
CHAPTER 8

PACKAGER

Overview of the Packager

8.1 INTRODUCTION

Packager
Overview

The Packager provides the interface between the
SCALDsystem and the user's physical design environment. The
files output by this program are intended to supply all the
information needed by physical design systems. The Packager
reads the expansion file created by the Compiler and
produces files for the user's physical design system. These
output files include net lists, part lists, etc.

State files can be generated to maintain a consistent
description of the design from one Packager run to another.
The Packager can also read files created by the user's
physical design system that specify changes in the physical
design or additions to it that need to be reflected in the
output files. These changes are then made to the state
files during the next execution of the Packager.

8.2 A SUMMARY OF THE PACKAGER'S FUNCTIONS

The Packager performs several functions. These are
summarized below with a short description. A complete
description of each will be presented later in this section.

1. Expand parts with SIZE properties.

Parts with SIZE properties need to be expanded into
(possibly) several parts. The signals connected to
the original part are assigned to the expanded parts.

2. Create versions of parts that have TIMES property.

New versions of those parts that have TIMES
properties are created. The signal versions (the
outputs of versioned parts) are allocated as needed
in the rest of the design.

3. Remove phantom WIRE-OR and WIRE-AND bodies.

All WIRE-OR and WIRE-AND bodies used in the design
are removed and replaced with explicit wire tying.
New versions of signals are used to implement wire

8-3

4.

tying (see the section on WIRE-ORs and WIRE-ANDs).

f > • •

L?_g-i~al to physical mapping.

Each logical part, signal, and pin is given a
physical name. These names are originally created by
the Packager but can be changed by the user.

5. l-?~cB.ng'._:calcula t ions •
. .. ·' . "

. '
~- "T , .,

•''Th~ Pa~kager checks each net to make sure that the
loading specifications of the parts are not violated.

6. Input and output checks.

:~ '} ~h~~Packager checks that there is at least one input
''·'··and' one output pin connected to each net. This

7 •

~'~~tects th•:~~ses where there are dangling inputs or
1 o~tpu~s. _ .
.. ~ .. ' t . .

&&tput file creation.

The Packager creates several files containing the
results of the run. These files include a net list,

:~ . . ,,. p~r ts. list, logical design change summary, etc.

-, ;:~. ! . t~~~~a~k of phy~ical design changes.
~ ·:.;,. E' ~ B. , 1 ··~ ~ ~ ~· ~,. - ~-~ ,

-··

The physical design created by the Packager may
differ from the design created by the physical design
system. All of these changes can be fed back into

·~~~~~P,ckpger to modify its understanding of the
actual physical design.

........ ' t ,, ,

Tb~,)~~~ager ,- fll~o provides preliminary support for
engin,~r.ing:~hanges. The treatment of ECOs in general will
be adi~~~s'' at,a:later date; the current Packager is not
intended to ~e,.,a solution to those problems.

r: a: ~t- .•

8.3 PACKAGER INPUT FILES

The following files are read by the Packager. Some of
them are created by the Packager, some are created by the
Compiler, and some are created by the designer (or the
desig-,e~:.s;· l)l\Y$ieal·:design system). The specific formats of
the~e filtsaisode~eTtbed later in this section.

8-4

Packager
Overview

1. Packager Directives File

This file contains commands used to direct the
execution of the Packager and is created by the
designer with a text editor.

2. Compiler Expansion File

3.

4.

5.

6.

This is the output file from the Compiler and
contains a body ordered description of the design.
All user defined properties and signals are found
here.

CHIPS File

This file contains descriptions of the physical part
types used in the design. Each entry contains the
physical part type, pin numbers, section
descriptions, default properties, current loading
values for both input and output pins, and family
specification. This file is generated by the
Compiler from a special set of library drawings.

Physical Part Tables

These files contains tables describing how new part
types can be created from existing part definitions
on an instance by instance basis. This is useful for
discrete parts such as resistors and capacitors.
These files are created by the designer with a text
editor.

Logical Signal Name to Physical Net Name Bindings

This file contains bindings of logical signal names
to physical net names. Each logical signal name is
in cannonical form. It also contains a path name
specifying the signal instance. The physical net
name is a physical name string. Each signal name
pair represents a single bit. This file is
maintained by the Packager and is not to be written
or changed in anyway by the user.

Physical Net Name Transformations

This file is used to change the physical net names
assigned by the Packager. It consists of a list of

8-5

".h: .Packager
A. ; thTfHV·iew

7.

old physical net names and new physical net names.
It is created by the user or the user's physical
design system.

Logical to Physical Part Designator Bindings

..1- ~i r·l " ; ('!f P,.'.}.?f'

This file ~ontains a list of logical to physical
designator bindings. Each entry consists of a
logical part designator and its corresponding
physical part designator. Each entry also contains a
section specification which binds logical pin
designators to physical pin designators. This file
is maintained by the Packager and is not to be
written or changed in any way by the user.

.,)-. .
(- ~"'
l

8.

9.

Physical Part Designator Transformations

This file contains changes of old physical part
designators (the ones assigned by the Packager during
the last run of the program) to new physical part
designators (as assigned, possibly, by some layout
program). This file provides a means by which the
physical part designators assigned by the Packager
can be changed. This file is generated by the user
or the user's physical design system.

Physical Section Transformations

This file contains changes of old physical sections
(the ones assigned by the Packager during the last
run of the program) to new physical sections (as
assigned, possibly, by some layout program). This
file provides a means by which physical sections
assigned by the Packager can be changed. This file
is generated by the user or the user's physical
design system.

~1.1~. Feedback Net List

This file contains a net list sorted by physical part
designator of the current physical design. The only
restriction is that the physical net names must not
have changed or the new physical net names have
already been fedback before performing a net list
feedback. The Packager will detect and perform all
physical part designators changes, physical section
swapping, and pin swapping from the feedback net
list. The file is generated by the user or the

8-6

user's physical design system.

Packager
Overvie~

11. Signal Synonyms File

This file is produced by the Compiler and lists all
aliases for each signal that has a synonym in the
design.

12. State file

This contains information about the last run of the
Packager. It is used to ensure that the Packager
produces the same output for the same inputs.

13. Pin Swap File

-~f. ;/ This file contains the pin swap information generated
from a previous run of the Packager. This file is
maintained by the Packager and is not to be written
or changed in any way by the user.

FILES WRITTEN BY THE PACKAGER

The following files are created by the Packager. Some
of them may be selectively disabled should the file not be
needed. Some of these files are read by the Packager in
subsequent runs of the program.

1. Execution Summary

A summary of the Packager execution showing execution
times, statistics, error messages, etc.

2. Cross References

This file contains several cross references intended
to provide information about the design that is not
readily available in the drawings. These cross
references include both physical and logical
information and how they correspond. They are
organized to provide access to the design as a whole
or to a particular drawing.

8-7

Packager
Overview

3. Logical Signal Name to Physical Net Name Bindings

This file contains bindings of logical signal names
to physical net names. Each logical signal name is
in SCALD format. It also contains a path name
specifying the signal instance. The physical net
name is a physical name string. Each signal name
pair represents a single bit. This file is
maintained by the Packager and is not to be written
or changed in any way by the user.

4. Logical to Physical Part Designator Bindings

This file contains a list of logical to physical
designator bindings. Each entry consists of a
logical part designator and its corresponding
physical part designator. Each entry also contains a
section specification which binds logical pin
designators to physical pin designators. This file
is maintained by the Packager and is not to be
written or changed in any way by the user.

5. Expanded Net List

A net list consisting of the physical net name,
properties of that net, physical part type, physical
part designator, physical pin name, and properties of
the logical pins. Properties from the chips file are
not output.

6. Expanded Parts List

A part list consisting of physical part designators,
logical to physical bindings, and the body properties
of the logical parts. Properties from the chips file
are not output.

7. Logical Changes Summary

A list of the changes in the logical design from the
last run of the Packager. Any changes in logical
part to physical part assignments are listed to this
file.

8. State File

This contains information about the last run of the

8-8

Package~

Ov~rvi~*

Packager. It is used to ensure that the Packager
produces the same output for the same inputs.

9. Pin Swap File

This contains the pin swap information generated by
the Packager during a feedback net list. This file
is maintained by the Packager and is not to be
written or changed in any way by the user.

10. Log File

This file contains assertion check error messages,
run time statistics, internal debug information, etc.
used by Valid personnel when searching for
information about program bugs. The user does not
normal~y need to look at this file.

11. Back Annotation File

This file contains information added to the design by
the Packager or the physical design system which the
user may wish to see reflected in the drawings. The
Graphics Editor reads this file and adds this
information to the user's drawings.

12. Reports

This file contains several user reports generated by
the Packager. These reports includes a part summary
of the design and a list of spare physical sections.

13. New CHIPS file

This file contains the new part definitions that were
created from processing physical part tables. Thi~
file can be used by other programs such as DIAL to
differentiate the newly created part types.

8-9

Packager
Reference Manual

8.4 INTRODUCTION

Packager Reference Manual

The following sections describe the various functions
of the Packager.

8.5 SIZE EXPANSION

~he SIZE property is used to generate a multiple-bit
component, and connect it to a group of signals. The
Packager generates SIZE number of logical parts and assigns
a new logical part designator to each. A logical part can
have pins common to all sections as well as pins unique for
each section. Common pins are connected in parallel for all
sections and the unique pins are connected to independent
pieces of the signal connected to the original part. The
PIN NUMBER property for each pin in the body definition
specifies whether the pin is common or unique for each
section. The PIN NUMBER property specifies the width of the
pin it is attached to. The Packager allocates this number
of bits from the original signal to each logical part. If
the original signal is not w~de enough for all logical
parts, the Packager begins allocating from the beginning of
the signal again. See the documentation describing the
construction of physical libraries for more detail.

The assignment of bits of a signal to physical parts is
done sequentually so that adjacent bits are assigned to the
same physical package if possible.

8.6 TIMES EXPANSION

In digital designs, it is often convenient to have
several different signals available which each have the same
behavior. One such case is where a net has more input loads
than the output is capable of driving. This fan-out error
must be corrected for the product to function as designed.
A good way to fix this type of problem is to divide the
inputs on the net into two or more groups, where each group
presents a small enough load to be driven by one output.
Each group is wired together, and is said to connect to a
version of the net. To keep the operation of the design
unchanged, each version of the net must have the same
logical behavior. To avoid fan-out errors, each version of
the net must have a different output driving it. This is
accomplished by connecting each version of the net to a
different version of the output, where each output version
behaves the same.

8-10

Packager
Reference Manual

Any part may have multiple versions of its outputs
generated by attaching the TIMES property to the instance of
the part. The number of versions of each output that will
be generated is the value of the TIMES property. The
outputs are generated by creating TIMES number of physical
sections and, for all physical sections, connecting the
inputs as shown in the drawings. Thus, since the inputs to
each of the components are identical, each output signal
will exhibit the same logical behavior over all the
versions.

Replication by TIMES is useful where an output must
drive many input loads, and the Packager will divide the
loads among the versions of an output so that the specified
loading rules will be obeyed. In the process, it will
generate one version of the net for each version of the
output. When more versions of an output exist than are
necessary to drive the net to which it connects to, the
Packager will attempt to divide the loads evenly among all
output versions. If loading rules require more output
versions than are specified, the excess number required will
be determined and flagged as an error.

When several outputs are connected to one net
(wire-tied), and several versions of the net are desired,
each output should have a TIMES value equal to the number of
versions of the net desired. If several outputs on the same
net have different TIMES values, the number of versions of
the net generated is the minimum of the output TIMES values.
Physical parts with no TIMES properties have a TIMES value
of one.

Pins with the BIDIRECTIONAL property (see the section
describing current loading) are considered to be output pins
when versions of the part are created because of a TIMES
property.

8.7 WIRE-GATE AND WIRE-TIE EXPANSION

In SCALD III, outputs of appropriate technologies may
be connected together in two different ways:

o An explicit wire-tie.
o A wire-gate.

Wire-ties are simply the connection of two or more outputs
to the same signal and are used primarily for connection of
several drivers to a common bus. The signal present on the
outputs is exactly that signal which is present on the bus,
since the outputs are connected to the bus.

8-11

Packager
Reference Manual

Wire-gates are used whenever signals are wired together
to form the logical-or or logical-and of the signals
{depending on the technology), and the signals are also used
elsewhere in the design. In these cases, simply connecting
to the same net {wire-tying) the outputs driving each signal
is not acceptable, since it results in all the signals
assuming the value of the logical-or or logical-and. The
correct way to wire these signals together is to wire-gate
the signals by connecting versions of the outputs which are
used nowhere else in the design. By doing this, a signal is
generated which has the required behavior, and the behavior
of the other versions of the constituent signals remains
unchanged wherever else they are used. This allows the
designer to treat wire-gates the same as "real" gates, which
makes complex wire-gate designs understandable.

TIMES properties on wire-gates function exactly the
same as on physical parts. Several versions of a net are
generated, each with different output versions. For each
version of the wire-gate output net, one version of each of
the wire-gate input nets is used. If a net connects to a
wire-gate input, then enough versions of the net must exist
to drive the "real" loads on the net plus the "induced"
loads on the output net of the wire-gate. If a wire-gate
has no TIMES property, it is ignored when determining the
number of versions of the output net, and assumes the TIMES
value required by the net. Each version of the output net
will use one version of each input net, whether the
wire-gate has a TIMES property or not. The Packager
indicates any extra versions of outputs which are required,
making it simple to arrive at the correct TIMES values for
outputs driving even a complex combination of "real" and
wire-gate inputs.

After a number of versions of a net have been generated
{by use of the TIMES property), the number of versions
required by wire-gate inputs is first used. The "real"
loads on the net are then divided among the remaining
versions of the net. Therefore, a net with 10 versions
which gives 3 versions to wire-gate inputs will have 7
versions left to drive "real" inputs.

The constant signals 'O' and 'l' may be applied to the
inputs of wire-gates, and function as they would on "real"
gates. If a wire-and has an input connected to the 'l' net,
that input is ignored, since the other inputs will determine
the value of the output. If a wire-and has an input
connected to the 'O' net, then all loads on the output net
are connected to the 'O' net, since 0 AND anything is O.
The outputs driving the remaining inputs to the wire-and are
not used. The same is true for wire-or's, with 'O' and 'l'
reversed.

8-12

8.8 NET CHECKS PERFORMED BY THE PACKAGER

Packager
Reference Manual

A net is a single bit signal and the nodes (parts and
the specific pin) that are connected to it. There are
several consistency checks performed for nets. These are:

l. Make sure every net is connected to at least one
input pin and at least one output pin.

2. If a net is connected to more than one output pin,
make sure all those pins have the proper technology
(OC, OE, TS, etc.).

3. Make sure loading rules are not violated.

Each of the checks above is discussed below. Loading
rules will be discussed in the next section.

INPUT AND OUTPUT PIN CHECKS

Each net is checked to make sure that it connects to at
least one input as well as one output pin. If this is not
the case, a message is printed indicating the condition
detected and the net for which it was detected. The
presence of the OUTPUT LOAD property on a pin indicates that
the pin is an output and the presence of the BIDIRECTIONAL
property indicates that the pin is both an input and output.

These input and output checks can be suppressed on a
pin by pin, body by body, or net by net basis. The
NO IO CHECK property is used for this purpose.

The NO 10 CHECK property can be given one of three
values as follows:

LOW
This causes the ''O state" 1/0 check to be suppressed.
The "l state" check is performed.

HIGH
This causes the "l state" 1/0 check to be suppressed.
The "O state" check is performed.

BOTH or TRUE
This causes both the "O state" and the "l state'' 1/0
checks to be suppressed.

The NO 10 CHECK property may appear on a library part
(as in the case of a standard connector) or can appear on an
instance by instance basis in the drawings.

8-13

Packager
Reference Manual

If the NO IO CHECK property is used as a net property,
it applies to all-the pins on the net. When used as a body
property, NO IO CHECK applies to all pins of the body. When
used as a pin property, NO IO CHECK applies only to the pin
to which it is attached. - -

MULTIPLE OUTPUT CHECKS

Outputs can only be tied together if they are given
explicit permission to do so. Permission is given by the
OUTPUT TYPE property attached to the output pins. The
OUTPUT-TYPE property serves three purposes. First, it gives
permission to the pin to be connected to other outputs.
Second, it specifies the type of output so that only
compatible outputs may be connected together. Third, it
specifies the logic function created by tying the outputs
together. When the Packager detects outputs tied together
that do not have the OUTPUT TYPE property or outputs tied
together that hav incompatible OUTPUT TYPE properties, it
produces an error message indicating the output pins as well
as the net name.

Each output pin that can be connected to other output
pins must have the OUTPUT TYPE property. The property value
specifies the pin type and also the logic function created
by tying the outputs together. The form of the OUTPUT TYPE
property value is:

((output type) , (logic function>)

where (output type) is the output type name and can be any
identifier (string of letters, digits, or ' ' starting with
a letter). The (logic function> is optional and specifies
the logic function of outputs tied together and may be
either AND, OR, or TS. See the Timing Verifier
documentation for a description of how multiple output nets
are simulated in the presence and absence of the logic
function portion of the OUTPUT_TYPE property.

Outputs can be connected together only if they have the
OUTPUT TYPE property and the property values are the same.
The pa~ts in the Valid libraries have the following standard
OUTPUT_TYPE property values:

OC,AND { open collector; AND logic function }
OE,OR { open emitter; OR logic function }
TS,TS { TRI-STATE; logic function handled specially }

Other property values can be used. The value is only used
to match output pin types and has no other meaning to the
Packager.

8-14

Packager
Reference Manual

Occasionally, there is a need to connect outputs of
different types. The ALLOW CONNECT property can used to
allow multiple outputs to be connected together by
specifying which outputs are to be "ignored" during the
check.

The ALLOW CONNECT property may appear on a library part
(as in the case of a standard connector) or can appear on an
instance by instance basis in the drawings.

If the ALLOW CONNECT property is used as a net
property, it applies to all the output pins on the nets.
When used as a body property, ALLOW CONNECT applies to all
the output pins of the body. When used as a pin property,
ALLOW CONNECT applies only to the pin to which it is
attached.

8.9 DEVICE LOADING CALCULATIONS

Once a design has been expanded into physical
components, and the interconnection between them is
complete, it is necessary to check that loading rules have
been obeyed. The loading values are unitless quantities and
need not represent any physical values.

The loading for each part is specified in the SCALD
library defining the part. The loading for each pin of the
part is specified by a property attached to the pin. The
property has the following form:

((low value), (high value))

where (low value) is the DC load the pin presents when in
the "O state" (the most negative voltage state). (high
value) is the DC load the pin presents when in the "1 state"
(the most positive voltage state). The actual value is an
integer or a real number (of the form n.m) that specifies
the load in some consistent units.

The values used for some Valid libraries (such as the
LSTTL library) is the amount of current which an output may
source or sink, and the amount of current required to set an
input to each of its states. Theses loading values are
specified in mA (Amps x 0.001) and by convention, current
flowing into a pin is positive and current flowing out of a
pin is negative. Some libraries (such as the lOOK library)
use values which has no physical meaning but instead
describe the maximum fan-out for an output pin.

There are two properties used to specify loading:
INPUT LOAD and OUTPUT LOAD. INPUT LOAD is used to specify
the load a pin presents when it is-used as an input or when

8-15

Packager
Reference Manual

not driving the signal. An input pin should always have an
INPUT LOAD property. An output pin is given an INPUT LOAD
property whenever that pin can also place an input load on
the signal. For instance, a TRI-STATE or an open collector
output also presents a load when not driving the signal.
This load needs to be considered when calculating the
loading of the entire net. The OUTPUT LOAD property is used
to specify the load presented by a pin-when used as an
output pin.

By definition, the presence of the OUTPUT LOAD property
indicates that the pin is an output pin. If a p~n does not
have the OUTPUT LOAD property, it is assumed to be an input
pin. When a pin is both an output and an input (as, for
instance, in the case of a transceiver pin), both the
INPUT LOAD and OUTPUT LOAD properties must be present. In
addition, the BIDIRECTIONAL property must be used to
indicate that the pin is both an input and an output.

The Packager calculates the loading for each net.
There are two loading calculations performed: 11 0 state"
loading and "l state" loading. The "O state" loading
calculation proceeds as follows:

1. Find the minimum 11 0 state" value found in all the
OUTPUT_LOAD properties of pins connected to the net.

2. Add up the "O state" value found in all the
INPUT LOAD properties of pins connected to the net.

3. Calcuate the net loading by adding the minimum
OUTPUT LOAD to the INPUT LOAD totals.

4. If the result has a different sign than the sign of
the OUTPUT LOAD value, report a loading error for the
net.

For example, consider a net with four nodes (pins) with the
following loading properties:

OUTPUT LOAD = (3.0,-1.8)
INPUT LOAD = (-1.2, 0.2)
INPUT-LOAD = (-1.2, 0.2)
INPUT-LOAD = (-1.2, 0.2)

The "O state" net loading value is -0.6. Since this value
has a different sign than the value given in the OUTPUT LOAD
(3.0), the net violates loading rules; there are too many
inputs for the given output drive capability.

8-16

Packager
Reference Manual

The calculation of the "1 state" loading proceeds
similarly. In the example used above, the "1 state" loading
for the net would be -1.0 which is not an error (the sign of
the value for the entire net is the same as the value for
the output).

If a net loading error exists and may be fixed by the
use of more versions of the net, the Packager will flag the
net as having a loading error, and will try to generate more
versions of the net to correct the error. This may, in
turn, cause errors if not enough versions of the outputs
exist. If a net has a loading error which cannot be fixed
by more versions (such as an output which cannot drive even
a single input), the Packager will flag this error and not
try to generate more versions of the net.

LOADING FOR PINS THAT DRIVE OR LOAD ONE STATE ONLY

Some output pins can only drive to one state. For
example, an open collector pin can only drive to the "O
state". For these pins, it is meaningless to specify a
loading for the opposite state. Further, the 1/0 and
loading checks for the net for the other state should not
assume that this pin is an output.

Likewise, some input pins only present a load for one
state. Thus the I/O and loading checks for the net for the
other state should not assume that this pin is an input.

To support this, the Packager allows loading for either
the "O state" or the "1 state" to be specified with an '' to
indicate that the pin does not drive or load the net.

For example, the output loading for an open collector pin
might be specified as:

OUTPUT_LOAD = (-2.0,*)

indicating that it can drive a 2.0 load in the "O state" but
does not drive the net in the 11 1 state".

SUPPRESSION OF DEVICE LOADING CALCULATIONS

Device loading calculations may be suppressed on a pin
by pin or body by body basis. The NO LOAD CHECK property is
used for this purpose.

The NO LOAD CHECK property can be given one of three
values as follows:

LOW
This causes the "O state" loading check to be suppressed.

8-17

Packager
Reference Manual

The "1 state" check is performed.

HIGH
This causes the "1 state" loading check to be suppressed.
The "O state" check is performed.

BOTH or TRUE
This causes both the "O state" and the "1 state" loading
checks to be suppressed.

The NO LOAD CHECK property may appear on a library part
(as in the case of a standard connector) or can appear on an
instance by instance basis in the drawings.

If the NO LOAD CHECK is used as a net property, it
applies to all-the pins on the net. When used as a body
property, NO LOAD CHECK applies to all pins of the body.
When used as-a pin property, NO LOAD CHECK applies only to
the pin to which it is attached~ -

SPECIFICATION OF UNKNOWN LOADING

Occasionally there are parts in a design that have pins
with unspecified or unknown loading such as the pins of a
connector. The Packager makes it possible to include such
components in a design without causing net loading or I/O
check errors.

The property UNKNOWN LOADING is used to inform the
Packager that loading is unknown and to suppress loading and
I/O checks on the entire net if it appears on any pin of the
net.

The UNKNOWN LOADING property may appear in on a library
part (as in the case of a standard connector) or can be used
on an instance by instance basis in the drawings.

If the UNKNOWN LOADING is used as a body property, it
applies to all the pins of the body. When used as a pin
property, UNKNOWN LOADING applies only to the pin to which
it is attached. -

If one attaches the NO LOAD CHECK to a pin with either
UNKNOWN LOADING on the pin or body, load checking will not
be suppressed for the entire net, but only for this pin as
specified by the value of the NO LOAD CHECK. Likewise,
attaching the NO IO CHECK to a pin will only suppress I/O
checking only for the pin as specified by the value of the
NO IO CHECK. This mechanism allows the user to ''suppress"
the effects of the UNKNOWN LOADING property on a pin by pin
basis which is useful in the case of the UNKNOWN LOADING
property attached to the body of a library part.-

8-18

(
\

8.10 ASSIGNING LIBRARY PIN NUMBERS

Packager
Reference Manual

Library parts must be given PIN NUMBER properties so
the Packager will know how to assign-pin numbers, swap
sections, etc. The PIN NUMBER property is attached to each
pin of the body (except-for bus through pins) and conveys
the following information:

o The pin number for the pin.

o How many sections of the part are in a package.

o What the pin numbers are for each section.

The Packager will print an error message if a pin is found
with no PIN NUMBER property.

The basic form for a PIN NUMBER property is:

PIN NUMBER = ((pin number))

where (pin number) is a positive integer. If the pin
represents a vector (multiple bits) rather than a scalar
(single bit), the pin numbers for the pin are specified as:

PIN_NUMBER = (<(pin number), (pin number), •••))

The enclosing '(' and ')'
represents multiple bits.
separated by commas. For
specified as:

serve to indicate that the pin
The pin numbers in the list must

example, a four bit pin might be

PIN NUMBER= ((1,2,4,5))

If a part has multiple sections, the PIN NUMBER must
specify the pin numbers for each section. The form of the
PIN_NUMBER property for specifying sections is:

PIN NUMBER= ((pin number), (pin number), •••)

where (pin number) specifies the pin number for the same pin
but for different sections. For example, the output pin of
a 74LSOO (a quad NAND) would be specified as:

PIN NUMBER= (3,6,8,11)

There must be four pin numbers specified since the part has
four sections. All pins of the part must be assigned the
same number of pin numbers (indicating the number of
sections). The Packager will print an error message if this
is not so.

8-19

Packager
Reference Manual

If a pin is common to each of 4 sections, it must be
given 4 pin numbers as well; the pin numbers are all
identical. For example, the clock and Q pins of a 74LS273
(an octal register) would be specified as follows:

PIN NUMBER• (2,5,6,9,12,15,16,19)
PIN-NUMBER• (11,11,11,ll,ll,ll,ll,ll)

Q pin
clock

Note that the clock pin has 8 identical entries because it
is common (has the same pin number) for each section of the
part.

Care must be taken to ensure that the pin numbers are
consistent for all pins of each section. Each number in the
list specifies a different section. The Packager expects
the second number in the list, for example, to correspond to
the second section for every pin of the part.

If a sectioned part has a vectored pin, its pin numbers
are specified in a similar manner. For instance, a 3 bit
pin in a part with 2 sections might be specified as:

PIN NUMBER• (<1,2,3), (5,6,7))

8.11 THE LOCATION PROPERTY

The LOCATION property is attached to a body in a
drawing to assign its physical part designator. LOCATION
properties can be attached only to physical part bodies.
LOCATION properties attached to higher level drawings are
errors and ignored. The LOCATION property is not inherited
as a body property.

The LOCATION property always takes precedence over a
physical part designator assignment in the physical part
designator transformations file. An attempt at reassignment
is flagged as an error. This error is classified as a FATAL
ERROR. The Packager outputs a list of such discrepancies so
that the drawings can be altered.

The LOCATION property is. to be used only for flat
drawings or wherever there is a one to one correspondence
between a body in a drawing and a physical part. Since the
LOCATION property specifies the physical part designator,
care should be taken to make sure that layout has been
considered.

Several parts may be given the same LOCATION property
as long as they may all be assigned (as sections) to the
same physical part. If this is not the case, an error
message is produced.

8-20

8.12 THE LOCATION CLASS PROPERTY

Packager
Reference Manual

The LOCATION CLASS property is used to control the
assignment of logical parts to physical part by the
Packager. If two logical parts have different
LOCATION CLASS properties, they will not be assigned to the
same physical part. However a logical part without a
LOCATION CLASS may be assigned to a physical part that
already has a logical part with a LOCATION CLASS.
LOCATION CLASS properties are attached as body properties in
the drawings.

8.13 MANUAL SECTION ASSIGNMENTS

The user can manually assign sections to logical parts
in the drawings and have the Packager perform the specified
assignments. Sections are assigned through the Graphics
Editor SECTION command and works much like the VERSION
command by pointing to the body or pin of the logical part.

Currently, the only parts that can be assigned to a
particular section are either SIZE wide parts with a size of
1 or HAS FIXED SIZE parts. Assigning sections to a
HAS FIXED SIZE-part is accomplished by pointing to the pin
of the section to be assigned. It is an error to point to
the body of a HAS_FIXED_SIZE part.

If the logical part selected can be assigned to a
section, the pin numbers for the selected section will be
back annotated to the part in the drawing. If the same
logical part is selected again, the next section will be
selected and the new pin numbers will be back annotated to
the part. Thus by pointing to the same logical part, one
can step through all the different possible sections for the
logical part.

The actual implementation for section assignment is
done through the use of the SEC property which is assigned
by the Graphics Editor to the logical part. If the Packager
finds this property on a logical part, it will assign the
logical part to the desired physical section. The user
should not use or change the SEC property assigned by the
Graphics Editor.

8.14 MANUAL PIN ASSIGNMENTS

The user can manually assign pins of a logical part in
the drawings and have the Packager perform the specified
assignments. The pins are assigned through the Graphics
Editor command PINSWAP.

8-21

Packager
Reference Manual

Currently, the only parts that can have pin assignments \
are those which already have been assigned to a section
through the Graphics Editor command SECTION. It is an error
to try and PINSWAP pins of a part which has not been
SECTIONed.

In addition, only pins in the same swap group are
permitted to be swapped. A swappable group of pins are
those pins which are logically equivalent and belong to the
same section. This means that if two nets are swapped
between two pins which are in a swappable group, the logical
function of the circuit is not altered.

A common example of this occurs for the inputs of an
NAND gate like a 74LSOO. The two input pins are physically
equivalent in terms of loading and propagation delay from
input to output. Thus, if the nets to the input pins are
swapped, the behavior of the circuit is unchanged.

To define a swappable group, the library files must
have the PIN_GROUP property defined. Any set of pins that
is swappable must have the PIN GROUP attached to it with the
same value. Any pin without the PIN GROUP property is
considered not swappable with any other pins. The value of
the PIN GROUP property is not important, only that all pins
of a swappable group have the identical value.

Once pin swaps have been performed on a part, further
section assignments are no longer allowed for the part.
This means that if the user wishes to assign a part to a
different section after performing pin swaps, the part must
first be de-assigned by using the REPLACE command. The user
can then assign the new part to the desired section.

The actual implementation for pin assignment is done
through the use of the PN property which is assigned by the
Graphics Editor to the pins of the logical part. If the
Packager finds this property on a pin, it will assign the
nodes to the desired physical pin. The user should not use
or change the PN property assigned by the Graphics Editor.

8.15 THE CREATION OF PHYSICAL NAMES

The Packager assigns physical names to both signals and
parts the first time through. The algorithms are described
below.

CREATION OF SIGNAL NAMES

Physical net names are created from the abbreviation of
the logical ~ignal name for the net. The maximum length of
the names is controlled by the NET NAME LENGTH directive

8-22

Packager
Reference Manual

always. The path name portion of the logical signal name is
not used in the abbreviation. The abbreviation is created
as follows:

1. Remove all special characters. These are all
characters except A-Z and 0-9.

2. If the signal is low asserted, add a trailing 'L'.

3. If the name starts with a digit, change it to a
letter.

4. If the signal is vectored, append the offset as a
number.

s. If the signal is versioned, append 'V' and the
version number when the version number is not zero.

6. If the resulting name is greater than maximum net
name length, remove all the vowels.

7. If the resulting name is still too long, then
truncate the name to the maximum net name length.

8. If the resulting name is not unique, make it unique
by incrementing the last non-numeric characters of
the name. This is to preserve the bit offset that
was appended to the name.

CREATION OP PHYSICAL PART DESIGNATORS

Physical part designators are created by starting with
the value of the PHYS DES PREFIX property found on the part
type in the library, or if no such property is found, the
standard prefix 'U'. If the name is not unique, it is made
unique by suffixing a number. The maximum length of the
names is controlled by the PART NAME LENGTH directive.

8.16 FEEDBACK PROCESSING

The Packager convert~ a logical design into a format
suitable for physical design. This design as output by the
Packager may not be optimal for layout, and the physical
design system may rearrange parts and swap equivalent
sections within a part and equivalent pins on a section.
Since users need documentation of the completed physical
design and may make modifications which require changes to
the physical design, any changes to the physical design made
during layout and wiring must be fed back into the Packager
state files.

8-23

Packager
Reference Manual

There are 4 types of changes which are commonly made
during physical design:

1. Physical part name changes.
When a design is laid out, the physical part
designators are often changed to include position
information. A typical scheme is to give a part a
name of the form <letter> <number>, where <letter>
and <number) represent coordinates in two
dimensions on a board. Example Gl3 is row G
column 13.

2. Physical section reallocation.
To simplify wiring, it is often desirable to group
together those parts which connect to each other.
Since the sections in a part may connect to
different groups of parts, it is sometimes
necessary to move a section from one part into
another part of the same type. If all sections of
the destination part are in use, then it is
necessary to move one of them somewhere else.
This process is of ten done in the form of swaps of
two sections between different parts of the same
type. Sections are sometimes reallocated within a
single part to improve wiring.

3. Physical pin reallocation within a section.
To simplify wiring even more, equivalent input
pins of a section may be reallocated. This is
done primarily to parts having many equivalent
inputs such as a 13 input NAND gate.

4. Physical net name changes.
Changing physical net names does not affect the
layout or wiring of a design, but users may wish
to rename nets for documentaion or standardization
reasons.

The Packager currently can process four types of
feedback files. The user has the freedom to use any or all
of the files as the situation requires. Only these files
should be used to change the physical design. The state
files should never be edited by the user. These files are.
as follows:

1. PSTPRTX - Physical part designator transformations
file

This file contains a list of old physical part
designator and new physical part designator pairs.

8-24

Packager
Reference Manual

2. PSTSECX - Physical section transformations file
This file contains a list of old physical section
to new physical section pairs.

3. PSTNETX - Physical net name transformations file
This file contains a list of old physical net name
to new physical net name pairs.

4. PSTFNET - Feedback net list
This file contains a net list sorted by physical
part designator of the current physical design.
The only restriction is that the physical net name
must not have changed or the new physical net
names have already been fedback before performing
a net list feedback. The Packager will detect and
perform all physical part designator changes,
physical section swapping, and pin swapping from
the feedback net list.

The FEEDBACK ORDER directive is used to specify which
files and order of feedback processing for the Packager.
The file types allowed are as follows:

PART TRANS
This specifies the physical part designator
transformations file (PSTPRTX).

SECTION TRANS

NET TRANS

This specifies the physical section reallocation
file (PSTSECX).

This specifies the physical net name
transformations file (PSTNETX).

FEEDBACK NETLIST
-This specifies the feedback net list (PSTFNET).

An example of this directive is as follows:

FEEDBACK ORDER NET_TRANS, FEEDBACK_NETLIST;

which specifies that physical net name transformations occur
first followed by a feedback net list transformation.

Feedback of physical design changes can only occur when
state files generation have been enabled, otherwise the
changes being fedback cannot be saved. The Packager will
generate an error if the FEEDBACK ORDER directive is used
without enabling the use of state-files through the
USE STATE FILES ON; directive.

8-25

Packager
Reference Manual

Due to the current implementation, feedback processing
will only work if the logical design (the compiler expansion
file) has not changed since the design was last packaged to
generate a physical design from which the changes are
derived and the design now being processed for feedback
changes. This means the compiler expansion file, library
files, and all Packager generated state files should be
saved for a design that is sent to a physical design system.
By saving these files, the Packager will be able to feedback
the physical changes made by the physical design system.

8.17 BACK ANNOTATION

Information in the SCALDsystem usually flows from the
drawings, through the Compiler and Packager, and on to
physical design systems. However, there is an important
class of information that flows from the end of the SCALD
process to the beginning. The Packager and the physical
design system add information to the design which you may
wish to see reflected in the drawings. Most typical of this
information is the physical part designator for each part
and the pin number for each pin. This process of taking
information created or added downstream in the design
process and bringing it upstream is ·called back annotation.

The most common form of back annotation is bringing
information from the Packager (physical design information)
and adding it to the drawings. The Packager generates a
back annotation file that contains physical information
grouped by drawing. To generate this file, the directive
OUTPUT BACKANNOTATION; should appear in the directive file.
Backannotation can occur on three types of elements:
bodies, pins, and nets. In order to select among these
elements, the ANNOTATE directive should be used. If this
directive is not specified, the default options will be
bodies and pins. If the net option is specified, the
synonym file from the compilation must be available. The
back annotation information is written to the logical file
PSTBACK.

The back annotation file can then be read by the
Graphic Editor with the BACKANNOTATE command. This will add
all the physical information in the file to the drawings.
It is recommended that you copy all the drawings to another
directory before back annotation is performed. This will
give you both non-annotated and annotated versions of the
drawings which may be useful since it is not easy to remove
the annotated properties from a set of drawings.

8-26

8.18 OUTPUT FILE FORMATS

Packager
Reference Manual

This section describes the formats of each of the
output files created by the Packager. All output files are
text files.

STATE FILES

The Packager generates several state files to maintain
the physical assignments through several runs of the
Packager. The state files are written to the logical files
PSTPRTB, PSTSIGB, PSTPSWP, and PSTSTAT. They are described
in the section "Packager State Files" later in this chapter.

CROSS REFERENCES

The Packager generates several cross references to the
logical file PSTXREF. A complete description of these files
and their use is described in the "Packager Cross
References" section later in this chapter.

EXPANDED NET AND PART LISTS

The expanded net and part lists produced by the
Packager contain logical to physical net and part bindings,
as well as all the properties attached to pins and bodies.
These files are intended for use in interfacing to
unsupported physical design systems. These list are written
to the logical files "PSTXNET" and "PSTXPRT" respectively.
They are described in the "Packager Expanded Lists'' section
later in this chapter.

LOGICAL CHANGES LIST

This file consists of a list of the changes in the
logical design between the current input and the last run of
the Packager. The changes are essentially add and delete
lists of logical parts.

The Packager compares the Compiler expansion file and
the Packager state files to find the following:

l. Any logical parts that were not present during the
last run of the Packager.

2. Any logical parts present during the last run of the
Packager and are not present during the current run.
Each of these parts has a corresponding physical part
designator.

8-27

Packager
Reference Manual

The Packager lists each of the parts found to give a
summary of the changes made. The. form of the list is:

<header>
LOGICAL PARTS ADDED TO DESIGN:

(list of logical part designators>
LOGICAL PARTS DELETED FROM DESIGN:

<list of logical part and physical part designators>
END LOGICAL CHANGES LIST

where (list of logical part designators> lists each logical
part designator separated by ';'. The ~econd list consists
of a logical part designator followed by a physical part
designator separated by' ' and terminated with a';'.

An example Logical Changes file:

LOGICAL CHANGES LIST - 1 12-AUG-1982 13:18:10.21
LOGICAL PARTS ADDED TO DESIGN:

(FGl .HH l.TTT .00)74LSOO;
(ABC XYZ .253)74LS253;

LOGICAL PARTS DELETED FROM DESIGN:
(ABC XYZ .122)74LS122 U31;
(REG .04)74LS04 U76;

END LOGICAL CHANGES LIST

8.19 POWER AND GROUND PIN ASSIGNMENTS

Power and ground pin assignments for each part are
specified with the POWER PINS property attached to the part
within the libraries. Tne POWER PINS property is used to
specify both the names of the power rails as well as the pin
numbers. The form of the PIN_NUMBER property value is:

((power rail) : (pin list> ; •••)

where (power rail) is the name of the power supply rail and
must be an identifier (a string of letters, digits, or ''
starting with a letter). The (pin list> is a list of the
pin numbers of the part (separated with commas) that connect
to the power rail. The ';' is used to separate the power
rail specifications.

For example, a TTL part has two power pins: VCC and GND.
The 74LSOO would have the property:

POWER PINS • (VCC:l4; GND:7)

The TMS4050 RAM would have the following property:

POWER PINS • (VBB:l;VDD:lO;VSS:l8)

8-28

Packager
Reference Manual

The 100123 bus driver would have the following property:

POWER PINS= (VCC:6; VCCA:7,9,11,5,3,l; VEE:18);

The order of the values is not important. The POWER PINS
property only applies to parts found within the libraries
and is ignored if found elsewhere.

s.20 DESCRIPTION or THE CHIPS PILE

The CHIPS file contains a description of every physical
part in the libraries. It is generated by the Compiler from
a drawing that uses every physical part exactly once. The
Valid supplied libraries have such drawings. See, for
example, the LSTTL LIBRARY drawing in the LSTTL library.

The CHIPS file contains information attached to the
body as well as the .PART drawing describing the part. The
following information is expected for each part:

1. PIN NUMBER property on every pin.

2. INPUT LOAD or OUTPUT_LOAD properties on every pin.

3. POWER PINS property for the part. This may be
attached to the body or to the .PART drawing
(attached to the DRAWING body within the .PART
drawing).

4. FAMILY property for the part. This may be attached
to the body or to the .PART drawing (attached to the
DRAWING body within the .PART drawing).

Other properties recognized by the Packager but not
required:

1. BIDIRECTIONAL pin property if the pin is both an
output and an input.

2. UNKNOWN LOADING pin or body property indicating that
device loading is not known.

3. NO LOAD CHECK pin or body property used to suppress
device loading calculations.

4. NO IO CHECK pin or body property used to suppress
input-and output net checks.

8-29

Packager
Reference Manual

5. WIRE GATE body property indicating that the body is a
phantom wire gate (such as a WIRE-OR).

6. WIRE GATE OUTPUT pin property indicating that this is
an output-pin of a wire gate.

7. OUTPUT TYPE pin property which specifies whether
other 6utputs can be connected to the pin and what
type they must be.

8. ALLOW CONNECT pin property to permit an output pin to
be connected to a net regardless of whether there are
other outputs on the net.

9. PHYS DES PREFIX body property which specifies the
prefix to use for physical part designator creation.

10. PIN GROUP pin property which specifies whether a pin
belongs to a group of swappable pins or not.

The CHIPS file is generated with the Compiler by
compiling the library description drawings with the OUTPUT
CHIPS; directive specified. The Compiler produces a chips
file in the file CHIPS which is read by the Packager. The
library manager has the responsibility to see that the CHIPS
files used by the the designers are up to date. The CHIPS
file must be recreated whenever the libraries are modified.

The libraries are described, for the purpose of
creating the CHIPS file, in drawings of the form:
<library> LIBRARY where <library> is the name of the
particular library. For example, the LSTTL library is
described in the drawing LSTTL LIBRARY. The library
description drawing contains exactly one instance of each of
the parts in the library. Only one version of parts with
multiple body versions is permitted in the library
description drawing. If the part has body versions that are
asymmetrical (for example if the two versions describe
sections of the part that have different function) both
versions of the part must appear.

8.21 FORMATS FOR USER GENERATED FILES

This section describes the formats of the files you can
generate. The Packager reads these files. All input files
for the Packager are text files. Every file is terminated
by an 'END.' which serves to mark the end of the file as
well as provide a method for determining whether the file is
complete.

8-30

Packager
Reference Manual

The header lines in the file serves to identify the
file and the name of the design. The form of the header
lines are:

FILE TYPE = (file type) ;
ROOT=DRAWING = '(drawing name)'

where (file type) specifies the file's type (see below for
each file described) and (drawing name) is the name of the
root drawing of the expansion file. The header for the
Physical Part Designator Transformations file would appear
as:

FILE TYPE = PART TRANS;
ROOT-DRAWING= 'RISC/E II';

Comments may be placed in the files if enclosed in '{'
and '}'. A comment may appear anywhere a space may appear.
Comments may cross line boundaries. Comments may not be
nested.

If an item is too long to fit on a line (80
characters), it must be broken into more than one line. A
tilde ('-') should be used as a continuation character to
indicate that the current item is continued on the next
line. A line break can appear between ANY TWO CHARACTERS in
the file. A tilde is only significant if it· occurs at the
end of the line.

PHYSICAL PART DESIGNATOR TRANSFORMATIONS

This file is used to change a physical part designator
assigned by the Packager to one determined by the user. The
physical part designator is used to identify a particular
instance of a physical part. Each physical part is
(usuall(YT·~ real, purchaseable, wireable, tangible entity
(unlike\ Vifaing Verifier or Simulator primitives).

'--...·
The file type for this file is PART TRANS. The file

consists of a list of transformations. Each transformation
is of the form:

'<old part designator)' '(new part designator)'

where (old part designator) is the physical part designator
assigned by the Packager during its last run and
(new part designator) is the new physical part designator to
be assigned. For instance, the physical part designator U31
can be changed to U32 as follows:

FILE TYPE = PART TRANS;
ROOT-DRAWING= 'RISC/E II';

8-31

Packager
Reference Manual

'U31' 'U32'
END.

PHYSICAL NET NAME TRANSFORMATIONS

This file is used to change the name given a physical
net. Each net is originally assigned a name by the
Packager. That name can be changed with this file. The
file type for this file is NET TRANS. The file consists of
a list of transformations. Each transformation is of the
form:

'<old physical net name>' '<new physical net name>'

where <old physical net name> is the name assigned to the
net by the Packager in the last run and
(new physical net name) is the new name to be assigned to
the net. For example, the net NOOOOl can be changed to XYZ
with the transformation:

FILE TYPE • NET TRANS;
ROOT-DRAWING• "T'RISC/E II';
'NOOOOl' 'XYZ'
END.

PHYSICAL SECTION TRANSFORMATIONS

The Packager assigns sections during the first run of a
design. Sections of parts are assigned sequentially so that
individual bits of a signal will be connected to the same
package. No layout knowledge is used during this
assignment. When more reasonable section assignments are
known, they can be given to the Packager which will use that
information to reassign sections. The Physical Section
Transformations file is used to specify section changes.

The file contains a list of old physical pin
designators (as assigned by the Packager during its last
run) and new physical pin designators where a physical pin
designator consists of a physical part name and a unique pin
number of the section (not a common pin). The Packager will
reassign the sections as specified in this file •. If a
section is reassigned that was already assigned in the
drawings (through section assignment), the Packager will NOT
change the assignment. An error message is printed in this
case. This error is classified as a FATAL ERROR. The only
way to change section assignments assigned in the drawings
is to change the drawings.

The file type for this file is SECTION TRANS. The file
consists of a list of transformations. Each transformation
is of the form:

8-32

Packager
Reference Manual

'(old part)' (old pin) '(new part)' (new pin)

where (old part) and (old pin) specify the current section
assignment and (new part) and (new pin) specify the new
section assignment. For example, given a 74LSOO (quad
NAND), a swap of the first two sections on the part U31
might appear as follows:

FILE TYPE = SECTION TRANS;
ROOT-DRAWING = 'RISC/E II';
'U317 1 'U31' 4
'U31' 4 'U31' 1
END.

FEEDBACK NET LIST

If a physical design system can generate a net list
which specifies part types and represents a physical design
differing from the design produced by the last run of the
Packager only by physical part designator changes and
physical section reallocation, then the Packager can extract
tpese changes and perform these transformations. The
Feedback Net List is used by the Packager to extract these
transformations of physical designators and section
assignments.

The file type for this file is FEEDBACK NETLIST. The
file consist of a list of nodes of the design. Each node
entry is of the form:

'(physical part name)'
'(physical part type)'
(pin number)
'(physical net name)'

where (physical part name) is the new physical part
designator, (physical part type) is the part type of the
physical part, (pin number) is the pin number of the node
and (physical net name) is the name assigned to the net by
the Packager to which the node is connected.

The file MUST be SORTED by physical part name, so that
all the pins of a physical part appear together. The
ordering of the pins on the part does not matter. An
example of this file might appear as follows:

FILE TYPE = FEEDBACK NETLIST;
ROOT-DRAWING = 'RISC7E II';
'Ul' 'LS08' 1 'AO';
'Ul' 'LS08' 2 'BO';
'Ul' 'LS08' 3 'CO';
'Ul' 'LS08' 4 'Al';

8-33

Packager
Reference Manual

'Ul' 'LS08' 5 'B 1' ;
, u l' 'LS08' 6 , c 1, ;
'Ul' 'LS08' 8 'C2' ;
'Ul' 'LS08' 9 'A2' ;
'Ul' 'LS08' 10 'B2' ;
'Ul' 'LS08' 11 'C3' ;
'Ul' 'LS08' 12 'A3' ;
, u l' 'LS08' 13 'B3';
END.

s.22 INTERFACE SIGNALS

Interfaces between a circuit and the external
components it connects to must be defined in some manner.
This is normally done in board level designs by implicitly
defining interface signals through connectors spread
throughout the design. Many gate array design systems,
however, treat interface signals (those which connect to the
chip carrier and hence go off the chip) as different from
internal signals. Often they must be declared in separate
parts of the net list, and must have extra information
attached. For this reason, the Packager must be able to
distinguish interface signals and treat them specially.

The Packager supports the use of FLAG bodies in the
drawings to define the connection of interface signals in a
root drawing to some external component such as a gate array
chip carrier. To define a signal as an interface signal,
attach a FLAG body to the signal. When the INCLUDE IO LIST
ON; directive is specified, the Packager will attach to the
interface signals the IO NET property with either the values
INPUT, OUTPUT, or BIDIRECTIONAL, as defined by the FLAG-
body. These properties are then output in the Expanded Net
List.

8-34

:1

\

Packager
Directives Summary

Packager Directives Summary

8.23 PACKAGER DIRECTIVES

The Packager directives are used to specify input and
output files, control message generation, and direct the
Packager execution. The directives are placed in a text
file and given to the Packager as the logical file INFILE
which is bound to the file PACKAGER.CMD (PACKAGER CMD in
CMS) by default. Each of the directives is described below.
The directives and their parameters are not case sensitive.

ANNOTATE

Used to specify the allowable schematic back annotation
information to generate for the BACKANNOTATION output
file. If more than one of these directives appears in
the directive file, the Packager ignores all but the last
one. The form of the directive is:

ANNOTATE (option) , (option) , . . .
The options for this directive are as follows:

BODY

PIN

NET

When specified, allows the back annotation of
physical part designators.

When specified, allows the back annotation of
physical pin numbers.

When specified, allows the back annotation of
physical net names. Currently only scalar nets can
be annotated. The synonym file from the
compilation of the design must be available for the
net option to be successful.

If directive is unspecified, the Packager will generate
back annotation for BODY and PIN when the BACKANNOTATION
output file is generated.

FEEDBACK ORDER

Used to specify which feedback files and their order to
perform feedback processing for the Packager. This

8-35

Packager
Directives Summary

directive can only be used in the directives file once.
The form of the directive is:

FEEDBACK_ORDER (file type), (file type), ••• ;

The ~llowable (file type) for ~his directive are as
follows:

PART TRANS
This specifies the physical part designator
transformations file (PSTPRTX).

SECTION TRANS
This specifies the physical section reallocation
file (PSTSECX).

NET TRANS
This specifies the physical net name
transformations file (PSTNETX).

FEEDBACK NETLIST
ThTs specifies the feedback net list (PSTFNET).

An example of this directive is as follows:

FEEDBACK ORDER NET_TRANS, FEEDBACK_NETLIST;

which specifies that physical net name transformations
occur first followed by a feedback net list
transformation. If this directive is unspecified, the
Packager will not perform feedback processing.

FILTER PROPERTY

Used to specify properties that are not to be included in
the expanded net and part lists. A list of property
names separated by commas is given. The Packager makes
sure that these properties are not output to the expanded
net and part lists. This directive has no impact on any
other file. The properties FOO, GRBX, and PATH could be
suppressed with the directive:

FILTER_PROPERTY FOO,GRBX,PATH;

Any number of properties can be listed. The
FILTER PROPERTY directive can be specified as many times
as desired.

8-36

INCLUDE IO LIST

Packager
Directives Summary

Used to control whether the nets connected to the
interface pins of the design are included in the Expanded
Net List with the IO NET property. The value of the
IO NET property is eTther INPUT, OUTPUT, or BIDIRECTIONAL
as-defined by the FLAG body. The directive is specified
as follows:

INCLUDE IO LIST ON;

INCLUDE IO LIST OFF;

output the IO NET property
for the interface pins.

do not output the IO NET
property for the interface pins.

If this directive is unspecified, the Packager will not
output the interface pins.

LIBRARY FILE

Used to specify the names of files containing library
components. These files are produced by the Compiler
using the OUTPUT CHIPS directive. Any number of
libraries can be specifed with this directive. The names
can be placed in a list separated by commas or listed
individually with separate LIBRARY FILE directives. For
example, the directive:

LIBRARY_FILE 'lOOk.prt', 'lsttl.prt';

specifies two library files, lOOk.prt and lsttl.prt, and
is equivalent to the directives:

LIBRARY FILE 'lOOk.prt';
LIBRARY-FILE 'lsttl.prt';

The Packager checks to make sure that a file is not
specified more than once.

MAX ERRORS

Used to specify the maximum number of errors allowed
before the Packager gives up and terminates. When this
condition occurs, the Packager prints a message and
terminates with a summary of the execution. The maximum
number of errors can be set to 500 as follows:

MAX ERRORS 500;

8-37

Packager
Directives Summary

If not specified, the Packager terminates after 1000
errors.

OUTPUT

Used to control which output files are produced by the
Packager. Each of the various output listings can be
individually suppressed or enabled. All files are
generated by default. The first OUTPUT directive
encountered causes all output files to be turned off (so
that they may be individually turned back on) unless the
~-' option is used, in which case files are deleted
individually. The 'ALL' identifier can be used to turn
all files on or off. For example, the directive:

OUTPUT;

is equivalent to the directive

OUTPUT -ALL;

which turns off all output files.

The names of these files are listed separated by commas
in a single OUTPUT directive or can be specified with
multiple OUTPUT directives. For instance, the directive:

OUTPUT EXPANDEDNETLIST,EXPANDEDPARTLIST;

is equivalent to:

OUTPUT EXPANDEDNETLIST;
OUTPUT EXPANDEDPARTLIST;

In both of the above examples, the only output files that
will be generated are the expanded net list and the
expanded part list.

Each of the OUTPUT files are listed below.

EXPANDEDNETLIST
Causes the expanded net list to be output to the file
PSTXNET.

EXPANDEDPARTLIST
Causes the expanded part list to be output to the file
PSTXPART.

LOGICALCHANGES
Causes the logical changes summary to be output to the

8-38

file PSTLCHG.

CROSSREFERENCES

Packager
Directives Summary

Causes all of the cross references to be output to the
file PSTXREF.

LOCALPARTXREF
Causes the local part crossreference to be output to the
file PSTXREF.

GLOBALSIGNALXREF
Causes the global signal crossreference to be output to
the file PSTXREF.

GLOBALPARTXREF
Causes the global part crossref erence to be output to the
file PSTXREF.

BACKANNOTATION
Causes the back annotation file to be output to the file
PSTBACK.

If no OUTPUT directive is specified, the Packager
produces all files.

OVERSIGHTS

Used to control whether oversight messages are displayed.
Several conditions are detected during execution of the
Packager that are considered to be more serious than a
warning (see below) but not as serious as an error. The
oversights should be corrected, but the design will
probably work without first fixing them. The total
number of oversights detected is always reported at the
end of the program regardless of whether they were
printed or not. This directive is used to turn off all
oversight messages. The SUPPRESS directive can be used
to turn off specific oversight message by message number.
The directive is specified as follows:

OVERSIGHTS ON;

OVERSIGHTS OFF;

display all oversight messages
on the Packager's list
file.

display no oversight messages.

8-39

Packager
Directives Summary

PART NAME LENGTH

Used to control the maximum physical part name designator
length to be generated by the Packager. The form of the
directive is:

PART_NAME_LENGTH (length) ;

If this directive is unspecified, the Packager will use a
default length of 16.

PART TABLE FILE

Used to specify the names of files containing physical
part tables. Any number of physical part table files can
be specifed with this directive. The names can be placed
in a list separated by commas or listed individually with
separate PART TABLE FILE directives. For example, the
directive: - -

PART_TABLE_FILE 'res.tab', 'cap.tab';

specifies two physical part table files, res.tab and
cap.tab, and is equivalent to the directives:

PART TABLE FILE 'res.tab';
PART-TABLE-FILE 'cap.tab';

The Packager checks to make sure that a file is not
specified more than once.

PASS PROPERTY

Used to control whether a specific property appears in
the expanded net and part lists. The PASS PROPERTY
directive takes a list of properties like the
FILTER PROPERTY directive above. If the directive is not
specified, all the properties are defaulted to pass into
the expanded lists. Once specified, only those
explicitly selected properties are allowed to pass into
the expanded lists. The pass operation is performed
before filtering, thus those properties explicitly
allowed to pass may then be suppressed by filtering them
out. See also the FILTER PROPERTY directive.

8-40

Packager
Directives Summary

NET NAME LENGTH

Used to control the maximum physical net name length to
be generated by the Packager. The form of the directive
is:

NET_NAME_LENGTH <length) ;

If this directive is unspecified, the Packager will use a
default length of 24.

REPORT

Used to control which user reports to generate. The
syntax of this directive is the same as the OUTPUT
directive and supports the '-' and 'ALL' options. All
the reports are written to the logical file PSTRPRT. The
available reports are as follows:

SPARES
This report contains the all the spare physical
sections in the design. Spare physical sections
are sections which have not been allocated to a
logical part and are listed by physical part
designator and a unique pin number of the section
that is a spare.

PARTSUMMARY
This report contains a summary of all the physical
parts used in the design. It is a list of part
types and the number of physical parts used for
that part type. A grand total is also generated
for all the physical parts used in the design.

If no REPORT directive is specified, the Packager
produces all reports.

SUPPRESS

Used to suppress specific warning and oversight messages.
Warnings and oversights are used to grade the severity of
error conditions detected by the Packager. Warnings are
considered to be the least severe, followed by
oversights, and then errors. Since neither warnings nor
oversights are as severe as an "error", and since there
may be many of these messages in a good design, this
directive is supplied to suppress the message that would
be produced. The design conventions assumed by the

8-41

Packager
Directives Summary

Packager are conservative and rigorous. The user may
choose to design in a more liberal style and may want to
ignore certain messages. Warning 132 can be suppressed
with the directive: ·

SUPPRESS 132;

A list of warning messages may be specified as, for
instance:

suppress 132,133,134;

All warning messages can be suppressed with the WARNING
directive (see below). Error messages cannot be
suppressed. If unspecified, the Packager suppresses no
warnings or oversights.

USE STATE FILES

Used to control whether the Packager reads and generates
state files. The directive is specified as follows:

USE STATE FILES ON;

USE STATE FILES OFF;

use state files if present
and generate new state files.

do not use or generate any
state files.

If this directive is unspecified, the Packager will use
and generate state files.

WARNINGS

Used to control whether the Packager prints warning
messages. Several conditions are detected that are not
as severe as errors, but need to be brought to the
attention of the designer. All warning conditions can be
eliminated by adding the needed information (described in
the warning message) to the drawings. This directive can
be used to suppress all warning messages (though it is a
good idea to add the information to the drawings - this
info helps to more clearly document the design). The
total number of warning conditions encountered is
reported at the end of the program regardless of whether
warnings are displayed or not. The directive is
specified as follows:

WARNINGS ON; display all warning messages on

8-42

WARNINGS OFF;

Packager
Directives Summary

the Packager's list file.

display no warning messages.

If unspecified, the Packager prints all warning messages.

8.24 AN EXAMPLE OF A PACKAGER DIRECTIVES FILE

The Packager directives file can be created with a text
editor. The Packager pays no attention to the end-of-line
or to multiple spaces. The letter case of the directives is
unimportant. This is true both for directive names as well
as file names within strings. Comments may be placed in the
file if enclosed with'{' and'}'. Note that all Packager
directives must be separated by ';' and the file must end
with an 'end.'.

output EXPANDEDNETLIST,
EXPANDEDPARTLIST;

warnings on;
end.

{ output the expanded net list
{ output the expanded part list
{ display all warning messages
{ this marks the end of the file

8-43

}
}
}
}

Packager
PIN NUMBER Property

The PIN NUMBER Property

8.25 INTRODUCTION

The Packager recognizes the PIN NUMBER property on pins
of parts in the CHIPS files. The property is used to assign
the physical pin numbers for each logical pin so that the
Packager can do physical assignments. The Packager requires
PIN NUMBER properties for every pin of every part. The
absence of the property on any pin is considered fatal.

The PIN NUMBER property for scalar pins has the
following form:

PIN NUMBER• ((pin>, (pin>, •••)

where (pin> is a pin number. A multiple section part has
several pin numbers for a pin, one for each section.

form:
A PIN NUMBER property on a vector pin has the following

PIN NUMBER = (< (pin), (pin>,
< (pin>, ••• >,

• • • >,
• • •)

where (pin> is a pin number which can be either an integer
or an identifier consisting of letters, digits, or ' ' with
a maximum length of 16 characters. The enclosing '<'and
'>' are used to indicate that the list of pin numbers
specifies individual bits of the pin and not different
sections for the pin.

8-44

Packager
PIN NUMBER Property

8.26 PIN NUMBERS FOR SINGLE SECTION SCALAR PINS

A scalar pin is a pin which corresponds to a one bit
signal. This is different from a vector pin which
corresponds to a several bit signal. The PIN NUMBER
property for each pin of a simple one section-part like a
74LS30 is a single positive integer enclosed by parentheses
as follows:

74LS30
+------+

-IA
I

A

B - B

c -1c
D -ID

-IE Y* o Y*
E

I F -1F
G -IG
H -IH

I
+------+

PIN PIN NUMBER property

A (1)
B (2)
c (3)
D (4)
E (5)
F (6)
G (11)
H (12)
Y* (8)

8-45

Packager
PIN NUMBER Property

8.27 PIN NUMBERS FOR MULTIPLE SECTION SCALAR PINS

Some physical parts contain several equivalent sections
which each correspond to the logical part of the given type.
An example is the 74LSOO, which contains 4 2-input NAND
gates, and the logical part for a 74LSOO is a single 2-input
NAND gate. The sections of a part are specifed by the
PIN NUMBER property on a logical pin by logical pin basis.
Each pin of the logical part has a PIN NUMBER property
containing a list of pin numbers, one pin number for each
section in the part. The sections are ordered, with all
pins for the Nth section present in the Nth position in the
PIN NUMBER property values. Each logical pin of a 74LSOO
has-4 pin numbers, one for each section. The pin numbers
for various sections within the PIN NUMBER property are
separated by commas as follows:

74LSOO
+------+

A - A
Y* 0 Y*

B - B I
+------+

PIN PIN NUMBER property

A (1,4,9,12)
B (2,5,10,13)
Y* (3,6,8,11)

8-46

8.28 PIN NUMBERS FOR SIZE EXPANDED PARTS

Packager
PIN NUMBER Property

A scalar pin may be defined as a SIZE wide pin on a
SIZE replicated part, for which each bit of the attached bus
connects to a different section of the part. The part
definition for a SIZE wide part defines the SIZE wide pins
as scalars, since for each section, those pins are only one
bit wide. The 74LSOO shown above could (and probably would)
be defined as a SIZE replicatable part as follows:

74LSOO
+------+

I
A <SIZE-1 •• 0) - A

Y*lo Y* (SIZE-1 •• 0)
B (SIZE-1 •• 0) - B I

PIN

A (SIZE-1 •• 0)
B (SIZE-1 •• 0)
Y* (SIZE-1 •• 0)

+------+

PIN NUMBER property

(1,4,9,12)
(2,5,10,13)
(3,6,8,11)

8.29 PIN NUMBERS FOR VECTOR PINS

A vector pin is a multiple bit pin having a fixed
number of bits (not effected by the value of the SIZE
property), where each bit of the vector connects to the same
section of the part. Examples of vector pins are the data
buses of a 74LS181 ALU. A vector pin has a PIN NUMBER
property of the same form as a scalar pin, except that each
logical pin number is generalized to include several
physical pin numbers, enclosed between a less-than sign"<"
and a greater-than sign ">":

8-47

Packager
PIN NUMBER Property

74LS181
+----------+
I I

A <0 •• 3) - A F - F <0 •• 3)

B <0 •• 3) - B

s <0 •• 3) - s CN+4 - CN+4

PIN

A <0 •• 3)
B <0 •• 3)
s <0 •• 3)
CN
M
F <0 •• 3)
A•B
CN+4
P*
G*

CN - CN P* o P*

M - M G* o G*

+----------+

PIN_NUMBER property

(<19,23,21,2>)
(<18,20,22,1))
(<3,4,5,6))
(7)
(8)
(<13,11,10,9))
(14)
(16)
(15)
(17)

The bits of a vector pin are assigned to the physical
pin numbers specified in the PIN NUMBER property in the
following manner: The bit havini the lowest subscript is
assigned to the first pin number in the list. The bit with
the next lowest subscript is assigned to the second pin in
the list, and so on. This is intuitively correct for
installations using left-to-right bit ordering (example
A<0 •• 31)), since the pin numbers for vector pins are then
ordered from most significant to least significant from left
to right. An example of left-to-right bit ordering is shown
for the 74LS181 above. For installations using
right-to-left bit ordering (example B<l5 •• 0)), the
assignment seems backwards, since the pin numbers for the
vector pins are then ordered from least significant to most
significant from left to right.

8-48

Packager
PIN NUMBER Property

The way to define the pin numbers for vectors without
using the vector form of the PIN NUMBER property is to
define an expanded body for each-vectored part. Attach the
PIN NUMBER property to each bit of a vector pin separately
as shown for the right-to-left bit ordering version of the
74LS181.

74LS181
+---------+
I I

A (3) -1 A3 F31- F (3)

A (2) -IA2 F21- F (2)

A (1) - Al Fl - F (1)

A (0) - AO F01- F (0)

B (3) - B3 A=B - A=B

B (2) - B2

B (1) -1Bl I
B <O> -IBO I
s <3> -ls3 CN+41- CN+4

I I
s (2) -1s2 I
s < 1) -1s1 I
s (0) -lso I

I I
CN - CN P* o P*

M - M G* 0 G*
I +---------+

8-49

Packager
PIN NUMBER Property

PIN PIN NUMBER property

A (3) (19)
A <2> (21)
A <l> (23)
A <O> (2)
B <3> (18)
B <2> (20)
B <l> (22)
B <O> (1)
s <3> (3)
s <2> (4)
s <l> (5)
S <O> (6)
CN (7)
M (8)
F <3> (13)
F <2> (11)
F (1) (10)
F <O> (9)
A=B (14)
CN+4 (16)
P* (15)
G* (17)

A vectored version of the part may still be defined and
used, as long as the non-vectored version is the one from
which the CHIPS file is generated, and the pin names for the
two versions are the same.

8-50

Pack.ager
PIN NUMBER Property

8.30 PIN NUMBERS FOR PARTS WITH COMMON PINS

Some multiple section parts have pins which are common
to several sections. A example of this is the 74LS374 octal
register, which has 8 sections with a common clock and a
common output enable. The PIN NUMBER properties for these
pins are the same as for any other pin, except that pin
numbers appear more than once. In fact, common pins are
treated EXACTLY like non-common pins, in that all pins for
the Nth section of the part are present in the Nth position
in the PIN NUMBER property values. The 74LS374 would be
defined as-follows:

74LS374
+------+

I
D<SIZE-1 •• 0) - D QI- Q<SIZE-1 •• 0)

CLK - CLK

PIN

D<SIZE-1 •• 0)
Q<SIZE-1 •• 0)
CLK
ENABLE*

EN*
+------+

0

ENABLE*

PIN_NUMBER property

(3,4,7,8,13,14,17,18)
(2,5,6,9,12,15,16,19)
(11,11,11,11,11,ll,11,ll)
(1,1,1,1,1,1,1,1)

The CLK and ENABLE pins are common to all eight flip-flops
in the pack.age. The D and Q pins are defined so that one
bit is assigned to each flip-flop.

8-51

Packager
PIN NUMBER Property

Some parts have pins which are common only to certain
sections of the part. These are represented in the same
manner as pins which are common to all sections, except that
the these pin numbers are present only in the sections for
which they are common. An example is the 74LS367:

74LS367
+------+

D(SIZE-1 •• 0> - D YI- Y<SIZE-1 •• 0>

PIN

D(SIZE-1 •• 0>
Y(SIZE-1 •• 0>
ENABLE*

EN*
+------+

0

ENABLE*

PIN_NUMBER property

(2,4,6,10,12,14)
(3,5,7,9,11,13)
(1,1,1,1,15,15)

8-52

(

Packager
PIN NUMBER Property

8.31 PIN NUMBERS FOR PARTS WITH ASYMMETRICAL SECTIONS

Some parts have multiple sections which are
functionally different, such as the 74LS241, which has 4
buffers with active-high enables, and 4 buffers with
active-low enables. One version of the body is defined for
each type of section in the part. The pins of the different
versions ALL have DIFFERENT pin names, so that a pin of a
given name is present in only one section. The PIN NUMBER
property values for the pins specify all the sectio~s of the
part. Any pin which is not present in a given section is
specified with a pin number of o.

74LS241 Version 1
+------+

Dl<SIZE-1 •• 0> -lo YI- Yl<SIZE-1 •• 0>

02(SIZE-1 •• 0)

PIN

Ol(SIZE-1 •• 0)
Yl(SIZE-1 •• 0)
ENABLEl
02(SIZE-l •• 0)
Y2(SIZE-l •• 0)
ENABLE2*

EN
+------+

I

ENABLEl

74LS241 Version 2
+------+

-lo YI- Y2(SIZE-l •• 0)

EN• I
+------+

0

ENABLE2*

PIN_NUMBER property

(11,13,15,17,0,0,0,0)
(9,7,5,3,0,0,0,0)
(19,19,19,19,0,0,0,0)
(0,0,0,0,2,4,6,8)
(0,0,0,0,18,16,14,12)
(0,0,0,0,1,1,1,1)

8-53

Packager
PIN NUMBER Property

8.32 VECTOR PINS COMPARED TO SCALAR PINS

Vector pins are syntactically identical to scalar pins;
they may be used wherever a scalar pin may be used, provided
the pin to which they attach is a vector. An example part
having vector pins and multiple sections is the 748189, 16
word by 4 bit RAM:

748189
+------+
I I

D(SIZE-1 •• 0) - D Q* - Q*(SIZE-1 •• 0)

A(3 •• 0) - A

SELECT* - S*

WRITE* - W*

PIN

D(SIZE-1 •• 0)
Q*(SIZE-1 •• 0)
A(3 •• 0)

SELECT*
WRITE*

+------+

PIN_NUMBER property

(4,6,10,12)
(5,7,9,11)
(<1,13,14,15),(1,13,14,15),(1,13,14,15),

(1,13,14,15))
(2,2,2,2)
(3,3,3,3)

8-54

!
\

The PIN GROUP Property

8.33 INTRODUCTION

Packager
PIN GROUP Property

The Packager and the section and pin assignment program
used by the Graphics Editor recognize the PIN_GROUP property
on pins of parts in the CHIPS files. The property is used
to assign the logical pins to pin equivalent and swappable
groups so that the Packager can perform legal pin swaps.

8.34 HOW TO USE THE PIN GROUP PROPERTY

A swappable group of pins are those pins which are
logically equivalent and belong to the same section. This
means that if two nets are swapped between two pins which
are in a swappable group, the logical function of the
circuit is not altered.

A common example of this occurs for the inputs of an
NAND gate like a 74LSOO. The two input pins are physically
equivalent in terms of loading and propagation delay from
input to output. Thus, if the nets to the input pins are
swapped, the behavior of the circuit is unchanged.

Any set of pins that are swappable must have the
PIN GROUP attached to them with the same value. Any pin
without the PIN GROUP property is considered not swappable
with any other pins. The value of the PIN GROUP property is
not important, only that all pins of a swappable group have
the identical value.

8-55

Packager
PIN GROUP Property

An example of pins which form a swappable group are the
input pins of a 74LS30, an 8-input NAND gate. For this
part, we can define the PIN GROUP as follows:

74LS30
+------+

A - A

B - B

c - c

D - D
Y* o Y*

E - E

F - F

G - G

H - H

+------+

PIN PIN GROUP property

A 1
B 1
c 1
D 1
E 1
F 1
G 1
H 1
Y* not present on this pin

Notice in this case that the output pin Y* does not have a
PIN GROUP property because it is not swappable with any
other pin of the part.

8-56

Packager
PIN GROUP Property

Another example of swappable groups appears for the
74LS51, a 2-wide 3-input, 2-wide 2-input AND-OR-INVERT. For
this part, we can define the PIN GROUP as follows:

+------+

A - A I
B - B 1---+

I
c - c I

+------+

+------+
I I

D -ID

E - E

F - F I
+------+

+------+

G -IG I
H - H

+------+

+------+
I I

I - I

J - J
I I
+------+

74LS51
+------+

I
+---

YO*
+---1

I l------1
I

---+

---+

I 7 4LSS l
+------+

I I +---
Yl*

+---
I

I +------+

---+

8-57

0 YO*

0 Yl*

Packager
PIN GROUP Property

PIN PIN GROUP property

A 1
B 1
c 1
D 2
E 2
F 2
YO* not present on this pin

G 3
H 3
I 4
J 4
Yl* not present on this pin

In this case, there are 4 swappable groups, one for each AND
gate. The inputs for each AND gate are equivalent and thus
swappable. However, inputs from different AND gates are not
swappable, so the PIN GROUP properties have a different
value.

Again note that the output pins YO* and Yl* do not have
PIN GROUP properties since they cannot swap with any other
pin7

8-58

Packager
Expanded Lists

Packager Expanded Lists Specifications

8.35 HOW ARE THE EXPANDED LISTS TO BE USED?

The Expanded Part List and Expanded Net List are
intended to be used to interface to other systems. You can
read these files, which contain all the information about
the design known to the Packager, and convert them into a
form compatible with some target system. The files are
organized by physical information since that is the form
needed when converting formats for other systems.

8.36 SOME GENERAL NOTES OF THE FILE FORMAT

The Valid canonical signal name
logical signal names and pin names.
portion of the signal are in quotes.
The Valid canonical syntax is:

'<assertion)(name)' (subscript)

form is used for all
The assertion and name

No bit lists appear.

where the (assertion) character is '-' and only appears for
low asserted signals.

Comments may be placed in the expanded net and part
lists if enclosed in'{' and '}'. A comment may appear
anywhere a space may appear. Comments may cross line
boundaries. Comments may not be nested.

If an item is too long to fit on a line (80
characters), it will be broken into more than one line. A
tilde ('-') is used as a continuation character to indicate
that the current item is continued on the next line. A line
break may appear between ANY TWO CHARACTERS in the file. A
tilde is only significant if it occurs at the end of the
line.

8.37 THE EXPANDED NET LIST

The Expanded Net List is a net list ordered by physical
net name that contains all the information in the Concise
Net List as well as all the properties known by the Packager
for each net. This includes all the properties and the
logical to physical binding of nets and nodes.

8-59

Packager
Expanded Lists

THE FORM OF THE EXPANDED NET LIST

The form of the Expanded Net List is as follows:

FILE TYPE=EXPANDEDNETLIST;
<list of nets>
END.

The (list of nets> is of the form:

NET NAME
(physical net name> <logical net name> <version>
<net properties>
<node list>

where NET NAME is used to mark the beginning of a net entry.
(physical-net name> is the physical name for the net. It is
a quoted string of letters and digits. (logical net name>
is the logical name for the net. It is in Valid canonical
syntax. <version> is an optional field of the form:

* <version number>

where <version number> specifies which version of the TIMES
replicated signal matches the physical net. Versions of the
signal are numbered from O to number of versions - 1. If
<version number> is O, then <version) is not output. A
colon(':') is used to mark the end of the logical net name.
<net properties> are the properties of that net of the form:

<property name> • '<property value>'

Each element in the list of properties is separated by a
comma(','). The last element in the list is followed by a
semicolon(';'). This list may cross several lines. If
there are no properties, a semicolon is output alone.

The <node list> is a list of all of the nodes on the net and
the properties for each. Each element has the form:

NODE NAME
(physical designator> (pin number>
(logical node list>

where (physical designator) is the name of the physical
part. It is a string of letters and -digits. (pin number>
is the pin number on that part.

8-60

Packager
Expanded Lists

The (logical node list) is a list of logical nodes
corresponding to the physical node. Each element has the
form:

(logical designator) (bit) <version)
(node properties)

(pin name)

where (logical designator) is the name of the logical part
corresponding to the physical part. It is a quoted string
of characters. (bit) is an optional field of the following
form:

II (bit number)

where (bit number) specifies which bit of a SIZE replicated
component matches the physical section. Bits of the
component are numbered from 0 to number of bits - 1. If
(bit number) is 0, then (bit) is not output. <version) is
an optional field described above for (list of nets).
(pin name) is the logical name of the pin corresponding to
the pin number given. It has Valid canonical syntax (see
the previous section). A colon (' :') is used to mark the
end of the (pin name) and the start of the node properties.
The (node properties) are output in the same manner as the
net properties described above.

AN EXAMPLE EXPANDED NET LIST

An example of an Expanded Net List:

FILE TYPE=EXPANDEDNETLIST;
NET NAME

{ physical net FOO } 'F002'
-'F00'(2): { logical net name }

LENGTH='2',
BREADTH='4';

{ first node
NODE NAME

U31-2

on

{ property of the net
{ property of the net

the net }

{ physical designator
and pin number }

}
}

'(GRBX ABD2P#2 3.4GN2P TF1.14P#l SDPlP TBB23P -
GDP2P .74.SP)74LS74': 'Q'<O>: {note line break}

{ previous line contains

INPUT='23';
{ second node

NODE NAME

the logical designator
and pin name }

{ node property }
on the net }

Ull-3 { physical node }
'(GRBX .00.12P)74LS00'#2*1: { bit 2, version
'Y'(Q): { first logical node }

{ no node property }

8-61

1 }

Packager
Expanded Lists

'(GRBX .00.13P)74LSOO':
'Y'<O>: { second logical node }
; { no node property }

NET NAME { the next net }
•
• { and so on }
•

END.

HOW TO READ THE EXPANDED NET LIST

The Expanded Net List is designed to be easily read.
Net descriptions are marked by the NET NAME k~yword (which
cannot be confused with a net name since physical net names
cannot contain the underscore character (' '). The net name
entry is always terminated by a semicolon(';') which comes
at the end of the net property list.

The physical net name is always followed by the logical
name which has a restricted form making it easy to
interpret. A colon is used to mark the end of the logical
net name so that there is no chance for confusion.

After the net names and properties are the node
entries. Each of these is marked by the NODE NAME keyword
and terminated with a semicolon(';') which falls at the end
of the list of node properties. The part name is followed
by a colon(':') to mark the start of the pin name. The pin
name is followed by a colon(':') to mark the beginning of
the node properties. Line boundaries are not significant;
they should not be used to determine where one item begins
and the other ends. The file is totally free form.

8.38 THE EXPANDED PART LIST

The Expanded Part List is a part list ordered by
physical designator that contains all the information known
by the Packager for each of the parts. This includes all
the properties and the logical to physical bindings of
parts.

THE FORM OF THE EXPANDED PART LIST

The form of the Expanded Part List is as follows:

FILE TYPE•EXPANDEDPARTLIST;
DIRECTIVES

ROOT DRAWING='<root drawing name)';
COMPILE TIME•'(compilation time)';
POST TIME='(packaging time>';
(global design properties>

END_DIRECTIVES;

8-62

I

\

(list of parts)
END.

Packager
Expanded Lists

where <root drawing name) is the name of the root drawing
that was compiled, (compilation time> is the time and date
of the compilation of the design, and (packaging time) is
the time and date of when the design was packaged, and
(global design properties) is a list of design-wide
properties specified in the directives section of the
expansion file.

Each entry in the global property list is of the form:

(property name) = '<property value)'

where (property name) is the name of the property and
(property value) is the value of the property (which is
enclosed by quotes).

The (list of parts) is of the form:

PART NAME
(physical part name> (part type name>
(logical part list)

where PART NAME is used to mark the beginning of a part
entry. (physical part name) is the physical designator for
the part. It is a string of letters and digits.
(part type name> is the name of the part type for the part.
It is a quoted string of characters. (logical part list) is
a list of all of the logical parts that are allocated to the
physical part. It has the form:

SECTION NUMBER (section number)
(logical part name) (bit) <version)

(logical part properties)

where (section number) is a number indicating which section
of the physical part matches the logical part.
(logical part name) is the name of a logical part. It is a
quoted string of characters. (bit) and (version) are the
optional fields specified above for the expanded net list.
A colon(':') is used to mark the end of the logical part
name. (logical part properties> are the properties of the
logical part. These properties are read from the Compiler
expansion file and come from your drawings. The properties
in the list have the form:

(property name) = '<property value)'

Each element in the list of properties is separated by a
comma (' ,'). The last element in the list is followed by a

8-63

Packager
Expanded Lists

semicolon(';'). This list may cross several lines. If
there are no properties, a semicolon is output alone.

AN EXAMPLE EXPANDED PART LIST

An example of an Expanded Part List:

FILE TYPE•EXPANDEDPARTLIST;
DIRECTIVES

ROOT DRAWING•'RISC';
COMPILE TIME•' COMPILATION ON THU JUN 30 11:38:02 1983';
POST TIME•'l9-0CT-1983 ';

END DIRECTIVES;
PART NAME
U31

'74LSOO':;
SECTION NUMBER 1

{ physical part U~l }

{ first logical part }
'(GRBX ABD2P#2 3.4GN2P TF1.14P#l SDPlP TBB23P -

GDP2P .74.SP)': {note line break}

SIZE•'l';
SECTION NUMBER 2

{ previous line contains
the logical part name }

{ logical part property }

{ second logical part in the 74LSOO }
'(GRBX .00.2P)'#2*1:; { no properties }

SECTION NUMBER 3
{ third logical part }
'(GRBX ABD2P#2 .OO.SP)':
SIZE•'2',
TIMES•'l';

SECTION NUMBER 4
{ fourth logical part }
'(GRBX FGHlP DD2P .OO.llP)':;

PART NAME { the next part }
•
• { and so on }
•

END.

HOW TO READ THE EXPANDED PART LIST

The Expanded Part List is designed to be easily read.
Part descriptions are marked by the PART NAME keyword (which
cannot be confused with a part name sine~ physical part
names cannot contain the underscore character (' '). The
part name entry is always terminated by a semicolon(';')
which comes at the end of the part type property list. The
physical part name is always followed by the part type name
which is in quotes to make it easy to identify.

8-64

Packager
Expanded Lists

A colon and semicolon are used to mark the end of the
part type name and the beginning of the physical sections.
Each of these physical sections is terminated with a
semicolon(';') which falls at the end of the list of
logical part properties. The logical part name is in quotes
making it easy to interpret. The logical part name may be
followed by SIZE and TIMES replication information. Next is
a colon(':') to mark the beginning of the logical part
properties. Line boundaries are not significant; they
should not be used to determine where one item begins and
other ends. Th.e file is totally free form.

8-65

Packager
Physical Part Tables

Packager Physical Part Tables

8.39 INTRODUCTION

Physical part tables give you the ability to assign a
property to a part that causes the Packager to invent a new
part type from the basic part type. For example, a resistor
may have a VALUE property attached which causes a different
PART NUMBER to be used, but otherwise the part definition
would be the same as for an unselected resistor. There is
only one library definition for the part, and therefore only
one copy of the models. The Packager uses the properties
attached to the part to differentiate it from other
instances of the same part.

Another use of physical part tables is to attach new
body properties to a part type without having to recreate or
modify the library files containing the part types
definitions. An important use of this capability is the
addition of new properties to the libraries for certain
interfaces such as SCICARDS. These properties describe to
the interface the type and shape of each component.

By using several physical part tables, you can change
the way part types are handled without changing the library
files. This is useful when a design is processed by several
different interfaces. The properties for each new interface
need not be added to the libraries, but ~nstead are
concentrated together into their own special physical part
table. You only need to specify which physical part table
to be used by the Packager.

8.40 A TYPICAL USE OF PHYSICAL PART TABLES

The most obvious case where physical part tables are
used is with resistors and capacitors. You should be able
to place a resistor into a drawing and worry about its value
later. The value of the resistor should be specified with a
property attached to the body so that you can easily modify
it and not have to worry about alternate part names.

To achieve this, a table must be provided that relates
resistance values to part numbers. One method might be to
have a unique PART NUMBER property for each resistance
value. Such a table might appear as:

lK
1.2K
l.SK
2.2K

CB1025
CB1225
CB1525
CB2225

8-66

•

Packager
Physical Part Tables

Whenever the Packager encounters a resistor, it looks up its
value (specified by the VALUE property) in the table and
uses the associated PART NUMBER specified. The part lists
produced would list each-resistor by part number.

This method can be generalized somewhat to make it
possible to associate other properties with each part
instance. For example, the above table might be extended to
include power dissipation, temperature coefficient, cost,
reliability data, etc.

You can create the physical part table with any text
editor. Since the files are kept in a tabular form, they
can easily be read and updated.

An example of a physical part table for 1/4 watt
resistors might appears as follows:

1. FILE TYPE = MULTI_PHYS_TABLE;
2.
3. { 1/4 watt resistor table }
4.
5. PART 'l/4W RES'
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.

{ SCICARDS specific properties }

SCI PART
SCI-SHAPE

= RES1/4W
= CR1/4W

{ table format }

VALUE = PART_NUMBER, COST;

{ actual table entries for the resistors }

lK
1.2K
l.SK =
2.2K =
2.7K =
3.3K =
3.9K =
4. 7K =
5.6K =
6.SK =
8.2K =

= CB1025,
CB1225,
CB1525,
CB2225,
CB2725,
CB3325,
CB3925,
CB4725,
CB5625,
CB6825,
CB8225,

$0.05
$0.05
$0.05
$0.05
$0.05
$0.05
$0.05
$0.05
$0.05
$0.05
$0.05

{ end of the l/4W RES entries }

8-67

Packager
Physical Part Tables

32. END PART
33.
34. { end of the physical part table file }
35.
36. END.

where the line numbers on the left are not actually in the
file but will be used to describe the format of this table.

Line 1 is used to start the physical part table file
and tells the Packager that the file is a multiple physical
part table file. This means it may contain more than one
part type.

Blank lines and comments such as lines 2 and 3 are
ignored by the Packager to allow you to make the file more
readable. The comments are enclosed by '{' and '}' and can
appear anywhere a space can when used as a separator.
Comments may cross line boundaries and cannot be nested.

Line 5 starts the physical part table entries for the
'l/4W RES' part type. The part type name must be enclosed
by quotes. Lines 9 and 10 indicate that ALL 1/4 watt
resistors have the body properties SCI PART and SCI SHAPE
added to the part type with the values-'RES1/4W' and
'CR1/4W' respectively.

Line 14 describes the format for each line in the table
for the 1/4 watt resistor. In this example, the property
that may be used to modify the resistor is VALUE and the
properties added to the new part types are PART NUMBER and
COST. Another point to be noted is that the separator
between the PART NUMBER and COST properties is a comma.
This defines the-separator character between the PART NUMBER
and COST values to be a comma within the table that follows.

Lines 18 to 28 are the actual physical part table
entries the Packager searches through to determine the new
part types to be created. For example, line 18 specifies
that all 1/4 watt resistors that have a VALUE property with
a value of 'lK' will be assigned to a new part type. This
new part type will have the same definition as a 1/4 watt
resistor without a VALUE property plus the additional
properties PART NUMBER and COST with the values of 'CB1025'
and '$0.05' respectively.

If the 1/4 watt resistor had a VALUE of '4.7K' the
added PART NUMBER and COST would instead be 'CB4725' and
'$0.05'.

8-68

Packager
Physical Part Tables

Finally, line 32 is used to denote the end of the part
table for the part type 'l/4W RES' and line 36 denotes the
end of the file.

8.41 THE PHYSICAL PART TABLE

Each physical part table file can contain information
for more than one part type and has the following general
form:

FILE TYPE = MULTI PHYS TABLE;
(part type table)- -
(part type table)

•
•

END.

where each (part type table) is the physical part table for
a part type.

The (part type table) has the form:

PART ' (part name) '
(part type property list)
(table format definition)
(table entries)
END PART

where (part name) is the name of the part type being
redefined by the table entries, (part type property list) is
a list of new properties to be added to the part type, and
(table format definition) describes the format of the table
which consists of the <table entries). The end of the part
type table is marked with an 'END PART'.

PART TYPE PROPERTY LIST

The (part type property list) section of the part
tables can be used to add new properties to a part type
without having to modify the chip files or library drawings.
This is useful if you wish to add properties independent of
any set of properties attached to a logical part. Entries
in the (part type property list) are of the form:

(property name) = (property value)

and appears one per line. (property name) is a standard
SCALD property name which is a string of letters, digits, or
' ' starting with a letter and is no longer than 16
characters.

8-69

Packager
Physical Part Tables

The (property value) can be any string of characters
and is terminated by the end of the line. If the value is
too long and cannot fit on one line, a tilde ('-') may be
used as a continuation character. It must appear as the
last character in the line. The tilde may appear between
any two characters in the line. For example, the line

SCI PART = RES1/4W

is equivalent to

SCI PART = RES
l / 4W

Notice that multiple spaces are considered to be one space
and that leading and trailing spaces about property values
are removed. If leading or trailing spaces are required,
the property values must be entered with quotes. Thus the
line

SCI PART = I RES1/4W I

which defines a SCI PART value with a leading and trailing
space. You may use-either single quotes (') or double
quotes ("). This allows the use of quotes in the property
value by using the other quote character. You can also use
the quote character in a quoted string by doubling it when
used. For example, the line

HOW ARE YOU = "I'm OK"

is equivalent to the line

HOW ARE YOU= 'I''m OK'

TABLE FORMAT DEFINITION

The <table format definition) is used to describe the
format of each table entry and has the form:

: (instance property list) m (part property list) ;

(instance property list) is a list of property names that
can be attached to an instance of the part. These
properties are used to control the selection and
customization of the part. For a resistor, this property
may be VALUE. This list has the form:

(property name and attributes)
or

(property name and attributes) <separator char> •••

8-70

where if there is more than one

Packager
Physical Part Tables

(property name and attributes) in the list, they must be
separated by a <separator char).

The (separator char) may be any character but a letter,
digit,' ', '=', '(', ')', '{', '}', •-•, ':',';',single
quote C'T, or double quote (").

Each (property name and attributes) has the form:

(property name)
or

<property name) ((attribute list))

When present, the (attribute list) describes any special
attributes the property may have during processing of the
physical part table. The form of the (attribute list) is as
follows:

(attribute)
or

(attribute) , (attribute) . . .
where if there is more than one (attribute) in the list,
they must be separated by commas.

Currently the only (attribute) understood by the
Packager is whether a property is optional on an instance of
a part. If a property is not optional on a part and is not
present on the part, a warning is generated to remind you
that the property is missing. To specify that a property is
optional, (attribute) has the form:

OPT
or

OPT = '(default value)'

where (default value) is the default value for the property
if it is not present on the instance of a part. This
default value must appear as a quoted string.

As an example, the definition

: VALUE(OPT='lK') = PART_NUMBER;

specifies that the VALUE property is optional on the part.
If not present on the part, the Packager will assume a
default value of 'lK' and not generate any warning messages.

The (part property list) is a list of the properties to
be associated with the new part type by the Packager. For
example, a resistor table may specify the PART NUMBER

8-71

Packager
Physical Part Tables

property. This property lists has the form:

(property name)
or

<property name) <separator char> •••

where if there is more than one property name in the list,
the property names must be separated by a <separator char>.

There is no limit to the number of properties that can
be specified. The <table format definition> may cross
several lines. The semicolon(';') is used to mark the end
of the definition.

In the resistor table example, each line is defined to
start with a VALUE property followed by an equal sign ('=').
The next field is the PART NUMBER property value followed by
the COST property value separated by a comma (' ,'). An
alternate file with the same information is:

FILE TYPE = MULTI PHYS_TABLE;

PART 'l/4W RES'
•

. VALUE = PART NUMBER COST; .
lK = CB1025 $0.05
l.2K = CB1225 $0.05
l.5K = CB1525 $0.05

END PART

END.

Here the separator has been changed to a space (' '). If
the separator is a space, any number of spaces can appear.

The separator characters defined in the format line
will be used as the separator characters for property values
defined in the table entries. Thus when the separator
character was changed from a comma to a space, the comma is
no longer special and can be used as part of a property
value. Also the ability to change the separator character
can be used to make the file more readable. A more creative
use of separator characters might be as follow:

8-72

FILE TYPE = MULTI_PHYS_TABLE;

•
•

{----------------------------}
: VALUE = PART NUMBER I COST
{-------------~--------------}

lK = CB1025 $0.05
1.2K = CB1225 $0.05
1.5K = CB1525 $0.05
2.2K = CB2225 I $0.05

{----------------------------}
•
•

END.

Packager
Physical Part Tables

where the separator character is defined to be a vertical
bar ('j').

TABLE ENTRIES

The <table entries) are the actual physical part table
entries the Packager searches through to determine the new
part types to be created. Each table entry has the form:

(instance values) = <part type values)
or

(instance values) = (part type values) : <new properties)

where the second form is only used when there are additional
new properties to be added for the part type created for
this table entry. Since a colon (:) is used to separate the
last part type property value from any new properties, the
last property value must be enclosed in quotes if it
contains a colon.

The <new properties) are a list of new part type
properties to be added to the new part type created for a
particular table entry. The <new properties) have the form:

<property)
or

<property) , <property) •••

where each (property) has the form:

(property name) = '(property value)'

The property values must be enclosed in quotes. For example
if we have the table

8-73

Packager
Physical Part Tables

FILE_TYPE = MULTI_PHYS_TABLE;

PART 'l/4W RES'

: VALUE = PART_NUMBER, COST;

lK = CB1025, $0.05
l.2K = CB1225, $0.05
1.5K = CB1525, $0.05

END PART

END.

TOLERANCE = '5%'

not only will the part type created for resistors with a
VALUE of 'lK' have a PART NUMBER of 'CB1025' and a COST of
'$0.05', but also have a TOLERANCE of '5%'. Resistors with
a VALUE of '1.2K' or 'l.5K' will NOT have the TOLERANCE
property added to the new part type.

Each table entry must each appear on one line. If an
entry is too long, we can again use the tilde('-') as a
continuation character. For example, the resistor example
can be entered as:

FILE TYPE = MULTI_PHYS_TABLE;

•

PART '1/4W RES'

•
•

VALUE = PART NUMBER,
COST;

lK = CB1025,
$0.05

1.2K = CB1225,
$0.05

1.5K = CB1525,
$0.05

•

END PART

END.

If more than one property is specified in the
(instance ptoperty list), the AND of the values is used.
For example,

8-74

FILE_TYPE = MULTI_PHYS_TABLE;

PART '1/4W RES'

Packager
Physical Part Tables

: VALUE, TOLERANCE = PART NUMBER COST;

lK, 5% = CB1025 $0.05
lK, 1% = CB1021 $0.50
1.2K, 5% = CB1225 $0.05
l.2K, 1% = CB1221 $0.50

END PART

END.

Note that both the VALUE and TOLERANCE properties must match
the values as specified in the table before the property
entry can be found. In this case, changing the TOLERANCE
property on a lK resistor causes a different part to be
selected (with a corresponding change in cost).

8.42 HOW TO USE THE PHYSICAL PART TABLES

To tell the Packager the names of the files which
contain physical part tables, you must use the
PART TABLE FILE directive. Any number of tables can be
specifed wTth this directive. The names can be placed in a
list separated by commas or listed individually with
separate PART TABLE FILE directives. For example, the
directive: - -

PART_TABLE_FILE 'res.tab', 'cap.tab';

specifies two physical part table files, res.tab and
cap.tab, and is equivalent to the directives:

PART TABLE FILE 'res.tab';
PART-TABLE-FILE 'cap.tab';

If a part has a table associated with it, the Packager
will read the table format definition line to find the
properties that can be used to alter the part. If any of
these properties are found on an instance, their values are
checked against the entries in the table. If the Packager
cannot find an entry in the table for the given values on a
part, an error message is generated. You must either change
the property values in the drawings or must update the part
tables.

The Packager creates a unique library part definition
for each entry in the table that matches a use in the
drawings. These are summarized as though they were unique

8-75

Packager
Physical Part Tables

physical part types. The associated information from the
tables is added to each new library part created and can be
used to guide the Packager's execution (for example,
attaching a NO LOAD CHECK property to a new part type will
turn off load checking for all instances of that part type).

To inform other programs, such as DIAL interfaces, that
these new library part definitions were created from the
physical part tables, the Packager builds a chips file
containing all the new part types that are used in the
design. This file is written to the logical file PSTCHIP
which is bound by default to PSTCHIP.DAT in VMS, pstchip.dat
in UNIX, and to PSTCHIP DATA in CMS.

For DIAL interfaces which are run after packaging, You
must include the LIBRARY FILE directive to use the Packager
generated chips file. Thus the interface's directives file
might contain the following line

LIBRARY_FILE 'pstchip.dat';

When the Packager seatches the physical part table
entries, the property values on the instance must match
exactly with the values defined in the entry. This means
that a VALUE property of '1000' on an instance will NOT
match an entry with a value of 'lK'.

To avoid these problems, it is suggested that you use a
consistent set of scale factors for numeric values. One
common set of scale factors are those defined for SPICE and
are as follows:

T • 1El2
G = 1E9
MEG • 1E6
K • 1E3
M • lE-3
U • lE-6

· N = lE-9
P = lE-12
F = lE-15

For example, one should use 'l.234K' instead of '1234', and
'lMEG' instead of 'lOOOK' or '1000000'.

8-76

(

Packager Cross References

8.43 INTRODUCTION

Packager
Cross References

The Packager produces several cross references intended
to provide information about a· design that is not readily
available in the drawings. These cross references include
both physical and logical information and how they
correspond. They are organized to provide access to the
design as a whole or to a particular drawing.

This document describes the format and content of each
of the cross references provided. It also describes how
they are intended to be used and how the information in each
is related to the others.

8.44 GENERAL PHILOSOPHY

There are two types of cross references provided:
those that deal with the entire design and those that deal
with a particular drawing. The term global is used to
indicate a cross reference dealing with the design as a
whole. The term local is used to indicate a cross reference
that deals with a single drawing.

In general, global cross references are sorted by
physical information. This is because this is the most
common access required when looking for something in the
entire design. For example, the designer may wish to know
which parts are connected by a specific net, which nodes are
on a specific net, what logical p.arts are in a specific
physical part, etc.

Local cross references, on the other hand, are usually
sorted by logical information. This is because they refer
to a specific drawing which represents the logical design
exactly but may contain only vague information about the
physical design. The designer needs to know where the
logical parts on a print are to be found in the physical
design, what physical names were assigned to the logical
signals in the drawing, what the physical pin assignments
are for each logical pin, etc.

The Packager supports local and global cross references
containing many different types of information. For each
local cross reference, there is usually a corresponding
global cross reference. The two contain basically the same
information, but are sorted differently.

8-77

Packager
Cross References

A description of conventions used in the cross
references is located at the end of this section.

8.45 THE LOCAL PART CROSS REFERENCE

A Local Part Cross Reference is produced for each
drawing in the design. It is a list of all of the logical
parts (sorted by logical part) that appear in the drawing.
The following information is given for each part:

Logical part name
Part's PATH property
Physical designator for part
List of pins of the part with:

Pin number for each pin
Pin name for each pin
Physical net name connected to each pin
Logical signal connected to each pin

The general form for a cross ref.erence entry is as follows:

<logical part name> <PATH property> <physical part>

(pin number> (physical net> (pin name> (logical net>
•

•

An entry in such a cross reference for the 100166 might
appear as follows:

100166 29P Ul8 .
1 OPB2 B(2) OP 8(2)
2 OPBl B(l) OP B(l)
3 OPBO B<O> OP B(Q)
4 LTL B)A -LT
5 EQ -A=B EQ
8 GT A)B GT
9 OPAO A<O> OP A<O>
10 OP Al A<l> OP A(l)
11 OPA2 A<2> OP A(2)
12 OPA3 A(3) OP A<3>
13 AO A(4) 0
14 AO A<S> 0
15 AO A<6> 0
16 AO A<7> 0
17 AO A<S> 0
19 AO B(8) 0
20 AO B(7) 0
21 AO B(6) 0
22 AO B<S> 0
23 AO B(4) 0

8-78

(.

I
\

24 OPB3 B(3) OP B(3)

Packager
Cross References

The first line gives the logical part name (100166), the
part's PATH property (29P), and the name of the physical
part this logical part was placed in (U18).

The rest of the lines in the entry show each pin of the
part. The first line shows the pin number (1), the physical
net name (OPB2), the logical pin name for the pin (B(2)) and
the logical signal name connected to the pin (OP B(2)).

If the logical part is given a SIZE or TIMES property,
the cross reference entry changes to summarize the common
portions of the logical part and then to list each of the
SIZE and/or TIMES replicated sections. For example, a
100145 with a SIZE=4 property might appear in the cross
reference as:

100145 26P SIZE=4 Summary of common pins:
1 READADRB2 AR(2) READ ADR B(2)
2 READADRBl AR(l) READ ADR B(l)
3 READADRBO AR(O) READ ADR B(O)
14 C2L -OEO -C2
15 C2L -OE! -C2
16 ClL -WEO -Cl
17 ClL -WEl -Cl
19 MR MR MR
20 WRITEADRABO AW<O> WRITE ADR AB<O>
21 WRITEADRABl AW(l) WRITE ADR AB(l)
22 WRITEADRAB2 AW(2) WRITE ADR AB(2)
23 WRITEADRAB3 AW(3) WRITE ADR AB(3)
24 READADRB3 AR<3> READ ADR B(3)

Section: 26P#3 Ul
4 OPB3 Q<3>
13 RESULT3 D(3)

Section: 26P#2 Ul
5 OPB2 Q(2)
12 RESULT2 D(2)

Section: 26P#l Ul
8 OPBl Q<l>
11 RESULT! D(l)

Section: 26P
9 OPBO
10 RESULTO

Ul
Q<O>
D(O)

OP B(3)
RESULT(3)

OP B(2)
RESULT(2)

OP B(l)
RESULT(!)

OP B(O)
RESULT(O)

The first line contains the logical part name (100145), the
part's PATH property (26P), a SIZE value specification
showing how many SIZE and/or TIMES replicated parts there

8-79

Packager
Cross References

are (SIZE•4). Following the first line, the common pins of
the part are shown in the same format as in the 100166
example shown above:

<pin number) <physical net) <pin name) <logical net)

as, for example:

1 READADRB2 AR<2> READ ADR B<2>

Following the common pins summary, each SIZE and/or TIMES
replicated section of the logical part is shown. The form
for each SIZE and/or TIMES replicated section is:

Section: <PATH element> <physical part name)

(pin list)

The PATH element consists of the PATH property followed by
the SIZE replicated index (#1, #2, #3, •••) and the TIMES
replicated index (1, 2, 3, •••). The name of the physical
part to which the logical section is assigned is given last.
The <pin list) is of the same form as the pin list in the
common pins summary. It only lists those pins that are
unique to the specified section.

8.46 GLOBAL PART CROSS REFERENCE

A Global Part Cross Reference is produced for the
entire design. It consists of a list of all of the physical
parts in the design sorted by physical part name. The
following information is given for each part:

Physical part name
Part type ,
List of the nodes on the part with:

Pin number of the pin
Physical net connected to the pin
Logical signal name connected to the pin
PATH element for the logical part
Drawing on which the logical part is found

The general form for an entry in this cross reference is:

(physical part name) <part type)

<pin number) <phys net> <log net) <PATH> <drawing)
•
•

An entry in such a cross reference for the 100145 might

8-80

Packager
Cross References

appear as follows:

Ul 100145
1 READADRB2 READ ADR B(2) 26P/13 GRBX MJP.LOGIC.1.1
2 READADRBl READ ADR B(l) 2 6 Pi/ 3 GRBX MJP.LOGIC.1.1
3 READADRBO READ ADR B<O> 26P/13 GRBX MJP.LOGIC.1.1
4 OPB3 OP B(3) 2 6 Pit 3 GRBX MJP.LOGIC.1.1
5 OPB2 OP B<2> 26 P/12 GRBX MJP.LOGIC.1.1
8 OPBl OP B(l) 26P/ll GRBX MJP.LOGIC.1.1
9 OPBO OP B<O> 26P GRBX MJP.LOGIC.1.1
10 RESULTO RESULT(O) 26P GRBX MJP.LOGIC.1.1
11 RESULTl RESULT(l) 26 Piil GRBX MJP.LOGIC.1.1
12 RESULT2 RESULT(2) 26Pll2 GRBX MJP.LOGIC.1.1
13 RESULT3 RESULT(3) 26Pf/3 GRBX MJP.LOGIC.1.1
14 C2L -C2 26Pil3 GRBX MJP.LOGIC.1.1
15 C2L -C2 26P/13 GRBX MJP. LOGIC. 1. 1
16 ClL -Cl 2 6 P/13 GRBX MJP.LOGIC.1.1
17 ClL -Cl 26Pl/3 GRBX MJP.LOGIC.1.1
19 MR MR 26Pfl3 GRBX MJP.LOGIC.1.1
20 WRITEADRABO WRITE ADR AB<O> 26Pl/3 GRBX MJP.LOGIC.1.1
21 WRITEADRABl WRITE ADR AB(l) 26P/13 GRBX MJP. LOGIC. 1. 1
22 WRITEADRAB2 WRITE ADR AB(2) 26Pll3 GRBX MJP.LOGIC.1.1
23 WRITEADRAB3 WRITE ADR AB(3) 2 6 P{/ 3 GRBX MJP.LOGIC.1.1
24 READADRB3 READ ADR B(3) 26Pl/3 GRBX MJP.LOGIC.1.1

The first line of the entry shows the (physical part name)
which, in the above example, is Ul. Following that is the
part's part type, 100145. The following lines show the pins
of the part in order. For each pin, the pin number,
physical net name, and logical net name are given. The last
two elements of the line show the instance of the logical
part that corresponds to the pin. The logical part is
described by giving its path element (PATH property of the
logical part as shown on the drawing and the value of the
SIZE and/or TIMEs replication index) and the drawing on
which the logical part appears.

The first entry in the pin list above appears as:

1 READADRB2 READ ADR B(2) 26P#3 GRBX MJP.LOGIC.1.1

which shows pin number 1 connected to the physical net
READADRB2 which is also the logical signal READ ADR B(2).
The logical part corresponding to this pin (that is, the
logical part allocated to this physical part with a pin
corresponding to this particular pin on the physical part)
has a PATH property of 26P and has the SIZE replication
index of 3. It appears in the drawing GRBX MJP.LOGIC.1.1.

- 8-81

Pack.ager
Cross References

8.47 GLOBAL SIGNAL CROSS REFERENCE

A Global Signal Cross 'Reference is produced for the
entire design. It consists of a list of all of the signals
in the design sorted by physical net name. The following
information is given for each net (signal) in the cross
reference:

Physical net name
Input load on the net
Logical signal name of the net
list of nodes on the net with:

Physical part designator
Pin number on the part
Pin name of the pin
Part's part type
corresponding logical part

The general form for an entry in this cross reference is:

<physical net name) (net loading> <logical signal)

<phys part> <pin #) <pin name) <part type)
(path element)

<drawing name)

•
•

An entry in the cross reference might appear as follows:

READADRB2 3.0 -3.0 READ ADR 8(2)
Ul 1 AR<2> 100145 26P#3 GRBX MJP.LOGIC.1.1

26P#2 GRBX MJP.LOGIC.1.1
26P/ll GRBX MJP.LOGIC.1.1
26P GRBX MJP.LOGIC.1.1

U2 24 Q(26) 100150 33P#26 GRBX MJP.LOGIC.1.1

The first line of the above entry shows the
(physical net name) (READADRB2). Following the net name is
the total load on the net presented by all of the inputs on
the net. Both the 0-state (3.0) and the 1-state (-3.0)
loading is shown. The last entry on the first line is the
logical signal name for the net (READ ADR B<2>). Following
the first line is a list of all of the nodes on the net.
Each entry in the node list bas the form:

<physical part name) (pin #) (pin name) (part type)
(logical part name)

In the above example, the (physical part name) is Ul, the
(pin #> is 1, the (pin name) is AR(2), and the (part type)

8-82

Packager
Cross References

is 100145. The <logical part name) is given by a PATH
element (26P#3) and the name of the drawing in which the
part appears (GRBX MJP.LOGIC.1.1). The PATH element is made
up of the PATH property on the logical part, and the SIZE
and TIMES replication values for this expanded instance.
Note that the physical part, pin, and part type information
are not listed for the next three entries. Instead of
repeating identical information, the cross reference leaves
it blank. This is intended to make the cross reference
easier to read. The following node list for Ul would be
equivalent:

Ul
Ul
Ul
Ul

1
1
1
1

AR(2)
AR(2)
AR(2)
AR(2)

100145
100145
100145
100145

26P#3
26P#2
26Pll
26P

GRBX MJP.LOGIC.1.1
GRBX MJP.LOGIC.1.1
GRBX MJP.LOGIC.1.1
GRBX MJP.LOGIC.1.1

8.48 CONTROLLING CROSS REFERENCE GENERATION

The cross references are generated by the Packager
under the direction of the Packager OUTPUT directive. There
are two ways to control the cross references: they may all
be turned on together, or they may be turned on
individually. By default, the Packager generates all of the
cross references.

To direct the Packager to generate all of the cross
references, the directive

OUTPUT CROSSREFERENCES;

is used. This causes ALL of the cross references to be
generated. Each cross reference may be individually
selected as well. To cause all of the cross references to
be generated by individually selecting them, the directives

OUTPUT LOCALPARTXREF;
OUTPUT GLOBALPARTXREF;
OUTPUT GLOBALSIGNALXREF;

are used or, equivalently, the single directive

OUTPUT LOCALPARTXREF,GLOBALPARTXREF,GLOBALSIGNALXREF;

can be used.

All of the cross references are output to the file
PSTXREF. If more than one cross reference is output, they
are separated by page ejects. All local cross references
are separated by page ejects since each cross reference
refers to a single drawing page. The file may be split up
into individual cross references by breaking at the page

8-83

Packager
Cross References

ejects. The cross references always appear in the same
order in the PSTXREF file independent of the order they are
specified in the OUTPUT directives. The order is:

Local Part Cross Reference
Global Signal Cross Reference
Global Part Cross Reference

If you do not wish to manually break the PSTXREF file into
separate cross references, they may be individually
generated by selecting only one cross reference output at a
time and re-running the Packager.

The cross references are ALL output assuming at least
132 characters are permitted in a line. There is no
provision for you to specify the width of the output file.

8.49 HOW TO USE THE CROSS REFERENCES

There are many questions that need to be answered
during the design, test, debugging, and construction of a
design. The cross references are intended to directly or
indirectly answer many of these questions. Two basic types
of cross references are supported. The first, called a
local cross reference, is sorted by logical information and
relates to a single drawing. The second, called a global
cross reference, is sorted by physical information and
relates to the design as a whole.

LOCAL PART CROSS REFERENCES

The Local Part Cross Reference contains information
about the logical parts in the design and the physical
assignments given them. It is produced for each drawing in
the design and lists all of the parts that are found in the
drawing. It identifies a part by giving its name and the
PATH property attached to it. Given a part in a drawing,
the designer can easily find the corresponding entry in this
cross·reference since it is ordered by part name. If there
is more than one instance of a particular part within the
drawing, the specific part can be identified by its PATH
property. The physical part to which the logical part has
been assigned is also given. If a logical part has been
assigned to more than physical part (because of SIZE or
TIMES replication), the physical part is given for each of
the SIZE and TIMES replicated logical parts; each of which
is listed separately.

For each pin on the part, the logical and physical
signal names are given. The designer can see the logical
signal name in the drawing and this cross reference gives
the physical net name assigned to it. The Global Signal

8-84

Packager
Cross References

Cross Reference (which is indexed by physical net name) can
be checked to find all of the other parts on the net. If
there is more than one signal name for a signal in the
drawing (because of synonyms or interface signals), this
cross reference can be used to determine which name the
system uses to refer to the signal.

GLOBAL PART CROSS REFERENCE

The Global Part Cross Reference contains the same
information as the Local Part Cross Reference except that it
is sorted by physical part rather than logical part and
refers to the entire design rather than a single drawing.

The part type is given for each physical part along
with the pins on the part. For each pin, the physical and
logical signal names are given. The logical part
corresponding to the particular pin is given by the PATH
element of the part and the drawing the part appears in. To
find the part, get the drawing referenced (it refers to a
specific page), find a part on the drawing of the given name
(the physical part's part type is the same as the name of
the part in the drawing), and make sure it has the PATH
property given in the PATH element (see below for a
description of how PATH elements are displayed).

The physical net name can be looked up in the Global
Signal Cross Reference to find out to which other parts it
is connected.

GLOBAL SIGNAL CROSS REFERENCE

The Global Signal Cross Reference contains information
about each net in the entire design. It is sorted by
physical net name. For each physical net, the logical
signal name is shown. This is the same logical signal name
that appears in the drawings. The loading on the net is
given for both the 0-state and the 1-state. This loading is
the sum of all of the input loads on the net.

Each node on the net is listed. For each node, the
physical part name and pin number are given. This makes it
possible to trace a net in the physical design. To make it
possible to understand what the node is, the part type and
pin name are also given. To make it possible to find the
node in the drawings, the logical part corresponding to the
particular pin is given by specifying a PATH element and the
drawing in which the logical part can be found.

8-85

Packager
Cross References

a.so CONVENTIONS USED IN CROSS REFERENCES

Descriptions of various conventions used within the
cross references appear in this section.

PATH PROPERTIES AND PATH ELEMENTS

PATH information is used in several places to specify a
specific logical component. The term PATH property refers
to the PATH property attached to a logical component. The
term PATH element refers to a specific SIZE and/or TIME_S __
replicated logical part. Take, for example, the f~llowing
part:

PATH=2P
SIZE=32
TIMES=2

+-------+

- D Q -

LS374

- CLK

+-------+

The LS374 (an octal register) has been-given three
properties. The PATH property serves to identify this LS374
on a particular drawing, the SIZE property causes this LS374
to be 32 bits wide, and the TIMES property causes two
versions of each output to be created (therby doubling the
number of components).

The PATH property for the LS374 is just as seen in the
drawing: 2P. This refers to a particular component as it
appears in a drawing. A component in a drawing may refer to
more than one logical component. The LS374 above represents
64 logical components. The SCALDsystem has a consistent
method for naming each of the logical components. This name
is called the PATH element. A PATH element has the form:

(PATH property> (SIZE index) <TIMES index)

(
\

(

<PATH property> is the PATH property attached to the
component in the drawing. As SIZE expansion is performed, a (

8-86

Packager
Cross References

SIZE index is used to number each of the logical components.
The LS374 above is given SIZE indices that run from O to 31
(since the SIZE property value is 32). The SIZE index value
is appended to the PATH property separated by a '#'. As
TIMES expansion is performed, a TIMES index is used to
number each of the logical components. The LS374 above has
TIMES indices that run from 0 to 1 (since the TIMES property
value is 2). The TIMES index value is appended to the PATH
element, following the SIZE index, separated by a '' PATH
elements for the LS374 above are:

2P
2P*l
2P#l
2P#l*l
2P#2
2P#2*1
2P#3
2P#3*1

•
•

2P#31
2P#31*1

Note that whenever the SIZE or TIMES index value is O, it is
not output. This is done so to prevent SIZE (#0) and TIMES
(0) values on parts which have no SIZE or TIMES properties.

8-87

Packager
State Files

8.51 INTRODUCTION

Packager State Files

The Packager generates and reads the part bindings
(PSTPRTB), signal bindings (PSTSIGB), and design information
(PSTSTAT) state files. These files record the logical to
physical part allocation, logical to physical net name
assignment, logical to physical pin assignment, and global
design information for the last run of the Packager.

If the use of states files is enabled and these files
exist when the Packager is run, they are used to guide
logical to physical part allocation and logical to physical
net name assignment, and logical to physical pin assignment.
The Packager reports whether the state files are being used
during ASSIGN PHYSICAL PARTS and ASSIGN PHYSICAL NET NAMES,
and PERFORM PIN SWAPS.

8.52 LOGICAL TO PHYSICAL ASSIGNMENTS

When the Packager builds a physical design to match the
logical design presented in the drawings, it assigns
physical sections to logical parts, assigns physical names
to logical nets, and assigns physical pins to logical nodes.
Some logical parts may correspond to several physical
sections (due to SIZE expansion), and some logical nets may
correspond to several physical nets (due to TIMES expansion
and signal versioning). The part, net and pin assignments
are always performed so that the resulting physical design
matches the logical design.

A small change in the logical design must result only
in a corresponding small change iµ the physical design.
This makes it possible to modify a design while physical
design is in progress without requiring physical layout to
be started over.

State files provide the Packager the assignments from
the previous run. Those assignments which are still legal
in the current run (the parts, nets, or pins they reference
still exist in the logical design) are performed. Any new
logical parts, nets, or pins are then assigned.

The logical changes (PSTLCHG) file contains a list of
changes in the logical to physical part assignments from the
last time the design was packaged. These changes include
addition and deletion of logical parts and reassignment of
logical parts to different physical sections. The temporary
form of this file reports each logical part for which the
assignment has changed, and most information about the

8-88

Packager
State Files

physical section to which it is or was assigned. No summary
of net or pin changes is generated.

8.53 BOW TO USE STATE FILES FOR NORMAL OPERATION

When enabled, the Packager reads state files if they
exist, and generates them after the logical to physical
assignments have been completed. Since the state files for
any design are named PSTPRTB, PSTSIGB, PSTPSWP, AND PSTSTAT.
it is necessary to keep each design in a separate directory,
or for IBM systems, a separate disk. This ensures that a
state file for one design will not be applied to a different
design.

To disable the use and generation of state files, the
Packager directive USE STATE FILES OFF; must be used since
the default is ON. Because the default is ON, you must
insert this directive to keep the Packager from using or
generating new state files.

Since the assignments specified in the state files are
based on the history of the design, the component packing
which they specify may not be as tight or as regular as that
the Packager might generate from scratch. Deleting the odd
bits of a bus might, for example, result in a set of buffers
where every other section is used. If common pin usage
allows, new logical parts will be allocated to the unused
sections, but this may result in a physical design which is
difficult to wire.

For these reasons, you may choose to delete the state
files occasionally, to allow the Packager to repack the
design in the most compact form. Deleting the state files
WILL GREATLY CHANGE THE ASSIGNMENTS for a design, and may
result in slightly different loading on nets connecting to
common pins. Obviously, the state files should NEVER be
deleted for designs which have already been built. Rather
than deleting the state files, they should be SAVED so that
they may be used if the new assignments are for some reason
undesirable.

8.54 MODIFYING THE PHYSICAL DESIGN

Since the state files direct the logical to physical
assignments performed by the Packager, component allocation
changes, physical part name changes, physical net name
changes, and physical pin assignments made to the physical
design during layout may be fed back into the Packager via
the state files. Subsequent runs of the Packager will then
use the new physical information for all forms of output.
This facilitates documenting the final form of a design, or
making changes in a design which has already been laid out.

8-89

Packager
State Files

The physical design may be modified as often as desired.
Typical times for feeding back physical information might be
at completion of wire-wrap prototype design and completion
of PC board design.

The state files should never be edited in order to
change the physical design. Only the feedback files should
be used to alter the design. Refer to the Packager
Reference Manual.

8.55 STATE FILE FORMATS

The state files are intended for use only as internal
files for the Packager. The formats of the part bindings,
signal bindings, pin swap, and design state files may vary
slightly in future releases.

PART BINDINGS FILE

The current part bindings file is structured as
follows:

FILE TYPE•PART BINDINGS;
<part binding entry>

•
•
•

END.

Each <part binding entry> is of the form:

(logical part name>
<section assignment) ••• <section assignment)

Each <section assignment) is of the form:

(size> <version) (physical part name) (pin number>

where (physical part name) is the name of the physical part
containing the section and (pin number) is the number of the
pin connected only to the section of the part matching the
logical section {it is a non-common pin). The (size> is of
the form:

H (SIZE off set)

where (SIZE off set> specifies the particular bit of a SIZE
replicated component. Bits of the component are numbered
from 0 to number of bits - 1. The <version> is of the form:

* <version number>

8-90

Packager
State Files

where <version number) specifies which version of the TIMES
replicated component. Versions of a part are numbered from
0 to number of versions - 1.

An example part bindings file:

FILE TYPE=PART BINDINGS;
'(T12 .8BA12P ADC2P STLlOP)'
110*0 'U17' 2

' '(Tl2 .8BA12P ADC2P STLllP)'
110*0 'Ul8' 2 .
' '(Tl2 .8BA12P ADC2P STL12P)'
110*0 'U20' 2

' '(Tl2 .8BA12P ADC2P STL13P)'
110*0 'U2S' 2

' '(Tl2 .8BA12P ADC2P STLlSP)'
110*0 'U40' 2
llO* l 'U40' 3
fl O* 2 'U40' 4
110*3 'U41' 2
110* 4 'U40' s .
' '(Tl2 .8BA12P ADC2P STL16P)'
ffO*O 'USO' 2
110*1 'USO' 3
110*2 'USl' 2
110*3 'USO' 4
110*4 'USO' S

END.

SIGNAL BINDINGS FILE

The current signal bindings file is structured as
follows:

FILE TYPE=SIGNAL BINDINGS;
(signal binding entry)

•

•
END.

Each (signal binding entry) is of the form:

<logical net name) (bit) <version) (physical net name)

8-91

Packager
State Files

where the <logical net name> is the logical name of the net
and (physical net name> is the phfsical name of the net.
These are output as quoted strings. The (bit> is only
output for vectored nets and has the form:

'<' (bit number> '>'

where (bit number> specifies which bit of the vectored net
is assigned the physical name. The <version> has the form:

* <version number>

where <version number> specifies which version of the TIMES
replicated net is assigned the physical name. If the
<version number> is O, the <version> is not output.

An example signal bindings file:

FILE TYPE•SIGNAL BINDINGS;
'(Tll .8BA12P ADC2P)UN1"STL#"$10P$A'<O>
'UNlSTLlOPAO';
'(Tl2 .8BA12P ADC2P)UN1"STL#"$11P$A'<O>
' UN 1 S TL 11 PAO' ;
'UN1"TSN#"$10P$Y'<3>*3
'UN1TSN10PY3V3';
'UN1"TSN#"$10P$Y'<3>*2
'UN1TSN10PY3V2';
'UN1"TSN#"$10P$Y'(3)*1
'UNlTSNlOPY3Vl';
'UN1"TSN#"$10P$Y'<3>
'UN1TSN10PY3';
'-(Tl2 .8BA12P)PINNAME$COUT'
'PINNAMECOUTL';
END.

PIN SWAP FILE

The current pin swap file is structured as follows:

FILE TYPE = PIN SWAP;
(pin swap entry>

•
•
•

END.

Each (pin swap entry> is of the form:

<logical node name> : <new pin number>

8-92

Packager
State Files

where (logical node name) is the logical name for a node and
<new pin number) is the new pin number for the node. The
colon(':') is used to separate the end of the
(logical node name) from the start of the (new pin number).

The (logical node name) is of the form:

<logical designator) <size) <version) : (pin name)

where (logical designator) is the name of the logical part
to which the node belongs. It is a quoted string ot
characters. <size) is an optional field of the following
form:

<SIZE off set)

where <SIZE offset) specifies the particular bit of a SIZE
replicated component. If the <SIZE offset) is O, the (size)
is not output. (version) is an optional field of the form:

* <version number)

where (version number) specifies particular version of the
TIMES replicated component. If the <version number) is O,
the <version) is not output.

(pin name) is the name of the logical pin which the node
corresponds and has the Valid canonical syntax as follows:

'<assertion)(name)' (subscript)

where the assertion and name of the pin are enclosed by
quotes. The <assertion) character is '-' and only appears
for low asserted signals. The (subscript) is only present
for vectored pins and can only be a single bit. The colon
(' :') is used to mark the end of the logical part name and
the start of the pin name.

An example pin swap file:

FILE_TYPE = PIN_SWAP;

{ the following two entries swaps
pins l and 2 of a 74LSOO }

'(GRBX .00.12P)'#2*1: { bit 2 ' version l

'A'<O>: { pin name and bit

2; { new pin number }
'(GRBX .Q0.12P)'#2*1: { bit 2 ' version l

'B'<O>: { pin name and bit
l ; { new pin number }

8-93

}
}

}
}

Packager
State Files

END.

•
•
•

DESIGN STATE FILE

{ and so on }

The current design state file is structured as follows:

FILE TYPE=STATE FILE;
ROOT-DRAWING='<root drawing name>';
TIME~'(compilation time>';
END. .

where <root drawing name) is the name of the root drawing
that was compiled and (compilation time> is the date and
time that the design was last compiled.

8.56 FORMAT OF THE LOGICAL CHANGES FILE

The format of the logical changes file (PSTLCHG) is
temporary and WILL CHANGE in future releases. The notation
used in the logical changes file is similar to that of the
part bindings file. Logical sections are listed as DELETED
or ADDED to the design. Logical sections which existed in
both the last run and the current run of the Packager, but
which no longer fit into the same physical sections are
listed as REASSIGNED from their old physical sections and
ADDED to their new physical sections.

An example logical changes list:

TEMPORARY LOGICAL CHANGES LIST - 1 25-FEB-1983 15:S1:49.82
LOGICAL PARTS DELETED FROM DESIGN:

(T12 .8BA12P ADC2P STL16P) STL#;
Reassigned: #0*2 U40 5

(Tl2 .8BA12P ADC2P STL21P) STL#;
Deleted: #0*4 USSl 2
Deleted: #0*4 U650 5

LOGICAL PARTS ADDED TO DESIGN:
(T12 .8BA12P ADC2P STLlSP) STL#;

Added: #0*4 U40 5
(Tl2 .8BA12P ADC2P STL16P) STL#;

Added: #0*2 USl 2
Added: #0*3 USO 4
Added: #0*4 USO 5

END LOGICAL CHANGES LIST

8-94

Packager Glossary of Terms

Packager
Glossary

The following glossary is included in the hope that it
will make this chapter easier to understand.

8.57 TERMS

LOGICAL PART
A section of a physical part. It may have SIZE and TIMES
properties attached that are used by the Packager to
generate several logical parts (sections).

LOGICAL PART TYPE
The logical part type is the name of the logical part
This is always the same as the physical part type (which
is the name of the physical part). The logical part is
assigned in the libraries as the PRIMITIVE property
attached to the .PART drawing. If the PRIMITIVE property
is not present, the logical part type is the same as the
drawing name.

LOGICAL PART DESIGNATOR
The name given to each instance of a logical part. The
name is assigned by the Compiler and consists of the path
name for the part and the logical part type. The path is
augmented by the Packager when replicating parts with
SIZE properties or creating new versions because of TIMES
properties.

LOGICAL PIN NAMES
The name given a pin of a SCALD body.

LOGICAL PIN DESIGNATOR
Consists of a logical part designator and a logical pin
name separated by a space.

PHYSICAL PART
Something understood by the physical design system. For
instance, a 74LSOO might be known by some layout program
and this would be a physical part. In the case of a gate
array design, a physical part would be a component of the
array. In general, a physical part is something that a
physical design system is going to try to hook up. A
physical part is normally associated with a package and
not a section of a package. A NANO gate within a 74LSOO
is not a physical part but the 74LSOO is.

PHYSICAL PART TYPE
The name of a physical part as assigned in the SCALD
library. For example, a package of TTL NAND gates may

8-95

Packager
Glossary

have the physical part type 74LSOO. This name may in
many cases be a generic part name or it may be an
internal part name.

PHYSICAL PART DESIGNATOR
The name given to an instance of a physical part. Each
physical part in a design has a unique physical part
designator that may be assigned by the designer or is
automatically assigned by the Packager.

PHYSICAL PIN NAME
The name given a pin on a physical part. This name is,
by convention, a number or an identifier (not more than
16 characters) and is specified by the PIN NUMBER
property on the library component describing the physical
part type.

PHYSICAL PIN DESIGNATOR
Consists of a physical part designator and a physical pin
name separated by a space.

PHYSICAL NAME STRING
A sequence of characters consisting only of letters,
digits, or ' '•

PHYSICAL NET NAME
Each net has a logical signal name (assigned by the
Compiler and derived from the drawings) and a
corresponding name used by the physical system. The .
physical net name is the name used by the physical system
to refer to the net.

FATAL ERROR
This is a class of errors. When an error in this class
is detected the Packager does not alter any state files
or produce any output files other than the error
listings. Execution continues after the detection of a
FATAL ERROR in order to find any other errors that may be
present.

8-96

