" when a "1" was
actually programmed, and reading a "1" when a "O" was programmed.
Reading IRB, on the other hand, will read the "1" or "O" level
actually programmed, no matter what the loading on the pin.

Figures H-9, H-10, and H-11 illustrate the formats of the port
registers. In addition, the input latching modes are selected by the
Auxiliary Control Register (Figure H-16.)

The SY6522 allows positive control of data transfers between
the system processor and peripheral devices through the operation of
"handshake" lines. Port A lines (CA 1, CA2) handshake data on both
a read and a write operation while the Port B lines (CB1, CB2)
handshake on a write operation only.

209

210

Rgure H-9: Output Register B (ORB), Input Register B (IRB)

REG 0 - ORB/IRB

PBO

P81

._ ____ P83

._ _____ P84

'-------PBS

L--------PB&

'---------PB7

Pin
0... Direction WRITE -DDRB • "1" IOUTPUTI MPU wt"ites Output L••

IORBI
DORB • "O" llNPUTI MPU writa i-ORB, but

OUTPUT REGISTER ''B" IORBI

OR

llll'llT REGISTER "B-101181

READ

MPU Madtouq1ut r91ill• bit
in.ORB. Pin lnel Ms no affect.
MPU rnds lnpu1 lnel on PB

11 - ... --1 no effect: on pin lewel. until '""· DORBcho
DDRB • "O" llNPUTI MPU ruds IRB bit, which ii
!Input lotching ltllbledl tlw lonl of the PB pin ot the

time of the Ila CB1 Ktiwe
ldftlition.

Figure H-10: Output Register A (ORA), Input Register A (IRA)

REG 1 - ORA/IRA

PAO

PA1

L----PA2

'-----PA3

._-----PA4

L-------PAS

'--------PA&

Pin
Doto Di-ion WRITE

SeloctioA
DDRA • "1" IOUTPUTI WU writes Output Lael
!Input lotch.!!!Ldillbledl CORAi.
DORA• "1" IOUTPUTI
llnput-...-1

OUTPUT REGISTER "A" IORAI

OR

INPUT REGISTER -A" URAi

READ

MPU ruds loql on PA pin.

MPU ruds IRA bit which ii
tlwloweloftlwPApiaattlw
time of the II• CA 1 actiwe
tfllnsition.

DDRA • "O" llNPUTI MPU writ11 lnlo ORA, but MPU ruds le1el an PA pin.
llnput latching d!ablodl ao effect on pie lttef. until

DORAclloaged.
DORA• "O" llNPUTI MPU .-1RAbitwhichil
11-•••tchiagltllbledl tlwlowelofthePAp;,.ottllo

-ol1hele•CA1-.
uamition.

READ HANDSHAKE

Figure H-11: Data Direction Registers (DDRB, DDRA)

REG 2 (DDRB) AND REG 3 (DORA)

l1lalsl4~13El2~l;loLPBO/PAO
L_PBllPAI

PB2/PA2

P931PA3

P941PA4

'------ PBS/PAS

'------- P86/PA6
,___ ______ PB7/PA7

"O" ASSOCIATED PB/PA PIN IS AN INPUT
CHIGH·IMPEDANCEI

''1'' ASSOCIATED PB/PA PIN IS AN OUTPUT,
WHOSE LEVEL IS DETERMINED BY
DRB/ORA REGISTER BIT.

DATA DIRECTION REGISTER
"B" OR "A" IDDRB/DDRAI

Positive control of data transfers from peripheral devices into the
system processor can be accomplished very effectively using Read
Handshaking. In this case, the peripheral device must generate the
equivalent of a "Data Ready" signal to the processor signifying that
valid data is present on the peripheral port. This signal normally
interrupts the processor, which then reads the data, causing generation
of a "Data Taken" signal. The peripheral device responds by making
new data available. This process continues until the data transfer
is complete.

In the SY6522, automatic "Read" Handshaking is possible on
the Peripheral A port only. The CA1 interrupt Input pin accepts the
"Data Ready" signal and CA2 generates the "Data Taken" signal.
The "Data Ready" signal will set an internal flag which may interrupt
the processor or which may be polled under program control. The
"Data Taken" signal can either be a pulse or a level which is set low
by the system processor and is cleared by the "Data Ready" signal.
These options are shown in Figure H-12, which Illustrates the
normal Read Handshaking sequence.

Figure H-12: Read Handshake Timing (Port A, Only)

12~

iiffiOUTPUT

0'DATA TAKEN ..
HANDSHAKE MODI
ICA.11

~:i"=:N" ------------
ICA11

211

WRITE HANDSHAKE The sequence of operations which allows handshaking data from

TIMER OPERATION

212

the system processor to a peripheral device is very similar to that
described for Read Handshaking. However, for Write Handshaking,
the SY6522 generates the "Data Ready" signal and the peripheral
device must respond with the "Data Taken" signal. This can be
accomplished on both the PA port and the PB port on the SY6522.
CA2 or CB2 act as a "Data Ready" output in either the handshake
mode or pulse mode and CA1 or CB1 accept the "Data Taken"
signal from the peripheral device, setting the Interrupt Flag and cleaning
the "Data Ready" output. This sequence is shown in Figure H-13.

Selection of operating modes for CA 1, CA2, CB1, and CB2 is
accomplished by the Peripheral Control Register (Figure H-14).

Figure H-13: Write Handshake Timing

+z~~,J"1.J"l_rL
WRITEORA.OA8 I I . I I
OPERATION_ _ __..·---------~

"'DATA RIAOY~

-·- ~ ~ ICA1.Cl21 ~-------!

~::=·-____ , .-------------!
CCAJ.C121 -

"'DATATAKIEN ----------i
ICAt.CBU ~,..-.."""""""""~~

illllOUTPUT----------i
....._ ______ __,

Interval Timer T1 consists of two 8-bit latches and a 16-blt counter.
The latches are used to store data which is to be loaded into the
counter. After loading, the counter decrements at +2 clock rate. Upon
reaching zero, an Interrupt Flag will be set, and IRQ will go low if the
interrupt is enabled. The timer will then disable any further interrupts,
or will automatically transfer the contents of the latches into the
counter and will continue to decrement. In addition, the timer may be
programmed to invert the output signal on a peripheral pin each time
it "times-out". Each of these modes is discussed separately below.

The T1 counter is depicted in Figure H-15 and the latches in Figure H-16.

Figure H-14: CA 1, CA2, CB1, CB2 Control

REG 12- PERIPHERAL CONTROL REGISTER

7 6 5 OPERATION
0 0 0 INPUT-NEGATIVE ACTtVE EDGE
0 0 1 INDEPENDENT INTERRUPT

INPUT·NEG EDGE

0 ' 0 INPUT POSITIVE ACTIVE EDGE

0 ' 1 INDEPENDENT INTERRUPT
INPUT .POS EDGE

' 0 0 HANDSHAKE OUTPUT

' 0 1 PULSE OUTPUT

' ' 0 LOW OUTPUT

' '' HIGH OUTPUT

CBI INTERRUPT CONTROL -----'

0 •NEGATIVE ACTIVE EDGE
1 "POSITIVE ACTIVE EDGE

3 2 t OPERATION
0 0 0 INPUT·NEGATIVE ACTIVE EDGE
0 0 1 INDEPENDENT INTERRUPT

INPUT ·NEG EDGE

0 ' 0 INPUT POSITIVE ACTIVE EDGE

0 '
1 INDEPENDENT INTERRUPT

INPUT-POS EDGE

' 0
0 HANDSHAKE OUTPUT

' 0
t PULSE OUTPUT

' ' 0 LOW OUTPUT

' ' 1 HIGH OUTPUT

Two bits are provided in the Auxiliary Control Register (bits 6 and 7)
to allow selection of the T1 operating modes. The four possible
modes are depicted in Figure H-17.

Figure H•15: T1 Counter Registers
REG 4 - TIMER 1 LOW-ORDER COUNTER REG 5 - TIMER 1 HIGH-ORDER COUNTER

'----4

'------8

'------16

'-------32

COUNT
VALUE

COUNT
VALUE

'--------64
----------128

WRITE - 8 BITS LOADED INTO Tl LOW.ORDER
LATCHES. LATCH CONTENTS ARE
TRANSFERRED INTO LOW-ORDER
COUNTER AT THE TIME THE HIGH·
ORDER COUNTER IS LOADED (REG 51.

READ - 8 BITS FROM T1 LOW·ORDER COUNTER
TRANS•ERRED TO MPU. IN ADDITION.
T1 INTERRUPT FLAG IS RESET (BIT 6
IN INTERRUPT FLAG REGISTERh

Figure H•16: T1 Latch Registers

REG 6 - TIMER 1 LOW-ORDER LATCHES

'---------32

'---------64
'----------128

WRITE - 8 BITS LOADED INTO Tl
LOW·ORDER LATCHES. THIS
OPERATION IS NO DIFFERENT
THAN A WRITE INTO REG 4.

COUNT
VALUE

READ - 8 BITS FROM T1 LOW-ORDER LATCHES
TRANSFERRED TO MPU. UNLIKE REG 4
OPERATION, THISDOESNOTCAUSE
RESET OF T1 INTERRUPT FLAG.

'-------4096
--------8192

---------16384
'-----------32768

WRITE - 8 BITS LOADED INTO T1 HIGH-ORDER
LATCHES. ALSO, AT THIS TIME BOTH
HIGH ANO LOW·OROER LATCHES
TRANSFERRED INTO Tl COUNTER.
T1 INTERRUPT FLAG ALSO IS RESET.

READ - 8 BITS FROM Tl HIGH-ORDER COUNTER
TRANSFERRED TO MPU.

REG 7 -TIMER 1 HIGH-ORDER LATCHES

'--------8192

'----------16384

'-----------32788

WRITE - 8 BITS LOADED INTO T1 HIGH-ORDER
LATCHES. UNLIKE REG 4 OPERATION
NO LATCH· TO.COUNTER TRANSFERS
TAKE PLACE.

READ- 8 BITS FROM T1 HIGH-ORDER LATCHES
TRANSFERRED TO MPU.

COUNT
VALUE

213

TIMER 1
ONE-SHOT MODE

214

Figure H-1?: Auxlllary Control Register

REG 11 - AUXILIARY CONTROL REGISTER

Tl TIMER CONTROL

1 • ORRATION P87

1•1 1:~;.~·:~
LOADED DISAlll.ED

0 1 CONTINUOUS
INTERRUPTS

' 0 TIMED INTERMWT ON£-lllOT
EACH TIME T1 IS OUTl'UT
LOADED

1 ' CONTINUOUS SOUARE
INTERRUPTS WAVE

OUTPUT

Figure H-18: Timer 1 and Timer 2 One-Shot Mode Timing

~·2

WRITIT1C·H
OfllRATION

Tim OUTPUT

P870Ul'fln
ITl,ONLYI

~ .. '..~--1 _0

__ 1·11 .. I NI NI

The interval timer one-shot mode allows generation of a single
Interrupt for each timer load operation. As with any Interval timer,
the delay between the "Write T1C-H" operation and generation of the
processor interrupt is a direct function of the data loaded into the
timing counter. In addition to generating a single interrupt, Timer 1
can be programmed to produce a single negative pulse on the PB7
peripheral pin. With the output enabled (ACR7=1) a "write T1C-H"
operation will cause PB7 to go low. PB7 will return high when Timer 1
times out. The result Is a single programmable width pulse.

In the one-shot mode, writing into the high order latch has no
effect on the operation of Timer 1. However, it will be necessary to
assure that the low order latch contains the proper data before
Initiating the count-down with a "write T1C-H" operation. When the
processor writes into the high order counter, the T1 Interrupt Flag will
be cleared, the contents of the low order latch will be transferred into
the low order counter, and the timer will begin to decrement at
system clock rate. If the PB7 output is enabled, this signal will go
low on the phase two fol!Qwing the write operation. When the counter
reaches zero, the T1 Interrupt Flag will be set, the IRQ pin will go low

TIMER 1
FREE-RUN MODE

(interrupt enabled). and the signal on PB7 will go high. At this time
the counter will continue to decrement at system clock rate. This
allows the system processor to read the contents of the counter to
determine the time since interrupt. However, the T1 Interrupt Flag
cannot be set again unless it has been cleared as described
in this specification.

Timing for the SY6522 interval timer one-shot modes is shown
in Figure H-18.

The most important advantage associated with the latches in T1
is the ability to produce a continuous series of evenly spaced interrupts
and the ability to produce a square wave on PB7 whose frequency is
not affected by variations in the processor interrupt response time.
This is accomplished in the "free-running" mode.

In the free-running mode, the Interrupt Flag is set and the signal on
PB7 is inverted each time the counter reaches zero. However, instead
of continuing to decrement from zero after a time-out, the timer
automatically transfers the contents of the latch into the counter
(16 bits) and continues to decrement from there. The Interrupt Flag
can be cleared by writing T1C-H, by reading T1C-L, or by writing
directly into the flag as described later. However, it is not necessary
to rewrite the timer to enable setting the Interrupt Flag on the
next time-out.

All interval timers in the SY6522 are "re-triggerable". Rewriting
the counter will always re-initialize the time-out period. In fact, the
time-out can be prevented completely if the processor continues to
rewrite the timer before it reaches zero. Timer 1 will operate in this
manner if the processor writes into the high order counter (T1C-H).
However, by loading the latches only, the processor can access the
timer during each down-counting operation without affecting the
time-out in process. Instead, the data loaded into the latches will
determine the length of the next time-out period. This capability is
particularly valuable in the free-running mode with the output
enabled. In this mode, the signal on PB7 is inverted and the interrupt
flag is set with each time-out. By responding to the interrupts with
new data for the latches, the processor can determine the period of
the next half cycle during each half cycle of the output signal on PB7.
In this manner, very complex waveforms can be generated. Timing
for the free-running mode is shown in Figure H-19.

Figure H-19: Timer 1 Free-Run Mode Timing

P970UTPUT ~ •• ,.._ ___ _.

1-N + 1.5CVCl.El------N~ JCVClH----;

Note: A precaution to take in the use of PB7 as the timer output concerns the Data Direction Register contents for PB7. IQ1b.
ODRB bit 7 and ACR bit 7 must be 1 for PB7 to function as the timer output. If one is 1 and the other is o. then PB7 function1
as a normal outi>ut pin, controlled by ORB bit 7.

215

TIMER 2 OPERATION

TIMER 2
ONE-SHOT MODE

TIMER 2
PULSE COUNTING
MODE

SHIFT REGISTER
OPERATION

216

Timer 2 operates as an inteival timer (in the "one-slot" mode only),
or as a counter for counting negative pulses on the PB6 peripheral pin.
A single control bit is provided in the Auxiliary Control Register to
select between these two modes. This timer is comprised of a
"write-only" low-order latch (T2L-L), a "read-only" low-order counter
and a read/write high order counter. The counter registers act as a
16-bit counter which decrements at +2 rate. Figure H-20 illustrates
the T2 Counter Registers.

As an inteival timer, T2 operates in the "one-shot" mode similar
to Timer 1. In this mode, T2 provides a single interrupt for each
"write T2C-H" operation. After timing out, the counter will continue
to decrement. However, setting of the Interrupt Flag will be disabled
after initial time-out so that it will not be set by the counter continuing
to decrement through zero. The processor must rewrite T2C-H to
enable setting of the Interrupt Flag. The Interrupt Flag is cleared by
reading T2C-L or by writing T2C-H. Timing for this operation is
shown in Figure H-18.

Figure H-20: T2 Counter Registers
REG 8 -TIMER 2 LOW-OROER COUNTER

COUNT
VALUE

WRIT£ - 8 ms LOADED tNTO T2 LOW.ORDER
lATCMES.

RIAD - I BITS FROM T2 LOW.ORDER COUNTUt
TRANSPERRID TO MPU. T2 INTIRftlUPT
FLAG IS AESU.

REG 9 -TIMER 2 HIGH-ORDER COUNTER

... ...
1024

2048 COUNT
VALUE

8112

,
:mea

WRITE - 8 BITS LOAOIO INTO T2 HIGH.otl0£R
COUNTER. ALSO, 1.0W.oAOlft LATCHES
TRANSPIRRIO TO LOW-GROIR
COUNTER. IN AODITtON, T2 INTERRUPT
FLAG 11 RlllT.

AIAD - 8 BITS •ROM T2 MIGH-OlllDIR COUNTt:R
TRANIP:UIRID TO MPU.

In the pulse counting mode, T2 seives primarily to count a
predetermined . number of negative-going pulses on PBS. This is
accomplished by first loading a number into T2. Writing into T2C-H
cleats the Interrupt Flag and allows the counter to decrement each
time a pulse is applied to PBS. The lnterrupr Flag will be set when
T2 reaches zero. At this time the counter will continue to decrement
with each pulse on PB6. However, it is necessary to rewrite T2C-H to
allow the Interrupt Flag to set on subsequent down-counting
operations. Timing for this mode is shown in Figure H-21. The pulse
must be low on the leading edge of +2.

The Shift Register (SR) performs serial data transfers into and
out of the CB2 pin under control of an internal modulo-8 counter.
Shift pulses can be applied to the CB1 pin from an external source
or, with the proper mode selection, shift pulses generated internally
will appear on the CB1 pin for controlling external devices.

INTERRUPT
OPERATION

The control bits which select the various shift register operating
modes are located in the Auxiliary Control Register. Figure H-22
illustrates the configuration of the SR data bits and the SR control
bits of the ACR.

Figures H-23 and H-24 illustrate the operation of the various
shift register modes.

Controlling interrupts within the SY6522 involves three principle
operations. These are flagging the interrupts, enabling interrupts and
signaling to the processor that an active interrupt exists within the
chip. Interrupt fl;:igs are set by interrupting conditions which exist
within the chip or on inputs to the chip. These flags normally remain
set until the interrupt has been serviced. To determine the source of
an interrupt, the microprocessor must examine these flags in order
from highest to lowest priority. This is accomplished by reading the
flag register into the processor accumulator, shifting this register
either right or left and then using conditional branch instructions to
detect an active interrupt.

Associated with each Interrupt Flag is an interrupt enable bit.
This can be set or cleared by the processor to enable interrupting
the processor from the corresponding Interrupt Flag. If an interrupt
flag is set to a logic 1 by an interrupting condition, and the corresponding
interrupt enable bit is set to a 1, the Interrupt Request Output (IRQ)
will go low. IRQ is an "open-collector" output which can be "wire-or'ed"
with other devices in the system to interrupt the processor.

In the SY6522, all the Interrupt Flags are contained in one register.
In addition, bit 7 of this register will be read as a logic 1 when an
interrupt exists within the chip. This allows very convenient polling of
several devices within a system to locate the source of an interrupt.

Figure H-21 : Timer 2 Pulse Counting Mode
WAITE T2C-H r---1
OPERATION ___J IL... --------------------

Pa& INPUT LI LI ;/ LI LI
fAOOUTPUT

N N-1 N-2 II

FIQure H-22: SR and ACR Control Bits
REG 10 - SHIFT REGISTER

REG 11 -AUXILIARY CONTROL REGISTER

SHIFT
REGISTER
BITS

4
0
0
0
0
.1
1
1
1

3
0
0
I
I
0
0
1
1

2
0
1
0
1
0
I
0
1

l+lsl+H+I
J_J_1

OPERATION
DISABLED

L SHIFT REGISTER
MOOE CONTROL

SHIFT IN UNDER CONTROi. OF T2
SHI FT IN UNDER CONTROL OF •!2_
SHIFT IN UNDER CONTROL OF EXT CLK
SHIFT OUT FREE·RUNNING AT T2 RATE
SHIFT OUT UNDER CONTROL OF T2
SHIFT OUT UNDER CONTROL OF •1•2
SHIFT OUT UNDER CONTROL OF EXTCLK

217

SR Disabled (000)

Shift In Under
Control of T2 (001)

Shift In Under
Control of h (010)

Shift In Under
Control of External
CB1 Clock (011)

218

The 000 mode is used to disable the Shift Register. In this mode
the microprocessor can write or read the SR, but the shifting operation
is disabled and operation of CB1 and CB2 is controlled by the
appropriate bits in the Peripheral Control Register (PCR). In this
mode the SR Interrupt Flag is disabled (held to a logic 0).

In the 001 mode the shifting rate is controlled by the low order
8 bits of T2. Shift pulses are generated on the CB1 pin to control
shifting in external devices. The time between transitions of this output
clock is a function of the system clock period and the contents of
the low order T2 latch (N).

The shifting operation is triggered by writing or reading the shift
register. Data is shifted first into the low order bit of SR and is then
shifted into the next higher order bit of the shift register on the
negative-going edge of each clock pulse. The input data should
change before the positive-going edge of the CB1 clock pulse. This
data is shifted into the shift register during the +2 clock cycle following
the positive-going edge of the CB1 clock pulse. After 8 CB1 clock
pulses, the shift register Interrupt Flag will be set and IRQ will go
low.

+,

WftlT!OAREAD n ~q IHIFTHEG. - •

N+2 CYCLES

C810UTfl'UT -----.., 1 2 3 8
SMIFTCl,,.OCK

1 '3~ C6l'INPUT
DATA

iiiii
I

In mode 010 the shift rate is a direct function of the system clock
frequency. CB1 becomes an output which generates shift pulses for
controlling external devices. Timer 2 operates as an independent
interval timer and has no effect on SR. The shifting operation is
triggered by reading or writing the Shift Register. Data is shifted first
bit O and is then shifted into the next higher order bit of the shift
register on the trailing edge of each +2 clock pulse. After 8 clock
pulses, the shift register Interrupt Flag will be set, and the output
clock pulses on CB1 will stop.

In mode 011 CB1 becomes an input. This allows an external device
to load the shift register at its own pace. The shift register counter will
interrupt the processor each time 8 bits have been shifted in. However,
the shift register counter does not stop the shifting operation; it acts
simply as a pulse counter. Reading or writing the Shift Register
resets the Interrupt flag and initializes the SR counter to count
another 8 pulses.

Shift Out Free-Running
at T2 Rate (100)

Shift Out Under
Control of T2 (101)

Shift Out Under
Control of +2 (110)

219

Note that the data is shifted during the first system clock cycle
following the positive-going edge of the CB1 shift pulse. For this
reason, data must be held stable during the first full cycle following
CB1 going high.

Figure H-23: Shift Register Input Modes

Mode 100 is very similar to mode 101 in which the shifting rate
is set by T2. However, in mode 100 the SR counter does not stop
the shifting operation. Since the Shift Register bit 7 (SR7) is recirculated
back into bit 0, the 8 bits loaded into the shift register will be
clocked onto CB2 repetitively. In this mode the shift register
counter is disabled.

In mode 101 the shift rate is controlled by T2 (as in the previous
mode). However, with each read or write of the shift register the SR
Counter is reset and 8 bits are shifted onto CB2. At the same time, 8
shift pulses are generated on CB1 to control shifting in external
devices. After the 8 shift puJses, th~ shifting is disabled, the SR
Interrupt Flag is set and CB2 remains at the last data level.

..
' CLOCK

:'~~~~~ON _n...___-+----i----j-----i---1---+----+---+---I I I
CBl OUTPUT
SHIFT CLOCK

N•ZCYCLES -t-•~-~

x..__ __ _,x _ __,

In mode 110, the shift rate is controlled by the +2 system clock.

··~ CLOCK

' I ~~~~~:~ON ___n._ _________________ _

·ce10UTPUT -----.
SHIFT CLOCK

Shift Out Under
Control of External
CB1 Clock (111)

220

In mode 111 shifting is controlled by pulses applied to the CB1 pin
by an external device. The SR counter sets the SR Interrupt
flag each time it counts 8 pulses but it does not disable the shifting
function. Each time the microprocessor writes or reads the shift
register, the SR Interrupt flag is reset and the SR counter is
initialized to begin counting the next 8 shift pulses on pin CB1. After
8 shift pulses, the Interrupt flag is set. The microprocessor can then
load the shift register with the next byte of data.

Figure H-24: Shift Register Output Modes

CBI INPUT
SHlfTCLOCll

=~ ~--------x""'---t

The Interrupt Flag Register (IFR) and Interrupt Enable Register (IER)
are depicted in Figures H-25 and H-26, respectively.

The IFT may be read directly by the processor. In addition,
individual flag bits may be cleared by writing a '' 1 '' into the
appropriate bit of the IFR. When the proper chip select and register
signals are applied to the chip, the contents of this register are
placed on the data bus. Bit 7 indicates the status of the IRQ output.
This bit corresponds to the logic function: IRQ = IFR6xlER6+1FR5x
IER5 + IFR4xlER4 + IFR3xlER3 + IFR2xlER2 + IFR1 xlER1 + IFROxlERO.
Note: X = logic AND, + = Logic OR.
The IFR bit 7 is not a flag. Therefore, this bit is not directly
cleared by writing a logic 1 into It. It can only be cleared by clearing
all the flags in the register or by disabling all the active interrupts as
discussed in the next section.

Figure H-25: Interrupt Flag Register (IFR)

REG 13 - INTERRUPT FLAG REGISTER

SET BY CLEARED BY

CA2 CA2 ACTIVE EDGE

CA1 ACTIVE EDGE

SHIFT REG COMPLETE 8 SHIFTS

cm~---ti!i21iC'ffiniiOOE"li~i'i>R'WimFEOiRF'"'1
CB1---~~~~~~~~~~!.....f

TIMER2----1

TIMER 1 ___ -ITIME·OUT OF T1

• IF THE CA2/Cm CONTROL IN THE PCR IS SELECTED AS
""INDEPENDENT" INTERRUPT INPUT. THEN READING OR
WRITING THE OUTPUT REGISTER ORA/ORB WILL !!IQ!
CLEAR THE FLAG BIT. INSTEAD. THE BIT MUST BE
CLEARED BY WRITING INTO THE IFR, AS DESCRIBED
PREVIOUSLY.

For each Interrupt Flag in IFR, there is a corresponding bit in the
Interrupt Enable Register. The system processor can be set or clear
selected bits in this register to facilitate controlling individual interrupts
without affecting others. This is accomplished by writing to address
1110 (IER address). If bit 7 of the data placed on the system data
bus during this write operation is a 0, each 1 in bits 6 through 0
clears the corresponding bit in the Interrupt Enable Register. For
each zero in bits 6 through O, the corresponding bit is unaffected.

Setting selected bits in the Interrupt Enable Register is accomplished
by writing to the same address with bit 7 in the data word set to a
logic 1. In this case, each 1 in bits 6 through O will set the
corresponding bit. For each zero, the corresponding bit will be
unaffected. This individual control of the setting and clearing
operations allows very convenient control of the interrupts during
system operation.

In addition to setting and clearing IER bits, the processor can read
the contents of this register by placing the proper address on the
register select and chip select inputs with the R/W line high. Bit 7
will be read as a logic O.

Figure H-26: Interrupt Enable Register (IER)

REG 14 - INTERRUPT ENABLE REGISTER

~-----T1MER2

~------TIMER 1

'---------SET/CLEAR

NOTES:

0 • INTERRUPT DISABLED

1 = INTERRUPT ENABLED

1. IF BIT 7 IS A ""0", THEN EACH "1'' IN BITS 0- 6 DISABLES THE
CORRESPONDING INTERRUPT.

2. IF BIT 7 IS A "1''. THEN EACH "1" IN BITS 0 -6 ENABLES THE
CORRESPONDING INTERRUPT.

3. IF A READ.OF THIS REGISTER IS DONE, BIT 7 WILL BE ''O" ANO
ALL OTHER BITS WILL REFLECT THEIR ENABLE/DISABLE STATE.

221

222

PACKAGE OUTLINE
10· m••

D.. ·o· • ;._J_ __ [- ~-
. 600 m••· n•.111 .'2$

115.2•mmt li!i fit .595

" -- I
11 oo't~"L:!~~ zo I f

~IN'-10 I '""'u I l -ll.93mml

•--:zOM i -- 11111111H

.... 3.mml _ I [····~
uu=;:ru t j 310~ .. mt-r -r-=- "'~.'.'.'."''

..... 211 IL I
i1.iil 040 l'i'P 10011'1'1tn

- _ 11~11 ~12 fVP 1254mml
•·•• ••• -- 010m1n

~ ~ ::::::: i-
19 £0UAL SPACES

.100 q_ TOL. NONCOM.
l:Z.~r-n!ll

f.25mm)

NOTE: Pm No. 1 11 on loWll !tilt cot• when
•Ymbolint10tt 11 en notm.i o"ent1hon

ORDERING INFORMATION PIN CONFIGURATION

O.de• Package Frequency
Number Typo Option

SYP6522 Pt as tic 1 MHz
SYP6522A Plastic 2MHz

VSS(I .. ,
PA) ...

SYC6522 Ceramic 1 MHz
SYC6522A Ceramic 2MHz

••• ,.,
AS2 ... RS3

••• m ... 00
,., 01 - 02 ... 03

"' O& ... 05

.... 05 ... 01 - , CS1

en
CO> .,,;;-
Vee [2G (llM]

1.1 8086 REGISTER
MODEL

Appendix I ASSEMBLY LANGUAGE REFERENCE DATA

AX:
BX:
CX:
DX:

AH AL
BH BL
CH CL
DH DL

DD p
I
I

ACCUMULATOR
BASE
COUNT
DATA

STACK POINTER
BASE POINTER ,
SOURCE INDEX
DESTINATION INDEX

IP INSTRUCTION POINTER
FLAGSH FLAGSL STATUS FLAGS

cs
DS
SS
ES

CODE SEGMENT
DATA SEGMENT
STACK SEGMENT
EXTRA SEGMENT

}

UJ
......J _.

<{LL
a: a:
wW
zl
w~
(!) (!)

w
a:

Instructions which reference the flag register file as a 16-bit object
use the symbol FLAGS to represent the file:

15 7 0
l X X X X OF DF IF TF SF ZF X AF X PF X CFI

X = Don't care

AF: AUXILIARY CARRY-BCD } ::~ CF: CARRY FLAG ::;
PF: PARITY FLAG 8080 FLAGS

. SF: SIGN FLAG
ZF: ZERO FLAG

Cl)

OF: DIRECTION FLAG (STRINGS)] ~
IF: INTERRUPT ENABLE FLAG _ ~
OF: OVERFLOW FLAG (CF EB SF) co
TF: TRAP-SINGLE STEP FLAG ~

co

All mnemonics ~lnte! Corpora•ion 1981.

223

1.2 OPERAND
SUMMARY

1.3 SECOND
INSTRUCTION BYTE
SUMMARY

224

"REG" FIELD BIT ASSIGNMENTS

16-BIT(W=1) 8-BIT_(_W=Ol SEGMENT

000 AX 000 AL 00 ES
001 ex 001 CL 01 cs
010 DX 010 DL 10 SS
011 BX 011 BL 11 OS
100 SP 100 AH
101 BP 101 CH
110 SI 110 DH
111 DI 111 BH

I mod xxx rim

MOD DISPLACEMENT

00 DISP=O*; disp-low and disp-high are absent
01 DISP=disp-low sign-extended to 16-bits, disp-high is absent
1 O DISP=disp-high:disp-low
11 r/m is treated as a "reg" field

DEFAULT
R/M OPERAND ADDRESS SEGMENT

000 (BX) + (SI) + DISP OS
001 (BX) + (DI) + DISP OS
010 (BP) + (SI) + DISP SS
011 (BP) + (DI) + DISP SS
100 (SI)+ DISP OS
101 (DI)+ DISP DS
110 (BP)+ DISP* SS
111 (BX)+ DISP DS

DISP follows 2nd byte of instruction (before data if required).
*except if mod=OO and r/m=11 O; then EA=disp-high: disp-low.

OPERAND ADDRESS (EA) TIMING (CLOCKS):
Add 4 clocks for word operands at ODD ADDRESSES.
I mmed offset=6
Base (BX, BP, SI, 01)=5
Base+ DISP=9
Base + index (BP + DI, BX + SI)=?
Base + index (BP + SI, BX + 01)=8
Base+ index (BP + DI, BX +SI)+ DISP=11
Base + index (BP + SI, BX + DI) + DISP=12

All mnemonics '£lintel Corporation 1981.

1.4 MEMORY
SEGMENTATION
MODEL

1.5 INSTRUCTION
SET DATA

LOGICAL
MEMORY SPACE

7 0
I !fFFFFH

6rt----tl}CODE SEGMENT

XXXXOH

15
OFFSET

0

-~-t----f }STACK SEGMENT DIS~LACEMENT

ADDRESS t'."----~

}m"""'" WORD{
MSB

LSB
BYTE

l EXTRA DATA

ADDER
J SEGMENT

r 1'oooooH

------PHYSICAL

------' ~~~~~SS

SEGMENT OVERRIDE PREFIX

I o o 1 REG 1 0

Timing: 2 clocks

USE OF SEGMENT OVERRIDE

OPERAND REGISTER DEFAULT WITH OVERRIDE PREFIX

IP (code address) cs Never
SP (stack address) SS Never
BP (stack address or

stack marker) SS BP + OS, or ES, or CS
SI or DI (not incl. strings) OS ES, SS, or CS
SI (implicit source addr.

for strings) DS ES, SS, or CS
DI (implicit dest. addr.

for strings) ES Never

Section 1.5.2 presents instuction set data, grouped by function. Section
1.9 provides an alphabetic index to the data.

All mnemonics ~Intel Corporation 1981.

225

1.5.1 KEY TO FLAG
EFFECTS

1.5.2 DATA
TRANSFER

MOV=Move

226

The following key refers to the flag sections in the instruction set data
in Section 1.5.2.

IDENTIFIER

(blank)
0
1

FLAG EFFECT KEY

EXPLANATION

Not altered
Cleared to O
Set to 1

x
u
R

Set or cleared according to result
Undefined-contains no reliable value
Restored from previously-saved value

Flags: ODITSZAPC

Register/memory to/from register

I 1 0 0 0 1 0 d w I mod reg r/m I
Timing (clocks): register to register

memory to register
register to memory

Immediate to register/memory

I 1 1 0 0 O 1 1 w I mod 0 O O rim I data

Timing: 1 O+EA clocks

Immediate to register

2
B+EA
9+EA

I 1 O 1 1 w reg I data data if w=1

Timing: 4 clocks

Memory to accumulator

11 0 1 0 0 0 0 w I addr-low addr-high

Timing: 1 O clocks

Accumulator to memory

I 1 0 1 0 0 0 1 w I addr-low addr-high

Timing: 1 O clocks

Register I memory to segment register

I 1 0 0 0 1 1 1 0 I mod 0 reg r /m I
Timing (clocks): register to register 2

memory to register B+EA

Segment register to register I memory

I 1 0 0 0 1 1 0 0 I mod 0 reg r/m I

All mnemonics ©Intel Corporation 1981.

data if w=1 I

PUSH=Push

POP= Pop

XCHG=Exchange

IN=lnput to AL/AX
from

Timing (clocks): register to register 2
register to memory 9+EA

Flags: 0 D I T S Z A P C

Register I memory
I 1 1 1 1 1 1 1 1 I mod 1 1 O rim

Timing (clocks): register
memory

101010 reg I
Timing: 1 O clocks

Segment register

loooreg11ol

Timing: 1 O clocks

Flags: 0 D I T S Z A P C

Register I memory

I 1 O O 0 1 1 1 1 I mod 0 O O rim

Timing (clocks): register
memory

Register

101011 reg

Timing: 8 clocks

Segment register

loooreg111I

Timing: 8 clocks

Flags: 0 D I T S Z A P C

Register I memory with register

I 1 0 0 0 0 1 1 w lmod reg rim I

10
16+EA

8
17+EA

Timing (clocks): register with register 4
memory with register 17 +EA

Register with accumulator

110010 reg I
Timing: 3 clocks

Flags: 0 D I T S Z A P C

Fixed Port

l111001owl port

Timing: 1 O clocks

All mnemonics 'l:>lntel Corporation 1981.

227

OUT=Output from
AL/AX to

XLA T=Translate Byte
to AL

LEA=Load EA to
Register

LDS=Load Pointer to
OS

LES=Load Pointer to
ES

LAHF=Load AH with
Flags

SAHF=Store AH Into
Flags

228

Variable port (DX)

l111011owl

Timing: 8 clocks

Flags: 0 D I T S Z A P C

Fixed Port

I 1 1 1 0 0 1 1 w I port

Timing: 1 O clocks

Variable port (DX)

l1110111wl

Timing: 8 clocks

Flags: O D

111010111

T S Z A P C

Timing: 11 clocks

Flags: 0 D I T S Z A P C

I 1 0 0 0 1 1 0 1 I mod reg r Im

Timing: 2+EA clocks

Flags: 0 D I T s z A p c
111000101 I mod reg r/m I
Timing: 16+EA clocks

Flags: 0 D I T s z A p c
I 1 1 0 O O 1 O O I mod reg rim

Timing: 16+EA clocks

Flags: 0 D T s z A p c
110011111

Timing: 4 clocks

Flags: 0 D I T S Z A P C
R R R R R

1100111101

Timing: 4 clocks

All mnemonics ©Intel Corporation 1981.

PUSHF=Push Flags

POPF=Pop Flags

1.5.3 ARITHMETIC

ADD=Add

Flags: 0 D I T s z A p c
1100111001

Timing: 1 O clocks

Flags: 0 D I T s z A p c
R R R R R R R R R

1100111011

Timing: 8 clocks

Flags: 0 D I T S Z A P C
x x x x x x

Reg./ memory with register to either

I 0 0 0 0 0 0 d w I mod reg rim I
Timing (clocks): register to register

memory to register
register to memory

Immediate to register I memory

I 1 0 O 0 O O s w I mod 0 0 0 rim I data

3
9+EA

16+EA

data if s:w=01 I
Timing (clocks): immediate to register 4

immediate to memory 17 +EA

Immediate to accumulator

looooo1owl data data if w=1

Timing: 4 clocks

ADC=Add with Carry Flags: 0 D I T S Z A P C
x x x x x x

Reg./ memory with register to either

I 0 0 0 1 0 0 d w I mod reg rim I
Timing (clocks): register to register

memory to register
register to memory

Immediate to register/memory

I 1 O O 0 0 0 s w I mod 0 1 0 rim I data

3
9+EA

16+EA

data if s:w=01 I
Timing (clocks): immediate to register 4

immediate to memory 1 7 +EA

All mnemonics ©Intel Corporation 1981.

229

INC= Increment

AAA=ASCll Adjust for
Add

DAA=Declmal Adjust
for Add

SUB=Subtract

230

Immediate to accumulator

looo101owl data data if w=1 I
Timing: 4 clocks

Flags: 0 D I T s z A p c x x x x x x
Register I memory

l1111111wlmodOOO rim

Timing (clocks): register
memory

Register

101000 reg

Timing: 2 clocks

Flags: 0 D I T s z A p c
u u u x u x

10 o 1 1o1 1 1 I
Timing: 4 clocks

Flags: O D
x

T S Z A P C
x x x x x

100100111

Timing: 4 clocks

Flags: 0 D I T s z A p c
x x x x x x

I 0 0 1 0 1 0 d w I mod reg rim I

Timing (clocks): register from register
memory from register
register from memory

Immediate from register I memory

I 1 0 0 0 0 0 s w I mod 1 0 1 rim I data

2
15+EA

3
9+EA

16+EZ

data if s:w=01 I
Timing (clocks): immediate from register 4

immediate from memory 17 +EA

Immediate from accumulator

I 0 0 1 0 1 1 0 w I data data if w=1

Timing: 4 clocks

All mnemonics ~Intel Corporation 1981.

SBB=Subtract with
Borrow

DEC= Decrement

NEG=Change Sign

CMP=Compare

Flags: 0 D I T S Z A P C
x x x x x x

I 0 0 0 1 1 0 d w I mod reg rim I
Timing (clocks): register from register

memory from register
register from memory

Immediate from register I memory

I 1 0 0 0 0 0 s w I mod 0 1 1 rim I data

3
9+EA

16+EA

data if s:w=01 I
Timing (clocks): immediate from register 4

immediate from memory 17 +EA

Immediate from accumulator

I O 0 0 1 1 1 0 w I data data if w=1

Timing: 4 clocks

Flags: 0 D I T S Z A P C
x x x x x

Register I memory

I 1 1 1 1 1 1 1 w I mod 0 0 1 r Im

Timing (clocks): register
memory

Register

I 0 1 0 0 1 reg I

Timing: 2 clocks

Flags: 0 D I T s z A p c
x x x x x 1*

•o if destination=O

I 1 1 1 1 O 1 1 w I mod O 1 1 r Im

Timing (clocks): register
memory

Flags: 0 D I T S Z A P C
x x x x x x

Register I memory and register

I 0 0 1 1 1 0 d w I mod reg r Im I

2
15+EA

3
16+EA

Timing (clocks): register with register 3
memory with register 9+EA
register with memory 9+EA

All mnemonics £>Intel Corporation 1981.

231

AAS=ASCll AdJust for
Subtract

DAS=Declmal Adjust
for Subtract

MUL=Multlply
(Unsigned)

IMUL=lnteger Multiply
(Signed)

AAM=ASCll Adjust for
Multiply

DIV= Divide
(Unsigned)

232

Immediate with register/memory

l1oooooswlmod111 rim I data data if s:w .. 01 l
Timing (clocks): immediate with register 4

immediate with memory 17 +EA

Immediate with accumulator

loo 1 1 1 1 ow I data data if w=1

Timing: 4 clocks

Flags: 0 D T s z A p c
u u u x u x

100111111

Timing: 4 clocks

Flags: 0 D T s z A p c
u x x x x x

lo o 1 o 1 1 1 1

Timing: 4 clocks

Flags: 0 D I T s z A p c
x u u u u x

I 1 11 1o1 1wll'lod1 o o rim

Timing (clocks): 8-bit 71+EA
16-bit 124+EA

Flags: 0 D I T S z A p c
x u u u u x

I 1 1 1 1 O 1 1 w I mod 1 o 1 rim I
Timing (clocks): 8-bit 90+EA

16-bit 144+EA

Flags: 0 D I T s z A p c
u x x u x u

111o1o1 o o Io o o o 1o1 o

Timing: 83 clocks

Flags: 0 D I T s z A p c
u u u u u u

11111011wlmod110 rim

Timing (clocks): 8-blt 90+EA
16-bit 155+EA

All mnemonics ©Intel Corporation 1981 .

IDIV=lnteger Divide
(Signe4)

AAD=ASCll Adjust for
Divide

CBW=Convert Byte to
Word

CWD=Convert Word
to Double Word

1.5.4 LOGIC

NOT= Invert

SHL/SAL=Shlft
Logical/ Arithmetic
Left

SHR=Shlft Logical
Right

Flags: 0 D I T s z A p c
u u u u u u

I 1 1 1 1 0 1 1 w I mod 1 1 1 rim

Timing (clocks): 8-bit
16-bit

Flags: 0 D I T s z A p c
u x x u x u

111010101 100001010

Timing: 60 clocks

Flags: 0 D I T S Z A P C

1100110001

Timing: 2 clocks

Flags: 0 D I T S Z A P C

110011001 I
Timing: 5 clocks

Flags: 0 D I T S Z A P C

l 1 1 1 1 0 1 1 w I mod 0 1 0 rim

Timing (clocks): register
memory

Flags: 0 D I T S Z A P C
x x

j 1 1 0 1 0 0 v w I m.od 1 0 0 r/m I
Timing (clocks): single-bit register

single-bit memory
variable-bit register
variable-bit

112+EA
177+EA

3
16+EA

MSB LSB

~o

2
15+EA

8+4/bit

memory 20+EA+4/bit

Flags: 0 D I T S Z A P C
x x

I 1 1 0 1 0 0 v w I mod 1 0 1 rim I
Timing (clocks): single-bit register

single-bit memory
variable-bit register
variable-bit

MSB LSB

-.~

2
15+EA

8+4/bit

memory 20+EA+4/bit

All mnemonics &'!Intel Corporation 1981.

233

SAR=Shift Arithmetic Flags: 0 D I T S Z A P C
Right X X X U X X

j 1 1 0 1 0 0 v w l mod 1 1 1 rim I ~

ROL=Rotate Left

ROR=Rotate Right

RCL=Rotate Through
Carry Left

RCR=Rotate Through
Carry Right

234

Timing (clocks): single-bit register
single-bit memory
variable-bit register
variable-bit

2
15+EA

8+4/bit

memory 20+EA+4/bit

Flags: 0 D I T S Z A P C
x x

MSB

I 1 1 0 1 0 0 v w I mod 0 0 0 rim I ~I
I

Timing (clocks): single-bit register
single-bit memory
variable-bit register
variable-bit

2
15+EA

8+4/bit

memory 20+EA+4/bit

Flags: 0 D I T S Z A P C
x x

I 1 1 0 1 0 0 v w I mod 0 0 1 rim I
Timing (clocks): single-bit register

single-bit memory
variable-bit register
variable-bit

2
15+EA

8+4/bit

memory 20+EA+4/bit

Flags: 0 D I T S Z A P C
x x MSB

I 1 1 0 1 0 0 v w I mod 0 1 0 rim I @I I

Timing (clocks): single-bit register
single-bit memory
variable-bit register
variable-bit

2
15+EA

8+4/bit

memory 20+EA+4/bit

Flags: 0 D I T S Z A P C

-

x x MSB LSB

I 1 1 0 1 0 0 v w I mod 0 1 1 rim I
Timing (clocks): single-bit register

single-bit memory
variable-bit register
variable-bit

2
15+EA

8+4/bit

memory 20+EA+4/bit

All mnemonics ~Intel Corporation 1981.

LSB

I~

LSB

'h

AND=And

TEST=And Function
to Flags, No Result

OR= Or

Flags: 0 D I T S Z A P C
0 x x u x 0

Reg./ memory and register to either

I 0 0 1 O 0 0 d w I mod reg r/m I
Timing (clocks): register to register

memory to register
register to memory

Immediate to register/memory

3
9+EA

16+EA

I 1 0 0 0 0 0 0 w I mod 1 O O rim I data ·I

Timing (clocks): immediate to register 4
immediate to memory 17+EA

Immediate to accumulator

I O O 1 O 0 1 O w I data data if w=1

Timing: 4 clocks

Flags: 0 D I T S Z A P C
0 x x u x 0

Register I memory and register

I 1 O 0 0 0 1. 0 w I mod reg rim I
Timing (clocks): register to register 3

register with memory 9+EA

Immediate data and register I memory

data ii t1= 1

I 1 1 1 1 0 1 1 w I mod 0 0 0 r /m I data data if w= 1

Timing (clocks): immediate with register 4
immediate with memory 1 O+EA

Immediate data and accumulator

I 1 0 1 0 1 0 0 w I data data if w=1

Timing: 4 clocks

Flags: 0 D I T S Z A P C
0 x x u x 0

Reg./ memory and register to either

I 0 O O O 1 0 d w I mod reg rim I
Timing (clocks): register to register

memory to register
register to memory

All mnemonics ~Intel Corporation 1981.

3
9+EA

16+EA

235

XOR=Excluslve Or

1.5.5 STRING
MANIPULATION

REP= Repeat

MOVS=Move String

CMPS=Compare
String

236

Immediate to register I memory

I 1 0 0 0 0 0 0 w I mod 0 0 1 r /m I data

Timing (clocks): immediate to register 4
immediate to memory 17 +EA

Immediate to accumulator

0 0 0 0 1 1 0 w I data data if w=1

Timing: 4 clocks

Flags: 0 D I T S Z A P C
0 x x u x 0

Reg./ memory and register to either

I 0 0 1 1 0 0 d w I mod reg rim I

Timing (clocks): register to register
memory to register
register to memory

Immediate to register/memory

I 1 0 0 0 0 0 0 w I mod 1 1 0 rim I data

3
9+EA

16+EA

Timing (clocks): immediate to register 4
immediate to memory 17 +EA

Immediate to accumulator

I 0 0 1 1 0 1 0 w I data data if w=1

Timing: 4 clocks

Flags: O D

f1111001z

T S Z A P C

Timing: 6 clocks/loop

Flags: 0 D I T S Z A P C

l101001owl

Timing: 17 clocks

Flags: 0 D I T S Z A P C
x x x x x x

:11010011wl

Timing: 22 clocks

All mnemonics ©Intel Corporation 1981.

data if w0 1

data if w=1

SCAS=Scan String

LODS=Load String

STOS=Store String

1.5.6 CONTROL
TRANSFER

CALL=Call

JMP=Uncondltlonal
Jump

Flags: 0 D I T s z A p c
x x x x x x

l1010111wl

Timing: 15 clocks

Flags: 0 D I T s z A p c
!101011owl

Timing: 12 clocks

Flags: 0 D I T s z A p c
l1010101wl

Timing: 10 clocks

NOTE: Queue reintialization is not included in the timing information
for transfer operations. To account for instruction loading, add 8
clocks to timing numbers.

Flags: 0 D I T S Z A P C

Direct within segment

I 1 1 1 o 1 O O 0 I disp-low

Timing: 11 clocks

Indirect within segment

I 1 1 1 1 1 1 1 1 I mod 0 1 0 r Im

Timing: 13+EA clocks

Direct intersegment

I 1 O O 1 1 0 1 0 I offset-low

I seg-low

Timing: 20 clocks

Indirect intersegment

I 1 1 1 1 1 1 1 1 I mod 0 1 1 r Im

Timing: 29+EA clocks

disp-high

offset-high

seg-high

Flags: 0 D I T S Z A P C

Direct within segment

I 1 1 1 O 1 0 O 1 I disp-low disp-high

Timing: 7 clocks

All mnemonics ~Intel Corporation 1981.

237

RET=Retum from
CALL

JE/JZ=Jump on
Equal/Zero

238

Direct within segment-short

1111010111 disp

Timing: 7 clocks

Indirect within segment

11 1 1 1 1 1 1 1 I mod 1 O O rim

Timing: 7+EA clocks

Direct intersegment

[111010101 offset-low

[seg-low

Timing: 7 clocks

Indirect intersegment

I 1 1 1 1 1 1 1 1 I mod 1 0 1 r /m

Timing: 16+EA clocks

offset-high

seg-hlgh

Flags:ODITSZAPC

Within segment

111000011'

Timing: 8 clocks

Within seg. adding immediate to SP

I 1 1 0 0 0 0 1 0 I data-low data-high

Timing: 12 clocks

I ntersegment

1110010111

Timing: 18 clocks

lntersegment, adding immediate to SP

I 1 1 0 0 1 0 1 O I data-low data-high

Timing: 17 clocks

Flags: 0 D I T S Z A P C

I o 1 1 1 o 1 o o I disp

Timing (clocks): jump is taken
jump is not taken

All mnemonics .tlntel Corporation 1981.

8
4

JL/JNGE=Jump on Flags: 0 D I T s z A p c
Less/Not Greater or
Equal 1011111001 disp

Timing (clocks): jump is taken 8
jump is not taken 4

JLE/JNG=Jump on Flags: 0 D I T s z A p c
Less or Equal/Not
Greater 1011111101 disp

Timing (clocks): jump is taken 8
jump is not taken 4

JB/JNAE=Jump on Flags: 0 D I T s z A p c
Below/Not Above or
Equal 1011100101 disp

Timing (clocks): jump is taken 8
jump is not taken 4

JBE/JNA=Jump on Flags: 0 D I T s z A p c
Below or Equal/Not

1011101101 disp Abpve

Timing (clocks): jump is taken 8
jump is not taken 4

JP/JPE=Jump on Flags: 0 D I T s z A p c
Parity/Parity Even

1011110101 disp

Timing (clocks): jump is taken 8
jump is not taken 4

JO=Jump on Flags: 0 D T s z A p c
Overflow

1011100001 disp

Timing (clocks): jump is taken 8
jump is not taken 4

JS=Jump on Sign Flags: 0 D I T s z A p c
1011110001 disp

Timing (clocks): jump is taken 8
jump is not taken 4

JNE/JNZ=Jump on Flags: 0 D I T s z A p c
Not Equal/Not Zero

1011101011 disp

Timing (clocks): jump is taken 8
jump is not taken 4

All mnemonics £Intel Corporation 1981.

239

JNUJGE=Jump on Flags: 0 D I T s z A p c
Not Leu/Greater or
Equal 1011111011 disp

Timing (clocks): jump is taken 8
jump is not taken 4

JNLE/JG=Jump on Flags: 0 D I T s z A p c
Not Less or
Equal/Greater 1011111111 disp

Timing (clocks): jump is taken 8
jump is not taken 4

JNB/JAE=Jump on Flags: 0 D I T s z A p c
Not Below/ Above or
Equal 1011100111 disp

Timing (clocks): jump is taken 8
jump is not taken 4

JNBE/JA=Jump on Flags: 0 D I T s z A p c
Not Below or
Equal/ Above 1011101111 disp

Timing (clocks): jump is taken 8
jump is not taken 4

JNP/JPO=Jump on
Not Parity/Parity Odd Flags: 0 D T s z A p c

1011110111 disp

' Timing (clocks): jump is taken 8
jump is not taken 4

JNO=Jump on Not Flags: 0 D I T s z A p c
Overflow

101110001 I disp

Timing (clocks): jump is taken 8
jump is not take 4

JNS=Jump on Not Flags: 0 D I T s z A p c
Sign

1011110011 disp

Timing (clocks): jump is taken 8
jump is not taken 4

LOOP=Loop CX Flags: 0 D I T s z A p c
Times

1111000101 disp

Timing (clocks): jump is taken 9
jump is not taken 5

--- ·-- .. --- -
AH mne:r.or;ics !: Intel C.xporation 1981.

240

LOOPZ/LOOPE=Loop
Whlle Zero/Equal

Flags: 0 D T S Z A P C

111100001 disp

Timing (clocks): jump is taken 11
jump is not taken 5

LOOPNZILOOPNE=Loop Flags: 0 D I T S ' Z A P C
While Not Zero/Not
Equal I 1 1 1 o o o o o I disp

JCXZ=Jump on CX
Zero

I NT= Interrupt

Timing (clocks): jump is taken 11
jump is not taken 5

Flags: 0 D T S Z A P C

1ii100011 disp

Timing (clocks): jump is taken
jump is not taken

9
5

8086 Condltlonal Transfer Operations

INSTRUCTION

JE or JZ
JL or JNGE
JLE or JNG

JB or JNAE
JBE or JNA
JP or JPE
JO
JS
JNE or JNZ
JNL or JGE
JNLE or JG

JNB or JAE
JNBE or JA
JNP or JPO
JNO
JNS

CONDITION

ZF=1
(SR xor OF)=1
((SP xor OF)

or ZF)=1
CF=1
(CF or ZF)=1
PF=1
OF=1
SF=1
ZF=O
(SF xor OF)=O
((SF xor OF) or

ZF)=O
CF=O
(CF or ZF)=O
PF=O
OF=O
OF=O

INTERPRETATION

"equal'' or "zero"
"less" or "not greater or equal"
"less or equal" or "not greater"

"below" or "not above or equal"
"below or equal" or "not above"
"parity" or "parity even"
"overflow"
"sign"
"not equal" or "not zero"
"not less" or "greater or equal"
"not less or equal" or "greater"

"not below" or "above or equal"
"not below or equal" or "above"
"not parity" or "parity odd"
"not overflow"
"not sign"

NOTE: "Above and below" refer to the relation between two
unsigned values, while "greater'' and "less" refer to the
relation between two signed values.

Flags: 0 D I T S Z A P C
0 0

Type specified

I 1 1 o o 1 1 o 1 I type

Timing: 50 clocks

All mnemonic,; ;; Ir.tel Corporat:on 1961.

241

INTO=lnterrupt on
Overflow

Type 3

1110011001

Timing: 51 clocks

Flags: 0 0 I T S Z A P C
0 0

1110011101

Timing: 52 clocks if pass 4 clocks if fail

IRET=lnterrupt Return Flags: O D I T S Z A P C

1.5.7 PROCESSOR
CONTROL

CLC=Clear Carry

STC=Set Carry

CMC=Complement
Carry

NOP=No Operation

CLD=Clear Direction

242

R R R R R R R R R
1110011111

Timing: 24 clocks

Flags: 0 0 I

1111110001

Timing: 2 clocks

Flags: 0 0

lq111001

Timing: 2 clocks

Flags: 0 0

111110101

Timing: 2 clocks

T s z A p c
0

T s z A p c
1

T s z A p c
x

Flags: 0 0 I T S Z A P C

110010000 I
Timing: 3 clocks

Flags: 0 0 I T S Z A P C
0

1111111001

Timing: 2 clocks

All mnemonics ©lnlei Corporation 1981.

STD=Set Direction Flags: 0 D T s z A p c
1

111111101

Timing: 2 clocks

CLl=Clear Interrupt Flags: 0 D I T s z A p c
0

1111110101

Timing: 2 clocks

STl=Set Interrupt Flags: 0 D I T s z A p c
1

111111011

Timing: 2 clocks

HLT=Halt Flags: 0 D T s z A p c
111110100

Timing: 2 clocks

WAIT= Walt Flags: 0 D T s z A p c
110011011

LOCK=Bus Lock Timing: 3 clocks
Prefix

Flags: 0 D T s z A p c

111110000

Timing: 2 clocks

ESC=Escape (To Flags: 0 D I T s z A p c
External Device) I 1 1 O 1 1 x x x I mod x x x r/m

Timing: 7+EA clocks

All mnemonics ~Intel Corporation 1981.

243

1.6 PROCESSOR
RESET REGISTER
INITIALIZATION

I. 7 8088 RESERVED
LOCATIONS

Interrupt Pointer Table

244

NOTES:
If d=1 then "to"; if d=O then "from."
If w=1 then word instruction; if w=O then byte instruction.
If s:w=01 then 16 bits of immediate data form the operand.
If s:w=11 then an immediate data byte is sign extended to form the

16-bit operand.
If v=O then "count"=1; if v=1 then "count" in (CL).
X=don't care.
Z is used for some string primitives to compare with ZF FLAG.
AL=8-bit accumulator.
AX =16-bit accumulator.
CX =Count register.
DS=Data segment.
DX =Variable port register.
ES=Extra segment.
Above/below refers to unsigned value.
Greater=more positive signed values.
Less=less positive (more negative) signed values.
See section 1.2 for Operand summary.
See section 1.4 for Segment Override summary.

Flags=OOOOH (to disable interrupts and single-stepping)

CS=FFFFH (to begin execution at FFFFOH)
IP=OOOOH

DS=OOOOH
SS=OOOOH
ES=OOOOH

No other registers are acted upon during reset.

INTERRUPT LOCATION

0
1
2
3
4

OOH-03H
04H-07H
08H-OBH
OCH-OFH
1 OH-13H

3FFH

FUNCTION

Divide by zero
Single step
Non-maskable interrupt
One-byte interrupt instruction
Interrupt on overflow

CS255

IP255

cs,

•••
cs.

•••

INTERRUPT TYPE VECTOR
x 4 IS LOCATION FOR
ADDRESS OF INTERRUPT
SERVICE ROUTINE

All mnemonics ~Intel Corporation 1981.

1.8 8088
INSTRUCTION SET
MATRIX

1.9 MNEMONIC
INDEX

NOTES:
b=byte operation
d=direct
f=from CPU reg
i=immediate
ia=immed. to accum.
id=indirect
is=immed. byte, sign ext.
l=long ie. intersegment

m=memory
r/m=EA is second byte
si=short intrasegment
sr=segment register
t=to CPU reg
v=variable
w=word option
z=zero

Mnemonic Page Mnemonic
------~

Page Mnemonic Page

AAA 230 JG 240 MOV 226
AAD 233 JGE 240 MOVS 236
AAM 232 JL 239 MUL 232
AAS 232 JLE 239 NEG 231
ADC ·229 JMP 237 NOP 242
ADD 229 JNA 239 NOT 233
AND 235 JNAE 239 OR 235
CALL 237 JNB 240 OUT 228
CBW 233 JNBE 240 POP 227
CLC 242 JNE 239 POPF 229
CLD 242 JNG 239 PUSH 227
cu 243 JNGE 239 PUSHF 229
CMC 242 JNL 240 RCL 234
CMP 231 JNLE 240 RCA 234
CMPS 236 JNO 240 REP 236
CWD 233 JNP 240 RET 238
DAA 230 JNS 240 AOL 234
DAS 232 JNZ 239 ROA 234
DEC 231 JO 239 SAHF 228
DIV 232 JP 239 SAL 233
ESC 243 JPE 239 SAR 234
HLT 243 JPO 240 SBB 231
IDIV 233 JS 239 SCAS 237
IMUL 232 JZ 238 SHL 233
IN 227 LAHF 228 SHA 233
INC 230 LOS 228 STC 242
INT 241 LEA 228 STD 243
INTO 242 LES 228 STI 243
IRET 242 LOCK 243 STOS 237
JA 240 LOOS 237 SUB 230
JAE 240 LOOP 240 TEST 235
JB 239 LOOPE 241 WAIT 243
JBE 239 LOOPNE 241 XCHG 227
JCXZ 241 LOOPNZ 241 XLAT 228
JE 238 LOOPZ 241 XOR 236

245

Appendix J SAMPLE SIRIUS 1 SOFTWARE DRIVERS

PL/M-86 COMPILER SIRIUS Systems Technology, IRG• (c) 1982 S-1 Hardware
Example software drivers for s-1 Hardware

04/01/82 PAGE

SERIES-III PL/M-86 Vl.O COMPILATION OF MODULE HARDWARB
NO OBJECT MODULE REQUESTED ..
COMPILER INVOKED BY: P.86 TEMP.SRC OPTIMIZE(3) PAGELENGTH(42) PAGEWIDTH(l09) PRINT(1F41HW.LS) NOOBJECT

$TITLE (c) 1982
$SUBTITLE ('Example software drivers for S-1 Hardware')
/***
* *
* *
* *
* •
* *
* *
* *
* *
* *
* •
* * • •
* *
" *
* *
* *
* *
* *
* *
* *
··*••/

PL/M-86 COMPILER 04/01/82 PAGE

1

2
3

4

1
1

1

Example software drivers for s-1 Hardware

$eject
$SMALL ROM

Hardware1 do1

Declare dcl
Del lit

Del addr
ext
init
intg
proc
ptr
pub
rent
ret
struc
boolean
true
false

literally 'declare 1 1
literally 'literally'1
lit 'address•,
lit 'external',
lit 'initial',
lit 'integer•,
lit 'procedure•,
lit 'pointer•,
lit 'public',
lit •reentrant•,
lit 'return',
lit 'structure',
lit 'byte',
lit I OFFH',
lit 'OOOOH'I

PL/M-86 COMPILER
KB: Hardware bit defs

$subtitle('KB1 Hardware bit defs')

04/01/82 PAGE

5 1 dcl SR$intbit 1 t '4'; I* KB shift register interrupt mask in6522 IER/IFR */
6 1 dcl SR$enable 1 t 'Och'1 /* KB shift register enable in 6522 ACR */
7 1 dcl CB1$intbit 1 t 'lOh' I I* KB RDY edge-sense interrupt mask 6522 PCR */
8 1 dcl CB1$pos_edge 1 t 'lOh 1 1 /* KB RDY edge-sense control in 6522 PCR */

9 1 dcl kb$databit 1 t '40h' 1 /* KB DATA level */
10 1 dcl kb$ackctl 1 t '2'; /* KB ACK control for 6522 output *I
11 1 dcl kb$TIMEOUT 1 t '300 1 1 /* error timeout in milliseconds */
12 1 dcl timerl_ena 1 t 'OcOh' I /* timer 1 interrupt mask in 6522 IER/IFR */

1

2

3

247

PL/M-86 COMPILER 04/01/82 PAGE
KB: Hardware bit defs

$eject

I* KYBRD PORT (e8040 •• e804f) *I
13 l dcl via (161 struc (/* 6522 port organization *I

RB byte,
RA byte,
DDRB byte,
DDRA byte,
TIMERl word,
TIMERlL word,
TIMER2 word,
SR byte,
ACR byte,
PCR byte,
IFR byte,
IER byte,
RAX byte) at(Oe8000h)1

14 l dcl kb$state byte1 I* current state of keyboard stateware *I
15 l dcl kb$data bytei I* constructed data from keyboard *I

I* nybble convert table for inverted shift reg *I
16 1 dcl Ctable(*I byte data (0,8,4,0cb, 2,0ah,6,0eh, 1,9,S,Odh, 3,0bh,7,0fhl1

17 1 dcl tick lit •so• 1 /* console clock rate in milliseconds *I

PL/M-86 COMPILER 04/01/82 PAGE

18

19
20
21

22
23
24

1

1
2
2

1
2
2

KB: external routines

$subtitle('KB: external routines')

/*
* *I

signal user about keyboard error state -- ring bell

dcl signalKBerror lit 'Ringbell'1
/* Ringbell found in SOUND module */

/*
*
•/

Process key board event -- in external module

Process$Event: proc(event)
dcl event byte1

end1

byte ext1

I*
* */

Software c~ock resource -- set timeout for interrupt to KB$reset

setKBclock: proc(Period) ext;
dcl Period intg1

end setKBclock1
/* timeout delay in milliseconds *I

PL/M-86 COMPILER SIRIUS Systems Technology, Inc. (c) 1982 S-1 Hardware
KB: Keyboard Stateware

04/01/82 PAGE

25 l
26 2

27 3
28 4

29 4
30 4
31 4
32 4

248

$subtitle('KB: Keyboard Stateware')
I*

* KB interrupt entry (level 6)
*I

kb$irq: proc pub rent1
do case kb$state1

I*
* state o to state 1: shift register (full) interrupt
*I

kbstO: do1
via(4).ACR- via(4).ACR and not SR$enable1 /* disable shift register

/* prepare for interrupt on negative edge
via(4).PCR• via(4).PCR and not CBl$pos_edge1
via(4).IBR• 80h or CBl$intbit1

disable1 I* time critical section
kb$data g via(4).SR1 I* get KB data from SR (clears

*I
of KB RDY */

SR IROI
*I
*/

4

5

6

33

34
3S
36
37

3B
39
40
41
42
43

44
4S
46
47
4B

4

4
4
4
4

3
4
4
4
4
s

s
s
s
4
4

via(4).IER= SR$intbit1

via(4).RB = via(4).RB or kb$ackctl1
enable1

kb$state = 11
end1

/* disable SR interrupt
/* assert KB ACK control on interrupt
/* (CBl IRO is reset)
/* end of critical section
/* set to state 1

I*
* state 1 to state 2: interrupt from negative edge on KB$RDY
*/

kbstl: do1
disable1
if (via(4).RA and kb$databit)

call kb$errori
II 0 then

I*
/*
I*

time critical section

*/
*/
*/
*I
*I

*/
*/
*/

else do1 /* prepare for
CB1$pos edge1

if data bit is not low then
stop bit error has occurred
interrupt on positive edge of KB ROY */

via(4).PCR• via(4).PCR or

via(4).RB = via(4).RB
kb$state = 21

end1
enable1

end1

- I*
and not kb$ackctl1

I*

release KB ACK control on interrupt
/* (CBl IRO is reset)
set to state 2

/* end of critical section

*I
*I
*/

*/

PL/M-B6 COMPILER 04/01/B2 PAGE

49
so
Sl
S2
S3

S4

SS
S6
S7

SB

S9

3
4
4
4
s

s
s
s
4

3

2

KB: Keyboard Stateware

$eject

I*
* state 2 to state 0: interrupt from positive edge on KB$RDY
*I

kbst2: do1
*I
*/

end1

if (via(4).RA and kb$databit) "O then
call kb$error1

else. do1

/* if data bit is low then
/* stop bit error has occurred

call kb$reset1 /*reset hardware/software for next event */
/* call event processing routine with order of bits reversed to */
/* reflect physical key. number and event type (open or close) */

if not Process$Event(shl1Ctable(kb$data and Ofh),4)

end1
end1

or Ctable(shr(kb$data,411 I then
call signalKBerror1 /* signal error in event process *I

end kb$irq1

PL/M-B6 COMPILER 04/0l/B2 PAGE

60 1
61 2

62 2
63 2
64 2
6S 2
66 2
67 2
6B 2
69 2

70 1
71 2
72 2
73 2
74 2

7S 1

76 2
77 2
7B 2
79 2
BO 2
Bl 2

KB: Keyboard support routines

$subtitle('KB: Keyboard support routines')

kb$reset: proc rent1
dcl dummy byte1

/* puts KB hardware/software into state 0 *I

via(4) .IER = CBl$intbit1
via(4).RB = via(4).RB and not kb$ackctl1
via(4).ACR = via(4).ACR or SR$enable1
dummy = via(4).SR1
via(4).IER" BOh or SR$intbit1
kb$state " 01
call setKBclock(0)1

end kb$reset1

kb$error: proc rent1
via(4).RB = via(4).RB or kb$ackctl1
via(4).IER = 7fh1
call setKBclock(kb$TIMEOUTl1

end kb$error1

kb$init: proc pub rent1

via(4),RB a via(4).RB and (OFFh-311
via(4).DDRA = via(4),DDRA and not kb$databit1
via(4).DDRB = via(4).DDRB or kb$ackctl1
via(4).IER 7fh1
via(4).PCR = 01
via(4),ACR a 01

/* clear CBl interrupts
/* release kb$ack
/* enable shf t reg
/* clr any pending irq
/* enable sr interrupts
/* init keybrd state
/* clear timeout counter

/* force kb$ack high
/* allow no interrupts
/* time out keyboard

*I
*I
*I
*I
*/
*I
*I

*/
*/
*I

7

8

249

82
83
84
85
86

2
2
2
2
2

via(2).ACR= (via(2).ACR and OcOh) or 40h1
via(2).timerlL= tick*l0001
via(2).IER = timerl ena and 7fh1
call kb$reset1 -

end kb$init1

PL/M-86 COMPILER SIRIUS systems Technology, Inc. (c) 1982 S-1 Hardware
CRTreg: controller chip registers

04/01/82 PAGE

$SUBTITLE ('CRTregs controller chip registers')

87 1 DCL CRT$0 byte AT (0E8000H)J /* CRT-chip address register */
88 1 DCL CRT$1 BYTE AT (0E8001R)J /* CRT-chip internal register port */

/*
* Set CRT register
*I

89 1 setCRTreg1 proc (reg,value) rent1
90 2 dcl reg byte1
91 2 dcl value byte1
92 2 CRT$O=-reg1
93 2 CRT$1= value1

/* select register */
/* set data */

94 2 end setCRTreg1

9

PL/M-86 COMPILER 04/01/82 PAGE 10

95

96
97
98

99
100
101

102
103
104
105

106
107
108
109

1

1
1
1

1
2
2

1
2
2
2

1
2
2
2

CRTreg: cursor-display mode control

$SUBTITLE ('CRTreg: cursor-display mode control')

dcl rast$start lit '10' J I* CRT reg: cursor-start & cursor-display mode */

DCL Cursor$PAR BYTBJ /* VAR: contents for
dcl blink$on boolean1
dcl curs$of f boolean1

/*
• Set cursor to current Cursor parameter
*/

set$cursor: proc rent1

/*

call setCRTreg(rast$start,Cursor$PAR)1
end set$cursor1

* Set block cursor.
*/

BLOCK$CRS:PROC RENTJ

/*

Cursor$PAR a Cursor$PAR AND OEOh1
call set$cursor1

END BLOCK$CRSJ

* Set underscore cursor.
*/

UNDERSCORE$CRS:PROC RENT1
Cursor$PAR = OOFh OR (Cursor$PAR AND OEOh)1
call set$cursor1

END UNDERSCORE$CRSJ

CRT cursor-start raster & cursor
/* FLAG: =O Blinking cursor
/* FLAG: 110 Cursor off

byte.

/* set raster start reg

/* set block cursor
/* set cursor mode reg

/* set underscore cursor
/* set cursor mode reg

dbplay mode
on (fast) */

*/

*/

*/
*I

1'/
*/

*I

PL/M-86 COMPILER 04/01/82 PAGE 11

110
111
112
114
115
116

250

1
2
2
2
2
2

CRTreg: cursor-display mode control

$eject
I* * Return cursor to previous modes: block or underline, steady or flashing
*I

CURSOR$0N:PROC RENTJ
curs$off= false1
if blink$on then Cursor$par= Cursor$par or
else Cursor$par= Cursor$par and OlFh1

call set$cursor1
END CURSOR$ON1

/* reset cursor off flag
060h1 /* set to flashing mode

/* set to steady mode
/* set cursor mode reg

*I
*/
*I
*/

117
118
119
120
121

122
123
124
126
127

128
129
130
132
133

l
2
2
2
2

l
2
2
2
2

1
2
2
2
2

/*
* Turn cursor off.
*I

CURSOR$OFF1PROC RENT;
curs$off• true; /* set cursor off flag
Curaor$PAR = 020h OR (Cursor$PAR AND OlFh); /* set to off mode
call set$cursor;

END CURSOR$0FF;
/* set cursor mode reg

/*
* Set cursor blinking.
•/

CRS$BLINK$0N:PROC RENT;
blink$on= true;
if not curs$off then Cursor$PAR=
call set$cursor;

/* set blinking on flag
060h OR Cursor$PAR; /* set flashing,if not off

/* set cursor mode reg
END CRS$BLINK$0N;

/*
* Set cursor steady.
*/

CRS$BLINK$0FF:PROC RENT;
blink$on= false;
if not curs$off then
call aet$cursor;

END CRS$BLINK$0FF;

/* reset blinking on flag
Cursor$PAR= OlFh and Cursor$PAR; /* set ateady,if not off

/* set cursor mode reg

*/
*I
*I

*I
*I
*/

*/
*/
*I

PL/M-86 COMPILER 04/01/82 PAGE 12

134
135

136
137
138
139
140

1
1

1
2
2
2
2

CRTreg: cursor positioning

$SUBTITLE ('CRTreg: Cursor positioning')

dcl
dcl

cursaddrH
curaaddrL

lit
lit

'14'; /*CRT reg: MSByte of cursor location word, bits: xx54$3210 */
'15'; /*CRT reg: LSByte of cursor location word*/

I*
* Position Cursor to Absolute Font Cell number
* and display bank
*I

POS$Cursor: proc (Cell$number) pub rent;
dcl Cell$Number word; /* Absolute Font Cell Number & diplay bank */

call setCRTreg (cursaddrL, low(Cell$number));
call setCRTreg (cursaddrH, high(Cell$nwaber));

end POS$Cursor;

PL/M-86 COMPILER 04/01/82 PAGE 13

141

142
143
144
145
146

147
148
149
150
151

152
153
154
155
156

1

1
2
2
2
2

1
2
2
2
2

1
2
2
2
2

CRT: video contrast & brightness

$SUBTITLE ('CRT: video contrast & brightness')

DCL CBctrl BYTE AT (0E8040H) I

/*
* Raise video contrast one level.
*I

contrast$up: proc rent;
dcl a byte;
if (a:= (CBctrl + 20h) and OEOh) IJ 0 then

CBctrl• (CBctrl and OlFH) or a;
end contrast$up;
/*

* Lower video contrast one level.
*I

contrast$down: proc rent;
dcl a byte;
if (a:• (CBctrl - 20h) and OEOh) IJ OEOh then

CBctrl• (CBctrl and OlFH) or a;
end contrast$down;

I*
* Raise video brightness one level.
*/

bright$up1 proc rent;
dcl a byte;
if (a:• (CBctrl + 4) and OlCR) IJ 0 then

CBctrl• (CBctrl and OE3H) or a;
end bright$up;

/* Contrast & Brightness control register */
/* bits: CCCB$BB-- */

/* add & check upper limit
/* set contrast, bits: 765

/* sub & check lower limit
/* set contrast, bits: 765

/* add & check upper limit
/* set brightness, bits: 432

*/
*/

*/
*/

*I
*/

251

157
158
159
160
161

1
2
2
2
2

I*
* •/

Lower video brightness one level.

bright$down: proc rent;
dcl a byte;
if (a:= (CBctrl - 4) and OlCh) Cl OlCh then

CBctrl= (CBctrl and OE3H) or a1
end bright$down;

/* sub & check lower limit
/* set brightness, bits: 432 *I

•/

PL/M-86 COMPILER 04/0l/82 PAGE 14

162
163
164

165

166

167
168
169
170
171

172
173
174
175
176

1
1
1

1

1

1
1
1
1
1

1
2
2
2
2

CRT: display RAM/Font Cells

$SUBTITLE {'CRT: display RAM/Font Cells')

dcl
dcl
OCL

screen$ram word at {OPOOOOh)1
screen$addr ptr;

/* memory address of display RAM */
/* display ram pointer, base of word ARRAY */

SCREEN based screen$addr (2000) word; /* ARRAY of Pont Cell Pointers */

I*
* Screen Buffer Word variables
*I

dcl char$mode word pub; /* CRT attribute bits: 7654$3---

dcl char$base

DCL REVBIT
DCL BGBIT
DCL UNDBIT
dcl INVBIT
dcl extraBIT

word

LIT
LIT
LIT
lit
lit

pub; I* CRT Pont Cell Pointer base
I* ASCII symbol index

'8000B' I
'40008';
'2000B' I
'lOOOh' 1
'0800h' I

/*
*
*
*
* *I

Display symbol from character set (typically ASCII)
at absolute Pont Cell number

(typically: [linel * [display width! + [column!
with current Cursor & Display modes.

Display$symbol1 proc (Symbol$code,Cell$number) pub rent;
dcl Symbol$code byte; /* Symbol print code
dcl Cell$Number word; /* Absolute Font Cell Number

screen(Cell$Number)= (Symbol$code + char$base) OR char$mode;
end Display$symbol;

for

*I
*/
*I

*I
*I

PL/M-86 COMPILER 04/01/82 PAGE 15

177 1

178 l
179 2

180 2

181 2
182 2

183 2
184 2
185 2

186 2
187 3
188 3

189 2

252

CRT hardware initialization

$SUBTITLE ('CRT hardware initialization')
/*COMMENT THIS 1111

DCL CRT$config (*) BYTE DATA (92,80, 81,0CPh, 25,6, 25,25, 3,14, 0,15, 0,0, 0,0);

CRT$Init: PROC;
DCL I BYTE;

screen$addr= @screen$ram;

char$mode= BGBIT;
char$base= 201

curs$off= false;
blink$on= false;
Cursor$PAR= 01

DO I=O TO OPH;
CALL SETCRTREG (I,(CRTconfig(I)));
ENDJ

END CRT$Init1

*I

PL/M-86 COMPILER 04/01/82 PAGE 16
SOUND variables & hardware defs

$SUBTITLE ('SOUND variables & hardware defa')

190 1 dcl bell$freq LIT '76'' I* period of bell tone: frequency= 14.9KHz *I
191 1 dcl codec$clk word at (OE8084h)1 I* TIMERl1 codec clock frequency */
192 1 dcl codee$ctl byte at (OB808Bh)1 /* ACR1 codec clock control register */
193 1 dcl codec$sda word at (0E8060h)I I* */
194 1 dcl volume byte at (OE802Ah)1 /* SR: volume shift-reyister */
195 1 dcl vol$ctl byte at (OB802Bh)1 /* ACR: SR control reg ster */
196 1 dcl vol$clk word at (OE802Bh)1 /* TIMER2: volume SR clock */

197 1 dcl bell$on byte1 /* FLAG1 bell sound presently active *I
198 1 dcl vol$level byte; /*current volume level (nine levels1 0 --1 8)

/* volume shift pattern lookup table */
199 l dcl vol$table 1*1 byte data (0FFh,7FH,3FH,lFH,OFH,7,3,l,0)1

PL/M-86 COMPILER 04/01/82 PAGE 17
SOUND: Bell control

$SUBTITLE ('SOUND: Bell control')

I*
*
*/

Software clock resource -- set timeout for interrupt to Bell$clock

200
201
202

203
204
205
206

l
2
2

l
2
2
2

set$BELL$clock1 proc (Period) ext1
dcl Period intg;
end set$BELL$clock1

/*
* CODEC Hardware reset
*I

Bell$init: proe pub rent1
vol$level• length(vol$table)-21
call Bell$cloek1

end Bell$init1

PL/M-86 COMPILER

207 1

208 2

209 2
210 2
211 2
212 2

213 2
214 2
215 2
216 2

217 2

218 1
219 2
221 3
222 3

223 3
224 3
225 3
226 3
227 2
228 2

SOUND: Bell control

$eject

Bell$clock: proe pub rent;

codec$ctl = codec$ctl and not OCOh;

codec$sda
codec$sda •
codec$sda =
codec$sda =

5E00h1
0D40h1
0AA80h1
OOCOh1

vol$ctl = (vol$ctl and not 3Ch) or lOh;
vol$clk • 11 /*
volume= vol$table(vol$level)1
bell$on = false;

end bell$clock1

Ring$bell: proc pub rent1
if not bell$on then do;
call bell$clock;
codec$sda • Of80h;

codec$ctl • codec$ctl or OcOh;
codec$clk • bell$freq;
bell$on • true;

end1
call set$bell$clock(l00)1

end1

/* timeout delay in milliseconds */

/* set initial volume level near max */
/* set hardware to a known & quiet state */

04/01/82 PAGE 18

/* disable codec clock */

/* initialize codec SDA to input mode ••• */
/* ••• to reduce extraneous noise */

/* set SR & T2 volume register modes */
volume clock frequency set beyond perception */

/* set volume to current level */
/* set bell state to off */

/* start bell if sound is off */
/* init codec hardware on every bell */

/* set output waveform to 4 up & 4 down, */
/* a low amplitude triangle wave. */

/* set codec clock to free run */
/* set audio pitch frequency */
/* set bell state on *I

/* turn off bell in 100 milliseconds */

253

PL/M-86 COMPILER 04/01/82 PAGE 19
SOUND: volume control

$SUBTITLE ('SOUND: volume control')
/*
• Raise CODEC volume one level •
*/

229 1 volume$up: proc rent1
230 2 if vol$level I= length(vol$table)-l then I* check upper limit */
231 2 vol$level= length(vol$table)-l1 I* set to max volume *I
232 2 else vol$level= vol$level+l1 /* bump level up by one */
233 2 volume= vol$table(vol$level)1 /* set volume register *I
234 2 end volume$up1

/*
• Lower CODEC volume one level.
*/

235 1 volume$down: proc rent1
236 2 if vol$level I• length(vol$table)-l then /* check upper limit *I
237 2 vol$level= length(vol$table)-21 /* set to max volume-1 *I

else
238 2 if vol$level[j0 then vol$level• vol$level-l1 /* drop level by one */

volume= vol$table(vol$level)1 /* set volume register *I
241 2 end volume$down1

PL/M-86 COMPILER 04/01/82 PAGE 20

242 1

243 1

244 1

245 1

SIO: Serial I/O dvrs for TTY: and ULl:

$subtitle('SIO: Serial I/O dvrs for TTY: and ULl:')

/*ctr device dcls*/
dcl sioctr struc

(adata byte,
bdata byte,
xxx byte,
ctrctl byte) at (0E0020h);

/*sio device dcls*/
dcl siodev struc

(adata byte,
bdata byte,
actl byte,
bctl byte) at(OB0040h);

dcl rx$avail literally 'l',
tx$empty literally '4';

dcl serial_params struc
(actrlsb byte,
actrmsb byte,
bctrlsb byte,
bctrmsb byte,

/* if [baud! then lsb
50

1 75 CUlllO

110
134.5 ===I
150

1 200

300 ===I
600 I

l.2k ===

??h msb ??h
lAh 06h
llh 04h
C6h 02h
44h 02h
08h 02h
86h Olh

04h Olh

82h OOh
41h OOh

/*LSByte of chan a.•s baud rate */
/*MSByte ••• */
/*LSByte of chan b.'s baud rate */
/*MSByte ••• *I

l.25Mhz/([baudj*l6)
50.00 -o- (min.tol.dist.43.75')
75.00 -o- (• 43. 75%)

110.00 -o- (43. 75%)
134.00 -0.37% (40.23%)
150.00 -o- (43.75%)
200. 00 -0- (43. 75%)

300.00 -o-
600.00 -0-

1201.00 +0.08'

43.75%)

43. 75%)
42.99\)

PL/M-86 COMPILER 04/01/82 PAGE 21

$eject

254

SIO: Serial I/O dvrs for TTY: and ULl:

l.8k ===I

2.0k ,

2.4k ,

2Ch
28h

28h
27h

2lh
20h

OOh
OOh

OOh
OOh

OOh
OOh

1775.00
1816.00

1953.00
2003.00

2367.00
2441.00

-1.39\
+0.09%

-2.36'
+0.15\

-1.38'
+1.7U

30.54')
42.88')

21. 33)
42.32)

30.64')
27.51')

3.6k ===I

4.8k ===I

9.6k ===I

19.2k ===I

16h
15h

llh
lOh

09h
08h

OOh
OOh

OOh
OOh

OOh
OOh

3551.00 -1.36%
3720.00 +3.33'

4595.00 -4.27'
4882.00 +1.02%

8680.55 -9.58% (DISTORTED)

30.83%)
12.4')

3.185%)
34.06%)

9765.56 +l.73% (min.tol.dist.27.32%)

06h OOh 13020.83 -9.58% (DISTORTED)
05h OOh 15625.00 +8.51% (DISTORTED)

05h
04h

OOh 15625.00 -18,62% of 19.2k (DISTORTED)
OOh 19531.25 +l.02% (min.tol.dist.34.06%)

min.tol.dist. figure assumes no channel noise effects.
NOTE: possible noise DOES NOT includes bias distorition

caused by various cable capacitance effects*/

PL/M-86 COMPILER 04/01/82
SIO: Serial I/O dvrs for TTY: and ULl:

$eject

cr2a byte, /*bus interface option: lOh if baud a 1= baud b
14h if baud a baud b*/

cr4a byte,
cr4b byte,

/*cr4x (16x)54(stops)$(even)$(parenb)
01 00 SS e p

= 4?h

cr3a byte,
cr3b byte,

ss 01 1 stop
10 1. 5 stop

• 11 2 stop
e = 1 even
e = 0 odd,

p
p =

byte transparent
1 even or odd
0 byte transparent*/

/*cr3x (rbits)$(autoenb)$4$3$2$1$(renb) = ?lb
bb 1 00001
bb = 11 byte transparent cr3x = Elh

= 01 even,odd cr3x = 6lh*/

cr5a byte,
cr5b byte) EXT1

/*cr5x (dtr)$(tbits)$(br)$(tenb)$2(rts)0 = ?Ah
1 bb 0 1 0 1 0

bb = 11 space,mark cr5x = EAh
bb = 01 even,odd,no cr5x • AAh*/

PL/M-86 COMPILER 04/01/82
SIO: Serial I/O dvrs for port A -- TTY$INSTAT & TTY$STAT

$subtitle('SIO: Serial I/O dvrs for port A -- TTY$INSTAT & TTY$STAT')

246 1 TTYinstat:proc boolean PUB;

247 2 if ((siodev.actl AND rx$avail) II 0)
then return(true)1

249 2 return(false)1

250 2 end TTYinstat;

251 1 TTY$stat:proc boolean PUB1

252 2 if ((siodev.actl AND tx$empty) 0)
then return(true);

254 2 return(false);

255 2 end TTY$stat1

PAGE 22

PAGE 23

255

PL/M-86 COMPILER 04/01/82

256

257
258
259

260

261
262

263
264
265
266

267

1

2
3
2

2

1
2

2
3
2
2

2

SIO: Serial I/O dvrs for port A -- TTY$GET & TTY$PU'l'

$subtitle('SIO: Serial I/O dvrs for port A -- TTY$GET & TTY$PUT')

TTY$get:proc byte PUB;

/*user must not activate this procedure if siodev chan. a re<J. ptr
is not set to 0 (only ll 0 if user has been mucking with hardware*/

do while((siodev.actl AND rx$avail) = 0); /*wait forever till empty
end;
return(siodev.adata); /*input form 7201

end TTY$get;

TTY$put:proc{char) PUB;
dcl char byte;

/*user must not activate this procedure if siodev chan. a reg. ptr
is not set to 0 (only !I 0 if user has been mucking with hardware*/

do while((siodev.actl AND tx$empty) • 0)1 /*wait forever till empty
end;
siodev.adata = char; /*output a char
returnr

end TTY$put1

PL/M-86 COMPILER 04/01/82

268

269

271

272

273
274

275
276
277
278

279

l

2

2

2

l
2

2
3
2
2

2

SIO: Serial I/O dvrs for port B -- UL1$STAT & ULlPU'l'

$subtitle('SIO: Serial I/O dvrs for port B -- UL1$STAT & ULlPU'l'')

UL1$stat:proc boclean PUB1

if ((siodev.bctl AND tx$empty) = 0)
then return(true)1
return(false);

end ULl$stat1

UL1$put:proc(char) PUB1
dcl char byte1

/*user must not activate this procedure if siodev chan. b re<J. ptr
is not set to 0 (only ll 0 if user has been mucking with hardware*/

do while((siodev.bctl AND tx$empty) = 0); /*wait forever till empty
end;
siodev.bdata = char1 /*output a char
return1

end ULl$put1

PL/M-86 COMPILER 04/01/82

280
281
282

283
284
285
286
287
288

289
290

256

1
2
2

2
2
2
2
2
2

2
2

SIO: Serial I/O dvrs for ports A & B -- SIO$INIT

$subtitle('SIO: Serial I/O dvrs for ports A & B -- SI0$INIT')
SIO$init:proc PUB;
siodev.actl = 00$011$000b1 /*chan. a reset
siodev.bctl = 00$011$000b1 /*chan. b reset

/*load timer now1 cant touch 7201 chip for 4 2,SMhz clocks*/
sioctr.ctrctl • 36h; /*7${ctra)${rl)${mode)${bin)
sioctr.adata = serial_params.actrlsb1
sioctr.adata = serial params.actrmsb1
sioctr.ctrctl = 76h; - /*7$(ctrb)$(rl)$(mode)$(bin)
sioctr.bdata = serial params.bctrlsb1
sioctr,bdata = serial:J>arams.bctrmsb1

/*cr2a bus interface option*/
siodev,actl 2;
siodev.actl = serial_params.cr2a;

/*cr4x*/

/*--lcr4a

PAGE 24

*I
*I

*/

*I

PAGE 25

*I
*/

PAGE 26

*I
*/

*I

*/

*I

291 2 siodev.actl = 4; /*--lcr4a
292 2 siodev.actl = serial_params.cr4a;
293 2 siodev.bctl • 4; /*--lcr4b
294 2 siodev.bctl serial_params.cr4b;

/*cr3x*/
/*--lcr3a 295 2 siodev.actl = 31

296 2 siodev.actl = serial_Params.cr3a;
297 2 siodev.bctl 3; /*--lcr3b
298 2 siodev. bctl = serial_Params.cr3b;

PL/M-86 COMPILBR 04/01/82

299
300
301
302

303
304
305
306

307

2
2
2
2

2
2
2
2

2

SIO: Serial I/O dvrs for ports A ' B -- SI0$INIT

$eject

/*cr5x*/
siodev.actl = 5; /*--lcr5a
siodev.actl = serial_Params.cr5a;
siodev.bctl 5; /*--lcr5b
siodev.bctl serial_params.cr5b;

/*crOx reset ext/st intra to enable modem control sense--1 autoenb chans.
also --1 crlx, set intr params*/

siodev.actl = 00$010$00lb;
siodev.actl O; /*no intra
siodev.bctl 00$010$00lb;
siodev.bctl O; /*no intra

end sio$init;

PL/M-86 COMPILER 04/01/82
PPORT -- centronics interface routines

$subtitle ('PPORT -- centronics interface routines 'I

/*
* This module implements the initialization, LISTST, and LIST functions
* for a Centronics-compatible parallel printer interface, using the
* 6522 VIA chip •
•
* Our entry points are named pp$init, LPT$stat, and LPT$put respectively,
• it's up to our caller to decode the I/O byte and call the approp-
* riate routines.
*I

PL/M-86 COMPILER 04/01/82

308
309

310
311
312
313

1
1

1
1
1
1

PPORT -- centronics interface routines

$eject
declare pp$base pointer;
declare pp based pp$base structure (

rb byte,

)1
/*

ra byte,
ddrb byte,
ddra byte,
tlcl byte,
tlch byte,
tlll byte,
tllh byte,
t2cl byte,
t2ch byte,
sr byte,
acr byte,
per byte,
ifr byte,
ier byte,
rax byte

/* baseaddr for a 6522
/* 6522 template
/* out-in reg 'b'
/* out-in reg 'a'
/* data-direction, reg 'b'
/* data-direction, reg 'a'
/* tl ctr(r)/lat(w) lo
/* tl ctr hi
/* tl latch lo
/* tl latch hi
/* t2 ctr(r)/lat(w) lo
/* t2 ctr hi
/* shift register
/* auxiliary ctrl reg
/* peripheral ctrl reg
/* interrupt flg register
/* interrupt enbl register
I* OUT·in reg 'a' NO HANDSHAKE

* Bit
*/

declare
declare
declare
declare

definitions for Centronics-style parallel interface, 'vial'.

vial$base literally 'Oe8020h';
ds$1 literally 'Olh';
pi$h literally '02h';
bz$h literally '20h';

/* baseaddr for this
/* data strobe (pbO)
/* this datum for vfu
/* printer busy (pb5)

chip

(pbl)

*/

*/

*/

*/

PAGE 27

*/

*/

*/

*I

PAGE 28

PAGE 29

*I
*I
*I
*I
*/
•/
*/
*/
*I
*I
*/
*I
*I
•/
*I
*/
*I
*/

*/
*/
*/
*I

257

3l4 1 declare ak$1 literally '40h'; /* printer ack (pb6)
315 1 declare sl$h literally

/*
I 80h 1 J /* on-line and no error (pb7)

* Bit definitions for multi-use
*/

pio, 'via2'.

316 1 declare via2$base literally '0e8040h'; /* baseaddr for this chip
317 1 declare te$h literally 'Olh' I /* talk-enable line

PL/M-86 COMPILER 04/01/82

318 1
319 2
320 2
321 2
322 2
323 2
324 2
325 2

326 2

$eject
/*

PPORT -- centronics interface routines

* initial setup for parallel printer port
* Note we use via2 during this setup to get talk-enable turned on, and
* thus someone MUST ALREADY HAVE VIA2 INITIALIZED.
*I

pp$init: procedure Eublic1
pp$base • via2$ ase; /* point to secondary chip for te
pp.rb = pp.rb or te$h; /* set 'talk enbl'
pp$base • vial$base; I* point struc at primary chip
pp.ca • O; /* ra is dataport, init with O's
pp.ddra = Offh; I* set all ra bits as outgoing
pp.rb = ds$l1 I* rb is ctrlport, init no ds/pi
pp.ddrb = ds$l or pi$h; /* these 2 only are outgoing

/* cal/ca2 cbl/cb2 not used
I* timers/shif treg not used

end pp$init;

PL/M-86 COMPILER SIRIUS Systems Technology, Inc. (c) 1982 S-1 Hardware
PPORT -- centronics interface routines

04/01/82

327
328
330
331

332
333
334
336
337
338
339
340
341
342

258

1
2
2
2

l
2
2
2
2
2
2
2
2
2

$eject

/*
* Test status of printer, return true if on-line and not busy, else
* false. For some reason, the Altos code explicitly deasserted data
* strobe before testing; we'll assume that this represents an Altos
* fubar and is not required here.
*/

LPT$stat: procedure byte public;
if (pp.rb and (sl$h or bz$h)) = sl$h then return Offh;
return 01

end LPT$stat1

/*
* Put one character to the printer interface.
*/

LPT$put: procedure(ch) public1
declare ch byte1

do while LPT$stat = O; end;
pp.ra • ch1

disable1
pp.rb = pp.rb and not ds$1;
pp.rb • pp.rb or ds$1;

enable;
return1

end LPT$put;

/* wait for printer ready
/* put outgoing char on the port

/* assert data strobe
/* deassert data strobe

*/
*/

*I
•/

PAGE 30

*I
*/
*/
*I
*I
*I
*I
*/
*/

PAGE 31

*/
*I

*/
*/

PL/M-86 COMPILER
Example software drivers for s-1 Hardware

$SUBTITLE ('Example software drivers for S-1 Hardware')

343 1 end Hardware:

MODULE INFORMATION:

CODE AREA SIZE
CONSTANT AREA SIZE
VARIABLE AREA SIZE
MAXIMUM STACK SIZE
807 LINES READ
0 PROGRAM WARNINGS
0 PROGRAM ERRORS

END OF PL/M-86 COMPILATION

073EH
OOOOH
0014H
OOOEH

1854D
OD

20D
14D

04/01/82 PAGE 32

259

INDEX

A Addition . 66
Address generation . 13
Addressing modes . 28, 29
Addressing structures . 31
Arbitrator circuit . 39
Arithmetic instructions . 63
Assembly language . 223
Attribute bits . 40, 41
Audio amplifier . 37
Audio clock . 36
Audio hardware . 109
Audio section 36
Auxiliary carry flag . a

B Base address . 11
Based addressing . 31
Based indexed addressing . 33
Bit clock . 36
Bit manipulation instructions . 69
Bit-mapped' display . 44
Bit shift . 48
Boolean operators . 69
Boot ROM ... 35
Breakpoint interrupt 27
Brightness : . ·. 43
Brightness and contrast control . 97
Bus control logic . 147
Bus interface unit . 4, 5
Byte ready . 19

. Byte-ready strobe . 45

C Carry flag ·: . 8
Centronics interface . 1, 36
Checksum . 45, 46, 50
CU (clear interrupt-enable) 21
Clock and reset control logic . 154
Clock recovery . 45, 49
Coder/Decoder (CODEC) . 36, 109, 122
Companding • . 38, 123
Conditional Transfers . n
Continually-Variable-Slope Delta (CVSD) modulation 109
Contrast . 43
Control port . 1, 36
Control register O . 155
Control register 1 . 115, 121, 157
Control register 2 . 115, 121
Control register 2 (channel A) 159
Control register 2 (channel B) . 161
Control register 3 116, 121, 161
Control register 4 . 163
Control register 5 . 164
Control register 6 . 167

261

262

Control register 7 . 167
CPU (central processing unit) . 3
CRTC device operation 99
CS register ... 7
Cursur control . 107

D Data block . 45
Data block ID .. 45
Data bytes . 50
Data field . 50
Data ID ... 50
Data register . 6
Data sync . 50
Data transfer . 45
Data transfer instructions . 58
Delta modulation . 39, 122
Digital recording . 36
Direct addressing ... 30
Direct memory access . 19
Direction flag. 8
Disk drive assembly. 3, 44
Disk drive interface . 45
Disk Interface . 38
Display ... 39
Display circuit . 97
Display contrast . 43
Display system . 95
Display unit . 53
DIV (division) . 22
Division . 68
OMA control logic . 152
Double words . 11
OS register . 7
Dual port memory. 39
Dynamic relocation . 16

E Effective address . 29
8048 ... 49
8088 instruction set . 245
8088 register . 223
8080/8085 . 9
8253 timer chip. 36
ES register . 7
Execution unit . 4, 5
Extemal synchronization . 81
External interrupts . 21
Expansion bus .. 39, 83

F Fan .. 51
Fetch overlap . 4
FIFO ... 37
Flag operations . 80
Flags ... 8, 65
Fold-back limiting ... 51
Font cells . 41

Font cell address . 41
Font cells . 40, 42
Font pointer . 40
Formatting . 46
Fuse ... 51

G Gap 1 .. 50
Gap 2 .. 50
GCR (group code recording) . 49
GCR read circuit. 45
General register . 6

H Header ID ... 50
Header search . 45
Header sync . 50
Head positioning .. 47
High/Low intensity . 41
High resolution mode. 43, 97
HLT (halt) ... 28
Hold (HOLD) . 19
Hold acknowledge (HLDA). 19

IDIV (integer divide) . 22
IEEE 488 . 1 , 36
Indexed addressing 32
Index registers . 6
Input/Output (1/0) functions . 35
Instruction pointer. 8
Instruction set . 57
INT 3 (breakpoint interrupt) . 27
Interface signals to CPU 99
Interface signals to display circuits . 100
Interlace . 53, 106
Interlace sync mode display . 106
Interlace sync and video mode display. 106
Internal interrupts . 22
Internal registers. 101
Interrupt control logic . 148
Interrupt-enable flag . 9
Interrupt instructions . 78
Interrupt nesting . 25
Interrupt pointer table. 23
Interrupt procedures . 23, 25
Interrupt request . 21
Interrupts . 19, 21, 25
INTO (interrupt on overflow) . 22
INTR ... 21
1/0 address assignments . 89
1/0 port addressing . 35
IRET (interrupt return) . 21, 26
Iteration control . 78

263

M

N

0

p

264

K Keyboard . 125
Keyboard electrical speciiications . 125
Keyboard interface : . 38
Keyboard mechanical specifications . 125
Keyboard unit .. 55

L Light pen . 36
Line filters . 51
LOCK (lock) . 21
Logical address .. 13
Logical instructions . 69
Low pass filter . 38

Main logic board . 3
Memory ... 10
Memory access . 18
Memory-mapped 1/0. 18
Modem ... 36
Motor speed control . 4 7
Motor speed variation . 4 7
MPSC2 .. 129, 137
MPSC2 asynchronous mode 135, 139, 144
MPSC2 application hints 193
MPSC2 COP synchronous mode 140, 145
MPSC2 pin description . 130
MPSC2 receiver ... 142
MPSC2 registers ... 154
MPSC2 SDLC (/HDLC BOP synchronous) mode. 141, 146
MPX2 synchronous bit-oriented protocols . 135
MPSC2 transmitter . 137
Multiplication . 67

NMI (nonmaskable interrupt) 22, 25
Nondisplay : 41
Noninterface mode display 106
Nonmaskable interrupt . 21

Offset value . 11
Overflow flag . 9, 21

Packed decimal number . 64
Parallel port . 1
Parity... 117
Parity flag . 8
Phase-locked loop (PLL) . 49
Physical address . 13, 29
Pointers . 6, 11
Power supply . 3, 51
Power switch . 51
Priority order . 23

R

s

Processor control instructions . 79
Processor halt . 28
Processor-initiated interrupts . 25
Processor unit . 3
Program transfer instructions 74
Programmable interrupt controller. 21

Reading data . 45
Read channel .. 49
Read signal amplitude . 47
Read/Write head . 49
Receive data first-in first-out register . 118
Recording density. 47
Register indirect addressing . 31
Register operands . 26
Repeat .. 21
Reserved memory locations . 18
Reverse video . 41
Rotates ... 70
Rotational period ... 51
RS-232 (V-24) . 1, 36

Screen buffer . 40
· Screen buffer words . 96
Sector components . 50
Sector format . 50
Sector header . 45, 50
Sector ID . 50
Sector number . 45
Segmentation . 12
Segment override . 15, 21
Segment registers . 7
Serial ports . 36
7201 communications controller . 129
Shifts ... 70
Signed binary numbers . 64
Sign flag ... 9
Single-step mode . 26
6522 versatile interface . 199
6522 versatile interface electrical characteristics 200
6522 versatile interface functional description 200
6522 versatile interface peripheral interface characteristics 203
6522 versatile interface pins • 206
6522 versatile interface read timing characteristics . . • 201
6522 versatile interface write timing characteristics. 202
Software attribute . 41
Software-initiated interrupt . 26
Sound output .. 36
Sound quality . 37
Speaker ... 36
Speed control .. 47
Speed control processor (SCP) . 47
SSDA (synchronous serial data adapter) 36, 109
SSDA interface signals for CPU . 112

265

T

u

v

w

z

266

S$DA operation . 11 O
SSDA registers . 114
SS register . 7
Stack pointer. 17
Stacks .. 17
Stack segment . 17
Status register . 119, 120
Status register O • . 168
Status register 1 . 170
Status register 2 . 172
STI ~ 21, 25
Storage organization . 1 O
Strikeover . 41
Strings .. 15
String addressing . 34
Strings .. 15
Subtraction . 66
Supervisor call . 26
Swivel ramp . 53
SYN .. 45
Sync-code register . 117
Sync detection . 45
System reset . 27

Test (TEST) . 19
Text mode . 39
Tones ... 36
Track format . 51
Track ID ... 50
Track numbers . 45
Trap flag . 9, 22, 26
Trim erase . 46
Type O interrupt .. 22
Type 1 interrupt . 22, 26
Type 3 interrupt . 27
Unconditional transfers 76
Underline/strikeover . 41
Unpacked decimal numbers . 64
Unsigned binary numbers . 64

Verification . 46
Voice ... 36
Volume control . 36
Volume level . 36

Wait (WAIT) ... 19, 45
Word data . 11
Wrap around ... 14
Write channel . 50
Writing data. 46

Zero flag ... 9
Zones ... 48, 51

Supplemental Technical Reference Material

SOPPLEMEHTAL TECBHICAL REFEREHCE MATERIAL

APPLICATION NOTE: 002

Revision 0

Rev 0 - 3/23/83

COPYRIGHT

TRADEMARKS

ROT I CB

Supplemental Technical Reference Material

@ 1983 by VICTOR. (R)

All rights reserved. This publication contains
proprietary information which is protected by this
copyright. No part of this publication may be
reproduced, transcribed, stored in a retrieval
system, trans lated into any language or computer
language, or transmitted in any form whatsoever
without the prior written consent of the
publisher.
For information contact:·

VICTOR Publications
380 El Pueblo Road
Scotts Valley, CA 95066
(408) 438-6680

VICTOR is a registered trademark of Victor
Technologies, Inc.

VICTOR makes no representations or warranties of
any kind whatsoever with respect to the contents
hereof and specifically disclaims any implied
warranties of merchantabi 1 i ty or fitness for any
particular purpose. VICTOR shall not be liable for
errors contained herein or for incidental or
consequential damages in connection with the
furnishing, performance, or use of this
publication or its contents.

VICTOR reserves the right to revise this
publication from time to time and to make changes
in the content hereof without obligation to notify
any person of such revision or changes.

First VICTOR printing March 1983.

Rev 0 - 3/23/83

1.

2.

J.

Supplemental Technical Reference Material

Victor 9889 System Overview
1.1 Computer •.••..•••..••...•••••••••••.•.•
1. 2 Memory •••••••••••••••••••••••••••••••••
1.3 Disk System ••••••••••••••••••••••••••••
1.4 Display System •••••••••••••••••••••••••
1.5 Keyboard •••••••••••••••••••••••••••••••
1.6 Memory Map •••.•••••••••••••••••••••••••

1.6.1 MS-DOS •••••••••••••••••••••••••••
1.6.2 CP/M-86 •••••••••••••••w••••••••••

Display Driver Specifications
2 .1 Overview ••.•..•..•••••••••••.••.•••.•••
2.2 Screen Control Sequences •••••••••••••••
2.3 Multi-Character Escape Sequences •••••••

2.3.1 Cursor Functions •••••••••••••••••
2.3.2 Editing Functions ••••••••••••••••
2.3.3 Configuration Functions ••••••••••
2.3.4 Operation Mode Functions •••••••••
2.3.5 Special Functions ••••••••••••••••

2.4 Direct Cursor Addressing - Examples ••••
2.4.1 Microsoft MS-BASIC •••••••••••••••
2.4.2 Microsoft MACR0-86 •••••••••••••••
2.4.3 Microsoft MS-Pascal ••••••••••••••

2.5 Transmit Page - Examples •••••••••••••••
2.5.1 Microsoft MS-BASIC •••••••••••••••
2.5.2 Microsoft MACR0-86 •••••••••••••••
2.5.3 Microsoft MS-Pascal ••••••••••••••

Input/Output Port Specifications
3.1 Device Connection •••••••••••••••••••••
3.2 Parallel Printer Connection •••••••••••
3.3 Parallel Cable Requirements •••••••••••
3.4 Serial Printer Connection •••••••••••••
3.5 Serial Cable Requirements •••••••••••••
3.6 Operating System Port Utilities •••••••

3.6.1 SETIO - List Device Selection •••
3.6.2 STAT - List Device Selection ••••
3.6.3 PORTSET - Baud Rate Selection •••
3.6.4 PORTCONF - Baud Rate Selection ••

3.7 Serial Input/Output Ports •••••••••••••
3.8 Baud Rate/ Transmission - Examples •••

3.8.1 Microsoft MS-BASIC ••••••••••••••
3.8.2 Microsoft MACR0-86 ••••••••••••••

COHTEHTS

Page
1-1
1-1
1-2
1-3
1-4
1-5
1-6
1-7

2-1
2-2
2-3
2-3
2-4
2-6
2-7
2-8
2-10
2-10
2-11
2-12
2-13
2-13
2-14
2-15

3-1
3-2
3-2
3-3
3-4
3-5
3-5
3-5
3-6
3-6
3-7
3-8
3-9
3-11

Rev
0
0
0
0
0
0
0
0

I Rev 0 - 3/23/83

Supplemental Technical Reference Material

Appendices

Appendix A: ASCII Codes
A.l ASCII Codes used in the Victor 9000
A.2 ASCII/Hex/Decimal Chart •••••••••••

Appendix B: Keyboard
B.l Victor 9000 Keyboard Layout

c: Input/Output Ports Appendix
C.l
C.2
C.3
C.4

Parallel (Centronics) Port ••••••••
Serial (RS232C) Port ••••••••••••••
IEEE-488 Port •••••••••••••••••••••
Control Port ••••••••••••••••••••••

Appendix D: Assembler Examples
D.l MACR0-86 Assembler Shell ••••••••••
D.2 ASM-86 Assembler Shell ••••••••••••

Appendix E: File Header Structure
E.l EXE File Header Structure

Appendix F: Victor 9181 Specifications
F.l Technical Specifications ••••••••••
F.2 Physical Specifications •••••••••••

Appendix G: Glossary

Page

A-1
A-2

B-1

C-1
C-2
C-3
C-4

D-1
D-2

E-1

F-1
F-2

CONTENTS
continued

Rev

0
0

0
0
0
0

0
0

0
0

G.l Glossary of Terms ••••••••••••••••• G-1

Appendix H: MS-DOS Base Page Structure
H.l Base Page Structure ••••••••••••••• H-1

Appendix I: Interrupt Driven Serial I/O
I.l Interrupt Driven Serial I/O •••••••
I.2 Interrupt Vectors •••••••••••••••••

I.2.1 Vectors Available on Victor •
r.2.2 Location of Vectors •••••••••
I.2.3 Set Vector - Example ••••••••

I.3 Enabling Internal/External Clocks •
I.3.1 Providing Clocks ••••••••••••

I.4 Initializing the SIO ••••••••••••••
I.4.1 Baud Rate for SIO •••••••••••
I.4.2 Enabling sro Interrupts •••••

I.S Interrupt Service Routine (!SR) •••
I.S.l Interrupt Service - Example •

I.6 Setting Direction Bits ••••••••••••

1-1
I-2
1-2
1-2
I-3
I-4
1-4
I-5
I-6
I-6
1-7
I-8
I-10

0
0
0
0
0
0
0
0
0
0
0
0
0

II Rev 2 - 7/22/83

Supplemental Technical Reference Material

Appendices

Appendix
J.l
J.2
J.3
J.4

Appendix
K.l

K.2
K.3

J: Victor File Header Information
Character Set Header ••••••••••••••
Proportional Character Set Trailer.
Keyboard Table Header •••••••••••••
Banner Skeleton Files •••••••••••••

K: Victor 9888 Disk Structure
Victor 9000 Disk Structure ••••••••
K.1.1 Floppy Disk Structure •••••••
K.1.2 Hard Disk Structure •••••••••

K.1.2.1 Hard-Disk Label •••••
K.1.2.2 Virtual Volume Label.

MS-DOS Disk Directory Structure •••
MS-DOS File Allocation Tables •••••

Page

J-1
J-4
J-5
J-6

K-1
K-1
K-2
K-3
K-6
K-8
K-9

CONTENTS
continued

Rev

0
0
0
0

0
0
0
0
0
0
0

Appendix L: Generation of Frequencies with the CODEC
L.l Generation of Frequencies ••••••••• L-1 0

III Rev 3 - 10/5/83

Supplemental Technical Reference Material

CHAPTER 1

Victor 9111 System Overview

1.1 Computer

The Victor 9000 computer is based upon the Intel 8088 16-bit
microprocessor. This processor chip is directly related to
the Intel 8086 16-bit microprocessor, but with two subtle
differences:

8188
8-bit data bus
4 instruction look-ahead

8186
16-bit data bus
6 instruction look-ahead

The major difference, the 8-bit data bus, has some effect on
the relative abilities of the two chips; the main difference
is that while the 8086 can load an entire 16-bit word of
data directly, the 8088 has to load two 8-bit bytes to
achieve the same result - the outcome of which being that
the 8088 processor is a little slower than the 8086. The
loss of speed, however, is balanced by the fact that the
cost of the main circuit board and add-on boards are lower
than for the wider 8086 requirement. This means that the
end-user will have the best cost/performance ratio for a 16-
bit computer.

1.2 Memory

The Victor 9000 has a maximum memory capacity of 896
k i 1 obytes of Random Access Memory or "RAM" (a measure of a
computer's internal storage capacity; a "kilobyte" is 1,024
bytes). A byte is able to store one character of data - thus
the Victor 9000, with full 896k memory capacity is able to
hold, internally, nearly 1 million characters - compare this
figure with the older Z80 or 6502 computers that have a
maximum memory capacity of less than 70,000 characters or
64k bytes of RAM.

1-1 Rev 0 - 3/23/83

Supplemental Technical Reference Material

1.3 Disk System

The Victor 9000 has several integral disk configurations
available; these are:

o Twin single-sided 600k bytes per drive 5 1/4-inch
minifloppies, giving a total capacity of l.2Mbytes
(l,200kbytes) available on-line.

o Twin double-sided l.2M bytes per drive 5 1/4-inch
minifloppies, giving a total capacity of 2.4Mbytes
(2,400kbytes) available on-line.

o Single 10M byte hard disk (Winchester) plus a
single double-sided l.2M byte 5 1/4-inch mini
floppy, giving a total capacity of ll.2Mbytes
(ll,200kbytes) available on-line.

Future disk systems will include an external 10Mbyte hard
disk (Winchester) that will allow expansion of any of the
above systems by a further 10,000k bytes.

Although the Victor 9000 uses 5 1/4-inch minifloppies of a
similar type to those used in other computers, the floppy
disks themselves are not readable on other machines, nor can
the Victor 9000 read a disk from another manufacturers
machine. The Victor 9000 uses a unique recording method to
allow the data to be packed as densely as 600kbytes on a
single-sided single-density minif loppy; this recording
method involves the regulation of the speed at which the
floppy rotates, explaining the fact that the noise from the
drive sometimes changes frequency.

1-2 Rev 0 - 3/23/83

Supplemental Technical Reference Material

1.4 Display System

The display unit swivels and tilts to permit optimum
adjustment ~f the viewing angle, and the unit incorporates a
12-inch antiglare screen to prevent eye strain. The display,
in normal mode, is 25 lines, each line having 80 columns.
Characters are formed, in normal mode, in a 10-x-16 font
cell, providing a highly-readable display. The screen may be
used in high-resolution mode, providing a bit-mapped screen
with 800-x-400 dot matrix resolution. The high-resolution
mode is available only under software control, there is no
means of simply "switching" in to high-resolution. Victor
Technologies has provided software to allow full use of the
screen in high-resolution mode in the Graphics Tool Kit.

Character sets are "soft" - that is they may be substituted
for alternative character sets of the users choice, or
creation. Only one 256-character character set may be
displayed on the screen at one time - multiple character
sets cannot, currently, be displayed simultaneously - but
this feature may well become available in the future.
Character set manipulation software is available in both the
Graphics and Programmers Tool Kits.

1-3 Rev 0 - 3/23/83

Supplemental Technical Reference Material

1.5 Keyboard

Several different types of keyboards are offered. Each
keyboard is a separate, low-profile module with an optional
palm rest for ease of use. Every key is programmable,
permitting the offering of a National keyboard in each
country in which it is marketed. As a result, the keyboard
can be customized to satisfy the requirements of foreign
languages and so that striking a key enters a character or
predetermined set of commands.

Keyboards are as soft as the character sets - this allows a
keyboard to be generated to match a newly created or special
character set. Each key on the keyboard has three potential
states; the unshifted, shifted and alternate. The unshifted
mode is accessed when the shift key is not depressed along
with the desired key; the shifted mode is accessed when the
shift key is depressed along with the desired key; and the
alternate mode is accessed when the ALT key is depressed
along with the desired key. Keyboard manipulation software
is available in both the Graphics and Programmers Tool Kits.

1-4 Rev 0 - 3/23/83

Supplemental Technical Reference Material

1.6 Memory Map

The Victor 9000 is currently supplied with two major disk
operating systems; CP/M-86 from Digital Research, and MS-DOS
from Microsoft. Athough these two operating systems appear
superficially similar, they are quite different in their
operation, program interfacing techniques, and their memory
structure. The following diagrams are the memory maps for
CP/M-86 and MS-DOS; you will notice that some aspects of
the machine never change, such as the screen RAM and
interrupt vector locations, these areas are hardware
defined, and as such never alter. The memory maps for MS-DOS
and CP/M-86 are not fixed in the Victor 9000, thus some of
the elements of the map will not be specific; this is not to
be deliberately vague, but improvements to the performance
aspects of the software do take place forcing the diagrams
to be unspecific to some degree.

1-5 Rev 0 - 3/23/83

Supplemental Technical Reference Material

1.6.1 Memory Map -- MS-DOS Operating System

FFFFF
Boot Proms

FC00--~~~~~~~~~~~~~~~~~~~_,..--
Reserved for Future Expansion

F400..__~~~~~~~~~~~~~~~~~~~~~~
Screen High-Speed Static RAM

F0000~--------------------------~--------------~

etc.
256k=3FFF0
128k=lFFF0

Memory-Mapped I/0 Space

BIOS
Operating System ----------

MS-DOS
Command - Resident Portion
Command - Transient Portion

Transient Program Area (TPA)

Alternate Character Set

128 Character Set

Logo

"Stub" - Jump Vectors
00400~~~~~~~~~~~~~~~~~~~~~

Interrupt Vector Table
00000~~~~~~~~~~~~~~~~~~~~---

4k bytes

4k bytes

2k bytes

128 bytes

lk bytes

1-6 Rev 0 - 3/23/83

Supplemental Technical Reference Material

1.6.2 Memory Map -- CP/M-86 Operating System

FFFFF
Boot Proms

Reserved for Future Expansion

Screen High-Speed Static RAM

Memory-Mapped I/O Space

E0000~~~~~~~~~~~~~~~~~~~~~~~

00489

0040

00000

BIOS
Operating System ----------

BOOS

Transient Program Area (TPA)

Alternate Character Set

128 Character Set

Logo

"Stub" - Jump Vectors

Interrupt Vector Table

4k bytes

4k bytes

2k bytes

128 bytes

lk bytes

1-7 Rev 0 - 3/23/83

Supplemental Technical Reference Material

CHAPTER 2

Display Driver Specifications

2.1 Overview

The display system in the Victor 9000 is, like so much of
the machine, soft. The operating system BIOS contains the
Zenith H-19 video terminal emulator, which is an enhanced
control set of the DEC VT52 crt. The BIOS takes all ASCII
characters received and either displays them or uses their
control characteristics. The control characters 00hex
(00decimal) thru lFhex (3ldecimal) and 7Fhex (127decimal)
are not displayed under normal circumstances. The non
display characters previously discussed, plus those
characters having the high-bit set, being 80hex (128decimal)
through FFhex (255decimal), may be displayed on the screen
under program control, but extensive use of these characters
is easier with the Victor Technologies character graphics
utilities.

Most of the control characters act by themselves; for
example, the TAB key (Control I, 09hex, 09decimal) will
cause the cursor to move to the right to the next tab
position. For more complex cursor/screen control the
multiple character escape sequences should be used. The
control characters, and the escape sequences are fully
described below.

2-1 Rev 0 - 3/23/83

Supplemental Technical Reference Material

2.2 Screen Control Sequences

Single Control Characters

Bell (Control G, 07hex, 07decimal - ASCII BEL)
This ASCII character is not truly a displaying
character, but causes the loudspeaker to make a beep.

Backspace (Control H, 08hex, 08decimal - ASCII BS)
Causes the cursor to be positioned one column to the
left of its current position. If at column 1, it causes
the cursor to be placed at column 80 of the previous
line; if the cursor is at column 1, line 1, then the
cursor moves to column 80 of 1 ine 1.

Horizontal Tab (Control I, 09hex, 09decimal - ASCII HT)
Positions the cursor at the next tab stop to the right.
Tab stops are fixed, and are at columns 9, 17, 25, 33,
41, 49, 57, 65, and 72 through 80. If the cursor is at
column 80, it remains there.

Line Feed (Control J, 0Ahex, 10decimal - ASCII LF)
Positions the cursor down one line. If at line 24, then
the display scrolls up one line. This key may be
treated as a carriage return -- see ESC x9.

Carriage Return (Control M, 0Dhex, 13decimal - ASCII CR)
Positions the cursor at column 1 of the current line.
This key may be treated as a line feed -- see ESC x8.

Shift Out (Control N, 0Ehex, 14decimal - ASCII SO)
Shift out of the standard system character set, and
shift into the alternative system character set
(Character set 1, Gl). This gives the ability to access
and display those characters having the high-bit set -
being those characters from 80hex (128decimal) through
FFhex (255decimal).

Shift In (Control O, 0Fhex, 15decimal - ASCII SI)
Shift into the standard system character set (Character
set 0, G0). This gives the ability to access and
display the standard ASCII character set - being those
characters from 00hex (00decimal) through 7Fhex
(127decimal).

2-2 Rev 0 - 3/23/83

Supplemental Technical Reference Material

2.3 Multi-Character Escape Sequences

2.3.1 Cursor Functions

Escape
Sequence/Function

ESC A

ESC B

ESC C

ESC D

ESC H

ESC I

ESC Y 1 c

ESC j

ESC k

ESC n

ASCII Code

lB, 4lhex
27, 65dec

lB, 42hex
27, 66dec

lB, 43hex
27, 67dec

lB, 44hex
27, 68dec

lB, 48hex
27, 72dec

lB, 49hex
27, 73dec

lB, 59hex
27, 89dec

lB, 6Ahex
27, 106dec

lB, 6Bhex
27, 107dec

lB, 6Ehex
27, 110dec

2-3

Performed Function

Move cursor up one line
without changing column.

Move cursor down one line
without changing column.

Move cursor forward one
character position.

Move cursor backward one
character position.

Move cursor to the home
position. Cursor moves to line
1, column 1.

Reverse index. Move cursor up
to previous line at current
column position.

Moves the cursor via direct
(absolute) addressing to the
line and column location
described by 'l' and 'c'. The
line ('l') and column ('c')
coordinates are binary values
offset from 20hex (32decimal).
(For further information on
the use of direct addressing
see section 2.4).

Store the current cursor
position. The cursor location
is saved for later restoration
(see ESC k).

Returns cursor to the
previously saved location (see
ESC j).

Return the current cursor
position. The current cursor
location is returned as line
and column, offset from 20hex
(32decimal), in the next
character input request.

Rev 0 - 3/23/83

Supplemental Technical Reference Material

2.3.2 Editing Functions

Escape
Sequence/Function

ESC @

ESC E

ESC J

ESC K

ESC L

ESC M

ESC N

ESC 0

ESC b

ASCII Code

lB, 40hex
27, 64dec

lB, 45hex
27, 69dec

lB, 4Ahex
27, 74dec

lB, 4Bhex
27, 75dec

lB, 4Chex
27, 76dec

lB, 4Dhex
27, 77dec

lB, 4Ehex
27, 78dec

lB, 4Fhex
27, 79dec

lB, 62hex
27, 98dec

2-4

Performed Function

Enter the character insert
mode. Characters may be added
at the current cursor
position, as each new
character is added, the
character at the end of the
1 ine is 1 ost.

Erase the entire screen.

Erase from the current cursor
position to the to the end of
the screen.

Erase the screen from the
current cursor position to the
end of the 1 ine.

Insert a blank 1 ine on the
current cursor line. The
current line, and all
following lines are moved down
one, and the cursor is placed
at the beginning of the blank
line.

Delete the line containing the
cursor, place the cursor at
the start of the line, and
move all following lines up
one - a blank line is inserted
at line 24.

Delete the character at the
cursor position, and move all
other characters on the line
after the cursor to the left
one character position.

Exit from the character insert
mode (see ESC @).

Erase the screen from the
start of the screen up to, and
inc 1 ud i ng, the current cursor
position.

Rev 0 - 3/23/83

Supplemental Technical Reference Material

2.3.2 Editing Functions -- continued

Escape
Sequence/Function

ESC 1

ESC o

ASCII Code

lB, 6Chex
27, 198dec

lB, 6Fhex
27, llldec

2-5

Performed Function

Erase entire current cursor
line.

Erase the beginning of the
line up to, and including, the
current cursor position.

Rev 9 - 3/23/83

Supplemental Technical Reference Material

2.3.3 Configuration Functions

Escape
Sequence/Function

ESC x Ps

ESC y Ps

ASCII Code

lB, 78hex
27, 120dec

3lhex, 49dec
33hex, 5ldec
34hex, 52dec
35hex, 53dec
38hex, 56dec

39hex, 57dec

4lhex, 65dec
42hex, 66dec
43hex, 67dec

lB, 79hex
27, 120dec

3lhex, 49dec
33hex, 5ldec
34hex, 52dec
35hex, 53dec
38hex, 56dec

39hex, 57dec

4lhex, 65dec
42hex, 66dec
43hex, 67dec

Performed Function

Sets mode(s) as follows:

Ps Mode
Y- Enable 25th line
3 Hold screen mode on
4 Block cursor
5 Cursor off
8 Auto line feed on receipt

of a carriage return.
9 Auto carriage return on

receipt of line feed
A Increase audio volume
B Increase CRT brightness
C Increase CRT contrast

Resets mode(s) as follows:

Ps Mode
Y-- Disable 25th line
3 Hold screen mode off
4 Underscore cursor
5 Cursor on
8 No auto line feed on rec

eipt of a carriage return.
9 No auto carriage return on

receipt of line feed
A Decrease audio volume
B Decrease CRT brightness
C Decrease CRT contrast

ESC [Set hold mode

ESC \ Clear hold mode

2-6 Rev 0 - 3/23/83

Supplemental Technical Reference Material

2.3.4 Operation Mode Functions

Escape
Sequence/Function

ESC (

ESC

ESC 0

ESC 1

ESC p

ESC q

ASCII Code

lB, 28hex
27, 49dec

lB, 29hex
lB, 4ldec

lB, 30hex
27, 48dec

lB, 3lhex
27, 49dec

lB, 79hex
27, 112dec

lB, 7lhex
27, 113dec

2-7

Performed Function

Enter high intensity mode. All
characters displayed after
this point will be displayed
in high-intensity.

Exit high intensity mode.

Enter underline mode. All
characters displayed after
this point will be underlined.

Exit underline mode.

Enter reverse video mode. All
characters displayed after
this point will be displayed
in reverse video.

Exit reverse video mode.

Rev 0 - 3/23/83

Supplemental Technical Reference Material

2.3.5 Special Functions

Escape
Sequence/Function

ESC ft

ESC $

ESC +

ESC 2

ESC 3

ESC 8

ESC Z

ESC]

ASCII Code

lB, 23hex
27, 35dec

lB, 24hex
27, 36dec

lB, 2Bhex
27, 43dec

lB, 32hex
27, 59dec

lB, 33hex
27, 5ldec

lB, 38hex
27, 56dec

lB, 5Ahex
27, 99dec

lB, 5Dhex
27, 93dec

2-8

Performed Function

Return the current contents of
the page. The entire contents
of the screen are made
available at the next
character input request(s).
(For further information on
the use of this function, see
section 2.5).

Re t u r n t h.~ v a 1 u e o f t h e
character at the current
cursor position. The character
is returned in the next
character input request.

Clear the foreground. Clear
all high-intensity displayed
characters.

Make cursor blink.

Stop cursor blink.

Set the text (literally) mode
for the next single character.
This allows the display of
characters from 9lhex (9ldec)
thru lFhex (3ldec) on the
screen. Thus the BELL
character (97hex, 97dec) wi 11
not cause the bleep, but a
character will appear on the
screen.

Identify terminal type. The
VT52 emulator will return
ESC\Z in the next character
input request.

Return the value of the 25th
1 ine. The next series of
character input requests will
receive the current contents
of the 25th line.

Rev 9 - 3/23/83

Supplemental Technical Reference Material

2.3.S Special Functions -- continued

Escape
Sequence/Function

ESC v

ESC w

ESC z

ESC {

ESC }

ESC i Ps

ASCII Code

lB, 76hex
27, 118dec

lB, 77hex
27, 119dec

lB, 7Ahex
27, 122dec

lB, 7Bhex
27, 123dec

lB, 7Dhex
2"", 125dec

lB, 69hex
27, HJ5dec

30hex, 48dec
3lhex, 49dec
32hex, 50dec
33hex, 5ldec

2-9

Performed Function

Enable wrap-around at the end
of each screen line. A
character placed after column
80 of a 1 ine wi 11 be placed on
the next line at column 1.

Disable wrap-around at the end
of each 1 ine.

Reset terminal emulator to the
power-on state. This clears
al 1 user selected modes,
clears the screen, and homes
the cursor.

Enable keyboard input. (see
ESC }) •

Disable keyboard input. This
locks the keyboard. Any
character(s) typed are ignored
until an ESC { is issued.

Displays banner as follows:

Ps Mode
r Display entire banner
1 Display company logo
2 Display operating system
3 Display configuration

Rev 0 - 3/23/83

Supplemental Technical Reference Material

2.4 Direct Cursor Addressing -- Examples of Use

The direct cursor addressing function is accessed by sending
the ESC Y 1 c sequence to the screen (see section 2.3.1).
"l" is the line number required, whose valid coordinates are
between 1 and 24. An offset of lFhex (3ldecimal) must be
added to the location required in order to correctly locate
the cursor. "c" is the column numb.er required, whose valid
coordinates are between 1 and 80. An offset of lFhex
(3ldecimal) must be added to the location required in order
to correctly locate the cursor.

Note that the true offset requirement of 20hex (32decimal)
for line and column may only be used accurately when the
line number is viewed 0 to 23, and the column number 0 to
79.

The line/column number requested must be handled as a binary
digit, examples of this follow:

2.4.1 Microsoft MS-BASIC Direct Cursor Positioning

The following method uses offsets from line 1, column 1:

10 PRINT CHR$(27)+"E" :REM CLEAR THE SCREEN
20 DEF FNM$(LIN,COL)=CHR$(27)+"Y"+CHR$(3l+LIN)+CHR$(3l+COL)
30 PRINT "Enter line (1-24) and column (1-80), as LINE,COL ";
40 INPUT LIN, COL
50 PRINT FNM$(LIN,COL);
60 FOR I = 1 TO 1000 :REM PAUSE BEFORE OK MESSAGE DISPLAYED
70 NEXT I

The alternative method, using offsets from zero is shown below:

10 PRINT CHR$(27)+"E" :REM CLEAR THE SCREEN
20 DEF FNM$(LIN,COL)=CHR$(27)+"Y"+CHR$(32+LIN)+CHR$(32+COL)
30 PRINT "Enter line (0-23) and column (0-79), as LINE,COL ";
40 INPUT LIN, COL
50 PRINT FNM$(LIN,COL);
60 FOR I = 1 TO 1000 :REM PAUSE BEFORE OK MESSAGE DISPLAYED
70 NEXT I

2-10 Rev 0 - 3/23/83

Supplemental Technical Reference Material

2.4.2 Microsoft MACR0-86 Assembler -- Direct Cursor Positioning

line off
col off
esc
msdos

equ
equ
equ
equ

20h
20h
lbh
2lh

clear screen
dir_cur_pos_lead

db
db

esc, 'E$'
esc, 'Y$'

;line position offset from 0
;column position offset from 0
;escape character
;interrupt to MS-DOS

;clear screen request
;cursor positioning lead-in

; the cursor position required is handed down in BX
; where BH =line (0-23 binary), BL= column (0-79 binary)

clear and locate:
mov -ah,9h
mov dx,offset clear screen
int msdos

;string output up to $
;get the clear screen string
;and output it up to the $

; the cursor position required is in BX
;

;

add
add

bh,line off
bl,col_off

;normalize line for output
;normalize column for output

; send the direct cursor positioning lead-in
;

mov ah,9h ;select screen output up to $
mov dx,offset d1r cur pos lead ;select the lead in ESC Y
int msdos - ;and output it up to $. ,

; now the contents of BX must be sent to the terminal emulator
;

mov dl,bh ;ready the line number
mov ah,6h ;direct console output of DL
int msdos ;output the line coordinate

;
mov dl,bl ;ready the column number
mov ah,6h ;direct console output of DL
int msdos ;send the column coordinate

;
; the cursor is now at the location selected in BX

2-11 Rev 0 - 3/23/83

Supplemental Technical Reference Material

2.4.3 Microsoft Pascal Compiler -- Direct Cursor Positioning

program position (input,output);
{This method uses offsets from line 0, column 0.}

con st
clear_screen = chr(27) * chr(69);

var
result array[l •• 4] of char;
i, line, column : integer
row, col char;

begin
result (1) := chr (27);
result[2) := chr(89);
write (clear screen);

{RESULT = ESC}
{RESULT = "Y"}

write (' Enter line (0-23)
readln (line, column);
writeln (clear screen);
row:= chr(32 +line);

and column (0-79), as LINE COLUMN: ');

col := chr(32 +column);
result[3] :=row;
result[4] := col;
for i := 1 to 4 do

write (result[i]);
for i := 1 to 32000 do

end.

2-12

{RESULT = ROW}
{RESULT = COL}

{PRINT CURSOR TO SCREEN}
{PAUSE}

Rev 0 - 3/23/83

Supplemental Technical Reference Material

2.5 Transmit Page -- Examples of Use

The transmit page function is accessed by sending the ESC #
sequence to the screen (see section 2.3.S). The result of
this sequence is that all characters on the screen, as well
as the cursor positioning sequences required to re-create
the screen, are sent to the keyboard buffer. Reading the
keyboard via a normal keyboard input request will return the
entire screen of data to the program. The screen buffer
within the program should be at least 1929decimal bytes long
to accomodate the entire screen - the program will need to
perform 1929-single character inputs to empty the keyboard
buffer. Note that the character input requests must be done
rapidly to prevent the keyboard buffer overflowing and
causing loss of data - note, too, that on a keyboard buffer
overflow, the bell sounds.

2.s.1

The following sample programs demonstrate the use for this
function request:

Microsoft MS-BASIC -- TranSJDit Page

19 DIM A$(1929)
29 PRINT CHR$(27)+"#";
39 FOR I = l TO 1929
49 A$(I)=INKEY$
59 NEXT I
69 PRINT CHR$(27)+"E";
79 FOR I = 1 TO 1929
89 PRINT A$(I)~
90 NEXT I

2-13 Rev 9 - 3/23/83

Supplemental Technical Reference Material

2.s.2 Microsoft MACR0-86 Assembler -- Transmit Page

coniof equ
con in equ
printf equ
msdos equ
buf fer_length

6h
0f fh
9h
21h

equ 1920

;direct console i/o function
;console input request
;screen o/p up to $
;interrupt operating system
;entire screen count

read screen db
clear screen db
buffer db

lbh,'#$' ;read entire screen

mov
mov
mov
mov
mov
mov
int

lbh,'E$' ;clear screen/home cursor
buffer_length dup (?) ;main buffer region

ax,DS
ES,ax
di,offset buffer
si,di
dx,offset read screen
ah,printf
msdos

;get buffer data segment
;ready for store
;get storage buffer
;init for later use
;read entire screen string
;o/p it up to $
;call the OS

; now read entire screen in to BUFFER
;

mov ah,coniof
mov dl,conin
mov cx,buffer _length

;
in loop:

- int msdos
stosb
loop in_loop

;
mov ah,printf
mov dx,offset clear
int msdos . ,

; now replace the screen data

mov
mov

;
out_loop:

lodsb
mov
int
loop
ret

cx,buffer length
ah,coniof-

dl,al
msdos
out_loop

screen

2-14

;read from keyboard buffer
;ready to read
;count of chars to read

;get a char in AL
;save the char in BUFFER
; and loop til buffer full

;ready to clear the screen
;get the string
; and o/p it up to $

;get the count
;get the o/p char function

;get a char
; ready to go
;o/p it
;loop til buffer empty . ,

Rev 0 - 3/23/83

Supplemental Technical Reference Material

2.5.3 Microsoft Pascal Compiler -- Transmit Page

PROGRAM Scrnbuf;

CONST
clear screen
transmit_page
err msg
direct conio
con in
print_string

= CHR(27)*CHR(69)*CHR(36);
= CHR(27)*CHR(35)*CHR(36);
= 'ERROR$';

VAR

= #6;
= #SFF;
= 19;

screen_dump : ARRAY (1 •• 1929) OF CHAR;
ch : CHAR;
i : INTEGER;
param : WORD;
status : BYTE;

FUNCTION DOSXQQ(command, parameter : WORD) : BYTE; EXTERNAL;

BEGIN
EVAL(DOSXQQ(print string,WRD(ADR(transmit page))));
param:= BYWORD(9~ conin); -
status:= DOSXQQ(direct_conio, param);
IF status <> 9 THEN

BEGIN
i:= 1;
WHILE status <> g DO

BEGIN
ch:= CHR(status);
screen dump[i]:= ch;
i:= i + l;
status:= DOSXQQ(direct conio, param);

END; -
i:= i - 1;
EVAL(DOSXQQ(print string,WRD(ADR(clear screen)));
FOR VAR J:= 1 TO i DO -

END
ELSE

EVAL(DOSXQQ(direct_conio, WRD(screen_dump[J])));

EVAL(DOSXQQ(print_string,WRD(ADR(err_msg))));
END.

2-15 Rev 9 - 3/23/83

Supplemental Technical Reference Material

CHAPTER 3

Victor 9999 Input/Output Port Specification

3.1 Device Connection

There are 5 ports available on the Victor 9000 - they are as
follows:

2 x Serial (RS232C) - Ports A and B
1 x Parallel (Centronics)
2 x Parallel (control - located on CPU board)

The ports are located on the rear of the Victor 9000 as shown in
the following diagram:

PARALLEL
PORT

VIDEO
CONNECTOR

RS232 SERIAL·
PORT A - TTY

Figure 1

E3 •

RS232 SERIAL
PORT B - Ull

Victor 9999 Parallel and Serial Ports

3-1 Rev 0 - 3/23/83

Supplemental Technical Reference Material

3.2 Parallel Printer Connection

To connect a parallel printer to the Victor 9000, a suitable
cable is required - if the printer is supplied by Victor
Technologies, then it will be a matter of plugging the cable into
both machines; cables should be attached as follows:

1) Disconnect power from both the computer and printer.
2) Disconnect the Victor video connector (see 3.1)
3) Attach interface cable to Victor and printer
4) Re-attach the video connector
5) Set the printer qip-switches as required

3.3 Parallel Cable Requirements

If a suitable parallel cable is not available, you will need to
make one - use the guidelines that follow to create your own
cable:

You will need a male centronics-compatible Amphenol 57-30360
type connector for the Victor 9000 end of the cable; use the
type of connector suggested by the printer manufacturer for
the printer end, in general, another male centronics
compatible Amphenol 57-30360 type connector will be
required. You will also require a length of 12-core cable
(10 feet maximum length).

Refer to the port layout in your printer handbook - compare this
with the Victor 9000 parallel port layout (see C.l). If the pin
numbers and signal requirements are the same, then construct the
cable as follows:

1 ------------------- 1
2 ------------------~ 2
3 ------------------- 3
4 ------------------- 4
5 ------------------- 5
6 ------------------- 6
7 ------------------- 7
8 ------------------- 8
9 ------------------- 9

10 ------------------- 10
11 ------------------- 11
16 ------------------- 16

It does not matter which end of the cable is connected to
the printer or the computer.

3-2 Rev 0 - 3/23/83

Supplemental Technical Reference Material

If your printer has the same signals as the Victor 9000, but on
differing pins, then use the following guidelines:

1) Label one connector "Computer" and the other "Printer".
2) Connect pin 1 at the computer connector to the Data
strobe pin at the printer connector.
3) Connect pins 2 thru 9 at the computer connector to the
Data! (may be labelled Data0) thru Data8 (may be labelled
Data?) at the printer connector.
4) Connect pin 10 at the computer connector to the ACK pin
at the printer connector.
5) Connect pin 11 at the computer connector to the BUSY pin
at the printer connector.
6) Connect pin 16 at the computer connector to the GROUND
(may be labelled GND) pin at the printer connector.

The printer cable is now complete - it must always be
attached to the devices as marked on the connectors - if it
is not, then the printer will not work.

3.4 Serial Printer Connection

To connect a serial printer to the Victor 9000, a suitable cable
is required - if the printer is supplied by Victor Technologies,
then it will be a rratter of plugging the cable into both
machines; cables should be attached as follows:

1) Attach the cable between the Victor 9000 serial port B
(see 3.1) and the pr inter connector.
2) Set the printer switches for 7-data bits, 1 stop bit,
1200 baud and no parity. Set DTR protocol (refer to printer
manual).

You may set the baud rate at a rate different from that
mentioned in (2) - but you will then be required to set the
baud rate using the baud rate selection utility, PORTSET or
PORTCONF (see 3.6), or alternatively you will need to build
a new operating system.

3-3 Rev 0 - 3/23/83

Supplemental Technical Reference Material

3.5 Serial Cable Requirements

If a suitable serial cable is not available, you will need to
make one - use the guidelines that follow to create your own
cable:

You will require 1 x D25 male, 1 x D25 female connectors,
and a length of 6-12 core cable, with a maximum length of
fourty feet. Refer to the port layout in your printer
manual, if pin 3 is received data (labelled RXD or RD), and
pin 20 is data terminal ready (labelled DTR), then construct
your cable as follows:

Computer Printer

1 ---------------------- 1
2 ---------------------- 3
3 ---------------------- 2
7 ---------------------- 7
5 ---------------------- 20

This cable, often called a Modem Eliminator Cable, must be
attached as shown - mark the Computer/Printer connectors as
a reference.

If pin 3 is receive data (RXD or RD) and pin 20 is not data
terminal ready (DTR) then construct your cable as follows:

Computer Printer

1 ---------------------- 1
3 ---------------------- 2
2 ---------------------- 3
7 ---------------------- 7
5 ---------------------- 4

This cable must be attached as shown - mark the
Computer/Printer connectors as a reference.

3-4 Rev 0 - 3/23/83

Supplemental Technical Reference.Material

3.6 Operating System Port Utilities

Victor Technologies supplies a selection of programs under
both CP/M-86 and MS-DOS to allow the temporary selection of
both baud rate and list device port. If you attach a printer
to your system you may be required to perform some of the
following steps in order to utilize the printer. Before you
use any of the utilities discussed you need to be aware of
the port the printer is attached to; Port A, B or Parallel.
You will also need to know, except in the case of a parallel
printer, what the baud rate, stop-bits and parity your
printer is set up at. Note that many printers will start to
lose data at baud rates above 4800, you must, therefore,
select a baud rate that your printer can handle.

3.6.1 SETIO - MS-DOS List Device Selection Utility

To select the correct port for the list device you have
attached, the SETIO program has been provided. This program
is used as follows:

SET IO LST = TTY - printer is attached to port A
SET IO LST = ULl - printer is attached to port B
SET IO LST = LPT - printer is attached to parallel port

It is recommended that your printer be attached to either
port B or the parallel port.

Once SETIO has executed, it displays a map of the ports,
with the ones you selected highlighted on the screen - if
this is not corrcet, repeat the process.

3.6.2 STAT - CP/M-86 List Device Selection Utility

To select the correct port for the list device you have
attached, the STAT program has been provided. This program
is used as follows:

STAT LST:=TTY: - printer is attached to port A
STAT LST: =UL 1: - printer is attached to port B
STAT LST:=LPT: printer is attached to parallel port

It is recommended that your printer be attached to either
port B or the parallel port.

3-5 Rev 0 - 3/23/83

Supplemental Technical Reference Material

3.6.3 PORTSET - MS-DOS Baud Rate Selection Utility

To select the correct baud rate for ports A or B (but this
is not applicable to the parallel port), the PORTSET program
is provided. This program is menu driven, and is used as
follows:

To the prompt type PORTSET, the screen will display a
choice of three ports:

1) Port A (RS232C)
2) Centronics/Parallel Port
3) Port B (RS232C)

Type either 1,2 or 3. If you type 1 or 3, the next menu
screen is displayed - this screen has baud-rate choices
labelled A through N - select one of the baud-rates.

3.6.4 PORTCONF - CP/M-86 Baud Rate Selection Utility

This program is used in exactly the same manner as PORTSET
(see 3.6.3).

3-6 Rev 0 - 3/23/83

Supplemental Technical Reference Material

3.7 Serial Input/Ouput Ports

The two serial input/output ports are memory mapped ports
located in the memory segment E000hex; and they are mapped
as fol lows:

E000:40
E000:41

E000:42
E000:43

port A data (input/output)
port B data (input/output)

port A control (read/write)
port B control (read/write)

The following information is available in each port's
control register:

bit 0 rx character available
bit 1 not used
bit 2 tx buffer empty
bit 3 DCD
bit 4 not used
bit 5 CTS
bit 6 not used
bit 7 not used

See Appendix C.2 for information on each port's pinouts.

Note that writing a 10hex to the relevent control register
al lows the resensing of the modem leads (i.e. DCD and CTS)
with their current values being updated in the port's
control register.
Since the Victor 9000 configures the NEC 7201 chip to
operate in auto-enable mode, DCD (pin 8 on the port
connector) must be ON, and CTS (pin 5 on the port connector)
must be ON to enable the 720l's receiver and trasmitter
respectively. RTS and DTR are always ON as a convenient
source for an RS-232C control ON (+11 volts).

3-7 Rev 0 - 3/23/83

Supplemental Technical Reference Material

3.8 Baud Rate and Data Input/Output - Sample Programs

The means of establishing the baud rates, receiving and
transmitting data are discussed in the following programs.
The serial port's control register are discussed in 3.7 -
the means of accessing them is better described with the
programming examples that follow.

The following programs provide information on how to set up
the baud rates on the serial ports (A and B) - they also
demonstrate how to send and receive data from these ports.

3-8 Rev 0 - 3/23/83

Supplemental Technical Reference Material

3.8.1 Microsoft MS-BASIC -- Baud Rate and Data Input/Output

The following program may be used in place of PORTSET or
PORTCONF if you omit the lines 500 through 740 inclusive.

10 DIM RATE(l4)
20 REM Select the data port
30 PRINT CHR$(27)+"E"; : REM Clear the screen
40 PRINT : PRINT : PRINT : PRINT
50 PRINT "The serial ports are:" : PRINT
60 PRINT ," A - Serial Port TTY - left hand on back"
70 PRINT ," B - Serial Port ULl - right hand on back"
80 PRINT : PRINT
90 PRINT ,"Select the port you want to use, A or B ";
100 PORT$ = INPUT$(1)
110 PRINT PORT$
120 IF PORT$ = "a" THEN
130 IF PORT$ = "A" THEN
140 IF PORT$ = "b" THEN
150 IF PORT$ = "B" THEN
160 GOTO 30

STATI0=2
STATI0=2
STATI0=3
STATI0=3

200 REM Set the baud rate

DATI0=0
DATI0=0
DATIO=l
DATIO=l

GOTO
GOTO
GOTO
GOTO

210 PRINT CHR$(27)+"E"; : REM Clear the screen
220 PRINT : PRINT : PRINT : PRINT

210
210
210
210

230 PRINT "The available baud rates are as follows:"
240 PRINT ," 1 = 300 baud"
250 PRINT ," 2 = 600 baud"
260 PRINT ," 3 = 1200 baud"
270 PRINT ," 4 = 2400 baud"
280 PRINT ," 5 = 4800 baud"
290 PRINT ," 6 = 9600 baud"
300 PRINT ," 7 = 19200 baud"
310 PRINT : PRINT : PRINT
320 PRINT "Select one of the above baud rates: ";
330 RATE$ = INPUT$(1)
340 IF RATE$ > "7" THEN 210
350 IF RATE$ < "l" THEN 210
360 PRINT RATE$
400 REM Now set the baud rate in the port selected
410 DEF SEG = &HE002

PRINT

420 IF DATIO = 0 THEN POKE 3,54 : IF DATIO = 1 THEN POKE 3,118
430 FOR I = 1 TO 14
440 READ RATE(!) : REM Set the baud rate matrix
450 NEXT I
460 NODE = (VAL(RATE$)-1)*2+1
470 POKE DATIO,RATE(NODE)
480 POKE DATIO,RATE(NODE+l)

-- Listing Continued on Next Page --

3-9 Rev 0 - 3/23/83

Supplemental Technical Reference Material

500 REM Now data may be entered and sent down line
510 PRINT CHR$(27)+"E"; : REM Clear the screen
520 PRINT : PRINT ,"Baud rate established"
530 PRINT : PRINT : PRINT
540 DEF SEG = &HE004
550 PRINT ,"Enter data to be sent down line with return to end"
560 PRINT ,"or just press return to receive data -"
570 PRINT
589 TEXT$=INKEY$
590 IF TEXT$="" THEN 630
600 IF TEXT$=CHR$(13) THEN PRINT TEXT$:TEXT$=CHR$(126) :GOTO 620
610 PRINT TEXT$;
620 GOSUB 650
630 GOSUB 690
640 GOTO 580
650 STATUS=PEEK (STATIO) : STATUS=STATUS AND 4
660 IF STATUS = 0 THEN 650 :REM Waiting to send char
670 POKE DATIO, ASC(TEXT$)
680 RETURN
690 STATUS = PEEK(STATIO) :STATUS = STATUS AND 1
700 IF STATUS = 0 THEN RETURN : REM No char available
710 DATUM = PEEK (DATIO) : DATUM = DATUM AND 127
720 IF DATUM= 126 THEN PRINT CHR$(13) : RETURN
730 PRINT CHR$(DATUM); :REM Show char from line
740 RETURN
1000 DATA 04,l,&H82,0,&H41,0,&H20,0,&Hl0,0,8,0,4,0

3-10 Rev 0 - 3/23/83

Supplemental Technical Reference Material

3.8.2 MACR0-86 Assembler -- Baud Rate and Data Input/Output

The following assembler modules may be included in a program
and called with the stated parameters. The character input
and output modules will need re-coding if your program
requires status return rather than looping for good status.

rates db
db
db
db

04h,lh,82h,0h
4 lh, 0h, 2 0h, 0h
10h,0h,8h,0h
4h,0h

;baud rate conversion table

;**
; . Routine: ,

; Function: . ,
; Entries:
;
;

Returns:
; . Corruptions: ,

BAUD SET

To set Port A or B baud rate

AL = 0=PortA, l=PortB
DX = 0=300 baud, 1=600 baud, 2=1200 baud

3=2400 baud, 4=4800 baud, 5=9600 baud
6=19200 baud

None

ES, AX, BX, ex, DX
;
;**

baud set:
mov
mov
mov
or
jnz

;

;
set B:

;

mov
jmp

mov

set rate:
mov
shl
add
mov
xor
mov
mov
mov
ret

cx,0e002h
ES,cx
bx,3
al,al
set B

byte ptr ES: [bx],36h
short set rate

byte ptr ES: [bx],76h

bx,offset rates
dx,1
bx,dx
dx, [bx]
bh,bh
bl,al
byte ptr ES: [bx],dl
byte ptr ES:[bx] ,dh

3-11

; get the segment
;init the segment register
;point to counter control
;see if Port A or B to be set
;AL > 0, so set Port B counter

;set it for port A
; and input the Baud rate

;set port B counter

;get the baud rate table
;DX = DX * 2 for words
;point to baud rate entry
;get the baud rate
;BH=0
;get the required port
;send first byte
; and last byte of rate
;baud rate established

Rev 0 - 3/23/83

Supplemental Technical Reference Material

3.8.2 Baud Rate and Data Input/Output -- continued

•** ,
;

Routine:

. Function: ,
;

Entries:
;

; Returns:

SEND CHAR

To output a character to a serial port

AL = 0=PortA, l=PortB
AH = Character to send

None

Corruptions: ES, AX, BX
;
•** ,

send char:
mov
mov
xor
mov
add

;
in_status_loop:

mov

. ,
and
jz

sub
mov
ret

bx,0e004h
ES,bx
bh,bh
bl,al
bl,2

al,ES: [bx]
al,4h
in_status_loop

bl,2
ES: [bx] ,ah

3-12

;get the port segment
;set the· segment
;BH=0
;get the required port
;required port status

;get the status
;mask for TX empty
;not ready - loop

;point to data
;character gone

Rev 1 - 4/4/83

Supplemental Technical Reference Material

3.8.2 Baud Rate and Data Input/Output -- continued

;** . , . Routine: , GET CHAR . , . Function: , To input a character from a serial port . ,
Entries: AL = 0=PortA, l=PortB

;
Returns: AL = character

; . Corruptions: , ES, AX, BX
;
•** ,

get_char:
mov
mov
xor
mov
add

;
out status loop:

bx,0e004h
ES,bx
bh,bh
bl,al
bl,2

- mov al,ES: [bx]
and al,lh
jz out_status_loop

;
sub
mov
ret

bl,2
al,ES: [bx]

3-13

;get the port segment
;set the segment
;BH=0
;get the required port
;required port status

;get the status
;mask for RX character avail
;not ready - loop

;point to data
;character received

Rev 1 - 8/4/83

Supplemental Technical Reference Material

APPENDIX A

A.1 ASCII Codes Used in the Victor 9000 Computer

The American Standard Codes for Information Interchange
(ASCII) has been defined to allow data communication between
computers, their peripherals, and other computers. The other
major code standard is the Extended Binary Coded-Decimal
Interchange Code (EBCDIC) used on some mainframe computers.
The Victor 9000 computer is designed to function in ASCII,
but communication software is available that allows the
Victor 9000 to receive EBCDIC data and have it translated
into ASCII, and vice versa.

The following table contains the 7-ASCII codes and their
meanings. It is called 7-ASCII as only 7-bits of the
potential 8-bits are used to carry data; the "spare" bit is
utilized in the Victor 9000 computer to support characters
not otherwise available in the 7-ASCII set.

An Eight Bit Byte is pictured as follows:

7] [6] [5] [4] [3] [2] [1] [0]

the bits are numbered 0 through 7 (which adds up to eight
bits), and it is the 8th bit (bit 7 in computer jargon)
which is not used in 7-ASCII.

A-1 Rev 0 - 3/23/83

Supplemental Technical Reference Material

A.2 ASCII / HEXADECIMAL / DECIMAL Character Set

ASCII He:x Dec ASCII He:x Dec ASCII Re:x Dec ASCII He:x Dec

NUL 00 00 space 20 32 @ 40 64 .. 60 96
SOH 01 01 ! 21 33 A 41 65 a 61 97
STX 02 02 " 22 34 B 42 66 b 62 98
ETX 03 03 • 23 35 c 43 67 c 63 99
EOT 04 04 $ 24 36 D 44 68 d 64 100
ENO 05 05 % 25 37 E 45 69 e 65 101
ACK 06 06 & 26 38 F 46 70 f 66 102
BEL 07 07 ' 27 39 G 47 71 g 67 103
BS 08 08 (28 40 H 48 72 h 68 104
HT 09 09) 29 41 I 49 73 i 69 105
LF 0A 10 * 2A 42 J 4A 74 j 6A 106
VT 0B 11 + 2B 43 K 4B 75 k 6B 107
FF 0C 12 2C 44 L 4C 76 1 6C 108
CR 00 13 20 45 M 40 77 m 60 109
so 0E 14 • 2E 46 N 4E 78 n 6E 110
SI 0F 15 I 2F 47 0 4F 79 0 6F 111
OLE 10 16 0 30 48 p 50 80 p 70 112
DCl 11 17 1 31 49 0 51 81 q 71 113
DC2 12 18 2 32 50 R 52 82 r 72 114
DC3 13 19 3 33 51 s 53 83 s 73 115
DC4 14 20 4 34 52 T 54 84 t 74 116
NAK 15 21 5 35 53 u 55 85 u 75 117
SYN 16 22 6 36 54 v 56 86 v 76 118
ETB 17 23 7 37 55 w 57 87 w 77 119
CAN 18 24 8 38 56 x S8 88 x 78 120
EM 19 25 9 39 57 y S9 89 y 79 121
SUB lA 26 : 3A S8 z SA 90 z 7A 122
ESC lB 27 ; 3B S9 [SB 91 (7B 123
PS lC 28 < 3C 60 \ SC 92 ! 7C 124
GS 10 29 = 30 61] SD 93 70 12S
RS lE 30 > 3E 62 SE 94 7E 126
us lF 31 ? 3F 63 SF 9S DEL 7F 127

A-2 Rev 0 - 3/23/83

Supplemental Technical Reference Material

APPENDIX B

B.1 Victor 9999 Keyboard Layout

Legend:

Shaded region indicates unused key switch

Figure 2
Victor 9888 Keyboard Configuration

with Key Switch Positions and Logical Key Numbers

B-1 Rev 0 - 3/23/83

APPENDIX C

C.l

Supplemental Technical Reference Material

Victor 9999 Parallel (Centronics) Port

Pin Humber Signal

1 --------------------------- Data

2 --------------------------- Data

3 --------------------------- Data

4 --------------------------- Data

5 --------------------------- Data

6 --------------------------- Data

7 --------------------------- Data

8 --------------------------- Data

9 --------------------------- Data

10 --------------------------- ACK

11 --------------------------- Busy

Strobe

1

2

3

4

5

6

7

8

17 --------------------------- Pshield

12,18,30,31 ------------------ Not connected

Remaining -------------------- GND

C-1 Rev 0 - 3/23/83

Supplemental Technical Reference Material

C.2 Victor 9888 Serial (RS-232C) Port

Pin Number Signal

1 --------------- FG Frame Ground

2 --------------- TD Transmitted Data

3 --------------- RD Received Data

4 --------------- RTS Request to Send

5 --------------- CTS Clear to Send

6 --------------- DSR Data Set Ready

7 --------------- SG Signal Ground

8 --------------- DCD Data Carrier Detect

15 --------------- TC Transmitter Clock

17 --------------- RC Receiver Clock

20 --------------- DTR Data Terminal Ready

22 --------------- RI Ring Indicator

C-2 Rev 0 - 3/23/83

Supplemental Technical Reference Material

C.3 Victor 9888 IBEB-488 Port

The Victor 9000 IEEE-488 cable attaches to the parallel port -
the pin number refers to the actual computer port connector; the
IEEE-488 pin number refers to the standard IEEE-488 pin-out as
they must attach to the parallel port.

The IEEE pin numbers referred to with the (**z) are wires that
are to be bound together as twisted pairs.

Pin Humber IBBB Signal IBBB Pin Humber

1 ----------- DAV ------------- 6 (**a)
19 ----------- GND ------------- 18 (**a)
2 ----------- 0101 ------------- 1
3 ----------- 0102 ------------- 2
4 ----------- 0103 ------------- 3
5 ----------- 0104 ------------- 4
6 ----------- 0105 ------------- 13
7 ----------- 0106 ------------- 14
8 ----------- 0107 ------------- 15
9 ----------- 0108 ----------·--- 16
HJ ----------- NRFD ------------- 7 (**b)
28 ----------- GND ------------- 19 (**b)
11 ----------- SRQ ------------- 10 (**c)
29 ----------- GND ------------- 22 C**c)
13 ----------- NDAC ------------- 8 (**d)
33 ----------- GND ------------- 20 (**d)
15 ----------- EOI ------------- 5
17 ----------- shield ----------- 12
34 ----------- REN ------------- 17
35 ----------- ATN ------------- 11 (**e)
16 ----------- GND ------------- 23 (**e)
36 ----------- IFC ------------- 9 (**f)
27 ----------- GND ------------- 21 (**f)
20 ----------- GND ------------- 24

C-3 Rev 0 - 3/23/83

C.4

Supplemental Technical Reference Material

Victor 9999 Control Port

Pin Number Signal

1 --------------- -12V
2 --------------- -12V
3 --------------- Not connected
4 --------------- Not connected
S --------------- +12V
6 --------------- +12V
7 --------------- +SV
8 --------------- +SV
9 --------------- Not connected

10 --------------- Light Pen
11 --------------- GND
12 --------------- CAl
13 --------------- GND
14 --------------- CA2
lS --------------- GND
16 --------------- PA0
17 --------------- GND
18 --------------- PAI
19 --------------- GND
20 --------------- PA2
21 --------------- GND
22 --------------- PA3
23 --------------- GND
24 --------------- PA4
2S --------------- GND
26 --------------- PAS
27 --------------- GND
28 --------------- PA6
29 --------------- GND
30 --------------- PA7
31 --------------- GND
32 --------------- PB0
33 --------------- GND
34.--------------- PBl

3S --------------- GND
36 --------------- PB2
37 --------------- GND
38 --------------- PB3
39 --------------- GND
40 --------------- PB4
41 --------------- GND
42 --------------- PBS
43 --------------- GND
44 --------------- PB6
4S --------------- GND
46 --------------- PB7 / CODEC Clock Output
47 --------------- GND
48 --------------- CBl
49 --------------- GND
50 --------------- CB2

C-4 Rev 0 - 3/23/83

Supplemental Technical Reference Material

APPENDIX D

D.l Example Assembler Shell Program for MS-DOS Interfacing

The Microsoft MACR0-86 assembler follows closely the Intel ASM-86
specifications. The operating system interfacing technique is via
a straightforward interrupt (INT 21Hex), with the required
operational parameter in the AH register. MS-DOS does not corrupt
any registers other than the ones used for the sending or
receiving of data. An example of the running and exiting program
technique, plus the required assembler directives, follows. The
program example is for the small memory model; but it will apply
equally well to the compact or large memory model. The 8080
memory model is not recommended as it results in poor usage of
the potential of the 8086/8088 processor. At link time, this
programming example will generate an .EXE file - the header
information on this file type will be found in E.l.

title

dgroup
cgroup

msdos

data
;#tit##
data

code

example

begin:

. ,

Example of MS-DOS/MACR0-86 Assembly Programming

group
group

data
code

equ 0002lh ;interrupt to operating system

segment public 'data'
insert your data here ######

ends

segment ~ublic 'code'
assume CS: cgroup, OS: dgroup

proc near ;origin of code

push ES ;save return segment
call run module ;run the program

address

; run ends - select close down
;
exit

exit

proc
xor
push
ret
endp

far
ax,ax
ax

run module:

;#####

mov ax,DATA
mov DS,ax

insert your code at this
ret

example endp
code ends
end

;close down code
;zero for PSP:0
;save for far return
;and close down
;close down code ends

;get the data segment origin
; and initialize the segment

point ######
;return to exit module

D-1 Rev 0 - 3/23/83

Supplemental Technical Reference Material

D.2 Example Assembler Shell Program for CP/M-86 Interfacing

The Digital Research ASM-86 assembler does not follow the
standard Intel ASM-86 structure - this makes for a more complex
task when transferring assembler programs between the CP/M-86 and
the MS-DOS operating systems. The operating system interfacing
technique is via a straightforward interrupt (INT E0Hex), with
the required operational parameter in the CL register. CP/M-86
corrupts all registers, excepting the CS and IP - it is,
therefore, recommended that all registers be pushed prior to the
INT E0Hex being issued. An example of the running and exiting
program technique, plus the required assembly directives,
follows. The program example follows that of the MS-DOS MACR0-86
example. At GENCMD time, this programming example will generate a

.CMD file - the header information on this file type is shown in
the System Guide for CP/M-86.

title 'Example of CP/M-86/ASM-86 Programming'

reset
cpm

begin:

;

equ
equ

cseg

call

00000h
000e0h

run module

; run ends - select close down . ,

;

mov
mov
int

run module:

cl,reset
dl,00h
cpm

;system reset function
;interrupt to operating system

; run the program

;select system reset
;select memory recovery
;return to operating system

;##i## insert your code at this point ######
ret ;return to exit module

dseg
;##### insert your data here #####

end

D-2 Rev 0 - 3/23/83

E.1

Supplemental Technical Reference Material

MS-DOS -- EXE File Header Structure

The Microsoft linker outputs .EXE files in a relocatable
format, suitable for quick loading into memory and
relocation. EXE files consist of the following parts:

o Fixed length header
o Relocation table
o Memory image of resident program

A run file is loaded in the following manner:

o Read into RAM at any paragraph (16 byte) boundary
o Relocation is then applied to all words described by

the relocation table.

The resulting relocated program is then executable.
Typically, programs using the PL/M small memory model have
little or no relocation; programs using larger memory models
have relocation for long calls, jumps, static long pointers,
etc.

The following is a detailed description of the format of an
EXE file:

E-1 Rev 0 - 3/23/83

Byte
fHl
2+3

4+5

6+7

8+9

A+B

C+D

E+F

Supplemental Technical Reference Material

Microsoft .EXE File Main Header

Name
wSignature
cbLastp

cpnRes

irleMax

cparDirectory

cparMinAlloc

cparMaxAlloc

saStack

Function
Must contain 4D5Ahex.
Number of bytes in the memory image
modulo 512. If this is 9 then the last
page is full, else it is the number of
bytes in the.last page. This is useful
in reading overlays.
Number of 512 byte pages of
memory needed to load the resident and
the end of the EXE file header.
Number of relocation entries in the
table.
Number of paragraphs in EXE file
header.
Minimum number of 16-byte paragraphs
required above the end of the loaded
program.
Maximum number of 16-byte paragraphs
required above the end of the loaded
program. 9FFFFh means that the program
is located as low as possible into
memory.

lfHll raStackinit

Initial value to be loaded into SS
before starting program execution.
Initial value to be loaded into SP
before starting program execution.
Negative of the sum of all the words
in the run file.

12+13 wchksum

14+15 raStart Initial value to be loaded into IP
before starting program execution.
Initial value to be loaded into CS
before starting program execution.
Relative byte offset from beginning of
run file to the relocation table.
Number of the overlay as generated by
LINK-86. The resident part of a
program will have iov = 9.

16+17 saStart

18+19 rbrgrle

lA+lB iov

The relocation table follows the fixed portion of the run
file header and contains irleMax entries of type rleType,
defined by:

rleType bytes 9+1 ra
bytes 2+3 sa

Taken together, the ra and sa fields are an 8986/8988 long
pointer to a word in the EXE file to which the relocation
factor is to be added. The relocation factor is expressed as
the physical address of the first byte of the resident
divided by 16. Note that the sa portion of an rle must first

E-2 Rev 0 - 3/23/83

Supplemental Technical Reference Material

be relocated by the relocation factor before it in turn
points to the actual word requiring relocation. For
overlays, the rle is a long pointer from the beginning of
the resident into the overlay area.

The resident begins at the first 512 byte boundary following
the end of the relocation table.

The layout of the EXE file is:

28-byte Header

Relocation Table

padding (<200hex bytes)

memory image

E-3 Rev 0 - 3/23/83

Supplemental Technical Reference Material

P.l Victor 9999 Technical Specification

Processor
o Intel 8088 16-bit microprocessor
o 128k bytes RAM internally upgradeable to 896k bytes
o 4k bytes Auto-boot ROM (read only memory)
o 4 internal expansion slots for plug-in card options
o 2 x RS232C serial communications ports
o 1 x Parallel (Centronics) or IEEE-488 port
o 2 x Parallel user port (50-way KK Connector on CPU board)

Display System
o 25 line x 80 column screen / 50 line x 132 column screen
o 12" CRT, Green p39 phosphor
o Adjustable horizontal viewing angle (+ 45 degree swivel)
o Adjustable vertical viewing angle (0 deg to 11 deg ti 1 t)

Floppy Drives
o Standard 5 1/4-inch, single-sided 96 TPI dual disk drives,

with a maximum capacity of 600k bytes per drive.
o Optional 5 1/4-inch, double-sided 96 TPI dual disk drives,

with a maximum capacity of 1200k bytes per drive.
o Optional single 10,000k byte Hard Disk - non-removable; with

single 5 1/4-inch, double sided 96 TPI disk drive with a
maximum capacity of 1200k bytes.

Single-sided floppy drive offers 80 tracks at 96 TPI
Double-sided floppy drive offers 160 tracks at 96 TPI
Floppy drives have 512 byte sectors; utilising a GCR, 10-bit
recording technique.

Floppy access times:
2 micro-second per bit data transfer
interleave factor of 3. Average
approximately 90 milli-seconds.

Hard Disk access times:

rate, with
seek time

an
is

0.2 micro-second per bit data transfer rate, with an
interleave factor of 5. Average seek time is
approximately 100 milli-seconds.

F-1 Rev 0 - 3/23/83

Supplemental Technical Reference Material

Keyboard

Separate Intel 8048 microprocessor
Fully software definable with 10 soft function keys
Full IBM Selectric III (56 key) keyboard layout
Type ahead buffering to 32 levels and full n-key rollover
Keyswitches rated for 100 million operations

Electrical

Input voltage 90-137 VAC or 190-270 VAC (internal jumper)
Input frequency 47-63 Hz

Environment

Operating temperature 0 deg C to 40 deg C
Operating humidity 20% to 80% (non-condensing)
Storage temperature -20 deg C to 70 deg C
Storage humidity 5% to 95% (non-condensing)

F-2 Rev 0 - 3/23/83

Supplemental Technical Reference Material

F.2 Victor 9988 Physical Specifications

Mainframe Assembly

Height Width Depth Weight (approx)
178 mm 422 mm 356 mm 12.6 kg
7 in 16.6 in 14 in 281 lbs

Display Assembly

Height Width Depth Weight (approx)
264 mm 326 mm 339 mm 8.1 kg
10.4 in 12.9 in 13.4 in 18 lbs

Keyboard Assembly

Height Width Depth Weight (approx)
45 mm 483 mm 203 mm 1. 5 kg
1.8 in 19 in 6.4 in 3 lbs

System Assembly

Height Width Depth Weight (approx)
457 mm 483 mm 559 mm 22.2 kg
18 in 19 in 20.4 in 49 lbs

Width without the keyboard module is 396 mm I 15.6 in

F-3 Rev 0 - 3/23/83

Supplemental Technical Reference Material

G.l Glossary of Terms

The following table is a glossary of terms found in this manual:

BAUD

BIOS

BIT

BOOT

BUS

The term baud rate means the number of bits
sent down a line per second. A baud rate of
300 will, therefore, be capable of
transmitting data at 300 bits per second.
Since a textual character is composed of 8
bits, then 37.5 characters could be sent per
second at this baud rate.

This means the Basic Input Output System. The
BIOS is a fundamental portion of an Operating
System, al lowing the operating system to
communicate correctly with any peripheral
devices; typical BIOS modules include the
disk driver; the keyboard input driver; the
screen driver; the printer driver.

A bit is a binary digit. The bit can,
therefore, contain either One or Zero. A One
is bit HIGH or ON. A zero is bit LOW or OFF.
A bit may be likened to a light-switch - the
switch can only be on or off. See BYTE.

This term comes from the phrase "the computer
pulls itself up by its boot-strap". The term
boot-strap means the same, but is no longer
in such common use. To boot a computer is to
load an operating system - the computer does
this by means of a boot-strap program. The
computer, when switched on, is not aware of
its environment - but it automatically runs
its boot-strap program. The Victor 9000 boot
strap program is stored in the boot PROM; it
first causes the display of the little disk
picture - it then searches for a disk with an
operating system - when it finds this disk,
it loads the operating system and begins to
execute it. The boot-strap program is not
used again until the reset switch is pressed,
or the power is switched off and on.

A bus in computer jargon is not unlike a bus
to carry passengers. When data is moved
around inside a computer it is moved along
the bus wires. These bus wires connect the
Victor 9000 microprocessor to its memory,
disk (s) and screen.

G-1 Rev 0 - 3/23/83

Supplemental Technical Reference Material

BYTE

DOT MATRIX

FONT CELL

HEADER

INTERRUPT

NIBBLE

OPERATING
SYSTEM

A byte is a collection of 8-bits or two
nibbles. A byte may store one character of
text, or a number from 0 to 255 in binary.

A printed character on the screen or a dot
matrix printer may be viewed as a square
containing dots. On the Victor 9000 screen a
character has a square cell (matrix) of 16
dots high by 10 dots wide - within this box,
the dot on/off patterns create a viewable
character.

In reference to DOT MATRIX, the font cell is
the collection of bytes of data that make up
the character dots that are to be displayed
on the screen. Each character on the screen
is composed of pre-defined patterns of dots
to make the viewed dot matrix. These patterns
of dots are stored in the Victor 9000 memory
as data - the screen controller chip scans
these data bytes and the resulting character
image is displayed on the screen.

A header on a file gives information to the
operating system on where and how the file is
to be loaded in to memory. Many files
provided by Victor Technologies (such as
keyboard and character set files) contain
headers that are not used by the operating
system, but are used by Victor Technologies
utilities.

An interrupt is some event occuring in the
computers environment that the computer will
stop all other activities for. An example of
an interrupt is a key-press. If you press a
key on the Victor 9000, an interrupt is
generated; at this point the processor stores
all information on its current task and gets
and saves the value of the key pressed; it
then picks up all the information it stored
on its last task and continues where it left
off. This whole series of events takes only a
few micro-seconds.

Sometimes spelled NYBBLE; a nibble is half a
byte or 4-bits. See BYTE and BIT.

An operating system allows the computer to be
aware of its environment and gives the user
the ability to enter and retrieve data from
the computer.

G-2 Rev 0 - 3/23/83

Supplemental Technical Reference Material

PROM

RAM

REGISTER

WORD

Programmable Read Only Memory, PROM, is a
chip or collection of chips that is used to
store permanently a single computer program
or collection of computer programs. The boot
prom, sometimes called boot-rom, contains all
the information the Victor 9000 computer
needs to read an operating system from disk.
There are different types of prom; EPROM
which is erasable prom, simply shine a high
powered ultra-violet lamp on the chip, and it
can be re-programmed; etc.

Random Access Memory, RAM, is a chip or
collection of chips that is used to store
temporarily (until the power is removed)
data, computer program(s), text, etc. This is
the memory of a computer.

A computer register is a portion of the
processor. The Victor 9000 uses the Intel
8088 micro-processor - there are several
different types of registers within this
chip; there are 8-bit registers, and 16-bit
registers. Data is generally not manipulated
in RAM, but is brought in to a register of
the processor and manipulated there, then the
result saved from the register back into RAM.

A word is a number of bits, generally greater
than 8. The Victor 9000 has a 16-bit word -
thus a word in the Victor 9000 is composed of
two bytes. The DEC PDP-8 computer has a 12-
bit word - on this machine, therefore, a word
is composed of one byte and one nibble.

G-3 Rev 0 - 3/23/83

Supplemental Technical Reference Material

H.l MS-DOS Base Page Structure

The MS-DOS Base Page (sometimes called the Program Segment Prefix
or PSP), is created when you enter an external command.
COMMAND.COM wi 11 al locate a memory reg ion to the external
program, and will insert the Base Page prior to the origin of
this program.

In the memory segment that the program is to load, COMMAND.COM
places a Base Page, COMMAND.COM then loads the program at an
offset of 100hex, and hands over control to the external program.
The external program, once its function is complete, hands
control back to the operating system by a far JUMP or far RETURN
to location zero within the Base Page; the instruction at this
location is an INT 20, or return control to MS-DOS. This stage
must be executed to allow MS-DOS to recover memory correctly (see
Appendix D.l).

When an external program is loaded, the following conditions are
true:

The file control blocks at Base Page locations SChex and
6Chex are created from the first two parameters entered on
the command 1 ine.

The command line at Base Page location 80hex is created from
the command line entered AFTER the program filename. The
byte at location 80hex contains the command line character
count, the following bytes contain the raw command line as
entered at the keyboard.

The word at offset 6 in the Base Page contains the number of
bytes available in the segment.

The contents of register AX are established to reflect the
validity of the drive(s) on the command line. Thus the
following may be found:

AL = FFhex when the first drive letter on the command
line was not recognized by MS-DOS.
AH = FFhex when the second drive letter on the command
line was not recognized by MS-DOS.

The above applies equally to both .EXE and .COM type files. The
.EXE and .COM files do have differences when the they load, and

these are described more fully below.

H-1 Rev 0 - 4/26/83

Supplemental Technical Reference Material

When .EXE files load:

The contents of register DS and register ES are pointing at
the Base Page segment address.

The registers CS, IP, SS and SP are initialized to those
values passed by the linker.

When .COM files load:

The contents of registers CS, DS, ES, and SS are pointing to
the Base Page segment address.

The register IP is set at 100hex.

The register SP is set the high address in the program
segment, or to the base of the transient portion of
COMMAND.COM, whichever is the lower. The contents of the
word at Base Page off set 6 are decremented by 100hex to
allow for a stack of that size.

A word of zeros is placed at the top of the stack.

H-2 Rev 0 - 4/26/83

Supplemental Technical Reference Material

The Base Page

The Base Page is structured as follows - with offsets in Hex

Offset
0000

0002

0005

000A

000E

005C

006C

0080

Contents
INT 20hex. Word.

Total Memory size in paragraph form (i.e.
2000hex is equivalent to 256k bytes). Word.

Far CALL to MS-DOS function dispatcher. 5
bytes.

Program Terminate address as IP and CS. 2
words.

Control Break address as CS and IP. 2 words.

File Control Block fl, formatted as normal
unopened FCB. 8 words.

File Control Block #2, formatted as normal
unopened FCB. 8 words.

Count of characters on command line; followed
by command line entered. This region may be
used as disk transfer address.

H-3 Rev 0 - 4/26/83

Supplemental Technical Reference Material

Normal File Control Block

The normal file control block is structured as follows - with
offsets in decimal:

Byte
0

1-8

9-11

12-13

14-15

16-19

Contents
The drive number. The drives are numbered as
follows:

Before opening file:

After opening file:

0=default drive
l=drive A
2=drive B
3=drive c, etc

l=drive A
2=drive B, etc

MS-DOS replaces the default drive prefix of 0
with the correct drive number after the open
is processed.

Filename, left justified with trailing ASCII
space(s). If a device name is placed in this
region, the trailing colon should be omitted.

Extent, left justified with trailing ASCII
space(s).

Current block number relative to the
beginning of the file, starting with zero
(automatically set to zero by the open
function request). A block consists of 128
records, each record being of the size
specified in the logical record size field.
The current block number is used with the
current record field for sequential
reads/writes.

Logical record size in bytes. Set to 80hex by
the open function request.

File size in bytes. The first word represents
the low-order part of the file size.

H-4 Rev 0 - 4/26/83

20-21

22-23

24-31

32

33-36

Supplemental Technical Reference Material

Date the file was created or last updated.
The date is set by the open function request.
The date is formatted as follows:

< 21 > < 20 >
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
y

<

y y

where m
d
y

y y y

month
day
year

y m m

lthrul2
lthru31

m m d d d

0thrull9 (1980thru2099)

d d

Time the file was created or last updated.
The time is set by the open function request.
The time is formatted as follows:

23 > < 22 >
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
h h h h h m m m m m m s s s s s

where h hours 0thru23
m minutes 0thru59
s seconds*2 0thru59

Reserved for system use.

Current relative record number (0-127) within
the current block. This must be set before
doing seqeuntial read/write operations on the
file. The open function request does not set
this field.

Relative record number, relative to the
origin of the file, starting at zero. This
field must be set prior to doing random
read/write operations on the file. The open
function request does not set this field.

If the record size is less than 64 bytes,
both words are used. If the record size is
greater than 64 bytes, then only the first
three bytes are used.

Notes: The File Control Block at 5Chex in the Base Page overlaps
both the File Control Block at 6Chex and the first byte
of the command line area/disk transfer area at 80hex.

Bytes 0thrul5 and 32thru36 must be set by the user
program. Bytes 16thru31 are set by MS-DOS and may only be
changed at the programmers own risk.

In the 8086/8088 all word fields are stored least
significant byte first - this is true in setting the
record 1 ength, etc.

H-5 Rev 0 - 4/26/83

Supplemental Technical Reference Material

Extended File Control Block

The extended FCB is used to create or search for files having
special attributes. The extended FCB adds an additional 7 bytes
preceeding the normal FCB. The extended FCB is structured as
follows:

Byte
FCB-7

Contents
Set to FFhex indicates that an extended FCB
is being used.

FCB-6 to FCB-2 are reserved.

FCB-1

FCB-0

Attribute byte to include hidden files
(02hex) or system files (04hex) in directory
searches.

Origin of normal FCB (drive byte).

H-6 Rev 0 - 4/26/83

Supplemental Technical Reference Material

APPBlllDIX I

I.1 Interrupt Driven Serial Input/Output

This appendix is designed to show the methodology involved in
driving the Victor 9998 in interrupt mode when communicating via
the serial port(s). Some pitfalls are described, and tested
sample routines are included. There are, currently, no system
level facilities that enable this task to be accomplished easily,
and some chips, namely the PIC 8259, PIT 8253, SIO 7291 and the
VIA 6522 will require re-progranoning. It is up to the progranoner
to reset the machine to the original state prior to exiting the
interrupt driven application.

A typical interrupt driven application will normally follow the
steps outlined below:

1) Save the original vector, set the new vector.
2) Set the direction bits.
3) Enable clocks (internal or external).
4) Reset SIO 7291 device, define your communication

characteristics.
5) Set the baud rate.
6) Set the PIC 8259 to enable SIO interrupts.

These steps will be discussed in more detail throughout the text.

I-1 Rev 0 - 7/22/83

Supplemental Technical Reference Material

I.2 Interrupt Vectors

There are 256 software interrupts available to the Victor 9000.
Most are reserved for system functions, and diagnostics. A block
of vectors from 80Hex thru BFHex are set aside for applications.

I.2.1 Vectors available on the Victor 9888

00 - lFHex
20 - 3FHex
40 - 7FHex
80 - BFHex
C0 - FFHex

Intel reserved.
Microsoft reserved.
Victor reserved.
Applications reserved.
Victor reserved.

Vectors 40Hex thru 47Hex are those belonging to devices
controlled by the Programmable Interrupt Controller (PIC).

1.2.2

40Hex
41Hex
42Hex
43Hex
44Hex
45Hex
46Hex
47Hex

Sync IRQ
SIO 7201
Timer 8253
General Interrupt Handler (all 6522 IRQ's)
IRQ4
IRQ5
Keyboard - keystroke
8087 math processor

Location of Vectors

Vectors consist of a long pointer (double word) to an interrupt
service routine. This pointer is a 4 byte entry consisting of the
Segment and Offset of the Interrupt Service Routine. The vectors
are stored in a table that has its origin at 0000:0000. The first
entry in this table is, therefore, Interrupt 0; the vector for
Interrupt 1 is the second, with its vector having an origin of
0000:0004. The interrupt vector for Interrupt 41Hex (the SIO
7201) will be found at location 0000:0104 (4*41Hex).

To set a vector into this table, the MS-DOS function 25Hex can be
used, but since it is desirable to restore the old vector prior
to the application program exiting, it is less cumbersome to
simply set the new vector "by hand", and restore the old vector
when the application terminates.

I-2 Rev 0 - 7/22/83

Supplemental Technical Reference Material

I.2.3 Set Vector - Assembler Example

;store old vector, and set new vector for SIO

cli
xor ax,ax
mov ES,ax
mov ax,word ptr ES: [HJ4h]
mov word ptr old offset,ax
mov ax,word ptr is: [196hJ
mov word ptr old _segment,ax
mov ax ,my_sio_isr
mov word ptr ES: [104h] , ax
mov word ptr ES: [106h] ,CS
sti
ret

;to replace the old vector prior

cli
xor ax,ax
mov ES,ax
mov ax,word ptr old off set
mov word ptr ES: [104h] , ax
mov ax ,word ptr old _segment
mov word ptr ES: [106h] ,ax
sti
ret

I-3

to exit

;clear interrupts
; AX = 0000
;access table via ES
;get old offset
;save old offset in OS
;old segment
;save old segment
;get offset to my code
;set vector offset
; and the new segment
;enable interrupts
;all done, exit

;clear interrupts
; AX = 0000
;access table via ES
;get old offset
;restore old offset
;get old segment
;restore old segment
;enable interrupts
;all done, exit

Rev 0 - 7/22/83

Supplemental Technical Reference Material

1.3 Enabling Internal and External Clocks

In an asynchronous environment the transmit clock is generated
internally, as opposed to a synchronous environment where the
transmit clock is typically provided by an external source.

Internal clocking is selected by masking off the appropriate bit
in register 1 of the keyboard Versatile Interface Adaptor (VIA).

The keyboard VIA, resgister 1, is located at E804:0001.
The appropriate bits are:

Bit 0 (PA0) for port A
Bit 1 (PAl) for port B

Thus, by setting PA0 to zero, the internal clock is enabled for
port A; setting PAl to zero will enable the internal clock for
port B. Setting PA0 or PAl to one wil 1 enable the external clock,
disabling the internal clock. CAUTION: Care must be taken to
leave the other bits in the pre-selected state.

To enable internal clocks for ports A and B mask off the two
least significant bits in register 1:

mov ax,0e804h
mov ES,ax
and byte ptr ES:[0001),0fch

;keyboard VIA segment
;select the segment register
;A & B internal clocks done

To enable external clocks on either channel then set the relevent
bit by OR'ing the bit in. The following sample sets the external
clocks for both ports A and B:

I.3.1

mov ax,0e804h
mov ES,ax
or byte ptr ES:[0001],03h

Providing Clocks

;keyboard VIA segment
;select the segment register
;A & B external clocks done

In a synchronous environment it sometimes becomes necessary to
provide transmit and receive clocks from the Victor 9000. This
requires that the cable used has pins 15, 17 and 24 jumpered at
the Victor 9000 end. The Victor 9000 always has a clock on pin
24, this being provided by the internal baud rate generator; thus
by jumpering pin 24 to both pins 15 and 17, this clock becomes
available for both the transmitter and the receiver, at both ends
of the cable.

When providing clocks from the Victor 9000, the external clock
must be set as well as a baud rate selected. In synchronous mode,
the "divide by rate" of the PIT 8253 is 1, therefore the values
used to set the required baud rate is 1/16 the values used in an
asynchronous environment. (See section 3.8.2 for values).

I-4 Rev 0 - 7/22/83

Supplemental Technical Reference Material

I.4 Initializing the SIO

There is little magic used in this step, but it is recommended
that the programmer read the entire Intel/NEC 7201 chip data
sheet. The SIO segment is found in segment location E004Hex. The
offsets for the data ports A and B and control ports A and B are
at 0, 1, 2, 3 respectively.

The following example of initializing the SIO 7201 is for Port A:

cli
mov ax,0e004h
mov ES,ax
mov byte ptr ES: [0002h],18h

;disable interrupts
;the SIO segment
; using ES
;channel reset

now delay at least 4 system clock cycles

nop
nop ;delay for 7201

mov byte ptr ES: [0002h],12h ;reset external/status
; interrupts

;and select register 2

mov byte ptr ES: [0002h],14h
mov byte ptr ES:[0003h],02h
mov byte ptr ES: [0003h],00h

;non-vectored
;select CR2 B
;set vector to 0

; set for clock rate of 16*; 1 stop bit; parity disabled

mov byte ptr ES: [0002h],04h ;select CR4 A
mov byte ptr ES: [0002h],44h

; this register defines the operation of the receiver:
; 7 data bits; auto enable and receive enable

mov byte ptr ES: [0002h],03h ;select CR3 A
mov byte ptr ES: [0002h],6lh ;

; CRS controls the operation of the transmitter
; 7 data bits, dtr; assumes half-duplex

mov byte ptr ES: [0002h],05h ;select CRS A
mov byte ptr ES: [0002h],0a0h;

; set status: affects the vector, interrupt on every character,
; enable transmitter interrupt

mov byte ptr ES: [0002h],0lh
mov byte ptr ES: [0002h],17h

sti

I-5

;select CRl A . ,
; enable interrupts

Rev 0 - 7/22/83

Supplemental Technical Reference Material

I.4.1 Baud Rate for SIO

At this point, baud rate must be selected. In an asynchronous
environment the PIT 8253 divides the supplied baud rate by 16;
but in a synchronous environment the baud rate is divided by 1.
Thus, to set the baud rate in an asynchronous environment, the
value written to the PIT 8253 is 16 times the desired baud rate
value. The common baud rate values, and the method of
establishing the baud rates, are shown in Section 3.8.2 of this
manual.

1.4.2 Set the PIC to Enable SIO Interrupts

In the Victor 9000 the PIC is normally initialized to operate the
SIO in a polled environment. The following lines of code sets the
PIC to operate the SIO in an interrupt environment:

The PIC resides at segment E000Hex and the register required here
is at offset 0001:

cli ;disable interrupts
mov ax,0e000h ;get the PIC segll\,ent
mov ES,ax ;
and byte ptr ES: [0001h) ,(not 02h) ;mask off bit 1

sti ;allow interrupts

Prior to exiting the interrupt drievn application, the PIC should
be returned to operating the SIO in polled mode. This is done by
setting bit 1:

cli ;disable interrupts
mov ax,0e000h ;get the PIC segment
mov ES,ax ;
or byte ptr ES: [000lh),02h ;set polled
sti ;allow interrupts

I-6 Rev 0 - 7/22/83

Supplemental Technical Reference Material

I.S Interrupt Service Routine - ISR

When an interrupt occurs in non-vectored mode, SIO register CR2 B
contains the vector number of the interrupting device. Assuming
the SIO was initialized as earlier described in this appendix,
CR2 B contains a value in the range 0-7, which serves as the
index to the following interrupt vector table:

I-7 Rev 0 - 7/22/83

Supplemental Technical Reference Material

1.5.1 Sample Interrupt Service Routine

data segment public 'data'
int vectors dw tx int b

dw ext status b
dw - int b-recv
dw recv err -b
dw tx int -a
dw ext status a - -dw recv int a
dw recv err a

data ends

code segment
assume

public 'code'
CS:cgroup, DS:dgroup

sio isr:
mov word ptr CS:current ss,SS
mov word ptr CS:current-sp,SP
mov SS,word ptr CS:ss origin
mov SP,offset dgroup:stack_top

push ax
push bx
push ex
push dx
push bp
push DS
push ES

mov DS,dgroup
mov ax,0e004h
mov ES,ax
mov byte ptr ES: [0003h) , 02h
mov al, ES: [0003h)
add al,al
mov ah,0
mov bx,offset int vectors
add bx,ax
call [bx]
cli

;tx int for port B
;external status changed
;recv int port B
;recv error port B
;tx in for port A
;external status changed
;recv in port A
;recv error port A

;save stack seg
; and stack pointer
;internal stack
; defined in DS (dgroup)

;save environment

;set to internal data
;set SIO segment
;
;select CR2 B
;read int device
;word align
; hi = 0
;get vector table
;point to entry
;service routine
;keep disabled

--See next page for continuation--

I-8 Rev 0 - 7/22/83

Supplemental Technical Reference Material

1.s.1 continued

; now an "end of interrupt" (EOI} must be issued to the
; SIO (port A} and to the PIC.

mov ax,0e000h
mov DS,ax
mov byte ptr
mov byte ptr

pop ES
pop OS
pop bp
pop dx
pop ex
pop bx
pop ax

mov ss,word
mov SP ,word
iret

the SS origin is
ss origin dw
current sp dw
current-ss dw

[0042h],38h
[0000h],6lh

ptr CS:current ss
ptr CS :curren()p

stored here during
0
0
0

;PIC segment . ,
;EOI to ctrl A of SIO
;EOI to PIC ctrl port A

;restore environment

;get SS
;get SP
;interupt return

initialization
;stack segment or1g1n
;SP on ISR entry
;SS on ISR entry

NOTE: Some variables are stored within the code segment, as the
CS register is the only register containing a known value at the
time of interrupt.

I-9 Rev 0 - 7/22/83

Supplemental Technical Reference Material

I.6 Setting Direction Bits

This function need only be performed once, and is performed by
the operating system BIOS following a hardware reset. This step
need not be implemented, therefore, if a standard Victor or
Sirius operating system is used. If a standard operating system
is not used, then this step needs to be performed immediately
prior to the enable clock code.

;The offset to the data direction register is 0003Hex.

.
I

cli
mov
mov
mov
or

ax,0e804h
ES,ax
al,byte ptr ES: [0003h]
al,03h

;disable interrupts
;kbd VIA segment
;
;get the old value
;set for output

; set the PA2-5 to zero, to enable DSR and RI input .
I

and al,0c3h ;mask in
mov byte ptr ES:[0003h],al ;rewrite new value

sti ;enable interrupts

I-10 Rev 0 - 7/22/83

Supplemental Technical Reference Material

APPENDIX J

J.l Character Set Header

All files with the extension .CHR are Character Set table files.
These files contain data corresponding to the actua 1 dot matrix
displayed for each character on the console. These files also
contain information regarding the character set name, version
number, origin, date of creation, and display class. The
Character Set table file header is a 128 byte field, structured
as fol lows:

Byte No.
Hex Dec

00

01

02-00

0E-1S

16

17-19

lA

1B-3D

3E-4D

4E-SS

S6-S9

SA-SB

00

01

02-13

14-21

22

23-2S

26

27-61

62-77

78-8S

86-89

90-91

Function

Character Set type, ASCII 'C' = character

Character Set Version Number (ASCII 0 thru 9)

Display Class

Character Set Name

Filler (ASCII Space)

Banner Class

Filler (ASCII Space)

Comment

Originator

Creation Date - arranged as YY/MM/DD

Number of records in the file in ASCII.
A character set file of 128 characters has 32
records; a character set file of 2S6
characters has 64 records. The record count
for a 32 record file is stored as 30 30 33 32
(0032).

Reserved.

Over •••

J-1 Rev 0 - 6/14/83

Supplemental Technical Reference Material

Byte No.
Hex Dec

SC 92

SD

SE

Bit
Function

93

94

SF-7F 9S-127

80- 128-

Function

This byte is used to house three variables.
Bit 7 is used to show the Horizontal/Vertical
alignment of the character set - bit 7 ON
infers a Vertical character set. Bits 6 thru
4 of the high nibble is used to store the
binary Super/Subscript value (which may be 1
thru 7) offset from 1 - thus a Super/Subsript
value of two would be stored as binary 2.
The low nibble is used to store the binary
Character Height offset from 0 - thus a
Character Height value of 16 would be stored
as binary F. The Character height is a
function of the number of vertical pixels the
character will occupy in the 16xl0 pixel
matrix available for each character on the
screen.
If the Horizontal/Vertical bit, the
Super/Subscript value and the Character
Height value was as stated above, then this
byte would read AF. The byte appears:

[7]
Horiz/Vert

[6 s 4]
Super/Sub

[3210]
Character Height

This byte contains two values; the
User/System character set toggle, bit 0
stores this va 1 ue; and the Stock/Spec ia 1
character set toggle, bit 1 stores this
value. Bit 0 ON infers that the character set
is a system character set. Bit 1 ON infers
that the character set is a special character
set.

This byte contains information on the
character set width. If the high nibble is 0,
then the low nibble contains the binary
information, offset from 0, of all the
characters in the character set - thus a
character set width value of 16 would be
stored as F. If the high nibble is F, then
the character set is a proportional one - the
proportional character set has a trailing
record containing information on the width of
each individual character in the character
set. A proportional character set is designed
to be used in high-resolution mode as it
requires a 16x16 screen cell.

Reserved.

The character set font information.

J-2 Rev 0 - 6/14/83

Supplemental Technical Reference Material

Sample Character Set Table Pile Header

Fol lowing is an actual header taken from the Character Set Table
file for the character set PROP.CHR. PROP contains 128
characters, and is a proportional character set:

Hex Off set Value in Hex

0: 43 30 49 6E 74 27 6C 20 20 20 20 20 20 20 50 52
10: 4F 50 20 20 20 20 20 43 48 52 20 54 68 69 6E 20
20: 70 72 6F 70 6F 72 74 69 6F 6E 61 6C 20 63 68 61
30: 72 61 63 74 65 72 20 73 65 74 20 20 20 20 53 69
40: 72 69 75 73 20 53 79 73 74 65 60 73 20 20 38 32
50: 2F 30 37 2F 31 36 30 30 33 30 00 00 7F 00 FF 00
60: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
70: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

J-3 Rev 0 - 6/14/83

Supplemental Technical Reference Material

J.2 Proportional Character Set Trailer Information

In the case of a proportional character set, the trailing 128
bytes of the character set file contains information on the
proportional width of each of the characters in the file. A
proportional character set may not, therefore, contain more than
256 characters.
The fol lowing is a sample taken from the character set PROP.CHR;
the hex figures represent the width for each proportion a 1
character starting with the space character. Note that each width
value is offset from 0, with a value range of 1 thru 16 decimal.
Each byte is stored, and represented below, in low/high order;
the two nibbles would be exchanged to give the value to the
character(s) in high/low order. Each character is mapped from the
proportional width as follows:

29 95 98 49 77 88 84 93

The above figures are for the first 16 display characters
including the space character - they correspond as follows:

space = 19 (corresponding to 9)
! = 3 (corresponding to 2)
" = 6 (corresponding to 5)
= 19 (corresponding to 9)
$ = 9 (corresponding to 8)
% = 19 (corresponding to 9)
& = 19 (corresponding to 9)

= 5 (corresponding to 4)
(• 8 (corresponding to 7)
) = 8 (corresponding to 7)
* = 9 (corresponding to 8)
etc

J-4 Rev 0 - 6/14/83

Supplemental Technical Reference Material

J.3 Keyboard Table Header

All files with the extension .KB are Keyboard Table file. These
files contain information regarding keyboard code generated when
a key on the keyboard is pressed. These files also contain
information regarding the Keyboard Table name, version number,
origin, date of creation, and display class. The Keyboard Table
table file header is a 128 byte field, structured as follows:

Byte No.
Hex Dec

00

01

02-0D

0E-15

16

17-19

lA

1B-3D

3E-4D

4E-55

56-59

5A-7F

80-

00

f.H

02-13

14-21

22

23-25

26

27-61

62-77

78-85

86-89

90-127

128-

runction

Keyboard table type, ASCII 'K' = character

Keyboard table Version Number (ASCII 0-9)

Display Class

Keyboard Table Name

Filler (ASCII Space)

Banner Class

Filler (ASCII Space)

Comment

Originator

Creation Date - arranged as YY/MM/DD

Number of records in the file in ASCII.
A character set file of 128 characters has 32
records; a character set file of 256
characters has 64 records. The record count
for a 32 record file is stored as 30 30 33 32
(0032) •

Reserved.

Keyboard table information.

J-5 Rev 0 - 6/14/83,

Supplemental Technical Reference Material

J.4 Banner Skeleton Files

Files with the extension .BAN are banner skeleton files. The
banner is information printed on the screen during system boot.
The banner also prints the Logo (if selected) along with other
information regarding configuration. The banner is a set of ASCII
strings containing the escape sequences and characters necessary
to print the logo and configuration information on the console.

The first 128 bytes of the Banner Skeleton has the following
format. The first byte is zero followed by 90h, 9Ah. This is
followed by the length of the file in ASCII decimal with a
leading and trailing space, and followed by 00h, 9Ah.

The location of the keyboard name and character set name follow
in the same format as the file name length. If the file length is
639 characters, the keyboard name is at byte 592, and the
character set name is at 541, then the first 24 bytes of the
banner file would be as follows:

39 00 0A 29 36 33 39 29 90 9A 29 35 30 32 29 90 0A 29
35 34 31 29 90 0A

J-6 Rev 9 - 6/14/83

Supplemental Technical Reference Material

APPENDIX K

K.l Victor 9888 Disk Structure

K.1.1 Victor 9888 Floppy Disk Structure

The Victor 9000 disk system requires that each track has a
variable number of sectors, with each sector containing 512
bytes, with 4 sectors per Al location Unit (AU), the track
structure is as follows:

Track Format

Track Numbers
zone Lower Head Upper Sectors Rotational

Number (*) Head Per Track Period (MS)

0 0-3 (unused) 19 237.9
1 4-15 0-7 18 224.5
2 16-26 8-18 17 212.2
3 27-37 19-29 16 199.9
4 38-48 30-40 15 187.6
5 49-59 41-51 14 175.3
6 60-70 52-62 13 163.0
7 71-79 63-74 12 149.6
8 (unused) 75-79 11 144.0

Notes:
(*) The upper head is not present on the single-sided floppy

machine; only the double-sided floppy machine has the upper and
lower heads as specified in the table.

MS-DOS allocates space on a Single Sided diskette (SS) and a
Double Sided (DS) diskette as follows:

Track 0 Sector 0 Disk Label

Track 0 Sectors 1-2 Two copies of the File Allocation
Table (FAT), one FAT in each sector.
(SS) •

Track 0 Sectors 1-4 Two copies of the FAT, two sectors
per FAT. (OS).

Track 0 Sectors 3-10 Directory (SS)
Track 0 Sectors 5-12 Directory (OS)

Track 0 Sectors 11- Data Region (SS)
Track 0 Sectors 13- Data Region (DS)

Files, under MS-DOS, are not necessarily written sequentially on
the diskette. Diskette space for a file in the data region is
allocated on a sector by sector basis, skipping any currently

K-1 Rev 0 - 8/4/83

Supplemental Technical Reference Material

allocated sectors. The first unused sector found in the data
region will be the next sector used, regardless of where it
appears on the diskette, This method allows for the most
efficient use of the disk space available, as sectors made
available once a file has been erased can be re-allocated to new
files.

K.1.2 Victor 9888 Hard Disk Structure

The hard disk system, in the Victor 9000, is split into virtual
volumes - thus what is in reality one physical disk may be broken
into several virtual disks. This means that one large disk system
is broken up into several smaller, and therefore, more managable
smaller 'disks'.

The virtual volumes are described by a volume list placed in the
drive label by the hard-disk configuration utility. This list
could be of any length, but in practice will contain only a few
entries. Partitioned into smaller 'disks', where each hard disk
partition will appear as contiguous storage to the user; this is
achieved by dividing the physical address space into Regions and
translating logical addresses into these areas. Regions typically
represent usable areas between unusable spots in the media. The
initial Region list is created after the unit is formatted and

. configured, and it is ordered by physical address. If areas of
the disk should become 'bad' during use, the list can be re
ordered to effectively replace the bad track with a spare track
located elsewhere on the disk.

K-2 Rev 0 - 8/4/83

Supplemental Technical Reference Material

K.1.2.1 Victor 9889 Hard-Disk Label Format

The hard-disk has a label that is used both at boot and run time,
this label informs the system of the size and structure of the
hard-disk media. Located in sector 0, the label is as follows:

Field Name Data Type Contents BOOT BIOS HDSETUP TEST

Label_Type

Device ID

WORD

WORD

0000 = unqualified R
0001 = Current Rev.

0001 = Current Rev. R

R R/W 0

R R w

Serial Number BYTE(l6) ASCII R w

Sector Size

IPL Vector
Disk Address
Load-Address
Load-Length
Cod_Entry

WORD

DWORD
WORD
WORD
PTR

Primary_Boot_Volume
WORD

Control Parms BYTE(l6)
#Cylinders BYTE(Hi)

BYTE(Lo)
Heads BYTE
1st reduced- BYTE(Hi)
current cyl. BYTE(Lo)
1st write- BYTE(Hi)
precomp cyl. BYTE(Lo)

ECC data burstBYTE
Options BYTE
Interleave BYTE
Spares BYTE(6)

Available Media List
Region Count
Region-Descr

Region PA
Region=Size

BYTE
(var)
DWORD
DWORD

Working Media List
Region-Count-BYTE
Region-Descr (var)

Region PA DWORD
Region=Size DWORD

Virtual Volume List - -Volume Count BYTE
Volume-Address DWORD

512

Logical Address
Paragraph Number
Paragraph Count
Memory Address

Virtual Volume #

R

R

(for Tandon TM603SE) R
00Hex
E6Hex (=230)
06Hex (=6)
00Hex
80Hex (=128)
00Hex
80Hex
0BHex
02Hex

(=128)
(=11)
(=2)

R R

w

R w

R

05Hex (=5, note that 0 means 5)
00Hex

Number of Regions
(Variable by Region Count)
Physical Address -
Block Count

R

R R R/W
Number of Regions
(Variable by Region Count)
Physical Address -
Block Count

Number of Virtual Vols.
R R/W

Virtual Volume label Logical Address

w

0

0

w

w

0

0

K-3 Rev 0 - 8/4/83

Supplemental Technical Reference Material

The above table describes those elements found in the hard-disk
label, fol lowing is a discussion of the meanings of the entries
themselves:

o Label Type - this defines the state of the drive layout
and the revision level of the label.

o Device ID - Classification identifying the arrangement,
for example, the drive manufacturer, controller
revision number. This allows for the identification of
compatible controllers/drives.

o Serial Number - the serial number of the unit is
stored here.

o Sector size - the physical atomical unit of storage on
the media.

o Initial Program Load Vector (IPL) - this is a
descriptor identifying the boot program and its
location on disk. This information is generated from
the primary boot volume label via the utility HDSETUP.

o Disk Address - the logical disk address of the
boot program image.

o Load Address - the paragraph address of the memory
where the boot program is to load. A zero entry
indicates a default load to the highest RAM
location.

o Load Length - the length of the boot program in
paragraphs.

o Code Entry - a long memory address of the starting
entry of the boot program. Segment of zero
defaults to the segment of the loaded program.

o Primary Boot Volume - the 1 og ica 1 address of the
virtual volume label containing the IPL vector and
configuration information.

o Controller Parameters - a list of controller dependent
information, for use in device reset and configuration.

o Available Media List - a list of permanent usable areas
of the disk. This is derived from the available media
1 i st and from the format func i ton of the HOS ETUP
utility.

o Physical Address - disk address of the region.
o Region Size - the number of physical blocks in the

region.

K-4 Rev 0 - 8/4/83

Supplemental Technical Reference Material

o Working Media List - a list of the working areas of the
disk. This is derived from the Available Media List and
from the format function of the HDSETUP utility.

o Physical Address - disk address of the region.
o Region Size - the number of physical blocks in the

region.

o Virtual Volume List - a list of the logical disk
addresses of all virtual volume labels.

K-5 Rev 0 - 8/4/83

Supplemental Technical Reference Material

K.1.2.2 Victor 9880 Hard-Disk Virtual Volume Label Format

The Virtual Volume Label provides information on the structure of
the Virtual Volume. Generally the operating system references
this label, while the HDSETUP utility will create and reference
it. The Virtual Volume Label appears as follows:

Field Name Data Type Contents BOOT BIOS HDSETUP TEST

Label_Type

Volume Name

IPL Vector
Disk Address
Load-Address
Load-Length
Code_Entry

WORD 0000 = null

BYTE (16) ASCII

DWORD
WORD
WORD
PTR

Virtual Address
Paragraph Number
Paragraph Count
Memory Address

R

Volume_Capacity DWORD # of Physical Blocks -

Data Start DWORD Virtual Address

Host Block Size WORD MS-DOS = 512 bytes

Allocation Unit WORD # of Physical Blocks -

Number_of_Directory_Entries

Reserved

WORD Entry Count

BYTE(l6) Future Expansion
Set to Nulls

R

R

R

R

R

R

R/W

R/W

w

R/W

R/W

R/W

R/W

R/W

w

Configuration Information R R/W
Assignment Count BYTE # of assignment mappings
Assignment- (var) (Variable by Assignment Count)

Device Unit WORD Physical Unit Number -
Volume-Index WORD Index into Virtual Volume List

0

K-6 Rev 0 - 8/4/83

Supplemental Technical Reference Material

The above table describes those elements found in the hard-disk
Virtual Volume label, following is a discussion of the meanings
of the entries themselves:

o Label Type - this defines the type of operating
environment that the virtual volume is configured for.
It is used for type checking when assigning volumes to
drives. •

o Volume Name - the name of the virtual volume as defined
by the user. It is used for identifying volumes.

o Initial Program Load Vector (IPL) - this is a
descriptor identifying the boot program and its
location within the virtual volume. This field is used
to generate the IPL vector on the drive label when
configuring the primary boot volume.

o Disk Address - the virtual disk address of the
boot program image.

o Load Address - the paragraph address of the memory
where the boot program is to load. A zero entry
indicates a default load to the highest RAM
location.

o Load Length - the length of the boot program in
paragraphs.

o Code Entry - a long memory address of the starting
entry of the boot program. Segment of zero
defaults to the segment of the loaded program.

o Volume Capacity - the number of actual blocks that
comprise the virtual volume.

o Data Start - the offset (in blocks) into the virtual
volume for the start of data space.

o Host Block Size - the atomical unit used by the host in
data trasnsfer operations.

o Allocation Unit (AU) - this operating system dependent
field means the storage allocation size used by the
host in the virtual volume. It is used in determining
disk parameter tables and disk definitions.

o Number of Directory Entries - this operating system
dependent field means the number of entries in the
hosts directory. It is used in determining disk
parameters tables and disk definitions.

o Configuration Information - a list of the drive
assignments for a system at boot time. It is used to
map logical drives to virtual volumes. This field is
referenced via the label of the booted drive.

K-7 Rev 0 - 8/4/83

Supplemental Technical Reference Material

K.2 MS-DOS Disk Directory Structure

The FORMAT/HDSETUP utilities structure the directory for 128
entries on a floppy diskette, and a user defined number on the
hard-disk. The directory entries are structured as follows:

0-7

8-10

11

12-23

24-25

26-27

28-31

Filename (0E5Hex in byte 0 indicates
that this directory entry is unused).

Filename extension.

File attribute. In MS-DOS 1.25, the
contents of this byte may be 02Hex
indicating a hidden file and 04Hex
indicating a system file. A directory
search wi 11 not show f i 1 es with the
above attributes, unless the extended
FCB is used. Files without attributes
will contain 00Hex in this byte. A file
may be made hidden/system on 1 y when
created.

Reserved.

Date when file was created or last
updated. The mm/dd/yy are mapped as
follows:

< 25 > < 24 >
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
y y y y y y y m m mm d d d d d

where:

yy is a value from 0-199 (1980-2099)
mm is a value from 1-12
dd is a value from 1-31

Starting AU; the relative AU number of
the first block in the file. For file
allocation purposes only, relative AU's
start at 000.

Note that relative AU's 000 and 001 are
the last two AU's of the directory.
Therefore the data reg ion starts at
relative AU 002. The relative AU number
is stored in normal Intel fashion, Least
Significant byte first.

Fi le size in bytes. The first word
contains the low-order part of the size.
Both words are stored Least Significant
byte first.

K-8 Rev 0 - 8/4/83

Supplemental Technical Reference Material

K.3 MS-DOS File Allocation Tables

The file allocation table (FAT) is used by DOS to allocate disk
space for a file, one sector at a time. The FAT is composed of a
12 bit entry for each Allocation Unit (AU), starting with Track 0
Sector 11 on a single sided disk; Track 0 Sector 13 on a double
sided disk, and going through to Track 79 Sector 12 on a single
sided disk; Track 158 Sector 11 on a double sided disk.

The third FAT entry (relative AU 002) begins the mapping of the
data region; each entry contains three hex digits:

FFF

nnn

If the AU is unused, and available.

The last AU in the file.

Any other hex digits that are the
relative AU number of the NEXT AU in the
file. The relative AU number of the
first AU in the file is kept in the
files directory entry.

A copy of the FAT for the last used disk in each drive is kept in
RAM, and is written back to the disk whenever the status of the
disk space used changes.

K-9 Rev 0 - 8/4/83

Supplemental Technical Reference Material

APPEllDIX L

L.l Generation of Frequencies with the CODEC

This appendix covers the use of the CODEC chip within the Victor
9000 to generate sound. It is beyond the scope of this text to
cover actual human-voice generation, Victor does provide tools to
achieve this, but generating a frequency will be discussed.

The CODEC chip generates sounds by producing a wave form;
frequency generation is achieved by causing a sine wave to be
produced by the CODEC, then varying the time base of the sine
wave to create various frequencies. Two steps are involved with
frequency generation; first the initialization step. The
intialization of the CODEC is to produce the sine wave with no
time base, the is achieved by the following code:

codec seg
codec-tab
codec-lngth
ssda -
clkctr
cdclk

init codec:

;

- push
mov
mov
mov
mov
mov
cld

load loop:
- lodsw

mov
loop
mov
mov
pop
ret

equ
dw
equ
equ
equ
equ

ES

0e800h
0SE00H,
4
000608
0008BH
900848

;codec chip segment
00D40H, 00F80H, 000C0H
;4 words in the codec table
;SSDA chip port offset
;Codec cloek port
;Codec frequency clock

bx,codec seg ;codec chip segment address
ES,bx - ;ready the segment origin
bx,ssda ;point to the serial chip
si,offset codec tab ;get the init code
cx,codec_lngth -;get the table length value

ES: [bx] ,ax
load loop
bx,cfkctr
ES:byte ptr
ES

;save the table value
; and loop til ex • 0

[bx],0C0H ;enable the CODEC clock

Once intialized, the CODEC is ready to respond to frequency
generation requests. This is simple to achieve by supplying the
following subroutine with the correct parameters as follows:

L-1 Rev 11 - 111/5/83

Supplemental Technical Reference Material

Routine: PLAY NOTE
Function:
Entries:

To play a single voice note via the CODEC
CX = Frequency in Hz to be played

;
;
;
;

DX = Duration of note in multiples of 2.SmS
AL=0=play note, AL=FF=halt note

play_note:
or
jz
or
jz

donol0:

cx,cx
dono end
dx,dx
dono end

si
bx
ES
bx,codec seg
ES,bx -
al,0ffH
dono50

;is freq 0
;yes, exit
;is duration 0
;yes, exit

;codec chip segment address
;ready the segment origin
;if AL = FF then stop note

push
push
push
mov
mov
crop
jne
mov
jmp

word ptr ES:cdclk,0
short dono ret

;stop note

dono50:
push dx ;save the duration

; Now the input to the SSDA must be calculated - note that the
; following calculation achieves a fairly linear tone generation
; - any deviance from linearity should be fairly minor due to
; lack of precision in the divide. The calculation itself is:
; N=((500 000/F)/8)-l ;where F=desired frequency in Hz

;N is the value for the CODEC clock
; This equation may be broken down to: . , N=(62500/F)-l

mov ax,62500d
xor dx,dx
div ex
sub ax,l
pop dx
mov bx,cdclk
mov ES:[bx],ax

time_loop:

;ready LSW of 62500 decimal
;make MSW zeroes
;get CODEC input value
;normalise to desired value
;get back duration of note

;give the frequency to clock

mov ax,2Sd ;ready 1 2.5 millisecond period
micro_loop:

mov
shr
dee
jnz
dee
jnz

time done:
mov

dono ret:
pop
pop
pop

dono end:
ret

cl,78h
cl,cl

;ready the timing value

ax ;100 microseconds has passed
micro_loop ;no, so loop til done
dx ;see if the note is finished
time_loop ; not finished - round again

; note playing is over - flush speaker
ES:word ptr [bx],0 ;clear the speaker to

ES
bx
si ;stack clear

; and exit

- more?

with

silence

L-2 Rev 0 - 10/5/83

