
CHAPTER 7

LOGIC SIMULATOR

7.1 INTRODUCTION

The Logic Simulator represents a new approach to simulation of
large digital systems. By separating timing verification from
simulation, timing verification has been made more comprehensive
and simulation has been made conceptually simpler and thus much
faster.

The graphic input language (SCALD notation) lets the designer
refer to multibit-wide components and buses as single entities.
The Compiler expands the design using components that are drawn
from a component library until the design is expressed entirely
in terms of simulation primitives. Previously, the Compiler was
explicitly invoked to generate design files which were then read
by the Logic Simulator; with the advent of ValidSIM, the
Simulator is now able to invoke the Compiler directly or use the
traditional Compiler design files.

The Timing Verifier ensures that the circuit is free of race
conditions, setup and hold-time errors, pulse width errors, and
clock glitches.

The Logic Simulator initializes the system to a fixed state and
waits for a command from the user. The user may enter commands
directly or through a command file to advance simulated time.
It is frequently necessary to provide an external stimulus to a
design, for example, a simulated disk data stream. Application
of stimulus may be done by the user through a command file, data
file, or in many cases, by simulating an additional circuit
specifically drawn to provide the stimulus.

The designer may use command files to exercise a design in a way
that is analogous to a diagnostic program. Since command files
may be stored for repeated use, verification of a previously
checked circuit can easily be verified to ensure that it is
still working correctly after design modifications.

Although designed primarily as an interactive tool, the Logic
Simulator may be run as a batch process. All commands of a
simulation session may be entered into a single command file and
the name of this command file included in the Logic Simulator
directives file (a special file that directs the simulation
process). The directives are described later in this chapter.

7-3

Logic Simulator
Overview

7.2 GETTING STARTED

The Simulator can be run on any of Valid's three supported
hardware configurations: Digital VAX, IBM 370 (or equivalent),
or Valid's own S-32 computing system (or equivalent - Valid's
SS IV is generally considered equivalent). The program can be
run from a terminal connected to these three systems or directly
from the SCALD Design Station.

The design station can access the Simulator in three different
ways. When connected to a host computer, the Simulator can be
run from the design station using the terminal emulation mode
(see Display Manager in Chapter 2). If simulation is desired
under UNIX on Valid's S-32 computer, the design station can be
used to run the Simulator in a full or partial screen window,
either with or without using graphics capabilities. Or, the
program can be invoked while running the Graphics Editor (see
Graphics Editor in Chapter 3). To run the Simulator from any of
the above configurations, the user simply types:

simulate

If the Simulator is invoked in a partial screen UNIX window, the
window must be at least a minimum size. Unde~ GED, this size is
48 x 86 characters. The Simulator without graphics can be run
in any window at least 12 x 80; with graphics, the minimum
window size is 14 x 86. The user is prevented from running the
Simulator in any window which is smaller than required.

The Simulator starts by reading the Simulator directives file.
The Simulator looks for this file under a specific name. For
the three hardware configurations, the name must appear as
follows:

simulate.cmd - For VAX and S-32 configurations
simulate cmd - For IBM or equivalent configurations

If the ROOT DRAWING directive is specified in this file or on
the simulate command line, the Simulator will invoke the
Compiler directly to process the design and interpret the data
during its initialization phase. If this directive is not used,
the Simulator requires two files created by the Compiler during
some previous invocation - the expansion file and the synonyms
file; if the Simulator does not find the names of these files
in the directives file, the default names "cmpexp.dat" and
"cmpsyn.dat" are assumed.

7-4

7.3 DISPLAY FORMATS

Logic Simulator
Overview

The Simulator has two output formats. These are BUS mode and
WAVEFORMS mode. BUS mode simultaneously displays the current
value of a large group of signals selected by the user.
WAVEFORMS mode can manipulate up to 200 signals; the number of·
signals simultaneously displayed on the screen is determined by
the type of terminal as shown in the following table.

Terminal Type Maximum Number
· of Waveforms Displayed

Cluster/GCluster 48
Cluster running GED 12
Ann Arbor 34
VT-100 12
IBM 3270 14

In the WAVEFORMS mode, both the current value and a history of
transitions are maintained for each signal. The signal history
can be displayed as a waveform such as produced by a standard
logic analyzer or can be written to a file for subsequent input
to the Plottime program. (The Plottime program uses the signal
history to produce timing diagrams for display by the Graphics
Editor.)

The display screen is divided into three parts: the echo area,
the status lines, and the main display. The echo area shows
what has been typed recently by the user. The status lines are
at fixed locations on the top of the screen and are updated
periodically by the Simulator. The main display shows the
values of signals selected by the user and, in WAVEFORMS mode,
their history.

On a cluster terminal (not under GED), the size of the main
display area varies with the size of the window in which the
Simulator is invoked. Not only will the number of lines
increase (for up to 48 waveforms in a full-screen window), but
the width of the display area will also grow as the size of the
window is increased above the minimum. The additional width is
used to increase the space available for waveforms in WAVEFORMS
mode and to increase the total amount of space available for BUS
mode names and values.

7-5

Logic Simulator
Overview

ECHO AREA

The echo area is used for echoing command inputs and displaying
Simulator output information. Most of this information consists
of either error messages or query responses. When running under
GED, if a command results in several lines of output, the
Simulator displays a few lines and prints "** Press <RETURN) to
continue **''. The Simulator then waits for a (carriage return>
before continuing to allow users to interpret the output before
it is scrolled away; note that all other input is ignored until
a <carriage return> is entered. On other terminal types,
scrolling can be inhibited through the use of the appropriate
terminal key (e.g., ctrl-S).

STATUS LINES

Time: xxxxxx Step: xxx Radix: xx
Mem path: xxxxxxxxxx
Scope: xxxxxxxxxx

Clock: xxx I xxx Top Row: xxx
Scale: xxx.x

These lines are a permanent part of the Simulator display.
"Mem path" and "Scope" are displayed only in BUS mode, and "Top
Row" is displayed only in WAVEFORMS mode. "Scale" is displayed
near the top of the screen in BUS mode and near the bottom in
WAVEFORMS mode.

"Time" is the current simulation time in nanoseconds. "Step" is
some interval in nanoseconds which is stepped off when the
SIMulate Step command is input. "Radix" shows t.he current radix
value, which can be binary, octal, decimal, hexadecimal, or
strength. "Clock" indicates the clock cycle time in nanoseconds
and the number of periods into which the clock has been
subdivided. "Top Row" indicates the row number of the top row
on the display in WAVEFORM~ mode. "Mem path" is a memory
pathname that indicates the result of the last successful
MEMPATH command (see below). "Scale" is the scale factor
associated with the RESOLUTION command. "Scope" shows the
default path name that may be set with the SCOPE command.

VALUES

Values are displayed in one of five radices: binary, octal,
decimal, hexadecimal, or strength. Binary numbers are indicated
by a trailing "b", octal by 11 0 11 , decimal by "d", hex by "h", and
strength by "s". On input, numbers are assumed to be in the
current radix. Each bit of a value may be either 1, O, U
(unknown), or Z (high impedance). In binary, these bits are
displayed as "l", "O", "U" or "Z". Unknown or high-impedance
bits in octal or hex values cause the digit to which they map to
be reported as "Z" if all bits in the digit are high impedance,

7-6

Logic Simulator
Overview

otherwise "U". Unknown or high-impedance bits in decimal values
cause the entire value to be displayed as "U". In strength
radix, values are displayed and input using the state
abbreviations shown above. For example, "UOOlOZZZZb" represents
a binary value with the most significant bit unknown and the
four least significant bits in high impedance. In hex, this
value would be displayed as "U2Zh". In strength radix, this
value might be displayed as ".hU.hO.sO.sl.mO •• Z •• Z •• Z •• Zs" if
some of the bits were HARD, some SOFT, and some MEMORY strength.
In WAVEFORMS mode, "---------" is output in the column of signal
values if there is insufficient space to display the entire
value.

OPENING SIGNALS

When the user "opens" a signal name, that signal and its value
appear in the main display. A signal name is in standard SCALD
syntax, except that bit lists and step values are not permitted.
Names are right-justified in WAVEFORMS mode. The value of the
signal appears left-justified in the current radix. The
currently open signal is indicated by a "->" preceding the
signal value. This value may be changed by "depositing" some
other value. The last signal to be opened may be changed at any
time in this fashion.

Any subrange of a signal may be displayed. If no bit range is
given for a signal vector, then the entire vector is OPENed. A
signal also may be displayed any number of times in different
radices. A change made to the value of one version of the
signal affects all the others.

A signal may be known by more than one name. A bit may be
common to a group of signals. For example, ADR BUS(0 •• 31) may
also be known as SYSTEM BUS(40 •• 71) and also as CHIP
SELECT(O •• S):MEMORY ADR(0 •• 27). The user may refer to the
signal using any of its names.

OPENING MEMORIES

The contents of memories are displayed in a somewhat different
fashion from signals. First, the pathname to the memory
primitive is specified with the MEMPATH command (see Commands
section) and then the OPENMEMORY command is used to open the
desired addresses. This sequence causes an entry, which
consists of the memory pathname followed by the address
(enclosed in parentheses) and the value stored in the memory at
that address (right justified in the current radix), to be made
in the main display. Bit ranges are not currently permitted in
memory displays.

7-7

Logic Simulator
Overview

BUS MODE

In BUS mode, the main display area is a table of signals and
their values. Since this mode can display many signals on each
line, a signal might not fit if its name and value require too
much room horizontally. If this happens, it is still possible
to open the signal as several subranges.

WAVEFORMS MODE

WAVEFORMS mode displays the history of selected signals as
waveforms, with the value of buses displayed wherever possible.
This mode takes advantage of the graphics capabilities of the
design station by building waveforms from line segments. This
mode may also be run on an ASCII or EBCDIC terminal, in which
case waveforms are built from characters, or on the SS IV, in
which case waveforms are built using a graphical character set.

Simulator Screen Format

A sample screen format is shown:

T1me: 897 Step: 100 Rad1x:

CARRY IN
RESET*

CLOCK I C 4-8 '---=~

TERM N-2<10 .. 0> 171171171
TERM N-1<10 .. 0>

16 Clock: 100/ 8 Top 1

0b
lb
0b

005h
008h

TERM N<10 .. 0> ~171171 1710 171!?11 ->00Dh

CARRY OUT
TERM N<0>
TERM N<l>
TERM N<2>
TERM N<3>

TERM N-2<5 .. 0>
TERM N-1<5 .. 0>

TERM N<5 .. 0>
I
0

Tr1gger = 397 Cursor =

171171
1710

171171

849

I
!?11

I (7j j 111711
I
200

Scale

!?11 I !?12 I !?13 1!?15
I !?I~ ',~~ I P~s lt1~ I pj:;J L ;:i I ;:I

I I I
400 600 800
= 1. 0

The "T" character marks the time of the last encountered
(Triggered) breakpoint. The "C" character marks the time at
which the cursor is placed. If the character column for the "T"
and "C" indicators coincide, a "B" (for both) will be output
instead. The cursor may be placed at any time between 0 and the
current time. The values of the signals on the display at the
time specified by the cursor are displayed on the right side of
the screen.

7-8

0b
lb
0b
lb
lb

05d
08d
13d

Waveform Representations

Logic Simulator
Overview

When the cluster's graphics capabilities are utilized (as is the
case when the Simulator is invoked with the GCLUSTER terminal
type or when run under GED), waveform representations differ
from when terminal characters are used. The waveform
representation on the SS IV differs still again; it is almost a
combination of the following two, in which characters are used,
but they are from a graphical character set.

GRAPHICS CHARACTERS

Single bit (scalar) signals are represented as follows:

SIGNAL = 1

SIGNAL 0

SIGNAL = Z -----g------

SIGNAL = U u

Multiple bit buses are represented as follows:

BUS with all bits 1

BUS with all bits 0

BUS with all bits Z

BUS with value "xxxx"

BUS with value too large
to fit in display space

x

0

-----g------

xx xx

-----z------

=====U=======

0

-----z------

====xxxx====

=============

When utilizing graphics, all signal transitions are indicated by
a vertical line at the transition time; multiple transitions at
a single time are indicated by a bold vertical line. With
character output, the following characters are used to indicate
different transitions:

7-9

Logic Simulator
Overview

I low-to-high transition
\ high-to-low transition
X multiple transitions mapping to same character
> transition to Z
I all other transitions (including transition to U)

A multiple transition symbol is displayed only if some bit of
the signal has changed two or more times during the time mapping
to the display position. If a bus undergoes several
transitions, but each bit changes only once, a multiple
transition has not occurred.

A typical scalar signal might be displayed as follows:

SIGNAL 1---c---1 ______ u __

This signal is shown to have the history: 0,1,z,o,u,1.

A typical bus (vector) signal might be displayed as follows:

BUS(l5 •• 0) AD34 I

This bus is shown to have the history:
43Dl,?,AD34,0000,?,FFFF,U,?,Z (where "?" indicates that the
value is too large to fit in the display space).

7.4 SIGNAL STATES

Each bit of each signal in the Simulator assumes one of the 20
internal signal states used by the Simulator. These 20 internal
states are mapped into the 12 states that are directly viewable
by the user. The eight states that are not directly viewable
are special forms of the UNDEFINED value which are sometimes
used internally.

Each state may be divided into two parts, a VALUE and a
STRENGTH. The VALUE of a signal is its logical level. The
possible VALUEs are:

Signal VALUE

0
1
U (UNKNOWN)

Meaning

Logical 0
Logical 1
Could be 0 or 1

7-10

Logic Simulator
Overview

The STRENGTH of a signal describes the type of output or outputs
that drive the signal to its VALUE. The possible STRENGTHs are:

Signal Strength

HARD
SOFT
MEMORY

INDETERMINATE

Meaning

Driven to level without resistance
Driven to level through resistance
Was driven to level, now holding

due to charge storage
Could be HARD, SOFT or MEMORY

MEMORY STRENGTH signals maintain their VALUE for a limited
period of time and then assume UNDEFINED VALUE. This time is
measured from the time the signal was last driven to the
specified value. All signals in a design have the same decay
time which is set with the directive:

DECAY TIME (value in nanoseconds>

The combination of each VALUE with each STRENGTH gives the 12
viewable states. The combination of INDETERMINATE strength and
UNKNOWN value is interpreted as Z (high-impedance). The state
names and abbreviations are:

STATE NAME

llARD STATE 0
SOFT-STATE-0
MEMORY STATE 0
INDETERMINATE STATE 0
HARD STATE 1
SOFT-STATE-1
MEMORY STATE 1
INDETERMINATE STATE 1
HARD STATE U - -SOFT STATE U
MEMORY STATE U
STATE Z

BIDIRECTIONAL NETS

ABBREVIATION

hO
sO
mO
iO
hl
s 1
ml
il
hU
sU
mU

z

Bidirectional nets are nets that connect to the A or B pins of a
PASS TRANSISTOR or RES primitive. DEPOSITing into bidirectional
signals is not recommended as the deposited value does not
persist very long due to the bidirectional net evaluation scheme
used by the Simulator. Unidirectional drivers should be
connected to those bidirectional nets that the user wishes to
force to certain levels.

7-11

Logic Simulator
Overview

COMBINATION OF STATES

. When more than one output drives a net, the state of the net is
determined by combining the states of the driving outputs. When
more than two outputs drive a net, the output states are
combined iteratively. The following table lists all
combinations of two states.

I hO I so I mo I iO I hl I sl I ml I il I hU I su I mu I z I
---+----+----+----+----+----+----+----+----+----+----+----+----+

I I I I I I I I I I I I I
hO I hO I hO I hO I hO I hU I hO I hO I hU I hU I hO I hO I hO I
---+----+----+----+----+----+----+----+----+----+----+----+----+

I I I I I I I I I I I I I
sO I hO I sO I sO I iO I hl I sU I sO I hU I hU I sU I sO I sO I
---+----+----+----+----+----+----+----+----+----+----+----+----+

I I I I I I I I I I I I I
mo I hO I so I mo I iO I hl I sl I mu I hU I hU I sU I mu I mO I
---+----+----+----+----+----+----+----+----+----+----+----+----+

I I I I I I I I I I I I I
iO I hO I iO I iO I iO I hU I hU I hU I hU I hU I hU I hU I iO I
---+----+----+----+----+----+----+----+----+----+----+----+----+

I I I I I I I I I I I I I
hl I hu I hl I hl I hU I hl I hl I hl I hl I hu I hl I hl I hl I
---+----+----+----+----+-~--+----+----+----+----+----+----+----+

I I I I I I I I I I I I I
sl I hO I sU I sl I hU I hl I sl I sl I il I hU I sU I sl I sl I
---+----+----+----+----+----+----+----+----+----+----+----+----+

I I I I I I I I I I I I I
ml I hO I so I mu I hU I hl I sl I ml I il I hU I su I mu I ml I
---+----+----+----+----+----+-----+----+----+----+----+----+----+

I I I I I I I I I I I I I
il I hU I hU I hU I hU I hl I il I il I il I hU I hU I hU I il I
---+----+----+----+----+----+----+----+----+----+----+----+----+

I I I I I I I I I I I I I
hU I hU I hU I hU I hU I hU I hU I hU I hU I hU I hU I hU I hU I
---+----+----+----+----+----+----+----+----+----+----+----+----+

I I I I I I I I I I I I I
sU I hO I sU I sU I hU I hl I sU I sU I hU I hU I sU I sU I sU I
---+----+----+----+----+----+----+----+----+----+----+----+----+

I I I I I I I I I I I I I
mU I hO I sO I mU I hU I hl I sl I mU I hU I hU I sU I mU I mU I
---+----+----+----+----+----+----+----+----+----+----+----+----+

I I I r I I I I I I I I I
z I hO I so I mo I iO I hl I sl I ml I il I hU I su I mu I z I

---+----+----+----+----+----+----+----+----+----+----+----+----+

7-12

7.5 INITIALIZATION OF SIGNALS AND MEMORIES

Logic Simulator
Overview

At the start of simulation, each signal is set to the undefined
state. The LOGIC_INIT and MEM_INIT commands may be used to
initialize all signals or all memories to a specific value.
Signals and memories may be initialized to 0, 1, undefined (U),
asserted (*) or unasserted (-*). If a signal has neither low
assertion nor negation characters, or if it has both, then its
asserted state is one; otherwise it is zero. For example, if
"-" is the negation character and "*" is the trailing low
assertion character, then SIG A and -SIG B* have an asserted
value of one, while -SIG C and SIG D* have an asserted state of
zero. If a memory has a bubbled output, then it has an asserted
state of zero, otherwise it is one.

7.6 CHANGING SIGNAL VALUES

The user may change the value of any signal, whether driven or
undriven. If the user changes the value of a signal that is
driven, the signal value specified temporarily overrides the
value given in the circuit that drives that signal. Whenever a
signal name has a clock assertion (!P or !C) and is not driven
by an output in the circuit, the signal generated by the Logic
Simulator will have the timing behavior corresponding to the
clock notation following the !P or !C.

7.7 CHANGING MEMORY VALUES

The user may change the value of any memory location in the
design by opening a location witl1 the OPENMEMORY command and
then depositing the desired value to that location. The
location retains this value until a memory write is done to the
matching address or until another deposit is done into that
location.

7-13

Logic Simulator
Overview

7.8 SIMULATING

The user can cause simulated time to advance by typing ''SIMULATE
C" (simulate for a clock period), "SIMULATE S" (simulate for the
STEP time), or "SIMULATE <val>" (simulate for <val> nano­
seconds). Primitives are evaluated and values are changed as
time advances until the designated simulation time elapses.
When this time is reached, the status lines and the values of
all the signals in the main display are updated appropriately.
The command "SIMULATE O" can also be used to immediately cause
the evaluation of any zero-delay parts.

7.9 SESSION LOGGING

Creating a permanent record of a simulation session is often
useful for future reference. A list file may be created that
contains a summary of the directives, errors found in the
expansion file, and if requested, a copy of all command inputs.
The SNAPSHOT command sends an image of the status lines and
signal display window to the list file. For more details, see
the section on Logic Simulator Directives.

7-14

Logic Simulator
Compiling within Simulator

7.10 INVOKING COMPILER FROM SIMULATOR

Traditionally, the Simulator has learned about the circuit
definition by reading in the expansion file and the synonyms
file produced by the Compiler. With the advent of ValidSIM, the
user can now invoke the Simulator immediately after a design is
entered into GED - the Simulator can invoke the Compiler
directly and no longer requires the pre-exist~nce of the two
Compiler files.

The data obtained by the Simulator is identical to the data that
would be obtained if the Compiler were invoked explicitly. The
primary difference to the user is the execution time. With
ValidPAGECOMP, compilation proceeds more rapidly since only
those pages which have changed need to be re-compiled (see
Compiler in Chapter 5). The time required for compilation is
further reduced since the Compiler need not create its two
potentially large files and the Simulator need not read them.
Thus, the time required between the creation of a drawing in
GED and the start of actual simulation has been reduced
significantly.

There are two ways to invoke the Compiler from within the
Simulator. One is to use the new directive, ROOT DRAWING, in
the Simulator directives file (see Directives section); this
directive is identical to that used by the Compiler. The second
is to pass the root drawing name to the Simulator as a command
line argument, as can be done with the Compiler:

simulate <root drawing name>

A command line argument will override any root drawing name in
the directives file. The root drawing name should match that in
the Compiler directives file, which is still required when the
Compiler is invoked by the Simulator. When the root drawing
name is specified in either manner, the COMPILER_OUTPUT and
SYNONYM FILE directives should not be used; even if specified,
the two-files will be ignored. If the root drawing name is not
specified, the traditional expansion and synonyms files must
exist, and the Simulator will operate identically to that prior
to ValidSIM.

The Compiler generates error messages if there are any errors
during the compilation. If the specified root drawing name is
not found or if compile errors are detected, the Simulator will
exit. Since the design may be divided into separate pages, the
error messages may be distributed among many files. These
messages are collected and output on the screen when the
Compiler has completed, except when the Simulator is invoked
under GED. The program COMPERR can also be invoked explicitly
to collect all the Compiler error messages.

7-15

Logic Simulator
Simulator Graphics Capabilit~es

7.11 SIMULATOR GRAPHICS CAPABILITIES

Graphics capabilities are available in the Logic Simulator
either when it's run under the Graphics Editor, or when it's
invoked with the terminal type set to GCLUSTER (for graphics
cluster). The former is referred to as the split-screen
Simulator, and the latter as the graphics Simulator.

Certain capabilities are available in either mode of operation.
These include the following:

o Waveforms are displayed using graphics rather than with
terminal character representations. See the Waveform
Representations section.

o A command menu is displayed along the right-hand side of the
screen. Under GED, this menu contains nine entries; in the
graphics Simulator, the menu size will vary with the window
size, with between nine and 17 entries.

o The puck is enabled and available for use with the menu and
various commands. A puck point can often be entered in
place of typing a signal name. See the Command Summary for
a description of puck use with commands.

o The HARDCOPY command can be invoked to produce hard output.
See the description of HARDCOPY in the Command Summary.

These two modes also share a limitation - when running under
UNIX, the job control feature (ctrl-Z) cannot be used to stop
the Simulator. Attempts to stop the Simulator will simply be
ignored. Job control capability is enabled with any other
terminal type.

There are differences between the graphics capabilities provided
with each mode and between these modes and normal terminal
operation. These are described in greater detail below.

The graphics capabilities available with the graphics Simulator
are not available on the SCALD System IV. However, a graphical
character set is used to display waveforms on this terminal (see
Waveform Representations section). The user does not need to
issue any special commands to use this character set, and
waveforms appear more realistic than using normal ASCII
characters.

7-16

Logic Simulator
Simulator Graphics Capabilities

SPLIT-SCREEN GED/SIMULATOR OPERATION

The Graphics Editor SIMULATE command creates a Simulator window
and invokes the Simulator. A sufficiently large window is
required to run the split-screen Simulator; this minimum size
is 48 x 86 characters. The user is prevented from invoking a
Simulator in a GED window which is smaller than this minimum.
Any window larger than this, up to and including full-screen
windows, can be used to run the split-screen Simulator.

Before simulating, the user MUST write out the drawing if any
changes have been made during the current editing session and
the changes are to be reflected during simulation. When
invoked, the Simulator does its normal initializations and
initializes its window appropriately.

Differences from Normal Terminal Operation

o The user may specify signals visible in the upper (GED)
window by pointing to them with the puck instead of typing
them at the keyboard. For example, to open a signal, touch
OPEN in the menu with the puck, and then point to the signal
to be opened. The user can open an unnamed signal by
pointing to the wire.

o A command selected from the Graphics Editor window returns
the user to the Graphics Editor and suspends the Simulator.
A command selected from the Simulator menu, or selecting the
SIMULATE command from the Graphics Editor menu, returns
control to the Simulator.

o The EXIT command terminates the Simulator and causes the
Simulator window to disappear.

o If the Graphics Editor is used to change a drawing while the
Simulator is running, simulation data will be inconsistent
with the new version of the drawing. To simulate the
modified drawing, the Simulator must be EXITed, the drawing
must be recompiled, and the Simulator must be restarted. It
is not necessary to exit the Graphics Editor.

o "Softkeys" defined in the Graphics Editor can be used with
the Simulator to save typing.

7-17

Logic Simulator
Simulator Graphics Capabilities

GRAPHICS SIMULATOR OPERATION

The graphics Simulator is available on an S-32 terminal when the
terminal type is set to GCLUSTER. This mode of operation makes
available functionality which was previously available only when
running the Simulator under GED.

A sufficiently large window is required to run the graphics
Simulator; this minimum size is 14 x 86 characters. The user
is prevented from running the graphics Simulator in a window
which .is smaller than this minimum. Any window larger than
this, up to and including full-screen windows, can be used to
run the graphics Simulator.

There are important differences between this mode of operation
and that available when running under GED:

o Up to 48 lines of graphical waveforms can be displayed
simultaneously when running the graphics Simulator, as
compared to the 12 available under GED.

o The speed of graphical output is significantly faster than
that which is possible when running under GED. Output can
be made at a speed approximately five times greater.

o The user can control the window size in which the Simulator
is invoked and, hence, the number of waveforms which are to
be displayed.

o Additional menu commands are available when the Simulator is
run in a sufficiently large window. This was described
above.

o Additional options are available ~ith the HARDCOPY command.
Further details are available in the description of
HARDCOPY.

o Communications with GED in another window has not yet been
implemented in the graphics Simulator, so it is not yet
possible to select signals from GED. However, it is still
possible to specify signals by pointing to them in the
Simulator display area.

7-18

7.12 COMMANDS USED IN WAVEFORMS MODE

Logic Simulator
Waveforms

The following commands are commonly used in the WAVEFORMS mode
and may affect the signal display:

Waveforms { (start time) { (end time) } }
or

Waveforms (point!) { (point2) I }

This command invokes WAVEFORMS mode, and defines the range of
time to be displayed. If the <end time> parameter (or <point2))
is omitted, then the current display width (<end time) -
<start time)) is used with a new <start time). The WAVEFORMS
command may be issued any time the Simulator displays a "*"
prompt. Since the WAVEFORMS command does not aff~ct the state
of the recorded history of open signals, pan and zoom can be
used.

The second syntax is only available when the puck is enabled in
the Simulator and is used to zoom in on an area displayed on the
screen. <pointl) and (point2) are points supplied by the puck,
where the left one refers to the <start time> and the right one
refers to the <end time).

The <start time) and <end time) fields may be specified in
either absolute or in relative time. Absolute time is specified
in nanoseconds, while relative time is specified as RIGHT
<offset in nanoseconds) or LEFT <offset in nanoseconds). If
time is specified in relative form, then the new value is
calculated by adding (RIGHT) or subtracting (LEFT) the offset
from a command dependent value.

For the WAVEFORMS command, the <start time) parameter is
relative to the old <start time), and the <end time) parameter
is relative to the new <start time) so that the command

WAVEFORMS RIGHT 10 RIGHT 100

moves the left side of the display to the right by 10
nanoseconds in the history of the open signals, and sets the
display width to 100 nanoseconds. The WAVEFORMS display
advances automatically whenever simulation is done.

7-19

Logic Simulator
Waveforms

History { (recording period) I }

The History command sets or reports the recording period during
which a signal history is maintained. If a <recording period)
is entered, the Simulator maintains the behavior of all signals
opened in WAVEFORMS mode for the specified number of ticks (in
the same units as the display). If no parameter is given, then
the current value of the recording period is displayed. This
value is initially set to 10000 ns.

Cursor <new time) [;

This command moves the cursor to a new time. The <new time>
parameter may be specified in absolute time or relative to the
current cursor time. The command

CURSOR LEFT 25

moves the cursor 25 ns to the left. Whenever the cursor is
moved, the signal values on the right side of the screen are
changed to indicate the signal values at the cursor time. The
cursor may be set to any time between 0 and the current time,
whether the new time is visible or not. When simulation is
complete, the cursor is auiomatically moved to the current time.

Open (signal name) [, <row) [, <col)
or

Open (signal pt) ((dest pt) (signal pt)) ••• [<dest pt)]

OPENing a signal adds that signal to the display.

The second syntax is only available when the puck is enabled in
the Simulator (GED or GCLUSTER); <signal pt) is a point
supplied by the puck that refers to a signal in the drawing or
in the Simulator window, and <<lest pt) is a point supplied by
the puck that refers to the place to display the signal. If
(dest pt) is omitted, the Simulator opens the signal in a
default location. The sequence of (<dest pt) <signal pt)) can
be arbitrarily repeated many times, and must be terminated by a
semicolon or carriage return. In WAVEFORMS mode, OPENing a
signal also causes its history to be recorded.

7-20

Logic Simulator
Waveforms

When a signal has not already been opened and empty rows are
present on the current screen, if the user omits <row>, the
signal appears in the first free row; if the screen is filled,
the next available row (not on the screen) is used, and the
display is shifted to display this signal. The user can replace
an existing signal by opening a new signal and specifying <row).
Once a signal is OPENed in WAVEFORMS mode, the history for the
signal is maintained for the specified history period, even if
the signal is not on the screen. This feature allows a user to
OPEN more signals than can be displayed at once, SIMulate to
calculate their behavior, and then view their behavior.

DELta_time (pointl) (point2)

The DELta time command is used to determine the time difference
between two points on the current waveform display. The points
are specified using the puck, so this command is only available
where puck usage is enabled. The value will be returned in the
echo area. The points can be specified anywhere in the
waveforms display area within the time frame currently being
displayed (i.e., valid points are any place where waveforms can
be drawn).

ROw (top row number) [

This command controls which signals are displayed on the screen.
The (top row number) parameter designates which row is to be
placed at the top of the screen and may be specified as an
absolute value (the top row for the screen) or as an offset
relative to the current top row number (by preceding the number
with a "+" or "-"). The number of the top row currently
displayed on the screen is indicated on the status line as ''Top
Row". Note that when changing the top row, all signals
previously displayed above the new top row are scrolled up and
off of the screen.

SCROll [ON I OFF]

This command allows the user to control the automatic scrolling
feature of the Simulator. The Simulator will normally cause the
display to scroll in WAVEFORMS mode when a signal not currently
on the screen is OPENed. Using this command to turn the feature
OFF allows the user to OPEN and DEPOSIT into signals that are
not on the display.

7-21

Logic Simulator
Breakpoints

7.13 BREAKPOINTS

Breakpoints are triggering conditions that cause the Simulator
to stop simulating and accept commands from the user. The
following are some important uses of breakpoints:

o Skipping to a point of interest; for example, when a
shift register shifts to all zeros.

o Performing "background" tests while the user stimulates
the design (such as stopping whenever the design enters an
error condition).

Breakpointing conditions are boolean expressions of signals
present in the design (refer to expression syntax). A
breakpoint is encountered (triggers) when the expression
defining it changes value from false to true. In addition to
the standard boolean operators AND, OR, XOR, and NOT, state
information can be included in breakpoint expressions to allow
the user to build a state machine that detects when to trigger a
breakpoint. This general form of the trigger-enabling feature
is used in most logic analyzers.

To simplify construction of complex breakpoints, a new class of
signal called an ENABLE signal has been added to the Simulator.
ENABLE signals never exist in a design, but are created by the
user as partial products in expressions. ENABLE signal names
follow the same rules as standard signal names, but they are
always scalars.

Simulation halts to display a breakpoint expression, but the
system remains in interactive mode. The user may perform other
operations or may continue simulation using another SIMULATE
command.

If a breakpoint is encountered during execution from a command
file, the normal breakpoint message is displayed and execution
from the script continues. This allows the user to create
scripts for circuits where it is unknown how long to simulate
before a certain event will occur.

Note that breakpoints should not be used if REALFAST is
operating.

7-22

BREAKPOINT COMMANDS

Logic Simulator
Breakpoints

This section contains a list of commands used with breakpoints.
See the following section for a description of breakpoint
syntax.

SEt Enable (signal) WHEN <expression) [;
Sets (signal) to 1 when <expression) is true. The signal
is a "new" signal that is created the first time it is
referenced by the user (i.e., the signal cannot already
exist in the design).

CLear Enable <signal) WHEN <expression) [;
Clears <signal) to 0 when <expression) is true. The
signal is a "new" signal that is created the first time it
is referenced by the user (i.e., the signal cannot already
exist in the design).

SAmple Enable <signal) GETS <expression 1) WHEN
<expression 2) [;]

Equates <signal) to the value of <expression 1) when
<expression 2) changes from a 0 to a 1. The signal is a
"new" signal that is created the first time it is
referenced and cannot already exist in the design.

LAtch Enable <signal) GETS <expression 1) WHEN
<expression 2> [;]

Equates (signal) to the value of <expression 1) when
<expression 2) is a 1. The signal is a "new" signal that
is created the first time it is referenced and cannot
already exist in the design.

EQuate Enable <signal) TO <expression> ;
Continuously gives <signal) the value of <expression).
The signal is a "new" signal that is created the first
time it is referenced and cannot already exist in the
design.

SEt Breakpoint <expression) [;
Installs <expression) as a breakpoint. While this
breakpoint is set, the Simulator ALWAYS stops when the
function changes from false to true. When the simulator
stops, it prints out the function to identify which
breakpoint was encountered. The Simulator assigns numbers
to breakpoints to allow a breakpoint to be specified
either by number or function; simple breakpoints can be
called by name, and complex breakpoints can be called by
number.

7-23

Logic Simulator
Breakpoints

Named breakpoints are a special case of ENABLE signals. A
user can EQUATE an ENABLE signal to the desired
breakpointing expression, and thereafter reference the
breakpoint by the name of the ENABLE signal as follows:

EQUATE Enable <name) to <breakpoint condition)
SEt Breakpoint <name) [] -

SEt Breakpoint # <number) [;
Activates the indicated breakpoint. While this breakpoint
is set, the Simulator ALWAYS stops when the function
changes from false to true. When the simulator stops, it
prints out the function to identify the responsible
breakpoint. Breakpoints are given numbers by the
Simulator, and complex breakpoints may be re-installed by
number. Note that when simulating on an IBM host, the #
sign prefix must be replaced by the% symbol).

CLear Breakpoint (signal) [;
Deactivates the signal as a breakpoint. The breakpoint no
longer affects simulation (the breakpoint remains in the
breakpoint list, but is marked "inactive"). Only simple
breakpoints (i.e., breakpoints that are named signals) may
be cleared by name; all others must be cleared by number.

CLear Breakpoint # <number) [;
Deactivates the indicated breakpoint. The breakpoint no
longer affects simulation (the breakpoint remains in the
breakpoint list, but is marked "inactive").

List Breakpoints [;
Lists all breakpoints that have been created, whether they
are active or have been CLEARed. Breakpoints are marked
as active (SET) or inactive (CLEARed). This command also
prints the breakpoint number assigned by the Simulator.

List Enables
Lists all of the ENABLE signals that have been defined and
their definitions.

7-24

Logic Simulator
Breakpoints

Groups of SAMPLE, LATCH, SET, CLEAR, and EQUATE commands may be
applied to any signal, with the following results:

o EQUATEing a signal generates a combinational function
only; signals generated with the EQUATE command have no
state of their own. EQUATEing a signal that has already
been equated supersedes the old definition.

o SAMPLEing, LATCHing, SETting or CLEARing a signal
generates a function containing state information. SETs
and CLEARs may be added to a signal that is SAMPLEd or
LATCHed. A SAMPLE or LATCH may be added to a signal that
is SET and/or CLEARed. Defining a SAMPLE, LATCH, CLEAR,
or SET for a signal that already has such a definition
supersedes the old definition. Only one SAMPLE or LATCH
definition applies at one time. Defining a SAMPLE or
LATCH for a signal already defined to have the other
definition supersedes the existing definition.

o Only one EQUATE definition or one definition from the set
{SAMPLE, LATCH, SET, CLEAR} applies at a time. EQUATEing
a signal that was previously defined as SAMPLEd, LATCHed,
SET, or CLEARed supersedes the existing definition.
SAMPLEing, LATCHing, SETting, or CLEARing a signal that
was previously EQUATEd supersedes the existing definition.

7-25

Logic Simulator
Breakpoints

EXPRESSION SYNTAX

The syntax for an <expression> is based on the SCALD standard
expression syntax:

<expression) -> <expression> OR <boolean expression> { boolean OR }
-> <expression> XOR <boolean expression> { boolean XOR }
-> <boolean expression>

<boolean expression) -> <boolean expression> AND
<relational expression> { boolean AND }

-> <relational expression>

<relational expression> -> <term) <rel OP) <term>
-> <term>

<rel OP> -> <'='> { equal }
-> <' <>, > { not equal }
-> <'>='> { greater than
-> <'<='> { less than or
-> <'<<'> { less than }
-> <'>>'> { greater than

<term> -> <factor>

<factor> -> <signal)
-> (<expression>)
-> NOT <factor> { boolean NOT}
-> 0 { constant 0 }
-> 1 { constant 1 }
-> & <constant) { any constant,

or equal
equal }

}

given
in current radix }

}

A (signal) can be any number of bits wide, but the <expression>
used in a breakpoint or enable definition must evaluate to a
single bit. If a vector signal is used without a subscript, the
entire width is considered for the expression. The AND operator
takes precedence over the OR operator and the XOR operator. A
<rel OP) takes precedence over any boolean operator except the
NOT operator; when a <rel OP) is used, it should be separated
from <term)s by spaces to prevent confusion in parsing. Some
useful examples are:

SET BREAKPOINT NOT BAR
SET BREAKPOINT F00(15 •• 0))= &3FO;
SET BREAKPOINT (read = 0 OR write AND refresh) = 0

The last expression is evaluated as follows:

SET BREAKPOINT (((read = 0) OR (write AND refresh)) = 0)

7-26

7.14 LOGIC PATCHING

Logic Simulator
Logic Patching

The Simulator has a logic patching facility that allows the user
to make simple modifications to a design without recompiling.
This facilit"y is useful primarily for "tacking" bug fixes in
before they are entered into the design, or for stimulating an
incomplete design. Some example uses are:

o Patching a design by forcing signals to some state, such
as forcing the PARITY ERROR signal to a 0 whenever some
pattern is read that is incorrectly reported as an error.

o Generating test stimuli based on the state of the design,
such as submitting instruction N+l whenever instruction N
has completed.

The logic patching facility allows the user to redefine the
behavior of a scalar signal or a single bit of a vector signal
in the design by specifying the new behavior of the signal as a
boolean expression of signals in the design (refer to the
expression syntax of signals). Note that patching must be done
after the LOGIC INIT command. The commands and operators used
to patch a signal are very similar to those used for defining
breakpoints:

SEt Patch (signal) WHEN (expression> [;
Sets (signal) to 1 when <expression) is true. The signal
must be present in the design.

CLear Patch (signal) WHEN <expression>
Clears (signal) to 0 when <function) is true. The signal
must be present in the design.

SAmple Patch (signal> GETS (expression 1) WHEN
(expression 2) [;]

Equates <signal) to the value of <expression 1) when
(expression 2) changes from a 0 to a 1. The signal must
be present in the design.

LAtch Patch (signal) GETS <expression l> WHEN
(expression 2) [;]

Equates (signal) to the value of <expression 1) when
(expression 2) is a 1. The signal must be present in the
design.

EQuate Patch (signal) TO (expression> [;
Continuously gives (signal) the value of <expression).
The signal must be present in the design.

List Patches [;
Lists all PATCH signals that have been defined and their
definitions.

7-27

Logic Simulator
Tracing

7.15 TRACING AND TABULAR I/O

Tracing is a way to output the state of the design at various
times during the simulation. This type of report can be
generated during batch mode simulation and examined
interactively. Two formats for trace generation are described
here: the standard trace format and the tabular trace format.
The tabular form may also be used as input to the Simulator to
force signals to values or patterns at specified times (see the
section below, "Stimulating Circuits with Tabular 1/0 files").
See the TABULAR TRACE Simulator directive for information on how
to specify which trace format to use.

REQUIRED INFORMATION FOR STANDARD TRACING

A program reading the trace must be able to find the value of
any signal at any time during the simulation. The required
information may be separated into CONNECTIVITY information,
which describes the circuit, and VALUE information, which
describes the state of the design. The connectivity of a design
is nearly constant during a simulation; it is modified only by
explicit logic patching or breakpoint generation commands from
the user. The portion of connectivity that is most useful for
understanding the behavior of a circuit is the mapping between
outputs and signals. The value information of a design changes
very rapidly during a simulation and includes all state
transitions occurring in the design. The Simulator trace output
is placed in two files: the signal mapping file and the value
file.

SIGNAL MAPPING-FOR STANDARD TRACING

A program reading trace output needs a description of how
signals are attached to outputs in order to relate simulation
results to the circuit. An output of a part connects to a range
of bits of a signal or signals. The signal mapping file relates
which bits of which signals attach to which bits of which
outputs.

VALUE INFORMATION FOR STANDARD TRACING

Value information is output in both absqlute and relative form.
At the beginning of the simulation, and possibly at intervals
throughout the simulation, the state of the entire design is
output in absolute form. As each output pin changes state, that
change is reported in relative form. A program may extract some
or all transitions in the design by reading just the relative
sections of the value file, or may maintain the current state of
the design by first reading an absolute report, and then
applying transitions as they appear in the relative reports.

7-28

FILE FORMATS FOR STANDARD TRACING

Logic Simulator
Tracing

Both the signal mapping file and the value file contain
<output descriptors> and <primitive segment descriptors). Each
of these is a unique 32-bit integer that represents an output or
primitive segment. In the signal mapping file and the ASCII
version of the value file, these descriptors are output as
signed decimal integers. In the binary version of the value
file, they are output as binary integers. Any 32-bit integer
may be used as either an <output descriptor> or a
(primitive segment descriptor), but not both. Therefore, it is
possible to determine the type of a descriptor from its value.

Several <output descriptors> are reserved for use as sentinels
in the value file. A sentinel is a reserved value that has a
special meaning, such as the last element in a list. Any
sentinel <output descriptor) will not be used as either a true
<output descriptor> or a <primitive segment descriptor). The
values of these sentinels may differ from simulation to
simulation, and are defined in the signal mapping file.

Signal Mapping File Format

The signal mapping file has the following format:

STATE ENCODING
(list of state encodings)

RELATIVE SENTINEL <relative sentinel descriptor>
ABSOLUTE SENTINEL <absolute sentinel descriptor>
END FILE SENTINEL <end file sentinel descriptor)
RESERVED

<reserved information>
END_RESERVED ;
SIGNAL MAPPING

<list of signal mappings>
END_SIGNAL ;
MEMORY MAPPING

<list of memory mappings>
END_MEMORY ;

(list of state encodings) is a list of the following entries:

<state name> : <state value> ;

<state name> is the name of the state in single quotes.
<state value) is a 32-bit integer that describes the value
representing the state.

7-29

Logic Simulator
Tracing

(relative sentinel descriptor) is the special
(output descriptor) that indicates that a relative report
follows. (absolute sentinel descriptor) is the special
(output descriptor> that indicates that an absolute report
follows. (end file sentinel descriptor) is the special
(output descriptor) that indicates that the end of the file has
been reached.

(reserved information) is a portion of the file that has not yet
been defined, except that it is terminated by the keyword
END RESERVED.

(list of signal mappings) is a list of the following entries:

(signal name) (subrange) = (output descriptor) : (offset),
(is bubbled) ;

(signal name) is a single-quoted string that contains a base
signal name in canonical syntax. (subrange) is a subrange of
the signal of the form:

"<"(most significant bit) •• (least significant bit)">"

or

"<" (single bit number> ">"

or

(nothing)

If no (subrange) is specified, the signal is a scalar.
(output descriptor) identifies the output to which the signal is
connected. (offset) ~s the bit number on the specified output
that matches the least-significant bit of the signal subrange.
(is bubbled) is BUBBLED if the output pin is bubbled, and is
NOT_BUBBLED if the output pin is not bubbled.

(list of memory mappings) is a list of the following entries:

(memory path name> <subrange)
(is bubbled)

(primitive segment descriptor>,

(memory path name) is the path name of a memory in the design
and is enclosed in single quotes. <subrange) describes a
contiguous subrange of the memory, that matches the
(primitive segment descriptor). (primitive segment descriptor)
describes which primitive segment matches the indicated subrange
of the memory. The bits of a memory are numbered in increasing
bit numbers from O, which is least significant, to SIZE-1, which
is most significant. <is bubbled> is BUBBLED if the memory
output pin is bubbled, and is NOT BUBBLED if the memory output

7-30

/

pin is not bubbled.

Value File Format

Logic Simulator
Tracing

The value file contains a list of the following entries:

<type sentinel> <absolute time> <list of output states>

(type sentinel) equals an ABSOLUTE SENTINEL, a
RELATIVE SENTINEL, or an END FILE SENTINEL. <absolute time) is
a 32-bit-integer. (list of output states> lists output pins and
their current states. Each entry in the <list of output states)
has the following format:

<output descriptor> <value 1) <value 2>

or

<primitive segment descriptor> <memory address> <value 1) <value 2>

<output descriptor> describes an output pin. <value 1) and
<value 2> are 32-bit integers that represent the state of the
output pin. The states of the eight bits of the output pin are
represented in the eight bytes of <value 1) and <value 2). The
highest order output pin bit is in the highest order byte (bits
31 •• 24) of <value 1). Lower order output pin bits are stored in
descending bytes ending with the lowest order output pin bit in
bits 7 •• 0 of <value 2). This list continues until another
<type sentinel) is reached. If the <type sentinel) equals an
ABSOLUTE_SENTINEL, then the following state information
represents an absolute report. If the <type sentinel) equals a
RELATIVE_SENTINEL, then the following state information
represents a relative report. If the <type sentinel) equals an
END_FILE_SENTINEL, then this is the last entry in the file, and
no (absolute time) or (list of output states) follows.

<primitive segment descriptor) describes a memory primitive
segment. <memory address) is a 32-bit integer that indicates
which location in the memory has changed. <value 1) and (value
2) are 32-bit integers that represent the new state of the
memory location.

Whether the first element is an <output descriptor) or a
(primitive segment descriptor) can be determined by checking
which way the integer was referenced in the signal mapping file.

This file format is optimized for binary representation, but
will be supported as both a binary and as an ASCII file of
signed decimal integers.

7-31

Logic Simulator
Tracing

FILE FORMAT FOR TABULAR I/O

The Tabular I/O output file includes a list of the signals being
traced, the radix in which they are being traced, and a series
of records that specify times and signal values; signal
strengths are not output. For example:

FILE TYPE = TABULAR_TRACE;
sigl,2
sig2<10 •• 8>,8
sig3<5>,2
sig2<7 •• 0>,2
START TAB TRACE;

- 0 I U,U,U,UUUUUUUU;
10 I l,l,Z,10010110;
20 I 0,5,U,10010111;
30 I 0,5,U,10010111;

END_TAB_TRACE;
END.

This example shows four subranges of three signals being traced
every 10 nanoseconds. Signals can be traced at any interval or
at every transition; that is, a new record is produced if a
change occurs in any one of the signals being traced. See the
TRACE INTERVAL command for more information.

STIMULATING CIRCUITS WITH TABULAR I/O FILES

The Simulator can read in a Tabular I/O file, such as the one in
the example above, and set the signals specified in it to the
specified values at the specified times. The Simulator reads
the time from the file, and when the time in the simulation
reaches this value, the signal values are read and deposited
into the signals specified in the first part of the file. See
the TRACE READ and TRACE RESET commands for further details.

The file can be created "manually" with a text editor or by the
Simulator from a previous run. When creating a Tabular I/O file
manually, note that signal names containing a "," should be
enclosed in quotes (e.g., 'CLK !C0-1, 3-4'). Also note that if
the values, which are separated by commas, extend beyond an 80
character line, a - (tilde) must be entered at the end of the
line. If the values extend over 255 characters, put a new line
character before the signal value that would make the total
number of characters exceed 255. For example:

7-32

I·',!

\~

Logic Simulator
Tracing

10 I 1,1,0010101,
uuuu,z101011z,10,
1'11'0101011'1'1' •••

010,uu11011011,uuuuuu-
101,uuuuu,1,11,1,111,-
00 1'1 '1 '1, 1 ' 1 ' 1 '1 '10 ' -

010100,
ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ,1,11
20 I 0,1,0010101, ••• etc.

In this case, a new line was inserted before the
ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ value because, otherwise, the 255
character limit would have been reached. Signals wider than
approximately 250 bits must be split into multiple segments to
be traced using Tabular I/O. Note that, at present, memories
cannot be traced using Tabular I/O.

SAMPLE TABULAR 1/0 USE

With the directive ''TABULARTRACE ON;" included in your
directives file, the following command sequence might be given
to create a tabular stimulus file:

* trace radix 16
* trace foo

*
*
* * trace bar<50 •• 3)
* trace start
* sim 100

*
*
*

•

* dep 42
* trace_stop
* trace close

{ trace buses in hex }
{ specify signals to trace }

{ open the file, start tracing
{ OPEN signals, }
{ deposit values, }
{ advance time, }
{ etc. }

{ stop the trace }
{ close the file; write to disk

To then use the file as stimulus to the Simulator, you might
execute the following:

* logic_init U
* trace read tabfile.dat
* sim 800

*
*
*
*

{ set time back to zero }
{ read the stimulus file }
{ simulation with stimulus of }
{ TRACEd signals from file }

If stimulus from more than one tabular input file is desired,
the TRACE RESET command can be used to reset the Simulator. For
further details, see the description of the TRACE RESET command.

7-33

}

}

Logic Simulator
Command Summary

Logic Simulator Command Summary

7.16 SIMULATOR COMMANDS

All commands take the form of a command name followed by
arguments, if necessary. You may abbreviate commands if the
abbreviations are not ambiguous. (In the descriptions below the
shortest unambiguous abbreviations are given in CAPITAL
letters.) All command inputs may be typed in either upper or
lower case. Some commands prompt for arguments if none are
given. The following paragraphs describe the individual
commands.

Assertions <signal), <timing data) [;
The ASSERTIONS command allows timing assertions to be
specified while running the Simulator. This allows the
user to specify assertions interactively rather than
with the signal name given when creating the drawing in
GEn. This feature provides the user with an extra
degree of flexibility when performing simulations since
signal timing assertions are no longer fixed with the
signal name and need not be compiled with the drawing.

The < timing data > parameter is specified using the
standard SCALD syntax for timing assertion data (e.g.,
0-4). The assertion type should not be' specified - the
Simulator automatically adds the 11 !C" property to the
timing data. This command can be invoked on existing
clock signals as well as any other signals in the
drawing. Thus, any signal can be assigned timing
assertions while in the Simulator, and assertions of
existing clock signals can be re-defined. After
assigning clock properties, the signal can be OPENed
using either its previous or its new (with assertions)
name.

Bus [;]
Places the user in BUS mode and refreshes the screen.

CLear Breakpoint <signal) ;]
Deactivates a named breakpoint.
section.

See Breakpoints

CLear Breakpoint I <number> [;
Deactivates a numbered breakpoint.
section.

7-34

See Breakpoints

CLear Enable (signal) WHEN (expression> [;

Logic Simulator
Command Summary

Clears an ENABLE signal when <expression) is true. See
Breakpoints section.

CLear Patch (signal) WHEN (expression) [;
Clears a PATCH signal when <expression) is true. See
Logic Patching section.

CLOck [ON I OFF] [;
Turns the clocks on and off. CLOCK ON turns on the
clocks; CLOCK OFF turns off the clocks. With no
argument, CLOCK reports the ON/OFF state of the clocks.
When clocks are turned off, the clock generator
primitives are disabled and the values of clock signals
stop changing. When clocks are turned on, at the start
of the next simulation all primitives are re-evaluated,
and all clock values are immediately set to their
correct instantaneous values.

compare <val) [;]
Compares the value of the currently open signal against
(val). An indication is given of whether or not the
comparison was successful. If the comparison is not
successful (and the command originated from a command
file), the Logic Simulator PAUSEs from the command tile
and returns command control to the terminal. Control
may be returned to the command file with the RESUME
command.

coverage [ON I OFF J [;]
Enables simple coverage analysis allowing the user to
obtain a list of the signals that have made a transition
during a period of simulation. With no argument, the
current status of the. coverage analysis is reported. If
coverage analysis is off, the Simulator will not track
the number of transitions.

Cursor (new time> []
Moves the WAVEFORMS cursor to a new time.
section.

7-35

See WAVEFORMS

Logic Simulator
Command Summary

DELta time (pointl) (point2)
-Indicates the time difference between two points on the

current waveform display. The points are specified
using the puck, so this command is only available where
puck usage is enabled (GED or GCLUSTER). See WAVEFORMS
section.

Deposit [(signal),] <val) [;
Deposits <val) into the indicated <signal). Multiple
bit values appear in the current radix. <signal) is an
optional parameter which may be specified using the
puck. If <signal) is not specified, <val) will be
DEPOSITed on the currently OPEN signal. Note that this
command will neither OPEN the specified signal nor
change which signal is currently OPEN. If the specified
<signal name) has not been OPENed, DEPOSIT will cause
the value to be placed on the signal, but will neither
OPEN it nor cause signal history to be started.

Display [ON I OFF] [;]
Allow the user to enable/disable updating of the display
area of the screen. This is particularly helpful in
increasing the Simulator's speed when continuous
updating of the display area is not required. When
updating is disabled, a field on the status line will
indicate this to the user. The output to the echo area
in response to the commands given will proceed as usual.
When the display is reenabled, the screen will be
redrawn as if a REDISPLAY command was issued.

DUmpmemory (filename) [,<primitive bit range),
· [primitive word range]] [;]

Dumps the contents of memory primiti~e into (filename>
(the user is prompted if a filename is not specified).
The optional bit and word range parameters specify a
window of memory to be dumped; if no optional
parameters are specified, the entire memory is dumped.
The file created can be used to load the memory with the
MEMLoad command.

7-36

!

Logic Simulator
Command Summary

EQuate Enable (signal) TO (expression) [;
Equates an ENABLE signal to (expression). See
Breakpoints section.

EQuate Patch (signal) TO (expression) [;

Erase

EXit

Equates a PATCH signal to <expression>. See Logic
Patching section.

.
' Erases the entire display area of the screen, including

all signals and values. Resets the top row number to 1
and restores the status lines.

;
Exits the Logic Simulator.

HArdcopy [{ A - E }] .
' Produces a plot of the current Simulator screen. This

command only works when the Simulator is running under
GED or with terminal type GCLUSTER. When running under
GED, the plot is produced by GED and the optional
parameter is not available. The parameter may be
specified with the graphics Simulator to produce an
output of the desired page size; the default is "A".

Several plotter types are supported and a local/spooled
option is available through the SET command (see below).

History { (recording period) I ; }
Sets or provides the recording period for WAVEFORMS.
See the section on WAVEFORMS.

INit_coverage [;
Clears the list of signals that have made a transition.
This command enables the user to invoke coverage
analysis for different periods of simulation (see
COVERAGE command). Note that turning coverage analysis
OFF does not clear this list - this command must be
invoked each time a new list of signals is to be started
(except the first, when the list is empty), regardless
of the use of the COVERAGE command.

7-37

Logic Simulator
Command Summary

Interval (val) [;
Sets the number of clock intervals to th~ specified
decimal integer <val>. The interval value appears on
the status lines. If the number of intervals is too
small, a warning is given.

LAtch Enable (signal) GETS (expression 1) WHEN
<expression 2) [;]

Latches an ENABLE signal to <expression 1) when
<expression 2) is true. See Breakpoints section.

LAtch Patch (signal) GETS <expression 1) WHEN
<expression 2) [;]

Latches a PATCH signal to <expression l> when
<expression 2) is true. See Logic Patching section.

List Breakpoints [;
Lists all breakpoints. See Breakpoints section.

List Enables [;
Lists all ENABLE signals. See Breakpoints section.

List Patches [;]
Lists all PATCH signals. See Logic Patching section.

List Signals [;
Lists all signals originally present in the design.
Breakpoints and patches applied to the signal also are
reported.

List Traces [;
Lists all signals, subranges, and memories that are
currently being traced along with the radix in which
they are being traced. For example, if List Traces is
typed after the three trace commands in the example
shown in the Trace command section, below, the following
output would appear:

FOO,binary
BAR<66 •• 33) ,hex
BAR<4> ,binary

7-38

Logic Simulator
Command Summary

LOadmemory (another name for the MEMLOAD command)

LOGic_init { 0 I 1 I * I -* I U } [;
Resets simulated time to 0 and initializes all signals
to the specified value. Note that this command does not
alter the contents of memories. "*" sets all signals to
their asserted value; that is, low asserted signals
become 0 and high asserted signals become 1. "-*" sets
all signals to their non-asserted values.

MEM_ini t { 0 I 1 I * I -* I U } [;
Initializes the contents of memories to the specified
values. U is only a legal option if the "MEM STATE 4;"
directive has been given.

MEMLoad (file name>[,<file bit range),[file word range],
(primitive bit range),[primitive word range]] [;]

Loads the memory specified by the current Memory path
from (file name). Note that the square brackets
the file and primitive word ranges are required.

around
The

All user is prompted for a file name if none is given.
other parameters are optional. The optional bit and
word ranges specify a mapping from the memory contents
file to the memory primitive. Note that all of the
ranges are taken to be decimal regardless of the current
radix. The MEMLOAD command is discussed in detail later
in this chapter.

Mempath (pathname) [;
Sets the "Memory path" part of the status line to
(pathname). Note that pathname must be the pathname of
a memory primitive and must be enclosed in parentheses.
The pathname need not be complete, but must uniquely
define a primitive. Memory pathnames are necessary in
order to display or change memory locations or load
memories from files. If no memory can be found that
matches the given pathname, the memory that best matches
the pathname is used. The NEXTMEMORY command can be
used to advance the mempath to another memory.

7-39

Logic Simulator
Command Summary

MOve (from_point) (to_point> [;
Allows the user to change the position op the screen of \
a previously OPENed signal. <from point) and <to_point)
are specified using the puck in the Simulator window.
The signal currently being displayed at <from point)
will be removed and redisplayed at <to point>: replacing
any signal which may already be at that location. This
command is only available where puck usage is enabled
(GED or GCLUSTER).

Nextmemory [; ·,
Advances the mempath to another memory.

Open (signal name> , <row> [, (col)]] [;
or

Open (signal pt) [((dest pt) (signal pt))... [(dest pt)]
Opens a signal (i.e., adds a signal to the display).
Note that the second syntax is only available using the
puck with the Simulator running under GED. <signal pt)
is the puck point that identifies the signal in the
drawing or in the lower window; <dest pt) is the point
that defines where the signal is to be displayed. If
<dest pt) is omitted, the Simulator opens the signal in
a default location, usually as near as possible to the
top of the display. The sequence of (<dest pt) <signal
pt)) can be arbitrarily repeated; the .command must be
terminated by a semicolon or carriage return. In
WAVEFORMS mode, opening a signal also causes its history
to be recorded.

If a signal has not already been opened and empty rows
remain on the current screen, omitting <row) causes the
signal to appear in the first free row. If the screen
is filled, the next available row (not on the screen) is
used, and the display is shifted to display this signal.
If the same signal was previously opened and no position
is indicated, the existing signal is marked as open
(shifting, if necessary,· to display it).

The user can replace an existing signal by opening a new
signal and specifying <row). Once a signal is Opened in
WAVEFORMS mode, the history for the signal is maintained
for the specified history period, even if the signal is
not on the screen (i.e., a user can Open more signals
than .can be displayed at one time, Simulate to calculate
their behavior, and then view their behavior).

7-40

OPENMemory address [, row [, column]]

Logic Simulator
Command Summary

Adds the contents of the addressed memory lpcation to
the main display. The memory is identified by the
pathname last given to the MEMPATH command. The
pathname appears in parentheses, followed by the address
in parentheses. The memory word appears in the current
radix, and becomes the current signal for purposes of
depositing a new value. The address uses the current
radix and must not contain If a location is specified,
the memory display is placed at that location (if
possible).

Pause [;
Stops taking commands from the current command file and
returns control to the terminal. The RESUME command
returns control to the command file.

PEEk (signal) [;]
Allows the user to observe the value of a specified
signal without requiring that it first be OPENed in the
display area. The signal value is simply output in the
echo area in the current radix. (signal) may be
specified using the puck. If CURSOR time is something
other than the current time, the command will output the
value of the specified signal at both the CURSOR time
and the current time. If the specified signal has no
history, the message in the echo area will so indicate
and the command will output its current value.

PEriod <val) [
Sets the clock period to the specified decimal integer
value (<val)). The clock period is displayed in the
status lines. If the specified period is too small, a
warning is given.

7-41

Logic Simulator
Command Summary

PLot [<starting_time> (ending_time>J ['(filename>'] [;
Builds a timing diagrams file for plotting via the
PLOTTIME program and GED. The default parameters are
the waveform starting time, waveform ending time, and
the file name 'plotsig.dat', respectively. Note that
specifying (filename> closes any previously-specified
file and opens a new file for output; after the initial
invocation, subsequent calls without the <filename>
parameter append additional data onto the previously
specified file. For additional information on the
Plottime program, see "Plottime Timing Diagram Program"
in Chapter 6.

RAdix { 2 I 8 I 10 I 16 I B I 0 I D I H I S }
Sets the current radix. Th~ radix value may be either 2
or B for binary, 8 or 0 for o~tal, 10 or D for decimal,
16 or H for hexadecimal, or S for str,ength. The default
radix is hexadecimal.

RECORD_All [;]
The RECORD ALL command causes the signal histories of
all signals and all memories in a circuit to be
recorded. This command is identical to the
RECORD SIGNALS command (~ee below) except that the
history of all locations of all memories also is
recorded. Note that considerable storage requirements
could be involved in creating and maintaining a history
of all signals and memories. Thus, this command should
not be invoked on circuits with a large number of
elements and/or larg~ memories.

RECord signals [; l
Causes the signal histories of all signals in the
circuit to be recorded. Previously, a signal had to be
OPENed in WAVEFORMS mode in order to start a recording
of its history. Thus, after a period of simulation, if
a signal was not OPENed, there would be no method to
determine what the value of a signal was at a previous
time. By invoking this command the history of all
signals is available thereafter.

7-42

Logic Simulator
Command Summary

Note that the RECORD ALL command does not affect the
duration of history that is maintained for all signals.
Also note that since certain storage requirements are
involved in creating and maintaining history, this
command should not be invoked on large circuits.

Redisp [;]
Erases the screen and redraws the status lines and main
display. The echo area disappears.

REMove [(signal)]
Removes the indicated signal from the signal display
area. (signal) is an optional parameter which may be
specified using the puck. If <signal) is not specified,
the currently OPEN signal will be REMOVEd. If (signal
name) is entered from the keyboard, a single occurrence
of the signal in the current radix will be REMOVEd.
When selected from the menu, the user will be prompted
for a signal name.

RESume [;]
Returns command control to the command file at the point
of the most recent PAUSE or COMPARE command.

ROw (top row number) [;
Specifies signals to be displayed by defining the signal
to be positioned at the top of the display in the
WAVEFORMS mode. See WAVEFORMS section.

SAmple Enable (signal) GETS <expression 1) WHEN
(expression 2) [;]

Samples an ENABLE signal to <expression 1) when
<expression 2) becomes true. See Breakpoint section.

SAmple Patch (signal) GETS <expression 1) WHEN
<expression 2) [;]

Samples a PATCH signal to <expression 1) when
<expression 2) becomes true. See Logic Patching
section.

7-43

Logic Simulator
Command Summary

scope <pathname> I ;
Defines a default <pathname> to be used for signal
identification. If the user sets the scope to the
desired drawing or part, signals can be identified
without having to type the pathname. (Note that even
without defining scope, the Simulator accepts an
abbreviated or missing pathname if it uniquely specifies
a si~nal.)

SCRipt (file name) [;
Changes the input stream so that the Simulator reads
from the specified file. The file name does not need to
be in quotes, but must follow the file name conventions
of the host machine; for example, in UNIX, the case of
letters is significant, while in VMS, it is not. The
Simulator echos the commands in the script file at the
terminal, but does not prompt. See the PAUS~ and RESUME
commands for further information on script files.

SCROll [ON I OFF] [;
Allows the user to control the automatic scrolling
feature of the Simulator. See WAVEFORMS section. The
default is ON.

SEt Breakpoint (expression) [;
Installs <expression) as a breakpoint. See Breakpoint~
section.

SEt Breakpoint I (number) [;
Activates a numbered breakpoint.
section.

See Breakpoints

SEt Enable (signal) WHEN (expression> [;
Sets an ENABLE signal when (expression) is true. See
Breakpoints section.

7-44

SEt { Local_plot I Spooled_plot } [;]

Logic Simulator
Command Summary

Specifies what to do with HARDCOPY output; LOCAL PLOT
queues the output immediately, while SPOOLED PLOT sends
the output to a file for output using the HP~ utility.
Spool files have names of the form 'hardXX', where XX is
the tty number of the current window. This command is
only available with the graphics Simulator - it has no
effect when running under GED. LOCAL PLOT is the
default. See the HARDCOPY command.

SEt Patch (signal) WHEN <expression) [;]
Sets a PATCH signal when <expression) is true. See
Logic Patching section.

SEt { Wllversatec I W22versatec I W36versatec I W42versatec
Calcompl043 I Calcomp5744 I B9424 } [;

Specifies the plotter type for HARDCOPY output. The
same plotter types are supported as in GED with the same
name specifications. This command is only available
with the graphics Simulator - it has no effect when
running under GED. The 11" Versatec is the default.
See the HARDCOPY command.

SHow (pathname) [;
Accepts a pathname in the same format as the MEMPATH
command and displays the current values of all the
signals connected to the primitive at that pathname.
This command is most useful for developing Logic
Simulator models.

Simulate { val I C I S } [(display percentage)] [;
Simulates and advances simulated time by the specified
number of nanoseconds. If the command "SIMULATE C" or
"SIMULATE S" is given, time is advanced by one clock
period or one step, respectively. When simulating past
the final time displayed on the screen in WAVEFORMS
mode, the display automatically shifts to display a new
interval. The optional (display percentage> parameter
indicates the percentage of the screen width which is to
be occupied by waveforms when this shift occurs. The
default is 50 percent of the screen (matching its former
behavior), but any value between 0 and 100, inclusive,
may be specified.

7-45

Logic Simulator
Command Summary

SNapshot [;
Prints an image of the status lines and signal display
window in the List file if a List file is being created.

STep <val) [;
Sets the simulated time step size to the specified
decimal integer <val>.

Terminal { VtlOO I Cluster I Gcluster I Annarbor I Tty I 3270 } [
Sets the terminal type. Accepted types are:

VTIOO a DEC VTIOO with 24 lines.

CLUSTER the SCALD CLUSTER terminal in
transparent mode connected to the
host computer.

GCLUSTER the SCALD CLUSTER terminal with
graphics capabilities enabled.

ANNARBOR an Ann Arbor Ambassador terminal,
48 lines.

TTY a video terminal (this is the default).

3270 an IBM 3270.

TRace (signal name), [(radix) [;
or

TRace <point) [(point) •••] ;
Traces the output or outputs corresponding to the given
signal or signal subrange. The second syntax indicates
that <signal name> may be specified using the puck to
point at it. <radix> is an optional parameter which may
be specified using numerals (2, 8, 10, or 16) or
characters (b, o, d, or h). If no radix is specified
the default trace radix is used. See the TRACE RADIX
and LIST TRACES commands for more information.

Example: * trace foo
*trace bar<66 •• 33>,h
* trace bar<4>

7-46

TRACE_All [;

Logic Simulator
Command Summary

Traces all outputs of all signals and all contents of
all memories.

TRACE_Close [;
Closes all trace output files. Usually means that all
tracing for the current simulation is complete.

TRACE Interval <number) [;]
-For Tabular I/O format, causes a trace record to be

output every <number) nanoseconds during the simulation.
<number) must not be less than O. If <number) is 0 (the
default), a trace record is written every time there is
at least one transition. This command is ignored when
the standard trace format is being used.

TRACE Mem [;
-Traces the contents of the memory currently specified by

the MEM PATH command. This command only works for
standard tracing.

TRACE Open [;]
-Opens the trace output file(s). If the simulation is

using the standard trace format, the signal mapping file
is output when this command is given.

TRACE_RAdix [2 I 8 I 10 I 16 I b I o I d I h 1 [;
Changes the default radix used for tracing (initially
set to 2). If no parameter is specified, the current
default trace radix is output.

TRACE Read (file name) [;]
-Reads in a Tabular I/O trace file from a previous run

(or manually generated) to stimulate the circuit. The
signals to be traced are first read in, followed by the
list of times and signal values. As each time is
reached in the simulation, the values for that time are
deposited into the proper signals. To see the values
being deposited as the simulation advances, use the
UPDATE INTERVAL command.

7-47

Logic Simulator
Command Summary

TRACE RESet [;]
-Resets (disables) stimulation from a tabular input file.

This command can be given at any time to turn off
circuit stimulation. To use two (or more) input
stimulus files, a sequence of commands similar to the
following could be used:

* trace read filel
* sim c

• etc.

* logic_init -*
* trace reset
* trace read f ile2
* sim c

• etc.

TRACE Start [;
-Begins tracing the outputs specified by either the

TRACE_ALL command or appropriate TRACE command.
TRACE START can be given any number of times during a
simulation run. See the TRACE STOP command.

'TRACE_STOp [;
Discontinues tracing until another TRACE START command
is entered.

Update_interval <constant) [;
Sets the simulator to update the screen at specified
intervals while simulating for a longer time. If zero
(0) is specified, any previausly set interval is cleared
and updating is disabled.

Waveforms { <start time) { <end time>
or

Waveforms (pointl) { (point2) I ; }

} I } [

Enters WAVEFORMS mode with the specified parameters.
See WAVEFORMS section.

7-48

Logic Simulator
Command Summary

WRite_coverage <filename> [, { 0 I 1 I 2 I 3 }] [;
Outputs the list of signals that have made a transition
and the number of transitions that they have made. If
the optional parameter (O - 3) is specified, the signals
are processed based on the number of times that they
have made a transition. The signals are sorted by the
number of t~ansitions, and the file only contains those
signal names in specific groups; for example,
specifying "O" indicates that only signals making 0
transitions (i.e., those that have not changed) should
be output, and "l" indicates that only those signals
making 0 or 1 transitions are output. Also s~e the
COVERAGE and !NIT COVERAGE commands.

7-49

Logic Simulator
Directives Summary

Logic Simulator Directives Summary

7.17 LOGIC SIMULATOR DIRECTIVES

Simulator directives are parameters that control the simulation
session. These directives control error reporting, I/O, and the
Simulator's interpretation of the Compiler's expansion file.
Directives must appear in the Simulator directives file.

Each of the directives is described below, along with an example
where usage may not be obvious. The Logic Simulator directives
and their parameters are not case sensitive; each directive
must be on a separate line and must be terminated by a
semicolon. An example of a Logic Simulator directives file is
given at the end of this section.

BINARY_TRACE { ON I OFF } ;
This directive is ignored for Tabular tracing.
Specifying BINARY TRACE ON causes the Value File to be
output in binary. The default, BINARY TRACE OFF, causes
the Value File to be an ASCII file.

CLOCK_ON_DRIVEN { OFF I ON } ;
Specifies whether clock generators may be specified on
driven signals. The default for the directive is OFF,
which will only permit timing assertions to be specified
on undriven signals. Thus, building a clock generator
on a driven signal will no longer be allowed unless this
directive is specified as ON.

CLOCK_PERIOD integer ;
Sets the period of the clock (in nanoseconds) used by
the Simulator. Any signal with a "C" or "P" name
property (e.g., MASTER CLK !C 0-3) has its behavior
specified relative to this period.

CLOCK_PERIOD 56; { sets the clock period to 56 ns }

If unspecified, the Simulator sets the period to 100 ns.
Note that the clock period must be an integer and may be
changed during simulation using the PERIOD command.

7-50

CLOCK_INTERVALS integer ;

Logic Simulator
Directives Summary

Sets the number of evenly spaced sub-periods within the
clock period. For example, if there are eight
sub-periods and the period of the clock is 100 ns, then
MASTER CLK IC 0-2 is high from time 0 ns to time 25 ns
and low from 2Sns to lOOns.

CLOCK PERIOD 100; { sets the clock period to 100 ns }
CLOCK=INTERVALS 20; { divides the clock into 20 units }

Using the above values, the signal MASTER CLK !C
0-10,15-20 is high both from 0 ns to SOns and from 75 ns
to 100 ns. In terms of a Timing Verifier timing
description: MASTER CLK IC 0-10,15-20 = 1:0, 0:50,
1:75 • If CLOCK INTERVALS is unspecified, the clock is
divided into 10 sub-periods.

COMPILER OUTPUT 'filename' ;
Specifies the name of the Compiler output file
containing the design to be simulated. If no Compiler
output file is specified in the directives file, the
default filename 'cmpexp.dat' is used. The file name
must be enclosed in quotes.

COMPILER OUTPUT '[jane.qa]cmpexp.dat';

COMMAND FILE 'filename' ;
Specifies the name of a command file to be invoked
immediately after the Compiler output file is read. The
Simulator can be run in batch mode by means of such a
command file. The file name must be enclosed in quotes.
See the SCRIPT command for a description of command
files.

COMMAND FILE '[jane.qa]comfile.dat';

DECAY TIME time ;
-Specifies the time period during which MEMORY strength

signals retain their value (i.e., before they assume an
UNDEFINED value). The default value is infinite - MOS
signal strengths will not decay over time unless the
user explicitly specifies a decay time.

DECAY TIME 10000;

7-51

Logic Simulator
Directives Summary

LOGIC_STATE { 2 I 4 } ;
This directive is no longer supported.
assume one of 12 states.

MEM_STATE { 2 I 4 } ;

All signals

Selects between two-state memories and four-state
memories. A four-state memory retains U's. If uot
specified, memories are four-state (in fact, a misnomer
since there are only three actual states).

MEM STATE 2;

OUTPUT [NO) { LIST , COMMAND_LOG } ,
Determines output files produced by the Simulator. If
no directive is given, no files are created. The output
file specifiers are:

LIST causes the LSTFILE file to be created.
The contents of the list file are
controlled by other directives.

COMMAND LOG is a file containing only the commands
that the Simulator processed. After
renaming, this file can be used as an
input command file (either using the
COMMAND FILE directive or SCRIPT command).

REALCHIP LIBRARY 'filename'
Sp~cifies the name of the Realchip library file
containing the full set of Realchip device definition
blocks for primitives modeled by Realchip reference
elements. This directive must be present if any
Realchip models are used by the Simulator. Otherwise,
this directive can be omitted. The file name must be
enclosed in quotes.

REALCHIP LIBRARY '[jane.qa)realchip.dat';

7-52

RESOLUTION time ;

Logic Simulator
Directives Summary

Specifies the time resolution to be used by the
Simulator. 'time' is specified as a real number of
nanoseconds (<l for finer resolution,)1 for coarser),
the default value is 1 ns. The resolution being used by
the Simulator is indicated in the display area as a
fixed point value labeled "Scale:".

RESOLUTION 0.05;

This directive affects the user interface in several
areas. The time scale in WAVEFORMS mode will no longer
represent nanoseconds, but must be scaled by the
indicated scale factor; using the above example, each
tick (formerly 1 ns) will now represent 0.05 ns. Values
specified inns (clock period, delays, decay times,
etc.) will remain inns, but are scaled on the display
(e.g., a clock period of 100 ns will appear on the
display with a period of 2000 ticks; "DECAY TIME 5000"
will cause memory signals to change value after 100000
ticks). Screen-oriented commands (SIM, WAVE, HISTORY,
CURSOR, etc.) will maintain their relation to ticks on
the screen, although the "real" times associated with
those ticks has changed (e.g., "WAVE 0 1000" will
display a time scale of 0 to 1000 ticks, repreb~nting
50 ns of time).

Exercise caution when manipulating resolution. Too fine
a resolution will decrease execution speed (simulating
for hundreds of ticks even when no events are scheduled)
or generate massive amounts of signal histories. Before
decreasing the resolution, ensure that the specification
of other time values is correspondingly coarse (e.g.,
"RESOLUTION 50" probably will not make sense with a 20
ns clock period).

RISE FALL { ON I OFF } ;
- Specifies if separate RISE/FALL delays will be used by

the Simulator. If the ON state is specified,
simulations will be performed using both the rise and
fall delays specified for parts. The default state of
this directive is OFF; this causes all primitives to
change states after the specified delay time (if only
one value is given) or after the greater of the rise and
fall delays. See Delays section.

7-53

Logic Simulator
Directives Summary

ROOT DRAWING 'drawing name' ;
- Specifies the drawing's name when direct invocation of

the Compiler from the Simulator is desired. The
traditional expansion file and synonym file are not
needed and will not be created when the Compiler is
invoked from within the Simulator.

ROOT DRAWING 'counter';

SESSION LOG { ON I OFF } ;
Specifies if a copy of terminal 1/0 in to be output to
the List file. Note that SESSION LOG ON and
OUTPUT NO LIST are incompatible.

SESSION LOG OFF;

SIGNAME_CHARS { 9 - 24 };
Defines the number of character columns dedicated to
signal names on the left side of the screen in WAVEFORMS
mode. ·The default value is 24. Values outside the
legal range will be rounded to the closest legal value.

SIGNAME CHARS 18;
As the number of characters is decreased, the space
available for waveforms is correspondingly increased;
however, with fewer characters available for signal
names, a greater number of characters will be truncated
when the length of the signal names exceeds the space
available.

SYNONYM FILE 'filename' ;
Specifies the name of the synonyms file, which contains
the sets of names that each signal is known by. The
synonyms file is created by tbe Compiler. If no
synonyms file is specified in the directives file, the
default filename 'cmpsyn.dat' is used. The file name
must be enclosed in quotes.

SYNONYM FILE '[jane.qa]cmpsyn.dat';

7-54

Logic Simulator
Directives Summary

TABULAR TRACE { ~N I OFF } ;
Specifies the trace format. TABULAR_TRACE OFF, the
default, specifies standard trace format, while
TABULAR TRACE ON specifies tabular trace format.

TERMINAL { VTlOO I CLUSTER I GCLUSTER I ANNARBOR I TTY I 3270 }
Specifies the terminal type. VTlOO is assumed to be a
DEC VTlOO (or equivalent) with 24 lines. CLUSTER is
assumed to be a SCALD CLUSTER terminal running the
Simulator locally or in transparent mode connected to
the host computer. GCLUSTER is identical to the CLUSTER
type except that graphics capabilities are also
included. ANNARBOR is assumed to be an Ann Arbor
Ambassador terminal with 48 lines. TTY is assumed to be
any dumb video terminal. 3270 is assumed to be an IBM
3270 or equivalent.

TERMINAL VTlOO;

If the Simulator is running in a Graphics Editor window,
the TERMINAL directive is ignored.

TRACE RADIX { 2 I 8 I 10 I 16 } ;
-Specifies the default radix to use for tabular tracing.

The default is initially 2.

TRACE RADIX 16;

USE_IF { BATCH I INTERACTIVE }
Precedes directives that are only used if the Simulator
is run in the specified mode. The USE IF directive has
effect until the next USE IF directive, or until the end
of the directives file. The following example of USE_IF
directs the Simulator to use a command file, create a
session log, and set the terminal type to TTY when the
Simulator is run as a batch process.

USE IF BATCH;
COMMAND_FILE '[JANE.QA]BATCHSIM.CMD';
TERMINAL TTY;
SESSION LOG ON;

7-55

Logic Simulator
Directives Summary

USE REALFAST { ON I OFF } ;
- Controls use of Realfast simulation accelerator. When

enabled (USE REALFAST ON;), a simulation is aborted if
the Simulator cannot access the Realfast hardware
(Realfast currently is not a shareable resource;
simultaneous use by more than one work station is
prohibited). Simulation using Realfast is the same as
without its use -- Realfast simply increases the speed
of simulation. If this directive is omitted, the
Realfast simulation accelerator is not used.

USE_SYNONYM { ON I OFF } ;
Determines if the Simulator is required to read the
Compiler's synonyms file. Not reading the synonyms file
decreases simulation loading time; however, signals can
then only be referenced by their base names. The
default is ON (i.e., the synonyms file is read).

USER PRIM CONFIG 'filename' .
' Specifies the name of the user primitive configuration

file that contains the pin names of the user-coded
primitive in the format explained in the section on
User-Coded Simulator Primitives; the filename must be
quoted.

USER PRIM CONFIG '[jane.qa]primconf.dat';

WIRE DELAYS 'filename'
Specifies the name of the wire delays file; the
filename must be quoted. See Wire Delays section.

WIRE DELAYS '[jane.qa]wiredel.dat';

7-56

Logic Simulator
Directives Summary

AN EXAMPLE OF A SIMULATOR DIRECTIVES FILE

The Simulator directives file is created with a text editor.
The Simulator ignores carriage returns and multiple spaces.
Directives may be entered in either upper or lower case.
Comments may be included if enclosed in curly brackets. Note
that each directive must be terminated with a semicolon (";")
and that the file must end with an "END." statement.

{
{
{

sets the clock period to 100 ns
clock has five intervals of 20 ns
creates a list file

{ creates a session log

CLOCK PERIOD 100;
CLOCK=INTERVALS 5;
OUTPUT LIST;
SESSION LOG ON;
COMPILER OUTPUT '[JANE.SIM]CMPEXP.DAT';

{ name of Compiler expansion file
SYNONYM FILE '[JANE.SIM]CMPSYN.DAT';

}
}
}
}

}

- { name of synonym file }
TERMINAL CLUSTER; { terminal type }
USE IF BATCH; { remainder of directives for batch only }
COMMAND FILE '[JANE.SIM]BATCH.CMD';

- { name of command file
TERMINAL TTY; { terminal type for batch mode
END. { marks end of the file, note " "

7-57

}
}
}

Logic Simulator
Loading Memories

7.18 LOADING MEMORIES

Memories are loaded from the memory contents file uAing the
MEMLOAD command. First locate the memory using the MEMPATH
command.

The format of the memory contents file is identical to the
format of the file generated by the DUMPMEMORY command. A
memory contents file containing four 36-bit words might appear
as:

FILE TYPE = MEMORY_CONTENTS;
BIT RANGE = 35 .. O;
MEM BLOCK 0,4;

0000 0001 0100 0000 1 1 1 1 1010 1011 0101 1111
0000 0010 0100 0000 1 1 1 1 1110 1011 1101 1111
0000 0011 0011 0000 0000 1111 1 1 1 1 0110 0100
0000 0000 0101 0000 0000 1111 1111 1111 1101

END_MEM_BLOCK;
END.

BIT RANGE determines the word size and bit numbering of the data
words in the file; regardless of library format, the syntax for
BIT RANGE is "(high value) •• (low value)" (e.g., 11 35 •• O", not
11 0.:-35 11). MEM BLOCK is followed by two decimal parameters. The
first parameter is the ~J)._g__.a.d.ilr..es-s of the block, the second
parameter is the ~umbe__!._ .. Q.J __ ~.4.s. in the block. Following
MEM_BLOCK are the data words in binary. Each data word must be
the length specified by BIT RANGE and must end with a semicolon.
Spaces may be inserted in the data words for clarity. There may
be any number of MEM BLOCKS; however, all MEM BLOCKS must be
placed in ascending ~rder of address and must iot specify
overlapping ranges.

The format of the MEMLOAD command· is:

MEMLoad filename [, (file bit range),[file word range],
<primitive bit range>, [primitive word range l] [;

If no filename is given, the user is prompted for one.

7-58

Logic Simulator
Loading Memories

The four optional arguments to the MEMLOAD command are used to
specify a mapping from the memory contents file to the memory
primitive. Note that bit- and word-range arguments must be
given as integers and must be enclosed in the indicated brackets
('<>'and '[]' respectively). An example of the complete
command syntax is:

MEMLOAD ramvals.dat,<8 •• 5),[200 •• 100:10] ,<3 •• 0>,[20 •• 0:2]

The file word range "[high addr •• low addr : step]" specifies
which words from the memory file are to be deposited in the
memory primitive, and the primitive word range
"[high addr •• low addr : step]" specifies the mapping of the
words within the memory primitive. Thus, the example above maps
words 200,190,180,170, ••• of the file into words 20,18,16,14, •••
of the memory primitive. If word ranges are not specified, they
default to [mem size-1 •• 0) where mem size is the depth of the
memory primitive.

The file bit range"< n •• m)" specifies which of the file word
bits are deposited in the memory primitive, and the primitive
bit range specifies the mapping of the file word bits within the
memory primitive. Thus, the example above maps bit 8 of file
word into bit 3 of the primitive, bit 7 of the file word into
bit 2 of the primitive, and so on. If bit ranges are not
specified, they default to the range of the memory primitive
(either (width-1 •• 0) or <O •• width-1), depending on the
site-default bit ordering).

7-59

Logic Simulator
Delays

7.19 RISE/FALL DELAY PROPERTY

Delay values associated with Simulator primitives may include a
rise delay and a fall delay. Specification of these delays is
made through the DELAY property or through the properties, RISE
and FALL.

The DELAY property accepts two values, a rise delay followed by
a fall delay and separated by a comma. If only one value is
specified, this value is used as both the rise and fall delay.
Thus, delay can be specified in one of the following formats:

DELAY <delay time)
DELAY <rise delay>, <fall delay>

In addition, rise and fall delays can be specified using the
RISE and FALL properties. Usage of these properties is as
follows:

RISE <rise delay)
FALL <fall delay)

Note that the DELAY property and the RISE and FALL properties
should not both be specified on the same body or an error will
result.

The RISE FALL directive is used to control the use of separate
RISE/FALL delays. The format of this directive is as follows:

RISE FALL { OFF I ON }

If the ON state is specified, simulations are performed using
both the rise and fall delays specified for parts. The default
state of this directive is OFF, which causes all primitives to
change states after the specified delay time (if only one value
is given) or after the greater of the rise and fall delays.

When the use of the separate rise/fall delay feature is
specified, the delay used for the various transitions is as
follows (where X indicates any value):

old value new value delay to use

--------- --------- ------------
x 0 fall
x 1 rise
x u min(rise,fall)
0 z rise
1 z fall
u z max(rise,fall)

7-60

Logic Simulator
Delays

7.20 WIRE DELAY FEEDBACK

Wire delays can be fed back in either of two ways:

1. By using a directive of the form

WIRE_DELAYS 'filename';

2. By using a command of the form

WIRE DELAYS filename [;]

The file must be in the format described below. Basically, each
element consists of a signal name (in quotes), a bit subscript
(if any), and a delay element or a list of path names of
components that the signal drives with a delay for each bit.
These delays are added in with any other specified delay values
to determine when Simulator events should be scheduled for those
bits.

<delay file) · ·= END. I
(delay li~t> ; END.

<delay list) ::=<signal delay list); I
<signal delay list) ; <delay list)

<signal delay list) : := (signal name) <stop delay list)

<stop delay list)

<stop delay)

<signal name>

(bit range)

(bit number)

.• - <stop delay);
<stop delay>; <stop delay list)

: := = (quoted rise/fall range) I
<quoted path name) =

(quoted rise/fall range)

::=(quoted signal name) I
(quoted signal name) < (bit range) >

: := (bit number)
(bit number)

: := (integer)

<bit number>

<quoted rise/fall range)
: := '<delay)' I

'(delay range)' I
'(rise delay range),

<fall delay range)'

7-61

Logic Simulator
Delays

<rise delay range) ::=<min delay) - <max delay)

(fall delay range) ::=<min delay) - <max delay)

<min delay) ::=<fixed point number)

<max delay) ::=<fixed point number)

<delay range) ::=<delay), <delay) I
<delay) - <delay)

<delay) ::=<fixed point number)

At present, the Simulator does not support the following:

<stop delay) : : = <quoted path name) =
<quoted rise/fall range)

<min delay> .. -.. - <fixed point number)

<max delay) : : = (fixed point number>

<delay range) : : = <delay) - (delay)

In other words, the delay specified for a signal is applied to
all of its inputs. Note that if only <rise delay range) or only
(fall delay range) is specified, the maximum delay is applied.

The following is an example of a wire delay file:

'DATA' <S •• 0): = '2.3, 3.4';

'ENABLE' : = '5.1';

END.

7-62

7.21 A SAMPLE SIMULATION SESSION

Logic Simulator
Sample Simulator Session

First, use the Graphics Editor to create the circuit to be
simulated. The Simulator can then be invoked immediately to
process the design (in turn invoking the Compiler), or the
Compiler can be explicitly invoked to create data files for the
Simulator. The former method is more efficient since the
generation and processing of Compiler data files is eliminated.

COMPILATION BEFORE SIMULATION

Compile the design for simulation (i.e., compile it using the
Compiler directive "COMPILE SIM"). The Compiler directive,
DIRECTORY, specifies the SCALD directories read by the Compiler.
The directories for all drawings referenced by the root drawing,
including the drawings for every part used, the special parts
like "not bodies" and "B size pages," and the Simulator
primitives, must be included in the directives file.

The following is a sample Compiler directives file:

root_drawing 'joes circuit';
compile sim;
directory '/uO/lib/standard/standard.lib',

'/uO/lib/sim/sim.lib',
'/uO/lib/lsttl/lsttl.lib',
'/uO/joe/joe.wrk';

warnings on;
oversights on;
output list, expand;
print_width 80;
end.

In the sample directives file, the drawing to be compiled is
named "joes circuit." This drawing resides in the SCALD
directory "joe.wrk". Since this drawing includes both LSTTL
parts and Standard parts (Merge bodies, Not bodies, B size
pages, etc.), the LSTTL and Standard libraries (directories) are
included; the Sim library, which contains the Simulator
primitives, must be specified. Note that any errors reported
during compilation must be corrected before the design is
simulated.

The Simulator is invoked by typing the word "simulate" in
response to the shell prompt. The Simulator reads its
directives file (see Directives Summary) and checks the file for
correctness. It then reads the Compiler's expansion and
synonyms files and constructs its internal representation of the
circuit. If no errors are found, simulation is begun; the user
may open signals, advance simulated time, and execute any

7-63

Logic Simulator
Sample Simulator Session

desired Simulator commands (see Command Summary) to observe and
test the circuit. When the user has completed simulation, exit
the Simulator by entering the command "exit."

COMPILATION WITHIN SIMULATOR

Include the ROOT DRAWING directive in the Simulator directives
file. The specified root drawing should be identical to that in
the Compiler directives file, which is also required. The
format of the Compiler directives file is the same whether
invoked directly or from within the Simulator (see example
above).

Type the word "simulate" in response to the shell prompt. The
Simulator reads its directives file (see Directives Summary) and
checks the file for correctness. When the ROOT DRAWING
directive is used, the COMPILER_OUTPUT and SYNONYM_FILE
directives should not be used; even if specified, any existing
expansion and synonyms files will be ignored. The Simulator
will then invoke the tompiler and receive the circuit
description from the Compiler directly; the Compiler will NOT
generate the expansion and synonyms files. Note that any errors
reported during compilation must be corrected before the design
is simulated.

If no errors are found, simulation is begun; the user may open
signals, advance simulated time, and execute any desired
Simulator commands (see Command Summary) to observe and test the
circuit. When the user has completed simulation, exit the
Simulator by entering the .command "exit."

7-64

Logic Simulator
User-Coded Simulator Primitives

7.22 USER-CODED PRIMITIVES

The SCALD Logic Simulator allows users to code Simulator models
in PASCAL, and refer to them using standard SCALD drawings.
This section is a specification of this feature, the Simulator
User-Coded Primitives or "UCPs."

The use of UCPs allows the user to expand the
understood by the SCALD III Logic Simulator.
basic parts: a body definition for drawing;
the "pin-out" of the part for the Simulator;
program to model the behavior of the part.

THE PASCAL CODE FOR VAX HOSTS

"parts set"
A UCP has three
a description of
and a PASCAL

The user must code his or her primitive as a single PASCAL
procedure that is linked to the Simulator. This procedure must
be of the following form:

(*
$S-,c+,x-,w­
*)
MODULE userprim;

CONST
{user constant definitions}
MAX PIN BIT NUMBER= (value of user's choice);

TYPE
{user type definitions}

%INCLUDE 'SYS$SCALD:USERPRIM.TYP'
%INCLUDE 'SYS$SCALD:USERPRIM.DCL'
PROCEDURE userprim;

END {of procedure userprim};

END {of module}.

To compile and link "userprim.pas" with the Simulator on the
VAX, type:

@SYS$SCALD:MKUCPSIM USERPRIM

This script prints any syntax errors to the screen.

7-65

Logic Simulator
User-Coded Simulator Primitives

The procedure userprim may use any PASCAL language features
provided by the host's PASCAL dialect. However, if the user
ever intends to use the Simulator on the S-32 as well, the
procedure should adhere to ISO-standard PASCAL.

There are a number of data structure access routines provided
for the user to get signal values, to store signal values, and
to schedule simulation events. These are discussed below.

If the user has more than one UCP, se~arate procedures must be
provided for each, nested within userprim. It is up to the user
to dispatch among these several UCPs. The Simulator only calls
the procedure userprim. There is an access function provided
that returns the number of the particular user primitive to be
called.

THE PASCAL CODE FOR IBM HOSTS

The user must code his primitive as a single PASCAL procedure
that is linked to the Simulator. This procedure must be of the
following form:

SEGMENT UCPSEG;

CONST
{ user constant definitions }
MAX PIN BIT NUMBER = <value of user's choice);

TYPE
{ user type definitions }

%INCLUDE UCPTYP
%INCLUDE UCPDCL
PROCEDURE userprim; EXTERNAL;
PROCEDURE userprim;

END { of procedure userprim };
• { This is really a dot in the file. }

To compile and link "userprim pascal" with the Simulator on the
370, type:

MKUCPSIM USERPRIM

This exec will print any syntax errors to the screen.

The procedure userprim may use any PASCAL language features
provided by the host's PASCAL dialect. However, if the user

7-66

'"'
I~

Logic Simulator
User-Coded Simulator Primitives

ever intends to use the Simulator on the S-32 as well, the
procedure should adhere to ISO-standard PASCAL.

There are a number of data structure access routines provided
for the user to get signal values and store signal values and to
schedule simulation events. These are discussed below.

If the user has more than one UCP, separate procedures must be
provided for each, nested within userprim. It is up to the user
to dispatch among these several UCPs. The Simulator only calls
the procedure userprim. There is an access function provided
that returns the number of the particular user primitive to be
called.

THE PASCAL CODE FOR S-32 HOSTS

The user must code his primitive as a single PASCAL procedure
that is linked to the Simulator. It must be of the following
form:

unit unit_for_userprim;
interface
uses (*$U userglob.obj*) userglob;

procedure userprim;
implementation

procedure userprim;
con st

{ user's constant definitions, if any }
type

{ user's type definitions, if any }
var

{ user's var definitions, if any }
begin

end;
end.

{ body of user's userprim routine }

7-67

Logic Simulator
User-Coded Simulator Primitives

To compile and link "userprim.pas" with the Simulator on the
S-32, type

/uO/scald/simulator/mkucpsim userprim

This script prints any syntax errors on the screen.

The procedure userprim may use any PASCAL language features
provided by SVS Pascal.

There are a number of data structure access routines provided
for the user to get signal values and store signal values and to
schedule simulation events. These are discussed below.

If the user has more than one UCP, separate procedures must be
provided for each, nested within userprim. It is up to the user
to dispatch among these several UCPs. The Simulator only calls
the procedure userprim. There is an access function
(get_number) provided that returns the number of the particular
user primitive to be called.

RUNNING A SIMULATOR CONTAINING UCPs

Since a Simulator linked with UCPs is a different program than
the released Simulator, it must be invoked differently. The
following sections describe how to run your own Simulator on the
different hosts.

Running Your Simulator on the S-32

To run your Simulator under the Graphics Editor on the S-32,
start the Graphics Editor as you normally would, and EDIT your
drawing. When you want to run the Simulator, type:

set user sim (name_of_your_simulator)
simulate-

The Simulator name must be specified with its full pathname.
The Simulator specified will be invoked.

To run your Simulator without GED, copy the file
/usr/bin/simulate into one of your directories and edit it so
that the line that begins

/uO/scald/simulator/sim

is changed to give the name of YOUR executable file. After you
make this change, give the name of YOUR copy of this script when
you want to run the Simulator.

7-68

Running Your Simulator on the VAX

Type:

@SYS$SCALD:SIMASSIGN
RUN SIM

Logic Simulator
User-Coded Simulator Primitives

where SIM is the name of your version of the Simulator.

Running Your Simulator on the 370

Running the SIMULATE EXEC accesses the first Simulator in your
search path. If you place the disk with your Simulator earlier
in your search path (e.g., on your A disk) than the disk with
the release Simulator, the EXEC will use your version.

BODY DEFINITION FOR UCPs

The body definition of a UCP is nearly the same as the body
definition for any other primitive part -- see the guidelines
outlined in Valid Library Styles and Standards located in
Chapter 11. There are some additional rules:

1. For every pin on the part being modeled there must be a
pin on the body.

2. A vectored pin name must appear on a single pin. For
example, if there is a pin name PNAME<l5 •• 0), you must not
have a pin PNAME<l5 •• 8) and another PNAME<7 •• 0).

3. Vectored pins must always have the most significant bit on
the left.

4. A part may have up to 512 pins.

5. A pin of a part may be up to 320 bits long.

Samples of correct Simulator bodies are found in any standard
Valid Simulator library (for example, lOOK.SIM).

In addition tQ the .BODY drawing that describes the UCP, a .PRIM
drawing is required to mark the UCP as a primitive for
compilation. The .PRIM drawing contains a DRAWING body and a
DEFINE body. The TITLE and ABBREV properties should correspond
to the UCP name. The SCALD directory containing the .PRIM files
must have

FILE_TYPE = SIM_DIR;

as the first line.

7-69

Logic Simulator
User-Coded Simulator Primitives

Since SCALD directories created by GED have

FILE TYPE = LOGIC_DIR;

as the first line, the user must edit the SCALD directory to
give it the proper FILE_TYPE. Only User-Coded Primitives should
be placed in a SCALD directory with a FILE TYPE of SIM DIR.

UCP PINOUT DESCRIPTIONS

The Simulator must know how each of the pins of a UCP are
defined. This information is specified in the user primitive
configuration file. The Simulator must know:

1. The name of the UCP in the name of the .PRIM drawing.

2. The number of input and output pins.

3. The name of each pin, and if it is size-replicated.

This information is passed to the Simulator using the following
format:

primitive '(primitive name>';
pin

INPUT SPEC= '(string>':(size>, '(string)':(size>;
INPUT-SPEC= '(string)':(size>;
OUTPUT SPEC= '(string>':(size>, '(string)':(size>;
OUTPUT-SPEC= '(string)':(size>;

end pin;
end_primitive;

primitive '(primitive name>';
pin

INPUT SPEC= '(pin name>':(size>, '(pin name>':(size>;
INPUT-SPEC= '(pin name)':(size);
OUTPUT SPEC= '(pin name)':(size), '(pin name)':(size>;
OUTPUT=SPEC ='(pin name)':(size);

end pin;
OWN-STORAGE (integer>;
OWN-STORAGE !NIT (integer>;

end_primitive;
END.

7-70

Logic Simulator
User-Coded Simulator Primitives

o INPUT SPECs, OUTPUT SPECs can be specified using a list
(elements separated-by commas), or with separate commands.

o All INPUT SPECs must precede all OUTPUT_SPECs.

o (pin names) and (primitive names) are strings containing no
"'"and no ':'. A (primitive name) must be no longer than
20 characters. There is no restriction on the length of a
(pin name). The pin name should be in canonical syntax.
For example, the name '-G' is the canonical syntax for 'G*'·

o (size) specifies how wide the pin is:

- (size> = SIZE if the pin is to have the subscript
(size-I •• 0) (right to left bit ordering) or
<O •• size-1) (left_to_right bit ordering)

- (size) = an integer K if the pin is to have the subscript
<K-1 •• 0) (right to left bit ordering) or
<O •• K-1) (left_to_right bit ordering)

If K=l, then the pin is interpreted as SCALAR (i.e., no
subscript).

o If a primitive is to have "own" storage, the OWN STORAGE
command specifies the number of words and the -
OWN STORAGE !NIT command gives the initialization value for
the-entire array.

o There is no limit to the number of UCPs a user may write.

A Simulator directive determines which user primitive
configuration file is used:

USER PRIM CONFIG (file_name);

OWN STORAGE IN UCPs

The UCP itself is a PASCAL program (details below) that performs
the simulation of the primitive. The values of local variables
in the UCP will be lost from call to call. Since it is
necessary to have some state preserved from call to call, the
user may also specify a block of storage that is accessible only
by the user primitives, and its state will be preserved from
call to call. (It is analogous to an ALGOL "own" variable.) The
local storage is an array of integers:

static_storage: ARRAY [l •• (user's spec)] OF INTEGER;

7-71

Logic Simulator
User-Coded Simulator Primitives

FUNCTIONS PROVIDED FOR USE IN UCPs

There are a variety of functions provided to facilitate coding
of user-coded primitives. The following predefined types,
~onstants, and routines are available for use in any UCPs.

Predefined constants:
MAX PIN BIT NUMBER = 3199;

Predefined types:
LOGIC TYPE= (LOGIC O, LOGIC 1, LOGIC Z, LOGIC U,);
LOGIC=PIN_ARRAY = packed array [O •• max_pin_bit=number]

of logic type;
STR20 =packed array [1 •• 20] of char;
STR256 =packed array [1 •• 256] of char;

Predefined routines:

FUNCTION get_number: INTEGER;

Returns the number of the primitive to be simulated on this
call to userprim. The primitives are assigned successive
numbers in the order in which they were defined in the user
primitive configuration file, the first one being ''!."

PROCEDURE get_name(VAR name: str20);

Returns the name of the primitive to be simulated on this
call to userprim.

PROCEDURE get_path(VAR name: str256);

Returns the path name that uniquely determines the primitive
to be simulated on this call to userprim.

FUNCTION get_size: INTEGER;

Returns the value of the size property of this primitive.

7-72

Logic Simulator
User-Coded Simulator Primitives

FUNCTION get_delay: INTEGER;

Returns the value of the rise or fall delay properties of
this primitive, whichever is greater, in picoseconds (see
put_pin).

FUNCTION get_rise: INTEGER;

Returns the value of the rise delay property of this
primitive in picoseconds (see put_pin).

FUNCTION get_fall: INTEGER;

Returns the value of the fall delay property of this
primitive in picoseconds (see put_pin).

FUNCTION get_current_time: INTEGER;

Returns the current simulation time.

FUNCTION get_wire_delays(pin: INTEGER;
VAR rise delay, fall delay: REAL)

- BOOLEAN;-

Returns the value of the rise and fall wire delays of the
output pin, pin. Returns TRUE if pin is a legal pin number;
returns FALSE if not.

The pins of a primitive are assigned successive numbers in
the order in which they were defined in the user primitive
configuration file. The first pin of each primitive is
given the number "1." The bits of a pin are numbered from
most significant to least significant as 0 •• LastBitNum
(left-to-right ordering) or LastBitNum •• 0 (right-to-left
ordering).

FUNCTION get_bit_of_pin(pin, b:
VAR val:

INTEGER;
LOGIC_TYPE) BOOLEAN;

Stores the value of the b bit of pin in val. Returns TRUE
if pin is a legal pin number and if b is a legal bit number
within that pin; returns FALSE if not.

7-73

Logic Simulator
User-Coded Simulator Primitives

FYNCTION get pin{pin: INTEGER;
- VAR values: LOGIC_PIN_ARRAY;): BOOLEAN';

Stores the value of the i"th" bit of pin in the i"th"
location of values. The last bit number o~ the pin must be
less than or equal to the user-defined constant
MAX PIN BIT NUMBER. Returns TRUE if pin is in the range
1 •• Last pin number; returns FALSE if not.

FUNCTION put_pin{pin: INTEGER;
VAR values: LOGIC PIN ARRAY;
time: INTEGER): BOOLEAN;

Forces pin to assume a new value; as specified by values at
the time (current simulation time+ time). time is in
picoseconds (pico= 10 exp -12), where 1.27 nanoseconds is
1270. Returns TRUE if pin is a legal pin number; returns
FALSE if not.

FUNCTION logic_AND(a, b: LOGIC_TYPE): LOGIC_TYPE;

Returns the "AND" of a and b.

FUNCTION logic_OR(a, b: LOGIC_TYPE): LOGIC_TYPE;

Returns the "OR" of a·and b.

FUNCTION logic_XOR(a, b: LOGIC_TYPE): LOGIC_TYPE;

Returns the "XOR" of a and b.

FUNCTION logic_NOT(a: LOGIC_TYPE): LOGIC_TYPE;

Returns the complement of "a."

FUNCTION logic_to_int(a: LOGIC TYPE; VAR b: INTEGER)
BOOLEAN;

Converts "a" to an integer, returned in "b." Returns TRUE if
"a" had the value logic 0 or logic l; otherwise returns
false. -

7-74

FUNCTION int_to_logic(a:

Logic Simulator
User-Coded Simulator Primitives

INTEGER; VAR b: LOGIC_TYPE)
BOOLEAN;

Converts "a" to a logic type,
if "a" had the value 0 or 1;

returned in "b." Returns TRUE
otherwise returns FALSE.

FUNCTION int_shift(a, n: integer) : integer;

Returns the value of the integer "a" left shifted by n bits
within a host machine word. Zeros are entered into the
right end. If n is negative, "a" is right shifted by -n
bits and zeros are entered into the left end.

FUNCTION put_own(index, val: INTEGER) : BOOLEAN;

Puts the value, val, in the index location of the own array
if it is within range. Returns TRUE if index was within
range, FALSE if not.

FUNCTION get_own (index: INTEGER; VAR value: INTEGER):
BOOLEAN;

Stores the contents of the index location of the own array
into value. Returns TRUE if the index is within range,
FALSE if not.

PROCEDURE report_error(errnum: INTEGER);

Outputs a report of the current primitive name and path with
the identifying number supplied by the user in errnum.

7-75

Logic Simulator
User-Coded Simulator Primitives

7.23 EXAMPLE OF A USER-CODED PRIMITIVE

The following example models three parts -- an 8-function ALU, a
12-bit latch, and a 32-word memory with a clear line and
separate read and write addresses.

USER CONFIGURATION FILE

The user primitive configuration file specifies the names of the
primitives, the names and widths of the input and output pins,
the amount of user storage required for each instance of the
primitives, and the initialization value for the user storage.

PRIMITIVE 'S381';

PIN
INPUT SPEC = 'a':SIZE,
OUTPUT SPEC= 'f':SIZE,

END_PIN;

END_PRIMITIVE;

PRIMITIVE 'LATCH12';

PIN

'b':SIZE, 's':3, 'ci':l;
'co':l, '-g':l, '-p':l;

INPUT SPEC 'd':l2, 'enin':l, 'enout':l;
OUTPUT SPEC= 'q' :12;

END_PIN;

OWN STORAGE l;
OWN STORAGE INIT O;

END_PRIMITIVE;

PRIMITIVE 'USERMEM';

PIN
INPUT SPEC
INPUT SPEC
OUTPUT SPEC

= 'ra':S,'wa':S,'we':l,'mr':l;
= 'd':SIZE;
= 'q':SIZE;

END_PIN;

OWN STORAGE 2000;
OWN STORAGE INIT O;

END_PRIMITIVE;

END.

7-76

Logic Simulator
User-Coded Simulator Primitives

USER'S VAX PASCAL MODULE EXAMPLE

(*
*)
(*$S-,C+,X-,W-*)
MODULE USERPRIM;

(***************************** CONSTANTS ***********************)

CONST

(**
* All user-coded primitives must define the constant *
* MAX PIN BIT NUMBER. This constant defines the size *
* of the type-LOGIC PIN ARRAY (see [SCALD]USERPRIM.DCL) *
* which is used whenever an array of pin values is *
* passed to or returned from a procedure. *
**)

MAX PIN BIT NUMBER = 200;

(***************************** TYPES ***********************)

TYPE

(*******************************x************************
* * * Get the user-primitive type definitions from the *
* SCALD library. *
* *
**)

%INCLUDE 'SYS$SCALD:USERPRIM.TYP'

(*********************** PROCEDURE DEFINITIONS *****************)

(**

* * * Get the user-primitive procedure definitions from the *
* SCALD library. *
* *
**)

7-77

Logic Simulator
User-Coded Simulator Primitives

%INCLUDE 'SYS$SCALD:USERPRIM.DCL'

(**
* * * Do NOT include user-defined procedures here. Make *
* them sub-procedures of the USERPRIM procedure. *
* *
**)

(***************************** USERPRIM ************************)

(**
* * * This entire module has only one procedure definition, *
* namely USERPRIM. All other procedures are sub- *
* procedures of USERPRIM. The user is free to declare *
* local variables, types, constants, and procedures *
* within USERPRIM. The following example of a user- *
* coded primitive defines a read-write 32-word memory *
* with a clear line, and separate read and write *
* addresses. It makes use of "own-·storage" to store *
* memory contents.

*
*
* * Throughout this example, right-to-left bit ordering *

* is assumed. *
* *
**)

PROCEDURE USERPRIM;
CONST

TYPE

VAR

MinUserPrimNum = I;
MaxUserPrimNum = 3;
BitsPerHostWord = 32;
Debug = false;

Value_Array = array [l

u_primnum,
u_size,
u_delay: integer;

procedure user_alu;

var

10] of integer;

a,b,s,ci,f,co,p,g: logic pin_array;
select,s2,sl,s0,i: integer;
c: logic type;

begin (* user alu *)

7-78

Logic Simulator
User-Coded Simulator Primitives

if not (get pin(l,a) and (* get inputs *)
get-pin(2,b) and
get-pin(3,s) and
get-pin(4,ci) and
logic to int(s[O],s2) and
logic-to-int(s[l] ,sl) and
logic=to=int(s[2] ,sO)) then REPORT_ERROR(l);

select := s2*4 + sl + sl + sO;
p[O) := logic_l;
g[O) := logic_l;
co[O] := logic O;
c := ci[O);

for i := u size-1 downto 0 do
case select of

0: f [i] : = logic_O; (* CLEAR

1 : begin
(* later *)

end;

2 : begin
(* later *)

end;

(* PLUS *)

(* do function *)

*)

3: begin
f [i]
c : =

:=logic xor(logic xor(a[i],b[i]) , c);
logic or(logic and(a[i] ,b[i)) ,

end;

4: f [i)

5: f [i)

6 : f [i]

7 : f [i]

end;

co[O] :=

if not (

- logic=and(c , logic_or(a[i] ,b[i))));

:=

: =

:=

:=

c ;

logic_xor(a[i) ,b[i));

logic_or(a[i] ,b[i]);

logic_and(a[i] ,b[i]);

logic_not(logic_O);

and
and
and

(* XOR *)

(* OR *)

(* AND *)

(* SET *)

put pin(S,f,u delay)
put-pin(6,co,u delay)
put-pin(7,g,u delay)
put=pin(8,p,u=delay)) then REPORT_ERROR(2);

end (* user alu *);

7-79

Logic Simulator
User-Coded &imulator Primitives

procedure user latch;
const Dpin =-1; ENINpin
var ok: boolean;

i,j,k: integer;
enin,
enout:
Dval,

LOGIC_TYPE;

2; ENOUTpin

Qval: LOGIC PIN ARRAY;
begin (* user_latch-*) -

ok :=GET BIT OF PIN(ENINpin,O,enin);

3; Qp in

if (not ok)-or-debug then REPORT_ERROR(l);
if enin = LOGIC 1 then
begin

ok := GET PIN(Dpin,Dval);
if (not ok) or debug then REPORT_ERROR(2);
j := O;
for i := 11 downto 0 do
begin

ok :=LOGIC TO INT(Dval[i] ,k);
if (not ok-) or debug then REPORT_ERROR(3);
j := (j*2) + k;

end;
ok := PUT OWN(l,j);
if (not ok) or debug then REPORT_ERROR(4);

end;

ok :=GET BIT OF PIN(ENOUTpin,O,enout);
if (not ok)-or-debug then REPORT_ERROR(S);
if enout = LOGIC 1 then
begin

ok :=GET OWN(l,j);
if (not ok) or debug then REPORT_ERROR(6);
for i := 0 to 11 do

4 •
'

if odd(INTEGER SHIFT(j,-i)) then Qval[i] :=LOGIC 1
- else Qval[i] := LOGIC_(f;

ok := PUT PIN(Qpin,Qval,u delay);
if (not ok) or debug then REPORT_ERROR(7);

end;

end (* user latch *);

procedure user mem;
canst RApin=T; WApin=2; WEpin=3; MRpin=4; Dpin=S; Qpin=6;
var ok: boolean;

v: LOGIC_ TYPE;
vO,vl,
adr,
i,n:
Dval,
Qval,

integer;

7-80

RAval,
WAval:
temp:

LOGIC_PIN_ARRAY;
Value_Array;

Logic Simulator
User-Coded Simulator Primitives

function Val_to_Adr(var val: LOGIC_PIN_ARRAY) integer;
var adr,bit,v: integer;

ok: boolean;
begin (*Val_to_Adr*)

adr : = 0;
for bit := 4 downto 0 do
begin

ok :=LOGIC TO INT(val[bit] ,v);
if (not ok-) or debug then REPORT_ERROR(l);
adr := adr*2+v;

end;
Val to Adr := adr;

end <*Val to_Adr*);

procedure Conv_to_ValArr(var val: LOGIC PIN ARRAY;
var ValArr: Value_Array);

var i,j,k,v: integer;
ok: boolean;

begin (*Conv_to_ValArr*)
j := l; k := O;
for i := 0 to u size-1 do
begin

if k = 0 then ValArr[j] := O;
ok := LOGIC TO INT(val[i] ,v);
if (not ok-) or debug then REPORT ERROR(2);
ValArr[j] := ValArr[j]+INTEGER SHIFT(v,k);
if k = BitsPerHostWord-1 then -
begin j := j+l; k := O; end
else k := k+l;

end;
end (*Conv_to_ValArr*);

procedure Conv to Val(var ValArr: Value Array;
- var val: LOGIC_PIN_ARRAY);

var i,j,k,v: integer;
ok: boolean;
lv: LOGIC TYPE;

begin (*Conv to Val*)
j := I; k := o;
for i := 0 to u size-I do
begin

if odd(INTEGER SHIFT(ValArr[j] ,-k)) then v := 1 else v := O;
ok := INT TO LOGIC(v,lv);
if (not ok) or debug then REPORT ERROR(3);
val[i] := lv; -
if k = BitsPerHostWord-1 then begin j := j+l; k := O; end

7-81

Logic Simulator
User-Coded Simulator Primitives

else k := k+l;
end;

end (*Conv_to_Val*);

begin (* user mem *)
n := (u size+BitsPerHostWord-1) div BitsPerHostWord;

- (*n is the number of host words needed to store
one u size-bit memory word*)

ok := LOGIC TO INT(LOGIC O,vO);
if (not ok-) or debug then REPORT ERROR(4);
vO := -vO; (*create host-word-long value for logic_O*)

ok :=LOGIC TO INT(LOGIC l,vl);
if (not ok-) or debug then REPORT ERROR(S);
vl := -vl; (*create host-word-long value for logic_l*)

ok := GET BIT OF PIN(MRpin,O,v); (*v := value of MR(O)*)
if (not ok)-or-debug then.REPORT ERROR(6);
if ok and (v = LOGIC 1) then (*reset the entire memory*)

for i := 1 to n*32-do ok := PUT_OWN(i,vO)
else
begin

ok := GET BIT OF PIN(WEpin,O,v); (*v := value of WE(O)*)
if (not ok)-or-debug then REPORT ERROR(7);
if ok then if v = LOGIC 1 then (*write input into memory*)
begin

ok := GET PIN(WApin,WAval);
if (not ok) or debug then REPORT ERROR(8);
if ok then ok := GET PIN(Dpin,Dval);
if (not ok) or debug then REPORT ERROR(9);
if ok then -
begin

adr :=Val to Adr(WAval); (*convert to address of memory*)
Conv to ValArr(Dval,temp); (*convert input to value array*)
for i == 1 to n do if ok then ok := PUT_OWN(adr*n+i,temp[i]);

end;
end;

end;

ok := GET PIN(RApin,RAval); (*read memory into output pin*)
if (not ok) or debug then REPORT_ERROR(lO);
if ok then
begin

adr :=Val to Adr(RAval); (*convert to address of memory*)
for i := 1-to-n do if ok then
begin

ok :=GET OWN(adr*n+i,temp[i]);
if (not ok) or debug then REPORT_ERROR(ll);

end;
if ok then

7-82

begin
Conv to Val(temp,Qval);

Logic Simulator
User-Coded Simulator Primitives

ok :~PUT PIN(Qpin,Qval,u delay);
if (not ~k) or debug then REPORT_ERROR(l2);

end;
end;

end (* user_mem *);

BEGIN (*USERPRIM*)
u_primnum := GET_PRIM_NUMBER;

u size := GET_SIZE;
u_delay := GET_DELAY;

(*Get the index number of the
primitive called*)

(*Get the value of the SIZE parameter*)
(*And of the DELAY parameter*)

(*Dispatch on u_primnum*)
if (u primnum)= MinUserPrimNum) and

(u=primnum <= MaxUserPrimNum) then
case u primnum of

1: user=alu;
2: user latch;
3: user_mem;

end
else REPORT_ERROR(l3);

END (*USERPRIM*);

END.
(*
*)

7-83

Logic Simulator
Simulator Modeling

7.24 SIMULATOR MODELING

Every part used in a circuit must be modeled in terms of Logic
Simulator primitives if a simulation is to be performed on that
design. A wide variety of Logic Simulator primitives are
available from simple logic gates to a complete ALU. The
behavior of each primitive is understood by the Logic Simulator.

Each input and output pin on a primitive may be individually
bubbled using the Graphics Editor command "BUBBLE." A bubbled
pin has an intrinsic inversion; that is, an AND gate with a
bubbled output behaves as a NAND gate. The function table for
this appears as follows:

In..£_ut Ou!£_ut
0 1
1 0
z z
u u

A Simulator primitive can have a SIZE property to specify its
bit width. For example, to compute the sum of two 16-bit
signals, a single adder primitive with a SIZE of 16 would be
used, not 16 adder primitives. Two special primitives, the "8
BIT PRIO ENCODER" and the "l OF 8 DECODER" have a fixed SIZE of
eight bits. A primitive may be given a size of "SIZE" which
means that the size of the primitive is taken from the size
property of the part being modeled. Many primitives have inputs
and outputs that are not affected by the size property. All
enable inputs, clock inputs, and chip select inputs have a fixed
width of one bit. The select input of an 8-bit multiplexer is
always three bits wide.

Simulator primitives may be given a DELAY property. Primitives
without an explicit DELAY are assumed to have a delay of O.
Delays are given in nanoseconds. By convention, primitives are
given delays to model the worst-case behavior of the part being
modeled, but this is not required. The SCALD Timing Verifier
uses a different set rif timing models. For the Simulator to
function correctly, it is sufficient that the timing behavior of
the Simulator model represents one possible timing behavior of
the part. The user should exercise care when specifying delay
values for pa~ts; in particular, zero-delay parts may result in
unexpected behavior in a circuit.

7-84

Logic Simulator
Simulator Modeling

Logic Simulator models must include interface signals with names
that correspond to the names of the signals in the body drawing
for the part being modeled. A DRAWING body and a DEFINE body
should be included in each Logic Simulator model. The DRAWING
body should be given a TITLE property and an ABBREV property.
The TITLE should be the name of the body and the ABBREV should
be some easily discernible abbreviation.

7.25 SIMULATOR PRIMITIVES

The various Logic Simulator primitives are described in this
section. Function tables are included to document the behavior
of primitive outputs. The "*" character is used to designate
low assertion on inputs pins and to complement output pins.

Logic Gate Primitives

There are three types of logic gate primitives: AND, OR, and
XOR. Since any pin of any primitive may be independently
bubbled, to create a NAND gate, simply bubble the output of an
AND gate.

The AND primitives come in seven varieties, 2-input through
8-input: 2 AND, 3 AND, 4 AND, 5 AND, 6 AND, 7 AND, and 8 AND.

One or More All Other The
ln__p__uts llU!Uts Output

0 any 0
1 1 1

Z orU 1 u

The OR primitives also come in seven varieties:
4 OR, 5 OR, 6 OR, 7 OR, and 8 OR.

One or More All Other The
ln....P._uts ln__p__uts Output

0 0 0
1 any 1

Z orU 0 u

The XOR has only a 2-input version.

ln__p__ut 1 llU!ut 2 Out_E.ut
0 0 0
0 1 ·1
1 0 1
1 1 0

any UorZ u
Z orU any u

7-85

2 OR, 3 OR,

Logic Simulator
Simulator Modeling

Buffer Primitives

There are three buffer primitives: the simple buffer BUF, the
tri-state buffer TS BUF, and the identity buffer, IDENTITY. To
create an inverting buffer, simply bubble the input or output
pin of a buffer. Non-inverting buffers are commonly used for
delays.

The BUF primitive behaves as follows:

Input OutQ_ut
0 0
1 1

Z orU u

The tri-state buffer has an enable input which, when disabled,
causes the output to take the value "Z." The enable input has a
width of one bit.

Input Enable• Ou_.!P.ut
0 0 0
1 0 1

Z orU 0 u
any 1 z
any Z orU u

The IDENTITY primitive is similar to BUF except that it
propagates the exact signal on the input pin to the output pin,
while the BUF primitive converts the Z state to U and soft
values to hard values.

ln~ut Output
0 0
1 1
z z
u u

7-86

JK Primitive

Logic Simulator
Simulator Modeling

The JK primitive models the J-K Flip Flop. The primitive has
input pins for J and K data inputs, asynchronous set and reset
functions, and an edge-sensitive clock. If the clock input is
not bubbled, then the primitive's outputs triggers on a positive
edge; if it is bubbled, it triggers on a negative edge.
Outputs consist of Q and Q-BAR data outputs. Asserting both the
set and reset pins causes both of the outputs to go high.

J K Clock PR• CL• _Q_ _Q_-BAR
any any any Z orU any u u
any any any any Z orU u u
any any any 0 0 1 1
any any any 0 1 1 0
any any any 1 0 0 1
any any any-Z,U 1 1 u u
any any any-o 1 1 no change no change

0 0 0-1 1 1 no change no change
0 1 0-1 1 1 0 1
1 0 0-1 1 1 1 0
1 1 0-1 1 1 not..9_ not~BAR

Latch Primitives

There are three latch primitives: the LATCH, LATCH RS, and
LATCH RS COMP. The latches have an enable input that is level
sensitive. The LATCH RS and LATCH RS COMP also have
asynchronous set and reset inputs that cause the outputs to take
the values 1 and O, respectively.

The LATCH primitive behaves as follows:

Data Enable Output

any 0 no change
0 1 0
1 1 1

Z orU 1 u
any ZorU u

7-87

Logic Simulator
Simulator Modeling

In the LATCH RS primitive, reset prevails over set if both are
asserted.

Data Enable PR• CL• OuJE_ut
any any any Z orU u
any any any 0 0
any any Z orU 1 u
any any 0 1 1
any Z orU 1 1 u
any 0 1 1 no change

0 1 1 1 0
1 1 1 1 1

Z orU 1 1 1 u

Complementary outputs are provided on the LATCH RS COMP, and
both outputs take the value 1 when both set and reset are
asserted.

Data Enable PR• CL• Output Output•

any any any Z orU u u
any any Z orU any u u
any any 0 0 1 1
any any 0 1 1 0
any any 1 0 0 1
any Z orU 1 1 u u
any 0 1 1 no change no change

0 1 1 1 0 1
1 1 1 1 1 0

Z orU 1 1 1 u u

Register Primitives

There are four register primitives: the REG, REG RS, REG RS
COMP, and REG CKE. The registers have an edge-sensitive clock
input. If the clock input is not bubbled, then the primitive's
outputs triggers on a positive edge; if it is bubbled, it
triggers on a negative edge. The REG RS and REG RS COMP also
have asynchronous set and reset inputs that cause the outputs to
take the values 1 and O, respectively.

7-88

'.,,

Logic Simulator
Simulator Modeling

The REG primitive behaves as follows:

Data Clock Ou tout
0 0-1 0
1 0-1 1

Z orU 0-1 u
any 1-0 no change
any any-Z,U u

In the REG RS primitive, reset prevails over set if both are
asserted.

Data Clock PR• CL• Output
any any any Z orU u
any any any 0 0
any any Z orU 1 u
any any 0 1 1
any Z orU 1 1 u

0 0-1 1 1 0
1 0-1 1 1 1

Z orU 0-1 1 1 u
any 1-0 1 1 no change

Complementary outputs are provided on the REG RS COMP, and both
outputs take the value 1 when both set and reset are asserted.

Data Clock PR• CL• O~tput Ot!_tput*
any any any Z orU u u
any any Z orU any u u
any any 0 0 1 1
any any 0 1 1 0
any any 1 0 0 1
any any-Z,U 1 1 u u
any any-o 1 1 no change no change

0 0-1 1 1 0 1
1 0-1 1 1 1 0

Z orU 0-1 1 1 u u

The REG CKE primitive is similar to the REG primitive except
that it has a clock enable input that enables the clock when
asserted.

7-89

Logic Simulator
Simulator Modeling

Multiplexer Primitives

There are three multiplexer primitives with 2, 4, and 8 inputs:
the 2 MUX, 4 MUX, and 8 MUX respectively. The SELECT inputs for
these parts have a fixed width of 1, 2, and 3 bits respectively.
Clever use of a multiplexer can often drastically reduce the
number of Logic Simulator primitives needed to model a part.
The table for the 2 MUX is as follows and can be extended
readily for the 4 MUX and 8 MUX:

s IO : 11 y

0 IO~ Z IO
IO= Z u

1 11 ~ z 11
11 = z u

Z orU IO= 11 ~ Z I1
I0=11=Z u

IOz§_ 11 u

Memory Primitive

There is one memory primitive: the MEMORY primitive. The width
of each word is determined by the SIZE property. The number of
words is determined by the DEPTH property. The ADR input has a
size corresponding to the number of words. For example, a 256
word RAM has an ADR input of width eight. As a convenience to
the model builder, the write enable and chip select inputs on
the VALID-supplied body definitions are bubbled (many actual
parts have these inputs low asserted). although they may be
un-bubbled if necessary. The Master Reset input, when asserted,
clears the entire MEMORY to zeros.

Memories may be modeled in either 2-state or 4-state mode. In
2-state mode, each bit of the memory may assume one of two
states: 0 and 1. In 4-state mode, each bit of the memory may
assume one of three states: O, 1 or U.

Counter/Shift Register Primitive

An Up-Down counter with right and left shifting capabilities is
available: the COUNTER SHIFT REGISTER primitive. This
primitive has seven inputs: MR - Master reset, CK - clock, CEP
- count enable parallel input (active low), CET - count enable
trickle input (active low) that also acts as a serial input for
shift left, S - select inputs (3 bits), DI - parallel data in,
and MSBIN - serial data input for shift right; it produces two
outputs: DO - data out and TC - terminal count (active low).

L- f 1 c ff : No e f f E c T o N 5 Ht FT tN u- o P- ~w tr

°LEl

5
7-,90

Logic Simulator
Simulator Modeling

The function is selected based on the S input as follows:

S2 Sl so Function

L L L Parallel Load
L L H Complement
L H L Shift Right
L H H Shift Left
H L L Count Down
H L H Clear
H H L Count Up
H H H Hold

The output also can be cleared asynchronously by bringing the
master reset signal active.

Arithmetic Primitives

The ADDER primitive takes three inputs: A, B, and CARRY IN;
and produces four outputs: F, P, G, and CARRY OUT. The size
property determines the width of A, B, and F. F takes the sum
of A, B, and CARRY IN. CARRY OUT is asserted if an overflow
occurs. G is asserted if the addition of A and B generates a
carry. P is asserted if the addition of A, B, and 1 propagates
a carry.

The ALU primitive has inputs and output identical to those of
the adder primitive with the addition of a 4-bit select input
that selects a function from the following table:

0: A plus B (BCD)
1 : A minus B (BCD)
2: B minus A (BCD)
3: 0 minus B (BCD)
4: A plus B
5: A minus B
6: B minus A
7 : 0 minus B
8: (A and B) or (-A and -B)
9: (A and -B) or (-A and B)

10: A or B
11 : A
12: -.B
13: B
14: A and B
15: 0

BCD denotes binary-coded-decimal. The behavior of the BCD
functions is not defined for SIZE values that are not multiples
of four, or for data inputs that are not valid BCD values. The

7-91

Logic Simulator
Simulator Modeling

"pl us" and "mi nus" denote two' s-compleme-n t a r i th met ic. A 11 - 11

denotes one's-complement. The ALU primitive is patterned after
the 100181 ECL -part.

The lookahead carry generator primitive LOOKAHEAD has three
inputs - P, G, and CARRY IN - and produces one output CARRY OUT.
CARRY IN is one bit wide; P, G, and CARRY OUT can be sized.
Each CARRY OUT bit- is the carry calculated from CARRY IN and the
P and G inputs from the least significant bit through the CARRY
OUT bit of the primitive.

The CARRY SAVE ADDER takes three inputs - A, B, and C - and
produces two outputs - T and CARRY. All can be sized. The
2-bit sum is computed for each bit of A, B, and C and is stored
in the corresponding bits of CARRY and F. F is the low order
bit of the sum, and CARRY is the high order bit of the sum.

The COMPARATOR primitive takes two inputs A and B and produces
three 1-bit outputs: LT, EQ, and GT. LT is asserted if A < B.
EQ is asserted if A = B. GT is asserted if A > B.

Other Primitives

The 8-BIT PRIO ENCODER
produces two outputs:
which is one bit wide.
asserted. T is the bit
asserted, if any, where

primitive takes an 8-bit input and
T, which is three bits wide and ANY,

ANY is asserted if any input bit is
number of the most significant bit
0 is the most significant input.

The PRIORITY ENCODER primitive takes eight 1-bit inputs: 17 ••
IO, and produces two outputs: T, which is three bits wide, and
ANY, which is one bit wide. ANY is asserted if any input bit is
asserted. T is the bit number of the most significant input
which is asserted, if any, where 17 is the most significant
input and has a bit number of 7 (lllb).

The l-of-8 DECODER primitive takes two inputs: SELECT, which is
three bits wide and ENABLE, which is one bit wide. It produces
an 8-bit output T. If ENABLE is asserted, SELECT selects which
bit of T is asserted.

The PARITY primitive's I input can be sized and produces a one
bit output T. T is the --~ty of I. (, :::1\\.-

~~or -· exc u'1'1<2 ,,,... :.:.JV
The RES primitive is fully bidirectional and acts like a wire
except that HARD strength signals are converted to SOFT strength
when they pass through. RESs always have 0 delay. The RES
primitive is SIZE wide, and the pins may not be bubbled.

7-92

Logic Simulator
Simulator Modeling

The PASS/rtlANSISTOR primitive is fully bidirectional, and acts
like a 1$witc~. The G pin of the PASS TRANSISTOR controls
whether the A and B pins are connected together. An active G
pin (0 if the pin is bubbled, otherwise 1) causes the PASS
TRANSISTOR to act like a wire, connecting the A and B nets. An
inactive G pin causes the PASS TRANSISTOR to act as if it were
not in the circuit. The delay from A to B or B to A is always
O. The G pin has an input delay that assumes the value of the
DELAY property on the PASS TRANSISTOR. The A and B pins of the
PASS TRANSISTOR are SIZE wide and may not be bubbled. The G pin
is always one bit wide, and may be bubbled.

The UNI PASS TRANSISTOR is a unidirectional version of the PASS
TRANSISTOR and results in more rapid simulation for MOS
circuits. Pins and properties of the UNI PASS TRANSISTOR
primitive are identical - a G pin which controls whether the A
and B pins are connected; however, since the transistor
described is now uni-directional, the A pin is an input pin
rather than an output.

7.26 USER-CODED PRIMITIVES

The Simulator allows users to code simulator models in PASCAL
and refer to them using standard SCALD drawings. Existence of
these user-coded primitives (UCPs) means that the user can
expand the "parts set" understood by the Logic Simulator. This
feature is described in detail in the section "User-Coded
Simulator Primitives."

7.27 PROPERTIES AFFECTING SIMULATION

When a signal is driven by more than one output, the result
depends on the logic family. Output pins are given output types
to specify their behavior when wired together. The
"output type" pin property is put on the body drawings for the
part and is inherited by both Logic Simulator and Timing
Verifier models. Supported output_type values are:

TS
TS,TS
OC,AND
OE,OR

tri-state
tri-state
open collector
open emitter

If no output type is given, the pin behaves as a "totem pole"
TTL output.

7-93

Logic Simulator
Error Summary

7.28 SIMULATOR ERROR MESSAGES

Whenever the Simulator encounters an error in input, the
Simulator prints the input line along with a pointer to the
position in the line where the problem is detected in the
simlst.dat file.

ERROR #1: Expected identifier

Generated when the Simulator is expecting an identifier (a
string of letters, digits, or ' starting with a letter) and
finds some other data.

ERROR #2: Expected =

Generated when the Simulator is expecting an equal (=) and finds
some other data.

ERROR #3: Expected

Generated when the Simulator is expecting a left square bracket
([)and finds some other data.

ERROR #4: Expected

Generated when the Simulator is expecting a right square bracket
(]) and finds some other data.

ERROR #5: Expected a constant

Generated when the Simulator is expecting a constant and finds
some other data.

ERROR #6: Expected subrange specifier

Generated when the Simulator is expecting a subrange specifier
(••) and finds some other data.

7-94

ERROR #7: Expected)

Logic Simulator
Error Summary

Generated when the Simulator is expecting a right parenthesis
(")") and finds some other data.

ERROR #8: Expected ,

Generated when the Simulator is expecting a comma(,) and finds
some other data.

ERROR #9: Expected *

Generated when the Simulator is expecting an asterisk (*) and
finds some other data.

ERROR #10: Expected (

Generated when the Simulator is expecting a less than character
(<) and finds some other data.

ERROR #11: Expected)

Generated when the Simulator is expecting a greater than
character (>) and finds some other data.

ERROR #12: Expected ;

Generated when the Simulator is expecting a semicolon (;) and
finds some other data.

ERROR #13: Expected :

Generated when the Simulator is expecting a colon (:) and finds
some other data.

7-95

Logic Simulator
Error Summary

ERROR #14: Unexpected symbol in integer expression

Generated when the Simulator is reading an expression and finds
something unexpected. When this error occurs, the Simulator is
expecting one of the following:

1. A constant
2. An expression in parenthesis, e.g., (2+3)
3. NOT followed by an item from this list
4. An identifier whose value is one of the above

or a parameter whose value is an integer.

ERROR #15: Expected (

Generated when the Simulator is expecting a left parenthesis
("(") and finds some other data.

ERROR #16: Bit value invalid

Generated when the Simulator is reading a bit subscript and
finds an illegal bit value. Bit values are invalid if they are
negative or are greater than the largest allowed bit number.
Since the largest allowed bit number is
(2**31 - 1 = 2147483647), this error usually means that the bit
value is negative.

ERROR #17: Expected /

Generated when the Simulator is expecting a slash (/) and finds
some other data.

ERROR #18: Reserved

ERROR #19: Reserved

ERROR #20: Unmatched closing comment symbol

Generated when the Simulator encounters a closing comment symbol
("}") without a matching starting comment symbol ("{"). Either
this symbol is extraneous or the beginning of the comment was
never specified.

7-96

ERROR #21: Reserved

ERROR #22: String length exceeded

Logic Simulator
Error Summary

Generated when the Simulator is reading a string and finds that
the string is too long. Strings are limited to 255 characters.
The Simulator ignores the characters from the current position
to the end of the string.

ERROR #23: Illegal character found

Generated when the Simulator finds an illegal character in the
input line. Removing the character will solve the problem.

ERROR #24: Expression value overflow

Generated when the Simulator evaluates an expression and its
value overflows. When this error occurs, the Simulator assigns
0 to the expression and continues.

ERROR #25: Division by zero

Generated when the Simulator detects a division by 0 during the
evaluation of an expression. This error does not abort the
Simulator, but the division is skipped.

ERRORS #26 through #29: Reserved

ERROR #30: Unexpected symbol in bit subscript

Generated when the Simulator finds an unexpected symbol in a bit
subscript. The symbols expected by the Simulator in a bit
subscript are:

1. A subrange symbol (••).
2. A colon (:) specifying a bit step.
3. A greater than symbol (>).

ERROR #31: Reserved

7-97

Logic Simulator
Error Summary

ERROR #32: Non-printing ASCII character found

Generated when the Simulator finds a non-printing ASCII
character in the input line. Deleting the character corrects
this error.

ERROR #33: Expected a string

Generated when the Simulator is expecting a string and finds
some other data.

ERROR #34: Comment not closed before end of input

Generated when the Simulator does not find the end of the
comment before the end of input.

ERROR #35: Reserved

ERROR #36: Constant is too long

ERROR #37: Expected •

Generated when the Simulator is expecting a period (.) and finds
some other data.

ERROR #38: Reserved

ERROR #39: Undefined identifier in expression

Generated when the Simulator finds an undefined identifier in
the expression. Identifiers are used as names in properties.
Check the DEFINE bodies and parameters of the body.

ERROR #40: Expected END

Generated when the Simulator is expecting the keyword 'END' and
finds some other data. Check the file for the keyword at the
end of the file.

7-98

ERROR #41: Identifier length exceeded

Logic Simulator
Error Summary

Generated when the Simulator encounters an identifier that has
more than 16 characters. The Simulator ignores the rest of the
characters in the identifier.

ERROR #42: Non-existent primitive in expansion file

Generated when the Simulator encounters a primitive in the
expansion file that is not a Simulator, user-coded, or Realchip
primitive.

ERROR #43: Non-existent pin on primitive

Generated when the Simulator finds a pin on a primitive in the
expansion file that is not a defined pin on the primitive.

ERROR #44: Illegal output type

Generated when an improper output type is detected for the
OUTPUT TYPE pin property.

ERROR #45: Pin can have only one OUTPUT TYPE

Generated when the Simulator encounters more than one output
type for a pin. Defining exactly one output type corrects this
error.

ERROR #46: Reserved

ERROR #47: Reserved

ERROR #48: Command file already specified-ignoring

Generated when the Simulator encounters more than one
COMMAND FILE directive. Only one command file can be specified
in the directives file; all command files except the first are
ignored.

7-99

Logic Simulator
Error Summary

ERROR #49: Can't specify both types of tracing

Generated when the user specifies both BINARY_TRACEing and
TABULAR_TRACEing in the directives file. The BINARY TRACE
directive is ignored.

ERROR #50: This file name was already specified

ERROR #51: Unknown directive

Generated when the Simulator encounters an unknown directive in
the directives file.

ERROR #52: Invalid specification for directive

Generated when the Simulator is processing a directive from the
directives file and encounters an invalid operand.

ERROR #53: Input line exceeds maximum length

Generated when the Simulator tries to read a line greater than
255 characters. The input line must be divided to correct this
error.

ERROR #54: Expected error number for suppression

Generated when the Simulator is expecting an error number to be
suppressed and finds some other data.

ERROR #55: This error cannot be suppressed

Generated when the user tries to suppress an error that cannot
be suppressed (only errors classified as oversights or warnings
can be suppressed).

ERROR #56: Reserved

ERROR #57: End of input before end of expression

Generated when the Simulator finds the end of input before the
end of the expression being evaluated.

7-100

ERROR #58: Extraneous characters at end of expr

Logic Simulator
Error Summary

Generated when the Simulator finds extra characters at the end
of an expression. All characters in a string that are to be
evaluated as an expression must be a part of the expression.

ERROR #59: Reserved

ERROR #60: Number of errors must be > 0

Generated when the Simulator is processing the MAXIMUM ERRORS
directive and finds a 0 or negative number.

ERROR #61: Radix must be in the range 2 •• 16

Generated when the Simulator encounters a radix outside the
range 2-16. The Simulator supports four radices in that range
(2, 8, 10, 16).

ERROR #62: Trace radix must be 2,b,8,o,10,d,l6 or h

Generated when the Simulator finds a specification for the radix
in a TRACE file other than the indicated values.

ERROR #63: Reserved

ERROR #64: Cannot open Simulator list file (SIMLST)

Generated when the Simulator is unable to open the list file for
output. Check disk space and directory protection.

ERROR #65: Cannot open session log file (SIMLOG)

Generated when the Simulator is unable to open the session log
file for output. Check disk space and directory protection.

7-101

Logic Simulator
Error Summary

ERROR #66: Cannot open error log file (OUTFILE)

Generated when the Simulator is unable to open the error log
file for output. Check disk space and directory protection.

ERROR #67: Incorrect envir. vars or terminal type

Generated when the Simulator cannot find the environment
variables (TERMCAP) for the terminal, or finds that a terminal
is set to GCLUSTER when it isn't one. Set the proper terminal
type or correct the environment variables.

ERROR #68: Min. graphics Sim. window at least 14x86

Generated when the graphics Simulator is invoked in a window
which is smaller than the minimum size of 14 x 86. Create a
larger window for the Simulator.

ERROR #69: Unrecognizable format specification

ERROR #70: Non-contiguous bit subscripts for pin

Generated when the Simulator finds non-contiguous bit subscripts
for a pin on a primitive. The Simulator supports only
contiguous bit subscripts.
ERROR #71: Window too small~must be at least 12x80

Generated when the Simulator is invoked in a window smaller than
12 x 80. Create a larger window for the Simulator.

ERROR #72: Unknown signal syntax specification

Generated when the Simulator finds a syntax specification with
which it is not familiar. Check the syntax specification.

7-102

ERROR #73: Signal syntax element found twice

Logic Simulator
Error Summary

Generated when the Simulator finds an element specified twice
while reading the signal syntax specification. Removing the
second specification corrects this error.

ERROR #74: Every syntax MUST have a name portion

Generated when the Simulator does not find a name portion in the
signal syntax specification.

ERROR #75: Every syntax MUST have a subscript

Generated when the Simulator does not find a subscript portion
in the signal syntax specification.

ERROR #76: Illegal form for signal syntax

Generated when the Simulator finds an element that is not
assertion specifier, negation specifier, or name_specifier while
reading the signal syntax. -

ERROR #77: Symbol must be one character

Generated when the Simulator finds more than one character as
the assertion specifier symbol.
ERROR #78: This symbol cannot be used here

Generated when the Simulator finds a forbidden symbol (
0-9) as the configuration character.

ERROR #79: Subrange symbol must be •• or :

< > II

Generated when the Simulator finds a subrange specifier that is
neither 11 11 nor 11 : 11

ERROR #80: No pins found on part in drawing

ERROR #81: No pins found on library part

7-103

Logic Simulator
Error. Summary

ERROR #82: Root drawing has some compile errors

Generated when there are errors reported by the Compiler when it
is invoked from the Simulator. Correct the compile errors.

ERROR #83: Root drawing does not exist

Generated when the Simulator is unable to find the drawing
specified by the ROOT DRAWING directive. Check the drawing
name.

ERROR #84: Cannot open WIREDELAYS file

Generated when the Simulator is unable to open the wire delays
file for reading.
ERROR #85: Expected FILE_TYPE specification

Generated when the Simulator does not find a file type
specification in the file it is currently reading~

ERROR #86: File is not of the correct type

Generated when the Simulator finds a file_type that is not the
correct type for the current file.

ERROR #87: Directory file name previously specified

Generated when the Simulator finds that a SCALD directory has
been specified more than once in the directives file. Removing
the second entry in the directives file corrects this error.

ERROR #88: Cannot open tabular trace output file

Generated when the Simulator is unable to open an output file
for writing tabular trace.

ERROR #89: String not closed before the end of line

Generated when the Simulator finds that a string does not have a
closing quote before the end of the line.

7-104

ERROR #90: Vector PIN NUMBER < pin's width

ERROR #91: Vector PIN NUMBER) pin's width

ERROR #92: Invalid error number (warnings only)

ERROR #93: Expected directory file name

Logic Simulator
Error Summary

ERROR #94: Cannot open signal mapping file(SIGMAP)

Generated when the Simulator is unable to open the signal
mapping file.

ERROR #95: Cannot open synonym file

Generated when the Simulator is unable to open the synonyms file
for reading. Misspelled or improper specification of the
synonyms file pathname in the directives file can cause this
error.

ERROR #96: Cannot open MEMLOAD file

Generated when the Simulator is unable to open the file
specified in the MEMLOAD command.

ERROR #97: Expansion file not for Simulator

Generated when the Simulator finds an incorrect file type in the
expansion file. The drawing was not compiled for sim.

ERROR #98: This property has already been specified

Generated when the Simulator finds a property of a body defined
more than once.

7-105

Logic Simulator
Error Summary

ERROR #99: Error limit exceeded

Generated when the Simulator detects more than the maximum
number of errors.

ERROR #100: Assertion chk failure: save simlog file

Generated when an internal error (an assertion failure) is
detected by the Simulator. Please contact Valid.

ERROR #101: Cannot open compiler output (CMPEXP)

Generated when the Simulator is unable to open the Compiler
expansion file. Check the directives file and verify the
pathname.

ERROR #102: Compiler synonyms file has wrong type

Generated when the Simulator finds an incorrect file type for
the synonyms file. Recompile the drawing for sim.

ERROR #103: Cannot open user input file (USERIN)

Generated when the Simulator is unable to start terminal
interaction, in interactive mode, or the script file, in batch
mode.

ERROR #104: Unknown command

Generated when the Simulator does not recognize the command
entered. Check the manual for the proper Simulator commands.

ERROR #105: Malformed command

Generated when a non-identifier is entered as a command to the
Simulator.

ERROR #106: Cannot open tabular trace input(TABULAR)

Generated when the Simulator is unable to open the trace file
for reading.

ERROR #107: Cannot open directives file (INFILE)

Logic Simulator
Error Summary

Generated when the Simulator is unable to find the simulate.cmd
file in the default or specified directory.

ERROR #108: Clock signal must be undriven

Generated when the Simulator finds a clock signal that is not
undriven -- building a clock on a driven signal results in
unexpected behavior.

ERROR #109: Clock time must be within clock period

Generated when the Simulator finds a transition time that is
greater than the clock period while building the clock
transitions list. The Simulator assigns the transition time to
be the clock period and builds the list accordingly.

ERROR #110: Clock time less than previous time

Generated when the Simulator finds a transition time that is
less than the previous transition time while building the clock
transitions list. The signal should have ascending clock
assertions to correct this error.

ERROR #111: Clock period must be greater than 0

Generated when the Simulator finds a negative or zero clock
period. Specify a clock period greater than zero.

ERROR #112: Run stopped because errors were detected

ERROR #113: Clock intervals must be greater than 0

Generated when the Simulator finds a value less than 1 for the
number of clock intervals. Specify a value greater than zero.

ERROR #114: Only 2 or 4 memory states are allowed

Generated when the Simulator finds an operand other than 2 or 4
while processing the MEM STATE directive.

7-107

Logic Simulator
Error Summary

ERROR #115: Illegal parameter to OUTPUT directive

Generated when the Simulator finds some parameter other than
list or command_log to the OUTPUT directive.

ERROR #116: Illegal terminal type

Generated when the Simulator finds an improper ter~inal type
while processing the TERMINAL command or TERMINAL directive.
The valid terminals are:

1. VTlOO
2. ANNARBOR
3. CLUSTER
4. 3270
S. TTY

ERROR #117: Illegal value for memory depth

Generated when the Simulator finds a value that is negative,
zero, or greater than the maximum depth for the memory
primitive.

ERROR #118: Expected BIT_RANGE

Generated when the Simulator is expecting a bit range and finds
some other data.

ERROR #119: Expected ••

Generated when the Simulator is expecting '
other data.

ERROR #120: Expected MEM_BLOCK

' and finds some

Generated when the Simulator is expecting a MEM BLOCK and finds
some other data. Check the MEMLOAD file.

ERROR #121: Input word is wider than memory

Generated when the Simulator reads a word from memory and finds
that it is larger than the memory word. Either adjust the input
to the proper width or use the subrange specification of the
MEMLOAD command.

7-108

ERROR #122: Expected END_MEM_BLOCK

Logic Simulator
Error Summary

Generated when the Simulator is expecting an END MEM BLOCK
symbol and finds some other data. Check the MEMLOAD-file.

ERROR #123: BIT RANGE does not match memory width

Generated when the Simulator reads a MEMLOAD file and finds that
the bit range specified in the file does not match the memory
width. Use the bit range specification option of the MEMLOAD
command.

ERROR #124: Illegal BIT_RANGE bit ordering

Generated when the Simulator finds a reversed bit range
specification (right to left ordering when using left to right
ordering). Reversing the bit range corrects this error.-

ERROR #125: MEM BLOCK will not fit into memory

Generated when the Simulator is reading a MEMLOAD file and finds
that the current mem_block is larger than the memory primitive
being loaded. Use the word range specification option of the
MEMLOAD command.

ERROR #126: Memory contents file has wrong type

Generated when the Simulator is reading a MEMLOAD file and finds
a wrong type in the file. Use the correct file_type
specification in the file.

ERROR #127: Input word is narrower than memory

.
Generated when the Simulator is reading a MEMLOAD file and finds
that the word read is narrower than the memory word.

ERROR #128: Fewer words than specified in MEM BLOCK

Generated when the Simulator is expecting more words in a
MEMLOAD file and finds an END MEM BLOCK symbol.

7-109

Logic Simulator
Error Summary

ERROR #129: Cannot open user configuration file

Generated when the Simulator is unable to open the user-coded
primitive configuration file~ Check the f il~ pathname in the
directives file.

ERROR #130: Expected PRIMITIVE

Generated when the Simulator is expecting a PRIMITIVE symbol and
finds some other data.

ERROR #131: Primitive already defined

Generated when the Simulator finds a primitive defined more than
once. Remove the extra declaration.

ERROR #132: Expected PIN

Generated when the Simulator is expecting a PIN description and
finds some other data.

ERROR #133: Expected INPUT_SPEC or OUTPUT SPEC

Generated when the Simulator is expecting either INPUT SPEC or
OUTPUT SPEC symbol and finds some other data.

ERROR #134: Expected END_PIN

Generated when the Simulator is expecting an END PIN symbol and
finds some other data.

ERROR 11135: Expected END_PRIMITIVE

Generated when the Simulator is expecting an END PRIMITIVE
symbol and finds some other data.

ERROR 11136: Expected width specification

Generated when the Simulator is expecting a width specification
and finds some other data.

7-110

/'

ERROR #137: Illegal OWN_STORAGE value

Logic Simulator
Error Summary

Generated when the Simulator is expecting the number of storage
words and finds a value that is negative, zero, or greater than
the maximum user storage.

ERROR #138: Cannot open Realchip Library file

Generated when the Simulator is unable to open the Realchip
library file~ Check the pathname in the directives file.

ERROR #139: Expected INPUT_SPEC,OUTPUT_SPEC, IO_SPEC

Generated when the Simulator is expecting the INPUT_SPEC,
OUTPUT_SPEC, or IO SPEC symbols and finds some other data.

ERROR #140: Illegal JIG_ID value

Generated when the Simulator finds an invalid JIG ID for the
Realchip primitive used in the simulation.

ERROR #141: Expected DYNAMIC,STATICor STATIC_FOREVER

Generated when the Simulator is expecting the DYNAMIC, STATIC,
or STATIC FOREVER symbols and finds some other data.

ERROR #142: Expected RISE, FALL, or BOTH

Generated when the Simulator is expecting a rise or fall delay
or both delays and finds some other data.

ERROR #143: Illegal clock_period value(s)

Generated when the Simulator finds a negative or zero clock
period value in the PERIOD command or CLOCK PERIOD directive.

ERROR #144: Expected , or ;

Generated when the Simulator is expecting a comma or semicolon
(, or ;) and finds some other data.

7-111

Logic Simulator
Error Summary

ERROR #145: Expected : or , or ;

Generated when the Simulator is expecting a colon, comma, or
semicolon(: or , or ;) and finds some other data.

ERROR #146: Pin number out of range

Generated when the Simulator finds a pin number that is out of
range. Since the number of pins supported is very large, this
error should seldom occur.

ERROR #147: Delay value out of range

Generated ~hen the Simulator finds a delay value that is either
less than the minimum value or greater than the maximum value.

ERROR #148: Expected (TS,TS), (OC,AND) or (OE,OR)

Generated when the Simulator does not find an output type for an
output pin. This error seldom occurs because the default is
(TS,TS).

ERROR #149: Unknown definition parameter

Generated when the Simulator is unable to interpret a parameter
of a pin specification.

ERROR #150: Expected END_RESET_SEQ

Generated when the Simulator is expecting an END RESET SEQ
symbol and finds some other data while reading a-Realchip
library.

ERROR #151: RESET_SEQ pin not found

Generated when the Simulator does not find a RESET_SEQ pin in
Realchip.

ERROR #152: Expected O, 1 or Z

Generated when the Simulator is expecting a O, 1 or Z and finds
some other data.

7-112

ERROR #153: CLOCK_P!N pin not found

Logic Simulator
Error Summary

Generated when the Simulator does not find a CLOCK PIN in the
Realchip adapter.

ERROR #154: Realchip adapter not found

Generated when Realchip is used and the Simulator does not find
the adapter.

ERROR #155: Cannot open trace value file (VALBIN)

Generated when the Simulator is unable to open the trace value
file for output.

ERROR #156: Cannot open trace value file (VALASC)

Generated when the Simulator is unable to open the trace value
file for output.

ERROR #157: Expected END_DELAY_TABLE

Generated when the Simulator does not find the END DELAY TABLE
symbol while reading the Realchip library.

ERROR #158: DELAY_TABLE output pin not found

Generated when the Simulator does not find the output pin read
in the DELAY TABLE. Check the pin name.

ERROR #159: Trace interval must be 0 or greater

Generated when the Simulator finds a negative trace interval.

ERROR #160: Symbol_stack overflow

Generated when the Simulator symbol stack exceeds its maximum
depth during parsing.

ERROR #161: Tabular trace input file has wrong type

Generated when the Simulator finds an incorrect file type while
reading the tabular trace input file.

7-113

Logic Simulator
Error Summary

ERROR #162: Expected END_TAB_TRACE

Generated when the Simulator is expecting an END TAB TRACE
symbol while reading the tabular trace file and finds some other
data.

ERROR #163: Expected START_TAB_TRACE

Generated when the Simulator is expecting a START TAB TRACE
symbol while reading the tabular trace file and finds some other
data.

ERROR #164: Stimulation time must be) current time

Generated when the Simulator finds the stimulation time to be
less than the current time.

ERROR #165: Incorrect signal value in Tabular file

Generated when the Simulator finds an erroneous signal value in
the tabular file.

ERROR #166: Radix must be 2,8,10,16 in Tabular file

Generated when the Simulator finds a value other than 2, 8, 10,
or 16 for the radix of a value in the tabula~ input file.

ERROR #167: Decay time must be greater than 0

Generated when the Simulator finds the decay time to be less
than zero.

ERROR #168: odd # of reset_seq for clk_both device

Generated when the device definition file has an odd number of
reset sequences for the particular device (clock type =
clock=both). Modify the definition file so that-the device bas
an even number of reset_sequences.

ERROR #170: Pattern RAM overflow. Invalid ~esults.

Generated when the Realchip simulation pattern RAM overflows.

7-114

ERROR #171: Unsupported clock period range

Logic Simulator
Error Summary

Generated when the Simulator finds a clock period that is
outside the range supported by Realchip.
ERROR #172: Missing pin number specification

Generated when the Simulator is expecting a pin number
specification and finds some other data.

ERROR #173: DELAY_TABLE input pin not found

Generated when the Simulator does not find the input pin read
from the DELAY TABLE. Check the pin specification.

ERROR #174: PAUSE sequence already given

Generated when the Simulator encounters a PAUSE sequence more
than once.

ERROR #175: Pin number is already used

Generated when the Simulator encounters a pin number that is
already used for another pin.

ERROR #176: **** Realchip in use or not present

Generated when a user attempts to use Realchip on a system where
it does not exist or is already in use.

ERROR #177: unknown value input to micro sim device

ERROR #178: Feedback may be disconnected

Generated when the feedback connection for a device that
requires feedback is disconnected.

7-115

Logic Simulator
Error Summary

ERROR #179: WORD RANGE does not match memo~y width

Generated when the optional parameters used in the MEMLOAD
command have unequal file and primitive word ranges.

ERROR #180: Static forever device is not unique

Generated when there is more than one static forever device
having the same primitive name in the same design.

ERROR #181: Reserved

ERROR #182: Cannot open memory dump file

Generated when the Simulator is unable to open an output file
for dumping the contents of a memory primitive. Check disk
space and directory protection.

ERROR #183: Cannot close output file

Generated when the Simulator is unable to close an output file.

ERROR #184: Cannot close input file

Generated when the Simulator is unable to close an input file.

ERRORS #185 through #196: Reserved

ERROR #197: Improper MEMLOAD params - using defaults

Generated when the Simulator finds some error in the
specification of the optional parameters for the MEMLOAD
command. Simulator will try to use the default parameters
instead.

ERROR #198: Inconsistent MEMLOAD parameters

Generated when the Simulator finds a different number of words
in the MEMLOAD file from that specified by the optional
parameters for the MEMLOAD command.

7-116

ERROR #199: File is longer than memory

Logic Simulator
Error Summary

Generated when the Simulator finds that the MEMLOAD file has
more words than the memory primitive for the MEMLOAD or
DUMPMEMORY commands.

ERROR #200: File has fewer words than memory

Generated when the Simulator finds that the MEMLOAD file has
fewer words than the memory primitive being loaded.

ERROR #201: Output already has Realfast data

Generated when the Simulator finds that the data structure for
an output already has Realfast data in it.

ERROR #202: Not enough data structure memory

Generated when the Simulator finds that the design is too big to
fit in available Realfast memory. In particular, all of the
data structure memory was used up. Run on a Realfast with more
memory.

ERROR #203: Input already has Realfast data

Generated when the Simulator finds that the data structure for
an input already has Realfast data in it.

ERROR #204: Primitive not yet implemented

Generated when the Simulator finds that the design contains a
simulator primitive which has not been implemented in Realfast.
Either change the design to not use that primitive or simulate
without using Realfast.

ERROR #205: Not enough microcode memory

Generated when the Simulator finds that the design is too big to
fit in available Realfast memory. In particular, all of the
eva~uation memory was used up. Run on a Realfast with more
memory.

7-117

Logic Simulator
Error Summary

ERROR #206: SET MICRO FIELD has invalid parameters

ERROR #207: Output has width) 1

Generated when the Simulator finds an internal error indicating
that a Realfast data structure has a width greater than one.

ERROR #208: Undriven input has illegal default value

Generated when the Simulator finds an internal error indicating
that a Realfast data structure has an improper default value.

ERROR #209: Reserved

ERROR #210: Primitive already has Realfast data

Generated when the Simulator finds that the data structure for a
primitive already has Realfast data in it.

ERROR #211: Monitor code too large

Generated when the Simulator finds that the microcode monitor
was larger than expected. This can only happen if the Simulator
and /uO/scald/simulator/monitor.int are out of sync. Check
installation.

ERROR #212: Monitor returned an error code

Generated when the Simulator finds that the microcode monitor
gave a failure indication. This usually indicates a hardware
problem but could also indicate an internal consistency failure.

ERROR #213: Did not get access to Realfast hardware

Generated when the Simulator is unable to access the Realfast
hardware. This can be caused when there is no Realfast hardware
plugged into the S-32, when Realfast is turned off, when the
hardware is incorrectly plugged in, or when some other user is
using Realfast at the present time.

7-118

ERROR #214: Realfast interrupt but hardware busy

Logic Simulator
Error Summary

Generated when the Simulator finds that Realfast indicated an
interrupt condition but was still running when the interrupt was
serviced. This indicates a likely hardware failure. If this
error occurs, call your field service representative.

ERROR #215: Bad Realfast access

ERROR #216: Reserved

ERROR #217: Ran out of event blocks

Generated when the Simulator finds that the Realfast data
structure memory was exhausted during simulation. Run on a
Realfast with more memory.

ERROR #218: Reserved

ERROR #219: Not enough value memory

Generated when the Simulator finds that the design is too big to
fit in available Realfast memory. In particular, all of the
evaluation memory was used up. Run on a Realfast with more
memory.

ERROR #220: UCP/Realchip delay >= 4096

Generated when the Simulator finds some UCP or Realchip
primitive with a delay of 4096 or greater. Change the UCP or
micro-sim pins file to not use such a large delay.

ERROR #221: Realfast memory parity error

Generated when the Simulator finds a parity error in the
Realfast memory during simulation. This indicates a hardware
problem; call your field service representative.

7-119

Logic Simulator
Error Summary

ERROR #222: Feature not yet implemented for Realfast

Generated when the Simulator finds that the user tried to invoke
a Simulator feature which is not available when using Realfast.
This includes logic patching and breakpoints.

ERROR #223: Cannot open Realfast monitor file

Generated when the Simulator finds that it cannot access
/uO/scald/simulator/monitor.int. Check that this file is
present and readable by users. Also check /usr/bin/simassign to
ensure that there is an entry
"RFMON=/uO/scald/simulator/monitor.int".

ERROR #224: Cannot open Realfast ALU file

Generated when the Simulator finds that it cannot access
/uO/scald/simulator/alumem.int. Check that this file is present
and readable by users. Also check /usr/bin/simassign to ensure
that there is an entry "RFALU=/uO/scald/simulator/alumem.int".

ERRORS #225 through #230: Reserved

ERROR #231: Expected SPECIAL

Generated when a Realchip part requires SPECIAL sampling and the
Simulator finds some other data in the definition file.

ERRORS #232 through #250: Reserved

7-120

