
ValidTIME'™ REFERENCE MANUAL

Manual Number: MN225 Rev.A

10 April 1986

Valid Logic Systems, Incorporated
2820 Orchard Parkway
San Jose, CA 95134

(408)945-9400 Telex 371 9004
FAX 408 262 2599

Copyright© 1986 Valid Logic Syst.ems, Incorporat.ed

This document contains confidential. proprietary information which is
not to be disclosed t.o unauthorized persons without the prior written
consent of an officer of Valid Logic Systems Incorporated.

The copyright notice appearing above is included t.o provide statut.ory
protection in the event of unauthorized or. unintentional public disclo­
sure.

ii

MANUAL REVISION HIS'IORY

Rev Date Software Reason for Change
Release

A 4-10-86 ValidTIME Initial release.
Release 1.0

4/10/86 iii

TABLE OF CONTENTS

Overview
What is Timing Verification................................... 1-1
Timing Verifier Principles...................................... 1-3

The Idealized Clock Cycle............................... 1-4
Signal Values in the Timing Verifier..................... 1-5

Timing Verifier Operation
Running the Timing Verifier................................. 2-1

Tips... 2-2
The Verification Process .. 2-4

Convergence... 2-4
Timing Violations... 2-5

Timing Verifier Files.. 2-5
Input Files... 2-5
Output Files.. 2-7
File Names.. 2-9

Signal History... 2-9
Low-Asserted Signals in the Signal History.... 2-12

User Specified Timing Information....................... 2-12
Ways to Specify Periodic and

Delay Information.. 2-13

Timing Verifier Directives
General Directives.. 3-1

Clock_Period .. 3-2
Clock_Intervals... 3-2
Clock_Skew .. 3-2
Prec_Clock_Skew.. 3-3
Reconv _Fanout.. 3-3
Root_Drawing... 3-4
Timing_)) iagrams ... 3-4

Execution and Output Directives.......................... 3-5
D iff _Passes.. 3-5
List.. 3-6
Max_Errors... 3-9
Max_Eval_Passes.. 3-10
Max_Exp_Errors... 3-10
Output_Resolution ... 3-10
Print_Width .. 3-11

4µ0~6 v

Table of Contents Timing Verifier

Delay Directives 3-11
Delay_Model .. 3-11
Rise_Fall_Anal.. 3-12
Rise_Fall_Models ... 3-13
Use_Drawing_Wd... 3-14
Wire_Delay ... 3-14

Delay Estimator Directives.................................... 3-15
Default_Drive... 3-15
Delay_Estimator ... 3-15
Load_Coeffs.. 3-16
Wire_Estimate .. 3-17

Technology-Linked Directives............................... 3-18
Dot_Type .. 3-18
Latch_Err_Model.. 3-19
NC_Signals.. c3-19
Pulse_Filter ... 3-20
Set_Min_Delays.. 3-20
Timing_Sim_Mode ... 3-20
TS_Bus_Type .. 3-22

Timing Assertions
Clock Assertions and Signal Assertions................ 4-1

Types of Signal Assertions............................... 4-3
Advanced Use of Assertions........................... 4-5

Timing Assertions in Signal Names 4-5
Time Specifiers... 4-7
Preceding a Signal Assertion

with a Subinterval... 4-10
Adding Skew to a Signal Assertion................. 4-11

Using the Case File.. 4-12
Case File Syntax... 4-12
Case Analysis.. 4-13
Timing Assertions in the Case File................. 4-16

Delays
Wire Delay Directive.. 5-2
Delay Properties... 5-3

Text Macros for Delay Properties................... 5-5
Attaching a Delay Property to a

Signal or a Pin... 5-5
Wire_Delay as a Pin Property.......................... 5-7

vi 4/10/86

Timing Verifier Table of Contents

Delay Estimator.. 5-8
Interaction of Wire Delays with

Delay Estimator.. 5-9
Computing Net Dependent Delays................. 5-10
Using the Delay Estimator............................... 5-13
Wire Delay File 5-14
Interaction of Wire Delay File and

Other Wire Delays.. 5-15
Evaluation Directives... 5-15

Attaching an Evaluation Directive
to a Signal... 5-17

Evaluation Directive for
Signal Initialization 5-17

Example Circuit.. 5-18
Evaluation Directives for Clock Tuning.......... 5-20
Evaluation Directives for Clock Gating.......... 5-23
Tuned and Gated Clocks................................. 5-26
Defining Complex Tuned and Gated Clocks.. 5-31
Evaluation Directives Used in

Multilevel Components................................ 5-32

TI.ming Models
Time Primitives.. 6-2

Standard Functions .. 6-2
Non-Standard Functions.................................. 6-3
Checker Primitives... 6-4
Using Time Primitives..................................... 6-4

Non-Standard Primitives.. 6-5
The Change Primitive...................................... 6-5
The Buffer and Identity Primitives.................. 6-5
The Resistor Primitive..................................... 6-6
The Threshold Primitive.................................. 6-6
The Transmission Gate.................................... 6-6
The Uni Trans Gate... 6-6

Error-Checking Primitives..................................... 6-7
Setup Hold.. 6-7
Setup Rise Hold Fall .. 6-7
Edge to Edge 6-8
Min Pulse Width .. 6-9

Truth Tables for Timing Functions....................... 6-9
AND, OR, XOR, and Change Functions....... 6-10
TS Buf and TS Bus Functions......................... 6-12
TS Bus... 6-14

4/10/86 vii

Table of Contents Timing Verifier

Buf and Threshold Primitives.......................... 6-17
Res and Identity Functions.............................. 6-17
Latch Primitive... 6-18
Latch RS... 6-21
Transition Property.. 6-21
Set Reset Function... 6-22
Reg Function.. 6-25
Reg RS.. 6-26
The 2, 4 and 8 Mux Functions........................ 6-26

Wire Gates
Wire Gat.e Truth Tables... 7-2
TS Bus Truth Tables.. 7-7

Error Messages
Classes of Errors.. 8-1
Format of Messages... 8-2
Numerical Listing of Error Messages.................... 8-3

Glossary of Terms

Appendix A File Syntax
Case File Syntax .. ~. A-1
Delay Properties Syntax... A-1
Wire Delay File Syntax.. A-2
Drive Property Syntax.. A-3

Index

viii 4/10/86

SECTION!
OVERVIEW

ValidTIME, the SCALDsystem Timing Verifier is a power­
ful design tool that provides thorough verification of syn­
chronous circuits and can be used early in the design cycle.
Because ValidTIME is not dependent on full circuit simula­
tion, accurate timing data can be obtained on portions of a
design before a full logic simulation is possible. The two
significant advantages to this design methodology are first,
that timing information can be incorporated into the design
process incrementally, thus assuring more accurate design,
and second, that the unbundling of timing verification from
logic simulation produces a faster, more efficient,
verification tool.

1.1 VVHAT IS TIMING VERIFICATION?

Digital systems are composed of components and their
interconnections, or wires which convey signals from one
component to another. In general, when a signal on the
input of a component changes, some time later the signal
on the output may change. The wire connected to this out­
put then conveys the signal to the input of other com­
ponents, again after some delay. Because of variations in
construction, the delay time of components and wires
varies.

At certain places in a system - data inputs to registers, and
external interfaces for example - a signal must assume its
value at a certain time. If the delay to such a place is. too
long or too short, the signal may change value too early or
too late. This will cause the system to yield an incorrect
result. Consider the D register shown in Figure 1-1:

4/10/86 1-1

Overview

: '" Dl----""""-'DATA OUT

: ts I th :

: : : DATA IN 1/---:---,i
~ : 1'--

CU<

1 : !
' I
1r---~

t pulsa

Figure 1-1. D Regist.er

Timing Verifier

In order for this register to function correctly, the signal
DATA_IN must be stable for a specified amount of time
before the clock signal CLK changes. This is the setup
time for the register and is marked as ts in the example.
The signal DATA_IN must also remain stable for a
specified amount of time after CLK changes. This is the
hold time for the register and is marked as th in the exam­
ple.

For the register to function correctly it is also necessary for
CLK to remain high for a certain minimum time. The time
that CLK remains high is called the clock pulse, and so this
requirement is called a minimum pulse width. It is marked
in the exam pie as t pulse.

When these requirements are met, the signal DATA_OUT
will change after the register is clocked. The time interval

1-2 4/10/86

Timing Verifier Overview

between the time CLK changes and the time DATA_OUT
changes is the time it takes the DA TA_IN signal to pro­
pagate through the circuitry of the register. This is called
propagation delay. The timing requirements and propaga­
tion delays of devices are listed in manufacturer's data
books.

As a second example, consider a memory interface
comprising a data bus named D <7 .. 0> and a data ready
signal named READY, there will typically be some
specification that the bits D <7 .. 0> must be ready (that
is stable, not changing) some period of time before
READY becomes true. If this setup time is not met, sys­
tems connected to the memory may malfunction.

The Timing Verifier checks all of the components in the
design for their timing constraints by using a timing model
for each component. These timing models are supplied in
Valid Libraries. They are built by Library Development
Engineers on the basis of manufacturer's data books. The
Timing Verifier augments the information in the models
with user-specified timing information (wire delays, signal
assertions, etc.) and checks that user-specified assertions
are met.

1.2 TIMING VERIF1ER PRINCIPLES

The underlying principle of the SCALD system Timing
Verifier is that most timing errors occur when signals are
changing states, not when they are stable. Therefore only
the behavior of changing signals needs to be examined for
possible timing errors. When a given signal is stable,
whether it is high or low (1 or 0) is of no importance. And
when a given signal is changing, whether it is changing
from high to low, or low to high, is only important if the
rise and fall delays at that particular place are asymmetrical.

By defining the cyclical clock behavior and setting most
other signals in a circuit to a stable condition at the outset

4/10/86 1-3

Overview Timing Verifier

of the verification, the SCALDsystem Timing Verifier can
test each signal and library part for all possible timing
errors during a complete clock period. This thorough tim­
ing analysis provides considerably more information than
evaluation for worst, best, and typical cases.

A basic assumption of the Timing Verifier is that the circuit
to be verified has periodic behavior. That is, given a circuit
and a set of input stimulus, there is some state of the cir­
cuit S and some time T, such that starting the circuit in
state S, applying the inputs and simulating for time T, the
circuit returns to state S. (By state of a circuit, we mean
the value history of each signal in the design.) Synchronous
sequential circuits, and strictly combinational circuits both
have this property.

TIIE IDEALIZED CLOCK CYCLE

The Timing Verifier tests for all timing errors over the
course of a single clock cycle. This clock cycle is not any
particular cycle, but an IDEALIZED cycle in which all pos­
sible transitions are analyzed and tested for timing errors.
In a circuit that contains a 4-bit counter, for example, each
of the four bits does not undergo a transition every clock
cycle. But in any given clock cycle, the outputs of the
counter that D 0 undergo transitions undergo them at the
same time within that cycle.

The Timing Verifier doesn't care whether any particular bit
is changing value at a particular moment in time. What the
Timing Verifier cares about is that when ANY of the bits
undergoes a transition, the timing behavior of that signal
does not interfere with the timing specifications of the rest
of the circuit.

To the Timing Verifier, therefore, all four bits change at
the same time. That is to say that they all change during
the same portion of the clock cycle. The signal history for
each of the four bits of the counter output is identical in
the Timing Verifier. Remember, this is not a functional
model, but just a timing model.

1-4 4/10/86

Timing Verifier Overview

When the Timing Verifier reports an error condition (let's
say a setup time violation) at time 67.0 in a 100 ns clock
cycle, it is not telling you that a setup time violation occurs
during every clock cycle, but rather that during every clock
cycle when this component IS active, a setup time violation
occurs at the 67th nanosecond within that cycle.

If the particular component in question is only active once
every several hundred cycles, then this error could be
difficult to detect by other means.

1.3 SIGNAL VALUES IN THE TIMING VERIFIER

Because the SCALDsystem Timing Verifier does not
require you to specify the exact value of each signal, but
only that of the clocks, the Timing Verifier reports the
value history of each signal using a system of eight signal
values. The timing behavior of all synchronous circuits can
be accurately represented using these eight signal values.
Of these eight values, the three fundamental signal values
are stable, changing, and unknown. The remaining five
signal values are specific cases of the fundamental values.

Logic 1 and logic 0 are specific cases of a stable signal
value, rising and falling are specific cases of a changing sig­
nal value, and high impedance is a specific case of an unk­
nown signal value. The eight values are shown in Figure
1-2 with their abbreviations used when giving a signal's
value history, and their waveform representation. These
signal values are internal to the SCALDsystem Timing
Verifier. On the basis of the clock behavior you specify
and the timing models of each part in your design, the
Timing Verifier calculates and reports the signal history for
each signal.

4/10/86 1-5

Overview Timing Verifier

Stable sl Rising R /ll
Logic 1 1 I Falllng F \\\
LoglcO 0 I Unknpwn ul u

cl DB<] zl Changing High z
Impedance

Figure 1-2: Signal Values

Notice that for timing verification these eight signal values
are sufficient to describe all pertinent conditions. An "in­
between" value such as 2.5V is not relevant to timing
verification, nor are threshold voltages.

Here, as an example, is a signal DATA and its value his­
tory shown as a waveform representation and in list form:

1-6 4/10/86

Timing Verifier

0

I I I I

-~ 15 30 35
I I I

45
I

Overview

100

DATA 0:0.0, R:15.0, 1:30.0, F:35.0, 0:45.0

Figure 1-3: Waveform and Signal History

This signal history means that the signal DATA might rise
as soon as 15 ns, that it must reach the value 1 by 30 ns,
and then remains high until 35 ns when it could fall and it
must reach the value 0 at 45 ns. The signal remains low
for the rest of the cycle. This signal history reports the
behavior of the signal DA TA during those clock cycles
when DA TA is active. This signal history does not mean
that DA TA is active during every clock cycle. The
numbers given in the signal history do not therefore specify
real time hut relative time within the clock cycle. If for a
clock period of 100 ns the signal DATA is active only every
third period, then in real time DA TA would be high from
230 ns to 235 ns and from 530 to 535 ns, and so on. But
to the Timing Verifier this is not important. What is
important to the Verifier is whether the signal DATA
causes timing conflicts during the cycles when it IS active.
That's why the Timing Verifier needs only to know about
the cyclic behavior of DA TA and not its behavior in real
time.

For each part in the design, the Timing Verifier determines
the signal value of the input signals and then uses a timing
model to represent the requisite delays and to determine
the signal value of the output. The timing models are pro­
duced by Valid engineers from a small set of Timing
Verifier primitives. Each timing primitive uses a unique
algorithm to determine the value of signal outputs. See
Section 7, Timing Models for complete truth tables for
each timing primitive.

4/10/86 1-7

Overview Timing Verifier

Using the signal value stable (S) greatly reduces the
amount of time spent preparing inputs for the Timing
Verifier. A register, for example, changes state only during
a short interval after it is clocked. The rest of the time it is
stable. By specifying the signal names as having the value
S (stable) the contents of registers and memories do not
have to be individually specified. Using the signal value S
also exponentially reduces the number of states that must
be simulated to verify the timing behavior of the circuit.
For example, a 16-bit counter that contains the value
SSSSS SS (16 times) has only one state, not 2**16 states.
Rarely does a circuit's timing depend on the actual value in
the counter, but merely how long after the counter is
clocked it takes for the outputs to stop undergoing transi­
tions.

For cases where correct modelling of the signals in a circuit
requires specifying (0, 1) behavior, the Timing Verifier uses
a mechanism called case analysis explained later in this
manual.

Signal values are calculated in picoseconds (1/1000 ns) and
reported in nanoseconds with 0-3 decimal digits. To change
the resolution of reported signal values use the
OUTPUT_RESOL UTION directive.

1-8 4/10/86

SECJ'IlON2
TIMING VERIFIER OPERATION

To perform timing verification, you must first define the
periodic operation of the master clock and of any sub­
clocks in the design. This includes specifying the clock
period, duty cycle, and any clock skew that needs to be
taken into account.

The Verifier then determines first at what time during the
cycle each possible transition occurs, and then whether any
of these transitions cause timing errors. The first part of
this process is what we call "convergence" and the second is
the actual error analysis. If the circuit does not converge, it
is not synchronous and the Timing Verifier cannot
effectively proceed.

2.1 RUNNING mE TIMING VERIFIER

Here is an overview of the steps required to run the Timing
Verifier:

1. Specify the clock behavior with an assertion state­
ment on the GED drawing or in the case.dat file. Be
sure to 'WRITE the GED drawing.

2. Edit the Compiler directives file, the Verifier direc­
tives file and any other optional input files.

3. verify

4. Check tvlst.dat for Compiler and Timing Verifier
errors. If there are process errors (Compiler, syn­
tax, runtime), make the necessary changes to the
drawing in GED, re-edit the necessary files, and vel"­
ify again.

4/10/86 2-1

Operation Timing Verifier

5. Look in tvlst.dat for signal history and information
on design errors.

'llPS

The following tips are keyed to the steps in the list above.

1. ,It is important to specify the clock behavior before
running the Timing Verifier. Without information
about the master clock, the Verifier cannot produce
meaningful results. For more information about
Timing Assertions, see Section 4.

2. You need to edit the Verifier Directives file and
specify the clock period and number of clock inter­
vals. You should also enter the name of your draw­
ing with the ROOT_D RA WING directive. The
Verifier uses the ROOT_DRAWING directive to call
the Compiler. If you don't enter your drawing name
in the Verifier Directives file, you must enter it on
the command line. See Section 3 for more informa­
tion about Directives.

Also, be sure you edit the Compiler Directives file
and enter the directives you require before using the
Timing Verifier for the first time on a design. See
the Compiler Reference Manual for more informa­
tion on the Compiler.

3. To run the Timing Verifier, you use the command:

verify

2-2

The name of the root drawing can be included as a
command line argument, like this:

verify subtract.or

When the root drawing name is included as a com- ·
mand line argument, the name entered there over­
rides any name given in the ROOT_D RA WING
directive in the Verifier Directives file. When the
root drawing name includes spaces, th~ name must

4/10/86

Timing Verifier Operation

be enclosed in quotes on the command line, like
this:

verify 'my subtracror'

4. Compiler errors. are divided into three groups
according to severity: errors, warnings, oversights.
Errors are the most severe and must be corrected
before proceeding with timing verification.

Timing Verifier errors are divided into three groups:
syntax: errors, runtime errors, and timing errors.
Syntax: and runtime errors must be corrected before
consulting verification results. Timing errors are
errors the Verifier found in the design. Syntax: and
runtime errors often cause spurious timing errors.
For detailed error information, see Section 8.

5. The Timing Verifier is an analysis tool that is used
not just to discover timing errors, but also to pro­
duce detailed timing information about the design.
This detailed timing information is called signal his­
tory and appears in the listing file (tvlst.dat). For
more information on signal history, see section 2.4
below.

To use the Timing Verifier effectively, check care­
fully for Compiler, syntax:, and runtime errors
before consulting the signal history or running Plot­
time. The signal history reported in the listing file is
usually inaccurate when these types of errors are
reported.

Results of the verification are presented in two
forms. The first is a list of each signal by name giv­
ing the signal's values over a clock cycle (we call this
the signal's "history"). The second is a file which
when used as input to the Plottime program pro­
duces waveform representations of each signal over
a clock cycle. The waveform output is particularly
useful for spotting timing conflicts. For more inf or­
mation on Plottime, see the Plottime Reference
Manual.

4/10/86 2-3

Operation Timing Verifier

The listing file also contains information about
design errors the Verifier found. These design
errors are called "timing errors" or timing violations.
For more information about timing violations, see
below, and Section 8.

2.2 nIE VERIFICA'l10N PROCESS

The Timing Verifier operates in two phases. It first deter­
mines at what time during the cycle each possible transition
occurs, and then whether any of these transitions cause
timing errors. The first part of this process is what we call
"convergence" and the second is the actual error analysis.
If the circuit does not converge, it is not synchronous and
the Timing Verifier cannot effectively proceed.

CONVERGENCE

The Timing Verifier makes multiple evaluation passes until
the circuit converges to a steady behavior. During the first
evaluation pass, all time primitives are evaluated. After
that, the Timing Verifier checks the input.s of the time
primitives for change. If any input changes, another
evaluation pass is made. In this pass only the primitives
that had any input.s change are evaluated. The cycle contin­
ues until all of the time primitive inputs are unchanged.
When this occurs, the circuit has "converged" to a steady
behavior. This is an "event-driven" algorithm.

Circuit.s with much feedback require more evaluation
passes because the time primitive input.s fluctuate. The
critical factor is the feedback in the circuit, not the size of
the circuit. Timing violations cannot be determined if the
circuit does not converge because stable circuit behavior
has not been determined. If the circuit does not converge
an error occurs when the maximum number of evaluation
passes (default is 2000) is reached.

2-4 4/10/86

Timing Verifier Operation

TIMING VIOLATIONS

After the circuit converges, the Timing Verifier checks for
timing violations. There are time primitives that
correspond to each timing violation. The "setup hold"
primitive, the "setup rise hold fall" primitive, the "edge to
edge" primitive, and the "min pulse width" primitive check
for setup and hold time, pulse separation, and minimum
pulse width timing constraints respectively. The Timing
Verifier also checks for any signal delays that are greater
than the clock period. For more information on timing
errors see Section 8, Error Documentation, and Section 7,
Primitives under the specific primitives.

2.3 TIMING VERIFIER FILES

This section describes the Timing Verifier Input and Output
files.

INPUT FILES

The Timing Verifier has one required and three optional
input files. The required input file is the Verifier Directives
file. The optional input files are:

Case file
Wire Delay file
Compiler Expansion file (produced by the 7.27 or
earlier Compiler in a compilation for time).

File names for these files are slightly different when the
Valid verification tools are run under different operating
systems (UNIX, VMS, CMS). Under UNIX, the file
names are:

Verifier Directives File
Case Analysis File
Wire Delay File
Compiler Expansion File

- verifier.cmd
- case.dat
- delay.dat
- cmpexp.dat

Here is a description of each input file~ For file names
under VMS and CMS, see File Names later in this section.

4/10/86 2-5

Operation Timing Verifier

Verifier Directives File

The Verifier Directives file (verifier.cmd) is the only
required input file to the Timing Verifier. Directives are
used to give commands to the Timing Verifier covering a
broad range of topics. Here is a sample Verifier directives
file:

CLOCK_PERIOD 132.0;
CLOCK_INTERV ALS 12;
CLOCK_SKEW 1.0;
PREC_CLOCK_SKEW 0.1;
WIRE_DELA Y 0.0-2.0;
PRINT_WIDTII 80;
RECONV _FANOUT ON;
ROOT_.DRAWING TEST;
END.

Note that all Timing Verifier directives must be separated
by a semi-colon (;) and last line of the file reads

END.

Don't forget the final period. Upper case or lower case
may be used for the directives. The Timing Verifier does
not pay any attention to the end-of-line character or to
multiple spaces. Comments may be placed in the file
enclosed in curly braces { }. Nested comments are not per­
mitted.

There are a great many Timing Verifier directives most of
which take default values. Each directive is described in
Section 3, Directives.

Case File

The Case file case.dat is used for two main purposes:

2-6

1. To specify timing assertions for signals in a design
when it is inconvenient to enter them on the draw­
ing.

4/10/86

Timing Verifier Operation

2. To specify several different cases of signal values to
be evaluated. Each case is evaluated in turn.

For a more complete description of case.dat, see under
Case Analysis in Section 4, Timing Assertions.

Wire Delay File

The Wire Delay file delay.da.t is used to specify individual
wire delays on a net by net basis. Most oft.en, this file is
used t.o feed back wire delay data from the physical design
system t.o the Timing Verifier. When the Wire Delay file is
used in this function, other mechanisms for specifying
delay should be turned off. For more information, see Sec­
tion 5, Delays.

Compiler Expansion File

When the ROOT_D RA WING directive is omitted, the
Timing Verifier does not call the Compiler/Linker.
Instead, it looks for a Compiler Expansion file
(cmpexp.dat) t.o provide the design input. When the
ROOT_DRAWING directive is included, any existing Com­
piler Expansion file is ignored. See the Compiler Reference
Manual for additional details.

OU1PUTFIL~

The Timing Verifier produces three output files:

Listing File
Log File
Waveform Input File

File names for these files are slightly different when the
Valid verification t.ools are run under different operating
systems {UNIX, VMS, CMS). Under UNIX, the file
names are:

Verifier Listing File
Verifier Log File
Waveform Input File

4/10/86

- tvlst.da.t
- tvlog.da.t
- plotsig.dat

2-7

Operation Timing Verifier

For file names under VMS and CMS, see File Names later
in this section.

Each time the Timing Verifier is run from the same direc­
tory, the three output files are overwritten. This saves con­
siderable amounts of disk space. Here is a brief description
of each of the Verifier output files.

Listing File

The Listing file tvlst.dat is the most important of the three
Verifier output files. It contains process information on the
Verifier run, error information, and the Verification results
in the form of signal history and, if requested, histograms.
It is very important to check the error information in this
file before using the verification results, as some Verifier
errors result in invalid output from the Timing Verifier.
The Verifier reports three types of errors: syntax errors,
run time errors, and timing errors. Syntax and runtime
errors result in invalid Verifier output. Signal history is
explained in detail in the next section. Complete error
message documentation appears in Section 7.

Log File

The Log file tvlog.dat is used primarily by internal person­
nel to track down run time errors. In addition to process
and error information, this file contains statistics on the
memory requirements of the Verification run.

Waveform Input File

The Waveform Input File ploU!ig.dat is an ASCII file that
serves as the input file to the program Plottime which pro­
duces waveform diagrams of the signals from the design
verified. Plottime produces waveform diagrams from a
Simulator output file as well as from a Timing Verifier out­
put file. For more information on Plottime, see the Plot­
time Reference Manual.

4/10/86

Timing Verifier Operation

FILE N.AMF.s

The table below shows the file names under different
operating systems for the Timing Verifier's input and out­
put files.

Table 2-1. Timing Verifier Input and Output Files

File Name UNIX VMS CMS

Directives verifier.cmd VERIFIER.CMD VERIFIER CMD
Case case.dat CASE.DAT CASE DATA
Wire Delay delay.dat DELAY.DAT DELAY DATA
Expansion cmpexp.dat CMPEXP.DAT CMPEXPDATA

Listing tvlst.dat TVLST.DAT TVLSTDATA
Log tvlog.dat TVLOG.DAT TVLOG DATA
Waveform plotsig.dat PLOTSIG.DAT PLOTSIG DATA

2.4 SIGNAL HISTORY

The Verifier listing file, tv lst.dat, includes a section called
the signal hist.ory. This section list.s each of the named sig­
nals in the design and additional other groups of signals as
requested. The LIST directive regulates the order in which
the named signals appear and whether or not other groups
of signals are included.

The LIST directive is an optional directive that is entered in
the Verifier Directives File. For more information see Sec­
tion 3, Directives.

The signal hist.ory of a signal is a list of the values of that
signal (O, 1, S, R, F, C, U and Z) and the times (over a
single clock cycle) when the signal has each value. An
example of signal hist.ory is:

DATA S:O.O R:18.2 1:20.0 F:31.0 0:32.8

4/10/86 2-9

Operation Timing Verifier

If the clock period is 80ns, the signal DATA is STABLE at
time 0.0, then starts to RISE at 18.2 ns, stabilizes at 1
(high) at 20.0 ns, starts to FALL at 31.0 ns, then is 0 (low)
again starting at 32.8 ns.

Signal history always describes cyclical behavior. This is the
behavior of the signal DATA during every clock period in
which it is active.

Figure 2-1 shows the signal history portion of a Timing
Verifier listing file. On the left are the signal names, and
on the right are the different values of each signal over the
course of a complete clock period. The initial value (at
time 0.0) is given for each signal, and additional values are
given for all signals that change value during the cycle.

The signals are listed in alphabetical order. A signal named
"Z" would appear at the end of this list, after the unnamed
signals.

Signals that are tied to 0 and 1 on a design have very unin­
teresting signal histories. For reporting purposes in the sig­
nal history, these signals are bundled together into two
groups and renamed, respectively, to TV _o and TV _1.

Notice the signal name A <3 .. 0> at the top of the left
column. This is a bus signal that is four-bit.s wide. The
Timing Verifier consolidates signal names that are bits of a
bus and have identical signal history. The design may have
a signal with this name, or it may, instead, have four sig­
nals with the names A <3>, A <2>, A <1>, and A
<O>. Whichever notation is used, when the bit.s of the
bus have identical signal history, they are grouped together
and reported in the signal history as a bus signal, such as
A<3 .. 0>. This keeps the signal history from getting too
long.

The first column on the right gives the initial signal values
for all of the signals. Each signal for which no timing
behavior was specified was set to STABLE (S) at time 0.0. ·
In this case, all signals except the CLOCK and the signals
tied to 1 and 0 (represented by TV_l and TV_O) are set to
STABLE.

2-10 4/10/86

Timing Verifier Operation

Values of all signals

A<3 • • II> st 111.11

B<3 • • II> Sill.1/1

CLOCK IC 11-4 1 tll1.l/1. 1/1128.S

SUM<3 • • B> SiS.S, C: 16.S, St51.111

TV_l/1 1/11.9'.l/1

TV_l 1 tliJ.1/1

UNSlSADDRSSPSA Ssl/1.1/1, C:B.5, St27.l/1

UNS1SADDRS5PSAS1 S:S.1/1, C:B.5, St27.l/1

UNS1SADDRSSPSAS2 S:l/1.1/1, CtB.5, St27.l/1

UNS1SADDRSSPSAS3 S:l/1.1/1, CsB.5, S:27.l/1

UNS1SADDRS5PS8 S:S.1/1, C:B.S, S:27.l/1

UNSlSADDRSSPSBSS Stlil'.1/1, C:B.S, Ss27.lil'

UNS1SADDRSSPSBS6 S:JiJ.1/1, CtB.S, St27.l/1

UNS1SADDRSSPSBS7 StliJ.S, C:B.5, St27.JJ

UNS1SADDRS6PSA StS.JI, Ctl3.5, St42.8'

UNS1SADDRS6PSAS1 S:Jl.JI, C: 13.5, St42.ll

UNS1SADDRS6PSAS2 S:B.JI, Ctl3.5, S:42.ll

UNS1SADDRS6PSAS3 StS.B, Ctl3.S, S:42.ll

UNS1SADDRS6PSV Sill.JI, C:21.S, ·St38.ll

UNS1SADDRS6PSVS11 Sill.JI, C121.JI, 5:38 • .11

UNS1SADDRS6PSVS12 SiS.11, Ci21.JI, S:3B • .ll

UNS1SADDRS6PSVS13 SiJl,JI, Ct21.JI, St38.B

UNS1SDFFS7PSD Sill.JI, C:B.5, Si27 .S

UNSlSDFFS7PSDS1JiJ Sill.JI, CiB.5, Si27.JI

UNS1SDFFS7PSDS11 Sill.JI, CtB.5, St27.JI

UNS1SOFFS7PSDS9 SiB.11, c.e.5, Si27.ll

UNSlSDFFSBPSQ S:B.JI, CtB.5, St27.ll

Figure 2-1. Signal History

When the signal hist.ory shows signals whose values remain
stable Cor an entire clock cycle, it can mean that the circui­
try is not being Cully t.est.ed and that the Verifier needs
some additional inCormation.

4/10/86 2-11

Operation Timing Verifier

LOW-ASSERTED SIGNALS IN 'IRE SIGNAL
HISTORY

Low-asserted signals do not always appear in the signal his­
tory in exactly the same form in which they appear on the
GED drawing.

To indicate a low-asserted signal on a drawing using the
SCALD Language (format 1) you use an asterisk * follow­
ing the signal name, like this:

CLOCK*

The internal data base of the SCALDsystem, however,
represents the low-asserted signal name CLOCK* as
-CLOCK in its data base. Since it is this data base that gets
passed on to the Timing Verifier (and the Packager and the
Logic Simulator), the names you see in the signal history
do not exactly match the names on your GED drawing. A
signal named

NAME*

appears as

-NAME

in the signal history.

For more details on signal name syntax and formats, see
the SCALD Language Reference Manual.

2.5 USER SPECIFIED TIMING INFORMATION

Digital systems are composed of components and their
interconnections. Complete timing verification includes the
verification of all component timing constraints, and the
verification of all interconnect timing constraints. The Tim­
ing Verifier obtains component timing information from
the timing models provided in Valid libraries for each com­
ponent. The interconnect timing information must be
specified by the user. There are two basic types of inter­
connect timing information:

2-12 4/10/86

Timing Verifier Operation

1. Periodic information: This is the specification of the
periodic behavior of clock and interface signals.

2. Wire Delay: This includes all delays resulting from
the ways components are interconnected.

Periodic information is specified to the Timing Verifier in
the form of clock and signal assertions. The periodic
behavior of the clock signals in a design must be specified
for the Timing Verifier to be able to produce meaningful
results. The periodic behavior of interface signals and pri­
mary input and output signals provides additional useful
information to the Verifier, but is not required. The sec­
tions on Assertions and Case Analysis later in this manual
describe the ways to specify periodic information.

Wire delay information is not required input to the Timing
Verifier, but including it can greatly increase the accuracy
of the timing information obtained. In early design phases
when detailed wire delay information is not available,
estimated wire delays can be included or the Delay Estima­
tor can be used to estimate load dependent delays. After
the design has been sent to a physical design system, delay
information from that system can be fed back as input to
the Timing Verifier. The section on Delays later in this
manual describes the ways to specify interconnect delay
information. The directives that regulate delay usage and
the Delay Estimator are described in the Directives section.

WAYS TO SPECIFY PERIODIC AND DELAY
INFORMATI.ON

There are three different ways to provide user specified
information to the Timing Verifier. These are:

1. Enter the data on the GED drawing.

2. Specify a value for a directive in verifier.cmd.

3. Enter the data in an input file (case.dat or delay.dat).

4/10/86 2-13

Operation Timing Verifier

Frequently you may choose which method to use. Clock
assertions, for example, can be added on the GED draw­
ing, or they can be entered in the case.dat file. In both
cases, the clock period and number of clock intervals must
be entered in the directives file.

Wire delays can also be added on the GED drawing, or a
global default delay can be set by using a directive. In
addition, the delay estimator can be used to calculate load
dependent delays. This feature is regulated by a directive
in the verifier.cmd file.

The multiplicity of choices can be confusing at first, but the
options are provided to give you complete control of the
assertion information and interconnect delay information
used by the Verifier. For example, early in the design pro­
cess you can specify wire delay on the GED drawing to pro­
vide an early approximation. Later, when more accurate
data is available, you can then disable these approximations
without changing the drawing. Generally speaking you
want to add timing information that you will not be chang­
ing frequently directly on the GED drawing. Other infor­
mation is more easily added in an input file.

The next three sections of this manual cover first the Tim­
ing Verifier directives, then assertions, and delays.

2-14 4/10/86

SEC'I10N 3
TIMING VERIFIER DIREC'IIVES

The Timing Verifier accepts a large number of directives
that regulat.e many aspects of the verification process.
These directives fall int.o five basic cat.egories: general direc­
tives, execution and output directives, delay directives,
delay estimat.or directives, and t.echnology-linked directives.
The first two cat.egories contain directives that you will use
on a regular basis. The directives in the third group are
used t.o regulat.e the calculation of wire delays. A great
number of options are available by combining these direc­
tives. The directives in the fourth group are used only
when using the Delay Estimat.or. The directives in the fifth
group are used t.o select alt.ernative timing functions for
certain Tuning Verifier primitives and t.o conform t.o the
requirements of specific t.echnologies.

Each directive is described below. They are list.ed alphabet­
ically under the appropriate group.

3.1 GENERAL DIREC'IIVES

These directives cover clock behavior and other general
Timing Verifier functions. They are the most commonly
used Verifier directives.

This category includes the following directives:

CLOCK_PERIOD
CLOCKJNTERVALS
CLOCK_SKEW
PREC_CLOCK_SKEW
RECONV _FANOUT
ROOT_DRA WING
TIMING_..DIAGRAMS

4/10/86 3-1

Directives Timing Verifier

CLOCK_PERlOD

Sets the period of the clock used by the Timing Verifier.
This clock period is used in timing assertions. Clock period
is specified in units of nanoseconds. The directive

CLOCK_PERIOD 56.0;

sets the clock period to 56 ns. If unspecified, the Timing
Verifier sets the period to 100 ns.

CLOCK_INTERVALS

Sets the number of evenlyspaced intervals within the clock
period. For example, if there are eight intervals and the
period of the clock is 100 ns, then MASTER CLK!C 0-2 is
high from 0 ns to 25 ns and low from 25ns to lOOns. The
directive

CLOCK_PERIOD 100.0;

sets the clock period to 100 ns, and the directive

CLOCK_INTERVALS 20;

divides the clock into 20 intervals of equal length. With a
clock period of 100 ns, each interval is 5 ns long.

For example, the signal MASTER CLK !C 0-10,15-20 is
high for the first ten intervals, (that is, from 0 ns to 50ns)
and then high again for the last five intervals, from 75.0 ns
to 100 ns. The signal history for this clock is:

1:0.0, 0:50.0, 1:75.0

If unspecified the clock is divided into eight intervals.

CLOCK_SKEW

Specifies the amount of symmetrical clock skew to be
added to signals having an !C timing assertion.
CLOCK_SKEW is skew from the nominal time (in
nanoseconds). The directive

3-2 4/10/86

Timing Verifier Directives

CLOCK_PERIOD 100.0;

sets the clock period to 100 ns, the directive

CLOCK_INTERVALS 20;

divides the clock into 20 intervals of equal length, and the
directive

CLOCK_SKEW 0.1;

sets the skew to -0.1, and + 0.1 ns from the nominal.

With clock skew added, the signal history for the signal
MASTER CLK !C 0-10,15-20 becomes:

1:0.0, F:49.9, 0:50.1, R:74.9, 1:75.1

If unspecified the CLOCK_SKEW is 0 ns.

PREC_CLOCK_SKEW

The directive PREC_CLOCK_SKEW is identical to
CLOCK_SKEW except it affects only signals with !P timing
assertions.

If unspecified the PREC_CLOCK_SKEW is O ns.

RECONV _FANOUT

This directive tells the Timing Verifier to analyze the circuit
to understand reconvergent fanout, The use of this direc­
tive eliminates spurious errors that are currently flagged for
circuits that count on correlated signal skews to work. The
default for this directive is ON.

Reconvergent fanout is where a signal fans out from a
common point in a circuit through different paths, which
then reconverge at some other point. When these signals
come together at a primitive like a setup-hold checker, the
skew which is common to them needs to be subtracted out
before the check is done, or else spurious errors may be
generated.

4/10/86 3-3

Directives Timing Verifier

One of the most common cases of this is a shift register.
Skew on the clock to the register .is common to all of the
bits of the register and needs to be subtracted out before
checking the setup and hold times of the shift bits.

Other common, terms for reconvergent fan out are corre­
lated skews and common ambiguity. The directive

RECONV _FANOUT ON;

causes the Timing Verifier to take into account correlated
signal skews. If unspecified, the reconvergent fan out
analysis is performed.

ROOT_DRAWING

This directive is used to specify the name of the drawing
that you want to run timing verification on. Use quotes to
enclose the drawing name, like this:

ROOT_DRA WING 'subtractor';

When a drawing name is specified on the command line it
overrides the name given with this directive.

This directive is new for the ValidTIME 1.0 Timing
Verifier .. If this directive is omitted, the Linker /Compiler is
not called. Instead, the Verifier looks for a Compiler
expansion file (cmpexp.dat) from which to read the design.

TIMING_DIAGRAMS

When set to ON, this directive instructs the Timing Verifier
to produce the output file plotsig.dat. This output file is
used as input to the Plottime program to produce Timing
Diagrams. The directive

TIMING_DIAGRAMS ON;

generates waveform input file, plotsig.dat If unspecified,
this directive is OFF.

3-4 ' 4/10/86

Timing Verifier Directives

3.2 EXECUllON AND OU'IPUT DIRECllVES

These directives regulate the number and types of errors
allowed during execution and the format and content of
listing files. This category includes the following directives:

DIFF _PASSES
LIST
MAX_ERRORS
MAX_EVAL_PASSES
MAX_EXP _ERRORS
OUTPUT_RESOLUTION
PRINT_ WIDTH

DIFF _PASSES

This directive aids debugging when a circuit loops
indefinitely instead of converging to a stable behavior. The
directive takes an integer as its value, as in:

DIFF _PASSES 3;

The default value for this directive is zero.

When the DIFF _PASSES directive has a value other than
zero, the Timing Verifier continues for the specified
number of passes after the number of passes specified with
the MAX_EVAL_PASSES directive. For these additional
passes, the Verifier prints the signals that are changing
value. This information is very helpful in locating zero­
delay feedback loops that cause the problem.

When MAX_EVAL_PASSES is 500, and DIFF _PASSES is
3, the following output can appear:

4/10/86 3-5

Directives Timing Verifier

Signals that have changed after pass 500

DATA 1:0.0

Signals that have changed after pass 501

DATA 0:0.0

Signals that have changed after pass 502

DATA 1:0.0

The user is alerted to check the signal DA TA in the design
to see why it is oscillating.

LIST

This directive takes one or several options separated by
commas. These options control the way in which the signal
history is presented in the listing file. These options are:

3-6

1. BY_NAME/NOBY_NAME (default BY_NAME)
BY_NAME causes the signals to be listed sorted
alphabetically by name. NOBY _NAME causes sig­
nals to be sorted by path name. Signals with unique
names are listed by name only, and signals with mul­
tiple path names are listed with each path name
indented:

CLRINIT ! C 0+ 1.0
(TST123221 .123.lOP)
(TST123221 .221.9P)

1:0.0, 0:1.0
1:0.0, 0:1.0

This eliminates many superfluous path names from
the signal listing.

2. CHIP /NOCHIP (default NOCHIP) CHIP causes
local signals within timing models to be listed.

3. CONSTANT/NOCONSTANT (default NOCON­
STANT) CONSTANT causes constant signals
(TV _O, TV _1) to appear in the listing file (tv lst.dat)
and in the Plottime input file (plotsig.dat). Constant
signals are of little interest in the signal history or in

4/10/86

Timing Verifier Directives

timing diagrams because they do not change value.

4. DOT/NOD OT (default NOD OT) DOT causes sig­
nals that are generated automatically for the inputs
of dot gates (wire gates) to be listed.

5. HISTOGRAM/NOHISTOGRAM (default NOHIS­
TOGRAM) HISTOGRAM causes bar charts show­
ing timing error statistics to be generated.

6. NC/NONC (default NONC) NC causes NC or "not
connected" signals to be listed.

7. RISE_FALL/NORISE_FALL (default
NORISE_F ALL) RISE_F ALL causes both the rise
and the fall skew associated with each time/value
pair to appear in the signal history in parentheses.
The first number in the parentheses is the rising
skew, and the second is the falling skew. Here is an
example:

DATA S:O.O, C:lO.O(1.0,0.0), 8:20.0

In this example the signal DATA has the value
CHANGING between time 10 and time 20. In addi­
tion, if the transition is rising (from 0 to 1), it may
occur as late as time 21 (20 + 1.0 ns rise skew).

When the default value (NORISE_FALL) is used
for the same example, the signal history reads:

DATA S:O.O, C:lO.O, S:21.0

8. SKEWS/NOSKEWS (default NOSKEWS) SKEWS
causes the common skew associated with each signal
to appear at the beginning of the signal history for
that signal, and does not include the effect of that
skew in the signal history. The signal history will

4/10/86 3-7

Directives Timing Verifier

generally have fewer entries in it. For example, for
a signal DELAY with a skew of+ 2.70 and the direc­
tive LIST SKEWS, here is the signal history:

DELAY (+ 2.70) 1:0.0, 0:8.95, 1:13.90,
0:28.90, 1:33.90

With the default value NOSKEWS, the signal history
is:

DELAY 1:0.0, F:8.95, 0:11.65, R:l3.90,
1:16.60, F:28.90, 0:31.60, R:33.90,
1:36.60

9. STRENGTH/NOSTRENGTH (default NOS-
TRENGTH) STRENGTH causes the signal strength
(hard, soft, undriven) to appear in square brackets
after each signal value and before the time in the
signal history. The three possible signal strengths
are designated as h (hard), s (soft), or z (undriven).
Here is an example:

DATA O[h] :0.0, l[h] :10.0, O[h] :30.0

10. TRAN_INPUT/NOTRAN_INPUT (default
NOTRAN_INPUT) Transmission gates have two bi­
directional pins, Tl and T2. TRAN_INPUT causes
the Verifier to list the values that bi-directional
transmission gates see at their pins Tl and T2 that
the other drivers on those nets have generated. This
feature is useful in debugging complicated circuits
with a lot of bi-directional transistors in them.

11. UNNAMED /NOUNNAMED (default NOUN-
NAMED) UNNAMED causes unnamed signals to
be listed in the output listing.

12. VIOLA TIONS/NOVIOLA TIONS (default NOVI O­
LA TIONS) VIOLATIONS causes a report of all
types of timing violations to be printed. The viola­
tions are sorted in order of descending severity.
Here is an example:

3-8 4/10/86

Timing Verifier Directives

Table 3-1. Setup Time Violations

Violation TI me Errorjf_ Primitive

52.0 509.5 11 (TIM llP SUH 4P)
30.1 546.0 22 (TIMllP SUH14P)
17.5 546.0 20 f TIM 1 lP SUH 4P~
7.0 583.0 12 TIM llP SUH 4P
2.7 6.9 15 (TIMllP SUH14P)
2.7 6.9 9 (TIM llP SUH 4P)
2.6 595.0 17 i TIM llP SUH 4Pl

Included in this report are: setup and hold violations,
low and high pulse width violations, and minimum and
maximum edge-to-edge timing violations.

An example LIST directive is:

LIST UNNAMED, NOD OT, VIOLATIONS,
HISTOGRAM, NOBY_NAME, CHIP;

MAX_ERRORS

If more than MAX_ERRORS occur during the reading of
the input files to the Timing Verifier, verification is
aborted. The input files to the Timing Verifier are the
Compiler expansion file (cmpexp.dat), case.dat, and
delay.dat. If there are a large number of errors in the input
files, the Timing Verifier will not produce meaningful
results. This directive saves time by aborting the program
before verification of the entire design and reporting the
errors found in the input files. The correct syntax for this
directive is:

MAX_ERRORS 2;

If unspecified, MAX_ERRORS defaults to 10. The
MAX_ERRORS directive is not triggered by timing errors
found in the design. It is only triggered by errors found in
the input files to the Timing Verifier.

4/10/86 3-9

Directives Timing Verifier

MA)CEV AL_PASSES

If more than MAX EVAL PASSES occur during the
verification of the design then verification is aborted. The
directive

MAX_EVAL_PASSES 50;

aborts current Verifier run if there are more than fifty
passes. A runtime error is reported. If unspecified,
MAX_EVAL_PASSES is 2000. If a non-integer value is
given to this directive, the Verifier rounds it to the closest
integer.

MAX_EXP _ERRORS

If more than MAX_EXP _ERRORS are detected in the
Compiler expansion file then verification is aborted. The
Compiler expansion file is generated by the Compiler and
can only have errors in it if edited by a user. The directive

MAX_EXP_ERRORS 4;

aborts this run if there are more than four errors in the
expansion file. If unspecified, MAX_EXP _ERRORS is 0.

OUTPUT_RESOLU110N

All Timing Verifier calculations are made in picoseconds.
The output data is given in nanoseconds to one, two, or
three decimal places. The OUTPUT_RESOLUTION direc­
tive specifies the number of decimal places used in output
data. There are four possible values for the
OUTPUT_RESOL UTION directive:

OUTPUT_RESOLUTION O;
OUTPUT_RESOLUTION 1;
OUTPUT_RESOLUTION 2;
OUTPUT_RESOLUTION 3;

When the first value is used, this directive specifies that
output data includes no decimal places (0). The second
value specifies one decimal place (0.0). Th~ third value

3-10 4/10/86

Timing Verifier Directives

specifies two decimal places (0.00). The fourth value
specifies three decimal places (0.000).

PRINT_WID'lll

This directive tells the Timing Verifier how many columns
may be used in the listing file. The output is formatted
according to this specification. The directive

PRINT_WIDTH 80;

formats output for an 80 column display. If unspecified,
the width is 132. (Only 80 and 132 are permitted.)

3.3 DELAY DIRECTIVES

This category includes the following directives:

DELAY_MODEL
RISE_FALL_ANAL
RISE_F ALL_MOD ELS
USE_DRAWING_WD
WIRE_DELAY

DELAY_MODEL

The DELAY_)AODEL directive takes one of three possible
values:

MIN/MAX
MIN
MAX

MIN/MAX is _the default and tells the Timing Verifier to
use both the minimum and maximum available delays.

MAX tells the Timing Verifier to use only maximum
delays.

MIN tells the Timing Verifier to use only minimum delays.

4/10/86 3-11

Directives Timing Verifier

The DELAY_MODEL directive works with the
RISE_FALL_MODELS directive to let you use six combi­
nations of delay data. When the DELAY_MODEL direc­
tive is MIN /MAX (the default) and the
RISE_FALL_MODELS directive is ON (the default), all of
the available delay data is used.

Take as an example a signal that has 1 to 3 ns delay rising
and 2 to 4 ns delay falling. If we attach that wire delay to
the signal name we record it in this form:

\ WD (1-3, 2-4)

The chart below shows what delay the Timing Verifier
selects.

Table 3-2. Delays Selecled

R-F DELAY MODEL DELAY USED COMMEN'IS

ON MIN-MAX (1-3, 2-4) all
ON MAX (3,4) max rise, max fall
ON MIN (1,2) min rise, min fall
OFF MIN-MAX (1-4) min of min, max of max
OFF MAX (4) highest max
OFF MIN (I) lowest min

RISE_FALL_ANAL

This directive toggles on and off. When on, the directive
tells the Timing Verifier to perform rise/fall delay analysis
through cascades of inverting logic not only on signals
whose 0/1 behavior is known, but also on signals whose
behavior is reported as stable/changing. The Verifier does
this by selecting the worst case delay for the first com­
ponent, remembering whether that delay was a rise delay or
a fall delay, and selecting the opposite type of delay the
next time it encounters inverting logic on that signal path.

Rise/fall delay analysis is always performed for signals
whose 0/1 behavior is known when they encounter asym­
metrical rise/fall delays. When no asymmetric rise/fall

3-12 4/10/86

Timing Verifier Directives

delays exist, or when the asymmetric delays have been
made symmetric by turning off the RISE_FALL_MODELS
directive, no rise/fall analysis is performed on any of the
signals.

When RISE_FALL_MODELS is OFF, RISE_FALL_ANAL
is set to OFF by the Timing Verifier.

When RISE FALL ANAL is OFF and
RISE_FALL_MODELS is ON, rise/fall analysis is per­
formed on signals whose 0/1 behavior is known, but not
on signals whose behavior is only known to be
changing/stable. The directive

RISE_FALL_ANAL ON;

causes the timing verifier to exploit different rise and fall
delays for stable/changing values of signals. If unspecified,
the directive is ON.

RISE_FALL_MODELS

This directive toggles on and off. The directive tells the
Timing Verifier to select both rise and fall delays from the
delay data provided. The way in which the rise and fall
delay values are selected is regulated by the
DELAY _MOD EL directive. If this directive is OFF, rise
and fall delays are symmetric. If this directive is turned
off, then RISE_F ALL_.ANAL is also turned off. The direc­
tive

RISE_FALL_MODELS ON;

selects both rise and fall delays from the delay data. If
unspecified, the directive is ON. See above under
DELAY MODEL for the interaction of the
DELAY_MODEL directive and the RISE_FALL_MODELS
directive.

4/10/86 3-13

Directives Timing Verifier

USE_DRA WING_ WD

This directive regulates whether the Timing Verifier uses
wire delay data entered on the drawing either in signal
names or with the WIRE_D ELA Y property. The directive
toggles on and off. When this directive is on, wire delay on
the drawing overrides the wire delay set in the
WIRE_D ELA Y directive. By default this directive is on.

When using the delay estimator, this directive should usu­
ally be turned off, to prevent delays on the drawing from
being added to the delays calculated by the delay estimator.

This directive does not regulate the use of delay entered on
the drawing with the CHIP _DELAY and CLOCK_DELA Y
properties. When, for example, CHIP _DELAY is used to
add 4 ns of delay to a pin of a component, and the
USE_DRA WING_WD directive is OFF, the 4 ns of delay
is still used by the Timing Verifier in delay calculations.
This is consistent with the function of CHIP_DELAY to
specify delay in timing models and with the function of
CLOCK_DELA Y to describe tuned clocks. The directive

USE_DRA WING_WD OFF;

turns off use of wire delays specified on the drawing. If
unspecified, this directive is on.

WIRE_DELAY

This directive assigns a default wire delay to each net in the
design that is connected to at least one input pin of a device
and for which wire delay is not specified by a property
(either attached with the property command or added to
the signal name). By def a ult the WIRE_D ELA Y directive
takes the value 0.0-0.0. When omitted, the directive takes
the default value.

The value of the WIRE_DELA Y directive is specified in
nanoseconds. When the directive takes a single numeric
value (as 2.35), that value is added to each applicable net.
When the directive takes a range of values (as 2.35-4.312),
a range of delay is assigned to each net.

3-14 4/10/86

Timing Verifier Directives

If a range is specified where the mm1mum delay is larger
than the maximum delay, a syntax error occurs and the
Verifier uses the larger number as a single numeric delay
value. The directive

WIRE_DELAY 0.1-2.0;

assigns wire delay of 0.1 ns (min) to 2 ns (max) to all nets
where the wire delay is not specified by a property.

3.4 DELAY ESTIMATOR DIRECTIVES

This category includes the following directives:

DEF A UL T_D RIVE
DELAY _ESTIMATOR
LOAD _COEFFS
WIRE_ESTIMA TE

DEFAULT_DRIVE

This directive defines the default drive to be used by the
delay estimator when no DRIVE body property is given for
a primitive. The value of this directive can be a single
number, a range of numbers, or two ranges of numbers.
When two ranges of numbers are given the first specifies
min/max rise delay and the second specifies min/max fall
delay. Here is an example:

DEFAULT_DRIVE 0.5-1.2, 0.4-1.0;

The default value for this directive is 0. When the direc­
tive is missing, the default value is used.

DELAY_ESTIMATOR

This directive is used to turn the delay estimator on or off.
The directive

DELAY_ESTIMATOR ON;

4/10/86 3-15

Directives Timing Verifier

turns the delay estimator on. If this directive is omitted,
the delay estimator is set to OFF.

LOAD_COEFFS

This directive is used to specify the drive factor and
coefficients used by the Delay Estimator to calculate delays
when the load exceeds the drive factor.

For example:

When L = Total Load
D =Drive
F = Drive Factor

and delays need to be calculated according to these
specifications:

1. L <= F
Load Delay

2. F < L <= 2F
Load Delay

3. 2F < L <= 3F
Load Delay

4. 3F < L <= 4F
Load Delay

= D * F + 1.5 * D * (L-F)

= D * F + 1.5 * D * F +
3 * D * (L-2F)

= D * F + 1.5 * D * F +
3 * D * F + 4 * D * (L-3F)

Specify the LOAD _COEFFS directive as follows:

LOAD_COEFFS F, 1.5, 3, 4;

F is the value of the drive factor. Thus, the first number is
. the drive factor, the second number is the coefficient used

in the second case, the third number is the coefficient used ·
in the third case, and so on. Up to 99 coefficients may be
specified.

3-16 4/10/86

Timing Verifier Directives

The directive also takes an optional family specification.
The family specification works the same as for the
WIRE_ESTIMA TE directive, see below for details.

When the LOAD _COEFFS directive is not specified, the
normal delay estimator calculation is made, that is:

Load Delay= Drive* Total Load

WIRE_ESTIMATE

To estimate wire delay, the number of stops on each net is
counted. The number of stops is converted to equivalent
loads by using a lookup table specified by this directive.
The WIRE_ESTIMA TE directive takes for values a list of
fixed point numbers and an optional FAMILY specification.
A net with j stops receives a wire delay estimate given by
the jth number in the list. Each wire estimate list may
have a maximum of 100 entries. For nets with more than
100 stops, the last entry is used for the remining stops.

The family specification allows for a number of different
WIRE_ESTIMA TE tables to be used in the same Timing
Verification run. When the FAMILY property is attached
to a primitive, the WIRE_ESTIMA TE table with the same
FAMILY specification is used. When no FAMILY pro­
perty is attached to a primitive, then the
WIRE_ESTIMA TE table without a FAMILY specification is
used. Family is an identifier up to 16 characters long.
Spaces are not allowed. An example set of
WIRE_ESTIMA TE directives are given below:

WIRE_ESTIMA TE 1.0, 2.0, 3.0, 4.0;

WIRE__ESTIMA TE ECL: 0.5, 1.0, 2.0, 3.0;

WIRE_ESTIMATE TTL: 1.0, 2.0, 3.1, 4.0;

WIRE__ESTIMA TE ON_GA TE_ARRA Y: 0.3, 0.6, 1.0, 1.3;

WIRE__ESTIMATE BET_GATE_ARRAY: 1.0, 2.0, 3.1, 4.5;

4/10/86 3-17

Directives Timing Verifier

If unspecified, the default is 0.0;

3.5 TECHNOLOGY-LINKED DIRECTIVES

This category includes the following directives:

DOT_TYPE
LATCH_ERR_MODEL
NC_SIGNALS
PULSE_FIL TER
SET_MIN_DELA YS
TIMING_SIM_MODE
TS_BUS_TYPE

DOT_ TYPE

Certain physical devices can be connected together to form
wire-gates. The timing models for these physical devices
include the pin property OUTPUT_TYPE on dottable out­
puts. The OUTPUT_TYPE property informs the Verifier
what type of wire gate to form (OE, OC, or TS for open
emitter, open collector, and tri-state), and what logic func­
tion is performed when those outputs are connected
together (AND, OR, TS).

When the OUTPUT_TYPE property is missing, or when
outputs with dissimilar logic function specifications are con­
nected together, the Verifier needs to make some choice
for the logic function of the bus. This choice is specified
with the D OT_TYPE directive. The possible values for this
directive are: DOT_AND, DOT_OR, and DOT_TS. The
default value of this directive is D OT_AND. The directive

DOT_TYPE DOT_OR;

sets unspecified wire gates to type DOT-OR, the directive

DOT_TYPE DOT_AND;

sets unspecified wire gates to type DOT-AND, and the
directive

3-18 4/10/86

Timing Verifier Directives

D OT_TYPE D OT_TS;

sets unspecified wire gates to type tri-state.

If this directive is missing, unspecified buses are set to
DOT_AND.

When the DOT_ TYPE D OT_TS; directive is specified, the
Verifier uses the tri-state model specified by the
TS_BUS_TYPE directive.

LATCH_ERR_MODEL

This directive changes the model used for latches. There
are three models for latches, OPEN, CLOSED, and CON­
SERVATIVE. The differences between these models is
defined in the definition of the latch model in the section
on Time Primitives. The default value for this directive is
CONSERVATIVE. The directive

LA TCH_ERR_MOD EL CLOSED;

uses the closed model for all latches in the design. If this
directive is omitted, the value defaults to CONSERVA­
TIVE.

NC_SIGNALS

This directive regulates what value NC (non-connected)
inputs are set to. There are 5 possible values, 0, 1, S,
ASSERTED, and DEASSERTED. The values 0 and 1 set
all non-connected inputs to either 0 or 1, ignoring any bub­
bled inputs. For example, 0 makes a bubbled input true,
and a non-bubbled input false. A value of S sets all non­
connected inputs to stable. The value ASSERTED sets all
inputs to true (i.e., bubbled inputs to zero, and non­
bubbled inputs to one), and DEASSERTED sets all inputs
to false. For ECL circuits, DEASSERTED is generally the
recommended value for this directive because of the resis­
tor pull-downs on the inputs. The directive

NC_SIGNALS DEASSERTED;

4/10/86 3-19

Directives Timing Verifier

sets non-connected inputs to deasserted.
unspecified, the def a ult value is S.

PULSE_FIL TER

When

This directive turns a pulse filter on that is used by the
register and latch models. If a pulse has a large amount of
skew, such that the skew is larger than the width of a
pulse, then the two edges skew together, causing a chang­
ing signal value to occur. When this directive is on, the
register and latch models recognize this case, and handle it
as if the leading edge of the pulse was extended through
the changing value. The directive

PULSEYILTER ON;

activates the pulse filter. If unspecified, this directive is
OFF.

SET_MIN_DELAYS

This directive affects the DELAY, RISE, and FALL pro­
perties in timing models. Because it affects delays internal
to models, it should be used with caution. It allows all
minimum delays above the specified value to be set to that
value. The directive

SET_MIN_DELA YS 5.0;

sets all minimum delays greater than 5.0 nsec to 5.0 nsec.
If unspecified, this directive is turned off.

TIMING_SIM_MODE

This directive causes the Verifier to verify for a set length
of time instead of for a clock cycle. It is suitable for cir­

. cuits that require verification over more than a single clock
cycle. The syntax for this directive is:

TIMING_SIM_MODE ON;

3-20 4/10/86

Timing Verifier Directives

The default value for this directive is OFF.

Notes on usage:

1. The length of time in nanoseconds for which ybu
want to verify is specified with the CLOCK_PERIOD
directive.

2. Assertion statements must be changed as required.
For example, with a clock assertion !C 0-5, and
these directives:

CLOCK_PERIOD 100;

CLOCK_INTERVALS 10;

the clock is asserted for 50 ns and de asserted for 50
ns. With these directives:

CLOCK_PERIOD 500;

CLOCK_INTERVALS 10;

TIMING_SIM_MODE ON;

the value of CLOCK_PERIOD is changed to 500 but
this does NOT automatically change the assertion
statement. This gives you a clock that is asserted for
250 ns and deasserted for 250 ns.

You also need to change the assertion statement to:

!C 0-1, 2-3, 4-5,6-7, 8-9

or its more compact equivalent:

!2C 0-1

Using this directive can greatly improve execution speed
for circuits containing large amounts of feedback. Error
detection may not be as complete when this directive is
used.

4/10/86 3-21

Directives Timing Verifier

TS_BUS_TYPE

The Timing Verifier has two modes for simulating tri-state
buffers and buses: the true tri-state function and a modified
function called D OT_OR. The tri-state D OT_OR function
is not identical to the wire gate DOT_OR function. The
true tri-state function only gives useful output signal values
when 0/1 behavior is specified for the enable signal. The
modified tri-state function is less conservative and is used
for designs with stable/changing behavior on the enables of
the tri-state driver.

The TS_BUS_TYPE directive specifies which tri-state func­
tion is used for all tri-state logic in the design. The default
value of the directive is D OT_TS. The directive

TS_BUS_TYPE DOT_OR;

models TS gates as activated when the ENABLE signal is
STABLE. The directive

TS_BUS_TYPE D OT_TS;

models TS gates as activated only when 0/1 behavior is
given for the ENABLE signal.

The truth tables for the logic functions performed by the
TS BUS and the TS BUF for the two modes, and for the
TS type wire gates, are described in the section on Primi­
tives later in this manual.

If this directive is unspecified, tri-state buses are modeled
DOT_TS.

3-22 4/10/86

SEG110N4
TIMING ASSERTIONS

In order for the Timing Verifier to function properly you
need to specify the periodic behavior of the clock signals in
the design. This is done by attaching an assertion state­
ment to each clock signal. These assertion statements, or
clock assertions, are prefixed with either ! C or !P.

A second type of timing assertion that can be attached to
signals are the !S and !D assertion statements. These asser­
tion statements are used for non-clock signals and specify
the signal behavior as either stable or changing.

Both types of assertion statements can be added in GED to
a signal name on a drawing, or they can be entered in the
case file. This section explains both types of timing asser­
tions and the use of the case file.

4.1 CLOCKASSERTIONS AND SIGNAL
ASSERTIONS

Clock assertions are preceded with either !C or !P. These
assertions specify when during the clock period the signal is
asserted, and when not. They describe the clock signal as
0/1 behavior. Because clocks often have common skew,
clock skew can be added to the calculation. The only
difference between the !C and the !P assertion statements is
the amount of skew specified. If all of the clocks in a
design have the same amount of skew, then the !P asser­
tion statement is not needed.

For complete timing verification it is also often necessary to
specify the periodic behavior of primary. input signals. In
the Subtractor circuit shown in Figure 4-1, A<3 .. O> and
B<3 .. 0> are interface signals sent from outside of this
design. If you do not specify their periodic behavior with
an assertion statement, the Timing Verifier sets their values
to stable at the beginning of verification. This allows the

4/10/86 4-1

Assertions Timing Verifier

m

d

F1gure 4.-1. Subtract.or arcuit

4-2 4/10/86

Timing Verifier Assertions

Timing Verifier to check the propagation delay through the
first flip-flop, and all of the other timing delays for the rest
of the circuit. But it does not allow the Timing Verifier to
check the setup time or hold time for the first flip-flop.
You can only ascertain whether these two time require­
ments for the first flip-flop are met by specifying the
periodic behavior of the interface signals. Notice, however,
that the behavior of the interface signals does not need to
be specified in as much detail as does that of the clock sig­
nal. The Timing Verifier only needs to know if the signals
A<3 .. 0> and B<3 .. O> are STABLE during the setup
time required by the flip-flop. It does not need to know
whether the signal value at that time is 0 or 1.

Because of this difference between clock assertion state­
ments and assertion statements for other signals, the
prefixes !S and !D are used for assertion statements for sig­
nals other than clocks. The !S and !D assertion statements
only specify the signal behavior in terms of stable and
changing. More details on the syntax are given later in this
section.

Another related use of the !S and !D assertion statements
is to verify that output signals that are interface signals to
other circuitry perform within the expected time ranges. In
the Subtractor circuit shown in Figure 4-1 an assertion
statement could be added to the signal SUM<3 .. O>.
The Timing Verifier would then report whether or not the
calculated behavior of that signal agreed with the assertion
statement. Although this check is not absolutely necessary
because the data could be extracted from the signal history
of the signal SUM<3 .. 0>, it is a feature that greatly
facilitates the debugging of complex designs.

TYPES OF SIGNAL ASSERTIONS

Timing assertion statements may be one of four different
types, each of which bears a unique prefix: !C, !P, !S, !D.
The general form of an assertion statement is an assertion
prefix followed by a time specifier. Timing assertions are
either added to signal names or placed in the case file
(case.dat). The same syntax is used for timing assertions
in either location. This section gives examples of timing

4/10/86 4-3

Assertions Timing Verifier

assertions in signal names. For the use of timing assertions
in the Case file (case.dat), see the section, Using the Case
File, below.

The four types of signal assertions are discussed in order
below.

4-4

1. C -- This prefix is used to specify the 0, 1 behavior of
a clock signal. The signal is asserted during the time
specified by the time specifier. Signals having an !C
time assertion that does not include skew as part of
the assertion receive the clock skew specified with
the CLOCK_SKEW directive in the Verifier com­
mand file. Clock skew that is specified in the timing
assertion overrides skew specified with the
CLOCK_SKEW directive. An !C assertion can be
used on any signal for which you need to specify pre­
cise 0, 1 behavior.

2. P -- This prefix is used to specify the O, 1 behavior of
a precision clock signal. The !P assertion is identical
to the !C assertion except that the signal using !P
receives the skew specified by the
PREC_CLOCK_SKEW directive. The !P assertion
provides a way to make two groups of clock signals
and assign to each group a different amount of skew.
The skew assigned to signals having an !P assertion
need not be more precise than that assigned to sig­
nals having an !C assertion.

3. S -- This prefix is used to specify the stable, chang­
ing behavior of a signal. The signal is defined to be
STABLE during the time specified by the time
specifier. Skew may be added as part of the timing
assertion. If no skew is given, then the time specifier
is assumed to be exact.

When an !S assertion is added to a signal that is not
a primary input, the assertion statement specifies an
initial value for the signal. If, during the course of
verification, the computed value for the signal differs
from the specified value, the computed value over­
rides. The signal name appears in the listing file

4/10/86

Timing Verifier Assertions

under the heading "Signals not meeting their asser­
tion specifications".

4. D -- This prefix is used to specify the stable, chang­
ing behavior of a signal. This assertion is the same
as the !S assertion except that the signal value
specified with an !D assertion statement is NEVER
overridden by a computed value during the course of
verification. The signal name appears in the listing
file under the heading "Signals not meeting their
assertion specifications". The use of an !D assertion
on signals in feed back paths that are broken by
latches can significantly speed up the execution of
the Timing Verifier.

ADVANCED USE OF ASSERTIONS

Timing assertions can be used to create abstract models.
An abstract model of a part P consists of a body drawing
and an abstract timing model. The abstract timing model is
constructed solely of buffers -- all input signals are received
by buffers and the output signals driven by buffers. The
output of each receiver buffer has a local signal with a tim­
ing assertion on it matching the input timing specification
of the corresponding pin of P. The input of each drive
buffer has a local signal with a timing assertion on it match­
ing the output timing specification of corresponding output
pin of P. This approach can be expanded to have small
amounts of logic in the abstract model to achieve more
complex logic or timing behavior as required.

4.2 TIMING ASSERTIONS IN SIGNAL NAMES

Signal assertions are added to the name portion of a signal
name. They must be placed in the signal name after the
name string, and before the bit subscript. The examples
below illustrate the correct placement of an assertion state­
ment within a signal name:

4/10/86 4-5

Assertions Timing Verifier

1. CLOCK A IC 0-4

2. ALU$DATA !C 0-4 <15 .. 3>

3. CLK! C0-4*

4. CLOCK A !C 1-2

5. DATA B !D 1-2 \WD 2.0-3.5

These examples display the following general rules:

Spaces are optional.

The timing assertion is part of the name string. This
means that items 1 and 4 above are different signals
because they have different signal names.

Bit subscripts, the assertion character, and properties
go after a timing assertion.

Do not confuse a timing assertion with the assertion char­
acter. The assertion character (* is the default) indicates
that a signal is low asserted. A timing assertion specifies
WHEN a signal is asserted, or when a signal is stable. It
does NOT specify when a signal is high. For example, item
3 in the list above is a low asserted signal that is low for the
first four intervals of the period. For a clock with a period
of 100 ns and 10 intervals, the waveform representation of
this signal is shown in Figure 4-2:

0 40 100

Figure 4-2. Low Assert.ed Signal

The syntax for signal assertions is as follows:

4-6 4/10/86

Timing Verifier Assertions

! sub-interoal assertion prefix time specifier skew

Of these, only the assertion prefix and the time specifier are
required. The four assertion prefixes are described above.
The syntax for time specifiers, sub-intervals, and skew are
described below.

'llME SPECIFIERS

The detailed syntax is:

time specifier = time interoal, time interoal ...

Where time interoal is a positive integer or decimal number.
A time specifier is one or several time intervals separated
by commas. Here are examples of the three types of time
intervals.

A. specifies a single clock interval. The signal is asserted
or stable during this interval. Example: !C 4

B. specifies a range of clock intervals. The signal is
asserted or stable during this range of clock intervals.
Example: !C 0-4

C. specifies a clock interval followed by a time in
nanoseconds. The signal becomes asserted at the beginning
of the interval and stays asserted for the specified number
of nanoseconds. Example: !C 2+ 3.2

All three types define the signal behavior in terms of the
clock intervals specified with the CLOCKJNTERVALS
directive in the Verifier command file. Several examples of
each type appear below. For these examples, the clock
period is 100 ns, and there are eight clock intervals, each
12.5 ns long. CLOCK_SKEW and PREC_CLOCK_SKEW
are both set to 0.

4/10/86 4-7

Assertions Timing Verifier

Type A: Single Clock Interval

This form specifies a pulse whose width is one interval
long.

CLK!P 4-5

CLK!P4(-2,5)

a signal that is high from t4 to t5.
This is the 5th interval.
0:0.0, 1:50.0, 0:62.5

the same signal with asymmetri­
cal skew added.
0:0.0, R:48.0, 1:55.0, F:60.5,
0:67.5

Notice that !P4-5 and !P4 both specify the clock interval
that starts at t4. This is the 5th interval. The 1st clock
interval starts at tO.

CLK!C 2,5*

CLK!P2.2,5.7

a signal that is low for one inter­
val starting at t2, and low again
for one interval starting at t5.
This signal is low for the 3rd and
6th intervals.
1:0.0, 0:25.0, 1:37.5, 0:62.5,
1:75.0

a signal that is high for 1 interval
(12.5 ns) starting at t2.2, and
high for 1 interval starting at t5.7.
0:0.0, 1:27.5, 0:40.0, 1:71.3,
0:83.8

Notice that decimal numbers are permitted in time
specifiers and in skews. The Timing Verifier rounds off
numbers to 3 decimal places for calculations. Signal history
can be reported at a resolution of 0 - 3 decimal digits. The
OUTPUT_RESOLUTION directive selects this resolution.
This type of time specifier is used for a pulse whose width
scales with the clock intervals, but whose starting time does
not.

4-8 4/10/86

Timing Verifier Assertions

Type B: Range of Intervals

This type specifies a range of intervals, or a series of ranges
of intervals.

CLK!P 0-2

CLK!P0,4,7-8

a signal that is high during the
first 2 intervals.
1:0.0, 0:25.0

a signal that is high during the
1st, !)th, and 8th intervals.
1:0.0, 0:12.5, 1:37.5, 0:50.0,
1:87.5

Notice that the signal is continually high from 87.5ns
through 12.5 ns of the next clock cycle.

SIG!Sl-4,6-7.3

SIG!S2-4(-1,1)

a signal that is stable from t1 t;o
t4, then changing, then stable for
1.3 intervals starting at t6.
C:O.O, S:12.5, C:50.0, S:75.0,
C:91.3

a signal that is stable for the 3rd
and 4th intervals with symmetri­
cal skew of 1 ns.
C:O.O, S:26.0, C:49.0

Notice that the first number in the parentheses is the
negative skew, the negative sign is required.

Type C: Partial Clock Interval

This type specifies a pulse with a start time that is specified
in terms of clock intervals, and a width specified in
nanoseconds. It is used t;o specify pulses whose widths do
not scale with the clock intervals.

SIG !S2+ 11.3

4/10/86

a signal that goes stable at t2 and
is stable for the next 11.3 ns.
C:O.O, S:25.0, C:36.3

4-9

Assertions Timing Verifier

-CLK!P3+ 7.0,4+ 9.0 a signal that goes low at t3 and
stays low for 7 ns, then goes low
again at t4 for 9 ns.
1:0.0, 0:37.5, 1:44.5, 0:50.0,
1:59.0

PRECEDING A SIGNAL ASSERTION Wim A SUB­
INTERVAL

The sub-interval is a positive integer that must divide evenly
into the number of intervals specified with the
CLOCK_INTERV ALS directive in the Verifier command
file. The sub-interval must also be greater than or equal to
the clock intervals specified in the time specifier. Here is
an example for a clock with a period of lOOns and 50 inter­
vals (of 2 ns each):

!10 c 0-8

The meaning of this timing assertion can be paraphrased as:

In every block of 10 intervals, go high for the first 8
intervals.

This produces a signal that is high for 16 ns, low for 4 ns,
and then repeats this pattern 5 times in the clock period.
The waveform representation of this signal is shown in Fig­
ure 4-3:

16

0 20 40 60 80 100

Figure 4-3. Clock with Sub-intervals

The subinterval must divide evenly into the number of
intervals in the clock period so that the repeating pattern is
regular for every clock cycle.

4-10 4/10/86

Timing Verifier Assertions

The time specifier cannot specify an interval greater than
the subinterval. That is,

!10 c 8-10

is a legal time assertion that can be paraphrased as:

In every block of 10 intervals, go high for the inter­
vals 8 through 10.

But the following example is NOT permitted and causes a
syntax error:

!5 c 8-10

because a block of 5 intervals does not contain the intervals
8 through 10.

ADDING SKEW TO A SIGNAL ASSERTION

Skew can be added to any signal assertion on an individual
basis. When skew is added to an !C or !P assertion, it
overrides the skew specified in the CLOCK_SKEW and
PREC_CLOCK_SKEW directives.

Clock skew added to signal assertions is calculated in the
same manner for rising and falling edges. Skew may be
specified as symmetrical or asymmetrical around the edge.
(Notice that skew added with the CLOCK_SKEW and
PREC_CLOCK_SKEW directives is always symmetrical.)
The syntax for clock skew in a timing assertion is

(-negative skew, positive skew)

A negative sign must precede the negative skew. Here is
an example of a timing assertion with skew:

CLOCKA !C 0-1 (-1.1834, 1)

R:O.O, 1:1.0, F:8.8, 0:11.0, R:98.8

The positive skew causes the clock to rise at 0 ris, and to go
high at 1.0 ns. The negative skew is rounded off to 1.183
(rem em her the Timing Verifier calculates in picoseconds)
and then is rounded to 1.2 for output (according to the

4/10/86 4-11

Assertions Timing Verifier

value of the OUTPUT_RESOLUTION directive). The
clock is therefore reported as falling at 8.8 ns, and rising at
98.8 ns.

4.3 USING TIIE CASE FILE

The case file (case.dat) is an optional input file to the Tim­
ing Verifier. See above for the name of the case file under
different operating systems. Whenever a case.dat file is
present in the directory where verification is run, that is, in
the same directory as the verifier.cmd file, the Verifier uses
the case file as input.

CASE FILE SYNTAX

Each line in the case file contains on the left a signal name,
and on the right a signal value or timing assertion. The last
line of the case file is

END.

Each line in the case file (except the last line) ends with a
comma or a semicolon. A comma is used at the end of
lines within a single case. A semicolon is used to end a
case. The Case File does not distinguish between upper
and lower case letters.

The signal name portion of the line includes the name por­
tion of the signal name and a bit subscript (when appropri­
ate). Properties included in a signal name (by using a text
macro) are not included in the case file. Remember that
timing assertions and signal class are both part of the name
portion of a signal name. Therefore, they are both
included as part of the signal name in the case file.

Signal names that contain spaces need to be enclosed in
quotes in the case file. The bit subscript portion of the sig­
nal name is not enclosed in the quotes. See the SCALD
Language Reference Manual for details on signal names.

4-12 4/10/86

Timing Verifier

For a design including the signals:

DATA \WD 3.0-4.0
CLOCK !C 0-4
SUM <3 .. 0>

here is a possible case.dat file:

DATA= 'l',
'CLOCK !C 0-4' = '!P 1-5',
'SUM' <3 .. 2> = 'O';

Assertions

Notice that the signal DATA is entered in the case file
without properties and that it requires no quotes.

Notice that the timing assertion for the signal CLOCK is
included as part of the signal name and that it is enclosed
in quotes.

Notice that the bit subscript for the signal SUM is not
included in the quotes, and that it may specify a subrange
of bits. This lets you specify different values for different
subranges of bits of a bus. In addition, low asserted signals
are always specified as

-SIGNAL

and not as

SIGNAL*

CASE ANALYSIS

Some digital systems are designed to take advantage of data
dependent delays. In such systems, worst case timing
analysis is not appropriate because although certain very
long data paths through the system exist, these paths are
never used. In order to tailor the timing analysis appropri­
ately for such systems, the Timing Verifier includes a
mechanism called case analysis. To use case analysis, you
enter timing assertions and signal values into the case file
(case.dat). When the assertions and signal values that you
enter into the case file all describe concurrent events, they

4/10/86 4-13

Assertions Timing Verifier

are said to describe "one case". To best verify systems with
data dependent delays, multiple cases are entered in the
case file. When multiple cases are entered in the case file,
the circuit is verified once for each case specified.

A case specifies a list of signals, and for each signal a signal
value or timing assertion. Only the signal values 0, 1, and
S can be used in the case file.

Consider the following circuit:

D A

LOGIC

Figure 4-4. Case Analysis Example

Suppose that there are hundreds of transitions on FAST
CLK for every transition on SLOW CLK. This could be
modeled by using a very long period for analysis (the
period of SLOW CLK) and specifying the full behavior of
FAST CLK over that period. This is time consuming and

. produces much redundant information.

A better way to handle this kind of circuit is to consider
that there are only two cases of interest. The first case is
when SLOW CLK remains stable during an entire period of
FAST CLK (i.e., only the upper register is being clocked).
The second case is when both registers are being clocked.

4-14 4/10/86

Timing Verifier Assertions

To do this, a clock assertion is used on FAST CLK:

FAST CLK !C 0-5

With a 100 ns clock period that is divided into 10 clock
intervals of 10 ns each, this produces a signal history of:

1:0.0, 0:50.0

If the behavior of SLOW CLK is unspecified and undriven,
then the signal history of SLOW CLK is stable throughout
the period of analysis. The two cases of interest may be
specified as:

'SLOW CLK' = '!S 0-10';

'SLOW CLK' = '!C 0-5';

These two cases can be specified in the case file. Below is
an example of a case file showing multiple cases.

Example Case File

Assume that a design contains the signals SELECT Al,
SELECT B2*, CLOCK_RATE and DATA<3 .. O>*. Then
a sample case file including five different cases is:

'SELECT Al' = 'O';

' 'SELECT Al' = 'l',
'-SELECTB2' = 'O',
CLOCK_RATE = 'l';
-DATA= 'O';
'SELECT Al'= 'l',
'-DATA'<3 .. 0> = 'l';
eND.

Notice that in the case file no distinction exists between
upper case and lower case letters. See, for example, the
last line in the sample file above.

The case file specifies five cases are to be run. It specifies
no timing assertions.

4/10/86 4-15

Assertions Timing Verifier

1. The first case sets SELECT Al t.o 0 for the intervals
that this signal is stable (not changing).

2. The second case does not alter any of the signals. It
is equivalent t.o running the Timing Verifier with no
case file.

3. The third case sets SELECT Al t.o 1, SELECT B2*
to 0 and CLOCK_RA TE t.o 1 for the intervals these
signals are stable.

4. The fourth case sets the bus DATA<3 .. O>* to 0
for the intervals it is stable.

5. The last case sets the bus DATA<3 .. 0>* to 1 and
sets SELECT Al t.o 1 for the intervals it is stable.

TIMING ASSERTIONS IN TIIE CASE FILE

Timing assertions can be added t.o signals as part of the sig­
nal name (using GED) or they can be entered in the case
file. When signal assertions are entered in the case file,
they can be changed without recompiling the drawing.
Because recompilation can be time consuming, it is recom­
mended that you enter timing assertions in the case file
when performing the following tasks:

1. Trying several different timing assertions on a signal
or group of signals.

2. Optimizing the performance of interface signals.

3. Determining the correct resetting sequence for a cir­
cuit.

4. Performing timing tests that require frequent
changes to timing assertions.

Associating a timing assertion with a signal in the case file
is identical to associating the assertion with the signal on
the print. Subintervals and skews may also be included.
See above under Timing Assertions in Signal Names for

4-16 4/10/86

Timing Verifier Assertions

the syntax for specifying subintervals and skews.

Below is an example of a case file showing timing asser­
tions.

Example Case File

For a design with the signals, RESET*, INIT!C 0-3,
DATA<15 .. 0> and ID!S 2-4<3 .. 0> in it, here is a
case file that includes timing assertions:

-RESET= 'O',
'INIT!C 0-3' = '!P 2-4(-2,+ 5) ',
DATA<15 .. 0> = '!S 14-17,19';
'-RESET'= '!C 0-4',
'ID!S 2-4' = '!D 2-4';
END.

This case file describes two different cases. The first case is
described by the first three lines of the file; the second case
is described by the next two lines. In the first case, the sig­
nal RESET* is set to the value O, and the signal INIT is
given a different timing assertion. Notice that the timing
assertion ! C 0-3 is included as part of the signal name in
the left part of the entry. This is because the timing asser­
tion was entered on the drawing and therefore is part of the
signal name. In this case the signal DA TA is also given a
timing assertion.

In the second case, the signal -RESET is given a timing
assertion. Because -RESET is a low-asserted signal, the
timing assertion !C 0-4 means that the signal is LOW for
the first four intervals. The bit subscript for the signal ID
!S 2-4 is not included. When a bit subscript is omitted, the
value or timing assertion is assigned to the entire bus.

4/10/86 4-17

SEGilON 5
DELAYS

Accurate timing verification requires not only the
specification of component delays (as are provided in tim­
ing models for all Valid library parts), but also the
specification of interconnect delays occurring in the design.
Interconnect delays are technology dependent and design
specific. They include both delays caused by wire length,
and load-dependent delays. Because accurate interconnect
delay data is only available late in the design cycle, after the
design has been packaged and sent to a physical design sys­
tem, the Timing Verifier provides several ways to approxi­
mate interconnect delay data in early design phases, and
also provides a mechanism for feeding back detailed inter­
connect delay data from a physical design system.

The Timing Verifier also has a,mechanism for specifying
delays for tuned and gated clocks. This mechanism is
Evaluation Directives and is described later in this section.

The Timing Verifier has four mechanisms for specifying
wire delay information. Three of these are used in early
design phases to estimate interconnect delays. The fourth
is used to feed back delay information from the physical
design system to the Timing Verifier.

• Wire Delay File (delay.dat) When accurate delay
data is available from a physical design system, this
data can be formatted (with the help of the Wire
Delay Interface) into a file (delay.dat) that the Tim­
ing Verifier reads as an input file. In this file, a list
element associates a delay with an input pin. Thus
the delay on each stub of a signal that drives multi­
ple loads may be specified.

4/10/86 5-1

Delays 'liming Verifier

• Delay Estimat.or For technologies where delay is
load dependent, the Timing Verifier can use its
Delay Estimator to calculate an estimated delay
based on the number of loads and the size of the
loads.

• Wire Delay Property Wire delay can be added to a
signal by including the text macro \ WD as part of
the signal name, or by attaching the WffiE_DELAY
property to the signal or pin. When this method is
used, the specified delay is added only to that partic­
ular instance of the signal. If the signal has a
synonym elsewhere in the design the delay is NOT
added to the synonymed signal.

• Wire Delay Directive The Timing Verifier Wire
Delay directive adds the specified delay to all wires
in the circuit that connect to the input pin of a body
and do not have a Wire Delay property attached.

The last two mechanisms in this list are designed to work
together. Delay specified with the Wire_Delay Property
overrides delay specified in the Wire_Delay Directive. All
other combined uses of these four mechanisms causes the
resultant delays to be added to each other. Since each of
the first two mechanisms in this list are most frequently
used as the only source of interconnect delay data, direc­
tives are provided to disable alternate sources of intercon­
nect delay data.

5.1 WIRE DELAY DIRECTIVE

The WIRE DELAY directive is used to specify a global
delay or range of delays. The specified delay is attached to
all signals in a design that are attached to the input pin of a
library part and that do not have a delay property attached
to them. See under Verifier Directives for additional infor­
mation.

5-2 . 4/10/86

Timing Verifier Delays

5.2 DELAYPROPER'II~

The Timing Verifier recognizes several delay properties. Of
these, two are for use on logic drawings and the remainder
are reserved for library development. The two delay pro­
perties that can be used on logic drawings are
WffiE_DELAY and CLOCK_DELAY. Of these, the
WIRE_D ELA Y property is by far the most common. Both
properties can be attached to a signal or an input pin.

The delay properties used in library development are:
DELAY, RISE, FALL, and CHIP_DELAY.

Verifier delay properties indicate that the signal is to be
delayed by the time indicated with respect to the signal
source.

Most delay properties (except RISE and FALL) can take
two ranges of values. When two ranges are specified the
first range specifies a min/max rise delay and the second a
min/max fall delay. When a single range of values is
specified, the rising and failing delays are assumed to be the
same. The property value can also be a single fixed point
number.

The syntax for the WIRE_DELAY and CLOCK_DELA Y
properties is the same. Here is an example:

WIREJ)ELAY 2.0-5.6, 2.5-6.2

Here is a brief description of the delay properties recog­
nized by the Verifier:

WIRE_DELAY

4/10/86

This is the most common wire
delay property. The delay specified
with this property overrides the
delay specified with the
WIRE_DELAY directive. The
delay specified refers to the entire
instance of the net, but not to
other instances having the same
name. All WIRE_DELAY proper­
ties in a design may be ignored by
using the USE_DRA WING_WD

5-3

Delays Timing Verifier

OFF directive. WIRE DELAY is
the only delay property affected by
this directive. An individual
instance of the WIRE_DELAY
property may be set to zero with an
evaluation directive.

CLOCK_D ELA Y This delay is not affected by any
evaluation directive, nor can it be
ignored by using the
USE_DRAWING_WD OFF direc­
tive. It.s primary use· is to describe
a tuned clock which is adjusted to
have some delay with respect to
another logical version of the clock:
See Evaluation Directives for addi­
tional details.

CHIP _DELAY This delay is used primarily in
library development to assign delay
to an entire timing model. An
evaluation directive can be used to
set it to zero.

DELAY This delay is used in library
development to assign delay to sig­
nals in a timing model. The pro­
perty is often attached to the BUF,
REG, REG RS, LATCH, and
LATCH RS primitives.

RISE This delay property is used in
library development to assign rise
delay to -a primitive in a timing
model. This property can take only
a single range of values, or a fixed
point number.

5-4 4/10/86

Timing Verifier Delays

FALL This delay property is used in
library development to assign fall
delay to a primitive in a timing
model. This property can take only
a single range of values, or a fixed
point number.

TEXT MACROS FOR DELAY PROPERTIES

To shorten signals and increase readability, three text mac­
ros have been predefined to specify delay properties. These
are "WD", "CD", and "CKD" for wire delay, chip delay and
clock delay respectively. The user may of course use either
the full property name or the ,associated text macro.

ATTACHING A DELAY PROPERTY TO A SIGNAL
ORA PIN

All Verifier delay properties can be attached to a signal or a
pin. The delay is applied at each input pin to which the
wire with the delay property (or signal name containing the
delay property) is attached. For example consider the fol­
lowing example drawing with a D-type flip-flop and two
inverters:

Figure 5-1. Using Delay Properties

4/10/86 5-5

Delays Timing Verifier

The periodic behavior of the clock and data signals is
specified in the case.dat file:

CLK = '!C 1-4',
DATA= '!S 0-2, 7-10';

Assume that the WIRE_D ELA Y directive has a value of O.
Notice that MID is the name of the signal that goes to both
inverters.

The propagation delays for the flip-flop are RISE (8.5 -
27.0), FALL (9.0 - 27.0). The propagation delays for the
inverters are RISE (4.5 - 15.0), FALL (5.0- 15.0).

When the delay property is attached to the signal MID (as a
signal property), the signals OUTA and OUIB both act
identically to each other. With rise/fall analysis on, and a
delay property of 2.0 ns, the signal value of MID is

S:O.O, C:18.5, S:37.0

and the signal values of OUTA and OUIB are

S:O.O, C:25.5, S:54.0

The 2.0 ns delay is not reflected in the signal history of
MID, but only in that of OUTA and OUTB. Wire delay is
always reflected in signal history after a lag. That is
because all signal history reflects the behavior of the signal
at the beginning of that signal. The signal MID begins at
the output pin of the flip-flop. 8.5 ns is used for the propa,..
gation delay because it is the worse case possibility.

OUTA and OUIB start changing at 25.5 ns which is 5 + 2
ns after MID starts changing. The Verifier uses 5 ns and
not 4.5 ns because it is doing rise/fall analysis. The 2 ns is
the delay specified with the WIRE_DELAY property.

5-6 4/10/86

Timing Verifier Delays

WIRE_DELAY AS A PIN PROPERTY

As an alternative to using the WIRE_DELA Y property as a
signal property, the WIRE_DELAY property may also be
used as a pin property.

The WIRE_DELA Y property may be attached to any input
pin. The Timing Verifier does not recognize the
WIRE_DELAY property when it is attached to an output
pin.

In the circuit shown in Figure 5-1 the signal MID connects
to two different input pins, one for each of the inverters.
In this situation, when the delay is greater along one path
than along the other, the WIRE_DELA Y property can be
attached to the input pin of one of the inverters, instead of
to the entire signal. As a result, the delay affects one of
the two output signals, but not both.

When the WIRE_DELA Y property is attached to the input
pin of the topmost inverter, the delay appears only in the
signal history of OUTA and not of OUTB. Here is the sig­
nal history for both signals:

OUTA
OUTB

8:0.0, C:25.5, 8:54.0
8:0.0, C:23.5, 8:52.0

Delay properties are handled this way so that systems
where delays are different on different "stubs" of a net may
be modeled correctly.

4/10/86 5-7

Delays Timing Verifier

5.3 DELAY ESTIMATOR

In many technologies, the time required for the output of a
component to reach its loads is affected by both the inter­
connect delay and the size of the load:

Tr= Tdr + Kr(load on the net) + Tir
Tf = Tdf + Kf(load on the net) + Tif where

Tdr is the component's rise delay

Kr is a device-specific constant related to changes in
the output's rise time as a function of com­
ponent loading

Tir is the rising edge delay due to wires

Tdf is the component's fall delay

Kf is a device-specific constant related to changes in
the outputs fall time as a function of component
loading

Tif is the falling edge delay due to wires

Note that Tdr, Tdf, Kr, Kf are device-specific; (load on the
net) is net specific; and Tir, Tif are input specific. All
quantities can assume both a min and max value.

We can lump together the net loading term and intercon­
nect term of the delay. Then the delay due to all intercon­
nection effects can be modeled as an input specific wire
delay. If interconnection delays are computed (or
estimated) this way by the physical design system, and then
fed back to the Timing Verifier as wire delays (the delay.dat
file), we obtain an accurate timing representation of the
system. Early in the design cycle however, it may be
impractical to provide such detailed delay information -­
estimators are required.

5-8 4/10/86

Timing Verifier Delays

When the signal delay due to loading effects is small, it is
often adequate to estimate the delay and add it to the signal
in GED using the WIRE_DELA Y property, or to specify a
global default value for delays by using the WIRE_DELA Y
directive.

When the loading effect is not small, the Timing Verifier
has a more accurate Delay Estimator that takes into
account static load, and provides a wire delay estimate
based on the number of stops (inputs and outputs) on the
net. This delay estimate is added to the basic component
delay (specified with the RISE, FALL, and DELAY proper­
ties in the timing model).

To use the Delay Estimator you need to use the directive
DELAY _ESTIMATOR ON and set the other appropriate
directives to the required values. The Delay Estimator uses
the following equation:

Tr(estimated) = Tdr + Kr(loads on the net+ wire delay)
Tf(estimated) = Tdf + Kf(loads on the net+ wire delay)

where constants Tdr, Kr, Tdf, Kf are as above.

The load term is a weighted sum of inputs and outputs on
the net which approximates the true capacitive and DC load
on the net. The wire delay is estimated by counting the
number of stops on the net and converting stops into load
equivalents.

IN'IERAC1.10N OF WIRE DELAYS Wim
DELAY F8'11MATOR

The delays calculated by the delay estimator are used to
adjust the delays of the driving components, and as such
will be added to wire delays specified in the drawings or fed
back wire delays specified in the wire delay file. The direc­
tive USE DRAWING WD allows the user to control
whether the wire delays specified in the drawings will be
used or not. In general, any fed back wire delays will over­
ride any wire delays specified in the drawings. It is sug­
gested that USE_J)RAWING_WD normally be turned off
when the Delay Estimator is on.

4/10/86 5-0

Delays Timing Verifier

COMPUTING NET DEPENDENT DELAYS

The Timing Verifier estimates the net delay on each net in
six steps:

1. The load is estimated by taking a weighted sum of
the inputs and outputs on the net.

2. The number of stops on the net is counted.

3. The number of stops is converted to an interconnec­
tion delay estimate (in units of load equivalents) by
table look-up.

4. An effective net load is computed by adding the
interconnect and load estimates.

5. The effective net loading is multiplied by the drive
constants (Kr and Kf) of the drivers of the net to
obtain rise and fall delays due to net loading.

6. These delays are added to the drivers zero-load
parameters (Tdr and Tdf).

Counting Loads

Counting the inputs and outputs on a net is complicated by
the presence of TIMES properties and dots. When a net is
connected to the output pin or input pin of a library part
that has the TIMES property attached to it, the value of the
TIMES property affects the number of loads on the net.

When a net is connected to one or more input pins and a
single output pin, the following rule applies:

5-10

Each input pin is counted n times when TIMES = n
and the sum of the values of the TIMES properties
for each pin is used. The output pin to which the
net is connected is counted once and when the outr ·
put pin is connected to a library part having a TIMES
property, the total number of inputs on the net is
divided by n.

4/10/86

Timing Verifier Delays

For example, a net is connected to an output pin of
a library part with the property TIMES=3, and to
three input pins. The input pins are on three
different library parts that have, respectively, the
properties TIMES=5, TIMES=2, and TIMES = 1.
The load is calculated as 5 + 2 + 1 = 8 inputs on
the net. This total number of inputs is divided by
the value of the TIMES property of the output pin.
This gives 8 divided by 3.

When a net is connected to several output pins that are
dotted together (connected together) and the output pins
are on library parts that have the TIMES property attached
to them, the following rules apply:

The number of output pins on the net is the sum of
each output pin ignoring the TIMES properties. The
number of inputs on the net is counted as before,
then divided by the smallest value of the TIMES
property of any library part with an output on the
net.

If phantom gates are used, they are collapsed to an
explicit dot for the counting procedure.

The user may , in addition, place an optional pin property,
LOAD_FACTOR, on any pin. LOAD_FACTOR takes a
fixed point number as a value. If LOAD_FACTOR is
specified, a pin is counted LOAD_FACTOR times (or
LOAD_FACTOR * n times when it is an input pin and a
TIMES property with a value of n is present) rather than
once in the above counting procedure.

&timating Wire Delays

To estimate wire delay, the number of stops on each net is
counted. I(phantom gates are used, they are collapsed into
an explicit dot for the stop counting process. The number
of stops is converted to equivalent loads by table lookup
using a table specified with the Tiining Verifier directive
WffiE~STIMA 'IE. WffiE_ESTIMA TE takes an argument
list of fixed point numbers and an optional FAMILY
specification. A net with i stops receives a wire delay

4/10/86 5-11

Delays Timing Verifier

estimate given by the ,Ith number in the list. The family
specification allows for a number of different
WIRE_ESTIMA TE tables to be used in the same Timing
Verification run. If a FAMILY body property is given on a
primitive, then the WffiE_ESTIMA TE table with the same
FAMILY specification will be used. If no FAMILY body
property is given on a primitive, then the
WIRE_ESTIMA TE table without a FAMILY specification
will be used. An example set of WIRE_ESTIMA TE direc­
tives are given below:

WIRE_ESTIMA TE 1.0, 2.0, 3.0, 4.0;
WffiE_ESTIMA TE ECL: 0.5, 1.0, 2.0, 3.0;
WffiE_ESTIMA TE TTL: 1.0, 2.0, 3.1, 4.0;
WffiE_ESTIMA TE ON_GA TE_ARRA Y: 0.3, 0.6, 1.0, 1.3;
WIRE_ESTIMA TE BET_GA TE_ARRA Y: 1.0, 2.0, 3.1, 4.5;

Computing Load Dependent Net Delays

In timing models, each primitive that drives an output pin
of the part being modeled can have an optional body pro­
perty, DRIVE. This property takes a pair of fixed point
ranges as a value, the first range is the driver's Kr factor,
the second its Kf factor. A range is required to specify
both a minimum and maximum value. If no DRIVE pro­
perty is specified, Kr and Kf are set to the default value
specified by the DEFAULT_DRIVE directive. When nei­
ther DRIVE properties nor the DEFAULT_DRIVE direc­
tive are used, Kr and Kf are set to 0-0. If only one fixed
point range or number is given, Kr and Kf are both set to
that value.

After the effective net loading has been computed for a
component's output net, the component's output delays
(DELAY, or RISE/FALL} are adjusted on a bit-by-bit
basis by the time obtained by - multiplying its drive
constant.(s) by each output bit's effective net loading.

5-12 4/10/86

Timing Verifier Delays

USING THE DELAY ESTIMATOR

To use the delay estimator, follow these steps:

1. Use the DELAY _ESTIMATOR directive to turn on
delay estimation. The default value for this directive
is OFF.

2. Specify drive constants (Kr, and Kf). This can be
done in two ways:

• By attaching the DRIVE body property to
each Timing Verifier primitive whose output is
to display load-dependent behavior. See
Appendix A for the DRIVE property syntax.

• By specifying a default value for drive con­
stants. To do so, use the DEFAULT_DRIVE
directive. See under Directives for details.

3. Specify pin loading. This is done by attaching the
LOAD_FACTOR property to a pin of the Timing
Verifier primitive that connects to the interface sig­
nal that represents the pin of the part whose load is
to be specified. The LOAD _FACTOR property
takes a fixed point number as its value. If no
LOAD_FACTOR property is specified, a default
LOAD_FACTOR value of 1 is used.

4. Specify a conversion table from stops to load
equivalents using the WIRE_ESTIMA TE directive.
See under Directives for details.

Assuring Correct Load Counting

This scheme for counting stops and loads on a net is
independent of the actual wiring of a net. In two significant
cases this results in delay estimates that are too large.

Drivers with the TIMES property, especially those feeding
wire gates or phantom gates, are often wired with a careful
partitioning a.nd placement of the loads. The estimation
scheme does not take this into account. It assumes a load
that results from an even partitioning of the loads into a

4/10/86 5-13

Delays Timing Verifier

number of pieces equal to the smallest value of the TIMES
properties found on the drivers.

Physical parts often have common input pins which are
modeled as separate pins. For example in a design that
uses two LS37 4s, each with the property SIZE=4, both
parts could be driven by the same clock signal and hence be
allocated to the same package. However, since two logical
parts appear on the GED drawing, two LS37 4 clock pins
will appear on the net instead of one.

In order to ensure correct counting of loads, timing models
are constructed so that only one primitive (not counting
checker bodies) is connected to each interface signal. The
BUF primitive is used to accomplish this task.

WIRE DELAY FILE

An optional input file to the Timing Verifier is the wire
delay file. This file associates delays with input pins of the
parts in the system. When the Wire Delay file is used, the
specified delay is applied to the signal driving the input pin
before the component is simulated. This allows a delay to
be associated with each stub on a net. This file is typically
generated by feeding the wire delays calculated by a physi­
cal design system through the WIRE DELAY interface.

The Wire Delay file consists of a list of signal names and
under each one, a list of the path names of the parts that
the signal drives and a delay for each pin. Here is an
example:

5-14

'SIGNAL l' <5 .. 0> :
'(SYS ALU MUX)' = '2.3-3.4',
'(SYS REG)' = '0.2-1.7,0.1-1.2';

'SIGNAL 2' <7 .. 5> :
'(SYS SHIFTER)' = '0.0-1.1';

'SIGNAL 2' <4 .. 1> :
'(SYS SHIFTER)' = '0.5-3.1';

4/10/86

Timing Verifier

'SIGNAL 2' <0> :
'(SYS SHIFTER)'= '0.5-3.1';

end.

Delays

If no bit subscript is included as part of a signal name, the
specified delay applies to all of the bits of a bus. To sim­
plify feeding back of wire delays, a path name in the stop
delay list may be a unique left substring of the actual path
name. For Wire Delay File syntax see Appendix A.

INTERACTION OF WIRE DELAY F1LE
AND OTIIER WIRE DELAYS

When a delay.dat file is available, the delay values in that
file are ADD ED to the wire delays specified by the three
other methods: with the WIRE_DELAY property on the
drawing, with the WIRE_D ELA Y directive, and with the
Delay Estimator.

If the user has access to a delay.dat file, generated by the
physical design system, the information in that file is prob­
ably more accurate than the delay information specified in
the Directives file, on the drawing, or calculated by the
Delay Estimator.

To use the delay.dat file as the only source of delay infor­
mation, specify these directives:

DELAY _ESTIMATOR OFF;
USE_DRA WING_WD OFF;
WIRE_DELA Y 0.0-0.0;

5.4 EVALUATIONDIRECTIVES

Some high-speed digital systems use clocks that are tuned
to compensate for delays in the system. A tuned clock is
adjusted so that its timing behavior is independent of cir­
cuit delays. Other systems use gated clocks where the sys­
tem only functions correctly when: the gating signal properly
"envelopes" the clock for all variations in: circuit delays. Irr
both cases, the Timing Verifier needs additional informa­
tion: in order to correctly verify the circuit. Evaluation

4/10/86 5-15

Delays Timing Verifier

directives are used to direct the Timing Verifier to correctly
evaluate circuits using tuned and gated clocks.

An additional evaluation directive is used to initialize an
individual signal to a particular signal value.

Six evaluation directives are recognized by the Timing
Verifier. Five are used with tuned and gated clocks, the
sixth is used to initialize signals to a specified value. Here
is a brief list of the function of each of the six evaluation
directives:

V initializes the signal to a known value. Most
often used to set a signal to 0, 1, or S (stable).

W sets the minimum delay of the wire to zero and
subtracts the minimum delay from the max­
imum delay.

Z sets the wire delay and the gate delay to zero.

A checks that the non-clock input to a gate is stable
when the clock input is enabling the gate.
Directs the Timing Verifier to ignore all the
inputs to the gate except the one with the A
evaluation directive.

H sets the wire delay and the gate delay to zero and
checks that the non-clock input to a gate is stable
when the clock input is enabling the gate.

I directs the Timing Verifier to ignore all the
inputs to the gate except the one with the I
assertion. The output of the gate is simply the
input signal (including any timing assertion)
delayed by the propagation delay of the gate.
This directive may be used on any type of gate.

The \E V evaluation directive may be used on any signal ..
All of the other evaluation directives may be applied to
only one input of a gate.

5-16 4/10/86

Timing Verifier

A'ITACHING AN EVALUATION DIRECTIVE
TOA SIGNAL

Delays

The most convenient to attach an evaluation directive to a
signal is to use the reserved text macro \E n, where n is
one of the five letters V, W, Z, A, or H. The evaluation
directives may also be specified in signal names by using
the full form of the text macro: \EVAL 'I'. This full
form is required for the I evaluation directive when includ­
ing it in a signal name.

The PROPERTY command can also be used to attach an
evaluation directive to a wire. In this case, the property
name is EVAL and the property value is V, W, Z, A, H, or
I.

EVALUATION DIRECTIVE FOR SIGNAL
INITIALIZATION

The \E V evaluation directive is used to initialize any signal
to a value other than U (unknown). When this directive is
not used, signals are initialized to U. Legal values for the
\E V directive are:

\EVO
\EV 1
\EVS
\EVC
\EV Z
\EVU

initialize to 0
initialize to 1
initialize to stable
initialize to changing
initialize to high impedance
initialize to unknown

A signal cannot be initialized to Rising or Falling. The
values O, 1, and S are the most useful values for this
evaluation directive.

4/10/86 5-17

Delays Timing Verifier

EXAMPLE CIRCUIT

Figure 5-2 shows a flip-flop with a gated clock signal. This
circuit serves well to demonstrate the effect of the remain­
ing five evaluation directives.

The circuit is verified first with no evaluation directive and
then once with each of the five directives: \E W, \E Z, \E
H, \EA, and \EI. The following Verifier directives file is
used in all cases:

CLOCK_PERIOD 300.0;
CLOCK_INTERVALS 10;
TIMING_J)IAGRAMS ON;
CLOCK_SKEW 0.0;
PREC_CLOCK_SKEW 0.0;
WIRE_D ELA Y 0.0-0.0;
MAX_ERRORS 50;
END.

The pertinent timing information for the LS08 and the
LS74 follows:

LS08 Rise time delay : 4.0 - 15.0 ns
Fall time delay : 5.0 - 20.0 ns

LS74 Rise time delay: 6.5-25.0 ns
Fall time delay : 12.5-40.0 ns

In the case file, the input to the LS74 is asserted with a
changing value from 210-240 ns. In a true design, this
input would be generated by the circuit and would not have
to be specified. The case.dat file is as follows:

5-18

'EN'= 1,
'INPUT' = '!S 0-7, 8-10';
END.

4/10/86

Timing Verifier Delays

l
WIRE_DELAY\2. 21-3. 21 INPUT D PR Q OUTPUT

\

CLI< I C ' L974
MID

EN

CL Q

l

Figure 5-2. No Evaluation Directive

The signal hist.ory for the verification with no evaluation
directive is:

CLK !C 3-5

EN

INPUT

MID

OUTPUT

0:0.0, 1:90.0, 0:150.0

1:0.0

8:0.0, .C:210.0, 8:240.0

0:0.0, R:96.0, 1:108.0, F:157.0, 0:173.0

8:0.0, C:102.5, 8:148.0

EN is held high, so MID reflects CLK, its wire delay, and
the component delay of the L808. After CLK goes high at
90.0 ns, MID rises at 96.0 ns (90.0 from CLK + 4.0 min
component rise delay+ 2.0 min wire delay= 96.0), and is
high at 108.0 ns (90.0 from CLK + 15.0 max component
rise delay + 3.0 max wire delay = 108.0). CLK falls t.o
zero at 150.0 ns causing MID t.o fall at 157.0 ns (150.0 +
5.0 min component fall delay + 2.0 min wire delay =
157.0), and MID t.o be stable at 173.0 ns (150.0 + 20.0
max component fall delay+ 3.0 max wire delay= 173.0).
The timing diagram for the circuit with no evaluation direc­
tives is shown in Figure 5-3.

4/10/86 5-19

Delays Timing Verifier

INPUT z,~11

Q_I(IC 3-5 z,~I

EN z,~I

MID z,~I _ ___,_,O \......._\ ---
OUTPUT z,~11

111.111 6111.111 J.2111.111 J.8111.111 24111.111 30111.IZJ

Figure 5-3. Timing Diagram: No Evaluation Directive

EV ALUA'llON DIREC'llVES FOR CLOCK TUNING

The \E W and \E Z evaluation directives are used for
tuned clocks.

\EW

This evaluation directive sets the mm1mum delay of the
wire to zero and subtracts the minimum wire delay from
the maximum wire delay. This is used for tuned clocks to
cancel out wire delays. Figure 5-4 shows the circuit with
the \E W evaluation directive and Figure 5-5 is the circuit's
timing diagram.

WI~E-DELAY=?.~-3.~
...

CU< IC 3-5 'E W "
EN

Figure 5-4. \E WEvaluation Directive

5-20 4/10/86

Timing Verifier Delays

The signal history for the verification with the \E W
evaluation directive is:

CLK !C 3-5

EN

INPUTW

MID W

OUTPUTW

0:0.0, 1:90.0, 0:150.0

1:0.0

8:0.0, C:210.0, 8:240.0

0:0.0, R:94.0, 1:106.0, F:155.0, 0:171.0

8:0.0, C:l00.5, 8:146.0

The WIRE_DELAY properties are affected by this evalua­
tion directive and are recalculated as follows: the minimum
wire delay is set to zero, and the minimum wire delay is
subtracted from the maximum wire delay leaving a recalcu­
lated wire delay of 1.0 ns (3.0 - 2.0 = 1.0). EN is held
high so MID W reflects CLK, the recalculated wire delay,
and the component delay. CLK goes high at 90.0 ns caus­
ing MIDW to rise at 94.0 ns (90.0 + 4.0 min component
rise delay + 0.0 minimum wire delay= 94.0) and MIDW
to be high at 106.0 ns (90.0 + 15.0 max component rise
delay+ 1.0 recalculated wire delay= 106.0).

x~ w z,~jl.__ ________ --L.t@.....,._..__ __

CU< IC 3-5 z, ~ '-----'
EN z,~,

MID w z, ~ , ___ ___,,,,O \ \ ____ _

OUTPUT W z,~11 ~
1!1.1!1 61!1.l!I !21!1.l!I !60.1!1 240.1!1 31!10.l!I

Figure 5-5. Timing Diagram: \E W Evaluation Directive

4/10/86 5-21

Delays Timing Verifier

\EZ

This directive sets both the wire delay and the gate delay to
zero. This is also used for tuned clocks. The following
delay properties are aff ecte<l by this evaluation directive:

WIRE_DELAY
DELAY
RISE
FALL
CHIP_DELAY

Since the component delay from the LS08 is not reflected
and EN is held high, MID Z changes with CLK. The cir­
cuit is shown in Figure 5-6, and Figure 5-7 shows the tim­
ing diagram.

WIRE_DELAY~2.0-3.0

',
CU< I C 3-5 '-E Z ',,

EN

Figure 5-6. \E Z Evaluation Directive

The signal history for the verification with the \E Z evalua­
tion directive is:

5-22

CLK !C 3-5

EN

INPUT Z

MID Z

OUTPUTZ

0:0.0, 1:90.0, 0:150.0

1:0.0

S:O.O, C:210.0, 8:240.0

0:0.0, 1:90.0, 0:150.0

S:O.O, C:96.5, 8:130.0

4/10/86

Timing Verifier Delays

IllFl.IT Z z,~11

Q_f(IC 3-5 z,~I

EN z,~I

MID Z z.~1

OUTPUT Z z,~11
l!l.lll Siil.iil l211l.lll lSlll.lll 240.lll 300.0

Figure 5-7. Timing Diagram: \E Z Evaluation Directive

EVALUATION DIRECTIVES FOR CLOCK GATING

A clock can be gated using either an AND gate or an OR
gate. In our example, the clock is gated with an AND gate.
Correct performance of the digital system requires that the
gating signal (in this case, EN) be stable while the clock
signal is in its asserted state. EN must be stable when CLK
!C 3-5 is high. When an OR gate is used instead of the
LS08, EN must be stable when CLK !C 3-5 is low.

\EA

This directive is used on AND and OR gates to check that
the non-clock input is stable when it is enabling the gate.
The A directive may be used only on AND and OR gates
where one input of the gate is driven by a clock signal (a
signal with a 'C' or 'P' assertion). When the 'A' directive
is used, the output of the gate {MID A) is calculated as a
function of CLK, any wire delay, and the propagation delay
through the LS08. MID A does not reflect the EN signal.

None of the delay properties are affected by this evaluation
directive.

4/10/86 5-23

Delays Timing Verifier

For this example, EN is specified (in the case.dat file) to
be a pulsing signal. Because the L808 is an AND gate, EN
is controlling the gate when CLK is asserted (high). An
error occurs if EN changes while CLK is asserted. If an
OR gate is used, the EN signal controls the gate when CLK
is low and an error occurs if EN changes while CLK is low.

Figure 5-8 shows the circuit with the \E A directive.

1
WIRE-DELAY~2.~-3.~

INPUT A a PR Q OUTPUT A
CU< I C 3-S 'E ff', L974

EN

CL Q

l

Figure 5-8. \EA Evaluation Directive

The signal history for the verification with the \EA evaluai­
tion directive is:

S-24

CLK !C 3-5

EN

INPUT A

MID A

OUTPUT A

0:0.0, 1:90.0, 0:150.0

1:0.0, 0:60.0, 1:120.0, 0:210.0

8:0.0, C:210.0, 8:240.0

0:0.0, R:96.0, 1:108.0, F:157.0, 0:173.0

8:0.0, C:102.5, 8:148.0

4/10/86

Timing Verifier Delays

The timing diagram is shown is Figure 5-9.

Il"Fl.IT A z, ~ llL.. __________[>@_,._,._....._ __

CL.I(I c 3-5 z, ~I ____ ___.
EN z,~I

MID A z,~l ___ __._.O \...,,\ ____ _

<XJTRJT A z, ~II ~
li!l. li!I Bli!l.li!I 1221. 1i!1 1Bli!I. eJ 240. eJ 301!1. Ill

Figure 5-0. Timing Diagram: \EA Evaluation Directive

Since EN is changing while CLK is asserted, the following
timing violation is generated:

4/10/86

#1 Timing error (166): Input changing while clock
is asserted

Drawing name = LS08.TIME.1.1
Path name to primitive is
"(DRC LS08.1P.2AN1P)"

CK INPUT= CLK !C 3-5 \EA (0.0:0.0)
0:0.0, R:92.0, 1:93:0, F:152.0, 0:153.0
DATA INPUT= EN
1:0.0, 0:60.0, 1:120.0 0:210.0

5-25

Delays Timing Verifier

TUNED AND GATED CLOCKS

When a clock is tuned and gated, you use either the 'H'
directive or the 'I' directive. The 'H' directive is a varia­
tion of the 'A' directive. It causes the Timing Verifier to
ignore any wire delay and the propagation delay through
the LS08, and also to check that the non-clock input to the
gate is stable when it is enabling the gate.

The 'I' directive causes the Timing Verifier to ignore all
other inputs to the gate except the CLK input and to calcu­
late MID I as a function of the CLK input, any wire delay,
and the propagation delay through the LS08. An error is
NOT generated if the non-clock input changes while it is
controlling the gate.

\EH

This directive is similar to \EA MIDH is a function of
CLK only; it is not effected by EN, propagation delay, or
wire delay.

The following delay properties are affected by this evalua­
tion directive:

WIRE_DELAY
DELAY
RISE
FALL
CHIP_DELAY

Figure 5-10 shows the circuit using the \E H evaluation
directive, and Figure 5-11 shows the timing diagram for the
circuit.

5-26 4/10/86

Timing Verifier Delays

l
WIRE-DELAY~2.0-3.0

' INPUT H 0 PR Q OUTPUT H

CLK IC 3-5 'EH',

EN

CL Q

1

Figure 5-10. \EH Evaluation Directive

The signal history for the verification with the \EH evalua­
tion directive is:

CLK

CLK !C 3-5

EN

INPUTH

MID H

OUTPUTH

INPUT H z.~11

IC 3-5 z.~1

EN z.~1

MID H z.~1

OUTPUT H z.~11
1!1.1!1

0:0.0, 1:90.0, 0:150.0

1:0.0, 0:60.0, 1:120.0, 0:210.0

8:0.0, C:210.0, 8:240.0

0:0.0, 1:120.0, 0:150.0

8:0.0, C:126.5, 8:160.0

00

~
Bl!l.1!1 121!1. l!I 181!1.l!I 241!1.l!I 31!11!1.l!I

Figure 5-11. 'Ilming Diagram: \E H Evaluation Directive

4/10/86 5-27

Delays Timing Verifier

A timing error is generated because EN changes while the
clock is asserted:

\EI

#1 Timing error (166): Input changing while clock
is asserted

Drawing name= LS08.TIME.1.1
Path name to primitive is
"(HDR LS08.1P.2AN1P)"

CK INPUT= CLK !C 3-5 EH (2.0:3.0)
0:0.0, 1:90.0, 0:150.0
DATA INPUT= EN
1:0.0, 0:60.0, 1:120.0 0:210.0

This directive causes the Timing Verifier to ignore all
inputs to the gate except the one with the \EI assertion. It
is similar to \EA except it does not generate an error if the
non-clock input changes while it is controlling the gate.
The output of the gate is the input signal (with assertion)
delayed by propagation delay of the gate and wire delay.
This directive may be used on any gate type, but only one
input to a gate may have an \EI assertion.

None of the delay properties are affected by this evaluation
directive.

To use this evaluation directive you must use the long
form of the text macro, like this:

\EVAL='I'

or the property name EV AL with the value 'I'. The shor­
tened text macro \E I is not permitted.

The signal EN is specified as a stable/changing value in the
case.dat file. Figure 5-12 shows the circuit with the
\EVAL='I' evaluation directive, and Figure 5-13 shows
the circuit's timing diagram.

5-28 4/10/86

Timing Verifier Delays

WIRE-DELAY..;=2. IZl-3. 1Z1 INPUT I OUTPUT I

CLt< I C 3-5 'EVAL=' 'I~--~-.__1----------....

MID I
EN

Figure 5-12. \EVAL 'I' Evaluation Directive

The signal history for the verification with the \EV.AL 'I'
evaluation directive is:

CU<

CLK !C 3-5

EN

INPUT I

MID I

OUTPUT I

INPUT I z.~,,

IC 3-5
z,~,

0:0.0, 1:90.0, 0:150.0

C:O.O, 8:60.0, C:120.0, 8:210.0

8:0.0, C:210.0, 8:240.0

0:0.0, R:96.0, 1:108.0, F:157.0, 0:173.0

8:0.0, C:102.5, 8:148.0

00

EN z,~,~ ftl:lt!tlllA
MID I z.~j 0 ~

OUTPUT I z.~11 [:{XXX)<J
113.113 6113.113 12113.113 18111.113 24113.113 3113113.113

Figure 5-13. Timing Diagram: \EV.AL 'I'

4/10/86 5-29

Delays Timing Verifier

In this example, if the \EVAL='I' evaluation directive is
not used, a timing violation occurs, because the clock input
to the L87 4 has a changing value. The timing violation
without the \EVAL-'I' directive is:

#1 Timing error(159): Minimum pulse width
timing violation
Input is driven with changing value at time = 96.0
Minimum HIGH = 25.0, Minimum LOW = 15.0
Drawing name= L874.TIME.1.1

Path name to primitive is
''{DRC L874.2P MPW5P)"

CK INPUT = MID I { + 10.0)
0:0.0, R:96:0, 8:98:0, C:124.0, 0:163.0

The signal history for the circuit without the \EVAL='I'
directive is:

CLK !C 3-5

EN

INPUT I

MID I

OUTPUT I

0:0.0, 1:90.0, 0:150.0

C:O.O, 8:60.0, C:120.0, 8:210.0

8:0.0, C:210.0, 8:240.0

0:0.0, R:96.0, 8:108.0, C:124.0,
0:173.0

8:0.0, C:102.5, 8:213.0

If EN is specified in terms of ones and zeros as in the
examples with the \E A and the \E H directives, and the
\EVAL='I' directive is not used, the minimum pulse
width error does not occur. If the EN signals in the \EA
and \E H examples are specified as changing/stable, a
minimum pulse width error is generated instead of the
error:

''Signal changing while clock is asserted."

The timing diagram is shown in Figure 5-14.

5-30 4/10/86

Timing Verifier Delays

INPUT I z.~11 00
CU< IC 3-5 z.~1

EN z,~l©(XOO f/JJtltltllJ
MID I z.~1 LA ~

OUTPUT I z.~11 ~
121.121 6121. 121 121!1. 121 161!1. 121 24121.121 31!1121.121

Figure 5-14. Timing Diagram Without EV AL = 'I'

DEFINING COMPLEX TUNED AND GATED CLOCKS

The \E H, \E W, \E Z, \EA, and \EI evaluation direc­
tives can be made to ripple through multiple gates by speci­
fying them repeatedly as shown in the example in Figure
5-15.

4/10/86

~IRE-DE:L.AY=2.121-3.121
\
\
\ .
\ .
EN

1

OUTPUT ZZ

Figure 5-15. \E='ZZ' Evaluation Directive

5-31

Delays Timing Verifier

The \E ZZ causes the wire and component delay from both
of the LS08s to be canceled out before reaching the LS7 4.
The signal values and timing diagrams for this example are
the same as for the \E Z example. The signal history is
shown below:

CLK !C 3-5 0:0.0, 1:90.0, 0:150.0

EN 1:0.0

ENl 1:0.0

INPUT ZZ S:O.O, C:210.0, S:240.0

MID ZZ 0:0.0, 1:90.0, 0:150.0

OUTPUT ZZ S:O.O, C:96.5, S:130.0

The W directive can be used with the Z directive to zero
out the minimum wire delay of the LS08 output. You use
the directive \E=ZW. The ZW causes the input wire delay
and the propagation delay of the LS08 to be set to zero (Z
evaluation directive). It also causes the minimum wire
delay of the output wire MID ZW to be set to zero (W
evaluation directive).

EVALUATION DIRECTIVES USED IN
MULTILEVEL COMPONENTS

When a component is defined with multiple levels of primi­
tives, it is desired that the evaluation directives ref er to the
entire path through the component, rather than to a single
primitive that the component is made up of. If the com­
ponent definition is a single level drawing, then the Timing
Verifier automatically causes the evaluation directive string
to count all of the primitives as one element. A user can
also put the body property 'KEEPD IRECTIVE' on a primi­
tive which will cause it to propagate the entire evaluation
string through it, rather than taking the first evaluation
letter off of it. This property is useful if a hierarchical
definition for a component is used and the evaluation direc­
tives only want to increment once when going through the
component.

5-32 4/10/86

SEG'll0N6
TIMNG MODELS

As part of each Valid-supplied library, there is a timing
model for each component in the library. The timing
model models the timing behavior of the component and is
used by the TI.ming Verifier. TI.ming models are built by
library developers from a specific set of parts called TI.ming
.Verifier primitives. The model is entered into the SCALD­
system as a GED drawing having the extension .TIME.
For example, the timing model of an LS74 is a drawing
with the name LS74.TIME. It can be viewed on the screen
using the ED IT command. Permissions are usually set on
component models so that only the librarian or root has
permission to change the models.

TI.ming models are built with a dual purpose in mind: to
accurately model the timing behavior of a component while
keeping the model as simple as possible. When timing
models are kept simple the TI.ming Verifier runs quickly
and efficiently. TI.ming models therefore focus on timing
characteristics and do not exhaustively simulate the logical
behavior of the component.

A timing model needs to correctly model the delays of all
signals through the component (propagation delay), and for
clocked and complex components it needs to check setup
and hold times, pulse width, and, when appropriate, edge
to edge time.

To efficiently perform these various functions there are
three types of time primitives.

4/10/86 6-1

Primitives Timing Verifier

6.1 TIME PRIMITIVES

Time Primitives are the building blocks of timing models.
Each primitive is a logic function that can be fully described
in a truth table and that is represented by a GED drawing.
The time primitives make up the TIME library on your
SCALDsystem. A timing model may contain only parts
from this library and from the STANDARD library. (In
rare cases a time model can also contain a hierarchical body
that is made up solely of time primitives.) Time primitives
were created to best describe timing functions. To this end
there are three basic groups of time primitives.

The first group of time primitives is made up of elements
based on familiar SSI and MSI functions like gates and
flip-flops. The second group of time primitives is made up
of non-standard functions that are particularly useful in
timing models. The third group of time primitives is made
up of checker primitives that are added to timing models to
catch timing errors. They do not model circuit functional­
ity. Each of these groups of time primitives is described
more fully below. Truth tables for each primitive are given
later in the section.

STANDARD FUNCTIONS

The first group of time primitives are based on familiar SSI
and MSI components. They perform some, but not all, of
the functions of these parts. In this group you find AND
gates, OR gates, registers, latches, multiplexers, and so on.
MSI components like latches, registers and multiplexers can
be used as primitives for the Timing Verifier because the
Verifier is only interested in their delay characteristics and
not in their total functionality. Models for different latches,
for example, are built by using one of the two latch primi­
tives and additional SSI gates where needed and attaching
delays to the latch primitive and to wires so that the propa­
gation delays for each signal are correct and according to
the data book.

6-2 4/10/86

Timing Verifier

The primitives in this group are:

AND
OR
XOR
LATCH
LATCH RS
TSBUF

NON-STANDARD FUNC'IlONS

REG
REG RS
2MUX
4MUX
8MUX

Primitives

The next group of time primitives are non-standard logic
functions that are particularly suited to modeling timing
functionality. Some of these primitives, like the Buff er and
the Resistor, are similar to the familiar components, but
may be used somewhat differently in a timing model.
Other parts, such as the CHANGE primitive, were created
specially for the Timing Verifier. These parts are used to
attach delay properties to various parts of a model, provide
accurate load calculations, and otherwise assure efficient
and correct functioning of the model.

The primitives in this group are:

CHG
BUF
IDENTITY
RES
THRESHOLD
TRANSMISSION GA TE
UNI TRANS GA TE

change gate
buffer
identity
resistor
threshold
transistor
uni-directional transistor

The non-standard primitives are described more fully in
Section 6.2.

4/10/86 6-3

Primitives Timing Verifier

CHECKER PRIMI'llVES

The last category of time primitives differ from the other
two categories because they do not model functionality.
Instead, they are added to timing models of clocked com­
ponents to check for setup and hold time violations, and
other clock related errors. They are sometimes called
checker primitives. These primitives are:

SETUP HOLD
SETUP RISE HOLD FALL
MIN PULSE WIDTH
EDGE TO EDGE

The error-checking primitives are described more fully in
Section 6.3.

USING TIME PRIMITIVES

or the three types of time primitives described above, the
first group need little further explanation. Truth tables for
each appear later in the chapter. Because the second and
third groups of primitives are somewhat less familiar, a
description of the function of each of these follows in the
next two sections. First are descriptions of the non­
standard primitives, followed by descriptions of the primi­
tives used for error checking.

Bubbling of Primitive Pins

All Timing Verifier primitives have bubbleable pins. This
feature allows negative edge triggering of latches, buffers to
become inverters, etc.

Each input and output of every primitive may be "bubbled"
independently. (See Graphics Editor, BUBBLE com­
mand.) When this is done, it is as if an inverting buffer
were inserted between the signal (input or output) and the
primitive itself. The characteristics of the primitive itself
are not changed in any way. This is useful for creating
inverting buffers (by bubbling the input or output of a
BUF), nand gates, nor gates, negative edge triggered regis­
ters, etc.

6-4 4/10/86

Timing Verifier Primitives

The use of a bubbled input on a MIN PULSE WIDTII
primitive is a good example of the statement that the primi­
tive itself is unchanged. In order to check a low asserted
signal (e.g., CLOCK *) to make sure that it is low for at
least 20.0 ns, you may use a MIN PULSE WIDTII primi­
tive with a bubbled input and a HIGH=20.0 property.

6.2 NON-STANDARD PRIMITIVES

THE CHANGE PRIMITIVE

The most important member of this group is the CHANGE
primitive. The change primitive takes an input signal and
tells you whether that signal is stable, changing, or unk­
nown. Frequently this is all the information the Timing
Verifier needs. When you add delay to the CHANGE
primitive, you effectively model simple propagation delay
through a component. To model, for example, the propa­
gation delay from the A and B inputs to the sum (Y out­
put) of an adder (let's say an LS283), you use the
CHANGE primitive and attach the appropriate delays using
the PROPERTY command. The model is very simple
because the delay through this component is the same
regardless of the values being added. Adding in the
appropriate delay for CARRY IN complicates the model
only slightly.

THE BUF'FER AND IDENTITY PRIMITIVES

The Buff er primitive is used as a convenient place to attach
delay properties in a model. It is also used to isolate out­
puts so that correct load calculations can be performed. As
one would expect, the value of a signal is not changed by
the Buffer primitive (with the exception of the value Z).
Buffers are also used to isolate outputs for correct load
checking.

The Identity primitive is a special case of the Buff er primi­
tive. It retains the identity of all signal values including Z.
It also retains the signal strength of all input signals (see
Signal Strength, below).

4/10/86 6-5

Primitives Timing Verifier

THE RESISTOR PRIMITIVE

The Resistor primitive has the same truth table as the Iden­
tity primitive. But the Resistor primitive changes the
strength of HARD input signals to SOFT signal strength.
Since most other signal strengths in a design are HARD,
this means that the value of the Resistor output can be
overridden by a competing HARD value. This primitive is
used to assure the correct modelling of circuits using pull­
up resistors. For HARD and SOFT input strengths, the
Resistor outputs a SOFT signal strength; for UNDRIVEN
input strengths, the Resistor outputs an UNDRIVEN signal
strength. For more information on signal strengths
(HARD, SOFT, UNDRIVEN) see the section later in this
chapter.

THE THRESHOLD PRIMITIVE

The TIIRESHOLD primitive has a threshold input and a
single output pin. The primitive behaves somewhat like an
input-state (0 or 1) detector whereby its output remains
changing until its threshold input is asserted. This primi­
tive is very seldom implemented.

THE TRANSMISSION GATE

The TRANSMISSION GA TE primitive has an enable input
EN, and two bi-directional pins Tl and T2. If the enable
input is ZERO, then both Tl and T2 are set to high­
impedance (Z). If EN is ONE, then Tl and T2 are tied
together using the same function as the tri-state bus (TS
BUS) defined below.

THEUNI TRANS GATE

The UNI TRANS GA TE primitive is a uni-directional
transistor. It has an enable input EN, an input pin I, and
ari output pin T. If the enable input is ZERO, then Tis set
to high-impedance (Z). If EN is ONE, then the value and
strength of I is passed to T.

6-6 4/10/86

Timing Verifier Primitives

6.3 ERROR-CHECKING PRIMITIVES

SETUP HOLD

The SETUP HOLD primitive has a clock and data input.
For an active-high clock, it generates an error message in
the output listing when the data input is not stable from
SETUP ns before the beginning of the rising edge of the
clock until HOLD ns after the clock is high. The SETUP
HOLD primitive has by default two body properties
attached:

SETUP= 0.0
HOLD= 0.0

The properties SETUP and HOLD are assigned the
required property values by using the CHANGE command.
This primitive is used to check the set-up and hold times
of registers and latches.

The SETUP HOLD primitive has an optional enable input,
which if specified, turns the checking on and off. If the
enable input is any value other than ZERO, then checking
is enabled. If checking is enabled any time during the ris­
ing edge of the clock input, then checking is performed for
that edge.

SETUP RISE HOLD FALL

The SETUP RISE HOLD FALL primitive has a clock and
data input. For an active-high clock, it generates an error
message in the output listing when the data input is not
stable from SETUP ns before the beginning of the rising
edge of the clock, while the clock is rising, while the clock
is high, during the falling edge of the clock, until HOLD ns
after the clock has gone low. The SETUP RISE HOLD
FALL primitive has by default two body properties
attached:

SETUP= 0.0
HOLD= 0.0

4/10/86 6-7

Primitives Timing Verifier

The properties SETUP and HOLD are assigned the
required property values by using the CHANGE command.
This primitive is used to check the set-up and hold times
of data being written into memories.

The primitive has an optional enable input that can be used
to turn off checking. If the enable input is given, then any
value other than ZERO will cause checking to be enabled.
If checking is enabled at any time between the beginning of
the rising edge until the end of the falling edge, checking is
performed for that clock pulse.

EDGE TO EDGE

The EDGE TO EDGE primitive has two inputs, CKl and
CK2. It checks that the beginning of a RISING edge on
CK2 is at lea.st a minimum delay from the end of a RIS­
ING edge on CKl and that the end of a RISING edge on
CK2 is no more than a maximum delay from the beginning
of a RISING edge on CKl. The EDGE TO EDGE primi­
tive has by default two body properties attached:

MIN= 0.0
MAX=O.O

The properties MIN and MAX are assigned the required
property values by using the CHANGE command. Only
rising delays are used.

If there is no edge on CK2 (that is, if CK2 does not change
state), then no error message is generated.

The primitive has an optional enable input, which if
specified, turns the checking on and off. If the enable input
is any value other than ZERO, then checking is enabled. If
checking is enabled any time during the rising edge of CKl,
then checking is performed for that edge.

6-8 4/10/86

Timing Verifier Primitives

MIN PULSE WIDTH

The MIN PULSE WIDTH primitive has one data input. It
checks that its data input has no pulses on it that are low
for less than LOW ns, and no pulses on it that are high for
less than HIGH ns. The MIN PULSE WIDTH primitive
has by default two body properties attached:

LOW= 0.0
HIGH= 0.0

The properties LOW and HIGH are assigned the required
property values by using the CHANGE command.

The primitive has an optional enable input, which if
specified, turns the checking on and off. If the enable input
is any value other than ZERO, then checking is enabled. If
checking is enabled any time during a given pulse, then the
width of that pulse is checked.

6.4 TRUTH TABLES FOR TIMING FUNCTIONS

The truth tables for each of the Timing Verifier primitives
are given below. In the case where more than one entry
applies to a given set of input conditions, the first entry
takes precedence.

Truth tables are also given for three ancillary functions that
are not represented by primitives. These three functions
are:

4/10/86 6-9

Primitives

the TS BUS (tri-state bus) function,
the SET RESET function,
the LATCH_ERR_MODEL function

Timing Verifier

The TS BUS function is used by the Timing Verifier when
TS BUFs are wired together into a TS BUS. The SET
RESET function is used to model the LATCH RS and the
REG RS primitives. The LATCH_ERR_MODEL function
is used in conjunction with a directive and the LATCH
primitive to provide three behavioral models for a closing
latch.

AND, OR, XOR, and CHANGE FUNCTIONS The truth
tables for the AND, OR, XOR, and CHANGE(CHG)
functions are given in the following tables:

AND 0 1 s R F c u z

0 0 0 0 0 0 0 0 0
1 0 1 s R F c u u
s 0 s s R F c u u
R 0 R R R c c u u

F 0 F F c F c u u
c 0 c c c c c u u
u 0 u u u u u u u
z 0 u u u u u u u

6-10 4/10/86

Timing Verifier Primitives

OR 0 1 s R F c u z

0 0 1 s R F c u u
1 1 1 1 1 1 1 1 1
s s 1 s R F c u u
R R 1 R R c c u u

F F 1 F c F c u u
c c 1 c c c c u u
u u 1 u u u u u u
z u 1 u u u u u u

XOR 0 1 s R F c u z

0 0 1 s R F c u u
1 1 0 s F R c u u
s s s s c c c u u
R R F c c c c u u

F F R c c c c u u
c c c c c c c u u
u u u u u u u u u
z u u u u u u u u

4/10/86 6-11

Primitives Timing Verifier

CHG 0 1 s R F c u z

0 s s s c c c u u
1 s s s c c c u u
s s s s c c c u u
R c c c c c c u u

F c c c c c c u u
c c c c c c c u u
u u u u u u u u u
z u u u u u u u u

TS BUF and TS BUS FUNCTIONS

The tri-state buffer primitive has two inputs: DATA and
ENABLE. When the SIZE property is used on the TS BUF
(for example SIZE= 2), the DATA input and output are
size replicated, but the ENABLE is not. The ENABLE sig­
nal is common to both buffers.

By default, this primitive operates in "tri-state mode" as
shown in the first table below. When the ENABLE is
STABLE, the output is UNKNOWN. This is a conserva­
tive model of tri-state behavior. The alternative "wire-or
mode" is less conservative and is provided to accommodate
designs in which the ENABLE signal is specified as
STABLE/CHANGING. Selection of the "wire-or mode" or
the "tri-state mode" is controlled by the TS_BUS_TYPE
directive.

6-12 4/10/86

Timing Verifier Primitives

The directive TS_BUS_TYPE D OT_TS; selects tri-state
mode and is the default. The directive TS_BUS_TYPE
DOT_OR; selects wire-or mode. See the Directives section
for additional explanation.

The truth table for the TS BUF primitive in the default tri­
state mode is given below.

DATA
INPUT

TSBUF

0
1
s
R

F
c
u
z

ENABLE INPUT

0 1 s R F

z 0 u c c
z 1 u c c
z s u c c
z R u c c

z F u c c
z c u c c
z u u u u
z u u u u

TRI-STATE MODE

c u z

c u u
c u u
c u u
c u u

c u u
c u u
u u u
u u u

The truth table for the TS BUF primitive in the alternate
wire-or mode is given below.

4/10/86 6-13

Primitives

DATA
INPUT

TS BUS

TSBUF

0
1
s
R

F
c
u
z

ENABLE INPUT

0 1 s R F

z 0 0 c c
z 1 1 c c
z s s c c
z R R c c

z F F c c
z c c c c
z u u u u
z u u u u

WIRE-OR MODE

Timing Verifier

c u z

c u u
c u u
c u u
c u u

c u u
c u u
u u u
u u u

When the outputs of two or more TS BUFs are tied
together you have what we call a tri-state bus (TS BUS) as
shown below. The TS BUS is a special kind of primitive
because it is not represented by a GED drawing. You can­
not add a TS BUS to a timing model.

Il

I2 BUS

N

Figure 6-1. TS BUS

6-14 4/10/86

Timing Verifier Pri°mitives

Because the drivers are tri-state and share the use of the
BUS by means of separate ENABLE signals, the logical
function represented here is not the same as that of a
wire-gate. With a tri-state bus, the only two meaningful
configurations are:

1. Only one TS BUF is enabled at a time.

2. If two are enabled, they carry identical output signal
values.

Almost all other conditions produce the signal value U
(unknown) on the BUS. See the tri-state mode table
below.

The Timing Verifier evaluates this circuitry in accordance
with the tables below. The TS BUS, like the TS BUF prim­
itive, operates by default in "tri-state mode" but can also
operate in "wire-or mode". The selection of tri-state or
wire-or mode is made with the TS_BUS_TYPE directive
and is made globally for an entire design. See above under
TS BUF and see also TS_BUS_TYPE in the Directives sec­
tion for further information. The truth table for the TS
BUS function in the default tri-state mode is given below.

4/10/86 6-15

Primitives Timing Verifier

11

TS BUS 0 1 s R F c u z

0 0 u u u F u u 0
1 u 1 u R u u u 1
s u u u u u u u s

12 R u R u R u u u R

F F u u u F u u F
c u u u u u u u c
u u u u u u u u u
z 0 1 s R F c u z

TRI-STATE MODE

The truth table for the TS BUS function in the alternate
wire-or mode is given below.

11

TS BUS 0 1 s R F c u z

0 0 s s R F c u 0
1 s 1 s R F c u 1
s s s s c c c u s

12 R R R c R c c u R

F F F c c F c u F
c c c c c c c u c
u u u u u u u u u
z 0 1 s R F c u z

WIRF.rOR MODE

6-16 4/10/86

Timing Verifier Primitives

BUF AND TIIRESHOLD PRIMITIVES

The truth tables for the BUF and TIIRESHOLD primitives
are given in the following tables:

BUF TIIRESHOLD

INPUT OUTPUT INPUT OUTPUT

0 0 0 c
1 1 1 1

s s s c
R R R c

F F F c
c c c c
u u u u
z u z u

RES AND IDENTITY FUNCTIONS

Below are the truth tables for the RES and IDENTITY
primitives. See also Signal Strength in Section 7.

RES IDENTITY

INPUT OUTPUT INPUT OUTPUT

0 0 0 0
1 1 1 1

s s s s
R R R R

F F F F

c c c c
u u u u
z z z z

4/10/86 6-17

Primitives Timing Verifier

LATCH PRIMITIVE

The LATCH primitive is affected by the value of the
TRANSITION property and the value of the
LATCH_ERR_MODEL directive. Both of these features
are described below.

The LATCH primitive has a DATA and an ENABLE
input. When ENABLE is bubbled the inverse of the chart
applies. In the chart X represents any signal value and < >
means "not equal to".

LATCH

EN LAST OUTPUT DATA OUTPUT

0 0,1,S x = 0,1,S
0 R,F,C,U,Z x s

1 x 0,1,S,R,F,C =DATA
1 x u,z u
R =DATA 0,1,U,Z 0,1,U,U
R s s s **

R =DATA all other cond. c
R <>DATA u,z u
R 0 1,S R
R 1 o,s F

R R,F,C,U,Z 0,1,S c
R R,1 R R
R F,O F F
R all other cond. c

** Note:If there has been no DATA transition since EN was
last 1 or R and the latch is being simulated SMOOTH.

6-18 4/10/86

Timing Verifier Primitives

LATCH (cont'd)

EN LAST OUTPUT DATA OUTPUT

F =DATA 0,1,S,U,Z 0,1,S,U,U
F =DATA R,F,C c
F x U,Z u,u
F 0 1,S R

F 1 o,s F
F c 0,1,S =DATA
F R,1 R R
F F,O R F

F all other cond. c
s =DATA x =DATA
s <>DATA 0,1,S s
s 1 R R

s 0 F F
s <> 1 R c
s <>O F c
s x c c

s all other cond. u
c x

I
u,z u

c =DATA 0,1,S,R,F,C =DATA
c all other cond. c

z x 1 x u
u x x u

If the INPUT undergoes a transition while the latch is clos­
ing, then a setup/hold time violation has occurred. Under
these conditions the latch is modeled in one of three ways
depending on the value of the LATCH_ERR_MODEL
directive.

4/10/86 6-19

Primitives Timing Verifier

The LATCH_ERR_MODEL Directive

When the ENABLE signal of a latch primitive has the
value F (falling) and the DATA signal undergoes a transi­
tion, an error condition occurs. When this error condition
occurs, signal values are calculated in accordance with the
value of the LATCH_ERR_MODEL directive.

This directive takes one of three values: OPEN, CLOSED,
or CONSERVATIVE. The default value is CONSERVA­
TIVE. Truth tables are given below for each of the three
values. Notice that in all cases the last value of the
ENABLE signal was F (falling).

LATCH_ERR_MODEL =OPEN

LAST EN LAST OUTPUT DATA OUTPUT

F x u,z u
F 0 0,1,S R
F 1 0,1,S F
F c 0,1,S 0,1,S

F S,R,F,U,Z 0,1,S c
F R,1 R R
F F,O F F
F all other cond. c

LATCH_ERR_MODEL =CLOSED

LAST EN LAST OUTPUT DATA OUTPUT

F 0,1,S x 0,1,S
F R,F,C,U,Z x s

6-20 4/10/86

Timing Verifier Primitives

LATCH_ERR_MODEL =CONSERVATIVE

LAST EN LAST OUTPUT DATA OUTPUT

F x u,z u
F 0 0,1,S R
F 1 0,1,S F
F S,R,F,C,U,Z 0,1,S c

F R,1 R R
F F,O F F
F all other cond. c

The LA TOH primitive has by def a ult the property TRAN­
SITION = GLITCHY. This means that when the LATCH
is clocked, the output of the LA TOH always changes, even
when the input remains stable. If the property TRANSI­
TION = SM001H is attached to the LA TOH, the output
of the LATCH does not change when the LA TOH is
clocked and the input remains stable.

LATCH RS

The LA TOH RS primitive is a LA TOH primitive that also
has asynchronous RESET and SET inputs. First the
LA TOH output is computed for the current input values,
then the SET RESET function is applied to the outputs.
The SET RESET function is different for TRANSITION=
GLITCHY and TRANSITION = SM001H. The SET
RESET function is described below.

mANSl'IlON PROPERTY

The transition property . takes the values SM001H and
GLITCHY and is used to provide accurate models of both
glitchy and smooth registers and latches. When it is
attached to the REGISTER and LATCH (and REG RS and

4/10/86 6-21

Primitives Timing Verifier

LA TOH RS) primitives, it alters the functioning of the
primitive to model either GLITCHY or SMOOTH
behavior. The REGISTER and REG RS primitives each
have two body VERSIONS, the first GLITCHY, the second
SMOOTH. Select the appropriate version with the VER­
SION command in GED.

The LATCH and LATCH RS primitives have only one
body VERSION. These primitives are GLITCHY by
default. To change their behavior, attach the TRANSI­
TION = SMOOTH body property. The truth t.ables for
these primitives include information on both glitchy and
smooth models.

The transition property can he attached to any Timing
Verifier primitive, but it only affects the behavior of the
REG, REG RS, LATCH, LATCH RS, and MUX primi­
tives.

SET RESET FUNCllON

The SET RESET function is combined with the LATCH
primitive and the REG primitive, respectively, to produce
the LATCH RS and the REG RS functions. It is not
directly accessible as a Timing Verifier Primitive .. The SET
RESET function is different for 1RANSITION =
SMOOTH and GLITCHY. The function inherits its
1RANSITION property from the LATCH RS or REG RS
of which it is a part.

Here are the truth t.ables for the SET/RESET function in
glitchy mode and in smooth mode. Notice that certain
values for NEW OUTPUT are given in terms of the CHG
function. This is the function performed by tjle CHANGE
primitive described above.

6-22 4/10/88'

'liming Verifier Primitives

SET/RF.BET in GLITCHY MODE

RESET SET OUTPUT NEW OUTPUT

0 0 x OLD OUTPUT
0 x 1 1
0 1 <>1 1
0 R,F,C <>1 c

0 s o,s s
0 s R,F,C c
0 s u,z u
0 u,z <>1 u

x 0 0 0
1 0 x 0

R,F,C 0 <>SET c
u,z 0 <>SET u

s 0 1,S s
s 0 R,F,C c
s 0 u,z u
all other cond. CHG (OUTPUT,

RESET, SET)

CHG is the change function defined above.

4/10/86 6-23

Primitives Timing Verifier

SET/RF.SET in SMOOTH MODE

RESET SET OUTPUT NEW OUTPUT

0 0 x OUTPUT
0 x 1 1
0 1 x 1
0 R 0 R

0 s o,s s
0 s R,F,C c
0 s u,z u
0 F,C x c
0 u,z x u

x 0 0 0
1 0 x 0
R 0 0 F

s 0 0,1,S s
s 0 R,F,C c
s 0 u,z u

F,C 0 x c
u,z 0 x u

1,R F 0,1,S 0,F,F
1,R F R,F,C c
1,R F u,z u

F 1,R 0,1,S R,1,R
F 1,R R,F,C c
F 1,R U,Z u

CHG is the change function defined above.

6-24 4/10/86

Timing Verifier Primitives

REG FUNCTION

The REG primitive implements a rising edge triggered
register. The truth tables for the REG functions appear
below. The tables are for different values for the CLOCK
signal.

REG when CLOCK= 1

LAST CK INPUT LAST OUT NEXT OUT

0 0,1 0,1 LAST OUT
0 1,R O,R R
0 O,F 1,F F
0 s s S**
1 x <>0,1,S s
1 x 0,1,S LAST OUT
s x x LAST OUT
R 0,1 s LAST OUT
F x <>0,1,S s

c,u,z INPUT= LAST OUT LAST OUT
c,u,z INPUT<> LAST OUT s

** Note: If the REG is SMOOTH and there were no
input transitions.

REG when CLOCK= C or R

LASTCLK INPUT LAST OUT NEXT OUT

x 0,1 0,1 LAST OUT
x 1,R O,R R
x O,F 1,F F
x s s S**

**Note: If the REG is SMOOTH and there were no
input transitions.

4/10/86 6-25

Primitives Timing Verifier

REG when CLOCK= O, S, or F

LASTCLK INPUT LAST OUT NEXT OUT

x x <>0,1,S s
x x 0,1,S LAST OUT

REG when CLOCK= U or Z

LASTCLK INPUT LAST OUT NEXT OUT

x x x u

When the REG primitive has the property TRANSITION
= GLITCHY, and the REG is clocked, the output of the
REG always changes, even when the input remains stable.
When the REG primitive has the property TRANSITION
= SMOOTH, the output of the REG does not change
when the REG is clocked and the input remains stable.

REG RS

The REG RS primitive is the same as the REG except that
it also has asynchronous RESET and SET inputs. First the
REG output is computed for the current input values, then
the SET RESET function is applied to the output.

nIE 2, 4 AND 8 MUX FUNCTIONS

The 2 MUX, 4 MUX, and 8 MUX primitives im ple­
ment 2-input, 4-input, and 8-input multiplexers. If any
of the select inputs on these multiplexers has a known
value of 0 or 1, then only the possibly selected data
inputs will be looked at when calculating the output value.
If. more than one data input might be selected, the outr­
put value is calculated by using the CHANGE function on
the set of selected data inputs.

6-26 4/10/86

Timing Verifier Primitives

If the MUX has no 1RANSITION property or 1RANSI­
TION = GLITCHY, then any input transition causes an
output transition of the appropriate slope. If 1RANSITION
= SMOOTH, then if the output state before and after an
input transition is the same, there is no output transition.

4/10/86 6-27

SECTION7
WIRE GATES

The Timing Verifier simulates multiple driven nets (buses)
by inserting a gate in the network. All the drivers of the
bus are reconnected to the gate's inputs. The output of the
gate drives all the inputs on the bus. The type of gate
inserted depends on the bus type. If the bus is a wire-or or
a wire-and type bus, the inserted gate is a WIRE-OR gate
or a WIRE-AND gate, respectively. If the bus is a tri-state
bus, the inserted gate is a TS BUS functioning in either
DOT_TS mode or DOT_OR mode depending on the value
of the TS_BUS_TYPE directive.

The output of a Timing Verifier primitive may assume one
of three strengths, HARD, SOFT or UNDRIVEN.
Strengths are required to correctly model circuit nodes that
have multiple drivers on them when those drivers (out­
puts) have different drive capabilities. A typical example of
this is a tri-state bus that is pulled-up with a resistor. When
none of the tri-state drivers are on, the bus is in the one
state. When a single driver drives the bus to zero, the bus
assumes the zero state. The use of signal strengths pro­
vides a way of modelling the fact that the resistor output is
weaker than a bus driver output.

All primitives except the resistor, the identity function, and
wire gates ignore the strengths of their input signals. The
functions of the resistor and identity gate are described
above.

By default, the output or all devices except RES, IDEN­
TITY and wire gates is HARD. The output of a resistor
primitive is SOFT, unless the input to the resistor is
UNDRIVEN, then the output is UNDRIVEN. The output
of the IDENTITY primitive is the same as its input. The
output strength of a wire gate is the same as the strongest
input strength.

4/10/86 7-1

Wire Gates Timing Verifier

WIRE GATE TR.Um TABLES

The functions of the wire gates are shown in the tables
below. Different tables are provided for different signal
strengths.

0 1

0 0 1
1 1 1
s s 1

HARD R R 1

F F 1
c c 1
u u 1
z 0 1

WIRE OR
HARD

s R F

s R F
1 1 1
s R F
R R c

F c F
c c c
u u u
s R F

c u z

c u 0
1 1 1
c u s
c u R

c u F
c u c
u u u
c u z

The WffiE OR truth table for HARD input strength is
identical t.o the OR truth table for all values except z.
When one of the inputs t.o a WffiE OR gate is Z, the outr
put takes the value of the other input.

7-2 4/10/86

Timing Verifier

0 1

0 0 1
1 1 1
s s 1

HARD R R 1

F F 1
c c 1
u u 1
z 0 1

WIRE OR
SOFT

s R F

s R F
1 1 1
s R F
R R R

F F F
c c c
u u u
s R F

Wire Gates

c u z

c u 0
1 1 1
c u s
R u R

F u F
c u c
u u u
c u z

The truth table for the HARD /SOFT WIRE OR gat.e is
identical to the HARD /HARD WIRE OR truth table
except for the values R and F.

0 1

0 0 1
1 1 1
s s s

HARD R R 1

F F 1
c c c
u u u
z 0 1

4/10/86

WIRE OR
UNDRIVEN

s R F

s R F
1 1 1
s s s
R R R

F F F
c c c
u u u
s R F

c u z

c u 0
1 1 1
s u s
R R R

F F F
c c c
u u u
c u z

7-3

Wire Gates Timing Verifier

The WIRE OR function for SOFT/HAR.D input signal
strengths is obtained by transposing the values of the
HARD /SOFT table given above.

The WIRE OR function for SOFT/SOFT input strength is
identical to the HARD /HARD table given above.

The WIRE OR function for SOFT/UNDRIVEN input
strength and UNDRIVEN/SOFT input strength is identical
to the HARD /UND RIVEN table given above.

The WIRE OR function for UNDRIVEN/HARD input
strength is obtained by transposing the values of the
HARD /UND RIVEN table given above.

UN­
DRIVEN

7-4

0
1
s
R

F
c
u
z

0 1

0 s
s 1
s s
s s

s s
s s
u u
0 1

WIRE OR
UNDRIVEN

s R F

s s s
s s s
s s s
s s s

s s s
s s s
u u u
s s s

c u z

s u 0
s u 1
s u s
s u s

s u s
s u s
u u u
s u z

4/10/86

Timing Verifier

0 1

0 0 0
1 0 1
s 0 s

HARD R 0 R

F 0 F
c 0 c
u 0 u
z 0 1

WIRE AND
HARD

s R F

0 0 0
s R F
s R F
R R c

F c F
c c c
u u u
s R F

Wire Gates

c u z

0 0 0
c u 1
c u s
c u R

c u F
c u c
u u u
c u z

The WIRE AND truth table for HARD input strength is
identical to the AND truth table for all values except Z.
When one of the inputs to a WIRE AND gate is Z, the
output takes the value of the other input.

4/10/86 7-5

Wire Gates

0 1

0 0 0
1 0 1
s 0 s

HARD R 0 R

F 0 F
c 0 c
u 0 u
z 0 1

0 1

0 0 0
1 0 1
s s s

HARD R 0 R

F F F
c c c
u u u
z 0 1

7-6

WIRE AND
SOFT

s R F

0 0 0
s R F
s R s
R R c

F c F
c c F
u u u
s R F

WIRE AND
UNDRIVEN

s R F

0 0 0
s s F
s s s
R R R

F F F
c c c
u u u
s s F

Timing Verifier

c u z

0 0 0
c u 1
s u s
c u R

c u F
c u c
u u u
c u z

c u z

0 0 0
c u 1
s s s
R R R

F F F
c c c
u u u
c u z

4/10/86

Timing Verifier Wire Gates

The WIRE AND function for SOFT/HARD input signal
strengths is obtained by transposing the values of the
HARD /SOFT table given above.

The WIRE AND function for SOFT/SOFT input strength
is identical to the HARD /HARD table given above.

The WIRE AND function for SOFT/UNDRIVEN input
strength is identical to the HARD /UND RIVEN table given
above.

The WIRE AND functions for UNDRIVEN/SOFT input
strength and UNDRIVEN/HARD input strength are
obtained by transposing the values for the
HARD /UND RIVEN table given above.

UN­
DRIVEN

0
1
s
R

F
c
u
z

0 1

s 0
0 1
0 s
0 s

s s
0 s
u u
0 1

TS BUS TRUTH TABLES

WIRE AND
UNDRIVEN

s R F

s 0 s
s s s
s s s
s s s

s s s
s s s
u u u
s s s

c u z

s 0 0
s u 1
s u s
s u s

s u s
s u s
u u u
s u z

Two sets of truth tables are given for the TS BUS function.
The first set are for the default DOT TS MODE. The
second set are for the alternate DOR OR MODE.

4/10/86 7-7

Wire Gates

0

0 0
1 u
s u

HARD R c

F F
c c
u u
z 0

0

0 0
1 1
s s

HARD R R

F F
c c
u u
z 0

7-8

Timing Verifier

TS BUS in DOT TS MODE
HARD

1 s R F c u

u u c F c u
1 u R c c u
u s c c c u
R c R c c u

c c c F c u
c c c c c u
u u u u u u
1 s R F c u

TS BUS in DOT TS MODE
SOFT

1 s R F c u

0 0 0 0 0 0
1 1 1 1 1 1
s s s s s s
R R R R R R

F F F F F F
c c c c c c
u u u u u u
1 s R F c u

z

0
1
s
R

F
c
u
z

z

0
1
s
R

F
c
u
z

4/10/86

Timing Verifier Wire Gates

The TS BUS function for HARD /UNDRIVEN input signal
strengths is identical to the HARD /SOFT table given
above.

The TS BUS function for SOFT/HARD input signal
strengths is obtained by transposing the values of the
HARD /SOFT table given above.

The TS BUS function for SOFT/SOFT input signal
strengths is identical to the HARD /HARD table given
above.

The TS BUS function for SOFT/UNDRIVEN input signal
strengths is identical to the HARD /SOFT table given
above.

The TS BUS function for UNDRIVEN/HARD input signal
strengths is obtained by transposing the values of the
HARD /SOFT table given above.

The TS BUS function for UNDRIVEN/SOFT input signal
strength is obtained by transposing the values of the
HARD /SOFT table given above.

UN­
DRIVEN

4/10/86

0
1
s
R

F
c
u
z

0

0
s
s
s

s
s
u
0

TS BUS in DOT TS MODE
UNDRIVEN

1 s R F c u

s s s s s s
1 s s s s u
s s s s s u
s s R s s u

s s s F s u
s s s s s u
u u u u u u
1 s R F c u

z

0
1
s
R

F
c
u
z

7-9

Wire Gates

0
1
s

HARD R

F
c
u
z

0
1
s

HARD R

c
F
u
z

Timing Verifier

TS BUS in DOT OR MODE
HARD

0 1 s R F c u

0 1 s R F c u
s 1 s 1 c c 1
s s s c c c u
c c c R c c u

c c c c F c u
c c c c c c u
u u u u u u u
0 1 s R F c u

TS BUS in DOT OR MODE
SOFT

0 1 s R F c u

0 0 0 0 0 0 0
1 1 1 1 1 1 1
s s s s s s s
R R R R R R R

c c c c c c c
F F F F F F F
u 1 u u u u u
0 1 s R F c u

z

0
1
s
R

F
c
u
z

z

0
1
s
R

c
F
u
z

The TS BUS function in DOT OR mode for
HARD /UNDRIVEN input signal strengths is identical t.o

7-10 4/10/86

Timing Verifier Wire Gates

the HARD /SOFT table given above.

The TS BUS function in DOR OR mode for SOFT/HARD
input signal strengths is obtained by transposing the values
of the HARD /SOFT table given above.

The TS BUS function in DOT OR mode for SOFT/SOFT
input signal strengths is identical to the HARD /HARD
table given above.

The TS BUS function in DOT OR mode for
SOFT/UNDRIVEN input signal strengths is identical to the
HARD /SOFT table given above.

The TS BUS function in DOT OR mode for
UNDRIVEN/HARD and UNDRIVEN/SOFT input signal
strengths is obtained by transposing the values of the
HARD /SOFT table given above.

UN­
DRIVEN

4/10/86

0
1
s
R

F
c
u
z

0

0
s
s
s

s
s

TS BUS in DOT OR MODE
UNDRIVEN

1 s R F c u

s s s s s u
1 s s s s u
s s s s s u
s s s s s u

s s s s s u
s s s s s u

u u u u u u u
0 1 s s s s u

z

0
1
s
s

s
s
u
z

7-11

SEmlON8
ERROR MESSAGES

Error messages are short statements that identify and
record each error encountered by the Timing Verifier.
When errors occur in a run of the Timing Verifier, error
messages are generated and printed in the list file (tvlst.dat)
in numerical sequence.

The following sections define the three classes of errors,
describe each error, and suggest how to correct many of
them.

8.1 CLASSES OF ERRORS

Errors detected by the Timing Verifier fall into three
categories:

1. Syntax Errors,

Syntax errors are typographical errors or violations in
the specified form of a character string and are
discovered when the system is searching any of the
four input files or the design. Syntax errors are very
common in signal names and properties.

Syntax errors must be corrected before looking at
timing errors.

2. Runtime Errors

Runtime errors occur after the input files are read
and while the verifier is processing the design. Run­
time errors prohibit the Verifier from completing
verification of the design. If the circuit does not
converge, a runtime error is reported. If a required
input file is lacking, a runtime error occurs.

4/10/86 8-1

Errors Timing Verifier

Runtime errors must be corrected before looking at
timing errors.

Timing Errors

Timing errors are design errors that cause timing
problems. Common timing errors are setup and
hold violations and minimum pulse width violations.
If syntax and runtime errors are also present, spuri­
ous timing errors are often produced.

There are only seven different timing errors. They
are numbers:

153, 156, 157' 158, 159, 160, 166

Look in the numerical listing for descriptions of each
one.

8.2 FORMAT OF MESSAGES

Error documentation is included in the listing file (tvlst.dat)
and a summary of errors is sent to the screen. In each
case, errors are divided into the three basic types: syntax
errors, runtime errors, and timing errors.

In the listing file, the format for error messages is:

#7 Syntax error(22): String length exceeded

The #7 indicates the 7th occurrence of that particular error.

The label "Syntax error (22)" tells you what type of error it
is, and gives you the error number. For more complete
error documentation you can look up the error in this sec­
tion of the manual using the error number.

A brief message after the label describes the error. In this
case it is: "string length exceeded".

Following each error message in the listing file are several
lines describing the path name to the body in the drawing
where the error was detected. This information helps you
to locate the error on the drawing.

8-2 4/10/86

Timing Verifier Errors

The summary of errors that is sent to the screen at the end
of each verification run reports how many of each of the
three classes of errors occurred. For example:

Twelve syntax errors detected.

No timing errors detected.

One run time error detected.

8.3 NUMERIC.AL LISTING OF ERROR MESSAGES

The rest of this section contains a numerical listing of all of
the Timing Verifier error messages. Each message is
explained and often suggestions are made about the causes
of the problem and how to remedy them.

Each error message number has one of these four labels:

• Syntax error

• Runtime error

• Timing error

• Error # : Unused.

Unused means that the error message number is available
for future use.

Certain syntax and runtime error messages are labeled
''Reserved". This means that the error does not occur in
normal operation and is reserved by Valid for debugging or
other internal operations.

Syntax error #1: Expect.ed identifier

This error is generated whenever the Verifier is expecting
an identifier (a string of letters, digits, or '_' starting with a
letter) and finds some other character. Identifiers are used

4/10/86 8-3

Errors Timing Verifier

as names in properties, text macros, and as operands for
Verifier directives. The Verifier prints the input line along
with a pointer to the position in the line where the problem
was detected.

Syntax error #2: Expect.ed =

This error is generated whenever the Verifier is expecting
an equal sign and finds some other character. Equal signs
are used in many places: between property names and
values, and in expressions. The Verifier prints the portion
of the input line it read before it encountered the error.

Syntax error #3: Reserved.

Syntax error #4: Reserved.

Syntax error #5: Reserved.

Syntax error #6: Reserved.

Syntax error #7: Expect.ed)

This error is generated whenever the Verifier is expecting a
right parenthesis and finds some other character. The
Verifier prints the portion of the input line it read before
the error was encountered.

Syntax error #8: Expect.ed,

This error is generated whenever the Verifier is expecting a
comma and finds some other character. Commas are used
to separate elements in lists and are required, for example,
in. specifying options to the LIST command. The Verifier
prints the portion of the input line it read before the error
was encountered.

8-4 4/10/86

Timing Verifier Errors

Synt.a.x error #D: Reserved.

Synt.a.x error #10: Expected<

This error is generated whenever the Verifier is expecting a
< (less than character) and finds some other character.
The Verifier prints the portion of the input line read before
the error was encountered.

Synt.a.x error #11: Expected>

This error is generated whenever the Verifier is expecting a
> (more than character) and finds some other character.
The Verifier prints the portion of the input line read before
the error was encountered.

Synt.a.x error #12: Expected;

This error is generated whenever the Verifier is expecting a
semi-colon and finds some other character. The Verifier
prints the portion of the input line read before the error
was encountered.

Synt.a.x error #13: Expected:

This error is generated whenever the Verifier is expecting a
colon and finds some other character. The Verifier prints
the portion of the input line read before the error was
en countered.

Synt.a.x error #14: Reserved.

Synt.a.x error #15: Expected (

This error is generated whenever the Verifier is expecting a
left parenthesis and finds some other character. The
Verifier prints the portion of the input line read before the
error was encountered.

4/10/86 8-5

Errors Timing Verifier

Syntax error #16: Reserved

Error #17: Unused.

Error #18: Unused.

Error #10: Unused.

Syntax error #20: Unmatched closing comment cha.ract.er

This error is generated when the Verifier encounters a clos­
ing comment character (a right curly brace }) without a
matching starting comment character (a left curly brace {).
The Verifier prints the portion of the input line read before
the error was encountered.

This error occurs either when the right curly brace is
extraneous, or when the left curly brace was omitted.
When the right curly brace really is extraneous the Verifier
continues with no further errors. When it isn't, additional
errors usually are generated because the Verifier tries to
read the text of the comment started by a left curly brace.

Syntax error #21: Nested comments not allowed

Comments within comments are not allowed in Timing
Verifier input files. This error is generated when input of
the form:

{ This is a comment {This is a nested comment }}

is encountered.

Syntax error #22: String length exceeded

This error is generated as the Verifier is reading a string
and finds that the string is too long. Strings are limited to
255 characters. The Verifier prints the portion of the input
line read before the error was encountered. The string is

8-6 4/10/86

Timing Verifier Errors

truncated at the current position and the Verifier reads until
it finds the closing quote or the end of the input line.
Make the string shorter.

Syntax error #23: Illegal character found

This error is generated when the Verifier finds an illegal
character in an input file. All non-printing characters
except TAB are illegal. The Verifier prints the portion of
the input line read before the error was encountered.
Remove the illegal character.

Syntax error #24: Expression value overflow

This error is generated when the Verifier evaluates an
expression whose value overflows. The Verifier prints the
portion of the input line read before the error was encoun­
tered. An overflow does not cause the Verifier to abort; it
assigns the value 0 to the result (unless it knows a more
reasonable value) and continues with the verification.

Syntax error #25: Reserved.

Error #26: Unused.

Error #27: Unused.

Error #28: Unused.

Error #29: Unused.

Syntax error #30: Reserved.

4/10/86 8-7

Errors Timing Verifier

Error #31: Unused.

Syntax error #32: Non-printing cha.racOOr found

This error is detected when the Verifier is reading charac­
ters from an input file. A non-printing character has been.
This is not permitted. The Verifier prints the portion of the
input line read before the error was encountered.

Syntax error #33: Expected a string

This error is detected when the Verifier is expecting a
string (a quoted sequence of printing characters) and finds
something else. The Verifier prints the portion of the input
line read before the error was encountered.

Syntax error #34: Comment not closed before end of
input

This error is detected when the Verifier does not find the
end of a comment before the end of the file. A comment
is started with the left curly brace character {, and ended
with the right curly brace character }. The Verifier prints
the portion of the input line read before the error was
encountered.

Error #35: Unused.

Syntax error #36: Reserved.

Syntax error #37: Expected.

This error is generated when the Verifier is expecting a
period and finds some other character. The Verifier prints
the portion of the input line read before the error was
encountered. This error is most commonly caused by
omitting the period following the END on the last line of
the directives, case or wire delay file.

8-8 4/10/86

liming Verifier Errors

Error #38: Unused.

Synt.ax error #39: Reserved.

Synt.ax error #40: Expect.ed END

This error is generated when the Verifier reaches what it
expects to be the end of a file and no END is found. An
END must be present at the end of the directives, case,
and delay files. The Verifier prints the portion of the input
line read before the error was encountered. The END is
used to inform the Verifier that the file is complete and
that it isn't unfinished or missing some text.

Synt.ax error #41: Reserved.

Error #42: Unused.

Error #43: Unused.

Error #44: Unused.

Error #45: Unused.

Error #46: Unused.

Error #47: Unused.

Error #48: Unused.

4/10/86 8-9

Errors

Syntax error #52: Reserved.

Syntax error #53: Reserved.

Syntax error #54: Reserved.

Syntax error #55: Reserved.

Error #56: Unused.

Syntax error #57: Reserved.

Syntax error #58: Reserved.·

Error #59: Unused.

Syntax error #60: Reserved.

Syntax error #61: Reserved.

Error #62: Unused.

Error #63: Unused.

Error #64: Unused.

Error #65: Unused.

8-10

Timing Verifier

4/10/86

Timing Verifier Errors

Error #66: Unused.

Syntax error #69: Reserved.

Syntax error #70: Reserved.

Error #71: Unused.

Syntax error #72: Reserved.

Syntax error #73: Reserved.

Syntax error #7 4: Reserved.

Syntax error #75: Reserved.

Syntax error #76: Reserved.

Syntax error #77: Reserved.

Syntax error #78: Reserved.

Syntax error #79: Reserved.

Syntax error #80: Output digits must be 0,1,2, or 3

This error occurs when an illegal numerical value is given
to the OUTPUT_DIGITS directive. Legal values are 0
through 3. See the Directives section for more inf orma­
tion.

4/10/86 8-11

Errors

Error #81: Unused.

Error #82: Unused.

Error #83: Unused.

Error #84: Unused.

Syntax error #85: Reserved.

Runtime error #86: Reserved.

Syntax error #87: Reserved.

Error #88: Unused.

Syntax error #89: Reserved.

Syntax error #90: Reserved.

Syntax error #91: Reserved.

Error #92: Unused.

Syntax error #93: Reserved.

Error #94: Unused.

8-12

Timing Verifier

4/10/86

Timing Verifier Errors

Error #95: Unused.

Error #96: Unused.

Syntax error #97: Reserved.

Syntax error #98: Reserved.

Runtime error #99: Reserved.

Runtime error #100: .Assertion check failure: save Log
File.

This error is generated whenever the Verifier discovers
some internal data problem. This message indicates an
internal Verifier error and usually cannot be fixed by the
user. Contact Valid Logic Systems for a work around
and/or corrections. Save the data that caused the error as
it will be very helpful in finding the problem. It is very
important that the TVLOG file be saved (at a minimum).
Valid may also request any of the input or output files for
the Verifier. Try to be ready to reproduce the problem for
the Service Engineer.

Runtime error #101: Cannot open compiler output
(CMPEXP)

This error is generated when the Verifier is not given a
ROOT_DRA WING directive and cannot find the compiler
expansion file, (cmpexp.dat). If you want the Verifier to
use a compiler expansion file, the file must be in the same
directory where you are running the Timing Verifier. See
the Compiler Reference Manual for information on using
the expansion file.

4/10/86 8-13

Errors Timing Verifier

Runtime error #102: Compiler expansion file has wrong
type

This error occurs when an expansion file is found, but it
was not produced by a compilation for time. Check that
you intentionally included no ROOT_DRA WING directive
and that you compiled for time. See the Compiler Refer­
ence manual for more information.

Syntax error #103: Number too large

This error is generated when the Verifier finds an integer
value that is larger than 99999. This error can occur read­
ing any of the input files: the compiler expansion file, the
directives file, the case file, or the wire delay file.

Syntax error #104: Illegal cha.racter in number

This error is generated when the Verifier finds a character
other than a digit or a decimal point in a number. This
error can occur reading any of the input files: the compiler
expansion files, the directives file, the .case file, or the wire
delay file.

Syntax error #105: EOF encount.ered

The end of an input file (EOF) was found prematurely.
This means before ''END." appeared in the file.

Syntax error #106: Reserved.

Runtime error #107: Reserved.

Syntax error #108: Continuation cha.racter not at EOL.

The Verifier found a line in an input file that was not ended
properly. A string was being read, and it contained a new­
line character. Strings that extend past character 80 in an
input file should include a tilda - (the continuation

8-14 4/10/86

Timing Verifier Errors

character) to indicate that they continue on the next input
line.

Syntax error #109: String too long

This error is generated when the Verifier finds a string that
extends over 255 characters. Make the string shorter.

Syntax error #110: Bad delimiter

This error occurs when the Verifier is expecting some del­
imiter (such iis a double quote ending a string), and finds a
different one. The expected delimiter is printed with the
portion of the input line read before the error was encoun­
tered.

Syntax error #111: Expected quoted string

This error is generated when the Verifier encounters some­
thing other than a string in quotes when it is expecting a
quoted string. The portion of the input line read before the
error was encountered is printed out.

Runtime error #112: Reserved.

Syntax error #113: Invalid width of signal

This error occurs when the Verifier computes a signal that
has a period the is not equal to the CLOCK_PERIOD. This
is a very unusual internal error, and if it ever occurs,
should be reported immediately.

Syntax error #114: Reserved.

4/10/86 8-15

Errors Timing Verifier

Syntax error #115: Multiple values given for signal

This error is generated when more than one value is given
for a signal in one case in the case file. Check the case file
for syntax problems. In particular, check that the correct
lines end with commas and semicolons.

Runtime error #116: Max number of evaluation passes
executed

If the circuit does not converge within the number of
evaluation passes specified by the MAX_EVAL_PASSES
directive (which currently defaults to 2000), this error is
generated. Many evaluation passes may be required for cir­
cuits with feedback loops in them.

Runtime error #117: Resistor connect.ed to consiantti at
both ends

This error occurs when the Verifier tries to orient the resis­
tors in the design. A resistor connected to constant signals
(1 or 0) at both ends is not acceptable to the Timing
Verifier, and usually indicates a design error.

Runtime error #118: Resistor driven at both ends

The Verifier generates this error when it finds a resistor
that has primitive outputs attached to both ends. This
resistor cannot be oriented. The verification run continues,
but the resistor is ignored. Change the circuit so that all
resistors are driven at only one end.

Runtime error #110: Part not orientable

This error is generated when a resistor cannot be oriented.
Each resistor must have unique, unambiguous input and
output sides; they are not allowed to be truly bidirectional.

8-16 4/10/86

Timing Verifier Errors

Runtime error #120: The following parts are unorient­
able

This error is generated when more than one resistor cannot
be oriented; see Runtime error 119 above.

Syntax error #121: Max time is smaller than min time

This error is generated by the Verifier whenever it finds a
maximum time that is less than the corresponding
minimum time. Specifying DELAY=5.0-4.0, for example,
would cause this error.

Syntax error #122: Single time variable expect.eel, not
range

This error occurs when a minimum to maximum range
(min-max) is specified where only a single time value is
expected. Examples: setup times, hold times, minimum
pulse widths. Check user-created timing models for errors.

Syntax error #123: Reserved.

Syntax error #124: Illegal transition type specified

This error is generated when the Verifier finds a Transition
Type other than SMOOTH or GLITCHY on a primitive.
Check user-created timing models for improper use of the
transition property.

Syntax error #125: Illegal strength type specified

This error in generated when the Verifier finds a strength
other than SOFT or HARD in a design.

4/10/86 8-17

Errors Timing Verifier

Syntax error #126: Illegal characler in evaluation string

Evaluation characters must be either: A, I, E, Z, H, or W.
See the section on DELAYS for more information on
Evaluation directives.

Syntax error #127: Bit numbers specified are out of
range

This error is generated when bit subscripts specified in the
case file do not agree with the signal width found in the
design. If a signal has bits <5 .. 2> in the design, any
specification in the case file for that signal may only refer to
bits 5 through 2 or to the whole signal.

Syntax error #128: Illegal characler in signal list

This error is generated by the Verifier when it finds
extraneous or incorrect input in the properties connected to
a signal. The various property names must be spelled
correctly, and the other elements such as equal signs (=)
and semi-colons (;) must be in the proper places.

Syntax error #129: 'lime range given for clock delay

The value of a CLOCK_DELAY property must be a single
value, not a minimum - maximum range.

Syntax error #130: Undefined pin

This error is generated when an incorrect pin name is
found for a Timing Verifier primitive. The correct pin
names are documented in the section on Verifier primi­
tives. Check user-created timing models.

Syntax error #131: No signal passed to parameter

This error is generated when there is no signal bound to a
pin of a Timing Verifier primitive. Check that all Compiler
errors have been corrected. If this error occurs when there

8-18 4/10/86

Timing Verifier Errors

are no Compiler errors, it is indicative of a Compiler bug.

Syntax error #132: Missing paramet.er

This error is generated when a required pin of a primitive is
not found in the expansion files. It occurs when optional
pins on primitives, such as enables on checker primitives,
are used incorrectly in library models. Check user-created
timing models.

Runtime error #133: Incorrect width paramet.er passed to
formal

This error is generated when a signal and the pin it is con­
nected to are found to have different widths in an expan­
sion file. Check that all Compiler errors have been
corrected. This error should have caused a Compiler error
to be generated.

Syntax error #134: Illegal value given to boolean option

Boolean expressions must be given either the value TRUE
or the value FALSE. Any other value generates this error.

Syntax error #135: Illegal value given to on/off option

Verifier directives such as RECONV _FAN OUT and
DELAY_ESTIMATOR require either the value ON or the
value OFF. Any other value generates this ~rror.

Syntax error #136: Unknown dot type specified

The legal values for the D OT_TYPE directive are:
D OT_OR, D OT_AND, and D OT_TS. Any other value gen­
erates this error.

4/10/86 8-19

Errors Timing Verifier

Syntax error #137: Expect.ed bit ordering specifier

This error is generated when the BIT_ORDERING direc­
tive is read, and the value assigned is not either
RIGHT_TO_LEFT or LEFT_TO_RIGHT.

Syntax error #138: Too many entries given in wire esti­
mate list

The maximum number of wire estimates that can be
specified in a wire estimate list is currently 100. Any addi­
tional estimates are ignored and cause this error to be gen­
erated.

Syntax error #139: Unknown option given

This error is generated when an unknown (illegal or
undefined) Timing Verifier directive is specified in the
directives file. It is also generated when the value of the
DELAY_MODEL directive is not one of the legal values:
MIN, MAX, MIN/MAX, RISE/FALL, or a combination
of the legal values. This error is most often caused by a
spelling error.

Syntax error #140: Unknown syntax specification

Signal specifications have up to five parts: the property
specifier, the assertion specifier, the subscript specifier, the
name specifier, and the negation specifier. If the values
given for the SYNTAX specification are anything else, this
error is generated.

Syntax error #141: Invalid clock period specified

If the CLOCK_PERIOD is specified as less than one nano­
second, this error is generated, and the CLOCK_PERIOD
set to the default, 100 nanoseconds. ·

8-20 4/10/86

Timing Verifier Errors

Syntax error #142: Invalid number of clock intervals
specified

If the number of CLOCK_INTERVALS specified in the
CLOCK_INTERVALS directive is less than one or greater
than 10000 times the CLOCK_PERIOD this error is gen­
erated.

Syntax error #143: Invalid tri-state bus type

The only legal values for the TS_BUS_TYPE directive are
DOT_OR and DOT_TS. This error is generated when any
other value is specified. The value is then set to the
default, D OT_TS, or to D OT_OR if a previous
TS_BUS_TYPE directive had the value D OT_OR.

Syntax error #144: NC_SIGNALS set t.o illegal value

The legal values for the NC_SIGNALS directive are: 0, 1,
S, ASSERTED, and DEASSERTED. Using any other
value causes this error and causes the value S (stable) to be
used.

Syntax error #145: PULSE_EDGE_CORR must be
between 0 and 1

Legal values for the PULSE_EDGE_CORR directive range
between 0 and 1. See the directives summary for more
information. If an illegal value is used that generated this
error, the value 1 will be used as a default.

Syntax error #146: Print width invalid

Valid values for the PRINT_WIDTH directive are 80 and
132. Specifying other values generates this error. When an
error occurs, the value defaults to 132. See the
PRINT_WIDTH directive for more information.

4/10/86 8-21

Errors Timing Verifier

Syntax error #147: Invalid number of passes specified

Specifying a value less than one for the
MAX_EV AL_PASSES directive generates this error.
Values less than one are meaningless, so the value defaults
to 2000 when this error in encountered.

Syntax error #148: Ekpect.ed FILE_TYPE

This error is generated when the Verifier finds a file called
cmpexp.dat but the first characters in the file are not
''FILE_TYPE". The first line of correct compiler expansion
files for the Verifier is always either:
''FILE_TYPE=CMP _EXPANSION;" or
''FILE_TYPE=TIME_EXPANSION;". Make sure the
proper expansion files exist, and that they have not been
altered by hand.

Syntax error #140: Unknown primitive

This error is generated by the Verifier when it reads a
primitive from the expansion file that has an unknown
type. This can only happen if the expansion file was edited
by hand, and a primitive's name is changed accidently. The
primitive will be ignored. Do not edit the expansion files.

Syntax error #150: Ekpect.ed "END_PRIMI'llVE"

This is another error that is only caused by hand editing of
an expansion file. Every primitive in the expansion has the
keyword, "END _PRIMITIVE" at the end of its description.
This error can be hard to recover from, and in some cases
can cause many extraneous errors to be generated.

Syntax error #151: Unknown block type in expansion
file

This error is caused by hand editing expansion files. Legal
block types are: DIRECTIVES, TIME, PRIMITIVE, and
END.

8-22 4/10/86

Timing Verifier Errors

Runtime error #152: Reserved.

Timing error #153: Edge to Edge timing violation

This error is generated by a Timing Verifier Edge to Edge
checker primitive. This indicates an edge-to edge timing
error in the design. See the section on primitives for more
information on this and the other Timing errors.

Error #154: Unused.

Error #155: Unused.

Timing error #156: Setup time violation

This error is generated by a Timing Verifier Setup Hold
checker primitive. This indicates a setup or hold time error
in the design. See the section on primitives for more inf or­
mation on this and the other Timing errors.

Timing error #157: Hold time violation

This error is generated by a Timing Verifier Setup Hold
checker primitive. This indicates a setup or hold time error
in the design. See the section on primitives for more infor­
mation on this and the other Timing errors.

Timing error #158: Setup/Hold time violation

This error is generated by a Timing Verifier Setup Hold
checker primitive. This indicates a setup or hold time error
in the design. See the section on primitives for more infor­
mation on this and the other Timing errors.

4/10/86 8-23

Errors Timing Verifier

'liming error #159: Minimum pulse width timing violar
ti on

This error is generat.ed by a Timing Verifier Minimum
Pulse Width checker primitive. This indicat.es a minimum
pulse width error in the design. See the section on primi­
tives for more information on this and the other Timing
errors.

'liming error #160: Delay is great.er than
CLOCK_PERlOD

Before doing the actual verification, the Timing Verifier
checks that all delays are less than the CLOCK_PERIOD.
Any that aren't are flagged with this error message. (This
is a feature only available in release 7.5 and lat.er releases).
As always, great.er delays are used modulo the
CLOCK_PERIOD during the verification. That is, with
CLOCK_PERIOD set to 102 ns, a delay of 104.2 ns will
used as a delay of 104.2 mod 102 or 2.2ns.

Syntax error #161: Too many entries given in load
coefficient table

This error is generat.ed when more than 100 entries are
given for a LOAD _COEFF table. See the section on the
delay estimator under DELAYS for more information.

Error #162: Unused.

Syntax error #163: Illegal latch directive

The legal values for the LATCH_ERR_MODEL directive
are: OPEN, CLOSED, and CONSERVATIVE. Specifying
any other value generat.es this error.

8-24 4/10/86

Timing Verifier Errors

Syntax error #164: Reserved {debug).

Runtime eITOr #165: Multiple evaluation directives on
primitive

The use of five of the six allowed evaluation directives is
restricted to only ONE pin of a primitive. See the section
on Evaluation Directives under DELAYS for more infor­
mation.

TI.ming eITOr #166: Input changing while clock is
asserted

This error indicated that the conditions required by an A
evaluation directive have not been met by the circuit.
While the clock input to an AND or OR gate is asserted,
the other input is not stable. See the section on Evaluation
Directives under DELAYS for more information.

Syntax eITOr #167: Reserved.

Runtime eITOr #168: Wire-tie eITOr- mixed and/or

This error is generated by the Verifier when some illegal
combination of wire-and and wire-or logic is used on a sig­
nal. See the sections on Wire Gates and Timing Models,
and the D OT_TYPE directive for more information.

Syntax error #169: Illegal value given

This error is generated when a signal is set to an illegal
value in the case file. Legal values are 0, 1, S, and clock
assertions. See the section on Case Analysis for more
information.

4/10/86 8-25

Errors Timing Verifier

Syntax error #170: Invalid casefi.le syntax

This error is generated when the proper case file syntax is
not used. In particular, signal names and values must be
enclosed in single quotes (').

Syntax error #171: Case signal not used in network

This error is generated when a signal found in the case file
is not found in the design. The erroneous line in the case
file is ignored.

Syntax error #172: Reserved.

Syntax error #173: Ex.pecled; or,

This error is generated when a line in the case file is not
ended properly. Each line must end with either a comma,
or a semicolon. See the Case Analysis section for the exact
syntax and more information.

Syntax error #174: Signal not found- delay spec ignored

This error is generated when a signal is found in the wire
delay file (delay.dat) that is not found in the design. The
signal is printed out, and the specification is ignored. Usu­
ally this error is caused by a spelling error.

Syntax error #175: Signal does not drive pin, delay
ignored

This error is generated when a signal is found in the wire
delay file (delay.dat) with an incorrect path name. See the
section on Wire Delays and Appendix A for the exact syn­
tax required and for more information.

8-26 4/10/86

Timing Verifier Errors

Runtime error #176: Dott.ed signal name too long

This error is generated as a warning when a signal name
and its path name are too long to be concatenated to form
a dotted signal name. The limit on signal name lengths is
255 characters. The Verifier picks an intelligent substitute
and prints out that substitute name.

Runtime error #177: Too many outputs are wire-tied
t.ogether

Currently, only 1000 primitive outputs may be wire-tied
together. If this error occurs, and there is not an error in
the drawing, please report the problem and the size will be
increased.

Syntax error #178: Error in ti.ming assertion

This error is generated when any one of many signal name
syntax errors are detected. The exact error is printed out,
and the signal in question. If possible, an intelligent substi­
tute or default is used.

Syntax error #179: Illegal List option

This error refers to the LIST directive which has many pos­
sible options of the form <option> and NO<option>.
See the LIST directive in the Directives section for more
information.

Runtime error #180: No option file or
TIME_DIRECTIVES block

This error is generated when the Timing Verifier cannot
find any directives. The file verifier.cmd does not exist in
the current directory AND there is no
TIME_D IRECTIVES block in the expansion file. Create a
file called verifier.cmd and enter the required directives into
it.

4/10/86 8-27

Errors Timing Verifier

Syntax error #181: Verification abort.eel-expansion file
errors

This error is generated when more errors are detected
while reading in the expansion file than the value given to
the MAX_EXP _ERRORS directive. See the Directives sec­
tion for information on the MAX_EXP _ERRORS directive.

Runtime error #182: Cannot open file for write

This error is generated by the Verifier when it cannot open
the monitor (screen output) file. Check for space on the
disk, no write access to the current directory, etc.

Runtime error #183: Reserved.

Runtime error #184: Verification abort.eel-too many input
errors

This error is generated when more errors are detected
while reading in the input files (not just the expansion files)
than the value given to the MAX_ERRORS directive. See
the Directives section for more information on the
MAX_ERRORS directive.

Runtime error #185: Illegal evaluation modes

This is an internal error that very seldom occurs. If it
does, please note the two evaluation modes, save the list
and log files, and notify a Valid Service Engineer.

Runtime error #186: Wire table already defined,
redefining

This error in generated when more than one wire estimate
list is given for a single family. In the directives file or the
TIME_DIRECTIVES block, more than one
WIRE ESTIMATE directive was found with either no fam­
ily spe~ification, or the same family specification.

8-28 4/10/86

Timing Verifier Errors

Runtime error #187: Undefined wire delay t.able given

This error is generated when a FAMILY specification is
given for a primitive (by attaching the body property FAM­
ILY to the primitive), but a wire estimate list for that fam­
ily is not in the directives file or in the
TIME_D IRECTIVES block of the drawing.

Runtime error #188: Undefined load coefficient t.able
given

This error is generated when a FAMILY specification is
given for a primitive, but a load coefficient list for that fam­
ily is not in the directives file or in the
TIME_D IRECTIVES block of the drawing.

Runtime error #189: Load t.able already defined,
redefining

This error in generated when more than one load
coefficient list is given for a single family. IIi the directives
file or the TIME_DIRECTIVES block, more than one
LOAD _COEFF directive was found with either no family
specification, or the same family specification.

Error #190: Unused.

Error #191: Unused.

Error #192: Unused.

Runtime error #193: No name string in
print_signal_f ormatt.ed

This error is an internal error that very seldom occurs. If it
does, and is repeatable, please save the input and output
files and report the problem to Valid.

4/10/86 8-29

Errors Timing Verifier

Runtime error #194: Invalid margin in
print_signal_f ormatt.ed

This error is an internal error that very seldom occurs. If it
does, and is repeatable, please save the input and output
files and report the problem to Valid.

Error #195: Unused.

Error #196: Unused.

Error #197: Unused.

Error #198: Unused.

Error #199: Unused.

Error #200: Unused.

8-30 4/10/86

SECilON9
GLOSSARY OF 'IERMS

Here is a glossary of important terms used in the SCALD
Timing Verifier documentation. A short description of
each term is given along with a reference to the section(s)
where it is more fully described.

ASSERTION

CASE

A timing assertion specifies the periodic 0/1 or
changing/stable behavior of a signal over time using
SCALD Language syntax. The timing assertion
specifies for which intervals of the clock period the
signal is asserted. Timing assertions are either
included as part of a signal name entered on a GED
drawing, or entered in the case.dat file. Four types
of timing assertions are allowed, each having one of
these four prefixes: !C !P !S !D. !C and !Pare clock
assertions and specify 0/1 behavior. !S and !D are
signal assertions and specify changing/stable
behavior. See under Timing Assertions for more
information.

In some circuits it is unrealistic to test for worst case
timing behavior throughout the circuit. When the
values of certain signals are related, and the designer
knows what the few possible combinations of those
signal values are, each combination of values can be
specified as a case. A particular assignment of
zero /one values to a set of signals in a design for a
Verifier run is called a CASE. Cases are specified in
the case file (case.dat). The case file is an optional
input file to the Timing Verifier. See Case Analysis
in Section 4 for more information.

4/10/86 9-1

Glossary Timing Verifier

CLOCK

A clock is a control signal whose periodic 0/1
behavior is specified with a timing assertion (either
!C or !P). The timing behavior of the master clock
must be specified t.o achieve meaningful results from
the Timing Verifier.

CLOCK.SKEW

Many clocks have some amount of skew over an
entire system. Clock skew for the entire design can
be added with two directives: CLOCK_SKEW and
PREC_CLOCK_SKEW (for precision clock skew).
The skew specified with the CLOCK_SKEW direc­
tive is added t.o all signals in the design having an ! C
assertion statement. The skew specified with the
PREC...;.CLOCK_SKEW directive is added t.o all sig­
nals in the design having an !P assertion statement.
Clock skew is always symmetrical around all clock
edges. See Section 3, Directives for more inf ormar
tion.

Asymmetrical skew can be added t.o any signal on an
individual basis as part of a timing assertion. See
under Assertion Statements for more information.

DIREC'llVE

0-2

Timing Verifier Directives are entered in the Direc­
tives File (verifier.cmd) and provide additional
instructions t.o the Verifier. See under Directives for
more. information. Evaluation Directives are an
exception. They are unlike all other directives and
are described in Section 5, Delays. See also the
definition below.

4/10/86

Timing Verifier Glossary

EVALUATION DIRECTIVE

An evaluation directive is a signal property attached
to clock signals that instructs the Timing Verifier to
treat that signal specially. Evaluation directives can
be added to signal names using the test macro _E or
can be added as properties to signals using the pro­
perty name EV AL and a value. There are six possi­
ble evaluation directives. Five of them are used in
designs that contain tuned or gated clock signals.
The sixth evaluation directive _E V is used to initial­
ize a signal to a value other than U. See under
Evaluation Directives for more information.

PRECISION CLOCK SKEW

See CLOCK SKEW above.

RECONVERGENTFANOUT

When signals follow a common path, then diverge,
and then reconverge the worst case delays along the
two paths are related to each other. The term
"reconvergent fanout" is used to describe this situa­
tion. To correctly model the delays along such signal
paths and to eliminate spurious errors, the Timing
Verifier compensates for the common skew of the
two signals before checking for setup and hold time
errors. For more information see the Directives sec­
tion under RECONV _FAN OUT.

SCALAR

A scalar is a discrete one-bit signal. It is not a part
of a bus. All signals that are not vector signals are
scalars. Typical signal names of scalars are:

4/10/86 9-3

Glossary Timing Verifier

ENABLE
RESET
CLOCK !C 0-4
Al
A2

In the examples above, each signal is one bit wide.
Al and A2 are unrelated signals. They are not bits
of a bus A. Scalar signals never have bit subscripts
because they are always only one bit wide. See also
VECTOR and "Signal Name Syntax" in the SCALD
Language Manual.

SIGNAL HISTORY

The Timing Verifier produces in the listing file
(tvlst.dat) signal history for all signals in the design.
The signal history of a signal is a list of the values of
that signal (0, 1, S, R, F, C, U and Z) and the times
(over a single clock cycle) when the signal has each
value. An example of signal history is:

DATA S:O.OR:l8.21:20.0F:31.00:32.8

If the clock period is 80ns, the signal DA TA is
STABLE at time 0.0, then starts to RISE at 18.2 ns,
stabilizes at 1 (high) at 20.0 ns, starts to FALL at
31.0 ns, then is 0 (low) again starting at 32.8 ns.
Signal history always describes cyclical behavior. So
this is the behavior of the signal DA TA during every
clock period in which it is active. This signal illus­
trates wraparound. See WRAPAROUND for more
information.

TEXT MACRO

9-4

Text macros are used to provide a brief way of
entering information in GED (such as properties in
signal names) and to allow easy global changes of
frequently used values. A number of text macros
have been pre-defined for particular uses. Text mac­
ros may be used in property values but not in

4/10/86

Timing Verifier Glossary

property names. See under Text Macros in the
SCALD Language Manual for more information.

TIMING VIOLATION

There are four types of timing violations: a setup
time violation, a hold time violation, a minimum
pulse width violation, and an edge to edge time vio­
lation. Each of these violations is detected by a
checker primitive in the timing model of the library
part. An additional violation occurs when a signal's
value is inconsistent with its timing assertion.

VECTOR

A vector (or vectored signal) is a signal that is one
or more bits of a bus. The signal name of a vec­
tored signal always includes a name that is common
to the entire bus, and a bit subscript. The bits of a
multibit signal are referred to by number. A 4-bit
bus named DATA_IN has the following signal name:

DATA IN <3 .. O>

Elsewhere on the same drawing, the signals

DATA IN <1> and DATA IN <0>

ref er to two individual bits of this bus. In contrast,
scalar signals are always one-bit signals. The signals

Al
A2

are two discrete signals. They are not bits of a bus
named A. See also SCALAR, and "Signal Name
Syntax" in the SCALD Language Manual.

4/10/86 9-5

Glossary Timing Verifier

WRAPAROUND

9-6

The Timing Verifier reports signal behavior in syn­
chronous circuits. The behavior of signals is
reported in terms of the CLOCK_PERIOD specified.
Because the circuit is synchronous, the signal
behavior of a particular signal is identical for every
clock cycle during which that signal is active. Signal
history does not assume that a signal is active during
every clock cycle. In a counter circuit, for example,
all bits of the output do not change during the same
clock cycle. But in a synchronous counter, the bits
that do change, change at the same time during
every cycle.

For a signal DA TA with this signal history:

DATA S:O.OR:18.21:20.0F:31.00:32.8

and a clock period of 80 ns, the signal history
represents the behavior of DA TA during the cycles
in which DATA is active. Because this signal has
the same value at the beginning and end of the clock
period, it illustrates wraparound. If DATA is active
during the first and third clock cycles, then the signal
DATA is low (0) from 32.8 ns until 18.2 ns after the
start of the third cycle, or 160 + 18.2 ns, and then
starts to rise again. The low value (0) wraps around
from the end of a period to the beginning of
another.

4/10/86

APPENDIX A
FILE SYNTAX

A.1 CASE FILE SYNTAX

The syntax for the case file is:

<case file>::= <case list> END. jEND.

<case list>::= <case>; I <case>; <case list>

<case> ::= <signal assignment list> I;

<signal assignment list>
::= <signal assignment> I

<signal assignment>, <signal assignment list>

<signal assignment>
::= <signal name> = <value> I

<signal name>= '<timing assertion>'

<value> 'O' j'l'

A.2 DELAY PROPERTIES SYNTAX

<delay property> ::= <property name > <value>
<value> ::= = ' <time interval specifier> '
<time interval specifier>

::= <delay range> I
<rising range> , <falling range>

<rising range> ::= <delay range>
<falling range> ::= <delay range>
<delay range> ::=<delay> I

<min delay> - <max delay>

4/10/86 A-1

Appendix Timing Verifier

::=<time>
::=<time>
::=<time>

<delay>
<min delay>
<max delay>
<time> ::= <integer> I <fixed point number>

A.3 WIRE DELAY FILE SYNTAX

The detailed syntax for the wire delay file is:

<delay file> ::= END. I <delay list>; END.

<delay list> ::= <signal delay list>; <delay list>

<signal delay list> ::= <signal name> : <stop delay list>

<stop delay list> ::= <stop delay>; I
<stop delay>, <stop delay list>

<stop delay> ::= <quoted path name> = <quoted rise/fall
range>

<signal name> ::= <quoted signal name> I
<quoted signal name> < <bit range> >

<quoted signal name> ::=' <signal name> '

<bit range> ::= <bit number> I <bit number> .. <bit number>

<bit number> ::= <integer>

<quoted path name>::=' <path name>'

<quoted rise/fall range>
::=' <delay>' I' <delay range>' I

' <rise delay range> , <fall delay range> '

<rise delay range> ::= <min delay> - <max delay>

<fall delay range> ::= <min delay> - <max delay>

A-2 4/10/86

Timing Verifier

<delay range> ::= <min delay> - <max delay>

<delay> ::= <fixed-point number>

<min delay> ::= <fixed-point number>

<max delay> ::= <fixed-point number>

A.4 DRIVE PROPERTY SYNTAX

<drive> ::=DRIVE= <rise and fall delay> I
DRIVE= <rise delay>,<fall delay>

Appendix

<rise and fall delay> ::= <delay> I <min delay>-<max delay>

<rise delay> ::= <delay> I <min delay>-<max delay>

<fall delay> ::= <delay> I <min delay>-<max delay>

<min delay>::= <delay>

<max delay> ::= <delay>

<delay> ::= <fixed point number>

4/10/86 A-3

INDEX

and primitives, 6-3, 6-10
assertion character, 2-12, 4-6
assertions, see signal assertions

behavior cyclical, 2-10
bit subscript, 4-6, 4-12

in wire delay file, 5-15
body VERSIONS, 6-22
BUBBLE command, 6-4
buff er primitive, 5-4, 5-14, 6-3, 6-5, 6-17
buffers tri-state, 3-22
bus signal, 2-10, 7-1, 9-5
buses tri-state, 3-22

case analysis, 1-8, 2-13, 4-13, 4-14, 4-15, 4-16, 4-17, 9-1
case analysis file, see files, case
case file, 1-8, 2-1, 2-5, 2-6, 2-7, 2-13, 2-14, 4-3, 4-12,

4-13, 9-1
assertions in, 4-16, 4-17
buses in, 4-17
low asserted signals in, 4-13
multiple cases in, 4-13, 4-14, 4-15
quotes in, 4-12
signal values in, 4-14
syntax, 4-12, A-1

case.dat file, 1-8, 2-1, 2-5, 2-6, 2-7, 2-13, 2-14, 3-9, 4-3,
4-12, 4-13, 9-1, A-1

CHANGE command, 6-7, 6-8, 6-9
change primitive, 6-3, 6-5, 6-11
CHIP _DELAY property, 3-14, 5-3, 5-4, 5-22, 5-26, A-1
circuit initialization, 1-3, 2-10, 4-1
circuits

non-synchronous, 3-20, 3-21
synchronous, 1-5, 2-1, 2-4, 9-6

clock assertions, see signal assertions
clock cycle, see clock period
clock intervals, 2-2, 2-14, 3-2, 4-7, 4-8, 4-9, 4-10, 4-11
clock period, 1-4, 1-5, 1-7, 2-1, 2-2, 2-14, 4-10

4/10/86 1-1

Index Timing Verifier

delay greater than, 2-5, 8-24
setting, 3-2

clock signals, 1-3, 1-5, 2-1, 2-2, 2-10, 2-13, 4-1
clock skew, 2-1, 4-4, 9-2
clocks

gated, 5-1, 5-15, 5-18, 5-23, 5-26, 8-25
tuned, 3-14, 5-1, 5-15, 5-20, 5-21, 5-22, 5-26

CLOCK_DELA Y property, 3-14, 5-3, 5-4, A-1
CLOCK_INTERVALS directive, 2-2, 3-2, 4-10
CLOCK_PERIOD directive, 2-2, 3-2
CLOCK_SKEW directive,3-2, 3-3, 4-4
cmpexp.dat file, 2-5, 2-7, 3-4, 3-9, 3-10, 8-13
CMS, 2-5, 2-7, 2-9
command entry, 2-1, 2-2, 2-3, 2-6
command line, 2-2, 2-3, 3-4
comments in files, 2-6
Compiler, 2-2, 2-7, 3-4
Compiler directives file, see files, Compiler directives
Compiler errors, see errors, Compiler
Compiler expansion file, see files, Compiler expansion
compiler.cmd file, 2-1
component delay, 5-9
constant signals, 8-16
convergence, 2-1, 2-4, 3-5, 8-1, 8-16
cycle clock, see clock period

deasserted, see NC_SIGNALS directive
debugging, 3-5, 3-8, 4-3
DEFAULT_DRIVE directive, 3-15, 5-12, 5-13
delay directives, 3-11
delay estimator, 2-13, 2-14, 3-14, 3-15, 3-16, 3-17, 5-2, 5-8,

5-9, 5-10, 5-11, 5-12, 5-13, 5-15, A-3
delay file, see files, wire delay
delay properties, 3-14, 5-2, 5-3, 5-5, 6-5

on pins, 5-5, 5-7
on signals, 5-5, 5-6
ranges in, 5-3, 5-4, 5-5

DELAY property, 5-4, 5-9, 5-22, 5-26
delay.dat file, 2-5, 2-7, 2-13, 3-9, 5-1, 5-9, 5-14, 5-15, A-2
delays, see also wire delays

1-2

component, 5-1, 5-9
feedback of, 2-7
greater than clock period, 2-5

4/10/86

Timing Verifier Index

rise/fall, 3-13
selecting, 3-12
wire, 2-13

DELAY_ESTIMATOR directive, 2-14, 3-15, 5-9, 5-13, 5-15
DELAY_MODEL directive, 3-11, 3-13
DIFF _PASSES directive, 3-5
directives, 3-1

CLOCK_IN'IERVALS, 2-2, 3-2, 4-10
CLOCK_PERIOD, 2-2, 3-2
CLOCK_SKEW, 3-2, 3-3, 4-4
DEFAULT_DRIVE, 3-15, 5-12, 5-13
delay estimat.or, 2-13, 3-15, 5-9
delay, 2-13, 3-11
DELAY_ESTIMATOR, 2-14, 3-15, 5-9, 5-13, 5-15
DELAY_MODEL, 3-11, 3-13
DIFF _PASSES, 3-5
DOT_TYPE, 3-18
evaluation, see evaluation directives
execution, 3-5, 3-9, 3-10
file, see directives files
LATCH_ERR_MODEL, 3-19, 6-18, 6-19, 6-20, 6-21
LIST, see LIST directive
LOAD_COEFFS, 3-16
LOAD_COEFFS families in, 3-17
MAX_ERRORS, 3-9
MAX_EV AL_PASSES, 3-5, 3-10
MAX_EXP _ERRORS, 3-10
NC_SIGNALS, 3-19
output, 3-5, 3-6, 3-10, 3-11
OUTPUT_RESOLUTION, 1-8, 3-10, 4-8, 4-11
PREC_CLOCK_SKEW, 3-3, 4-4
PRINT_WIDTH, 3-11
PULSE_FIL 'IER, 3-20
RECONV _FANOUT, 3-3
RISE_F ALL_ANAL, 3-12, 5-6
RISE_FALL_MODELS, 3-12, 3-13, 5-6
ROOT_DRA WING, 2-2, 2-7, 3-4, 8-13
SET_MIN_DELA YS, 3-20
technology-linked, 3-18
TIMING_DIAGRAMS, 3-4
TIMING_SIM_MODE, 3-20, 3-21
TS_BUS_TYPE, 3-19, 3-22, 6-12, 6-15, 7-1, 7-7, 7-8,

7-9, 7-10, 7-11

4/10/86 I-3

Index Timing Verifier

USE_DRAWING_WD, 3-14, 5-3, 5-4, 5-9, 5-15
WIRE_DELAY, 2-14, 3-14, 5-2, 5-9, 5-15
WIRE_ESTIMATE, 3-17, 5-11, 5-13

families in, 3-17, 5-11
directives files

Compiler, 2-1, 2-2
Verifier, 2-1, 2-2, 2-5, 2-6, 2-9, 2-13, 2-14, 8-27, 9-2

syntax, 2-6
dot gate, see wire gate
DOT_OR, 6-12, 6-13, 6-14, 6-15, 6-16
DOT_TS, 6-12, 6-13, 6-15, 6-16
DOT_TYPE directive, 3-18
drawing name, 2-2, 3-4, 6-1
DRIVE property, 3-15, 5-10, 5-12, 5-13, A-3
drive factor, 3-16
drivers, multiple, 7-1

ECL technology NC signals in, 3-19
edge to edge primitives, 6-4, 6-8
edge to edge time, 2-5
error model for latch, 6-10, 6-18, 6-19, 6-20, 6-21
errors

Compiler, 2-1, 2-3
edge to edge, 2-5, 8-23
hold time, 2-5, 8-23
in interface signals, 4-3
interpreting, 1-5, 2-3, 8-2
min pulse width, 2-5, 5-30
minimum pulse width, 8-24
report of, 3-7, 3-8, 8-1, 8-2, 8-3
runtime, 2-1, 2-3, 3-9, 3-10, 8-1, 8-13, 8-14, 8-16,

8-17, 8-19, 8-25, 8-27, 8-28, 8-29, 8-30
setup time, 1-5, 2-5, 6-19, 8-23
spurious, 2-3, 3-3, 8-2
summary report, 8-3
syntax, 2-1, 2-3, 3-9, 3-15, 4-11, 8-1
timing, 1-3, 1-5, 2-2, 2-3, 2-4, 2-5, 3-7, 3-8, 3-9,

3-21, 5-24, 5-25, 5-26, 5-28, 5-30, 8-1, 8-2,
. 8-23, 8-24, 8-25, 9-5

EV AL property, 5-17
evaluation directives, 5-4, 5-15, 5-16, 5-18, 5-19, 5-20,

5-21, 5-22, 5-23, 5-24, 5-25, 5-26, 5-31, 5-32, 8-18,
8-25, 9-3

1-4 4/10/86

Timing Verifier

A, 5-23, 5-25
H, 5-26, 5-27, 5-28
I, 5-17, 5-26, 5-28, 5-29, 5-30,
w, 5-20, 5-21
z, 5-22, 5-23
and wire delay, 5-21, 5-22, 5-26
as properties, 5-17
in hierarchy, 5-32
in signals, 5-17
multiple, 5-31

evaluation passes, 2-4, 3-10, 8-16
execution directives, 3-5, 3-9, 3-10
expansion file, see files, Compiler expansion

FALL property, 5-5, 5-9, 5-22, 5-26
FAMILY property, 3-17, 5-12
fanout reconvergent, 3-3, 9-3
feedback, 2-4, 2-13, 3-5, 3-21, 4-5
file names, 2-9
files

case, 1-8, 2-1, 2-5, 2-6, 2-7, 2-13, 2-14, 3-9, 4-3,
4-12, 4-13, 9-1

case syntax, see case file, syntax
comments in, 8-6
Compiler directives, 2-2
Compiler expansion, 2-5, 2-7, 3-4, 3-9, 3-10, 8-13
delay, see files, wire delay
directives

Compiler, 2-1
syntax, 2-6
Verifier, 2-1, 2-5, 2-6, 2-9, 2-13, 2-14,
8-27, 9-2

input, 2-1, 2-5, 2-6, 2-9, 3-9, 8-6
listing, 2-1, 2-3, 2-7, 2-8, 2-9, 2-10, 3-11, 8-1
log, 2-7, 2-8
optional input, 2-5, 4-12, 5-14
output, 2-5, 2-7, 2-9
required input, 2-5, 2-6
waveform input, 2-3, 2-7, 2-8, 3-4, 3-6
wire delay, 2-5, 2-7, 2-13, 3-9, 5-1, 5-9, 5-14, 5-15

syntax, A-2

gates, phantom, 5-11, 5-13

4/10/86

Index

1-5

Index

GED, 2-1, 2-12, 2-13, 2-14, 6-1
glossary, 9-1
Graphics Editor, 2-1, 2-12, 2-13, 2-14

hierarchy, 6-2
high impedance, 1-5
HIGH property, 6-9
history, see signal history
HOLD property, 6-7, 6-8
hold time, 1-2, 4-3

identity primitive, 6-3, 6-5, 6-17, 7-1
initialization

of circuits, 1-3, 2-10, 4-1
of signals, 5-16, 5-17

input files, 3-9
inputs, bubbled, 3-19
interfaces, wire delay, 5-1
intervals, see clock intervals

KEEPD IRECTIVE property, 5-32

latch, 4-5
smooth/glitchy, 6-18, 6-21, 6-22, 6-23

latch models, 3-19

Timing Verifier

latch primitive, 3-19, 3-20, 5-4, 6-3, 6-10, 6-18, 6-19, 6-20,
6-21, 6-22

LATCH_ERR_MODEL directive, 3-19, 6-18, 6-19, 6-20, 6-21
librarian, 6-1
libraries

STAND ARD, 6-2
TIME, 6-2

library development, 5-3, 6-1
Linker, 2-7, 3-4
LIST directive, 2-9, 3-6
LIST directive options, 3-6

I-6

BYNAME, 3-6
CHIP, 3-6
CONSTANT, 3-6
DOT, 3-7
HISTOGRAM, 3-7
NC, 3-7
NOBYNAME, 3-6

4/10/86

- -~------~

Timing Verifier

NOCHIP, 3-6
NOCONSTANT, 3-6
NODOT, 3-7
NOHISTOGRAM, 3-7
NONC, 3-7
NORISE_F ALL, 3-7
NOSKEWS, 3-7
NOSTRENGTII, 3-8
NOTRAN_INPUT, 3-8
NOUNNAMED, 3-8
NOVIOLA TIONS, 3-8
RISE_F ALL, 3-7
SKEWS, 3-7
STRENGTII, 3-8
TRAN_INPUT, 3-8
UNNAMED, 3-8
VIOLATIONS, 3-8

listing file, 2-1, 2-3, 2-7, 2-8, 2-9, 2-10, 3-11, 8-1
options 3-6

load calculation, 5-10, 5-11
load coefficient, 3-16
loading, 5-8, 5-9, 5-10, 5-11, 5-12, 5-13, 6-5
LOAD _COEFFS directive, 3-16

families in, 3-17
LOAD_FACTOR property, 5-11, 5-13
log file, 2-7, 2-8
LOW property, 6-9

MAX property, 6-8
MAX_ERRORS directive, 3-9
MAX_EVAL_PASSES directive, 3-5, 3-10
MAX_EXP_ERRORS directive, 3-10
MIN property, 6-8
min pulse width primitives, 6-4, 6-9
minimum pulse width, 1-2, 2-5, 8-24
models, hierarchical, 6-2
mux, smooth/glitchy, 6-27
mux primitive, 6-3, 6-22, 6-26

named signals, 2-10
NC_SIGNALS directive, 3-19

open collector, 3-18

4/10/86

Index

1-7

Index Timing Verifier

open emitter, 3-18
operating systems, 4-12

CMS, 2-5, 2-7, 2-9
UNIX, 2-5, 2-7, 2-9
VMS, 2-5, 2-7, 2-9

optional input files, see files, optional input
or primitive, 6-3, 6-11
output

open collector, 3-18
open emitter, 3-18
tri-state, 3-18

output directives, 3-5, 3-6, 3-10, 3-11
output files, see files, output
OUTPUT_RESOLUTION directive, 1-8, 3-10, 4-8, 4-11
OUTPUT_TYPE property, 3-18

Packager, 2-12
period, see clock period
permissions, 6-1
phantom gates, 5-11, 5-13
physical design system, 2-7, 2-13, 5-8, 5-14, 5-15
plotsig.dat file, 2-3, 2-7, 2-8, 3-4, 3-6
Plottime, 2-3, 2-8, 3-4
PREC_CLOCK_SKEW directive, 3-3, 4-4
primitives

and, 6-3, 6-10
buff er, 5-4, 5-14, 6-3, 6-5, 6-17
change, 6-3, 6-5, 6-11
edge to edge, 2-5, 6-4, 6-8, 8-23
error checking, 2-5, 6-4, 6-7, 6-8
identity, 6-3, 6-5, 6-17, 7-1
latch, 3-19, 3-20, 5-4, 6-3, 6-10, 6-18, 6-19, 6-20,

I-8

6-21, 6-22
min pulse width, 2-5, 6-4, 6-9, 8-24
mux, 6-3, 6-22, 6-26
or, 6-3, 6-11
reg, 3-20, 5-4, 6-3, 6-10, 6-22, 6-25, 6-26
resistor, 6-3, 6-6, 6-17, 7-1, 8-16
setup hold, 2-5, 3-3, 6-4, 6-7, 6-8, 8-23
setup rise fall hold, 2-5, 8-23
threshold, 6-3, 6-6, 6-17
timing, 1-7, 2-4, 2-5, 5-12, 5-32, 6-2
transistor, 6-3, 6-6

4/10/86

Timing Verifier

transmission gat.e, 6-3, 6-6
ts buf, 3-22, 6-3, 6-12
ts bus, 3-22, 6-6, 6-10, 6-14
uni trans gat.e, 6-3, 6-6
xor, 6-3, 6-11

PRINT_WIDTH directive, 3-11
properties, 4-6, 4-12

CHIP _DELAY, 3-14, 5-3, 5-4, 5-22, 5-26, A-1
CLOCK_DELAY, 3-14, 5-3, 5-4, A-1
delay, syntax, A-1
DELAY, 5-4, 5-9, 5-22, 5-26
DRIVE, 3-15, 5-10, 5-12, 5-13, A-3
EVAL, 5-17
FALL, 5-5, 5-9, 5-22, 5-26
FAMILY, 3-17, 5-12
HIGH, 6-9
HOLD, 6-7, 6-8
KEEPD IRECTIVE, 5-38
LOAD_FACTOR, 5-11, 5-13
LOW, 6-9
MAX, 6-8
MIN, 6-8
OUTPUT_TYPE, 3-18
RISE, 5-4, 5-9, 5-22, 5-26
SETUP, 6-7, 6-8
SIZE, 5-14
TIMES, 5-10, 5-11, 5-13

Index

1RANSITION, 6-18, 6-21, 6-22, 6-23, 6-25, 6-26, 6-27
WIRE_DELA Y, 3-14, 5-2, 5-3, 5-9, 5-15, 5-21, 5-22,

5-26, A-1
pull-up resistor, 6-6, 7-1
pulse separation, 2-5
pulse width

and skew, 3-20
minimum, see minimum pulse width

PULSE_FIL TER directive, 3-20

reconvergent fanout, 3-3, 9-3
RECONV _FAN OUT directive, 3-3
regist.er, smooth/glitchy, 6-22, 6-23, 6-25, 6-26
register primitive, 3-20, 5-4, 6-3, 6-10, 6-22, 6-25, 6-26
required input files, see files, required input
resistor, 7-1

4/10/86 I-9

Index Timing Verifier

resistor primitive, 6-3, 6-6, 6-17, 7-1, 8-16
resistors, pull-up, 6-6
resolution, 1-8, 3-10, 4-8, 4-11
RISE property, 5-4, 5-9, 5-22, 5-26
rise/fall time, asymmetrical, 1-3, 3-7, 3-12
RISE_FALL_ANAL directive, 3-12, 5-6
RISE_FALL_MODELS directive, 3-12, 3-13, 5-6
root drawing, 2-2
ROOT_DRAWING directive, 2-2, 2-7, 3-4, 8-13

SCALD Language, 2-12, 4-12, 9-1
scale, see resolution
set reset function, 6-10, 6-21, 6-22, 6-23, 6-26
setup hold primitives, 6-4, 6-7, 6-8
SETUP property, 6-7, 6-8
setup time, 1-2, 1-3, 1-5, 4-3
setup time primitives, 2-5, 3-3
SET_MIN_DELAYS directive, 3-20
signal assertions, 2-1, 2-2, 2-6, 2-13, 2-14, 3-2, 3-21, 9-1

!C, 4-4
!D, 4-5
!P, 4-4
!S, 4-4
for clocks, 4-1
for interface signals, 4-1, 4-3
in case file, 4-12
prefix, 4-3, 4-4, 4-5, 4-6
skew in, 4-6, 4-8, 4-11
sub-intervals in, 4-6, 4-10, 4-11
syntax, 4-5, 4-6, 4-7, 4-8, 4-9, 4-10, 4-11
time specifier in, 4-3, 4-6, 4-7, 4-8, 4-9, 4-10

signal history, 1-4, 1-5, 1-7, 2-2, 2-3, 2-9, 2-10, 2-11,
2-12, 3-2, 5-6, 5-19, 5-21, 5-22, 5-24,
5-27, 5-29, 5-30, 5-32, 9-4

buses in, 2-10
common skew in, 3-7
options to control 3-6
resolution of, 1-8, 4-8
rise/fall time in, 3-7

signal name syntax, 2-12, 4-5, 4-12
signal strength, 3-8, 6-5, 6-6, 6-17, 7-1, 7-2, 7-3, 7-4,

7-5, 7-6, 7-7, 7-8, 7-9, 7-10, 7-11
signal values, 1-5, 1-6, 1-7, 2-7, 2-9, 2-10, 2-11

I-10 4/10/86

Timing Verifier

high impedance/unknown, 1-5
in case file, 4-14
resolution of, 1-8, 4-8
rising/falling, 5-17
stable/changing, 1-5, 1-8, 2-11, 3-13, 3-20, 3-22,

4-1, 4-3, 4-4, 4-5 5-6, 5-17,
5-30, 6-5, 6-12

zero/one, 1-5, 1-8, 2-10, 3-13, 3-22, 4-1,
4-4, 5-17' 5-30

signals
clock, 1-3, 1-5, 2-10, 4-1, 5-23, 9-2
constant, 3-6, 8-16
evaluation directives on, 5-17
initialization of, 5-16, 5-17
low asserted, 2-12, 4-6
multi-bit, 7-1, 9-5
named, 2-9
NC (non-connected), 3-7, 3-19
path names, 3-6
scalar, 9-3
synonymed, 5-2
unnamed, 3-8
vectored, 9-5
waveforms, 1-5, 1-7, 2-3, 2-8

Simulator, 2-8, 2-12
SIZE property, 5-14
skew, 2-1, 3-2, 3-3, 3-7, 3-20, 4-1, 4-4, 4-7, 4-8, 4-9,

4-11, 9-2
STANDARD library, 6-2
syntax, signal name, 2-12
systems, operating, see operating systems

text macros, 4-12, 5-2, 5-5, 5-17, 9-4
threshold primitive, 6-3, 6-6, 6-17
threshold voltages, 1-6
TIME library, 6-2
time specifier, 4-3, 4-7, 4-8, 4-9, 4-10
TIMES property, 5-10, 5-11, 5-13
timing assertions, see signal assertions
timing error, see errors, timing
timing information, see signal history

Index

timing models, 1-3, 1-5, 2-12, 3-6, 5-1, 5-4, 5-5, 5-9, 6-1
assertions in, 4-5

4/10/86 I-11

Index Timing Verifier

timing primitives, 1-7, 2-4, 2-5, 5-12, 5-32, 6-2
bubbled pins on, 6-4

timing violation, see errors, timing
TIMING_DIAGRAMS directive, 3-4
TIMING_SIM_MODE directive, 3-20, 3-21
tips, running Verifier, 2-2 ·0

transistor primitive, 6-3, 6-6
transistors, bidirectional, 3-8
TRANSITION property, 6-18, 6-21, 6-22, 6-23, 6-25,

6-26, 6-27
transmission gate primitive, 6-3, 6-6
transmission gates, 3-8
tri-state logic, 3-22, 7-1, 7-7, 7-8, 7-9, 7-10, 7-11
tri-state mode, 6-12, 6-13, 6-15, 6-16
tri-state output, 3-18
ts buf primitive, 3-22, 6-3, 6-12
ts bus primitive, 3-22, 6-6, 6-10, 6-14, 7-1
TS_BUS_TYPE directive, 3-19, 3-22, 6-12, 6-15, 7-1, 7-7,

7-8, 7-9, 7-10, 7-11
tuned clocks, 5-26
tvlog.dat file, 2-7, 2-8
tvlst.dat file, 2-1, 2-3, 2-7, 2-8, 2-9, 2-10, 3-11, 8-1
TV_O, 2-10
TV_l, 2-10

uni trans gate primitive, 6-3, 6-6
UNIX, 2-5, 2-7, 2-9
unnamed signals, 2-10, 3-8
USE_DRA WING_WD directive, 3-14, 5-3, 5-4, 5-9, 5-16

vector, 9-5
verifier.cmd file, 2-1, 2-5, 2-6, 2-9, 2-13, 2-14, 8-27, 9-2
verify command, 2-1, 2-2, 2-3
verify command line, 2-2
VERSION command, 6-22
violation, timing, see errors, timing
VMS, 2-5, 2-7, 2-9

waveform input file, see files waveform input
waveforms, 1-7, 2-3, 2-8
wire delay file, 2-5, 2-7, 2-13, A-2
wire delay interface, 5-1
wire delays, 2-13, 3-14, 5-19, 5-21

1-12 4/10/86

Timing Verifier Index

and evaluation directives, 5-21, 5-22, 5-26
estimat.ed, 2-13, 2-14, 5-8, 5-9, 5-10, 5-11, 5-13
feedback of, 2-7, 5-1, 5-8, 5-14, 5-15
in signal hist.ory, 5-6
load dependent, 2-13, 2-14, 3-17, 5-1, 5-2, 5-8, 5-9,

5-10, 5-13
on pins, 5-7

wire gat.es, 3-7, 3-18, 3-22, 5-10, 5-11, 5-13, 6-15, 7-1, 7-2
ts-bus, 7-7, 7-8, 7-9, 7-10, 7-11
wire-and, 7-5, 7-6, 7-7
wire-or, 7-2, 7-3, 7-4

wire st.ops, 3-17, 5-9, 5-10, 5-11, 5-12
wire tie, see wire gat.e
wire-and gat.e see wire gat.es
wire-or gat.e see wire gat.es
wire-or mode, 6-12, 6-13, 6-14, 6-15, 6-16
WIRE_DELAY directive, 2-14, 3-14, 5-2, 5-9 5-15
WIRE DELAY int.erface, 5-14
WIRE_DELAY property, 3-14, 5-2, 5-3, 5-9 5-15, 5-21,

5-22, 5-26, A-1
WIRE_ESTIMATE directive, 3-17, 5-11, 5-13

families in, 3-17
wraparound, 9-6

xor primitive, 6-3, 6-11

4/10/86 1-13

