
SCALD LANGUAGE REFERENCE MANUAL

Manual Number: MN221 Rev A

10 March 1986

Valid Logic Systems, Incorporated
2820 Orchard Parkway
San Jose, CA 95134

(408) 945-9400 Telex 371 900,1

Copyright© HJ86 Valid Logic Systems, Incorporated

This document contains confidential proprietary informa
tion which is not to be disclosed to unauthorized persons
without the prior written consent of an officer of Valid
Logic Systems Incorporated.

The copyright notice appearing above is included to provide
statutory protection in the event of unauthorized or unin
tentional public disclosure.

ii

TABLE OF CONTENTS

Overview
D ra"·ings .. . 1-2
Signals and Interconnections 1-3

Signal Naming and Syntax
Signal Naming Conventions 2-1
Signal Na1ne Synta.x .. . 2-2

Negation Symbol 2-2
Signal Name .. . 2-3
Bit Subscripts 2-5
Assertion .. . 2-7
Signal Properties .. . 2-7

The Complete Signal Syntax 2-!J
Optional Signal Name Syntax 2-11
Concatenated Signals 2-12
Constant Signals .. . 2-12
Path Name Syntax 2-14

Page .. . 2-1.5
Abbreviation .. . 2-15
Path .. . 2-15
Size 2-16
Unique_Nun1ber .. . 2-16
Path Element Name Examples 2-16
Path Nan1e 2-17

Signal Synony1ns .. . 2-17
Signals of Undetermined Width 2-18
Signals of Undetermined Assertion 2-10
Advanced Signal Name Topics 2-20

Unused Pin Nan1es .. . 2-20
NC Signals 2-21
U nna1ned Signals 2-22

Special SCALD Bodies
Plu1nbing Bodies .. . 3-1
Bodies in the Standard Library 3-3

l\1ergers .. . 3-3
Demergers 3-3
NOT 3-3
SLASH 3-4

3/10/86 iii

Table of ContentB SCALD Language

SYNONYM ... 3-4
TAP... 3-4

Properties in the SCALD Language

iv

What is a Property.. 4-2
Specifying Properties.. 4-3

The Property Command 4-3
Properties Within Signals................................. 4-4
Signal Properties... 4-4

Pin Properties... 4-6
Adding Pin Properties w /Property Command .. .4-7
Adding Pin Properties as Part of Pin Name.... 4-7
Pin Properties Inherited From Signals 4-7

Property Attributes... 4-7
Parameter Attribute... 4-8
Inherit Attribute ... 4-11
Permit Attribute... 4-13
Filter Attribute... 4-14
User Property Attribute File............................ 4-14
Default Property Attributes............................. 4-15
An Example Property Attributes File............. 4-16

Drawing Properties... 4-16
Text Macro Processing Within Properties............. 4-17
Advanced Property Topics..................................... 4-18

\NAC Property... 4-18
\NWC Property.. 4-lQ

Properties Recognized by the Compiler................ 4-20
ABBREV... 4-22
ALLOW _CONNECT....................................... 4-23
BODY_TYPE.. 4-24
BUBBLED.. 4-26
EXPR .. 4-27
HAS_FIXED _SIZE... 4-28
NEEDS_NO_SIZE.. 4-2Q
NOASSERT.. 4-30
NO_IO_CHECI(... 4-32
NOWIDTII ... 4-33
PART_NAME .. 4-35
PATII.. 4-36
REP ... 4-37
SCOPE .. 4-38
SIZE.. 4-3Q
1ERMINAL ... 4-40

3/10/86

SCALD Language Table of Contents

TIMES.. 4-41
TITLE... 4-42
WIRE_D ELA Y ... 4-43

Text Macro Facility
What is a Text Macro... 5-1
Where to Define Text Macros............................... 5-3
Defining a Text Macro on a Drawing.................... 5-4
How to Use Text Macros....................................... 5-4

Use in Other Text Macros............................... 5-5
Use in Signal Names.. 5-5
Use in Properties.. 5-6
Use in Parameters.. 5-7

Where Text Macros May Not be Used................. 5-8
Drawing Names.. 5-8
Property Names.. 5-8

Text Macros With Parameters............................... 5-8
Multiple Parameters in Text Macros..................... 5-10
Globally Defined Text Macros............................... 5-11

Selection Expressions
Drawing Versions 6-1
Selection Expressions... 6-2
How Selection Expressions Are Evaluated 6-3
Selection Expressions in Drawings........................ 6-4
Expression Evaluation.. 6-5

Expressions
Use of Expressions... 7-1
BNF For Expressions... 7-3

Index

3/10/86 v

SEGilON 1
OVERVIEW

Logic design is support.ed on the SCALDsyst.em and PC
A T with a unique set of software tools and a proven
methodology. One of the most important aspects of
SCALD technology is the SCALD language that is used to
express the logical design of an electronic circuit. Within
this manual, the signal and path name syntax is defined and
the concepts of properties and t.ext macros are explained.

As with any language, the SCALD language has been
developed to provide clear and concise communication
between system and designer and specifically to allow logic
design concepts to be expressed in a predictable and con
sistent manner. The language is explicitly designed to allow
the definition of complex logic circuits while still retaining
its user-comprehensible nature. Since the language is
understood by the system, error detection, circuit analysis,
and physical descriptions can be generated automatically.

In the development of the SCALD language, the following
uiteria were realized:

• The language is complete. That is, the language is
capable of describing any logic circuit.

• The language is easy to understand. It is consist.ent,
simple, and logical and includes no surprises.

• The language adapts to existing design conventions.
Logic design conventions such as signal naming con
ventions and schematic layout are accommodat.ed
within the language - the language does not require
the user to follow a specific design style.

• The language supports hierarchical and structured as
well as flat designs.

3/10/86 1-1

Overview SCALD Language

• The language is error resistant. Constructs that are
error-prone and that do not provide significant
advantages in return are avoided.

• The language support.a concise representations.
Commonly encountered circuit element.a are
represented in as concise a manner as possible.

• The language does not require the addition of "spe
cial" information in a drawing that normally would
not be placed on a vellum print. A drawing needs
only enough information to describe the schematic.

1.1 DRAWINGS

Logic designs are entered into the SCALDsystem as draw
ings. A drawing is nothing more than a graphical schematic
- it is the same as' a schematic drawn by hand on paper.
The Graphics Editor is used to create all drawings in the
SCALDsystem. Drawings are used to specify all informa.
tion about a schematic throughout the SCALD system.

To describe a schematic, the component.a or "part.s" are
specified, positioned, and interconnected with wires. Com
ponent.a come from libraries that define set.s of part.s within
a logic family. Valid offers a wide range of libraries that
include the TIL, ECL, and CMOS technologies. A
schematic drawing is complete when all component.a and
wires have been entered and the drawing has been written
to the disk.

The Graphics Editor creates two descriptions of each draw
ing; a graphical description that shows the shape and place
ment of all part.s and wires, and a description of the
circuit's electrical connectivity that describes how the part.s
are interconnected, but contains no graphical information.
The Graphics Editor is the only SCALDsystem analysis tool
that knows what the drawing "looks like" and is the only
tool that reads the graphical descriptions. The remainder of
the analysis tools use the electrical connectivity descrip
tions.

1-2 3/10/86

SCALD Language Overview

The SCALD Compiler reads the drawings created by the
Graphics Editor, performs error checking and hierarchical
expansion, and outputs the connectivity files for use by the
other analysis tools. A drawing is entered by the designer
using the Graphics Editor, is compiled by the Compiler,
and is packaged by the Packager into the net and parts lists
required for circuit fabrication and documentation. The
O·ptional Timing Verifier and Logic Simulator analysis tools
perform electrical verification of the design.

1.2 SIGNALS AND INTERCONNF.GllONS

Every interconnection between two or more components
represents a signal, and every signal has a name. Signal
names can be assigned by the designer (using the Graphics
Editor's SIGNAME command); unnamed signals automati
cally are given unique names by the Graphics Editor. Sig
nal name assignment by the designer allows descriptive or
mnemonic references to be used; signal names assigned by
the Graphics Editor are more cryptic and are not as easily
interpreted. A signal is referred to by name and can be
referenced from many drawings.

The SCALD language recognizes interconnections in two
ways: the direct connection of two (or more) points with a
wire, or the designer's assignment of the same signal name
to two or more wires (i.e., there is an implicit connection
among wires of the same name). Implicit connections by
signal name make it easy to interconnect components
without having to use continuous wire connections that can
add unnecessary complexity to a schematic. As an exam
ple, consider a clock signal that drives multiple com
ponents. While a single wire with multiple tie points can be
used, labeling each clock input with the same signal name
is logically and functionally identical and eliminates having
to route the signal to each input.

3/10/86 1-3

SECilON 2
SIGNAL NAMING AND SYNTAX

2.1 SIGNAL NAMING CONVENTIONS

Signals in the SCALDsystem represent interconnections of
parts. These interconnections are given names that serve
to identify and distinguish them. Signals have several attri
butes that are specified within the signal name. These attri
butes are:

• The name by which the signal is known
• Its assertion level (high or low)
• The number of bits the signal represents
• The properties it possesses

A signal's name is a string of characters chosen to provide
some descriptive or mnemonic reference for the signal.
The name is used to identify the signal, and all signals with
the same name are interpreted as being the same signal.

The assertion level describes the active state of the signal
when asserted. By convention, a signal is active high for
positive logic and is active low for negative logic. Two sig
nals with the same name, but with different assertion levels
are NOT the same signal.

A signal that represents a single bit is called a "scalar" sig
nal. Within SCALDsystem, signals can represent multiple
bits (i.e., a bus). Multiple-bit signals are called "vector"
signals; the bit subscript portion of the signal name specifies
the number of bits (and which bits) the vector signal
represents. Scalar signals do not have bit subscripts. Vec
tor signals always have bit subscripts even when the signal
represents only a single bit. A signal cannot be a scalar in
one instance and a vector in another; the use of a signal
must be consistent.

3/10/86 2-1

Signal Naming and Syntax SCALD Language

Signals can be given properties that describe characteristics
of the signal, control how the signal is interpreted by the
Compiler, convey physical information, etc. Several pro
perties are predefined by the Compiler and have special
meanings. The designer can define additional properties
that are passed through the Compiler to post processing
programs to allow information to be added to the drawings
that is not used by the other design tools, but has meaning
in the user's design environment. Signals that have
different properties, but are otherwise identical, are con
sidered to be the same signal (except signals with different
values for the SCOPE property; see Properties in section 3.

2.2 SIGNAL NAME SYNTAX

The complete signal name syntax can include the following
parameters:

• negation symbol
• signal name
• bit subscript
• assertion symbol
• general properties

With the exception of the name, all of the other signal
parameters are optional.

NEGATION SYMBOL

The negation symbol indicates that the entire signal is the
negated form of a corresponding "base" signal (i.e., the
complement of the signal without the negation symbol).
As an example, the signal -CLOCK A is the negated form
or complement of the signal CLOCK A. The default nega
tion symbol is the "-" character (see section 2.4 and the
Library Reference Manual for optional symbols).

2-2 3/10/86

SCALD Language Signal Naming and Syntax

SIGNAL NAME

The name portion of a signal is the "name" by which the
signal is known. Within a name, a timing assertion may be
included. A signal name may be made up of any characters
except the following reserved characters:

bit subscript start character (' < ')
general property prefix character ('\')
assertion character('*')
signal concatenation character (':')

The following additional characters have special meanings
within the signal name:

"
{}
!
$

delimiter for a single quote string
delimiter for a double quote string
delimiters for a comment
prefix for a timing assertion
signal class separator

A signal name is further divided into three parts: the signal
class, the name string, and the timing assertion. The signal
class and timing assertion are optional.

Signal aass

Signal class is an optional character string prefix that is used
to identify groups or sets of related signals. As part of the
signal name, signals with the same name string, but with a
different signal class, are NOT identical. A signal class
string must be separated from the name string by the $
character. As an example, all signals in an ALU portion of
a design would be placed in the same class (i.e., the
''ALU'' class) by prefixing each signal with ''ALU.''

ALU$A=B
ALU$BUS ENABLE
ALU$CARRYIN

3/10/86 2-3

Signal Naming and Syntax SCALD Language

The signal class of a signal is ignored by the Compiler; it is
interpreted as part of the name. Signal class can be used by
the designer both to sort signals and to improve the reada
bility of signal names. As will be explained later in this
section, unnamed signals automatically are assigned signal
class "UN."

Name String

The name string is a string of characters that form the
"name" of the signal; user-assigned names are usually
descriptive or mnemonic. Names may be made up of any
characters except for the special characters previous
described (special characters can be used if enclosed in sin
gle or double quotes). For example, the name

A*B enable

is illegal while the following names are legal:

'A*B enable'
"A *B" enable
A' *'B enable

'liming Assertions

Timing assertions are used to define the periodic behavior
of a signal over a clock period. The most common use is
in defining the behavior of clock signals. Timing assertions
provide important data to the Timing Verifier and the Logic
Simulator. They are passed on to these programs by the
Compiler without being checked for syntax errors. Timing
assertions are ignored by the Packager. The form of a tim
ing assertion is described in detail in the Timing Verifier
Reference Manual. The general form is

I assertion_type tz"me_specifier

where '!' is the timing assertion prefix character,
assertion_type is C, P, D, or S, and time_specifier is a clock
interval or range of clock intervals.

2-4 3/10/86

SCALD Language

Here are some examples:

CLOCK !S 4-6
CLOCK !C2-4

Signal Naming and Syntax

The Compiler ignores timing assertions because they are
part of the name portion of the signal name. The two sig
nals in the above example are NOT the same signal
because they have unique signal names.

mT SUBSCRIPTS

:Bit subscripts are part of the SCALD structured design
methodology and are used with vector signals both to
specify the number of bits that a signal represents (e.g., the
bit range) and to identify the bits included. Bit subscripts
can be of the following forms:

<bit>
<bit •• bit>
<bit •• bit: step>
<bit :width>
<bit :width :step>
<bit list>

wliere bit is some bit number. The bit number must be
equal to or greater than zero (negative bit numbers are not
allowed). The '<' character marks the beginning of a bit
subscript, and the '>' character marks the end. If a bit
subscript does not appear in a signal name, the signal is a
scalar.

<hit> Subscript

Specifies a single bit of a vector signal. Note that although
such a signal represents only a single bit, it is called a vec
tor since it represents a specific bit of a multibit (vectored)
signal. Some examples:

<31> <0> <6> <5334773>

3/10/86 2-5

Signal Naming and Syntax SCALD Language

<bitl •• bit2> Subscript

Specifies a subrange of bit.s from bit1 to bit£ inclusive. The
order of the bit.s is determined by the signal synt.ax being
used; the default bit order is from right to left (i.e., bit1 is
greater than bit2). See also section 2.4 and the Library
Reference Manual. Some examples:

<31..0> <9 .. 2> <7..0>

<bitl .• bit2: step> Subscript

Specifies a subrange of bit.s beginning with bit£ and includ
ing every bit that is step bit.s apart up to bitl (default right
to-left bit order). The step value is a positive integer (a
negative integer can be specified to reverse the bit order
signal synt.ax); a step value of "1" is equivalent to no step
value. Some examples:

< 31..0:2 > result.s in 30 28 26 ... 6 4 2 0
<11..0:4> result.sin 8 4 0
<9,.1:3> result.s in 7 4 1
<0 .. 31:-l>result.s in 31 30 29 ... 3 2 1 0
< 15 .. 0:20>result.s in 0

<bit: width> Subscript

Specifies a field of width bit.s using bit as the high-order bit
(default rightrto-left bit order) or low-order bit (left-to
right bit order). Note that width must be a non-zero posi
tive integer. Some examples:

2-6

<31:8> same as <31..24>
<15:16> same as <15 .. 0>
<0:16> same as <0 .. 15> (left-to-right bit order)

3/10/86

SCALD Language Signal Naming and Syntax

<bit : width : st.ep> Sub!cript

Specifies a field of width bits using bit as the high-order bit
(default right-to-left bit order) or low-order bit (left-to
right bit order) and including only those bits that are step
bits apart. Note again that width must be a non-zero posi
tive integer, and step can be either a positive or negative
non-zero integer. Some examples:

<31:8:2> same as <31..24:2>, results in 30 28 26 24
<0:16:3> same as <0 .. 15:3> (left-to-right bit order),

results in 0 3 6 9 12 15
<31:8:-1> same as <24 .. 31>

<bit list> Sub!cript

A bit list is a list of any of the above forms of subscript
specifiers. Each subscript specifier must be separated by a
comma, and any number of specifiers may be included in
the list. An example:

<1,7 . .4,19:8:2> results in 18 16 14 12 7 6 5 4 1

ASSERTION

In the default signal syntax, the assertion level of a signal is
determined by the presence or absence of the '*' low asser
tion character (i.e., the presence of the low assertion char
acter indicates that the signal is active in it low state). For
a high assertion character that must be explicitly specified
to define a signal that is active in its high state, see the
alternate signal syntax formats described in section 4.4.

SIGNAL PROPERTIES

Signal properties are used to add information to a signal
that can be interpreted by the Compiler or Packager pro
grams. A property is a name/value pair that is used to con
vey almost any kind of information. For a complete
description of properties, see the Section 4.

3/10/86 2-7

Signal Naming and Syntax SCALD Language

The form of a signal property when it appears in a signal
name is:

\ property name = 'property value'

The \ is the property prefix character, property name is a
character string identifier, and 'property value' is a string or
characters enclosed in single quotes. Some common signal
properties have been given abbreviations (with text mac
ros) to make them easier to use. These abbreviations are:

L - gives local scope to a signal
G - gives global scope to a signal
I - identifies a signal as an interface signal
Rn - specifies signal replication
NWC - no width check directive
NAC - no assertion check directive
WD n - wire delay
CD n - chip delay
En - evaluation directive

They are used as follows:

\L equivalent to \SCOPE='LOCAL'
\WD 2.0-3.0 equivalent to \WIRE_DELAY='2.0-3.0'
\R 2 equivalent to \REP='2'

For a more complete description of text macros and their
use, see Text Macro Facility, later in this manual.

2-8 3/10/86

SCALD Language Signal Naming and Syntax

2.3 TIIE COMPLETE SIGNAL SYNTAX

The signal name parameters are combined to form a com
plete signal name. To summarize, a signal name may
include the following parameters:

• negation character
• name portion
• bit subscript
• assertion statement
• general properties

With the default signal name syntax, the order in which the
signal name parameters must appear is as follows:

negation name subscript assertion properties

The negation, subscript, assertion, and properties parameters
are optional; name must appear in every signal name. The
following examples demonstrate the default signal syntax.

CLOCK
Active high "CLOCK" scalar signal.

-CLOCK
Negated (complementary) active high "CLOCK"
scalar signal.

ENABLE*
Active low "ENABLE" scalar signal.

-ENABLE*
Negated active low "ENABLE" scalar signal.

-DATA IN < 15 .. 0> *
Negated active low 16-bit DATA IN vector signal
(DATA IN 0 through DATA IN 15).

3/10/86 2-9

Signal Naming and Syntax SCALD Language

DATA OUT <2>• \WD 2.0-3.0 \L
Active low "DA TA OUT 2" single-bit vector sig1.1al
with 2.0-3.0 nanosecond wire delay and "local"
scope.

SYSINIT* \G
Active low "SYSINIT" scalar signal with global
scope.

ADDR <15 .. 0,18> \I\WD 3.0-5.6
Active high 17-bit "ADDR" vector signal (ADDR
0-15, ADDR 18) with "interface" scope and 3.0-5.6
nanosecond wire delay.

CLK !C 0-4, 5-7
Clock signal high for intervals 0-4 and 5-7.

DATA !S 2-4
Data signal high for intervals 2-4.

Note that in the signal examples with properties, a space is
required to separate the property name from it.s associated
value and that a space also is required to separate a pro
perty value from a subsequent property name (the Com
piler uses spaces to determine the beginning and end of a
text macro parameter; a space is not required between the
\I and \WD properties in the last example since the \I tex1
macro does not have an associated property value).

2-10 3/10/81

3'CALD Language Signal Naming and Syntax

:t4 OPTIONAL SIGNAL NAME SYNTAX

Ilhe default syntax for signal names described in the previ
>us sections is ref erred to as the Valid standard library for
nat or "Library Format 1" and is defined as follows:

negation name subscript assertion general_props

<'our other formats for the signal name syntax are sup
>orted. To use these formats, the component libraries
nust be translated from the Valid format to the library for
nat desired. Note that library translations normally are per
'ormed by Valid field service personnel when the system is
nstalled. The signal name syntax for each of the optional
ibrary formats is as follows; the negation, assertion, and
>it subscript order and subrange indicator for each format
i.re outlined in Table 2-1.

Library Format 2:
negation name subscript assertion general_props

Library Format 3:
negation name subscript assertion general_props

Library Format 4:
assertion name subscript general_props

Library Format 5:
negation name assertion subscript general_props

Table 2-1. Optional Library Forma1B

Onn&t Low Assert.ion High .Assert.ion Bit Subranp
rumber Clia.racter a.aracter Order Indicator

l• '•' none right to left ' ' ..
2 L H right to left ':'
3 L H right to left ' ' ..
4 ·-· '+' left to right ':'
5 L H left to right • ' ..

faJid standard default format

fI0/86 2-11

Signal Naming and Syntax SCALD Languagt

Note that with the formats that use the 'L' and 'H' fo1
assertion level, a space prefix is required to avoid signa
name ambiguity with scalar signal names. Also note tha
since Library Formats 2 and 4 use a ':' as the subrang«
indicator, two consecutive colons must be used to indicatA
a step argument for a bit subscript (e.g.
< bit1: bit2:: step>).

2.5 CONCATENATED SIGNALS

Signals can be concatenated (linked} to form signal bu
structures by separating each signal name with the concate
nation character (':') For example, the signals A and B ar
concatenated as follows:

A:B

Concatenated signals are completely unrelated; concaten~
ti on is merely a shorthand notation for two or more signal
that appear together and is the same as running the signal
side by side. A concatenated signal is separated back int
its individual signals with a "demerge" or "tap" body (se
section 3).

2.6 CONSTANT SIGNALS

A constant is a special type of signal name. The SCALl
language allows constant signals to be specified in binar:
octal, hexadecimal, and other number systems. The synta
for a constant signal name is the same as for other sign
names, except that bit subscripts are not allowed. The~
fields are allowed:

neg constant_name assertion properties

Constants may have assertions although no assertion checl
ing is performed on them unless explicitly enabled (see tl
Compiler Reference Manual for a discussion of assertic
checking).

The syntax for constant_name is

2-12 3/10/

SCALD Language Signal Naming and Syntax

radix # constant_value [(width)]

where radix specifies the number system (or base) used to
specify constant_value. Note that radix must be a base 10
integer between 2 and 16. Ir radix is not specified, binary
(base 2) is assumed. The '#' character separates radix
from constant_value.

Constant_value is a string of digits. The legal digits are
determined by the radix specified as follows:

Radix Legal Digits
2 0 1
3 0 1 2
4 0 1 2 3
5 01234
6 012345
7 0123456
8 01234567
g 012345678
10 0123456789
11 0123456789A
12 0123456789AB
13 0123456789ABC
14 0123456789ABCD
15 0123456789ABCDE
16 0123456789ABCDEF

Width explicitly specifies the num her of bits used to express
the constant (in the specified radix) and must be greater
than zero. Ir width is omitted, it is calculated from the
number of bits per digit (radix) and the number of digits in
the constant. Note that width, if specified, must be
enclosed in parentheses.

Radix Bits per Digit
2 1
3 4 2
5678 3
g 10 11 12 13 14 15 16 4

3/10/86 2-13

Signal Naming and Syntax SCALD Language

Example constants:

Const.ant Valueibase 10} Number of Bits

0101 5 4
2#0000 0 4
0000(3) 0 3
10#0 0 4
16#FFFF 65535 16
8#377 255 g
8#377(8) 255 8

2.7 PA'IH NAME SYNTAX

Path names are used to uniquely identify every component
within a design. Just as every wire has a signal name,
every component appearing within a design has a unique
path name. Since the same component can be used many
times within a design, the component path name must be
more specific than just the name of the component. Path
names are assigned exclusively by the SCALD system based
on the path followed from the root drawing down through
the hierarchy to each individual component. Users may not
specify their own path names. Path names are used by the
Compiler (the Compiler listing file cmplst.dat references
path names in its error reports), the Logic Simulator (open
ing signals with the same name within a design are resolved
with path names), and by the Packager.

The path name itself is made up of path element names for
each of the bodies encountered in the path from the root
drawing to the component. A path element name is
created by the Compiler for each body within a design. The
path element name syntax is:

page abbreviation path [size) [unique_numberj

2-14 3/10/86

SCALD Language Signal Naming and Syntax

PAGE

The number of the drawing page on which the body
appears. If the page number is '1,' the page reference is
(llcmitted from the path element name.

ABBREVIATION

An abbreviation for the drawing name. The abbreviation is
normally assigned by the user by attaching the ABBREV
property to the DRAWING body within the drawing. If an
ABBREV property is not assigned to a drawing, the Com
piler creates an abbreviation by truncating the drawing
name. {Library components are preassigned an ABBREV
property.) When abbreviation begins with a number, a
period ('.') is prefixed to the abbreviation as a delimiter to
separate abbreviation Crom page even if the page number is
'l' (omitted). For example:

.lALU = page 1 of drawing lALU
2.lALU =page 2 of drawing lALU

2ALU =page 2 of drawing ALU

PA'IH

The value of the PA TII property attached to the body.
Unique PA TII properties are automatically assigned to each
body in a drawing by the Graphics Editor when the drawing
is written. PA TII properties can also be assigned by the
user with the Graphics Editor's PROPERTY command.
When PA TII is automatically assigned by the Graphics Edi
tor, it takes the form

integerP

as in:

37P 85P 4P

If abbreviation ends with a number, a period{'.') is prefixed
to path as a delimiter.

3/10/86 2-15

Signal Naming and Syntax SCALD Language

SIZE

The value of the SIZE property attached oo the body for
size replication. If the SIZE value is greater than 0, the
value is included in the path element and prefixed by a '#'
character; if the SIZE value is 0 or not specified (i.e., no
size replication is oo be performed), size is omitted.

UNIQUE_NUMBER

If the combination of the page, abbreviation, path, and size
values does not form a unique path name element (e.g.,
vecoored signals with size replicated components), an incre
menting number, prefixed by a colon (':') is added follow
ing the size value oo make each path name element unique.

PA1.ll ELEMENT NAME EXAMPLES

The path element name for a 74LS74 with an assigned
PA TH property of 34P that appears on page 3 of a drawing
is:

3LS74.34P

In the above example, note the period delimiter between
LS74 {the abbreviation for an 74LS74 device) and the
PATH property {34P). A more complex path elemen1
name is:

.2DAC8P#8:3

This path element name is for a body on page 1. Note the
omission of a page number at the beginning; the leadin@
period indicates that the body drawing abbreviation begim
with a numeral {2DAC}. The body has an assigned PATH
property of SP (a period delimiter is not required between
the ABBREV and PATH properties since the ABBREV pro
perty ends with a character). The '#8' indicates a size
replicated part, and the ':3' makes the path name elemen1
unique among the eight size-replicated bodies.

2-16 3/10/Sf

SCALD Language Signal Naming and Syntax

PAnINAME

In a hierarchical design, the path name for any component
within a design is constructed by concatenating each path
element name for each body in the hierarchical path from
the root drawing down to the component. Path names are
enclosed in parentheses (). Each individual path element
name is separated by a space. An example of a path name
using the two path element names described above is:

(CONVT .2DAC8P#8:3 3LS74.34P)

This example describes a 74LS74 that appears on page 3 of
the drawing "2nd DAC stage" (abbreviated as 2DAC)
which itself appears as a body on page 1 of the root drawing
"converter" (abbreviated as CONVT). Note that since
"CONVT" is the root drawing, there is no corresponding
body and no page number or PA TH or SIZE property.

2.8 SIGNAL SYNONYMS

When a signal has more than one signal name, the signal
names are said to be synonymous (i.e., the names all refer
ence the same signal). Synonyms are useful for creating
locally-meaningful names for signals known throughout a
design. Synonyms also provide a means of interconnecting
nets. As an example, the two nets A and B can be con
nected together by simply synonyming the signals A and B. ·

The easiest way to create a synonym is to assign two signal
names to a single wire. Synonyms also are created when
ever more than one signal is connected to the same pin. A
SYNONYM body is provided in the Standard Library (see
the Library Reference Manua~ that can be used to create a
synonym. The SYNONYM body appears as three parallel
lines; the center line has two common pins (one at each
end). Every signal connected to the pins of the synonym
body will be synonymed together.

3/10/86 2-17

Signal Naming and Syntax SCALD Language

When two signals are synonymed, the Compiler selects one
of the signal names as the "base" signal. The Compiler's
expansion file (cmpexp.dat) contains only base signals. The
synonyms file (cmpsyn.dat) lists all of the signals in the
design and their corresponding base signal name. A signal
is its own base signal if is is not synonymed to any other
signals or if it is selected as the base signal. The rules for
selecting a base signal are as follows. The rules are applied
in the order listed; if base signal name selection cannot be
determined by one rule, the next rule is applied.

1. Select the lower bit number of two signals with the
same name (e.g., X<O> is selected over X<3>).

2. Select a constant signal over a non-constant signal.

3. Select a signal with name properties over a signal
without name properties (e.g., CLOCK !C 0-4 is
selected over CLOCK).

4. Select the signal with the most global scope.

5. Select the root-level interface signal.

6. Select a user-assigned signal name over an
"unnamed" or 'NC' signal.

7. Select a scalar signal over a vector signal.

8. Select the signal that is lexicographically smaller
(e.g., CLK is selected over CLOCK).

The synonyms file is described in detail in the Compiler
Ref ere nee Manual.

2.9 SIGNALS OF UNDE'IERMINED WIDm

Some signals in a design do not have an explicit width
specification. The width of these signals must be deter
mined from context; that is, the widths are determined by
how they are used. The most common example of signals
with undetermined widths are NC and unnamed signals.

2-18 3/10/86

SCALD Language Signal Naming and Syntax

NC and unnamed signals are special signals. An NC signal
is used to specify an unconnected pin. The use of this sig
nal serves to make the drawing easier to understand. It is
inconvenient to have to specify the width of an uncon
nected pin so the Compiler coerces the width of the signal
NC to the width of whatever pin it is connected to.
Unnamed signals are created by the Graphics Editor.

For both NC and unnamed signals, the Compiler deter
mines the signal width from context. Most of the time, the
Compiler sets the width of the signal to the width of the
pin to which it is connected. In some cases, however, the
pin itself has no width (as in the case of a MERGER or
NOT body). In these cases, the Compiler must search
further to find the width of the signal. Typically, all the
"plumbing" bodies in a drawing must be processed before
the widths of all the unnamed and NC signals can be deter
mined. If the width of a signal cannot be determined, an
error message is printed.

Signals with unknown widths are given the bit subscript
<UNDEFINED> when printed to indicate to the designer
that the width could not be determined. In such cases, the
designer can specify the width in one of the following ways:

1. Give the signal a name with the width specified (in
the bit subscript).

2. Use a SLASH body to specify the width of the sig
nal.

2.10 SIGNALS OF UNDETERMINED ASSERTION

The assertion of unnamed signals must be determined from
context as is the width. The assertion of the signal is deter
mined whenever the signal is connected to a pin with a
known assertion or when the signal is synonymed to a sig
nal with a known assertion. Some pins do not have known
assertions. These pins have the NAC (no assertion check)
property which causes the assertion of the pin to be inher
ited from the signals connected to it. The existence of the
NAC property forces the Compiler to look at another body
to find the assertion of a signal.

3/10/86 2-19

Signal Naming and Syntax SCALD Language

Most "plumbing" bodies have pins with the NAC property.
For this reason, the Compiler processes all of the "plumb
ing'' bodies first in order to determine the assertions of the
unnamed signals in the design. If an unnamed signal is
connected to pins of conflicting assertions, the Compiler
generates an error message.

2.11 ADVANCED SIGNAL NAME TOPICS

All nets in a design are named. Many of these names are
assigned by the user while others are assigned by the
Graphics Editor. The Compiler uses the name given a net
to refer to the net. If there is more than one name for a
net, the Compiler selects one name for the net and outputs
a list of synonyms (or aliases) for that name so that the
other names are known. Special cases of signal names will
be described below.

UNUSED PIN NAMF.S

In a number of instances, a pin on a body will be intention
ally left unconnected by design. Any unconnected pins are
tied to the signal NC (no connect). There are cases where
this can lead to problems. For instance, assume a drawing
has two bodies connected with a signal that happens to also
be an interface signal (a pin of the body corresponding to
the drawing). Normally, the Compiler replaces the pin
name as used in the drawing with the name of the signal
connected to the pin. This means that a global signal name
is propagated down into the design via the pins it is con
nected to. This makes it very easy to trace a signal and
reduces confusion caused by preserving pin names (which
aren't real signals in any case). In the case mentioned
above, the real signal is NC (no connect). Substituting NC
for the pin name in the drawing disconnects the two bodies
since the signal is now a non-connected signal. To prevent
this from happening, the Compiler creates a new signal
name when it encounters an unconnected pin name.

2-20 3/10/86

SCALD Language Signal Naming and Syntax

The new signal name is created as follows:

1. Start with PINNAME$.

2. Append the pin name.

3. If the name is not unique, make it unique by
appending a number preceded by a'$'.

For example, the pin name SETA would be transformed
into the signal PINNAME_$SETA. This signal has the
same scope as the pin name; that is, it is known
throughout the subtree below the drawing.

NC SIGNALS

Occasionally, a signal (or pin) is to be left unconnected. To
make this clear in a drawing, it can be given the special sig
nal name NC. The Compiler (and the rest of the SCALD
system programs) understand that NC is a special signal
name. It has the following characteristics:

• Unlike other signals, nets with the name NC are not
connected together; each one is considered to be a
unique net.

• The signal NC has no particular width: it assumes
the width of whatever it is connected to.

• The signal NC has no particular assertion: it can be
connected to bubbled as well as non-bubbled pins.

• NC can be given an explicit width through the use of
the replication operator (\R n).

If a pin is left unconnected, the Graphics Editor automati
cally assigns the signal NC to it. See the section on
undetermined width signals for a complete discussion of
NC signal width.

3/10/86 2-21

Signal Nmning and Synta.X SCALD Language

UNNAMED SIGNALS

The Graphics Editor names each net that is not given a
name by the designer. The name is selected as follows:

1. Start with UN$.

2. Append the page number of the drawing in which
the net is found followed by a '$'.

3. Find all the bodies that the net connects to. Sort the
names of the bodies alphabetically and select the first
in the list. Append this name followed by a '$'.

4. Append the value of the PA TH property attached to
the body (selected above) followed by a '$'.

5. Append the name of the pin of the body (selected
above) that the net connects to.

6. If the signal so constructed is not unique within the
drawing, append a number, prefixed with a '$', to
make it unique.

For example, an unnamed signal on the third page of a
drawing that is connected to an LSOO, an LS138, a DACl,
and a MUX3 would be named as follows:

UN3$DAC1$

If the pin that the signal connects to on the DACl body is
ENABLE and the DA Cl body has the PA TH property 31P,
the signal would be named as follows:

UN3$DAC1$31P$ENABLE

Finally, if this signal name is not unique, it is made unique:

UN3$D AC 1$31P$ENABLE$2

2-22 3/10/86

SCALD Language Signal Naming and Syntax

This is the complete form of the signal name. If the body
name or the pin name have special characters (those with
special meanings in signal names such as'<', '>', '\', ':')
the body or pin name is placed in quotes. For instance, if
the pin on the DACl body was ENABLE\1, the signal
name would be formed as:

UN3D AC 1$31P$''ENABLE\l "$2

The Graphics Editor does not assign an assertion to the
unnamed signal. This is because, in general, the assertion
of a signal cannot be determined from the drawing alone;
it can only be determined by processing the synonyms and
"plumbing" bodies.

Unnamed signals have no particular width; they assume
the width of the pins of the bodies to which they are con
nected. See the section describing signals of undetermined
width for details.

3/10/86 2-23

SECTION3
SPECIAL SCALD BODIES

There are several special bodies that can be used in
SCALD drawings for signal manipulation. These bodies
are used to make it easier to express a design concisely.
The bodies can be found in the SCALD Standard library in
the Library Reference Manual. The SCALDsystem does not
treat these bodies as special; each one is defined in terms
of more basic concepts. The designer may create special
bodies that behave in exactly the same manner as the ones
provided.

3.1 PLUMBING BODIES

Plumbing bodies are used to combine (concatenate) signals
into a single (vectored) signal or to separate a vectored sig
nal into individual signals. A "plumbing" body looks like
a wire or wires and simulates interconnections. For exam
ple, if two signals are to be combined into a bus, the user
might draw a structure as follows:

A

_B _ _,)>--C_<_l_._.O>

The signals A and B are combined into the bus C< 1..0>.
Combining signals in this manner is called merging. If the
above structure is drawn with wires, the result is the same
as drawing:

A B C<l..0>

3/10/86 3-1

Special SCALD Bodies SCALD Language

The signals A, B, and C< 1..0> are synonymed together.
This is not what was meant at all, and is an error besides
(since the widths of the signals are different). The
intended function could be drawn as:

A:B C<l..0>

In this example, the signal A:B (the concatenation of the
signals A and B) is synonymed to the signal C<l..0>.
This is precisely the function desired for merging.

The last example, however, does not give a good graphical
representation of the function of merging. What is needed
is to define a body that looks like the merge function and
has the same function. This is done in a family of bodies
called 2 MERGE, 3 MERGE, 4 MERGE, etc. that merge
2, 3, or 4 etc. signals into one signal. The definition of the
MERGE is a synonym of the concatenation of all of the
input signals to the output bus. MERGERs are described
further below.

''Plumbing" bodies are special in that the Compiler
processes them before processing other bodies in a drawing
to resolve widths and assertions of signals whose widths or
assertions are unknown (this is discussed in detail else
where). A "plumbing" body is identified by the presence
of the NWC (no width check) property on a pin of the
body. The NWC property indicates that the pin has no
known width; the width of the pin is determined by the
widths of the signals connected to it. Another method of
specifying a "plumbing" body is the presence of the
BODY_TYPE=''PLUMBING" body property. A "plumb
ing" body can not contain any primitives.

The designer may create "plumbing" bodies that follow
design conventions already being used. In this manner,
SCALD system drawings can be customized

3-2 3/10/86

SCALD Language Special SCALD Bodies

3.2 BODIES IN THE STANDARD LIBRARY

The bodies in the following sections are included in the
Standard Library; for additional information, see the
Lz'brary Reference Manual.

MERGERS

Mergers are used to combine several signals into one sig
nal. The result of merging several signals is a single signal
that is the concatenation of the input signals. An
equivalent signal can be created by explicitly specifying the
concatenation of the input signals. For instance, the signals
A, B, and C can be merged together to form the signal
A:B:C with a merger. The output signal is equivalent to
A:B:C. If the output signal were named A:B:C, the merger
would not be needed. The merger provides a graphical
representation for combining signals. For a more detailed
explanation, see under Plumbing Bodies below.

DEMER.GERS

Demergers are simply mergers turned around. The input
signals are now output signals, and the output signal is now
the input signal. A demerger is used to separate a signal
into several pieces. In fact, a demerger is exactly the same
as a merger. Its use determines its meaning; that is, if a
merger is used to combine signals, it is a merger; but if it is
used to separate signals, it is a demerger. For a more
detailed explanation, see under Plumbing Bodies below.

NOT

The NOT body is used to change the logic convention of a
signal. If a signal is asserted low, it is considered to be a
negative logic signal. If a signal is asserted high, it is con
sidered to be a positive logic signal. The NOT body is used
to change the logic convention of a signal without introduc
ing an actual logical inversion. That is, the state of the sig
nal is not changed, it is just considered to be of the oppo
site logic convention. The consistent use of logic

3/10/86 3-3

Special SCALD Bodies SCALD Language

conventions makes designs easier to read and understand.
The NOT body is used as an escape in those cases where
strict adherence to a logic convention is not possible. The
NOT body is a notational assistance and does not affect the
physical implementation of the circuit. The NOT body
must be used if bubble checking is to be performed.

SLASH

A SLASH body performs two useful functions. First, it is
used to document the widths of signals. Normally, a
signal's width is apparent from it5 bit subscript, but occa
sionally the signal name is not present or visible where the
signal is used. In these cases, it may not be clear what the
signal's width is. The SLASH body is used to remind the
designer. The Compiler always checks the signal's actual
width with that specified on the SLASH body.

The second use of the SLASH body is to specify signal
widths that are not otherwise specified. NC and unnamed
signals, for instance, have no particular widths. The Com
piler assigns widths to these signals, but, when the Com
piler is unable to determine the width, the SLASH body
can be used to specify it.

SYNONYM

The SYNONYM body is used to tell the Compiler that two
signals with different names are to be considered the same
signal. For more information, see below under Signal
Synonyms.

TAP

The TAP body is used to select a portion of a signal while
leaving the original signal unchanged. In this fashion it is
different from a merger which splits a signal into several
pieces. A tap can be used to select either the most
significant or least significant portion of the input signal.
The number of bits selected by the tap is specified with a
SIZE property attached to the TAP body.

3-4 3/10/86

SECTION 4
PROPERTIES IN lllE SCALD LANGUAGE

This section introduces the concept of a property. Proper
ties serve important and varied functions in the SCALDsys
tem. They are used to convey a wide range of information
about the design and to control analysis processes. A pro
perty is a name/value pair that can be attached to certain
objects in a design to convey almost any information. A
number of predefined properties are used by the SCALD
system to record information needed by the Timing
Verifier, the Simulator, and the Packager. Other properties
can be defined by the user to convey information to design
programs, or to be passed through the SCALDsystem to
other systems (such as simulators, physical design systems,
etc.).

Properties also provide a mechanism for adding physical
information to drawings (which represent only a logical
design), that can be passed on to the Packager and other
physical design systems. With the ability to define and use
properties, the designer can customize the SCALDsystem
to fit into an existing or evolving CAD system.

A property consists of a name by which the property is
known (property name) and an associated value (property
value). Properties can be attached to certain objects on any
drawing in the Graphics Editor. Property name/value pairs
can be attached to bodies, signals, and pins. Properties can
also be attached to an entire drawing by attaching them to a
DEFINE body or a DRAWING body on that drawing.

Properties are then passed along to the Compiler in the edi
tor output files. From the Compiler they are passed to all
the other SCALD system programs (as well as programs
written by the user) in the Compiler expansion output file.
(Some properties can be filtered out by the Compiler to
reduce file size.)

3/10/86 4-1

Properties SCALD Language

4.1 WHAT IS A PROPERTY?

A property is a name/value pair assigned to a particular
object. The property name is an identifier, that is,

a string of not more than 16 characters that
includes letters, digits, and '_'(underscores)
and start.s with a letter.

Some examples of property names are:

SIZE
TIMES
MY _PROP _NAME
THE_40TH_NAME
SATURDAY1027
COST_OF _PART
PIN_NUMBER
PART_NAME

Notice that the underscore is used instead of a space.
Spaces are not allowed in property names because a space
delimit.s a property name from a property value.

Many properties have been defined by Valid for use in the
SCALD system and have a specific meaning. Each of these
are described, one to a page, in alphabetical order, later in
this section.

A property value is associated with each property name.
The property value is a string of up to 255 printing charac
ters. Property values can be empty. Property values
should be enclosed in single quotes when a property is
added to a signal name (and text macros are not used).
Property values need no quotes when a property is added
using the PROPERTY command.

Here are some representative property values:

1
25oct82 10:31:46.03
(SIZE+ 4) I 5 + 35 MOD A
This is a long property value
Property value with special chars !@ #$o/6*()-}{[] > <

4-2 3/10/86

SCALD Language Properties

A property always consists of the property name and its
value.

4.2 SPECIFYING PROPERTIES

Properties are specified with the Graphics Editor. The
Graphics Editor ignores double quotes ("), it does not pass
them on to the Compiler. Where a double quote is needed,
use two single quotes (") instead.

There are basically two ways of adding properties to draw
ings; using the PROPERTY command or including the
property in a signal name. The two methods are used in
different situations. Body properties are always added using
the PROPERTY command. Signal properties are usually
included in a signal name, but can also be added to the sig
nal using the PROPERTY command. Pin properties are
usually included in the pin name, but can also be added
using the PROPERTY command. A pin property can also
be inherited by a pin from a signal connected to the pin.

The meaning of the properties is the same regardless of the
method used to assign them.

nIE PROPERTY COMMAND

The PROPERTY command of the Graphics Editor is used
to specify a property name and its value and to attach the
property to an object in the drawing. Properties are
attached to the origin of an object. Any property value can
be entered, except one with leading spaces. Double quotes
are ignored by GED.

3/10/86 4-3

Properties SCALD Language

A property specification appears as

name value

where name is the property name and value is the property
value. When displayed on the drawing, the property
appears as:

NAME-VALUE

PROPER'llFS WimIN SIGNALS

The other method of specifying properties is to include
them as part of signal names. Commonly used properties
can be added to a signal name using predefined text mac
ros. Other properties included in a signal name take the
form:

\NAME='VALUE'

For more information on the exact syntax used for adding
properties to signal names, see below under Signal Proper
ties.

The user can define additional text macros to support other
properties. See "Text Macro Facility," in Section 5.

SIGNAL PROPER.'11F8

The syntax for a property in a signal name is

\NAME='VALUE'

where the backslash (\) denotes the start of a property.
Note that the property value appears in single quotes. This
is recommended to unambiguously identify the beginning
and end of the property value. Do not use double quotes
(GED restriction) .

4-4 3/10/86

SCALD Language Properties

Text macros are used to make it easier to specify proper
ties. For example, the property "SCOPE" specifies the
scope of a signal. It can assume the values "LOCAL,"
"GLOBAL," or "INTERFACE." Instead of adding the
property SCOPE='LOCAL' or SCOPE='GLOBAL' to a
signal, text macros for each are predefined for the Com
piler in a file. These text macros are:

L = 'SCOPE="LOCAL"'
G = 'SCOPE="GLOBAL"'
I= 'SCOPE="INTERFACE"'

When used in a signal name, the text macros are expanded
by the Compiler into the proper form. For example

CLOCK* \I

is expanded to:

CLOCK * \SCOPE="INTERF ACE"

To define additional global text macros for property
name/value pairs, see section 5. The designer may define
additional text macros with a DEFINE body in a drawing
(see section 5).

Text macro parameters can be used to create property
name/value pairs whose values need to be assigned on an
instance by instance basis. For example, assume a property
called LENGTII which can take on many values. A global
text macro definition of the property might be

LEN = 'LENGTII="%1'"

where %1 refers to the first text macro parameter (text
macro parameters are separated by spaces). When used in
a signal name, the value of the property is placed after the
text macro as follows

\LEN 2

which expands to:

\LENGTII=2

3/10/86 4-5

Properties SCALD Language

This is the manner in which Timing Verifier properties are
supported. For example, a wire delay may be added to a
wire as follows

SIGNAL* \WD 2.0-5.6

which is equivalent to:

SIGNAL* \WffiE_DELAY='2.0-5.6'

This text macro is globally defined as follows

WD = 'WIRE_D ELA Y ="%1 "'

where %1 references the first parameter of the text macro.

Other standard signal name properties are supported with
built-in, reserved text macros. See the text macro section
for a complete description.

For a complete description of the syntax for a SCALD sig
nal name, see section 2, Signal Naming and Synf;ax.

Properties on signal names are passed through the Com
piler to the output expansion file. In this way, properties
are available to the Packager, the Timing Verifier, the
Logic Simulator, and any user provided programs.

Properties are associated with specific bit.s of the signal.
Different bit.s of a multi-bit signal can have different pro
perties.

4.3 PIN PROPERTIES

Properties can be attached to pins three ways. They may be
attached by adding the property to the pin with the PRO
PERTY command of the Graphics Editor. They may be
included as properties of the pin name for the pin. They
may also be inherited from signals connected to the pin.

4-6 3/10/86

SCALD Language Properties

ADDING PIN PROPERTIES
WI'TII 'TIIE PROPERTY COMMAND

PIN properties can be added to pins of bodies with the
Graphics Editor PROPERTY command. The user points to
the pin and specifies the property name and value to be
assigned to the pin. Default properties may be attached to
pins in the body drawing. The most common example of a
default pin property is PIN_NAME which is used to specify
the logical name of the pin.

ADDING PIN PROPERTIES
AS PART OF 'TIIE PIN NAME

Each pin of a body has a pin name which serves to identify
that pin. A pin name can have signal properties just like any
other signal; they are included in the signal name in exactly
the same manner. Some examples of pin names with pin
properties:

DATA INPUT \NAC
CLOCK* \PIN_NUMBER='2'
OUTPUT \OUTPUT_TYPE='(TS, TS)'

PIN PROPERTIES INHERITED FROM SIGNALS

Properties can be inherited from the signals that are con
nected to them. The most common example of a property
of this type is WIRE_DELAY. This property is assigned as
a signal property, but since it has a special inheritance attri
bute (see the section on property attributes), it is copied
from the signal to the pin to which the signal is attached.

4.4 PROPERTY ATTRIBUTES

A property attribute is used to control property processing
within the Compiler. Every property is given some attri
butes by default, and the user can modify or add to these.
Attributes are assigned in property attributes files read by
the Compiler. There is a Valid supplied attributes file that
is always read by the Compiler to assign attributes to

3/10/86 4-7

Properties SCALD Language

standard SCALD properties. The user may supply an addi
tional property attributes file specified by the
PROPERTY _FILE directive.

The attributes file contains a list of property names and
associated attributes. The file has the following form

FILE_TYPE = ATTRIBUTES;
property name : attribute specification ;

END.

where property name is the name of the property, and attn._
bute specification is a list of attributes for the property.

The attributes that can be assigned to properties are:

---+ used on body properties only
---+ controls property inheritance

parameter
inherit
permit
filter

---+ permission for property attachment
---+ removes property from output files

These are described in the following sections.

PARAME1ER ATTRIBUTE

The PARAMETER attribute is used to make the name and
value of a body property known within the drawing
corresponding to the body. Normally, body properties are
attached to bodies and pass through the Compiler to other
analysis tools. For example, the LOCATION property is
used to specify the LOCATION name for a physical com
ponent. This property means nothing to the Compiler; it
passes it through to the Packager, which uses it to guide its
package allocation.

4-8 3/10/86

SCALD Language Properties

Some properties, however, are used to pass information
into the drawing. The most common example of such a
property is SIZE. This property is used to convey informa
tion about the number of bits the body represents. This
information is needed by the drawing. To make it avail
able, the SIZE property is given the PARAMETER attri
bute. This causes two things to happen. First, the name of
the property, and its value, are available in the drawing. It
can be used as though it were a text macro. Second, any
text macros within the property value are expanded.

For example, assume the WIDTH=45*X property is
attached to the ELAN body. If the WIDTH property has
the PARAMETER attribute, its value will be known within
the ELAN.LOGIC drawing. It can be used, for example, in
signal names:

SIGNAL_WITHIN_ELAN <WIDTH-LO>

Further, the value of the WIDTH property is expanded by
the Compiler. Its value is '45*X' where 'X' is some text
macro (assume, for the purpose of example, that X=2).
The WIDTH property value is expanded to be: "45*2."
The signal name shown above then becomes:

SIGNAL_WITHIN_ELAN <45*2-1..0>

If the WIDTH property does not have the PARAMETER
attribute, the Compiler will generate an error since WIDTH
will be undefined.

Some properties that are to be parameters are used to pass
information about a primitive component through to some
analysis tool. For example, the TIMES property is attached
to components to specify to the Packager that additional
versions of the component should be generated. It may be
necessary for the value of the TIMES property to be related
to other design information; for example, the SIZE of the
component:

TIMES=SIZE*2

3/10/86 4-9

Properties SCALD Language

If the TIMES property has the PARAMETER attribute, the
Compiler substitutes the value of the SIZE parameter (the
SIZE property has the PARAMETER attribute by default).
If SIZE=l, the TIMES property value becomes "1*2."
The Packager, on the other hand, is expecting the TIMES
property to have an integer value; it won't accept "2*1."
The Compiler can be told to completely evaluate the
property's value by giving it the PARAMETER(INTEGER)
attribute. The Compiler expands text macros within the
property value and evaluates the property value as an
integer expression (an error is generated if the property
value is a malformed integer expression). The TIMES pro
perty shown above is then output with the value "2." In
all other respects, the PARAMETER(INTEGER) attribute
behaves just like the PARAMETER attribute.

A property can be given the PARAMETER attribute in one
of two ways: the property can be specified as a PARAME
TER when creating the body in the Graphics Editor, or the
property can be given the PARAMETER attribute in the
property attributes file. To give the property the PARAM
ETER attribute in a body drawing, append a \PARAME
TER to the end of the property value. For example, the
following property (attached to a body) has the PARAME
TER attribute:

ELAN="value for ELAN\PARAMETER"

The property ELAN has the PARAMETER attribute only
for this particular instance. If the property ELAN appears
anywhere else (and does not have the \PARAMETER
appended), it is not a PARAMETER. The second way to
give a property the PARAMETER attribute is with the pro
perty attributes file. When given the attribute via the attri
butes file, the property has that attribute everywhere it is
used (regardless of whether it has the \PARAMETER
appended or not).

4-10 3/10/86

SCALD Language Properties

INHERIT ATTRIBUTE

A property may appear on an object automatically when
objects become related or attached in some manner. This
copying of properties from one object to another is called
property inheritance. Inheritance can be controlled with the
INHERIT attribute. Inheritance behavior for a particular
property can be controlled for three independent contexts:
BODYs (DRAWINGs), SIGNALs, and PINs. These will
be discussed separately.

Body Property Inheritance

Inheritance of body properties is controlled with the
INHERIT(BODY) attribute. When a property is attached
to a body, it may be inherited down the hierarchy to appear
on all of the bodies within the drawing corresponding to the
body. For example, if the X property is attached to the
ELAN body, and the X property has the INHERIT(BODY)
attribute, every body within the ELAN.LOGIC drawing will
have the X property. If the X property does not have the
INHERIT(BODY) attribute, the X property only appears
on the bodies to which it is attached (the ELAN body in
this example).

Properties attached to the DRAWING body within the
ELAN drawing will also inherit to every body within the
drawing if the properties have the INHERIT(BODY) attri
bute. In this manner, properties attached to the body for
ELAN and those attached DRAWING body within ELAN
are processed in the same manner.

Care should be taken when using properties on bodies. If
the properties all have the INHERIT(BODY) attribute
(which all properties do by default), they all appear in the
Compiler's output files. For example, if each drawing is
given the property ENGINEER to specify the responsible
engineer, and there are seven levels of hierarchy and five
pages to every drawing, the primitives produced by the
Compiler will each have 35 ENGINEER properties
attached. This is probably not desirable. It can be
corrected by removing the INHERIT(BODY) attribute
from the property ENGINEER.

3/10/86 4-11

Properties SCALD Language

Signal Property Inheritance

Inheritance of signal properties is controlled with the
INHERIT(SIGNAL) attribute. When a property is attached
to' a signal, it may be inherited by other signals synonymed
to it. For example, if the signal RESET has the X property
and RESET is synonymed to the MCLEAR signal, the
MCLEAR signal will get the X property if the X property
has the INHERIT(SIGNAL) attribute. Since MERGERs,
NOTs, and all other plumbing bodies are implemented with
synonyms, this attribute allows properties to move along a
net within a drawing.

Properties with the INHERIT(SIGNAL) attribute are con
sidered to be properties of the net (since all of the signal
names for the net will have the properties). These proper
ties are output by the Compiler as properties of the net and
are available for processing by the Packager, DIAL, etc.
Properties without the INHERIT(SIGNAL) attribute are
properties of a particular signal and not the entire net.
These properties a1·e not output from the Compiler.
SCOPE is one such property. It is a property of a particular
signal and should not be inherited by the entire net. In
general, the user will never create a signal property without
the INHERIT(SIGNAL) attribute.

All properties are given the INHERIT{SIGNAL) attribute
by default.

Pin Property Inheritance

Inheritance of pin properties is controlled with the
INHERIT(PIN) attribute. When a property is attached to a
pin, it becomes a property of that pin. If it has the
INHERIT(PIN) attribute, it inherits to the interface signal
for the pin. Once on a signal, an INHERIT{PIN) property
is copied to other pins. A property with the
INHERIT(PIN) attribute is automatically given the
INHERIT(SIGNAL) attribute.

For example, suppose the X property is attached to the A
pin of the ELAN body. Within the ELAN.LOGIC drawing,
the signal A \I appears and connects to the B pin of a EREG

4-12 3/10/86

SCALD Language Properties

body. If the X property has the INHERIT(PIN) attribute,
it will first appear as a property of the A \I signal and finally
a property of the B pin of the EREG body.

The WIRE_DELAY property has the INHERIT(PIN) attri
bute by default (assigned in the system-wide property attri
butes file). When used as a signal property (with the WD
text macro) as follows:

CLOCK \ WD 5.0-6.0

It appears as a signal property, but is copied to each pin
connected to the CLOCK signal. It is then available as a
pin property and can inherit deeper into the hierarchy. Pro
perties with the INHERIT(PIN) attribute are stripped from
all signals at the end of processing.

Properties are not assigned the INHERIT(PIN) property by
default; this attribute must be assigned in the property
attributes file.

Summary of the INHERIT Attribut.e

The INHERIT attribute is assigned as INHERIT(PIN),
INHERIT(SIGNAL), and/or INHERIT(BODY). If a pro
perty can be inherited by more than one object, a list can
be used:

INHERIT(PIN,SIGNAL)

INHERIT() can be used to remove all inheritance attri
butes for a property.

PERMIT ATTRIBUTE

The PERMIT attribute is used to control the objects to
which a property may be attached. It is possible to acciden
tally attach a property to the wrong object. If the property
does not have permission to be attached to that object, an
error is generated by the Compiler. Permission can be
granted for a property to be attached to a BODY, PIN, or
SIGNAL (WIRE) with the PERMIT(BODY),
PERMIT(PIN), or PERMIT(SIGNAL) attributes.

3/10/86 4-13

Properties SCALD Language

The SIZE property, for example, has the PERMIT(BODY)
attribute since it is an error for it to be attached to any
other object. The SCOPE property has the
PERMIT(SIGNAL) attribute. By default, a property has all
three attributes.

If a property is to be given permission to be attached to
more than one object, the PERMIT attribute can be
specified with a list:

PERMIT(PIN,SIGNAL)

Permission for a property to be attached to all objects can
be removed with PERMIT(). Such a property cannot be
attached to any object and is, therefore, useless.

FIL'IER ATIRlBU'IE

The FILTER attribute prevents a property from appearing
in the Compiler's output files. For example, the
LAST_MODIFIED property, which specifies the date on
which the drawing page was last written, is filtered from the
output by default since it is normally of no interest to
analysis programs. The intent of supporting filtering is to
reduce the size of design files and to reduce superfluous
properties.

The FILTER attribute is assigned in the property attributes
file. The user can override this attribute with the
PASS_PROPERTY directive (which causes the property to
be output regardless of its attributes). The
FIL TER_PROPERTY directive can be used to filter proper
ties from the output even if they do not have the FILTER
attribute.

USER PROPERTY ATIRlBUTE FILE

The user can supply a property attributes file by using the
PROPERTY _FILE directive in the Compiler command file.
The attributes assigned in the user attribute file override
the attributes assigned in the system-wide attributes file.
Care should be taken to not override important attributes.

4-14 3/10/86

SCALD Language Properties

The only safe attribute is the FIL 'IER attribute. All other
attributes should be left unchanged; they are assigned as
required for the SCALDsystem.

DEFAULT PROPER'IY ATllUBUTES

The default attributes for a property are:

PERMIT(SIGNAL ,PIN,BOD Y),INHERIT(SIGNAL,BOD Y);

These may be changed in the property attributes file. The
following SCALD properties have attributes assigned (as
shown) within the Compiler and cannot be changed by the
user (if the property is normally used via a text macro, the
text macro name appears as a comment):

SIZE:
TIMES:
PATH:
REPLICATION:
TITLE:
EXPR:
VERSION:
ABBREV:
SCOPE:
PART_NAME:
'IERMINAL:
NEED S_N0_8IZE:
HAS...FIXED _SIZE:
WIREJ) ELA Y:
NOWIDTH:
NOASSERT:
BODY_TYPE:
X:
X...FIRST:
X_81EP:

3/10/86

inherit() ,permit(body) ,parameter(integer);
inherit(), permit(body) ,parameter(integer);
inherit() ,permit(body);
inherit(),permit(signal); { \R }
inherit() ,permit(body);
inherit(),permit(body);
inherit() ,permit(body);
inherit(),permit(body);
inherit(),permit(signal); {\I \L \G }
inherit(),permit(body);
inherit() ,permit(body);
inherit(},permit(body);
inherit(),permit(body);
inherit(pin},permit(pin, signal);
inherit(),permit(signal), { \NWC } filter;
inherit(),permit(signal), { \NAC } filter;
inherit(),permit(body);
inherit(),filter;
inherit(),filter;
inherit(} ,filter;

4-15

Properties SCALD Language

AN EXAMPLE PROPERTY ATTRIBUTES FILE

The following example is used to demonstrate the syntax
and form for the property attributes file. The list of stan
dard property attributes in the previous section is also,
except for FILE_TYPE, a legal attributes file.

FILE_TYPE = ATTRIBUTES;

CLOCK: inherit(signal);
STABLE: inherit(signal);
WIRE_DELAY: inherit(pin);
EV AL: inherit(pin);
CHIP _DELAY: inherit(pin);

END.

4.5 DRAWING PROPERTIF.S

Properties may be "attached" to an entire drawing by
attaching them to a special body called DRAWING. These
properties are used to convey standard information about
the drawing itself. The Compiler understands a few stan
dard property names. These properties are:

TITLE
ABBREV
EXPR

PART_NAME

TERMINAL

=title of the drawing.
= abbreviation for the drawing.
= selection expression (if the drawing

has >1 version).
= name of the primitive part if this

is a primitive drawing.
= indicates that the drawing is a

terminal drawing in the expansion
but is not a primitive component.

These properties are discussed in detail later in this section.

Properties of the DRAWING are inherited by all bodies
within the drawing if they have the INHERIT(BODY) attri
bute. Drawing properties behave exactly as body properties
except they are common for all instances of the drawing.

4-16 3/10/86

SCALD Language

4.6 TEXT MACRO PROCESSING
WITHIN PROPERTIES

Properties

It is convenient to be able to use text macros within pro
perty values. One mechanism for doing this was described
above in the section about the PARAMETER attribute.
The problems with this method are:

1. It only works for body properties.

2. The syntax of the property value must be severely
restricted so that the text macros can be found.

3. If there is any text in the property value that coin
cidentally matches a text macro name, it is
expanded. This can result in very strange results.

To solve these problems, another mechanism has been
implemented that is much more flexible. Each of the prob
lems above has been addressed as follows:

1. It works for all properties regardless of where they
are attached.

2. The content of the property value can be whatever is
desired since the text macros are clearly identified
and are separate from the rest of the text.

3. The user has explicit control over what is expanded
and what is not.

To use this feature, the property cannot be given the
PARAMETER attribute. That is, the PARAMETER attri
bute mechanism and this mechanism are mutually
exclusive.

Text macros need to be identified within the property with
the '%' character. This character serves to mark the pres
ence of the text macro and to prevent confusion between
text macros and normal text. For example:

PARMS= "W=%WIDTH,L=%LENGTH"

3/10/86 4-17

Properties SCALD Language

Note the presence of the two text macros (WIDTH and
LENGTH) in the property value. They are flagged with the
'%' character. By coincidence, the character 'L' is also a
text macro, defined to be SCOPE=''LOCAL". Without the
use of the '%', the property value would be turned into
garbage.

The text macro name must be an identifier: a string of
letters, digits, and '_' starting with a letter and no more
than 16 characters long. If the text macro is to be embed
ded in text so that the text macro name cannot be easily
identified, the name must be quoted. For example,

PARMS= ''This property value is %'TM'ed."

The text macro 'TM' is identified by the quoted name.

These text macros are processed on output only. That is,
they are ignored until the Compiler outputs them to the
output file.

4.7 .ADVANCED PROPERTY TOPICS

This section describes some advanced topics that require
some SCALD language knowledge.

\NAC PROPERTY

A signal of either assertion can be connected to a pin with
the \NAC property. The Compiler assigns the assertion of
the first signal connected to the pin as the pin's assertion.
This forces any other signals connected to that pin to have
the same assertion as the first signal. For example, assume
the signals A, B, and C* are connected to the pin CLOCK
\NAC. If the A signal is the first signal connected to the
pin, the CLOCK pin is forced to be asserted high (since A
is asserted high). This is the same as saying that pin
CLOCK does not have a bubble. Since the signals B and
C* are also connected to pin CLOCK, they are synonymed
with the signal A. However, the signal C* is low asserted
which will be flagged as an error. The \NAC property can
only be used in pin names.

4-18 3/10/86

SCALD Language Properties

If, in the above example, the signal C* was the first signal
connected to the pin, CLOCK would be forced to be low
asserted (since C* is low asserted). This is the same as say
ing that the CLOCK pin has a bubble. The signals A and B
will be flagged as errors since they have the wrong asser
tion.

The first signal connected to a pin is chosen at random by
the compiler. There is no way to predict which signal will
be chosen. This is not a problem since assertion errors will
be caught regardless of which signal is chosen first.

The \NAC is used when the assertion level of signals is not
important but all the signals must be compatible.

For an example of the use of the \NAC property, see the
MERGER bodies in the standard Valid library. The \NAC
property can be used on any body desired.

\NWC PROPERTY

The \NWC property is used when the width (in bits) of a
pin is not known or when it is desired that signals of any
width be connectable to the pin. If a pin has the \NWC
property, the compiler determines the actual width from
the context in which it is used. Once the width has been
determined, the pin is assigned that width. This means that
the pin inherits the width of the first signal connected to it.
All other signals connected to that pin must have the same
width as the first. In this manner, the \NWC behaves like
the \NAC property (see above). The \NWC property can
only be used in pin names.

The first signal connected to a pin is determined at random
by the compiler. There is no way to predict which signal
will be chosen. This is not a problem, since all width
incompatibilities are detected regardless of which signal is
chosen first.

For an example of the use of the \NWC property, see the
MERGER bodies in the standard Valid library.

3/10/86 4-19

Properties SCALD Language

The presence of the \NWC property on any pin of a body
defines that body as a "plumbing" body. This means that
the body's definition contains only signal synonyming to
"plumb" it.s signals around. A MERGER is an example of
a plumbing body. The \NWC property cannot be used on
hierarchical bodies that expand to primitives. The Com
piler generates an error message when this is done.

4.8 PROPER'llES RECOGNIZED
BY 'IHE COMPILER

The SCALD Compiler recognizes several predefined pro
perties that convey information about the design and con
trol the compilation. These properties are described below,
one to a page. The box at the top of each page shows the
property name, the object(s) to which the property can be
attached, and the inheritance of the property. The object.s
to which properties can be attached are:

BODY - attached to a body
PIN - attached to a pin
SIGNAL - attached to a signal (wire)
DRAWING- attached to a DRAWING body

The inherit field shows the object.s that can inherit the pro
perty. These are body, pin, signal~ When a property cannot
be inherited, the field shows:

INHERIT()

This is the syntax used in the property attributes file for no
inheritance.

Here, as an example, is the box for the NEEDS_NO_SIZE
property:

NEED S_NO_SIZE :BODY : INHERIT()

4-20 3/10/86

SCALD Language

This means that the NEEDS_NO_SIZE property is inkr
preted only if it is attached to a body. If it appears any
where else, it is an error detected by the Compiler. The
property is not inheritable.

3/10/86 4-21

Properties SCALD Language

ABBREV :DRAWING : INHERIT()

The ABBREV property specifies an abbreviation for a draw
ing. It should be attached to the DRAWING body. (Each
drawing must have a DRAWING body added to it; see
STANDARD Library in the Lz'brary Reference Manual for
more information on a DRAWING body.) The abbrevia
tion is used by the Compiler to create path names (see the
Compiler Reference Manual for a description of path names).

If the ABBREV property is not found, the Compiler makes
an abbreviation, derived from the name of the drawing.
The ABBREV property value can only include letters,
digits, and the underscore '_'. The Compiler generates an
error message if any other characters are used.

4-22

NOTE

If different abbreviations are placed on
two different pages of the same drawing,
the Compiler takes the abbreviation from
the highest-numbered page.

3/10/86

SCALD Language

ALLOW _CONNECT : PIN
:BODY
: SIGNAL

Properties

: INHERIT()

The ALLOW _CONNECT property allows different types of
outputs to be connected by specifying which output'3 are to
be "ignored" when an OUTPUT_TYPE is checked by the
Packager. The ALLOW_CONNECT property may appear
on a library part (as in the case of a connector) or in a logi
cal design. If the ALLOW _CONNECT property is attached
to a net, it applies to all output pins on the net. When
attached to a body, it applies to all output pins on the body.
When attached to a pin, the ALLOW _CONNECT property
applies only to the pin to which it is attached.

3/10/86 4-23

Properties SCALD Language

BODY_TYPE :BODY : INHERIT()

The BODY_TYPE property specifies certain special bodies.
It can be given the following values:

COMMENT
The body is a comment and to be totally ignored.
This property replaces the previous
COMMENT_BODY property.

FLAG_BODY
The body is. used to indicate an I/O signal. Used by
the Packager and DIAL to process module interface
signals. It should be noted that parts identified as
FLAG_llODYs are only output by the Compiler if
they appear in the root level drawing.

REL_REF
The origin of the body is used as the reference point
for the XY properties attached to all other bodies
within the drawing. This property usually appears on
the B SIZE PAGE or similar drawing. The system
also interprets it to be a comment (same as
BODY_TYPE=COMMENT above).

ABS_REF

·1-24

Causes the Graphics Editor to use absolute coordi
nates for the XY property if found on any body
within the drawing.

3/10/86

SCALD Language Properties

PLUMBING
The body is a plumbing body. Standard plumbing
bodies are MERGERs, NOTs, SYNONYMs, etc.
They are used to "plumb" signals in the drawing.
Normally, the presence of the NWC (NOWIDTII)
property on any pin of the body is used to determine
whether a body is a plumbing body. If the body is a
plum bing body but does not have any NWC pin (as
is the case with the SLASH body), this property is
attached.

3/10/86 4-25

Properties SCALD Language

BUBBLED : PIN : INHERIT{)

The BUBBLED property is used by the Graphics Editor to
indicate when a pin is bubbled {has a bubble). The pro
perty only makes sense in this context and is an error
everywhere else. Indeed, this property should NEVER be
entered, assigned, or attached by the user; it is mentioned
here only so that the user may know how the bubble infor
mation is passed to the Compiler.

The presence of the BUBBLED property on a pin means
that only low-asserted signals may be connected to it. The
assertion of the pin name has no bearing on assertion
checking. The reason for this is the BUBBLE command
capability of the editor which changes the graphical
representation of the body {adds or deletes a bubble)
without changing the pin name. The Compiler needs to
know whether a pin has a graphical bubble on it since the
pin name does not (and cannot) convey this information.

4-26 3/10/86

SCALD Language Properties

EXPR : DRAWING : INHERIT()

The EXPR property specifies the selection expression for a
drawing. Drawings can be conditionally compiled. The
specific condition for which a particular drawing is intended
is determined by the selection expression. For example,
given the drawing PARTl, there may be three versions
with the following selection expressions:

(SIZE<4) PARTl.LOGIC.1.1
PARTl.LOGIC.2.1
PARTl.LOGIC.3.1

(SIZE>=4) and (SIZE<8)
(SIZE>=8)

The PARTl drawing has three versions. Each version,
presumably, is different. The Compiler selects one of the
versions based on the value of its selection expression. If
the selection expression has a non-zero value, that version
of the drawing is used. The Compiler checks t.o make sure
that one and only one of the selection expressions evalu
ates true. If no selection expression evaluates true, the
Compiler outputs an error message (for additional informa
tion on selection expressions, see the Compiler Reference
Manua~.

The value of the EXPR property can be any integer expres
sion involving constants, text macros, arithmetic operat.ors
(*, /, -, +,MOD), logical operat.ors (OR, AND, NOT),
relational operat.ors (<, <=, =, >=, >, < >), or func
tions (ORD, ABS). See the Sections 6 and 7 for additional
information.

3/10/86

NOTE

When selecting a multipage drawing with
the EXPR property, the property must be
attached t.o the drawing body on the first
page.

4-27

Properties SCALD Language

HAS_FIXED _SIZE :BODY : INHERIT()

The HAS_FIXED _SIZE property identifies those bodies
which have a fixed size. These bodies should not be given
a SIZE property; indeed, it is an error to do so. The
HAS_FIXED _SIZE property has two functions. First, it
informs the Compiler that the body it attaches to has a
fixed known size (specified in the property value); the
Compiler will not produce a warning (#196). Second, it
causes an error message to be produced if a SIZE property
is found.

Ma11y of the bodies in the standard Valid libraries have this
property attached to. them. It is used for versions of physi
cal parts that display all sections. The vectored· version of
the body typically represents a one bit section of the part.
The second body version represents all sections of the part.
If the part has, for example, four sections, then the second
body version will be given a HAS_FIXED _SIZE="4" pro
perty to specify that it represents four bits. This is impor
tant since the models (for the Timing Verifier and Logic
Simulator) are modeled as one-bit sections with the SIZE
property specifying the actual number of bits for each
instance. The HAS_FIXED _SIZE property causes a
"default" SIZE property to be attached to support the
models. The presence of a user assigned SIZE property on
these bodies is always an error since none of the pins of the
body or the definition of the body use the SIZE property.

The HAS_FIXED _SIZE property can be attached as a
default body property (attached to the ORIGIN body in the
.BODY drawing) or it, can also be attached to the body
when used in a drawing (with the Graphics Editor's PRO
PEHTY command).

4-28 3/10/86

SCALD Language Properties

NEED S_NO_SIZE :BODY : INHERIT()

The NEEDS_NO_SIZE property is used to identify those
bodies which need no SIZE property; indeed, it is an error
to attach a SIZE property to one of these bodies. The
NEEDS_NO_SIZE property has two functions. First, it
informs the Compiler that the body it attaches to does not
need a SIZE property; the Compiler will not produce a
warning (#rn6). Second, it causes an error message to be
produced if a SIZE property is found.

Many of the bodies in the standard Valid libraries have this
property attached to them. Most notable are the NOT and
MERGER bodies. These bodies automatically conform to
the widths of the signals they are attached to. The pres
ence of the SIZE property on these bodies is always an
error since none of the pins of the body or the definition of
the body use the SIZE property.

The NEEDS_NO_SIZE property can be attached as a
default body property (attached to the O~IGIN body in the
.BODY drawing) or it can also be attached to the body
when used in a drawing (with the Graphics Editor's PRO
PERTY command).

3/10/86 4-29

Properties SCALD Language

NOASSERT : PIN : INHERIT()
: SIGNAL

The NOASSERT property can only be used as a PIN pro
perty or as a property of the pin name (signal name for a
pin) It is not permitted on other signals. The presence of
the property causes the Compiler to interpret the pin's
assertion specially. The NOASSERT property is not per
mitted as a property of a pin or pin name that also has an
explicit assertion specification (such as '*').

A pin with the NOASSERT property is interpreted as hav
ing no particular assertion. The pin assumes the assertion
of the first signal connected to it. For example, if the sig
nal CLOCK is connected to a pin with the NOASSERT pro
perty, the pin would become high asserted. If the signal
ENABLE* were attached, the pin would become low
asserted. If more than one signal is attached to the pin, all
the signals would have to have the same assertion (the
assertion of the first signal encountered since it is this
assertion that the pin inherits).

A pin with the NOASSERT property may assume a
different assertion for each instance of the body on which it
appears. The best example of a body with pins with the
NOASSERT property is the MERGE body. The MERGE
body can be used on signals of any assertion; it assumes
the assertion of whatever signal it is connected to.

To make the NOASSERT property easier to use, the stan
dard text macro "NAC" (No Assertion Check) is provided
with the following definition:

NAC = NOASSERT='"'

4-30 3/10/86

SCALD Language Properties

The property value for the NOASSERT property is unim
portant; just the presence of the property is significant.
The signal

PIN NAME \NAC

is equivalent to the signal:

PIN NAME \NOASSERT='"'

3/10/86 4-31

Properties

NO_IO_CHECK : PIN
:BODY
: SIGNAL

SCALD Language

: INHERIT()

The NO_IO_CHECK property is used to suppress the
Packager's input and output checks on a pin-by-pin, body
by-body, or net-by-net basis. The NO_IO_CHECK pro
perty can be given one of the following three values:

LOW Suppresses the "O state" I/O check;
the "1 state" check is performed.

HIGH Suppresses the "l state" I/O check;
the "O state" check is performed.

BOTII or TRUE Suppresses both the "O state" and the
"1 state" I/O check.

The NO_IO_CHECK property may appear on a library part
(as in the case of a standard connector) or can be attached
to various pins, bodies, and net.s on a drawing. If the
NO_IO_CHECK property is attached to a net, it applies to
all pins on the net. When attached to a body, it applies to
all pins on the body. When attached to a pin, the
NO_IO_CHECK property applies only to the pin to which it
is attached.

4-32 3/10/86

SCALD Language Properties

NOWIDTH :PIN : INHERIT()
: SIGNAL

The NOWIDTH property can only be used as a PIN pro
perty or as a property of the pin name (signal name for a
pin) It is not permitted on other signals. The presence of
the property causes the Compiler to interpret the pin's
width specially. The NOWIDTH property is not permitted
as a property of a pin or pin name that also has an explicit
bit width specification (bit subscript).

A pin with the NOWIDTH property is interpreted as having
no particular width. The pin assumes the width of the first
signal connected to it. For example, if the signal CLOCK
is connected to a pin with the NOWIDTH property, the pin
would be assigned the width 1. If the signal DATA<3 .. 0>
were attached, the pin would assume the width 4. If more
than one signal is attached to the pin, all the signals would
have to be the same width (the width of the first signal
encountered since it is this width that 0e pin inherits).

A pin with the NOWIDTH property may assume a different
width for each instance of the body on which it appears.
The best example of a body with pins with the NOWIDTH
property is the NOT body. The NOT body can be used on
signals of any width; it assumes the width of whatever sig
nal it is connected to.

The presence of the NOWIDTH property can cause signals
that have indeterminate widths. If an UNNAMED signal
connects to a pin with the NOWIDTH property, the Com
piler must look further to determine the width of both the
signal and the pin (since the width of an unnamed signal is
determined Crom how it is used.) In some cases, there may
be insufficient information available to determine the
width. Such cases are detected in Pass 2 of the Compiler
and reported.

3/10/86 4-33

Properties SCALD Language

To make the NOWIDTII property easier to use, the stan
dard text macro "NWC" (No Width Check) is provided
with the following definition:

NWC = NOWIDTII=""

The property value for the NOWIDTII property is unim
portant; just the presence of the property is significant.
The signal:

PIN NAME \NWC

is equivalent to the signal:

PIN NAME \NOWID TII='"'

4-34 3/10/86

SCALD Language Properties

PART_NAME :DRAWING : INHERIT()

The PART_NAME property is used to specify the name of
a primitive component. When the Compiler is ready to
output a primitive component into the expansion output
file, it has to determine the name of the component. Nor
mally, this name is just the name of the primitive com
ponent. There are times, however, when it is desired to
have the primitive component name be different from the
logical component name.

For example, the LSTIL library components are called
LSOO, LSOl, LS02, etc. Each part, however, is known in
the Compiler expansion file as 74LSOO, 74LS01, etc. since
this is a more explicit name. The '74' that is left off the
logical component name makes the name easier to type. Of
course, giving the LSOO the PART_NAME 74LS74 is
counter-productive. The PART_NAME properties are
found attached to the DRAWING body within the .PART
drawing for the component.

If the Compiler finds a PART_NAME property, it uses it as
the name of the primitive component otherwise, it uses the
logical component's name.

3/10/86 4-35

Properties SCALD Language

PA1H :BODY : INHERIT()

The PA 1H property is used by the Compiler in the forma
tion of path name elements. It is attached to each body in
a drawing (either manually with the PROPERTY command
or automatically in the Graphics Editor). The PA 1H pro
perty value can be any string of letters or digits. The
Graphics Editor creates a PA 1H property of the form nP
where n is unique for each body on the drawing.

The PA 1H property can be added as a default body pro
perty (by attaching the property to the origin body in the
.BODY drawing),' but is normally not a good idea. If more
than one of the bodies (with a default PA 1H property) is
used within the same drawing, the Compiler will output an
error message since the path element created for the two
bodies is the same. If default PA 1H properties are used,
the property value will have to be changed if there is more
than one of these bodies in the drawing.

4-36 3/10/86

SCALD Language Properties

REP : SIGNAL : INHERIT()

The REP property is used to replicate a signal in much the
same way that SIZE is used to replicate a body. The REP
property causes the Compiler to create multiple copies of
the signal and append them to the original to form one sig
nal. For example, the signal:

BUS SIGNAL<4 .. 1> \REP="2"

is equivalent to:

BUS SIGNAL<4 .. 1> : BUS SIGNAL<4 .. l>

To make the REP property easier to use, the standard text
macro 'R' is available which has the definition:

R = REP="%1"

where %1 is the parameter of the macro. The signal given
above would appear as follows when this text macro is
used:

BUS SIGNAL<4 .. 1> \R 2

3/10/86 4-37

Properties SCALD Language

SCOPE : SIGNAL : INHERIT()

The SCOPE property is used to define the scope of a signal.
There are three possible values for this property, defined as
follows:

LOCAL
Signals on different pages of the same drawing
are equated.

GLOBAL
Signals at all levels of a hierarchical design are
equated.

INTERFACE
Used in hierarchical design and library develop
men t to indicate an interface signal from a
higher level drawing.

By default, the scope of all signals is LOCAL. The SCOPE
property is usually included in the signal name by using one
of three standard text macros:

\I = SCOPE="INTERF ACE"
\L = SCOPE=''LOCAL"
\G = SCOPE="GLOBAL"

as, for example, in the signal DATA <15 .. 0> \L. For the
correct syntax, see under Signal Name Syntax/General Pro
perties, earlier in this manual.

A signal cannot be given more than one scope, and cannot
inherit its scope from some other signal.

4-38 3/10/86

SCALD Language Properties

SIZE :BODY : INHERIT()

The SIZE property is one of the most powerful and basic of
SCALD properties. Only bodies can be given the SIZE
property. For more information, see the Graphics Editor
Reference Manual and the following sections in this manual:

Signal Name Syntax/Parameter Attributes
Text Macro Facility/Use in Body Parameters

3/10/86 4-39

Properties SCALD Language

TERMINAL :BODY : INHERIT()

The TERMINAL property is used to tell the Compiler that
an empty drawing is not an error. Normally, the Compiler
will generate an error message if a drawing is found that is
empty; that is, it contains no bodies. It is expected that
the drawing was not written, accidentally deleted, or other
wise ruined.

There are some drawings that are intentionally empty. The
SYNONYM.LOGIC drawing is one of these. The entire
purpose of the SYNONYM body is to synonym signals
together. This it does by virtue of the fact that all of its
pins have the same name. There is nothing else to be done
and, therefore, the SYNONYM.LOGIC drawing is empty.
The Compiler will generate an error. To inform the Com
piler that the drawing is intentionally empty, the
TERMINAL=TRUE property is attached to the DRAW
ING body within the SYNONYM drawing.

4-40 3/10/81

SCALD Language Properties

TIMES :BODY : INHERIT(BODY)
: DRAWING

The TIMES property is one of the most powerful and basic
of SCALD properties. Its use is complex and proper justice
cannot be given it here. See the Packager and Graphics Edi
tor Reference Manuals for a complete discussion.

Here it is appropriate to mention that the TIMES property
is inherited. If a high level body is given the TIMES pro
perty (either by attaching it to the BODY or to the DRAW
ING body with the corresponding LOGIC drawing), it is
inherited by all bodies within the corresponding LOGIC
drawing. This makes it possible to assign a TIMES pro
perty to a large group of components without having to
assign it individually.

3/10/86 4-41

Properties SCALD Language

TITLE : DRAWING : INHERIT()

The TITLE property is used to specify the name of the
drawing. The property can only be attached to the DRAW
ING body found within the drawing. If the drawing's name
and the TITLE property's value are different, the Compiler
will output an error message. The names must be identical
(character for character) if the Compiler is not to produce
this error.

The TITLE property is used to document, within the draw
ing, the name of the drawing. It it not required; no error,
oversight, or warning message is output if it does not
appear.

4-42 3/10/86

SCALD Language Properties

WIRE_DELAY : PIN : INHERIT(PIN)
: SIGNAL

The WIRE_D ELA Y property is used to specify wire delays
on signals. The text macro \ WD has been defined to take a
single parameter, as follows:

WD = 'WIRE_DELAY="%1"'

Wire delay can, therefore, be succinctly added as a property
in a signal name. Here are some examples:

\WD 2.0-5.6
\WD 1.0-2.0

Wire delay can also be attached as a signal property directly
to a signal, or as a pin property directly to an input pin. To
do so, use the property command and enter:

WIRE_D ELA Y 2.0-5.6

Remember the underscore in WIRE_D ELA Y (to make the
entire string the property name), and the space after
WIRE_D ELA Y (to separate property name from property
value).

When wire delay is added to a signal, it is inherited by the
pin attached to that signal.

The value of the \ WD property can be a single range, two
ranges, or a fixed-point number. When the value includes
two ranges, the first range is the minimum and maximum
rising delay, and the second range is the minimum
minimum and maximum falling delay, as in:

WIRE_DELAY 2.0-5.6,2.5-6.2

When only one range is given, the rising and falling delays
are assumed to be the same. See Delay Properties in the
Timing Verifier Reference Manual for additional information.

3/10/86 4-43

SECTION 5
TEXT MACRO FACILITY

This section describes the text macro facility of the SCALD
Compiler. Text macros are used to globally replace one
string of characters with another. The first section explains
what text macros are and how they are used. The follow
ing sections describe the specific syntax used to define text
macros and their use in signal names and properties. Exam
ples are given to demonstrate various features. Knowledge
of the SCALD signal name syntax is helpful as the exam
ples refer frequently to signal names.

5.1 WHAT IS A TEXT MACRO?

A text macro is a string of characters (usually short) that
represents another string of characters. The Compiler
replaces each occurrence of each text macro with the string
it represents. For example, the text macro "VLS" can
represent the string "Valid Logic Systems," and the text
macro "CURRENT_ADDRESS" cail represent "2820
Orchard Parkway, San Jose, CA 95134." ·Then, the sen
tence:

Company headquarters of VLS are at CURRENT_J\DDRESS.

appears as follows after the text macros have been replaced:

Company headquarters of Valid Logic Systems are at
2820 Orchard Parkway, San Jose, CA 05134.

The process of replacing the text macros with the strings of
characters they represent is called text macro expansion.

Text macros serve two basic functions, both of which are
demonstrated by the above example. VLS is a useful
abbreviation for the longer and more cumbersome Valid
Logic Systems. CURRENT_ADDRESS represents a
parameter that could change. The text macro lets you con
centrate the variable information in one place. When the

3/10/86 5-1

Text Macros SCALD Language

parameter changes value, you need only change the
definition of the macro. Text macros are useful Cor
defining global information that is needed in many places
and is likely to change.

In the SCALD language, text macros are most commonly
used in signal names. For example, if the text macro
ADDRESS_BUS is defined as:

ADD RESS_BUS = "23 .. 0"

then signals that reference the address bus can be named as
follows:

INTERFACE <ADDRESS_BUS>

This expands to:

INTERFACE <23 .. 0>

IC the size of the address bus is changed t.o, for instance,
31..0, the text macro definition is all that need be changed.

A more typical use might be the assignment or bit fields
that represent register fields within an instruction or por
tions of some interface bus. The bit assignments need be
determined only once and can be used throughout the
design with little chance of error. Again, should the bit
assignments be changed, only the text macro definitions
have to be altered. For example:

5-2

in terf ace_bus
address_bus
data_bus
interrupts
flags
control
reset
power_Cail

= "0 .. 63"
= "0 .. 23"
= "24 .. 30"
= "40 •. 42"
= "43 .. 60"
= "61..61"
= "62"
= "63"

3/10/86

SCALD Language Text Macros

5.2 WHERE TO DEFINE TEXT MACROS

There are two places within the SCALD system to define
text macros: on individual drawings, and in a text file used
by the compiler. A text macro that is defined on a particu
lar drawing is operative (in full compilation) within that
drawing and all other drawings under it in the hierarchy. A
text macro that is defined in a text file is globally operative
each time the compiler is used. (For separate compilation,
text macros should either be globally defined, or explicitly
defined on each drawing.) When you define a global text
macro (in a text file) that macro cannot be overridden.
Certain global text macros have been predefined for use in
signal names. See "Globally Defined Text Macros" below.

A text macro defined on a particular drawing can be over
ridden by a macro on a drawing lower in the hierarchy. For
example, take the drawing ALU.LOGIC that contains the
drawings PAR Tl.LOGIC, PART2.LOGIC, AND
PART3.LOGIC, and also contains the text macro definition
CTR = counter. If the drawing PART3.LOGIC contains
the text macro definition CTR = counterI, the compiler
will expand all occurrences of CTR in ALU.LOGIC,
PARTl.LOGIC, and PART2.LOGIC into "counter," but it
will expand the occurrences of CTR in PART3.LOGIC into
"counterl." This expansion lets you use text macros in
higher level drawings to designate general cases, and over
ride these macros for a specific case on a lower level draw
ing.

When you define a text macro on a page of a drawing (for
example, ALU.LOGIC.I), the text macro is operative on
all pages of that drawing (ALU.LOGIC.I,
ALU.LOGIC.2, ...). A given text macro cannot be defined
more than once in the same drawing. The Compiler gen
erates an error message when this happens.

3/10/86 5-3

Text Macros SCALD Language

5.3 DEFINING A 'TEXT MACRO ON A DRAWING

A text macro is an identifier, that is,

a string of not more than 16 characters that
includes letters, digits, and '_'(underscores)
and starts with a letter.

The text macro definition can be any character string (with
a maximum length of 255 characters). Text macros are
defined in a DEFINE body placed in a drawing. To define
a text macro for a drawing, add a DEFINE body and use
the PROPERTY command to attach properties to the
DEFINE body. The PROPERTY command expects a
name/value pair separated by a space. If, at the PRO
PERTY command, you enter:

xxxx·yy zz

The Compiler will interpret xxxx to be the text macro and
yy zz to be the macro definition. Each time it finds xxxx
on the drawing, it will expand that macro to yy zz. Any
number of properties may be attached to the DEFINE body
and any number of DEFINE bodies may appear in a draw
ing. Text macros defined on one page of a drawing are
operative on all pages of that drawing.

See also Globally Defined Text Macros below.

5.4 HOWTOUSETEXTMACROS

Text macros may be used in several places: in other text
macros, in signal names, in properties, and in body parame
ters. Each of these is described below.

5-4 3/10/86

SCALD Language Text Macros

USE IN OTHER TEXT MACROS

Text macros can be nested one inside the other. The macro
COPYRIGHT can be defined as:

Copyright CURRENT_YEAR, VLS Inc.

where CURRENT_YEAR and VLS are also macros, that
represent, respectively, "1985" and "Valid Logic Sys
tems." To make a current copyright page, you need only
type COPYRIGHT. This expands to:

Copyright 1985, Valid Logic Systems Inc.

The text macros CURRENT_YEAR and VLS are nested
inside of the text macro COPYRIGHT. The text macro
"COPYRIGHT" has a nesting depth of 2. The Compiler
permits a maximum text macro nesting depth of 10. The
Compiler rescans strings for macros until no more are
found.

A text macro that is defined in terms of itself, either
directly or indirectly (through another text macro that
references the first), is a recursive text macro. A recursive
text macro causes an error condition in the compiler, but it
is difficult for the Compiler to detect the cause of the error
condition. Usually, a recursive text macro results in one of
the following error messages:

TEXT MACRO NESTING DEPTH EXCEEDED

EXPANDED TEXT MACRO EXCEEDS MAX LENGTH

USEIN SIGNAL NAMES

The use of text macros within signals requires some care.
The Compiler recognizes a text macro by searching for an
identifier and checking to see if the identifier is a text
macro. Since SCALD signal names can contain almost any
character sequence, it is conceivable that a signal name may
inadvertently contain a sequence of characters that formed
an identifier that just happened to be a text macro; it would
be an error if the Compiler were to expand it.

3/10/85 5-5

Text Macros SCALD Language

For this reason, text macros are not permitted within the
name portion of signal names. Remember, a signal name
has these parts:

neg name bits assertion properties

I (class)(name)(timing)

Since text macros would not be appropriate in the negation
and assertion fields, macros within signal names are used
only to define bit subscripts and properties.

USE IN PROPERTIES

The Compiler allows text macros to be placed within pro
perty values and have them expanded. Text macros are
not allowed within property names. This capability is
different than that supported for body parameters (see
below).

Text macros need to be identified within the property value
with the '%' character. This character serves to mark the
presence of the text macro and to prevent confusion
between text macros and normal text. For example:

PARMS = 'W=%WIDTH,L=%LENGTH'

Note the presence of the two text macros (WIDTH and
LENGTH) in the property value. They are flagged with the
'%' character. The Compiler only expands the identifier
following the '%' character. The text macro name must, as
always, be an identifier. The comma marks the end of the
identifier. The character L is also a text macro, defined to
be SCOPE=LOCAL within the SCALD III Language. But
because it is not preceded by '%' it is not interpreted as a
text macro. Because it is preceded by a comma, it is not
interpreted as part of the text macro WIDTH.

If WIDTII = 2, and LENGTH = 3, then the above pro
perty expands to:

PARMS= 'W=2,L=3'

5-6 3/10/86

SCALD Language Text Macros

If the text macro is to be immediately followed by text
{that is, by any character acceptable in an identifier),
enclose it in quotes. For example,

PARMS= ''This property value is %'1M'ed."

The text macro 1M is identified by the quote marks. Text
macros within property values cannot include parameters
nor can they have embedded text macros. If such appear,
they are ignored.

USE IN PARAME'IERS

A parameter is a special body property that is evaluated by
the Compiler and made available to the logic, time, or sim
drawings associated with the body as a text macro.

The best example of such a property is SIZE which is
attached to a body and used to specify the width of pin
names, signal names, and to control size expansion.

The value of the parameter may be changed on an instance
by instance basis thereby providing a means of passing
information from the using drawing to the used drawing
(hence the name body parameter). The body parameter
may refer to text macros. The text macros must be defined
on the drawing in which the body appears or .in drawings
above the containing drawing. A body parameter cannot
refer to a text macro defined within the drawing to which
the body corresponds.

All strings o.f characters that are identifiers (a string of
letters, digits, and '_' starting with a letter and no more
than 16 characters long) that happen to be text macro
names are expanded. This means that body parameters
must have very restricted formats. Typically, they are
defined as simple integer expressions such as 'X+ 1' or
'SIZE-1'.

3/10/86 5-7

Text Macros SCALD Language

The most common text macro used within the SCALD
language is SIZE which is defined by the user to specify the
number of bits a component represents or the width of a
bus. Pin names are often defined as "SIZE" bits wide as
follows:

PINA < SIZE-1..0 >

When the SIZE text macro is expanded, the width of the
pin can be determined.

5.5 WHERE TEXT MACROS MAY NOT BE USED

There are several places where text macros are not permit.
ted. They are described below.

DRAWING NAMES

Drawing names are assigned in the Graphics Editor and are
stored in the TI1LE property of the drawing and the draw
ing directory. Text macros are not permitted here because
the Graphics Editor would have to know about them and
how to expand them.

PROPERTY~

The name of a property is exactly as entered. It cannot
contain, reference, or otherwise depend upon text macros.

5.6 'IEX.TMACROS Wini PARAMETERS

The text macro capabilities described above are useful, but
inadequate for some applications where simple text substi
tution does not provide enough flexibility. The SCALD
Compiler text macro processor also supports text macros
with parameters.

5-8 3/10/86

SCALD Language Text l\Iacros

At times, it is advantageous to allow the use of n text
macro to be customized on an instance by instance basis.
For example, suppose a text macro is to be defined that
specifies a bus by specifying the width desired. This could
be supported as follows:

BUSS= "0 .. 7"
BUS16 = "0 .. 15"
BUS24 = "0 .. 23"
etc.

Since the relationship between the left and right sides of
these text macros is the same (8=7+1, 16=15+1, 24
= 23+ 1), all three macros can be replaced by a single text
macro that includes a parameter describing the size of the
bus. For example:

BUS= "0 .. %1-1"

where '%1' is replaced by the parameter that the user gives
to the text macro "BUS."

BUS 8

is expanded into

0 .. 7

and

SIGNAL <BUS 8 >

is expanded into

SIGNAL <0 .. 8-1>

A text macro parameter may have up to 16 characters, and
may include any character except a space.

3/10/85 5-9

Text Macros SCALD Language

Note that the text macro parameter (in this case, 8) is pre
ceded and followed by at least one space. If the trailing
space is left out, as in:

SIGNAL <BUS 8>

the Compiler interprets 8> to be the parameter. This
results in

SIGNAL <0 .. 8>-1

and will produce an error message from the Compiler. The
Compiler uses spaces to delimit parameters in text macros.
If there are several parameters in a text macro, they must
be separated by spaces.

When the Compiler detects an error in the syntax of the
line it is reading, it prints out the line and all text macros
that are being expanded so that is it clear how the expan
sion has been done. This makes it easier to find errors
such as this one.

5. 7 MULTIPLE PARAMETERS IN TEXT MACROS

Text macros can include up to nine parameters (1 through
9). The parameters are numbered from left to right (fol
lowing the text macro) starting with one. For example,
given the text macro "DBUS" with five parameters and a
use as follows:

DBUS 23-4 9 . .4+ 1 w, BDAC

the parameters are:

parameter 1
parameter 2
paran1eter 3
parameter 4
parameter 5

"23-4"
"9 . .4+ 1"
"w"

"" ' ''BDAC"

A text macro parameter may itself be a text macro. For
example, given the following text macro definitions:

5-10 3/10/86

SCALD Language Text Macros

ORDER= ''Beginning %1 the %2"
LAST= "ENDING"
MIDDLE= "PRECEDES"

The use of "ORDER" as follows:

ORDER MIDDLE LAST

expands as "Beginning PRECEDES the ENDING."

The text macro "ORDER" is given two parameters;
"MIDDLE" and "LAST." The two parameters are them
selves text macros which are expanded to "PRECEDES"
and "END ING" respectively. Text macros that require
parameters (such as ORD ER above) should not be used as
parameters of other text macros. They will be expanded,
but the parameter order and binding is very obscure.
Parameterized text macros should NOT be used as parame
ters of text macros.

5.8 GLOBALLY DEFINED TEXT MACROS

There are many predefined text macros created by the
Compiler. These text macros are globally known (that is,
they are accessable by every drawing within a design) and
are reserved; the designer is prevented from creating a
text macro with the same name. These predeclared text
macros are:

L
G
I
R
WD

B
NWC
NAC

TRUE
FALSE
x

3/10/86

-+ gives local scope to a signal
-+ gives global scope to a signal
-+ identifies a signal as an interface signal
-+ used to specify signal replication
-+ wire delay property

-+ indicates that a pin has a bubble
-+ no width check property
-+ no assertion check property

-+constant 1
-+constant 0
-+ current value of the X variable

5-11

Text Macros

Their definitions are:

R
G
L
I
NWC
NAC
B
TRUE
FALSE

REP="%1"
SCOPE="GLOBAL"
SCOPE="LOCAL"
SCOPE="INTERF ACE"
NOWIDTH='"'
NOASSERT-'"'
BUBBLED=""
1
0

SCALD Language

The designer may define additional globally known
reserved text macros. These are given to the Compiler in a
text macro file (see the TEXT_MACRO_FILE directive in
the Compiler directives section for a description of the
method). The form of the file is

FILE_TYPE : TEXT_MACROS;
text macro name = text macro definition ;

END.

where text macro name is the name of the text macro being
defined and text macro definition is the text macro value
enclosed with quotes. There are a few text macros that
should be defined for the Timing Verifier. They appear
below as an example of what the text macro file should
look like.

5-12

FILE_TYPE=TEXT_MACROS;
S = 'S_ASSERT=''%1"';
P = 'P _ASSERT "%1"';
C = 'CLOCK="%1"';
WD = 'WIRE_DELA Y=''%1 "';
CD ='CHIP _DELA Y="%1"';
E = 'EVAL="%1 "';
END.

3/10/86

SCALD Language Text 1lacros

These text macros are used to support the timing assertion
properties used by the Timing Verifier. Note that all of
them require one parameter. For example, the "WD" text
macro could be used in a signal as follows:

SIGNAL NAME <0 .. 31> \WD 3.2-4.5

The parameter for the "WD" text macro is "3.2-4.5."
Note also that these text macros are used as shorthand for
property specifications in signal names. A property in a sig
nal name is specified by the property name followed by '='
followed by the property value in quotes. Since the text
macro definition contains quotes, two kinds of quotes are
used to reduce confusion. An alternate, and equivalent,
method of defining the "WD" text macro appears below:

WD = 'WIRE_DELAY="%1'";

Two quotes in a row are taken to mean a single quote when
found within a character string.

3/10/86 5-13

SECTION6
SELECTION EXPRESSIONS

Parameters attached to a body can be used to "customize"
the body's drawing. The most common parameter is the
SIZE property which is used in structured and hierarchical
designs to specify the number of bits represented by the
body. Another commonly used parameter is the DELAY
property. The use of parameters allows the designer to
have each instance of a body represent a slightly different
implementation without having many different bodies and
drawings.

In some cases, there is a need for radical differences
between implementations of a single circuit. These
differences are not simply parametric, which can be handled
easily with body parameters, but involve changes in the cir
cuit topology. For example, a gate may be designed with
several different versions, one version having input protec
tion diodes, one with internal pullups, one with high capaci
tance load/drive capability, and others with combinations of
these. Since each version represents the same gate, the
user would prefer to define a single body to represent the
gate and then use some parameter to control which of the
gate representations is used. This is supported in the
SCALDsystem by drawing versions and selection expres
sions.

6.1 DRAWINGVERSIONS

Each different implementation of a single circuit is called a
drawing version. There is no limit to the number of ver
sions that can be defined for a single drawing. Each of the
drawing versions corresponds to the same body.

3/10/86 6-1

Selection Expressions SCALD Language

In the gate example described above (a NAND gate), the
following drawings might be created:

NAN) .B<DY .1 .1
NAN).LOGIC.1.1 <- ''generic'' NAN) representation
NAN>.LOGIC.2.1 <-NAN) with input diodes
NAN>.LOGIC.3.1 <-NAN) with internal pullups
NAN>.LOGIC.4.1 <-NAN) with high-C drive

Four versions are shown above (though more can be
defined) and each version shown has only one page
although a drawing version can have any number of pages.

6.2 SELEC'llONEXPRESSIONS

If a drawing has more than one version, there must be a
method of selecting which version is to be used for any
particular instance. This is done with the use of parame•
ters. When the NAND body is placed in a drawing, a
parameter must be attached to the body to specify which of
the NAND drawing versions is to be used to allow each
instance of the body to refer to a different implementation.

Once the parameters have been attached to the bodies,
there must be a method of selecting the appropriate draw
ing version. This form of selecting is done with a selection
expression. The selection expression defines the "context"
in which the drawing is valid. In the case of the NAND,
the context is used to select which of the drawing versions
(or NAND gate implementations) is to be used.

A selection expression can be an arbitrary integer or
Boolean expression. In the NAND example, assume that
the parameter TYPE is used to select among the drawing
versions. Four selection expressions are needed; one for
each drawing version:

6-2 3/10/86

SCALD Language Selection Expressions

NAND .LOGIC.1.1
NAND .LOGIC.2.1
NAND .LOGIC.3.1
NAND .LOGIC.4.1

(TYPE=O)
(TYPE=l)
(TYPE=2)
(TYPE=3)

The selection expressions (TYPE=O, TYPE=l, ...) define
which value of the parameter TYPE is to be used for a par
ticular drawing version. The user sets the value of the
TYPE parameter to select the desired version of the
NAND.LOGIC drawing.

Selection expressions are defined in the drawing as an
EXPR property attached to the DRAWING body of the
drawing. If a drawing has more than one version, each
version must be given a selection expression to specify
under which condition that version is to be used.

6.3 HOW SELECTION EXPRESSIONS ARE
EVALUATED

Whenever a component is found that has more than one
implementation (more than one drawip.g version), the
Compiler must determine which version is to be used.
This is done by evaluating the selection expressions for
each version and picking the version with the selection
expression that evaluates TRUE for that instance.

If the selection expression is a Boolean expression (e.g.,
SIZE>2), the selection expression is TRUE if the expres
sion evaluates TRUE. If the selection expression is an
integer expression (e.g., SIZE+ 1), the selection expression
is TRUE if its value is not 0. If the selection expression is
empty (or absent), it evaluates TRUE.

3/10/86 6-3

Selection Expressions SCALD Language

Only one version's selection expression may evaluate
TRUE for any given instance. An error is generated if the
Compiler finds that the selection expressions for more than
one version evaluate TRUE. For example, the following
selection expressions are in error because the first two
expressions evaluate TRUE for SIZE=2:

(SIZE>l)
(SIZE=2)
(SIZE<=l)

In the above examples, the selection expressions have been
shown using the SIZE parameter although any parameter or
text macro may be used in a selection expression.

If the Compiler discovers an error when evaluating selec
tion expressions, it outputs the selection expressions for all
of the versions to make it easier for the user to see what
has happened and to provide a guide to solving the prob
lem.

6.4 SELECTION EXPRESSIONS IN DRAWINGS

As mentioned above, the selection expression is defined by
an EXPR property attached to the DRAWING body of the
drawing. It is important to note that the EXPR property
must appear in the first page of the drawing (the first page
is the lowest numbered page and not necessarily page 1).

The EXPR property in the first page of the drawing defines
the context for the entire drawing. Once the drawing has
been selected, further selection can be performed. If
EXPR properties are used in other pages of the drawing,
the Compiler evaluates them to decide if that page is to be
used. This gives the user the ability to define a selection
expression for the entire drawing, and to specify a second
selection expression for each page to determine whether it
is used.

6-4 3/10/86

SCALD Language Selection Expressions

6.5 EXPRESSION EVALUATION

Selection expressions follow the standard SCALDsystem
expression evaluation rules described in section 7. Only
expressions that evaluate to integer quantities are supported
for selection expressions.

3/10/86 6-5

SEGTION 7
EXPRESSIONS

7 .1 USE OF EXPRESS! ONS

In general, anywhere a number is expected, an expression
can be used. This capability allows the designer to use
expressions that clearly represent the source or structure of
a number. For example, if a half of some other quantity is
needed, it is much better to enter Y /2 than 4 (if Y is 8).
This has two advantages. First, if the value of Y changes,
all other quantities that depend on Y also change. Second,
it shows that the second quantity depends on Y.

The expression syntax in the SCALD language supports
expressions that evaluate to integer quantities only. The
following operators are supported:

OR - inclusive OR
value is 0 (false) or 1 (true)

XOR - exclusive OR
value is 0 (false) or 1 (true)

AND -AND
value is 0 (false) or 1 (true)

< - signed less than
value is 0 (false) or 1 (true)

> - signed greater than
value is 0 (false) or 1 (true)

<= - signed less than or equal
value is 0 (false) or 1 (true)

>= - signed greater than or equal
value is 0 (false) or 1 (true)

- - equal
value is 0 (false) or 1 (true)

<> - not equal
value is 0 (false) or 1 (true)

+ - signed addition
value is integer

- signed subtraction
value is integer

3/10/86 7-1

Expressions SCALD Language

* - signed multiplication
value is integer

/ - signed division
value is integer

MOD - remainder
value is integer

NOT - logical complement
value is either 0 or 1

ORD - ordinal value
value is either 0 or 1

ABS - absolute value
value is positive integer

MAX - maximum of n values
value is integer

MIN - minimum of n values
value is integer

Operator precedence refers to the order in which operations
are performed when evaluating an expression. Operators
with highest precedence are evaluated first. The operator
precedence can be demonstrated by considering the follow
ing expression:

X>l OR Y<2 AND X=4

This is obviously confusing. This expression is evaluated as
though there were parentheses as follows:

((X>l) OR ((Y <2) AND (X=4)))

Operator precedence is as follows:

1. NOT {highest precedence}
2. MAX MIN ABS ORD
3. * I MOD
4. + -
5. < > = <= >= <>
6. AND
7. OR XOR {lowest precedence}

Parentheses can be used to force expression evaluation
order if desired. For operators that have the same pre
cedence, evaluation is performed left to right.

7-2 3/10/86

SCALD Language Expressions

7.2 BNF FOR EXPRESSIONS

The following is the BNF for expressions within the
SCALD language.

expression
list

expression

bool OP

boolean
expression

relational
expression

rel OP

simple
expression

sign

add OP

expression I
expressi·on lis~ expression

boolean expression I
expression bool OP boolean expression

OR I XOR

relational expression I
boolean expression AND relational expression

simple expression I
simple expression rel OP simple expression

< I > I <> I = I >= I <=

term I
sign term I
simple expression add OP term

+ I -

+I-

term ::= factor I
term mul OP factor

mul OP * I I I MOD

3/10/86 7-3

Expressions SCALD Language

factor unsigned constant I
identifier I
(expression) I
NOT factor I
ABS (expression) I
ORD (expression) I
MIN (expression lis~ expression) I
MAX (expression lis~ expression)

expression list ::=expression I
expression expression list

unsigned constanf::=unsigned number I
stn"ng

7-4 3/10/86

INDEX

ABBREV property, 2-15, 4-16, 4-22
abbreviation for drawing name, 2-15, 4-22
ABS_REF property, 4-24
aliases, 2-20, see also text macros
ALLOW _CONNECT property, 4-23
analysis tools, passing information to, 4-9
assertion

check, 2-8, 4-18, 4-30
of signals, 2-1, 2-7
symbol (signal names), 2-2
undetermined, 2-19

attaching parameters, 6-2
attributes

also see inheritance
default, 4-12, 4-13, 4-15
file, 4-7, 4-14
file example, 4-16
filter, 4-14
inherit, 4-11, 4-13
inherit(body), 4-11
inherit(pin), 4-12
inherit(signal), 4-12
list of, 4-8
of a property, 4-7
parameter, 4-8, 4-10,
permit, 4-13

base signals, 2-18
bit ranges, 2-6
bit subscript, 2-2, 2-5
bit width

default, 4-28
of pins, 4-33
of signals, 2-1

BNF for expressions, 7-3

3/10/86 1-1

Index

bodies
COMMENT, 4-24
creation, 4-10
DEFINE, 4-1
DEMERGE, 3-3
DRAWING, 4-1, 6-3, 6-4
FLAG, 4-24
ignoring, 4-24
in standard library, 3-3
MERGE, 3-2, 3-3
NOT, 3-4
plumbing, 3-1
property inheritance, 4-11
SCALD, 3-1
sizeable, 4-28
SLASH, 3-4
special, 3-1
SYNONYM, 3-4
TAP, 3-4

body
inheritance of properties, 4-11
instances, 6-1
parameters, 6-1
properties, 4-8

BODY_TYPE property, 3-2, 4-24
Boolean expressions, 6-3
bubble checking, 3-4, 4-18, 4-26
BUBBLED property, 4-26
buses, 3-1
buses, signal replication, 4-37

chip delay, 2-8
class of signals, 2-3
clock signals, 2-4
COMMENT body, 4-24
Compiler

and properties, 2-2
and signal names, 2-2
directives, 4-7
filtering properties, 4-14
handling of signals, 2-10
treatment of properties , 4-20

complement of a signal, 2-2

I-2

SCALD Language

3/10/86

SCALD Language

component
versions, 6-1
path names, 2-14

concatenated signals, 2-12, 3-1
connections, 1-3
constant signals, 2-12
conventions, 2-2, also see syntax
creating bodies, 4-10

default attributes, 4-15
default signal names, 2-22
DEFINE body, 4-1
delays, wire, 4-43
DEMERGE body, 3-3
directives in signal names, 2-8
DRAWING body, 4-1, 6-3, 6-4
drawing

name abbreviation, 2-15
properties, inheritance, 4-16
title, 4-42
versions, 6-1

drawings, 1-2
drawings, empty, 4-40

elements, path name, 4-36
evaluating expressions, 6-3
evaluation directive, 2-8
evaluation errors, 6-4
expansion files, signal names, 2-18
EXPR property, 4-16, 4-27, 6-3, 6-4
expressions

BNF, 7-3
Boolean, 6-3
evaluation, 6-3
integer, 6-3, 6-5
precedence, 7-2
selection 4-27, 6-1,

3/10/86

Index

l-3

Index

fall time, 4-43
fan out, 4-41
files

property attribute, 4-14
text macro, 5-12

FIL 1ER attribute, 4-14
FIL 1ER_PROPERTY directive, 4-14
FLAG body, 4-24
format 1 syntax, 2-11

global signals, 4-38
global text macros, 5-11
Graphics Editor (GED), 1-2

HAS_FIXED _SIZE property, 4-28
hierarchical design restriction, 4-20
hierarchy, signals ,in, 4-38

I/O checking, 4-32
identifiers, 5-4
inherit attribute

body 4-11
pin, 4-12
signal, 4-12
summary, 4-13

inheritance
of drawing properties, 4-16
of properties, 4-11

inherited properties on pins, 4-7
inheriting properties, 4-8
integer expressions, 6-3, 6-5
interconnecting nets, 2-17
interconnections, 1-3
interface signals, 2-8, 2-21, 4-24, 4-32, 4-38

linked signals, 2-12
linking signals, 2-17
local signals, 4-38
LOCATION property, 4-8
logic convention, changing, 3-4
Logic Simulator, 1-3, 2-4

I-4

SCALD Language

3/10/86

SCALD Language

macros, see text macros
MERGE body, 2-19, 3-2, 3-3
merging signals, 3-1
multi-bit parts, 2-16

NAC (no assertion check) property, 2-19, 4-18
name string (signal), 2-4
names of parts, 4-35
NC (no connect) signal, 2-18, 2-21
NEEDS_NO_SIZE property, 4-21
negation symbol (signal names), 2-2
nets, naming of, 2-20
no assertion check directive, 2-8
no connect signal, 2-18
no width check directive, 2-8
NO_IO_CHECK property, 4-32
NOASSERT property, 4-30
nonstandard signal name syntax, 2-11
NOT body, 2-19, 3-4
NOWIDTH property, 4-33
NWC (no width check) property, 3-2, 4-19

operators in expressions, 7-1
optional signal name syntax, 2-11
output pins, 4-23
OUTPUT_TYPE property, 4-23

parameter attribute, 4-8, 4-10
parameter selection, 6-2
parameters

attaching, 6-2
in text macros, 5-10
text macros in, 5-7

part, path names, 2-14
part values, see properties
PART_NAME property, 4-16, 4-35
parts

in parallel, 4-41
path names for, 2-17
versions of, 4-27

PASS_PROPERTY directive, 4-14
path element

unique_number, 2-16

3/10/86

Index

1-5

Index

name, 2-15
name examples, 2-16
syntax, 2-14

path name, 2-17
PA TII property, 2-15, 4-36
permit attribute, 4-13
pin assertion, 4-30
pin names and properties, 4-7
pin properties, inheritance, 4-12
pin properties, inherited, 4-7
pin properties, 4-7
PIN_NAME property, 4-7
pins, bit width, 4-33
pins and properties, 4-6
pins, unconnected, 2-21
plumbing bodies, 2-19, 3-1, 4-25
plumbing property, 4-25
properties

I-6

ABBREV, 2-15, 4-16, 4-22
ABS_REF, 4-24
adding, 4-6
advanced topics, 4-18
ALLOW _CONNECT, 4-23
body, 4-8
BODY_TYPE, 3-2, 4-24
BUBBLED, 4-26
compilation, 4-7
Compiler treatment of, 2-2, 4-20
definition of, 4-2
drawing, 4-16
EXPR, 4-16, 4-27, 6-3, 6-4
filtering from output, 4-8
HAS_FIXED _SIZE, 4-28
in pin names, 4-7
in signal names, 4-4, 4-6
inheritance, 4-8, 4-12
inherited, 4-7
list of, 4-15
LOCATION, 4-8
multi-bit signals, 4-6
NAC, 2-19, 4-18
NEED S_NO_SIZE, 4-21
NO_IO_CHECK, 4-32

SCALD Language

3/10/86

SCALD Language

NOASSERT, 4-30
NOWIDTH, 4-33
NWC, 3-2, 4-19
of signals, 2-1, 2-7
on bodies, 4-11
PART_NAME, 4-16, 4-35
PA TH, 2-15, 4-36
permit attribute, 4-13
pin, 4-7, 4-12
PIN_NAME, 4-7
plumbing, 4-25
propagation of, 4-11
REL_REF, 4-24
REP, 4-37
SCOPE, 2-2, 4-5, 4-38
signal, 4-4, 4-12
SIZE, 2-16, 3-4, 4-9, 4-39, 5-7, 6-1
TERMINAL, 4-16, 4-40
text macros in, 4-17, 5-6
TIMES, 4-9, 4-41
TI1LE, 4-16, 4-42
unattachable, 4-13
unexpected, 4-11
values, 4-2
WIDTH, 4-9
WIRE_DELAY, 4-7, 4-13, 4-43

property attributes, see also attributes
property attributes file, 4-14, 4-16
property attributes, default, 4-15
PROPERTY command (GED), 4-3, 4-4, 4-7
property_file attribute, 4-14
PROPERTY _FILE directive, 4-7

REL_REF property, 4-24
REP property, 4-37
replication of signals, 4-37
rise time, 4-43

SCALD bodies, 3-1
schematic capture, 1-2
scope

of a signal, 2-8
of properties, 4-18

3/10/86

Index

1-7

Index

of text macros, 5-11
SCOPE property, 2-2, 4-5, 4-38
selecting versions, 6-2
selection expressions, 4-27, 6-1

definition, 6-2
errors, 6-4
in drawings, 6-4

• signal
assertion checking, 4-18
assertion, 2-1, 2-7
bit width, 2-1
class, 2-3
interface, 2-8
scope, 2-8

signal name
bit subscript, 2-5
definition and restrictions, 2-3
negation synibol1 2-2
properties in, 2-7
property abbreviatons, 2-8
string, 2-4
synonyms, 3-4
syntax, 2-1, 2-2, 2-9

signal names
advanced topics, 2-20
directives in, 2-8
macros in, 5-1, 5-5
nonstandard, 2-11
properties in, 4-4, 4-6
text macros in, 2-8, 5-2

signal naming conventions, 2-1
signal path names, 2-14
signal properties, 2-1, 4-4
signal property inheritance, 4-12
signal synonyms, 2-17
signal width, 2-19

specifying, 3-4
unknown, 2-18

signals

1-8

base for synonyms, 2-18
bus, 3-1
combining, 3-1
concatenated, 2-12

SCALD Language

3/10/86

SCALD Lang;nag;e

constant, 2-12
global, 4-38
how compiler interpret">, 2-10
inherited properties, '1-7
interface, 4-2·1, 4-38
local, 4-:38
NC (no connect), 2-21
replication, 4-:37
scope, 4-5
timing assertion, 2-'1
undetermined assertion, 2-19
unnamed, 2-18, 2-22
vectored, 2-5, 3-1

SIGNAME command (GED), 1-3
SIZE property, 2-16, 3-4, 4-9, 4-39, 5-7, 6-1

and replication, 2-16
sizeable bodies, 4-28, 4-39
SLASH body, 2-19, 3-4
special bodies, 3-1
standard library bodies, 3-3
standard signal format, 2-11
strings, 5-1
SYNONYM body, 2-17, 3-4
synonyms, signal, 2-17
synonyms file, 2-18
synonyms, 2-20
syntax, nonstandard, 2-11
syntax of signal names, 2-1, 2-2

TAP body, 3-4
TERMINAL property, •1-16, 4-·10
text macro files, 5-12
text macros, 4~5, 4-17, 6-4

defining, 5-3
defining on a dwg, 5-4
definition, 5-1
global, 5-11
global scope (\G), 2-8
in drawing name, 5-8
in parameters, 5-7
in properties, 5-6
in property names, 5-8
in signal names, 5-2

3/10/86

Index

1-9

Index

in signal names, 5-5
interface signal (\I), 2-8
local scope (\L), 2-8
multiple parameters, 5-10
no assertion check (\NAC), 2-8
no width check (\NWC), 2-8
nested, 5-5
restrictions, 5-8
scope of, 5-3, 5-11
signal replication (\R), 2-8
timing assertion, 5-13
using, 5-4
wire delay (\ WD), 2-8, 4-6
with parameters, 5-8

TIMES property, 4-9, 4-41
timing, text macros, 5-13
timing assertions, 2-4
Timing Verifier, 1-3
timing, 4-43
TITLE property, 4-16, 4-42
TYPE parameter, 6-2

unconnected pins, 2-18, 2-21
unconnected signals, 2-21
undetermined assertion, 2-19
unique_number in path element, 2-16
unknown signal width, 2-18
unnamed signals, 2-18, 2-22

vector signals, 2-5, 3-1
bit subscript, 2-5

versions
drawing, 6-1
of parts, 4-27
selecting, 6-2

width (signal), unknown, 2-18
width check, 2-8, 4-19
width of signals documenting, 3-4
WIDTH property, 4-9
wire delay text macro (\ WD), 2-8, 4-6
WIRE_DELA Y property, 4-7, 4-13, 4-43

I-10

SCALD Language

3/10/86

