
Applications
Programmer’s

Tool Kit II
Volume II

Applications
Programmer’s

Tool Kit II
Volume II

COPYRIGHT

©1984 by VICTOR®.
©1983 by Microsoft Corporation.
©1983 by Phoenix Software Associates, Ltd.

Published by arrangement with Microsoft Corporation and Phoenix Software
Associates, Ltd., whose software has been customized for use on various desktop
microcomputers produced by VICTOR. Portions of the text hereof have been
modified accordingly.

All rights reserved. This manual contains proprietary information which is pro­
tected by copyright. No part of this manual may be reproduced, transcribed,
stored in a retrieval system, translated into any language or computer language,
or transmitted in any form whatsoever without the prior written consent of the
publisher. For information contact:

VICTOR Publications
380 El Pueblo Road
Scotts Valley, California 95066
(408) 438-6680

TRADEMARKS

VICTOR is a registered trademark of Victor Technologies, Inc.
MS- is a trademark of Microsoft Corporation.
Microsoft is a registered trademark of Microsoft Corporation.
PMATE is a registered trademark of Phoenix Software Associates, Ltd.

NOTICE

VICTOR makes no representations or warranties of any kind whatsoever with
respect to the contents hereof and specifically disclaims any implied warranties of
merchantability or fitness for any particular purpose. VICTOR shall not be liable
for errors contained herein or for incidental or consequential damages in connec­
tion with the furnishing, performance, or use of this material.

VICTOR reserves the right to revise this publication from time to time and to
make changes in the content hereof without obligation to notify any person of
such revision or changes.

Second VICTOR printing April, 1984.

ISBN 0-88182-117-9 Printed in U.S.A.

II APPLICA TIONS PROGRAMMER’S TOOL KIT II— VOLUME II

CONTENTS

1. PM ATE

2. PLINK

3. PLIB

CONTENTS III

OVERVIEW

The Applications Programmer's Tool Kit II—Volume II consists of
these programming tools:

► PMATE

► PLINK

► PLIB

A full-screen, expandable editing system that allows
you to create and maintain text files.

A program that takes individually compiled modules
of 8086-88 object code, and links them into one or
more relocatable files that can be loaded and executed
by your computer’s operating system.

A program that manipulates libraries of object files; it
supplements the PLINK linkage editor.

OVERVIEW IV

PMATE

COPYRIGHT

© 1983 by VICTOR®,
© 1982 by Phoenix Software Associates Ltd.

Published by arrangement with Phoenix Software Associates Ltd., whose
software has been customized for use on various desktop microcomput­
ers produced by VICTOR. Portions of the text hereof have been
modified accordingly.

All rights reserved. This manual contains proprietary information which
is protected by copyright. No part of this manual may be reproduced,
transcribed, stored in a retrieval system, translated into any language or
computer language, or transmitted in any form whatsoever without the
prior written consent of the publisher. For information contact:

VICTOR Publications
380 El Pueblo Road
Scotts Valley, California 95066
(408) 438-6680

TRADEMARKS

VICTOR is a registered trademark of Victor Technologies, Inc.
PM ATE is a registered trademark of Phoenix Software Associates Ltd.

NOTICE

VICTOR makes no representations or warranties of any kind whatso­
ever with respect to the contents hereof and specifically disclaims any
implied warranties of merchantability or fitness for any particular pur­
pose. VICTOR shall not be liable for errors contained herein or for
incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

VICTOR reserves the right to revise this publication from time to time
and to make changes in the content hereof without obligation to notify
any person of such revision or changes.

First VICTOR printing February, 1983.
Second VICTOR printing December, 1983.

ISBN 0-88182-108-X Printed in U.S.A.

II PM ATE

CONTENTS

Preface..IX

1. Basic Procedures
1.1 Terms Used in this Manual.. 1-1
1.2 Special Notation Used in this Manual............................... 1-3
1.3 Entering PM ATE.. 1-4
1.4 The Screen Display.. 1-5
1.5 PM ATE Modes... 1-6

1.5.1 Command Mode... 1-6
1.5.2 Insert and Overtype Modes...................................... 1-6
1.5.3 Format Mode... 1-7

1.6 PMATE Commands... 1-8
1.7 Editing Text with Instant Commands................................ 1-9
1.8 File and Program Operations.. 1-12

1.8.1 Printing Text............................ 1-12
1.8.2 Writing a File.. 1-13
1.8.3 Reading a File... 1-13
1.8.4 Leaving PMATE... 1-13

2. Command-Line Commands
2.1 Numeric and String Arguments... 2-1

2.1.1 Numeric Arguments.. 2-1
2.1.2 String Arguments.. 2-2

2.2 Command Descriptions... 2-3

3. The Main Ingredients
3.1 The Garbage Stack... 3-1
3.2 Buffers... 3-2
3.3 File Operations.. 3-4

3.3.1 Declaring Filenames.. 3-5
3.3.2 File Input and Output.. 3-6

CONTENTS III

3.3.3 Auto Buffer and Manual Modes............................. 3-8
3.3.4 Directory Maintenance... 3-10

3.4 Formatting a Text File... 3-12
3.4.1 Setting Tab Stops.. 3-12
3.4.2 Indenting Text.. 3-13
3.4.3 Control Lines.. 3-14

3.5 Linking Commands... 3-16
3.5.1 Command Strings... 3-16
3.5.2 Repeating a Command String.................................. 3-17
3.5.3 Using a Command String to Print Text 3-17
3.5.4 Executing Command Strings from Buffers............ 3-18

4. Macros
4.1 Introduction... 4-1

4.1.1 Creating a Permanent Macro File................. 4-2
4.1.2 Saving PMATE with a Permanent Macro File..... 4-3
4.1.3 Executing a Macro When Entering PMATE........ 4-4
4.1.4 Nesting Macros.. 4-4

4.2 Numeric Arguments.. 4-5
4.2.1 Arithmetic Operations.. 4-5
4.2.2 Logical Operations.. 4-6
4.2.3 Variables... 4-7

@ —- 4.2.4 Functions.. 4-9
4.2.5 Insert and Replace Arguments................................. 4-11

4.3 Input and Output Radixes.. 4-11
4.4 String Arguments... 4-12
4.5 Wild-Cards Used in String Arguments................................ 4-15
4.6 Iteration and Branching... 4-15

4.6.1 Iteration.. 4-16
4.6.2 If-Then Loops... 4-17
4.6.3 Conditional and Unconditional Branching........... 4-18
4.6.4 Exiting from a Macro.. 4-18

4.7 Tracing Errors................................... 4-18
4.7.1 Trace Mode...................... 4-19

IV PMATE

4.7.2 Error Traceback.. 4-19
4.7.3 The Error Flag... 4-20

4.8 Processing Keyboard Input..4-21
4.9 Inserting Comments in Macros...4-21
4.10 Q Commands..4-22

APPENDIXES
A. Customization Guide.. A-l
B. Macro Examples and Ideas... 8-1
C. ASCII Conversion Chart... C-l

INDEX Index-1

TABLES

1- 1: Instant Commands... 1-10

2- 1: Basic Command-Line Commands... 2-3

3- 1: Edit Buffer Commands...3-4
3-2: File Input and Output Commands... 3-7
3-3: Manual Mode Commands... 3-9
3-4: Directory Listing Commands..3-10
3-5: Tab Stop Commands..3-12
3- 6: Control-Line Commands... 3-14

4- 1: Arithmetic Operators.. 4-6
4-2: Logical Operators...4-7
4-3: Examples of Logical Operators..4-7
4-4: PMATE Functions.. 4-9
4-5: Search-String Wild-Card Characters...4-15
4-6: Q Commands.. 4-23

CONTENTS V

CHAPTERS

1. Basic Procedures

2. Command-Line Commands

3. The Main Ingredients

4. Macros

Appendix A: Customization Guide

Appendix B: Macro Examples and Ideas

Appendix C: ASCII Conversion Chart

1
■
2

3

4

■
c

CHAPTERS VII

PREFACE

PMATE is a text-editing program that you can use to do word process­
ing and to edit program source code and data files. PMATE’s basic edit­
ing commands are easy to use, even if you have limited experience with
text-editing programs.

PMATE has many advanced editing features that make it a fast, flexible
text-editing program. With PMATE you can:

► Store blocks of text and commands in any of several edit buffers. You
can edit text in these buffers, move text in and out of the buffers, and
execute commands from the buffers.

► Store deleted text with a “garbage stack.” When you delete text, you
can easily recover it from the garbage stack.

► Format text for printing with nonprinting control lines. These con­
trol lines format text with margins, tab stops, and indentation. With
control lines, you can easily change text formatting without making
changes to the text.

► Write your own commands using variables, functions, and arithmetic
and logical operations. These commands, called macros, can resem­
ble small text-editing programs.

► Modify the PMATE program to your own specifications, changing
PMATE’s editing parameters and incorporating the macros you
write.

This manual is written for people with various levels of text-editing
experience. Every PMATE user should read Chapters 1, 2, and 3.
Chapters 1 and 2 introduce you to the basic procedures of PMATE, and
Chapter 3 explains the rest of the PMATE features used for text editing.

PREFACE IX

Chapter 4 is useful primarily to people with extensive text-editing or
programming experience. Chapter 4 shows you how to write your own
macros; it also demonstrates the PMATE features useful in macros.

Appendix A provides information necessary to configure PMATE to
your own specifications. Appendix B provides macro ideas and exam­
ples. Appendix C is a list of ASCII characters.

X PMATE

1
BASIC PROCEDURES

After introducing you to the special terms and notation used in this
manual, this chapter describes:

► How to enter PMATE.

► PMATE’s screen screen display, modes, and two kinds of commands.

► How to do basic editing with PMATE’s instant commands.

► How to write a file, read a file, print text, and leave PMATE.

n

TERMS USED IN THIS MANUAL 1.1
TERM DEFINITION

ALT key The ALT key enables special Alternate functions
of keys on your keyboard. Hold the ALT key
down while typing the key(s) it is to affect. A
reference to the ALT key appears in text as ALT,
followed by a hyphen and the key(s) it is to affect.
For example, ALT-X refers to the Alternate func­
tion of the X key; ALT-FC refers to the Alternate
function of the F and C keys, which must be
typed consecutively to achieve the desired effect.

argument An argument is a character or string that you use
with certain commands. An argument gives
PMATE specific instructions on how you want
the task done.

BASIC PROCEDURES 1-1

TERM DEFINITION

buffer A buffer is a place in memory where PMATE
stores text.

character A character is a letter, number, symbol, or space.

control character A control character is a nonprinting character
that appears in reverse video when you enter the
character on the screen. You enter a control
character by typing ALT-7 and the character.
PMATE uses control characters for text format­
ing, file operations, and wild-card searches. Con­
trol characters are underlined in this manual—
for example, $.

drive name A drive name is the letter that indicates a specific
disk drive. In PMATE, you use a drive name to
write a file to (or list a directory of) a drive other
than the default drive. You also use a drive name
to change the default drive. When using the drive
name in a command, follow the letter with a
colon (:). PMATE displays the drive name (fol­
lowed by a colon) of the default drive in the top
left corner of the screen.

end-of-file character The end-of-file character is Z. Type ALT-7 Z to
enter this character at the end of a data file (if
required).

execute In PMATE, you execute a command to cause
PMATE to carry it out or put it into effect.

filename A PMATE filename consists of up to eight letters
or numbers, with an optional filename extension
of up to three letters or numbers. Separate the
filename extension from the filename with a
period. If you are using subdirectories, you can
include the pathname with the filename.

1-2 PM ATE

TERM DEFINITION

form-feed character

pathname

string

tag

toggle

The form-feed character is a control character
used to separate pages of text for printing and for
certain file operations. It appears on the screen as
an L in reverse video. (Type ALT-7 L to enter the
form-feed character in text. The form-feed char­
acter appears in text as L.)

A pathname is a subdirectory name.

A string consists of two or more characters linked
together or grouped as a set.

A tag is a temporary, invisible marker that you
enter to mark a place in text.

A toggle key switches from one value to another.
EMATE has keys that toggle modes on and off,
toggle between modes, and toggle the cursor
between two locations.

SPECIAL NOTATION USED IN THIS 1.2
MANUAL

NOTATION ______________ DEFINITION______________

$ $ represents the Escape key, which is Function
key 1. (Refer to “Keyboard Considerations”
in the MS-DOS User's Guide.) When you
type $, EMATE displays a dollar sign in
reverse video. Type $ twice to execute a com­
mand on FMATE’s command line. Type _$
again to re-execute the command. (You also
use $ to separate commands and command
strings on the command line, as explained in
Chapters 2 and 3.)

BASIC PROCEDURES 1-3

DEFINITIONNOTATION

Angle brackets indicate a user-supplied value.
For example, < filename > indicates that you
should supply a filename of your choice.

* and ? * and ? are the standard MS-DOS wild-card
characters. * matches any string and ? matches
any character.

(cr) In this manual, (cr) indicates that you should
press the Return key.

Notes:

You can type PM ATE commands in uppercase or lowercase letters.

When an error occurs while you are using PMATE, PMATE puts an
error message in the text area of the screen. To delete the error message
and resume editing text, press the Return key.

This manual is written for use with a Standard keyboard (see Appendix
F in the MS-DOS User's Guide).

1.3 ENTERING PMATE
PMATE’s three program files are on one of your Applications
Programmer's Tool Kit II disks. Put this disk in drive A of your com­
puter. These three files should be listed in the directory:

PMATE.COM
CONPMATE.COM
CONFIG.CNF

At the operating system prompt (A >), type the command to enter
PMATE, followed by the name of the file you’re going to create. If your
filename is TEXTFILE, type the command:

pmate textfile(cr)

1-4 PMATE

PMATE.COM
CONPMATE.COM

THE SCREEN DISPLAY 1.4
When you enter PMATE and specify a text file named TEXTFILE, the
screen displays:

As *,TEXTFILE BUF=T ARG=O LIN=O COL=O

PMATE-86 rev x.y Copyright Phoenix Software Associates Ltd. 1982

1

The first line of the screen is the status line. The status line provides
information about PMATE and your text file while you are editing the
file. The A: tells you that you are logged on to drive A. The
*,TEXTFILE tells you that PMATE will store the text you create on
disk as TEXTFILE. LIN = 0 and COL = 0 indicate the line number
and column number of the cursor position. The BUF and ARG indi­
cators are discussed in Chapters 3 and 4.

The second line on the screen is the command line. The command line
displays most of the PMATE commands you execute, as Chapters 1.5
and 1.6 explain. When you enter PMATE, however, its copyright
information appears on the command line. If you type any regular key
on your keyboard, the copyright information disappears and the char­
acter entered by the key appears on the command line. For now, type
ALT-C to clear the command line. The cursor (an underline character)
remains on the command line.

The rest of the screen is the text area. As you create the contents of
TEXTFILE (see Chapter 1.5), the text appears in the text area.
Although the screen is only 80 columns (characters) wide, the text area
is 250 columns wide. If you type a line of text longer than 80 charac­
ters, the display moves to the right to follow what you’re typing. When
you type past column 249, the display moves back to the left and the
text appears at the beginning of the next line of text. (The columns are
numbered 0 through 249.)

BASIC PROCEDURES 1-5

1.5 PM ATE MODES

1

To create a text file, you should be familiar with PM ATE’s operating
modes. These four modes are:

► Command Mode

k Insert Mode

► Overtype Mode

► Format Mode

PMATE always operates in one of the first three modes. The fourth,
Format Mode, can be on or off while you are in any of the other three
modes. Chapter 1.5 describes each of the four modes.

1.5.1 COMMAND MODE

You are in Command Mode when you enter PMATE. In Command
Mode, you type file operations, program operations, and editing com­
mands on the command line. You execute these commands by typing
$$. To correct mistakes on the command line, press the Backspace key
to erase the last character(s) typed, or type ALT-C to clear the entire
command line. Type ALT-X to return to Command Mode from Insert
Mode or Overtype Mode.

1.5.2 INSERT AND OVERTYPE MODES

Use Insert Mode or Overtype Mode to enter text in the text area.
When you are in Insert Mode, you enter text at the cursor. Existing
text moves to the right or down. Type ALT-N to enter Insert Mode.
While you are in Insert Mode, PMATE displays INSERT MODE on
the command line.

1-6 PMATE

In Overtype Mode, text you enter replaces text at the cursor. Existing
text disappears. Type ALT-V to enter Overtype Mode. While you are
in Overtype Mode, EMATE displays OVERTYPE MODE on the com­
mand line.

FORMAT MODE 1.5.3

Format Mode is off when you enter EMATE. You turn Format Mode
on to enable PMATE’s text-formatting features (see Chapter 3). While
turning Format Mode on, you can also change the maximum line
length. For example, you can change the line length from 250 columns
to 80 columns. (The width of the screen is 80 columns.)

You turn Format Mode on by typing the command F (Format) in
Command Mode. To change the maximum line length, precede the F
with the column number of the new right margin. To change the max­
imum line length to 80 columns, for example, type the command 79F
on the command line. Execute the command by typing $$. The com­
mand line should look like this:

79F$$

When Format Mode is on, PMATE displays < in the text area wher­
ever you have entered a carriage return.

While Format Mode is on, you can change the line length again by
repeating the F command with a new column number.

BASIC PROCEDURES 1-7

To turn Format Mode off, type the F command without specifying a
column number. The command line should look like this:

F$$

When you turn Format Mode off, the carriage return symbols (<)
disappear.

1.6 PMATE COMMANDS
PMATE has three kinds of commands:

► Command-line commands

► Instant commands

► Control-line commands

Chapter 1.6 explains how to use command-line and instant com­
mands. (Chapter 3 explains how to use control-line commands.)

Command-line commands are the commands you execute on the
command line, in Command Mode. Most PMATE commands are
command-line commands, which do simple or complex file operations,
program operations, and editing.

After you execute a command-line command, the command and $$
remain on the command line. You can re-execute such a command by
typing $ again. The additional $ doesn’t appear on the command line.

You execute instant commands either with special function keys or in
conjunction with the ALT key. You can execute an instant command
in any mode. Almost every instant command duplicates a command­
line command. PMATE has these instant commands so you can do
simple editing without switching to Command Mode.

1-8 PMATE

In this manual, the term “command” refers to a command-line com­
mand. An instant command is referred to by name or is preceded by
ALT.

Note: To stop execution of a command-line or instant command, type
ALT-C.

EDITING TEXT WITH INSTANT 1.7
COMMANDS
Once you are familiar with PMATE’s modes, you should be able to
enter text in the text area. Use the instant commands in Table 1-1 to
edit the text you create. Use these instant commands to move the cur­
sor, scroll the screen, delete and recover text, move text, and change
the case of characters.

When using the cursor-movement commands in Table 1-1, note that
cursor movement in Overtype Mode is different from cursor move­
ment in Insert and Command Modes. In Overtype Mode, the down­
arrow and the up-arrow move vertically in whatever column you put
the cursor. In Insert and Command Modes, the down-arrow and the
up-arrow move only in column 0 of your screen. In Overtype Mode,
the left-arrow stops at column 0 of your screen and the right-arrow
stops at column 249. In Insert and Command Modes, the left-arrow
moves to the end of the previous line when it reaches column 0, and
the right-arrow moves to the beginning of the next line when it reaches
the end of the line.

BASIC PROCEDURES 1-9

COMMAND DEFINITION

Table 1-1: Instant Commands

CURSOR MOVEMENT

ALT-B or j

ALT-Y or]

Moves the cursor down one line.

Moves the cursor up one line.

ALT-G or — Moves the cursor to the left.

—> Moves the cursor to the right.

ALT-U Moves the cursor up six lines.

ALT-J Moves the cursor down six lines.

ALT-? Moves the cursor to the beginning of the next word.

ALT-O Moves the cursor to the beginning of the current or
preceding word.

ALT-FM Moves the cursor to the beginning of the line.

ALT-A

SCROLLING

Moves the cursor to the beginning of text, or moves the
cursor to the end of text if it is already at the beginning.

ALT-FG Scrolls the display left one column.

ALT-FH Scrolls the display right one column.

ALT-FY Scrolls the display up one line.

ALT-FB Scrolls the display down one line.

DELETING AND RECOVERING TEXT

Backspace or ALT-H Deletes the character preceding the cursor.

ALT-D Deletes the character at the cursor and moves the text to the
right of the cursor one space to the left.

ALT-K Deletes the current line, beginning at the cursor.

ALT-W Deletes text up to the next word.

ALT-Q Deletes the word preceding the cursor.

DEL Deletes the character at the cursor and moves the cursor to
the next character.

ALT-R Recovers the last text deleted and puts it at the cursor
location.

1-10 PM ATE

COMMAND DEFINITION

MOVING BLOCKS OF TEXT

ALT-T Tags the beginning of a block of text to be moved.

ALT-E Moves the text between the tag and the cursor into the
special buffer.

ALT-Z Inserts the contents of the special buffer at the cursor
location.

ALT-FT Toggles the cursor between the tag and the current cursor
location.

MISCELLANEOUS INSTANT COMMANDS

ALT-L Inserts a line below the cursor.

ALT-M Inserts a line, and moves the cursor to the beginning of the
new line.

ALT-FC Changes the case of the character at the cursor, and advances
the cursor one character position.

ALT-FS Toggles the default case of text between upper- and lowercase
letters.

ALT-S x Enters character x in text four times. (ALT-88 x enters x in
text 16 times.)

ALT-S n << command > Executes < command > n times.

SWITCHING FROM ONE MODE TO ANOTHER

ALT-X Enters Command Mode.

ALT-V Enters Overtype Mode.

ALT-N Enters Insert Mode.

BASIC PROCEDURES 1-11

1.8 FILE AND PROGRAM OPERATIONS
Chapter 1.8 shows you how to print text, write a file to disk, read a file
from the disk, and leave PMATE.

1.8.1 PRINTING TEXT

To print your text, enter Command Mode by typing ALT-X. If the
command line isn’t empty, type ALT-C to clear it. Then, move the
cursor to the beginning of the text by typing ALT-A.

Use the XT (Type) command to print text. To print the entire file,
type:

XT$$

on the command line. PMATE prints the text exactly as it appears on
the screen.

To print a specific number of lines instead of the entire text file, pre­
cede the XT command with the number of lines you want to print.
For example, to print 25 lines of text, type:

25XT$$

on the command line. (Chapter 3 shows you how to print text with
page breaks.)

1-12 PMATE

WRITING A FILE 1.8.2

To write your text file to the disk, enter Command Mode by typing
ALT-X. Then, on the command line, type the XE (End) command:

XE$$

EMATE writes your text file to the disk, clears the text area, and
removes the filename from the status line.

READING A FILE 1.8.3

To read a text file from the disk, enter Command Mode by typing
ALT-X. Then, type the command XE, followed by the filename. To
read TEXTFILE from the disk, your command-line entries should
look like this:

XFtextfile$$

When you read a text file from the disk, the file appears in the text
area, and the status line displays two filenames. The first is the name of
the file read from the disk. The second is the name of the file to be
written to disk. (Chapter 3 explains the .$$$ filename extension.)

LEAVING PMATE 1.8.4

After you write your file to the disk, you can return to the operating
system by typing the XH (Home) command:

XH$$

BASIC PROCEDURES 1-13

2
COMMAND-LINE COMMANDS

Instant commands offer flexibility in text editing by letting you edit
text without switching from one mode to another. Command-line
commands offer a different kind of flexibility. With command-line
commands, you can:

► Specify a numeric argument to tell PMATE how many times (and
in which direction) to perform a task.

► Specify a string argument to insert, search for, replace, or change
text.

► Link commands together to be executed as a single command.

This chapter introduces you to the command-line commands used for
text editing and elaborates on the use of command-line commands for
reading, writing, and printing. Before presenting these commands, this
chapter explains how to use numeric arguments and string arguments.
(Chapter 3 shows you how to link commands together.)

NUMERIC AND STRING ARGUMENTS 2.1

NUMERIC ARGUMENTS 2.1.1

You use a numeric argument in front of most command-line com­
mands to tell PMATE how many times (and in which direction) to
perform a task. A numeric argument can be an integer from — 32768
to 32767. In most cases, the default numeric argument is 1; if you
don’t specify a numeric argument, PMATE does the task once, moving
forward. (The XT command is an exception; 1XT causes PMATE to
print 1 line of text and XT causes PMATE to print the entire text file.)

COMMAND-LINE COMMANDS 2-1

A minus sign (—) as the numeric argument means — 1; if you use a
minus sign as the argument, PMATE does the task once, moving back­
ward.

The L command moves the cursor from line to line. It is used here to
show you how to use numeric arguments:

15L Moves the cursor forward 15 lines.
— 15L Moves the cursor backward 15 lines.

OL Moves the cursor to the beginning of the line.
L Moves the cursor forward 1 line.

— L Moves the cursor backward 1 line.

The # symbol is a numeric argument that represents the “entire quan­
tity.” Use it when you don’t want to count how many lines you are
operating on. For example, if you are moving a block of text, tag the
beginning of text with the instant command ALT-T or with the
command-line command T. Then, move the cursor to the end of text
to be moved. The command #BM moves the block of text into the
special buffer. The command BG inserts the block back into text at the
cursor.

2.1.2 STRING ARGUMENTS

String arguments usually follow commands such as I (Insert), S
(Search), R (Replace) and C (Change). Follow commands I, S, and R
with one string. For example, to search for the word HELLO, type the
command SHELLO. Follow the command C with two strings.
Separate the two strings with $. For example, the command Ccat$dog
changes the first occurrence of cat to dog.

2-2 PMATE

COMMAND DESCRIPTIONS 2.2
Use the command-line commands in Table 2-1 to do basic editing and
file operations. (Some of these commands—such as XT, XT, and
XT—were introduced in Chapter 1.) Use numeric and string argu­
ments with these commands, where appropriate. Execute a command
by typing $$ and re-execute a command by typing $. (The additional $
doesn’t appear on the screen.)

Table 2-1: Basic Command-Line Commands

COMMAND DEFINITION

CURSOR MOVEMENT

A Moves the cursor to the beginning of the text.

Z Moves the cursor to the end of the text.

M Moves the cursor 1 position.

L Moves the cursor to the beginning of the next line.

P Moves the cursor to the beginning of the next paragraph.

W Moves the cursor to the beginning of the next word.

DELETING TEXT

D Deletes the character at the cursor.

K Deletes the line beginning at the cursor.

INSERTING TEXT

I Inserts what follows at the cursor position (IHELLO
inserts the word HELLO before the cursor).

REPLACING TEXT

R Replaces the text at the cursor with what follows
(RHELLO overwrites the five characters at the cursor
with HELLO).

COMMAND-LINE COMMANDS 2-3

COMMAND DEFINITION

SEARCHING FOR TEXT

s Searches for the following string, putting the cursor after
the occurrence of the string (SHELLO places the cursor
after the next occurrence of HELLO).

-s Searches backward for the following string, putting the
cursor at the beginning of the string.

CHANGING TEXT

C Changes the first occurrence of one string to another
string (CCAT$KITTEN changes the next occurrence of
CAT to KITTEN).

-c Changes the previous occurrence of one string to another
string.

MOVING BLOCKS OF TEXT

nBC Beginning at the cursor, copies n lines of text into the spe­
cial buffer, overwriting text already in the special buffer.

— nBC Moving backward from the cursor, copies n lines of text
into the special buffer, putting the cursor at the beginning
of the lines that have been copied. Text already in the
special buffer is overwritten.

nBM Beginning at the cursor, moves n lines of text into the
special buffer, overwriting whatever is already in the spe­
cial buffer.

— nBM Backward from the cursor, moves n lines of text into the
special buffer, overwriting text already in the special
buffer.

BG Gets the contents of the special buffer and inserts it at the
cursor position.

T Tags the beginning of the text to be moved.

Q# Toggles the cursor between the tag and the current cursor
position.

SWITCHING MODES

ON Takes you into Command Mode.

2N Takes you into Overtype Mode.

N Takes you into Insert Mode (any number preceding N,
other than 0 or 2, takes you into this mode).

2-4 PM ATE

COMMAND DEFINITION

FILE OPERATIONS

XE Writes the text file to the disk, clearing the text area.

XK Clears (“kills”) the text area without writing the contents
to the disk.

XF Reads the following file from the disk into the text area or
declares the name for the file you are about to create.
(XFtextfile reads a file called TEXTFILE into the text
area. If TEXTFILE doesn’t already exist, this command
declares TEXTFILE as the name of the file you will
create.)

XH Exits from PM ATE, returning to the operating system.

PRINTING TEXT

XT Prints the entire text file.

nXT Prints n lines of text from the cursor forward.

Caution: Instant command ALT-C stops execution of the XT command. When you exe­
cute ALT-C while printing, however, you might leave PMATE and return to the operat­
ing system.

COMMAND-LINE COMMANDS 2-5

THE MAIN INGREDIENTS

This chapter covers the rest of the PMATE features you should know
for text editing. These features include:

► The garbage stack

► Buffers

► Auto Buffer and Manual Modes

► Global commands

k Directory maintenance

► Command strings

This chapter also elaborates on features introduced in Chapters 1 and
2 such as text formatting and file input and output.

THE GARBAGE STACK 3.1
When you delete text, PMATE dumps it onto the garbage stack. The
garbage stack is stored in a small block of memory space reserved by
PMATE for deleted text. The garbage stack can also take up any space
in memory not filled by text.

You can recover deleted text from the garbage stack with the instant
command ALT-R. This command “pops” the last text deleted off the
garbage stack and displays it on the screen again. If you delete four
lines of text by typing ALT-KKKK, you can recover the text by typing
ALT-RRRR. If you delete an entire file with the XK command, you
can recover the file by typing ALT-R. (If the file is larger than the gar­
bage stack, however, you might not be able to recover the entire file.)

THE MAIN INGREDIENTS 3-1

You can also use the garbage stack to hold text you want to move.
Delete text with the ALT-K or ALT-D command. Then, move the cur­
sor to a new location and use ALT-R to insert the text by popping the
garbage stack.

3.2 BUFFERS
PMATE has 11 edit buffers, which are areas in memory where text is
stored. The main edit buffer is buffer T. When PMATE reads your text
file from the disk, it puts the text file in buffer T. At the same time, the
text area displays the text and the status line displays BUF = T.

The other buffers, buffers 0-9, are useful for storing and editing text to
be moved from or inserted into your text file. When you edit text in
buffers 0-9, the status line indicates which buffer you are editing. For
example, if you are editing text in buffer 1, the status line displays
BUF=1.

Buffer 0 is the special buffer that PMATE uses to store text to be
moved. When you use the command nBC, PMATE stores n lines of
text in buffer 0. The command BO moves the contents of buffer 0
back into the edit buffer. The command BOE lets you display the con­
tents of buffer 0 for editing. While you are editing this special buffer,
the status line displays BUF = 0. Resume editing buffer T with the
command BTE.

Buffer 0 is special because it is the default buffer. PMATE copies or
moves text from your edit buffer into buffer 0 unless you specify
another buffer.

Buffers 1-9 are like buffer 0 except PMATE moves or copies text into
these buffers only when you tell PMATE which buffer to use. The
command nB3C copies n lines of text into buffer 3. B3G copies the
contents of buffer 3 into the edit buffer, at the cursor. B3E lets you edit
buffer 3.

3-2 PMATE

Table 3-1 is a summary of the edit buffer commands. While using
these edit buffer commands, you should note these guidelines:

► You can move or copy text into or out of a buffer while editing any
other buffer. You can also delete text from a buffer while editing
any other buffer. If you delete the contents of buffer T, however,
you’ll lose your text file.

► You must be editing buffer T to read a file from the disk with the
XF command or write your text file to the disk with the XE com­
mand. You can, however, read a file from the disk to buffers 0-9
with the XI command or write a file from buffers 0-9 with the XO
command. (See Chapter 3.3.2.)

► The contents of buffers 0-9 remain in memory when you write the
contents of buffer T to the disk with the XE command or delete the
contents of buffer T with the XK command. The contents of buffers
0-9 are erased when you leave PMATE to return to the operating
system.

► The size of any buffer depends on the amount of memory space
available. If the text file in buffer T is large, less space is available for
the other buffers. More space becomes available for one buffer when
you delete text from another. If you fill up all memory space,
PMATE displays the message MEMORY SPACE EXHAUSTED.
Delete text or write it to disk to continue.

► You can store text or command strings in buffers 0-9. The com­
mand .3 executes a command string stored in buffer 3. (See Chapter
3.5 for information on command strings.)

THE MAIN INGREDIENTS 3-3

Table 3-1: Edit Buffer Commands

COMMAND DEFINITION

BxK Deletes (“kills”) the contents of buffer x when you are editing in any
other buffer.

BxE Displays buffer x for editing.

nBxC Copies n lines from the edit buffer to buffer x. The cursor in each buffer
is left at the end of the text that is copied. This command
destroys the previous contents of buffer x.

nBxD Copies n lines from the edit buffer to buffer x. These lines are inserted
before the cursor position in buffer x. The cursor in the edit buffer is
left at the end of the lines that have been copied.

nBxM Moves n lines from the edit buffer to buffer x. Buffer x’s cursor is left at
the end of the text. This command deletes the previous contents of
buffer x, and deletes these n lines from the edit buffer.

nBxN Moves n lines from the edit buffer to buffer x. The lines are inserted in
buffer x just before the cursor. The lines are deleted from the edit
buffer.

BxG Copies (“gets”) contents of buffer x into the edit buffer just before the
cursor. The contents of buffer x are not affected.

NOTE: x is equal to T or a number 0-9; the “edit buffer” is the buffer you are
editing.

3.3 FILE OPERATIONS
PMATE’s file operations consist of reading input files and writing out­
put files. When PMATE reads a file from disk, the file is an input file.
When PMATE writes a file to disk, the file is an output file. Thus, a
text file can be an input file or an output file, depending on whether
you are reading it from or writing it to disk.

When you tell PMATE the name of the input or output file, you
declare the filename. PMATE offers several options for declaring a
filename as well as several options for reading and writing a file.

3-4 PMATE

Chapter 3.3 shows you:

► The ways in which you can declare a filename.

► The various commands for reading and writing files.

► How to modify the way in which PMATE reads and writes files.

► How to list your directory of files and delete files without returning
to the operating system.

DECLARING FILENAMES 3.3.1

As demonstrated in Chapter 1, you can declare a filename as you enter
PMATE or while you are in PMATE. To declare a filename as you
enter PMATE, you type:

pmate < filename > (cr)

To declare a filename while you are in PMATE, on the command line
you type:

XF < filename > $$

In both cases, the command syntax is the same for a new filename and
an existing filename. In both cases, however, PMATE treats a new file
differently from an existing file.

PMATE treats the new file as an output file. The status line displays an
asterisk (to indicate that there is no input file), followed by the output
filename.

PMATE treats an existing file as an input file. Because there is no out­
put file, PMATE creates one. The status line displays the input
filename, followed by the output filename. They are the same, except
the output filename has the filename extension .$$$.

THE MAIN INGREDIENTS 3-5

When you write the file to the disk, PMATE renames both the input
filename and the output filename. Suppose the input filename is
TEXTFILE. 1. PMATE creates an output file called TEXTFILE.$$$.
When you write the file to disk, PMATE stores TEXTFILE. 1 on the
disk as TEXTFILE.BAK and stores TEXTFILE.$$$ as TEXTFILE. 1.
Next time you read the file from disk, you’ll read the most recent ver­
sion of the file. The previous version of the file is the backup file.

z

Another option is to declare different input and output filenames. For
example, you can declare two filenames, FILEONE and FILET WO,
when you enter PMATE or while you are in PMATE. From the
operating system, type:

pmate filedne filetwo(cr)

or, on the command line type:

XFfileone filetwo$$

The first file is your input file and the second file is your output file.
The status line displays FILEONE,FILETWO. When you write the file
to the disk, the filenames remain the same.

You could declare two filenames to modify a file and keep both ver­
sions, each for a different purpose. Also, you might declare a different
drive name for the output file if your input file is larger than half of
your disk space.

3.3.2 FILE INPUT AND OUTPUT

Until now you have used the XF and XE commands to read and write
files. PMATE has many other commands for file input and output.
Table 3-2 is a summary of all the file input and output commands.

3-6 PMATE

Table 3-2: File Input and Output Commands

COMMAND DEFINITION

XF < filename > Declares a new (output) filename or declares an existing
(output) filename. To declare two filenames, separate
them with $.

XE Writes the text file to disk, clearing the text area.

XE < newname > Writes the file to disk, renaming the output file and leav­
ing the input file undisturbed.

XJ Writes the file to disk and reads the file into memory
again. This command is equivalent to using the XE com- \
mand and then the XF command. Use this command fre- 1
quently to write your data to disk and then resume editing
(in case of a power failure).

XJ < newname > Writes the file to disk using a new filename, and then
reads the file back into memory using the new filename.
The original input file is not disturbed.

XC Closes the input and output files as they are (on disk).
The contents of the edit buffers are deleted, and the out­
put file keeps the .$$$ filename extension.

XK Deletes the output file and the contents of the edit buffer,
if you are editing in buffer T, leaving the input file undis­
turbed. Deletes the contents of the edit buffer if you are
editing in buffers 0-9.

XI < filename > Reads (in) a copy of < filename > from disk into the text
buffer just before the cursor. < filename > on the disk is
unchanged, and currently declared input and output
filenames remain the same. You can use this command to
merge files, load macros into buffers, and store on disk
what you might store in buffers. (See Chapter 3.5.4.)

nXI < filename > Reads (in) n lines of < filename > from disk into the text
buffer just before the cursor without disturbing currently
declared input and output files.

XO < newname > Copies the file in the edit buffer to < newname > . This
lets you write (out) the file to the disk under another
name without disturbing the currently declared input and
output filenames.

nXO < newname > Copies n lines of the text buffer to < newname > . This
lets you write (out) text to disk under another name
without disturbing the currently declared input and out­
put filenames.

THE MAIN INGREDIENTS 3-7

3.3.3 AUTO BUFFER AND MANUAL MODES

PMATE normally operates in Auto Buffer Mode. Auto Buffer Mode
lets you edit a file that is larger than PMATE’s memory space. When
PMATE reads such a large file from disk, it reads in only as much as
will fit in memory. Then, as you move the cursor through the file,
PMATE writes some of the text into the output file and reads in more
of the text from the input file. Auto Buffer Mode works only when you
are editing text in buffer T. You can edit a file as large as 512K in
Auto Buffer Mode.

As you edit a file that is larger than memory, cursor movement com­
mands, such as L, M, P, and W, move through the entire text file.
Other commands, such as A, Z, and S, operate only on text in
memory, even though Auto Buffer Mode is on. These commands
move the cursor or search for a word in a "limited workspace” so that
you can move short distances while editing a large file.

PMATE has global commands for moving and searching through an
entire large text file. Global commands begin with U (Universal). The
US command is the global command that searches through an entire
text file for a word or string. The UZ command moves the cursor to
the end of a large text file. The UA command scrolls backward to the
beginning of a large text file. If you are near the end of a long file and
you want to go to the beginning of text, however, XJ gets you there
faster than UA. XJ writes the remainder of the file to disk and reopens
the file at the beginning.

You can turn Auto Buffer Mode off with the OQU command. This
puts PMATE in Manual Mode, and PMATE no longer automatically
writes and reads text to and from the disk. Instead, text is divided into
pages.

3-8 PMATE

You can specify the number of lines in a page with the QP command.
For example, 50QP divides text into pages of 50 lines each. Or, you
can divide pages with form-feed characters. You enter a form-feed
character in text with the command ALT-7 L. It appears on the screen
as L.

Once you specify the number of lines in a page, you can read or write
text with Manual Mode commands, shown in Table 3-3.

COMMAND DEFINITION

Table 3-3: Manual Mode Commands

nXA Reads n pages of text from the input file into the edit buffer, appending
the new pages to the end of the text already in the buffer.

— nXA Reads n pages of text from the output file to the beginning of text in
the edit buffer.

nXW Writes n pages of text from the beginning of text in the edit buffer to
the output file.

— nXW Writes n pages of text from the end of text in the edit buffer back to the
input file.

nXR Writes n pages of text to the output file and reads n pages of text from
the input file into the edit buffer.

3

To stop PM ATE from reading or writing pages at a specific point in
the text file, put a form-feed character at that point in the text.

When you are in Manual Mode, the numeric argument preceding the
XI and XO commands represents the number of pages instead of a
number of lines. For example, the command 3X1 < filename > reads
in 3 pages from < filename >. Repeat the XI command without the
filename to read in more pages. PMATE assumes you are reading from
the same file unless you specify a new filename.

THE MAIN INGREDIENTS 3-9

3.3.4 DIRECTORY MAINTENANCE

You can look at any of your file directories while you are in PM ATE.
To list a directory, PM ATE inserts a copy of the directory in the
current edit buffer at the cursor. After you look at the directory you
can delete it just as you delete any text. If you don’t want to insert the
directory in your text file, display a different edit buffer before listing
the directory. The command to list a directory is XL. Table 3-4 shows
the options for using the XL command.

3
Table 3-4: Directory Listing Commands

COMMAND

XL

XL <d> :*.*

XL < pthnm > *.*

XL < d > : < pthnm > *.*

DEFINITION

Lists all files in the current working directory of the
default drive.

Lists all files in the current working directory of
drive < d > .

Lists all files in subdirectory < pthnm > of the
default drive.

Lists all files in subdirectory < pthnm > of drive
<d> .

You can delete files in your directory while you are in PMATE. This
feature is useful if you get a DISK FULL message when trying to write
a file to disk. You can delete unwanted files from the disk to make
room.

The directory you read into the edit buffer isn’t updated after you
delete files because it is only a copy. Read in the directory again to see
if the files have been deleted. Wild-card characters such as * and ?
don’t work when you are deleting files.

3-10 PMATE

The file delete command is XX. Here are the options for using the XX
command:

► XX < txtfl >
Deletes file < txtfl > from current working directory of default
drive.

► tXX < pthnm > < txtfl >
Deletes file < txtfl > from subdirectory < pthnm > of default
drive.

► XX < d > : < pthnm > < txtfl >
Deletes file < txtfl > from subdirectory < pthnm > of drive
< d > .

You can change the default drive in PM ATE before you have declared
an input or output file. Use this feature to reset the disk system after
you have taken a diskette out of a drive and replaced it with another.
The command to change the default drive is XS. Thus you can change
the default drive to drive B by typing:

XSb:$$

The status line displays B:, and PMATE resets the disk system if you
have changed the diskette in that drive.

You can also change the subdirectory (pathname) in PMATE before
you have declared input and output files. The command to change the
subdirectory is XP (pathname). You can change to a subdirectory
called \DATAFILES by typing:

XP\datafiles$$

THE MAIN INGREDIENTS 3-11

3.4 FORMATTING A TEXT FILE
Chapter 3.4 explains how to format text for printing. It shows you
commands that temporarily format text with tab stops and commands
that indent text. These commands aren’t incorporated into the file
when you write the file to disk and are in effect only until you exit
PMATE.

Chapter 3.4 also shows you how to embed permanent formatting com­
mands in text. The commands are part of a nonprinting control line,
which formats text with margins, tabs stops, and indentation. The con­
trol line is part of the file you write to disk, so the text is always for­
matted.

3.4.1 SETTING TAB STOPS

PMATE uses tab stops to indent text and to format multiple-column
text. You can set a maximum of fifteen tab stops. Default tab stops are
every eight columns. Use the commands in Table 3-5 to set tab stops.

COMMAND DESCRIPTION

Table 3-5: Tab Stop Commands

YK Deletes all tab stops (each space becomes a tab stop).

nYS Sets a tab stop at column n.

nYD Deletes the tab stop at column n.

nYE Deletes all old tab stops and sets new ones every nth column.

Use the following commands to change tab settings without altering the current position
of the text:

nYF Replaces all tabs with the appropriate number of spaces in the next n
lines.

nYR Replaces blocks of spaces with tabs (where possible) in the next n lines.

3-12 PMATE

INDENTING TEXT 3.4.2

To indent a single line of text, use the Space bar to move the required
number of spaces. To indent more than one line of text, use one of
these two methods:

► In Command Mode, type the command YI, preceded by the
column number of the tab stop where the text should begin. Thus, if
column 5 is a tab stop, you can set the indentation to column 5 by
typing 5YI.

Once you set the indentation, you can indent an entire paragraph
by indenting the first line of the paragraph. Do this by putting the
cursor at the beginning of the first line. Then, press the Tab key.
The entire paragraph moves to the right and begins in column 5.

3

To indent part of a paragraph, put the cursor at the beginning of the
first line to be indented. Then, press the Tab key. PMATE indents
the line where the cursor is located, as well as subsequent lines in
the paragraph.

► In Command Mode, Insert Mode, or Overtype Mode, you can
indent an entire paragraph. Put the cursor at the first tab stop on the
first line of the paragraph. Type the instant command ALT-FI to set
the indentation to that tab stop. Then press the Tab key. The entire
paragraph moves to the right and begins at the first tab stop.

If you type the instant command ALT-FP, PMATE moves the
indented text and the cursor four columns to the right. Instant com­
mand ALT-FO moves the indented text and cursor four columns
back to the left.

THE MAIN INGREDIENTS 3-13

3.4.3 CONTROL LINES

A control line formats text when Format Mode is on. You embed a
control line in text before the block of text to be formatted. Begin the
control line with F, which you enter in text by typing ALT-7 F in
Insert or Overtype Mode. Separate each command in the control line
with a semicolon (;), and end the control line with a carriage return.

Table 3-6 contains the control-line commands that format text with
margins, tab stops, and indentation.

3

COMMAND DESCRIPTION

Table 3-6: Control-Line Commands

Ln Sets the left margin to column n.

Rn Sets the right margin to column n.

K Deletes all tab stops.

Sn Sets a tab stop at column n.

Dn Deletes the tab stop at column n.

En Deletes old tab stops and sets new tab stops every nth column.

In Sets indentation to column n if n is a tab stop. Tabbing to this
column indents all subsequent lines in the paragraph.

Here is an example of a control line that sets margins:

FL5;R60<

This control line formats the text that follows with the left margin at
column 5 and the right margin at column 60. Without this control
line, the left margin is 0. The right margin is the column you specify
when you turn Format Mode on. (If you don’t specify a right margin,
the right margin is 249.)

3-14 PM ATE

The right-margin column number in the control line should be less
than or equal to the column number you specify when you turn For­
mat Mode on. If it isn’t, re-enter Format Mode, specifying a larger
column number.

Here is an example of a control line that sets margins, tab stops and
indentation:

FL5;R60;K;S10;I10<

This control line formats the text that follows with a left margin of 5
and a right margin of 60. The K command deletes all tab stops, the
810 command makes column 10 a tab stop, and the 110 command sets
the indentation to column 10.

If you omit a formatting command from the control line, PMATE uses
the default setting to format text. For example, if you omit the left­
margin command from the control line, PMATE formats text with a
left margin of 0.

PMATE interprets the control line to format text. When printing a
specific number of lines, PMATE counts the control line even though
it doesn’t print it. For example, suppose the control line is on line 0 of
your text file. If you tell PMATE to print 10 lines of text, it prints lines
1 through 9. You can embed up to thirty control lines in a text file.

THE MAIN INGREDIENTS 3-15

3.5 LINKING COMMANDS
PMATE lets you link commands together to form a command string.
A command string is a sequence of commands executed on the com­
mand line at the same time. Chapter 3.5 shows you how to:

► Form and execute command strings

► Edit a command string on the command line

► Repeat command strings

► Store command strings in a buffer and execute the strings from the
buffer

3.5.1 COMMAND STRINGS

To form a command string, type commands on the command line,
each separated by_$. Execute the string with $$, just as you execute an
individual command. Then PMATE performs the tasks, in order of
occurrence, without stopping.

Here is an example of a command string that moves the cursor to the
top of the file and then deletes 5 lines:

A$5K$$

If you discover an error in a command string, you can edit the com­
mand line. Type the instant command ALT-—, which puts the com­
mand string into the text area. Then, edit the command string in Insert
or Command Mode. Finally, return to Command Mode and type
ALT-_ again to put the edited command string back on the command
line.

3-16 PMATE

REPEATING A COMMAND STRING 3.5.2

Like an individual command, a command string remains on the com­
mand line after you execute it. You can re-execute the command
string by typing $ again.

To repeat a command string several times, use PMATE’s iteration
feature. To use iteration, enclose the command string in brackets [],
and precede the bracketed string with a number that indicates how
many times you want to execute the command string. Inside the
brackets, terminate the last command in the string with $. To execute
the command string, follow the bracketed string with $$.

Here is an example of a command string that uses iteration:

2[A$IHELLO$]$$

This command string moves the cursor to the beginning of the text,
inserts HELLO, moves the cursor to the beginning of text, and inserts
HELLO again. If you don’t use a numeric argument in front of the
brackets, PM ATE executes the command string as long as it can. In
this case, PMATE executes the command until it runs out of memory
space.

z

USING A COMMAND STRING TO PRINT 3.5.3
TEXT

You can use a command string with iteration to print text with page
breaks. The command string uses the command 12QT, which causes a
page break in text. To print 10 pages of text, 50 lines each, type the
command string:

10[50XT$12QT]$$

THE MAIN INGREDIENTS 3-17

3.5.4 EXECUTING COMMAND STRINGS
FROM BUFFERS

You can store a command string in another buffer if you want to use it
more than once. Go into one of the buffers 1 through 9. Type the com­
mand string in the text area, in Insert or Overtype Mode. Then, return
to the edit buffer.

3

To execute the command string from the buffer, type the buffer
number, preceded by a period, on the command line. Execute this
command with $$. For example, if you are storing a command string
in buffer 2, execute the command string by typing .2$$ on the com­
mand line.

Command strings can be nested, which means you can execute a com­
mand string in one buffer that executes a command string in another
buffer.

When you leave PMATE, a command string stored in a buffer disap­
pears. To save a command string, store it in a text file on disk. After
you enter PMATE, use the XI command to read the file into one of
the buffers 1 through 9. Then, execute the command string from the
buffer by typing the buffer number, preceded by a period.

3-18 PMATE

4
MACROS

This chapter shows you how to create, store, and execute macros.
Then the chapter presents the advanced text-editing features that you
might use in macros. These features include:

► The advanced use of numeric arguments

► The ARG (argument) indicator

► Input and output radixes

► String arguments

► Iteration, branching, and exiting from a macro

► Tracing macro errors

► Processing input from the keyboard

► Inserting comments in a macro

► Q commands used in macros

4

INTRODUCTION 4.1
A macro is a sequence of commands executed as a single command. A
command string stored in a buffer is an example of a simple macro. A
macro can also resemble a small program. It can be several lines long
and it can contain complicated editing commands.

When a macro is stored in a buffer, you execute it by typing a period
and then the buffer number. You store the buffer contents in a file on
disk to save such a macro to use the next time you enter PMATE (see
Chapter 3.5.4).

MACROS 4-1

Macros you use often can be stored as a macro file in PMATE’s per­
manent macro area. You execute a permanent macro by typing the
macro name, preceded by a period. (A permanent-macro name can be
any single character except 0-9.)

After you create the macro file it can be incorporated as a permanent
part of PMATE by making a new copy of the PMATE program.

4.1.1 CREATING A PERMANENT MACRO FILE

To create a permanent macro file, make sure you have no input or
output files declared. Empty your edit buffer of text. Then, read the
contents of your permanent macro area into the text area with the
command QMG (Macros Get). Nothing appears on the screen unless
you already have a macro file in your permanent macro area.

Follow these guidelines when creating a permanent macro file:

► Begin each macro with control character X. (Enter this character by
typing ALT-7 X.)

► Type the macro name after the X.

► End each macro in the file with $.

► End your permanent macro file with X.

This is an example of macro file format:

Xa A$IHELLO WORLDS
Xb A$C $*$
X

The first macro in the file is macro a. It puts the cursor at the begin­
ning of the file and inserts HELLO WORLD in text. The $ at the end
of the macro separates macro a from the next macro. Macro b moves
the cursor to the beginning of text and changes the first occurrence of a
space to an asterisk. The $ at the end of the macro separates macro b
from the X, which marks the end of the macro file. Without the $ at

4-2 PMATE

the end of macro b, PMATE thinks the X is part of macro b.

After you create a macro file, send it to the permanent macro area
with the command QMC (Macros Change). The permanent macro file
you have created overwrites any previous file in the permanent macro
area. After you send the macro file to the permanent macro area,
delete the macros from the screen with the XK command.

Once you send your macro file to the permanent macro area, you can
execute any macro in the file. After you send the macros shown above
to the permanent macro area, you can insert HELLO WORLD in text
by executing the command .a. You can change the first occurrence of a
space to an asterisk by executing the command .b.

SAVING PMATE WITH A PERMANENT 4.1.2
MACRO FILE

To save the permanent macro file, make a new copy of PMATE with the
command XD (Duplicate). Follow XD with a new filename. To make a
copy of PMATE called PMATE02, type this on the command line:

XDpmateO2$$

This command creates a new version of PMATE, PMATEO2.COM,
which contains your permanent macros. (The filename extension .COM
is automatically appended when you use the XD command.) To enter
the new version of PMATE from the operating system, either type the
new filename instead of PMATE, or rename the new PMATE from the
operating system after deleting the old PMATE.

MACROS 4-3

PMATEO2.COM

4.1.3 EXECUTING A MACRO
WHEN ENTERING EMATE

Precede the first macro in the permanent macro area with I (Initializa­
tion) instead of X to execute the first macro every time you enter
PMATE.

Precede the first macro with I and end the macro with the XH com­
mand to generate a program that edits a file and returns to the operat­
ing system without displaying anything on the screen.

4

Precede the first macro with S to execute the macro as you enter
PMATE and process commands given directly from the operating sys­
tem. Input and output filenames, however, are not opened until the
macro has finished execution. Instead, any strings that follow "pmate",
when you enter PMATE from the operating system, appear on the
command line.

The strings on the command line can be used as string arguments dur­
ing macro execution. Use the control character A to get a string argu­
ment from the command line and put the string in text. (See Chapter
4.4.) After the macro has finished execution, the first two strings typed
from the operating system become your input and output filenames.

4.1.4 NESTING MACROS

Macros can call any other macro stored in the permanent macro area or
in a buffer. Macros can be nested to a maximum depth of 15 levels.

4-4 PMATE

NUMERIC ARGUMENTS 4.2
A numeric argument is defined as an integer from — 32768 to 32767.
Its integer value can also be expressed as an arithmetic or logical
operation, a variable, or a function. In a macro, it is often useful to
express a numeric argument in one of these forms. Chapter 4.2
explains how to use arithmetic and logical operations, variables, and
functions as numeric arguments. It also shows you how to use a
numeric argument with the Insert and Replace commands.

On the status line, the ARG indicator displays the value of numeric
arguments expressed as arithmetic and logical operations, variables,
and functions.

ARITHMETIC OPERATIONS 4.2.1

An example of an arithmetic operation is 5 + 4. You can use this
expression, which has an integer value of 9, as a numeric argument.
For example, you can type the command 5 + 4L to move the cursor
forward 9 lines. When you execute this command, the status line
displays ARG = 9.

PMATE performs arithmetic operations from left to right. Multiplica­
tion and division don’t take precedence over addition and subtraction.
Use parentheses to change the way PMATE performs an operation.
For example, 5 + 3*2 has the value 16, but 5 + (3*2) has the value 11.
You can use up to 15 levels of parentheses in an arithmetic operation.

Table 4-1 shows the arithmetic operators you can use in a numeric
argument.

MACROS 4-5

Table 4-1: Arithmetic Operators

OPERATOR DEFINITION

+ Addition

— Subtraction

* Multiplication

/ Integer division

Note: You can display the remainder of the last division operation on the status line with
the function @R.

4.2.2 LOGICAL OPERATIONS

The value of a logical operation is either true or false. The value of a
numeric argument expressed as a true logical operation is — 1. (The
status line displays ARG = — 1.) The value of a numeric argument
expressed as a false logical operation is 0. (The status line displays
ARG = 0.)

Table 4-2 lists the logical operators you can use in a numeric argu­
ment. Table 4-3 shows some examples of the use of logical operators.

4-6 PM ATE

Table 4-2: Logical Operators

OPERATOR DEFINITION

Table 4-3: Examples of Logical Operators

>

Equal (true if the two operands are equal).

Less than (true if the first operand is less than the second operand).

Greater than (true if the first operand is greater than the second
operand).

&
J

And (true if both operands are true).

Or (true if either operand is true).

Logical complement (gives the opposite value of an expression).

EXAMPLE DESCRIPTION

3 < 2 False, has the value 0.

3 < 2' True, has the value — 1. (The expression is false but the ' gives it
the opposite value.)

2 < 3 True, has the value — 1.

2 < 3!(5 = 2) True, has the value — 1. (At least one of the operands is true.)

2 < 3&(5 = 2) False, has the value 0. (Only one operand is true.)

5 + 3 = (1 + 7) True, has the value — 1. (The two operands are equal.)

5 + 3 = (1 +7)' False, has the value 0. (The two operands are equal, making the
expression true, but the ' gives the expression the opposite value.)

VARIABLES 4.2.3

You can use ten numeric variables as numeric arguments (labeled
0-9). Set the value of a variable with the command V. For example,
this command sets the value of variable 0 to 10:

10V0$$

MACROS 4-7

To use the value of the variable as a numeric argument, precede the
variable label with @. For example, if variable 0 is set to 10, you can
delete 10 lines of text with the command:

@0K$$

The status line displays ARG =10.

Use the command VA to add to the value of a variable. If the value of
variable 0 is 10, the command:

3VA0$$

adds 3 to the value of variable 0. The value of variable 0 becomes 13.

4 During execution of a macro, you can put up to 20 variable values on
the number stack, a reserved block of PMATE’s memory. The last
value put on the number stack is the first value “popped” off. You pop
the values off the top of the stack. If you set the value of variable 0 to
10 by typing:

10V0$$

you can put the value 10 on the number stack by typing:

@0,$$

Pop the value 10 off the number stack for use elsewhere in the macro
by typing:

@S$$

PMATE clears the number stack when the execution of the macro is
completed.

4-8 PMATE

FUNCTIONS 4.2.4

A PMATE function is an operation that requires the input of an argu­
ment and returns a value based on that argument. (The value is
displayed by the ARG indicator on the status line.) Arguments pre­
ceded by @, such as those in Chapter 4.2.3, are examples of functions.
Table 4-4 is a summary of the PMATE functions, which you can use
as numeric arguments.

Table 4-4: PMATE Functions

FUNCTION DESCRIPTION

@n Returns the value of variable n, where n is a digit 0-9.

@n, Puts the value of variable n on the number stack.

@A Returns the value of the numeric argument preceding the last
macro call (this may be used to pass an argument to a
macro).

@B Returns the value of the current edit buffer (0 if buffer T, 1 if
buffer 0, 2 if buffer 110 if buffer 9, 11 if editing the com­
mand line, also known as buffer C).

@c Returns the value that represents the current location of the
cursor. This value is the character-position number of the
cursor location in the edit buffer. The first character position
is 0.

@D Returns the number of lines scrolled by instant commands
ALT-U and ALT-J.

(DE

@F < filename >

Returns the value of the error flag.

Returns the value — 1 if < filename > exists in the working
directory. Returns the value 0 if < filename > is not in the
working directory.

@G Returns the length of the string argument just referenced by
an I, S, R, or C command.

@H < string > $ Returns the value 0 if < string > matches the characters at
the cursor, returns the value — 1 or 1 if there is no match.

@1 Returns the number of pages read from the input file.
Pages are counted only if they are delimited by form-feed
characters.

MACROS 4-9

FUNCTION ____________ DESCRIPTION__________________

@J Returns the number of lines available on the screen for text
display (not counting the three lines at the top of the screen).

@K Returns the ASCII value of the key entered after a G or QR
command.

@L Returns the line number of the cursor location. (The first line
number is 0.) This returns the line number of the text file if
Auto Buffer Mode is on. If Auto Buffer Mode is off or if you
are not editing buffer T, this returns the line number of text
in memory.

@M Returns the amount (in bytes) of working memory space
available.

@o Returns the number of pages written to the output file.
Pages are counted only if they are delimited by form-feed
characters.

@p Returns the value of the absolute memory address of the cur­
sor location.

@Q
@R

Returns the column number of the previous tab stop.

Returns the remainder of the last arithmetic division
performed.

@S Returns the top number in the number stack and pops the
number off the stack.

@T

@U

Returns the ASCII value of the character at the cursor.

Returns the value — 1 if Auto Buffer Mode is on and 0 if
Auto Buffer Mode is off.

@V Returns the value of the current mode (0 if Command Mode,
1 if Insert Mode, 2 if Overtype Mode).

@w
@Y

Returns the column number of the right margin.

Returns the column number of the left margin.

@Z Returns the column number of the next tab stop.

@@ Returns the value of the byte in memory pointed to by
whatever value you assign to variable 9.

@/ Returns the column number of the current indentation set­
ting.

"x Returns the ASCII value of x, where x is any character.

4-10 PM ATE

INSERT AND REPLACE ARGUMENTS 4.2.5

You can insert a character in text by using its ASCII value as the
numeric argument of the I command. For example, if you type 921 on
the command line, PMATE inserts a backslash (\) in text at the cursor
(if you are using a Standard keyboard). (Appendix C lists the ASCII
characters and their values.)

You can replace a character in text by using its ASCII value as the argu­
ment of the R command. For example, if you type 65R on the command
line, PMATE replaces the character at the cursor with the letter A.

You can use a numeric argument with the I command to insert the
value of a variable or a value related to the variable, in text. To insert
the value of the variable in text, precede the I command with @, the
variable label, and a backslash (\). For example, if variable 0 has the
value 20, the command @0\I inserts 20 in text. To insert the value of
variable 0 in text, followed by a space and the value of variable 0 plus
5, type the command:

@0\l $@0 + 5\$$

The numbers 20 25 appear in text.

INPUT AND OUTPUT RADIXES 4.3
PMATE recognizes the numbers you enter on the command line as
decimal numbers; base 10 is the default input radix (base). The default
output radix is also base 10. Thus, both the values displayed by the
ARG indicator and the operations performed on the text file are in
base 10.

You can change the input and output radixes with the command QI.
For example, if you execute the command 8QI, the input radix
changes to base 8 (octal). You can then do conversions from octal to
decimal. If you type 10 on the command line, the ARG indicator

MACROS 4-11

displays 8. To change the input radix back to base 10, execute the
command 12QI. The numeric argument for the QI command is 12
because 12 (octal) is equal to 10 (decimal).

If the input radix is base 10, you can change the output radix to base 8
with the command 8QO. If you type 8 (decimal) on the command
line, the ARG indicator displays 10 and the line and column indicators
display the cursor position in octal. Change the output radix back to
decimal with the command 10QO.

4

Because you can change the input and output radixes, you can perform
conversions between any two radixes. Many programmers need to do
such conversions between decimal and hexadecimal (base 16). When the
radix is greater than 10, however, some values are repre-
sented,by letters and numbers.

When PMATE sees a letter in the command line, it recognizes the
letter as a command unless it is preceded by a digit (0-9). PMATE
interprets each succeeding character as a number (if the character can
be interpreted as a number). If the input radix is hexadecimal, the
command DDK deletes 2 characters and erases 1 line. The command
0DDK erases 221 lines since DD (hex) equals 221 (decimal). Use $ to
terminate a hex character if the next character can also be interpreted
as part of the hex number. The command 0D$D deletes 13 characters.
2$D deletes 2 characters. 2D is interpreted as 45 (decimal).

4.4 STRING ARGUMENTS
Two advanced editing features involve string arguments. The first lets
you store a string argument in a buffer. You can then use the string
argument when you execute an I, 8, C, or R command. When a string
argument is stored in a buffer, use control character A, followed by @
and the buffer number, as the command argument.

4-12 PMATE

For example, if the word AUTOMOBILE is stored in buffer 1, type the
command:

to insert the word AUTOMOBILE in text, at the cursor. (The com­
mand IA@0 is the same as the BG command. It inserts the contents of
the special buffer in text.)

The second feature, which you use with the I command, lets you store
string arguments on the command line to insert in a block of text
when you execute a macro. The text is contained in the macro, which
gets the string arguments from the command line. You use the control
character A and command QA, along with I in the macro, to call the
strings.

If buffer 1 contains:
4

2QAIDear Mr. IAAI,
You, Mr. IAAI, have the opportunity to be the first on your

block in beautiful IABI to own your own copy of an exciting new
editor. Imagine what you and Mrs. IAAI can do with it. The rest of
IABI will be so jealous...$

then the command:

.1Jones$Cambridge$$

inserts the following text:

Dear Mr. Jones,
You, Mr. Jones, have the opportunity to be

the first on your block in beautiful Cambridge to
own your own copy of an exciting new editor.
Imagine what you and Mrs. Jones can do with it.
The rest of Cambridge will be so jealous...

MACROS 4-13

4

You begin the macro with the command 2QA to tell the macro how
many string arguments are stored on the command line. Without the
QA command, the macro doesn’t know how many string arguments to
look for. Consequently, it tries to execute the J in Jones as a com­
mand.

The next command in the macro is the I command, which inserts the
text that follows in the text area.

The command IAA inserts Jones, the first string stored on the com­
mand line. PMATE identifies the strings on the command line in
alphabetical order. Thus, the first is string A and the command IAA
copies string A from the command line and inserts it in text. After this
command, the I inserts the following text up to another IAA com­
mand, which again inserts string A in text. Then, the I command again
inserts the text that follows, up to the command IAB, which inserts
string B (Cambridge), the second string on the command line.

As demonstrated in this example, you can insert the strings stored on
the command line, over and over. You can store up to 26 strings
(A-Z) on the command line. Remember to use the QA command to
tell PMATE how many strings are stored on the command line.

When macros are nested, string arguments can be nested.

4-14 PMATE

WILD-CARDS USED IN STRING 4.5
ARGUMENTS
You can use wild-cards in nonspecific search strings. Uppercase char­
acters in the search strings match only uppercase characters in text.
Lowercase characters match either upper- or lowercase characters.
Type ALT-7 with the letter to enter wild-card characters. Table 4-5
lists these wild-card characters.

Table 4-5: Search-String Wild-Card Characters

WILD-CARD DESCRIPTION_____________________

E Matches any character. (SMAEE matches MALE, MADE, and
MATE.)

L Matches the character that follows. This lets you search for a
wild-card character. (SMALEE matches only MAEE.)

N Matches anything but the character that follows. (SMANTE
finds MALE or MADE, but not MATE.)

S Matches a space or a tab.

W Matches any character except a letter or number.

4

ITERATION AND BRANCHING 4.6
You can use PMATE’s iteration feature with the numeric arguments
presented in Chapter 4 to create complex macros consisting of if-then
loops, and conditional and unconditional branching. Chapter 4.6
reviews iteration. Then it shows you how to use iteration in if-then loops
and branching statements. It also shows you how to exit from a macro.

MACROS 4-15

4.6.1 ITERATION

The syntax for iteration is as follows:

< num. arg. > [< command string > < opt. num. arg. >]

4

The numeric argument preceding the brackets [] tells PMATE how
many times to execute the command string inside the brackets. If this
numeric argument is missing, PMATE executes the command string
64,000 times, or until an error occurs. If the numeric argument is 0,
PMATE ignores the command string inside the brackets. If the
numeric argument is — 1, PMATE executes the command string once.
If the numeric argument is a logical operation, PMATE executes the
command string if the operation is true, and ignores it if the operation
is false.

If you use the optional numeric argument, PMATE stops iteration of
the loop as soon as the optional numeric argument becomes nonzero
(true). If you omit the optional numeric argument, PMATE stops
iteration of the loop if the error flag is set (see Chapter 4.7.3).

Commands 5[D], 5D, and 5V0[D — VA0@0 = 0] all have the same
effect. In the third command string, 5V0 sets the value of variable 0 to
5. Inside the iteration brackets, D deletes a character and — VA0
decrements the value of variable 0 by one. The optional numeric argu­
ment (DO = 0 is a logical operation. The loop continues until the value
of variable 0 is 0, and the logical operation is true.

The command string [Chello£goodbye$] changes all occurrences of
hello to goodbye. The command string [Chello$goodbye] changes the
first occurrence of hello to goodbye]. PMATE interprets the bracket at
the end of the iteration as part of the string, because the string is not
terminated by $. And without the closing bracket, PMATE cannot
continue the change command.

Iterations can be nested to a maximum depth of 15.

4-16 PMATE

IF-THEN LOOPS 4.6.2

As mentioned in Chapter 4.6.1, when a command string within brack­
ets is preceded by a logical operation, PMATE executes the command
string if the operation is true and skips the command string if the
operation is false. PMATE can also execute one command string if a
logical operation is true and another command string if the operation
is false. Follow the first command string within brackets by the second
command string within brackets. Don’t put spaces between the sets of
command strings. Here is an example of such an if-then loop:

@0 < 3[lhello$][lgoodbye$]$$

In this example, if the value of variable 0 is less than 3, PMATE inserts
hello in text at the cursor. If the value of variable 0 is 3 or greater,
PMATE inserts goodbye in text.

You can use the next and break commands inside iteration brackets to
terminate execution of a loop. The next command is an argument fol­
lowed by If the argument is nonzero (true) or missing, PMATE goes
to the next set of iteration brackets. If the argument is 0, PMATE con­
tinues executing the current command string. The break command is
an argument followed by If the argument is nonzero or missing,
PMATE exits from the iteration brackets. If the argument is 0,
PMATE continues executing the command string.

You can use brackets [] or braces { } to enclose iteration loops except
when using break and next commands. Next and break commands
skip braces { } and move to the next bracket. Enclose if-then-else con­
structions in braces so that a next or break command exits the itera­
tion loop, not just the clause.

Make sure you match every left bracket with a right bracket. Also,
make sure you use $_to distinguish between brackets used as part of a
search or insert string, and brackets used for iteration.

4

MACROS 4-17

4.6.3 CONDITIONAL AND UNCONDITIONAL
BRANCHING

In conditional branching, PMATE jumps to a branch point in the macro
if a specific condition is met. Designate a branch point in a macro with a
label (consisting of any character), preceded by a colon (:).

The branch command is J (Jump), followed by the branch-point label.
If no numeric argument precedes J, or if the argument is nonzero
(true), PMATE executes the command following the label. If the
numeric argument is 0, PMATE continues with the command it is
executing. For example, in the command string (DM > 100JL$10K:L,
PMATE jumps to label L if there are more than 100 bytes of memory
left. Otherwise, PMATE deletes 10 lines of text.

4.6.4 EXITING FROM A MACRO

You can exit from a macro at any point with the command %. If no
numeric argument precedes the % command, or if the numeric argu­
ment is nonzero (true), PMATE exits from the macro.

4.7 TRACING ERRORS
PMATE’s Trace Mode and error traceback features help you to
“debug” macros. Its error flag feature lets you test for and control
errors. Chapter 4.7 explains how to use these features.

4-18 PMATE

TRACE MODE 4.7.1

In Trace Mode, PMATE stops after each command in the macro so
you can see how the command affects your text. Also, the ARG indica­
tor displays the value of numeric arguments expressed as arithmetic
and logical operations, variables, and functions. To use Trace Mode,
put a question mark (?) at the beginning of the macro. When you exe­
cute the macro, the cursor stops before execution of every command.
Press the Space bar to execute the next command.

You can also debug sections of a macro using breakpoints. Break­
points mark specific sections of a macro that you want to trace. Put a
question mark (?) before and after sections you want to trace. PMATE
goes into Trace Mode when it reaches the first question mark. Press
the Space bar to execute each command. PMATE leaves Trace Mode
when it reaches the next question mark. You can put any number of
breakpoints in a macro.

4

ERROR TRACEBACK 4.7.2

When a fatal error occurs while PMATE is executing a macro, the
error message appears in the text area of the screen. The command
string that has caused the error appears on the command line. The cur­
sor points to the character just after the command that has caused the
error. The status line tells you which buffer or permanent macro has
executed the erroneous command. For example, if buffer 2 stores the
command string with the error, the status line displays COMMAND
FROM 2.

The error might be part of a macro that calls a macro. You can use the
error traceback feature to find out which macro has called the com­
mand string with the error. With error traceback you pop a level by
pressing the Space bar to see which command string executes the trou­
blesome macro. If this command string is also a macro, you can pop
another level by pressing the Space bar again. You can continue view­
ing the macros that call the macros until you reach the original

MACROS 4-19

command string that executes the first macro. If you don’t want to use
error traceback, press Return instead of the Space bar just as you do
with any other error.

4.7.3 THE ERROR FLAG

4

The three kinds of errors that occur in PMATE are:

► Fatal

► Optional

► Nonfatal

A fatal error occurs when PMATE does not recognize a command. It
stops the execution of a macro. You can use Trace Mode or the error
traceback feature to debug the macro and correct the mistake.

An optional error can be fatal or nonfatal. An example of a fatal
optional error is when your macro executes a Change command and
PMATE runs out of strings to change. Once PMATE can’t find
another occurrence of the string, execution of the macro stops and the
STRING NOT FOUND error message is displayed on the screen. You
can use error traceback to find the error. Or, you can press the Return
key to eliminate the error message and execute another command.

This optional error can be made nonfatal by suppressing the error mes­
sage with the E command. When the error message is suppressed, exe­
cution of the macro continues after an optional error. If the error mes­
sage is suppressed and an error NGcurs, PMATE sets the value of the
error flag to — 1 and continues execution of the macro. You can use a
logical operation as a numeric argument to test for the error. The func­
tion (DE returns the value of the error flag. Thus, use the numeric
argument @E = — 1 to test for an error. PMATE resets the error flag
to 0 both after you test with the @E function and after completion of
the macro.

4-20 PMATE

A nonfatal error occurs when a macro executes an M, L, P, or W com­
mand while the cursor is already at the end of the file. No real error
occurs. The cursor has just gone as far as it can go. In this case, PM ATE
sets the value of the error flag to — 1 and continues with the execution of
the macro. You can test for the occurrence of an error with the @E func­
tion, just as you do when you suppress the error message.

PROCESSING KEYBOARD INPUT 4.8
You can create a macro that stops in the middle of an editing opera­
tion and waits for keyboard input. Use the command G, followed by a
string argument, in the macro. PM ATE pauses during execution of the
macro and updates the screen. During the pause, the string argument
appears on the command line. You can edit the text with instant com­
mands. Execution of the macro continues after you enter any charac­
ter, other than an instant command, from the keyboard. Use the @K
function if you want PMATE to return the ASCII value of this key.

If you precede the G command with a numeric argument that has a
value of 0, the string argument that follows G is displayed on the com­
mand line, but the macro continues execution without keyboard input.

You can use character strings and multiple-digit numbers as keyboard
input. Store the strings in buffers and the numbers as variables.

INSERTING COMMENTS IN MACROS 4.9
Because macros can be complex editing programs, PMATE lets you
format your macros for easy modification. You can insert spaces, car­
riage returns, and tabs between commands. You can also put com­
ments in the macros to document tasks performed by the commands.
PMATE ignores all characters preceded by a semicolon (;) and fol­
lowed by a carriage return. This macro, which changes all uppercase

MACROS 4-21

alphabetical characters to lowercase, is an example of how a macro can
be formatted with comments:

A
I

,start at beginning of edit buffer
;begin iteration

@T < "A JA ;if the character at the cursor is not an alphabetical
;character (if the ASCII value is less than the ASCII
,value of A), jump to label A

@T! < "VO ,assign the lowercase ASCII value of the character
;to variable 0 by ORing it with the ASCII value of a
;space (20H) since the uppercase ASCII value of a
character is 20H less than the lowercase value.

D @01 ;delete character at cursor and insert uppercase value
;of character

-M ;move back to same character

:A M

I

;move cursor to next character, setting error flag if
;cursor is at the end of text

;begin iteration with next character unless error flag
;has been set

4.10 Q COMMANDS
Q commands, which are used to make changes to PMATE, are useful
in macros. As demonstrated in Chapters 3 and 4, you use Q com­
mands to:

► Switch between Auto Buffer and Manual Modes

► Divide text into pages while in Manual Mode

► Send a form-feed character to the printer

4-22 PMATE

► Move the permanent macro file to and from the permanent macro
area

► Change the input and output radixes

► Indicate the number of strings stored on the command line

Table 4-6 is a complete list of Q commands.

Table 4-6: Q Commands

COMMAND DESCRIPTION

nQA Indicates that n strings are stored on the command line.

QB Rings bell. This is useful for telling you when a long command string or
macro has finished execution.

nQC Sets the control-shift character to the character represented by the
ASCII value of n. The shift character is ignored when entered, but the
character that follows is a control character. The control-shift character
is currently set to ASCII 94.

nQD Delays for a time proportional to n. This command can be used with L
and QR to implement variable-speed scrolling.

OQE Sets Type Out Mode to 0, which prints text as it is displayed. Control
lines are printed, $ is printed as a dollar sign ($), and all control charac­
ters are printed as the character preceded by an up-arrow ('). Use this
mode for printing macros.

1QE Sets Type Out Mode to 1 (the default mode), which prints text on a reg­
ular printer. Tabs are expanded to spaces. Control lines are not printed,
but affect the margins and tab stops. Other control characters are sent
through to the printer.

2QE Sets Type Out Mode to 2, which is used with printers that do their own
formatting. Carriage returns are sent only at the end of a paragraph.
Tabs are not expanded to spaces and all control sequences are sent
through to the printer.

nQF Sets the form-feed character to that represented by the ASCII value of
n.

nQG Turns garbage stacking off if n equals 0. Turns garbage stacking on if n
is nonzero or missing.

nQH Inserts n spaces at the cursor. This is useful for centering text. Because
all spaces are inserted at once, this operation is faster than n[I $].

MACROS 4-23

COMMAND DESCRIPTION

nQI

nQJ

nQK

nQL

QMC

QMG

tnQO

. nQP

nQQ

nQR

nQS

nQT

nQU

nQV

nQW

nQX

QY

Sets the current input radix to base n.

Shifts the text display up or down n lines without changing the cursor
location in text. The display is shifted as far as possible without moving
the cursor beyond the screen boundaries set during configuration.

Sets Backup Mode for files. If n is 0, .BAK files are not created from
old input files. If n is nonzero or missing, .BAK files are created.

Sets number of lines that instant commands ALT-U and ALT-J scroll.

Sends the permanent macro file to the permanent macro area.

Gets the permanent macro file from the permanent macro area.

Sets the current output radix to base n.

Divides pages into n lines each.

Shifts the text display left or right n columns without changing the cur­
sor location in text. The display is shifted as far as possible without
moving the cursor beyond the boundaries set during configuration.

Redraws screen if n is 0. Checks the keyboard without redrawing screen
if n is — . @K returns the value of any key struck, or 0 if none. Use
this command to create interactive macros where PMATE continues
doing something, showing you the results, until you tell it to stop.

Sets the uppercase/lowercase shift character to the character represented
by the ASCII value n. The shift character is ignored when input, but
shifts the case of the next character entered.

Sends the character represented by the ASCII value n to the listing
device.

Turns Auto Buffer Mode off if n is 0. Turns Auto Buffer Mode on if n
is not 0.

Enables tab fill unless n is 0. When a character is inserted past the end
of an existing line, PMATE inserts as many tabs and spaces as needed
to fill out the line (see QY). If tab fill is not enabled, only spaces are
used.

Turns the command-line error display off if n is nonzero and turns the
command-line error display on if n is 0.

Moves the cursor to column n on the current line. Depending on the
state of the free space flag (see QY), the cursor might not be able to go
past the last character in a line.

Sets the free space flag if n is 0, letting the cursor move past the end of
a line. When a character is inserted at such a cursor position, the neces­
sary amount of spaces (or tabs—see QV) is inserted to extend the line
to the new cursor location. If n is nonzero, the free space flag is reset,
restricting cursor movement to existing text.

4-24 PMATE

COMMAND DESCRIPTION

nQZ Prevents the cursor from moving past column n. Use this command to
control the width of text when you need clean output on a limited­
width printer. When the cursor reaches the restricted column, it stops
advancing and a warning tone sounds. If n is missing, the default width
of 250 columns is restored.

Q# Toggles cursor between tag and current cursor position.

nQ — Sets a flag to indicate whether numbers are displayed as signed integers
or positive integers only. If n is 0, numbers are displayed as positive
only. Otherwise they are displayed as signed. This affects the ARG
display on the status line as well as numbers inserted in text with a
backslash (\). When numbers are expressed as signed integers and more
than 32K of memory remains, you see ARG = — 30536 displayed
after you type the command @M (in order to see how much memory
remains). You get a more understandable response to (DM when
numbers are expressed as positive integers only.

nQ/ Sets indentation to column n. After you press the Return key in Over­
type or Insert Mode, PMATE moves the cursor to column n. Set the
free space flag (see QY) to use this feature, because spaces and tabs are
not inserted until a character is typed (so that blank lines do not con­
tain unnecessary spaces). If n is missing, Q/ increments the indentation
by one column and — Q/ decrements it by one column.

Q < Saves the current edit buffer, Format Mode setting, and garbage stack.
They are restored once, after the next error message. 0Q < disables
this.

nQ > Gets the character represented by ASCII value n as if you type the char­
acter from the keyboard. If there are other characters in the keyboard
buffer, the character represented by n goes to the top of the queue.
(— G returns the numeric representation of instant commands as
command code + 256.)

nQ! Stores n in memory in the location pointed to by variable 9.

nQx Sets user variable x (0-9) to n. Use these 10 user variables with user-
written I/O drivers.

MACROS 4-25

CUSTOMIZATION GUIDE

GENERATING A CUSTOM A. 1
CONFIGURATION FILE
CONFIG.CNF is a file that contains the configuration parameters for
PM ATE. You can use PM ATE to change these configuration parame­
ters. Then you can use the edited CONFIG.CNF file to create a cus­
tom version of PMATE.

CONFIG.CNF contains a series of questions or statements that prompt
you to make or change a parameter assignment. Three asterisks (***)
follow each question or statement. Enter (or change) the parameter
after the asterisks. The parameter is a number or yes or no. Enter the
number in decimal or hex; identify a hex number with “H”. If more
than one number is required, separate them by spaces.

You can give your custom version of CONFIG.CNF a new filename,
as long as it has extension .CNF. When running CONPMATE, you
must specify your custom configuration file after entering the com­
mand; otherwise, CONFIG.CNF is used.

To configure a version of PMATE, obtaining information from the file
MYCONFIG.CNF, type:

conpmate myconfig

Upon completion, you must save this custom version of PMATE on
disk. To do so, type:

XDpmate$$

If PMATE.COM already exists on this disk, you can use PMATE 1
(XDPMATE1$$) and rename it later.

CUSTOMIZATION GUIDE A-l

PMATE.COM

CONFIGURATION INFORMATION

CONFIG.CNF asks you these questions during the configuration
process.

► How many lines from the center of screen can cursor wander?

Since the display screen can hold only a small portion of the text file
being edited, you need to scroll the display as the cursor moves off
of it. Typically, the display scrolls to prevent the cursor from mov­
ing down past the bottom line or up past the top. Keep one or two
lines above or below the cursor at all times, so you can easily see the
context you are working in.

The number you enter in response to the question indicates how far
from the center line of the text display the cursor is allowed to move
before a scroll occurs. If this number is 0, the cursor remains on the
middle line of the display. Any up or down cursor motion causes a
screen scroll. Using 0 (or a small number) keeps maximum context
and requires the most screen scrolling. For example, on a 24-line
screen, 21 lines are dedicated to text display. Entering 10 (don’t use
anything bigger) produces a display that scrolls only at either limit;
8 leaves two lines on top or bottom before scrolling; and 1 restricts
the cursor to the three center lines.

► How many lines do you want redrawn in foreground?

This sets the number of lines to be redrawn on the screen before
PMATE responds to the next keystroke. (In other words, this many
lines are kept up to date at all times; the rest are redrawn when
PMATE has the time.) The smaller this number, the faster
PMATE’s overall response is, but the less you can see the effect of
your keystrokes.

► Should display proceed from top to bottom (or from cursor out­
ward)?

PMATE screen redraws proceed in one of two ways. The traditional
method is to start at the top, and work down. PMATE can also start
drawing on the line containing the cursor, and work outward, alter­
nately displaying lines on either side. If the cursor is on the bottom
line, the display proceeds from bottom up; if the cursor is at the top,

A-2 PMATE

the display proceeds in the usual top-down manner. This second
method has the advantage of showing you the text in which you are
most interested—that near the cursor.

Answer yes to get a top-down display, and no to get a display
proceeding from the cursor outward.

► Should cursor be displayed before each line is redrawn?

By addressing the cursor to its final position before each line is
redrawn, you don’t lose track of where the cursor is as the screen
redraw proceeds. As usual, there is a trade-off. Twice as many cur­
sor addressing sequences now need to be performed. If your display
requires a significant delay after each cursor addressing operation,
this can slow down a screen redraw noticeably.

► Maximum number of instant commands to buffer.

PMATE constantly polls the keyboard to keep from missing any
keystrokes while it is doing other tasks. This buffering, however, can
allow certain instant commands (such as deletes or cursor motion)
to run away when used with auto-repeat. You can limit the severity
of this run-away by answering this question with a small number (at
least 1). If you quickly enter four ALT-Ds and only two characters
are deleted, you will know why. As always, compromise.

► Number of characters to shift for horizontal scroll.

PMATE allows lines of. up to 250 characters in length. Since
displays rarely show more than 80 of those, PMATE shifts the entire
display over to keep the cursor from moving off the right end.

Enter the number of characters to be shifted at one time. If you
enter 1, the display scrolls one character at a time as you enter a
long line. This is very natural, but you’ll notice continual screen
activity as the line progresses. If this bothers you, choose a larger
number.

► Are carriage returns and tabs to be inserted while in Overtype
Mode?

If you answer no, Returns are inserted only at the end of text, and
tabs are inserted only at the end of a line. Except in Overtype Mode,
these characters just move the cursor—to the beginning of the next
line, or to the character following the next tab. If you answer yes,

CUSTOMIZATION GUIDE A-3

these characters are inserted any time they are typed (and the cursor
motion keys must be used for moving the cursor).

► Do you want .BAK files to be generated automatically?

Most text editors do not delete the original input file after a com­
pleted edit pass. Instead, they rename it, giving it the extension
.BAK (any old file by that name is deleted). If you answer yes to this
question, PMATE does this, too. If you don’t like to clutter your
disks with two copies of every file, answer no. You can use the QK
command to change this while editing.

► Reserved size of garbage area.

PMATE stacks its garbage in any available memory space so it can
be retrieved later if needed. By permanently reserving some space
for garbage, you ensure that you can recover at least a small item or
two. Reserving space for garbage also lets you use the stack for mov­
ing text. Enter the number of bytes you want to reserve (it must be
at least 1). Remember to leave some memory to edit text.

► Size of permanent macro area.

Enter the amount of memory (in bytes) you want to reserve for per­
manent macros. PMATE doesn’t let you load permanent macros
requiring more space than you have allocated.

► Should disk buffering be automatic?

Answer yes if you want automatic disk buffering; no if you don’t.
This can be later changed by the QU command.

► Start in Command Mode (0), Insert Mode (1), or Overtype Mode
(2)?

Your answer to this question sets the mode that PMATE is in when
you initialize the program. This mode is also entered after ALT-C
abort and after any errors. By choosing 1 or 2 and adding appropri­
ate permanent macros (with associated instant commands), you can
eliminate Command Mode.

A-4 PMATE

CUSTOMIZING THE KEYBOARD A.2
PMATE lets you determine the keystroke required to execute instant
commands. To suit your preferences and hardware, CONPMATE can
create a version of PMATE that assigns any keystrokes you want to
any one of a list of commands.

CONPMATE asks for the following information during the configura­
tion process.

► Maximum number of codes entered for instant commands below.

You can enter as many as eight codes before an instant command
executes. This can be a series of keystrokes or the multi-code
sequence sent out by function keys. Enter the maximum number of
codes entered for any of the commands below.

► Control shift character.

If you are using control codes for instant commands, you need to
designate a “control shift character” if you want to enter these con­
trol characters in text (see the QC command). Enter the ASCII code
for your control shift character in response to this question (up-
arrow is the usual choice),

After these questions, you’ll see a list of instant command functions.
After each function, enter the ASCII codes of the required keystroke
sequence. Not all functions must be implemented (leave the function
blank if you choose not to implement it). You can assign several
different sets of keystrokes to the same instant command using the
configuration file. CONPMATE interprets all lines that start with ***
as subsequent entries for the instant command listed previously..

CUSTOMIZATION GUIDE A-5

An example should make this clearer:

Delete character *** 4
Delete line *** 11
* * * 29 49
* * * 29 50
Delete word forwards *** 23
* * * 30
Delete word backwards *** 17

The CONFIG file provided implements the standard PMATE instant
command set.

The PMATE cursor motion commands require more explanation.
Line-oriented cursor motion is implemented as follows:

Left: Move cursor one character to the left. If cursor is at the begin­
ning of a line, it moves to the last character of the preceding line.

Right: Move cursor one character to the right. If cursor is at the last
character of a line, it moves to the beginning of the following line.

Up: Move to the beginning of the current line. If cursor is at the begin­
ning of a line, it moves to the beginning of the preceding line.

Down: Move cursor to the beginning of the following line.

This combination of cursor motion is selected by entering codes next
to Move left, Move right, Move up, and Move down. These com­
mands make it easy for you to move the cursor to either end of a line,
and they are well-suited to editing programs. These commands do not,
however, let you easily move the cursor down through columnar
material.

Another way to move the cursor vertically is geometric motion. If the
cursor is at column 5, moving up one line does not move the cursor
out of column 5. Normally, the cursor can’t go past the Return at the
end of a line or move to the middle of a tab space; the cursor lands

A-6 PMATE

only on a text character. If you answer “Allow cursor to move into free
space?” with yes, the cursor can move anywhere on the screen as long
as it stays in the same column it occupied in its original location. If
you insert a character while the cursor is “floating,” the appropriate
number of spaces (and possibly tabs—see the QV command) are
inserted so that the character actually appears where you expect.

Move right (geometric) and Move left (geometric) always keep the cur­
sor on the same line and always move it one column at a time. This
causes trouble if the cursor has not been allowed into free space.
Whenever the cursor reaches a tab, it tries to move over another
column but can’t land there. When this happens, the cursor goes back
to the beginning of the tab and stays there.

A final option mixes the two approaches just mentioned. Overtype
Mode works well with a column format since it is a geometric cursor
(a Return moves the cursor to the beginning of a line). When working
on line-oriented material, you usually use Insert Mode. When you
enter codes in the Move up (mixed) and other (mixed) categories, the
line-oriented cursor routines are used in Insert Mode, and the
geometric routines are used in Overtype Mode.

The move-multiple-lines commands also have geometric and mixed
variants. The number of lines moved by any of these commands is set
by the QL command. The Move Page Up and Move Page Down com­
mands move up or down exactly one screen, independent of the QL
setting.

The instant commands that move the cursor to the top and bottom of
text have several more varieties. You can configure PMATE so that
ALT-A (or another chosen keystroke) moves the cursor to the begin­
ning or end of the file, or to the beginning or end of the text in
memory. The first choice is the default. If you want better control over
what is in memory and what is on disk, you can choose the latter (then
a UA or UZ command moves the cursor to the beginning or end of
the file).

CUSTOMIZATION GUIDE A-7

The next section of the configuration file lets you redefine the codes
that control certain built-in PMATE functions. If you want to redefine
one of these, enter the new code (or codes) following the *** as for any
of the instant commands. The Escape, Tab, and Return keys can also
be redefined, but you will rarely want to do this.

The end of the keyboard configuration section lets you define your
own instant commands by assigning keystrokes to permanent macros
0-9. The macro named "0" in the permanent macro area can be exe­
cuted every time an assigned key is pressed. Macros 0-9 are used
because they cannot be executed from the command line and serve no
other purpose (.0$$ executes buffer 0, not permanent macro 0). How­
ever, additional macros can be added to the list. For example, per­
manent macro a can be invoked every time you type ALT-a by adding
the line:

a *** 1

A-8 PMATE

MACRO EXAMPLES AND IDEAS

This appendix contains examples of macros which you can use as
presented or as a guide for building your own macros. Some of the
examples are relatively simple macros; they are explained in more
detail than later ones. None of the examples, however, are intended to
be polished final products. Instead, they should give you an idea of the
types of operations you can perform with macros, and provide you
with a foundation on which to build.

The best way to understand how and why these macros work is to
enter them, execute them, and then run them in Trace Mode. You
should read up on Trace Mode and breakpoints in Chapter 4 before
using the sample macros. To refresh your memory, though, here’s a
summary: Put a question mark (?) at the beginning of the macro or at
the place where you stop understanding what’s going on. At this point,
the macro executes one step at a time, showing you the results of its
latest operation. The macro continues only when you press the Space
bar.

ADDING OR DELETING COMMENTS B. 1
Programmers often "comment out” sections of code—a way of delet­
ing a section from the program, but keeping the code in memory just
in case it has to be replaced. In many programming languages, this is
done by putting a semicolon at the beginning of each line. In PMATE,
you can go into Insert Mode, enter a semicolon, move the cursor
down, enter another semicolon, move the cursor, and so on. This isn’t
much trouble for a few lines, but the macro I;$L$$ works better if you
need to enter a lot of lines. This macro inserts the semicolon and
moves the cursor all at once. If you enter a series of Escapes, the com­
mand repeats until you reach your last line. Finally, try 2Q[I;$L]$$.

MACRO EXAMPLESAND IDEAS B-l

This command repeats the above sequence 20 times, commenting out
20 lines at a time. Any time you need to perform a repetitive sequence,
think macro.

What if you need to delete all the comments from a file? If you’ve
ever done that by hand, you will appreciate a macro which does it for
you automatically. This macro assumes that comments begin with a
semicolon; it deletes the comment starting at the semicolon, as well as
any preceding tabs. Use it on programs, or on PMATE macros them­
selves:

[S;$ - M - SNI& M K I
$]

The left bracket starts a loop that deletes all comments. The first S
finds a comment by searching for ,. Then, the macro looks for the tabs
preceding the semicolon. Since the S left the cursor on the character
just after the semicolon, the macro must move back one (— M) before
looking for tabs. The next S searches backwards until it arrives at the
first character that isn’t a tab (NI matches anything except ALT-I,
which is a tab) and leaves the cursor on that non-tab character. Then,
the cursor points to the entire comment to be deleted. K deletes the
comment, as well as the Return at the end of the line. The Return is
then restored by the I. The right bracket loops back to the start of the
macro. The macro terminates when the first S command cannot find
any more comments.

8.2 SEARCH AND REPLACE MACROS
Escape characters in text present problems when a macro string needs
to operate on those characters. If you want to put an Escape into text,
I$$$ doesn’t work, but 271 does. To avoid this problem, here’s a macro
that changes all Escapes in text to dollar signs (in case you ever need to
write a section like this one):

[@T = 27[36R][M]@T = 0]

B-2 PMATE

The first bracket starts iteration, for we want to change the entire text
buffer. @T = 27 tests the character under the cursor to see if it’s an
Escape (ASCII code 27). If it is an Escape, the expression in the first set
of brackets (36R) is executed. This replaces the Escape with a dollar
sign (ASCII code 36).

If the character at the cursor is not an Escape, the expression in the
second set of brackets moves the cursor on to the next character.
@T = 0 tests to see if the cursor has reached the end of the text buffer
(always a null). If the end has been reached, the iteration ends; if not,
the macro goes back and checks the next character.

The command [Cblah$blew$] changes all occurrences of “blah” in the
text buffer to “blew”. Sometimes, though, you will want to Replace
only some of the occurrences. You can write a macro that stops at
each “blah” and asks you whether you want to replace it. Put this
command string in buffer 1:

2QA
l

SAA$
GType space to replaces
@K = 32[- CAA$AB]

I

Then type .lblah$blew$$.

The first line of the macro sets the number of string arguments
required from the calling command (in this case, “blah” is the first and
“blew” is the second). The next line searches for the first argument
(blah). The G command then gives a prompt, displays the text buffer
with the cursor located just past the next “blah”, and waits for you to
respond. If you respond with a space, @K = 32 is true, and the expres­
sion in brackets is executed. The “blah” changes to “blew” (the — C is
necessary because the cursor has already been moved past “blah”). If
you press anything other than the Space bar, the expression in brackets
is ignored. The last line iterates back to the first bracket and the macro
keeps looking for the “blah”s. The process will continue until the last
“blah” or until you enter ALT-C.

MACRO EXAMPLESAND IDEAS B-3

B.3 TEXT OUTPUT PROCESSING
By itself, PMATE does not perform many print functions often associ­
ated with word processors. However, you can use PMATE with a
separate output processor or you can write macros to do these func­
tions. Here are a few ideas to get you started.

LINE CENTERING AND MARGIN ALIGNMENT

In Format Mode, this macro centers a line. Start by putting the cursor
anywhere on the line to be centered.

L-M
@W-@X/2V0

;move to end of current line
;get one half the distance from right margin
;to current cursor position
;save it in variable 0.

0L
@0QH
L

;back to beginning of line
;insert number of spaces computed above
;move on to next line

It’s easy to make a macro that moves the line flush with the right
margin—just get rid of the /2 after the @W — @X.

This next macro copies the character at the cursor position, leaving the
rest of the line flush with the right margin. Use it, for example, on a
table of contents. Start with:

Chapter l.pg 1
Chapter 2.pg 24
Chapter 3.pg 30

Put the cursor on each decimal point in turn, execute the macro three
times, and you are left with:

Chapter 1...pg 1
Chapter 2.. pg 24
Chapter 3.. pg 30

B-4 PMATE

@xvo
L-M

;save the current column in variable 0
;find end of line

@W — @XV1 ;amount of space needing fill to variable 1
@0QX
@TV2
@1QH
@0QX
@1[@2R]

;back to original cursor position
;save the character there in V2
;fill out line with spaces
;back to original cursor position again
;now overtype spaces with the original character

The last three lines could have been replaced with @1[@2I]. However,
replaces require much less memory than inserts; the suggested method
executes faster.

PAGE HEADINGS AND PAGE NUMBERS

Here is an easy way to write a macro for page headings and number­
ing. Suppose buffer 1 contains a one-line heading which you want
printed at the top of every page. And suppose you have put a # in that
line at the place you want a page number inserted. Buffer 1 might con­
tain:

Chapter 2 EXCITING DOCUMENT! page #

Enter into variable 0 the first page number: 5V0$$ is appropriate if
Chapter 2 starts on page 5. Then, the following macro prints your file,
using the above header and printing page numbers:

I
B2K
B2E
BIG
A
S#$ — D
@o\\

;start iteration—will type till end of buffer
,empty buffer 2
;edit buffer 2
;get prototype page header from buffer 1
;find its beginning
;find “#” and delete it
;insert page number there instead

MACRO EXAMPLESAND IDEAS B-5

VAO
XT
10QT
BTE
60XT
4[10QT]
@T = 0]

increment page number—ready for next page
;type header
;send a linefeed to skip line after header
;back to text buffer
;type next 60 lines of document
;send 4 linefeeds to complete a 66 line page
;keep typing until the text buffer is finished

There are lots of ways to expand on this. For documents larger than
available memory, have the macro read in successive pages. Define a
print format line, starting with a unique character (maybe P). The
print macro does not type this line, but uses its information for further
formatting. The print format can include output functions like double
space, center (see the preceding macro), and so on. Header informa­
tion no longer needs to be put in a buffer beforehand, but can be
moved there from the print format line as the macro proceeds.

B.4 FORMS AND MATH
Sometimes you need to get a whole string from the keyboard. The next
example macro gets a string from the keyboard, echoes what is typed
in the command/prompt line, and saves that string in buffer 9. The
string ends on a Return. To correct mistakes on entry, a backspace
deletes the last character entered.

B9K
l
GA@9$

;delete old contents of buffer 9
,start iteration
;get a character, displaying contents
;of buffer 9 on command line

@K = 13_
B9E

;if character is a Return, break (all done)
;now go into buffer 9

@K = 8[-D][@KI] ;if character is a backspace

BTE
I

;delete previously entered character
,otherwise, insert new character
;back to text buffer

8-6 PM ATE

You can use this macro to create an interactive macro for filling out
forms. For instance, a preexisting invoice skeleton can be read in. You
can then use the full capabilities of PMATE to fill in the blanks, or an
invoice macro can set the cursor into each field and prompt for infor­
mation. The entry is accumulated in buffer 9 and inserted in the text
when finished. The invoice macro can check for illegal entries and
prevent you from totally destroying the invoice form. Furthermore, the
macro can be used by someone unfamiliar with PMATE.

You frequently need to add up numbers when you’re filling out a
form. Here’s a macro that helps you do this. It adds the number
pointed to by the cursor to a number stored in buffer 9.

BTE

[M (@T > "9)! (@T < "0)1 ;Move cursor until end of number
;is found

0V1
B9E
Z
I

initialize carry
;number to add to is in buffer 9
;move to end of that number
iterate one digit at a time
starting with least significant

BTE
-M
(@T > "9)! (@T < "0)
IM 0V0][

;back to first number
;get next most significant digit
;not a digit?
;no, don’t move past it
;0 to V0 is number to be added

@T - "OVOJ ;a digit—gets its numeric
;value to V0.

B9E
-M
@E_
@T + (DO + @1VO

;now go to buffer 9
;get next most significant digit
;done if out of digits
;add digit from text, and carry
;to it result to V0

@0 > "9[1V1 @0 - 10 R ;if greater than 9, set carry to 1,
,subtract 10 and store result in text

JI0V1 (DOR, ;not greater than 9, set carry to
;0 and store in text

-M ;R has moved cursor, so move back
;on to next digit

MACRO EXAMPLESAND IDEAS 8-7

The number of digits stored in buffer 9 controls the precision of the
result. If you start with 000000000, numbers up to 999,999,999 can be
accumulated. The result can be moved back into the main text buffer.

B.5 TWO PRINT MACROS
This simple macro lets you type directly on your printer, using the
keyboard as if it were a typewriter. The third line implements an
automatic linefeed. If the macro finds a Return, it sends a linefeed
also. Any other character is sent as is.

[
GDIRECT TYPES
@K = 13[13QT 10QT][@KQT]
I

Here’s a macro that prints an alphabetized directory listing; it should
suggest many other applications:

B1K
B1E
XL$
A
I
BC

;clear buffer 1 to hold directory list
;go into buffer 1
;get a directory listing
;go to beginning of directory
;begin overall loop
;copy first filename to buffer 0— will try to
;find filenames earlier alphabetically.

1
@HA@0$ < 0[BC]jL]

;this loop finds earliest filename
;compare next filename to earliest already
Found—if this one is earlier, copy it to
;buffer 0, otherwise, advance to next

@T = 0]
A
SA@0$
— 1XT
-K

A@T = 0]

;iterate until end of directory list
;back to top of directory list
;match the earliest entry stored in buffer 0
;type it out
;and then delete it
;back to beginning—continue unless
;list is now empty

BTE ;back to text buffer when all done

8-8 PM ATE

CURSOR MOTION B.6
Here (without comment) are the macros that PMATE uses to imple­
ment the cursor motion instant commands. If you want to customize
cursor motion to your own taste, this gives you a place to start.

Up: @V = 2[@X, - L@SQX][- MOL]
Down: @V = 2[@X,L@SQX][L]
Left: @V = 2[@X > 0[@X - 1QX]][- M]
Right: @V = 2[@X 4- 1QX][M]

MACRO EXAMPLES AND IDEAS B-9

ASCII CONVERSION CHART

Dec Hex CHR Dec Hex CHR

000 OOH NUL 040 28H (
001 01H SOH 041 29H)
002 02H STX 042 2AH
003 03H ETX 043 2BH +
004 04H EOT 044 2CH
005 05H ENQ 045 2DH -
006 06H ACK 046 2EH
007 07H BEL 047 2FH /
008 08H BS 048 30H 0
009 09H HT 049 31H 1
010 0AH LF 050 32H 2
Oil OBH VT 051 33H 3
012 OCH FF 052 34H 4
013 0DH CR 053 35H 5
014 OEH SO 054 36H 6
015 OFH SI 055 37H 7
016 10H DLE 056 38H 8
017 UH DC1 057 39H 9
018 12H DC2 058 3AH
019 13H DC3 059 3BH
020 14H DC4 060 3CH <
021 15H NAK 061 3DH —
022 16H SYN 062 3EH >
023 17H ETB 063 3FH ?
024 18H CAN 064 40H @
025 19H EM 065 41H A
026 1AH SUB 066 42H B
027 1BH ESCAPE 067 43H C
028 1CH FS 068 44H D
029 1DH OS 069 45H E
030 1EH RS 070 46H F
031 1FH US 071 47H G
032 20H (sp) 072 48H H
033 21H ! 073 49H I
034 22H // 074 4AH J
035 23H # 075 4BH K
036 24H $ 076 4CH L
037 25H % 077 4DH M
038 26H & 078 4EH N
039 27H 079 4FH 0

ASCII CONVERSION CHART

Dec Hex CHR Dec Hex CHR

080 50H P 104 68H h
081 51H Q 105 69H i
082 52H R 106 6AH j
083 53H S 107 6BH k
084 54H T 108 6CH 1
085 55H U 109 6DH m
086 56H V 110 6EH n
087 57H w ill 6FH 0
088 58H X 112 70H P
089 59H Y 113 71H q
090 5AH Z 114 72H r
091 5BH [115 73H s
092 5CH \ 116 74H t
093 5DH 117 75H u
094 5EH 118 76H V

095 5FH _ 119 77H w
096 60H 120 78H X
097 61H a 121 79H y
098 62H b 122 7AH z
099 63H c 123 7BH {
100 64H d 124 7CH 1
101 65H e 125 7DH }
102 66H f 126 7EH
103 67H g 127 7FH DEL

NOTE: In the column headings, DEC means decimal, Hex means hexadecimal (H) and
CHR means character. LF = Linefeed, FF = Form feed, CR — Carriage return, and
DEL — Delete.

C-2 PM ATE

INDEX

$, 1-3, 1-6, 2-2, 3-16, 4-2
(cr), 1-4
<,1-7, 4-7
>,4-7

* 1-4, 3-10, 4-6
?, 1-4, 3-10, 4-19
#, 2-2
[], 3-17, 4-16 to 4-17
(}, 4-17
< >,1-4

%, 4-18
_, 4-17
", 4-17,4-23
;, 3-14, 4-21
:, 1-2, 4-18
+ ,4-6
-, 4-6
/, 4-6
= ,4-7
&, 4-7
!, 4-7

Addition, 4-5 to 4-6
ALT key, 1-1, 1-8
ARG indicator, 4-5
Argument

definition, 1-1
indicator, 4-5
insert command, 4-11
numeric, 2-1 to 2-2, 4-5 to 4-11,

4-17 to 4-18
replace command, 4-11
string, 2-2, 4-12, 4-15

Arithmetic operations, 4-4 to 4-5
ASCII, 4-10, 4-11,4-21,4-23,

Appendix C

Auto Buffer Mode, 3-8 to 3-9

Backspace key, 1-6
Backup Mode, 4-24
Base, 4-11
Branching, 4-15, 4-18
Branch point, 4-18
Break command, 4-17
Breakpoints, 4-19
Buffer

commands, 1-11, 2-4, 3-3 to 3-4
definition, 1-2, 3-2
editing, 3-2
execution, 3-3, 3-18
indicator, 3-2
size, 3-3

Case, 1-4, 1-10
Change command, 2-2, 2-4
Changing

drive name, 3-11
PMATE, 4-3, A-l to A-8
text, 2-2, 2-4, 4-12 to 4-14, 4-16

Clearing text area, 2-5
COL indicator, 1-5
Column

indicator, 1-5
numbering, 1-5
width, 1-5

INDEX Index-1

Command
Auto Buffer Mode, 3-8 to 3-9
break, 4-17
change, 2-2, 2-4
command-line, 1-8, Chapter 2
control line, 1-8, 3-12, 3-14 to 3-15
execution, 1-2, 1-8, 3-16
global, 3-9
insert, 2-2, 2-3, 4-11
instant, 1-9 to 1-11
jump, 4-18
linking, 3-16
Manual Mode, 3-8 to 3-9
Mode, 1-6
next, 4-17
print, 1-12, 2-5, 3-17
Q, 4-22 to 4-25
read, 1-13, 2-5, 3-5 to 3-7
re-execution, 1-8
replace, 2-2, 2-3, 4-11
search, 2-2, 2-4, 4-15
string, 3-16 to 3-18
write, 1-13, 2-5, 3-5 to 3-7

Command line
clearing, 1-6
definition, 1-5
editing, 3-16
error, 3-16
linking, 3-16, 4-4, 4-16

Command-line command
buffer, 2-4, 3-3 to 3-4
change radix, 4-11 to 4-12
changing text, 2-4
clearing text area, 2-5
cursor movement, 2-3
deleting files, 2-3
deleting text, 2-3
exiting PMATE, 1-13, 2-5
Format Mode, 1-7 to 1-8,

3-14 to 3-15
function, 4-9 to 4-10
indenting text, 3-13, 4-25
inserting text, 2-3, 4-11

Manual Mode, 3-8 to 3-9
moving text, 2-4
number stack, 4-8
permanent macro, 4-2 to 4-3
printing text, 1-12, 2-5, 3-17
Q, 4-22 to 4-26
reading text, 1-13, 2-5, 3-5 to 3-7
replacing text, 2-2, 2-3, 4-11
searching, 2-4, 4-15
switching modes, 2-4
tab fill, 3-13
tab stop, 3-12
tag, 2-4
variable, 4-7
writing text, 1-13, 3-5 to 3-7

Command Mode, 1-6, 1-7
Command string, 3-16 to 3-18
Configuration parameters, A-1 to A-4
Control character

A, 4-4, 4-12 to 4-14
E, 4-15
F, 3-14
I, 4-4
L, 1-3, 3-9, 4-15
N, 4-15
S, 4-4, 4-15
W, 4-15
X, 4-2
Z, 1-2
definition, 1-2
output, 4-23

Control line, 1-7, 3-14 to 3-15, 4-23
Control-line command, 1-8, 3-14 to 3-15
Cursor

character, 1-5
movement, 1-9, 2-3, 4-23

Customizing the keyboard, A-5 to A-8
Customizing PMATE, Appendix A

Deleting files, 3-10 to 3-11
Deleting text, 1-10, 2-3, 3-1
Directory maintenance, 3-10 to 3-11

Index-2 PMATE

Division
arithmetic, 4-4, 4-5
page, 3-9

Drive name
changing, 3-11
definition, 1-2

Error
command string, 3-16
correction, 1-4, 1-6, 3-16, 4-18 to 4-20
fatal, 4-20
flag, 4-9, 4-20
message, 1-4, 4-25
nonfatal, 4-20
optional, 4-19
traceback, 4-19

Escape key, 1-3
Exiting PM ATE, 1-13, 2-5

Fatal error, 4-20
File, input and output, 3-6 to 3-7
Filename, 1-2, 3-5 to 3-6
Format Mode, 1-7 to 1-8, 3-14 to 3-15
Formatting text, 3-12 to 3-15
Form-feed character, 1-3, 3-9, 4-23
Free space flag, 4-24
Functions, 4-9 to 4-10

Garbage stack, 3-1 to 3-2, 4-23
Global commands, 3-8

If-then loops, 4-17
Indenting text, 3-13 to 3-15, 4-25
Insert command, 2-2, 2-3, 4-11
Insert Mode, 1-6 to 1-7
Inserting text, 2-3, 4-11

Instant command
buffer, 1-11
changing case, 1-11
cursor movement, 1-10
definition, 1-8
deleting text, 1-10
indenting text, 3-13
moving text, 1-11
recovering text, 1-10
scrolling, 1-10
switching modes, 1-11

Iteration, 3-17, 4-15 to 4-18

Jump command, 4-18

Keyboard input, 4-21, 4-25

LIN indicator, 1-5
Line

indicator, 1-5
length, 1-5

Logical operations, 4-6 to 4-7

Macro
comments, 4-21 to 4-22
definition, 4-1
examples and ideas, Appendix B
execution, 4-1, 4-4
exiting, 4-18
file, 4-2 to 4-3
name, 4-2
nesting, 4-4
permanent, 4-2 to 4-3
storage, 4-1 to 4-4

Manual Mode, 3-9 to 3-10
Margin, 1-7, 3-14 to 3-15

INDEX Index-3

Mode
Auto Buffer, 3-8 to 3-9
Backup, 4-24
Command, 1-6 to 1-7
Format, 1-7 to 1-8, 3-14 to 3-15
Insert, 1-6 to 1-7
Manual, 3-9 to 3-10
Overtype, 1-6 to 1-7
Trace, 4-18 to 4-20
Type Out, 4-23

Modes
operating, 1-6 to 1-8
switching, 1-7, 1-11, 2-5

Moving text, 1-11, 2-4, 3-1 to 3-4
Multiplication, 4-5 to 4-6

Nesting
command strings, 3-18
macros, 4-4
string arguments, 4-14

Next command, 4-17
Nonfatal error, 4-20
Number stack, 4-8
Numeric argument, 2-1 to 2-2,

4-5 to 4-11,4-17 to 4-18

Operating modes, 1-6 to 1-8
Optional error, 4-19
Overtype Mode, 1-6 to 1-7

Page break, 3-17
Page division, 3-9
Pathname, 1-3, 3-11
Permanent macro area, 4-2 to 4-3
Printing text, 1-12, 2-5, 3-17
Program files, 1-4

Q commands, 4-22 to 4-25

Radix, 4-11 to 4-12
Reading text, 1-13, 2-5, 3-5 to 3-7
Recovering text, 1-10, 3-1
Replace command, 2-2, 2-3, 4-11

Replacing text, 2-2, 2-3, 4-11
Reset disk, 3-11

Saving PMATE, 4-3
Screen display, 1 -5
Scrolling, 1-10, 4-24
Search command, 2-2, 2-4
Searching, 2-2, 2-4, 4-15
Space bar, 4-19
Status line, 1-5
String argument, 2-2
Subtraction, ,4-5 to 4-6
Switching modes, 1-7, 1-11,2-5

Tab fill, 3-13, 4-24
Tab stops, 3-12 to 3-14
Tag, 1-3, 2-4, 1-10, 2-5
Text area

definition, 1-5
clearing, 2-5

Trace Mode, 4-18 to 4-19

Variables, 4-7 to 4-8

Wild-card, 1-4, 3-10, 4-15
Writing text, 1-13, 2-5, 3-5 to 3-7

Index-4 PMATE

P I i n k 8 6

SQUEEZING A LARGE PROGRAM
INTO A SMALL MEMORY SPACE?
The Overlay Linkage Editor That
Brings Modular Programming to
8088/86-Based Micros.

If you're tired of shoe-horning large pro­
grams into small memory, you're ready
for Plink86. Now you can write a program
as large and complex as you want and
not worry about whether it will fit within
available memory constraints, especially
if you’re porting software down from
minicomputers.

You can divide your program into any
number of tree-structured overlay areas.
Handle diskette changes while running
large programs.. .Segment the program
for add-on packages...Work on modules
individually...Then link them into execut­
able files. And, there's no need to make
changes to the source program modules.

Plink86

P I i n k 8 6
Two-Pass Linkage Editor - piink86 ac­
cepts any object file conforming to the
Intel or Microsoft format and outputs exe­
cutable program files. Each input file is
read twice. During the first pass Plink86
determines which modules are to be
loaded and allocates memory segment
addresses. During the second pass, the
output file is created. All information about
program modules is available before the
output file is created, giving you greater
flexibility in assigning memory addresses.

Modules created by the Microsoft as­
sembler or any of Microsoft’s 8088/86
compilers may be linked. Plink86 also
works with other popular languages, like
Lattice C, Computer Innovations' C86, or
mbp/COBOL.

Automatic disk buffering ensures that
Plink86 won't run out of space for symbol
names. Plink86 allows three different kinds
of paginated, sorted memory map reports
to be written to the printer or disk file.
These reports enable symbols to be de­
fined as absolute addresses or as offsets
to other symbols, and produces symbolic
information for Phoenix's Pfix86 Plus™
debugger.
Overlay Management - Plink86’s easy-
to-use overlay description language lets
you specify your overlay structure in one
place in your program. Up to 4095 over­
lays can be stacked 32 deep. And, you
don't have to recompile to change the
overlay structure.

Once your structure is defined, the over­
lay manager is bound into your compiled
program. Automatically swapping mod­
ules between disk and memory. Without
the need for calls from the source pro­
gram. So that each module can tempor­
arily occupy the same memory space.

It’s easy to use the same module in dif­
ferent programs, or to quickly experiment

with changes to the overlay structure of an
existing program. You can use one overlay
to access code and data in other overlays.
Each overlay may contain as many entry
points as you want. You can write overlays
making up a program to the same file as
the main program, or to one or more other
files which may be stored on separate
diskettes.
The Library Manager - Plib86™ is in­
cluded as part of the Plink86 package.
With it you can build libraries from scratch.
Add or delete modules from existing
libraries. Merge libraries. And produce
cross-reference listings. Modules may be
chosen for processing using the same
library search algorithm used by Plink86,
so that portions of one or more libraries
can be cross-referenced or merged into a
new library.
I/O - During processing, Plink86 uses all
available memory to hold I/O buffers and
the description of the program. The pro­
gram description is automatically paged
to disk if there is not enough free memory
to hold it. The program may define up to
about 35,000 program description objects
(symbols, segments, groups, etc.) So
Plink86 can link almost any size program
you can write.
Language Interfaces - Microsoft C;
Microsoft FORTRAN; Microsoft Pascal;
Microsoft BASIC; Microsoft COBOL;
Microsoft Assembler; Lattice C; Com­
puter Innovations' 086; mbp/COBOL.
Operating Systems - pc DOS, MS-
DOS™ and CP/M-86™ (Lattice C and
Digital Research's Assembler only).

Plink86. One in a series of software
development tools by Phoenix. It’s the
right tool for the job.

Phoenix Computer Products Corporation
1416 Providence Highway, Suite 220
Norwood, MA 02062
MOI 344-7200
In Massachusetts 16171769-7020

MS-DOS is a trademark of Microsoft Corporation
CP/M is a trademark of Digital Research, Inc.
Plink86, Plib86. and Pfix86 Plus are trademarks of Phoenix Software Associates Ltd.

PLINK

COPYRIGHT

® 1983 by VICTOR®.
® 1983 by Phoenix Software Associates Ltd.

Published by arrangement with Phoenix Software Associates Ltd., whose
software has been customized for use on various desktop microcomput­
ers produced by VICTOR. Portions of the text hereof have been
modified accordingly.

All rights reserved. This manual contains proprietary information which
is protected by copyright. No part of this manual may be reproduced,
transcribed, stored in a retrieval system, translated into any language or
computer language, or transmitted in any form whatsoever without the
prior written consent of the publisher. For information contact:

VICTOR Publications
380 El Pueblo Road
Scotts Valley, California 95066
(408) 438-6680

TRADEMARKS

VICTOR is a registered trademark of Victor Technologies, Inc.
PLINK and PLIB are trademarks of Phoenix Software Associates Ltd.
INTEL is a trademark of Intel Corporation.
Microsoft is a registered trademark of Microsoft Corporation.
MS- is a trademark of Microsoft Corporation.

NOTICE

VICTOR makes no representations or warranties of any kind whatso­
ever with respect to the contents hereof and specifically disclaims any
implied warranties of merchantability or fitness for any particular pur­
pose. VICTOR shall not be liable for errors contained herein or for
incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

VICTOR reserves the right to revise this publication from time to time
and to make changes in the content hereof without obligation to notify
any person of such revision or changes.

First VICTOR printing November, 1983.

ISBN 0-88182-040-7 Printed in U.S.A.

II PLINK

CONTENTS

1. Introduction
1.1 About This Manual.. 1-1
1.2 Using PLINK with Compilers Not Mentioned

in This Manual... 1-2

2. Linkage Editor Concepts
2.1 The Basics... 2-1

2.1.1 What Does a Linkage Editor Do?........................... 2-1
2.1.2 Terminology.. 2-3

2.2 Basic 8086/8088 Concepts... 2-7
2.2.1 Public Segments.. 2-7
2.2.2 Private Segments... 2-8
2.2.3 Groups.. 2-8
2.2.4 Classes.. 2-9

2.3 PLINK Overview... 2-10
2.3.1 PLINK Design... 2-10
2.3.2 Storing a Program on Disk....................................... 2-10
2.3.3 Overlays.. 2-11

3. Getting Started with PLINK
3.1 Installing PLINK... 3-1
3.2 Using PLINK.. 3-2
3.3 PLINK Files... 3-5

4. PLINK Commands
4.1 Input Format.. 4-1

4.1.1 16-Bit Values... 4-1
4.1.2 Identifiers..4-2
4.1.3 Disk Filenames.. 4-3
4.1.4 Starting PLINK...4-4
4.1.5 Command Format..4-5

CONTENTS III

4.2 Output File...4-6
4.3 Memory Map..4-6

4.3.1 WIDTH.. 4-8
4.3.2 HEIGHT.. 4-8

4.4 Object Files........................ ...4-8
4.4.1 FILE, LIBRARY, and SEARCH............................ 4-9

4.5 Defining Program Structure........... 4-10
4.5.1 SECTION...4-12
4.5.2 CLASS.. ...4-13
4.5.3 MODULE... 4-14
4.5.4 GROUP... 4-15
4.5.5 Command Precedence............. 4-15

4.6 Overlays.. 4-16
4.6.1 BEGINAREA and ENDAREA...............................4-17
4.6.2 Separate Overlay Files................................. 4-23
4.6.3 Selecting an Overlay Loader................................... 4-24
4.6.4 ALWAYS and NEVER..4-24
4.6.5 Finding the Overlays............................ 4-25
4.6.6 Direct Overlay Load... 4-26

4.7 Miscellaneous Commands................................... 4-28
4.7.1 DEFINE... 4-28
4.7.2 VERBOSE..4-28

5. PLINK Examples
5.1 PLINK Commands for MS-DOS Files................................5-1

5.1.1 DSALLOC..5-1
5.1.2 HIGH... 5-2

5.2 Using PLINK with Common MS-DOS Compilers..........5-2
5.2.1 Lattice C... 5-2
5.2.2 MS-FORTRAN and MS-Pascal................................5-4
5.2.3 PL/M-86 and ASM86.. 5-5

IV PLINK

APPENDIXES
A. Overlay Loader..A-l
B. Warning Messages.. B-l
C. Error Messages.. C-l
D. Supported Compilers..D-1
E. Debugging Hints... E-l

FIGURES

4-1: Simple Overlay.. 4-19
4-2: Two Independent Overlays.. 4-20
4-3: Overlay Structure with Nested BEGIN/END Pairs....................4-21

TABLES

4-1: Bases for 16-Bit Values...4-2

CONTENTS V

CHAPTERS

1. Introduction

2. Linkage Editor Concepts

3. Getting Started with PLINK

4. PLINK Commands

5. PLINK Examples

Qi
2
I
3
I
4
I
5

CHAPTERS VII

INTRODUCTION

The PLINK program takes individually compiled modules of
8086/8088 object code and links them into one or more relocatable files
that can be loaded and executed by your computer’s operating system.
PLINK can handle the output from various popular compilers available
for the 8086/8088 microprocessor, and an overlay feature lets you run
programs larger than your computer’s available memory.

ABOUT THIS MANUAL 1.1
The manual assumes that you have some programming experience. It’s
designed to be read from front to back—each chapter assumes that you
understand the information in all the previous chapters.

Chapter 2 gives an introduction to linkage editors in general and to
PLINK specifically. Start with Chapter 2 if you are not familiar with
linkage editors; otherwise, start with Chapter 3.

Chapter 3 shows how to get started with PLINK. It describes the PLINK
package and some simple checkout procedures.

Chapter 4 is a complete listing of the commands and features offered by
PLINK.

Chapter 5 shows how to use PLINK with several popular compilers. The
chapter gives an informal explanation of the most commonly used com­
mands, and describes the commands peculiar to MS-DOS. This chapter
gives sufficient information and examples for many applications of
PLINK.

Error codes, warning messages, and overlay tables are discussed in the
appendixes.

INTRODUCTION 1-1

1.2 USING PLINK WITH COMPILERS NOT
MENTIONED IN THIS MANUAL

This manual tells how to use PLINK with the most popular compilers
on the market at the time of this writing. If you want to use PLINK
with a compiler not mentioned in this manual, you are pretty much on
your own. You may find that a new compiler offered by a particular
software company is similar to one already sold by that company. If
this is the case, there’s a good chance that PLINK is compatible with
the compiler, although you may have to use some obscure commands
to structure your linked program. Ask your dealer for help in adapting
PLINK for use with the compiler.

1-2 PLINK

2
LINKAGE EDITOR CONCEPTS

This chapter describes the basic functions of a linkage editor and
defines some terms used throughout this manual. It also shows how
PLINK interacts with the 8086/8088 microprocessor, and how PLINK
links and stores programs.

THE BASICS 2.1

WHAT DOES A LINKAGE EDITOR DO? 2.1.1

A linkage editor has two main purposes: it helps solve the memory
management problem for programs, and it supports modular program­
ming.

Memory Management
Computer memories fall into two categories. One kind is fast, but also
small and expensive (semiconductor memories, for example). The
other kind is slow, but has a lot of memory space and costs much less
per bit of information stored (for example, disks or diskettes). Because
of these design constraints, most modern computers have a two-tiered
memory system. To run programs quickly, the programs and the data
they require are loaded into a fast “primary” memory. A large, inex­
pensive “secondary” memory provides adequate storage at a reason­
able cost.

Some interpretive languages offer memory management help for pro­
gram code. For example, many BASIC interpreters let you “chain”
one program to another. The new program is then loaded into

LINKAGE EDITOR CONCEPTS 2-1

memory on top of the old one and execution continues. Some fancier
interpreters load individual procedures automatically from disk as the
executing program needs them. The interpreter has full control over
program execution, and can easily catch references to objects not in
primary memory and then load those objects. However, if a program is
executing in the form of machine code, this task is difficult without
some help from the processor. Because of this, noninterpretive
language compilers do not provide for automatic memory allocation
themselves. Since most major software packages are not written as
interpretive systems, the memory management problem remains
unsolved.

A linkage editor such as PLINK handles the memory management
problem for noninterpreted programs. When used with programs that
are executed directly by the processor, PLINK offers automatic
methods for swapping various parts of the program in and out of
memory as required during execution. Because portions of the pro­
gram share the same primary memory space, the program’s total pri­
mary memory requirement can be greatly reduced.

Modular Programming
It is often convenient (if not essential) to divide a large programming
job into smaller pieces called “modules” that can be edited and com­
piled separately. Because many microcomputer compilers can only
compile a limited number of code lines at once, you may have to use
modules regardless of your preferences. Modular programming also
lets you organize a program into pieces that are easier to understand
and work with. Using a linkage editor to “link” the pieces of the pro­
gram saves time because only the affected modules are recompiled
when you make a change. The linkage process is generally faster than
compilation.

Once you create a modular program, you may find that some of the
modules are useful in a different program. With a little work, you can
make these modules more general and use them in many programs. In
this way, you can make a “library” of useful routines that can be
linked in by the linkage editor whenever needed. In fact, most com­
pilers are sold with a library that supports functions not supported by

2-2 PLINK

the hardware and have to be implemented as procedure calls (such as
arithmetic on real numbers). The compiler library also contains
modules that support high-level language features, such as formatted
output in FORTRAN. This library is often called the “run-time sup­
port,” because its modules are required while the program executes.

TERMINOLOGY 2.1.2 2

This section contains a glossary of some basic terms commonly used
when discussing linkage editors.

Object File
The compiler (or assembler) produces the object file as output after
compiling a program. The linkage editor takes the object file as input.

Relocatable File
This is another term for object file. “Relocatable” means the file con­
tains code that the linkage editor can modify to execute at any address
in the computer memory. This term is often shortened to “REL
FILE.”

Module
This is the smallest unit of code that can be compiled at one time. The
relocatable file created by a compiler typically contains one module.
You usually create a module for each major function within a pro­
gram; however, a compiler usually lets you put several procedures or
functions into a single module. Although the functions and procedures
in a module can be called separately, the linkage editor treats the
module as a single entity, and the procedures can no longer be
separated.

LINKAGE EDITOR CONCEPTS 2-3

Library
A library is a relocatable file that contains more than one module. A
library often has an index to its modules; this helps the linkage editor
to quickly find the modules it needs. (This kind of library is called an
“indexed library.”)

Segment
A segment (or logical segment) is the basic unit of code or data mani­
pulated by the linkage editor. A module is made up of segments. Usu­
ally there is at least one segment for the module’s code and another
one for data.

A main job of the linkage editor is to determine how much memory
each segment of each module requires and where in memory to put it.
One segment may need to access code or data in another. For exam­
ple, the code segment of a module may need to load some data from
the data segment into a register. These references are “fixed up” by the
linkage editor after the segment addresses have been selected; i.e., the
address is plugged into the right place in the segment making the refer­
ence.

Common Block
FORTRAN and other compilers often create a segment for each com­
mon block accessed by a module. A common block is a way for several
modules to share a data area. A common block referenced by a partic­
ular module is overlapped by common blocks referenced by other
modules. Each module references the common block using the same
name. The size of the common block is the same as that of the largest
version of the common block specified by any module.

2-4 PLINK

Symbol
A symbol is much like an identifier in a program. It is a name for a
value which can be a constant, the address of a piece of code, or data
somewhere in the program. The first kind is called an “absolute sym­
bol.” The second is called a “relative symbol,” because it is defined
relative to a segment. If a segment is 100 bytes long, for example, you
could define a relative symbol as the address of that segment plus 50
bytes. The linkage editor then determines the address of the symbol by
adding 50 to the address it selects for the segment. When segments
contain references to a symbol, those references are modified by the
linkage editor to contain the assigned address or value of the symbol.

Public Symbol
Sometimes called an “internal symbol,” a public symbol is a symbol
whose value is defined inside the module that contains it. It is called
“public” because its value is available to other segments in other
modules. Only those symbols deliberately made public by the compiler
are visible to other modules.

External Symbol
An external symbol is a symbol that has its value supplied by a module
other than the one containing it. All references to an external symbol
are fixed up by the linkage editor when its value becomes known. If an
external symbol is never defined by any module, the linkage editor
gives an error message.

Library Search
This term refers to the way libraries are processed by the linkage edi­
tor. When the linkage editor encounters an undefined external symbol,
it looks up the symbol in the library index. If a module in the library
defines the symbol (i.e., specifies the symbol as public), that module is
included in the program. If the library does not have an index, the

LINKAGE EDITOR CONCEPTS 2-5

linkage editor usually scans the entire library one or more times to find
the needed module. A module loaded from the library can contain
undefined external symbols of its own; the linkage editor keeps search­
ing to find those symbols as well.

2

Section
This part of the program is loaded from disk into memory as a single
unit. A section is also called a "load module.”

The linkage editor breaks modules into segments and then regroups
those segments into sections for execution. The program section that
contains the main program modules usually is loaded into memory by
the operating system when the program is executed. Other sections are
loaded at the same time, or loaded later by a run-time routine supplied
by the linkage editor.

Overlay
An overlay is a section that shares all or part of its memory with at
least one other section. Overlays are brought into memory as the pro­
gram runs, usually destroying other overlays using the same memory
space. This reduces the memory requirement of the program.

Overlay Loader
Sometimes the operating system loads overlays into memory as
required; otherwise, an overlay loader is included in the program by
the linkage editor. PLINK invokes the overlay loader automatically
each time it is needed.

2-6 PLINK

BASIC 8086/8088 CONCEPTS 2.2
The last section discussed what linkage editors do and defined some
terms associated with linking. Because linkage editors are unavoidably
involved in the basic addressing mechanisms of the computer they are
run on, we also need to introduce some concepts specific to the Intel
8086/8088 processor used by your computer.

The addressing scheme of the Intel 8086/8088 processor is based on a
16-bit address, providing a 64K byte address space for the processor (1
Kbyte is equal to 1024 bytes). To access a full megabyte of main
memory, the 8086/8088 provides four segment registers that provide a
20-bit address. The word “segment” has a different meaning here than
in the last section. Here it refers to a 64K “physical segment,” as
opposed to the “logical segment” discussed earlier.

The segment registers (CS, DS, SS, and ES) are each only 16 bits long,
but each contains a paragraph address, where a paragraph is 16 bytes.
In this way, the segment registers address 16 * 64K bytes or 1 mega­
byte. The 16-bit address used by most instructions are treated as an
offset to one of the segment registers. Although a program can access
only four 64K pieces of memory at once, the segment registers can be
moved around to access any part of the megabyte address space.

Whenever a memory address is needed, this dual addressing scheme
requires the linkage editor to know the address in the segment register
that will be used as a base. To provide this information, the 8086/8088
processor uses public segments, private segments, groups, and classes.

PUBLIC SEGMENTS 2.2.1

A public segment can be “combined” with other segments of the same
name. Combined segments are concatenated so that they occupy adja­
cent locations in memory. Often a combined segment is accessed by
putting a base register at the low end. PLINK combines segments on

LINKAGE EDITOR CONCEPTS 2-7

request, but only if they are in the same section. Even when they are
deliberately kept apart, the segments are still addressed by assuming
the base address is the address of the segment lowest in memory.

PLINK creates reports called "memory maps” that describe the
address allocation of the program. A public segment within a section
causes only one entry to be listed in the map, even if several modules
define the segment. The size of the public segment is the sum of the
sizes of the original segments.

2.2.2 PRIVATE SEGMENTS

Private segments cannot be combined. Private segments usually are
addressed by setting a base register to the front. The 8086/8088 has
"long call” and "long jump” instructions that set a base register while
changing the execution address. Many MS-DOS compilers produce a
private segment for the module code, and use long jumps and calls to
set the segment register to the front of the called segment. This lets
programs have more than 64K of code. At run-time, MS-DOS fixes up
the segment addresses of the program by adding the paragraph address
where the program was loaded. The PLINK overlay loader fixes the
paragraph addresses contained in overlays as they are loaded.

2.2.3 GROUPS

A group is a collection of segments accessed by the same segment
register. The address of the segment register is the address of the seg­
ment within a group having the lowest memory address. If the end of
the highest segment is 64K or less from the start of the lowest one, any
of the segments can be addressed with a 16-bit offset. Most compilers
group the data segments of the program into a single group called

2-8 PLINK

DGROUP. A segment register points to DGROUP when the program
begins, and continues to point there while the program executes. Com­
pilers that follow this procedure cannot create programs with more
than 64K of data area.

PLINK does not move segments from one place to another to put the
segments of a group within 64K of each other. Instead, PLINK gives
warning messages if a segment cannot be addressed from the base of
the group. If requested, PLINK can put all segments of a particular
group into a given section of the program. Some examples of this
feature are given later.

2

CLASSES 2.2.4

You can also refer to a collection of segments by a class name. The
class name can be used to move all members of a class to a specified
section without naming all the members of that class. Where possible,
PLINK puts members of the same class into adjacent areas of memory
and in the order the class names are given. Within a class, segments
are ordered in the sequence the segment names are given.

Every segment is assigned to a class by the compiler or assembler. Pub­
lic segments must have the same class name in order to be combined.

The 8086/8088 processor also uses an "overlay name” for each seg­
ment. PLINK ignores the overlay name, but provides other ways to
specify the overlay structure of your program.

LINKAGE EDITOR CONCEPTS 2-9

PLINK OVERVIEW 2.3

2.3.1 PLINK DESIGN

PLINK is a two-pass linkage editor; that is, each of the input files is
read twice. During the first pass, PLINK determines the modules to be
loaded and allocates segment addresses. The output file is created dur­
ing the second pass. This makes PLINK slower than one-pass linkers,
but ensures that full information about all program modules is avail­
able before the output file is created. This provides greater flexibility in
assigning memory addresses.

PLINK uses all available memory to hold I/O buffers and the descrip­
tion of the program being linked. The program description is automat­
ically read to disk if there is not enough free memory to hold it.
PLINK can define as many as 35 thousand program description
objects (symbols, segments, groups, and so on). Almost any size pro­
gram can be linked, although it might take a while.

2.3.2 STORING A PROGRAM ON DISK

Linkage editors use two methods to store the sections of a program on
disk. One way is to put each section into a separate file. This wastes
space in the disk directory and requires a directory search whenever a
section must be loaded into memory. If a program is heavily overlaid,
you lose time searching for overlay files in the disk directory. Also, you
can never be certain if the correct versions of each file are on the disk
at the same time.

The separate-file approach does have an advantage, however. If your
system does not have a hard disk, you can access other parts of a pro­
gram by swapping diskettes. In this way, you can use a program larger
than your available memory. PLINK lets you arbitrarily group pro­
gram sections into any number of output files, so the tradeoffs just dis­
cussed can be handled as desired.

2-10 PLINK

Some linkage editors let you link a program in pieces. This lets you
avoid a relink of the program if only a single section needs to be
changed. PLINK can’t do this; the entire program must be linked each
time, even if the program is being loaded into more than one output
file.

Actually, piecemeal linking is not appropriate for the 8086/8088
because most compilers require the data areas to be combined. This
means that you would have to relink everything anyway if you
changed the data.

If the time spent linking the program becomes unacceptable, you should
consider breaking up the program into several smaller ones that are
linked separately and chained by facilities offered in the operating sys­
tem.

OVERLAYS 2.3.3

Many linkage editors require you to code calls to the overlay manager
in the source program. This approach hinders modular programming;
you can’t link the same module into overlay structures in different pro­
grams without changing the calls and recompiling. This requirement
also scatters the description of the overlays all over the program, mak­
ing it hard to visualize the final overlay structure.

PLINK does not require changes to the source program modules.
Instead, it uses an easily-understood overlay description language that
lets you specify the overlay structure in one place. You do not need to
recompile when changing the overlay structure. With PLINK, you can
use the same module in different programs, or quickly experiment with
changes to the overlay structure of an existing program.

PLINK does this by intercepting calls to overlaid routines and substi­
tuting a call to a small piece of code called an "overlay vector.” The
overlay vector calls the overlay loader to ensure that the needed over­
lay is loaded, and then jumps to the desired routine. This automatic
overlay call mechanism lets you set up complex overlay structures
without worrying about when to load the overlays.

LINKAGE EDITOR CONCEPTS 2-11

3
GETTING STARTED

This chapter shows how to install PLINK and to make sure you have a
good copy of the program. The chapter also gives a simple example of
how to use PLINK, and describes the files on the PLINK distribution
disk.

INSTALLING PLINK 3.1
First, copy the files on your PLINK distribution disk onto another
disk. Then, log onto the disk containing the PLINK files and validate
PLINK by running the CHECKSUM program supplied on the disk.
To run CHECKSUM, type:

CHECKSUM PLINK86(cr)

The message “Checksum OK” should appear on the screen. If this
message does not appear, run CHECKSUM again. If the “Checksum
OK” message still does not appear, you probably have a bad copy of
PLINK. Get a replacement from your dealer.

After the CHECKSUM program completes successfully, try to execute
PLINK by typing:

PLINK86 @PLTEST(cr)

PLINK should execute for a minute and then issue this message:

PLTEST (3K)

GETTING STARTED 3-1

This means that the PLTEST program has linked successfully. See if
PLINK runs by typing:

PLTEST(cr)

PLINK should respond with the following message:

PLTEST OK

3 If either of these tests fail, then some part of your operating environ­
ment is incompatible with PLINK. (Contact your dealer for assis­
tance.) If the tests complete successfully, you are ready to use PLINK.

3.2 USING PLINK
Here is a simple example of how to use PLINK. (Everything in this
section is described in more detail in Chapter 4.) Suppose you have a
complete assembler program consisting of the source file TEST.ASM,
which is assembled to produce TEST.OBJ. To produce the file
TEST.EXE, type:

PLINK86 Fl TEST(cr)

PLINK accepts input on the command line as it is executed. Every
PLINK statement begins with a key word. The key word in the last
example is FI, an abbreviation for FILE. Key words can be abbreviated
by leaving off characters on the right, as long as the resulting abbrevia­
tion is unique. Statements can be put together on the same line in any
column—this is called "free format” input.

3-2 PLINK

Each program must contain at least one FILE statement giving the
names of the files to be linked. All modules appearing in the files are
included in the output program. If you do not specify an extension for
a filename, PLINK assigns the default .OBJ extension.

After you enter a command statement, PLINK links the program and
then displays a message like this:

TEST•EXE (5K)

This particular message tells you that the output program TEST.EXE
has been created successfully, and that the program needs 5K bytes of
memory when executed. This size can differ from the actual size of the
program on disk, especially if the program uses overlays.

Unless you specify otherwise, PLINK gets the name of the output file
by using the name of the first input file with extension .EXE. The
OUTPUT statement could have been used to give the name explicitly
by typing:

PLINK OUTPUT TEST.EXE FILE TEST.OBJ(cr)

PLINK also accepts input interactively from the keyboard. Type:

PLINK86(cr)

and PLINK prompts you for input statements. You can enter as many
lines as you want. PLINK checks your input for syntax and stores it
until you enter a semicolon to terminate the last line.

If an error occurs, PLINK displays an error message on the screen. The
message is often accompanied by an error number. Look up this
number in Appendix C to find advice on how to correct the problem.

GETTING STARTED 3-3

With more complicated programs, store the necessary commands in a
disk file to avoid retyping the commands each time you need them.
The commands in these files have the same format as any other com­
mands. Staying with our example program, you can create a file
named TEST.LNK by entering:

OUTPUT TEST.EXE
FILE TEST.OBJ
LIB MATHLIB.LIB
MAP = TEST

Then link the program by putting an at-sign (@) in front of the
filename:

PLINK86 @TEST(cr)

Unless you specify a different extension, PLINK assumes that the
extension of an @ file is .LNK. These @ files can be used at almost
any point during command input, and each can invoke other @ files
up to three levels deep. This lets you create a complicated overlay
structure for a library file and then use it within many different pro­
grams.

The linkage edit we’ve entered produces a memory map report on disk
called TEST.MAP. There are a variety of formatted reports available.
(See Section 4.3 for details.) The command file also names a library to
be searched. Library files have the extension .LIB. Any modules
needed by the TEST module are selected automatically.

When linking extremely large programs, PLINK may not have enough
primary memory to store the description of the program. When this
happens, the message:

Out of memory, opening work file

appears on the screen. PLINK then opens a work file on the logged
disk, and stores a portion of the program description in that file. The
logged disk should not be removed until the linkage edit is complete.

3-4 PLINK

PLINK FILES 3.3
Your PLINK software includes several files not yet discussed. Some of
these aren’t needed to operate PLINK; they’re included as a conveni­
ence to software developers.

The PLINK software consists of these files:

> PLINK86.EXE: The linkage editor program.

► CHECKSUM.EXE: A utility program that validates the checksum
of any .EXE file. Use it if you suspect a program has been damaged.

To run CHECKSUM, enter the name of the file followed by the
name of the file to check, as in this example:

CHECKSUM BIGFILE.EXE

► PLTEST.LNK, PLTEST.LIB: A PLINK test program with overlays.

► OVERLAY.LIB: An object file that contains run-time overlay
loaders. OVERLAY.LIB must be on the logged disk when you link
a program that contains overlays. PLINK automatically selects the
appropriate overlay loader to include in the program when overlays
are used.

► COMPARE.EXE: A utility that compares two files byte-by-byte.
When differences are encountered, COMPARE lists the bytes from
the first file with the corresponding bytes from the second file under­
neath. You can specify starting address and size to compare a por­
tion of the files, as in this example:

COMPARE FILE1 FILE2
COMPARE Fl F2 START 21C5 SIZE 20

Numbers are assumed to be hexadecimal unless followed by a
period to indicate decimal. The key words START and SIZE can be
abbreviated by leaving characters off the end.

GETTING STARTED 3-5

► DUMP.EXE: A utility program that dumps a file in a readable form
to the screen or a disk file. To get a listing on the screen, type:

DUMP filename

To put the dump into a disk file, type:

DUMP filename DISK

The name of the disk file is the name of the output file with the
extension .LST.

The program selects a dump format according to the file extension.

.EXE

If the file has the .EXE extension, the header and all base fixups are
printed. To prevent the fixups (there can be thousands of them in a
large program with long calls) use the NOFIXUP option:

DUMP filename.EXE NOFIXUP

.OBJ or .LIB

With .OBJ and .LIB files, object files are dumped showing the Intel
object format. If the file is a library, each module in the library is
dumped. You can select a single module by giving the module
name, or a public symbol defined in the module and present in the
library index:

DUMP LC.LIB MODULE XIOS
DUMP LC.LIB SYMBOL PRINTF

Particular object file records are included in or excluded from the
report by giving the Intel record names or hex record type­
numbers:

DUMP FOO.OBJ INCLUDE THEADR
DUMP FOO.OBJ EXCLUDE 0A0, 9C

3-6 PLINK

If PLINK does not recognize the file extension, the file is dumped
in HEX, with the ASCII interpretation on the right-hand side of
the line.

To force a HEX dump, or any other kind of dump, specify the
type:

DUMP LC.LIB HEX DISK
DUMP TEST.FOO EXE NOFIX

When the format is HEX, the starting address and size can be
specified in hex:

DUMP TEST.FOO START 1200 SIZE 80

When using any of these utility files, remember:

► The file type of the input file defaults to EXE.

► Numbers must begin with a digit 0-9.

► Numbers are assumed to be hexadecimal unless you end them with
a period for base 10.

► Option names can be abbreviated by leaving off characters at the
end.

GETTING STARTED 3-7

4
PLINK COMMANDS

This chapter discusses the various PLINK commands. The commands
are grouped according to their general functions. The groups are:

► Input format

► Output files

► Memory map

► Object files

► Defining program structure

► Overlays

► Miscellaneous commands

4

INPUT FORMAT 4.1
This section describes some basic input elements. Later sections show
how these are combined to create full statements.

16-BIT VALUES 4.1.1

You can express a 16-bit value as a number in any of several bases, as
shown in Table 4-1. An optional radix character immediately following
a number indicates which number system is used.

PUNK COMMANDS 4-1

Table 4-1: Bases for 16-Bit Values

BASE RADIX VALID DIGITS VALID RANGE

Hex H 0-9 , A-F 0-0FFFFH
Decimal 0-90 0-65535
Octal O 0-70 0-1777770
Binary B 0 and 1 16 digits

Use hexadecimal (H) representation if a number does not have a trail­
ing radix character.

Here are some examples of valid 16-bit values:

14170 00185 55. 118 11BH

Here are some invalid 16-bit values:

960 contains an invalid octal digit.
C1C2 does not begin with a digit.
12345H is too large.

4.1.2 IDENTIFIERS

An identifier is the name of an object, such as a module or segment. A
simple identifier is a sequence of 20 characters or less that does not
contain spaces or any of these special characters:

>/,\!’#&* + -:@ DEL

Lowercase letters in identifiers are automatically translated into upper­
case. The first character of an identifier cannot be a digit.

You can avoid these restrictions on valid identifier characters by using
the escape character f). The character immediately following the
escape character is treated as a normal identifier character. If you want
to include the escape character itself in an identifier, type two escape
characters (~).

4-2 PUNK

Here are some valid identifiers:

Programi SORT3 ABC'@

These are not valid identifiers:

34ABC Begins with a number.
NIM A Contains a space.
PROG%1 Starts a comment with a percent sign.

You can make these invalid identifiers valid by including the escape
character:

34ABC NIM" A PROG %1

Identifiers that appear in object files are truncated (cut off on the right)
to 50 characters for symbol names, or 12 characters for other names
(such as groups, classes, and segments). Truncation both saves memory
and makes it easier for PLINK to compare these names with other
identifiers in your program. Identifiers may be truncated again when
included in memory map reports.

DISK FILENAMES 4.1.3

PLINK uses the filename format of the operating system under which
it is executing. A filename is terminated when you enter a character
that cannot be legally included in a filename. The escape character can
be used to put any character into a filename.

This manual uses MS-DOS filenames when discussing how to use
PLINK. These filenames have the form:

< d > : < filename > . < ext >

PLINK COMMANDS 4-3

where:

< d > is a one-letter drive or device specifier.

< ext > is a three-letter extension that specifies the file type.

The device specifier and the extension are optional.

Here are some examples:

PROG1.EXE
B:CHESS.OBJ
SCANNER

If a device is not given, PLINK assumes that you want to use the
logged disk.

4.1.4 STARTING PLINK

You can use PLINK interactively, or you can give input as it is exe­
cuted. All input uses this format:

PL.INK86 < statements > (cr)

where (cr) means you must press the Return key.

To use PLINK in the interactive mode, type:

PLINK86(cr)

PLINK then reads statements from the keyboard, prompting you with
an asterisk (*) each time more input is needed. All input is stored
uninspected until you type a carriage return. Standard line-editing
features supplied by the operating system are available.

4-4 PUNK

A disk file that contains all or part of a command can be inserted into
the input at any point. Do this by entering an @ followed by the name
of the command file, as in this example:

PLINK @COMFILE(cr)

PLINK assigns the default extension .LNK unless you specify other­
wise. A disk file can contain up to three additional levels of @
specifications.

This feature is most often used to prepare a file containing a complete
command. Usually, .LNK files are prepared once for a given program
and then used over and over, simplifying the whole process.

PLINK reads an entire command, checking for syntax only, before
processing files.

COMMAND FORMAT 4.1.5

All PLINK input is free format. Blank lines are ignored, and a com­
mand can use any number of lines. You can include comments by
preceding them with a percent sign. When PLINK encounters the per­
cent sign, all remaining characters on the same line are ignored.

Input takes the form of a list of statements. Each statement begins with
a key word, and many statements are followed by arguments separated
by commas. In this statement:

FILE A,B,C

FILE is the key word, and A, B, and C are the arguments.

PLINK COMMANDS 4-5

Key words can be shortened by omitting trailing characters, as long as
the resulting abbreviation is unique. For instance, the previous state­
ment can be entered as:

Fl A,B,C

For other types of errors, PLINK displays an error message as an error
code. Appendix C explains the PLINK error messages and error codes.

If a fatal error occurs, PLINK terminates after displaying the error
message. Re-run PLINK after you correct the error.

4.2 OUTPUT FILE
The OUTPUT command specifies the name of the file that will hold
the linked program. The extension must be .EXE. If you do not
specify an extension, PLINK assigns .EXE by default. The output file
is written over any existing file with the same name.

Here are some files specified with the OUTPUT command:

OUTPUT PROG1
OUTPUT PROG2.EXE
OUTPUT PROG3.EXE

4.3 MEMORY MAP
You can use the MAP statement to obtain various reports describing
the output of the linkage edit. You can choose reports that show the
memory addresses assigned by PLINK to the sections, segments and
symbols in the linked program, or that describe the modules that were
included.

4-6 PLINK

The format of the MAP statement is:

MAP [=< filename >] <flag1>5... ,<flagn>

where:

< flag 1 > ,... , < flagn > select the report you want. These can be:

G Global symbols. This report lists all public symbols of all
loaded modules. The symbols are listed in alphabetical order
with their assigned addresses.

S Sections. All program sections are listed in input order. The
assigned disk and memory addresses, size, and other informa­
tion is given for each section.

A All. This report lists the program sections in input order. The
segments of each section are listed in order of ascending
memory address.

M Modules. This is the largest report. Each module is listed in
input order, along with the segments it contains, the segment
addresses, and their sizes. The symbols contained in each seg­
ment are also listed. Common blocks are listed separately
because they are not really a part of any single module.

If you do not specify a flag, PLINK uses MAP G by default.

Memory map reports usually appear on the screen. However, they can
be written to any file by typing an equal sign and then a filename. In
this example:

MAP = BIGFILE

a report listing all global symbols is written to BIGFILE.MAP. (The
default extension is .MAP.)

Public segments with the same name located within the same section
appear as a single combined entry in the S and A reports. The size of
the entry is the sum of the individual segment sizes plus amounts
needed for alignment.

PLINK COMMANDS 4-7

In the map reports, segment names are given as the segment name fol­
lowed by the class name, with a period separating the two. This name
is truncated if necessary to fit the allotted number of columns.

4.3.1 WIDTH

This statement sets the page width of the memory map reports. For
example:

WIDTH 132

sets the page width to 132 characters. The report generators change the
page width by changing the number of columns per line.

4.3.2 HEIGHT

This statement sets the page height of the memory map reports. For
example:

HEIGHT 80

sets the page height to 80 characters. The report generators change the
page height by changing the number of lines per page.

4.4 OBJECT FILES
PLINK uses a single object file format—the same format used by the
MS-FORTRAN and MS-Pascal compilers. This is the Intel 8086/8088
relocatable object module format as modified by Microsoft for faster
library searches. Several other compilers also use this format.

4-8 PLINK

FILE, LIBRARY, AND SEARCH 4.4.1

The FILE, LIBRARY, and SEARCH statements define the object files
and libraries to be used as input to the linkage edit. Each statement is
followed by a list of filenames, separated by commas:

FILE MAIN, PASS1.OBJ, PASS2
LIBRARY LC.LIB, APPLIB
SEARCH PASLIB.LIB

The default extension for these files is .OBJ.

With the FILE statement, all modules in the listed files are included in
the output program.

If you use the LIBRARY statement, the only modules selected are
those that contain the definitions of symbols needed to define external
symbols in modules that are already linked. This selection process is
known as a “library search,” and is commonly used for the run-time
support libraries supplied with most compilers. A library search
reduces the size of a linked program because only those parts of the
run-time support actually needed are loaded.

The SEARCH statement is the same as the LIBRARY statement,
except that PLINK makes multiple passes through the file if undefined
symbols remain after all specified files are read. SEARCH is rarely
used, but is useful when you can’t pull all the needed modules out of
the library in one pass. This can occur when you are searching two
libraries that can contain symbols defined in the other library.

You can use the same filename twice in a FILE, LIBRARY, or
SEARCH statement, but a duplicate symbol error will probably occur
if the same module is loaded twice.

If PLINK can’t find an object file you’ve asked for, it looks on drive A.
If the file is not on this drive, PLINK asks for the name of another
drive to search. You can change diskettes at this time if necessary.
Make sure that the diskettes you remove do not contain open files.
(During pass 2 of the linkage edit, for instance, the output file is open.

PLINK COMMANDS 4-9

4

Also, if PLINK runs out of memory, a work file is opened on the
default disk. You must not remove that disk.)

PLINK accepts a PATH name as part of an object filename. If an
object file can’t be found, PLINK looks for a string named OBJ in the
environment and puts that string’s value onto the front of the file
name, after stripping any drive ID. For example, suppose that you
enter:

SET OBJ = \OBJECT

and then run PLINK using this command:

ALE B:TEST.OBJ

If TEST.OBJ doesn’t exist on drive B, PLINK strips the B: from the
name and tries \OBJECT\TEST.OBJ to obtain the requested file.

Usually you set up a directory containing libraries and other com­
monly used object files. These libraries and files can then be auto­
matically linked into any program in the system.

4.5 DEFINING PROGRAM STRUCTURE
This section describes PLINK statements that define the organization
of module segments into sections.

Normally, segment classes are allocated memory in the same order
that they appear in the input files. Within each class, segments are allo­
cated memory in the order that the segment names are encountered.

4-10 PLINK

For instance, suppose the first module linked defines the following seg­
ments:

Class Name

PROG BASE
DATA PROG
PROG PROG
DATA STACK

The segments will be assigned memory in the order BASE, PROG,
DATA, and STACK. The two segments in class PROG are first, fol­
lowed by those in class DATA. Whether or not a segment is in a group,
has no effect on this canonic definition of segment ordering.

Because of the canonic ordering, many compilers supply a “header
file”. This file has to be linked first; it defines all segments the com­
piled program will use. The order they are given in thus defines the
memory allocation order for all segments in the program.

4

Other compilers require the user to link the main module first, and
place the necessary segment definitions within it. Still others output the
required segment definitions with each module compiled. These could
be linked in any order.

Plink86 follows the canonic segment ordering unless it is deliberately
altered with the CLASS command. When the program contains more
than one section, the segments within each section are ordered canoni­
cally (rather than trying to use the canonic order over the entire pro­
gram). For example, if two sections contained segments in class PROG
and DATA, the PROG segments would be first in each section, fol­
lowed by the DATA segments.

PLINK COMMANDS 4-11

4.5.1 SECTION

The SECTION command creates a new program section. Segments
from all files specified after the SECTION command are loaded into
the new program section by default.

The format for the SECTION command is:

SECTION [= < section name>]

where:

< section name > is an optional element used to refer to the sec­
tion in subsequent commands.

4
Segment classes are normally allocated memory in the order in which
they appear in the input files. Regular files are processed first, followed
by library files. A simple, none overlaid program usually has only one
section containing all the classes in order.

Here are some examples:

SECTION = Global
SECTION

Plink86 will automatically create a new section when necessary. If, for
example, you write a FILE or LIBRARY statement without a preced­
ing SECTION statement, Plink86 assumes the SECTION statement
and, if one is not already available, creates one.

All program overlays are sections. SECTION, then, must also be used
to create an overlay, or any other portion of the program that is loaded
from disk as a separate unit. For more information, see Section 4.6.

4-12 PLINK

CLASS 4.5.2

The CLASS command moves some or all of the segments in a class to
the currently defined section. There are two formats.

The first format is:

CLASS < classname >

All segments in the specified class are moved to the current section by
default.

The second format is:

CLASS < classname > (seg1, seg2, segn)

where:

segl, seg2, segn are the segments to be moved to the current sec­
tion.

Nothing happens to the other members of the class. (The class name is
used only to identify the segments to be moved.) This form of the
CLASS statement overrides all other specifications.

Here are some examples of the CLASS command:

CLASS MEMORY
CLASS DATA (OV1DATA, OV2DATA, C0MM5)

The classes and segments specified in CLASS statements become part
of the canonic segment ordering of the program. These classes and seg­
ments appear in the ordering before those defined by program
modules. This happens because Plink86 processes all input statements
before any object files are read. Therefore, even if the class statement is
used only to move something from one section to another, one must
be careful to restore the canonic order to what it should be.

PLINK COMMANDS 4-13

4.5.3 MODULE

The MODULE command assigns all segments from the given modules
to the current section. It is overridden only by the CLASS statement.

The format for the MODULE command is:

MODULE < modulel >, < module2 >, ... < modulen >

where:

< module 1 > , < module2 > , ... < modulen > are the modules to
be included in the current section, separated by commas.

4 MODULE is most often used to select modules from within a library.
A typical library manager program gives a module the same name as
the object filename when the object file is inserted into a library.

You can find the names of the modules in an object file by using the
DUMP utility. For example, this statement:

DUMP BIGFILE INC THEADR

tells you the names of the modules in BIGFILE.

Determining module names can be tricky. FORTRAN compilers typi­
cally give modules whichever name you specify. Other compilers, how­
ever, often give each module the same name, making it impossible to
use the MODULE command. With these compilers, you should use
the FILE command.

4-14 PLINK

GROUP 4.5.4

The GROUP command is used to move all segments within the
specified group to the current section. GROUP overrides the section
assignment given by the FILE statement, but does not override the
MODULE or CLASS statements.

The format of the GROUP command is:

GROUP < groupl > , < group2 > , ... < groupn >

where:

< groupl >, <group2>, ... < groupn > are the names of the
groups to be allocated in the current section.

Here is an example of the GROUP command:

GROUP DGROUP, COMGRP

You can make addressing easier by creating a section which contains
only members of a particular group. The command would look like
this:

SECTION GROUP DGROUP

COMMAND PRECEDENCE 4.5.5

As the preceding discussion has shown, some commands can override
other commands. Here is a list of the preceding commands in order of
precedence (highest precedence first):

1. CLASS (with segments)

2. CLASS (without segments)

PLINK COMMANDS 4-15

3. MODULE

4. GROUP

5. FILE, LIBRARY, SEARCH

FILE, LIBRARY, SEARCH, and SECTION statement are generally
used to structure the program segment into sections. These statements
are then overriden by GROUP, MODULE, and CLASS statements to
place the appropriate entities into overlays, to ensure that groups can
be addressed properly, and to restore the cononic segment ordering.

4 4.6 OVERLAYS
Overlays reduce a program’s memory requirement. Each overlay is a
program section that uses the same memory area as another section.
Two overlays do not generally use the same memory area con­
currently; an overlay normally destroys any earlier overlay in its
memory area.

When you use overlays, PLINK adds an overlay loader module to the
program. The loader automatically reads overlays from disk into
memory as required by the executing program. Memory requirements
are reduced because parts of the program share the same memory
space while the program is running. Overlays increase execution time,
however, because of the extra time needed to load the overlays from
disk.

No explicit calls to load overlays are required in the source code of the
application program; the overlays are loaded automatically by an over­
lay loader supplied with PLINK. The application program can also call
the overlay loader and pass the number of the overlay to be loaded.

If you have unusual requirements, see Appendix A for instructions on
writing custom overlay loaders.

4-16 PLINK

BEGINAREA AND ENDAREA 4.6.1

BEGINAREA and END AREA (abbreviated BEGIN and END) define
overlay structures. You can usually create complex overlay structures
without modifying the program modules as long as you obey some
rules concerning calling sequences and accessing data. The overlay
structure should be organized to minimize the number of times over­
lays have to be loaded. If it takes .05 second to load an overlay, a pro­
gram loop that switches overlays each of the 100,000 times the pro­
gram executes will run for almost three hours. Be careful.

An overlay area is a group of overlays (sections) that share the same
memory address. The BEGIN statement is used without arguments to
create an overlay area beginning at the current memory allocation
address. Each overlay area must be ended by an END statement. Any
sections between the BEGIN/END pair automatically become over­
lays.

4

This example:

OUTPUT TEST
FILE Fl
I-I i. I N SECTION FILE

SECTION FILE
SECTION FILE

F 2
F 3
F4 END

creates a program named TEST.EXE. When TEST.EXE is executed,
the code in file Fl is loaded. This code is the root section of the pro­
gram that is resident in memory at all times. Then, execution begins.
Suppose a call to some code is made from file F2. The overlay loader is
automatically invoked to read F2 from the disk, and then a branch is
made to the called routine. If a call is then made to F3, F3 is loaded,
overwriting F2 in the process. If F2 is called again before F3 or F4, no
disk I/O occurs because the required overlay is still in memory.

An overlay is not written back to disk when replaced by another over­
lay. A fresh copy is loaded the next time the overlay is needed; the disk
file is never modified.

PLINK COMMANDS 4-17

PLINK arranges for overlays to be loaded automatically by replacing
the address that points to an overlaid routine with a call to a small
piece of code that calls the overlay loader and then jumps to the over­
laid routine. (This piece of code is called the "overlay vector.”) This
ensures that the correct overlay is in memory. Calls to an overlaid rou­
tine can be long or short. The overlay loader uses the program’s stack
area, but the stack and all machine registers are returned to their previ­
ous state before returning to the program.

A program can either call or jump to an overlaid routine. However,
you must make sure that the caller is still in memory when you make
a return to the caller. Overlays are not loaded automatically when a
routine returns to its caller. Using the previous example, if F2 calls F3,
F2 is replaced by F3 before the return to F2 is made. F2 can jump to
F3 with no problem, however.

4
PLINK cannot tell if an address in an overlay represents code or data.
If F2 references F3, PLINK assume the reference is a call or jump.
Data can’t be accessed from one overlay to another in the same area.

Figures 4-1, 4-2, and 4-3 are memory diagrams used in the following
discussion of overlay structures. In these diagrams, the vertical dimen­
sion represents memory addresses, with lower addresses at the bottom.
The horizontal dimension is used to indicate where memory locations
are shared.

In Figure 4-1, Fl reaches all the way from left to right because it does
not share its memory (Fl is resident). F2, F3, and F4 share the same
memory space within the overlay area. Since F3 is larger than F2 or
F4, some memory is unused when these overlays are in memory.
These wasted areas are shaded.

4-18 PLINK

Figure 4-1: Simple Overlay

4
More than one overlay area can be created. Each additional one is allo­
cated to the next available space in memory, as shown by this com­
mand:

OUTPUT TESTS
FILE FT! Fl IN
BEGIN S E C T I 0 N F I L E F 1

I-l! ON F I LE FSA, FSB
!"! ECT ION F I LE F3 END

BEGIN S ECTI 0N FILE F4
I-- E C"!" I 0 N F I LE

ECT I ON F I LE F6 END

This command creates two independent overlay areas. One overlay
from the first and one from the second can be in memory simultane­
ously, as shown in Figure 4-2.

PUNK COMMANDS 4-19

Figure 4-2: Two Independent Overlays

You can also create overlay structures by nesting BEGIN and END
statements up to 32 levels deep, as shown in this example:

OUTPUT TEST3
FILE FMFlIN
LIB FLIBR
BEG SECT FILE Fl

SECT FILE F2 BEE ° FILE F4
■:ri ! FILE F5
SECT FILIH F6

END
SECT FILE F3

END

4-20 PLINK

Each section of a program is assigned a “level number.” This number
tells you how many levels of overlay exist at a particular section. A
resident section always has a level number of 0. Whenever a BEGIN
command is entered, the level number of a section increases by one. The
level number decreases by one at an END statement. In Figure 4-1, for
example, Fl is level 0, while F2, F3, and F4 are level 1. In Figure 4-3, Fl
through F3 are level 1, and F4 through F5 are at level 2.

Figure 4-3: Overlay Structure with Nested
BEGIN/END Pairs

F4
F5

F3Fl

F6

F2

Resident Section

4

Each overlay has at least one “ancestor.” An ancestor is the last section
defined before the beginning of the overlay area. The ancestor also has a
lower level number than the overlay area. In Figure 4-1, Fl is the ances­
tor of F2, F3, and F4. In Figure 4-2, the global section is the ancestor of
all the overlays. In Figure 4-3, FMAIN is the ancestor of Fl through F3,
while F2 is the ancestor of F4 through F6.

The ancestors of an overlay consist of the overlay’s ancestor, the ancestor
of that overlay, and so on until a resident section is reached. The number

PLINK COMMANDS 4-21

of ancestors an overlay has is equal to its level number. In Figure 4-3, the
ancestors of F5 (which is at level 2) are F2 and FMAIN.

A section can also have “descendants.” Descendants are all those sec­
tions that share the same section as an ancestor. In Figure 4-3, the des­
cendants of F2 are F4, F5, and F6.

Now that the terminology is established, here is the rule for accessing
data within overlays:

► Data within an overlay can be accessed only from within the over­
lay, or from one of the overlay’s descendants.

For instance, data within F2 can be accessed only from within F2, or
from F4, F5, or F6. The data within Fl can be accessed only within
Fl, since the section has no descendants.

PLINK and the overlay loader guarantee the data access rule by obey­
ing these additional rules:

► When an overlay is in memory, all of its ancestors must be in
memory as well. In Figure 4-3, if F6 were called without a call to
F2, F2 is automatically loaded anyway.

► Overlay vectors are never used when an overlay accesses an ances­
tor. Instructions that access data in this direction are not modified.
Procedure calls execute at full speed as well.

The simplest way to avoid complications when accessing data is to put
all data in a separate section. Most available compilers use a single
64K physical segment for data. If the data is scattered throughout the
overlay structure it can be impossible to stay within this 64K restric­
tion. Many compilers also require the data segment to be at the end of
the program so the free memory above the program can be used as
heap space.

Nested overlay structures are useful when a set of routines is used only
by certain overlays. In Figure 4-3, for instance, F2 would typically con­
tain routines used by F4 through F6, but not by Fl or F3.

4-22 PLINK

SEPARATE OVERLAY PILES 4.6.2

Resident portions of a program and all overlays are normally written
to the same output file. Because the overlays appear at the end of the
file,-the operating system is unaware of their presence when loading the
program. There are two advantages to this:

► It decreases the execution time of your program. No directory
search is needed to find an overlay, because the program file is
opened only once at run time.

► It makes it hard to confuse overlay files from different versions of a
program.

Sometimes, however, it is useful to put overlays into separate disk files.
If a program is linked into a single file, for example, it might not fit on
a single disk.

4

Add the INTO option to the SECTION statement if you want to put
an overlay into a different file. INTO is followed by the name of the
file where the overlay should be placed. If you do not specify an exten­
sion, PLINK uses the default .OVL.

If we add the INTO option to the program discussed with Figure 4-1,
this statement:

OUTPUT TEST
file: Fl
BEGIN SECTION

SECTION
SECTION

INTO TESTI FILE F2
INTO TESTS FILE F3
FILE: F4 END

writes the program into three disk files. Files Fl and F4 are in
TEST.EXE. File F2 is in TESTI.OVL, and F3 is in TEST2.OVL.

If you do not use the INTO option, a section is written to the file of its
ancestor, or to the main output file if the section is at level 0. The
same overlay filename can be mentioned more than once if needed.

PLINK COMMANDS 4-23

4.6.3 SELECTING AN OVERLAY LOADER

The overlay loader library must reside on disk in a file named
OVERLAY.LIB. PLINK searches this file whenever necessary, so you
should not include this filename in a FILE, LIBRARY, or SEARCH
statement. PLINK looks in the directory specified in the OBJ environ­
ment string if OVERLAY.LIB is not found in the current directory.

4

OVERLAY.LIB contains several overlay loaders. PLINK selects an
appropriate one based on your operating system and other factors.
You can select a debugging version of each loader by using the
DEBUG statement. The DEBUG statement displays a screen message
whenever an overlay is loaded at run-time. If you already have a .LNK
file of an overlaid program, for example, you could type:

PLINK86 @TEST.LNK DEBUG

to get a version with debugging messages.

4.6.4 ALWAYS AND NEVER

Sometimes PLINK’s strategy for determining when an overlay vector
should be used for symbol access is incorrect. In these cases, you can
override the default choice.

Suppose, for example, that you’re linking a program, in which the
address of a function is passed as an argument to a function in another
overlay which calls the original function. PLINK doesn’t know that the
original function is being called from another overlay and, as a result,
might not use the vector. If you use the ALWAYS command, PLINK
is forced to use the vector for all references to the symbol.

4-24 PLINK

The format for the ALWAYS command is:

ALWAYS < sym1 > , < sym2 < sym n >

Problems also occur when a data area is to be accessed from an ances­
tor of the overlay that contains the data area. By default, PLINK
assumes that a function is being accessed and uses the overlay vector.
Use the NEVER command to make all access to the symbol use the
real address.

The format for the NEVER command is:

NEVER < sym! > , < sym2 < sym n >

FINDING THE OVERLAYS 4.6.5

None of the operating systems under which PLINK-created programs
can run offer a way for an executing program to find out which disk
file it was executed from. Because the program overlays are usually in
the same file, the overlay loader must somehow find this file and open
it. If the overlays are in one or more separate files, the overlay loader
must find these files as well. With PLINK, this process is usually
automatic, but occasionally you may be asked to tell the program
where the overlays are (see Section 4.6.6).

PLINK supplies the overlay loader with a common block containing
the names of all files making up the program, as well as all other over­
lay information (see Appendix A for details). These filenames consist
of name and type fields only; the drive ID (and directory name) is
stripped.

When looking for an overlay file, the overlay loader first checks the
logged drive (within the current directory) for the required file. If this
fails, the overlay loader tries the internally-set "overlay drive.” The over­
lay drive is initially drive A, but it can be changed as described later. If
the overlay file is not on the overlay drive, the PATH currently set for
executable files is tried.

PLINK COMMANDS 4-25

If all else fails, PLINK asks you to enter the drive ID where the overlay
can be found (see Appendix B for exact messages). You can change
diskettes at this time if necessary, making sure that none of the
diskettes removed have open files on them. The drive ID you enter
becomes the new overlay drive and is used to find overlays needed
later.

The easiest approach to use when disk space is adequate is to put the
program file and all overlay files into the directory specified by the
PATH string in the environment. This is probably where you keep
most other programs anyway; using the specified directory lets PLINK
load the overlays without bothering you.

4
Another approach to finding an overlay is to have the application pro­
gram invoke the overlay loader and handle the "no overlay” situation
directly. This process is described next.

4.6.6 DIRECT OVERLAY LOAD

Sometimes you need to call the overlay loader directly from the appli­
cation program. If you have used NEVER to override the automatic
overlay loading associated with a symbol in an overlay, the associated
overlay must be loaded manually before calling the symbol. A manual
load also lets the application program handle the “overlay file not
found” situation itself. This can be done by having the program
display a message suggesting ways to correct the problem.

4-26 PLINK

You must use assembly language to call the overlay loader directly.
Assembly language gets around the fact that different compilers use
incompatible methods to pass parameters to procedures and return
function results. This is the code you need for MS-DOS:

e x t!- n $!.... 0 A D $ s !- a r

I'l'l O H H 'x P ■:::! I" If! t 1 /
iii o!"!!...., < p a i- a rn ■=■ t e r 2 >
if! v C X , < # o f o v e r 1 a y t o 1 a d >
cal 1 $!.... OH D $
j c < e r i" o r r o u t i n e >

The $LOAD$ routine returns with the carry flag set if the load was
unsuccessful.

Parameter 1 (if nonzero) is a flag that tells the overlay loader to return
to the caller if an overlay can’t be found. In this case, the carry flag is
set; otherwise, an error message appears and the program terminates.

Parameter 2 (if nonzero) is a flag that tells the overlay loader to ask for
the name of the drive on which an overlay is to be found. If parameter
2 is zero, the loader searches the usual place and then aborts the pro­
gram or returns to the application, depending on parameter 1. If
parameter 2 is nonzero, you can enter the drive name, or you can
enter a period to abort. If you decide to abort, and parameter 1 is set,
the loader returns to the application program with the carry flag set.

The overlay number is determined by the order in which overlays are
defined in the input to PLINK, regardless of the level of the overlay.
The first overlay is level 1. If you are unsure how the numbers are
assigned, use the MAP command and the S (or A) report, as described
in Section 4.3.

If the overlay being loaded has ancestors, the ancestors are loaded as
well. After the load is finished, routines in the overlays are called in the
normal fashion. The carry flag is set if the overlay loader is unable to
load one of the ancestors.

PLINK COMMANDS 4-27

If you want the overlay loader to check a different disk or PATH for
an overlay, change them programmatically before calling $LOAD$.

4.7 MISCELLANEOUS COMMANDS

4.7.1 DEFINE

This statement can be used to give values to symbols not defined by
any module in the program. These symbols are then used to resolve
EXTERNAL symbol references made by the program modules. The
symbols can be given absolute values (with or without a base address)
or they can be defined as a plus- or minus-offset to some other symbol.
For example:

DEFINE VERSION = 3, FLAGS --- 101100118,
SI = 100:108, S2 = S1, S3 = S2 + 5

When an absolute symbol is defined (like SI), use a colon to separate
the base and offset components of the address, with the base appearing
first. If only one number is given (like VERSION), PLINK assumes
that number is the offset and sets the base address to zero.

4.7.2 VERBOSE

The VERBOSE command causes PLINK to maintain a status line at
the bottom of the screen that tells you what operation is being carried
out. This is helpful during a long linkage edit.

The format of VERBOSE is:

VERBOSE

4-28 PLINK

5
PLINK EXAMPLES

This chapter describes more complex uses of PLINK by showing how
to create programs under the MS-DOS operating system. An MS-DOS
program is specified by using a filename with the .EXE extension in
the the OUTPUT statement:

OUTPUT TEST.EXE

The .EXE extension is the default.

PLINK COMMANDS FOR MS-DOS 5.1
FILES
Two commands are used only on .EXE files. After these are discussed,
we’ll see how to use PLINK with three MS-DOS compilers.

DSALLOC 5.1.1

DSALLOC changes the address of DGROUP to be the size of the
group minus 10000H. All items referenced relative to DGROUP have
offsets as though DGROUP were moved to the high end of the physi­
cal segment used to hold the data area. DSALLOC does not take argu­
ments.

DSALLOC is used when linking MS-FORTRAN and MS-Pascal pro­
grams. At execution, the run-time systems of the MS-FORTRAN and
MS-Pascal compilers physically move the DGROUP segments to high
memory before any references to them are made.

PLINK EXAMPLES 5-1

5.1.2 HIGH

HIGH sets the “high switch” in the .EXE file header to zero. (Nor­
mally this field contains FFFFH.) This causes the program to be
loaded as high as possible in memory when executed. You do not usu­
ally need to use the HIGH statement—the run-time support libraries
of most compilers use free memory above the program as heap space.

5.2 USING PLINK WITH COMMON MS-DOS
COMPILERS

5
5.2.1 LATTICE C

Under MS-DOS, the Lattice C compiler requires that header file
C.OBJ be linked first, and that library LC.LIB be searched. The
STACK segment in class DATA must appear at the end of the pro­
gram because the heap begins there.

This example shows how to link a non-overlaid Lattice C program:

OUTPUT TEST.EXE
MAP = TEST.LST G
FILE C_. Fl .. F2.. F 3F4
LIB LC.LIB

The example links the program and produces a memory map on disk
that contains an alphabetic list of all symbols and their addresses. The
STACK segment automatically appears last because it is defined last in
the C.OBJ module.

5-2 PLINK

When overlays are used, you must explicitly move the STACK seg­
ment to the end of the program. The resident portion of the program
comes first, and the overlays are in-between. Here is an example:

OUTPUT TEST.EXE
MAP ----- TEST S
FILE C_. Fl .. F 2F3
LIB LC
HI i, I N SECTION FILE F4, F5

SECTION FILE F6, F7, FS
SECTION FILE F9

END
■Uli ON ----- DATA GROUP DGROUP

Use BEGIN and END to define an overlay area where all three sec­
tions share the same memory space. If you have not created a neces­
sary section, PLINK does so automatically. (This is why there is no
SECTION command at the front of the input.) The overlay sections in
the example do not have names, but the DATA section does. The
GROUP statement moves everything in DGROUP to the DATA sec­
tion at the end of the program’s assigned memory area. The STACK
segment is located at the end of this.

The DATA section must be less than 64K in length. If it is longer,
PLINK gives warning messages about offsets being too large. (Lattice C
uses 16-bit offsets to access the data area.)

When the program is executed, MS-DOS loads only the first section.
The DATA section is marked to be preloaded by the overlay loader,
and is loaded as execution of the program begins. This is apparent in
the memory map, which is simply a list of all sections in this example.

In the previous example, the overlays contain only code; all the data is
in the DATA segment. To overlay the data as well, the last line of the
command can be changed to:

SECTION = DATA CLASS DATA (STACK)

or:

CLASS DATA (STACK)

PLINK EXAMPLES 5-3

This puts only the STACK segment at the end of the program; the
other data segments are put with the code segments, allowing the data
to be overlaid. The distance from the lowest-addressed data segment in
the program to the end of the highest must still be 64K or less, how­
ever. The same is true for the code segments.

5.2.2 MS-FORTRAN AND MS-PASCAL

With these compilers, the FORTRAN.LIB or PASCAL.LIB library
must be searched. In addition, the data segments must be allocated to
high memory (for an explanation of this concept, see the DSALLOC
command in Section 5.1.1).

The following examples are for MS-FORTRAN, but the statements for
MS-Pascal are identical. Here is an example of a simple link:

OUTPUT TEST.EXE
MAP = TEST S
DSAL.L OC
FILE Fl, F2, F3, F4
LIB FORTRAN

The program is linked and a memory map listing all modules in the
program and the segments in each is produced. Common block seg­
ments appear in a separate report.

5-4 PLINK

When overlays are used, all data segments (including some not in
DGROUP) must be moved to the end of the program in a specified
order. The main program appears first, then the overlays, then the data
segments, as shown in this example:

END
C I.... A S S M E M 0 R Y , S "I " A C K , D A T A , C 0 M A D S ,

CONST,. COMMON,. HI MEM

0UTPUT PR0CRAM . EXE
MAP EST A
DSALLOC
FILE Fl ,. F2, F
LIB FOR TRAN
HI i SECT F I I....E F 4 ,. FT

SECT F I I....E F6, F7
S E C T F IE FS

When the program is executed, MS-DOS loads only the first section.
The data section at the end is marked to be preloaded by the overlay
loader, and is loaded as execution of the program begins. This is
apparent in the memory map, which is a list of all sections in the pro­
gram and the segments contained in each.

Use the CLASS command to move all the data segments to the end of
the program in the order required by the MS-FORTRAN run-time sys­
tem. MS-FORTRAN does quite a bit of processing before execution of
the application begins, making it difficult to use other structures for an
overlaid MS-FORTRAN program.

PL/M-86 AND ASM86 5.2.3

Under MS-DOS, the PL/M-86 compiler and ASM86 assembler require
that you link the file EXEBASE. OB J with your object modules and
libraries to create an .EXE file. The CONST segment should appear
before the DATA segment.

PLINK EXAMPLES 5-5

This example shows how to link a non-overlaid PL/M-86 program:

0 U T P U T F 0 0
MAP ----- FOO. MAP M, A, G, S
FILE: EXE BASE, FOOL FOOS, FOOS
LIB FOO . LIE-
0!.... A S S C 0 D E , C 0 N S T , D A T A , S T A C K

You can also choose to use the Intel linker, LINK86, to produce .LNK
files, and then use PLINK to turn these files into an .EXE file, as
shown below:

OUTPUT TESTPROG
FILE EXI BASE, I ESI PROG.LNK
C L A S S C 0 0 E , C 0 N S T , D A T A , S T A C K

5

5-6 PLINK

OVERLAY LOADER

This appendix contains technical information about the overlay loader
for programmers who want to write their own overlay loader (not
recommended unless absolutely necessary) and for those who just want
to know more about how PLINK works. None of the information here
is needed to use the overlay loader in the usual way.

ENTRY POINTS A.l
At link time, the overlay loader is selected from a library of overlay
loaders for MS-DOS. The specific overlay loader selected depends on the
main entry point called by the symbol vectors. The name of the entry
point is $OVLY??; the last two characters indicate one of these overlay
loaders:

► $OVLYM: Standard overlay loader for MS-DOS.

► $OVLYMD: MS-DOS overlay loader with debugging messages.

In addition to one of these entry points, the loader contains the following
symbols:

► $OVIN$: The initialization entry point. This is always the starting
address of the program when the overlay loader is present. It initial­
izes the loader and then jumps to $STRT$, the starting address of
the application. This is a long jump.

► $LOAD$: A routine that loads the overlay whose number is in CX,
callable from the application program. If AH is nonzero, the loader
returns to the application if the overlay isn’t found on disk. Other­
wise, program execution terminates and an error message appears. If
AL is nonzero, the overlay loader may ask you to enter the drive
containing the overlay file. Otherwise, it doesn’t ask, and an error is
returned to the application program. An error is indicated when the

OVERLAY LOADER A-l

carry flag is set.

► $OVEX$: The exit point from $OVLY??, used for debugging.
Breakpoints can’t be set in overlays until after they are loaded.
Sometimes it is helpful to break at the address of this symbol. It
points to the return back to the overlay vector jump instruction.

To construct a library of the two overlay loaders, assemble each loader
separately into the .OBJ files OVLYM, OVLYMD. Then, use these
PLIB commands to build the OVERLAY.LIB file:

BU OVERLAY.LIB
Fl OVLYM,OVLYMD
NOI $LOAD$,$OVEX$,$OVIN$

The symbols that would be duplicated in the library index are
prevented from going to the index. (See PLIB for more information.)

A.2 SEGMENTATION
The overlay loader addresses three segments:

► Code

► Data

► $OVTB$

In MS-DOS programs, the two data segments are accessed by putting a
segment register at the front.

A-2 PLINK

OVERLAY TABLES A.3
The linkage editor creates the common block $OVTB$ that provides
all necessary information about overlays to the overlay loader.
$OVTB$ contains this information:

► Base Offset (2 bytes): Contains the paragraph offset of the overlay
loader from the front of the program. By subtracting the base offset
from the current CS register at execution time, the overlay loader
determines the paragraph address at which the program was loaded.

► Overlay Flags (2 bytes): Contains information about the first over­
lay. Bit 15 of the word is set to zero. This bit is used by the overlay
loader to keep track of which overlays are in memory. Bit 14 is the
preload bit. When this bit is set, the overlay loader loads the overlay
immediately upon execution of the program; a request to load it
probably won’t be generated by the application program. Bits 13
through 0 contain the overlay number of the overlay’s ancestor.
Whenever an overlay is in memory, its ancestor must be in memory
as well.

► Fixup Count (2 bytes): Contains the number of base fixup entries (4
bytes each) appearing at the front of the overlay on disk. The fixup
count is nonzero for MS-DOS programs. This table is rounded up
to a page boundary; the overlay contents begin after the table.

► Starting Memory Address (2 bytes): Contains the memory address
where the overlay should be loaded. The starting memory address is
a paragraph address for MS-DOS.

► Ending Memory Address (2 bytes): Contains the address of the end
of the overlay in memory. The loader must not load anything
beyond this address. The ending memory address uses the same for­
mat as the starting memory address.

► Filename Offset (2 bytes): Contains the offset (from the front of
$OVTB$) to the name of the file containing this overlay. These
filenames consist of a name and type, separated by a period and fol­
lowed by a NULL. There are no drive IDs or path names.

OVERLAY LOADER A-3

► Disk Address (4 bytes): Contains the address of the overlay within
the selected disk file. For MS-DOS, this is a paragraph offset from
the front of the file. The first portion of the overlay consists of a
fixup table.

► Disk Length (2 bytes): Contains the size of the overlay on disk in
paragraphs.

Except for the base offset, all the previous items are repeated for each
overlay in the program. This subtable is terminated by a — 1 (FFH) in
the position that is normally occupied by the overlay flags field.

The next part of $OVTB$ contains the overlay filenames, each an
ASCII string terminated by a NULL. These filenames are pointed to
by the overlay entries described earlier. There is only one name unless
PLINK was told to use separate files for overlays.

The final portion of $OVTB$ is made up of the symbol vectors. These
consist of a call to the $OVLY?? routine, a word giving the number of
the overlay to load, and a jump to the true address of the routine sup­
ported by the vector. The call and jump are long for MS-DOS pro­
grams. The overlay loader should never have to look at this portion of
$OVTB$—any calls to this portion are automatically inserted by
PLINK as the program is linked.

A-4 PLINK

WARNING MESSAGES

Occasionally PLINK detects a situation that may cause a problem
when the linked program is executed. When this occurs, PLINK issues
a warning message but continues to link the program. These warning
messages are listed here, along with an explanation of what has hap­
pened.

< group > is larger than 64K

You’ve used a group that’s too big to fit in 64K of memory. Each
group is a collection of segments that must reside within a 64K
memory space. This lets 16-bit addresses be used to access objects
within the group. If the group is too large, part of the group can’t be
accessed. You must reduce the size of the group. You can use over­
lays to decrease the memory requirement of a code group.

With MS-FORTRAN, an overflow of DGROUP can be handled by
moving some items to a common block. Common blocks are lim­
ited to 64K, but you can use many of them.

This situation often occurs when you mix modules in assembly
language with modules in a high level language. The class and seg­
ment names you use in the assembly language should match those
used by the high level language. If they don’t, your assembler seg­
ments probably will be assigned memory locations at one end of the
section, this section might be too far from the other members of the
group.

If you use an undefined segment in a group statement, the Microsoft
assembler creates a dummy segment with no class name. For example,
if you use the Microsoft assembler to link an MS-FORTRAN program
containing a MASM statement (like “DGROUP GROUP DATA”)
whose DATA segment is undefined, you will get a dummy DATA seg­
ment with an omitted class statement. This segment won’t combine
with the other data segments and might cause this warning message.
Check your memory map for segments with no class names.

WARNING MESSAGES 8-1

In MS-FORTRAN, an overflow of DGROUP can be handled by mov­
ing some things to a common block. Commons are also limited to
64K, but you can have many of them. Note: Overlays may be used to
decrease the memory requirement of a code group.

Offset out of range in reference to XXXX

You tried to use a near reference to the named object, but the offset
was larger than 64K. The object may be in a group that is larger
than 64K. The offset you used will be wrapped around to a number
within range. As a result, the program probably won’t address the
object correctly.

No stack segment defined, 0000:0000 used

The stack location of your program is not defined in the .EXE file
header (MS-DOS). This location is used to set the SS and SP regis­
ters when the program is executed. PLINK looks for a stack seg­
ment marked as such by the compiler or assembler being used.

► If found, the stack segment’s eventual address is put into the
header.

► If not found, zeros are used. In this case, the program probably
won’t function correctly unless it sets the SS and SP registers
itself.

No starting address given, 0000:0000 used

PLINK cannot find a module marked with the starting address of
your program. Under MS-DOS, the starting address of a program is
kept in the .EXE file header. However, PLINK uses this location for
a jump to the true starting address. If PLINK can’t find a module
marked with a starting address by the compiler or assembler, zeros
are used for the starting address. The program begins execution at
the first location.

B-2 PLINK

Can’t find module XXXX

The named module is used in the MODULE command, but
PLINK can’t find that module in the input files. The module name
usually isn’t the same as the filename. Some compilers use the same
name for every module compiled. Consequently, the library
manager usually replaces the module name with the filename when
a module is inserted into a library. Use the DUMP utility to find a
file’s module name by typing:

DUMP < filename > INC THEADR

This selects and displays all module name records from the file.

Frame = XXXX, target = XXXX
Fixup offset 99999 out of range in < module >

The named module contains a reference to the given target object.
That reference assumed that the segment register to be used pointed
to the given frame object. However, the target is more than 64K
bytes from the frame and cannot be accessed. One of your groups is
probably larger than 64K. Reduce its size so this access can be made
correctly.

Unknown record type 99 in < module >

The named module contains a record type unfamiliar to PLINK.
The whole record is skipped. This message appears the first few
times the problem arises, and then is inhibited.

Checksum error in < module >

PLINK has found a checksum error. Each record in an object file
contains a check field at the end for validation purposes. This mes­
sage tells you that the checksum in that field is bad, but that linking
continued anyway. These messages are inhibited after the first few
times the problem occurs.

Check to see if the object file was patched on disk before the link.
(Typically, people who patch object files don’t bother changing the
checksum.) If the file is badly damaged, a fatal error usually occurs
soon after this message appears.

WARNING MESSAGES B-3

Record size error in < module >

PLINK reached the end of a record and found the number of bytes
processed differs from the specified size. Each record in an object file
is preceded by a byte containing the record size. (This size can be
revealed by the DUMP utility.) When this warning appears, the
object file is probably damaged. PLINK tries to continue processing
it anyway.

Duplicate symbol XXXXX in < module >
Duplicate symbol XXXXX in DEFINE command

PLINK has found two definitions of the named global (PUBLIC)
symbol. The second definition was found in another module, or you
created it with the DEFINE command. There can be only one
definition for each global symbol in the program being linked.
PLINK stays with the first definition, ignores the duplicate, and
continues linking.

B-4 PLINK

ERROR MESSAGES

Most common error conditions display a self-explanatory screen mes­
sage. The more uncommon or obscure errors are accompanied by a
number you can look up in this appendix.

COMMAND SYNTAX ERRORS C. 1
These errors are caused by mistakes in the input to PLINK. The input
line causing the problem is displayed on the screen, with two question
marks inserted at the point where the error was detected. Re-run
PLINK after correcting the problem.

1 @ files are nested too deeply. Only three levels of @ files can be
active at any given time. Do you have a loop in your @ file refer­
ences?

2 Disk error encountered while reading @ file. Try rebuilding the file.

5 The item given for input at this point is too large. The maximum
size allowed is 64 characters.

6 Invalid digit in number. The legal digits depend on the radix used.
The default is hex for addresses; decimal for everything else.

10 Invalid filename. Use a legal filename.

11 Expecting a statement. You’ve omitted a key word that begins a
statement.

14 Expecting identifier. You must enter a section, module, segment,
or symbol name at this point.

15 Expecting = . An equal sign is missing.

ERROR MESSAGES C-l

16 Expecting a value. You must enter an expression or 16-bit quantity
here.

17 No files were given to link. Use the FILE statement to specify at
least one input file.

18 Expecting the) at the end of the CLASS statement. The list of seg­
ment names must be enclosed in parentheses.

C.2 WORK FILE ERRORS
When PLINK runs out of memory, it opens a disk work file named
PLINK86.WRK to hold the description of the program. These error
codes indicate problems with processing the work file.

30 The work file can’t be created. The disk directory is probably full.

31 An I/O error occurred while writing the work file.

32 An I/O error occurred while reading the work file.

33 An I/O error occurred while positioning the work file.

34 This program contains too many program description objects.
About 35,000 symbols, segments, groups, and so on can be defined.
This program is too large for PLINK to handle.

C.3 INPUT OBJECT FILE ERRORS
These errors involve the object files that PLINK is to link. Usually, the
errors occur when a file has been corrupted. Try recompiling to get a
new copy of the object file. If the file causing the problem is a library
supplied with the compiler, try to get a new copy.

C-2 PLINK

41 Premature end of input object file. The end of the indicated file
was reached unexpectedly. The file may have been truncated by
copying it with a program that assumes an ALT-Z (1AH) is end-
of-file.

42 Fatal read error in object input file.

43 Fatal file position error in object input file. This can occur when
a library file is truncated.

OUTPUT FILE ERRORS 0.4
These errors are caused by a problem in creating the output code file
or memory map file (when written to disk). They are often caused by a
full disk or disk directory, a disk that is write-protected, or a disk-
related hardware problem.

45 Can’t create output disk file. The disk directory may be full, or
the disk is write-protected.

46 Invalid output file type. If given, the file type must be .EXE.

47 Fatal disk write error in output file. The disk is full or write-
protected, or a hardware error has occurred.

48 Fatal disk read error in output file. An irrecoverable hardware
error has probably occurred.

49 Can’t close output file. The disk may be write-protected, or a
hardware error has occurred.

50 Can’t create the memory map disk file. Possibly the disk direc­
tory is full, or the disk is write-protected.

ERROR MESSAGES C-3

C.5 MISCELLANEOUS ERRORS

51 Undefined symbols exist. The listed symbols are external to one
or more modules, but you never defined them. Use the DEFINE
statement to create the listed symbols, or define them as internals
of a module.

52 Symbol is self-defined. The given symbol was defined relative to a
another symbol, and that symbol defined relative to yet another
symbol, and so on until the original symbol was reached again.
You’ve created a circular chain without defining any of the sym­
bols.

53 Duplicate input file. Each file used in the FILE, SEARCH, or
LIBRARY statements must have a unique name.

54 The program is too large. The program will not fit into a 20-bit (1
megabyte) address space. Try using overlays to decrease the
memory requirement of the program.

55 Incorrect starting address in module. The starting address must
be a location inside one of the segments defined in the module.

56 An absolute segment cannot be initialized at link time. These seg­
ments are supported for the purpose of defining addresses only.

57 There is a problem with the OVERLAY.LIB file. Be sure you are
using the most recent version. If you created your own
OVERLAY.LIB, it is incorrectly formatted.

C.6 OBJECT FILE FORMAT ERRORS
These errors are caused by a problem with the format of the input
object files. These files should be in the correct format for Intel
8086/8088 compiler output.

Sometimes an error occurs because the object file is using a feature
that PLINK does not support. You are probably trying to use a com­
piler that is not compatible with PLINK. See your dealer. It’s also pos­

C-4 PLINK

sible that the relocatable file has been corrupted in a subtle way. Try
recompiling.

61 An LTL segment appeared in an Intel module. PLINK does not
accept these as input.

65 An absolute starting address was specified in the given file. The
starting address must be given relative to some segment.

66 Unsupported group element type in module. Only segments can
be included in groups. (The group component descriptor code is
FFH.)

69 Invalid record type in Intel module.

70 Invalid location specified for fixup. The LOC field is greater than
4 for a segment-relative fixup.

71 Invalid location specified for fixup. The LOC field is greater than
1 for a self-relative fixup.

73 Bad Frame specification. A frame of type 6 or 7 was given. These
are not supported by PLINK.

PROGRAM STRUCTURE ERRORS C.7
These errors involve a problem with the overlay structure that was
specified. Correct the problem and relink.

80 Overlays are nested too deeply. There are too many levels in the
overlay structure.

81 There are too many END statements. The number exceeds the
number of BEGIN statements that need to be closed.

82 The BEGIN and END statements are unbalanced. There should
be the same number of each.

ERROR MESSAGES C-5

C.8 PLINK BUGS
These errors indicate a bug in PLINK. It’s likely there’s nothing you
can do to correct them. If one of these errors occurs, try running
PLINK again. If the error persists, contact your dealer.

200 Missing segment (SegFnd).

201 Expandable array bug.

202 Public segment base missing (FIXUPP).

203 Unrecognizable Object (Eaddr).

204 Unrecognizable Object (Daddr).

205 SEEK errors while writing output file. An attempt to SEEK
past end-of-file.

206 Can’t find symbol during pass 2 (ExtDef).

207 Unrecognizable Object (Addr32).

208 No I/O buffers available.

209 Segment not assigned to any section.

219 Bad object block (GetBlock).

220 Requested record size too large (Newrec).

221 Invalid object key (Q).

222 Invalid object key (QM).

225 No object (Daddr).

226 No ouput file (Daddr).

C-6 PUNK

SUPPORTED COMPILERS

This appendix lists the assemblers that PLINK has been checked out
with. If you are using a more recent version of a compiler listed here,
the chances are good that PLINK can handle it. Your dealer may
know for sure.

This manual contains examples using some of these compilers (these
compilers are marked with an asterisk). Some testing was done with
the others, but no test programs of significant size were linked. With
these semi-tested compilers, PLINK links the program correctly, but
you must make sure that the segment classes are ordered correctly
(especially if you used overlays).

If you want to use a compiler that’s not on this list, you are on your
own. Compilers from the same source usually work in the same way. A
useful guideline is that PLINK can usually link anything that MS-
LINK can handle.

MS-DOS compilers include:

► Lattice C

► MS-FORTRAN *

► MS-Pascal *

► MS-BASIC

► MS-COBOL

► MACRO-86 Assembler

► PL/M-86

► ASM86

SUPPORTED COMPILERS D-l

E
DEBUGGING HINTS

This appendix offers some debugging hints, and explains how to use
Plink86 memory map reports.

ADDRESSING E.l
Addresses in the memory map are generally given as 20 bit offsets
from the start of the program. Symbols, however, are given a two-part
Intel format address of the form "paragraph: offset". When the program
is executed it will typically be loaded at a non-zero address. Therefore,
when you use the debugger, you must add the program load address to
addresses obtained from the map.

Suppose, for example, that the program was loaded at memory address
8100. A segment (or other 20 bit address) appearing in the map as 525
would correspond to a memory address of 8100 + 525, or 8625. A
symbol appearing as 630:255 would be in memory at (810 + 630):255
= E40:255, or E655 in long form.

Locations accessed via short (16 bit) addresses are typically addressed
relative to a particular group or segment. If there is currently a seg­
ment register pointing to that group or segment, you can use the offset
as it is given in the map. For example, a symbol in DGROUP
addressed as 630:255 can be referred in the debugger as 1)8:255
(assuming DS is assigned to that location).

Most MS-DOS programs move the DS register to its assigned location
some time after execution begins.

E

The address at which MS-DOS loads the program into is not always
easy to determine. You can look at the contents of the CS register for
simple un-overlaid programs using short addresses. These programs
usually are set up with the code area in front; the operating system sets

DEBUGGING HINTS E-l

CS to this location. If a program uses far calls, however, CS may not
be set to the front of the program, because MS-DOS sets CS:IP to the
starting address of the program at load time.

The following method works for all un-overlaid MS-DOS programs:
Look up a symbol named $STRT$ in the "O" or "M" memory map
report. This is a dummy symbol created by Plink86 which gives the
address where program execution is to begin. Then subtract the para­
graph address given for this symbol from the contents of the CS regis­
ter before the program begins execution. This yields the paragraph
address where the program was loaded.

For example, if CS is 1A60 and $STRT$ has an address 1250:267, the
program was loaded at paragraph 1A60— 1250 = 810, or 8100 in
long form.

If a program does have overlays, use symbol $OVIN$ instead of
$STRT$. This symbol is the initialization entry point for the overlay
loader, and is always executed first.

E.2 DEBUGGING WITH OVERLAYS
If a program has overlays, the overlay loader initialization routine is
always executed before the user program. You can go directly to the
user program by setting a break-point at symbol $STRT$ (discussed in
Section E.l).

A break-point can’t be set in an overlay that is not currently in
memory. A break-point can, however, always be set at symbol
$OVEX$. This symbol is in the overlay loader at the point where the
requested overlay has been loaded and the loader is about to return to
the user program.

Another method is to find the call to the overlaid routine. The address
called will be the overlay vector for the symbol (unless the NEVER
statement was used). Set a break-point at the jump following the call to
the overlay loader (see Appendix A).

E-2 PLINK

INDEX

*, 4-4
(a\ 3-4, 4-5

3- 3
\ 4-2

4- 2

Commands, order of, 4-15 to 4-16
Common block, 2-4
Compilers, Appendix D

ASM86 assembler, 5-5 to 5-6
Lattice C, 5-2
MS-FORTRAN, 5-4

.EXE, 3-3, 3-6, 4-6

.LIB, 3-4, 3-6

.ENK, 3-4, 4-5

.OBJ, 3-3, 3-6, 4-9

MS-Pascal, 5-4
PL/M-86, 5-5 to 5-6

DEBUG statement, 4-24
Debugging, Appendix E

8086/8088, 2-7, 2-9 DEFINE statement, 4-28
DGROUP, 2-9

A (All), 4-7
Absolute symbol, 4-28
Addressing, 2-7
ALWAYS command, 4-24
ASM86 assembler, 5-5 to 5-6

Direct Overlay Load, 4-26
Disk filenames, 4-3
DSALLOC command, 5-1
DUMP.EXE, 3-6

ENDAREA, 4-17
BEGINAREA, 4-17
Bit values, 4-1
Bugs, C-6

Error messages, 3-3, C-l
Errors

input object file, C-2 to C-3
object file format, C-4 to C-5

CHECKSUM, 3-1, 3-5
CLASS command, 4-13
Classes, 2-9, 4-11
Command format, 4-5
Commands, 3-4

output file, C-3
program structure, C-5
syntax, C-1 to C-2
work file, C-2

EXTERNAL symbol, 4-28
ALWAYS, 4-24
CLASS, 4-13
DSALLOC, 5-1
GROUP, 4-15
MODULE, 4-14
NEVER, 4-24
OUTPUT, 4-6
SECTION, 4-12
VERBOSE, 4-28

FILE statement, 3-3, 4-5, 4-9
Files

CHECKSUM.EXE, 3-5
COMPARE.EXE, 3-5
DUMP.EXE, 3-6
header, 4-11
OVERLAY.LIB, 3-5, 4-24

INDEX Index-1

PLINK86.EXE, 3-5
PLTEST.LIB, 3-5
PLTEST.LNK, 3-5
TEST.EXE, 4-17

First pass, 2-10
Flag, 4-7
Free format, 4-5

input, 3-2

G (Global symbols), 4-6
GROUP command, 4-15
Groups, 2-8 to 2-9

Header file, 4-11
HEIGHT statement, 4-8
HEX, 3-7

dump, 3-7
HIGH statement, 5-2

Identifier, 2-5, 4-2 to 4-3
Input

format, 4-1
free format, 3-2
interactive, 3-3
object file errors, 0-2 to 0-3

Installing PLINK, 3-1
Interactive

input, 3-3
mode, 4-4

INTO option, 4-23

Key words, 3-2, 4-5

Lattice 0, 5.-2
Level number, 4-21
Library, 2-2, 2-4, 4-9

search, 2-5, 4-9
LIBRARY statement, 4-9
Line editing, 4-4
Linkage editor, 2-1
$LOAD$, 4-27
Logical segment, 2-4
Long call, 2-8
Long jump, 2-8

M (Modules), 4-7
MAP statement, 4-6
Memory, 4-10, 4-16

address, 2-7
management, 2-1
map reports, 4-7
maps, 2-8, 3-4, 4-6
primary, 2-1, 3-4
secondary, 2-1

Messages, warning, Appendix B
Modular programming, 2-2
Module, 2-3

names, 4-14
MODULE command, 4-14
Multiple passes, 4-9

NEVER command, 4-24
NOFIXUP, 3-6
Numbers, 3-5

OBJ, 4-10
Object file, 2-3, 4-8

format errors, C-4 to 0-5
Output, 3-3

file errors, C-3
OUTPUT

command, 4-6
statement, 3-3, 5-1

Overlay, 2-6, 2-11, 4-16 to 4-28
ancestor, 4-21
debugging, E-2
descendants, 4-22
files, 4-23, 4-26
loader, 2-6, 4-24, Appendix A
name, 2-9
tables, A-3
vector, 2-11

OVERLAY.LIB, 3-5, 4-24

Passes, multiple, 4-9
PATH

name, 4-10
string, 4-26

Physical segment, 2-7

Index-2 PLINK

PLINK, installing, 3-1
PLINK86.EXE, 3-5
PL/M-86 compiler, 5-5 to 5-6
Program structure errors, C-5

Radix character, 4-1 to 4-2
Relocatable file, 2-3
Relocatable object module, 4-8

S (Sections), 4-7
SEARCH statement, 4-9
Second pass, 2-10
Section, 2-6
SECTION command, 4-12
Segment, 2-4

logical, 2-7
physical, 2-7
private, 2-8
public, 2-7 to 2-8
registers, 2-7

Segmentation, A-2
Semicolon, 3-3
SIZE, 3-5
START, 3-5
Statements, 4-5

DEBUG, 4-24
DEFINE, 4-28
FILE, 3-3, 4-9
HEIGHT, 4-8
HIGH, 5-2
LIBRARY, 4-9
MAP, 4-6
OUTPUT, 5-1
SEARCH, 4-9
WIDTH, 4-8

Status line, 4-28
Storing programs, 2-10
Symbol

absolute, 2-5
external, 2-5
internal, 2-5
public, 2-5
relative, 2-5

Syntax errors, C-1 to C-2

TEST.EXE, 4-17
Tests, CHECKSUM, 3-1

VERBOSE command, 4-28

Warning messages, Appendix B
WIDTH statement, 4-8
Work file errors, C-2

INDEX Index-3

X 8 6

STILL FIXING BUGS THE HARD WAY?
Advanced Dynamic and Symbolic
Program Debuggers

Both Pfix86 ano Pfix86 Plus™ give you
the power of a multiple-window debugger
with advanced breakpoint capability and
an in-line assembler, so you can make
program corrections directly in assembly
language. Pfix86 Plus gives you the
added advantage of symbolic debug­
ging to handle overlayed programs
developed with Phoenix's Plink86™
overlay linkage editor.

In addition, both debuggers provide
standard debugging tools including mem­
ory and register examination/modification
and program execution with breakpoints.
However, they extend these common tools
considerably with user-controlled data
formatting, powerful expression evaluation
for user-entered data, and extremely flexi­
ble trap capabilities with tracing.

Pfix86

p f i x 8 6
Symbolic Debugging - Symbolic
debugging eliminates the struggle micro­
computer programmers traditionally have
with linker memory maps. When a pro­
gram linked by Phoenix’s Plink86 is
being debugged, Pfix86 Plus displays
the names of public symbols as their
addresses are encountered. Pfix86 Plus
will accept symbol names wherever you
normally would need to type in an address.
This greatly simplifies tasks such as setting
a breakpoint at the start of a procedure. It
even works on overlayed programs.
Multiple Window Display - View pro­
gram code and data, breakpoint settings,
current machine register and stack con­
tents all at the same time. Make changes
by simply positioning the cursor within a
window and entering a new value. Enter
instructions in the code window and bytes,
words, addresses, long integers, or text
strings into the data window. Or review
text files in the file window. You can even
adjust window size to match your needs.
Pfix86 will preserve the program screen if
you are using one terminal. Or, you can
have your program screen on a mono­
chromatic display and your debugger
screen on a color display. Or, vice versa.

Advanced Breakpoint Capabilities -
Want to run a program at full speed until
a loop has been performed 100 times, or
have the program automatically jump to a
temporary patch area? You can with the
powerful breakpoint features Pfix86/Pfix86
Plus offer. Set up breakpoints that are
marked in both the breakpoint and code
windows. Then disable them so that they
remain in the table in an inactive state.
Temporary breakpoints can be set right in
the code window with a single keystroke.
When reached in execution, the break­
points are eliminated.
Trace Facility - With a single keystroke,
you can trace an instruction and the action
will be immediately reflected in code, data,
stack, and register windows.
Easy-To-Use Menus - An easily acces­
sible menu makes the power of Pfix86
instantly available to the new user, and
the menu won’t inhibit the practiced user:
often-used functions are assigned to the
IBM PC function keys, and menu selec­
tions can be made with just a few
keystrokes.
I/O - With both Pfix86 and Pfix86 Plus
you can read and write absolute disk sec­
tors and access your computer’s I/O ports.
System Requirements - Both debug­
gers will run on the IBM PC (or com­
patibles) because of their extensive use of
the keyboard and display. A custom
version is available for the Tl Professional,
Wang Professional, DEC Rainbow, and
other machines. No other special
hardware is needed. At least 50K of free
memory is required, and the MS-DOS™
(or PC DOS) operating system (version
2.0 or above) must be used.

Pfix86/Pfix86 Plus. One in a series of
software development tools by Phoenix.
It's the right tool for the job.

Phoenix Computer Products Corporation
1416 Providence Highway, Suite 220
Norwood, MA 02062
18001 344-7200
In Massachusetts 16171769-7020

MS-DOS is a trademark of Microsoft Corporation
Pfix86, Pfix86 Plus and Plink86 are trademarks of Phoenix Software Associates Ltd.

PLIB

COPYRIGHT

@ 1983 by VICTOR®. @ 1983 by Phoenix Software Associates Ltd.

Published by arrangement with Phoenix Software Associates Ltd.,
whose software has been customized for use on various desktop
microcomputers produced by VICTOR. Portions of the text hereof
have been modified accordingly.

All rights reserved. This manual contains proprietary information
which is protected by copyright. No part of this manual may be repro­
duced, transcribed, stored in a retrieval system, translated into any
language or computer language, or transmitted in any form whatso­
ever without the prior written consent of the publisher. For informa­
tion contact:

VICTOR Publications
380 El Pueblo Road
Scotts Valley, California 95066
(408) 438-6680

TRADEMARKS

VICTOR is a registered trademark of Victor Technologies, Inc.
PLINK and PLIB are trademarks of Phoenix Software Associates Ltd.
INTEL is a trademark of Intel Corporation.
Microsoft is a registered trademark of Microsoft Corporation.
MS- is a trademark of Microsoft Corporation.
CP/M-86 is a registered trademark of Digital Research.

NOTICE

VICTOR makes no representations or warranties of any kind whatso­
ever with respect to the contents hereof and specifically disclaims any
implied warranties of merchantability or fitness for any particular pur­
pose. VICTOR shall not be liable for errors contained herein or for
incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

VICTOR reserves the right to revise this publication from time to time
and to make changes in the content hereof without obligation to notify
any person of such revision or changes.

First VICTOR printing November, 1983.

ISBN 0-88182-039-3 Printed in U.S.A.

II PLIB

CONTENTS

1. Introduction... 1-1

2. Library Manager Concepts
2.1 What Does a Library Manager Do?.................................... 2-1
2.2 Terminology........... ... 2-3

2.2.1 Object File.. 2-3
2.2.2 Relocatable File... 2-3
2.2.3 Module... 2-3
2.2.4 Library.. 2-4
2.2.5 Library Search... 2-4

3. Using PLIB
3.1 Creating and Merging Libraries.. 3-1
3.2 Library Search... 3-2
3.3 Updating a Library... 3-3
3.4 Extracting a Module... 3-3
3.5 Cross-Reference Listing... 3-4

4. PLIB Commands
4.1 Input Elements... 4-1
4.2 Disk Filenames.. 4-2
4.3 Input Modes... 4-3
4.4 Commands... 4-4

4.4.1 Command Format.. 4-4
4.4.2 Command Descriptions... 4-5

CONTENTS III

Appendix A: Error Messages
A.l Common Syntax Errors.. A-l
A.2 Work File Errors.. A-2
A. 3 Input Object File Errors.. A-3
A.4 Output File Errors.. A-3
A. 5 Miscellaneous Errors.. A-4
A.6 Bugs.. A-4

IV PLIB

CHAPTERS

1. Introduction

2. Library Manager Concepts

3. Using PLIB

4. PLIB Commands

1

2
I
z
I
4

Appendix A: Error Messages

CHAPTERS V

INTRODUCTION

PLIB is a program that manipulates libraries of object files. It supple­
ments the PLINK linkage editor, and handles object files and libraries
that conform to the format generated by Microsoft compilers for the
Intel 8086/8088. (This is the standard Intel format with an enhanced
library index.)

This manual assumes that you have some programming experience. It
is designed to be read from front to back—each chapter assumes you
understand the information in all previous chapters.

Chapter 2 explains the “object library” concept and the capabilities of
PLIB. Start here if you are unfamiliar with library managers. This
chapter also discusses object files and linkage editors.

Chapter 3 shows how you can use PLIB to handle several common
object library situations. It also gives an informal explanation of what
the PLIB commands do. You may want to go directly to this section
if you are experienced with linkage editors and library managers; this
section gives enough information to use PLIB.

Chapter 4 is a detailed list of PLIB commands and features. Use this
section when you need more information than is provided by the
examples in Chapter 3.

An appendix describes the error messages that can appear when you
use PLIB.

INTRODUCTION 1-1

2
LIBRARY MANAGER CONCEPTS

This chapter introduces the basic concepts of libraries and modular
programming, and gives an idea of how PLIB can be used to create
and manipulate libraries of object modules. It also contains a short
glossary of terms used in this manual.

WHAT DOES A LIBRARY MANAGER 2.1
DO?
Often it’s convenient to divide a large programming job into smaller
pieces called “modules” that can be edited and compiled separately.
Sometimes you have to use modules, because microcomputer com­
pilers can handle only a limited number of program lines at once. In
either case, modular programming is a way to organize your program
into manageable pieces that are easier to understand and work with.
After you create and compile your program modules, you must link
them together with a linkage editor to produce an executable program.

You may find that some modules in your program are useful in other
programs. With a bit of work, you can make these modules more gen­
eral in function and use them in several programs. In this way, you
gradually build up a “library” of useful routines that can be linked
into programs by the linkage editor whenever needed.

Almost all compiler packages are sold with a library because there are
many useful functions (such as arithmetic on real numbers) that are
not supported by hardware, and that have to be implemented as pro­
cedure calls. Compiler libraries also contain modules that support
high-level features of a language, such as formatted output with
FORTRAN. This kind of library is usually called the “run-time sup­
port,” since its modules are required while executing the program.

LIBRARY MANAGER CONCEPTS 2-1

2

Because of the importance of libraries, linkage editors typically have
special library-handling facilities. To save memory space, only the
library modules actually required by a program are linked in. Some­
times a library is a group of object modules that the linkage editor
searches sequentially to find the needed modules. Some more sophisti­
cated systems use a "library index” that contains a list of the public
symbols offered by each library module, and the location of the
module that defines each symbol. A library index helps the linkage
editor to find the required modules quickly. Microsoft compilers have
libraries that use the indexed structure.

The PLIB library manager creates and manipulates object module
libraries, and is a useful aid to the linkage editor, PLINK. PLIB has
commands that create libraries from individual object modules, and
that extract a selected module from a library. PLIB can also merge
libraries and replicate the library search process used by the linkage
editor while creating a program. (In other words, you can create a
library that consists only of the modules that the linkage editor would
include in a particular program.)

PLIB also has a powerful cross-reference function. With this function,
you can generate a listing that shows each public symbol, the module
that defines the public symbol, and a list of other modules that refer
to it. You can use this listing to cross-reference one or more libraries.
When used with the library search feature already described, the
cross-reference function can generate a cross reference of a program to
be created by the linkage editor.

2-2 PLIB

2.2 TERMINOLOGY
This section defines some terms commonly used when discussing
library managers.

OBJECT FILE 2.2.1 2

The compiler (or assembler) produces the object file as output after
compiling a program. The object file usually contains one module.
The PLINK linkage editor takes the object file as input.

RELOCATABLE FILE 2.2.2

This is another term for object file. This term is often shortened to
“REL FILE.”

MODULE 2.2.3

This is the smallest unit of code that can be compiled at one time.
The relocatable file created by a compiler typically contains one
module. PLIB combines modules into libraries for easy access by
PLINK.

You usually create a module for each major function within a pro­
gram; however, a compiler usually lets you put several procedures or
functions into a single module. Although the functions and pro­
cedures in a module can be called separately, the linkage editor treats
the module as a single entity and the procedures can no longer be
separated.

LIBRARY MANAGER CONCEPTS 2-3

2.2.4 LIBRARY

A library is a relocatable file that contains more than one module. A
library often has an index to its modules; this helps the linkage editor
quickly find the modules it needs. This kind of library is called an
“indexed library.”

2.2.5 LIBRARY SEARCH

This term refers to the way that libraries are processed by the PLINK
linkage editor. When PLINK encounters an undefined external sym­
bol, it looks up the symbol in the library index. If a module in the
library defines the symbol (i.e., specifies the symbol as public), that
module is included in the program. If the library does not have an
index, the linkage editor usually scans the entire library one or more
times to find the needed module. A module loaded from the library
can contain undefined external symbols of its own; the linkage editor
keeps searching to find those as well.

See PLINK in the Applications Programmer’s Tool Kit II, Volume II,
for more information.

2-4 PLIB

3
USING PLIB

►
z

Before you can use any of these functions, however, you must load
PLIB into your operating system. First, boot your operating system.
After the system prompt appears, type:

This chapter tells how to use the PLIB functions introduced in
Chapter 2. These include:

► Creating and merging libraries

► Searching libraries

► Updating a library

Extracting modules from a library

Making a cross-reference listing

PLIB86(cr)

The program loads and you can go on to work with library modules.

CREATING AND MERGING LIBRARIES 3.1
To create a new library, use the BUILD and FILE commands. For
example, loading PLIB and typing:

BUILD DB.LIB(cr)
FILE BTREE, SORT, REPGEN, FIRSTLIB.LIBj(cr)

after the prompt creates a library called DB.LIB that contains the files
listed after the FILE command. These files can be individual object
modules or complete libraries. All of the files are merged into a single
library. Normally you can type commands on as many lines as you
want. End the last line with a semicolon to begin processing.

USING PLIB 3-1

Each PLIB statement begins with a key word like BUILD or FILE
and is followed by arguments, possibly separated by commas. Key
words can be abbreviated by leaving off characters at the end. For
example, you can type BU and FI instead of BUILD and FILE. PLIB
displays an error message if your abbreviation could be confused with
another command. Command input is free format; blank lines are
ignored.

You can also give PLIB commands while the program is executing.
The library defined in the last example can also be created by entering
on a single line:

PLIB86 BU DB Fl BTREE, SORT, REPGEN, FIRSTLIB(cr)

Since you did not specify an extension for your library file, PLIB
automatically assigns the default extension .LIB.

3.2 LIBRARY SEARCH
Suppose you want to create a library that consists of several modules,
plus the portions of another library that are referenced by those
modules. To do this, you must use the LIBRARY command to search
the second library for the needed modules. Using the library defined
in the last example, enter:

BU DB Fl BTREE, SORT, REPGEN LIB FIRSTLIB.LIB

Only the portions of FIRSTLIB.LIB referenced by the three other files
in the command are put into the DB library.

3-2 PLIB

UPDATING A LIBRARY 3.3
To update a library, you must copy the old library to an output file,
delete the module to be updated, and include the new module. To
replace the module COSINE in library MATHLIB, for example,
rename the current library file MATHLIB.LIB to MATHLIB.OLD.
Then, enter:

BU MATHLIB Fl COSINE, MATHLIB.OLD EXCLUDE COSINE

The EXCLUDE statement applies to the old filename; it causes the
COSINE module in MATHLIB to be ignored. 3

EXTRACTING A MODULE 3.4
The EXTRACT statement causes a single object module file to be
created. Unless you specify a particular module, EXTRACT uses the
first object module found in the input files. For example, typing:

EXT OLDCOS Fl MATHLIB.LIB INCLUDE COSINE

creates the file OLDCOS.OBJ that contains the object module
COSINE. The INCLUDE statement is the counterpart of EXCLUDE:
it applies to the previous input file and causes only those modules
named to be considered for processing.

EXTRACT cannot be used at the same time as BUILD.

USING PLIB 3-3

3.5 CROSS-REFERENCE LISTING
Use the LIST command to create a cross-reference listing. Using the
same input file commands given in previous examples, you can enter:

LIST = DB S Fl BTREE, SORT, REPGEN, FIRSTLIB.LIB

3

This creates a cross-reference listing file named DB.LST. This file
describes the modules in all of the files listed in the command. The S
selects the type of cross-reference report. (For a list of other report
types available, see the LIST command description.) The equal sign
(=) specifies that the report is to be put into a disk file. If the equal
sign is not used, the report appears on the screen.

3-4 PLIB

PLIB COMMANDS

This chapter describes the basic elements you use to create a PLIB
statement. It also lists the PLIB commands and gives examples of
their use.

INPUT ELEMENTS 4.1
PLIB commands and statements contain numbers and identifiers.
Numbers are normally decimal.

An identifier is the name of an object such as a module or symbol.
An identifier is a sequence of no more than 30 characters. It cannot
contain any spaces or any of the following characters:

= ; < > \ ,/!’#& * + - : @ DEL

All lowercase letters are automatically converted to uppercase. The
first character of an identifier cannot be a digit 0-9.

These restrictions on valid identifier characters are avoided if you use the
escape character f). The character immediately following the escape
character is treated as a normal identifier character. Enter the escape
character twice to include the escape character itself in an identifier.

Here are some examples of valid identifiers:

Programi
SORT3
ABC @

PLIB COMMANDS 4-1

Here are some invalid identifiers:

34ABC begins with a number.
NIM A contains a space.
PROG%1 starts a comment with %.

4

The previous invalid identifiers can be made valid using the escape
character C):

34ABC
NIM'A
PROG'%1

Identifiers that appear in object files are truncated to 50 characters to
compare them with other identifiers in the program. Identifiers may be
truncated again for inclusion in report listings.

4.2 DISK FILENAMES
PLIB uses the filename format of your operating system. The first ille­
gal filename character terminates the name. Use the escape character
to include an illegal character in a filename.

The PLIB filename can include a device specification, the filename
itself, and an extension, as shown here:

< device >: < filename > . < ext >

If you do not specify a device, PLIB uses the logged drive.

4-2 PLIB

INPUT MODES 4.3
PLIB can be used interactively, or input can be given while the pro­
gram executes. Enter input using this format:

PLIB86 < statements > (cr)

To use PLIB in the interactive mode, enter:

PLIB86(cr)

PLIB reads all statements you type at the keyboard, prompting you
with an asterisk (*). All input is stored until you press the carriage
return. All standard line editing features supplied by your operating
system are available.

You can use a disk file containing all or part of a command at any
point in your input by preceding the disk filename with @. If you do
not specify an extension, PLIB automatically uses the default extension
.LNK. These disk files can contain further @ specifications, up to three
levels deep. The most common use of this feature is to prepare a file
containing a complete command. Typing:

PLIB86 @NEWFILE(cr)

creates the library NEWFILE.LIB.

These .LNK files can be prepared once for a given library and then
used over and over, greatly simplifying the process of creating libraries.

PLIB reads an entire command, checking only for syntax, before any
file processing occurs.

4

PLIB COMMANDS 4-3

4.4 COMMANDS
This section gives the format used for PLIB commands and describes
each command in detail.

4.4.1 COMMAND FORMAT

All PLIB input is free format. Blank lines are ignored, and a command
can extend over any number of lines. You can include comments by
prefacing them with a percent sign (%). When PLIB encounters a per­
cent sign, it ignores all subsequent characters on the same line.

Input takes the form of a list of statements. Each statement begins with
a key word and many are followed by arguments separated by com­
mas. In this statement, for example:

FILE A,B,C

FILE is the key word, and A, B, and C are the arguments. Key words
can be abbreviated by omitting trailing characters, as long as the result­
ing abbreviation is unique. For example, the previous statement can
also be entered as:

Fl A,B,C

If PLIB finds a syntax error, the current input line appears on the
screen with two question marks (??) appearing at the point where the
error was detected. This is followed by an error message. (See the
appendix.) You must re-enter the command before proceeding. If
some other error occurs, PLIB terminates with an error message.

4-4 PLIB

COMMAND DESCRIPTIONS 4.4.2

You must tell PLIB which object files and libraries to use for input and
which modules to take from them. Usually you use the FILE com­
mand to process all modules in the given files. For example:

FILE COSINE, SIN, ARCTAN

The LIBRARY and SEARCH commands have a similar function but
are used only on libraries. These commands select only those modules
that define a public symbol needed by an already processed module.
This selection process is called a "library search,” and is a process car­
ried out by most linkage editors. Library searches ensure that only
those library modules actually needed are included in the program.

Here are statements that use the LIBRARY and SEARCH commands:
4

LIBRARY MATHLIB
SEARCH FORTRAN

The LIBRARY command causes the specified libraries to be searched
once. The SEARCH command causes the libraries to be searched until
there are no remaining undefined symbols. SEARCH is needed only if
you need to search two or more libraries that contain references to
symbols defined in each other.

When you request an object file, PLIB searches drive A or the logged
drive (if you are logged onto a drive other than drive A). If the requested
object file is not found, PLIB asks you to enter a drive name. Diskettes
can be changed at this time if necessary. (Be sure that the removed
diskette does not contain open files such as the BUILD and EXTRACT
files.)

If PLIB runs out of memory, a work file is opened on the default disk.
Do not remove that disk while PLIB is running.

PLIB COMMANDS 4-5

PLIB accepts a PATH name as part of an object filename. If an object
file can’t be found, PLIB looks for a string named OBJ in the operating
system environment and appends its value to the front of the filename,
after stripping the drive ID.

Suppose you enter:

SET OBJ = \OBJECT

and then run PLIB. Also, suppose one of the commands to PLIB is:

FILE B:TEST.OBJ

4

and that TEST.OBJ does not exist on drive B. PLIB then strips the B:
designation from the filename and tries \OBJECT\TEST.OBJ to
obtain the requested file.

If an object file (but not a library) is being processed, the module it
contains is usually given the same name as the filename when the
module is copied to the output file. This is done because some com­
pilers do not supply a unique module name. Use the AS statement if
you do not want this automatic renaming to occur. When you use AS,
the module is given the filename specified in the most recent FILE
statement. If you type:

FILE MATH1 AS COSINE

the module in MATH 1 is named COSINE instead of MATH 1.

INCLUDE and EXCLUDE Statements
You can further restrict the modules selected from a library with FILE,
LIBRARY, and SEARCH by using the INCLUDE and EXCLUDE
statements. These statements are followed by a list of module names,
as shown here:

FILE MATHLIB INCLUDE SIN, COSINE LIB MATHLIB, DB EXCLUDE BTREE

4-6 PLIB

With the INCLUDE statement, only the specified modules are con­
sidered for processing. With EXCLUDE, all modules except those
specified are considered for processing.

INCLUDE and EXCLUDE apply to the immediately preceding FILE,
LIBRARY, or SEARCH file. In the second example, the EXCLUDE
BTREE applies only to the DB library, not to MATHLIB.

BUILD Command
The BUILD command creates a library from the modules selected
from the input files. Follow BUILD by the name of the library file to
be created. If you do not specify an extension, PLIB uses the default
extension .LIB.

Here are example statements using BUILD:

BUILD DB.LIB
BUILD D:MATHLIB

After all modules are written out, the library index is created.

Be sure that the output file does not have the same name as any of the
input files. For instance, entering:

BUILD MATHLIB Fl COSINE, ARCTAN, MATHLIB

doesn’t work because MATHLIB is erased before it is read.

The BUILD command cannot be used at the same time as the
EXTRACT command. If no output is requested (i.e., there is no
BUILD, EXTRACT, or LIST command), then PLIB simply reads the
input modules and reports any errors it finds.

4

PLIB COMMANDS 4-7

EXTRACT Command
The EXTRACT command extracts a single object module from a
library file and puts the module into a separate disk file. The
EXTRACT command is followed by the name of the file to be created,
as in these examples:

EXTRACT COSINE.OBJ
EXTRACT ARCTAN

If you do not specify an extension, PLIB assigns the default .OBJ.

Unless you specify otherwise, the EXTRACT command extracts the
first module in the given input files. Because of this, it’s a good idea to
use the INCLUDE statement to specify the particular library module
you want. For example:

EXTRACT COSINE Fl MATHLIB

extracts the very first module in MATHLIB, even if that module is not
named COSINE. To get the correct module, enter:

EXTRACT COSINE Fl MATHLIB INC COSINE

LIST Command
The LIST command generates report listings about the object files
being processed. You can specify two types of listings.

► When followed by M, LIST produces an alphabetical listing of all
modules.

► When followed by an S, LIST produces an alphabetical listing of all
public and external symbols. Each symbol is followed by
parentheses containing the name of the module in which the symbol
is defined. (For external symbols, this part of the listing is blank.)
Then comes a cross-reference listing—an alphabetical list of all
modules that access the symbol.

4-8 PLIB

If you enter an equal sign and a filename after the LIST command, the
listing you specify is sent to the named disk file or device.

These statements use the LIST command:

LIST M
LIST = DB.LST M, S
LIST = XREF.LST S

WIDTH and HEIGHT Commands
WIDTH and HEIGHT are used to reconfigure the listing generator for
different paper sizes. The default values are 80 columns and 66 lines
per page.

Use the WIDTH command to change the number of columns. This
command, for example, produces a page 132 columns wide:

WIDTH 132

Use the HEIGHT command to change the number of lines. This com­
mand produces a page 88 lines long:

HEIGHT 88

NOINDEX Command
Normally, all public symbols from all modules are inserted into the
library index. PLINK continues to create a library if it finds a dupli­
cate public symbol; however, a warning message is displayed, and the
index entry for that symbol selects the first module that defines the
symbol.

Use the NOINDEX command to exclude certain symbols from the
library index. For example:

NOINDEX SYM1, SYM2, SYM3

excludes SYM1, SYM2, and SYM3 from the index.

PLIB COMMANDS 4-9

Suppose you want to create a library that contains several versions of
the same module, such as a driver for a hardware device. The entry
point symbols are the same for each version of the module, but the
code in the module differs according to the device. If you put all the
modules into the library, you will get duplicate symbol warnings, and
at link time the linkage editor won’t select the desired module.

You can solve this problem by using NOINDEX on the module entry
points. This excludes these symbols from the library index. To get the
linkage editor to select the correct modules, insert a unique, unused
dummy symbol into each module. At linkage edit time, one of these
symbols will be accessed to create a need for the desired module. The
linkage editor will then select it when the library is searched. For
example, you could use the statement “DEFINE FOO = DRIVER 1” to
select the module containing driver 1.

Alternatively, you can use the existing dummy index entry to select the
module. The name of each module is in the library index, followed by
an exclamation point. For example, if the library contains a module
named DRIVER 1, the dummy index entry will be DRIVER 1!. You
can use this entry instead of creating your own dummy module entry
point.

4-10 PLIB

ERROR MESSAGES

Most error conditions detected by PLIB cause an error message to
appear on the screen. Usually the message is fairly easy to interpret.
For more uncommon or obscure errors, a number appears next to the
message. These error codes can be checked in the following listing.

COMMON SYNTAX ERRORS A. 1
These errors are caused if you make a mistake in your input to PLIB.
The input line causing the problem is displayed, with a pair of ques­
tion marks appearing at the point where the error was detected. Rerun
PLIB after correcting the problem.

1 @ files are nested too deeply. Only three levels of @ files can
be active at any given time. Check to see if you have a loop in
your @ references.

2 Disk error encountered while reading @ file. Try rebuilding
the file.

5 The item given for input is too large. The maximum allowable
size is 64 characters.

6 Invalid digit in number (i.e., not 0 through 9).

10 Invalid filename. The filename is not legal for your operating
system.

11 Expecting a statement. A key word is missing.

12 The INCLUDE and EXCLUDE statements cannot be used
simultaneously on the same input file.

ERROR MESSAGES A-l

14 Expecting identifier. A section, module, segment, or symbol
name must be entered at this point.

15 Expecting an equal sign.

16 Expecting a value. You need to supply an expression or 16-bit
quantity.

17 No input file has been specified. You must use the file state­
ment and specify at least one input file.

18 The BUILD and EXTRACT commands cannot be used at the
same time. Run PLIB separately for each command.

A.2 WORK FILE ERRORS
When PLIB runs out of memory, it opens a work file on disk (called
PLIB.WRK) to hold the description of the library. These error codes
indicate a problem with processing the work file.

30 The work file can’t be created. There is probably no space in
the disk directory.

31 An I/O error occurred while writing the work file.

32 An I/O error occurred while reading the work file.

33 An I/O error occurred while positioning the work file.

34 There are too many module-description objects in the library.
(About 50 thousand symbols, segments, groups, and so on can
be defined.) The library is too large for PLIB to handle.

A-2 PLIB

INPUT OBJECT FILE ERRORS
These errors have to do with the object files given to PLIB for process­
ing. They usually occur when a file has been corrupted in some way.
Try recompiling to get a new copy of the object file. If the corrupted
file is a library supplied with a compiler, try to get a fresh copy.

41 Premature end of input object file. The end of the indicated
file was reached unexpectedly. The file may have been trun­
cated by copying it with a program that assumes ALT-Z
(1AH) is end-of-file.

42 Fatal read error in object input file.

43 Fatal file-position error in object input file. This can occur
when a library file is truncated.

OUTPUT FILE ERRORS

46

47

48

Can’t create output disk file. The disk directory may be full or
the disk may be write-protected.

Output file too large. The given modules won’t fit into the
library. Break the library into two or more smaller libraries.

Fatal disk write error in output file. The disk is probably full
or write-protected, or a hardware error may have occurred.

Fatal disk read error in output file. An irrecoverable hardware
error has probably occurred.

These errors are caused by problems in creating the output code file or
memory map file when writing to disk. They are often caused by a full
disk or disk directory, a disk that is write-protected, or a hardware
problem with the disk.

45

ERROR MESSAGES A-3

49 Can’t close output file. The disk is probably full or write-
protected, or a hardware error has occurred.

50 Can’t create the LIST output file. The disk directory may be
full, or the disk is write-protected.

A. 5 MISCELLANEOUS ERRORS

51 There are too many symbols to be placed into the library
index. Break the library into several smaller ones.

52 No modules were selected (by the library search, or the
INCLUDE or EXCLUDE statements) to be put into the out­
put file (BUILD or EXTRACT).

54 Your computer does not have enough memory to run PLIB.
This error should never occur.

A.6 BUGS
These errors indicate a bug in PLIB. It’s unlikely you can do anything
to correct them. If one of these errors occurs, run PLIB again. If the
error persists, gather the relevant information and contact your dealer.

201 Expandable array bug.

205 SEEK errors while writing output file. (Attempt to SEEK
past end-of-file.)

219 Bad object block (GetBlock).

221 Invalid object key (Q).

222 Invalid object key (QM).

A-4 PLIB

INDEX

@, 4-3, A-l
=, 3-4, 4-9

Equal sign (=), 3-4, 4-9
External symbol, 4-8

??, 4-4
FILE, 3-2, 4-5

Arguments, 3-2, 4-4
Asterisk, 4-3
Automatic renaming, 4-6

Filenames
disk, 4-2
PLIB, 4-2
object, 4-6

Bugs, A-4
BUILD, 3-2, 4-7 Identifier, 4-1

Input, 4-3
Command format, 4-4
Commands

Input object file errors, A-3
Interactive mode, 4-3

BUILD, 3-1, 4-7
EXTRACT, 4-8
FILE, 3-1, 4-5
HEIGHT, 4-9
LIBRARY, 4-5
LIST, 3-4, 4-8 to 4-9
NOINDEX, 4-9 to 4-10
PLIB, 4-1
SEARCH, 4-5
WIDTH, 4-9

Comments, 4-4
Cross-reference, 2-2, 3-4

Key words, 3-2, 4-4

Library, 2-1, 2-4, 4-5
command, 3-2
index, 2-2, 2-4
search, 2-4, 4-5
updating, 3-3

Linkage editor, 2-1
Load, 3-1

Memory, 4-5
Module, 2-1, 2-4

Dummy index, 4-10
Numbers, 4-1

Error messages, A-1
Errors

input object file, A-3
messages, A-l
output file, A-3
syntax, A-l
work file, A-2

Escape character, 4-1

Object file, 2-3, 4-6
Output file errors, A-3 to A-4

PATH name, 4-6
Percent sign (%), 4-4
PLINK, 1-1, 2-4
Public symbol, 4-9

INDEX Index-1

Relocatable file, 2-3
Report listings, 4-8
Run-time support, 2-1

Statement, 3-2, 4-3
AS, 4-6
EXCLUDE, 3-3, 4-7
EXTRACT, 3-3
INCLUDE, 3-3, 4-7
PLIB, 4-1
SEARCH, 4-5

Syntax error, A-1

Work file errors, A-2

Index-2 PLIB

SB

PMATE Quick Reference Guide

INSTANT COMMANDS

CURSOR MOVEMENT

ALT-B or j

ALT-Y or f

ALT-G or <-

Down one line

Up one line

Left one space

—> Right one space

ALT-U Up six lines

ALT-J Down six lines

ALT-P Beginning of next word

ALT-O Beginning of current or preceding word

ALT-FM Beginning of line

ALT-A Beginning/end of text

SCROLLING

ALT-FG Scrolls display left one column

ALT-FH Scrolls display right one column

ALT-FY Scrolls display up one line

ALT-FB Scrolls display down one line

DELETING AND RECOVERING TEXT

Backspace
or ALT-H

Deletes character preceding cursor

ALT-D Deletes character at cursor; moves text to right of
cursor left one column

ALT-K Deletes line beginning at cursor

ALT-W Deletes text up to next word

ALT-Q Deletes word preceding cursor

DEL Deletes character at cursor; moves cursor to next
character

ALT-R Recovers last text deleted; puts it at cursor
position

.OCKS OF TEXT

Tags beginning of block to be moved

Moves text between tag and cursor into special buffer

Inserts contents of special buffer at cursor

Toggles cursor between tag and current cursor position

Sets indentation at cursor if cursor position is tab stop

Indents text after indent is set

Increments indented text and cursor four columns

Decrements indented text and cursor four columns

MODES

Enters Command Mode

Enters Overtype Mode

Enters Insert Mode

•dEOUS INSTANT COMMANDS

Inserts a line below cursor

Inserts a line; moves cursor to beginning of new line

Changes case of character at cursor; advances cursor
one column

Toggles default case of text between upper- and
lowercase

Clears command line or stops command execution

Inserts command line in text area

Redraws and reformats screen

Enters character x in text 4 times (ALT-SS x enters x
in text 16 times and ALT-SSS x enters x in text 64
times)

Executes < command > n times
and>

COMMAND-LINE COMMANDS

CURSOR MOVEMENT

1 A To beginning of text in memory

j UA To beginning of text file

Z To end of text in memory

uz To end of text file

! nM/ — nM Forward/backward n columns
1 nL/ - nL Up/down n lines

nP/ — nP Up/down n paragraphs

nW/ - nW Forward/backward n words

INSERTING TEXT

I < strng >

nl

IA@n

IAa$

@n\I

Inserts < strng > at cursor

Inserts ASCII character n at cursor

Inserts contents of buffer n at cursor

Gets string a from command line; inserts string a in
text at cursor

Inserts value of variable n in text at cursor

REPLACING TEXT

R < strng >

nR

RA@n

Replaces text at cursor with < strng >

Replaces text at cursor with ASCII character n

Replaces text at cursor with contents of buffer n

SEARCHING FOR TEXT

(-)S< strng >
i

(-)US< strng >

(-)SA@n

Searches text in memory forward (backward) for
< strng >

Searches entire text file forward (backward) for
< strng >

Searches text in memory forward (backward) for
match with contents of buffer n

(-)UAS@n Searches entire text file forward (backward) for match
with contents of buffer n

TEXT

> $ < st2 > Changes first (previous) occurrence in memory
of < stl > to < st2 >

> $_ < st2 > Changes first (previous) occurrence in text file
of < stl > to < st2 >

V@x Changes first (previous) occurrence in memory
of match with buffer n contents to match with
buffer x contents

S A@x Changes first (previous) occurrence in text file
of match with buffer n contents to match with
buffer x contents

Globally changes all occurrences of
< si > to < s2 >

FEXT

Prints entire text file

Prints n lines of text beginning at cursor

F] Prints n pages of text x lines each (beginning at cursor)

TEXT

Deletes n characters forward/backward

Deletes n lines forward/backward

G MODES

Enters Command Mode

Enters Overtype Mode

Enters Insert Mode if n isn’t 0 or 2

Turns Format Mode on; specifies column n as right
margin

Turns Format Mode on/off

BUFFER COMMANDS

(-)nBC Copies n lines from edit buffer into special buffer; deletes
previous contents of special buffer

(-)nBxC Copies n lines from edit buffer into buffer x; deletes
previous contents of buffer x

(-)nBxD Copies n lines from edit buffer into buffer x before
cursor

(-)nBM Moves n lines from edit buffer into special buffer; deletes
previous contents of special buffer

(-)nBxM Moves n lines from edit buffer into buffer x; deletes
previous contents of buffer x

(-)nBxN Moves n lines from edit buffer into buffer x just before
cursor

BG Inserts contents of special buffer at cursor

BxG Inserts contents of buffer x at cursor

BxE Displays buffer x for editing

BxK Deletes contents of buffer x while you are editing
another buffer

T Tags beginning of text to be moved

.X Executes command string or macro stored in buffer x

) SEPARATION AND EXECUTION

Separates commands on command line

Executes commands on command line

DIRECTORY MAINTENANCEATIONS

Declares (new) output filename < txtfl > or
(existing) input filename < txtfl >

Declares input filename < f 1 > and output
filename < f2 >

Writes text to output file on disk; reopens that
file as input file

Writes text to new output file < newfl > ; opens
< newfl > as input file (original input file is
not changed)

Writes text to output file; clears buffer T

Writes text to renamed output file < newfl > ;
clears buffer T

Closes input and output files as they are (on
disk); deletes contents of edit buffers

Clears edit buffer without writing text to disk

Exits to operating system

Saves copy of PMATE as < newfl >

Reads copy of < txtfl > from disk into edit
buffer just before cursor; < txtfl > on disk is
unchanged and currently declared input and
output files remain the same

Reads n lines of < txtfl > from disk into edit
buffer just before cursor; < txtfl > on disk is
unchanged and currently declared input and
output filenames remain the same

Writes copy of edit buffer contents to new file
< newfl > ; currently declared input and output
filenames remain the same

Writes copy of n lines of edit buffer contents to
new file < newfl > ; currently declared input
and output filenames remain the same

In Manual Mode, reads n pages of text from
input file appending pages to text in edit buffer

In Manual Mode, reads n pages of text from
output file prepending pages to text in edit
buffer

In Manual Mode, writes n pages of text from
beginning of edit buffer to output file

In Manual Mode, writes n pages of text from
end of edit buffer back to input file

In Manual Mode, writes n pages of text to
output file; reads n pages of text from input file
to edit buffer

Lists all files in current working directory of
default drive

XL < d > .* *

XL < pthnm > *.*

Lists all files in current working directory of
drive <d>

Lists all files in subdirectory < pthnm > of
default drive

pthnm > *.* Lists all files in subdirectory < pthnm > of
drive < d >

XX < txtfl > Deletes file < txtfl > from current working
directory of default drive

XX < pthnm > < txtfl > Deletes file < txtfl > from subdirectory
< pthnm > of default drive

XX < d > : < pthnm >
< txtfl >

Deletes file
< pthnm >

< txtfl > from subdirectory
of drive < d >

XP < pthnm >

Changes to the current working directory of
drive < d > from any other drive; drive < d >
becomes default drive

Changes to subdirectory < pthnm > on default
drive; < pthnm > becomes current working
directory

SETTING TAB STOPS

YK Deletes all tab stops; each space becomes a tab stop

nYS Sets a tab stop at column n

nYD Deletes the tab stop at column n

nYE Deletes all old tab stops; sets new ones every nth column

nYF Replaces all tabs in the next n lines with spaces

nYR Replaces blocks of spaces in the next n lines with tabs
(where possible)

INDENTING TEXT

nYI Sets indentation to tab stop at column n (use Tab key to
indent text)

SETTING VARIABLES

nVx Sets the value of variable x to n

nV Ax Adds n to the value of variable x

anual Mode, commands nXI and nXO read and write pages

EOUS MACRO COMMANDS LOGICAL OPERATORS
Suppresses error message

Displays. < strng > to prompt for keyboard input and gets
character from keyboard if n is nonzero or missing; displays
< strng > on command line without processing keyboard
input if n is 0

Turns Trace Mode on/off

Executes macro x stored in permanent macro area

Suppresses interpretation of characters until next carriage
return

AND BRANCHING

Enclose iteration loop

Enclose iteration loop except when using next C) and break
(__) commands

Skips to next set of iteration brackets if n is nonzero (true)
or missing

Exits iteration brackets if n is nonzero (true) or missing

Jumps to branchpoint x (labeled :x) if n is nonzero (true) or
missing

Exits macro if n is nonzero (true) or missing

) CONTROL CHARACTERS

Matches any character (SMAEE matches MALE, MADE,
and MATE).

Matches character that follows (SMALEE matches only
MAEE)

Matches anything but character that follows (SMANTE
finds MALE or MADE, but not MATE)

Matches a space or a tab

Matches any character except a letter or number

ese wild-card characters in Search, Replace, Insert, and
s.

IC OPERATORS

Multiplication

ateger division

+ Addition

— Subtraction

= Equal

< Less than

> Greater than

& And

! Or

' Logical complement (Not)

FUNCTIONS

@n Returns value of variable n, where n is a digit 0-9

@n, Puts value of variable n on number stack

(DA Returns value of numeric argument preceding last
macro call

@B Returns value of current edit buffer: 0 if buffer T, 1 if
buffer 0, 2 if buffer 1,...,10 if buffer 9, 11 if buffer C
(command line)

@C Returns value of current cursor position in edit buffer
(first position is 0)

@D Returns number of lines scrolled by instant
commands ALT-U and ALT-J

@E Returns value of error flag

@F < flname > Returns value — 1 if < flname > exists in working
directory; returns value 0 if < flname > is not in
working directory

GO Returns length of string argument just referenced by
an I, S, R, or C command

@H < strng > Returns value 0 if < strng > matches characters at
cursor; returns value — 1 or 1 if no match

(DI Returns number of pages read from input file; pages
are counted only if delimited by form-feed characters

@J Returns number of lines available on screen for text
display; top three lines are not counted

@K Returns ASCII value of key entered after a G or QR
command

@L Returns line number of cursor’s position in text file if
Auto Buffer Mode is on; returns line number of
cursor’s position in memory if Auto Buffer Mode is
off or if editing in buffer other than T

@M Returns amount (in bytes) of working memory space
available

(DO Returns number of pages written to output file; pages
are counted only if delimited by form-feed characters

@P Returns value of absolute memory address of cursor
position

Q COMMANDS

Returns column number of previous tab stop QMC

Returns remainder of last arithmetic division QMG
performed nQO
Returns top number in number stack; pops number
off stack >
Returns ASCII value of character at cursor nQQ

Returns value — 1 if Auto Buffer Mode is on; returns .
value 0 if Auto Buffer Mode is off ?

Returns value of the current operating mode (0 if
Command Mode, 1 if Insert Mode, 2 if Overtype
Mode)

Returns column number of right margin

Returns column number of left margin

Returns column number of next tab stop

Returns value of byte in memory pointed to by value nQV
assigned to variable 9

Returns column number of current indentation nQW
setting

Returns ASCII value of x, where x is any nQX
character

<DS
nQY

Indicates that n strings are stored on the command line nQZ

Rings bell Q#
Sets control-shift character to that represented by ASCII nQ —
value of n

Delays for a time proportional to n nQ/

Sets Type Out Mode where n is 0, 1, or 2

Sets form-feed character to that represented by ASCII value nQ <
of n
Turns garbage stacking off if n is 0; turns garbage stacking
on if n is nonzero or missing £ nQ >

Inserts n spaces at cursor

Sets current input radix to base n nQ!

Shifts text display up or down n lines without changing
cursor position nQx

Turns Backup Mode off if n is 0; turns Backup Mode on if
n is nonzero or missing

Sets number of lines that instant commands ALT-U and
ALT-J scroll to n

Sends permanent macro file to permanent macro area

Gets permanent macro file from permanent macro area

Sets current output radix to base n

Divides pages into n lines each

Shifts text display left or right n columns without changing
cursor position

Redraws screen if n is 0; checks keyboard without
redrawing screen if n is —

Sets the uppercase/lowercase shift character to that
represented by ASCII value n

Sends character represented by ASCII value n to the listing
device

Turns Auto Buffer Mode off if n is 0; turns Auto Buffer
Mode on if n is nonzero or missing

Enables tab fill if n is nonzero or missing; disables tab fill if
n is 0

Turns the command-line error display off if n is nonzero;
turns the command-line error display on if n is 0

Moves cursor to column n on current line; depending on
state of free space flag (see QY) cursor might not be able to
go past last character in line

Sets free space flag if n is 0; resets free space flag if n is
nonzero

Prevents cursor from moving past column n

Toggles cursor between tag and current cursor position

Sets flag to display numbers as signed integers if n is not 0;
resets flag (and displays numbers as positive only) if n is 0

Sets indentation to column n; if n is missing, Q/ increments
indentation by one column and — Q/ decrements it by one
column

Saves current edit buffer, Format Mode setting, and garbage
stack if n is nonzero or missing (they are restored once,
after the next error message); this feature is disabled if n is 0

Gets character represented by ASCII value n as if you type
the character from the keyboard

Stores value of n in memory in location pointed to by
variable 9

Sets value of user variable x (0 — 9) to n; use these 10 user
variables with user-written I/O drivers.

L-LINE COMMANDS

Begins formatting control line

Separates control-line commands

Sets left margin to column n

Sets right margin to column n

Deletes all tab stops

Sets a tab stop at column n

Deletes the tab stop at column n

Deletes old tab stops and sets new tab stops every nth columns

Sets indentation to tab stop at column n

ANEOUS control characters
Precedes macro definition in permanent macro file; ends per­
manent macro file

Precedes first macro in permanent macro file to execute macro
when you enter PMATE

Precedes first macro in permanent macro file to execute macro
when you enter PMATE; processes operating system com­
mands

Form-feed character

End of file character

echnologies, Inc.
Road
:A 95066 USA
ademark of Phoenix Software Associates Ltd.
egistered trademark of Victor Technologies, Inc. Printed in USA

