
Chapter 6
DATA DIVISION

6.1 DATA DIVISION
Header and General Format 84

6.2 Record Description Entry 87
6.2.1 Data Description Entries

and Data-Items 89
6.2.2 Group Items 90
6.2.3 Elementary Items 91
6.2.4 Alphanumeric and

Alphanumeric-Edited Items 91
6.2.5 Numeric Items 92
6.2.6 Numeric-Edited Items 96
6.2.7 Level 66 (RENAMES) Items 97
6.2.8 Level 77 (Noncontiguous) Items 97
6.2.9 Level 88 (Condition-Name) Items 98
6.3 DATA DIVISION Limitations 100
6.4 Sections 104
6.4.1 FILE SECTION and

the File Description (FD) Entry 105
6.4.2 WORKING-STORAGE SECTION 109
6.4.3 LINKAGE SECTION 111
6.4.4 SCREEN SECTION 113
6.5 Clauses 118

79

6.5.1 AUTO Clause 119
6.5.2 BACKGROUND-COLOR Clause 120
6.5.3 BELL Clause 121
6.5.4 BLANK LINE Clause 122
6.5.5 BLANK SCREEN Clause 123
6.5.6 BLANK WHEN ZERO Clause 124
6.5.7 BLINK Clause 125
6.5.8 BLOCK Clause 126
6.5.9 CODE-SET Clause 127
6.5.10 COLUMN Clause 128
6.5.11 DATA RECORD(S) Clause 130
6.5.12 FOREGROUND-COLOR Clause 131
6.5.13 FROM/TO/USING Clause 132
6.5.14 FULL Clause 134
6.5.15 HIGHLIGHT Clause 135
6.5.16 JUSTIFIED Clause 136
6.5.17 LABEL RECORD(S) Clause 137
6.5.18 LINAGE Clause 138
6.5.19 LINE Clause 140
6.5.20 OCCURS Clause 142
6.5.21 PICTURE Clause 145
6.5.22 RECORD Clause 153
6.5.23 REDEFINES Clause 154
6.5.24 RENAMES Clause 156
6.5.25 REQUIRED Clause 158

80

6.5.26 SECURE Clause 159
6.5.27 SIGN Clause 160
6.5.28 SYNCHRONIZED Clause 162
6.5.29 TO Clause 163
6.5.30 USAGE Clause 164
6.5.31 USING Clause 166
6.5.32 VALUE IS Clause 167
6.5.33 VALUE OF FILE-ID Clause 169

81

DATA DIVISION

The DATA DIVISION describes the data that the object pro
gram uses, creates, and produces as output. This chapter de
fines the physical limitations that apply to the DATA DIVI
SION, the types of data-items that may be specified in a
Microsoft COBOL program with the USAGE clause, and the
section headers and clauses that provide the structure for your
data.

The last two parts of the chapter present the individual sec
tions and clauses that are used in the DATA DIVISION. Sec
tion 6.4, “Sections,” presents the sections, in the order in which
they appear in a source program, and Section 6.5, “Clauses,”
presents the clauses that make up these sections, in alphabeti
cal order.

83

Microsoft COBOL Reference Manual

6.1 DATA DIVISION
Header and General Format

Purpose

Describes the data that will be used, created, or produced by
the object program.

Format

The DATA DIVISION contains four sections:

FILE SECTION
WORKING-STORAGE SECTION
LINKAGE SECTION
SCREEN SECTION

These sections are discussed individually in Section 6.4, "Sec
tions," of this chapter. The SCREEN SECTION is a Microsoft
extension for interactive screen-handling.

The general format for the DATA DIVISION is:

DATA DIVISION.

(FILE SECTION.

[file-description-entry { record-description-entry } ...
sort-merge-file-description-entry { record-description-entry } ...

f WORKING-STORAGE SECTION.

[77-level-description-entry~| .
record-description-entry J

[LINKAGE SECTION.

[77-level-description-entry"| ,
record-description-entry J

84

DATA DIVISION

[screen section.

I level-number [screen name]

[BLANK SCREEN 1

[LJNE NUMBER IS [PLUS] integer-1 J

[COLUMN NUMBER IS [PLUS] integer-2 J

l FOREGROUND-COLOR integer-3]

r BACKGROUND-COLOR inteqer-4]

I BLANK LINE I

[BELL]

[UNDERLINE I

r REVERSE-VIDEO]

I HIGHLIGHT]

f BLINK 1

' [l VALUE] IS literal-1]

« F i l literal-2 \
i PICTURE) IS character-string { [FROM \ identifier-1 J] [TO identifier-2]
I PIC J U USING identifier-3]

[BLANK WHEN ZERO]

[~f JUSTIFIED] RIGHT 1
Lt JUST / J

f AUTO 1

I SECURE 1

[REQUIRED]

[FULL]- } ...]

Remarks

The DATA DIVISION is a required part of an MS-COBOL pro
gram. It describes the data that were listed in the FILE
CONTROL paragraph of the ENVIRONMENT DIVISION. It
also describes data used in the program that are not part of the
input-output sections of the program (i.e., that are in the
WORKING-STORAGE, LINKAGE, and SCREEN SECTIONS).

85

Microsoft COBOL Reference Manual

These data are arranged in logical records. A logical record
can be further divided into fields, or data-items. For example,
an “Inventory-Master-File” declared in a FILE-CONTROL
paragraph could contain one record for each piece of equipment
inventoried. Each record could be further divided into data-
items such as PART-NUMBER and DATE-ACQUIRED.

Example

DATA DIVISION.

FILE SECTION.

FD INVENTORY-MASTER-FILE
LABEL RECORDS ARE STANDARD
VALUE OF FILE-ID IS "MASTER.DAT" .

01 MASTER-RECORD.
05 MSTR-KEY PIC X(10).
05 MSTR-DESCRI PTI ON PIC X(25).
05 MSTR-AMT-ON-HAND PIC S9(5).
05 MSTR-WARNING-LEVEL PIC S9(5).

FD INVENTORY-WARNING-F ILE
LABEL RECORDS ARE STANDARD
VALUE OF FILE-ID IS "WARNING.DAT" .

01 WARNING-RECORD PIC X(45).

FD INVENTORY-REPORT-FILE
LABEL RECORDS ARE OMITTED
LINAGE IS 56 LINES.

01 REPORT-RECORD PIC X(80).

WORKING-STORAGE SECTION.

01 WORK-FIELDS.
05 MASTER-STATUS

VALUE SPACES.
PIC XX

05 WARNING-STATUS
VALUE SPACES.

PIC XX

05 REC-COUNT
VALUE ZERO.

PIC 59(5)

05 WARNING-COUNT
VALUE ZERO.

PIC S9(5)

05 END-OF-FILE-SW PIC X
VALUE "N".
88 END-OF-FILE

VALUE "Y".

86

DATA DIVISION

6.2 Record Description Entry

A record description entry includes all the data description en
tries for that record (see the following pages for the complete
syntax).

Within the DATA DIVISION, record-items and data-items are
given level numbers. Record-items are given level-numbers of
01. Data-items (fields within records and other data-items
needing storage by the object program) are given level
numbers 02 through 49 and are declared in "data description
entries.”

For naming purposes, records are considered as data-items and
follow the rules given for data-names in Chapter 2, "Language
Elements.”

Level 66, 77, and 88 entries may also be used in the DATA
DIVISION. Level 66 entries support the RENAMES clause
which regroups data-items. Level 77 entries describe elemen
tary data-items that are not subordinate to any other data-
item. Level 88 entries describe conditional variables.

87

Microsoft COBOL Reference Manual

The general format for a record or data description entry (in
cluding level 77 entries) is:

level-number
data-name-1
FILLER

[; REDEFINES data-name-2]

/ PICTURE
1 PIC

IS character-string

;[USAGE IS 1

/ COMPUTATIQNAL-O
COMP-O
COMPUTATIONAL
COMP
COMPUTATIONAL-3
COMP-3
COMPUTATIONAL-4
COMP-4
DISPLAY

. INDEX

; [SIGN IS] f LEADING | [SEPARATE CHARACTER]
I TRAILING J

:OCCURS integer-1 TO integer-2 TIMES DEPENDING ON data-name-3
integer-2 TIMES

T (ASCENDING }
L (DESCENDING/

KEY IS data-name-4 [, data-name-5]...

[INDEXED BY index-name-1 [, index-name-2] ...]

(SYNCHRONIZED) ["LEFT ll
(SYNC / I RIGHT] I

JUSTIFIED
JUST

RIGHT

[; BLANK WHEN ZERO]

f ; VALUE IS literal L

88

DATA DIVISION

or, in the case of level 66 and 88 entries, respectively:

66 data-name-1; RENAMES data-name-2 H THROUGH \ data-name-3
Lithru j

Ft THROUGH \
[\THRU 1

literal-2'88 condition-name; l VALUE IS \ literal-1
I VALUES ARE J

literal-3 F f THROUGH\
Il THRU /

literal-4^

The clauses used in a record description entry may appear in
any order, except that the data-name must immediately follow
the level-number, and if the REDEFINES clause is used, it
must immediately follow the data-name.

The PICTURE clause is required in every elementary data-
item description except an index-data-item.

The clauses PICTURE, JUSTIFIED, SYNCHRONIZED, and
BLANK WHEN ZERO can only be specified for elementary
data-items.

For a discussion of the restrictions on the use of level 66, level
77, and level 88 data-items, see Sections 6.2.7, 6.2.8, and 6.2.9,
respectively.

6.2.1 Data Description Entries and Data-items

Each data-item in the object program (for example, fields
within records and other data-items needing storage by the
object program) must be described in a separate record descrip
tion or data description entry. These descriptions are entered
in the DATA DIVISION and are given level-numbers 02
through 49. For convenience, we will generally use the term
"data description entry” to mean both record description entry
and data description entry.

Note, however, that a record description entry is a specific type
of data description entry, and always refers to data that begins
with level-number 01. We will use the term "record descrip
tion entry” when the data to be described must begin with
level-number 01.

89

Microsoft COBOL Reference Manual

Data-items must be entered in the order in which the items
appear in the record, and can be either group items having
subordinate data elements, or elementary items, which do not
have subordinates. Elementary items can be further classified
and defined by their content (see Section 6.2.3, "Elementary
Items”).

The following discussion defines group and elementary data-
items and the elementary data-item types supported by
Microsoft COBOL.

The general format for a data description entry is given in Sec
tion 6.2 of this chapter. Every entry must contain a level
number, data-name or the word "FILLER”, and a series of
clauses, followed by a period (.). Specific types of data-items,
however, require certain clauses and cannot contain others.
These requirements and restrictions are discussed in Sections
6.2.4 through 6.2.9 of this chapter.

6.2.2 Group Items

A group item is any item that is further subdivided into ele
mentary items or subordinate group items.

Example:

01 GROUP-NAME.
02 FIELD-A PICTURE X.
02 FIELD-B.

03 FIELD-C PICTURE X.
03 FIELD-D PICTURE X.

In this example, the level 02 items are subordinate to the level
01 group item. The level 02 group item, FIELD-B, contains
two level 03 subordinate elementary items, FIELD-C and
FIELD-D. The 01 level number also indicates the beginning of
a new record; all items will be part of that record until another
01 level number is encountered. The maximum size of a group
item, including its subordinate items, is described in Section
6.3, "DATA DIVISION Limitations.”

90

DATA DIVISION

The following clauses may be used to modify the data descrip
tion entry:

OCCURS
REDEFINES
SIGN
USAGE

6.2.3 Elementary Items

An elementary level data-item is one that contains no subordi
nate items, and may be of these data-item types:

1. alphabetic
2. alphanumeric
3. alphanumeric-edited
4. numeric
5. numeric-edited
6. level 66 (RENAMES)
7. level 77 (noncontiguous)
8. level 88 (condition-names)

The default internal storage format for elementary data-items
is DISPLAY where the data are stored in standard ASCII for
mat, except for index-data-items and index-names which are
stored in COMP-O (binary) format.

6.2.4 Alphanumeric and
Alphanumeric-Edited Items

An alphanumeric item consists of any combination of charac
ters making a “character string” data field.

If the associated PICTURE clause contains any editing charac
ters, the item is an alphanumeric-edited item. This form of a
data-item is permissible as a receiving field for numeric data
but cannot be used as an arithmetic operand.

91

Microsoft COBOL Reference Manual

The PICTURE clause is required.

The following clauses may be used to modify the data descrip
tion entry:

SYNCHRONIZED
USAGE
VALUE

JUSTIFIED
OCCURS
REDEFINES

Example:

02 MISO-1 PICTURE X(53).
02 MISO-2 PICTURE BXXXBXXB.

In this example, MISC-1 may contain any combination of char
acters, with a maximum of 53 characters. The “B” in MISC-2
is an edit character representing a space.

6.2.5 Numeric Items

A numeric item is an elementary item that contains numeric
data only. There are four kinds of numeric items:

1. external decimal items
2. internal decimal items
3. binary items
4. index-data-items and index-names

These classifications are based on how the items are stored in
memory.

1. External decimal item
An external decimal item is one in which each charac
ter represents one decimal digit in standard ASCII for
mat. The maximum number of digits that can be
represented is 18.
The exact number of digits in an item is defined by the
PICTURE clause in the item. For example, PICTURE
999 defines a three-digit item whose maximum value is
nine hundred ninety-nine.
If the value of PICTURE begins with the letter "S", the
item will also contain an algebraic operational sign.

92

DATA DIVISION

This means that any data stored in the field as the
result of a MOVE statement or an arithmetic state
ment will contain the algebraic sign of the result.
The sign does not occupy a separate byte unless the
SEPARATE form of the SIGN clause is used in the
general format.
The USAGE of an external decimal item is implicitly
DISPLAY.
The PICTURE clause is required with external decimal
items.
The following clauses may be used to modify the data
description:

OCCURS
REDEFINES
SIGN

SYNCHRONIZED
USAGE
VALUE

Examples:
02 HDURS-WORKED PICTURE 99V9

USAGE IS DISPLAY.

02 HOURS-SCHED PICTURE S99V9
SIGN IS SEPARATE TRAILING.

The "V" in the PICTURE clause represents an implied
decimal point, and "S" represents an operational sign.

2. Internal decimal item
An internal decimal item is one that is stored in
packed binary-coded decimal (BCD) format. The
USAGE IS COMPUTATIONAL-3 form of the USAGE
clause specifies this format.
An internal decimal item defined by n —9's in its PIC
TURE clause occupies (n + 2)/2 bytes in memory
(rounded down). All bytes except the rightmost contain
a pair of digits, and each digit is represented by the
binary equivalent of a valid digit value from 0 to 9.
The item’s low order digit and the operational sign are
stored in the rightmost byte of a packed item. For this
reason, the compiler considers a packed item to have an
arithmetic sign, even if the original PICTURE clause
lacked an S-character.

93

Microsoft COBOL Reference Manual

The USAGE IS COMPUTATIONAL-3 clause is re
quired for an internal decimal item.
The following clauses may be used to modify the data
description:

OCCURS SYNCHRONIZED
REDEFINES VALUE
SIGN

Example:
05 TAX-RATE PICTURE S99V999

VALUE 1.375
USAGE IS COMPUTATIONAL-3.

3. Binary item
A binary item uses the base 2 system to represent an
integer. Data-items whose USAGE is COMP-O occupy
two bytes of memory and represent integers in the
range -32,768 to 32,767. Data-items whose USAGE is
COMP-4 occupy four bytes of memory and represent in
tegers in the range of —2,147,483,648 to 2,147,483,647.
The storage format of binary items may vary among
implementations of MS-COBOL.
A binary item is specified by the USAGE IS
COMPUTATIONAL-0 or COMPUTATIONAL-4 forms
of the USAGE clause.
The PICTURE and USAGE IS COMPUTATIONAL-O or
COMPUTATIONAL-4 clauses are required for binary
items.
The following clauses may be used to modify the data
description:

OCCURS
REDEFINES
SYNCHRONIZED
VALUE

94

DATA DIVISION

Warning
We strongly advise against redefining COMP-O or
COMP-4 data-items to refer to parts of such a data-
item. The order in which bytes are stored may vary
among implementations, or may change in later ver
sions of Microsoft COBOL. Such a practice may limit
the portability of your software.

Examples:
03 YEAR-TO-DATE PICTURE S9(5)

USAGE IS COMPUTATIONAL-O.

03 LARGE-VALUE PICTURE S9(9)
USAGE IS COMPUTATIONAL-4.

4. Index-data-item and index-name
Index-data-names and index-names are used in table
handling. An index-name is defined in the INDEXED
BY phrase of the OCCURS clause. It is not declared in
a separate WORKING-STORAGE SECTION entry. An
index-name is associated with the table whose defini
tion contains the OCCURS clause, and it cannot be
used with any other table.
An index-data-item is defined in a data description en
try with the USAGE IS INDEX clause. The PICTURE
and VALUE IS clauses are not used in the index-data-
item definition. An index-data-item is not associated
with a particular table.
Index-data-items and index-names have an implicit
USAGE IS COMPUTATIONAL-O (binary item) clause.
See Chapter 9, “Table Handling by the Indexing
Method,” for more information about using index-data-
items and index-names.

95

Microsoft COBOL Reference Manual

The following clauses may be used to modify the data
description:

SIGN
SYNCHRONIZED

BLANK
JUSTIFIED
REDEFINES

Examples:
05 TABLE-ENTRY OCCURS 10 TIMES

PIC 9
INDEXED BY SUB-VAL.

05 SUB-VAL
USAGE IS INDEX.

In the first example, SUB-VAL is implicitly declared as
an index-name associated with TABLE-ENTRY. In the
second example, SUB-VAL is declared explicitly, as an
index-data-item, but is not associated with a particular
table.

6.2.6 Numeric-Edited Items

A numeric-edited data-item is a receiving field for numeric
values. It cannot be used as a numeric item itself in numeric
calculations. For example, it might be a field named SALES-
TOTAL where the calculated figure representing total sales is
stored.

A numeric-edited item contains only digits and/or special edit
ing characters such as commas and dollar signs. The max
imum number of characters is 30, and the maximum number of
digits is 18. The following clauses may be used to modify the
data description:

BLANK WHEN ZERO
OCCURS
PICTURE
REDEFINES

SYNCHRONIZED
USAGE
VALUES

Example:

02 SALES-TOTAL PICTURE $ $ $ $,$$9.99-.

96

DATA DIVISION

The minus (—) in the PICTURE clause above represents the
location of the operational sign of the calculated result. The
dollar sign ($) will "float"; i.e., only one dollar sign will appear
in the result, one position to the left of the leftmost non-zero
digit in SALES-TOTAL.

6.2.7 Level 66 (RENAMES) Items

Level 66 items provide for multiple names for the same data by
renaming individual or adjacent data fields, including group
and subordinate items. For example, this code fragment
renames a subset of fields in a record. See Section 6.5.24,
"RENAMES Clause," for more information.

APPAREL.

02 STOCK- ON-ACCOUNT.
03 PERISHABLES PIC 9(8).
03 SUNDRIES PIC 9(8).
03 DRY-GOODS PIC 9(8).
03 APPAREL PIC 9(8).
03 ROLLING PIC 9(8).
03 SECURITIES PIC 9(8).

66 RETAIL -STOCK RENAMES STOCK-•ON-ACCOUNT THRU

6.2.8 Level 77 (Noncontiguous) Items

Some data-items and constants may not be part of a hierarchi
cal relationship in the program. These items are not grouped
into logical records, and they are not subdivided. Instead, they
are given level-number 77 and are classed as "noncontiguous
elementary items." They are sometimes called "stand-alone
items."

Level 77 entries follow the naming conventions and general
format for standard data description entries (see Section 6.2.1,
"Data Description Entries and Data-items").

A PICTURE or USAGE IS INDEX clause is required.

Level 77 entries may be used only in the WORKING
STORAGE and LINKAGE SECTIONS.

97

Microsoft COBOL Reference Manual

6.2.9 Level 88 (Condition-Name) Items

A level 88 condition-name entry specifies a value, list of
values, or a range of values that an elementary item may as
sume. If the specified value matches the value of its associated
elementary item, the condition is true; otherwise it is false.
For example, the elementary item,

02 PAYROLL-PERIOD PICTURE IS 9.

may be followed by the level 88 entries

88 WEEKLY VALUE IS 1.
88 SEMI-MONTHLY VALUE IS 2.
88 MONTHLY VALUE IS 3.

In this case, either of the following conditions may be applied:

IF MONTHLY
PERFORM PIOO-DO-MONTHLY.

IF PAYROLL-PERIOD = 3
PERFORM P1OO-DO-MONTHLY.

The elementary item associated with a level 88 entry is called
the “conditional variable.”

A level 88 entry must be preceded either by another level 88
entry (in the case of several condition-names pertaining to an
elementary item) or by an elementary item (which may be
FILLER). Index-data-items should not be followed by level 88
items.

The general format for a level 88 entry is:

88 condition-name; i VALUE IS \ literal-1 R THROUGH \ literal-2
I VALUES ARE/ I I THRU f

T, literal-3 IR THROUGH)L 11 THRU-------|,ltera,-4JJ

The VALUE IS or VALUES ARE clause is required.

98

DATA DIVISION

The following clauses may be used to modify the data descrip
tion:

THROUGH I THRU

For an edited elementary item, the values in a condition-name
entry must be expressed as non-numeric (quoted) literals.

A VALUE clause may contain both a series of literals and a
range of literals.

The following rules apply to level 88 condition-names:

1. Every condition-name may be qualified by the name of
its associated elementary item and that elementary
item’s qualifiers.

2. A condition-name may be used in the PROCEDURE
DIVISION in place of a simple relational condition.

3. A condition-name may pertain to an elementary item
that requires subscripts. In this case, the condition
name, when written in the PROCEDURE DIVISION,
must be subscripted according to the same require
ments as the associated elementary item.

4. The type of literal in a condition-name entry must be
consistent with the data type of its conditional variable.

99

Microsoft COBOL Reference Manual

6.3 DATA DIVISION Limitations

Individual data-items, group or elementary, are limited in size
to 60K (61,440) bytes.

As a general rule of thumb, with a small number of files with
record sizes under IK (1024) bytes, and with a small number of
LINKAGE SECTION parameters, also under 1024 bytes each,
a program can normally have 50 to 60K bytes of working
storage. Each new file and linkage section parameter will
make at least 1024 bytes of working storage unavailable.

Specifically, the DATA DIVISION in MS-COBOL programs is
limited by the equation:

w/1024 + JfR/1024) 4- ^"^71024) .<60

where:

w = the size of the working storage area, in bytes
f the number of ED and SD entries in the

FILE SECTION
R(i) the size of the largest record for each file,

in bytes
1 the number of 01 or 77 level data-items

in the LINKAGE SECTION
D(i) the size of each 01 or 77 level data-item

in the LINKAGE SECTION

Note that all the results of divisions are rounded UP to the
next highest integer value.

The memory available to the DATA DIVISION is allocated in
segments of 1024 bytes. The equation above relates the vari
ous allocation restrictions and the maximum number of 1024-
byte segments. Note that these segments may overlap when

100

DATA DIVISION

there are unused portions, and that actual memory used will
be less than the number of segments allocated.

Memory assigned to the WORKING-STORAGE area is allocat
ed enough memory segments to contain all data-items. In the
equation above, the term

w/1024

reflects the number of segments allocated to the WORKING
STORAGE SECTION.

Memory allocated to file records is similarly allocated enough
segments to contain the largest data record described for each
file. However, each file is always allocated a new memory seg
ment. Thus, the term

f

n
reflects the sum of the memory segments required for each
individual file record area.

While LINKAGE SECTION items reserve no actual space,
they are treated as if memory is actually allocated to them,
under the same rules as WORKING-STORAGE. In addition,
each level 01 or 77 data-item present is assigned a new 1024-
byte segment. Thus, the term

/
Joy 1024)

i— 1

represents the sum of the segments allocated to each individual
level 01 or 77 LINKAGE SECTION item.

101

Microsoft COBOL Reference Manual

Example:

DATA DIVISION.
FILE SECTION.
FD FILE-1

01 FILE-1-RECORD.
05 FILE-1-DATA PIC X(80)

FD FILE-2

01 FILE-2-RECQRD.
05 FILE-2-DATA PIC X(2 0 0 0).

WORKING-STORAGE SECTION.
01 ITEM-1
01 LARGE-ITEM.

03 LARGE-VALUES OCCURS
05 LARGE-ELEMENT-1
05 LARGE-ELEMENT-2
05 LARGE-ELEMENT-3
05 LARGE-ELEMENT-4

PIC

1 00 TI

X(80).

MES.
PIC 9(10)
PIC 9(1 0)
PIC 9(1 0)
PIC 9(1 0)

LINKAGE SECTION.
01 PARAMETER-1
01 PARAMETER-2
77 PARAMETER-3

PIC
PIC
PIC

X(1 0).
X(2 0 0 0).
9(5).

102

DATA DIVISION

In this example, we calculate each of the three terms of the
DATA DIVISION limitation as follows:

1. The size of WORKING-STORAGE is 80 + (100 * 40),
that is, the size of ITEM-1 (80 bytes), plus the size of
LARGE-ITEM (100 elements of 40 bytes each). The
result, 4080, is divided (rounding up) by 1024, resulting
in four 1024-byte segments being allocated.

2. The allocation of file record space is calculated as the
size of each file’s largest record, divided by 1024,
rounded up. For the two files in our example, 80/1024
gives us 1, and 2000/1024 gives us 2. A total of three
segments are used for file record buffers.

3. Similarly, the allocation of the LINKAGE SECTION
space is calculated as the sizes of each level 01 or 77
item divided by 1024, and then summed. Thus in our
example, the three parameters have sizes of 10, 2000,
and 5 bytes, respectively, and are allocated 1, 2, and 1
segment each. The total segment allocation for the
LINKAGE SECTION is then 4.

4. The total of these three terms, 4 + 3 + 4, or 11, is
thus valid, since it is less than 60.

103

Microsoft COBOL Reference Manual

6.4 Sections

The DATA DIVISION of an MS-COBOL program contains four
sections:

FILE SECTION
WORKING-STORAGE SECTION
LINKAGE SECTION
SCREEN SECTION

These sections are described in Sections 6.4.1 through 6.4.4.
The SCREEN SECTION for screen data storage and organiza
tion is an extension to the full language standard.

104

DATA DIVISION

6.4.1 FILE SECTION and
the File Description (FD) Entry

The FILE SECTION defines the structure of your data files.
The File Description (FD) entry and the optional SORT File
Description (SD) entry that follow the FILE SECTION header
contain entries for every file that has been declared within a
SELECT clause in the ENVIRONMENT DIVISION.

The FILE SECTION header appears on its own line and ends
with a period (.).

Purpose

Supplies logical and physical descriptions of the files used in
the program.

105

Microsoft COBOL Reference Manual

Format

The general format for the FILE SECTION, including FD and
SD entry syntax, is:

DATA DIVISION.

[FILE SECTION.

[FD file-name

BLOCK CONTAINS [integer-1 TO] integer-2 RECORDS H
CHARACTERS JJ

[; RECORD CONTAINS [integer-3 TO] integer-4 CHARACTERS]

(RECORD IS \ f STANDARD 1
: LABEL I RECORDS ARE j I OMITTED J

[l data-name-1 fl
; VALUE OF FILE-ID IS \ literal-1 JJ

T; DATA /RECORD IS 1 ... o r q i 1L I RECORDS ARE I data-name-2 [, data-name-3) ...J

r / data-name-4 \ [(data-name-5 |"l
LINAGE IS I integer-5 f LINES I . WITH FOOTING AT I integer-6 fj

r /data-name-6H [f data-name-7 fll
LINES ATTOP 1 integer-7 JJ I . LINES AT BOTTOM \ integer-8 1JJ

[; CODE-SET IS alphabet-name].

jrecord-description-entry| ...]...

[SD file-name

[; RECORD CONTAINS [integer-1 TO] integer-2 CHARACTERS]

T (RECORD IS) I
L; DATA 1 RECORDS ARE / data-name-1 [, data-name-2] ...J

[f data-name-1 \ ~|
: VALUE OF FILE-ID IS I literal-1 J J

record-description-entry > ...] ...

106

DATA DIVISION

Remarks

FD and SD entries specify the size of the logical and physical
records, the presence or absence of label records, the value of
implementor-defined label items, names of the data records
which make up the file, and the number of lines to be included
on a logical printer page. The FD and SD entry ends with a
period (.).

The form of the LABEL entry and use of the VALUE OF
FILE-ID entry will vary according to the physical destination
of your data files.

If you are assigning a data file to PRINTER, the LABEL
RECORDS ARE OMITTED entry must appear, and the
VALUE OF FILE-ID entry is not permitted in the FD entry.

If you are assigning a data file to DISK, the LABEL
RECORDS ARE STANDARD entry must appear, and the
VALUE OF FILE-ID clause is required.

The LINAGE and CODE-SET clauses are only relevant in the
file description of a Sequential or Line Sequential file.

In the general format of the FILE SECTION, FD entries may
be followed by SORT File Description (SD) entries.

The following rules must be observed in the FILE SECTION:

1. The level indicator FD or SD identifies the beginning of
a file description. It must be followed by the file-name.

2. The clauses included in the FD or SD entry may be in
any order.

3. One or more record description entries must follow the
file description entry. Record description entries are
discussed in Section 6.2 of this chapter.

107

Microsoft COBOL Reference Manual

Example

FILE SECTION.

FD INVENTORY-MASTER-FILE
LABEL RECORDS ARE STANDARD
VALUE OF FILE-ID IS "MASTER.DAT" .

01 MASTER-RECORD.
05 MSTR-KEY PIC X(10)
05 MSTR-DESCRI PT I ON PIC X(25)
05 MSTR-AMT-ON-HAND PTC S9(5)
05 MSTR-WARNI NG-LEVEL PIC S9(5)

SD SORT-FILE
VALUE OF FILE-ID IS "SORTWORK".

SIGN IS LEADING SEPARATE.

SORT-RECORD.
04 SORT-DATE.

08 SORT-MONTH PIC 99.
08 SORT-DAY PIC 99.
08 SORT-YEAR PIC 99.

04 SORT-TRANSACTION-CODE PIC XXX.
04 SORT-ACCOUNT-NUMBER PIC 99999
04 SORT-REFERENCE PIC X(9).
04 SORT-AMOUNT PIC S9(7)V99

108

DATA DIVISION

6.4.2 WORKING-STORAGE SECTION

Purpose

The WORKING-STORAGE SECTION describes the data that
are developed and processed internally. These data will not be
part of the external data files.

Format

The WORKING-STORAGE SECTION includes the WORK
ING-STORAGE header, record description, and level 77 en
tries. The general format is:

l WORKING-STORAGE SECTION.

[77-level-description-entryl
record-description-entry J ■*

Record description entries are described in Section 6.2 of this
chapter.

Remarks

Record description and data description entries included in this
section may use level-numbers 01 through 49, and 77. Level
77 entries are discussed in Section 6.2.8 of this chapter.

VALUE clauses, which are prohibited in the FILE SECTION,
are allowed in the WORKING-STORAGE SECTION.

109

Microsoft COBOL Reference Manual

Example

WORKING-STORAGE SECTION.

01 WORK
05

’-F I ELDS.
MASTER-STATUS PIC XX VALUE SPACES

05 WARNING-STATUS PIC XX VALUE SPACES
05 REC-COUNT PIC S9(5) VALUE ZERO.
05 WARNING-COUNT PIC S9(5) VALUE ZERO.
05 END-OF-FILE SW PIC X VALUE "N" .

88 END-OF-FILE VALUE u y w

110

DATA DIVISION

6.4.3 LINKAGE SECTION

The LINKAGE SECTION in a program is needed only if the
program has been called from another program, and the CALL
^tatement_Jmd±Le^allingL4)m
The LINKAGE SECTION describes data that are defined in
the calling program and are referenced by both the calling and
the called programs.

Purpose

To describe data that are referenced by a calling and called
program. This section may contain record description entries
and level 66, level 77, and level 88 entries.

Format

The LINKAGE SECTION begins with a header, followed by
record description entries and level 66, level 77, and level 88
entries. The general format is:

s LINKAGE SECTION.

[77-level-description-entry~| .
record-description-entry J "' •*

See separate listings in this chapter for details on individual
parts of the LINKAGE SECTION.

In the LINKAGE SECTION, the VALUE IS clause may only
be used in level 88 entries.

Remarks

No space is allocated in the program for data-items described
in the LINKAGE SECTION. Instead, PROCEDURE DIVI
SION references to these data are resolved by equating the
descriptions with data whose addresses are passed to the called
program by the CALL statement. Note that for index-items,
no such correspondence is established; index-names in the cal
ling and called programs always refer to separate indices.

Ill

Microsoft COBOL Reference Maintal

Data-items that are defined in the LINKAGE SECTION can
only be referenced in the PROCEDURE DIVISION of the
program if they are specified in the USING phrase of the
PROCEDURE DIVISION header or are subordinate to
operands in that header.

Because names in the LINKAGE SECTION cannot be quali
fied, they must be unique within the called program.

See Chapter 8, "Interprogram Communication,” for more infor
mation on the LINKAGE SECTION.

Example

LINKAGE SECTION.

01 SHARED-LIST.
05 MSTR-DESCRI PT I ON PIC X(25).
05 MSTR-AMT-ON-HAND PIC S9(5).

112

DATA DIVISION

6.4.4 SCREEN SECTION

Microsoft COBOL is capable of defining screen attributes and
having these attributes and other screen definitions displayed
in an interactive mode.

This capability comes from using the SCREEN SECTION,
which is a Microsoft extension to the DATA DIVISION. This
extension takes advantage of Formats 1, 3, and 4 of the
ACCEPT statement, and Format 3 of the DISPLAY statement.
See Sections 7.6.1 and 7.6.10 for more information about these
formats of ACCEPT and DISPLAY, respectively.

Purpose

To define terminal format and to describe the data-items
entered in the fields on the screen.

Format

The SCREEN SECTION header begins the section, followed by
a period (.). Items are entered as group or elementary items,
numbered 01 through 49.

Elementary screen items in the SCREEN SECTION define
individual display and/or data entry fields. Group items name
any group of elementary screen items that are accepted or
displayed with a single ACCEPT or DISPLAY statement.

113

Microsoft COBOL Reference Manual

The general format for an elementary screen item is:

level-number [screen-name]

T BLANKSCREEN 1

[LINE NUMBER IS [PLUS] integer-1]

[COLUMN NUMBER IS [PLUS] integer-2]

[FOREGROUND-COLOR integer-3]

[BACKGROUND-COLOR integer-4]

[BLANK LINE]

[BELL]

f UNDERLINE]

[REVERSE-VIDEO 1

[HIGHLIGHT]

[BLINK]

' [[VALUE] IS literal-1]

< r- / J literal-2 1
f PICTURE) IS character-string | [FROM I identifier-1 J] [TO identifier-2]
I PIC > U USING identifer-3]

[BLANK WHEN ZERO]

ff JUSTIFIED! RIGHT"!
I IJUST f J

[AUTO]

[SECURE]

f REQUIRED]

[FULL].

114

DATA DIVISION

The general format for a group screen item is:

level-number [screen-name]

[AUTO]

[SECURE]

[REQUIRED]

[FULL]

Remarks

The clauses used in these formats are discussed in Section 6.5
of this chapter, and may be entered in any order.

If the PICTURE clause is included, either USING or at least
one of FROM and TO must be present. The AUTO and
SECURE clauses may be used only if the PICTURE clause is
also present.

The clauses that are specified with elementary data-items af
fect data input and display operations when ACCEPT and
DISPLAY statements are executed at runtime. These effects
are discussed in Sections 6.5.1 through 6.5.33, which describe
individual clauses.

With screen items, the following actions are always executed in
the order shown below, regardless of the order in which they
are specified:

BLANK SCREEN
LINE/COLUMN positioning
BLANK LINE
DISPLAY or ACCEPT data

115

Microsoft COBOL Reference Manual

Example

IDENTIFICATION DIVISION.

PROGRAM-ID. DOCTST.

ENVIRONMENT DIVISION.

DATA DIVISION.

WORKING-STORAGE SECTION.

01 WORK-FIELDS.

05 WS-PASSWORD PIC X(10)
VALUE "ABCDEFGHIJ".

05 WS-PART-NO PIC S9(7)
VALUE 1234567.

05 WS-DESCR IPTI ON PIC X(25)
VALUE "ASDSDKSDDDASABCDEHIJ".

05 WS-UNIT-COST PIC S99V99
VALUE 12.34.

05 WS-QTY-ON-HAND PIC S999
VALUE 987.

SCREEN SECTION.

01 COLOR-SCREEN.

02 BLANK SCREEN FOREGROUND-COLOR 1
BACKGROUND-COLOR 2.

01 INVENTORY-SCREEN.

05 LINE 1 COLUMN 1
VALUE "ENTER PASSWORD ".

05 COLUMN PLUS 1 PIC X(1 0) SECURE
USING WS-PASSWORD.

05 LINE 2 COLUMN 1
VALUE "PART NUMBER "
HIGHLIGHT.

05 SCR-PART-NO
LINE 2 COLUMN 13 PIC 59(7)
USING WS-PART-NO.

05 LINE 3 COLUMN 1
VALUE "DESCRIPTION ".

05 COLUMN PLUS 1 PIC X(25)
USING WS-DESCRIPTION.

116

DATA DIVISION

05 FOURTH-LINE AUTO.
10 LINE 4 BLANK LINE.
10 COLUMN 1 VALUE "UNIT-COST".
10 COLUMN PLUS 1 PIC S999V99

BLANK WHEN ZERO
USING WS-UNIT-COST.

10 COLUMN PLUS 4
VALUE "QTY ON HAND".

10 COLUMN PLUS 1 PIC S999
BLINK
USING WS-QTY-ON-HAND.

PROCEDURE DIVISION.

01O-MAINLINE.
DISPLAY COLOR-SCREEN.
DISPLAY INVENTORY-SCREEN.
ACCEPT INVENTORY-SCREEN.
STOP RUN.

117

Microsoft COBOL Reference Manual

6.5 Clauses

The remainder of this chapter describes the clauses that may
be used within the DATA DIVISION. The clauses are
arranged here in alphabetical order. For information about
how the clauses are used in the general format, see descrip
tions of the DATA DIVISON sections in Section 6.4 of this
chapter.

The following rules apply to the use of clauses:

1. Clauses may appear in any order except that a REDE
FINES clause, if used, must come first.

2. A clause included in a group item applies to all items
within that group.

3. If a clause is entered at the group level, it may not be
contradicted by a clause in an item that is subordinate
to that group.

118

DATA DIVISION

6.5.1 AUTO Clause

Purpose

Specifies that when a field on a screen has been filled by user
input, the cursor automatically skips to the next input field,
rather than waiting for a terminating character. The ACCEPT
statement is terminated when the last input field is accepted.

Format

The AUTO clause appears as part of the SCREEN SECTION of
the DATA DIVISION.

The general format is:

rauto i

Remarks

AUTO is effective only when an ACCEPT statement is active
during execution of the program.

Example

05 LINE 2 COLUMN 13 PIC 59(7)
TO WS-QTY-ON-HAND
AUTO.

119

Microsoft COBOL Reference Manual

6.5*2 BACKGROUND-COLOR Clause

Purpose

Specifies an integer value that will be interpreted as a back
ground color at runtime.

Format

The BACKGROUND-COLOR clause appears as part of the
SCREEN SECTION of the DATA DIVISION.

The general format is:

[BACKGROUND-COLOR integer-4]

Remarks

BACKGROUND-COLOR sets the color for a single elementary
screen item that will be in effect while the screen item is
DISPLAYed or ACCEPTed.

When BACKGROUND-COLOR follows a BLANK SCREEN
clause, the background color chosen becomes the default color
for all following screen items that do not explicitly define
colors.

If the BLANK SCREEN clause is not present, the background
color is only in effect for the current screen item. If
REVERSE-VIDEO is used in the screen item, the values of the
foreground and background colors are switched. Integer-4 can
be a number from 0 to 15. See the Microsoft COBOL Compiler
User’s Guide for the range of colors represented by integer-4.

If BACKGROUND-COLOR is not supported on a specific ter
minal, the clause has no effect.

Example

□5 LINE 2 COLUMN 5
VALUE "BACKGROUND 2"
BACKGROUND-COLOR 2.

120

DATA DIVISION

6.5.3 BELL Clause

Purpose

Sounds the terminal’s audio alarm.

Format

The BELL clause appears as part of the SCREEN SECTION of
the DATA DIVISION.

The general format is:

[BELL]

Remarks

BELL causes the alarm to sound only during an ACCEPT of
the field containing the BELL clause.

Example

05 LINE 1 COLUMN 1 PIC X(1 0)
USING ALARMING-FIELD
BELL.

121

Microsoft COBOL Reference Manual

6.5.4 BLANK LINE Clause

Purpose

Erases the screen from the current cursor position to the end of
the current physical line.

Format

The BLANK LINE clause appears in the SCREEN SECTION
of the DATA DIVISION.

The general format is:

[BLANK LINE]

Remarks

The area of the screen in which the specified line appears is
cleared. No data are affected.

Example

05 LINE 10 BLANK LINE.

122

DATA DIVISION

6.5.5 BLANK SCREEN Clause

Purpose

Erases the entire screen and places the cursor at home position
(line 1, column 1).

Format

The BLANK SCREEN clause appears in the SCREEN SEC
TION of the DATA DIVISION.

The general format is:

rBLANK SCREEN 1

Remarks

Anything appearing on the screen is erased, but no data are af
fected.

Example

05 BLANK SCREEN.

123

Microsoft COBOL Reference Manual

6.5.6 BLANK WHEN ZERO Clause

Purpose

Specifies that a numeric item is displayed as spaces (i.e., is left
completely blank) when its value is zero.

Format

The BLANK WHEN ZERO clause may appear in any section
within the DATA DIVISION.

The general format is:

f BLANK WHEN ZERO 1

Example

05 UNIT-COST PIC S999V99
BLANK WHEN ZERO.

124

DATA DIVISION

6.5.7 BLINK Clause

Purpose

Specifies that an item is to be flashing when displayed on the
screen.

Format

The BLINK clause appears as one of several screen attributes
in the SCREEN SECTION of the DATA DIVISION. The other
available attributes are: UNDERLINE, REVERSE-VIDEO,
and HIGHLIGHT.

The general format is:

[BLINK]

Example

10 COLUMN PLUS 1 PIC S999
BLINK
USING WS-QTY-ON-HAND.

125

Microsoft COBOL Reference Manual

6.5.8 BLOCK Clause

Purpose

Specifies the size of the physical records in the file. Because
this clause is normally used only for tape files, it is not func
tional in MS-COBOL. If it is present, however (e.g., if included
for transferability), the syntax is checked.

Format

The BLOCK clause appears in an FD entry in the FILE SEC
TION.

The general format is:

r; BLOCK CONTAINS [integer-1 TO] integer-2 I RECORDS
L I CHARACTERS JJ

Remarks

If the BLOCK clause is specified, the following rules apply:

1. Files assigned to PRINTER must not have a BLOCK
clause in the associated FD entry.

2. The size of a physical block should be stated in
RECORDS, except when the records are variable in size
or exceed the size of a physical block; in these cases the
size should be expressed in CHARACTERS.

Example

FD MASTER-INV-FI LE
BLOCK CONTAINS 5 RECORDS.

126

DATA DIVISION

6.5.9 CODE-SET Clause

Purpose

Specifies the character code set used to represent the data on
the external media. In MS-COBOL, this clause is used for
documentation only.

Format

The CODE-SET clause appears in the FD entry of the FILE
SECTION. The code set for MS-COBOL is always ASCII,
regardless of the code set specified.

The format is:

I ; CODE-SET IS alphabet-name].

Example

FD INV-RECORD-FILE
CODE-SET IS ASCII

127

Microsoft COBOL Reference Manual

6.5.10 COLUMN Clause

Purpose

Sets the cursor’s column position on the screen.

Format

The COLUMN clause appears in the SCREEN SECTION of the
DATA DIVISION.

The general format is:

[COLUMN NUMBER IS [PLUS] integer-2]

Remarks

The COLUMN and LINE clauses determine the screen location
associated with an elementary screen item. As the SCREEN
SECTION is processed at compile time, a current cursor posi
tion is maintained so that each elementary screen item can be
identified with a particular region of the screen. When a level
01 screen item is encountered, the current screen position is
reset to line 1, column 1. Then, as each item is processed, the
current position is adjusted for the size of each definition
encountered. By default, therefore, successively defined fields
appear end-to-end on the screen.

The current column or line at the start of any elementary
screen item data description may be changed with the
COLUMN and LINE clauses. If neither clause is specified, the
current screen position is not changed. If only COLUMN is
specified, the line is not changed. If only LINE is specified,
column 1 is assumed.

The COLUMN or LINE clause without PLUS causes the speci
fied integer to be taken as the line or column at which the
current screen item should start. When the PLUS phrase is
specified, the specified integer is added to the current column

128

DATA DIVISION

or line, and the result is the column or line at which the
current screen item starts. If the integer is not specified,
COLUMN/LINE PLUS 1 is assumed.

See also Section 6.5.19, “LINE Clause.”

Example

05 COLUMN PLUS 4
VALUE "QUANTITY ON HAND".

129

Microsoft COBOL Reference Manual

6*5.11 DATA RECORD(S) Clause

Purpose

Names the records in a file. This clause is used for documenta
tion only.

Format

The DATA RECORD(S) clause appears in FD and SD entries
in the FILE SECTION. Note that SD entries are used only
with SORT/MERGE files.

The general format is:

j~: DATA RECORD IS \
RECORDS AREI

data-name-2 [, data-name-3]...

Remarks

Each record in the file is assigned a data-name (e.g., data-
name-1, data-name-2, etc.). The records may be of different
sizes, formats, etc. The data-names may be listed in any order.

Each data-name must have a corresponding 01 level number
record description entry, with the same data-name.

Example

FD RECORD-NAME
DATA RECORDS ARE TOOLS-1> T00LS-2

01

01

PART-ND PIC 9(8).
DESCRIPTION PIC X(25).
QTY PIC 999.

TOOLS-1.
05
05
05

T00LS-2.
05 PART-NO PIC 9(6).
05 COST PIC 9(9)V99.

130

DATA DIVISION

6.5.12 FOREGROUND-COLOR Clause

Purpose

Specifies an integer value that will be interpreted as a fore
ground color at runtime.

Format

The FOREGROUND-COLOR clause appears as part of the
SCREEN SECTION of the DATA DIVISION.

The general format is:

[FOREGROUND-COLOR integer-3]

Remarks

FOREGROUND-COLOR sets the color for a single elementary
screen item that will be in effect while the screen item is
DISPLAYed or ACCEPTed.

When FOREGROUND-COLOR follows a BLANK SCREEN
clause, the foreground color chosen becomes the default color
for all following screen items that do not explicitly define
colors.

If the BLANK SCREEN clause is not present, the foreground
color is only in effect for the current screen item. If
REVERSE-VIDEO is used in the screen item, the values of the
foreground and background colors are switched. Integer-3 can
be a number from 0 to 15. See the Microsoft COBOL Compiler
User’s Guide for the range of colors represented by integer-3
for your terminal or computer.

If FOREGROUND-COLOR is not supported on a specific com
puter or terminal, the clause has no effect.

Example

05 BLANK SCREEN FOREGROUND-COLOR 4.

131

Microsoft COBOL Reference Manual

6.5.13 FROM/TO/USING Clause

Purpose

When a data-item is displayed on a screen, FROM or USING
moves the contents of the data-item or a literal from storage to
a temporary item that is defined by the PICTURE clause. This
value is then displayed on the screen.

When an item is accepted, TO or USING implicitly moves the
contents of the item to the data-item named in the TO or
USING clause.

Format

The FROM/TO/USING clause appears in the SCREEN SEC
TION of the DATA DIVISION, and is part of the PICTURE
clause for a data-item associated with a screen.

The general format is:

I literal-2 \
[FROM I identifier-11][TO identifier-2]
[USING identifier-3]

Remarks

Identifiers may be qualified but not subscripted.

Note that the FROM and TO clauses are used together;
USING, in effect, combines the two.

132

DATA DIVISION

Examples

05 LINE 1 PIC 59(5)
USING WS-PART-NO.

05 SCR-DESC PIC X(25)
FROM LS-DESCRIPTION.

05 COLUMN PLUS 1 PIC X(10)
TO FILE-IDENT.

The first example references data in the WORKING-STORAGE
SECTION; the second example references data in the LINK
AGE SECTION; and the third example references data in the
FILE SECTION.

133

Microsoft COBOL Reference Manual

6.5.14 FULL Clause

Purpose

When a data-item is accepted from the screen, FULL causes
any terminator characters to be ignored until the field is com
pletely filled.

Format

The FULL clause is used in the SCREEN SECTION of the
DATA DIVISION.

The general format is:

[FULL]

Example

05 LINE 3 PIC X(5)
TO WS-I DENT-NO
FULL.

134

DATA DIVISION

6.5.15 HIGHLIGHT Clause

Purpose

Specifies that an item is shown in a highlighted mode when
displayed on the screen.

Format

The HIGHLIGHT clause appears as one of several screen attri
butes in the SCREEN SECTION of the DATA DIVISION. The
other attributes are: BLINK, UNDERLINE, and REVERSE
VIDEO.

The general format is:

[HIGHLIGHT 1

Example

05 LINE 2 VALUE "ENTER UNIT COST"
HIGHLIGHT.

135

Microsoft COBOL Reference Manual

6.5.16 JUSTIFIED Clause

Purpose

Specifies right-to-left alignment when the field is the receiving
field for a MOVE statement.

Format

The JUSTIFIED clause may appear in any section of the
DATA DIVISION. The abbreviated form, JUST, is allowed.

The general format is:

p/ JUSTIFIED \ RIGHT"!
I I JUST J J

Remarks

The JUSTIFIED clause applies only to unedited alphanumeric
items. It can be used only for elementary items.

When the receiving field is longer than the source field, the
data are aligned right-to-left, with space fill on the left. When
the receiving field is shorter than the source field, truncation
occurs from the left.

Example

05 ALPHA-ITEM PIC X(20)
JUSTIFIED RIGHT.

136

DATA DIVISION

6.5.17 LABEL RECORD(S) Clause

Purpose

Indicates whether a file contains labels.

Format

The LABEL RECORD(S) clause appears in the FD entry of the
FILE SECTION.

The general format is:

[RECORD IS \ (STANDARD\
; LABEL 1 RECORDS ARE J 1 OMITTED J

OMITTED specifies that no labels exist for the file. OMITTED
must be specified for files assigned to PRINTER.

STANDARD specifies that labels exist for the file and that
they conform to system specifications. STANDARD must be
specified for files assigned to DISK.

Remarks

This clause is required in every FD entry.

Example

FD INVENTORY-WARNING-FILE
LABEL RECORDS ARE STANDARD.

137

Microsoft COBOL Reference Manual

6.5.18 LINAGE Clause

Purpose

Specifies the total number of lines assigned to a printed page,
the number of lines allotted for top and bottom margins, and
the line number at which the footing (information printed at
the bottom of the page) begins.

Format

The LINAGE clause appears in the FD entry of the FILE SEC
TION for a file assigned to PRINTER.

The general format is:

(data-name-41 I" I data-name-5 \"I
: LINAGE IS I integer-5] LINES I . with FOOTING AT 1 integer-6 J J

[(data-name-6) "I [f data-name-7 \~] ~|
, LINES ATTOP I integer-7 J J I . LINES AT BOTTOM 1 integer-8 J J J

Remarks

All data-names refer to unsigned numeric integer data-items.
The operands of the LINAGE and FOOTING phrases must
have values greater than zero. The values of the operands of
the LINES AT TOP and LINES AT BOTTOM phrases may be
zero. The operand in the FOOTING phrase must have values
not greater than that in the LINAGE phrase operand.

The total page size is the sum of the values in each phrase
except for FOOTING. If TOP or BOTTOM margins are not
specified, their size is assumed to be zero. The footing area is
the part of the page between the line indicated by the FOOT
ING value and the last line of the page.

The values in each phrase at the time the file is opened (by the
execution of an OPEN OUTPUT statement) specify the number
of lines in each of the sections of the first logical page. When
ever a WRITE statement with the ADVANCING PAGE phrase
is executed or a "page overflow” condition occurs (see Section

138

DATA DIVISION

7.6.39, “WRITE Statement”), the values in the phrases will be
used for the next logical page.

A LINAGE-COUNTER is automatically created by the pres
ence of a LINAGE clause. The value in the LINAGE
COUNTER at any given time represents the line number at
which the printer is positioned within the current page.
LINAGE-COUNTER may be referenced but may not be modi
fied by PROCEDURE DIVISION statements. It is automati
cally modified during execution of a WRITE statement, accord
ing to the following rules:

1. When the ADVANCING PAGE phrase of the WRITE
statement is specified or a “page overflow” condition
occurs (see Section 7.6.39, “WRITE Statement”),
LINAGE-COUNTER is reset to one.

2. When the ADVANCING {identifier I integer} phrase
is specified, LINAGE-COUNTER is incremented by the
ADVANCING value.

3. When the ADVANCING phrase is not specified,
LINAGE-COUNTER is incremented by one.

Example

FD INVENTDRY-REPORT-FILE
LABEL RECORDS ARE OMITTED
LINAGE IS 56 LINES
LINES AT TOP 3
LINES AT BOTTOM 5.

139

Microsoft COBOL Reference Manual

6.5.19 LINE Clause

Purpose

Sets the line position of the cursor on the screen.

Format

The LINE clause appears in the SCREEN SECTION of the
DATA DIVISION.

The general format is:

[LINE NUMBER IS [PLUS] integer-1]

Remarks

The COLUMN and LINE clauses determine the screen location
associated with an elementary screen item. As the SCREEN
SECTION is processed at compile time, a current cursor posi
tion is maintained so that each elementary screen item can be
identified with a particular region of the screen. When a level
01 screen item is encountered, the current screen position is
reset to line 1, column 1. Then, as each item is processed, the
current position is adjusted for the size of each definition
encountered. By default, therefore, successively defined fields
appear end-to-end on the screen.

The current column or line at the start of any elementary
screen item data description may be changed with the
COLUMN and LINE clauses. If neither clause is specified, the
current screen position is not changed. If only COLUMN is
specified, the line is not changed. If only LINE is specified,
column 1 is assumed.

The COLUMN or LINE clause without PLUS causes the speci
fied integer to be taken as the line or column at which the
current screen item should start. When the PLUS phrase is
specified, the specified integer is added to the current column
or line, and the result is the column or line at which the

140

DATA DIVISION

current screen item starts. If the integer is not specified,
COLUMN/LINE PLUS 1 is assumed.

Example

05 LINE 1 PIC 999
USING WS-QUANTITY.

141

Microsoft COBOL Reference Manual

6.5.20 OCCURS Clause

Purpose

Specifies the number of times that a data-item is repeated in a
record, for example within the associated level 01 group. The
OCCURS clause allows for a variable number of repetitions of
a data-item.

Format

The general format is:

OCCURS i integer-1 TO integer-2 TIMES DEPENDING ON data-name-3
1 integer-2 TIMES

f 1 ASCENDING 1 KEY IS data-name-4 [, data-name-5]... "I ...
LI DESCENDING J J

[INDEXED BY index-name-1 [, index-name-2] ...] |

The OCCURS clause is used to define the number of oc
currences of table elements and the subscript or index-name
that will apply during table handling.

The DEPENDING ON phrase specifies that the subject of the
entry has a variable number of occurrences, the number of
which must fall within the range defined by integer-1 and
integer-2.

The KEY and INDEXED phrases specify key-names that can
be used in SEARCH statements to refer to the items within a
table. In the KEY phrase, ASCENDING and DESCENDING
specify that the items in the table are arranged in ascending or
descending order according to their values.

See Chapter 9, “Table Handling by the Indexing Method,” for
more information about the KEY and INDEXED phrases.

142

DATA DIVISION

Remarks

The OCCURS clause defines related sets of repeated data, such
as tables, lists, and arrays. It specifies the number of times
that a data-item with the same format is repeated in the
record. The entire data description entry applies to each repe
tition of the entry.

A data-item may have at most three subscripts (e.g., TABLE-
VAL (2, IIX, WS-LEVEL)). Therefore, up to three OCCURS
clauses may be nested in a single data record.

The OCCURS clause may be used in the FILE, WORKING
STORAGE, and LINKAGE SECTIONS. The OCCURS clause
may not be used in a level-number 01, 66, 77, or 88 entry, or in
a data description that is subordinate to another data descrip
tion that itself contains an OCCURS clause modified by the
DEPENDING ON phrase.

When the OCCURS clause is used in an entry, the data-name
associated with the OCCURS clause must be subscripted or in
dexed whenever it appears as an operand in the PROCEDURE
DIVISION. If this data-name is the name of a group item, all
data-names belonging to the group must be subscripted or in
dexed whenever they are used.

Subscripting enables the user to refer to a table or list of data-
items that have not been assigned individual data-names. This
is the case for items that have been specified by an OCCURS
clause; therefore, any item that contains an OCCURS clause or
belongs to a group containing an OCCURS clause must be sub
scripted or indexed whenever it is used. The one exception is
in a SEARCH statement, where a table-name must be used
without subscripts. See Section 9.2, "Subscripting," for more
information.

A subscript is a positive, nonzero integer whose value indicates
which element is selected within a table or list. The subscript
may be either a literal or a data-name whose value is an
integer. A subscript must be defined as a decimal or binary
item (USAGE IS DISPLAY for decimal format or either
COMPUTATIONAL-O or COMPUTATIONAL-4 for the binary
format; the binary format is recommended for efficiency).

143

Microsoft COBOL Reference Manual

A subscript is always enclosed by parentheses. In the general
format, it is given after the terminal space of the name of the
element. Multiple subscripts are separated by a comma and a
space (e.g., ITEM (3, 4)).

A data-name may not be subscripted if it is being used for:

1. a subscript
2. the defining name of a data description entry
3. data-name-2 in a REDEFINES clause
4. a qualifier

Examples

01 ARRAY.
03 TABLE-VAL OCCURS 3 TIMES PIC 9(4).

In this example, storage would be allocated as follows:

TABLE-VAL (1)
TABLE-VAL (2)
TABLE-VAL (3)

These three occurrences make up the ARRAY, which consists
of 12 characters (each TABLE-VAL has 4 digits).

01 DEPENDING-ARRAY.
03 TABLE OCCURS 1 TO 100 TIMES

DEPENDING ON TSIZE
INDEXED BY DEP-IND.

05 TABLE-ENTRY PIC X(4).

In this example, the value of TSIZE determines the number of
entries that DEPENDING-ARRAY can hold at a given time.

144

DATA DIVISION

6.5.21 PICTURE Clause

Purpose

Describes the contents of every elementary data-item, except
an index-data-item. May also describe editing features of the
item.

Format

The general format is:

PICTURE) IS character-string
PIC f

PICTURE
PIC

IS character-string
[literal-2 \

[FROM 1 identifier-11
[USING identifier-3]

] [TO identifier-2]

The abbreviation PIC is allowed.

The second format is used only in the SCREEN SECTION,
where the PICTURE clause must be followed by the USING
clause, or one or both of the FROM and TO clauses.

Character-strings are discussed in the remarks which follow.

See Section 6.5.13 for discussion of the FROM/TO/USING
clause.

Remarks

The character-string specification differs for alphanumeric,
alphanumeric-edited, numeric, and numeric-edited data-items.
These differences are described in the following paragraphs.

145

Microsoft COBOL Reference Manual

Alphanumeric and Alphanumeric-Edited Items

The PICTURE clause of an alphanumeric item may combine
characters X, A, and 9. It may also contain the editing charac
ters B, 0, and /, in which case it is considered to be an
alphanumeric-edited item.

An X indicates that the character position may contain any
character from the computer’s character set. A PICTURE
clause that contains at least one of these combinations:

A and 9
X and 9
Xand A

in any order, is considered as if every X, A, or 9 character were
X.

The characters B, 0, and / may be used to insert blanks, zeros,
or slashes in the item.

If the string contains only A’s and B’s, it is considered alpha
betic; if it has only 9’s, it is numeric. The NUMERIC and
ALPHABETIC class tests may be used to determine whether
an alphanumeric data-item is alphabetic or numeric.

Numeric Items

The PICTURE clause of a numeric item may combine the fol
lowing characters:

9 Indicates that the actual or conceptual digit posi
tion contains a numeric character. The maximum
number of 9’s in a PICTURE clause is 18.

V Indicates the position of an assumed decimal point.
This character is optional. Since a numeric item
cannot contain an actual decimal point, the
assumed decimal point provides the compiler with
information about the scaling alignment of items
involved in computations. Storage is never
reserved for the character V. Only one V is permit
ted in any single PICTURE clause. V is redundant
if it is the rightmost character.

146

DATA DIVISION

S Indicates that the item has an operational sign.
This character is optional. It must be the first
character of the PICTURE clause. See also Section
6.5.27, “SIGN Clause.”

P Indicates an assumed decimal scaling position.
This character is optional. It specifies the location
of an assumed decimal point when the point is not
within the number that appears in the data-item.
The scaling position character P is not counted in
the size of the data-item, and memory is not
reserved for it. However, scaling position charac
ters are counted in determining the maximum
number of digit positions (18) in numeric-edited
items or in items that appear as operands in arith
metic statements.
If the clause contains more than one P, the P’s
must be continuous. The character P may appear
only to the left or right of the other characters in
the string, except that it may appear to the left of a
leftmost string of P’s. P implies an assumed deci
mal point to the left of the P’s if the P’s are left
most, and to the right of the P’s if the P’s are right
most. Therefore, the assumed decimal point symbol
V is redundant as either the leftmost or rightmost
character within a PICTURE clause that contains
P’s.

Numeric-Edited Items

A numeric-edited item is a data-item that can be used as an
“edited” receiving field for a numeric value. The editing char
acters that may be combined to describe a numeric-edited item
are:

9 V . Z CR DB , $ + * B 0 - P /

The characters 9, V, and P have the same meaning as for a
numeric item.

147

Microsoft COBOL Reference Manual

Editing for numeric-edited items may be insertion editing or
suppression and replacement editing. The editing characters
that are used for these editing tasks are described in the para
graphs that follow.

Insertion editing. The four types of insertion editing are: sim
ple insertion, special insertion, fixed insertion, and floating
insertion.

1. simple insertion
, The comma specifies insertion of a comma

between digits. Each comma is counted in
the size of the data-item, but does not
represent a digit position. The comma may
also appear in conjunction with a floating
string, as described below. It must not be
the last character in the PICTURE
character-string.

B Each appearance of B in a PICTURE clause
represents a blank in the final edited value.

/ Each slash in a PICTURE clause represents
a slash in the final edited value.

0 Each appearance of zero in a PICTURE
clause represents a position in the final
edited value where the digit zero will ap
pear.

2. special insertion
The decimal point specifies that an actual
decimal point is to be inserted in the indi
cated position and that the source item is to
be aligned accordingly. Numeric character
positions to the right of an actual decimal
point in a PICTURE clause must consist of
characters of one type. The decimal point
must not be the last character in the PIC
TURE character-string. The decimal point
and P may not be used in the same PIC
TURE clause.

148

DATA DIVISION

3. fixed insertion
-j- - The plus sign (+) or minus sign (—) may

appear in a PICTURE clause either singly
or in a floating string. As a fixed-sign char
acter, the + or - must appear as the last
symbol in the PICTURE clause.
The plus sign indicates that the sign of the
item is indicated by either a plus or minus
placed in the character position, depending
on the algebraic sign of the numeric value
placed in the output field. The minus sign
indicates that blank or minus is placed in
the character position, depending on wheth
er the algebraic sign of the numeric value
placed in the output field is positive or
negative, respectively.

CR CR and DB are credit and debit symbols,
DB respectively. They may appear only as the

rightmost characters in a PICTURE clause.
These symbols occupy two character posi
tions. They indicate that the specified sym
bol is to appear in the indicated positions if
the value of a source item is negative. If
the value is positive or zero, spaces will
appear instead. CR and DB and + and -
are mutually exclusive.

4. floating insertion
A floating string is a leading, continuous series of
either dollar signs, plus signs, or minus signs; or a
string composed of one such character interrupted by
one or more commas and/or decimal points. For exam
ple:
$$,$$$,$$$
+ + + +

+ (8). + +
$$,$$$.$$

A floating string containing (N + 1) occurrences of ($)
or (+) or (-) defines N digit positions. When a numer
ic value is placed in a numeric-edited item, the
numeric-edited item will have one actual $ or + or -

149

Microsoft COBOL Reference Manual

immediately to the left of the most significant nonzero
digit, in one of the positions indicated by $ or 4- or —
in the PICTURE clause. Blanks are placed in all char
acter positions to the left of the float character.
If the most significant digit appears in a position to the
right of positions defined by the floating string, the
numeric-edited item will contain $ or + or - in the
rightmost position of the floating string, and non
significant zeros may follow. When a floating string
contains an actual or implied decimal point, all digit
positions to the right of the decimal point are treated
as if they contained 9's.
When a comma (,) appears to the right of a floating
string, the float character disregards the comma so that
it may be as close to the leading digit as possible.
In the following examples, "b" represents a blank in
the developed items.

PICTURE
Clause

$$$999
—, 7 999
$$$$$$

Numeric
Value

14
-456

14

Printed
Output

bb$014
bbbbbb-456
bbb$14

A floating string need not constitute the entire PIC
TURE clause of a numeric-edited item.

Suppression and replacement editing.

Z The characters Z and * are suppression and
* replacement characters. Each one represents a

digit position. During execution, leading zeros to
be placed in positions defined by Z or * are
suppressed, becoming blank or *, respectively. Zero
suppression ends when a decimal point (. or V) or a
non-zero digit is encountered. All digit positions to
be modified must be the same (either Z or *), and
must be contiguous starting from the left. Z or *
may appear to the right of an actual decimal point
only if all digit positions are the same.

150

DATA DIVISION

Commas will not be inserted into numeric-edited
items where the zero to the left of the comma has
been suppressed. Instead, the comma will be
replaced by either a blank or an asterisk.

Other rules for the PICTURE clause of a numeric-edited item
are:

1. Only one type of floating string may be used in the
item.

2. The item must have at least one digit position charac
ter.

3. The appearance of a floating sign string or fixed plus or
minus character precludes the appearance of any other
of the sign control insertion characters, namely, +, -,
CR, and DB.

4. The characters from the immediate right of a decimal
point to the end of the PICTURE clause (excluding the
fixed insertion characters +, -, CR, and DB), are sub
ject to the following restrictions:
a. Only one type of digit position character may

appear. That is, only one of Z, *, or 9, and the
floating-string digit position characters $, 4, or -
may be used.

b. If one of the numeric character positions to the
right of a decimal point is represented by -t or -
or $ or Z, then all the numeric character positions
in the PICTURE clause must be represented by the
same character.

5. The PICTURE character 9 can never appear to the left
of a floating string or replacement character.

Additional notes on the PICTURE clause:

1. A maximum of 30 character positions is allowed in a
PICTURE character string. For example, PICTURE
X(89) consists of the five PICTURE characters:

X (8 9)

151

Microsoft COBOL Reference Manual

2. A PICTURE clause must contain at least one of the
characters A, Z, *, X, 9 or at least two consecutive
appearances of the symbols +, —, or $.

3. The characters S, V, OR, and DB can appear only
once in a PICTURE clause.

4. When the DECIMAL-POINT IS COMMA clause is
specified in the ENVIRONMENT DIVISION of the pro
gram, the explanations for period and comma apply to
comma and period, respectively.

5. A PICTURE clause is used only with elementary items,
not with group items.

The following examples illustrate how data are represented by
the PICTURE clause. "Data Value” shows contents in storage;
and "Edited Data” shows the value that is reported.

Receiving Area

PICTURE Data Value PICTURE Edited Data

Source Area

9(5) 12345 $$$,$$9.99 §12,345.00
9(5) 00123 $$$,$$9.99 §123.00
9(5) 00000 $$$, $$9.99 §0.00
9(4)V9 12345 $$$,$$9.99 §1 ,234.50
V9(5) 12345 $$$, $$9.99 §0.12
59(5) 00123 -------------- .99 123.00
59(5) -00001 -------------- .99 -1 .00
59(5) 00123 +++++++.99 +123.00
59(5) 00001 -------------- .99 1 .00
9(5) 00123 +++++++.99 +123.00
9(5) 00123 -------------- .99 123.00
59(5) 1 2345 *******,99CR **12345.00
5999V99 02345 zzz.zz 23.45
S999V99 00004 zzz.zz .04

152

DATA DIVISION

6.5.22 RECORD Clause

Purpose

Specifies the number of characters each record in the file con
tains. It is used to check that the length of the records defined
within the FD and SD is within the range of lengths specified
by this clause. The size of each data record is actually defined
by the data description entries that make up the record (level
01) declaration.

Format

The RECORD clause appears in the FD (and SD) entry in the
FILE SECTION.

The general format is:

[; RECORD CONTAINS [integer-3 TO] integer-4 CHARACTERS]

Integer-4 should be the size of the largest record in the file dec
laration. If the records are variable in size, integer-3 must be
specified and equal to the size of the smallest record. The sizes
are given as character positions required to store the logical
records.

Remarks

This clause is always optional.

Examples

FD INV-MSTR-FILE
RECORD CONTAINS 80 CHARACTERS.

FD VAR-MSTR-FILE
RECORD CONTAINS 20 TO 200 CHARACTERS.

153

Microsoft COBOL Reference Manual

6.5.23 REDEFINES Clause

Purpose

Specifies that a storage area is to contain different data-items,
or provides an alternative grouping or description of the same
data.

Format

The REDEFINES clause is optional. If present, it must be the
first clause in the data description or record description entry.

The general format is:

[; REDEFINES data-name-2]

The data description entry for data-name-2 should not contain
a REDEFINES clause or an OCCURS clause.

Warning
We strongly advise against redefining COMP-O or COMP-4
data-items to refer to parts of such a data-item. The order
in which bytes are stored may vary among implementa
tions, or may change in later versions of Microsoft COBOL.
Such a practice may limit the portability of your software.

154

DATA DIVISION

Remarks

When an area is redefined, all descriptions of the area remain
in effect. Thus, if B and C are two separate items that share
the same storage area due to redefinition, the procedure state
ments MOVE X TO B or MOVE Y TO C could be executed at
any point in the program. In the first case, B would assume
the value of X and take the form specified by the description of
B. In the second case, the same physical area would receive Y
according to the description of C.

For purposes of discussing redefinition, data-name-1 is termed
the subject, and data-name-2 is called the object. The levels of
the subject and object are denoted by s and t, respectively. The
following rules must be obeyed in order to establish a proper
redefinition:

1. Level s must equal level t, but must not equal 66 or 88.
2. The object must be contained in the same record (01

group level item), unless s = t = 01.
3. The REDEFINES clause may not be used in level 01

entries in the FILE SECTION, because multiple 01 lev
el items in the FILE SECTION are implicitly redefined.

4. Prior to definition of the subject and subsequent to de
finition of the object, there can be no level numbers
that are numerically less than s.

5. The length of data-name-1, multiplied by the number of
occurrences of data-name-1, may not exceed the length
of data-name-2, unless the level of data-name-1 is 01.

6. Data-name-1 and entries subordinate to data-name-1
must not contain any VALUE clauses, except in level
88.

155

Microsoft COBOL Reference Manual

6.5.24 RENAMES Clause

Purpose

Provides for alternative grouping of data-items subordinate to
the same 01 level data-item.

Format

The general format is:

RENAMES data-name-2 U THROUGH\
THRU I

data-name-3

Remarks

The following clauses may be used to modify the RENAMES
clause:

THROUGH I THRU

The level 66 entry and RENAMES clause must immediately
follow the last data-item entry for the record that it modifies.
Data-name-1 cannot be used as a qualifier. Data-name-3 must
follow data-name-2 in the record description. A level 66 entry
cannot rename a level 01, 66, 77, or 88 entry. Data-name-1 is
described with the level 66 entry in Section 6.2, "Record
Description Entry.”

The range of data renamed consists of all data from the begin
ning of data-name-2 to the end of data-name-3, or the end of
data-name-2 if data-name-3 is not specified.

Neither data-name-2 nor data-name-3 may have an OCCURS
clause in its description nor be subordinate to an item that con
tains an OCCURS clause. None of the items within the
renamed range may contain the OCCURS clause with the
DEPENDING ON option.

156

DATA DIVISION

If data-name-3 is specified, or data-name-2 is a group item,
then data-name-1 is a group item. Otherwise, data-name-1 is
an elementary item with the same characteristics as data-
name-2.

Example

05 A- DATA-GROUP
1 0 ITEM1 PIC X(1 0).
10 ITEM2 PIC 9(5).
10 ITEM3 PIC 9(3).
1 0 ITEM4 PIC X(7).

66 ANOTHER RENAMES A -DATA-GROUP THRU ITEM3

157

Microsoft COBOL Reference Manual

6.5.25 REQUIRED Clause

Purpose

When a data-item is accepted from the screen, REQUIRED
causes terminator characters to be ignored until at least one
non-terminator character is entered into a field.

The REQUIRED clause appears in the SCREEN SECTION of
the DATA DIVISION.

Format

The general format is:

[REQUIRED I

Example

05 LINE 3 PIC X(5)
TO WS-I DENT-NO
REQUIRED.

158

DATA DIVISION

6.5.26 SECURE Clause

Purpose

Suppresses the echo of characters input at the terminal. In
stead, an asterisk is displayed for each data character accepted.

Format

The SECURE clause appears in the SCREEN SECTION of the
DATA DIVISION.

The general format is:

[SECURE!

Remarks

The SECURE clause is always optional.

Example

05 SCREEN-NAME PIC 59(5)
USING MS-NAME
SECURE.

159

Microsoft COBOL Reference Manual

6.5.27 SIGN Clause

Purpose

Specifies that an operational sign be included as part of an
external decimal item; also specifies one of four possible for
mats for placement of the sign.

Format

The SIGN clause appears in the data description entry for an
external decimal item (USAGE IS DISPLAY).

The general format is:

F; r SIGN ISl l LEADING \ I SEPARATE CHARACTER]~|
L 1 TRAILING J J

where the possible forms of the clause are:

SIGN Clause Sign Representation

TRAILING Embedded in rightmost byte
LEADING Embedded in leftmost byte
TRAILING SEPARATE Stored in separate rightmost

byte
LEADING SEPARATE Stored in separate leftmost

byte

The SEPARATE CHARACTER phrase increases the size of the
data-item by one character.

160

DATA DIVISION

Remarks

The following rules apply to the SIGN clause:

1. When an operational sign is specified, the PICTURE
must begin with S. If no S is used, the item is not
signed (and is capable of storing only absolute values),
and the SIGN clause is prohibited. When S appears at
the front of a PICTURE but no SIGN clause is included
in an item’s description, the default case, SIGN IS
TRAILING, is assumed.

2. The SIGN clause may be written at the group level. In
this case, the clause specifies the sign’s format on any
signed subordinate external decimal item.

3. The entries to which the SIGN clause applies must be
implicitly or explicitly described as USAGE IS
DISPLAY.

4. When the CODE-SET clause is specified for a file, all
signed numeric data for that file must be described
with the SIGN IS SEPARATE clause.

161

Microsoft COBOL Reference Manual

6.5.28 SYNCHRONIZED Clause

Purpose

The SYNCHRONIZED clause was designed in order to effi
ciently allocate memory space for data. It specifies the align
ment of an item on the computer’s natural memory boundaries.
However, in MS-COBOL, the SYNCHRONIZED clause is used
for documention only.

Format

The SYNCHRONIZED clause is used in the standard data
description entry.

The general format is:

SYNCHRONIZED
SYNC

left "1~1
RIGHT J J

Remarks

The SYNCHRONIZED clause may be used only with elemen
tary data-items.

Although this clause is for commmentary only, the compiler
does check the syntax.

Example

OS RECORD-ITEM PIC X(1 0)
SYNCHRONIZED RIGHT.

162

DATA DIVISION

6.5.29 TO Clause

See Section 6.5.13, “FROM/TO/USING Clause.”

163

Microsoft COBOL Reference Manual

6.5.30 USAGE Clause

Purpose

Specifies the form in which numeric data are represented.

Format

The USAGE clause appears in data description or record
description entries in the FILE, WORKING-STORAGE, or
LINKAGE SECTIONS.

The general format is:

• [USAGE IS]

r COMPUTATION AL-0
COMP-0
COMPUTATIONAL
COMP
COMPUTATIONAL-3

" COMP-3
COMPUTATIONAL-4
COMP-4
DISPLAY
INDEX

COMP is an accepted abbreviation for COMPUTATIONAL.

A COMPUTATIONAL item is capable of representing a value
to be used in computations. It must be numeric. If a group
item is described as COMPUTATIONAL, the elementary items
in the group are COMPUTATIONAL. The group item itself is
not COMPUTATIONAL and cannot be used in computations.

COMPUTATIONAL-3, which may be abbreviated COMP-3, de
fines a packed binary-coded (internal decimal) field.
COMPUTATIONAL-0 (abbreviated COMP-0) defines a two-
byte binary integer. COMPUTATIONAL-4 (COMP-4) defines a
four-byte binary integer.

164

DATA DIVISION

Warning
We strongly advise against redefining COMP-O or COMP-4
data-items to refer to parts of such a data-item. The order
in which bytes are stored may vary among implementa
tions, or may change in later versions of Microsoft COBOL.
Such a practice may limit the portability of your software.

The USAGE IS DISPLAY clause indicates that the data are in
standard ASCII data format.

USAGE IS INDEX indicates that the data-item will be used as
an index-data-item (see Chapter 9, "Table Handling by the
Indexing Method”).

USAGE IS INDEX defines the data-item to be a binary item,
in the same format as a COMPUTATIONAL-O data-item. If
USAGE IS INDEX is used, no PICTURE clause can be used.

Remarks

If a USAGE clause is given at a group level, it applies to each
elementary item in the group. The USAGE clause for an ele
mentary item must not contradict the USAGE clause of a
group to which the item belongs.

The USAGE clause may be written at any level. If USAGE is
not specified, the item is assumed to be USAGE IS DISPLAY.

The USAGE IS COMPUTATIONAL-3 clause is required in the
data description for an internal decimal number.

The USAGE IS COMPUTATIONAL-O or COMPUTATIONAL-4
clause is advised for subscripts.

Example

05 TOTAL-AMT-SALES PIC S9(5)V99
USAGE IS COMP-3.

165

Microsoft COBOL Reference Matinal

6.5.31 USING Clause

See Section 6.5.13, “FROM/TO/USING Clause.”

166

DATA DIVISION

6.5.32 VALUE IS Clause

Purpose

Specifies the initial value of data-items or conditions.

Format

In MS-COBOL, the VALUE IS clause appears only in the
WORKING-STORAGE and SCREEN SECTIONS or in level 88
conditions. The format for a standard data description entry is:

[; VALUE IS literal]

The format for a level 88 condition-name is:

88 condition-name; (VALUE IS \ literal-1 [/ THROUGH
I VALUES AREJ I I THRU

[•—« ■“"]]

literal-2

THROUGH and THRU are equivalent.

Note that the VALUE IS clause is required for level 88 condi
tions.

Remarks

The VALUE IS clause must not be written in a data descrip
tion entry that also has an OCCURS or REDEFINES clause, or
in an entry that is subordinate to an entry containing an OC
CURS or REDEFINES clause. Furthermore, it cannot be used
in the FILE or LINKAGE SECTIONS, except in level 88 condi
tion descriptions.

167

Microsoft COBOL Reference Manual

The size of the literal given in a VALUE IS clause must be less
than or equal to the size of the item as given in the PICTURE
clause. The positioning of the literal within a data area is the
same as would result from specifying a MOVE of the literal to
the data area, except that editing characters in the PICTURE
have no effect on the initialization, nor do BLANK WHEN
ZERO or JUSTIFIED clauses.

The type of literal written in a VALUE IS clause depends on
the type of data-item, as described in Chapter 2, "Language
Elements.” For edited items, values must be specified as non
numeric literals, and must be presented in edited form.

In the SCREEN SECTION, the literal must be a non-numeric
(quoted) literal and cannot be a figurative constant; in other
sections, the literal can be a numeric, non-numeric, or figura
tive constant.

When an initial value is not specified, no assumption should be
made regarding the initial contents of an item in WORKING
STORAGE.

The VALUE IS clause may be specified at the group level, in
the form of a correctly sized non-numeric literal, or as a figura
tive constant. In these cases the VALUE IS clause cannot be
stated at the subordinate levels within the group. However,
the VALUE IS clause should not be written for a group con
taining items with descriptions that include JUSTIFIED, SYN
CHRONIZED, and USAGE clauses (other than USAGE IS
DISPLAY).

See Section 6.5.33 for a description of the VALUE OF FILE-ID
clause, which provides information for the label records associ
ated with a disk file.

Examples

05 QTY PIC 99 VALUE IS 24.
88 ON-HAND-QTY VALUE IS 1 THRU 3.

168

DATA DIVISION

6.5.33 VALUE OF FILE-ID Clause

Purpose

Provides the operating system with information for the label
records associated with a file that is assigned to DISK.

Format

The VALUE OF FILE-ID clause appears in any FD or SD
entry for a disk-assigned file. The VALUE OF FILE-ID clause
contains a FILE-ID expressed as a data-name or non-numeric
literal.

The general format is:

f data-name-1
: VALUE OF FILE-ID IS I literal-1

Remarks

If a file is assigned to PRINTER, it is unlabelled and the
VALUE OF FILE-ID clause must not be included in the associ
ated FD or SD. If a file is assigned to DISK, it is necessary to
include both LABEL RECORDS STANDARD and VALUE OF
FILE-ID clauses in the associated FD or SD. If a data-name is
specified, it may contain as many characters as desired. See
your Microsoft COBOL Compiler User's Guide for FILE-ID for
mats for specific operating systems.

Examples

(MS-DOS) VALUE OF FILE-ID IS " A:MASTER.ASM".
(Xenix) VALUE OF FILE-ID IS "/usr/bobz/xout.15t".

169

Chapter 7
PROCEDURE DIVISION

7.1 PROCEDURE DIVISION
Header and General Format 175

7.2 Arithmetic Statements 177
7.2.1 CORRESPONDING Option 178
7.2.2 GIVING Option 179
7.2.3 REMAINDER Option 180
7.2.4 ROUNDED Option 180
7.2.5 SIZE ERROR Option 181
7.3 1-0 Error Handling 182
7.4 Dynamic Debugging Statements 183
7.5 MS-COBOL Tape Syntax 184
7.6 PROCEDURE DIVISION Statements 184
7.6.1 ACCEPT Statement 185
7.6.1.1 Format 1 ACCEPT Statement 186
7.6.1.2 Format 2 ACCEPT Statement 188
7.6.1.3 Format 3 ACCEPT Statement 190
7.6.1.4 Format 4 ACCEPT Statement 205
7.6.2 ADD Statement 207
7.6.3 ALTER Statement 209
7.6.4 CALL Statement 211
7.6.5 CHAIN Statement 212

171

7.6.6 CLOSE Statement 213
7.6.7 COMPUTE Statement 214
7.6.8 COPY Statement 215
7.6.9 DELETE Statement 216
7.6.10 DISPLAY Statement 217
7.6.11 DIVIDE Statement 220
7.6.12 EXHIBIT Statement 222
7.6.13 EXIT Statement 224
7.6.14 EXIT PROGRAM Statement 225
7.6.15 GO TO Statement 226
7.6.16 IF Statement 227
7.6.16.1 Methods for

Making Comparisons 228
7.6.16.2 Forms of Conditions 229
7.6.17 INSPECT Statement 236
7.6.18 MERGE Statement 240
7.6.19 MOVE Statement 241
7.6.20 MULTIPLY Statement 244
7.6.21 OPEN Statement 246
7.6.22 PERFORM Statement 247
7.6.23 READ Statement 252
7.6.24 READY/RESET

TRACE Statements 253
7.6.25 RELEASE Statement 255
7.6.26 RESET TRACE Statement 256
7.6.27 RETURN Statement 257

172

7.6.28 REWRITE Statement 258
7.6.29 SEARCH Statement 259
7.6.30 SET Statement 260
7.6.31 SORT Statement 261
7.6.32 START Statement 262
7.6.33 STOP Statement 263
7.6.34 STRING Statement 264
7.6.35 SUBTRACT Statement 267
7.6.36 UNLOCK Statement 269
7.6.37 UNSTRING Statement 270
7.6.38 USE Statement 273
7.6.39 WRITE Statement 274

173

I

PROCEDURE DIVISION

This chapter describes the statements used in the PRO
CEDURE DIVISION of a Microsoft COBOL program. Descrip
tions of individual statements that provide the structure of
the source text are arranged alphabetically in Section 7.6,
“PROCEDURE DIVISION Statements.”

The PROCEDURE DIVISION of a COBOL program contains
the logic necessary for solving a data processing problem. The
instructions for file 1-0, decision-making, and arithmetic opera
tions are coded into this division of the source program.

7.1 PROCEDURE DIVISION
Header and General Format

Purpose

To initiate the data processing procedures required for solving
a given problem.

Format

The general format for the PROCEDURE DIVISION is:

PROCEDURE DIVISION [l USING \ data-name-1 [, data-name-2]...
LI CHAINING j

I DECLARATIVES.

{ section-name SECTION I segment-number]. USE statement.

l paragraph-name. [sentence] ...]...] ...

END DECLARATIVES.]

{ section-name SECTION I segment-number].

l paragraph-name. [sentence]...]...] ...

See Chapter 8, “Interprogram Communication,” for the general
format of the PROCEDURE DIVISION for programs that are
invoked by the CALL or CHAIN statements and options that
require use of the USING or CHAINING phrases.

175

Microsoft COBOL Reference Manual

Remarks

The PROCEDURE DIVISION may be subdivided in three
possible ways:

1. It may consist only of paragraphs.
2. It may consist of a number of paragraphs followed by a

number of sections (each section subdivided into one or
more paragraphs).

3. It may consist of a DECLARATIVES Region and a
series of sections (each section subdivided into one or
more paragraphs).
Using the DECLARATIVES Region as a subdivision of
the PROCEDURE DIVISION is optional; it provides a
means of designating procedures to be invoked in the
event of an 1-0 error. See Chapter 14, "DECLARA
TIVES Region and USE Statement,” for details on the
DECLARATIVES Region syntax.

Example

PROCEDURE DIVISION.

PO 0 0-MA INLINE.
OPEN INPUT INVENTORY-MASTER-FILE,

OUTPUT INVENTORY-WARNING-FILE,
INVENTORY-REPORT-FILE.

WRITE REPORT-RECORD FROM PR-HEADER
AFTER ADVANCING PAGE.

PERFORM P1OO-WRITE-REPORT
UNTIL END-OF-FILE.

MOVE REC-COUNT TO PR-REC-COUNT.
MOVE WARNING-COUNT TO PR-WARNING-COUNT.
WRITE REPORT-RECORD

FROM PR-TOTAL-RECORD
AFTER ADVANCING 2 LINES.

CLOSE INVENTORY-MASTER-FILE,
INVENTORY-WARNING-FILE,
INVENTORY-REPORT-FILE.

STOP RUN.

176

PROCEDURE DIVISION

P1OO-WRITE-REPORT.
READ INVENTDRY-MASTER-FILE

AT END MOVE " Y " TD END-OF-FILE-SW.
IF NOT END-OF-FILE

PERFORM P200-PROCESS-RECORD.

P200-PROCESS-RECORD.
MOVE MSTR-KEY TO PR-KEY.
MOVE MSTR-DESCRIPTION

TO PR-DESCRI PT I ON.
MOVE MSTR-AMT-ON-HAND

TO PR-AMT-ON-HAND.
MOVE MSTR-WARNING-LEVEL

TO PR-WARNING-LEVEL.
PERFORM P300-WRITE-LINE.

IF MSTR-AMT-ON-HAND <
MSTR-WARNING-LEVEL

MOVE MASTER-RECORD
TO WARNING-RECORD

ADD 1 TO WARNING-COUNT
WRITE WARNING-RECORD.

P300-WRITE-LINE.
WRITE REPORT-RECORD

FROM PR-REPORT-RECORD
AFTER ADVANCING 1 LINE.

7.2 Arithmetic Statements

The five arithmetic statements: ADD, SUBTRACT, MULTI
PLY, DIVIDE, and COMPUTE, are described in Section 7.6,
"PROCEDURE DIVISION Statements,” in alphabetical order.
For a review of the concepts supported by these statements and
the basic rules that govern their use, see Section 2.9,
"Arithmetic Statements.”

The discussion that follows describes in alphabetical order the
optional words that can be used to modify an arithmetic
statement.

177

Microsoft COBOL Reference Manual

7.2.1 CORRESPONDING Option

The CORRESPONDING option can reduce the coding required
to transfer data during the ADD, SUBTRACT, or MOVE
operations.

A pair of data-items from separate identifiers correspond when:

1. the data-items have the same data-name and the same
qualifiers up to, but not including their respective iden
tifiers

2. at least one of the data-items is an elementary item (in
the case of a MOVE with the CORRESPONDING
option)

3. both data-items are elementary numeric data-items
(in the case of the ADD and SUBTRACT with
CORRESPONDING)

If the proper correspondence exists between the data-items that
are specified in an ADD, SUBTRACT, or MOVE statement
using the CORRESPONDING option, then the transfer of data
from one group item to another will result. The following
restrictions apply:

1. At least one of the items specified in a MOVE state
ment must be an elementary data-item.

2. Both of the items specified in an ADD or SUBTRACT
statement must be elementary numeric data-items.

3. The group items must not be described by the USAGE
IS INDEX clause or the level-numbers 66, 77, or 88;
however, they may contain REDEFINES and OCCURS
clauses or be subordinate to data descriptions that do
contain these clauses.

4. Corresponding data-items will be ignored if they con
tain the USAGE IS INDEX, RENAMES, REDEFINES,
or OCCURS clauses.

178

PROCEDURE DIVISION

Example:

01 ITEM -A.
05 RECORDS-IN-ERROR PIC S9(5).
05 TOTAL-ERRORS PIC S9(8).
05 ITEM-A-GROUP.

10 CORRECTED-RECORDS PIC 59(8).
10 RECORD-ID PIC X(1 0).
10 UNIT-PRICE PIC S9(3)V99

05 TOTAL-PRICE PIC S9(4).

01 ITEM--B.
05 RECORDS-IN-ERROR PIC S9(6).
05 TOTAL-PRICE PIC S9(4)V99.
05 R-M-B-NAME PIC X(1 0).
05 ITEM-B-GROUP.

10 UNIT-PRICE PIC S9(2)V99.

ADD CORRESPONDING ITEM-A TO ITEM- B.

is equivalent to:

ADD RECORDS-IN-ERROR OF ITEM-A
TO RECORDS-IN-ERROR OF ITEM-B.

ADD TOTAL-PRICE OF ITEM-A
TO TOTAL-PRICE OF ITEM-B.

ADD UNIT-PRICE OF ITEM-A
TO UNIT-PRICE OF ITEM-B.

In this example, data-items RECORDS-IN-ERROR, TOTAL
PRICE, and UNIT-PRICE exist in both ITEM-A and ITEM-B,
and will be added. Since TOTAL-RECORDS, CORRECTED-
RECORDS, R-M-B-NAME, and RECORD-ID have no cor
responding data-item in ITEM-B, they are not involved in the
addition. Note that the order in which the CORRESPONDING
additions are performed is not defined.

7.2.2 GIVING Option

If the GIVING option is written, the value of the data-name
that follows the word GIVING is made equal to the calculated
result of the arithmetic operation. The data-name that follows
GIVING is not used in the computation and may be a
numeric-edited item.

179

Microsoft COBOL Reference Manual

7.2.3 REMAINDER Option

The REMAINDER option directs that a remainder be returned
to a specified data field. If the receiving field for the quotient
has been defined as numeric-edited, the remainder will be
calculated on the quotient’s unedited form. If the ROUNDED
option has been used on the quotient, the remainder will be
calculated on the quotient’s truncated form rather than on the
rounded form.

7.2.4 ROUNDED Option

If, after decimal-point alignment, the number of places in the
fraction of the result is greater than the number of places in
the fractional part of the data-item that is to be set equal to
the calculated result, truncation occurs unless the ROUNDED
option has been specified.

When the ROUNDED option is specified, the least significant
digit of the resultant data-name has its value increased by 1
whenever the most significant digit of the excess is greater
than or equal to 5.

Rounding of a computed negative result is performed by round
ing the absolute value of the computed result and then making
the final result negative.

The following chart illustrates the relationship between a cal
culated result and the value stored in an item that is to receive
the calculated result, with and without rounding.

Calculated
Result

PICTURE Value After
Rounding

Value After
Truncation

-12.36 S99V9 -12.4 -12.3
8.432 9V9 8.4 6.4
35.6 99V9 35.6 35.6
65.6 S99V 66 65
.0055 SV999 .006 .005

180

PROCEDURE DIVISION

When the low order integer positions in a receiving field are
represented by the character “P” in its PICTURE, rounding or
truncation occurs relative to the rightmost integer position for
which storage is allowed.

7.2.5 SIZE ERROR Option

If, after decimal-point alignment and any rounding, the value
of a calculated result exceeds the largest value that the receiv
ing field is capable of holding, a SIZE ERROR condition exists.

The SIZE ERROR option is written immediately after any
arithmetic statement, as an extension of the statement. The
format of the SIZE ERROR option is:

[; ON SIZE ERROR imperative-statement]

If the SIZE ERROR option is present, and a SIZE ERROR con
dition arises, the value of the resultant data-name is unaltered,
and the series of imperative statements specified for the condi
tion is executed.

If the SIZE ERROR option has not been specified and a SIZE
ERROR condition arises, no assumption should be made about
the final result.

The SIZE ERROR condition applies to the final results of an
arithmetic operation. The exceptions are the multiply and
divide operations in which the intermediate results are checked
for size errors as well as the final results. Within an addition
or subtraction operation where the CORRESPONDING phrase
has been specified, if any of the individual operations produces
a SIZE ERROR condition, the imperative statement in the
SIZE ERROR phrase is not executed until all the additions or
subtractions are completed.

An arithmetic statement, if written with the SIZE ERROR
option, is not an imperative statement. Rather, it is a condi
tional statement and is prohibited in contexts where only
imperative statements are allowed.

181

Microsoft COBOL Reference Manual

7.3 1-0 Error Handling

If an 1-0 error occurs, the file’s FILE STATUS data-item, if one
exists, is set to the appropriate two-character code. Otherwise,
it assumes the value "00”.

If an 1-0 error occurs that is pertinent to the AT END or IN
VALID KEY condition and an AT END or INVALID KEY
phrase exists to handle the error, then the imperative state
ments in the phrase are executed.

If there is not an appropriate phrase (such phrases may not ap
pear as modifiers to OPEN and CLOSE statements, for exam
ple, and are optional for other 1-0 statements), then the logic of
program flow is as follows:

1. If there is an associated DECLARATIVES error pro
cedure, it is performed automatically; user-written logic
must determine what action is taken because of the ex
istence of the error. Upon return from the error pro
cedure, normal program flow to the next sentence (fol
lowing the 1-0 statement) is allowed.

2. If no DECLARATIVES error procedure is applicable
but there is an associated FILE STATUS item, it is
presumed that the user may base actions upon testing
the status item, so normal flow to the next sentence is
allowed. See Chapter 14, "DECLARATIVES Region
and USE Statement,” for more details about declaring
error procedures in the DECLARATIVES Region of a
source program.

Only if none of the above (INVALID KEY or AT END phrase,
DECLARATIVES error procedure, or testable FILE STATUS
data-item) exists, does a runtime error occur.

182

PROCEDURE DIVISION

7.4 Dynamic Debugging Statements

The execution TRACE mode may be set or reset dynamically.
When it is set, procedure-names are printed on the user’s ter
minal in the order in which they are executed.

Execution of the READY TRACE statement sets the TRACE
mode to cause printing of every section and paragraph name
each time it is entered. The RESET TRACE statement inhib
its such printing. A printed list of procedure-names in the
order of their execution is invaluable in detection of a program
malfunction, because it aids in detection of the point at which
actual program flow departed from the expected program flow.

Another debugging feature may be required in order to reveal
critical data values at specifically designated points in the
procedure. The EXHIBIT statement provides this facility.
EXHIBIT produces a printout of values of a specified literal or
data-item in this format: data — name = value.

The EXHIBIT, READY TRACE, and RESET TRACE state
ments are extensions to ANSI 74 Standard COBOL. These
statements are designed to provide a convenient aid to program
debugging. For more information, see the discussions of the
individual statements in Section 7.6, “PROCEDURE DIVI
SION Statements.”

Note
It is often desirable to include such statements on source
lines that contain D in column 7. In this case, the debug
ging statements are ignored by the compiler unless the
WITH DEBUGGING MODE clause is included in the
SOURCE-COMPUTER paragraph.

MS-COBOL also provides an interactive debug facility for
dynamic program debugging. See the Microsoft COBOL Com
piler User's Guide for information about this facility.

183

Microsoft COBOL Reference Manual

7.5 MS-COBOL Tape Syntax

While the Microsoft COBOL Compiler recognizes and checks
the full language tape-handling syntax, it does not support
tape-handling commands during program execution.

7.6 PROCEDURE DIVISION Statements

The remainder of this chapter discusses the individual
PROCEDURE DIVISION statements. These statements are
arranged alphabetically. For information about how the state
ments appear in the general format of the PROCEDURE DIVI
SION, see Section 7.1, “PROCEDURE DIVISION Header and
General Format.”

184

PROCEDURE DIVISION

7.6.1 ACCEPT Statement

Purpose

The ACCEPT statement is used to obtain low-volume input at
runtime, and to place it in a specified receiving field or set of
receiving fields.

Format

Four formats are available:

ACCEPT identifier FROM
DATE
DAY

< TIME
LINE NUMBER
ESCAPE KEY

ACCEPT identifier [FROM mnemonic-name]

ACCEPT (position-spec) identifier [WITH
(ZERO-FILL \

SPACE-FILL ...]
LEFT-JUSTIFY
RIGHT-JUSTIFY
TRAILING-SIGN
PROMPT
UPDATE "
LENGTH-CHECK
AUTO-SKIP
BEEP
NO-ECHO
EMPTY-CHECK J

ACCEPT screen-name [ON ESCAPE imperative-statement]

Formats 3 and 4 are Microsoft COBOL extensions to ANSI 74
Standard COBOL. The reserved words LINE NUMBER and
ESCAPE KEY in Format 1 are also extensions.

185

Microsoft COBOL Reference Manual

Remarks

The function of each form of the ACCEPT statement is to ac
quire data from a source external to the program and place it
in a specified receiving field or set of receiving fields. The
forms differ primarily in the data source with which they are
designed to interface.

The Format 1 ACCEPT obtains date or time information from
the operating system.

The next two formats of the ACCEPT statement receive data
keyed in by an operator at the terminal. For Format 2, this
device is assumed to be a teletype, teleprinter, or “dumb” ter
minal in scrolling mode. For Format 3, it is assumed that the
input device is a video terminal capable of direct cursor
positioning.

The Format 4 ACCEPT receives an entire data entry form (as
defined in the SCREEN SECTION) when it has been completed
by the terminal operator. Note that an ordinary terminal is
suitable as an input device for a Format 2, 3, or 4 ACCEPT,
although the effects on the appearance of the screen will differ.
The effects of the various WITH phrase options of the Format 3
ACCEPT statement are summarized in Section 7.6.1.3.

7.6.1.1 Format 1 ACCEPT Statement

Any of several standard values may be obtained at execution
time by use of the Format 1 ACCEPT statement.

The formats of the standard values are:

DATE

a six-digit value of the form YYMMDD (year, month, day).
Example: July 4, 1976 is 760704.

DAY

a five-digit “Julian date” of the form YYNNN where YY is the
two low-order digits of year and NNN is the day-in-year
number between 1 and 366.

186

PROCEDURE DIVISION

TIME

an eight-digit value of the form HHMMSSFF where HH is
from 00 to 23, MM is from 00 to 59, 88 is from 0 to 59, and FF
is from 00 to 99; HH is the hour, MM is the minutes, 88 is the
seconds, and FF represents hundredths of a second.

LINE NUMBER

The ACCEPT...FROM LINE NUMBER statement is provided
for compatibility, but in MS-COBOL, the value of LINE
NUMBER is always zero.

ESCAPE KEY

a two-digit code generated by the key that terminated the most
recently executed Format 3 or Format 4 ACCEPT statement.

Identifier can be interrogated to determine exactly which key
was typed. Input may be terminated by any of the following
keys, and sets the ESCAPE KEY value as:

Key Name Value

Backtab 99
(terminates only
Format 3 ACCEPTs)

Escape 01

Field-terminator 00
(of the last field
if Format 4 ACCEPT
is used)

Function key 02-nn

Refer to the Microsoft COBOL Compiler User's Guide for infor
mation on how key codes are defined for specific terminals.
The identifier specified in the format should be an unsigned
numeric integer whose USAGE is explicitly or implicitly

187

Microsoft COBOL Reference Manual

DISPLAY, and whose length agrees with the content of the
system-defined data-item. If not, the standard rules for a
MOVE govern storage of the source value in the receiving item
(identifier).

7-6.I.2 Format 2 ACCEPT Statement

Format 2 of the ACCEPT statement is used to accept a string
of input characters from a scrolling device such as a teletype or
a terminal in scrolling mode. When the ACCEPT statement is
executed, input characters are read from the terminal until a
carriage return is encountered; then a carriage return/line feed
pair is sent back to the console. The input data string is con
sidered to consist of all characters keyed prior to (but not
including) the carriage return. If used, the mnemonic-name
specified in Format 2 must also be specified in the CONSOLE
IS clause of the SPECIAL-NAMES paragraph of the CONFIG
URATION SECTION.

For a Format 2 ACCEPT with an alphanumeric receiving field,
the input data string is transferred to the receiving field
exactly as if it were being MOVEd from an alphanumeric field
of length equal to the number of characters in the string. (That
is, left justification, space filling, and right truncation occur by
default, and right justification and left truncation occur if the
receiving field is described as JUSTIFIED RIGHT.) If the
receiving field is alphanumeric-edited, it is treated as an
alphanumeric field of equal length (as if each character in its
PICTURE were "X"), so that no insertion editing will occur.

For a Format 2 ACCEPT with a numeric or numeric-edited
receiving field, the input data string is subjected to a validity
test which depends on the PICTURE of the receiving field. (If
the receiving field is described as COMP-O, its PICTURE is
treated as “S9(5)” for purposes of this discussion.) The digits 0
through 9 are considered valid anywhere in the input data
string.

The decimal point character is either a period (.) or a comma
(,), depending on whether the DECIMAL POINT IS COMMA
clause of the CONFIGURATION SECTION is used. In the fol
lowing discussions, any reference to the decimal point charac
ter as a period should be interpreted as if the reference were to
a comma if the DECIMAL POINT IS COMMA clause is active.

188

PROCEDURE DIVISION

The decimal point character is considered valid if:

1. it occurs only once in the input data string, and
2. the PICTURE of the receiving field contains a frac

tional digit position, that is, a 9, Z, *, or floating inser
tion character which appears to the right of either an
assumed decimal point (V) or an actual decimal point
(.).

The operational sign characters 4- and - are considered valid
only as the first or last character of the input string and only if
the PICTURE of the receiving field contains one of the sign
indicators S, + , -, CR, or DB.

All other characters are considered invalid. If the input data
string is invalid, the message “INVALID NUMERIC INPUT —
PLEASE RETYPE” is sent to the console, and another input
data string is read.

When a valid input data string has been obtained, data are
transferred to the receiving field exactly as if the instruction
being executed were a MOVE to the receiving field from a
hypothetical source field with the following characteristics:

1. a PICTURE of the form S9...9V9...9
2. USAGE DISPLAY
3. a total length equal to the number of digits in the

input data string
4. as many digit positions to the right of the assumed dec

imal point as there are digits to the right of the explicit
decimal point in the input data string (zero if there is
no decimal point in the input data string)

5. current contents equal to the string of digits embedded
in the input data string

6. a separate sign with a current negative status if the
input data string contains the character and a
current positive status otherwise

189

Microsoft COBOL Reference Manual

Note
The numeric receiving-field handling described above does
not conform to the ANSI 74 COBOL Standard, which treats
numeric receiving fields as if they were alphanumeric, jus
tifying data to the left. A runtime switch, described in the
Microsoft COBOL Compiler User's Guide, is available to
make the Format 2 ACCEPT conform to the standard.

7.6.1.3 Format 3 ACCEPT Statement

Format 3 of the ACCEPT statement is used to accept data into
a field from a nonscrolling video terminal. The following syn
tax rules must be observed when the Format 3 ACCEPT is
used:

1. The identifier must reference a data-item whose length
is less than or equal to 1920 characters.

2. The options SPACE-FILL and ZERO-FILL may not
both be specified in the same ACCEPT statement.

3. The options LEFT-JUSTIFY and RIGHT-JUSTIFY may
not both be specified within the same ACCEPT state
ment.

4. If the identifier is described as a numeric-edited item,
the UPDATE option must not be specified.

5. The TRAILING-SIGN option may be specified only if
the identifier is described as an elementary numeric
data-item. If the identifier is described as unsigned,
the TRAILING-SIGN option is ignored.

6. For alphanumeric or alphanumeric-edited identifiers,
the SPACE FILL option is assumed if the ZERO-FILL
option is not specified, and the LEFT-JUSTIFY option
is assumed if the RIGHT-JU STIF Y option is not speci
fied.

7. For numeric or numeric-edited identifiers, the ZERO
FILL option is assumed if the SPACE-FILL option is
not specified.

190

PROCEDURE DIVISION

Data Input Field

The position-spec and receiving field (identifier) specifications
of the Format 3 ACCEPT statement are used to define the
location and characteristics of a data input field on the screen
of the terminal.

Location of the Data Input Field

The position-spec is of the form:

LIN [{ ± } integer-1] COL [{ ± } integer-3]

integer-2 integer-4

The opening and closing parentheses and the comma separat
ing the two major bracketed groups are required. A space must
follow the comma. The position-spec specifies the position on
the terminal screen at which the data input field will begin.
LIN and COL are MS-COBOL special registers. Each behaves
like a numeric data-item with USAGE IS COMP-O, but they
may be referred to by every MS-COBOL program without
being declared in the DATA DIVISION.

If LIN is specified, the data input field will begin on the screen
row whose number is equal to the value of the LIN special
register, incremented (or decremented) by integer-1 if “ +
integer-1" (or integer-1”) is specified. If integer-2 is speci
fied, the data input field will begin on the row whose number
is integer-2. If neither LIN nor integer-2 is specified, the data
input field will begin on the screen row containing the current
cursor position.

If COL is specified, the data input field will begin in the screen
column whose number is equal to the value of the COL special
register, incremented (or decremented) by integer-3 if
“+ integer-3” (or integer-3”) is specified. If integer-4 is
specified, the data input field will begin in the screen column
whose number is integer-4. If neither COL nor integer-4 is
specified, the data input field will begin in the screen column
containing the current cursor position.

191

Microsoft COBOL Reference Manual

Characteristics of the Data Input Field

The characteristics (other than position) of the data input field
on the terminal screen are determined by the receiving field’s
PICTURE specification (which is treated as 89(5) in the case of
an item whose USAGE is COMP-O). For alphanumeric or
alphanumeric-edited identifier-3, the data input field is simply
a string of data input character positions starting at the screen
location specified by position-spec. The length of the data
input field in character positions is equal to the length of the
receiving field in memory.

For numeric or numeric-edited identifiers, the data input field
may contain any or all of the following: integer digit positions,
fractional digit positions, sign position, and decimal point posi
tion. There will be one digit position for each 9, Z, *, P, or
noninitial floating insertion symbol (a floating insertion sym
bol is a +, -, or $ which is not the last symbol in a PICTURE
character string) in the PICTURE of the identifier.

Each digit position in the data input field is a fractional digit
position if the corresponding PICTURE character is to the
right of an assumed decimal point (V) or actual decimal point
(.) in the PICTURE of the identifier. Otherwise, it is an
integer digit position. There will be one sign position if the
identifier is described as signed, and no sign position other
wise. There will be one decimal point position if there is at
least one fractional digit position, and no decimal point posi
tion otherwise.

The data input positions which are defined will occupy succes
sive character positions on the terminal screen, beginning with
the position specified by position-spec. If TRAILING-SIGN is
specified in the ACCEPT statement, the data input positions
will be in the following sequence: integer digit positions (if
any), decimal point position (if any), fractional digit positions
(if any), and sign position (if any). If TRAILING-SIGN is not
specified, the data input positions will be in the following
sequence: sign position (if any), integer digit positions (if any),
decimal point position (if any), and fractional digit positions
(if any).

192

PROCEDURE DIVISION

Data Input and Data Transfer

A character entered into the data input field by the terminal
operator may be treated either as an editing character, a ter
minator character, or a data character. When a terminator
key is typed, the ACCEPT is terminated, the data is
transferred to the identifier, and the ESCAPE KEY value is
set as described in Section 7.6.1.1, “Format 1 Accept State
ment.” This value can be interrogated by using a Format 1
ACCEPT statement FROM ESCAPE KEY.

The editing characters are DELETE LINE, FORWARD
SPACE, BACK SPACE, and DELETE CHARACTER. See the
Microsoft COBOL Compiler Users Guide to determine which
keys perform these functions on your terminal. The action of
the editing characters is described later in this section; for
now, only data characters will be considered.

Alphanumeric Receiving Field

Consider first the execution of the Format 3 ACCEPT state
ment with an alphanumeric or alphanumeric-edited receiving
field. An alphanumeric-edited receiving field is treated as an
alphanumeric field of the same length (as if every character in
its PICTURE were “X”). Specifically, no insertion editing will
occur.

The initial appearance of the data input field depends on the
specifications in the WITH phrase of the ACCEPT statement.
If UPDATE is specified, the current contents of the identifier
are displayed in the input field. In this case, all data input
positions will be treated as if they were keyed by the terminal
operator. If UPDATE is not specified, but PROMPT is speci
fied, a period (.) is displayed in each input data position. If
neither UPDATE nor PROMPT is specified, the data input
field is not changed. The cursor is placed in the first data
input position, and characters are accepted as they are keyed
by the operator until a terminator character (normally carriage
return) is encountered.

If AUTO-SKIP is specified in the ACCEPT statement, the
ACCEPT will also be terminated if the operator keys a charac
ter into the last (rightmost) data input position.

193

Microsoft COBOL Reference Manual

As each input character is received, it is echoed to the terminal
screen. If all positions of the data input field are filled, addi
tional input is ignored until a terminator character or editing
character is encountered. If RIGHT-JUSTIFY was specified in
the ACCEPT statement, the operator-keyed characters are
shifted to the rightmost positions of the data input field when
the ACCEPT is terminated. All unkeyed character positions
are filled on termination; the fill character is either space (if
SPACE-FILL is in effect) or zero (if ZERO-FILL was specified).

The contents of the receiving field will be the same set of char
acters which appears in the input field; however, the justifica
tion of operator-keyed characters will be controlled by the JUS
TIFIED specification in the receiving field’s data description,
not by the RIGHT or LEFT-JUSTIFY option of the ACCEPT
statement. Excess positions of the receiving field will be filled
with spaces or zeros based on the SPACE-FILL or ZERO-FILL
specification in the ACCEPT statement.

Numeric Receiving Field

Next, consider the execution of a Format 3 ACCEPT statement
with a numeric or numeric-edited receiving field. As described
above, the data input field on the terminal screen may contain
integer digit positions, fractional digit positions, or both. First,
assume that both are present; the other cases will be treated as
variations.

As with the alphanumeric ACCEPT, the data input field may
be initialized in a way determined by the WITH options speci
fied in the ACCEPT statement. If UPDATE is specified (not
permitted for a numeric-edited receiving field), the integer and
fractional parts of the data input field will be set to the integer
and fractional parts of the decimal representation of the initial
value of the receiving field, with leading and trailing zeros
included, if necessary, to fill all digit positions. Except for lead
ing zeros, these initialization characters are treated as
operator-keyed data.

When a numeric field with UPDATE is accepted, any digit,
sign, or decimal point entered will cause the entire field to be
cleared and set to zero or the value of the entered digit. Such
a numeric field can be accepted without change by entering a
terminator key instead of a digit, sign, or decimal point.

194

PROCEDURE DIVISION

If UPDATE is not specified, but PROMPT is specified, an
underscore (_) character will be displayed in each input digit
position. In either of these cases (UPDATE or PROMPT), a
decimal point will be displayed at the decimal point position.

If neither UPDATE nor PROMPT is specified, the input field
on the screen will not be initialized, except for the sign posi
tion. The sign position is always initialized positive except
when UPDATE is specified, in which case it is initialized
according to the sign of the current contents of the receiving
field. On most systems, a positive sign position is shown as a
space, and a negative sign position is shown as a minus sign.

The cursor is initially placed in the rightmost integer digit
position, and characters are accepted one at a time as they are
keyed by the operator. A received character may be treated in
one of several ways: If the incoming character is a digit, previ
ously keyed digits are shifted one position to the left in the
input field and the new digit is displayed in the rightmost
integer digit position. If all integer digit positions have not
been filled, the cursor remains on the rightmost digit position
and another character is accepted. If the entire integer part of
the input field has been filled and AUTO-SKIP was specified,
the integer part is terminated and the cursor is moved to the
leftmost fractional digit position. If the integer part has been
filled and AUTO-SKIP was not specified, the cursor is moved
to the decimal point position, and any further digits keyed are
ignored until the integer part is terminated with a decimal
point.

If the character entered is one of the sign characters + or —,
the sign position is changed to a positive or negative status,
respectively. Cursor position is not affected.

If the character entered is a decimal point character, the
integer part is terminated and the cursor is moved to the left
most fractional digit position.

If the character entered is a field terminator (normally
carriage-return), the ACCEPT is terminated and the cursor is
turned off. Any other character is ignored.

195

Microsoft COBOL Reference Manual

When the integer part is terminated, the cursor is placed in
the leftmost fractional digit position, and operator-keyed char
acters are again accepted. Digits are simply echoed to the ter
minal. The sign characters + and - are treated exactly as
they were while integer part digits were being entered. The
field terminator character terminates the ACCEPT. (If
AUTO-SKIP is in effect, filling the entire fractional part also
terminates the ACCEPT.) Other characters are ignored. After
all digit positions of the fractional part have been filled, fur
ther digits are also ignored.

If no fractional digit positions are present, the decimal point is
ignored as an input character, and entry of integer part digits
may be terminated only by terminating the entire ACCEPT. If
no integer digit positions are present, the cursor is initially
placed in the leftmost fractional digit position and entry of the
fractional part digits proceeds as described above.

On termination of the Format 3 ACCEPT of a numeric or
numeric-edited item, data are transferred to the receiving field.
The exact form of the data in the receiving field after execution
of the ACCEPT is as described in the last paragraph of the dis
cussion of the Format 2 ACCEPT (see Section 7.6.1.2), where
the role of the "input data string” mentioned in that paragraph
is taken by the string of characters displayed in the data input
field. After termination, if SPACE-FILL is in effect, leading
zeros in the integer part of the data input field (not in the
receiving field) will be replaced by spaces, and the leading
operational sign, if present, will be moved to the rightmost
space thus created.

Screen Editing Characters With ACCEPT

The editing keys, DELETE LINE, FORWARD SPACE, BACK
SPACE, and DELETE CHARACTER, may be used to send
screen editing characters. These characters will change data
which has already been keyed or supplied by the MS-COBOL
runtime system as a result of a WITH UPDATE specification.
Entering the DELETE LINE character will cause the ACCEPT
to be restarted and all data keyed by the operator or initially
present in the receiving field to be lost. The data input field
on the terminal screen will be reinitialized if PROMPT is in
effect. Otherwise, the data input field will be filled with spaces
or zeros according to the SPACE-FILL or ZERO-FILL
specification.

196

PROCEDURE DIVISION

Typing the FORWARD SPACE or BACK SPACE characters
will move the cursor forward or back one data input position in
the case of an alphanumeric or alphanumeric-edited receiving
field, or one digit position in the case of a numeric or numeric-
edited receiving field. In no case, however, will the FOR
WARD SPACE or BACK SPACE characters move the cursor
outside the range of positions including:

1. the positions already keyed by the operator (or filled by
MS-COBOL runtime support when WITH UPDATE is
specified), and

2. the rightmost data input position which the cursor has
occupied during the execution of this ACCEPT. If the
cursor is moved to a position of this range other than
the rightmost, and a legal data character is entered, it
is displayed at the current cursor position and the cur
sor is moved forward one data position (alphanumeric
or alphanumeric-edited) or one digit position (numeric
or numeric-edited).

Typing the DELETE CHARACTER key effectively cancels the
last data character entered. The cursor is moved back one data
position (digit position if the receiving field is numeric or
numeric-edited) and a fill character (space or zero) is displayed
under the cursor (except when the cursor is to the left of the
decimal point for a numeric ACCEPT). In the case of a
numeric field, no fill character is displayed and the cursor is
not moved, but the digit at the cursor position is deleted and
all digits to the left of it are shifted one position to the right.

Note
The DELETE CHARACTER key has no effect unless the
cursor is in position to accept a new data character; in
other words, it has no effect if BACK SPACE character(s)
have been used to move the cursor back over already keyed
positions.

197

Microsoft COBOL Reference Manual

WITH Phrase

The following list summarizes the effects of the WITH phrase
specifications for a Format 3 ACCEPT with an alphanumeric
or alphanumeric-edited receiving field:

1. SPACE-FILL causes unkeyed character positions of the
data input field and the receiving field to be space-filled
when the ACCEPT is terminated.

2. ZERO-FILL causes unkeyed character positions of the
data input field and the receiving field to be set to
ASCII zeros when the ACCEPT is terminated.

3. LEFT-JUSTIFY is treated by this compiler as commen
tary.

4. RIGHT-JUSTIFY causes operator-keyed characters to
occupy the rightmost positions of the data input field
after the ACCEPT is terminated. Note that the justifi
cation of transferred data in the receiving field is con
trolled by the JUSTIFIED declaration or default of the
receiving field’s data description, not by the WITH
RIGHT-JUSTIFY phrase.

5. PROMPT causes the data input field on the screen to
be set to all periods (.) before input characters are
accepted.

6. UPDATE causes the data input field to be initialized
with the initial contents of the receiving field and the
initial data to be treated as operator-keyed data.

7. LENGTH-CHECK causes a field terminator character
to be ignored unless every data input position has been
filled.

8. EMPTY-CHECK causes all field terminator characters
to be ignored until at least one nonterminator charac
ter has been keyed.

9. AUTO-SKIP forces the ACCEPT to be terminated when
all data input positions have been filled. A terminator
character explicitly keyed has its usual effect.

10. BEEP causes an audible alarm to sound when the
ACCEPT is initialized and the system is ready to
accept operator input.

198

PROCEDURE DIVISION

11. NO-ECHO causes an asterisk (*) to be displayed for
every character entered in the field, rather than
displaying the entered character.

The following list summarizes the effects of the WITH phrase
specifications for the Format 3 ACCEPT with a numeric or
numeric-edited receiving field:

1. SPACE-FILL causes unkeyed digit positions of the data
input field (not of the receiving field) to the left of the
(possibly implied) decimal point to be space-filled when
the ACCEPT is terminated. SPACE FILL also causes
any leading operational sign to be displayed in the
rightmost space thus created.

2. ZERO-FILL causes all unkeyed digit positions of the
data input field to be set to zero when the ACCEPT is
terminated.

3. LEFT-JUSTIFY and RIGHT-JUSTIFY have no effect
for a numeric or numeric-edited receiving field.

4. TRAILING-SIGN causes the operational sign to appear
as the rightmost position of the data input field. Ordi
narily, the sign is the leftmost position of the field.

5. PROMPT causes the data input field positions to be ini
tialized as follows before input characters are accepted:
digit positions to underscores (_), decimal point position
(if any) to the decimal point character, and sign posi
tion (if any) to space.

6. UPDATE causes the data input field to be initialized to
the current contents of the receiving field and this ini
tial data to be treated like operator-keyed data.

7. LENGTH-CHECK causes a received decimal point
character to be ignored unless all integer digit positions
have been keyed, and a field terminator character to be
ignored unless all digit positions have been keyed.

8. EMPTY-CHECK causes all field terminator characters
to be ignored until at least one nonterminator charac
ter has been keyed.

199

Microsoft COBOL Reference Manual

9. AUTO-SKIP causes the integer part of the ACCEPT to
be terminated when all integer digit positions have
been keyed, and the entire ACCEPT to be terminated
when all digit positions have been keyed.

10. BEEP causes an audible alarm to sound when the AC
CEPT is initialized and the system is ready to accept
operator input.

11. NO-ECHO causes an asterisk (*) to be displayed for
every character entered in the field, rather than
displaying the entered character.

200

PROCEDURE DIVISION

The following three examples use the Format 3 ACCEPT
statement.

Example 1.

Set-up Prior to Executing

Receiving Field: 05 RS-DISCOUNT PIC X(8).

Initial Contents: ABCDEFGH

ACCEPT Statement: ACCEPT (1 , 1) RS-DISCOUNT
WITH PROMPT.

Executing the ACCEPT

At Start of ACCEPT: .

Operator Enters N: N

Operator Enters ONE: NONE

Operator Enters
Carriage Return: NONEbbbb

Result

Final Contents of
Receiving Field: NONEbbbb

201

Microsoft COBOL Reference Manual

Example 2.

Set-up Prior to Executing

Receiving Field: 10 VEND-NAME PIC X(12).

Initial Contents: ACME WIDGETS

ACCEPT Statement: ACCEPT (1 , 1) VEND-NAME
WITH PROMPT UPDATE.

At Start of ACCEPT: ACME WIDGETS

(If operator enters carriage return here,
the receiving field will not be changed.)

Executing the ACCEPT

Operator Enters
DELETE LINE:

Operator Enters XYZ: XYZ;

Operator Enters
Carriage Return: XYZbbbbbbbbb

Result

Final Contents of
Receiving Field: XYZbbbbbbbbb

202

PROCEDURE DIVISION

Example 3.

Set-up Prior to Executing

Receiving Field: 05 CREDIT PIC S9(4)V99.

Initial Contents: +
111111

ACCEPT Statement: ACCEPT (LIN + 4, COL - 3) CREDIT
WITH PROMPT TRAILING-SIGN.

Executing the ACCEPT

At Start of ACCEPT: ____ .__ b

Operator Enters 8: ___ 8.__ b

Operator Enters 7: __87 .__ b

Operator Enters —: __ 87.__ -

Operator Enters 6: _876.__-

Operator Enters N: _876.__ -

Operator Enters . : _876.

Operator Enters 5: _876.5_-

Operator Enters
Carriage Return: _876.5_-

203

Microsoft COBOL Reference Manual

Result

Final Contents
of Receiving Field: 0876 50
(The line above the
low order 0 is used
to indicate the im
bedded negative sign.)

204

PROCEDURE DIVISION

7.6.1.4 Format 4 ACCEPT Statement

Format 4 of the ACCEPT statement causes a transfer of infor
mation from the operator’s terminal to all USING and/or TO
fields specified in the SCREEN SECTION definition of screen
name or any screen item subordinate to screen-name. Screen
items having only VALUE literals or FROM fields or literals
have no effect on the operation of the ACCEPT statement.
If you wish to have such fields displayed, use the “DISPLAY
screen-name” statement before the Format 4 ACCEPT
statement.

Each such transfer of data consists of an implicit Format 3 AC
CEPT of a field defined by the appropriate screen item’s PIC
TURE followed by an implicit MOVE to the associated TO or
USING field.

If the ESCAPE KEY is typed during data input, the entire AC
CEPT is terminated without moving the current field to the as
sociated TO or USING item, the ESCAPE KEY value is set to
01, and the imperative-statement in the ON ESCAPE phrase is
executed. If a function key is typed, the appropriate ESCAPE
KEY value is set and the entire ACCEPT is terminated.

If a field-terminator key (carriage return, tab, etc.,) is typed,
the ESCAPE KEY value is set to 00 and the cursor moves to
the next input field defined under screen-name, if one exists.
If the current field is the last field, the entire ACCEPT is
terminated.

If the BACKTAB KEY is typed, the current field is terminated
and the cursor moves to the previous input field defined under
screen-name. If the current field is the first field, the cursor
does not move from that field.

When a field is terminated by a function key, field-terminator
key, or BACKTAB KEY, the contents of the current field are
moved to the associated TO or USING item, except in the case
where no data characters and no editing characters have been
entered in that field. This allows the operator to tab forward
or backward through the input fields without affecting the
contents of the receiving items.

205

Microsoft COBOL Reference Manual

All the editing and validation features described in Section
7.6.1.3 for the Format 3 ACCEPT apply to the Format 4 AC
CEPT as well. Several SCREEN SECTION specifications
correspond to the Format 3 ACCEPT options:

AUTO corresponds to AUTO-SKIP
BELL corresponds to BEEP
JUSTIFIED corresponds to RIGHT-JUSTIFY
SECURE corresponds to NO-ECHO
REQUIRED corresponds to EMPTY-CHECK
FULL corresponds to LENGTH-CHECK

Furthermore, if an input field specifies the USING clause or
both a FROM and TO clause, the ACCEPT will be executed
with the UPDATE option. Format 4 ACCEPT statements
always use the PROMPT and TRAILING-SIGN options when
executing the individual Format 3 ACCEPTS.

If the screen item’s PICTURE clause specifies a numeric-edited
or alphanumeric-edited input field, the ACCEPT is executed as
if the field were numeric or alphanumeric, respectively. When
the field is terminated, the data is edited according to the PIC
TURE clause and redisplayed in the specified screen position.
In this case, the JUSTIFIED clause has no effect.

Moves from screen fields to receiving items follow the standard
MS-COBOL rules for MOVE statements, except that moves
from numeric-edited fields are allowed. In this case, the data
is input as if the field were numeric and the MOVE uses only
the sign, decimal point, and digit characters.

The Format 4 ACCEPT does not cause the display of any text
or prompting label information. That is accomplished by using
the “DISPLAY screen-name” statement before accepting the
screen-name. See the discussion of DISPLAY in Section 7.6.10
for more information on displaying text.

206

PROCEDURE DIVISION

7.6.2 ADD Statement

Purpose

Adds two or more numeric values and stores the resulting sum.

Format

The general formats for the ADD statement are:

ADD (identifier-1 \ Pidentifier-2’1 ... TO identifier-m [ROUNDED]
I literal-1 J ' Lliteral-2 J

[, identifier-n [ROUNDED] [; ON SIZE ERROR imperative-statement]

ADD (identifier-1 \ l identifier-2} I”identifier-3’1
I literal-1 f ' 1 literal-2 j ' Lliteral-3 J

GIVING identifier-m [ROUNDED] [, identifier-n [ROUNDED]]

[; ON SIZE ERROR imperative-statement]

ADD i CORRESPONDING \ identifier-1 TO identifier-2 [ROUNDED]
I CORR I

[; ON SIZE ERROR imperative-statement]

Either the TO or the GIVING option must be specified.

Remarks

When the TO option is used, the values of all the identifiers
(including identifier-m, identifier-n...) and literals in the state
ments are added, and the resulting sum replaces the value of
identifier-m, identifier-n, etc. When the GIVING option is
used, at least two identifiers and/or numeric literals must be
coded between ADD and GIVING. The sum of the values of
these identifiers and literals (not including identifier-m,
identifier-n...) replaces the value of identifier-m, identifier-n,
etc.

207

Microsoft COBOL Reference Manual

When the CORRESPONDING option is used, the correspond
ing data-items of identifier-1 are added to and stored in the
corresponding data-items of identifier-2. Each identifier must
refer to a group item, and the composite of operands is deter
mined separately for each pair of corresponding data-items.
See Section 7.2.1, “CORRESPONDING Option,” for more
information.

Neither the composite of operands nor the receiving fields
defined in the ADD statement may exceed eighteen (18) deci
mal digits. This restriction does not apply to the COMPUTE
statement. See Section 2.9, “Arithmetic Statements,” for a
definition of the composite of operands in an arithmetic
statement.

Examples

ADD INTEREST,
DEPOSIT TO BALANCE ROUNDED.

ADD REGULAR-TIME OVERTIME
GIVING GROSS-PAY.

ADD FEDERAL-TAX, FICA-TAX TO
DEDUCTIONS, YEAR-TO-DATE-TAX.

The last example is equivalent to:

ADD FEDERAL-TAX, FICA-TAX TO DEDUCTIONS.
ADD FEDERAL-TAX, FICA-TAX TO YEAR-TO-DATE-TAX.

The first statement would result in the sum of INTEREST,
DEPOSIT, and BALANCE being placed at BALANCE, while
the second would result in the sum of REGULAR-TIME and
OVERTIME earnings being placed in item GROSS-PAY. In the
third example, the sum of FEDERAL-TAX and FICA-TAX is
added to both DEDUCTIONS and YEAR-TO-DATE-TAX.

208

PROCEDURE DIVISION

7.6.3 ALTER Statement

Purpose

Modifies a simple GO TO statement elsewhere in the PRO
CEDURE DIVISION, thus changing the sequence of execution
of program statements.

Format

The general format is:

ALTER procedure-name-1 TO [PROCEED TO] procedure-name-2

[, procedure-name-3 TO [PROCEED TO] procedure-name-4] ...

Remarks

Procedure-name-1 and the successive operands in the ALTER
statement must refer to MS-COBOL paragraphs. Procedure
name-1 must consist of only a simple GO TO statement; the
ALTER statement in effect replaces the former operand of that
GO TO by one or more procedure-names.

Note
Since the ALTER statement may easily make a program
hard to follow, we strongly advise against its use.

209

Microsoft COBOL Reference Manual

Example

GATE.
GO TO MF-OPEN.

MF-OPEN.
OPEN INPUT MASTER-FILE.
ALTER GATE TO PROCEED TO NORMAL.

NORMAL.
READ MASTER-FILE,
AT END GO TO EOF-MASTER.

Examination of the above code reveals the technique of “shut
ting a gate,” providing a one-time initializing program step.

210

PROCEDURE DIVISION

7.6.4 CALL Statement

See Chapter 8, “Interprogram Communication,” for a discus
sion of the CALL and CHAIN statements.

211

Microsoft COBOL Reference Manual

7.6.5 CHAIN Statement

See Chapter 8, ‘Interprogram Communication,” for a discus
sion of the CALL and CHAIN statements.

212

PROCEDURE DIVISION

7.6.6 CLOSE Statement

The description of the CLOSE statement differs for the various
types of file organization. See Chapters 10, 11, and 12 for dis
cussion of CLOSE statements for Sequential, Indexed, and Rel
ative files, respectively.

213

Microsoft COBOL Reference Manual

7.6.7 COMPUTE Statement

Purpose

Evaluates an arithmetic expression and then stores the result
in a designated numeric or numeric-edited item.

Format

The general format is:

COMPUTE identifier-1 [ROUNDED] [, identifier-2 [ROUNDED]]...

= arithmetic-expression [; ON SIZE ERROR imperative-statement]

Remarks

Note that exponentiation to an integral power can be accom
plished by using the COMPUTE statement.

The COMPUTE statement provides results to arithmetic com
putations that are not restricted by the "composite of operands”
rule. See Section 2.9, "Arithmetic Statements,” for a definition
of the composite of operands in an arithmetic statement.

Examples

COMPUTE GROSS-PAY ROUNDED = BASE-SALARY *
(1+1.5* (HOURS - 40) / 40).

COMPUTE AMT-CUBED ROUNDED = AMT ** 3.

COMPUTE WS-TQTAL 7 OUT-TOTAL =
MS-TOTAL + CURRENT AMT
ON SIZE ERROR

PERFORM P800-OVERFLOW.

214

PROCEDURE DIVISION

7.6.8 COPY Statement

See Chapter 16 for a discussion of the COPY statement and its
use with the REPLACING phrase.

215

Microsoft COBOL Reference Manual

7.6.9 DELETE Statement

See Chapters 11 and 12 for discussion of use of the DELETE
statement in Indexed and Relative files.

216

PROCEDURE DIVISION

7.6.10 DISPLAY Statement

Purpose

Provides the capability of outputting low-volume data at run
time without the complexities of file definition.

Format

The general formats are:

\ I", identifer-2“|
J L, literal-2 J

DISPLAY ... [UPON mnemonic-name]i identifier-1
I literal-1

DISPLAY | (position-spec) (identifier)
literal J }
ERASE]

DISPLAY screen-name

See the following remarks for information on individual parts
of the format.

Remarks

The following rules must be observed:

1. All identifiers must reference data-items whose lengths
are less than or equal to 1920 characters.

2. Mnemonic-name must be defined in the PRINTER IS or
CONSOLE IS clause of the SPECIAL-NAMES para
graph of the CONFIGURATION SECTION.

3. Screen-name must be defined in the SCREEN SEC
TION of the DATA DIVISION.

The DISPLAY statement will cause output to be sent to the
terminal unless UPON mnemonic-name is specified, in which
case output will be sent to the printer. Each display-item (that
is, each occurrence of identifier, literal, or ERASE) will be pro
cessed in turn as described in the paragraphs below; then, if no

217

Microsoft COBOL Reference Manual

position-spec is coded in the entire DISPLAY statement, a car
riage return/line-feed pair will be sent to the receiving device.

Position-Spec

For each display-item, if position-spec is specified, the cursor is
positioned prior to the transfer of data for this item.

Position-spec is of the form:

(f LIN[{ + } integer-1] ~| , COL [{ + } integer-3]

integer-2 integer-4

The opening and closing parentheses and the comma separat
ing the two major bracketed groups are required. A space must
follow the comma. The position-spec specifies the position on
the terminal screen at which the cursor will be placed. LIN
and COL are MS-COBOL special registers. Each behaves like
a numeric data-item with USAGE IS COMP-O, but they may
be referenced by every MS-COBOL program without being de
clared in the DATA DIVISION. LIN and COL should be ini
tialized before USING. To display the value of LIN or COL,
move LIN or COL to a WORKING-STORAGE data-item with
PIC 9(5), and display that data-item. LIN and COL do not
change as the cursor position changes; they do not represent
the current cursor position.

For complete information about cursor positioning by line and
column, see Section 7.6.1.3, “Format 3 ACCEPT Statement.”

Identifier, Literal, and ERASE

If identifier or literal is specified for a given display-item, the
contents of identifier or the value of literal are sent to the
receiving device.

If ERASE is specified and if position-spec is coded for this or a
previous display-item, the terminal screen will be cleared from I
the current cursor position to the end of the screen. The initial
cursor position for the next display-item will be that specified
by the position-spec coded in the ERASE display-item, if

218

PROCEDURE DIVISION

present, or the position in which the cursor was left by the pre
vious display-item. If ERASE is specified and no position-spec
has been encountered up to this point in the DISPLAY state
ment, no action will be taken.

Screen-name

The "DISPLAY screen-name” statement causes a transfer of
information from screen-name (or each elementary screen item
subordinate to screen-name) to the terminal screen. For each
such screen item having a VALUE, FROM, or USING specifi
cation, the specified literal or field is the source of the
displayed data. For a field having only a TO clause, the effect
is as if FROM ALL had been specified. The source data is
MOVEd implicitly to a temporary item defined by the
appropriate screen item’s PICTURE (or by the length of the
data in the case of a VALUE literal). An implied identifier
type DISPLAY of the constructed temporary is then executed
as modified by the positioning and control clause coded in the
definition of the appropriate screen item.

Examples

DISPLAY QTY-ON-HAND.
DISPLAY INPUT-SCREEN.
DISPLAY (10, 2) USER-NAMES.
DISPLAY (LIN, COL) ERASE.
DISPLAY USER-NAME UPON PRINTER.

219

Microsoft COBOL Reference Manual

7.6.11 DIVIDE Statement

Purpose

Divides two numeric values and stores the quotient and the
remainder.

Format

The general formats are:

DIVIDE l identifier-1 \
\ literal-1 J

INTO identifier-2 [ROUNDED]

[, identifier-3 [ROUNDED]] ...

[ON SIZE ERROR imperative-statement]

DIVIDE (identifier-1) (INTO | i identifier-2 \
I literal-1 J 1BY / 1 literal-2 f

GIVING identifier-3 [ROUNDED]
[, identifier-4 [ROUNDED I]...

[ON SIZE ERROR imperative-statement]

DIVIDE identifier-1)
literal-1 f

INTO \
BY J

identifier-2 \
literal-2 J

GIVING identifier-3 [ROUNDED 1

[REMAINDER identifier-4]

[ON SIZE ERROR imperative-statement]

Remarks

The use of BY signifies that the first operand (identifier-1 or
literal-1) is the dividend (numerator), and the second operand
(identifier-2 or literal-2) is the divisor (denominator). If GIV
ING is not written in this case, the first operand must be an
identifier, in which the quotient is stored. With the GIVING
form, multiple results (destinations) are supported.

220

PROCEDURE DIVISION

The use of INTO signifies that the first operand is the divisor
and the second operand is the dividend. If GIVING is not writ
ten in this case, the second operand must be an identifier, in
which the quotient is stored.

The REMAINDER option directs that a remainder be returned
to a specified data field. If the receiving field for the quotient
has been defined as numeric-edited, the remainder will be cal
culated on the quotient’s unedited form. If the ROUNDED
option has been used on the quotient, the remainder will be
calculated on the quotient’s truncated form rather than the
rounded form.

Division by zero always causes a SIZE ERROR condition.

Neither the composite of operands nor the receiving fields
defined in the DIVIDE statement may exceed eighteen (18)
decimal digits. This restriction does not apply to the COM
PUTE statement. See Section 2.9, "Arithmetic Statements,”
for a definition of the composite of operands in an arithmetic
statement.

Examples

DIVIDE QTY INTO TOTAL
GIVING UNIT-COST.

DIVIDE WEIGHT BY 10.

DIVIDE TOTAL-DAYS BY DAYS-IN-WEEK
GIVING WEEKS-IN-TOTAL
REMAINDER DAYS-REMAINI NG

ON SIZE ERROR
DISPLAY "DIVISION RESULT TOO LARGE".

221

Microsoft COBOL Reference Manual

7.6.12 EXHIBIT Statement

Purpose

Displays data values at designated points in a program. This
statement is generally used for debugging.

Format

The general format is:

EXHIBIT NAMED [position-spec] {identifier'j 'j
literal I J
ERASE j j

... l UPON mnemonic-name]

Remarks

EXHIBIT displays the value of the specified literal, or identifi
ers in this format: identifier - value; i.e., both the value of
the identifier and its name are displayed.

The EXHIBIT, READY TRACE, and RESET TRACE state
ments are extensions to ANSI 74 Standard COBOL. These
statements are designed to provide a convenient aid to program
debugging.

Position-spec is defined in Section 7.6.10, "DISPLAY State
ment.”

Note
Including the EXHIBIT, READY TRACE, and RESET
TRACE statements on source lines that contain D in
column 7 is often desirable. The statements are ignored by
the compiler unless the WITH DEBUGGING MODE clause
is included in the SOURCE-COMPUTER paragraph. See
Section 5.2.2, "SOURCE-COMPUTER Paragraph.”

222

PROCEDURE DIVISION

For more information on debugging, see Section 7.6.24,
“READY/RESET TRACE Statements.”

Examples

EXHIBIT QTY-ON-HAND.

D EXHIBIT DEBUG-VALUES.

In the second example, “D” is in column 7, and “EXHIBIT”
begins in column 12.

223

Microsoft COBOL Reference Manual

7.6.13 EXIT Statement

Purpose

Provides an end-point for a procedure.

Format

The general format is:

EXIT.

Remarks

EXIT must appear in the source program as a one-word para
graph preceded by a paragraph-name. An exit paragraph pro
vides an end-point to which preceding statements may transfer
control if an operator decides to bypass some part of a section.

Example

P100-EXIT-POINT.
EXIT.

224

PROCEDURE DIVISION

7.6.14 EXIT PROGRAM Statement

Purpose

Marks the logical end of a called program.

Format

The general format is:

EXIT PROGRAM.

Remarks

The EXIT PROGRAM statement must appear in a sentence by
itself and must be the only sentence in the paragraph. It is
used to terminate a subprogram and to return control to the
calling program.

If an EXIT PROGRAM statement is encountered in a program
that was not called, the statement is treated as if it were an
EXIT statement (see Section 7.6.13, "EXIT Statement”).

Example

EXIT PROGRAM.

225

Microsoft COBOL Reference Manual

7.6.15 GO TO Statement

Purpose

Transfers control from one portion of a program to another.

Format

The general formats are:

GOTO [procedure-name-1]

GOTO procedure-name-1 [, procedure-name-2]procedure-name-n

DEPENDING ON identifier

Remarks

The simple form, GO TO procedure-name, changes the path of
flow to a designated paragraph or section. If the GO TO state
ment is without a procedure-name, then that GO TO statement
must be the only one in a paragraph, and must be altered prior
to its execution.

The more general form designates n procedure-names as a
choice of n paths to transfer to, if the value of identifier is 1 to
n, respectively. Otherwise, there is no transfer of control, and
execution proceeds in the normal sequence. Identifier must be
a numeric elementary item and have no positions to the right
of the decimal point.

If a GO TO (non-DEPENDING) statement appears in a
sequence of imperative statements, it must be the last state
ment in that sequence.

Examples

GO TO P200-PROCESS-RECORD.

GO TO DO-WEEKLY, DO-MONTHLY, DO-YEARLY
DEPENDING ON MODE-OF-PAYMENT.

226

PROCEDURE DIVISION

7.6.16 IF Statement

Purpose

Permits the programmer to specify a series of procedural state
ments to be executed in the event a stated condition is true.
Optionally, an alternative series of statements may be specified
for execution if the condition is false.

Format

The general format is:

IF condition; statement-1
NEXT SENTENCE

; ELSE statement-2
; ELSE NEXT SENTENCE

Conditional expressions may also be specified in the PER
FORM and SEARCH statements. For more details, see Sections
7.6.22 and 9.6, respectively.

Remarks

The ELSE NEXT SENTENCE phrase may be omitted if it im
mediately precedes the terminal period of the sentence.

Examples

IF BALANCE = 0
PERFORM NOT-FOUND.

IF T LESS THAN 5
NEXT SENTENCE

ELSE
PERFORM T-1-4.

IF ACCOUNT-FIELD = SPACES
OR NAME = SPACES

ADD 1 TO SKIP-COUNT
ELSE

PERFORM PROCESS-RECORD.

227

Microsoft COBOL Reference Manual

IF (A + C - 1 = 0)
AND NOT (B NUMERIC)

PERFORM INPUT-ERROR.

The statements following the IF statements are executed only
if the designated condition is true. The statements following
the ELSE statement are executed only if the designated condi
tion is false.

Regardless of whether the condition is true or false, the next
sentence is executed after execution of the appropriate series of
statements, unless a GO TO is contained in the imperatives
that are executed, or unless the nominal flow of program steps
is superseded because of an active PERFORM statement.

If there is no ELSE part to an IF statement, the first series of
statements must be terminated by a sentence-ending period.
Refer to Appendix B, “Nested IF Statements,” for discussion of
nested IFs.

7.6.16.1 Methods for Making Comparisons

The discussion that follows describes numeric and character
(non-numeric) comparisons.

Numeric Comparisons

The data operands are compared after alignment of their deci
mal positions. The results are as defined mathematically, with
any negative values being less than zero, which in turn is less
than any positive value. An index-name or index-data-item
may appear in a comparison. Comparison of any two numeric
operands is permitted regardless of the formats specified in
their respective USAGE clauses, and regardless of length.

Character Comparisons

Non-equal length comparisons are permitted, with spaces being
assumed to extend the length of the shorter item, if necessary.
Group items are treated simply as characters when compared.

228

PROCEDURE DIVISION

If one operand is numeric and the other is not, the numeric
operand must be an integer and have an implicit or explicit
USAGE IS DISPLAY. The method of character comparisons is
dependent on the current program collating sequence. This
will be the standard ASCII sequence or a user-defined alphabet
if the alphabet-name phrase and PROGRAM COLLATING SE
QUENCE clause were used in the SPECIAL-NAMES and
OBJECT-COMPUTER paragraphs, respectively.

If the COLLATING SEQUENCE phrase is used in a SORT or
MERGE statement, the collating sequence specified in the
phrase becomes the method used for character comparisons
during the execution of the SORT or MERGE statement.

Refer to Appendix D for ASCII character representations.

7.6.16.2 Forms of Conditions

Three forms of conditions may be expressed in Microsoft
COBOL, including the permissible forms involving
parentheses, NOT, or abbreviations. They are:

1. Simple Conditions — The four simple conditions are re
lational conditions, class conditions, condition-name
(level 88) conditions, and sign conditions.

2. Compound Conditions — A compound condition may be
formed by connecting two conditions, of any sort, by the
logical operator AND or OR (e.g., A = B OR C = D).

3. Complex Conditions — A complex condition exists
when simple conditions, compound conditions, and/or
other complex conditions are logically connected or
negated using the allowable logical operators which
are: AND, OR, and NOT.

Simple Conditions

Simple relational condition. Simple relational conditions have
three basic forms, expressed by the relational symbols equal to
(=), less than (<), or greater than (>).

229

Microsoft COBOL Reference Manual

The six simple relations in conditions are:

Relation Meaning

NOT =
NOT <
NOT >

equal to
less than
greater than
not equal to
greater than or equal to
less than or equal to

The reserved words EQUAL TO, LESS THAN, and GREATER
THAN are accepted equivalents of =, < , and >, respectively.
Any form of the relation may be preceded by the optional word,
IS.

A simple relational condition has the following structure:

operand-1 relation operand-2

where "operand" is an arithmetic-expression, data-name,
literal, or figurative-constant.

Class condition. A class condition has the following format:

identifier IS [NOT] / NUMERIC)
I ALPHABETIC I

This condition specifies an examination of the data-item to
determine whether all characters are proper digit representa
tions regardless of any operational sign (when the test is for
NUMERIC), or only alphabetic or blank space characters
(when the test is for ALPHABETIC).

The NUMERIC test is valid only for a group, decimal, or char
acter item (not having an alphabetic PICTURE). The ALPHA
BETIC test is valid only for a group or character item
(alphanumeric PICTURE).

Example:

IF NUM-VALUE IS NOT ALPHABETIC
PERFORM NUMERIC-ROUTINE.

230

PROCEDURE DIVISION

Sign condition. A sign condition has the following format:

arithmetic-expression IS [NOT]
[POSITIVE

NEGATIVE
I ZERO

This test is equivalent to comparing an arithmetic expression
to zero in order to determine the truth of the stated condition.

Example:

IF RECORD-COUNT NOT ZERO
NEXT SENTENCE

ELSE
PERFORM INITIALIZE-ROUTINE.

Condition-name condition. In a condition-name condition, a
conditional variable is tested to determine whether its value is
equal to one of the values associated with the condition-name.
A condition-name condition is expressed by the following for
mat:

condition-name

where condition-name is defined by a level 88 DATA DIVI
SION entry.

Example:

05 END-OF-FILE-SW PIC X VALUE 'N'.
68 END-OF-FILE VALUE 'Y'.

IF END-OF-FILE
PERFORM EOF-ROUTINE.

231

Microsoft COBOL Reference Manual

Compound Conditions

Conditions may be connected to other conditions. The reserved
words AND or OR permit the specification of a series of condi
tions as follows:

1. Individual conditions connected by AND specify a com
pound condition that is met (true) only if all the indi
vidual conditions are true.

2. Individual conditions connected by OR specify a com
pound condition that is met (true) if any one of the
individual conditions is true.

The following examples illustrate a compound condition con
taining both AND and OR connectors.

In the preceding example, execution will be as follows, depend-

IF X = Y AND FLAG = 'Z' OR SWITCH = 0
PERFORM PROCESSING.

ing on various data values.

SWITCH Does Execution Go
to PROCESSING?

Data
X

Value
Y

FLAG

10 10 ’Z’ 1 Yes
10 11 ’Z’ 1 No
10 11 'Z' 0 Yes
10 10 ’P’ 1 No
6 3 ’P’ 0 Yes
6 6 'P' 1 No

Evaluation rules for compound conditions. The following list
presents rules for compound conditions:

1. Evaluation of individual simple conditions (relation,
class, condition-name, and sign test) is done first.

2. AND-connected simple conditions are evaluated next as
a single result.

3. OR and its adjacent conditions (or previously evalu
ated results) are then evaluated.

232

PROCEDURE DIVISION

Examples:

1. A<B OR C-D OR E NOT > F

The evaluation is equivalent to (A < B) OR (C - D)
OR (E NOT > F) and is true if any of the three individ
ual parenthesized simple conditions is true.

2. WEEKLY AND HOURS NOT = 0

with WEEKLY defined as:

05 PAY-CODE PIC X VALUE SPACE.
88 WEEKLY VALUE 'W'.

The evaluation is equivalent, after expanding level 88
condition-name WEEKLY, to:
(PAY-CODE = 'WO AND (HOURS NOT = 0)

and is true only if both the simple conditions are true.
3. A = 1 AND B = 2 AND C = -3

OR P NOT EQUAL TO "SPAIN"

is evaluated as:
((A = 1) AND (B = 2) AND (C = -3))
OR (P NOT = "SPAIN")

If P is equal to ’’SPAIN”, the compound condition can
only be true if all three of the following are true:

A - 1
B = 2
C - -3

However, if P is not equal to ’’SPAIN”, the compound
condition is true regardless of the values of A, B, and
C.

Parenthesized conditions. Parentheses may be written within
a compound condition or parts thereof in order to indicate prec
edence in the evaluation order.

Example:

IF A = B AND (C - 5 OR C = 1)
PERFORM PROCEDURE-44.

233

Microsoft COBOL Reference Manual

In this case, PROCEDURE-44 is executed if C = 5 OR C = 1
while at the same time A = B. In this manner, compound con
ditions may be formed containing other compound conditions,
not just simple conditions, with the use of parentheses.

Complex Conditions

The examples that follow illustrate negated and abbreviated
conditions.

NOT, the logical negation operator. In addition to its use as a
part of a relation (e.g., IF A IS NOT - B), NOT may precede a
condition. For example, the condition NOT (A = B OR C) is
true when (A = B OR A = C) is false. The word NOT may
precede a level 88 condition-name, also.

Note that negating a compound condition may yield unex
pected results. For example, the condition

NOT (A = B OR A = C)

is equivalent to:

A NOT = B AND A NOT = C

rather than,

A NOT = B OR A NOT = C

as might be expected.

As an example, assume A = 3, B = 3, and C = 5.

Then, since

A = B is true, and
A = C is false,

1. A = B OR A = C is true
2. NOT (A = B OR A = C) is false
3. A NOT = B AND A NOT = C is false
4. A NOT = B OR A NOT = C is true

234

PROCEDURE DIVISION

Conditions 2 and 3 are equivalent. Conditions 2 and 4 are not
equivalent.

Abbreviated relational conditions. For the sake of brevity, the
user may omit the “subject” when it is common to several suc
cessive relational tests. For example, the condition A = 5 OR
A = 1 may be written A = 5 OR - 1. This may also be writ
ten A = 5 OR 1, where both subject and relation being implied
are the same.

Another example:

IF A = B OR < C OR Y

is a shortened form of

IF A = B OR A < C OR A < Y

The interpretation applied to the use of the word NOT in an
abbreviated condition is:

1. If the item immediately following NOT is a relational
operator, then the NOT participates as part of the rela
tional operator.

2. Otherwise, the beginning of a new, completely separate
condition must follow NOT, not to be considered part of
the abbreviated condition.

Warning
Abbreviations in which the subject and relation are implied
are permissible only in relation tests; the subject of a sign
test or class test cannot be omitted.

235

Microsoft COBOL Reference Manual

7.6.17 INSPECT Statement

Purpose

Enables the programmer to examine a character-string item.
Options permit various combinations of the following actions:

1. Counting appearances of a specified character or char
acter string

2. Replacing a specified character or character string with
another

3. Limiting the above actions by requiring the appearance
of other specific characters or character strings

236

PROCEDURE DIVISION

Format

The general formats are:

INSPECT identifier-1 TALLYING

\\ f / BEFORE] INITIAL
I | I I AFTER I

identifier-4
literal-2

INSPECT identifier-1 REPLACING

([f ALL \ (identifier-3
identifier-2 FOR { i \ LEADING J I literal-1

(ICHARACTERS

I (I ALL I (identifer-3
identifier-2 FOR \ { 1 LEADING / I literal-1

[(CHARACTERS D BEFORE I INITIAL (identifier-4
AFTER / 1 literal-2

REPLACING

Remarks

In the remarks that follow, operand-n refers to the braced pair
which consists of identifier-n and its associated literal; e.g.,
operand-5 represents {identifier-5 I literal-3}.

Because identifier-1 is to be treated as a string of characters by
INSPECT, it must not be described by USAGE IS INDEX,
COMP-O, COMP-3, or COMP-4. Identifier-2 must be a numeric
data-item.

237

Microsoft COBOL Reference Manual

The TALLYING phrase and REPLACING phrase may not both
be omitted; if both are present, the TALLYING phrase must be
first.

The TALLYING phrase causes character-by-character com
parison, from left to right, of identifier-1, incrementing
identifier-2 by one each time a match is found. The matching
is done under the following conditions:

1. When an AFTER INITIAL operand-4 subphrase is
present, the counting process begins only after detec
tion of a character in identifier-1 matching operand-4.

2. If BEFORE INITIAL operand-4 is specified, the count
ing process terminates upon encountering a character
in identifier-1 which matches operand-4. Also going
from left to right, the REPLACING phrase causes
replacement of characters under conditions specified by
the REPLACING phrase.

3. If BEFORE INITIAL operand-7 is present, replacement
does not continue after detection of a character in
identifier-1 matching operand-7.

4. If AFTER INITIAL operand-7 is present, replacement
does not commence until detection of a character in
identifier-1 matching operand-7.

With bounds on identifier-1 thus determined, TALLYING and
REPLACING is done on characters as specified by the follow
ing:

1. CHARACTERS implies that every character in the
bounded identifier-1 is to be TALLYed or REPLACEd.

2. ALL operand-n means that all characters in the
bounded identifier-1 which match the operand-n char
acters are to participate in TALLYING/REPLACING.

3. LEADING operand-n specifies that only characters
matching operand-n from the leftmost portion of the
bounded identifier-1 which are contiguous (such as
leading zeros) are to participate in TALLYING or
REPLACING.

4. FIRST operand-n specifies that only the first-
encountered characters matching operand-n are to
participate in REPLACING. (This option is unavail
able in TALLYING.)

238

PROCEDURE DIVISION

When both TALLYING and REPLACING phrases are present,
the two phrases behave as if two INSPECT statements were
written, the first containing only a TALLYING phrase and the
second containing only a REPLACING phrase.

In developing a TALLYING value, the final result in
identifier-2 is equal to the tallied count plus the initial value of
identifier-2. In the first example below, the item COUNTX is
assumed to have been set to zero initially elsewhere in the
program.

Examples

INSPECT ITEM TALLYING COUNTX
FOR ALL "L" REPLACING LEADING "A"
BY "E" AFTER INITIAL "L".

Original (ITEM): SALAMI ALABAMA
Result (ITEM): SALEM! ALEBAMA
Final (COUNTX): 1 1

INSPECT WORK-AREA REPLACING ALL DELIMITER
BY TRANSFORMATION

Original (WORK-AREA): NEW YORK NY
(length 16)

Original (DELIMITER): (space)
Original (TRANSFORMATION): . (period)
Result (WORK-AREA): NEW. YORK. .N.Y. . .

Note
If any identifier-1 or operand-n is described as signed
numeric, it is treated as if it were unsigned.

239

Microsoft COBOL Reference Manual

7.6.18 MERGE Statement

The MERGE statement combines two or more identically se
quenced files on a set of specified keys. During this process the
MERGE statement makes records available in a single merged
sequence to an output procedure or to an output file.

See Chapter 13, "SORT/MERGE Facility,” for the full descrip
tion of this statement.

240

PROCEDURE DIVISION

7.6.19 MOVE Statement

Purpose

Moves data from one area of main storage to another and per
forms conversions and/or editing on the data that is moved.

Format

The general format is:

MOVE (identifier-11 TO identifier-2 [, identifier-3]...
\ literal J

MOVE (CORRESPONDING \ identifier-1 TO identifier-2
\CORR I

In Format 1, the value of the data-item represented by
identifier-1 or the specified literal is moved to the receiving
fields designated by identifier-2, identifier-3, etc. in the order
specified. When a group item is a receiving field, characters
are moved without regard to the level structure of the group
involved and without editing.

When the CORRESPONDING option is used, identifier-1 and
identifier-2 must be group items.

Remarks

Subscripting or indexing associated with receiving fields
(identifier-2, identifier-3, etc.) is evaluated immediately before
data is moved to the receiving field. Subscripting or indexing
associated with a non-literal source field (identifier-1) is
evaluated only once, before any data is moved.

The outcome of the data transfer can be adjusted with the JUS
TIFIED clause.

To illustrate a data transfer with subscripting, consider the
following statement:

MOVE A (B) TO B, C (B).

241

Microsoft COBOL Reference Manual

This statement is equivalent to:

MOVE A (B) TO temp.
MOVE temp TO B.
MOVE temp TO C (B).

where temp is an intermediate result field assigned automati
cally by the compiler. Note that the value of B used as the
subscript of A may be different than the value of B used as the
subscript of C, since B receives a new value after A (B) is
evaluated and before C (B) is evaluated.

Appendix A, “Permissible MOVE Operands,” shows, in tabular
form, all permissible combinations of source and receiving field
types.

The following conditions apply when moving elementary data-
items to elementary receiving fields (data-items):

1. If a numeric or alphanumeric data-item is moved to a
numeric or numeric-edited data-item:
a. The source data-item is aligned to the receiving

field decimal point, with generation of zeros or
truncation on either end, as required. If the source
is alphanumeric, it is treated as an unsigned in
teger. Alphanumeric data-items should not be
longer than 31 characters.

b. When the types of the source field and receiving
field differ, conversion to the type of the receiving
field takes place. Alphanumeric source items are
treated as unsigned integers and are represented in
DISPLAY format.

c. The items may have special editing performed on
them such as suppression of zeros and insertion of a
dollar sign. Editing characters may replace leading
zeros.

d. Though numeric integers and numeric-edited data-
items can be moved to alphanumeric items with or
without editing, operational signs are not moved in
this case even if SIGN IS SEPARATE has been
specified.

242

PROCEDURE DIVISION

2. If an alphabetic or alphanumeric data-item is moved to
an alphabetic or alphanumeric-edited item:
a. The characters are placed in the receiving area

from left to right, unless JUSTIFIED RIGHT
applies.

b. If the receiving field is not completely filled by the
data being moved, the remaining positions are
filled with spaces.

c. If the source field is longer than the receiving field,
the excess characters are truncated on the right
after the receiving field is filled.

3. Group item moves are considered alphanumeric; no
type conversion is performed.

4. When overlapping fields are involved, results are not
predictable.

5. An index-data-item or an index-name cannot appear as
an operand of a MOVE statement. See Section 9.4,
"SET Statement,” for information on modifying index-
data-items and index-names.

Examples

The following examples show data movement (a lowercase "b”
represents a blank).

Source Field Receiving Field

PICTURE Value PICTURE Before
MOVE

After
MOVE

99V99 1234 S99V99 9876- 1234 +
99V99 1234 S99V9 987 123
S9V9 12- 99V999 98765 01200
XXX A2C XXXXX Y9X8W A2Cbb
9V99 123 99.99 87.65 01 .23

243

Microsoft COBOL Reference Manual

7.6.20 MULTIPLY Statement

Purpose

Multiplies two numeric data-items and stores the product.

Format

The general formats are:

MULTIPLY identifier-1 \
literal-1 J

BY identifier-2 [ROUNDED]

[, identifier-3 [ROUNDED]]...[; ON SIZE ERROR imperative-statement]

MULTIPLY identifier-11
literal-1 J

BY f identifier-2 \
\ literal-2 I

GIVING identifier-3 [ROUNDED]

[, identifier-4 [ROUNDED]]...[; ON SIZE ERROR imperative-statement]

Remarks

When the GIVING option is omitted, the second operand must
be an identifier; the product replaces the value of identifier-2,
identifier-3, etc. For example, a new BALANCE value is com
puted by the statement MULTIPLY 1.03 BY BALANCE.
Since this order might seem somewhat unnatural, it is recom
mended that GIVING always be written.

Neither the composite of operands nor the receiving fields de
fined in the MULTIPLY statement may exceed eighteen
(18) decimal digits. This restriction does not apply to the
COMPUTE statement.

See Section 2.9, “Arithmetic Statements,” for a definition of
the composite of operands in an arithmetic statement.

244

PROCEDURE DIVISION

Examples

MULTIPLY UNIT-PRICE BY QTY
GIVING TOT-PRICE.

MULTIPLY OVERTIME-POURS BY 1.5
GIVING CURRENT-OVERT I ME 7 TOTAL-OVERTIME.

245

Microsoft COBOL Reference Manual

7.6.21 OPEN Statement

The description of the OPEN statement differs for the various
types of file organization. See Chapters 10, 11, and 12 for
discussion of OPEN statements for Sequential, Indexed, and
Relative files, respectively. For details about the optional file
locking syntax for the OPEN statement which is an extension
to the full language standard and supports processing in a
multi-tasking environment, see Chapter 17, "File and Record
LOCKING."

246

PROCEDURE DIVISION

7.6.22 PERFORM Statement

Purpose

Permits the execution of a separate body of program steps.

Format

The range of a PERFORM statement as defined by the
“procedure-name” operand, can be a construct of procedure-
name-1 THRU procedure-name-2, (THRU being synonymous
with THROUGH), or a paragraph-name or a section-name.

The general formats are:

PERFORM procedure-name-1 F i THROUGH \ procedure-name-2‘1
LI THRU / J

PERFORM procedure-name-1 f l THROUGH 1 procedure-name-2 "I jidentifier-11 TIMES
LI THRU i J I integer-1 I

PERFORM procedure-name-1 R THROUGH | procedure-name-21 UNTIL condition-1
LI THRU J J

PERFORM procedure-name-1 I" (THROUGH \ procedure-name-2 "I
LI THRU I J

(identifier-3]
VARYING i identifier-2 \ FROM | index-name-2 >

I index-name-1 J (literal-1 J

BY | identifier-41 UNTIL condition-1
\ literal-3 J

(identifier-5
AFTER 1 index-name-: FROM

identifier-6
index-name-4
literal-3

BY i identifier-7 \ UNTIL condition-2
I literal-4 f

AFTER
identifier-8 . 1
index-name-51 FROM {identifier-9

index-name-6
literal-5

BY (identifier-101 UNTIL
I literal-6 1

condition-3

247

Microsoft COBOL Reference Manual

Using Format 2, a designated range may be performed a fixed
number of times, as determined by an integer or by the value
of an integer data-item within the TIMES phrase. Using For
mat 3, a designated range may be performed until a condition
al value specified in the UNTIL phrase is encountered.

If no TIMES or UNTIL phrase is given, (Format 1 PERFORM),
the range is performed once.

Using a Format 4 PERFORM with the VARYING phrase, a
range may be performed a variable number of times, with
identifier-2 or index-name-1 varying from an initial value of
identifier-3 or index-name-2 or literal-1 with increments of
literal-4 or literal-3, until a specified condition is met, at which
time execution proceeds to the next statement after the
PERFORM.

Remarks

If only a paragraph-name is specified as the range of the PER
FORM statement, program control returns to the statement fol
lowing the PERFORM statement after the paragraph’s last
statement. If only a section-name is specified, control returns
after the last statement of the last paragraph of the section. If
a construct of procedure-name-1 THRU procedure-name-2 is
specified, control is returned after the appropriate last sentence
of a paragraph or section.

These return points are valid only when a PERFORM has been
executed to set them up; in other cases, control will pass right
through. When any PERFORM has finished, execution
proceeds to the next statement following the PERFORM.

The condition in a PERFORM using the UNTIL phrase is
evaluated prior to each attempted execution of the range. Con
sequently, it is possible to not PERFORM the range, if the con
dition is met at the outset. Similarly, if the TIMES phrase is
used, and if identifier-1 or integer-1 is less than or equal to 0,
the range is not performed at all.

At runtime, it is illegal to have concurrently active PERFORM
ranges whose end points are the same.

248

PROCEDURE DIVISION

Examples

PERFORM P000-MAINLINE
THRU PIOO-WRITE-REPORT.

PERFORM P050-INITIALIZE
TBL-LENGTH TIMES.

PERFORM P1OO-WRITE-REPORT
UNTIL END-OF-FILE.

PERFORM P200-LOOP
VARYING SUB1 FROM 1 BY 1
UNTIL (SUB1 > 10
OR TABLE-VAL (SUB1) = 0).

Format 4 PERFORM VARYING can best be described by ex
ample. In Example la that follows, a PERFORM using a sin
gle VARYING clause causes Pl 00-GET-ENTRY to be executed
100 times. Example lb uses a simple PERFORM and explicit
ADD and IF statements, and produces identical results.

Example la:

PIOO-MAIN-ENTRY.
PERFORM P100-GET-ENTRY VARYING ENTRY-COUNT

FROM 1 BY 1
UNTIL ENTRY-COUNT GREATER THAN 100.

This PERFORM VARYING is equivalent to the following:

Example lb:

MOVE 1 TO ENTRY-COUNT.

PI 0 0-MAIN-ENTRY-LOOP.
IF ENTRY-COUNT GREATER THAN 100

GO TO P10 0-MAIN-ENTRY-EX IT.
PERFORM P100-GET-ENTRY.
ADD 1 TO ENTRY-COUNT.
GO TO P10 0-MAIN-ENTRY-LOOP.

PI00-MAIN-ENTRY-EXIT.
EXIT.

249

Microsoft COBOL Reference Manual

As a more complex example, consider the program fragment in
Example 2a. Invoices have been read into working storage,
numbered from 100 to 990 in increments of 10. On each in
voice, there are 10 lines items which are processed by the rou
tine P400-PROCESS-LINE-ITEM.

Example 2a:

P300-PROCESS-DATA.
PERFORM P400-PROCESS-LINE-ITEM

VARYING INVOICE-NUMBER FROM 100 BY 10
UNTIL INVOICE-NUMBER GREATER THAN 990

AFTER VARYING LINE-ITEM-NUMBER FROM 1 BY 1
UNTIL LINE-ITEM-NUMBER GREATER THAN 10.

This example can be expanded using only PERFORMS with the
UNTIL option, and MOVE, ADD, and IF statements:

Example 2b:

P300-PROCESS-DATA.
MOVE 100 TO INVOICE-NUMBER.
PERFORM P310-INVOICE-LOOP

UNTIL INVOICE-NUMBER GREATER THAN 990.

P310-INVOICE-LOOP.
MOVE 1 TO LINE-ITEM-NUMBER.
PERFORM P320-LINE-ITEM-LOOP

UNTIL LINE-ITEM-NUMBER GREATER THAN 10.
ADD 10 TO INVOICE-NUMBER.

P320-LINE-ITEM-LOOP.
PERFORM P400-PROCESS-LINE-ITEM.
ADD 1 TO LINE-ITEM-NUMBER.

The results of this expanded program fragment and the PER
FORM VARYING fragment are identical.

250

PROCEDURE DIVISION

This example can be further expanded using only a simple
PERFORM, and MOVE, ADD, IF, and GO TO statements, con
trolling all looping explicitly:

Example 2c:

P300-PROCESS-DATA.
MOVE 100 TO INVOICE-NUMBER.

P310- INVDICE-LOOP.
IF INVOICE-NUMBER GREATER THAN 990

GO TO P340-PROCESS-DATA-EX IT.
MOVE 1 TO LINE-ITEM-NUMBER.

P320-LINE-ITEM-LOOP.
IF LINE-ITEM-NUMBER GREATER THAN 10

GO TO P330-LINE-ITEM-EX IT.
PERFORM P400-PROCESS-LINE-ITEM.
ADD 1 TO LINE-ITEM-NUMBER.
GO TO P320-LINE-ITEM-LOOP.

P330-LINE-ITEM-EX IT.
ADD 10 TO INVOICE-NUMBER.
GO TO P310-INVOICE-LOOP.

P340-PROCESS-DATA-EX IT.
EXIT.

Again, the results of the expanded program fragment and the
PERFORM VARYING fragment are identical.

251

Microsoft COBOL Reference Manual

7.6.23 READ Statement
The description of the READ statement differs for the various
types of file organization. See Chapters 10, 11, and 12 for dis
cussion of READ statements for Sequential, Indexed, and Rela
tive files, respectively.

For details about the optional file locking syntax for the READ
statement which is an extension to the full language standard
and supports processing in a multi-tasking environment, see
Chapter 17, "File and Record LOCKING.”

252

PROCEDURE DIVISION

7.6.24 READY/RESET TRACE Statements

Purpose

Execution of a READY TRACE statement sets trace mode to
cause printing of every section and paragraph name each time
it is encountered. The RESET TRACE statement inhibits such
printing.

Format

The general formats for these statements are:

RESET TRACE

READY TRACE

Remarks

A printed list of procedure-names in the order of their execu
tion can be invaluable in detecting a program error, because it
helps find the point at which actual program flow departed
from that expected.

The READY TRACE, RESET TRACE, and EXHIBIT state
ments are extensions to ANSI 74 Standard COBOL. An In
teractive Debug Facility with extensive debugging capabilities
is also available. See the Microsoft COBOL Compiler User’s
Guide for details.

Note
It is often desirable to include such statements on source
lines that contain a "D" in column 7. In this case, the
statements are ignored by the compiler unless the WITH
DEBUGGING MODE clause is included in the SOURCE
COMPUTER paragraph.

253

Microsoft COBOL Reference Manual

Examples

READY TRACE.

D RESET TRACE.

In the second example, the “D” is in column 7 and “RESET
TRACE” begins in column 13.

254

PROCEDURE DIVISION

7.6.25 RELEASE Statement

The RELEASE statement transfers records to the initial phase
of a SORT operation.

See Chapter 13, “SORT/MERGE Facility,” for the full descrip
tion of this statement.

255

Microsoft COBOL Reference Manual

7.6.26 RESET TRACE Statement

For a description of the RESET TRACE statement, see Section
7.6.24, “READY/RESET TRACE Statements.”

256

PROCEDURE DIVISION

7.6.27 RETURN Statement

The RETURN statement obtains either sorted records from the
final phase of a SORT operation or merged records during a
MERGE operation.

See Chapter 13, “SORT/MERGE Facility,” for the full descrip
tion of this statement.

257

Microsoft COBOL Reference Manual

7.6.28 REWRITE Statement

The REWRITE statement differs for the various types of file
organizations. See Chapter 10, 11, and 12 for discussion of the
REWRITE statement in Sequential, Indexed, and Relative
files, respectively.

258

PROCEDURE DIVISION

7.6.29 SEARCH Statement

The SEARCH statement is used for the indexing method of
table handling. See Chapter 9, "Table Handling by the Index
ing Method,” for a discussion of this statement.

259

Microsoft COBOL Reference Manual

7.6.30 SET Statement

The SET statement is used for the indexing method of table
handling. See Chapter 9, "Table Handling by the Indexing
Method/’ for a discussion of this statement.

260

PROCEDURE DIVISION

7.6.31 SORT Statement

The SORT statement creates a sort file by executing input pro
cedures or by transferring records from one or more USING
files.

See Chapter 13, “SORT/MERGE Facility,” for the full descrip
tion of this statement.

261

Microsoft COBOL Reference Manual

7.6.32 START Statement

The START statement is used only with Indexed and Relative
files. See Chapters 11 and 12 for discussion of this statement.

For details about the optional file locking syntax for the
START statement which is an extension to the full language
standard and supports processing in a multi-tasking environ
ment, see Chapter 17, "File and Record LOCKING.”

262

PROCEDURE DIVISION

7.6.33 STOP Statement

Purpose

Terminates or delays execution of the object program.

Format

The general format is:

STOP f RUN \
\ literal /

Remarks

STOP RUN terminates execution of a program, returning con
trol to the operating system. If used in a sequence of impera
tive statements, it must be the last statement in that sequence.

STOP literal displays the specified literal on the terminal and
suspends execution.

Execution of the program is resumed only after operator inter
vention. Presumably, the operator performs a function sug
gested by the content of the literal prior to resuming program
execution by pressing the carriage return key.

Examples

CLOSE INV-MSTR-FILE , I NV-WARN I NG-FILE.
STOP RUN.

STOP "CHANGE DISKETTE,
THEN PRESS RETURN".

263

Microsoft COBOL Reference Manual

7.6.34 STRING Statement

Purpose

Allows joining together of multiple sending data-item values
into a single receiving item.

Format

The general format is:

STRING (identifier-1) F , identifier-21
\ literal-1 f L , literal-2 I ... DELIMITED BY

identifier-3
literal-3
SIZE

identifier-41
literal-4 /

, identifier-5 j ... DELIMITED BY
, literal-5 J

identifier-6
literal-6
SIZE

INTO identifier-7 [WITH POINTER identifier-8]

[; ON OVERFLOW imperative-statement]

Remarks

In this format, identifier-7 is the receiving data-item name,
which must be alphanumeric without editing symbols or the
JUSTIFIED clause; identifier-8 is a counter and must be an
elementary numeric integer data-item of sufficient size (plus 1)
to point to positions within identifier-7.

If no POINTER phrase exists, the default value of the logical
pointer is one. The logical pointer value designates the begin
ning position of the receiving field into which data placement
begins. During movement to the receiving field, the criteria
for termination of an individual source are controlled by the
DELIMITED BY phrase, as described below.

264

PROCEDURE DIVISION

DELIMITED BY SIZE

The entire source field is moved (unless the receiving field be
comes full).

DELIMITED BY an identifier or literal

The character string specified by the identifier or literal is a
"hey" which, if found to match a like-numbered succession of
sending characters, terminates the function for the current
sending field (and causes automatic switching to the next send
ing field, if any).

If at any point the logical pointer (which is automatically in
cremented by one for each character stored into identifier-7) is
less than one or greater than the size of identifier-7, no further
data movement occurs, and the imperative statement given in
the OVERFLOW phrase (if any) is executed. If there is no
OVERFLOW phrase, control is transferred to the next execut
able statement.

There is no automatic space fill into any position of identifier-
7. That is, unaccessed positions are unchanged upon comple
tion of the STRING statement.

Upon completion of the STRING statement, if there was a
POINTER phrase, the resultant value of identifier-8 equals its
original value plus the number of characters moved during
execution of the STRING statement.

Examples

STRING OLD-NAME DELIMITED BY SIZE
INTO NEW-NAME
WITH POINTER STRING-PTR.

STRING OLD-NAME
DELIMITED BY STR-DELIM
INTO NEW-NAME
ON OVERFLOW

PERFORM PSOO-OVERFLOW.

STRING OLD-NAME-1 > OLD-NAME-2
DELIMITED BY SIZE
INTO NEW-NAME.

265

Microsoft COBOL Reference Manual

The following lists show how the values in the last example
are affected by the STRING statement.

Variable PICTURE SIZE

OLD-NAME-1 PIC X(5) 5
NEW-NAME PIC X(1 0) 1 0
OLD-NAME-2 PIC X(5) 5

For these same variables, the contents are affected as follows:

Variable

OLD-NAME-1
NEW-NAME
OLD-NAME-2

Before String

ABODE
1234567
FGHI J

After String

unchanged
ABCDEFGHIJ
unchanged

266

PROCEDURE DIVISION

7.6.35 SUBTRACT Statement

Purpose

Subtracts one or more numeric data-items from a specified
item and stores the difference.

Format

The general formats are:

SUBTRACT (identifier-11 F, identifier-2"! ... FROM identifier-m (ROUNDED]
I literal-1 / L, literal-2 J

identifier-n [ROUNDED] j ... [; ON SIZE ERROR imperative-statement]

SUBTRACT (identifier-1 \ F, identifier-2-] ... FROM (identifier-m \
\ literal-1 I L, literal-2 J \ literal-m /

GIVING identifier-n [ROUNDED] identifier-o [ROUNDED] ...j

[; ON SIZE ERROR imperative-statement]

SUBTRACT (CORRESPONDING \ identifier-1 FROM identifier-2 [ROUNDED]
1 CORR i

(; ON SIZE ERROR imperative-statement]

Remarks

In Format 1, the values of all identifiers and literals preceding
FROM are added, and the resulting sum is subtracted from
identifier-m, identifier-n, etc. The result of the subtraction re
places the value of identifier-m, identifier-n, etc.

In Format 2, the values of all identifiers and literals preceding
FROM are added, and the resulting sum is subtracted from
identifier-m or literal-m, and the result is stored as the new
value of identifier-n.

267

Microsoft COBOL Reference Manual

When Format 3 is used, data-items of identifier-1 are added to
and stored in the corresponding data-items of identifier-2.
Each identifier must refer to a group item, and the composite
of operands is determined separately for each pair of
corresponding data-items. See Section 7.2.1, “CORRESPOND
ING Option,” for more information.

Neither the composite of operands nor the receiving fields
defined in the SUBTRACT statement may exceed eighteen (18)
decimal digits. This restriction does not apply to the COM
PUTE statement.

See Section 2.9, “Arithmetic Statements,” for a definition of
the composite of operands in an arithmetic statement.

Example

SUBTRACT TOT-EXP7
TOT-DEDUCTIONS FROM TOT-EARNINGS
GIVING NET-INCOME.

268

PROCEDURE DIVISION

7.6.36 UNLOCK Statement

The UNLOCK statement unlocks a record that was previously
locked by the execution of a READ or START statement in
which the LOCK option was specified. See Chapter 17, “File
and Record LOCKING,” for details about the use of this state
ment with Indexed and Relative files.

269

Microsoft COBOL Reference Manual

7.6.37 UNSTRING Statement

Purpose

Causes data in a single sending field to be separated into sub
fields that are placed into multiple receiving fields.

Format

The general format is:

UNSTRING identifier-1

DELIMITED BY f ALL 1
identifier-2 \
literal-1 J .OR[ALLI identifier-31 "I

literal-2 J J

INTO identifier-4 [, DELIMITER IN identifier-5] [, COUNT IN identifier-6]

[, identifier-7 [, DELIMITER IN identifier-8] [, COUNT IN identifier-9]] ...

[WITH POINTER identifier-10] [TALLYING IN identifier-11]

[; ON OVERFLOW imperative-statement]

Remarks

The braced items {identifier-2 I literal-1} and {identifier-3 I
literal-2} may be referred to in the following remarks as
operand-i, where "i" refers to the number of the identifier
being discussed.

Criteria for separation of subfields may be given in the DE
LIMITED BY phrase. Each time a succession of characters
matches one of the non-numeric literals, one-character figura
tive constants, or data-item values named by operand-2, the
current collection of sending characters is terminated and
moved to the next receiving field specified by the INTO clause.
When the ALL phrase is specified, more than one contiguous
occurrence of operand-2 in identifier-1 is treated as one
occurrence.

270

PROCEDURE DIVISION

When two or more delimiters exist, an 'OR’ condition exists.
Each delimiter is compared to the sending field in the order
specified in the UNSTRING statement.

Identifier-1 must be a group or character-string (alphanumeric)
item. When a data-item is employed as an operand, that
operand must also be a group or character-string item.

Receiving fields (identifiers 4,7,...) may be any of the following
types of items:

1. an unedited alphabetic item
2. a character-string (alphanumeric) item
3. a group item
4. an external decimal item (numeric, usage DISPLAY)

whose PICTURE does not contain any P character

When any examination encounters two contiguous delimiters,
the current receiving area is either space or zero filled depend
ing on its type. If there is a DELIMITED BY phrase in the
UNSTRING statement, then there may be DELIMITER IN
phrases following any receiving item (e.g., identifier-4) men
tioned in the INTO clause. In this case, the character(s) that
delimit the data moved into identifier-4 are themselves stored
in identifier-5, which should be an alphanumeric item. Fur
thermore, if a COUNT IN phrase is present, the number of
characters that were moved into identifier-4 is moved to
identifier-6, which must be an elementary numeric integer
item.

If there is a POINTER phrase, identifier-10 must be a numeric
integer item, and its initial value becomes the initial logical
pointer value (otherwise, a logical pointer value of one is
assumed). The examination of source characters begins at the
position in identifier-1 specified by the logical pointer; upon
completion of the UNSTRING statement, the final logical
pointer value will be copied back into identifier-10.

If at any time the value of the logical pointer is less than one
or exceeds the size of identifier-1, then overflow is said to occur
and control passes over to the imperative statements given in
the ON OVERFLOW phrase, if any.

271

Microsoft COBOL Reference Manual

Overflow also occurs when all receiving fields have been filled
prior to exhausting the source field.

During the course of source field scanning (looking for match
ing delimiter sequences), a variable length character string is
developed which, when completed by recognition of a delimiter
or by acquiring as many characters as the size of the current
receiving field can hold, is then moved to the current receiving
field in the standard MOVE fashion.

If there is a TALLYING IN phrase, identifier-11 must be a
numeric integer item. The number of receiving fields acted
upon, plus the initial value of identifier-11, will be produced in
identifier-11 upon completion of the UNSTRING statement.

Any subscripting or indexing associated with identifier-1, 10,
or 11 is evaluated only once at the beginning of the UN
STRING statement. Any subscripting associated with
operand-i or identifier-4 through identifier-9 is evaluated im
mediately before access to the data-item.

Example

UNSTRING FIELD-A DELIMITED BY SPACES
INTO FIELD-B.

272

PROCEDURE DIVISION

7.6.38 USE Statement

The USE statement specifies procedures for input-output error
handling that are in addition to the standard procedures pro
vided by the system. The USE statement itself is never exe
cuted; it merely defines the procedures that are to be executed
under certain conditions.

See Chapter 14, “DECLARATIVES REGION and USE State
ment,” for details on the USE statement.

273

Microsoft COBOL Reference Manual

7.6.39 WRITE Statement

The WRITE statement differs for the various types of file or
ganizations. See Chapters 10, 11, and 12 for discussion of the
WRITE statement in Sequential, Indexed, and Relative files,
respectively.

274

Chapter 8
r Interprogram

Communication

8.1 CALL Statement 277
8.1.1 USING Phrase 278
8.1.2 ON OVERFLOW Phrase 279
8.2 EXIT PROGRAM Statement 279
8.3 CHAIN Statement 279
8.4 CANCEL Statement 280
8.5 PROCEDURE DIVISION Header

With USING/CHAINING Phrases 281

275

Interprogram Communication

Separately compiled Microsoft COBOL program modules may
be combined into a single executable program. Interprogram
communication is made possible through the use of the LINK
AGE SECTION of the DATA DIVISION (which follows the
WORKING-STORAGE SECTION) and by the CHAIN and
CALL statements and the USING and CHAINING phrases of
the PROCEDURE DIVISION header.

The LINKAGE SECTION describes data made available in
memory from another program module. Record-description en
tries in the LINKAGE SECTION provide data-names by which
data-areas reserved in memory by other programs may be
referenced. Entries in the LINKAGE SECTION do not reserve
memory areas because the data is assumed to be present in the
calling program.

Any record-description entry may be used to describe items in
the LINKAGE SECTION as long as the VALUE clause is not
specified for other than level 88 items.

8.1 CALL Statement

The CALL statement temporarily transfers control from a pro
gram or subprogram to a subprogram.

The format of the CALL statement is:

CALL i identifier-1 \ [USING data-name-1 [, data-name-2]...]
I literal-1 I

[; ON OVERFLOW imperative-statement]

Under Microsoft COBOL, COBOL subprograms are not
resident in memory until they are called for the first time.
When a program is run, only that program (the "main" pro
gram) is loaded. When the first CALL to a particular subpro
gram occurs, COBOL allocates memory for the subprogram and
loads it into memory from disk. This is termed "dynamic"
loading of subroutines. Subroutines remain in memory until
the program terminates, or until explicitly canceled by the pro
gram.

277

Microsoft COBOL Reference Manual

When first called, each subprogram is loaded into memory in
its initial state. That is, all working storage variables contain
data as described in their VALUE clauses, and GO TO state
ments which might be ALTERed all go to their initial targets.

Subprograms retain their current state on subsequent calls
until removed from memory. Working storage data-items may
contain data that have been modified because of previous calls.
Any GO TO statements retain the target set by the most re
cent ALTER statement.

Literal-1 is a subprogram name defined as the PROGRAM-ID
of a separately compiled program, and must be a non-numeric
(quoted) literal. Identifier-1 is a data-item that must be de
fined as alphanumeric so that its value can be a subprogram
name.

See the Microsoft COBOL Compiler User’s Guide for informa
tion and examples for parameter passing and calling of subpro
grams.

8.1.1 USING Phrase

Data-names in the USING phrase are made available to the
called subprogram by passing addresses to the subprogram;
these addresses are assigned to the LINKAGE SECTION items
declared in the USING phrase of that subprogram. Therefore,
the number and order of data-names specified in matching
CALL statements and PROCEDURE DIVISION USING
phrases must be identical. Information-passing conventions at
the machine language level are described in the Microsoft
COBOL Compiler User’s Guide.

Note
Correspondence between caller and callee lists is by posi
tion, not by identical spelling of names.

278

Interprogram Communication

8.1.2 ON OVERFLOW Phrase

If memory is incapable of accommodating the subprogram
specified by the CALL statement and the ON OVERFLOW
phrase has been used, no transfer of control will occur and the
imperative-statement following the ON OVERFLOW phrase
will be executed. If the ON OVERFLOW phrase is not present,
and memory for the subprogram is not available, the program
will terminate abnormally.

8.2 EXIT PROGRAM Statement

The EXIT PROGRAM statement, appearing in a called subpro
gram, causes control to be returned to the next executable
statement after CALL in the calling program. This statement
must be a paragraph by itself. If used in a main program, the
EXIT PROGRAM statement is ignored.

8.3 CHAIN Statement

The CHAIN statement, which is an extension to the COBOL
standard, causes a specified program to be loaded into memory
and executed, replacing the program containing the CHAIN
statement.

The CHAIN statement is coded according to the following
format:

CHAIN i identifier-11 [USING data-name-1 I , data-name-2]... 1
1 literal-1 I

Literal and identifier-1 must be alphanumeric. Each data-
name in the USING list must be defined in the WORKING
STORAGE or LINKAGE SECTION or in the record area of a
file open at the time the CHAIN statement is executed.

279

Microsoft COBOL Reference Manual

When the CHAIN statement is executed, the value of literal or
identifier-1, up to but not including the first space encountered
(or the end of the literal or identifier), is interpreted as the
name of an executable program in the format of the appropri
ate operating system or a compiled COBOL program. The
named program is loaded into memory and executed.

All program and data structures of the chaining program are
permanently destroyed except that the USING phrase may be
used to transfer parameters to the chained program. See
Section 8.5, “PROCEDURE DIVISION Header With
USING/CHAINING Phrases."

The chained program need not be an MS-COBOL program. If
it is, it must be a main program.

See the Microsoft COBOL Compiler User's Guide for aspects of
program chaining and examples of chaining programs which
are specific to your operating system.

8.4 CANCEL Statement

The CANCEL statement is used to remove subroutines from
memory, freeing that memory for other subprograms, or for
other uses. A subsequent CALL to the subprogram causes it to
be read into memory from disk again, in its initial state.

The format for the CANCEL statement is:

CANCEL (identifier-11 identifier-2‘1 ...
1 literal-1 J L, literal-2 J

Identifiers or non-numeric literals specify the subprograms
that are to be released.

The identifiers must be defined as alphanumeric data so that
the value can be a program name.

280

Interprogram Communication

Each named and previously-called subprogram is removed from
memory. The memory that it occupied is released for use by
other functions. If the named subprogram had not been previ
ously called, the respective CANCEL statement is ignored.

A subprogram which is called after having been canceled, will
be reloaded into memory in its initial state. Alterable GO TOs
and data-items take on their initial values.

Before a valid CANCEL operation can be performed, either the
subprogram must never have been called, or an EXIT PRO
GRAM instruction must have been executed in the subpro
gram. A subprogram named in the CANCEL statement must
not be in the process of being executed.

See Section 8.1, "CALL Statement,” for more details.

8.5 PROCEDURE DIVISION Header
With USING/CHAINING Phrases

The PROCEDURE DIVISION header of a chained main pro
gram or a called subprogram is coded as:

PROCEDURE DIVISION USING \
chaining/

data-name-1 [, data-name-2]...]

where the PROCEDURE DIVISION header of the main pro
gram uses CHAINING, and the PROCEDURE DIVISION
header of the subprogram uses USING. The forms of the
PROCEDURE DIVISION header that use the CHAINING and
USING phrases describe the linkage and parameter initializa
tion requirements of a program.

A main program may be run independently or invoked by the
execution of a CHAIN statement in another program. A
subprogram may only be executed by the action of a CALL
statement. See the Microsoft COBOL Compiler User’s Guide
for examples and an explanation of these operations.

281

Microsoft COBOL Reference Manual

Warning
A chained or called program should not have a CHAINING
phrase or nonempty USING phrase, unless the invoking
CHAIN or CALL statement has a USING list. Further
more, the numbers of entries in the phrases should be
equal. Data entries having corresponding positions in the
two lists should refer to data-items of the same size and
USAGE.

Failure to conform to these rules will not be detected by the
compiler and will cause unpredictable results at runtime.

The values of the data-items named in the PROCEDURE
DIVISION header USING or CHAINING phrase are estab
lished at program initialization time by using the contents of
data-items having corresponding positions in the argument list
of the invoking CALL or CHAIN statement. In the case of
CALL, the identification is made by passing pointers. There
fore, if the value of a data-item named in a PROCEDURE
DIVISION USING phrase is changed during subprogram exe
cution, the corresponding data-item in the calling program will
reflect the change after control is returned from the subpro
gram.

For a description of the formats in which parameters are
passed by the CALL and CHAIN statements, see the chapter
on interprogram communication in the Microsoft COBOL Com
piler User's Guide.

282

Chapter 9
Table Handling by
the Indexing Method

9.1 Index-Names and Index-Data-Items 285
9.2 Subscripting 285
9.3 Relative Indexing 286
9.4 SET Statement 286
9.5 Format 1 SEARCH Statement 287
9.6 Format 2 SEARCH Statement 290

283

Table Handling by the Indexing Method

Microsoft COBOL supports several methods of referring to
elements in tables, using index-names, index-data-items,
subscripts, and relative indexes.

9.1 Index-Names and Index-Data-Items

An index-name is declared not by the usual method of level
number, name, and data description clauses, but implicitly by
appearance in the “INDEXED BY index-name” appendage to
an OCCURS clause. An index-name must be unique.

An index-data-item is an item defined by the USAGE IS IN
DEX clause. An index-data-item must not have a PICTURE
clause. An index-name or index-data-item may only be used as
an argument in the following contexts:

1. in a SET or SEARCH statement
2. in a CALL statement USING phrase or a PRO

CEDURE DIVISION header USING phrase
3. in a relational condition
4. as the variation item in a PERFORM VARYING state

ment
5. in place of a subscript

In all cases, the process is equivalent to dealing with a binary
word integer subscript. An index-name may be initialized to
some value with a SET, SEARCH, or PERFORM operation.

9.2 Subscripting

Program reference to an item in a table that is controlled by
an OCCURS clause is expressed with a proper number of sub
scripts (or indexes), separated by commas, and enclosed in
matching parentheses. For example:

TAX-RATE (BRACKET7 DEPENDENTS)
XCODE (I, 2)

285

Microsoft COBOL Reference Manual

Subscripts may be specified as:

1. integer data-names with any USAGE, including
USAGE IS INDEX

2. integer numeric literals (for example, 5)
3. index-names

Subscripts may be qualified, but not subscripted. A subscript
may be signed, but if so, it must be positive. The lowest
acceptable value is 1, pointing to the first element of a table.
The highest permissible value is the maximum number of
occurrences of the item as specified in its OCCURS clause.

Binary subscripts with USAGE of COMPUTATIONAL-O or
COMPUTATIONAL-4 are recommended for efficiency.

9.3 Relative Indexing

Relative indexing is another method available for referring to
elements in a table. In this case, an index is expressed as

index-name (4- or -) integer constant

where a space must be on either side of the plus or minus sign.

For example:

XCODE (I + 3, J - 1).

9.4 SET Statement

The SET statement permits the manipulation of index-names,
index-data-items, or binary subscripts for table-handling pur
poses.

286

Table Handling by the Indexing Method

There are two formats for the SET statement:

SET l identifier-1 [, identifier-2]
\ index-name-1 [, index-name-2 J.

(identifier-3
index-name-3
integer-1 t

SET index-name-4 [, index-name-5]... UP BY
DOWN BY

identifier-4 V
integer-2 J

Format 1 is equivalent to moving the TO value (e.g., integer-2)
to the multiple receiving fields specified following the verb
SET.

Format 2 is equivalent to reduction (DOWN) or increase (UP)
applied to each of the quantities specified following the verb
SET; the amount of the reduction or increase is specified by a
name or value immediately following the word BY. Note that
Format 2 is used only with index-names (declared using the
INDEXED BY phrase) and not with data-items or identifiers.

In any SET statement, identifiers are restricted to integer
data-items.

9.5 Format 1 SEARCH Statement

A linear search of a table may be done using the SEARCH
statement. The general format is:

SEARCH identifier-1 VARYING
i identifier-2
\ index-name-1 [; AT END imperative-statement-1]

; WHEN condition-1 imperative-statement-2 \
NEXT SENTENCE j

; WHEN condition-2 imperative-statement-3 | “|
NEXT SENTENCE J J

Identifier-1 is the name of a data-item having an OCCURS
clause that includes an INDEXED BY phrase; identifier-1
must be written without subscripts or indexes because the
nature of the SEARCH statement causes automatic variation
of an index-name associated with a particular table.

287

Microsoft COBOL Reference Manual

There are four possible VARYING cases:

1. No VARYING phrase
The first-listed index-name for the table is varied.

2. VARYING index-name in a different table
The first-listed index-name in the table’s definition is
varied, implicitly, and the index-name listed in the
VARYING phrase is varied in like manner, simultane
ously.

3. VARYING index-name defined for table
This specific index-name is the only one varied.

4. VARYING integer data-item name
Both this data-item and the first-listed index-name for
the table are varied, simultaneously.

The term "variation" has the following interpretation:

1. The initial value is assumed to have been established
by an earlier statement such as SET.

2. If the initial value exceeds the maximum declared in
the applicable OCCURS clause, the SEARCH operation
terminates at once; if an AT END phrase exists, the
associated imperative statement is executed.

3. If the value of the index-name is within the range of
valid indexes (1,2, . . . up to and including the max
imum number of occurrences), each WHEN condition is
evaluated until one is true or all are found to be false.
If one is true, its associated imperative statement is ex
ecuted and the SEARCH operation terminates. If none
is true, the index is incremented by one and the steps
in this paragraph are repeated. Note that incrementa
tion of the index applies to whatever item and/or index
is selected according to the four cases listed above.

If the table is subordinate to another table, an index-name
must be associated with each dimension of the entire table via
INDEXED BY phrases in all the OCCURS clauses. Only the
index-name of the SEARCH table is varied (along with another
"VARYING" index-name or data-item). To search an entire
two or three-dimensional table, a SEARCH must be executed

288

Table Handling by the Indexing Method

several times with the other index-names set appropriately
each time, probably with a PERFORM VARYING statement.

Figure 9.1. Logic Diagram for
Format 1 SEARCH Statement

289

Microsoft COBOL Reference Manual

9.6 Format 2 SEARCH Statement

Format 2 SEARCH statements deal with tables of ordered
data. The general format of such a SEARCH ALL statement
is:

SEARCH ALL identifier-1 [; AT END imperative-statement-1]

; WHEN
data-name-1 I IS EQUAL TO

IIS -
condition-name-1

! identifier-3
literal-1
arithmetic-expression-1

AND
data-name-2 J IS EQUAL TO

IIS =
condition-name-2

{identifier-4
literal-2
arithmetic-expression-2

imperative-statement-2
NEXT SENTENCE

Only one WHEN clause is permitted.

The following rules apply to the condition:

1. Only simple relational conditions or condition-names
may be employed, and the subject must be properly in
dexed by the first index-name associated with
identifier-1 (along with sufficient other indexes if mul
tiple OCCURS clauses apply). Furthermore, each sub
ject data-name (or the data-name associated with a
condition-name) in the condition must be mentioned in
the KEY phrase of the table. The KEY phrase is an
appendage to the OCCURS clause having the following
format:

r; OCCURS (integer-1 TO integer-2 TIMES DEPENDING ON data-name-3
L I integer-2 TIMES

ASCENDING
DESCENDING

} KEY IS data-name-4 [, data-name-5]...

[INDEXED BY index-name-1 [, index-name-2] ...]

290

Table Handling by the Indexing Method

where the data-names are the names defined in this
data-description entry (following level number) or one
of the subordinate data-names. If more than one data-
name is given, all of them must be the names of entries
subordinate to this group item.
The KEY phrase indicates that the repeated data is ar
ranged in ascending or descending order according to
the data-names which are listed (in any given KEY
phrase) in decreasing order of significance. More than
one KEY phrase may be specified.

2. In a simple relational condition, only the equality test
(using relation - or IS EQUAL TO) is permitted.

3. Any condition-name variable (level 88 items) must be
defined as having only a single value.

4. The condition may be compounded by use of the logical
connector AND, but not OR.

5. In a simple relational condition, the object (to the right
of the equal sign) may be a literal or an identifier. The
identifier must not be specified in the KEY phrase of
the table or be indexed by the first index-name associ
ated with the table (The term identifier means data-
name, including any qualifiers and/or subscripts or
indexes.)

Warning
Failure to conform to the restrictions described in the
preceding list may yield unpredictable results. Unpredict
able results also occur if the table data is not ordered in
conformance to the declared KEY phrase, or if the keys
referenced in the WHEN-condition are not sufficient to
identify a unique table element.

291

Microsoft COBOL Reference Manual

In a Format 2 SEARCH, a nonserial type of search operation
may take place, relying upon the declared ordering of data.
The initial setting of the index-name for the table is ignored,
and its setting is varied automatically during the searching, al
ways within the bounds of the maximum number of oc
currences. If the condition (WHEN) cannot be satisfied for any
valid index value, control is passed to imperative-statement-1,
if the AT END clause is present, or to the next executable sen
tence in the case of no AT END clause.

If all the simple conditions in the single WHEN condition are
satisfied, the resultant index value indicates an occurrence
that allows those conditions to be satisfied, and control passes
to imperative-statement-2. Otherwise, the final setting is not
predictable.

292

Chapter 10
Sequential Files

10.1 Definition of
SEQUENTIAL File Organization 295

10.2 Syntax Considerations
for Sequential File 1-0 296

10.2.1 FILE-CONTROL Entry
(ENVIRONMENT DIVISION) 296

10.2.2 File Description Entry
(DATA DIVISION) 297

10.2.3 I-O-CONTROL Paragraph
(ENVIRONMENT DIVISION) 298

10.3 File Status Reporting 299
10.4 PROCEDURE DIVISION

Statements for Sequential Files 300
10.4.1 CLOSE Statement 301
10.4.2 OPEN Statement 303
10.4.3 READ Statement 305
10.4.4 REWRITE Statement 307
10.4.5 WRITE Statement 308

293

Sequential Files

This chapter describes SEQUENTIAL file organization and
provides source-coding considerations related to its use.

10.1 Definition of
SEQUENTIAL File Organization

Records in a file whose ORGANIZATION IS SEQUENTIAL
are stored sequentially (in the order in which they were writ
ten). These records may be of variable length with each record
following the previously written record until the end of the file.
This order does not change, except that records may be added
to the end of the file.

Sequential files may only be read in the order in which they
were written.

Unless otherwise specified, the term "Sequential files” will be
used throughout this reference manual, to represent both
SEQUENTIAL and LINE SEQUENTIAL file organizations.

There are two organizations of Sequential files:

1. The SEQUENTIAL organization consists of a 2-byte
record length followed by the record itself, for as many
records as exist in the file. This is the default format
for files created by an MS-COBOL program.

2. The LINE SEQUENTIAL organization consists of
records followed by delimiters, usually a linefeed or car
riage return/linefeed pair, for as many records as exist
in the file. See the Microsoft COBOL Compiler User's
Guide for the delimiters used in your implementation.
This type of file is often produced by non-COBOL pro
grams, such as text editors. No COMP-O, COMP-3, or
COMP-4 data should be written into a Line Sequential
file because these data-items may contain the same
binary codes used for the record delimiters, and this
could subsequently cause problems when the file is
read.

295

Microsoft COBOL Reference Manual

Note
If files in Line Sequential format are to be used as input to
MS-COBOL programs, the ORGANIZATION IS LINE
SEQUENTIAL clause must be specified in the SELECT
clause of the input file. If an attempt is made to read a
Line Sequential file without this specification, a runtime
error will result.

10.2 Syntax Considerations
for Sequential File 1-0

Information about data file organization and the desired access
mode is specified in the ENVIRONMENT DIVISION of a pro
gram. Information about the physical characteristics of the
data file is specified in the DATA DIVISION. The sections
that follow indicate the syntax considerations for the use of
SEQUENTIAL and LINE SEQUENTIAL organizations and
SEQUENTIAL access mode.

10.2.1 FILE-CONTROL Entry
(ENVIRONMENT DIVISION)

The general format for the FILE-CONTROL entry in the
ENVIRONMENT DIVISION is:

SELECT [OPTIONAL] file-name

(DISK \
ASSIGN TO \ PRINTER J

; [LOCKING IS] EXCLUSIVE J

P AREA "1]
RESERVE integer AREAS J J

[I ORGANIZATION IS [LINE] SEQUENTIAL]

[J ACCESS MODE IS SEQUENTIAL]

[; FILE STATUS IS data-name-1].

296

Sequential Files

The SELECT clause must be specified in the FILE-CONTROL
paragraph. The clauses which follow the SELECT clause may
appear in any order.

The OPTIONAL phrase must be specified if input files are
being selected that are not necessarily present each time the
object program is executed.

The ORGANIZATION and ACCESS MODE clauses, if not
specified, default to ORGANIZATION IS SEQUENTIAL and
ACCESS MODE IS SEQUENTIAL, respectively.

For Line Sequential files, the ACCESS MODE clause should be
specified as ACCESS MODE IS SEQUENTIAL, or it should be
omitted, and the ORGANIZATION IS LINE SEQUENTIAL
clause must be in effect.

Note
The record and end-of-file delimiters created by a non
COBOL program must be the same as those used by your
implementation of MS-COBOL for proper interpretation of
data to occur at runtime. See the Microsoft COBOL Com
piler User's Guide for the delimiters used with your imple
mentation.

The general formats for the clauses used with Sequential files
are given in Chapter 5, “ENVIRONMENT DIVISION.”

10.2.2 File Description Entry
(DATA DIVISION)

FD (file description) entries in the FILE SECTION are includ
ed for each file that was described in the FILE-CONTROL
paragraph of the ENVIRONMENT DIVISION. FD entries
specify the size of the logical and physical records, the value of
implementor-defined label items, names of the data records
which make up the file, and the number of lines to be included
on a logical printer page. The FD entry is ended with a
period (.).

297

Microsoft COBOL Reference Manual

See Section 6.4.1, “FILE SECTION and the File Description
(FD) Entry,” for more information about file descriptions for
Sequential files.

10.2.3 LO-CONTROL Paragraph
(ENVIRONMENT DIVISION)

The LO-CONTROL paragraph syntax specifies the points at
which tape rerun is to be established, the memory area which
is to be shared by different files, and the location of files on a
multiple file reel.

The general format for the LO-CONTROL paragraph is:

f l-O-CONTROL.

(
il END OF /REEL \]
| I UNIT f } OF file-name-2
(integer-1 RECORDS)

integer-2 CLOCK-UNITS
condition-name

[; SAME [RECORD] AREA FOR file-name-3 { . file-name-4 j ... |...

[; MULTIPLE FILE TAPE CONTAINS file-name-5 [POSITION integer-3]

[, file-name-6 [POSITION integer-4]]...]....]

In general, the RERUN clause specifies when and where the
rerun information is recorded, the SAME AREA RECORD
clause specifies that two or more files are to use the same
memory area for processing of the current logical record, and
the MULTIPLE FILE clause specifies that more than one file
shares the same reel of tape. See Chapter 5, “ENVIRON
MENT DIVISION,” for details about the MULTIPLE FILE,
RERUN, and SAME AREA clauses.

Note
While the Microsoft COBOL Compiler recognizes and
checks the full language tape-handling and RERUN syn
tax, it does not support these commands during program
execution.

298

Sequential Files

10.3 File Status Reporting

If the FILE STATUS clause is specified in the FILE-CONTROL
paragraph, the designated two-character data-item is set after
any CLOSE, OPEN, READ, REWRITE, or WRITE statement
and before any USE procedure is executed. The value of this
data-item indicates to the program the status of the input
output operation. Table 10.1 summarizes the possible file
status settings.

Table 10.1

Sequential File Status Settings

File Status Meaning

”00”
”10”
”30”
”34”
”91”
”94”

Successful completion
End of file
Permanent error or file not found
Disk space full
File structure error
File locked

In an OPEN INPUT or OPEN 1-0 statement, a file status of
”30” means "File not found.”

If file status ”91” should occur in a READ statement, it usually
indicates that the record size in the file is larger than the size
specified in the program record description.

File status ”94” occurs when an attempt was made to OPEN a
file that is in the locked state because another process had
SELECTed it with the LOCKING EXCLUSIVE clause.

299

Microsoft COBOL Reference Manual

10.4 PROCEDURE DIVISION
Statements for Sequential Files

The statements that are used to process Sequential and Line
Sequential files are:

CLOSE
OPEN
READ
REWRITE
USE
WRITE

The USE statement applies only to Sequential files, and it is
used only in the DECLARATIVES Region of the PROCEDURE
DIVISION.

The formats and descriptions that apply to Sequential files are
given in the remainder of this chapter.

300

Sequential Files

10.4.1 CLOSE Statement

Purpose

Causes the operating system to restore the named file to a
storage device. Whenever a file is closed, or has never been
opened, READ, REWRITE, or WRITE statements cannot be ex
ecuted; a runtime error would occur, terminating the run.

Format

The general format for SEQUENTIAL and LINE SEQUEN
TIAL file organizations is:

CLOSE file-name-1

, file-name-2

REEL)
UNIT f

WITH

REEL)
UNIT]

WITH

T WITH NO REWIND]'
I FOR REMOVAL J

NO REWIND \
LOCK j

f WITH NO REWIND]
L FOR REMOVAL J

NO REWIND)
LOCK J

Remarks

Executed at the end of file processing. If the LOCK suffix is
used, the file cannot be reopened during the current job. If
LOCK is not specified immediately after a file-name, that file
may be reopened later in the program, if program logic dictates
the necessity.

Note
The LOCK suffix is a standard COBOL feature, and is not
part of the Microsoft COBOL multi-user file locking exten
sions, which are described in Chapter 17, “File and Record
LOCKING.”

301

Microsoft COBOL Reference Manual

An attempt to execute a CLOSE statement for a file that is not
currently open generates a runtime error, and may cause exe
cution to terminate.

If the OPTIONAL phrase was used in the FILE-CONTROL en
try for the file being accessed, but the file did not exist, the
standard end-of-file processing for that file is not performed.

Note
While the Microsoft COBOL Compiler recognizes and
checks the full language tape-handling syntax, it does not
support tape-handling commands during program execu
tion.

Examples

CLOSE MASTER-FILE-IN WITH LOCK7 WORK-FILE.

CLOSE PRINT-FILE, TAX-RATE-FILE,
JOB-PARAMETERS WITH LOCK.

302

Sequential Files

10.4.2 OPEN Statement

Purpose

Prepares a file for use and defines the method of access. The
OPEN statement must be executed prior to file processing.

Format

The general format for SEQUENTIAL and LINE SEQUEN
TIAL file organizations is:

OPEN s LOCKING IS] EXCLUSIVE j

(INPUT file-name-1 ["REVERSED 1 [, file-name-2 f REVERSED U
[with no rewindj [[with no rewind IJ

OUTPUT file-name-3 [WITH NO REWIND] [, file-name-4 I WITH NO REWIND]]... ...

' LO file-name-5 [, file-name-6] ...

< EXTEND file-name-7 file-name-8]...

Remarks

OPEN INPUT makes available an area into which an existing
file’s records may be read. The current record pointer is set to
the first record in the file.

OPEN OUTPUT makes available a record area for develop
ment of one record, which will be transmitted to the assigned
output device upon the execution of a WRITE statement. An
existing file which has the same name will be overwritten by
the file created with OPEN OUTPUT.

An OPEN LO statement is valid only for a DISK file; it per
mits use of the REWRITE statement to modify records which
have been accessed by a READ statement. OPEN LO assumes
the existence of the named file, and cannot be used to create
the file.

OPEN EXTEND positions the current record pointer at the end
of the file for the purpose of appending logical records. Subse
quent WRITE statements referencing the file will add records

303

Microsoft COBOL Reference Manual

to the end of the file. Thus, processing proceeds as though the
file had been opened with the OUTPUT phrase and positioned
at its end.

This mode for initializing a file (OPEN EXTEND) only applies
to Sequential and Line Sequential files.

Note
While the Microsoft COBOL Compiler recognizes and
checks the full language tape-handling syntax, it does not
support tape-handling commands during program execu
tion.

The LOCKING IS EXCLUSIVE clause is optional within the
syntax of the SELECT clause and the OPEN statement, and
only applies to disk files. EXCLUSIVE is the default of the
SELECT clause and the OPEN EXTEND and OPEN OUTPUT
modes for SEQUENTIAL and LINE SEQUENTIAL file organi
zations. For more details, see Chapter 17, "File and Record
LOCKING.”

The WRITE statement may not be used in 1-0 mode for files
with SEQUENTIAL and LINE SEQUENTIAL organizations.

Failure to precede file reading or writing (in terms of time se
quence) by the execution of an OPEN statement is an
execution-time error which will cause abnormal termination of
a program run. Furthermore, a file cannot be opened if it has
been closed using the WITH LOCK option.

Sequential files opened for INPUT or 1-0 access must have
been written in the appropriate format described in the
Microsoft COBOL Compiler User's Guide.

Example

OPEN INPUT INV-MSTR-FILE,
OUTPUT INV-REPORT-FILE.

304

Sequential Files

10.4.3 READ Statement

Purpose

Makes available the next logical data record of the designated
file from the assigned device, and updates the value of the
FILE STATUS data-item, if one was specified.

Format

The general format for SEQUENTIAL and LINE SEQUEN
TIAL file organizations is:

READ file-name RECORD [INTO identifier] [; AT END imperative-statement]

Since at some time the end-of-file will be encountered, the user
should include the AT END phrase.

Remarks

The reserved word END is followed by any number of impera
tive statements, all of which are executed only if the end-of-file
situation arises. The last statement in the AT END series
must be followed by a period to indicate the end of the
sentence.

If end-of-file occurs but there is no AT END phrase on the
READ statement, an applicable DECLARATIVES procedure is
performed.

If neither AT END nor DECLARATIVE exists and no FILE
STATUS item is specified for the file, a runtime 1-0 error is
processed.

When more than one level 01 item is subordinate to a file defi
nition, these records share the same storage area, and the
potential for a record type conflict exists.

305

Microsoft COBOL Reference Manual

The INTO option permits the user to copy a data record into a
predefined data field for comparison with the contents in the
file’s record area. The predefined data field area must not be
defined in the FILE SECTION.

Then, using an IF statement to test for a type-field in each
record, the user will be able to distinguish between the types of
records that are possible, and determine exactly which type is
currently available.

The INTO option should not be used when the file has records
of various sizes, as indicated by their record descriptions. Any
subscripting or indexing of data-name is evaluated after the
data has been read but before it is moved to data-name. After
ward, the data is available in both the file record and data-
name.

In the case of a blocked input file (such as disk files), not every
READ statement performs a physical transmission of data from
an external storage device; instead, READ may simply obtain
the next logical record from an input buffer.

If the actual record is shorter than the file record area, the file
record area is padded on the right with spaces.

When a data record to be read exists, successful execution of
the READ statement is immediately followed by execution of
the next sentence in the paragraph.

Example

READ INV-MSTR-FILE
INTO WS-MSTR-REC
AT END MOVE "Y" TO END-OF-FILE-SW.

306

Sequential Files

10.4.4 REWRITE Statement

Purpose

Replaces a logical record in a Sequential disk file.

Format

The general format for SEQUENTIAL and LINE SEQUEN
TIAL file organizations is:

REWRITE record-name [FROM identifier]

Record-name is the name of a logical record in the FILE SEC
TION of the DATA DIVISION and may be qualified. Record
name and identifier must refer to separate storage areas.

Remarks

At the time of execution of this statement, the file to which
record-name belongs must be open in the 1-0 mode.

If a FROM part is included in this statement, the effect is as if
MOVE data-name TO record-name were executed just prior to
the REWRITE.

Execution of REWRITE replaces the record that was accessed
by the most recent READ statement; the READ must have
been completed successfully. If the record which is rewriting
the record in the file is longer than the file’s record, only as
many bytes as will fit are actually rewritten. On the other
hand, if the record which is rewriting the record in the file is
shorter than the file’s record, unpredictable information will be
written after the record, until the beginning of the next record
in the file.

Example

REWRITE PR-REC FROM INV-COUNT.

307

Microsoft COBOL Reference Manual

10.4.5 WRITE Statement

Purpose

Releases a logical record for an output or input-output file.

Format

The general format for SEQUENTIAL and LINE SEQUEN
TIAL file organizations is:

WRITE record-name [FROM identifier-1]

BEFORE\
AFTER J

ADVANCING
r f identifier-2 \ rLINE T

\ integer I LUNES J

l mnemonic-name \
I PAGE J

END-OF-PAGE \ imperative-statement
EOP f

Remarks

In MS-COBOL, file output is achieved by execution of the
WRITE statement. Depending on the device assigned, "writ
ten" output may take the form of printed matter or magnetic
recording on a floppy disk storage medium. Remember also
that you READ file-name, but you WRITE record-name. The
associated file must be open in the OUTPUT mode at the time
of execution of a WRITE statement.

Record-name must be one of the level 01 records defined for an
output file, and may be qualified by the file-name.

If the data to be output has been developed in WORKING
STORAGE or in another area (for example, in an input file’s
record area), the FROM suffix permits the user to stipulate
that the designated data (data-name-1) is to be copied into the
record-name area and then output from there. Record-name
and data-name-1 must refer to separate storage areas.

308

Sequential Files

When an attempt is made to write beyond the externally de
fined boundaries of a Sequential file, a DECLARATIVES pro
cedure will be executed (if available) and the FILE STATUS (if
available) will indicate a boundary violation. If neither is
available, a runtime error occurs.

The ADVANCING phrase is restricted to line printer output
files, and permits the programmer to control the line spacing
on the paper in the printer. {Identifier-1 I integer} may have
values from 0 to 120.

Integer Carriage Control Action

0 No spacing
1 Normal single spacing
2 Double spacing
3 Triple spacing

Single spacing (i.e., "after advancing 1 line”) is assumed if
there is no BEFORE or AFTER option in the WRITE state
ment.

Use of the key word AFTER implies that the carriage control
action precedes printing a line, whereas use of BEFORE
implies that writing precedes the carriage control action. If
PAGE or mnemonic-name are specified, the data is printed BE
FORE or AFTER the printer is repositioned to the next physi
cal page. However, if a LINAGE clause is associated with the
file, the repositioning is to the first line that can be written on
the next logical page as specified in the LINAGE clause.

If the END-OF-PAGE phrase is specified, the LINAGE clause
must be specified in the file description entry for the associated
file. EOP is equivalent to END-OF-PAGE.

An end-of-page condition is reached whenever a WRITE state
ment with the END-OF-PAGE phrase causes printing or spac
ing within the footing area of a page body. This occurs when
such a WRITE statement causes the LINAGE-COUNTER to
equal or exceed the value specified by the FOOTING value, if
specified. In this case, after the WRITE statement is executed,
the imperative statement in the END-OF-PAGE phrase is
executed.

309

Microsoft COBOL Reference Manual

A page overflow condition is reached whenever a WRITE state
ment cannot be fully accommodated within the current page
body. This occurs when a WRITE statement would cause the
LINAGE-COUNTER to exceed the value specified as the size of
the page body in the LINAGE clause. In this case, the record
is printed before or after (depending on the phrase used) the
printer is repositioned to the first line of the next logical page.
The imperative statement in the END-OF-PAGE clause, if
specified, is executed after the record is written and the printer
has been repositioned.

Clearly, if no FOOTING value is specified in the LINAGE
clause, or if the end-of-page and overflow conditions occur
simultaneously, only the overflow condition is effective.

Example

WRITE REPORT-REC FROM PR-HEADER
AFTER ADVANCING PAGE.

310

Chapter II
Indexed Files

11.1 Definition of
INDEXED File Organization 313

11.2 Syntax Considerations
for Indexed File 1-0 314

11.2.1 FILE-CONTROL Entry
(ENVIRONMENT DIVISION) 314

11.2.2 RECORD KEY Clause 315
11.2.3 ALTERNATE RECORD

KEY Clause 317
11.2.4 File Description Entry

(DATA DIVISION) 317
11.2.5 I-O-CONTROL Paragraph

(ENVIRONMENT DIVISION) 318
11.3 File Status Reporting 319
11.4 PROCEDURE DIVISION

Statements for Indexed Files 321
11.4.1 CLOSE Statement 322
11.4.2 DELETE Statement 324
11.4.3 OPEN Statement 325
11.4.4 READ Statement 327
11.4.5 REWRITE Statement 329
11.4.6 START Statement 331
11.4.7 UNLOCK Statement 333
11.4.8 WRITE Statement 334

311

Indexed Files

This chapter describes INDEXED file organization, and access,
and provides source-coding considerations related to its use.

11.1 Definition of
INDEXED File Organization

An Indexed file is organized according to a set of control field
values called “keys.” These keys are defined in the ENVIRON
MENT DIVISION of the source program. An Indexed file must
be assigned to DISK in its defining SELECT sentence in the
source program’s FILE-CONTROL entry.

Each Indexed file declared in a Microsoft COBOL program will
generate two disk files: a key file and a data file. The file
specification in the VALUE OF FILE-ID clause specifies a
file containing data only. The file-name included in the file
specification is joined with the extension .KEY to form the
file specification of the key file.

The key file contains keys, pointers to keys, and pointers to
data. The data file consists of data records and a "data diction
ary” containing descriptions of the data records.

A file whose organization is INDEXED can be accessed either
sequentially, dynamically, or randomly (see Section 5.3.1.1,
"ACCESS MODE Clause”).

SEQUENTIAL access provides access to data records in ascend
ing order of RECORD KEY values.

In the RANDOM access mode, the order of access to records is
controlled by the programmer. Each record desired is accessed
by placing the value of its key in a key data-item prior to an
access statement. In the DYNAMIC access mode, the
programmer’s logic may change from SEQUENTIAL access to
RANDOM access, and vice versa, at will.

313

Microsoft COBOL Reference Manual

11.2 Syntax Considerations
for Indexed File 1-0

Information about data file organization and the desired access
mode is specified in the ENVIRONMENT DIVISION of a pro
gram. Information about the physical characteristics of the
data file is specified in the DATA DIVISION. The sections
that follow indicate the syntax considerations for the use of IN
DEXED organization and SEQUENTIAL, RANDOM, or
DYNAMIC access mode.

11.2.1 FILE-CONTROL Entry
(ENVIRONMENT DIVISION)

In the FILE-CONTROL entry of the ENVIRONMENT DIVI
SION, the SELECT sentence must specify ORGANIZATION IS
INDEXED, and the file must be assigned to DISK. If an access
mode other than SEQUENTIAL is desired during processing,
the ACCESS MODE IS clause must be included.

314

Indexed Files

The general format for the FILE-CONTROL entry is:

FILE-CONTROL.

SELECT file-name

ASSIGN TO DISK

; [LOCKING IS]
EXCLUSIVE V
MANUAL \
AUTOMATIC j.

; RESERVE integer AREA 11
AREAS JJ

: ORGANIZATION IS INDEXED

; [ACCESS MODE IS]
(SEQUENTIAL
] RANDOM
I DYNAMIC

; RECORD KEY IS

(data-name-1
split-key-name-A = data-name-1 [, data-name-2]...

I ; ALTERNATE RECORD KEY IS
(data-name-3 [WITH DUPLICATES] \
i split-key-name-B = data-name-3 [, data-name-4] }]...
[[WITH DUPLICATES])

[; FILE STATUS IS data-name-5].

Dataname-1 through dataname-4 must refer to alphanumeric
data-items. Dataname-5 must refer to a two-character
alphanumeric data-item defined in the WORKING-STORAGE
SECTION of the DATA DIVISION.

11.2.2 RECORD KEY Clause

This clause, which is required, specifies the RECORD KEY
that is the prime RECORD KEY for the file. The format for
the RECORD KEY clause is as follows:

; RECORD KEY IS

data-name-1
split-key-name-A = data-name-1 [, data-name-2]...

315

Microsoft COBOL Reference Manual

The data-item named in the RECORD KEY clause is the prime
RECORD KEY for that file. For purposes of inserting, updat
ing, and deleting records in a file, each record is identified
solely by the value of its prime RECORD KEY. This value
must be unique and must not be changed when updating a file.
The key may represent a single field or multiple fields (using
the split key syntax). The maximum key length is 250 bytes,
and the key value should never be made to contain all binary
zeros. A split key is equal to the concatenation of selected
data-items.

A record with the following file description entry:

01 EXEMPT-RECORD.

SELECT EXEMPT-STAFF-FILE

FD EXEMPT-STAFF-FILE
LABEL RECORD STANDARD
VALUE OF FILE-ID IS "STAFF.DAT"
DATA RECORD IS EXEMPT-RECORD.

02 PRIME-RECORD-KEY PIC 9(5).
02 ALT-KEY2-SSNUM PIC X(2 0).
02 ALT-KEY1-NAME PIC X(2 0).
02 PROJECT-ID PIC X(1 2).
02 BONUS-KEY PIC S9(4)V99

could have this FILE-CONTROL entry:

PRIME-RECORD-KEY
PROJECT-ID BONUS-KEY

FILE STATUS IS STATUS-INDX.

ASSIGN TO DISK
ORGANIZATION IS INDEXED
ACCESS MODE IS DYNAMIC
RECORD KEY IS PRIME-RECORD-KEY
ALTERNATE RECORD KEY IS ALT-KEY2-SSNUM
ALTERNATE

WITH
RECORD KEY

DUPLICATES
IS ALT-KEY1-NAME

ALTERNATE RECORD KEY IS RANK-KEY =

From this control-index structure, the records may be accessed
on the prime RECORD KEY, two alternate keys, or a split
alternate key which represents three of the fields in the record,
including the prime key.

316

Indexed Files

If RANDOM access mode is specified, the value of the primary
RECORD KEY designates the record to be accessed by the next
DELETE, REWRITE, or WRITE statement.

11.2.3 ALTERNATE RECORD KEY Clause

A data-item named in the ALTERNATE RECORD KEY clause
of the FILE-CONTROL paragraph is an alternate RECORD
KEY for that file. The key may represent a single field or mul
tiple fields (using the split key syntax).

[; ALTERNATE RECORD KEY IS

i data-name-3 [WITH DUPLICATES] . \
{ split-key-name-B -- data-name-3 [, data-name-4] }]...
I [WITH DUPLICATES] J

If the WITH DUPLICATES phrase is used at the end of the
ALTERNATE RECORD KEY clause, duplicate field values
will be accepted during processing and the alternate RECORD
KEY (field value) does not need to be unique.

The DUPLICATES phrase specifies that the value of the asso
ciated alternate RECORD KEY may be duplicated within any
of the records in the file. If the DUPLICATES phrase is not
specified, duplicate values must not occur in the records.

As specified in the FILE-CONTROL paragraph, the key is
equal to the concatenation of the selected data-items.

11.2.4 File Description Entry
(DATA DIVISION)

FD (file description) entries are included for each file that was
described in the FILE-CONTROL paragraph of the ENVIRON
MENT DIVISION. FD entries specify the size of the logical
and physical records, the value of implementor-defined label
items, and the names of the data records which make up the
file.

317

Microsoft COBOL Reference Manual

In the FD entry for an Indexed file, both a LABEL RECORDS
STANDARD clause and a VALUE OF FILE-ID clause must ap
pear.

11.2.5 LO-CONTROL Paragraph
(ENVIRONMENT DIVISION)

The I-O-CONTROL paragraph syntax specifies the points at
which rerun is to be established, and the memory area which is
to be shared by different files.

The general format for the I-O-CONTROL paragraph is:

[l-O-CONTROL.

{integer-1 RECORDS OF file-name-2
integer-2 CLOCK-UNITS
condition-name

[; SAME [RECORD] AREA FOR file-name-3 { , file-name-4 } ... J.... 1

In general the RERUN clause specifies when and where the
rerun information is recorded, and the SAME AREA RECORD
clause specifies that two or more files are to use the same
memory area for processing of the current logical record.

See Chapter 5, “ENVIRONMENT DIVISION,” for details about
the RERUN and SAME AREA clauses.

Note
While the Microsoft COBOL Compiler recognizes and
checks the full language RERUN syntax, it does not sup
port RERUN commands during program execution.

318

Indexed Files

11.3 File Status Reporting

If a FILE STATUS clause appears in the ENVIRONMENT
DIVISION for an INDEXED organization file, the designated
two-character data-item is set after every 1-0 statement. Table
11.1 summarizes the possible file status settings.

Table 11.1

Indexed File Status Settings

File Status Meaning

”00” Successful completion
”02” Duplicate key; duplicates allowed
”10” End of file
”21” Sequence error in writing a

Sequential access file
”22” Duplicate key; duplicates not allowed
”23” Key not found
”24” Disk space full
”30” Permanent error or file not found
”91”
”94”
”95”

File structure error
Record or file locked
Indexed file system not available

File status ”02” indicates successful completion of the input
output statement when a duplicate key is used and duplicate
keys are allowed (the DUPLICATES phrase is present in the
SELECT clause).

1. For a READ statement, the key value for the current
key of reference is equal to the value of that same key
in the next record within the current key of reference
(same field, next record).

2. For a WRITE or REWRITE statement, the record just
written creates a duplicate key value in at least one
alternate RECORD KEY which allows duplicates.

319

Microsoft COBOL Reference Manual

File status ”22” indicates an INVALID KEY condition, and a-
rises if a WRITE or REWRITE statement is executed, the
DUPLICATES phrase has been omitted from the SELECT
clause, and duplicates are found.

File status ”23” arises if the key value specified cannot be
found.

In an OPEN INPUT or OPEN 1-0 statement, file status ”30”
means "File not found.”

File status ”91” occurs on an OPEN INPUT or OPEN 1-0
statement for an Indexed file whose structure has been de
stroyed (for example, by a system crash during output to the
file). When this status is returned the file is not considered to
be open, and all 1-0 operations fail.

File status ”94” occurs when an attempt is made to OPEN,
READ, or START a READ of a record or file that is in the
locked state because another process has SELECTed it with the
LOCKING AUTOMATIC or LOCKING MANUAL clause, or
has OPENed, READ, or STARTed to READ it with the LOCK
option.

File status ”95” occurs only in MS-COBOL implementations
that separate Indexed file-handler programs (as described in
the Microsoft COBOL Compiler User's Guide) when the file
handler has not been run before Indexed 1-0 was attempted.

Note
"Disk Space Full” generates file status ”24” for Indexed
and Relative file handling, whereas it generates file status
”34” for Sequential files.

If an error occurs at execution time and no FILE STATUS is
specified, no AT END or INVALID KEY phrase imperative
statements are given, and no appropriate error-handling sec
tions are supplied in your DECLARATIVES Region, the pro
gram will terminate, abnormally.

320

Indexed Files

11.4 PROCEDURE DIVISION
Statements for Indexed Files

Table 11.2 summarizes the available statement types and their
permissibility in terms of ACCESS mode and OPEN option in
effect. Where X appears, the statement is permissible; other
wise, it is not valid under the associated ACCESS mode and
OPEN option. CLOSE is permissible under all conditions.

OPEN Option in Effect

Table 11.2

1-0 Permitted With Indexed Files

ACCESS
MODE IS

Procedure
Statement Input Output 1-0

READ X X
WRITE X

SEQUENTIAL REWRITE X
START X X
DELETE X

READ X X
WRITE X X

RANDOM REWRITE X
START
DELETE X

READ X X
WRITE X X

DYNAMIC REWRITE X
START X X
DELETE X

The formats and descriptions that apply to Indexed files are
given in the remainder of this chapter.

321

Microsoft COBOL Reference Manual

11.4.1 CLOSE Statement

Purpose

Causes the operating system to restore the named file to a
storage device. Whenever a file is closed, or has never been
opened, READ, REWRITE, or WRITE statements cannot be
executed properly; a runtime error will occur, terminating the
run.

Format

The general format for INDEXED file organization is:

CLOSE file-name-1 [WITH LOCK 1 s. file-name-2 l WITH LOCK 1 1...

Remarks

Executed at the end of file processing. If the LOCK suffix is
used, the file cannot be reopened during the current job. If
LOCK is not specified immediately after file-name, that file
may be reopened later in the program, if the program logic
dictates the necessity.

Note
The LOCK suffix is a standard COBOL feature, and is not
part of the Microsoft COBOL multi-user file locking exten
sions, which are described in Chapter 17, “File and Record
LOCKING.”

An attempt to execute a CLOSE statement for a file that is not
currently open generates a runtime error, and may cause exe
cution to terminate.

322

Indexed Files

Examples

CLOSE MASTER-FILE-IN WITH LOCK, WORK-FILE.

CLOSE PRINT-FILE, TAX-RATE-FILE,
JOB-PARAMETERS WITH LOCK.

323

Microsoft COBOL Reference Manual

11.4.2 DELETE Statement

Purpose

Logically removes a record from the Indexed file.

Format

The general format is:

DELETE file-name RECORD [; INVALID KEY imperative-statement]

Remarks

For a file in SEQUENTIAL access mode, the last input-output
statement executed for file-name would have been a successful
READ statement. The record that was read is deleted. Conse
quently, no INVALID KEY phrase should be specified for files
being processed in SEQUENTIAL access mode.

For a file being processed in either RANDOM or DYNAMIC
access mode, the record deleted is the one associated with the
prime RECORD KEY; if there is no such matching record, an
INVALID KEY condition exists, and control passes to the
imperative statements in the INVALID KEY phrase, or to an
applicable DECLARATIVES Region error-handling section if
no INVALID KEY phrase exists.

324

11.4.3 OPEN Statement

Indexed Files

Purpose

Prepares a file for use and defines the method of access. The
OPEN statement must be executed prior to file processing.

Format

The general format for INDEXED file organization is:

OPEN l LOCKING IS 1
(EXCLUSIVE
\ MANUAL
I AUTOMATIC

] n [INPUT file-name-1 [, file-name-2]... }
?] OUTPUT file-name-3 I. file-name-4 1... >
] J \ LO file-name-5 [, file-name-6 j...)

Remarks

A file with INDEXED organization may be opened for access
with either SEQUENTIAL, RANDOM, or DYNAMIC access
mode, as specified in the ACCESS MODE clause in the
program’s FILE-CONTROL entry.

OPEN INPUT, with SEQUENTIAL access, sets the current
record pointer to the first record of the file. If no records exist
for the file, the pointer is set so that the AT END condition
will exist on the next (Format 1) READ statement.

OPEN INPUT, with RANDOM or DYNAMIC access, sets the
current record pointer to the first record of the file based on
the existence of a valid RECORD KEY or other specified valid
key (see ALTERNATE RECORD and split key under the
FILE-CONTROL entry for Indexed files). If no records exist
for the file with the specified key value, an INVALID KEY
condition will exist on the next (Format 2) READ statement,
and the processing will be altered accordingly.

OPEN 1-0 assumes the existence of the named file and cannot
be used if the file is being created by the program.

325

Microsoft COBOL Reference Manual

OPEN OUTPUT makes available a record area for develop
ment of one record, which will be transmitted to the assigned
output device upon execution of a WRITE statement. An exist
ing file which has the same name will be overwritten by the
file created with OPEN OUTPUT.

An OPEN 1-0 statement is valid only for a DISK file; it per
mits use of the REWRITE statement to modify records which
have been read into memory by a READ statement.

Failure to precede file reading or writing (in terms of time se
quence) by the execution of an OPEN statement is an
execution-time error which will cause abnormal termination of
a program run. A file that has been closed WITH LOCK can
not be opened during the remainder of the program’s run.

The LOCKING IS {EXCLUSIVE I MANUAL AUTO
MATIC} clause is optional within the syntax of the
SELECT clause and the OPEN statement. AUTOMATIC is
the default behavior of the SELECT clause and the OPEN 1-0
and OPEN OUTPUT modes for INDEXED file organization.
For more details about locking, see Chapter 17, "File and
Record LOCKING."

Example

OPEN INPUT INV-MSTR-FILE,
OUTPUT INV-REPORT-FILE.

326

Indexed Files

11.4.4 READ Statement

Purpose

For SEQUENTIAL access, the READ statement makes the
next logical record available. For RANDOM access, the READ
statement makes a specified record available.

Format

The general format for INDEXED file organization is:

READ file-name [NEXT] RECORD [LOCK]■ [WAIT] [INTO identifier]

[; AT END imperative-statement]

READ file-name RECORD [LOCK] [WAIT] [INTO identifier]

[; KEY IS data-name]

[J INVALID KEY imperative-statement]

Format 2 is used for files in RANDOM access mode or for files
in DYNAMIC access mode when records are to be retrieved
randomly. In Format 2, the INVALID KEY phrase specifies
the action to be taken if the key value does not refer to an ex
isting key in the file. If the clause is not given, the appropri
ate DECLARATIVES Region error-handling section, if sup
plied, is given control.

If the KEY phrase is used in the Format 2 READ statement,
the specified key becomes the key of reference. That key of
reference will remain in effect for all subsequent Format 1
READs until another key of reference is specified.

If the KEY phrase is not used in the Format 2 READ state
ment, the prime RECORD KEY is the key of reference during
the DYNAMIC access mode. That key of reference will remain
in effect for all subsequent Format 1 READs until another key
of reference is specified.

327

Microsoft COBOL Reference Manual

Remarks

Format 1 with the NEXT option is used for sequential reads of
a file having DYNAMIC access mode. Format 1 without the
NEXT phrase must be used for all files having SEQUENTIAL
access mode. The AT END phrase is executed when the logical
end-of-file condition arises.

When the AT END condition has been recognized, one of the
following statements must be successfully executed before the
next Format 1 READ statement execution is attempted:

1. a CLOSE statement followed by the successful execu
tion of an OPEN statement for the file

2. a START statement for the file
3. a Format 2 READ for the same file

In the absence of the AT END phrase, an appropriately
assigned DECLARATIVES Region error-handling section is
given control at end-of-file time, assuming the section exists.

When an Indexed file is processed sequentially using alternate
RECORD KEYs, any records having the same duplicate value
are read back in the same order that they were written by the
WRITE or REWRITE statements.

The WITH LOCK and WAIT options that have been added to
the syntax of the READ and START statements for Indexed
and Relative file 1-0 are optional. For more details about lock
ing, see Chapter 17, "File and Record LOCKING.”

Examples

READ INV-REC-FILE NEXT-RECORD
INTO REC-COUNT
AT END PERFORM P300.

READ INV-REC-FILE RECORD INTO REC-COUNT
KEY IS DATE-REC
INVALID KEY DISPLAY "REC NOT FOUND".

328

Indexed Files

11.4.5 REWRITE Statement

Purpose

Replaces a logical record in the file.

Format

The general format for INDEXED file organization is:

REWRITE record-name [FROM identifier] [; INVALID KEY imperative-statement]

Remarks

For a file being processed in SEQUENTIAL access mode, the
last READ statement must have been successful in order for a
REWRITE statement to be valid; the record replaced is the one
accessed by the READ command.

For a file in RANDOM or DYNAMIC access mode, the record
to be replaced is specified by the primary RECORD KEY; no
previous READ is necessary. The INVALID KEY condition ex
ists when the value of the key that is the current key of refer
ence does not equal that of any record stored in the file.

The INVALID KEY Condition

In the event that an improper key value is encountered, the
system will execute the imperative statements that follow the
INVALID KEY phrase; otherwise the error-handling sections
of your DECLARATIVES Region are invoked, if applicable.
The INVALID KEY condition occurs when:

1. during SEQUENTIAL access, the prime RECORD KEY
data-item to be replaced contains a value that is not
equal to the prime RECORD KEY of the last record
read

2. the value of the prime RECORD KEY data-item is not
equal to the primary key field for any record in the file

329

Microsoft COBOL Reference Manual

3. the value of the alternate RECORD KEY data-item
equals a corresponding data-item existing in the file;
duplicates were not specified

Example

REWRITE PR-REC FROM INV-REC
INVALID KEY PERFORM P300.

330

Indexed Files

11.4.6 START Statement

Purpose

Enables a file with INDEXED organization to be positioned for
reading at a specified key value. This is permitted for files
open in either SEQUENTIAL or DYNAMIC access modes.

Format

The general format for INDEXED file organization is:

START file-name [LOCK] [WAIT] data-name

f IS EQUAL TO '
IS =KEY 11 IS GREATER THAN

j IS >
IS NOT LESS THAN

(lS NOT <

Data-name must be one of the declared RECORD KEYs.

Remarks

Prior to executing the START statement, the key value that is
the object of your search should be placed in the RECORD
KEY data-item that will be used for the comparison.

If the key relation is specified as EQUAL TO, the next record
accessed will be the first record that is equal to the key value
that you specified.

If the key relation is specified as GREATER THAN or NOT
LESS THAN, the next record accessed will be the first record
that is greater than or equal to the indicated key value.

331

Microsoft COBOL Reference Manual

Establishing the Key of Reference

If the KEY phrase is used, data-name must specify one of the
RECORD KEYs in the file. This key is used for the subse
quent retrievals. Any subsequent Format 1 READ statements
will use this key of reference until another is specified.

If the KEY phrase is not used, the relational operator IS
EQUAL TO is implied and the prime RECORD KEY is used
for comparison. Any subsequent Format 1 READ statements
will use this key of reference until another is specified.

If no matching value is found, the imperative statements in the
INVALID KEY phrase are executed. In the absence of this
key clause, the imperatives in your DECLARATIVES Region
are executed.

The WITH LOCK and WAIT options that have been added to
the syntax of the READ and START statements for Indexed
and Relative file 1-0 are optional. For more details about lock
ing, see Chapter 17, "File and Record LOCKING.”

Example

START INV-REC-FILE
KEY IS EQUAL TO QTY-RECEIVED
INVALID KEY DISPLAY "KEY NOT FOUND".

332

Indexed Files

11.4.7 UNLOCK Statement

Purpose

Unlocks files formerly locked with a READ or START state
ment using the WITH LOCK option, or releases the last au
tomatically locked record.

Format

The general format for INDEXED file organization is:

UNLOCK file-name

Remarks

File-name specifies the file of current reference for either a
READ or a START statement. The UNLOCK statement must
appear in the same run unit as the READ or a START state
ment whose operand is the object of its action.

Example

UNLOCK MSTR-ACCT-PAYABLE-FILE.

333

Microsoft COBOL Reference Manual

11.4.8 WRITE Statement

Purpose

Releases a logical record from the record processing buffer and
directs the operating system to transfer the record to the desig
nated output device; this only applies to files in OPEN OUT
PUT or OPEN INPUT-OUTPUT mode.

Format

The general format for INDEXED file organization is:

WRITE record-name [FROM identifier] [; INVALID KEY imperative-statement]

Remarks

The value in your prime RECORD KEY must be valid and
unique before WRITE statement execution.

The ALTERNATE RECORD KEY value may be non-unique if
DUPLICATES were specified for that key.

The INVALID KEY Condition

In the event that an improper key value is encountered, the
imperative statements of the INVALID KEY phrase are exe
cuted, assuming this clause exists. Otherwise an appropriate
DECLARATIVES Region error-handling section is invoked, if
applicable.

The INVALID KEY condition exists when

1. for SEQUENTIAL access, key values are not ascending
from one WRITE to the next WRITE.

2. the key value is not unique.

334

Indexed Files

3. the allocated disk space is exceeded.
4. the value of the alternate RECORD KEY equals a

corresponding data-item existing in the file, and dupli
cates were not specified.

Example

WRITE INV-REC FROM PR-REC
INVALID KEY DISPLAY "KEY NOT FOUND".

335

Chapter 12
Relative Files

12.1 Definition of
RELATIVE File Organization 339

12.2 Syntax Considerations
for Relative File 1-0 339

12.2.1 FILE-CONTROL Entry
(ENVIRONMENT DIVISION) 340

12.2.2 RELATIVE KEY Clause 340
12.2.3 File Description Entry

(DATA DIVISION) 341
12.2.4 I-O-CONTROL Paragraph

(ENVIRONMENT DIVISION) 341
12.3 File Status Reporting 342
12.4 PROCEDURE DIVISION

Statements for Relative Files 343
12.4.1 CLOSE Statement 345
12.4.2 DELETE Statement 347
12.4.3 OPEN Statement 348
12.4.4 READ Statement 350
12.4.5 REWRITE Statement 352
12.4.6 START Statement 353
12.4.7 UNLOCK Statement 355
12.4.8 WRITE Statement 356

337

Relative Files

This chapter describes RELATIVE file organization and pro
vides source-coding considerations related to its use.

12.1 Definition of
RELATIVE File Organization

RELATIVE file organization is restricted to disk files. Records
are differentiated on the basis of a relative record number.
Unlike Indexed files, where the identifying key field occupies a
part of the data record, relative record numbers are conceptual
and are not embedded in the data records. Relative file records
are fixed length records whose length is that of the largest
record in the file.

A Relative file may be accessed either sequentially, dynamical
ly, or randomly. In SEQUENTIAL access mode, records are ac
cessed in the order of ascending record numbers.

In RANDOM access mode, the sequence of record access is con
trolled by the program, by placing a number in a relative key

z item. In DYNAMIC access mode, the program may alternately
read a file’s records in either RANDOM or SEQUENTIAL ac
cess mode.

12.2 Syntax Considerations
for Relative File 1-0

Information about data file organization and desired access
mode is specified in the ENVIRONMENT DIVISION of a pro
gram. Information about the physical characteristics of the
data file is specified in the DATA DIVISION. The sections
that follow indicate the syntax considerations for the use of
SEQUENTIAL, RANDOM, or DYNAMIC access mode and
RELATIVE organization.

339

Microsoft COBOL Reference Manual

12.2.1 FILE-CONTROL Entry
(ENVIRONMENT DIVISION)

In the ENVIRONMENT DIVISION, the FILE-CONTROL entry
must specify ORGANIZATION IS RELATIVE. The general
format for the SELECT clause is:

SELECT file-name

ASSIGN TO DISK

I LOCKING IS]
/ EXCLUSIVE
I MANUAL
I AUTOMATIC

; RESERVE integer
AREA T|
AREAS JJ

; ORGANIZATION IS RELATIVE

; ACCESS MODE IS
SEQUENTIAL [, RELATIVE KEY IS data-name-1

RANDOM)
DYNAMIC! , RELATIVE KEY IS data-name-1

[; FILE STATUS IS data-name-2].

The first byte of the record area associated with a Relative file
should not be set to binary zero by being described as part of a
COMP-O, COMP-3, or COMP-4 item, nor set to LOW-VALUES
by any record description for the file, or the record will be
treated as deleted.

In the associated FD entry, both a LABEL RECORDS STAN
DARD clause and a VALUE OF FILE-ID clause must appear.

12.2.2 RELATIVE KEY Clause

In addition to the usual clauses in the SELECT entry, the
"RELATIVE KEY IS data-name-1” clause is required for RAN
DOM or DYNAMIC access mode. It is also required for
SEQUENTIAL access mode, if a START statement exists for
such a file.

340

Relative Files

Data-name-1 must be described as an unsigned integer-item
not contained within any record description of the file itself.
Its value must be positive and nonzero.

12.2.3 File Description Entry
(DATA DIVISION)

FD (file description) entries are included for each file that was
described in the FILE-CONTROL paragraph of the ENVIRON
MENT DIVISION. FD entries specify the size of the logical
and physical records, the value of implementor-defined label
items, and names of the data records which make up the file.

In the FD entry for a Relative file, both a LABEL RECORDS
STANDARD and a VALUE OF FILE-ID clause must appear.

12.2.4 DO-CONTROL Paragraph
(ENVIRONMENT DIVISION)

The I-O-CONTROL paragraph syntax specifies the points at
which RERUN is to be established, and the memory area
which is to be shared by different files.

The general format for the I-O-CONTROL paragraph is:

l l-O-CONTROL

(integer-1 RECORDS OF file-name-2
; RERUN ON lfile-name-1 | EVERY I integer-2 CLOCK-UNITS

\ implementor-name J (condition-name

[; SAME [RECORD] AREA FOR file-name-3 { , file-name-4

In general, the RERUN clause specifies when and where the
rerun information is recorded, and the SAME AREA RECORD
clause specifies that two or more files are to use the same
memory area for processing of the current logical record.

341

Microsoft COBOL Reference Manual

See Chapter 5, “ENVIRONMENT DIVISION,” for details about
the RERUN and SAME AREA clauses.

Note
While the Microsoft COBOL Compiler recognizes and
checks the full language RERUN syntax, it does not sup
port RERUN commands during program execution.

12.3 File Status Reporting

If a FILE STATUS clause appears in the ENVIRONMENT
DIVISION for a Relative file, the designated two-character
data-item is set after every 1-0 statement. Table 12.1 summar
izes the possible file status settings:

Table 12.1

Relative File Status Settings

File Status Meaning

”00” Successful completion
”10” End of file
”22” Duplicate key
”23” Key not found
”24” Disk space full
”30” Permanent error
”94” Record or file locked

In an OPEN INPUT or OPEN 1-0 statement, a file status of
”30” means "File Not Found.”

342

Relative Files

File status ”94” occurs when an attempt is made to OPEN,
READ, or START a READ of a record or file that is in the
locked state because another process has SELECTed it with the
LOCKING AUTOMATIC or LOCKING MANUAL clause, or
has OPENed, READ, or STARTed to READ it with the LOCK
option.

"Disk Space Full” generates file status ”24” for Relative and
Indexed file handling, whereas it generates file status ”34” for
Sequential files.

12.4 PROCEDURE DIVISION
Statements for Relative Files

Within the PROCEDURE DIVISION, the verbs OPEN,
CLOSE, READ, WRITE, REWRITE, DELETE, and START are
available, just as for files whose organization is INDEXED.

The formats for OPEN and CLOSE are the same as those
described in Chapter 7, "PROCEDURE DIVISION,” except that
the EXTEND phrase is NOT applicable to the OPEN state
ment for Relative files.

Table 12.2 summarizes the available statement types and their
permissibility in terms of ACCESS mode and OPEN option in
effect. An X indicates that the statement is permissible.
CLOSE is permissible under all conditions.

343

Microsoft COBOL Reference Manual

OPEN Option in Effect

Table 12.2

1-0 Permitted With Relative Files

ACCESS
MODE IS

Procedure
Statement Input Output 1-0

READ X X
WRITE X

SEQUENTIAL REWRITE X
START X X
DELETE X

READ X X
WRITE X X

RANDOM REWRITE X
START
DELETE X

READ X X
WRITE X X

DYNAMIC REWRITE X
START X X
DELETE X

The formats and descriptions that apply to Relative files are
given in the remainder of this chapter.

344

Relative Files

12.4.1 CLOSE Statement

Purpose

Causes the operating system to restore the named file to a
storage device. Whenever a file is closed, or has never been
opened, READ, REWRITE, or WRITE statements cannot be ex
ecuted properly; a runtime error will occur, terminating the
run.

Format

The general format for RELATIVE file organization is:

CLOSE file-name-1 [WITH LOCK 1 [, file-name-2 [WITH LOCK 1]...

Remarks

Executed at the end of file processing. If the LOCK suffix is
used, the file cannot be reopened during the current job. If
LOCK is not specified immediately after a file-name, that file
may be reopened later in the program, if program logic dictates
the necessity.

Note
The LOCK suffix is a standard COBOL feature, and is not
part of the Microsoft COBOL multi-user file locking exten
sions, which are described in Chapter 17, “File and Record
LOCKING.”

An attempt to execute a CLOSE statement for a file that is not
currently open generates a runtime error, and may cause exe
cution to stop.

345

Microsoft COBOL Reference Manual

Examples

CLOSE MASTER-FILE-IN WITH LOCK, WORK-FILE.

CLOSE PRINT-FILE, TAX-RATE-FILE,
JOB-PARAMETERS WITH LOCK.

346

Relative Files

12.4.2 DELETE Statement

Purpose

Removes a record from the file. The record that is deleted is
the last one that was read.

Format

The format of the DELETE statement is the same for a Rela
tive file as it is for an Indexed file:

DELETE file-name RECORD [; INVALID KEY imperative-statement]

Remarks

For a file in SEQUENTIAL access mode, the last input-output
statement executed for file-name would have been a successful
READ statement. The record that was read is deleted. Conse
quently, no INVALID KEY phrase should be specified for files
being processed in SEQUENTIAL access mode.

For a file being processed in either RANDOM or DYNAMIC
access mode, the record deleted is the one associated with the
RELATIVE KEY; if there is no such matching record, an
INVALID KEY condition exists, and control passes to the
imperative statements in the INVALID KEY phrase, or to an
applicable DECLARATIVES Region error-handling section if
no INVALID KEY phrase exists.

Example

DELETE INV-REC RECORD
INVALID KEY DISPLAY "KEY NOT FOUND".

347

Microsoft COBOL Reference Manual

12.4.3 OPEN Statement

Purpose

Prepares a file for use and defines the method of access. The
OPEN statement must be executed prior to file processing.

Format

The general format for RELATIVE file organization is:

OPEN r LOCKING IS 1
EXCLUSIVE
MANUAL
AUTOMATIC

INPUT file-name-1 [, file-name-2]... }
OUTPUT file-name-3 I . file-name-4]... > ...
I-O file-name-5 [, file-name-6]... J

Remarks

A file with RELATIVE organization may be opened for access
with either SEQUENTIAL, RANDOM, or DYNAMIC access
mode, as specified in the ACCESS MODE clause in the
program’s FILE-CONTROL entry. Specification of a RELA
TIVE KEY is required for RANDOM and DYNAMIC access
and optional for SEQUENTIAL access.

OPEN INPUT, with SEQUENTIAL access, sets the current
record pointer to the first record of the file. If no records exist
for the file, the pointer is set so that the AT END condition
will exist on the next (Format 1) READ statement.

OPEN INPUT, with RANDOM or DYNAMIC access, sets the
current record pointer to the first record of the file based on
the existence of a valid RELATIVE KEY. If no records exist
for the file with the specified key value, an INVALID KEY
condition will exist on the next (Format 2) READ statement
and the processing will be altered accordingly.

OPEN 1-0 assumes the existence of the named file and cannot
be used if the file is being created by the program.

348

Relative Files

OPEN OUTPUT makes available a record area for develop
ment of one record, and creates a null file (no data records).
After the record fields have been defined, the record will be
transmitted to the assigned output device by the WRITE state
ment. An existing file which has the same name will be
overwritten by the file created with OPEN OUTPUT.

An OPEN 1-0 statement is valid only for a DISK file; it per
mits use of the REWRITE statement to modify records which
have been accessed by a READ statement.

The LOCKING IS {EXCLUSIVE I MANUAL I AUTO
MATIC} clause is optional within the syntax of the
SELECT clause and the OPEN statement. AUTOMATIC is
the default behavior of the SELECT clause and the OPEN 1-0
and OPEN OUTPUT modes for RELATIVE file organization.
For more details about locking, see Chapter 17, "File and
Record LOCKING.”

Failure to precede file reading or writing (in terms of time
sequence) by the execution of an OPEN statement is an
execution-time error which will cause abnormal termination of
a program run. If a file has been closed using the WITH
LOCK option, it cannot be opened during the remainder of the
run.

Note
While the Microsoft COBOL Compiler recognizes and
checks the full language tape-handling syntax, it does not
support tape-handling commands during program execu
tion.

Example

□PEN INPUT INV-MSTR-FILE,
OUTPUT INV-REPORT-FILE.

349

Microsoft COBOL Reference Manual

12.4.4 READ Statement

Purpose

Makes available the next logical data record of the designated
file from the assigned device, and updates the value of the
FILE STATUS data-item, if one was specified.

Format

The general formats for RELATIVE file organization are:

READ file-name [NEXT] RECORD [LOCK] [WAIT] [INTO identifier]

[; AT END imperative-statement]

READ file-name RECORD [LOCK] [WAIT] [INTO identifier]

[; INVALID KEY imperative-statement]

Remarks

Format 1 must be used for all files that are being processed in
SEQUENTIAL access mode.

If the file’s declared mode of access is DYNAMIC, the NEXT
phrase must be present to achieve SEQUENTIAL access.

The AT END phrase, if given, is executed when the logical
end-of-file condition exists, or, if not given, the appropriate
DECLARATIVES error section, if available, is given control.

The INTO option permits the user to copy a data record into a
predefined data field for comparison with the contents in the
file’s record area. The predefined data field must not be
defined in the FILE SECTION.

Then, using an IF statement to test for a type-field in each
record, the user will be able to distinguish between the types of
records that are possible, and determine exactly which type is
currently available.

350

Relative Files

Format 2 must be used when RANDOM access has been
defined in the ACCESS MODE clause. This format also
applies if the method of record access is DYNAMIC.

If a RELATIVE KEY is defined in the FILE-CONTROL entry,
successful execution of a Format 1 READ statement updates
the contents of the RELATIVE KEY item (data-name-1) so as
to contain the record number of the record retrieved.

For a Format 2 READ, the record that is retrieved is the one
whose relative record number is pre-stored in the RELATIVE
KEY item. If no such record exists, however, the INVALID
KEY condition arises, and is handled by

1. the imperative statements given in the INVALID KEY
portion of the READ, or

2. an associated DECLARATIVES Region

The WITH LOCK and WAIT options that have been added to
the syntax of the READ and START statements for Indexed
and Relative file 1-0 are optional. For more details about lock
ing, see Chapter 17, "File and Record LOCKING.”

Examples

READ INV-REC-FILE NEXT RECORD
INTO REC-COUNT
AT END PERFORM P300.

READ INV-REC-FILE RECORD INTO REC-COUNT
INVALID KEY DISPLAY "REC NOT FOUND" .

351

Microsoft COBOL Reference Manual

12.4.5 REWRITE Statement

Purpose

Replaces a logical record in the file.

Format

The format of the REWRITE statement is the same for RELA
TIVE file organization as it is for INDEXED file organization:

REWRITE record-name [FROM identifier] [; INVALID KEY imperative-statement]

Remarks

For a file with SEQUENTIAL access, the immediately previous
action would have been a successful READ; the record made
available by this READ is replaced in the file by executing
REWRITE. If the previous READ was unsuccessful, a runtime
error will terminate execution. Therefore, no INVALID KEY
phrase is allowed for SEQUENTIAL access.

For a file with DYNAMIC or RANDOM access declared, the
record that is replaced by executing REWRITE is the one
whose ordinal number is preset in the RELATIVE KEY item.
If no such item exists, the INVALID KEY condition arises.

Example

REWRITE PR-REC FROM INV-REC
INVALID KEY PERFORM P300.

352

Relative Files

12.4.6 START Statement

Purpose

Enables a Relative file to be positioned for reading at a speci
fied key value. This statement is allowed only for files whose
access mode is defined as SEQUENTIAL or DYNAMIC.

Format

The format of the START statement is the same for RELA
TIVE file organization as it is for INDEXED file organization:

START file-name [LOCK] [WAIT] KEY

IS EQUAL TO
IS -
IS GREATER THAN > data-name
IS >
IS NOT LESS THAN

L_ IS NOT <

Remarks

Data-name may only be that of the previously declared RELA
TIVE KEY item, and the number of the relative record must
be stored in it before START is executed. When this statement
is executed, the associated file must be currently open in
INPUT or 1-0 mode.

If the KEY phrase is not present, equality between a record in
the file and the record key value is sought. If key relation
GREATER or NOT LESS is specified, the file is positioned for
next access at the first record greater than, or greater than or
equal to, the indicated key value.

If no such relative record is found, the imperative statements
in the INVALID KEY phrase are executed, or an appropriate
DECLARATIVES Region error-handling section is executed.

The WITH LOCK and WAIT options that have been added to
the syntax of the READ and START statements for Indexed
and Relative file 1-0 are optional. For more details about lock
ing, see Chapter 17, "File and Record LOCKING.”

353

Microsoft COBOL Reference Manual

Example

START INV-REC-FILE
KEY IS EQUAL TO QTY-RECEIVED
INVALID KEY DISPLAY "KEY NOT FOUND".

354

Relative Files

12.4.7 UNLOCK Statement

Purpose

Unlocks files formerly locked with a READ or START state
ment using the WITH LOCK option, or releases the last
automatically locked record.

Format

The format of the UNLOCK statement is the same for RELA
TIVE file organization as it is for INDEXED file organization:

UNLOCK file-name

Remarks

File-name specifies the file of current reference for either a
READ or a START statement. The UNLOCK statement must
appear in the same run unit as the READ or a START state
ment whose operand is the object of its action.

Example

UNLOCK MSTR-ACCT-PAYABLE-FILE.

355

Microsoft COBOL Reference Manual

12.4.8 WRITE Statement

Purpose

Releases a logical record from the record processing buffer and
directs the operating system to transfer the record to the desig
nated output device; this only applies to files in OPEN OUT
PUT or OPEN INPUT-OUTPUT mode.

Format

The format of the WRITE statement is the same for RELA
TIVE file organization as it is for INDEXED file organization:

WRITE record-name [FROM identifier] [; INVALID KEY imperative-statement]

Remarks

If access mode is SEQUENTIAL, completion of a WRITE state
ment causes the relative record number of the record just out
put to be placed in the RELATIVE KEY item.

If access mode is RANDOM or DYNAMIC, the user must
preset the value of the RELATIVE KEY item in order to
assign the record an ordinal (relative) number. The INVALID
KEY condition arises if there already exists a record having
the specified ordinal number, or if the disk space is exceeded.

Example

WRITE INV-REC FROM PR-REC
INVALID KEY PERFORM P800-NOT-FOUND.

356

Chapter 13
SORT/MERGE Facility

13.1 Syntax Considerations 359
13.1.1 FILE-CONTROL Entry 359
13.1.2 Sort File Description Entry

(SORT/MERGE) 360
13.1.3 LO-CONTROL Paragraph 360
13.2 Sort File Status Reporting 361
13.3 SORT Statement 363
13.4 MERGE Statement 364
13.5 Sorting and Merging Sequence 365
13.5.1 INPUT PROCEDURE

and USING Phrase 366
13.5.2 OUTPUT PROCEDURE

and GIVING Phrase '367
13.6 Restrictions 367
13.7 RELEASE Statement 369
13.8 RETURN Statement 370
13.9 Examples 372

357

SORT/MERGE Facility

The SORT/MERGE Facility of Microsoft COBOL enables you to
order one or more files or to combine two or more identically
ordered files during program execution. These files are ordered
according to a set of keys that you specify within each record.

This chapter describes the command syntax for the SORT and
MERGE statements. These descriptions are preceded by the
following paragraphs about related source program syntax.

13.1 Syntax Considerations

The SORT and MERGE statements use information provided
by FILE-CONTROL, File Description, and LO-CONTROL
paragraphs.

13.1.1 FILE-CONTROL Entry

The FILE-CONTROL entry names a sort or merge file, using
the following syntax:

SELECT file-name ASSIGN TO DISK

[SORT STATUS IS identifier]

Each sort or merge file described in the DATA DIVISION must
be named once and only once as a file-name in the FILE
CONTROL paragraph. Each sort or merge file specified in the
entry must have a SORT/MERGE file description (SD) entry in
the FILE SECTION of the DATA DIVISION. In a SORT
FILE-CONTROL entry, only the ASSIGN and STATUS clauses
are permitted to follow file-name in the FILE-CONTROL para
graph. The identifier must be defined in the WORKING
STORAGE SECTION.

After the execution of any SORT or MERGE statement for
file-name, the value of the identifier will be set to a two-digit
status code. (See Section 13.2, "Sort File Status Reporting,” for
a list of possible error code values.) Therefore, the identifier
should be described in the DATA DIVISION as a two-character
alphanumeric field with USAGE DISPLAY.

359

Microsoft COBOL Reference Manual

13.1.2 Sort File Description Entry
(SORT/MERGE)

A sort file description (SD) gives information about the file to
be sorted or merged using the following syntax:

[SDfile name

[; RECORD CONTAINS [integer-1 TO] integer-2 CHARACTERS]

I" I RECORD IS \
|_; DATA I RECORDS ARE J data-name-1 [, data-name-2]...

[l data-name-11 "I
; VALUE OF FILE-ID IS \ literal-1 I. J

record-description entry } ...]...

The clauses following the name of the file are optional and
they may appear in any order. The RECORD clause, DATA
RECORD(S) clause, and VALUE OF FILE-ID clause are
described in Chapter 6, "DATA DIVISION.” One or more
record description entries must follow the SORT/MERGE file
description entry. However, no INPUT-OUTPUT statements
may be executed for this file.

13.1.3 I-O-CONTROL Paragraph

The I-O-CONTROL paragraph specifies the memory area to be
shared by different files using the following syntax:

AREA FOR file-name-3

- "RECORD
SAME SORT

SORT-MERGE
, file-name-4

The I-O-CONTROL paragraph is optional. The SAME SORT
AREA and SAME SORT-MERGE AREA clauses are
equivalent.

The SAME RECORD AREA clause specifies that two or more
files are to use the same memory area for processing of the
current logical record. All of the files may be open at the same

360

SORT/MERGE Facility

time. A logical record in the SAME RECORD AREA is con
sidered as a logical record of each opened file whose file-name
appears in this SAME RECORD AREA clause.

If the SAME SORT AREA or SAME SORT-MERGE AREA
clause is used, at least one of the files must represent a SORT
or MERGE file. Files that do not represent sort or merge files
can be named in the clause, and files named in a SAME SORT
AREA or SAME SORT-MERGE AREA clause can also be
named in SAME RECORD AREA clause(s).

A file-name must not appear in more than one SAME
RECORD AREA clause. Neither may a file-name that
represents a sort or merge file appear in more than one SAME
SORT AREA or SAME SORT-MERGE AREA clause.

If a file-name that does not represent a sort or merge file ap
pears in a SAME AREA clause and in one or more SAME
SORT AREA or SAME SORT-MERGE AREA clauses, all files
named in that SAME AREA clause must be named in that
SAME SORT AREA or SAME SORT-MERGE AREA clause(s).

The files referred to in the SAME RECORD AREA, SAME
SORT AREA, or SAME SORT-MERGE AREA clause do not
need to have the same organization or access.

13.2 Sort File Status Reporting

Microsoft COBOL includes a special extension to the COBOL
standard, the SORT STATUS register.

The SORT STATUS register makes error detection possible.
At the end of a program run, the SORT STATUS register con
tains a code for any errors encountered or "00" if no errors oc
curred.

The SORT STATUS IS phrase specifies a data-item in which
the SORT facility can place a status code.

The WORKING-STORAGE SECTION description of the status
data-item should specify a two-character alphanumeric field
with USAGE DISPLAY.

361

Microsoft COBOL Reference Manual

Consistent with other error handling in COBOL, if no SORT
STATUS item is declared and an error occurs, MS-COBOL will
report the error and terminate execution.

The MS-COBOL runtime errors that can relate to SORT are:

"Need more memory"
"Object code error"
"Illegal release"
"Illegal return"
"Read beyond eof"
"Sort error XX"

XX can be one of the following sort file error codes:

00 Successful completion
20 Unknown error in Sort
70 Disk exhausted during Sort

Error codes 71-76 refer to system calls for intermediate files:

71 Error during Open call
72 Error during Close call
73 Error during Write call
74 Error during Read call
75 Error during Create call
76 Error during Delete call

The program will terminate abnormally, giving the message
"Illegal release” or "Illegal return,” if the runtime tries to exe
cute a RELEASE or RETURN statement when no SORT is
active.

362

SORT/MERGE Facility

13.3 SORT Statement

Purpose

Takes a sequence of records from a USING file or INPUT PRO
CEDURE, creates a SORT file, SORTs this file according to a
set of specified keys, and then transfers the ordered records one
at a time to a GIVING file or OUTPUT PROCEDURE.

Format

The format for the SORT statement is:

SORT file-name-1 ON i ASCENDING \ KEY data-name-1 [, data-name-2]...
\ DESCENDING J

ASCENDING \
DESCENDING I KEY data-name-3 [, data-name-4]

[COLLATING SEQUENCE IS alphabet-name].

INPUT PROCEDURE IS section-name-1 f l THROUGH \ section-name-2'
LI THRU I

USING file-name-2 [, file-name-3]...

OUTPUT PROCEDURE IS section-name-3 T f THROUGH|
LI THRU I

GIVING file-name-4

section-name-4

363

Microsoft COBOL Reference Manual

13.4 MERGE Statement

Purpose

Combines two or more identically sequenced files on a set of
specified keys. The merged records are made available to an
OUTPUT PROCEDURE or are output to a file.

Format

The format for the MERGE statement is:

MERGE file-name-1 ON ASCENDING \
DESCENDING I

KEY data-name-1 [, data-name-2]...

ON ASCENDING \
DESCENDING I

KEY data-name-3 [, data-name 4]...

[COLLATING SEQUENCE IS alphabet-name].

USING file-name-2, file-name-3 [, file-name-4]...

OUTPUT PROCEDURE IS section-name-1

GIVING file-name-5

THROUGH
THRU

section-name-2

Remarks for SORT and MERGE Operations

File-name-1 must be described in a SORT/MERGE file descrip
tion entry (SD) in the DATA DIVISION. Section-name-1
represents the name of an INPUT PROCEDURE which can be
declared for SORT but not for MERGE. Section-name-3
represents the name of an OUTPUT PROCEDURE.

File-name-2, file-name-3, and file-name-4 must be described in
a file description entry (ED) in the DATA DIVISION. These
files may have any type of organization, but ACCESS MODE
must be SEQUENTIAL. If file-name-4 has INDEXED organi
zation, the records must have been sorted according to increas
ing values of the RECORD KEY, or an error will occur during
record output.

364

SORT/MERGE Facility

Data-name-1, data-name-2, data-name-3, and data-name-4 are
KEY data-names and are subject to the following rules:

1. The data-items identified by KEY data-names must be
described in records associated with file-name-1.

2. KEY data-names may be qualified.
3. If file-name-1 has more than one record description, the

data-items identified by KEY data-names only need to
be described in one of the record descriptions.

4. None of the data-items identified by KEY data-names
can be described by an entry that contains an OCCURS
clause or is subordinate to an entry which contains an
OCCURS clause.

5. A maximum of 12 KEY data-names may be specified.
Each KEY data-item may be from 1 to 255 characters
in length.

The words THRU and THROUGH are equivalent. SORT state
ments may not appear in the DECLARATIVES portion of the
PROCEDURE DIVISION or in an INPUT or OUTPUT PRO
CEDURE associated with a SORT or MERGE statement.

The COLLATING SEQUENCE phrase applies to the com
parison and collating of nonnumeric key data-items. The col
lating sequence specified in the COLLATING SEQUENCE
phrase overrides any sequence specified in the PROGRAM
COLLATING SEQUENCE clause (see Section 5.2.3,
“SPECIAL-NAMES Paragraph,” for details).

13.5 Sorting and Merging Sequence

The data-names following the word KEY are listed from left to
right in order of decreasing significance. In the format, data-
name-1 is the major key, data-name-2 is the next most signifi
cant key, etc.

When ASCENDING is specified, the sorted or merged sequence
will be from the lowest value of the contents of the key data-
items to the highest value. When DESCENDING is specified,
the sorted or merged sequence will be from the highest value

365

Microsoft COBOL Reference Manual

to the lowest value Comparisons are made according to the
rules for the comparison of operands in a relation condition.

For a sort file, if the KEY data-items are the same for two or
more records, the sorted sequence will be the sequence in
which the records were RELEASEd to the SORT by an INPUT
PROCEDURE, or the sequence in which the records existed in
a USING file.

13.5.1 INPUT PROCEDURE
and USING Phrase

AN INPUT PROCEDURE can be used with a SORT statement,
but not with a MERGE statement.

If an INPUT PROCEDURE is used, control is passed to it at
the beginning of the SORT statement execution. The INPUT
PROCEDURE then provides the SORT mechanism (or sorter)
with records by performing a RELEASE operation for each
record. Once all of the records to be sorted have been given to
the sorter, the INPUT PROCEDURE exits by simply reaching
the end of the section.

Control is returned to the sorter at this time, and the actual
SORT operation begins.

If the USING phrase is specified, all the records in file-name-2
and file-name-3 are transferred automatically to file-name-1.
File-name-2 and file-name-3 must not be open at the time of
SORT or MERGE statement execution. The SORT or MERGE
statement automatically initiates the processing, makes avail
able the logical records, and terminates the processing of file
name-2 and file-name-3.

These functions allow any associated USE procedures to be ex
ecuted. The terminating function for all files is performed as if
a CLOSE statement without optional phrases had been execut
ed for the file. The SORT or MERGE statement also automati
cally moves records from the area of file-name-2 and file-
name-3 to the area for file-name-1 and releases the records to
the initial input phase of the SORT or MERGE operation.

366

SORT/MERGE Facility

13.5.2 OUTPUT PROCEDURE
and GIVING Phrase

If an OUTPUT PROCEDURE is used, control is passed to it at
the final phase of the SORT or MERGE statement execution.
The OUTPUT PROCEDURE receives sorted records from the
sorter by performing a RETURN operation for each record.
Once all of the sorted records have been given to the OUTPUT
PROCEDURE, the OUTPUT PROCEDURE exits by simply
reaching the end of the section.

Control is returned to the sorter at this time, the SORT opera
tion terminates, and control returns to the statement following
the SORT or MERGE statement.

If the GIVING phrase is specified, all the sorted or merged
records in file-name-1 are automatically written to file-name-4
as the implied OUTPUT PROCEDURE for the respective
SORT or MERGE statement. File-name-4 must not be open at
the time of the SORT or MERGE statement execution. The
SORT or MERGE statement automatically initiates the pro
cessing of, releases the logical records to, and terminates the
processing of file-name-4.

These functions allow any associated USE procedures to be ex
ecuted. The terminating function is performed as if a CLOSE
statement without optional phrases had been executed for the
file. The SORT or MERGE statement also automatically re
turns the sorted or merged records from the final phases of the
SORT or MERGE operation, and then moves the records from
the area for file-name-l to the area for file-name-4.

13.6 Restrictions

The restrictions on the procedural statements within the IN
PUT and OUTPUT PROCEDURES are as follows:

1. The INPUT and OUTPUT PROCEDURES must not
contain any SORT or MERGE statements.

367

Microsoft COBOL Reference Manual

2. The procedures must not contain any explicit transfers
of control to points outside the procedures; ALTER, GO
TO, and PERFORM statements in these procedures are
not permitted to refer to procedure-names outside the
INPUT and OUTPUT PROCEDURES. MS-COBOL
statements that will cause an implied transfer of con
trol to DECLARATIVES are allowed.

3. The remainder of the PROCEDURE DIVISION must
not contain any transfers of control to points inside the
INPUT and OUTPUT PROCEDURES; ALTER, GO TO,
and PERFORM statements in the remainder of the
PROCEDURE DIVISION must not refer to procedure
names within the INPUT and OUTPUT PRO
CEDURES.

Segmentation can be applied to programs containing the SORT
or MERGE statement; however, the following restrictions
apply:

1. If a SORT or MERGE statement appears in a section
that is not in an independent segment, any INPUT
PROCEDURES or OUTPUT PROCEDURES referenced
by that statement must appear within fixed segments
or be contained in a single independent segment.

2. If a SORT or MERGE statement appears in an indepen
dent segment, any INPUT PROCEDURES or OUTPUT
PROCEDURES referenced by that statement must be
contained within fixed segments or be within the same
independent segment as the SORT or MERGE
statement.

368

SORT/MERGE Facility

13.7 RELEASE Statement

Purpose

Transfers records to the initial input phase of a SORT opera
tion.

Format

The format for the RELEASE statement is:

RELEASE record-name [FROM identifier]

Remarks

A RELEASE statement may only be used within the range of
an INPUT PROCEDURE associated with a SORT statement.
Record-name must be the name of a record in the associated
SORT/MERGE file description entry and may be qualified.

The execution of a RELEASE statement releases the record
named by record-name to the initial input phase of a SORT
operation.

If the FROM phrase is used, the contents of the data area re
ferred to by the identifier-name are moved to record-name, and
the contents of record-name are released to the SORT file.

Moving takes place according to the rules specified for the
MOVE statement. After the RELEASE statement is executed,
the information in the record area is no longer available, but
the information in the data area associated with the identifier
is available.

369

Microsoft COBOL Reference Manual

13.8 RETURN Statement

Purpose

Obtains either sorted records from the final phase of a SORT
operation or merged records during a MERGE operation.

Format

The format for the RETURN statement is:

RETURN file-name RECORD [INTO identifier]

; AT END imperative-statement

Remarks

File-name must be described by a SORT/MERGE file descrip
tion entry in the DATA DIVISION. A RETURN statement
may only be used within an OUTPUT PROCEDURE associated
with a SORT or MERGE statement for file-name.

When the logical records of a file are described with more than
one record description, these records automatically share the
same storage area. This is equivalent to an implicit redefini
tion of the area.

The contents of any data-items lying beyond the range of the
current data record are undefined at the end of RETURN state
ment execution. RETURN statement execution causes the
next record to be made available for processing in the record
areas associated with the sort or merge file. The next record
will be made available in the order specified by the keys listed
in the SORT or MERGE statement.

If the INTO phrase is specified, the current record is moved
from the input area to the area specified by the identifier ac
cording to the rules for the MOVE statement. The implied
MOVE does not occur if there is an AT END condition. Any
subscripting or indexing associated with the identifier is
evaluated after the record has been returned and immediately
before it is moved to the data-item.

370

SORT/MERGE Facility

When the INTO phrase is used, the data is available in both
the input record area and the data area associated with the
identifier.

If no next logical record exists for the file during RETURN
statement execution, the AT END condition occurs. The con
tents of the record areas associated with the file when the AT
END condition occurs are undefined. After the execution of
the imperative-statement in the AT END phrase, no RETURN
statement may be executed as part of the current OUTPUT
PROCEDURE.

371

Microsoft COBOL Reference Manual

13.9 Examples

The sample programs that follow illustrate the command
language for the SORT operation. The second example pro
gram, SAMPL2, illustrates the use of a Microsoft extension,
the SORT STATUS clause, which is used for SORT file status
reporting.

Example 1:

1 IDENTIFICATION DIVISION.
2 PROGRAM-ID. SAMPL1.
3
4 ENVIRONMENT DIVISION.
5 INPUT-OUTPUT SECTION.
6 FILE-CONTROL.
7 SELECT INPUT-FILE ASSIGN TO DISK
8 ORGANIZATION IS LINE SEQUENTIAL.
9 SELECT OUTPUT-FILE ASSIGN TO DISK

1 0 ORGANIZATION IS LINE SEQUENTIAL
11 SELECT SORT-FILE ASSIGN TO DISK.
12
13 DATA DIVISION.
14 FILE SECTION.
15 FD INPUT-FILE
16 LABEL RECORDS ARE STANDARD
17 VALUE OF FILE-ID IS "SAMPLE.IN".
18 01 INPUT-RECORD.
19 04 IN-DATE.
20 08 IN-MONTH PIC 99.
21 06 IN-DAY PIC 99.
22 08 IN-YEAR PIC 99.
23 04 IN-TRANSACTION-CODE PIC XXX.
24 04 IN-ACCOUNT-NUMBER PIC 99999.
25 04 IN-REFERENCE PIC X(9).
26 04 IN-AMOUNT PIC S9(7)V99
27 SIGN IS LEADING SEPARATE.
28 FD OUTPUT-FILE
29 LABEL RECORDS ARE STANDARD
30 VALUE OF FILE-ID IS "SAMPLE.OUT".
31 01 OUTPUT-RECORD.
32 04 OUT-DATE.
33 08 OUT-MONTH PIC 99.
34 06 OUT-DAY PIC 99.
35 08 OUT-YEAR PIC 99.
36 04 OUT-TRANSACTION-CODE PIC XXX.
37 04 OUT-ACCOUNT-NUMBER PIC 99999.

372

SORT/MERGE Facility

38 04 OUT-REFERENCE PIC X(9).
39 04 OUT-AMOUNT PIC S9(7)V99
40 SIGN IS LEADING SEPARATE.
41 SD SORT-FILE.
42 01 SORT-RECORD.
43 04 SORT-DATE.
44 08 SORT-MONTH PIC 99.
45 08 SORT-DAY PIC 99.
46 08 SORT-YEAR PIC 99.
47 04 SORT-TRANSACTION-CODE PIC XXX
48 04 SORT-ACCOUNT-NUMBER PIC 99999.
49 04 SORT-REFERENCE PIC X(9).
50 04 SORT-AMOUNT PIC S9(7)V99
51 SIGN IS LEADING SEPARATE.
52
53

WORKING-STORAGE SECTION.

54 PROCEDURE DIVISION.
55 BEGIN-HERE.
56 SORT SORT-FILE
57 ON ASCENDING KEY
58 SORT-ACCOUNT-NUMBER
59 USING INPUT-FILE
60 GIVING OUTPUT-FILE.
61 STOP RUN.

Input file (SAMPLEIN):

11258020200077R00801337+000210000
11288010300224800800388-000049999
12018010100011P00800998-001523141
12018020300077R00801348+000020176
12038020100145R00801359+000522200
12046042900224600800721+000009669
12048010300011P00801007-000002774
12058020100077R00801363-000089160

373

Microsoft COBOL Reference Manual

Output file (SAMPLE.OUT):

1 201801 01 00011P00800998-001523141
12048010300011P00801007-000002774
11258020200077R00801337+000210000
12018020300077R00801348+000020176
12058020100077R00801363-000089160
12038020100145R00801359+000522200
11288010300224P00800988-000049999
12048042900224G00800721+000009669

I
I
+------- SORT KEY (SORT-ACCOUNT-NUMBER)

The following paragraphs highlight those portions of the pro
gram SAMPL1 which illustrate the use of the SORT statement.

1. Program lines 41 through 51
The SORT/MERGE file description includes descrip
tions of the records which will be found in each file to
be sorted, including data-item order and size.

2. Program lines 56 through 60
In the SORT statement, the programmer specifies
which record field will be used as the KEY for arrang
ing the records in sequence.
The programmer also specifies where the input will
come from (a USING file) and where the output will go
(a GIVING file).

3. Program line 11
The SELECT file-name ASSIGN TO DISK statement
must be included in the ENVIRONMENT DIVISION.

374

SORT/MERGE Facility

Example 2:

1 IDENTIFICATION DIVISION.
2 PROGRAM-ID. SAMPL2.
3
4 ENVIRONMENT DIVISION.
5 INPUT-OUTPUT SECTION.
6 FILE-CONTROL.
7 SELECT INPUT-FILE ASSIGN TO DISK
8 ORGANIZATION IS LINE SEQUENTIAL.
9 SELECT OUTPUT-FILE ASSIGN TO DISK

10 ORGANIZATION IS LINE SEQUENTIAL.
11 SELECT SORT-FILE ASSIGN TO DISK
12 SORT STATUS IS COMPLETION-STATUS.
13
14 DATA DIVISION.
15 FILE SECTION.
16 FD INPUT-FILE
17 LABEL RECORDS ARE STANDARD
18 VALUE OF FILE-ID IS "SAMPLE.IN" .
19 01 INPUT-RECORD.
20 04 IN-DATE.
21 08 IN-MONTH PIC 99.
22 08 IN-DAY PIC 99.
23 08 IN-YEAR PIC 99.
24 04 IN-TRANSACTION-CODE PIC XXX.
25 04 IN-ACCOUNT-NUMBER PIC 99999
26 04 IN-REFERENCE PIC X(9).
27 04 IN-AMOUNT PIC S9(7)V99
28 SIGN IS LEADING SEPARATE.
29 FD OUTPUT-FILE
30 LABEL RECORDS ARE STANDARD
31 VALUE OF FILE-ID IS "SAMPLE.OUT" .
32 01 OUTPUT-RECORD.
33 04 OUT-DATE.
34 08 OUT-MONTH PIC 99.
35 08 OUT-DAY PIC 99.
36 08 OUT-YEAR PIC 99.
37 04 OUT-TRANSACTION-CODE PIC XXX.
38 04 OUT-ACCOUNT-NUMBER PIC 99999
39 04 OUT-REFERENCE PIC X(9).
40 04 OUT-AMOUNT PIC S9(7)V99
41 SIGN IS LEADING SEPARATE.
42 SD SORT-FILE
43 VALUE OF FILE-ID IS "SORTWORK".
44 01 SORT-RECORD.
45 04 SORT-DATE.
46 08 SORT-MONTH PIC 99.
47 08 SORT-DAY PIC 99.

375

Microsoft COBOL Reference Manual

48 06 SORT-YEAR PIC 99.
49 04 SORT-TRANSACTION-CODE PIC XXX.
50 04 SORT-ACCOUNT-NUMBER PIC 99999.
51 04 SORT-REFERENCE PIC X(9).
52 04 SORT-AMOUNT PIC S9(7)V99
53
54

SIGN IS LEADING SEPARATE.

55
56

WORKING-STORAGE SECTION.

57 01 SWITCHES.
58 05 END-OF-INPUT-SW PIC X VALUE "N"
59 86 END-OF-INPUT VALUE "Y"
60 05 END-OF-OUTPUT-SW PIC X VALUE "N"
61
62

86 END-OF-OUTPUT VALUE "Y"

63 01 WORK-AREAS.
64 05 COMPLETION-STATUS PIC XX.
65 05 RECORD-COUNT PIC 999 VALUE ZERO.
66 05 LAST-TRANSACTION-CODE PIC XXX
67 VALUE HIGH-VALUES.
66 05 DEBIT-TOTAL PIC S9(9)V99
69 SIGN IS LEADING SEPARATE.
70 05 CREDIT-TOTAL PIC S9(9)V99
71 SIGN IS LEADING SEPARATE.
72 05 DEBIT-PRINT PIC $$$7$$$7$$9.99-.
73 05 CREDIT-PRINT PIC $$$7$$$7$$9.99-.
74
75

05 SPACE-FILLER PIC X(20) VALUE " " .

76
77

PROCEDURE DIVISION.

78
79

MAIN-PROCESSING SECTION.

80 100-BEGIN-HERE.
81 DISPLAY
82 "CONTROL TOTALS FOR REPORT FILE".
83 DISPLAY SPACE.
84 OPEN INPUT INPUT-FILE7
85
66

OUTPUT OUTPUT-FILE.

87 SORT SORT-FILE
88 ON ASCENDING KEY
89 SORT-TRANSACTION-CODE
90 ON DESCENDING KEY
91 SORT-YEAR SORT-MONTH SORT-DAY
92 INPUT PROCEDURE IS
93 INPUT-TO-SORT
94 OUTPUT PROCEDURE IS
95
96

OUTPUT-FROM-SORT.

376

SORT/MERGE Facility

97 IF COMPLETION-STATUS IS EQUAL TO ZERO
98 DISPLAY "SUCCESSFULLY SORTED ",
99 RECORD-COUNT, " RECORDS"

1 00 ELSE
101 DISPLAY "SORT ERROR, STATUS IS ",
102 COMPLETION-STATUS.
1 03
1 04 CLOSE INPUT-FILE, OUTPUT-FILE.
1 05 STOP RUN.
1 06
1 07 *
108 * ***** START OF INPUT PROCEDURE *****
1 09 *
110
111 INPUT-TO-SORT SECTION.
112
113 200-PROCESS-INPUT.
114 PERFORM 300-PROCESS-INPUT-FILE
115 UNTIL END-OF-INPUT.
116
117 GO TO 499-END-OF-INPUT-PROCEDURE.
118
119
120 *
121 * ***** INPUT PROCEDURE ROUTINES *****
122 *
123
124 300-PROCESS-INPUT-FILE.
125 READ INPUT-FILE
126 AT END MOVE "Y" TO
127 END-OF-INPUT-SW.
128 IF NOT END-OF-INPUT
129 PERFORM 400-PROCESS-INPUT-RECORD.
130
131 400-PROCESS-INPUT-RECORD.
132 IF IN-TRANSACTION-CODE
133 IS LESS THAN "300"
134 ADD 1 TO RECORD-COUNT
135 RELEASE SORT-RECORD
136 FROM INPUT-RECORD.
137
138 499-END-OF-INPUT-PROCEDURE.
139 EXIT.
140
141 *
142 * ***** START OF OUTPUT PROCEDURE *****
143 *
144
145 OUTPUT-FROM-SORT SECTION.

377

146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
1 73
174
175
176
177
178
1 79
180
161
182
183
184
185
186
187
188
189
190
191
192
193
194

Microsoft COBOL Reference Manual

378

500-PROCESS-OUTPUT.
PERFORM 600-PROCESS-OUTPUT-FILE

UNTIL END-OF-OUTPUT.

GO TO 899-END-OF-OUTPUT-PROCEDURE.

* ***** OUTPUT PROCEDURE ROUTINES *****

600-PROCESS-OUTPUT-FILE.
RETURN SORT-FILE INTO OUTPUT-RECORD

AT END
MOVE " Y" TO END-DF-OUTPUT-SW
PERFORM 800-CONTROL-TOTALS.

IF NOT END-OF-OUTPUT
PERFORM 700-PROCESS-OUTPUT-RECORD.

700-PROCESS-OUTPUT-RECORD.
IF SORT-TRANSACTION-CODE

IS NOT EQUAL TO
LAST-TRANSACTION-CODE

PERFORM 800-CONTROL-TOTALS.

IF SORT-AMOUNT IS GREATER THAN ZERO
ADD SORT-AMOUNT TO DEBIT-TOTAL

ELSE
SUBTRACT SORT-AMOUNT

FROM CREDIT-TOTAL.

WRITE OUTPUT-RECORD.

800-CONTROL-TOTALS.
IF LAST-TRANSACTION-CODE

IS NOT EQUAL TO HIGH-VALUES
MOVE DEBIT-TOTAL TO DEBIT-PRINT
MOVE CREDIT-TOTAL TO CREDIT-PRINT
DISPLAY "TRANSACTION CODE ",

LAST-TRANSACTION-CODE,
DEBITS " DEBIT-PRINT

DISPLAY SPACE-FILLER,
" CREDITS" CREDIT-PRINT.

MOVE SORT-TRANSACTION-CODE
TO LAST-TRANSACTION-CODE.

MOVE 0 TO DEBIT-TOTAL.
MOVE 0 TO CREDIT-TOTAL.

SORT/MERGE Facility

1 95
196 899-END-OF-OUTPUT-PROCEDURE.
197 EXIT.
198

No errors or warnings

Data area size= 1042
Code area size- 822

Input File (SAMPLE.IN):

11258020200077R00801337+000210000
11268010300224P00800988-000049999
12016010100011P00800998-001523141
12016020300077R00801348+000020176
12038020100145R00801359+000522200
12048042900224000800721+000009669
12048010300011P00801007-000002774
12058020100077R00801363-000089160

Output of program SAMPL2:

a) Output File (SAMPLE.OUT)

12016010100011P00800998-001523141
12048010300011P00801007-000002774
11288010300224P00800988-000049999
12058020100077R00801363-000089160
12038020100145R00801359+000522200
11258020200077R00801337+000210000
12018020300077R00801348+000020176

I I
I 4--------------- Ascending major key
I (SORT-TRANSACTION-CODE)
I
+------------------------Descending minor key (SORT-DATE)

379

Microsoft COBOL Reference Manual

b) Displayed Report

CONTROL TOTALS FOR REPORT FILE

TRANSACTION CODE 101 DEBITS
CREDITS

$0.00
$15, 231 .41

TRANSACTION CODE 1 03 DEBITS
CREDITS

$0.00
$527.73

TRANSACTION CODE 201 DEBITS
CREDITS

$5,222.00
$891.60

TRANSACTION CODE 202 DEBITS
CREDITS

$2,100.00
$0.00

TRANSACTION

SUCCESSFULLY

CODE 203

SORTED 007

DEBITS
CREDITS
RECORDS

$201.76
$0.00

The following paragraphs highlight those portions of program
SAMPL2 that are different from program SAMPL1.

1. Program lines 42 through 53
In addition to the descriptions of the records to be
sorted, the SORT-FILE description entry now includes
the optional VALUE OF FILE-ID clause which is
ignored by Microsoft COBOL.

2. Program lines 87 through 95
In SAMPL2, INPUT and OUTPUT PROCEDURES
were used instead of files in USING/GIVING state
ments.
Mixing of input and output selections is acceptable;
that is, you may select an INPUT PROCEDURE and
an output (GIVING) file, or an input (USING) file and
an OUTPUT PROCEDURE; these selections are as
acceptable as the selections in SAMPL1 and SAMPL2.

3. Program lines 97 through 102
Each COBOL program that uses the SORT/MERGE
Facility should define and test a SORT STATUS regis
ter so that any errors will be reported at the end of the
program run. This extension to the 1974 ANSI stan
dard will make error detection possible and will make
error handling and debugging easier. Refer to Section
13.2, "Sort File Status Reporting,” for a listing of the
possible SORT STATUS register values.

380

SORT/MERGE Facility

4. Program lines 111 through 139
The INPUT-TO-SORT SECTION was written because
special user processing was desired for each input
record. (The special processing in this case is the trans
action code selection at line 132.)
The program lines here specify the INPUT PRO
CEDURE. This section includes the RELEASE state
ment to transfer records to the initial phase of the
SORT operation. Notice the PERFORM loop inside
procedure 200-PROCESS-INPUT. Remember: The
INPUT PROCEDURE is processed only once, so any
necessary looping must be included in the INPUT PRO
CEDURE.
The GO TO statement at the end of procedure 200-
PROCESS-INPUT is present because an INPUT PRO
CEDURE implicitly PERFORMS the entire section
specified, not just the first paragraph in the section.
Without the GO TO, control would have fallen into
300-PROCESS-INPUT-FILE when the PERFORM in
200-PROCESS-INPUT was complete. The GO TO
directs control to the end of INPUT-TO-SORT SEC
TION, where it will return to the SORT statement.

5. Program lines 145 through 197
An OUTPUT PROCEDURE in the OUTPUT-FROM-
SORT SECTION was written to make immediate use of
the sort output by producing a short report.
This is typical of an OUTPUT PROCEDURE through
which sorted records are processed from SORT or
MERGE operations. This section will include the
RETURN statement to transfer records from the final
phase of a SORT or MERGE operation. Notice the
PERFORM loop inside procedure 500-PROCESS-
OUTPUT. As with the INPUT PROCEDURE, the
OUTPUT PROCEDURE is processed only once, so any
necessary looping must be included in the OUTPUT
PROCEDURE.

6. Program lines 12 and 64
The SORT STATUS IS phrase specifies a data-item
(in this case COMPLETION-STATUS) in which SORT
will place a status code. The WORKING-STORAGE

381

Microsoft COBOL Reference Manual

description of the status data-item should specify a
two-character field with USAGE DISPLAY.
Consistent with other error handling in COBOL, if no
SORT STATUS item is declared and an error occurs,
MS-COBOL will report the error and terminate
execution.

382

Chapter 14

DECLARATIVES
Region and USE Statement

The section and entry code that makes up the DECLARA
TIVES Region provides a method of including procedures that
are executed not as part of the sequential coding written by the
programmer, but rather when a condition occurs that cannot
normally be tested by the programmer.

Although the system automatically handles checking and crea
tion of standard labels and executes error recovery routines in
the case of 1-0 errors, additional procedures may be specified.

Since these procedures are executed only at the time an error
in reading or writing occurs, they cannot appear in the regular
sequence of procedural statements. They must be written at
the beginning of a PROCEDURE DIVISION.

Related procedures are preceded by a USE statement that
specifies their function. A declarative section ends with the oc
currence of another section-name with a USE statement or
with the key words END DECLARATIVES.

The key words DECLARATIVES and END DECLARATIVES
must each begin in Area A and be followed by a period (.).

The general format is:

[DECLARATIVES.

{ section-name SECTION s segment-number]. USE statement.

[paragraph-name. [sentence] ...]... } ...

END DECLARATIVES.]

The USE statement defines the applicability of the associated
section of coding.

383

Microsoft COBOL Reference Manual

A USE statement, when present, must immediately follow a
SECTION header in the DECLARATIVES Region of a PRO
CEDURE DIVISION and must be followed by a period followed
by a space. The remainder of the section must consist of zero,
one, or more procedural paragraphs that define the procedures
to be used. The USE statement itself is never executed; rath
er, it defines the conditions under which the standard error or
exception procedure will be executed. The general format of
the USE statement is:

’ file-name-1 [, file-name-2]... '
INPUT

USE AFTER STANDARD / EXCEPTION \ PROCEDURE ON OUTPUT
\ ERROR j l-O

EXTEND

The words EXCEPTION and ERROR may be used interchange
ably. The associated DECLARATIVES Region is executed (by
the PERFORM mechanism) after the standard 1-0 recovery
procedures for the files designated, or after the INVALID KEY
or AT END condition arises on a statement lacking the IN
VALID KEY or AT END phrase. A given filename may not be
associated with more than one DECLARATIVES Region.

Within a DECLARATIVES Region there must be no reference
to any nondeclarative procedure. Conversely, in the nonde
clarative portion there must be no reference to procedure
names that appear in a DECLARATIVES Region, except that
PERFORM statements may refer to a USE statement and its
procedures; but in a range specification (see Section 7.6.22,
“PERFORM Statement”), if one procedure-name is in a DE
CLARATIVES Region, the other must be in the same DE
CLARATIVES Region.

An exit from a DECLARATIVES Region is inserted by the
compiler following the last statement in the section. All logi
cal program paths within the section must lead to the exit
point.

384

Chapter 15
Segmentation

The program segmentation facility is provided to enable the ex
ecution of Microsoft COBOL programs that are larger than
physical memory. When segmentation is used (that is, when
any section header in the program contains a segment
number), the entire PROCEDURE DIVISION must be written
in sections. Each section is assigned a segment number by a
section header of the form:

section-name SECTION [segment-number] .

The general rules that follow apply to the use of segment
numbers:

1. Segment-number must be an integer with a value in
the range from 0 through 99.

2. If the segment-number is omitted, it is assumed to be 0.
3. A DECLARATIVES Region must have segment

numbers less than 50.
4. All sections which have the same segment-number

constitute a single program segment and must occur
together in the source program, but do not need to be
contiguous.

5. All segments with numbers less than 50 must occur
together at the beginning of the PROCEDURE DIVI
SION.

Segments with numbers 0 through 49 are called fixed segments
(permanent) and are always resident in memory during execu
tion, except as redefined by the SEGMENT-LIMIT clause. If
the SEGMENT-LIMIT clause has been used, the segment
numbers from the newly defined upper limit to 49 become fixed
overlayable segments and may be overlaid by an independent
segment at runtime.

385

Microsoft COBOL Reference Manual

Segments with numbers greater than 49 are called indepen
dent segments. Each independent segment is treated as a
program overlay. An independent segment is in its initial
state when control is passed to it for the first time during the
execution of a program, and also when control is passed to that
section (implicitly or explicitly) from another segment with a
different segment number.

Specifically, an independent segment is in its initial state
when it is reached by “falling through” the end of a fixed or
different independent segment.

Segmentation causes the following restrictions on the use of
the ALTER and PERFORM statements:

1. A GO TO statement in an independent segment must
not be referred to by an ALTER statement in any other
segment.

2. A PERFORM statement in a fixed segment may have
within its range only
a. sections and/or paragraphs wholly contained within

fixed segments, or
b. sections and/or paragraphs wholly contained in a

single independent segment
3. A PERFORM statement in an independent segment

may have within its range only
a. sections and/or paragraphs wholly contained within

fixed segments, or
b. sections and/or paragraphs wholly contained within

the same independent segment as the PERFORM
statement

See Section 5.2.1, “OBJECT-COMPUTER Paragraph,” for in
formation about the SEGMENT-LIMIT clause.

These remarks apply to processing of any file, whether organi
zation is SEQUENTIAL, LINE SEQUENTIAL, INDEXED, or
RELATIVE.

386

Chapter 16
COPY Statement

The COPY statement is used to logically embed the text of a
disk file (other than the source file) in the source program.
The COPY statement may be used anywhere in the
ENVIRONMENT, DATA, or PROCEDURE DIVISIONS.

The format of the COPY statement is:

COPY text-name library-name

REPLACING

= = pseudo-text-1 = =
identifier-1
literal-1
word-1

= pseudo-text-2 =
identifier-2
literal-2
word-2

where text-name is a disk filename in the format required by
the operating system and library-name is a name whose format
may vary. See the Microsoft COBOL Compiler User's Guide for
information on the formation of file and library names.

To illustrate the use of the COPY statement, suppose that you
want to copy a text file, BDEF.COB, into a host program.
BDEF.COB contains the following source code:

05 B.
10 B1 PIC X.
10 82 PIC X.

When the host source containing the COPY BDEF.COB code:

05 A.
10 A1 PIC 9.

COPY BDEF.COB.
05 C.

10 Cl PIC Z.

387

Microsoft COBOL Reference Manual

is compiled, the listing file will look like this:

43 05 A.
44 10 A1 PIC 9
45 COPY BDEF.COB.
46 C 05 B.
47 C 10 Bl PIC X
48 C 10 B2 PIC X
49 05 C.
50 10 Cl PIC Z

The COPY statement should be the last or only statement on
the line. Note that the entire statement containing the COPY
verb, including the terminal period (.), is replaced by the con
tents of file-name, so that any periods desired must be present
in the copied file.

If several libraries are available during compilation, a library
name may be specified. This serves to qualify text-name and
identify the library where the text will be found. See the
Microsoft COBOL Compiler User's Guide for a description of li
brary names allowable with your implementation.

In the REPLACING phrase, pseudo-text-1 may neither be null,
nor consist only of comment lines or character spaces. Pseudo
text-2, however, may be null.

Comment lines occurring in the library text and pseudo-text-1
are interpreted as single spaces for purposes of matching.
Comment lines occurring in the library text and pseudo-text-2
are copied into the host program unchanged.

Debugging lines are permitted in the library text and pseudo-
text-2. Debugging lines are not permitted in pseudo-text-1;
text-words appearing within a debugging line participate in
the matching as if the "D" did not appear in the comment area
(column 7).

Character strings within pseudo-text-1 and pseudo-text-2 may
be continued, but the characters of a pseudo-text delimiter
(==) must be on the same source program line.

388

COPY Statement

Note
Source program lines that have been copied into the host
program text are not checked for correct syntax until after
the REPLACING operation has been performed. Any text
placed beyond column 72 by the REPLACING operation
will be accepted, and the restrictions of placement of text
inside column 72 will be removed for the remainder of the
current line.

Word-1 or word-2 may be any COBOL word.

If the REPLACING phrase is not specified, the library text is
copied unchanged.

If the REPLACING phrase is used, the copying and replacing
operations occur in the following steps:

Note
In the discussion that follows, the term "text-word" is de
fined as a character string or separator (not including a
space) that occurs in pseudo-text or a library file.

1. The first operand of the REPLACING clause is com
pared to the text-words in the specified library, charac
ter for character, starting with the leftmost library
text-word.

2. If a match exists, the text-word represented by the
operand following the reserved word, BY, is placed in
the source program instead of the text-word represent
ed by psuedo-text-1, identifier-1, literal-1, or word-1.

3. If no correspondence exists during any of the compari
son cycles, the library text-word that is currently the
object of the comparison is placed unchanged into the

389

Microsoft COBOL Reference Manual

source program, and the next text-word in the library
is evaluated (going left to right).

4. The comparison operation continues until the rightmost
text-word in the library has either participated in a
match or has gone unmatched and been placed into the
source program.

Semicolons and separator commas that occur in psuedo-text-1,
are considered as spaces during the comparison process, unless
a semicolon or comma is the total content of the psuedo-text-1
operand. In that case, semicolons and separator commas are
treated as text-words for comparison.

390

COPY Statement

Examples

The examples that follow demonstrate the use of the COPY
statement in an FD paragraph and in a procedure.

Suppose that you wanted to insert the following data descrip
tion, and that this "text" was in a file on disk called
MASTER.CPY.

01 MASTER-RECORD.
05 MSTR-KEY PIC X(10).
05 MSTR-DESCRI PT I ON PIC X(25).
05 MSTR-AMT-ON-HAND PIC 59(5).
05 MSTR-WARNING-LEVEL PIC 59(5).

To embed the text of MASTER.CPY in the host program, the
COPY statement can be inserted at the appropriate position in
the source code.

FD INVENTORY-MASTER
LABEL RECORDS ARE STANDARD
VALUE OF FILE-ID IS "MASTER.DAT".

COPY MASTER.CPY.

This COPY operation will copy the contents of MASTER.CPY
into the source program under the FD, and will yield the fol
lowing text in the listing file:

1 01
1 02
1 03
1 04
1 05
1 06
1 07
1 08
1 09
1 1 0

FD INVENTORY-MASTER
LABEL RECORDS ARE STANDARD
VALUE OF FILE-ID IS "MASTER.DAT".

COPY MASTER.CPY.
C 01 MASTER-RECORD.
C 05 MSTR-KEY PIC X(1 0).
C 05 MSTR-DESCR I PT I ON PIC X(25).
C 05 MSTR-AMT-ON-HAND PIC 59(5).
C 05 MSTR-WARNING-LEVEL PIC 59(5).

391

Microsoft COBOL Reference Manual

In the next example, the COPY operation will replace existing
identifiers and text strings in the library file, MAIN.CPY, with
those specified with the REPLACING clause, and embed them
in the host program.

MAIN.CPY is a file on disk containing this source code:

□PEN INPUT INVENTORY-MASTER-FILE,
OUTPUT INVENTORY-WARNING-FILE,
INVENTORY-REPORT-FILE.

WRITE REPORT-RECORD FROM PR-HEADER
AFTER ADVANCING PAGE.

PERFORM P100-WRITE-REPDRT
UNTIL END-OF-FILE.

MOVE REC-COUNT TO PR-REC-COUNT.
MOVE WARNING-COUNT TO PR-WARNING-COUNT.
WRITE REPORT-RECORD

FROM PR-TOTAL-RECORD
AFTER ADVANCING 2 LINES.

CLOSE INVENTORY-MASTER-FILE,
INVENTORY-WARNING-FILE,
INVENTORY-REPORT-FILE.

STOP RUN.

Suppose that the text in MAIN.CPY can logically be inserted
into a procedure. The COPY statement would appear in the
code like this:

P000-MAINLINE.

COPY MAIN.CPY
REPLACING

INVENTORY-MASTER-FILE
BY TRANSACTION-FILE

--AFTER ADVANCING 2 LINES—
BY —BEFORE ADVANCING 1 LINE—

END-OF-FILE
BY —REC-COUNT > 10—.

392

The

200
201
202
203
204
205
206
207
208
209
21 0
21 1
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
226
229
230
231
232

COPY Statement

listing file will look like this after compilation:

P000-MA INLINE.

COPY MAIN.CPY
REPLACING

INVENTORY-MASTER-FILE
BY TRANSACTION-FILE

—AFTER ADVANCING 2 LINES—
BY
—BEFORE ADVANCING 1 LINE—

END-OF-FILE
BY —REC-COUNT > 1 0—.

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

OPEN INPUT TRANSACTION-FILE,
OUTPUT INVENTORY-WARNING-FILE,
INVENTORY-REPORT-FILE.

WRITE REPORT-RECORD FROM PR-HEADER
AFTER ADVANCING PAGE.

PERFORM PI00-WRITE-REPORT
UNTIL REC-COUNT > 10.

MOVE REC-COUNT TO PR-REC-COUNT.
MOVE WARNING-COUNT

TO PR-WARNING-COUNT.
WRITE REPORT-RECORD

FROM PR-TOTAL-RECORD
BEFORE ADVANCING 1 LINE.

CLOSE TRANSACTION-FILE,
INVENTORY-WARNING-FILE,
INVENTORY-REPORT-FILE.

STOP RUN.

393

Chapter 17
File and Record LOCKING

17.1 File LOCKING 397
17.2 Record LOCKING 398
17.3 Syntax Considerations 399
17.3.1 FILE-CONTROL Entry

(SELECT Clause) 399
17.3.1.1 Sequential and Line

Sequential Files 399
17.3.1.2 Indexed and Relative Files 400
17.3.2 OPEN, READ, START,

and UNLOCK Statements 402
17.3.2.1 OPEN Statement (Sequential

and Line Sequential) 402
17.3.2.2 OPEN Statement

(Indexed and Relative) 402
17.3.2.3 READ Statement

(in MANUAL Mode) 403
17.3.2.4 START Statement (in AUTOMATIC

and MANUAL Mode) 404
17.3.2.5 UNLOCK Statement 404

395

File and Record LOCKING

A file and record LOCKING construct for multi-user/multi-
tasking systems has been implemented with Microsoft COBOL.
File and record LOCKING ensure protection of data files
during simultaneous access by multiple processes, and give
individual processes the opportunity for exclusive use of a file.

This is an extension to the full language standard, and pro
vides for Sequential and Line Sequential file processing in one
LOCKING mode (EXCLUSIVE), and Indexed and Relative file
processing in three LOCKING modes (EXCLUSIVE, MANU
AL, or AUTOMATIC).

The file and record LOCKING syntax is supported in these
places:

1. in the FILE-CONTROL entry which supercedes the 1-0
statements that follow.

2. in the OPEN, READ, START, and UNLOCK state
ments.

3. in some implementations of MS-COBOL, additional file
locking commands can be entered on the runtime com
mand line. If your implementation supports this
feature the Microsoft COBOL Compiler User's Guide
will describe its use.

17.1 File LOCKING

File LOCKING gives the user exclusive use of the file. All at
tempts by another process to either read, write, or lock the file
will be prevented by the operating system. If the other process
is a COBOL program, an error will be generated by the
COBOL runtime. File LOCKING is most frequently used for
sequential processing of a file.

397

Microsoft COBOL Reference Manual

17.2 Record LOCKING

Record LOCKING is only implemented for Indexed and Rela
tive files.

Selecting the AUTOMATIC option in the LOCKING clause
specifies that the records will be accessed in the AUTOMATIC
record LOCKING mode. The AUTOMATIC record LOCKING
mode automatically locks any record that is the target of a
READ statement. The same record is automatically unlocked
by the next READ, WRITE, REWRITE, or CLOSE.

See Section 17.3, "Syntax Considerations,” for the LOCKING
clause syntax.

Selecting the MANUAL option in the LOCKING clause speci
fies that the records will be accessed in the MANUAL LOCK
ING mode. The MANUAL LOCKING mode only locks a record
when the LOCK verb is present in the respective READ or
START statement. In MANUAL LOCKING mode, the record
is only unlocked by an UNLOCK statement or when the file is
CLOSEd.

Record LOCKING gives the user exclusive use of several
records at a time in the MANUAL LOCKING mode or one
record at a time in the AUTOMATIC LOCKING mode. For the
limitations placed on multiple record LOCKING under the
MANUAL LOCKING mode, see the Microsoft COBOL Com
piler User's Guide.

Note
Normal 1-0 error handling applies to this element of the
construct, requiring FILE STATUS, INVALID KEY, or
DECLARATIVES Region language to prevent program ter
mination.

398

File and Record LOCKING

17.3 Syntax Considerations

The discussion that follows explains the use of the file and
record LOCKING command language within either the FILE
CONTROL entry, or in the file 1-0 statements: OPEN, READ,
START, and UNLOCK.

17.3.1 FILE-CONTROL Entry (SELECT Clause)

The four file organizations supported by Microsoft COBOL now
default to specific file LOCKING and record LOCKING modes.

17.3.1.1 Sequential and Line Sequential Files

The syntax for the SELECT clause for Sequential and Line
Sequential files follows:

SELECT [OPTIONAL] file-name

(DISK \
ASSIGN TO \ PRINTER f

jj [LOCKING IS] EXCLUSIVE]

F ("AREA I"]
RESERVE integer LaREASjJ

[I ORGANIZATION IS [LINE] SEQUENTIAL]

[; ACCESS MODE IS SEQUENTIAL]

I : FILE STATUS IS data-name-1].

The use of the EXCLUSIVE option in the SELECT clause for
the file specifies exclusive use of the file. This mode only ap
plies to disk files.

The EXCLUSIVE option is meant to be used with file modes
and organizations where random access is not the objective.

399

Microsoft COBOL Reference Manual

Note
EXCLUSIVE is the default behavior of the SELECT clause
for SEQUENTIAL and LINE SEQUENTIAL file organiza
tions.

17.3.1.2 Indexed and Relative Files

The syntax for the SELECT clause for Indexed files is:

FILE-CONTROL.

SELECT file-name

ASSIGN TO DISK

(EXCLUSIVE
[LOCKING IS] { MANUAL

I AUTOMATIC

; RESERVE integer ["AREA “I
LAREASj

: ORGANIZATION IS INDEXED

; ACCESS MODE IS
SEQUENTIAL
RANDOM

. DYNAMIC

400

File and Record LOCKING

and for Relative files is:

SELECT file-name

ASSIGN TO DISK

[LOCKING IS]
EXCLUSIVE
MANUAL
AUTOMATIC j

; RESERVE integer s'AREA “I
LareasJ

; ORGANIZATION IS RELATIVE

SEQUENTIAL [, RELATIVE KEY IS data-name-1]
: ACCESS MODE IS

I RANDOM\
I dynamic/ , RELATIVE KEY IS data-name-1

[; FILE STATUS IS data-name-2] .

The use of the EXCLUSIVE option in the SELECT clause for
the file specifies exclusive use of the file.

The AUTOMATIC option allows sharing of the records in the
file. The AUTOMATIC option dictates that a single record will
automatically be locked when accessed by a READ statement
and automatically unlocked by the next READ, REWRITE,
WRITE, or CLOSE statements. Only one record is locked and
unlocked at a time in this context.

Note
The AUTOMATIC option is the default for Indexed and
Relative files.

If the MANUAL option is specified, more than one record can
be locked or unlocked at a time. The READ and START state
ments using the LOCK verb will lock a record. The UNLOCK
statement will release all locks present in the file.

401

Microsoft COBOL Reference Manual

The AUTOMATIC and MANUAL options are meant to be used
where random record processing of Relative and Indexed files
in the OPEN 1-0 mode is the object of the program.

17.3.2 OPEN, READ, START,
and UNLOCK Statements

The LOCKING context specified in the OPEN statement takes
precedence over any subsequent file LOCKING language. For
example, if the OPEN statement implies or specifies EX
CLUSIVE LOCKING, subsequent LOCK, UNLOCK, and
WAIT clauses for the file so opened are ignored.

17.3.2.1 OPEN Statement
(Sequential and Line Sequential)

The syntax for the OPEN statement for Sequential and Line
Sequential files follows:

OPEN l LOCKING IS] EXCLUSIVE j

(INPUT file-name-1 rREVERSED 1 s. file-name-2 ["REVERSED U
LWITH NO REWINDJ |_ [W,TH N0 REWIND IJ

OUTPUT file-name-3 [WITH NO REWIND] [, file-name-4 [with NO REWIND]]...

IX) file-name-5 [, file-name-6] ...

. EXTEND file-name-7 [, file-name-8]...

If the LOCKING clause is not specified, the EXCLUSIVE
LOCKING mode is implied by OPEN EXTEND and OPEN
OUTPUT. Files OPENed with the INPUT option may only be
read, and so require no file locking.

17.3.2.2 OPEN Statement (Indexed and Relative)

The syntax for the OPEN statement for Indexed and Relative
files follows:

OPEN l LOCKING IS]
(EXCLUSIVE \
{ MANUAL }
I AUTOMATIC I

{INPUT file-name-1 [,file-name-2]
OUTPUT file-name-3 [, file-name-4 j
l-O file-name-5 [. file-name-6]

402

File and Record LOCKING

If the LOCKING clause is not specified, the EXCLUSIVE
LOCKING mode is implied by OPEN OUTPUT. AUTOMATIC
LOCKING mode is implied by OPEN 1-0. Files OPENed with
the INPUT option may only be read, and so require no file
locking.

17.3.2.3 READ Statement (in MANUAL Mode)

The READ statement syntax for Indexed files is:

READ file-name [NEXT] RECORD [LOCK] [WAIT] [INTO identifier]

[; AT END imperative-statement]

READ file-name RECORD [LOCK] [WAIT] [INTO identifier]

[i KEY IS data-name]

[; INVALID KEY imperative-statement]

and for Relative files is:

READ file-name [NEXT] RECORD [LOCK] [WAIT] [INTO identifier]

[; AT END imperative-statement]

READ file-name RECORD [LOCK] [WAIT] [INTO identifier]

[; INVALID KEY imperative-statement]

The LOCK and WAIT verbs are optional. If the WAIT verb is
used and a locked record is encountered during runtime, the
process will wait until the specified record is released, and then
will execute the READ instruction.

If the WAIT verb is not specified and a locked record is encoun
tered during runtime, the runtime executor will return an
error condition.

403

Microsoft COBOL Reference Manual

17.3.2.4 START Statement
(in AUTOMATIC and MANUAL Mode)

The syntax for the START statement for Indexed and Relative
files is:

START file-name [LOCK] [WAIT]

IS EQUAL TO
IS =
IS GREATER THAN

KEY <
IS >
IS NOT LESS THAN

> data-name

ISNOT< _

The LOCK and WAIT verbs are optional. If the WAIT verb is
used and a locked record is encountered during runtime, the
process will wait until the specified record is released, and then
will execute the START instruction.

If the WAIT verb is not specified and a locked record is encoun
tered during runtime, the runtime executor will return an
error condition.

Unlike the READ statement which automatically locks a
record in AUTOMATIC LOCKING mode, the START state
ment in AUTOMATIC LOCKING mode will not lock a record
unless the LOCK verb is present in the statement.

17.3.2.5 UNLOCK Statement

The UNLOCK statement removes all locks from a file and,
with the exception of the CLOSE statement, is the only means
of unLOCKING the records of a file in the MANUAL LOCK
ING mode. Furthermore, the UNLOCK statement only applies
within the context of the MANUAL LOCKING mode.

404

Appendices

A Permissible MOVE Operands 407
B Nested IF Statements 409
C Reserved Words 413
D ASCII Character Set 419

405

Appendix A
Permissible MOVE Operands

Table A.1
Permissible MOVE Operands

Source
Operand

Receiving Operand In MOVE Statement

Numeric
Integer

Numeric
Non-integer

Numeric
Edited

Alpha
numeric
Edited

Alpha
numeric Group

Numeric
Integer OK OK OK OK(A) OK(A) OK(B)

Numeric
Non-integer OK OK OK OK(B)

Numeric
Edited OK OK OK(B)

Alpha
numeric
Edited OK OK OK(B)

Alpha
numeric OK(C) OK(C) OK(C) OK OK OK(B)

Group OK(B) OK(B) OK(B) OK(B) OK(B) OK(B)

The characters (A), (B), and (C) in the preceding table indicate:

(A) Source sign, if any, is ignored.
(B) If the source operand or the receiving operand is a

group item, the move is considered to be a group
move.

(C) Source is treated as an unsigned integer; source
length may not exceed 31.

407

Microsoft COBOL Reference Manual

Note
No distinction is made in the compiler between alphabetic
and alphanumeric. Therefore, numeric items should not be
moved to alphabetic items, and vice versa.

Alignment Rules for Receiving Fields

The data type of a receiving field determines the positioning of
data within it. The following rules apply:

1. If the receiving field is numeric, the data-item is
aligned on the decimal point by padding with zeros or
by truncation, when the data-item is too short or too
long.

2. If the receiving field is numeric-edited, the data-item is
aligned as in a numeric field, except that the editing
may cause replacement of leading zeros and the inser
tion of editing characters, as specified by the receiving
field’s PICTURE clause.

3. If the receiving field is alphabetic, alphanumeric, or
alphanumeric-edited, the data-item is aligned at the
leftmost character position with SPACE FILL or trun
cation on the right end as required by the data
transfer.

If the JUSTIFIED clause has been specified for the receiving
field, these alignment rules are modified as described in the
JUSTIFIED clause.

408

Appendix B
Nested IF Statements

A “nested IF” exists when the conjunction IF appears more
than once in a single sentence.

Example

IF X = Y
IF A = B

MOVE TO SWITCH
ELSE

MOVE "A" TO SWITCH
ELSE

MOVE SPACE TO SWITCH.

The flow of the preceding example may be represented by a
tree structure. Such a structure is illustrated by the figure on
the following page.

409

Microsoft COBOL Reference Manual

Figure 8.1. Tree Structure of Nested IF Statements

Another useful way of viewing nested IF structures is based on
numbering IF and ELSE verbs to show their priorities.

Example

IF1 X = Y
t rue-act ion1 :

IF2 A = B
t rue-ac t ion2:

MOVE TO SWITCH
ELSE2

fa 1se-ac ti on2:
MOVE "A" TO SWITCH

ELSE1
fal5e-action1 :

MOVE SPACE TO SWITCH.

The preceding illustration shows that IF2 is wholly nested
within the true-action side of IF1.

410

Nested IF Statements

The number of ELSEs in a sentence need not be the same as
the number of IFs; there may be fewer ELSE branches.

Example

IF M = 1
IF K = 0

GO TO M1-K0
ELSE

GO TO M1-KNOTO.

IF AMOUNT IS NUMERIC
IF AMOUNT IS ZERO

GO TO CLOSE-OUT.

In the latter case, the second IF could equally well have been
written as AND.

411

Appendix C
Reserved Words

In the reserved word lists that follow, a plus sign (+) before a
reserved word indicates words which are required by Microsoft
COBOL for its extensions: the interactive screens feature, de
bug and file-locking facilities, and special data formats.

413

Microsoft COBOL Reference Manual

ACCEPT
ACCESS
ADD
ADVANCING
AFTER
ALL
ALPHABETIC
ALSO
ALTER
ALTERNATE
AND
ARE
AREA(S)
ASCENDING

+ ASCII
ASSIGN
AT
AUTHOR

+ AUTO-SKIP
+ AUTOMATIC

CLOSE
COBOL
CODE
CODE-SET

+ COL
COLLATING
COLUMN
COMMA
COMMUNICATION
COMP
COMPUTATIONAL

+ COMPUTATIONAL-O
+ COMP-O
+ COMPUTATIONAL-3
+ COMP-3
+ COMPUTATIONAL-4
+ COMP-4

COMPUTE
CONFIGURATION
CONTAINS
CONTROL(S)

+ BACKGROUND-COLOR
A BEEP

BEFORE
+ BELL

BLANK
+ BLINK

BLOCK
BOTTOM
BY

COPY
CORR(ESPONDING)
COUNT
CURRENCY

DATA
DATE
DATE-COMPILED
DATE-WRITTEN
DAY

CALL
CANCEL
CD
CF
CH

+ CHAIN
+ CHAINING

CHARACTER(S)
CLOCK-UNITS

DEBUG-CONTENTS
DEBUG-ITEM
DEBUG-LINE
DEBUG-NAME
DEBUG-SUB-1
DEBUG-SUB-2
DEBUG-SUB-3
DEBUGGING
DECIMAL-POINT

414

Reserved Words

DECLARATIVES
DELETE
DELIMITED
DELIMITER
DEPENDING
DESCENDING
DESTINATION
DE(TAIL)
DISABLE
DISK

+ DISPLAY
DIVISION
DOWN
DUPLICATES
DYNAMIC

ED
FILE
FILE-CONTROL

+ FILE-ID
FILLER
FINAL
FIRST
FOOTING
FOR

+ FOREGROUND-COLOR
FROM

GENERATE
GIVING
GO
GREATER

EGI
+EJECT

ELSE
EMI

+ EMPTY-CHECK
ENABLE
END
END-OF-PAGE
ENTER
ENVIRONMENT
EOP
EQUAL

+ERASE
ERROR

+ESCAPE
ESI
EVERY
EXCEPTION

+ EXCLUSIVE
+ EXHIBIT

EXIT
EXTEND

GROUP

HEADING
HIGH-VALUE(S)
HIGHLIGHT

1-0
LO-CONTROL
IDENTIFICATION
IF
IN
INDEX
INDEXED
INITIAL
INITIATE
INPUT
INPUT-OUTPUT
INSPECT
INSTALLATION
INTO
INVALID
IS

415

Microsoft COBOL Reference Manual

JUST(IFIED) OBJECT-COMPUTER
OCCURS

KEY OF

LABEL
OFF
OMITTED

+ LAST ON
LEADING OPEN
LEFT OPTIONAL

+ LEFT-JUSTIFY OR
LENGTH ORGANIZATION

+ LENGTH-CHECK OUTPUT
LESS OVERFLOW
LIMIT(S)

+ LIN PAGE
LINAGE PAGE-COUNTER
LINAGE-COUNTER PERFORM
LINE(S) PF
LINE-COUNTER PH

+ LINKAGE PIC(TURE)
LOCK PLUS

+ LOCKING POINTER
LOW-VALUE(S) POSITION

+ MANUAL
POSITIVE

+ PRINTER
MEMORY PRINTING
MERGE PROCEDURE(S)
MESSAGE PROCEED
MODE PROGRAM
MODULES PROGRAM-ID
MOVE + PROMPT
MULTIPLE
MULTIPLY QUEUE

NATIVE
NEGATIVE

QUOTE(S)

RANDOM
NEXT RD
NO READ

+ NO-ECHO +READY
NOT RECEIVE
NUMBER RECORD(S)
NUMERIC REDEFINES

416

Reserved Words

REEL
REFERENCES
RELATIVE
RELEASE
REMAINDER
REMOVAL
RENAMES
REPLACING
REPORT(S)
REPORTING
RERUN
RESERVE
RESET
RETURN
REVERSE-VIDEO
REVERSED
REWIND
REWRITE
RF
RH
RIGHT

+ RIGHT-JUSTIFY
ROUND
RUN

SIGN
SIZE
SORT
SORT-MERGE
SOURCE
SOURCE-COMPUTER
SPACE(S)

+ SPACE-FILL
SPECIAL-NAMES
STANDARD
STANDARD-1
START
STATUS
STOP
STRING
SUB-QUEUE-1,2,3
SUBTRACT
SUM
SUPPRESS
SYMBOLIC
SYNC(HRONIZED)

TABLE
TALLYING
TAPE

SAME
SD
SEARCH
SECTION
SECURITY
SEGMENT
SEGMENT-LIMIT
SELECT
SEND
SENTENCE
SEPARATE
SEQUENCE
SEQUENTIAL
SET

TERMINAL
TERMINATE
TEXT
THAN
THROUGH
THRU
TIME
TIMES
TO
TOP

+TRACE
TRAILING

+ TR AILING-SIGN
TYPE

417

Microsoft COBOL Reference Manual

UNDERLINE
UNIT

+ UNLOCK
UNSTRING
UNTIL
UP

+UPDATE
UPON
USAGE
USE
USING

WITH
WORDS
WORKING-STORAGE
WRITE

ZERO((E)S)
ZERO-FILL

+

VALUE(S)
VARYING

/
**

+ WAIT
WHEN =(=)

418

Appendix D
ASCII Character Set

Dec Hex CHR Dec Hex CHR

000 OOH NUL 032 20H SPACE
001 01H SOH 033 21H I
002 02H STX 034 22H u

003 03H ETX 035 23H #
004 04H EOT 036 24H $
005 05H ENQ 037 25H %
006 06H ACK 038 26H &

007 07H BEL 039 27H >
008 08H BS 040 28H (
009 09H HT 041 29H)
010 OAH LF 042 2AH -i-

Oil OBH VT 043 2BH +
012 OCH FF 044 2CH
013 ODH CR 045 2DH —

014 OEH SO 046 2EH
015 OFH SI 047 2FH /

016 10H DLE 048 30H 0
017 11H DC1 049 31H 1
018 12H DC2 050 32H 2
019 13H DC3 051 33H 3
020 14H DC4 052 34H 4
021 15H NAK 053 35H 5
022 16H SYN 054 36H 6
023 17H ETB 055 37H 7
024 18H CAN 056 38H 8
025 19H EM 057 39H 9
026 1AH SUB 058 3AH
027 1BH ESCAPE 059 3BH
028 1CH FS 060 3CH <
029 1DH OS 061 3DH —

030 1EH RS 062 3EH >
031 1FH US 063 3FH ?

419

Microsoft COBOL Reference Manual

DEL=Rubout

Dec Hex CHR Dec Hex CHR

064 40H @ 096 60H
065 41H A 097 61H a
066 42H B 098 62H b
067 43H C 099 63H c
068 44H D 100 64H d
069 45H E 101 65H e
070 46H F 102 66H f
071 47H G 103 67H g
072 48H H 104 68H h
073 49H I 105 69H i
074 4AH J 106 6AH j
075 4BH K 107 6BH k
076 4CH L 108 6CH 1
077 4DH M 109 6DH m
078 4EH N 110 6EH n
079 4FH 0 111 6FH 0

080 50H P 112 70H P
081 51H Q 113 71H q
082 52H R 114 72H r
083 53H 8 115 73H s
084 54H T 116 74H t
085 55H U 117 75H u
086 56H V 118 76H V

087 57H w 119 77H w
088 58H X 120 78H X

089 59H Y 121 79H y
090 5AH Z 122 7 AH z
091 5BH [123 7BH {
092 5CH \ 124 7CH I
093 5DH] 125 7DH }
094 5EH A 126 7EH
095 5FH - 127 7FH DEL

Dec'=decimal, Hex - hexadecimal (H), CHR=character,
LF= Line Feed, FF=Form Feed, CR==Carriage Return,

420

Index

Abbreviated relational
conditions, 235

ACCEPT statement, 185
data input field, 191
data-items, 115
Format 1, 186
Format 2, 188
Format 3, 190

AUTO-SKIP, 193, 195, 198,
200

BEEP, 198, 200
data input, 193
data transfer, 193
EMPTY-CHECK, 198, 199
LEFT-JUSTIFY, 198, 199
LENGTH-CHECK, 198, 199
NO-ECHO, 199, 200
PROMPT, 193, 198, 199
RIGHT-JUSTIFY, 194, 198,

199
SPACEFILL, 194, 198, 199
TRAILING-SIGN, 199
UPDATE, 193, 198, 199
ZERO-FILL, 194, 198, 199

Format 4, 205
AUTO option, 206
BELL option, 206
data transfer, 205
ESCAPE KEY value, 205
ESCAPE option, 205
FROM/TO/USING option,

205
FULL option, 206
JUSTIFIED option, 206
REQUIRED option, 206
SCREEN SECTION, 205
SECURE option, 206

WITH phrase options
PROMPT, 193
UPDATE, 193

ACCEPT screen-name, 205

ACCESS MODE IS clause, 63,
297

Indexed files, 314
SORT/MERGE files, 364

ADD statement, 207
ADVANCING PAGE phrase,

139
ADVANCING phrase, 309
AFTER, 247
AFTER ADVANCING, 308
AFTER INITIAL subphrase,

238
Alignment rules, 408
ALL, 21
ALL as figurative literal, 21
ALL phrase, 270
Alphabet-name, 57
ALPHABETIC, 230
Alphanumeric item, 146
Alphanumeric-edited item, 146
ALSO, 56
ALTER statement, 209

restricted usage, 386
ALTERNATE RECORD KEY

clause, 7, 317
split keys, 317

Area A, 11, 73
Area B, 11, 70, 73
Arithmetic expressions, 26
Arithmetic operators, 26
Arithmetic statements, 177

ADD statement, 207
composite of operands, 25
COMPUTE statement, 214
conditional, 24
decimal digit restriction, 25
DIVIDE statement, 220
imperative, 24
multiple destinations, 24
MULTIPLY statement, 244

421

Index

Arithmetic statements
(continued)

optional phrases
CORRESPONDING, 25,

178
GIVING, 25, 179
REMAINDER, 25, 180
ROUNDED, 25, 180
SIZE ERROR, 25, 181

receiving fields, 25
SUBTRACT statement, 267

ASCENDING phrase
MERGE statement, 364
OCCURS clause, 142, 290
SORT statement, 365

ASCII character set, 419
ASCII IS NATIVE, 57
ASSIGN clause, 64, 70, 359
AT END condition, 182, 305,

328, 348, 370
AT END phrase, 182, 305

Indexed files, 320
READ statement, 350
RETURN statement, 370
SEARCH statement, 288

AUTHOR paragraph, 41
AUTO clause, 119
AUTO-SKIP, 190
AUTOMATIC option, 398, 401

BACKGROUND-COLOR clause,
120

BEFORE ADVANCING, 308
BEFORE INITIAL subphrase,

238
BELL clause, 121
Binary format, 94, 143, 164, 286
Binary item

COMP-0, 94
COMP-4, 94

Binary word integer subscript,
285

Binary-coded decimal (packed),
93

BLANK LINE clause, 122

BLANK SCREEN clause, 123
BLANK WHEN ZERO clause,

89, 124
BLINK clause, 125
BLOCK clause, 126
Blocked input files

data transmission, 306
input buffer, 306
READ statement, 306

BOTTOM, 138
BY phrase, 220

CALL statement, 277
CANCEL statement, 280
Carriage return/line feed pair,

68
CHAIN statement, 7, 279
CHAINING phrase, 7, 277, 280,

281
Character comparisons, 228

collating sequence, 229, 365
COPY statement, 390
SORT/MERGE files, 366

Character set, 13
CHARACTERS, 53, 126
CHARACTERS phrase, 238
CHARACTERS phrase

(INSPECT), 237
Characters, lowercase, 7
Class condition test, 230
Clause, definition, 32
Clauses, 118

ACCESS MODE clause, 63,
297, 314, 364

ALTERNATE RECORD KEY
clause, 317

ASSIGN clause, 64
AUTO clause, 119
BACKGROUND-COLOR

clause, 120
BELL clause, 121
BLANK LINE clause, 122
BLANK SCREEN clause, 123
BLANK WHEN ZERO clause,

124

422

Index

Clauses (continued)
BLINK clause, 125
BLOCK clause, 126
CODE-SET clause, 127
COLUMN clause, 128
CONSOLE IS clause, 57
CURRENCY SIGN clause, 67
DATA RECORD(S) clause,

130
DECIMAL-POINT IS

COMMA clause, 58, 188
EJECT clause, 58
FILE STATUS clause, 65
FOREGROUND-COLOR

FROM/TO/USING clause,
115, 132

FULL clause, 134
HIGHLIGHT clause, 135
JUSTIFIED clause, 136
LABEL RECORD(S) clause,

137
LINAGE clause, 138, 309
LINE clause, 140
LOCKING clause, 399
MULTIPLE FILE clause, 75
OCCURS clause, 142, 290,

365
ORGANIZATION clause, 68,

297
PICTURE clause, 145
PRINTER clause, 58
PROGRAM COLLATING

SEQUENCE clause, 53,
57, 229

RECORD clause, 153
RECORD KEY clause, 315,

364
REDEFINES clause, 118, 154
RELATIVE KEY clause, 340,

348, 356
RENAMES clause, 156
REQUIRED clause, 158
RERUN clause, 76
SAME AREA clause, 77
SAME RECORD AREA

clause, 298, 360

Clauses (continued)
SAME SORT AREA clause,

361
SAME SORT-MERGE AREA

clause, 361
SECURE clause, 159
SEGMENT-LIMIT clause, 54,

385
SELECT clause, 7, 69, 296,

359
SIGN clause, 160
SORT STATUS clause, 359,

380
SWITCH-n clause, 58
SYNCHRONIZED clause, 162
USAGE clause, 93, 164
VALUE IS clause, 167
VALUE OF FILE-ID clause,

169, 360
WHEN clause, 290
WITH DEBUGGING MODE

clause, 183, 222, 253
CLOCK-UNITS, 73
CLOSE statement

Indexed files, 322
Line Sequential files, 301
Relative files, 345
Sequential files, 301

CODE-SET clause, 127
Coding rules, 11
Collating sequence, 53-54
COLLATING SEQUENCE

phrase, 365
COLUMN clause, 128
Comment entries, 12
COMP, 164
COMP-0, 94, 143, 164, 165, 295
COMP-3, 164, 295
COMP-4, 94, 143, 164, 295
Compiler directing statements,

23, 36
Complex conditions, 234

abbreviated conditions, 235
NOT, negation operator, 234
parenthesized conditions, 233

Composite of operands, 24, 25,
208, 221, 244, 268

423

Index

Compound condition, 232
COMPUTATIONAL, 164
COMPUTATIONAL-0, 94, 143,

164, 165, 286
COMPUTATIONAL-3, 7, 164
COMPUTATIONAL-4, 94, 143,

164, 286
COMPUTE statement, 214
Condition-name, 17

level 88 items, 98
SWITCH-n clause, 57

Condition-name (SEARCH), 290
Condition-name condition test,

231
Conditional items, 35
Conditional PERFORM, 248
Conditional statements, 23
Conditional variable, 98
Conditions

abbreviated, 235
AT END, 182, 305, 328, 348,

370, 384
complex, 234
compound, 232
duplicate key, 319
INVALID KEY, 182, 324,

329, 334, 348, 351, 356,
384

parenthesized, 233
simple, 229
simple relational, 290
SIZE ERROR, 181
WHEN, 288

CONFIGURATION SECTION,
51

CONSOLE IS clause, 57
CONTAINS, 153
Continuation lines, 11
Continued line

Area A, 12
hyphen (-) sign, 12
indicator area, 12
non-numeric literals, 20

COPY statement, 387
CORRESPONDING identifiers,

178

CORRESPONDING phrase,
178, 181, 241

ADD statement, 207
SUBTRACT statement, 267

COUNT IN phrase, 271
CURRENCY SIGN clause, 57
Current record pointer, 303, 325
Cursor positioning

AUTO clause, 119
auto-skip, 119
BACK SPACE, 197
COLUMN clause, 128
DISPLAY statement, 218
Format 3 ACCEPT, 186, 193,

195
FORWARD SPACE, 197
LINE clause, 140
line position, 140

Data description entries, 89
DATA DIVISION, 83

clauses, see Clauses
data limits, 100
FILE SECTION, 105 .
LINKAGE SECTION, 111
memory allocation, 101
SCREEN SECTION, 113
sections, 84-85
WORKING-STORAGE

SECTION, 109
Data initialization

CHAINING phrase, 282
DATA DIVISION, 83
USING phrase, 282

Data input field, 191
DATA RECORD(S) clause, 130
Data transfer

chained program parameters,
280

CHAINING phrase, 280
USING phrase, 280

Data types (categories), 22
Data-item

elementary item, 34
group item, 34

424

Index

Data-item (continued)
LINKAGE SECTION, 111
truncation, 243

Data-name, 16
DATA-RECORD(S) clause, 360
DATE value (ACCEPT), 186
DATE-COMPILED paragraph,

42
DATE-WRITTEN paragraph, 43
DAY value (ACCEPT), 186
Debug statements, 12

EXHIBIT statement, 183, 222
READY TRACE statement,

183, 253
RESET TRACE statement,

183, 253
Debugging

dynamic, 7
trace-style, 6

Decimal point alignment, 26
DECIMAL-POINT IS COMMA

clause, 19, 58, 188
DECLARATIVES, 385
DECLARATIVES error

procedure, 182
DECLARATIVES procedure,

305
DECLARATIVES Region, 182

error handling, 383
the USE statement, 383

DELETE statement
Indexed files, 324
Relative files, 347

DELIMITED BY phrase, 264,
270, 271

DELIMITER IN phrase, 271
Delimiters, 20
DEPENDING ON phrase

GO TO statement, 226
OCCURS clause, 142, 290

DESCENDING phrase
MERGE statement, 364
OCCURS clause, 142, 290
SORT statement, 365

DISK, 61

Disk files
data transmission, 306
external storage device, 306

Disk-assigned file, 169
DISPLAY, 164
DISPLAY format, 91, 93, 143,

164, 165, 359
DISPLAY statement, 217

display screen-name, 219
ERASE option, 218
position-spec, 217
screen items, 115

DIVIDE statement, 220
Division, definition, 33
DOWN BY, 287
Duplicate key condition, 319
DUPLICATES phrase, 7, 317,

319
DYNAMIC access

Indexed files, 313, 321
OPEN statement, 325
READ statement, 327, 350
Relative files, 339

Dynamic debugging, 7

Edited receiving fields, 96, 147,
408

Editing characters
alphabetic (A), 146
ASCII character set (X), 146
assumed decimal point (V),

146
blank (B), 146, 148
comma (,), 148
credit symbol (CR), 149
debit symbol (DB), 149
decimal point (.), 148
decimal scaling position (P),

147
dollar sign ($), 96-97
floating string, 149
forward slash (/), 146, 148
minus sign (-), 96-97, 149
numeric (9), 146

425

Index

Editing characters (continued)
operational sign (S), 147
plus sign (.+), 149
replacing (Z and *), 150-151
replacing leading zeros, 242
sign character (S), 93
zero (0), 146, 148

Editing
Format 4 ACCEPT, 205

EJECT clause, 58
Elementary item, 91

definition, 34
ELSE NEXT SENTENCE

phrase, 227
ELSE phrase, 227
ELSE verb, 410
EMPTY-CHECK, 198
End-of-file delimiters, 297
End-of-file processing, 302
END-OF-PAGE, 308
END-OF-PAGE phrase, 309
Entry, definition, 33
ENVIRONMENT DIVISION, 49

CONFIGURATION
SECTION, 51

FILE-CONTROL paragraph,
61

header, 49
OBJECT-COMPUTER

paragraph, 53
SOURCE-COMPUTER

paragraph, 55
SPECIAL-NAMES paragraph,

56
EOP, 308
EQUAL phrase (SEARCH), 290
ERASE phrase (DISPLAY), 217
Error handling, 383

input-output errors, 182
USE statement, 384

ESCAPE KEY, 185
ESCAPE KEY option, 193
ESCAPE KEY value

(ACCEPT), 187
Evaluation order, 27
EXCLUSIVE, 61, 303

EXCLUSIVE option, 399
EXHIBIT statement, 7, 183, 222
EXIT PROGRAM statement,

225, 279
EXIT statement, 224
EXTEND, 303, 384
External decimal item, 92

FD and SD entry, 13, 34
Indexed files, 317
Line Sequential files, 297
Relative files, 341
Sequential files, 297

Figurative constant, 21
VALUE IS clause, 168

Figurative literal
ALL, 21
HIGH-VALUE, 21
LOW-VALUE, 21
QUOTE, 21
SPACE, 21

File and record LOCKING, 397
File description (FD) entry, 105
File LOCKING, 397
FILE SECTION, 105
File sharing

automatic, 397
manual, 397

FILE STATUS clause, 65, 71,
319

FILE STATUS data-item, 182
FILE STATUS settings

Indexed files, 319
Line Sequential files, 299
Relative files, 342
Sequential files, 299
SORT files, 361
SORT STATUS register, 380

FILE STATUS values, 70
FILE-CONTROL entry, 61

file LOCKING, 399
SORT/MERGE files, 359

FILE-CONTROL paragraph
Indexed files, 314
Line Sequential files, 296

426

Index

FILE-CONTROL paragraph
(continued)

Relative files, 340
Sequential files, 61, 296
SORT/MERGE files, 359

File-name, 16
Files

GIVING files, 363
INDEXED organization, 313,

319
physical destination, 107
RELATIVE organization, 339
SEQUENTIAL organization,

295
SORT/MERGE, 360
USING files, 363

FILLER, 90
FILLER as data-name, 16
FIRST, 238
Fixed segments, 385
FOOTING phrase, 138
FOREGROUND-COLOR clause,

131
Forms of conditions

complex conditions, 229
compound conditions, 229
simple conditions, 229

FROM phrase, 267
FROM suffix, 308
FROM/TO/USING clause, 132
FULL clause, 134
Function keys (ACCEPT)

BACK SPACE, 196
DELETE CHARACTER, 196
DELETE LINE, 196
FORWARD SPACE, 196

GIVING files, 363
GIVING phrase, 179

ADD statement, 207
DIVIDE statement, 220
MERGE statement, 364
MULTIPLY statement, 244
SORT statement, 363

GO TO statement, 226
Group item, definition, 34

Hierarchy, structural, 32
High-order truncation, 26
HIGH-VALUE as figurative

literal, 21
HIGHLIGHT clause, 135

1-0, 303, 384
1-0 error handling, 182, 383

AT END phrase, 182
FILE STATUS data-item, 182
INVALID KEY phrase, 182
see AT END condition
see DECLARATIVES Region
see INVALID KEY condition

LO-CONTROL paragraph, 360
Indexed files, 318
Line Sequential files, 298
Relative files, 341
Sequential files, 298
shared memory, 73
tape handling, 73

IDENTIFICATION DIVISION,
39

AUTHOR paragraph, 41
comment entries, 40
DATE-COMPILED

paragraph, 42
hppnpr
INSTALLATION paragraph,

44
PROGRAM-ID paragraph, 39,

45
SECURITY paragraph, 46

Identifier
system-defined data-item, 188
unsigned integer, 187-188

IF statement, 227
IF verb, 410
Illegal RELEASE, 362
Illegal RETURN, 362
Imperative statements, 22
Independent segments, 385
INDEX, 88, 164
INDEX format, 164

COMPUTATIONAL-O, 165

427

Index

Index-data-item, 18, 95, 285
COMPUTATIONAL-O format,

91, 165
Index-name, 18, 285

COMPUTATIONAL-O format,
91

INDEXED BY phrase, 287
OCCURS clause, 142, 290

Indexed data-name, 143
Indexed files, 313

file sharing, 401
record LOCKING, 398

INDEXED organization, 313
Indexing table elements, 286
Indicator area

(*) symbol, 11
(-) symbol, 11
(/) symbol, 11
comment lines, 11
continuation lines, 11
debugging statements, 55,

222, 253
letter D, 55, 222, 253

INPUT, 303, 384
Input buffer, 306
INPUT PROCEDURE phrase

(SORT), 363, 366
INPUT-OUTPUT SECTION

data file parameters, 59
FILE-CONTROL paragraph,

59
I-O-CONTROL paragraph, 59

INSPECT statement, 236
INSTALLATION paragraph, 44
Integer values

COMP-0, 94
COMP-4, 94
ranges, 94

Interactive mode
ACCEPT, 113
DISPLAY, 113

Internal data representation, 92
Internal data-items, 109
Internal decimal item, 93

Internal representation
COMPUTATIONAL, 164
COMPUTATIONAL-O, 164
COMPUTATIONAL-3, 164
COMPUTATIONAL-4, 164
DISPLAY, 164
INDEX, 164

Internal storage
internal decimal item, 93

Interprogram communication
CALL statement, 277
CANCEL statement, 280
CHAIN statement, 279
LINKAGE SECTION, 277
PROGRAM-ID, 278
USING phrase, 278
WORKING-STORAGE

SECTION, 280
INTO phrase (READ), 306
INTO phrase

DIVIDE statement, 221
READ statement, 350
RETURN statement, 370

INVALID KEY condition, 182,
320, 325, 329, 334, 348,
351,356

INVALID KEY phrase, 182
DELETE statement, 347
Indexed files, 320, 334
OPEN statement, 348
READ statement, 327
Relative files, 348
WRITE statement, 334

JUSTIFIED clause, 89, 136

KEY phrase
OCCURS clause, 142, 290
READ statement, 327
START statement, 332, 353

428

Index

LABEL clause, 107
LABEL entry, 107
LABEL RECORD(S) clause, 137
Label records, 107
LABEL RECORDS STANDARD

clause, 318
LEADING phrase, 238
LEADING SEPARATE, 88, 160
LEFT, 88
LEFT-JUSTIFY, 198
LENGTH-CHECK, 198
Level 66 (RENAMES) items, 35,

97
Level 66 entry, 87, 156
Level 77 entry, 87, 156

LINKAGE SECTION, 111
WORKING-STORAGE

SECTION, 109
Level 77 items, 35, 97

WORKING-STORAGE
SECTION, 97

Level 88 entry, 87, 156
Level 88 items, 35

condition-names, 98
conditional variable, 98
subscripting, 99

Level numbers, 13, 34
Limitations on data, 100
LINAGE clause, 138, 309
LINAGE-COUNTER value, 309
LINAGE-COUNTER

ADVANCING PAGE phrase,
139

internal item, 139
LINE clause, 140
Line number, 12
LINE NUMBER, 185
LINE NUMBER value

(ACCEPT), 187
Line Sequential files, 295
LINE SEQUENTIAL

organization, 295
LINKAGE SECTION, 111

interprogram communication,
277

referencing data items, 277

Literal
multiple-character, 21
VALUE is clause, 168

Literals, 19
figurative constants, 21
non-numeric, 20
numeric, 19
quoted, 20

LOCK, 301
LOCK suffix, 301, 322, 345
LOCK verb, 403
LOCKING clause, 67, 399
LOCKING IS clause

AUTOMATIC mode, 397
EXCLUSIVE mode, 397
MANUAL mode, 397

LOCKING syntax, 397
Logical negation operator, NOT,

234
Logical printer page, 297
Logical record, 86

Line Sequential files, 306
NEXT phrase, 327
Sequential files, 306

Logical records, 107
LOW-VALUE, 21
LOW-VALUE as figurative

literal, 21
Lower-case characters, 7

Memory allocation
dynamic loading, 277
file records, 101, 103
LINKAGE SECTION, 101,

103
subprograms, 277
WORKING-STORAGE

SECTION, 101
MEMORY SIZE, 53
MERGE statement, 240, 364

collating sequence, 57
Mnemonic-name, 17

ACCEPT statement, 188
ADVANCING phrase, 309
DISPLAY statement, 217

429

Index

MODULES, 53
MOVE statement, 241

truncation, 242
type conversion, 241

Multiple destinations, 24
ADD statement, 207
COMPUTE statement, 214
DIVIDE statement, 221
MULTIPLY statement, 244
SUBTRACT statement, 267

MULTIPLE FILE clause, 75
MULTIPLY statement, 244

NAMED, 222
Names, 15
Naming conventions, 15
NATIVE, 57
NEGATIVE, 231
Nested IF statements, 409
NEXT phrase, 327
NEXT SENTENCE, 287
NEXT SENTENCE phrase

IF statement, 227
SEARCH statement, 288

NO REWIND, 301
NO-ECHO, 199
Non-numeric literal, 20

multiple-character, 21
Noncontiguous items, 97
Nonserial SEARCH operation,

292
NUMERIC, 230
Numeric comparisons, 228
Numeric data-item, 92

binary item, 94
COMP-O format, 165
COMPUTATIONAL format,

164
COMPUTATIONAL-O format,

143, 164
COMPUTATIONAL-3 format,

93, 164
COMPUTATIONAL-4 format,

143, 164
external decimal item, 92

Numeric data-item (continued)
index-data-item, 95
internal decimal, 93

Numeric literals, 19
Numeric-edited item, 147

OBJECT-COMPUTER
paragraph, 53

OCCURS clause, 142, 156, 178,
290, 365

index-names, 95
SEARCH statement, 290
table handling, 290

OFF STATUS, 56
OMITTED, 137
ON ESCAPE, 205
ON ESCAPE phrase (ACCEPT),

205
ON OVERFLOW phrase

CALL statement, 279
STRING statement, 265
UNSTRING statement, 271

ON STATUS, 56
OPEN EXTEND, 304
OPEN 1-0

Sequential files, 303
OPEN INPUT, 303
OPEN OUTPUT, 303
OPEN OUTPUT mode, 308
OPEN statement, 348

File LOCKING, 402
Indexed files, 325
Line Sequential files, 303
Relative files, 348
Sequential files, 303

Operational sign characters,
189

Operators, 26
Option, definition, 32
OPTIONAL phrase, 71, 297
Order of evaluation, 27
ORGANIZATION clause, 68, 71

Line Sequential files, 297
Sequential files, 297

OUTPUT, 303, 384

430

Index

OUTPUT PROCEDURE phrase,
367

OUTPUT PROCEDURE phrase
(MERGE), 364

OUTPUT PROCEDURE phrase
(SORT), 363

Overlays, 385
Overwriting files, 326

Packed decimal format, 93, 164
Padding with spaces, 243
Padding with zeros, 242
Paragraph

definition, 33
I-O-CONTROL, 360

Parenthesized conditions, 233
Passing parameters

CHAINING phrase, 281
USING phrase, 281

PERFORM statement, 247
range, 247
restricted usage, 386
TIMES phrase, 248
UNTIL phrase, 248
VARYING phrase, 248

PERFORM VARYING, 249
Permissible MOVE operands,

407
Phrase, definition, 32
Phrases

ADVANCING phrase, 309
AFTER INITIAL subphrase,

238
ALL phrase, 270
ASCENDING phrase, 365
AT END phrase, 182, 288,

305, 328, 348, 370
BEFORE INITI AL subphrase,

238
BY phrase, 220
CHAINING phrase, 175, 281,

CHARACTERS phrase
(INSPECT), 237, 238

COLLATING SEQUENCE
phrase, 229, 365

Phrases (continued)
CORRESPONDING phrase,

178, 181, 207, 241, 267
COUNT IN phrase, 271
DELIMITED BY phrase, 264,

271
DELIMITER IN phrase, 271
DEPENDING ON phrase,

142, 226, 290
DESCENDING phrase, 365
DUPLICATES phrase, 317,

319
ELSE phrase, 227
END-OF-PAGE phrase, 309
EQUAL phrase, 290
ERASE phrase, 217
FOOTING phrase, 138
FROM phrase, 267
GIVING phrase, 179, 207,

244, 363, 364, 367
INDEXED BY phrase, 142,

287, 290
INPUT PROCEDURE phrase,

363, 366
INTO phrase, 221, 350, 370
INTO phrase (READ), 306
INVALID KEY phrase, 182,

327, 348
KEY phrase, 142, 290, 327
LEADING phrase, 160, 238
LEADING SEPARATE

phrase, 160
NEXT phrase, 327
NEXT SENTENCE phrase,

227, 287
ON ESCAPE phrase, 205
ON OVERFLOW phrase

(CALL), 279
ON OVERFLOW phrase

(STRING), 265
ON OVERFLOW phrase

(UNSTRING), 271
OPTIONAL phrase, 71, 297
OUTPUT PROCEDURE

phrase, 363, 364, 367
POINTER phrase, 264, 271

431

Index

Phrases (continued)
POINTER phrase (STRING),

265
REMAINDER phrase, 180,

221
REPLACING phrase

(INSPECT), 237, 238
ROUNDED phrase, 180, 214,

221, 244
SEPARATE CHARACTER

phrase, 160
SIZE ERROR phrase, 181,

207, 214, 220, 244, 267
TALLYING IN phrase, 272
TALLYING phrase, 237, 238
TIMES phrase (PERFORM),

248
TO phrase, 207
TRAILING phrase, 160
TRAILING SEPARATE

phrase, 160
UNTIL phrase (PERFORM),

248
USING phrase, 175, 281, 282,

363, 364
VARYING phrase, 248, 288
WITH phrase (ACCEPT), 190,

198
Physical

block, 126
records, 107

PICTURE clause, 89, 145
PLUS, 113, 128, 140
POINTER phrase, 264, 271

STRING statement, 265
POSITION, 73
Position-spec

COL, 191
DISPLAY statement, 218
EXHIBIT statement, 222
Format 3 ACCEPT, 191
LIN, 191

POSITIVE, 231
Prime RECORD KEY, 316
PRINTER, 61
PRINTER clause, 58

Printer-assigned file, 169
PROCEDURE DIVISION, 175

ACCEPT statement, 185
CHAINING phrase, 175
DECLARATIVES, 383
END DECLARATIVES, 383
header, 175, 281
nested IF statements, 409
statements, 175
USING phrase, 175

Procedure-name, 17
PROCEED TO, 209
PROGRAM COLLATING

SEQUENCE, 53, 54, 57
PROGRAM-ID paragraph, 45
PROMPT, 198
Pseudo-text delimiter, 388
Punctuation, 14

Qualification of names, 18
QUOTE, as figurative literal,

21
Quoted literals, 20

RANDOM access
Indexed files, 313, 321
OPEN statement, 325
READ statement, 327, 350
Relative files, 339

Range (INPUT PROCEDURE),
369

Range (PERFORM), 248
Range of integer values, 94
READ statement, 350

AT END phrase, 305
file LOCKING, 403
Indexed files, 327
INTO option, 305
key of reference, 327
LOCK verb, 403
Sequential files, 305
WAIT verb, 403

READY TRACE statement, 7,
183, 253

432

Index

Receiving fields, 25, 221, 244,
268

alphanumeric, 188, 193
alphanumeric-edited, 188, 193
CORRESPONDING data-

iterns, 208
Format 3 ACCEPT, 191
JUSTIFIED clause, 136
MOVE operation, 408
MOVE statement, 242
numeric, 194
numeric-edited, 188, 194

Record area
delete flag, 340
Relative file, 340
Sequential file, 68

RECORD clause, 153
Record delimiters, 68, 297
Record description entry, 87
RECORD KEY clause, 315

MERGE statement, 364
SORT statement, 364
SORT/MERGE files, 364

RECORD KEY
alternate, 315
prime, 315
split, 315
values, 313

Record LOCKING, 398
Record processing buffer, 334
Records

fixed length, 339
physical destination, 107
VARIABLE length, 295

REDEFINES clause, 35, 89,
154, 178

REEL, 73
Region, definition, 33
Relative files, 339

file sharing, 401
record LOCKING, 398

Relative 1-0, syntax, 339
Relative indexing, 286
RELATIVE KEY clause, 348

DELETE statement, 347
Relative files, 340

RELATIVE KEY clause
(continued)

START statement, 353
WRITE statement, 356

RELATIVE organization, 339
RELEASE statement, 369
REMAINDER phrase, 180, 221
REMOVAL, 301
RENAMES clause, 97, 156, 178
REPLACING phrase, 237, 238

with COPY, 388
REQUIRED clause, 158
RERUN clause, 76
RESERVE clause, 71
Reserved words, 12, 15, 413
RESET statement, 7
RESET TRACE statement, 183,

253, 256
RETURN statement, 370
REVERSE-VIDEO clause, 120,

131
REVERSED, 303
REWRITE statement

Indexed files, 329
Line Sequential files, 307
Relative files, 352
Sequential files, 307

RIGHT, 88
RIGHT-JUSTIFY, 198
ROUNDED phrase, 180, 214,

221, 244
Runtime error

absence of OPEN statement,
304

Line Sequential file I-O, 295
standard I-O, 305

SAME AREA clause, 77
SAME RECORD AREA clause,

298, 360
SAME SORT AREA clause, 361
SAME SORT-MERGE AREA

clause, 361
Screen attributes, 113

BACKGROUND-COLOR
clause, 120

433

Index

Screen attributes (continued)
BLANK LINE clause, 122
BLANK SCREEN clause, 123
BLINK clause, 125
FOREGROUND-COLOR

clause, 131
HIGHLIGHT clause, 135
REVERSE-VIDEO clause,

125
UNDERLINE clause, 125

Screen character, asterisk, 159
Screen editing characters, 196-

197
Screen items, 113
SCREEN SECTION, 113

FROM/TO/USING clause, 115
Screen-name, 205, 219
SD and FD entry, 34
SD entry, 360
SD file-name, 360
SEARCH ALL statement, 290
SEARCH statement, 287

Format 1, 287
Format 2, 290

SECTION, 175
Section, definition, 33
SECURE clause, 159
SECURITY paragraph, 46
SEGMENT-LIMIT clause, 54,

385
Segment-numbers, 54

delimiting, 53
Segmentation

fixed overlayable segments,
54

independent segments, 385
largest overlayable segment,

54
permanent segments, 385
segment number, 385
SORT/MERGE statements,

368
source code, 385

SELECT clause, 69
ACCESS MODE clause, 63
ASSIGN clause, 64

SELECT clause (continued)
file LOCKING, 399
FILE-STATUS clause, 65
Indexed files, 314
Line Sequential files, 296
LOCKING clause, 67
OPTIONAL phrase, 71
ORGANIZATION clause, 68
Relative files, 340
RESERVE clause, 71
Sequential files, 296
SORT/MERGE files, 359

Sentence, definition, 32
Sequence number area, 11
SEQUENTIAL access

Indexed files, 313, 321
OPEN statement, 325
READ statement, 350
Relative files, 339
SORT/MERGE files, 364

Sequential files, 295
SEQUENTIAL organization,

295
SET statement, 287
Setting switches at runtime, 57
Shared memory, 73
SIGN clause, 160

LEADING phrase, 160
LEADING SEPARATE

phrase, 160
SEPARATE CHARACTER

phrase, 160
TRAILING phrase, 160
TRAILING SEPARATE

phrase, 160
USAGE IS DISPLAY clause,

160
Sign condition test, 231
Simple conditions, 229

class condition, 230
condition-name condition, 231
sign condition, 231
simple relational condition,

229
SIZE ERROR condition, 181

434

Index

SIZE ERROR phrase, 181
ADD statement, 207
COMPUTE statement, 214
DIVIDE statement, 220
MULTIPLY statement, 244
SUBTRACT statement, 267

SORT description (SD) entry,
105

SORT file description entry, 360
SORT statement, 363

collating sequence, 57
SORT STATUS clause, 359
SORT STATUS register, 380
SORT STATUS settings, 361
SORT/MERGE file, 360

description, 359
Source code segmentation, 385
Source coding rules, 11
SOURCE-COMPUTER

paragraph, 55
SPACE, as figurative literal, 21
SPACE-FILL, 198
Special registers

COL, 191
Format 3 ACCEPT, 191
LIN, 191

SPECIAL-NAMES paragraph,
19, 56

Split key syntax, 316
STANDARD, 137
STANDARD ERROR

PROCEDURE, 384
STANDARD EXCEPTION

PROCEDURE, 384
STANDARD-1, 57
START statement

file LOCKING, 404
Indexed files, 331
key of reference, 332
LOCK verb, 404
Relative files, 353
WAIT verb, 404

Statements
ADD statement, 207
ALTER statement, 209
arithmetic, 24, 177

Statements (continued)
CALL statement, 277
CANCEL statement, 280
CHAIN statement, 279
CLOSE statement, 301, 322,

345
compiler directing, 23
COMPUTE statement, 214
conditional, 23
COPY statement, 387
definition, 22, 32
DELETE statement, 324, 347
DISPLAY statement, 217
DIVIDE statement, 220
EXHIBIT statement, 222
EXIT PROGRAM statement,

225, 279
EXIT statement, 224
GO TO statement, 226
IF statement, 227
imperative, 22
INSPECT statement, 236
MERGE statement, 364
MOVE statement, 241
MULTIPLY statement, 244
OPEN statement, 303, 325,

348, 402
PERFORM statement, 247
READ statement, 305, 327,

350, 403
READY TRACE statement,

253
RELEASE statement, 369
RESET TRACE statement,

253
RETURN statement, 370
REWRITE statement, 307,

329, 352
SEARCH statement

Format 1, 287
Format 2, 290

SET statement, 286
SORT statement, 363
START statement, 331, 353,

404

435

Index

Statements (continued)
STOP statement, 263
STRING statement, 264
SUBTRACT statement, 267
UNLOCK statement, 333,

355, 404
UNSTRING statement, 270
USE statement, 300
WRITE statement, 308, 356

STATUS, 56
Status code

FILE STATUS, 299, 319, 342
SORT STATUS, 361

STOP RUN, 263
STOP statement, 263
STRING statement

DELIMITED BY phrase, 264
POINTER phrase, 264

Structural hierarchy, 32
Subprogram, 281
Subprograms

EXIT PROGRAM statement,
225

Subscripted data-item
RETURN statement, 370
table handling, 285

Subscripted data-name
OCCURS clause, 143
restrictions, 143-144

SUBTRACT statement, 267
SWITCH-n clause, 58
SYNC, 162
SYNCHRONIZED clause, 89,

162

Tab stops, 13
Table handling by indexing, 18,

95, 286
Tables, lists, and arrays, 143
TALLYING IN phrase, 272
TALLYING phrase, 237, 238
TAPE CONTAINS, 73
Tape handling, 75
Terms, 32-33
THROUGH, 56, 88, 99, 247

THRU, 88, 99, 247
TIME value (ACCEPT), 187
TIMES, 248
TIMES phrase (PERFORM), 248
TO phrase, 207
TOP, 138
TRACE mode

dynamic debugging, 183
Trace-style debugging, 6
TRAILING SEPARATE, 88, 160
TRAILING-SIGN, 199
Truncation, 242, 243

high-order, 26
Type conversion, 242

UNIT, 73
UNLOCK statement, 404

file sharing, 404
Indexed files, 333
Relative files, 355

UNSTRING statement, 270, 271
ALL phrase, 270
COUNT IN phrase, 271
DELIMITED BY phrase, 271
POINTER phrase, 271

UNTIL, 248
UNTIL phrase (PERFORM),

248
UP BY, 287
UPDATE, 198
UPON, 217
USAGE clause, 93, 164
USAGE IS INDEX, 178, 286
USE AFTER, 384
USE statement, 182, 273

DECLARATIVES Region, 300
error handling, 384
see DECLARATIVES
Sequential files, 300

User-defined system name, 51,
57

USING files, 363
USING list, 282
USING phrase, 277, 278, 280,

281, 363, 364, 366

436

Index

VALUE IS, 98
VALUE IS clause, 167
VALUE OF FILE-ID clause,

107, 169, 318, 360
VALUE OF FILE-ID entry, 107
VALUES ARE, 98
VARYING index-name, 288
VARYING integer data-item

name, 288
VARYING phrase, 288

PERFORM statement, 248
SEARCH statement, 288

WAIT option, 332, 403
READ statement, 351
START statement, 353

WHEN clause, 290
WHEN condition, 288
WITH DEBUGGING MODE

clause, 12, 55, 183, 222, 253
WITH LOCK option, 332

READ statement, 351
START statement, 353

WITH phrase (ACCEPT), 193,
194, 198

WITH phrase options
LEFT-JUSTIFY, 198
RIGHT-JUSTIFY, 198
SPACEFILL, 198
TRAILING-SIGN, 199
UPDATE, 198
ZERO-FILL, 198

WORDS, 53
WORKING-STORAGE

SECTION, 109, 361
data-item for output, 308
target of FROM suffix, 308

WRITE statement, 274
ADVANCING phrase, 309
END-OF-PAGE phrase, 309
FROM suffix, 308
Indexed files, 334
Line Sequential files, 308
Relative files, 356
Sequential files, 308

ZERO, 21, 114, 231
ZERO-FILL, 198

437

'D

F

