
SCALD 7.4.2 LOGIC SIMULATOR INCREMENTAL CHANGES

GENERAL DESCRIPTION

The 7.4.2 release of the Simulator contains several new features and added
capabilities from the previous 7.25' release. Highlights of this release are
listed below and are described in more detail within this document:

o Support for different radices in tabular I/O.

o Separate rise/fall delays for all Simulator primitives.

o Wire delay feedback.

o Addition of a uni-directional MOS transistor primitive.

o User-specified time resolution.

o Simple coverage analysis to indicate which signals have made a
transition.

Existing circuits, Simulator models, command files, etc. do not need to be
changed. Incompatibilities bet een versions 7.25 and 7.4.2 should be
reported as bugs unless other ise described in this document.

DIFFERENT RADICES IN TABULAR I/O

In Release 7.25, users were limited to using binary for tabular I/O values.
The Simulator has been modified to accept values in a radix other than
binary. Now, these values may also be specified in octal, decimal, or
hexadecimal using a command of the following format:

TRACE <signal name>, <radiX>

The radix may be specified using numerals (2, 8, 10, or 16) or characters
(b, a, d, 0 r h).

1

7.4.2 Simulator Changes

If the TRACE command is given without a radix, the default trace radix is
used. This default is initially 2, but some other value may be specified
using the TRACE RADIX directive. The format for this directive is:

TRACE_RADIX { 2 \ 8 \ 10 \ 16 };

The default radix may also be changed at any time using the new TRACE RADIX
command:

TRACE_RADIX [2 \ 8 \ 10 -\ 16 \ b \ aid \ h]

If no argument is given, the current default trace radix is displayed.

SEP.~TE RISE/FALL DELAYS

Delays associated with Simulator primitives have been modified so that
different times may be specified corresponding to a rise delay and a fall
delay. Specification of these delays is made through the modified DELAY
property or through the new properties, RISE and FALL.

The DELAY property has been modified to accept two values, a rise delay
followed by a fall delay (separated by a comma). If only one value is
specified, this value is used as both the rise and fall delay. Accordingly,
delay can be specified in either of the following formats:

DELAY <delay time>
DELAY <rise delay>, <fall delay>

In addition,
properties.

rise and fall delays can be specified using the RISE and FALL
Usage of these properties is as follows:

RISE <rise delay>
FALL <fall delay>

Note that both the DELAY property and the RISE and FALL properties cannot be
specified on the same body or an error will result.

A new directive has been added to the Simulator to control the use of
separate RISE/FALL delays. The format of this new directive is:

RISE FALL { OFF I ON }

If the ON state is specified, simulations are performed using both the rise
and fall delays specified for parts. The default state of this directive is
OFF which causes all primitives to change states after the specified delay
time (if only one value is given) or after the greater of the rise and fall
delays.

2

.NAY 1 6 -19~

7.4.2 Simulator Chang~s ~MAY 1 ~
- .. :. V 1985

w~en separate rise/fall delays are specified, the delay used for the various
transitions is as follows (where X indicates any value):

old value output new value delay to use
---------------- --------- ------------

X 0 fall
X 1 rise
X U min(rise, fall)
0 Z rise
1 Z - fall
U Z max(rise, fall)

As a result of this new feature, changes were made to the set of functions
provided for UCP's. The function GET DELAY now returns the greater of the
rise and fall delays. In addition, two new functions, GET RISE and GET FALL
have been added to return the rise and fall delays of the primitive, -
respectively.

WIRE DELAY FEEDBACK

Wire delay feedback has been added to the Simulator. The wire delays can be
fed back in either of two ways:

1. By using a directive of the form

WIRE_DELAYS 'filename';

2. By using a command of the form

WIRE DELAYS filename [;]

The file must be in the format described below. Basically, each element
consists of a signal name (in quotes), a bit subscript (if any), and a delay
element or a list of path names of components that the signal drives with a
delay for each bit. These delays are added in with any other specified
delay values to determine when Simulator events are scheduled for those
bi ts.

3

7.4.2 Simulator Changes

<delay file>

<delay list>

<signal delay list>

<stop delay list>

<stop delay>

<signal name>

<bit range>

<bit number>

. . = END • I
<delay list> ; END.

: : = <signal delay list>; I
<signal delay list> ; <delay list>

: : = <signal name> := <stop delay list>

::= <stop delay>; I
<stop delay>; <stop delay list>

::= = <quoted rise/fall range> I
<quoted path name> =

<quoted rise/fall range>

<quoted signal name> I
<quoted signal name> < <bit range> >

: : = <bi t number>
<bi t number>

: : = <integer>

<bi t number>

<quoted rise/fall range>

<rise delay range>

<fall delay range>

<min delay>

<max delay>

<delay range>

<delay>

::= ' <delay>' I

: : =

: : =

: : =

.. =

.. =

'<delay range>' I
'<rise delay range>,

<fall delay range>'

<min delay> - <max delay>

<min delay> - <max delay>

<fixed point number>

<fixed point number>

<delay>, <delay> I
<delay> - <delay>

<fixed point number>

4

7.4.2 Simulator Changes

At present, the Simulator does not support the following:

<stop delay> ::= <quoted path name> =
<quoted rise/fall range>

In other words, the delay specified for a signal is applied to all of its
inputs. Note that if only <rise delay range> or only <fall delay range> is
specified, the maximum delay is applied. The following is an example of a
wire delay file:

'FOO' <5 •• 0>: = '2.3,3.4';

'BAR' <2> , 3. 7 - 4.8';

'FOO BAR' '5.1';

END.

PERFORl"'.ANCE ENEAL~CEKENTS IN MOS

The performance of NMOS simulation has been enhanced through the addition of
a uni-directional MOS transistor primitive, UNI PASS T~~SISTOR. This
addition not only increases the speed of simulation for MOS circuits, but
improves the readability of drawings where fully bi-directional gates are
not required. Pins and properties of the UNI PASS T~~SISTOR primitive are
identical to those of the PASS TRJU~SISTOR primitive - a G pin controls
whether the A and B pins are connected; however, since the transistor
described is now uni-directional, the A pin is an input pin rather than an
output pin.

The performance of MOS simulation has also been improved by making the decay
time feature associated with MOS primitives default to "no decayll. That is,
unless the user explicitly specifies a decay time (using the DECAY TIME
directive or DECAY TIME command), MOS signal strengths do not decay over
time.

USER-SPECIFIED TIME RESOLUTION

A user can now specify the time resolution to be used by the Simulator
through a new directive, RESOLUTION. This feature allows a user to specify
a finer resolution when such capabilities are needed, or to increase the
speed of simulations when a more coarse resolution is being used. The
format of this directive is:

RESOLUTION <time>

5

7.4.2 Simulator Changes

The time resolution should be specified as a real number of nanoseconds and
need not be a power of ten (e.g., 50 picoseconds is expressed as 0.05 and
2 microseconds is expressed as 2000). The default value is 1 nanosecond,
the resolution previously used by the Simulator.

The current resolution used by the Simulator is indicated in the display
area as a fixed point value labeled "Scale:". In BUS mode, this indication
appears on the second line of the screen. In WAVEFO~~S mode, the resolution
appears near the bottom of the display area below the tick marks and time
scale.

The addition of this feature affects the user interface in several areas.
The most obvious of these is that the time scale indicated on the screen in
WAVEFO~~S mode no longer represents nanoseconds, but must be scaled by the
indicated scale factor. For example, by specifying "RESOLUTION 20", each
tick (formerly 1 ns) now represents 20 ns.

This feature also impacts time values entered into the Simulator or used by
the Simulator. Some values are scaled based on the time resolution
specified in this directive; these include the clock period, signal
histories, signal delays, and decay times. These values are typically
specified in nanoseconds, and this remains true; however, since the display
may not be in nanoseconds, the values must be appropriately scaled by the
Simulator. The following examples will help clarify time resolution •. With
the same scale factor of 20 used above:

1. A clock period of 500 ns divided into 10 intervals is displayed as
"Clo c k : 25 / 10".

2. The default for signal history remains the same (1000 ns), but since
each tick on the screen now represents 20 ns, history is only retained
for SO ticks.

3. Time values specified in input files (e.g., delay), do not have to be
scaled by the user. The input units remain the same, but the values
are scaled by the Simulator for display on the screen. For example, a
10000 ns decay time still is specified by "DECAY TIME 10000", but
signals change value after 500 ticks.

On the other hand, screen-oriented times maintain their relation to ticks on
the screen (although the "real" times associated with those ticks have
changed). For example, while "WAVEFORM a lOa" displays a time scale from a
to 100 ticks, "SIM 100" advances simulated time by 100 ticks, and "CURSOR
25" sets the cursor to a location corresponding to 25 ticks. Still using
the example with a scale factor of 20, the 25 and 100 ticks correspond to
"real" times of 500 and 2000 ns, respectively.

6

7.4.2 Simulator Changes

~e user should exercise caution when manipulating the time resolution. Too
fine a resolution decreases the execution speed of the Simulator (simulating
for hundreds of ticks even when no events are being scheduled) or could
result in the generation of massive amounts of signal histories. On the
other hand, before decreasing the resolutio~ one must ensure that the
specification of other time values is correspondingly coarse (i. e., it
probably does not make sense to specify "RESOLUTION 50" with a 20 ns clock
interval).

NP; SIMULATOR DIRECTIVES

CLOCK ON DRIVEN Directive

In previous releases, if the clock property was specified for a signal, the
Simulator built a clock generator for that signal even if it was driven by
some other signal. The new directive:

has been added for building clock generators on driven signals. The default
for the directive is OFF (which only pe~its timing assertions to be
specified on undriven signals). Thus, building a clock generator on a
driven signal is no longer allowed unless this directive is specified as ON.

USE SYNONYM Directive

The USE SYNONYM directive determines if the Simulator is required to read
the Compiler's synonyms file (not reading the synonyms file speeds
simulation time). The syntax for this directive is:

USE SYNONYM { OFF i ON };

Note that if the directive USE SYNONYM OFF; is included, signals only can be
referenced by their "base names." The default for the directive is ON (the
synonyms file always is read).

7

7.4.2 Simulator Changes

Dther Directives

Several new directives have been described previously in this document.
Below is a summary of these directives (see above for a more complete
description):

TRACE R-~IX { 2 I 8 I 10 I 16}; defines default trace
radix (default: 2)

RISE FALL { OFF I ON }; enables separate primitive
rise/fall delays (default: OFF)

WIRE_DEL\YS 'filename'; specifies file for wire delays

RESOLUTION <time>; specifies Simulator time
resolution (default: 1 ns)

NEW/MODIFIED COMMANDS IN THE SIMULATOR

TRACE Command

The TRACE command has been modified to take advantage of the puck when
running the Simulator under GED. Signals to be traced may now be specified
by pointing to them with the puck using the following command format:

TRACE <point> <point> •••

Thus, signals can easily be specified for tracing in the default radix
without typing their signal name.

ASSERTIONS Command

The ASSERTIONS command is a new command that allows timing assertions to be
specified while running the Simulator. This command allows the user to
specify assertions interactively rather than with the signal name given when
creating the drawing in GED. Addition of this feature provides the user
with an extra degree of flexibility when performing simulations since signal
timing assertions are no longer fixed with the signal name and need not be
compiled with the drawing. Usage of this command is as follows:

ASSERTIONS < signal name >. < timing data >

The < timing data > parameter is specified using the standard SCALD syntax
for timing assertion data (e.g •• 0-4). The assertion type should not be
specified - the Simulator automatically adds the "IC" property to the timing
data.

8

7.4.2 Simulator Changes

This command can be invoked on existing clock signals as well as any other
signals in the drawing. Thus, any signal can be assigned timing assertions
while in the Simulator, and assertions of existing clock signals can be
re-defined. After assigning clock properties, the signal can be OPENed
using either its previous or its new (With assertions) name.

COVERAGE Command

Simple coverage analysis has been ~dded to the Simulator to enable the user
to obtain a list of the signals that' have made a transition during a period
of simulation. This list can then be used to ensure that all signals in the
circuit have been exercised.

Coverage analysis is controlled by the COVERAGE command. The format of this
command is:

COVERAGE [ON I OFF]

If no parameter is give~ the current status of the coverage analysis is
reported. If coverage analysis is off, the Simulator will not track the
number of transitions.

At any time (whether coverage analysis is enabled or not), the user can
output the list of signals that have made a transition and the number of
transitions that they have made by using the WRITE COVERAGE command. This
command outputs the list to a file with the speCified name. The format of
this command is:

WRITE COVERAGE < filename> [, { 0 I 1 I 2 I 3 }]

If no parameters are given, the user is prompted for a file name. If the
optional parameter (0 - 3) is give~ the signals are processed based on the
number of times that they have made a transition. The signals are sorted by
the number of transitions, and the file only contains those signal names in
specific groups; for example, specifying "0" indicates ·that only signals
making 0 transitions (i.e., those that' have not changed) should be output,
and "1" indicates that only those signals making 0 or 1 transitions are
output.

To clear the list of signals that have made a transition, the user must
invoke the INIT CQVER..;,GE command. This command, which has no parameters,
enables the user to invoke coverage analysis for different periods of
simulation. Note that turning coverage analysis OFF does not clear this
list - this command must be invoked each time a new list of signals is to be
started (except the first, when the list is empty), regardless of the use of
the COVERAGE command.

9

7.4.2 Simulator Changes

RECORD SIGNALS Command

The RECORD SIG~ALS command causes the signal histories of all signals in the
circuit to be recorded. Previously, a signal had to be OPENed in WAVEFO&~S
mode in order to start a recording of its history. Thus:," a.fter a period of
simulation, if a signal was not OPENed, there would be no: method to
determine what the value of a signal was at a previous 'time. By invoking
this command, which takes no parameters, the history of:,al:l signals is
available thereafter.

-Note that this command does not affect the duration of history which is
maintained for all signals - history only is preserved for the interval
specified using the HISTORY command (or the default). Also 'note that since
certain storage requirements are-involved in creating and maintaining
history. this command should not be invoked on large circuits.

RECORD ALL Command

The RECORD ALL command causes the signal histories of all signals and all
memories in a circuit to be recorded. This command is identical to the
RECORD SIGNALS command described above except that the history of all
locations of all memories also is recorded. This command requires no
parameters and has no effect on the duration of history maintained for all
signals.

Note that considerable storage requirements could be involved in creating
and maintaining a history of all signals and memories. Thus, this command
should not be invoked on circuits with a large number of elements and/or
large memories.

SCROLL Command

The SCROLL command allows the user to control the automatic scrolling
feature of the Simulator. The format of this command is:

SCROLL [ON I OFF]

The default is ON, which causes the Simulator display to scroll in WAVEFORMS
mode when a signal not currently on the screen is OPENed. Using this
command to turn the feature OFF allows the user,to OPEN and DEPOSIT into
signals that are not on the display.

10

