
ValidCOMPILER Usage and Anomalies

(Program Release ValidCOMPILER 1.0.3)

09 Dec 85 Bill Hunsicker

(C) Copyright 1985 Valid Logic Systems, Inc.

1

Val id COMPILER Usage and Anomalies

1.0 ValidCOMPILER

The ValidCOMPILER package greatly improves the speed of compilation and
analysis tool loading over the SCALD compiler. Analysis tools using this
mechanism can be run without previously having to compile anything. The
tool will then run a page-at-a-time compiler (ValidPAGECOMP) that will
compile only those pages that have been updated (or affected hy a changed
text macro definition) and will link them together (with ValidLINKER). If
all is ok (no compiler or linker ERROR messages), the tool will then run;
otherwise, tht error messages will be gathered together in the compiler list
file (cmplst.dat) for inspection. When the errors have been fixed, the tool
may be run again, and the fixed pages will automatically be recompiled. The
compilations are performed accordir\g to the contents of compiler.cmd in the
current directory (as before).

ValidSIM is the first tool released with this capability. It can be run
with an expansion file (the old way) or with the ValidCOMPILER mechanism.
Specifying a ROOT DRAWING directive in the simulate.cmd file or specifying a
root drawing in the command line:

simulate "my drawing"

causes the ValidCOMPILER mechanism to be used (no previous compilation is
required).

Other tools (such as the packager) still require expansion files (produced
by running the compiler before running the tool).

2.0 Error Messages

The ValidCOMPILER mechanism compiles drawings page-by-page. The results for
each page are stored until a change is detected that requires the page to be
recompiled. These pages are then linked together to form the entire design.
Each page can contain ERROR, OVERSIGHT or WARNING messages; these can also
be generated when linking the pages together. As the error messages are
stored with the output, a mechanism is necessary to gather them together for
viewing so that they can be fixed.

When ERRORs occur in the language processing (using ValidCOMPILER or
ValidSIM), then a program called COMPERR is run automatically to produce a
cmplst.dat file containing all ERROR, OVERSIGHT, and WARNING messages. This
program can also be run directly by a user at any time. It is not
automatically run if only WARNINGs and/or OVERSIGHTs are present (as these
usually do not prevent continuing), so it is recommended that COMPERR be run
occ~sionally to allow these to be cleaned up. COMPERR is described
completely in its own document, but in brief it takes root drawing and
compile type arguments (like COMPILE) and these take default values in the
same way that they do for the COMPILE command.

1

ValidCOMPILER Usage and Anomalies

The error listing produced (in cmplst.dat) lists "compiler" messages
(organized page by page) and "linker" messages (which are generated when
gathering the pages together to form the design). The page compiler catches
as many errors as it can without looking at other pages. The r<-~St ar<o
caught during the linking nf the pages.

3.0 Access Control

When running a ValidCOMPILER analysis tool (such as ValidSIM) on a drawing,
that drawing and all of its sub-drawings become candidates for compilation
during that run. The result of each (page) compilation is stored with the
pag<::~ that was compiled (meaning within the drawing directory where the
page's connectivity and other GED files are stored). This allows one
compiled result to be shared between users and designs (saving a
considerabl<~ amount of disk space). This means that if Joe's design uses
Bill's drawing, then Bill's drawing may be compiled (with results stored in
its directory under Bill's account) when Joe simulates his design. In order
to do this, Joe must have read, write, and execute access tu the directory
containing any of Bill's drawings tl1at he uses and read/write access to any
of the compiler files therein.

The operating system on the S32 provides access control for the user, group,
and world. If Joe and Bill are in the same group, then allowing full access
to the group will allow them to use each others drawings witl1out running
into access problems during the page compilations. The compiler
automatically generates files with mad/write :iccess tor the group. (It
does this by executing "umask 2" in the file /uO/scald/U.nker/lnkassi::r,n.sh.)
c~o (because it also executes /uO/scald/linker/lnkassign.sh) will now
generate drawing directories with read/write/execute access for the group.
Old GED drawings probably will NOT have write permission for the group -­
this can be changed by executing "chmod +w *" in the directory that contains
all of the drawings. (If this feature is NOT desired, have the system
manager delete the "umask 2" line from /uO/scald/linker/lnkassign.sh. The
compiler and GED will then run with umask set as specified by each user's
login command file.)

When accessing library drawings (where the drawing directory is owned by the
"lib" account) the compiler will run as if "lib" was the user; otherwise lt
runs as the real user. (For thosf~ familiar with the operating systL~m, "real
user" here means exactly that and not "effective user".) This makes it
possible for library drawings to be automati.cally compiled for any user
though only "lib" has write access to them.

If a drawing is used that exists on another node of the network, the user
must have an account on both nodes (unless only (lrawin[_!,'.:; owned by "lib" will
be accessed remotely) and the local node must be listed in that node's
/hosts.equiv file. (These are the conditions that allow rsh to work.)
Additionally, ValidCOMPILER must be installed on both nodes.

2

ValidCOMPILER Usage and Anomalies

4.0 Anomalies

The following anomalies exist with the new mechani.sm (ValidCOMPILER or
ValidSIM using the ROOT_DRAWING directive). They are intendecl to be fixed
in some upcoming release.

1. The MASTEK_LIRRARY compiler directive does not work.

2. The PRIMITIVE compiler directive is not implemented.

3. The SUPPRESS compiler directive works only on compiler messages. Linker
oversights and warnings cannot be suppressed. This applies to the
WARNINGS OFF and OVERSIGHTS OFF directives as well.

4. The REPORT compiler directive is not implemented.

5. The OUTPUT CHIPS compiler directive is not implemented.

6. The ERROR_HELP ON compiler directive is not implemented.

7. The linker will not report signals synonymed to their own complement.

8. Error messages not directly associated with a page (such as "Drawing not
found") are reported only to the monitor (and cmplog.dat), so are not
included in the list file (cmplst.dat) produced by COMPERR.

9. The compiler does not detect different property attributes (such as
PERMIT(PIN) INHERIT(PIN)) when deciding whether to recompile a page.
(Property attributes describe how a property can be used, not what its
value is -- see the SCALD manual for a full description.) This kind of
change is usually made very infrequently. If changes of this kind are
made, then all drawings can be forcibly marked "dirty" by going to all
working directories (and library directories) and executing the command
rm /schema in each. The absence of this file from a drawing directory
causes all pages of the drawing to be recompiled. All users sharing
libraries or drawings must specify the same property attributes.

10. The compiler does not detect different values for the BUBBLE_CHECK,
SUPPRESS, WARNINGS or OVERSIGHTS directives when deciding whether to
recompile d page. Unlike the above, this is by design and there are no
plans to change it.

11. The mechanism used to detect changes to plumbing drawings is not
entirely foolproof (this may or may not be changed). In particular, if
a different "standard" library is specified than was used the last ti.me
the page was compiled while leaving the old library files in place this
change will not be detected.

3

ValidCOHPIU~R Usage and Anomalies

5. 0 Language Changes

The following are language changes adopted with the ValidCOMPILER. They
will not be changed. The old compiler still does things the old way. The
first concern.s a change that must be made to all FLAG body drawin.gs to make
thern compatible with the new system. The next two concern errors now
reported that were not previously reported. They will be of interest if
they are discovered in a design that previously compiled without error. The
last two changes concern rather advanced topics and are subtle, so readers
not well familiar with the SCALD 111 language should skip them.

1. FLAG bodies must have the BODY TYPE="FLAG BODY" property on the drawing
body in both the LOGIC drawing-and the PART drawing. (Previously this
was needed only in the PART drawing.) It is NOT necessary to update any
drawings using the flag bodies after making this change (as none of the
FLAG.BODY drawings have been changed).

2. Signals are checked against their complements for consistent scope and
kind (vector or scalar). In other words, it is an error to have
(assuming format 1) a signal A along with a signal A<2 •• 0)* just as it
would be an error to have both A and A(2 •• 0). Similarly, one cannot
have both A\I and A*\L just as one cannot have both A\I and A\L in the
same drawing.

3. Drawings having more than one (different) abbreviation are reported as
oversights.

4. Text macros specified on DEFINE bodies Are defined only within all pages
of that drawing, version, and extension. (Such as MYDRAWING.LOGIC.l.).
Previously, the definition was inherited downward through the hierarchy.
Note: wher_e this inheritance was used, it was usually used to define
some global text macros in a define body of the root drawing, which then
allowed them to be used throughout the design. This same result can be
obtained by defining unreserved global text macros in a text macro file.
The SCALD manual describes how to define reserved global text macros
this way, and unreserved macros are defined in the same way, but with
the word UNRESERVED appearing after the de.fini.tion and before the
semicolon that terminates it.
Ex:

my_city "San Jose" unreserved;
in a text macro file defines the text macro MY CITY which expands to
"San Jose" and is unreserved (can be locally overririen by a parameter or
DEFINE body specification). NOTE: If your drawing counted on the
downward inheritance of text macros defined by DEFINE bodies, then it
will not work with Va lid COMPILER unti 1 the macros are defined in a text
macro file as described above. The SCALD compiler will successfully
compile the drawing as it did in the past.

5. PRIH and PART drawings for drawings with one version must not dep~~nd on
their parameterization. In other words, any drawine body properties in
the PRIM or PART drawings should not have values that use the % text

.•

macro expansion mechanism where the macro to be expanded is to be passed /
in as a parameter. ,

4

ValidCOMPIL~R Usage and Anomalies

Additionally, there have heen bug fixes that effect compilation results.
These bugs have been fixed for both the SCALD compiler and the
\TaltdCOMPILER. Directi1Tes have heen added to turn the bug fixes on or off
for backward compatibility. The directives default to the value that fixes
the bug. Use the SCALD compiler with the directive set as specified (below)
to get backward compatibility -- BUT ONLY WHEN ABSOLUTELY NECESSARY.

1. BUG -- Upon encountering an lnterface signal for a pin FOO whi.ch is not
connected, the compiler creates a local signal PINNAME$FOO to replace
the interface signal. The problem is that PINNAI1E$FOO is treated
strictly as a local signal when in fact it should continue to be treated
as an "almost" interface signal. The problem is particularly acute when
using X (XSTEP < SIZE) replication in the compiler. When this is done,
local signals are local to each replication of the drawing, while
interface signals are shared between all replications. Treating the
PINNAME$FOO signal (which was originally FOO\I) as a local signal causes
separate local signals to be generated for each replication, when it was
intended to be shared by all replications. It therefore is a signal
with more global scope than any local signal and should always be chosen
as the base signal over a local signal (unless the local signal has
"name" properties).

FIX -- The signals generated to represent interface signals for
unconnected pins are considered to have greater scope than local signals
and are shared by all replications of a drawing when performing
X-replication. Because they have greater scope, they are chosen as base
over local signals (unless preempted by name properties in the local
signal). This has been fixed in the ValidCOMPILER and the SCALD
compiler (version 7.27a:27Nov85 or later). The SCALD compiler supports
a directive that can restore the original anomalous behavior.

This hug fix results in a PINNAME$FOO signal being picked as the base
signal where previously a local signal synonymed to it (such as MYSIG)
may have been picked. This results in an equivalent circuit, but with
PINNAME$FOO substituted for MYSIG. To the packager, this is a changed
circuit. If compilation the old way (with the bug, so that the packager
sees the same base signal names) is desired, this can be <lone by using
the SCALD compiler with the directive LOCALLY GLOBAL OFF. This
directive is not supported by the ValidCOMPILER. (The name of the
directive derives from the fact that, when ON, the compiler generated
PINNAME$ signals are to be treated as "locally global" instead of
"local".) Note that this directive exists only to allow a previous bug
to be recreated for old unchanged designs where this degree of backward
compatibility is essential. It should not be used for other cases.

2. BUG -- The parameter value evaluation mechanism for string-valued
parameters did not work as documented (and intended). A (non-integer)
parameter such as MAX DELAY="20NS\PARAMETER" would be transformed into
MAX DELAY="20". Similarly, a parameter such as CAP="3.0E-12" (meant to
be passed as a string to the analysis tool which then treats it as a
real number) would be passed as CAP="3.0-12". In short, trailing
characters would be deleted from what looked like an "integer". This
came about because the compiler parsed the value with the same parser

5

ValidCOMPILER Usage and Anomalies

that .it uses to parse integer parameter. values (such as SIZE="lB") and
signal names, so it treated the parameter value as a string of "tokens"
(words and punctuation marks) with strings like 20NS or OE being treated
as a single token that was equivalent to the integer without the
trailing characters. (This mechanism exists to allow documentation to
be added to the integers used to define values for integer-valued
parameters. It was not intended to affect the way that string-valued
parameters are handled.)

FIX -- The SCALD compiler and ValidCOMPILER now parse string parameter
values as stated in the documentation. Text macro expansion is done on
identifiers, but the value is otherwise unmodified. Identifiers must be
delimited to become candidates for text macro expansion (meaning they
must he preceded and followed by a character not allowed in identifiers
or by the start or end of the parameter value).

If backward compatibility in this is absolutely necessary, the compiler
directive TOKENIZE PARAMS ON can be used. It is highly recommended that
this be used only with the SCALD compiler and not with the ValidCOMPILER
(tho11gh it works for both) so that any new designs (or old designs being
changed anyway) which use parameters erroneously will be fixed.

6

\

