
:- .. 4.

Iff'" . t
. _ i .' \:" . ~:. ::iJ

.. .' = '. "\.~·~R

~[J@~[J@[TI]JUilil(@j~ · lruouD[ij~~
:' f , . .
. ~ ~ "

. ' i · , ~ . . :

, ... ·,"(;D
¥ ' cccC\"ti ,l.

\,') ~r) ;;1. 'Va£

CP/M-86

PROGRAMMER'S GUIDE

Revision 00

May 20, 1983

Manual PIN 7100-0023

Copyright 1983 Vector Graphic Inc.

Made in U.S.A.

Disclaimer

Vector Graphic makes no representations or warranties with respect to the contents
.of this manual itself, whether or not the product it describes is covered by a
warranty or repair agreement. Further,Vector Graphic reserves the right to revise
this publication and to make changes from time to time in the content hereof
without obligation of Vector Graphic to notify any person of such revis ion or
changes, except when an agreement to the contrary exists.

Revision Numbers and Updates

The date, reVISIOn and part number of each page appears on its bottom line. The
revision number (which may range from 00 to 99) is appended to the 8 digit Vector
part number by a hyphen. The date and revision on the Title Page corresponds to
that of the page most recently revised. In addition a page listing the latest
revision level of each page is included before the Table of Contents. THIS
MANUAL SHOULD ONLY BE USED WITH THE PRODUCT(S) IDENTIFIED ON THE
TITLE PAGE.

Trademark

CP/M-86 is a registered trademark of Digital Research.

ii 7100-0023-00 05-20-83

WARRANTY AGREEMENT

Vector warrants to the authorized dealer that products manufactured by Vector will
be free from defects in material and workmanship for a period of ninety (90) days
following delivery to the end-user.

Vector's obligation under the warranty is limited to replacing or repairing, at its
option, at its factory, products that, wi thin the warranty period, are returned
prepaid and insured to Vector and that are found by Vector to be defective.
Return authorization must be obtained from Vector Customer Support before
returning products. The repaired or replacement product will be returned prepaid
to the dealer.

This warranty shall immediately be null and void if, in Vector's sole judgement, the
product has been subjected to misuse, abuse, neglect, accident, improper installation,
alterations, modifications, including failure to maintain environmental conditions, or
use supplies that do not meet specifications recommended by Vector; or external
causes such as electrical power fluctuations and failures, floods, windstorms and
other acts of God, or if the serial number and/or product markings have been
removed, defaced, or altered.

This warranty agreement is void if the warranty form is not returned to Vector
within ten (10) days of end-user purchase. In such event, repair or alterations will
be rendered only on special order by the customer and after approval by the
customer of the estimated additional charge.

THE FOREGOING WARRANTY IS EXCLUSIVE AND IN LIEU OF ALL OTHER
WARRANTIES EITHER EXPRESSED OR IMPLIED, INCLUDING WITHOUT
LIMITATION ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR
A PARTICULAR PURPOSE.

In no event shall Vector be liable for incidental or consequential damages or
economic loss arising out of or related to the product or services provided.

05-20-83 7100-0023-00 iii

MANUAL REVISIONS

PB2:e Revision Date P~e ReYision Date

i 00 05-20-83 4-1 00 05-20-83
i i 00 05-20-83 4-2 00 05-20-83
iii 00 05-20-83 4-3 00 05-20-83
iv 00 05-20-83 4-4 00 05-20-83
v 00 05-20-83 4-5 00 05-20-83
vi Blank 4-6 00 05-20-83
vi i 00 05-20-83 4-7 00 05-20-83
vi i i Blank 4-8 00 05-20-83
ix 00 05-20-83 4-9 00 05-20-83
x 00 05-20-83 4-10 00 05-20-83

4-11 00 05-20-83
4-12 00 05-20-83
4-13 00 05-20-83

1-1 00 05-20-83 4-14 00 05-20-83
1-2 00 05-20-83 4-15 00 05-20-83
1-3 00 05-20-83 4-16 00 05-20-83
1-4 00 05-20-83 4-17 00 05-20-83
1-5 00 05-20-83 4-18 00 05-20-83
1-6 Blank 4-19 00 05-20-83

4-20 00 05-20-83
4-21 00 05-20-83

2-1 00 05-20-83 4-22 00 05-20-83
2-2 00 05-20-83 4-23 00 05-20-83
.2-3 00 05-20-83 4-24 00 05-20-83
2-4 00 05-20-83 4-25 00 05-20-83
2-5 00 05-20-83 4-26 00 05-20-83
2-6 00 05-20-83 4-27 00 05-20-83
2-7 00 05-20-83 4-28 00 05-20-83
2-8 00 05-20-83 4-29 00 05-20-83
2-9 00 05-20-83 4-30 00 05-20-83
2-10 00 05-20-83 4-31 00 05-20-83
2-11 00 05-20-83 4~32 00 05-20-83
2-12 00 05-20-83 4-33 00 05-20-83
2-13 00 05-20-83 4-34 00 05-20-83
2-14 00 05-20-83 4-35 00 05-20-83

4-36 00 05-20-83
3-1 00 05-20-83 4-37 00 05-20-83
3-2 00 05-20-83 4-38 00 05-20-83
3-3 00 05-20-83 4-39 00 05-20-83
3-4 00 05-20-83 4-40 00 05-20-83
3-5 00 05-20-83 4-41 00 05-20-83
3-6 00 05-20-83 4-42 00 05-20-83
3-7 00 05-20-83 4-43 00 05-20-83
3;..8 00 05-20-83 4-44 00 05-20-83
3-9 00 05-20-83 4-45 00 05-20-83
3,..,10 Blank 4-46 00 05-20-83

iv 7100-0023-00 05-20-83

MANUAL REVISIONS (Coot,)

PBi'e Reyision Date

4-47 00 05-20-83
4-48 00 05-20-83
4-49 00 05-20-83
4-50 00 05-20-83
4-51 00 05-20-83
4-52 00 05-20-83
4-53 00 05-20-83
4-54 00 05-20-83
4-55 00 05-20-83
4-56 00 05-20-83
4-57 00 05-20-83
4-58 00 05-20-83
4-59 00 05-20-83

05-20-83 7100-0023-00 v

vi 7100-0023-00 05-20-83

Audience

Scope

Organization

05-20-83

FOREWORD

The CP/M-86 Programmer's Guide is designed for System
Programmers.

The CP /M-86 Programmer's Guide describes all aspects of
the CP/M-86 Operating System. This Guide also discusses
the Vector 4 Simulator (for 8-bi t software) and specific
technical information about the Video and Device Drivers.

Th e C P /M-8 6 Programmer's Guide is organized in four
sections. The first section gives a general overview of
supplementary documentation and how it can be used with
this manual. The next two sections describe the V ec tor 4,
I6-bit Video Driver/Console Input and Device Drivers. The
last section describes the Vector 4 CP/M Simulator.

7100-0023-00 vii

viii 7100-0023-00 05-20-83

TABLE OF CONTENTS

Section

Title Sheet
Warning, Disclaimer, Revision Policy
Warranty
Manual Revisions
Foreword
Table of Contents

Section I - Overview of Ogerating System Documentation

1.1

1.2

1.3

1.4

1.5

Vector 4 Operating Systems

Types of Operating System Documentation

How to Use User's and Programmer's Documentation

How to Use Vector's CP/M-86 Programmer's Guide

System and Programmers Disk

Section II - Yideo Driver and Console InDUt Module

2.1

2.2

2.3

Overview of Video Driver and Console Input Module

Video Driver

Console Input

Section III - Device Drivers

3.1

3.2

3.3

Overview of Device Drivers

Printer Driver Entry Point and Data Block
Descriptions

Communication Driver Entry Point and Data Block
Descriptions

05-20-83 7100-0023-00

i
ii
iii
iv
vii
ix

1-1

. 1-1

1-1

1-2

1-2

1-3

2-1

2-1

2-1

2-13

3-1

3-1

3-1

3-5

ix

TABLE OF CONTENTS (Cont.)

Section

3.4 I/O Function Remapping 3-8

Section IV - vector 4 CP/M Simulator 4-1

4.1 Overview of Vector 4 CP/M Simulator 4-1

4.2 Vector 4 CP/M Simulator Operation 4-1

4.3 Vector 4 CP/M Simulator Implementation 4-2

4.3.1 BnOS Functions 0-15 4-2

4.3.2 BnOS FUnctions 16-27 4-13

4.3.3 BnOS Functions 28-42 4-22

4.3.4 BnOS Functions 43-228 4-33

4.3.5 BnOS Functions 233-255 4-47

4.3.6 Bnos Function Chart 4-56

x 7100-0023-00 05-20-83

CP/M-8S

PROGRAMMER'S GUIDE

SECTION I - OVERVIEW OF OPERATING SYSTEM DOCUMENTATION

l..1 Vector 4 Operati~ 83stems

The Vector 4 can use either Vector 4 CP/M or CP/M-8S. Vector 4 CP/M is
designed to use the 8-bit, Z-80 microprocessor while CP /M-8S will only work
with the IS-bit 8088. CPU.

L.2. Types of OperatiIwl 83stem Documentation

The Operating System Documentation can be divided into two general areas:

-Documentation which describes system software for Vector 4 CP/M
-Documentation which describes system software for CP/M-8S

These two general areas can each be divided into User's and Programmer's
Documentation. The User's Documentation consists of Vector's CP/M-8S
User's Guide, Vector's Vector 4 CP/M Programmer's Guide and Digital
Research's CP/M-8S Operating System User's Guide. These Guides describe
several features of the CP/M-8S Operating System and the Vector 4 CP/M
Operating System. This includes a complete description of the resident and
transient commands, loading the Operating System and an explanation of
Vector's Disk Partitioning System. Note: The Disk Partitioning system only
applies to IS-bit operating system.

The Programmer's Documentation consists of this manual along with several
other manuals:

-Digital Research's CP/M-8S Operating System- Programmer's Guide
-Digi tal Research's CP /M-8S Operating System- System Guide
-Vector's Vector 4 CP/M Programmer's Guide
-Vector's SCOPE Reference Manual
-Vector's ZSM Assembler For CP/M Manual
-Digital Research's CP/M Dynamic Debugging Tool User's Guide
-Microsoft BASIC Interpreter Reference Manual

The first three manuals (including this manual) are included in the set of
programmer's documentation for the CP/M-8S Operating System. The next
five manuals are arranged in a second set of documentation. This second set
of documentation covers programmer's information for the Vector 4 CP/M
Operating System.

05-20-83 7100-0023-00 Page 1-1

/

VECTOR GRAPHIC, INC.

ld. How to Use User's IlDd Programmer's Documentation

All operating system documentation is included with your Vector 4. If you
are using Vector 4 CP/M then you would want to reference the users and
programmers guides for that operating system:

-Vector 4 CP/M User's Guide
-Vector 4 CP/M Programmer's Guide

Also, you could reference other manuals for specific information on system
programs:

-Vector's SCOPE Reference Manual
-Vector's ZSM Assembler For CP/M Manual
-Digital Research's CP/M Dynamic Debugging Tool User's Guide
-Microsoft BASIC Interpreter Reference Manual

If you are using the CP/M-86 Operating System you would want to reference
those manuals which apply to the CP/M-S6 Operating System. These include:

-Vector's CP /M-S6 User's Guide
-Digital Research's CP/M-86 Operating System- Programmer's Guide
-Digital Research's CP/M-86 Operating System- System Guide
-Vector's CP/M-86 Programmer's Guide

The CP/M-86 Operating System uses the same resident (built-in) and transient
commands that are used by the CP /M-80 Operating System. If you are
familiar with CP/M-80's commands, you should be able to easily adapt to the
CP /M-86 environment. If you aren't familiar with CP/M-80 Commands, see
the User's Guide for a complete discussion of these commands.

As explained in the previous section, Vector's CP/M-86 User's Guide contains
an explanation of Operating System loading procedures and Vector's Disk
Partitioning System.' All. CP/M-86 users and programmers should review these
sections.

It should be noted that Digital Research's CP/M-86 Programmer's Guide
describes system software that can only be used with CP/M-86. i.e., ASM-86
and DDT-86. Digital Research's CP/M-86 System Guide includes an extensive
discussion of BDOS Functions and BIOS Jump Routines for the CP /M-86
Operating System.

The next section describes the contents of this manual.

lA How to Use Vector's CPIM-86 Prqp-ammerts Guide

This manual describes specific operating system modules which have been
des.igned to provide. aninter,face between Vector 4, 16-bit hardware (8088)
and- a16~bit Operating,~;Systemc(CPfM---88).

Page 1-2 7100-0023-00 05-20-83

CP/M-86

PROGRAMMER'S GUIDE

These modules are unique to the Vector 4 hardware environment and must be
used when creating or modifying I6-bit software. They include:

-Device Drivers
-Video and Console Input

As a system programmer you can refer to this information along with the
"Standardll BDOS Functions (found in CP/M-86 Systems Guide) and BIOS Jump
Routines (found in CP /M-86 Systems Guide).1 These sources should provide
you with all the system information you need to design and create 16-bit
programs.

The Vector CP/M-86 Programmer's Guide also describes a Vector 4 CP/M
Simulator which can be used to run 8-bit programs within a 16-bit operating
system.

L.5. System and Programmer's Disk

The Vector 4 comes with a System and Programmer's Disk. Both these disks
have files which are described in different types of documentation which
comes with your Vector 4. The following chart gives the file names, file
description and the specific documentation which describes those files.

Ul= Vector 4 CP 1M User's Guide
U2= Vector 4 CP/M-86 User's Guide
U3= Digital Research's CP/M-86 Operating System-User's Guide

Tl= Vector 4 Technical Information Manual
T2= Disktest User's Manual

Pl= Vector 4 CP/M Programmer's Guide
P2= Vector's SCOPE Reference Manual
P3= Vector's ZSM Assembler For CP/M Manual
P4= Digital Research's CP/M Dynamic Debugging Tool User's Guide
P5= Vector 4 CP /M-86 Programmer's Guide
P6= Digital Research's CP/M-86 Operating System-Programmer's Guide
P7= Digital Research's CP/M-86 Operating System-System Guide
P8= Microsoft BASIC Interpreter Reference Manual

1 Vector does not support Table Generation using GENDEF or Bootstrap Adaptation
Procedures (Pages 72 to 86).

05-20-83 7100-0023-00 Page 1-3

VECTOR GRAPmC, INC.

System Disk

File Name

(User O)

UTILITY.CMD
CONFIG.CMD
SERIAL.DEV
P ARALLEL.DEV
NEC.DEV
PIP.CMD
STORE.COM

RESTORE.COM

STAT.CMD
HELP.CMD
HELP.HLP
ED.CMD
DDT86.CMD
ASM86.CMD
GENCMD.CMD
RUN8.CMD
TOD.CMD

SUBMIT.CMD

(User 1)

PRINTEST.COM
MEMTEST.CMD
KYBDTEST.COM
SCRNTEST.COM
PORTEST.COM
CPUTEST.COM

CRC.COM
DISKTEST.COM
RECLAIM.COM

Page 1-4

Documentation
Location

U2
U2
U2
U2
U2
U2, U3
U1, U2

U1, U2

U2, U3
U2, U3
U2
U2, U3,
U3, P6
P6
U3, P7
U2, P5
U3

U3

U1, U2, T1
U1, U2, T1
U1, U2, T1
U1, U2, T1
U1, U2, Tl
U1, U2, T1

U1; U2, T1
U1, U2, T1, T2
U1, U2

7100-0023-00

File DescriDtion

Utility to FORMAT, GENSYS, •••••
System Configuration Program
Serial Printer Driver
Parallel Printer Driver
NEC Printer Driver
Peripheral Interchange Program
Mul ti-Floppy Harddisk Storage
Program
Mul ti-Floppy Harddisk Restore
Program
File and disk status utility
Help utility
Data file for Help Utility
CP/M-86 Text Editor
CP/M Debugger
8086 Assembler
CrvID file generation utili ty
Vector 4 CP/M 'Simulator
Display and set time of day
utility
Batch processing utility

Printer Test Program
M emory Test Program
Keyboard Test Program
Screen Test Program
Port Test Program
Central Processing Unit Test
Program
Cyclic Redundancy Check
Disk Test Program
Disk check and re-wri te program

05-20-83

Prozrammer1s Disk

:Eil~ NaDl~

(User 0)

ED.CMD
SC.COM
ASMS6.CMD
ZSM.COM
GENCMD.CMD
LMCMD.CMD
LOAD.COM
DDTS6.CMD
SERIAL.DEV
SERIAL.AS6

PARALLEL.DEV
P ARALLEL.AS6

NEC.DEV
RANDOM.AS6

DUMP.ASM

DUMP.COM
MBASIC5.COM
EDIR.COM
ERAX.COM
SORTDIR.COM
ACOM.DEV

ACOM.A86

DQ~JJDlenta1iQD
LocatioD

U2, U3
P2
U3, P6
P3
U3, P7
P7
PI
U3, P6
U2
P5

U2
P5

U2
P5, P7

PI, P3

PI
P8
Ul, PI
Ul, PI
Ul, P1
U2

P5

CP/M-86
PROGRAMMER'S GUIDE

:Eile DescrictiQD

CP/M-S6 Text Editor
SCOPE program and text editor
S086 Assembler
8080 Assembler
CMD file generation utility
CMD file generation utility
COM file generation utility
CP/M Debugger
Serial Printer Driver
Serial Printer Driver source
code1
Parallel Printer Driver
Parallel Printer Driver source
code1
NEC Printer Driver
Sample A86 program using BDOS
calls
Sample ASM program using BDOS
calls
Program DUMP Utility
Microsoft BASIC
Extended DIR Utility
Extended ERA Utility
Sort DIR Utility
Asynchronous Communications
Driver
Asynchronous Communications
Driver Source

1 The reference (documentation location) describes how to write drivers.

05-20-83 7100-0023-00 Page 1-5

VECTOR GRAPmC, INC.

Page 1--6 7100-0023-00 05-20-83

CP/M-86
PROGRAMMER'S GUIDE

SECTION II - VIDEO DRIVER AND CONSOLE INPUT MODULE

%.l. Overview of Video Driyer and Console Input Module

The Operating System Independent Video Driver/Console Input Module is
designed to provide all necessary operating system video/console functions
within a standard module of code. The first responsibility of the module is
to support a full set of programming commands that control a memory mapped
video screen, needed to satisfy the console output requirement. The second
responsibility of the module is to handle all keyboard input, conversion and
buffering functions needed to satisfy the console input requirement.

Certain Console Functions will not properly pass through the escape
character value "lBH". In these cases a "9BH" may be substitu ted for a
"1BH". All requests for information that are made using a "9BH" will return
information using the lead in control code of "9BH" •

.2..a Video Driyer

The video driver will operate in one of two modes. The first mode
recognizes a subset of the ANSI 3.64 - 1979 Standards specification. This
subset has been implemented within the practical and functional limitations of
the Vector 4 computer system. The second mode (compatible mode),
recognizes the Vector 4 CP/M video driver functions.

The mode control command is recognized regardless of the current mode.

VIDEQ DRIVER ANSI 3.64 COMMANDS

The following control sequences will produce the indicated action. In all
cases the entire sequence must be sent sequentially (without intervening
characters). If an improper character is detected, within the control
sequence, then the entire sequence is aborted (i.e. reset to STATE1) and the
improper character is not printed. However, subsequent printable characters
will be printed until an "ESC" is encountered.

Parameter DescriDtion Table

1. The parameters nand U. must consist of ASCII digits 1 thru 9
(30H-39H).

2. Two or more digit, decimal parameters (e.g. 37, 187) are sent as two
or more consecutive ASCn digits.

3. If more than one parameter required then the character n;" (3BH) is
included between them.

4. The maximum value for a parameter is 255.

05-20-83 7100-0023-00 Page 2-1

VECTOR GRAPmC, INC.

5. If n equals zero or is not present, the default value of one (31H) is
used. If f# is omitted the default value is 30H.

Whenever an attempt is made to move the cursor beyond the physical limit of
the screen, the cursor will be stopped at the last possible position (i.e. just
before leaving the screen). All lines are numbered beginning with one at the
top of the screen. The column numbers also begin with one at the left side
of the screen. .

The physical screen size is defined by two parameters: Lines and columns.
A provision is included for up to 136 horizontal and 40 vertical tab stops.
A ttempted cursor movement to any non-existing tab position (or positions
beyond the screen limit) results in movement to the appropriate edge of the
screen. Upon screen initialization horizontal tab stops are set at every
eighth position (default). There are no default settings for vertical tab
stops.

CURSOR CONTROL COMMANDS

"ESC", "(I' ,n, "A"

"ESC", "[" ,n, "B"

"ESC", "[" ,n, "C"

"ESC", "[" ,n, flD"

"E SC" , "[" ,n, fiE"

Page 2-2

CUU

CUD

CUF

CUB

CNL

Cursor Up - Move cursor upward n lines. An
attempt to move the cursor above the top of
the screen results in the cursor positioned at
the same column of the first line.

Cursor Down - Move cursor downward n
Ii n es • A nat t e m p t tom 0 vet h e cur s 0 r
beyond the bottom of the screen results in
the cursor positioned at the same column of
the last line.

Cursor Forward - Move cursor forward n
positions. An attempt to move the cursor
beyond the right side of the screen results in
the cursor stopping at the last column of the
current line.

Cursor Backward - Move cursor backward n
positions. An attempt to move the cursor
beyond the left side of the screen results in
the cursor stopping at the first column of
the current line.

Cursor Next Line - Move cursor to the first
column of the n-th following line. An
attempt to move the cursor beyond the
bottom of the screen results in the cursor
stopping at the first column of the last line.

7100-0023-00 05-20-83

"ESC", "['I ,n, "F"

"ESC", "['I ,n, "G"

"ESC" 11[" v 11.11 h IIH" , "'"

"ESC", "['I ,n, "I"

"ESC", "[,I, "6", "nil

"ESC" "[" n "Y" , "

"ESC", "[" ,n, "Z"

IIESC", "[" ,n, "'"

05-20-83

CPL

CHA

CUP

CHT

CPR

CVT

CBT

HPA

CP/M-86

PROGRAMMER'S GUIDE

Cursor Preceding Line - Move cursor to the
first column of the n-th preceding line. An
attempt to move the cursor beyond the top
of the screen results in the cursor stopping
at the first column of the first line.

Cursor Horizontal Absolute - Move cursor to
absolute horizontal position n. An attempt
to move the cursor beyond the right side of
the screen results in the cursor stopping at
the last column of the current line.

Cursor Position - Move cursor to position
specified by v (vertical) and h (horizontal):
Defaults- v,h = 1. An attempt to move the
cursor beyond the right side of the screen
results in the cursor stopping at the last
column. An attempt to move the cursor
beyond the bottom of the screen results in
the cursor stopping at the last line.

Cursor Horizontal Tab - Advance Cursor to
the n-th following horizontal tab stop (set by
CTC,HTS, or default). An attempt to move
the cursor beyond the right side of the
screen or to a non-existing tab stop results
in the cursor stopping at the last column of
the current line.

Cursor Position Report - Returns the current
cursor position into the keyboard buffer with
the following sequence: "ESC",II[",v,";",h,"R"
where v = vertical position, h = horizontal.

Cursor Vertical Tab - Advance cursor to the
n-th following vertical tab stop (set by CTC
or VTS). An attempt to move the cursor
beyond the bottom of the screen or to a
non-existent tab stop r~ults in the cursor
stopping at the same column of the last line.

Cursor Backward Tab - Move cursor
backward to the n-th preceeding horizontal
tab. An attempt to move the cursor beyond
the left side of the screen or to a
non-existing tab stop results in the cursor
stopping at the first column of the current
line.

Horizontal Position Absolute - Same as CHA.

7100-0023-00 Page 2-3

VECTOR GRAPmC, INC.

"ESC", "[" ,n, "a"

"ESC" "[,, n "d" , "

"ESC", "[" ,n," elf

"ESC", "[", v, ";" ,h, "f"

"ESC","D"

"ESC", "E"

"ESC", "M"

HPR

VPA

VPR

HVP

IND

NEL

RI

Horizontal Position Relative - Same as CUF.

Vertical Position Absolute - Move cursor to
absolute line n with no horizontal movement.
An attempt to move the cursor to a
non-existent screen position results in the
cursor stopping at the last line of the same
column.

Vertical Position Relative - Same as CUD.

Horizontal and Vertical Position - Moves
cursor to the specified vertical (v) and
horizontal (h) position (same as CUP).

Index - Move cursor down one line with no
horizontal movement. An attempt to move
the cursor beyond the last line results in the
cursor stopping at the same column of the
last line.

N ext line - Move cursor to start of the
following line. An attempt to move the
cursor beyond the last line results in the
cursor stopping at the start of the last line.

Reverse index - Move cursor up one line.
An attempt to move the cursor beyond the
first line results in the cursor stopping at
the same column of·· the first line.

SCREEN SCROLLING COMMANDS

"ESC", "[If ,n, "S" SU Scroll Up - Move entire screen contents up n
lines. All lines moved off the top of the
screen are permanently erased while n erased
lines are inserted at the bottom of the
screen.

FORMAT EFFEC"IOR COMMANDS (TABULATION 1 SPECIAL AREAS)

"ESC", "[" ,f ti, "g" TBC

Page 2-4

Tabulation Clear - Clears tab stops according
to f#:

30 Clear horizontal tab at cursor
(default).

31 Clear vertical tab; at current line.

7100-0023-00 05-20-83·

"ESC", "P' ,f #, "W" CTC

"ESC" ,"H" HTS

"ESC","J" VTS

VISUAL DISPLAY EDITING

"ESC" ,"P' ,n,"@" ICH

"ESC", "P' ,f #, "J" ED

05-20-83

CP/M-86

PROGRAMMER'S GUIDE

33 Clear all horizontal tab stops.

34 Clear all vertical tab stops.

Cursor Tab Control - Sets or clears tab
stops according to f # •

30 Set horizontal tab stop at the current
cursor position (default).

31 Set vertical tab stop at the current
line.

32 Clear horizontal tab stop at the
current cursor position.

33 Clear vertical tab stop at the current
cursor position.

35 Clear all horizontal tab stops.

36 Clear all vertical tab stops.

Horizontal Tab Set - Set horizontal tab stop
at current position.

Vertical Tab Set - Sets vertical tab at
active line.

Insert Characters - Insert n spaces from the
current cursor position. Existing characters
are shifted away from cursor (forward or
backward depending on HEM (defined on page
2-10). Characters that are shifted off the
screen are lost.

Erase Display - Erases some or all of the
displayed characters depending on f#:

30 From cursor position to end inclusive.

31 From start to cursor position.

32 All of display.

7100-0023-00 Page 2-5·

VECTOR GRAPmC, INC.

"ESC", "[" ,f # ,"K" EL

"ESC", "P' ,n, "L" IL

"ESC", "[" ,n, "M" DL

"ESC", "[,, ,n, "P" DCH

"ESC", "[II ,n, "X" ECH

"ESC", "[" ,f #, "m" SGR

Page 2-6

Erase In Line - Erases some or all of the
characters in the current line depending on
f#:

30 From cursor position to end inclusive.

31 From start to cursor position inclusive.

32 All of the line inclusive.

Insert Line - Inserts n blank lines at the
current cursor line. Previous lines shifted
up. All lines shifted beyond the first line
are permanently lost.

Delete Line - Deletes n lines from the
current cursor line inclusive. Adjacent lines
are shifted upward toward current line.
Erased lines (n) are added to the bottom of
the display.

Delete Characters - Deletes n characters
from the current cursor inclusive, adjacent
characters are shifted toward cursor {forward
or backward depends on HEM (defined on
page 2-10). Erased characters (n) are added
to the appropriate end of the shifted
characters.

Erase Characters - Erases n characters after
the current cursor position inclusive. Cursor
does not move.

Select Graphic Rendition - Selects graphic
mode according to function # :

30

37

31";"30

31 ";"31

31 ";"32

7100-0023-00

Normal Video (light on dark
background)

Reverse Video (dark on light
background)

Standard Character Set (default)

Alternate Character Set

Foreign Video Conversion
Enabled

05-20-83

MISCELLANEOUS FUNCTIONS

"ESC", "[" ,n, "b"

"ESC", "c"

"ESC", "P' ,n,2 2H,
IIcharsll ,22H,"p"

REP

RIS

KRA

31";"33

31 ";"34

31 ";"35

31";"36

31 ";1137

CP/M-86
PROGRAMMER 1S GUIDE

Foreign Video Conversion
Disabled

Keyboard Standard (Vector 3
compatible)

Keyboard Physical (No
conversion)

Keyboard Foreign Conversion
Enabled

Keyboard Foreign Conversion
Disabled

Repeat - The previous single character is
repeated n times.

Reset to Initial State - Reset screen to the
initial condition (Resets modes, keyboard
reassignment buffer and sets horizontal tab
stops every 8 positions) note: This command
has no visible effect on the screen.

Keyboard Reassignment - (non ANSI standard
implementation). Allows the user to reassign
the keyboard hex codes to another
representation in the form of one or more
ASCn characters (including command strings
as interpreted here). The first numeric
parameter is the value which is replaced (by
the subsequent parameters) when it appears
in the console input buffer. The replacement
values may be either numeric parameters as
previously discussed or an ASCII string
beginning and ending with the character 22H
(II) or any combination of both. Example:

1B 5B 31 39 33
esc [---n----

22 S~T *.* OD 22 70
"-string---- " p

Whenever the F1 key is depressed the
CP/M-8S command STAT *.* will be executed
automatically. Note: The carriage return
must be included if you want the command
string to be execu ted. When adding a new
reasSignment, the following sequence is
returned in the input buffer:

05-20-83 71 0 0-0 0 2 3-0 0 Page 2-7

VECTOR GRAPHIC,INC.

"ESC","[",nl,";",n2,"r" SSC

"ESC", If[" ,nl,";" ,n2, "q" SSL

"ESC", "[", "x" RRS

"ESC", "P',f #, "chars", "0" SSD

"ESC", "[", "0", "w" =successful
"ESC","[","I","w" =not successful (buffer full)

Set Screen Columns - (non ANSI standard)
Allows the user to define an active screen
which is within the first and last physical
screen columns: nl = starting column, n2 =
ending column.

Set Screen Lines - (non ANSI standard)
Allows the user to define an active screen
which is within the first and last physical
screen lines: nl = starting line, n2 = ending
line.

Return Reassignment Space - returns the
following sequence: "ESC", "[" ,nl, ";" ,n2, "P'
where: nl = size in bytes of the
reassignment buffer and n2 = # of empty
reassignment buffer bytes.

Set Status Display - (non ANSI standard)
Allows the user to print a message on the
bottom (25th) line (cols. 1-70) and turn the
clock display (cols. 71-78) on/off according
to f#:

o Clock off - Normal Video
1 Clock on - Normal Video
2 Clock off - ReverSe Video
3 Clock on - Reverse Video

MODE MODIFICATION COMMANDS

"ESC", "[" ,f #, "s" SCM

Page 2-8

Set Video Command Mode - Sets command
interpretation for independent type commands
(i.e. "ESC",command) depending on fl. This
mode eliminates conflict between the ANSI
standard commands with that format and the
V ector ESC sequences.

30 A N SIs tan dar d mod e for ESC
commands.

31 Vector compatible mode for ESC
commands.

7100-0023-00 05-20-83

"ESCII, "[11," t" RSM

nO:

n1:

n2:

n3:

n4:

n5:

"ESC", "P',f #, "z" SLD

"ESC", "P', "v" RRT

"ESC", "[" ,f #,'~h" SM

"ESC", "[" ,f #,''1'' RM

05-20-83

CP/M-86
PROGRAMMER'S GUIDE

Return System Mode - Current system mode
is returned with the following format into
the input buffer: "ESC", "[",nO,n1,n2,n3,n4,n5,
"y" where:

30
31
32
33

30
31

30
31

30
31

30
31

30
31

List device mode 0 - ignore list output
List device mode 1 - Printer driver #1
List device mode 2 - Printer driver #2
List device mode 3 - Output to video
driver

Standard Character Set
Alternate Character Set (foreign)

Standard (V3) Keyboard Conversion
Physical Keyboard (no conversion)

Foreign Keyboard Conversion Disabled
" " 11 Enabled

Foreign Video Conversion Disabled
" " n Enabled

ANSI Standard command mode
Vector compatible command mode

Set List Device - according to f #:

30 Mode 0 - Ignore List Output
31 Mode 1 - Printer Driver #1
32 Mode 2 - Printer Driver #2
33 Mode 3 - List Output To Video Driver

Returns the following sequence into the input
buffer: "ESC", "[" ,n, "u"

30 Successful
31 List Device Busy
32 Driver Not Connected

Reset Reassignment Table - Clears all
entries in the reassignment table so that no
reassignments are in effect.

Set Mode - Sets mode according to f #:

Reset Mode - Resets mode according to f #:

7100-0023-00 Page 2-9·

VECTOR GRAPmC, INC.

The following modes are set or reset by SM and RM:

f#

34 IRVf Insertion/Replacement Mode

set - characters at cursor are shifted
left or right (depending on HEM) and
new characters inserted.

reset- characters at cursor are replaced
by new characters (default).

31,";",30 HEM Horizontal Editing Mode

32,";",30

set - causes DOH ,ICH and IBM to effect
characters preceeding the cursor.

reset- causes DOH ,ICH and IBM to affect
characters after the cursor (default).

Line Feed New Line Mode -

set - causes line feed (LF) to move cursor
to beginning of next line.

reset- causes line feed (LF) to move cursor
down one line with no horizontal
movement (default).

The following control sequences are also defined in ANSI 3.64 but are not
included in this implementation:

Me Appl icat ion Program Camtand
CXH cancel Character
CEVI Control Representation Mode
~ Device Attributes
~ Define Area ~alification
rx:::::s Device Control String
DMI Disable Manual Input
DSR Device Status Report
FA Erase in Area
EBM Editing Boundary Mode

Page 2-10 7100-0023-00 05-20-83·

EF Erase in Field
EMI Enable Manual Input
EPA End Protected Area
ESA End Selected Area
FEAM Format Effector Action Mode
FETM Format Effector Transfer Mode
FNT Font Selection
CATM Guarded Area Transfer Mode
GSM Graphic Size Modification
GSS Graphic Size Selection
HTJ Horizontal Tab with Justify
JFY Justify
RAM Keyboard Action Mode
MATM Multiple Area Transfer Mode
lVC Med ia Copy
MW Message Waiting
NP Next Page
esc Operating System COmmand
PLO Partial Line Down
PLU Partial Line Up
PM Privacy Message
PP Preceding Page
PUl Privacy Use One
PU2 Privacy Use Two
PUM Positioning Unit Mode
(;pAD Quad
SA'IlVI Area Transfer Mode
SD Scroll Down
SEM Select Edi ting Extent Mode
SL Scroll Left
SPA Start Protected Area
SPI Spacing Increment
SR Scroll Right
SRM Send-Receive Mode
SR]M Status Report Transfer Mode
SSA Start Selected Area
SS2 Single Shift 2
SS3 Single Shift 3
ST String Terminator
STS Set Transmit State
TSS Thin Space Specification
TTM Transfer Termination Mode
VEM Vertical Editing Mode

05-20-83 7100-0023-00

CP/M-86
PlIXEAM'r1ER IS CIJIDE

Page 2-11

VlCIm GlAmIC, IH:!.

vpm mlvm YlCIm <D1PATIHI.R a:MMNOO

A (am)
B (02H)
D (04H)
G (07H)
H (08H)
I (09H)
J (OAH)
M (om)
N (OEE)
P (lOH)
Q (llH)
R (12H)
T (14H)
U (15H)
W (l7H)
x (l8H)
Z (lAH)

ESC x Y
ESC " A
ESC " B
ESC '" C
ESC " D
ESC ,. E
ESC " F
ESC ,. G
ESC A H
ESC A I

Ini tial ize
Home
Clearscreen
Bell
Backspace
Tab
Linefeed
Car r iage ret
Toggle
Clrscreen
Clrline
Linefeed
Toggle
Upcursor
Curleft
Clrstart
Curight

Curpos
~
PCS
KPM
KSM
KFM
GV1E
(M)

FVCE
FVm

F<JmI<li vum <IMF.BSIOf

- Initializes screen
- Home cursor
- Clear screen and home cursor
- Audible bell
- Backspace
- Tab
- Linefeed
- Carriage Return
- Toggle reverse video cursor
- Clear to end of screen
- Clear to end of line
- Same as CRIL J
- Toggle reverse video character
- Move cursor up
- Move cursor left
- Clear to start of line
- Move cursor right

- x,y cursor positioning
- Standard Character Set
- Alternate Character Set
- Keyboard Physical Mode
- Keyboard Standard Mode
- Keyboard Foreign Mode
- Graphics Mode Enabled
- Graphics Mode Disabled
- Foreign Video Conversion Enabled
- Foreign Video Conversion Disabled

When the video driver is in the Foreign Video Conversion Enabled mode,
the following convers ions take place between the code sent to the video
driver and the code displayed in the screen.

ACTUAL <XDE

Page 2-12

40
5B
5C
5D
5E
60
7B
7C
7D
7E

CCNVERIED VIDEO <XDE

16
17
18
19
1A
IB
lC
ID
IE
IF

7100-0023-00 05-20-83

U Console Input

CP/M-86
PROGRAMMER'S GUIDE

The console input routine is responsible for handling the physical interface
with the keyboard. It performs the actual retrieval, buffering and conversion
functions. The character input and buffer fill functions are performed as
part of the interrupt service procedure. The character is buffered in its raw
physical state. All character conversions are done on the character when it
is read from the buffer.

USER PROGRAMMABLE KEYCODE TRANSLATION

Another responsiblity of the console input function is to handle the keycode
translation function on the input side. Translation is defined as the
conversion of one input code to a different output code or number of output
codes. This is done by searching through the translation table for a
matching input code. If a matching input code is found, the output codes
are sent through the console channel instead of the original input code. The
original implementation uses a 512 byte table to store the original code,
number of output translation codes and actual output translation code or
codes. The output string may not exceed 255 codes in length. The table is
maintained so that no two identical input codes exist concurrently. If a
command is received specifying a translation with an input code that already
exists in the table, the existing entry is replaced with the new entry. If the
translation is specified with a length of zero the matching entry would be
removed with no new entry added. The number of entries in the table is
dependent on the length of each entry. The sum of the lengths may not
exceed the total table length.

FOREIGN KEYBOARD CONVERSION

When the video driver is in the Keyboard Foreign Mode, the following
conversions take place between the physical code returned by the keyboard
and the logical code returned by the system. This function is implemented
by adding these conversions to the keyboard conversion table. If one of the
physical codes required by this function was mapped before this function was
enabled, the old mapping of that physical code will be destroyed.

05-20-83 7100-0023-00 Page 2-13

VECTOR GRAPHIC, INC.

After this function has been enabled, the physical codes may be selectively
mapped to other logical values.

PHYSICAL rroICAL
-------- -------

B1 40
B2 5B
B3 5C
B4 5D
B5 5E
B6 60
B7 7B
B8 7C
B9 7D
FF 7E

Page 2-14 7100-0023-00 05-20-83

SECTION III - DEVICE DRIVERS

.a.J.. Overview of Device Drivers

CP/M-86
PROGRAMMER '8 GUIDE

The following description of the printer/communications interface is intended
for CP/M-86. Each printer/communications driver is a stand alone program
structured as a CP/M-86 8080 model where the code, data, stack and extra
segment all have the same base address. All data storage and code must be
within the printer driver. All segment registers must be returned to original
value on exiting. All other registers may be modified. Two printer drivers
and one communications driver are supported within each system. The initial
implementation will statically preallocate 3K of memory for each printer
driver and 2K of memory for the communications driver.

Control is transferred to specific functions within the printer/communications
device using a jump table that begins at the start of the segment.
Immediately following the jump table is a table of parameters to be used
within the printer/communications driver.

If the function is returned incomplete, all required input values should be
preserved for a subsequent recall.

NOTE: Examples of device drivers (Communication and Printer) exist on the
"system" disk which came with your Vector 4. The "Config" Program
(described in User's Guide) is used to integrate the drivers into your system
configuration •

.a.a Printer Driver EnD:y Point and Data Block Descriptiom

The following entry points are located at the beginning of the driver. The
entry points are used to pass control to the various routines within the
driver.

driver+o JMP INITIALIZE
driver+3 JMP STA'IUS
driver+6 JMP DATA.JXJTPur
driver+9 JMP n\TA_INPur

future expansion of table

05-20-83 7100-0023-00 Page 3-1

VOC1m rnAPHIC, D£.

Data storage begins at driver + 24

driver+24 DRIVER. NAME byte * 16
dr iver+40 !RIVER CL/1YPE byte
driver+41 DRIVER. INT .DES byte
driver+42 SERIAL INIT byte
driver+43 FCHJILENGIH byte
driver+44 TCP MARGIN byte
driver+45 LAST LINE byte
driver+46 AUltPAGE byte

IlESCBIETION Of BHTRY :eOINTS

INITIALIZE - This routine should initialize the communicating hardware.
Serial drivers should be initialized according to the data byte
describing baud rate, parity, etc. For parallel devices, any special
sequences should be sent, clearing ports. The connected device, when
applicable, should be set to a known state. Initialization of special
functions, within the printer, should also be done at this time (e.g.
horizon tal, vertical tab settings, etc.) Reset any line counting
functions supported by the driver. Also any character buffering done
by the driver should be cleared.

Required information - none
Returned information - (AL) completion status

(EOC) printer condition information

STATUS - This routine should return general printer I/O status.

Required information - none
Returned information - (AL) completion status

(EOC) printer condition information

~~CUTPUT - This routine sends a data character to the printer. An
incomplete status exists until the printer has successfully
transmi tted the character or a faul t has occurred.

Required information - (BL) character to be printed
Returned information - (AL) completion status

DATA-INPUT - This routine receives a data character fran the printer.

Page 3-2

An incomplete status exists until a data character has
successfully been received from the printer or a fault has
occurred.

Required information - none
Returned information - (AH) character (if successful)

(AL) completion status

7100-0023-00 05-20-83

a>/M-86
PRXllM'MER'S mIDE

TmmPIICN <F l)\TA fiIl'llA03

DRIVER NAME - Text description identifying driver. The name should be
left justified in a field size of 16, padded with spaces.

DRIVER CL/TYPE - Byte value identifying class and type of driver.

There are two bytes located at the front of all Vector 4 CP/M
printer driver modules that provide information about the printer
and its interface to the system. The first byte, located at
DVR+40, contains the printer class and type codes. The printer
class code is contained in the upper nibble (bits 4-7) while the
printer type code is contained in the lower nibble (bits 0-3).

Bit 7---> O:X::CI'I'l'l' < --- Bit 0

The assigned printer class codes are:

0000 =Undefined
0001 =Draft Printer (Line Printers)
0010 =Word Processing Printer (Letter Quality)
0011-1111 =Undefined

The assigned printer type codes depend on the printer class and
are assigned as follows:

Type Code Class 1 Class 2

0000 No Printer No Printer
0001 Standard Serial (TI 810) Qume (Parallel)
0010 Centronics NBC (Parallel)
0011 Epson Serial

(EIX/ACK or xm/XOFF)
0100-1110 Undefined Undefined
1111 OJstan OJstan

DRIVER INT.DES - Byte value identifying interface characteristics.

05-20-83

The second byte, located at DVR+41, contains the Interface
Descriptor byte. It is composed of four separate fields;

Bit 7 ---> HHH U PPP I <--- Bit 0

7100-0023-00 Page 3-3·

'VICIOt rnAPHIC, m:::.

The upper three bits (HHH) contain the hardware environment code.
the following values have been ass igned:

000 =1/0 2 Board
001 =zc::B Board
010 =Vector 4 SEC
011 =1/0 2 or ~ Serial
100-111 =Undefined

Bit 4 (U) is an undefined field.

Bits 1 through 3 (PPP) contain the Protocol COde. The following
values have been assigned:

000 =Hardware handshaking
001 =ETX/ACK Protocol
010 =~/XOFF Protocol
011-111 =Undefined

Bit 0 (1) is the interface type bit. If this bit is set (1) then
the interface is serial. If this bit is reset (0) then the
interface is parallel.

SERIAL INIT - Byte value specifying serial communications parruneters as
defined below.

7 6 5

----baudrate-----

000 = 110
001 = 150
010 = 300
all = 600
100 = 1200
101 = 2400
110 = 4800
111 = 9600

4 3

--parity-

xO = none
01 = odd
11 = even

2 1 a

stopbit -wordlength-

o = 1 10 = 7 bits
1 = 2 11 = 8 bits

FORMLENGTH - Byte value specifying number of physical lines per page.

TOP MARGIN - Byte value specifying number of blank lines in top margin.

LAST LINE - Byte value specifying last line printed on page.

A UTOPAGE - Byte value specifying auto page activity (NZ = active).

Page 3-4 7100-0023-00 05-20-83

CP/M-86

PROGRAMMER'S GUIDE

PRINTER CONDITION INFORMATION

The printer condi tion information is both general purpose and device
dependent. The following section will describe the functions and organization
of the general purpose bits. If the bit is set the condition exists.

bi t 0
bi t 1
bit 2
bi t 3
bi t 4
bi t 5
bi t 6
bit 7
bi t 8
bit 9-15

printer is busy
printer is inoperative
printer is offline
I/O error
input character available
output buffer is full
paper is out
ribbon is out
timeout
device dependent information

COMPLETION STATUS

A completion status exists for each function. The status is checked on
return and the routine is recalled if the function is marked incomplete. This
requirement is necessary in order to maintain control within the operating
system for real time required scheduling functions. When the operation is
complete, the completion bit should be cleared along with the corresponding
successful/not successful setting of the status bit. The function of the
individual bits are defined as follows:

bit 0
bit 1
bi t 2

function incomplete
function not successful
reserved

U Communication Driver EntJ:y Point and Data Block Descriptions

The entry points are located at the beginning of the driver. The entry
points are used to pass control to the various routines within the driver.

driver+O
driver+3
driver+6
driver+9

JMP
JMP
JMP
JMP

INITIALIZE
STATUS
DATA_OUTPUT
DATAJNPUT

future expansion of table

Data storage is located at driver start + 24

05-20-83

driver+24
driver+40

DRIVER NAME
SERIAL INIT

7100-0023-00

byte * 16
byte

Page 3-5

VECTOR GRAPHIC, INC.

DESCRIPTION OF ENTRY POINTS

INITIALIZE - Initialize the communicating hardware. Initialize any serial
ports using parameters specified in SERIAL INIT data byte. Initialize
the connected device when applicable to a known state. Some
communications devices may require a sequence of characters to be
sent to prepare them for use. Clear any buffers that are used.

Required information - none
Returned information - (AL) completion status

(EOC) communication condition information

~TUS - This routine should return the general I/O status of the
communications channel.

Required information - none
Returned information - (AL) completion status

(EOC) communication condition information

n\TA-CUIPur- This routine transmits a data character to the device.
An incomplete status exists until the data character has
successfully been transmitted or a fault has occurred in the
hardware.

Required information - (BL) data to be transmitted
Returned information - (AL) completion status

DATA-INPur - This routine receives a data character from the
communicating device. An incomplete status exists until a data
charac ter has successfully been received or a faul t has occurred
in the hardware.

Page 3-6

Required information - none
Returned information - (AH) character (if successful)

(AL) completion status

7100-0023-00 05-20-83

CP/M-86
~'S(DIDE

DRIVER NAlVlE - 16 characters for name left justified and padded with
spaces.

SERIAL INIT - byte where each bit is described below

7 6 5 4 3 2 1 o

----baudrate----- --parity- stopbit -wordlength-

000 = 110 xO = none o = 1 10 = 7 bits
001 = 150 01 = odd 1 = 2 11 = 8 bits
010 = 300 11 = even
011 = 600
100 = 1200
101 = 2400
110 = 4800
111 = 9600

COMMl,1NICATION CONDITION INFORMATION

The communications condition information specifies both the physical state of
the communications port and any attached modem hardware. The function of
the individual bits are defined as follows:

05-20-83

bi t 0
bi t 1
bi t 2
bi t 3
bi t 4
bit 5
bit 6
bit 7
bi t 8
bi t 9
bit 10
bi t 11
bit 12
bi t 13
bi t 14
bi t 15

delta clear to send
delta data set ready
trailing edge ring detector
delta receive line signal detect
clear to send
data set ready
ring indicator
received line signal detect
data ready
overrun error
parity error
framing error
break detect
~it holding register empty
~it shift register empty
time out

7100-0023-00 Page 3-7·

VECTOR GRAPHIC, INC.

COMPLETION STATUS

A completion status exists for each function. The status is checked on
return and the routine is recalled if the function is marked incomplete. This
requirement is necessary in order to maintain control within the operating
system for real time required scheduling functions. When the operation is
complete the completion bit should be cleared along with the corresponding
successful/not successful setting of the status bit.
The function of the individual bits are defined as follows:

bi t 0
bit 1
bi t 2

function incomplete
function not successful
reserved

.ad UO Function Remap,ping

The I/O byte implementation will correspond as close as possible to the
original INTEL standard of mapping logical to physical devices. The IOBYTE
function creates a mapping of logical to physical devices which can be
altered during CP/M-86 processing. The byte is broken up into 4 fields of 2
bits each. The following is a description of each field:

CONSOLE - The principal interactive console which communicates 'with the
operator, accessed through CONST, CONIN and CONOUT. In this
implementation, the default console is the memory mapped video screen
and associated keyboard on the Vector 4 system.

LIST - The principal listing device. This implementation supports two online
list device drivers. The current-list-device is the driver that is used
for all list output and input. The current-list-device may be
established through the use of a video driver command, extended
function or command within the CONFIG utility.

AUXILIARY
OUTPUT - In this implementation, the A UXO is considered the

communications output channel. The actual device driver is user
definable and may be loaded interactively by the user.

AUXILIARY
INPUT - In this implementation, the AUXI is considered the communications

input channel. The actual device driver is user definable and may be
loaded interactively by the user.

Page 3-8 7100-0023-00 05-20-83

CP/M-86

PROGRAMMER'S GUIDE

I/O BYTE ORGANIZATION (ALL VALUES ARE IN BITS)

OFFSET LENGIH DESCRIPTICN
--
1 0 2 <XNSOLE mapp i ng
2 2 2 AUXI LIARY CUIPur mapp i ng

(to communication device)
3 4 2 AUXILIARY INPur mapping

(fran communication device)
4 6 2 LIST mapping

The following is a chart showing the route of information for the console and
list logical device mapping. All mapping is done from a single logical to
physical level. Any device mapping for the A UXO and A UXI is not
recognized by this implementation.

<XNSCLE FIElD = 0
= 1
= 2

-- TTY ----------------------------+
-- CRT -------------------------+ I
--BA1CH --------------------+ I I = 3 -- OOMM ------------------+ I I I

LIST FIElD = 0 -- MONITOR ------------+
= 1 -- CRT -------------+ I
= 2 -- LPT ----------+ I I
= 3 -- OOMM ------+ I I I

I I I I
I I I I

INPUf rnARACrER FRQ\1 LIsr-------1 I I I
CUIPUf rnARACrER 10 LI sr-------- I + I +

I I I I

I I I I
I I I I
I I I I
I I I I
I I I I
I I I I
I I I I
I I I +
I + I +
I I I I

INPur rnARACrER FRlVI CXlirSOLE----1 I I I + + + +
OUIPUf rnARACrER 10 CXlirSOLE-----1 I + + + + + I

I I I I I I I I
INPUf rnARACrER FRQ\1 OOMM. ------ I I I I + + I I
CUIPur rnARACrER 10 OOMM. -------+ I I I + I I I

05-20-83 7100-0023-00 Page 3-9

VECTOR GRAPHIC, INC.

Page 3-10 7100-0023-00 05-20-83

SECTION IV - VECTOR 4 CP/M SIMULATOR

U Overview of Vector 4 CP/M Simulator

CP/M-86
PROGRAMMER'S GUIDE

The Vector 4 CP/M simulator is designed to allow eight bit CP/M programs
to be run under the CP/M-S6 Operating System. The simulator performs this
task by converting eight bit operating system calls to sixteen bit operating
system calls. The actual eight bit code is executed by the ZSO in the
Vector 4. When the eight bit code makes an operating system request, the
parameters are passed to the sixteen bit system by the pseudo BDOS
contained in the simulator. Control is then passed to the sixteen bit system
where the function is performed. The simulator also contains a pseudo BIOS
to convert eight bit BIOS calls to sixteen bit BIOS calls.

Vector 4 CP/M contains many functions not available in CP/M-S6. These
functions are performed in the simulator. The simulator is designed to
execute eight bit software in a manner as true to Vector 4 CP/M as possible.
This does not mean that any CP/M program will run under the simulator.
Only CP/M programs which make conventional interfaces to the operating
system will execu te properly (using same amount of memory in same
environment). This is the same constraint that has existed with Vector 4
CP/M. No interrupt support is provided.

4.2 Vector 4 CP/M Simulator Operation

The simulator exists on CP/M-S6 as a program file named R UN8. The
command format for executing the simulator is as follows:1

A) R UN8 [program-name [argument [argument. ••] J]

Where:

program-name the name of a CP/M .COV1 program file excluding
.COVI extens ion.

argument optional arguments separated by spaces.

The simulator will then be loaded from the currently logged logical disk and
will be passed to the remainder of the command line. The simulator will
then process the remaining command line into a program name and associated
arguments. The simulator will then load the eight bit program into memory
and place the remaining arguments in their respective locations. Th e
simulator then passes control to the Z80 processor and jumps to location
100H, the normal eight bit CP/M entry point.

1 NOTE: No spooling features will be supported initially.

05-20-83 7100-0023-00 Page 4-1

VECTOR GRAPHIC, INC.

The Z80 executes until a BDOS or BIOS call is performed. At that time,
control is passed to the sixteen bit operating system and the function is
performed. After the function is complete, the 8088 processor returns
control to the Z80 and the eight bit program continues. When the eight bit
program terminates, control is passed to the command processor of the
sixteen bit system and the process is complete. The file system used for the
simulator is that of the sixteen bit system. This means that the default
drive, and logical drive layout will appear identical to both the eight bit
system and the sixteen bit system. Also, all files from each system will be
available to the other.

!.l Simulator Implementation

The following sections describe each Vector 4 CP/M BDOS call and how it is
simulated by the Vector 4 CP/M simulator program. The section after the
"Entry Parameters" may refer to Appendix A. This appendix is found in the
Vector 4 CP/M Programmer's Guide.

The "Simulator Action" Section contains the reference "See Description
Above". This refers to the paragraph(s) which summarizes this function.
This paragraph(s) is located under the "Entry Parametersll and/or the
"Returned Values" subtitles.

!.a.l. BDOS Functions 0-15

FUNCTION 0; SYSTEM RESET

Entry Parameters: Register C - ~~H

The SYSTEM RESET function will return control to the Vector 4 CP/M
operating system at the CCP level. All records and files locked by the
calling program are released. The CCP reinitializes the disk SUbsystem by
selecting and logging-in Drive A. To this particular process, this has exactly
the same' effect as a freshly booted system, or entering BYE from the CCP.

Simulator Action:

The simulator will process function 0 (SYSTEM RESET) by making the
corresponding host system BDOS call. The registers will be passed and
returned in the same manner used in Vector 4 CP/M (See Description Above).
This call when completed will transfer control back to the host operating
system CCP.

Page 4-2 7100-0023-00 05-20-83

FUNCTION I: CONSOLE INPUT

Entry Parameters:

Returned Value:

Register C - ~lH

CP/M-86
PROGRAMMER'S GUIDE

Register A - ASCII Character

The CONSOLE INPUT function will read the next console character to
register A. Graphic characters, along with [RETURN], line feed, and
backspace, [DEL], or [CTRL H], are echoed to the console.

Tab characters, [CTRL 11, are expanded in columns of eight characters. A
check is made to terminate process [CTRL C], start/stop scroll [CTRL S] and
start/stop printer echo [CTRL p].

The BD OS does not return to the calling program until a character has been
typed, thus suspending execution if a character is not ready.

Simulator Action:

The simulator will process function 1 (CONSOLE INPUT) by making the
corresponding host system BIOS calls required to perform the function. The
registers will be passed and returned in the same manner used in Vector 4
CP/M (See Description Above).

FUNCTION 2: CONSOLE OUTPUT

Entry Parameters: Register C - ~2H
Register E - ASCII Character

The CONSOLE OUTPUT function will send the ASCII character from
register E to the video driver, then to the console device. Similar to
function 1, tabs are expanded and checks are made for terminate process,
start/stop scroll and printer echo. Graphics or non-standard characters (such
as foreign character sets) should be called through this function, rather than
directly through the video driver PROM.

Simulator Action:

The simulator will process function 2 (CONSOLE OUTPUT) by making the
corresponding host system BIOS calls required to perform the function. The
registers will be passed and returned in the same manner used in Vector 4
CP/M (See Description Above).

05-20-83 7100-0023-00 Page 4-3

VECTOR GRAPHIC, INC.

FUNCTION 3: READER INPUT

Entry Parameters: Register C - 03H

Returned Value: Register A - ASCII Character

The READER INPUT function will read the next character from the logical
reader into register A. Control does not return until the character has been
read.

Simulator Action:

The simulator will process function 3 (READER INPUT) by making the
corresponding host system BIOS calls required to perform the function. The
registers will be passed and returned in the same manner used in Vector 4
CP/M (See Description Above).

FUNCTION 4: PUNCH OUTPUT

Entry Parameters: Register C - 04H
Register E - ASCII Character

The Punch Output function will send the character from register E to the
logical punch device.

Simulator Action:

The simulator will process function 4 (PUNCH OUTPUT) by making the
corresponding host system BIOS calls required to perform the function. The
registers will be passed and returned in the same manner used in Vector 4
CP/M (See Description Above).

FUNCTION 5: UST OUTPUT

Entry Parameters: Regis~erC - 05H
Register E - ASCII Character

The LIST OUTPUT function will send the ASCII character in register E to
the selected logical listing device. In the event that the spooler is being
used and a disk error occurs, the function returns 0FFH in register A,
otherwise a 0 is returned in register A.

Simulator Action:

The simulator will process function 5 (LIST OUTPUT) by making the
corresponding host system BIOS calls required to perform the function. The
registers will be passed and returned in the same manner used in Vector 4
CP/M (See Description Above).

Page 4-4 71 0 0-0 0 2 3-0 0 05-20-83·

FUNCTION 6; DIRECT CONSOLE I/O

Entry Parameters:

Returned Value:

Register C - 06H

CP/M-86
PROGRAMMER '8 GUIDE

Register E - 0FFH - COnsole Input/Status
0FEH - Keyboard Status
0Fm - Input
ASCII Character (Output)

Register A - Status or ASCII Character (No
Value)

The DIRECT CONSOLE I/O function is supported under CP/M for those
special applications where simple console input and output is required. Use
of this function should, in general, be avoided since it bypasses all of CP/M's
normal control character functions (e.g., [CTRL S], [CTRL X]). Programs
which perform direct I/O through the BIOS under previous releases of CP/M,
however, should be changed to use direct I/O under the BDOS so that they
can be fully supported under future releases of CP/M.

Upon entry to function 6, register E either contains a hexadecimal value
FDH - FFH, denoting a console input request, or an ASCII character. If
the input value is not in the range 0FDH - 0FFH, function 6 will output the
character in the E register to the system console.

REGISTER E:

0FFH

0FEH

0FDH

ASCII

MEANING:

Console Input and status: register A = input
character or if no character is ready, zero is
returned.

Console status: register A = 00 if no
character is ready or FF if a character is
available at the console.

Console input: returns an input character in
register A and suspends the calling process
until a character is ready.

Console output:
the console.
register A.

Sends value in register E to
No value returned in

An important difference between Function 6 and Function 1 (Console Input) is
that Function 6 does Wl.t. echo the character to the console. It is possible,
using Function 6, to get the character, evaluate it against your program
parameters, and throw it out if it does not meet the parameters or print it
if it does.

05-20-83 7100-0023-00 Page 4-5

VECTOR GRAPHIC, INC.

Simulator Action:

The simulator will process function 6 (DIRECT CONSOLE I/O) by making the
corresponding host system BIOS calls required to perform the function. The
registers will be passed and returned in the same manner used in Vector 4
CP/M (See Description Above).

FUNCTION 7: GET IOBYTE

Entry Parameters: Register C - ~7H

Returned Value: Register A - IOBYTE Value

The GET IOBYTE function will return the current value of the IOBYTE in
Register A.

Simulator Action:

The simulator will maintain a pseudo I/O byte. This is required because of
the differences between the I/O byte in Vector 4 CP/M and the standard I/O
byte configuration contained in CP/M-S6. The simulator will implement the
I/O functions of the I/O byte with a combination of BIOS calls Vector 4
System Function Calls.

FUNCTION 8: SET IOBYTE

Entry Parameters: Register C - 08H
Register E - New IOBYTE value

Returned Value: Register A - Return Code

The two most Significant bits of the IOBYTE are used to define the
destination of the list output stream. A value of 1~' for the two bits
specifies that all list output is to be discarded. A value of '1' selects echo
to console and values of '2' and '3' select list device one and list device
two, respectively.

All changing of the IOBYTE should be done using this function. The least
significant 6 bits are reserved for future use and should be maintained when
changing the list device. This can be accomplished by first getting the
IOBYTE (see function 7) and making only the necessary changes and then
performing function 8.

In the event that the user attempts to select a printer which is busy (the
printer is being used by the despooler or by another process), the IOBYTE
will not be altered and an ~FFH will be returned in the A register; in other
cases the A register will return a ~~H.

Page 4-6 7100-0023-00 05-20-83

CP/M-86
PROGRAMMER'S GUIDE

Simulator Action:

The simulator maintains a local pseudo I/O byte. This function causes the
local I/O byte to be updated depending on the passed parameters. See
function 7 (Get I/O Byte) for further information.

FUNCTION 9: PRINT STRING

Entry Parameters: Register C - ~9H
Registers DE - String Address

The PRINT STRING function will send the character string stored in memory
at the location given by DE to the console device, until a '$' is encountered
in th e string. Tabs are expanded as in function 2, and checks are made for
terminate process, start/stop scroll, and printer echo. To print a '$'
character, set bit 7 of the character and the '$' will not be recognized as
an end of string delimiter.

Simulator Action:

The simulator will process function 9 (PRINT STRING) by making the
corresponding host system BIOS calls required to perform the function. The
registers will be passed and returned in the same manner used in Vector .:~
CP/M (See Description Above).

FUNCTION 10: READ CONSOLE BUFFER

Entry Parameters: Register C - ~AH
Register DE - Buffer Address

Returned Value: Console Characters in Buffer

The READ BUFFER function will read a line of edited console input into a
buffer addressed by register DE. Console input is terminated when the input
buffer overflows, or when a [RETURN] is entered from the keyboard. The
Read Buffer takes the form:

DE: +0 +1 +2 +3 +4 +5 +6 +7 +8 +n

:mx:nc:cl:c2:c3:c4:c5:c6:c7: ••• .99 •

where 'mx' is the maximum number of characters which the buffer will hold
(1 to 255), 'nc' is the number of characters read (set by BDOS upon return),
followed by the characters read from the console.

05-20-83 7100-0023-00 Page 4-7

VECTOR ,GRAPHIC, INC.

If the number of characters read did not fill the buffer to capacity, (nc is
less than mx), then uninitialized positions follow the last character, denoted
by'??' in the above figure. A number of control functions are recognized
during line editing:

[cmL C] Warm-Starts when at the beginning of line
[CiRL E] causes physical end of line
[CiRL H] Backspaces one character position
[CiRL J] (Line feed) terminates input line
[CiRL M] (Return) terminates input line
[CiRL R] Retypes the current line after new line
[CiRL U] Removes current line after new line
[CiRL X] Backspaces to beginning of current line
[CiRL K] Form feeds current list device
[CiRL p] Toggles printer echo
[DEL] Same as [GIRL H] or [Bt'CKSP~]

Note also that certain functions which return the carriage to the leftmost
position (e.g., [CTRL Xl) do so only to the column position where the prompt
ended (in earlier releases, the carriage returned to the extreme left margin).
This convention makes operator data input and line correction more legible.
The input string will be terminated by a null.

Simulator Action:

The simulator will simulate the actions performed by function 10 (Read
Console Buffer). The simulator will input characters one at a time and
perform all edi ting and control functions listed above. All register
conventions and parameter passage conventions utilized in Vector 4 CP/M will
be maintained.

FUNCTION 11: GET CONSOLE STATUS

Entry Parameters: Register C - 9 BH

Returned Value: Register A - Console Status

The CONSOLE STATUS function will check to see if a character has been
entered at the console. If a character is ready, the value 0FFH is returned
in register A; otherwise, a 0lJH value is returned.

Simulator Action:

The simulator _ will process function 11 (GET CONSOLE STATUS) by making
the corresponding host system BIOS calls required to perform the function.
The registers will be passed and returned in the same manner used in Vector
4 CP/M·.(SeeDescription Above).

Page 4-8 7100-0023-00 05-20-83

CP/M-S6
PROGRAMMER'S GUIDE

FUNCTION 12: RETURN VERSION NUMBER

Entry Parameters: Register C - 9CH

Returned Value: Registers HL - Version Number

The RETURN VERSION NUMBER function will provide information which
allows version independent programming. A two-byte value is returned,
L = 99, for' all releases previous to Version 2.0.
CP /M 2.0 returns a hexadecimal '29' in register L, with subsequent Version
2.0 releases in the hexadecimal range 21 and 22 through 2F. Vector
Graphic's Vector 4 CP/M will return a value greater than or equal to '25H'.

Using function 12, for example, application programs can be written which
provide both sequential and random access functions, with random access
disabled when operating under early releases of CP 1M.

Simulator Action :

The simulator will return the value '25H' in the L register regardless of the
version of CP/M-S6 it is executing under.

FUNCTION 13: RESET DISK SYSTEM

Entry Parameters: Register C - 9DH

Returned Value: Register A - Return Code
Register H - Physical or Logical Error

The RESET DISK SYSTEM function will initialize the BDOS, reset the
Read/Write state for all disks, selects Drive A, and sets the default DMA to
89H. Normally, it returns 99H in register A; however, if a SUBMIT file
($$$.SUB) exists on the drive, this function returns ~FFH in register A. If a
physical error is returned during drive select, register H will return the
physical error code (see Appendix A for a discussion of errors).

Simulator Action:

The simulator will process function 13 (RESET DISK SYSTEM) by making the
corresponding host system BDOS call. The registers will be passed and
returned in the same manner used in Vector 4 CP/M (See Description Above).

05-20-83 7100-0023-00 Page 4-9

VECTOR GRAPHIC, INC.

FUNCTION 14: SELECT DISK

Entry Parameters: Register C - ~EH
Register E - Selected Disk

Returned Value: Register A - Return Code
Register H - Physical or Logical Error

The SELECT DISK function will designate a drive as the default drive for
subsequent file operations, with the value in register E = ~ for Drive A, 1
for Drive B, etc., through 15 corresponding to Drive P in a full sixteen drive
system.

The drive is placed in an 'on-line' status which, activates its directory until
the next cold start, warm start, or disk system reset operation. If the disk
media is changed while it is on-line, the drive automatically goes to a
Read-Only status in a standard CP/M environment (see function 28). FCBs,
which specify drive code zero (dr = ~~H), automatically reference the
currently selected default drive. FCBs with drive code values between 1 and
16, however, ignore the selected default drive and directly reference
Drives A through P.
If the SELECT DISK operation was successful, register A is zero upon

return. If a physical error is returned, register A is ~FFH and one of the
following physical error codes is returned in register H:

'1 -Permanent error ,4 -Select error

(See Appendix A for description of error codes)

Simulator Action:

The simulator will process function 14 (SELECT DISK) by making the
corresponding host system BDOS call. The registers will be passed and
returned in the same manner used in Vector 4 CP/M (See Description Above).

FUNCTION 15: OPEN FILE

Entry Parameters: Register C - ~FH
Register DE - FCB address

Returned Value: Register A - Directory Code
Register H - Physical or Logical error

The OPEN FILE function is used to activate a file which has already been
written to the disk for the currently active user number. The BDOS scans
the disk directory for a match in pOSitions 1 though 14 with the FCB
referenced by register DE. Note that if a file is to be accessed sequentially
starting at record 0, the current record byte ('cr') must be zeroed (byte s1 is
automatically zeroed).

Page 4-10 7100-0023-00 05-20-83

CP/M-86
PROGRAMMER'S GUIDE

Normally, no question marks are included and, further, bytes 'ex' and 's2' of
the FCB are zero. An error will occur if any field in the filename contains
a '?'. If a directory entry is matched, the relevant directory inform a tion is
copied into bytes d0 through dn of the FCB, thereby allowing subsequent file
access in read or write operations.

On systems operating in the 3.0 mode, the following information applies as
well:

An FCB checksum is computed and is used to verify that the file hasn't been
changed by another process or task during subsequent operations. Attribute
bits f5' and f6' of the filename in the FCB specify in which of three modes
the file will be opened:

f6' :

o
o
1

fS' :

o
1
o or 1

MIlE:

I..CX:EED l\fi)E (DEFAULT)
oo.a:KED l\fi)E
REAl)-(N.y M])E

Opening files in the Locked mode prevents other tasks from accessing the
same files. Opening files in the Unlocked mode allows other tasks to access
the same file provided that they do not access the same record (if that
record was locked), and that they also open the file in the unlocked mode.
Opening files in the Read-Only mode allows only read operations as well as
access for other tasks to the file provided that' they open it in the same
mode.

A successfully opened file is registered in a File Lock list. While this file
remains in the list, no other task can perform any operations on the file in
any mode other than the mode specified by the current task. Also, no other
task can delete, rename or modify any of the file's attributes. The file
remains in the lock list until permanently closed or the task that opened it
terminates.

In both 2.5 and 3.~ modes, an existing file must not be accessed until a
successful open operation has been completed.

05-20-83 7100-0023-00 Page 4-11

VECTOR GRAPmC, INC.

The OPEN function returns a 'directory code' with a value of S through 3 if
successful, or ~FFH (255 decimal) if the file cannot be found. Register H is
set to zero in both cases; if a physical or logical error is returned,
register H contains one of the following error codes:

'1 - PERMANENT ERROR ,4 -SELECT ERROR
'5 - FILE OPEN BY ANOTHER PROCESS OR BY CURRENT

PROCESS IN AN INCOMPATIBLE MODE (3.' ONLY)
'9 - '1' IN FILENAME OR EXTENSION FmLD 1, -PROCESS OPEN FILE IJMIT EXCEEDED· (3.' ONLY)
11 - NO ROOM IN THE SYSTEM LOCK LIST (3.' ONLY)

(See Appendix A, from the Vector 4 CP/M Programmers Guide, for a
description of the error messages)

Simulator Action:

The simulator will process function 15 (OPEN FILE) by making the
corresponding host system BDOS call. The registers will be passed and
returned in the same manner used in Vector 4 CP/M (See Description Above).
When the simulator is running under CP/M-86, file record locking will not be
supported.

Page 4-12 7100-0023-00 05-20-83

~ Bnos Functions 16-27

FUNCTION 16: CLOSE FILE

Entry Parameters:

Returned Value:

Register C - l~H

CP/M-86
PROGRAMMER '8 GUIDE

Register DE - FCB address

Register A - Directory Code
Register H - Physical/Logical Error
Registers DE - FCB Address

The CLOSE FILE function will perform the opposite function of OPEN FILE.
Given that the FCB addressed by DE has been previously activated through
an OPEN or MAKE function (see functions 15 and 22), CLOSE will write the
new FCB to the referenced disk directory. The FCB matching process for
the CLOSE is identical to the OPEN function.

In addition, on systems running in the 3.0 mode, the interface attribute f5' is
used to specify the mode in which the file is to be closed:

f5! MODE

~ Permanent close (default)
1 Partial close

The CLOSE FILE function will first verify that the referenced FCB has a
valid checksum; if it is valid and the referenced FCB contains new
information because of write operations to the FCB, the function permanently
records the new information in the referenced disk directory. The FCB will
not contain new information and the directory update step is bypassed if only
READ and/or UPDATE operations have been made to the FCB. The
function, however, always attempts to locate the corresponding FCB entry in
the directory and will return an error if the entry cannot be found.

If (in the 3.0 mode) the CLOSE has performed successfully and is permanent,
the function removes the file's item from the system lock list; if the FCB
was opened in unlocked mode, it also deletes all the filets record lock items
from the system lock list. Since the file's lock list item has been removed,
the function will invalidate the FCB checksum to ensure that the FCB cannot
be subsequently used with other BDOS functions requiring an open FCB.

In the event that a partial close is performed, the FCB and directory will be
updated as above. The file list information is not removed, however, and the
FCB checksum remains valid to allow further file access.

A successful operation in either mode returns 0, 1, 2, or 3 in register A,
while 0FFH (255 decimal) is returned if the file name cannot be found in the
directory; register H is set to zero in both cases. Files opened by systems
in the 3.0 mode should always be closed for optimal system operations in
systems using file tracking or in systems maintaining active file lists.

05-20-83 7100-0023-00 Page 4-13

VECTOR GRAPHIC, INC.

When a physical error is returned, register A is 0FFH and register H will
display one of the following:

gl - PERMANENT ERROR
g2 - READ-ONLY DISK
g4 - SELECT ERROR
gs - FCB CHECKSUM ERROR

Simulator Action:

The simulator will process function 16 (CLOSE FILE) by making the
corresponding host system BDOS call. The registers will be passed and
returned in the same manner used in Vector 4 CP/M (See Description Above).
When running under CP/M-S6, the record and file locking features are not
implemented.

FUNCTION 17: SEARCH FOB FIRST

Entry Parameters: Register C - llH
Register DE - FCB Address

Returned Value: Register A - Directory Code
Register H - Physical or Logical Error Code

The SEARCH FIRST function will scan the directory for a match with the
file given by the FCB addressed by DE. If the file is found, the current
DMA address is filled with the record containing the directory entry, and the
relative starting position is A * 32 (i.e., rotate the register A left 5 bits, or
ADD tAt five times). Although not normally required for application
programs, the directory information can be extracted from the buffer at this
position.

An ASCII question mark (63 decimal, 3F hexadecimal) in any position from 'fl'
through 'ex' matches the corresponding field of any directory entry on the
default or auto-selected disk drive. If the 'dr' field contains an ASCII
question mark, then the auto disk select function is disabled, the default disk
is searched, with the search function returning any matched entry, allocated
or free, belonging to any user number. This latter .function is not normally
used by application programs, but does allow complete flexibility to scan all
current directory values. If the tdr' field is not a question mark, the 's2'
byte is automatically zeroed.

The value 255 (hexadecimal FF) is returned if the file is not found, otherwise
9, 1, 2, or 3 is returned indicating the file is present. In either case,
register H is zero. If a physical or logical error is returned, register A
contains ~FFH and register H contains one of the following error codes:

Page 4-14

'1 -PERMANENT ERROR
g4-'SELEOT ERROR

7100-0023-00 05-20-83

Simulator Action:

CP/M-86
PROGRAMMER'S GUIDE

The simulator will process function 17 (SEARCH FOR FIRST) by making the
corresponding host system BDOS call. The registers will be passed and
returned in the same manner used in Vector 4 CP/M (See Description Above).

FUNCTION 18: SEARCH FOR NEXT

Entry Parameters: Register C - 12H

Returned Value: Register A - Directory Code
Register H - Physical or Logical Error Code

The SEARCH NEXT function will find the next occurrence of a match after
Function 17 is used. It returns the decimal value of 255 in register A when
no more directory items match.

NOTE: Vector has changed SEARCH NEXT so that it will keep track of its
last position in the directory. In this way other disk functions (i.e., DELETE
file, RENAME file) may be executed in the middle of a search.
If a physical or logical error is returned, register A contains ~FFH and
register H contains one of the following error codes:

'1 - PERMANENT ERROR '4 -SELECT ERROR

Simulator Action:

The simulator will process function 18 (SEARCH FOR NEXT) by making the
corresponding host system BDOS call. The registers will be passed and
returned in the same manner used in Vector 4 CP/M (See Description Above).

FUNCTION 19; DELETE FILE

Entry Parameters: Register C - 13H
Register DE - FCB address

Returned Value: Register A - Directory Code
Register H - Physical or Logical Error

The DELETE FILE function will remove files which match the FCB addressed
by register DE. The filename and extension may contain ambiguous
references but the drive select code must be unambiguous, as in the SEARCH
and SEARCH NEXT functions.

An open file can be deleted if opened in locked mode by the same process;
however, a checksum error will be returned if a· further reference to the file
occurs using a BDOS function that requires an open FCB.

05-20-83 7100-0023-00 Page 4-15.

VECTOR GRAPHIC, INC.

In the 3.0 mode, it is permissible to delete files if:

the file is not open by any user;

the file has been opened in the LOCKED mode by the user requesting
the deletion;

the file has been opened UNLOCKED by ~ the user requesting the
deletion.

DELETE FILE will return a decimal '255' if the referenced file or files
cannot be found; otherwise, a value in the range of ~ to 3 is returned if the
delete was successful. In both cases,register H is set to zero. If a physical
or logical error is returned, register A contains 0FFH and register H contains
one of the following error codes:

,,1 - PERMANENT ERROR
,,2 - READ-ONLY DISK
,,3 - READ-ONLY FILE
"4 - SELECT ERROR
,,5 - FILE OPEN BY ANOTHER PROCESS OR BY CURRENT

PROCESS IN AN INCOMPATIBLE MODE

Simulator Action:

The simulator will process function 18 (DELETE FILE) by making the
corresponding host system BDOS call. The registers will be passed and
returned in the same manner used in Vector 4 CP/M (See Description Above).

FUNCTION 20; READ SEQUENTIAL

Entry Parameters: Register C - 14H
Register DE - FCB Address

Returned Value: Register A - Error Code
Register H - Physical or Logical Error

The READ SEQUENTIAL function will read the next one to sixteen 128-byte
records from a file into memory beginning at the current DMA address. The
BDOS function 44 will determine the number of records to be read; the
default is one record. The FCB addressed by register DE must already be
activated by an OPEN or MAKE function call in order that this function can
read the next record from the file into memory at the current DMA address.

Each record is read from position 'crt of the extent, then the 'cr' field is
automatically incremented to the next record position. If the 'cr' field
overflows, the next logical extent is automatically opened and the 'cr' field
is reset to zero, to prepare for the next READ operation.

Page 4-16 7100-0023-00 05-20-83

CP/M-a6
PROGRAMMER'S GUIDE

Th e value ~0H is returned in the A register if the read operation was
successful; otherwise, one of the following errors is returned if no data
exists at the next record position or if a physical or logical error is
returned:

,,1 - READING UNWRITI'EN DATA
,,8 - RECORD LOCKED BY ANOTHER PROCESS
"9 - INV AIJD FCB
11 - UNLOCKED FILE VERIFICATION ERROR
255 - PHYSICAL ERROR (REFER TO REGISTER H)

PHYSICAL ERROR CODES; (FOUR LEAST SIGNIFICANT BITS OF Hl

,,1 - PERMANENT ERROR
,,4 - SELECT ERROR

Simulator Action:

The simulator will process function 20 (READ SEQUENTIAL) by making the
corresponding host system BDOS call. The registers will be passed and
returned in the same manner used in Vector 4 CP/M (See Description Above).

fUNCTION 21: WRITE SEQUENTIAL

Entry Parameters: Register C - 15H
Register DE - FCB Address

Returned Value: Register A - Return Code
Register H - Physical or Logical Error

The WRITE SEQUENTIAL function will write one to sixteen 128-byte records
beginning at the current DMA address into the file named by the F C B
addressed in register DE. BDOS function 44 (SET MULTI-SECTOR COUNT)
will determine the number of 128-byte records that are written; the default
is one record. The FCB must have been activated previously by an OPEN or
MAKE function call. If the FCB has been activated through an OPEN or
MAKE function, the WRITE SEQUENTIAL function will write 128 bytes
starting at the current DMA address to the file named by the FeB. The
record is placed at position Icrl of the file, and the Icrl field is
automatically incremented to the next record position. If the 'crt field
overflows then the next logical extent is automatically opened and the 'crt
field is reset to zero.

Write operations can take place into an existing file, in which case newly
written records overlay those which already exist in the file. The WRITE
function will, upon return, set register A to zero if the operation was
successful; otherwise, A may contain one of the following error codes.
If a physical or logical error is returned, register A will be 0FFH and the
error code will consist of one of the following in register H:

05-20-83 7100-0023-00 Page 4-17

VECTOR GRAPmC, INC.

'1 - WRITE MODE: NO DIRECTORY SPACE
'2 - NO AVAILABLE DATA BLOCKS (Not returned in random mode) '8 -RECORD LOCKED BY ANOTHER PROCESS '9 -INVALID FCB
1, - FCB CHECKSUM ERROR
11 - UNLOCKED FILE VERIFICATION ERROR
255 - PHYSICAL ERROR (REFER TO REGISTER H)

PHYSICAL ERROR CODES; (LEAST SIGNIFICANT FOUR BITS IN
REGISTER H)

'1 - PERMANENT ERROR
'2 - READ-ONLY DISK
'3 - READ-ONLY FILE ,4 -SELECT ERROR

Simulator Action:

The simulator will process function 21 (WRITE SEQUENTIAL) by making the
corresponding host system BDOS call. The registers will be passed and
returned in the same manner used in Vector 4 CP/M (See Description Above).

FUNCTION 22: MAKE FILE

Entry Parameters: Register C. - 16H
Register DE - FCB Address

Returned Value: Register A - Directory Code
Register H - Physical or Logical Error

The MAKE FILE function will create a new file under the current user
number; it is used for files that have never been written to disk. The BDOS
crea tes the file and initializes the FCB in memory and disk. as an empty file;
if the file already exists, register H will return error ~8 (PILE ALREADY
EXISTS). Vector Graphic has changed the original CP/M function to prevent
creation of duplicate files. The PCB is entered to the File Open list (if the
system is running in the 3.~ mode). The MAKE function has the side-,-effect
of activating the FCB; a subsequent OPEN is unnecessary. (Refer to OPEN
PILE function for discussion of attributes.) The READ-ONLY mode attribute
bit (fS) is ignored by the MAKE FILE function.

This function returns gPFH in register A if there were no directory space.
If the operation is successful register A will return ~, 1, 2, or 3. In either
case, register H is zero; but if a physical or logical error is returned,
register H contains one of the following error codes:

Page 4-18 7100-0023-00 05-20-83

,1 - PERMANENT ERROR '4 -SELECT ERROR

CP/M-86
PROGRAMMER'S GUIDE

'5 -FILE OPEN BY ANOTHER PROCESS OR BY CURRENT
PROCESS IN AN INCOMPATIBLE MODE ,8 -FILE ALREADY EXISTS

,9 - '1t IN FILENAME OR EXTENSION FIELD
1, - PROCESS OPEN FILE LIMIT EXCEEDED
11 - NO ROOM IN THE SYSTEM LOCK LIST

Simulator Action:

The simulator will process function 22 (MAKE FILE) by making the
corresponding host system. BDOS call. The registers will be passed and
returned in the same manner used in Vector 4 CP/M (See Description Above).

FUNCTION 23: RENAME FII,E

Entry Parameters: Register C - 17H
Register DE - FCB Address

Returned Value: Register A - Directory Code
Register H - Physical or Logical Error

The RENAME FILE function will use the FCB addressed by register DE to
change all occurrences of the file named in the first 16 bytes to the file
named in the second 16 bytes. The call will check that the filenames
specified in the FCB are valid and unambiguous, and that the new filename
does not already exist on the drive. The drive code 'dr' at position 0 is
used to select the drive, while the drive code for the new filename at
position 16 of the FCB is assumed to be zero. A file can be renamed by a
process if the file was opened in lock mode. A file cannot be renamed if
opened in Read-Only or Unlocked mode.

Upon return, register A is set to a value between 0 and 3 if the rename was
successful, and ~FFH (255 decimal) if the first filename could not be found
in the directory scan. In either case, register H is zero. If a physical or
logical error is returned, register A contains 0FFH and one of the following
error codes is returned in H:

05-20-83

,1 -PERMANENT ERROR '2 -READ-ONLY DISK '3 -READ-ONLY FILE OR FILE OPEN IN,READ-ONLY MODE ,4 -SELECT ERROR ,5 -FILE OPEN BY ANOTHER PROCESS OR BY CURRENT
PROCESS IN AN INCOMPATIBLE MODE ,8 -FILE ALREADY EXISTS ,9 -'1' IN FILENAME OR EXTENSION FIELD

7100-0023-00 Page 4-19

VECTOR GRAPHIC, INC.

Simulator Action:

The simulator will process function 23 (RENAME FILE) by making the
corresponding host system BDOS call. The registers will be passed and
returned in the same manner used in Vector 4 CP/M (See Description Above).

FUNCTION 24: RETURN LOGIN VECTOR

Entry Parameters: Register C - ISH

Returned Value: Register HL - Login Vector

The LOGIN VECTOR returned by CP/M is a 16-bit value in HL, where the
least significant bit of L corresponds to the first Drive A, and the high-order
bit of H corresponds to the sixteenth drive, labelled P. A '0' bit indicates
that the drive is not on-line, while a 'I' bit marks a drive that is actively
on-line due to an explicit disk drive selection, a drive that has been accessed
since the last warm/cold boot, or an implicit drive select caused by a file
operation which specified a non-zero 'dr' field. Note that compatibility is
maintained with earlier releases, since registers A and L con~ain the same
values upon return.

Simulator Action:

The simulator will process function 24 (RETURN LOGIN VECTOR) by making
the corresponding host system BDOS call. The registers will be passed and
returned in the same manner used in Vector 4 CP/M (See Description Above).

FUNCTION 25: RETIJRN CURRENT DISK

Entry Parameters: Register G - 19H

Returned Value: Register A - Current Disk

The RETURN CURRENT DISK function returns the current default disk
number in register A. The disk numbers range from 0 through 15
corresponding to Drives A through P.

Simulator Action:

The simulator will process function 25 (RETURN CURRENT DISK) by making
the corresponding host system BDOS call. The registers will be passed and
returned in the same manner used in Vector 4 CP/M (See Description Above).

Page 4-20 7100-0023-00 05-20-83

FUNCTION 26: SET DMA ADDRESS

Entry Parameters: Register C - lAR

CP/M-86
PROGRAMMER '8 GUIDE

Register DE - DMA Address

Direct Memory Address (DMA) is often used in connection with disk
controllers which directly access the memory of the mainframe computer to
transfer data to and from the disk subsystem. Many computer systems use
non-DMA access where the data is transferred through programmed I/O
operations.

In Vec tor 4 CP/M, the DMA address has come to mean the address at which
the 12S-byte data record resides before a disk write and after a disk read.
On a cold start, warm start, or disk system reset, the DMA address is
automatically set to ~~S~R.The SET DMA function, however, can be used to
change this default value to address another area of memory where the data
records reside. Thus, the DMA address becomes the value specified by DE
until it is changed by a subsequent SET DMA function, cold start, warm
start, or disk system reset.

Simulator Action:

The simulator will process function 26 (SET DMA ADDRESS) by making the
corresponding host system BDOS call. The registers will be passed and
returned in the same manner used in Vector 4 CP/M (See Description Above).

FUNCTION 27: GET ADDR (ALLOC)

Entry Parameters: Register C - lBH

Returned Value: Register HL - ALLOC Address

The system maintains an "allocation table" in the main memory for each
on-line disk drive (on-line here meaning that the disk has an associated
driver). Programs like STAT use this table to determine the amount of
remaining storage space. Function 27 will return the address of the
allocation table for the currently selected drive. If the selected disk has
been marked Read-Only, the allocation information may be invalid. This
function is not normally used by application programs. Application programs
should use function 46.

Simulator Action:

The simulator will, upon initialization, map a 2K block of Z-SO address space
over the system tables. When simulator function 27 is called, the simulator
will return the address of the actual ALLOC table in the Z-SO HL register.
This will allow the Z-80 direct access to the actual tables.

05-20-S3 7100-0023-00 Page 4-21.

VECTOR GRAPmC, INC.

~. BDOS Functions 2H2

FUNCTION 28: WRITE PROTECT DISK

Entry Parameters: Register C - lCH

The WRITE PROTECT DISK function will provide temporary write protection
for the currently selected disk. Any attempt to write to the disk, before
the next cold or warm start operation produces the message:

ERROR - d: DRIVE IS READ-ONLY

NOTE: A drive can be permanently set to READ-ONLY by using the
CONFIG D option.

Simulator Action:

The simulator will process function 28 (WRITE PROTECT DISK) by making
the corresponding host system BDOS call. The registers will be passed and
returned in the same manner used in Vector 4 CP/M (See Description Above).

FUNCTION 29: GET READIONLY VECTOR

Entry Parameters: Register C - IDH

Returned Value: Register HL - R/O Vector Value

The GET READ/ONLY VECTOR function will return a bit vector in
register HL which indicates drives which have the temporary read-only bit
set. Similar to function 24, the least significant bit corresponds to Drive A,
while the most significant bit corresponds to Drive P. The Read-Only bit is
set either by an explicit call to function 28, or by the automatic software
mechanisms within CP/M which detect changed disks.

Simulator Action:

The simulator will process function 29 (GET READ/ONLY VECTOR) by
making the corresponding host system BDOS call. The registers will be
passed and returned in the same manner used in Vector 4 CP/M (See
Description Above).

FUNCTION 30; SET FILE ATI"lUBUTES

Entry Parameters: Register C - lEH
Register DE - FCB address

Returned Value: Register A, - Directory Code
Register H'''' Permanent or Log~cal Error

Page 4-22 7100-0023-00 05-20-83

CP/M-86
PROGRAMMER'S GUIDE

The SET FILE ATTRIBUTES function will set or clear indicators attached to
files; in particular, the R-O and System attributes (tl' and t2') can be set or
reset. Register DE will address an unambiguous FCB with the appropriate
attributes set or reset. Function 30 will search for a match and change the
matched directory entry to contain the selected indicators. Indicator f1' is
used to make a file 'invisible' to other users (other account numbers), while
f2' through f4' are not presently used, but may be useful for application
programs since they are not involved in the matching process during file open
and close operations. Indicators f5' and f6! are used during OPEN, MAKE,
and CLOSE functions to specify access mode; f7', f8' and t3' are reserved
for future system expansion. This function cannot be performed on any files
opened by another process. It can be performed on files opened by the
current process in lock mode but any subsequent operations, which require an
open FCB, will return a FCB checksum error. No attributes may be set on
any file open in unlocked or read/only mode.

If successful, this function returns a value of 0 through 3 in register A. If
the file is not found, register A will return FFH. Register H is zero in
either case. If a physical or logical error is returned, register A is FFH and
register H contains one of the following:

gl - PERMANENT ERROR
g2 - READ-ONLY ERROR
g4 - SELECT ERROR
gs - FILE OPEN BY ANOTHER PROCESS
g9 - "?" IN FILE NAME OR EXTENSION

Simulator Action:

The simulator will process function 30 (SET FILE ATTRIBUTES) by making
the corresponding host system BDOS call. The registers will be passed and
returned in the same manner used in Vector 4 CP/M (See Description Above).

FUNCTION 31: GBT ADDR (DISK PARAMS)

Entry Parameters: Register C - lFH

Returned Value: Register HL - DPB address

The GET ADDR function will return the address of the BIOS resident Disk
Parameter Block (DPB) in register HL. The address is useful for computing
space or for changing the disk parameter values when the disk environment
changes. Normally, application programs will not require this faCility.

Simulator Action:

When the simulator initializes the Z-80 addressing map, it will place a 2K
block over the actual system tables. This will allow the Z-80 to have direct
access to the tables. The simulator will return in register HL a pointer to
the DPB relative to the Z-80 address space.

05-20-83 7100-0023-00 Page 4-23

VECTOR GRAPHIC, INC.

FUNCTION ·32; SET!GET USER CODE

Entry Parameters:

Returned Value:

Register C - 2~H
Register E - ~FFH (GET)
Register E .,.. < FFH User Code (SET)
(E MOD 32)

Register ~ - Current Code (or no value)

The SET/GET USER CODE function will change or query, within an
application program, the currently active user number. If register E = ~FFH
the value of the current user number is returned in register A, where the
value is in the range of ~ to 31. If register E is not ~FFH, then the
current user number is changed to the value of E (modulo 32).

Simulator Action:

The simulator will process function 32 (SET/GET USER CODE) by making the
corresponding host system BDOS call. The registers will be passed and
returned in the same manner used in Vector 4 CP/M (See Description Above).

fUNCTION 33: READ RANDOM

Entry Parameters: Register C - 2lH
Register DE - FCB Address

Returned Value: Register A - Error Code
Register H - Physical or Logical Error

The READ RANDOM function will use the read random field, (the last three
bytes) of the FeB to select a particular record number and read the record.
The read operation takes place at a record number indicated by the 24-byte
value constructed from byte positions r~ at 33, rl at 34, and r2 at 35. Note
that the sequence of 24 bits is stored with the least significant byte first
(r~), the middle byte next (rl), and the high byte last (r2). Vector 4 CP/M
does not reference byte r2, except in computing the size of a file
(function 35). Byte r2 must be zero because a non-zero value indicates
overflow past the end of file; therefore, the r~, rl byte pair is treated as a
double byte, or 'word' value, which contains the record to read. This value
ranges from ~ to 65,535 providing access to any particular record of the 8
Mbyte file.

In order to process a file using random access, the base extent (extent S)
must first be opened. Although the base extent mayor may not contain any
allocated data, this ensures that the file is properly recorded in the
directory, and is visible in DIR requests. The selected record number is then
stored into the random record field (d,rl), and the BDOS is called to read
the record. If the BDOS Multi-Sector Count is greater than one (see
function 44), the READ RANDOM function will read muUiple consecutive
recorda into mernorybeginning at the currentDMA.

Page 4-24 7100-0023-00 05-20-83

CP/M-8S
PROGRAMMER'S GUIDE

The r0, rl, and r2 field of the FCB will automatically be incremented to
read each record; however, the FCB's random record number is restored to
the first record's value upon return to the calling process. Upon return from
the call, register A either contains an error code or the value 00H indicating
the operation was successful, in which case the current DMA address contains
the randomly accessed record or multiple records if using function 44 (see
paragraph on function 34). If register A is non-zero, one of the following
error codes will be returned:

,,1 - READING UNWRITTEN DATA
,,3 - CANNOT CLOSE CURRENT EXTENT
,,4- SEEK TO UNWRITIEN EXTENT
"S - SEEK PAST PHYSICAL END OF DISK (RANDOM

RECORD NUMBER OUT OF RANGE)
1" - FCB CHECKSUM ERROR
11 - UNLOCKED FILE VERIFICATION ERROR
255 - PHYSICAL ERROR (REFER TO REGISTER H)

If a physical error is returned, register H will contain one of the following
error codes:

,,1 - PERMANENT ERROR
,,4 - SELECT ERROR

NOTE: If a physical error is returned in the RANDOM READ function, the
four MSBs of register H contain an integer set to the number of records
successfully read before an error was encountered. Note that contrary to
the SEQUENTIAL READ operation, the record number is not advanced;
therefore, subsequent RANDOM READ operations continue to read the same
record.

Upon each RANDOM READ operation, the logical extent and current record
values are automatically set; therefore, the file can be sequentially read or
written, starting from the position from which it was accessed randomly.
Note, however, that in this case, the last randomly read record will be read
again as you switch from random mode to sequential read, and the last
record will be written again as you switch to a sequential write operation.
You can, of course, simply advance the random record position following each
random read or write to obtain the effect of a sequential I/O operation.

Simulator Action:

The simulator will process function 33 (READ RANDOM) by making the
corresponding host system aDOS call. The registers will be passed and
returned in the same manner used in Vector 4 CP/M (See Description Above).

05-20-83 7100-0023-00 Page 4-25

VECTOR GRAPHIC, INC.

FUNCTION·34: . WRITB RANDOM

Entry Parameters: Register C - 22H
Registers DE - FCB Address

Returned Value: Register A - Error Code
Register H - Physical or Logical Error

The WRITE RANDOM operation works in nearly the same fashion as the
READ RANDOM call, except that data is written to the disk from the
current DMA address. Further, if the file's space has yet to be allocated,
the function allocates space before writing. As in the READ RANDOM
operation, the random record number is not advanced as a result of the
write. The logical extent number and current record positions of the FCB
are set to correspond with the random record being written.

SEQUENTIAL READ or WRITE operations can begin following a RANDOM
WRITE, with the notation that the currently addressed record is either READ
or WRITE again as the sequential operation begins. Simply advance the
random record position following each write to get the effect of a sequential
write operation. Note that reading or writing the last record of an extent
in random mode does not cause an automatic extent switch as it does in
sequential mode.

The error codes returned by a random write are identical to the RANDOM
READ operation with the addition of error code ~5, which indicates that a
new extent cannot be created due to directory overflow.

To write to a file using the WRITE RANDOM function, the calling program
must first open the base extent (extent e). This ensures that the FCB is
initialized properly for subsequent random access operations. The base extent
mayor may not contain any allocated data, however, opening extent e
records the file in the directory so that it can be displayed by the DIR
utility (if a process does not open extent ~ and allocate data to some other
extent, the file will be invisible to the DIR utility).

The WRITE RANDOM function will set the logical extent and current record
positions to correspond with the random record being written, but does not
change the random record number. Therefore, sequential read or write
operations can follow a random write, with the current record. being reread
or rewritten as the calling process switches from random to sequential mode.

If the BDOS Multi-Sector Count is greater than one (see function 44), the
WRITE RANDOM function will write multiple consecutive records from
memory beginning at the current DMA. The r0, rt, and r2 field of the FCB
will automatically be incremented to write each record; however, the FeB's
random record number is restored to the first record's value upon return to
the calling process. Upon return, the WRITE RANDOM function. will set
register A to zero if the write operation was successful; otherwise,
register A wUh cOl'ltain one'~of, the follow.ing'~errorrcodes:

Page 4-26 7100-0023-00 05-20-83.

CPjM-86
PROGRAMMER IS GUIDE

g2 - NO AVAILABLE DATA BLOCKS (Not returned in random mode)
g3 - CANNOT CLOSE CURRENT EXTENT
g5 - NO AVAILABLE DIRECTORY SPACE (WRITE MODE ONLY)
gs - SEEK PAST PHYSICAL END OF DISK (RANDOM RECORD

NUMBER OUT OF RANGE)
g8 - RECORD LOCKED BY ANOTHER PROCESS
Ig - FCB CHECKSUM ERROR
11 - UNLOCKED FILE VERIFICATION ERROR
255 - PHYSICAL ERROR (REFER TO REGISTER H)

If a physical error is returned, the four LSBs of register H will con tain one
of the following error codes:

gl - PERMANENT ERROR
g2 - READ-ONLY DISK
g3 - READ-ONLY FILE OR FILE OPEN IN READ-ONLY MODE
g4 - SELECT ERROR

NOTE: If a physical error is returned in the RANDOM WRITE function, the
four MSBs of register H contain an integer set to the number of records
successfully written before an error was encountered.

Simulator Action:

The simulator will process function 34 (WRITE RANDOM) by making the
corresponding host system BDOS call. The registers will be passed and
returned in the same manner used in Vector 4 CP/M (See Description Above).

FUNCTION 35: COMPUTE FILE SIZE

Entry Parameters:

Returned Value:

Register C - 23H
Register DE - FCB address

Random Record Field Set
Register A - Error code
Register H - Physical or Logical Error

When computing the size of a file, register DE will address an FCB in
random mode format (bytes r~, rl, and r2 are present). The FCB contains an
unambiguous filename which is used in the directory scan. Upon return, the
random record bytes contain the 'virtual' file size which is, in effect, the
record address of the record following the end of the file.

05-20-83 7100-0023-00 Page 4-27

VECTOR GRAPHIC, INC.

If, following a call to function 35, the high record byte 'r2' is 01, the file
will contain the maximum record count of 65,536. Otherwise, bytes r0 and
r1 constitute a 16-bit value (r9 is the least significant byte, as before) which
is the file size. Data can be appended to an existing file by using this
information to SET the RANDOM RECORD position before performing a
series of RANDOM WRITE operations.

The virtual size of a file corresponds to the physical size when the file is
written sequentially. If, instead, the file was created in random mode and
'holes' exist in the allocation, the file may, in fact, contain fewer records
than the size indicates. If, for example, only the last record of an eight
megabyte file is written in random mode (i.e., record number 65,535), the
virtual size will be 65,536 records, although only one block of data is
actually allocated.

On return, register A is set to zero if the specified file was found, or 9FFH
if the file was not found; in either case, register H is set to zero. If a
physical error is returned, register A contains '9FFH' and register H will
contain one of the following error codes:

'1 - PERMANENT ERROR '4 -SELECT ERROR
,9 - '1' IN FILENAME OR EXTENSION FIELD

Simulator Action:

The simulator will process function 35 (COMPUTE FILE SIZE) by making the
corresponding host system BDOS call. The registers will be passed and
returned in the same manner used in Vector 4 CP/M (See Description Above).

FUNCTION 36: SET RANDOM RECORD

Entry Parameters: Register C - 24H
Register DE - FCB address

Returned Value: Random Record Field Set

The SET RANDOM RECORD function will cause the BDOS to automatically
produce the random record position from a file which has been read or
written sequentially to a particular point. The function can be useful in two
ways. First, it is often necessary to in~tially read and scan a sequential file
to extract the positiOns of various 'key' fields. As each key is encountered,
function 36 is called to compute the random record position for the data
corresponding to this key. If the data unit size is 128 bytes, the resulting
record position is placed into a table with the key for later retrieval. After
scanning the entire file and tabulating the keys and their record numbers,
you can move instantly to a particular keyed record by performing a random
read usi~· the corresponding-random record number whiohwElS.,.saved earlier.

Page 4-28 7100-0023-00 05-20-83

CP/M-86
PROGRAMMER'S GUIDE

The scheme is easily generalized when variable record lengths are involved
since the program need only store the buffer-relative byte position along with
the key and record number in order to find the exact starting position of the
keyed data at a later time. Second, the use of function 36 occurs when
switching from a sequential read or write over to random read or write. A
file is sequentially accessed to a particular point in the file, function 36 is
called which sets the record number, and subsequent random read and write
operations continue from the selected point in the file.

Simulator Action:

The simulator will process function 36 (SET RANDOM RECORD) by making
the corresponding host system BDOS call. The registers will be passed and
returned in the same manner used in Vector 4 CP/M (See Description Above).

FUNCTION 37: RESET DRIVE

Entry Parameters: Register C - 25H
Registers DE - Drive Vector

Returned Value: Register A - 00H

The RESET DRIVE function will allow resetting of specified drive(s). The
passed parameter is a I6-bit vector of drives to be reset, the least
significant bit is Drive A. The drive is reset as it appears to the user who
placed the call, but not to the system or to other users.

Register A is 00H if no errors occur, but if a physical or logical error is
returned, register A is FFH and register H returns the error code.

Simulator Action:

The simulator will process function 37 (RESET DRIVE) by making the
corresponding host system BDOS call. The registers will be passed and
returned in the same manner used in Vector 4 CP/M (See Description Above).

FUNCTION 40; WRITE RANDOM WITH ZERO FILL

Entry Parameters: Register C - 28H
Register DE - FCB address

Returned Value: Register A - Error Code
Register H - Physical or Logical Error

The WRITE RANDOM WITH ZERO FILL function is similar to the WRITE
RANDOM function (function 34) with the exception that a previously
unallocated data block is filled with zeroes before the record is written.

05-20-83 7100-0023-00 Page 4-29

VECTOR GRAPHIC, INC.

If this function has been used to create a file, records accessed by a READ
RANDOM operation that contain all zeroes identify unwritten random record
numbers. Unwritten random records in allocated data blocks of files created
using the WRITE RANDOM function contain uninitialized data (see WRITE
RANDOM FUNCTION and Appendix A, from the Vector 4 CP/M Programmer's
Guide, for a description of returned values).

Simulator Action:

The simulator will process function 40 (WRITE RANDOM WITH ZERO FILL)
by making the corresponding host system BDOS call. The registers will be
passed and returned in the same manner used in Vector 4 CP/M (See
Description Above).

FUNCTION 41: TEST AND WRITE RECORD

Entry Parameters: Register C - 29H
Register DE - FCB address

Returned Value: Register A - Error Code
Register H - Physical or Logical Error

The TEST AND WRITE RECORD function will provide a means of verifying
the current contents of a record on disk before updating it. The calling
program must set bytes rS, rl, and r2 of the FCB addressed by register DE
to the random record number of the record to be tested. The original
version of the record (i.e., the record to be tested) must reside at the
current DMA address, followed immediately by the new version of the record.
The record size can range from 128 bytes to 16 times that value depending
on the BDOS Multi-Sector Count (see function 44).

Function 41 verifies that the first record is identical to the record on disk
before replacing it with the new version of the record. If the record on
disk does not match, the record on disk is not changed and an error code is
returned to the calling program. This function is intended for use in
situations where more than one process has Read/Write access to a common
file. Function 41 is a logical replacement for the record Lock/Unlock
sequence of operations because it prevents two processes from simultaneously
updating the same record.

On return, function 41 will set register A to zero if the function was
successfUl; otherwise, register A contains one of the following error codes.

Page 4-30

'1 - READ MODE: READING UNWRITTEN DATA
'3 - CANNOT CLOSE CURRENT EXTENT
'4 - SEEK TO UNWRITTEN EXTENT
'6 - SEEK PAST PHYSICAL END OF DISK (RANDOM

RECORD NUMBER OUT OF RANGE) ''1 -RECORD DID NOT MATCH

7100-0023~OO 05-20-83

CP/M-86
PROGRAMMER'S GUIDE

NOTE: This function is the only function which returns an error code
of '07' in register A indicating non-matching sectors.

118 - RECORD LOCKED BY ANOTHER PROCESS
111 - FCB CHECKSUM ERROR
11 - UNLOCKED FILE VERIFICATION ERROR
255 - PHYSICAL ERROR (REFER TO REGISTER H)

If a physical or logical error is returned, the four LSBs of register H contain
one of the following error codes:

111 - PERMANENT ERROR
112 - READ-ONLY DISK
113 - READ-ONLY FILE OR FILE OPEN IN READ-ONLY MODE
114 - SELECT ERROR

TEST AND WRITE RECORD function also sets the four high order bits of
register H to the number of records successfully tested and written.

Simulator Action:

The simulator performs the test and write function by reading the existing
record(s), comparing them to the test record(s), and writing the new record(s)
if a match is found.

FUNCTION 42: LOCK RECORD (3.a MODE ONLY)

Entry Parameters:

Returned Value:

Register C - 2AH
Register DE - FCB Address

Register A - Error Code
Register H - Physical Error

The LOCK RECORD function will lock one or more consecutive records so
that no other program with access to the records can simultaneously lock or
update them. This function is only supported for files open in unlocked
mode. If it is called for a file open in Locked or Read-Only mode, no
locking action is performed and a successful result is returned.

The calling process passes in register DE, the address of an FCB in which
the Random Record field is filled with the random record number of the first
record to be locked. The number of records to be locked is determined by
the BDOS Multi-Sector Count (see function 44).

The LOCK RECORD function requires that each record number to be locked,
reside in an allocated block for the file. In addition, function 42 verifies
that none of the records to be locked are currently locked by another
process. Both of these tests are made before any records are locked. Each
locked record consumes an entry in the BDOS system lock table which is
shared by locked record and open file entries.

05-20-83 7100-0023-00 Page 4-31

VECTOR GRAPHIC, INC.

If there is not sufficient space in the system lock table to lock all the
specified records, or the process record lock limit is exceeded, the LOCK
RECORD function locks no records and returns an error code to the calling
process.

Upon return, the LOCK RECORD function sets register A to zero if the lock
operation was successful; otherwise, register A contains one of the following
error codes:

'1 - READ MODE: READING UNWRITrEN DATA ,3 -CANNOT CLOSE CURRENT EXTENT ,4 -SEEK TO UNWRITTEN EXTENT ,6 -SEEK PAST PHYSICAL END OP DISK (RANDOM
RECORD NUMBER OUT OP RANGE) ,S -RECORD LOCKED BY ANOTHER PROCESS 1, -FCB CHECKSUM ERROR

11 - UNLOCKED PILE VERIFICATION ERROR
12 - PROCESS RECORD LOCK I.JMIT EXCEEDED
13 - ACCESSED FILE NOT PREVIOUSLY OPENED
14 - NO ROOM IN THE SYSTEM LOCK IJST
255 - PHYSICAL ERROR (REPER TO REGISTER H)

If a physical or logical error is returned, register A is 0FFH and register H
will consists of one of the following:

PHYSICAL ERROR CODES: (IN THE FOUR LOW-oRDER BITS OP H)

,,1 - PERMANENT ERROR ,4 -SELECT ERROR

Simulator action:

The Simulator, when running under CP/M-S6, returns a 'OH' in the A register
and an 'FFH' in the C register. This means that recording locking does not
exist when running the simulator under CP/M-S6.

Page 4-32 7100-0023-00 05-20-S3

CP/M-86
PROGRAMMER'S GUIDE

~ BDOS Functions 43-228

FUNCTION 43: UNLOCK RECORD (3ea MODE ONLY)

Entry Parameters:

Returned Value:

Register C - 2BH
Register DE - FCB Address

Register A - Error Code
Register H - Physical Error

The UNLOCK RECORD function will unlock one or more consecutive records
previously locked by the LOCK RECORD function. This function is only
supported for files open in unlocked mode. If it is called for a file open in
Locked or Read-Only mode, no locking action is performed and a successful
result is returned.

The calling program passes the address of an FCB in which the Random
Record field is filled with the number of the first record to be unlocked.
The number of records to be unlocked is determined by the BDOS
Multi-Sector Count (see function 44).

Although the UNLOCK RECORD function will not unlock a record that is
currently locked by another process, no error is returned if a proc ess
attempts the process. If the Multi-Sector Count is greater than one, the
UNLOCK RECORD function unlocks all records locked by the calling
program, while skipping those records locked by other programs.

The UNLOCK RECORD function sets register A to zero if the operation was
successful; otherwise, register A will contain one of the following error
codes:

III - READ MODE: READING UNWRITTEN DATA
113 - CANNOT CLOSE CURRENT EXTENT
114 - SEEK TO UNWRITTEN EXTENT
116 - SEEK PAST PHYSICAL END OF DISK (RANDOM

RECORD NUMBER OUT OF RANGE)
1, - FCB CHECKSUM ERROR
11 - UNLOCKED FILE VERIFICATION ERROR
13 - ACCESSED FILE NOT PREVIOUSLY OPENED
255 - PHYSICAL ERROR (REFER TO REGISTER H)

If a physical or logical error is returned, register A is 0FFH and register H
consists of one of the following:

05-20-83 7100-0023-00 Page 4-33

VECTOR GRAPHIC, INC.

PHYSICAL ERROR CODES: (IN THE FOUR LOW-oRDER BITS OF H)

g1 - PERMANENT ERROR
,4 - SELECT ERROR

Simulator Action:

When running the simulator under CP/M-86, the simulator will return a 'OH'
in the A register and a 'FFH' in the C register. This means that the Unlock
function is not supported when running the simulator under CP/M-S6.

FUNCTION 44: SET MULTI-SECTOR COUNT

Entry Parameters: Register C - 2CH
Register E - Number' of sectors

Returned Value: Register A - Return Code

The SET MULTI-SECTOR COUNT function will provide logical record
blocking. It enables a process to read and write from one to 16 'phYSical'
records of 128 bytes at a time during subsequent BDOS Read and Write
functions. It also specifies the number of 128-byte records to be locked or
unlocked by the BDOS LOCK and UNLOCK functions.

Function 44 sets the Multi-8ector Count value for the calling program to the
value passed in register E. Once set, the specified Multi-Sector Count
remains in effect until the calling process makes another 'set count' call and
changes the value. Note that the CCP will set the count to one when it
initiates a transient program.

The Multi-Sector Count affects BDOS error reporting for the BDOS READ,
WRITE, LOCK and UNLOCK functions. If an error interrupts these functions
when the Multi-Sector Count is greater than one, they return the number of
records successfully processed in the for high-order bits of register H.

Upon return, register A is set to zero if the specified value is in the range
of 1 to 16; otherwise, register A is set to 9FFH.

Simulator Action:

When running under CP/M-8S, this function is implemented by setting a local
variable to the Multi-8ector Count passed to the function in the E register.
If the value passed in the E register is within the range of one to sixteen,
the local variable is set to that value and a 'OH' is returned in the A
register. If the value passed in the E register is out of the range one to
sixteen, the local variable is left unaltered, and a 'FFH' is returned in the A
register. This local variable is then used to control repeated calls to the
BnOS to .. simulateMuIU-Sector I/O. The default value of· this local variable
is onet,'

Page 4-34 7100-0023-00 05-20-83

CP/M-S6
PROGRAMMER'S GUIDE

FUNCTION 45: SET BDOS BRROR MODB

Entry Parameters: Register C - 2DH
Register E - BDOS Error mode:
~0: Default
U : Return
02 : Print & Return
All others: DEFAULT

The SET BDOS ERROR MODE function will determine how physical and
logical errors are handled for a process. The function can ex is t in three
modes: ~he pefault mode, the Return Error mode, and the Print and Return
Error mode.

In the Default mode, the BDOS will display a system message at the console
identifying the error and will then terminate the calling program.

In the Return Error mode, the BDOS will set register A to 0FFH (255
decimal), place an error code identifying the physical or logical error in the
four low-order bits of register H, and return to the calling program. No
system messages are displayed, however, when the BDOS is in Return Error
mode.

In the Print and Return Error mode, the system message is displayed as in
the Default mode. Unlike the Default mode, however, the program is not
terminated after the user presses any key. Instead, the error code is
returned to the program as in the Return Error mode.

Function 45 will set the BDOS error mode for the calling program to the
mode specified in register E. If this register is set to 0FFH (255 decimal),
the error mode is set to Return Error mode; if set to any other value, the
error mode is set to the default mode.

Simulator Action:·

The simulator maintains a local variable containing the BDOS error mode.
The set aDOS error mode alters the value of this local variable. If the
function is called with the E register containing an 'FEH' then the local
variable is set to the display and return mode. If the function is called wi th
the E register containing an 'FFH', then the local variable will be set to the
return error mode. Any other value in the E register when the function is
called, will cause the error mode to be set the default mode (display and
reset system).

05-20-83 7100-0023-00 Page 4-35

VECTOR GRAPHIC, INC.

FUNCTION 46: . RETURN FREE DISK SPACE

Entry Parameters:

Returned Value:

Register C - 2FH
Register E - ~~ - Drive A

- U - Drive B
- 92 - Drive C
- ~3 - Drive D

Current DMA Buffer - Number of free
records on disk

The RETURN FREE DISK SPACE function will return the number of free
records remaining on disk. To maintain upward compatibility, use this
function instead of counting space from allocation records. The function
returns a 24-bit value in the first three bytes of the current DMA buffer,
with the low bits in the first byte, the middle bits in the second byte and
the high bits in the third byte.

Normally, register A is zero upon return, but if a physical or logical error is
returned, register A is ~FFH and register H is one of the following codes:

g1 - Permanent error
g4 - Select error

Simulator Action:

The simulator will simulate function 46 (RETURN FREE DISK SPACE) by
examining the Allocation Vector for the associated drive and calculating the
free space. The simulator will obtain the address of the Allocation Vector
by calling CP/M-86 BDOS function 27 (get Allocation Vector address) after
selecting the requested drive. After the function is complete, the simulator
will re-select the previously selected drive.

FUNCTION 47: CHAIN TO PROGRAM

Entry Parameters: Register C - 2FH

The CHAIN TO PROGRAM function will provide a means of chaining from
one program to the next without operator intervention. Although there is no
passed parameter for this call, the calling program must place a command
line terminated by a null byte in the default DMA buffer (8~H). Function 47
does not return any values to the calling program because any errors
encountered are handled by the CCP.

Page 4-36 7100-0023-00 05-20-83

Simulator Action:

CP/M-86
PROGRAMMER'S GUIDE

The simulator will simulate the Chain to Program Function in the following
manner. If the string passed to the function does not have an extension, the
simulator will create a FCB containing the string with a .COM extension.
The simulator will then attempt to find the .COM file. If the file is found,
the simulator will then load the file at Z-80 location '100H'. The simulator
will then initialize the Z-80 as if the program had been loaded by the CCP.
The simulator will then execute the program at location '100H'.

If the string passed to the function can not be turned into an existing .COM
file, or the string already contains an extension other than .COM, then the
string will be passed in it's original form to CP/M-86 BDOS function 47
(Chain CCP function). At that time, the CP/M-86 CCP will process the
string.

FUNCTION 48: FLUSH BUFFERS

Entry Parameters:

Returned Value:

Register C - 3~H

Register A - Error flag
Register H - Permanent or Logical Error

The FLUSH BUFFERS function will force the write of any write-pending
records contained in internal blocking/deblocking buffers~

Upon return, register A is set to zero if the flush operation was successful
or if a physical or logical error is returned, register A is 0FFH and
register H is 01 - Permanent Error.

Simulator Action:

When running under CP/M-86, the flush buffer function will will return a 'OH'
in the A register and a 'FFH' in the C register. This means that when the
simulator is running unde.r CP/M-86, the flush buffer function is not
supported.

FUNCTION 152: PARSE FILENAME

Entry Parameters:

Returned Value:

Register C - 98H
Register DE - PFCB Address

Register HL - Return Code
(Parsed File Control Block)

05-20-83 7100-0023-00 Page 4-37

VECTOR GRAPHIC, INC.

The PARSE FILENAME function will pal'Se an ASCII filename and prepare an
FCB; the calling program will pass the address of the Parse File Control
Block (PFCB) in register DE. The PFCB contains the address of the ASCII
filename string followed by the address of the target FCB.

Ini tializa tion of the PFCB data structure is shown below in assembly
language:

PFNCB:
DW FLNAME
DW FCB

FLNAME:
DS 128

FCB:
DS 36

The file specification should be written in the following form:

d:fnename.ext

Function 152 will pal'Se the first file specification found in the input string,
first eliminating leading blanks and tabs. It will then assume the file
specification ends on the first delimiter encountered that is out of context
with the specific field it is pal'Sing.

The specified FCB will be initialized as follows:

BYTE

Page 4-38

DESCRIPTION

Drive field set to specified drive number. If drive not
specified, default value is used.
J = default
1 = Drive A
2 = Drive B
•

16 = Drive P

1-8 Name field set to specified filename, and all letter are
converted to uppercase.
Filename < 8 characters, remaining bytes in field padded
wi th blanks.
Filename has (*) , all remaining bytes filled with (?).

7100-0023-00 05-20-83

CP/M-86
PROGRAMMER'S GUIDE

9-11 Extension field set to specified extension; if none
specified, field is initialized to blanks (all letters
converted to uppercase).
Extension < 3 characters, remaining bytes padded with
blanks.
Extension > 3 characters, characters beyond 3 ignored.
Extension has (*), all remaining bytes filled with (?).

The PARSE FILENAME function, on a successful parse, will check the next
item in the Filename string, skipping over trailing blanks and tabs and look
at the next character. If the character is a null or a carriage return, it
will return a ~ indicating the end of the Filename string; if the next
character is a delimiter, it will return the address of the delimiter; if the
next character is n.o1 a delimiter, it will return the address of the delimiting
blank or tab. In case of an error, all fields not parsed will be set to their
default values and register HL will return a 0FFFFH indicating the error.

Note: the FCB is first cleared out, so that any field not found is skipped.
If the string to parse is a terminator (S), then the FCB would come back
cleared, with zero fields zeroed and ASCII fields filled with spaces.

If the first non-blank or non-tab character is a null (~) or a carriage return
within the filename string, function 152 will return a zero indicating the end
of the string, and the FCB will be initialized to its default value. If
function 152 is to be used to parse a subsequent filename in the Filename
string, the returned address should be advanced over the delimiter before
placing it in the PFCB.

Simulator Action :

The simulator will process the input string following the same procedures
used in the Vector 4 CP/M operating system.

FUNCTION 158: ATfACH JJST

Entry Parameters: Register C - 9EH

Returned Value: None

The ATTACH LIST function will attach the previously specified list device
assignment to the calling program. If the list device is already attached to
another job or program, the calling program will relinquish the CPU and wait
until the other program detaches from the list device; the attach operation
will take place when it becomes free. This function must be preceded by
function 250 (SELECT LIST DEVICE) in order to select the list device.

05-20-83 7100-0023-00 Page 4-39

VECTOR GRAPHIC, INC.

Simulator Action:

The simulator will process function 158 (ATTACH LIST) on a local basis when
running under CP/M-86. The simulator, under CP /M-86, is only concerned
with despooler list device contention problems. The simulator will function
as above if a contention exists. All parameter passage conventions are as in
Vector 4 CP/M.

fUNCTION 159: DETACH IJST

Entry Parameters: Register C - 9FH

Returned Value: None

The DETACH LIST function will detach the previously specified list device
assignment from the calling program. If no list device is currently attached,
no action will take place. This function must be preceded by Function 250
(SELECT LIST DEVICE) in order to select the list device to be detached.

Simulator Action:

The simulator, running under CP/M-S6, will process function 159 (DETACH
LIST) on a local basis. The only contention under CP /M-86 is that of the
despooler. The simulator maintains a local variable containing the currently
selected list device and it's attached status. This function will allow the
program to give up control of the list device so that another process may
have access to it.

FUNCTION 160; SET '.IST

Entry Parameters:

Returned Value:

Register C - A~H
Register E - List Device

None

The SET LIST function will detach the currently attached list device (if any)
from the calling program and attach the newly specified list device passed in
Register E. If the list device is already attached to another job or program,
the calling program will relinquish the CPU and wait until the other program
detaches from the list device; the attach operation will take place when it
becomes free. The list device can also be set using function 8, SET
IOBYTE.

Page 4-40 7100-0023-00 05-20-83

The value of register E can be one of the following:

~ - No List Device
1 - Echo to Console
2 - Logical List Device 1
3 - Logical List Device 2

CP/M-86
PROGRAMMER '8 GUIDE

This function selects and attaches the specified list device. It is not
necessary to select the list device through function 250 prior to running this
function.

Simulator Action:

The simulator will process function 160 (SET LIST) on a local basis. The
simulator maintains a local variable containing the currently selected list
device. This function will cause that variable to be updated with the
requested list device. If the device is currently attached to the despooler,
this function will wait for the device to become available. (See description
above for further information.)

FUNCTION 161: CONDIDONAL A'ITACH Y,IST

Entry Parameters: Register C - AIH

Returned Value: Register A - Return Code

The CONDITIONAL ATTACH LIST function will attach the previously
specified list device assignment to the calling program if. the list device is
currently unattached. If the list device is currently attached to another job
or program, a value of PFFH in register A is returned, indicating that the
list device could not be attached. As with functions 158 and 159, this
requires function 250 (Select List Device) before running.

Simula tor Action:

The simulator will process function 161 (CONDITIONAL ATTACH LIST) on a
local basis. The simulator maintains a local variable containing the currently
selected list device. Function 161 will attempt to attach the device. This
function, unlike function 158 (Attach List), will return even if the selected
list device is in use. All parameter passage is as in Vector 4 CP/M. (See
Description Above).

FUNCTION 164: GET J.JST NUMBER

Entry Parameters: Register C - A3H

Returned Value: Register HL - List Number

05-20-83 . 7100-0023-00 Page 4-41

VECTOR GRAPIDC, INC.

The GET LIST NUMBER function will return the value of the specified list
device assignment of the calling program. Returned values will be in the
following format:

Registers

A (= L)
B (= H)

Simulator Action:

Values

LD field from IOBYTE
Select status

The simulator processes function 164 (GET LIST NUMBER) on a local basis.
The simulator maintains a variable containing the currently selected list
device. This list device number will be returned in the HL register pair.
(See above description for further information.)

FUNCTION 217: GETISET CONFIG BYTE

Entry Parameters: Register D - 8-bit Mask
Register E - ~0H - SET Mode
Register E - ~1H - RESET Mode
Register E - ~2H - TOGGLE Mode
Register E - Anything other - GET Mode

Returned Values: Register A - 00H - SET, RESET, & TOGGLE
Modes
Register A - Current CONFIG BYTE (GET
Mode)

The GET/SET CONFIG BYTE function will enable or disable the [CTRL CJ,
[CTRL P], and the [CTRL K] functions by setting a bit within the CONFIG
BYTE. Any bit set in the D register mask will affect the user1s CON FIG
BYTE according to the mode set by the value in the E register.

When the values change within the different modes, the results will vary;
e.g.:

Page 4-42

SET MODE

OONFIG BYTE = ~010 101~
Register D = 0000 0001
Result = 001~ 1011

7100-0023-00 05-20-83

mEI'MTf:

OONFIG BYTE = ~S1~ 1~1~
Register D = ~SS0 001~
Result = 001~ 1~00

OONFIG BYTE = ~010 1~1~
Register D = 0S0S SS11
Result = SS19 19S1

GET MODE

The GET Mode will ignore the D register and return the
CONFIG BYTE in the A register.

A bit set within the CONFIG BYTE will enable the associated function, While
a bit reset within the CONFIG BYTE will disable the associated function; a
'0' equates to 'off' and a '1' equates to 'on'.

The CONFIG BYTE bits have been defined as follows:

Bi t 0 = [cmL C] Wann Boot function
o = Disable
1 = Enable

Bit 1 = [cmL PJ Trap
S =Disable (disables printer echo enable/disable)
1 = Enable

Bi t 2 = [cmL Kl Trap
o = Disable (disables printer fonn feed)
1 = Enable

Bi ts 3-'1 = Reserved for Future Use

Simulator Action:

The simulator will not support function 217 (GET/SET CONFIG BYTE). This
function was never supported in the Vector 4 CP/M operating system. The
call will return a 'OH' in the A register and a 'FFH' in the C register.

05-20-83 7100-0023-00 'Page 4-43

VECTOR GRAPHIC, INC.

FUNCTION 218: . RETURN CURRENT CURSOR POSmoN

Simulator Action:

The simulator will return the current cursor pOSition by making an extended
system function call to the video driver with a cursor position report request
("ESC","(","RIf). The simulator will then convert the returned parameters from
decimal to binary and return them in the HL register pair.

FUNCTION 222: OUTPUT TONE

Simulator Action:

The simulator will not support function 222 (OUTPUT TONE). The call will
return with the registers unaltered.

FUNCTION 223: RETURN TONE GENERATOR STATUS

Simula tor Action:

The simulator will not support function 223 (RETURN TONE GENERATOR
STATUS). The call will return with a 'OH' in the a register and a 'OFFH' in
the C register.

FUNCTION 224: DETECT R=O STATUS

Entry Parameters:

Returned Value:

Register C - 0E0H

Register A - ~~ - R/W
B1 - R-O

The DETECT R-O STATUS function will detect if a disk is (physically) write
protected. It returns a Boolean value in the A register.

Simulator Function:

The simulator will process function 224 (DETECT R-O STATUS) by making an
Extended System Fun~tion Call to return such status. All parameter passage
conventions from Vector 4 CP/M are maintained. (See Description Above)

FUNCTION 225: RETURN BIOS ERROR CODE

Entry Parameters: Register C - 0EIH

Returned Value: Register HL - Error Code

-Page 4-44 7100-0023-00 05-20-83

CP/M-86
PROGRAMMER'S GUIDE

The RETURN BIOS ERROR CODE function will return the BIOS error code
from the last disk access in register HL. It is used to test for errors when
error messages are inhibited by function 22q. Register H returns a BIOS
code related to a specific BIOS error. Register L returns a BDOS error
code related to a specific BDOS ~rror.

NOTE: This function must be executed immediately after an error. Any
intervening function call will clear the BIOS error code to 0.

Simulator Action:

The simulator will process function 225 (RETURN BIOS ERROR CODE) by
calling the Extended System Function Call to return that information. All
parameter passage conventions are as in Vector 4 CP/M. (See Description
Above)

FUNCTION 226: INmBIT/ENABLE BDOS ERRORS

Entry Parameters:

Returned Value:
,

Register C - 0E2H
Register E - ~FFH - Enable

00H - Disable

The INHIBIT/ENABLE BDOS ERRORS function will allow the programmer to
inhibit or enable BDOS error messages. When the errors are disabled,
function 225 should be invoked after every disk access in order to test for
errors. At the end of execution of the program the errors should be
enabled.

NOTE: This function was implemented by Vector Graphic prior to function
45 (SET BDOS ERROR MODE). Function 226 is maintained for historical
compatibility; it is strongly recommended that programmers use Function 45
instead. Function 226 toggles between BDOS error modes 0 (default) and 1
(return error), with no provision for selecting BDOS error mode 2 (print and
return error).

Simulator Action:

The simulator sets the local BDOS error mode variable depending on the E
register. If the E register contains an 'FFH' then the variable is set to
reflect the default error mode (report error and return to CCP). If the E
register contains an 'OH' then the variable is set to reflect the return error
mode.

05-20-83 7100-0023-00 Page 4-45

VECTOR GRAPHIC, INC.

FUNCTION 227: INBIBITIENABLE mos ERRORS

Entry Parameters: Register C - 9E3H
Register E - 9FFH - Enable

99H - Disable

The INHIBIT/ENABLE BIOS ERRORS function will enable and disable BIOS
soft errors. If enabled, BIOS soft errors are either printed on the console (if
error reporting enabled, see function 226) or can be r_ead from register H
after a function 225 call.

Simulator Function:

The simulator will process function 227 (INHIBIT/ENABLE BIOS ERRORS) by
making an Extended System Function Call. All parameter passage conventions
are as in Vector 4 CP/M (See Description Above).

FUNCTION 228: GET/SET ACCOUNT COPE

Entry Parameters:

Returned Value:

Register C - 9E4H
. Register HL - Account Code

Register E - 9FFH - Get code
Account Code to set

Register A - Account Code

The GET/SET ACCOUNT CODE function will get or set the account code.
The account code works in a manner similar to the user number. It is used
to coordinate auto boot commands and to secure disk files. A file is locked
under an account code if bit 7 of the first letter of the filename is high.
This function was designed primarily for multiuser systems. The code may be
in the range from 99-0FH.

Simulator Action:

The simulator maintains a local variable for current account code. This
variable is initialized to zero in the simulator initialization routine. When
BDOS function 228 (GET/SET USER CODE) is called with an 'FFH' in the E
register, the current contents of the account code variable is returned in the
A register. If any other value is passed in the E register, then the simulator
will replace the contents of the account code variable with the value stored
in the E register.

Page 4-46 7100-0023-00 05-20-83

~ BDOS Functions 233-255

CP/M-86
PROGRAMMER'S GUIDE

FUNCTION ·233: RELEASE TIME SLICE

Entry Parameters: Register C - 9E9H

The RELEASE TIME SLICE function will release the current time slice. It
should be incorporated in all long delay loops as it will improve the system
efficiency.
This is especially important if the program will run in a multiuser system.

Simulator Action:

When running the simulator under CP/M-86, function 233 (RELEASE TIME
SLICE) will not be implemented. If this function is called when running the
simula tor under CP /M-86, the call will return with the Z-80 registers
unaltered.

FUNCTION 234: SET DMA TASK

Entry Parameters: Register C - ~EAH
Register E - DMA task number

The SET DMA TASK function will set the DMA task for disk I/O. It is used
by the operating system and should normally not be used in application
programs. The DMA task number is passed in register E.

Simulator Action:

The Simulator does not support BDOS function 234 (SET DMA TASK). This
call is very specific to the Vector 4 CP/M Multi Bank Systems and can not
be supported under sixteen bit systems. If a call to this function is
performed, the simulator will display an error message and return to the host
system CCP.

FUNCTION 235: CHAIN CCP COMMAND

Entry- Parameters: Register C - 9EBH
Register DE - Address of Command String

The CHAIN CCP COMMAND function will chain CCP commands and works
similarly to a Single line submit file. Use function 235 at the end of a
program when you want to invoke another program. Pass the address of a
valid CCP command string in the DE register pair. The string must be
terminated by a null (~~H). The system will warm boot and the command
will be executed by the CCP.

05-20-83 7100-0023-00 Page 4-47

VECTOR GRAPHIC, INC.

Simulator Action:

The simulator will simulate the Chain CCP function in the following manner.
If the string passed to the function does not have an extension, the simulator
will create an FCB containing the string with a .COM extension. The
simulator will then attempt to find the .COM file. If the file is found, the
simulator will then load the file at Z-80 location '100H'. The simulator will
then initialize the Z-80 as if the program had been loaded by the CCP. The
simulator will then execute the program at location f100H'.

If the string passed to the function can not be turned into an existing .C OM
file, or the string already contains an extension other than .COM, then the
string will be passed in it's original form to CP/M-86 BDOS function 47
(Chain CCP function). At that time, the CP /M-86 CCP will process the
string.

FUNCTION 236: RETURN OUTPUT STATUS

Entry Parameters: Register C - ~ECH

Returned Value: Register A - 00 - Not Ready
- 0FFH - Ready

The RETURN OUTPUT STATUS function will return the output status, (ready
or not ready to print), of the currently selected print device.

Simulator Action:

The simulator will process function 236 (RETURN OUTPUT STATUS) by
making an Extended System Function Call to return the list device status.
Parameter passage conventions are as in Vector 4 CP/M (See Description
Above).

FUNCTION 237: RETURN INPUT STATUS

Entry Parameters:

Returned Value:

Register C - 0EDH

Register A - 00 - No Character Present
- 0FFH - Character Present

The RETURN INPUT STATUS function will return the input status (character
present or not) of the currently sele~ted list device.

Simulator Action:

The simulator will process function 237 (RETURN INPUT STATUS) by making
an.Extended ... Systefn; Function Call to,· return the input status. Parameter
passag~",conventions are as., inVecter4'CP/M (See'·;Description·Above).

Page 4-48 7100-0023-00 05-20-83 .

FUNCTION 238: T.IST INPUT

Entry Parameters:

Returned Value:

Register C - 0EEH

CP/M-86
PROGRAMMER '8 GUIDE

Register A - Input Character

The LIST INPUT function will input a character from the currently selected
list device. It is used primarily for printers that require a special
communications protocol, or can be used with printers that have a keyboard.

Simulator Action:

The simulator will process function 238 (LIST INPUT) by making an Extended
System Function Call to return the list input character. Parameter passage
convention are as in Vector 4 CP/M (See Description Above).

FUNCTION 239: RETURN PRINTER TYPE

Entry Parameters:

Returned Values:

Register C - 0EFH
Register E - 00H - Current List Device

01H - List Device 1
~2H - List Device 2

Registers HL Type Bytes (see text)

The RETURN PRINTER TYPE function will return the type bytes for the
currently selected printer. Register L contains Type I byte (printer type)
and register H contains the Type II byte (the interface byte). For a list of
possible values see the documentation for the List Device Drivers
(paragraph 3.3.9 - GENLIST Command). Pass a 00H, 01H or 02H in
Register E, depending on which list device type is wanted.

Simulator Action:

The simulator will process function 239 (RETURN PRINTER TYPE) by making
the corresponding Extended System Function Calls required to perform the
function. The registers will be passed and returned in the same manner used
in Vector 4 CP/M (See Description Above).

FUNCTION 24Q; INITIAJJZE PRINTER

Entry Parameters: Register C - 0F0H

The INITIALIZE PRINTER function will perform any necessary initialization
required by the currently selected print device.

05-20-83 7100-0023-00 Page 4-49

VECTOR GRAPHIC, INC.

Simulator Action:

The simulator will process function 240 (INITIALIZE PRINTER) by making the
corresponding Extended System Function Calls required to perform the
function. The registers will be passed and returned in the same manner used
in Vector 4 CP/M (See Description Above).

FUNCTION 241: BNABLBIDISABLE CmCULAR BUFFERS

Entry Parameters: Register C - ~F1H
Register E - SFFH - Enable

~SH - Disable

The ENABLE/DISABLE CIRCULAR BUFFERS function will enable and disable
the console input circular buffers, for use with a multiuser system. The
buffers will be automatically re-enabled on a cold or warm boot.

Simulator. Action:

The simulator does not support function 241 (ENABLE/DISABLE CIRCULAR
BUFFERS). The simulator executes with input buffering always enabled. If
function 241 is called, the Simulator will retlJrn with the registers unaltered.

FUNCTION 242: ENABLEIDISABLE KEYBOARD CONVERSIONS

Entry Parameters: Register C - ~F2H
Register E - SFFH - Enable

S9H - Disable

The ENABLE/DISABLE KEYBOARD CONVERSIONS function will enable and
disable the keyboard conversions normally carried out by the Monitor. The
conversions are automatically re-enabled on a cold or warm boot.

Simulator Action:

The simulator implements function 242 (EN ABLE/DISABLE KEYBOARD
CONVERSIONS) by using the capabilities of the Video Driver. If the E
register contains 'OH', the Video Driver will be called to Disable all
keyboard conversions. This means that the simulator will return physical
keyboard codes. If the E register contains any other value, the Video
Driver will be called to Enable all keyboard conversions currently
programmed. This means that the simulator will return logical keyboard
codes and strings.

Page 4-50 7100-0023-00 05-20-83·

CP/M-S6
PROGRAMMER'S GUIDE

FUNCTION 243: BNABLEIDISABLE AUTO PAGING

Entry Parameters: Register C - ~F3H
Register E - ~FFH - Enable

~~H - Disable

The ENABLE/DISABLE AUTO PAGING function will enable or disable the
printer auto-paging. The function is automatically toggled along with the
printer when the [CTRL P J function is used in function 1~, READ CONSOLE
BUFFER. It is also automatically cleared on warm or cold boot or by the
INITIALIZE PRINTER, function 240.

Simulator Action:

The simulator will process function 243 (ENABLE/DISABLE AUTO PAGING)
by making the corresponding Extended System Function Calls required to
perform the function. The registers will be passed and returned in the same
manner used in Vector 4 CP/M (See Description Above).

FUNCTION 244: RETURN REVISION LEVEL

Entry Parameters:

Returned Value:

Register C - ~F4H

Register H - System Code (hardware environ­
ment)
H = ~ - Vector 3, 5 Series
H = 1 - Vector 3E, 5E Series
H = 2 - Vector 4 Series

Register L - Revision Level

The RETURN REVISION LEVEL function will return the revision level of
CP/M being used, as well as the type of system using it. The function will
determine if certain BDOS features are installed. Use this along with
Function 12 (RETURN VERSION NUMBER) to determine actual version,
revision level, and mode (2.5 or 3.0).

Simulator Action:

When function 244 (RETURN REVISION LEVEL) is called, the Simulator will
return in the H register an '06H' and in the L register the revision level of
the simulator.

05-20-83 7100-0023-00 Page 4-51

VECTOR GRAPHIC, INC.

FUNCTION 245: ENABLEmlSABLE CROSS-BANK CAl,IS

Entry Parmneters: Register C - ~F5H
Register E - ~~ - Disable

- 9FFH - Enable

The ENABLE/DISABLE CROSS-BANK CALLS function will either enable or
disable the CCP from calling the BDOS, and the BD OS from calling the
BIOS, through the BDOS or BIOS Jump Tables within the userls memory. This
feature allows the user to modify the BIOS Jump Table, or intercept BDOS
calls, and reroute them to the user's own routines. The BDOS and BIOS
Jump Tables may then be restored to their original form by initiating a cold
boot sequence, or by calling this function with a zero in the E register. The
default used by the BDOS and CCP is to Wll use the user's vectors and jump
directly to the BDOS and BIOS respectively. This default is used because
the system throughput is increased enormously when the CCP can call the
BDOS, and the BDOS can call the BIOS directly; therefore, the program
should disable the cross-bank calls upon termination of its task.

Simulator Action:

The simulator will not support function 245 (EN ABLE/DISABLE CROSS BANK
CALLS). If function 245 is called, the simulator will issue an error message
and return to the host system CCP. What this means is that if a program
alters it's pseudo BIOS, all calls to the BIOS by the user program will be
affected. Any calls made by the simulator, however, will be performed using
the host system BIOS.

FUNCTION 246: CHANGE BOOS BASE ADDRESS

Entry Parameters: Register C - 9F6H
Register E - Page Address

This function provides a means of lowering the base address of the BDOS.
This is useful for programs that want to intercept system calls, to perform
addi tional tasks (plotting, asynchronous communications, etc.), and yet not be
disturbed by a warm boot, or the end of execution of a program. Note that
both the default pseudo-BDOS and the relocated BDOS will exist; that is, the
space taken up by the default pseudo-BDOS at the top of memory will not be
cleared for program access. There will be a 'window' of free, 'protected'
RAM between the top of the relocated pseudo-BDOS and the base of the
default BDOS.
Function 246 will adjust both the BDOS vector at location 5 and the
pseudo-BDOS located at the top of the TPA to the address specified in E
(i.e., if E register equals 9CEH, the vector at location 5 will change to
JMP CE96H; and the pseudo-BDOS will be copied to CE'9H). Subsequent
attempts from the BDOS to access the user's disk 1/0 error vectors will get
these vectors from the CE99H pseudo-BDOS. If the E register contains a
zero, or', if a cold boot is initiated, theBDOSw·jll return'to its default
location.

Page 4-52 7100-0023-00 05-20-83

CP/M-86
PROGRAMMER'S GUIDE

NOTE: Versions of Vector 4 CP/M prior to Release 7 (2.56 and earlier) use
a slightly different procedure. For these systems, the new page address is
passed in Register D, and Register E IDJJ.S1 be reset to 0.

Simulator Action:

The simulator will process function 246 (CHANGE BDOS BASE ADDRESS) by
moving it's pseudo BDOS and reflecting the change at location 5 (Z-80
relative). Parameter passage conventions are as in Vector 4 CP/M (See
Description Above).

FUNCTION 247: RETURN MICROPROCESSOR CLOCK SPEED

Entry Parameters:

Returned Value:

Register C - 0F7H

Register A - Clock Speed in MHz
(4 = 4MHz, 5 = 5MHz, 6 = 6MHz)

The RETURN MICROPROCESSOR CLOCK SPEED function will return the
clock speed of the microprocessor to the calling program. This can be useful
for programs that require fairly accurate time delays, and these delays need
to be adjusted according to the clock speed of the processor.

Simulator Action:

The simulator will process a function 247 (RETURN MICROPROCESSOR
CLOCK SPEED) by returning an '04H' in the A register. This val!le reflects
the speed of the Z-80 processor and not the sixteen bit processor.

FUNCTION 248: READ ACTUAL RECORD

Entry Parameters: Register C - 0F8H
Register DE - Record Number

Returned Values: Register A - Error Code
Register H - Physical or Logical Error

The READ ACTUAL RECORD function will read from the currently selected
drive one to sixteen 128-byte records starting at the record number passed in
the DE register into memory beginning at the DMA address.

This function will allow the programmer to read all but the system tracks on
a logical disk unit. Since the largest logical disk unit that can be supported
by Vector 4 CP/M can only be 8 Mbytes in size (including the directory), this
allows for 65,536 128-byte records. The programmer need only select the
appropriate drive and then read the actual record desired.

05-20-83 7100-0023-00 Page 4-53

VECTOR GRAPHIC, INC.

This facility allows Vector 4 CP/M to retrieve information from non-CP/M
structured diskettes. The value ~~H is returned in the A register if the read
operation was successful; otherwise, an error code will be returned as
described in functions 20 and 33, READ SEQUENTIAL and RANDOM.

Simulator Action:

The simulator will process function 248 (READ ACTUAL RECORD) by making
the corresponding Extended System Function Calls required to perform the
function. The registers will be passed and returned in the same manner used
in Vector 4 CP/M (See Description Above).

FUNCTION 249: WRITE ACTUAL RECORD

Entry Parameters: Register C - ~F9H
Register DE - Record number

Returned Values: Register A - Error Code
Register H - Physical or Logical Error

The WRITE ACTUAL RECORD function will write from one to sixteen
128-byte records, beginning at the current DMA address onto the currently
selected disk starting at the record number passed. This function is the
complement to function 248, READ ACTUAL RECORD, and enables the
programmer to create and maintain a non-CP/M compatible diskette and/or
disk. The programmer must be specially careful in the use of this function
for a number of reasons. First, the actual disk directory must be contained
within the 8 Mbyte limit; therefore, the first several records starting with
record zero are the actual disk directory on a CP/M diskette. Once the
directory information has been lost,there is no way to recover the files that
were contained within the directory record. Second, the programmer must
carefully insure that he is not writing to a record that is being used by a
file on that disk. Third, there is no need for an FCB since this function is
more of a physical interface to a disk rather than a logical file interface.
Since there is no FCB maintained, there is no way for Vector 4 CP/M to
maintain any allocation information about records that are written using this
function. This function will return ~FFH in the A register if the write
operation was successful; otherWise, an error code is returned as described in
functions 21 and 34, WRITE SEQUENTIAL and RANDOM.

Simulator Action:

The simulator will process function 249 (WRITE ACTUAL RECORD) by
making the corresponding Extended System Function Calls required to perform
the function. The registers will be passed and returned in the same manner
used in Vector 4 CP/M (See Description Above).

Page 4-54 7100-0023-00 05-20-83

FUNCTION 250; SELECT LIST DEVICE

CP/M-86
PROGRAMMER '8 GUIDE

Entry Parameters: Register E - List Device

Returned Values: None

This function selects the desired list device, which can now be used by other
attach or conditional attach functions (see functions 158, 159, 161, 164).
Possible values for Register E are listed with Function 160 (SET LIST).

Simulator Action:

The simulator maintains a local variable containing the currently selected list
device. This variable is initialized by the simulator to zero (Discard Output).
When function 250 (SELECT LIST DEVICE) is processed by the Simulator, the
value passed in the E register is stored as the currently selected list device.

FUNCTION·255: RELEASE FILE RESOURCES

Entry Parameters: Register C - 9FFH

The RELEASE FILE RESOURCES function will release all open files and
locked records used by the calling task. This function is executed
automatically upon entry to the CCP.

Simulator Action:

When the simulator is executing under CP/M-86, function 255 (RELEASE FILE
RESOURCES) is not supported. If function 255 is called, the simulator will
return with the registers unaltered.

I

05-20-83 7100-0023-00 Page 4-55

VECTOR GRAPHIC, INC.

!.a& BDOS Function Chart

FDNCT. FDNCT.
NUMBER NAME

" SYSTEM RESET

1 CONSOLE INPUT

2 CONSOLE OUTPUT

3 READER INPUT

4 PUNCH OUTPUT

5 LIST OUTPUT

6 DIRECT CONSOLE I/O

7 GET I/O BYTE

8 SET I/O BYTE

9 PRINT STRING

1~ READ CONSOLE BUFFER

11 GET CONSOLE STATUS

12 RETURN VERSION NUMBER

13 RESET DISK SYSTEM

14 SELECT DISK

15 OPEN FILE

16 CLOSE FILE

17 SEARCH FOR FIRST

18 SEARCH FOR NEXT

19 DELETE FILE

INPUT
PARAMETERS!

None

None

E= Char

None

E= Char

E=Char

See Def

None

E = IOBYTE

DE = Buffer

DE = Buffer

None

None

None

E=Disk Number

DE = FCB

DE = FCB

DE = FCB

None

DE = FCB

1 See Def = See BDOS Definition within text.

Ret Code = Returned Code

Dir Code = Directory Code

Err Code = Error Code

2 A = L, and B = H upon return.

Page 4-56 7100-0023-00

OUTPUT RESULTS!

None

A = Char

None

A=Char

None

See Def

See Def

A = IOBYTE

See Def

None

See Def

A = 0~/FF

HL = Version2

See Def

See Def

A = Dir Code

A = Dir Code

A = Dir Code

A = Dir Code

A = Dir Code

05-20-83

FUNCTa FUNCT. INPUT

NUMBER NAME P ARAMETERSI

2~ READ SEQUENTIAL DE = FCB

21 WRITE SEQUENTIAL DE = FCB

22 MAKE FILE DE = FCB

23 RENAME FILE DE = FCB

24 RETURN LOGIN VECTOR None

25 RETURN CURRENT DISK None

26 SET DMA ADDRESS DE = DMA

27 GET AD DR (Alloe) None

28 WRITE PROTECT DISK None

29 GET RIO VECTOR None

3~ SET FILE ATTRIBUTES DE = FCB

31 GET ADDR (Disk Params) None

32 SETIGET USER CODE See Def

33 READ RANDOM DE = FCB

34 WRITE RANDOM DE = FCB

35 COMPUTE FILE SIZE DE = FCB

36 SET RANDOM RECORD DE = FCB

37 RESET DRIVE DE = Drive

4~ WRITE RANDOM WITH ZERO

FILL DE = FCB

41 TEST AND WRITE RECORD See Def

42 LOCK RECORD See Def

43 UNLOCK RECORD See Def

44 SET MULTI-SECTOR COUNT See Def

1 See Def = See BDOS Definition within text.

Ret Code = Returned Code

Dir Code = Directory Code

Err Code = Error Code

2 A = L, and B = H upon return.

05-20-83 7100-0023-00

CP/M-86
PROGRAMMER'S GUIDE

OUTPUT RESUL TSI

A = Err Code

A = Err Code

A = Dir Code

A = Dir Code

HL = Login Veet2

A = Cur Disk2

None

HL = Alloe

See Def

HL = RIO Veet2

See Def

HL = DPB

See Def

A = Err Code

A = Err Code

r0, r1, r2

r0, r1, r2

A = ~0H

A = Ret Code

See Def

See Def

See Def

See Def

Page 4-57

VECTOR GRAPHIC, INC.

FUNCTa PUNCT.

NUMBER NAME

45 SET BDOS ERROR MODE

46 RETURN FREE DISK SPACE

47 CHAIN TO PROGRAM

48 FLUSH BUFFERS

152 PARSE FILEN AME

158 ATTACH LIST

159 DETACH LIST

160 SET LIST

161 CONDITIONAL ATTACH LIST

164 GET LIST NUMBER

217 GET/SET CONFIG BYTE

224 DETECT R/O STATUS

225 RETURN BIOS ERROR CODE

226 INHIBIT/ENABLE BDOS

ERRORS

227 INHIBIT/EN ABLE BIOS

ERRORS

228 GET/SET ACCOUNT CODE

233 RELEASE TIME SLICE

INPUT

PARAMETERSl

See Def

See Def

None

See Def

See Def

None

None

See Def

None

None

See Def

None

None

See Def

See Def

See Def

None

1 See Def = See BDOS Definition within text.

Ret Code = Returned Code

Dir Code = Directory Code

Err Code = Error Code

Page 4-58 7100-0023-00

OUTPUT RESULTSl

None

See Def

None

See Def

See Def

None

None

See Def

A = Ret Code

A = List Number

See Def

A = Boolean Value

HL = Err Code

None

None

See Def

None

05-20-83

FUNCTa EUHCT,

NUMBER NAME

234 SET DMA TASK

235 CHAIN CCP COMMAND

236 RETURN OUTPUT STATUS

237 RETURN INPUT STATUS

238 LIST INPUT

239 RETURN PRINTER TYPE

240 INITIALIZE PRINTER

241 EN ABLE/DISABLE

CIRC BUFFERS

242 EN ABLE/DISABLE

KEY CONVERS

243 EN ABLE/DISABLE

AUTO-PAGING

244 RETURN REVISION LEVEL

245 EN ABLE/DISABLE

CROSS-BANK CALLS

246 CHANGE BDOS BASE

ADDRESS

247 RETURN MICROPROCESSOR

CLOCK SPEED

248 READ ACTUAL RECORD

249 WRITE ACTUAL RECORD

255 RELEASE FILE RESOURCES

INPUT

PARAMETERSl

See Def

See Def

None

None

See Def

See Def

None

See Def

See Def

See Def

None

See Def

See De!

C = ~F7H
See Def

See Def

None

1 See De! = See BDOS Definition within text.

Ret Code = Returned Code

Dir Code = Directory Code

Err Code = Error Code

05-20-83 7100-0023-00

CP/M-86
PROGRAMMER'S GUIDE

OUTPUT RESULTsl

None

None

A = Boolean Value

A = Boolean Value

See Def

See Def

None

See Def

See Def

See Def

HL = Rev Level

None

None

A = Clock Speed

See Def

See Def

None

Page 4-59

