
Hardware
Reference

Manual



Hardware
Reference
Manual



COPYRIGHT © 1983 by VICTOR.®

Portions reprinted by permission of Intel Corporation INTEL, 
©1978 and 1981. _ ; ’r

•*
Portions reprinted by permission Of Motorola, Inc.,
©1978.

Portions reprinted by permission of Synertec, Inc., ©1980.

c

All rights reserved. This publfcatidh odMains proprietary infor
mation which is protected by copyright. No part of this publication 
may be reproduced, transcribed, stdrecFin a retrieval system, 
translated into any language of comp’uter language, or transmitted

>- in any form whatsoever without the prior written consent of the 
publisher. For information contact?

r VICTOR Publications
380 El Pueblo Road
Scotts Valley, CA 95066 c c

TRADEMARKS

NOTICE

(408) 438-6680 .

bsv^ss.'! ?,■■■.' v?fL.»rv» I

VICTOR is a registered trademark of Victor Technologies, Inc.
: 1 . a: ■

VICTOR makes no representations or warranties of any kind 
whatsoever with respect to the contents hereof and specifically 
disclaims any implied warranties of merchantability or fitness for 
any particular purpose VICTOR shall not be liable for errors 
contained herein dr for incidental or consequential damages in 
connection with the furnishing, performance, or use of this
publication or its contents.

?'”• VICTOR reserves the right to revise this publication from time to 
time and to make changes in the content hereof without obligation 
to notify any person Of subh revision or changes.

Second VICTOR printing April, 1983.

ISBN 0-88182-065-2 Printed in U.S.A.



CONTENTS

- ■ ' • " is. ■ - ?

1. System Description .............  1777.i77,..r.7..7..,.................................. 1
Processor Unit    2
Display Unit ................ ................................. 2
Keyboard Unit  7.777.7 ............................... 2

• t~.; it ■ ■: ~ ['*j li-'iri -. »<.'
2. Processor Unit Main Logic Board   :„,777...-................................ 3

' 808&,CentralProcessing IJnit (CPU,),,.  3
ci Execution Unit .^c7. -7r?-7--7..... ........................... 5

. r;.- .■ .. Bus Interface-Unit ^..7.^.7,,7.•^’•'..7.J,.  5
. :V-... General Regi^ers^.:?/.7 17  6

■ - Segment R egistertz.7.^-^7,-,77...77....1,.................................. 7
I nstructiqn - Pointer . 77.777.7........,,.,,..1. ................................ 8
Flags 77...7 1 7.7.1.................................. 8
8080/8085 Register and Flag Correspondence  9
Memory 17.. 7. .77,...... .117.. .7.7........................................  10

Storage Organization 7.,71 .11.77.1....................................  10
Segmentation ....l7,....7.pC7..1..;...................  11
Physical Address Generation ...7.7.  13
Dynamically Relocatable Code  16
Stack Implementation  17
Dedicated and Reserved Memory Locations  18 

<1 - 8086/8088 Memory Access J8•
Input/Output ........ 7.7.17 1.... 117.7 71 ’ 18'

Memory Mapped I/O  18
Direct Memory Access .....................................  19
Wait and Test  19

c Processor . Control and Monitoring Interrupts ^,19
.; .- ■, External! I nterrupts 7.7........ 7.7 21

-.cinternal Interrupts ......1^^7.771,1.................................  22
Interrupt Pointer Table ,..7 fl..77:77..77  23

. . Interrupt Procedures ...7.7........................................  25
j. Breakpoint Interrupt ............................................... 27

System Reset 7.^,7^,,^,..,,.................................  27
Processor Halt"... .7 ..77.17.7177777.7  28 

>C1,n ^AddMying Modes ... .................................... 28
7,17. jRagisfer an^llmmediate Operands 1... 28

.7e. Meqipry Addressing Modes ...71177.7-1  29
Effective Address  1.771...7................................... 29
Direct Addressing ...................................  30
Register Indirect Addressing  ....................................  30
Based Addressing 31
Indexed Addressing  32
Based Indexed Addressing ...  33
String Addressing  34
I/O Port Addressing  35

Boot ROM  35
Input/Output (I/O) Functions  35

Serial Ports  36
Parallel Port  36

III



Control Port.......3:;:.. ,n?.:.7......................................................36
Audio Section............................................... 36
Keyboard Interface ...........................   38

Disk Interface ......................................-... .■...........................................38
Expansion Bus..........................................  39
Display ...........................................................................................  39

Screen Buffer .............................................  40
Font- Pointer.....c.-..,..................................................... 40
Attribute Bits .......     41

d- Reverse Video ...........................  41
Display High/Low Intensity .........................................41
Display Underline/Strikeover ........................................41
Nondisplay Attribute ..c;?ru.p.................................................... 41
Software Attribute...................... a.<............................................41

Font Cell ......................     42.
Display Brightness................ ..................................................... 43
Display Contrast    43

High Resolution M od e •>.. n j ;............  43
Disk Drive Assembly .................................  44

Functional Description .... ................................................................44
Reading Data....... ........................................................................ 44

Header Search.........................   44
.. •’ Data Transfer .............................  44

Writing Data .......................j..3...................................................... 46
Verification ........   46
Formatting .......................................... -............................  46

• Positioning...........................................  47
Speed Control ...........................^7,........................................................... 47

;; Physical Description............ .......................................................... 47
Motor Speed Control .........................  47
Data Encoding Technique-GCR ........................................ 49
Read Channel ....................................  49
Write Channel .....................................    50
Sector Format ............   50
Track Format ...........~..p.7.......................................................................  51
Physical Bus -Interface   51

Power Supply ....... .3,:,..........^....^...^p........................................................ 51

3. Display Unit.................................................   .-..r-.--.................................................... 53

4. Keyboard Unit.......................................-iM.-a\-_jr$■...................................................................... 55

Appendixes A. 8088 I nstruction- Zetc>..«;;.g........................................ 57
Introduction ..................................2-.-.7,................................................ 57
Data Transfer Instructions ................................................ 58

General Purpose Data Transfers ............................................... 59
MOV destination, source^. ..?..c.p.::...................................................... 59
PUSH source ........................................  59
POP destination 2.,.cisa..7........................................... 59

5" XCHG destination,, source -^7.g.y.^.,-...................................... 59
5" XL AT translate-table 73.......7........................................ 59

IN accumulator, port 7.p.c. ,.7.................................................. 59
OUT port, accumulator-..-:,f7.-.>..pA...7..................................... 59

Address Object Transfers.....,..7.7...................................... 59
LEA destination, source ....7.-....p-/.7:7................................................. 60
LDS destination, source   60

IV



LES destination, source.........................................................60
Flag Transfers................................... ;...................................60

LAHF.........................  -.........................................60
SAHF.................................................................    62
PUSHF ...............................................................     62
POPF......................................................................   62

Arithmetic Instructions .................................................. 63
Arithmetic Data Formats .......... ............................. 63
Arithmetic Instructions and Flags.........................................65
Addition .......................................... -...................................... 66

ADD destination, source   66
ADC destination, source?:.:..'..^.,;,......................................... 66
INC destination  66
AAA........................................... .-.4...................................... 66
DAA ........................................ .'.......;ii...................................... 66

Subtraction ............... ..kc.. ..........................................66
SUB destination, source  66
SBB destination, source  66
DEC destination ................. .r.-,.?;'-.’....................................66
NEG destination ..................................  66
CMP destination, source. .... ...............................................67
AAS ..................................................................    67
DAS ..................................................................   67

Multiplication .....................................................  67
MUL source.......................................................... 67
IMUL source .........................................................  67
AAM ........................................................................  68

Division.......................................................................  68
DIV source ...........A................................................................ 68
I DIV source ...... ;..’..?a..... ...............;.........................................68
AAD .... .........■:. -  .................. ........................... 68
CBW............................ ............................................................ 69
CWD ............ -.-’J;.................................................. 69

Logical ..................................................      69
NOT destination ........................................    70
AND destination, source ;./......................................70
OR destination, source ............................................ 70
XOR destination, source..........................................................70
TEST destination, source ...................................................  70 ■

Shifts.............................................................................................70
SHL/SAL destination, count................................................................L
SHR destination, source .............................................. 70
SAR destination, count ............ H-....-................................v.u..:^4.rc-aA

Rotates ...................................u^r.............................................. 71
ROL destination,■'count ...’a’?.:.;..L:..................................71
RCL destination, count  71
RCR destination, count ...................................  71

String Instructions ...................................................... 71
REP/REPE/REPZ/REPNE/REPNZ ..............................................73
MOVS destination-string, source-string......................................73
MOVSB/MOVSW /.... .......: ............................................. 73
CMPS destination string^ source-string ......................................74
SCAS destination-string-...... ..............................................74
LCDS source-string ..........................................  74
STOS destination-string fe?..;?:-...............................................74

Program Transfer'Instructions ...........................................74

V



Expansion Bus Definition -

Unconditional Transfers 
CALL procedure-harhe 
RET optional-pop-value '....—......
JMP target  

Conditional Transfers. .......:7.,.—
Iteration Control ... 

LOOP -short;/abe/1—.....
LOOPE/LOOPZ short-label
LOOPNE/LOOPNZ short-label ...
JCXZ short-label 

Interrupt Instructions .7.1
INT■'ihterrupt-t^pie 7.i,7,l.............

; - INTO Xlll:7..-.ll..ll.............
. -,J R ET ‘ .^lll 1 1 H...............

■ ^Processor; Control Instructiphs..'
Flag Operations .1.—.7.77.7

" CLC-....-7?7--..--7..77-7.7..............
CMC .1-17.7.77 — 7.7.............
STC 7.77.—1...11...7
OLD ' ---I..-..-..
STD --..7..7..-77.
CLI -..--1 7
STI ...7... 7.-—-

External Synchronization 7.7.77---..
HLT .......................—1:77-—7:7
WAIT   
ESC external-opcode, source' :..::
LOCK -.7777.77.7777.7-77-77.77- 

- ; NO OPERATION: NOP 7—7—777.7 
Instruction Set Reference Information 
B.

76
76
77
77
77
78
78
78
78
79
79
79
79
79
79
80
80
80
80
80
80
80
80
81
81
81
81
81
81
81
83

C. Memory Mapped I/O Address and Bit Assignments 89

D. The Display System 1-7-7.7'-— 95
Introduction li-l....7...,.1.......................................................... 95
High Resolution Mode .-..-...777.---.  97 
Brightness and Contrast Control"/..'.  97 
Circuit Description 11. 711................................................................ 98
CRTC Device Operation Overview  99

Interface Signals, to The CPU 1  99 
Bidirectional Data Bus.(JD0-ID7)  99 
R ead/Wfjte (R /W)7-7'1............................................................ 100
Chip Select (OS) 7'71.:.-1 100 
Register Select (RS) --777.',,^. 100 
Enable (E) ; .....7II-..I7..7.............................................100
Reset (RES).-.17^7.71:77- .̂...............................................................100

Interface Signals to,Display Circuits 100 
Character Clobk (CLK)111-1 100 
Horizontal Syncr(’HSYNC^ ‘.."4 100 
Vertical Sync (VSYNC) .11..,. 100 
Display Timing (DISPTMG) ...........................................100
Refresh Memory Address MAO-MAI 3 100 
Raster Address (RA0-RA4) 1Q1 
Cursor Display (CUDISP) „  101 
Light Pen Strobe (LBSTB)  101

VI



VII

Internal Registers)C„.^,^..<..J;”’..?................................................ 101
Address Register (AR) ....................  101

Horizontal Total Register (RO) ................................................. 101
Horizontal Displayed Register (Rl) .......................................-....101
Horizontal Sync Position Register (R2) ....................................101
Sync Width Register (R3) ..........................................................101

Vertical Total;Register (R4) .............................................. 101
Vertical Total Adjust Register (R5).....................................102
Vertical Displayed Register (R6) ........... 102
Vertical Sync Position Register (R7) ..................................103
Interlace Skew Register (RS)..............................................103
Interlace Mode Program Bits (V,S) ....................................103
Skew Program Bit (C1rC0, DI, DO) ..................................103
Maximum Raster Address,Register (R9) ........................... 104
Cursor Start Raster Register (RIO) ....................................105
Cursor End Raster Register (R11) .....................................105
Start Address Registers (R12, R13) ...................................105
Cursor Registers (R14, R15) ..............................................105
Light Pen Registers (R16, R17) ..........................................105
Restrictions on Programming Internal Registers ...............106

Noninterlace Mode Display ................................................... 106
Interlace Sync Mode Display ........................................................106
Interlace Sync and Video Mode Display ......................................106
Cursor Control     107

E. Audio System Hardware .................................................109
Input Signal Conditioning ...................................................109
Output Conditioning and Power Amplifier.....................................109
SSDADevice Operation ..........................................110

Overview  110
Initialization........... ................   110
Transmitter Operation   111
Receiver Operation ......................................................................Ill
Synchronization...........................................................................Ill
Receiving Data ...........,,7v.......a........................................ 112

Input/Output Functions ...s../...^;....^..,..........................................112
SSDA Interface Signals for $PU  ..........................................112

SSDA Bidirectional Data (ID0-ID7) ........................................112
SSDA Enable (PHASE2) ......... 113
Read/Write (R/W). .□. v.................................................113
Chip Select (OS). ,f..L....................................................113
Register Select (RS)!v:....^....l....................................................113
Interrupt Request (IRO) ...........................................................113
Reset Input  113

Clock Inputs.................1,;.. ...........................................................................113
Transmit Clock (Tx Oik) ......................................................... 113
Receive Clock (Rx CIk) .^........................................................ 114

Serial Input/Output Lines......................................................114
Receive Data (Rx Data) ..................................................114
Transmit Data (Tx Data) .........................................................114

SSDA Registers  114
Conttol.Register 1..(Cl)  115

Receiver.Reset (Rx Rs), Cl Bit 0 ........................................115
Transmitter Reset (Tx Rs), C1 Bit 1 .................................... 115
Strip Synchronization Characters (Strip-Sync),

01 Bit 2 ........................................................................115



Clear Synchronization (Clear Sync), Cl Bit 3 ...................115
Transmitter Interrupt Enable (TIE), Cl Bit 4 ......................115
Receiver Interrupt Enable (RIE), Cl Bit 5 .........................115
Address Control 1 (AG1) and Address Control 2 (AC2),

Cl Bits 6 and.7 -,..... .................................................... 115
Control Register 2 (C2) .............................................115

Peripheral Control T (PCI) and Peripheral Control 2
- . (PC2), C2 Bits 0 and 1 ................................................ 116

1 -Byte/2-Byte Transfer (1 -Byte/2-Byte), C2 Bit 2 ...........116
Word Length Selects (WST, WS2, WS3),

C2 8Jts4r4 and 5 .........................................116
Transmit Sync-Code on' Underflow (Tx Sync),

r C2 Bit 6 p................................................. 116
Error Interrupt Enable (ElE), C2 Bit 7 ................................ 116

Control Register 3 (C3)^p..»,....^,...,,.... ......................................116
External/Internal Sync Mode-Control (E/1 Sync),

C3 Bit 0 ..\,>i -..i•' .......................................... 116
One-Sync-Character/Two-Sync Character Mode
Control (1 Sync/2 Sync), C3 Bit 1 .................................... 117
Clear CTS Status (Clear GTS), C3 Bit 2 ...........................117
Clear Transmit Underflow Status (CTUF), C3 Bit 3 ..........117

Sync-Code Register',5,.-.............................................. 117
Parity for Sync Character^..;...,,...'..............................................117

T ransmitter.  117
Receiver u....................................... 118

During SynchronizMird ........................................ 118
After Synchronization .is Established .............................. 118

Receive Data First-In First-Out Register (Rx Data FIFO) ... 118
Transmit Data First-In First-Out Register (TX data FIFO) ... 119
Status Register ...................................... 119

Receiver Data Available (BPA), S Bit 0 ............................ 119
Transmitter Data Register Available (TDRA), S Bit 1 .....119
Data Carrier Detect (DCD), S Bit 2 ................................... 120
Clear-to-Send (CTS), S Bit 3 ........................................... 120
Transmitter Underflow (TUF), S Bit 4  ......................... 120
Receiver Overrun (Rx Ovrn), S Bit 5 ................................. 120
Receiver Parity Error (PE). S Bit 6 ......................................120
Interrupt Request (IRQ), S Bit 7 ......................................... 120

Status Register .................  120
IRQ Bit 7........................................ 120
Bits 6 to 0 ,v,t....... ................................................................120
PE Bit 6 ...............................  120
RX Ovrn Bit 5  121
TUF Bit 4 ......................  121
CTS Bit 3 .................................... 121
DCD Bit 2 ................................... 121
TDRA Bit 1 ................................. 121
RDA Bit 0   121

Control Register 1   121
AC2, AC1 Bits 7, 6     121
RIE Bit 5 ...............................................................................121
TIE Bit 4 ...............A.............................................................. 121
Clear Sync Bit 3 ................................................................. 121
Strip Sync Bit 2  121
Tx Rs Bit 1  121
Rx Rs Bit 0 .................. 121



Control Register 2 ................  121
"7- CTUF Bit 3-............7..7:7................................................................121

' 7=. Clear CTS Bit 2 /......777.................................................................121
1 Sync/2 Sync Bit T ............................................................121
E/1 Sync Bit 0 ..-.,.7''!..........................................................................121

Control Register'3  121
eie Bit 7-...... : 7777.7.7..;;................... 121
Tx Sync Bit 6-.-.7„7777.........................................................  121
WS3, WS2, WS1 Bits 5, 4 and 3 ........................................ 121
1-Byte/2-Byte Bit 2 .............................................................122

- ' PC2, PC1 Bits 1 and 0 ........................................................122
Codec Device Operation 4?.......................................................................... 122

’The'D~etta'ModulatdrJA'.?^.7'-.7.................................................. 122
The2Companding Algorithm .................................................. 123

F. Keyboard Specif icat ions -. .77.-................... 125
Mechanical specifications 777.7..................................................................125
. Key,Total_Travel ..,7-7..^;..... . ...................................................................125

Actuation Force 7777.7777................................................................125
Reliability ..7.:..7.7.,.^77.7.,.................................................................125
Key Spacing ......77777.. .77..................................................................125
Key Sideplay ........7............... 125
Key Top Dimension 777.:-.777.............................................................125
Key Surfdce77..........:....7......„.............................................................. 125
Key Switch Pressures ...  125

Electrical Specifications 7:.;77................................................................. 125
.Input Power- .77777777.......................................................................125
Rollover .’.J.......7.......::...... . .............................................................. 125

: Connector ..777777..77.7.............................................................125
'' Logical Specifications .7777.:..............................................................126

„. .. Protocol Definition 77.7.7................................................................126
Reserved Keyboard Codes ..7................................................................. 127

Environmental Specifications ^7.....................................................................127
- 0 perafing Temperature*-7.77...................................................................127

Storage Temperature .......7:7:....................................................................127
Humidity 77.7.777777................................................................ 127
Material 77:..7.77.:.;,..7.77.;...................................................................127
Keyboard Approvals 7.7....... ...................................................................127
Vibration 7..'.......7 7.7.. .......................... 127
Shock ..........................................................................................127

Keyboard Layout .......>7-:-7...................... 127
Keyboard Timing Diagram ..............................................................127

G. Communications Controller Specification ...................................129
Introduction .................77............................................................................ 129

Features ..................    129
Pin Description ........... 130
Protocols ............. .,.... • .:.7......7..................................................134

Asynchronous Protocol ■.... ....................................................135
Synchronous Character-Oriented Protocols .............................135
Synchronous Bit-Oriented Protocols .........................................135

Functional Description ............... 137
Transmitter .......................... 137

Asynchronous Mode .............................................................. 139
COP Synchronous Modes ......................................................140
SDLC (/HDLC BOP Synchronous) Mode ...............  141

IX



Receiver,..... „. q....,.,.. *. .tr, P................................................ 142
Asynchronous M&de"...7..^.^.^................................................144
Synchronous Modes  145
SDLC (/HDLC BOP. Synchronous) Mode.............................. 146

Bus Interface Controller .......................... 147
Bus Control Logic... ........................................................147
Interrupt Control Logic   148
DMA Control Logic .,',7................ 152
Clock and Reset Control Logic ................................................154

Programming The MPSC2.. .. ............................................154
MPSC2 Registers ....,7.-................... 154

Control Register 0 ...........................................155
Control Regjsterl;..........................................157

. Control RegitzterH I^M^nMA)..........................................159
; Control R egister? ,(C HHrinetB)..........................................161
Control Register 3 .tL?/:.  161

“Control1R^st^4.J.'7..Jl..;.7;7:............................................... 163
Control Register  164
Control Register 6 -.a,:;..;/............................................... 167
Control Register 7-;..7.;?.:,.//............................................... 167
Status Register’0'.......................... 168
Status Register 1 f...7?........................................ 170
Status Register2 ;...7./Fsi/...?..^.7........................................172

MPSC2 Programming Examples ........................................173
Application Hints........................................193

Designing with the........................................193
8080/86-Type Processors'.........................................193
Other Processor Types’.;..,/.'.;./............................................ 193

Using the MPSC2 with DMA.Controllers ...............................195
Vectored Interrupts Without'Using PR! ..................................195
To DMA or Not to DMA ............................................... 195
Handling an SDLC Underrun Fault ........................................ 197
Sending Synchronous Pad Characters.................................. 197
Transmitting Bisync Transparent Mode................................. 197
Vectoring the MPSC2 in Non-Vectored Mode .......................197

H. 6522 Versatile Ihterface^SpecIfication .................................... 199
Absolute Maximom Ratings7..?: si.-'...............................................200
Electrical Characteristics...............................................200
Read Timing Characteristics ...................................................... 201
Write Timing Characteristics......................................................202
Peripheral Interface Characteristics.......................................... 203
Pin Descriptions 7................... „..............................................206

RES (Reset) ............................................................................206
o/2_(lnput Clock)........ ............................................................206
R/W (Read/Write) ..................................................................206
DBO-DB7(Data Bus) ......‘...:.,7.;.............................................. 206
CS1, CS2 (Chip Selects) .... ................................................ 207
RS0-RS3 (Register Selects) ..7/..............................................207
IRQ (Interrupt Request) T. .............................................207
PA0-PA7 (Peripheral A Pott) .:/..............................................207
CAI, CA2 (Peripheral A Control Lines) ................................207
PB0-PB7 (Peripheral1 B Port) :................................................208
CB1, CB2 (Peripheral B Control Lines) ................................208

Functional Description ................................................................209



Port A and Port B Operation ............................................209
Handshake Control of Data Transfers .................................209
Read.Handshake ............................................... 211
Write Handshake  212
Timer Operation  212
Timer 1 One-Shot Mode ................................................214

Timer 1 Free-Run Mode ............................................................215
Timer 2 Operation   216
Timer 2 One-Shot Mode  216
Timer 2 Pulse Counting Mode...................................................216
Shift Register Operation .................................................216
Interrupt Operation ...J.....................................................217

SR Disabled (000)..„..._.,.,..^................................................... 218
. Shift ln Under Control of T2 (001)........................................... 218
Shift In Under Control of <j>2 (010)........................................... 218
Shift In Under Control of External Clock (011)......................218
Shift Out Free-Running at T2(100)......................................... 219
Shift Out Under Control of T2 (101).......................................219
Shift Out Under Control of <j>2 (110)........................................219
Shift Out under Control of External CB1 Clock (111).......... 220

I. Assembly Language Reference Data.......................................... 223
8086 Register Model  223
Operand Summary ............................................................................224
Second Instruction Byte Summary ............................................ 224
Memory Segmentation Model ......... 225
Instruction Set Data .... .........................................................225

Key to Flag Effects  226
Data Transfer.......................... 226

MOV Move .....................r,..... .................................................226
,r - PUSH Push.......... ...................;................................................227

POP Pop............. ..............   227
XCHG Exchange ............... >............................................ 227

.. IN Input to AL/AX from............................................................227
OUT Output from AL/AX to ................................................... 228
XL AT Translate Byte to AL .... .......... 228
LEA Load EA to Register ............................................228
LDS Load Pointer to DS .............. 228
LES Load Pointer to ES..........................................................228
LAHF Load AH with Flags .....................................................228

. SAHF Store AH into Flags .....................................................228
PUSHF Push Flags ........ 229
POPF Pop Flags......................................................................229

Arithmetic ....................................................................................229
ADD Add ................................... 229
ADC Add with Carry ...............................................................229
INC Increment.........................................................................230
AAA ASCII Adjust for Add .....................................................230
DAA Decimal Adjust for Add .................................................230
SUB Subtract ..........................................................................230
SBB Subtract with Borrow..... .................................................231
DEC Decrement......................................................................231
NEG Change Sign ..................................................................231
CMP Compare ........................................................................231
AAS ASCII Adjust for Subtract...............................................232
DAS Deicmal Adjust for Subtract ..........................................232
MUL Multiply (Unsigned) ........................................................232

xi



fU M

IMUL Integer Multiply (Signed) ..............................................232
AAM ASGITAdjust for Multiply ...............................................232
DIV Divided-Unsigned) .............................................................232
IDIV Integer Divide (Signed) ..................................................233
AAD ASCII Adjust for Divide.................................................. 233
CBW Convert Byte to Word ...................................................233
CWD Convert Word to Double Word..................................... 233

Logic............... ............,.:.7............................................................233
NOT Invert........... ............ 233
SHL/SAL Shift Logical/Arithmetic Left .................................233
SHR Shift Logical Right ...........................................................233
SAR Shift Arithmetic Right .......................................... 234
ROL Rotate Left  234
ROR Rotate Right  234

' RCL Rotate Through Carry Left............................................. 234
RCR Rotate Through Carry Right ..........................................234
AND And ...............   235
TEST And Function to Flags, No Result ............................... 235
OR Or .................... .............7.:.:................................................235
XOR Exclusive Or ........ ......... 236

String Manipulation ............... 236
REP Repeat   236
MOVS Move String .....     236
CMPS Compare String ................. 236
SCAS Scan String  237
LO DS Load Stri ng 5: : Q. ............................................237
STOS Store String . jcx-.mC.............................................237

Control Transfer  237
CALL Call...... ...........................................................................237
JMP Unconditional:dtimpr.wr.....r;............................................. 237
RET Return from CalbeLcO..X;uv.;\E......................................... 238
JE/JZ Jump on Equal/Zero. ............................................238
JL/JNGE Jump on Less/Not Greater or Equal ...................239
JLE/JNG Jump on Less or Equal/Not Greater ...................239
JB/JNAE Jump on Below/Not Above or Equal ................. 239
JBE/JNA Jump on Below or Equal/Not Above ...................239
JP/JPE Jump on Parity/Parity Even ...........  239
JO Jump on Overflow ............................................................ 239
JS Jump on Sign .................................................................... 239
JNE/JNZ Jump on Not Equal/Not Zero .....................239
JNL/JGE Jump on Not Less/Greater or Equal ................. 239
JNLE/JG Jump on Not Less or Equal/Greater ..................240
JNB/JAE Jump on Not Below/Above or Equal ..................240
JNBE/JA Jump on Not Below or Equal/Above ................. 240
JNP/JPO Jump on Not Parity/Parity Odd ............................. 240
JNO Jump on Not Overflow...................................................240
JNS Jump on Not Sign........................................................... 240
LOOP Loop CX Times............................................................ 240
LOOPZ/LOOPE Loop While Zero/Equal ..............................241
LOOPNZ/LOOPNE Loop While Not Zero/Not Equal ............ 241
JCXZ Jump on CX Zero.........................................................241
INT Interrupt ................................................................ 241
INTO Interrupt on Overflow....................................................241
I RET Interrupt Return...........................................................242

Processor Control.......................................................................242
CLC Clear Carry .....................................................................242

XII



STC Set Carry................ ....................................................... 242
CMC Complement Carry ......................................................... 242
NOP No Operation................................................................. 242
CLD Clear Direction ................................................................242
STD Set Direction ....................................................................243
CLI Clear Interrupt .................................................................. 243
STI Set Interrupt............ ....................................................... 243
HLT Halt .................................................................................. 243
WAIT Wait ...................................................................  243
LOCK Bus Lock Prefix ...........................................................243
ESC Escape (to External Device) ..........................................243

Processor Reset Register Initialization ..........................................244
8088 Reserved Locations..... .........................................................244
Mnemonic Index ........................... 244
8088 Instruction Set Matrix ...........................................................245
Mnemonic Index.........................;;..................................................245

J. Sample SIRIUS 1 Software Drivers ..............................................247
Keyboard................................................................. 247

Hardware Bit Definitions ............................................................247
External Routines ...................... ................................................. 248
Keyboard Stateware ...................................................................248
Keyboard Support Routines .......................................................249

CRT ...........      250
Controller Chip Register ..... ........................................................250
Cursor-Display Mode Control .................................................... 250
Cursor Positioning ..................... 251
Video Contrast and Brightness .................................................. 251
Display RAM/Font Cells ............................................................ 252
Hardware Initialization ................. 252

Sound/Codec ..............    253
Variables and Hardware Definitions .......................................... 253
Bell Control .............    253
Volume Control ..................... ;.....................................................254

Serial I/O .........................................................................................254
PPORT—Centronics Interface Routines ....................................... 257

XIII



XIV



FIGURES

1 Typical Arrangement of Main Units.............................. 1
2 Main Logic Block Diagram.............................................. 3
3 Overlapped Instruction Fetch and Execution.................. 4
4 Execution and Bus Interface Units ................................. 5
5 General Registers ............................................................ 6
6 Segment Registers........................................................... 7
7 Flags ................................................................................ 9
8 8080/8085 Register Subset ............................................ 10
9 Storage Organization ....................................................... 10

10 Instruction and Variable Storage............ ........................ 11
11 Storage of Word Variables............................................... 11
12 Storage of Pointer Variables............................................ 11
13 Segment Locations in Physical Memory ........................ 12
14 Currently Addressable Segments ......  12
15 Logical and Physical Addresses..................................... 14
16 Physical Address Generation.......................................... 14
17 Dynamic Code Relocation .............................................. 16
18 Stack Operation ............................................................... 17
19 Reserved and Dedicated Memory Locations.................. 18
20 Interrupt Sources ............................................................. 20
21 Interrupt Processing Sequence....................................... 20
22 Processing Simultaneous Interrupts ............................... 24
23 Interrupt Pointer Table..................................................... 25
24 Memory Address Computation ....................................... 29
25 Direct Addressing ............................................................ 30
26 Register Indirect Addressing ........................................... 31
27 Based Addressing............................................................ 31
28 Accessing a Structure with Based Addressing .............. 32
29 Indexed Addressing ......................................................... 32
30 Accessing an Array with Indexed Addressing ................ 33
31 Based Indexed Addressing ............................................. 33
32 Accessing a Stack Array with Based Indexed

Addressing ............................................................... 34
33 String Operand Addressing ............................................. 34
34 I/O Port Addressing ........................................................ 35
35 Audio Section Block Diagram ......................................... 37
36 Display System Block Diagram ...................................... 39
37 Display Operation ............................................................ 40
38 Font Cell Example ........................................................... 42
39 Block Diagram of a Font Cell ......................................... 43
40 Disk Drive Assembly ....................................................... 44
41 Disk Track and Sector Layout ........................................ 48
42 Sector Format ................................................................. 50
43 Processor Unit ................................................................ 52
A-1 String Operation Flow ....................................................... 61
A-2 Flag Storage Formats ....................................................... 62
B-1 Expansion Connector ....................................................... 87
B-2 Expansion Bus Interface Timing ...................................... 88
D-1 Display System Organization ........................................... 95

XV



D-2 Screen Buffer Word Format ........................................... 96
D-3 Cursor Control..................................................................... 107
F-1 Keyboard Timing Diagram ................................................. 128
6-2.1 Functional Pinout ....................................... -.......................130
G-2.2 Pin Configuration ................................................................ 130
G-2.3 SYNC Output, External Synchronization ............................ 134
G-2.4 SYNC Output, Internal Synchronization ............................. 134
G-3.1 Asynchronous Data Character Format.............................. 136
G-3.2 BISYNC Message Format ...................................................136
G-3.4 Basic SDLC Frame ..............................................................136
G-4.1 Block Diagram .....................................................................137
G-4.2 Block Diagram MPSC2 Transmitter ................................... 138
G-4.3 Data Format Example for Less Than 

8 Bits/Character..................................142
G-4.4 Block Diagram MPSC2 Receiver ........................................143
G-4.5 Bus Interface Controller ......................................................148
G-4.6 MPSC2 Interrupt Conditions ............................................ 150
G-4.7 Interrupt Timing ....................................................................151
G-4.8 DMA Data Transfer Timing ............................................ 152
G-4.9 Wait Mode Timing ............................................................... 153
G-5.1 Control Register 0 ................................................................155
G-5.2 Control Register 1 ................................................................157
G-5.3 Control Register 2 (Channel A) ......................................... 159
G-5.4 Control Register 2 (Channel B) ......................................... 161
G-5.5 Control Register 3 ................. 161
G-5.6 Control Register 4 ................. 163
G-5.7 Control Register 5 .................. 164
G-5.8 Control Register 6 ................................................................167
G-5.9 Control Register 7 ................................................................167
G-5.10 Status Register 0 .................................................................168
G-5.11 Status Register 1 .................................................................170
G-5.12 Status Register 2 .................................................................172
G-5.13 Asynchronous Initialization for Polled Transmit 

and Receive.........................................175
G-5.14 Asynchronous Receive .......................................................175
G-5.15 Asynchronous Transmit......................................................176
G-5.16 Bisync Initialization Transmit ..............................................181
G-5.17 Bisync Initialization Receive...............................................184
G-5.18 SDLC Initialization Transmit ...............................................188
G-5.19 SDLC Initialization Receive ................................................192
G-6.1 uPD720l Interface to 8080 Standard System Bus 

(Non-DMA) ...........................................193
G-6.2 6800/6502 to MPSC2 Adapter ...........................................193
G-6.3 6800/6502 to MPSC2 Adapter...........................................194
G-6.4 INTA Generator for 2-80 .................................................... 194
G-6.5 DMA Interface ..................................................................... 195
G-6.6 Priority Resolution Circuit for 

Nondaisychained Devices ..................196
H-1 SY6522 Block Diagram ...................................................... 199
H-2 Test Load (for All Dynamic Parameters) ..........................201
H-3 Read Timing Characteristics ..............................................201
H-4 Write Timing Characteristics ..............................................202
H-5a CA2 Timing for Read Handshake, Pulse Mode ..................203
H-5b CA2 Timing for Read Handshake, Handshake Mode .......204
H-5c CA2, CB2 Timing for Write Handshake, Pulse Mode ......204
H-5d CA2, CB2 Timing for Write Handshake,

XVI



Handshake Mode .......................................................204
H-5e Peripheral Data Input Latching Timing.............................205
H-5f Timing for Shift Out with Internal or 

External Shift Clocking .................... 205
H-5g Timing For Shift In with Internal or 

External Shift Clocking ...................... 205
H-5h External Shift Clock Timing ................................................206
H-5i Pulse Count Input Timing...................................................206
H-6 SY6522 internal Register Summary...................................207
H-7 Peripheral A Port Output Circuit ........................................208
H-8 Peripheral B Port Output Circuit ........................................208
H-9 Output Register B (ORB), Input Register B (IRB) ............ 210
H-10 Output Register A (ORA), Input Register A (IRA)............ 210
H-11 Data Direction Registers (DDRB, DDRA) ............................211
H-12 Read Handshake Timing (Port A, only) ...............................211
H-13 Write Handshake Timing ....................................................212
H-14 CAI, CA2, CB1, CB2 Control ............................................ 213
H-15 T1 Counter Registers .........................................................213
H-16 T1 Latch Registers ............................................................. 213
H-17 Auxiliary Control Register ................................................... 214
H-18 Timer 1 and Timer 2 One-Shot Mode Timing ..................214
H-19 Timer 1 Free-Run Mode Timing .....................................215
H-20 T2 Counter Registers ......................................................... 216
H-21 Timer 2 Pulse Counting Mode ........................................... 217
H-22 SR and ACR Control Bits ..........  217
H-23 Shift Register input Modes ..................................................219
H-24 Shift Register Output Modes ...............................................220
H-25 Interrupt Flag Register (IFR)................................................220
H-26 Interrupt Enable Register (IER) ...........................................221

XVII



XVIII



TABLES

1 Implicit Use of General Registers................................... 7
2 Logical Address Sources ................................................ 15
3 Interrupt Priorities............................................................. 23
4 CPU State Following RESET ........................................ 28
5 Effective Address Calculation Time.................................. 30
6 Sector Components ................................... .*.................... 50
7 Track Format................................................................... 51

A-1 Data Transfer Instructions................................................ 58
A-2 Arithmetic Instructions ...................................................... 63
A-3 Arithmetic Interpretation of 8-bit Numbers ....................... 63
A-4 Bit Manipulation Instructions ............................................ 69
A-5 String Instructions ............................................................. 72
A-6 String Instruction Register and Flag Use ......................... 72
A-7 Program Transfer Instructions ......................................... 75
A-8 Interpretation of Conditional Transfers ............................. 78
A-9 Processor Control Instructions......................................... 80
B-1 Expansion Bus Pin Definition ...........................................  83
B-2 Expansion Bus Loading.................................................... 86
B-3 Inputs Driven with Open Collector Drivers ...................... 86
B-4 Inputs Direct to System 8259 ........................................... 86
C-1 8259A (PIC IODO) ............................................................ 89
C-2 8253 (TIMER-IOD1) .......................................................... 89
C-3 720I (COMM. CTLR IOD2) ............................................... 90
C-4 HD46505S (CRTC OSO) ................................................... 90
C-5 6522 (VIA 1 CS1) ............................................................. 91
C-6 6522 (VIA 2 CS2) ............................................................. 91
C-7 6852 (SSDA CS3) ............................................................. 92
C-8 6522 (VIA 3 CS4) ............................................................. 92
C-9 6522 (VIA 4 CS5) ............................................................. 93
C-10 6522 (VIA 6 CS6) ............................................................. 93
C-11 6522 (VIA 5 CS7) ............................................................. 94
D-1 Recommended Values for CRTC Register Initialization .. 99
D-2 Pulse Width of Vertical Sync Signal .................................. 102
D-3 Pulse Width of Horizontal Sync Signal .............................. 102
D-4 Interlace Mode (DO, D1) ....................................................103
D-5 DISPTMG Skew Bit (D7, D6) ............................................. 103
D-6 Cursor Skew Bit (D5, D4) ..................................................103
D-7 Cursor Display Mode (D6, D5) .......................................... 105
D-8 Programmed Values into the Registers ............................. 106
D-9 Output Raster Address in Interlace Sync

and Video Mode ........................................................107
E-1 SSDA Programming Model.................................................114
E-2 Strip Sync Control Bit .........................................................118
E-3 Word Length Select ............................................................122
E-4 SM/DTR Output Control ....................................................122
E-5 Definitions and Functions of Pins .......................................124
F-1 Pin Assignment ...................................................................126
F-2 Switching Characteristics ...................................................127
G-4.1 Transmitter Control and Status Registers ..........................139



SYSTEM DESCRIPTION





G-4.2 Receiver Control and Status Registers ............................ 143
G-4.3 Read/Write Selection .........................................................148
G-4.4 Bus Interface Controller Control and Status Registers ...149
G-4.5 Vectored Interrupt Mode ................................................... 150
G-5.1 Control Registers ................................................................154
G-5.2 Status Registers ..................................................................155
G-5.3 DMA Mode Selection ..........................................................160
G-5.4 DMA/lnterrupt Priorities ......... 160
G-5.5 Interrupt Acknowledge Sequence Response ....................160
G-5.6 Received Bits/Character....................................................162
G-5.7 Stop Bits ..............................................................................163
G-5.8 Synchronous Formats .........................................................164
G-5.9 Clock Rates.........................................................................164
G-5.10 Transmited Bits/Character.................................................166
G-5.11 Transmitted Bits/Character for 5 Characters

and Less ..................................................................... 166
G-5.12 Residue Codes.................................................................... 171
G-5.13 Condition Affects Vector Modifications .............................173
H-1 Absolute Maximum Ratings................................................200
H-2 Electrical Characteristics....................................................200
H-3 Read Timing Characteristics ..............................................201
H-4 Write Timing Characteristics ..............................................202
H-5 Peripheral Interface Characteristics ..................................203

XX



1. SYSTEM DESCRIPTION

The system is designed for maximum operator comfort and 
comfort and ease of use. The system is composed of three modules, 
and occupies the desk space normally needed for an office 
typewriter. Its modules are: the processor unit, the display unit, and 
the keyboard unit. Coiled cables interconnect these stand-alone 
modules, allowing easy positioning and mobility. A standard 
configuration is shown in Figure 1.

Figure 1: Typical Arrangement of Main Units

The system can be connected to a wide variety of peripherals and 
accommodates local and long distance communications. Standard 
interfaces include a parallel port (Centronics or IEEE-488), 
programmable RS-232(V-24) channels, an internal control port, and an 
audio controller for digitized voice and tone output.

i



PROCESSOR UNIT The processor unit physically supports the display unit, as shown in 
Figure 1. The main logic, disk drives, and power supply are housed in 
the processor unit. The two integral single-sided 5 1 /4-inch floppy 
disk drives store up to 1.2 megabytes of information. The system 
incorporates a minimum 128K bytes of random access memory 
(RAM), expandable to 512K bytes.

DISPLAY UNIT The display unit swivels and tilts to permit optimum adjustment of the 
viewing angle, and the unit incorporates a 12-inch antiglare screen to 
prevent eye strain. The display is 25 lines; each line has 80 
characters. Characters are formed in a IO-x-16 font cell, providing a 
high resolution display. A bit-mapped graphics mode with 800-X-400- 
dot matrix screen resolution is available under software control. 
Software also controls the overall screen brightness, character 
contrast, and audio volume.

KEYBOARD UNIT • The keyboard unit is designed for comfort and ease of operation. It is 
completely software definable and features several keys that are 
specifically designed for special-function use in application programs. 
The keyboard contains separate typewriter and numeric/calculator 
keypad configurations, double-size general-function keys, special
function keys, and editing and cursor-control keys. A cluster of keys 
is also used to manipulate screen brightness, character contrast, and 
audio volume.

2



PROCESSOR UNIT





2. PROCESSOR UNIT

The heart of the processor unit is the Intel 8088 microprocessor. 
This processor is a version of the Intel 16-bit 8086 processor 
that contains an 8-bit bus interface. The 8088 is software
compatible with the 8086, and thus supports 16-bit operations, 
including multiply and divide. The processor has a 20-bit physical 
address space, providing 1 megabyte of addressable memory I/O.

As indicated earlier, the processor unit is the module that physically 
supports the display unit. It contains three basic assemblies: the main 
logic board, the disk drive assembly, and the power supply.

MAIN LOGIC BOARD As shown in Figure 2, the main logic board is comprised of the 
central processing unit (CPU) section, the input/output (I/O) section, 
the display section, the disk interface section, and the expansion bus.

Figure 2: Main Logic Block Diagram

8088 CENTRAL 
PROCESSING UNIT 
(CPU)

Microprocessors execute programs by cycling through the following 
four steps:

1. Fetch the next instruction from memory.
2. Read an operand (if required by the instruction).
3. Execute the instruction.
4. Write the result (if required by the instruction).

3



These steps have historically been performed in a series or with a 
single bus cycle fetch overlap. The architecture of the 8088 CPU 
allocates the same steps to two separate processing units within the 
CPU. The execution unit (EU) executes instructions. The bus interface 
unit (BIU) fetches instructions, reads operands, and writes results.

The two units operate independently of each other, thus allowing 
overlap of instruction-fetch activity and instruction-execution activity. 
The time required to fetch instructions “disappears” because it no 
longer impacts instruction execution time; the next instruction to be 
executed by the EU has always already been fetched by the BIU. 
Figure 3 provides an example which illustrates this overlap and 
compares it to traditional microprocessor operation. In the example, 
overlapping reduces the elapsed time required to execute three 
instructions, and, during that execution time, allows two additional 
instructions to be fetched.

Figure 3: Overlapped Instruction Fetch and Execution

8086/8088
MICROPROCESSOR

SECOND 
GENERATION 

MICROPROCESSOR

INSTRUCTION STREAM

1st INSTRUCTION (ALREADY FETCHED) 
EXECUTIVE AND WRITE RESULT

2nd INSTRUCTION 
EXECUTE ONLY

3rd INSTRUCTION:
READ OPERAND AND EXECUTE

4th INSTRUCTION: 
(UNDEFINED)

5th INSTRUCTION: 
(UNDEFINED)

4



Execution Unit All registers and data paths in the EU are 16 bits wide, providing for 
fast internal transfers. CPU status and control flags are maintained in 
the EU by a 16-bit arithmetic/logic unit (ALU) that manipulates the 
general registers and the instruction operands (Figure 4).

Figure 4: Execution and Bus Interface Units

The EU is not connected to the outside world via the system bus. It 
obtains instructions from a queue maintained by the BIU. When an 
instruction requires access to memory or to a peripheral device, the 
EU sends a request to the BIU to store or obtain the data. The BIU 
performs an address relocation that gives the EU access to a full 
megabyte of memory space.

Bus Interface Unit The BIU performs all bus operations for the EU. Upon demand from 
the EU, the BIU transfers data between the CPU and the memory or 
an I/O device.

While the EU is executing instructions, the BIU fetches instructions 
from memory. The instructions are stored in an internal RAM array 
called the instruction stream queue. The 8088 instruction queue holds 
up to four bytes of the instruction stream. The queue size is sufficient 
to allow the BIU to keep the EU supplied with fetched instructions 
without monopolizing the system bus. The BIU fetches another 
instruction byte whenever (1) one byte in the queue is empty and (2) 
there is no active request for bus access (Figure 3).

5



The instruction queue usually contains at least one byte of the 
instruction stream; the EU does not have to wait for instructions to be 
fetched. The instructions in the queue are those stored in the memory 
locations immediately adjacent to and higher than the instruction 
currently being executed. That is, the queue contains the next logical 
instructions, as long as execution proceeds serially. If the EU 
executes an instruction that transfers control to another location, the 
BIU resets the queue, fetches the instruction from the new address, 
passes it immediately to the EU, and then begins refilling the queue 
from the new location.

The BIU suspends instruction fetching whenever the EU requests a 
memory or I/O read or write. A fetch already in progress is 
completed before the EU’s bus request is executed.

General Registers The 8088 has eight 16-bit general registers (Figure 5). The general 
registers are divided into two sets of four registers: the data registers 
called the H&L group (H&L stands for "high and low”), and the 
pointer and index registers which are called the P&l group.

Figure 5: General Registers

The data registers are unique in that their upper (high) and lower 
halves are separately addressable. Each data register can be used 
interchangeably as a'16-bit register or as two 8-bit registers. 
However, the CPU registers are always accessed as 16-bit units. 
Data registers can be used without constraint in most arithmetic and 
logic operations. Certain instructions use specified registers implicitly 
(see Table 1), allowing compact, powerful encoding.

6



Table 1: Implicit Use of General Registers

REGISTER OPERATIONS

AX Word multiply, word divide, word I/O

AL Byte multiply, byte divide, byte I/O, translate, decimal 
arithmetic

AH Byte multiply, byte divide

BX Translate

ox String operations, loops

CL Variable shift and rotate

DX Word multiply, word divide, Indirect I/O

SP Stack operations

SI String operations

Di String operations

The pointer and index registers can also participate in most arithmetic 
and logic operations. All eight general registers fit the definition of 
"accumulator,” as used with first and second generation 
microprocessors. The P&l registers (except for the BP register) are 
also used implicitly in some instructions, as shown in Table 1.

Segment Registers One megabyte of memory space is divided into logical segments of 
up to 64K bytes each. The CPU has direct access to four segments 
at a time. The starting location (the base address) of each segment, 
is contained in the segment registers (see Figure 6). The CS register 
points to the current code segment; instructions are fetched from this 
segment. The 88 register points to the current stack segment; stack 
operations are performed on locations in this segment. The DS 
register points to the current data segment and generally contains 
program variables. The ES register points to the current extra.

The segment registers can be accessed by programs and 
manipulated with several instructions.

Figure 6: Segment Registers

7



Instruction Pointer The 16-bit instruction pointer (IP) is similiar to the program counter 
(PC) in the 8080/8085 CPUs. The IP points to the next instruction. It 
Is updated by the BIU so that it contains the offset (distance in bytes) 
of the next instruction from the beginning of the current code 
segment. During normal execution, the IP contains the offset of the 
next instruction to be fetched by the BIU. Whenever the IP is saved 
on the stack, it is automatically adjusted to point to the next 
instruction to be executed. Programs do not have direct' access to the 
IP; however, instructions cause the IP to change and to be saved on 
and restored from the stack.

Flags The 8088 has six 1 -bit status flags that the EU posts (Figure 7). The 
flags reflect specified properties of the result of an arithmetic or logic 
operation. Different instructions affect the status flags differently. 
Another group of instructions is available that allows a program to 
alter its execution, depending on the result of a prior operation. This 
result is indicated by the state of these flags. Examples of conditions 
reflected by the flags are described below:

► The auxiliary carry flag (AF) is set when a carry out of the low 
nibble into the high nibble or a borrow from the high nibble into the 
low nibble of an 8-bit quantity (low-order byte of a 16-bit quantity) 
has occurred. This flag is used by decimal arithmetic instructions.

► The carry flag (OF) is set when a carry out of, or a borrow into, 
the high-order bit of the result (8- or 16-bit) has occurred. This flag 
is used by instructions that use the OF to add and subtract 
multibyte numbers. Rotate instructions also isolate a bit in memory 
or in a register by placing it in the OF.

.► The overflow flag (OF) is set when an arithmetic overflow has 
occurred; that is, a significant digit has been lost (i.e„ the 
size of the result exceeded the capacity of its destination location). 
An interrupt on overflow instruction is available to generate an 
interrupt in an arithmetic overflow.

► The sign flag (SF) is set when a result's high-order bit is a 1. 
Negative binary numbers are represented in the 8088 in standard 
two’s complement notation. SF indicates the sign of the result 
(0=positive, 1 —negative).

► The parity flag (PF) is set when the result has even parity (an 
even number of 1 -bits).

► The zero flag (ZF) is set when the result of the operation is 0.

Three additional control flags (Figure 7) can be set and cleared by 
programs to alter processor operations:

► Setting the direction flag (DF) causes string instructions to auto
decrement (to process strings from high addresses to low 
maskable) interrupt requests. Clearing IF disables these interrupts. 
IF has no affect on nonmaskable interrupts generated externally or 
internally.

8



► Setting the trap flag (TF) puts the processor into single-step mode 
for debugging. In this mode, the CPU automatically generates an 
internal interrupt after each instruction, allowing a program to be 
inspected as it executes each instruction.-

Figure 7: Flags

CARRY
PARITY

AUXILIARY CARRY
ZERO
SIGN

OVERFLOW
INTERRUPT-ENABLE
DIRECTION
TRAP

8080/8085 Register 
and Flag 
Correspondence

The registers, the flags, and the program counter in the 8080/8085 
CPUs have counterparts in the 8088 CPU (see Figure 8). The A 
register (accumulator) in the 8080/8085 corresponds to the AL 
register in the 8088. The 8080/8085 H&L, B&C, and D&E registers 
correspond to registers BH, BL, CH, CL, DH, and DL, respectively, in 
the 8088. The 8080/8085 stack pointer (SP) and program counter 
(PC) correspond to the 8088 SP and IP.

The AF, CF, PF, SF, and ZF flags are the same in both CPU families. 
The remaining 8088 flags and registers are unique to the 8088. The 
8080/8085 to 8088 mapping allows direct translation of most existing 
8080/8085 program code into 8088 program code.

9



Memory

Figure 8: 8080/8085 Register Subset

The 8088 has 1,048,576 bytes of address space. This section 
describes how memory is functionally organized and used.

STORAGE ORGANIZATION The 8088 memory storage space is 
organized as an array of 8-bit bytes (see Figure 9). Instructions, byte 
data, and word data may be stored at any byte address, regardless of 
alignment. This technique saves storage space because code can be 
densely packed in memory (see Figure 10).

Figure 9: Storage Organization

LOW MEMORY HIGH MEMORY
OOOOOH 00001H 00002H ^FFFFEH FFFFFH

1 MEGABYTE -------------------------

10



19H I AH I UH 1CH IDH 1 EH 1FH 20H 2IH 22H 23H

Figure 10: Instruction and Variable Storage

The most-significant byte in word data is always stored in the higher 
memory location (see Figure 11). This storage convention is 
"invisible” to the user except when the user monitors the system bus 
or reads memory dumps. A special class of data is stored as double 
words (l.e., two consecutive words) called pointers, which are used to 
address data and code outside the currently-addressable segments. 
The lower-addressed word of a pointer contains an offset value, and 
the higher-addressed word contains a segment base address. Each 
word is stored conventionally with the higher-addressed byte 
containing the most significant eight bits of the word (see Figure 12).

Figure 11: Storage of Word Variables

724H 725H

0
—

2 5 5 HEX

0000 0010 0101 0101 BINARY

VALUE OF WORD STORED AT 724H: 5502H

Figure 12: Storage of Pointer Variables

4H

6

0110

5

0101

0

0000

0

0000

4

0100

C

1100

3

0011

B

1011

HEX

BINARY

VALUE OF POINTER STORED AT 4H: 
SEGMENT BASE ADDRESS: 3B4CH 
OFFSET:65H

11



SEGMENTATION 8088 programs view the megabyte of memory 
space as a group of segments defined by the application. A segment 

•is a logical unit of memory up to 64K bytes long. Each segment 
contains contiguous memory locations and is an independent, 
separately-addressable unit. Software assigns each segment a base 
address, which is the segment’s starting location in the memory 
space. All segments begin on 16-byte memory boundaries. The 
segments can be disjoint, partially overlapped, or fully overlapped 
(see Figure 13). A physical memory location can be mapped into 
(contained in) one or more logical segments.

Figure 13: Segment Locations In Physical Memory

LOGICAL 
SEGMENTS

I PHYSICAL J MEMORY

OH 10000H 20000H 30000H

The segment registers contain (point to) the base address values of 
the four currently addressable segments (see Figure 14). Programs 
access code and data in other segments by changing the segment 
registers to point to the segments containing the needed code or 
data.

Figure 14: Currently Addressable Segments 

FFFFFH

DATA: 

CODE. 

STACK

EXTRA:

OH

12



Individual applications define and use segments differently. The 
currently-addressable segments provide a generous work space: 64K 
bytes for code, a 64K byte stack, and 128K bytes of data storage. 
Many applications can be written that simply initialize the segment 
registers and then forget them. However, large applications should be 
designed with careful consideration given to segment definition.

The segmented structure of the 8088 memory space supports 
modular software design and discourages the development of huge, 
monolithic programs.

The segments can be used to advantage in many programming 
situations—for example, when programming an editor for several on
line terminals. A 64K text buffer (probably an extra segment) could be 
assigned to each terminal. A single program could maintain all the 
buffers by simply changing register ES to point to the buffer of the 
terminal requiring service.

PHYSICAL ADDRESS GENERATION There are two kinds of 
memory location addresses: physical and logical. A physical address 
is a 20-bit value that identifies each byte location in the megabyte 
memory space. Physical-address range varies from OH through 
FFFFFH. All exchanges between the CPU and memory components 
use physical addresses.

Programs use logical, addresses, which allow code to be developed 
before the code is assigned physical addresses. This technique 
facilitates dynamic management of memory resources.

A logical address consists of two values: a segment-base value and 
an offset value. The segment-base value for any memory location is 
the value that defines the first byte of the segment. The offset value 
is the number of bytes from the beginning of the segment to the 
target location. Segment-base and offset values are unsigned 16-bit 
quantities. The lowest addressed byte in a segment has an offset 
value of 0. Different logical addresses can map to the same physical 
location, as shown in Figure 15. The physical memory location 2C3H 
shown in Figure 15 is contained in two different overlapping 
segments, one beginning at 2B0H and the other at 2C0H.

13



Figure 15: Logical and Physical Addresses

When the BIU accesses memory to fetch an instruction, or to obtain 
or store a variable, it generates a physical address from a logical 
address. It does this by (1) shifting the segment-base value four bit 
positions, and (2) adding the offset value, as illustrated in Figure 16. 
This addition process results in modulo 64K addressing, which 
causes addresses to wrap around from the end of a segment to the 
beginning of the same segment.

Figure 16: Physical Address Generation

TO MEMORY

14



The BIU obtains the logical address of a memory location from 
different sources, depending on the type of reference that is being 
made (see Table 2). Instructions are always fetched from the current 
code segment. The IP contains the offset of the target instruction 
from the beginning of the segment. Stack instructions always operate 
on the current stack segment. The SP contains the offset of the top 
of the stack. Most memory operands reside in the current data 
segment, although the program can instruct the BIU to access a 
variable in one of the other currently addressable segments. The 
offset of a memory variable is calculated by the EU; the calculation is 
based on the addressing mode specified in the instruction, and the 
result is called the operand’s effective address (EA).

Table 2: Logical Address Sources

TYPE OF
MEMORY REFERENCE

DEFAULT
SEGMENT 

BASE

ALTERNATE 
SEGMENT 

BASE OFFSET

Instruction fetch CS NONE IP

Stack operation S3 NONE SP

Variable (except following) DS CS, ES, SS Effective address

String source DS CS, ES, SS SI

String destination ES NONE DI

BP used as base register SS CS, DS, ES Effective Address

Strings are addressed differently than other variables. The source 
operand of a string instruction usually lies in the current data 
segment; however, another currently-addressable data segment may 
be specified. The source operand's offset is taken from register SI 
(the source index register). The destination operand of a string 
instruction always resides in the current extra segment, and its offset 
is taken from DI (the destination index register). The string 
instructions automatically adjust SI and DI as they process the strings 
one byte or word at a time.

When register BP (the base pointer register) is designated as a base 
register in an instruction, the variable is assumed to reside in the 
current stack segment. Using register BP is a convenient way to 
address data on the stack. The BP register can be used to access 
data in any of the other currently addressable segments.

Programmers usually find the segment assumptions of the BIU 
convenient to use. A programmer can, however, direct the BIU to 
access a variable in any of the currently-addressable segments by 
preceding an instruction with a segment override prefix. This 1 -byte 
machine instruction tells the BIU which segment register to use to 
access a variable referenced in the following instructions. The only 
exception to this is a string instruction’s destination operand, which 
must be located in the extra segment.

15



DYNAMICALLY RELOCATABLE CODE Dynamically relocatable—or 
position-independent—programming is made possible by the 
segmented memory structure of the 8088. The dynamic relocation 
technique makes effective use of available memory by taking 
advantage of the system's multiprogramming/multitasking capabilities. 
Inactive programs can be written to disk, making the space they 
occupied available to other programs. A disk-resident program can be 
read back into any available memory location and restarted. When a 
program needs a large contiguous block of storage and only 
nonadjacent fragments are available, other program segments can be 
compacted to free up a contiguous space (Figure 17).

Figure 17: Dynamic Code Relocation

BEFORE RELOCATION AFTER RELOCATION

FREE SPACE

To be dynamically relocatable, all offsets in the program must be 
relative to fixed values contained in the segment registers. This allows 
the program to be moved anywhere in memory as long as the 
segment registers are updated to point to the new base addresses. A 
dynamically relocatable program must not load or alter its segment 
registers and must not transfer directly to a location outside the 
current code segment.

16



STACK IMPLEMENTATION Stacks in the 8088 are implemented in 
memory. They are located by the SS (the stack segment register) and 
the SP (the stack pointer register). A system may have an unlimited 
number of stacks. Each may be the maximum length of a segment, 
64K bytes.

Attempting to expand a stack beyond 64K bytes overwrites the 
beginning of the stack. Only one stack is directly addressable at a 
time; this stack is the current stack, often referred to simply as "the” 
stack. SS contains the base address of the current stack. SP contains 
the offset of the top of the stack from the stack segment's base 
address. The stack's base address (contained in SS) is not the 
"bottom" of the stack.

Stacks are 16 bits wide. Instructions that operate on a stack add and 
remove stack items one word at a time. An item is pushed onto the 
stack (see Figure 18) by decrementing SP by 2 and writing the item 
at the new TOS (top of stack). An item is popped off the stack by 
copying it from TOS then incrementing SP by 2. In other words, the 
stack grows down in memory toward its base address.- Stack 
operations never move or erase items on the stack. The TOS 
changes only as a result of updating the stack pointer.

Figure 18: Stack Operation

EXISTING 
STACK

STACK OPERATION FOR CODE SEQUENCE

POP AX

PUSH AX 
POP AX 
POP BX

17



DEDICATED AND RESERVED MEMORY LOCATIONS Two areas 
in extremely low and high memory—OH through 7FH (128 bytes) and 
FFFFOH through FFFFFH (16 bytes)—are dedicated to specific 
processor functions or are reserved for use by hardware and software 
products (Figure 19). These areas are reserved for interrupt and 
system reset processing, and should not be used for any other 
purpose.

FIGURE 19: Reserved and Dedicated Memory

8086/8088 MEMORY ACCESS The 8088 always accesses memory 
in bytes. Word operands are accessed in two bus cycles, regardless 
of their alignment. Instructions are also fetched one byte at a time. 
Although word operand alignment does not affect performance, 
locating 16-bit data on even addresses ensures maximum throughput 
if the system is transferred to an 8086.

Input/Output MEMORY-MAPPED I/O I/O devices may be placed in the 8088
memory space. The CPU cannot tell the difference between I/O 
devices as long as each device responds as a memory component.

Memory-mapped I/O provides programming flexibility. Instructions that 
normally reference memory may be used to access an I/O port 
located in the memory space. The move (MOV) instruction, for 
example, can transfer data between any 8088 register and a port. 
AND, OR, and TEST instructions may be used to manipulate bits in 
I/O device registers. Memory-mapped I/O takes advantage of the 
8088 memory addressing modes. For example, a group of terminals 
can be treated as an array in memory with an index register selecting 
a terminal in the array.

All mnemonics ©Intel Corporation 1981

18



However, a price is paid for the added programming flexibility that 
memory-mapped I/O provides. Dedicating part of the memory space 
to I/O devices reduces the number of addresses available for 
memory (although with a megabyte of memory space this should 
rarely be a constraint). Also, memory reference instructions take 
longer to execute and are less compact than simpler IN and OUT 
instructions.

DIRECT MEMORY ACCESS The 8088 provides hold (HOLD) and 
hold acknowledge (HLDA) signals that are compatible with traditional 
DMA controllers. By activating HOLD, a DMA controller can request 
use of the bus for direct transfer of data between an I/O device and 
memory. The CPU responds by completing the current bus cycle (if 
one is in progress) and then issuing HLDA, which grants the bus to 
the DMA controller. The CPU does not attempt to use the bus until 
HOLD goes inactive.,

WAIT AND TEST The 8088 can be synchronized to an external 
event with the WAIT (wait for TEST) instruction and the TEST input 
signal. When the EU executes a WAIT instruction, the result depends 
on the state of the TEST input line. If TEST is not connected to or 
receiving an external signal, the processor enters an idle state and 
repeatedly retests the TEST line at 5-clock intervals. If TEST is 
connected to an external signal source, execution continues with the 
instruction following the WAIT.

The TEST input is connected to a “byte ready" signal from the 
floppy disk controller. This allows the processor to synchronize data 
transfer operations.

Processor Control 
And Monitoring — 
Interrupts

Microcomputer system design requires that I/O devices such as 
keyboards, displays, sensors, and other components receive efficient 
servicing to ensure that the microcomputer can perform a large 
number of system tasks with little or no effect on throughput.

One desirable method for ensuring efficient servicing is to allow the 
microprocessor to execute its main program, stopping to service 
peripheral devices only when told to do so by the device itself. In 
effect, this method provides an external asynchronous input which 
informs the processor to complete whatever instruction is currently 
being executed and to fetch a new routine to service the requesting 
device. Once this servicing is complete, the processor resumes 
exactly where it left off.

The 8088 interrupt system is a simple and versatile interrupt system. 
Every interrupt is assigned a type code that identifies it to the CPU. 
The 8088 can handle up to 256 different interrupt types. Interrupts 
may be initiated by devices external to the CPU, or they may be 
triggered by software interrupt instructions and, under certain 
conditions, by the CPU itself, as illustrated in Figure 20. Figure 21 
illustrates the basic response of the 8088 to an interrupt. The next 
sections elaborate on the information presented in Figure 21.

All mnemonics © Intel Corporation 1981

■IQ



|_8086/8088CPU J

MASKABLE 
INTERRUPT 
REQUEST

Figure 20: Interrupt Sources

Figure 21: Interrupt Processing Sequence

All mnemonics © Intel Corporation 1981

20



EXTERNAL INTERRUPTS External devices can use two lines in the 
8088 to signal interrupts: interrupt request (INTR) and nonmaskable 
interrupt (NMI). The INTR line is driven by an 8259 A programmable 
interrupt controller (PIC). The PIC is a flexible circuit controlled by 
software commands from the 8088.

The PIC appears as a set of I/O ports to the software and connects 
to devices that need interrupt services. It accepts interrupt requests 
from the attached devices and determines which service request has 
the highest priority. If the device selected for service has a higher 
priority than the one currently being serviced, the PIC activates the 
8088 INTR line.

The CPU response to the active INTR line is based on the state of 
the interrupt-enable flag (IF). The currently-executing instruction is 
completed before the interrupt becomes active.

Occasionally, an interrupt request is not recognized until after the 
following instruction. Repeat, LOCK, and segment override prefixes 
are considered part of the instructions they prefix. Therefore, no 
interrupt is recognized between execution of a prefix and an 
instruction.

A move (MOV) to a segment register instruction and a POP segment 
register instruction are treated similarly (no interrupt is recognized 
until after the following instruction). This mechanism protects a 
program that is changing to a new stack (by updating 88 and SP). 
The processor pushes the CS and IP flags into the wrong area of 
memory if an interrupt is recognized after 88 has been changed, but 
before SP has been altered.

If a segment register and another value must be updated together, 
first the segment register must be changed, and then the instruction 
changing the other value must be given.

An interrupt request is recognized in the middle of an instruction in 
two instances—WAIT and repeated string instructions. In these cases, 
interrupts are accepted after any completed primitive operation or wait 
test cycles.

IF is clear when the interrupts signaled on INTR are masked or 
disabled, in which case the CPU ignores the interrupt request and 
processes the next instruction. The INTR signal is not latched by the 
CPU. It must be held active until a response is received or the 
request is withdrawn. When IF is set—enabling interrupts on INTR— 
the CPU recognizes the interrupt request and processes it. Interrupt 
requests arriving on INTR are enabled by executing a set interrupt
enable flag (STI) instruction, and disabled by executing a clear 
interrupt-enable flag (CLI) instruction. Writing commands to the 8259A 
(the PIC chip) selectively masks some of these requests. STI and 
IRET instructions re-enable interrupts only after the end of the 
following instruction, which reduces excessive stack buildup.

All mnemonics © Intel Corporation 1981

21



The CPU acknowledges an interrupt request by executing two 
consecutive interrupt'acknowledge (INTA) bus cycles. Bus hold 
requests are not honored until INTA cycles are completed. The first 
INTA cycle signals to the 8259A that the request has been honored. 
The 8259A responds during the second INTA cycle by placing the 
interrupt byte containing the interrupt type (0-255) associated with the 
requesting device on the data bus. (Type assignment is made when 
the 8259A is initialized by software in the 8088.) The CPU uses this 
type code to call the indicated interrupt procedure.

A nonmaskable interrupt (NMI) request can arrive on another CPU 
line from an external source. This edge-triggered line signals to the 
CPU that a catastrophic event—such as the imminent loss of power, 
a memory error detection, or a bus parity error—has occurred. 
Interrupt requests arriving on NMI cannot be disabled. They are 
latched by the CPU and have a higher priority than an interrupt 
requested on INTR (level-triggered). NMI is first recognized when an 
interrupt request arrives on both lines during execution of an 
instruction. Nonmaskable interrupts are predefined as type 2. The 
processor does not need a type code to call the NMI procedure and 
does not run the INTA bus cycles in response to an NMI request.

The time required for the CPU to recognize an external request is 
determined by the number of clock cycles remaining to complete the 
instruction currently being executed. This delay is referred to as 
interrupt latency. The longest possible interrupt latency occurs when 
an interrupt request arrives during multiplication, divison, variable-bit 
shift, or rotate instruction execution. In the most extreme case, 
interrupt latency spans two instructions, rather than one.

INTERNAL INTERRUPTS Execution of an interrupt (INT) instruction 
generates an immediate interrupt. The interrupt type code identifies 
the procedure needed to process the interrupt. Since any type code 
can be specified, software interrupts can be used to test interrupt 
procedures that are written to service external devices.

When the overflow flag (OF) is set, an interrupt on overflow (INTO) 
instruction (a type 4 interrupt) is initiated immediately after the 
completion of the currently executing instruction. The CPU generates 
a type 0 interrupt following execution of a divide (DIV) instruction or 
an integer divide (IDIV) instruction when the calculated quotient is 
larger than the specified destination. When the trap flag (TF) is set, 
the CPU automatically generates a type 1 interrupt after every 
instruction. This single-step execution, which is a powerful debugging 
tool, is discussed in more detail later.

All internal interrupts (INT, INTO, divide-error, and single step) share 
these characteristics:

► The interrupt type code is contained in the instruction or is 
predefined.

► No INTA bus cycles are run.

All mnemonics © Intel Corporation 1981

22



► Except for single-step interrupts, internal interrupts cannot be 
disabled.

► Internal interrupts (except single-step) have higher external 
interrupts (see Table 3). When interrupt requests arrive on NMI 
and/or INTR during execution of an instruction that causes an 
internal interrupt (e.g., a divide error), the internal interrupt is 
processed first.

Table 3: Interrupt Priorities

INTERRUPT PRIORITY

Divide error, I NT n, INTO Highest
NMI
INTR

Single-step Lowest

INTERRUPT POINTER TABLE The interrupt pointer (or interrupt 
vector) table links an interrupt type code and its associated service 
procedure. The interrupt pointer table occupies the first 1 K bytes of 
low memory. There may be up to 256 entries in the table, one for 
each interrupt type that can occur in the system. Each entry in the 
table is a double-word pointer containing the address of the 
procedure servicing interrupts of that type. The higher-addressed 
word of the segment contains the procedure. The lower-addressed 
word contains the procedure's offset from the beginning of the 
segment. Each entry is four bytes long; the CPU calculates the 
location of the correct entry for a given interrupt type by simply 
multiplying the type number by 4.

In applications that do not recognize interrupt types, space at the high 
end of the table can be used for other purposes.

The 8088 activates an interrupt procedure by executing the equivalent 
of an intersegment indirect CALL instruction after pushing the flags 
onto the stack. The address contained in the interrupt pointer table 
element located at n x 4 (where “n” represents the type number) is 
the target of the CALL. The CPU saves the address of the next 
instruction by pushing CS and IP onto the stack. It transfers control to 
the interrupt procedure by replacing the second and first words of the 
table element.

The processor activates the interrupt procedures in priority order 
when multiple interrupt requests arrive simultaneously. Figure 22 
shows how procedures would be activated in an extreme case. The 
processor is running in single-step mode with external interrupts 
enabled. INTR is activated during execution of a divide instruction. 
The instruction generates a divide error interrupt. Except for INTR, the 
interrupts are recognized in the order of their priorities (see Figure 
23). INTR is not recognized until after the following instruction 
because recognition of the earlier interrupts cleared IF. If an earlier 
response to INTR is desired, interrupts can be re-enabled in any of 
the interrupt response routines.

All mnemonics © Intel Corporation 1981

23



All main-line code is executed in single-step mode (Figure 22). The 
processing speed (full speed or single-step mode speed) can be 
selected in each occurrence of the single-step routine because of the 
order of interrupt processing.

Figure 22: Processing Simultaneous Interrupts
■ U «■■■■».»! .UMMIJII LLW. AtW;L8«!W» J ■.■WJ.X.J.JWEW

All mnemonics © Intel Corporation 1981

24



AVAILABLE 
INTERRUPT 
POINTERS 
(224)

RESERVED 
INTERRUPT 
POINTERS 
(27)

Figure 23: Interrupt Pointer Table

084H

- 080H
r 07FH

TYPE 33 POINTER: 
(AVAILABLE)

TYPE 32 POINTER. 
(AVAILABLE)

DEDICATED 
INTERRUPT 
POINTERS 
(5)

TYPE 31 POINTER: 
(AVAILABLE)

TYPE 5 POINTER 
“ (RESERVED) ~

TYPE 4 POINTER: 
— (OVERFLOW) "

_ TYPE 3 POINTER: _ 
1-BYTE INT INSTRUCTION

_ TYPE 2 POINTER: _ 
NON-MASKABLE

_ TYPE 1 POINTER: _ 
SINGLE STEP

_ TYPED POINTER: 
DIVIDE ERROR

CS BASE ADDRESS

IP OFFSET

16 BITS 

INTERRUPT PROCEDURES Flags CS and IP are pushed onto the 
stack and flags TF and IF are cleared when an interrupt service 
procedure is entered. The procedure can re-enable external interrupts 
with the set-interrupt-enable flag (STI) instruction, allowing itself to be 
interrupted by a request on INTR. Interrupts are not actually enabled 
until the instruction following STI has executed. An interrupt procedure 
can always be interrupted by a request arriving on NMI. The interrupt 
procedure can also be interrupted by software- or processor-initiated 
interrupts occuring within the procedure. (Programmers should ensure 
that the type of interrupt being serviced does not inadvertently occur 
during the interrupt procedure. For example, attempting to divide by 0 
in the divide error (type 0) interrupt procedure results in the 
procedure being reentered endlessly.) Sufficient stack space must be 
available to accommodate the maximum depth of interrupt nesting 
that occurs in the system.

Prior to procedure termination, any registers used by the interrupt 
procedures should be saved before they are updated and restored. 
External interrupts for all sections except those sections of code that 
cannot be interrupted without risking erroneous results should be 
enabled. Interrupt requests on INTR can be lost if external interrupts 
are disabled for too long in a procedure.

All mnemonics © Intel Corporation 1981

25



Interrupt procedures with an interrupt return (IRET) instruction should 
be terminated. The IRET instruction assumes that the stack is in the 
same condition as when the procedure was entered. It pops the top 
three stack words into IP, 08, and the flags, and returns to the 
instruction that was to be executed when the interrupt procedure was 
activated.

The actual processing done by the procedure is application 
dependent. When servicing an external device, the procedure sends a 
command to the device, instructing it to remove its interrupt request. 
It can then read status information from the device, determine the 
cause of the interrupt, and act accordingly.

A software-initiated interrupt procedure can be used as a service 
routine (supervisor call) for other programs in the system. In this 
case, the procedure is activated when a program, rather than an 
external device, needs attention. (The "attention” might be to search 
a file for a record, send a message to another program, request an 
allocation of free memory, etc.) Software interrupt procedures can be 
used to advantage in systems that dynamically relocate programs 
during execution. Since the interrupt pointer table is at a fixed storage 
location, procedures can call each other through the table by issuing 
software interrupt instructions. This provides a stable communication 
exchange, independent of procedure addresses. Interrupt procedures 
can be moved if the interrupt pointer table is always updated, 
providing linkage from the calling program via the interrupt type code.

The 8088 is in single-step mode when the trap flag (TF) is set. In this 
mode, the processor automatically generates type 1 interrupt 
processing. The CPU automatically pushes the flags onto the stack 
and then clears TF and IF. The processor is not in single-step mode 
when the single-step interrupt procedure is entered. The old flag 
image is restored from the stack when the single-step procedure 
terminates, placing the CPU back into single-step mode.

Single stepping is a valuable debugging tool. A single-step procedure 
acts as a window into the system, through which operations can be 
observed on an instruction-by-instruction basis. A single-step interrupt 
procedure prints or displays register contents, instruction pointer 
values, key memory variables, etc., as they change after each 
instruction. This permits the exact flow of a program to be traced in 
detail. The point at which discrepancies occur can be identified by a 
single-step routine. A single-step routine can be used to accomplish 
the following:

► Writing a message when a specified memory location or I/O port 
changes value (or equals a specified value)

► Providing diagnostics selectively (for instance, only for certain 
instruction addresses)

► Letting a routine execute a number of times before providing 
diagnostics

All mnemonics © Intel Corporation 1981

26



The 8088 does not have instructions for setting or clearing TF. TF 
can be changed by modifying the flag image on the stack. The 
PUSHF and POPF instructions push and pop the flags. (TF can be set 
by ORing the flag image with 0100H. Clear TF by ANDing it with 
FEFFH.) After TF is set, the first single-step interrupt occurs after the 
first instruction following the IRET from the single-step procedure has 
been executed.

If the processor is single stepping, it processes an interrupt (either 
internal or external) as follows:

1. Control is passed normally (flags, CS and IP are pushed) to the 
procedure designated for handling the type of interrupt that has 
occurred.

2. Before the first instruction of that procedure is executed, the 
single-step interrupt is recognized and control is passed normally 
(flags, CS and IP are pushed) to the type 1 interrupt procedure.

3. When single-step procedure terminates, control returns to the 
previous interrupt procedure. Figure 23 illustrates this process in a 
case where two interrupts occur when the processor is in single- 
step mode.

BREAKPOINT INTERRUPT A type 3 interrupt is a breakpoint 
interrupt. A breakpoint is any place in a program where normal 
execution is arrested so that some sort of special processing may be 
performed. Breakpoints are inserted into programs during debugging 
to display registers, memory locations, etc., at crucial points in the 
program.

The INT 3 (breakpoint) instruction is one byte long, which facilitates 
planting a breakpoint anywhere in a program. The processor can be 
placed in single-step mode by using a breakpoint procedure.

Breakpoint instructions can insert new instructions (patch) into a 
program without recompiling or reassembling it. This can be done by 
saving an instruction byte and replacing it with an INT 3 (CCH) 
machine instruction. The breakpoint procedure contains new machine 
instructions—code to, restore the saved instruction byte and 
decrement IP on the stack before returning control to the program. 
The displaced instruction is executed after the patch instructions.

NOTE: Undertake patching a program with caution. This action 
requires machine-instruction programming and can add new bugs to 
a program. Also note that a patch is only a temporary measure to be 
used in exeptional conditions. The affected code should be updated 
and retranslated as soon as possible.

SYSTEM RESET The 8088 RESET line provides an orderly way to 
start or restart an executing system. When the processor detects the 
positive-going edge of a pulse on RESET, it terminates all activities 
until the signal goes low, at which time it initializes the system as 
shown in Table 4.

All mnemonics © Intel Corporation 1981

27



Addressing Modes

■MBHBHBMMBBBBBMSBHBEBBBncnBBEBHHBI
Table 4: CPU State Following Reset

CPU COMPONENT CONTENT

Flags Clear
Instruction Register 0000H

08 Register FFFFH
DS Register 0000H
SS Register 0000H
ES Register 0000H

Queue Empty

Since the code segment register contains FFFFH and the instruction 
pointer contains OH, the processor executes its first instruction 
following system reset from absolute memory location FFFFOH. This 
location normally contains an intersegment direct JMP instruction 
whose target is the actual beginning of the system program. External 
(maskable) interrupts are disabled by system reset. As soon as the 
system is initialized, the system software should re-enable interrupts 
to the point where they can be processed.

PROCESSOR HALT When the halt (HLT) instruction is executed, the 
8088 enters the halt state. This condition may be interpreted as “stop 
all operations until an external interrupt occurs or the system is 
reset” No signals are floated during the halt state, and the content of 
the address and datq buses is undefined. A bus hold request arriving 
on the HOLD line is acknowledged normally while the processor is 
halted.

The halt state can be used when an event prevents the system from 
functioning correctly. An example might be a power-fail interrupt. After 
recognizing that loss of power is imminent, the CPU could use the 
remaining time to move registers, flags and vital variables to a 
battery-powered CMOS RAM area and then halt until the return of 
power was signaled by an interrupt or system reset.

The 8088 accesses instruction operands in many different ways. 
Operands can be in registers, instructions, memory, or I/O ports. 
Memory address and I/O port operands can be calculated several 
ways. These addressing modes extend the flexibility and convenience 
of the instruction set. This section briefly describes register and 
immediate operands, and then covers the 8088 memory and I/O 
addressing modes in detail.

REGISTER AND IMMEDIATE OPERANDS The quickest, most 
compact executing instructions specify only register operands. This is 
because register address is encoded in instructions in a very few bits, 
and the operation is performed entirely within the CPU (no bus cycles 
are run). Registers can be source operands and/or destination 
operands.

All mnemonics © Intel Corporation 1981

28



Immediate operands are constant data 8- or 16-bits long, contained in 
an instruction that is available directly from the instruction queue and 
can be accessed quickly. Like a register operand, no bus cycles are 
needed to obtain an immediate operand. Immediate operands are 
limited; they are constant values and can only serve as source 
operands.

MEMORY ADDRESSING MODES Memory operands must be 
transferred to or from the CPU over the bus. The EU has direct 
access to register and immediate operands. When the EU needs to 
read or write a memory operand, it passes an offset value to the BIU. 
The BIU adds the offset to the (shifted) content of a segment register, 
producing a 20-bit physical address. Then it executes the bus 
cycle(s) needed to access the operand.

EFFECTIVE ADDRESS The operand's effective address (EA) is the 
offset calculated by EU for a memory operand. EA is an unsigned 16- 
bit number expressing the operand’s distance in bytes from the 
beginning of the segment in which it resides.

The EU calculates the EA in several different ways. Information 
encoded in the second byte of the instruction tells the EU how to 
calculate the EA of each memory operand. A compiler or assembler 
derives this information from the statement or instruction written by 
the programmer. Assembly language programmers have access to all 
addressing modes.

Figure 24 shows that the execution unit calculates the EA by adding 
a displacement, the content of a base register, and the content of an 
index register. The variety of 8088 memory addressing modes results 
from combinations of these three components in a given instruction.

ENCODED 
IN THE 
INSTRUCTION

EXPLICIT 
IN THE 
INSTRUCTION

ASSUMED 
UNLESS 
OVERRIDDEN 
BY PREFIX

-

Figure 24: Memory Address Computation

All mnemonics lintel Corporation 1981.

28



The displacement, aq 8- or 16-bit number contained in the instruction, 
is derived from the position of the operand name (a variable or label) 
in the program. A programmer can modify this value or specify the 
displacement.

A programmer can specify that BX or BP serve as a base register 
whose content is to be used in the EA computation. SI or DI can be 
specified as an index register. The displacement value can change 
the contents of the base and index registers can change during 
execution. This makes it possible for one instruction, as determined 
by current values in the base and/or index registers, to access 
different memory locations.

It takes time for EU to calculate a memory operand’s EA. The more 
elements in the calculation, the longer it takes. Table 5 shows the 
time required to compute an effective address for any combination of 
displacement, base register, and index register.

Table 5: Effective Address Calculation Time

EA COMPONENTS CLOCKS*

Displacement Only 6

Base or Index Only (BX,BP,SI,DI) 5

Displacement
+

Base or Index (BX, BP, SI, DI) 9

Base BP+DI, BX+SI 7
+

Index BP+SI, BX+DI 8

Displacement BP+DI+DISP
+ BX+SI+DISP 11

Base
+ BP+SI+DISP

Index BX+DI+DISP 12

‘Add 2 clocks for segment override.

DIRECT ADDRESSING Direct addressing (see Figure 25) is the 
simplest memory addressing mode. No registers are involved; the EA 
is taken directly from the displacement field of the instruction. Direct 
addressing is used to access simple variables (scalars).

Figure 25: Direct Addressing

All mnemonics ©Intel Corporation 1981.

30



REGISTER INDIRECT ADDRESSING The effective address of a 
memory operand can be taken from one of the base or index 
registers, as shown in Figure 26. When the value in the base of the 
index register is updated appropriately, one instruction can operate on 
many different memory locations. The load effective address (LEA) 
and arithmetic instructions change the register value.

Figure 26: Register Indirect Addressing

NOTE: Any 16-bit general register can be used for register indirect 
addressing with the JMP or CALL instructions.

BASED ADDRESSING In based addressing (Figure 27), the effective 
address is the sum of a displacement value and the content of 
register BX or register BP. Specifying BP as a base register directs 
the BID to obtain the operand from the current stack segment (unless 
a segment override prefix is present). Therefore, based addressing 
with BP is a convenient way to access stack data.

Based addressing provides a straightforward way of addressing 
structures located at different places in memory (see Figure 28). A 
base register can be pointed at the base of the structure, and 
elements of the structure can be addressed by their displacements 
from the base. Different copies of the same structure can be 
accessed by changing the base register.

All mnemonics ©Intel Corporation 1981.

Figure 27: Based Addressing

31



Figure 28: Accessing a Structure with Based Addressing

INDEXED ADDRESSING In indexed addressing, the effective 
address is calculated by the sum of a displacement plus the content 
of an index register (SI or DI) as shown in Figure 29. Indexed 
addressing is often used to access elements in an array (see Figure 
30). The displacement locates the beginning of the array, and the 
value of the index register selects one element (the first element is 
selected if the index register contains 0). All array elements are the 
same length, so simple arithmetic on the index register selects any 
element.

Figure 29: Indexed Addressing

All mnemonics ©Intel Corporation 1981.

32



Figure 30: Accessing an Array with Indexed Addressing

HIGH ADDRESS

-[displacement!

INDEX REGISTER

ARRAY (8)
ARRAY (7)
ARRAY (6)
ARRAY (5)
ARRAY ,->>
ARRAY (3)
ARRAY (2)
ARRAY (1)
ARRAY (0)

14

I
EA

|-*1 WORD»-|
LOW ADDRESS

BASED INDEXED ADDRESSING Based indexed addressing 
generates an effective address that is the sum of a base register, an 
index register, and a displacement (see Figure 31). Two address 
components can be varied at execution time, making based indexed 
addressing a very flexible mode. Based indexed addressing provides 
a convenient way for a procedure to address an array allocated on a 
stack (see Figure 32). Register BP can contain the offset of a 
reference point on the stack, typically the top of the stack after the 
procedure has saved registers and allocated local storage. The offset 
of the beginning of the array from the reference point can be 
expressed by a displacement value, and an index register can be 
used to access individual array elements.

Based indexed addressing can access arrays contained in structures 
and matrices (two-dimension arrays).

Figure 31: Based Indexed Addressing

All mnemonics ©Intel Corporation 1981

33



BSQ
Figure 32: Addressing a Stack Array with Based Indexed Addressing

HIGH ADDRESS

r 
i 
i 
i 
i 
i 
i 
i 
i 
i
i 
i 
i

DISPLACEMENT

I I
I I

PARM 2
PARM 1

IP
OLD BP
OLD BX
OLD AX

ARRAY (6)
ARRAY (5)
ARRAY (4)
ARRAY (3)
ARRAY (2)
ARRAY (1)
ARRAY (0)
COUNT
TEMP

STATUS

DISPLACEMENT

-<•1 WORD-B

LOWER ADDRESS

STRING ADDRESSING String instructions do not use the normal 
memory addressing modes to access their operands. Instead, the 
index registers are used implicitly as shown in Figure 33. When a 
string instruction is executed, SI is assumed to point to the first byte 
or word of the source string, and DI is assumed to point to the first 
byte or word of the destination string. In a repeated string operation, 
the CPUs automatically adjust SI and DI to obtain subsequent bytes 
or words.

Figure 33: String Operand Addressing

All mnemonics ©Intel Corporation 1981

34



I/O PORT ADDRESSING When an I/O port is memory mapped, 
any of the memory operand addressing modes can be used to 
access the port. For example, a group of terminals can be accessed 
as an array. String instructions can also transfer data to memory
mapped ports with an appropriate hardware interface.

The two addressing modes that can be used to access ports located 
in the I/O space are illustrated in Figure 34. In direct port addressing, 
the port number is an 8-bit immediate operand. This allows fixed 
access to ports numbered 0-255. Indirect port addressing is similar to 
register indirect addressing of memory operands. The port number is 
taken from register DX and ranges from 0 to 65,535. By previously 
adjusting the content of register DX, one instruction can access any 
port in the I/O space. A group of adjacent ports can be accessed 
using a simple software loop that adjusts the value in DX.

Figure 34: I/O Port Addressing

Boot ROM The boot ROM has up to 16K of memory. When the 8088 is reset or
powered on, the microprocessor goes to the highest memory area 
and begins to execute code in the boot ROM. The boot ROM 
performs basic initialization of all hardware in the machine. It then 
tries to read the boot software in the disk drives, which contains the 
operating system. The boot software is loaded into the processor’s 
system random access memory (RAM). When this process is 
completed, the boot ROM jumps into the operating system and begins 
executing in the operating system.

INPUT/OUTPUT (I/O) The I/O function consists of serial ports, a parallel port, a control 
FUNCTIONS port, an audio input/output function, and a keyboard port.

35



Serial Ports The standard configuration includes two full-duplex, serial 
communications ports. The serial ports are independent and are 
controlled by a single chip, the NEC 7201. These ports support the 
RS-232 standard serial interface and can be programmed for 
asynchronous and for more advanced protocols (e.g., SDLC and IBM 
binary synchronous communications). Each port is capable of running 
with an internally generated bit clock (or clocks) supplied by an 
external source (usually the MODEM). The clock selection is made 
under software control. There is a programmable bit clock generator 
for each channel to provide clocking if the internal mode is selected 
(channels 0 and 1 of the 8253 timer chip are used for this purpose).

Parallel Port The parallel port is a dual function port supporting parallel Centronics 
and IEEE 488 interfaces. It is software configurable so as to support 
these interfaces. The Centronics interface is an 8-bit parallel output 
interface to standard printers and other devices; the IEEE 488 
interface is an instrumentation interface. Initially developed by 
Hewlett-Packard, the IEEE 488 interface allows for multiple 
independent devices and for better control and more advanced 
functions than does the Centronics port. The parallel port is buffered • 
with the standard IEEE 488 drivers.

Control Port The control port Is a series of stake pins on the main logic assembly 
that contain I/O lines from a 6522 I/O chip. There are two complete 
8-bit I/O control ports. Each pin can be configured for input or output 
(to drive one standard TTL load).

Each 8-bit port has two handshake control lines. The only pin on the 
control port dedicated to another function is the most significant bit 
(MSB) of port B. This pin is dedicated to the audio clock that controls 
the sample rate for the audio. When the Codec audio is in use, the 
MSB is active.

The control port also has a light pen connection which connects to 
the CRT controller chip and to +12V, -12V, +5V, and ground signals. It 
supplies minimum power to an external device.

Audio Section The audio section can generate voice, tones, bells, or other sounds 
through the speaker in the processor unit. The sounds are stored in a 
specially coded digitized form in the computer memory. The volume 
level of sounds generated by the processor unit can be controlled 
through software or directly with special keys on the keyboard. With 
additional hardware, the audio section also supports input from 
external analog sources, allowing digital recording of sounds for future 
playback.

As shown in Figure 35, the sound output function acts basically as a 
pipeline from the CPU to the speaker. Sound in digital byte form is 
stored in the CPU memory. The CPU transfers the sound bytes to the 
synchronous serial data adapter (SSDA). The SSDA converts the 
bytes into a serial bit stream of data to feed to the coder/decoder 
(Codec). The Codec converts the serial data into a varying analog 
signal. The analog signal is sent through a low pass filter to remove 
any high frequency noise generated in the digital-to-analog 
conversion in the Codec. The filtered analog signal is sent into a 
volume-control section. The volume-control section switches the

36



analog signal at a variable on-to-off rate, allowing the sound level to 
be controlled. The analog signal is finally sent through an audio 
amplifier to the. speaker in the processor unit.

DEB!

VOLUME PULSES

SAMPLE CLOCK

Figure 35: Audio Section Block Diagram

The synchronous serial data adapter (SSDA) is the major interface 
between the CPU and the audio section. The main function of the 
SSDA in playback mode is the buffering and conversion of 8-bit bytes 
into a serial bit stream for the Codec. In the record mode, the SSDA 
also converts a serial bit stream from the Codec into bytes for the 
CPU.

The SSDA is a 6852 I/O chip. The SSDA's control and data resisters 
are memory-mapped in the CPU's high memory space. The SSDA 
contains a 3-byte FIFO register buffer. The FIFO allows the CPU to fill 
the SSDA with three bytes of data and then perform other processing 
while the SSDA shifts bits out to the Codec. This reduces processor 
overhead while the processor is playing or recording sounds. The 
SSDA first shifts the data to the Codec's least significant bit. The 
SSDA control registers then tell the CPU that the FIFO is ready for 
more data. The SSDA also provides playback/record (decode/ 
encode) control via its "DTR” output.

The CPU controls the sound quality of the audio section with the shift 
clock sent to the SSDA and the Codec. The shift clock is generated 
in one of the CPU's 6522 I/O chips. The PB7 output from the 6522 is 
controlled by an internal timer, which provides adjustable clock 
frequency. The higher the frequency of the shift clock, the better the 
sound quality. Because faster shift clocks require more memory to 
store the sound bytes, a trade off must be made between sound 
quality and memory storage. A shift clock of 16Khz will produce 
telephone quality reproduction of the original sound with each second 
requiring 2K bytes of storage.

The Codec converts digital data into analog signal in the playback 
mode and analog signal into digital data in the record mode. The 
Codec uses a technique known as delta modulation to convert the 
serial bit stream into analog output. The digital data’s 0’s and 1 's are 
commands to the integrator in the Codec to make its analog output 
signal "go up” or “go down” respectively. The serial bit stream 
represents the direction for the analog output signal.

37



To increase dynamic range, continuously variable slope delta
modulation (CVSD) is used. An outstanding characteristic of CVSD is 
its ability, with fairly simple circuitry, to transmit intelligible voice 
sounds at relatively low data rates. CVSD increases the dynamic 
range by "companding” (compressing-expanding), which gives small 
signals a higher relative gain. The CVSD scheme detects three or 
more consecutive 0’s or 1 s in the data stream. When this occurs, the 
gain of the integrator is adjusted to ramp faster to track larger signals. 
Up to a limit, the more consecutive 1’s or 0’s, the larger the obtained 
ramp amplitude, and the better the reproduction of the original sound.

The low pass filter removes unwanted high frequency noise generated 
in the CODEC. The filter is set for a 3KHz cutoff frequency. This limits 
sounds to the normal voice bandwidth.

Volume is controlled by varying the duty factor of the analog signal 
from the filter. The CPU controls the volume level by switching the 
analog signal on and off at a frequency above the audible range. A 
minimum of 20KHz is recommended. The CPU uses a 6522’s shift 
register in a recirculating output mode to generate the duty cycle for 
the volume control. This allows selection of seven different volume 
levels (and also off).

The final stage is a four watt audio power amplifer which drives the 
speaker mounted in the disk drive subassembly. A large speaker can 
be attached to produce more sound output.

Keyboard Interface There are six signals, or lines, going to the keyboard from the 
processor. A +5V supply and a ground signal power the keyboard. A 
shield line shields the keyboard from static and interference. There 
are three signal lines: ready, data, and acknowledge.

The ready, data, and acknowledge lines control communications 
between the keyboard and the processor. The keyboard sends data 
to the microprocessor serially. The keyboard acknowledges or signals 
to the processor that a key signal has been received and is ready to 
be sent to the processor. It does this with a keyboard ready line. 
When the processor is ready, it handshakes the data in via the 
acknowledge line and the data comes across on the keyboard data 
line.

The keyboard uses the serial shift register capabilities of a 6522 
Interface chip to communicate with the microprocessor. This function 
is handled automatically by the 6522 until the whole key identifier has 
been received into the shift register. Then the processor reads the 
key identifier, and handshakes the final check bit sequence.

See Chapter 4, "Keyboard Unit,” for a more detailed description of the 
keyboard interface.

DISK INTERFACE The signals sent to the disk interface are 8-bit data lines, read/write 
signals, selection logic signals, and addressing and control signals. 
They control, send information to, and receive information from the 
disk drive assembly. A connector on the main logic assembly 
connects to the drive assembly through a cable. The main logic 
assembly and microprocessor control the drives with these signals 
while receiving and sending data to the drive assembly.

38



EXPANSION BUS The main logic board supports expansion of the system through four 
female 50-pin edge connectors. These connectors provide an 
interface for memory expansion boards and special control boards. 
Some of the control boards are highspeed network systems, hard disk 
controller interfaces, and I/O expansion boards for use with science- 
related applications. The expansion bus has a set of data lines, 
addressing lines, control lines, and power lines capable of driving any 
expansion interface. Additional expansion capabilities provide 
external-device access to memory internal to the main logic 
assembly.

DISPLAY Standard raster scanning techniques are used to display 
information on the screen. The most common mode of operation is 
the text mode, which displays 80 character cells horizontally by 25 
lines vertically. This means that an electron beam, scanning 
horizontally, divides the screen into scan lines. The lines are scanned 
from left to right and top to bottom.

As the beam scans left to right, the CRT controller generates 
addresses for the screen buffer RAM'. The CRT controller selects 
words from the screen buffer memory, determining the type of 
character and the attributes to be displayed. A character cell is 10 
dots wide by 16 scan lines high in the text mode. These characters 
are RAM-mapped and programmable.

The lower 128K bytes of RAM (as well as the 4K bytes from F0000 to 
FOFFF) is dual port memory. One port of the lower 128K bytes of 
RAM is used by the display hardware to refresh the raster-scan 
display. The dual-port memory is managed by an arbitrator circuit that 
guarantees one refresh access to the display RAM every character 
cell time. The arbitrator circuit adds a wait-state to any 8088 memory 
cycle if this is necessary to isolate it from the display-refresh cycle. 
The display circuit manages the memory-refresh in the dual port on
board dynamic RAM.

Figure 36: Display System Block Diagram

HORZ SYNC

VERT SYNC

VIDEO

39



Screen Buffer The screen buffer is a section of memory 2000 words in length (it is 
mapped at addresses F0000 through FOFFF).

The words are arranged linearly. The first word in the screen buffer 
defines the top leftmost character on the screen. The next word in 
the screen buffer defines the next character on the screen, reading 
left to right, and etc. All of the characters on the screen are defined 
in the screen buffer prior to display.

Figure 37: Display Operation

FONT POINTER The words in the screen buffer are broken into two 
pieces. The lower 11 bits comprise the font pointer. The upper five 
bits are attribute bits. The font pointer contains binary address 
information. Up to 2048 characters, or font cells, can be displayed 
on the screen.

40



ATTRIBUTE BITS There are five attribute codes associated with 
each character. Four of these attribute bits are used for reverse 
video, underline/strikeover, high/low-intensity, and nondisplay. The 
other bit is available for user software or external hardware.

Each character on the screen is affected by the attributes in the 
upper 5 bits. Each attribute bit is independent of the other bits.

Reverse Video The reverse video attribute displays black characters 
on a white background. This affects all the dots in every character, 
including underline and other modes.

Display Hlgh/Low Intensity The high/low intensity attribute displays 
a character in high intensity (enhanced mode), or in low intensity.

Display Underllne/Strikeover The underline/strikeover attribute 
works in conjunction with the font cell control bit mentioned above. 
One bit in a font cell word determines where the underline/strikeover 
occurs (this is discussed later, in “Font Cell”). Underline creates a 
solid line through the character cell; thus, text underlining is 
programmable. It can also be used as a strikeover if the underline 
control bit is in the middle of the character rows. The strikeover is 
displayed on the screen and superimposed on the character when 
the attribute is turned on.

Nondisplay Attribute The nondisplay attribute suppresses dot information 
so that the character is not displayed on the screen.

Software Attribute The software is available for software application 
program use to identify special fields on the screen, mark the end of 
lines, or mark special text in an editor. It is not used for display 
generation functions.

The character and attribute bits are organized into words. The lower 
11 bits of each word define which of the 2048 possible characters 
(font cells) is placed at that location on the screen. The upper five 
bits identify attributes. These words are on even address boundaries. 
The 80-character-by-25-line display occupies 2000 words (4000 
bytes) of the screen memory.

The five attribute bits are sent to the video control section. The video 
control section adds the reverse video, intensity, cursor, underline, 
and nondisplay functions, according to the attribute bits.

The lower 11 bits are the font cell code. The font cell code has other 
address bits added to it—five lower bits and four upper bits—to 
generate a font cell address. The first four of the five lower bits, one 
through four, are the raster row. Using this binary code, 16 raster 
rows—the number of raster rows in a standard character—can be 
addressed.

The lower bit, bit 0, is the byte address bit. It is always a zero 
because words in memory for the font cell are being addressed.

41



Font Cell

The upper four bits select the 64K block of memory in which the font 
cells are located. The font cell RAM is limited to the lowest 128K of 
memory, so bit 17 through bit 19 are always zero.

When bit 16 is zero, it selects the lower 64K of memory. When bit 16 
is one, it selects the next block of 64K of memory. This 15-bit 
address, bits 19 to 5, is the base of the font cell address. The display 
hardware then appends this address to the raster row being scanned. 
It takes the addressed word out of the font cell memory and passes it 
to the video shift register. The word is then processed through 
attribute control and out to the display.

Characters are generated using a high-density dot matrix 
technique resulting in a high-resolution display of characters on the 
screen. This technique uses a font cell as the basic structure within 
which characters are developed for display. The font cell is a 
sequential block of 16 words that are accessed to form a dot matrix 
16 bits wide and 16 raster rows high.

The first word’s least significant bit (LSB) is displayed at the top 
leftmost position of the font cell display. The second word's LSB is 
displayed at the leftmost position on the second line, and so forth, 
through all 16 scan lines. Ten dots of the 16-bit wide cell are 
displayed on each line. The remaining six dots of each word, which 
are most significant bits (MSBs), are not displayed.

The underline/strikeover control bit is the MSB of each font.

In normal mode, a bit value of 1 displays a white dot, and a bit value 
of 0 displays a black dot (in reverse video mode, the reverse is 
displayed). A word, which consists of 16 bits, defines the condition of 
each dot in the matrix (see Figure 38).

' - Underline/Strikeover Bit

Figure 38: Font Cell Example
MSBLSB

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0

1 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

2 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0

3 0 0 1 1 0 o 0 1 1 0 0 0 0 0 0 0

4 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0

5 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0

6 0 0 1 1 1 1 1 1 o 0 0 0 0 0 0 0

7 0 0 1 1 o o 0 1 1 0 0 0 0 0 0 0

8 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0

9 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0

10 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0

11 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

42



Display Brightness

Display Contrast

LSB MSB

Figure 39: Block Diagram of a Font Cell

To summarize, the CRT controller chip generates word addresses in 
the screen buffer memory. A portion of each word contains the 
attributes, which are passed to the video output section. Another 
portion of each word is the font cell code, which, when combined with 
other bits, generates a font cell address. The word at this font cell 
address is loaded into a video shift register which turns the parallel 
word into serial bits and passes it to the video output section, where 
it is combined with the attribute functions. The CRT controller chip 
also generates the horizontal/vertical signals that go to the display.

Overall display brightness is software adjustable. Brightness may be 
adjusted to one of eight different levels by setting the brightness 
control bits (PB2, PB3, and PE4 of the 6522 at E8040) to the binary 
value corresponding to the desired level. The binary values range 
from zero to seven, in order of increasing brightness.

Display contrast is also software adjustable. The contrast function 
controls the difference in intensity between high- and low-intensity 
characters. Only the intensity of the low-intensity characters is varied 
by the contrast function. Contrast may be adjusted to one of eight 
levels by setting the binary value of the desired level in the three 
contrast control bits (PB5, PB6, and PB7 of the 6522 at E8040). The 
binary values range from zero to seven, in order of increasing 
contrast (a binary value of zero causes no difference in contrast).

HIGH RESOLUTION 
MODE

A bit-mapped high-resolution mode is configured for 800 by 400 dots 
of bit-addressable display. In this mode, the reverse video, high/low- 
intensity, and nondisplay attributes apply to fixed 16- by 16-dot cells 
on the screen, and the underline/strikeover attribute is disabled.

The high-resolution mode makes special use of the font cell graphics. 
The output line (HIRES) controls the font cell width. When high, this 
line enables the 16-dot matrix, which displays all 16 bits of each font 
cell word. In this mode, the screen is organized into a 50-column by 
25-line display.

43



To use the bit-mapped display mode, the screen buffer is filled with 
font cell pointers which address successive font cells, by column. For 
example, if line 1/column 1 addresses font cell N, line 2/column 1 
would address font cell N+1, and line 25/column 1 would address 
font cell N+24. Line 1/column 2 would address font cell N+25, and so 
forth. Line 25/column 50 which would address font cell N+1249. The 
font cell memory is directly manipulated, without further modification 
to the screen buffer.

In high-resolution mode, the programmer’s view of the screen is 
20,000 contiguous words of bit-mapped dots organized into 16-bit 
wide columns, going from top to bottom, and left to right as word 
addresses increase.

DISK DRIVE 
ASSEMBLY

As shown in Figure 40, the disk drive assembly is comprised of two 
floppy disk drive mechanisms, a disk drive interface board, and a 
chassis which also contains a speaker. The disk drive assembly 
provides the system with a minimum of 1.2 million bytes (formatted) of 
auxiliary storage.

Figure 40: Disk Drive Assembly

44



The standard drive units are 5-1/4 inch, 80-track mechanisms, which 
operate with single-sided media. Track density is 96 tracks per inch, and 
recording density is maintained at approximately 8000 bits per inch on all 
tracks.

FUNCTIONAL
DESCRIPTION The disk drive interface board provides all the low level operations 

required to convert binary information for storage on and retrieval 
from diskette. Status and drive control interface to the drives is also 
provided on the disk drive interface board.

The processing unit maintains functional control of the disk drive assembly.

Reading Data The 8088 CPU transfers data from the disk to memory as byte-by- 
byte read operations. Before the data is transferred, the drive motor 
for the drive containing the disk is started, and the head is positioned 
to the correct track. The GCR read circuit provides sync detection 
and separation. (Sync is a special GCR pattern that does not occur in . 
normal data fields. The sync pattern consists of 10 ones during a byte 
time; other GCR patterns cannot contain more than 8 ones during a 
byte time.) When the GCR read circuit detects a sync mark, it starts a 
counter that causes an interrupt to be sent to the CPU, if sync 
remains present for 6 byte times. This interrupt to the CPU, which is 
called SYN and is on the highest level interrupt input line to the 
interrupt controller, informs the CPU that a header sync mark has 
been detected.

HEADER SEARCH When a sync interrupt occurs while the CPU is 
searching for a sector, the CPU enters the controller software that will 
compare the sector header information with the sector requested (the 
sector header contains the data block ID, track numbers, the sector 
number, and the checksum). This compare function is performed by 
the CPU on a byte-by-byte basis. The GCR read circuit provides a 
data byte every 21.3 microseconds. In order to be able to keep up 
with the high data rate, the CPU uses a special instruction (WAIT) 
that stops processing until a byte-ready strobe occurs on the test 
input. The CPU then continues processing by reading the latched 
data byte and comparing it with the requested sector information.

If the sector is not the correct sector, the CPU returns from the 
interrupt and continues processing until the next header sync 
interrupt. Once the desired sector header has been found, the data 
transfer can begin.

DATA TRANSFER Before the CPU can read the data block of a 
sector, the clock recovery circuitry must be resynchronized. This is 
required because the data block is updated and can be written at any 
random phase relative to the header information. The data block sync 
mark is only 5 bytes long and is not detected by the header sync 
mark detection circuit (header sync marks must be at least 6 bytes in 
length). The CPU polls the sync input line until the data block sync is 
detected and then verifies that the byte following sync—the data 
block IO byte—is correct. If it is not correct, a “not data block IO 
error” is generated, and no data is transferred. Using the WAIT

45



instruction, the CPU then transfers the following 512 bytes of sector 
information to the present destination in memory. As the CPU moves 
the data to memory, it also computes the checksum. This resulting 
checksum is then compared with the checksum recorded in the data 
block. If the checksums match, the data transfer is correct; otherwise, 
error recovery by the CPU is needed.

Writing Data Data transfer from memory to disk is performed by the CPU in much 
the same manner as for read operations. The disk drive motor is 
started and set to the proper speed, and the head is positioned at the 
correct track by the controller software. The CPU does a header 
search using the method described earlier in “Reading Data.” When 
the desired header is matched, the CPU starts an update operation of 
the data portion of the sector and, before turning on the write current, 
times the GAP1 area. The 5-byte data block sync area is written. 
Next the 10-byte data block, and then 512 bytes of sector data are 
written from the preset location in memory. As the data is written, the 
CPU also creates the 2-byte checksum, which is written at the end of 
the data section.

The CPU also controls the trim erase timing of the read/write head. 
The purpose of trim erase is to erase any remaining portion of the old 
data section that was recorded from the sides of the new data 
section. At the end of the update, the write current is turned off, and, 
about 31 byte times later, the trim erase is turned off.

Verification In order to ensure reliable data storage, all sector updates are 
followed by a verify operation. A verify operation is similar to a read 
operation, except that the data in memory is compared to the read 
disk data being transferred to memory. If any of the bytes do not 
compare correctly with the data in memory, an error is flagged, and 
an error recovery is performed by the CPU.

Formatting A blank or new diskette must be formatted before it can be used. 
(Some programs, such as DCOPY, perform the formatting function 
implicitly.) Formatting is done by writing control information and 
dummy data blocks to all 80 tracks on the disk (see the “Track 
Format" and “Sector Format” sections under “Physical Description”). 
The format is a variable number of sectors per zone in soft sectored 
format. In order to achieve maximum speed tolerance on each 
diskette, the CPU performs an adaptive format procedure. Diskette 
speed variation (from unit to unit) causes the number of bytes on a 
track to vary. During format this problem is solved by always 
providing a fixed number of unused bytes to allow for the worst case 
speed. Instead of allowing the unused bytes to be wasted, the format 
procedure measures the size of the first track in each zone and then 
adjusts the gap to the size of the sector format. This causes the 
physical sector size to remain constant regardless of diskette speed 
during format. This method allows the maximum possible tolerance to 
speed variation without requiring a gap at the end of the track to 
allow for speed variation. The technique makes better use of 
the unused space by distributing it and using the additional intersector 
time to achieve stabilization of the clock recovery circuitry.

Refer to “Speed Control” and “Motor Speed Control” for more details 
on speed control.

46



Positioning The head positioning mechanism for each drive is a four-phase 
stepper motor. The disk drive interface has drivers for each stepper 
motor which are controlled directly by the CPU. By properly 
sequencing the four phases of the stepper motor, the CPU can move 
the head of each drive in or out. All timing and control is done in 
software by the CPU. To reduce power consumption, the stepper 
motors are energized only when the drive is active; otherwise they are 
turned off by the CPU. The independent stepper drivers allow the 
CPU to perform overlapping seeks, resulting in higher system 
performance.

Speed Control In order to attain maximum data capacity, the media passes under 
the head at a constant linear velocity. To attain this, the rotational 
period is varied as the radius of the track changes. The disk 
rotational speed is selected by the CPU. The actual speed control is 
performed by a single chip computer on the disk drive interface 
board. The CPU communicates with the speed control processor 
(SCP) by an eight-bit port. On system powerup, the SCP uses a 
default speed table that allows the system to boot. Once the 
operating system software is loaded, the CPU writes a new speed 
table to the SCP that allows it to operate with the current 512-byte 
sectors. The SCP can be programmed with up to 15 different speeds.

PHYSICAL 
DESCRIPTION

The disk interface board contains the circuitry necessary to control 
both of the integrated system disk drives. This circuitry consists of 
drive motor speed control, read/write head positioning, data decoding 
and encoding, read channel electronics, and write channel 
electronics. The interface board receives functional control from the 
processor unit through a dedicated I/O bus.

Motor Speed Control The traditional approach to storing data on floppy disks is to write 
data (using some encoding scheme) at a fixed rate, while rotating the 
disk at a constant speed. This results in several undesirable 
characteristics. Three major undesirable characteristics that were 
addressed are wasted capacity, large variation in the read signal 
amplitude, and low system tolerance to motor speed variation.

Since the circumference of the outermost track on the floppy is larger 
than the circumference of the innermost track (and, in fact, larger 
than all other tracks) the recording density on the outermost track is 
lower than on the innermost. The major limiting factor in recording on 
magnetic media is bit density (actually, flux reversal density), which 
means that the outer tracks contain less data than the inner tracks, 
unless adjustment is made to accommodate this problem.

Also, when the disk is rotated at a constant speed or RPM, the linear 
velocity of the head relative to the media varies from track to track. 
Since the amplitude of the recorded signal is partly a function of 
speed, the signal amplitude varies greatly from the outermost track 
(where it is highest) to the innermost track. This results in a read 
channel that has a lower signal-to-noise ratio than would be 
obtainable if all tracks were recorded with a constant amplitude 
signal.

47



These two problems are overcome by setting disk rotation speed 
according to the track circumference. This is done in a way 
that maintains a nearly constant bit density and a nearly constant 
linear velocity, hence a constant amplitude signal.

Figure 41: Disk Track and Sector Layout

FLOPPY DISK

Data written to the disk is organized into groups of 512 bytes (plus a 
number of synchronization and control information bytes). These 
groups are called sectors. Although the circumference of each track 
differs slightly, it is not possible to take advantage of the potential 
difference in capacity without using sectors of varying size. Therefore, 
the speed is changed only when this results in enough additional 
capacity for an extra sector. The disk is thus divided into groups of 
tracks, called zones. Each zone, when being read or written, causes 
the disk to rotate at a slightly different speed.

The third problem—low system tolerance to motor speed variations— 
is caused by a phenomena called bit shift or pulse crowding. Bit shift 
occurs during recording at moderately high densities. This introduces 
timing errors in the data transitions during subsequent reads. The 
clock recovery circuitry interprets these variations as motor speed 
error, which reduces the system's tolerance to speed variations of the 
drive motor.

This problem has been reduced by improving the motor speed 
control and using an encoding technique that is more tolerant of bit 
shift error. The disk rotational speed control is accomplished by using 
a crystal-controlled, closed-loop servo system. The servo system 
actually consists of two interacting closed servo loops.

The first servo loop is a fast acting inner loop, which is an analog 
circuit that provides excellent short-term stability. This circuit uses a 
charge-pump technique, which converts tach pulses from the drive 
motor to a voltage. This voltage is compared to a reference voltage, 
and any difference generates a correction in motor speed.

48



The second servo loop (the outer loop) digitally counts a fixed 
number of tach pulses from the motor, and measures the period of 
time that this takes. It then compares this time with the expected 
time. Any difference results in a modification of the reference voltage 
for the inner loop. This is accomplished using a single-chip 
microprocessor (an 8048), which uses the 5 Mhz system clock and 
two (8-bit) digital-to-analog converters (one per drive). Since this 
outer loop is crystal-referenced, it provides absolute long term stability 
and virtually eliminates unit to unit speed differences.

The microprocessor contains a set of speed control tables. These 
tables are initialized to default values at power-on and are reloadable 
by the processor unit.

Data Encoding 
Technique—GCR

To record data on magnetic media, like floppies, the data first has to 
be converted from the internal computer format into a form that can 
be stored and retrieved. This is true because data in the internal 
format may contain long sequences of like bits—either ones or 
zeroes. If data is recorded with more than a few bit times having no 
changes (flux reversals), the characteristics of the read channel make 
it impossible to read back the same signal that was recorded. Also, 
the data is written at a constant frequency (bit rate), but no clock 
signal is written. This means that the clock information must be re
created during subsequent read operations. Even though the disk 
speed is closely controlled (to within 2%), data transitions are required 
periodically to resynchronize the clock recovery circuitry.

An encoding technique called group code recording (GCR) 
is used to convert the data from internal representation to an 
acceptable form. GCR converts each (4-bit) nibble into a 5-bit code 
that guarantees a recording pattern that never has more than two 
zeroes together. Then data is recorded on the disk by causing a flux 
reversal for each "one" bit and no flux reversal for each "zero" bit.

Read Channel The read channel consists of a magnetic pickup (read/write head), 
an amplifier section, a clock recovery section, a serial to parallel 
converter, and a 10-bit to 8-bit (GCR to internal form) conversion 
section.

The read/write head picks up a low amplitude (approximately 2 to 8 
millivolts) signal from the disk. This signal is amplified differentially (to 
minimize the effects of common mode noise), and pass-band filtered 
(to reduce noise at frequencies other than those of interest). The 
linear output from the filter is passed to the differentiator, which 
generates a wave form whose zero crossovers correspond to the 
peaks of the read signal (these peaks occur approximately where the 
flux reversals take place during the write). Then this signal is fed to 
the comparator and digitizer circuitry. The comparator and digitizer 
circuitry generate a 1-microsecond read data pulse, corresponding to 
each peak of the read signal. These pulses serve two purposes: first, 
each of these pulses represents a "one” bit and so sets the serial 
data latch (to one); second, these pulses are used by the clock 
recovery circuit to keep a phase-locked loop (PLL) synchronized to 
the data being read from the disk. At each clock cycle (bit time), the 
serial data latch is shifted into the serial to parallel converter, and the 
serial data latch is reset (to zero).

49



When 10 bits have been shifted into the serial to parallel converter, 
the data is converted back into the original 8-bit byte. This data byte 
is latched, and a signal is sent to the processor unit that a byte is 
ready to be read.

Write Channel The write channel consists of an 8-bit to 10-bit (internal form to GCR) 
code conversion section, a parallel to serial converter, write/erase 
current control, and the read/write head. The write circuitry is 
configured so that it is impossible to enable the write current if the 
diskette is write-protected. The write circuitry also initializes to read 
mode at power-up, and is prevented from writing until the power has 
stabilized.

Sector Format Figure 42 illustrates sector format; Table 6 describes the parts of the 
sector

Figure 42: Sector Format

HEADER
SYNC

HRD TRK SEC CHK- GAP
ID ID ID SUM 1

DATA
SYNC

DATA
ID

DATA 
BYTES

CHK-
SUM

GAP
2

15 BYTS 10 BYTS 5 BYTS 1
BYTS

p

512 BYTS

M p

2 BYTS

1 F

25 BYTS

■■■■■■■■■■■aBMSEasnnBBBiBaBMMHaHBaBHaagDsaa
Table 6: Sector Components

COMPONENT DESCRIPTION

Header sync This sync mark synchronizes the PLL and causes sync 
detect interrupts to be sent to the CPU.

Sector header
(header ID, track ID, sector 
ID, and checksum)
Gap 1

This area of 4 bytes contains sector indentification 
information.

This gap allows time for the CPU to process the sector 
header in formation and for the read/write head to clear 
the header for an update.

Data Sync This sync mark synchronized the PLL and indicates the 
start of the data field.

Data field
(data sync, data ID, data 
bytes, and checksum)
Gap 2

This is the useful data content of the sector for error 
detection if a 2-byte checksum is used.

This'gap allows for speed variation during an update so 
that the next sector sync mark is not overwritten.

50



Track Format Table 7 presents track format:

Table 7: Track Format

ZONE 
NUMBER

TRACK NUMBERS
LOWER HEAD 
(STANDARD)

UPPER 
HEAD

SECTORS
PER TRACK

ROTATIONAL
PERIOD (MS)

0 0-3 (unused) 19 237.9
1 4-15 0-7 18 224.5
2 16-26 8-18 17 212.2
3 27-37 19-29 16 199.9
4 38-48 30-40 15 187.6
5 49-59 41 -51 14 175.3
6 60-70 52-62 13 163.0
7 71 -79 63-74 12 149.6
8 unused 75-79 11 144.0

Physical Bus Interface

POWER SUPPLY

The disk drive interface board connects to the CPU board via a 50- 
pin ribbon cable. This cable carries the data bus, address lines, and 
control signals needed to interface to the three 6522’s on the 
interface board. All the I/O ports of the CPU System are memory
mapped, allowing more efficient I/O operations.

The power supply for is designed for operational and equipment 
safety, single-switch operation, and data protection.

The power supply is a 4 voltage regulator with one +5V output, two 
+12V outputs, and one -12V output. Overall feedback regulates all 
outputs by sensing the +5V. The -12V output and one of the +12V 
Outputs have independent series regulators.

The power supply provides 6 amps of +5V +2%, 2 amps of +12V 
±5%, 1.5 amps of +12V ±5%, and .2 amp of -12V ±5%. The 
operating range is 90-137Vac or 190-270Vac. The range may be 
selected and strapped by jumper wire. The power supply operates at 
47-63 Hz. All power levels are regulated with overvoltage and 
overcurrent protection.

Line filters provide noise/ripple suppression and conducted/radiated 
radio frequency energy reduction.

When the power supply is shorted or overloaded, fold-back limiting 
occurs, preventing overheating. The unit withstands shorted output for 
an indefinite period and transients of up to 6000V peak. The power 
supply absorbs transients without causing any deviation at the output.

As shown in Figure 43, the power supply is in a shielded case, 
housed in the rear of the processor unit. The power supply module 
contains a fuse, a power switch and a line filter connector which 
connects to the AC power mains. It powers the processor unit, 
installed options, the display unit, and the keyboard unit. A 4-inch fan, 
mounted in the right rear of the processor unit, provides cooling air 
flow.

51



Figure 43: Processor Unit

52



DISPLAY UNIT





3. DISPLAY UNIT

The video display unit is supported by a swivel ramp and fits on top 
of the processor unit. The swivel ramp permits the video display unit 
to be swiveled right or left and to be tilted up or down. A fabric grid 
on the face of the CRT reduces glare and reflection and increases 
character contrast.

A coiled cord with a locking connector plugs the video display unit 
into the processor unit. The cord carries power and video signals, 
sync signals, and brightness control signals to the video display unit.

The video display system uses +12V power at approximately 1.2 
amps. The horizontal sweep rate is approximately 15KHz. A vertical 
refresh rate of 76 Hz, or. 76 frames per second, prevents visual flicker.

An interlace method of display is used. Each frame contains half the 
picture. This is very similar to what happens on a conventional 
television and permits a high-resolution 400-line vertical capability.

Display brightness and contrast are both software adjustable. 
Brightness, controlled by signals sent from the processor unit's 
display section, may be varied to two intensities. Contrast is controlled 
on the main logic board of the processor unit. The user may select 
eight levels of contrast from the keyboard.

53





KEYBOARD UNIT





4. KEYBOARD UNIT

The function of the keyboard is to generate and send coded electrical 
signals to the processor unit as each key is depressed or released. 
The keyboard is entirely reconfigurable.

The keyboard unit is approximately 19 inches wide, 1.8 inches high, 
and 6.4 inches deep. It is connected to the rear of the processor unit 
by a coiled cord.

The key switch is a high reliability capacitive-type switch on the 
keyboard. There is no mechanical contact. The signal is detected 
electrically, so the switch has a very long life.

Key surfaces are sculpted for comfortable typing. Key caps are 
removable and interchangeable, facilitating service and allowing the 
keyboard to be customized.

The keyboard unit is organized into five key groups. The central key 
group is arranged in a standard typewriter configuration. A 
numeric/calculator keypad is located at the far right of the keyboard. 
The general function keys across the top row are double-sized and 
can be defined for specific purposes by applications programs. A 
single column of specific function keys are located on the far left of 
the keyboard. Editing and cursor-control function keys are located in 
a double column between the typewriter keyboard and the 
numeric/calculator keypad groups.

The coiled cord is the conduit for all of the keyboard unit’s inputs and 
outputs. The keyboard unit receives power and ground signals, a 
shield signal which protects the keyboard from static discharge and 
radiating noise, and three handshake or data control signals which 
control data transfer from the keyboard to the processor unit.

The comunication between the processor unit and the keyboard unit 
is serial. The transmission is in 9-bit words. The first eight bits are the 
data byte, with the least significant bit transmitted first. The last bit is 
a stop bit.

The keyboard returns key numbers and key status through the eight 
data bits. The most significant bit of the key number returned by the 
keyboard unit is status which flags a key “close" or a key "open.” 
The least significant seven bits are the key number.

A single-chip microprocessor in the keyboard unit scans the keyboard 
for key closures and communicates with the processor unit. Keyboard 
status communicated to the processor unit is completely independent 
of key condition. The microprocessor reports an event, such as a key 
making or breaking contact, and the processor unit determines what 
that key's function is, based on application program definition.



The keyboard unit processor has an event buffer. It buffers events in 
case activity is going on in the processor unit that prevents it from 
servicing all the event signals coming in.

The communication protocol is accomplished through the use of three 
signal lines. The first control line passes the data serially. The second 
control line from the keyboard indicates to the processor unit that an 
event signal is ready, and the processor unit acknowledges this, using 
the third signal as a handshake. This return line from the processor 
unit to the keyboard unit is called the acknowledge line. It tells the 
keyboard that the processor unit has taken the bit and is making the 
appropriate handshake.

A protocol is defined for handling overflow problems (when the 
keyboard unit overflows its buffer). The protocol allows the keyboard 
to enter a “hold-off” state, thus permitting the processor to complete 
an activity without losing any event signals.

The keyboard can be made to time-out and retransmit event signals 
in case of an error or a problem in the handshake. The keyboard 
processor supports N-key rollover, which means that status is 
reported as the keys are depressed and as they are released. As 
long as the event queue doesn’t overflow and the processor unit 
keeps up with the event queue, an unlimited number of keys can be 
rapidly depressed.

56



APPENDIXES





Appendix A 8088 INSTRUCTION SET

INTRODUCTION The 8086 and 8088 execute exactly the same instructions. This 
instruction set includes equivalents to the instruction typically found in 
previous microprocessors, such as the 8080/8085. Significant new 
operations include:

► Multiplication and division of signed and unsigned binary numbers 
as well as unpacked decimal numbers

► Move, scan, and compare operations for strings up to 64K bytes in 
length

► Nondestructive bit testing

► Byte translation from one code to another

► Software-generated interrupts
► A group of instructions that can help coordinate the activities of 

multiprocessor systems

These instructions treat different types of operands uniformly. Nearly 
every instruction can operate on either byte or word data. Register, 
memory, and immediate operands may be specified interchangeably 
in most instructions (except, of course, that immediate values may 
only serve as source and not destination operands). In particular, 
memory variables can be added to, subtracted from, shifted, 
compared, and so on, in place, without moving them in and out of 
registers. This saves instructions, registers, and execution time in 
assembly language programs. In high-level languages, where most 
variables are memory based, compilers, such as PL/M-86, can 
produce faster and shorter object programs.

The 8086/8088 instruction set can be viewed as existing at two 
levels: the assembly level and the machine level. To the assembly 
language programmer, the 8086 and 8088 appear to have a repertoire 
of about 100 instructions. One MOV (move) instruction, for example, 
transfers a byte or a word from a register or a memory location or an 
immediate value to either a register or a memory location. The 8086 
and 8088 CPUs, however, recognize 28 different MOV machine 
instructions (“move byte register to memory,” "move word immediate 
to register,” etc.). The ASM-86 assembler translates the assembly
level instructions written by a programmer into the machine-level 
instructions that are actually executed by the 8086 or 8088. 
Compilers such as PL/M-86 translate high-level language statements 
directly into machind-level instructions.

The two levels of the instruction set address two different 
requirements: efficiency and simplicity. The numerous—there are 
about 300 in all—forms of machine-level instructions allow these 
instructions to make very efficient use of storage. For example, the

All mnemonics with ©Intel Corporation 1981

57



DATA TRANSFER 
INSTRUCTIONS

machine instruction that increments a memory operand is three or 
four bytes long because the address of the operand must be encoded 
in the instruction. To increment a register, however, does not require 
as much information, so the instruction can be shorter. In fact, the 
8086 and 8088 have eight different machine-level instructions that 
increment a different 16-bit register; these instructions are only one 
byte long.

If a programmer had to write one instruction to increment a register, 
another to increment a memory variable, etc., the benefit of compact 
instructions would be offset by the difficulty of programming. The 
assembly-level instructions simplify the programmer’s view of the 
instruction set. The programmer writes one form of the INC 
(increment) instruction and the ASM-86 assembler examines the 
operand to determine which machine-level instruction to generate.

This section presents the 8086/8088 instruction set from two 
perspectives. First, the assembly-level instructions are described in 
functional terms. The assembly-level instructions are then presented 
in a reference table that breaks out all permissible operand 
combinations with execution times and machine instruction length, 
plus the effect that the instruction has on the CPU flags.

The 14 data transfer instructions (Table A-1) move single bytes and 
words between memory and register as well as between register AL 
or AX and I/O ports. The stack manipulation instructions are included 
in this group as are instructions for transferring flag contents and for 
loading segment registers.

Table A-1: Data Transfer Instructions

All mnemonics ©Intel Corporation 1981.

GENERAL PURPOSE

MOV Move byte or word
PUSH Push word onto stack
POP Pop word off stack
XCHG Exchange byte or word
XLAT Translate byte

INPUT/OUTPUT

IN Input byte or word
OUT Output byte or word

ADDRESS OBJECT

LEA Load effective adress
LOS Load pointer using DS
LES Load pointer using ES

FLAG TRANSFER

LAHF Load AH register from flags
SAHF Store AH register in flags
PUSHF Push flags onto stack
POPF Pop flags off stack

58



GENERAL PURPOSE 
DATA TRANSFERS

MOV destination, 
source

MOV transfers a byte or a word from the source operand to the 
destination operand.

PUSH source PUSH decrements SP (the stack pointer) by two and then transfers a 
word from the source operand to the top of stack now pointed by SP. 
PUSH often is used to place parameters on the stack before calling a 
procedure; more generally, it is the basic means of storing temporary 
data on the stack.

POP destination POP transfers the word at the current top of stack (pointed to by SP) 
to the destination operand, and then increments SP by two to point to 
the new top of stack. POP can be used to move temporary variables 
from the stack to registers or memory.

XCHG destination, 
source

XCHG (exchange) switches the contents of the source and 
destination (byte or word) operands. When used in conjunction with 
the LOCK prefix, XCHG can test and set a semaphore that controls 
access to a resource shared by multiple processors.

XL AT translate-table XLAT (translate) replaces a byte in the AL register with a byte from a 
256-byte, user-coded translation table. Register BX is assumed to 
point to the beginning of the table. The byte in AL is used as an 
index into the table and is replaced by the byte at the offset in the 
table corresponding to AL’s binary value. The first byte in the table 
has an offset of 0. For example, if AL contains 5H, and the sixth 
element of the translation table contains 33H, then AL will contain 
33H following the instruction. XLAT is useful for translating characters 
from one code to another, the classic example being ASCII to 
EBCDIC or the reverse.

IN accumulator, port IN transfers a byte or a word, respectively, to the AL register or AX 
register, from an input port. The port number may be specified either 
with an immediate byte constant, allowing access to ports numbered 
0 through 255, or with a number previously placed in the DX register, 
allowing variable access (by changing the value in DX) to ports 
numbered from 0 through 65,535.

OUT port, 
accumulator

OUT transfers a byte or a word from the AL register or the AX 
register, respectively, to an output port. The port number may be 
specified either with an immediate byte constant, allowing access to 
ports numbered 0 through 255, or with a number previously placed in 
register DDX, allowing variable access (by changing the value in DX) 
to ports numbered from 0 through 65,535).

ADDRESS OBJECT 
TRANSFERS

These instructions manipulate the addresses of variables rather than 
the contents or values of variables. They are most useful for list 
processing, based variables, and string operations.

All mnemonics ©Intel Corporation 1961

59



LEA destination, 
source

LDS destination, 
source

LES destination, 
source

FLAG TRANSFERS

LAHF

LEA (Load Effective Address) transfers the offset of the source 
operand (rather than its value) to the destination operand. The source 
operand must be a memory operand, and the destination operand 
must be a 16-bit general register. LEA does not affect any flags. The 
XL AT and string instructions assume that certain registers point to 
operands; LEA can be used to lead these registers (e.g., loading BX 
with the address of the translate table used by the XL AT instruction).

LDS (Load pointer using DS) transfers a 32-bit pointer variable from 
source operand, which must be a memory operand, to the destination 
operand and register DS. The offset word of the pointer is transferred 
to the destination operand, which may be any 16-bit general register. 
The segment word o,f the pointer is transferred to register DS. 
Specifying SI as the destination operand is a convenient way to 
prepare to process a source string that is not in the current data 
segment (string instructions assume that the source string is located 
in the current data segment and that SI contains the offset of the 
string).

LES (Load pointer using ES) transfers a 32-bit pointer variable from 
the source operand, which must be a memory operand, to the 
destination operand and register ES. The offset word of the pointer is 
transferred to the destination operand, which may be any 16-bit 
general register. The segment word of the pointer is transferred to 
register ES. Specifying DI as the destination operand is a convenient 
way to prepare to process a destination string that is not in the 
current extra segment. (The destination string must be located in the 
extra segment, and DI must contain the offset of the string.)

LAHF (Load register AH from Flags) copies SF, ZF, AF, PF and OF 
(the 8080/8085 flags) into bits 7, 6, 4, 2 and 0, respectively, of 
register AH (see Figure A-1). The content of bits 5, 3 and 1 is 
undefined; the flags themselves are not affected. LAHF is provided 
primarily for converting 8080/8085 assembly language programs to 
run on an 8086 or 8088.

All mnemonics ©Intel Corporation 1981.

60



Figure A-1: String Operation Flow

r------- 1
PREVIOUS i 

INSTRUCTIONS

Sl/DI. CX
AND DF WOULD 
TYPICALLY BE 
INITIALIZED HERE

I NEXT I
' INSTRUCTION '
L J

All mnemonics with ©Intel Corporation 1981

61



SAHF SAHF (Store register AH into Flags) transfers bits 7, 6, 4, 2, and 0 
from register AH into SF, ZF, AF, PF, and CF, respectively, replacing 
whatever values these flags previously had. OF, OF, IF and TF are not 
affected. This instruction is provided for 8080/8085 compatibility.

PUSHF

POPF

PUSHF decrements SP (the stack pointer) by two and then transfers 
all flags to the word at the top of stack pointed to be SP (see Figure 
A-1). The flags themselves are not affected.

POPF transfers specific bits from the word at the current top of stack 
(pointed to by register SP) into the 8086/8088 flags, replacing 
whatever values the flags previously contained (Figure A-2). SP is 
then incremented by two to point to the new top of stack. PUSHF and 
POPF allow a procedure to save and restore a calling program’s 
flags. They also allow a program to change the setting of TF (there is 
no instruction for updating this flag directly). The change is 
accomplished by pushing the flags, altering bit 8 of the memory 
image, and then popping the flags.

Figure A-2: Flag Storage Formats

LAHF,
SAHF

____________________ I______________________ I
™SHF [Uj U,U,U,O,D,I ,T|StZ|U,A tUjPi U,C|

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

|S|Z|U| A|U| P|U i 
>7 6 5 4 3 2 1 0 
K-8080/8085 FLAGS—*
I

U - UNDEFINED; VALUE IS INDETERMINATE 
O = OVERFLOW FLAG
D = DIRECTION FLAG
I = INTERRUPT ENABLE FLAG
T - TRAP FLAG
S = SIGN FLAG
Z - ZERO FLAG
A = AUXILIARY CARRY FLAG
P - PARITY FLAG
C = CARRY FLAG

All mnemonics ©Intel Corporation 1981

62



ARITHMETIC 
INSTRUCTIONS

ARITHMETIC DATA 
FORMATS

8086 and 8088 arithmetic operations (Table A-2) may be performed 
on four types of numbers: unsigned binary, signed binary (integers), 
unsigned packed decimal and unsigned unpacked decimal (see Table 
A-3). Binary numbers may be 8 or 16 bits long. Decimal numbers are 
stored in bytes, two digits per byte for packed decimal and one digit 
per byte for unpacked decimal. The processor always assumes that 
the operands specified in arithmetic instructions contain data that 
represent valid numbers for the type of instruction being performed. 
Invalid data may produce unpredictable results.

Table A-2: Arithmetic Instructions

ADDITION

ADD 
ADC 
INC 
AAA
DAA

Add byte or word
Add byte or word with carry 
Increment byte or word by 1 
ASCII adjust for addition 
Decimal adjust for addition

SUBTRACTION

SUB 
SBB 
DEC 
NEG 
CMP 
AAS 
DAS

Subtract byte or word
Subtract byte or word with borrow.
Decrement byte or word by 1
Negate byte or word
Compare byte or word 
ASCII adjust for subtraction 
Decimal adjust for subtraction

MULTIPLICATION

MUL 
IMUL 
AAM

Multiply byte or word unsigned 
Integer multiply byte or word 
ASCII adjust for multiply

DIVISION

DIV 
I DIV 
AAD 
CBW 
CWD

Divide byte or word unsigned 
Integer divide byte or word 
ASCII adjust for division 
Convert byte to word 
Convert word to doubleword

Table A-3: Arithmetic Interpretation of 8-Bit Numbers

HEX BIT PATTERN
UNSIGNED

BINARY
SIGNED
BINARY

UNPACKED
DECIMAL

PACKED
DECIMAL

07 00000111 7 +7 7 7

89 10001001 137 -119 Invalid 89

05 11000101 197 -59 Invalid Invalid

All mnemonics © Intel Corporation 1981

M



Unsigned binary numbers may be either 8 or 16 bits long; all are 
considered in determining a number’s magnitude. The value range of 
an 8-bit unsigned binary number is 0-255; 16 bits can represent 
values from 0 through 65,535. Addition, subtraction, multiplication, and 
division operations are available for unsigned binary numbers.

Signed binary numbers (integers) may be either 8 or 16 bits long. The 
high-order (leftmost) bit is interpreted as the number’s sign: 
0 - positive, and 1 - negative. Negative numbers are represented in 
standard two's complement notation. Since the high-order bit is used 
for a sign, the range of an 8-bit integer is -128 through +127; 16-bit 
integers may range from -32,768 through +32,767. The value zero has 
a positive sign. Multiplication and division operations are provided for 
signed binary numbers. Addition and subtraction are performed with 
the unsigned binary instructions. Conditional jump instructions, as well 
as an "interrupt on overflow” instruction, can be used following an 
unsigned operation on an integer to detect overflow into the sign bit.

Packed decimal numbers are stored as unsigned byte quantities. The 
byte is treated as having one decimal digit in each half-byte (nibble); 
the digit in the high-order half-byte is the most significant. 
Hexadecimal values 0-9 are valid in each half-byte, and the range of 
a packed decimal number is 0-99. Addition and subtraction are 
performed in two steps. First an unsigned binary instruction is used to 
produce an intermediate result in register AL. Then an adjustment 
operation is performed which changes the intermediate value in AL to 
a final correct packed decimal result. Multiplication and division 
adjustments are not available for packed decimal numbers.

Unpacked decimal numbers are stored as unsigned byte quantities. 
The magnitude of the number is determined from the low-order half
byte; hexadecimal values 0-9 are valid and are interpreted as decimal 
numbers. The high-order half-byte must be zero for multiplication and 
division; it may contain any value for addition and subtraction. 
Arithmetic on unpacked decimal numbers is performed in two steps. 
The unsigned binary addition, subtraction, and multiplication 
operations are used to produce an intermediate result in register AL. 
An adjustment instruction then changes the value in AL to a final 
correct unpacked decimal number. Division is performed similarly, 
except that the adjustment is carried out on the numerator operand in 
register AL first, and then a following unsigned binary division 
instruction produces a correct result.

Unpacked decimal numbers are similar to the ASCII character 
representations of the digits 0-9. Note, however, that the high-order 
half-byte of an ASCII numeral is always 3H. Unpacked decimal 
arithmetic may be performed on ASCII numeric characters under the 
following conditions:

► The high-order half-byte of an ASCII numeral must be set to OH 
prior to multiplication or division.

► Unpacked decimal arithmetic leaves the high-order half-byte set to 
OH; it must be set to 3H to produce a valid ASCII numeral.

All mnemonics ©Intel Corporation 1981

64



ARITHMETIC The 8086/8088 arithmetic instructions post certain characteristics of
INSTRUCTIONS AND the result of the operation to six flags. Most of these flags can be
FLAGS tested by following the arithmetic instruction with a conditional jump

instruction; the INTO (interrupt on overflow) instruction also may be 
used. The various instructions affect the flags differently, as explained 
in the instruction descriptions. However, they follow these general 
rules;

► OF (Carry Flag): If an addition results in a carry out of the high- 
order bit of the result, then CF is set; otherwise CF is cleared. If a 
subtraction results in a borrow into the high-order bit of the result, 
then CF is set; otherwise CF is cleared. Note that a signed carry is 
indicated by CF=OF. CF can be used to detect an unsigned 
overflow. Two instructions, ADC (add with carry) and SBB (subtract 
with borrow), incorporate the carry flag in their operations and can 
be used to perform multibyte (e.g., 32-bit, 64-bit) addition and 
subtraction.

► AF (Auxiliary Carry Flag): If an addition results in a carry out of the 
low-order half-byte of the result, then AF is set; otherwise AF is 
cleared. If a subtraction results in a borrow into the low-order half
byte of the result, then AF is set; otherwise AF is cleared. The 
auxiliary carry flag is provided for the decimal adjust instructions 
and ordinarily is not used for any other purpose.

► SF (Sign Flag): Arithmetic and logical instructions set the sign flag 
equal to the high-order bit (bit 7 or 15) of the result. For signed 
binary numbers, the sign flag will be 0 for positive results and I for 
negative results (so long as overflow does not occur). A 
conditional jump instruction can be used following addition or 
subtraction to alter the flow of the program depending on the sign 
of the result. Programs performing unsigned operations typically 
ignore SF since the high-order bit of the result is interpreted as a 
digit rather than a sign.

► ZF (Zero Flag): If the result of an arithmetic or logical operation is 
zero, then ZF is set; otherwise ZF is cleared. A conditional jump 
instruction can be used to alter the flow of the program if the 
result is or is not zero.

► PF (Parity Flag): If the low-order eight bits of an arithmetic or 
logical result contain an even number of 1 -bits, then the parity flag 
is set; otherwise it is cleared.

PF is provided for 8080/8085 compatibility; it also can be used to 
check ASCII characters for correct parity.

► OF (Overflow Flag): If the result of an operation is too large a 
positive number, or too small a negative number to fit in the 
destination operand (excluding the sign bit), then OF is set; 
otherwise OF is cleared. OF thus indicates signed arithmetic 
overflow; it can be tested with a conditional jump or the INTO 
(interrupt on overflow) instruction. OF may be ignored when 
performing unsigned arithmetic.

All mnemonics ©Intel Corporation 1981

65



ADDITION

ADD destination, 
source

The sum of the two operands, which may be bytes or words, replaces 
the destination operand. Both operands may be signed or unsigned 
binary numbers (see AAA and DAA). ADD updates AF, CF, OF, PF, 

. SF, and ZF.

ADC destination, 
source

ADC (Add with Carry) sums the operands, which may be bytes or 
words, adds one if CF is set, and replaces the destination operand 
with the result. Both operands may be signed or unsigned binary 
numbers (see AAA and DAA). ADC updates AF, CF, OF, PF, SF, and 
ZF. Since ADC incorporates a carry from a previous operation, it can 
be used to write routines to add numbers longer than 16 bits.

INC destination INC (Increment) adds one to the destination operand. The operand 
may be a byte or a word and is treated as an unsigned binary 
number (see AAA and DAA). INC updates AF, OF, PF, SF, and ZF; it 
does not affect CF.

AAA AAA (ASCII Adjust for Addition) changes the contents of register AL 
to a valid unpacked decimal number; the high-order half-byte is 
zeroed. AAA updates AF and CF; the content of OF, PF, SF, and ZF is 
undefined following execution of AAA.

DAA DAA (Decimal Adjust for Addition) corrects the result of previously 
adding two valid packed decimal operands (the destination operand 
must have been register AL). DAA changes the content of AL to a 
pair of valid packed decimal digits. It updates AF, CF, PF, SF, and ZF; 
the content of OF is undefined following execution of DAA.

SUBTRACTION

SUB destination, 
source

The source operand is subtracted from the destination operand, and 
the result replaces the destination operand. The operands may be 
bytes or words. Both operands may be signed or unsigned binary 
numbers (see AAS and DAS). SUB updates AF, CF, OF, PF, SF, and ZF.

SBB destination, 
source

SBB (Subtract with Borrow) subtracts the source from the destination, 
subtracts one if CF is set, and returns the result to the destination 
operand. Both operands may be bytes or words. Both operands may 
be signed or unsigned binary numbers (see AAS and DAS). SBB 
updates AF, CF, OF, PF, SF, and ZF. Since it incorporates a borrow 
from a previous operation, SBB may be used to write routines that 
subtract numbers longer than 16 bits.

DEC destination DEC (Decrement) subtracts one from the destination, which may be a 
byte or a word. DEC updates AF, OF, PF, SF, and ZF; it does not 
affect CF.

NEG destination NEG (Negate) subtracts the destination operand, which may be a 
byte or a word, from 0 and returns the result to the destination. This 
forms the two’s complement of the number, effectively reversing the 
sign of an interger. If the operand is zero, its sign is not changed. 
Attempting to negate a byte containing -128 or a word containing 
-32,768 causes no change to the operand and sets OF. NEG updates 
AF, CF, OF, PF, SF, and ZF. CF is always set except when the 
operand is zero, in which case it is cleared.

All mnemonics ®Intel Corporation 1981

66



CMP destination, 
source

AAS

PAS

MULTIPLICATION

MUL source

IMUL source

CMP (Compare) subtracts the source from the destination, which may 
be bytes or words, but does not return the result. The operands are 
unchanged, but the flags are updated and can be tested by a 
subsequent conditional jump instruction. CMP updates AF, CF, OF, PF, 
SF, and ZF. The comparison reflected in the flags is that of the 
destination to the source. If a CMP instruction is followed by a JG 
(Jump if Greater) instruction, for example, the jump is taken if the 
destination operand is greater than the source operand.

AAS (ASCII Adjust for Subtraction) corrects the result of a previous 
subtraction of two valid unpacked decimal operands (the destination 
operand must have been specified as register AL). AAS changes the 
content of AL to a valid unpacked decimal number; the high-order 
half-byte is zeroed. AAS updates AF and CF; the content of OF, PF, 
SF, and ZF is undefined following execution of AAS.

DAS (Decimal Adjust for Subtraction) corrects the result of a previous 
subtraction of two valid packed decimal operands (the destination 
operand must have been specified as register AL). DAS changes the 
content of AL to a pair of valid packed decimal digits. DAS updates 
AF, CF, PF, SF, and ZF; the content of OF is undefined following 
execution of DAS.

MUL (Multiply) performs an unsigned multiplication of the source 
operand and the accumulator. If the source Is a byte, then it is 
multiplied by register AL, and the double-length result is returned in 
AH and AL. If the source operand is a word, then it is multiplied by 
register AX, and the double-length result is returned in registers DX 
and AX. The operands are treated as unsigned binary numbers (see 
AAM). If the upper half of the result (AH for byte source, DX for word 
source) is nonzero, CF and OF are set; otherwise they are cleared. 
When CF and OF are set, they indicate that AH or DX contains 
significant digits of the result. The content of AF, PF, SF, and ZF is 
undefined following execution of MUL.

IMUL (Integer Multiply) performs a signed multiplication of the source 
operand and the accumulator. If the source is a byte, then it is 
multiplied by register AL, and the double-length result is returned in 
AH and AL. If the source is a word, then it is multiplied by register 
AX, and the double-length result is returned in registers DX and AX. If 
the upper half of the result (AH for byte source, DX for word source) 
is not the sign extension of the lower half of result, CF and OF are 
set; otherwise they are cleared. When CF and OF are set, they 
indicate that AH or DX contains significant digits of the result. The 
content of AF, PF, SF, and ZF is undefined following execution of 
IMUL.

All mnemonics ©Intel Corporation 1981.

67



AAM

DIVISION

DIV source

I DIV source

AAD

AAM (ASCII Adjust for Multiply) corrects the result of a previous 
multiplication of two valid unpacked decimal operands. A valid 2-digit 
unpacked decimal number is derived from the content of AH and AL 
and is returned to AH and AL The high-order half-bytes of the 
multiplied operands must have been OH for AAM to produce a correct 
result. AAM updates PF, SF, and ZF; the content of AF, CF, and OF is 
undefined following execution AAM.

DIV (divide) performs an unsigned division of accumulator (and its 
extension) by the source operand. If the source operand is a byte, it 
is divided Into the double-length dividend assumed to be in registers 
AL and AH. The single-length quotient is returned in AL, and the 
single-length remainder is returned in AH. If the source operand is a 
word, it is divided into the double-length dividend in registers AX and 
DX. The single-length quotient is returned in AX, and the single-length 
remainder is returned in DX. If the quotient exceeds the capacity of 
its destination register (FFH for byte source, FFFFFH for word source), 
as when division by zero is attempted, a type 0 interrupt is generated, 
and the quotient and remainder are undefined. Nonintegral quotients 
are truncated to integers. The content of AF, CF, OF, PF, SF, and ZF 
is undefined following execution of DIV.

IDIV (Integer Divide) performs a signed division of the accumulator 
(and its extension) by the source operand. If the source operand is a 
byte, it is divided into the double-length dividend assumed to be in 
registers AL and AH; the single-length quotient is returned in AL, and 
the single-length remainder is returned in AH. For byte integer 
division, the maximum positive quotient is +127(7FH) and the 
minimum negative quotient is 127(81 H). If the source operand is a 
word,it is divided into the double-length dividend in registers AX and 
DX; the single-length quotient is returned in AX, and the single-length 
remainder is returned in DX. For word integer division, the maximum 
positive quotient is +32,767 (7FFFH) and the minimum negative 
quotient is 32,767 (8001H). If the quotient is positive and exceeds the 
maximum, or is negative and is less than the minimum, the quotient 
and remainder are undefined, and a type 0 interrupt is generated. In 
particular, this occurs if division by 0 is attempted. Nonintegral 
quotients are truncated (toward 0) to integers, and the remainder has 
the same sign as the dividend. The content of AF, CF, OF, PF, SF, 
and ZF is undefined following IDIV.

AAD (ASCII Adjust for Division) modifies the numerator in AL before 
dividing two valid unpacked decimal operands so that the quotient 
produced by the division will be a valid unpacked decimal number. 
AH must be zero for the subsequent DIV to produce the correct 
result. The quotient is returned in AL, and the remainder is returned in 
AH; both high-order half-bytes are zeroed. AAD updates PF, SF, and 
ZF; the content of AF, CF, and OF is undefined following execution of 
AAD.

All mnemonics ©Intel Corporation 1981

68



CBW CBW (Convert Byte to Word.) extends the sign of the byte in register 
AL throughout register AH. CBW does not affect any flags. CBW can 
be used to produce a double-length (word) dividend from a byte prior 
to performing byte division.

CWD CWD (Convert Word to Doubleword) extends the sign of the word in 
register DX. CWD does not affect any flags. CWD can be used to 
produce a double-length (doubleword) dividend from a word prior to 
performing word division.

BIT MANIPULATION 
INSTRUCTIONS

The 8086 and 8088 provide three groups of instructions (Table A-4) 
for manipulating bits within both bytes and words: logical, shifts, and 
rotates.

Table A-4: Bit Manupulation Instructions

LOGICALS

NOT 
AND 
OR 
XOR 
TEST

“Not" byte or word
"And" byte or word 
"Inclusive or" byte or word 
“Exclusive or” byte or word 
"Test" byte or word

SHIFTS

SHL/SAL
SHR
SAR

Shift logical/arithmetic left byte or word
Shift logical right byte or word
Shift arithmetic right byte or word

ROTATES

ROL
ROR
ROL
RCR

Rotate left byte or word
Rotate right byte or word
Rotate through carry left byte or word
Rotate through carry right byte or word

LOGICAL The logical instructions include the boolean operators "not,” "and,” 
"inclusive or”, and "exclusive or", plus a TEST instruction that sets 
the flags, but does not alter either of its operands.

AND, OR, XOR and TEST affect the flags as follows: The overflow 
(OF) and carry (OF) flags are always cleared by logical instructions, 
and the content of the auxiliary carry (AF) flag is always undefined 
following execution of a logical instruction. The sign (SF), zero (ZF) 
and parity (PF) flags are always posted to reflect the result of the 
operation and can be tested by conditional jump instructions. The 
interpretation of these flags is the same as for arithmetic instructions. 
SF is set if the result is negative (high-order bit is 1), and is cleared if 
the result is positive (high-order bit is 0). ZF is set if the result is zero; 
it is otherwise cleared. PF is set if the result contains an even number 
of 1 -bits (has even parity) and is cleared if the number of 1 -bits is 
odd (the result has odd parity). Note that NOT has no effect on the 
flags.

All mnemonics ®Intel Corporation 1981

69



NOT destination NOT inverts the bits (forms the one’s complement) of the byte or 
word operand.

AND destination, 
source

AND performs the logical “and” of the two operands (byte or word) 
and returns the result to the destination operand. A bit in the result is 
set if both correspondence bits of the original operands are set; 
otherwise the bit is cleared.

OR destination, 
source

OR performs the logical “inclusive or” of the two operands (byte or 
word) and returns the result to the destination operand. A bit in the 
result is set if either or both corresponding bits in the original 
operands are set; otherwise the result bit is cleared.

XOR destination, 
source

XOR (Exclusive Or) performs the logical “exclusive or” of the two 
operands and returns the result to the destination operand. A bit in 
the result is set if the corresponding bits of the original operands 
contain opposite values (one is set, the other is cleared); otherwise 
the result bit is cleared.

TEST destination, 
source

TEST performs the logical “and” of the two operands (byte or word), 
updates the flags, but does not return the result—i.e., neither operand 
is changed. If a TEST instruction is followed by a JNZ (Jump if Not 
Zero) instruction, the jump will be taken if there are any 
corresponding 1 -bits in both operands.

SHIFTS The bits in bytes and words may be shifted arithmetically or logically. 
Up to 255 shifts may be performed, according to the value of the 
count operand coded in the instruction. The count may be specified 
as the constant 1, or as register CL, allowing the shift count to be a 
variable supplied at execution time. Arithmetic shifts may be used to 
multiply and divide binary numbers by powers of two (see note in 
description of SAR). Logical shifts can be used to isolate bits in bytes 
or words.

Shift instructions affect the flags as follows: AF is always undefined 
following a shift operation. PF, SF, and ZF are updated normally, as in 
the logical instructions. CF always contains the value of the last bit 
shifted out of the destination operand. The content of OF is always 
undefined following a multibit shift. In a single-bit shift, OF is set if the 
value of the high-order (sign) bit was changed by the operation; if the 
sign bit retains its original value, OF is cleared.

SHL/SAL destination, 
count

SHL and SAL (Shift Logical Left and Shift Arithmetic Left) perform the 
same operation and are physically the same instruction. The 
destination byte or word is shifted left by the number of bits specified 
in the count operand. Zeros are shifted in on the right. If the sign bit 
retains its original value, then IF is cleared.

SHR destination, 
source

SHR (Shift Logical Right) shifts the bits in the destination operand 
(byte or word) to the right by the number of bits specified in the count 
operand. Zeros are shifted in on the left. If the sign bit retains its 
original value, then OF is cleared.

All mnemonics ©Intel Corporation 1981

70



SAR destination, 
count

ROTATES

ROL destination, 
count

ROR destination, 
count

RCL destination, 
count

RCR destination, 
count

STRING 
INSTRUCTIONS

SAR (Shift Arithmetic Right) shifts the bits in the destination operand 
(byte or word) to the right by the number of bits specified in the count 
operand. Bits equal to the original high-order (sign) bit are shifted in 
on the left, preserving the sign of the original value. Note that SAR 
does not produce the same result as the dividend of an equivalent 
IDIV instruction if the destination operand is negative and 1 -bits are 
shifted out. For example, shifting -5 right by one bit yields -3, while 
integer division of -5 by 2 yields -2. The difference in the instructions 
is that IDIV truncates all numbers toward zero, while SAR truncates 
positive numbers toward zero and negative numbers toward negative 
infinity.

Bits in bytes and words also may be rotated. Bits rotated out of an 
operand are not lost as in a shift, but are circled back into the other 
end of the operand. As in the shift instructions, the number of bits to 
be rotated is taken from the count operand, which may specify either 
a constant of 1, or the CL register. The carry flag may act as an 
extension of the operand in two of the rotate instructions, allowing a 
bit to be isolated in CF and then tested by a JC (Jump if Carry) or 
JNC (Jump if Not Carry) instruction.

Rotates affect only the carry and overflow flags. CF always contains 
the value of the last bit rotated out. On multibit rotates, the value of 
OF is always undefined. In single-bit rotates, OF is set if the operation 
changes the high-order (sign) bit of the destination operand. If the 
sign bit retains its original value, OF is cleared.

ROL (Rotate Left) rotates the destination byte or word left by the 
number of bits specified in the count operand.

ROR (Rotate Right) operates similar to ROL except that the bits in the 
destination byte or word are rotated right instead of left.

RCL (Rotate through Carry Left) rotates the bits in the byte or word 
destination operand to the left by the number of bits specified in the 
count operand. The carry flag (CF) is treated as “part of" the 
destination operand; that is, its value is rotated into the low-order bit 
of the destination, and is itself replaced by the high-order bit of the 
destination.

RCR (Rotate through Carry Right) operates exactly like RCL except 
that the bits are rotated right instead of left.

Five basic string operations, called primitives, allow strings of bytes or 
words to be operated on, one element (byte or word) at a time. 
Strings of up to 64k bytes may be manipulated with these instructions. 
Instructions are available to move, compare, and scan for a value, as 
well as for moving string elements to and from the accumulator (see 
Table A-5). These basic operations may be preceded by a special 
one-byte prefix that causes the instruction to be repeated by the 
hardware, allowing long strings to be processed much faster than 
would be possible with a software loop. The repetitions can be 
terminated by a variety of conditions, and a repeated operation may 
be interrupted and resumed.

All mnemonics ®Intel Corporation 1981

71



Table A-5: String Instructions

REP 
REPE/REPZ 
REPNE/REPNZ 
MOVS 
MOVSB/MOVSW 
CMPS
SCAS 
LODS 
STOS

Repeat
Repeat while equal/zero
Repeat while not equal/not zero 
Move byte or word string 
Move byte or word string 
Compare byte or word string 
Scan byte or word string 
Load byte or word string 
Store byte or word string

The string instructions operate quite similarly in many respects; the 
common characteristics are covered here and in Table A-6 and 
Figure A-2 rather than in the descriptions of the individual instructions. 
A string instruction may have a source operand, a destination 
operand, or both. The hardware assumes that a source string resides 
in the current data segment; a segment prefix byte may be used to 
override this assumption. A destination string must be in the current 
extra segment. The assembler checks the attributes of the operands 
to determine if the elements of the strings are bytes or words. The 
assembler does not, however, use the operand names to address the 
strings. Rather, the content of register SI (source index) is used as an 
offset to address the current element of the source string, and the 
content of register DI (destination index) is taken as the offset of the 
current destination string element. These registers must be initialized 
to point to the source/destination strings before executing the string 
instruction; the LDS, LES, and LEA instructions are useful in this 
regard.

Table A-6: String Instruction Register and Flag Use

SI Index (offset) for source string
DI Index (offset) for destination
CX Repetition counter
AL/AX Scan value

Destination for LODS 
Source for STOS

DE O=auto-increment SI, DI
1 -auto-decrement SI, DI

ZE Scan/compare terminator

The string instructions automatically update SI and/or DI in 
anticipation of processing the next string element. The DF (direction 
flag) setting determines whether the index registers are auto 
decremented (DF=1). If byte strings are being processed, SI and/or 
DI is adjusted by 1; the adjustment is 2 for word strings.

All mnemonics ©Intel Corporation 1981

72



REP/REPE/REPZ/ 
REPNE/REPNZ

MOVS destination
string, source-string

MOVSB/MOVSW

If a Repeat prefix has been coded, then register CX (count register) is 
decremented by 1 after each repetition of the string instruction; 
therefore, CX must be initialized to the number of repetitions desired 
before the string instruction is executed. If CX is 0, the string 
instruction is not executed, and control goes to the following 
instruction.

REP (Repeat), REPE (Repeat While Equal), REPZ (Repeat While Zero), 
REPNE (Repeat While Not Equal), and REPNZ (Repeat While Not 
Zero) are five mnemonics for two forms of the prefix byte that 
controls repetition of a subsequent string instruction. The different 
mnemonics are provided to improve program clarity. The repeat 
prefixes do not affect the flags.

REP is used in conjunction with the MOVS (Move String) and STOS 
(Store String) instructions and is interpreted as “repeat while not end- 
of-string” (CX not 0). REPE and REPZ operate identically and are 
physically the same prefix byte as REP. These instructions are used 
with the CMPS (Compare String) and SCAS (Scan String) instructions 
and require ZF (posted by these instructions) to be set before 
initiating the next repetition. REPNE and REPNZ are two mnemonics 
for the same prefix byte. These instructions function the same as 
REPE and REPZ, except that the zero flag must be cleared or the 
repetition is terminated. Note that ZF does not need to be initialized 
before executing the repeated string instruction.

Repeated string sequences are interruptable; the processor will 
recognize the interrupt before processing the next string element. 
System interrupt processing is not affected in any way. Upon return 
from the interrupt, the repeated operation is resumed from the point of 
interruption. Note, however, that execution does not resume properly if 
a second or third prefix (i.e., segment override or LOCK) has been 
specified in addition to any of the repeat prefixes. The processor 
"remembers" only one prefix in effect at the time of the interrupt—the 
prefix that immediately precedes the string instruction. After returning 
from the interrupt, processing resumes at this point, but any additional 
prefixes specified are not in effect. If more than one prefix must be 
used with a string instruction, interrupts may be disabled for the 
duration of the repeated execution. However, this will, not prevent a 
nonmaskable interrupt from being recognized. Also, the time that the 
system is unable to respond to interrupts may be unacceptable if long 
strings are being processed.

MOVS (Move String) transfers a byte or a word from the source string 
(addressed by SI) to the destination string (addressed by DI) and 
updates SI and DI to point to the next string element. When used in 
conjunction with REP, MOVS performs a memory-to-memory block 
transfer.

MOVSB and MOVSW are alternate mnemonics for the move string 
instruction. These mnemonics are coded without operands; they 
explicitly tell the assembler that a byte string (MOVSB) or a word 
string (MOVSW) is to be moved (when MOVS is coded, the assembler 
determines the string type from the attributes of the operands). These 
mnemonics are useful when the assembler cannot determine the 
attributes of a string—e.g., when a section of code is being moved.

All mnemonics ©Intel Corporation 1981

73



CMPS destination
string, source-string

SCAS 
destination-string

LODS source-string

STOS 
destination-string

PROGRAM 
TRANSFER 
INSTRUCTIONS

CMPS (Compare String) subtracts the destination byte or word 
(addressed by DI) from the source byte or word (addressed by SI). 
CMPS affects flags without altering either operand, updates SI and DI 
to point to the next string element, and updates AF, CF, OF, PF, SF, 
and ZF to reflect the relationship of the destination element to the 
source element. For example, if a JG (Jump if Greater) instruction 
follows CMPS, the jump is taken if the destination element is greater 
than the source element. If CMPS is prefixed with REPE or REPZ, the 
operation is interpreted as “compare while not end-of-string (CX not 
zero) and strings are equal (ZF=1)." If CMPS is preceded by REPNE 
or REPNZ, the operation is interpreted as “compare while not end-of- 
string (CX not zero) and strings are not equal (ZF=0).” Thus, CMPS 
can be used to find matching or differing string elements.

SCAS (Scan String) subtracts the destination string element (byte or 
word) addressed by DI from the content of AL (byte string) or AX 
(word string) and updates the flags, but does not alter the destination 
string or the accumulator. SCAS also updates DI to point to the next 
string element and AF, CF, OF, PF, SF, and ZF to reflect the 
relationship of the scan value in AL/AX to the string element. If SCAS 
is prefixed with REPE or REPZ, the operation is interpreted as “scan 
while not end-of-string (CX not 0) and string-element scan value 
(ZF=1)." This form may be used to scan for departure from a given 
value. If SCAS is prefixed with REPNE or REPNZ, the operation is 
interpreted as "scan while not end-of-string (CX not 0) and string
element is not equal to scan-value (ZF=0)." This form may be used to 
locate a value in a string.

LODS (Load String) transfers the byte or word string element 
addressed by SI to register AL or AX, and updates SI to point to the 
next element in the string. This instruction is not ordinarily repeated 
since the accumulator would be overwritten by each repetition, and 
only the last element would be retained. However, LODS is very 
useful in software loops as part of a more complex string function 
built up from string primitives and other instructions.

STOS (Store String) transfers a byte or word from register AL or AX 
to the string element addressed by DI and updates DI to point to the 
next location in the string. As a repeated operation, STOS provides a 
convenient way to initialize a string to a constant value (e.g„ to blank 
out a print line).

The sequence of execution of instructions in an 8086/8088 program 
is determined by the content of the code segment register (OS) and 
the instruction pointer (IP). The CS register contains the base address 
of the current code segment, the 64k portion of memory from which 
instructions are presently being fetched. The IP is used as an offset 
from the beginning of the code segment; the combination of CS and 
IP points to the memory location from which the next instruction is to 
be fetched. (Recall that under most operating conditions, the next 
instruction to be executed has already been fetched from memory 
and is waiting in the CPU instruction queue.) The program transfer 

All mnemonics ©Intel Corporation 1981

74



instructions operate'on the instruction pointer and on the CS register; 
changing the content of these causes normal sequential execution to 
be altered. When a program transfer occurs, the queue no longer 
contains the correct instruction, and the Bill obtains the next 
instruction from memory using the new IP and CS values, passes the 
instruction directly to the EU, and then begins refilling the queue from 
the new location.

Four groups of program transfers are available in the 8086/8088: 
unconditional transfers, conditional transfers, iteration control 
instructions and interrupt-related instructions (see Table A-7). Only the 
interrupt-related instructions affect any CPU flags. As will be seen, 
however, the execution of many of the program transfer instructions is 
affected by the states of the flags.

Table A-7: Program Transfer Instructions

UNCONDITIONAL TRANSFERS

CALL Call procedure
RET Return from procedure
JMP Jump

CONDITIONAL TRANSFERS

JA/JNBE Jump if above/not below or equal
JAE/JNB Jump if above or equal/not below
JB/JNAE Jump if below/not above or equal
JBE/JNA Jump if below or equal/not above
JC Jump if carry
JE/JZ Jump if equal/zero
JG/JNLE Jump if greater/not less or equal
JGE/JNL Jump if greater or equal/not less
JL/JNGE Jump if less/not greater or equal
JLE/JNG Jump if less or equal/not greater
JNC Jump if not carry
JNE/JNZ Jump if not equal/not zero
JNO Jump if not overflow
JNP/JPO Jump if not parity/parity odd
JNS Jump if not sign
JO Jump if overflow
JP/JPE Jump if parity/parity even
JS Jump if sign

ITERATION CONTROLS

LOOP Loop
LOOPE/LOOPZ Loop if equal/zero
LOOPNE/LOOPNZ Loop if not equal/not zero
JCXZ Jump if register CX-V

INTERRUPTS

INT Interrupt
INTO Interrupt if overflow
I RET Interrupt return

All mnemonics ©Intel Corporation 1981

75



UNCONDITIONAL 
TRANSFERS

The unconditional transfer instructions may transfer control to a target 
instruction within the current code segment (intrasegment transfer) or 
to a different code segment (intersegment transfer). The ASM-86 
assembler terms an intrasegment target NEAR and an intersegment 
target FAR. The transfer is made unconditionally any time the 
instruction is executed.

CALL 
procedure-name

CALL activates an out-of-line procedure, saving information on the 
stack to permit a RET (return) instruction in the procedure to transfer 
control back to the instruction following the CALL. The assembler 
generates one of two types of CALL instruction; the type depends on 
whether the programmer has defined the procedure name as NEAR 
or FAR. For control to return properly, the type of CALL instruction 
must match the type of RET instruction that exits from the procedure. 
(The potential for a mismatch exists if the procedure and the CALL 
are contained in separately assembled programs.) Different forms of 
the CALL instruction allow the address of the target procedure to be 
obtained from the instruction itself (direct CALL) or from a memory 
location or register referenced by the instruction (indirect CALL). In 
the following descriptions, bear in mind that the processor 
automatically adjusts IP to point to the next instruction to be executed 
before saving it on the stack.

For an intrasegment direct CALL, SP (the stack pointer) is 
decremented by two and IP is pushed onto the stack. The relative 
displacement (up to +32k) of the target procedure from the CALL 
instruction is then added to the instruction pointer. This form of the 
CALL instruction is self-relative and is appropriate for position
independent (dynamically relocatable) routines in which the CALL and 
its target are in the same segment and are moved together.

An intrasegment indirect CALL may be made through memory or 
through a register. SP is decremented by two and IP is pushed onto 
the stack. The offset of the target procedure is obtained from the 
memory word or 16-bit general register referenced in the instruction 
and replaces IP.

For an intersegment direct CALL, SP is decremented by two, and CS 
is pushed onto the stack. CS is replaced by the segment word 
contained in the instruction. SP again is decremented by two. IP is 
pushed onto the stack and is replaced by the offset word contained 
in the instruction.

For an intersegment indirect CALL (which only may be made through 
memory), SP is decremented by two, and CS is pushed onto the 
stack. CS is then replaced by the content of the second word of the 
doubleword memory pointer referenced by the instruction. SP again is 
decremented by two, and IP is pushed onto the stack and is replaced 
by the content of the first word of the doubleword pointer referenced 
by the instruction.

All mnemonics ©Intel Corporation 1981

76



RET
optional-pop-value

JMP Target

CONDITIONAL 
TRANSFERS

RET (Return) transfers control from a procedure back to the 
instruction following the CALL that activated the procedure. The 
assembler generates either an intrasegment RET, if the programmer 
has defined the procedure NEAR, or an intersegment RET, if the 
procedure has been defined as FAR. RET pops the word at the top of 
the stack (pointed to by register SP) into the instruction pointer and 
increments SP by two. If RET is intersegment, the word at the new 
top of stack is popped into the CS register, and SP is again 
incremented by two. If an optional pop value has been specified, RET 
adds that value to SP. This feature may be used to discard 
parameters pushed onto the stack before the execution of the CALL 
instruction.

JMP unconditionally transfers control to the target location. Unlike a 
CALL instruction, JMP does not save any information on the stack, 
and no return to the instruction following the JMP is expected. Like 
CALL, the address of the target operand may be obtained from the 
instruction itself (direct JMP) or from memory or a register referenced 
by the instruction (indirect JMP).

An intrasegment direct JMP changes the instruction.pointer by adding 
the relative displacement of the target from the JMP instruction. If the 
assembler can determine that the target is within 127 bytes of the 
JMP, it automatically generates a two-byte form of this instruction 
called a SHORT JMP; otherwise, it generates a NEAR JMP that can 
address a target within +32k. Intrasegment direct JMPS are self
relative and are appropriate in position-independent (dynamically 
relocatable) routines in which the JMP and its target are in the same 
segment and are moved together.

An intrasegment indirect JMP may be made either through memory or 
through a 16-bit general register. In the first case, the content of the 
word referenced by the instruction replaces the instruction pointer. In 
the second case, the new IP value is taken from the register named 
in the instruction.

An intersegment direct JMP replaces IP and OS with values contained 
in the instruction.

An intersegment indirect JMP may be made only through memory. 
The first word of the doubleword pointer referenced by the instruction 
replaces IP, and the second word replaces OS.

The conditional transfer instructions are jumps that may or may not 
transfer control depending on the state of the CPU flags at the time 
the instruction is executed. These 18 instructions (see Table A-8) 
each test a different combination of flags for a condition. If the 
condition is true, then control is transferred to the target specified in 
the instruction. If the condition is false, then control passes to the 
instruction that follows the conditional jump. All conditional jumps are 
SHORT, that is, the target must be in the current code segment and 
within -128 to +127 bytes of the first byte of the next instruction (JMP 
OOH jumps to the first byte of the next instruction). Since the jump is 
made by adding the relative displacement of the target to the 
instruction pointer, all conditional jumps are self-relative and are 
appropriate for position-independent routines.

All mnemonics ® Intel Corporation 1981.

77



Table A-8: Interpretation of Conditional Transfers

MNEMONIC CONDITION TESTED "JUMP IF. . ."

JA/JNBE (CF or ZF)=0 above/not below or equal
JAE/JNB CF=0 above or equal/not below
JB/JNAE CF=1 below/not above or equal
JBE/JNA (CF or ZF)=1 below or equal/not above
JC CF-1 carry
JE/JZ ZF=1 equal/zero
JG/JNLE ((SF xor OF) or ZF)-0 greater/not less or equal
JGE/JNL (SF xor OF)=0 greater or equal/not less
JL/JNGE (SF xor OF)=1 less/not greater or equal
JLE/JNG ((SF xor OF) or ZF)=1 less or equal/not greater
JNC CF=0 not carry
JNE/JNZ ZF=0 not equal/not zero
JNO OF=0 not overflow
JNP/JPO PF=0 not parity/parity odd
JNS SF=0 not sign
JO OF=1 overflow
JP/JPE PF=1 parity/parity equal
JS SF--1 sign

NOTE: “above” and "below" refer to the relationship of two unsigned values; 
"greater” and "less" refer to the relationship of two signed values.

ITERATION 
CONTROL

The iteration control instructions can be used to regulate the 
repetition of software loops. These instructions use the CX register as 
a counter. Like the Conditional transfers, the iteration control 
instructions are self-relative and may only transfer to targets that are 
within -128 to +127 bytes of themselves, i.e., they are SHORT 
transfers.

LOOP short-label LOOP decrements CX by 1 and transfers control to the target 
operand if CX is not 0; otherwise the instruction following LOOP is 
executed.

LOOPE/LOOPZ 
short-label

LOOPE and LOOP? (Loop While Equal and Loop While Zero) are 
different mnemonics for the same instruction (similar to the REPE and 
REPZ repeat prefixes). CX is decremented by 1, and control is 
transferred to the target operand if CX is not 0 and if ZF is set; 
otherwise the instruction following LOOPE or LOOPZ is executed.

LOOPNE/LOOPNZ 
short-label

LOOPNE and LOOPNZ (Loop While Not Equal and Loop While Not 
Zero) are also synonyms for the same instruction. CX is decremented 
by 1, and control is transferred to the target operand if CX is not 0 
and ZF is clear; otherwise the next sequential instruction is executed.

JCXZ short-label JCXZ (Jump If CX Zero) transfers control to the target operand if CX 
is 0. This instruction is useful at the beginning of a loop to bypass the 
loop if CX has a zero value, i.e., to execute the loop zero times.

* All mnemonics ©Intel Corporation 1981.

78



INTERRUPT 
INSTRUCTIONS

The interrupt instructions allow interrupt service routines to be 
activated by programs as well as by external hardware devices. The 
effect of software interrupts is similar to hardware-initiated interrupts. 
However, the processor does not execute an interrupt acknowledge 
bus cycle if the interrupt originates in software or with an NMI. The 
effect of the interrupt instructions on the flags is covered in the 
description of each instruction.

INT Interrupt-type INT (Interrupt) activates the interrupt procedure specified by the 
interrupt-type operand. INT decrements the stack pointer by two, 
pushes the flags onto the stack, and clears the trap flag (TF) and 
interrupt-enable flag (IF) to disable single-step and maskable 
interrupts. The flags are stored in the format used by the PUSHF 
instruction. SP is decremented again by two, and the CS register is 
pushed onto the stack. The address of the interrupt pointer is 
calculated by multiplying interrupt-type by four; the second word on 
the interrupt pointer replaces CS. SP again is decremented by two, 
and IP is pushed onto the stack and is replaced by the first word of 
the interrupt pointer. If interrupt-type-3, the assembler generates a 
short (1 byte) form of the instruction, known as the breakpoint 
interrupt.

Software interrupts can be used as supervisor calls—requests for 
service from an operating system. A different interrupt-type can be 
used for each type of service that the operating system could supply 
for an application program. Software interrupts also may be used to 
check out interrupt service procedures written for hardware-initiated 
interrupts.

INTO INTO (Interrupt on Overflow) generates a software interrupt if the 
overflow flag (OF) is set; otherwise control proceeds to the following 
instruction without activating an interrupt procedure. INTO addresses 
the target interrupt pointer at location 10H; it clears the TF and IF 
flags and otherwise operates like INT. INTO may be written following 
an arithmetic or logical operation to activate an interrupt procedure if 
overflow occurs.

IRET IRET (Interrupt Return) transfers control back to the point of 
interruption by popping IP, CS, and the flags from the stack. IRET 
thus affects all flags by restoring them to previously saved values. 
IRET is used to exit any interrupt procedure, whether activated by 
hardware or software.

PROCESSOR 
CONTROL 
INSTRUCTIONS

These instructions (see Table A-9) allow programs to control various 
CPU functions. One group of instructions updates flags, and another 
group is used primarily for synchronizing the 8086 or 8088 with 
external events, A final instruction causes the CPU to do nothing. 
Except for the flag operations, none of the processor control 
instructions affect the flags.

All mnemonics ©Intel Corporation 1981

79



c
Table A-9: Processor Control Instructions

FLAG OPERATIONS

STC Set carry flag
CLC Clear carry flag
CMC Complement carry flag
STD Set direction flag
OLD Clear direction flag
STI Set interrupt-enable flag
CLI Clear interrupt-enable flag

EXTERNAL SYNCHRONIZATION

HLT Halt until interrupt or reset
WAIT Wait for TEST pin active
ESC Escape to external processor
LOCK Lock bus during next instruction

NO OPERATION

NOP No operation

FLAG OPERATIONS

CLC CLC (Clear Carry flag) zeroes the carry flag (CF) and affects no other 
flags. It (and CMC and STC) is useful in conjunction with the RCL 
and RCR instructions.

CMC CMC (Complement Carry flag) toggles CF to its opposite state and 
affects no other flags.

STC STC (Set Carry flag) sets CF to 1 and affects no other flags.

CLD CLD (Clear Direction flag) zeroes DF, causing the string instructions 
to auto-increment the SI and/or DI index registers. CLD does not 
affect any other flags.

STD STD (Set Direction flag) sets DF to 1, causing the string instructions 
to autodecrement the SI and/or DI index registers. STD does not 
affect any other flags.

CLI CLI (Clear Interrupt-enable flag) zeroes IF. When the interrupt-enable 
flag is cleared, the 8086 and 8088 do not recognize an external 
interrupt request that appears on the INTR line; in other words, 
maskable interrupts are disabled. A nonmaskable interrupt appearing 
on the NMI line, however, is honored, as is a software interrupt. CLI 
does not affect any other flags.

STI STI (Set Interrupt-enable flag) sets IF to 1, enabling processor 
recognition of maskable interrupt requests appearing on the INTR line. 
Note however, that a pending interrupt will not actually be recognized 
until the instruction following STI has executed. STI does not affect 
any other flags.

All mnemonics ®Intel Corporation 1981

80



EXTERNAL
SYNCHRONIZATION

HLT HLT (Halt) causes the 8086/8088 to enter the halt state. The 
processor leaves the halt state upon activation of the RESET line, 
upon receipt of a nonmaskable interrupt request on NMI or, if 
interrupts are enabled, upon receipt of a maskable interrupt request 
on INTR. HLT does not affect any flags. It may be used as an 
alternative to an endless software loop in situations where a program 
must wait for an interrupt.

WAIT WAIT causes the CPU to enter the wait state while its TEST line is 
not active. WAIT does not affect any flags.

ESC external-opcode, 
source

ESC (Escape) provides a means for an external processor to obtain 
an opcode and possibly a memory operand from the 8086 or 8088. 
The external opcode is a 6-bit immediate constant that the assembler 
encodes in the machine instruction it builds (see Table A-10). An 
external processor may monitor the system bus and capture this 
opcode when the ESC is fetched. If the source operand is a register, 
the processor does nothing. If the source operand is a memory 
variable, the processor obtains the operand from memory and 
discards it. An external processor may capture the memory operand 
when the processor reads it from memory.

LOCK LOCK is a 1 -byte prefix that causes the 8086/8088 (configured in 
maximum mode) to assert its bus LOCK signal while the following 
instruction executes. LOCK does not affect any flags.

NO OPERATION1NOP NOP (No Operation) causes the CPU to do nothing. NOP does not 
affect any flags.

INSTRUCTION SET 
REFERENCE 
INFORMATION

Appendix I provides detailed operational information for the 
8086/8088 instruction set.

All mnemonics ©Intel Corporation 1981.

81



■

82



Appendix B EXPANSION BUS DEFINITION

The Expansion Bus is basically a buffered extension of the systems 
8088 processor plus additional control and timing signals required to 
interface the system..The expansion bus consists of—
► A multiplexed buffered data bus, BD0-BD7
► A buffered address bus, A8-A19
► Various timing, control, interrupt, and power lines

Table B-1: Expansion Bus Pin Definition

PIN SIGNAL I/O DESCRIPTION

50 Al 9 IO Buffered Address Bits 8 to 19: These lines are
1 Al 8 IO driven from the 8088 during normal operation and

49 Al 7 IO are valid from the falling edge of ALE to the rising
2 Al 6 IO edge of the next ALE. If an external device takes

48 Al 5 IO control of the system via HOLD and HOLD
3 A14 IO ACKNOWLEDGE, these lines are tri-stated.

47 Al 3 IO
4 A12 IO

46 All IO
5 A10 IO

45 A9 IO
6 A8 IO

29 BD7 IO Time Multiplexed Buffered Address/Data
22 BD6 IO Bus: During normal operation, the lower 8 bits of
28 BD5 IO address, AD0-AD7, are valid on the falling edge
23 BD4 IO of ALE.
27 BD3 IO
24 BD2 IO
26 BD1 IO
25 BDO IO

9 ALE 0 Buffered Address Latch Enable: Processor signal 
which indidates BD0-BD7 contain valid 
addresses. Typically used to latch low-order 8 bits 
of address.

11 RD 0 Buffered Read Strobe: Processor signal indicating 
a read cycle.

14 WR 0 Buffered Write Strobe: Processor signal indicating 
a write cycle.

8 DEN 0 Buffered Data Enable: Provided by the processor 
for use as an enable for transceivers,

33 DLATCH 0 Data Latch: The falling edge of this signal may be 
used to strobe data generated from a processor 
read access.

30 EXTIO I External IO: Control line which prevents internal
data bus buffers from conflicting with external 
buffers when mapping external IO into address 
space E0000 to EFFFF. CSEN should be used 
as a control signal to disable internal buffers via 
EXI IO and enable external buffers if using 
address space E0000 to EFFFF, Addresses used 
by the system cannot be disabled by EXTIO.



19 CSEN 0 Chip Select Enable: This line is synchronized to 
PHASE2. It is true from a falling edge of PHASE2 
to the next falling edge of PHASE2, when address 
space E0000 to EFFFF is accessed.

40 CLK15B 0 15-Mhz Clock: Signal from which all system timing 
is derived. Its period is 66.6 nanoseconds with a 
50%±10% duty cycle.

38 CLK5 0 5-Mhz Clock: Signal is in phase with the 8088 
clock input. Its period is 200 nanoseconds with a 
33% duty cycle.

20 PHASE2 0 1-Mhz Clock: Signal is asynchronous with CLK5. 
Its period is 1 microsecond with a 40/60% duty 
cycle. Useful to interface 6800-type I/O circuits.

21 XACK I External Acknowledge: This line is normally high 
and may be pulled low by external devices 
resulting in pulling the 8088 Ready input low, 
generating wait states. This line is resynchronized 
by the system logic.

17 HOLD I Input to the 8088. This is an external request for 
control of the system buses,

Table B-1: Expansion Bus Pin Definition (Concluded)

PIN SIGNAL I/O DESCRIPTION

18 HLDA O Buffered Hold Acknowledge: System response to 
"HOLD’' request. When true (high) the following 
signals are tri-stated:

A8-A19
BD0-BD7
ALE
io/mT
RD
WR ,
DT/R
DEN
SSO

_____ INTA
DLATCH is controlled by external logic.

41 READY O Status Line: This line reflects the synchronized 
"ready" input to the 8088.

10 IO/M 0 Buffered 8088 Status Line: Distinguishes between 
a memory or I/O bus cycle.

7 SSO O Buffered 8088 Status Line.

12 DT/R 0 Buffered Data Transmit/Receive: Processor signal 
typically used to control the direction of system 
transceivers.

The combination of IO/M, DT/R, and SSO provide 
current bus cycle status:

84



DESCRIPTION10/M DT/R 880

0 0 0 Instruction fetch
0 0 1 Read from memory
0 1 0 Write from memory
0 1 1 Passive (no bus cycle)
1 0 0 Interrupt acknowledge
1 0 1 Read from I/O
1 1 0 Write to I/O
1 1 1 Rail

15 NMI 1 Non-Maskable Interrupt: An edge-triggered input 
which causes a type-2 interrupt. A transition from 
high to low initiates the interrupt at the end of the 
current instruction.

16 IRQ 1 Interrupt Request: This input should be driven with 
an open collector driver; it is “collector ORed” 
with five 6522s and one 6852 and is pulled to +5 
volts through a 3.3K ohm resistor. A low level on 
any of these circuits generates a high level input 
to the system 8259 at IR3 level.

43 IR4 1 Interrupt Request Level 4: Direct access to IR4 of 
the system 8259.

42 IR5 1 Interrupt Request Level 5: Direct access to IR5 of 
the system 8259.

13 RESET 0 System Reset: Generated at power on or from the 
Reset switch.

PIN SIGNAL DESCRIPTION

44 Ground
39 Ground
35 Ground
31 Ground
37
36

+5volts
+5volts 250 ma/expansion board

34 +12 volts 250 ma/expansion board
32 -12 volts 50 ma/expansion board

85



Table 8-2: Expansion Bus Loading

SIGNAL

NORMAL 
USAGE 

I/O
INTERNAL 

LOAD
EXTERNAL

DRIVE

Tri-Stated Lines

A8-19 0 4 4
BDO-7 IO 5 4

ALE 0 5 4
RD 0 4 4
WR 0 4 4
DEN 0 4 4
10/M 0 2 4
SSO 0 1 4
DT/R 0 4 4

TTL Outputs

DLATCH 0 - ' 4*
CSEN 0 4*

C1K15B 0 1*
C1K5 0 4*

PHASE2 0 ■ r
HLDA 0 1*

READY 0 4
RESET 0 - 4

NOTE: All loads are 74LSXX loads of .4ma External drive, as specified, Is for each of the four slots available. 
Care must be taken to ensure adequate drive for other expansion modules which may be Installed in 
the system.

If required, buffer through one common IC package, such as 74LSO4.

Table 8-3: Inputs Driven with Open Collector Drivers

INTERNAL PULLUP
SIGNAL LOAD PROVIDED

EXTIO 2
XACK 1
HOLD 1
NMI 1
IRQ 1

2.2K
2.2K
2.2K
2.2K
3.3K

Table 8-4: Inputs Direct to System 8259

IR4
IR5

86



Figure 8-1: Expansion Connector

BDO — 25 26 — BD1
BD2 — 24 27 — BD3
BD4 — 23 28 — BD5
BD6 — 22 29 — BD7

ZACK — 21 30 — EXTIO

PHASE 2 — 20 31 — Ground

CSEN — 19 32 — -12 volts
HLDA — 18 33 — DLATCH

HOLD — 17 34 — +12 volts

IRQ — 16 35 — Ground

NMI — 15 36 — +5 volts

WR — 14 37 — +5 volts
Reset — 13 38 — CLK5
DT/R — 12 39 — Ground

RD — 11 40 — CLK15B
10/M — 10 41 — Ready

ALE — 9 42 — IR5
DEN — 8 43 — IR4

SSO — 7 44 — Ground

A 8 — 6 45 — A 9

A10 — 5 46 — All

A12 — 4 47 — A13
A14 — 3 48 — A15

A16 — 2 49 — A17

A18 — 1 50 — A19

87



NOTES

□ BDO-BD7 IS A TIME MULTIPLEXED 
BI-DIRECTIONAL BUS.

IGH FOR A COMPLETE 
CYCLE WHEN

ACCESSING ADDRESS SPACE 
EOOOO TO EFFFF.

0 HI-600 * 36 NANO SEC PHASE 2 IS 
NOT PHASE LOCKED TO ALE .

LO-400 ± 36 NANO SEC
IF USED FOR TIMING I/O CIRCUITS, 
THE BOBB MUST BE SYNCRONIZED 
VIA XAClt/READY.

|4| IN PHASE WITH AND TRAILING,BY 3 TO 5 
---- NANO SEC. THE INPUT CLOCK TO THE BOBB

PHASE2

[~5~| 50 ± IDS DUTY CYCLE .

[7]bOO-BD7 (AO-A7 OUT)

|~1~|bDO-BD7 (DATA IN REQ)

71bDO-BD7 (DATA OUT AVAILABLE)
—J (WRITE CYCLE)

BDO-BD7-(MEMORY DATA OUT
BOBB READ CYCLE)

OLATCH

CLK5

ALE

XACK (INPUT)

RDY (OUTPUT)

INTERFACE TIMING

gure 8-2: Expansion B
us Interface Tim

ing



■ MU« 11JI iiHJIB-d'ALt! UWJAH .1 .PIH Bl »'

Appendix C MEMORY MAPPED I/O ADDRESS AND BIT 
ASSIGNMENTS

Table 0-1: 8259A (PIC IODO) 
Address: E0000-E0001

INTERRUPT SIGNAL
LEVEL NAME

NONSPECIFIC INTERRUPT

DESCRIPTION

IRO SYN SYNC DETECT
IR1 COMM SERIAL COMMUNICATIONS (7201)
IR2 TIMER 8253 TIMER
IR3 PARALLEL ALL 6522 IRQ (INCLUDING DISK)
IR4 IR4 EXPANSION IR4
IR5 IRS EXPANSION IR5
IRS KBINT KEYBOARD DATA READY
IR7 VINT VERTICAL SYNC OR

Table C-2: 8253 (TIMER-I0D1) 
Address: E0020-E0023

I/O 
NAME

SIGNAL 
NAME

CLK2 100KHZ
GATE2 +5 V
OUT2 TIMER
GLK1 1.25 MHZ

GATE1 +5 V
OUT1 MUX SERIAL B
CLKO 1.25 MHZ

GATED +5 V
OUTO MUX SERIAL A

DESCRIPTION

CLOCK INPUT (FOR TIME OF DAY)

INTERRUPT FOR TIME OF DAY
CLOCK INPUT FOR SERIAL PORT B

TO SERIAL PORT B MUX
CLOCK INPUT FOR SERIAL PORT A

TO SERIAL PORT A MUX

89



■
Table C-3: 7201 (COMM.CTLR IOD2) 

Address: E0040-E0043

I/O 
NAME

SIGNAL
NAME __________ DESCRIPTION___________

RXCA 
TXCA 
RXDA 
TXDA 
CTSA 
RTSA 
DCDA 
DTRA 
RXCB 
TXCB 
RXDB 
TXDB 
CTSB 
RTSB 
DCDB 
DTRB

J8-17 RECEIVE CLK A
J8-15 TRANSMIT CLK A
J8-3 RECEIVE DATA A
38-2 TRANSMIT DATA A
J8-5 CLEAR TO SEND A
38- 4 REQUEST TO SEND A
J8-8 DATA CARRIER DETECT A INPUT

J8-20 DATA TERMINAL READY A
39- 17 RECEIVE CLK B
39-15 TRANSMIT CLK B
39-3 RECEIVE DATA B
39-2 TRANSMIT DATA B
39-5 CLEAR TO SEND B
39-4 REQUEST TO SEND B
39-8 . DATA CARRIER DETECT B INPUT

39-20 DATA TERMINAL READY B

Table C-4: HD46505S (CRTC CSO) 
Address: E8000-E8001

INTERRUPT 
LEVEL

SIGNAL
NAME __________ DESCRIPTION

MAI 3
MAI 2

HIRES HIRES ENABLE OUTPUT
DOT ADDR 32K WORD PAGE SELECT OUTPUT

(1 =UPPER)

90



Table C-5: 6522 (VIA 1 CS1)
Address: E8020-E802F

I/O 
NAME

SIGNAL 
NAME DESCRIPTION

PAO DIO1 Parallel data bit 0, IN/OUT
PAI DIO2 Parallel data bit 1, IN/OUT
PA2 DIO3 Parallel data bit 2, IN/OUT
PA3 DIO4 Parallel data bit 3, IN/OUT
PA4 OIOS Parallel data bit 4, IN/OUT
PAS OIOS Parallel data bit 5, IN/OUT
PAS DIO7 Parallel data bit 6, IN/OUT
PA7 DIOS Parallel data bit 7, IN/OUT
CAI NRFD Parallel NRFD interrupt input
CA2 NDAC Parallel NDAC interrupt input
PBO DAV Parallel DAV, IN/OUT
PB1 EOI Parallel EOI, IN/OUT
PB2 REN Parallel REN, IN/OUT
PB3 ATN Parallel ATN, IN/OUT
PB4 IFC Parallel IFC, IN/OUT
PBS SRQ Parallel SRQ, IN/OUT
PBS NRFD Parallel NRFD, IN/OUT
PB7 NDAC Parallel NDAC, IN/OUT
CB1 N.C.
CB2 CODEC VOL Pulse width control CODEC Vol output (TZ)

Table C-6: 6522 (VIA 2 CS2) 
Address: E8040-E804F

I/O 
NAME

SIGNAL 
NAME DESCRIPTION

PAO INT/EXTA Serial A clock select (LOW=INT)
PAI INT/EXTB Serial B clock select (LOW=INT)
PA2 RIA Serial A ring indicate (J8-22)
PA3 DSRA Serial A data set ready (J8-6)
PA4 RIB Serial B ring indicate (J9-22)
PAS DSRB Serial B data set ready (J9-6)
PAS KBDATA Data from keyboard
PA7 VERT Vertical signal input (from CRTC)
CAI NC
CA2 SRQ/BUSY Parallel port IN/OUT
PBO TALK/LISTEN Parallel port direction, control, output
PB1 KBACKCTL Keyboard acknowledge, control, output
PB2 BRTO LSB of brightness control, output
PB3 BRT1 Intermediate bit of brightness control, output
PB4 BRT2 MSB of brightness control, output
PBS CONTO LSB of contrast control, output
PBS CONTI Intermediate bit of contrast control, output
PB7 CONT2 MSB of contrast control, output
OBI KBRDY Key data ready, input
CB2 KBDATA Shift register input

All mnemonics ©Intel Corporation 1981

91



Table C-7: 6852 (SSDA CSS) 
Address: E8060-E80GF

I/O
NAME

RXCLK

TXCLK

RXDATA
TXDATA
SM/DTR

DCD 
CTS

SIGNAL 
NAME DESCRIPTION

Inverted input from PB7 of VIA3 
(CODEC CLOCK)
Inverted input from PB7 of VIA3
(CODEC CLOCK)
Input digital data from CODEC
Digital data output to CODEC
Encode/Decode control for CODEC
(Low=Decode, or transmit)
Inverted input from SM/DTR of this chip 
Input from SM/DTR of this chip

Table C-8: 6522 (VIA 3 CS4) 
Address: E8080-E808

I/O
NAME

SIGNAL 
NAME DESCRIPTION

PAO J5-16 Control Port
PAI J5-18 Control Port
PA2 J5-20 Control Port
PA3 35-22 Control Port
PA4 35-24 Control Port
PA5 35-26 Control Port
PA6 35-28 Control Port
PA7 35-30 Control Port
CAI 35-12 Control Port
CA2 35-14 Control Port
PBO 35-32 Control Port
PB1 35-34 Control Port
PB2 35-36 Control Port
PB3 35-38 Control Port
PB4 35-40 Control Port
PB5 35-42 Control Port
PB6 35-44 Control Port
PB7 35-46 CODEC Clock Output
CB1 35-48 Control Port
CB2 35-50 Control Port

92



Table C-9: 6522 (VIA 4 CS5)
Address: E80A0-E80AF

I/O SIGNAL
NAME NAME DESCRIPTION

PAO LOMSO Drive 0 motor speed, outputs (also
PAI L0MS1 used as a data bus to load 8048
PA2 L0MS2 parameters during motor speed
PA3 L0MS3 controller initialization)
PA4 STOA
PA5 STOB Drive 0 stepper phase, outputs
PA6 STOC
PA7 STOD
CA1 DSO Door 0 sense interrupt, input
CA2 MODE Write sync
PBO LI MSO
PB1 LI MSI Drive 1 motor speed, outputs
PB2 L1MS2
PB3 L1MS3
PB4 ST1 A
PB5 ST1B
PB6 STIC Drive 1 stepper phase, outputs
PB7 ST1D
CB1 DS1 Door 1 sense interrupt, input
CB2 N.C.

Table C-10: 6522 (VIA 6 CS6) 
Address: E80C0-E80CF

'Also used as handshake lines during speed controller initialization.

I/O 
NAME

SIGNAL 
NAME DESCRIPTION

PAO LEDOA LED, drive A, output
PAI TRK0D0 Track 0, drive A sense, input
PA2 LED1A LED, drive B, output
PA3 TRK0D1 Track 0, drive B sense, input
PA4 Side Select Dual side select, output
PA5 Drive Select Select drive A/B, output
PA6 WPS Write protect sense, input
PA7 SYNC Disk sync detect, input
CAI GCRERR GCR error input
CA2 DRW Disk read/write CTRL, output

*PB0 RDYO Motor speed status, drive A
*PB1 RDY1 Motor speed status, drive B

PB2 SCRESET Motor speed controller (8048) reset, output
PB3 DS1 Door B sense, input
PB4 DSO Door A sense, input
PB5 Single/Double sided
PB6 Stepper enable A
PB7 Stepper enable B
CB1 N.C.
CB2 Erase Erase head On/Off, output

93



Table 0-11: 6522 (VIA 5 CS7) 
Address: E80E0-E80EF

I/O SIGNAL
NAME NAME DESCRIPTION

PAO EO
PAI El
PA2 12
PA3 E2 Disk data inputs
PA4 E4
PAS E5
PA6 17
PA7 E6

CA1 BRDY Byte ready input
CA2 RDYO Motor speed status interrupt, drive 0
PBO WDO
PSI WD1
PB2 WD2
PB3 WD3 Disk data outputs
PB4 WD4
PBS WD5
PB6 WD6
PB7 WD7

CB1 N.C.
CB2 RDY1 Motor speed status interrupt, drive 1

94



Appendix D THE DISPLAY SYSTEM

INTRODUCTION The display hardware is a memory-mapped raster scan system.
The display RAM physically occupies 4K bytes, starting at F0000H, 
plus from 4K to 40K bytes of the lower 128 bytes in the 8088 
memory map. The display RAM is organized in two separate banks, 
which operate in a pipelined fashion (see Figure 0-1). The first bank 
is the screen bufgfer; it contains the characters which are to be dis
played on the screen. The screen buffer also contains attribute infor
mation for each character location. The character selection code 
(called the font cell pointer), together with the character row number 
(0-15) is used as the address for the second bank, which contains 
patterns for the characters (font cells). To generate video, the font 
cell patterns are accessed and latched into the video shift register.

Figure D-1: Display System Organization

The display hardware is capable of 80 columns by 25 lines of text. 
The text character cells are 10 dots wide by 16 lines high. These 
character cells are RAM-mapped and programmable. There is also a 
5-bit attribute code associated with each character. Four of these 
attribute bits are used for reverse-video, underline/strikeover, 
highlight, and nondisplay. The other bit is available for user software 
or external hardware. The display hardware can also be configured 
for a high-resolution mode: 800 by 400 dots of bit-addressable 
display. In this mode, the reverse-video, double intensity, and 
nondisplay attributes apply to fixed (16-by-16-dot) cells on the screen, 
and the underline/strikeover attribute is not operative.



The character and attribute bits are organized into words called the 
screen buffer. The lower 11 bits of each word define which of the 
2048 possible characters is to be placed at that location of the 
screen. These 11 bits are collectively called the font cell pointer. The 
upper five bits of the word are the attributes. The MSB (bit 15) is the 
reverse-video bit. Bit 14 is the low-intensity bit; bit 13 is the underline 
bit; and bit 12 is the nondisplay bit. The remaining bit is uncommitted.

The screen buffer words are on even-address boundaries. The 
physical memory of the screen buffer is located, in system address 
space, at F0000 to FOFFF. The 80-character by 25-line display 
occupies 2000 words (4000 bytes) of the available 2048 words in the 
screen buffer. Logically, the screen buffer is mapped to include 
locations FOOOO to Fl FFF. Therefore, addressing location F0000 
accesses the same physical word as addressing location Fl 000. The 
logical beginning of the display screen is selected by a pair of 
registers in the CRT controller chip (this is a word address). This 
register pair may be programmed to move the starting address (line 
one, column one) of the display to any word of the screen buffer. 
When the control register pair is used in this manner, the screen 
buffer functions as a 2048-word circular buffer. Using this technique, 
line scrolling in the text mode may be accomplished by adding 80 to 
the contents of the screen start register and blanking the 80 words 
following the previous end of screen. In both these operations, to 
keep the address within the screen buffer address space, it is also 
necessary to logically AND the resulting address with Fl FFF.

Figure D-2: Screen Buffer World Format

15 0

xxxxxxxxxxxxxxxx

-------------------- font cell pointer----------------------

— RESERVED

L- NON-DISPLAY

— UNDERLINE

L- LOW-INTENSITY

— REVERSE-VIDEO

96



The actual dot patterns of each character are stored in the font cell 
memory. Each 10-dot-by-16-line character cell is stored in 16 
consecutive words. This group of 16 words is called a font cell. The 
lower 10 bits of each word contain the 10 dots of a scan line of the 
character picture. The upper-left bit of a character would be the LSB 
of the first word in the 16 consecutive words that define a font cell. 
Bit 15 of each font cell word is reserved for the underline/strikeover 
flag bit (in text mode, only). If bit 15 is set and the underline/ 
strikeover attribute (bit 13) from the screen buffer is set, then that 
scan line will be white; otherwise, the lower 10 bits in that word will 
be displayed. The nondisplay bit can be used to create "secret” 
(nondisplayed) characters or fields. If a minimum (128-character) set 
is defined, the font cells would occupy 4K bytes of memory. The font 
cells can be located anywhere within the first 128K bytes of RAM, but 
may not cross the 64K boundary.

HIGH RESOLUTION 
MODE

The 800-by-400-dot, bit-mapped, high-resolution display is a special
case use of the cell graphics. The output line, called HIRES (from the 
CRT controller), controls the character cell width. When this line is 
high, the character cells are 16 dots wide instead of the usual 10 
dots. The screen is then organized as 50 columns by 25 lines of 16- 
by-16-dot font cells. This is accomplished by writing new values into 
the control registers of the CRT controller. The full 16 bits of each 
font cell word are used to describe the picture of each character. The 
screen buffer is organized so that each of the 1250 characters on the 
screen is a different character, as described earlier in this manual. 
High-resolution software then operates directly on the font cell 
memory for display bit manipulation.

Programming Note: The HIRES/TEXT control and the DOTSEL 
control (which select whether the beginning address of the font cell 
memory is to be in the first or the second 64K of system memory) 
are manipulated via the two high-order address bits in the CRTC 
display address register pair, R12 and R13. This address interacts 
with the cursor register pair, R14 and R15, and the light pen register 
pair, R16 and R17. Specifically, if the light pen register pair is used 
and/or the cursor-display function is desired, then the software must 
(1) add the cursor address to the current settings of HIRES/TEXT 
and DOTSEL and (2) subtract or mask these bits when interpreting a 
light pen interrupt.

BRIGHTNESS AND 
CONTRAST 
CONTROL

The overall display brightness and the contrast between high and low 
intensity characters are software adjustable.

Brightness may be adjusted to one of eight different levels by setting 
the brightness control bits (PB2, PB3, and PB4 of the 6522 at E8040) 
to the binary value corresponding to the desired level. The binary
value range from zero to seven selects increasing brightness levels.

The contrast function controls the difference in intensity between 
highlighted characters and normal intensity characters. Only the 
intensity of the normal intensity characters is varied by the contrast 
function. The contrast function selects one of eight levels by setting 
the binary value of the desired level in the three contrast control bits

97



(PB5, PB6, and PB7 of the 6522 at E8040). A value range of zero to 
seven selects increasing differences between the normal and 
highlighted characters, with zero causing no difference.

CIRCUIT
DESCRIPTION

The lower 128K bytes of RAM is a dual-port memory system. One 
port is used by the display hardware to refresh the raster-scan 
display. The other port is used by the'8088 microprocessor for read 
and write operations. The dual-port memory is managed by an 
arbitrator circuit that guarantees one refresh access to the display 
RAM every character cell time. The arbitrator circuit adds a wait state 
to any 8088 memory cycle if this is necessary to isolate it from the 
display-refresh cycle. This results in an average of one wait state 
(200 nsec) for every five processor memory access cycles. Processor 
and memory cycles are normally four clock periods (200 nsec). This 
could cause a decrease of approximately 5% in system bus 
performance. However, due to the 8088 instruction lookahead queue, 
this decrease in bus performance rarely translates into decreased 
system performance.

The display-refresh addresses are generated by the HD46505S CRT- 
controller chip (CRTC). Of the 14 address lines from the CRTC, 11 
(MA0-MA10) are used to address the 2K words of screen buffer RAM. 
The 16 data lines output by the screen buffer are latched and divided 
into 11 lines of character address information and 5 lines of character 
attributes. The attribute bits are sent, via a set of character sync 
registers, to the video control section. The 11 lines of the character 
address are combined with 4 lines of character-row address and 
MAI2 (DOTSEL) from the CRTC. This address is then multiplexed 
down to 8 font cell address lines. The 14th character address line 
(MA13) is used to select the high-resolution mode. The 16-bit data 
output word from each font cell word is latched and sent to a 16-bit 
shift register. Either 10 or 16 dots of the shift register are shifted out 
to the video control section. The video control section adds the 
reverse video, highlight, underline, and nondisplay attribute bits and 
the cursor output from the CRTC. The result is sent to the video 
display, along with horizontal and vertical sync pulses.

The display circuit manages the memory refresh in the 128K bytes of 
on-board dynamic RAM. The horizontal and vertical retrace intervals 
are used for memory refresh. Display-refresh cycles occuring during 
retrace intervals cause 8 bits from the refresh-address counter to be 
sent to all 128K of dynamic RAM, rather than the normal display
address lines. The display CAS signal is inhibited for a RAS-only 
memory refresh. The memory-refresh counter is clocked after each 
refresh cycle. In every 64 microsecond horizontal display period, 15 
memory-refresh cycles occur. Every 2 ms, 480 memory-refresh 
addresses are generated, exceeding the 128-address-per-2ms 
specified requirement of 16K dynamic RAM.

98



■ !!■ !■ I 11 ■ 11 — 
CRTC DEVICE 
OPERATION

The CRTC consists of an internal register group, horizontal and 
vertical timing circuits, a linear address generator, a cursor-control 
circuit, and a light-pen-detection circuit. Horizontal and vertical timing 
circuits generate RA0-RA4 , DISPTMG, SYNC, and VSYNC. RA0-RA4 
are raster (row) address signals and are used as address bits 1 to 4 
for the font cell accesses. DISPTMG, HSYNC, and VSYNC signals are 
sent to the video control circuit. This horizontal and vertical timing 
circuit consists of an internal counter and comparator circuit.

The linear address generator generates refresh memory address 
MAO-MA11 to be used for refreshing the screen. The light-pen- 
detection circuit detects the light pen position on the screen. When 
the light pen strobe signal is received, the light pen register latches 
the address generated by the linear address generator to save the 
position of the pen on the screen. The cursor control circuit controls 
the position of the cursor, its height, and its blink rate.

The CRTC provides 13 interface signals to the CPU and 25 interface 
signals to the display circuits.

Table D-1: Recommended Values For CRTC Register Initialization

NOTE: All values are in hexadecimal.

REGISTER
CHARACTER 

MODE

HIGH 
RESOLUTION 

MODE

RO 5C 3A
R1 50 32
R2 51 34
R3 CF C9
R4 19 19
R5 06 06
R6 19 19
R7 19 19
R8 03 03
R9 0E 0E

RIO 60 20
R11 OF OF
R12 00 20
R13 00 00
R14 00 00
R15 00 00

INTERFACE SIGNALS 
TO THE CPU

Bidirectional Data Bus 
(ID0-ID7)

The bidirectional data bus is used for data transfer betweeen the 
CRTC and the 8088. The data bus outputs are 3-state buffers and 
remain in the high-impedance state except when the 8088 performs a 
CRTC read operation.

99



INTERFACE SIGNALS 
TO DISPLAY 
CIRCUITS

Read/Write (R/W) The R/W signal controls the direction of data transfer between the 
CRTC and the 8088. When R/W is high, CRTC data is transferred to 
the 8088. When R/W is low, 8088 data is transferred to the CRTC.

Chip Select (CS) The CS signal is used to address the CRTC. When CS is low, it 
enables R/W operation to CRTC internal registers. This signal is 
derived from decoded address signals of the the 8088.

Register Select (RS) The RS signal is used to select the address register and the 18 
control registers of the CRTC. When RS is low, the address register is 
selected; when RS is high, control registers are selected. This signal 
is the lowest bit (A0) of the 8088 address bus.

Enable (E) The E signal is used as strobe signal in 8088 R/W operations with 
the CRTC internal registers. This signal is PHASE2.

Reset (RES) The Reset signal (RES) is an input signal used to reset the CRTC. 
When RES is low, it forces the CRTC into the following status:

► All the counters in the CRTC are cleared, and the device stops the 
display operation

► All the outputs go low

► Control registers in the CRTC are not affected

Character Clock 
(CLK)

CLK is a standard clock Input signal which defines character timing 
for the CRTC display operation. This signal is provided by the 
memory controller.

Horizontal Sync 
(HSYNC)

HSYNC is an active high-level signal which provides horizontal 
synchronization for the display device.

Vertical Sync 
(VSYNC)

VSYNC is an active high-level signal which provides vertical 
synchronization for the display device.

Display Timing 
(DISPTMG)

DISPTMG is an active high-level signal which defines the display 
period in horizontal and vertical raster scanning. It is necessary to 
enable the video signal only when DISPTMG is high.

Refresh Memory 
Address MA0-MA13

MA0-MA11 are refresh memory address signals which are used to 
access the screen buffer in order to refresh the CRT screen 
periodically.

MA11 is unused.

MAI2 selects the 64K memory bank to be used for font cell memory.

When MA12 equals Q, it selects system RAM starting at location 0; 
when MA12 equals 1, it selects system RAM starting at location 
10000H.

When MAI3 equals 0, it selects text mode when MAI 3 equals one, it 
selects bit-mapped HIRES mode.

100



Raster Address 
(RA0-RA4)

RA0-RA4 are row-address signals which are used to select the row of 
the current character in the font cell memory to be displayed.

Cursor Display 
(CUDISP)

CUDISP is an active high-level video signal which is used to display 
the cursor on the CRT screen at the current display location. This 
output is inhibited while DISPTMG is low. This output is mixed with 
the video signal and is provided to the CRT display circuits.

Light Pen Strobe 
(LPSTB)

LPSTB is an active high-level input signal which accepts a strobe 
pulse detected by the light pen and control circuit. When this signal is 
activated, the memory address (MA0-MA11), along with the current 
settings of HIRES and DOTADR, are stored in the 14bit light-pen 
register. The stored memory address needs to be corrected in 
software, taking the delay time of the display device, light pen, and 
light-pen-control circuits into account.

INTERNAL 
REGISTERS

ADDRESS REGISTER 
(AR)

AR is a 5-bit register used to select among the 18 internal control 
registers (R0-R17). The value of AR is the address of one of 18 
internal control registers. Data values from 18 to 31 do nothing. 
Access to R0-R17 requires writing the address of the corresponding 
control register into this register.

HORIZONTAL TOTAL 
REGISTER (RO)

The contents of RO program the total number of horizontal character
clock periods per line, including the retrace period. The data is 8-bit, 
and its value should be programmed according to the selected mode 
of the display. The programmed value must be one less than the 
number of character intervals required. When programming for 
interlace mode, the value must be even.

HORIZONTAL 
DISPLAYED 
REGISTER (R1)

R1 is used to program the number of displayed characters per 
horizontal line. Data is 8-bit, and any value smaller than that in RO is 
valid.

HORIZONTAL SYNC 
POSITION REGISTER 
(R2)

The contents of R2 program the horizontal sync position in units of 
the character-clock period. Data is 8-bit, and any value less than RO 
is valid. The value programmed should be one less than the sync 
position desired. The effect of increasing the value in R2 is to shift all 
characters displayed on the CRT screen to the left. When the value is 
decreased, character positions shift to the right.

SYNC WIDTH 
REGISTER (R3)

The contents of R3 set the horizontal sync pulse width and the 
vertical sync pulse width. The horizontal sync pulse width is 
programmed in the lower 4 bits, in units of the character-clock period 
(0 is invalid). The vertical sync pulse width is programmed in the 
upper 4 bits, in units of the horizontal period. When 0 is programmed 
in the upper 4 bits, 16 horizontal periods are specified.

VERTICAL TOTAL
REGISTER (R4)

R4 is used to program the total number of horizontal scans per frame, 
including the vertical retrace period. This is a 7-bit value and should 
be programmed according to the selected display mode. The 
programmed value should be one less than the number desired.

101



VERTICAL TOTAL
ADJUST REGISTER
(R5)

VERTICAL
DISPLAYED
REGISTER (R6)

The contents of R5 select the total number of horizontal scans per 
field. This register allows fine control of the deflection frequency.

R6 is used to determine the number of displayed character rows on 
the CRT screen. This is a 7-bit value, and any number that is smaller 
than that in R5 is valid.

NOTE: H=horizontal period.

Table D-2: Pulse Width of Vertical Sync Signal

27
vsw

24
PULSE WIDTH 

(# Rows)26 25

0 0 0 0 16H
0 0 0 1 1
0 0 1 0 2
0 0 1 1 3
0 1 0 0 4
0 1 0 1 5
0 1 1 0 6
0 1 1 1 7
1 0 0 0 8
1 0 0 1 9
1 0 1 0 10
1 0 1 1 11
1 1 0 0 12
1 1 0 1 13
1 1 ' 1 0 14
1 1 1 1 15

Table D-3: Pulse Width of Horizontal Sync Signal

HSW PULSE WIDTH
23 22 2' 2° (# Characters)

0 0 0 0 (not used)
0 0 0 1 1 CH
0 0 1 0 2
0 0 1 1 3
0 1 0 0 4
0 1 0 1 5
0 1 1 0 6
0 1 1 1 7
1 0 0 0 8
1 0 0 1 9
1 0 1 0 10
1 0 1 1 11
1 1 0 0 12
1 1 0 1 13
1 1 1 0 14
1 1 1 1 15

NOTE: CH=character period; HSW=0 cannot be used.

102



VERTICAL SYNC 
POSITION REGISTER 
(R7)

INTERLACE AND 
SKEW REGISTER 
(R8)

INTERLACE MODE 
PROGRAM BITS 
(V, S)

SKEW PROGRAM BIT 
(C1, CO, DI, DO)

The contents of R7 set the vertical sync position on the screen, in 
units of the horizontal character line period. Data is 7-bit, and any 
number that is equal to or less than the vertical total register can be 
programmed. The value programmed should be one less than the 
position desired. Increasing the value shifts the display upward. 
Decreasing the values shifts the display downward.

R8 programs the raster-scan mode and the skew (delay) of CUDISP 
and DISPTMG.

The raster-scan mode is selected by the V and S bits.

Table D-4: Interlace Mode (DO, DI)

V BIT S BIT RASTER-SCAN MODE

0 0 Noninterlace mode
1 0 Noninterlace mode
0 1 Interlace sync mode
1 1 interlace sync and video mode

The LI, C0, D1, and DO bits are used to program the skew (delay) of 
CUDISP and DISPTMG.

The skews of the two signals are programmed separately.

Table D-5: DISPTMG Skew Bit (D7, D6)

D1 BIT DO BIT DISPTMG SIGNAL

0 0 Zero skew
0 1 One-character skew
1 0 Two-character skew
1 1 No output

Table D-6: Cursor Skew Bit (DS, D4)

C1 BIT CO BIT NON SKEW

0 0 Zero skew
0 1 One-character skew
1 0 Two-character skew
1 1 No output

103



The skew function is used to delay the CUDISP and DISP.TMG 
signals for optimum screen-memory access, dot-matrix memory, and 
video signal timing.

MAXIMUM RASTER 
ADDRESS REGISTER 
(R9)

R9 is used to program the maximum raster address (5 bits). This 
register defines the number of rasters (lines) per character, including 
intercharacter spaces. Programming is as follows: 

► Noninterlace Mode

In the following tabulation, the value parameter is set at 4.

RASTER ADDRESS RESULTING FORMAT

0 
1 ..._______ _
2 ...
3 
4 

NOTE: The number of rasters produced in the character 
format is 5 (one more than the value programmed).

► Interlace Sync Mode

In the following tabulation, the value parameter is 4.

RASTER ADDRESS RESULTING FORMAT

0 ......
0 
1 ......
1 ......
2 
2 
3 . ____  .
3 
4 ......
4 ......

NOTE: - and denote alternate fields.

The total number of rasters in the character is 10. The number is 
found by doubling the sum of one plus the value programmed.

► Interlace Sync and Video Mode

The total number of rasters in the character format is one more 
than the value parameter, as in the noninterlace mode, but the 
rasters alternate fields. In the following tabulation, a value 
parameter of 4 is set.

104



RESULTING FORMATRASTER ADDRESS

0 ____________
1 ........................
2 .......
3 ........................
4 ...____ __

NOTE: - -.............and..................denote alternate fields.

CURSOR START 
RASTER REGISTER 
(R10)

RIO programs the cursor-start raster (line) address and the cursor
display mode. The lower 5 bits (D0-D4) are cursor-start, and the next 
2 bits (D5, D6) are cursor-mode.

Table 0-7: Cursor Display Mode (D6, 05)

D5

0
0
1
1

06 CURSOR DISPLAY MODE

0 Steady cursor
1 Cursor off
0 Blinking cursor, 16-field period
1 Blinking cursor, 32-field period

CURSOR END 
RASTER REGISTER 
(R11)

R11 sets the cursor-end raster (line) address.

START ADDRESS 
REGISTERS 
(R12, R13)

R12 and R13 are used to program the first (word) address of the. 
screen buffer memory to be displayed. This word will display as line 
one/column one on the display screen.

CURSOR REGISTERS 
(R14, R15)

LIGHT PEN 
REGISTERS (R16, 
R17)

The two read/write registers R14 and R15 store the cursor location. 
The upper 2 bits (D6, D7) of R14 must always be set to "0".

The read-only registers R16 and R17 are used to latch the detection
time address of the light pen. The upper 2 bits (D6, D7) of R16 are 
always “0”. The value latched may need to be corrected by software 
to allow for light pen system delays.

105



RESTRICTIONS ON 
PROGRAMMING 
INTERNAL 
REGISTERS

NONINTERLACE 
MODE DISPLAY

INTERLACE SYNC 
MODE DISPLAY

INTERLACE SYNC 
AND VIDEO MODE 
DISPLAY

The following restrictions on programming internal registers apply:

► OfNhdf(Nht + 1)t=256
► OfNvdt(Nvt + 1 )f=128
► Of=Nhspt=Nht
► Ot=Nvspt=Nvt*
► O=tNCSTART=tNCEND=tNr (noninterlace, interlace sync mode) 

0=fNCSTARTtNCEND=tNr+1 (interlace sync and video mode)
► 2=tNr=f30
► 3=fNht (except non interlace mode)

5=tNht (noninterlace mode only)

*ln interlace mode, pulse width Is changed +1/2 by the raster time when the 
vertical sync signal extends over two fields.

NOTES: The values programmed in the internal registers of the CRTC are used 
directly to control the CRT. Consequently, the display may flicker if the contents 
of the registers are changed asynchronously to the display operation. The 
registers should be changed only during the horizontal or vertical retrace period.

Alternate fields are identical. The values of raster addresses (RAO- 
RA4) are counted, starting at zero.

In the interlace sync mode, raster addresses in the even field and the 
odd field are the same. The same character pattern is displayed in 
both fields with the displayed position in the odd field 1 /2 raster 
space down from that in the even field.

In interlace sync and video mode, when the raster number is even, 
the output raster address is different from when the raster number is 
odd.

Table D-8: Programmed Values into the Registers

REGISTER REGISTER NAME VALUE

RO Horizontal total Nht
R1 Horizontal displayed Nhd
R2 Horizontal sync position Nhsp
R3 Sync width Nvsw, Nhsw
R4 Vertical total Nvt
R5 Vertical total adjust Nadj
R6 Vertical displayed Nvd
R7 Vertical sync position Nvsp
R8 Interlace and skew
RS Maximum raster address Nn
R10 Cursor start raster
R11 Cursor end raster
R12 Start address (H) 0
R13 Start address (L) 0
R14 Cursor (H)
R15 Cursor (L)
R16 Light pen (H)
R17 Light pen (L)

NOTE: NhdfNht, NvdfNvt

106



Table D-9: Output Raster Address in Interlace Sync and Video 
Mode

TOTAL NUMBER OF RASTERS 
IN THE CHARACTER FORMAT

FIELD

EVEN ODD

Even Even Odd
Address Address

Odd
Even Line Even Odd

Address Address

Odd Line Odd Even
Address Address

NOTE: Internal line address begins from zero.
NOTE: A wide disparity in the number of ON dots in even fields versus that in odd 
fields causes unequal average beam currents during alternate fields. This causes 
CRT final-anode voltage to differ during alternate fields. Since the deflection factor is 
a function of this voltage, the two fields will have somewhat different widths. 
Characters will be distorted, particularly near the edges of the screen. Programming 
for an odd number of rasters per character line is a good way to reduce this type of 
problem.

CURSOR CONTROL Figure D-3 shows display patterns in which various values are stored 
in the cursor-start-raster register and the cursor-end-raster register.
Values in the cursor-start-raster register and the cursor-end-raster 
register must meet the following conditions: cursor-start-rasterf= 
cursor end raster registers- maximum raster address.

Figure D-3: Cursor Control
o
1

2

3

4

5

6

7

g

9-0-0-0-0-0-0-0-0-0-0-
1 0--------------------------------- - ----------------------------

Cursor Start Address = 9
Cursor End Address = 9

0

1- 0-0-0-0-0-0-0-0-0-0-
2- 0-0-0-0-0-0-0-0-0-0-
3- 0-0-0-0-0-0-0-0-0-0-
4- 0-0-0-0-0-0-0-0-0-0-
5- 0-0-0-0-0-0-0-0-0-0-
6
7---------------------------------------------------------------

S
g

1 0

o
1---------------------------------------- :-----------------------
2

3

4

5

6

7

8

9-0-0-0-0-0-0-0-0-0-0-

10-0-0-0-0-0-0-0-0-0-0-

Cursor Start Address - 9
Cursor End Address = 10

107



108



Appendix E AUDIO SYSTEM HARDWARE

Audio output from and (optionally) input to the system are provided by 
a built-in coder/decoder (CODEC), which uses a Continuously- 
Variable-Slope Delta modulation (CVSD) technique. This device 
produces audio output by converting a single-bit, digital-bit stream to 
an analog output.

The bit-stream interface is provided by the 6852-SSDA chip which 
converts 8-bit data bytes from the processor to a bit-serial data 
stream for the CODEC. The SSDA also provides encode/decode 
control, via the DTR output, and a 3-byte FIFO buffer which reduces 
the real-time processor servicing requirements.

Additional control of the audio section is provided by VIA 1 and VIA 3. 
The signals provided are Codec Clock and Volume Control. The 
encode/decode line, controlled by DTR from the SSDA, selects the 
desired audio function (input or output). Codec clock is a PB7 output 
(of VIA 3), a timer-generated signal which determines Codec sampling 
rate (normally about 16KHz). Volume control, a CB2 output (of VIA 1), 
is a timer-controlled recirculating shift register output and is an eight
step, pulse-width-modulated ultra-audio signal.

INPUT SIGNAL 
CONDITIONING

The microphone amplifier utilizes half of an LM358 and a JFET in a 
variable-gain amplifier used as a compressor. The attack time of the 
compressor is about 50 milliseconds; release time is 250 mS. Input 
signal amplitude range for acceptable record quality is about 5 to 75 
mVRMS. The second stage, 1 /2 of a LM358, is a 3-pole butterworth 
low-pass filter with a cutoff-frequency of about 3 KHz. This filter 
eliminates "aliasing” in the CVSD modulator.

OUTPUT 
CONDITIONING AND 
POWER AMPLIFIER

Following the CVSD, the output (playback) signal is low-pass filtered 
by another active, 3 KHz cutoff butterworth filter (1 /4 LM324). 
Following this stage, a CA4066B and its attendant drivers provide 
software-controlled volume control by varying the duty-factor of signal 
CODEC VOL. The frequency of this signal (including the produced 
sidebands) must be high enough to be above audible range; a 
minimum of 20 KHz is recommended. Playback power amplification is 
provided by an LM383. This stage also provides some roll-off to 
alleviate the above problem. The power stage will produce 4 watts of 
audio; thus, an external speaker should be used if above-normal 
sound levels are programmed, since the internal speaker is rated at 
only 300 milliwatts.



SSDA DEVICE 
OPERATION

OVERVIEW At the bus interface, the SSDA appears as two addressable memory 
locations. Internally, there are seven registers: two read-only and five 
write-only registers. The read-only registers are Status and Receive 
Data; the write-only registers are Control 1, Control 2, Control 3, 
Sync-Code and Transmit Data. The serial interface consists of serial 
input and output lines with independent clocks and four 
peripheral/modem control lines.

Data to be transmitted is transferred directly into the 3-byte Transmit 
Data First-In First-Out (FIFO) register from the data bus. Availability of 
the input to the FIFO is indicated by a bit in the Status register; once 
data is entered, it moves through the FIFO to the last empty location. 
Data at the output of the FIFO is automatically transferred from the 
FIFO to the Transmitter Shift register as the shift register becomes 
available to transmit the next character. If data is not available from 
the FIFO (underflow condition), the Transmitter Shift register is 
automatically loaded with either a sync code or an all 1 ’s character. 
The transmit section should be programmed to not append parity onto 
the transmitted word.

For use in the SI audio system, the SSDA should normally be 
programmed to use 8-bit, no parity, and External Sync mode. Then 
the DTR control selects the input or output function. However, for 
completeness and any special functions, all modes of SSDA operation 
are discussed in the following sections.

The method of serial data accumulating in the receiver depends on 
the synchronization mode selected. In External Sync mode, used for 
parallel-serial operation, the receiver is synchronized by the DCD 
(Data Carrier Detect) input and transfers successive bytes of data to 
the input of the Receiver FIFO. The Single-Sync-Character mode 
requires a match between the Sync-Code register and one incoming 
character before data transfer to the FIFO begins. In Two-Sync- 
Character mode, two sync codes must be received in sequence to 
establish synchronization. Subsequent to synchronization in any mode, 
data is accumulated in the shift register. Availability of a word at the 
FIFO output is indicated by a bit in the Status register.

The SSDA and its internal registers are selected by the address bus 
and the Read/Write (R/W) and Enable control lines. To configure the 
SSDA, Control registers are selected and the appropriate bits set. The 
Status register can be selected to read status.

The transmitter and receiver clock inputs are tied together. Signals to 
the microprocessor are the Data bus and Interrupt Request (IRQ).

INITIALIZATION During a power-up sequence, system reset sets the SSDA in an 
internally-latched reset condition to prevent erroneous output 
transitions. The Sync-Code register, Control register 2, and Control 
register 3 should be loaded prior to the programmed release of the 
Transmitter and/or Receiver Reset bits. The bits in Control register 1 
should be cleared after the Reset line has gone high.



TRANSMITTER 
OPERATION

RECEIVER 
OPERATION

SYNCHRONIZATION

Data is transferred to the transmitter section in parallel form via the 
data bus and the Transmit Data FIFO. The Transmit Data FIFO is a 3- 
byte register whose status is indicated by the Transmitter Data 
Register Available status bit (TDRA) and its associated interrupt 
enable bit. Data is transferred through the FIFO on negative edges of 
PHASE2 pulses. Two data transfer modes are provided in the SSDA: 
the 1-byte transfer mode provides for writing data to the transmitter 
section (and reading from the receiver section) one byte at a time; 
the 2-byte transfer mode provides for writing two data characters in 
succession.

Data automatically transfers from the last register location in the 
Transmit Data FIFO (when it contains data) to the Transmitter Shift 
register during the last half of the last bit of the previous character. A 
character is transferred into the Shift register by the Transmitter 
Clock. Data is transmitted LSB first.

When the Shift register becomes empty and data is not available for 
transfer from the Transmit Data FIFO, an underflow results, and a 
character is inserted into the transmitter data stream. This character 
will be either all 1 's or the contents of the Sync-Code register, 
depending on the state of the Transmit Sync-Code-On-Underflow 
control bit.

Transmission is initiated by clearing the Transmitter Reset bit in 
Control register 1. When the Transmitter Reset bit is cleared, the first 
full positive half-cycle of the Transmit Clock initiates the transmit 
cycle; the transmission of data (or underflow characters) begins on 
the negative edge of the Transmit Clock pulse which started the 
cycle. If the Transmit Data FIFO has not been loaded, an underflow 
character is transmitted. When the Transmitter Reset bit (Tx Rs) is 
set, the Transmit Data FIFO is cleared and the TDRA status bit is 
cleared. After one PHASE2 clock has occurred, the Transmit Data 
FIFO becomes available for new data and TDRA is inhibited.

Data and a pre-synchronized clock are provided to the SSDA receiver 
section by means of the Receive Data (Rx Data) and Receive Clock 
(Rx Ok) inputs. The data is a continuous bit stream; character 
boundaries cannot be identified within the stream. The Receiver Shift 
register outputs are high when it is in the reset state.

The SSDA provides three operating modes related to character 
synchronization: One-Sync-Character mode, Two-Sync-Character 
mode, and External Sync mode. The External Sync mode requires 
synchronization and control of the receiving section through the Data 
Carrier Detect (DCD) input. The external synchronization source could 
consist of a direct control line from the transmitting end of the serial 
data link or from external logic designed to detect the start of a 
message block. The One-Sync-Character mode searches on a bit-by- 
bit basis until a match is achieved between the data in the Shift 
register and the Sync-Code register. A match indicates that character 
synchronization is complete and will be retained for the message 
block. In the Two-Sync-Character mode, the receiver searches for the 
first sync-code match on a bit-by-bit basis and then looks for a 
second successive sync-code character prior to establishing 
character synchronization. If the second sync-code character is not 
received, the bit-by-bit search for the first sync-code resumes.

Ill



Sync-codes received prior to the completion of synchronization (one 
or two character) are not transferred to the Receive Data FIFO. 
Redundant sync-codes received during the preamble or sync-codes 
which occur as fill characters can automatically be stripped from the 
data by setting the Strip-Sync control bit to minimize system loading. 
Character synchronization is retained until cleared by means of the 
Clear-Sync bit. This bit also inhibits the synchronization search 
routine.

RECEIVING DATA Once synchronization has been achieved, subsequent characters are 
automatically transferred into the Receive Data FIFO and clocked 
through the FIFO to the last empty location by PHASE2 pulses. The 
Receiver Data Available status-bit (RDA) indicates when data is 
available to be read from the last FIFO location (number 3) when in 
the 1 -byte transfer mode. The 2-byte transfer mode causes the RDA 
status bit to indicate that data is available when the last two FIFO 
register locations are full. Available data in the Receive Data FIFO 
triggers an interrupt request if the Receiver Interrupt Enable bit (RIE) 
is set. The CPU should then read the SSDA Status register, which 
indicates whether data is available for the CPU to read from the 
Receive Data FIFO register. The IRQ and RDA status bits are reset 
by a read from the FIFO.

If more than one character has been received and is resident in the 
Receive Data FIFO, subsequent PHASE2 clocks cause the FIFO to 
update and the RDA and IRQ status-bits to again be set. The read
data operation for the 2-byte transfer mode requires a PHASE2 clock 
intervening between reads to allow the FIFO data to shift.

The other status bit which pertains to the receiver section is Receiver 
Overrun. The Overrun status bit is automatically set when a character 
is transferred to the Receive Data FIFO while the first register of the 
Receive Data FIFO is full. Overrun causes an interrupt if Error 
Interrupt Enable (EIE) has been set. The transfer of the overrunning 
character into the FIFO causes the previous character in the FIFO 
input register location to be lost. The Overrun status bit is cleared by 
reading the Status register (when the overrun condition is present) 
followed by a Receive Data FIFO register read. Overrun cannot occur 
and be cleared without providing an opportunity to detect its 
occurrence via the Status register.

INPUT/OUTPUT 
FUNCTIONS

SSDA INTERFACE 
SIGNALS FOR CPU

SSDA Bidirectional 
Data (ID0-ID7)

The SSDA interfaces to the CPU with an 8-bit bidirectional data bus 
(ID0-ID7), a chip-select line, a register-select line, an interrupt-request 
line, a read/write line, an enable line, and a reset line. These signals 
permit the CPU to have complete control over the SSDA.

The bidirectional data lines (D0-D7) allow for data transfer between 
the SSDA and the CPU. The data bus output drivers are three-state 
devices that remain in the high-impedance (off) state except when 
the CPU performs an SSDA read operation.

112



SSDA Enable 
(PHASE2)

The Enable signal, PHASE2, is a high impedance TTL-compatible 
input that enables the bus input/output data buffers, clocks data to 
and from the SSDA, and moves data through the FIFO Registers. This 
signal is the continuous System PHASE2 1 Mhz clock.

Read/Write (R/W) The Read/Write line is a high-impedance input that is TTL-compatible 
and is used to control the direction of data flow through the SSDA's 
input/output data bus interface. When Read/Write is high (CPU read 
cycle), SSDA output drivers are turned on if the chip is selected and 
a selected register is read. When it is low, the SSDA output drivers 
are turned off and the CPU writes into a selected register. The 
Read/Write signal is also used to select read-only or write-only 
registers within the SSDA.

Chip Select (CS) The Chip Select line is a high impedance TTL-compatible input line 
used to address the SSDA. The SSDA is selected when CS is low. 
Transfers of data to and from the SSDA are performed under the 
control of the Enable signal, Read/Write, and Register Select.

Register Select (RS) The Register Select line is a high impedance input that is TTL- 
compatible. A high level is used to select Control registers C2 and 
C3, the Sync Code register, and the Transmit/Receive Data registers. 
A low level selects the Control 1 and Status registers (see Table 1). 
This line is driven by the AO bit of the system address bus.

Interrupt Request 
(IRQ)

Interrupt Request is a TTL-compatible, open-drain (no internal pullup), 
active-low output that is used to interrupt the CPU. The Interrupt 
Request remains low until cleared by the CPU.

Reset Input The Reset input provides a means of resetting the SSDA from an 
external source. In the low state, the Reset input causes the following:

► The Receiver Reset (Fix Rs) and Transmitter Reset (Tx Rs) bits are 
set, causing both the receiver and transmitter sections to be held 
in a reset condition.

► Peripheral Control bits PCI and PC2 are reset to zero, causing the 
SM/DTR output to be high.

► The Error Interrupt Enable (EIE) bit is reset.

► An internal synchronization mode is selected.

► The Transmitter Data Register Available (TDRA) status bit is 
cleared and inhibited.

When Reset returns high (the inactive state), the transmitter and 
receiver sections remain in the reset state until the Receiver Reset 
and Transmitter Reset bits are cleared via the bus under software 
control. The Control Register bits affected by Reset (Fix Rs, Tx Rs, 
PCI, PC2, EIE, and E/l Sync) cannot be changed when Reset is low.

CLOCK INPUTS Separate high impedance TTL-compatible inputs are driven by a 
common source for clocking transmitted and received data. The 
source is the CB2 signal from the Control Port VIA.

Transmit Clock 
(Tx Clk)

The Transmit clock input is used to clock out of transmitted data. The 
transmitter shifts data on the negative transition of the clock.

113



Receive Clock 
(Rx Clk)

The Receive clock-input is used to clock in received data. The clock 
and data must be synchronized externally. The receiver samples the 
data on the positive transition of the clock.

SERIAL
INPUT/OUTPUT 
LINES

Receive Data 
(Rx Data)

The Receive Data line is a high impedance TTL-compatible input 
through which data is received in a serial format. Data rates may be 
from 0 to 600 kbs.

Transmit Data 
(Tx Data)

The Transmit Data output line transfers serial data to a modem or 
other peripheral. Data rates may be from 0 to 600 kbs.

SSDA REGISTERS Seven registers in the SSDA can be accessed by means of the bus. 
The registers are defined as read-only or write-only according to the 
direction of information flow. The Register Select input (RS) selects 
two registers in each state, one being read-only and the other write- 
only. The Read/Write input (R/W) defines which pair is actually 
accessed. Four registers (two read-only and two write-only) can be 
addressed via the bus at any particular time. These registers and the 
required adressing are defined in Table E-1.

Table E-1: SSDA Programming Model

INPUTS CONTROL REGISTER CONTENT

REGISTER RS R/W AC2 AC1 BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0

Status (S) 0 1 X X Interrupt 
Request 

(IRQ)

Receiver 
Parity 
Error

Receiver
Overrun

(RX Ovrn)

Transmitter 
Underflow 

(TUF)

Clear- 
to-Send 
(CIS)

Data Carrier 
Detect 
(DCD)

Transmitter
Data 

Register 
Available 
(TDRA)

Receiver 
Data 

Available 
(RDA)

Control 
(C1)

0 0 X X Address
Control 2 

(AC 2)

Address
Control 1

(AC 1)

Receiver 
Interrupt 
Enable 
(RIE)

Transmitter 
Interrupt 

(TIE)

Clear 
Sync

Strip Sync 
Characters 
(Strip Sync)

Transmitter 
Reset 

(Tx Rs)

Receiver 
Reset 

(Rx Rs)

Receive
Data FIFO

1 1 X X D7 D6 DS D4 D3 D2 D1 DO

Control 2 
(C2)

1 0 0 0 Error 
Interrupt 
Enable 
(EIE)

Transmit 
Sync Code 

on Underflow 
(TX Sync)

Word 
Length 

Select 3 
(WS 3)

Word 
Length 

Select 2 
(WS 2)

Word 
Length 

Select 1 
(WS 1)

1-Byte/2-Byte 
Transfer 
(1 -Byte/ 
2-Byte)

Peripheral 
Control 2 

(PC 2)

Peripheral 
Control 1 

(PC 1)

Control 3 1 0 0 1 Not Used Not Used Not Used Not Used Clear 
Transmitter 
Underflow 

Status 
(CTUF)

Clear CTS
Status_

(Clear CTS)

One-Sync- 
Character/ 
Two-Sync- 
Character 

Mode Control 
(1 Sync/ 
2 Sync)

External/ 
Internal 

Sync Mode 
Control 

(E/l Sync)

Sync Code 1 0 1 0 D7 D6 DS D4 D3 D2 D1 DO
Transmit 1 0 1 1 D7 D6 D5 D4 D3 D2 01 DO

X = Don't care.

114



CONTROL REGISTER
1 (Cl)

Control register 1 is an 8-bit write-only register that can be directly 
addressed from the data bus. Control register 1 is addressed when 
RS equals zero.

Receiver Reset 
(Rx Rs), Cl Bit 0

The Receiver Reset control bit provides both a reset and inhibit 
function to the receiver section. When Rx Rs is set, it clears the 
receiver control logic, sync logic, error logic, Rx Data FIFO Control, 
Parity Error status bit, and DCD interrupt. The Receiver Shift register 
is set to "ones.” The Rx Rs bit must be cleared after the occurrence 
of a low level on Reset in order to enable the receiver section of the 
SSDA.

Transmitter Reset 
(Tx Rs), Cl Bit 1

The Transmitter Reset control bit provides both a reset and inhibit to 
the transmitter section. When Tx Rs is set, it clears the transmitter 
control section, Transmitter Shift register, Tx Data-FIFO Control (the 
Tx Data FIFO can be reloaded after one PHASE2 clock pulse), the 
Transmitter Underflow status bit, and the CTS interrupt, and inhibits 
the TDRA status bit (in the one-sync-character and two-sync- 
character models). The Tx Rs bit must be cleared after the 
occurrence of a low level on Reset in order to enable the transmitter 
section of the SSDA. If the Tx FIFO is not preloaded, it must be 
loaded immediately after the Tx Rs release to prevent a transmitter 
underflow condition.

Strip Synchronization 
Characters (Strip- 
Sync), Cl Bit 2

If the Strip-Sync bit is set, the SSDA automatically strips all received 
characters which match the contents of the Sync-Code register. The 
characters used for synchronization (one or two characters of sync) 
are always stripped from the received data stream.

Clear Synchronization 
(Clear-Sync), Cl Bit 3

The Clear-Sync control bit provides the capability of dropping receiver 
character synchronization and inhibiting resynchronization. The Clear- 
Sync bit is set to clear and inhibit receiver synchronization in all 
modes and is reset to zero to enable resynchronization.

Transmitter Interrupt 
Enable (TIE), C1 Bit 4

TIE enables both the Interrupt Request output (IRQ) and Interrupt 
Request status bit to indicate a transmitter service request. When TIE 
is set and the TDRA status bit is high, the IRQ output goes low (the 
active state), and the IRQ status bit goes high.

Receiver Interrupt 
Enable (RIE), Cl Bit 5

RIE enables both the Interrupt Request output (IRQ) and the Interrupt 
Request status bit to indicate a receiver service request. When RIE is 
set and the RDA status bit is high, the IRQ output goes low (the 
active state), and the IRQ status bit goes high.

Address Control 1 
(AC1) and Address 
Control 2 (AC2), Cl 
Bits 6 and 7

AC1 and AC2 select one of the write-only registers (Control 2, Control 
3, Sync-Code, or Tx Data FIFO), as shown in Table 0-1, when RS 
equals one and R/W equals zero.

■ equals zero.

CONTROL REGISTER 
2 (02)

Control register 2 is an 8-bit write-only register which can be 
programmed from the bus when the Address Control bits in Control 
register 1 (AC1 and AC2) are reset and'RS equals one and R/W

115



Peripheral Control 1 
(PCI) and Peripheral 
Control 2 (PC2), 
C2 Bits 0 and 1

1-Byte/2-Byte Transfer
(1-Byte/2-Byte),
C2 Bit 2

Word Length Selects 
(WS1, WS2, WS3), 
C2 Bits 3, 4, and 5

Transmit Sync-Code 
on Underflow 
(Tx Sync), C2 Bit 6

Error Interrupt Enable 
(EIE), C2 Bit 7

CONTROL REGISTER
3 (C3)

External/lnternal Sync 
Mode Control (E/1 
Sync), C3 Bit 0

The Peripheral Control 1 bit (PCI) and the Peripheral Control 2 bit 
(PC2) control the direction of data transfer and the selected CODEC 
function (Encode for receive; Decode for transmit). Control is 
accomplished by setting PC2 and setting PCI to 00 for enabling the 
input (receive) function or to a 01 to enable the output (transmit) 
function. The DTR output is connected directly to the CTS input of 
the SSDA. Its complement is connected to the DCD input of the 
SSDA, as well as to the Encode/Decode select (pin 10) of the 
CODEC.

When 1-Byte/2-Byte is set, the TDRA and RDA status bits indicate 
the availability of their respective data FIFO registers for a single byte 
data transfer. If 1 Byte/2 Byte is reset, the TDRA and RDA status bits 
indicate when two bytes of data can be moved without a second 
status-read. An Enable pulse must occur between data transfers.

Word Length Select bits WS1, WS2, and WS3 select the word length 
(including parity) for the 7, 8, and 9 bits, as shown in Table 6-1.

When Tx Sync is set, the transmitter automatically sends a sync
character when data is not available for transmission. If Tx Sync is 
reset, the transmitter transmits a Mark character (including the parity 
bit position) on underflow. If the Tx Sync bit is set when the underflow 
is detected, a pulse approximately the width of a Tx Clk high-period 
occurs on the underflow output. Internal parity generation is inhibited 
during underflow except for sync-code fill-character transmission in 
8-bit-plus parity word lengths.

When EIE is set, the IRQ status bit goes high and the IRQ output 
goes low if —

► A receiver overrun occurs. The interrupt is cleared by reading the 
Status Register and reading the Rx Data FIFO.

► The transmitter has underflowed (in the Tx Sync On Underflow 
Mode). The interrupt is cleared by writing a "1" into the Clear 
Underflow, C3 bit 3, or Tx Reset.

When EIE is a 0, the IRQ status bit and the IRQ output are disabled 
for the preceding error conditions. A low level on the Reset input 
resets EIE to "0.”

Control register 3 is a 4 - bit write-only register that can be 
programmed from the bus when RS equals one and R/W equals zero 
and when Address Control bits AC1 equals one and AC2 equals zero.

When the E/1 Sync Mode bit is high, the SSDA is in External Sync 
mode, and the receiver synchronization logic is disabled. 
Synchronization can be achieved by means of the DCD input. The 
DCD input is controlled directly by the DTR output, whose operation 
is described earlier in "Control Register 2, bits PCO and PC1.” Both 
the transmitter and receiver sections operate as parallel-to-serial 
converters in External Sync mode. The Clear-Sync bit in Control 
register 1 acts as a receiver sync inhibit when high to provide a bus- 
controllable inhibit. The Sync-Code Register can serve as a

116



transmitter fill-character register and a receiver match register in this 
mode. A low on the Reset input resets the E/1 Sync Mode bit, 
placing the SSDA in Internal Sync mode.

One-Sync-
Character/Two-Sync- 
Character Mode 
Control (1 Sync/2 
Sync), C3 Bit 1

When the 1 Sync/2 Sync bit is set, the SSDA synchronizes on a 
single match between the received data and the contents of the 
Sync-Code register. When the 1 Sync/2 Sync bit is reset, two 
successive sync characters must be received prior to receiver 
synchronization. If the second sync character is not detected, the bit- 
by-bit search resumes from the first bit in the second character. Refer 
to the section of the Sync Code register for more detailed description.

Clear CTS Status 
(Clear CTS), C3 Bit 2

When a “1" is written into the Clear CTS bit, the stored status and 
interrupt are cleared. Subsequently, the CTS status bit reflects the 
state of the CTS input. The Clear CTS control bit does not affect the 
CTS input or its inhibit of the transmitter section. The Clear CTS 
command bit is self-clearing, so writing a "0" into this bit 
accomplishes nothing.

Clear Transmit 
Underflow Status 
(CTUF), C3 Bit 3

When a "1” is written into the CTUF status bit, the CTUF bit and its 
associated interrupt are reset. The CTUF command bit is 
self-clearing.

SYNC-CODE 
REGISTER

The Sync-Code register is an 8-bit register for storing the 
programmable sync code required for received data character 
synchronization in the One-Sync-Character and Two-Sync-Character 
modes. The Sync-Code register also provides for stripping the 
sync/fill characters from the received data (a programmable option) 
and for automatic insertion of fill characters in the transmitted data 
stream. The Sync-Code register is not used for receiver character 
synchronization in the External Sync mode; instead, it provides 
storage of receiver match and transmit fill characters.

The Sync-Code register can be loaded when AC2 and AC1 are a "1" 
and a "0”, respectively, and if R/W equals zero and RS equals one.

The Sync-Code Register may be changed after the detection of a 
match with the received data (the first sync-code having been 
detected) to synchronize with a double-word sync pattern. (This sync
code change must occur prior to the completion of the second 
character.) The sync-match (SM) output can be used to interrupt the 
CPU system to indicate that the first eight bits have matched. The 
service routine would then change the Sync Code register to the 
second half of the pattern. Alternately, One Sync-Character mode can 
be used for sync-codes of more than 8 bits by using software to 
check the second and subsequent bytes after reading them from the 
FIFO.

PARITY FOR SYNC 
CHARACTER

The Transmitter does not generate parity for the sync character 
except in 9-bit mode:

Transmitter 9-bit (8-bit + parity) generates an 8-bit sync character + parity

8-bit (7-bit + parity) generates an 8-bit sync character (no 
parity)

7-bit (6-bit + parity) generates a 7-bit sync character (no parity)

117



Receiver DURING SYNCHRONIZATION The Receiver automatically strips 
the sync character(s) (there are two sync characters if 2-sync mode 
is selected) used to establish synchronization. Parity is not checked 
for these sync characters.

AFTER SYNCHRONIZATION IS ESTABLISHED When the “strip
sync” bit is selected, the sync characters (fill characters) are stripped, 
and parity is not checked for the stripped sync (fill) characters. When 
the strip-sync bit is not selected (low), the sync character is assumed 
to be normal data and is transferred into FIFO after parity checking (if 
a parity format is selected).

Table E-2: Strip Sync Control Bit

STRIP SYNC 
(Cl BIT 2)

1

0

0

WS0-WS2 
(DATA FORMAT; 

C2 BIT 3-5)

X

With parity

Without parity

OPERATION

No transfer of sync-code.
No parity check of sync-code.

‘Transfer data and sync-codes.
Parity check.

‘Transfer data and sync-codes.
No parity check.

‘Subsequent to synchronization.

Care should be exercised in selecting the sync character in the 
following situations:

► When Data format is (6 + parity) or (7 + parity)

► When Strip sync is not selected (low)

► When sync code is used as a fill character, and synchronization 
is established

The transmitter sends a sync character with parity, but the receiver 
checks the parity as if it were normal data. Therefore, the sync 
character should be chosen to match the parity check selected for 
the receiver in the special cases described in Table E-2.

RECEIVE DATA 
FIRST-IN FIRST-OUT 
REGISTER (Rx Data 
FIFO)

The Receive Data FIFO register consists of three 8-bit registers and 
is used for buffer storage of received data. Each 8-bit register has an 
internal status bit that monitors its full or empty condition. Data is 
always transferred from a full register to an adjacent empty register. 
The transfer from register to register occurs on PHASE2 pulses. The 
RDA status bit is high when data is available in the last location of 
the Rx Data FIFO.

In an Overrun condition, the overrunning character is transferred into 
the full first stage of the FIFO register and causes the loss of that 
data character. Successive overruns continue to overwrite the first

118



register of the FIFO, This destruction of data is indicated by the 
Overrun status bit. The Overrun bit is set when the overrun occurs 
and remains set until the Status Register is read and a read of the Rx 
Data FIFO occurs.

Unused data bits for short word lengths (including the parity bit) 
appear as zeros on the data bus when the Rx Data FIFO is read.

TRANSMIT DATA 
FIRST-IN FIRST-OUT 
REGISTER (TX DATA 
FIFO)

The Transmit Data FIFO register consists of three Shift registers used 
for buffer storage of data to be transmitted. Each 8-bit register has an 
internal status bit which monitors its full or empty condition. Data is 
always transferred from a full register to an adjacent empty register. 
The transfer is clocked by pulses. The TDRA status bit is high if the 
Tx Data FIFO is available for data.

Unused data bits for short word lengths are handled as “don’t cares.” 
The parity bit is not transferred over the data bus since the SSDA 
generates parity at transmission.

When an Underflow occurs, the Underflow character is either the 
contents of the sync-code register or an all-ones character. The 
Underflow is stored in the Status register until cleared and appears on 
the Underflow output as a pulse approximately the width of a Tx Oik 
high period.

STATUS REGISTER The Status register is an 8-bit read-only register. It provides the real
time status of the SSDA and the associated serial data channel. 
Reading the Status register is nondestructive. The method of clearing 
status bits depends upon the function each bit represents and is 
treated separately for each bit in the register, as described in the 
following sections.

Receiver Data 
Available (RDA), 
S Bit 0

The Receiver Data Available status bit indicates when receiver data 
can be read from the Rx Data FIFO. The presence of Receiver data 
is in the last register (#3) of the FIFO causes RDA bit to be high for 
the 1-byte transfer mode. In the 2-byte transfer mode, a high RDA bit 
indicates that the last two registers (#2 and #3) are full. The second 
character can be read without a second status read (to determine 
whether the character is available). Status must be read on a byte- 
by-byte basis if receiver data error checking is desired. The RDA 
status bit is reset automatically when data is not available.

Transmitter Data 
Register Available 
(TDRA), S Bit 1

The TDRA status bit indicates that data can be loaded into the Tx 
Data FIFO register. An empty first register (#1) of the Tx Data FIFO is 
indicated by a high-level TDRA status bit in the 1-byte transfer mode. 
The first two registers (#1 and #2) must be empty for TDRA to be 
high when in the 2-byte transfer mode. The Tx Data FIFO can be 
loaded with two bytes without an intervening status read. TDRA is 
inhibited by the Tx reset or reset. Upon Tx Reset, the Tx Data FIFO is 
cleared and then released on the PHASE2 clock pulse. The Tx Data 
FIFO can then be loaded with up to three data characters, even 
though TDRA is inhibited. This feature allows preloading data prior to 
the release of Tx Reset. A high-level CTS input inhibits the TDRA 
status bit in either sync mode (One-Sync-Character mode or Two- 
Sync-Character mode). CTS does not affect TDRA in External Sync 
mode. Thus the SSDA is allowed to operate under the control of the

119



CTS input with TDRA indicating the status of the Tx Data FIFO. The 
CTS input does not clear the Tx Data FIFO in any operating mode.

Data Carrier Detect 
(DCD), S Bit 2

A positive transition on the DCD input is stored in the SSDA until 
cleared by reading both Status and Rx Data FIFO. A "1” written into 
Rx Rs also clears the stored DCD status. The DCD status bit, when 
true, indicates that the DCD input has gone high. The reading of both 
Status and Receive Data FIFO allows Bit 2 of subsequent Status 
reads to indicate the state of the DCD input until the next positive 
transition.

Clear-to-Send 
(CTS), S Bit 3

A positive transition on the CTS input is stored in the SSDA until 
cleared by writing a “I" into the Clear CTS control bit or the Tx Rs 
bit. The CTS status bit, when true, indicates that the CTS input has 
gone high. The Clear CTS command (a "1” into C3 Bit 2) allows Bit 3 
of subsequent Status reads to indicate the state of the CTS input until 
the next positive transition.

Transmitter Underflow 
(TUF), S Bit 4

When data is not available for the transmitter, an underflow occurs 
and is so indicated in the Status register (in the Tx Sync on. underflow 
mode). The underflow status bit is cleared by writing a "1" into the 
Clear Underflow (CTUF) control bit or the Tx Rs bit. TUF indicates 
that a sync character will be transmitted as the next character. A TUF 
is indicated on the output only when the contents of the Sync-Code 
Register is to be transferred (transmit sync code on underflow equals 
one).

Receiver Overrun 
(Rx Ovrn), S Bit 5

Overrun indicates that data has been received when the Rx Data 
FIFO is full, resulting in data loss. The Rx Ovrn status bit is set when 
Overrun occurs. The Tx Ovrn status bit is cleared by reading Status 
followed by reading the Rx Data FIFO or by setting the Rx Rs control 
bit.

Receiver Parity Error The Parity Error status bit indicates that parity for the character in the 
(PE), S Bit 6 . last register of the Rx Data FIFO did not agree with selected parity.

Interrupt Request 
(IRQ), S Bit 7

The parity error is cleared when the character to which it pertains is 
read from the Rx Data FIFO or when Rx Rs occurs. The DCD input 
does not clear the Parity Error or Rx Data FIFO status bits.

The Interrupt Request status bit indicates when the IRQ output is in 
the active state (IRQ output equals zero). The IRQ status bit is 
subject to the same interrupt enables (RIE, TIE, and EIE) as the IRQ 
output. The IRQ status bit simplifies status inquiries for polling 
systems by providing a single-bit indication of service requests.

STATUS REGISTER

IRQ Bit 7 The IRQ flag is cleared when the source of the IRQ is cleared. The 
source is determined by the enables in the Control registers. TIE RIE 
EIE.

Bits 6 to 0 Indicate the SSDA status at a point in time, and can be reset as 
follows:

PE Bit 6 Read Rx Data FIFO, or a "1" into Rx Rs (Cl Bit 0).

120



Rx Ovrn Bit 5 Read Status and then Rx Data FIFO or a “1" into Rx 
Rs (01 Bit 0).

TUF Bit 4 A “1 ” into CTUF (C3 Bit-3) or into Tx Rs (01 Bit 1).

CTS Bit 3 A "1" into Clear CIS (03 Bit 2) or a “1" into Tx Rs (01 
Bit 1).

DCD Bit 2 Read Status and then Rx Data FIFO or a "1" into Rx Rs 
(01 Bit 0).

TDRA Bit 1 Write into Tx Data FIFO.

RDA Bit 0 Read Rx Data in FIFO.

CONTROL
REGISTER 1

AC2, AC1 Bits 7, 6 Used to access other registers, as shown above.

RIE Bit 5 When "1", enables interrupt on RDA (S Bit 0).

TIE Bit 4 When "1", enables interrupt on TDRA (S Bit 1).

Clear Sync Bit 3 When "1", clears receiver character synchronization.

Strip Sync Bit 2 When "1", strips all sync codes from the received data stream.

Tx Rs Bit 1 When “1", resets and inhibits the transmitter section.

Rx Rs Bit 0 When “1 ”, resets and inhibits the receiver section.

CONTROL
REGISTER 2

CTUF Bit 3 When "1", clears TUF (S Bit 4), and IRQ if enabled.

Clear CTS Bit 2 When "1", clears CTS (S Bit 3), and IRQ if enabled.

1 Sync/2 Sync Bit 1 When "1", selects the one-sync-character mode; when "0”, selects 
the two-sync character mode.

E/1 Sync Bit 0 When "1", selects the external sync mode; when "0", selects the 
internal sync mode.

CONTROL
REGISTER 2

WS3, 2, 1 Sits 5 to 3

EIE Bit 7 When "1", enables the PE, Rx Ovrn, TUF, CTS, and DCD interrupt 
flags (S Bits 6 through 2).

Tx Sync Bit 6 When "1", allows sync code contents to be transferred on underflow, 
and enables the TUF Status bit and output. When "0”, an all mark 
character is transmitted on underflow.

121



’This is the mode which should always be used.

Table E-3: Word Length Select

BIT 5 BIT 4 BIT 3
WS3 WS2 WS1 WORD LENGTH

0 0 0 6 bits + even parity
0 0 1 6 bits + odd parity
0 1 0 7 bits, no parity

*0 1 1 8 bits, no parity
1 0 0 7 bits + even parity
1 0 1 7 bits + odd parity
1 1 0 8 bits + even parity
1 1 1 8 bits + odd parity

1-Byte/2-Byte, Bit 2

PC2, PC1, 
Bits 1 and 0

When "1", enables the TDRA and RDA bits to indicate when a 1 -byte 
transfer can occur; when "0”, the TDRA and RDA bits indicate when 
a 2-byte transfer can occur.

Table E-4: SM/DTR Output Control

BIT 1
PC2S

BIT 0 
PC1 SM/DTR OUTPUT AT PIN 5

0 0 1 Select audio output
1 0 0 Select audio input

CODEC DEVICE 
OPERATION

The Continuously-Variable-Slope-Delta modulator (CVSD) is a simple 
alternative to more complex conventional conversion techniques in 
systems requiring digital communication of analog signals. The human 
voice is analog, but digital transmission of any signal over great 
distance is attractive. Signal/noise ratios do not vary with distance in 
digital transmission, and multiplexing, switching, and repeating 
hardware is more economical and easier to design. However, 
instrumentation Analog-to-Digital converters do not meet the 
communications requirements. The CVSD Analog-to-Digital is well 
suited to the requirements of digital communications and is an 
economically efficient means of digitizing voice inputs for 
transmission.

THE DELTA 
MODULATOR

The innermost control loop of a CVSD converter is a simple delta 
modulator. A delta modulator consists of a comparator in the forward 
path and an integrator in the feedback path of a simple control loop. 
The inputs to the comparator are the analog input signal and the 
integrator output. The comparator output reflects the sign of the 
difference between the input voltage and the integrator output. That 
sign bit is the digital output and also controls the direction of ramp in 
the integrator. The comparator is normally clocked, producing 
synchronous and band-limited digital bit-stream.

122



If the clocked serial bit-stream is transmitted, received, and delivered 
to a similar integrator at a remote point, the remote integrator output 
is a copy of the transmitting control loop integrator output. To the 
extent that the transmitting integrator tracks the input signal, the 
remote receiver reproduces that input signal. Low-pass filtering at the 
receiver output eliminates most of the quantizing noise if the clock 
rate of the bit stream is an octave or more above the upper band 
limit of the input signal. Input bandwidth cuts off above 3 kHz, so 
clock rates from 8 kHz up are possible. Thus, the delta modulator 
digitizes and transmits the analog input to a remote receiver. The 
serial, unframed nature of the data is ideal for communications 
networks. With no input at the transmitter, a continuous one/zero 
alternation is transmitted. If the two integrators are made leaky, then, 
during any loss of contact, the receiver output decays to zero and 
receive restart begins without framing when the receiver re-acquires. 
Similarly, a delta modulator is tolerant of sporadic bit errors.

THE COMPANDING 
ALGORITHM

The fundamental advantages of the delta modulator are its simplicity 
and the serial format of its output. Its limitations are those caused by 
a limited digital bit rate. The analog input must be band-limited and 
amplitude-limited. The frequency limitations are governed by the 
Nyquist information rate relationships, and the amplitude capabilities 
are set by the gain and dynamic range of the integrators.

The frequency limits are bounded on the upper end; that is, for any 
input bandwidth there exists a clock frequency larger than that 
bandwidth transmits the signal with a specific noise level. However, 
the amplitude limits are bounded on both upper and lower ends. For 
any given signal level, one specific gain achieves an optimum noise 
level. Unfortunately, the basic delta modulator has a small dynamic 
range over which the noise level is constant.

The continuously-variable-slope circuitry provides increased dynamic 
range by adjusting the gain of the integrator. For a given clock 
frequency and input bandwidth, the additional circuitry increases the 
delta modulator’s dynamic range. External to the basic delta 
modulator is an algorithm which monitors the past few outputs of the 
delta modulator in a simple shift register. The register is 2 bits long. 
The accepted CVSD algorithm simply monitors the contents of the 
shift register and indicates if it contains all ones or zeros. This 
condition is called coincidence. When it occurs, it indicates that the 
gain of the integrator is too small. The coincidence output charges a 
single pole low-pass filter. The voltage output of this "syllabic filter” 
controls the integrator gain through a pulse amplitude modulator 
whose other input is the sign bit or up/down control.

The simplicity of the all-ones/all-zeros algorithm should not be taken 
lightly. Many other control algorithms using shift registers have been 
tried. The key to the accepted algorithm is that it provides a measure 
of the average power or level of the input signal. Other techniques 
provide more instantaneous information about the shape of the input 
curve. The purpose of the algorithm is to control the gain of the 
integrator and to increase the dynamic range. Thus, a measure of the 
average input level is what is needed.

123



The algorithm is repeated in the receiver, and thus the level data is 
recovered in the receiver. Because the algorithm only operates on the 
past serial data, it changes the nature of the bit stream without 
changing the channel bit rate.

The effect of the algorithm is to compand the input signal. If the bit 
stream from a CVSD encoder is played into a basic delta modulator, 
the output of the delta modulator reflects the shape of the input 
signal, but all of the output will be at an equal level. Thus, the 
algorithm is needed at the output to restore the level variations. The 
bit stream on the channel behaves as if it came from a standard 
delta modulator with a constant level input.

The delta modulator encoder with the CVSD algorithm provides an 
efficient method for digitizing voice signals in a manner which is 
especially convenient for digital communications requirements.

Table E-5: Definitions and Functions of Pins

PIN NUMBER PIN FUNCTION

Pin 1
Pin 2
Pin 3

VDD (+5 volts)
Audio Ground. Connection to D/A ladders and comparator.
Audio Out. Recovered audio out. Presents approximately 100 kilo
ohm source. Zero signal reference is VDD/2.

Pin 4 AGO (not used). A logic "low" level appears at this output when the 
recovered signal excursion reaches one-half of full scale value.

Pin 5
Pin 6
Pin 7
Pin 8
Pin 9
Pin 10

Audio Input. Externally AC coupled.
N/C
N/C
Ground Logic Ground
Clock Input
Encode/Decode. A low level selects the encode mode; a high level, 
the decode mode.

Pin 11 Alternate Plain Text (not used). A low level at this input causes a 
quieting pattern to be transmitted without affecting the internal 
operation of the CVSD.

Pin 12
Pin 13

Digital Data Input
Force Zero (not used). A low level at this input forces the 
transmitted output, the internal logic, and the recovered audio 
output of the CVSD into the “quieting" condition.

Pin 14 Digital Data Output

124



APPENDIX F KEYBOARD SPECIFICATIONS

MECHANICAL 
SPECIFICATIONS

KEY TOTAL TRAVEL Range .150 in-.200 in ±.010 (3.8 mm-5 mm)
Preferred . .170 in (4.3 mm)
Key Pretravel .100 in minimum (2.5 mm)
(when applicable)

ACTUATION FORCE Standard Key Range 1.5-2.5 oz ±30%
(42.5-70 grams)

Preferred 1.5 oz ±30% (42.5 grams)

Special Key Range 3-5 oz (85-142 grams)
Preferred 3 oz (85 grams)

RELIABILITY >100 million cycles

KEY SPACING Range .70-.80 in (18-20 mm)
Preferred .75 in (19 mm)

KEY SIDEPLAY .018 in (.5 mm) 
2° rotational

KEY TOP 
dimension

Range .47- 60 in (12-15 mm)
Preferred .51 in (13 mm)

KEY SURFACE Concave, textured (mat) unless position marked otherwise, low 
reflection, low glare.

KEY SWITCH 
PRESSURES

Keytop shall be capable of withstanding 3 lbs (1.4 kg) pull without 
coming loose and 11 lbs (5 kg) in the direction of actuation without 
any damage to the key switch.

ELECTRICAL 
SPECIFICATIONS

INPUT POWER +5VDC ± 5% @ 250 ma

ROLLOVER N Key

CONNECTOR Type: AMP 87551-7 or equivalent

Spacing: 0.1 in, 7 pin header



Table F-1: Pin Assignment

PIN(S) NAME FUNCTION

1, 7 +5V +5 volts at 250 ma
2, 3 GROUND System Ground

4 KBACK TTL Input. Driven by terminal processor. Transitions 
indicate acknowledgement of KBRDY transitions.

5 KBRDY TTL Output. Driven low by the keyboard to initiate 
handshake of each data bit of a transmission. Driven 
high after receipt of the negative edge of the KBACK 
line.

6 KBDATA TTL Output. Changed after the positive edge of the 
KBACK line. Data must change no later than the 
negative edge of KBRDY. The exception to this is the 
stop bit. Transfer of the stop bit is as follows:
1) Data line driven low at or before negative edge of 

KBRDY.
2) Data line and KRBDY driven high following the 

negative edge of KBACK.
3) Keyboard enters the Idle state afterthe positive 

edge of KBACK.

LOGICAL 
SPECIFICATIONS

PROTOCOL 
DEFINITION

The communication between the terminal processor and the keyboard 
is serial. The transmission is in 9-bit words. The first eight bits are the 
data byte, transmitted LSB first. The last bit is a stop bit.

The keyboard will return key numbers and key status through the 
eight data bits. The MSB of the key number returned by the keyboard 
is status which flags a key close or key open. An MSB of one 
indicates a key close, and an MSB of zero indicates a key open. The 
least significant 7 bits are the key number.

The stop bit is a zero from KBRDY low to KBACK low. The stop bit 
goes high before KBRDY goes high and remains high until the next 
transfer.

The keyboard indicates it has an event in its buffer with the KBRDY 
line. If transmission is idle, the keyboard can signal an event by 
taking the KBRDY line low. The high to low transition of KBRDY 
should flag an interrupt in the terminal processor. The keyboard  
should raise the KBRDY line on the negative transition of the KBACK 
line. Each event in the keyboard buffer will cause a transition of the 
KBRDY line. The keyboard transmission becomes idle after the 
positive edge of the KBACK line following the stop bit.

The keyboard times out the processor response to KBRDY low for 
250 milliseconds. If the processor does not respond with a negative 
transition of KBACK clock within this time, the keyboard will drive 
KBRDY high and then restart the current transmission. This will allow 
the terminal processor to resynchronize to the keyboard data stream.

126



Table F-2: Switching Characteristics

PARAMETER FUNCTION DESCRIPTION REQUIRED TIMING
MAX MIN

TDVRL KB data valid to KBRDY low — O
TRLCL KBRDY low to KBACK low 250ms —
TAHKL KBACK high to KBRDY low 

(except after stop bit)
1 ms 0

RESERVED HEX FUNCTION DESCRIPTION
KEYBOARD CODES

FEH Overflow Key queue overflow. Keys have been lost.
FFH Dead Keyboard dead or not connected.

ssnanBaaaBMMHa
ENVIRONMENTAL 
SPECIFICATIONS

OPERATING 
TEMPERATURE

STORAGE 
TEMPERATURE 
HUMIDITY

MATERIAL

KEYBOARD 
APPROVALS

VIBRATION

SHOCK

0° 0-50° C

-40° C-+6O0 0

0-95% noncondensing

Self-extinguishable

Keyboard meets UL and VDE requirements for approval.

To be determined

Operating: 106 peak 1/2 sinusoid: 10ms duration
Nonoperating: 1006 peak 1/2 sinusoid: 10ms duration

KEYBOARD LAYOUT Key layouts vary from model to model in relation to the targeted 
application. The layout is broken into typewriter keys, command keys, 
and calculator keys. The typewriter pad has 58 possible key positions. 
The whole keyboard has a total of 104 possible key positions. The 
typewriter pad is sculptured; other pads are sloped. The layout uses 
one common PC Board, while the actual number of key positions 
occupied varies from model to model.

KEYBOARD TIMING 
DIAGRAM

Figure F-1 illustrates keyboard timing.

127



Figure F-1: Keyboard Timing Diagram
BHS&SH

128



APPENDIX G COMMUNICATIONS 
CONTROLLER SPECIFICATIONS

G-1 INTRODUCTION The NEC UPD7201 Multiprotocol Serial Communications Controller 
(MPSC2) is a versatile device designed to give you high-level control 
of your data communication protocols with maximum flexibility and 
minimum processor overhead. The MPSC2 contains two complete full 
duplex channels in a 40-pin package and incorporates a variety of 
sophisticated features to simplify your protocol management.

G-1.1 FEATURES ► Implements the three basic data/communications protocols
— Asynchronous
—- Character-oriented synchronous (monosync, bisync, external 

sync)
-- Bit-oriented synchronous (SDLC/HDLC)

► Provides extensive error checking
— Parity
— CRC-16
— CRC-CCITT
— Break/Abort detection
— Framing Error detection

► Enhanced data reliability
— Double-buffered transmitters
— Quadruply-buffered receivers
— Programmable transmitter underrun handling

► Simplified system design
— Simple interface to most microprocessors
— Automatic Interrupt vectoring for most microprocessors
— Four DMA channels for maximum throughput with standard 

8237/8257-type DMA controllers
— Single-phase TTL clock
— Single +5 volt supply

129



G-2 PIN 
DESCRIPTION

This section describes the various pin functions available on the 
MPSC2. Some pin numbers are used twice because of their 
programmability and dual functionality. Those pins that have more 
than one function are marked with an * in the following descriptions. 
Refer to Section G-5 for detailed information on selecting pin 
functions.

Figure G-2.1 Functional Pinout

DATA BUS

DATA BUS 
CONTROL

INTERRUPT 
CONTROL

DMA 
CONTROL

Dq-07

CS

RD 

Wr 
C/D 

B/A

INT

TnTa 
FHT 

pr3

DRORxA 
DRQTxA 

DRQRxB 

DRQTxB 

haT

HAO

CLK

RESET

UPD 
7201

----- -- - TxDA

— ---- - TxCA

■ RxDA

-- ------ - RxCA 

-»' — SYNCA

----- — RTSA

-»----- - CTSA

----- — DTRA
— ----- OCDA

TxDB

— ----- TxCB

RxDB

RxCB 

SYNCS

RTSB

CTSB

DTRB

OCDB

TRANSMITTER

RECEIVER

> CHANNEL A

MODEM 
CONTROL

TRANSMITTER

RECEIVER

MODEM 
CONTROL

CHANNEL 8

Figure G-2.2 Pin Configuration

CLK E 1 40
RESET C 2 39
OCDA C 3 38
R^CB C 4 37
CCDS c 5 36
CTSB C 6 35
TxCB C 7 34
TxDB C 8 33
RxDB C 9 32

RTSB/SYNCB C 10 pPD 31
WAITB/DRQTxA £ 11 7201 30

D? E 12 29
□6 C 13 28
□5 C 14 27
d4 c 15 26
03 C 16 25
0? C 17 24
01 E 18 23
°o c 19 22

vss c 20 21

vcc 
ctSa 
RTSA 
TxDA 
t^ca

RxCA 
RxDA 
SYNCA 
WAITA/DRQRxA
DTRA/HAO 
PRO/DRQT xB 
PRT/DRQRxB 
INT
INTA
DTRB/HAi
B/A
C/D
CS 
RD 
WR

130



12-19 Do-D7 Data Bus (bidirectional three-state)
The data bus lines are connected to the system data bus. Data or 
status from the MPSC2 is output on these lines when CS and RD are 
active and data or commands are latched into the MPSC2 on the 
rising edge of WR when CS is active.

23 CS Chip Select (input, active low)
Chip select allows the MPSC2 to transfer data or commands during a 
read or write cycle.

25 B/A Channel Select (input)
A low selects channel A and a high selects channel B for access 
during a read or write cycle.

24 C/D Control/Data Select (input)
This input, with RD, WR and B/A, selects the data registers (C/D = 
0) on the control and status registers (C/D = 1) for access over the 
data bus.

22 RD Read (input, active low)
This input (with either CS during a read cycle or HAl during a DMA 
cycle) notifies the MPSC2 to read data or status from the device.

21 WR Write (input, active low)
This input (with either CS during a read cycle or HAl during a DMA 
cycle) notifies the MPSC2 to write data or control information to the 
device.

2 RESET Reset (input, active low)
A low on this input (one complete CLK cycle minimum) initializes the 
MPSC2 to the following conditions: receivers and transmitters disabled, 
TxDA and TxDB set to marking (high), and Modem Control Outputs 
DTRA, DTRB, RTSA, RTSB set high. Additionally, all interrupts are 
disabled, and all interrupt and DMA requests are cleared. After a 
reset, you must rewrite all control registers before restarting operation.

1 CLK System Clock (input)
A TTL-level system clock signal is applied to this input. The system 
clock frequency must be at least 4.5 times the data clock frequency 
applied to any of the data clock inputs TxCA, TxCB, RxCA or RxCB.

28 INT Interrupt Request (output, open drain, active low) 
INT is pulled low when an internal interrupt request is accepted.

27 INTA Interrupt Acknowledge (input, active low)
The processor generates two or three INTA pulses (depending on the 
processor type) to signal all peripheral devices that an interrupt 
acknowledge sequence is taking place. During the interrupt 
acknowledge sequence, the MPSC2, if so programmed, places 
information on the data bus to vector the processor to the appropriate 
interrupt service location.

29* PRI Interrupt Priority In (input, active low)
This input informs the MPSC2 whether the highest priority device is 
requesting interrupt and is used with PRO to implement a priority 
resolution "daisy chain” when there is more than one interrupting 

131



device. The state of PRI and the programmed interrupt mode 
determine the MPSC2’s response to an interrupt acknowledge 
sequence.

30* PRO Interrupt Priority Out (output, active low)
This output is active when HAI is active and the MPSC2 is not 
requesting interrupt (INT is inactive). The active state informs the next 
lower priority device that there are no higher priority interrupt requests 
pending during an interrupt acknowledge sequence.

11*, 32* WAITA WAITS Wait (outputs, open drain)
These outputs synchronize the processor with the MPSC2 when block 
transfer mode is used. You may program it to operate with either the 
receiver or transmitter, but not both simultaneously. WAIT is normally 
inactive. For example, if the processor tries to perform an 
inappropriate data transfer such as a write to the transmitter when the 
transmitter buffer is full, the WAIT output for that channel is active 
until the MPSC2 is ready to accept the data. The CS, C/D, B/A, RD, 
and WR inputs must remain stable while WAIT is active.

11*, 29*, 30*, 32* DRQTxA, DRQTxB, DRQRxA, DRQRxB 
DMA Request (outputs, active high)
When these lines are active, they indicate to a DMA controller that a 
transmitter or receiver is requesting a DMA data transfer.

26* HAI Hold Acknowledge In (input, active low)
This input notifies thd MPSC2 that the host processor has 
acknowledged the DMA request and has placed itself in the hold 
state. The MPSC2 then performs a DMA cycle for the highest priority 
outstanding DMA request, if any.

31* HAO Hold Acknowledge Out (output, active low)
This output, with HAI, implements a priority daisy chain for multiple 
DMA devices. HAO is active when HAI is active and there are no 
DMA requests pending in the MPSC2.

8, 37 TxDA, TxDB Transmit Data (outputs, marking high) 
Serial data from the MPSC2 is output on these pins.

7, 36 TxCA, TxCB Transmitter Clocks (inputs, active low)
The transmit clock controls the rate at which data is shifted out at 
TxD. You may program the MPSC2 so that the clock rate is 1 x, 16x, 
32x, or 64x the data rate. Data changes on the falling edge of TxC. 
TxC features a Schmitt-trigger input for relaxed rise and fall time 
requirements.

9, 34 RxDA, RxDB Receiver Data (inputs, marking high) 
Serial data to the MPSC2 is input on these pins.

4, 35 RxCA, RxCB Receiver Clocks (inputs, active low)
The receiver clock controls the sampling and shifting of serial data at 
RxD. You may program the MPSC2 so that the clock rate is 1 x, 16x, 
32x, or 64x the data rate. RxD is sampled on the rising edge of RxC. 
RxC features a Schmitt-trigger input for relaxed rise and fall time 
requirements.

132



26*, 31* DTRA, DTRB Data Terminal Ready (outputs, active low) 
The DTR pins are general-purpose outputs which may be set or reset 
with commands to the MPSC2.

10, 38* RTSA, RTSB Request to Send (outputs, active low) 
When you operate the MPSC2 in one of the synchronous modes, 
RTSA and RTSB are general-purpose outputs that you may set or 
reset with commands to the MPSC2. In asynchronous mode, RTS is 
active immediately as soon as it is programmed on. However, when 
programmed off, RTS remains active until the transmitter is completely 
empty. This feature simplifies the programming required to perform 
modem control.

3, 5 DCDA, DCDB Data Carrier Detect (inputs, active low) 
Data carrier detect generally indicates the presence of valid serial 
data at RxD. You may program the MPSC2 so that the receiver is 
enabled only when DCD is low. You may also program the MPSC2 so 
that any change in state that lasts longer than the minimum specified 
pulse width causes an interrupt and latches the DCD status bit to the 
new state.

6, 39 CTSA, CTSB Clear to Send (inputs, active low) 
Clear to send generally indicates that the receiving modem or 
peripheral is ready to receive data from the MPSC2. You may program 
the MPSC2 so that the transmitter is enabled only when CTS is low. 
As with DCD, you may program the MPSC2 to cause an interrupt and 
latch the new state when CTS changes state for longer than the 
minimum specified pulse width.

10, 33* SYNCA, SYNCB Synchronization (inputs/outputs, active low) 
The function of the SYNC pin depends upon the MPSC2 operating 
mode. In asynchronous mode, SYNC is an input that the processor 
can read. It can be programmed to generate an interrupt in the same 
manner as DCD and CTS.

In external sync mode, SYNC is an input which notifies the MPSC2 
that synchronization has been achieved (see Figure 6-2.3 for detailed 
timing). Once synchronization is achieved, hold SYNC low until 
synchronization is lost or a new message is about to start.

In internal synchronization modes (monosync, bisync, SDLC), SYNC is 
an output which is active wherever a SYNC character match is made 
(see Figure 6-2.4 for detailed timing). There is no qualifying logic 
associated with this function. Regardless of character boundaries, 
SYNC is active on any match.

133



Figure G-2.3 SYNC Output, External Synchronization

1st BIT 
OF DATA 

CHARACTER

2nd BIT 
OF DATA 

CHARACTER

LAST BIT
OF SYNC

CHARACTER

DATA

DATA CHARACTER

Figure 0-2.4 SYNC Output, Internal Synchronization

0-3 PROTOCOLS A protocol defines a set of rules for transmitting information and 
control from one place to another. In parallel protocols as you might 
find on a microprocessor bus, dedicated “control" lines handle 
functions such as timing, type of information, and error checking. 
Since the object of serial data communications is to minimize the 
number of wires, the protocol used must place all of this control 
information in the serial data stream.

The basic protocol unit or frame can be built into increasingly 
complex protocols by defining special control characters and fields, 
and by grouping frames together into larger units. Virtually all 
communications protocols currently in use are based on one of three 
basic protocols: Asynchronous, Synchronous Character- or Count- 
Oriented Protocols (COPs), and Bit-Oriented Protocols (BOPs).

134



6-3.1 
ASYNCHRONOUS 
PROTOCOL

In asynchronous protocol, each character transmitted has its own 
framing information in the form of a start and stop bit(s). Each 
character is a "message" in itself and may be asynchronous with 
respect to any others. You can implement error detection by adding a 
parity bit to each character. The transmitter makes the parity bit 1 or 
0 so that the character plus parity contains an even or odd number of 
ones for even parity or odd parity, respectively. Figure 2-3.1 illustrates 
the asynchronous data format.

6-3.2 
SYNCHRONOUS 
CHARACTER 
ORIENTED 
PROTOCOLS

In synchronous character-oriented protocols (COPs), the start and 
stop bits associated with each character are eliminated. A 
synchronization (sync) character that is not part of the data is 
transmitted before the data to establish proper framing. The 
synchronization character is usually 8 or 16 bits long. Monosync and 
IBM Bisync are typical examples of COPs (Figure G-3.2). Since the 
framing information is presented only at the beginning, the transmitter 
must insert fill characters to maintain synchronization. Sync 
characters are commonly used for this purpose.

As with the asynchronous protocol, a parity bit may be used with 
each character to provide error checking. A more reliable check is 
performed by calculating a special 16-bit block check character 
called a Cyclic Redundancy Check (CRC) for the entire data block 
and transmitting this character at the end of the data. The most 
commonly used CRC polynomial for COPs is called CRC-16.

A disadvantage of the character-oriented protocol is having to use 
special characters such as SYNC to define various portions of a 
message when you send non-character binary data (“transparent 
data” in bisync terminology). To do this, you must transmit special 
DLE sequences and selectively exclude certain characters from the 
CRC calculation for both the transmitter and receiver. The MPSC2 
features special circuitry to simplify this operation.

6-3.3
SYNCHRONOUS 
BIT-ORIENTED 
PROTOCOLS

Synchronous Bit-Oriented Protocols (BOPs) use a special set of rules 
to distinguish between data and framing characters. This eliminates 
some of the problems associated with COPs. The most common 
BOPs in use are the almost-identical HDLC and SDLC protocols 
shown in Figure 2-3.3.

The rules for SDLC (henceforth we will refer only to SDLC although 
the same information applies to HDLC as well) are quite simple. The 
basic transmission unit is called a frame and is delineated by a 
special flag character 01111110 (flags cannot be used as filler like the 
COP sync character). The data or information field may consist of 
any number of bits; not necessarily an integral number of n-bit 
characters. Since data could contain the 01111110 pattern, the 
transmitter performs the following operation: if five consecutive ones 
are transmitted, the transmitter inserts a zero bit before the next data 
bit. Likewise, the receiver must delete any zero that follows five 
consecutive ones. Six consecutive ones indicate a flag character and 
eight or more ones indicate a special abort condition.

Error checking is done with a 16-bit CRC character inserted between 
the end of the information field and the End Of Frame flag. The CRC- 
CCITT polynomial is generally used. The end of a frame is

135



determined by counting 16 bits (CRC) back from the End Of Frame 
flag. Special circuitry in the receiver must inform the processor of the 
boundary between the end of the information field and the beginning 
of the CRC when the information field is not an integral number of n- 
bit characters. The MPSC2 performs ail of the above functions 
necessary to implement Bit-Oriented Protocols.

Figure 6-3.1 Asynchronous Data Character Format

Figure 6-3.2 BISYNC Message Format

STX TEXT
ETX 
OR 
ETB

BCCSOH HEADER

w - ------------------- - — DIRECTION OF SERIAL DATA FLOW

Figure 6-3.4 Basic SDLC Frame

FRAME 

BEGINNING 
FLAG 

01111110 
8 BITS

ADDRESS
8 BITS

CONTROL
8 BITS

INFORMATION 
ANY NUMBER 

OF BITS

FRAME
CHECK
16 BITS

ENDING 
FLAG 

01111110 
8 BITS

136



G-4 FUNCTIONAL 
DESCRIPTION

The MPSC2 provides two complete serial communications controllers 
in a single package implementing the following functions:

Parallel-to-Serial and Serial-to-Parallel data conversion.
Buffering of outgoing and incoming data, allowing the processor 
time to respond.
Insertion and deletion of framing bits and characters.
Calculation and checking of Parity and CRC error checking.
Informing the processor when and what action needs to be taken. 
Interfacing with the outside world over discrete modem control 
lines.

The MPSC2 can be logically divided into the following functional 
groups (Figure 6-4.1):

Two identical serial I/O controller channels, each consisting 
of a Transmitter section and a Receiver section, and a common 
Processor Interface that connects the MPSC2 with the host 
processor and provides overall device control.

Figure G-4.1 Block Diagram

SERIAL DATA

DATA CLOCKS

MODEM ANO SYNC
CONTROLS

SERIAL DATA

DATA CLOCKS

MODEM ANO SYNC 
CONTROLS

G-4.1 TRANSMITTER The MPSC2 Transmitter performs all the functions necessary to 
convert parallel data to the appropriate serial bit streams required by 
various protocols. The major components of the transmitter are shown 
in Figure G-4.2. Control and status register fields pertinent to the 
operation of the transmitter are summarized in Table G-4.1.

The primary data flow through the transmitter begins at the internal 
data bus. There, characters written to the MPSC2 are placed in the 
buffer register. When any character present in the shift register has 
been transferred out, or if the shift register is empty, the contents of 
the buffer register are transferred to the shift register and output with 
the least significant bit first. Then, a Transmitter Buffer Becoming 

137



Empty indication (flag) is given. This double buffering allows the 
processor one full character time from this flag to respond with the 
next character without interrupting data transmission. You should note 
that it is the transfer of a character from the data buffer to the shift 
register rather than the empty condition itself that causes the 
Transmitter Buffer Becoming Empty indication. At initialization or after 
a Reset Transmitter Interrupt/DMA Pending Command is issued to 
control register 0 (CRO) you must write one character to the buffer to 
reset this flag. The Transmitter Buffer Empty bit in status register 0 
(SRO), always reflects the presence or absence of a character in the 
buffer.

After a hardware or software reset, the transmitter data output (TxD) 
is in high (marking) state. You can pull TxD low (spacing) any time by 
setting the Send Break bit (CR5 bit 4). TxD remains low until the 
Send Break bit is reset and any data currently being transmitted is 
destroyed.

Figure 6-4.2 Block Diagram MPSC2 Transmitter

INTERNAL DATA BUS

ALGORITHM 
SELECT

138



G-4.1.1 Asynchronous 
Mode

n
Table G-4.1 Transmitter Control and Status Registers

CONTROL 
REGISTER

0

1

5

6

7

3

°7 °6 °5 °4 °3 02 01 °0

CRCCONTROL COMMAND REGISTER POINTER

Int
Enable

Ext/Status 
Int 

Enable

Clock
Mode Format Sync/Async 

Mode Select Control

DTR Bits/Char Break
Transmitter 

Enable
CRC
Type RTS CRC 

Enable

SYNC 1

SYNC 2

Enables

STATUS 
REGISTER

0

07 Ob Os 04 03 °2 °1 Do

Underrun/ 
EOM

CTS Buffer 
Empty

All Async 
Characters

You can change the number of bits transmitted for each character at 
any time by modifying the bits/char field (CR5, D5-D6) before you load 
the character into the buffer.

The rate at which data is shifted out is determined by the transmitter 
clock input (TxC) and the clock mode field (CR4 Bits 6-7). You can 
select a clock divisor so that the data clock (TxC) rate is equal to 1 x, 
16x, 32x, or 64x the actual data rate. This field also controls the 
receiver clock and must be set to 1 x for synchronous modes (see 
Section G-4.2.2 for use in asynchronous mode). Each new bit is 
shifted out on the falling edge of TxC.

The following is a general discussion of the operation of the MPSC2 in 
various protocol modes. For a detailed description of the registers and 
examples, see Chapter G-5.

After you select asynchronous mode, initialize the various parameters 
(number of bits/character, number of stop bits, etc.) and enable the 
transmitter (CR5 bit 3 = 1). TxD remains in the high (marking) state. 
When the first character is written to the data buffer, it is transferred 
to the shift register and the Transmitter Buffer Becoming Empty flag is 
set. A parity bit, if enabled, and the specified number of stop bits 
(1, 1or 2) are appended to the character, The character plus the 
start bit are shifted out serially through a one-bit delay. After the 
character has been completely sent, the next character is loaded into 
the shift register and the process continues. When no more 
characters are available, TxD remains high and the All Async

139



Characters Sent flag (SR1 bit 0) is set until the next character is 
loaded. The transmitter may be disabled at any time (CR5 bit 3 - 0); 
however, transmission of the character currently being sent, if any, is 
completed. Disabling the transmitter does not reset the Transmitter 
Buffer Becoming Empty flag or any resultant interrupts or DMA 
requests. You can clear this flag either by writing a character to the 
data buffer for later transmission or by issuing a Reset Transmitter 
Interrupt/DMA Pending Command.

The modem control output RTS (Request To Send) may be set or 
reset at any time with CR5 bit 1. RTS immediately goes to the active 
state (low) when this bit is set. When reset, RTS does not go high 
until the shift register and the data buffer are empty.

The function of the modem control input, CTS (Clear To Send), 
depends upon the Auto Enables Control (CR3 bit 5). When Auto 
Enables is reset, any transition of CTS sets the External/Status 
Change flag but has no affect upon transmission. When Auto Enables 
is set, character transmission cannot begin until CTS goes low. If CTS 
goes high, any character currently being transmitted is completed and 
the transmitter is then disabled until CTS again goes low. The CTS 
flag, SRO bit 5, reflects the inverted state of the external CTS pins, 
that is, CTS flag = 1 when CTS = low.

6-4.1.2 COP 
Synchronous Modes

The MPSC2 gives you three distinct COP operating modes: monosync 
(8-bit sync character), bisync (16-bit sync character), and external 
sync (the transmitter operates in the same manner as Monosync). 
When bisync mode is selected, you should program the eight least 
significant bits (first byte) of the sync character into CR6 and the 
eight most significant bits (second byte) into CR7. For monosync and 
external sync modes you should program CR6 with the 8-bit sync 
character.

During operation in COP modes, the MPSC2 transmitter may be in any 
one of the following phases:
Disabled Phase:

Idle Phase:
Data Phase:
CRC Phase:

Transmitter Enable is off (CR5, D3=0) or CTS is 
low when the auto enables function is used;
Sync characters are being sent;
Data from the processor is being transmitted;
(If CRC is used) when the CRC check 
characters are being transmitted.

After selecting the desired protocol and initializing parameters, the 
transmitter enters and remains in the Disabled Phase, with TxD high 
until the Transmitter Enable bit is set. Once this is done the 
transmitter enters the Idle Phase, transmits the first sync character 
and continues to send sync characters until a character is written into 
the transmit buffer. When the first data character is loaded into the 
data buffer and the current sync character has been sent, the 
trasnmitter enters Data Phase and sends data characters while 
setting the Transmitter Buffer Becoming Empty flag each time it is 
ready for the next character.

140



During the Data Phase, the transmitter may run out of data to send 
for one of two reasons: (1) The processor is busy and is not able to 
provide the next data characters within a message, or (2) the data 
portion of the message is complete and it is time to enter the CRC 
Phase (or the Idle Phase if CRC is not used). The MPSC2 
automatically handles both of these conditions through a mechanism 
called the Idle/CRC Latch, the state of which may be read from 
SRO D6.

When the transmitter is initialized the Idle/CRC Latch is set, indicating 
that the transmitter will enter the Idle Phase and begin sending sync 
characters when there is no data to send. Entering this phase also 
sets the Transmitter Buffer Becoming Empty flag (if not already set) to 
indicate with SRO D6 = 1, that the Idle Phase has been entered.

However, if you reset the Idle/CRC Latch with a Reset Idle/CRC 
Latch command to CRO, a lack of data causes the MPSC2 to enter 
the CRC Phase and begin sending the 16-bit CRC character 
calculated up to that point. Entering the CRC Phase sets the 
Idle/CRC Latch which, in turn, sets the External/Status Change flag 
indicating that the MPSC2 is sending CRC. After you reset the flag, • 
you may send the next data character to the transmitter and it will be 
sent immediately following the CRC, or you may do nothing. In either 
case, the Idle/CRC Latch is now set again so the transmitter enters 
the Idle Phase when.no further data is available.

You can disable the transmitter during any phase of operation. If the 
transmitter is disabled during the Idle or Data Phases the MPSC2 
finishes sending the current character and goes to the Disabled 
Phase (TxD high). If disabled during the CRC Phase, a 16-bit CRC is 
sent; however, the remainder of the CRC is supplanted by sync with 
bit positions matching.

The CRC Generator may be programmed to either of two polynomials, 
CRC-16 (x'° + x15 + x2 + 1) or CRC-CCITT (x16 + x'2 + x5 + 1). The 
CRC Generator may be reset to 0 at any time by issuing a Reset 
CRC Generator Command to CRO. Since it is sometimes necessary 
to exclude certain characters from the CRC calculation, the MPSC2 
features a CRC enable/disable control (CR5 Do) that may be 
changed just prior to loading a character into the transmitter buffer to 
include or exclude that and subsequent characters in the CRC 
calculation.

G-4.1.3 SDLC (/HDLC In SDLC mode, the MPSC2 transmitter operates similarly to monosync 
BOP Synchronous) transmission with the following exceptions:
Mode

WR6 is not used for the transmitter sync character. SDLC flags (sync) 
are generated internally.

Data and CRC are passed through zero insertion logic before 
transmission. This logic inserts a 0 bit after transmitting five 
contiguous ones to distinguish information from framing flags.

A special Send SDLC Abort Command is available in CRO. Issuing 
this command causes at least 8 but less than 14 ones to be 

141

when.no


transmitted, destroying any data in the transmitter shift register and 
buffer. After sending the abort, the transmitter enters Idle Phase.

Resetting the CRC generator initializes it to all ones rather than 
zeroes and the result bits are inverted before transmission.

6-4.2 RECEIVER The MPSC2 receiver reverses the process performed by the 
transmitter. It converts the serial data stream of the various protocols 
back to parallel data for the processor. The major components of the 
receiver are shown in Figure 6-4.4. Control and status registers 
pertinent to the operation of the receiver are summarized in Table 
6-4.2.

The primary data path through the receiver begins at the receiver 
data input RxD. Data passes through a two-bit time delay and into the 
receiver shift register (the sync data path is described later). The 
point of entry into the shift register and hence the number of bits per 
character is determined by the mode of operation and the 
Bits/Character field of CR3 (D6-D7). You can change this field at any 
time provided that the character that is currently being assembled has 
not yet reached the new number of bits/character. If the number of 
bits/character specified is less than eight, the character appears 
right-justified in the data buffer (with the parity bit, if parity is enabled) 
and the left side is filled with ones (see Figure 6-4.3).

Figure 6-4.3 Data Format Example for Less Than 8 
Blts/Character

5 BITS/CHARACTER, PARITY ENABLED

1 1 p □4 □3 DZ Di DO

142



Figure 6-4.4 Block Diagram MPSC2 Receiver

Table 6-4.2 Receiver Control and Status Registers

CONTROL 
REGISTER

0

Os °4 °3 °r o0

CRC CONTROL COMMAND REGISTER POINTER

Receiver
Interrupt 
Control

Ext/Statu* 
Interrupt

Biti/Cher
Enables Sync Hunt CRC Addreii 

Search mode

Sync Char

Inhibit
Enable!

Clock Mod*
Format Select

Sync/Aiync 
Mode Select Control

CRC

SYNC 1

SYNC 2

STATUS 
REGISTER

0

°7 O« °5 04 °3 Oj Ol Oo

Break/
Abort

Sync/Hunt OCD Character 
Available

SDLC End 
of Frame

CRC / 
Framing*

Receiver 
Overrun

Parity SOLC 1-Field 
R endue Code

143



Once the character has been assembled in the shift register, it is 
passed to a three-character First In-First Out buffer (FIFO) and the 
Received Character Available flag (and SRO Do) is set to inform the 
processor that a character is available. The three-character buffer 
allows the processor up to four character times to service the 
receiver without losing data. This feature enhances data reliability at 
high speeds while relaxing software timing requirements. The 
Received Character Available flag is reset when all characters in the 
buffer have been read, i.e., the buffer is empty.

As each character is transferred to the buffer, it is checked for errors 
or special conditions and that information is placed in a parallel FIFO 
error buffer so that the status associated with each character can be 
read with that character through status register 1, Reading a 
character from the data buffer moves the next character and its 
status to the top of the FIFO. You should read the status first, if it is 
of interest, and then the data.

The rate at which data is shifted into the receiver is controlled by the 
receiver clock input (RxC) and the clock mode field (CR4 D6-D7). This 
field also controls the transmitter clock mode. In any of the 
synchronous modes, you must select the 1 x clock mode. In 
asynchronous mode you may select a divisor such that clock rate 
(RxC) equals 1 x, 16x, 32x, or 64x the actual data rate. However, if 
you select the 1 x mode, the clock must be externally synchronized 
with the data (see Section 6-4.1.3). RxD is always sampled on the 
rising edge of RxC.

The data carrier detect (DCD) input works the same way as CTS 
except that it enables the receiver when auto enables is set.

6-4.2.1 Asynchronous 
Mode

After initializing and enabling the MPSC2 Receiver, the receiver logic 
begins sampling the RxD input for a high-to-low (marking-to-spacing) 
transition on each rising edge of RxC. When the transition is found, 
the receiver waits bit time, (for example, eight clock periods if the 
clock mode is 16x) and samples again to ensure that RxD is still low, 
improving the MPSC2’s noise immunity. If RxD is still low, the MPSC2 
assumes this is the middle of the start bit and one bit time later 
begins to sample RxD to assemble the required number of data and 
parity (if enabled) bits.
Once the character is assembled, the MPSC2 waits one more bit time 
and again samples RxD. If RxD is not high, the stop bit is missing 
and a Framing Error is indicated when the character is passed to the 
data buffer. If a Framing Error has occurred, the MPSC2 receiver waits 
1/z bit time before beginning to sample again to avoid interpreting the 
Framing Error as a new start bit.

Note that in the 1 x Clock mode, the receiver simply waits one clock 
period after the first high-to-low transition is detected and then begins 
assembling the character. It is for this reason that data and clock 
must be synchronized in this mode.

The Break/Abort bit, D7 of SRO is set when a null character plus 
Framing Error is detected (i.e. RxD is low for more than one full 
character time). Break detection also sets the External/Status Change 

144



flag. When RxD returns high and the break has ended, D7 is reset to 
0 and the External Status Change flag is once again set. After the 
break, a single null character is present in the data buffer. It should 
be read and discarded.

The following errors may occur during operation and are flagged in 
status register 1.

Framing Error
Parity Error

See above discussion.
If parity is enabled and a parity error occurs, the 
Parity Error bit D4 is set. Once a Parity Error has 
occurred, the Parity Error bit remains set for 
subsequent characters until reset by an Error 
Reset command to CRO. You need only check 
the end of a message or block to determine if a 
parity error occurred.

Overrun Error If the data buffer is full with three characters 
and a fourth character is received, the last 
character in the buffer is overwritten and the 
Overrun Error bit D5 is set. Like Parity Error, 
Overrun Error remains set until the Error Reset 
command is issued.

G-4.2.2 COP
Synchronous Modes

The MPSC2 gives you three distinct COP operating modes: (1) 
monosync (8-bit sync character), (2) bisync (16-bit character), and (3) 
external sync (the SYNC pin is used as an input to inform the MPSC2 
that synchronization has been achieved externally).

When monosync mode is selected, CR7 should be programmed with 
the 8-bit sync character to be matched by the receiver.

In bisync mode CR6 should contain the least significant bits (first 
byte) and CR7 should contain the most significant bits (second byte) 
of the 16-bit character to be matched.

In external sync mode, no sync character is required by the receiver. 
During operation in the COP modes, the MPSC2 receiver is in one of 
two phases: (1) Sync Hunt Phase or (2) Data Phase. The receiver 
automatically enters Sync Hunt Phase when it is enabled (CR3, Do).

In monosync mode, the incoming data stream passes through and is 
compared to the sync character in CR7. When a match is found, the 
receiver switches to Data Phase and begins to pass data to the shift 
register. If you determine at any time that synchronization has been 
lost, you may re-enter the Sync Hunt Phase by setting the Enter Hunt 
Phase bit (D4) in CR3. When the Hunt Phase is entered or left, the 
External/Status Change flag is set. When SRO D4 (Sync/Hunt) = one, 
it indicates that the receiver is in Hunt Phase.

Operation is similar in bisync mode, however, when a match is found, 
CR6 is also checked against the shift register contents and the Hunt 
Phase is left only if the bytes match. In both monosync and bisync 
modes, the SYNC pin is used as an output which goes momentarily 
low any time a sync pattern is detected whether the receiver is in 
Hunt or Data Phase. See Figure 6-2.3 for a detailed timing diagram.

145



You can inhibit the transfer of sync characters to the data register by 
setting the Sync Char Load Inhibit bit (CR3, DJ. Since the CRC 
calculation on sync is not inhibited by this bit, you should use it only 
to strip leading sync characters from a message if you are using 
CRC Block Check.

Because of the 8-bit delay between the shift register and the CRC 
checker, CRC status (SR1, D6) is not valid immediately after the CRC 
character is received. CRC status is valid 16 bit times after the last 
CRC character is transferred to the receive buffer, or 20 bit times 
after the last CRC bit is shifted in at RxD.

G-4.2.3 SDLC (/HDLC 
BOP Synchronous) 
Mode

The MPSC2 provides you with high-level processing capability for 
handling bit-oriented protocols. When you select SDLC Mode, CR7 
must be programmed with the SDLC Flag character 01111110.

When operating in SDLC mode, the receiver can be in one of three 
phases: Hunt Phase, Address Search Phase, or Data Phase.

The receiver automatically enters Hunt Phase when first enabled. The 
incoming data stream passes through the one-bit delay and enters 
the Sync Comparisoh/Zero Deletion logic where the following three 
operations are performed.

First, whenever a 0 bit follows five consecutive ones, that 0 is deleted 
from the data stream. Second, if six consecutive ones are received, a 
Flag Character Received indication is given internally. Third, if eight or 
more ones are received, an abort is indicated and the External/Status 
Change Flag is set. Flags and aborts are not transferred to the 
receiver shift register.

Once a flag is detected, the receiver leaves Hunt Phase (setting the 
External/Status Change Flag) and, if Address Search Mode (CR3-D2) 
is enabled, it enters Address Search Phase. Once this phase is 
entered, the MPSC2 receiver compares the first 8-bit non-flag 
character with the contents of control register 6. If the two values 
match, or the received character is the global address 11111111, the 
receiver immediately enters Data Phase and character assembly 
begins with this character. If no match is found and the value is not 
the global address, the receiver remains in Address Search Phase 
and no data characters are assembled until a flag followed by the 
correct address is encountered. If Address search Mode is not 
enabled, Data Phase is entered immediately and character assembly 
begins with the first non-flag character. Since all messages are 
framed with flag characters, you can skip an incoming message at 
any time simply by setting the Enter Hunt Phase bit (D4) in CR3.

Once in Data Phase, characters are assembled according to the 
number of bits or characters specified until the next End of Frame 
flag is encountered. The receiver then sets the Special Receive 
Condition flag and transfers the character currently being assembled 
to the receiver buffer regardless of the number of bits actually 
assembled. A special residue code placed in the status buffer (SRI) 
uses the number of bits assembled to indicate the boundary between 
the data and CRC characters (see Section 0-5.1 for a more detailed

146



-

description of the residue code). If Address Search Mode is enabled, 
the receiver once again enters Address Search Phase.

Unlike the COP mode of operation, data from the Sync 
Comparison/Zero Deletion logic passes directly to the CRC checker. 
As a result, when the End of Frame Flag is detected, the CRC 
calculation is complete and the error status is passed to the status 
buffer along with the residue code. The CRC checker is automatically 
reset to all ones at this time.

G-4.3 BUS 
INTERFACE 
CONTROLLER

The bus interface controller is the interface between the transmitter 
and receiver sections and the processor bus. The major components 
of this section are shown in Figure 6-4.5. The control and status 
registers pertinent to the operation of the control section are 
illustrated in Table 6-4.4.

The bus interface controller can be divided into four major 
components:

Bus Control Logic
Interrupt Control Logic
DMA Control Logic
Clock and Reset Control Logic

All of these components interact to provide a flexible high- 
performance interface between the bus architecture defined by your 
processor and application and the various internal elements that 
make up the MPSC.2

G-4.3.1 Bus Control 
Logic

The bus control logic determines the direction and internal source or 
destination of data and control transfers between the MPSC2 and the 
processor bus. During operation of the MPSC2, the bus control logic 
may operate in any of three distinct modes: Processor Read/Write, 
Interrupt Acknowledge, and DMA Cycle. These last two modes are 
described in detail in Sections 6-4.3.2 and 6-4.3.3.

Processor Read/Write mode is the normal mode of operation. The 
processor transfers data or commands and status to or from the 
MPSC2 with its instruction set. The MPSC2 is enabled for Processor 
Read/Write mode when the chip select (CS) input is made active 
(low). The direction of the transfer is controlled by enabling either the 
read (RD) or write (WR) inputs. The B/A input determines the 
source/destination channel for the transfer and the C/D input 
specifies whether the transfer is character data or control/status 
information. These inputs are generally connected to the two low- 
order address lines. Figure 6.1 illustrates a typical connection 
between a processor and the MPSC2.

147



6-4.3.2 Interrupt 
Control Logic

■■■■■■■■■■MBHI 
Table G-4.3 Read/Write Selection

OS B/A C/D RD WR OPERATION

1 X X X X NO OPERATION. THE MPSC2 IS DESELECTED.

0 X X 1 1 NO OPERATION. THE MPSC2 IS DESELECTED.

0 0 0 1 0 WRITE A CHAR TO CHANNEL A TRANSMITTER.

0 0 0 0 1 READ A CHAR FROM CHANNEL A RECIVER.
0 0 1 1 0 WRITE A CONTROL BYTE TO CHANNEL A.
0 0 1 0 1 READ A STATUS BYTE FROM CHANNEL A.

0 1 0 1 0 WRITE A CHAR TO CHANNEL B TRANSMITTER.

0 1 0 0 1 READ A CHAR FROM CHANNEL B RECEIVER.
0 1 1 1 0 WRITE A CONTROL BYTE TO CHANNEL B.
0 1 1 0 1 READ A STATUS BYTE FROM CHANNEL 8.

0 X X 0 0 ILLEGAL.

The interrupt control logic performs two functions: it prioritizes various 
internal input requests, and places the appropriate information on the 
data bus during an Interrupt Acknowledge cycle (if you enabled the 
MPSC2s vectored interrupt feature).

Figure G-4.5 Bus Interface Controller

148



Table G-4.4 Bus Interface Controller Control and Status 
Registers

CONTROL 
REGISTER

CRO

CR2A

CR2B

STATUS 
REGISTER

CRO

CR2B

O7 Ob □5 04 Oz 2- 01 Oo ’Relevant 
commands

Channel
Resat

End of 
Interrupt

COMMAND* REGISTER POINTER

0 Vector Mod* Select Priority □MA Mode Select

INTERRUPT VECTOR

°7 0, 05 °« 03 °r 01 Oo

Interrupt 
Pending

INTERRUPT VECTOR

Each MSPC2 channel can generate four different types of interrupt 
requests:

Received Character Available
Special Received Condition (character received but with an error or 
SDLC End of Frame flag received)
Transmitter Buffer Empty
External input (CTS, DCD, SYNC, Internal Status (Sync,ldle/CRC 
Latch) Change)

When any of these requests occurs, the interrupt control logic 
determines whether to accept the request at that time, issue an 
interrupt request by setting the I NT output low when the request is 
accepted, and, if Vectored Interrupt mode is enabled, place the 
interrupt information on the data bus during the times that the 
interrupt acknowledge input (INTA) is activated by the processor.

As an example, assume that the channel A DCD input has just 
changed state causing an External/Status Change interrupt request. 
The following sequence occurs:

If all the following conditions are true:
External/Status Change interrupts are enabled
No higher priority interrupt requests are pending
PRI is active
The MPSC2 is not acknowledging a pending lower priority interrupt 
request

Then the interrupt control logic accepts the interrupt request and sets 
I NT active and PRO inactive.

If Vectored Interrupt mode is enabled, the MPSC2 may place 
information on the data bus in response to a series of INTA pulses as 
shown in the following chart.

149



Table G-4.5 Vectored Interrupt Mode

"The SOM issues 2 Interrupt Acknowledge pulses rather than 3.

Interrupt 
Mode Select PRI

INTA Cycle

1 2 3
8000/5 Mester 0 CO HEX ICALL OP) VECTOR 0

1 CO HEX (CALL OPI Hl-Z Hl-Z
8060/5 Sieve 0 Hl-Z VECTOR 0

1 Hl-Z Hl-Z Hl-Z
SOM 0 Hl-Z VECTOR •

1 Hl-Z Hl-Z •

When operating in the 8080/5 modes, the MPSC2 issues an 8080- 
type CALL CD vv Hex instruction where vv is the contents of control 
register 2B (modified by the cause of the interrupt if the Status 
Affects Vector feature is enabled). In particular, an MPSC2 
programmed for 8085 Master mode always places the CALL opcode 
on the data bus regardless of whether that MPSC2 has a pending 
interrupt request. To avoid problems caused by momentary bus 
contention, you should never program more than one device to 
operate in this mode.

In 8086 mode, the MPSC2 places the vector on the data bus during 
the second interrupt acknowledge to vector the processor to the 
approximate location in low memory.

Figure G-4.6 MPSC2 Interrupt Conditions

150



Figure G-4.7 illustrates the action of the interrupt control logic during 
an interrupt acknowledge sequence.

Figure G-4.7 Interrupt Timing

At the beginning of the first Interrupt Acknowledge cycle, the interrupt 
prioritization logic is frozen to permit any late interrupt requests by 
higher priority devices to ripple through and resolve internal priorities 
before the second interrupt pulse.

At the end of the second INTA pulse, the I NT output is released by 
the acknowledging device and the interrupt prioritization logic is re
enabled with an Interrupt In Service flag set. As long as this flag is 
set, PRO is held high and only internal interrupt requests with a 
priority higher than the one currently being serviced are accepted.

While the interrupt is being serviced, the processor issues an End of 
Interrupt (EOI) command to the MPSC2 to reset the interrupt control 
logic to its previous state. This scheme permits nested interrupts to 
be serviced and the priority daisy chain to be properly maintained.

When the MPSC2 is operated in Non-vectored Interrupt mode, the 
interrupt control logic operates in a similar manner except that INTA 
is not used and no vector information is placed on the data bus. 
Rather, the interrupt acknowledge sequence is simulated by reading 
the vector (modified if Status Affects Vector is enabled) in status 
register 2B.

151



6-4.3.3 DMA Control 
Logic

The function of the DMA logic is somewhat similar to that of the 
interrupt control logic in that service requests must be accepted, 
prioritized, and information placed on (or, in this case, accepted from 
as well) the data bus at the appropriate times. However, the purpose 
of the DMA control logic is to enable the MPSC2 to avoid interrupting 
the processor to make a data transfer. This is accomplished by 
activating an external controller to move the data directly from the 
MPSC2 to memory, or vice versa.

The DMA control logic accepts requests from four sources: (1) 
Received Data Available in channel A, (2) Transmitter Buffer 
Becoming Empty in channel A., (3) Data Available in channel B, and 
(4) Transmitter Buffer Becoming Empty in channel B. When an 
internal DMA request is made by one of the above sources and DMA 
mode is enabled for that channel, the appropriate DMA request output 
(e.g. DRQRxA when received data is available in channel A) is made 
active. This causes the external DMA controller to request control of 
the processor bus with a hold request. The MPSC2's daisy chain 
output, HAO, is at this point locked in the inactive (high) state.

Some time later, the external DMA controller gains control of the 
processor bus as the processor asserts its hold acknowledge output.

The DMA Controller now places the source or destination address on 
the address bus and asserts the I/O read or write control line for a 
data transfer from or to the MPSC2, respectively. The MPSC2 also 
receives the processor hold acknowledge signal possibly through 
higher priority MPSC2s not requesting DMA, at its HAI input. When 
HAI is asserted, the DMA control logic freezes all internal requests, 
determines which one has the highest priority, and performs the 
transfer when I/O read or write is received from the DMA controller 
at RD or WR. Once the transfer is complete, the prioritization logic is 
re-enabled and new or pending requests can be serviced. Figure G- 
4.8 illustrates some of the timing details of a DMA transfer.

Figure G-4.8 DMA Data Transfer Timing 

152



From the above explanation you should note two points. First, in the 
case of multiple DMA requests from one MPSC2, both the MPSC2 and 
the external DMA controller establish priorities independently to 
determine which request to service first. As a result, you MUST 
connect the MPSC2’s DMA request outputs to the DMA controller so 
that both make the same priority decisions. For example, when using 
the MPSC2 with an 8257-type DMA controller and the priority bit 
(CR2A-D2) = 0, you must set the controller to the fixed priority mode 
(as opposed to rotating priority), and connect the MPSC2s DRQRxA 
output to the 8257's DRQ 0 input, DRQTxA to DRQ 1, and so on.

The second point is that many DMA controllers, such as the 8257, 
may begin the transfer by asserting RD or WR before the MPSC2 can 
receive HAI through the daisy chain and resolve request priorities. 
Because of this, you should always derive HLDA to the DMA 
Controller from HAI of the MPSC2(s) to which it is connected. 
Additionally, a delay circuit from HAI to HLDA is recommended. 
Figure 6-6.5 shows a typical MPSC2/DMA interface which conforms 
to these points.

The mechanism that controls the WAIT outputs of the MPSC2 is 
related to the DMA logic. When enabled, the wait logic pulls the WAIT 
line active when the processor attempts to perform a data transfer 
operation at an inappropriate time. If WAIT is connected to the 
processor’s WAIT (or READY) input, it waits until the line is released 
by the MPSC2 before completing the data transfer. Since the 
processor is dedicated to either a read or write operation at any one 
time, only one WAIT output is required for each channel. You may 
assign it to operate with either the transmitter or the receiver. Figure 
6-4.9 illustrates the basic wait feature timing.

Figure G-4.9 Walt Mode Timing

153



G-4.3.4 Clock and 
Reset Control Logic

The clock input of the MPSC2 controls the various timing states of the 
MPSC2 and is usually connected to the processor clock. The clock is 
not used by the bus control logic and data transfers need not be 
synchronized to it in any way. The receiver and transmitter sections 
use the clock, and it must be at least 4.5x the highest data clock 
frequency you plan to use. The DMA control logic also uses the 
clock, and it should be the same clock seen by the external DMA 
Controller.

The RESET input is used at power-up and at any other time that you 
wish to reset the MPSC2 to its initial state. After a reset, all 
transmitters and receivers are disabled, any pending interrupt and 
DMA requests are cleared, and the modem control outputs DTR and 
RTS are reset (high). When you reset the MPSC2, you must hold the 
RESET input low for at least one complete clock cycle.

G-5 PROGRAMMING 
THE MPSC2

The software operation of the MPSC2 is very straightforward. Its 
consistent register organization and high-level command structure 
help to minimize the number of operations required to implement 
complex protocol designs. Programming is further simplified by the 
MPSC2s extensive interrupt and status reporting capabilities.

This section is divided into two parts. The first is a detailed 
description of the commands, bits, and fields in the various MPSC2 
control and status registers. The second part provides programming 
examples and flowcharts for the MPSC2’s various operating modes to 
assist you in developing software for your specific application.

G-S.1 THE MPSC2 
REGISTERS

The MPSC2 interfaces to the system software with a number of 
control and status registers associated with each channel. Commonly 
used commands and status bits are accessed directly through control 
and status registers 0. Other functions are accessed indirectly with a 
register pointer to minimize the address space that must be dedicated 
to the MPSC2.

Table G-S.1 Control Registers

CONTROL 
REGISTER FUNCTION

0 FREQUENTLY USED COMMANDS AND REGISTER POINTER CONTROL
1 INTERRUPT CONTROL
2 PROCESSOR/BUS INTERFACE CONTROL
3 RECEIVER CONTROL
4 MOOeCONTROL
5 TRANSMITTER CONTROL
S SYNC/AODRESS CHARACTER
7 SYNC CHARACTER

154



Li-5.1.1 Control
Register 0

■■■■■MBBBBBMMBBI JURWl MN
Table 6-5.2 Status Registers

STATUS 
REGISTER FUNCTION

0 BUFFER AND "EXTERNAL/STATUS" STATUS
1 RECEIVED CHARACTER ERROR AND SPECIAL CONDITION STATUS
2 

(CHANNEL 
B ONLY)

INTERRUPT VECTOR

All control and status registers except CR2 are separately maintained 
for each channel. Control and status registers 2 are linked with the 
overall operation of the MPSC2 and have different meanings when 
addressed through different channels.

When initializing the MPSC2, control register 2A (and 2B if desired) 
should be programmed first to establish the MPSC2 processor/bus 
interface mode. You may then program each channel to be used 
separately, beginning with control register 4 to set the protocol mode 
for that channel. The remaining registers may then be programmed in 
any order.

Figure G- 5.1 Control Register 0

□7 0« ' Os 04 03 02 Ol DO

CRC CONTROL 
COMMAND COMMAND REGISTER POINTER

Register Pointer (D0-D2)

The register pointer specifies which register number is accessed at 
the next Control Register Write or Status Register Read. After a 
hardware or software reset, the register pointer is set to 0. Therefore, 
the first control byte goes to control register 0. When the register 
pointer is set to a value other than 0, the next control or status 
(C/D= 1) access is to the specified register, after which the pointer is 
reset to 0. You can freely combine other commands in control register 
0 with setting the register pointer.

Command (D3-D5)

155



Commands commonly used during the operation of the MPSC2 are 
grouped in control register 0. They are:

Null (000)

This command has no effect and is used when you wish to set only 
the register pointer or issue a CRC command.

Send Abort (001)

When operating in SDLC mode, this command causes the MPSC2 to 
transmit the SDLC abort code, issuing 8 to 13 consecutive ones. Any 
data currently in the transmitter or the transmitter buffer is destroyed. 
After sending the abort, the transmitter reverts to the Idle Phase 
(flags).

Reset External/Status Interrupts (010)

When the External/Status Change flag is set, the condition bits Do-D2 
of status register 0 are latched to allow you to capture short pulses 
that may occur. The Reset External/Status Interrupts Command 
clears a pending interrupt and re-enables the latches so that new 
interrupts may be sensed.

Channel Reset (Oil)

This command has the same effect on a single channel as an 
external reset at pin 2. A channel reset command to channel A resets 
the internal interrupt prioritization logic. This does not occur when you 
issue a Channel Reset command to channel B. You must reinitialize 
all control registers associated with the channel that you reset. After a 
channel reset, you must wait at least four system clock cycles before 
writing new commands or controls to that channel.

Enable Interrupt on Next Character (100)

When operating the MPSC2 in Interrupt on First Received Character 
mode, you may issue this command at any time (generally at the end 
of a message), to re-enable the interrupt logic for the next received 
character.

Reset Pending Transmitter Interrupt/DMA Request (101)

You can reset a pending Transmitter Buffer Becoming Empty interrupt 
or DMA request without sending another character by issuing this 
command (typically at the end of a message). A new Transmitter 
Buffer Becoming Empty interrupt or DMA request is not made until 
another character has been loaded and transferred to the transmitter 
shift register or when, if operating in synchronous or SDLC mode, the 
CRC character has been completely sent and the first sync or flag 
character loaded into the transmitter shift register.

Error Reset (110)

This command resets a Special Receive Condition interrupt. It also 
re-enables the Parity and Overrun Error latches that allow you to 

156



check for these errors at the end of a message.

End of Interrupt (111) (Channel A only)

Once an interrupt request has been issued by the MPSC2, all lower 
priority internal and external interrupts in the daisy chain are held off 
to permit the current interrupt to be serviced while allowing higher 
priority interrupts to occur. At some point in your interrupt service 
routine (generally at the end), you must issue the End of Interrupt 
command to channel A to re-enable the daisy chain and allow any 
pending lower priority internal interrupt requests to occur.

CRC Control Commands (D6-D7)

These commands control the operation of the CRC generator/ 
checker logic.

Null (00)

This command has no effect and is used when issuing other 
commands or setting the register pointer.

Reset Receiver CRC Checker (01)

This command resets the CRC checker to 0 when the channel is in a 
synchronous mode and resets to all ones when in SDLC mode.

Reset Transmitter CRC Generator (10)

This command resets the CRC generator to 0 when the channel is in 
a synchronous mode and resets to all ones when in SDLC mode.

Reset Idle/CRC Latch (11)

This command resets the Idle/CRC latch so that when a transmitter 
underrun condition occurs (that is, the transmitter has no more 
characters to send), the transmitter enters the CRC Phase of 
operation and begins to send the 16-bit CRC character calculated up 
to that point. The latch is then set so that if the underrun condition 
persists, idle characters are sent following the CRC. After a hardware 
or software reset, the latch is in the set state.

G-5.1.2 Control 
Register 1 Figure G-5.2 Control Register 1

°7 Os OS □4 oz °r Pl Do

WAIT 
FUNCTION 

ENABLE
1

WAIT ON 
RECEIVER 

TRANSMITTER

RECEIVER 
INTERRUPT 

MODE

CONDITION 
AFFECTS 
VECTOR

TRANSMITTER 
INTERRUPT 

ENABLE

EXT/STATUS 
INT ENABLE

External/Status Interrupt Enable (Do) 

157



When this bit is set to one, the MPSC2 issues an interrupt whenever 
any of the following occur:

transition of DCD input
transition of CTS input
transition of SYNC input
entering or leaving synchronous Hunt Phase break detection or 
termination
SDLC abort detection or termination
Idle/CRC latch becoming set (CRC being sent)

Transmitter Interrupt Enable (DJ

When this bit is set to one, the MPSC2 issues an interrupt when:

the character currently in the transmitter buffer is transferred to the 
shift register (Transmitter Buffer Becoming Empty) or,

the transmitter enters Idle Phase and begins transmitting sync or 
flag characters.

Status Affects Vector (D2)

When this bit is set to 0, the fixed vector programmed in CR2B during 
MPSC2 initialization is returned in an interrupt acknowledge sequence. 
When this bit is set to 1, the vector is modified to reflect the condition 
that caused the interrupt. See Section G-5.1.12 for a detailed 
explanation of the MPSC2's vectored interrupt feature.

Receiver Interrupt Mode (D3-D4)

This field controls how the MPSC2’s interrupt/DMA logic handles the 
character received condition.

Receiver Interrupts/DMA Request Disabled (00)

The MPSC2 does not issue an interrupt or a DMA request when a 
character has been received.

Interrupt on First Received Character Only (01)

(and issue a DMA Request)

In this mode, the MPSC2 issues an interrupt only for the first 
character received after an Enable Interrupt on First Character 
Command (CRO) has been given. If the channel is in DMA mode, a 
DMA request is issued for each character received including the first. 
This mode is generally used when using the MPSC2 in DMA or Block 
Transfer mode to signal the processor that the beginning of an 
incoming message has been received.

Interrupt (and issue a DMA Request) (10)

On All Received Characters
Parity Error is a Special Receive Condition

158



G-5.1.3 Control 
Register 2 
(Channel A)

In this mode, an interrupt (and DMA request if DMA mode is 
selected) is issued whenever there is a character present in the 
receiver buffer. A parity error is considered a special receive 
condition.

Interrupt (and issue a DMA request) (11)

On All Received Characters
Parity Error is not a Special Receive Condition

This mode is the same as above except that a parity error is not 
considered a special receive condition. The following are considered 
special receive conditions and, when status affects vector is enabled, 
cause an interrupt vector different from that caused by a received 
character available condition:

Receiver Overrun Error
Parity Error (if specified)
SDLC End of Message (final flag received)

Wait on Receiver/Transmitter (D5)

If the Wait function is enabled for block mode transfers, setting this bit 
to 0 causes the MPSC2 to issue a wait (WAIT output goes low) when 
the processor attempts to write a character to the transmitter while 
the transmitter buffer is full. Setting this bit to 1 causes the MPSC2 to 
issue a wait when the processor attempts to read a character from 
the receiver while the receiver buffer is empty.

Wait Function Enable (D7)

Setting this bit to 1 enables the wait function as described above and 
in Section 4.3.3.

Figure G-5.3 Control Register 2 (Channel A)

07 06 05 04 03 02 01 DO

PIN 10 
SYNCB/RTSB i INTERRUPT VECTOR MODE PRIORITY DMA MODE 

SELECT

DMA Mode Select (Do-D,)

Setting this field establishes whether channels A and B are used in 
DMA mode (i.e. data transfers are performed by a DMA controller) or 
in non-DMA mode where transfers are performed by the processor in 
either Polled, Interrupt, or Block Transfer modes. The functions of 
some MPSC2 pins are also controlled by this field.

159



■■BHBHmMHOMaEBaniMB
Table 6-5.3 DMA Mode Selection

Channel Pin Function

0, Do A 8 11 26 29 30 31 32

0 0 Non-OMA Non-OMA WAITS DTPS PRI PRO DTRA WAI TA

0 1 DMA Non-OMA DRQTxA haT 7r3 HAO DRQRxA

1 0 DMA DMA DRQTxA haT DRQRxB DRQTxB HAO DRQRxA

1 1 1 Hegel - - - - - - -

Priority (D2)

This bit allows you to select the relative priorities of the various 
interrupt and DMA conditions according to your application.

Table 6-5.4 DMA/lnterrupt Priorities

Mode DMA Priority Reletion Interrupt Priority Relation

02 CHA CHB

0 

1
INT INT

----------------------- ------------ ----RxA > TxA > RxB > TxB > ExTA > ExTB 

RxA > RxB > TxA > TxB > ExTA > ExTB

0 

1
DMA INT

RxA TxA

RxA TxA

RxA > RxB > TxB > ExTA > ExTB 
RxA > RxB > TxB > ExTA > ExTB

0 

1
DMA DMA

RxA TxA RxB TxB

RxA RxB TxA TxB

RxA > RxB > ExTA > ExTB
RxA > RxB > ExTA > ExTB

Interrupt Vector Mode (D3-D5)

This field determines how the MPSC2 responds to an interrupt 
acknowledge sequence from the processor. See Section 4.3.2 for a 
detailed description of the MPSC2 response in these modes.

Table 6-5.5 Interrupt Acknowledge Sequence Response

°5 Mode Status Register 2B and Interrupt Vector bits affected when 
Condition Affects Vector is enabled

0 0 0 Non-Vectored °4 d3 d2
0 0 1 Non-Vectored d4 d3 d2
0 1 0 Non-Vectored 02 Di Do
0 1 1 Illegal -
1 0 0 8085 Master □4 Dj Dj
1 0 1 8085 Slave D4 Dz Dz
1 1 0 8086 Dj Di Dq

1 1 1 Illegal -

160



6-5.1.4 Control 
Register 2 
(Channel B)

6-5.1.5 Control 
Register 3

Pin 10 SYNCB/RTSB Select (D7)

Programming a 0 into this bit selects RTSB as the function of pin 10. 
A one selects SYNCB as the function.

Figure 6-5.4 Control Register 2 (Channel B)

O? □6 05 04 03 °r Ol Do

INTERRUPT VECTOR

G-lnterrupt Vector (Do-D7)

When the MPSC2 is used in Vectored Interrupt mode, the contents of 
this register are placed on the bus during the appropriate portion of 
the interrupt acknowledge sequence. Its value is modified if status 
affects vector is enabled. You can read the value of CR2B at any 
time. This feature is particularly useful in determining the cause of an 
interrupt when using the MPSC2 in Non-vectored Interrupt mode.

Figure 6-5.5 Control Register 3

07 06 08 04 03 □2 01 oo

NUMBER OF RECEIVED 
BITS/CHARACTER

AUTO 
ENABLES

ENTER HUNT 
PHASE

RECEIVER 
CRC ENABLE

ADDRESS 
SEARCH 

MODE

SYNC 
CHARACTER 

LOAD INHIBIT

RECEIVER 
ENABLE

Receiver Enable (Do)

After the channel has been completely initialized, setting this bit to 1 
allows the receiver to begin operation. You may set this bit to 0 at 
any time to disable the receiver.

Sync Character Load Inhibit (DJ

In a synchronous mode, this bit inhibits the transfer of sync 
characters to the receiver buffer, thus performing a "sync stripping" 
operation. When using the MPSC2's CRC checking ability, you should 
use this feature only to strip leading sync characters preceding a 
message since the load inhibit does not exclude sync characters 
embedded in the message from the CRC calculation. Synchronous 
protocols using other types of block checking such as checksum or 
LRC are free to strip embedded sync characters with this bit.

Address Search Mode (D2)

161



In SDLC Mode, setting this bit places the MPSC2 in Address Search 
mode where character assembly does not begin until the 8-bit 
character (secondary address field) following the starting flag of a 
message matches either the address programmed into CR6 or the 
global address 11111111.

Receiver CRC Enable (D3)

This bit enables and disables (1 = enable) the CRC checker in COP 
mode to allow you to selectively include or exclude characters from 
the CRC calculation. The MPSC2 features a one-character delay 
between the receiver shift register and the CRC checker so that the 
enabling or disabling takes effect with the last charcter transferred 
from the shift register to the receiver buffer. Therefore, you have one 
full character time in which to read the character and decide whether 
it should be included in the CRC calculation.

Enter Hunt Phase (D4)

Although the MPSC2 receiver automatically enters Sync Hunt Phase 
after a reset, there are times when you may wish to reenter it, such 
as when you have determined that synchronization has been lost or, 
in SDLC mode, to ignore the current incoming message. Writing a 1 
into this bit at any time after initialization causes the MPSC2 to reenter 
Hunt Phase.

Auto Enables (Ds)

Setting this bit to 1 causes the DCD and CTS inputs to act as enable 
inputs to the receiver and transmitter, respectively.

Number of Received Bits/Character (D6-D7)

This field specifies the number of data bits assembled to make each 
character.

You may change the value on the fly while a character is being 
assembled and if the change is made before the new number of bits 
has been reached, it affects that character. Otherwise the new 
specifications take effect on the next character received.

Table 6-5.6 Received Blts/Character

°7 □6 BITS/CHARACTER

6 0 5

0 1 7

1 0 ' 6

1 1 8

162



6-5.1.6 Control 
Register 4

—win i "'Twir'ummwwivaa
Figure 6-5.6 Control Register 4

□7 06 Os D4 03 O2 □1 □o
CLOCK RATE SYNC MODE NUMBER OF STOP BITS 

SYNC MODE
PARITY 

EVEN/ODD
PARITY 
ENABLE

Parity Enable (Do)

Setting this bit to 1 adds an extra data bit containing parity . 
information to each transmitted character. Each received character is 
expected to contain this extra bit and the receiver parity checker is 
enabled.

Parity Even/Odd (D,)

Programming a 0 into this bit when parity is enabled causes the 
transmitted parity bit to take on the value required for odd parity. The 
received character is checked for odd parity. Conversely, a 1 in this 
bit signifies even parity generation and checking.

Number of Stop Bits/Sync Mode (D2-D3)

This field specifies whether the channel is used in synchronous (or 
SDLC) mode or in asynchronous mode. In asynchronous mode, this 
field also specifies the number of bit times used as the stop bit length 
by the transmitter. The receiver always checks for one stop bit.

Table G-5.7 Stop Bits

°3 02 MODE

0 0 SYNCHRONOUS MODES

0 1 ASYNCHRONOUS 1 BIT TIME (1 STOP BIT)

1 0 ASYNCHRONOUS 1'/- BIT TIMES 11'/- STOP BITS)

1 1 ASYNCHRONOUS 2 BIT TIMES (2 STOP BITS)

Sync Mode (D4-D5)

When the Stop Bits/Sync Mode field is programmed for synchronous 
modes D2 D3 = 00), this field specifies the particular synchronous 
format to be used. This field is ignored in asynchronous mode.

163



Table G-5.8 Synchronous Formats

°5 □ 4 MODE

0 0 8 SIT INTERNAL SYNCHRONIZATION CHARACTER (MONOSYNC)

0 1 16-BIT INTERNAL SYNCHRONIZATION CHARACTER (BISYNC)

1 0 SDLC

1 1 EXTERNAL SYNCHRONIZATION (SYNC PIN BECOMES AN INPUT)

Clock Rate (D6-D7)

This field specifies the relationship between the transmitter and 
receiver clock inputs (TxC, RxC) and the actual data rate at TxD and 
RxD. When operating in a synchronous mode you must specify a 1 x 
clock rate. In asynchronous modes, any of the rates may be 
specified, however, with a 1 x clock rate the receiver cannot determine 
the center of the start bit. In this mode, you must externally 
synchronize the sampling (rising) edge of RxC with the data.

Table G-5.9 Clock Rates

CLOCK CLOCK
RATE 1 RATE 2

°7 °s CLOCK RATE

0 0 CLOCK RATE - 1x DATA RATE

a 1 CLOCK RATE - 16x DATA RATE
1 0 CLOCK RATE - 32x DATA RATE

1 1 CLOCK RATE - S4x DATA RATE

G-5.1.7 Control 
Register 5 Figure G-5.7 Control Register 5

07 0, 05 □4 03 02 01 00

DTR NUMBER OF TRANSMITTED 
BITS/CHARACTER

SEND 
BREAK

TRANSMITTER 
ENABLE

CRC 
POLYNOMIAL 

SELECT
RTS TRANSMITTER 

CRC ENABLE

Transmitter CRC Enable (Do)

A 1 or a 0 enables or disables, respectively, CRC generator 
calculation. The enable or disable does not take effect until the next 
character is transferred from the transmitter buffer to the shift register, 
thus allowing you to include or exclude specific characters from the 

164



CRC calculation. By setting or resetting this bit just before loading the 
next character, it and subsequent characters are included or 
excluded from the calculation. If this bit is 0 when the transmitter 
becomes empty, the MPSC2 goes to the Idle Phase, regardless of the 
state of the Idle/CRC latch.

RTS (Di)

In synchronous and SDLC modes, setting this bit to 1 causes the 
RTS pin to go low while a 0 causes it to go high. In asynchronous 
mode, setting this bit to 0 does not cause RTS to go high until the 
transmitter is completely empty. This feature facilitates programming 
the MPSC2 for use with asynchronous modems.

CRC Polynomial Select (D2)

This bit selects the polynomial used by the transmitter and receiver 
for CRC generation and checking. A 1 selects the CRC-16 polynomial 
(x16 + x'5 + x2 + 1). A 0 selects the CRC-CCITT Polynomial 
(x16 + x12 + x5 + 1). In SDLC mode, you must select CRC-CCITT. You 
may use either polynomial in other synchronous modes.

Transmitter Enable (D3)

After a reset, the transmitted data output (TxD) is held high (marking) 
and the transmitter is disabled until this bit is set.

In asynchronous mode, TxD remains high until data is loaded for 
transmission.

In synchronous and SDLC modes, the MPSC2 automatically enters 
Idle Phase and sends the programmed sync or flag characters.

When the transmitter is disabled in asynchronous mode, any 
character currently being sent is completed before TxD returns to the 
marking state.

If you disable the transmitter during the Data Phase in synchronous 
mode, the current character is sent, then TxD goes high (marking).

In SDLC mode, the current character is sent, but the marking line 
following is zero-inserted. That is, the lines goes low for one bit time 
out of every five.

You should never disable the transmitter during the SDLC Data Phase 
unless a reset is to follow immediately. In either case, any 
character in the buffer register is held.

Disabling the transmitter during the CRC Phase causes the 
remainder of the CRC character to be bit-substituted with sync 
(or flag). The total number of bits transmitted is correct and TxD 
goes high after they are sent.

If you disable the transmitter during the Idle Phase, the remainder 
of sync (flag) character is sent, then TxD goes high.

165



Send Break (D<)

Setting this bit to 1 immediately forces the transmitter output 
(TxD) low (spacing). This function overrides the normal transmitter 
output and destroys any data being transmitted although the 
transmitter is still in operation. Resetting this bit releases the 
transmiter output.

Transmitted Bits/Character (D5-D6)

This field controls the number of data bits transmitted in each 
character. You may change the number of bits/character by 
rewriting this field just before you load the first character to use 
the new specification.

TRANSMIT TRANSMIT 
BITS PER BITS PER

CHARACTER 1 CHARACTER

Table 6-5.10 Transmitted Bits/Character

□6 °5 BITS/CHARACTER

0 0 5 OR LESS (SEE BELOW)

0 1 7

1 0 6

1 1 8

Normally each character is sent to the MPSC2 right-justified and 
the unused bits are ignored. However, when sending five bits or 
less the data should be formatted as shown below to inform the MPSC2 
of the precise number of bits to be sent.

Table 6-5.11 Transmitted Blts/Character for 5 Characters 
and Less

□? 0, Os 0« 03 0, °0 NUMBER OF BITS/CHARACTER

1 1 1 1 0 0 0 Ofl 1
1 1 1 0 0 0 °1 0° 2
1 1 0 0 0 03 0, Oo 3
1 0 o 0 03 °r Do 4
0 0 0 03 or °1 Ofl 5

DTR (Data Terminal Ready) (D7)

When this bit is 1, the DTR output is low (active). Conversely, 
when this bit is 0, DTR is high.

166



6-5.1.3 Control 
Register 6

6-5.1.9 Control 
Register 7

Figure 6-5.8 Control Register 6

°7 0, 05 04 03 02 Ol □O

SYNC BYTE 1

Sync Byte 1 (D0-D7)

Sync byte 1 is used in the following modes:

Monosync: 8-bit sync character transmitted during the
Idle Phase

Bisync: Least significant (first) 8 bits of the 16-bit
transmit and receive sync character

External Sync: Sync character transmitted during the Idle 
Phase

SDLC: Secondary address value matched to
Secondary Address field of the SDLC frame 
when the MPSC2 is in Address Search Mode

Figure 6-5.9 Control Register 7

.. °7 o« 05 04 03 Or 01 DO

SYNC BYTE 2

Sync Byte 2 (D0-D7)

Sync Byte 2 is used in the following modes:
Monosync: 8-bit sync character matched by the 

Receiver
Bisync: Most significant (second) 8 bits of the 16-bit 

transmit and receive sync characters
SDLC: You must program the flag character, 

01111110, into control register 7 for flag 
matching by the MPSC2 receiver

167



G-5.1.10 Status ■—w— .I ..IB ■imwr-l’MgMMMMBBB.LJll.TLL 'HIM

Register 0 Figure G-5.10 Status Register 0

°7 °s °5 0« 03 02 °1

Break/ 
Abort Idle/CRC CTS Status □co

Transmitter 
Buffer Interrupt 

Pending

Received 
Character 
Available

Received Character Available (Do)

When this bit is set, it indicates that one or more characters are 
available in the receiver buffer for the processor to read. Once all 
of the available characters have been read, the MPSC2 resets 
this bit until a new character is received.

Interrupt Pending (0,-Channel A Only)

The interrupt pending bit is used with the interrupt vector register 
(status register 2) to make it easier to determine the MPSC2’s 
interrupt status, particularly in ^on-vectored Interrupt mode where 
the processor must poll each device to determine the interrupt 
source. In this mode, interrupt pending is set when you read 
status register 2B, the PRI input is active (low) and the MPSC2 is 
requesting interrupt service.

You need not analyze the status registers of both channels to 
determine if an interrupt is pending. If status affects vector is 
enabled and interrupt pending is set, the vector you read from 
SR2 contains valid condition information.

In Vectored Interrupt mode, interrupt pending is set during the 
interrupt acknowledge cycle (on the leading edge of the 2nd 
INTA pulse) when the MPSC2 is the highest priority device 
requesting interrupt service (PRI is active). In either mode, if there 
are no other pending interrupt requests, interrupt pending is reset 
when the End of Interrupt command is issued.

Transmitter Buffer Empty (D2)

This bit is set whenever the transmitter buffer is empty, except 
during the transmission of CRC (the MPSC2 uses the buffer to 
facilitate this function). After a reset, the buffer is considered 
empty and transmit buffer empty is set.

External/Status Flags

The following status bits reflect the state of the various conditions 
that cause an external/status interrupt. The MPSC2 latches all 
external/status bits whenever a change occurs that would cause 
an external/status interrupt (regardless of whether this interrupt is 
enabled). This allows you to capture transient status changes on 
these lines with relaxed software timing requirements (see 
Appendix A for detailed timing specifications).

168



When you operate the MPSC2 in interrupt-driven mode for 
external/status interrupts, you should read status register 0 when 
this interrupt occurs and issue a Reset External/Status Interrupt 
command to reenable the interrupt and the latches. To poll 
these bits without interrupts, you can issue the Reset 
External/Status Interrupt command to first update the status to 
reflect the current values.

DCD (D3)

This bit reflects the inverted state of the DCD input. When DCD is 
low, the DCD status bit is high. Any transition on this bit causes an 
External/Status Interrupt request.

Sync Status (D4)

The meaning of this bit depends on the operating mode of the 
MPSC2.

Asynchronous mode: Sync status reflects the inverted state of the 
SYNC input. When SYNC is low, sync status is high. Any transition on 
this bit causes an External/Status Interrupt request.

External Synchronization mode: sync status operates in the same 
manner as asynchronous mode. The MPSC2s receiver 
synchronization logic is also tied to the sync status bit in external 
synchronization mode and a low-to-high transition (SYNC input going 
low) informs the receiver that synchronization has been achieved and 
character assembly begins (see Appendix A for detailed timing 
information).

A low-to-high transition on the SYNC input indicates that 
synchronization has been lost and is reflected both in sync status 
becoming zero and the generation of an External/Status interrupt. The 
receiver remains in Receive Data Phase until you set the Enter Hunt 
Phase bit in Control Register 3.

Monosync, Bisync, SDLC modes: In these modes, sync status 
indicates whether the MPSC2 receiver is in the Sync Hunt or Receive 
Data Phase of operation. A 0 indicates that the MPSC2 is in the 
Receive Data Phase and a one indicates that the MPSC2 is in the 
Sync Hunt Phase, as after a reset or setting the Enter Sync Hunt 
Phase bit. As in the other modes, a transition on this bit causes an 
External/Status interrupt to be issued. You should note that entering 
Sync Hunt Phase after either a reset or when programmed causes an 
External/Status Interrupt request which you may clear immediately 
with a Reset External/Status Interrupt command.

CTS (D5)

This bit reflects the inverted state of the CTS input. When CTS is low, 
the CTS status bit is high. Any transition on this bit causes an 
External/Status Interrupt request.

Idle/CRC (D«)

169



6-5.1.11 Status 
Register 1

This bit indicates the state of the Idle/CRC latch used in synchronous 
and SDLC modes. After reset this bit is 1, indicating that when the 
transmitter is completely empty, the MPSC2 enters Idle Phase and 
automatically transmits sync or flag characters.

A zero indicates that the latch has been reset by the Reset Idle/CRC 
Latch command. When the transmitter is completely empty, the 
MPSC2 sends the 16-bit CRC character and sets the latch again. An 
External/Status interrupt is issued when the latch is set, indicating 
that CRC is being sent. No interrupt is issued when the latch is reset.

Break/Abort (D7)

In asynchronous mode, this bit indicates the detection of a break 
sequence (a null character plus framing error, that occurs when the 
RxD input is held low (spacing) for more than 1 character time). 
Break/Abort is reset when RxD returns high (marking).

In SDLC mode, Break/Abort indicates the detection of an abort 
sequence when 7 or'more ones are received in sequence. It is reset 
when a zero is received.

Any transition of the Break/Abort bit causes an External/Status 
Interrupt.

Figure 6-5.11 Status Register 1

0? t>5 D< □2 Ot °0

End of
SDLC Frame

CRC 
Framing Overrun Pintv SDLC Residue Code All Sant

All Sent (Do)

In asynchronous mode, this bit is set when the transmitter is empty 
and reset when a character is present in the transmitter buffer or shift 
register. This feature simplifies your modem control software routines. 
In synchronous and SDLC modes, this bit is always set to 1.

SDLC Residue Code (DrD3)

Since the data portion of an SDLC message can consist of any 
number of bits and not necessarily an integral number of characters, 
the MPSC2 features special logic to determine and report when the 
End of Frame flag has been received, the boundary between the data 
field, and the CRC character in the last few data characters that were 
just read.

When the end of frame condition is indicated, that is, status register 1 
D7 = 1 and Special Receive Condition interrupt (if enabled), the last 
bits of the CRC character are in the receiver buffer. The residue code 
for the frame is valid in the status register 1 byte associated with that 
data character (remember SRI tracks the received data in its own 
buffer),

170



The meaning of the residue code depends upon the number of 
bits/characters specified for the receiver. The previous character 
refers to the last character read before the End of Frame, etc.

MITMMWBmMBMWaj.UI JWU IM
Table G-5.12 Residue Codes

8 Bits/Characttr

°3 °z Previous Character 2nd Previous Character

1 0 0 CCCCCCCC CCCCCCCC

0 1 0 CCCCCCCC CCCCCCCC

1 1 0 CCCCCCCC CCCCCCCC

0 0 1 CCCCCCCC CCCCCCCC

1 0 1 CCCCCCCC CCCCCCCC

0 1 1 CCCCCCCC CCCCCCCC (no residue)

1 1 1 CCCCCCCC CCCCCCCC

0 0 0 CCCCCCCC CCCCCCCC

7 Bits/Character

°1 Previou Character 2nd Previous Character

1 0 0 C C C C C C C C C C C COD

0 1 0 C C C C C C C C C C C ODD

1 1 0 C C C C C C C C C C 0 CCD

0 0 1 C C C C C C C C COO ODD

1 0 1 C C C C C C C C COO COD

0 1 1 C C C c c c c 0 COO D D D (no residue)

0 0 0 c c c C C C 0 0 OOO COD

6 Bits/Character

□ 3 °2 °1 Previous Character 2nd Previous Character

1 0 0 C C C c c c c c c c C 0

0 1 0 C C c c c c C C c c D 0

1 1 0 C C c c c c c c C D D D

0 0 1 C C C c c c c c 0 D 0 0

1 0 1 C C c c c c c D D 0 D D

0 0 0 C C c c c c 0 D D D D 0 (no residue)

5 Bits/Character

03 °2 2nd Previous Character 3rd Previous Character

1 0 0 C C c C C D 0 D D 0 (no residue)

0 1 0 C C C C 0 COCCO

1 1 0 C C C 0 0 0 0 0 0 0

0 o 1 C C 0 0 D ' 0 0 0 0 0

0 0 0 C 0 0 D 0 0 0 0 0 0

Special Receive Condition Flags

The status bits described below (Parity error [if Parity is a Special 
Receive condition is enabled], Receiver Overrun Error, CRC/Framing 
Error, and End of SDLC Frame), all represent Special Receive 
conditions.

When any of these conditions occurs and interrupts are enabled, the 
MPSC2 issues an interrupt request. In addition, if you enabled 
Condition Affects Vector mode, the vector generated (and the 

171



G-5.1.12 Status 
Register 2

contents of SR2B for non-vectored interrupts) is different from that of 
a Received Character Available condition. Thus, you need not analyze 
SR1 with each character to determine that an error has occurred.

As a further convenience, the Parity Error and Receiver Overrun Error 
flags are latched, that is, once one of these errors occurs, the flag 
remains set for all subsequent characters until reset by the Error 
Reset command. With this facility, you need only read SR1 at the end 
of a message to determine if either of these errors occurred 
anywhere in the message. The other flags are not latched and follow 
each character available in the receiver buffer.

Parity Error (D4)

This bit is set and latched when parity is enabled and the received 
parity bit does not match the sense (odd or even) calculated from the 
data bits.

Receiver Overrun Error (D5)

This error occurs and is latched when the receiver buffer already 
contains three characters and a fourth character is completely 
received, overwriting the last character in the buffer.

CRC/Framing Error (D6)

In asynchronous mode, a framing error is flagged (but not latched) 
when no stop bit is detected at the end of a character (i.e. RxD is low 
1 bit time after the center of the last data or parity bit). When this 
condition occurs, the MPSC2 waits an additional bit time before 
sampling again so that the framing error is not interpreted as a new 
start bit.

In synchronous and SDLC modes, this bit indicates the result of the 
comparison between the current CRC result and the appropriate 
check value and is usually set to 1 since a message rarely indicates 
a correct CRC result until correctly completed with the CRC check 
character. Note that a CRC error does not result in a Special Receive 
Condition interrupt.

End of SDLC Frame (D7)

This flag is used only in SDLC mode to indicate that the End of 
Frame flag has been received and that the CRC error flag and 
residue code is valid. You can reset this flag at any time by issuing 
an Error Reset command. The MPSC2 also automatically resets this 
bit for you on the first character of the next message frame.

Figure G-5.12 Status Register 2

□7 OS °5 03 □1 □o
Interrupt Vector

172



Interrupt Vector (Do-D7 - Channel B Only)

Reading status register 2B returns the interrupt vector that you 
programmed into control register 2B. If Condition Affects Vector mode 
is enabled, the value of the vector is modified as follows:

BB9BM
Table G-5.13 Condition Affects Vector Modifications

8085 Modes o« □ 3 □2
CONDITION

8086 Modes °r °1 Oo

1 1 1 No Interrupt Pending

0 0 0 Channel B Transmitter Buffer Empty

0 0 1 Channel B External/Status Change

0 1 0 Channel B Received Character Available

0 1 1 Channel B Special Receive Condition

1 0 0 Channel A Transmitter Buffer Empty

1 0 1 Channel A External/Status Change

1 1 0 Channel A Received Character Available

1 1 1 Channel A Special Receive Condition

G-5.2 MPSC2 
PROGRAMMING 
EXAMPLES

As you can see, code 111 can mean either channel A Special 
Receive condition or no interrupt pending. You can easily distinguish 
between the two by examining the Interrupt Pending bit (D,) of status 
register 0, channel A. Remember, in Non-vectored Interrupt mode you 
must read the vector register first for Interrupt Pending to be valid.

ASYNC.01
********** Asynchronous Mode ***************

Init:
ISSUE Channel Reset Command (CRO)
SET Bus Interface Options (CR2A)
SET Interrupt Vector (CR2B)-if used
SET Operating Mode (CR4):

Asynchronous Mode, Parity Select, # of Stop Bits, Clock
Rate

SET Receive Enable, Auto Enables, Receive Character Length
(CR2)
SET Transmit Enable, Modem Controls, Transmit Char,
Length (CR5)
ISSUE Reset External/Status Interrupt Command
SET Transmit Interrupt Enable, Receive Interrupt on Every 

Character, External Interrupt Enable, Wait Mode Disable.
**** End Of Initialization******

Send:
ISSUE First Byte 1b MPSC
RETURN 1b Main Program OR Halt

Interrupt:
CASE Interrupt Type DO:

173



Character Received:
READ Character from MPSC
PROCESS Character
ISSUE End Of Interrupt Command
RETURN From Interrupt

Special Receive Condition:
. READ SRI

ISSUE Error Reset Command
CALL Special Error Routine
ISSUE End Of Interrupt Command
RETURN From Interrupt

Transmitter Buffer Empty:
IF Last Character Transferred was End of Message 

THEN ISSUE Reset Transmit Interrupt/DMA Pending 
Command

ELSE
Transfer Next Character to MPSC
ISSUE End Of Interrupt Command
RETURN From Interrupt

External/Status Change:
READ SRI
CALL Special Condition Routine
ISSUE End Of Interrupt Command
RETURN From Interrupt

**** END CASE ****

Terminate Transmit:
RESET Transmit Enable, RTS (CRB)
RETURN

Terminate Receive:
RESET Receive Enable (CR1)
RESET DTR (CRB)

ASYNC.01

RETURN

END

174



Figure 6-5.13 Asynchronous Initialization for Polled Transmit and
Receive Receive

IN A TYPICAL POLLED ENVIRONMENT. 
THE MPSC2 IS INITIALIZED AND 

THEN PERIODICALLY CHECKED FOR 
COMPLETION OF A TRANSMIT OR 

RECEIVE OPERATION.

CHANNEL

Figure 6-5.14 Asynchronous Receive

175



Figure G-5.15 Asynchronous Transmit

IF AUTO ENABLE WAS SET (OS - 1 IN CONTROL REGISTER 21. 
THIS STEP MAY BE OMITTED

SYNC. PRG
***********SYNCHBiONOUS OPERATION EXAMPLE***********
****This example uses the Block Transfer Mode***

Init:
ISSUE Channel Reset Command
SET Interface Option (CR2A)
SET Interrupt Vector (CR2B)
SET Parity Mode, Sync Mode, lx Clock (CR4)
SET Sync Character 1 (CR6)
SET Sync Character 2 (CR7)
RETURN

Initiate Transmit:
ISSUE Reset External/Status Interrupt Command
SET External Interrupt Enable, Transmit Interrupt Enable

Wait Enable, Wait on Transmit (CR1)
SET Transmit Enable, # of Bits/Character, RTS, 

ORC Polynomial Select.

* * * * * *Transmitter  is now enabled and will automatically begin 
sending Sync characters****  ‘

WAIT Several Character Times (a good idea to help system gain 
synchronization)
Next Message:

ISSUE Reset Transmit ORC Command

176



Send Character:
GET Character
If Character Is Id Be Included In CRC
THEN

SET CRC Generator On (CR5)
ELSE

SET CRC Generator Off (CR5)
END IF
WRITE Character Id MPSC (Processor will “Wait” until 

Transmitter buffer is empty)
IF Character Was Not The Last
THEN

GOTO Send Character (do next character)
ELSE

SET CRC Generator On (CR5)
ISSUE Reset Idle/CRC Latch Command
WAIT For External/Status Interrupt Indicating CRC Being 
Sent
IF Next Message Is Ready Id Be Transmitted
THEN

GOTO Next Message (Next message will be sent 
immediately following CRC)

ELSE
WAIT For Transmit Buffer Interrupt indicating Trailing

Sync Being Sent
SET Transmitter Enable Off, RTS Off (CR5)

ENDIF
ENDIF
****End of Transmit Routine****

SYNCJPRG

""Receive Routine****

Receive Message:
SET External/Status Interrupt Enable, Receive Interrupt

On First Character Mode, Wait Enabled, Wait on
Receive (CR1)

SET Receiver Enable On, Sync Character Load Inhibit,
* of Bits/Character (CR1)

SET DTR On (CR5)
ISSUE Reset External Status Interrupt Command
ISSUE Enable Interrupt On Next Received Character

Command
ISSUE Error Reset Command

""Receiver is now enabled and in the Hunt Phase****
WAIT For External/Status Interrupt (indicating

Synchronization has been achieved)
Issue Error Reset Command
WAIT For Received Character Available Interrupt (first 

non-sync character is now available)
ISSUE Reset CRC Checker Command
SET Sync Character Load Inhibit Off

177



Get Character:
GET Character from MPSC (processor will “Wait” until at 

least 1 character is available)

IF Character Is Id Be Included In CRC Calculation
THEN

Thrn CRC Checker On (CR3)
ELSE

SET CRC Checker Off (CR3)
ENDIF
IF Character Is Part of Message Data
THEN

SAVE Character In Memory
ENDIF
IF Character Was NOT End Of Message
THEN

GOTO READ Character
ENDIF

*** End Of Message***
SET CRC Checker On
READ 2 CRC Characters
READ 2 Character (these characters may be part of the 

next message but must be read before CRC will be valid)
READ SRI (this must be done immediately so that next 

character status will not overwrite)
IF Parity OR Overrun OR CRC = Error
THEN

GOTO Error Processor
ENDIF

IF More Messages Are Id Be Received
THEN

GOTO Get Next Message

SYNC.PRG

ELSE
SET DTR Off
SET Receive Enable Off

SET External/Status Interrupts Off, Receiver Interrupt
Mode Disabled (CR1)
RETURN

END
RETURN

178



CRO

179



180



B
Figure G-5.16 Blsync Initialization Transmit

IF INTERRUPT ERROR OCCURS

181



CONTINUED

CRO

182



8ISYNC TRANSMIT 
WHEN INTERRUPT ON FIRST 

CHARACTER OCCURS.

DURING THE HUNT MODE. THE MPSC* DETECTS 
TWO CONTIGUOUS CHARACTERS TO ESTABLISH

RECEIVE CONTINUED

183



Figure G-5.17 Blsync Initialization Receive

MESSAGE TERMINATION

184



****♦♦**♦*♦ *********g*0^0 OPERATION EXAMPLE********************

****This example uses DMA Transfer Mode****

Initialize:
ISSUE Channel Reset Command
SET Interface Option (CR2A)
SET Interrupt Vector (CR2B)
SET SDLC Mode, lx Clock (0R4)
SET SDLC Flag (CR7)= 01111110
SET SDLC Secondary Address (CR6)
RETURN

Initiate Transmit:
ISSUE Reset External Status Interrupt Command
SET External Interrupt Enable, Transmit Interrupt/DMA
Enable (CR1)
SET Transmit Enable, RTS, CRC-CCITT Polynomial (CRB)

****The Transmitter is now enabled and will automatically begin 
sending Flag characters****

Send Message:
SET DMA Controller to Beginning of Message, * of Characters 
in Message.
ISSUE Reset Transmit CRC Generator Command
SET 8 Bits/Character (CR5)
WRITE Address byte to MPSC
SET * of Bits/Character (ORS)
ISSUE Reset EOM/CRC Latch Command

****The MPSC will now transmit the message until the DMA 
Controller completes the required number of transfers****

WAIT for External/Status Change Interrupt (signifies CRC 
being sent)
IF Next Message Ready to be Transmitted
THEN

GOTO Send Message (since MPSC will automatically issue a 
DMA request when ready, set DMA controller to address 
byte preceding message and skip the write)
ELSE

ISSUE RESET External/Status Interrupt Command
ISSUE RESET Transmit Interrupt/DMA Pending Command
RETURN

****End of Transmit Routine****

Receive Message:
SET External/Status Interrupt Enable, Receive Interrupt on
First Character (CR1)
SET Receiver Enable On, 8 Bits/Character, Receive CRC On,
Address Search Mode On (CR3)
SET DTR On, CRC-CCITT (CRB)
ISSUE Reset External/Status Interrupt Command
ISSUE Enable Interrupt On Next Character Command

185



""Receiver is now enabled and in the Hunt Phase****

WMT for External/Status Interrupt (indicating that a Flag 
character has been received)
ISSUE Reset External/Status Interrupt Command
RETURN From Interrupt

****Receiver is now in the Address Search Phase****

Next Message:
WAIT for Character Received Interrupt (Indicating that an address 
match or global address has occurred)
GET Address Character (for later processing)
SET DMA Controller
SET * of Bits/Character (CR3)

""Receiver is now in the Data Phase and will transfer all 
succeeding characters until the End of Frame Flag****

WAIT for Special Receive Condition Interrupt (indicating flag 
received)
READ SRI to Obtain CRC Status and Residue Code
SET DMA Controller Off
IF More Messages Are Id Be Received
THEN

GOTO Next Message
ELSE

SET DTR Off
SET Receive Enable Off
RETURN

ENDIF

186



THE EXTERNAL INTERRUPT MODE MONITORS 
THE STATUS OF CfS ANO DCO, AS WELL AS THE 
STATUS OF TX UNDER RUN/EOM LATCH A 

. TRANSMIT INTERRUPT OCCURS WHEN THE 
TRANSMIT BUFFER BECOMES EMPTY. THE 
EXTERNAL WAIT PIN CAN BE USED FOR BLOCK 
MODE TRANSFERS OR THE DRQ PINS (WHICH 
ARE EXTERNAL! CAN BE USED IN DMA OPERA
TION AS WELL.

1R7



Figure 6-5.18 SDLC Initialization Transmit

ALTHOUGH THERE IS NO RESTRICTION 
AS TO WHEN THE TRANSMIT UNDERRUN/ 
EOM BIT CAN BE RESET, IT IS GOOD 
PRACTICE TO RESET THE BIT AFTER THE 
FIRST DATA CHARACTER IS SENT. THIS 
WILL ALLOW CRC ANO FLAG TO BE 
SENT SHOULD AN UNDERRUN CONDITION 
OCCUR.

WHEN INTERRUPT OCCURS

THE FIRST INTERRUPT WILL OCCUR WHEN 
THE CT$ PIN BECOMES ACTIVE. AT WHICH 
POINT THE MPSC2 WILL START TRANS
MITTING FLAG CHARACTERS. THE CPU 
WILL RESPOND TO THIS INTERRUPT BY 
ISSUING THE FIRST BYTE (ADDRESS 
FIELDI TO THE MPSC2.

WHEN INTERRUPT OCCURS IDROI

AT THIS POINT THE MPSC2 IS UNDER DMA 
CONTROL AND WILL TRANSMIT DATA 
UNTIL END OF FRAME, OR THERE IS AN 
ERROR CONDITION. WHEN THE LAST 
CHARACTER IS SENT THE MPSC2 SENDS 
CRC. SEND CLOSING FLAG AND INTER
RUPTS THE CPU WITH THE DATA 
BUFFER EMPTY BIT SET.

188



CRO

PARITY INFORMATION, 
SYNC MODE, SDLC MODE, 

XI CLOCK MODE

IN THIS MODE. ONLY THE 
ADDRESS FIELD (1 CHARACTER 
ONLY) IS TRANSFERRED TO THE 
CPU. ALL SUBSEQUENT FIELDS 
(CONTROL. INFORMATION ETC.) 
ARE TRANSFERRED ON A DMA 
BASIS. STATUS AFFECTS VECTOR 
IN CHANNEL B ONLY.

SET RECEIVER ENABLE ON, 8-BIT, 
RECEIVE CRC ON, ADDRESS 

SEARCH MODE ON

189



ON EXTERNAL/STATUS INTERRUPT 
INDICATING THAT A FLAG WAS 

RECEIVED

190



WHEN INTERRUPT ON FIRST 
CHARACTER OCCURS

THE MPSC2 IS NOW IN THE 
ADDRESS SEARCH PHASE. 
DURING THIS PHASE THE 
MPSC2 INTERRUPTS WHEN 
THE PROGRAMMED ADDRESS 
MATCHES THE MESSAGE.

THE MPSC2 RECEIVER IS NOW IN 
THE DATA PHASE AND WILL 
TRANSFER ALL SUCCEEDING 
CHARACTERS BY THE DMA CONTROLLER 
UNTIL THE END OF FROM FLAG.

191



Figure G-5.19 SDLC Initialization Receive

WHEN SPECIAL RECEIVE CONDITION 
INTERRUPT OCCURS INDICATING 

FLAG RECEIVED

DURING THE DMA OPERATION, THE 
MPSC2 MONITORS THE DCD INPUT 
AND THE ABORT SEQUENCE IN 
THE DATA STREAM. IF EITHER 
OF THESE CONDITIONS OCCURS, THE 
MPSC2 WILL INTERRUPT THE CPU 
WITH EXTERNAL STATUS ERROR. 
THE SPECIAL RECEIVE CONDITION 
INTERRUPT IS CAUSED BY RECEIVE 
OVERRUN ERROR.

DETECTION OF END OF 
FRAME (FLAG) CAUSES 
AN INTERRUPT AND 
DEACTIVATES THE DRQ 
FUNCTION. RESIDUE CODES 
INDICATE THE BIT STRUCTURE 
OF THE LAST TWO BYTES OF 
THE MESSAGE, WHICH WERE 
TRANSFERRED TO MEMORY 
UNDER DMA CONTROL. ERROR 
RESET IS ISSUED TO CLEAR 
THE SPECIAL CONDITION.

192



6-6 APPLICATION
HINTS

6-6.1 DESI6NIN6
WITH THE MPSC2

6-6.1.1 8080/86-Type 
Processors

6-6.1.2 Other 
Processor Types

Designing the MPSC2 into your system is generally straightforward 
and requires a minimal number of external devices.

The bus interface used by the MPSC2 is directly compatible with 
8080/86-type buses. Figure 6-6.1 illustrates the basic interconnection 
scheme for these processors. This configuration supports polled, 
interrupt driven, and block mode operation.

Figure 6-6.1 UPD7201 Interface to 8080 Standard System Bus 
(Non-DMA)

You may also connect the MPSC2 to uPD780 (Z-80) and 6800/6502- 
type processors with a few additional gates. Figures 8-6.2 and 6-6.3, 
respectively, illustrate the circuits necessary to derive the correct 
signals. In both cases the MPSC2 can be used in Non-vectored mode 
with minimal software overhead.

Figure 6-6.2 uPD780 (Z-80) to MPSC2 Adapter

TO MPSC2

193



Figure G-6.3 6800/6502 to MPSC2 Adapter

The MPSC2 can also be used in Vectored Interrupt mode with the 
uPD780 operated in Interrupt Mode 0. In this mode, the uPD780 
handles interrupt requests in much the same manner as an 8080 
processor, that is, an interrupt acknowledge sequence is executed 
during which the processor expects the next instruction to come from 
the interrupting device. The 8080 INTA signal is generated by 
combining Ml and IORQ from the uPD780. There is one key 
difference that must be noted. In accepting a multibyte instruction 
such as the CALL generated by the MPSC2, the 8080 issues a 
separate INTA pulse for each byte. The uPD780, however, issues an 
INTA on the first byte only. Succeeding bytes are accessed with 
memory read cycles. In order for the MPSC2 to operate properly, a 
circuit such as the one shown in Figure 6-6.4 should be used to 
derive the proper INTA sequence.

Figure G-6.4 INTA Generator for Z-80

194



6-6.2 USING THE 
MPSC2 WITH DMA 
CONTROLLERS

Most other types of processors may be readily accommodated. The 
bus control inputs RD, WR, CS, C/D, B/A, and INTA have no timing 
requirements with respect to the system clock (CLK) and there is no 
hold time requirement for data after the trailing edge of WR. The only 
timing constraint you must observe is that the address lines C/D, 
B/A, and CS must be stable by the leading edge of RD or WR.

You can greatly increase the data handling capacity of your serial 
I/O subsystem by using the MPSC2 with a DMA controller such as 
the UPD8257 or uPD8237, to permit direct transfer of data between 
the MPSC2 and memory. Figure 6.5 illustrates a typical MPSC2/DMA 
configuration. In using the MPSC2 in this manner, you should be 
aware of a few special considerations:

To minimize the number of pins required to implement four DMA 
channels, the MPSC2 does not use the usual DRQ/DACK pins for 
each channel but rather only DRQ with a single Hold Acknowledge 
input, HAI. This arrangement eliminates three pins and in addition 
permits daisychained MPSC2s operating in DMA mode. However, it 
does require that the MPSC2 and the DMA controller reach 
independent agreement on which DMA request is to be serviced in 
the case of multiple requests to the same controller.

To ensure that this agreement does occur, you should program the 
DMA controller for a fixed priority arrangement that agrees with the 
DMA priority you programmed into the MPSC2 (see Secton G-5.1).

- You must also allow sufficient time for the MPSC2 to determine its 
internal request priority before the DMA controller begins the data 
transfer. Activating the DMA controller’s Hold Acknowledge input 
through the delay circuit shown in Figure G-6.5 provides this time 
delay.

195



2-6.3 VECTORED 
INTERRUPTS 
WITHOUT USING PRI

There are circumstances when you may wish to use the MPSC2’s 
Vectored Interrupt feature and you cannot use PRI to inform the 
MPSC2 whether it is the highest priority device requesting service. 
These situations can .occur when both channels are being used in 
DMA mode (the PRI pin becomes DRQRxB) or when using other 
peripherals that are incompatible with daisychaining. To retain the 
Vectored Interrupt feature, you can pull PRI low if available (this is 
done automatically when both channels are DMA). Program the 
MPSC2 for either 8080 Master or 8086 Vector mode, and gate INTA 
to the highest priority device with a circuit similar to Figure 6-6.6.

Figure G-6.6 Priority Resolution Circuit for Non-dalsychained 
Devices

NEXT LEVEL GROUP (OUTPUTI - EXPANSION PINE
4. DEVICES SHOULD DU PROGRAMMED FOR MASTER MODE OF 

INTA RESPONSE. THEY SHOULD ISSUE THE COMPLETE 
CALL INSTRUCTION FOR SM3 SYSTEMS

G-6.4 TO DMA OR 
NOT TO DMA...

You should note that an 8259-type interrupt controller programmed for 
Master Mode does not set its Slave Enable outputs until the second 
INTA pulse and so is incompatible with the MPSC2’s interrupt 
acknowledge timing.

When operating an MPSC2 channel in DMA mode, there are normally 
some interrupts in parallel with DMA requests. Here are the rules:

Interrupt on Each Character Mode: Both an interrupt and DMA 
request are made when a character is received.

Interrupt on First Character: The first character received (after issuing 
an Enable Interrupt On Next Character) generates both an interrupt 

196



6-6.5 HANDLING AN 
SDLC UNDERRUN 
FAULT

and a DMA request. Subsequent characters cause only a DMA 
request to be issued. As an exception, a Special Receive condition 
always causes both an interrupt and a DMA request.

Transmitter Buffer Becoming Empty: Only DMA requests are issued 
when the MPSC2 is transmitting under DMA c.nntroi

Since SDLC-type protocols do not allow flags to be imbedded within a 
message as filler, a fault condition can sometimes occur where the 
transmitter runs out of data to send. This situation is particularly 
common in interrupt-driven systems that are heavily task-loaded. You 
can use the MPSC2s Idle/CRC latch feature to detect these underrun 
faults and abort the message before an erroneous End of Frame flag 
is sent. This is accomplished by issuing a Reset Idle/CRC Latch 
command to the MPSC2 immediately after loading it with the first 
character of the message. If an underrun condition occurs, the 
MPSC2 automatically begins to send the CRC character calculated up 
to that point and issues an External/Status Change interrupt to 
indicate that the CRC is being sent. Since your software routine 
knows that the end of the message has not been reached, an 
underrun is indicated and your routine can immediately abort the 
message with a Send Abort command.

G-6.6 SENDING 
SYNCHRONOUS PAD 
CHARACTERS

If you want to send one or more pad characters between 
synchronous messages, you can do it two ways with the MPSC2:

When the MPSC2 issues an External/Status interrupt to indicate that 
CRC is being sent, you can begin loading your pad characters into 
the transmitter.

Instead of loading pad characters in response to the above interrupt, 
you can simply change the programmed sync character on the fly, 
and the MPSC2 will transmit pads when it enters Idle Phase after 
sending CRC.

G-6.7
TRANSMITTING 
BISYNC TRANS
PARENT MODE

Because of the ability to change the sync registers (CR6, CR7) on 
the fly, the MPSC2 is truly compatible with bisync protocol's 
Transparent mode. On entering this mode, program CR6 with the DLE 
character and, if an underrun condition occurs, the correct DLE-SYN 
sequence is transmitted. On leaving Transparent mode you should 
reset CR6 back to SYN.

G-6.8 VECTORING 
THE MPSC2 IN NON
VECTORED MODE

If you're using the MPSC2 in Non-vectored Interrupt mode, you can 
still use the Condition Affects Vector feature to direct your software to 
the correct routine. The following example, written in 8080 assembler, 
assumes that the MPSC2 has been programmed for either 8085 
master or slave mode (D3-D5 modified) and that CR2B was 
programmed with a zero.

MPSCINT:
PUSH B
PUSH D
PUSH H
PUSH PSW

;Save state so registers are free for 
;your service routine

197



MVI A,2
OUT MPSCBC 
IN MPSCBC
LX I H, JMPTBL 
MVI D,0 
MOV E,A 
DAD D 
PCHL

JMPTBL JMP TBEB 
NOP 
JMP EXTB 
NOP 
JMP RCVB

NOP
JMP SPRB 
NOP

END

;Set channel B register pointer to 2

Register A = modified vector
;HL— vector jump table
;DE = offset into table

;HL— jump table + offset
;Jump to jump table entry

;Channel B transmitter buffer empty

;External/Status change

^Received character available

jSpecial receive condition

;Repeat for channel A interrupts

198



APPENDIX H 6522 VERSATILE INTERFACE SPECIFICATION

► Two 8-Bit Bi-directional I/O Ports
► Two 16-Bit Programmable Timer/Counters
► Serial Data Port
► Single +5V Power Supply
► TTL Compatible
► CMOS Compatible Peripheral Control Lines
► Expanded “Handshake” Capability Allows Positive Control of 

Data Transfers Between Processor and Peripheral Devices
► Latched Output and Input Registers
► 1 MHz and 2 MHz Operation
The SY6522 Versatile Interface Adapter (VIA) is a very flexible 
I/O control device. In addition, this device contains a pair of very 
powerful 16-bit interval timers, a serial-to-parallel/parallel-to-serial shift 
register and input data latching on the peripheral ports. Expanded 
handshaking capability allows control of bi-directional data transfers 
between VIA’s in multiple processor systems.
Control of peripheral devices is handled primarily through two 8-bit 
bi-directional ports. Each line can be programmed as either an input 
or an output. Several peripheral I/O lines can be controlled directly 
from the interval timers for generating programmable frequency 
square waves or for counting externally generated pulses. To 
facilitate control of the many powerful features of this chip, an 
interrupt flag register, an interrupt enable register and a pair of 
function control registers are provided.

199



ABSOLUTE MAXIMUM RATINGS

This device contains circuitry to protect the inputs against damage 
due to high static voltages. However, it is advised that normal 
precautions be taken to avoid application of any voltage higher than 
maximum rated voltages.

Rating Symbol Value Unit

Supply Voltage VCC -0.3 to +7.0 V
Input Voltage V|N -0.3 to +7.0 V
Operating Temperature

Range Ta 0 to +70 °C
Storage Temperature

Range Tstg -55 to +150 °C

ELECTRICAL CHARACTERISTICS
(Vcc 5.0V +5%, Ta = 0-70° C unless otherwise noted)

Symbol Characteristic Min. Max. Unit
V|H Input High Voltage (all except 02) 2.4 Vcc V
VCH Clock High Voltage 2.4 Vcc V
V|L Input Low Voltage -0.3 0.4 V
•in Input Leakage Current — V|sg = 0 to 5 Vdc 

RAV, RES, RSO, RSI, RS2, RS3, CS1, CS2, 
CAI, 4>2

— ±2.5 UA

■tsi Off-state Input Current - Vin - .4 to 2.4V 
Vcc = Max» DO to D7

- ±10 pA

•iH Input High Current — Vjh = 2.4V 
PA0-PA7, CA2. PBO-PB7, CB1, CB2

-100 - mA

hl Input Low Current - V||_ - 0.4 Vdc 
PA0-PA7, CA2, PB0-PB7, CB1, CB2

- -1.6 mA

VOH Output High Voltage
Vcc - fin, I load = -100pAdc
PA0-PA7, CA2, PB0-PB7, CB1, CB2

2.4 - V

Vol Output Low Voltage
Vcc " min. Iioaj = 1.6 mAdc

- 0.4 V

Ioh Output High Current (Sourcing)
VOh - 2 4V
V0H * 1-5V (PBO-PB7)

-100
-1.0

pA

•OL Output Low Current (Sinking)
Vol = 0.4 Vdc

1.6 - mA

'off Output Leakage Current (Off state) 
IRQ

- 10 pA

C|N Input Capacitance - - 25“C, f = 1 MHz
(RM. RES, RSO, RSI, RS2, RS3, CS1, C52, 
DO-O7, PA0-PA7, CAI, CA2, PB0 PB7) 
(CB1.CB2) 
(<t>2 Input)

-

7.0

10
20

pp

pF
pF

COUT Output Capacitance - = 25°C, f = 1 MHz — 10 pF
Po Power Dissipation - 700 mW

200



Figure H-2: Test Load (for all Dynamic Parameters)

Figure H-3: Read Timing Characteristics

READ TIMING CHARACTERISTICS (FIGURE H-3)

NOTE: tr, tf » 10 to 30n$.

Symbol Parameter

SY 6522 SY6522A

UnitMin. Max. Min. Max.
TCy Cycle Time 1 50 0.5 50 gs
tacr Address Set-Up Time 180 - 90 - ns
Tcar Address Hold Time 0 - 0 - ns
TpCR Peripheral Data Set-Up Time 300 - 300 - ns
Tcdr Data Bus Delay Time - 340 - 200 ns
Thr Data Bus Hold Time 10 - 10 - ns

201



Figure H-4: Write Timing Characteristics

WRITE TIMING CHARACTERISTICS (FIGURE 4)

NOTE: tr, tf = 10 to 30ns.

Symbol Parameter

SY6522 SY6522A

UnitMin. Max. Min. Max.

Tcy Cycle Time 1 50 0.50 50 Ps
Tc 02 Pulse Width 0.44 25 0.22 25 Ps
tacw Address Set-Up Time 180 - 90 - ns
tcaw Address Hold Time 0 - 0 - ns
TwCW R/W Set-Up Time 180 - 90 - ns

R/W Hold Time 0 - 0 - ns
tDCW Data Bus Set-Up Time 300 - 200 - ns
thw Data Bus Hold Time 10 - 10 - ns
TCPW Peripheral Data Delay Time - 1.0 1.0 ps
tcmos Peripheral Data Delay Time 

to CMOS Levels - 2.0 - 2.0 ps

202



PERIPHERAL INTERFACE CHARACTERISTICS

Symbol Characteristic Min, Max. Unit Figure
tr, tf Rise and Fall Time for CAI, CB1, CA2, and CB2 

Input Signals
- 1.0 MS -

tCA2 Delay Time, Clock Negative Transition to CA2 Negative 
Transition (read handshake or pulse mode) — 1.0 MS 5a, 5b

tRS1 Delay Time, Clock Negative Transition to CA2 Positive 
Transition (pulse mode) — 1.0 MS 5a

TRS2 Delay Time, CAI Active Transition to CA2 Positive 
Transition (handshake mode) — 2.0 Ms 5b

Twhs Delay Time, Clock Positive Transition to CA2 or CB2 
Negative Transition (write handshake) 0.05 1.0 MS 5c, 5d

tds Delay Time, Peripheral Data Valid to CB2 Negative 
Transition 0.20 1.5 MS 5c. 5d

TrS3 Delay Time, Clock Positive Transition to CA2 or CB2 
Positive Transition (pulse mode) — 1.0 Ms 5c

tRS4 Delay Time, CAI or CB1 Active Transition to CA2 or 
CB2 Positive Transition (handshake mode) — 2.0 Ms 5d

T21 Delay Time Required from CA2 Output to CAI 
Active Transition (handshake mode) 400 - ns . 5d

Til Set-up Time, Peripheral Data Valid to CAI or CB1 
Active Transition (input latching) 300 - ns 5e

TsR1 Shift-Out Delay Time — Time from 02 Falling Edge 
to CB2 Data Out — 300 ns 5f

TSR2 Shift-In Setup Time — Time from CB2 Data In to 
02 Rising Edge 300 — ns 5g

TSR3 External Shift Clock (CB1) Setup Time Relative To 
02 Trailing Edge 100 Tcy ns 5g

TIPW Pulse Width — PB6 Input Pulse 2 - MS 5i
Ticw Pulse Width — CB1 Input Clock 2 - MS 5h
hns Pulse Spacing — PB6 Input Pulse 2 — Ms 5i
hcs Pulse Spacing — CB1 Input Pulse 2 - Ms 5h

Figure H-5a: CA2 Timing for Read Handshake, Pulse Mode

203



Figure H-5c: CA2, CB2 Timing for Write Handshake, Pulse Mode

Figure H-5d: CA2, CB2 Timing for Write Handshake, Handshake Mode

204



Figure H-5e: Peripheral Data Input Latching Timing

Figure H-5f: Timing for Shift Out with Internal or External Shift Clocking

Figure H-5g: Timing for Shift In with Internal or External Shift Clocking

205



Figure H-5h: External Shift Clock Timing

Figure H-5i: Pulse Count Input Timing

PULSE COUNT

PIN DESCRIPTIONS

RES (RESET) The reset input clears all internal registers to logic 0 (except T1 
and T2 latches and counters and the Shift Register). This places all 
peripheral interface lines in the input state, disables the timers, shift 
register, etc. and disables interrupting from the chip.

§2 (INPUT CLOCK) The input clock is the system -j>2 clock and is used to trigger all 
data transfers between the system processor and the SY6522.

R/W (READ/WRITE) The direction of the data transfers between the SY6522 and the 
system processor is controlled by the R/W line. If R/W is low, data 
will be transferred out of the processor into the selected SY6522 
register (write operation). If R/W is high and the chip is selected, 
data will be transferred out of the SY6522 (read operation).

DB0-DB7 (DATA BUS) The eight bi-directional data bus lines are used to transfer data 
between the SY6522 and the system processor. During read cycles, 
the contents of the selected SY6522 register are placed on the data 
bus lines and transferred into the processor. During write cycles, 
these lines are high-impedance inputs and data is transferred from 
the processor into the selected register. When the SY6522 is 
unselected, the data bus lines are high-impedance.

206



081, CS2 
(CHIP SELECTS)

The two chip select inputs are normally connected to processor 
address lines either directly or through decoding. The selected SY6522 
register will be accessed when CS1 is high and CS2 is low.

RS0-RS3
(REGISTER SELECTS)

The four Register Select inputs permit the system processor to select 
one of the 16 internal registers of the SY6522, as shown in Figure H-6.

Figure H-6: SY6522 Internal Register Summary

Register 
Number

RS Coding Register 
Desig.

Description
RS3 RS2 RSI RSO Write Read.

0 0 0 0 0 ORB/IRB Output Register "B" Input Register "B"
1 0 0 0 1 ORA/IRA Output Register "A" Input Register "A"
2 0 0 1 0 DDRB Data Direction Register "8"
3 0 0 1 1 DDRA Data Direction Register "A"
4 0 1 0 0 T1C-L T1 Low-Order Latches T1 Low-Order Counter
5 0 1 0 1 T1C-H T1 High-Order Counter
6 0 1 1 0 T1L-L T1 Low-Order Latches
7 0 1 1 1 T1L-H T1 High-Order Latches
8 1 0 0 0 T2C-L T2 Low-Order Latches T2 Low-Order Counter
9 1 0 0 1 T2C-H T2 High-Order Counter
10 1 0 1 0 SR Shift Register
11 1 0 1 1 ACR Auxiliary Control Register
12 1 1 0 0 PCR Peripheral Control Register
13 1 1 0 1 IFR Interrupt Flag Register
14 1 1 1 0 IER Interrupt Enable Register
15 1 1 1 1 ORA/IRA Same as Reg 1 Except No "Handshake"

IRQ 
(INTERRUPT REQUEST)

The Interrupt Request output goes low whenever an internal 
Interrupt Flag is set and the corresponding interrupt enable bit is a 
logic 1. This output is “open-drain” to allow the interrupt request 
signal to be “wire-or’ed” with other equivalent signals in the system.

PA0-PA7 
(PERIPHERAL A PORT)

The Peripheral A port consists of 8 lines which can be individually 
programmed to act as inputs or outputs under control of a Data 
Direction Register. The polarity of output pins is controlled by an 
Output Register and input data may be latched into an internal 
register under control of the CA1 line. All of these modes of operation 
are controlled by the system processor through the internal control 
registers. These lines represent one standard TTL load in the input 
mode and will drive one standard TTL load in the output mode. 
Figure H-7 illustrates the output circuit.

CAI, CA2 
(PERIPHERAL A 
CONTROL LINES)

The two Peripheral A control lines act as interrupt inputs or as 
handshake outputs. Each line controls an internal Interrupt Flag with 
a corresponding interrupt enable bit. In addition, CA1 controls the 
latching of data on Peripheral A port input lines. CA1 is a high-impedance 
input only while CA2 represents one standard TTL load in the input 
mode. CA2 will drive one standard TTL load in the output mode.

2n7



PB0-PB7 
(PERIPHERAL B PORT)

OBI, CB2 
(PERIPHERAL B 
CONTROL LINES)

Figure H-7: Peripheral A Port Output Circuit

The Peripheral B port consists of eight bi-directional lines which 
are controlled by an output register and a data direction register in 
much the same manner as the PA port. In addition, the polarity of 
the PB7 output signal can be controlled by one of the interval timers 
while the second timer can be programmed to count pulses on the 
PB6 pin. Peripheral B lines represent one standard TTL load in the 
input mode and will drive one standard TTL load in the output mode. 
In addition, they are capable of sourcing 1.0mA at 1.5VDC in the 
output mode to allow the outputs to directly drive Darlington 
transistor circuits. Figure H-8 is the circuit schematic.

The Peripheral B control lines act as interrupt inputs or as 
handshake outputs. As with CA1 and CA2, each line controls an 
Interrupt Flag with a corresponding interrupt enable bit. In addition, 
these lines act as a serial port under control of the Shift Register. 
These lines represent one standard TTL load in the input mode and 
will drive one standard TTL load in the output mode. Unlike PB0-PB7, 
OBI and CB2 cannot drive Darlington transistor circuits.

Figure H-8: Peripheral B Port Output Circuit

208



FUNCTIONAL
DESCRIPTION

PORT A AND PORT B 
OPERATION

HANDSHAKE 
CONTROL OF 
DATA TRANSFERS

Each 8-bit peripheral port has a Data Direction Register (DDRA, 
DDRB) for specifying whether the peripheral pins are to act as. inputs 
or outputs. A “0” in a bit of the Data Direction Register causes the 
corresponding peripheral pin to act as an input. A “1” causes the 
pin to act as an output.’

Each peripheral pin is also controlled by a bit in the Output Register 
(ORA, ORB) and an Input Register (IRA, IRB). When the pin is 
programmed as an output, the voltage on the pin is controlled by 
the corresponding bit of the Output Register. A “1” in the Output 
Register causes the output to go high, and a “0” causes the output 
to go low. Data may be written into Output Register bits corresponding 
to pins which are programmed as inputs. In this case, however, the 
output signal is unaffected.

Reading a peripheral port causes the contents of the Input Register 
(IRA, IRB) to be transferred onto the data bus. With input latching 
disabled, IRA will always reflect the levels on the PA pins. With input 
latching enabled, IRA will reflect the levels on the PA pins at the 
time latching occurred (via CA1).

The IRB register operates similar to the IRA register. However, 
for pins programmed as outputs there is a difference. When reading 
IRA, the level on the pin determines whether a “0” or a “1” is sensed. 
When reading IRB, however, the bit stored in the output register, 
ORB, is the bit sensed. Thus, for outputs which have large loading 
effects and which pull an output “1” down or which pull an output 
“0” up, reading IRA may result in reading a “0” when a “1” was 
actually programmed, and reading a “1 ” when a “0” was programmed. 
Reading IRB, on the other hand, will read the “1” or “0” level 
actually programmed, no matter what the loading on the pin.

Figures H-9, H-10, and H-11 illustrate the formats of the port 
registers. In addition, the input latching modes are selected by the 
Auxiliary Control Register (Figure H-16.)

The SY6522 allows positive control of data transfers between 
the system processor and peripheral devices through the operation of 
“handshake” lines. Port A lines (CAI, CA2) handshake data on both 
a read and a write operation while the Port B lines (CB1, CB2) 
handshake on a write operation only.

9na



Figure H-9: Output Register B (ORB), Input Register B (IRB)

REG 0 — ORB/IRB

OUTPUT REGISTER 'S ' (ORB) 

OR

INPUT REGISTER "B" (ORB)

Pin 
Data Direction 

Selection
WRITE READ

DDRB - "1" (OUTPUT) MPU writes Output Level 
(ORB)

MPU reads output register bit 
in ORB. Pin level has no affect.

DDRB - "0" (INPUT) 
(Input latching disabled)

MPU writes into ORB. but 
no effect on pin level, until 
DDRB changed.

MPU reads input level on PB

DDRB - "0" (INPUT! 
(Input latching enabled)

MPU reads IRB bit. which is 
the level of the PB pin at the 
time of the last CB1 active 
transition.

■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■
Figure H-10: Output Register A (ORA), Input Register A (IRA)

REG 1 -ORA/IRA

OUTPUT REGISTER "A" (ORA) 

OR

INPUT REGISTER "A" (IRA)

Pin
Data Direction 

Selection
WRITE READ

ODRA « " (OUTPUT)
(Input latching disabled)

MPU writes Output Level 
(ORA).

MPU reads level on PA pin.

DDRA « "1" (OUTPUT) 
(Input latching enabled)

MPU reads IRA bit which is 
the level of the PA pin at the 
time of the last CAI active 
transition.

DDRA - "0" (INPUT) 
(Input latching disabled)

MPU writes into ORA, but 
no effect on pin level, until 
DDRA changed.

MPU reads level on PA pin.

DDRA - "0" (INPUT) 
(Input latching enabled)

MPU reads IRA bit which is 
the level of the PA pin at the 
time of the last CAI active 
transition.

210



Figure H-11: Data Direction Registers (DDRB, DDRA)

REG 2 (DDRB) AND REG 3 (DDRA)

o ' ASSOCIATED PB/PA PIN IS AN INPUT 
(HIGH-IMPEDANCE)

"I" ASSOCIATED PB/PA PIN IS AN OUTPUT. 
WHOSE LEVEL IS DETERMINED BY 
ORB/ORA REGISTER BIT

READ HANDSHAKE Positive control of data transfers from peripheral devices into the 
system processor can be accomplished very effectively using Read 
Handshaking. In this case, the peripheral device must generate the 
equivalent of a “Data Ready” signal to the processor signifying that 
valid data is present on the peripheral port. This signal normally 
interrupts the processor, which then reads the data, causing generation 
of a “Data Taken” signal. The peripheral device responds by making 
new data available. This process continues until the data transfer 
is complete.

In the SY6522, automatic “Read” Handshaking is possible on 
the Peripheral A port only. The CA1 interrupt input pin accepts the 
“Data Ready” signal and CA2 generates the “Data Taken” signal. 
The “Data Ready” signal will set an internal flag which may interrupt 
the processor or which may be polled under program control. The 
“Data Taken” signal can either be a pulse or a level which is set low 
by the system processor and is cleared by the “Data Ready” signal. 
These options are shown in Figure H-12, which illustrates the 
normal Read Handshaking sequence.

DATA READY'

IRQ OUTPUT

READ IRA OPERATION

DATA TAKEN"
HANDSHAKE MODE

"DATA TAKEN”
PULSE MODE

Figure H-12: Read Handshake Timing (Port A, Only)

211



WRITE HANDSHAKE

TIMER OPERATION

The sequence of operations which allows handshaking data from 
the system processor to a peripheral device is very similar to that 
described for Read Handshaking. However, for Write Handshaking, 
the SY6522 generates the “Data Ready’’ signal and the peripheral 
device must respond with the “Data Taken” signal. This can be 
accomplished on both the PA port and the PB port on the SY6522. 
CA2 or CB2 act as a “Data Ready” output in either the handshake 
mode or pulse mode and CA1 or CB1 accept the “Data Taken” 
signal from the peripheral device, setting the Interrupt Flag and cleaning 
the “Data Ready” output. This sequence is shown in Figure H-13.

Selection of operating modes for CA1, CA2, CB1, and CB2 is 
accomplished by the Peripheral Control Register (Figure H-14).

Figure H-13: Write Handshake Timing

HANDSHAKE MODE 
<CA2. CB2)

"DATA RE ADV" ■
PULSE MODE
(CA2, CB2) ____ J

(cai. can

IRQ OUTPUT

Interval Timer T1 consists of two 8-bit latches and a 16-bit counter. 
The latches are used to store data which is to be loaded into the 
counter. After loading, the counter decrements at <j>2 clock rate. Upon 
reaching zero, an Interrupt Flag will be set, and IRQ will go low if the 
interrupt is enabled. The timer will then disable any further interrupts, 
or will automatically transfer the contents of the latches into the 
counter and will continue to decrement. In addition, the timer may be 
programmed to invert the output signal on a peripheral pin each time 
it “times-out”. Each of these modes is discussed separately below.

The T1 counter is depicted in Figure H-15 and the latches in Figure H-16.

212



Figure H-14: CA1, CA2, CB1, CB2 Control

REG 12 - PERIPHERAL CONTROL REGISTER

CB2CONTROL

CB1 INTERRUPT CONTROL

7 6 5 OPERATION
0 0 0 INPUT NEGATIVE ACTIVE EDGE
0 0 1 INDEPENDENT INTERRUPT 

INPUT NEG EDGE
0 1 0 INPUT POSITIVE ACTIVE EDGE
0 1 1 INDEPENDENT INTERRUPT 

INPUT POS EDGE
1 0 0 HANDSHAKE OUTPUT
1 0 1 PULSE OUTPUT
1 1 0 LOW OUTPUT
1 1 1 HIGH OUTPUT

0 - NEGATIVE ACTIVE EDGE 
1 - POSITIVE ACTIVE EDGE

0 - NEGATIVE ACTIVE EDGE
1 - POSITIVE ACTIVE EDGE

CA2CONTROL

3 2 1 OPERATION
0 0 0 INPUT NEGATIVE ACTIVE EDGE
0 o 1 INDEPENDENT INTERRUPT 

INPUT-NEG EDGE
0 1 0 INPUT POSITIVE ACTIVE EDGE
0 1 1 INDEPENDENT INTERRUPT 

INPUT POS EDGE
1 0 0 HANDSHAKE OUTPUT
1 0 1 PULSE OUTPUT
1 1 0 LOW OUTPUT
1 1 1 HIGH OUTPUT

Two bits are provided in the Auxiliary Control Register (bits 6 and 7) 
to allow selection of the T1 operating modes. The four possible 
modes are depicted in Figure H-17.

Figure H-15: T1 Counter Registers
REG 4 - TIMER 1 LOW-ORDER COUNTER

WRITE - 8 BITS LOADED INTO T1 LOW ORDER 
LATCHES. LATCH CONTENTS ARE 
TRANSFERRED INTO LOW ORDER 
COUNTER AT THE TIME THE HIGH 
ORDER COUNTER IS LOADED (REG 5).

READ - 8 BITS FROM T1 LOW-ORDER COUNTER 
TRANSFERRED TO MPU. IN ADDITION. 
T1 INTERRUPT FLAG IS RESET (BIT 6 
IN INTERRUPT FLAG REGISTER).

REG 5 - TIMER 1 HIGH-ORDER COUNTER

WRITE - 8 BITS LOADED INTO T1 HIGH ORDER 
LATCHES. ALSO, AT THIS TIME BOTH 
HIGH AND LOW ORDER LATCHES 
TRANSFERRED INTO T1 COUNTER. 
T1 INTERRUPT FLAG ALSO IS RESET.

READ - 8 BITS FROM T1 HIGH ORDER COUNTER 
TRANSFERRED TO MPU.

Figure H-16: T1 Latch Registers

REG 6 - TIMER 1 LOW-ORDER LATCHES

WRITE - 8 BITS LOADED INTO T1 
LOW-ORDER LATCHES. THIS 
OPERATION IS NO DIFFERENT 
THAN A WRITE INTO REG 4.

READ - 8 BITS FROM T1 LOW-ORDER LATCHES 
TRANSFERRED TO MPU. UNLIKE REG 4 
OPERATION, THIS DOES NOT CAUSE 
RESET OF T1 INTERRUPT FLAG.

COUNT
VALUE

REG 7 - TIMER 1 HIGH-ORDER LATCHES

WRITE - 8 BITS LOADED INTO T1 HIGH ORDER 
LATCHES. UNLIKE REG 4 OPERATION 
NO LATCH TO COUNTER TRANSFERS 
TAKE PLACE.

READ - 8 BITS FROM T1 HIGH ORDER LATCHES 
TRANSFERRED TO MPU

213



TIMER 1 
ONE-SHOT MODE

Figure H-17: Auxiliary Control Register

REG 11 - AUXILIARY CONTROL REGISTER

T1 TIMER CONTROL

7 6 OPERATION PB7
0 0 TIMED INTERRUPT 

EACH TIME T1 IS 
LOADED DISABLED

0 1 CONTINUOUS
INTERRUPTS

1 0 TIMED INTERRUPT 
EACH TIME T1 IS 
LOADED

ONE SHOT 
OUTPUT

1 1 CONTINUOUS
INTERRUPTS

SQUARE
WAVE 
OUTPUT

T? TIMER CONTROL

5 OPERATION
0 TIMED INTERRUPT
1 COUNT DOWN WITH 

PULSES ON PB6

LATCH ENABLE/DISABLE

0 = DISABLE
1 = ENABLE LATCHING

SHIFT REGISTER CONTROL

4 3 2 OPERATION
0 0 0 DISABLED ,
0 0 1 SHIFT IN UNDER CONTROL OF T2
0 1 0 SHIFT IN UNDER CONTROL OF 02
0 1 1 SHIFT IN UNDER CONTROL OF EXT. CLK
1 0 0 SHIFT OUT FREE-RUNNING AT T2 RATE
1 0 1 SHIFT OUT UNDER CONTROL OF T2
1 1 0 SHIFT OUT UNDER CONTROL OF 02
1 1 1 SHIFT OUT UNDER CONTROL OF EXT. CLK.

Figure H-18: Timer 1 and Timer 2 One-Shot Mode Timing

The interval timer one-shot mode allows generation of a single 
interrupt for each timer load operation. As with any interval timer, 
the delay between the “write T1C-H” operation and generation of the 
processor interrupt is a direct function of the data loaded into the 
timing counter. In addition to generating a single interrupt, Timer 1 
can be programmed to produce a single negative pulse on the PB7 
peripheral pin. With the output enabled (ACR7 = 1) a “write T1C-H’’ 
operation will cause PB7 to go low. PB7 will return high when Timer 1 
times out. The result is a single programmable width pulse.

In the one-shot mode, writing into the high order latch has no 
effect on the operation of Timer 1. However, it will be necessary to 
assure that the low order latch contains the proper data before 
initiating the count-down with a “write T1C-H” operation. When the 
processor writes into the high order counter, the T1 Interrupt Flag will 
be cleared, the contents of the low order latch will be transferred into 
the low order counter, and the timer will begin to decrement at 
system clock rate. If the PB7 output is enabled, this signal will go 
low on the phase two following the write operation. When the counter 
reaches zero, the T1 Interrupt Flag will be set, the IRQ pin will go low 

214



(interrupt enabled), and the signal on PB7 will go high. At this time 
the counter will continue to decrement at system clock rate. This 
allows the system processor to read the contents of the counter to 
determine the time since interrupt. However, the T1 Interrupt Flag 
cannot be set again unless it has been cleared as described 
in this specification.

Timing for the SY6522 interval timer one-shot modes is shown 
in Figure H-18.

TIMER 1 
FREE-RUN MODE

The most important advantage associated with the latches in T1 
is the ability to produce a continuous series of evenly spaced interrupts 
and the ability to produce a square wave on PB7 whose frequency is 
not affected by variations in the processor interrupt response time. 
This is accomplished in the “free-running” mode.

In the free-running mode, the Interrupt Flag is set and the signal on 
PB7 is inverted each time the counter reaches zero. However, instead 
of continuing to decrement from zero after a time-out, the timer 
automatically transfers the contents of the latch into the counter 
(16 bits) and continues to decrement from there. The Interrupt Flag 
can be cleared by writing T1C-H, by reading T1C-L, or by writing 
directly into the flag as described later. However, it is not necessary 
to rewrite the timer to enable setting the Interrupt Flag on the 
next time-out.

All interval timers in the SY6522 are “re-triggerable”. Rewriting 
the counter will always re-initialize the time-out period. In fact, the 
time-out can be prevented completely if the processor continues to 
rewrite the timer before it reaches zero. Timer 1 will operate in this 
manner if the processor writes into the high order counter (T1C-H). 
However, by loading the latches only, the processor can access the 
timer during each down-counting operation without affecting the 
time-out in process. Instead, the data loaded into the latches will 
determine the length of the next time-out period. This capability is 
particularly valuable in the free-running mode with the output 
enabled. In this mode, the signal on PB7 is inverted and the interrupt 
flag is set with each time-out. By responding to the interrupts with 
new data for the latches, the processor can determine the period of 
the next half cycle during each half cycle of the output signal on PB7. 
In this manner, very complex waveforms can be generated. Timing 
for the free-running mode is shown in Figure H-19.

Figure H-19: Timer 1 Free-Run Mode Timing

WRITE TIC H 
OPERATION

IRQ OUTPUT

Pg7 OUTPUT

Note: A precaution to take in the use of PB7 as the timer output concerns the Data Direction Register contents for PB7. Both 
DDRB bit 7 and ACR bit 7 must be 1 for PB7 to function as the timer output. If one is 1 and the other is 0, then PB7 functions 
as a normal output pin, controlled by ORB bit 7.

91K



TIMER 2 OPERATION Timer 2 operates as an interval timer (in the “one-slot” mode only), 
or as a counter for counting negative pulses on the PB6 peripheral pin. 
A single control bit is provided in the Auxiliary Control Register to 
select between these two modes This timer is comprised of a 
“write-only” low-order latch (T2L-L), a “read-only” low-order counter 
and a read/write high order counter. The counter registers act as a 
16-bit counter which decrements at <j>2 rate. Figure H-20 illustrates 
the T2 Counter Registers.

TIMER 2 
ONE-SHOT MODE

TIMER 2
PULSE COUNTING
MODE

As an interval timer, T2 operates in the “one-shot” mode similar 
to Timer 1. In this mode, T2 provides a single interrupt for each 
“write T2C-H” operation. After timing out, the counter will continue 
to decrement. However, setting of the Interrupt Flag will be disabled 
after initial time-out so that it will not be set by the counter continuing 
to decrement through zero. The processor must rewrite T2C-H to 
enable setting of the Interrupt Flag. The Interrupt Flag is cleared by 
reading T2C-L or by writing T2C-H. Timing for this operation is 
shown in Figure H-18.

Figure H-20: T2 Counter Registers
REG 8 - TIMER 2 LOW-ORDER COUNTER

WRITE - 8 BITS LOADED INTO T2 LOW ORDER 
LATCHES

READ - 8 BITS FROM T2 LOW ORDER COUNTER 
TRANSFERRED TOMPU. T2 INTERRUPT 
FLAG IS RESET

REG 9 - TIMER 2 HIGH-ORDER COUNTER

WRITE - 8 BITS LOADED INTO T2 HIGH ORDER 
COUNTER ALSO. LOW ORDER LATCHES 
TRANSFERRED TO LOW ORDER 
COUNTER IN ADDITION. T2 INTERRUPT 
FLAG IS RESET.

READ - 8 BITS FROM T2 HIGH ORDER COUNTER 
TRANSFERRED TO MPU

In the pulse counting mode, T2 serves primarily to count a 
predetermined number of negative-going pulses on PB6. This is 
accomplished by first loading a number into T2. Writing into T2C-H 
clears the Interrupt Flag and allows the counter to decrement each 
time a pulse is applied to PB6. The Interrupr Flag will be set when 
T2 reaches zeio. At this time the counter will continue to decrement 
with each pulse on PB6. However, it is necessary to rewrite T2C-H to 
allow the Interrupt Flag to set on subsequent down-counting 
operations. Timing for this mode is shown in Figure H-21. The pulse 
must be low on the leading edge of -j>2.

SHIFT REGISTER 
OPERATION

The Shift Register (SR) performs serial data transfers into and 
out of the CB2 pin under control of an internal modulo-8 counter. 
Shift pulses can be applied to the CB1 pin from an external source 
or, with the proper mode selection, shift pulses generated internally 
will appear on the CB1 pin for controlling external devices.

216



INTERRUPT
OPERATION

The control bits which select the various shift register operating 
modes are located in the Auxiliary Control Register. Figure H-22 
illustrates the configuration of the SR data bits and the SR control 
bits of the ACR.

Figures H-23 and H-24 illustrate the operation of the various 
shift register modes.
Controlling interrupts within the SY6522 involves three principle 
operations. These are flagging the interrupts, enabling interrupts and 
signaling to the processor that an active interrupt exists within the 
chip. Interrupt flags are set by interrupting conditions which exist 
within the chip or on inputs to the chip. These flags normally remain 
set until the interrupt has been serviced. To determine the source of 
an interrupt, the microprocessor must examine these flags in order 
from highest to lowest priority. This is accomplished by reading the 
flag register into the processor accumulator, shifting this register 
either right or left and then using conditional branch instructions to 
detect an active interrupt.

Associated with each Interrupt Flag is an interrupt enable bit. 
This can be set or cleared by the processor to enable interrupting 
the processor from the corresponding Interrupt Flag. If an interrupt 
flag is set to a logic 1 by an interrupting condition, and the corresponding 
interrupt enable bit is set to a 1, the Interrupt Request Output (IRQ) 
will go low. IRQ is an “open-collector” output which can be “wire-or‘ed” 
with other devices in the system to interrupt the processor.
In the SY6522, all the Interrupt Flags are contained in one register. 
In addition, bit 7 of this register will be read as a logic 1 when an 
interrupt exists within the chip. This allows very convenient polling of 
several devices within a system to locate the source of an interrupt.

Figure H-21: Timer 2 Pulse Counting Mode
WRITE T2C-H 
OPERATION

IRQ OUTPUT

Figure H-22: SR and ACR Control Bits

SHIFT 
REGISTER 
BITS

REG 10 - SHIFT REGISTER

NOTES:
1. WHEN SHIFTING OUT. BIT 7 IS THE FIRST BIT 

OUT AND SIMULTANEOUSLY IS ROTATED BACK 
INTO BITO.

2. WHEN SHIFTING IN, BITS INITIALLY ENTER 
BIT 0 AND ARE SHIFTED TOWARDS BIT 7.

REG 11 - AUXILIARY CONTROL REGISTER

4 3 2 OPERATION
0 0 0 DISABLED
0 0 1 SHIFT IN UNDER CONTROL OF T2
0 1 0 SHIFT IN UNDER CONTROL OF «|«2
0 1 1 SHIFT IN UNDER CONTROL OF EXT CLK
1 0 0 SHIFT OUT FREE RUNNING AT T2 RATE
1 0 1 SHIFT OUT UNDER CONTROL OF T2
1 1 0 SHIFT OUT UNDER CONTROL OF I-?
1 1 1 SHIFT OUT UNDER CONTROL OF EXT CLK

217



SR Disabled (000) The 000 mode is used to disable the Shift Register. In this mode 
the microprocessor can write or read the SR, but the shifting operation 
is disabled and operation of CB1 and CB2 is controlled by the 
appropriate bits in the Peripheral Control Register (PCR). In this 
mode the SR Interrupt Flag is disabled (held to a logic 0).

Shift in Under 
Control of T2 (001)

In the 001 mode the shifting rate is controlled by the low order
8 bits of T2. Shift pulses are generated on the CB1 pin to control 
shifting in external devices. The time between transitions of this output 
clock is a function of the system clock period and the contents of 
the low order T2 latch (N).

The shifting operation is triggered by writing or reading the shift 
register. Data is shifted first into the low order bit of SR and is then 
shifted into the next higher order bit of the shift register on the 
negative-going edge of each clock pulse. The input data should 
change before the positive-going edge of the CB1 clock pulse. This 
data is shifted into the shift register during the elock cycle following 
the positive-going edge of the CB1 clock pulse. After 8 CB1 clock 
pulses, the shift register Interrupt Flag will be set and IRQ will go 
low.

081 OUTPUT
SHIFT CLOCK

CB2INPUT

IRQ

jinjinnnnnnnnnnrinnnnnnnnnnjin^
WRITE OR READ 
SHIFT REG.

2 WWWE«»MW

Shift in Under
Control of |2 (010)

In mode 010 the shift rate is a direct function of the system clock 
frequency. CB1 becomes an output which generates shift pulses for 
controlling external devices. Timer 2 operates as an independent 
interval timer and has no effect on SR. The shifting operation is 
triggered by reading or writing the Shift Register. Data is shifted first 
bit 0 and is then shifted into the next higher order bit of the shift 
register on the trailing edge of each <|>2 clock pulse. After 8 clock 
pulses, the shift register Interrupt Flag will be set, and the output 
clock pulses on CB1 will stop.

Shift in Under 
Control of External 
CB1 Clock (011)

In mode 011 CB1 becomes an input. This allows an external device 
to load the shift register at its own pace. The shift register counter will 
interrupt the processor each time 8 bits have been shifted in. However, 
the shift register counter does not stop the shifting operation; it acts 
simply as a pulse counter. Reading- or writing the Shift Register 
resets the Interrupt flag and initializes the SR counter to count 
another 8 pulses.

218



Note that the data is shifted during the first system clock cycle 
following the positive-going edge of the CB1 shift pulse. For this 
reason, data must be held stable during the first full cycle following 
CB1 going high.

Figure H-23: Shift Register Input Modes

*jmnnnnnnnnnnnn^^

Shift Out Free-Running 
at T2 Rate (100)

Mode 100 is very similar to mode 101 in which the shifting rate 
is set by T2. However, in mode 100 the SR counter does not stop 
the shifting operation. Since the Shift Register bit 7 (SR7) is recirculated 
back into bit 0, the 8 bits loaded into the shift register will be 
clocked onto CB2 repetitively. In this mode the shift register 
counter is disabled.

Shift Out Under 
Control of T2 (101)

xzzzxzizxzr^zx xzz

WRITE SR 
OPERATION

CB2OUTPUT

CHI OUTPUT 
SHIFT CLOCK

MMMI 
H

MM WniuiniuuuiiL
1 |

MMMMMMM
1

N*2CYCLES

1

-—- - N*2C

2

fCLES
s

I 9 1

In mode 101 the shift rate is controlled by T2 (as in the previous 
mode). However, with each read or write of the shift register the SR 
Counter is reset and 8 bits are shifted onto CB2. At the same time, 8 
shift pulses are generated on CB1 to control shifting in external 
devices. After the 8 shift pulses, the shifting is disabled, the SR 
Interrupt Flag is set and CB2 remains at the last data level.

Shift Out Under 
Control of <|>2 (110)

91<3



Shift Out Under 
Control of External
CB1 Clock (111)

In mode 111 shifting is controlled by pulses applied to the CB1 pin 
by an external device. The SR counter sets the SR Interrupt 
flag each time it counts 8 pulses but it does not disable the shifting 
function. Each time the microprocessor writes or reads the shift 
register, the SR Interrupt flag is reset and the SR counter is 
initialized to begin counting the next 8 shift pulses on pin CB1' After 
8 shift pulses, the Interrupt flag is set. The microprocessor can then 
load the shift register with the next byte of data.

WRITE SR 
OPERATION

CB1INPUT 
SHIFT CLOCK

CB2 OUTPUT

Figure H-24: Shift Register Output Modes

The Interrupt Flag Register (IFR) and Interrupt Enable Register (IER) 
are depicted in Figures H-25 and H-26, respectively.

The I FT may be read directly by the processor. In addition, 
individual flag bits may be cleared by writing a “1” into the 
appropriate bit of the IFR. When the proper chip select and register 
signals are applied to the chip, the contents of this register are 
placed on the data bus. Bit 7 indicates the status of the IRQ output. 
This bit corresponds to the logic function: IRQ = IFR6xlER6 + IFR5x 
IER5 + IFR4xlER4 + IFR3xlER3 + IFR2xlER2 + IFR1 xIERl + IFROxlERO. 
Note: X = logic AND, + -- Logic OR.
The IFR bit 7 is not a flag. Therefore, this bit is not directly 
cleared by writing a logic 1 into it. It can only be cleared by clearing 
all the flags in the register or by disabling all the active interrupts as 
discussed in the next section.

Figure H-25: Interrupt Flag Register (IFR)

7 6 5 4 3 2 1 0

REG 13 - INTERRUPT FLAG REGISTER

I-CA2-.

lcA1 —

LSHIFT REG-

CB2-----------------
L-CB1---------------------

*-TIM ER 2---------------------

SET BY CLEARED BY

CA2 ACTIVE EDGE READ OR WRITE 
REG 1 (ORA)’

CAI ACTIVE EDGE READ OR WRITE
REG 1 (ORA)

COMPLETE 8 SHIFTS READ OR WRITE 
SHIFT REG

CB2 ACTIVE EDGE READ OR WRITE ORB*
CB1 ACTIVE EDGE READ OR WRITE ORB
TIME OUT OF T2 READ T2 LOW OR 

WRITE T2 HIGH
TIME OUT OF T1 READ T1 LOW OR 

WRITE T1 HIGH
ANY ENABLED CLEAR ALL
INTERRUPT INTERRUPTS

* IF THE CA2/CB2 CONTROL IN THE PCR IS SELECTED AS 
"INDEPENDENT” INTERRUPT INPUT, THEN READING OR 
WRITING THE OUTPUT REGISTER ORA/ORB WILL NOT 
CLEAR THE FLAG BIT. INSTEAD, THE BIT MUST BE 
CLEARED BY WRITING INTO THE IFR, AS DESCRIBED 
PREVIOUSLY.

220



For each Interrupt Flag in IFR, there is a corresponding bit in the 
Interrupt Enable Register. The system processor can be set or clear 
selected bits in this register to facilitate controlling individual interrupts 
without affecting others. This is accomplished by writing to address 
1110 (IER address). If bit 7 of the data placed on the system data 
bus during this write operation is a 0, each 1 in bits 6 through 0 
clears the corresponding bit in the Interrupt Enable Register. For 
each zero in bits 6 through 0, the corresponding bit is unaffected.

Setting selected bits in the Interrupt Enable Register is accomplished 
by writing to the same address with bit 7 in the data word set to a 
logic 1. In this case, each 1 in bits 6 through 0 will set the 
corresponding bit. For each zero, the corresponding bit will be 
unaffected. This individual control of the setting and clearing 
operations allows very convenient control of the interrupts during 
system operation.

In addition to setting and clearing IER bits, the processor can read 
the contents of this register by placing the proper address on the 
register select and chip select inputs with the R/W line high. Bit 7 
will be read as a logic 0.

Figure H-26: Interrupt Enable Register (IER)

REG 14 - INTERRUPT ENABLE REGISTER

0 = INTERRUPT DISABLED

1 - INTERRUPT ENABLED

NOTES:
1. IF BIT 7 IS A "0 ", THEN EACH "1" IN BITS 0 - 6 DISABLES THE 

CORRESPONDING INTERRUPT.
2. IF BIT 7 IS A "1". THEN EACH "1" IN BITS 0 - 6 ENABLES THE 

CORRESPONDING INTERRUPT.
3. IF A READ OF THIS REGISTER IS DONE, BIT 7 WILL BE "0" AND 

ALL OTHER BITSWILL REFLECT THEIR ENABLE/DISABLE STATE.

991



PACKAGE OUTLINE ORDERING INFORMATION PIN CONFIGURATION

<
 

<
&

<
/>

&
>

<
/! 

|u
'O

'-<
M

<
*
>

<
*
in

«
P

o
o

f
t
a
c
t
e
c
i
c
r
o

Q
Q

O
Q

O
O

Q
-
r
O

i
u

a
r
i
x

q
.d

 
 .Q

Q
.n

 n
n

n
n

n
n

n
n

n
n

n
n

n
n

. 
o

 
o> co 

r* 
u> 

in 
<

 
n

 
n

 
*- 

o
 

n
 

b
 

10 
in 

<
 

n
 

n
 

r-
-V 

M
 H

 
O

 
n

 
n

 
n

 
H

 
M

 
H

 
M

 
N
 

rM
N

C
M

 
N

 
N

 
N

 
N

 
N

-
N

n
^

n
o

b
B

u
i
O

^
N

n
j
 

«
 

«
 

»
 

K

U
L

J
U

L
J
U

U
U

U
U

L
J
L

J
U

U
U

L
J
U

U
U

'U
u

 
«z? 

<
 
<

<
<

<
<

<
<

S
m

m
S

S
S

r
o

m
f
f
l
S
 

8
 

>
a
.
a
.
a
.
a
.
a
.
a
a
.
a
.
a
-
a
.
a
.
C

L
Q

.
Q

.
o

.
a
.
o

u
>

222



Appendix I ASSEMBLY LANGUAGE REFERENCE DATA

1.1 8086 REGISTER AX: AH AL
MODEL BX: BH BL

OX: CH CL
DX: DH DL

SP 
BP 
SI 
DI

ACCUMULATOR
BASE
COUNT
DATA

STACK POINTER 
BASE POINTER 
SOURCE INDEX 
DESTINATION INDEX

IP
FLAGSh FLAGSl

INSTRUCTION POINTER
STATUS FLAGS

OS
DS
SS
ES

CODE SEGMENT 
DATA SEGMENT 
STACK SEGMENT 
EXTRA SEGMENT

Instructions which reference the flag register file as a 16-bit object 
use the symbol FLAGS to represent the file: 

X X X X OF DF IF TF SF ZF X AF X PF X OF
15

X = Don’t care

AF: AUXILIARY CARRY—BCD
OF: CARRY FLAG
PF: PARITY FLAG 8080 FLAGS
SF: SIGN FLAG
ZF: ZERO FLAG

o 
co 
o 
co

____ CD
DF: DIRECTION FLAG (STRINGS) Z
IF: INTERRUPT ENABLE FLAG ___
OF: OVERFLOW FLAG (OF G SF.) co
TF: TRAP-SINGLE STEP FLAG  Z

All mnemonics ©Intel Corporation 1981.

223

SE
G

M
EN

T 
G

E
N

E
R

A
L

R
E

G
IS

TE
R

 FI
LE

 
R

EG
IS

TE
R

 FI
LE



1.2 OPERAND REG" FIELD BIT ASSIGNMENTS
SUMMARY 16-BITffl-n 8-BIT(W=0) SEGMENT

000 AX 000 AL 00 ES
001 CX 001 CL 01 CS
010 DX 010 DL 10 SS
011 BX 011 BL 11 DS
100 SP 100 AH
101 BP 101 CH
110 SI 110 DH
111 DI 111 BH

1.3 SECOND 
INSTRUCTION BYTE
SUMMARY

mod xxx r/m

MOD DISPLACEMENT

00 DISP=0*; disp-low and disp-high are absent
01 DISP=disp-low sign-extended to 16-bits, disp-high is absent
10 DISP=disp-high:disp-low
11 r/m is treated as a “reg” field

DEFAULT
R/M OPERAND ADDRESS SEGMENT

000 (BX) + (SI) + DISP DS
001 (BX) + (DI) + DISP DS
010 (BP) + (SI) + DISP SS
011 (BP) + (DI) + DISP SS
100 (SI) + DISP DS
101 (DI) + DISP DS
110 (BP) + DISP* SS
111 (BX) + DISP DS

DISP follows 2nd byte of instruction (before data if required), 
‘except if mod-00 and r/m=110; then EA=disp-high: disp-low.

OPERAND ADDRESS (EA) TIMING (CLOCKS):
Add 4 clocks for word operands at ODD ADDRESSES.
Immed offset-6
Base (BX, BP, SI, Dl)=5
Base + DISP-9
Base + index (BP + DI, BX + Sl)=7
Base + index (BP + SI, BX + Dl)=8
Base + index (BP + DI, BX + SI) + DISP-11
Base + index (BP + SI, BX + DI) + DISP-12

All mnemonics ©Intel Corporation 1981.

224



1.4 MEMORY 
SEGMENTATION 
MODEL

SEGMENT OVERRIDE PREFIX 

i 0 0 1 REG 1 1 0

Timing: 2 clocks

USE OF SEGMENT OVERRIDE

OPERAND REGISTER DEFAULT WITH OVERRIDE'PREFIX

IP (code address) OS Never
SP (stack address) SS Never
BP (stack address or

stack marker) SS BP + DS, or ES, or OS
SI or DI (not incl. strings) DS ES, SS, or OS
SI (implicit source addr.

for strings) DS ES, SS, or OS
DI (implicit dest. addr.

for strings) ES Never

1.5 INSTRUCTION 
SET DATA

Section 1.5.2 presents instuction set data, grouped by function. Section 
1.9 provides an alphabetic index to the data.

All mnemonics ©Intel Corporation 1981.

225



1.5.1 KEY TO 
EFFECTS

1.5.2 DATA 
TRANSFER

MOV=Move

FLAG The following key refers to the flag sections in the instruction set data 
in Section I.5.2.

FLAG EFFECT KEY
IDENTIFIER EXPLANATION

(blank) Not altered
0 Cleared to 0
1 Set to 1
X Set or cleared according to result
U Undefined—contains no reliable value
R Restored from previously-saved value

Flags: ODITSZAPC
Register/memory to/from register

1 0 0 0 1 0 d w mod reg r/m

Timing (clocks): register to register 2
memory to register 8+EA
register to memory 9+EA

Immediate to register/memory
1 1 0 0 0 1 1 w mod 0 0 0 r/m data data if w=1

Timing: 10+EA clocks

Immediate to register

Timing: 4 clocks

1 0 1 1 w reg data data if w=1

Memory to accumulator

1 0 1 0 0 0 0 w addr-low addr-high

Timing: 10 clocks

Accumulator to memory
1 0 1 0 0 0 1 w addr-low addr-high

Timing: 10 clocks

Register/memory to segment register
1 0 0 0 1 1 1 0 | mod 0 reg r/m

Timing (clocks): register to register 2
memory to register 8+EA

Segment register to register/memory
10001100 mod 0 reg r/m

All mnemonics ©Intel Corporation 1981.

226



Timing (clocks): register to register 
register to memory

2
9+EA

PUSH=Push

POP-Pop

XCHG=Exchange

IN=lnput to AL/AX 
from

Flags: ODITSZAPC

Register/memory
1111111-1 mod 110 r/m

Timing (clocks): register 
memory 

0 1 0 1 0 reg i

Timing: 10 clocks
Segment register

0 0 0 reg 1 1 0

Timing: 10 clocks

Flags: ODITSZAPC

Register/memory
10001111 mod 0 0 0 r/m

Timing (clocks): register
memory

Register
| 0 1 0 1 1 reg

Timing: 8 clocks

Segment register 
0 0 Q reg 1 TT~

Timing: 8 clocks

Flags: ODITSZAPC

Register/memory with register

1 0 0 0 0 1 1 w mod reg r/m

Timing (clocks): register with register 
memory with register

Register with accumulator

10 0 10 reg

Timing: 3 clocks

Flags: ODITSZAPC

Fixed Port
1 1 1 o o 1 o w port

Timing: 10 clocks

All mnemonics ©Intel Corporation 1981.

10
16+EA

8
17+EA

4
17+EA

227



Variable port (DX)

1 1 1 o 1 1 o w

Timing: 8 clocks

OUT=Output from 
AL/AX to

XLAT=Tran slate Byte 
to AL

LEA=Load EA to
Register

LDS=Load Pointer to

LES=Load Pointer to

LAHF=Load AH with 
Flags

SAHF=Store AH into 
Flags

Flags: ODITSZAPC

Fixed Port

1 1 1 0 0 1 1 w port

Timing: 10 clocks

Variable port (DX)

1 1 1 0 1 1 1 w

Timing: 8 clocks

Flags: ODITSZAP C

110 10 111

Timing: 11 clocks

Flags: ODITSZAPC

1 0 0 0 1 1 0 1 mod reg r/m

Timing: 2+EA clocks

Flags: ODITSZAPC

1 1 0 0 0 1 0 1 mod reg r/m

Timing: 16+EA clocks

Flags: ODITSZAPC

1 1 0 0 0 1 0 0 mod reg r/m

Timing: 16+EA clocks

Flags: ODITSZAPC

10 0 11111

Timing: 4 clocks

Flags: ODITSZAPC
,----- -------- ------ R R R R R
| 1 0 0 1 1 1 1 0

Timing: 4 clocks

All mnemonics s Intel Corporation 1981.

228



PUSHF=Push Flags

POPF=Pop Flags

1.5.3 ARITHMETIC

ADD=Add

Flags: ODITSZAPC

10011100

Timing: 10 clocks

Flags: ODITSZAPC 
RRRRRRRRR

10011101

Timing: 8 clocks

Flags: ODITSZAPC
X X X X X X

Reg./memory with register to either
0 0 0 0 0 0 d w mod reg r/m

Timing (clocks): register to register 3
memory to register 9+EA
register to memory 16+EA

Immediate to register/memory

1 0 0 0 0 0 s w mod 0 0 0 r/m data data if s:w=01

Timing (clocks): immediate to register 4 
immediate to memory 17+EA

Immediate to accumulator

Timing: 4 clocks

0 0 0 0 0 1 0 w data data if w=1

ADC=Add with Carry Flags: ODITSZAPC
X X X X X X

Reg./memory with register to either

0 0 0 1 0 0 d w mod reg r/m

Timing (clocks): register to register 3
memory to register 9+EA
register to memory 16+EA

Immediate to register/memory

1 0 0 0 0 0 s w mod 0 10 r/m data data if s:w=01

Timing (clocks): immediate to register 4 
immediate to memory 17+EA

All mnemonics ©Intel Corporation 1981.

229



Immediate to accumulator

0 0 0 1 0 1 Ow data data if w=l

Timing: 2 clocks

Timing: 4 clocks

INC=lncrement Flags: O D I T S Z A
X XXX

Register/memory

P C
X X

1 1 1 1 1 1 1 W mod 0 0 0 r/m

Timing (clocks)

Register
0 1 0 0 0 reg

: register 
memory

2
15+EA

AAA=ASC1I Adjust for Flags: ODITSZAPC
Add U U U X U X

00110111

DAA-Decimal Adjust 
for Add

Timing: 4 clocks

Flags: ODITSZAPC
X X X X X X

00100111

SUB=Subtract

Timing: 4 clocks

Flags: ODI TSZAPC
X X X X X X

0 0 1 0 1 0 d w mod reg r/m

Timing (clocks): register from register 3 
memory from register 9+EA
register from memory 16+EZ

Immediate from register/memory
1 0 0 0 0 0 s w mod 10 1 r/m data data if s:w=01

Timing (clocks): immediate from register 4 
immediate from memory 17+EA

Immediate from accumulator
0 0 1 0 1 1 0 w data data if w=1

Timing: 4 clocks

All mnemonics sIntel Corporation 1981.

230



SBB=Subtract with 
Borrow

Flags: ODITSZAPC
X X X X X X

DEC=Decrement

NEG=Change Sign

CMP=Compare

0 0 0 1 1 0 d w mod reg r/m

Timing (clocks): register from 
memory from 
register from

Immediate from register/meme

egister 3
register 9+EA
nemory 16+EA

ry

1 0 0 0 0 0 sw mod 0 1 1 r/m data data if s:w=01

Timing (clocks): immediate from register 4
immediate from memory 17+EA

Immediate from accumulator

0 0 0 1 1 1 0 w data data if w=1

Timing: 4 clocks

Flags: O D
X

I T S Z A P C
X X X X

Register/memory

1 1 1 1 1 1 1 w mod 0 0 1 r/m

Timing (clocks)

Register

register 
memory

2
15+EA

0 10 0 1 reg

Timing: 2 clocks

Flags: O D I T S Z A
X XXX

*0 if destination^)

P C
X 1*

1 1 1 1 0 1 1 w mod 0 1 1 r/m

Timing (clocks): register 
memory

Flags: O D I T S Z A
X XXX

Register/memory and register

3 
16+EA

P C
X X

0 0 1 1 1 0 d w mod reg r/m

Timing (clocks): register with register 3
memory with register 9+EA
register with memory 9+EA

All mnemonics ®Intel Corporation 1981.

231



AAS=ASCII Adjust for 
Subtract

DAS=Decimal Adjust 
for Subtract

MUL=Muitiply 
(Unsigned)

IMUL=lnteger Multiply 
(Signed)

AAM=ASCII Adjust for 
Multiply

DIV=Divide
(Unsigned)

Immediate with register/memory

1 0 0 0 0 0 s w mod 111 r/m data data if s:w=01

Timing (clocks): immediate with register 4 
immediate with memory 17+EA

Immediate with accumulator

0 0 1 1 1 1 0 w data data if w=1

Timing: 4 clocks

Flags: ODITSZAPC
U U U X U X

00111111

Timing: 4 clocks

Flags: ODITSZAP-C
U X X X X X

00101111

Timing: 4 clocks

Flags: O D I T S Z A
X U U U

P c
U X

1 1 1 1 0 1 1 w mod 10 0 r/m

Timing (clocks): 8-bit
16-bit

Flags: O D I T S Z A
X U U u

71 +EA 
124+EA

P C
U X

1 1 1 1 0 1 1 w mod 10 1 r/m

Timing (clocks): 8-bit
16-bit

Flags: O D I T S Z A
U X X U

90+EA 
144+EA

P C
X U

110 10 10 0 00001010

Timing: 83 clocks

Flags: O D I T S Z A
U U U U

P C
U U

1 1 1 1 0 1 1 w mod 110 r/m

Timing (clocks): 8-bit
16-bit

All mnemonics § Intel Corporation 1S

90+EA 
155+EA

81.

232



IDIV= Integer Divide 
(Signed) "

CBW=Convert Byte to 
Word

CWD=Convert Word 
to Double Word

1.5.4 LOGIC

NOT=lnvert

SHL/SAL=Shift
Logical/Arithmetic
Left

SHR=Shift Logical 
Right

Timing: 2 clocks

Flags: ODITSZAPC

AAD=ASC1I Adjust for 
Divide

Flags: 0 D I T S Z A
U U U U

P C 
u u

1 1 1 1 0 1 1 w mod 1 1 1 r/m

Timing (clocks): 8-bit
16-bit

Flags: 0 D I T S Z A
U X X u

112+EA 
177+EA

P C
X U

110 10 10 1 00001010

Timing: 60 clocks

Flags: O D I T S Z A P C

10011000

10011001

Timing: 5 clocks

Flags: ODITSZAPC

1 1 1 1 0 1 1 w mod 0 1 0 r/m

Timing (clocks): register 
memory

Flags: ODITSZAPC
X X

1 1 0 1 0 0 v w mod 10 0 r/m

3 
16+EA

MSB LSB

Timing (clocks): single-bit register 2
single-bit memory 15+EA
variable-bit register 8+4/bit
variable-bit

memory 20+EA+4/bit

Flags: ODITSZAPC
X X

1 1 0 1 0 0 v w mod 1 0 1 r/m
MSB LSB

Timing (clocks): single-bit register 2
single-bit memory 15+EA
variable-bit register 8+4/bit
variable-bit

memory 20+EA+4/bit

All mnemonics ©Intel Corporation 1981.

233



SAR=Shift Arithmetic 
Right

ROL=Rotate Left

ROR=Rotate Right

RCR=Rotate Through 
Carry Right

Flags: ODITSZAP C
X X X U X X

1 1 0 1 0 0 v w mod 1 1 1 r/m

Timing (clocks): single-bit register 2
single-bit memory 15+EA
variable-bit register 8+4/bit
variable-bit

memory 20+EA+4/bit

Timing (clocks): single-bit register 2
single-bit memory 15+EA
variable-bit register 8+4/bit
variable-bit

memory 20+EA+4/bit

Flags: 0 D
X

1 1 0 1 0 0 v w

I T S Z A

mod 0 0 0 r/m

P C
X

c
MSB

•4—
LSB

Flags: ODITSZAPC
X

1 1 0 1 0 0 V w mod 0 0 1 r/m

X

r
MSB - LSB

C

Timing (clocks): single-bit register 2
single-bit memory 15+EA
variable-bit register 8+4/bit
variable-bit

memory 20+EA+4/bit

RCL=Rotate Through 
Carry Left

Flags: 0 D T S Z A P C
X X MSB LSB

1 1 0 1 0 0 v w mod 0 1 0 r/m

Timing (clocks): single-bit register 2
single-bit memory 15+EA
variable-bit register 8+4/bit
variable-bit

memory 20+EA+4/bit

Flags: ODITSZAPC

Timing (clocks): single-bit register 2
single-bit memory 15+EA
variable-bit register 8+4/bit
variable-bit

memory 20+EA+4/bit

All mnemonics ® Intel Corporation 1981.

234



AND=And

TEST=And Function 
to Flags, No Result

OR=Or

Flags: ODITSZAPC 
0 X X U X 0

Reg./memory and register to either
OOlOOOdw mod reg r/m

Timing (clocks): register to register 3
memory to register 9+EA
register to memory 16+EA

Timing (clocks): immediate to register 4 
immediate to memory 17+EA

Immediate to register/memory
1 0 0 0 0 0 0 w mod 10 0 r/m data data if w=1

Immediate to accumulator
0 0 1 0 0 1 0 w data data if w=1

Timing: 4 clocks

Flags: 0 D I T S Z A 
0 X X U

Register/memory and register

P C
X 0

1 0 0 0 0 1 0 w mod reg r/m

Timing (clocks): register to register 3
register with memory 9+EA

Immediate data and register/memory

| 1 1 1 1 0 1 1 w mod 0 0 0 r/m data data if w=1

Timing (clocks): immediate with register 4
immediate with memory 10+EA

Immediate data and accumulator
1 0 1 0 1 0 0 w data data if w=1

Timing: 4 clocks

Flags: ODITSZAPC 
0 X X U X 0

Reg./memory and register to either

0 0 0 0 1 0 d w mod reg r/m

Timing (clocks): register to register 3
memory to register 9+EA
register to memory 16+EA

All mnemonics ©Intel Corporation 1981.

235



Immediate to register/memory

1 OOOOOOw modO 0 1 r/m data data if w-1

Timing (clocks): immediate to register 4
immediate to memory 17+EA

Immediate to accumulator

0 0 0 0 1 1 Ow data data if w=1

XOR=Exclusive Or

Timing: 4 clocks

Flags: ODITSZAPC 
0 X X U X 0

Reg./memory and register to either

0 0 1 1 0 0 d w mod reg r/m

Timing (clocks): register to register 3
memory to register 9+EA
register to memory 16+EA

mmediate to register/memory

1 0 0 0 0 0 0 w mod 110 r/m data data if w=1

Timing (clocks): immediate to register 4
immediate to memory 17+EA

Immediate to accumulator
0 0 1 1 0 1 0 w data data if w=1

Timing: 4 clocks

1.5.5 STRING 
MANIPULATION

Timing: 22 clocks

REP=Repeat Flags: 0 D I T S Z A P C

1 1 1 1 0 0 1 z

Timing: 6 clocks/loop

MOVS=Move String Flags: 0 D I T S Z A P C

1 0 1 0 0 1 0 w

Timing: 17 clocks

CMPS=Compare Flags: O D I T S Z A P C
String X X X X X X

1 0 1 0 0 1 1 w

All mnemonics ®Intel Corporation 1981.

236



1 0 1 0 1 0 1 w

SCAS=Scan String Flags: O D
X

1 T S Z A P C
X X X X X

1 0 1 0 1 1 1 w

LODS=Load String

Timing: 15 clocks

-lags: ODITSZAPC

1 0 1 0 1 1 0 w

STOS=Store String

Timing: 12 clocks

Flags: ODITSZAPC

Timing: 10 clocks

1.5.6 CONTROL 
TRANSFER

CALL=Call

JMP=Unconditional
Jump

NOTE: Queue reintialization is not included in the timing information 
for transfer operations. To account for instruction loading, add 8 
clocks to timing numbers.

Flags: ODITSZAPC

Direct within segment

1 1 1 0 1 0 0 0 disp-low disp-high

Timing: 11 clocks

Indirect within segment

Timing: 13+EA clocks

11111111 mod 0 10 r/m

Timing: 20 clocks

Indirect intersegment
1 1 1 1 1 1 1 1 I mod 0 1 1 r7m

Direct intersegment

10011010 offset-low offset-high

seg-low seg-high

11111111 mod 0 11 r/m

Timing: 29+EA clocks

Flags: ODITSZAPC

Direct within segment

11101001 disp-low disp-high

Timing: 7 clocks

All mnemonics ©Intel Corporation 1981.

237



Direct within segment-short

RET=Return from 
CALL

JE/JZ=Jump on 
Equal/Zero

1110 10 11 disp

Timing: 7 clocks

Indirect within segment

11111111 mod 10 0 r/m

Timing: 7+EA clocks

Timing: 7 clocks

Indirect intersegment

Direct intersegment

1110 10 10 offset-low offset-high

seg-low seg-high

Timing: 16+EA clocks

11111111 mod 1 0 1 r/m

Flags: ODITSZAPC

Within segment

11000011

Timing: 8 clocks

Within seg. adding immediate to SP

11000010 date-low data-high

Timing: 12 clocks

Intersegment

110 0 10 11

Timing: 18 clocks

Intersegment, adding immediate to SP

Timing: 17 clocks

11001010 data-low data-high

Flags: ODITSZAPC

01110100 disp

Timing (clocks): jump is taken 
jump is not taken

All mnemonics ©Intel Corporation 1981.

8
4

238



JL/JNGE=Jump on 
Less/Not Greater or
Equal

JLE/JNG=Jump on 
Less or Equal/Not 
Greater

JB/JNAE=Jump on 
Below/Not Above or
Equal

JBE/JNA=Jump on 
Below or Equal/Not 
Above

JP/JPE=Jump on 
Parity/Parity Even

JO=Jump on 
Overflow

JS=Jump on Sign

JNE/JNZ=Jump on 
Not Equal/Not Zero

Flags: ODITSZAPC

0 111110 0 disp

Timing (clocks): jump is taken 
jump is not taken

Flags: ODITSZAPC

0 1111110 disp

Timing (clocks): jump is taken 
jump is not taken

Flags: ODITSZAPC

0 1110 0 10 disp

Timing (clocks): jump is taken 
jump is not taken

Flags: ODITSZAPC

0 1110 110 disp

Timing (clocks): jump is taken 
jump is not taken

Flags: ODITSZAPC

0 11110 10 disp

Timing (clocks): jump is taken 
jump is not taken

Flags: ODITSZAPC

01110000 disp

Timing (clocks): jump is taken 
jump is not taken

Flags: ODITSZAPC

01111000 disp

Timing (clocks): jump is taken 
jump is not taken

Flags: ODITSZAPC

0 1110 10 1 disp

Timing (clocks): jump is taken 
jump is not taken

8
4

8
4

8
4

8
4

8
4

8
4

8
4

8
4

All mnemonics ®Intel Corporation 1981.

239



JNL/JGE=Jump on 
Not Less/Greater or 
Equal

JNLE/JG=Jump on 
Not Less or 
Equal/Greater

JNB/JAE=Jump on 
Not Below/Above or 
Equal

JNBE/JA=Jump on 
Not Below or 
Equal/Above

JNP/JPO=Jump on 
Not Parity/Parity Odd

JNO=Jump on Not 
Overflow

JNS-Jump on Not 
Sign

LOOP-Loop CX 
Times

Flags: ODITSZAPC

0 111110 1 disp

Timing (clocks): jump is taken 
jump is not taken

Flags: ODITSZAPC

0 1111111 disp

Timing (clocks): jump is taken 
jump is not taken

Flags: ODITSZAPC
0 1110 0 11 I disp

Timing (clocks): jump is taken 
jump is not taken

Flags: ODITSZAPC

0 1110 111 disp

Timing (clocks): jump is taken 
jump is not taken

Flags: ODITSZAPC
0 11110 11 disp

Timing (clocks): jump is taken 
jump is not taken

Flags: ODITSZAPC

01110001 disp

Timing (clocks): jump is taken 
jump is not take

Flags: ODITSZAPC

01111001 disp

Timing (clocks): jump is taken 
jump is not taken

Flags: ODITSZAPC
11100010 disp

Timing (clocks): jump is taken 
jump is not taken

Ail mnemonics Intel Corporation 1981.

240



LOOPZ/LOOPE=Loop 
While Zero/Equal

LOOPNZ/LOOPNE=Loop
While Not Zero/Not
Equal

JCXZ=Jump on CX 
Zero

Flags: 0 D I T S Z A P

11100001 disp

Timing (clocks): jump is taken 
jump is not taken

Flags: O D I T S Z A P

11100000 disp

Timing (clocks): jump is taken 
jump is not taken

Flags: 0 D I T S Z A P

11100011 disp

Timing (clocks): jump is taken 
jump is not taken

5

9
5

I NT=Interrupt

8086 Conditional Transfer Operations

INSTRUCTION CONDITION INTERPRETATION

JE or JZ ZF=1 “equal” or “zero”
JL or JNGE (SR xor OF)=1 “less” or “not greater or equal"
JLE or JNG ((SP xor OF) “less or equal" or “not greater”

or ZF)=1
JB or JNAE CF--1 “below” or “not above or equal”
JBE or JNA (OF or ZF)=1 “below or equal” or "not above"
JP or JPE PF=1 “parity” or “parity even”
JO OF-1 “overflow”
JS SF=1 “sign”
JNE or JNZ ZF=0 "not equal” or “not zero”
JNL or JGE (SF xor OF)=0 "not less” or “greater or equal”
JNLE or JG ((SF xor OF) or “not less or equal” or “greater”

ZF)=0
JNB or JAE CF=0 “not below” or "above or equal”
JNBE or JA (OF or ZF)=0 “not below or equal” or “above”
JNP or JPO PF=0 “not parity” or "parity odd”
JNO OF=0 “not overflow”
JNS OF=0 “not sign”

NOTE: “Above and below” refer to the relation between two 
unsigned values, while "greater” and “less" refer to the 
relation between two signed values.

Flags: ODITSZAPC
0 O

Type specified

110 0 110 1 type

Timing: 50 clocks

All mnemonics ®Intel Corporation 1981.

241



Type 3

11001100

Timing: 51 clocks

Flags: ODITSZAPC 
O O

11001110

Timing: 52 clocks if pass 4 clocks if fail

Flags: O D I T 
R R R R

INTO=lnterrupt on 
Overflow

IRET=lnterrupt Return

1.5.7 PROCESSOR 
CONTROL

CLC=Clear Carry

STC=Set Carry

CMC=Complement 
Carry

NOP=No Operation

CLD=Clear Direction

11001111

Timing: 24 clocks

Flags: O D I T 

11111000

Timing: 2 clocks

Flags: O D I T 

11111001

Timing: 2 clocks

Flags: O D I T 

11110 10 1

Timing: 2 clocks

Flags: O D I T 

10010000

Timing:. 3 clocks

Flags: O D I T 
O

>1111110 0 I 

Timing: 2 clocks

S Z A P C
R R R R R

S Z A P C
O

S Z A P C
1

S Z A P C
X

S Z A P C

S Z A P C

All mnemonics ©Intel Corporation 1931

242



STD=Set Direction

CLI=Clear Interrupt

STI=Set Interrupt

HLT=Hait

WAIT=Wait

LOCK=Bus Lock 
Prefix

ESC=Escape (To
External Device)

Flags: 0 D I
1

Timing: 2 clocks

Flags: O D I 
O 

111110 10

Timing: 2 clocks

Flags: 0 D I 
1 

111110 11

Timing: 2 clocks

Flags: 0 D I 

11110100

Timing: 2 clocks

Flags: O D I 

10011011

Timing: 3 clocks

Flags: O D I

1 1 1 1 0 0 0 0

Timing: 2 clocks

Flags: O D I

T S Z A P C

T S Z A P C

T S Z A P C

T S ' Z A P C

T S Z A P C

T S Z A P C

T S Z A P C

1 1 0 1 1 x x x mod xxx r/m

Timing: 7+EA clocks

All mnemonics $ Intel Corporation 1981

243



NOTES:
If d=1 then “to”; if d=0 then “from.”
If w=1 then word instruction; if w=0 then byte instruction.
If s:w=01 then 16 bits of immediate data form the operand. •
If s:w=11 then an immediate data byte is sign extended to form the 

16-bit operand.
If v=0 then “count"=1; if v=1 then "count" in (CL).
X-don't care.
Z is used for some string primitives to compare with ZF FLAG.
AL=8-bit accumulator.
AX=16-bit accumulator.
CX-Count register.
OS-0ata segment.
OX-Variable port register.
ES-Extra segment.
Above/below refers to unsigned value.
Greater-more positive signed values.
Less-less positive (more negative) signed values.
See section 1.2 for Operand summary.
See section 1.4 for Segment Override summary.

1.6 PROCESSOR 
RESET REGISTER 
INITIALIZATION

Flags=OOOOH (to disable interrupts and single-stepping)

CS=FFFFH (to begin execution at FFFFOH) 
IP=0000H

DS=0000H
SS=0000H
ES=OOOOH

No other registers are acted upon during reset.

1.7 8088 RESERVED 
LOCATIONS

INTERRUPT LOCATION FUNCTION

0 00H-03H Divide by zero
1 04H-07H Single step

Interrupt Pointer Table

All mnemonics ®Intel Corporation 1981

244



STD=Set Direction

CLI=Clear Interrupt

STI=Set Interrupt

HLT=Halt

WAIT=Wait

LOCK=Bus Lock 
Prefix

ESC= Escape (To
External Device)

Flags: 0 D I 
1 

11111101

Timing: 2 clocks

Flags: 0 D I 
O

111110 10

Timing: 2 clocks

Flags: 0 D I 
1 

111110 11

Timing: 2 clocks

Flags: 0 D I 

11110100

Timing: 2 clocks

Flags: O D I 

10011011

Timing: 3 clocks

Flags: O D I 

11110000

Timing: 2 clocks

Flags: O D I

T S Z A P C

T S Z A P C

T S Z A P C

T S Z A P C

T S Z A P C

T S Z A P C

T S Z A P C

1 1 0 1 1 x x x mod xxx r/m

Timing: 7+EA clocks

All mnemonics a Intel Corporation 1981.

243



NOTES:
If d=1 then "to"; if d=0 then “from.”
If w=1 then word instruction; if w=0 then byte instruction.
If s:w=01 then 16 bits of immediate data form the operand. •
If s:w=11 then an immediate data byte is sign extended to form the 

16-bit operand.
If v=0 then "count"=1; if v=1 then "count” in (CL).
X=don’t care.
Z is used for some string primitives to compare with ZF FLAG.
AL=8-bit accumulator.
AX-16-bit accumulator.
OX-Count register.
DS=Data segment.
DX-Variable port register.
ES-Extra segment.
Above/below refers to unsigned value.
Greater-more positive signed values.
Less-less positive (more negative) signed values.
See section 1.2 for Operand summary.
See section 1.4 for Segment Override summary.

1.6 PROCESSOR 
RESET REGISTER 
INITIALIZATION

Flags=0000H (to disable interrupts and single-stepping)

CS=FFFFH (to begin execution at FFFFOH)
IP=0000H

DS=0000H
SS=0000H
ES=0000H

No other registers are acted upon during reset.

1.7 8088 RESERVED 
LOCATIONS

INTERRUPT LOCATION FUNCTION

0 00H-03H Divide by zero
1 04H-07H Single step

Interrupt Pointer Table

All mnemonics lintel Corporation 1981.

244



STD=Set Direction

CLI=Clear Interrupt

STI=Set Interrupt

HLT=Halt

WAIT=Wait

LOCK=Bus Lock 
Prefix

ESC=Escape (To
External Device)

Flags: 0 D I
1

Timing: 2 clocks

Flags: 0 D I 
O

111110 10

Timing: 2 clocks

Flags: 0 D I 
1 

111110 11

Timing: 2 clocks

Flags: 0 D I 

11110 10 0

Timing: 2 clocks

Flags: O D I 

10011011

Timing: 3 clocks

Flags: O D I 

11110000

Timing: 2 clocks

Flags: O D I

T S Z A P C

T S Z A P C

T S Z A P C

T S Z A P C

T S Z A P C

T S Z A P C

T S Z A P C

Timing: 7+EA clocks

1 1 0 1 1 x x x mod xxx r/m

Ail mnemonics »Intel Corporation 1981.

243



NOTES:
If d=1 then “to”; if d=0 then “from.”
If w=1 then word instruction; if w=0 then byte instruction.
If s:w=01 then 16 bits of immediate data form the operand. -
If s:w=11 then an immediate data byte is sign extended to form the 

16-bit operand.
if v=0 then "count”=1; if v-1 then “count” in (CL).
X=don’t care.
Z is used for some string primitives to compare with ZF FLAG.
AL=8-bit accumulator.
AX-16-bit accumulator.
CX-Count register.
DS=Data segment.
OX-Variable port register.
ES-Extra segment.
Above/below refers to unsigned value.
Greater-more positive signed values.
Less-less positive (more negative) signed values.
See section 1.2 for Operand summary.
See section 1.4 for Segment Override summary.

1.6 PROCESSOR 
RESET REGISTER 
INITIALIZATION

Flags=0000H (to disable interrupts and single-stepping)

CS=FFFFH (to begin execution at FFFFOH)
IP=0000H

DS=0000H
SS=0000H
ES=0000H

No other registers are acted upon during reset.

Interrupt Pointer Table

1.7 8088 RESERVED INTERRUPT LOCATION FUNCTION
LOCATIONS

0 00H-03H Divide by zero
1 04H-07H Single step
2 08H-0BH Non-maskable interrupt
3 0CH-0FH One-byte interrupt instruction
4 10H-13H Interrupt on overflow

INTERRUPT TYPE VECTOR 
x 4 IS LOCATION FOR 
ADDRESS OF INTERRUPT 
SERVICE ROUTINE

All mnemonics ’Intel Corporation 1981

244



STD=Set Direction

CLI=Clear Interrupt

STl=Set interrupt

HLT=Halt

WAIT=Wait

LOCK=Bus Lock 
Prefix

ESC= Escape (To 
External Device)

Flags: 0 D I
1

Timing: 2 clocks

Flags: 0 D I 
0

111110 10

Timing: 2 clocks

Flags: O D I 
1

111110 11

Timing: 2 clocks

Flags: 0 D I 

11110100

Timing: 2 clocks

Flags: O D I 

10011011

Timing: 3 clocks

Flags: O D I

1 1 1 1 0 0 0 0

Timing: 2 clocks

Flags: O D I

T S Z A P C

T S Z A P C

T S Z A P C

T S Z A P C

T S Z A P C

T S Z A P C

T S Z A P C

1 1 0 1 1 x x x mod xxx r/m

Timing: 7+EA clocks

All mnemonics ®Intel Corporation 1981.

243



NOTES:
If d=1 then “to”; if d=0 then “from.”
If w=1 then word instruction; if w=0 then byte instruction.
If s:w=01 then 16 bits of immediate data form the operand. •
If s:w=11 then an immediate data byte is sign extended to form the 

16-bit operand.
If v=0 then "count" =1; if v=1 then "count” in (CL).
X-don't care.
Z is used for some string primitives to compare with ZF FLAG.
AL-Z-bit accumulator.
AX-16-bit accumulator.
CX-Count register.
DS=Data segment.
DX=Variable port register.
ES-Extra segment.
Above/below refers to unsigned value.
Greater-more positive signed values.
Less-less positive (more negative) signed values.
See section 1.2 for Operand summary.
See section 1.4 for Segment Override summary.

1.6 PROCESSOR 
RESET REGISTER 
INITIALIZATION

Flags=0000H (to disable interrupts and single-stepping)

CS=FFFFH (to begin execution at FFFFOH)
IP=0000H

DS=0000H
SS=0000H
ES=0000H

No other registers are acted upon during reset.

1.7 8088 RESERVED 
LOCATIONS

INTERRUPT LOCATION FUNCTION

0 00H-03H Divide by zero
1 04H-07H Single step

Interrupt Pointer Table

All mnemonics s Intel Corporation 1981

244



STD=Set Direction

CLI=Clear Interrupt

STI=Set Interrupt

HLT=Halt

WAIT=Wait

LOCK=Bus Lock 
Prefix

ESC=Escape (To
External Device)

Flags: 0 D I
1

Timing: 2 clocks

Flags: 0 D I 
O 

111110 10

Timing: 2 clocks

Flags: 0 D I 
1 

111110 11

Timing: 2 clocks

Flags: 0 D I 

11110100

Timing: 2 clocks

Flags: O D I 

10011011

Timing: 3 clocks

Flags: O D I

1 1 1 1 0 0 0 0

Timing: 2 clocks

T S Z A P C

T S Z A P C

T S Z A P C

T S Z A P C

T S Z A P C

T S Z A P C

T S Z A P CFlags: O D I

1 1 0 1 1 x x x mod xxx r/m

Timing: 7+EA clocks

All mnemonics sIntel Corporation 1981.

243



NOTES:
If d=1 then "to”; if d=0 then "from.”
If w=1 then word instruction; if w=0 then byte instruction.
If s:w=01 then 16 bits of immediate data form the operand. •
If s:w=11 then an immediate data byte is sign extended to form the 

16-bit operand.
If v=0 then "count”=1; if v=1 then "count” in (CL).
X=don't care.
Z is used for some string primitives to compare with ZF FLAG.
AL=8-bit accumulator.
AX =16-bit accumulator.
CX-Count register.
DS=Data segment.
OX-Variable port register.
ES-Extra segment.
Above/below refers to unsigned value.
Greater-more positive signed values.
Less-less positive (more negative) signed values.
See section I.2 for Operand summary.
See section I.4 for Segment Override summary.

1.6 PROCESSOR 
RESET REGISTER 
INITIALIZATION

Flags=0000H (to disable interrupts and single-stepping)

CS=FFFFH (to begin execution at FFFFOH)
IP=0000H

DS=0000H
SS=0000H
ES=0000H

No other registers are acted upon during reset.

1.7 8088 RESERVED 
LOCATIONS

Interrupt Pointer Table

INTERRUPT LOCATION FUNCTION

0 00H-03H Divide by zero
1 04H-07H Single step
2 08H-0BH Non-maskable interrupt
3 0CH-0FH One-byte interrupt instruction
4 10H-13H Interrupt on overflow

All mnemonics “Intel Corporation 1581

244



1.8 8088
INSTRUCTION SET 
MATRIX

NOTES:
b=byte operation 
d=direct
f=from CPU reg 
i=immediate 
ia=immed. to accum. 
id=indirect
is=immed. byte, sign ext.
Mong ie. intersegment 

m=memory 
r/m=EA is second byte 
si-short intrasegment 
sr=segment register 
t=to CPU reg 
v=variable 
w=word option 
z=zero

1.9 MNEMONIC 
INDEX

Mnemonic Page Mnemonic Page Mnemonic Page

AAA ........ ........230 JG ............ .......240 MOV ....... ........226
AAD ........ ........233 JGE ......... .......240 MOVS ..... ........23.6
AAM ....... ........232 JL ............ .......239 MUL ........ ........232
AAS ........ ........232 JLE .......... .......239 NEG ........ ........231
ADC ........ ........229 JMP ......... .......237 NOP ........ ........242
ADD ........ ........229 JNA ......... .......239 NOT ........ ........233
AND ........ ........235 JNAE ....... .......239 OR .......... ........235
CALL ...... ........237 JNB ......... .......240 OUT ........ ........228
CBW ....... ........233 JNBE ....... .......240 POP ........ ........227
CLC ........ ........242 JNE .......... .......239 POPF ...... ........229
OLD ........ ........242 JNG ......... .......239 PUSH ...... ........227
CLI .......... ........243 JNGE ....... .......239 PUSHF .... ........229
CMC ....... ........242 JNL .......... .......240 RCL ........ ........234
CMP ....... ........231 JNLE ........ .......240 RCR ........ ........234
CMPS ..... ........236 JNO ......... .......240 REP ........ ........236
CWD ....... ........ 233 JNP .......... .......240 RET ........ ........238
DAA ..... ........ 230 JNS .......... .......240 ROL ........ ........234
DAS ........ ........ 232 JNZ .......... .......239 ROR ........ ........234
DEC ........ ........ 231 JO ............ .......239 SAHF ...... ........228
DIV ......... ........ 232 JP ............ .......239 SAL ......... ........233
ESC ........ ........ 243 JPE .......... .......239 SAR ........ ......... 234
HLT ........ ........ 243 JPO ......... .......240 SBB ........ ........231
1 DIV ...... ........ 233 JS ............ .......239 SCAS ...... ........237
IMUL ....... ........ 232 JZ ............ .......238 SHL ........ ........233
IN ............ ........ 227 LAHF ....... .......228 SHR ........ ........233
INC ......... ........ 230 LDS ......... .......228 STC ........ ........242
INT ......... ........ 241 LEA .......... .......228 STD ........ ........243
INTO ....... ........ 242 LES .......... .......228 STI .......... ........243
IRET ....... ........ 242 LOCK ...... .......243 STOS ...... ........237
JA ........... ........ 240 LCDS ....... .......237 SUB ........ ........230
JAE ......... ........ 240 LOOP ...... .......240 TEST ...... ........235
JB ........... ........ 239 LOOPE .... .......241 WAIT ...... ........243
JBE ......... ........ 239 LOOPNE .. .......241 XCHG ..... ........227
JCXZ ...... ........ 241 LOOPNZ .. .......241 XL AT ...... ........228
JE ........... ........ 238 LOOPZ .... .......241 XOR ........ ........236

245



246



Appendix J SAMPLE SIRIUS 1 SOFTWARE DRIVERS

PL/M-86 COMPILER SIRIUS Systems Technology, In<^. (c) 1982 S-l Hardware 04/01/82 PAGE 1
Example software drivers for S-l Hardware

SERIES-III PL/M-86 VI.0 COMPILATION OP MODULE HARDWARE
NO OBJECT MODULE REQUESTED
COMPILER INVOKED BY: P.86 TEMP.SRC OPTIMIZER) PAGELENGTH (42) PAGEWIDTH (109) PRINT (:F4:HW.LS) NOOBJECT

STITLE (c) 1982
SSUBTITLE ('Example software drivers for S-l Hardware')

PL/M-86 COMPILER
Example software drivers for S-l Hardware

Seject
SSMALL ROM

1 Hardware: do;

2 1 Declare del literally 'declare';
3 1 Del lit literally 'literally';
4 1 Del addr lit 'address',

ext lit 'external',
init lit 'initial',
intg lit 'integer',
proc lit 'procedure'
ptr lit 'pointer',
pub lit 'public',
rent lit 'reentrant'
ret lit 'return',
struc lit 'structure'
boolean lit 'byte',
true lit '0FFH',
false lit ' 0000H' ;

04/01/82 PAGE 2

PL/M-86 COMPILER
KB: Hardware bit defs

04/01/82 PAGE 3

Ssubtitle('KB: Hardware bit defs')

5 1 del SR?intbit lit ■ 4' ; /* KB shift register interrupt mask in6522 IER/IFR */
6 1 del SR$enable lit 'Och'; /* KB shift register enable in 6522 ACR */
7 1 del CBl$intbit lit '10h*; /* KB RDY edge-sense interrupt mask 6522 PCR */
8 1 del CBl$pos_edge lit '10h' ; /* KB RDY edge-sense control in 6522 PCR */

9 1 del kbSdatabit •lit '40h'; /* KB DATA level */
10 1 del kb$ackctl lit '2' ; /* KB ACK control for 6522 output */
11 1 del kbSTIMEOUT lit '300'; /* error timeout in milliseconds */
12 1 del timerl_ena lit '0c0h' ; /* timer 1 interrupt mask in 6522 IER/IFR */

247



PL/M-86 COMPILER .. . 04/01/82 PAGE 4
KB: Hardware bit defs

Seject

/* KYBRD PORT (e8040.. e804f) */

13 1 del via(16) struc ( /* 6522 port organization */

RB byte,
ra byte,
DDRB byte,
□DRA byte,
TIMER1 word,
TIMER1L word,
TIMER2 word,
SR byte,
ACR byte,
PCR byte,
IFR byte,
IER byte,
RAX byte) at (OeSOOOh);

14 1 del kbSstate byte; /* current state of keyboard stateware */
IS 1 del kbSdata byte; /* constructed data from keyboard */

/* nybble convert table for inverted shift reg */
16 1 del Ctable (*) byte data (0,8,4,Och, 2,0ah,6,0eh,_ l,9,5,0dh, 3,0bh,7,0fh) ;

17 1 del tick lit '50'; /* console clock rate in milliseconds */

PL/M-86 COMPILER 04/01/82 5PAGE
KB:' external routines

signal user about keyboard error state — ring bell
18 1

Process key board event — in external module

Software clock resource — set timeout for interrupt to KBSreset

/* timeout delay in milliseconds
22
23
24

19
20
21

1
2
2

1
2
2

'Ringbell' ;
SOUND module */

del signalSKBSerror lit
/* Ringbell found in

ProcessSEvent: proc(event) byte ext; 
del event byte;

end;

setSKBSclock: proc(Period) ext; 
del Period intg;

end setSKBSclock;

Ssubtitle(’KB: external routines')

PL/M-86 COMPILER SIRIUS Systems Technology, Inc. (c) 1982 S-l Hardware 04/01/82 PAGE 6
KB: Keyboard Stateware

Ssubtitle(1 KB: Keyboard Stateware')
/*
* KB interrupt entry (level 6) 
*/

25 1 kbSirq: proc pub rent;
26 2 do case kbSstate;

/*
* state 0 to state 1: shift register (full) interrupt
*/

27 3 kbstO: do;
28 4 via(4),ACR= via(4).ACR and not SRSenable; /* disable shift register */

/* prepare for interrupt on negative edge of KB RDY */
29 4 via(4).PCR= via(4).PCR and not CBlSpos_edge;
30 4 via(4).IER- 80h or CBlSintbit;
31 4 disable; /* time critical section */
32 4 kbSdata - via(4).SR; /* get KB data from SR (clears SR IRQ) */

248



33 4 via(4).IER= SR?intbit; /* disable SR interrupt */
*//* assert KB ACK control on interrupt

34 4 via(4).RB - via(4).RB or kbSackctl; /* (CB1 IRQ is reset) */
35 4 enable; /* end of critical section */
36 4 kbSstate = 1; /* set to state 1 */
37 4 end;

/*
* state 1 to state 2: interrupt from negative edge on KBSRDY
*/

38 3 kbstl: do;
39 4 disable; /* time critical section */
40 4 if (via(4).RA and kbSdatabit) [ | 0 then /* if data bit is not low then */
41 4 call kbSerror; /* stop bit error has occurred */
42 4 else do; /* prepare for interrupt on positive edge of KB RDY */
43 5 via (4) .PCR-- via (4) .PCR or CBl$pos edge;

/* release KB ACK control on interrupt */
44 5 via(4).RB « via(4).RB and not kbSackctl; /* (CB1 IRQ is reset) */
45 5 kbSstate - 2; /* set to state 2 */
46 5 end;
47 4 enable; /* end of critical section */
48 4 end;

PL/M-86 COMPILER
KB: Keyboard Stateware

04/01/82 PAGE 7

Se-ject

/*
* state 2 to state 0: interrupt from positive edge on KBSRDY
*/

49 3 kbst2: do;
50 4 if (via(4).RA and kbSdatabit) - 0 then /* if data bit is low then */
51 4 call kbSerror; /* stop bit error has occurred */
52 4 else do;
53 5 call kbSreset; /"reset hardware/software for next event */

/* call event processing routine with order of bits reversed to */ 
/* reflect physical key number and event type (open or close) */

54 5 if not ProcessSEvent( shl(Ctable(kbSdata and 0fh),4)
or Ctable(shr(kb$data,4)) ) then

55 5 call signal$KB$error; /* signal error in event process */
56 5 end;
57 4 end;

58 3 end;

59 2 end kb$irq;

PL/M-86 COMPILER
KB: Keyboard support routines

04/01/82 PAGE 8

Ssubtitle('KB: Keyboard support routines')

60
61

1
2

kbSreset: proc rent; 
del dummy byte;

/* puts KB hardware/software into state 0 */

62 2 via(4).IER - CBlSintbit; /* clear CB1 interrupts */
63 2 via(4).RB « via(4).RB and not kbSackctl; /* release kb$ack */
64 2 via(4).ACR - via(4).ACR or SRSenable; /* enable shft reg */65 2 dummy - via(4).SR; /* clr any pending irq */
66 2 via(4).IER - 80h or SR$intbit; /* enable sr interrupts */
67 2 kbSstate = 0; /* init keybrd state */
68 2 call setSKBSclock (0); /* clear timeout counter */
69 2 end kbSreset;

70 1 kbSerror: proc rent;
71 2 via(4).RB - via(4).RB or kbSackctl; /* force kbSack high */
72 2 via(4).IER - 7fh; /* allow no interrupts */
73 2 call setSKBSclock(kbSTIMEOUT); /* time out keyboard */74 2 end kbSerror;

75 1 kbSinit: proc pub rent;

76 2 via(4).RB - via(4).RB and (OFFh-3);
77 2 via(4).ODRA - via(4).ODRA and not kbSdatabit;
78 2 via(4).DDRB = via(4).DDRB or kbSackctl;
79 2 via(4).IER - 7fh;
80 2 via(4).PCR - 0;
81 2 via(4).ACR - 0;

249



82 2 via(2).ACR= (via(2).ACR and OcOh) or 40h;
83 2 via(2).timerlL= tick*1000;
84 2 via(2).IER - timerl_ena and 7fh;
85 2 call kbSreset;
86 2 end kbSinit;

PL/M-86 COMPILER SIRIUS Systems Technology, Inc. (c) 1982 S-l Hardware 04/01/82 PAGE 9
CRTreg: controller chip registers

$SUBTITLE ('CRTreg: controller chip registers')

87 1 DCL CRTS0 byte AT (0E80Q0H); /* CRT-chip address register */
88 1 DCL CRTS1 BYTE AT (0E8001H); /* CRT-chip internal register port */

/*
* Set CRT register
*/

89 1 setSCRTSreg: proc (reg,value) rent;
90 2 del reg byte;
91 2 del value byte;
92 2 CRTS0-- reg; /* select register */
93 2 CRT$1“ value; /* set data */
94 2 end setSCRTSreg;

PL/M-86 COMPILER
CRTreg: cursor-display mode control

04/01/82 PAGE 10

SSUBTITLE ('CRTreg: cursor-display mode control')

95 1 del rastSstart lit '10'; /* CRT reg: cursor-start & cursor-display mode */

96 1 DCL CursorSPAR BYTE; /* VAR: contents for CRT cursor-start raster & cursor display mode */
97 1 del blinkSon boolean; /* FLAG: -0 Blinking cursor on (fast) */
98 1 del cursSoff boolean; /* FLAG: [ 10 Cursor off */

99 1

/*
* Set cursor
*/
setScursor: proc r

to current Cursor parameter 

ent;

byte.

100 2 call setSCRTSr eg(rastSstart,CursorSPAR); /* set raster start reg */
101 2 end setScursor;

/*
* Set block cursor.

102 1
*/ 

BLOCKSCRS:PROC RENT;
103 2 CursorSPAR = CursorSPAR AND OEOh; /* set block cursor */
104 2 call setScursor; /* set cursor mode reg */
105 2 END BLOCKSCRS;

106 1
107 2
108 2
109 2

/*
* Set underscore cursor.
*/

UNDERSCORESCRS:PROC RENT;
CursorSPAR - OOFh OR (CursorSPAR AND OEOh); 
call setScursor;

END UNDERSCORESCRS;

/* set underscore cursor
/* set cursor mode reg

PL/M-86 COMPILER 04/01/82 PAGE 11
CRTreg: cursor-display mode control

Seject
/*
* Return cursor to previous modes: block or underline, steady or flashing
*/

110 1 CURSORSON:PROC RENT;
111 2 cursSoff= false; /* reset cursor off flag */
112 2 if blinkSon then CursorSpar= CursorSpar or 060h; /* set to flashing mode */
114 2 else CursorSpar- CursorSpar and OlFh; /* set to steady mode */
115 2 call setScursor; /* set cursor mode reg */
116 2 END CURSORSON;

250



/*

*/

/*
* Set cursor blinking.

Turn cursor off.

117 1 CURSORSOFF:PROC RENT;
118 2 cursSoff- true; /* set cursor off flag */
119 2 Cursor SPAR = 020h OR (CursorSPAR AND OlFh); /* set to off mode */
120 2 call setScursor; /* set cursor mode reg */
121 2 END CURSORSOFF;

/*

/*
* Set cursor steady.

*/
122 1 CRSSBLINKSON:PROC RENT;
123 2 blink$on= true; /* set

if not cursSoff then CursorSPAR- 060h OR CursorSPAR;
blinking on flag */

124 2 /* set flashing,if not off */
126 2 call setScursor; /* set cursor mode reg */
127 2 END CRSSBLINKSON;

128 1 CRSSBLINKSOFF:PROC RENT;
129 2 blinkSon- false; /* reset blinking on flag */
130 2 if not cursSoff then CursorSPAR- OlFh and CursorSPAR; /* set steady,if not off */
132
133

2
2

call setScursor; /* set cursor mode reg */
END CRSSBLINKSOFF;

PL/M-86 COMPILER
CRTreg: Cursor positioning

04/01/82 PAGE 12

SSUBTITLE ('CRTreg: Cursor positioning')

134
135

1
1

del
del

cursaddrH 
cursaddrL

lit 
lit

14';
15' ;

! /* CRT reg: MSByte of cursor
; /* CRT reg:

location word, bits: xx54S3210 */
LSByte of cursor location word */

/*

*/

Position Cursor to 
and display bank

Absolute Font Cell number

136 1 POSSCursor: proc (CellSnumber) pub rent;
137 2 del CellSNumber word; /* Absolute Font Cell Number & diplay bank */
138 2 call set$CRT$reg (cursaddrL, low(CellSnumber));
139 2 call setSCRTSreg (cursaddrH, high(CellSnumber));
140 2 end POSSCursor;

PL/M-86 COMPILER
CRT: video contrast i brightness

04/01/82 PAGE 13

SSUBTITLE ('CRT: video contrast & brightness')
141 1 DCL CBctrl BYTE AT (0E8040H); /* Contrast & Brightness control register */

/* bits: CCCBSBB— */

/*
* Raise video contrast one level.
*/

142 1 contrastSup: proc rent;
143 2 del a byte;
144 2 if (a:= (CBctrl + 20h) and OEOh) [| 0 then /* add & check upper limit */
145 2 CBctrl- (CBctrl and 01FH) or a; /* set contrast, bits: 765 */
146 2 end contrastSup;

/*
* Lower video contrast one level.
*/

147 1 contrastSdown: proc rent;
148 2 del a byte;
149 2 if (a:- (CBctrl - 20h) and OEOh)-[I 0E0h then /* sub & check lower limit */
150 2 CBctrl- (CBctrl and 01FH) or a; /* set contrast, bits: 765 */
151 2 end contrastSdown;

/*
* Raise video brightness one level.
*/

152 1 brightSup: proc rent;
153 2 del a byte;
154 2 if (a:- (CBctrl + 4) and 01CH) [| 0 then /* add & check upper limit */
155 2 CBctrl- (CBctrl and OEM) or a; /* set brightness, bits: 432 */
156 2 end brightSup;



/*
* Lower video brightness one level.

157 1 brightSdown: proc rent;
158 2 del a byte;
159 2 if (a: = (CBctrl - 4) and Oleh) (| OlCh then /* sub & check lower limit
160 2 CBctrl« (CBctrl and 0E3H) or a; /* set brightness, bits* 432
161 2 end brightSdown;

PL/M-86 COMPILER
CRT: display RAM/Font Cells

04/01/82 PAGE 14

$SUBTITLE ('CRT: display RAM/Font Cells')

162 1 del screenSram word at (OFOOOOh); /* memory address of display RAM */
163 1 del screenSaddr ptr; /* display ram pointer, base of word ARRAY */
164 1 DCL SCREEN based screenSaddr (2000) word; /* ARRAY of Font Cell Pointers */

165 1

/*

*/

del

Screen Buffer Word variables

charSmode word pub; /* CRT attribute bits: 7654S3—- */

166 1 del charSbase word pub; /* CRT Font Cell Pointer base for */

167
168
169
170
171

1
1
1
1
1

DCL 
DCL 
DCL 
del 
del

REVBIT LIT
BGBIT LIT
UNDBIT LIT
INVBIT lit
extraBIT lit

'8000H';
'4000H';
' 2000H';
■lOOOh';
'0800h' ;

/* ASCII symbol index */

/*
* Display symbol from character set (typically ASCII)
* at absolute Font Cell number
* (typically: [line| * (display width| + [column] )
* with current Cursor & Display modes.
*/

172 1 DisplaySsymbol: proc (Symbol$code,Cell$number) pub rent;
173 2 del SymbolScode byte; /* Symbol print code */
174 2 del CellSNumber word; /* Absolute Font Cell Number */
175 2 screen(CellSNumber)= (SymbolScode + charSbase) OR charSmode;
176 2 end DisplaySsymbol;

PL/M-86 COMPILER
CRT hardware initialization

04/01/82 PAGE 15

SSUBTITLE ('CRT hardware initialization') 
/* COMMENT THIS I I!I */

177 1 DCL CRTSconfig (*) BYTE DATA (92,80, 81,0CFh, 25,6, 25,25, 3,14, 0,15, 0,0, 0,0);

178 1 CRTSInit: PROC;
179 2 DCL I BYTE;

180 2 screenSaddr- @screen$ram;

181 2 charSmode- BGBIT;
182 2 charSbase= 20;

183 2 cursSoff’ false;
184 2 blinkSon’ false;
185 2 CursorSPAR= 0;

186 2 DO 1 = 0 TO 0FH;
187 3 CALL SETSCRTSREG (I,(CRTconfig(I)))
188 3 END;

189 2 END CRTSInit;

252



PL/M-86 COMPILER
SOUND variables & hardware defs

04/01/82 PAGE 16

5SUBTITLE ('SOUND variables & hardware defs')

ISO 1 del bellSfreq LIT ' 76' ; /* period of bell tone: frequency- 14.9KHZ */

191 1 del codecSclk word at (0E8084h); /* TIMER1: codec clock frequency */
192 1 del codecSctl byte at (0E808Bh); /* ACR: codec clock control register */
193
194

1
1

del codecSsda
del volume

word 
byte

at (0E8060h); /*
at (0E802Ah); /* SR: volume shift-register

*/
*/

195 1 del volSctl byte at (0E802Bh); /* ACR: SR control register */
196 1 del volSclk word at (0E8028h); /* TIMER2: volume SR clock */

197
198

1
1

del bellSon byte;
del volSlevel byte;

/* FLAG: bell sound presently active 
/♦current volume level (nine levels: 0 —1 8)

*/

199 1 del volStable (*) byte data
/* volume shift pattern lookup table 

(0FFh,7FH,3FH,lFH,0FH,7,3,l,0);
*/

1704/01/82PL/M-86 COMPILER PAGE
SOUND: Bell control

SSUBTITLE ('SOUND: Bell control')

* Software clock resource — set timeout 
*/

for interrupt to BellSclock

200
201
202

1
2
2

setSBELLSclock: proc (Period) ext; 
del Period intg;
end set$BELL$clock;

/* timeout delay in milliseconds */

/*
* CODEC Hardware reset
*/

203
204
205
206

1
2
2
2

BellSinit: proc pub rent;
vol$level= length(volStable)-2; 
call BellSclock;
end BellSinit;

/* set initial volume level 
/* set hardware to a known &

near max 
quiet state

*/
*/

PL/M- 86 COMPILER 04/01/82 PAGE 18
SOUND: Bell control

Seject

207 1 BellSclock: proc pub rent;

208 2 codecSctl = codecSctl and not OCOh; /* disable codec clock */

209 2 codecSsda - 5E00h; /* initialize codec SDA to input mode... */
210 2 codecSsda = OD40h; /* ... to reduce extraneous noise */
211 2 codecSsda - OAASOh;
212 2 codecSsda = OOCOh;

213 2 volSctl = (volSctl and not 3Ch) or lOh; /* set SR 4 T2 volume register modes */
214 2 volSclk =1; /* volume clock frequency set beyond perception */
215 2 volume - volStable(volSlevel); /* set volume to current level */
216 2 bellSon = false; /* set bell state to off */

217 2 end bellSclock;

218 1 RingSbell: proc pub rent;
219 2 if not bellSon then do; /* start bell if sound is off */
221 3 call bellSclock; /* init codec hardware on every bell */
222 3 codecSsda - OfSOh; /* set output waveform to 4 up & 4 down. */

/* a low amplitude triangle wave. */
223 3 codecSctl = codecSctl or OcOh; /* set codec clock to free run */
224 3 codecSclk - bellSfreq; /* set audio pitch frequency */
225 3 bellSon = true; /* set bell state on */
226 3 end;
227 2 call setSbellSclock(100); /* turn off bell in 100 milliseconds */
228 2 end;

253



PL/M-86 COMPILER
SOUND: volume control

04/01/82 PAGE 19

SSUBTITLE ('SOUND: volume control') 
/*
* Raise CODEC volume one level.

229
230

1
2

*/ 
volumeSup: proc rent;

*/if volSlevel |= length(volStable)-1 then /* check upper limit
231
232
233
234

235

2
2
2
2

1

vol?level- length(volStable)-1;
else volSlevel- volSlevel+1;

volume- volStable(volSlevel);
end volumeSup;

/*
* Lower CODEC volume one level.
*/

volumeSdown: proc rent;

/*
/*
/*

set to max volume 
bump level up by one 
set volume register

*/
*/
*/

236
237

2
2

if volSlevel |- length(volStable)-1 then 
volSlevel- length(volStable)-2;

else

/*
/*

check upper limit 
set to max volume-1

*/ 
*/

238

241

2

2

if volSlevel I § 0 then volSlevel- volSlevel- 
volume- volStable(volSlevel);

end volumeSdown;

-1; 
/*

/* drop level by one 
set volume register

*/ 
*/

PL/M-86 COMPILER
SIO: Serial I/O dvrs for TTY: and ULI:

04/01/82 PAGE 20

Ssubtitle('SIO: Serial I/O dvrs for TTY: and ULI:')

/*ctr device dels*/
242 1 del sioctr struc

(adata byte,
bdata byte, 
xxx byte,
ctrctl byte) at (0E0020h);

/*sio device dels*/
243 1 del siodev struc

(adata byte, 
bdata byte, 
actl byte, 
bctl byte) at(0E0040h);

244 1 del rxSavail literally '1',
tx$empty literally '4';

245 1 del serial-params struc
(actrlsb byte, 
actrmsb byte,

/*LSByte of chan a.'s 
/♦MSByte ...

baud rate */
*/

bctrlsb byte,
bctrmsb byte,

/* if [baud| the
50 ---

sn Isb - ??h 
lAh

/*LSByte of chan b.'s 
/*MSByte ...

msb - ??h 1.25Mhz/([baud| *16)
06h 50.00 -0- (min.tol

baud rate

.dist.43.75%)

*/
*/

75 ==- llh 04h 75.00 -0- < 43.75%)
110 --- C6h 02h 110.00 -0- ( 43.75%)
134.5 ---! 44h 02h 134.00 -0.37% ( 40.23%)
150 ----- 08h 02h 150.00 -0- ( 43.75%)
200 ----- 86h 01h 200.00 -0- ( 43.75%)

300 ----- 04h Olh 300.00 -0- ( 43.75%)

600 — 82h OOh 600.00 -0- ( 43.75%)
1.2k ----- 41h OOh 1201.00 +0.08% ( 42.99%)

PL/M-86 COMPILER
SIO: Serial I/O dvrs for TTY: and ULI:

04/01/82 PAGE 21

Seject

1.8k ===|
2Ch
2Bh

OOh
OOh

1775.00
1816.00

-1.39% (
+0.09% (

» 30.54%)
42.88%)

28h OOh 1953.00 -2.36% ( II 21.33)
2.0k ===| 27h OOh 2003.00 +0.15% ( 42.32)

2.4k ===| 21h OOh 2367.00 -1.38% ( fl 30.64%)
20h OOh 2441.00 +1.71% ( 11 27.51%)

254



NOTE: possible noise DOES NOT includes bias distorition 
caused by various cable capacitance effects*/

3.6k ===| 16b
15b

00b
00b

3551.00
3720.00

-1.36%
-+3.33%

( " 30.83%)
( " 12.4%)

lib 00b 4595.00 -4.27% ( " 3.185%)
4.8k ===| 10b 00b 4882.00 +1.02% ( " 34.06%)

09b 00b 8680.55 -9.58% (DISTORTED)
9.6k ===| 08h 00k 9765.56 +1.73% (min.tol.dist.27.32%)

06h 00b 13020.83 -9.58% (DISTORTED)
0 5b 00b 15625.00 +8.51% (DISTORTED)

05h 00b 15625.00 +18.62% of 19.2k (DISTORTED)
19.2k ===| 04h 00b 19531.25 +1.02% (min.tol.dist.34.06%)

min.tol.dist. figure assumes no channel NO2.SS effects.

PL/M-86 COMPILER
SIO: Serial I/O dvrs for TTY: and ULI:

04/01/82 PAGE 22

$eject

/*cr4x (16x)$54$(stops)$(even)$(parenb) = 4?h

cr2a byte, /*bus interface option: 10h
14h

if 
if

baud a 
baud a

[= baud b 
| baud b*/

cr4a byte,
cr4b byte,

/*cr3x (rbits)$ (autoenb)$4$3$2$1$(renb) = ?lh

01 00 ss
ss = 01

- 10
= 11

e
1 
I.
2 
e 
e

p 
stop
.5 s top 
stop
= 1 even
= 0 odd,

P =
P =

byte transparent
1 even or odd 
0 byte transparent*/

cr3a byte,
cr 3b byte,

bb 1 00001
bb = 11 byte transparent cr3x -- Elb

- 01 even,odd cr3x = Sib*/

or 5a byte,
cr5b byte) EXT;

/*cr5x (dtr)$ (tbits)$ (br)$ (tenb)$2$(rts)$0 = 7Ab
1 bb 0 1 0 1 0

bb - 11 space,mark cr5x - EAb
bb - 01 even,odd,no cr5x - AAh*/

PL/M-86 COMPILER 04/01/82 PAGE 23
SIO: Serial I/O dvrs for port A — TTY$INSTAT & TTY$STAT

$subtitle('SIO: Serial I/O dvrs for port A — TTY$INSTAT & TTYSSTAT')

246 1 TTY$in$stat:proc boolean PUB;

247 2 if ( (siodev.actl AND rx$avail) (| 0)
then return(true);

249 2 return(false);

250 2 end TTY$in$stat;

251 1 TTY$stat:proc boolean PUB;

252 2 if i (siodev.actl AND tx$empty) = 0)
then return(true);

254 2 return(false);

255 2 end TTY$stat;

255



PL/M-86 COMPILER 04/01/82 PAGE 24
SIO: Serial I/O dvrs for port A — TTYSGET & TTYSPUT

Ssubtitle('SIO: Serial I/O dvrs for port A — TTYSGET & TTYSPUT')

256 1 TTYSget;proc byte PUB;

/♦user must not activate this procedure if siodev chan, a reg. ptr
is not set to 0 (only [| 0 if user has been mucking with hardware*/

257 2 do while( (siodev.actl AND rxSavail) = 0); /♦wait forever till empty */
258 3 end;
259 2 return(siodev.adata); /♦input form 7201 */

260 2 end TTYSget;

261
262

1
2

TTYSput:proc (char) PUB; 
del char byte;

/♦user must not activate this procedure if siodev chan, a reg. ptr
is not set to 0 (only [| 0 if user has been mucking with hardware*/

263 2 do while( (siodev.actl AND txSempty) = 0); /*wait forever till empty */
264 3 end;
265 2 siodev.adata -- char; /‘output a char */
266 2 return;

267 2 end TTYSput;

PL/M-86 COMPILER
SIO: Serial I/O dvrs for port B — UL1SSTAT & UL1PUT

04/01/82 PAGE 25

Ssubtitle('SIO: Serial I/O dvrs for port B — UL1SSTAT i UL1PUT')
268 1 ULISstat:proc boolean PUB;

269 2

271 2

if ( (siodev.bctl AND txSempty) 
then return(true);
return(false);

- 0)

272 2 end ULlSstat;

273 1 ULlSput:proc(char) PUB;
274 2 del char byte;

/♦user must not activate this procedure if siodev chan, b reg. ptr
is not set to 0 (only [| 0 if user has been mucking with hardware*/

275 2 do while( (siodev.bctl AND txSempty) = 0); /*wait forever till empty */
276 3 end;
277 2 siodev.bdata = char; /♦output a char */
278 2 return;

279 2 end ULlSput;

/*cr4x*/

PL/M-86 COMPILER
& B —

04/01/82 PAGE 26
SIO: Serial I/O dvrs for ports A SIOSINIT

280
281
282

1
2 
2

Ssubtitle('SIO: Serial I/O dvrs for ports A & 
SIO$init:proc PUB;
siodev.actl - OOSOllSOOOb;
siodev.bctl - OOSOllSOOOb;

/♦load timer now; cant touch 7201 chip for 4

B — SIOSINIT')

/♦chan, a reset
/♦chan, b reset

2.5Mhz clocks*/

*/
*/

283
284
285

2
2
2

sioctr .ctrctl -» 36h;
sioctr.adata » serial_params.actrlsb;
sioctr.adata -- serial^params.actrmsb;

/*7$(ctra)S(rl)S(mode)$(bin) */

286
287
288

239
290

2
2
2

2
2

sioctr.ctrctl = 76h;
sioctr.bdata = setial-Params.bctrisb;
sioctr.bdata - serial_params.bctrmsb;

/*cr2a bus interface option*/ 
siodev.actl - 2;
siodev.actl = serial_params.cr2a;

/*7S (ctrb) S (YDS (mode) S (bin)

/*—|cr 4a

*/

*/

256



291 2 siodev.actl = 4; /*— |cr4a */
292 2 siodev.actl = serialsparams.cr4a?
293 2 siodev.bctl = 4; /*— |cr4b */
294 2 siodev.bctl = serial_params.cr4b;

/*cr3x*/
295 2 siodev.actl = 3; /*— |cr3a */
296 2 siodev.actl - serial params.cr3a;
297 2 siodev.bctl = 3; /*—|cr 3b */
298 2 siodev.bctl = serial_params.cr3b;

PL/M-86 COMPILER 04/01/82 PAGE 27
SIO: Serial I/O dvrs for ports A & B — SIOOINIT

Oeject

/*cr5x*/
299 2 siodev.actl = 5; /*—|cr5a */
300 2 siodev.actl = serial_params.cr5a;
301 2 siodev.bctl = 5; /*—|cr5b */
302 2 siodev.bctl - serial—params,cr5b;

/*cr0x reset ext/st intrs to enable modem control sense—| autoenb chans.
also —| crlx, set intr params*/

303 2 siodev.actl -- 0000109001b;
304 .2 siodev.actl = 0;’ /*no intrs */
305 2 siodev.bctl -- 0090100001b;
306 2 siodev.bctl = 0; /‘no intrs */

307 2 end sioOinit;

PL/M-86 COMPILER
PPORT -- centronics interface routines

04/01/82 PAGE 28

Ssubtitle ('PPORT — centronics interface routines ')

/*
* This module implements the initialization, LISTS!, and LIST functions
* for a Centronics-compatible parallel printer interface, using the
* 6522 VIA chip.

* Our entry points are named pp$init, LPTOstat, and LPTSput respectively,
* it's up to our caller to decode the I/O byte and call the approp-
* riate routines.
*/

PL/M-86 COMPILER
PPORT — centronics interface routines

04/01/82 PAGE 29

$eject
308 1 declare ppObase pointer; /* baseaddr for a 6522 */
309 1 declare pp based ppObase structure ( 

rb byte, 
ra byte, 
ddrb byte, 
ddra byte, 
tlcl byte, 
tlch byte, 
till byte, 
tllh byte, 
t2cl byte, 
t2ch byte, 
sr byte, 
acr byte, 
per byte, 
ifr byte, 
ier byte, 
rax byte 

);
/*
* Bit definitions for Centronics-style parallel 
*/

/* 6522 template
/* out-in reg 'b'
/* out-in reg 'a'
/* data-direction, reg ' b'
/* data-direction, reg 'a'
/* tl ctr(r)/lat(w) lo
/* tl ctr hi
/* tl latch lo
/* tl latch hi
/* t2 ctr(r)/lat(w) lo
/* t2 ctr hi
/* shift register
/* auxiliary Ctrl reg
/* peripheral Ctrl reg
/* interrupt fig register
/* interrupt enbl register
/* out-in reg 'a' NO HANDSHAKE 

interface, 'vial'.

*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
»/ 
*/ 
*/ 
*/ 
*/

310 1 declare vialObase literally '0e8020h';
declare dsOl literally '01h';

/* baseaddr for this chip */
311 1 /* data strobe (pbO) */
312 1 declare piOh literally '02h'; /* this datum for vfu (pbl) */
313 1 declare bzOh literally '20h'; /* printer busy (pb5) */

257



314 1 declare ak$l literally '40h';
315 1 declare sl$h literally '80h';

/*
* Bit definitions for mul,ti-use pio, 'via2'.
*/

316 1 declare via2$base literally '0e8040h';
317 1 declare teSh literally 'Olh';

/* printer ack (pb6)
/* on-line and no error (pb7)

/* baseaddr for this chip
/* talk-enable line

PL/M-86 COMPILER
PPORT — centronics interface routines

04/01/82 PAGE 30

Seject
/*
* initial setup for parallel printer port
* Note we use via2 during this setup to get talk-enable turned on, and
* thus someone MUST ALREADY HAVE VIA2 INITIALIZED.
*/

318 1 ppSinit; procedure public;
319 2 ppSbase = via2$base; /* point to secondary chip for te */
320 2 pp.rb - pp.rb or teSh; /* set 'talk enbl' */
321 2 ppSbase - vialSbase; /* point struc at primary chip */
322 2 pp.ra = 0; /* ra is dataport, init with O's */
323 2 pp.ddra - Offh; /* set all ra bits as outgoing */
324 2 pp.rb - ds$l; /* rb is ctrlport, init no ds/pi */
325 2 . pp.ddrb = dsSl or piSh; /* these 2 only are outgoing */

/* cal/ca2 cbl/cb2 not used */
/* timers/shiftreg not used */

326 2 end ppSinit;

PL/M-86 COMPILER SIRIUS Systems Technology, Inc. (c) 1982 S-l Hardware 
PPORT — centronics interface routines

04/01/82 PAGE 31

Seject

/*
* Test status of printer, return true if on-line and not busy, else
* false. For some reason, the Altos code explicitly deasserted data
* strobe before testing; we'll assume that this represents an Altos
* fubar and is not required here.
*/

327 1 LPTSstat: procedure byte public;
328 2 if (pp.rb and (slSh or bzSh)) -- sl$h then return Offh;
330 2 return 0;
331 2 end LPTSstat;

/*
* Put one character to the printer interface. 
*/

332 1 LPTSput: procedure(ch) public;
333 2 declare ch byte;
334 2 do while LPTSstat -» 0; end;
336 2 pp.ra -» ch;
337 2 disable;
338 2 pp.rb -» pp.rb and not ds$l;
339 2 pp.rb -- pp.rb or dsSl;
340 2 enable;
341 2 return;
342 2 end LPTSput;

/* wait for printer ready */
/* put outgoing char on the port */

/* assert data strobe */
/* deassert data strobe »/

258



PL/M-86 COMPILER
Example software drivers for S-l Hardware

04/01/82 PAGE 32

SSUBTITLE ('Example software drivers for S-l Hardware')

343 1 end Hardware;

MODULE INFORMATION:

CODE AREA SIZE - 073EH 1854D
CONSTANT AREA SIZE - OOOOH 0D
VARIABLE AREA SIZE - 0014H 20D
MAXIMUM STACK SIZE - 000EH 14D
807 LINES READ 
0 PROGRAM WARNINGS 
0 PROGRAM ERRORS

END OF PL/M-86 COMPILATION

259





INDEX

A Addition  66
Address generation  13
Addressing modes  28, 29
Addressing structures ........ 31
Arbitrator circuit  39
Arithmetic instructions  63
Assembly language  .................................................. 223
Attribute bits  40, 41
Audio amplifier  37
Audio clock  36
Audio hardware  109
Audio section  36
Auxiliary carry flag  8

B Base address  11
Based addressing  31
Based indexed addressing  33
Bit clock  36
Bit manipulation instructions  69
Bit-mapped" display  44
Bit shift ........ 48
Boolean operators  69
Boot ROM  35
Breakpoint interrupt  27
Brightness .............................................. . 43
Brightness and contrast control  97
Bus control logic .............................. 147
Bus interface unit  4, 5
Byte ready  19
Byte-ready strobe  45

C Carry flag  8
Centronics interface  1, 36
Checksum  45, 46, 50
CLI (clear interrupt-enable)  21
Clock and reset control logic .......................... 154
Clock recovery  45, 49
Coder/Decoder (CODEC)  36, 109, 122
Companding  38, 123
Conditional Transfers  77
Continually-Variable-Slope Delta (CVSD) modulation  109
Contrast  43
Control port .......................................................................... 1, 36
Control register 0  155
Control register 1  115, 121, 157
Control register 2  115, 121
Control register 2 (channel A)  159
Control register 2 (channel B)  161
Control register 3  116, 121, 161
Control register 4 ...................................................... 163
Control register 5  164
Control register 6 .................................................... 167

261



Control register 7  167
CPU (central processing unit)  3
CRTC device operation  ............................... 99
CS register  7
Cursur control  .................... . .................. 107

D Data block  45
Data block ID  45
Data bytes  50
Data field  50
Data ID  50
Data register ......................................... 6
Data sync ............   50
Data transfer  45
Data transfer instructions ....................................... 58
Delta modulation ........................................................................  39, 122
Digital recording  36
Direct addressing  30
Direct memory access  19
Direction flag  8
Disk drive assembly  ........ 3, 44
Disk drive interface  45
Disk interface ....................... 38
Display ........... 39
Display circuit ..................... 97
Display contrast ....................   43
Display system ......................... 95
Display unit  53
DIV (division) ......... 22
Division  68
DMA control logic  152
Double words  11
DS register ................................. 7
Dual port memory ........................... 39
Dynamic relocation  16

E Effective address  29
8048  49
8088 instruction set .................................................................... 245
8088 register  223
8080/8085  9
8253 timer chip  36
ES register ............ 7
Execution unit  4, 5
External synchronization  81
External interrupts .................................................................... 21
Expansion bus  39, 83

F Fan ............................................. 51
Fetch overlap  4
FIFO  37
Flag operations  80
Flags  8, 65
Fold-back limiting  51
Font cells ............................................... 41

262



Font cell address  41
Font cells  40, 42
Font pointer ,............................................................ 40
Formatting  46
Fuse  51

G Gap 1  50
Gap 2  50
GCR (group code recording)  49
GCR read circuit  45
General register  6

H Header ID  50
Header search  45
Header sync  50
Head positioning  47
High/Low intensity  41
High resolution mode '..............................................  43,97
HLT (halt)  28
Hold (HOLD) .............................. 19
Hold acknowledge (HLDA)  19

I IDIV (integer divide)  22 
IEEE 488  1,36 

Indexed addressing ..........................................................32
Index registers  6 
Input/Output (I/O) functions  35 
Instruction pointer  8 
Instruction set  57 
INT 3 (breakpoint interrupt)  27 
Interface signals to CPU  99 
Interface signals to display circuits  100 
Interlace  53, 106 
Interlace sync mode display  106 
Interlace sync and video mode display  106 
Internal interrupts  22 
Internal registers  101 
Interrupt control logic  148 
Interrupt-enable flag  9 
Interrupt instructions  78 
Interrupt nesting  25 
Interrupt pointer table  23 
Interrupt procedures  23, 25 
Interrupt request  21 
Interrupts  19, 21, 25 
INTO (interrupt on overflow)  22 
INTR  21 
I/O address assignments  89 
I/O port addressing  35 
I RET (interrupt return)  21, 26 
Iteration control  78

263



K Keyboard  125
Keyboard electrical specifications ........................................ 125
Keyboard interface  38
Keyboard mechanical specifications  125
Keyboard unit  55

L Light pen  .................................................. 36
Line filters  51
LOCK (lock) ...................................................................... 21
Logical address ..............................................  13
Logical instructions  69
Low pass filter ,........................................... 38

M Main logic board .......................................................... 3
Memory  10
Memory access ........................................................................ 18
Memory-mapped I/O ...................... 18
Modem  36
Motor speed control  47
Motor speed variation ..  47
MPSC2  129, 137
MPSC2 asynchronous mode  135,139,144
MPSC2 application hints  193
MPSC2 COP synchronous mode  140, 145
MPSC2 pin description  130
MPSC2 receiver . 142
MPSC2 registers  154
MPSC2 SDLC (/HDLC BOP synchronous) mode  141, 146
MPX2 synchronous bit-oriented protocols  135
MPSC2 transmitter .................................................... 137
Multiplication  67

N NMI (nonmaskable interrupt)........................................................  22, 25
Nondisplay  ........ 41
Noninterface mode display  106
Nonmaskable interrupt  ..................  21

O Offset value  11
Overflow flag  9, 21

P Packed decimal number .............................................. 64
Parallel port  1
Parity  117
Parity flag  8
Phase-locked loop (PLL)  49
Physical address  13, 29
Pointers  6, 11
Power supply  3, 51
Power switch :............................................................ 51
Priority order  23

264



Processor control instructions............................................................ 79
Processor halt...................................................................................... 28
Processor-initiated interrupts.............................................................. 25
Processor unit........................................................................................ 3
Program transfer instructions ............. '............................................. 74
Programmable interrupt controller...................................................... 21

R Reading data ...................................................................................... 45
Read channel........................................................................................ 49
Read signal amplitude.......................................................................... 47
Read/Write head................................................................................... 49
Receive data first-in first-out register .............................................. 118
Recording density................................................................................. 47
Register indirect addressing............................................................... 31
Register operands.............................................................................. 26
Repeat.................................................................................................. 21
Reserved memory locations ................................................................ 18
Reverse video...................................................................................... 41
Rotates................................................................................................ 70
Rotational period .................................................................................. 51
RS-232 (V-24).................................................................................. 1. 36

8 Screen buffer...................................................................................... 40
Screen buffer words............................................................................ 96
Sector components ............................................................................ 50
Sector format...................................................................................... 50
Sector header................................................................................ 45, 50
Sector ID.............................................................................................. 50
Sector number.................................................................................... 45
Segmentation...................................................................................... 12
Segment override.......................................................................... 15, 21
Segment registers ................................................................................ 7
Serial ports.......................................................................................... 36
7201 communications controller...................................................... 129
Shifts.................................................................................................... 70
Signed binary numbers...................................................................... 64
Sign flag................................................................................................ 9
Single-step mode................................................................................ 26
6522 versatile interface...................................  199
6522 versatile interface electrical characteristics............................ 200
6522 versatile interface functional description................................ 200
6522 versatile interface peripheral interface characteristics.......... 203
6522 versatile interface pins............................................................ 206
6522 versatile interface read'timing characteristics........................ 201
6522 versatile interface write timing characteristics........................ 202
Software attribute................................................................................ 41
Software-initiated interrupt............................   26
Sound output...................................................................................... 36
Sound quality...................................................................................... 37
Speaker....  36
Speed control...................................................................................... 47
Speed control processor (SCP)............................................................ 47
SSDA (synchronous serial data adapter).................................. 36, 109
SSDA interface signals for CPU....................................................... 112

265



SSDA operation  ............................................................................ 110
SSDA registers  .......................................... 114
88 register .............................................. 7
Stack pointer  17
Stacks  17
Stack segment .................................. 17
Status register  119, 120
Status register 0  168
Status register 1  170
Status register 2 ..................... 172
STI  21, 25
Storage organization ..  10
Strikeover .............................................................................. 41
Strings.  15
String addressing  34
Strings  15
Subtraction  66
Supervisor call  26
Swivel ramp  53
SYN  45
Sync-code register  117
Sync detection  45
System reset  27

T Test (TEST)  19
Text mode ......................... 39
Tones. ..........................................................................  36
Track format ....................................................................................  51
Track ID  50
Track numbers  45
Trap flag  9, 22, 26
Trim erase  ................ 46
Type 0 interrupt ............................................................................ 22
Type 1 interrupt............................................................................  22, 26
Type 3 interrupt . 27

U Unconditional transfers ..  76
Underline/strikeover ................................  41
Unpacked decimal numbers . 64
Unsigned binary numbers  64

V Verification  46
Voice  36
Volume control  36
Volume level  36

W Wait (WAIT)  19,45
Word data  11
Wrap around - 14
Write channel -...................................... 50
Writing data  46

Z Zero flag  9
Zones  48, 51

266



SUPPLEMENTAL TECHNICAL REFERENCE MATERIAL

APPLICATION NOTE:

Revision 0

002

1



2



Supplemental Technical Reference Material

Application Notes: 002

The following manual contains much general technical information 
on the Victor 9000 microcomputer. It is intended to be used as 
both a sales and support aid.

Many questions asked to the Victor Technologies Hot-Line staff 
have been answered in this manual; the manual will be updated by 
means of loose-leaf inserts sent directly from the Victor 
Headquarters — so hold onto this copy.

In the future, enhancements will consist of questions regularly 
asked of the Hot-Line; if you have any suggestions as to how this 
document could be improved, please fill in and return the Reader 
Comment Form you will find at the rear of the manual.

There are several sample software programs contained within this 
manual, most have been carefully tested; one program, the 
Transmit Page program written in MS-BASIC, is correct, but a bug 
in the latest release of MS-BASIC from Microsoft prevents it from 
working; the program will work once the bug has been fixed. The 
Pascal and Macro-86 examples of this program do work properly.

If you find any bugs in any other software program, or have any 
other problems or questions, please use the Reader Comment Form 
to let us know.

Chris Williams
Snr. Software Engineer

1



(c) 1983 by VICTOR. (R)

All rights reserved. This publication contains proprietary 
information which is protected by this copyright. No part of this 
publication may be reproduced, transcribed, stored in a retrieval 
system, translated into any language or computer language, or 
transmitted in any form whatsoever without the prior written 
consent of the publisher. For information contact:

VICTOR Publications
380 El Pueblo Road
Scotts Valley, CA 95066 
(408) 438-6680

TRADEMARKS

VICTOR is a registered trademark of Victor Technologies, Inc.

NOTICE

VICTOR makes no representations or warranties of any kind 
whatsoever with respect to the contents hereof and specifically 
disclaims any implied warranties of merchantability or fitness 
for any particular purpose. VICTOR shall not be liable for errors 
contained herein or for incidental or consequential damages in 
connection with the furnishing, performance, or use of this 
publication or its contents.

VICTOR reserves the right to revise this publication from time to 
time and to make changes in the content hereof without obligation 
to notify any person of such revision or changes.

First VICTOR printing March 1983.

2



CONTENTS

1. Victor 9000 System Overview Page Rev
1.1 Computer ......................  1-1 0
1.2 Memory ........................  1-1 0
1.3 Disk System ...................  1-2 0
1.4 Display System ................  1-3 0
1.5 Keyboard ......................  1-4 0
1.6 Memory Map ..................... 1-5 0

1.6.1 MS-DOS ..................  1-6 0
1.6.2 CP/M-86 .................  1-7 0

2. Display Driver Specifications
2.1 Overview ......................  2-1 0
2.2 Screen Control Sequences  ....  2-2 0
2.3 Multi-Character Escape

Sequences ...................  2-3 0
2.3.1 Cursor Functions ........  2-3 0
2.3.2 Editing Functions .......  2-4 0
2.3.3 Configuration Functions .. 2-6 0
2.3.4 Operation Mode

Functions..............  2-7 0
2.3.5 Special Functions .......  2-8 0

2.4 Direct Cursor Addressing
- Examples ..................  2-10 0

2.4.1 Microsoft MS-BASIC ......  2-10 0
2.4.2 Microsoft MACRO-86 ......  2-11 0
2.4.3 Microsoft MS-Pascal .....  2-12 0

2.5 Transmit Page - Examples ......  2-13 0
2.5.1 Microsoft MS-BASIC ......  2-13 0
2.5.2 Microsoft MACRO-86 ......  2-14 0
2.5.3 Microsoft MS-Pascal .....  2-15 0

3. Input/Output Port Specifications
3.1 Device Connection .............  3-1 0
3.2 Parallel Printer Connection .... 3-2 0
3.3 Parallel Cable Requirements .... 3-2 0
3.4 Serial Printer Connection .....  3-3 0
3.5 Serial Cable Requirements .....  3-4 0
3.6 Operating System Port

Utilities ..............  3-5 0
3.6.1 SETIO - List Device
Selection .......   3-5 0

3.6.2 STAT - List Device
Selection ........   3-5 0

3.6.3 PORTSET - Baud Rate
Selection ...................  3-6 0

3.6.4 PORTCONF - Baud Rate
Selection ......   3-6 0

I



3.7 Serial Input/Output Ports .....  3-7 0
3.8 Baud Rate / Transmission

- Examples ..................  3-8 0
3.8.1 Microsoft MS-BASIC ......  3-9 0
3.8.2 Microsoft MACRO-86 ......  3-11 0

Appendices Page Rev

Appendix A: ASCII Codes
A.1 ASCII Codes used in 

the Victor 9000 .  A-l 0
A. 2 ASCII/Hex/Decimal Chart ... A-2 0

Appendix B: Keyboard
B. l Victor 9000 Keyboard

Layout .................  B-l 0

Appendix C: Input/Output Ports
C. l Parallel (Centronics)

Port .................... C-l 0
C. 2 Serial (RS232C) Port .......C-2 0
C.3 IEEE-488 Port ............ C-3 0
C. 4 Control Port ............. C-4 0

Appendix D: Assembler Examples
D. l MACRO-86 Assembler

Shell ..................  0-1 0
D. 2 ASM-86 Assembler Shell .... 0-2 0

Appendix E: File Header Structure
E. l EXE File Header

Structure ..............  E-l 0

Appendix F: Victor 9000 Specifications
F. l Technical Specifications .. F-l 0
F. 2 Physical Specifications ... F-2 0

Appendix G: Glossary
G. l Glossary of Terms ........  G-l 0

Appendix H: MS-DOS Base Page Structure
H. l Base Page Structure ......  H-l 0

II



1. VICTOR 9000 SYSTEM OVERVIEW

1.1 COMPUTER

The Victor 9000 computer is based upon the Intel 8088 16-bit 
microprocessor. This processor chip is directly related to the 
Intel 8086 16-bit microprocessor, but with two subtle 
differences:

8088 8086
8-bit data bus 16-bit data bus
4 instruction look-ahead 6 instruction look-ahead

The major difference, the 8-bit data bus, has some effect on the 
relative abilities of the two chips; the main difference is that 
while the 8086 can load an entire 16-bit word of data directly, 
the 8088 has to load two 8-bit bytes to achieve the same result - 
the outcome of which being that the 8088 processor is a little 
slower than the 8086. The loss of speed, however, is balanced by 
the fact that the cost of the main circuit board and add-on 
boards are lower than for the wider 8086 requirement. This means 
that the end-user will have the best cost/performance ratio for a 
16-bit computer.

1.2 MEMORY

The Victor 9000 has a maximum memory capacity of 896 kilobytes of 
Random Access Memory or "RAM" (a measure of a computer's internal 
storage capacity; a "kilobyte" is 1,024 bytes). A byte is able to 
store one character of data - thus the Victor 9000, with full 
896k memory capacity is able to hold, internally, nearly 1 
million characters - compare this figure with the older 280 or 
6502 computers that have a maximum memory capacity of less than 
70,000 characters or 64k bytes of RAM.

1.3 DISK SYSTEM

The Victor 9000 has several integral disk configurations 
available; these are:

o Twin single-sided 600k bytes per drive 5 1/4-inch 
mini floppies, giving a total capacity of 1.2Mbytes 
(1,200kbytes) available on-line.

o Twin double-sided 1.2M bytes per drive 5 1/4-inch 
minifloppies, giving a total capacity of 2.4Mbytes 
(2,400kbytes) available on-line.

o Single 10M byte hard disk (Winchester) plus a single 
doublesided 1.2M byte 5 1/4-inch mini-floppy, giving a total

1-1



capacity of 11.2Mbytes (11,200kbytes) available on-line.

Future disk systems will include an external 10Mbyte hard disk 
(Winchester) that will allow expansion of any of the above 
systems by a further 10,000k bytes.

Although the Victor 9000 uses 5 1/4-inch minifloppies of a 
similar type to those used in other computers, the floppy disks 
themselves are not readable on other machines, nor can the Victor 
9000 read a disk from another manufacturers machine. The Victor 
9000 uses a unique recording method to allow the data to be 
packed as densely as 600kbytes on a single-sided single-density 
minifloppy; this recording method involves the regulation of the 
speed at which the floppy rotates, explaining the fact that the 
noise from the drive sometimes changes frequency.

1.4 DISPLAY SYSTEM

The display unit swivels and tilts to permit optimum adjustment 
of the viewing angle, and the unit incorporates a 12-inch 
antiglare screen to prevent eye strain. The display, in normal 
mode, is 25 lines, each line having 80 columns. Characters are 
formed, in normal mode, in a 10-X-16 font cell, providing a 
highly-readable display. The screen may be used in high- 
resolution mode, providing a bit-mapped screen with 800-X-400 dot 
matrix resolution. The high-resolution mode is available only 
under software control, there is no means of simply "switching" 
in to high-resolution. Victor Technologies has provided software 
to allow full use of the screen in high-resolution mode in the 
Graphics Tool Kit.

Character sets are "soft" - that is they may be substituted for 
alternative character sets of the users choice, or creation. Only 
one 256-character character set may be displayed on the screen at 
one time - multiple character sets cannot, currently, be 
displayed simultaneously - but this feature may well become 
available in the future. Character set manipulation software is 
available in both the Graphics and Programmers Tool Kits.

1.5 KEYBOARD

Several different types of keyboards are offered. Each keyboard 
is a separate, low-profile module with an optional palm rest for 
ease of use. Every key is programmable, permitting the offering 
of a National keyboard in each country in which it is marketed. 
As a result, the keyboard can be customized to satisfy the 
requirements of foreign languages and so that striking a key 
enters a character or predetermined set of commands.

Keyboards are as soft as the character sets - this allows a 
keyboard to be generated to match a newly created or special 
character set. Each key on the keyboard has three potential 

1-2



states; the unshifted, shifted and alternate. The unshifted mode 
is accessed when the shift key is not depressed along with the 
desired key; the shifted mode is accessed when the shift key is 
depressed along with the desired key; and the alternate mode is 
accessed when the ALT key is depressed along with the desired 
key. Keyboard manipulation software is available in both the 
Graphics and Programmers Tool Kits.

1.6 MEMORY MAP

The Victor 9000 is currently supplied with two major disk 
operating systems; CP/M-86 from Digital Research, and MS-DOS from 
Microsoft. Athough these two operating systems appear 
superficially similar, they are quite different in their 
operation, program interfacing techniques, and their memory 
structure. The following diagrams are the memory maps for CP/M-86 
and MS-DOS; you will notice that some aspects of the machine 
never change, such as the screen RAM and interrupt vector 
locations, these areas are hardware defined, and as such never 
alter. The memory maps for MS-DOS and CP/M-86 are not fixed in 
the Victor 9000, thus some of the elements of the map will not be 
specific; this is not to be deliberately vague, but improvements 
to the performance aspects of the software do take place forcing 
the diagrams to be unspecific to some degree.

1.6.1 MEMORY MAP — MS-DOS OPERATING SYSTEM

FFFFF 
Boot Proms

FC000 
Reserved for Future Expansion

F4000 
Screen High-Speed Static RAM

F0000 
Memory-Mapped I/O Space

E0000

etc. BIOS
256k=3FFF0 Operating System ----------
128k=lFFF0 MS-DOS

Command - Resident Portion 
Command - Transient Portion

Transient Program Area (TPA)

Alternate Character Set 4k bytes

128 Character Set 4k bytes

Logo 2k bytes

1-3



00480
"Stub” - Jump Vectors 128 bytes

00400
Interrupt Vector Table Ik bytes

00000

1.6.2 MEMORY MAP — CP/M-86 OPERATING SYSTEM

FFFFF
Boot Proms

FC 000
Reserved for Future Expansion 

F4000
Screen High-Speed Static RAM

F0000
Memory-Mapped I/O Space 

E 000 0

BIOS
Operating System -----------

BOOS

Transient Program Area (TPA)

Alternate Character Set 4k bytes

128 Character Set 4k bytes

00480
Logo 2k bytes

00400
"Stub" - Jump Vectors 128 bytes

00000
Interrupt Vector Table Ik bytes

1-4



2. DISPLAY DRIVER SPECIFICATIONS

2.1 OVERVIEW

The display system in the Victor 9000 is, like so much of the 
machine, soft. The operating system BIOS contains the Zenith H-19 
video terminal emulator, which is an enhanced control set of the 
DEC VT52 crt. The BIOS takes all ASCII characters received and 
either displays them or uses their control characteristics. The 
control characters 00hex (00decimal) thru IFhex (31decimal) and 
7Fhex (127decimal) are not displayed under normal circumstances. 
The non-display characters previously discussed, plus those 
characters having the high-bit set, being 80hex (128decimal) 
through FFhex (255decimal), may be displayed on the screen under 
program control, but extensive use of these characters is easier 
with the Victor Technologies character graphics utilities.

Most of the control characters act by themselves; for example, 
the TAB key (Control I, 09hex, 09decimal) will cause the cursor 
to move to the right to the next tab position. For more complex 
cursor/screen control the multiple character escape sequences 
should be used. The control characters, and the escape sequences 
are fully described below.

2.2 SCREEN CONTROL SEQUENCES

Single Control Characters

Bell (Control G, 07hex, 07decimal - ASCII BEL)
This ASCII character is not truly a displaying character, 
but causes the loudspeaker to make a beep.

Backspace (Control H, 08hex, 08decimal - ASCII BS)
Causes the cursor to be positioned one column to the left of 
its current position. If at column 1, it causes the cursor 
to be placed at column 80 of the previous line; if the 
cursor is at column 1, line 1, then the cursor moves to 
column 80 of line 1.

Horizontal Tab (Control I, 09hex, 09decimal - ASCII HT) 
Positions the cursor at the next tab stop to the right. Tab 
stops are fixed, and are at columns 9, 17, 25, 33, 41, 49, 
57, 65, and 72 through 80. If the cursor is at column 80, it 
remains there.

Line Feed (Control J, 0Ahex, 10decimal - ASCII LF)
Positions the cursor down one line. If at line 24, then the 
display scrolls up one line. This key may be treated as a 
carriage return — see ESC x9.

2-1



Carriage Return (Control M, 0Dhex, 13decimal - ASCII CR) 
Positions the cursor at column 1 of the current line. This 
key may be treated as a line feed — see ESC x8.

Shift Out (Control N, 0Ehex, 14decimal - ASCII SO)
Shift out of the standard system character set, and shift 
into the alternative system character set (Character set 1, 
61). This gives the ability to access and display those 
characters having the high-bit set - being those characters 
from 80hex (128decimal) through FFhex (255decimal).

Shift In (Control 0, 0Fhex, 15decimal - ASCII SI)
Shift into the standard system character set (Character set 
0, G0). This gives the ability to access and display the 
standard ASCII character set - being those characters from 
00hex (00decimal) through 7Fhex (127decimal).

2.3 MULTI-CHARACTER ESCAPE SEQUENCES

2.3.1 CURSOR FUNCTIONS

Escape 
Sequence/ 
Function ASCII Code Performed Function

ESC A IB, 41hex
27, 65dec

Move cursor up one line without 
changing column.

ESC B IB, 42hex
27, 66dec

Move cursor down one line without 
changing column.

ESC C IB, 43hex
27, 67dec

Move cursor forward one character 
position.

ESC D IB, 44hex
27, 68dec

Move cursor backward on character 
position.

ESC H IB, 48hex
27, 72dec

•Move cursor to the home position. 
Cursor moves to line 1, column 1.

ESC I IB, 49hex
27, 73dec

Reverse index. Move cursor up to 
previous line at current column 
position.

ESC Y 1 C IB, 59hex
27, 89dec

Moves the cursor via direct 
(absolute) addressing to the line
and column location described by 
’1* and 'c'. The line ('1') and 
column ('c') coordinates are binary 
values offset from 20hex 
(32decimal). (For further 
information on the use of direct 
addressing see section 2.4).

2-2



Escape
Sequence/
Function ASCII Code

ESC j IB,
27,

6Ahex 
106dec

ESC k IB,
27,

6Bhex
107dec

ESC n IB,
27,

6Ehex 
110dec

Performed Function

Store the current cursor position. 
The cursor location is saved for 
later restoration (see ESC k) .

Returns cursor to the previously 
saved location (see ESC j).

Return the current cursor position. 
The current cursor location is 
returned as line and column, offset 
from 20hex (32decimal), in the next 
character input request.

2.3.2 EDITING FUNCTIONS

Escape
Sequence/
Function ASCII Code

ESC @ IB, 4 0hex
27, 64dec

ESC E IB, 4 5hex
27, 74dec 

67

ESC J IB, 4Ahex
27, 74dec

ESC K IB, 4Bhex
27, 75dec

ESC L IB, 4Chex
27, 76dec

ESC M IB, 4Dhex
27, 77dec

Performed Function

Enter the character insert mode. 
Characters may be added at the 
current cursor position, as each 
new character is added, the 
character at the end of the line is 
lost.

Erase the entire screen.

Erase from the current cursor 
position to the to the end of the 
screen.

Erase the screen from the current 
cursor position to the end of the 
line.

Insert a blank line on the current 
cursor line. The current line, and 
all following lines are moved down 
one, and the cursor is placed at 
the beginning of the blank line.

Delete the line containing the 
cursor, place the cursor at the 
start of the line, and move all 
following lines up one - a blank 
line is inserted at line 24.

2-3



Escape 
Sequence/
Function ASCII Code Performed Function

ESC N IB, 4Ehex
27, 78dec

Delete the character at the cursor 
position, and move all other 
characters on the line after the 
cursor to the left one character 
position.

ESC 0 IB, 4Fhex
27, 79dec

Exit from the character interest 
mode (see ESC @).

ESC b IB, 62hex
27, 98dec

Erase the screen from the start of 
the screen up to, and including, 
the current cursor position.

ESC 1 IB, 6Chex 
27, 108dec

Erase entire current cursor line.

ESC o IB, 6Fhex
27, llldec

Erase the beginning of the line up 
to, and including, the current 
cursor position.

2.3.3 CONFIGURATION FUNCTIONS

Escape 
Sequence/ 
Function

ESC x Ps

ASCII Code

IB, 78hex
27, 120dec

Performed Function

Sets mode(s) as follows:

Ps _____Mode________

31hex, 49dec 1 Enable 25th line
33hex, 51dec 3 Hold screen mode on
34hex, 52dec 4 Block cursor
35hex, 53dec 5 Cursor off
38hex, 56dec 8 Auto line feed on receipt 

of a carriage return.
39hex, 57dec 9 Auto carriage return on 

receipt of line feed
41hex, 65dec A Increase audio volume
42hex, 66dec B Increase CRT brightness
43hex, 67dec C Increase CRT contrast

2-4



Escape 
Sequence/
Function ASCII Code Performed Function

ESC y Ps IB, 79hex
27, 120dec

Resets mode(s) as follows:

Ps Mode

31hex, 49dec 1 Disable 25th line
33hex, 51dec 3 Hold screen mode off
34hex, 52dec 4 Underscore cursor
35hex, 53dec 5 Cursor off
38hex, 56dec 8 No auto line feed on receipt of 

a carriage return.
39hex, 57dec 9 No auto carriage return on 

receipt of line feed
41hex, 65dec A Decrease audio volume
42hex, 66dec B Decrease CRT brightness
43hex, 67dec C Decrease CRT contrast

ESC ( IB, 5Bhex
27, 91dec

Set hold mode

ESC \ IB, 5Chex
27, 92dec

Clear hold mode

ESC " IB, 5Ehex
27, 94dec

Toggle hold mode on/off.

2.3.4 OPERATION MODE FUNCTIONS

Escape 
Sequence/ 
Function ASCII Code Performed Function

ESC ( IB, 28hex
27, 40dec

Enter high intensity mode. All 
characters displayed after this 
point will be displayed in high 
intensity.

ESC ) IB, 29hex
IB, 41dec

Exit high intensity mode.

ESC 0 IB, 30hex
27, 48dec

Enter underline mode. All 
characters displayed after this 
point will be underlined.

ESC 1 IB, 31hex
27, 49dec

Exit underline mode.

2-5



ESC p

ESC q

2.3.5 SPECIAL

Escape 
Sequence/ 
Function

ESC #

ESC $

ESC +

ESC 2

ESC 3

Escape 
Sequence/ 
Function

ESC 8

ESC Z

IB,
27,

70hex
112dec

Enter reverse video mode, 
characters displayed after 
point will be displayed in 
video.

All 
this 
reverse

IB,
27,

71hex 
113dec

Exit reverse video mode.

FUNCTIONS

ASCII Code Performed Function

lB,23hex Return the current contents of the
page. The entire contents of the 
screen are made available at the 
next character input request(s). 
(For further information on the use 
of this function, see section 2.5).

IB, 24hex Return the value of the character 
27, 36dec at the current cursor position. The 

character is returned in the next 
character input request.

IB,
27,

2Bhex
43dec

Clear the foreground.
Clear all high-intensity displayed 
characters.

IB,
27,

32hex
50dec

Make cursor blink.

IB,
27,

33hex
51dec

Stop cursor blink.

ASCII Code Performed Function

IB, 38hex Set the text (literally) mode for 
27, 56dec the next single character. This 

allows the display of characters 
from 01hex (01dec) thru IFhex 
(31dec) on the screen. Thus the 
BELL character (07hex, 07dec) will 
not cause the bleep, but a 
character will appear on the 
screen.

IB, 5Ahex Identify terminal type. The VT52
27, 90dec emulator will return ESC\Z in the next

character input request.

2-6



Ps Mode

Escape 
Sequence/
Function ASCII Code Performed Function

ESC ] IB, 5Dhex
27, 93dec

Return the value of the 25th line. 
The next series of character input 
requests will receive the current 
contents of the 25th line.

ESC v IB, 76hex
27, 118dec

Enable wrap-around at the end of 
the end of each screen line. A 
character placed after column 80 of 
a line will be placed on the next 
line at column 1.

ESC W IB, 77hex
27, 119dec

Disable wrap-around at the end of 
each line.

ESC z IB, 7Ahex
17, 122dec

Reset terminal emulator to the 
power-on state. This clears all 
user selected modes, clears the 
screen, and homes the cursor.

ESC { IB, 7Bhex
27, 123dec

Enable keyboard input, 
(see ESC }) .

ESC } IB, 7Dhex
27, 125dec

Disable keyboard input. This locks 
the keyboard. Any character(s) 
typed are ignored until an ESC { is 
issued.

ESC i Ps IB, 69hex
27, 105dec

Displays banner as follows:

30hex, 48dec 0 Display entire banner
31hex, 49dec 1 Display company logo
32hex, 50dec 2 Display operating system
33hex, 51dec 3 Display configuration

2.4 DIRECT CURSOR ADDRESSING — EXAMPLES OF USE

The direct cursor addressing function is accessed by sending the 
ESC Y 1 c sequence to the screen (see section 2.3.1). ”1" is the 
line number required, whose valid coordinates are between 1 and 
24. An offset of iFhex (31decimal) must be added to the location 
required in order to correctly locate the cursor, "c" is the 
column number required, whose valid coordinates are between 1 and 
80. An offset of IFhex (31decimal) must be added to the location 
required in order to correctly locate the cursor.

2-7



Note that the true offset requirement of 20hex (32decimal) for 
line and column may only be used accurately when the line number 
is viewed 0 to 23, and the column number 0 to 79.

The line/column number requested must be handled as a binary 
digit, examples of this follow: 

2.4.1 MICROSOFT MS-BASIC — DIRECT CURSOR POSITIONING

The following method uses offsets from line 1, column 1:

10 PRINT CHR$ (27)+"E” :REM CLEAR THE SCREEN
20 DEF FNM$(LIN,COL)=CHR$(27)+"Y"+CHR$

(31+LIN)+CHR$(31+COL)
30 PRINT "Enter line (1-24) and column (1-80), 

as LINE,COL
40 INPUT LIN, COL
50 PRINT FNM$(LIN,COL);
60 FOR I = 1 TO 1000 :REM PAUSE BEFORE OK

MESSAGE DISPLAYED
70 NEXT I

The alternative method, using offsets from zero is shown below:

10 PRINT CHR$(27)+"E" :REM CLEAR THE SCREEN
20 DEF FNM$(LIN,COL)=CHR$(27)+"Y"+CHR$(32+LIN)

+CHR$(32+COL)
30 PRINT "Enter line (0-23) and column (0-79) ,

as LINE,COL
40 INPUT LIN, COL
50 PRINT FNM$(LIN,COL);
60 FOR I = 1 TO 1000 :REM PAUSE BEFORE OK

MESSAGE DISPLAYED
70 NEXT I

2.4.2 MICROSOFT MACRO-86 ASSMEMBLER — DIRECT CURSOR POSITIONING

1ine_off 
col—off 
esc 
msdos

equ 
equ 
equ 
equ

2 0h 
20h
Ibh 
21h

;line position
;column position offset from 0
;escape character
;interrupt to MS-DOS

clear_screen 
dir__cur—pos_lead

db
db

esc,•E$’ 
esc,’Y$'

;clear screen request 
-cursor positioning lead-in

; the cursor position required is handed down in BX
; where BH = line (0-23 binary), BL - column (0-79 binary)

clear—and—locate:
mov ah,9h ;string output up to $
mov dx,offset clear_screen ;get the clear screen string
int msdos ;and output it up to the $

2-8



; the cursor position required is in BX

add bh,line_off ;normal ire line for output
add bl,col_off ;normalire column for output/

; send the direct cursor positioning lead-in
9

MOV ah,9h jselect screen output up to $
mov dx,offset dir_cur_pos_lead ;select the lead in ESC Y 
int msdos ;and output it up to $

contents of BX must be sent to the terminal emulatornow the

selected in BXthe cursor is now at the location

mov
mov
int

mov 
mov 
int

;ready the line number
;direct console output of DL
;output the line coordinate

dl ,bl 
ah, 6h 
msdos

ready the column number 
direct console output of DL 
send the column coordinate

dl,bh 
ah, 6h 
msdos

2.4.3 MICROSOFT PASCAL COMPILER — DIRECT CURSOR POSITIONING

program position (input,output);
{This method uses offsets from line 0, column 0.}

const
clear—screen = ehr(27) * chr(69);

var
result : array{1..4) of char;
i, line, column : integer 
row, col : char;

begin
result[1] := chr(27); {RESULT = ESC}
result [2] chr (89); {RESULT -- "Y"}
write (clear—screen);
write (' Enter line (0-23) and column (0-79), 

as LINE COLUMN: ');
readin (line, column);
writein (clear_screen);
row chr (32 + line);
col :- chr(32 + column);
result[3] :- row; {RESULT - ROW}
result [4] col; {RESULT - COL}
for i := 1 to 4 do

write (result ID); {PRINT CURSOR
TO SCREEN}

for i := 1 to 32000 do {PAUSE}
end.

2-9



2.5 TRANSMIT PAGE EXAMPLES OF USE

The transmit page function is accessed by sending the ESC # 
sequence to the screen (see Section 2.3.5). The result of this 
sequence is that all characters on the screen, as well as the 
cursor positioning sequences required to re-create the screen, 
are sent to the keyboard buffer. Reading the keyboard via a 
normal keyboard input request will return the entire screen of 
data to the program. The screen buffer within the program should 
be at least 1920decimal bytes long to accomodate the entire 
screen - the program will need to perform 1920 single character 
inputs to empty the keyboard buffer. Note that the character 
input requests must be done rapidly to prevent the keyboard 
buffer overflowing and causing loss of data - note, too, that on 
a keyboard buffer overflow, the bell sounds.

The following sample programs demonstrate the use for this 
function request:

2.5.1 MICROSOFT MS-BASIC — TRANSMIT PAGE

10 DIM A$(1920)
20 PRINT CHR$(27)
30 FOR I = 1 TO 1920
40 A$ (I)=INKEYS
50 NEXT I
60 PRINT CHR$(27)+”E";
70 FOR I - 1 TO 1920
80 PRINT A$(I);
90 NEXT I

2.5.2 MICROSOFT' MACRO-86 ASSEMBLER — TRANSMIT PAGE

coniof equ 6h ;direct console i/o function
conin equ . 0ffh jconsole input request
pr intf equ 9h ;screen o/p up to $
msdos equ 21h ;interrupt operating system
buffer_length equ 1920 ;entire screen count

read—screen db Ibh,’#$’ ?read entire screen
clear—screen db Ibh,'ES' ;clear screen/home cursor
buffer db buffer—length dup (?) ;main buffer region

mov ax, DS ;get buffer data segment
mov ES, ax ;ready for store
mov di,offset buffer ;get storage buffer
mov si ,di ;init for later use
mov dx,offset read—screen ;read entire screen string
mov ah,printf ;o/p it up to $
int msdos ;call the OSr

; now read entire screen in to BUFFER

2-10



9

9 
in_

mov 
mov
mov

loop: 
int 
stosb 
loop

ah,coniof
dl,conin 
ex,buffer_length

msdos

in_loop

;read from keyboard buffer
;ready to read
;count of chars to read

;get a char in AL
;save the char in BUFFER
; and loop til buffer full

mov 
mov
int

ah,pr intf
dx,offset clear_screen 
msdos

;ready to clear the screen
;get the string
; and o/p it up to $

9
; now replace the screen data
9

mov ex,buffer_length
mov ah,coniof

;get the count
;get the o/p char function

9
out_loop: 

lodsb
mov 
int 
loop 
ret

dl ,al 
msdos 
out—loop

;get a char
; ready to go
;o/p it
;loop til buffer empty
9

2.5.3 MICROSOFT PASCAL COMPILER — TRANSMIT PAGE

PROGRAM Scrnbuf;

CONST 
clear_screen - CHR (27)*CHR(69)*CHR(36); 
transmi t_page --- CHR (27) *CHR (35) *CHR (36) ; 
err_msg = 'ERRORS';
direct_conio = #6; 
conin -- #0FF;
print_string - #9; 

VAR
screen_dump : ARRAY [1..1920] OF CHAR;
ch : CHAR;
i : INTEGER;
param : WORD;
status : BYTE;

FUNCTION DOSXQQ( command, parameter : WORD ) : BYTE; EXTERNAL;

BEGIN
EVAL(DOSXQQ(print_string,WRD(ADR(transmit_page) ) ) );
param:- BYWORD( 0, conin );
status:- DOSXQQ( direct—conic, param );
IF status <> 0 THEN
BEGIN

i:= 1;

2-11



WHILE status <> 0 DO
BEGIN
ch:= CHR(status);
screen_dump[i]:= ch;
i : = i + 1;
status:= DOSXQQ( direct_conio, param );

END;
i:= i - 1;
EVAL(DOSXQQ(print_string,WRD(ADR(clear_screen) ) ) );
FOR VAR J:= 1 TO i DO

EVAL(DOSXQQ( direct_conio, WRD(screen_dump(J]) ) ); 
END

ELSE
EVAL(DOSXQQ(print_string,WRD(ADR(err_msg) ) ) );

END.

2-12



3. VICTOR 9000 INPUT/OUTPUT PORT SPECIFICATION

3.1 DEVICE CONNECTION

There are 5 ports available on the Victor 9000 - they are as 
follows:

2 x Serial (RS232C) - Ports A and B
1 x Parallel (Centronics)
2 x Parallel (control - located on CPU board)

The ports are located on the rear of the Victor 9000 as shown in 
the following diagram:

Figure 3-1: Victor 9000 Parallel and Serial Ports

3.2 PARALLEL PRINTER CONNECTION

To connect a parallel printer to the Victor 9000, a suitable 
cable is required - if the printer is supplied by Victor 
Technologies, then it will be a matter of plugging the cable into 
both machines; cables should be attached as follows:

1) Disconnect power from both the computer and printer.
2) Disconnect the Victor video connector (see 3.1).
3) Attach interface cable to Victor and printer.
4) Re-attach the video connector.
5) Set the printer dip-switches as required.

3-1



3.3 PARALLEL CABLE REQUIREMENTS

If a suitable parallel cable is not available, you will need to 
make one - use the guidelines that follow to create your own 
cable:

You will need a male centronics-compatible Amphenol 57-30360 type 
connector for the Victor 9000 end of the cable; use the type of 
connector suggested by the printer manufacturer for the printer 
end, in general, another male centronics-compatible Amphenol 57- 
30360 type connector will be required. You will also require a 
length of 12-core cable (10 feet maximum length).

Refer to the port layout in your printer handbook — compare this 
with the Victor 9000 parallel port layout (see C.l). If the pin 
numbers and signal requirements are the same, then construct the 
cable as follows:

1-- ----------------- 1
2-------------------2
3 
4
5 

3
4
5

6
7 
8
9

10
1116

6
7
8
9
10
11
16

It does not matter which end of the cable is connected to the 
printer or the computer.

If your printer has the same signals as the Victor 9000, but on 
differing pins, then use the following guidelines:

1) Label one connector "Computer" and the other "Printer".

2) Connect pin 1 at the computer connector to the Data strobe 
pin at the printer connector.

3) Connect pins 2 thru 9 at the computer connector to the Datai 
(may be labelled Data0) thru Data8 (may be labelled Data7) 
at the printer connector.

4) Connect pin 10 at the computer connector to the ACK pin at 
the printer connector.

5) Connect pin 11 at the computer connector to the BUSY pin at 
the printer connector.

6) Connect pin,16 at the computer connector to the GROUND (may

3-2



be labelled GND) pin at the printer connector.

The printer cable is now complete - it must always be attached to 
the devices as marked on the connectors - if it is not, then the 
printer will not work.

3.4 SERIAL PRINTER CONNECTION

To connect a serial printer to the Victor 9000, a suitable cable 
is required - if the printer is supplied by Victor Technologies, 
then it will be a matter of plugging the cable into both 
machines; cables should be attached as follows:

1) Attach the cable between the Victor 9000 serial port B (see 
3.1) and the printer connector.

2) Set the printer switches for 7-data bits, 1 stop bit, 1200 
baud and no parity. Set DTR protocol (refer to printer 
manual).

You may set the baud rate at a rate different from that mentioned 
in (2) - but you will then be required to set the baud rate using 
the baud rate selection utility, PORTSET or PORTCONF (see 3.6), 
or alternatively you will need to build a new operating system.

3.5 SERIAL CABLE REQUIREMENTS

If a suitable serial cable is not available, you will need to 
make one - use the guidelines that follow to create your own 
cable:

You will require 1 x D25 male, 1 x D25 female connectors, and a 
length of 6-12 core cable, with a maximum length of fourty feet. 
Refer to the port layout in your printer manual, if pin 3 is 
received data (labelled RXD or RD), and pin 20 is data terminal 
ready (labelled DTR), then construct your cable as follows:

Computer Printer

1-- ------------------- 1
2 ---------------------- 3
3 ----------------------2
7 ----------------------7
5----------------------- 20

This cable, often called a Modem Eliminator Cable, must be 
attached as shown - mark the Computer/Printer connectors as a 
reference.

If pin 3 is receive data (RXD or RD) and pin 20 is not data 
terminal ready (DTR) then construct your cable as follows:

3-3



Computer Printer

1
3
2
7
5

1
2
3
7
4

This cable must be attached as shown - mark the Computer/Printer 
connectors as a reference.

3.6 OPERATING SYSTEM PORT UTILITIES

Victor Technologies supplies a selection of programs under both 
CP/M-86 and MS-DOS to allow the temporary selection of both baud 
rate and list device port. If you attach a printer to your system 
you may be required to perform some of the following steps in 
order to utilize the printer. Before you use any of the utilities 
discussed you need to be aware of the port the printer is 
attached to; Port A, B or Parallel. You will also need to know, 
except in the case of a parallel printer, what the baud rate, 
stop-bits and parity your printer is set up at. Note that many 
printers will start to lose data at baud rates above 4800, you 
must, therefore, select a baud rate that your printer can handle.

3.6.1 SETIO - MS-DOS LIST DEVICE SELECTION UTILITY

To select the correct port for the list device you have attached, 
the SETIO program has been provided. This program is used as 
follows:

or the parallel port.

SETIO LST - TTY - printer is attached to port A
SETIO LST - ULI - printer is attached to port B
SETIO LST - LPT - printer is attached to

parallel port

It is recommended that your printer be attached to either port B

Once SETIO has executed, it displays a map of the ports, with the 
ones you selected highlighted on the screen - if this is not 
corrcet, repeat the process.

3.6.2 STAT - CP/M-86 LIST DEVICE SELECTION UTILITY

To select the correct port for the list device you have attached, 
the STAT program has been provided. This program is used as 
follows:

STAT LST:=TTY: - printer is attached to port A
STAT LST:-ULI: - printer is attached to port B
STAT LST:-LPT: - printer is attached to parallel port

3-4



It is recommended that your printer be attached to either port B 
or the parallel port.

3.6.3 PORTSET - MS-DOS BAUD RATE SELECTION UTILITY

To select the correct baud rate for ports A or B (but this is not 
applicable to the parallel port), the PORTSET program is 
provided. This program is menu driven, and is used as follows:

To the prompt type PORTSET, the screen will display a choice of 
three ports:

1) Port A (RS232C)
2) Centronics/Parallel Port
3) Port B (RS232C)

Type either 1,2 or 3. If you type 1 or 3, the next menu screen is 
displayed - this screen has baud-rate choices labelled A through 
N - select one of the baud-rates.

3.6.4 PORTCONF - CP/M-86 BAUD RATE SELECTION UTILITY

This program is used in exactly the same manner as PORTSET (see 
3.6.3).

3.7 SERIAL INPUT/OUTPUT PORTS

The two serial input/output ports are memory mapped ports located 
in the memory segment E000hex; and they are mapped as follows:

E000:40 - port A data (input/output)
E000:41 - port B data (input/output)

E000:42 - port A control (read/write)
E000:43 - port B control (read/write)

The following information is available in each port’s control 
register:

bit 0 — rx character available
bit 1 not used
bit 2 — tx buffer empty
bit 3 — DCD
bit 4 — not used
bit 5 — CTS
bit 6 — not used
bit 7 — not used

See Appendix C.2 for information on each port's pinouts. 

3-5



Note that writing a 10hex to the relevent control register allows 
the resensing of the modem leads (i.e. DCD and CTS) with their 
current values being updated in the port's control register.

Since the Victor 9000 configures the NEC 7201 chip to operate in 
auto-enable mode, DCD (pin 8 on the port connector) must be ON, 
and CTS (pin 5 on the port connector) must be ON to enable the 
7201's receiver and trasmitter respectively. RTS and DTR are 
always ON as a convenient source for an RS-232C control ON (+11 
volts) .

3.8 BAUD RATE AND DATA INPUT/OUTPUT — SAMPLE PROGRAMS

The means of establishing the baud rates, receiving and 
transmitting data are discussed in the following programs. The 
serial port's control register are discussed in 3.7 - the means 
of accessing them is better described with the programming 
examples that follow.

The following programs provide information on how to set up the 
baud rates on the serial ports (A and B) - they also demonstrate 
how to send and receive data from these ports.

3.8.1 MICROSOFT MS-BASIC — BAUD RATE AND DATA INPUT/OUTPUT

The following program may be used in place of PORTSET or PORTCONF 
if you omit the lines 500 through 740 inclusive.

10 DIM RATE(14)
20 REM Select the data port
30 PRINT CHR$(27)+"E”; : REM Clear the screen
40 PRINT : PRINT : PRINT : PRINT
50 PRINT "The serial ports are:" : PRINT
60 PRINT A - Serial Port TTY - left hand on back"
70 print ," B - Serial Port ULI - right hand on back"
80 PRINT : PRINT
90 PRINT ,"Select the port you want to use, A or B
100 PORTS = INPUTS(1)
110 PRINT PORTS
120 IF PORTS = "a" THEN STATIO-2 • DATIO-0 • GOTO 210
130 IF PORTS = "A" THEN STAT10=2 • DATIO--0 • GOTO 210
140 IF PORTS - "b" THEN STATIO-3 • DATIO-1 • GOTO 210
150 IF PORTS - "B" THEN STAT10=3 • DATIO-1 • GOTO 210
160 GOTO 30
200 REM Set the baud rate
210 PRINT CHRS(27)+"E"; : REM Clear the screen
220 PRINT : PRINT : PRINT : PRINT
230 PRINT "The available baud rates are as follows:" : PRINT
240 PRINT ," 1 = 300 baud"
250 PRINT ," 2 = 600 baud"
260 PRINT ," 3 = 1200 baud"
270 PRINT ," 4 = 2400 baud"
280 PRINT ," 5 = 4800 baud"

3-6



290 PRINT ," 6 - 9600 baud"
300 PRINT 7 - 19200 baud"
310 PRINT : PRINT : PRINT
320 PRINT "Select one of the above baud rates: ";
330 RATES - INPUTS (1)
340 IF RATES > "7" THEN 210
350 IF RATES < "1" THEN 210
360 PRINT RATES
400 REM Now set the baud rate in the port selected
410 DEF SEG - &HE002
420 IF DATIO - 0 THEN POKE 3,54 : IF DATIO - 1 THEN POKE 3,118
430 FOR I - 1 TO 14
440 READ RATE(I) : REM Set the baud rate matrix
450 NEXT I
460 NODE -- (VAL(RATES)-l) *2 + 1
470 POKE DATIO,RATE(NODE)
480 POKE DATIO,RATE(NODE+1)
500 REM Now data may be entered and sent down line
510 PRINT CHR$(27)+"E"; : REM Clear the screen
520 PRINT : PRINT ,"Baud rate established"
530 PRINT : PRINT : PRINT
540 DEF SEG - &HE004
550 PRINT ,"Enter data to be sent down line with return to end"
560 PRINT ,"or just press return to receive data -"
570 PRINT
580 TEXT$=INKEY$
590 IF TEXTS-"" THEN 630
600 IF TEXT$=CHR$(13) THEN PRINT TEXTS :TEXT$=CHR$ (126) :GOTO 620
610 PRINT TEXTS;
620 GOSUB 650
630 GOSUB 690
640 GOTO 580
650 STATUS-PEEK (STATIO) : STATUS-STATUS AND 4
660 IF STATUS - 0 THEN 650 :REM Waiting to send char
670 POKE DATIO, ASC(TEXTS)
680 RETURN
690 STATUS - PEEK(STATIO) :STATUS - STATUS AND 1
700 IF STATUS - 0 THEN RETURN : REM No char available
710 DATUM - PEEK (DATIO) : DATUM - DATUM AND 127
720 IF DATUM - 126 THEN PRINT CHR$(13) : RETURN
730 PRINT CHRS(DATUM); :REM Show char from line
740 RETURN
1000 DATA 0,1,&H80,0,&H40,0,&H20,0,&H10,0,8,0,4,0

3-7



3.8.2 MACRO-86 ASSEMBLER — BAUD RATE AND DATA INPUT/OUTPUT

The following assembler modules may be included in a program and 
called with the stated parameters. The character input and output 
modules will need re-coding if your program requires status 
return rather than looping for good status.

rates db 0h,lh,80h,0h ;baud rate conversion table
db 40h,0h,20h,0h 
db 10h,0h,8h,0h
db 4h,0h

**********************************************************

Routine: BAUD_SET

Function: To set Port A or B baud rate

Entries: AL -- 0-PortA, 1-PortB
DX -- 0=300 baud, 1 = 600 baud, 2 = 1200 baud 

3=2400 baud, 4=4800 baud, 5=9600 baud 
6=19200 baud

Returns: None

Corruptions: ES, AX, BX, CX, DX

**********************************************************

baud set:
mov ex,0e002h

ES ,cx 
bx, 3 
al ,al 
set—B

;get the segment
? init the segment register
-point to counter control
;see if Port A or B to be set
;AL > 0, so set Port B counter

mov
mov
or
jnzr
MOV 
jmp

byte ptr ES:[bx],36h 
short set—rate

-set it for port A
; and input the Baud rate

set—B:
mov

set—rate: 
mov 
shl 
add 
mov 
xor 
mov

byte ptr ES:[bx],76h

bx,offset rates
dx, 1
bx ,dx
dx,[bx]
bh ,bh
bl ,al

;set port B counter

;get the baud rate table 
;DX = DX * 2 for words 
-point to baud rate entry 
-get the baud rate
;BH=0
-get the required port

mov byte ptr ES:[bx],dl - send first byte
mov 
ret

byte ptr ES:[bx],dh - and last byte of rate 
;baud rate established

3-8



**********************************************************9
; Routine: SEND_CHAR
9
; Function: To output a character to a serial port
9
; Entries:
9

AL -- 0=PortA, 1-PortB 
AH -- Character to send

9
; Returns: None
9
; Corruptions: ES, AX, BX
9 *********************************************************** r
send__char: 

MOV
MOV 
xor 
MOV 
add

bx,0e004h
ES ,bx 
bh,bh 
bl,al 
bl, 2

;get the port segment
; set the segment
;BH=0
;get the required port
;required port status

9
in_status_loop:

MOV 
and 
jnz

9
sub
MOV 
ret

al,ES:[bx]
al, 4h
in_status_loop

bl,2
ES:[bx],ah

;get the status 
;mask for TX empty 
;not ready - loop

xpoint to data 
^character gone

***********************************************************tf
; Routine: GET_CHAR
/
; Function: To input a character from a serial port9
; Entries: AL = 0=PortA, 1--Portsr
; Returns: AL = character
9
; Corruptions: ES, AX, BX
9
***********************************************************9
get—char:

mov bx,0e004h ;get the port segment
mov ES ,bx ;set the segment
xor bh ,bh ;BH=0
mov bl,al ;get the required port
add bl ,2 ^required port status

9
out—status—loop •

mov al,ES:[bx] ;get the status
and al, Ih ;mask for RX character avail

3-9



jnz out_status_loop ;not ready - loop

sub bl ,2 ;point to data
MOV al,ES:[bx] ;character received
ret

3-10



APPENDIX A

A.I ASCII CODES USED IN THE VICTOR 9000 COMPUTER

The American Standard Codes for Information Interchange (ASCII) 
has been defined to allow data communication between computers, 
their peripherals, and other computers. The other major code 
standard is the Extended Binary Coded-Decimal Interchange Code 
(EBCDIC) used on some mainframe computers. The Victor 9000 
computer is designed to function in ASCII, but communication 
software is available that allows the Victor 9000 to receive 
EBCDIC data and have it translated into ASCII, and vice versa.

The following table contains the 7-ASCII codes and their 
meanings. It is called 7-ASCII as only 7-bits of the potential 8- 
bits are used to carry data; the "spare" bit is utilized in the 
Victor 9000 computer to support characters not otherwise 
available in the 7-ASCII set.

An Eight Bit Byte is pictured as follows:

[7H6][5][4][3][2][1H0]

The bits are numbered 0 through 7 (which adds up to eight bits), 
and it is the 8th bit (bit 7 in computer jargon) which is not 
used in 7-ASCII.

A-l



A.2 ASCII/HEXADECIMAL/DECIMAL Character Set

ASCII Hex Dec ASCII Hex Dec ASCII Hex Dec ASCII Hex Dec

NUL 00 00 space 20 32 @ 40 64 60 96
SOH 01 01 i 21 33 A 41 65 a 61 97
STX 02 02 ii 22 34 B 42 66 b 62 98
ETX 03 03 # 23 35 C 43 67 c 63 99
EOT 04 04 $ 24 36 D 44 68 d 64 100
ENQ 05 05 % 25 37 E 45 69 e 65 101
ACK 06 06 & 26 38 F 46 70 f 66 102
BEL 07 07 i 27 39 G 47 71 g 67 103
BS 08 08 ( 28 40 H 48 72 h 68 104
HT 09 09 ) 29 41 I 49 73 i 69 105
LF 0A 10 * 2A 42 J 4A 74 j 6A 106
VT 0B 11 + 2B 43 K 4B 75 k 6B 107
FF 0C 12 r 2C 44 L 4C 76 1 6C 108
CR 0D 13 — 2D 45 M 4D 77 m 6D 109
SO 0E 14 • 2E 46 N 4E 78 n 6E 110
SI 0F 15 / 2F 47 0 4F 79 o 6F 111
OLE 10 16 0 30 48 P 50 80 P 70 112
DC 1 11 17 1 31 49 Q 51 81 q 71 113
DC 2 12 18 2 32 50 R 52 82 r 72 114
DC 3 13 19 3 33 51 S 53 83 s 73 115
DC 4 14 20 4 34 52 T 54 84 t 74 116
NAK 15 21 5 35 53 U 55 85 u 75 117
SYN 16 22 6 36 54 V 56 86 V 76 118
ETB 17 23 7 37 55 W 57 87 w 77 119
CAN 18 24 8 38 56 X 58 88 X 78 120
EM 19 25 9 39 57 Y 59 89 y 79 121
SUB 1A 26 • 3A 58 Z 5A 90 z 7A 122
ESC IB 27 / 3B 59 l 5B 91 7B 123
FS 1C 28 < 3C 60 5C 92 7C 124
GS ID 29 = 3D 61 ] 5D 93 7D 125
RS IE 30 > 3E 62 5E 94 *** 7E 126
US IF 31 9 3F 63 5F 95 DEL 7F 127

A-2



APPENDIX B

B.l  VICTOR 9000 KEYBOARD LAYOUT

Legend:

Shaded region indicates unused key switch.

Figure B-l: Victor 9000 Keyboard Configuration 
with Key Switch Positions and 
Logical Key Numbers

B-l





APPENDIX C

C.l  VICTOR 9000 PARALLEL (CENTRONICS) PORT

Pin Number Signal

1 ---------------------------Data Strobe

2 ---------------------------Data 1

3 --------------------------- Data 2

4 --------------------------- Data 3

5 --------------------------- Data 4

6 -------------------------— Data 5

7 ---------------------------Data 6

8 --------------------------- Data 7

9 —-------------------------- Data 8

10 ---------- ---------------- ACK

11 --------------------------- Busy

17--------------------------- Pshield

12,18,30,31 ------------------ Not connected

Remaining--------------------GND

C.2 VICTOR 9000 SERIAL (RS-232C) PORT

Pin Number Signal

1 --------------- FG Frame Ground

2 ---------------TD Transmitted Data

3 ---------------RD Received Data

4 ---------------RTS Request to Send

5 ---------------CTS Clear to Send

6 ---------------DSR Data Set Ready

7 --------------- SG Signal Ground

C-l



8---------------DCD Data Carrier Detect

15---------------TC Transmitter Clock

17---------------RC Receiver Clock

20---------------DTR Data Terminal Ready

22---------------RI Ring Indicator

C.3 VICTOR 9000 IEEE-488 PORT

The Victor 9000 IEEE-488 cable attaches to the parallel port - 
the pin number refers to the actual computer port connector; the 
IEEE-488 pin number refers to the standard IEEE-488 pin-out as 
they must attach to the parallel port.

The IEEE pin numbers referred to with the (**z) are wires that 
are to be bound together as twisted pairs.

Pin Number IEEE Pin NumberIEEE Signal

1 ----- ----- DAV -------- ----- 6 (**a)
19----- --------- gnd ------------------- 18 (**a)
2 ----- -----  DI01 ------- ----- 1
3 ----- -----  DI02 ------- ----- 2
4 ----- -----  D103 ------- ----- 3
5 ----- -----  DI04 ------- --- — 4
6 ---- ------  DI05 ------- ----- 13
7 ----- -----  DIOS ------- ----- 14
8 ----- -----  DI07 ------- ----- 15
9 ----- ----- DIOS-------------- 16
10---- ---------- nrfd ----------------- 7 (**b)
28 —------------- gnd ------------------- 19 (**b)
11-----—--- SRQ -------- ----- 10 (**c)
29----- --------- gnd ------------------- 22 (**c)
13----- --------- ndac ----------------- 8 (**d)
33----- --------- gnd ------------------- 20 (**d)
15----- ----- EOI -------- ----- .5
17----- -----  shield ----- ----- 12
34----- ----- REN -------- ----- 17
35----- ----- ATN -------- ----- 11 (**e)
16----- ---------gnd -------------- ----- 23 (**e)
36----- ----- I pc -------- ---— 9 (**f)
27----- --------- gnd —-- ---- -------- - 21 (**f)
20----- ---------gnd —--------- —----- 24

C-2



C.4 VICTOR 9000 CONTROL PORT

Pin Number Signal

1 -------------- -12V
2 ----------------12V
3 ---------------Not connected
4 -------------— Not connected
5 ---------------+12V
6 ---------------+12V
7 ---------------+5V
8 ---------------+5V
9 ---------------Not connected

10 ---------------Light Pen
11 ---------------GND
12 ---------------CAI
13 ---------------GND
14 ---------------CA2
15 ---------------GND
16 ---------------PA0
17 ---------------GND
18 ---------------PAI
19 ---------------GND
20 ----------- ---PA 2
21 ---------------GND
22 ---------------PA 3
23 ---------------GND
24 ---------------PA 4
25 ---------------GND
26 ---------------PA 5
27 ---------------GND
28 ---------------PA 6
29 ---------------GND
30 ---------------PA 7
31 ---------------GND
32 ---------------PB0
33 ---------------GND
34 ---------------PBl

• 35---------------GND
36 ---------------PB2
37 ---------------GND
38 ---------------PB3
39 ---------------GND
40 ---------------PB4
41 ---------------GND
42 ---------------PB5
43 ---------------GND
44 ---------------PB6
4 5--------------GND
46 ---------------PB7 / CODEC Clock Output
47 ---------------GND
48 ---------------CB1
49 ---------------GND
50 ---------------CB2

C-3



C-4



APPENDIX D

D.1 EXAMPLE ASSEMBLER SHEL PROGRAM 
FOR MS-DOS INTERFACING

The Microsoft MACRO-86 assembler follows closely the Intel ASM-86 
specifications. The operating system interfacing technique is via 
a straightforward interrupt (INT 21Hex), with the required 
operational parameter in the AH register. MS-DOS does not corrupt 
any registers other than the ones used for the sending or 
receiving of data. An example of the running and exiting program 
technique, plus the required assembler directives, follows. The 
program example is for the small memory model; but it will apply 
equally well to the compact or large memory model. The 8080 
memory model is not recommended as it results in poor usage of 
the potential of the 8086/8088 processor. At link time, this 
programming example will generate an .EXE file - the header 
information on this file type will be found in E.l.

title Example of MS-DOS/MACRO-86 Assembly Programming

dgroup
cgroup

group
group

data 
code

msdos equ 00021h ;interrupt to operating system

data 
;###### 
data

segment 
insert 

ends

public 
your data

’data 
here

I

######

code segment 
assume

public
CS: cgroup

’ code
, DS:

1
dgroup

example proc near ;origin of code

begin:
push
call

ES 
run^module

;save return segment address
;run the program

9
; run ends - select close down
9
exit

exit

proc 
xor 
push 
ret 
endp

far 
ax ,ax 
ax

;close down code 
;zero for PSP:0 
;save for far return 
;and close down 
;close down code ends

run_module: 
mov ax,DATA
mov DS,ax

;##### insert your code at 
ret

this

;get the data segment origin 
; and initialize the segment 

point ######
;return to exit module

D-l



example endp 
code ends 
end

D.2 EXAMPLE ASSEMBLER SHELL PROGRAM 
FOR CP/M-86 INTERFACING

The Digital Research ASM-86 assembler does not follow the 
standard Intel ASM-86 structure - this makes for a more complex 
task when transferring assembler programs between the CP/M-86 and 
the MS-DOS operating systems. The operating system interfacing 
technique is via a straightforward interrupt (INT E0Hex), with 
the required operational parameter in the CL register. CP/M-86 
corrupts all registers, excepting the CS and IP - it is, 
therefore, recommended that all registers be pushed prior to the 
INT E0Hex being issued. An example of the running and exiting 
program technique, plus the required assembly directives, 
follows. The program example follows that of the MS-DOS MACRO-86 
example. At GENCMD time, this programming example will generate a 

.CMD file - the header information on this file type is shown in 
the System Guide for CP/M-86.

title 'Example of CP/M-86/ASM-86 Programming'

reset equ 00000h xsystem reset function
cpm equ 000e0h ;interrupt to operating system r

> *
cseg

beg in:
call run_module ;run the program9

; run ends - select close down
9

MOV cl,reset ;select system reset
mov dl,00h ;select memory recovery
int cpm ;return to operating system9

run module:
insert your code at this point ######
ret ;return to exit module

dseg
;##### insert your data here ##### 

end

D-2



APPENDIX E

E.l  MS-DOS — EXE FILE HEADER STRUCTURE

The Microsoft linker outputs .EXE files in a relocatable format, 
suitable for quick loading into memory and relocation. EXE files 
consist of the following parts:

o Fixed length header

o Relocation table

o Memory image of resident program

A run file is loaded in the following manner:

o Read into RAM at any paragraph (16 byte) boundary

o Relocation is then applied to all words described by the
relocation table.

The resulting relocated program is then executable. Typically, 
programs using the PL/M small memory model have little or no 
relocation; programs using larger memory models have relocation 
for long calls, jumps, static long pointers, etc.

The following is a detailed description of the format of an EXE 
file:

E-l



Microsoft .EXE File Main Header

Byte Name Function

0+1 wSignature Must contain 4D5Ahex.
2+3 cbLastp Number of bytes in the memory image

modulo 512. If this is 0 then the last 
page is full, else it is the number of 
bytes in the last page. This is useful 
in reading overlays.

will have iov -- 0.

4+5 cpnRes Number of 512 byte pages of memory 
needed to load the resident and the end 
of the EXE file header.

6 + 7 irleMax Number of relocation entries in the 
table.

8+9 cparDirectory Number of paragraphs in EXE file header
A+B cparMinAlloc Minimum number of 16-byte paragraphs 

required above the end of the loaded 
program.

C+D cparMaxAlloc Maximum number of 16-byte paragraphs 
required above the end of the loaded 
program. 0FFFFh means that the program 
is located as low as possible into 
memory.

E+F saStack Initial value to be loaded into SS 
before starting program execution.

10 + 11 raStacklnit Initial value to be loaded into SP 
before starting program execution.

12 + 13 wchksum Negative of the sum of all the words in 
the run file.

14 + 15 raStart Initial value to be loaded into IP 
before starting program execution.

16+17 saStart Initial value to be loaded into CS 
before starting program execution.

18+19 rbrgrle Relative byte offset from beginning of 
run file to the relocation table.

1A + 1B iov Number of the overlay as generated by 
LINK-86. The resident part of a program

The relocation table follows the fixed portion of the run file 
header and contains irleMax entries of type rleType, defined by:

r1eType bytes 0+1 ra 
bytes 2+3 sa

Taken together, the ra and sa fields are an 8086/8088 long 
pointer to a word in the EXE file to which the relocation factor 
is to be added. The relocation factor is expressed as the 
physical address of the first byte of the resident divided by 16. 
Note that the sa portion of an rle must first be relocated by the 
relocation factor before it in turn points to the actual word 
requiring relocation. For overlays, the rle is a long pointer 

E-2



from the beginning of the resident into the overlay area.

The resident begins at the first 512 byte boundary following the 
end of the relocation table.

The layout of the EXE file is:

28-byte Header

Relocation Table

padding (<200hex bytes)

memory image

E-3



■



F.l  VICTOR 9000 TECHNICAL SPECIFICATION

Processor

o Intel 8088 16-bit microprocessor

o 128k bytes RAM internally upgradeable to 896k bytes

o 4k bytes Auto-boot ROM (read only memory)

o 4 internal expansion slots for plug-in card options

o 2 x RS232C serial communications ports

o lx Parallel (Centronics) or IEEE-488 port

o 2 x Parallel user port (50-way KK Connector on CPU board)

Display System

o 25 line x 80 column screen / 50 line x 132 column screen

o 12" CRT, Green p39 phosphor

o Adjustable horizontal viewing angle (+ 45 degree swivel)

o Adjustable vertical viewing angle (0 deg to 11 deg tilt)

Floppy Drives

o Standard 5 1/4-inch, single-sided 96 TPI dual disk drives, 
with a maximum capacity of 600k bytes per drive.

o Optional 5 1/4-inch, double-sided 96 TPI dual disk drives, 
with a maximum capacity of 1200k bytes per drive.

o Optional single 10,000k byte Hard Disk - non-removable? with 
single 5 1/4-inch, double sided 96 TPI disk drive with a 
maximum capacity of 1200k bytes.

o Single-sided floppy drive offers 80 tracks at 96 TPI

o Double-sided floppy drive offers 160 tracks at 96 TPI

o Floppy drives have 512 byte sectors; utilising a GCR, 10-bit
recording technique.

F-l



Floppy access times:

2 micro-second per bit data transfer rate, with an 
interleave factor of 3. Average seek time is approximately 
90 milli-seconds.

Hard Disk access times:

0.2 micro-second per bit data transfer rate, with an 
interleave factor of 5. Average seek time is approximately 
100 milli-seconds.

Keyboard

Separate Intel 8048 microprocessor
Fully software definable with 10 soft function keys
Full IBM Selectric III (56 key) keyboard layout
Type ahead buffering to 32 levels and full n-key rollover 
Keyswitches rated for 100 million operations

Electrical

Input voltage 90-137 VAC or 190-270 VAC (internal jumper)
Input frequency 47-63 Hz

Environment

Operating temperature 0 deg C to 40 deg C 
Operating humidity 20% to 80% (non-condensing) 
Storage temperature -20 deg C to 70 deg C 
Storage humidity 5% to 95% (non-condensing)

F.2 VICTOR 9000 PHYSICAL SPECIFICATIONS

Mainframe Assembly

Height Width Depth Weight (approx
178 mm 4 22 mm 3 56 mm 12.6 kg
7 in 16.6 in 14 in 281 lbs

Display Assembly

Height Width Depth Weight (approx)
264 mm 326 mm 339 mm 8.1 kg
10.4 in 12.9 in 13.4 in 18 lbs

F-2



Keyboard Assembly

Height 
45 mm 
1.8 in

Wid th 
4 83 mm 
19 in

Depth Weight (approx)
203 mm 1.5 kg
6.4 in 3 lbs

System Assembly

Height Width Depth Weight (approx)
4 57 mm 4 83 mm 559 mm 22.2 kg
18 in 19 in 20.4 in 49 lbs

Width without the keyboard module is 
396 mm / 15.6 in.

F-3



F-4



APPENDIX G

G.1 GLOSSARY OF TERMS

The following table is a glossary of terms found in this manual:

BAUD The term baud rate means the number of bits sent 
down a line per second. A baud rate of 300 will, 
therefore, be capable of transmitting data at 300 
bits per second. Since a textual character is 
composed of 8 bits, then 37.5 characters could be 
sent per second at this baud rate.

BIOS This means the Basic Input Output System. The BIOS 
is a fundamental portion of an Operating System, 
allowing the operating system to communicate 
correctly with any peripheral devices; typical 
BIOS modules include the disk driver; the keyboard 
input driver; the screen driver; the printer 
dr iver.

BIT A bit is a binary digit. The bit can, therefore, 
contain either One or Zero. A One is bit HIGH or 
ON. A zero is bit LOW or OFF. A bit may be likened 
to a light-switch - the switch can only be on or 
off. See BYTE.

BOOT This term comes from the phrase "the computer 
pulls itself up by its boot-strap". The term boot
strap means the same, but is no longer in such 
common use. To boot a computer is to load an 
operating system - the computer does this by means 
of a boot-strap program. The computer, when 
switched on, is not aware of its environment - but 
it automatically runs its boot-strap program. The 
Victor 9000 boot-strap program is stored in the 
boot PROM; it first causes the display of the 
little disk picture - it then searches for a disk 
with an operating system - when it finds this 
disk, it loads the operating system and begins to 
execute it. The boot-strap program is not used 
again until the reset switch is pressed, or the 
power is switched off and on.

BUS A bus in computer jargon is not unlike a bus to 
carry passengers. When data is moved around inside 
a computer it is moved along the bus wires. These 
bus wires connect the Victor 9000 microprocessor 
to its memory, disk(s) and screen.

BYTE A byte is a collection of 8-bits or two nibbles. A 
byte may store one character of text, or a number

G-l



from 0 to 255 in binary.
DOT MATRIX A printed character on the screen or a dot-matrix 

printer may be viewed as a square containing dots. 
On the Victor 9000 screen a character has a square 
cell (matrix) of 16 dots high by 10 dots wide - 
within this box, the dot on/off patterns create a 
viewable character.

FONT CELL In reference to DOT MATRIX, the font cell is the 
collection of bytes of data that make up the 

; character dots that are to be displayed on the 
screen. Each character on the screen is composed 
of pre-defined patterns of dots to ma'k$ the viewed 
dot matrix. These patterns of dots are stored in 
the Victor 9000 memory as data - the screen 
controller chip scans these data bytes and the 
resulting character image is displayed on the 
screen.

HEADER

INTERRUPT

NIBBLE

OPERATING
SYSTEM

PROM

A header on a file gives information to the 
operating system on where and how the file is to 
be loaded in to memory. Many files provided by 
Victor Technologies (such as keyboard and 
character set files) contain headers that are not 
used by the operating system, but are used by 
Victor Technologies utilities.

An interrupt is some event occuring in the 
computers environment that the computer will stop 
all other activities for. An example of an 
interrupt is a key-press. If you press a key on 
the Victor 9000, an interrupt is generated; at 
this point the processor stores all information on 
its current task and gets and saves the value of 
the key pressed; it then picks up all the 
information it stored on its last task and 
continues where it left off. This whole series of 
events takes only a few micro-seconds.

Sometimes spelled NYBBLE; a nibble is half a byte 
or 4-bits. See BYTE and BIT.

An operating system allows the computer to be 
aware of its environment and gives the user the 
ability to enter and retrieve data from the 
computer.

Programmable Read Only Memory, PROM, is a chip or 
collection of chips that is used to store 
permanently a single computer program or 
collection of computer programs. The boot-prom, 
sometimes called boot-rom, contains all the 
information the Victor 9000 computer needs to read 
an operating system from disk. There are different

G-2



-
types of prom; EPROM which is erasable prom, 
simply shine a high-powered ultra-violet lamp on

3 3 6., the chip, and it can be re-programmed; etc.

RAM Random Access Memory, RAM, is a chip or collection 
of chips that is used to store temporarily (until 
the power is removed) data, computer program(s), 
text, etc. This is the memory of a computer. ....

REGISTER A computer register is a portion of the processor. 
The Victor 9000 uses the .Intel 8088 micro
processor - there are several different types of 
registers within this chip; there are 8-bit 
registers, and 16-bit registers. Data is generally 
not manipulated in RAM, but is brought in to a 
register of the processor and manipulated there, 
then the result saved from the register back into 
RAM.

WORD A word is a number of bits, generally greater than 
8. The Victor 9000 has a 16-bit word - thus a word 
in the Victor 9000 is composed of two bytes. The 
DEC PDP-8 computer has a 12-bit word - on this 
machine, therefore,, a word is composed of one byte 
and one nibble*.



''' T~**? A .;t« ' ?
n.. z - i; 33-fCTi : ■



APPENDIX H

H.l  MS-DOS BASE PAGE STRUCTURE

The MS-DOS Base Page (sometimes called the Program Segment Prefix 
or PSP), is created when you enter an external command. 
COMMAND.COM will allocate a memory region to the external 
program, and will insert the Base Page prior to the origin of 
this program.

In the memory segment that the program is to load, COMMAND.COM 
places a Base Page, COMMAND.COM then loads the program at an 
offset of 100hex, and hands over control to the external program. 
The external program, once its function is complete, hands 
control back to the operating system by a far JUMP or far RETURN 
to location zero within the Base Page; the instruction at this 
location is an INT 20, or return control to MS-DOS. This stage 
must be executed to allow MS-DOS to recover memory correctly (see 
Appendix D.l).

When an external program is loaded, the following conditions are 
true:

The file control blocks at Base Page locations 5Chex and 
6Chex are created from the first two parameters entered on 
the command line.

The command line at Base Page location 80hex is created from 
the command line entered AFTER the program filename. The 
byte at location 80hex contains the command line character 
count, the following bytes contain the raw command line as 
entered at the keyboard.

The word at offset 6 in the Base Page contains the number of 
bytes available in the segment.

The contents of register AX are established to reflect the 
validity of the drive(s) on the command line. Thus the 
following may be found:

AD - FFhex when the first drive letter on the command line 
was not recognized by MS-DOS.

AH - FFhex when the second drive letter on the command line 
was not recognized by MS-DOS.

The above applies equally to both .EXE and .COM type files. The 
.EXE and .COM files do have differences when the they load, and 
these are described more fully below.

When .EXE files load:

The contents of register DS and register ES are pointing at 
the Base Page segment address.

H-l

COMMAND.COM
COMMAND.COM
COMMAND.COM


The registers CS, IP, SS and SP are initialized to those 
values passed by the linker.

When .COM files load: ~

The contents of registers CS, DS, ES, and SS are pointing to 
the Base Page segment address.

The register IP is set at 100hex.

The register SP is set the high address in the program 
segment, or to the base of the transient portion of 
COMMAND.COM, whichever is the lower. The contents of the 
word at Base Page offset 6 are decremented by 100hex to 
allow for a stack of that size.

A word of zeros is placed at the top of the stack.

~ c : The Base Page

The Base Page is structured as* follows - with offsets in Hex 
cn . .2 . - .. •* - - 3 * 7 2 S2 5 2 ■■

Offset Contents __________

0000 INT 20hex. Word. - *

0002 Total Memory size in paragraph form (i.e. 2000hex is 
equivalent to 256k bytes)7. WOrd.

-f '' rs -7 • • -4 ~ * .5. r ; J ; rj 'Q -a -t ■) 5 7 ■

0005 ■- Far CALL to MS-DOS - functioh' dispatcher . 5 bytes.
■ ~ " c ' - - .. ;’T . bi-9 x 1 axis

000A Program Terminate address as IP and CS. 2 words.

000E Control Break address as CS and IP. 2 words.

005C File Control Block #1, formatted as normal unopened 
FCB. 8 words.

006C File Control Block #2, formatted as normal unopened 
FCB. 8 words.

•" :• • ■ . ‘ •• - •-p* i r>e ? s 3 : • •

0080 Count of characters on'command line; followed by 
command line entered. This region may be used as disk 
transfer address.

in

ef I u c: 3 v

H-2^

COMMAND.COM


Normal File Control Block

The normal file control block is structured as follows - with -r-~ 
offsets in decimal:

Byte Contents x -
0 The drive number. The drives are numbered as follows:

.z 7 t * 7 © 7 ' '■?

Before opening file: 0=default drive
i-i.tr .1 Rd rive A

2-drive B
■? 3=drive C, etc

After opening file: , - 1-drive, A
2-drive B, etc

?c- • v'li c-9-.a :q . 5
MS-DOS replaces the default drive prefix of 0 with the 
correct drive number after the open is processed.

1-8 Filename, left justified? with trailing ASCII space(s) .r 
If a device name is placed in this region, the trailing 
colon should be omittedx; *

9-11 Extent, left justified with trailing ASCII space(s).

12-13 Current block number relative to the beginning of the '
file, starting with zero (automatically set to zero by 
the open function request). A block consists of 128 
records, each record" beioqx ofothe size specified in the 
logical record size field. The current block number is 
used with the current-record field for sequential c, 
reads/writes.

14-15 Logical record size in bytes. Set to 80hex by the open 
function request.-; ~ ' j '

16-19 File size in bytes. The first word represents the low- 
order part of the file size.

where m month lthrul2
d day lthru31
y year 0thrull9 (1980thru2099)

20-21 Date the file was created or last updated. The date is
set by the open function request. The date is formatted
as follows: c ■ ; i ; !-T

< 21 > < 20 >
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
y y y y y y y m m m m d d d d d

H-3$-h



22-23 Time the file was created or last updated. The time is 
set by the open function request. The time is formatted 
as follows:

iiT
< 23 <.. ■? > < . -X 22 >
15 14 13 12 'll 10 9 8 7 6 5 4 3 2 1 0 r*-

h h h h h m m M m m m s s s s s > ■<

where h hours 0thru23 - 
m minutes 0thruS9 

: :  s seconds*2 0thru59 ,i

24-31 Reserved for system use.

32 Current relative record number (0-127) within the 
current block.tThis must be set before doing seqeuntial ] 
read/write operations on the file. The open function 
request does not set this field.

33-36 Relative record number, relative to the origin of the 
file, starting at zero. This field must be set prior to 
doing random read/write operations on the file. The 
open function request does not set this field.

If the record size is less than 64 bytes, both words 
are used. If the record size is greater than 64 bytes, 
then only the first three bytes are used.

Notes:

The File Control Block at SChex in the Base Page overlaps both 
the File Control Block at 6Chex and the first byte of the command 
line area/disk transfer area at 80hex.

Bytes 0thrul5 and 32thru36 must be set by the user program. Bytes 
16thru31 are set by MS-DOS and may only be changed at the 
programmers own risk.

In the 8086/8088 all word fields are stored least significant 
byte first - this is true in setting the record length, etc.



Extended File Control Block

The extended FCB is used to create or search for files having 
special attributes. The extended FCB adds an additional 7 bytes 
proceeding the normal FCB. The extended FCB is structured as 
follows: < m ■. r ~

Byte Contents  r  *

FCB-7 Set to FFhex indicates that an extended FCB is
being used.

FCB-6 to FCB-2 are reserved.

FCB-1

FCB-0

Attribute byte to include hidden files (02hex) or 
system files (04hex) in directory searches.

Origin of normal FCB (drive byte).
- v « j T9 .. ..i. •. CT f ‘ . y?? ** •*

' v.?: 9.’.‘r: o? r- - .7^
> j... .. f - "E ,

■  2 ( 3-L -2 0 05--7 S5-?



H-6



READER'S COMMENTS FORM

Your comments are our main source of ideas for improvement. 
Please use this form to provide us with feedback on this 
document.



DOCUMENT TITLE:. Supplements! TecknicAl Reference 
Msteris!

YOVR GENERAL REACTION:

Overall quality: []Excellent' []Adequate []Poor 
Text Clarity: l1 Very clea? ^Adequate li?oor 
Usefulness ok .format: l)Helpkul llAdequate llPoor

YOUR SPEC IE IO COMMENTS:

Vid you kind any errors in the document? -•■ " . 
Ik so., desc.rihe: ■   . - , ■ -- -■■ - ■ ■ ■ .

 

Was any Important information omitted from the
document? . <• - ... -■ -■ -____ - ____________ _________
If so, ■ descrjbsr - ' .. .... • ' - ■- - ■■ ■ - - ~

 
 

What sections of the document were especially useful
to you? -  - - ■ - - ■

What sections- .were -of no use to you? ■■
 

How could the material be presented to be more
helpful to you?- .-■ ;; ' -■ ' ■ ■ ■  

READER’S NAME:   
JOB TITLE: ,
COMPANY: 
ADDRESS: ______ _ ______________________________________ ________

Please complete and return this form to:
Victor Technologies, Inc Attn: Marketing Dept.
380 El Pueblo Rd.
Scotts Valley, CA 95066 •


