
MS-PASCAL
VOLUME 1

MS-PASCAL VOLUME I

User’s Guide

Introduction 7
1. Getting Started 1-1
2. A Sample Session 2-1
3. More About Compiling 3-1
4. More About Linking 4-1
5. Using a Batch Command File 5-1
6. Compiling and Linking Large

Programs 6-1
7. Using Assembly Language

Routines 7-1
8. Advanced Topics 8-1
Appendix A Version Specifics A-l
Appendix B MS-LINK Error Messages .. B-l

Reference Manual

Introduction 1
1. Language Overview 1-1
2. Notation 2-1
3. Identifiers 3-1
4. Introduction to Data Types....... 4-1
5. Simple Types 5-1
6. Arrays, Records, and Sets.... . 6-1
7. Files 7-1
8. Reference and Other Types 8-1
9. Constants 9-1
10. Variables and Values 10-1

MS-PASCAL VOLUME II

Reference Manual (Continued)

11. Expressions 11-1
12 . Statements 12-1
13.Introduction to Procedures and

Functions 13-1

3

14. Available Procedures and
Functions 14-1

15. File-Oriented Procedures and
Functions 15-1

16. Compilable Parts of a Program ...16-1
17. MS-Pascal Metacommands 17-1
Appendix A. MS-Pascal Syntax

Diagrams A-l
Appendix B. MS-Pascal Features and

the ISO Standard B-l
Appendix C. MS-Pascal and Other

Pascals C—1
Appendix D. ASCII Character Codes .. D-l
Appendix E. Summary of MS-Pascal

Reserved Words E-l
Appendix F. Summary of Available

Procedures & Functions . F-l
Appendix G. Summary of MS-Pascal

Metacommands G-l
Appendix H. Messages H-l

4

MS-PASCAL
User’s Guide

'UM IF

COPYRIGHT

(C) 1983 by VICTOR. (R)
(C) 1983 by Microsoft Corporation. 1983

Published by arrangement with Microsoft Corporation, whose
software has been customized for use on various desktop
microcomputers produced by VICTOR. Portions of the text hereof
have been modified accordingly.

All rights reserved. This publication contains proprietary
information which is protected by copyright. No part of this
publication may be reproduced, transcribed, stored in a retrieval
system, translated into any language or computer language, or
transmitted in any form whatsoever without the prior written
consent of the publisher. For information contact:

VICTOR Publications
380 El Pueblo Road
Scotts Valley, CA 95066
(408) 438-6680

TRADEMARKS

VICTOR is a registered trademark of Victor Technologies, Inc.
CP/M-86 is a registered trademark of Digital Research, Inc.
MS-Pascal, MS-DOS, MS-FORTRAN and MS-LINK are registered
trademarks of Microsoft Corporation.

NOTICE

VICTOR makes no representations or warranties of any kind
whatsoever with respect to the contents hereof and specifically
disclaims any implied warranties of merchantability or fitness
for any particular purpose. VICTOR shall not be liable for
errors contained herein or for incidental or consequential
damages in connection with the furnishing, performance, or use of
this publication or its contents.

VICTOR reserves the right to revise this publication from time to
time and to make changes in the content hereof without obligation
to notify any person of such revision or changes.

Preliminary VICTOR release April, 1983.

ISBN 0-88182-026-1 Printed in U.S.A.

IMPORTANT SOFTWARE DISKETTE INFORMATION

For your own protection, do not use this product until you have
made a backup copy of your software diskette(s). The backup
procedure is described in the user’s guide for your computer.

Please read the DISKID file on your new software diskette.
DISKID contains important information including:

o The product name and revision number

o The part number of the product.

o The date of the DISKID file.

o A list of files on the diskette, with a description and
revision number for each one.

o Configuration information (when applicable).

o Release notes giving special instructions for using the
product.

o Information not contained in the current manual, including
updated, additions, and deletions.

To read the DISKID file onscreen, follow these steps:

1. Load the operating system.

2. Remove your system diskette and insert your new software
diskette.

3. Enter--

TYPE DISKID

4. The contents of the DISKID file is displayed on the screen.
If the file is large (more than 24 lines), the screen
display will scroll. Type ALT-S to freeze the screen
display; type ALT-S again to continue scrolling.

MS-PASCAL USER'S GUIDE CONTENTS

INTRODUCTION 7

System Requirements 7
Documentation 7
About This Manual 8
Manual Conventions 8
References 9

1. GETTING STARTED............................. 1-1

1.1 Preliminary Procedures................ 1-1
1.1.1 Backing Up Your System Files... 1-1
1.1.2 Preparing Your Run-Time

Library...................... 1-1
1.1.3 Copying PASKEY to the Default

Drive........................ 1-2
1.1.4 Setting Up Your System Disk.... 1-2

1.2 Program Development................... 1-3
1.3 Vocabulary............................ 1-8

1.3.1 Stages in Program Development.. 1-8
1.3.2 Linking and Run-Time.......... 1-8

2. A SAMPLE SESSION............................ 2-1

2.1 Creating a MS-Paseal Source File 2-2
2.2 Compiling Your MS-Paseal Program...... 2-3

2.2.1 Pass One........................ 2-3
2.2.2 Pass Two........................ 2-7
2.2.3 Pass Three...................... 2-8

2.3 Linking Your MS-Paseal Program....... 2-9
2.4 Executing Your MS-Pascal Program..... 2-12

3. MORE ABOUT COMPILING....................... 3-1

3.1 Files Written by the Compiler........ 3-1
3.1.1 Object File.................... 3-1
3.1.2 Source Listing File............ 3-1
3.1.3 Object Listing File............ 3-2

9

3.1.4 Intermediate Files............. 3-3
3.2 Filename Conventions.................. 3-4
3.3 Starting the Compiler.................. 3-8

3.3.1 No Parameters on the
Command Line................. 3-9

3.3.2 All Parameters on the
Command Line................. 3-9

3.3.3 Some Parameters on the
Command Line.................. 3-11

3.4 Pass One Compiler Switches............ 3-11

4. MORE ABOUT LINKING......................... 4-1

4.1 Files Read by the Linker............... 4-1
4.1.1 Object Modules................. 4-1
4.1.2 Libraries...................... 4-3

4.2 Files Written by the Linker........... 4-5
4.2.1 The Run File................... 4-5
4.2.2 The Linker Listing File....... 4-5
4.2.3 VM.TMP......................... 4-6

4.3 Linker Switches....................... 4-7

5. USING A BATCH COMAND FILE................. 5-1

6. COMPILING AND LINKING LARGE PROGRAMS......6-1

6.1 Avoiding Limits on Code Size.......... 6-1
6.2 Avoiding Limits on Data Size.......... 6-2
6.3 Working with Limits on Canpile-

Time Memory......................... 6-4
6.3.1 Identifiers.................... 6-4
6.3.2 Complex Expressions............ 6-7

6.4 Working with Limits on Disk Size...... 6-8
6.4.1 Pass One....................... 6-8
6.4.2 Pass Two....................... 6-10
6.4.3 Linking........................ 6-11
6.4.4 A Complex Example.............. 6-12

6.5 Minimizing Load Module Size.......... 6-14
6.5.1 I/O............................ 6-15

10

6.5.2 Run-Time Error Handling....... 6-16
6.5.3 Real Number Operations........ 6-16
6.5.4 Error Checking................. 6-16

7. USING ASSEMBLY LANGUAGE ROUTINES............7-1

7.1 Calling Conventions................... 7-1
7.2 Internal Representations of

Data Types.......................... 7-3
7.2.1 Initialized Variables.......... 7-8

7.3 Interfacing to Assembly Language
Routines............................. 7-8

8. ADVANCED TOPICS............................. 8-1

8.1 Structure of the Compiler............. 8-1
8.1.1 The Front End.................. 8-3
8.1.2 The Back End................... 8-5

8.1.2.1 Pass TVo.............. 8-5
8.1.2.2 Pass Three............ 8-8

8.2 An Overview of the File System....... 8-8
8.3 Run-time Architecture................. 8-12

8.3.1 Run-Time Routines.............. 8-12
8.3.2 Memory Organization............ 8-13
8.3.3 Initialization and

Termination.................. 8-18
8.3.3.1 Machine Level

Initialization..... 8-20
8.3.3.2 Program Level

Initialization..... 8-22
8.3.3.3 Program

Termination........ 8-24
8.3.4 Error Handling................. 8-25

8.3.4.1 Machine Error
Context............. 8-28

8.3.4.2 Source Error
Context............. 8-29

11

APPENDIX A Version Specifics A-l

A. I Implementation Additions.............. A-l
A.2 Implementation Restrictions........... A-6
A. 3 Unimplemented Features................ A-7

APPENDIX B MS-LINK Error Messages..............B-l

FIGURES

1-1: Program Development.................. 1-5
7-1: Contents of the Frame................ 7-1
7-2: Stack Before Transfer to ADD.......... 7-10
7-3: One-Byte Return Value................ 7-11
7-4: Two-Byte Return Value................ 7-12
7- 5: Four-Byte Return Value............... 7-12
8- 1: Structure of the MS-Paseal Compiler... 8-1
8-2: Unit U Interface 8-10
8-3: Memory Organization.................. 8-17

TABLES

1- 1: Suggested System Disk Set Up.......... 1-3
2- 1: Files Used by the MS-Pascal

Compiler............................ 2-9
3- 1: Default Filename Extensions.......... 3-5
3-2: Filenames Assigned by the Compiler.... 3-5
3- 3: Pass One Compiler Switches........... 3-12
4- 1: Linker Defaults....................... 4-3
4-2: MS-LINK Switches...................... 4-7
8-1: Unit Identifier Suffixes............. 8-13
8-2: Error Code Classification............ 8-27
8-3: Run-Time Values in BRTEQQ............ 8-28

12

INTRODUCTION

The MS-Pascal compiler accepts programs written
according to the ISO standard and programs written
in the full MS-Pascal language (described in the MS-
Pascal Reference Manual). This User’s Guide
explains how to use the MS-Pascal compiler
implemented for the MS-DOS operating system.

SYSTEM REQUIREMENTS

A 256K system is required to compile MS-Pascal
source code; at least 128K is required at run-time.
You also need the MS-DOS operating system and the
MS-LINK utility.

The current implementation of the MS-Pascal compiler
can take advantage of, but does not require, an 8087
numeric coprocessor.

DOCUMENTATION

The MS-Pascal User's Guide provides an introduction
to compilation and linking, a sample session, and a
technical reference for the MS-Pascal compiler.

The MS-Pascal Reference Manual describes the syntax
and use of the MS-Pascal language. This is the
language supported by the MS-Pascal compiler, with
the exceptions noted in Appendix A of the User's
Guide. Any recent changes are described in the
DISKID file on the distribution diskette.

ABOUT THIS MANUAL

The MS-Pascal User's Guide describes the operation
of the MS-Pascal compiler, from the most rudimentary
procedures to more advanced topics that may be of
interest only to experienced programmers. The manual
assumes that you have a working knowledge of both
the MS-Pascal language and the MS-DOS operating
system.

Chapters 1 through 4 should be read in their
entirety by the first-time user of the MS-Pascal
compiler.

MANUAL CONVENTIONS

The following notation is used throughout this
manual in descriptions of command and statement
syntax:

CAPS Uppercase letters indicate portions of
statements or commands that must be
entered, exactly as shown.

< > Angle brackets indicate user-supplied
data. For lowercase text (e.g.,
<filename>), you supply a specific data
entry of the type defined by the text.
For uppercase text, press the key named by
the text (such as <RETURN>).

[] Square brackets indicate that the enclosed
entry is optional.

Ellipses indicate that an entry may be
repeated as many times as needed or
desired.

All other punctuation, such as commas, colons, slash
marks, parentheses, and equal signs, must be entered
exactly as shown.

Pressing the Return (or Enter) key is assumed at the
end of every line you enter in response to a pranpt.
If a Return is the only response required, however,
<RETURN> is shown.

REFERENCES

The two manuals in this package provide complete
reference information for your implonentation of the
MS-Pascal compiler. They do not, however, teach you
to write programs in Pascal. If you are new to
Pascal or need help in learning to program, read any
of the following books:

Findlay, W., and Watt, D.F. Pascal: An
Introduction to Methodical Programming. Pittman:
London, 1978.

Holt, Richard C., and Hume, J.N.P. Programming
Standard Pascal. Reston Publishing Company, 1980.

Jensen, Kathleen, and Wirth, Niklaus. Pascal
User Manual and Report. Springer-Verlag, 1974,
1978.

Koffman, E.B. Problem Solving and Structured
Programming in Pascal. Addison-Wesley Publishing
Company, 1981.

Schneider, G.M., Weinhart, S.W., and Perlman,
D.M. An Introduction to Programming and Problem
Solving With Pascal. John Wiley & Sons, second
edition, 1982.

1. GETTING STARTED

1.1 PRELIMINARY PROCEDURES

This section describes several preliminary
procedures, some of which are required and some of
which are highly recommended before you begin the
sample session or canpile any programs of your own.
If you are unfamiliar with any of the MS-DOS
procedures mentioned, consult your Operator* 1 2s
Reference Guide.

1.1.1 BACKING UP YOUR SYSTEM FILES

This step is optional but highly recommended.

The first thing you should do after you unwrap your
system disks is make working copies of the disks.
You can make the copies with the DCOPY utility
supplied with MS-DOS. Save (archive) the original
disks; if your working copies are damaged, you can
make more copies from the originals.

1.1.2 PREPARING YOUR RUN-TIME LIBRARY

This step is required.

Two different run-time libraries are part of the MS-
Pascal compiler software:

1. PASCAL.L87 lets you perform real number
operations with an 8087 coprocessor.

2. PASCAL.LEM provides software support for real
number operations.

During linking, the linker automatically searches a
run-time library called PASCAL.LIB. Therefore,
depending on whether or not you have the 8087

1-1

coprocessor, you must rename the appropriate system
library as PASCAL.LIB (use the MS-DOS command REN).

To use PASCAL.L87, you must have an 8087 installed;
programs linked with PASCAL.LEM work whether you
have an 8087 or not. See Section 4.1.2 for
information about how MS-LINK uses the run-time
libraries.

1.1.3 COPYING PASKEY TO THE DEFAULT DRIVE

This step is required.

PASKEY, one of the files that is part of the MS-
Pascal compiler, contains the MS-Pascal
predeclarations. Because these predeclarations are
used by the first pass of the compiler, the PASKEY
file must always be on the disk in the default drive
while pass one is executing.

Before you begin to compile the sample program or
any program of your own, copy PASKEY to the disk in
the default drive.

1.1.4 SETTING UP MM SYSTEM DISK

This step is recommended.

Before you begin compiling and linking a program,
check the contents of your system disk against the
list in Table 1-1. Make sure you have all the files
you need including the linker utility, MS-LINK, from
your MS-DOS package. The disk set up shown in Table
1-1 avoids reprompting from the system to reload
certain MS-DOS files and eliminates the need to
switch disks between passes of the compiler.

1-2

Table 1-1: Suggested System Disk Set Up

CONTENTS

COMMAND.COM
<text editor>*
<other utilities>**
PAS1.EXE
PAS 2. EXE
PAS3.EXE
PASCAL.LIB
LINK.EXE

* Any text editor that fits.

** MS-DOS utilities to set up printer,
clear screen, sort directory, and so on.

To prepare a system disk, first FORMAT the disk.
Then use SYSCOPY to put the operating system on the
disk. (The Operator1s Reference Guide contains
instructions for FORMAT and SYSCOPY.) If you do not
put the operating system on the disk, the compiler
may prompt you to reinsert your MS-DOS disk after
each step, if it needs to reload CCMMAND.COM.
Finally, COPY the appropriate files to the disk.

1.2 PROGRAM DEVELOPMENT

This section provides a short introduction to
program development (a multi-step process that
includes first writing the program, and then
compiling, linking, and executing it). For a brief
explanation of terms that may be unfamiliar, see
Section 1.3.

1-3

COMMAND.COM
CCMMAND.COM

A microprocessor can execute only its own machine
instructions; it cannot execute source program
statements directly. Therefore, before you run a
program, the statements in the program must be
translated into the machine language of your
microprocessor.

Compilers and interpreters are two types of programs
that perform this translation. Depending on the
language you are using, either or both types of
translation may be available to you. MS-Pascal is a
compiled language.

A compiler translates a source program and creates a
new file called an object file. The object file
contains relocatable machine code that can be placed
and run at different absolute locations in menory.

Compilation also associates memory addresses with
variables and with the targets of GOTO statements,
so that lists of variables or of labels do not have
to be searched during execution of your program.

Many compilers, including the MS-Pascal compiler,
are "optimizing" compilers. During optimization,
the compiler reorders expressions and eliminates
common subexpressions, either to increase speed of
execution or to decrease program size. These
factors combine to measurably increase the execution
speed of your program.

The MS-Pascal compiler has a three-part structure.
The first two parts, pass one and pass two, together
carry out the optimization and create the object
code. Pass three is an optional step that creates
an object code listing. Compiling is described in
greater detail in Section 2.2 and in Chapter 3.

A successfully compiled program must be linked
before it can be executed. Linking is the process in
which MS-LINK computes absolute offset addresses for
routines and variables in relocatable object modules

1-4

and then resolves all external references by
searching the run-time library. The linker saves
your program on disk as an executable file, ready to
run.

At link-time, you can link more than one object
module. You can also link routines written in
assembly language or other high-level languages and
routines in other libraries. Linking is described
in greater detail in Section 2.3 and in Chapter 4.

Figure 1-1 illustrates the entire program
development process. The major steps in the process
are described after the figure.

The following steps make up the program development
process:

1. Create and edit MS-Pascal (and MACRO-86) source
file.

Program development begins when you write an
MS-Pascal program; you can use any general
purpose text editor. Also use the text editor
to write any assembly language routines you
plan to include.

2. Compile program with $DEBUG+. Assemble
assembler source, if any.

Once you write a program, compile it with the
MS-Pascal compiler. The compiler flags all
syntax and logic errors as it reads your source
file. Use the error-checking switches or their
corresponding metacommands (described in
Section 3.4) to generate diagnostic calls for
all run-time errors. If compilation is
successful, the compiler creates a relocatable
object file.

1-5

Figure 1-1: Program Development

+----------- +

---------- > |Text editor | <-----------
+----------- +

+—<---<--- +—>--->---- +
MS-Pascal source MACRO-^6 source

V V
+------------ + +---------- +
MS-Pascal MACRO-86
Compiler Assembler
+------------ + +---------- +

I I
V V

<—yes—errors? errors?—yes—>
no no

V V
pas.OBJ Run-Time asm.OBJ
file(s) Library file(s)

V
+-------- +

I MS-LINK I
|Linker |

+-------- +

V
pas.EXE file

V
+-------------+
| Run pas.EXE |
+-------------+

I
V

<-- yes------errors? — no —>

(1)

(4)

(5)

1-6

If you have written your own assembly language
routines (for example, to increase the speed of
execution of a particular algorithm), assemble
those routines with MACRO-86 available in the
Programmer's Tool Kit, Volume II.

3. Link compiled (and assembled) .OBJ files with
the run-time library.

A compiled (or assembled) object file is not
executable and must be linked with one of the
run-time libraries, using MS-LINK. Separately
compiled MS-FORTRAN subroutines can also be
linked to your program at this time.

4. Run .EXE file.

The linker links all modules needed by your
program and produces as output an executable
object file with .EXE as the extension. This
file can be executed by typing its filename.

5. Recompile, relink, and rerun with 5DEBUG-.

Repeat the above process until your program has
successfully compiled, linked, and run without
errors. Then recompile, relink, and rerun it
without the run-time error-checking switches,
to reduce the amount of time and space
required. Chapter 6 discusses how to work
within the various physical limits you may
encounter in compiling, linking, and executing
a program.

1-7

1.3 VOCABULARY

This section reviews some of the vocabulary used in
discussing the steps in program development. The
definitions are intended primarily for use with this
manual. Neither the individual definitions nor the
list of terms is comprehensive.

An MS-Pascal program is more commonly called a
"source program" or "source file." The source file
is the input file to the compiler and must be in
ASCII format. The compiler translates this source
and creates, as output, a new file called a
"relocatable object file." The source and object
files generally have the default extensions .PAS and
.CBJ, respectively. After compiling, you must link
the object file with the run-time library to produce
an executable program or run file. The run file has
the extension .EXE.

1.3.1 STAGES IN PROGRAM DEVELOPMENT

The following terms describe stages in the
development and execution of a compiled program:

Compile-time: The time when the compiler is
executing, and during which it compiles an MS-Pascal
source file and creates a relocatable object file.

Link-time: The time when the linker is executing,
during which it links together relocatable object
files and library files.

Run-time: The time when a compiled and linked
program is executing. By convention, run-time
refers to the execution time of your program and not
to the execution time of the compiler or the linker.

1-8

1.3.2 LINKING AND RUN-TIME

The following terms pertain to the linking process
and the run-time library:

Module: A general term for a discrete unit of code.
There are several types of modules, including
relocatable and executable modules. Furthermore, in
the MS-Pascal language, "module" has a specific
meaning as one type of MS-Pascal compiland. See the
MS-Pascal Reference Manual for details. This User's
Guide uses the term "module" in its general sense,
unless otherwise specified.

The object files created by the compiler are
"relocatable" — that is, they do not contain
absolute addresses. Linking produces an
"executable" module, that is, one that contains the
necessary addresses to proceed with loading and
running the program.

Routine: Code, residing in a module, that
represents a particular procedure or function. More
than one routine may reside in a module.

External reference: A variable or routine in one
module that is referred to by a routine in another
module. The variable or routine is often said to be
"defined" or "public" in the module in which it
resides.

The linker tries to resolve external references by
searching for the declaration of each such reference
in other modules. If such a declaration is found,
the module in which it resides is selected to be
part of the executable module (if it is not already
selected) and becomes part of your executable file.
These other modules are usually library modules in
the run-time library.

1-9

If the variable or routine is found, the address
associated with it is substituted for the reference
in the first module, which is then said to be
"bound." When a variable is not found, it is said to
be "undefined" or "unresolved."

Relocatable module: One whose code can be loaded
and run at different locations in memory.
Relocatable modules contain routines and variables
represented as offsets relative to the start of the
module. These routines and variables are said to be
at "relative" offset addresses. When the module is
processed by the linker, an address is associated
with the start of the module.

The linker then computes an absolute offset address
that is equal to the associated address plus the
relative offset for each routine or variable. These
new computed values become the absolute offset
addresses that are used in the executable file.
Compiled object files and library files are all
relocatable modules.

These offset addresses are still relative to a
"segment," which corresponds to an 8088 segment
register. Segment addresses are not defined by the
linker; rather, they are computed when your program
is actually loaded prior to execution.

Run-time library: Contains the run-time routines
needed to implement the MS-Pascal language. A
library module usually corresponds to a feature or
subfeature of the MS-Pascal language.

1-10

2. SAMPLE SESSION

This chapter gives step-by-step instructions for
compiling and linking an MS-Paseal program. You
should compile the sample program before compiling
any of your own MS-Pascal programs.

If you enter commands exactly as described, you
should have a successful session. If a problem
arises, check to see that you correctly carried out
all the required procedures in Section 1.1. Then
carefully redo each step in the sample session up to
the point where you had trouble.

Creating an executable MS-Pascal program involves
the following steps:

1. Write and save an MS-Pascal source file.

2. Compile your program with the MS-Pascal
compiler.

a. Start pass one and enter your filenames in
response to the prompts.

b. Run pass two of the compiler.

c. Run pass three of the compiler. (This
step is optional.)

3. Link your object file to the MS-Pascal run-time
library.

4. Execute (run) your program.

Compiler passes one and two are required. You need
to run pass three only if you need or want an object
listing, as in this sample session.

2-1

The sample session assumes the following:

1. You have completed the necessary preliminary
procedures.

2. You have two disk drives (A and B).

3. The sanpie program is already debugged, so that
it will compile, link, and execute
successfully.

4. An object listing is required. Therefore, all
three passes of the compiler will be rdn.

5. No compiler or linker switches will be used.

6. There are no problems with data, code, or
memory limits.

These assumptions are discussed in Chapters 3, 4,
and 6, and are referred to as appropriate in the
following sample session.

If the files required for successive steps in the
process are not all on the same disk, you have to
exchange disks between steps. For example, if
PAS1.EXE and PAS2.EXE are not on the same disk, you
have to remove the first disk after completing pass
one and replace it with the disk containing
PAS2.EXE. Similarly, if the linker or the library
file is on a different disk from pass three, you
have to insert the proper system disk before running
MS-LINK.

2.1 CREATING AN MS-PASCAL SOURCE FILE

Turn on your computer and load MS-DOS. Insert an
empty, formatted work disk in drive B. Log on to
drive B; B is now the default drive.

2-2

This sample session uses the SORT.PAS program, which
came with the system software. Although you can
create MS-Pascal programs with any available text
editor, the source file should, in most cases, have
the .PAS extension.

Copy SORT. PAS to drive B (where it would be if it
were your own program). If you have not already
done so, copy PASKEY to the disk in drive B.
(PASKEY must always be on the default drive when you
run pass one of the compiler.)

2.2 COMPILING YOUR MS-PASCAL PROGRAM

Compiling a program is either a two or a three-step
process, depending on whether or not you choose to
produce an object code listing. The sample session
runs all three passes.

2.2.1 PASS ONE

Insert your Pascal system disk (see disk set up in
Chapter 1) in drive A. In response to the operating
system prompt, type:

A:PAS1

This command starts pass one of the MS-Pascal
compiler.

(Note that you can respond in either upper or
lowercase. This manual uses uppercase simply for
clarity.)

The compiler displays a sign-on message that
includes the date and version number, and then
prompts you for four filenames:

1. Your source filename

2-3

2. An object filename

3. A source listing filename

4. An object listing filename

Respond to the prompts as described in the following
paragraphs. For additional information about the
files themselves, see Chapter 3.

1. Source file

The first prompt is for the name of the file
that contains your MS-Pascal source program:

Source f ilename [.PAS]:

The pranpt tells you that .PAS is the default
extension for the source filename. Unless the
extension is something other than .PAS, you can
omit it when you type the filename.

For this practice session, type SORT (to
indicate that the source file is BzSORT.PAS).

2. Object file

The second prompt asks for the name of the
relocatable object file, which is created
during pass two:

Object filename [SORT.OBJ]:

The name in brackets is the name the compiler
gives to the object file if you simply press
the Return key at this point. The filename is
taken from the source filename you gave in
response to the first prompt; the .CBJ
extension is the standard extension for object
files.

2-4

For now, either type SORT or press the Return
key.

3. Source listing file

The third prompt asks for the name of the
source listing file, created during pass one:

Source listing [NUL.LST]:

As before, the prompt shows the default.
Because the source listing is not required for
linking and executing a program, it defaults to
the null file (no file at all). If you press
the Return key, the source listing is sent to
the null file, NUL.

However, if you enter any part of a file
specification, the default extension is .LST,
the default device is the currently logged
drive, and the filename defaults to the name
given for the source file.

For this session, assume that you want to send
the source listing file to the screen.
Therefore, type USER in response to the source
listing prompt. (Typing CON has essentially
the same effect; see Section 3.2 for further
information.)

4. Object listing file

The final prompt is for the object listing
file, created during pass three:

Object listing [NUL.COD]:

The null file is the default for the object
listing, as it is for the source listing. If
you press the Return key, no intermediate files
are saved and you won’t be able to run pass
three. However, the same default naming rules

2-5

apply here as elsewhere; if you enter any part
of a file specification, the default extension
is .COD, the default device is the currently
logged drive, and the filename is the source
filename.

For now, type USER (or CON) to request that the
object listing be displayed on your terminal
screen when you run pass three.

Compilation begins as soon as you respond to all
four prompts. The source listing is displayed on
your screen, as requested. When pass one is
complete, the following message displays on your
screen:

Pass One No Errors Detected.

If the compiler detects errors during compilation,
messages like the following appear instead:

Pass One 2 Warnings Detected.
Pass One 3 Errors Detected.

The error and warning messages appear in the source
listing as it comes on your screen.

o Errors are mistakes that prevent a program from
running correctly.

o Warnings indicate a variety of conditions, none
of which prevent the program from running, but
which may reflect poor programming practice or
produce invalid results.

See Appendix G in the MS-Pascal Reference Manual for
a complete listing of messages and information about
how to correct the errors in your program.

Pass one creates two intermediate files, PASIBF.SYM
and PASIBF.BIN. The compiler saves these two files
on the default drive for use during pass two.

2-6

If there are errors, the two intermediate files are
deleted and the remaining passes cannot be run. If
pass one generates only warning messages, you can
still run passes two and three, but you should go
back and correct the source file at some point.

2.2.2 PASS TWO

Start pass two by typing:

A:PAS2

Pass two does not ordinarily prompt you for any
input. It performs the following actions:

1. Reads the intermediate files PASIBF.SYM and
PASIBF.BIN created in pass one.

2. Writes the object file.

3. Deletes the intermediate files created in pass
one.

4. Writes two new intermediate files, PASIBF.IMP
and PASIBF.OID, for use in pass three. These
files are written to the logged drive.

When you are compiling your own programs, the last
step described varies, depending on your response to
the object listing prompt. If, as for this sample
session, you plan to run pass three, pass two writes
the two intermediate files. If you do not request
an object listing in pass one, pass two writes and
later deletes just one new intermediate file,
PASIBF.IMP.

When pass two is complete, the screen displays a
message like the following example:

2-7

Code Area Size - #05EC (1516)
Cons Area Size = #00E6 (230)
Data Area Size - #0264 (612)

Pass Two No Errors Detected.

The first three lines indicate:

and then in decimal notation. The message giving
the number of errors refers to pass two only, not to
the entire compilation.

o Code: The amount of space taken up by
executable code.

o Cons: The amount of space taken up by
constants.

o Data: The amount of space taken up by
variables.

The amount of space is shown first in hexadecimal

2.2.3 PASS THREE

Start pass three by typing:

A:PAS3

PAS3.EXE does not prompt you for any input. It
reads PASIBF.'IMP and PASIBF.OID, the intermediate
files created during pass two, and, because of your
earlier response to the object listing prompt,
writes the object code listing to your screen.

When pass three is complete, the two intermediate
files are deleted. If, after requesting an object
listing, you choose not to run pass three, you
should delete these files yourself (to save space).

2-8

Table 2-1 summarizes the files read and written by
each of the three passes of the compiler during this
sample session.

Table 2-1: Files Used by the MS-Paseal Compiler

PASS READS WRITES DELETES

1 SORT.PAS
PASKEY

USER.LST
PASIBF.SYM
PASIBF.BIN

2 PASIBF.SYM
PASIBF.BIN

SORT.OBJ
PASIBF.OID
PASIBF.TT4P

PASIBF.SYM
PASIBF.BIN

3 PASIBF.OID
PASIBF.TMP

USER.COD PASIBF.OID
PASIBF.TMP

See Chapter 3 for details about compiler switches
and other ways of responding to the compiler
prompts.

2.3 LINKING YOUR MS-PASCAL PROGRAM

Now you are ready to link your program. Linking
converts the relocatable object file into an
executable program by assigning absolute addresses
and setting up calls to the run-time library.

Start the linker by typing:

A:LINK

The linker displays a header and then, like the
front end of the compiler, gives a series of four
prompts to which you must respond before linking
begins. The linker prompts for the following

2-9

information:

1. The name of your relocatable object file(s)

2. The name you want to give to the executable
program

3. The name you want to give to the linker listing

4. The location of the run-time library

Each of these prompts is discussed briefly in the
following paragraphs and in Chapter 4. For complete
information on MS-LINK, see your Programmer's Tool
Kit, Volume II.

If you have not already done so, you must rename one
of the run-time libraries to be PASCAL.LIB. See
Section 1.1.2 for information and instructions.

1. Object modules

The first linker prompt asks for the name of
your relocatable object file (or files):

Object Modules [.OBJ]:

This prompt indicates that .CBJ is the default
extension for any file(s) you name here. Type
SORT, and the file SORT.CBJ, created during
compilation, will be linked with PASCAL.LIB
during the linking process. If, for any
reason, the object file does not have the
extension .OBJ, you must give the file
specification in full.

2. Run file

The second prompt asks for the the name of the
run file, the file created by the linker that
will contain your executable program:

2-10

Run File [SORT.EXE]:

The default filename is taken from your
response to the first linker prompt; the .EXE
extension identifies an executable file. To
accept the default filename, press the Return
key.

3. Linker listing file

The third prompt asks for the linker listing
file, sometimes called the linker map:

List File [NUL.MAP]:

The default for the list file is the NUL file,
that is, no file at all. For this session,
press the Return key to accept this default.

If, when linking your own programs, you want to
display the list file on your screen, without
writing it to a disk file, type CON in response
to the list file prompt. (The linker does not
recognize USER as a name for your console.)

If you want the linker map written to a disk
file, respond to this prompt with a name for
the file.

4. Run-time library

The last linker prompt is for the location of
the run-time library:

Libraries [.LIB]:

For this session, to indicate that PASCAL.LIB
is on drive A, you type:

A:

After you respond to the last of the four prompts,

2-11

MS-LINK links your program, SORT.®J, with the
necessary modules in the MS-Rascal run-time library,
A:PASCAL.LIB. This linking process creates an
executable file, named SORT.EXE, on drive B (the
default drive).

See Chapter 4 for more information on linker files
and responding to the linker prompts.

2.4 EXECUTING YOUR MS-PASCAL PROGRAM

When linking is complete, the operating system
prompt returns. To run the sample program, type:

SORT

This command tells MS-DOS to load the executable
file SORT.EXE, fix segment addresses to their
absolute value (based on the address at which the
file is loaded), and start execution.

If the program runs correctly, you will see
displayed on the screen first an unsorted list of
numbers and then the same list in sorted order.

This ends the sample session. More information on
compiling and on linking is provided in Chapters 3
and 4. The following listing shows a log of the
entire sample session, including prompts, your
responses (shown underlined), and files written to
the screen (shown in brackets).

A> B£
B> A:PALI
Source filename [.PAS]: SORT
Object filename [SORT.PAS]: <RETORN>

Source listing [NUL.LST]: USER
Object listing [NUL.COD]: USER

[Source listing display]

2-12

Pass One No errors detected.

B> A:PAS2

Code Area Size - 05EC (1516)
Cons Area Size = 00E6 (230)
Data Area Size = 0264 (612)

Bass TWo No Errors Detected.

B> A:PAS3

[Object listing display]

B> A:LINK
Object modules [.OBJ]: SORT
Run file [SORT.EXE]: <RETORN>
List map [NUL.MAP]: <RETORN>
Libraries [.LIB]: A£

B> SMT

[Program display]

2-13

3. MORE ABOUT COMPILING

This chapter gives more procedural information on
the compiler, supplementing the discussion in
Section 2.2. For a technical discussion of the
compiler, see Section 8.1.

3.1 FILES WRITTEN BY THE COMPILER

In addition to creating several intermediate files,
vhich it later reads and deletes, the compiler
writes one required file and two optional files that
represent your program in various ways. The object
file is the one permanent file that must be created.
The source listing and object listing files are
optional; you can display or print either or both
of these instead of writing than to a disk file.

3.1.1 OBJECT FILE
The object file is written to disk after pass two of
the compiler. It is a relocatable module, which
contains relative rather than absolute addresses.
Normally created with the .OBJ extension, the object
module must be linked with the MS-Pascal run-time
library to create an executable module containing
absolute addresses.

3.1.2 SOURCE LISTING FILE

The source listing file is a line-by-line account of
the source file(s), with page headings and messages.
Each line is preceded by a number that is listed in
any error messages that pertain to that source line.

3-1

Compiler error messages, shown in the source
listing, are also displayed on your screen. See
Appendix G of the MS-Pascal Reference Manual for a
list and explanation of all error messages.

Files that you include in the compilation with the
$INCLUDE metacommand are also shown in the source
listing. Both the $INCLUDE metacommand and the
source listing are discussed in the MS-Pascal
Reference Manual, Chapter 17.

The flags, level numbers, error message indicators,
and symbol tables make the source listing useful for
error checking and debugging. Many programmers
prefer a printout of the source listing file rather
than of the source file itself as a working copy of
the program.

3.1.3 OBJECT LISTING FILE

The object listing file is a symbolic, assembler­
like listing of the object code that lists addresses
relative to the start of the program or module.
Absolute addresses are not determined until the
object file itself is linked with the run-time
library.

The object listing file can be useful during program
development for the following reasons:

1. You can look at it to see what code the
compiler generates and to familiarize yourself
with it.

2. You can check to see whether a different
construct or assembly language would improve
program efficiency.

3. You can use it as a guide when debugging your
program with the MS-DOS DEBUG utility (see the
Programmer's Tool Kit, Volume II).

3-2

3.1.4 INTERMEDIATE FILES

Pass one creates two intermediate files, PASIBF.SYM
and PASIBF.BIN. These files incorporate informa­
tion from your source file and from PASKEY (the
MS-Paseal predeclarations) for use in creating the
object file during pass two. These two inter­
mediate files are always written to the default
drive.

Pass two reads and then deletes PASIBF.SYM and
PASIBF.BIN. Pass two itself creates one or two new
intermediate files, depending on whether you
requested an object listing. If, as for the sample
session, you plan to run pass three to produce the
object listing, pass two writes the two intermediate
files, PASIBF.IMP and PASIBF.OID.

If in pass one you do not request an object listing,
pass two writes and later deletes just one new
intermediate file, PASIBF.TMP.

PAS2.EXE assumes that the intermediate files created
in pass one are on the default drive. If you have
switched disks so that they are on another drive,
you must indicate their location on the command that
starts pass two. For example, the following command
starts pass two when the intermediate files and
PAS2.EXE are on drive A:

A:PAS2 A/P

The "A" immediately following the command tells the
compiler that PASIBF.BIN and PASIBF.SYM are on drive
A, instead of the default drive B. The "/P" tells
the compiler to pause before continuing so that you
can insert the disk that contains the files into
drive A.

3-3

After pausing, pass two prompts as follows:

Press alter key to begin pass two.

When you have inserted the new disk in drive A,
press the Return key, and the compiler proceeds
with pass two.

PASIBF.IMP and PASIBF.OID are deleted from the
default drive during pass three. If you change your
mind after requesting an object listing file and
decide not to run pass three, delete these files to
recover the space on your disk.

3.2 FILENAME CONVENTIONS

When you start the compiler, it prompts you for the
names of four files: your source file, the object
file, the source listing file, and the object
listing file. The only one of these names you must
supply is the source filename.

The compiler constructs the remaining filenames
from the source filename. This section describes
these defaults and how to override them.

A complete MS-DOS file specification has three
parts:

o Device name: The name of the disk drive vdiere
the file is or will be. On multi-drive
machines, if you do not specify a device, the
compiler assumes the logged drive.

o Filename: The name you give to a file.
Consult your Operator's Reference Guide for
any limitations on assigning filenames.

o Filename extension: An addition to the file­
name that further identifies the file. The

3-4

extension is up to three alphanumeric
characters and must be preceded by a period.
Although you can give any extension to a file­
name, the MS-Pascal compiler and MS-LINK
recognize and assign certain extensions by
default, as shown in Table 3-1.

EXTENSION FUNCTION OF FILE

Table 3-1: Default Filename Extensions

.PAS MS-Pascal source file

.FOR MS-FORTRAN source file

.OBJ Relocatable object file
• LST Source listing file
.COD Object listing file
.ASM Assembler source file
.MAP Linker map file
.LIB Library file
.EXE Executable run file

If you give unique extensions to your filenames,
you must include the extension as part of the
filename in response to any prompt. If you do not
specify an extension, the MS-Pascal compiler
supplies one of those shown in Table 3-2. The last
column in the table 3-2 shows the default filenames
that the compiler supplies if you give a source
filename and then press the Return key in response
to the remaining compiler prompts.

3-5

Table 3-2: Filenames Assigned by the Compiler

FILE DEVICE EXTENSION FULL FILENAME

Source file dev: .PAS dev:filename.PAS

Object file dev: .OBJ dev:filename.OBJ

Source listing dev: .EST dev:NUL.LST

Object listing dev: .COD dev:NUL.COD

The device "dev:" is the logged drive. Even if you
specify a device in the source filename, the
remaining file specifications default to the current
logged drive. You must always specify the name of
another drive if that is vfriere you want a particu­
lar file to go.

The NUL file is equivalent to creating no file at
all; by default, the compiler creates neither a
source listing file nor an object listing file. If,
in response to either of the last two prompts, you
enter any part of a file specification, the
remaining parts default as follows:

o Source listing dev:filename.EST

o Object listing dev:filename.COD

If you specify any non-null file for the object
listing, pass two leaves PASIBF.IMP and PASIBF.OID,
the input files for pass three, on your work disk
until you delete them, either explicitly or by
running pass three.

If you want to send either listing file to your
screen, use one of the special filenames USER or
CON. USER is recognized by MS-Pascal (and MS-
FORTRAN) only and writes to the console immediately
as the listing is created. CON is recognized by all

3-6

MS-DOS programs, but saves the console output arx3
writes it in chunks.

The general rules for filenames are summarized as
follows:

1. All lowercase letters in filenames are changed
to uppercase. For example, the following
three names are all equivalent to ABODE.FGH:

abode.fgh AbCdE.FgH ABODE, fgh

2. To enter a filename that has no extension in
response to a prompt, type the name followed by
a period.

For example, typing ABC in response to the
source filename prompt gives a filename of
ABC.PAS (the default extension is .PAS).
Typing ABC. instructs the compiler to accept.
ABC, with no extension, as the name.

3. The filename itself must not contain spaces,
but leading and trailing spaces are permitted.
Therefore, the following is an acceptable
response to the prompt for the source filename:

ABC ;

The use of the semicolon is explained in
rule 6.

4. You can override any defaults by typing all or
part of the name instead of pressing the Return
key. For example, if the logged drive is B and
you want to write the object file to the disk
in drive A, type A: in response to the
following prompt:

Object Filename [ABC.OBJ]:

This creates the object file A:ABC.OBJ.

3-7

5. Listing files default to null. However, if you
specify any part of a legal filename, the
default changes so that the compiler creates a
filename with the same default rules that apply
to the source and object files. Specifically,
if you give a drive or extension, then the base
name is the base name of the source file.
Using the example from rule 4, type B: in
response to the object listing prompt to give
the filename B:ABC.COD.

6. Typing a semicolon after the source filename or
in response to any of the later prompts tells
the compiler to assign the default filenames to
all remaining files. This response is the
quickest way to start the compiler (if you
don't need either of the listing files). For
example, typing ABC; in response to the source
file prompt eliminates the remaining prompts
and results in the following filenames:

Source file
Object file
Source listing
Object listing

B:ABC.PAS
B: ABC.OBJ
B:NUL.LST
B:NUL.COD

You cannot enter a semicolon to specify a
source file, since the source file has no
default filename.

3.3 STARTING THE COMPILER

You can start the MS-Paseal compiler in one of three
ways:

1. Let the compiler prompt you for the three
filenames (as in the sample session).

2. Give all four filenames on the command line.

3-8

3 Give some of the filenames on the command line
and let the compiler prompt you for the rest.

Each of these methods is discussed in the following
sections. The second method, giving all four
filenames on the command line, is particularly
useful when you plan to use a batch command file.
See Chapter 5 for information.

3.3.1 NO PARAMETERS ON THE COMMAND LINE

To start the compiler without giving any of the
necessary parameters (filenames) on the command
line, simply type the following:

A: PALI

As in the sample session, the compiler prompts you
for each of the four filenames that it needs. A
typical session looks like this (your responses are
underlined):

Source filename [.PAS]: MYFILE
Object filename [MYFILE.OBJ]: <RETORN>
Source listing [NUL.LST] : MYFILE
Object listing [NUL.OOD]: <RE‘1UKN>

This sequence of responses gives you an object file
called BzMYFILE.OBJ, a source listing file called
B:MYFILE.LST, and no object listing file.

Remember, pressing the Return key accepts the
default filename shown in brackets. Giving any part
of a file specification creates a file with the same
default rules that apply to other files.

3.3.2 ALL PARAMETERS ON THE COMAND LINE

Instead of letting the compiler prompt you for each
of the four filenames in turn, you can implicitly

3-9

or explicitly give all four names in the command
line that starts the compiler. This method
eliminates prompting for the filenames and is
particularly useful with the MS-DOS batch files.
See Chapter 5 for information on creating a batch
command file for use with the compiler.

Hie general form of the command line that includes
all the compiler parameters is:

A:PAS1 <source-, <object>, <sourcelist>, <cbjectlist>

The default naming conventions here are the ones
used when filenames are prompted for.

You must separate the filenames with commas; spaces
are optional. Put a semicolon at the end of the
line to indicate that you do not want additional
prompting.

If you emit a filename after a comna, the file is
given the source filename, the default device
designation, and the default extension. Thus, these
two command lines are equivalent:

A:PAS1 DATABASE,DATABASE,DATABASE,DATABASE;
A:PAS1 DATABASE,,,;

Both of the preceding command lines result in the
following four filenames:

Source file
Object file
Source listing
Object listing

B:DATABASE.PAS
B:DATABASE. OBJ
B:DATABASE.LST
B : DATABASE. COD

If you want the normal defaults, with null listing
files, use the semicolon (;) following the source
filename. Thus, these command lines are equivalent:

A:PAS1 YOYO,YOYO,NUL,NUL;
A:PAS1 YOYO;

3-10

The command line can also include switches,
described in Section 3.4.

3.3.3 SOME PARAMETERS ON THE COMMAND LINE

You can also start the compiler by giving one or
more of the required filenames on the ccmmand line
and letting the compiler prompt you for the rest.
This feature of the compiler makes it relatively
failsafe to use.

In the following example, you give only the names
of the source file and the object file on the
command line. The compiler prompts you for the
names of the source listing and the object listing
(your responses are underlined):

B: A:PAS1 TEST,TEST
Source listing [NUL.COD]: TEST
Object listing [NUL.COD]: <RETORN>

The preceding sequence of prompts and responses
results in the following filenames:

Source file B: TEST. PAS
Object file B:TEST.OBJ
Source listing B:TEST.LST
Object listing B:NUL.COD

3.4 PASS ONE COMPILER SWITCHES

By adding switches to the command line when you
start pass one of the compiler, or to your response
to any of the pass one prompts, you can direct the
MS-Paseal compiler to perform additional or
alternate functions. The switch tells the compiler
to "switch on" a special function or to alter a
normal compiler function. You can use more than one
switch, but each must begin with a slash (/). Do

3-11

not confuse these compiler switches with the linker
switches, which are discussed in Section 4.3.

Switches affect the entire compilation and can be
placed anywhere that spaces can go (before or after
filenames, but not within them). You can enter
them either on the command line or in response to
compiler prompts. Table 3-3 shows the compiler
switches available to you, the default position of
the switch, and the corresponding metacommand.

Table 3—3: Pass One Compiler Switches

SWITCH DEFAULT METACOMMAND ACTION

/A off $INDEXCK Checks for array index
values in range,
including super array
indices.

/D off $DEBUG Switches on all others.

/E off $ENTRY Generates procedure entry
and exit calls for
debugger.

/I off $INITCK Checks for use of
uninitialized values.

/L off $LINE Generates line number
calls for debugger.

/M on $MATHCK Checks for mathematical
errors such as overflow
and division by zero.

/N on $NIDCK Checks for dereferencing
of any pointers that are
NIL.

/Q off $DEBUG Switches off all others.

3-12

/R on $RANGECK Checks for subrange
validity including
assignments.

/S on $STACKCK Checks for stack overflow
at procedure or function
entry.

Since all the pass one switches correspond to
MS-Pascal metacommands, you can use the metacommand
in the source file or give the command as a switch
to the compiler. However, any instruction given as
a metacommand in the source file overrides the
corresponding switch given at compile time.

The MS-Pascal metalanguage is discussed in detail in
Chapter 17 of the MS-Pascal Reference Manual. The
two switches, /D and /Q, are equivalent to the
$DEBUG+ and $DEBUG- metacommands, respectively,
except that they also turn on and off $ENTRY and
$LINE.

Several of the switches correspond to run-time error
checking metacarmands that end with the letters
"CK". Because of the way these switches are
implemented, turning one off does not guarantee that
the check will never be performed; it only means
that no extra effort is spent to perform the check.

One strong caution should be observed. Use of the
error-checking switches or metacommands does add
considerably to the amount of code generated. Thus,
you may want to use them in the early stages of
program development, and later recompile your
program without them to reduce code space and
increase execution time.

The following sample command lines and responses
illustrate the use of compiler switches (your
responses are underlined):

3-13

This turns on $INDEXCK:

B: PAS1 /A DEMO,„NUL

This turns on all the switches:

B: PAST DEMO,„/0

This sequence first turns all switches off, and then
turns on $MATHCK and $INDEXCK, and later $INITCK:

B: PALI DEMO/Q
Object filename [DEMO.OBJ]: /M/A
Source listing [NUL.LSTJ: DEMO
Object listing [NUL.COD] : /I

3-14

4. LINKING

4.1 FILES READ BY THE LINKER

A successful MS-Pascal compilation produces a
relocatable object file. The next step in program
development is linking — the process of converting
one or more relocatable object files into an
executable program.

4.1.1 OBJECT MODULES

Object files can cane from any of the following
sources:

1. MS-Pascal compilands (programs, modules, or
units)

2. MS-FORTRAN compilands (programs, subroutines,
or functions)

3. User code in other high-level languages

4. Assembly language routines

5. Routines in standard run-time library modules
that support facilities such as error handling,
heap variable allocation, or input/output

Interfacing to MS-FORTRAN routines is straight­
forward. The MS-FORTRAN procedure or function must
be external in the MS-Pascal source, and all
parameters must be VARS or CONSTS. For other
languages, see the appropriate reference and user
manuals.

You may need to write assembly language interface
routines to translate from the MS-Pascal or MS-
FORTRAN calling convention or function return to the
one used by that language. Whatever the language,

4-1

it must be able to produce linkable object modules.
For information on linking assembly languages
routines, see Chapter 7. For further information on
MS-LINK, see the appropriate chapter in your
programmer's Tool Kit, Volume II.

Linking programs, units, and modules of MS-Faseal
source code (as well as assembly language and
library routines) lets you develop a program
incrementally. Separate compilation and later
linking of separate parts of a program not only
reduces the need for continual recompilation, it
also allows you to create programs larger than 64K
bytes of code. (See Chapter 6 for further
information.)

For now, assume that you have created a program that
uses one MS-Pascal unit and one MS-Faseal module and
also contains two assembly language external
procedures. Assume further that these files have
already been compiled or, in the case of the
assembly language routines, already assembled. The
files thus created are the following:

PROG. OBJ
UNIT.OBJ
MOOT. OBJ
ASM1.0BJ
ASM2.OBJ

In response to the first linker prompt, enter the
names of the object files, separated by plus signs
as shown:

PROG+UNIT+MODU+ASM1+ASM2

The first object file listed must be an MS-Pascal
program, module, or unit, although it need not be
the main program. Do not put any assembly language
module first; doing so may result in segments being
misordered. After the initial MS-Pascal object
file, you can list the other modules, units, or

4-2

assembly language routines in any order.

Typing a semicolon after the name of the last object
file you want to link tells the linker to emit the
remaining prompts and to supply defaults, as shown
in Table 4-1, for all remaining parameters.

Table 4-1: Linker Defaults

PROMPT DEFAULT RESPONSE

Object Modules none

Run File prog.EXE

List Map NUL.MAP

Libraries PASCAL.LIB

4.1.2 LIBRARIES

A run-time library contains run-time modules
required during linking to resolve references made
during compilation. The MS-Pascal compiler
generates space for instructions for most floating­
point operations. It also issues fix-up information
in the object file. During linking, these
instructions are resolved using information in the
run-time library.

Because MS-Pascal is designed for use on machines
with or without an 8087 co-processor, the compiler
provides two versions of the run-time library:

1. If you use the library PASCAL.L87 (renamed
PASCAL.LIB) to link the program, the space
assigned by the compiler is fixed up to become

4-3

instructions for the 8087 co-processor. The
program runs correctly only with an 8087 co­
processor .

2. If you use the library PASCAL.LEM (renamed
PASCAL.LIB) to link your program, the
instructions are transformed into emulator
interrupts, which are serviced by code
automatically linked in with your program.
(This code is also in PASCAL.LEM.)

Because PASCAL.LIB is the only library searched
automatically at link-time, you must copy or rename
the library you decide to use (i.e., PASCAL.LEM or
PASCAL.L87) to PASCAL.LIB. This is the only way you
will be able to automatically use the kind of real
number support provided by your processor. You can
specify additional libraries to be searched; see
your Programmer's Tool Kit, Volume II for
information.

If you press the Return key in response to the final
linker prompt, the linker automatically searches for a
library called PASCAL.LIB on the default drive. If
PASCAL.LIB is not on the default drive, the
following message appears on your screen:

Cannot find library PASCAL.LIB
Enter new drive letter:

Switch disks if necessary, and then type the name of
the drive that does contain PASCAL.LIB. If instead
you respond by just pressing the Return key, linking
proceeds without a library search. You can get the
same affect by using the linker option switch /MO
(short for /NODEFAULTLIBRARYSEARCH) to override the
automatic search for PASCAL.LIB. This switch
produces unresolved reference error messages unless
you replace every required run-time routine with a
routine of your own.

To instruct the linker to search other libraries

4-4

(for example, FORTRAN.LIB) as well as PASCAL.LIB,
give the library names, separated by plus signs, in
response to this prompt. See your Programmer's Tool
Kit, Volume II, and complete information on using
different"libraries with MS-LINK.

4.2 FILES WRITTEN BY THE LINKER

The primary output of the linking process is an
executable run file. You can also request a linker
map or listing file, which serves much the same
purpose as the compiler listing files. The linker,
if need be, also writes and later deletes one
temporary file.

4.2.1 THE RJJN FILE

The run file produced by the linker is your
executable program. The default filename, given in
brackets as part of the prompt, is taken from the
name of the first module listed in response to the
first prompt. To accept this prompt, press the
Return key. To specify another run filename, type
in the name you want. All run files receive the
extension .EXE, even if you specify something else.

The linker normally saves the run file, with the
extension .EXE, on the disk in the default drive.
To specify another drive, which may be necessary if
your program is large, type a drive name in response
to the run file prompt.

4.2.2 THE LINKER LISTING FILE

The linker map, also called the linker listing file,
shows " e addresses, relative to the start of the
run mo. _.ie, for every code or data segment in your
program. If you request it, with the /MAP switch,

4-5

the linker map can also
PUBLIC variables. (See
on the /MAP switch.)

include all EXTERN and
Section 4.3 for information

The linker map defaults to the null file, unless you
specifically request that it be printed, displayed
on the screen, or saved on disk. In the early
stages of program development, you may want to
inspect the linker map in these two instances:

o When using the debugger to set breakpoints and
locate routines and variables.

o To find out vhy a load module is so large. (What
routines are loaded? How big are they? What's
in them?)

As the prompt indicates, the default for the linker
map is the NUL file, that is, no file at all. Press
the Return key to accept this default. If you want
to see the linker map without writing it to a disk
file, type CON in response to the list file prompt.
(The special filename USER is not recognized by the
linker.) If you want the file written to disk, give
a device or filename.

4.2.3 VM.TMP

Linking begins after you respond to all the linker
prompts. If the linker needs more memory space than
is available, it creates a file called VM.TMP on the
disk in the default drive and displays this message:

VM.TMP has been created.
Do not change disk in drive B:.

The linker aborts if the additional space is used up
or if you remove the disk that contains VM.TMP
before linking is complete.

When the linker finishes, VM.TMP is erased from the

4-6

disk, arid any errors that occurred during linking
are displayed. (For a list of MS-LINK error
messages, see Appendix G in the MS-Pascal Reference
Manual.)

If the linker aborts, use the MS-DOS command DIR to
check the contents of your disk to make sure that
VM.TMP has been deleted. Then, use the CHKDSK
program to reclaim any available space from unclosed
files. CHKDSK tells you the total amount of
available space on the disk.

4.3 LINKER SWITCHES

You can give one or more linker switches after any
of the linker prompts. Table 4-2 summarizes the
linker switches you can use with MS-Pascal. See
your Programmer's Tool Kit, Volume II for more
information on linker switches and when and how to
use them.

NAME ACTION

Table 4-2: MS-LINK Switches

/DEALLOCATE Loads data at the high end of the
data segment. For MS-Pascal and MS-
FORTRAN programs, this switch is
required and supplied automatically
by the compiler.

/LINENUMBERS Includes source listing line numbers
and associated addresses in the
linker listing, which allows you to
correlate machine addresses with
source lines when debugging. This
correlation is also available on the
object listing.

/MAP Includes all EXTERN and PUBLIC

4-7

variables in the linker list file.

/NO Tells the linker to not
automatically search PASCAL.LIB.
(Short for NODEFAULTLIBRARYSEARCH.)

/PAUSE Tells MS-LINK to display the
following message:

About to generate .EXE file
Change disks <press Return>

You can then change disks before the
linker continues. The /PAUSE switch
is useful for linking large
programs, since it allows you to
switch disks before writing the run
file. However, if a VM.TMP file is
created, you must not switch the
disk in the default drive.

NOTE: Do not use either of the additional linker
switches /HIGH or /STACK with MS-Pascal and MS-
FORTRAN programs.

4-8

5. USING A BATCH COMMAND FILE

The MS-DOS operating system allows you to create a
batch file for executing a series of commands.
Creating and using batch command files is described
fully in the MS-DOS section of your Operator's
Reference Guide. This chapter provides a brief
description of command files in the context of
compiling, linking, and running an MS-Pascal
program.

A batch command file is a text file of lines that
are MS-DOS commands. If a batch file is open when
MS-DOS is ready to process a command, the next line
in the file becomes the command line. After
processing all batch command lines (or if batch
processing is otherwise terminated), MS-DOS goes
back to reading, command lines from the console.

Batch file lines cannot be read by the compiler, the
linker, or a user program. Thus, you cannot put
responses to filename prompts, $INCONST values, or
the like in a batch file. All compiler parameters
must be given on the command line, as described in
Section 3.3.2.

The batch file can contain dummy parameters that you
replace with actual parameters when you invoke it.
The symbol %1 refers to the first parameter on the
line, %2 to the second parameter, and so on. The
limit is %9. A batch command file must have the
extension .BAT and should be kept on either the
program disk or the utility disk.

The PAUSE command, followed by the text of the
prompt, tells the operating system to pause, display
the prompt that you have defined, and wait for some
further input before continuing.

5-1

If your program is already debugged and you are
making only minor changes to it, you can speed up
the compilation process by creating a batch file
that issues the compile, link, and run commands.

For example, use the line editor in MS-DOS to create
the following batch file, COLIGO.BAT:

A:PAS1 %1,,;
PAUSE ...If no errors, hit Return to continue
compi1ing.
A:PAS2
A:LINK %1;

To execute this file, type:

COLIGO SORT

Where: SORT is the name of the source program you
want to compile, link, and run.

1. The first line of the batch file runs pass one
of the compiler.

2. The second line generates a pause and prompts
you to hit Return if pass one was successful.

3. The third line runs pass two.

4. The fourth line links the object file.

5. The fifth line runs the executable file.

A .BAT file is executed only if there is neither a
.COM file or .EXE file with the same name. Thus, if
you keep your source file and .BAT file on the same
disk, they should have different filenames.

For more information about batch command files, see
your Operator's Reference Guide.

5-2

6. COMPILING AND LINKING LARGE PROGRAMS

You may find that a large program exceeds one or
more physical size limits that the compiler, the
linker, or your machine can handle. This chapter
describes some ways to avoid or work within such
limits.

6.1 AVOIDING LIMITS ON CODE SIZE

The upper limit on the size of code that can be
generated at once by the MS-Pascal compiler is 64K
bytes. However, since you can compile any number of
compilands separately and link them together later,
the real program size limit is not 64K but the
amount of memory available.

For example, you can separately compile six
different compilands of 50K bytes each. Linking
them together produces a program with a total of
300K bytes of code.

In practice, a source file large enough to generate
64K bytes of code would be thousands of lines long,
and unwieldy both to edit and to maintain. A better
practice is to break a large program into MS-Pascal
modules and units to better structure the
development and maintenance process. As always,
there is a trade-off between size and speed.
Procedure and function calls within a module to
routines without the PUBLIC attribute are somewhat
faster, since intrasegment calls, which run faster,
are generated, rather than intersegment calls.

6.2 AVOIDING LIMITS ON DATA SIZE

Data includes your main variables, the stack, and
the heap. MS-Pascal operates with data in two
regions of memory:

6-1

1. The default data segment

2. The segmented data space

The upper limit on on the amount of data that can
reside in the default data segment is also 64K
bytes. You can go beyond this limit, however, by
taking advantage of the ability to place certain
kinds of data outside the default data segment,
using ADS variables, VARS and CONSTS parameters, and
segmented ORIGIN variables.

The default data segment normally holds the
following:

1. All statically allocated variables

2. Constants that reside in memory

3. Heap variables

4. The stack, which holds parameters, return
addresses, stack variables, and so on.

Although operations with data in the default data
segment are more efficient (i.e., generate less code
and run faster) than those with data that may be in
any segment, almost all MS-Paseal operations work
equally well on data outside the default data
segment.

The segmented data space includes the entire 8086
address space, including the default data segment.
Data outside the default data segment can be
referenced using ADS (segmented address) variables,
VARS and CONSTS parameters, and segmented ORIGIN
variables. See the MS-Pascal Reference Manual for a
discussion of these MS-Pascal features.

Only in the following cases must data reside in the
default data segment:

6-2

1. File variables

2. The LS TRING parameters to ENCODE and DECODE

3. All parameters to READSET

To allocate data outside the default data segment,
you must go outside the MS-Pascal system itself. If
you already know the address of free blocks of
memory on your computer, you can use these addresses
in a segmented ORIGIN attribute or assign them to an
ADS variable. Otherwise, you can get the addresses
of free memory from MS-DOS, using a process
(described as point #4 in "Implementation
Additions" in Appendix A) to get a pair of ADS
variables to the lower and upper bounds of available
memory.

Many applications use a large block of memory for
primary data, as well as various other variables to
control access and processing of this data. For
example, a text editor has a work area; a data base
system has a data area (or index area); and so on.
This large block can be managed outside the default
data segment with ADS variables.

In the default data segment, the heap and the stack
grow toward each other. Heap allocation attempts to
use existing disposed blocks in the heap itself,
before growing into memory shared with the stack.

As a part of this process, adjacent disposed blocks
are merged, and free blocks at the end of the heap
become available to the stack.

However, only heap allocation, (NEW or ALLHQQ)
releases free heap blocks to the stack. Therefore,
if you are running out of stack after a number of
DISPOSE operations, make the following call:

EVAL (ALLHQQ (65534));

6-3

6.3 WORKING WITH LIMITS ON COMPILE-TIME MEMORY

During compilation, large programs are most often
limited in the number of identifiers in any one
source file. They are occasionally limited by the
complexity of the program itself. If one of these
limits is reached, you will see this error message:

Compiler Out Of Memory

There is no particular limit on number of bytes in a
source file. The number of lines is limited to
32767, but in practice, any source file this big
will run into other limits first.

6.3.1 IDENTIFIERS

Pass one of the compiler can handle a maximum of
about a thousand identifiers visible at any one
time. This assunes a 64K default data segment
(i.e., about 160K of memory total); it also assumes
that most of your identifiers are seven characters
or shorter and are not PUBLIC or EXTERN.

Once a procedure or function is compiled, its local
identifiers can be released to provide room for new
ones. Several methods of reducing the number of
identifiers in a program are described in the
following paragraphs.

1. Break your program into modules or units.

The best way to reduce the number of
identifiers is to break up your program into
modules or units. When dividing your
application into pieces, one guiding principle
is to minimize the number of shared (PUBLIC and
EXTERN) identifiers. This is good programming
practice, and it makes compilation easier.

6-4

Breaking up a program may force you to choose
between a shared variable and a shared
procedure or function. Usually a shared
procedure or function is "cleaner"; it is
easier to trace the use of a procedure than the
use of a variable, for example. However, a
shared variable is usually more efficient in
terms of memory required and number of
identifiers used.

2. Simplify your identifiers.

Although it reduces the readability of a
program (since naming something is a more
readable way of referring to it than giving an
arbitrary number), you may simplify your
identifiers by replacing names with numbers.
If necessary, any of the following may help:

a. Change enumerated types into WORD types
and use numbers instead of identifiers.

b. Use constant literals instead of constant
identifiers.

c. Combine related procedures and functions
into single ones, with a parameter
indicating the type of call.

d. Combine variables into an array and refer
to the variables using constant array
indices.

3. Remove unneeded identifiers from PASKEY.

It is also possible to remove identifiers of
predeclared procedures and functions you don't
need from PASKEY, at least those in the final
section (the one that looks like an interface).
An identifier in this section must be removed
three times: once from the. UNIT list, once

6-5

from the interface (the declaration itself),
and once from the USES list. However, the type
FCBFQQ must not be removed.

You can also remove identifiers of intrinsic
procedures and functions, a list near the start
of PASKEY from READLN to RESULT. Any
identifiers removed must be replaced with an
asterisk (*). However, the procedure READFN
must not be removed if you have program
parameters.

Finally, the following declarations can be
removed:

ADAPQQ
ADFMEN
ADSMEM
BYTE
INTEGER1

INTEGER2
MAXINT
MAXINT4
MAXWORD
BYTE

Removing any other identifiers from PASKEY
generates the following error:

144 Compiler Internal Error

A special caution is required regarding interfaces.
When an interface USES another interface, it must
import all identifiers in the other interface. To
do this, the other interface must have been
declared, so now its identifiers occur twice. If a
third interface USES both of the first two, the
first interface's identifiers occur three times and
the second interface's identifiers occur twice, and
so on. This is an easy way to run out of
identifiers!

The only reason an interface needs to USE another
interface is to import identifiers for types; an
interface has no use for variables, procedures, and
functions. In many cases, you can declare a single
interface with your global types; this is the only

6-6

interface used by other interfaces. Once your
compilation gets past the USES clause in the
PROGRAM, MODULE, or IMPLEMENTATION, many of these
"extra" identifiers are removed.

6.3.2 COMPLEX EXPRESSIONS

It is also possible to run out of memory in pass one
with any of the following:

1. A very complex statement or expression (i.e.,
one that is very deeply nested)

2. A large number of error messages

3. A large number of structured constants,
including string constants.

You may be able to change literal strings and other
structured constants into EXTERN READONLY variables
which get initialized (as PUBLIC variables) in
another module.

Usually, if a program gets through pass one without
running out of memory, it will get through pass two.
The major exception occurs with complex basic
blocks, as in either of the following:

1. Sequences of statements with no labels or other
breaks

2. Sequences of statements containing very long
expressions or parameter lists (especially a
WRITE or WRITEEN procedure call with many
expressions)

If pass two runs out of memory, it displays the
fol lowing message:

Compiler Out Of Memory

6-7

The error message gives a line number reference. If
there is a particularly long expression or parameter
list near this line, break it up by assigning parts
of the expression to local variables (or using
multiple WRITE calls). If this does not work, add
labels to statements to break the basic block.

6.4 WORKING WITH LIMITS ON DISK MEMORY

Another type of limit you may encounter is in the
number of disk drives on your computer or the
maximum file size on one disk. As with other
limits, there are several possible solutions.

The simplest method of avoiding these limits is to
first load a compiler pass, then switch disks and
run the pass.

6.4.1 PASS ONE

For PAS1.EXE, just type PAS1 (or dev:PASl if
necessary) to load pass one and read the PASKEY
file. When the "Source File" prompt appears, you
can remove the disk containing PAS1 and PASKEY. If
you have a single drive system, replace the system
disk with the disk'containing your source file.
PAS1 will write its intermediate files on the same
disk.

If you have a two drive system, insert your source
file in the tion-default drive. Since the
intermediate files are always written to the default
drive, you will need to give an explicit device
(i.e., drive) letter for your source file.
Typically a source listing file would go on the same
drive as the source.

If your source file will not fit on one disk, you
can break it into pieces and use the $INCLUDE
metacommand to compile the pieces as a group. One

6-8

way to do this is create a master file with lines
such as:

{SMESSAGE:'Insert B:Pl.PAS'
$INCONST:P1 SlNCLODE: ‘B:Pl. PAS'}

{$MESSAGE:'Insert B:P2.PAS'
$I1KONST:P2 SlNCLUDE: ’B:P2.PAS'}

{SMESSAGE:'Insert B:P3.PAS'
$IN30NST:P3 $INCLUDE: *B:P3.PAS’}

The $INCONST metacommand makes the compiler pause
while you switch disks. These $INCLUDE's can also
be simply typed at your console. Just give USER as
the name of your source file, and type your $INCLUDE
metacommands directly, one per line. You will need
to type an ALT-2 (end-of-file) to end the
compilation.

If your source file doesn't fit on one diskette,
your source listing file will not fit either, so you
will need to send it directly to the printer. If
you think you could get a listing file on the disk,
except that the source and intermediate (PASIBF)
files take up too much room, include a line like the
following near the start of your source file:

{$IN30NST: ZERROR} CONST ERROR = 1 DIV ZERROR;

If you respond with "0" to the "Inconst ZERROR"
prompt, you get a compiler error. The compiler
error stops the writing of the intermediate files,
which leaves room on the disk for your listing.
However, then you have to run the front twice, once
to generate intermediate files for PAS2 and once for
the listing.

Another way to control a large listing file is use
of the $LIST metacommand. Turn off generation of
listing code with the $LIST- metacommand, and then
use the pair of metacommands, $LIST+ and $LIST-, to
bracket only those portions of the program for which
you want a soiirce listing.

6-9

6.4.2 BASS TWO

Two command line parameters available with PAS2 can
help you with disk limitations.

1. You can indicate a drive letter on which your
input intermediate files, PASIBF.SYM and
PASIBF.BIN, can be found.

2. The /P switch tells PAS2 to pause while you
remove the disk containing PAS2.EXE and insert
another disk.

For example, if you have a single drive system,
insert your PAS2.EXE disk and type "PAS2 /P". After
PAS2 is loaded, you will see the message:

Press ENTER key to begin pass two

Take out the PAS2.EXE disk and insert the disk with
the intermediate file from PAS1. Now press the
Enter (Return) key, and PAS2 will run.

If you have two drives, but you run out of disk
memory when executing PAS2, you need to have the
input intermediate files PASIBF.SYM and PASIBF.BIN
on one drive and PASIBF.TMP on the other drive (also
PASIBF.OID if you are making an object listing
file).

The PASIBF.TMP file (and the PASIBF.OID file used in
pass three) are always written to the default drive.

Give PAS2 a drive letter to specify the drive
containing the PASIBF.SYM and PASIBF.BIN files; for
example, "PAS2 B". Normally you also need the pause
command; for example, "PAS2 B/P". PAS2 responds
with a message like the following:

PASIBF.SYM and PASIBF.BIN are on B:

6-10

This message is followed by the pause prcmpt:

Press ENTER key to begin pass two

When you run PAS2 with the PASIBF files on two
disks, the object file should usually go on the same
disk as PASIBF.TMP (and PASIBF.OID); that is, on
the default drive. If it doesn't quite fit, and you
are making an object listing file, you could compile
your program twice, once without the object listing
but with the object file itself, and once with an
object listing but with NUL used for the object
file.

6.4.3 LINKING

If you are making a large program with only one disk
drive, you may run into similar problems when you
link your program. Since you can split your program
into pieces and compile them separately, but you
must link the entire program at one time, you may
run into disk limitations in the linker but not the
compiler.

The linker prompts you for any object files and/or
libraries it cannot find, so you can swap in the
correct disk and continue linking. Also, the /PAUSE
switch makes the linker wait after linking but
before writing the run (.EXE) file, so you can
create a run file that fills an entire diskette.
However, creation of the virtual file VM.TMP and the
link map limit the amount of disk swapping you can
do.

On a one-drive system:

1. Load the linker by typing LINK.

2. Remove the disk containing LINK.EXE and insert
the disk containing your object file(s) and, if

6-11

there is roan, any libraries.

3. Respond normally to the linker prompts, except
to include the /PAUSE switch with the run file
if you want the run file on another disk.

Unless all object files, libraries, and the run file
fit on one disk, you must not write the linker
listing to a disk file. Instead, send the linker
map to NUL, CON, or directly to your printer. Since
the map is written at various points in the link
process, you cannot swap the disk that gets the map.

The linker prompts you when it needs an object file,
a library file, or is about to write the run file;
exchange disks as necessary when this happens. If
the linker gives a message that it is creating
VM.IMP, its virtual memory file, you cannot switch
disks anymore, so you may not be able to link
without more memory or a second disk drive.

With two disk drives, you can devote one drive (the
default) to the VM.TMP file (and the link map, if
you want one). Use the other drive for your object
files, libraries, and run file (using the /PAUSE
switch). With this method you can link very large
programs.

The linker makes two passes through the object files
and libraries, one to build a symbol table and
allocate memory, and one to actually build the run
file. This means you will insert a disk containing
object files or libraries twice, and finally insert
the disk that receives your run file.

6.4.4 A COMPLEX EXAMPLE

The following example illustrates compiling and
linking a very large program. The example assumes
that the machine has two drives and that the
programmer doesn’t want any of the listing files.

6-12

1. Pass one

a

b.

c.

Type PAS1, and wait for the Source File
prompt.

Insert the disk containing the source file
LARGE.PAS in drive B.

Insert your MS-Pascal system disk
(containing PASKEY, PAS1.EXE, PAS2.EXE and
LINK.EXE) in drive A.

d. Respond to prompt with B:LARGE,B:LARGE;
and wait for PAS1 to run.

2. Pass two.

a. Type PAS2 B/P and wait for the PAS2
prompt.

b. Remove the MS-Pascal system disk from A
and insert an empty disk (to which the
object file will be written).

c. Respond to the prompt by pressing the
Return key and wait for PAS2 to run.

d. Remove the disk containing the object file
from A.

3. Linking.

a. Log on to drive B (which contains a now-
empty disk).

b. Insert your MS-Pascal system disk in A;
type A:LINK and wait for Object Modules prompt.

c. Remove the system disk from A and insert
the disk containing the object file(s).

6-13

the disk containing the object file(s).

d. Respond to the prompt by typing A:LARGE
(plus any other object files).

e. Respond to the Run File prompt by typing
LARGE/PAUSE.

f. Respond to the List File prompt by pressing
the Return key, or type B:LARGE to get a
linker map.

g. Respond to the Libraries prompt by
pressing the Return key or with a library
name (the library must be on A).

h. Whit for linker to run, swapping the A
disk after prompts as necessary.

6.5 MINIMIZING LOAD MODULE SIZE

Lome Pascal load modules can be reduced in size by
eliminating runtime modules your program doesn't
use. Reductions can be made in several areas:

1. I/O

2. Run-time error messages

3. Real number operations

4. Debugging

6.5.1 I/O

Because most MS-Pascal programs perform I/O, they
require linking to the MS-Pascal file system in the
run-time library. However, some programs do not
perform I/O and others perform I/O by directly

6-14

calling MS-Pascal's Unit U file routines or calling
operating system I/O routines. For more information
on Unit U, see Section 8.2.

Nonetheless, all programs include calls to INIFQQ
and ENDYQQ, the procedures that initialize and
terminate the file system. These calls increase the
size of the load module by linking and loading
routines that may never be used.

If a program doesn’t need the file system routines,
you can eliminate unnecessary file support by
declaring dummy INIFQQ and ENDYQQ subroutines in
your program, as follows:

PROCEDURE INIFQQ [PUBLIC];
BEGIN
END;

PROCEDURE ENDYQQ [PUBLIC];
BEGIN
END;

The linker still loads the Unit U procedures
necessary to access the terminal (INIUQQ, ENDUQQ,
PTYUQQ, PLYUQQ, and CTYUQQ), so that the runtime
system can write any run-time error messages.

However, if you do include the dummy procedures
shown and the linker produces any error messages for
global names that end with the "FQQ" or "UQQ"
suffix, your program requires the file systsn and
the process described above will not work. The most
common ones would be NEWFQQ, the file variable
initializer, and BUFFQQ, the lazy evaluation
evaluator.

On the other hand, if your program doesn't require
the I/O-hand ling procedures called by Unit U, you
can use the dummy file NULF.CBJ instead. NULF.OBJ
contains the dummy subroutines for INIFQQ and

6-15

ENDYQQ, as well as dummies for INIUQQ and ENDUQQ.

6.5.2 RON-TIME ERROR HANDLING

If run-time error handling is not required, the load
module can be further reduced in size by eliminating
the error message module and replacing it with the
null object module, NULE6.CBJ. NULE6.OBJ provides
for simple termination of a program if an error
occurs.

INUXQQ, the unit initialization helper, also resides
in the error unit. If you want to replace error
handling with NULE6, you must do any unit
initialization yourself and remove the keyword BEGIN
from all the interfaces in your source program.

6.5.3 REAL NUMBER OPERATIONS

If an MS-Pascal program does no real number
operations, it doesn't require INIX87 and ENDX87,
the modules that initialize and terminate the real
number support system. The dummy object module
NULR7.OBJ provides dummy routines for these two
modules.

6.5.4 ERROR CHECKING

Compiling and linking a program with the error­
checking switches or metacommands on may generate up
to 40% more code (or even more with $LINE+) than
with these switches or metacommands off. Therefore,
after a program has been successfully compiled,
linked, and run, turn the error-checking switches
off and do the entire process again to create a
program that runs considerably faster.

6-16

7. USING ASSEMBLY LANGUAGE ROUTINES

After describing the MS-Pascal calling conventions
and internal representations of data types, this
chapter shows how to interface 8086-88 assembly
language routines to MS-Pascal compilands. The
information in this chapter is not required for most
MS-Pascal programs and is intended primarily for the
advanced programmer who is familiar with the
foilowing materia 1:

1. The EXTERN directive (see Chapter 13 of the MS-
Pascal Reference Manual)

2. Procedure and function parameters (see Chapter
13 of the MS-Pascal Reference Manual)

3. MACRO-86 (or the assembler that is available
for your version of MS-DOS)

7.1 CALLING CONVENTIONS

At run-time, each active procedure or function has a
"frame" allocated on the stack. The frame contains
the data shown in Figure 7-1.

Figure 7-1: Contents of the Frame

+--+

| Return address to caller '
+--- +

| Parameters, if any |
+--+

| Upper framepointer, if any |
+--+

Frame pointer—> | Saved caller framepointer |
H---+

| Local data, temporaries, etc.|
+--- ------------------- ------------+

7-1

The framepointer points at the saved caller
framepointer, below the return address, and is used
to access frame data. A procedure or function
nested within another procedure or function has an
upper framepointer, so it can access variables in
the statically enclosing frame.

The following takes place during a procedure or
function call:

1. The caller saves any registers it needs (except
the framepointer).

2. The caller pushes parameters in the same order
as they are declared in the source and then
performs the call.

3. The called routine pushes the old framepointer,
sets up its new framepointer, and allocates any
other stack locations needed. It also checks
for adequate stack space if SSTACKCK was on.

To return to the calling routine, the called routine
restores the caller's framepointer, releases the
entire frame (including parameters), and returns.
Not all of these steps need necessarily be taken in
an assembly language routine. You must only ensure
that the framepointer is not modified and that the
entire frame, including all parameters, is popped
off the stack before returning. For information on
the assembly language interface, see Section 7.3.

The standard entry and exit sequences (with
$STACKCK-) are as follows:

PUSH BP
MOV BP,SP
<body of routine-
POP BP
RET PARAMETERSIZE

7-2

A function always returns its value in registers.
For real types, structured types, and pointers to
super arrays, regardless of length, the caller
allocates a frame temporary for the result and
passes the offset address to the function 1 ike a
parameter. When the called routine returns, it
places the address back in the normal return
register (AX).

8086-88 microprocessors perform a long call if the
called routine is PUBLIC or EXTERN. In all other
cases, they perform a short call.

The called routine must save the BP register, which
contains the MS-Pascal framepointer, as well as save
the DS segment register. The SS register is used by
interrupt routines, both user-declared and 8087
support, to locate the default data segment, and so
must not be changed (at least, if interrupts are
enabled). Other registers (FLAGS, AX, BX, CX, DX,
SI, DI, and ES) need not be saved.

Functions return a 1-byte value in AL, a 2-byte
value in AX, and a 4-byte value in DX:AX (high
part:low part, or segment:offset).

7.2 INTERNAL REPRESENTATIONS OF DATA TYPES

This section describes the internal representation
of MS-Pascal data types. Programmers who use both
MS-Pascal and MS-FORTRAN should pay particular
attention to the data type and parameter passing
differences when passing data between the two
languages. For internal representations of MS-
FORTRAN data types, see the MS-FORTRAN Compiler
User's Guide.

INTEGER and WORD

7-3

INTEGER values are 16-bit two's complement numbers,
but a subrange requiring 8 bits or less (i.e., in
the range -127..127) is allocated an 8-bit byte.
WORD values are 16-bit unsigned numbers, but a WORD
subrange in the range 0..255 is allocated an 8-bit
byte. For 16-bit INTEGERS and WORDS, the least
significant byte has the lower, even address.

INTEGER4 and REAL

INTEGER4s are 32-bit two’s complement numbers, with
the least significant byte at the lowest, even
address and more significant bytes at increasing
addresses. There are no subranges for INTEGER4 (as
there are for INTEGER2).

IEEE 4-byte real numbers have a sign bit, 8-bit
excess 127 binary exponent, and a 24-bit mantissa.
The mantissa represents a number between 1.0 and
2.0. Since the high order bit of the mantissa is
always 1, it is not stored in the number. This
representation gives an exponent range of 10**38 an5
7 digits of precision. The maximum real number is
normally 1.701411E38.

IEEE 8-byte real numbers have a similar format,
except that the exponent is 11-bits excess 1023, air!
the mantissa has 52 bits (plus the implied high-
order 1 bit). (This gives an exponent range of
10**306 and fifteen digits of precision.)

In either case, a number with an exponent of all
zeros is considered zero. An exponent of all ones
is a flag for an invalid real number, or "not a
number" (NaN).

CHAR, BOOLEAN, and Enumerated Types

7-4

CHAR values and BOOLEAN values take 8 bits. CHAR
values correspond to the ASCII collating sequence.
For BOOLEANs, FALSE is zero and TRUE is one. The
low order bit (bit 0) is generally used to check
this value. Bits 1 through 7 are presumed to be 0.

Enumerated values take 8 bits if 256 or fewer values
are declared; otherwise 16 bits are declared. Values
are assigned starting at zero. Subrange values take
either 8 or 16 bits.

Reference Types

Pointer values currently take 16 bits. A pointer is
a default data segment offset. Other representa­
tions, such as an offset from an address kept in a
global variable or an address divided by a power of
two, may be used in the future. A pointer to a super
array type is followed by the bounds (see point 6),
increasing the length of the pointer value (DS/SS).

ADR and ADS are offset addresses and segmented
addresses, respectively. For segmented addresses,
the offset is the lower address, and the segment
follows.

The heap contains heap blocks, which may be
allocated or free. A heap block contains a header
WORD, with a 15-bit length (in WORDs) and the lower-
order bit, which is ON for free blocks and OFF for
allocated blocks. The starting and ending heap
addresses are WORD variables in BEGHQQ and ENDHQQ.

Procedural and Functional Parameters

Procedural parameters contain a reference to the
procedure or function’s location along with a
reference to the "upper framepointer" (a list of
stack frames of statically enclosing routines). The
parameter always contains two words, in one of two

7-5

formats. In the first format, the first word
contains the actual routine's address (a local code
segment offset), and the second word contains the
upper framepointer. The upper framepointer is zero
if the actual routine is not nested in a procedure
or function and, therefore, the routine has no upper
framepointer.

In the second format, used for segmented address
targets, the first word is zero and the second word
contains a data segment offset address. This is an
offset to two words in the constant area that
contain the segmented address of the actual routine.
There is never an upper framepointer in this case.

Super Arrays

A super array type's representation is similar
whether it is a reference parameter or the referent
of a pointer. First comes the address (reference
parameter) or pointer value, Mich is either 2 or 4
bytes long. Following the address are the upper
bounds, which are signed or unsigned 16-bit
quantities. The bounds occur in the same order as
they are declared. A pointer value to a super array
type is normally longer than other pointers, since
the upper bounds are included.

Sets
The number of bytes allocated for a SET is:

(ORD (upperbound) DIV 16) *2+2

This is always an even number from 2 to 32 bytes.
For example, SET OF 'A'..'Z' requires 12 bytes.
Internally, a set consists of an array of bits, with
one bit for every possible ORD value from 0 to the
upper bound. Bits in a byte are accessed starting
with the most significant bit. The occurrence of a

7-6

given ORD value as an element of a set implies the
bit is 1, and the byte and bit position of a given
ORD value of any set is the same. For example, the
ORD value of 'A' is 65, and the 2nd bit (i.e.,
2#01000000) of the 9th byte in a set is 1 if 'A' is
in the set.

Files

A FILE type in a program is a record called a file
control block (of type FCBFQQ) in the file unit.
The initial portion of the FCBFQQ record is standard
for all files, but the remainder is available for
use by the particular target file system. The end
of the FCB contains the current buffer variable.
The internal form of a file varies depending on the
target file system.

Under MS-DOS, ASCII files consist of lines followed
by a carriage return and linefeed pair, which
together are a "line marker." MS-DOS binary files
are simply a stream of bytes.

Structures

For arrays arid records, the internal form is
comprised of the internal forms of the components,
in the same order as in the declaration. Arrays,
records, variants, sets, and files always start on a
word boundary. In any case, variables cannot be
allocated more than MAXWORD (64K) bytes.

A PACKED type has the same representation as an
unpacked one.

A variable or component 16 bits or larger is always
aligned on a word boundary; therefore, it always has
an even byte address. The only exception is vhen
explicit field offsets are given by the user in a
program.

7-7

An 8-bit variable is also aligned on a word boundary,
but an 8-bit component of a structure (array or
record) is aligned on a byte boundary, which can be
at an even or odd address. Currently, an array of 8-
bit values starts on a word boundary (but this may
change).

7.2.1 INITIALIZED VARIABLES

Sane variables are initialized automatically,
whether they reside in fixed memory, on the stack,
or on the heap.

1. Files (FCBFQQ records) are initialized by
calling NEWFQQ, by passing the size of a
textfile line buffer or binary file component,
and by passing a Boolean flag value to indicate
whether the file is a textfile.

2. If SINITCK is on, INTEGERS and their 2-byte
subranges are initialized to 16#8000, 1-byte
INTEGER subranges to 16#80, IEEE REAL values to
16#FFFF, and pointers to 16#0001. The following
variables, however, are never initialized
by $INITCK:

o Variables found in a VALUE section

o Variant fields in a record

o Super arrays allocated on the heap

The compiler generates the extra code necessary to
initialize stack and heap variables.

7-8

7.3 INTERFACING TO ASSEMBLY LANGUAGE ROUTINES

In general, interfaced procedures and functions are
declared EXTERN in the MS-Paseal source. When an
EXTERN procedure or function is called, actual
parameters are pushed on the stack in the order that
they are declared. If a parameter is a value
parameter, an actual value is pushed on the stack.

If a parameter is a VAR or CONST reference
parameter, the address of the variable is pushed on
the stack. Only the two-byte offset is pushed, and
not the segment. The offset is within the default
data segment, DS (where SS - DS).

In contrast, a VARS or CONSTS parameter includes
both a two-byte segment and a two-byte offset, with
the segment pushed first.

Super array reference parameters include their upper
bounds, pushed as value parameters before the address
is pushed. For multi-dimensional super arrays,
bounds are pushed in reverse order (the last flexible
bound is pushed first).

As shown in Figure 7-5, for some functions a final
hidden offset address for the return value temporary
variable is pushed last.

After all parameters have been pushed, the return
address for PUBLIC and EXTERN procedures is pushed
by a far call instruction. The return address is
segmented, so the segment is pushed first, followed
by the offset. This is the general starting state of
the stack for any assembly language routine that
wishes to access parameters.

For example, assume that you have created and
compiled the following program, which contains the
EXTERN function ADD:

PROGRAM AS4 INTERFACE (INPUT, OUTPUT);

7-9

VAR I, TOTAL : INTEGER;
FUNCTION ADD (VAR A:INTEGER; B:INTEGER):

INTEGER; EXTERN;
BEGIN

I :=10;
TOTAL ADD (I, 15);
WRITELN (OUTPUT, TOTAL)

END.

When the program executes the ADD function at
runtime, it sets up the stack as shown in Figure 7-
2.

Figure 7-2: Stack Before Transfer to ADD

Higher addresses

4---------------- ---+

| Low byte | High byte |
4-- +
| Low byte | High byte |
-s-EEEEEEEEEEEEEEEEEEEEEEEEE-^

| Low byte | High byte |
4--+

SP-> | Low byte | High byte |
4--4-

Parameter 1 (address of A)

Parameter 2 (value of B)

Return segment

Return offset

Lower addresses

Before you can run such a program, however, you have
to link it to a routine that implements the ADD
function. Implementation of AID in assembly
language might look like this:

DATA SEGMENT PUBLIC 'DATA'
;PUBLIC and EXTERN data declarations go here.

DATA ENDS
DGROUP GROUP DATA

ASSUME CS:ADDS,DS:DGROUP,SS:DGROUP

7-10

ADDS SEGMENT ’CODE’
PUBLIC ADD
ADD PROC FAR

PUSH BP ;Save franepo inter on stack
MOV BP,SP ; Address parameters
MOV AX,6[BP] ;AX := value of B
MOV BX,8[BP] ;BX := address of A
AH) AX, [BX] ;AX integer A + integer B
POP BP ;Restore framepointer
RET 4 ;Return, pop 4 bytes

ADD ENDP
ADDS ENDS

EM

Remember that when an EXTERN procedure or function
is called at runtime, parameters are pushed on the
stack. An assembly language routine must rely on
these pushed parameters being in a certain sequence
and format. It must also remove all parameters from
the stack before returning.

Assembly language routines must save and restore the
BP and DS registers. They must not even modify the
SS register. Hove ver, the remaining registers
(FLAGS, AX, BX, CX, DX, SI, DI, and ES) can be
changed by the assembly language routines as needed.

If the routine is a function, the return value is
placed in registers. If the return value is a one-
byte value, it is placed in the AL register, as
shown in Figure 7-3. AH need not be set.

Figure 7-3: One-Byte Return Value

4--+

I 00000000 | Low byte |
+----------------------------+

Single byte
return value

AH AL

If the return value is a two-byte value, the

7-11

returned value is placed in the AX register pair,
high byte in AH and low byte in AL.

Figure 7-4: Two-Byte Return Value

--------------------------- +

High Byte | Low Byte | Single Word
+---------------------------- + Return Value

AH AL

If the return value is a four-byte value, the high
part (or segment) of the return value is placed in
the DX register and the low part (or offset) in the
AX register. (This is sometimes shown as DX:AX.)
Note that this only applies to INTEGER4 and ADS
types.

Since MS-Pascal permits structured values to be
retrieved by a function, it is possible for the
return value's size in bytes to be extremely large.
Therefore, for all function returns of any real or
structured type (REAL4, REAL8, array, record, or
set) or of a pointer to a super array type, the
compiler allocates its own temporary variable. This
occurs even if the size of the return value is 1, 2,
or 4 bytes.

The address of this temporary variable is pushed on
the stack after all parameters, just before the
return address is pushed, as shown in Figure 7-5.
(This address is an offset, and therefore only one
word is pushed.)

7-12

Figure 7-5: Four-Byte Return Value

Higher addresses
+--- +

| Other parameters |
+--- —F

| Low byte | High byte |
+--- +

| Low byte | High byte |

SP-> | Low byte | High byte |
4------ —---------------- —-----------——————F

Lower addresses

Address of structure

Return segment

Return offset

Stack grows downward

On exit from the function, the address of this
temporary variable should be placed in the AX
register in lieu of the full structure. This
address is simply an offset returned in the AX
register.

You may want to pass data using PUBLIC and EXTERN
variables instead of parameters. If so, these
variable declarations go into a segment named DATA
with classname 'DATA', in group DGROUP. It is
important that you give the correct segment, class,
and group names, as shown in the last example. (See
your Programmer's Tool Kit, Volume II for more
information.)

7-13

8. ADVANCED TOPICS

This chapter contains advanced technical information
of interest primarily to experienced programmers.
Since MS-FORTRAN and MS-Paseal have the same
compiler back end, and share a common file and run­
time system, much of the information that follows
refers to both languages. Differences, where they
exist, are noted.

8.1 STRUCTURE OF THE COMPILER

The compiler is divided into three phases, or
passes, each of which performs a specific part of
the compilation process. Figure 8-1 illustrates the
basic structure of the compiler and its relationship
to the files that it reads and writes.

Pass one, which normally corresponds to a file named
PAS1, is the front end of the compiler. It performs
the following actions:

1. Reads the source program.

2. Compiles the source into an intermediate form.

3. Writes the source listing file.

4. Writes the symbol table file.

5. Writes the intermediate code file.

8-1

Figure 8-1: Structure of the MS-Pascal Compiler

The Compiler Files

Front
End

Back
End

PASS ONE

source

sourcelist

icode------+

symtab-- +

PASS TWO <--------------------+

Optimizer <----------------- +

Code generator ------ > bincod ---- +

Link text emitter <------------------ +

> symtab —+

> object

+-- +
PASS THREE <---------------- +

Object code lister <------------------+

------ > objectlist

Scanner <------

Low-level utilities ------ >

Middle-level utilities ----- >

High-level utilities — --->

+-- 1

+--+

Passes two and three (PAS2 and PAS3) together make
up the back end of the compiler, which does the

8-2

following:

1. Optimizes the intermediate code.

2. Generates target code fran intermediate code.

3. Writes and reads the intermediate binary file.

4. Writes the object (link text) file.

5. Writes the object listing file.

Both the front and back end of the compiler are
written in MS-Pascal, in a source format that can be
transformed into either relatively standard Pascal
or into system level MS-Pascal. (For information on
these levels, see the MS-Pascal Reference Manual.)

All intermediate files contain MS-Pascal records.
The front and back ends include a common constant
and type definition file called PASCOM, which
defines the intermediate code and symbol table
types. The back ends use a similar file for the
intermediate binary file definition. Formatted dump
programs for all intermediate files and object files
are available for special purpose debugging.

The symbol table record is relatively complex, with
a variant for every kind of identifier (assorted
data types, variables, procedures and functions).
The intermediate code (or Icode) record contains an
Icode number, opcode, and up to four arguments; an
argument can be the Icode number of another Icode to
represent expressions in tree form, or something
else (such as a symbol table reference, constant, or
length). The intermediate binary code record
contains several variants for absolute code or data
bytes, public or external references, label
references and definitions, and so on.

8-3

8.1.1 THE FRONT END

The MS-Pascal front end can be divided into four
parts:

1. The scanner

2. Low-level utilities

3. Intermediate-level utilities for identifiers,
symbols, Icodes, memory allocation, and type
compatibility

4. High-level routines for processing procedure
and function calls, expressions, statements,
and declarations

The front end is driven by recursive descent
syntax analysis, using a set of procedures such as
EXPR (for expressions), STATEMT (for statements),
and TYPEDEC (for type declarations).

The front end maintains a "current" symbol and a
"lookahead" symbol. While not necessary for parsing
correct programs, these symbols are useful for error
recovery. Syntax errors are processed by a
procedure that forces the current symbol to one of a
set of symbols legal at a given point. If the
current symbol is wrong, but the following one is
correct, the current symbol is deleted. In all
cases the correct symbol is inserted if possible.
However, common substitution mistakes, such as
confusing (---) and (:=), cause only a warning message
to be given during compilation.

The scanner is relatively large, since it must
process metalanguage and produce a listing with
error messages, data about variables, and other
information for the user.

Intermediate code is written to the Icode file on
disk as soon as it is generated: there is no reason

8-4

to keep it in memory. The symbol table is built as a
binary tree of identifiers with pointers to senantic
records. At the end of each block, all new sanantic
records are written to the symbol table file. When
an error is detected, all writing to intermediate
files stops, since the code may not be acceptable to
the back end. Detecting a warning, rather than an
error, does not invalidate the intermediate files.

The front end reads a file called PASKEY to
initialize pre-declared identifiers such as INTEGER,
READ, and MAXINT. PASKEY can be divided into four
sections:

1. The first contains
file control block
identifiers.

the number of bytes in a
and the primitive type

2. The second section lists all the intrinsic
procedure and function identifiers (those that
are transformed by the front end in special
ways).

3. The third section contains constants, types,
and external procedures and functions using
normal MS-Pascal syntax.

4. The fourth contains one or more INTERFACE and
USES clauses for predeclared procedures and
functions.

8.1.2 THE BACK END

Of the separate passes that make up the back end of
the compiler, pass two is required while pass three
is optional. Pass two produces the object file,
while pass three produces the object listing.

8-5

8.1.2.1 Pass TWO

The optimizer reads the interpass files in the
following order: first the symbol table for a block
is read; then the intermediate code for the block.
Optimization is performed on each "basic block",
that is, each block of intermediate code up to the
first internal or user label or up to a fixed
maximum number of Icodes, whichever comes first.
Within this block, the optimizer can reorder and
condense expressions so long as the intent of the
program(mer) is preserved. For instance, in the
following program fragment, the array address A [J,
K] must be calculated only once.

A [J, K] --- A [J, K] + 1;
{J := J - 1;}
IF A [J, K] = MAX THEN PUNT;

However, if the above fragment is rewritten to
include the assignment to J, shown above as a
comment, the array address in the IF statement must
be partially recalculated.

This optimization is called common subexpression
elimination. The optimizer also reorders
expressions so that the most complicated parts are
done first, when more registers for temporary values
are available. It also does several other
optimizations, such as:

o Constant folding not done by the front end

o Strength reduction (changing multiplications
and divisions into shifts when possible)

o Peephole optimization (removing additions of
zero, multiplications by one, and changing A :=
A + 1 to an internal increment memory Icode)

The optimizer works by building a tree out of the

8-6

transforming the list of statement trees.

There are seven internal passes per basic block:

1. Statement tree construction from the Icode
stream

2. Preliminary transformations to set
address/value flags

3. Length checks and type coercions

4. Constant and address folding, and expression
reordering

5. Peephole optimization and strength reduction

6. Machine dependent transformations

7. Common subexpression elimination

Finally, the optimizer calls the code generator to
translate the basic block from tree form to target
machine code.

The code generator must translate these trees into
actual machine code. It uses a series of templates
to generate more efficient code for special cases.
For example, there is a series of templates for the
addition operator. The first template checks for an
addition of the constant one. If this addition is
found, the template generates an increment
instruction. If the template does not find an
addition of one, then it gives up, and the next
template gets control and checks for an addition of
any constant. If this is found, the second template
generates an add immediate instruction.

The final tanplate in the series must handle the
general case. It moves the operands into registers
(by recursively calling the code generator itself),
then generates an add register instruction. There

8-7

is a series of templates for every operation. The
code generator must also keep track of register
contents, and several memory segment addresses
(code, static variables, constant data, etc.). The
code generator must also allocate any needed
temporary variables. The code generator writes a
file of binary intermediate code (BINCOD), which
contains actual byte values for machine
instructions, symbolic references to external
routines and variables, and other kinds of data. A
final internal pass reads the BINCOD file and writes
the object code file.

8.1.2.2 Pass 'Three, The Object Code Lister

This short pass reads both the BINCOD file,
described in the previous section, and a version of
the symbol table file as updated by the optimizer
and code generator. Using the data in these files,
it writes the generated code in an assembler-like
format.

8.2 AN OVERVIEW OF THE FILE SYSTEM

Since MS-Pascal and MS-FORTRAN share the same file
system, this section includes references to
differences between the two, wherever they exist.
MS-Pascal and MS-FORTRAN are designed to be easily
interfaced to existing operatic systems. The
standard interface has two parts:

1. A file control block (FCB) declaration

2. A set of procedures and functions, called Unit
U, that are called from MS-Pascal or MS-FORTRAN
at run-time to perform input and output

This interface supports three access methods:
TERMINAL, SEQUENTIAL, and DIRECT.

8-8

Each file has an associated FCB (file control
block). The FCB record type begins with a number of
standard fields that are independent of the
operating system. Following these standard fields
are fields such as channel numbers, buffers, and
other data, that are dependent on the operating
system.

The advanced MS-Pascal user can access FCB fields
directly, as explained in Chapter 7 of the MS-Pascal
Reference Manual. There is no standard way to
access FCB fields within MS-FORTRAN.

Both MS-Pascal and MS-FORTRAN have two special FCBs
that correspond to your keyboard and screen. These
two FCBs are always available. In MS-Pascal, they
are the predeclared files INPUT and OUTPUT (which
you can reassign and generally treat like any other
files); in MS-FORTRAN, they are Unit number 0 (or
*) and are accessed through a variable TRMVQQ,
declared as follows:

VAR TRMVQQ: ARRAY [BOOLEAN] OF ADR OF FCBFQQ;

The false element references the output file; the
true element references the input file.

For MS-Pascal files, each FCB ends with the buffer
variable that contains the current file component.
This means that the length of an FCB in MS-Pascal is
the length of its fixed portion plus the length of
the buffer variable. MS-FORTRAN files do not
require buffer variables, so all are of a fixed
length.

FCBs always reside in the default data segment, so
they can be referenced with the offset (ADR)
addresses instead of the segmented (ADS) addresses.

8-9

MS-Pascal file variables can occur:

1. In static memory

2. On the stack as local variables

3. In the heap as heap variables

In MS-Pascal, generated code initializes FCBs when
they are allocated and CLOSES them when they are
deallocated. FORTRAN files are allocated during
OPEN and deallocated during CLOSE or at program
termination.

The manner of allocation and deallocation depends on
the operating system. For example, a fixed number
of file "slots" may be available, or the routines
for MS-Pascal heap allocation may be used. In both
MS-Pascal and MS-FORTRAN, an FCB can be created or
destroyed, but never moved or copied.

The MS-Pascal compiler must know enough about an FCB
to allocate one. Thus, it needs to know the length
of an FCB less the length of its buffer variable.
This information is read by the compiler during
initialization from a special file called PASKEY.
The MS-FORTRAN compiler itself does not allocate
files, so it doesn't need to know an FOB'S length.

Unit U refers to the target operating system
interface routines. The file routines specific to
MS-Pascal are called Unit F; the file routines
specific to MS-FORTRAN are called Unit V. Code
generated by the compiler of either language
contains calls to Unit F (MS-Pascal) or Unit V (MS-
FORTRAN), which in turn call Unit U routines.

This relationship is shown schematically in Figure
8-2.

8-10

Figure 8-2: Unit 0 Interface

MS-Pascal
Compiler ----> Code

MS-FORTRAN
Code <----Canpiler

v
Unit U (Interface to

(operating system)

The file system uses the following naming convention
for public linker names:

1. All linker globals are six alphabetic
characters, ending with QQ. (This helps to
avoid conflicts with your program global
names.)

2. The fourth letter indicates a general class,
where:

a. xxxFQQ is part of the generic MS-Pascal
file unit.

b. xxxVQQ is part of the generic MS-FORTRAN
file unit.

c. xxxUQQ is part of the operating system
interface unit.

File system error conditions may be detected at the
lower Unit U level, detected at the higher Ltoit F or

8-11

V level, or undetected. When a Unit U routine
detects an error, it sets an appropriate flag in the
FCB and returns to the calling Unit F or V routine.
When Unit F or V detects an error or discovers that
Unit U has detected one, it takes one of two
possible actions:

1. An immediate run-time error message is generated
and the program aborts.

2. Unit F or V returns to the calling program if
error trapping has been set (in MS-Pascal with
the TRAP flag, in MS-FORTRAN with the ERR=mn
or IOSTAT=var clauses).

Units F and V will not pass a file with an error
condition to a unit U routine. For some access
methods, certain file operations may lead to an
undetected error, such as readirxj past the end of a
record (this condition has undefined results).
Runtime errors that cause a program abort use the
standard error-handling system, which gives the
context of the error and provides entry to the
target debugging system.

The distributed implorientation of the MS-Pascal
compiler includes the following three source files:

1. FINU contains procedure and function headers
for all Unit U routines.

2. FINK contains the common FCB declarations for
all MS-Pascal systems, along with the
declaration of the FILEMODES type.

3. FINKxx contains the FCB declarations as
extended for use in a particular environment.
For the MS-DOS environment the name is FINKXM.

8-12

8.3 RUN-TIME ARCHITECTURE

The remainder of this chapter describes several
topics related to the run-time structure of MS-
FORTRAN and MS-Pascal, with mention of differences
where they exist.

8.3.1 RUN-TIME ROUTINES

MS-Pascal and MS-FORTRAN runtime entry points and
variables conform to the same naming convention:
all names are six characters, and the last three are
a unit identification letter followed by the letters
"QQ". Table 8-1 shown the current unit identifier
suffixes.

Table 8-1: Unit Identifier Suffixes

SUFFIX UNIT FUNCTION__________

AQQ
BQQ
CQQ
DQQ
EQQ
FQQ
GQQ
HQQ
IQQ
JQQ

KQQ
LQQ
MQQ
NQQ
OQQ
PQQ
OQQ
RQQ

Complex real
Compile-time utilities
Encode, decode
Double precision real
Error handling
MS-Pascal file system
Generated code helpers
Heap allocator
Generated code helpers
Generated code helpers
FCB definition
STRING, ESTRING
Reserved
Long integer
Other miscellaneous routines
Pcode interpreter
Reserved
Real (single precision)

8-13

SQQ Set operations
TQQ Reserved
UQQ Operating system file system
VQQ MS-FORTRAN file system
WQQ Reserved
XQQ Initialize/Terminate
YQQ Special utilities
ZQQ Reserved

8.3.2 MEMORY ORGANIZATION

Memory on the 8086-88 is divided into segments, each
containing up to 64K bytes. The relocatable object
format and MS-LINK also put segments into classes and
groups. All segments with the same class name are
loaded next to each other. All segments with the
same group name must reside in one area up to 64K
long; that is, all segments in a group can be
accessed with one segment register.

MS-FORTRAN and MS-Pascal both define a single group,
named DGROUP, which is addressed using the DS or SS
segment register. Normally, DS and SS contain the
same value, although DS may be changed temporarily
to some other segment and changed back again. SS is
never changed; its segment registers always contain
abstract "segment values" and the contents are never
examined or operated on. This provides
compatibility with the Intel 80286 processor. Long
addresses, such as MS-Pascal ADS variables or MS-
FORTRAN named COMMON blocks, use the ES segment
register for addressing.

Memory is allocated within DGROUP for all static
variables, constants which reside in memory, the
stack, the heap, FORTRAN blank common, and segmented
addresses of FORTRAN named common blocks. The named
common blocks themselves reside in their own
segments, not in DGROUP.

8-14

Memory in DGROUP is allocated from the top down;
that is, the highest addressed byte has DGROUP
offset 65535, and the lowest allocated byte has seme
positive offset. This allocation means offset zero
in DGROUP may address a byte in the code portion of
manory, in the operating system below the code, or
even below absolute memory address zero (in the
latter case the values in DS and SS are "negative").

DGROUP has two parts:

1. A variable length lower portion containing the
heap and the stack

2. A fixed length upper portion containing static
variables, constants, blank common, and named
common addresses

After your program is loaded, during initialization
(in ENTX6L), the fixed upper portion is moved upward
as much as possible to make room for the lower
portion. If there is enough memory, DGROUP is
expanded to the full 64K bytes; if there is not
enough for this, DGROUP is expanded as much as possible.

The following paragraphs describe memory contents,
starting at the bottom (address zero), when an MS-
FORTRAN or MS-Pascal program is running. Addresses
are shown in "segment:offset" form.

0000:0000 The beginning of memory on an 8086-88
system contains interrupt vectors,
which are segmented addresses.
Usually the first 32 to 64 are
reserved for the operating system.
Following these vectors is the
resident portion of the operating
system (MS-DOS in this case).

MS-DOS provides for loading
additional code above it, which
remains resident and is considered

8-15

part of the operating system as well.
Examples of resident additional code
are special device drivers for
peripherals, a print spooler, or the
debugger.

BASE:0000 Here BASE means the starting location
for loaded programs, sometimes called
the transient program area. When you
invoke an MS-FORTRAN or MS-Paseal
program, loading begins here. The
beginning of your program contains
the code portion, with one or more
code segments. These code segments
are in the same order as the object
modules given to the linker, followed
by object modules loaded from
libraries.

DGROUP:DO Next comes the DGROUP data area,
containing the following:

SEGMENT CLASS ______ DESCRIPTION____________

HEAP MEMORY Pointer variables, some files
MEMORY MEMORY (not used,"-Intel compatible)
STACK STACK Frame variables and data
DATA DATA Static variables
C CM ADS CCMADS Addresses of named commons
CONST CONST Constant data
COMMQQ COMMON FORTRAN blank common

The stack and the heap grow toward
each other, the stack downward and
the heap upward.

DGROUP:TOP Here TOP means 64K bytes (4K
paragraphs) above DGROUP:0000 (i.e.,
just past the end of DGROUP). MS-
FORTRAN named common blocks start
here. Each common block has a
segment name as declared in the MS-

8-16

FORTRAN program as the common block
name, and the class name COMMON.
Each named common has one segmented
(ADS) address in the COMADS segment
in DGROUP. All references to common
block component variables use offsets
from this address.

HIMEM:0000 The segment named HIMEM (class HIMEM)
gives the highest used location in
the program. The segment itself
contains no data, but its address is
used during initialization. Available
memory starts here and can be
accessed with MS-Paseal ADS
variables.

COMMAND MS-DOS keeps its command processor
(the part of itself which does COPY,
DIR, and other resident commands) in
the highest location in memory
possible. Your MS-FORTRAN or MS-
Pa seal program may need this area to
run. If so, the command processor is
overwritten with program data. When
your program finishes, the command
processor is reloaded from the file
COMMAND.COM on the default drive.

In some circumstances, the check may
result a message appearing on your
screen telling you to insert a disk
that contains the appropriate file,
COMAND.COM. You can avoid this delay
by making sure that CCMMAND.COM is on
the disk in the default drive when
the program aids.

Figure 8-3 illustrates this memory organization.

8-17

COMMAND.COM
COMAND.COM
CCMMAND.COM

Figure 8-3: Memory Organization

4----------- Top (highest address) ---------- +

DOS code for COMMAND (may be overfayed)

4--- +

[unused memory]

+---+
HIMEM segment class HIMEM
<name> segment(s) class COMMON

DS offset 65536

CCMMQQ segment class COMMON
CONST segment class CONST
COMADS segment class COMADS
DATA segment class DATA
STACK segment class STACK
MEMORY segment class MEMORY
HEAP segment class MEMORY

------ DS offset >= 00 ---------

CODE segments (user and library routines)

DOS code and data (fixed)

+---------- Bottom (address 0:00) ----------+

8.3.3 INITIALIZATION AND TEfMINATION

Every executable file contains one, and only one,
starting address. As a rule, when MS-Pascal or MS-

8-18

FORTRAN object modules are involved, this starting
address is at the entry point BEGXQQ in the module
ENTX6L. An MS-Pascal or MS-FORTRAN program (as
opposed to a module or implementation) has a
starting address at the entry point ENTGQQ. BEGXQQ
calls ENTGQQ.

The following discussion assumes that a MS-Pascal or
MS-FORTRAN main program along with other object
modules is loaded and executed. However, you can
also link a main program in assembly or sane other
language with other object modules in MS-Pascal or
MS-FORTRAN. In this case, some of the initialization
and termination done by the ENTX6L module may need to
be done elsewhere.

Men a program is linked with the run-time library and
execution begins, several levels of initialization
are required. The levels, in the order in Mich they
occur, are the following:

1. Machine-oriented initialization

2. Runtime initialization

3. Program and unit initialization

The general program structure for MS-Pascal is shown
in this breakdown:

ENTX6L module

BEGXQQ: Set stackpointer, framepointer
Initialize public variables
Set machine-dependent flags,

registers, and other values
Call IN1X87
Call INIUQQ
Call BEGOQQ
Call ENTGQQ {Execute program}

8-19

Call ENDX87
Exit to operating system

INTR Module

INIX87: Real processor initialization
ENDX87: Real processor termination

Unit U

INIUQQ: Operating system specific
file unit initialization

ENDUQQ: Operating system specific
file unit termination

MISO Module

BBGOQQ: (Other user initialization)
ENDOQQ: (Other user termination)

Program Module

ENTCQQ: Call INIFQQ
If $ENTRY on, CALL ENTEQQ
Initialize static data
Initialize units
FOR program parameters DO

Call PPMFQQ
Execute program
If $ENTRY on, CALL EXTEQQ

8.3.3.1 Machine Level Initialization

The entry point of an MS-Pascal load module is the
routine BEGXQQ, in the module ENTXGL. BEGXQQ does
the following:

1. Moves constant and static variables upward (as
described in the introduction to this chapter),
creating a gap for the stack and the heap.
Sets the stackpointer to the top of this area.

8-20

1. Moves constant and static variables upward (as
described in the introduction to this chapter),
creating a gap for the stack and the heap.
Sets the stackpointer to the top of this area.
The initial stackpointer is put into public
variable STKBQQ and is used to restore the
stackpointer after an inter-procedure GOTO to
the main program.

2. Sets the framepointer to zero.

3. Initializes a number of public variables to
zero or NIL. These include:

RESEQQ, machine error context
CSXEQQ, source error context list header
PNUXQQ, initialized unit list header
HDRFQQ, MS-Pascal open file list header
HDRVQQ, MS-FORTRAN open file list header

4. Sets machine-dependent registers, flags, and
other values.

5. Sets the heap control variables. BEGHQQ and
CURHQQ are set to the lowest address for the
heap: the word at this address is set to a
heap block header for a free block the length
of the initial heap. ENDHQQ is set to the
address of the first word after the heap. The
stack and the heap grow together, and the
public variable STKHQQ is set to the lowest
legal stack address (ENDHQQ, plus a safety
gap) -

6. Calls INIX87, the real processor initializer.
This routine initializes an 8087 or sets 8087
emulator interrupt vectors, as appropriate.

7. Calls INIUQQ, the file unit initializer
specific to the operating system. If the file
unit is not used and you don't want it loaded,
a dummy INIUQQ routine that just returns must

8-21

be loaded.

8. Calls BEGOQQ, the escape initializer. In a
normal load module, an empty BEGOQQ that just
returns is included. However, this call
provides an escape mechanism for any other
initialization. For example, it could
initialize tables for an interrupt driven
profiler or a run-time debugger.

9. Calls ENTGQQ, the entry point of your MS-Pascal
program.

8.3.3.2 Progran Level Initialization

Your main program continues the initialization
process. First, the language-specific file system is
called, INIFQQ for MS-Pascal or INIVQQ for MS-
FORTRAN. Both are parameter less procedures.

If the main program is in MS-Pascal, and MS-FORTRAN
file routines are used, you must call INIVQQ to
initialize the MS-FORTRAN file system. If the main
program is in MS-FORTRAN, and MS-Pascal file
routines are used, you must call INIFQQ to
initialize the MS-Pascal file system.

MS-Pascal main programs automatically call INIFQQ;
MS-FORTRAN main programs automatically call INIVQQ.
To avoid loading the file system, you must provide
an empty procedure to satisfy one or both of these
calls.

After file initialization, ENTEQQ is called to set
the source error context (but only if SENTRY is on
during compilation). Next, each file at the program
level gets an initialization call to NMFQQ.

After static data initialization comes unit
initialization. Every USES clause in the source,

8-22

including those in INTERFACES, generates a call to
the initialization code for the unit.

Units may or may not contain initialization code.
If the interface contains a trailing pair or BEGIN
and END statements, then initialization code in the
implementation is presumed. Units are initialized
in the order that the USES clauses are encountered.

Finally, any program parameters are read or
otherwise initialized, and your program begins.
Program parameters are set in one of a number of
ways, depending on the target operating system. In
general, except for INPUT and OUTPUT, PPMFQQ is
called for each parameter to set the parameter's
string value as the next line in the file INPUT.
Then one of the READEN routines "reads" and decodes
the value, assigning it to the parameter. The
parameter's identifier is passed to PPMFQQ for use
as a prompt. PPMFQQ first calls PPMUQQ to get the
text of any command line parameter or other
parameters specific to the operating system. If
PPMUQQ returns an error, then PPMFQQ does the
prompting and reads the response directly.

User unit initialization is much like user program
initialization. The following actions occur:

1. Error context initialization if $ENTRY was on
during compilation

2. Variable (file) initialization

3. Unit initialization for USES clause

4. User's unit initialization

Calls to initialize a unit may come from more than
one unit. The unit interface has a version number,
and each initialization call must check that the
version number in effect when the unit was used in
another compilation is the same as the version

8-23

number in effect when the unit implementation itself
was compiled. Except for this, unit initialization
calls after the first one should have no effect;
i.e., a unit's initialization code should be
executed only once. Both version number checking
and single initial code execution are handled with
code automatically generated at the start of the
body of the unit. This has the effect of:

IF INUXQQ (useversion, ownversion, initree, unitid)
THEN RETURN

The interface version number used by the compiland
using the interface is always passed as a value
parameter to the implementation initialization code.
This is passed as "useversion" to INUXQQ. The
interface version number in the implementation
itself is passed as "ownversion" to INUXQQ. INUXQQ
generates an error if the two are unequal.

INUXQQ also maintains a list of initialized units.
INUXQQ returns true if the unit is found in the
list, or else puts the unit in the list and returns
false. The list header is PNUXQQ. A list entry
passed to INUXQQ as "initree" is initialized to the
address of the unit's identifier (unitid), plus a
pointer to the next entry.

User modules (and uninitialized implementations of
units) may have initialization code, much like a
program and unit implementation's initialization
code, but without user initialization code or INUXQQ
calls.

The initialization call for a module or unitialized
unit cannot be issued automatically. When the
module is compiled, a warning is given if an
initialization call will be required (i.e., if there
are any files declared or USES clauses). To
initialize a module, declare the module name as an
external procedure and call it at the beginning of
the program.

8-24

8.3.3.3 Program Termination

Program termination occurs in one of three ways:

1. The program may terminate normally, in which
case the main program returns to BEGXQQ, at the
location named ENDXQQ.

2. The program may abort due to an error
condition, either with a user call to ABORT or
a run-time call to an error handling routine. In
either case, an error message, error code, and
error status are passed to EMSEQQ, which does
whatever error handling it can and calls
ENDXQQ.

3. ENDXQQ can be declared in an external procedure
and called directly.

ENDXQQ first calls ENDOQQ, the escape terminator,
which normally just returns to ENDXQQ. Then ENDXQQ
calls ENDYQQ, the generic file system terminator.
ENDYQQ closes all open MS-Pascal and MS-FORTRAN
files, using the file list headers HDRFQQ and
HDRVQQ. ENDXQQ calls ENDOQQ, the operating system
specific file unit terminator. Finally, ENDXQQ
calls ENDX87 to terminate the real number processor
(8087 or emulator). As with INIUQQ, INIFQQ, and
INIVQQ, if your program requires no file handling,
you will need to declare empty parameter less
procedures for ENDYQQ and ENDOQQ.

As mentioned in Section 8.3.3, the main
initialization and termination routines are in
module ENTX6L. Procedures for BEGOQQ and ENDOQQ are
in module MISO. ENDYQQ is in module ENDY.

8-25

8.3.4 ERROR HANDLING

Run-time errors are detected in one of four ways:

1. The user program calls EMSEQQ (i.e., ABORT).

2. A run-time routine calls EMSEQQ.

3. An error checking routine in the error module
calls EMSEQQ.

4. An internal helper routine calls an error
message routine in the error unit that, in
turn, calls EMSEQQ.

Handling an error detected at run-time usually
involves identifying the type and location of the
error and then terminating the program. The error
type has three components:

o A message

o An error number

o An error status

The message describes the error, and the number can
be used to look up more information (in Appendix H
of the MS-Pascal Reference Manual). The
message describes' the error, and' the number can be
used to look up more information (in Appendix C of
the MS-FORTRAN Reference Manual). In MS-FORTRAN,
the error status value is used for special purposes
and has no significance for the user. In MS-Pascal,
the error status value is undefined, although for
file system errors it may be an operating system
return code. However, the error status value may
also be used for other special purposes. Table 8-2
shows the general scheme for error code numbering.

8-26

Table 8-2: Error Code Classification

RANGE

1- 999
1000-1099
1100-1199
1200-1299
1300-1999
2000-2049
2050-2099
2100-2149
2150-2199
2200-2399
2400-2449
2450-2499
2500-2999

CLASSIFICATION

Reserved for user ABORT calls
Unit U file system errors
Unit F file system errors
Unit V file system errors
Reserved
Heap, stack, memory
Ordinal and long integer arithmetic
Real and double real arithmetic
Structures, sets and strings
Reserved
Pcode interpreter
Other internal errors
Reserved

An error location has two parts:

1. The machine error context

2. The source program context

The machine error context is the program counter,
stackpointer, and framepointer at the point of the
error. The program counter is always the address
following a call to a run-time routine (e.g., a
return address). The source program context is
optional; it is controlled by metacommands. If
$ENTRY is on, the program context consists of:

o The source filename of the compiland containing
the error

o The name of the routine in which the error
occurred (program, unit, module, procedure, or
function)

o The line number of the routine in the listing

8-27

file

o The page number of the routine in the listing
file

If $LINE is also on, the line number of the
statement containing the error is also given.
Setting $LINE also sets SENTRY.

8.3.4.1 Machine Error Context

Run-time routines are compiled by default with the
SRUNTIME metacommand set. This procedure causes
special calls to be generated at the entry and exit
points of each run-time routine. The entry call
saves the context at the point where a run-time
routine is called by the user program. This context
consists of the frame pointer, stack .pointer, and
program counter. As a consequence of this saving of
context, if an error occurs in a run-time routine,
the error location is always in the user program.
This is true even if run-time routines call other
run-time routines. The exit call that is generated
restores the context.

The run-time entry helper, BRTEQQ, uses the run-time
values shown in Table 8-3.

Table 8-3: Run-time Values in BRTEQQ

VALUE DESCRIPTION_________

RESEQQ
REFEQQ
REPEQQ
RECEQQ

Stackpointer
Framepointer
Program counter offset
Program counter segment

8-28

The first thing that BRTEQQ does is examine RESEQQ.
If this value is not zero, the current run-time
routine was called from another run-time routine and
the error context has already been set, so it just
returns. If RESEQQ is zero, however, the error
context must be saved. The caller's stackpointer is
determined from the current framepointer and stored
in RESEQQ. The address of the caller's saved
framepointer and return address (program counter) in
the frame is determined. Then the caller's
framepointer is saved in REFEQQ. The caller's
program counter (i.e., BRTEQQ's caller's return
address) is saved: the offset in REPEQQ and the
segment (if any) in R0CEQQ.

The run-time exit helper, ERTEQQ, has no parameters.
It determines the caller's stackpointer (again, from
the framepointer) and compares it against RESEQQ.
If these values are equal, the original run-time
routine called by your program is returning, so
RESEQQ is set back to zero.

EMSEQQ uses RESEQQ, REFEQQ, REPEQQ, and RECEQQ to
display the machine error context.

8.3.4.2 Source Error Context

Giving the source error context involves extra
overhead, since source location data must be
included in the object code in some form.
Currently, this is done with calls which set the
current source context as it occurs. These calls
can also be used to break program execution as part
of the debug process. The overhead of source
location data, especially line number calls, can be
significant. Routine entry and exit calls, while
requiring more overhead, are much less frequent, so
the overhead is less.

The procedure entry call to ENTEQQ passes two VAR

8-29

parameters. The first is an LSTRING containing the
source filename. The second is a record that
contains the following:

1. The line nanber of the procedure (a WORD)

2. The page number of the procedure (a WORD)

3. The procedure or function identifier (an
LSTRING)

The filename is that of the ccmpiland source (e.g.,
the main source filename, not the names of any
$INCLUDE files). The procedure identifier is the
full identifier used in the source, not the linker
name. If one name is given in an INTERFACE and
another in a USES clause, the USES identifier is
used. The 1 ine and page are those designated by the
procedure header.

Entry and exit calls are also generated for the main
program, unit initialization, and module initializa­
tion, in vfriich case the identifier is the program,
unit, or module.

The procedure exit call to EXTEQQ does not pass any
parameters. It pops the current source routine
context off a stack maintained in the heap.

The line nanber call to LNTEQQ passes a line number
as a value parameter. The current line nanber is
kept in the public variable CLNEQQ. Since the
current routine is always available (because $LINE
implies $ENTRY), the canpilard source filename and
routine containing the line are available along with
the line number. Line number calls are generated
just before the code in the first statement on a
source line. The statement can, of course, be part
of a larger statement. The $LINE+ metacommand
should be placed at least a couple of symbols before
the start of the first statement intended for a line
number call ($LINE- also takes effect "early").

8-30

Most of the error handling
ERRE and PASE. The source
points ENTEQQ, EXTEQQ, and
module, DEBE.

routines are in modules
error context entry
LNTEQQ are in the debug

8-31

APPENDIX A

VERSION SPECIFICS

MS-Pascal has been implemented for a number of
different microcomputer operating systems. This
appendix describes the current implementation of the
MS-Pascal language for the MS-DOS operating system.
It discusses additions and restrictions to the
language described in the current MS-Pascal
Reference Manual and identifies features of
MS-Pascal that are not yet implemented.

For changes and additions to the MS-Pascal language
or compiler that may have been made after
publication of this User's Guide and companion
reference manual, see the DISKID file provided on
disk with the system files.

A.l IMPLEMENTATION ADDITIONS

The following additions have been made to the
language described in the MS-Pascal Reference
Manual.

1. The following function can be declared EXTERN:

FUNCTION DOSXQQ
(COMMAND, PARAMETER: WORD): BYTE;

This function invokes the operating system,
passing a command in the AH register and an
additional parameter in the DX register. The
BYTE function return value is identical to the
value returned by the operating system in AL,
the accumulator.

The PUBLIC variables CRCXQQ and CRDXQQ contain
the values of the CX and DX registers after the
call. The value of CRCXQQ is also loaded into

A—1

CX before the call.

Several operating system functions are
particularly useful:

DOSXQQ (1, 0);
Returns the next character typed. If no
character has been typed, DOSXQQ waits for
input. The ASCII value of the typed character
is returned, and the typed character is echoed
on the terminal screen.

DOSXQQ (2, WRD ('x'));
Outputs the character 'x' to your terminal.
The function return value should be ignored.
The <ALT-S> command to stop and start
scrolling, and the <ALT-P> command to toggle
the printer, are executed if entered. Tabs are
expanded.

DOSXQQ (6, 255);
Returns the next character typed on the
keyboard, or zero, if no character has been
typed. <ALT-S> and <ALT-P> are not treated
specially. The character typed is not echoed
on the terminal screen.

DOSXQQ (6, WRD ('*'));
Outputs the character 'x* to your terminal.
This is the same as DOSXQQ (2, WRD ('x')),
above, except that <ALT-S> and <ALT-P> are not
treated specially. The function return value
should be ignored in this case.

DOSXQQ (11, 0);
Returns console status. The value 255 is
returned if a character has been typed, a 0 is
returned if not. This function is used to
check for a keypress condition without actually
reading the character.

A-2

DOSXQQ (13, 0);
This function is not necessary in MS-DOS, but
is provided for compatibility with other
operating systems (such as CP/M-86), where this
function resets diskette tables.

2. The following MS-Pascal filenames are available
to indicate devices:

NAME DESCRIPTION MS-DOS CODE

USER Console 1, 2, and 6

LINE Auxiliary input 3, 4

Special MS-DOS filenames like CON and NUL are
also available (see your Operator's Reference
Guide for details). However, using CM for the
terminal causes buffering of input and output
data and precludes interactive input and
output. The filename USER should be used
instead.

3. Program parameters are available. When a
program starts, there is a prompt for every
program parameter. You may also give program
parameters on the command line with which you
invoke the program. If a program requires more
parameters than appear on the command line, the
remaining parameters are prompted for.

For example, assume that you want to execute
the following program:

A-3

PROGRAM DEMO (INFILE, OUTFILE, Pl, P2, P3);
VAR INFILE, OUTFILE : TEXT;

Pl, P2, P3 : INTEGER;
BEGIN

END.

From the command line, you can run this
program as follows:

A:DEMO DATA1.FIL DATA2.FIL 7 8 123

If you give only the first parameter on the
command line, the program will proceed to
prompt you as follows (your responses are
underlined):

A: DEMO DATA1.FIL
OUTFILE: DATA2.FIL 7
P2: £
P3: 123

An LSTRING parameter value of NULL cannot be
read from the command line and is assumed to be
missing. You can enter it by pressing the
Return key in response to the prompt.

4. The PUBLIC variable CESXQQ, containing the
segment register valve for the start of the MS-
DOS data area, is available. This allows you
to reference the command line, as shown:

VAR MSDATA: ADS OF LSTRING (80);
CESXQQ [EXTERN] : WORD;

BEGIN
MSDATA.S CESXQQ; MSDATA.R := 128;
{MSDATA* now contains the command line.}

END;

The MS-DOS data area also contains, at offset

A-4

2, the upper memory limit, expressed as the
segment (i.e., paragraph) address of the first
byte after available memory. The lower memory
segment address is simply 4K paragraphs (i.e.,
64K bytes) above the default data segment. For
example:

VAR LOMADS, HIMADS, MSDATA: ADS OF WORD;
CESXQQ [EXTERN] : WORD;

BEGIN
LOMADS := ADS LOMADS;
LOMADS.S LOMADS.S + 4096;
LOMADS.R 0;
{LOMADS is first available address.}

MSDATA.S := CESXQQ; MSDATA.R 2;
HIMADS.S MSDATA*; HIMADS.R := 0;
{HIMADS is first unavailable address.}

END;

5. TIME, TICS, and DATE are supported for MS-DOS
systems with clocks. TICS returns halves of
seconds.

6. The object code lister is no longer an integral
part of pass two. If you want an object code
listing, you must run the program PAS3.EXE.
See Section 2.2.3 for details.

7. Four-byte functions now return values in DX:AX,
not ES:BX. Also, real-valued functions now use
the long return mechanism (see Section 7.1).

8. Real Number Conversion Utilities

Releases of MS-Pascal starting with 3.0 and
later use the IEEE real number format.
Releases of MS-Pascal earlier than 3.0 used the
Microsoft real number format. The two formats
are not compatible. However, if you need to
convert real numbers from one format to the
other, you may do so with the following library

A-5

routines:

a. Microsoft to IEEE format

PROCEDURE M2ISQQ (VARS RMS, RIEEE: REAL4)

b. IEEE to Microsoft format

PROCEDURE I2MSQQ (VARS RIEEE, RMS: REAL4)

RMS and RIEEE are real numbers in Microsoft
format and in IEEE format, respectively.

9. Bankers' rounding is used vAien truncating real
numbers that end with .5; that is, odd numbers
are rounded up to an even integer, even numbers
are rounded down to an even integer. For
example:

TRUNC(4.5) = 4

TRUNC (207.5) - 208

A. 2 IMPLEMENTATION RESTRICTIONS

The following restrictions apply to this
implementation of MS-Pascal:

1. Identifiers can have up to 31 characters.
Longer identifiers are truncated.

2. Numeric constants can have up to 31 characters.
Like identifiers, numeric constants longer than
31 characters are truncated.

3. MS-LINK for this version of MS-Pascal truncates
global identifiers to 31 characters.

4. The PORT attribute for variables is identical
to the ORIGIN attribute. It does not use I/O
port addresses.

A-6

5. The maximum level to which procedures can be
statically nested is 15. Dynamic nesting of
procedures is limited by the size of the stack.

6. The FORTRAN attribute does nothing. MS-Pascal
and MS-FORTRAN share the same code generator
and calling sequence. MS-FORTRAN parameters
are always passed as MS-Pascal VARS parameters.

7. $SIMPLE currently turns off common subexpres­
sion optimization. $SIZE and $SPEED turn it
back on (and have no other effect).

A.3 UNIMPLEMENTED FEATURES

The following MS-Pascal features are not presently
implemented, or are implemented only as discussed
below:

1. OTHERWISE is not accepted in RECORD
declarations.

2. Code is generated for PURE functions, but no
checking is done.

3. The extend level operators SHL, SHR, and ISR
are not available.

4. The ENABIN, DISBIN, and VECTIN library routines
are not available. The INTERRUPT attribute is
ignored.

5. No checking is done for invalid GOTOs.

6. READ, READLN, and DECODE cannot have M and N
parameters.

7. Enumerated I/O, permitting the reading and
writing of enumerated constants as strings, is
not available.

A-7

8. The metacommands $TAGCK, $STANDARD, $EXTEND,
and $SYSTEM can be given, but have no effect.

9. The $INCONST metacommand does not accept string
constants.

A-8

APPENDIX B

MS-LINK ERROR MESSAGES

Any link error will cause the link session to abort.
After you have found and corrected the problem, you
must rerun MS-LINK. Link errors have no code
number. See your Programmer's Tool Kit, Volume II
for further information on MS-LINK.

Attempt to access data outside of segment bounds,
possibly bad object module

There is probably a bad object file.

Bad numeric parameter
Numeric value is not in digits.

Cannot open temporary file
MS-LINK is unable to create the file VM.TMP
because the disk directory is full. Insert a
new disk. Do not remove the disk that will
receive the list map file.

Error: dup record too complex
DUP record in assembly language module is too
complex. Simplify DUP record in assembly
language program.

Error: fixup offset exceeds field width
An assembly language instruction refers to an
address with a short instruction instead of a
long instruction. Edit assembly language
source and reassemble.

Input file read error
There is probably a bad object file.

B-l

Invalid object module
An object module (s) is incorrectly formed or
incomplete (as when assembly is stopped in the
middle).

Symbol defined more than once
MS-LINK found two or more modules that define a
single symbol name.

Program size or number of segments exceeds capacity
of linker

The total size may not exceed 384K bytes and
the number of segments may not exceed 255.

Requested stack size exceeds 64k
Specify a size greater than or equal to 64K
bytes with the -STACK switch.

Segment size exceeds 64k
64K bytes is the addressing system limit.

Symbol table capacity exceeded
Very many and/or very long names were typed,
exceeding the limit of approximately 25K bytes.

Too many external symbols in one module
The limit is 256 external symbols per module.

Too many groups
The limit is 10 groups.

Too many libraries specified
The limit is 8 libraries.

Too many public symbols
The limit is 1024 public symbols.

8-2

Too many segments or classes
The limit is 256 (segments and classes taken
together).

Unresolved externals: <list>
The external symbols listed have no defining
module among the modules or library files
specified.

VM read error
This is a disk error; it is not caused by MS-
LINK.

Warning: No stack segment
None of the object modules specified contains a
statement allocating stack space, but you used
the /STACK switch.

Warning: segment of absolute or unknown type
There is a bad object module or an attempt, has
been made to link modules that MS-LINK cannot
handle (e.g., an absolute object module).

Write error in tmp file
No more disk space remains to expand VM.TMP
file.

Write error on run file
Usually, there is not enough disk space for the
run file.

B-3

MS-PASCAL
Reference Manual

COPYRIGHT

(c) 1983 by VICTOR. (R)
(c) 1979 by Microsoft Corporation.

Published by arrangement with Microsoft Corporation
whose software has been customized for use on
various desktop microcomputers produced by VICTOR.
Portions of the text hereof have been modified
accordingly.

All rights reserved. This publication contains
proprietary information which is protected by
copyright. No part of this publication may be
reproduced, transcribed, stored in a retrieval
system, translated into any language or computer
language, or transmitted in any form whatsoever
without the prior written consent of the publisher.
For information contact:

VICTOR Publications
380 El Pueblo Road
Scotts Valley, CA 95066
(408) 438-6680

TRADEMARK

VICTOR is a registered trademark of Victor
Technologies, Inc.
MS-DOS is a registered trademark of Microsoft
Corporation.
CP/M-86 is a registered trademark of Digital
Research, Inc.

2
PRELIMINARY DRAFT

NOTICE

VICTOR makes no representations or warranties of any
kind whatsoever with respect to the contents hereof
and specifically disclaims any implied warranties of
merchantability or fitness for any particular
purpose. VICTOR shall not be liable for errors
contained herein or for incidental or consequential
damages in connection with the furnishing,
performance, or use of this publication or its
contents.

VICTOR reserves the right to revise this publication
from time to time and to make changes in the content
hereof without obligation to notify any person of
such revision or changes.

First VICTOR printing April, 1983.

ISBN: 0-88182-027-X Printed in U.S.A.

3

MS-PASCAL REFERENCE MANUAL CONTENTS

Introduction..................................1

About This Manual....................... 1
Levels of MS-Pascal..................... 2
Selected Features....................... 3
Unimplemented Features 5
References 6

1. Language Overview........................ 1-1

1.1 The Metalanguage........................ 1-1
1.2 Programs and Compilable Parts

of Programs...........................1-2
1.3 Procedures and Functions...............1-6
1.4 Statements............................. 1-8
1.5 Expressions........ 1-9
1.6 Variables............................. 1-11
1.7 Constants...............................1-12
1.8 Types..................................1-13
1.9 Identifiers.............................1-14
1.10 Notation................................. 1-15

2. Notation................................. 2-1

2.1 Components of Identifiers 2-1
2.1.1 Letters...........................2-2
2.1.2 Digits.............................2-2
2.1.3 The Underscore Character..........2-2

2.2 Separators............................. 2-2
2.3 Special Symbols....................... 2-4

2.3.1 Punctuation...................... 2-4
2.3.2 Operators.........................2-6
2.3.3 Reserved Words.................... 2-6

2.4 Unused Characters 2-7
2.5 Notes on Characters................... 2-8

5

3. Identifiers........................... .. 3-1

3.1 What is an Identifier?................. 3-1
3.2 Declaring an Identifier............... 3-3
3.3 The Scope of Identifiers............... 3-4
3.4 Predeclared Identifiers 3-4

4. Introduction to Data Types.............4-1

4.1 What is a Type?........................4-1
4.2 Declaring Data Types....................4-1
4.3 Type Compatibility..................... 4-3

4.3.1 Type Identity and Reference
Parameters..................... 4-4

4.3.2 Type Compatibility and
Expressions................... 4-5

4.3.3 Assignment Compatibility........ 4-6

5. Simple Types..............................5-1

5.1 Ordinal Types......................... 5-1
5.1.1 INTEGER......................... 5-2
5.1.2 WORD............................. 5-3
5.1.3 CHAR..............................5-3
5.1.4 BOOLEAN 5-3
5.1.5 Enumerated Types................. 5-4
5.1.6 Subrange Types................... 5-5

5.2 Real Types............................. 5-8
5.3 Integer 4................................5-11

6. Arrays, Records, and Sets............... 6-1

6.1 Arrays..................................6-1
6.2 Super Arrays........................... 6-3

6.2.1 Strings......................... 6-6
6.2.2 LSTRINGS....................... 6-8
6.2.3 Using STRINGS and LSTRINGS . . . 6-10

6.3 Records................................6-15
6.3.1 Variant Records.................6-16

6

6.3.2 Explicit Field Offsets 6-19
6.4 Sets..................................... 6-21

7. Files....................................7-1

7.1 Declaring Files....................... 7-1
7.2 The Buffer Variable................... 7-3
7.3 File Structures........................ 7-4

7.3.1 BINARY Structure Files 7-5
7.3.2 ASCII Structure Files 7-5

7.4 File Access Modes..................... 7-6
7.4.1 TERMINAL Mode Files.............. 7-7
7.4.2 SEQUENTIAL Mode Files............ 7-8
7.4.3 DIRECT Mode Files................ 7-8

7.5 The Predeclared Files Input and Output . 7-9
7.6 Extend Level I/O 7-10
7.7 System Level I/O........................ 7-12

8. Reference and Other Types...............8-1

8.1 Reference Types....................... 8-1
8.1.1 Pointer Types................... 8-2
8.1.2 Address Types................... 8-4
8.1.3 Segment Parameters for

the Address Types.............8-8
8.1.4 Using the Address Types........ 8-9
8.1.5 Notes on Reference Types 8-11

8.2 Packed Types.............................8-11
8.3 Procedural and Functional Types 8-12

9. Constants 9-1

9.1 What is a Constant?................... 9-1
9.2 Declaring Constant Identifiers..........9-2

7

9.3 Numeric Constants..................... 9-3
9.3.1 REAL Constants................. 9-4
9.3.2 INTEGER, WORD, and INTEGER4

Constants..................... 9-6
9.3.3 Nondecimal Numbering 9-8

9.4 Character Strings 9-8
9.5 Structured Constants 9-10
9.6 Constant Expressions.................... 9-12

10. Variables and Values.................... 10-1

10.1 What is a Variable?................ . 10-1
10.2 Declaring a Variable.................... 10-2
10.3 The Value Section.......................10-3
10.4 Using Variables and Values.............. 10-4

10.4.1 Components of Entire
Variables and Values.......... 10-7

10.4.1.1 Indexed Variables
and Values............ 10-7

10.4.1.2 Field Variables
and Values............ 10-8

10.4.1.3 File Buffers and Fields . 10-9
10.4.2 Reference Variables 10-9

10.5 Attributes............................... 10-11
10.5.1 The STATIC Attribute............ 10-13
10.5.2 The PUBLIC and EXTERN

Attributes.................... 10-14
10.5.3 The ORIGIN and PORT Attributes . 10-16
10.5.4 The READONLY Attribute.......... 10-17
10.5.5 Combining Attributes........... <10-18

8

13.4.1 Value Parameters 13-18
13.4.2 Reference Parameters 13-20

13.4.2.1 Super Array Parameters. . 13-22
13.4.2.2 Constant and Segment

Parameters................13-22
13.4.3 Procedural and Functional

Parameters 13-24

14. Available Procedures and Functions . . . 14-1

14.1 Categories of Available Procedures
and Functions........................ 14-3

14.1.1 File System Procedures
and Functions................14-3

14.1.2 Dynamic Allocation Procedures . 14-4
14.1.3 Data Conversion Procedures

and Functions................14-4
14.1.4 Arithmetic Functions 14-5
14.1.5 Extend Level Intrinsics 14-7
14.1.6 System Level Intrinsics..........14-7
14.1.7 String Intrinsics 14-8
14.1.8 Library Procedures

and Functions................14-8
14.2 Directory of Available Functions

and Procedures......................14-10

15. File-Oriented Procedures
and Functions........................15-1

15.1 File System Primitive Procedures
and Functions................15-1

15.1.1 GET and PUT.................. 15-3
15.1.2 RESET and REWRITE 15-4
15.1.3 EOF and EOLN.................. 15-6
15.1.4 PAGE...........................15-7
15.1.5 Lazy Evaluation................ 15-8
15.1.6 Concurrent I/O 15-10

9
PRELIMINARY DRAFT

15.2 Textfile Input and Output.............. 15-12
15.2.1 READ and READLN.................. 15-15
15.2.2 READ Formats....................15-18
15.2.3 WRITE and WRITELN..............15-21
15.2.4 WRITE Formats....................15-23

15.3 Extend Level I/O........................15-28
15.3.1 Extend Level Procedures 15-28
15.3.2 Temporary Files.................. 15-33

16. Compilable Parts of a Program......... 16.1

16.1 Programs...............................16-3
16.2 Modules.......... 16-7
16.3 Units....................16-9

16.3.1 The Interface Division 16-16
16.3.2 The Implementation Division 16-18

17. MS-Pascal Metacommands................ 17-1

17.1 Language Level Setting and
Optimization 17-3

17.2 Debugging and Error Handling. 17-5
17.3 Source File Control.................... 17-12
17.4 Listing File Control.................... 17-16
17.5 Listing File Format.................... 17-20
17.6 Command Line Switches.................. 17-24

Appendix A MS-Pascal Syntax Diagrams A-l

Appendix B MS-Pascal Features
and the ISO Standard............ B-l

B.l MS-Pascal and the ISO Standard. . . B-l
B. 2 Summary of MS-Pascal Features ... B-5

Appendix C MS-Pascal and Other Pascals . . . C-l
C. l Implementations of Pascal......... C-l
C.2 MS-Pascal and UCSD Pascal......... C-4

10
PRELIMINARY DRAFT

Appendix D ASCII Character Codes D-l

Appendix E Summary of MS-Pascal
Reserved Words. E-l

Appendix F Summary of Available Procedures
and Functions F-l

Appendix G Summary of MS-Pascal
Metacommands .. G-l

Appendix H Messages H-l

H.l Compiler Front End Errors........ H-2
H.2 Compiler Back End Errors....... .. H-39
H.3 Compiler Internal Errors......... H-40
H.4 Runtime File System Errors........ H-40

H.4.1 Operating System Run-time
Errors..................H-42

H.4.2 MS-Pascal File System
Error Codes........... H-44

H.5 Other Runtime Errors........... H-45
H.5.1 Memory Errors.......... H-46
H.5.2 Ordinal Arithmetic Errors. . H-48
H.5.3 Type Real Arithmetic

Errors..................H-49
H.5.4 Structured Type Errors . . . H-52
H.5.5 Integer4 Errors...........H-53
H.5.6 Other Erors.............H-53

PR^dkllMRY DRAFT

INTRODUCTION

MS(R)-Pascal, is a highly extended, portable version
of the Pascal language. Compatible with the
International Standards Organization (ISO) proposed
standard, its extensions facilitate systems as well
as applications programming.

You can use MS-Pascal at the ISO standard level for
transporting programs to and from other machines.
Or, to make full use of the capabilities of a
specific computer, you can make your programs more
efficient by using the language at its extend or
system levels.

The MS-Pascal compiler generates native machine
code; many other Pascal compilers for microcomputers
produce intermediate p-code. Programs compiled to
native code execute much faster than those compiled
to p-code. Thus, with MS-Pascal, you get the
programming advantages of a high-level language
without sacrificing execution speed. Because of
many low-level escapes to the machine level,
programs written in MS-Pascal are often comparable
in speed to programs written in assembly language.

ABOUT THIS MANUAL

Chapter 1, "Language Overview," paints a broad
picture of MS-Pascal, from the largest elements of
the language down to the smallest. Later chapters
build on this overview, discussing the elements one
chapter at a time, starting with the smallest
elements of the language and ending with a
discussion of programs and other compilable units.

For information on how to use the MS-Pascal compiler
and details on your specific version of MS-Pascal,
see the MS-Pascal User's Guide.

PRELIMINARY DRAFT

LEVELS OF MS-PASCAL

MS-Pascal is organized into three levels: standard,
extend, and system. The features of each level are
discussed in more detail in Appendix B. Briefly,
the differences among the three levels are as
follows:

1. Standard level

At the standard level, programs must conform to
the ISO standard. Programs you create at this
level are portable to and from machines running
other ISO-compatible Pascal compilers. There
are some minor MS-Pascal extensions to the
standard that won't be caught as errors at this
level. For details of these extensions, as
well as other issues regarding the standard,
see Appendix A. In this manual, the phrases
"standard Pascal," "the ISO standard," and "at
the standard level of MS-Pascal" are generally
synonymous.

2. Extend level

The extend level is intended for structured and
relatively safe extensions to the ISO standard.
Programs you create at this level are portable
among all machines that run MS-Pascal.

3. System level

The system level includes all features
available at the extend level. It also
includes some unstructured, machine-oriented
extensions, such as address types and the
ability to access all file control block
fields, which are useful for systems
programming.

In this manual, extensions to standard Pascal are

2

PFTLIMI?HRY DRAFF

called "features." A complete list of these features
and the level at which they are available are given
in Appendix B. Selected features are described
briefly in the following paragraphs.

In addition to these three levels, MS-Pascal has a
large number of metacommands, that is, directives
with which you can control the compiler. See
Chapter 17 for more information.

SELECTED FEATURES

The following list includes some of the features
available at the extend and system levels of MS-
Pascal. For a complete list, see Section B.2,
"Sumary of MS-Pascal Features."

1. Underscore in identifiers, which improve
readability.

2. Nondecimal numbering (hexadecimal, octal, and
binary), which facilitates programming at the
byte and bit level.

3. Structured constants, which you may declare in
the declaration section of a program or use in
statements.

4. Variable length strings (type LSTRING), as well
as special predeclared procedures and functions
for LSTRINGs, that overcome standard Pascal's
poor string handling capabilities.

5. Super arrays, a special variable length array
whose declaration permits passing arrays of
different lengths to a reference parameter, as
well as dynamic allocation of arrays of
different lengths.

6. Predeclared unsigned BYTE (0-255) and WORD (0-
65535) types that facilitate programming at the

3

preliminary WAFT

system level.

7. Address types (segmented and unsegmented) that
allow manipulation of actual machine addresses
at the system level.

8. String reads, that allow the standard
procedures READ and READLN to read strings as
structures rather than character by character.

9. Interface to assembly language, provided by
PUBLIC and EXTERN procedures, functions, and
variables, that allows low-level interfacing to
assembly language and library routines.

10. VALUE section, where you may declare the
initial constant values of variables in a
program.

11. Function return values of a structured type as
well as of a simple type.

12. Direct (random access) files, accessible with
the SEEK procedure, that enhance standard
Pascal's file accessing capabilities.

13. Lazy evaluation, a special internal mechanism
for interactive files that allows normal
interactive input from terminals.

14. Structured BREAK and CYCLE statements, that
allow structured exits from a FOR, REPEAT, or
WHILE loop; RETURN statement, that allows a
structured exit from a procedure or function.

15. OTHERWISE in CASE statements, whereby you avoid
explicitly specifying each CASE constant.
OTHERWISE also permitted with variant records.

16. STATIC attribute for variables, that allows you
to indicate that a variable is to be allocated
at a fixed location in memory rather than on

4

PRELIMINARY DRAFT

the stack.

17. ORIGIN attribute, that may be given to
variables, procedures, and functions to
indicate their absolute location in memory.

18. INTERRUPT attribute for procedures, that
signals the compiler to give the procedure a
special calling sequence that saves the machine
status on the stack upon entry and restores the
machine status upon exit.

19. Separate compilation of portions of a program
(UNITS and MODULES).

20. Conditional compilation, using conditional
metacommands in your MS-Pascal source file to
switch on or off compilation of parts of the
source.

UNIMPLEMENTED FEATURES

The following features are either not presently
implemented or implemented only as described below:

1. OTHERWISE is not. accepted in RECORD
declarations.

2. Code is generated for PURE functions, but no
checking is done.

3. The extend level operators SHL, SHR, and ISR,
are not available.

4. ENABIN, DISBIN, and VECTIN library routines are
not available. The INTERRUPT attribute is
ignored.

5. No checking is done for invalid GOTOs and
uninitialized REAL values.

5

preliminary DRAFT

6. READ, READLN, and DECODE cannot have M and N
parameters.

7. Enumerated I/O, for reading and writing
enumerated constants as strings, is not
available.

8. The metacommands $TAGCK, $STANDARD, $EXTEND,
and $SYSTEM can be given, but have no effect.

9. The $INCONST metacommand does not accept string
constants.

REFERENCES

The manuals in this package provide complete
reference information for your implementation of the
MS-Pascal compiler. They do not, however, teach you
how to write programs in Pascal. If you are new to
Pascal or need help in learning to program, read any
of the following books:

Findlay, W., and Watt, D. F. Pascal: An
Introduction to Methodical Programming. Pittman,
1978.

Holt, Richard C., and Hume, J. N. P.
Programming Standard Pascal. Reston Publishing
Company, 1980.

Jensen, Kathleen, and Wirth, Niklaus. Pascal
User Manual and Report. Springer-Verlag, 1974,
1978.

Koffman, E. B. Problem Solving and Structured
Programming in Pascal. Addison-Wesley Publishing
Company, 1981.

6
PRrLI MINARY DRAFT

Schneider, G. M., Weinhart, S. W., and
Perlman, D. M. An Introduction to Programming and
Problem Solving With Pascal. John Wiley & Sons,

second edition, 1982.

7
PRELIMINARY DRAFT

1. LANGUAGE OVERVIEW

This chapter gives you a summary description of MS-
Pascal from the largest elements of the language
down to the smallest. Each of the remaining
chapters of the manual discusses these elements in
detail, from the smallest element (notation) to the
largest (metacommands).

1.1 METACOMMANDS

The MS-Paseal metacommands provide a control
language for the MS-Pascal compiler. The
metacommands let you specify options that affect the
overall operation of a compilation. For example,
you can conditionally compile different source
files, generate a listing file, or enable or disable
run-time error checking code.

All the metacommands begin with a dollar sign ($).
You insert metacommands inside comment statements or
give them as switches when you invoke the compiler.

Although most implementations of Pascal have some
type of compiler control, the MS-Pascal metacommands
are not part of standard Pascal and hence are not
portable.

The metacommands available are listed in Table 1-1.

1-1

PRELIMINARY DRAFT

Table 1-1: MS-Pascal Metacommands

$BRAVE $INTEGER HPAGEIF $SKIP
$DEBUG HLINE $PAGESIZE HSPEED
SENTRY $LINESIZE $POP $STACKCK
^ERRORS HLIST $PUSH $STANDARD
HEXTEND $MATHCK $RANGECK ^SUBTITLE
HGOTO MESSAGE HREAL $SYMTAB
$INCLUDE $NILCK $ROM $SYSTEM
$INGONST HOCODE ^RUNTIME $TAGCK
$INDEXCK $0PTBUG $SIMPLE HTITLE
HINTICR HPAGE $SIZE $WARN
HIE $THEN HELSE $END

See Chapter 17 for a complete discussion of
metacommands.

1.2 PROGRAMS AND COMPILABLE PARTS OF PROGRAMS

The MS-Pascal compiler processes programs, modules,
and implementations of units. Collectively, these
compilable programs and parts of programs are
referred to as compilands. You can compile modules
and implementations of units separately and then
later link them to a program without having to
recompile the module or unit.

The program is the fundamental unit of compilation.
A program has three parts:

1. The program heading identifies the program and
gives a list of program parameters.

2. The declaration section follows the program
heading and contains declarations of labels,
constants, types, variables, functions, and
procedures. Some of these declarations are
optional.

1-2

PR: LI WINERY DRAFT

3. The body follows all declarations. It is
enclosed by the reserved words BEGIN and END
and is terminated by a period. The period is
the signal to the compiler that it has reached
the end of the source file.

The following program illustrates this three-part
structure:

{Program heading}
PROGRAM FRIDAY (INPUT,OUTPUT) ;

{Declaration section}
LABEL 1;
CONST DAYS_IN_WEEK - 7;
TYPE KEYBOARD_INPUT -- CHAR;
VAR KEYIN: KEYBOARD INPUT;

{Program body}
BEGIN

WRITE('IS TODAY FRIDAY? ');
1: READLN(KEYIN);

CASE KEYIN OF
•Y', 'y' : WRITELN('It’’s Friday.');
N' , 'n : WRITELN("It"s not Friday.');

OTHERWISE
WRITELN('ftiter Y or N.') ;
WRITE('Please re-enter: ');
GOTO 1

END
END.

This three-part structure (heading, declaration
section, body) is used throughout the Pascal
language. Procedures, functions, modules, and units
are all similar in structure to a program.

1-3

PRELIMINARY DRAFT

Modules are program-like units of compilation that
contain the declaration of variables, constants,
types, procedures, and functions, but not a program
body. You can compile a module separately and later
link it to a program, but it cannot be executed by
itself.

Example of a module:

{Module beading}
MODULE MODPART;

{Declaration section}
CONST PI - 3.14;

PROCEDURE PARTA;
BEGIN
WRITEIN ('parta')

END;

{Body}
END.

A module, like a program, ends with a period.
Unlike a program, a module contains no program
statements.

A unit has two sections: an interface and an
implementation. Like a module, an implementation
can be compiled separately and later linked to the
rest of the program. The interface contains the
information that lets you connect a unit to other
units, modules, and programs.

1-4

PRELIMINARY DRAFT

Example of a unit:

{Heading for interface}
INTERFACE;
UNIT MUSIC (SINKS, TOP) ;

{Declarations for interface}
VAR TOP : INTEGER;
PROCEDURE SING;

{Body of interface}
BEGIN
END;

{Heading for implementation}
IMPLEMENTATION OF MUSIC;

{Declaration for implementation}
PROCEDURE SING;
BEGIN

FOR I := 1 TO TOP DO
BEGIN
WRITE ('FA '); WRITELN ('LA LA')

END
END;

{Body of implementation}
BEGIN

TOP := 5
END.

A unit, like a program or a module, ends with a
period.

Modules and units let you develop large structured
programs that can be broken into parts. This
practice is advantageous in the following
situations:

o If a program is large, breaking it into parts
makes it easier to develop, test, and maintain.

1-5

PRELIMINARY DRAFT

o If a program is large and recompiling the
entire source file is time consuming, breaking
the program into parts saves compilation time.

o If you intend to include certain routines in a
number of different programs, you can create a
single object file that contains these routines
and then link it to each of the programs that
uses the routines.

o If certain routines have different
implementations, you can place them in a module
to test the validity of an algorithm. Later
you can create and implement similar routines
in assembly language to increase the speed of
the algorithm.

See Chapter 16 for a complete discussion of
programs, modules, and units.

1.3 PROCEDURES AND FUNCTIONS

Procedures and functions act as subprograms that
execute under the supervision of a main program.
However, unlike programs, procedures and functions
can be nested within each other and can even call
themselves. Furthermore, they have sophisticated
parameter-passing capabilities that programs lack.

Procedures are invoked as statements; functions can
be invoked in expressions wherever values are called
for.

A procedure declaration, like a program, has a
heading, a declaration section, and a body.

1-6

PRELIMINARY DRAFT

Example of a procedure declaration:

{Heading}
PROCEDURE COUNT_TO(NUM : INTEGER);

{Declaration section}
VAR I : INTEGER;

{Body}
BEGIN
FOR I := 1 TO NUM DO WRITELN (I)

END;

A function is a procedure that returns a value of a
particular type; hence, a function declaration must
indicate the type of the return value.

Example of a function declaration:

{Heading}
FUNCTION ADD (VAL1, VAL2 : INTEGER): INTEGER;

{Declaration section empty}

{Body}
BEGIN

ADD VAL1 + VAL2
END;

Procedures and functions look somewhat different
from programs, in that their parameters have types
and other options. Like the body of a program, the
body of a procedure or a function is enclosed by the
reserved words BEGIN and END; however, a semicolon
rather than a period follows the word "END".

Declaring a procedure or function is entirely
distinct from using it in a program. For example,
the procedure and function declared above might
actually appear in a program as follows:

1-7

PRELIMINARY DRAFT

TARGET_NUMBER ADD (5, 6);
COUNT_TO (TARGET_NUMBER);

See Chapter 13 for a complete discussion of
procedures and functions.

See Chapters 14 and 15 for a discussion of
procedures and functions that are predeclared as
part of the MS-Paseal language.

1.4 STATEMENTS

Statements perform actions, such as computing,
assigning, altering of the flow of control, and
reading and writing files. Statements are found in
the bodies of programs, procedures, and functions
and are executed as a program runs. MS-Paseal
statements perform the actions shown in Table 1-2.

STATEMENT PURPOSE

Table 1-2: Summary of MS-Paseal Statements

Assignment Replaces the current value of a
variable with a new value.

BREAK Exits the currently executing loop.

CASE Allows for the selection of one
action from a choice of many, based
on the value of an expression.

CYCLE Starts the next iteration of a loop.

FOR Executes a statement repeatedly while
a progression of values is assigned
to a control variable.

GOTO Continues processing at another part
of the program.

1-8

PRELIMINARY DRAFT

IF Together with THEN and ELSE, allows
for conditional execution of a
statement.

Procedure
call

Invokes a procedure with actual
parameter values.

REPEAT Repeats a sequence of statements one
or more times, until a Boolean
expression becomes true.

RETURN Exits the current procedure,
function, program, or implementation.

WHILE Repeats a statement zero or more
times, until a Boolean expression
becomes false.

WITH Opens the scope of a statement to
include the fields of one or more
records, so that you can refer to the
fields directly.

See Chapter 12 for a detailed discussion of each of
these statements.

1.5 EXPRESSIONS

An expression is a formula for computing a value.
It consists of a sequence of operators (that
indicate the action to be performed) and operands
(the value on which the operation is performed) .
Operands may contain function invocations,
variables, constants, or even other expressions. In
the following expression, plus (+) is an operator,
while A and B are operands:

A + B

1-9

PR“LI MINARY DRAFT

There are three basic kinds of expressions:

1. Arithmetic expressions perform arithmetic
operations on the operands in the expression.

2. Boolean expressions perform logical and
comparison operations with Boolean results.

3. Set expressions perform combining and
comparison operations on sets, with Boolean or
set results.

Expressions always return values of a specific type
For instance, if A, B, C, and D are all REAL
variables, then the following expression evaluates
to a REAL result:

A * B + (C / D) + 12.3

Expressions can also include function designators:

ADDREAL (2, 3) + (C / D)

ADDREAL is a function that has been previously
declared in a program. It has two REAL value
parameters, which it adds together to obtain a
total. This total is the return value of the
function, which is then added to (C / D).

Expressions are not statements, but can be
components of statements. In the following example
the entire line is a statement; only the portion
after the equal sign is an expression:

X :=2/3+A*B

See Chapter 11 for a detailed discussion of
expressions.

1-10

PRTIMIN'RY DRAFT

1.6 VARIABLES

A variable is a value that is expected to change
during the course of a program. Every variable must
be of a specific data type.

After you declare a variable in the heading or
declaration section of a ccmpiland, procedure, or
function, it can be used in any of the following
ways:

1. You can initialize it in the VALUE section of a
program.

2. You can assign it a value with an assignment
statement.

3. You can pass it as a parameter to a procedure
or function.

4. You can use it in an expression.

The VALUE section is an MS-Pascal feature that
applies only to statically allocated variables
(variables with a fixed address in memory). First
you declare the variables, as shown in the following
example: B>

VAR I, J, K, L : INTEGER;

Then you assign them initial values in the VALUE
section:

VALUE I := 1; J := 2; K := 3; L 4;

Later, in statements, the variables can be assigned
to and used as operands in expressions:

I := J + K + L;
J := 1 + 2 + 3;
K := (J * K) + 9 + (L DIV J);

1-11

PRELIMINARY DRAFT

See Chapter 10 for a complete discussion of
variables.

1.7 CONSTANTS

A constant is a value that is not expected to change
during the course of a program. At the standard
level, a constant may be:

o A number, such as 1.234 and 100

o A string enclosed in single quotation marks,
such as ’Miracle' or 'A1207'

o A constant identifier that is a synonym for a
numeric or string constant

You declare constant identifiers in the CONST
section of a canpiland, procedure, or function:

CONST REAL_CONST -- 1.234;
MAX_VAL. -- 100;
TITLE -- 'Pascal";

Because the order of declarations is flexible in MS-
Pascal, you can declare constants anywhere in the
declaration section of a compilable part of a
program, any number of times.

Constants are closely tied to the concepts of
variables and types. Variables are all of some
type; types, in turn, designate a range of
assumable values. These values, ultimately, are all
constants.

Two powerful extensions in MS-Pascal are structured
constants and constant expressions.

1-12

PRELIMINARY DRAFT

1. VECTOR, in the following example, is a
structured (array) constant:

CONST VECTOR - VECTORTYPE (1, 2, 3, 4, 5);

2. MAXVAL, in the following example, is a constant
expression (A, B, C, and D must also be
constants):

CONST MAXVAL = A * (B DIV C) + D - 5;

See Chapter 9 for a complete discussion of these and
other aspects of constants.

1.8 TYPES

Much of Pascal’s power and flexibility lies in its
data typing capability. Although a great variety of
data types are available, they can be divided into
three broad categories: simple, structured, and
reference types.

1. A simple data type represents a single value,
Mile a structured type represents a collection
of values. The simple types include the
following:

enumerated
subrange
REAL
INTEGER4

INTEGER
WORD
CHAR
BOOLEAN

2. The structured types include the following:

ARRAY
RECORD
SET
FILE

3. Reference types allow recursive definition of
types in an extremely powerful manner.

1-13

PFTLIMIN'RY DRAFT

All variables in Pascal must be assigned a data
type. A type is either predeclared (e.g., INTEGER
and REAL) or defined in the declaration section of a
program. The following sample type declaration
creates a type that can store information about a
student:

TYPE
STUDENT -- RECORD

AGE : 5..18;
SEX : (MALE, FEMALE);
GRADE : INTEGER;
GRADE PT : REAL;
SCHEDULE : ARRAY [1..10] OF CLASSES

END;

For a detailed discussion of data types, see
Chapters 4 through 8.

1.9 IDENTIFIERS

Identifiers are names that denote the constants,
variables, data types, procedures, functions, and
other elements of a Pascal program. Procedures and
functions must have identifiers; constants, type,
and variables may have identifiers (and it is useful
if they do).

You, the programmer, make up most of the identifiers
in a program and assign them meaning in
declarations. Other identifiers are the names of
variables, data types, procedures, and functions
that are built into the language and need not be
declared.

An identifier must begin with a letter (A - Z and a
- z). The initial letter can be followed by any
number of letters, digits (0 - 9), or underscore
characters. The compiler ignores the case of
letters; thus, "A" and "a" are equivalent.

1-14

PLUMIN'*PY DRAFT

The underscore in MS-Paseal is significant. Thus,
the following are not identical:

FOREST

FOR_EST

The only restriction on identifiers is that you must
not choose a Pascal reserved word (see Section 2.3.3
for a discussion of reserved words; see Appendix E
for a complete list).

Furthermore, most compilers have some restriction
either on the absolute length of an identifier or on
the number of characters that are considered
significant. See Appendix A in your MS-Paseal
User's Guide for any limitations imposed by your
version of the compiler.

See Chapter 3 for a complete discussion of
identifiers in MS-Paseal.

1.10 NOTATION

The basis of all Pascal programs is an irreducible
set of symbols with which the higher syntactic
components of the language are created.

The underlying notation is the ASCII character set,
divided into the following syntactic groups:

1. Identifiers are the names given to individual
instances of components of the language.

2. Separators are characters that delimit adjacent
numbers, reserved words, and identifiers.

3. Special symbols include punctuation, operators,
and reserved words.

1-15

PRELIMINARY DRAFT

4. Sane characters are not used by MS-Paseal but
are available for use in a conment or string
literal.

A good understanding of this notation increases your
productivity by reducing the number of subtle
syntactic errors in a program. See Chapter 2 for a
detailed discussion of MS-Paseal notation.

1-16
PR~LI MIN'R'Y DRAFT

2. NOTATION

All components of the MS-Pascal language are
constructed from the standard ASCII character set.
Characters make up lines that are separated by a
character specific to your operating system. Lines
make up files.

Within a line, individual characters or groups of
characters fall into one (or more) of four broad
categories:

1. Components of identifiers

2. Separators

3. Special symbols

4. Unused characters

2.1 COMPONENTS OF IDENTIFIERS

Identifiers are names that denote the constants,
variables, data types, procedures, functions, and
other elements of a Pascal program.

The use of identifiers is described thoroughly in
Chapter 3. This section discusses only how to
construct them. Identifiers must begin with a
letter; subsequent components can include letters,
digits, and underscore characters.

Although in theory, there is no limit on the number
of characters in an identifier, most implementations
restrict the length in some way. See Appendix A in
your MS-Pascal User's Guide for any limitations that
may apply to your system.

2-1
r»r-| f nv npAff

2.1.1 LETTERS

In identifiers, only the uppercase letters A through
Z are significant. Although you can use lowercase
letters for identifiers in a source program, the MS-
Pascal compiler converts lowercase letters to
uppercase.

Letters in comments or in string literals can be
either uppercase or lowercase; the difference is
significant. No mapping of lowercase to uppercase
occurs in either comments or string literals.

2.1.2 DIGITS

Digits in Pascal are the numbers zero through nine.
Digits can occur in identifiers (for example,
AS129M) or in in numeric constants (for example,
1.23 and 456).

2.1.3 THE UNDERSCORE CHARACTER

The underscore (_) is the only nonalphanumeric
character allowed in identifiers. The underscore is
significant in MS-Pascal. Use it like a space to
improve readability.

For example, the identifiers in the right column
below are easier to read than those in the left hand
column:

POWEROFTEN POWERJ3F_TEN
MYDOGMAUDE MY_DOG_MAUDE

2.2 SEPARATORS

Separators delimit adjacent numbers, reserved words,
and identifiers, none of which should have
separators embedded within them.

2-2

PRELIMINARY DRAFT

A separator can be any of the following:

1. The space character

2. The tab character

3. The form feed character

4. The new line marker

5. The comment

Comments in standard Pascal take one of the
following forms:

{This is a comment, enclosed in braces.}
(*This is an alternate form of comment.*)

The second form is generally used if braces are
unavailable on a particular machine. Comments in
either of these forms can span more than one line.

At the extend level, MS-Pascal also allows comments
that begin with an exclamation point:

! The rest of this line is a comment.

For comments in this form, the new line character
delimits the comment.

Nested comments are permitted in MS-Pascal, so long
as each level has different delimiters. Thus, when
a comment is started, the compiler ignores
succeeding text until it finds the matching end-of-
conroent. However, such nesting may not be portable.

Always use separators between identifiers and
numbers. If you fail to do so, the compiler
generally issues an error or warning message. In a
few cases, the MS-Pascal compiler accepts a missing
separator without generating an error message.

2-3
pRrLIMINARY DRAFT

For example, at extend level,

100MOD#127

is accepted as 100 MOD #127, where #127 is a
hex adec imal nunber. However,

100MOD127

is assumed to be 100 followed by the identifier
MOD127.

2.3 SPECIAL SYMBOLS

Special symbols fall into three categories:

1. Punctuation

2. Operators

3. Reserved words

2.3.1 PUNCTUATION

Punctuation in MS-Pascal serves a variety of
purposes, including the those shown in Table 2-1.

2-4

PRELIMINARY DRAFT

able 2.1. Summary of Punctuation in MS-Pascal

SYMBOL PURPOSE

{ } Braces delimit comments.

[] Brackets delimit array indices, sets,
and attributes. They can also
replace the reserved words BEGIN and
END in a program.

() Parentheses delimit expressions,
parameter lists, and program
parameters.

1 Single quotation marks enclose string
literals.

• = The colon-equals symbol assigns
values to variables in assignment
statements and in VALUE sections.

f The semicolon separates statements
and declarations.

• The colon separates variables from
types, and labels from statements.

= The equals sign separates identifiers
and type clauses in a TYPE section.

f The comma separates the components of
lists.

•

The double period denotes a subrange.

The period designates the end of a
program, indicates the fractional
part of a real number, and also
delimits fields in a record.

2-5

PRELIMINARY DRAFT

The up arrow denotes the value
pointed to by a reference value.

The number sign denotes nondecimal
numbers.

$ The dollar sign prefixes
metacam and s.

2.3.2 OPERATORS

Operators are a form of punctuation that indicate
sane operation to be performed. Sone are
alphabetic, others are one or two nonalphanumeric
characters. Any operators that consist of more than
one character must not have a separator between
characters.

The operators that consist of only nonalphabetic
characters are the following:

+ -*/><=<><=>=

Sane operators (e.g., NOT and DIV) are reserved
words instead of nonalphabetic characters.

See Chapter 11 for a complete list of of the
nonalphabetic operators and a discussion of the use
of operators in expressions.

2.3.3 RESERVED WORDS

Reserved words are a fixed part of the MS-Pascal
language. They include, for example, statement
names (e.g., BREAK) and words like BEGIN and END
that bracket the main body of a program. See
Appendix E for a complete list.

2-6

PRELIMINARY DRAFT

You cannot use a reserved word as an identifier.
You can, however, declare an identifier that
contains within it the letters of a reserved word
(for example, the identifier DOT containing the
reserved word DO).

There are several categories of reserved words in
MS-Pascal:

1. Reserved words for standard level MS-Paseal

2. Reserved words added for extend level MS-Pascal
features

3. Reserved words added for system level MS-Pascal
features

4. Names of attributes

5. Names of directives

See Appendix E for a complete list of reserved
words. The index lists where each reserved word is
discussed in the manual.

2.4 UNUSED CHARACTERS

These printing characters are not used in MS-Pascal:

% & " |

You can, however, use than within comments or string
literals.

The following nonprinting ASCII characters generate
error messages if you use them in a source file
other than in a comment or string literal:

1. The characters from CHR (0) to CHR (31), except
the tab and form feed, CHR (9) and CHR (12),
respectively

2-7

PRELIMINARY DRAFT

2. The characters frcm CHR (127) to CHR (255)

The tab character, CHR (9), is treated like a space
and is passed on to the listing file. A form feed,
CHR (12), is treated like a space and starts a new
page in the listing file.

2.5 NOTES ON CHARACTERS

This section discusses special notational properties
of the MS-Pascal language.

Characters within a Garment or string literal are
always legal and have no special effects.

Table 2-2 gives a list of pairs of printing
characters that are the same ASCII character. Thus,
you cannot substitute one for the other.

Table 2-2: Equivalent ASCII Characters

ASCII PRINTS AS EQUIVALENT CHARACTERS

CHR (94) * up arrow, caret

CHR (95) — underscore, left arrow

CHR (35) # number sign, English
pound sign

CHR (36) $ dollar sign, scarab
(circle with four spikes)

2-8

preliminary draft

MS-Paseal allows the following substitutions as
well:

If your keyboard lacks:
l
[
S

Use this instead:
(.
.)
0 or ?
“ or ?

The substitution of a question mark (?) for an up
arrow (*) is a minor extension to the ISO standard.

2-9

P^I1M|M*RY DRAFT

PRELIMINARY DRAFT

3. IDENTIFIERS

3.1 WHAT IS AN IDENTIFIER?

Identifiers are names for the constants, variables,
data types, procedures, functions, and other
elements of a Pascal program. Procedures and
functions must have identifiers; constants, types,
and variables may have identifiers (and it is useful
if they do).

Seme identifiers are predeclared; others you
declare in a declaration section. Standard Pascal
allows identifiers for the following elements of the
Pascal language:

o Types
o Constants
o Var iables
o Procedures
o Functions
o Programs
o Fields and tagfields in records

The following MS-Pascal features at the extend level
also require identifiers:

o Super array types
o Modules
o Units
o Statement labels

An identifier consists of a sequence of alphanumeric
characters or underscore characters. The first
character must be alphabetic. Underscores in
identifiers are allowed, and significant, at all
levels of MS-Pascal. Two underscores in a row or an
underscore at the end of an identifier are
permitted.

3-1

preliminary draft

Subject to the restrictions noted below, identifiers
can be as long as you want. They must, however, fit
on a single line. At least the first 19 characters
of an identifier are significant; in sane versions,
as many as 31 characters are significant.

An identifier longer than the significance length
generates a warning but not an error message; the
excess characters are ignored by the compiler. See
Appendix A in your MS-Paseal User's Guide for the
significance length in your implementation.

Standard Pascal allows unsigned integers as
statement labels. Statement labels have the same
scope rules as identifiers (see Section 3.3).
Leading zeros are not significant.

Extend level MS-Paseal allows labels that are normal
alphabetic identifiers.

The identifiers for a program, module, or unit, as
well as identifiers with the PUBLIC or EXTERN
attribute, are passed to the linker. The operating
system of a machine on which you plan to link and
run a compiled MS-Pascal program may impose length
restrictions on identifiers used as linker global
symbols. Furthermore, the object code listing and
debugger symbol table may truncate variable and
procedural identifiers to six characters.

Writing programs for use with other compilers and
operating systems imposes an additional constraint
on a program. Such a program must conform to the
identifier restrictions for the worst possible case.

For portability in general, do the following:

1. Make all identifiers unique in their first
eight characters.

2. Make external identifiers unique in their first
six characters.

3-2

Pf LIMIM’PY 9R4FT

3. Limit statement labels to four digits without
leading zeros.

Identifiers of seven or less characters save space
during compilation.

NOTE: All identifiers used internally by the run­
time system are four alphabetic characters followed
by the characters QQ. Avoid this form when creating
new names yourself.

3.2 DECLARING AN IDENTIFIER

You declare identifiers and associate them with
language objects in the declaration section of a
program, module, interface, implementation,
procedure, or function. Examples of identifiers,
the objects they represent, and the syntax used to
declare them are shown in Table 3-1. Although the
details vary, the basic form of the declaration of
the identifier for each of these elements is
similar.

Table 3-1: Declaring Identifiers

OBJECT IDENTIFIER DECLARATION________

Program z PROGRAM Z (INPUT, OUTPUT)

Module XXX MODULE XXX

Interface uuu INTERFACE; UNIT UUU

Implementation uuu IMPLEMENTATION of UUU

Constant D&YS CONST DAYS =365

Type LETTERS TYPE LETTERS = 'A'..'Z'

3-3

PRr‘LI MINARY DRAFT

Record fields X, Y, Z TYPE A = RECORD
X, Y ,Z : REAL END

Variable J VAR J : INTEGER

Label 1 LABEL 1

Label HAWAII LABEL HAWAII

Procedure BANG PROCEDURE BANG

Function FOO FUNCTION FOO: INTEGER

3.3 THE SCOPE OF IDENTIFIERS

An identifier is defined for the duration of the
procedure, function, program, module,
implementation, or interface in which you declare
it. This holds true for any nested procedures or
functions. An identifier's association must be
unique within its scope; that is, it must not name
more than one thing at a time.

A nested procedure or function can redefine an
identifier only if the identifier has not already
been used in it. However, the compiler does not
identify such redefinition as an error, but uses the
first definition until the second occurs.

A special exception for reference types is discussed
in Section 8.1.5.

3.4 PREDECEARED IDENTIFIERS

3-4

PRELIMINARY DRAFT

A number of identifiers are already a part of the
MS-Pascal language. This category includes the
identifiers for predeclared types, super array
types, constants, file variables, functions, and
procedures. You can use them freely, without
declaring them. Howaver, they differ from reserved
words in that you may redefine them whenever you
wish.

Table 3-2 lists the predeclared identifiers in MS-
Pascal.

STANDARD LEVEL IDENTIFIERS:

Table 3-2: Predeclared Identifiers

ABS EOLN MAXINT PUT SQR
ARCTAN EXP NEW READ SQRT
BOOLEAN FALSE ODD READLN SUCC
CHAR FLOAT ORD REAL TEXT
CHR GET OUTPUT RESET TRUE
COS INPUT PAGE REWRITE TRUNC
DISPOSE INTEGER PACK ROUND UNPACK
EOF LN PRED SIN WRITE

WRITELN

STRING INTRINSICS EXTEND LEVEL INTRINSICS

CONCAT INSERT ABORT EVAL RESULT
COPYLST POSITN BYWORD HIBYTE S12EOF
COPYSTR SCANEQ DECODE LOBYTE UPPER
DELETE SCANNE ENCODE LOWER

SYSTEM LEVEL INTRINSICS EXTEND LEVEL I/O

FILLC MOVESL nf ASSIGN READFN
FILLSC MOVESR CLOSE READSET DIRECT
MOVEL RETYPE SEEK DISCARD SEQUENTIAL
MOVER FCBFQQ TERMINAL FILEMODES

3-5

PRELIMINARY DRAFT

SUPER ARRAY TYPEINTEGER4 TYPE

BYLONG LOWORD LSTRING
FLOATLONG MAXI NT 4 NULL
BIWORD ROUNDLONG STRING
INTEGER4 TRUNCLONG

WORD TYPE

MAXWORD
WORD
WRD

MISCELLANEOUS

ADRMEM INTEGER2
ADSMEM REAL4
BYTE REAL8
INTEGER! SINT

3-6

pPHjMIMAWY DRAFT

4. INTRODUCTION TO DATA TYPES

4.1 WHAT IS A TYPE?

A type is the set of values that a variable or value
can have within a program. Types are either
predeclared or declared explicitly.

For example, the types INTEGER and REAL are
predeclared, while the type ARRAY [1..10] OF INTEGER
is declared explicitly. An explicitly declared type
may also be given a type identifier. To accomplish
this latter task, a type declaration is required.

Types in MS-Pascal fall into three broad categories:
simple, structured, and reference types. Table 4-1
gives a breakdown of the types in each of these
groups. The remainder of this chapter discusses
types in general; Chapters 5-8 discuss the
different groups in detail.

Table 4-1: Categories of Types

CATEGORY INCLUDES____________ COMMENTS/EXAMPLES

Simple
Types

Ordinal types
INTEGER
WORD
CHAR
BOOLEAN
enumerated types
subrange types

REAL4, REAL8
INTEGER4

-MAXINT..MAXINT
0..MAXWORD
CHR(O)..CHR(255)
(FALSE,TRUE)
e.g., (RED,BLUE)
e.g., 100..5000

-MAXINT4..MAXINT4

4-1

Table 4-1 (cont’d)

CATEGORY INCLUDES_____________ COMMENTS/EXAMPLES

Structured
Types

ARRAY OF type
general (OF any type)
SUPER ARRAY (OF type)

STRING (n) [1..n] of CHAR
LSTRING (n) [O..n] of CHAR

RECORD
SET OF type
FILE OF

general (binary) files
TEXT Like FILE OF CHAR

Reference
Types

Pointer Types e.g., "TREETIP
ADR OF type Relative address
ADS OF type Segmented address

Procedural
and
Functional
Types

only as parameter
type

4.2 DECLARING DATA TYPES

The type declaration associates an identifier with a
type of value. You declare types in the TYPE
section of a program, procedure, function, module,
interface, or implementation (not in the heading of
a procedure or function).

A type declaration consists of an identifier
followed by an equals sign and a type clause.

4-2

Examples of type definitions:

TYPE LINE - STRING (80);
PAGE = RECORD

PAGENUM : 1..499;LINES : ARRAY [1..60] OF LINE;
FACE : (LEFT, RIGHT);NEXTPAGE : "PAGE;END;

After declaring the data types, you declare
variables of the types just defined in the VAR
section of a program, procedure, function, module,
or interface, or in the heading of a procedure or
function. The following sample VAR section declares
variables of the types in the preceding sample TYPE
section:

VAR PARAGRAPH : LINE;
BOOK : PAGE;

Because a type identifier is not defined until its
declaration is processed by the compiler, a
recursive type declaration such as the following is
illegal:

T - ARRAY [0..91 OF T;
Reference types require a standard exception to this
rule and are discussed in Chapter 8.

A special feature of MS-Pascal is a category called
super types. A super type declaration determines
the set of types that designators of that super type
can assume; it also associates an identifier with
the super type. Super type declarations also occur
in the TYPE section. The only super types currently
available in MS-Pascal are super arrays.

4.3 TYPE COMPATIBILITY
MS-Pascal follows the ISO standard for type
compatibility, with some additional rules added for
super array types, LSTRINGs, and constant coercions
(i.e., forced changes in the type of a constant).
Type transfer functions, to override the typing
rules, are available with some MS-Pascal features.

Two types can be "identical," "compatible," or
"incompatible." An expression may or may not be
"assignment compatible" with a variable, value
parameter, or array index.

4.3.1 TYPE IDENTITY AND REFERENCE PARAMETERS
Two types are identical if they have the identical
identifier or if the identifiers are declared
equivalent with a type definition like the
following:

TYPE T1 - T2;
"Identical" types are truly identical in MS-Pascal:
there is no difference between types 11 and T2 in
the example above. Type identity is based on the
name of the types, and not on the way they are
declared or structured. Thus, for example, T1 and
T2 are not identical in the following declarations:

TYPE T1 = ARRAY [1..10] OF CHAR;
T2 - ARRAY [1..10] OF CHAR

Actual and formal reference parameters must be of
identical types. Or, if a formal reference
parameter is of a super array type, the actual
parameter must be of the same super array type or a
type derived from it. Two record or array types must
be identical for assignment.

4-4

The only exception is for strings. Here, actual
parameters of type CHAR, STRING, STRING (n),
LSTRING, and LSTRING (n) are compatible with a
formal parameter of super array type STRING.

Furthermore, an actual parameter of any FILE type
may be passed to a formal parameter of a special
record type FCBFQQ. Similarly, an actual parameter
of type FCBFQQ may be passed to a formal parameter
of any file type. See Section 7.7 for a description
of the FCBFQQ type.

STRING (n) is a shorthand notation for:

PACKED ARRAY [1..n] OF CHAR
The two types are identical. However, because
variables with the type LSTRING are treated
specially in assignments, comparisons, READs, and
WRITES, LSTRING (n) is not a shorthand notation for
PACKED ARRAY CO..n] OF CHAR. The two types are not
identical, compatible, or assignment compatible.
See Section 6.2.3 for further information on string
types.

4.3.2 TYPE COMPATIBILITY AND EXPRESSIONS
Two simple or reference types are compatible if any
of the following is true:

1. They are identical.

2. They are both ADR types.

3. They are both ADS types.

4. One is a subrange of the other.

5. They are subranges of compatible types.

4-5

Two structured types are compatible if any of the
following is true:

1. They are identical.

2. They are SET types with compatible base types.

3. They are STRING derived types of equal length.

4. They are ESTRING derived types.

However, two structured types are incompatible if
any of the following is true:

1. Either type is a FILE or contains a FILE.

2. Either type is a super array type.

3. One type is PACKED and the other is not.

Two values must be of compatible types when combined
with an operator in an expression. (Most operators
have additional limitations on the type of their
operands. See Chapter 11 for details.)

A CASE index expression type must be compatible with
all CASE constant values. Note that two sets are
never compatible if one is PACKED and the other is
not.

4.3.3 ASSIGNMENT COMPATIBILITY
Some types are implicitly compatible permitting
assignment across type boundaries. For instance,
assume you declare the following variables:

VAR DESTINATION : T VEST;
SOURCE : T SOURCE;

4-6

SOURCE is assignment compatible with DESTINATION
(i.e., DESTINATION := SOURCE is permitted) if one of
the following is true:

1. T_SOURCE and T_DEST are identical types.

2. T_SOURCE and T_DEST are compatible and SOURCE
has a value in the range of subrange type
T_DEST.

3. T_DEST is of type REAL and T_SOURCE is
compatible with type INTEGER or INTEGERS.

4. T_DEST is of type INTEGER4 and T_SOURCE is
compatible with type INTEGER or WORD.

Also, if T_DEST and T_SOURCE are compatible
structured types, then SOURCE is assignment
compatible with DESTINATION if one of the following
is true:

1. For SETs, every member of SOURCE is in the base
type of T—DEST.

2. For LSTRINGs, UPPER (DESTINATION) >= SOURCE.LEN.

Other than in the assignment statement itself,
assignment compatibility is required in the
following cases of implicit assignment:

o Passing value parameters

o READ and READLN procedures

o Control variable and limits in a FOR statement

o Super array type array bounds, and array
indices

Assignment compatibility is usually known at compile
time, and an assignment generates simple
instructions. However, some subrange, set, and

4-7

LSTRING assignments depend on the value of the
expression to be assigned and thus cannot be checked
until run-time. If the range checking switch is on,
assignment compatibility is checked at run-time;
otherwise, no checking is done.

4-8

5. SIMPLE TYPES

Simple data types cannot be divided into other
types, while structured types (discussed in Chapters
6 and 7) are composed of other types. The simple
data types fall into three categories:

1. Ordinal types

2. REAL

3. INTEGER4

5.1 ORDINAL TYPES

Ordinal types are all finite and countable. They
include the following simple types:

o INTEGER
o WORD
o CHAR
O BOOLEAN
o Enumerated types
o Subrange types

INTEGER4, though finite and countable, is not an
ordinal type.

5.1.1 INTEGER

INTEGER values are a subset of the whole numbers and
range from -MAXINT through 0 to MAXINT. MAXINT is
the predeclared constant 32767 (i.e., 2*15 - 1) for
current MS-Paseal target machines. (The value -
32768 is not a valid INTEGER; the compiler uses it
to check for uninitialized INTEGER and INTEGER
subrange variables.)

5-1

PRELIMINARY draft

INTEGER is not a subrange of INTEGER4 (discussed in
Section 5.3). If it were, signed expressions would
have to be calculated using the INTEGER4 type and
the result converted to INTEGER.

Expressions are always calculated using a base type,
not a subrange type. INTEGER type constants may be
changed internally to WORD type if necessary, but
INTEGER variables are not. INTEGER values change to
REAL or INTEGER4 in an expression, if necessary, but
not to REAL. The ORD function converts a value of
any ordinal type to an INTEGER type.

The predeclared type INTEGER2 is identical to
INTEGER.

5.1.2 WORD

The WORD and INTEGER types are similar, differing
chiefly in their range of values. Both are ordinal
types. You can think of WORD values as either a
group of 16 bits or as a subset of the whole numbers
from 0 to MAXWORD (65535, i.e., 2*16 -1). The WORD
type is an ME-Rascal feature that is useful in
several ways:

1. To express values in the range from 32768 to
65535.

2. To operate on machine addresses.

3. To perform primitive machine operations, such
as word ANDing and word shifting, without using
the INTEGER type and running into the -32768
value.

Unlike INTEGERS, all WORDS are nonnegative values.
The WRD function changes any ordinal type value to
WORD type. Like INTEGER values, WORD values in an
expression are converted to the INTEGER4 type, if
necessary.

5-2

PRELIMINARY DRAFT

Having both an INTEGER and a WORD type permits
mapping of 16-bit quantities in either of two ways:

1. As a signed value ranging from -32767 to +32767

2. As a positive value ranging from 0 to 65535.

However, you must not mix WORD and INTEGER values in
an expression (although doing so generates a warning
rather than an error message). The two assignments
are not compatible.

5.1.3 CHAR

In MS-Pascal, CHAR values are 8-bit ASCII values.
CHAR is an ordinal type. All 256-byte values are
included in the type CHAR. In addition, SET OF CHAR
is supported. Relational comparisons use the ASCII
collating sequence.

Although the line-marker character used in TEXT
files is not part of the CHAR type in the ISO
standard, some target operating systems for MS-
Pascal may require the line-marker character to be
included (e.g., carriage return).

The CHR function changes any ordinal type value to
CHAR type, as long as ORD of the value is in the
range from 0 to 255. See Appendix D for a complete
listing of the ASCII character set.

5.1.4 BOOLEAN

BOOLEAN is an ordinal type with only two
(predeclared) values: FALSE and TRUE. The BOOLEAN
type is a special case of an enumerated type, where
ORD (FALSE) is 0 and ORD (TRUE) is 1. This means
that FALSE < TRUE.

5-3

PRELIMINARY DRAFT

You may redefine the identifiers BOOLEAN, FALSE, and
TRUE, but the compiler implicitly uses the former
type in Boolean expressions and in IF, REPEAT, and
WHILE statements.

No function exists for changing an ordinal type
value to a BOOLEAN type value. However, you can
achieve this effect with the ODD function for
INTEGER and WORD values, or the expression:

ORD (value) <> 0

5.1.5 ENUMERATED TYPES

An enumerated type defines an ordered set of values.
These values are constants and are enumerated by the
identifiers that denote then.

Examples of enumerated type declarations:

FLAGCOLOR -- (RED, WHITE, BLUE)
SUITS -- (CLUB, DIAMOND, HEART, SPADE)
DOGS - (MAUDE, EMILY, BRENDAN)

Every enumerated type is also an ordinal type.
Identifiers for all enumerated type constants must
be unique within their declaration level.

At the extend level, the READ and WRITE procedures
and the ENCODE and DECODE functions operate on
values of an enumerated type by treating the actual
constant identifier as a string. This means that
enumerated values can be read directly.

The ORD function, at the standard level, can be used
to change enumerated values into INTEGER values; the
WRD function changes enumerated values into WORD
values.

5-4

PRELIMINARY DRAFT

The RETYPE function, at system level, can be used to
change INTEGER or WORD values to an enumerated type.
For example:

IF RETYPE (COLOR, I) -- BLUE THEN WRITELN
("TRUE BLUE')

The values obtained by applying the ORD function to
the constants of an enumerated type always begin
with zero. Thus, the valves obtained for the type
FLAGCOLOR, from the example above, are as follows:

ORD (RED) - 0
ORD (WHITE) -- 1
ORD (BLUE) = 2

Enumerated types are particularly useful for
representing an abstract collection of names, such
as names for operations or commands. Modifying a
program by adding a new value to an enumerated type
is much safer than using raw numbers, since any
arrays indexed with the type or sets based on the
type are changed automatically.

For example, interactive input of a command might be
accomplished by reading the enumerated type
identifier that corresponds to a command. Since
enumerated types are ordered, comparisons like RED <
GREEN may also be useful. At times, access to the
lowest and highest values of the enumerated type is
useful with the the LOWER and UPPER functions, as in
the following example:

VAR TINT: COLOR;
FOR TINT LOWER (TINT) TO UPPER (TINT)

DO PAINT (TINT)

5.1.6 SUBRANGE TYPES

A subrange type is a subset of an ordinal type. The
type from which the subset is taken is called the

5-5

PL?MiNARy DRAFT

"host" type. Therefore, all subrange types are also
ordinal types.

You can define a subrange type by giving the lower
and upper bound of the subrange (in that order).
The lower bound must not be greater than the upper
bound, but the bounds may be equal. The subrange
type is frequently used as the index type of an
array bound or as the base type of a set. (See
Chapter 6 for a discussion of arrays and sets.)

Examples of subranges along with their host ordinal
type:

Subrange of INTEGER:
Subrange of WORD:
Subrange of CHAR:
Subrange of enumerated type:

100..200
WRD(l) ..9
’A'..’Z'
RED. .YELLOW

In addition, you may substitute a subrange clause
for a list of values in the following circumstances:

1. Set constants

2. Set constructors

3. CASE statement constants and record variant
labels (at the extend level)

Besides using the subrange type in array and set
declarations, you can use it to help to guarantee
that the value of a variable is within acceptable
bounds. If the range checking switch is on during
compilation, these bounds are checked at run-time.

For instance, if the logic of a program implies that
a variable always has a value from 100 to 999, then
declaring it with a subrange causes the compiler to
check that the variable is never assigned a value
outside this range.

5-6

DRAFT

In addition, declaring a subrange type may permit
the compiler to allocate less room and use simpler
operations. For example, declaring BOTTLES to be
the INTEGER subrange 1..100 means that the type can
be allocated in eight bits instead of sixteen.

Three subrange types are predeclared:

1. BYTE = WRD(0) ..255;
{8-bit WORD subrange}

2. SINT -- -127..127;
{8-bit INTEGER subrange}

3. INTEGER1 = SINT

The BYTE type is particularly useful in machine-
oriented applications. For example, the ADRMEM and
ADSMEM types (see Section 8.1.2 for details)
normally treat memory as an array of bytes.
Hove ver, since the BYTE type is really a subrange of
the WORD type, expressions with BYTE values are
calculated using 16-bit instead of 8-bit arithmetic,
if necessary.

In some cases (for example, an assignment of a BYTE
expression to a BYTE variable when the math checking
switch is off), the compiler can optimize 16-bit
arithmetic to 8-bit arithmetic. In general, using
BYTE instead of WORD saves memory at the expense of
BYTE-to~WORD conversions in expression calculations.

At the extend level, subrange bounds can be constant
expressions. Because the compiler assumes that the
left parenthesis always starts an enumerated type
declaration, the first expression in a subrange
declaration must not start with a left parenthesis.
For example:

5-7

preliminary draft

TYPE {First two are permitted.}
FEE -- (A, 8, C);
FIE = M + 2 * N .. (P-2) * N;
{FOO is invalid as declared.}
FOO = (M + 2) * N .. P - 2 * N;

5.2 REAL

REAL values are nonordinal values of a given range
and precision; the range of allowable values
depends on the target system. The MS-Pascal User's
Guide gives more specific information about your
system.

Most MS-Pascal implementations use either the MS-or
IEEE single precision real nunber format. These
formats have a 24-bit mantissa and an 8-bit
exponent, giving about seven digits of precision and
a maximrm value of 1.701411E38. MS-format REAL
constants are limited to the range 1.0E-38 to
1.0E+38.

The current version of MS-Pascal includes expanded
numeric data types for processing higher precision
real (and integer) numbers. For reals, this
includes support for single and double precision
real numbers according to the IEEE floating-point
standard.

Standard Pascal provides a type REAL. MS-Pascal
provides three real types: REAL, REAL4, and REAL8.
However, the type REAL is always identical to either
REAL4 or REAL8. The choice is made with a
metacommand, $REAL:n, where n is either 4 or 8.
{$REAL:8} has the same effect as TYPE REAL = REAL8.
The default type for REAL is normally REAL4, but can
be changed (see Appendix A in the MS-Pascal User's
Guide for details).

5-8

PRELIMINARY DRAFT

Any or all of these real number forms can be used in
a single program. However, programs that use REAL4
and REAL8 are not portable.

The REAL4 type is in 32-bit IEEE format, and the
REAL8 type is in 64-bit IEEE format. The IEEE
standard format is as follows:

REAL4: Sign bit, 8-bit binary exponent with bias of
127, 23-bit mantissa.

REAL8: Sign bit, 11-bit binary exponent with bias
of 1023, 52-bit mantissa.

In both cases the mantissa has a "hidden" most
significant bit (always one) and represents a number
greater than or equal to 1.0 but less than 2.0. An
exponent of zero means a value of zero, and the
maximum exponent means a value called NaN (not a
number). Bytes are in "reverse" order; the lowest
addressed byte is the least significant mantissa
byte.

The REAL4 numeric range is barely seven significant
digits (24 bits), with an exponent range of E-38 to
E+38. The REAL8 numeric range includes over fifteen
significant digits (53 bits), with an exponent range
of E-306 to E+306 (a very large number!)

The exponent character can be "D" or "d" as well as
"E" or "e", so a number like 12.34d56 is permitted.
This minor extension provides compatibility with
other MS-languages. However, the D or d exponent
character does not indicate double precision (as it
does in FORTRAN), since this would imply that
numbers with an E or e exponent character are single
precision.

REAL literals in MS-Pascal are converted first to
REAL8 format and then to REAL4 as necessary (for
example, to be passed as a CONST parameter or to
initialize a variable in a VALUE section). If you

5-9

PRELIMINARY DRAFT

need actual REAL4 constants, you must declare then
as REAL4 variables (perhaps adding the READONLY
attribute) and assign them a constant in a VALUE
section.

Both REAL4 and REALS values are passed to intrinsic
functions as reference (CONSTS) parameters, rather
than as value parameters. The compiler accepts REAL
expressions as CONSTS parameters; it evaluates the
expression, assigns the result to a stack temporary,
and passes the address of the temporary, which is
usually more efficient than passing the value itself
(especially in the REALS care).

Functions that return REAL values use the long
return method; that is, the caller passes an
additional, hidden, offset address of a stack
temporary which receives the result. This applies
to all functions returning REAL4 or REALS values,
both user-defined and intrinsic.

The inclusion of special "not-a-number" (NaN) values
means that a comparison between two real numbers can
have a result other than less-than, equal, or
greater-than. The numbers can be unordered, meaning
one or both are NaNs. An unordered result is the
same as "not equal, not less than, and not greater
than."

For example, if variables A or B are NaN values:

1. A < B is false.

2. A <= B is false.

3. A > B is false.

4. A >= B is false.

5. A = B is false.

6. A <> B is, however, true.

5-10

PRELIMINARY DRAFT

REAL canparisons do not follow all the same rules as
other comparisons. A < B is not always the same as
NOT (B <= A); this fact prevents sane optimizations
otherwise done by the conpiler. If A is a NaN, then
A <> A is true; in fact, this expression is a good
way to check for a NaN value.

The MS-Pascal run-time library provides additional
REAL functions to support MS-FORTRAN. These
functions are available in MS-Pascal, but are not
predeclared (see Chapter 14 for further information
on the functions available and how to use then.)

5.3 INTEGER4

Like INTEGER and WORD values, INTEGER4 values are a
subset of the whole numbers. INTEGER4 values range
from -MAXLONG to MAXLONG. MAXLONG is a predeclared
constant with the value of 2,147,483,647 (i.e., 2*31
- 1). The value -2,147,487,648 (i.e., -2*31) is not
a valid INTEGER4.

Unlike INTEGER and WORD, the INTEGER4 type is not
considered an ordinal type. There are no INTEGER4
subranges and INTEGER4 cannot be an array index or
the base type of a set. Also, INTEGER4 values
cannot be used to control FOR and CASE statements.

INTEGER4 is currently an extended numeric type, like
REAL. Values of type INTEGER or WORD in an
expression change automatically to INTEGER4 if the
expression requires an intermediate value out of the
range of either INTEGER or WORD. Values of type
INTEGER4 do not change to REAL in an expression;
you must explicitly use the FLOATIONG function to
make the conversion.

5-11

PRELIMINARY DRAFT

PRELIMINARY DRAFT

6. ARRAYS, RECORDS, AND SETS

A structured type is composed of other types. The
components of structured types are either simple
types or other structured types. A structured type
is characterized by the types of its components and
by its structuring method. In MS-Pascal, a
structured type can occupy up to 65534 bytes of
memory.

The structured types in MS-Pascal are the following:

ARRAY <range- OF <type>
SUPER ARRAY <range- OF <type>

STRING (n)
LSTRING (n)

RECORD
SET OF <base-type-
FILE OF <type>

Because components of structures can be structured
types themselves, you may have, for example, an
array of arrays, a file of records containing sets,
or a record containing a file and another record.
This data typing flexibility gives Pascal linguistic
power as a computing language.

The remainder of this chapter discusses arrays,
records, and sets. See Chapter 7 for a discussion
of files.

6.1 ARRAYS

An array type is a structure that consists of a
fixed number of components. All the components are
of the same type (called the "component type").

The elements of the array are designated by indices,
which are values of the "index type" of the array.
The index type must be an ordinal type: BOOLEAN,

6-1
P?”11 MIN "RY RRAFT

CHAR, INTEGER, WORD, subrange, or enumerated.

Arrays in Pascal are one dimensional. Since the
component type can also be an array, however,
n-dimensional arrays are supported as well.

Examples of type declarations for arrays:

TYPE
INT_ARRAY : ARRAY [1..10] OF INTEGER;
ARRAY 20 : ARRAY [0..9] OF ARRAY [0..99] OF 0..999;
MORAL_RAY : ARRAY [PEOPLE] OF (GOOD, EVIL)

In the last declaration, PEOPLE is a subrange type,
while GOOD and EVIL are enumerated constants. A
short-hand notation available for n-dimensional
arrays makes the following statement the same as the
second example above:

ARRAY 2D : ARRAY [0..9, 0..99] OF 0..999;

After declaring these arrays, you could assign
components of the arrays with statements such as
these:

INI ARRAY [10] 1234;
ARRAY 2D [0,99] := 999;
M0RAL_RAY [Machiavelli] := EVIL;

All of an n-dimensional PACKED array is packed;
therefore these statements are equivalent:

PACKED ARRAY [1..2, 3..4] OF REAL

PACKED ARRAY [1..2] OF PACKED ARRAY [3..4] OF REAL

See Chapter 8 for a discussion of packed types.

6-2
pr~L!Mri^Y DRAFT

6.2 SUPER ARRAYS

A super array is one example of an MS-Pascal "super
type." A super type is like a set of types or like
a function that returns a type. Super types in
general, and super arrays in particular, are
features of MS-Pascal.

The super array type has several important uses. In
particular, you may use than for any of the
following purposes:

1. To process strings. Both STRING and LSTRING
are predeclared super array types. The LSTRING
type handles variable length strings. STRING
handles fixed-length strings and strings more
than 255 characters long.

2. To dynamically allocate arrays of varying
sizes. Otherwise such arrays would need a
maximum possible size allocation.

3. As the formal parameter type in a procedure or
function. By making such a declaration, you
make the procedure or function usable for a set
or class of types, rather than for just a
single fixed-length type.

A super type identifier specifies the set of types
represented by the super type. A later type
declaration may declare a normal type identifier as
a type "derived" from that class of types. This
derived type is like any other type.

A super array type declaration is an array type
declaration prefixed with the keyword SUPER. Every
array upper bound is replaced with an asterisk (*),
as shown:

TYPE VECTOR -- SUPER ARRAY [1..*] OF REAL;

6-3

PRELIMINARY draft

Following the above type declaration, you could
declare the following variables:

VAR ROW: VECTOR (10);
COL: VECTOR (30);
ROWP: * VECTOR;

In this example, VECTOR is a super array type
identifier. VECTOR (10) and VECTOR (30) are type
designators denoting "derived types." ROW and COL
are variables of types derived from VECTOR. ROWP is
a pointer to the super array type VECTOR.

Although the general concept of super types allows
other "types of types," such as super subranges and
super sets (in addition to super arrays), super
types currently allow only an array type with
parametric upper bounds. A super type is a class of
types and not a specific type. Thus, in the VAR
section of a program, procedure, or function, you
cannot declare the variables to be of a super type;
you must declare them as variables of a type derived
from the super type.

However, a formal reference parameter in a procedure
or function can be given a super type. For this
reason the routine can operate on any of the
possible derived types. (This kind of parameter is
called a "conformant array" in other Pascals.)

A pointer referent type can also be given a super
type. This allows a pointer to refer to any of the
possible derived types. A pointer referent to a
super type allows "dynamic arrays." These arrays are
allocated on the heap by passing their upper bound
to the procedure NEW. See Chapter 8 for a
discussion of pointer types and dynamic allocation.
See Chapter 14 for a description of the procedure
NEW.

Example using the NEW procedure for dynamic
allocation:

6-4

PRrL|M|N*PY 'WFT

VAR STR_PNT: "SUPER PACKED ARRAY [1..*] OF CHAR;
VEC_PNT: "SUPER ARRAY [0..*, 0..*] OF REAL;

NEW (STRJPNT, 12);
NEW (VECJPNT, 9, 99);

An actual parameter in a procedure or function can
be of a super type rather than a derived type, but
only if the parameter is a reference parameter or
pointer referent. (These are the only kinds of
variables that can be of a super rather than a
derived type.)

Example of super arrays:

TYPE VECTOR = SUPER ARRAY [1..*] OF REAL;
{"VECTOR" is the super array type identifier.}
VAR X: VECTOR (12); Y: VECTOR (24); Z: VECTOR (36);
{X, Y, and Z are types derived from VECTOR.}

{Below, SUM accepts variables of all types}
{derived from the super type VECTOR.}
FUNCTION SUM (VAR V: VECTOR) : REAL;
{V is the formal reference parameter of the
{super type VECTOR.}

VAR S: REAL; I: INTEGER;
BEGIN
S := 0;
FOR I := 1 TO UPPER (V) DO S := S + V [I] ;
SUM := S;

END;

BEGIN

TOTAL SUM (X) + SUM (Y) + SUM (Z);

END

6-5
PRELIMINARY DRAFT

The normal type rules for components of a super
array type and for type designators that use a super
array type allow components to be assigned,
compared, and passed as parameters.

The UPPER function returns the actual upper bound of
a super array parameter or referent. The maximum
upper bound of a type derived from a super array
type is limited to the maximum value of the index
type implied by the lower bound (e.g., MAXINT,
MAXWORD). Two super array types are predeclared,
STRING and LSTRING. The compiler directly supports
STRING and LSTRING types in the following ways:

1. LSTRING and STRING assignment

2. LSTRING and STRING comparison

3. LSTRING and STRING READS

4. Access to the length of a STRING with the UPPER
function

5. Access to maximum length of an LSTRING with the
UPPER function

6. Access to LSTRING length with STR.LEN and
STR[0]

These subjects are discussed in Section 6.2.3.

6.2.1 STRINGS

STRINGS are predeclared super arrays of characters:

TYPE STRING = SUPER PACKED ARRAY [1..*] OF CHAR;

A string literal such as 'abodefg' automatically has
the type STRING (n). The size of the array
’abcdefg* is 7; thus, the constant is of the STRING

6-6
PRELIMINARY DRAFT

derived type, STRING (7) .

Standard Pascal calls any packed array of characters
with a lower bound of one a "string" and permits a
few special operations on this type (such as
comparison and writing) that you cannot do with
other arrays.

In MS-Pascal, the super array notation STRING (n) is
identical to PACKED ARRAY [l..n] OF CHAR (n may
range from 1 to MAXINT). There is no default for n,
as in some other Pascals, since STRING means the
super array type itself and not a string with a
default length.

The identifier STRING is for a super array, so you
can only use it as a formal reference parameter type
or pointer referent type. The other super array
restrictions apply: you can not compare such a
parameter or dereferenced pointer or assign it as a
whole.

Any variable (or constant) with the super array type
STRING, or one of the types CHAR or STRING (n) or
PACKED ARRAY [l..n] OF CHAR, can be passed to a
formal reference parameter of super array type
STRING. Furthermore, a variable of type ESTRING or
ESTRING (n) can also be passed to a formal reference
parameter of type STRING. For a discussion of
STRING as a formal reference parameter, see Section
6.2.3.

Standard Pascal supports the assigning, comparing,
and writing of STRINGS. The extend level permits
reading STRINGS, including the super array type
STRING and a derived type STRING (n). Reading a
STRING causes input of characters until the end of a
line or the end of the STRING is reached. If the
end of the line is reached first, the rest of the
STRING is filled with blanks. Writing a string
writes all of its characters.

6-7
PRELIMINARY DRAFT

The normal Pascal type compatibility rules are
relaxed for STRINGS. Any two variables or constants
with the type PACKED ARRAY [l..n] OF CHAR or the
type STRING (n) can be compared or assigned if the
lengths are equal. However, since the length of a
STRING super array type may vary, comparisons and
assignments are not allowed.

Example of an illegal STRING assignment:

PROCEDURE CANNOTJDO (VAR S : STRING) ;
VAR STR : STRING (10);
BEGIN

STR := S
{This assignment is illegal because}
{the length of S may vary.}

END;

The PACKED prefix in the declaration PACKED ARRAY
[l..n] OF CHAR (as defined in the ISO standard)
normally implies that a component cannot be passed
as a reference parameter. In MS-Pascal, this
restriction does not apply.

To keep conformance to the ISO standard, this
passing of the CHAR component of a STRING as a
reference parameter is defined as an "error not
caught." Also, the index type of a string is
officially INTEGER, but WORD type values can also be
used to index a STRING. Many string-processing
applications are expected to take advantage of the
LSTRING type, described in Section 6.2.2.

A number of intrinsic procedures and functions for
strings are discussed in Chapter 14. Many of the
procedures and functions described work on STRINGS;
some apply only to LSTRINGs.

6.2.2 LSTRINGS

The LSTRING feature in MS-Pascal allows variable­

6-8
P""LI MINARY DRAFT

length strings. LSTRING (n) is predeclared as:

TYPE LSTRING = SUPER PACKED ARRAY [0..*] OF CHAR

However, a variable with the explicit type PACKED
ARRAY [0..n] OF CHAR is not "identical" to the type
LSTRING (n) even though they are structurally the
same. There is no default for n; the range of n is
from zero to 255. Characters in an LSTRING can be
accessed with the usual array notation.

Internally, LSTRINGs contain a length (L), followed
by a string of characters. The length is contained
in element zero of the LSTRING and can vary from 0
to the upper bound. The. length of an LSTRING
variable T can be accessed as T[0] with type CHAR,
or as T.LEN with type BYTE. String constants of
type CHAR or STRING (n) are changed automatically to
type LSTRING.

The predeclared constant NULL is the empty string,
LSTRING (0). NULL is the only constant with type
LSTRING; there is no way to define other LSTRING
constants. As with STRINGS, a CHAR component of an
LSTRING can be passed as a reference parameter, and
WORD and INTEGER values can be used to index an
LSTRING.

Several operations work differently on LSTRINGs than
on STRINGS. Any LSTRING can be assigned to any
other LSTRING, so long as the current length of the
right side is not greater than the maximum length of
the left side. Similarly, an LSTRING can be passed
as a value parameter to a procedure or function, so
long as the current length of the actual parameter
is not greater than the maximum length specified by
the formal parameter. If the range checking switch
is on, the compiler checks the assignment of
LSTRINGs and the passing of LSTRING (n) parameters.
The actual number of bytes assigned or passed is the
minimum of the upper bounds of the LSTRINGs.

6-9
PRrLIMINARY DRAFT

Neither side in an LSTRING assignment can be a
parameter of the super array type LSTRING; both
must be types derived from it.

Examples of LSTRING assignments:

{Declaring the variables}
VAR A : LSTRING (19) ;

B : LSTRING (14);
C : LSTRING (6);

{Assigning the variables}
A *19 character string';
B := *14 characters';
C := 'shorty';
A := B;
{This is legal, since the length of B}
{is less than the maximum length of A.}
C := A;
{This is illegal, since length of A}
{is greater than the maximum length of C.}

You may compare any two LSTRINGs, including super
array type LSTRINGs (the only super array type
comparison allowed). Reading an LSTRING variable
causes input of characters, until the end of the
current line or the end of the LSTRING, and sets the
length to the number of characters read. Writing
from an LSTRING writes the current length string.

6.2.3 USING STRINGS AND LSTRINGS

This section describes the STRING and LSTRING
operations directly supported by the compiler. An
annotated program at the end of this section
illustrates the use of STRINGS and LSTRINGs in
context.

Chapter 14 describes the following string procedures
and functions:

6-10
PfTLIMIN'RY !?R -FT

CONCAT INSERT COPYSTR SCANEQ
COPYLST POSITN DELETE SCANNE

At the system level of MS-Pascal, the procedures
FILLC, FILLSC, MOVEL, MOVESL, MOVER, and MOVESR also
operate on strings.

MS-Pascal supports STRINGS and LSTRINGs directly in
the following ways:

Assignment

You can assign any LSTRING value to any LSTRING
variable, as long as the maximum length of the
target variable is greater than or equal to the
current length of the source value and neither is
the super array type LSTRING. If the maximum length
of the target is less than the current length of the
source, only the target length is assigned, and a
run-time error occurs if the range checking switch
is on. You can assign a STRING value to a STRING
variable, as long as the length of both sides is the
same and neither side is the super array type
STRING. Passing either STRING or LSTRING as a value
parameter is much like making an assignment.

Comparison

LSTRING operators (< <= > >= <> --) use the
length byte for string comparisons; the operands
can be of different lengths. Two strings must be
the same length to be considered equal. If two
strings of different lengths are equal up to the
length of the shorter one, the shorter is considered
less than the longer one. The operands can be of
the super array type LSTRING. For STRINGS, the same
relational operators are available, but the lengths
must be the same, and operands of the super array
type STRINGS are not allowed.

6-11
PRELIMINARY DRAFT

READS and WRITES

READ LSTRING reads until the LSTRING is filled or
until the end-of-line is found. The current length
is set to the number of characters read. WRITE
LSTRING uses the current length. See also READSET
(Chapter 15), which reads into an LSTRING as long as
input characters are in a given SET OF CHAR. READ
STRING pads with spaces if the line is shorter than
the STRING. WRITE STRING writes all the characters
in the string. Both READ and WRITE permit the super
array types STRING and LSTRING, as well as their
derived types.

Length access

You can access the current length of an LSTRING
variable T with T.LEN, which is of type BYTE, or
with T[0], which is of type CHAR. This notation can
assign a new length, as well as determine the
current length. The UPPER function finds the
maximum length of an LSTRING or the length of a
STRING. This is especially useful for finding the
upper bound of a super array reference parameter or
pointer referent.

You cannot assign or compare mixed STRINGS and
LSTRINGs, unless the STRING is constant. You can
assign STRINGS to LSTRINGs, or vice versa, with one
of the move routines or with the COPYSTR and COPYLST
procedures. Since constants of type STRING or CHAR
change automatically to type LSTRING if necessary,
LSTRING constants are considered normal STRING
constants. NULL (the zero length LSTRING) is the
only explicit LSTRING constant.

In the sample program at the end of this section,
all STRING parameters (CONST or VAR) can take either
a STRING or an LSTRING; all LSTRING parameters are
VAR LSTRING and must take an LSTRING variable.

6-12
PRELIMINARY DRAFT

A "special transformation" lets you pass an actual
LSTRING parameter to a formal reference parameter of
type STRING. The length of the formal STRING is the
actual length of the LSTRING. Therefore, if LSTR
(in the following example) is of type LSTRING (n) or
LSTRING, it can be passed to a procedure or function
with a formal reference parameter of type STRING:

VAR LSTR : LSTRING (10);

PROCEDURE TIE STRING (VAR STR : STRING) ;

TIE STRING (LSTR);

In this case, UPPER (STR) is equivalent to LSTR.LEN.

Procedures and functions with reference parameters
of super type STRING can operate equally well on
STRINGS and LSTRINGs. The only reason to declare a
parameter of type LSTRING is when the length must be
changed. Normally, an LSTRING is either a VAR or a
VARS parameter in a procedure or function, since a
CONST or CONSTS parameter of type LSTRING cannot be
changed.

Example of a program that uses STRINGS and LSTRINGs:

PROGRAM STRING SAMPLE;

PROCEDURE STRING PROC (CONST S: STRING) ; BEGIN END;
PROCEDURE LSTRING PROC (CONST S: LSTRING); BEGIN END;

VAR
CHR1VAR: CHAR;
STR5VAR: STRING (5);
LST5VAR: LSTRING (5);
LST9VAR: LSTRING (9);
STR4VAR: PACKED ARRAY [1..4] OF CHAR;
STR6VAR: PACKED ARRAY [1..6] OF CHAR;

6-13
PRELIMINARY DRAFT

BEGIN

{Look at all the kinds of strings a}

{CONST STRING parameter takes.}
STRING_PROC ('A’);
{Character constant is OK.}
STRING_PROC (CHR1VAR) ;
{Character variable is OK.}
STRING PROC ('STRING');
{STRING constant is OK.
STRING PROC (STR5VAR);
{STRING variable is OK.}
STRING PROC (LST5VAR);
{LSTRING variable is OK.}

{However, a CONST LSTRING parameter cannot take}
{non-LSTRING variables.}
LSTRING PROC ('A');
{Character constant is OK.}
LSTRING PROC (CHR1VAR);
{Character variable is not OK!}
LSTRING PROC ('STRING');
{STRING constant is OK.}
LSTRING PROC (STR5VAR);
{STRING variable is not OK!}
LSTRING PROC (LST5VAR);
{LSTRING variable is OK.}

{Assignments to a STRING variable are limited to}
{to the same type.}
STR5VAR := 'A';
{Character constant is not OK!}
STR5VAR := CHR1VAR;
{Character variable is not OK!}
STR5VAR := 'TINY';
{STRING constant too snail.}
STR5VAR := 'RIGHT';
{Both sides have five characters; OK.}
STR5VAR 'longer';
{Not OK; STRING constant is too large.}
STR5VAR := LST5VAR;

6-14
P.?:LIMfNARY DRAFT

{Not OK; you cannot assign LSTRINGs to STRINGS.}
COPYSTR (LST5VAR, STR5VAR);
{COPYSTR is an intrinsic procedure.}
STR5VAR := STR4VAR;
{Not OK; STRING variable is too small.}
COPYSTR (STR4VAR, SIR5VAR);
{COPYSTR is OK; padding of space in STR5VAR[5] .}
STR5VAR := STR5VAR;
{OK; both sides have five characters.}
STR5VAR := STR6VAR;
{Not OK; STRING variable is too large.}

{Assignments to an LSTRING variable, however,}
{are more flexible.}
LST5VAR := 'A';

{Character constant is CK.}
LST5VAR := CHR1VAR;
{Character variable is not OK!}
LST5VAR := 'TINY';
{Smaller STRING constant is OK.}
LST5VAR := 'RIGHT';
{Same length STRING constant is OK.}
LST5VAR := 'LONGER';
{This gives an error at run-time only; OK for now.}
LST5VAR := LST9VAR;
{This may give an error at run-time; OK for now.}
LST9VAR := LST5VAR;
{This isn't even checked at run-time; always OK.}
LST5VAR := STR5VAR;
{Not OK; you cannot assign a STRING variable to an}
{LSTRING variable.}
COPYIST (STR5VAR, LST5VAR) ;
{This is the way to copy a STRING variable to an LSTRING.}

END.

6.3 RECORDS

A record structure acts as a template for
conceptually related data of different types. The

6-15
P.V LUMINARY DRAFT

record type itself is a structure consisting of a
fixed number of components, usually of different
types.

Each component of a record type is called a field.
The definition of a record type specifies the type
and an identifier for each field within the record.
Because the scope of these "field identifiers" is
the record definition itself, they must be unique
within the declaration. The field values associated
with field identifiers are accessible with record
notation or with the WITH statement.

For example, you could declare the following record
type:

TYPE LP = RECORD
TITLE : LSTRING (100);
ARTIST : LSTRING (100);
PLASTIC : ARRAY

[1..SCNG NUMBER] OF SONG TITLE
END

You could then declare a variable of the type LP, as
follows:

VAR BEATLES_1 : IP;

Finally, you could access a component of the record
with either field notation or the WITH statement
(note the period separating field identifiers):

BEATLES_1 .TITLE := ’Meet The Beatles';
WITH BEATLES 1 DO

PLASTIC[1] := 'I Wanna Hold Your Hand'

6.3.1 VARIANT RECORDS

A record can have several "variants," in which case
a certain field called the "tag field" indicates
which variant to use. The tag field may or may not

6-16
PRELIMINARY DRAFT

have an identifier and storage in the record. Some
operations, such as the NEW and DISPOSE procedures
and the SIZEOF function, can specify a tag value
even if the tag is not stored as part of the record.

Examples of variant records:

TYPE OBJECT = RECORD
X, Y: REAL;
CASE S: SHAPE OF

SQUARE: (SIZE, ANGLE: REAL);
CIRCLE: (DIAMETER: REAL)

END;

FOO -- RECORD
CASE BOOLEAN OF

TRUE: (I, J: INTEGER);
FALSE: (CASE COLOR OF

BLUE: (X: REAL);
RED: (Y: INTEGER4));

END;

Only one variant part per record is allowed; it
must be the last field of the record. However, this
variant part can also have a variant (and so on, to
any level). All field identifiers in a given record
type must be unique, even in different variants.
For example, after declaring the record types above,
you could create and then assign to the variables
shown below:

VAR 0, P : OBJECT;
F, G : FOO;

BEGIN
O. DIAMETER := 12.34;
P. SIZE 1.2;
F. I := 1; F.J 2;
G. X 123.45;
G.Y 678999

END;

{CASE of CIRCLE}
{CASE of SQUARE}
{CASE of TRUE}
{CASE of FALSE and BLUE}
{CASE of FALSE and RED;}
{this overwrites G.X.}

6-17

PRELIMINARY DRAFT

The latest ISO standard requires every possible tag
field value to select some variant. Therefore, it
is illegal to include CASE INTEGER OF and omit a
variant for every possible INTEGER value. However,
such an omission error is not caught in MS-Pascal.

MS-Pascal supports the use of full CASE constant
options in the variant clause; that is, a list of
constants can define a case. At the extend level,
subranges and the OTHERWISE statement can also
define a case. If used, OTHERWISE applies to the
last variant in the list and is not followed by a
colon. You can also declare an empty variant, such
as POINT: () or OTHERWISE (). You can even declare
an entirely empty record type, although the compiler
issues a warning whenever the record is used.

The ISO standard defines a number of errors that
relate to variant records; these errors may not be
caught in MS-Pascal, even if the tag-checking switch
is on. (The tag-checking switch generates code each
time a variant field is used, to check that the tag
value is correct.) In the record type declaration of
OBJECT (in the previous example), any use of SIZE
generates a check that S = SQUARE. However, in the
case of FOO, uses of I cannot be checked because MS-
Pascal does not allocate the BOOLEAN tagfield.

The ISO standard further declares that when a
"change of variant" occurs (such as when a new tag
value is assigned), all the variant fields become
undefined. However, MS-Pascal does not set the
fields to an uninitialized value when a new tag is
assigned. Therefore, using a variant field with an
undefined value is an error not caught in MS-Pascal.

MS-Pascal does not enforce various restrictions on a
record variable allocated on the heap with the long
form of the NEW procedure (see Chapter 14 for
details). However, MS-Pascal does check an
assignment to such a "short record" to see that only

6-18
PRELIMINARY 3RAFT

the short record itself is modified in the heap.

A record allocated with the long form of NEW can be
released using the short form of DISPOSE with no ill
effects (this is an ISO error not caught in MS-
Pascal). It is also an error not caught in MS-
Pascal to DISPOSE of a record passed as a reference
parameter or used by an active WITH statement.

Variant records interact with MS-Pascal features in
two ways:

1. Declaring a variant that contains a file is not
safe; any change to the file’s data using a
field in another variant may lead to I/O
errors, even if the file is closed. In the
following example, any use of R leads to
errors in F:

RECORD CASE BOOLEAN OF
TRUE : (F: FILE OF REAL);
FALSE : (R:ARRAY [1..100] OF REAL);
END;

2. Giving initial data to several overlapping
variants in a variable in a VALUE section may
have unpredictable results. In the following
example, the initial value of LAP is uncertain:

VAR LAP : RECORD CASE BOOLEAN OF
TRUE : (I: INTBGER4);
FALSE : (R: REAL);
END;

VALUE LAP.I := 10; LAP.R := 1.5;

MS-Pascal generates a warning message if you attempt
either of these operations.

6.3.2 EXPLICIT FIELD OFFSETS

MS-Pascal lets you assign explicit byte offsets to

6-19
R^LIMINARY DRAFT

the fields in a record. This system level feature
can be useful for interfacing to software in other
languages, since other control block formats may not
conform to the usual MS-Pascal field allocation
method. Assigning explicit field offsets permits
unsafe operations (such as overlapping fields and
word values at odd byte boundaries), and is not
recommended unless the interface is necessary.

Example showing assignment of explicit byte offsets:

TYPE CPM -- RECORD
NDRIVE [00]: BYTE;
FILENM [01]: STRING (8);
FILEXT [09]: STRING (3);
EXTENT [12] : BYTE;
CPMRES [13J: STRING (20);
RECNUM [33]: WORD;
RECOVF [35]: BYTE;

END;

OVERLAP = RECORD
BYTEAR [00]: ARRAY [0..7] OF BYTE;
WORDAR [00]: ARRAY [0..3] OF WORD;
BITSAR [00]: SET OF 0.-63;

END;

As can be seen in the example, the offset is
enclosed in brackets (similar to attribute
notation). The number is the byte offset to the
start of the field. Some target machines may not
permit accessing a 16-bit value at an odd address,
but the compiler doesn't catch this as an error.

If you give any field an offset, give offsets to all
fields. For any offset that you omit, the compiler
picks an arbitrary value. Although the compiler
will process a declaration that includes both
offsets and variant fields, you should use only one
or the other in a given program.

Although you can completely control field overlap

6-20
DRAFT

with explicit offsets, variants provide the long
forms of the procedures NEW, DISPOSE, and SIZEOF.
If you want to allocate different length records,
use the RETYPE and GETHQQ procedures, instead of
variants and the long form of NEW. For example:

CPMPV := RETYPE (CPMP, GETHQQ (36));

The compiler does support structured constants for
record types with explicit offsets. Internally, odd
length fields greater than one are rounded to the
next even length. For example:

ODOR = RECORD
Fl [00] : STRING (3);
F2[03] : CHAR

END;

In this example, field Fl is four bytes long, so an
assignment to Fl overwrites F2. In such a record,
all odd length fields must be assigned first.

6.4 SETS

A set type defines the range of values that a set
may assume. This range of assumable values is the
"power set" of the base type you specify in the type
definition. The power set is the set of all
possible sets that can be composed from an ordinal
base type. The null set, [], is a member of every
set.

Suppose you declare the following set types:

TYPE HUES = SET OF COLOR;
CAPS = SET OF 'A'..’Z';
MATTER -- SET OF (ANIMAL, VEGETABLE, MINERAL);

Then you declare variables like the following:

VAR FLAG : HUES;

6-21

PAILIMIN'iRY DRAFT

VOWELS : CAPS;
LIVE : MATTER;

Finally, you can assign these set variables:

FLAG [RED, WHITE, BLUE];
VOWELS := ['A', 'E', 'I', 'O', 'll'];
LIVE := [ANIMAL, VEGETABLE];

The set elements must be enclosed in brackets. This
practice differs from the use of parentheses to
enclose the base enumerated type in a set type
declaration.

Set operations are implemented directly by generated
in-line code or by routines in the set unit. See
Chapter 11 for a complete discussion of operations
on sets.

The ORD value of the base type can range from 0 to
255. Thus, SET OF CHAR is legal, but SET OF
1942..1984 is not.

Sets whose maximum ORD value is 15 (sets that fit
into a WORD) are usually more efficient than larger
ones. Also, if the range checking switch is on,
passing a set as a value parameter invokes a run­
time compatibility check, unless the formal and
actual sets have the same type.

Sets provide a clear and efficient way of giving
several qualities or attributes to an object. In
another language, you might assign each quality a
power of two:

READY = 1
GETSET = 2
ACTIVE = 4
DONE = 8

You might then assign the qualities with a statement
like this:

6-22

? LI Ml NARY DRAFT

X READY + ACTIVE)

and then test them using OR and AND as bitwise
operators with a statement like:

IF ((X AND ACTIVE) <> 0) THEN WRITELN ('GO FISH')

The equivalent declaration in MS-Pascal might be:

QUALITIES = SET OF (READY, GETSET, ACTIVE, DONE);

You could then assign the qualities with X := [
GETSET, ACTIVE] and test them with the following
operations:

IN tests a bit
+ sets a bit
- clears a bit

For example, an appropriate construction might be:

IF ACTIVE IN X THEN WRITELN ('GO FISH')

You can also use SET OF 0..15 to test and set the
bits in a WORD. Using WORDS both as a set of bits
and as the WORD type requires giving two types to
the word, with a variant record, the RETYPE
function, or an address type.

The bits in a set are assigned starting with the
most significant bit in the lowest addressed byte.
Thus, on a byte-swapped machine, the set [0, 7, 8,
15] has the WORD value #80 + #01 + #8000 +#0100.
See the MS-Pascal User's Guide for further details.

6-23

PRC LI MN* RY DRAFT

7. FILES

A file is a structure that consists of a sequence of
components, all of the same type. MS-Pascal
interfaces with a given operating system through
files. Therefore, you must understand the FILE type
in order to perform input to and output from a
program.

7.1 DECLARING FILES

As with any other type, you must declare a file
variable in order to use it. However, declaring a
FILE type does not fix the number of components in a
file.

Examples of FILE declarations:

TYPE Fl = FILE OF COLOR;
F2 = FILE OF CHAR;
F3 - TEXT;

Conceptually, a file is simply another data type,
like an array, but with no bounds and with only one
component accessible at a time. A file usually
corresponds to one of the following:

1. Disk files

2. Terminals

3. Printers

4. Other input and output devices

This implies the following restriction in Pascal: a
FILE OF FILE is illegal, directly or indirectly.
Other structures, such as a FILE OF ARRAYS or an
ARRAY OF FILES, are permitted.

7-1

prfliminary draft

Most Pascal implementations connect file variables
to the data files of the operating system. MS-
Pascal always uses the target operating system to
access files but does not impose additional
formatting or structure on operating system files.

MS-Pascal supports normal statically allocated
files, files as local variables (allocated on the
stack), and files as pointer referents (allocated on
the heap). Except for files in super arrays, the
compiler generates code to initialize a file when it
is allocated and to CLOSE a file when it is
deallocated.

This initialization call occurs automatically in
most cases. However, a file declared in a module or
uninitialized unit's interface gets its
initialization call only if you call the module or
unit identifier as a procedure. File declarations
in such cases get the following compiler warning:

Contains file initialize module

Only a file in an interface of an uninitialized unit
does not generate this warning.

MS-Pascal sets up the standard files, INPUT and
OUTPUT (discussed in Section 7.5). In standard
Pascal, files must be given in the program header,
and when you run your program, the run-time system
prompts you for filenames. At the extend level, you
may use the ASSIGN and READFN procedures to give
explicit operating system filenames to files not
included in the program header.

Files in record variants or super array types are
not recommended; if you use them, the compiler
issues a warning. A file variable cannot be
assigned, compared, or passed by value: it can only
be declared and passed as a reference parameter.

At the extend level, you can indicate a file's

7-2

PRELIMINARY DRAFT

access method or other characteristics by specifying
the mode of the file. The mode is a value of the
predeclared enumerated type FILEMODES. The modes
available normally include the three base modes,
SEQUENTIAL, TERMINAL, and DIRECT. All files, except
INPUT and OUTPUT, are given SEQUENTIAL mode by
default. INPUT and OUTPUT are given the default
mode TERMINAL.

7.2 THE BUFFER VARIABLE

Every file F has an associated buffer variable F*.
A buffer variable and its associated file might look
like Figure 7-1.

Figure 7-1: Buffer Variable and File

4——+——F—-—I——+—-—I——+
I a | b | c | d | e | |
+--+-------+---- +---- +---- +---- +

File F

Pointer to current component

Buffer variable

The procedures GET and PUT use this buffer variable
to READ from and WRITE to files. GET copies the
current component of the file to the buffer
variable. PUT does the opposite; that is, PUT
copies the value of the buffer variable to the
current component.

The buffer variable can be referenced (its value
fetched or stored) like any other MS-Paseal
variable. This allows execution of assignments like
the following:

7-3

PfTUWINERY DRAFT

F := 'z'
C := F~

A file buffer variable can be passed as a reference
parameter to a procedure or function or used as a
record in a WITH statement. However, the file
buffer variable may not be updated correctly if the
file position changes within the procedure,
function, or WITH statement. The compiler issues a
warning message to alert you to this possibility.

For example, the following use of a file buffer
variable generates a warning at compile time:

VAR A : TEXT;
PROCEDURE CHAR PROC (VAR X : CHAR) ;

CHARPROC (A");
{Warning issued here}

Two special internal mechanisms in MS-Pascal, lazy
evaluation and concurrent I/O, allow, respectively,
interactive terminal input in a natural way and
overlapped I/O along with program execution. Lazy
evaluation is applied to all ASCII structured files
and is necessary for natural terminal input.
Concurrent I/O is applied to all BINARY structured
files and is necessary for sane operating systems
that support overlapping input and output.

Both mechanisms generate a run-time call that is
executed before any use of the buffer variable. See
Sections 15.1.5 and 15.1.6 for complete details.

7.3 FILE STRUCTURES

MS-Pascal files have two basic structures: BINARY
and ASCII. These two structures correspond to raw
data files and human-readable textfiles,
respectively.

7-4

PRELIMINARY DRAFT

7.3.1 BINARY STRUCTURE FILES

The Pascal data type FILE OF <type> corresponds to
MS-Pascal BINARY structure files. These, in turn,
correspond to unformatted operating system files.

Under operating systems that divide files into
records, every record is one component of the file
type (not to be confused with the record type).
Primitive procedures such as GET and PUT operate on
a record basis. Under operating systems that do not
have their own record structure, the primitive
procedures GET and PUT transfer a fixed number of
bytes per call, equal to the length of one
component. See Section 7.4 for further discussion
of BINARY files.

7.3.2 ASCII STRUCTURE FILES

The Pascal data type TEXT corresponds to MS-Pascal
ASCII structure files. These, in turn, correspond
to textual operating system files (called
"textfiles" in this manual).

The Pascal TEXT type is like a FILE OF CHAR, except
that groups of characters are organized into "lines"
and, to a lesser extent, "pages." Primitive file
procedures, such as GET and PUT, always operate on a
character basis.

However, under operating systems that divide files
into records, every record is a line (not a
character). Even in operating systems that do not
have their own record structure, other languages and
utilities have some way of organizing bytes into
lines of characters.

MS-Pascal provides a number of special functions and
procedures that use this line-division feature.

7-5
PRELIMINARY DRAFT

Because MS-Pascal does not impose any additional
formatting on operating system files of most modes
(including SEQUENTIAL, TERMINAL, and DIRECT),
programs in other languages can generate and use
these files.

Pascal textfiles (files of type TEXT) are divided
into lines with a "line marker," conceptually a
character not of the type CHAR. In theory, a
textfile can contain any value of type CHAR.
However, under some operating systems, writing a
particular character (say, CHR (13), carriage
return, or CHR (10), line feed) terminates the
current line (record). This character value is the
line marker in this case and, when read, always
looks like a blank.

Under other operating systems, there may be no a
terminating character. Still, as far as you are
concerned, every line is followed by a line marker
that reads as a blank.

At the extend level, a declaration for a textfile
may include an optional line length. Setting the
line length, which sets record length, is needed
only for DIRECT mode textfiles. You can specify
line length for other modes as well, but doing so
has no effect.

Specify the line length of a textfile as a constant
in parentheses after the word TEXT:

TYPE NAMEADDR = TEXT (128);
DEFAULTX = TEXT;
SMALLBUF = TEXT (2);

7.4 FILE ACCESS MODES

The file modes in MS-Pascal are SEQUENTIAL,
TERMINAL, and DIRECT. SEQUENTIAL and TERMINAL mode
files are available at the standard level; all

7-6

PrTLIMIN^RY DfMFT

three, including DIRECT mode, are available at the
extend level. SEQUENTIAL and TERMINAL mode ASCII
structure files can have variable length records
(lines); DIRECT mode files must have fixed length
records or lines.

The declaration of a file in Pascal implies its
structure, but not its mode. For example, FILE OF
STRING (80) indicates BINARY structure; TEXT
indicates ASCII structure. An assignment like
F.MODE DIRECT sets the mode; this works only at
the extend level and is currently needed only to set
DIRECT mode.

7.4.1 TERMINAL MODE FILES

TERMINAL mode files always correspond to an
interactive terminal or printer. TERMINAL mode
files, like SEQUENTIAL mode files, are opened at the
beginning of the file for either reading or writing.
Records are accessed one after the other until the
end of the file.

Operation of TERMINAL mode input for terminals
depends on the file structure (ASCII or BINARY).
For ASCII structure (type TEXT), entire lines are
read at one time. TEXT type permits the usual
operating system intraline editing, including
backspace, advance cursor, and cancel. Characters
are echoed to the terminal screen while the line is
typed.

If the target operating system does not support
intraline editing or echo, the MS-Pascal file system
interface provides it. However, since an entire
line is read at once, you cannot read the characters
as you type them, cannot invoke several prompts and
responses on the same line, and so on.

For BINARY structure TERMINAL mode (usually type
FILE OF CHAR), you can read characters as you type

7-7

P "LI MIN 'R Y DRAFT

them. No intraline editing or echoing is done.
This method permits screen editing, menu selection,
and other interactive programming on a keystroke
rather than line basis.

TERMINAL mode files use lazy evaluation to properly
handle normal interactive reading of the terminal
keyboard. See Section 15.1.5 for details.

7.4.2 SEQUENTIAL MODE FILES

SEQUENTIAL mode files are generally disk files or
other sequential access devices. Like TERMINAL mode
files, SEQUENTIAL mode files are opened at the
beginning of the file for either reading or writing,
and records are accessed one after another until the
end of the file. Standard Pascal files are in
SEQUENTIAL mode by default (except for INPUT and
OUTPUT).

7.4.3 DIRECT MODE FILES

DIRECT mode files are generally disk files or other
random access devices. DIRECT mode files and the
ability to access the mode of a file are available
at the extend level of MS-Pascal.

DIRECT mode ASCII structure files, as well as all
BINARY structure files, have fixed-length records,
where a record is either a line or file component.
(Here the term "record" refers not to the normal
Pascal record type, but to a disk structuring unit.)
DIRECT files are always opened for both Leading and
writing, and records can be accessed randomly by
record number. There is no record number zero;
records begin with record number one.

7-8

LUMINARY DRAFT

7.5 THE PREDECLARED FILES INPOT AND OOTPOT

Two files, INPUT and OUTPUT, are predeclared in
every MS-Pascal program. These files get special
treatment as program parameters and are normally
required as parameters in the program heading:

PROGRAM ACTION (INPOT, OUTPUT) ;

If there are no program parameters and the program
does not use the files INPUT and OUTPUT, the heading
can look like this:

PROGRAM ACTION;

However, you should include INPUT and OUTPUT as
program parameters if you use than, either
explicitly or implicitly, in the program itself:

WRITE (OOTPOT, 'Prompt: ')
WRITE (1 Prompt: 1)

{explicit use}
{implicit use}

These examples generate a warning if OUTPUT is not
declared in the program heading. The only effect of
INPUT and OUTPUT as program parameters is to
suppress this warning.

Although you can redefine the identifiers INPUT and
OUTPUT, the file assumed by textfile input and
output procedures and functions (e.g., READ, EOLN)
is the predeclared definition. The procedures RESET
(INPUT) and REWRITE (OUTPUT) are generated
automatically, whether or not INPUT and OUTPUT are
present as program parameters (you may also use
these procedures explicitly).

INPUT and OUTPUT have ASCII structure and TERMINAL
mode. They are initially connected to your terminal
and opened automatically. At the extend level of
MS-Pascal, you can change these characteristics if
you wish.

7-9

"UMIN/'RY 3R4FT

7.6 EXTEND LEVEL I/O

A file variable in MS-Pascal is really a record, of
type FCBFQQ, called a file control block. At the
extend level, a few standard fields in this record
help you handle file modes and error trapping.

Additional fields and the record type FCBFQQ itself
can be used at the system level, described in
Section 7.7. Along with access to certain FOB
fields, extend level I/O also includes the following
procedures:

ASSIGN READFN
CLOSE READSET
DISCARD SEEK

See Section 15.3 for a description of these
procedures.

Use the normal record field syntax to access FCB
fields. For a file F, the fields are named F.MODE,
F.TRAP, and F.ERRS. You can change or examine these
fields at any time. The following paragraphs
describe the FCB fields.

F.MODE: FILEMODES

This field contains the mode of the file:
SEQUENTIAL, TERMINAL, or DIRECT. These values are
constants of the predeclared enumerated type
FILEMODES. The file system uses the MODE field only
during RESET and REWRITE. Thus, changing the MODE
field of an open file has no effect and is, in fact,
discouraged. Except for INPUT and OUTPUT, which
have TERMINAL mode, a file's mode is SEQUENTIAL by
default.

RESET and REWRITE change the mode from SEQUENTIAL to
TERMINAL if the device being opened is a terminal or
printer and if the target operating system allows

7-10

PAtLIMINARY DRAFT

it. This change is useful in programs designed to
work either interactively or in batch mode. You
must set DIRECT mode before RESET or REWRITE if you
plan to use SEEK on a file.

F.TRAP: BOOLEAN

If this field is TRUE, error trapping for file F is
turned on. Then, if an input/output error occurs,
the program does not abort and the error code can be
examined. Initially, F.TRAP is set FALSE. If FALSE
and an I/O error occurs, the program aborts.

F.ERRS: WRD(0)..15

This field contains the error code for file F. An
error code of zero means no error; values from 1 to
15 imply an error condition. If you attempt a file
operation other than CLOSE or DISCARD and F.ERRS is
not zero, the program immediately aborts if F.TRAP
is FALSE. However, if F.TRAP is TRUE, the attempted
file operation is ignored, and the program continues.

CLOSE and DISCARD do not examine the initial value
of F.ERRS, so they are never ignored and do not
cause an immediate abort. Nevertheless, if CLOSE or
DISCARD themselves generate an error condition,
F.TRAP determines whether to trap the error or to
abort.

An operation ignored because of an error condition
does not change the file itself, but may change the
buffer variable or READ procedure input variables.
See Appendix H for a complete listing of error
messages and warnings.

Also at the extend level, you can set the line
length for a textfile, as shown:

TYPE SMALLBUF = TEXT (16);
VAR RANDOMTEXT: TEXT (132);

7-11

P/TLIMINARY DRAFT

Declaring line length applies only to DIRECT mode
ASCII structure files, where the line length is the
record length used for reading and writing. Setting
the line length has no effect on other ASCII files.

7.7 SYSTEM LEVEL I/O

At the system level of MS-Pascal, you can call
procedures and functions that have a formal
reference parameter of type FCBFQQ with an actual
parameter of the type FILE OF <type> or TEXT, or the
identical FCBFQQ type.

The FCBFQQ type is the underlying record type used
to implement the file type in MS-Pascal. The
interface for the target system FCBFQQ type (and any
other types needed) is usually part of the internal
file system. Thus, procedures and functions that
reference FCBFQQ parameters can be called with any
file type, including predeclared procedures and
functions like CLOSE and READ.

An FCBFQQ type variable can be passed to procedures
like READLN and WRITELN that require a textfile.
This permits, for example, calling directly the
interface routines on the target operating system,
working with mixtures of MS-Pascal and MS-FORTRAN
(which share the file system interface but have
special FCBFQQ fields), and other special file
system activities.

Such activities require a sound knowledge of the
file system. See Section 8.2 in the MS-Pascal
User’s Guide for a discussion of the file system
interface and file control block.

7-12

PPFLIMIN'RY DRAFT

8. REFERENCE AND OTHER TYPES

The array, record, and set types discussed in
Chapter 6 let you describe data structures whose
form and size are predetermined and whose components
are accessed in a standard way. The file type,
described in Chapter 7, is a structure that varies
in size but Mose form and means of access are
predetermined.

This chapter discusses reference types, which allow
data structures that vary in size and form and whose
means of access is particular to the programming
problem involved. Also included are notes on PACKED
types and procedural and functional types.

8.1 REFERENCE TYPES

A reference to a variable or constant is an indirect
way to access it. The pointer type is an abstract
type for creating, using, and destroying variables
allocated from an area called the heap. The heap is
a dynamically growing and shrinking region of memory
allocated for pointer variables.

MS-Pascal also provides two machine-oriented address
types: one for addresses that can be represented in
16 bits, the other for addresses that require 32
bits.

Pointers are generally used for trees, graphs, and
list processing. Use of pointers is portable,
structured, and relatively safe.

Address types provide an interface to the hardware
and operating system; their use is frequently
unstructured, machine specific, low level, and
unsafe. Both pointers and address types are
discussed further in the following sections.

8-1

PRELIMINARY DRAFT

8.1.1 POINTER TYPES

A pointer type is a set of values that point to
variables of a given type. The type of the
variables pointed to is called the "reference type."
Reference variables are all dynamically allocated
from the heap with the NEW procedure. Pascal
variables are normally allocated on the stack or at
fixed locations.

You can perform only the following actions on
pointers:

1. Assign them

2. Test them for equality and inequality with the two operators
- and <>

3. Pass them as value or reference parameters

4. Dereference then with the up arrow (*)

Every pointer type includes the pointer value NIL.
Pointers are frequently used to create list
structures of records, as shown in the following
example:

TYPE
TREETIP = " TREE;
TREE = RECORD

VAL: INTEGER;
{Value of TREE cell.}

LEFT, RIGHT: TREETIP
{Pointers to other TREETIP cells.}
{Note recursive definition.}

END;

Unlike most type declarations, a pointer type
declaration can refer to a type of which it is
itself a component. The declaration can also refer
to a type declared later in the same TYPE section,

8-2

z'rtf HMiHAKY DRAFT

as in TREE and TREETIP in the previous example.
Such a declaration is called a forward pointer
declaration and permits recursive and mutually
recursive structures. Because pointers are often
used in list structures, forward pointer
declarations occur frequently.

The compiler checks for one ambiguous pointer
declaration. Suppose the previous example is in a
procedure nested in another procedure that also
declared a type TREE. Then the reference type of
TREETIP could be either the outer definition or the
one following in the same TYPE section. MS-Pascal
assumes the TREE type intended is the one later in
the same TYPE section and gives the warning:

Pointer Type Assumed Forward

At the extend level, a pointer can have a super
array type as a referent type. The actual upper
bounds of the array are passed to the NEW procedure
to create a heap variable of the correct size.
Forward pointer declarations of the super array type
are not allowed.

The ISO standard 'requires strict compatibility
between pointers. For example, you cannot declare
two pointers with different types and then assign or
compare them, even if they happen to point to the
same underlying type. For example:

VAR PRA : ~ REAL;
PRE : * REAL;

BEGIN PRA := PRE END; {This is illegal!}

Programs usually contain only one type declaration
for a pointer to a given type. In the TREETIP
example, the type of LEFT and RIGHT could be ''TREE
instead of TREETIP, but then you couldn't assign
variables of type TREETIP to these fields. However,
it is sometimes useful to make sure that two classes
of pointers are not used together, even if they

8-3
PRELIMINARY DRAFT

point to the same type.

For example, suppose you have a type RESOURCE kept
in a list and declare two types, OWNER and USER, of
type ~RESOURCE. The compiler would catch assignment
of OWNER values to USER variables and vice versa and
issue a warning message.

In theory, pointers have nothing to do with actual
machine addresses. In fact, a pointer may be
implemented in different ways on different target
machines. A pointer can be implemented as a normal
address, as a segment offset address, as an offset
from one or more fixed locations, or as an indirect
address, among other possibilities.

If the initialization checking switch is on, a newly
created pointer has an uninitialized value. If the
NIL checking switch is on, pointer values are tested
for various invalid values. Invalid values include
NIL, uninitialized values, reference to a heap item
that has been DISPOSEd, or a value that is not valid
as a heap reference.

8.1.2 ADDRESS TYPES

As a system implementation language, MS-Pascal needs
a method of creating, manipulating, and
dereferencing actual machine addresses. The pointer
type is applicable only to variables in the heap.

There are two kinds of addresses: relative and
segmented. The keywords ADR and ADS refer to the
relative address type and the segmented address
type, respectively. As the following example shows,
you use the keywords both as type clause prefixes
and as prefix operators:

VAR INTVAR : INTEGER;
REAL VAR : REAL;
A_INT : ADR OF INTEGER;

8-4

PTLIMIN’mY DRAFT

{Declaration of ADR variable}
AS_REAL : ADS OF REAL;
{Declaration of ADS variable}

BEGIN
INTVAR := 1;
{Normal integer variable}
REAL VAR := 3.1415;
{Normal real variable}
AINT ADR INT VAR;
{ADR used as operator}
AS REAL ADS REAL VAR;
{ADS used as operatorT
WRITEIN (A INT",A3 REAL")
{Note use of up arrow to dereference}
{the address types.}
{Output is 1 and 3.1415.}

END.

The characteristics of relative and segmented
address types, as implemented for different
machines, are shown in Table 8-1.

Table 8-1: Relative and Secjnented Machine Addresses

MACHINE -______ ADR_____ _ ADS

8080 16-bit absolute Same as ADR

8086 16-bit default
data segment offset

16-bit offset,
16-bit segment

28000
(unsegmented)

16-bit data
absolute

Same as ADR

28000
(segmented)

Same as ADS 16-bit segment,
16-bit offset

See your MS-Pascal User's Guide for details specific
to your implementation of the compiler.

8-5

F^~LIMIN&RY DRAFT

In MS-Pascal, you may declare a variable that is an
address:

VAR X : ADR OF BYTE;

Then, with the following record notation, you can
assign numeric values to the actual variable:

X.R 16#FFFF

In an unsegmented environment, the .R (relative
address) is the only record field available for ADR
and ADS addresses.

Since MS-Pascal allows nondecimal numbering, you may
specify the assigned value in hexadecimal notation.
You may also assign to a segment field with the ADS
type in a segmented environment, using the field
notation ,S (segment address). Thus, you may
declare a variable of an ADS type and then assign
values to its two fields:

VAR Y : ADS OF WORD;

Y.S 1610001
Y.R := 16#FFFF

As shown above, any 16-bit value can be directly
assigned to address type variables, using the .R and

•S fields. The ADR and ADS operators obtain these
addresses directly. The example below assigns
addresses this way to the variables X and Y:

VAR X : ADR OF BYTE;
Y : ADS OF WORD;
W : WORD;
B : BYTE;

X := ADR B;
Y := ADS W;

8-6

"LIMIN1'RY DRAFT

MS-Pascal supports the following two predeclared
address types:

ADRMEM = ADR OF ARRAY [0.-32766] OF BYTE;
ADSMEM = ADS OF ARRAY [0.-32766] OF BYTE;

Since the type referred to by the address is an
array of bytes, byte indexing is possible. For
example, if A is of type ADRMEM, then A''[15] is the
byte at the address A.R + 15, where .R specifies an
actual 16-bit address.

You can use the address types for a constant address
(a form of structured constant); you can also take
the address of a constant or expression. For
example:

TYPE ADRWORD = ADR GF WORD;
ADSWORD = ADS OF WORD;

VAR W: WORD;
R: ADRWORD;

CONST CONADR = ADRWORD (1234);
BEGIN
W := CONADR*;
{Get word at address 1234}
W := ADSWORD (0, 32)*;
{Get word at address 0:32}
W := (ADS W).S;
{Get value of DS segment register}
R ADR '123';
{Get address of a constant value}
R := ADR (W DIV 2 + 1) ;
{Get address of expression value}

END;

However, constants or expressions that yield
addresses cannot currently be used as the target of
an assignment (or as a reference parameter or WITH
record), as shown:

8-7

PRELIMINARY DRAFT

CONST ADSCON = ADSWORD (256, 64) ; {OK}
FUNCTION SOME_ADDRESS: ADSWORD; {OK}
BEGIN
ADSWORD (0, 32) ~ := W; {Not permitted}
ADSCOtT := 12; {Not permitted}
SOME_AEDRESS~ 100; {Not permitted}

END;

8.1.3 SEQUENT PARAMETERS FOR THE ADDRESS TYPES

Two keywords, VARS and CONSTS, are available as
parameter prefixes, like VAR and CONST, to pass the
segmented address of a variable. If P is of type
ADS FOO, then P~ can be passed to a VARS formal
parameter, such as VARS X: FOO, but cannot be passed
to a VAR formal parameter.

In a segmented machine environment, a default data
segment is assumed, in which case a VAR parameter is
passed as the default data segment offset of a
variable. A VARS parameter is passed as both the
segment value and the offset value.

In the 8086 environment, both VARS parameters and
ADS variables have the offset (.R) value in the word
with the lower address and the segment (.S) value in
the address plus two.

In the segmented 28000 environment, the segment (.S)
value is in the lower address and the offset (.R)
value in the the address plus two. Also, the ADR
type is identical to the ADS type.

In the nonsegmented environment (e.g., 8080), VAR
and CONST are identical to VARS and CONSTS. Since
ADS and ADR are identical in a nonsegmented
environment, the ADS type is useful in situations
where the target environment may change. For
example, in MS-Pascal, some primitive file system
calls are declared with ADS parameters.

8-8
pi 'Ll MINnRY DRAFT

In pointer type declarations, the up arrow (")
prefixes the type pointed to; in program
statements, it dereferences a pointer so that the
value pointed to can be assigned or operated on.
The up arrow also dereferences ADR and ADS types in
program statements.

Component selection with the up arrow (") is
performed before the unary operators ADR or ADS.
Because the up arrow (") selector can appear after
any address variable to produce a new variable, it
can occur, for example, in the target of an
assignment, a reference parameter, as well as in
expressions. Since ADS and ADR are prefix
operators, they are used only in expressions, where
they apply only to a variable or constant or
expression.

Pascal is a strongly typed language; two pointer
variables are compatible only if they have the same
type (it is not enough that they point to the same
type). However, two address types are considered
the same type if they are both ADR or both ADS
types. You can, for example, assign an ADR OF WORD
to an ADR OF STRING (200). Such an assignment makes
it easy to wipe out part of memory by assigning a
variable of type STRING (200) to the 200 bytes
starting at the address of a WORD variable.

If Pl is type ADR OF STRING (200) and P2 is any ADR
OF type, the assignment Pl" := P2" generates fast
code with no range checking. Although this
capability is not safe, operating systems and other
software sometimes require it.

ADR and ADS are not compatible with each other, but
the .R notation should overcome or reduce the
problem.

8.1.4 USING THE ADDRESS TYPES

8-9

"LIMIN'RY

Within limits, you can combine and intermingle the
two address types. The following example
illustrates the rules that apply in a segmented
environment:

VAR
P: ADS OF DATA;
{p is segmented address of type DATA.}
Q: ADR OF DATA;
{Q is relative address of type DATA.}
X: DATA;
{X is some variable of type DATA.}

BEGIN
P := ADS X;
{Assign the address of X to P.}
X := P";
{Assign to X the value pointed to by P.}
P := ADS P";
{Assign to P the address of the value whose}
{address is pointed to by P. P is unchanged}
{by this assignment.}
Q := ADR X;
{Assign the relative address of X to Q.}
Q.R := (ADR X) -R;
{Assign the relative address of X to Q,}
{using the WORD type.}
P := ADS Q";
{Assign address of variable at Q to P.}
{You can always apply ADS to ADR".}
Q := ADR P";
{illegal; you cannot apply ADR to ADS ".}
P.R := 1618000;
{Assign 32768 to P's offset field.}
P. S 16;
{Assign 16 to P's segment field.}
Q. R := P.R + 4;
{Assign P's offset plus 4 to be the value of Q.}

END;

See also the examples given in Section 8.1.2.

8-10

PRlLIMINARY draft

8.1.5 NOTES ON REFERENCE TYPES

The address type and pointer type should be treated
as two distinct types. The pointer type, in theory,
is just an undefined mapping from a variable to
another variable. The method of implementation is
undefined. However, the address type deals with
actual machine addresses.

Therefore, the pointer type is an abstract data type
that works the same in all implementations; the
address type is generally not portable, unless used
with sane caution. Address types are portable only
if you restrict yourself to using ADS and never
assign to fields. Even with these restrictions,
however, address types can be quite useful.

The following special facilities that use pointer
variables are not allowed with address variables.

1. The NEW and DISPOSE procedures are permitted
only with pointers. NIL does not apply to the
address type. There are no special address
values for onpty, uninitialized, or invalid
addresses.

2. The type "address of super array type" is not
supported in the same way as "pointer to super
array type." Getting the address of a super
array variable is still permitted with ADR and
ADS. For example, if a procedure or function
formal parameter is declared as VAR S: STRING,
then within the procedure or function, the
expression ADS S is fine. Unlike a pointer,
the address does not contain any upper bounds.

8.2 PACKED TYPES

Any of the structured types can be PACKED. You can
use PACKED types to save storage at the possible

8-11

preliminary

expense of access time or access code space.
However, in MS-Pascal, some limitations on the use
of PACKED structures apply:

1. The prefix PACKED is always ignored, except for
type checking, in sets, files, and arrays of
characters, and in most versions of MS-Pascal
has no actual effect on the representation of
records and other arrays. Furthermore, PACKED
can precede only one of the structure names
ARRAY, RECORD, SET, or FILE; it cannot precede
a type identifier. For example, if COLORMAP is
the identifier for an unpacked array type,
"PACKED COLORMAP" is not accepted.

2. A component of a PACKED structure cannot be
passed as a reference parameter or used as the
record of a WITH statement, unless the
structure is of a string type. Also, you
cannot obtain the address of a PACKED component
with ADR or ADS.

3. A PACKED prefix applies only to the structure
being defined: any components of that
structure that are also structures are not
packed unless you explicitly include the
reserved word PACKED in their definition. The
only exception to this rule, n-dimensional
arrays, is discussed in Section 6.1.

8.3 PROCEDURAL AND FUNCTIONAL TYPES

Procedural and functional types are different from
other MS-Pascal types. (Wherever the term
"procedural" is used from here on, both procedural
and functional is implied.) You cannot declare an
identifier for a procedural type in a TYPE section;
nor can you declare a variable of a procedural type.
However, you can use procedural types to declare the
type of a procedural parameter. In this sense they
conform to the Pascal idea of a type.

8-12

draft

A procedural type defines a procedure or function
heading and gives any parameters and for a function
the result type. The syntax of a procedural type is
the same as a procedure or function heading,
including any attributes. There are no procedural
variables in MS-Pascal, only procedural parameters.

Example of a procedural type declaration:

PROCEDURE ZEROPOINT (FUNCTION FUN (X, Y: REAL)-REAL)

The parameter identifiers in a procedural type (X
and Y in the previous example) are ignored; only
their type is important.

See Section 13.4.3 for more information about
procedural types in MS-Pascal.

8-13

P^IJMWRY DRAFT

UMir.'-.nY

9. CONSTANTS

9.1 WHAT IS A CONSTANT?

A constant is a value that is known before a program
starts and that does not change as the program
progresses. Examples of constants include the
number of days in the week, your birthdate, the name
of your dog, or the phases of the moon.

A constant can be given an identifier, but you
cannot alter the value associated with that
identifier during the execution of the program.
When you declare a constant, its identifier becomes
a synonym for the constant itself.

Each constant implicitly belongs to some category of
data:

1. Numeric constants (discussed in Section 9.3)
are one of these number types: REAL, INTEGER,
WORD, or INTEGER4.

2. Character constants (discussed in Section 9.4)
are strings of characters enclosed in single
quotation marks and are called "string
literals" in MS-Pascal.

3. Available at the extend level, structured
constants (discussed in Section 9.5) include
constant arrays, records, and typed sets.

Also available at the extend level, constant
expressions (discussed in Section 9.6) let you
compute a constant based on the values of previously
declared constants in expressions.

The identifiers defined in an enumerated type are
constants of that type and cannot be used directly
with numeric (or string) constant expressions.
These identifiers can be used with the ORD, WRD, or

9-1

’•"LIMIN'iRY DRAFT

CHR functions (e.g., ORD (BLUE)). The extend level
also permits directly reading and writing the
enumerated type's constant identifiers as character
strings.

TRUE and FALSE are predeclared constants of type
BOOLEAN and can be redeclared. NIL is a constant of
any pointer type; however, because it is a reserved
word, you cannot redefine it. Also, the null set is
a constant of any set type.

Numeric statement labels have nothing to do with
numeric constants; you may not use a constant
identifier or expression as a label. Internally,
all constants are limited in length to a maximum of
255 bytes.

9.2 DECLARING CONSTANT IDENTIFIERS

Declaring a constant identifier introduces the
identifier as a synonym for the constant. You put
these declarations in the CONST section of a
compiland, procedure, or function.

The general form of a constant identifier
declaration is the identifier followed by an equals
sign and the constant value. The following program
fragment includes three statements that identify
constants (beginning after the word "CONST"):

PROGRAM DEMO (INPUT, OUTPUT);
CONST DAYSINYEAR = 365;

DAYSINWEEK = 7;
NAMEOFPLANET = 'EARTH';

In this example, the numbers 365 and 7 are numeric
constants; 'EARTH' is a string literal constant and
must be enclosed in single quotation marks.

When you canpile a program, the constant identifiers
are not actually defined until after the

9-2
preliminary asAt-r

declarations are processed. Thus, a constant
declaration like the following has no meaning:

N = -N

The ISO standard defines a strict order in which to
set out the declarations in the declaration section
of a program:

CONST MAX = 10;
TYPE NAME = PACKED ARRAY [1..MAX] OF CHAR;
VAR FIRST : NAME;

MS-Paseal relaxes this order and, in fact, allows
more than one instance of each kind of declaration:

TYPE COMPLEX = RECORD R, I : REAL END;
CONST PII = COMPLEX (3.1416, 00);
VAR PIX : COMPLEX;
TYPE I VEG = ARRAY [1..3] OF COMPLEX;
CONST PIVEC = IVEC (PII, PII, COMPLEX (0.0, 1.0))

9.3 NUMERIC CONSTANTS

Numeric constants are irreducible numbers such as
45, 12.3, and 9E12. The notation of a numeric
constant generally indicates its type: REAL,
INTEGER, WORD, or INTEGER4.

Numbers can have a leading plus (+) or minus sign
(-), except when the numbers are within expressions.
Therefore:

ALPHA := +10 is legal.

ALPHA + -10 is illegal.

Blanks embedded within constants are not permitted.

The compiler truncates any number that exceeds a
certain maximum number of characters and gives a

9-3

PRELIMINARY DRAFT

warning when this occurs. The maximum length of
constants (either 19 or 31) is the same as the
maximum length of identifiers. For the maximum
length of constants and identifiers in a particular
version of the language, see Appendix A in your
MS-Pascal User's Guide.

The syntax for numeric constants applies not only to
the actual text of programs, but also to the content
of textfiles read by a program.

Examples of numeric constants:

123 +12.345 0.17 -26.0 26.0E12
—1.7E—10 17E+3 -17E3 1E1 007

Numeric constants can appear in any of the
following:

1. CONST sections

2. Expressions

3. Type clauses

4. Set constants

5. Structured constants

6. CASE statement CASE constants

7. Variant record tag values

The different types of numeric constants are
discussed in detail in the following sections.

9.3.1 REAL CONSTANTS

The type of a number is REAL if the number includes
a decimal point or exponent. The REAL value range
depends on the REAL number unit of the target

9-4

I Ml MARY DRAFT

machine. Generally, either the IEEE or the Microsoft
REAL number format is used. This provides about
seven digits of precision, with a maximum value of
about 1.701411E38.

There is, however, a distinction between REAL values
and REAL constants. The REAL constant range may be
a subset of the REAL value range. In MS-format,
REAL numeric constants must be greater than or equal
to 1.0E-38 and less than 1.0E+38. In IEEE format,
REAL numeric constants are kept in double precision
and can range from about IE-306 to 1E306.

The compiler issues a warning if there is not at
least one digit on each side of a decimal point. A
REAL number starting or ending with a decimal point
may be misleading. For example, because left
parenthesis-period substitutes for left square
bracket, and right parenthesis-period for right
square bracket:

(.1+2.)

is interpreted as:

[1+2]

Scientific notation in REAL numbers (as in 1.23E-6
or 4E7) is supported. The decimal point and
exponent sign are optional when an exponent is
given. Both the uppercase "E" and the lowercase "e"
are allowed in REAL numbers. "D" and "d" are also
allowed to indicate an exponent. This flexibility
gives MS-Pascal compatibility with other languages.

When IEEE REAL4 and REAL8 format are used, all real
constants are stored in REAL8 (double precision)
format. If you require a single precision REAL4
constant, declare a REAL4 variable and give it your
real constant value in a VALUE section. (You may
want to give this variable the READONLY attribute as
well.)

9-5

r‘Pr!JMIN* *Y WFT

Versions of the compiler that run on one machine but
generate code for another may lose a snail amount of
significance in REAL constants.

9.3.2 INTEGER, WORD, AND INTEGER4 CONSTANTS

The type of a non-REAL numeric constant is INTEGER,
WORD, or INTEGER4. Table 9-1 shows the range of
values that constants of each of these types can
assume.

Table 9-1: INTEGER, WORD, and INTEGER4 Constants

RANGE OF VALUES PREDECLARED
TYPE (min imum/max imum) CONSTANT

INTEGER -MAXINT to MAXINT MAXINT=32767

WORD 0 to MAXWORD MAXWORD=65535

INTEGER4 -MAXINT4 to MAXINT4 MAXINT4=2147483647

MAXINT, MAXWORD, and MAXINT4 are all predeclared
constant identifiers. One of three things happens
when you declare a numeric constant identifier:

1. A constant identifier from -MAXINT to MAXINT
becomes an INTEGER.

2. A constant identifier from MAXINT+1 to MAXWORD
becomes a WORD.

3. A constant identifier from -MAXINT4 to -MAXINT-1
(or MAXWORD+1 to MAXINT4) becomes an INTEGER4.

However, any INTEGER type constant (including
constant expressions and values from -32767 to -1)
automatically changes to type WORD if necessary; if
the INTEGER value is negative, 65536 is added to it

9-6
rllMIN'.RY DRVT

and the underlying 16-bit value is not changed.

For example, you can declare a subrange of type WORD
as WRD(0)..127; the upper bound of 127 is
automatically given the type WORD. The reverse,
however, is not true; constants of type WORD are not
automatically changed to type INTEGER.

The ORD and WRD functions also change the type of an
ordinal constant to INTEGER or WORD. Also, any
INTEGER or WORD constant automatically changes to
type INTEGER4 if necessary, but the reverse is not
true.

Examples of relevant conversions are given in Table
9-2.

Table 9-2: Constant Conversions

CONSTANT ________ ASSUMED TYPE____________

0 INTEGER could become WORD or INTEGER4

-32768 INTEGER4 only

32768 WORD could become INTEGER4

0..20000 INTEGER subrange

0..50000 WORD subrange

0..80000 Invalid: no INTEGER4 subranges

-1..50000 Invalid: becomes 65535..50000
(i.e., -1 is treated as 65536)

At the standard level, any numeric constant (literal
or identifier) may have a plus (+) or minus (-)
sign.

9-7

PRELIMINARY DRAFT

9.3.3 NONDECIMAL NUMBERING

At the extend level, MS-Pascal supports not only
decimal number notation, but also numbers in
hexadecimal, octal, binary, or other base numbering
(the base can range from 2 to 36). The number sign
(#) acts as a radix separator.

Examples of numbers in nondecimal notation:

161FF02
101987
81776
21111100

Leading zeros are recognized in the radix, so a
number like 008#147 is permitted. In hexadecimal
notation, upper or lowercase letters A through F are
permitted. A nondecimal constant without the radix
(such as #44) is assumed to be hexadecimal.
Nondecimal notation does not imply a WORD constant
and may be used for INTEGER, WORD, or INTEGER4
constants. You must not use nondecimal notation for
REAL constants or numeric statement labels.

9.4 CHARACTER STRINGS

Most Pascal manuals refer to sequences of characters
enclosed in single quotation marks as "strings." In
MS-Pascal, they are called "string literals" to
distinguish than from string constants, which may be
expressions, or values of the STRING type.

A string constant contains from 1 to 255 characters.
A string constant longer than one character is of
type PACKED ARRAY [l..n] OF CHAR, also known in MS-
Pascal as the type STRING (n). A string constant
that contains just one character is of type CHAR.
However, the type changes from CHAR to PACKED ARRAY
[1..1] OF CHAR (e.g., STRING (1)) if necessary. For
example, a constant ('A') of type CHAR could be

9-8

P?-LIMIN'RY DRAFT

assigned to a variable of type STRING (1).

A literal apostrophe (single quotation mark) is
represented by two adjacent single quotation marks
(e.g., 'DON'’T GO'). The null string ('') is not
permitted. A string literal must fit on a line.
The compiler recognizes string literals enclosed in
double quotations marks (") or accent marks ('),
instead of single quotation marks, but issues a
warning message when it encounters then.

The constant expression feature (discussed in
Section 9.6) permits string constants made up of
concatenations of other string constants, including
string constant identifiers, the CHR () function,
and structured constants of type STRING. This
feature is useful for representing string constants
that are longer than a line or that contain
nonprinting characters. For example:

'THIS IS UNDERLINED' * CHR(13) * STRING (DO 18 OF

The LSTRING feature of MS-Pa^cal adds the super
array type LSTRING. LSTRING is similar to PACKED
ARRAY [0..n] OF CHAR, except that element 0 contains
the length of the string, which can vary from 0 to a
maximum of 255. (See Section 6.2.2 for a discussion
of LSTRINGs.) For now, note that, if necessary, a
constant of type STRING (n) or CHAR changes
automatically to type LSTRING.

NULL is a predeclared constant for the null LSTRING,
with the element 0 (the only element) equal to CHR
(0). NULL cannot be concatenated, since it is not of
type STRING. It is the only constant of type
LSTRING.

Examples of string literal declarations:

NAME = 'John Jacob';
LETTER -- 'Z';
QUOTED QUOTE = " " ;

{a legal string literal}
{LETTER is of type CHAR}
{Quotes quote}

9-9

PRELIMINARY DRAFT

NULLSTRING = NULL;
NULL-STRING = ”;
DOUBLE = "OK";

{legal}
{illegal}
{generates a warning}

9.5 STRUCTURED CONSTANTS

Standard Pascal permits only the numeric and string
constants already mentioned, the pointer constant
value NIL, and untyped constant sets.

At the extend level of MS-Pascal, on the other hand,
you can use constant arrays, records, and typed
sets. Structured constants can be used anywhere a
structured value is allowed, in expressions as well
as in CONST and VALUE sections.

1. An array constant consists of a type identifier
followed by a list of constant values in
parentheses separated by commas.

Example of an array constant:

TYPE VECT TYPE = ARRAY [-2..2] OF INTEGER;
CONST VECT = VECT TYPE (5, 4, 3, 2, 1);
VAR A : VECT TYPE;
VALUE A := VECT;

2. A record constant consists of a type identifier
followed by a list of constant values in
parentheses separated by commas.

Example of a record constant:

TYPE REC TYPE = RECORD
A, B: BYTE;
C, D: CHAR;

END;
CONST RECR = RECTYPE (#20, 0, 'A', CHR (20));
VAR FOO : REC TYPE;
VALUE FOO := RECR;

9-10

PP’"LIMIN*RY CRAFT

3. A set constant consists of an optional set type
identifier followed by set constant elements in
square brackets. Set constant elements are
separated by commas. A set constant element is
either an ordinal constant, or two ordinal
constants separated by two dots to indicate a
range of constant values.

Example of a set constant:

TYPE COLOR_TYPE = SET OF
(RED, BLUE, WHITE, GREY, GOW);

CONST SETC = COLOR TYPE [RED, WHITE .. GOLD];
VAR RAINBOW : COLOR TYPE;
VALUE RAINBOW := SETC;

A constant within a structured array or record
constant must have a type that can be assigned to
the corresponding component type. For records with
variants, the value of a constant element
corresponding to a tag field selects a variant, even
if the tag field is empty. The number of constant
elements must equal the number of components in the
structure, except for super array type structured
constants. Nested structured constants are
permitted.

An array or record constant nested within another
structured constant must still have the preceding
type identifier. For this reason, a super array
constant can have only one dimension (see Section
6.2). The size of the representation of a
structured constant must be between 1 and 255 bytes.
If this 255-byte limit is a problem, declare a
structured variable with the READONLY attribute, and
initialize its components in a VALUE section.

Example of a complex structured constant:

TYPE R3 = ARRAY [1..3] OF REAL;
TYPE SAMPLE = RECORD I: INTEGER;

A: R3;

9-11

PRELIMINARY DRAFT

CASE BOOLEAN OF
TRUE: (S: SET OF 'A'..'2';

P: " SAMPLE);
FALSE:(X: INTEGER);

END;
CONST SAMP CONST- SAMPLE (27, R3 (1.4, 1.4, 1.4),

TRUE, l'A','E','I"), NIL);

Constant elements can be repeated with the phrase DO
<n> OF <constant>, so the previous example could
include "DO 3 OF 1.4" instead of "1.4, 1.4, 1.4".

MS-Pascal does not support set constant expressions,
such as] + LETTERS, or file constant
expressions. The constant 'ABC' of type STRING (3)
is equivalent to the structured constant STRING
('A', 'B', 'C). LSTRING structured constants are
not permitted; use the corresponding STRING
constants instead.

Structured constants (and other structured values,
such as variables and values returned from
functions) can be passed by reference using CONST
parameters. For more information, see Section 13.4.

There are two kinds of set constants: one with an
explicit type, as in CHARSET ['A'..'Z'], and one
with an unknown type, as in [20..40], You can use
either in an expression or to define the value of a
constant identifier. Set constants with an explicit
type may also be passed as a reference (CONST)
parameter. Sets of unknown type are unpacked, but
the type changes to PACKED if necessary. Passing
sets by reference is generally more efficient than
passing than as value parameters.

9.6 CONSTANT EXPRESSIONS

Constant expressions in MS-Pascal allow you to compute constants
based on the values of previously declared constants in
expressions. Constant expressions can also occur within program

9-12

PrTLIMINARY DRAFT

statements

Example of a constant expression declaration:

CONST HEIGHT_OF_LADDER = 6;
HEIGHT_OF_MAN = 6;
REACH = HEIGHTOFLADDER + HEIGHT_OF_MAN

Because a constant expression can contain only
constants that you have declared earlier, the
following is illegal:

CONST MAX = A + B;
A = 10;
B = 20;

Certain functions can be used within constant
expressions. For example:

CONST A = LOBYTE (-23) DIV 23;
B = HIBYTE (—A) ;

Table 9-3 shows the functions and operators you can
use with REAL, INTEGER, WORD, and other ordinal
constants, such as enumerated and subrange
constants.

Table 9.3. Constant Operators and Functions

TYPE OF OPERAND

REAL, INTEGER

FUNCTIONS AND OPERATORS

Unary plus (+)
Unary minus (-)

INTEGER, WORD + DIV OR HIBYTE ()
— MOD NOT LOBYTE ()
* AND XOR BYWORD ()

Ordinal types < <= CHR () LOWER ()
> >= ORD () UPPER ()
- <> WRD ()

9-13

. LIMINARY DRAFT

Boolean AND NOT

ARRAY LOWER () UPPER ()

Any type SIZEOF () RETYPE ()

Examples of constant expressions:

CONST FOO = (100 + ORD('X’)) * 8#100 + ORD('Y');
MAXSIZE = 80;
X -- (MAXSIZE > 80) OR (IN TYPE = PAPERTAPE);
{X is a BOOLEAN constant}

In addition to the operators shown in Table 9-3 for
numeric constants, you can use the string
concatenation operator (*) with string constants, as
follows:

CONST A = 'abodef1;
M = CHR (109); {CHR is allowed}
ATOM = A * 'ghijkl' * M;
{ATOM = 'abodef ghijklm' }

These constants can span more than one line, but are
still limited to the 255 character maximum. These
string constant expressions are allowed wherever a
string literal is allowed, except in metacommands.

9-14

■’TLIMI'HRY DRS.FT

10. VARIABLES AND VALUES

10.1 WAT IS A VARIABLE?

A variable is a value that is expected to change
during the course of a program. Every variable must
be of a specific data type. A variable may have an
identifier.

If A is a variable of type INTEGER, then the use of
A in a program actually refers to the data denoted
by A. For example:

VAR A: INTEGER;
BEGIN

A --- 1;
A := A + 1;

MD;

These statements first assign a value of 1 to the
data denoted by A, and subsequently assign it a
value of 2.

Variables are manipulated by using notation to
denote the variable, in the simplest case, a
variable identifier. In other cases—variables may
be denoted by array indices or record fields or the
dereferencing of pointer or address variables.

The compiler itself may create "hidden" variables,
allocated on the stack, in circumstances like the
following:

10-1

PRELIMINARY DRAFT

1. When you call a function that returns a
structured result, the compiler allocates a
variable in the caller for the result.

2. When you need the address of an expression
(e.g., to pass it as a reference parameter or
to use it as a WITH statement record or with
ADR or ADS), the compiler allocates a variable
for the value of the expression.

3. The initial and final values of a FOR loop may
require allocating a variable.

4. When the compiler evaluates an expression, it
may allocate a variable to store intermediate
results.

5. Every WITH statement requires a variable to be
allocated for the address of the WITH' s record.

10.2 raXZARfflG A VARIABLE

A variable declaration consists of the identifier
for the new variable, followed by a colon and a
type. You may declare variables of the same type by
giving a list of the variable identifiers, followed
by their cannon type. For example:

VAR XCDORD, YCOORD: REAL

You can declare a variable in any of the following
locations:

1. VAR section of a program, procedure, function,
module, interface, or implementation.

2. Formal parameter list of a procedure, function,
or procedural parameter.

10-2

^R'LIMINARY DRAFT

In a VAR section, you can declare a variable to be
of any legal type; in a formal parameter list, you
can include only a type identifier. (You cannot
declare a type in the heading of a procedure or
function). For example:

ROCEDURE NAME (GEORGE: ARRAY [1..10] OF COLOR)
{illegal; GEORGE is of a new type.}

VAR VECTORS: VECTOR (10)
{legal; VECTOR (10) is a type derived from}
{a super type.}

Each declaration of a file variable F of type FILE
OF T implies the declaration of a buffer variable of
type T, denoted by FA. At the extend level, a file
declaration also implies the declaration of a record
variable of type FCBFQQ, whose fields are denoted as
F.TRAP, F.ERRS, F.MODE, and so on. See Sections
7.2, and Section 7.6, for information on buffer
variables and FCBFQQ fields, respectively.

10.3 ME VALUE SECTION

The VALUE section in MS-Pascal lets you give initial
values to variables in a program, module, procedure,
or function. You can also initialize the variable
in an implementation, but not in an interface.

The VALUE section can include only statically
allocated variables (any variable declared at the
program, module, or implementation level, or a
variable with the STATIC or PUBLIC attribute).
Variables with the EXTERN or ORIGIN attribute cannot
occur in a VALUE section, since they are not
allocated by the compiler.

10-3

"’“LI MIN ARY DRAFT

The VALUE section can contain assignments of
constants to entire variables or to components of
variables. For example:

AR ALPHA : REAL;
ID : STRING (7);
I : INTEGER;

VALUE
ALPHA 2.23;
ID[1] := 'J';
I ----- 1;

However, within a VALUE section, you cannot assign a
variable to another variable. The last line in the
following example is illegal, since I must be a
constant:

ONTS MAX = 10;
VAR I, J : INTEGER;
VALUE I := MAX;

J ----- I;

If the $R0M metacommand is off, variables are
initialized by loading the static data segment. If
the $R0M metacommand is on, the VALUE section
generates an error message since ROM-based systems
usually cannot statically initialize data.

10.4 USING VARIABLES AND VALUES

At the standard level of MS-Pascal, denotation of a
variable may designate one of three things:

1. An entire variable

2. A component of a variable

3. A variable referenced by a pointer

10-4

P"LIMINARY D3AFT

A value may be any of the following:

1. A variable

2. A constant

3. A function designator

4. A component of a value

5. A variable referenced by a reference value

At the extend level, a function can also return an
array, record, or set. The same syntax used for
variables can denote components of the structures
these functions return.

This feature also allows you to dereference a
reference type that is returned by a function.
However, you can use the function designator only as
a value, not as a variable. For example, the
following is illegal:

F Lx, Yr := 42;

Also at the extend level, you can declare constants
of a structured type. Components of a structured
constant use the same syntax as variables of the
same type (see Section 9.6).

Examples of structured constant components:

TYPE REAU = ARRAY [1..3] OF REAL;
{an array type}
OCWT PIES = REAU (3.14, 6.28, 9.42);
{an array constant}

X := PIES [1] * PIES [3J;
{i.e., 3.14 * 9.42}
Y := REAU (1.1, 2.2, 3.3) [2];
{i.e., 2.2}

10-5

MtLIMINARY DRAFT

HMIfHRY DRAFT

10.4.1 COMPONENTS OF ENTIRE VARIABLES AND VALUES

At the standard level, a variable identifier denotes
an entire variable. A variable, function
designator, or constant denotes an entire value.

A component of a variable or value is denoted by the
identifier followed by a selector that specifies the
component. The form of a selector depends on the
type of structure (array, record, file, or
reference).

10.4.1.1 Indexed Variables And Values

A component of an array is denoted by the array
variable or value, followed by an index expression.
The index expression must be assignment compatible
with the index type in the array type declaration.
An index type must always be an ordinal type. The
index itself must be enclosed in brackets following
the array identifier.

Examples of indexed variables and values:

RRAY OFJCHAR [’C']
{Denotes the Cth element.}

•STRING CCNSTANT' [6]
{Denotes the 6th element, the letter "G'.}

BETAMAX [12] [-3]
BETAMAX [12,-3]
{These two say the same thing.}

ARRAYJFINCTICN (A, B) [C, D]
{Denotes a component of a two-dimensional array}
{returned by ARRAYJTONCTICN (A, B). A and B are}
{actual parameters.}

10-7
PS'LI MINARY DRAFT

You can specify the current length of an LSTRING
variable, LSTR, in either of two ways:

1. With the notation LSTR [0], to access the
length as a CHAR component

2. With the notation LSTR.LEN, to access the
length as a BYTE value

10.4.1.2 Field Variables And Values

A component of a record is denoted by the record
variable or value followed by the field identifier
for the component. Fields are separated by a period
or value only once. Within the WITH statement, you
can use the field identifier of a record variable
directly.

Examples of field variables and values:

EPSON.NAME := ‘PETE'

PEOPLE.DRIVERS.NAME := ’JOAN'

WITH PEOPLE.DRIVERS DO NAME 'GERI1

RECURSINGFUNC (‘XYZ1) .BETA
{Selects BETA field of record returned}
{by the function named RECURSIVE FUNC.}

COMPLEX TYPE (1.2, 3.14) .REAL PART

Record field notation also applies to files for
FCBFQQ fields, to address type values for numeric
representations, and to LSTRINGs for the current
length.

10-8

10.4.1.3 File Buffers And Fields

At any time, only one component of a file is
accessible. The accessible component is determined
by the current file position and represented by the
buffer variable. Depending on the status of the
buffer variable, fetching its value may first read
the value from the file. (This is called ’’lazy
evaluation"; see Section 15.1.5.)

If a file buffer variable is passed as a reference
parameter or used as a record of a WITH statement,
the compiler issues a warning to alert you to the
fact that the value of the buffer variable may not
be correct after the position of the file is changed
with a GET or PUT procedure.

Examples of file reference variables:

NPUT"
MOTTS PAYABUE.FILE"

10.4.2 Reference Variables

Reference variables or values denote data that
refers to some data type. There are three kinds of
reference variables and values:

1. Pointer variables and values

2. ADR variables and values

3. ADS variables and values

In general, a reference variable or value "points"
to a data object. Thus, the value of a reference
variable or value is a reference to that data
object. To obtain the actual data object pointed
to, you must "dereference" the reference variable by
appending an up arrow (*) to the variable or value.

10-9

’alLIMINARY draft

Example using pointer values:

AR P, Q : "INTEGER;
{P and Q are pointers to integers.}

NEW (P); NEW (Q) ;
{P and Q are assigned reference values to}
{regions in memory corresponding to data}
{objects of type IOTEGER.}

P := Q;
{P and Q ncm point to the same region
{in memory.}

P* := 123;
{Assigns the value 123 to the INTEGER value}
{pointed to by P. Since Q points to this}
{location as well, Q" is also assigned 123.}

Using NIL" is an error (since a NIL pointer does not
reference anything). At the extend level, you can
also append an up arrow (") to a function designator
for a function that returns a pointer or address
type. In this case, the up arrow denotes the value
referenced by the return value. This variable cannot be
assigned to or passed as a reference parameter.

Examples of functions returning reference values:

MAI ----- FUNK1 (I, J)"
{FUNK1 returns a reference value; the up arrow}

{dereferences the reference value returned,}
{assigning the referenced data to DATA1.}

DATA2 ----- FUNK2 (K, L)".FOO [2]
{FUNKS returns a reference value. ITie up arrow}
{dereferences the reference value returned. In}
{this case, the dereferenced value is a record.}
{The array component FOO [2] of that record is}
{assigned to the variable DATA2.}

10-10

RR'LIMINARY draft

If P is of type ADR OF some type, then P.R denotes
the address value of type WORD. If P is of type ADS
OF seme type, then P.R denotes the offset portion of
the address and P.S denotes the segment portion of
the address. Both portions are of type WOR

Examples of address variables:

OFF_ADR.R
DATA AREA. 8

At the extend

10.5 ATTRIBUTES

level of MS-Pascal, a variable
declaration or the heading of a procedure or
function may include one or more attributes. A
variable attribute gives special information about
the variable to the compiler.

Table 10-1: displays the attributes provided by MS-
Pascal for variables.

Table 10.1. Attributes for Variables
ATTRIBUTE VARIABLE

STATIC Allocated at a fixed location,
not on the stack.

PUBLIC Accessible by other modules with
EXTERN, iirplies STATIC.

EXTERN Declared PUBLIC in another module,
implies STATIC.

ORIGIN Located at specified address,
implies STATIC.

PORT I/O address, implies STATIC.

READONLY Cannot be altered or written to.

10-11

PTLIMINARY DRAFT

The EXTERN attribute is also a procedure and
function directive; PUBLIC and ORIGIN are also
procedure and function attributes. See Section 13.3
for a discussion of procedure and function
attributes and directives. Sections 10.5.1 through
10.5.5 discuss the variable attributes in detail.

You can give attributes for variables only in a VAR
section. You cannot specifying variable attributes
in a TYPE section or a procedure or function
parameter list.

You give one or more attributes in the variable
declaration, enclosed in brackets and separateci by
commas (if specifying more than one attribute).

The brackets may occur in either of two places:

1. An attribute in brackets after a variable
identifier in a VAR section applies to that
variable only.

2. An attribute in brackets after the reserved
word VAR applies to all the variables in the
section.

Examples that specify variable attributes:

VAR A, B, C [EXTERN] - INTEGER;
{Applies to C only.}

VAR [PUBLIC] A, B, C - INTEGER;
{Applies to A, B, and C.}

VAR [PUBLIC] A, B, C [ORIGIN 16#1000] : INMGER;
{A, B, and C are all PUBLIC. ORIGIN of C}
{is the absolute hexadecimal address 1000.}

Pa'L/MINArV draft

10.5.1 THE STATIC ATTRIBUTE

The STATIC attribute gives a variable a unique,
fixed location in memory. STATIC variables differ
from procedure or function variables that are
allocated on the stack or ones that are dynamically
allocated on the heap. Use of STATIC variables can
save time and code space, but increases data space.

All variables at the program, module, or unit level
are automatically assigned a fixed memory location
and given the STATIC attribute.

Functions and procedures that use STATIC variables
can execute recursively, but STATIC variables must
be used only for data common to all invocations.
Since most of the other variable attributes imply
the STATIC attribute, the trade-off between savings
in time and code space or reduced data space apply
to the PUBLIC, EXTERN, ORIGIN, and PORT attributes,
as well.

Files declared in a procedure or function with the
STATIC attribute are initialized when the routine is
entered; they are closed when the routine
terminates like other files. However, other STATIC
variables are initialized only before program
execution. This means that, except for open FILE
variables, STATIC variables can be used to retain
values between invocations of a procedure or
function.

Examples of STATIC variable declarations:

VAR VECTOR [STATIC]: ARRAY [0. .MAXVEC] OF INTEGER
VAR [STATIC] I, J, K: 0. -MAXVEC;

The STATIC attribute does not apply to procedures or
functions, as seme other attributes do.

10-13

PRELIMINARY DRAFT

10.5.2 THE PUBLIC AND EXTERN ATTRIBUTES

The PUBLIC attribute indicates a variable that can
be accessed by other loaded modules; the EXTERN
attribute identifies a variable that resides in seme
other loaded module. The identifier is passed to
the target linker in the generated code object file
(where it may be truncated if the linker imposes a
length restriction).Variables given the PUBLIC or
EXTERN attribute are implicitly STATIC.

Examples of PUBLIC and EXTERN variable declarations:

VAR [EXTERN] GDDBE1, GJJDBE2: INTEGER;
{The variables GL0BE1 and GLCBE2 are declared}
{EXTERN, meaning that they must be declared}
{PUBLIC in some other loaded module.}

VAR BASE PACE [PUBLIC, ORIGIN #12FE]: BYTE;
{The variable BASE PAGE is located at 12FE,}
{hexadecimal. Because it is also PUBLIC, it can}
{be accessed frcrci other loaded modules that}
{declare BASE PAGE with the EXTERN attribute.}

PUBLIC variables are usually allocated by the
compiler, unless you also give them an ORIGIN.
Giving a variable both the PUBLIC and ORIGIN
attributes tells the loader that a global name has
an absolute address. PUBLIC cannot be combined with
PORT.

If both PUBLIC and ORIGIN are present, the compiler
does not need the loader to resolve the address.
However, the identifier is still passed to the
linker for use by other modules.

EXTERN variables are not allocated by the compiler.
Nor do they have an ORIGIN, since giving both EXTERN
and ORIGIN implies two different ways to access the
variable. The reserved word EXTERNAL is synonymous
with EXTERN. This fact increases portability from

10-14

PSr-LIMINARY DRAFT

other Pascals/ since others cormonly use one of the
two.

10-15

PRELIMINARY dr "I7’

Variables in the interface of a unit are
automatically given either the PUBLIC or EXTERN
attribute. If a program, module, or unit USES an
interface, its variables are made EXTERN; if you
compile the IMPLEMENTATION of the interface, its
variables are made PUBLIC.

10.5.3 THE ORIGIN AND PORT ATTRIBUTES

The ORIGIN attribute directs the compiler to locate
a variable at a given memory address; the PORT
attribute specifies some kind of I/O address. In
either case, the address must be a constant of any
ordinal type. I/O ports, interrupt vectors,
operating system data, and other related data can be
accessed with ORIGIN or PORT variables.

Examples of ORIGIN and STATIC variable declarations:

VAR KEYBQARDP [EORT 16#FFF2]: CHAR?
VKR INTRVECT [ORIGIN 8#200]: WORD;

Variables with ORIGIN or PORT attributes are
implicitly STATIC.

These attributes also, inhibit common subexpression
optimization. For example, if GATE has the ORIGIN
attribute, the two statements X := GATE; Y ----- GATE
access GATE twice in the order given, instead of
using the first value for both assignments. This
fact ensures correct operation if GATE is a memory-
mapped input port . However, if GATE is passed as a
reference parameter, references to the parameter may
be optimized away. For this reason, PORT variables
cannot be passed as reference parameters.

ORIGIN and PORT variables are never allocated or
initialized by the compiler. The associated address
indicates only where the variable is found. ORIGIN
always implies a memory address, but the meaning of
PORT varies with the implementation.

10-16

’StLIMINARY DRAFT

In most implementations, I/O is assumed to be memory
mapped, so PORT is just a synonym for ORIGIN. Other
implementations use the machine's native input and
output instructions. Still others call port input
and output routines for every access.

For more information on the PORT attribute, see
Appendix A, of your MS-Pascal User's Guide.

Giving the PORT and ORIGIN attributes in brackets
immediately following the VAR keyword is ambiguous
and generates a error during compilation. (It would
be unclear to the compiler Eether all variables
following should be at the same address or addresses
should be assigned sequentially.)

VAR [ORIGIN 0] FIRST, SECOND: BYTE;
{IIJLEGAL!}

ORIGIN (but not PORT) permits a segmented address
using "segment: offset" notation.

VAR SEGVECT [ORIGIN 16#0001:16#FFFE]: WORD;

Currently, a variable with a segmented ORIGIN cannot
be used as the control variable in a FOR. statement.

10.5.4 TOE READONLY ATTRIBUTE

The READONLY attribute prevents assignments to a
variable. It also prevents the variable being
passed as a VAR or VARS parameter. Also, a READCNLY
variable cannot be read with a READ statement or
used as a FOR control variable. You may use
READONLY with any of the other attributes.

10-17

Examples of READONLY variable declarations:

VAR INPORT [PORT 12, READONLY]: BYTE;
{INPORT is a READONLY PORT variable.}

VAR [READONLY] I, J [PUBLIC], K [EXTERN]: INTEGER;
{I, J, and K are all READONLY;}
{j is also PUBLIC; K is also EXTERN.}

CONST and CQNSTS parameters, as well as FOR loop
control variables (while in the body of the loop),
are automatically given the READONLY attribute.
READONLY is the only variable attribute that does
not imply STATIC allocation.

A variable that is both READONLY and either PUBLIC
or EXTERN in one source file is not necessarily
READONLY when used in another source file. The
READONLY attribute does not apply to procedures and
functions.

10.5.5 COMBINING ATTRIBUTES

You can give a variable multiple attributes.
Separate the attributes with commas and enclose the
list in brackets, as shown:

VAR [STATIC]
X, Y, Z [ORIGIN #FFFE, READONLY]: INTEGER;

In the preceding example, Z is a STATIC, READONLY
variable with an ORIGIN at hexadecimal FFFE. These
rules apply when you are combining attributes:

1. If you give a variable the EXTERN attribute,
you cannot give it the PORT, ORIGIN, or PUBLIC
attributes in the current ccmpiland.

2. If you give a variable the PORT attribute, you
cannot give it the ORIGIN, PUBLIC, or EXTERN
attributes at all.

10-18

PRELIMINARY DRAFT

3. If you give a variable the ORIGIN attribute,
you cannot also give it the PORT or EXTERN
attributes. However, you can combine ORIGIN
with PUBLIC.

4. If you give a variable the PUBLIC attribute,
you cannot also give it the PORT or EXTERN
attributes. However, you can combine PUBLIC
with ORIGIN.

5. You can use STATIC and READONLY with any other
attributes.

PRELIMINARY DRAFT

