
IMPORTANT SOFTWARE
DISKETTE INFORMATION

For your own protection, do not use this product until you have made a
backup copy of your software diskette(s). The backup procedure is described
in the user’s guide for your computer.

Please read the DISKID file on your new software diskette. DISKID contains
important information including:

► The product name and revision number.

► The part number of the product.

► The date of the DISKID file.

► A list of the files on the diskette, with a description and revision number
for each one.

► Configuration information (when applicable).

► Release notes giving special instructions for using the product.

► Information not contained in the current manual, including updates,
additions, and deletions.

To read the DISKID file onscreen, follow these steps:

1. Load the operating system.

2. Remove your system diskette and insert your new software diskette.

3. Enter —

TYPE DISKID

and press Return.

4. The contents of the DISKID file is displayed on the screen. If the file
is large (more than 24 lines), the screen display will scroll. Type ALT-S
to freeze the screen display; type ALT-S again to continue scrolling.

GRAPHICS TOOL KIT V

Graphics
Tool Kit, II

COPYRIGHT
®1984 by VICTOR®.
®1982 by Microsoft Corporation.

Published by arrangement with Microsoft Corporation, whose software has been
customized for use on various desktop microcomputers produced by VICTOR.
Portions of the text hereof have been modified accordingly.

All rights reserved. This manual contains proprietary information which is pro
tected by copyright. No part of this manual may be reproduced, transcribed,
stored in a retrieval system, translated into any language or computer language,
or transmitted in any form whatsoever without the prior written consent of the
publisher. For information contact:

VICTOR Publications
380 El Pueblo Road
Scotts Valley, California 95066
(408) 438-6680

TRADEMARKS
VICTOR is a registered trademark of Victor Technologies, Inc.
GRAFIX, CHARGRAF, EFONT, KEYGEN, and MODCON are trademarks
of Victor Technologies, Inc.
Microsoft is a registered trademark of Microsoft Corporation. MS-, GW-BASIC,
Music Macro Language, Graphics Macro Language, and MS-BASIC are
trademarks of Microsoft Corporation.
CP/M-86 is a registered trademark of Digital Research, Inc.

NOTICE
VICTOR makes no representations or warranties of any kind whatsoever with
respect to the contents hereof and specifically disclaims any implied warranties of
merchantability or fitness for any particular purpose. VICTOR shall not be liable
for errors contained herein or for incidental or consequential damages in connec
tion with the furnishing, performance, or use of this material.

VICTOR reserves the right to revise this publication from time to time and to
make changes in the content hereof without obligation to notify any person of
such revision or changes.

Second VICTOR printing April, 1984.

ISBN 0-88182-116-0 Printed in U.S.A.

II GRAPHICS TOOL KIT II

OVERVIEW

The Graphics Tool Kit, II includes:

► GRAFIX A powerful programming library that helps
you program screen graphics. The
GRAFIX programing commands provide
such functions as drawing of multiple line
types and widths, drawing of circles and
arcs, filling of regions and bars, definition
of cursor and fill patterns, logical combina
tion of screens and windows, and columnar
printing.

► BUSIGRAF A business graphics package that allows
you to make and edit pie charts, bar
graphs, line plots, and organization charts.

► CHARGRAF A character graphics system that lets you
create and print graphics with characters
instead of high-resolution graphics.

► EFONT A font editor used to define or modify the
character set of the shapes of symbols
displayed on the screen.

► KEYGEN A keyboard generator used to define the
characteristics of individual keys on the
keyboard.

► GW-BASIC An interactive interpreter that supports the
BASIC language, with extensions for music
and high-resolution graphics.

X '■/- n A * ■ '• A7

OVERVIEW V

GRAFIX

COPYRIGHT

© 1983 by VICTOR®.

All rights reserved. This manual contains proprietary information
which is protected by copyright. No part of this manual may be repro
duced, transcribed, stored in a retrieval system, translated into any
language or computer language, or transmitted in any form whatsoever
without the prior written consent of the publisher. For information
contact:

VICTOR Publications
380 El Pueblo Road
Scotts Valley, California 95066
(408) 438-6680

TRADEMARKS

VICTOR is a registered trademark of Victor Technologies, Inc.
GRAFIX is a trademark of Victor Technologies, Inc.

NOTICE

VICTOR makes no representations or warranties of any kind whatso
ever with respect to the contents hereof and specifically disclaims any
implied warranties of merchantability or fitness for any particular pur
pose. VICTOR shall not be liable for errors contained herein or for
incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

VICTOR reserves the right to revise this publication from time to time
and to make changes in the content hereof without obligation to notify
any person of such revision or changes.

Second VICTOR printing January, 1984.

ISBN 0-88182-102-0 Printed in U.S.A.

II GRAFIX

CONTENTS
1. Introduction... 1-1

2. Memory Requirements.. 2-1

3. Installing GRAFIX
3.1 Character Set Parameter.. 3-1
3.2 Screen Parameter... 3-2

4. Using High Resolution Graphics
4.1 The High Resolution Screen...4-1

4.1.1 The Display Screen and the Work Screen.............. 4-2
4.1.2 The Text Window.... ..4-2
4.1.3 The Aspect Ratio... 4-3

4.2 The Character Set..4-4
4.2.1 Printing Vertically...4-5

5. GRAFIX Commands
5.1 Parameter Input Commands...5-1
5.2 Parameter Return Commands.. 5-2
5.3 Action Commands...................... 5-3
5.4 File Maintenance Commands... 5-3
5.5 Using the GRAFIX Escape Sequences................................. 5-3
5.6 Command Descriptions... 5-6

6. Hi-Res Printing
6.1 Character Sets...6-1
6.2 The Hi-Res Print Function... 6-2
6.3 Proportional Printing... 6-5

7. The Cursor
7.1 Positioning the Cursor...7-1
7.2 Pointing the Cursor.. 7-2
7.3 Multiple-Cursor Problems..7-2

CONTENTS III

8. Using Windows and Screens
8.1 Creating a Window...8-1
8.2 Moving a Window...8-1
8.3 Automatic Clipping.. 8-2
8.4 Saving Time... 8-4
8.5 Using Screens.. 8-4

9. Using the Combination Rules
9.1 Exchange of Screens.. 9-2
9.2 Blend or Fade Effect... 9-3
9.3 Hi-Res Printing.. 9-3
9.4 Line Draw Functions.. 9-4
9.5 The Combination Rules...9-4

APPENDIXES
A. Escape and Control Sequences.................................... A-l
B. Error Messages... B-l
C. GRAFIX Functions Reference List......................... C-l

FIGURES
4-1: Screen Coordinates...4-1
4-2: The Aspect Ratio..4-3
4-3: Character Orientation.. 4-5

7- 1: Total Cursor Space..7-1

8- 1: Moving a Window..-........8-3

9- 1: Combination Rules...9-6

A-l: Window Redefinition Parameters... A-7

TABLES
2-1: Approximate User Space with GRAFIX....................................2-1

7-1: Targets of GRAFIX Cursors......................................7-2

IV GRAFIX

CHAPTERS

1. Introduction 1

2. Memory Requirements

Z. Installing GRAFIX

4. Using High Resolution Graphics

5. GRAFIX Commands

6. Hi-Res Printing

7. The Cursor

8. Using Windows and Screens 8

9. Using the Combination Rules

Appendix A: Escape and Control Sequences

Appendix B: Error Messages

Appendix C: GRAFIX Functions Reference List c
CHAPTERS V

INTRODUCTION

1
GRAFIX gives you a powerful set of commands to fully use the high
resolution screen. GRAFIX provides such functions as:

► Drawing of multiple line types and widths

► Drawing of circles and arcs

► Filling of regions and bars

► Definition of cursor and fill patterns

► Logical combination of screens and windows

► Columnar printing

Screen file routines let you create screens or portions of screens, and
then save them on disk. You can call up screen files whenever you need
them. Furthermore, character sets created with the EFONT™ program
can be read from disk and used in various modes, including double-size,
reverse video, and proportional printing.

Since high resolution graphics requires a substantial amount of
memory, the standard memory configuration of 128K bytes might not
be sufficient for your needs. Refer to Chapter 2, “Memory Require
ments,” to see if you need additional memory for your application.

INTRODUCTION 1-1

2
MEMORY REQUIREMENTS

With GRAFIX you can use up to ten different character sets of 128
characters each, and up to eight full screens. A character set uses
slightly over 4K bytes; a screen uses exactly 40,000 bytes.

The specific number of screens that you can use is determined by the
total amount of available memory in the system. Table 2-1 gives some
examples which assume that you are using four character sets.

SYSTEM RAM

Table 2-1: Approximate User Space with GRAFIX

CAPACITY 128K 256K 384K 512K

No. of
Screens SPACE AVAILABLE TO USER

1 32K 180K 288K 416K

2 — 141K 249K 377K

3 — 102K 210K 338K

4 — 63K 171K 299K

5 — 23K 132K 260K

6 — — 93K 22 IK

7 — — 43K 182K

8 — — 14K 143K

Note: The above values represent memory available for the user after allocating memory
to the operating system (30K), GRAFIX (20K), and four character sets (4K each).

MEMOR Y REQUIREMENTS 2-1

In a system with 512K bytes of RAM, you can use all ten character
sets and all eight screens; 128K of RAM remain for your own use. For
smaller RAM configurations, you must decrease the number of screens
and character sets by an appropriate amount. In an application, you
must ensure that enough memory is left in RAM for both your pro
gram and your run-time package.

You can use GRAFIX with any language that is capable of executing a
print statement.

2-2 GRAFIX

3
INSTALLING GRAFIX

To install GRAFIX, type GRAFIX, followed by a space, a dollar sign,
and the letter 8. Then type the number of screens you want to use, the
letter C, and the number of extra character sets you want to activate.

To install GRAFIX with two character sets and two screens, for exam
ple, type the following command:

grafix $S2C2

To specify a printer, enter a third parameter, P, and one of the follow
ing:

F or M
T
CorS
O
N

Epson
Tally
C. Itoh
Okidata
No printer

For example, to install GRAFIX with one character set, three screens,
and the printer driver for an Epson printer, type the following com
mand:

grafix $S3C1PF

If you type the GRAFIX command without any parameters, you install
GRAFIX with only one screen and the standard system character sets.
Once GRAFIX is installed, you must reboot the system to return to any
other mode.

INSTALLING GRAFIX 3-1

3.1 CHARACTER SET PARAMETER

The minimum number of character sets available is two. The first 128
ASCII characters and the upper 128 graphics characters are the two sys
tem character sets; neither of these sets is ever overwritten. The max
imum number of character sets that you can specify is eight (a total of
ten, including the two system character sets).

If you specify one character set (for a total of three), you can load only
one additional character set at a time. Each time you load a new charac
ter set, the previously loaded character set is overwritten.

The only reason to specify an additional character set is to minimize
disk access. If an application requires many different character sets, you
can load all the sets once. Then the sets are resident in RAM, and you
can access them at any time without repeatedly loading from disk.

3.2 SCREEN PARAMETER

The minimum number of screens you can specify is 1, and the max
imum is 8. Refer to Table 2-1 to select the number of screens.

3-2 GRAFIX

4
USING HIGH RESOLUTION
GRAPHICS

THE HIGH RESOLUTION SCREEN 4.1

The high resolution screen consists of 320,000 individual dots. There
are 800 dots in each row and 400 in each column.

You can describe any point on the screen by using its horizontal (x) and
vertical (y) coordinates. The coordinates range from 0,0 in the upper left
corner to 799,399 in the lower right corner. Figure 4-1 displays the coor
dinates of the corners of the screen.

4

Figure 4-1: Screen Coordinates

x = o, y = o X = 799, y = 0

800 dots

400 dots

x = 0, y = 399 x = 799, y = 399

USING HIGH RESOLUTION GRAPHICS 4-1

4.1.1 THE DISPLAY SCREEN AND THE WORK
SCREEN

There are two types of screens in GRAFIX:

► DISPLAY SCREEN—currently displayed on the video screen

► WORK SCREEN—where you send GRAFIX commands

If you make the Display Screen and the Work Screen the same screen,
then the effects of the GRAFIX commands appear on the video screen.
If they are not the same, the effects of the commands do not appear on
the Display Screen until the Display Screen number is switched to
match the Work Screen number, or vice versa.

4 Regardless of how many screens you install when booting GRAFIX,
you can have only one Display Screen and one Work Screen. But you
can easily reassign Display Screen or Work Screen status to any other
screen. The escape sequence used to change the Display Screen is Esc 5
B. The sequence used to change the Work Screen is Esc 5 A.

4.1.2 THE TEXT WINDOW

With this feature, you can define a text window with any number of
lines anywhere on the screen. The text window simulates normal VT52
terminal operation under Hi-Res and implements most of the normal
functions and their escape sequences (see Appendix A). The only
difference from normal character mode operation is that all cursor posi
tioning, insert, and delete functions refer to the text window rather than
to the whole screen. When the bottom of the text window is reached, the
text scrolls up. Any normal printout, such as an error message, uses the
normal system character set and is directed to the text window. For
example, if you print Esc H (which normally sets the cursor at Home
Position), you will set the cursor to the upper left corner of whatever
text window you have defined.

The text window can range from rows 3 to 24; the default is lines 21 to
24 at the bottom of the display. The text window is always on the
currently viewed screen. The escape sequence used to specify the range
of the text window is Esc m2 plp2 (described in Appendix A).

4-2 GRAFIX

When you debug programs using Hi-Res graphics, do all Hi-Res print
ing and drawing on a Work Screen (for example, Screen 1), and leave
Screen 0 totally in text mode. It is easy to select the Work Screen as the
Display Screen in order to view the Hi-Res graphics. Select Screen 0 as
the Display Screen to return to programming. (See Chapter 5 for
descriptions of the Select Display Screen and Select Work Screen func
tions.) Program listings and error messages are printed in the text win
dow in Screen 0; they do not disturb the graphics.

THE ASPECT RATIO 4.1.3

The aspect ratio is the ratio of x units to y units needed to provide equal
length in both directions. The video screen has an aspect ratio of 3 to 2.
Figure 4-2 shows the dots that make up a small square on the screen.
The horizontal sides of the square have 1 1/2 times the number of verti
cal dots (3:2).

4

Figure 4-2: The Aspect Ratio

L

L

If you want to draw a ten-unit square on the screen, follow these steps:
draw a 15-unit line in the x direction, a 10-unit line in the y direction, a
15-unit line in the negative x direction, and finally a 10-unit line in the
negative y direction. To display a circle on the screen, you must draw an
ellipse.

USING HIGH RESOLUTION GRAPHICS 4-3

4.2 THE CHARACTER SET

A character set contains 128 characters. Each character is defined within
an array which is 16 dots wide and 16 dots high.

The Character Height parameter specifies the height of the character; it
is measured in dots, starting from the bottom row of the array. This
number is constant for all the characters within a character set.

The Character Width parameter specifies the width of the character,
measured in dots starting in the leftmost column of the array and mov
ing to the right. In a given character set, this parameter can be fixed or
can take on a different value for each character.

Each character set file contains the parameters used by GRAFIX to
print characters correctly from that character set. The character set file
headers contain flags specifying whether a character is:

► Normal or Special

► Horizontal or Vertical

► Fixed-width or Proportional

A normal character set is 10 dots wide and 16 dots long. It is booted at
the same time as the system.

Once a character from any character set has been placed on the Hi-Res
Screen, the character set doesn’t need to remain in RAM for the charac
ter to be displayed on the screen. (In normal mode, the character set
must reside in RAM to display any character from that set.)

4-4 GRAFIX

PRINTING VERTICALLY 4.2.1

Because of the screen’s 3:2 aspect ratio, you must use different character
sets for horizontal and vertical printing. A horizontal character set is
normally printed left to right, and a vertical character set is normally
printed bottom to top.

To print vertically, first specify a vertical character set. Then enter both
the Hi-Res print escape sequence and the string of characters to be
printed. Printing will be vertical until you return to horizontal printing.

The portion of the 16-by-16-dot character that is printed, together with
the direction of print, is shown in Figure 4-3.

16 dots »

Figure 4-3: Character Orientation

Direction Cursor

Direction

Cursor

USING HIGH RESOLUTION GRAPHICS 4-5

5
GRAFIX COMMANDS

GRAFIX has the following four types of commands:

1. Parameter Input

2. Parameter Return

3. Action—Screen Draw, Print, or Move

4. File Maintenance

PARAMETER INPUT COMMANDS

► Select the screen to draw on

► Select the screen to be displayed

► Select the fill pattern

► Define a screen window

► Select a character set

► Select a cursor type

► Select a combination rule

► Set relative and absolute cursor positioning

► Set line width

► Set line type

► Set left margin

► Set a dot

5
5.1

GRAFIX COMMANDS 5-1

► Set and reset superscript mode

► Set and reset subscript mode

► Set and reset invert character and print direction

► Set and reset double character size mode

► Define text window

► Define user cursor

► Define user fill pattern

► Enable and disable cursor

► Enable and disable shadow print

► Set and reset reverse video mode

► Set and reset underline mode

► Save GRAFIX cursor position

5.2 PARAMETER RETURN COMMANDS

► Get enabled screen number

► Get displayed screen number

► Get window parameters

► Get dot

► Get character width

► Get character height

► Get character type

► Get GRAFIX cursor

5-2 GRAFIX

ACTION COMMANDS

► Fill a region

► Fill a bar

► Draw a circle

► Draw an arc

► Absolute and relative line draw

► Move a window or a screen

► Initialize

► Hi-Res print

► Clear screen

► Return GRAFIX cursor to previously saved position

► Toggle text window screen 5

FILE MAINTENANCE COMMANDS 5.4

► Save a window on disk

► Load a window from disk

► Select character set

USING THE GRAFIX ESCAPE 5.5
SEQUENCES

All GRAFIX escape sequences begin with Esc 5. Many of the func
tions require parameters; others return values. The rest of the func
tions are simple commands and have no parameters. Any function
call (escape sequence) must be terminated with a carriage return/line
feed (ASCII OD, OA).

GRAFIX COMMANDS 5-3

You must call the functions in sequence; that is, the first function must
end before you call the next one. Note that only integer parameters are
accepted.

The following program segments show how each of the four types of
GRAFIX functions is used (Parameter Input, Parameter Return,
Action, and File Maintenance).

IN BASIC

1 0 E T = CHET'.27> . GT™ET+"5" ’initialize GRAFIX call s t r i ng
2 0 PRINT G$.! 11 2 “ 1 c 1 e a r t h e H i - R e s s c r e e n
3 0 P R I N T G T .; " Q " - 4 00 ! 20 0 ' p vi t c u i- s C' r a t 4 0 0 ,r 2 0 0
40 PRINT GT.- " R " • 1 0 0 ’ dr aw circle with radius I 0 0
5 0 PRINT GT.! " U H 1 g e t g r a p h i c s c u r s o r p o s i t i on
60 INPUT X 1 G R Fl F IX w ill r e t u r n v a 1 u >a s i n t o
7 0 INPUT T ! t h e i n p u t s t a t e m e n t s
8 0 PRINT GT. ! " i SCI- i pt " 1 1 o a d n e w f o n t f r o m d: i s k (s c r i p t
Z 0 PRINT GT.; 11 pEND , " 1 p i- i n t t o H i R e s s c r e e n

5

IN PASCAL

P R 0 C E D iJ R E g r a f i x e x a m p 1 e j

CON ST
e s c a p e c h r (2 7) .:
g r a f i x - esc ap e $ l 0

VAR
s c i- e e n : O , , 7 9 9 •
s c r e e n y ; 0 , ,39 9 .!

BEG IN

P e r f o r m t h e same functions'■ 4 a 11 st a t emen t s
a s b e f o r e I >

w r f t e 1 ng r a f i x, 1 2 r) ! (X Action Co m. m a n d 4)
w r i t e 1 n (g r a f i x , 1 Q ' , 4 0 0,2 0 0) .!! (X P a r a m e t e r Input 4)
w r i t e 1 n (g r a f i x, 1P'’100)} C 4 P a r a m e t e r I p p u t 4)
w r i t e 1 n < g r a f i x, ' u ') '• 4: Par ameter R e t u r n 4)
r e a d 1 n (s c r e e n x j ; (4 r e t u r n e d . parameter
r e a d 1 n (s c r e e n y y > (4: ret u r n e d Par ameter
w r i t e 1 n C g r a f i x, ' i s c r i p t ').! (4: File Mainte n a n c e 4)
w r i t e 1 n < g r a f i x, ' pE-ND . ') .! (4 P a r a meter I n p u t 4)

*)
*)

END (4 grafix example 4)

5-4 GRAFIX

COMMAND DESCRIPTIONS 5.6

ESC 5 A—SELECT WORK SCREEN

Action: Selects the screen specified as the Work Screen. All line
draws and Hi-Res prints are directed to the Work Screen.

Parameters passed: Single ASCII number between 0 and 7 corres
ponding to the screen desired.

Explanation: If only one screen is enabled when GRAFIX is loaded,
the Work Screen and the Display Screen are the same screen. If
more than one screen is enabled, you can program on Screen 0
(after specifying it as the Display Screen), but select Screen 1 as the
Work Screen. Then, once drawing is completed, you can select
Screen 1 as the Display Screen and view the completed picture,
rather than its formation.

ESC 5 B—SELECT DISPLAY SCREEN

Action: The specified screen is displayed.

Parameters passed: An ASCII number specifying which screen is to
be viewed on the CRT. Current hardware supports selection of
Screen 0 or Screen 1.

Explanation: As before, if only one screen is specified when
GRAFIX is installed, Screen 0 is both the Work and Display Screen
at all times. If multiple screens are enabled on installation, Screen 0
or 1 may be selected as the Display Screen.

GRAFIX COMMANDS 5-5

ESC 5 C—SET SUPERSCRIPT SHIFT MODE

Action: Shifts the cursor up by the number of dots specified in the
currently enabled character set.

Parameters passed: None.

Explanation: The cursor shifts up a number of dots, usually equal to
about one-half the character height stored in the currently enabled
character set. This function is used to print superscripts.

ESC 5 D—RESET SUPERSCRIPT SHIFT MODE

Action: Moves cursor down the number of dots specified in the table
for the currently enabled character set.

Parameters passed: None.

Explanation: This is the complement to Set Superscript Shift Mode.
A reset is required to return to printing on the normal line.

ESC 5 E—SET SUBSCRIPT SHIFT MODE

Action: Moves cursor down the number of dots specified in the table
for the currently enabled character set.

Parameters passed: None.

Explanation: Similar to Set Superscript Shift Mode, except that the
shift is downward for the printing of subscripts.

ESC 5 F—RESET SUBSCRIPT MODE

Action: Moves cursor up the number of dots specified in the table for
the currently enabled character set.

Parameters passed: None.

Explanation: Similar to Reset Superscript Shift Mode.

5-6 GRAFIX

ESC 5 G—SET DOUBLE CHARACTER SIZE MODE

Action: Causes all further Hi-Res print to be double the normal size.

Parameters passed: None.

Explanation: Doubles the width and the height of each character,
regardless of the character set enabled (a single character dot is
blown up into four dots).

ESC 5 H—RESET DOUBLE CHARACTER SIZE MODE

Action: Returns all Hi-Res print to normal size.

Parameters passed: None.

ESC 5 I—DEFINE SCREEN WINDOW

Action: Stores current window dimensions in a table for subsequent
move instructions.

Parameters passed: Two ASCII numbers: One specifies the width of
the window (x extent), and the other specifies the height of the
window (y extent). The cursor position specifies the upper left corner
of the window.

Explanation: This function is used prior to the Move function or to
the Save Window function. It is not a clipping window.

ESC 5 J—SET INVERT CHARACTER AND PRINT DIRECTION

Action: Changes print direction and inverts characters.

Parameters passed: None.

Explanation: If the currently enabled character set is horizontal, this
function flips the characters upside down and prints from right to left.
If the current character set is vertical, this function flips it over and
prints from the top down.

GRAFIX COMMANDS 5-7

ESC 5 K—RESET INVERT CHARACTER AND PRINT
DIRECTION

Action: Returns to normal print direction.

Parameters passed: None.

Explanation: This function restores the default print direction.

ESC 5 L—SELECT FILL PATTERN

Action: Stores the selected fill pattern number in a table for use by
any subsequent fill command.

Parameters passed: A single ASCII number specifying the number
for the fill pattern. The number must be between 0 and 8.

Explanation: Fill patterns 0-7 are preprogrammed. The density of
the fill pattern increases with the fill pattern number. Fill pattern
number 8 is blank. Each of the nine fill patterns can be specified by
selecting the Define User Fill Pattern function.

ESC 5 M—FILL REGION

Action: Fills the bounded region (specified by the cursor position
within the region) with the currently enabled pattern.

Parameters passed: None.

Explanation: The region to be filled is specified by the position of the
cursor. If the cursor is pointing to a dot that is ON when the Fill
Region command is executed, no error is generated and no region is
filled.

The region need not be bounded on all sides; the edges of the screen
act as boundaries. Complex regions can be filled; however, if the
region to be filled contains more than 64 discontinuities, a table
overflow error will result.

ESC 5 N—FILL BAR

Action: The fill is accomplished using the currently enabled fill pat
tern.

Parameters passed: Two ASCII numbers specifying the relative x
and y coordinates of the corner of the bar to be filled.

5-8 GRAFIX

Explanation: The bar is a rectangular region. A reference corner is
specified by the current position of the cursor. The diagonally oppo
site corner of the rectangular region is specified by the parameters
passed to the Fill Bar function.

Note: The coordinates passed to the function are relative to the
current cursor position. The x and y values may be positive, negative,
or any combination.

Example: If the cursor is positioned at 100,100 and the Fill Bar
function is called with the parameters -20 and -30, a bar with the
following coordinates is drawn:

80,70 100,70

80,100 100,100

The bar will be filled using the currently selected fill pattern. None of
the combination rules apply—the function erases the portion of the
screen and fills it with the selected fill pattern.

ESC 5 O—SET LEFT MARGIN

Action: Stores left margin.

Parameters passed: An ASCII number (0<n<799).

Explanation: Sets the left margin to be used with Hi-Res print.

ESC 5 P—DRAW CIRCLE

Action: Draws a circle centered at the current cursor position.

Parameters passed: An ASCII number specifying radius in y units.

Explanation: To display a circle on the screen, this function draws an
ellipse with an aspect ratio of 3:2.

Example: If the cursor position is 200,200 and the function is called
passing a radius of 100, a circle is drawn with a radius of 100 dots in
the y direction, and a radius of 150 dots in the x direction.

ESC 5 Q—ABSOLUTE POSITION GRAFIX CURSOR

Action: Moves the GRAFIX cursor to the absolute x,y position.

5

GRAFIX COMMANDS 5-9

Parameters passed: Two ASCII numbers specifying the x and y
positions (coordinates) on the screen.

Explanation: The GRAFIX cursor can be positioned anywhere
within the cursor space as shown in Figure 7-1. Attempting to posi
tion the cursor outside that space generates an error.

ESC 5 R—RELATIVE POSITION GRAFIX CURSOR

Action: Moves the GRAFIX cursor relative to the current cursor
position by the increments specified.

Parameters passed: Two ASCII numbers specifying the x and y
increments.

Explanation: Same as Absolute Position GRAFIX Cursor function
except the cursor is positioned relative to its prior location.

ESC 5 S—SAVE WINDOW ON DISK

Action: Saves the contents of the defined window from the Work
Screen in the named disk file with extension ".SCR".

Parameters passed: Up to 64 ASCII characters specifying a valid
pathname.

Explanation: Before calling this function, move the cursor to the
upper left corner of the desired window. Then specify the extent of
the window using the Define Screen Window function.

A whole screen can be defined as the window and saved on disk by
using this function, but the window must be entirely on the screen.

ESC 5 T—LOAD WINDOW FROM DISK

Action: Loads the contents of the named file onto the currently
enabled screen. The upper left corner of the window coincides with
the current cursor position. The file can contain a whole screen or a
partial screen. If the file exceeds the screen boundary, it is clipped.

Parameters passed: Up to 64 ASCII characters specifying a valid
pathname.

5-10
GRAFIX

Explanation: The file name must not contain an extent. The named
file must be on a specified drive and must have the extension
“.SCR”. The cursor must be on the screen when this routine is
called.

ESC 5 U—DRAW LINE (ABSOLUTE)

Action: Draws a line from the cursor position to the specified x and y
coordinates using the current combination rule, line width, and line
type. The cursor is moved to the newx,y position.

Parameters passed: Two ASCII numbers corresponding to the abso
lute x and y position on the screen.

Explanation: This function draws a line from the previous cursor
position to the absolute x and y coordinates specified, and moves the
cursor to the end of the line.

ESC 5 V—MOVE WINDOW

Action: Moves the window using the currently enabled combination
rule.

Parameters passed: An ASCII number specifying the destination
screen.

Explanation: Moves a region from the Work Screen (defined by the
enabled window) to the destination screen, using the cursor position
as the upper left corner of the window. The function selects the
specified screen as the Work Screen when the move is done. The
window can be moved from one location to another on the same
screen and from one screen to another. The current combination rule
remains in effect.

ESC 5 W—MOVE SCREEN

Action: Moves the current Work Screen to the screen specified,
using the current combination rule. Selects specified screen as the
Work Screen when move is done.

Parameters passed: An ASCII number specifying the destination
screen.

GRAFIX COMMANDS 5-11

Explanation: This is a special case of Move Window, where the
window is the whole screen. The move is accomplished faster than
with the Move Window function.

ESC 5 X—SET COMBINATION RULE

Action: Stores the currently selected combination rule.

Parameters passed: An ASCII number corresponding to one of 16
combination rules. These are described in Chapter 9.

Explanation: This rules applies to all moves, character prints, and
line draws, but not to arc draws, circle draws, or fills.

ESC 5 Y—SET LINE WIDTH

Action: Stores specified line width value.

Parameters passed: An ASCII number corresponding to the dot
width (y units) desired for the line drawing routine. The supported
numbers are 1, 2, 4, and 6. Lines other than horizontal lines are
automatically scaled to give equal widths.

Explanation: The specified value is used in all line, circle, and arc
drawings.

ESC 5 Z—SET LINE TYPE

Action: Stores line type value in table.

Parameters passed: An ASCII number corresponding to one of five
types of lines:

► Type 1—Solid line.

► Type 2—Dashed line: 4 dots ON, 4 dots OFF.

► Type 3—Dashed line: 8 dots ON, 4 dots OFF.

► Type 4—Dot, dash: 4 dots ON, 2 dots OFF, 2 dots ON, 2 dots
OFF.

► Type 5—Dot, dash: 8 dots ON, 3 dots OFF, 3 dots ON, 3 dots
OFF.

Explanation; The line type applies to all line, circle, and arc drawing.

5-12 GRAFIX

ESC 5 a—GET CHARACTER WIDTH

Action: Reads the width of the specified character and returns it as
an ASCII number.

Parameters passed: A single ASCII character.

Explanation: This is used with proportional printing.

ESC 5 b—GET DOT

Action: Returns the attribute of the dot pointed to by the GRAFIX
cursor.

Parameters passed: None.

Explanation: If the dot at the cursor position is ON, the value re
turned is 1; if it is OFF, the value returned is 0.

ESC 5 c—SET DOT

Action: Specifies the source dot, and combines it with the dot
pointed to by the cursor, according to the set rule.

Parameters passed: A single ASCII character (1 or 0) specifying the
source dot as ON or OFF.

Explanation: If an ASCII 1 is passed, the source dot is specified as
being ON; if an ASCII 0 is passed, the source dot is OFF. (See
Chapter 9.)

ESC 5 d—INITIALIZE

Action: Resets all functions to their initial values.

Parameters passed: None.

Explanation: The initial parameter values are:

Cursor Position 0,0
Window Position 0,0
Screen Window 800,400
Character Set NORMAL
Combination Rule 7 (OR)
Work Screen 0
Display Screen 0

GRAFIX COMMANDS 5-13

Line Type
Line Width
Left Margin
Shadow Print
Underline
Reverse Video
Double Size
Print Direction
Cursor
Cursor Type
Cursor Saved
User Cursor x Offset
User Cursor y Offset
Fill Pattern

SOLID
1
0
OFF
OFF
OFF
OFF
NORMAL
ON
ARROW
0,0
0
0
0

ESC 5 e—GET WINDOW

Action: Returns four ASCII numbers specifying the current
GRAFIX window. The first pair of numbers specifies the x and y
coordinates of the upper left corner of the window; the next pair
specifies the width and height of the window.

Parameters passed: None.

ESC 5 f—DRAW LINE (RELATIVE)

Action: Draws a line from the cursor position to the dot specified by
the increment arguments, x and y.

Parameters passed: Two ASCII numbers specifying the x and y
increments.

ESC 5 h—DRAW ARC

Action: Draws a circular arc between two endpoints in a coun
terclockwise direction.

Parameters passed: Five ASCII numbers specifying the radius (in y
units) and the x and y coordinates of the two endpoints of the arc.

Explanation: An arc with the specified radius is drawn between the
two endpoints. An error is generated if the x and y coordinates for the
endpoints do not fall on a circle of the specified radius.

5-14 GRAFIX

ESC 5 i—SELECT CHARACTER SET

Action: Selects the named character set for all subsequent Hi-Res
print.

Parameters passed: File name of the desired character set.

Explanation: If the character set is not in memory, it is loaded from
disk. The least recently accessed character set is overwritten if all
allocated set locations are used. The system character set is protect
ed from overwriting and is accessed by selecting NORMAL. The
system graphics character set (ALT) is also protected.

A drive may be specified when you enter the file name. If no drive is
specified, the default drive is assumed. File names are assumed to
have a .CHR extension which can be neither specified nor overrid
den. The same character set name should not be used from more than
one disk drive.

ESC 5 j—GET WORK SCREEN NUMBER

Action: Returns the ASCII number of the currently selected Work
Screen.

Parameters passed: None.

ESC 5 k—GET DISPLAY SCREEN NUMBER

Action: Returns the ASCII number (0 or 1 for current hardware)
indicating the current Display Screen.

Parameters passed: None.

ESC 5 1—GET CHARACTER HEIGHT

Action: Returns the ASCII value specifying the height of the cur
rently selected character set.

Parameters passed: None.

Explanation: All characters in the character set have the same
height.

GRAFIX COMMANDS 5-15

ESC 5 m—DEFINE USER CURSOR

Action: Stores the specified pattern as user cursor in the table for
future use.

Parameters passed: 34 ASCII numbers. The first two numbers repre
sent the desired x and y offset from the upper left corner to the cursor
dot within the pattern. The last 32 numbers represent the cursor
pattern (0 < n < 255).

Explanation: The GRAFIX cursor, whatever its shape, always points
to a single dot on a screen. The cursor character is a pattern 16 dots
wide by 16 dots high. The cursor dot is specified by the x and y
offsets with respect to the upper left corner of the cursor pattern.

Each of the last 32 ASCII numbers defines 8 dots of the cursor
pattern. Each pair of numbers defines a row of the cursor pattern.
For example, if you want to define an arrow, specify the following
pattern:

Number Pair Pattern

Row 1 255,255 11111111 11111111
Row 2 192,0 11000000 00000000
Row 3 160,0 10100000 00000000
Row 4 148,0 10010000 00000000
Row 5 136,0 10001000 00000000
Row 6 132,0 10000100 00000000
Row 7 2,0 00000010 00000000
Row 8 1,0 00000001 00000000
Row 9 0,128 00000000 10000000
Row 10 0,64 00000000 01000000
Row 11 0,32 00000000 00100000
Row 12 0,0 00000000 00000000
Row 13 0,0 00000000 00000000
Row 14 0,0 00000000 00000000
Row 15 0,0 00000000 00000000
Row 16 0,0 00000000 00000000

ESC 5 n—DEFINE USER FILL PATTERN

Action: Stores the specified fill pattern in the appropriate location in
the table.

5-16 GRAFIX

Parameters passed: 33 ASCII numbers. The first number specifies
the fill number this pattern will be accessed by; the remaining 32
specify the 16-by-16-dot pattern used as the fill pattern.

Explanation: A fill pattern is defined as a 16 x 16 array of dots. Each
ASCII number defines 8 dots, the first two numbers define the first
row of dots, the second two define the second row, and so on, until
the sixteenth row. See the explanation under “Define User Cursor.”

Fill patterns 0-7 are programmed with increasing density as the
number increases. Fill pattern 8 is completely blank. Any of the nine
fill patterns can be defined and specified.

ESC 5 o—GET CHARACTER SET TYPE

Action: Returns an ASCII number specifying the selected character
set type as follows:

0—Normal character set booted with the system (10 dots wide,
16 dots high).

4—Alternate set booted with the system.

8— Horizontal, Non-proportional.
9— Horizontal, Proportional.

10— Vertical, Non-proportional.
11— Vertical, Proportional.

12— —Special, Horizontal, Non-proportional.
13— Special, Horizontal, Proportional.

14— Special, Vertical, Non-proportional.
15— Special, Vertical, Proportional.

Parameters passed: None.

ESC 5 p—HI RES PRINT

Action: Prints the characters at the current graphics cursor position
and updates the cursor position.

Parameters passed: Printable ASCII characters terminated by car
riage return/line feed.

GRAFIX COMMANDS 5-17

ESC 5 q—ENABLE CURSOR

Action: Displays the currently selected cursor at the cursor position.

Parameters passed: None.

ESC 5 r—DISABLE CURSOR

Action: Does not display the cursor.

Parameters passed: None.

Explanation: Even though the cursor is not visible, you can position
it anywhere within the cursor positioning space.

ESC 5 s—ENABLE SHADOW PRINT

Action: Shadow prints all characters using Hi-Res print.

Parameters passed: None.

Explanation: Shadow printing is accomplished by printing a charac
ter twice. On the second printing, the character is moved one dot to
the right.

ESC 5 t—DISABLE SHADOW PRINT

Action: Returns to normal print.

Parameters passed: None.

ESC 5 u—GET GRAFIX CURSOR

Action: Returns two ASCII numbers. The first corresponds to the
absolute x position of the cursor, the second to the absolute y
position.

Parameters passed: None.

ESC 5 v—ENTER REVERSE VIDEO MODE

Action: Causes all further Hi-Res print to be in reverse video.

Parameters passed: None.

5-18 GRAFIX

ESC 5 w—RESET REVERSE VIDEO MODE

Action: Returns to normal print.

Parameters passed: None.

ESC 5 x—SELECT CURSOR TYPE

Action: Uses the specified cursor.

Parameters passed: An ASCII number as follows:

0—Block
1— Cross-hair
2— Arrow (the default)
3— User-defined

ESC 5 y—SET UNDERLINE MODE

Action: All characters printed from this point are underlined. (The
second row of dots from the bottom of the character cell is turned
ON.)

Parameters passed: None.

ESC 5 z—RESET UNDERLINE MODE

Action: Returns to normal print.

Parameters passed; None.

ESC 5 0—SAVE GRAFIX CURSOR POSITION

Action: Saves the current GRAFIX cursor position for subsequent
return.

Parameters passed: None.

ESC 5 1—RETURN GRAFIX CURSOR TO PREVIOUSLY SAVED
POSITION

Action: GRAFIX cursor returns to position saved when Esc 5 0 was
executed and stays on the screen.

Parameters passed: None.

GRAFIX COMMANDS 5-19

ESC 5 2—CLEAR SCREEN

Action: Sets all dots on the Work Screen to zero.

Parameters passed: None.

ESC 5 9—TOGGLE TEXT WINDOW SCREEN

Action: Successively enables and disables printing to the text win
dow.

Parameters passed: None.

ESC 5 ?—SCREEN DUMP TO DOT MATRIX PRINTER

Parameters passed: None.

Action: Prints the Work Screen on the printer.

Explanation: The type of printer, if any, is identified at installation.
You must install the printer correctly.

5-20 GRAFIX

HI-RES PRINTING

CHARACTER SETS 6.1

The dot pattern for any character is contained in a 16-dot-wide by
16-dot-high matrix. Each character set has two dimension attributes:
height and width.

Character height (H) specifies the height (in dots) of the field to be
covered by the characters. Character height is the same for all 128
characters in the set.

Character width (W) is the same for all characters in the set (non
proportional printing), or depends on the width of each character
(proportional printing). In proportional printing, for example, the letter
W is wider than the letter I. Each character in a set is defined by a
window starting at the lower left of the 16 x 16 dot character array. This
window has a width specified for that character and a height specified for
the whole character set. Essentially, any given character is a “small
window” which is being transferred to the selected screen.

6

Since all characters within any given set have the same height, the cursor
proceeds along the top of the boundary defined for the characters as they
are printed (if you’re using only one character set).

The Hi-Re s print function accepts a string of characters to be printed and
automatically allocates (from left to right) the amount of space needed
for each character. If the character set is proportionally spaced, the
printing on the screen is also proportionally spaced (the cursor automati
cally advances to the next character position each time). You must
manage the line width—automatic end-of-line wrap-around is not imple
mented.

If you execute a Hi-Res carriage return/line feed (ASCII code 160, 161)
within a string, the Hi-Res cursor advances down and to the left, and
then prints the rest of the string. (A normal return/line feed terminates

HI-RES PRINTING 6-1

the Hi-Res print function.) The specific number of dots the cursor moves
down is determined by the height parameter for the character set. The
cursor movement to the left is limited by the current left margin.

In contrast to printing on a terminal, the cursor is not a block equal to the
size of a character. Instead, the cursor points to a single dot. This dot is at
the upper left corner of the character field.

The Hi-Res print routine prints any character between 32 and 127 when
it receives the corresponding ASCII code. Characters 0 through 31
within a character set are accessed by sending ASCII codes of 128
through 159.

6.2 THE HI-RES PRINT FUNCTION

6

The Hi-Res print function lets you print character strings on a graphics
screen. Place the cursor at the spot where you want the upper left corner
of the first character in the string. Then call the Hi-Res print function,
with the string of characters you want to print as an argument. Terminate
the function with a carriage return/line feed.

Before executing the print function you can specify:

► The type font

► Shadow printing

► Reverse video

► Underlining

► Subscript and superscript printing

► Double character size

► The left margin

6-2 GRAFIX

These features are described in the following examples. (g$ is equivalent
to the escape character plus “5”.)

1. To print with a different type font (character set), use the Select
Character Set function (Esc 5 i). For example, if you want to load a
set called “script” located on drive B, execute this command:

print g$ + “ib:script”

2. With shadow printing, a character is printed a second time by OKing
in the same character one dot to the right. To shadow print a string of
characters, use the Enable Shadow Print function (Esc 5 s). For
example, if you want to shadow print the phrase “this is important,”
execute Esc 5 s, print the string using the print function, then turn
off shadow print with the Disable Shadow Print function (Esc 5 t):

print g$ + “s”
print g$ + “p” + “this is important”
print g$ + “t”

3. To print a word in reverse video, use the Set Reverse Video Mode
function (Esc 5 v). For example, to print the word “Warning” in
reverse video, execute the reverse video function, print the word,
and then exit reverse video:

print g$ + “v”
print g$ + “pWarning”
print g$ + “w”

4. To underline a character string, use the Set Underline Mode function
(Esc 5 y). For example:

print g$ + “y”
print g$ + “p” + the string)
print g$ + “z” ’to reset underline mode

5. Superscript and Subscript modes move the cursor up or down a
distance equal to one-half the character height. To print a super
script, use the Set Superscript Shift Mode function (Esc 5 C). To
print a subscript, use the Set Subscript Shift Mode function (Esc 5
E).

6

HI-RES PRINTING 6-3

For example:

Superscript:

print g$ + “C”
print gK + "p2 "
print g$ + “D”
print g$ + "p + c”
print g$ + “C”
print g$ + “p2”
print g$ + “D”
print g$ + "p = 0”

Subscript:

print g$ + “pH”
print g$ + “E”
print g$ + "p2"
print g$ + “F”
print g$ + “pO”

If you change the character font size, you must position the cursor
exactly if you print superscripts or subscripts.

6. When you call the function Set Double Character Size Mode (Esc 5
G) all subsequent graphics characters are printed double their nor
mal width and height. You set and reset (Esc 5 H) the mode as
described in the preceding explanations.

7. Esc 5 J, Set Invert Character And Print Direction, causes all subse
quent graphics characters to be printed upside-down and from right
to left. (If you’re using a vertical character set, then characters are
flipped over and printed from top to bottom.) Set and reset (Esc 5 K)
the mode as described in the preceding explanations.

6-4 GRAFIX

PROPORTIONAL PRINTING 6.3

If you use a proportionally spaced character set, GRAFIX automati
cally provides the correct amount of space between characters. (You
don’t need a “print proportional” function.) However, you must keep
track of the location of the right margin.

Use the Get Character Width function (Esc 5 a) to keep a running total of
the width of the characters, and compare it to the coordinate of the right
margin.

You can do microspacing by using the Relative Position Cursor function
(ESC 5 R).

6

HI-RES PRINTING 6-5

7
THE CURSOR

POSITIONING THE CURSOR 7.1

You can position the cursor anywhere within the actual screen—that
is, in the space between the limits of —800 and + 1599 for x and
— 400 and +799 for y. The total cursor space is shown in Figure 7-1.
All cursor positioning refers to the currently selected screen.

Figure 7-1: Total Cursor Space
-800, -400 1599, -400

(Cursor positioning space)

799,00,0

0, 399 799, 399

7(Viewable
screen)

-800, 799 1599, 799

The cursor may be selected for printing (cursor ON) or non-printing
(cursor OFF) within the actual screen, but it defaults to non-printing if
you position it outside the actual screen. To move the cursor from one
screen to another, simply change the Work Screen.

THE CURSOR 7-1

7.2 POINTING THE CURSOR

The GRAFIX cursor always points at a single dot on the screen. Table
7-1 indicates the target dots of the different cursors.

Table 7-1: Targets of GRAFIX Cursors

TYPE OF CURSOR TARGET DOT

Block Cursor

Arrow Cursor

Cross-hair Cursor

User-defined Cursor

The upper left corner of the block is the absolute x and y
position of the cursor.

The dot corresponding to the tip of the arrow is the
absolute x and y location of the cursor.

The dot in the middle of the cross-hair specifies the
absolute x and y position of the cursor.

The absolute location of the dot pointed to is the upper
left corner of a 16 X 16 dot array specified by the x and y
cursor offsets.

7

7.3 MULTIPLE-CURSOR PROBLEMS

GRAFIX supports two cursors: the Text cursor and the GRAFIX cur
sor. You can position the GRAFIX cursor anywhere within the cursor
positioning space; you can position the Text cursor anywhere within
the text window.

When a GRAFIX command to print or draw is issued, the GRAFIX
cursor is removed from the screen, the command is executed, and the
GRAFIX cursor is then XORed back into the screen. When the cursor
is moved, it is XORed out of the current position and XORed into the
new position. The GRAFIX cursor never disturbs any of the graphics
on the screen. The Text cursor, a block, is also XORed into the screen
and XORed out when it is moved.

7-2 GRAFIX

Two kinds of screen erase are possible. The GRAFIX Clear Screen
function (Esc 5 2) erases the entire Work Screen (which might not be
the current Display Screen). The Standard Clear function (Esc E) clears
the text window only.

If the GRAFIX cursor is enabled when a GRAFIX Clear Screen is exe
cuted, the cursor is removed, the screen is cleared, and the cursor is
restored. Similarly, if the Text cursor had been enabled when the Stan
dard Clear function was called, the Text cursor is removed, the text
window is cleared, and then the Text cursor is restored.

The GRAFIX Clear Screen manages only the GRAFIX cursor; it does
not manage the Text cursor. The Standard Clear function manages
only the Text cursor, not the GRAFIX cursor. Multiple cursors will
result if either of the screen clear functions affects a portion of the
screen on which the other type of cursor resides. For example:

► If the Text cursor is enabled and a GRAFIX Clear Screen is called,
the Text cursor will be cleared. The next time the Text cursor is
moved it will be restored to both old and new positions (resulting in
two Text cursors).

► If a Clear Text Window function is called while the GRAFIX cursor
is within the text window, the GRAFIX cursor will disappear. The
next time the GRAFIX cursor is moved it will reappear at both the
old and new positions.

These problems can be avoided if you follow two simple rules:

1. Disable the Text cursor before clearing any portion of the GRAFIX
screen.

2. Disable the GRAFIX cursor before clearing any portion of the text
window.

THE CURSOR 7-3

8
USING WINDOWS AND SCREENS

CREATING A WINDOW 8.1

A window is a rectangular portion of the screen of any size (up to the
whole screen). To create a window on the Work Screen:

1. Place the cursor at the desired location of the upper left corner of the
window, and

2. Enter the extent of the window by using the Define Window function,
specifying the width and height of the window in dots.

Windows can be saved on disk, loaded from disk, moved around on a
screen, or moved from one screen to another.

MOVING A WINDOW 8.2

The Move Window function lets you use one of sixteen possible combi
nation rules to move a window from screen to screen or into different
places on the same screen.

For example, if you want to move the upper left quarter of Screen 3 to
the lower right quarter of Screen 0, follow this sequence of calls:

1. Enable Screen 3 as the Work Screen.

2. Position cursor to: x - 0, y - 0.

3. Call the window function, with x - 399 and y - 199.

4. Move cursor to: x - 399, y = 199.

USING WINDOWSAND SCREENS 8-1

5. Specify the combination rule if it needs to be changed.

6. Call the Move Window function, specifying Screen 0.

This moves the window from the upper left corner of Screen 3 to the
lower right corner of Screen 0, and changes the Work Screen from
Screen 3 to Screen 0.

8.3 AUTOMATIC CLIPPING

8

Any point within the cursor positioning space (— 800 < x < 1599
and — 400 < y < 799) can be used for any of the drawing routines
(see Figure 7-1).

Graphics are automatically clipped; the viewable screen acts as a clip
ping window. If you draw a line from the origin (x = 0 and y = 0) to x =
1599 and y - 799, the visible line goes diagonally across the screen,
ending at x = 799 and y - 399. The cursor is at position 1599,799. If you
attempt to position the cursor outside the cursor space, an error will
result.

When you move a window that just been defined or loaded from disk,
place the GRAFIX cursor where you want it on the destination screen.
(Be sure to invoke the correct combination rule.) If you position the
GRAFIX cursor outside the range of the viewable screen, the window
will be “clipped.” Figure 8-1 shows how a screen is clipped if the win
dow does not fit in the viewable area of the screen.

8-2 GRAFIX

Figure 8-1: Moving a Window

Window
from disk
or another
screen

If the cursor is positioned at the point labeled A (above and to the left of
the selected screen), only the portion of the window that coincides with
the screen is combined with the screen. The shaded area of the window is
discarded.

If the cursor is within the selected screen and the window falls entirely
within that screen, all of the window is transferred. When loading a
window from disk, be sure the cursor is within the viewable screen.

8

The Move Window function need not actually perform a move. For
example, assume that you have placed the cursor at the upper left corner
of a window and that you’ve specified the x and y extents of that window.
If you invoke a Move and specify the screen on which the window has
been defined, without moving the cursor, the window does not move:
however, the combination rule is applied, as if there has been a move.

USING WINDOWSAND SCREENS 8-3

The portion of the screen defined as the window is combined using the
set combination rule. If the rule in effect is D ’ - NOT D, the portion of
the screen defined by the window turns into reverse video. Similarly, the
portion of the screen defined by the window can be erased by invoking
the appropriate combination rule (D’ =0).

8.4 SAVING TIME

You can save time in two ways when redrawing graphics figures. First,
any number of graphics features can be generated just once and saved on
disk. After placing the cursor at the upper left corner of your chosen
region, call the Load Window From Disk function.

Second, you can build a set of graphics figures on a background (non
Display) screen, and then recall the set (move it to the Display Screen)
when you need it.

Moving a window or a screen does not destroy the original image. If you
move a window from Screen 3 to Screen 0, the contents of the window
are still available on Screen 3.

8.5 USING SCREENS

You can save a screen, or a portion of a screen, on disk. In applications
where numerous frames are to be displayed, you should use Screens 0
and 1. Follow these steps:

1. Load the first frame from disk to Screen 1 while viewing Screen 0.

2. Change the Display Screen to 1.

3. Load the next frame from disk to Screen 0.

4. Change the Display Screen to 0.

8-4 GRAFIX

Then, the data is retrieved from disk and loaded onto the screen rapidly.

Multiple screens can be used when the graphics to be displayed on the
screen are generated during the execution of the program. You can build
complete screens- (or partial screens called windows) on a non-Display
Screen and then bring those windows onto the Display Screen.

Multiple screens also save time in applications where you need several
graphics screens concurrently. You can build or bring successive frames
from disk once—and then select or move them to the viewable screen as
desired.

8

USING WINDOWS AND SCREENS 8-5

9
USING THE COMBINATION RULES

You can use the sixteen combination rules to logically combine windows
with screens or other windows, and screens with other screens. The first
window or screen is called the “destination” (D). The second window or
screen, called the “source” (S), is the window or screen you are defin
ing. The rules specify how the destination is transformed by the source.
The transformed destination is labeled “D’ ”.

Figure 9-1 shows a possible destination and a possible source com
bined under the each of the sixteen rules. Using the combination rules,
you can:

1. Turn ON .all the dots in the destination. (D’ =1)

2. Turn OFF all the dots in the destination. (D' =0)

3. Invert all the dots in the destination. (D = not D)

4. Move the source into the destination. (D = S)

5. Move the inverted source into the destination. (D = NOT S)

6. Combine the source and destination or invert either one through the
logical ANDing, ORing, or XORing of the two.

You need only specify the dimensions of the source. The destination
automatically assumes the same dimensions. The source and the des
tination can be:

► On separate screens

► On different portions of the same screen

► Identical (on the same portion of the same screen)

9

USING THE COMBINATION RULES 9-1

The combination rules furnish multiple means for achieving the same
end. They apply to all window and screen moves, high resolution print
ing, the set dot function, draw line, draw circle, and draw arc functions.
All sixteen rules apply to window and screen moves and the set dot
function; only three apply to the Hi-Res print function.

9.1 EXCHANGE OF SCREENS

Assume that Screen 0 is the Display Screen and that you want to view
Screen 3, while preserving the contents of Screen 0. If you invoke the
Move Screen function, Screen 3 will be transferred to Screen 0, but the
contents of Screen 0 will be lost (the contents of both screens are now the
same).

If you want to exchange the contents of the two screens without having
to write one to a buffer (a 40,000-byte buffer is needed), follow these
instructions (the contents of Screen 0 are labeled SO, the contents of
Screen 3 are labeled S3).

1. Set the combination rule to: D’ - S XOR D.

2. Set the Work Screen to 0. This places the cursor on Screen 0.

3. Move Screen to Screen 3. This XORs the contents of Screen 0 with
Screen 3 and leaves the results in Screen 3. The Work Screen is now
Screen 3.

4. Move Screen to Screen 0. This XORs the contents of Screen 3 with
Screen 0 and leaves the results in Screen 0. The original contents of
Screen 3 are now in Screen 0. The Work Screen is now Screen 0.

5. Move Screen to Screen 3. This XORs the contents of Screen 0 (S3)
with Screen 3 and leaves the result in Screen 3. The original contents
of Screen 0 are now in Screen 3.

9-2 GRAFIX

BLEND OR FADE EFFECT 9.2

To fade the contents of another window or screen (called PIC3) into the
viewed screen, follow these instructions:

1. Specify the screen containing PIC3 as the Work Screen.

2. Set the combination rule to: OR (D’ = S OR D).

3. Move Screen (or Move Window) to the Display Screen. This ORs-in
the desired graphics onto the Display Screen.

4. Set the combination rule to: D’ = D.

5. Specify the screen containing PIC3 as the Work Screen.

6. Move Screen (or Move Window) to the Display Screen. This places
PIC3 on the viewed screen.

HI RES PRINTING 9.3

The combination rules that apply to Hi-Res printing are:

► Hard print the character. (O' = S)

► OR-in the character. (O' = D OR S)

► XOR-in the character. (O' = D XOR S) 9

If a combination rule other than one of these three is in effect when
Hi-Res print is activated, the OR rule is automatically implemented as a
default.

USING THE COMBINATION RULES 9-3

9.4 LINE DRAW FUNCTIONS

The sixteen combination rules can be summarized in the following four
rules for all the Line Draw functions. In this case, the line is the source
and all the dots in the source are ON.

► Hard write (or OR-in) the line. (D' = S)

► Erase aline. (D’ = NOT S)

► XOR-in the line. (D ’ = D XOR S)

► No operation. (D’ = D)

9

9.5 THE COMBINATION RULES

The portion of a screen (or a whole screen) to be moved is called the
source and is labeled “S”. The portion of the screen (or a whole screen)
targeted as the location of the move is called the destination. Prior to
your move, it is labeled “D' ”; after the move, the destination is labeled
“D

The following rules specify the possible transformations of the destina
tion by the source:

0. D’ = 0: The destination RAM contains all zeros.

1. D ’ = S AND D: The destination is formed by ANDing the corres
ponding bits in the original destination and the source.

2. D' = S AND NOT D: The destination is formed by ANDing the
complemented original destination with the source.

3. D’ = S: The source is moved to the destination.

4. D’ = NOT 8 AND D: The destination is formed by ANDing the
inverted source with the destination.

9-4 GRAFIX

5. D ’ = D: No operation; no change in the destination results regard
less of the source.

6. D ’ = S XOR D: The destination is formed by XORing the corres
ponding bits in the original destination and the source.

7. D' = S OR D: The destination is formed by ORing the
corresponding bits in the original destination and the source. This is
the starting combination rule.

8. D ’ = NOT S AND NOT D: The destination is formed by ANDing the
complemented destination and the complemented source.

9. D - NOT 8 XOR D: The destination is formed by XORing the
corresponding bits in the original destination and the complemented
source.

10. D' = NOT D: The destination is formed by complementing all the
bits in the original destination.

11. D = S OR NOT D: The destination is formed by complementing the
original destination and ORing the corresponding bits with the
source.

12. D = NOT S: The complemented source is moved to the destination.

13. D = NOT S OR D: The destination is formed by ORing the corres
ponding bits in the original destination and the complemented
source.

14. D' = NOT S OR NOT D: The destination is formed by ORing the
complemented original destination and the complemented source.

9

15. D’ = 1: The destination contains all ones.

The combination rules provide flexibility in graphics presentation,
including simulated motion on the screen. Figure 9-1 shows the results
of applying the combination rules to a simple destination and source.

USING THE COMBINATION RULES 9-5

Figure 9-1: Combination Rules

9

ORIGINAL
DESTINATION

D

SOURCE

S

9-6 GRAFIX

For your convenience, here are some simple examples of using combi
nation rules.

Inverting a Screen: If you select combination rule D ’ — NOT D and
specify a move from Screen N back to Screen N, each dot on Screen N is
inverted. Since only Screen 0 or Screen 1 can be selected as the Display
Screen, the function allows Screen N (if N > 1) to be moved to the screen
selected for display. This lets you display Screen N.

Erasing a Screen: When used with a combination rule, the Move function
allows any screen to be erased by setting that screen to all ones or all
zeros. If you set a screen to all ones and then XOR characters into that
screen, a black-on-green output results. Invoking D' = NOT D creates
the normal green-on-black display.

Scratchpad: You can select a given screen as a scratchpad where
drawings, graphs, and characters are formed and then brought onto the
Display Screen. Simply invoke a move using any of the combination
rules.

9

USING THE COMBINATION RULES 9-7

ESCAPE AND CONTROL
SEQUENCES

TERMINAL FUNCTIONS A.l

ESC H Moves the cursor to the first character position on the
defined top line.

ESC C Moves the cursor one character position to the right. If the
cursor is at the right end of the line, it remains there.

ESC D Moves the cursor one character position to the left. If the
cursor is at the start (left end) of a line, it remains there.

ESC B Moves the cursor down one line without changing col
umns. If the cursor reaches the bottom line, it remains
there and no scrolling occurs. No action is taken on bot
tom line + 1.

ESC A Moves the cursor up one line without changing columns. If
the cursor reaches the top line, it remains there and no
scrolling occurs. No action is taken on bottom line -j- 1.

ESC I Moves the cursor up one line, remaining in the same
column. If the cursor is on the top line, a scroll down is
performed. No action is taken on bottom line + 1.

ESC n The operating system’s Console In function reports the
cursor position in the form of ESC Y line # column #.

ESC h Moves the cursor left to next mod 8 position. Stops at left
side of screen.

ESC j The present cursor position is saved so the cursor can be
returned to it after a Set Cursor To Saved Position com
mand (ESC k).

ESC k Returns the cursor to the position where the Save Cursor
Position command was last executed. (See ESC Y.)

ESCAPE AND CONTROL SEQUENCES A-l

ESC Y 1# c# Moves the cursor to the position you indicate on the
screen by entering the escape code, the character repre
senting the line number, and the character representing
the column number.

Line and column numbers should be offset by 32. Thus, to
move to the (1,1) position of the screen, follow ESC Y by
two occurrences of the character representing the line
number,

If the line number entered is smaller than the defined top
line, the cursor moves to the top line. If the line number
entered is greater than the defined bottom line + 1, the
cursor does not move from its present line. If the column
number is too high, the cursor moves to the end of the line.

ESC E Erases the screen from the defined top line to the defined
bottom line. If the cursor is on the bottom line + 1, the
function erases bottom line + 1 only. The cursor remains in
the home position. Places the cursor in the home position.

ESC b Erases from the start of screen to the cursor, including the
cursor position.

ESC J Erases the screen from the cursor (including the cursor
position) to the end of the defined bottom line. If on bottom
line -l- 1, then erases to end of line only.

ESC o Erases from the beginning of the line to the cursor, includ
ing the cursor position.

ESC K Erases from the cursor (including the cursor position) to
the end of the defined bottom line. If on bottom line + 1,
erases to end of line only.

ESC L Inserts a new blank line by moving the line that the cursor
is on (and all the following lines) down one line, to the
defined bottom line. Then the cursor is moved to the
beginning of the new blank line. No action is taken on
bottom line + 1.

ESC M Deletes the contents of the line that the cursor is on. Then
places the cursor at the beginning of the line, moves all the
following lines up one line, and adds a blank line at the
defined bottom line. No action is taken on bottom line + 1.

A-2 GRAFIX

ESC N Deletes the character at the cursor position and shifts any
text located to the right of the cursor one character posi
tion to the left.

ESC Z Responds with “ESC/K” to indicate that it can perform as
VT52.

ESC @ Enters Insert Character mode, allowing insert into text on
the screen. As new characters are typed in, text to the right
of the cursor shifts to the right and the character at the end
of the line is lost.

ESC 0 Exits from the Insert Character mode.

CONTROL CODES A.2

CTRL G Bell (07H).
Generates a bell sound.

CTRL H Backspace (08H).
Moves the cursor back one column. If wrap-around mode
is enabled and the cursor was at column 1, then the cursor
is positioned at last column of previous row (unless at
column 1, row 1, in which case the cursor is positioned at
last column in row 1). If in discard mode, the cursor does
not move from column 1.

CTRL I Horizontal Tab (09H).
Moves the cursor forward to the next tab stop. Tab stops
are fixed at columns 9, 17, 25, 33,41,49, 56,65,73, and 81.
If the cursor is at the last column, it remains there.

CTRL J Line Feed (OAH).
Moves the cursor down one line at same horizontal posi
tion, scrolls the screen up if a line feed occurs on the
bottom line. If the cursor is on the bottom line + 1, then no
action is taken.

CTRL M Return (ODH).
Moves cursor to the leftmost column of the same line.

ESCAPE AND CONTROL SEQUENCES A-3

CTRL X Cancel (18H).
Aborts any escape sequence in progress. Starts displaying
characters as normal ASCII.

CTRL [Escape (1BH).
Starts an escape sequence.

CTRL O Shift In (OEH). (Not implemented.)
Switches the character cell size to 10 by 16, resulting in a
display of 80 columns by 25 lines. The top of the screen is
set to line 1 and the bottom of the screen is set to line 24.
The cursor homes.

CTRL N Shift Out (OFH). (Not implemented.)
Switches the character cell size to 6 by 10, resulting in a
display of 133 columns by 40 lines. The top of the screen is
set to line 1 and the bottom of the screen is set to line 39.
The bottom line + 1 is line 40, similar to VT52’s 25th line.
The cursor homes.

A.3 CONFIGURATION FUNCTIONS

ESC x Ps—Sets the following modes, where Ps equals:

1 = Enable bottom line
4 = Block cursor
5 - Cursor off
8 = Automatic line feed on receipt of CR
9 - Automatic CR on receipt of line feed
A = Send to VT52
B = Send to VT52
C - Send to VT52

ESC y Ps—Resets the following modes, where Ps equals:

1 = Disables bottom line
4 = Underscore cursor

(OK if character height >9)

A-4 GRAFIX

5 - Cursor on
8 = No automatic line feed
9 - No automatic CR (carriage return)
A = Send to VT52
B = Send to VT52
C = Send to VT52

OPERATION MODE FUNCTIONS A.4

ESC [Sets hold mode. (Not implemented.)

ESC/ Clears hold mode. (Not implemented.)

ESC p Enters reverse video mode. Characters are displayed as
black characters on a green background.

ESC q Exits reverse video mode.

ESC F VT52 graphics characters appear in character numbers 94
to 127 of the ASCII character set.

ESC G Exits GRAFIX mode. Normal lowercase characters
appear in character numbers 94 to 127.

ESC t Enter keypad shift mode. (Not implemented.)

ESCu Exit keypad shift mode. (Not implemented.)

ESC = ALT. keypad on. (Not implemented.)

ESC > ALT. keypad off. (Not implemented.)

ESC {

ESC }

Inhibits the output of the keyboard. Pass through to VT52.

Enables the keyboard after a keyboard disable command. !
Pass through to VT52.

ESC v A print to the last column of the line positions to the first
column of the next line. The page scrolls up if necessary.

ESCAPE AND CONTROL SEQUENCES A-5

ESC w A print to the last column of the line does not change the
cursor position and overprinting occurs. Therefore, only
the last character received is displayed in the last column
position.

ESC z Reset back to 80-column mode. (Not implemented.)

ESC (Simulates high-intensity mode by shadow printing. (Not
implemented.)

ESC) Prints normal characters. (Not implemented.)

ESC # Will transmit only a RETURN (ODH) LINE FEED (OAH).

ESC $ Will transmit only a RETURN (ODH) LINE FEED (OAH).

ESC] Will transmit only a RETURN (ODH) LINE FEED (OAH).

ESC — Turns the debug mode on or off. In debug mode, the
bottom line + 1 displays the hex codes for the print
stream.

ESC 0 Sets the underline mode.

ESC 1 Resets the underline mode.

ESC 4 Sets key value. Five characters are passed through to
VT52 to set new key values.

ESC 8 Displays next character literally.

ESC m2 plp2 Redefines the text window, pl defines the first line of
the text window; p2 defines the last line of the text window,
pl and p2 are the ASCII representations of the row num
bers, as described in Figure A-l.

A-6 GRAFIX

Figure A-l: Window Redefinition Parameters

row 0 (space) row 9) row 17 1
row 1 ! row 10 ❖ row 18 2
row 2 n row 11 + row 19 3
row 3 # row 12 row 20 4
row 4 $ row 13 — row 21 5
row 5 % row 14 • row 22 6
row 6 & row 15 / row 23 7
row 7 » row 16 0 row 24 8
row 8 (

ESCAPE AND CONTROL SEQUENCES

ERROR MESSAGES

If you give an invalid command, GRAFIX generates one of the follow
ing error messages:

► Invalid Command: This error occurs when you follow ESC 5 by a
symbol which is not interpreted by GRAFIX.

► Parameter(s) Missing: This error occurs when you invoke an escape
sequence which expects parameters to be passed, and parameters
have been omitted or an insufficient number has been passed.

► Invalid Parameter: This error occurs when you execute any invalid
command. For example, the error message appears if you try to move
a window to Screen 4 when GRAFIX has been installed with only
three screens. This error also occurs when you pass numeric parame
ters and alpha parameters are expected, or vice versa.

► Cursor Out of Range: This error occurs when you attempt to move
the cursor out of the cursor positioning range (between -800 and
1599 in the x direction, and -400 and 799 in the y direction). This
message also occurs if you call a function which expects the cursor to
be in the screen range and it is not.

► File Not Found: This error occurs if you try to enable a character set
that does not exist on the specified or default drive. It is also
generated when a Load Window From Disk function is accessed and
the file name passed does not exist.

► Disk Full: This error occurs if you execute the Save Window On Disk
command and there is not enough space to save the file on the
specified (or default) drive.

► Invalid File: This error occurs if the header sector does not match the
format required by a Load Window or Select Character Set com
mand. This occurs if the file has length “zero” or if the file was not
generated correctly.

► Table Overflow: This error occurs if you try to use the Fill function in
a polygon whose shape is too complex.

B

ERROR MESSAGES B-l

► Out of Character Sets: This error occurs if there are no character
sets available to load when you do a Select Character Set. This can
occur if you invoke GRAFIX with a maximum of two character
sets, or if all the loadable sets have headers designating them as sys
tem character sets.

B-2 GRAFIX

GRAFIX FUNCTIONS REFERENCE
LIST

PARAMETER INPUT COMMANDS C. 1

Select the Work Screen.. ESC 5 A
Select the Display Screen .. ESC 5 B
Select the fill pattern .. ESC 5 L
Define user fill pattern .. ESC 5 N
Define a screen window .. ESC 5 I
Select a character set ESC 5 i
Select a cursor type .. ESC 5 x
Define user cursor .. ESC 5 m
Enable cursor .. ESC 5 q
Disable cursor.. ESC 5 r
Select a combination rule .. ESC 5 X
Set relative cursor position ESC 5 R
Set absolute cursor position .. ESC 5 Q
Set line width.. ESC 5 Y
Set line type .. ESC 5 Z
Set left margin .. ESC 5 0
Set a dot .. ESC 5 c
Set superscript mode .. ESC 5 C
Reset superscript mode .. ESC 5 D
Set subscript mode ESC 5 E
Reset subscript mode ... ESC 5 F
Set invert character & print direction ESC 5 J
Reset invert character & print direction ESC 5 K
Set double character size mode .. ESC 5 G
Reset double character size mode ESC 5 H
Enable shadow print .. ESC 5 s
Disable shadow print .. ESC 5 t
Set reverse video mode .. ESC 5 v
Reset reverse video mode .. ESC 5 w
Set underline mode .. ESC 5 y

GRAFIX FUNCTIONS REFERENCE LIST C-1

Reset underline mode .. ESC 5 z
Save GRAFIX cursor position.. ESC 5 0

C.2 PARAMETER RETURN COMMANDS

Get enabled screen number .. ESC 5 j
Get displayed screen number .. ESC 5 k
Get window parameters .. ESC 5 e
Get dot .. ESC 5 b
Get character width .. ESC 5 a
Get character height .. ESC 5 1
Get character type .. ESC 5 o
Get GRAFIX cursor.. ESC 5 u

C.3 ACTION COMMANDS

Fill a region .. ESC 5 M
Fill a bar .. ESC 5 N
Draw a circle .. ESC5P
Draw an arc .. ESC 5 h
Absolute line draw .. ESC 5 U
Relative line draw ESC 5 f
Move a window or a screen .. ESC 5 V
Move a screen .. ESC 5 W
Initialize .. ESC 5 d
Hi-Res print .. ESC 5 p
Clear screen .. ESC 5 2
Return GRAFIX cursor to previously saved position.........ESC 5 1
Print a screen .. ESC 5 ?
Toggle text window screen.. ESC 5 9

C-2 GRAFIX

FILE MAINTENANCE COMMANDS C.4

Save a window on disk .. ESC 5 S
Load a window from disk .. ESC 5 T
Select character set (if that character

set is not already in memory) .. ESC 5 i

GRAFIX FUNCTIONS REFERENCE LIST C-3

INDEX

Aspect ratio, 4-3

BASIC, 5-4

Character
height, 4-4, 5-15
invert, 5-7
sets, 2-1, 3-1, 4-4, 5-15, 5-17, 6-1,

6-3
width, 4-4, 5-13, 6-5

Circle, 5-9
Clear screen, 5-20
Combination rule, 5-12, 9-1, 9-4
Configuration functions, A-4
Control codes, A-3 to A-4
Cursor

absolute position, 5-9 to 5-10
disable, 5-18
enable, 5-18
GRAFIX, 5-18, 7-2
pointing, 7-2
positioning, 7-1
problems, 7-2 to 7-3
relative position, 5-10
type, 5-19

Display screen, 5-5 to 5-6
Dot, 5-13
Dot matrix printer, 5-20
Draw

arc, 5-14
circle, 5-9
line, 5-11, 5-14

Error messages, Appendix B
Escape sequence, 4-2, 5-3

File maintenance, 5-1, 5-3

Fill
bar, 5-8 to 5-9
pattern, 5-8, 5-16
region, 5-8

Function call, 5-3

GRAFIX commands, 5-1
action, 5-3
move, 5-1
print, 5-1
screen, 5-1

Hi-Res, 4-2, 4-3, 4-4, 4-5, 6-1, 6-2
High resolution screen, 4-1

Initialize, 5-13 to 5-14
Install, 3-1
Invert character, 6-4

Language, 2-1
BASIC, 5-4
Pascal, 5-4

Left margin, 5-9
Line

draw, 9-4
type, 5-9
width, 5-12

Load window, 5-10 to 5-11

Memory, 1-1, 2-1
Microspacing, 6-5
Modes

character size, 6-4
double character size, 5-7
reverse video, 5-18
subscript, 5-6, 6-3
superscript, 5-6, 6-3
underline, 5-19, 6-3

INDEX Index-1

dot matrix, 5-20

Move screen, 5-11
Move window, 5-11

Screens
blend, 9-3
combine, 9-1

Number of screens, 2-1 display screen, 4-2
erase, 7-2, 9-7

Operation mode, A-5 exchange of, 9-2
inverting a, 9-7

Parameter
input, 5-1 to 5-2
return, 5-1, 5-2

Pascal, 5-4 to 5-5
Print

direction, 5-7, 6-4
Hi-Res, 5-17, 6-1, 6-2
reverse video, 6-3
shadow, 5-18, 6-3

Printer, 3-1

move, 5-11
multiple, 8-5
number, 5-15
number of, 3-1, 3-2
scratchpad, 9-7
using, 8-4
window, 5-7
work screen, 4-2

Text window, 4-2, 5-20

Hi-Res, 6-2, 9-3
Printing User cursor, 5-16

Save window, 5-10

horizontal, 4-4
proportional, 6-5
shadow, 6-3
vertical, 4-4

Proportional printing, 6-1

Video screen, 4-3

Window
clipping, 8-2
combine, 9-1
creating, 8-1

RAM, 2-1
Reverse video mode, 5-18, 5-19

load, 5-10
moving, 8-1 to 8-2, 8-3

Work screen, 5-5

Index-2 GRAFIX

BUSIGRAF

COPYRIGHT

® 1983 by VICTOR®.

All rights reserved. This manual contains proprietary information
which is protected by copyright. No part of this manual may be repro
duced, transcribed, stored in a retrieval system, translated into any
language or computer language, or transmitted in any form whatsoever
without the prior written consent of the publisher. For information
contact:

VICTOR Publications
380 El Pueblo Road
Scotts Valley, California 95066
(408) 438-6680

TRADEMARKS

VICTOR is a registered trademark of Victor Technologies, Inc.
GRAFIX and BUSIGRAF are trademarks of Victor Technologies, Inc.

NOTICE

VICTOR makes no representations or warranties of any kind whatso
ever with respect to the contents hereof and specifically disclaims any
implied warranties of merchantability or fitness for any particular pur
pose. VICTOR shall not be liable for errors contained herein or for
incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

VICTOR reserves the right to revise this publication from time to time
and to make changes in the content hereof without obligation to notify
any person of such revision or changes.

Second VICTOR printing November, 1983.

ISBN 0-88182-098-9 Printed in U.S.A.

II BUSIGRAF

CONTENTS

1. Introduction.. 1-1

2. Entering Data and Answering BUSIGRAF
Questions

2.1 Selecting from a Menu.. 2-1
2.2 Answering Questions... 2-2
2.3 Entering Parameters and Values.. 2-2
2.4 Specifying Names and Titles...2-2

3. Starting the Program
3.1 Automatic Boot-up of Grafix... 3-1
3.2 BUSIGRAF Main Menu... 3-1
3.3 Graph and Chart Screen Zones.. 3-2

4. Making a Pie Chart
4.1 The Main Menu.. 4-2
4.2 Making a New Pie Chart... 4-3

5. Making a Bar Graph
5.1 The Main Menu.. 5-1
5.2 Bar Graph Example.. 5-2

6. Making a Line Plot
6.1 The Main Menu.. 6-1
6.2 Line Plot Example..6-1

7. Making Organization Charts
7.1 Understanding Organization Charts.....................................7-1
7.2 Organization Chart Example.. 7-2

CONTENTS III

8. Making Slides and Slideshows
8.1 Understanding the Slideshow.. 8-1
8.2 Slideshow Example... 8-2
8.3 Viewing a Slideshow... 8-4

APPENDIXES

A. Sample Charts and Graphs... A-l
B. Data File Manipulation...B-l

FIGURES

3-1: The BUSIGRAF Main Menu................... 3-2
3- 2: Screen Zones.. 3-3

4- 1: Types of Pie Charts.. 4-1
4-2: Pie Chart Main Menu.. 4-2
4-3: Example Pie Chart... 4-5
4- 4: Pie Chart Editor... 4-6

5- 1: Types of Bar Graphs.. 5-1
5- 2: Example Bar Graph.. 5-2

6- 1: Example Line Plot.............................. 6-3

7- 1: Example Organization Chart........................... 7-3

8- 1; Slide Show Editor.. 8-3

A-l: Sample Pie Chart.. A-l
A-2: Sample Bar Graph... A-l
A-3: Sample Line Plot.. A-2
A-4: Sample Organization Chart A.. A-2
A-5: Sample Organization Chart B.. A-3
A-6: Sample Organization Chart C.. A-3

IV BUSIGRAF

CHAPTERS

1. Introduction

2. Entering Data and Answering BUSIGRAF Questions...

3. Starting the Program

4. Making a Pie Chart

5. Making a Bar Graph

6. Making a Line Plot

7. Making Organization Charts

8. Making Slides and Slideshows

2

3
I
4
I
5
I
6
I
7
I
8

Appendix A: Sample Charts and Graphs

Appendix B: Data File Manipulation

CHAPTERS V

1
INTRODUCTION

BUSIGRAF is a business graphics package. With BUSIGRAF, you
can make and edit:

► Pie charts

► Bar graphs

► Line plots

► Organization charts

OB

And, with BUSIGRAF, you can print these charts and graphs or
organize them into a "slideshow."

BUSIGRAF is easy to use. No prior knowledge of computers or com
puter programming is necessary. The program is menu-driven—it
leads you through the program automatically, so you may select both
the format for a graphic, and what information that graphic will
include.

This section is written in a tutorial format. You should read the entire
section and Appendix A before attempting to use the program. Going
through the five examples takes less than an hour and will save you
time in the long run.

Each type of chart or graph is covered in a separate chapter. The type
of chart is briefly described, as are its program’s menus. After going
through each chapter, you should be ready to create a graph on your
own.

INTRODUCTION 1-1

2
ENTERING DATA AND
ANSWERING BUSIGRAF
QUESTIONS

You use four types of data entry with BUSIGRAF:

1. Selecting from a menu

2. Answering questions

3. Entering parameters and values

4. Specifying names and titles

2

Each type of data entry requires a different response from you. The
easiest are selecting from a menu and answering questions—you press
only one key. With the other two types you enter data and then press
the carriage return key, shown in the examples as (cr).

SELECTING FROM A MENU 2.1

A menu is a list of options that lets you choose which action you
want to take. When a menu is presented, press the key corresponding
to your choice. If you press a number that is not presented in the
menu, you hear a beep; then the program asks you to re-enter your
choice.

ENTERING DATA AND ANSWERING BUSIGRAF QUESTIONS 2-1

2.2 ANSWERING QUESTIONS

If you want to answer a question with yes, simply press the Y key.
Press the N key to answer no. Striking any other key causes a beep.

2.3 ENTERING PARAMETERS
AND VALUES

When a menu or prompt asks you to enter a parameter or value, press
the key corresponding to the numeric value you want. When you
finish, press (cr). If you make a mistake, use the Backspace key to
correct it. Note: Sometimes you won’t have to press (cr) after entering
a value. If you are in doubt, make an entry and see if the system
responds. If it doesn’t, press (cr).

2.4 SPECIFYING NAMES AND TITLES

When you are asked to specify a name or title, the maximum length
of the name or title is shown by a reverse video field. You can type
any characters you want into that field. When you reach the end of
the field, you hear a beep.

If you make a mistake, use the Backspace key to back up to the point
of the mistake. The characters you backspace over are erased.

If you are editing an existing chart, you are given the old entry in the
length field. If you do not want to change that entry, press (cr). Other
wise, you can edit the value using the Backspace key. Note: You do
not need to fill in the entire field. The value you enter is centered
automatically.

2-2 BUSIGRAF

3
STARTING THE PROGRAM

AUTOMATIC BOOT-UP OF GRAFIX 3.1

The system supplied on your program diskette should automatically
boot up the GRAFIX package with the appropriate options. If it does
not, ask your dealer for assistance.

If you need to boot the GRAFIX package manually, the appropriate
command is:

grafix $S1C7P*(cr)

The * specifies the printer:

F or M Epson
T Tally
Cor S C. Itoh
O Okidata
N No printer

Note: you must have all the data files for BUSIGRAF in the currently
active directory on drive B.

To load the MS-BASIC Interpreter and run BUSIGRAF, type:

mbasic busigraf(cr)

BUSIGRAF MAIN MENU 3.2

The first menu that you will see when the program begins—the main
BUSIGRAF menu—is shown in Figure 3-1. The choices on the menu
are explained in the following chapters.

STARTING THE PROGRAM 3-1

Figure 3-1: The BUSIGRAF Main Menu

* BUSi-GMF .*

MKE YOUR SELECTION <!-?)?>

BUSINESS GRAPHICS

1 . PIE used to wake and edit PIE CHARTS

2 . BAR used to sake and edit BAR GRAPHS

3 . PLOT used to Make and edit LINE PLOTS

4 . ORGANIZATION used to make and edit ORGANIZATION CHARTS

5 . HAKE SLIDES used to make and edit SLIDES

6 . SLIDESHOW used to show a SLIDE PRESENTATION

7 . END exit to SYSTEM

3.3 GRAPH AND CHART SCREEN ZONES

The standard BUSIGRAF chart or graph screen has six fields:

► Date

► Title

► Second title

► Legend

► Note

► Chart, Graph, or Plot

Pie charts, bar graphs, and line plots all use this standard screen. Bar
graphs and line plots have vertical and horizontal axis titles and unit
labels. The pies, bars, lines, and axes are automatically organized and
scaled to fit into the sixth field. Refer to Figure 3-2.

3-2 BUSIGRAF

Figure 3-2: Screen Zone

STARTING THE PROGRAM 3-3

MAKING A PIE CHART

The Pie Chart program supports three types of pie charts, as shown in
Figure 4-1.

Figure 4-1: Types of Pie Charts

* Pi E Mi l 4

Select type of pie chart (1 to 3)? |

MAKING A PIE CHART 4-1

4.1 THE MAIN MENU

After you select the Pie Chart program at the BUSIGRAF main
menu, the following menu appears on your screen.

Figure 4-2: Pie Chart Main Menu

* PIEcm *

4
1 . EDIT AN EXISTING PIE CHART

2 . HAKE NEW PIE CHART

3 . VIEW EDITED PIE CHART

4 . SAVE EDITED PIE CHART

5 . PRINT EDITED PIE CHART

6 . ERASE A PIE CHART FILE

7 . EXIT TO BUSI-GRAF

MAKE YOUR SELECTION (1 - 7) ? |

These options are available to you from the Pie Chart main menu:

► Edit an Existing Pie Chart—displays a directory of the current pie
chart files on the (data) disk in drive B, and asks you which one
you want to edit.

► Make a New Pie Chart—makes a new pie chart from scratch. If
you choose this selection, you are led through a data entry pro
cedure until you form a complete pie chart.

4-2 BUSIGRAF

► View Edited Pie Chart—displays the pie chart in memory. To view
a chart, you must first have chosen one of the two options for load
ing a chart into memory.

► Save Edited Pie Chart—saves a just-created or just-edited pie chart.
The pie chart will be saved on the diskette in drive B.

► Print Edited Pie Chart—used to print a hard copy of the pie chart
in memory. To print a chart, you must first have chosen one of the
first two options.

► Erase a Pie Chart File—deletes a particular pie chart file from the
data diskette.

► Exit to BUSIGRAF—returns to the main BUSIGRAF menu.

MAKING A NEW PIE CHART 4.2

To make a new pie chart, you press "1" at the main menu. Then fol
low these steps (your entries are shown in boldface):

1. Enter the date. You are allowed 12 characters.

For this example, enter July 8, 1982.

2. Enter the title of the pie chart. You are allowed two lines for the
title. The first line of the title can be 24 characters long, the
second can be 50 characters long. (Figure 4-2 shows where the
title appears on the chart.)

Enter The Decline for the first line, and of the American Widget
Industry for the second line.

3. If you want notes, press the Y key; otherwise, press “N”. Next,
enter the number of notes (you are allowed five), and then enter
the notes.

There are two notes in the example. The first one is 1979-
Western Widgets enters agreement with Renault Tools. The
second one is 1980- US Government breaks up International
Widget Corp.

MAKING A PIE CHART 4-3

4. You are now asked to choose the type of pie chart you want. (See
Figure 4-1 for the types available.)

Choose Type 3. You will chart four different years.

5. Then enter the number of slices you want in each pie. Choose a
number between 2 and 8.

Choose 4 slices. You’ll want one for the USA, one for Japan, one
for Germany, and one for Other Countries.

6. For each pie slice, enter the name of the slice, and the correspond
ing value for each pie.

Enter USA for the name of the first parameter. Then enter the
following USA values for each pie: 76, 65, 54, 42. For the other
slices, enter: Japan and 8, 12, 19, 36; Germany and 12, 14, 13, 12;
Other Countries and 8, 9, 14, 10.

7. If you want to select the shading patterns, press “Y”; otherwise
press “N”.

Press Y.

8. If you struck the Y key to select the patterns, enter the patterns
you want for each slice.

In the example, enter 8 for the USA, 5 for Japan, 4 for Germany,
and 2 for Other Countries.

9. If you want any pie slices exploded (pulled out slightly from the
rest of the pie), press "Y"; otherwise, press “N”.

Press Y.

10. If you struck the Y key to explode a pie slice, enter a number
between 0 and 4 to indicate how many slices you want exploded.

Enter 1.

11. Then, enter the parameter number of the slice you want exploded.

In the example, choose 1 for USA.

4-4 BUSIGRAF

12. Then enter the subtitle for each pie in the chart. The subtitles
appear under each pie in your chart. Only 16 characters are
allowed.

In the example, enter 1965 for Pie 1, and 1970, 1975, and 1980,
respectively, for the other pies.

13. Indicate whether you want the percentages calculated for you. If
you don’t have them calculated, BUSIGRAF simply displays the
values (slices) in relation to the other values in the pie.

Press the N key. (If you had known only the dollar sales of each
country, instead of the percentage shares of the market, you
would have struck “Y” to let BUSIGRAF determine the percen
tages.)

14. The pie chart is displayed on the screen. It should look like the
chart in Figure 4-3. Note that the comma in the date was changed
to a hyphen. Commas are not allowed in any entries, and are
always converted to hyphens.

Figure 4-3: Example Pie Chart

July 8- 1982 The Decline
,'tzAmer Hein. Jictaet’

1975

LEGEND:
■ USA
■ Japan
S Germany
U Other Countries

1. 1979- Western Midgets enters

agreement with Renault Tools.
2. IM- US Government breaks up

International Widget Corp.

MAKING A PIE CHART 4-5

15. Press the space bar to continue. The Pie Chart Editor menu will be
displayed (see Figure 4-4). If there are any mistakes in the displayed
chart, select the option number for the incorrect data and follow the
directions to fix the error. If there are no errors, select option 9 to
return to the main Pie Chart menu. If you have trouble correcting
the errors, go on to the next chapter, and return to this one later.

Figure 4-4: Pie Chart Editor

4

* riE Znfni ECiijii *
1 . Edit TITLE

2 . Edit DATE

3 . Edit MOTES

4 . Edit PARAMETERS

5 . Edit PERCENTAGE/UALUE

6 . Edit SUBTITLES

7 . Edit EXPLODED SECTIONS 8 SHADING

8 . UIEW EDITED PIE CHART

9 . RETURN TO MAIN MENU

MAKE YOUR SELECTION (1 - 9) ? |

16. When you are returned to the main Pie Chart menu, you can save
the chart, print the chart, edit a chart, make a new chart, erase a
chart, or view a chart.

Note: If you want to keep the chart you just made, be sure to save it.
Otherwise you’ll have to re-enter all the data.

There is an example of a type 1 Pie Chart in Appendix A.

4-6 BUSIGRAF

5
MAKING A BAR GRAPH

The Bar Graph program allows you to make six types of bar graphs.
These are listed in Figure 5-1.

Figure 5-1: Types of Bar Graphs

* Etn IirE 3ElE2TI J , v
Hake a selection of the type of graph. Choices 1 through 5 handle the
labelling of the horizontal axis automatically, choice 6 allows you
to enter the desired labels. The choices are:

1 . To plot a single value for each year

2 . To plot a single value for each month

3 . To plot a single value for each week

4 . To plot a single value for each day (all seven days)

5 . To plot a single value for each day (Hon to Fri only)

6 . To label each value individually

HAKE YOUR SELECTIOH (1 - 6) ? |

5

THE MAIN MENU 5.1

The Bar Graph main menu is nearly identical to the Pie Chart
program’s main menu. All selections function like the similar selection
in the Pie Chart program.

MAKING A BAR GRAPH 5-1

5.2 BAR GRAPH EXAMPLE

Select option 2 at the main menu. Then, use the same data you used
in the pie chart, but represent it in a bar graph. Your entries are shown
in boldface:

1. Enter the date: 8 July 1982.

2. Enter the first line of the title: The Decline. Note that you are
allowed only 20 characters, instead of 24 as in the pie chart.

Enter the second line of the title: of the American Widget Industry.
Note that you are allowed only 40 characters, instead of 50.

3. There will be two notes. Note 1 is 1979-Western Widgets enters
agreement with Renault Tools. Note 2 is 1980-US Government
breaks up International Widget Corp.

4. Enter the number of bars: 4.

5. Enter the names of the bars: USA, Japan, Germany, and Other
Countries.

6. Enter the vertical axis title: % of US Sales.

7. Since you are charting sales percentages rather than actual sales,
don’t enter anything for Vertical Axis Units. Instead, press (er).
(Note: You could have used this field to continue the vertical axis
title.)

8. Choose the type of bar graph. You want selection 6 (to label each
value individually).

9. Enter Year for the horizontal axis label.

10. You don’t want to list anything for units on the horizontal axis, so
press (er).

11. You want to plot four years, so enter 4 for the number of data
points per parameter (bar) to be plotted.

12. Since the horizontal axis label is not numeric (the values are for
years, not numbers), press “N”.

5-2 BUSI GRAF

(If you want to use numeric axis labels, press “Y”, and enter the
"starting value, followed by the step value. The step value is the
difference between the starting value and the next value marked on
the axis. If you enter 1000 as the starting value and 5 as the step
value, BUSIGRAF automatically calculates the rest of the data
point labels for you: 1005, 1010, 1015 and so on.)

13. Now enter the numeric value that each parameter will have at a
particular year (data point). For parameter 1 (USA), the value at
data point 1 is 76. The next question requests the label for data
point 1. Enter 1965. Then enter 65 followed by 1970, 54 followed
by 1975, and 42 followed by 1980. Since you’ve already entered
the labels for the data points, you won’t have to enter them again
for the other parameters. For Japan, enter 8, 12, 19, 36. For Ger
many, enter 12, 14, 0, 12. (The zero in the third year is an inten
tional mistake. It will be fixed later.) For Other Countries, enter 8,
9,14,10.

14. Press "N” to let the program automatically select the shading pat
terns.

15. Look at the chart. You want to: (1) change the shading pattern of
Japan to a brighter pattern; and (2) fix the error you made in step
13. Press the space bar to continue. The Bar Graph Editor menu
will be displayed.

16. Press "5" to change the shading patterns and “Y” to indicate that
you want to select the patterns.

17. Select pattern 8 for the USA, 4 for Japan, 2 for Germany, and 5
for Other Countries.

18. Press "4” to edit the parameters. The parameter names are correct,
so press the N key. You want to change a parameter value, so
press “Y”. You made a mistake when you entered the data point
for Germany, however, so press "3" to indicate parameter Ger
many. Then press "Y” to indicate that you want to make a
change.

19. Press "3" to indicate you want to change Germany’s third data
point. Enter the correct value, 13. That is the only change you
want to make, so press the N key.

MAKING A BAR GRAPH 5-3

20. Press the N key again to return to the Bar Graph Editor menu.
Press "8" to view the chart. Your bar graph should look like the
one in Figure 5-2.

21. Return to the main Bar Graph menu to save the table.

If you want to make one of the other five types of bar graphs, follow
the line plot example—the types of line plots correspond to the types
of bar graphs.

Appendix A includes an example of a type 2 Bar Graph.

Figure 5-2: Example Bar Graph

LEGEND;
■ USA
K Japan
"s Germany
U Other Countries

1. 1379- Western Widget enters

agreement with Renault Tools.
L. 1380- US Gwemnent breaks up

International Widget Corp.

Year 0

5-4 BUSIGRAF

6
MAKING A LINE PLOT

Line plots are similar to bar graphs, except the data points are con
nected by lines instead of represented by bars. The following example
is almost identical to the previous bar graph example. The data, how
ever, will be displayed as a type 1 Line Plot (corresponding to a type 1
Bar Graph).

THE MAIN MENU 6.1

The Line Plot main menu is similar to the previous main menus.

LINE PLOT EXAMPLE 6.2
6

After you press “2” at the main menu:

1. Enter the date: 8 July 1982.

2. Enter the title, The Decline, then press “Y” to indicate a second
line. Enter the second line of the title: of the American Widget
Industry.

3. There will be two notes: 1979 — Western Widgets enters agree
ment with Renault Tools; and 1980 — US Government breaks up
International Widget Corp.

4. Enter the number of lines to plot: 4.

5. Enter the names of the lines: USA, Japan, Germany, and Other
Countries.

MAKING A LINE PLOT 6-1

6

6. Enter the vertical axis title: US Sales.

7. You will now plot actual sales, not percentages. Enter Thousands
for the unit.

8. Choose the type of line plot. You want selection 1 (to plot a single
value for each year).

9. Enter 1970 as the starting year.

10. Enter 10 as the number of years.

11. Enter the values for each year for each country. For the USA,
enter 618, 623, 632, 630, 628, 623, 616, 602, 585, and 555. For
Japan, enter 145, 151, 192, 212, 239, 255, 280, 301, 345, and 406.
For Germany, enter 112, 114, 115, 116, 113, 110, 115, 119, 121,
and 118. For Other Countries, enter 70, 72, 76, 74, 75, 79, 79, 77,
78, and 80.

Note: Because of the line type you requested, the next nine years
(after the first year 1970) are 1971 through 1979. Years are incre
mented by one automatically.

12. Press "N" to let the program automatically select the line types.

13. Look at the chart. You want to change the line types so that the
lines for Japan and Other Countries are more distinct. Therefore,
hit the space bar to continue on to the Line Plot Editor.

14. Press the 5 key and "Y". Choose types that will make the lines
more distinct. For example, choose 3 for USA, 5 for Japan, 1 for
Germany, and 6 for Other Countries.

15. Press the 8 key to view the plot again. Your line plot should look
like the graph in Figure 6-1.

There is a sample of another line plot in Appendix A.

6-2 BUSIGRAF

Figure 6-1: Example Line Plot

LEGEND:
USA
Japan
Germany
Other Countries

1. 1979 - Western Widgets

enters agreement with Renault

2. 1908 — US Government breaks

up International Widget Corp.

MAKING A LINE PLOT 6-3

7
MAKING ORGANIZATION
CHARTS

The Organization Chart program allows you to make a simple organi
zation chart: a main block with a tree of single-level secondary blocks
(as few as two or as many as eleven).

Although the format for the organization chart may seem restrictive
since only a single level of secondary blocks is supported, you can
create multiple organization charts for more complex organizations.

UNDERSTANDING ORGANIZATION 7.1
CHARTS

You should understand the concept of organization charts before
proceeding further. Look at the group of sample organization charts in
Appendix A. Notice how each of the three charts is related. Figure A-4
is the main chart; it is the only level 1 chart. Level 2 (Figure A-5) con
tinues the main chart by further describing one of the nodes of the
main chart, “VP Marketing.” One of the nodes of the secondary chart,
“International Marketing Manager,” is further described in the third
chart (Figure A-6). The main menu’s functions are identical to those of
the other main menus.

7

MAKING ORGANIZATION CHARTS 7-1

7.2 ORGANIZATION CHART EXAMPLE

The following example shows how to produce the organization chart in
Figure 7-1.

After pressing "2" at the main menu:

1. Enter the date: 8 July 1982.

2. Enter the organization chart title: BUSIGRAF.

3. Enter the second title line: PROGRAM STRUCTURE (Level 1).

4. Enter the number of lines of text for the main block: 4.

5. Enter the first line: BUSIGRAF. Enter the second, third, and
fourth lines: Main Menu; Program; and .BG1.ORG

6. Enter the number of secondary blocks: 7.

7. Secondary block 1 will have three text lines, so press the 3 key and
enter the three lines of text. Repeat this process for each of the
remaining six blocks displayed in Figure 7-1.

8. Enter the control code: LEVEL 1 - 1 of 1.

9. Enter your name as the operator identification.

10. The organization chart appears on the screen. Check to see that it
is identical to the chart in Figure 7-1. The only difference should
be the name in the lower right comer.

11. Press the space bar to continue on to the Organization Chart Edi
tor. If there are mistakes, press the appropriate key, and correct the
mistakes as before. If there are none, press “8” to return to the
main menu. Save the chart.

7-2 BVSIGRAF

BG1.ORG

Figure 7-1: Example Organization Chart

8 July 1982

LEVEL 1 - 1 of 1 U E Stauss

7

MAKING ORGANIZATION CHARTS 7-3

MAKING SLIDES
AND SLIDESHOWS

8

You can organize a group of pie charts, bar graphs, line plots, or
organization charts into a more understandable presentation which
automatically brings charts and graphs to the screen. To do this, you
must make a “slide” out of each chart or graph and then enter the
order you want the slides to appear in your “slideshow.”

UNDERSTANDING THE SLIDESHOW 8.1

A slideshow consists of a series of graphs or charts that is displayed
automatically. To make one, you first decide which slides should
appear, and in which order, and then run the Slide Maker program as
described in Chapter 8.2.

A slideshow works as follows. The screen is replaced by the first slide
in the slideshow (any type of chart or graph). When finished looking at
the first slide, the viewer presses the space bar. The slide disappears
and is replaced by the next slide, another chart or graph. This contin
ues until the viewer has looked at each slide in the slideshow.

8

The slideshow is useful for demonstrations and for presentations of
chartable data. You can design or develop a slideshow, and then save
the show on disk for viewing at any time.

MAKING SLIDES AND SLIDESHOWS 8-1

8.2 SLIDESHOW EXAMPLE

The following example illustrates how to make a slideshow of the
charts and graphs you have created in the previous examples. (If you
didn’t save the graphs, you’ll need to create some new ones.) At the
main Slide Maker menu:

1. Press the 1 key.

2. Choose the pie chart you want to convert into a slide and enter its
name. Be sure to enter the name exactly as you assigned it, with
upper- and lowercase letters identical to those in the original chart
name.

3. Then choose a name for the slide. Try SLIDE1.

4. Since no other pie charts should be converted to slides, press “N”.

5. Press “2” to create a slide from a bar graph.

6. Repeat steps 2 through 5, but choose a bar graph, and name the
slide SLIDE2.

7. Press “3” to create a slide from a line plot.

8. Repeat steps 2 through 5, but choose a line plot, and name the
slide SLIDE3.

9. Press “4” to create a slide from an organization chart.

10. Repeat steps 2 through 5, but choose an organization chart, and
name the slide SLIDE4.

11. Now put together the slideshow. Press the 5 key.

12. Give the show a name.

13. Enter the names of the slides that correspond to the slide numbers
in the show. For example, enter SLIDE1 as Slide 1.

14. Press “Y” to continue, and enter the names of the other three
slides: SLIDE2, SLIDE3, and SLIDE4.

15. When all the slide names have been entered, press “N”. The fol
lowing menu appears.

8-2 BUSIGRAF

Figure 8-1: Slide Show Editor

* 5li EE in'jl' EEi TOfi *

1 . ADD SLIDE(S)

2 . REHOVE SLIDE(S)

3 . DUE THE ORDER OF SLIDE(S)

4 . REPLACE SLIDE(S)

5 . VIEW EDITED SLIDE SHOW

k . PREVIEW A SLIDE

7 . ERASE A SLIDE FILE

0 . EXIT TO HAIN HENU

HAKE MR SELECTION (1 - 8) ?|

16. Press "5" to view the slideshow. When you are finished viewing a
slide, press the space bar to continue on to the next slide in the
show.

17. When you are finished with the last slide, you are returned to the
main Slide Maker menu. If there are mistakes in the show, press
the 6 key to go to the Slide Show Editor.

For example, if you want to move the organization chart from the
last slide to the first slide, follow these steps:

a. Press the 3 key.

b. Enter 4 to move the organization chart.

c. Enter 1 to move the slide to the first position.

d. Press the N key to return to the Slide Show Editor.

e. Press the 5 key to view the reorganized slideshow.

8

MAKING SLIDES AND SLIDESHOWS 8-3

After viewing the show, you will be returned to the main Slide
Maker menu. The slideshow is saved automatically.

Note: If you change any of the charts that have appeared in a
slideshow, you must adjust the slideshow by deleting the old chart and
replacing it with the revised chart. This is not done automatically.

8.3 VIEWING A SLIDESHOW

If you want to show a slide presentation, press “6” when you’re at the
main BUSIGRAF menu. Select the name of the show you’d like to
view, and enter its name. Be sure to observe the case of the letters.

8-4 BUSIGRAF

SAMPLE CHARTS AND GRAPHS

Figure A-l: Sample Pie Chart

8 July 1982

LEGEND:
M Sales
IB Rental Income
■ Investments
H Other

Chart mils - UILLIOMS

Figure A-2: Sample Bar Graph

SAMPLE CHARTS AND GRAPHS A-l

Figure A-3: Sample Line Plot

MEEK H 29 30 31

LEGEND:
Europe/flfrica
ftsia/Pacifica

Cent/So America

1. Hurricane Hattie hits at end

os 30th week.

Figure A-4: Sample Organization Chart A

14 Sept 1982

Corporate Direction U E Stans5

A-2 BUSIGRAF

Figure A-5: Sample Organization Chart B

Primary Management Level U E Stauss

Figure A-6: Sample Organization Chart C

14 Sept 1982

A

Secondary Management Level U E Stauss

SAMPLE CHARTS AND GRAPHS A-3

DATA FILE MANIPULATION

CHANGING THE DATA DISKETTE B. 1

If you want to change the data diskette, you can stop the program with
an ALT-C. (Note: MS-BASIC does not always accept ALT-C, so you
may need to enter more than one to stop a program.) The following
message appears on the screen:

BREAK IN LINE xxxx
Ok

(where xxxx is the line number.) Now another data diskette can be
inserted into drive B. To log the new diskette, type:

reset(cr)

To restart the program, type:

run(cr)

DIRECTORY OF THE DATA DISKETTE B.2

You can examine the contents of the data diskette partially by using
the BUSIGRAF EDPIE subprogram. Ask to edit an existing file to see
all the available .PIE files. To see the contents of the whole data
diskette, stop the program with an ALT-C and then type:

files "b:*.*"(cr)

DATA FILE MANIPULATION B-l

B.3 DATA FILE TYPES

Source files for editing are:

.BAR for Bar Charts

.PIE for Pie Charts

.PLT for Line Plots

.ORG for Organization Charts
,CTL for Slideshows

All of these files are created by BUSIGRAF and can be edited.

Compiled files are:

.SLD

You can group compiled files for a slideshow, but you cannot edit
them. They are generated from .PIE, .BAR, .PLT, and .ORG files in
the MAKESLD program. You can view them from the operating sys
tem, assuming GRAFIX has been installed, by entering:

type b:filename.sld(cr)

where FILENAME is the name of the file you want to view.

Show files are:

.CTL

These are “control” files which contain the names of .SLD files. You
can edit the contents of .CTL files with the MAKESLD program.

B-2 BUSIGRAF

EDITING DATA FILES 8.4

There are two ways to edit BUSIGRAF files:

1. The safe method: Use the BUSIGRAF internal editors.

2. The dangerous method: Use a word processor or text editor. In this
case, you must ensure that: first, the word processor does not insert
control characters (use non-document or program mode); and
second, you are familiar with the file format for the particular file.

RENAMING DATA FILES B.5

You cannot directly rename files in the BUSIGRAF program. But if
you leave the program, there are three ways to rename files:

1. Halt the program with an ALT-C. This re-enters the MS-BASIC
Interpreter and allows use of MS-BASIC’s full utilities to rename
files. To rename a file, type:

name "b:oldname.ext" as "b:newname.ext"(cr)
where OLDNAME.EXT is the current name of the file and
NEWNAME.EXT is the new name for the file.

2. Return to the main BUSIGRAF menu from any of the other menus
and select 7. END exit to system. This returns control to the operat
ing system and the A > prompt appears. You can now use system
utilities to rename files. To rename, type:

ren b:newname.ext = b:oldname.ext(cr)
where NEWNAME.EXT is the new name of the file and
OLDNAME.EXT is the old name of the file.

B

3. In the appropriate BUSIGRAF subprogram (PIE, BAR, LINE
PLOT, ORGANIZATION CHART, or SLIDESHOW), read the
current file and save it under the new name. Then, delete the old file.

DATA FILE MANIPULATION 8-3

INDEX

Automatic display of charts and graphs,
8-1

Bar graph, making a new, 5-2 to 5-4
Backspace key, 2-2
Booting up Grafix package, 3-1

Data files
changing diskettes of, C-1
editing, C-l
directory of, C-3
renaming, C-2

Entering names and titles, 2-2

File types, B-1

Invoking BUSIGRAF, 3-1

Line plot, making a, 6-1 to 6-2

Main menu options, 4-2

Organization chart, making a, 7-2

Pie chart, making a, 4-3 to 4-5

Sample charts and graphs, A-1 to A-3
Screen zones, 3-3
Slide show

creating a, 8-2 to 8-4
definition of, 8-1
viewing a, 8-4

INDEX Index-1

CHARGRAF

COPYRIGHT

® 1983 by VICTOR®.

All rights reserved. This manual contains proprietary information
which is protected by copyright. No part of this manual may be repro
duced, transcribed, stored in a retrieval system, translated into any
language or computer language, or transmitted in any form whatsoever
without the prior written consent of the publisher. For information
contact:

VICTOR Publications
380 El Pueblo Road
Scotts Valley, CA 95066 USA
(408) 438-6680

TRADEMARKS

VICTOR is a registered trademark of Victor Technologies, Inc.
CHARGRAF is a trademark of Victor Technologies, Inc.

NOTICE

VICTOR makes no representations or warranties of any kind whatso
ever with respect to the contents hereof and specifically disclaims any
implied warranties of merchantability or fitness for any particular pur
pose. VICTOR shall not be liable for errors contained herein or for
incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

VICTOR reserves the right to revise this publication from time to time
and to make changes in the content hereof without obligation to notify
any person of such revision or changes.

Second VICTOR printing November, 1983.

ISBN 0-88182-100-4 Printed in U.S.A.

II CHARGRAF

CONTENTS

1. Character Graphics System (CHARGRAF)
1.1 System Startup.. 1-1
1.2 Example Programs.. 1-2

1.2.1 Low Resolution Graphics Character Set............... 1-2
1.2.2 Operation of the Character Graphics System....... 1-4

2. The CHRPRINT Facility.. 2-1

3. Custom Character Graphics Systems
3.1 Defining Your Own Character Sets.................................... 3-1
3.2 Configuring Your Keyboard.. 3-2
3.3 Putting It All Together... 3-2

FIGURES

1-1: CHARGRAF Character Set.. 1-3
1-2: CHARGRAF Keyboard-Character Table.................................. 1-4
1-3: Keyboard Logical Key Numbers.. 1-5

CONTENTS III

CHAPTERS

1. Character Graphics System (CHARGRAF) . 1

2. The CHRPRINT Facility

3. Custom Character Graphics Systems Z

CHAPTERS V

CHARACTER GRAPHICS SYSTEM
(CHARGRAF)

The character graphics system (CHARGRAF) allows you to directly
access the graphics characters residing between Al hex and FE hex in
the International character set. CHARGRAF allows you to bypass the
usual requirement to use the CHR$ type function from within a pro
gram or the ESC/8/control-character sequence from the keyboard.
Instead, you can access the graphics characters with a single keystroke
using a properly configured operating system with the graphics charac
ter set provided with CHARGRAF, or a character set you create. A
facility is also provided that allows a text file containing images
developed through CHARGRAF to be output to any printer.

SYSTEM STARTUP 1.1

Since it is defined in the system configuration, the character graphics
system is initialized during a system cold boot. Simply insert the prop
erly configured system diskette into drive A. You can confirm that the
character graphics system has been properly loaded by checking the
operating system sign-on banner: “Graphic” should appear in the key
board description.

CHARACTER GRAPHICS SYSTEM (CHARGRAF) 1-1

1.2 EXAMPLE PROGRAMS
Three example programs (and their corresponding sources in BASIC
and Pascal) are contained on the distribution diskette:

► BAR.EXE (executable)
BAR.BAS (BASIC)
BAR.PAS (Pascal)

► MAN.EXE (executable)
MAN.BAS (BASIC)
MAN.PAS (Pascal)

► JUGGLER.EXE (executable)
JUGGLER.PAS (Pascal)
This is a slightly more advanced example demonstrating character
graphics animation.

1.2.1 LOW RESOLUTION GRAPHICS CHARACTER
SET

The low resolution character set is comprised of single characters that
are defined in a 16-by-10-dot matrix cell. The graphics characters pro
vided with CHARGRAF are made up of circle and line characters
that allow you to create fairly complex images using the graphics char
acter set shown in Figure 1-1.

1-2 CHARGRAF

Figure 1-1: CHARGRAF Character Set

8 12 3 4 56789 RBCDEF
0: © e V ♦ -t.gogSSFBH

4 r !! 11 § . 1 t I ■) t ■- « A T
2: ! " tt S % 8 '()*+,-. /
3:01234 56789: ;< = >?
4:0 fl B C 0 EFGH I JKLI1H0
5:P Q R S T UUUXYZ1\1A_
6: a b c d efghijklmno
7:p q r s t u v w x y z { > F~a
8 : Q ti e a a <O

(D
>

tn
:

C
D
''

>-
>

D
o

9:e st If o b o ii u tj b Li 0 £ ¥ ft f
fl: TV'7! k \ j kX

1

I—

z

X
\

I—
■/

>
X

I—
X

The CHARGRAF character set includes the following features:

► 13 horizontal lines located at cell matrix dots 0, 1, 2, 3, 4, 6, 7, 9,
10, 12, 13, 14 and 15.

► 8 vertical lines located at cell matrix dots 0, 1,2, 4, 5, 7, 8 and 9.

► 45 degree and — 45 degree lines.

► Special characters used to develop three-dimensional images such
as bar graphs, boxes and so on.

► Circle development characters with six different radii: 1 X 1 cell,
1 X 2 cell, 2X2 cell, 2X3 cell, 2X4 cell and 4X7 cell.

These features allow the development of graphics such as organization
charts, graphs and plots, pie charts and bar graphs.

CHARACTER GRAPHICS SYSTEM (CHARGRAF) 1-3

1.2.2 OPERATION OF THE CHARACTER
GRAPHICS SYSTEM

1
Operating CHARGRAF is as easy as typing on the keyboard. The
graphics characters have been attached to selected keys on the key
board, and can be accessed by typing keys in unshifted, shifted, or
Alternate mode. (Each of the selected keys has the ability to display a
maximum of three graphics characters.) The keys that can access
graphics characters are the seven function keys, the calculator pad
keys, and certain other keys.

The logical key number and their associated graphics character hex
codes in unshifted, shifted and Alternate modes are listed in Figure 1-2.
The logical key numbers corresponding to the keys on the keyboard are
shown in Figure 1-3.

Figure 1-2: Keyboard Logical Key Numbers

1-4 CHARGRAF

Figure 1-3: CHARGRAF Keyboard-Character Table

Logical
Key

1

Unshifted
Hex Code Char.

F1 /

Shifted
Hex Code

F8

Char.

\

Alternate
Hex Code Char

EE

2 F2 / F9 \ EB /

3 F3 \ Ffl EC /
4 F4 FB \ EB

5 F5 FC Efl /
6 F6 \ FB E9

7 F7 FE \ E8 /

11 - F0 * E7 /_
12 Fl / EF / E6 1
16 - - E5 1
18 - - E4 1
25 - E2 | E3 ■
26 E0 El | CLR SCREEN

27 - BE - BF 1
28 - BC - 88 -

29 - Bfl - SB -

30 87 - 88 - 89 -
31 - 85 - 86 -

32 82 83 - 84 -
33 - 80 L 81 r
44 C8 / CE 1 CF j
45 - - CC ✓

47 C9 \ Cfi X. CB —

1

CHARACTER GRAPHICS SYSTEM (CHARGRAF) 1-5

Logical
Key

Unshifted
Hex Code Char.

Shifted
Hex Code Char.

81 ternate
Hex Code Char

48 C6 X C7 I C8 |

49 . - C4 - C5

50 - C2 / C3

51 - C0 - Cl

52 - BE k BE s.

53 - - 88 A

64 - - BC -

65 - - 88 -

67 89) 88 (-

68 87 k 88 - -

69 - 85 — 86

70 - 83 J 84 (
71 - 81 82 k

72 - HE o 80 r

73 - - 8E)

83 - - 88 -

84 - - 8C 'I

85 - - 88 k

90 - 89 k 88)
91 - 87 k 88 J

92 - 85 k 86 1
93 - 83 (■ 84 A
108 - 81 F 82

1-6 CHARGRAF

2
THE CHRPRINT FACILITY

CHRPRINT is a stand-alone program run at the system level that
outputs a text file containing character graphics images to a dot
matrix printer. To use CHRPRINT, first be certain of the following:

► The text file you want to print is saved on diskette.

► A printer is properly connected to your computer and the correct
I/O channel is set.

► Important: The operating system’s graphics character set is the
same as the graphics character set under which the file was created.

2

You can then invoke CHRPRINT with the command:

CHRPRINT pathname

The 25th line of the screen will be replaced by a menu of printer
choices:

EPSON MX EPSON FX TALLY C.ITOH C.ITOH S OKIDATA

When you press the function key corresponding to the printer of your
choice, CHRPRINT prints the specified text file using the operating
system graphics character set.

THE CHRPRINT FACILITY 2-1

CUSTOM CHARACTER GRAPHICS
SYSTEMS

DEFINING YOUR OWN CHARACTER 3.1
SETS

You can create your own character set to suit any special need by
using a character set editor, like EFONT. You must follow certain
steps, however, to configure an operating system correctly with your
customized character graphics.

The character set header (a small section of information that is written
out to disk in front of any character set) contains important informa
tion used by the operating system configuration program. This infor
mation must be correct for your particular character set, or the char
acter set won’t work. Furthermore, the number of characters defined
can affect software you may want to run under the new operating sys
tem. You can redefine all 256 characters of a character set (normally
done only in unusual circumstances), but you should stay within the
range of Al hex to FE hex.

CUSTOM CHARACTER GRAPHICS SYSTEMS 3-1

3.2 CONFIGURING YOUR KEYBOARD

Besides creating your own character set, you can also place your char
acter set into any position on the keyboard that you like. Using
KEYGEN, you can specify the hex codes each key generates in
unshifted, shifted or Alternate mode. (Figure 1-2 shows how the key
board is configured on the distribution diskette.) When configuring a
keyboard, you should consider the software that will be run under the
new configuration. Some programs reserve certain keys for their own
use; take steps to supply the program with the required keys if you are
using that program in the new configuration.

3.3 PUTTING IT ALL TOGETHER

Once you have defined your own special graphics character set and
keyboard, you can configure a functional operating system. Use the
system configuration program (SYSGEN) or MODCON to do this
(refer to the Programmer's Tool Kit). These programs allow you to
combine everything you need to create your own character graphics
operating system.

3-2 CHARGRAF

INDEX

Character set, custom, 3-1
CHARGRAF character set, 1-2 to 1-3
CHRPRINT, 2-1
Custom character graphics

configuration, 3-1

Example programs, 1-2

Graphics character hex codes, 1-4 to 1-5

Invoking CHARGRAF, 1-1

Keyboard configuration, 3-1
Keyboard logical key numbers, 1-6

Logical key numbers, 1-4 to 1-6
Low resolution character set, 1-2

Printing, 2-1

Starting the system, 1-1

INDEX Index-1

GW-BASIC

COPYRIGHT

®1983 by VICTOR®.
® 1982 by Microsoft ® Corporation.

Published by arrangement with Microsoft Corporation, whose software
has been customized for use on various desktop microcomputers pro
duced by VICTOR. Portions of the text hereof have been modified
accordingly.

All rights reserved. This manual contains proprietary information which
is protected by copyright. No part of this manual may be reproduced,
transcribed, stored in a retrieval system, translated into any language or
computer language, or transmitted in any form whatsoever without the
prior written consent of the publisher. For information contact:

VICTOR Publications
380 El Pueblo Road
Scotts Valley, CA 95066 USA
(408) 438-6680

TRADEMARKS

VICTOR is a registered trademark of Victor Technologies, Inc.
GW-BASIC, Music Macro Language, Graphics Macro Language, and
MS-BASIC are trademarks of Microsoft Corporation.
MS-80 and MX-100 are trademarks of Epson America, Inc.

NOTICE

VICTOR makes no representations or warranties of any kind whatso
ever with respect to the contents hereof and specifically disclaims any
implied warranties of merchantability or fitness for any particular pur
pose. VICTOR shall not be liable for errors contained herein or for
incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

VICTOR reserves the right to revise this publication from time to time
and to make changes in the content hereof without obligation to notify
any person of such revision or changes.

First VICTOR printing February, 1983.
Second VICTOR printing December, 1983.

ISBN 0-88182-095-4 Printed in U.S.A.

II GW-BASIC

CONTENTS

Preface...VII

1. GW-BASIC Features
1.1 Graphics..1-1

1.1.1 The Color Attribute.. 1 -2
1.1.2 Coordinates... 1-3

1.2 Event T rapping.. 1-4
1.2.1 Event Specifiers...1-4
1.2.2 Controlling Event Trapping...................................... 1-5
1.2.3 Additional Controls...1-6

1.3 I/O... 1-6

2. The Full Screen Editor
2.1 Writing Programs................. ..2-1
2.2 Editing Programs.. 2-2
2.3 Function Keys...2-3
2.4 Syntax Errors... 2-7

3. GW-BASIC Statements
3.1 BEEP.. 3-2
3.2 BLOAD ... 3-3
3.3 BSAVE... 3-4
3.4 CALL.. 3-5
3.5 CHAIN... 3-12
3.6 CIRCLE.. 3-12
3.7 CLS..3-14
3.8 COLOR.. 3-15
3.9 COM.. 3-16
3.10 DATES... 3-17
3.11 DEF SEG.. 3-19
3.12 DRAW.. 3-20

CONTENTS III

3.13 EDIT..3-22
3.14 GET and PUT for COM Files... 3-23
3.15 GET and PUT for Graphics.. 3-24
3.16 KEY.. 3-28
3.17 KEY(n)... 3-30
3.18 ECOPY... 3-31
3.19 LINE... 3-32
3.20 LIST...3-34
3.21 LOAD... 3-35
3.22 LOCATE.. 3-36
3.23 MERGE..3-38
3.24 ON COM..3-39
3.25 ONKEY(n)... 3-41
3.26 OPEN... 3-43
3.27 OPENing a COM File.. 3-44
3.28 OUT... 3-48
3.29 PAINT.. 3-49
3.30 PLAY.. 3-50 -
3.31 PSET.................................. 3-52
3.32 PRESET...3-53
3.33 RETURN...3-54
3.34 SAVE.. 3-55
3.35 SCREEN...... ..3-55
3.36 SOUND..3-57
3.37 TIMES.. 3-57
3.38 WAIT.. 3-59
3.39 WIDTH..3-60

IV GW-BASIC

4. GW-BASIC Functions
4.1 CSRLIN..4-1
4.2 INP... 4-2
4.3 INPUT for COM Files... 4-3
4.4 LOF.. 4-4
4.5 POINT..4-5
4.6 SCREEN.. 4-5
4.7 VARPTR... 4-6

5. The Communication Option
5.1 Communication I/O..5-1
5.2 The TTY Program.. 5-2
5.3 Notes on the TTY Program..5-4
5.4 The COM I/O Functions.. 5-6

6. GW-BASIC Initialization and Printer Configuration
6.1 GW-BASIC Initialization............ ...6-1
6.2 Printer Installation..6-3

APPENDIXES

A. Error Messages.. A-1
B. BASIC Statements and Functions................................B-l

TABLES
1- 1: Screen Modes... 1-1

2- 1: GW-BASIC Function Keys.. 2-4

3- 1: GW-BASIC Statements..3-1

3- 2: PLAY Commands.. 3-51

4- 1: GW-BASIC Functions...4-1

4-2: Offsets to FOB Addresses... 4-7

CONTENTS V

PREFACE

GW-BASIC was created to take advantage of the facilities offered by the
newer 16-bit microprocessors. The extra capabilities provide:

► Advanced graphics

► Sound

► Device-independent I/O and telecommunications support

► Event trapping

GW-BASIC is an extension of MS-BASIC. Likewise, this manual is an
extension of the MS-BASIC manual. GW-BASIC includes only those
features and statements that are specific to this program, or that have
different uses than they have in MS-BASIC.

Chapter 1 introduces the special features that are supported by GW-
BASIC. It discusses graphics capabilities and event trapping. These
features are further discussed in the appropriate statement sections.
Chapter 1 also covers device-independent I/O and files.

Chapter 2 explains how to use the full screen editor to input and edit
your programs. The editor provides immediate visual feedback and
functions such as cursor movement, insertion, and deletion.

Chapters 3 and 4 cover GW-BASIC statements and functions. These
chapters are organized with this outline:

FORMAT:

Shows the correct format for the instruction.

PURPOSE:

Tells what the instruction is used for.

PREFACE VII

REMARKS:

Describes in detail how the instruction is used.

EXAMPLE:

Shows sample programs or program segments that demonstrate the use
of the instruction.

Statement and function syntax follows these rules:

1. Items in uppercase letters must be input as shown.

2. Items in lowercase letters enclosed in angle brackets (< >) are to be
supplied by the user.

3. Items in square brackets ([]) are optional.

4. All punctuation except angle brackets and square brackets (i.e., com
mas, parentheses, semicolons, hyphens, equals signs) must be
included where shown.

5. Items followed by an ellipsis (...) can be repeated any number of
times (up to the length of the line).

Chapter 5 describes the communications option, including Communi
cation I/O, the TTY program, and COM I/O functions.

Chapter 6 describes initialization and printer configuration.

GW-BASIC has two appendixes: Appendix A describes error messages;
Appendix B is a complete summary of statements and functions avail
able in GW-BASIC.

VIII GW-BASIC

GW-BASIC FEATURES

This chapter describes the special features that are part of GW-BASIC.
It includes graphics, event trapping, and device-independent I/O.

GRAPHICS 1.1

GW-BASIC can create high-resolution graphics on the standard screen.
The program supports two screen modes:

► SCREEN 0: a text-only video display mode nearly identical to the
MS-BASIC display mode.

► SCREEN 2: a high-resolution mode for black and white graphics and
text.

The screen mode is chosen by the mode parameter in the SCREEN
statement.

Table 1-1 further describes the screen modes.

Table 1-1: Screen Modes

MODE
CHARACTER

GRAPHICS
(PIXELS)

HORIZ VERT
COLOR/

B&WCOLS ROWS

Standard 0 40/80 25 No Graphics B&W
2 80 25 800 400 B&W

G W-BASIC FEA TURES 1-1

The screen in mode 2 produces the highest resolution and the sharpest
images for both graphics and text. Mode 2 is, however, black and white
only.

The GW-BASIC statements used to draw and manipulate images are:

PSET
PRESET
LINE

CIRCLE PAINT
GET DRAW
PUT

You can also use the POINT function in graphics. The SCREEN state
ment describes how to choose a mode, and the COLOR statement
discusses the use of character attributes, such as reverse video. For more
information on each of these commands, see the appropriate section in
Chapter 3.

All the graphics commands have been fully optimized to take advantage
of the 8086-88. They run significantly faster on these machines than on
others.

1.1.1 THE COLOR ATTRIBUTE

The graphics statements DRAW, CIRCLE, PSET, PRESET, LINE, and
PAINT let you specify a color attribute. You can select black or white.
The range is 0 to 3. In screen mode 2, 0 or 2 selects black, and 1 or 3
selects white.

1-2 GW-BASIC

COORDINATES 1.1.2

The drawing statements PSET, PRESET, LINE, CIRCLE, GET, PUT
and PAINT require screen locations as pairs of (x,y) coordinates. The
format is(<x>,<y>) where < x > and < y > are numeric expres
sions. 1

The screen coordinates are:

Mode

2 (standard screen)

x
(horizontal)

0-799

y
(vertical)

0-399

Point (0,0) is the upper left corner.

You can specify any integer coordinate value (in the range — 32768 to
32767) for < x > and < y > . Values outside this range, however,
specify points not on the screen.

The statements PSET, PRESET, LINE, and CIRCLE also let you
specify relative coordinates. In these cases you can write:

STEP (< x offset > , < y offset >)

< x offset > and < y offset > are numeric expressions. Their values
are added to the current graphics cursor to determine the coordinate.
The graphics cursor is the point on the screen where the last graphics
point was referenced.

All of the graphics statements (excluding the POINT function) update
the most recent point used. If you use the relative form on the second
coordinate, it is relative to the first coordinate.

When you clear the screen with either the SCREEN or CLS statement,
GW-BASIC sets the graphics cursor to the middle of the screen. On a
standard screen that point is (400,200).

GW-BASIC FEATURES 1-3

1.2 EVENT TRAPPING

Event trapping lets a program transfer control to a specific program
line when a certain event occurs. Control transfers as if a GOSUB
statement had been executed to the trap routine starting at the
specified line number.

After completing the event, the trap routine executes a Return state
ment that continues program execution at the place where it was when
the event trap occurred.

1.2.1 EVENT SPECIFIERS

The following are defined as "event specifiers”:

► COM (n): where n is the number of the communications channel
(1 or 2).

Typically, the COM trap routine reads an entire message from the
COM port before returning. Using the COM routine for single
character messages is problematic. At high baud rates, the overhead
of trapping and reading for each character might let the interrupt
buffer for COM overflow.

► KEY (n): where n is a function key number 1-11. 1 through 7 are
the soft keys. 8 through 11 are the cursor direction keys, as follows:
8-Up, 9-Left, 10-Right, 11-Down. A KEY (0) ON, OFF, or STOP
enables, disables, or stops all 11 key events.

Note that KEY (n) ON is not the same statement as KEY ON.
KEY ON displays the values of all the function keys on the twenty
fifth line of the screen.

1-4 GW-BASIC

When a key is trapped, that occurrence of the key is destroyed.
Therefore, you cannot use the INPUT or INKEY$ statements to
find out which key caused the trap. To assign different functions to
particular keys, you must set up a different subroutine for each key;
you cannot assign the various functions with a single subroutine.

CONTROLLING EVENT TRAPPING 1.2.2

Event trapping is controlled by the following statements:

< event specifier > ON
< event specifier > OFF
< event specifier > STOP

When an event is ON and a non-zero number is specified for the trap,
GW-BASIC checks before starting each new statement to see if the
specified event occurred. (It checks to see, for example, whether a func
tion key was struck or whether a COM character came in.) If the event
did occur, GW-BASIC performs a GOSUB to the line specified in the
ON statement.

When an event is OFF, no trapping takes place and the event is not
remembered even if it takes place.

When you specify STOP no trapping can take place. But if the event
happens, it is remembered and an immediate trap takes place when an
< event > ON is executed.

When a trap is made for a particular event, the trap automatically causes
a “stop” on that event so recursive traps can never take place. The
“return” from the trap routine turns that event trap back on unless an
explicit OFF has been performed inside the trap routine. When an error
trap takes place, it disables all trapping. Trapping never takes place when
GW-BASIC is not in Direct mode executing a program.

GW-BASIC FEATURES 1-5

1.2.3 ADDITIONAL CONTROLS

Event trapping includes the following statements:

ON < event specifier > GOSUB < line number >

This sets up an event trap line number for the specified event. A
< line number > of 0 disables trapping for this event.

RETURN < line number >

This optional form of RETURN is primarily intended for use with
event trapping. The event trap routine might want to go back into the
GW-BASIC program at a fixed line number while still eliminating the
GOSUB entry that the trap created.

Use this non-local RETURN with care. Any other GOSUB, WHILE,
or FOR that was active at the time of the trap remains active. If the
trap comes out of a subroutine, any attempt to continue loops outside
the subroutine results in the “NEXT without FOR” error.

1.3 I/O

GW-BASIC allows device-independent I/O (input/output) files. Conse
quently, any type of input/output can be treated like I/O to a file,
whether you are using a diskette or a printer, or are communicating
with a device.

1-6 GW-BASIC

The following statements, commands, and functions support device
independent I/O. (For more information, see the individual descrip
tions in Chapters 3 and 4.)

BLOAD INPUTS LPOS PRINT USING
BSAVE KILL LPRINT PUT
CHAIN LINE MERGE RESET
CLOSE LIST NAME RUN
EOF LLIST OPEN SAVE
FILES LOAD OPEN COM WIDTH
GET LOC POS WRITE
INPUT LOF PRINT

There are several ways to save and retrieve file information, such as
with SAVE, LOAD, and LIST.

Filenames
The physical hie is described by its file specification (filespec).

The filespec is a string expression of the form:

[< device >][< filename >]

< device > is a physical device:

KYBD: Keyboard Input only
SCRN: Video Display Output only
LPT I: First Line Printer !/

LPT2: Second Line Printer tf

LPT3: Third Line Printer
COMI: RS-232-C Port A Input/Output
COM2: RS-232-C Port B
A: to O: Disk Drives ft

G W-BASIC FEA TURES 1-7

< filename > is the name given to the file. The name conforms to the
MS-DOS filename conventions. The name consists of two parts sep
arated by a period:

< filename > .[< extension >]

The filename can be from 1 to 8 characters and the extension from 0
to 3 characters.

A default extension of .BAS is used on LOAD, SAVE, MERGE, RUN,
CHAIN, BLOAD, and BSAVE commands if no period appears in the
filename and if the filename has less than 9 characters. If the device is
not specified, the current MS-DOS default disk drive is assumed.

File specification for communications devices is slightly different. The
filename is replaced with a list of options specifying such items as baud
rate and parity.

1-8 GW-BASIC

2
THE FULL SCREEN EDITOR

Using the Full Screen Editor for program development is a big time
saver. This chapter describes how to use the editor most effectively.

Because editing is a dynamic process, it is difficult to provide clear text
examples of how edit commands work. The best way of understanding
the editing process is to try editing a few lines while reading the edit
commands in this chapter.

2

WRITING PROGRAMS 2.1

Any line of text that you type while GW-BASIC is in Direct mode is
processed by the Full Screen Editor. GW-BASIC is always in Direct
mode after the prompt Ok and until a RUN command is given.

GW-BASIC processes program statements in one of four ways:

1. Add a new line to the program. This occurs if the line number is
legal (range is 0 through 65529) and at least one non-blank charac
ter follows the line number in the line.

2. Modify an existing line. This occurs if the line number matches the
line number of an existing line in the program. GW-BASIC replaces
the existing line with the text of the newly entered line.

3. Delete an existing line. This occurs if the line number matches the
line number of an existing line and the entered line contains ONLY
a line number.

4. Produce an error. If you try to delete a non-existent line you see the
“Undefined line number” error message. If program memory is
exhausted and you try to add a new line to the program, the "Out
of memory” error message displays.

THE FULL SCREEN EDITOR 2-1

A GW-BASIC program line always begins with a line number, ends
with a carriage return, and can contain a maximum of 250 characters.
Note that any tabs that are embedded in multiple lines are replaced by
spaces.

You can place more than one GW-BASIC statement on a line, but you
must separate each statement from the last with a colon (:).

You can extend a logical line over more than one physical line by
using the linefeed key. A linefeed sends subsequent text to the next
line, without inserting a Return at the end of the previous line.
Remember to signal the end of a logical line with a Return.

2.2 EDITING PROGRAMS

Begin modifying text by using the LIST command to display an entire
program or range of lines on the screen. Then use the arrow keys and
ALT-B (previous word), ALT-F (next word), and ALT-N (end of line)
to move the cursor to the place requiring change. Finally, use one or
more of the special function keys described in Chapter 2.3 to perform
one of the following functions:

1. Overtype characters.

2. Delete characters to the left of the cursor.

3. Delete words or characters to the right of the cursor.

4. Insert characters at the cursor.

5. Add or append characters to the end of the current logical line.

2-2 GW-BASIC

A Return stores the modified lines in your program. You do not, how
ever, have to move the cursor to the end of the logical line before you
press Return. The Screen Line Editor remembers where each logical line
ends and transfers the whole line, regardless of the cursor position.

You can move around the screen and make corrections to several lines
at once. Then go back to the beginning of each line you changed and
press Return.

You do not need to modify lines that contain GW-BASIC messages
such as “OK”. These lines are automatically erased if your cursor
lands on them while you are editing. (The interpreter recognizes its
own messages because they are terminated internally by FF hex to dis
tinguish them from user text.)

2

FUNCTION KEYS 2.3

The Full Screen Editor recognizes the arrow keys, the Backspace, the
Tab, the Return, plus 15 Alternate keys for moving the cursor on the
screen, inserting characters, or deleting words or characters. The keys
and their names are described in Table 2-1.

In addition, GW-BASIC supports seven special function keys. These
keys display on the 25th line of your screen. Their functions are ex
plained in the KEY statement.

THE FULL SCREEN EDITOR 2-3

INTERNAL CODE

Table 2-1: GW-BASIC Function Keys

HEX DEC KEY FUNCTIONAL NAME

01 01 ALT-A Edit line buffer
02 02 ALT-B Previous word
03 03 ALT-C Break (stop program)
05 05 ALT-E Erase to end of line
06 06 ALT-F Next word
08 08 ALT-H Destructive backspace
09 09 ALT-I Tab (modulo 8)
0A 10 ALT-J Linefeed
0B 11 ALT-K Home
OC 12 ALT-L Clear screen
0D 13 ALT-M Carriage return (enter logical line)
0E 14 ALT-N Append to end of line
12 18 ALT-R Toggle insert/overtype mode
14 20 ALT-T Refreshes the 25th line
15 21 ALT-U Clear logical line
17 23 ALT-W Delete word
1A 26 ALT-Z Clear to end of window
1C 28 —> Cursor right
ID 29 <— Cursor left
IE 30 I Cursor up
IF 31 I Cursor down
7F 128 DEL Delete character

Note: The VT-52 Escape sequences are not supported to maintain compatibility with
IBM BASIC A.

Function Explanations

ALT-K Moves the cursor to the upper left corner of the screen.

ALT-L Clears the screen and positions the screen cursor in the
upper left corner of the screen.

T
I

Moves the cursor up one line.

Moves the cursor down one line.

2-4 GW-BASIC

ALT-F

ALT-B

ALT-N

ALT-T

ALT-E

ALT-R

Moves the cursor one column left. When the cursor is
advanced beyond the left of the screen, it moves to the
right side of the screen on the preceding line until it
reaches the beginning of the screen.

Moves the cursor one position right. When the cursor is
advanced beyond the right of the screen, it moves to the
left side of the screen on the next line down until it
reaches the end of the screen.

Moves the cursor to the beginning of the next word. A
word is defined as the characters A-Z, a-z, or 0-9 and is
delineated by space characters. The next word is defined
as the next character to the right of the cursor in the set
[A..Z] or [0..9].

Moves the cursor to the beginning of the previous word.

Moves the cursor to the end of the logical line. GW-
BASIC appends to the line any characters typed from
this position.

Refreshes the 25th line: if the function keys are displayed
(KEY ON), ALT-T rewrites them. If the keys are not
displayed (KEY OFF), ALT-T clears the 25th line.

Erases to the end of the logical line from the current cur
sor position. All physical lines are erased up to the ter
minating carriage return.

Toggles Insert/Overtype mode. Pressing this key changes
mode to the other mode. Insert mode is automatically
toggled to Overtype mode when you press any cursor
movement key or Return.

When in Insert mode, GW-BASIC inserts typed characters
at the cursor position and all characters on the physical
line move to the right. Wrap-around is in effect: characters
advanced off the right edge of the screen appear from the
left edge of the screen on the following line.
When out of Insert mode, characters typed replace exist
ing characters on the line.

THE FULL SCREEN EDITOR 2-5

TAB When in Insert mode, pressing the Tab key inserts blanks
from the current cursor position to the next tab stop.

When out of Insert mode, pressing Tab moves the cursor
right modulo 8 until the end of the screen.

DEL

2

Deletes one character under the cursor for each depres
sion. All characters to the right then move one position
left to fill in the space. If a logical line extends beyond
one physical line, characters on subsequent lines move
left one position to fill in the previous space, and the
character in the first column of each subsequent line
moves up to the end of the preceding line.

BS Backspace. Deletes the last character typed, or deletes the
character to the left of the cursor. All characters to the
right of the cursor move left one position. Subsequent
characters and lines within the current logical line move
up as with the DEL key.

ALT-U Erases the entire logical line.

ALT-C Returns to Direct mode, without saving any changes that
were made to the current line being edited.

ALT-A Enters the line buffer at the current cursor position for
editing.

ALT-J Moves to the next physical line; scrolls if necessary.

ALT-W Deletes characters up to the next word.

ALT-Z Clears the screen to spaces from the cursor position to
the end of the screen.

2-6 GW-BASIC

SYNTAX ERRORS 2.4

When GW-BASIC encounters a syntax error during program execution,
it automatically enters EDIT at the line containing the error. For exam
ple:

10 A = 2$5 (you meant 10 A = 2'5)
RUN
Syntax Error in 10
10 A = 2$5

The Screen Line Editor displays the line in error and puts the cursor
under the digit 1. You move the cursor right to the dollar sign ($) and
change it to an up-arrow ('), then press Return. The corrected line is
then stored in the program.

You destroy variables whenever you change a program line. If you
want to examine the contents of a variable before you make a change,
press ALT-C instead of moving the cursor. This command returns you
to Direct mode, and preserves the variables.

THE FULL SCREEN EDITOR 2-7

3
GW-BASIC STATEMENTS

Table 3-1 is a summary of GW-BASIC statements. The sections that
follow explain the statements in detail.

Table 3-1: GW-BASIC Statements

STATEMENT PURPOSE

BEEP
BLOAD
BSAVE
CALL
CHAIN
CIRCLE
CLS
COLOR
COM
DATES
DEF SEO
DRAW
EDIT
GET and PUT

(COM Files)
GET and PUT

(Graphics)
KEY
KEY(n)
LCOPY
LINE
LIST
LOAD
LOCATE
MERGE
ON COM
ON KEY(n)
OPEN
OPENING A

COM FILE
OUT
PAINT
PLAY

Sounds the speaker
Loads a memory image into memory
Saves memory on a. device
Interfaces 8086 machine language with GW-BASIC
Calls a program and passes variables to it from current program
Draws circles or ellipses
Clears active screen
Selects character attributes (reverse, underline, etc.)
Enables or disables trapping
Sets or retrieves current date
Assigns segment address for referencing 8086 memory locations
Draws a complex object
Displays specified line for editing
Allows fixed length I/O for COM

Reads and writes pixels to screen

Designates soft function keys
Activates and deactivates trapping
Dumps contents of screen to printer
Draws or removes lines, rectangles, and filled rectangles
Lists a program to screen or device
Loads a program from device into memory, and optionally runs it
Moves cursor to specified position
Merges lines from an ASCII program file into program in memory
Sets up line number for trapping
Sets up function key to designate line number for trapping
Establishes addressability between device and I/O buffer in data pool
Activates serial I/O communications

Sends a byte to output port
Fills in area on screen with selected color (black or white)
Plays music

G W-BASIC STA TEMENTS 3-1

PURPOSESTATEMENT

PSET
PRESET
RETURN
SAVE
SCREEN
SOUND
TIMES
WAIT
WIDTH

Displays or removes pixel
Removes or displays pixel
Returns from GOSUB
Saves program on specified device
Sets screen attributes
Generates sound at specified frequency for specified duration
Sets or retrieves current time
Suspends program execution
Sets printed line width

3.1 BEEP

FORMAT:

BEEP

PURPOSE:

Sounds the speaker at 800 Hz for 1 /4 second.

REMARKS:

Both BEEP and PRINT CHR$(7); have the same effect.

EXAMPLE:

2 430 IF X < 20 THEN BI I P 'if X is out of
1 range, comp lain,

3-2 GW-BASIC

BLOAD 3.2

FORMAT:

BLOAD < filespec > [, < offset >]

PURPOSE:

Loads a memory image into memory.

REMARKS:

< filespec > is a string expression returning a valid file specification.
This file specification must follow the format described in Chapter 1.3;
the extension, however, must be different. The only valid extensions
are:

(none) (no extension)

.B for GW-BASIC programs in the internal format (created
with the SAVE command).

.P for protected GW-BASIC programs in the internal format
(created with SAVE ,P command).

.A for GW-BASIC programs in ASCII format (created with
SAVE ,A command).

.M for memory image files (created with BSAVE command).

.D for data files (created by OPEN followed by output state
ments).

If you do not put an extension in the filename, GW-BASIC assigns the
default extension .BAS.

If you omit the device name, GW-BASIC assumes the current diskette
drive.

GW-BASIC STATEMENTS 3-3

< offset > is a numeric expression in the range 0 to 65535. This is the
address at which the loading starts, specified as an offset into the seg
ment declared by the last DEF SEG statement. If you omit the
< offset > , GW-BASIC assumes the < offset > specified in the last
BSAVE.

WARNING: BLOAD does not perform address range checking. That is,
it is possible to BLOAD anywhere in memory. You should be abso
lutely sure you are not overwriting the operating system, GW-BASIC, or
your own program.

EXAMPLE:

1 K:- ' !.... Q d S S ----- I'l'l b .!. y P !' O 9 I' IYl 1 I "l t O b’ !'-!H !"I 1 U
2 0 E |T| j ng i"i O p I" OQ 1“ IT! b I"l 1 O d d ,
3 0 D E F S E G ----- L H 1 6 F 0 ' s e t t o p r ----- v i o u s 1 y
4 0 ' d -----1 ----- r i'll i n ----- d 1 c -----1 i n
5 0 BL 0 A [' !! M 0 V E ", 0 1 1 o ----- d t h ----- C A I.... I.... ----- b 1 ----- p r og r ----- m

Note: See the CALL statement for details on safely loading a module.

3.3 BSAVE

FORMAT:

BSAVE < filespec > , < offset > , < length >

PURPOSE:

Saves portions of the computer’s memory on the specified device.

REMARKS:

< filespec > is a string expression returning a valid file specification as
described in BLOAD.

< offset > is a numeric expression in the range 0 to 65535. This is the
address at which the saving starts, specified as an offset into the

3-4 GW-BASIC

segment declared by the last DEF SEG statement.

< length > is a valid numeric expression returning an unsigned
integer in the range 1 to 65535. This is the length of the memory
image you want to save.

EXAMPLE:

1 0 1 :™: G t h G f i I" S - 1 0 0 b !:::i t G S O 1" IT I G I I I O F y 1 O C 3 t G d
2 0 ' a t t h g s t a r t o t G N B A S I C ' s IJ a t a S Gg m G n t -
■h HI I '.I i

4 0 BSRUE "PROGRAM . M 11 0 . 100

CALL 3.4

FORMAT:

CALL < variable name > [(< argument list >)]

PURPOSE:

Interfaces 8086 machine language programs with GW-BASIC. Use
CALL instead of the old-style user call (x = USR(n)).

REMARKS:

< variable name > contains the address that is the starting point in
memory of the subroutine being CALLed.

< argument list > contains the variables or constants, separated by
commas, that you want to pass to the routine.

The CALL statement conforms to the INTEL PL/M-86 calling con
ventions outlined in Appendix H of the INTEL PL/M-86 User's Guide
(#121636-02). GW-BASIC follows the rules described for the Medium
case.

G W-BASIC ST A TEMENTS 3-5

When you invoke the CALL statement, the following occurs:

1. For each parameter in the argument list, the 2-byte offset into the
data segment [DS] of the parameter’s location is pushed onto the
stack.

2. The return address code segment [CS] and offset [IP] are pushed
onto the stack.

3. Control is transferred to your routine via the segment address given
in the last DEF SEG statement and offset given in < variable
name >.

Your routine now has control. Parameters can be referenced by mov
ing the stack pointer [SP] to the base pointer [BP] and adding a posi
tive offset to [BP].

RULES:

The assembly language subroutine must follow these rules to work
correctly:

1. It must be declared FAR.

2. Segment registers DS and ES must be restored to their entry values
before returning to GW-BASIC.

3. The general purpose registers (AX, BX, CX, DX, SI, DI, and BP)
can have any value when returning to GW-BASIC.

4. The assembly language routine must not change the length of any
GW-BASIC strings.

5. The assembly language routine must perform a RET (n) (where n
= 2 times the number of parameters) to restore the stack pointer to

its proper value.

6. Values can be returned to GW-BASIC by passing a parameter that
the result will be returned in.

3-6 GW-BASIC

GW-BASIC Data Types
To manipulate data passed to an assembly language subroutine, you
must understand how the various data types are represented in
memory. When a subroutine is called, GW-BASIC passes the address
of one of the following data representations:

1. Integer: two-byte two’s-complement number.

2. Single-Precision Number: four-byte binary floating-point quantity.
The most significant byte contains the value of the exponent minus
127. The remaining three bytes contain the mantissa. The most
significant byte of the mantissa contains the sign bit, followed by the
seven highest bits of the mantissa. A positive number is represented
with a 0 as the sign bit, and a negative number with a 1 as the sign
bit. The binary point is to the left of the most significant bit of the
mantissa. A 1 is always assumed to exist immediately to the right of
the mantissa, although it is not represented. Thus the number is
represented as:

((sign) (1 .(mantissa)*2f(exponent — 127)

3. Double-Precision Number: eight-byte binary floating-point quan
tity. It is represented exactly the same as a single-precision number,
except that the mantissa consists of 55 bits (7 bytes less the sign bit).

4. String: GW-BASIC passes the offset address of a “string descriptor”
which is a three-byte data structure. The first byte of the string
descriptor contains the length of the string. The last two bytes con
tain the address where the actual ASCII string is located. The assem
bly language subroutine is allowed to modify the string (within the
number of bytes specified by the descriptor), but it must not change
the string descriptor.

5. Array: arrays are made up of sequential elements of the array type.
For example, an integer array containing twenty elements is
represented as twenty sequential integers in memory.

GW-BASIC STATEMENTS 3-7

Passing Parameters
GW-BASIC passes all subroutine parameters by reference. In a CALL
statement, the offset of each parameter’s address is pushed onto the
stack in the same order that the parameters are listed in the procedure
call. Note that all parameters to the assembly language subroutine
must be variables. Upon entry to the subroutine, the stack is arranged
as follows:

Stack grows up

CD a return address
(4 bytes)

□r *

SP + 4 ------- ► Offset of
1st parameter

QB I zC ___ Offset of
□r W v 2nd parameter

CD I O n. etc.or “TO *

The parameters can then be referenced by using the BP register to get
their address off of the stack.

3-8 GW-BASIC

EXAMPLE:

This example shows how to load an assembly language subroutine
from a GW-BASIC program. The assembly language routine performs
modulo arithmetic on two integers, returning the remainder that
results when the first integer is divided by the second. In this example,
the assembly language module is loaded at address 1664:0 Hex, but
this address will be different for different applications. The method of
determining this address is explained after the example.

1 0 1
2 0 1 1 o a d t h e M 0 D U!.... 0 r o u t i n e

z4 0 I.J 11 " E1? ::::: & H 1 b b 4
5 0 BLOAD 11 MODULO" 0
6 0 M 0 D I...I0 ----- 0
7 0 '
8 0 ' c a 1 1 t h ----- M 0 D U!.... 0 i- o u t i n ----- w i t h s o rn -----
9 0 ' s a rn p 1 e d a t a
1 0 0 A"----- 1 4 0
110 B----- n
120 REMAINDERS ---- 0
1 3 0 C A!.... I.... M 0 D U L 0 (Fl S , B S , R E M A I N D E R S >
1 4 0 P R I N T A S - " m o d u 1 o !l B S ,j '■ i s " R E M A I N D E R S
150 END

The assembly language module you should use with the CALL state
ment is:

n a i!i ----- rn o d ci 1 o

o d ----- :---:eg rn ----- n t p u b 1 i c ' d ----- ’
a s s u rn e c s : o d -----d s : c -:::> d e

rri o d u 1 o p i- o c I” a r

.! "I " h i s rn o d u 1 ----- i s a 1 1 ----- d f r o rn G W B A S I C w i t h 3
! p a i- a rn -----1 ----- r a , u s i ng t h ----- C AL s t a t ----- rn ----- n t - I t

d i v i d ----- s t h e f i r s t p a r a rn e t e r b y t h e s e c n d
a n d i------1 u r n s t h ----- r ----- rn a i n d ----- r :i. n t h ----- - h i r d .

G W-BASIC ST A TEMENTS 3-9

rn o b p , s p .! B P u s a d t o g e t p a r a rn e t e r s
rn o bx, Cbp+8 3 B X - p o i n t a r t o d i v i d a n d
rn o ax, CbxJ A X — v a 1 u a o t d i v i d a n d
rn o v bx, Cbp+61 : B X = p o i n t e r t o d i v i s o r
m o v ex, CbxJ .! C X -- v a 1 u a o t d i v i s o r
m o d x, @ D X : A X - d ii d a n d
i d i 1... : A= q. ci o t i a n t , D X = r a rn a i n d a r
I'l'l O V bx, Cbp+43 B X a d d r a s s o t r a s >..-i 1 t
ITl O [bx], d x i- a t i-i r n r a s u 1 t t G! - ! - B A S I C
i- a t 2 3 n o . o t p a i' a rn a t a r s

m o d u 1 o a n d p
LMDTWMK o d a a n d s

i "l d S

Loading the Assembly Language Module
To call the assembly language module, you must know its location
(address). The BLOAD statement allows you to load the module at
any physical address. However, to use the BLOAD statement to load a
module, you must first create the disk file containing the module using
MS-LINK and DEBUG and the BSAVE statement, as follows:

1. After assembling your module to create the object file, use the linker
to create the .EXE file. Use the /HIGH switch when linking so that
the module will load in high address memory.

2. Use the debugger to load the .EXE file produced in step 1.

3. Display the register values (with the R command) to determine
where the subroutine was loaded. Write down the values contained
in the CS:IP register pair and the CX register. The CS:IP register
pair contains the starting address of the subroutine and the CX
register contains its length.

3-10 GW-BASIC

4. Load and execute GW-BASIC from DEBUG with this sequence of
commands:

NGWBASIC.EXE
L
N
G

Note that your assembly language module is still loaded in high
address memory.

5. Set the segment value in GW-BASIC with a DEF SEG statement:

! I ! ! ' ' ! I ----- >:. J. U P 1 j "! U b I " e g i s t ■::? ! " j

6. Save the module with a BSAVE statement:

B S AE " rii d u 1 e__i"i a m e " , (a 1 u e i n I P r eg .) ,
>. v a ci e i n CX r eg .)

The assembly language subroutine is now ready to be called from
your GW-BASIC program. The following statements are required in
your GW-BASIC program before the subroutine can be called:

IJ E F S E G ----- (a 1 u e i n C S r eg i s t e r >
B I.... 0 A D " iyi o d u 1!---' n a m e " ---!e? i n I P r eg i s t e r)
!:::! UR U U I 1. N !:::. ----- ---i Le 1 ! P ! " e1 S t e-! i')

The subroutine can then be called with statements of the form:

C A!.... I.... S U B R 0 T I N E < P A R A M E T E R 1 , P A R A M E T E R 2 , . , .)

3

GW-BASIC STATEMENTS 3-11

3.5 CHAIN

FORMAT:

CHAIN [MERGE] < filespec > [,[< line number exp >]
[,ALL][,DELETE < range >]]

PURPOSE:

Calls a program and passes variables to it from the current program.

REMARKS:

< filespec > is a string expression returning a valid file specification as
described in Chapter 1.3.

< filespec > is the only difference between MS-BASIC and GW-
BASIC. Refer to your MS-BASIC manual for a complete description.

EXAMPLE:

S S 5 C H R I N " P R 0 G 1 " 1 0 0 0

3.6 CIRCLE

FORMAT:

CIRCLE (< xcenter > , < ycenter >), < radius >
[, < attribute > [, < start > , < end > [, < aspect >]]]

PURPOSE:

Draws an ellipse with center (< xcenter > , < ycenter >) and radius
< radius > .

3-12 GW-BASIC

REMARKS:

< xcenter > is a numeric expression in the integer range used as the
x-coordinate of the center of the ellipse.

< ycenter > is a numeric expression in the integer range used as the
y-coordinate of the center of the ellipse.

< radius > is a numeric expression in the integer range used as the
radius of the ellipse.

< attribute > is an expression returning the value 0 to 3, which is
used to determine the color of the ellipse. An attribute of 0 or 2 draws
an ellipse of the background color.

< start > and < end > are angle parameters expressed as radian
arguments between 0 and 2*PI that allow you to specify where drawing
of the ellipse begins and ends.

< aspect > is the ratio of the x radius to the y radius. The default
aspect ratio is 5.25/8.00 in hi-res, and gives a visual circle (assuming a
standard monitor screen aspect ratio).

The CIRCLE statement draws an ellipse with a center and radius, as
indicated by the first of its arguments. The default attribute is 1
(white). If the start or end angle is negative, the ellipse is connected to
the center point with a line, and the angles are treated as if they are
positive (note that this is different from adding 2*PI).

If the aspect ratio is less than one, then the radius is given in x-pixels.
If it is greater than one, the radius is given in y-pixels. You can use the
standard relative notation to specify the center point.

For more information, see Chapter 1.1.

EXAMPLE:

18 CIRCLE C39 9, ! 99), 100, 1 1 C J. I " C 1 -H t C & I "l t A I "
‘ Q I' S C r fl

G W-BASIC STA TEMENTS 3-13

3.7 CLS

FORMAT:

CLS [< n >]

PURPOSE:

Erases the current active screen page.

REMARKS:

< n > is a number from 0 to 2.

1. If the screen is in Alpha mode, it clears to white or underlined,
depending on the current foreground and background colors (see
Chapter 3.8). If the screen is in Graphics or Hi-res mode, the entire
screen buffer clears to black.

2. You can also clear the screen with ALT-L.

3. Note: The SCREEN and WIDTH statements force a screen clear if
the resultant Screen mode created is different from the current
mode.

4. Your computer does not have the capability to clear the text or
graphics screens separately. Use CLS with a valid parameter to clear
both screens.

EXAMPLE:

1 S C L S ' C 1 9l I " S t I "l 9 S C K 9 9 I'I ■
1 5 C!.... S 2 1 C 1 9 9i r s t h 9 s c r 9 9 n 9 1 s o .

3-14 GW-BASIC

COLOR 3.8

FORMAT:

COLOR [< foreground > , < background >]

PURPOSE:

Selects the foreground and background colors.

REMARKS:

< foreground > is an unsigned integer from 0 to 15 that determines
the color of the character.

z

< background > is an unsigned integer from 0 to 15 that determines
the color the character is placed over.

The COLOR statement is valid only in Screen 0 (Alpha mode). Since
GW-BASIC has no colors available, use this statement to select
reverse-video characters (black on white), underlined, or highlighted
characters.

You can obtain the following effects with the specified combinations of
foreground and background colors.

FOREGROUND BACKGROUND EFFECT________

7 0 Normal, white on black
1 0 Underlined, white on black
0 7 Reverse, black on white

15 0 Highlight, white on black
9 0 Highlight, underlined

white on black
8 7 Reverse highlight
0 0 Invisible (black)

GW-BASIC STATEMENTS 3-15

1. Any values that you enter outside these ranges result in the
“Overflow” or “Illegal Function Call” error. Previous values are
retained.

2. You can omit any parameter. Omitted parameters assume the old
value.

EXAMPLE:

1 0 0 C 0 L 0 R 0,7 ' r e v e r s e v i d e o
1 1 0 C 01.... 0 R , 0 ’ i I-- v i s i1 e c h a r a c t e r s

3.9 COM

FORMAT:

COM(< n >) ON
COM(< n >) OFF
COM(< n >) STOP

PURPOSE:

Enables or disables trapping of communications activity to the indi
cated serial port.

0 = both ports
1 = port A
2 = port B

REMARKS:

You must execute a COM(< n >) ON statement to allow trapping by
the ON COM(< n >) statement. The combination of COM(< n >)
ON and a non-zero line number specified in the ON COM(< n >) state
ment tells GW-BASIC to check for new characters from the serial port
before starting any new statements.

3-16 GW-BASIC

If COM(< n >) is OFF GW-BASIC does not execute event traps and
does not remember the specified event even if it does take place.

COM(< n >) STOP also inhibits trapping. If any communications
activity takes place, however, GW-BASIC remembers and executes an
immediate trap at the next COM(< n >) ON.

EXAMPLE:

10 PORT.A = 1
2 0 C 0 M P 0 R . A) 0!-! 1 e n a b 1 e o m t r a p p i ng o n

'per t a

1 0 0 C 0 M P 0 R "I " , A ■' S T 0 P ‘ tm p or a r i 1 y d i s a b 1 -----
strapping

00 C 0 (P 0 R T , A) 0 N 1 e n a b 1 e t r a p p i ng
' i m iti e d i a t e 1 y

5 0 0 C !'! (p 0 R T . A > 0 F F ' d i s a b I e t r a p p i ng
! I" org -----1 aven t s

DATES 3.10

FORMAT:

DATES < string expr >
To set the current date.

string expr > DATES

To get the current date.

G W-BAS1C ST A TEMENTS 3-17

PURPOSE:

Sets or retrieves the current date.

REMARKS:

< string exp > is a valid string literal or variable.

The current date is fetched and assigned to the string variable if
DATE$ is the expression in a LET or PRINT statement.

The date is stored if DATES is the target of a string assignment.

RULES:

1. If < string exp> is not a valid string, GW-BASIC generates the
“Type mismatch” error. Previous values are retained.

2. For < string var> = DATES, DATES returns a 10-character
string in the form “mm-dd-yyyy”, where mm is the month (01 to
12), dd is the day (01 to 31) and yy is the year (1980 to 2099).

3. For DATES = < string expr > , < string expr > may take one of
the following forms:

"mm-dd-yy"
"mm/dd/yy"
"mm-dd-yyyy"
"mm/dd/yyyy"

If any of the values are out of range or missing, GW-BASIC gen
erates the “Illegal Function Call” error. Any previous date is
retained.

EXAMPLE:

DATE# = " UZ-21-SE"
Ok
PRINT DATE#
1 0 - 2 1 --1 9 8 2
Ok

3-18 GW-BASIC

DEF SEG 3.11

FORMAT:

DEF SEG [= < address >]

PURPOSE:

Assigns the current segment address that the subsequent CALL or
POKE statement, or USR or PEEK functions will reference.

REMARKS:

< address > is a valid numeric expression returning an unsigned
integer in the range 0 to 65535. The < address > specified is saved for
use as the segment required by the PEEK, POKE and CALL state
ments.

RULES:

1. Any value entered outside of this range results in an “Illegal Func
tion Call” error. The previous value is retained.

2. If you omit the address option, DEF SEG uses GW-BASIC’s data
segment. This is the initial default value.

3. If you supply this address option, GW-BASIC uses the value as the
segment portion of the offset address specified by the PEEK, POKE,
or CALL.

4. Note: DEF and SEG must be separated by a space. Otherwise, GW-
BASIC interprets the statement DEFSEG = 100 to mean: “assign
the value 100 to the variable DEFSEG”.

EXAMPLE:

1 S DE F S EG::::: 0 1 Se t s eg m en t t o i n t er- r. r up t t a b e
2 0 D E F S E G ' R e s t or e s eg m e n t t o B AS I C 1 s D S ,
3 0 111 I 8I i.:::::H 8 1 1 2 ' S e t s eg m e n t
4 0 Fl = P E E K (1 0 0) ' Fl = b y t e a t 8 1 1 2 : 1 0 0 o r 8 1 2 2 0

1 a b s o 1 t e

G W-BASIC ST A TEMENTS 3-19

3.12 DRAW

FORMAT:

DRAW < string exp >

PURPOSE:

Draws a complex object as specified by < string exp > . < string
exp > is a string expression returning a valid formatted string, using
the movement commands.

The DRAW verb combines most of the capabilities of the other graph
ics statements into an easy-to-use object definition language called
“Graphics Macro Language.” A GML command is a single character
within a string, optionally followed by one or more characters.

MOVEMENT COMMANDS:

Each of the following movement commands begin movement from the
current graphics position. This is usually the coordinate of the last
graphics point plotted with another GML command, LINE, or PSET.
The current position defaults to the center of the screen (400,200)
when a program is run.

U[<C n x>] Move up (scale factor * n) points
D [<C n.>] Move down
L [<' n >>] Move left
R[<^n)>] Move right
E[<C n >] Move diagonally up and right
H[<< n'>] Move diagonally up and left
G[<< n">] Move diagonally down and left
F [<C n >»] Move diagonally down and right

3-20 GW-BASIC

The commands move one unit if no argument is supplied.

M <x,y> Move absolute or relative. If x is preceded by a
“ + ” or “ — ”, x and y are added to the current
position; the new point is connected with the
current position by a line. Otherwise, GW-BASIC
draws a line from the current position to the point
x,y.

The following prefix commands can precede any of the movement
commands:

B Move but don’t plot any points. i

N Move but return to original position when done. !

A < n > Set angle n. n can range from 0 to 3, where 0 is
zero degrees, 1 is 90, 2 is 180, and 3 is 270. Figures
rotated 90 or 270 degrees are scaled so that they
appear the same size as with 0 or 180 degrees on a
monitor screen with the standard aspect ratio of 3
to 2.

C < n > Set attribute n. n can range from 0 to 3; even values
remove the dot and odd values display the dot.

S < n > Set scale factor, n can range from 1 to 255. The
scale factor is multiplied by the distances given with
U, D, L, R, or relative M commands to get the
actual distance traveled.

X < string > Execute substring. This powerful command allows
you to execute a second substring from a string,
much like GOSUB in BASIC. You can have one
string execute another, which executes a third, and
so on.

Numeric arguments can be constants like "123” or
" = variable;”, where variable is the name of a vari
able.

G W-BASIC STA TEMENTS 3-21

EXAMPLE:

To draw a box:

1 0
2 0
3 0

SCREEN 2 'must be in graphics mode
SIDE.LEN ----- 50 ‘set length of each side
DRAW " C 1 U = S IDE. LEN : R = S IDE. LEN D-----S I DE . LEN
L = SI D E . LEN.: "

To draw a triangle:

1 0 S i R L EII 2 1 m l-i s t b e i n g r a p h i c s m o d e
20 DRAW “Cl : El 5 : FT 5 L30"

3.13 EDIT

FORMAT:

EDIT < line number >
EDIT <■>

PURPOSE:

Displays the line specified and positions the cursor under the first digit
of the line number. You can then modify the line using the Full Screen
Editor.

REMARKS:

< line number > is the program line number of a line existing in the
program. If there is no such line, GW-BASIC displays the “Undefined
Line Number” error message.

<. > always gets the last line referenced by an EDIT statement, LIST
command, or error message.

3-22 GW-BASIC

GET AND PUT FOR COM FILES 3.14

FORMAT:

GET < file number > , < nbytes >
PUT < file number > , < nbytes >

PURPOSE:

Allows fixed-length I/O for COM.

REMARKS: z
< file number > is an integer expression returning a valid file number.

< nbytes > is an integer expression returning the number of bytes to
transfer into or out of the file buffer, nbytes cannot exceed the value
set by the /S: switch when BASIC was invoked.

Because of the low performance associated with telephone line com
munication, you should not use GET and PUT in such applications.

EXAMPLE:

80 HEND
98 CLOSE GI, #2
100 END

10 ' P r og i" s m t o S e n d a n A S C I I t i 1 e v e r P o r t
20 INPUT 11 E I "I t I" H S L 1 J. t 1 .1. I:::' t 0 t I" H smiti"jFILNMET
30 OPEN " COMl!9600,0,7,1" AS #1 'init PORT A
40 OPEN " Output " ,#2, FILNME# 'o P n A S C I I f i 1
50 WHILE NOT(EOF(2>)
f ii i.! 1 IL' 1 1 o a d t !-> e T i 1 e b u f -!- e r w i t h a I" e c
70 PUT #1 , 1 2 S ! e n d t h e r e c o!- d o u t por t A

G W-BASIC ST A TEMENTS 3-23

3.15 GET AND PUT FOR GRAPHICS

FORMAT:

GET (< x1 -coord > , < y1-coord >) — (< x2-coord > , < y2-coord >),
< array name >

PUT (< x1 -coord > , < y 1 -coord >), < array > [, < action verb >]

PURPOSE:

Reads (GET) or writes (PUT) pixels to or from an area of the screen.

REMARKS:

< xl-coord > and <yl-coord> are numeric expressions returning a
value in the integer range that specifies one corner of the rectangular
area.

< x2-coord > and < y2-coord > are numeric expressions returning a
value in the integer range which specifies the opposite corner of the
rectangular area.

< array name > is a previously dimensioned array to receive the
graphics points.

< array > is an array containing graphics information.

< action verb > is one of:

PSET, PRESET, AND, OR, XOR

Use the PUT and GET statements to transfer graphics images to and
from the screen. PUT and GET make animation and high-speed object
motion possible in either Graphics mode.

3-24 GW-BASIC

The GET statement transfers the screen image inside a rectangle into the
array. You define the rectangle by specifying the coordinates in the same
way you would using the line statement with the ',B' or ',BF' option.

The array is only a place to hold the image and can be of any type
except string. It must be dimensioned large enough to hold the entire
image. After a GET the contents of the array are meaningless (unless
the array is of type integer).

The PUT statement transfers the image stored in the array onto the
screen. The specified point is the coordinate of the top left corner of
the image. If the image to be transferred is too large to fit on the
screen, GW-BASIC displays the "Illegal Function Call” error.

Use the action verb to interact the transferred image with the image al
ready on the screen. PSET transfers the data onto the screen verbatim.

PRESET is the same as PSET except that PRESET produces a neg
ative image (black on white). Use AND to transfer the image only if an
image already exists under the transferred image.

Use OR to superimpose the image onto the existing image.

XOR inverts the points on the screen where a point exists in the array
image. This behavior is exactly like the cursor on the screen. XOR has
a unique property that makes it especially useful for animation: when
an image is PUT against a complex background twice, the background
is restored unchanged. This allows you to move an object around the
screen without obliterating the background.

Note: The default action mode is XOR.

It is possible to GET an image in one mode and PUT it in another,
although the effect might be unusual because of the way points are
represented in each mode.

G J4 -BASIC ST A TEMENTS 3-25

AND, OR and XOR have the following effects on color:

AND OR

array
attr 0

screen attrib
_3

array
attr

screen attrib
1 2 0_ 1 2 _3

0 0 0 0 0 0 0 1 2 3
1 0 1 0 1 1 1 1 3 3
2 0 0 2 2 2 2 3 2 3
3 0 1 2 3 3 3 3 3 3

XOR

array screen attrib
attr 0_ 1 2 _3 '

0 0 1 2 3
1 1 0 3 2
2 2 3 0 1
3 3 2 I 0

You can animate an object in the following way:

1. PUT the object(s) on the screen.

2. Recalculate the new position of the object(s).

3. PUT the object(s) on the screen a second time at the old location(s)
to remove the old image(s).

4. Return to step 1, this time PUTting the object(s) at the new location.

This movement leaves the background unchanged. You can cut down
flicker by minimizing the time between steps 4 and 1, and by making
sure that there is enough time delay between steps 1 and 3. If you are
animating more than one object, you should process all objects at
once, one step at a time.

3-26 GW-BASIC

You don’t have to preserve the background; you can animate by using
the PSET action verb. Leave a border around the image when you first
get it as large or larger than the maximum distance the object will
move. Then, when the object is moved, the border effectively erases
any points. This method might be somewhat faster than the method
using XOR since you need only one PUT to move an object (although
you must PUT a larger image).

The storage format in the array is as follows:

2 bytes giving x dimension in bits
2 bytes giving y dimension
The array data itself

The data for each row of pixels is left-justified on a byte boundary, so
if you store less than a multiple of 8 bits, the rest of the byte is filled
with zeros. The required array size in bytes is:

4 + JNT((x* < bits/pixel > + 7)/8)*y

where < bits/pixel > is 1 in screen mode 2.

The bytes per element of an array are:

2 for integer
4 for single precision
8 for double precision

For example, if you want to GET a 10-by-12 image into an integer
array, the number of bytes required is 4 + INT((10*2 + 7)/8)*12, or 40
bytes. So you need an integer array with at least 20 elements.

You can examine the x and y dimensions and even the data itself if
you use an integer array. The x dimension is in element 0 of the array,
and the y dimension is in element 1. Remember that integers are
stored low byte first, then high byte, and that the data is transferred
high byte first (leftmost) and then low byte.

G W-BASIC ST A TEMENTS 3-27

3.16 KEY

FORMAT:

KEY < key number > , < string expression >
KEY LIST
KEY ON
KEY OFF

PURPOSE:

Designates function keys as “soft keys.” You can assign any one or all
of the seven special function keys a 15-byte string. When you press the
key, the string is input to GW-BASIC.

Initially, the soft keys are assigned the following values:

1 RUN
2 CONT
3 LCOPY
4 SAVE"

5 LOAD"
6 FILES
7 LIST

REMARKS:

< key number > is the key number, ah expression returning an
unsigned integer in the range 1 to 7.

< string expression > is the key assignment text, any valid string
expression up to 15 characters in length.

KEY ON This is the initial setting. It displays the key values on
the 25th line. Only the first 9 characters of each value
display. “ < ” in the string indicates a carriage return.

3-28 GW-BASIC

KEY OFF Erases the soft key display from the 25th line.

KEY LIST Lists all seven soft key values on the screen. All 15
characters of each value are displayed.

ALT-T Refreshs the 25th line if the function keys are on. If
the function keys are off, ALT-T clears line 25.

RULES:

1. If the value returned for < key number > is not in the range 1 to 7,
the “Illegal Function Call” error displays. GW-BASIC retains the
previous key assignment string.

2. The key assignment string may be 1 to 15 characters in length. If
the string is longer, the first 15 characters are assigned.

3. Assigning a null string (string of length zero) to a soft key disables
the function key as a soft key.

4. When a soft key is assigned, the INKEY$ function returns one char
acter of the soft key string per invocation. If a soft key is disabled,
INKEY$ returns the code given for that key.

EXAMPLE:

59 KEY ON

Display the soft keys on the 25th line.

2 0 0 K E Y 0 F F

Erase soft key display.

10 KEY 1, "MENU"+CHR$(13)

Assigns the string "MENU'z(cr) to soft key 1. You can use such
assignments for rapid data entry. This example might be used in a
program to select a menu display.

SO KEY 1, " "

Erases soft key 1.

G H -BASIC ST A TEMENTS 3-29

The following routine initializes the first five soft keys:

10 KEY OFF 'Turn off key display during init
20 DATA KEY 1 KEYS., KEY3, KEY4, KEYS
30 FOR 1=1 TO 5
40 READ S0FTKEYS$(I)
50 KEY I,S0FTKEYS$(I)
60 NEXT I
70 KEY 0N 1now di sp1 ay new soft k eys,

3.17 KEY(n)

FORMAT;

KEY(< n >) ON
KEY(< n >) OFF
KEY(< n >) STOP

PURPOSE:

Activates and deactivates trapping of the specified key.

REMARKS:

< n > is a numeric expression returning a value between 0 and 11
and indicates the key to be trapped.

0 Keys 1-11
1-7 Function keys 1 to 7
8 Up arrow
9 Left arrow
10 Right arrow
11 Down arrow

3-30 GW-BASIC

Execute a KEY(< n >) ON statement to activate trapping of function
key or cursor control key activity. If you then specify a non-zero line
number in the ON KEY(< n >) statement, every time GW-BASIC
starts a new statement it checks to see if the specified key was pressed.
If so, GW-BASIC performs a GOSUB to the line number specified in
the ON KEY(< n >) statement.

If KEY(< n >) is OFF, no trapping takes place and the event is not
remembered even if it does take place.

If a KEY(< n >) STOP statement has been executed, no trapping
takes place. But GW-BASIC remembers if the specified key is pressed,
and executes an immediate trap when the next KEY(< n >) ON exe
cutes.

KEY(< n >) ON has no effect on whether the soft key values are
displayed on the 25th line.

LCOPY 3.18

FORMAT:

LCOPY

PURPOSE:

Dumps the contents of the display screen to a graphics printer.

REMARKS:

This statement allows you to get hard copies of the graphics displays
generated by GW-BASIC. The program supports these printers:

Epson FX
Epson MX
Tally
C. Itoh
C. Itoh S
Okidata

G W-BASIC ST A TEMENTS 3-31

You must configure GW-BASIC to use one of these printers (see
Chapter 6.2, “Printer Installation”). Once configured, LCOPY can use
only the printer specified in the sign-on message. If you do not
configure any printer, GW-BASIC returns “Illegal Function Call.”

EXAMPLE:

10 SCR!SEN 2 ' s e t !.. ! P s O I " S 0 ITl 'Z I' " :::i p Fl 1 C S
20 KEY OFF tI " n o f s t h e f I.. I n c t :i. o n k e i d i s p 1 a y
30 CLS L,,. C 1 e 1" t Fl d S C, 1" e e n
4 0 1" U R RADIUS -- 20 TO 2 00 STEP 10
5 0 CIR(:le (40 0,2 0 0) , R Fl D I U S 1 d r W 5 0 ITl E 9 r p Fl i 'I
60 HEX'F RFID I U
?0 LCOF ' Y ' c p y t h e s !" e e n t a t h e P r i n t e r
80 END

3.19 LINE

FORMAT:

LINE [(< x >,< y >)]-(< x1 >,< y1 >)[[,[< attribute >][,B[F]J

PURPOSE:

Draws or removes straight lines, rectangles, and filled rectangles.

REMARKS:

<x> , <y>, < xl > , and <yl> are valid coordinates. <attri
bute > is an expression returning a value 0 to 3; GW-BASIC uses that
value to determine the color of a line. Even attributes remove dots and
odd attribute display dots. (See Chapter 1.1 for more information.)

The final argument is ",B" (box) or ",BF" (filled box).

LINE (x,y) — (xl,yl) draws a line from point (x,y) to point (xl,yl).

3-32 GW-BASIC

LINE — (xl,yl) draws a line from the previous graphics cursor to the
point (xl,yl).

LINE (xl,yl) — (x2,y2),B draws a rectangle with (xl,yl) as one corner
and (x2,y2) as the opposite diagonal corner. Using the B argument
replaces the following four LINE commands:

LINE (xl,yl) — (x2,yl)
LINE (xl,yl) — (xl,y2)
LINE (x2,yl) — (x2,y2)
LINE (xl,y2) — (x2,y2)

",BF" draws the same rectangle as ",B" but also fills in the interior
points with the selected attribute.

When you give out-of-range coordinates in the LINE command, the
coordinate which is out of range takes the closest legal value—negative
values become zero, y values greater than 399 become 399 and x
values greater than 799 become 799.

LINE (x,y) — (xl,yl),BF draws a rectangle and fills the entire rectangle.

3

EXAMPLE:

Draw lines forever using random attribute:

IO CLS
2© LINE RND:!:?99., RND*399>
3© GO TO 20

NT(RND*4)

Draw alternating pattern—line on, line off:

10 FOR ::::: 0 TO 7 9 9
20 LINE N , O > - (N 399> , N
30 NEXT

A N 0 1

Draw lines forever, using random attribute, and filling the rectangles:

1 O C!.... S
2 0 L I N E (R N D7 9 9 R N D !- ' ? (R N 0 * 7 9 9 , R N D3 9 9) ,

I NT <RND*4) bi"
3 0 G 0 T 0 2 O

G W-BASIC ST A TEMENTS 3-33

3.20 LIST

FORMAT:

LIST [[< line no. > [— [< line no. >]]] [, < filespec >]]

PURPOSE:

Lists a program to the screen or other devices.

REMARKS:

< line no. > is a valid line number in the range 0 to 65529.

< filespec > is a valid string expression returning a valid file speci
fication.

RULES:

1. If you omit the optional device specification, GW-BASIC lists the
specified lines to the screen.

2. You can stop listings directed to the screen at any time by pressing
ALL-O.

3. If you omit the line range, GW-BASIC lists the entire program.

4. When you use the dash (-) in a line range, you have three options:

a. If you give only the first number, that line and all higher num
bered lines are listed.

b. If you give only the second number, all lines from the beginning
of the program through the given line are listed.

c. If you give both numbers, the inclusive range is listed.

3-34 GW-BASIC

EXAMPLES:

LIST , "LPT1 : "

List program to the Line Printer.

LIST 10-20

List lines 10 through 20 to Screen.

LIST 10 , "SCRN s !i

List lines 10 through last to Screen.

L I S T ----- 2 0 0

List first through line 200 to Screen.

L I S T 1 0 0 0 -----1 0 4 5 , " C 0 N 1 s 4 8 0 0,0,5,2 "

List lines 1000 through 1045 to serial port A, setting the baud
rate, parity, data bits, and stop bits.

LOAD 3.21

FORMAT:

LOAD " < filespec > " [,R]

PURPOSE:

Loads a program from the specified device into memory, and option
ally runs it.

GW-BASIC STA TEMENTS 3-35

REMARKS:

< filespec > is a valid string expression for the file specification.

LOAD lets you enter programs from the communications ports. GW-
BASIC offers this option in addition to the MS-BASIC options. Refer
to your MS-BASIC manual for additional information.

EXAMPLE:

LOAD "COMI ; 4DO0,0.. 7.- 1 " R

3

3.22 LOCATE

FORMAT:

LOCATE [< row >] [,[< col >] [,[< cursor >][,[< start >]
L < stop >]]]]

PURPOSE:

Moves the cursor to the specified position on the active screen.
Optional parameters turn the cursor on and off and define the start
and stop raster lines for the cursor.

REMARKS:

LOCATE moves the cursor to the specified position. Subsequent
PRINT statements begin placing characters at this location. You can
also use this statement to turn the cursor on or off or to change the size
of the cursor.

< row > is the screen line number, a numeric expression returning an
unsigned integer in the range 1 to 25.

3-36 GW-BASIC

< col > is the screen column number, a numeric expression returning
an unsigned integer in the range 1 to 40 or 1 to 80, depending on the
screen width.

< cursor > is a boolean value indicating whether or not the cursor is
visible; use 0 for off, non-zero for on.

< start > is the cursor starting scan line, a numeric expression return
ing an unsigned integer in the range 0 to 31. GW-BASIC, however,
recognizes and displays only 0 to 15.

< stop > is the cursor stop scan line, a numeric expression returning
an unsigned integer in the range 0 to 31. GW-BASIC, however, recog
nizes and displays only 0 to 15.

If you enter any values outside these ranges, GW-BASIC displays the
“Illegal Function Call” error and retains previous values.

You can omit any of the parameters. Omitted parameters assume the
previous value.

If you give the start scan line parameter and omit the stop scan line
parameter, stop assumes the start value. If you omit both, the start and
stop scan lines retain their previous values.

EXAMPLE:

ID LOCATE 1,1

Move to the home position in the upper left corner.

2 0 0 C A T E , , 1

Make the cursor visible; position remains unchanged.

30 LOCATE ,,,15

G H -BASIC ST A TEMENTS 3-37

Cursor position and visibility remain unchanged. Set the cursor
to display at the bottom of the character starting and ending on
scanline 15.

40 LOCATE: 5.. 1 , 1,0.. 15

Move to line 5, column, turn cursor on; cursor covers entire
character cell starting at scan line 0 and ending at scan line 15.

3.23 MERGE

FORMAT:

MERGE < filespec >

PURPOSE:

Merges the lines from an ASCII program file into the program
currently in memory.

REMARKS:

< filespec > is a string expression that returns a valid file specification.
Refer to your MS-BASIC manual for additional syntax information.

EXAMPLE:

MERGE "CO M2:4800,O,7, 1 "

3-38 GW-BASIC

ON COM 3.24

FORMAT:

ON COM(< n >) GOSUB < line number >

PURPOSE:

Sets up a line number for GW-BASIC to trap when there is informa
tion coming into the communications buffer.

REMARKS:

< n > is the number of the communications port, where 1 is port A
and 2 is port B.

z

< line number > is the starting line number of the routine to handle
the information coming from the port. A line number of 0000 (zero)
disables trapping of communication for the specified port.

You must execute a COM(< n >) ON statement to activate this state
ment for port < n > . After COM(< n >) ON, if you specify a non
zero line number in the ON COM(< n >) statement, then every time
GW-BASIC starts a new statement it checks to see if any characters
have come in to the specified port. If so, the program performs a
GOSUB to the specified line number.

If COM(< n >) OFF was executed, no trapping takes place for the
port and the event is not remembered even if it does take place.

If GW-BASIC executes a COM(< n >) STOP statement, no trapping
can take place for the port. But if a character is received, GW-BASIC
remembers this character and an immediate trap takes place when
COM(< n >) ON is next executed. You can use 0 in place of a 1 or 2
to affect both ports in the COM(< n >) ON, COM(< n >) STOP,
COM(< n >) OFF.

G W-BASIC STA TEMENTS 3-39

When the trap occurs, an automatic COM(< n >) STOP is executed,
so that recursive traps can never take place. The RETURN from the
trap routine automatically executes a COM(< n >) ON unless there is
an explicit COM(< n >) OFF inside the trap routine.

Event trapping does not take place when GW-BASIC is not executing
a program. When an error trap (resulting from an ON ERROR state
ment) takes place, all trapping is automatically disabled (including
ERROR, COM and KEY).

Typically the communications trap routine reads an entire message
from the communications port before returning back to the main pro
gram. You should not use the communications trap for single
character messages. The interrupt buffer is fixed at 256K bytes, and at
high baud rates the overhead of trapping and reading for each indivi
dual character might overflow the buffer.

EXAMPLE:

1 0 U ! U R I f H ::::: 1.
110 PORT . IB -NN £
120 ON COM(PORT. A) GO BUB 500

5 0 0 ■ * * H: # H: R 0IJ T I N E T 0 H R N D L E P 0 R T A C H R S

5 50 UN

3-40 GW-BASIC

ON KEY(n) 3.25

FORMAT:

ON KEY(< n >) GOSUB < line number >

PURPOSE:

Sets up a line number for GW-BASIC to trap when you press the
specified function key or cursor control key.

REMARKS:

<n> is a numeric expression returning a value between 1 and 14
and indicates the key to be trapped.

1-7 Function keys 1 to 7
8 Up arrow
9 Left arrow

10 Right arrow
11 Down arrow

< line number > is a valid number in the range 0 to 65529. Use 0 as
< line number > to disable trapping on the specified key.

You must execute a KEY(< n >) ON statement to activate trapping
of function key or cursor control key activity. After KEY(< n >) ON,
if a non-zero line number is specified in the ON KEY(< n >) state
ment, then every time GW-BASIC starts a new statement it checks to
see if the specified key was pressed. If so, GW-BASIC performs a
GOSUB to the line number specified in the ON KEY(< n >) state
ment.

If you execute a KEY(< n >) OFF statement, no trapping takes place
for the specified key and the event is not remembered even if it does
take place.

If you enter a KEY(< n >) STOP statement, no trapping takes place.
But if you press the specified key, the program remembers so an
immediate trap takes place at the next KEY(< n >) ON.

G H -BASIC STA TEMENTS 3-41

When the trap occurs an automatic KEY(< n >) STOP is executed,
so that recursive traps can never take place. The RETURN from the
trap routine automatically executes a KEY(<n>) ON unless you
have an explicit KEY(< n >) OFF inside the trap routine.

Event trapping does not take place when GW-BASIC is not executing
a program. When an error trap (resulting from an ON ERROR state
ment) takes place it automatically disables all trapping (including
ERROR, COM, and KEY).

3
Key trapping might not work when you press other keys before the
specified key. The key that caused the trap cannot be tested using
INPUTS or INKEYS, so the trap routine for each key must be
different if you want a different function.

KEY(< n >) ON has no effect on whether the soft key values display
on the 25th line.

EXAMPLE:

100 KEYi5 - 5
1 1 0 0 N l< E Y C K E Y . 5) G 0 S U B 5 0 0

5 0 0 1 * * * L R 0 U T I N E 0 H Fl N D L E K E Y (5 >

550 RETURN

3-42 GW-BASIC

OPEN 3.26

FORMAT:

OPEN [< dev >] < filespec > [FOR < mode >] AS [#]
< file number > [LEN = < keel >]

PURPOSE:

Establishes addressability between a physical device and an I/O buffer
in the data pool.

REMARKS:

< dev > is optionally part of the filename string.

< filespec > is a valid string literal or variable, as described in Chapter
1.3. In the simplest case, it is just a filename. The device can be
specified separately in the < dev > field or as part of the < filespec > ,
or omitted entirely (in which case the default drive is assumed).

< mode > determines the initial positioning within the file and the
action to be taken if the file does not exist. The valid modes and
actions taken are:

k INPUT: Position to the beginning of an existing file. GW-BASIC
returns the "Pile Not Found” error if the file does not exist.

k OUTPUT: Position to the beginning of the file. If the file does not
exist, the program creates one.

► APPEND: Position to the end of the file. If the file does not exist,
the program creates one.

If you omit the FOR < mode > clause, the initial position is at the
beginning of the file. If GW-BASIC cannot find the file, it creates one.
This feature is the Random I/O mode: you can read or write records at
will from any position within the file.

G W-BASIC STA TEMENTS 3-43

< file number > is an integer expression returning a number in the
range 1 through 15. GW-BASIC uses this number to associate an I/O
buffer with a disk file or device. This association exists until the pro-
gram executes a CLOSE < file number > or CLOSE statement.

< Irecl > is an integer expression in the range 2 to 32768. This value
sets the record length to be used for random files. If you omit
< Irecl > , the record length defaults to 128-byte records.

Your MS-BASIC manual has an alternate form of the OPEN state
ment.

When you OPEN FOR APPEND a disk file, the position is initially at
the end of the file and the record number is set to the last record of the
file (LOF(x)/128). PRINT, WRITE, or PUT then extend the file. You
can position the program elsewhere in the file with a GET statement. If
you do so, the mode changes to random and the position moves to the
record indicated.

Once you move the position from the end of the file, you can execute
a GET #x,LOF(x)/ < Irecl > to append additional records to the file.

3.27 OPENING A COM FILE

FORMAT:

OPEN < COM.filename > AS [#] < file number >

PURPOSE:

Allocates a buffer for I/O in the same fashion as OPEN does for disk
files.

REMARKS:

< COM.filename > = z < dev > : < speed > , < parity > , < data > ,
< stop > ,[RS],[,CS < n >][,DS < n >][,CD < n >][,LF][,ASC or,BIN]zz

3-44 GW-BASIC

< dev > is a valid communications device. Valid devices are:

COMI: COM2:

< speed > is a literal integer specifying the transmit/receive baud rate.
Valid speeds are:

50, 75, 110, 150, 200, 300, 600, 1200, 1800,
2000, 2400, 3600, 4800, 9600, 19200

If you omit the speed parameter, GW-BASIC uses the default 300.

< parity > is a one-character literal specifying the parity for transmit
and receive as follows:

S SPACE Parity bit always transmitted and received as
space (0 bit).

O ODD Odd transmit/receive parity checking.

M MARK Parity bit always transmitted and received as
mark (1 bit).

E EVEN Even transmit/receive parity checking.

N NONE No transmit parity, no receive parity checking.

If you omit the parity parameter, GW-BASIC uses the default even.

< data > is a literal integer indicating the number of transmit/receive
data bits. Valid values are: 5, 6, 7, 8.

If you omit the data parameter, GW-BASIC uses the default 7.

Note: 5 data bits with no parity is illegal. 8 data bits with any parity is
also illegal.

< stop > is a literal integer indicating the number of stop bits. Valid
values are: 1,2.

(i W ’-BASIC ST A TEMENTS 3-45

If you omit <stop>, the program uses 2 stop bits at 75 and 110
baud; otherwise, the program uses 1 stop bit.

< file number > is an integer expression returning a valid file number.
The number is then associated with the file for as long as it is OPEN
and is used to refer other COM I/O statements to the file.

[RS] suppresses RTS (Request to Send). The RTS line is normally
turned on when you execute Open a COM File.

[CS < n >] controls CTS (Clear To Send). If you omit CS, the default
is CS1000.

If you specify RS and omit CS, CS defaults to 0.

[DS < n >] controls DSR (Data Set Ready). If you omit DS, the
default is DS 1000.

[CD < n >] controls CD (Carrier Detect, also referred to as RLSD,
Received Line Signal Detector). If you omit CD, the default is CS0.

Normally I/O statements to a communication file fail if the CTS or
DSR lines are not cabled. The CS and DS options let you avoid this
problem by ignoring these lines. If you include the < n > argument, it
specifies the number of milliseconds to wait for the signal before
returning a "Device Timeout” error.

If you omit the argument < n > in the CS, DS, and CD options, or if
you set them to 0, the program does not check that line’s status, n
must be greater than or equal to 0, but less than or equal to 65535.

[LF] causes a line feed character after a carriage return.

[ASC] opens a COM file in ASCII mode.

[BIN] opens a COM file in binary mode.

The speed, parity, data, and stop parameters are positional, but RS,
CS, DS, and CD can appear in any order after STOP.

3-46 GW-BASIC

Note: A COM device may be OPENed to only one file number at a
time.

POSSIBLE ERRORS:

Any coding errors within the filename string result in the “Bad File
Name” error. GW-BASIC does not give any indication which parame
ter is wrong. The “Device Timeout” error occurs if data set ready
(DSR) is not detected. Refer to your hardware documentation for
proper cabling instructions.

EXAMPLES:

IS OPEN " COM 1 s " AS 1

File 1 is opened for communication with all defaults. Speed at
300 bps, even parity,' and 7 data bits, one stop bit.

20 OPE N "COMl ! 24 0 0 " AS #2

File 2 is opened for communication at 2400 bps. Parity and
number of data bits are defaulted.

10 OPEN "COMl ! 1200, N.: 8" AS #1

File number 1 is opened for Asynchronous I/O at 1200
bits/second, no parity is to be produced or checked, and 8-bit
bytes are sent and received.

G n -BASIC ST A TEMENTS 3-47

3.28 OUT

FORMAT:

OUT < port > , < data >

PURPOSE:

Sends a byte to a machine output port.

REMARKS:

< port > is a numeric expression returning a value in the integer
range from 0 to 65535.

< data > is a numeric expression returning a value in the integer
range from 0 to 255.

In assembly language, the statement is equivalent to:

0 V D r :. , p o t ; p o f t a d t3!' 8 S S

o u H d t :::i b y t s t o o u t p u t
UT D X t R. L o u t p i-l t 1::>yte in HL to port

II D XII

Note: Since your computer uses memory mapped I/O, this statement
returns the port number.

3-48 GW-BASIC

PAINT 3.29

FORMAT:

PAINT (< xstart > , < ystart >)[, < paint attribute > [, < border attribute >]]

PURPOSE:

Fills in an area on the screen with the selected color.

REMARKS:

< xstart > and < ystart > are numeric expressions that return a num
ber in the integer range and specify screen coordinates for the origin of
painting.

< paint attribute > is a numeric expression that returns a value from
0 to 3. It determines the color with which to fill the area. See Chapter
1.1 for more information.

< border attribute > is a numeric expression that returns a value from
0 to 3 and specifies the color to be searched for to delimit the area
being painted.

The PAINT statement fills in an arbitrary graphics figure with the
specified paint attribute. If you omit the paint attribute, it defaults to
the foreground attribute (3 or 1) and the border attribute defaults to
the paint attribute.

You might, for example, want to fill in a circle of attribute 3 with attri
bute 0. Visually, this could mean a black ball with a white border.

Since there are only two attributes in Hi-res mode, you must white out
an area until white is hit, or black out an area until black is hit.

PAINT must start on a non-border point or it has no effect.

G H -BASIC STA TEMENTS 3-49

PAINT can fill any figure, but PAINTing “jagged” edges or very com
plex figures might result in the "Out of Memory” error. If this hap
pens, you must use the CLEAR statement to increase the amount of
stack space available.

EXAMPLE:

10 RE! N 2
2 0 I N E < 1 0 0,2 0 0) (2 0 0,3 5 0) , 1 , B
3 0 PRINT < 150,22 5) , 1 1

3

3.30 PLAY

FORMAT:

PLAY < string exp >

PURPOSE:

Plays music as specified by < string exp > .

REMARKS:

< string exp > is a string expression returning a valid string conform
ing to the format described below.

PLAY implements a concept similar to DRAW by embedding a Music
Macro Language into the string data type.

The single-character commands in PLAY are described in Table 3-2.

3-50 GW-BASIC

Table 3-2: PLA Y Commands

COMMAND DESCRIPTION

A-G [#, + ,-] Play the note. “#” or “ + " following the note means sharp, and
“ — ” means flat.

L < n > Length—sets the length of each note. L4 is a quarter note, LI is a
whole note, and so on. n ranges from 1 to 64.

The length can also follow the note when you want to change the
length for only one note. In this case, A16 is equivalent to L16A.

MF Music Foreground. Music (PLAY statement) and SOUND are to \
run in foreground. That is, each subsequent note or sound does not '
start until the previous note or sound is finished.

MB Music Background. In this version of GW-BASIC, the effect of MB
duplicates that of MF.

MN Music Normal. Each note plays 7/8ths of the time determined by L
(length).

ML Music Legato. Each note plays the full period set by L (length).

MS Music Staccato. Each note plays 3/4ths of the time determined by
L (length).

N < n > Play note n. n can range from zero to 84. In the seven possible
octaves, there are 84 notes. N = 0 means rest.

0 < n > Octave. Sets the current octave. There are seven octaves (0-6).

P < n > Pause. P ranges from 1 to 64.

T < n > Tempo. Sets the number of L4’s in a second, n ranges from 32 to
255. Default is 120.

Dot. A dot after a note causes the note to play 3/2 times the period
determined by L (length) times T (tempo). Multiple dots can appear
after the note. The period is scaled accordingly (for example, A.
3/2, A. . 9/4, A. . . 27/8). Dots can appear after a pause (P) and
scale the pause length as described.

X < string > Execute substring.

Note: Because of the slow clock interrupt rate, some notes do not play at higher
tempos—e.g., L64 at T255. You can determine these note/tempo combinations by
experimenting.

G W-BASIC ST A TEMENTS 3-51

EXAMPLE:

1 0 A$ ----- "BB-C"
2 B B$ ----- " 0 4XA# "
3 0 c $ ----- " L 1 C T 5 0 N 3 N 4 N 5 N 6
4 >;!'! P L R Y !l P 2 X A $ XB$; XC$;

3.31 PSET

FORMAT:

PSET (< absolute x > , < absolute y >) [, < attribute >]
PSET STEP (< x offset >,<y offset >) [,< attribute >]

PURPOSE:

Displays (“turns on”) or removes (“turns off’) one pixel (dot) from the
video screen.

REMARKS:

< absolute x > , < absolute y >, < x offset > , and < y offset > are
valid coordinates. See Chapter 1.1 for further information.

< attribute > is an expression returning a value 0 to 3. This value
determines the color of the point. Even values add a dot and odd
values remove a dot.

If the attribute argument is omitted, GW-BASIC uses the default 1 in
screen mode 2.

EXAMPLE:

1 0 FOR I ----- 0 T 0 1 0 0
2 0 P § p “i” i.. 1 1) 1
3 0 NEXT 5(dr aw d i 0 ! "I 1 1 i n ----- t O 1 0 0 , 1 0
4 0 FOR I ----- 1 0 0 TO 0 STEP - 1
5 0 PSET - I , I) , 0
6 0 NEXT ' I' ! n O s.::. t h ----- 1 i i-i ----- j u s t d r a w n)

3-52 GW-BASIC

PRESET 3.32

FORMAT:

PRESET (< absolute x > , < absolute y >) [, < attribute >]
PRESET STEP (<x offset >,<y offset >) [,< attribute >]

PURPOSE:

Removes (“turns off’) or displays (“turns on”) one pixel (dot) from the
video screen.

REMARKS:

PRESET has a syntax identical to PSET. The only difference is that if
you give no third parameter for the color, GW-BASIC selects zero.
When you give a third argument, PRESET is identical to PSET.

If you give an out-of-range coordinate to PSET or PRESET, GW-
BASIC takes no action and displays no error message. If you give an
attribute greater than 3, you see the “Illegal Function Call” message.
The program treats attribute value 2 like 0 in Hi-res and treats 3 like 1.

EXAMPLE:

1 0 F 0 R I = 0 T 0 1 0 0
2 0 PS El (I s I)

3 0 HEX’T* i draw ----- diagonal line
4 0 FOR T ::::: 100 TO 0 . i ' ..1
5 0 PRE:□ E ! :: I , I) , 0
6 0 HE X ’T ! r e m o w e t h e 1 i n e j u s t

(j n - A ASIC ST A TEMENTS' 3-53

3.33 RETURN

FORMAT:

RETURN [< line number >]

PURPOSE:

Returns from a GOSUB.

REMARKS:

See your MS-BASIC manual for details on RETURN.

The line number is primarily intended for use with event trapping. The
event trap routine might want to go back into GW-BASIC at a fixed
line number while still eliminating the GOSUB entry that the trap
created.

Use the non-local return with care. Any other GOSUB, WHILE, or
FOR that was active at the time of the trap remains active. If the trap
comes out of a subroutine, any attempt to continue loops outside the
subroutine results in the "NEXT without FOR” error.

EXAMPLE:

109 RETURN 90 0

3-54 GW-BASIC

SAVE 3.34

FORMAT:

SAVE " < filespec > " [,A,P]

PURPOSE:

Saves a GW-BASIC program file on diskette or another device.

REMARKS:

< filespec > conforms to the rules described in Chapter 1.3.

Refer to your MS-BASIC manual for normal syntax. The only
difference in syntax is that the device specifications other than the
diskette are legal.

EXAMPLE:

SAVE "C0M1 ! 4800,07, 1 " A

3

SCREEN 3.35

Note: This is the SCREEN statement. See Chapter 4.6 for the
SCREEN function.

FORMAT:

SCREEN [< mode >][,[< burst >][,[< apage >][, < vpage >]]]

PURPOSE:

Sets the screen attributes.

G W-BASIC ST A TEMENTS 3-55

REMARKS:

< mode > is a valid numeric expression returning an unsigned integer
value. Valid modes are:

► 0—Alpha mode at current width (40 or 80).

► 2—Hi-resolution Graphics mode (800 X 400 dots).

< burst > is a valid numeric expression returning a boolean result.
This parameter enables color burst. A value of 0 disables color burst
(black and white images only). A non-zero value enables color burst
(allows color images). Your computer accepts only zero.

< apage > —Active page. This parameter is valid in Alpha only. It is a
numeric expression returning an unsigned integer in the range 0 to 7
for width 40, or 0 to 3 for width 80. < apage > selects the page to be
written to. Your computer accepts only zero.

< vpage > —Visible page. Follows the same rules as < apage > , but
selects which page displays on the screen. Your computer accepts only
zero.

If all parameters are legal and there is a change in < mode > or
< burst > from their previous values, the screen clears. The back

ground color is reset to black, and the foreground color to white.

RULES:

1. Any values entered outside these ranges result in the “Illegal Func
tion Call” error. Previous values are retained.

2. You can omit any parameter. Omitted parameters assume the old
value.

EXAMPLE:

1 0 ' ! I 0,0,0 : 0 ' s e 1 e c t a 1 p h a m d e
1 0 -E EE N 2 ! se 1 ec t h :i. -1" es y r aph i cs

3-56 GW-BASIC

SOUND 3.36

FORMAT:

SOUND < frequency > , < duration >

PURPOSE:

Generates a sound of a specified frequency for a specified time dura
tion from the speaker.

REMARKS:

< frequency > is the desired frequency in Hertz. It is a valid numeric
expression returning an unsigned integer in the range 37 to 32767.

3

< duration > is the desired duration in clock ticks. It is a valid numeric
expression returning an unsigned integer in the range 0 to 65535.

Current clock ticks occur 18.2 times per second. If the duration is zero,
any current sound that is playing turns off; you see no effect if no
sound is playing.

EXAMPLE:

2 5 0 0 S 0!...! N D R N D 1 0 0 0 + 3 7,2 5 cr ----------1 -----:---: r ----- n d o m
O n d ,

TIMES

FORMAT:

TIME$ = < string expr >
To set the current time.

< string expr> = TIMES
To get the current time.

3.37

G W-BASIC STA TEMENTS 3-57

PURPOSE:

Sets or retrieves the current time.

REMARKS:

< string exp > is a valid string literal or variable.

The current time is fetched and assigned to the string variable if
TIMES is the expression in a LET or PRINT statement.

The current time is stored if TIMES is the target of a string assign
ment.

RULES:

1. If < string expr > is not a valid string, the “Type mismatch” error
results.

2. For < string var > = TIMES, TIMES returns an 8-character string
in the form "hh:mm:ss", where hh is the hour (00 to 23), mm is the
minutes (00 to 59), and ss is the seconds (00 to 59).

3. For TIMES = < string expr > , < string expr> can take one of
the following forms:

a. "hh" sets the hour. Minutes and seconds default to 00.

b. "hh:mm" sets the hour and minutes. Seconds default to 00.

c. "hh:mm:ss" sets the hour, minutes and seconds.

If any of the values are out of range, the statement returns the “Illegal
Function Call” error. The previous time is retained.

EXAMPLE:

"!" I ME$ ----- i! 08 ! 00"
0 k
PRINT TIME*
0 8 ; 0 0 : 0 4
0 k

3-58 GW-BASIC

The following program displays the current date and time on the 25th
line of the screen, and chimes on the half hour and hour.

1 0 K E Y 0 F F : S C R E E i-i 0 : 1*11 D T H 4 0 - C L S
2 0 !.... 0 C Fl"!" E 2 5,5
30 PRINT DRTEt,,TIME#
4 0 S E C ----- H L (M I 0 $ (T I M E $, 7,2))
50 IF SEC ----- SSEC THEN 20 ELSE SSEC ----- SEC
6 0 IF SEC ----- 0 THEN 10 10
7 0 IF SEC ----- SC THEN 1020
80 IF SEC < 57 I HEN 2B
1 0 0 0 S 0 U N D 1 0 0 0,2 ! G 0 T 0 2 0
1 0 1 0 S 0 U N D 2 0 0 0,8 ! G 0 T 0 2 0
1 0 2 0 S 01...! N D 4 0 0,4 : G 0 T 0 2 0 3

WAIT 3.38

FORMAT:

WAIT < port > , < and byte > [, < xor byte >]

PURPOSE:

Suspends program execution while monitoring the status of a machine
port.

REMARKS:

< port > is a numeric expression returning a number in the integer
range 0 to 65535.

< and byte > is a numeric expression returning a number in the
integer range from 0 to 255 and is used to match a byte coming in
from the < port > .

GW-BASIC STA TEMENTS' 3-59

< xor byte > is a numeric expression returning a number in the
integer range from 0 to 255 and is used to check a byte coming in
from the < port > .

Note: Because your computer uses memory mapped I/O, this state
ment stops execution of a program indefinitely. ALT-C aborts the
statement.

3.39 WIDTH

FORMAT:

WIDTH < size >
WIDTH < file no. > , < size >
WIDTH < dev > , < size >

PURPOSE:

Sets the printed line width in number of characters for the screen and
line printer.

REMARKS:

< size > is a valid numeric expression returning an integer result in
the range 0 to 255. This integer is the new width.

< file no. > is a valid numeric expression returning an integer in the
range 1 to 4. This integer is the number of the file OPENed.

< dev > is a valid string expression returning the device identifier.
Valid devices are described in Chapter 1.3.

3-60 GW-BASIC

Depending upon the device specified, the following actions are possible:

WIDTH < size >
WIDTH "SCRN:", <size>

These commands set the screen width. You can use 40- or 80-column
width only.

Note: Changing the screen width clears the screen. Screen mode 0 can
be 40 or 80 columns. Screen mode 2 is always 80 columns.

WIDTH "LPT1:", < size >

Use this form as a deferred width assignment for the line printer. This
form of WIDTH stores the new width value without changing the
current width setting. A subsequent OPEN "LPT1:" FOR OUTPUT
AS < number > uses this value for width while the file is open.

WIDTH < file no. >, < size >

If the file is open to LPT1:, the line printer’s width is immediately
changed to the new size specified. This allows you to change the width
while the file is open. This form of WIDTH has meaning only for
LPT1:.

RULES:

1. Valid widths for the screen are 40 and 80. Valid width for the line
printer is 1 to 255.

Any value entered outside these ranges results in the “Illegal Func
tion Call” error. The previous value is retained.

2. WIDTH has no effect on the keyboard (KYBD:).

3. WIDTH for printers does not check against the physical printer’s
valid width range. A value from 1 to 255 is valid for all physical
printers.

4. Specifying WIDTH 255 for the line printer (LPT1:) disables line
folding; the effect is infinite width.

G H -BASIC ST A TEMENTS 3-61

EXAMPLE:

10 WIDTH " 7 1 ! " ..
2S 0EN 71 : " FOR 0U7PU7 AS #1

6 O 2 0 i d t h # 1,4 0

In this example, line 10 stores a line printer width of 75 characters per
line.

Line 20 opens file #1 to the line printer and sets the width to 75 for
subsequent PRINT Hl,... statements.

Line 6020 changes the current line printer width to 40 characters per
line.

3-62 GW-BASIC

GW-BASIC FUNCTIONS

Table 4-1 is a summary of GW-BASIC functions. Each function is
explained in detail in the sections that follow.

Table 4-1: GW-BASIC Functions

FUNCTION PURPOSE

CSRLIN Returns current line position of cursor

INP Returns byte read from port

INPUTS for
COM Files

Returns a string of characters read from the keyboard or from a file

LOF Returns number of bytes allocated to the file

POINT Returns the attribute of pixel at specified coordinates

SCREEN Returns the ordinal of character at specified row and column

VARPTR Returns the first byte of the file control block for the opened file

CSRLIN 4.1

FORMAT:

X = CSRLIN

PURPOSE:

Returns the current line (or row) position of the cursor.

GW-BASIC FUNCTIONS 4-1

REMARKS:

The value returned is in the range from 1 to 25.

x = POS(O) returns the column location of the cursor.

The LOCATE statement explains how to set the cursor line.

EXAMPLE:

4

10 ROW ----- CSRLIN
2 0 C 0 L ----- P 0 S (S)
-in I hi || | | 24 , 1
40 PRINT "HELLO"
5 0 L 0 C A T E R 0 W , C 0 L

1 R ----- c r d u r r ----- n t
' R s -i o r d c u r r e n t

1 i n ----- .
c o 1 u rii n ,

'Print HELLO
' R -----:---: t O r ----- p O :---:

1 o 1 >..i m n

o n 1 a s t 1 i n e
t o o 1 d 1 i i-i e ,

4.2 INP

FORMAT:

X = INP(< n >)

PURPOSE:

Returns the byte read from port < n > .

REMARKS:

INP is the complementary function to the OUT statement. This func
tion translates to the 8086 assembly language statements:

M 0 V D Xn n = t h s p o r t n u m b e r
IN fiL, DX

Note: Because your computer uses memory mapped I/O, this function
returns the port number.

4-2 GW-BASIC

INPUTS FOR COM FILES 4.3

FORMAT:

x$ = INPUT$(< num chars > [,[#] < file number >])

PURPOSE:

Returns a string of < n > characters, read from the keyboard (default)
or from the < file number > .

REMARKS:

< num chars > is the number of characters to be input from the file.

< file number > is the number of a previously opened file for input.

The INPUTS function is better than the INPUT and LINE INPUT
statements when you are reading COM files, since all ASCII characters
might be significant in communications. INPUT stops at commas or
carriage returns and LINE INPUT terminates at carriage returns.

INPUTS allows all characters read to be assigned to a string. If you are
using the terminal for input, the characters do not echo on the console.
The function reads all characters except ALT-C. ALT-C interrupts the
execution of the INPUTS function.

The following statements are most efficient for reading a COM file:

10 WHILE N0T E0F (1)
2 0 A $ I N P U T $ < L 0 C (1) , #1 >

P I " O C S S d :S t F S t ! I " H d 3. I "! Fl $

60 WEND

GW-BASIC FUNCTIONS 4-3

This sequence means: “while there is something in the input queue,
return the number of characters in the queue and store them in A$. If
there are more than 255 characters, only 255 are returned at a time to
prevent string overflow. If this is the case, EOF(l) is false and input
continues until the input queue is empty.”

4.4 LOF

FORMAT:

LOF(< file number >)

PURPOSE:

Returns the number of bytes allocated to the file.

REMARKS:

< file number > is associated with a currently open file.

For diskette files, LOF returns a multiple of 128. For example, if the
actual file length is 257 bytes, the number 384 is returned.

For communications, LOF returns the amount of free space in the
input buffer. That is, size-LOC(filnum), where size is the size of the
communications buffer, defaults to 256.

EXAMPLE:

10 OPEN !l DATA , F I L " AS #1
20 Gt I 1 f.OF< 1) 1 28

These statements get the last record of the file, assuming the record
length is 128 bytes.

4-4 GW-BASIC

POINT 4.5

FORMAT:

x = POINT (< absolute x> , < absolute y >)

PURPOSE:

Returns the attribute of the pixel at the specified coordinates. < abso
lute x > and < absolute y > are valid expressions returning a value in
the screen range.

EXAMPLE:

10 FOR I = 1 TO 490
20 IF RO I NTC I , I) <> 0 THEN GOTO 50 'a dot ?
3 0 I I. I 1 I . I) 1 p u t a d o t if n o t oe h e r e
4 0 G 0 T 0 6 0
50 I' !■' I 1 l 1 I I) ' re move a dot it one here
60 NEXT I

SCREEN 4.6

Note: This is the SCREEN function. See Chapter 3.35 for the
SCREEN statement.

FORMAT:

x ----- SCREEN(< row > , < col > [, < boolean >])

PURPOSE:

Returns the ordinal of the character from the screen at the specified
row (line) and column.

GW-BASIC FUNCTIONS 4-5

REMARKS:

x is a numeric variable receiving the ordinal returned.

< row > is a valid numeric expression returning an unsigned integer
in the range 1 to 25.

< col > is a valid numeric expression returning an unsigned integer in
the range 1 to 40 or 1 to 80 depending upon the width.

< boolean > is a valid numeric expression returning a boolean result.

The ordinal of the character at the specified coordinates is stored in the
numeric variable. If you give a non-zero optional parameter
< boolean > , the color attribute for the character returns instead.

RULE:

Any values entered outside these ranges result in the "Illegal Function
Call” error.

EXAMPLE:

1 0 S X ----- S C R E E N 1 O , 1 0) ' E -----1 u I " I "I s 6 5 i f
' c h ----> i-.---! -i >: -----1- a t 1 0 , 1 0 1:---: ' Fl '

1 1 0 X ----- S C R E E N (1 , 1 1) ' R -----1 u I- I-I s o 1 o I-
1 a t 11- :i. b u t e o 1“ ■::: h a r a c t ----- r :i. n
' t h ----- u p p -----1 " 1 ----- i: t -i o r n ----- r I"
! :---: c r p e n .

4.7 VARPTR

FORMAT:

X = VARPTR(<file number >)

PURPOSE:

Returns the address of the first byte of the file control block (FCB) for
the opened file.

4-6 GW-BASIC

REMARKS:

< file number > is tied to a currently open file. Offsets to information
in the FCB from the address returned by VARPTR are described in
Table 4-2.

Table 4-2: Offsets to FCB Addresses

OFF SIZE CONTENTS _____________ MEANING_________

0 1 Mode The mode in which the file was opened:
1 Input only
2 Output only
4 Random I/O

16 Append only
32 Internal use
64 Future use

128 Internal use

1 38 FCB Disk File Control Block. Refer to the
MS-DOS User’s Guide for contents.

39 2 CURLOC Number of sectors read or written for
sequential access. For random access, it
contains the last record number + 1 read
or written.

41 1 ORNOFS Number of bytes in sector when read or
written.

42 1 NMLOFS Number of bytes left in input buffer.

43 3 *** Reserved for future use.

46 1 DEVICE Device number:
0-9 Disks A: thru J:
255 KYBD:
254 SCRN:
253 LPT1:
251 COMI:
250 COM2:
249 LPT2:
248 LPT 3:

47 1 WIDTH Device width.

GW-BASIC FUNCTIONS 4-7

SIZE CONTENTS MEANINGOFF

48 1 POS

49 1 FLAGS

50 1 OUTPOS

51 128 BUFFER

179 2 VRECL

181 2 PHYREC

183 2 LOGREC

185 1 ***

186 2 OUTPOS

188 < n > FIELD

Position in buffer for PRINT.

Internal use during LOAD/SAVE. Not used
for data files.

Output position used during tab expansion.

Physical data buffer. Used to transfer data
between DOS and GW-BASIC. Use this
offset to examine data in sequential
I/O mode.

Variable-length record size. Default is
128. Set by length option in OPEN
statement.

Current physical record number.

Current logical record number.

Reserved for future use.

Disk file only. Output position for
PRINT, INPUT, and WRITE.

Actual FIELD data buffer. Size is
determined by /S: switch. VRECL bytes
are transferred between BUFFER and
FIELD on I/O operations. Use this offset
to examine file data in Random I/O mode.

EXAMPLE:

10 OPEN "DATA.FIL" AS #1
,T> i i mu ib -----
U I...I H I H 0 E -----

VARPTRCttl) 5 F
FCHllUF 180 ’ [

“OBADR
3 AT AR

o n t a i n:---: :---: t ----- r ■
c o n t a i n:---: .---! d d r ----- :-

t O f f ' !
4 0 ' 1" d a t a b u f f e i" ,
50 A $ ----- PE El-((OATAOE) 'A- C O I "! t a i ! "!:---: 1 :---: t b y t -----
6 0 1 i ! "i d a t a b U i: F ----- T .

4-8 GW-BASIC'

5
THE COMMUNICATION OPTION

This chapter describes the GW-BASIC statements required to support
RS-232-C asynchronous communications with other computers and
peripherals.

COMMUNICATION I/O 5.1

Since the communications port is opened as a file, all Input/Output
statements that are valid for disk files are valid for COM.

COM sequential input statements are the same as those for disk files:

INPUT # < file number >
LINE INPUT # < file number >
INPUTS

COM sequential output statements are the same as those for disk:

PRINT # < file number >
PRINT # < file number > USING

Refer to the “INPUT” and “PRINT” statements for details of coding
syntax and usage.

GET and PUT are only slightly different for COM files. See “GET and
PUT Statements for COM Files.”

The TTY program that follows enables your (GW-BASIC) computer to
be used as a conventional terminal. Besides full-duplex communication
with a host, the TTY program allows data to be downloaded to a file.
Conversely, a file can be “uploaded” (transmitted) to another machine.

THE COMMUNICATION OPTION 5-1

In addition to demonstrating the elements of asynchronous communi
cations, this program is useful in transferring GW-BASIC programs
and data to and from your computer.

Note: The TTY program is set up to communicate using XON and
XOFF. You might want to modify it for your environment.

5.2 THE TTY PROGRAM

(An Exercise in Communication I/O)

IO SCREEN 0,0 s WIDTH 80

15 KEY OFF" : CI....S : CL0SE

20 DEF I NT A-Z

25 LOCATE 25,1

3 0 P RI N"!" S T RI N G $ < 6 0 , " " >

4 O F A!.... S E ----- 0 : T R U E ----- N 0 T F A!.... S E

50 MENU=5 ' Value of MENU key (ctrl-E)

6 0 I- -! 0 F F $ ----- C H R $ (1 9) : X 0 N $ ----- C H R $ (1 7 >

1 O O I.... 0 C A T E 25 , 1 - PR I N T " A s y nc "I" T Y Pr og r a m "

1 1 0 L 0 C A T E 1 , 1 - I N E I N P U T " S P e e d ? " S P E E D $

1 2 0 C 0 M FI!_. $ -----" C 0 M 1 : " +S P E E D $ + " , E , 7 "

130 OPEN COMFILt AS #1

140 OPEN "OUTPUT" , 11=2, SCAN : "

200 PAUSE-FALSE

210 A$=INKEY$s IF AB------" THEN 230

2 2 O I F A S C (A $) ----- M E N U T H E N 3 0 0 E L S E P R I N T # 1 , A $:

230 IF EOF(l) THEN 210

240 I F L0C < 1) > 1 28 THEN P AUSE-----TRUE : PR I NT # 1 , X0FF$

2 5 0 A * -----1 N P U T $ (L 0 C (1 > , # 1)

260 P R I 11T # 2 , A $.! i I F L 0 C (1) > 0 T H E N 2 4 O

2 7 O I F P A U S E T H E N P A U S E ----- F A L S E : P R I N T # 1 , X 0 N $

280 GOTO 210

3 O 0 !.... 0 C A T E 1 , 1 - P R I N T S T R I N G $ C 3 0 , " ") : L 0 C A T E 1,1

3 1 0 L I N E I N P U T " F i 1 e'? " D S K F I L $

5-2 GW-BASIC

4 0 0 I.... 0 C Fl T E 1 , 1 : P R L N T S T R I N G $ 3 0 , " ") ! I.... 0 G Fl 7 E :
4 1 0 L I N E I N P U T " < T) i- a n s m i t o r < R) s e i v e ? " .r IXI
415 CLOSE #2
4 2 0 I F T X R X $ = i! T 11 T H E N 0 P E!-! D S K F I!.... $ F 0 R I N P U T

Fl S # 2 ! G 0 T 0 1 0 0 0
4 3 0 0 P E N " 0 0 T P U T " , # 2 , D S 1< F I L $
4 40 PRINT #1 , C H R $ (1 3)

5 00 IF E 0 F '■ 1) THEN GOSUB 600.
5 I 0 I F L 0 C (1) > I 2 8 T H E N P Fl U S E = T R U E : P R I N T # 1 , •
5 2 0 Fl $ = I N P I...I T $ < L 0 C (1) , «-1)
5 3 O P R I N T «- 2 , Fl K : IF L 0 C (1) > O T H E N 5 1 O
5 4 0 I F P Fl I...! S E T H E N P Fl U S E - F Fl L S E r P R I N T # 1 , X 0 N $
5 5 O G 0 T 0 5 0 0

60S FOR 1=1 TO 5S00
610 IF NOT EOF(l) THEN 1=9999
62S NEXT I
63S IF I>9999 THEN RETURN
6 4 S C L 0 S E # 2 : C L S : L 0 C Fl T E 2 5 1 0 : P R I N T

1' -I'- [J o w i"! 1 >"? a d c o rf> p .1. e? t e? 111
65S END

ISOS WHILE NOT EOF(2)
1010 Fl $ = I NPU T$ (1 , #2)
1S20 PRINT # 1 Fl $
1030 WEND
1 0 4 S P R I N "I " # 1 , C H R $ (2 6) ' C T R L --- Z t o m a k s c 1 o s«
1 0 5 0 C0 S E # 2 ! C I.... S ! L 0 C Fl T E 2 5 , 1 S : P R I N T

" X t IJ p I o a d c o if, p I e t e X X "
106S END

CLOSE ; KE Y OFF

!,, 1
?X$

< 0 F F $ j

5

5 f i 1 s ,

THE COMMUNICATION OPTION 5-3

5.3 NOTES ON THE TTY PROGRAM

LINE NO. COMMENTS

10 Sets the screen to Alpha mode; sets the width to 80.

15 Turns off the soft key display, clears the screen, and makes sure that all
hies are closed.
Note: Asynchronous implies character I/O as opposed to line or block
I/O. Therefore, all PRINTs (either to the COM hie or to the screen) are
terminated with a semicolon (;). This retards the carriage return/line
feed normally issued at the end of a PRINT statement.

20 Defines all numeric variables as INTEGER. Primarily for the
subroutine at 600-620.

25-30 Clears the 25th line starting at column 1.

40 Defines boolean TRUE and FALSE.

1 50 Defines the ASCII (ASC) value of the MENU key.

1 60 Defines the ASCII XON, XOFF characters.

100-130 Prints program-id and asks for baud rate (speed). Opens
communications to hie number 1, even parity, 7 data bits.
Programmer exercise: Modify this section to check for valid baud rates.

200-280 This section performs full-duplex I/O between the screen and the device
connected to the RS-232-C connector, as follows:

1. Read a character from the keyboard into A$. Note that INKEY$
returns a null string if no character is waiting.

2. If no character is waiting then go see if any characters are being
received. If a character is waiting at the keyboard then:

3. If the character is the MENU key, then the user is ready to
download a hie, so get the filename.

4. If character (A$) is not the MENU key then send it by writing to the
communication hie (PRINT #1...).

5. At 230 see if any characters are waiting in COM buffer. If not, then
go back and check keyboard.

6. At 240, if more than 128 characters are waiting then set PAUSE flag
saying we are suspending input. Send XOFF to host, stopping
further transmission.

5-4 GW-BASIC

LINE NO. COMMENTS

300-320

400-420

430

500

510

520-530

540-550

600-650

1000-1060

9999

7. At 250-260, read and display contents of COM buffer on screen
until empty. Continue to monitor size of COM buffer (in 240).
Suspend transmission if we fall behind.

8. Finally, resume host transmission by sending XON only if
suspended by previous XOFF. Repeat process until MENU key is
struck.

Get disk filename we are downloading to. Open the file as device
number 2.

Asks if file named is to be transmitted uploaded) or received
(downloaded).

Sends a carriage return to the host to begin the download. This program
assumes that the last command sent to the host was to begin such a
transfer and was missing only the terminating carriage return. If a DEC
system is the host, then such a command might be:

COPY TTY: = MANUAL.MEM < MENU key>

where the MENU key was struck instead of Return.

When you are receiving no more characters (LOC(x) returns 0), then
perform a time-out routine (explained later).

Again, if more than 128 characters are waiting, signal a pause and send
XOFF to the host while we catch up.

Read all characters in COM queue LOC(x)) and write them to disk
(PRINT #2..) until we are caught up.

If a pause was issued, restart host by sending XON and clear the pause
flag. Continue process until no characters are received for a pre
determined time.

This is the time-out subroutine. The FOR loop count was determined
by experimentation. In short, if no character is received from the host
for 17-20 seconds, then transmission is assumed complete. If any
character is received during this time (line 610) then set I well above
FOR loop range to exit loop and then return to caller. If host
transmission is complete, close the disk file and return to being a
terminal.

Transmit routine. Until end of disk file do:

Read one character into A$ with INPUTS statement. Send character to
COM device in 1020. Send a Control-Z at end of file in 1040 in case
receiving device needs one to close its file. Finally, in lines 1050 and
1060, close our disk file, print completion message and go back to
conversation mode in line 200.

Presently not executed. As an exercise, add some lines to the routine
400-420 to exit the program via line 9999. This line closes the COM
file left open and restores the soft key display.

THE COMMUNICATION OPTION 5-5

5

5.4 THE COM I/O FUNCTIONS
z"~

The most difficult aspect of asynchronous communications is
processing characters as fast as they are received. At rates above 2400
bps, character transmission must be suspended from the host long
enough to catch up. This suspension can be done by sending XOFF
(ALT-S) to the host and XON (ALT-Q) when ready to resume.

GW-BASIC provides three functions which help in determining when
an "over-run" condition is imminent:

► LOC(x): Returns the number of characters in the input queue
waiting to be read. The input queue can hold only 255 characters.

► LOF(x): Returns the amount of free space in the input queue—
that is, 256—LOC(x). You can use LOF to detect when the input
queue is getting full. LOC is adequate for this purpose, as shown in
the programming example.

► LOF(x): If true (—1), indicates that the input queue is empty.
Returns false (0) if any characters are waiting to be read.

The following errors are possible:

1. “Communication Buffer Overflow" occurs if a read is attempted
after the input queue is full (i.e., LOC(x) returns 0).

2. "Device I/O Error" occurs if any of the following line conditions are
detected on receive: Overrun Error (OE), Framing Error (FE), or
Break Interrupt (BI). The error is reset by subsequent inputs but the
character causing the error is lost.

3. “Device Fault" occurs if data set ready (DSR) is lost during I/O.

5-6 GW-BASIC

6
GW-BASIC INITIALIZATION AND
PRINTER CONFIGURATION

GW-BASIC INITIALIZATION 6.1

FORMAT:

GW-BASIC [< filename >] [/F: < number of files >] [/S: < Irecl >]
< buffer size >] [/M: < highest memory location >]

REMARKS:

GW-BASIC is loaded and executed by typing:

GW-BASIC

at the MS-DOS command line prompt.

Upon loading, GW-BASIC responds with the banner:

GW-BASIC Rev. x.x
LCOPY Print to xxxxxxxxx
["MS-DOS Version I!
Created: DD-Month-YY
(c) Microsoft 1982
nnnn Bytes Free
Ok

You can alter the GW-BASIC operating environment somewhat by
specifying option switches following GW-BASIC on the command
line. < filename > is the filename of a GW-BASIC program. If
< filename > is present, GW-BASIC proceeds as if a RUN
" < filename > " command had been given after initialization.

GW-BASIC INITIALIZATION AND PRINTER CONFIGURATION 6-1

GW-BASIC assumes a default file extension of .BAS if you give no
other. This default allows GW-BASIC to run programs in batch by
putting this form of the command line in an AUTOEXEC.BAT file.
Programs run in this manner must exit via the SYSTEM command so
that the next command in the AUTOEXEC.BAT file can be executed.

/F: < number of files > If present, sets the maximum number of files
that can be opened simultaneously during the execution of a GW-
BASIC program. Each file requires 62 bytes for the File Control Block
(FOB) plus 128 bytes for the data buffer. You can alter the data buffer
size via the /S: option switch. If you omit the /F: option, the number
of files defaults to 3.

/S: < Irecl > If present, sets the maximum record size allowed for use
with random files. Note: The record size option to the OPEN state
ment cannot exceed this value. If you omit the /S: option, the record size
defaults to 128 bytes.

6

/M: < highest memory location > When present, sets the highest
memory location that will be used by GW-BASIC. GW-BASIC
attempts to allocate 65K of memory for the data and stack segments. If
you are using machine language subroutines with GW-BASIC pro
grams, use the /M: switch to reserve enough memory for them.

Note: < number of files > , < Irecl > , < buffer size > , and < highest
memory location > can be decimal, octal (preceded by &O), or hexa
decimal (preceded by &H).

EXAMPLES:

GW-BASIC PAYROLL
Use all of memory and 3 files, load and execute PAYROLL.BAS.

GW-BASIC INVENT/F:6
Use all of memory and 6 files, load and execute INVENT.BAS.

6-2 GW-BASIC

GW-BASIC M3276S
Use only the first 32K of memory.

GW-BASIC /F:4/S:512
Use 4 files and allow a maximum record length of 512 bytes.

PRINTER INSTALLATION 6.2

The GW-BASIC Interpreter is capable of outputting graphics or text to
a dot-matrix printer via the LCOPY verb. To configure GW-BASIC to
drive your system printer correctly, you must use the GWCONF
program. GW-BASIC cannot perform the LCOPY screen dump
without one of the following printers on your computer system:

EPSON FX
EPSON MX
TALLY
C. ITOH
C. ITOH S
Okidata

Before running the GWCONF program, back up your GW-BASIC
issue disk, and work from a copy. To execute the program, type:

GW-BASIC GWCONF

GW-BASIC displays its sign-on banner and then the GWCONF
screen. Follow the directions on the screen either to choose a printer or
abort the program. If you select the ABORT option, your GW-BASIC
is not modified.

If you select one of the printers, a highlighted counter digit displays in
the upper left corner of the screen. When it reaches zero, the screen
clears and the program returns to MS-DOS; your GW-BASIC is
modified. The next time you load GW-BASIC the new printer
selection is listed in the sign-on banner.

GW-BASIC INITIALIZATION AND PRINTER CONFIGURATION 6-3

ERROR MESSAGES

GW-BASIC provides the following error messages. These messages
supplement the MS-BASIC error messages.

24 Device Timeout

GW-BASIC did not receive information from an I/O device within a
predetermined amount of time.

25 Device I/O Error

Fault status returns from the parallel and serial devices. Usually
indicates a hardware error in the printer or serial communications
channel. .

57 Device I/O Error

Formerly “Disk I/O Error”. Generalized to include all I/O devices.

68 Device Unavailable

You attempted to open a file to a non-existent device. Hardware might
not exist to support the device (for example, LPT2: or LPT3:) or might
be disabled by the user.

69 Communication Buffer Overflow

GW-BASIC executed a communication input statement and the input
queue was already full. Use an ON ERROR GOTO statement to retry
the input. Subsequent inputs attempt to clear this fault unless
characters are received faster than the program can process them. In
this case these options are available:

1. Implement a “hand-shaking” protocol with the host/satellite such as
XON/XOFF (as demonstrated in the TTY programming example),
to turn transmit off long enough to catch up.

2. Use a lower baud rate for transmit and receive.

ERROR MESSAGES A-1

70 Disk Write Protect

This is one of three “hard” disk errors returned from the diskette
controller. It occurs when you attempt to write to a write-protected
diskette. Use an ON ERROR GOTO statement to detect this situation
and request user action.

Other possible “hard” disk errors are:

71 Disk Not Ready

The diskette drive door is open or a diskette is not in the drive. Again
use an ON ERROR GOTO statement to recover.

72 Disk Media Error

The FDC controller detected a hardware or media fault. This usually
indicates harmed media. Copy any existing files to a new diskette and
reformat the damaged diskette. FORMAT flag.

A-2 GW-BASIC

BASIC STATEMENTS
AND FUNCTIONS

The following is a complete list of statements and functions available
in GW-BASIC.

If a.statement or function is documented in both the GW-BASIC and
the MS-BASIC manuals, refer first to the GW-BASIC manual to find
out what new features have been added.

NAME
STATEMENT

TYPE WHEREjDOCUMENTED

ABS function MS-BASIC
ASC function MS-BASIC
ATN function MS-BASIC
AUTO statement MS-BASIC

BEEP statement GW-BASIC
BLOAD statement GW-BASIC
BSAVE statement GW-BASIC

CALL statement GW-BASIC MS-BASIC
CDBL function MS-BASIC
CHAIN statement GW-BASIC MS-BASIC
CHR$ function MS-BASIC
CINT function MS-BASIC
CIRCLE statement GW-BASIC
CLEAR statement MS-BASIC
CLOSE statement MS-BASIC
CLS statement GW-BASIC
COLOR statement GW-BASIC
COMMON statement MS-BASIC
COM statement GW-BASIC
CONT statement MS-BASIC
COS function MS-BASIC
CSNG function MS-BASIC
CSRLIN variable GW-BASIC
CVI, CVS, CVD function MS-BASIC

DATA statement MS-BASIC
DATE$ function MS-BASIC
DEF FN statement MS-BASIC

BASIC ST A TEMENTS AND FUNCTIONS B-l

NAME
STATEMENT

TYPE WHERE DOCUMENTED

DEF USR statement MS-BASIC
DEF SEG statement GW-BASIC MS-BASIC
DEFINT, DEFSNG statement MS-BASIC
DEFDBL, DEFSTR statement MS-BASIC
DELETE statement MS-BASIC
DIM statement MS-BASIC
DRAW statement GW-BASIC

EDIT statement GW-BASIC MS-BASIC
END statement MS-BASIC
EOF function MS-BASIC
ERASE statement MS-BASIC
ERR and ERL variable MS-BASIC
ERROR statement MS-BASIC
EXP function MS-BASIC

FIELD statement MS-BASIC
FIX function MS-BASIC
FOR...NEXT statement MS-BASIC
FRE function MS-BASIC

GET and PUT statement GW-BASIC MS-BASIC
GOSUB... RETURN statement MS-BASIC
GOTO statement MS-BASIC

HEX$ function MS-BASIC

IF statement MS-BASIC
INKEY$ function MS-BASIC
INP function GW-BASIC MS-BASIC
INPUT statement MS-BASIC
INPUT# statement MS-BASIC
INPUTS function GW-BASIC
INSTR function MS-BASIC
INT function MS-BASIC

KEY statement GW-BASIC
KEY(n) statement GW-BASIC
KILL statement MS-BASIC

LOOPY statement GW-BASIC
LEFTS function MS-BASIC
LEN function MS-BASIC
LET statement MS-BASIC
LINE statement GW-BASIC
LINE INPUT statement MS-BASIC
LINE INPUTS statement MS-BASIC
LIST statement GW-BASIC MS-BASIC
LLIST statement MS-BASIC

8-2 GW-BASIC

NAME
STATEMENT

TYPE WHERE DOCUMENTED

LOAD statement GW-BASIC MS-BASIC
LOC function MS-BASIC
LOCATE statement GW-BASIC
LOF function GW-BASIC
LOG function MS-BASIC
LPOS function MS-BASIC
LPRINT statement MS-BASIC
LSET and RSET statement MS-BASIC

MERGE statement GW-BASIC MS-BASIC
MID$ statement MS-BASIC
MID$ function MS-BASIC
MKI$, MKS$, MKD$ function MS-BASIC

NAME statement MS-BASIC
NEW statement MS-BASIC
NULL statement MS-BASIC

OCT$ function MS-BASIC
ON statement MS-BASIC
ON COM statement GW-BASIC
ON ERROR statement MS-BASIC
ON KEY statement GW-BASIC
OPEN statement GW-BASIC MS-BASIC
OPTION BASE statement MS-BASIC
OUT statement GW-BASIC MS-BASIC

PAINT statement GW-BASIC
PEEK function MS-BASIC
PLAY statement GW-BASIC
POINT function GW-BASIC
POKE statement MS-BASIC
POS function MS-BASIC
PSET statement GW-BASIC
PRESET statement GW-BASIC
PRINT statement MS-BASIC
PRINT USING statement MS-BASIC
PRINT# statement MS-BASIC
PUT statement GW-BASIC MS-BASIC

RANDOMIZE statement MS-BASIC
READ statement MS-BASIC
REM statement MS-BASIC
RENUM statement MS-BASIC
RESTORE statement MS-BASIC
RESUME statement MS-BASIC
RIGHTS function MS-BASIC
RND function MS-BASIC
RUN statement MS-BASIC

BASIC STATEMENTS AND FUNCTIONS

STATEMENT
TYPE WHERE DOCUMENTEDNAME

SAVE statement GW-BASIC MS-BASIC
SCREEN statement GW-BASIC
SCREEN function GW-BASIC
SGN function MS-BASIC
SIN function MS-BASIC
SOUND statement GW-BASIC
SPACES function MS-BASIC
SPC function MS-BASIC
SQR function MS-BASIC
STOP statement MS-BASIC
STR$ function MS-BASIC
STRINGS function MS-BASIC
SWAP statement MS-BASIC

TAB function MS-BASIC
TAN function MS-BASIC
TIMES function MS-BASIC
TRON and TROFF statement MS-BASIC

USR function MS-BASIC

VAL function MS-BASIC
VARPTR function GW-BASIC MS-BASIC

WAIT statement GW-BASIC MS-BASIC
WHILE... WEND statement MS-BASIC
WIDTH statement GW-BASIC MS-BASIC
WRITE statement MS-BASIC
WRITE# statement MS-BASIC

B-4 GW-BASIC

INDEX

8086/88, 1-3 Event trapping, 1-4 to 1-6
Event specifiers, 1-4

Address checking, 3-4
Alpha mode, 3-14
Alternate characters, 2-3 to 2-6
AND, 3-26
Appending, 2-2
Array, 3-7
Assembly language

loading, 3-10 to 3-11

COM (n), 1-4
KEY (n), 1-4

FCB addresses, offsets, 4-7 to 4-8
File specification, 1-7 to 1-8
Filenames, 1-8
Files, 1-7 to 1-8
Full Screen Editor, 2-1
Function keys, 2-3 to 2-6

BEEP, 3-2
BLOAD, 3-3
BSAVE, 3-4

Functions, Chapter 4
summary, 4-1, Appendix B

GET, 3-23 to 3-27
CALL, 3-5
Carriage return, 2-1

Graphics, 1-1 to 1-3
cursor, 1-3

CHAIN, 3-12
CIRCLE, 3-12
Clear screen (CLS), 3-14
Color attribute, 1-2
COLOR, 3-15
COM I/O functions, 5-6
COM (n), 1-5, 3-16
Communication I/O, 5-1 to 5-2
Coordinates, 1-3
CSRLIN, 4-1

Initialization, 6-1 to 6-3
INP, 4-2
INPUTS for COM files, 4-3 to 4-4
Inserting, 2-2

KEY, 3-28
KEY (n), 1-4, 3-29

LCOPY, 3-31
LINE, 3-32

Data types, 3-7
DATES, 3-17
DEF SEG, 3-19
Deleting characters or words, 2-3
Device-independent I/O, 1-6
Direct mode, 2-1
Double-precision number, 3-7
DRAW, 3-20

Linefeed key, 2-2
LIST, 3-34
LOAD, 3-35
LOCATE, 3-36
LOF, 4-4
Logical line, 2-2

Memory, 2-1, 3-3
MERGE, 3-38

EDIT, 3-22
Editing, 2-2 to 2-3
Ellipse, 3-12 to 3-13
Error messages, Appendix A

Messages, error, Appendix A
Movement commands, 3-20

INDEX Index-1

Offsets to FCB addresses, 4-7 to 4-8
ON COM, 3-39
ON KEY(n), 3-41
OPEN, 3-43
Opening a COM file, 3-44 to 3-47
OR, 3-26
OUT, 3-48
Overtyping, 2-2

PAINT, 3-49
Passing parameters, 3-8
PLAY, 3-50

commands, 3-51
POINT, 4-5
Prefix commands, 3-21
PRESET, 3-53
PRINT CHR$, 3-2
Printer installation, 6-3
Program modification, 2-1 to 2-3
Program statements, 2-1
PSET, 3-52
PUT, 3-23 to 3-27

Relative coordinates, 1-3
RETURN, 1-6, 3-54

SAVE, 3-55
SCREEN, 3-55, 4-5
Screen modes, 1-1 to 1-2, 3-55 to 3-56

0, 1-1
2, 1-1

Single-precision number, 3-7
Soft keys, 3-28 to 3-29
SOUND, 3-57
Statements, Chapter 3

summary, 3-1 to 3-2, Appendix B
String, 3-7
Syntax errors, 2-7

Tabs, 2-6
TIME$, 3-57
TTY program, 5-2 to 5-5

Variables, 2-7
passing, 3-8

VARPTR, 4-6

WAIT, 3-59
WIDTH, 3-60

XOR, 3-26

Index-2 GW-BASIC

