
CHAPTER 6

TIMING VERIFIER

Reference Manual

6.1 INTRODUCTION

Timing Verifier
Reference Manual

MAY 1 6 1985

The Timing Verifier represents a new approach to
verification of timing constraints of large digital systems.
The Timing Verifier uses an algorithm which is
computationally efficient and complete. Furthermore, the
Timing Verifier does not require test inputs (such as a
logic simulator) and works directly from the output of the
Compiler. Thus, timing verification is done using only the
designer's original set of drawings.

The Timing Verifier allows the verification of entire
designs or of designs section by section. Verification of
portions of a design means that small pieces of a design may
be verified to save computation time. Similarly, a design
need not be complete to be verified - verification can
proceed on the finished sections. Designers can check their
own pieces of a system on a daily basis, getting continuous
feedback on its corcectness as work proceeds. Verification
of an entire system can be done when the pieces are known to
be correct.

WHAT IS TIMING VERIFICATION?

Digital systems are composed of components and their
interconnections, or wires which convey signals from one
component to another. In general, when a signal on the
input of a component changes, some time later the signal on
the output changes. The wire connected to this output then
conveys the signal to the input of other components, again
after some delay. Because of variations in construction;
the delay time of components and wires varies.

At certain places in a system - data inputs of
registers, and external interfaces for example - a signal
must assume its value at a certain time. Thus, if a path to
such a place is too long or too short, the system may yield
an incorrect result. For example, consider a circuit
consisting of a D register:

6-3

Timing Verifier
Reference Manual

Q.OCK

DATA our

D[N-~
I 14-t~ I
1~t~1 I

Q.K I / "-
l4--t3~ I

I I

For real devices, tl must be longer than some critical
time - the setup time of the register ts - or the device may
malfunction. If the data delay is long, tl may shrink below
ts, violating the setup time spec of the register.
Similarly, t2 must be longer than the hold time of the
register, th. If the data delay is short, the hold time
specification of the register may be violated. Finally, the
width of the clock pulse, t3 must exceed some minimum time,
or correct operation of the register is not guaranteed.

As a second example, consider a memory interface with a
data bus and a data out valid signal:

D(O) ------~---(J21)
D(l) ----------<J22)
D(2) ----------(J23)
D(3) ----------<J24)

DOVAL ------------(J30)

D(4) ----------(J25)
D(5) ----------(J2.6)
D(6) ----------(J27)
D(7) ----------(J28)

There will typically be some specification that data must be
ready some period of time before DOVAL becomes true. If
this setup time is not met, systems connected to the memory
may malfunction.

The Timing Verifier checks that there are no timing
violations of these two types in the design. That is, at
all points in a design:

o Component constraints (setup, hold, pulse width, etc.)
are observed.

o All interface specifications provided by the designer
are met.

Timing constraint verification is based on minimum and
maximum propagdtion delays of circuit components, their
set-up times, hold times and pulse width constraints, wire
delays and interface specifications.

6-4

6.2 TIMING VERIFIER OPERATION

Timing Verifier
Reference Manual

The Timing Verifier operates in two phases. First, it
computes the value history of every signal in the system
over one clock period. Then, it checks that the signals
meet the timing constraints of the components and
interfaces.

6.3 SIGNALS IN THE TIMING VERIFIER

The Timing Verifier represents the behavior of a signal
over time textually. For example, a signal SIG is shown as
a waveform and in Timing Verifier text format:

SIG

0.0 15.0 30.0 35.0

SIG: 0:0.0, R:l5.0, 1:30.0, F:35.0, 0:35.0

The evolution of a signal over a clock is called its value
history.

A basi~ assumption of the Timing Verifier is that the
cir~uit to be verified has periodic behavior. That is,
given a circuit and a set of input stimulus, there is some
state of the circuit S and some time T, such that starting
the circuit in state S, applying the inputs and simulating
for time T, the circuit returns to state S. (By state of a
circuit, we mean the value history of each signal in the
design.) Synchronous sequential circuits, and strictly
combinational circuits both have this property.

In general, the design is simulated using an 8 value
logic system:

1 • 0 signal is 0 or false

2. 1 signal is 1 or true

3. s signal is stable, that is either 0 or 1

6-5

Timing Verifier
Reference Manual

4. R signal is rising - going from 0 to 1

5. F signal is falling - going from 1 to 0

6. C signal is undergoing a transition of unknown
direction

7. u nothing is known about the signal

8. z the signal is high impedance

The truth table for an AND gate in this logic system is:

AND 10111slRIFlc1u1z1

0 10101010101010101

1 lol1lslRIFlclulul

$ lolslslRIFlclulul

R IOIRIRIRICICIUIUI

F IOIFIFICIFICIUIUI

c !n!clclclclclulul

u 101u1u1u1u1u1u1u1

z 101u1u1u1u1u1u1u1

The intent of this approach is to preserve the logic
behavior of the circuit when actual values are known, and in
other cases, to represent a signal as stable (O,l or S), or
undergoing a transition (R, F or C). In most cases, this
information is sufficient for timing verification. For
example, to verify the setup and hold time of a register,
you only need to know when the D input is undergoing a
transition and when it is stable with respect to the clock
input. The actual value (0 or 1) on the D input is not
important. Similarly, you do not need to know the output
value (0 or 1) of the register. The output of a register
changes only during a short interval after it is clocked and
otherwise it is stable. Using S means that the contents of
registers and memories do not have to be specified1 greatly
reducing the amount of time the designer has to spend
preparing inputs for the verifier. Also, using S
exponentialy reduces the number of states that must be
simulated to verify the timing behavior of the circuit. For
exam?le, a k-bit counter that contains the value SSSSS •••• ss

6-6

Timing Verifier
Reference Manual

(k times) has only one state, not 2**k states. Rarely does
a circuit's timing depend on the actual value in the
counter, but merely how long after the counter is clocked it
takes for the outputs to stop undergoing transitions.

There are some cases where modelling the signals in a
circuit as stable or undergoing a transition is not
adequate, the actual (0, 1) behavior is necessary. The
Timing Verifier has a mechanism called case analysis for
handling these situations.

In addition to the eight values described above, a
signal may have one of three strengths, HARD, SOFT and
UNDRIVEN. In effect the Timing Verifier does a kind of
twenty-four state simulation. Signal strengths are
discussed in detail in section "Signal Drive Strengths".

6.4 SCALD SIGNALS AND THE TIMING VERIFIER

The Timing Verifier needs certain kinds of information
about signals in the system being checked. For example,
interface specifications for those output signals that are
to be checked must be provided. In general there are three
kinds of information that the Timing Verifier extracts from
signals - timing behavior, delays and special evaluation
rules.

Timing Behavior (Signal Assertions)

The Timing Verifier initially sets all undriven signals
of the circuit to "S" (stable) and all others to "U"
(undefined). Often systems will have many undriven inputs
set to "S" in this manner and consequently will not exhibit
meaningful timing behavior. Some examples of this are:

1. Primary inputs to the system. For example the design
may be a controller which "talks" on some standard bus
interface. If all the interface (input) signals are
always stable, the controller will not operate.

2. Partial designs. One of the most important aspects of
the Timing Verifier is the ability to verify the timing
of partial designs. (A partial design may be either one
that is incomplete, or a piece of an entire system that
was extracted for separate timing verification.) In a
partial design, signals that have not been generated yet
will be undriven.

3. Clock Signals. In large systems it is often convenient
to defer the design of the logic for complex multiphase
clocks to near the end of the design cycle. These
signals will therefore be undriven, even though their

6-7

Timing Verifier
Reference Manual

timing behavior is known. Furthermore, a synchronous
system will not do anything unless these clock lines are
driven.

For these signals assertions, which are simply part of the
signal name, can be added. Assert ions define the value
history of signals when the history is not determined by a
driving device. Assertions are discussed in detail below.

DELAYS

Timing verification requires the modelling of both
component and interconnect delays. Component delays are
specified inside Timing Verifier library components.
Interconnect delays on the other hand are specified as
delays associated with wires.

A delay is associated with a wire in one of several
ways:

1. The designer may place a delay property on a signal. If
this is done that particular instance ~ the signal has
the specified delay.

2. The Timing Verifier will read a list of delays typically
computed by some physical design subsystem. A list
element associates a delay with an input pin. Thus the
delay on each stub of a signal that drives multiple
loads may be specified.

3. The Timing Verifier can use its delay estimator to
calculate an estimated delay based on the number of
loads and the size of the loads.

4. If none of these delays is specified, the Timing
Verifier will use a default delay value that is
specified when the Timing Verifier is run (which may be
zero).

TUNED SIGNALS AND GATED CLOCKS (EVALUATION DIRECTIVES)

High-speed digital system often use clocks which have
been tuned in order to compensate for delays in the system.
A means for describing signals that will be adjusted to have
some particular timing behavior independent of circuit
delays is necessary for complete timing verification.
Evaluation Directives provide these descriptions.

A related complication occurs in systems that use gated
clocks. The system functions correctly only if the gating
signal properly "envelopes" the clock for all variations in

6-8

Timing Verifier
Reference Manual

circuit delays. Evaluation directives are used to direct
the Timing Verifier checks for correct timing behavior of
this type signal as well.

6.5 SIGNAL ASSERTIONS

In order for the Verifier to produce meaningful
results, the designer must specify the value history of all
input signals to the design and all interface signals that
are to be checked.

Value histories are specified using assertions which
are simply part of a SCALD signal name. The general form
is:

<assertion) ::= <clock period) <assertion type)
(time specifier) <explicit skew)

<assertion type) ::= C I P I S I D

The assertions recognized by the Verifier are:

1. C -- this indicates that the signal is a clock signal.
Together with the (time specifier) and <explicit skew)
this determines the O, 1 behavior of the signal. If no
<explicit skew) is given, this assertion will use the
skew specified by the CLOCK_SKEW directive.

2. P -- this indicates that the signal is a ~recision clock
signal. The P assertion is identical to the C assertion
except that when no <explicit skew> is given, it uses
the skew specified by the PREC_CLOCK_SKEW directive.

3. S -- together with the (time specifier) and <explicit
skew) this determines the stable, changing behavior of
the signal. This is used to specify an ~nitial value
history for a signal. During the course of
verification, should the computed value be different
than the specified value, the computed value will
replace it. If no <explicit skew> is given, then the
(time specifier) is assumed to be exact, and no skew is
added to the signal.

4. D -- together with the (time specifier> and <explicit
skew) this determines the stable, changing behavior of
the signal. This assertion is the same as the S
assertion except that the value history specified is
never changed during the course of verification. The
use of the D assertion on signals in feed back paths
which are broken by latches can significantly speed up
the execution of the Timing Verifier.

6-9

Timing Verifier
Reference Manual

(clock period> is a time (in nanoseconds). This
overrides the CLOCK PERIOD in the directives file for a
particular signal. The clock period has to be a
sub-multiple of the system clock period. For example, with
the CLOCK PERIOD and CLOCK INTERVALS set to 100, the
following-assertions can be given:

Signal Assertion

SIG !50 P0-25
SIG 125 CS-10

Equivalent To

SIG !P 0-25, 50-75
SIG ! C 5-10, 30-35, 55-60, 80-85

A (time specifier> is used to describe time intervals.
The (explicit skew) allows uncertainty or skew to be
specified about the (time specifier). The detailed syntax
is:

(time specifier> ::= (time interval) I
(time interval), (time specifier)

(time interval) ::= (time in elk units) I (time period)
(pulse)

(time period) ::= (time in elk units) - (time in elk units)

(pulse) ::=(time in elk units)+(time in nsec)

(explicit skew) : : = I (<negative skew) , (positive skew))

(negative skew) : : = -(time in nsec) (time in nsec)

(positive skew) : : = +(time in nsec) (time in nsec)

(time in elk units) : : = (integer> I (fixed point number)

(tim~ in nsec) ::=(integer) I (fixed point number)

All three types of (time interval)s specify signal behavior
in terms of evenly spaced sub-intervals of a global clock.
A clock unit is equal to one of these sub-intervals. In the
examples below the clock period is assumed to be 100 nsec
and is divided into 8 even sub-periods of 12.5 nsec each.
The CLOCK SKEW directive is -2 nsec to +2 nsec, and the
PREC CLOCK SKEW directive is set to 0.

6-10

Timing Verifier
Reference Manual

Each of the types of (time specifier)s is shown below:

(time in clock units)

This form specifies a pulse whose width is one
sub period long. The signal is asserted the number of
indicated sub-periods from the begining of the cycle.

CLK!P 4 • •
CLK!P 4 {-2,5).

CLK!C 2,5* •

CLKIP2.2,5.7

•

0:0.0, 1:50.0, 0:62.5
0:0.0, R:48.0, 1:55.0,
F:60.5, 0:67.5
1:0.0, F:23.0, 0:27.0,
R:35.5, 1:39.5,
F: 60.5, 0:64.5, R: 73.0,
1:77.0
0:0.0, 1:27.5, 0:40.0,
1:71.3, 0:83.8

Note that low-asserted clocks, such as the third example
above, take the value "O" when the signal is asserted.

(time period)

A (time period) is a pulse whose leading and trailing
edge is specified.

(pulse)

CLKIP 0-2.0 •
CLK!P 1-4,6.0-7

SIGISl-4,6-7.3

•

SIG !S2-4 {-1,5) •

•

•

1:0.0, 0:25.0
0:0.0, 1:12.5, 0:50.0,
1:75.0, 0:87.5
C:O.O, S:12.5, C:50.0,
S:75.0, C:91.3
C:O.O, S:30.0, C:49.0

This form is used to specify a signal whose start time
is specified relative to the clock sub-periods, but
whose width is specified in absolute units.

SIG!S2+11.3
-CLKIP3+9.0,4+10.0

•
•

C:O.O, S:25.0, C:36.3
1:0.0, 0:37.5, 1:46.5,
0:50.0, 1:60.0

The time before the plus symbol gives the time of the
leading edge of the pulse in clock units, and the time
after the plus symbol gives the width of the pulse in
absolute time units {nanoseconds). This allows for
pulses to be specified where the width doesn't scale
with the cyc1e time of the circuit.

6-11

Timing Verifier
Reference Manual

ADVANCED USE OF ASSERTIONS

During simulation, if a driven signal does not meet its
assertion specification, an error is reported in the Timing
Verifier output file. Assertions have obvious uses as
interface specifications of signals, and as pseudo-drivers
in partially complete designs. They may also be used to
create abstract models.

An abstract model of a part P consists of a body
drawing and an abstract timing model. The abstract timing
model is constructed soley of buffers -- all input signals
are received by buffers and the output signals driven by
buffers. The output of each receiver buffer has a local
signal with a timing assertion on it matching the input
timing spec of the corresponding pin of P. The input of
each drive buffer has a local signal with a timing assertion
on it matching the output timing spec of corresponding
output pin of P. This approach can be expanded to have
small amounts of logic in the abstract model to achieve more
complex logic or timing behavior as required.

One capability of the Timing Verifier enhances the
power of timing assertions. Assertions may be specified in
the CASE analysis file rather than on the print. This
facilitates experiro~~ting with assertions. See the section
on Timing Ver~fier Case Analysis for details.

6.6 DELAY PROPERTIES

Delay properties are used to model the delays of a
circuit's interconnections. Delay properties are simply
SCALD signal properties:

<delay property> ::=\<property name) <value)
<value) ::= = ' (time interval specifier) '
(time interval specifier)

<rising range)
(falling range)
(delay range>

<delay)
<min delay)
<max delay)
(time)

::=(delay range) I
<rising range) , <falling range)

::=(delay range)
::=<delay range)
::=(delay) I

<min delay) - <max delay)
::=(time)
::=(time)
::=<time)
::=(integer) I (fixed point number)

Verifier delay properties indicate that the signal is to be
delayed (by the time indicated by the (time interval
specifier)) with respect to the signal source. The most
gene~al form of a delay gives a minimum and maximum rising

6-12

I

Timing Verifier
Reference Manual

delay and a minimum and maximum falling delay. If only one
range is given, then the rising and falling delays are
assumed to be the same.

The general delay properties recognized by the Verifier
are:

1. WIRE DELAY -- this type of delay is a simple wire delay
property. It value may be over-ridden by the physical
design subsystem, and also may be set to zero by certain
evaluation directives.

2. CHIP DELAY -- this type of delay is used primarily with
VeriTier library models. It is just like the
WIRE DELAY, except that it is not changeable by the
physical design subsystem and a different set of
evaluation directives set it to zero.

3. CLOCK DELAY -- this delay is not affected by any
evaluation directives and cannot be overridden by the
physical design subsystem. Its primary use is to
describe a tuned clock which is adjusted to have some
delay with respect to another logical version of the
clock.

All delay properties are the same except in the way
evaluation di~ectives and the physical design subsystem
operate on them.

To shorten signals and increase readability, the
compiler has predefined text macros for these delay
properties: the strings "WD", "CD", and "CKD" respectively.
The user may of course use either the full property name or
the associated text macro interchangeably. All examples
will be in terms of the predefined macros. When using the
predefined text macros the equal sign and quotes should be
omitted, just giving the delay range after the macro name.

6-13

Timing Verifier
Reference Manual

All Verifier delay properties are pin properties. That is,
the delay is applied at each pin to which the wire with the
signal name containing the delay property is attached. A
pin connected to the same signal that lacks a delay property
is not delayed. For example consider a drawing with two
bodies th~% use a signal RESET:

RESET 'WO 2.~-4.3 D
~Bl RESET 'WO 0.0-1_._s_._1_._0_-2~.s~~~_,~

Then the behavior of RESET is:

RESET •

RESET

RESET

0:0.0, 1:10.0, 0:20.0
(at the driver)
O.O.O, R:12.0, 1:14.3,
F:22.0, 0:24.3 (at Bl)
O.O.O, R:lO.O, 1:11.5,
F:21.0, 0:22.5 (at B2)

Delay properties are handled this way so that systems where
delays are different on different "stubs" of a net may be
modelled.

6.7 EVALUATION DIRECTIVES

Evaluation directives are used for two purposes:

1. To facilitate the verification of designs that use tuned
clocks. This is done by providing a description of how
clock signals are tuned.

l'

2. To facilitate the verification of designs that use
"gated" clocks. Evaluation directives are defined that
direct the Verifier to ensure that gating signals
properly "envelope" clock signals.

6-14

EVALUATION DIRECTIVES FOR CLOCK TUNING

Timing Verifier
Reference Manual

High performance designs often require the adjustment
of clocks to compensate for circuit delays. A typical
example is shown below:

+----+, 1'

---+
I G +-------+> clocked device

CLK!C0-3

ENABLE ---+ I I
+----+ I

This is a typical circuit where a clocked device is
conditionally clocked depending on whether the enable is
asserted or not. Speed constraints may require that the
signal CLK!C0-3 be generated so that the effective delay of
the gate "G" and its top input wire is zero. An alternate
way of viewing this situation is that the top input signal
to gate G is generated so that the gates output signal is
asserted from period 0 to 3 (when enabled). We indicate
this to the Verifier using the evaluation directive ''Z". A
typical example is shown below:

+----+, 1'
---+

I G +-------+> clocked device
CLK!C0-3 \E Z

.i:!,;NABLE ---+ I I
+----+

The second evaluation directive for tuning is 'W', which
says to set the minimum wire delay to zero, and to substract
the minimum delay from the maximum delay. The 'W'
evaluation directive is just used to zero out the minimum
wire delay of the last wire on a clock path. For example,
evaluation directives may be composed:

+----+ I
CLK!C0-3 \E zw ---+ I I

I G +-------+> clocked device
ENABLE ---+ I I

+----+ I
The 'ZW' means to treat the circuit as if the input wire
delay, the delay of gate G and the minimum delay of the
output wire delay is zero. Tuning directives may be
combined to zero multiple levels of gating between the
clocked signal and the clocked device:

6-15

Timing Verifier
Reference Manual

CLK!C0-3 \E ZZ

ENABLE!

+----+ +----+ I
---+ I -----+ I

I Gl +--1 I G2 +-------+>
---+ I --+ I I

+----+ I +----+ I

ENABLE2 ---------------

clocked dev

If the clock is tuned with respect to the output of G2 the
evaluation directive 'ZZ' is used -- the first "Z" sets the
Gl and its input wire to zero, the second ''Z" sets G2 and
its input wire to zero. If the clock is tuned at the clock
device's clock input the evaluation directive 'ZZW' should
be used.

EVALUATION DIRECTIVES FOR CLOCK GATING

Correct performance of a digital system using gated
clocks, requires that the gating signal be stable during the
on-time (asserted time) of the clock. The evaluation
directive 'A' is used to check this:

+----+
CLK!C0-3 \E A ---+ I

I G +-------+> clocked device
ENABLE! ---+ I I

+----+ I
The 'A' indicates that ENABLE! must be stable (S or 0 or 1)
when that signal is controlling the gate:

o If G is an AND gate, ENABLE! must be stable when
CLK!C0-3 is high.

o If G is an OR gate, ENABLE! must be stable when CLK!C0-3
is low.

o If G is any other kind of logic element, it is ~gnored.

If the signals do not meet the conditions specified an error
is generated in the Verifier output report.

The 'A' directive may be used only on AND and OR gates
where one input of the gate is driven by a clock signal (a
signal with a 'C' or 'P' assertion).

6-16

TUNED AND GATED CLOCKS

Timing Verifier
Reference Manual

Use the directive 'H' to verify designs with clocks
that are both tuned and gated. The directive 'H' causes the
Timing Verifier to zero the wire and the gate, and also to
check that the enabling signal(s) is stable when the clock
enables the gate.

MULTILEVEL COMPONENT DEFINITION

When a component is defined with multiple levels of
primitives, it is desired that the evaluation directives
refer-to the entire path through the component, rather than
to a single primitive that the component is made up of. If
the component definition is a single level drawing, then the
Timing Verifier automatically causes the evaluation
directive string to count all of the primitives as one
element. A user can also put the body property
'KEEPDIRECTIVE' on a primitive which will cause it to
propagate the entire evaluation string through it, rather
than taking the first evaluation letter off of it. This
property is useful if a hierarchical definition for a
component is used and the evaluation directives only want to
increment once when going through the component.

SUMMARY OF EVALUATION DIRECTIVES

Five evaluation directives are recognized by the Timing
Verifier:

o W -- sets the minimum delay of the wire to zero and
subtracts the minimum delay from the maximum delay.

0 z sets the wire delay and the gate delay to zero.

o A checks that the non-clock input(s) to a gate is
stable when the clock input is enabling the gate.
Directs the Timing Verifier to ignore all the inputs to
the gate except the one with the 1 assertion.

o H -- sets the wire delay and the gate delay to zero and
check that the non-clock input(s) to a gate is stable
when the clock input is enabling the gate.

o I -- directs the Timing Verifier to ignore all the
inputs to the gate except the one with the I assertion.
The output of the gate is simply the input signal (with
the assertion) delayed by the propagation delay of the
gate. This directive may be used on any gate type but
only one input to the gate may have an I assertion.

6-17

Timing Verifier
Reference Manual

RESTRICTIONS

An evaluation directive may be applied to only one
input of a gate. The diagram illustrates an unacceptable
condition.

+----+
Xl \E z ---+ I

I G +------­
X2 \E z ---+ I

+----+

+----+ +----+
Yl \E zz ---+ I I

I Gl +------- G2
Y2 ---+ I I -------

+----+ +--+
I +----+

Y3 \E Z --------+

6-18

Timing Verifier
Timing Verifier Primitives

Timing Verifier Primitives

6.8 MODELLING COMPONENTS IN THE TIMING VERIFIER

Timing Verifier models are simply logic diagrams
constructed from a specific set of parts called Timing
Verifier primitives. Timing models may be hierarchical. If
they are, the leaf drawings must be in terms of this parts
set.

All Timing Verifier primitives may have an optional
body property, TRANSITION, which takes the values SMOOTH or
GLITCHY. The simulation of some primitives is modified
based on this parameters. (Details are given below.) In
addition, all Timing Verifier primitives have bubbleable
pins. This feature allows negative edge triggering of
latches, buffers to become inverters, etc.

The truth tables for the Timing Verifier primitives are
given below. In the case where more than one entry applies
to a given set of input conditions, the first entry will
take precedence.

2 OR
3 OR
4 OR
5 OR
6 OR
7 OR
8 OR

2 AND
3 AND
4 AND
5 AND
6 AND
7 AND
8 AND

2 CHG
3 CHG
4 CHG
5 CHG
6 CHG
7 CHG
8 CHG

XOR
BUF

A complete list of the primitives is given below:

L-input SIZE wide OR gate
3-input SIZE wide OR gate
4-input SIZE wide OR gate
5-input SIZE wide OR gate
6-input SIZE wide OR gate
7-input SIZE wide OR gate
8-input SIZE wide OR gate

2-input SIZE wide AND gate
3-input SIZE wide AND gate
4-input SIZE wide AND gate
5-input SIZE wide AND gate
6-input SIZE wide AND gate
7-input SIZE wide AND gate
8-input SIZE wide AND gate

2-input SIZE wide CHANGE gate
3-input SIZE wide CHANGE gate
4-input SIZE wide CHANGE gate
5-input SIZE wide CHANGE gate
6-input SIZE wide CHANGE gate
7-input SIZE wide CHANGE gate
8-input SIZE wide CHANGE gate

2-input SIZE wide XOR gate
1-input SIZE wide BUFFER gate

6-19

Timing Verifier
Timing Verifier Primitives

OR
AND
CHG

THRESHOLD
IDENTITY
RES

TS BUF

LATCH
LATCH RS

REG
REG RS

2 MUX
4 MUX
8 MUX

SETUP HOLD
SETUP RISE

HOLD FALL

EDGE TO EDGE

SIZE inputs to single bit output
SIZE inputs to single bit output
SIZE inputs to single bit output

I-input SIZE wide threshold gate
I-input SIZE wide identity gate
I-input SIZE wide resistor

SIZE wide tri-state driver with

SIZE wide latch with enable
SIZE wide latch with enable and
asynchrous set and reset

OR gate
AND gate
CHANGE gate

enable

SIZE wide rising-edge triggered register
SIZE wide rising-edge triggered register with
asynchrous set and reset

SIZE wide 2-input multiplexer
SIZE wide 4-input multiplexer
SIZE wide 8-input multiplexer

SIZE wide rising-edge setup and hold checker

SIZE wide rising-edge setup and falling-edge
hold checker

SIZE wide rising-edge to rising-edge skew
checker

MIN PULSE WIDTH SIZE wide minimum pulse width checker
TRANSMISSION

GATE SIZE wide bi-directional transmission gate

6-20

Timing Verifier
Timing Verifier Primitives

AND, OR, CHANGE and XOR FUNCTiONS

The truth tables for the AND, OR, CHANGE(CHG), and XOR
functions are given in the following tables:

AND 10111slRIFlc1u1z1
---------------------0 10101010101010101 o 10111slRIFlclulul

---------------------1 I 1I1I1I1I1I1I1I1.1

s IOlslslRIFlclulul

F IOIFIFICIFICIUIUI
---------------------c 101c1c1c1c1c1u1u1 c 1c111c1c1c1c1u1u1

u 101u1u1u1u1u1u1u1 u 1u111u1u1u1u1u1u1

z 101u1u1u1u1u1u1u1

CHG 10111slRlFlclu1z1 XOR IOlliSIRIFICIUIZI __________ ,,,. _________ _
---------------------o lslslslclclclulul 0 10111slRIFlclu1u1
---------------------1 lslslslclclclulul 1 11101slFIRlclulul

s lslslslclclclulul s lslslslclclclulul

R lclclclclclclulul R IRIFlclclclclulul

F lclclclclclclulul F IFIRlc1c1c1c1u1u1

c 1c1c1c1c1c1c1u1u1 c lclclclclclclulul
--------------------- ---------------------

u 1u1u1u1u1u1u1u1u1 u 1u1u1u1u1u1u1u1u1

z 1u1u1u1u1u1u1u1u1 z 1u1u1u1u1u1u1u1u1

These parts are simulated in the same way for
TRANSITION = SMOOTH and TRANSITION = GLITCHY.

6-21

Timing Verifier
Timing Verifier Primitives

TS BUF and TS BUS FUNCTIONS

The truth tables for the TS BUF primitive and related
TS BUS are given in the following tables.

ENABLE INPUT ENABLE INPUT
TS BUF 10111slRIFlc1u1z1 TS BUF 10111slRIFlc1u1z1

---------------------o 1z101u1c1c1c1u1u1 0 1z10101c1c1c1u1u1
--------------------- ----- -:~--------------

! 1z111u1c1c1c1u1u1 1 lzlllllclclclulul

s lzlslulclclclulul s 1z1s1s1c1c1c1u1u1
--------------------- ---------------------DATA R IZIRlulclclclulul DATA R lzlRIRlclclClulul

INPUT --------------------- INPUT ---------------------
F lzlFlulclclclulul F IZIFIFICICICIUIUI

c lzlclulclclclulul c lzlclclclclclulul

u lzlululululululul u 1z1u1u1u1u1u1u1u1

z 1z1u1u1u1u1u1u1u1 z 1z1u1u1u1u1u1u1u1

(tri-state mode) (dot-or mode)

6-22

Il
TS BUS 10111slRIFlc1u1z1

0 101u1u1ulFlululol

1 1u111ulRlu1u1u111

s 1u1u1u1u1u1u1u1s1

I2 R IUIRIUIRIUIUIUIRI

F IFIUIUIUIFIUIUIFI

c 1u1u1u1u1u1u1u1c1

u 1u1u1u1u1u1u1u1u1

z IOlllslRIFlclulzl

(tri-state mode)

Timing Verifier
Timing Verifier Primitives

Il
TS BUS 10111slRIFlc1u1z1

o lolslslRIFlclulol

1 1s111slRIFlclul1I

s lslslslclclclulsl

I2 R IRIRICIRICICIUIRI

F IFIFICICIFICIUIFI

c 1c1c1c1c1c1c1u1c1

u 1u1u1u1u1u1u1u1u1

z 10111slRIFlclulzl

(dot-or mode)

These partP are simulated in the same way for
TRANSITION = SMOOTH and TRANSITION = GLITCHY.

DOT GATES

The Timing Verifier simulates multiple driven nets
(buses) by inserting a gate in the network. All the drivers
of the bus are reconnected to the gate's inputs. The output
of the gate drives all the inputs on the bus. If the bus is
dot-or (dot-and), the inserted gate is an OR (AND) gate. If
the bus is a tri-state bus, the inserted gate is a TS BUS
with one of the two logic functions shown below.

Note that both the TS BUF and the TS BUS have two modes
of operation. The mode used for simulation depends on
whether the value of the TS BUS TYPE directive in the
Verifier command file is "DOT TS" or "DOT OR". (See the
Timing Verifier Directives Summary in this chapter of the
manual).

6-23

Timing Verifier
Timing Verifier Primitives

BUF AND THRESHOLD FUNCTIONS

The truth tables for the BUF and THRESHOLD primitives
are given in the following tables:

BUF I OUTPUT THRESHOLD I OUTPUT

o I o o I c

1 I 1 1 I 1

s I s s I c

INPUT R I R INPUT R I c

F I F F I c
---------- ----------

c I c c I c

u I u u I u

z I u z I u

These parts are simulated in the same way for
TRANSITION = SMOOTH and TRANSITION = GLITCHY.

6-24

RES AND IDENTITY FUNCTIONS

Timing Verifier
Timing Verifier Primitives

The truth tables for the RES and IDENTITY primitives
are given in the following tables:

RES I OUTPUT IDENTITY I OUTPUT

o I 0 o I 0

i I 1 i I 1

s I s s I s

INPUT R I R INPUT R I R

F I F F I F

c I c c I c

u I u u I u
---------- ----------z I z z I z

These parts are simulated in the same way for TRANSITION =
SMOOTH and TRANSITION = GLITCHY.

LATCH PRIMITIVE

The LATCH primitive has a DATA and EN input. Note: If
EN is bubbled the iverse of the chart should be followed.

LATCH:

EN I LASTOUTPUT DATA OUTPUT

0 ! {O,l,S} I x {O,l,S}

0 {R,F,C,U,Z} ! x s

1 I x I {O,l,S,R,F,C} I {O,l,S,R,F,C}

1 I x {U,Z} {U,U}

R =DATA I {0,1,U,Z} {O,l,U,U}

R I = DATA I s I s

R

If no input transition since EN was last 1 or R and
the latch is being simulated SMOOTH.

= DATA !all other cond.I c

6-25

Timing Verifier
Timing Verifier Primitives

R <> DATA {U,Z} u

R 0 { 1 's} R

R 1 {O,S} F

R {R,F,C,U,Z} {O,l,S} c

R { R, 1} R R

R {F,O} F F

R all other conditions c

F = DATA {O,l,S,U,Z} {O,l,S,U,U}

F DATA {R,F,C} c

F x {U,Z} {U,U}

F 0 {l,S} R

F 1 {O,S} F

F c {O,l,S} {O,l,S}

F { R, 1} R R

F {F,O} R F

F all other conditions c

s = DATA x LASTOUTPUT

s <> DATA {O,l,S} s

s 1 R R

s 0 F F

s <> 1 R c

s <> 0 F c
-----------------------------------~--------------------
s x c c

s all other inputs u

c {U,Z} {U,U}

c = DATA {O,l,S,R,F,C} {O,l,S,R,F,C}

6-26

Timing Verifier
Timing Verifier Primitives

C I all other inputs C

--z I x x u

u x x u

If the INPUT undergoes a transition while the latch is
closing, then a setup/hold time violation has occured.
Under these conditions the latch is simulated in one
of three ways depending on the value of LATCH-ERR-MODEL:
LATCH ERR MODEL = OPEN; LATCH_ERR_MODEL = CLOSED or
LATCH ERR MODEL = CONSERVATIVE;

LATCH ERR MODEL = OPEN:

LASTENI LASTOUTPUT DATA OUTPUT

F x {U,Z} {U,U}

F 0 {O,l,S} I R

F 1 {O,l,S} I F

F I {O,l,S} {O,l,S}

F ! {S,R,F,C,Z} I {O,l,S} c

F {R,l} ! R I R

F {F,O} F ! F

F all other conditions c

LATCH ERR MODEL = CLOSED:

LASTENI LASTOUTPUT DATA I OUTPUT

F {O,l,S} x I {O,l,S}

F {R,F,C,U,Z} x I s

6-27

Timing Verifier
Timing Verifier Primitiv~s

LATCH ERR MODEL = CONSERVATIVE:

LASTENI LASTOUTPUT DATA OUTPUT

F x {U,Z} {U,U}

F I 0 {O,l,S} R

F ! 1 I {0,1,S} F

F ' {S,R,F,C,,U} I {0,1,S} I c

F {R,1} R ! R

F {F,O} F F

F all other conditions c

The body property TRANSITION determines whether the
output of the LATCH primitive should change when it is
enabled, even if the input has not changed. When the body
property TRANSITIC~; ~ GLITCHY is attached to a LATCH
primitive, th~ output of the LATCH will always change even
if the input remains stable. If TRANSITION = SMOOTH is
attached, or no TRANSITION property is attached, the output
of the LATCH will not change if the input is always stable.

The LATCH RS primitive is the same as the LATCH except
that it also has asynchrous RESET and SET inputs. First the
LATCH output is computed for the current input values, then
the SET RESET function is applied .to the outputs. The
SET RESET function is described in the next section.

SET RESET FUNCTION

The SET RESET function is composed with the LATCH
function to form a LATCH RS and the RE~ function to form a
REG RS. It is not directly accessible as a Timing Verifier
Primitive. The SET RESET function is different for
TRANSITION = SMOOTH and GLITCHY. The function inherits its
TRANSITION property from the LATCH RS or REG RS of which it
is a part.

6-28

GLITCHY:

R s

0 0

Timing Verifier
Timing Verifier Primitives

OLDOUTPUT NEWOUTPUT

x I OLDOUTPUT

0 I x l ! l

0 ! l <> l l

0 <> { 0' l} <> l I CHG(OLDOUTPUT,S)

x o o I o

! o x I o

<>{O,l} I 0 x I CHG(OLDOUTPUT,R)

x all other cases ICHG(OLDOUTPUT,R,S)

where CH is the change function defined on Page 6-21.

6-29

Timing Verifier
Timing Verifier Primitives

SMOOTH:
R I s OLDOUTPUT NEWOUTPUT

0 0 x OLDOUTPUT

0 x 1 1

o 1 I x 1

0 R I 0 R

0 <> {l,R} x I CH(OLDOUTPUT,S)

---x o o I o

1 I o x o

R I 0 0 F

(){1,R}I 0 x I CH(OLDOUTPUT,R,S)

---11, R} I F {O,l,S} {O,F,F,}

{1, R} I F I <> {O,l,S} I CH(OLDOUTPUT,R,S)

F I {1,n.} ! {O,l,S} {R,1,R}

F I {1 ,R} () {O,l,S} I CH(OLDOUTPUT,R,S)

6-30

REG FUNCTION

Timing Verifier
Timing Verifier Primitives

The REG primitive implements a rising edge triggered
register.

CLOCK LAST CLOCK INPUT LASTOUTPUT NEXTOUTPUT

1 0 {O,l} {O.l} I LASTOUTPUT

1 I 0 { 1, R} {O,R}

'
R

1 ! 0 I {O,F} {l, F} F

! I o I s I s I s

If the REG is SMOOTH and there were no input transitions.

1 1 x <>{O,l,S} s

1 1 x = { 0, 1, s} I LAST OUTPUT

1 s x x I LASTOUTPUT

1 R {0,1} s I LASTOUTPUT

1 I F x <>{O,l,S} ! s

1 ! {t:,U,Z} INPUT = LASTOUTPUT I LASTOUTPUT

1 {C,U,Z} INPUT <> LASTOUTPUT I s

{C,R} x [0, 1] [0' 1] LASTOUTPUT

{C,R} x I {1,R} {0,R} I R

{C,R} x ! {O,F} {l,F} I F

{ c, R} x I s s s
If the REG is SMOOTH and there were no input transitions.

{O,S,F} I x x <>{O,l,S} s

{O,S,F} I x x ={O,l,S} I LASTOUTPUT

{U, Z} x x x I u

The body property TRANSITION determines whether the
output of the REG primitive should change when it is
clocked, even if the input has not changed. When the body
property TRAN~ITlON = GLITCHY is attached to a REG
primitive, the output of the REG will always change even if
the input remains stable. If TRANSITION = SMOOTH is

6-31

Timing Verifier
Timing Verifier Primitives

attached, or no TRANSITION property is attached, the output
of the REG will not change if the input is always stable.

The REG RS primitive is the same as the REG except that
it also has asynchrous R and S inputs. First the REG output
is computed for the current input values, then the SET RESET
function is applied to the output.

THE 2, 4 AND 8 MUX FUNCTIONS

The 2 MUX, 4 MUX, and 8 MUX primitives implement
2-input, 4-input, and 8-input multiplexers. If any of the
select inputs on these multiplexers has a known value of 0
or 1, then only the possibly selected data inputs will be
looked at when calculating the output value. If more than
one data input might be selected, the output value is
calculated by using the CHANGE function on the set of
selected data inputs.

If the N MUX has no TRANSITION property or TRANSITION
GLITCHY, then any input transition causes an output
transition of the appropriate slope. If TRANSITION =
SMOOTH, then if the output state before and after an input
transition is the same, there is no output transition.

SETUP HOLD FUNCTIC~

The SETUP HOLD primitive has a clock and data input.
It will generate an error message in the output listing if
the data input is not stable from SETUP nsec's before the
rising edge of the clock until HOLD nsec's after the rising
edge of the clock. SETUP and HOLD are timing parameters
given to this primitive. This primitive is normally used to
check the set-up and hold times of registers and latches.
This primitive has an optional enable input, which if
specified, turns the checking on and off. If the enable
input is any value other than ZERO, then checking is
enabled. If checking is enabled anytime during the rising
edge of the clock input, then checking will be done for that
edge.

SETUP RISE HOLD FALL FUNCTION

The SETUP RISE HOLD FALL primitive has a clock and data
input. It will generate an error message in the output
listing if the data input is not stable from SETUP nsec's
before the rising edge of the clock, while the clock is
rising, while the clock is true, during the falling edge of
the clock, until HOLD nsec's after the falling edge of the
clock. SETUP and HOLD are timing parameters given to this
primitive. This primitive is normally used to check the
set-up and hold times of data being written into memories.

6-32

Timing Verifier
Timing Verifier Primitives

This primitive has an optional enable input which can be
used to turn off checking. If the enable input is given,
then any value other than ZERO will cause checking to be
enabled. If checking is enabled anywhere between the
beginning of the rising edge to the end of the falling edge,
then checking will be done for that clock pulse.

EDGE TO EDGE FUNCTION

The EDGE TO EDGE primitive has two clock inputs, CKl
and CK2. It checks that the beginning of a RISING edge on
CK2 is at least a minimum delay from the end of a RISING
edge on CKl and that the end of a RISING edge on CK2 is no
more than a maximum delay from the beginning of a RISING
edge on CKl. The delay parameter is used to specify the
minimum and maximum delays used. Only rising delays are
used. If there is no edge on CK2, then no error message
will be generated. This primitive has an optional enable
input, which if specified, turns the checking on and off.
If the enable input is any value other than ZERO, then
checking is enabled. If checking is enabled anytime during
the rising edge of CKl, then the checking will be done for
that edge.

MIN PULSE WIDTH

The MIN ~ULSE WIDTH primitive has one data input. It
has two timing parameters LOW and HIGH. It checks that its
data input has no pulses on it that are low for less than
LOW nsec's, and that it has no pulses on it that are high
for less than HIGH nsec's. This primitive has an optional
enable input, which if specified, turns the checking on and
off. If the enable input is any value other than ZERO, then
checking is enabled. If checking is enabled anytime during
a given pulse, then the width of that pulse is checked.

TRANSMISSION GATE

The TRANSMISSION GATE primitive has an enable input EN,
and two bi-directional pins Tl and T2. If the enable input
is ZERO, then both Tl and T2 are set to high-impedence. If
EN is ONE, then Tl and T2 are tied together using the same
function as the tri-state bus (TS BUS), which is defined on
Page 5-22.

BUBBLING OF PRIMITIVE PINS

Each input and output of every primitive may be
''bubbled" independently. (See Graphics Editor, BUBBLE
command.) Whe~ this is done, it is as if an inverting buffer
were inserted between the signal (input or output) and the
priwitive itself. The characteristics of the primitive

6-33

Timing Verifier
Timing Verifier Primitives

itself are not changed in any way. This is useful for
creating inverting buffers (by bubbling the input or output
of a BUF), nand gates. nor gates, negative edge triggered
registers, etc.

The use of a bubbled input on a MIN PULSE WIDTH
primitive is a good example of the statement that the
primitive itself is unchanged. In order to check a low
asserted signal (e.g., CK) to make sure that it is low for
at least 20.0 nsec one may use a MIN PULSE WIDTH primitive
with a bubbled input and a HIGH=20.0 property.

6.9 SIGNAL STRENGTHS IN THE TIMING VERIFIER

The output of a Timing Verifier primitive may assume
one of three strengths, HARD, SOFT or UNDRIVEN. Strengths
are required to correctly model circuit nodes that have
multiple outputs on them when those outputs have different
drive capabilities. A typical example of this is a tristate
bus that is pulled-up with a resistor. When none of the
tristate drivers are on, the bus should be in the one state.
When a single driver drives the bus to zero, the bus should
assume the zero state. Thus we need some way of modelling
the fact that the resistor output is weaker than a bus
driver output.

Ey defe~lt, the output of all devices except RES,
IDENTITY and wire gates is HARD. The output of a resistor
primitive is SOFT, unless the input to the resistor is
UNDRIVEN, then the output is UNDRIVEN. The output of the
IDENTITY primitive is the same as its input. The output
strength of a wire gate is the same as the strongest input
strength.

The default output strength of a primitive may be
specified by attaching to it a body property STRENGTH which
takes the values HARD, SOFT and UNDRIVEN. All primitives
except the resistor and identity gate and wire gates ignore
the strengths of their input signals. The function of a
resistor and identity gate was described above. The
functions of the dot gates are shown in the tables below.

The tables have four indices. Indices 1 and 3 are the
strength and value of the first input, indices 2 and 4 are
the strength and value of the second input.

DOT OR

HARD,HARD,XO,XO
HARD,HARD~XO,Xs
HARD,HARD,XO,Xc
JARD,HARD,XO,Xf

XO
Xs
Xe
Xf

6-34

HARD,HARD,XO,Xl
HARD,HARD,XO,Xz
HARD,HARD,XO,Xr
HARD,HARD,XO,Xu

Xl
XO
Xr
Xu

Timing Verifier
Timing Verifier Primitives

HARD,HARD,Xl,XO Xl HARD,HARD,Xl,Xl Xl
HARD,HARD,Xl,Xs Xl HARD,HARD,Xl,Xz Xl
HARD,HARD,Xl,Xe Xl HARD,HARD,Xl,Xr Xl
HARD,HARD,Xl,Xf Xl HARD,HARD,Xl,Xu Xl
HARD,HARD,Xs,XO Xs HARD,HARD,Xs,Xl Xl
HARD,HARD,Xs,Xs Xs HARD,HARD,Xs,Xz Xs
HARD,HARD,Xs,Xe Xe HARD,HARD,Xs,Xr Xr
HARD,HARD,Xs,Xf Xf HARD,HARD,Xs,Xu Xu
HARD,HARD,Xe,XO Xe HARD,HARD,Xe,Xl Xl
HARD,HARD,Xe,Xs Xe HARD,HARD,Xe,Xz Xe
HARD,HARD,Xe,Xe Xe HARD,HARD,Xe,Xr Xe
HARD,HARD,Xe,Xf Xe HARD,HARD,Xe,Xu Xu
HARD,HARD,Xr,XO Xr HARD,HARD,Xr,Xl Xl
HARD,HARD,Xr,Xs Xr HARD,HARD,Xr,Xz Xr
HARD,HARD,Xr,Xe Xe HARD,HARD,Xr,Xr Xr
HARD,HARD,Xr,Xf Xe HARD,HARD,Xr,Xu Xu
HARD,HARD,Xf,XO Xf HARD,HARD,Xf,Xl Xl
HARD,HARD,Xf,Xs Xf HARD,HARD,Xf,Xz Xf
HARD,HARD,Xf,Xe Xe HARD,HARD,Xf,Xr Xe
HARD,HARD,Xf,Xf Xf HARD,HARD,Xf,Xu Xu
HARD,HARD,Xz,XO XO HARD,HARD,Xz,Xl Xl
HARD,HARD,Xz,Xs Xs HARD,HARD,Xz,Xz Xz
HARD,HARD,Xz,Xe Xe HARD,HARD,Xz,Xr Xr
HARD,HARD,Xz,Xf Xf HARD,HARD,Xz,Xu Xu
HARD,HARD,Xu,XO Xu HARD,HARD,Xu,Xl Xl
HARD,HARD,Xu,X., Xu HARD,HARD,Xu,Xz Xu
HARTl,HARD,Xu,Xe Xu HARD,HARD,Xu,Xr Xu
HARD,HARD,Xu,Xf Xu HARD,HARD,Xu,Xu Xu
HARD,SOFT,XO,XO XO HARD,SOFT,XO,Xl Xl
HARD,SOFT,XO,Xs Xs HARD,SOFT,XO,Xz XO
HARD,SOFT,XO,Xe Xe HARD,SOFT,XO,Xr Xr
HARD,SOFT,XO,Xf Xf HARD,SOFT,XO,Xu Xu
HARD,SOFT,Xl,XO Xl HARD,SOFT,Xl,Xl Xl
HARD,SOFT,Xl,Xs Xl HARD,SOFT,Xl,Xz Xl
HARD,SOFT,Xl,Xe Xl HARD,SOFT,Xl,Xr Xl
HARD,SOFT,Xl,Xf Xl HARD,SOFT,Xl,Xu Xl
HARD,SOFT,Xs,XO Xs HARD,SOFT,Xs,Xl Xl
HARD,SOFT,Xs,Xs Xs HARD,SOFT,Xs,Xz Xs
HARD,SOFT,Xs,Xe Xe HARD,SOFT,Xs,Xr Xr
HARD,SOFT,Xs,Xf Xf HARD,SOFT,Xs,Xu Xu
HARD,SOFT,Xe,XO Xe HARD,SOFT,Xe,Xl Xl
HARD,SOFT,Xe,Xs Xe HARD,SOFT,Xe,Xz Xe
HARD,SOFT,Xe,Xc Xe HARD,SOFT,Xe,Xr Xe
HARD,SOFT,Xe,Xf Xe HARD,SOFT,Xe,Xu Xu
HARD,SOFT,Xr,XO Xr HARD,SOFT,Xr,Xl Xl
HARD,SOFT,Xr,Xs Xr HARD,SOFT,Xr,Xz Xr
HARD,SOFT,Xr,Xc Xr HARD,SOFT,Xr,Xr Xr
HARD,SOFT,Xr,Xf Xr HARD,SOFT,Xr,Xu Xu
HARD,SOFT,Xf,XO Xf HARD,SOFT,Xf,Xl Xl
HARD,SOFT,Xt,Xs Xf HARD,SOFT,Xf,Xz Xf
H"RD,SOFT,Xf,Xc Xf HARD,SOFT,Xf,Xr Xf
HARD,SOFT,Xf ,Xf Xf HARD,SOFT,Xf,Xu Xu

6-35

Timing Verifier
Timing Verifier Primitives

HARD,SOFT,Xz,XO
HARD,SOFT,Xz,Xs
HARD,SOFT,Xz,Xc
HARD,SOFT,Xz,Xf
HARD,SOFT,Xu,XO
HARD,SOFT,Xu,Xs
HARD,SOFT,Xu,Xc
HARD,SOFT,Xu,Xf

HARD,UNDRIVEN,XO,XO
HARD,UNDRIVEN,XO,Xs
HARD,UNDRIVEN,XO,Xc
HARD,UNDRIVEN,XO,Xf
HARD,UNDRIVEN,Xl,XO
HARD,UNDRIVEN,Xl,Xs
HARD,UNDRIVEN,Xl,Xc
HARD,UNDRIVEN,Xl,Xf
HARD,UNDRIVEN,Xs,XO
HARD,UNDRIVEN,Xs,Xs
HARD,UNDRIVEN,Xs,Xc
HARD,UNDRIVEN,Xs,Xf
HARD,UNDRIVEN,Xc,XO
HARD,UNDRIVEN,Xc,Xs
HARD,UNDRIVEN,Xc,Xc
HARD,UNDRIVEN,Xc,Y~

HARD,DNDRIV~N,Xr,XO

HARu,UNDRIVEN,Xr,Xs
HARD,UNDRIVEN,Xr,Xc
HARD,UNDRIVEN,Xr,Xf
HARD,UNDRIVEN,Xf,XO
HARD,UNDRIVEN,Xf ,Xs
HARD,UNDRIVEN,Xf,Xc
HARD,UNDRIVEN,Xf,Xf
HARD,UNDRIVEN,Xz,XO
HARD,UNDRIVEN,Xz,Xs
HARD,UNDRIVEN,Xz,Xc
HARD,UNDRIVEN,Xz,Xf
HARD,UNDRIVEN,Xu,XO
HARD,UNDRIVEN,Xu,Xs
HARD,UNDRIVEN,Xu,Xc
HARD,UNDRIVEN,Xu,Xf

XO
Xs
Xe
Xf
Xu
Xu
Xu
Xu

HARD,SOFT,Xz,Xl
HARD,SOFT,Xz,Xz
HARD,SOFT,Xz,Xr
HARD,SOFT,Xz,Xu
HARD,SOFT,Xu,Xl
HARD,SOFT,Xu,Xz
HARD,SOFT,Xu,Xr
HARD,SOFT,Xu,Xu

Xl
Xz
Xr
Xu
Xl
Xu
Xu
Xu

XO HARD,UNDRIVEN,XO,Xl
Xs HARD,UNDRIVEN,XO,Xz
Xe HARD,UNDRIVEN,XO,Xr
Xf HARD,UNDRIVEN,XO,Xu
Xl HARD,UNDRIVEN,Xl,Xl
Xl HARD,UNDRIVEN,Xl,Xz
Xl HARD,UNDRIVEN,Xl,Xr
Xl HARD,UNDRIVEN,Xl,Xu
Xs HARD,UNDRIVEN,Xs,Xl
Xs HARD,UNDRIVEN,Xs,Xz
Xs HARD,UNDRIVEN,Xs,Xr
Xs HARD,UNDRIVEN,Xs,Xu
Xe HARD,UNDRIVEN,Xc,Xl
Xe HARD,UNDRIVEN,Xc,Xz
Xe HARD,UNDRIVEN,Xc,Xr
Xe HARD,UNDRIVEN,Xc,Xu
Xr HARD,UNDRIVEN,Xr,Xl
Xr HARD,UNDRIVEN,Xr,Xz
Xr HARD,UNDRIVEN,Xr,Xr
Xr HARD,UNDRIVEN,Xr,Xu
Xf HARD,UNDRIVEN,Xf,Xl
Xf HARD,UNDRIVEN,Xf,Xz
Xf HARD,UNDRIVEN,Xf,Xr
Xf HARD,UNDRIVEN,Xf,Xu
XO HARD,UNDRIVEN,Xz,Xl
Xs HARD,UNDRIVEN,Xz,Xz
Xe HARD,UNDRIVEN,Xz,Xr
Xf HARD,UNDRIVEN,Xz,Xu
Xu HARD,UNDRIVEN,Xu,Xl
Xu HARD,UNDRIVEN,Xu,Xz
Xu HARD,UNDRIVEN,Xu,Xr
Xu HARD,UNDRIVEN,Xu,Xu

Xl
XO
Xr
Xu
Xl
Xl
Xl
Xl
Xs
Xs
Xs
Xu
Xe
Xe
Xe
Xe
Xl
Xr
Xr
Xr
Xl
Xf
Xf
Xf
Xl
Xz
Xr
Xu
Xu
Xu
Xu
Xu

The DOT OR function for strength 1 SOFT, and strength 2
HARD is obtained by transposing the values of the
strength 2 SOFT, and strength 1 HARD table.

The DOT OR function for strength 1 SOFT, and strength 2
SOFT is ident~c&~ to the strength 1 HARD, and strength 2
HARD table.

6-36

Timing Verifier
Timing Verifier Primitives

The DOT OR function for strength 1 SOFT, and strength 2
UNDRIVEN is identical to the strength 1 HARD, and strength 2
UNDRIVEN table.

The DOT OR function for strength 1 UNDRIVEN, and strength 2
HARD is is obtained by transposing the values of the
strength 1 HARD, and strength 2 UNDRIVEN table.

The DOT OR function for strength 1 UNDRIVEN, and strength 2
SOFT is is obtained by transposing the values of the
strength 1 SOFT, and strength 2 UNDRIVEN table.

UNDRIVEN,UNDRIVEN,XO,XO XO UNDRIVEN,UNDRIVEN,XO,Xl
UNDRIVEN,UNDRIVEN,XO,Xs Xs UNDRIVEN,UNDRIVEN,XO,Xz
UNDRIVEN,UNDRIVEN,XO,Xc Xs UNDRIVEN,UNDRIVEN,XO,Xr
UNDRIVEN,UNDRIVEN,XO,Xf Xs UNDRIVEN,UNDRIVEN,XO,Xu
UNDRIVEN,UNDRIVEN,Xl,XO Xs UNDRIVEN,UNDRIVEN,Xl,Xl
UNDRIVEN,UNDRIVEN,Xl,Xs Xs UNDRIVEN,UNDRIVEN,Xl,Xz
UNDRIVEN,UNDRIVEN,Xl,Xc Xs UNDRIVEN,UNDRIVEN,Xl,Xr
UNDRIVEN,UNDRIVEN,Xl,Xf Xs UNDRIVEN,UNDRIVEN,Xl,Xu
UNDRIVEN,UNDRIVEN,Xs,XO Xs UNDRIVEN,UNDRIVEN,Xs,Xl
UNDRIVEN,UNDRIVEN,Xs,Xs Xs UNDRIVEN,UNDRIVEN,Xs,Xz
UNDRIVEN,UNDRIVEN,Xs,Xc Xs UNDRIVEN,UNDRIVEN,Xs,Xr
UNDRIVEN,UNDRIVEN,Xs,Xf Xs UNDRIVEN,UNDRIVEN,Xs,Xu
UNDRIVEN,UNDRIVEN,Xc,XO Xs UNDRIVEN,UNDRIVEN,Xc,Xl
UNDRIVEN,UNDRIVE~,~c)Xs Xs UNDRIVEN,UNDRIVEN,Xc,Xz
UNDRIVEN,UN~RLVEN,Xc,Xc Xs UNDRIVEN,UNDRIVEN,Xc,Xr
UNDKIVEN,UNDRIVEN,Xc,Xf Xs UNDRIVEN,UNDRIVEN,Xc,Xu
UNDRIVEN,UNDRIVEN,Xr,XO Xs UNDRIVEN,UNDRIVEN,Xr,Xl
UNDRIVEN,UNDRIVEN,Xr,Xs Xs UNDRIVEN,UNDRIVEN,Xr,Xz
UNDRIVEN,UNDRIVEN,Xr,Xc Xs UNDRIVEN,UNDRIVEN,Xr,Xr
UNDRIVEN,UNDRIVEN,Xr,Xf Xs UNDRIVEN,UNDRIVEN,Xr,Xu
UNDRIVEN,UNDRIVEN,Xf,XO Xs UNDRIVEN,UNDRIVEN,Xf,Xl
UNDRIVEN,UNDRIVEN,Xf,Xs Xs UNDRIVEN,UNDRIVEN,Xf ,Xz
UNDRIVEN,UNDRIVEN,Xf,Xc Xs UNDRIVEN,UNDRIVEN,Xf ,Xr
UNDRIVEN,UNDRIVEN,Xf ,Xf Xs UNDRIVEN,UNDRIVEN,Xf,Xu
UNDRIVEN,UNDRIVEN,Xz,XO XO UNDRIVEN,UNDRIVEN,Xz,Xl
UNDRIVEN,UNDRIVEN,Xz,Xs Xs UNDRIVEN,UNDRIVEN,Xz,Xz
UNDRIVEN,UNDRIVEN,Xz,Xc Xs UNDRIVEN,UNDRIVEN,Xz,Xr
UNDRIVEN,UNDRIVEN,Xz,Xf Xs UNDRIVEN,UNDRIVEN,Xz,Xu
UNDRIVEN,UNDRIVEN,Xu,XO Xu UNDRIVEN,UNDRIVEN,Xu,Xl
UNDRIVEN,UNDRIVEN,Xu,Xs Xu UNDRIVEN,UNDRIVEN,Xu,Xz
UNDRIVEN,UNDRIVEN,Xu,Xc Xu UNDRIVEN,UNDRIVEN,Xu,Xr
UNDRIVEN,UNDRIVEN,Xu,Xf Xu UNDRIVEN,UNDRIVEN,Xu,Xu

DOT AND

HARD,HARD,XO,XO
HARD,HARD,XO,Xs
HARD,HARn,xn.x~
HARD,HARD,XO,Xf
H~4D,HARD,Xl,XO

XO HARD,HARD,XO,Xl
XO HARD,HARD,XO,Xz
XO HARD,HARD,XO,Xr
XO HARD,HARD,XO,Xu
XO HARD,HARD,Xl,Xl

XO
XO
XO
XO
Xl

6-37

Xs
XO
Xs
Xu
Xl
Xl
Xs
Xu
Xs
Xs
Xs
Xu
Xs
Xs
Xs
Xu
Xs
Xs
Xs
Xu
Xs
Xs
Xs
Xu
Xl
Xz
Xs
Xu
Xu
Xu
Xu
Xu

Timing Verifier
Timing Verifier Primitives

HARD,HARD,Xl,Xs Xs HARD,HARD,Xl,Xz Xl
HARD,HARD,Xl,Xe Xe HARD,HARD,Xl,Xr Xr
HARD,HARD,Xl,Xf Xf HARD,HARD,Xl,Xu Xu
HARD,HARD,Xs,XO XO HARD,HARD,Xs,Xl Xs
HARD,HARD,Xs,Xs Xs HARD,HARD,Xs,Xz Xs
HARD,HARD,Xs,Xe Xe HARD,HARD,Xs,Xr Xr
HARD,HARD,Xs,Xf Xf HARD,HARD,Xs,Xu Xu
HARD,HARD,Xe,XO XO HARD,HARD,Xe,Xl Xe
HARD,HARD,Xe,Xs Xe HARD,HARD,Xe,Xz Xe
HARD,HARD,Xe,Xe Xe HARD,HARD,Xe,xr Xe
HARD,HARD,Xe,Xf Xf HARD,HARD,Xe,Xu Xu
HARD,HARD,Xr,XO XO HARD,HARD,Xr,Xl Xr
HARD,HARD,Xr,Xs I Xr HARD,HARD,Xr,Xz Xr
HARD,HARD,Xr,Xe I Xe HARD,HARD,Xr,Xr Xr
HARD,HARD,Xr,Xf Xe HARD,HARD,Xr,Xu Xu;
HARD,HARD,Xf,XO XO HARD,HARD,Xf,Xl Xf
HARD,HARD,Xf,Xs Xf HARD,HARD,Xf,Xz Xf
HARD,HARD,Xf,Xe Xe HARD,HARD,Xf,Xr Xe
HARD,HARD,Xf,Xf Xf HARD,HARD,Xf,Xu Xu;
HARD,HARD,Xz,XO XO HARD,HARD,Xz,Xl Xl
HARD,HARD,Xz,Xs Xs HARD,HARD,Xz,Xz Xz
HARD,HARD,Xz,Xe Xe HARD,HARD,Xz,Xr Xr
HARD,HARD,Xz,Xf Xf HARD,HARD,Xz,Xu Xu;
HARD,HARD,Xu,XO XO HARD,HARD,Xu,Xl Xu
HARD,HARD,Xu,Xs Xu HARD,HARD,Xu,Xz Xu
HARD,HARD,Xu,Xc Xu HARD,HARD,Xu,Xr Xu
HARD,HARD,:Au,Xf Xu HARD,HARD,Xu,Xu Xu

HARD,SOFT,XO,XO XO HARD,SOFT,XO,Xl XO
HARD,SOFT,XO,Xs XO HARD,SOFT,XO,Xz XO
HARD,SOFT,XO,Xe XO HARD,SOFT,XO,Xr XO
HARD,SOFT,XO,Xf XO HARD,SOFT,XO,Xu XO
HARD,SOFT,Xl,XO XO HARD,SOFT,Xl,Xl Xl
HARD,SOFT,Xl,Xs Xs HARD,SOFT,Xl,Xz Xl
HARD,SOFT,Xl,Xe Xe HARD,SOFT,Xl,Xr Xr
HARD,SOFT,Xl,Xf Xf HARD,SOFT,Xl,Xu Xu
HARD,SOFT,Xs,XO XO HARD,SOFT,Xs,Xl Xs
HARD,SOFT,Xs,Xs Xs HARD,SOFT,Xs,Xz Xs
HARD,SOFT,Xs,Xe Xs HARD,SOFT,Xs,Xr Xr
HARD,SOFT,Xs,Xf Xs HARD,SOFT,Xs,Xu Xu
HARD,SOFT,Xe,XO XO HARD,SOFT,Xe,Xl Xe
HARD,SOFT,Xe,Xs Xe HARD,SOFT,Xe,Xz Xe
HARD,SOFT,Xe,Xe Xe HARD,SOFT,Xe,Xr Xe
HARD,SOFT,Xe,Xf Xf HARD,SOFT,Xe,Xu Xu
HARD,SOFT,Xr,XO XO HARD,SOFT,Xr,Xl Xr
HARD,SOFT,Xr,Xs Xr HARD,SOFT,Xr,Xz Xr
HARD,SOFT,Xr,Xe Xe HARD,SOFT,Xr,Xr Xr
HARD,SOFT,Xr,Xf Xe HARD,SOFT,Xr,Xu Xu;
HARD,SOFT,Xf,XO XO HARD,SOFT,Xf,Xl Xf
HARD,SOFT,Y.f,Xs Xf HARD,SOFT,Xf,Xz Xf
HARD,SOFT,Xf,Xe Xe HARD,SOFT,Xf,Xr Xe
rlARD,SOFT,Xf,Xf Xf HARD,SOFT,Xf ,Xu Xu;

6-38

Timing Verifier
Timing Verifier Primitives

HARD,SOFT,Xz,XO XO HARD,SOFT,Xz,Xl Xl
HARD,SOFT,Xz,Xs Xs HARD,SOFT,Xz,Xz Xz
HARD,SOFT,Xz,Xc Xe HARD,SOFT,Xz,Xr Xr
HARD,SOFT,Xz,Xf Xf HARD,SOFT,Xz,Xu Xu;
HARD,SOFT,Xu,XO XO HARD,SOFT,Xu,Xl Xu
HARD,SOFT,Xu,Xs Xu HARD,SOFT,Xu,Xz Xu
HARD,SOFT,Xu,Xc Xu HARD,SOFT,Xu,Xr Xu
HARD,SOFT,Xu,Xf Xu HARD,SOFT,Xu,Xu Xu

HARD,UNDRIVEN,XO,XO XO HARD,UNDRIVEN,XO,Xl XO
HARD,UNDRIVEN,XO,Xs XO HARD,UNDRIVEN,XO,Xz XO
HARD,UNDRIVEN,XO,Xc XO HARD,UNDRIVEN,XO,Xr XO
HARD,UNDRIVEN,XO,Xf XO HARD,UNDRIVEN,XO,Xu XO
HARD,UNDRIVEN,Xl,XO XO HARD,UNDRIVEN,Xl,Xl Xl
HARD,UNDRIVEN,Xl,Xs Xs HARD,UNDRIVEN,Xl,Xz Xl
HARD,UNDRIVEN,Xl,Xc Xe HARD,UNDRIVEN,Xl,Xr Xs
HARD,UNDRIVEN,Xl,Xf Xf HARD,UNDRIVEN,Xl,Xu Xu
HARD,UNDRIVEN,Xs,XO Xs HARD,UNDRIVEN,Xs,Xl Xs
HARD,UNDRIVEN,Xs,Xs Xs HARD,UNDRIVEN,Xs,Xz Xs
HARD,UNDRIVEN,Xs,Xc Xs HARD,UNDRIVEN,Xs,Xr Xs
HARD,UNDRIVEN,Xs,Xf Xs HARD,UNDRIVEN,Xs,Xu Xs
HARD,UNDRIVEN,Xc,XO Xe HARD,UNDRIVEN,Xc,Xl Xe
HARD,UNDRIVEN,Xc,Xs Xe HARD,UNDRIVF.N,Xc,Xz Xe
HARD,UNDRIVEN,Xc.~~ Xe HARD,UNDRIVEN,Xc,Xr Xe
HARD,UNDRIVE~,Xc,Xf Xe HARD,UNDRIVEN,Xc,Xu Xe
HARL,UNDRIVEN,Xr,XO XO HARD,UNDRIVEN,Xr,Xl Xr
HARD,UNDRIVEN,Xr,Xs Xr HARD,UNDRIVEN,Xr,Xz Xr
HARD,UNDRIVEN,Xr,Xc Xr HARD,UNDRIVEN,Xr,Xr Xr
HARD,UNDRIVEN,Xr,Xf Xr HARD,UNDRIVEN,Xr,Xu Xr;
HARD,UNDRIVEN,Xf,XO Xf HARD,UNDRIVEN,Xf,Xl Xf
HARD,UNDRIVEN,Xf,Xs Xf HARD,UNDRIVEN,Xf,Xz Xf
HARD,UNDRIVEN,Xf,Xc Xf HARD,UNDRIVEN,Xf,Xr Xf
HARD,UNDRIVEN,Xf,Xf Xf HARD,UNDRIVEN,Xf,Xu Xf;
HARD,UNDRIVEN,Xz,XO XO HARD,UNDRIVEN,Xz,Xl Xl
HARD,UNDRIVEN,Xz,Xs Xs HARD,UNDRIVEN,Xz,Xz Xz
HARD,UNDRIVEN,Xz,Xc Xe HARD,UNDRIVEN,Xz,Xr Xs
HARD,UNDRIVEN,Xz,Xf Xf HARD,UNDRIVEN,Xz,Xu Xu;
HARD,UNDRIVEN,Xu,XO Xu HARD,UNDRIVEN,Xu,Xl Xu
HARD,UNDRIVEN,Xu,Xs Xu HARD,UNDRIVEN,Xu,Xz Xu
HARD,UNDRIVEN,Xu,Xc Xu HARD,UNDRIVEN,Xu,Xr Xu
HARD,UNDRIVEN,Xu,Xf Xu HARD,UNDRIVEN,Xu,Xu Xu

The DOT AND function for strength 1 SOFT, and strength 2
HARD is obtained by transposing the values of the
strength 2 SO~~> and strength 1 HARD table.

The ~OT AND function for strength 1 SOFT, and strength 2

6-39

Timing Verifier
Timing Verifier Primitives

SOFT is identical to the strength 1 HARD, and strength 2
HARD table.

The DOT AND function for strength 1 SOFT, and strength 2
UNDRIVEN is identical to the strength 1 HARD, and strength 2
UNDRIVEN table.

The DOT AND function for strength 1 UNDRIVEN, and strength 2
HARD is is obtained by transposing the values of the
strength 1 HARD, and strength 2 UNDRIVEN table.

The DOT AND function for strength 1 UNDRIVEN, and strength 2
SOFT is is obtained by transposing the values of the
strength 1 SOFT, and strength 2 UNDRIVEN table.

UNDRIVEN,UNDRIVEN,XO,XO Xs
UNDRIVEN,UNDRIVEN,XO,Xl XO
UNDRIVEN,UNDRIVEN,XO,Xs Xs
UNDRIVEN,UNDRIVEN,XO,Xz XO
UNDRIVEN,UNDRIVEN,XO,Xc Xs
UNDRIVEN,UNDRIVEN,XO,Xr XO
UNDRIVEN,UNDRIVEN,XO,Xf Xs
UNDRIVEN,UNDRIVEN,XO,Xu XO
UNDRIVEN,UNDRIVEN,Xl,XO XO
UNDRIVEN,UNDRIVEN,Xl,Xl Xl
UNDRIVEN,UNDRIVE~,Xl,Xs Xs
UNDRIVEN,U~DRIVEN,Xl,Xz Xl
UNuRIVEN,UNDRIVEN,Xl,Xc Xs
UNDRIVEN,UNDRIVEN,Xl,Xr Xs
UNDRIVEN,UNDRIVEN,Xl,Xf Xs
UNDRIVEN,UNDRIVEN,Xl,Xu Xu
UNDRIVEN,UNDRIVEN,Xs,XO XO
UNDRIVEN,UNDRIVEN,Xs,Xl Xs
UNDRIVEN,UNDRIVEN,Xs,Xs Xs
UNDRIVEN,UNDRIVEN,Xs,Xz Xs
UNDRIVEN,UNDRIVEN,Xs,Xc Xs
UNDRIVEN,UNDRIVEN,Xs,Xr Xs
UNDRIVEN,UNDRIVEN,Xs,Xf Xs
UNDRIVEN,UNDRIVEN,Xs,Xu Xu
UNDRIVEN,UNDRIVEN,Xc,XO XO
UNDRIVEN,UNDRIVEN,Xc,Xl Xs
UNDRIVEN,UNDRIVEN,Xc,Xs Xs
UNDRIVEN,UNDRIVEN,Xc,Xz Xs
UNDRIVEN,UNDRIVEN,Xc,Xc Xs
UNDRIVEN,UNDRIVEN,Xc,Xr Xs
UNDRIVEN,UNDRIVEN,Xc,Xf Xs
UNDRIVEN,UNDRIVEN,Xc,Xu Xu
UNDRIVEN,UNDRIVEN,Xr,XO XO
UNDRIVEN,UNDRIVEN,Xr,Xl Xs
UNDRIVEN,U~~R:VEN,Xr,Xs Xs
UNDRIVEN,UNDRIVEN,Xr,Xz Xs
~clDRIVEN,UNDRIVEN,Xr,Xc Xs

6-40

TS

Timing Verifier
Timing Verifier Primitives

UNDRIVEN,UNDRIVEN,Xr,Xr Xs
UNDRIVEN,UNDRIVEN,Xr,Xf Xs
UNDRIVEN,UNDRIVEN,Xr,Xu Xu;
UNDRIVEN,UNDRIVEN,Xf,XO Xs
UNDRIVEN,UNDRIVEN,Xf,Xl Xs
UNDRIVEN,UNDRIVEN,Xf,Xs Xs
UNDRIVEN,UNDRIVEN,Xf,Xz Xs
UNDRIVEN,UNDRIVEN,Xf,Xe Xs
UNDRIVEN,UNDRIVEN,Xf,Xr Xs
UNDRIVEN,UNDRIVEN,Xf ,Xf Xs
UNDRIVEN,UNDRIVEN,Xf,Xu Xu;
UNDRIVEN,UNDRIVEN,Xz,XO XO
UNDRIVEN,UNDRIVEN,Xz,Xl Xl
UNDRIVEN,UNDRIVEN,Xz,Xs Xs
UNDRIVEN,UNDRIVEN,Xz,Xz Xz
UNDRIVEN,UNDRIVEN,Xz,Xe Xs
UNDRIVEN,UNDRIVEN,Xz,Xr Xs
UNDRIVEN,UNDRIVEN,Xz,Xf Xs
UNDRIVEN,UNDRIVEN,Xz,Xu Xu;
UNDRIVEN,UNDRIVEN,Xu,XO Xu
UNDRIVEN,UNDRIVEN,Xu,Xl Xu
UNDRIVEN,UNDRIVEN,Xu,Xs Xu
UNDRIVEN,UNDRIVEN,Xu,Xz Xu
UNDRIVEN,UNDRIVEN,Xu,Xe Xu
UNDRIVEN,UNDRIVEN,Xu,Xr Xu
UNDRIVEN,UNDRIVE~,~u,Xf Xu
UNDRIVEN,UNvRIVEN,Xu,Xu Xu

BUS

HARD,HARD,XO,XO XO HARD,HARD,XO,Xl Xu
HARD,HARD,XO,Xs Xu HARD,HARD,XO,Xz XO
HARD,HARD,XO,Xe Xe HARD,HARD,XO,Xr Xe
HARD,HARD,XO,Xf Xf HARD,HARD,XO,Xu Xu
HARD,HARD,Xl,XO Xu HARD,HARD,Xl,Xl Xl
HARD,HARD,Xl,Xs Xu HARD,HARD,Xl,Xz Xl
HARD,HARD,Xl,Xe Xe HARD,HARD,Xl,Xr Xr
HARD,HARD,Xl,Xf Xe HARD,HARD,Xl,Xu Xu
HARD,HARD,Xs,XO Xu HARD,HARD,Xs,Xl Xu
HARD,HARD,Xs,Xs Xs HARD,HARD,Xs,Xz Xs
HARD,HARD,Xs,Xe Xe HARD,HARD,Xs,Xr Xe
HARD,HARD,Xs,Xf Xe HARD,HARD,Xs,Xu Xu
HARD,HARD,Xe,XO Xe HARD,HARD,Xe,Xl Xe
HARD,HARD,Xe,Xs Xe HARD,HARD,Xe,Xz Xe
HARD,HARD,Xe,Xe Xe HARD,HARD,Xe,Xr Xe
HARD,HARD,Xe,Xf Xe HARD,HARD,Xe,Xu Xu
HARD,HARD,Xr,XO Xe HARD,HARD,Xr,Xl Xr
HARD,HARD,Xr,Xs Xe HARD,HARD,Xr,Xz Xr
HARD,HARD,Xr,Xe Xe HARD,HARD,Xr,Xr Xr
HARD,HARD,X:-,X£ Xe HARD,HARD,Xr,Xu Xu;
HARD,HARD,Xf,XO Xf HARD,HARD,Xf,Xl Xe
Hat<.D,HARD,Xf,Xs Xe HARD,HARD,Xf,Xz Xf

6-41

Timing Verifier
Timing Verifier Primitives

HARD,HARD,Xf,Xc
HARD,HARD,Xf,Xf
HARD,HARD,Xz,XO
HARD,HARD,Xz,Xs
HARD,HARD,Xz,Xc
HARD,HARD,Xz,Xf
HARD,HARD,Xu,XO
HARD,HARD,Xu,Xs
HARD,HARD,Xu,Xc
HARD,HARD,Xu,Xf

HARD,SOFT,XO,XO
HARD,SOFT,XO,Xs
HARD,SOFT,XO,Xc
HARD,SOFT,XO,Xf
HARD,SOFT,Xl,XO
HARD,SOFT,Xl,Xs
HARD,SOFT,Xl,Xc
HARD,SOFT,Xl,Xf
HARD,SOFT,Xs,XO
HARD,SOFT,Xs,Xs
HARD,SOFT,Xs,Xc
HARD,SOFT,Xs,Xf
HARD,SOFT,Xc,XO
HARD,SOFT,~c,Xs

HAKD,SOFT,Xc,Xc
HARD,SOFT,Xc,Xf
HARD,SOFT,X".',XO
HARD,SOFT,Xr,Xs
HARD,SOFT,Xr,Xc
HARD,SOFT,Xr,Xf
HARD,SOFT,Xf,XO
HARD,SOFT,Xf,Xs
HARD,SOFT,Xf,Xc
HARD,SOFT,Xf,Xf
HARD,SOFT,Xz,XO
HARD,SOFT,Xz,Xs
HARD,SOFT,Xz,Xc
HARD,SOFT,Xz,Xf
HARD,SOFT,Xu,XO
HARD,SOFT,Xu,Xs
HARD,SOFT,Xu,Xc
HARD,SOFT,Xu,Xf

Xe HARD,HARD,Xf,Xr
Xf HARD,HARD,Xf,Xu
XO HARD,HARD,Xz,Xl
Xs HARD,HARD,Xz,Xz
Xe HARD,HARD,Xz,Xr
Xf HARD,HARD,Xz,Xu
Xu HARD,HARD,Xu,Xl
Xu HARD,HARD,Xu,Xz
Xu HARD,HARD,Xu,Xr
Xu HARD,HARD,Xu,Xu

XO HARD,SOFT,XO,Xl
XO HARD,SOFT,XO,Xz
XO HARD,SOFT,XO,Xr
XO HARD,SOFT,XO,Xu
Xl HARD,SOFT,Xl,Xl
Xl HARD,SOFT,Xl,Xz
Xl HARD,SOFT,Xl,Xr
Xl HARD,SOFT,Xl,Xu
Xs -HARD,SOFT,Xs,Xl
Xs HARD,SOFT,Xs,Xz
Xs HARD,SOFT,Xs,Xr
Xs HARD,SOFT,Xs,Xu
Xe HARD,SOFT,Xc,Xl
Xe HARD,SOFT,Xc,Xz
Xe HARD,SOFT,Xc,Xr
Xe HARD,SOFT,Xc,Xu
Xr HARD,SOFT,Xr,Xl
Xr HARD,SOFT,Xr,Xz
Xr HARD,SOFT,Xr,Xr
Xr HARD,SOFT,Xr,Xu
Xf HARD,SOFT,Xf,Xl
Xf HARD,SOFT,Xf,Xz
Xf HARD,SOFT,Xf,Xr
Xf HARD,SOFT,Xf,Xu
XO HARD,SOFT,Xz,Xl
Xs HARD,SOFT,Xz,Xz
Xe HARD,SOFT,Xz,Xr
Xf HARD,SOFT,Xz,Xu
Xu HARD,SOFT,Xu,Xl
Xu HARD,SOFT,Xu,Xz
Xu HARD,SOFT,Xu,Xr
Xu HARD,SOFT,Xu,Xu

Xe
Xu;
Xl
Xz
Xr
Xu;
Xu
Xu
Xu
Xu

XO
XO
XO
XO
Xl
Xl
Xl
Xl
Xs
Xs
Xs
Xs
Xe
Xe
Xe
Xe
Xr
Xr
Xr
Xr;
Xf
Xf
Xf
Xf;
Xl
Xz
Xr
Xu;
Xu
Xu
Xu
Xu

The TS BUS function for strength 1 HARD, and strength 2
UNDRIVEN is identical to the
strength 1 H~~t, and strength 2 SOFT table.

The TS BUS function for strength 1 SOFT, and strength 2

6-42

Timing Verifier
Timing Verifier Primitives

HARD is obtained by transposing the values of the
strength 1 HARD, and strength 2 SOFT table.

The TS BUS function for strength 1 SOFT, and strength 2
SOFT is identical to the strength 1 HARD, and strength 2
HARD table.

The TS BUS function for strength 1 SOFT, and strength 2
UNDRIVEN is identical to the strength 1 HARD, and strength 2
UNDRIVEN table.

The TS BUS function for strength 1 UNDRIVEN, and strength 2
HARD is is obtained by transposing the values of the
strength 1 HARD, and strength 2 UNDRIVEN table.

The TS BUS function for strength 1 UNDRIVEN, and strength 2
SOFT is is obtained by transposing the values of the
strength 1 SOFT, and strength 2 UNDRIVEN table.

UNDRIVEN,UNDRIVEN,XO,XO XO UNDRIVEN,UNDRIVEN,XO,Xl
UNDRIVEN,UNDRIVEN,XO,Xs Xs UNDRIVEN,UNDRIVEN,XO,Xz
UNDRIVEN,UNDRIVEN,XO,Xc Xs UNDRIVEN,UNDRIVEN,XO,Xr
UNDRIVEN,UNDRIVEN,XO,Xf Xs UNDRIVEN,UNDRIVEN,XO,Xu
UNDRIVEN,UNDRIVEN,Xl,XO Xs UNDRIVEN,UNDRIVEN,Xl,Xl
UNDRIVEN,UNDRIVEN,~1.Xs Xs UNDRIVEN,UNDRIVEN,Xl,Xz
UNDRIVEN,UN~~IVEN,Xl,Xc Xs UNDRIVEN,UNDRIVEN,Xl,Xr
UNDRIVEN,UNDRIVEN,Xl,Xf Xs UNDRIVEN,UNDRIVEN,Xl,Xu
UNDRIVEN,UNDRIVEN,Xs,XO Xs UNDRIVEN,UNDRIVEN,Xs,Xl
UNDRIVEN,UNDRIVEN,Xs,Xs Xs UNDRIVEN,UNDRIVEN,Xs,Xz
UNDRIVEN,UNDRIVEN,Xs,Xc Xs UNDRIVEN,UNDRIVEN,Xs,Xr
UNDRIVEN,UNDRIVEN,Xs,Xf Xs UNDRIVEN,UNDRIVEN,Xs,Xu
UNDRIVEN,UNDRIVEN,Xc,XO Xs UNDRIVEN,UNDRIVEN,Xc,Xl
UNDRIVEN,UNDRIVEN,Xc,Xs Xs UNDRIVEN,UNDRIVEN,Xc,Xz
UNDRIVEN,UNDRIVEN,Xc,Xc Xs UNDRIVEN,UNDRIVEN,Xc,Xr
UNDRIVEN,UNDRIVEN,Xc,Xf Xs UNDRIVEN,UNDRIVEN,Xc,Xu
UNDRIVEN,UNDRIVEN,Xr,XO Xs UNDRIVEN,UNDRIVEN,Xr,Xl
UNDRIVEN,UNDRIVEN,Xr,Xs Xs UNDRIVEN,UNDRIVEN,Xr,Xz
UNDRIVEN,UNDRIVEN,Xr,Xc Xs UNDRIVEN,UNDRIVEN,Xr,Xr
UNDRIVEN,UNDRIVEN,Xr,Xf Xs UNDRIVEN,UNDRIVEN,Xr,Xu
UNDRIVEN,UNDRIVEN,Xf,XO Xs UNDRIVEN,UNDRIVEN,Xf ,Xl
UNDRIVEN,UNDRIVEN,Xf,Xs Xs UNDRIVEN,UNDRIVEN,Xf,Xz
UNDRIVEN,UNDRIVEN,Xf,Xc Xs UNDRIVEN,UNDRIVEN,Xf,Xr
UNDRIVEN,UNDRIVEN,Xf,Xf Xf UNDRIVEN,UNDRIVEN,Xf,Xu
UNDRIVEN,UNDRIVEN,Xz,XO XO UNDRIVEN,UNDRIVEN,Xz,Xl
UNDRIVEN,UNDRIVEN,Xz,Xs Xs UNDRIVEN,UNDRIVEN,Xz,Xz
UNDRIVEN,UNDRIVEN,Xz,Xc Xe UNDRIVEN,UNDRIVEN,Xz,Xr
UNDRIVEN,UNDRIVEN,Xz,Xf Xf UNDRIVEN,UNDRIVEN,Xz,Xu
UNDRIVEN,UNDRIVEN,Xu,XO Xu UNDRIVEN,UNDRIVEN,Xu,Xl
UNDRIVEN,UNDRlV!N,Xu,Xs Xu UNDRIVEN,UNDRIVEN,Xu,Xz
UNDRIVEN,UNDRIVEN,Xu,Xc Xu UNDRIVEN,UNDRIVEN,Xu,Xr
u~~RIVEN,UNDRIVEN,Xu,Xf Xu UNDRIVEN,UNDRIVEN,Xu,Xu

6-43

Xs
XO
Xs
Xs
Xl
Xl
Xs
Xu
Xs
Xs
Xs
Xu
Xs
Xe
Xs
Xu
Xs
Xr
Xr
Xu
Xs
Xf
Xs
Xu
Xl
Xz
Xr
Xu
Xu
Xu
Xu
Xu

Timing Verifier
Timing Verifier Primitives

TS OR BUS

HARD,HARD,XO,XO XO HARD,HARD,XO,Xl Xl
HARD,HARD,XO,Xs Xs HARD,HARD,XO,Xz XO
HARD,HARD,XO,Xe Xe HARD,HARD,XO,Xr Xr
HARD,HARD,XO,Xf Xf HARD,HARD,XO,Xu Xu
HARD,HARD,Xl,XO Xs HARD,HARD,Xl,Xl Xl
HARD,HARD,Xl,Xs Xs HARD,HARD,Xl,Xz Xl
HARD,HARD,Xl,Xe Xe HARD,HARD,Xl,Xr Xl
HARD,HARD,Xl,Xf Xe HARD,HARD,Xl,Xu Xl
HARD,HARD,Xs,XO Xs HARD,HARD,Xs,Xl Xs
HARD,HARD,Xs,Xs Xs HARD,HARD,Xs,Xz Xs
HARD,HARD,Xs,Xe Xe HARD,HARD,Xs,Xr Xe
HARD,HARD,Xs,Xf Xe HARD,HARD,Xs,Xu Xu
HARD,HARD,Xe,XO Xe HARD,HARD,Xe,Xl Xe
HARD,HARD,Xe,Xs Xe HARD,HARD,Xe,Xz Xe
HARD,HARD,Xe,Xe Xe HARD,HARD,Xe,Xr Xe
HARD,HARD,Xe,Xf Xe HARD,HARD,Xe,Xu Xu
HARD,HARD,Xr,XO Xe HARD,HARD,Xr,Xl Xe
HARD,HARD,Xr,Xs Xe HARD,HARD,Xr,Xz Xr
HARD,HARD,Xr,Xe Xe HARD,HARD,Xr,Xr Xr
HARD,HARD,Xr,Xf Xe HARD,HARD,Xr,Xu Xu
HARD,HARD,Xf,XO Xe HARD,HARD,Xf,Xl Xe
HARD,HARD,Xf,Xs Xe HARD,HARD,Xf,Xz Xf
HARD,HARD,Xf,Xe Xe HARD,HARD,Xf.Xr Xe
HARD,HARD,Xf,Xf 'i{f HARD,HARD,Xf,Xu Xu
HARD,HARD,A.:i:o,XO XO HARD,HARD,Xz,Xl Xl
HAKD,HARD,Xz,Xs Xs HARD,HARD,Xz,Xz Xz
HARD,HARD,Xz,Xe Xe HARD,HARD,Xz,Xr Xr
HARD,HARD,Xz,Xf Xf HARD,HARD,Xz,Xu Xu
HARD,HARD,Xu,XO Xu HARD,HARD,Xu,Xl Xu
HARD,HARD,Xu,Xs Xu HARD,HARD,Xu,Xz Xu
HARD,HARD,Xu,Xe Xu HARD,HARD,Xu,Xr Xu
HARD,HARD,Xu,Xf Xu HARD,HARD,Xu,Xu Xu

HARD,SOFT,XO,XO XO HARD,SOFT,XO,Xl XO
HARD,SOFT,XO,Xs XO HARD,SOFT,XO,Xz XO
HARD,SOFT,XO,Xe XO HARD,SOFT,XO,Xr XO
HARD,SOFT,XO,Xf XO HARD,SOFT,XO,Xu XO
HARD,SOFT,Xl,XO Xl HARD,SOFT,Xl,Xl Xl
HARD,SOFT,Xl,Xs Xl HARD,SOFT,Xl,Xz Xl
HARD,SOFT,Xl,X:e Xl HARD,SOFT,Xl,Xr Xl
HARD,SOFT,Xl,Xf Xl HARD,SOFT,Xl,Xu Xl
HARD,SOFT,Xs,XO Xs HARD,SOFT,Xs,Xl Xs
HARD,SOFT,Xs,Xs Xs HARD,SOFT,Xs,Xz Xs
HARD,SOFT,Xs,Xe Xs HARD,SOFT,Xs,Xr Xs
HARD,SOFT,Xs,Xf Xs HARD,SOFT,Xs,Xu Xs
HARD, SOFT:. Y~, :~O Xe HARD,SOFT,Xe,Xl Xe
HARD,SOFT,Xe,Xs Xe HARD,SOFT,Xe,Xz Xe
~.ARD, SOFT, Xe, Xe Xe HARD,SOFT,Xe,Xr Xe

6-44

Timing Verifier
Timing Verifier Primitives

HARD,SOFT,Xc,Xf
HARD,SOFT,Xr,XO
HARD,SOFT,Xr,Xs
HARD,SOFT,Xr,Xc
HARD,SOFT,Xr,Xf
HARD,SOFT,Xf,XO
HARD,SOFT,Xf ,Xs
HARD,SOFT,Xf,Xc
HARD,SOFT,Xf,Xf
HARD,SOFT,Xz,XO
HARD,SOFT,Xz,Xs
HARD,SOFT,Xz,Xc
HARD,SOFT,Xz,Xf
HARD,SOFT,Xu,XO
HARD,SOFT,Xu,Xs
HARD,SOFT,Xu,Xc
HARD,SOFT,Xu,Xf

Xe
Xr
Xr
Xr
Xr
Xf
Xf
Xf
Xf
XO
Xs
Xe
Xf
Xu
Xu
Xu
Xu

HARD,SOFT,Xc,Xu
HARD,SOFT,Xr,Xl
HARD,SOFT,Xr,Xz
HARD,SOFT,Xr,Xr
HARD,SOFT,Xr,Xu
HARD,SOFT,Xf,Xl
HARD,SOFT,Xf,Xz
HARD,SOFT,Xf,Xr
HARD,SOFT,Xf,Xu
HARD,SOFT,Xz,Xl
HARD,SOFT,Xz,Xz
HARD,SOFT,Xz,Xr
HARD,SOFT,Xz,Xu
HARD,SOFT,Xu,Xl
HARD,SOFT,Xu,Xz
HARD,SOFT,Xu,Xr
HARD,SOFT,Xu,Xu

Xe
Xr
Xr
Xr
Xr
Xf
Xf
Xf
Xf
Xl
Xz
Xr
Xu
Xl
Xu
Xu
Xu

The TS OR BUS function for strength 1 HARD, and strength 2
UNDRIVEN is identical to the
strength 1 HARD, and strength 2 SOFT table.

The TS OR BUS function for strength 1 SOFT, and strength 2
HARD is obtained by transposing the values of the
strength 1 HARD, and strength 2 SOFT table.

The TS OR BUS function for strength 1 SOFT, and strength 2
SOFT is identical to the strength 1 HARD, and strength 2
HARD table.

The TS OR BUS function for strength 1 SOFT, and strength 2
UNDRIVEN is identical to the strength 1 HARD, and strength 2
UNDRIVEN table.

The TS OR BUS function for strength 1 UNDRIVEN, and strength 2
HARD is is obtained by transposing the values of the
strength 1 HARD, and strength 2 UNDRIVEN table.

The TS OR BUS function for strength 1 UNDRIVEN, and strength 2
SOFT is is obtained by transposing the values of the
strength 1 SOFT, and strength 2 UNDRIVEN table.

UNDRIVEN,UNDRIVEN,XO,XO XO
UNDRIVEN,UNDRIVEN,XO,Xl Xs
UNDRIVEN,UNDRIVEN,XO,Xs Xs
UNDRIVEN,UNDRIVEN,XO,Xz XO
UNDRIVEN,UNDRIVEN,XO,Xc Xs
UNDRIVEN,UNDRIVEN,XO,Xr Xs
UNDRIVEN,UNURIVEN,XO,Xf Xs
UNURIVEN,UNDRIVEN,XO,Xu Xu
UNDRIVEN,UNDRIVEN,Xl,XO Xs

6-45

Timing Verifier
Timing Verifier Primitives

UNDRIVEN,UNDRIVEN,Xl,Xl Xl
UNDRIVEN,UNDRIVEN,Xl,Xs Xs
UNDRIVEN,UNDRIVEN,Xl,Xz Xl
UNDRIVEN,UNDRIVEN,Xl,Xc Xs
UNDRIVEN,UNDRIVEN,Xl,Xr Xs
UNDRIVEN,UNDRIVEN,Xl,Xf Xs
UNDRIVEN,UNDRIVEN,Xl,Xu Xu
UNDRIVEN,UNDRIVEN,Xs,XO Xs
UNDRIVEN,UNDRIVEN,Xs,Xl Xs
UNDRIVEN,UNDRIVEN,Xs,Xs Xs
UNDRIVEN,UNDRIVEN,Xs,Xz Xs
UNDRIVEN,UNDRIVEN,Xs,Xc Xs
UNDRIVEN,UNDRIVEN,Xs,Xr Xs
UNDRIVEN,UNDRIVEN,Xs,Xf Xs
UNDRIVEN,UNDRIVEN,Xs,Xu Xu
UNDRIVEN,UNDRIVEN,Xc,XO Xs
UNDRIVEN,UNDRIVEN,Xc,Xl Xs
UNDRIVEN,UNDRIVEN,Xc,Xs Xs
UNDRIVEN,UNDRIVEN,Xc,Xz Xs
UNDRIVEN,UNDRIVEN,Xc,Xc Xs
UNDRIVEN,UNDRIVEN,Xc,Xr Xs
UNDRIVEN,UNDRIVEN,Xc,Xf Xs
UNDRIVEN,UNDRIVEN,Xc,Xu Xu
UNDRIVEN,UNDRIVEN,Xr,XO Xs
UNDRIVEN,UNDRIVEN,Xr,Xl Xs
UNDRIVEN,UNDRIVE~,~r,Xs Xs
UNDRIVEN,U~URIVEN,Xr,Xz Xs
UNDRIVEN,UNDRIVEN,Xr,Xc Xs
UNDRIVEN,UNDRIVEN,Xr,Xr Xs
UNDRIVEN,UNDRIVEN,Xr,Xf Xs
UNDRIVEN,UNDRIVEN,Xr,Xu Xu
UNDRIVEN,UNDRIVEN,Xf,XO Xs
UNDRIVEN,UNDRIVEN,Xf,Xl Xs
UNDRIVEN,UNDRIVEN,Xf,Xs Xs
UNDRIVEN,UNDRIVEN,Xf,Xz Xs
UNDRIVEN,UNDRIVEN,Xf,Xc Xs
UNDRIVEN,UNDRIVEN,Xf,Xr Xs
UNDRIVEN,UNDRIVEN,Xf,Xf Xs
UNDRIVEN,UNDRIVEN,Xf,Xu Xu
UNDRIVEN,UNDRIVEN,Xz,XO XO
UNDRIVEN,UNDRIVEN,Xz,Xl Xl

6-46

UNDRIVEN,UNDRIVEN,Xz,Xs
UNDRIVEN,UNDRIVEN,Xz,Xz
UNDRIVEN,UNDRIVEN,Xz,Xc
UNDRIVEN,UNDRIVEN,Xz,Xr
UNDRIVEN,UNDRIVEN,Xz,Xf
UNDRIVEN,UNDRIVEN,Xz,Xu
UNDRIVEN,UNDRIVEN,Xu,XO
UNDRIVEN,UNDRIVEN,Xu,Xl
UNDRIVEN,UNDRIVEN,Xu,Xs
UNDRIVEN,UNDRIVEN,Xu,Xz
UNDRIVEN,UNDRIVEN,Xu,Xc
UNDRIVEN,UNDRIVEN,Xu,Xr
UNDRIVEN,UNDRIVEN,Xu,Xf
UNDRIVEN,UNDRIVEN,Xu,Xu

6-47

Xs
Xz
Xs
Xs
Xs
Xu
Xu
Xu
Xu
Xu
Xu
Xu
Xu
Xu

Timing Verifier
Timing Verifier Primitives

Timing Verifier
Timing Verifier Output Format

Timing Verifier Output Format

6.10 INTRODUCTION

The Timing Verifier provides a single output listing
which contains several kinds of information:

1. Errors detected during the reading of the input files.
These errors are syntax errors and indicate that one of
the inputs to the Timing Verifier is not properly
formed.

2. Errors detected while the Timing Verifier is running.
These errors fall into two classes: improper inputs and
internal Timing Verifier errors.

The errors reported by the Timing Verifier will guide
the user to correct his design. Internal errors are
clearly distinguished and should be reported to VALID
immediately.

3. A list of the value history of every output signal in
the design.

4. A list of timiJ~ violations.

The output listing is described in detail using the
annotated Timing Verifier output on the following pages.

6-48

Timing Verifier
Timing Verifier Output Format

6.11 SAMPLE RUN OF THE TIMING VERIFIER

First the Timing Verifier is run with the following
directives (VERIFIER.CMD) file:

CLOCK PERIOD 200.0;
CLOCK INTERVALS 10;
CLOCK_SKEW 0.0;
PREC CLOCK SKEW o.o;
WIRE-DELAY- o.o;
BIT ORDERING RIGHT TO_LEFT;
end:-

This produces the following output listing (line numbers
have been added for reference - they do not normally appear
in the output file):

l)
2)
3)
4)
5)
6)
7)
8)
9)

10)
11)
12)
13)
14)
15)
16)
17)
18)
19)
20)
21)
22)
23)
24)
2 5)
26)
27)
28)
29)
30)
31)
3 2)
33)
34)
35)
36)
37)
38)
39)
40)
41)
42)

Reading Compiler Expansion File •••
Primitive ~ TSBUF

4 2)
SIZE•'8';

ERROR # l undefined primitive type
ERROR # 2 Unknown primitive in wire list ignored

2 errors detected.
(00:00:16.74)

Reading directives file •••
863) BIT_ORDERING RIGHT_TO_LEFT;

ERROR # 3 Unknown option specified
One error detected.

(00:00:00.40)

Verifier Directives:
CLOCK PERIOD 200.0;
CLOCK=INTERVALS 10 (20.0ns);
CLOCK SKEW 0.0;
PRECISION CLOCK SKEW o.o;
MINIMUM WIRE DELAY o.o;
MAXIMUM-WIRE-DELAY o.o;
RISE FALL ANALYSIS ON;
DOT TYPE DOT AND;
MAX-ERRORS 10
LIST OFF;

Reading bus delay file •••
No errors detected.

(00:00:00.24)

Initializing signals •••
No errors detected.

(00:00:01.3 2)

Reading Case Specification
1) END.
No errors detected.

Doing timing analysis •••
Circuit Evaluation completed
Total numbet of evaluation passes: 10

6-49

Timing Verifier
Timing Verifier Output Format

43) Total number of events processed: 83
44) (00:00:02.77)
45)
46) Set-up, Hold and Minimum Pulse Width Errors
4 7)
48) Doing error analysis ...
49) (00:00:00.30)
50)
51) Values of all signals
52)
53) NC s o.o, C:46.0, S:80.0
54) (SHF .00.15P)UNNAMED$1$2 AND$2P$T s o.o, C:46.0, S:80,0
55) (SHF .00.16P)UN5AMED$1$2 AND$2P$T s o.o, C:50.0, S:95.0
56) (SHF .00.2P)UNNAMED$1$2 AND$2P$T S:O.O
57) (SHF .157.lOP) ~;c S:O.O
5 8) (SHF .157.10P)USNAMED$1$2 AND$1P$IO S:O.O
59) (SHF .157.10P)U5NAMED$1$2 AND$1P$Il 1: 0. 0
60) (SHF .157,10P)U~lNAMED$1$2 MUX$4P$S S:O.O
61) (SHF .157.llP) !IC S:O,O
62) (SHF .15 7. l lP) U!iNAMED$ l $ 2 AND$1P$IO S:O.O
63) (SHF .157.llP)U!lNAMED$1$2 AND$1P$Il 1:0.0
6 4) (SHF .157.11P)UNNAMED$1$2 MUX$4P$S S:O.O
65) (SHF .157.12P) !IC S:O.O
66) (SHF ,157,12P)UNNAMED$1$2 AND$ IP$ IO S:O.O
67) (SHF .157.12P)UNNAMED$1$2 AND$1P$ Il 1:0.0
68) (SHF .157,12P)UNNAMED$1$2 MUX$4P$S S:O,O
69) (SHF .157.14P) !IC S:O.O
70) (SHF .15 7. l 4P) U!lNAMED$ l $ 2 AND$1P$IO s:o.o, C:46.0, S:80.0
71) (SHF .15 7. l 4P) U!!NAMED$ l $ 2 AND$1P$Il l:C.O
7 2) (SHF .157 .14P)U!W.-.Z:OJJ$1$2 MUX$4P$S s:o.o
73) (!'HF .157,.'.'P~ NC 4 S:O.O
7 4) (SHF .157.5P)UNNAMED$1$2 AND$1P$IO S:O.O
7 5) (SHF .157.SP)UNNAMED$1$2 AND$1P$Il 1: 0 .o
76) (SHF • 15 7, 5 P) U N!IAME D $1$2 MUX$4P$S S:O.O
77) (SHF .157.6P) NC 3 S:0,0
78) (SHF .157,6P)UNNAMED$1$2 AND$1P$IO S:O.O
79) (SHF .157.6P)UNNAMED$1$2 AND$1P$Il 1: 0. 0
80) (SHF .157 .6P)U!;NAMED$1$2 MUX$4P$S S:O.O
81) (SHF .157.7P) i;c 2 s: 0. 0
82) (SHF .157.7P)USNAMED$1$2 AND$1P$IO S:O.O
83) (SHF .157, 7P)U::NAMED$1$2 AND$1P$Il 1: 0. 0
84) (SHF .157.7P)U!:NAMED$1$2 MUX$4P$S S:O.O
85) (SHF .157.8P) ~iC 1 S:0,0
86) (SHF .157,8P)U5NAMED$1$2 AND$1P$IO S:O.O, C:54.0, S:llO.O
87) (SHF .157.8P)USNAMED$1$2 AND$1P$Il 1:0.0
88) (SHF • 1 5 7 • 8 P) U !iNAHE D $ 1 $ 2 MUX$4P$S s:o.o
89) (SHF .157.9P) :re o S:O.O
90) (SHF .157.9P)USNAMED$1$2 AND$1P$IO S:O.O
91) (SHF .157.9P)UNNAMED$1$2 AND$1P$Il 1: 0 .o
9 2) (SHF ,157.9P)UNNAMED$1$2 MUX$4P$S s o.o
93) (SHF .374.4P)UNNAMED1REG$5P$T(7,,0) . s o.o, C:41.0, S:48.0
9 4) (SHF ,74.13P)UNNAMED1BUF$1P$I s o.o, C:40.0, S:40.0
9 5) (SHF .74,13P)UNNAMED1IBUF$11P$T 0 o.o
96) (SHF .74,13P)UNNAMED1IBUF$3P$T 0 o.o
97) (SHF .374,4P)UNNAMED1BUF$3P$T 0 o.o

6-50

98)
99)

100)
101)
102)
103)

104)
105)
106)
107)
108)
109)
110)
111)
112)
113)
114)
115)
116)
117)
118)
119)
120)
121)
122)
123)
124)
125)
126)
127)
128)
129)
130)
131)
132)
133)

l.

2.

3.

4.

5.

UNNAMED1LS00$15P$Y
UNNAMED1LS00$16P$A
0 .

1
CARRY
CLOCK IC 2-4

LSB IN
SERIAL DATA IN
SHIFT
SHIFT/ROTATE
UN$1$8MERGE$3P$A
UN$1$8MERGE$3P$B
UN$1$8MERGE$3P$C
UN$1$8MERGE$3P$D
UN$ l $ 8ME RGE$3P $ E
UN$1$8MERGE$3P$F
UN$ l $ 8MERGE$3P$G
UN$1$8MERGE$3P$H
UN1LS00$2P$B
UN1LS157$10P$Y
UN1LS157$11P$Y
UN1LS157$12P$Y
UN1LS157$14P$Y
UN1LS157SPY
UN1LS157$6P$Y
UN1LS157$7P$Y
UN1LS157$8P$Y
UN1LS157$9P$Y

Timing Verifier
Timing Verifier Output Format

S:O.O, C:50.0, S:95.0
s :0 .o
0:0.0
1:0.0
S:O.O, C 46.0, S 80.0
0:0.0, R 40.0, 1 40.0,

F 80.0, o 80.0
S:O.O, C 54.0, S 110.0
s:o.o
S:O.O
S:O.O
S:O.O
S:O.O
S:O.O
S:O.O
S:O.O
S:O.O
S:O.O
S:O.O
S:O.O
S:O.O
S:O.O
S:O.O
s:o.o, C:So.o, S:94.0
S:O.O
S:O.O
S:O.O
S:O.O, C:58.0, S:l24.0
S:O.O

Signals not meeting their stable assertions

All done
3 runti~~ errors detected.

S~art time • 22:52:42.25
Ending time 22:53:05.44
Elapsed time = 00:00:23.19

Lines 1-8 -- The expansion file was read. One undefined
primitive type was detected. The correct primitive name
is TS BUF, not TSBUF. Reading the expansion file.took
16.7 seconds of elapsed time.

Line 10 -- The directives file is being read.

Lines 11-15 -- An error was detected in the directives
file. An unknown option was specified. This is
corrected by replacing the directive with one that is
defined in the SCALD III Timing Verifier Directives
document. The directives file was read in .4 seconds.

Lines 17-27 -- The Timing Verifier directives are
listed. These are the directives in effect for this
running of the Timing Verifier.

Lines 29-31 -- The bus delay file for this example is
empty so ~t is not too surprising that no errors were
detected when they were read in.

6-51

Timing Verifier
Timing Verifier Output Format

6. Lines 33-35 -- Signals are initialized. During this
phase errors such as multiply driven nets, and
overlapping signal assertion intervals are reported.

7. Lines 37-39 -- The case file is empty for this example
so no errors were detected.

8. Lines 40-44 -- A summary of the simluation phase of the
timing verifier is reported. In this particular case a
total of 10 simulations of the entire network were
required. However, the Timing Verifier is event driven,
and only simulates an object if its inputs have changed.
A total of 83 objects (gates, registers etc.) were
simulated -- approximately 8 per pass.

9. Lines 46-49 -- All the set-up, hold and minimum pulse
width errors are listed next. In this case there were
none.

10. Lines 51-125 -- All the signals in the design and their
value histories are listed next. A value history is a
list of the form: <time): <value),
<time): value ••• <time): <value). A signal assumes
the value indicated at the time indicated. The last
value in the list is the value of the signal to the end
of the clock p~~iod. So for example, the signal LSB IN
is stable at time 0 ns, and remains stable until time 54
ns, then the signal is changing. The signal is changing
from time 54 ns until time 110 ns. Then it goes stable
and remains stable until 200 ns (the end of the clock
period).

11. Lines 127 -- Any signals that have stable assertions and
are driven are checked to see that the actual value
history of the signal (as determined by the circuit) is
more conservative than the assertion. That is the
signal is actually stable whenever the assertion says it
is (and maybe at other times too). In this example, no
signals had stable assertions, so there were not
violations.

12. Lines 130-132 -- The total number of runtime errors (all
errors other than timing errors) detected by the Timing
Verifier and the total elapsed time for the job are
reported.

6-52

6.12 SECOND TRY

Timing Verifier
Timing Verifier Output Format

The drawing is corrected to use the correct part type
TS BUF and the command file is fixed:

CLOCK PERIOD 200.0;
CLOCK-INTERVALS 10;
CLOCK-SKEW o.o;
PREC CLOCK SKEW 0.0;
WIRE DELAY o.o;
end.

This produces the following correct output listing:

1)
2)
3)
4)
5)
6)
7)
8)
9)

10)
11)
12)
13)
14)
15)
16)
17)
18)
19)
20)
21)
22)
23)
24)
25)
26)
27)
28)
29)
30)
31)
3 2)
3 3)
34)
35)
36)
37)
38)
39)
40)
41)
42)

Reading Compiler Expansion File •••
No errors detected.

(00:00:16.36)

Reading directives file
No errors detected.

(00:00:00.32)

Verifier Directives:
CLOCK PERIOD 200.0;
CLOCK-INTERVALS 10 (20.0ns);
CLOCK=SKEW o.o;
PRECISIO~ CLOCK SKEW o.o;
MINIMUM WIRE DELAY o.o;
MAXIMUM-WIRE-DELAY o.o;
RISE FALL ANALYSIS ON;
DOT TYPE DOT AND;
MAX-ERRORS 10
LIST OFF;

Reading bus delay file •••
No errors detected.

(00:00:00.26)

Initializing signals •••
No errors detected.

(00:00:01.37)

Reading Case Specification
1) END.
No errors detected.

Doing timing analysis •••
Circuit Evaluation completed
Total number of evaluation passes: 11
Total number of events processed: 86

(00:00:03.29)

Set-up, Hold and Minimum Pulse Width Errors

Doing error analysis
(00:00:00.30)

6-53

Timing Verifier
Timing Verifier Output Format

43) Values of all signals
44)
45) NC s: 0. 0. C:46.0, s:8o.o
46) (SHF .00.15P)UN$1$2 AND$2P$T S :O. 0, C:46.0, S:80.0
47) (SHF .00.16P)UN$1$2 AND$2P$T s:o.o, C:50.0, S:95.0
48) (SHF .00.2P)UN$1$2 AND$2P$T S:O.O
49) paF .15 7. 1 OP) NC . . S:O.O
50) SHF .157 .10P)UN$1$2 AND$1P$IO S:O.O
51) (SHF .157.10P)UN$1$2 AND$1P$Il 1: 0 .o
5 2) (SHF .157.10P)UN$1$2 MUX$4P$S S:O.O
5 3) (SHF .157.llP) NC . S:O.O
5 4) (SHF .157.11P)UN$1$2 AND$1P$ IO S:O.O
5 5) (SHF .157.11P)UN$1$2 AND$ l P$ Il 1:0.0
56) (SHF .157.11P)UN$1$2 MUX$4P$S S:O.O
57) (SHF .15 7, l 2P) NC s:o.o
58) (SHF .157.12P)UN$1$2 AND$1P$IO S:O.O
59) (SRF • 15 7 , 1 2P) UN$ l $ 2 AND$1P$ Il 1:0.0
60) (SHF .157,12P)UN$1$2 MUX$4P$S S:O.O
61) (SHF .15 7. l 4P) NC S:O.O
62) (SRF .157 .14P)UN$1$2 AND$1P$IO S:O.O, c:46.o, S:80.0
63) (SHF .157.14P)UN$1$2 AND$1P$Il 1:0.0
64) (SHF .157 .14P)UN$1$2 MUX$4P$S S:O.O
6 5) (SHF .157.5P) NC 4 S:O.O
6 6) (SHF .157.5P)UN$1$2 AND$1P$ IO S:O.O
67) (SRF .157.5P)UN$1$2 AND$1P$Il 1 :0 .o
68) (SRF .157.5P)UN$1$2 MUX$4P$S S:O.O
6 9) (SRF .157.6P) NC 3 S:O.O
7 O) (SHF .157 .6P)UN$1$2 AND$1P$IO S:O.O
71) (SHF .157.6P)UN$ln .".ND$1P$Il 1: 0 .o
7 2) (SHF .157.6P)~1~$1$2 MUX$4P$S S:O.O
7 3) (SHF .157.7P) NC 2 S:O.O
7 4) (SHF .157.7P)UN$1$2 AND$1P$IO S:O.O
75) (SHF .157.7P)UN$1$2 AND$1P$ Il 1:0.0
7 6) (SHF .157.7P)UN$1$2 MUX$4P$S S:O.O
77) (SHF .157.8P) NC 1 s:o.o
78) (SRF .157 .8P)UN$1$2 AND$1P$IO S:O.O, C:54.0, S:llO.O
79) (SHF .157.8P)UN$1$2 AND$ l P$ Il 1:0.0
80) (SHF .157.8P)UN$1$2 MUX$4P$S S:O.O
81) (SHF .157.9P) NC 0 S:O.O
82) (SHF .157.9P)UN$1$2 AND$1P$IO S:O.O
8 3) (SHF .157.9P)UN$1$2 AND$ l P$ Il 1: 0. 0
84) (SHF .157.9P)UN$1$2 MUX$4P$S S:O.O
8 5) (SRF .374.4P)UN1REG$5P$T<7 •• 0) . s:o.o, C:41.0, 8:48.0
86) (SHF .74.13P)UN1BUF$1P$I s:o.o, C:40.0, S:40.0
87) (SRF .74.13P)UN1IBUF$11P$T 0:0.0
88) (SHF .74.13P)UN1IBUF$3P$T 0:0.0
89) (SHF .374.4P)UN1BUF$3P$T 0:0.0
90) UN1LS00$15P$Y S:O.O, C:50.0, S:95.0
91) UN1LS00$16P$A S:O.O
92) 0 0:0.0
93) 1 1 :0 .o
9 4) CARRY S:O.O, c 46 .o. s 80.0
95) CLOCK IC 2-4 O:O.O, R 40.0, 1 40.0,

F 80.0, 0 80.0
96) LSB IN s:o.o, c 54.0, s 110.0

6-54

97)
98)
99)

100)
101)
I 0 2)
103)
104)
105)
106)
107)
108)
109)
110)
111)
112)
113)
114)
115)
116)
117)
118)
119)
120)
121)
122)
123)
124)
125)
126)
127)
128)
129)
130)
131)
132)
133)

SERIAL DATA IN
SHIFT
SHIFT/ROTATE
UN$1$8MERGE$1P$A
UN$1$8MERGE$1P$B
UN$1$8MERGE$1P$C
UN$1$8MERGE$1P$D
UN$1$8MERGE$1P$E
UN$1$8MERGE$1P$F
UN$1$8MERGE$1P$G
UN$1$8MERGE$1P$H
UN$1$8MERGE$3P$A
UN$ l $ 8ME RGE$ 3P$B
UN$1$8MERGE$3P$C
UN$1$8MERGE$3P$D
UN$1$8MERGE$3P$E
UN$1$8MERGE$3P$F
UN$1$8MERGE$3P$G
UN$1$8MERGE$3P$H
UN1LS00$2P$B
UN1LS157$10P$Y
UN1LS157$11P$Y
UN1LS157$12P$Y
UN1LS157$14P$Y
UN1LS157$5P$Y
UN1LS157$6P$Y
UN1LS157$7P$Y
UN1LS157$8P$Y
UN1LS157$9P$Y

Timing Verifier
Timing Verifier Output Format

S:O.O
S:O.O
c;: 0. 0
S:O.O, C:47.0, S:68.0
S:O.O, C:47.0, S:68.0
S:O.O, C:47.0, S:68.0
S:O.O, C:47.0, S:68.0
S:O.O, C:47.0, S:68.0
S:O.O, C:47.0, S:68.0
S:O.O, C:47.0, S:68.0
S:O.O, C:47.0, S:68.0
S:O.O
S:O.O
s: 0 .o
s: 0. 0
s: 0. 0
S:O.O
S:O.O
S:O.O
S:O.O
S:O.O
s: 0. 0
S:O.O
S:O.O, C:50.0, S:94.0
S:O.O
S:O.O
S:O.O
S:O.O, C:58.0, S:l24.0
S:O.O

Signals not meeting their stable assertions

All done
No runtime errors detected.

Start time • 23:43:05.84
Ending time = 23:43:29.27
Elapsed time = 00:00:23.43

6-55

Timing Verifier
Timin~ Verifier Output Format

6.13 THIRD TRY

Now that we have some confidence in the design, we will
try one more run. This time a clock period of 100 ns is
tried by modifying the directives file. (Verifier.cmd on
VAX and S-32, verifier cmd on IBM.) Also we want to feed the
CARRY signal of this system to another system which requires
that it be stable from 0 ns to 30 ns and from 60 ns to 90 ns
in the cycle. To check that the CARRY signal is stable we
add the appropriate assertion on CARRY! S0-3,6-9. Running
the Timing Verifier we get the following output listing.

1)
2)
3)
4)
5)

~~
8)
9)

10)
11)
12)
13)
14)
15)
16)
1 7)
18)
19)
20)
21)
22)
2 3)
24)
25)
26)
27)
28)
29)
30)
31)
32)
3 3)
34)
35)
36)
37)
38)
39)
40)
41)
42)

Reading Compiler Expansion File ,,,
No errors detected.

(00:00:18.37)

Reading directives file
No errors detected.

(00:00 :00.30)

Verifier Directives:
CLOCK_PERIOD 100,0;
CLOCK_INTERVALS 10 (10.0ns);
CLOCK SKEW 0, 0;
PRECISION CLOCK SKEW 0 O;
MINIMUM WIRE DELAY o.o
MAXIMUM=WIRE::z~AY 0,0
RISE F~_l"!. ANALYSIS ON;
DOT TYPE DOT AND;
MAX-ERRORS 10
LIST OFF;

Reading bus delay file ,,,
No errors detected,

(00:00:00.23)

Initializing signals ,,,
No errors detected,

(00:00:01,53)

Reading Case Specification
1) END,
No errors detected.

Doing timing analysis ,,,
Circuit Evaluation completed
Total number of evaluation passes: 11
Total number of events processed: 102

(00:00:04.22)

Set-up, Hold and Minimum Pulse Width Errors

Doing error analysis ,,,

Minimum pulse width violated by signal; Minimum HIGH = 25.0,

6""".56

Timing Verifier
Timing Verifier Output Format

43) Minimum LOW = 15.0
44) current location string is "(SHF .374.4P MPWlP)"
45) CLOCK IC 2-4 (+O.l) 0:0.0, 1:20.0, 0:40.0
46)
47) Setup or Hold Time Error at 20.0; Setup Time• 20.0, Hold Time = O.O
48) current location string is "(SHF .374.4P SUH2P)"
49) CK INPUT =CLOCK !C 2-4 0:0.0, R:20.0, 1:20.0, F:40.0,

50) DATA INPUT = UNNAMED1LS157$8P$Y
51) (00:00:00.40)
5 2)
53) Values of all signals
54)
5 5) NC
56) (SHF .00.15P)UN$1$2 AND$2P$T
57) (SHF .00.16P)UN$1$2 AND$2P$T
58) (SHF .00.2P)UN$1$2 AND$2P$T
5 9) (S HF • 1 5 7 • 1 OP) NC
60) (SHF .157.10P)UN$1$2 AND$1P$IO
61) (SHF .157.10P)UN$1$2 AND$1P$Il
62) (SHF .157.10P)UN$1$2 MUX$4P$S
63) (SHF .157.llP) NC
64) (SHF .157.11P)UN$1$2 AND$1P$IO
65) (SHF .157.11P)UN$1$2 AND$1P$Il
66) (SHF .1S7.11P)UN$1$2 MUX$4P$S
67) (SHF .157.12P) NC
68) (SHF .157.12P)UN$1$2 AND$1P$IO
69) (SHF .157.12P)UN$1$2 AND$1P$Il
70) (SHF .157.12P)UN$1$2 MUX$4P$S
71) (SHF .157.14P) NC
72) (SHF .157.14P)UN$1$2 AND$1P$IO
73) (SHF .157.14P)UN$1$2 AND$1P$Il
74) (SHF .157.l~?)UN$1$2 MUX$4P$S
75) (SHF .157,5P) NC 4
76) (SHF .157.5P)UN$1$2 AND$1P$IO
77) (SHF .157.5P)UN$1$2 AND$1P$Il
78) (SHF .157.5P)UN$1$2 MUX$4P$S
79) (SHF .157.6P) NC 3
80) (SHF .157.6P)UN$1$2 AND$1P$IO
81) (SHF .157.6P)UN$1$2 AND$1P$Il
82) (SHF .157.6P)UN$1$2 MUX$4P$S
83) (SHF .157.7P) NC 2
84) (SHF .157.7P)UN$1$2 AND$1P$IO
85) (SHF .157.7P)UN$1$2 AND$1P$Il
86) (SHF .157.7P)UN$1$2 MUX$4P$S
87) (SHF .157.SP) NC 1
88) (SHF .157.8P)UN$1$2 AND$1P$IO
89) (SHF .157.8P)UN$1$2 AND$1P$Il
90) (SHF .157.8P)UN$1$2 MUX$4P$S
91) (SHF .157.9P) NC 0
92) (SHF .157.9P)UN$1$2 AND$1P$IO
93) (SHF .157.9P)UN$1$2 AND$1P$Il
94) (SHF .157.9P)UN$1$2 MUX$4P$S
95) (SHF .374.4P)UN1REG$5P$T<7 •• 0) •
96) (SHF .74.13P)UN1BUF$1P$I

6-57

C:O.O, S:4.0, C:38.0

S:O.O, C:26.0, S:60.0
S:O.O, C:26.0, S:60.0
S:O.O, C:30.0, S:75.0
S:O.O
s: 0. 0
S:O.O
1:0.0
S:O.O
S:O.O
S:O.O
1:0.0
s :0. 0
S:O,O
s:o.o
1: 0. 0
S:O.O
S:O.O
S:O,O, C:26.0, S:60.0
1: 0 .o
S:O,O
S:O.O
s: 0. 0
1: 0. 0
s :0. 0
S:O.O
S:O.O
1:0.0
S:O.O
S:O.O
S:O.O
1:0.0
S:O.O
S:O.O
S:O.O, C:34,0, S:90.0
1:0.0
S:O.O
S:O.O
S:O.O
1: 0. 0
S:O.O
S:O.O, C:21.0, S:28,0
S:O.O, C:20,0, S:20.0

0:40.0

Timing Verifier
Timing Verifier Output Format

97)
98)
99)

100)
101)
102)
103)
104)
105)

106)
107)
108)
109)
110)
111)
112)
113)
114)
115)
116)
117)
118)
119)
120)
121)
122)
123)
124)
125)
126)
127)
128)
129)
130)
131)
132)
133)
134)
135)
136)
137)
138)
139)
140)
141)
142)
143)
144)

1.

2.

(SHF .74.13P)UN1IBUF$11P$T
(SHF .74.13P)UN1IBUF$3P$T
*(SHF .374.4P)UN1BUF$3P$T
*UN1LS00$15P$Y
*UN1LS00$16P$A
0
1 • •
CARRYIS 0-3,6-9
CLOCK IC 2-4

LSB IN •
SERIAL DATA IN
SHIFT
SHIFT/ROTATE
UN$ l $8MERGE$1P$A
UN$ l $ 8MERGE$1P$B
UN$1$8MERGE$1P$C
UN$ l $ 8MERGE$1P$D
UN$1$8MERGE$1P$E
UN$ l $ 8MERGE$1P$F
UN$ l $ 8MERGE$1P$G
UN$ l $ 8MERGE$1P$H
UN$ l $ 8MERGE$3P$A
UN$1$8MERGE$3P$B
UN1 8MERGE$3P$C
UN$1$8MERGE$3P$D
UN$ l $ 8MERGE$3P$E
UN$1$8MERGE$3P$F
UN$1$8MERGE$3P$G
UN1 8MERGE$3P$H
UN1LS00$2P$B
UN1LS157$10P$Y
UN1LS157$11P$Y
UN1LS157$12P$Y
UN1LS157$14PSY
UN1LS157$"'P$Y
U~1LS157$6P$Y
UN1LS157$7P$Y
UN1LS157$8P$Y
UN1LS157$9P$Y

..

0:0.0
0:0.0
0:0.0
S:O.O, C:30.0, S:15.0
s :o.o.
0:0.0
1:0.0
S:O.O, C:26.0 1 S:60.0
0:0.0, R:20.0, 1:20~0 1

F :40.0, 0 :40.0
S:O.O, C:34.0, S:90.0
S:O.O
S:O.O
S:O.O
S:O.O, C:27.0, S:48.0
S:O.O, C:27.0, S:48.0
S:O.O, C:27.0, S:48.0
S:O.O, C:27.0, S:48.0
S:O.O, C:27.0, S:48.0
S:O.O, C:27.0, S:48.0
S:O.O, C:27.0, S:48.0
S:O.O, C:27.0 1 8:48.0
S:O.O
S:O.O
S:O.O
S:O.O
S:O.O
S:O.O
s:o.o
s:o.o
s:o.o
S:O.O
s:o.o
s:o.o
S:O.O, C:30.0, 8:74.0
S:O.O
s:o.o
s:o.o
c:o.o, s:4.o, c:38~o
s:o.o

Signals not meeting their stable assertions
CARRY!S 0-3,6-9 s~o.o, C:26.0, S:60.0

All done
No runtime errors detected.

Start time • 23:41:01.40
Ending time • 23:41:28.01
Elapsed time • 00:00:26.61

Notice that now there are a variety of timin&· e~rort.

Lines 42-45 -- The clock signal violates the ainiaha
pulse width requirements of the LS374 at locat-'.ion 4P of;
drawing SHF. The minimum required high time is 25 ns.·
The signal however, is high from 20 to 40 ns or 20 tis
(with a skew of -0.0, +0.1 ns).

Lin~s 47-~1 -- The same LS374 has a setup vio1~tion at
time 20 ns. At 20 ns the register is clocked, yet the
data input to the register bas been ~table for only l~

6-58

Timing Verifier
Timing Verifier Output Format

ns prior to the rising edge - 4 ns short of the devices
setup time. The actual hold time is 18 ns which is
sufficient.

3. Lines 137-138 -- The CARRY signal fails to meet the
interface specification. Its assertion requires that it
be stable at time 30 ns, but the Timing Verifier shows
that it is changing 4 ns too soon.

6-59

Timing Verifier
Directives Summary

Timing Verifier Directives Summary

6.14 INTRODUCTION

Timing Verifier directives are used to specify certain
things about a design that effect how the Timing Verifier
interprets and processes the Compiler output expansion.
Directives are passed to the Timing Verifier in two ways.
Directives may be placed in a text file (which is bound to
the logical device OPTFILE when the Timing Verifier is run).
Second, the directives may be specified as properties on a
TIME DIRECTIVES body in some drawing of the expansion. If
both a text file and a TIME DIRECTIVES body property specify
a directive value, the values in the text file will
dominate.

6.15 TIMING VERIFIER DIRECTIVES

Each of the directives is described below. The Timing
Verifier directives and their parameters are not case
sensitive. An example Timing Verifier directives file is
given at the end.

CLOCK PERIOD

Used to set the period of the clock used by the Timing
Verifier. Any signal with a "C", "P", "S", or "D"
name property (e.g. MASTER CLK!C 0-3) has its
behavior specified in terms of this period which is in
units of nanoseconds:

CLOCK PERIOD 56.0; set the clock period to
56 ns.

If unspecified, the Timing Verifier sets the period to
100 ns.

CLOCK INTERVALS

This directive sets the number of evenly spaced
sub-periods within the clock period. For example, if
there are 8 sub-periods and the period of the clock is
100 ns then MASTER CLKIC 0-2 is high from time 0 ns to
time 25 ns and low from 25ns to lOOns.

6-60

Timing Verifier
Directives Summary

CLOCK PERIOD 100.0; sets the clock period to
100 ns.

CLOCK INTERVALS 20; divide the clock into 20
pieces.

The signal MASTER CLK !C 0-10,15-20 would be high from
0 ns to 50ns and high from 75.0 ns to 100 ns and zero
otherwise -- MASTER CLK !C 0-10,15-20 = 1:0.0, 0:50.0,
1:75.0 •

If unspecified the clock is divided into 8
sub-periods.

CLOCK SKEW

This directive sets the uncertainty in the time at
which edges in signals with a "C" name property occur.
CLOCK SKEW is skew from the nominal time (in
nanoseconds):

CLOCK PERIOD 100.0; sets the clock period to
100 ns.

CLOCK INTERVALS 20; divide the clock into 20
pieces.

CLOCK SKEW 0.1; skew is -0.1, +O.l ns
from nominal.

The signal MASTER CLK !C 0-10,15-20 above would
become:

1:0.0, F:49.9, 0:50.1, R:74.9, 1:75.1

If unspecified the CLOCK SKEW is 0 ns.

DEFAULT DRIVE

This directive defines the default drive to be used by
the delay estimator when no DRIVE body property is
given for a primitive.

DEFAULT DRIVE 0.5-1.2,0.4-1.0

If this directive is missing, the default drive is O.

6-61

Timing Verifier
Directives Summary

DELAY ESTIMATOR

This directive is used to turn the delay estimator on
or off.

DELAY ESTIMATOR ON; turn the delay estimator on

If this directive is missing, the default is to leave
the delay estimator off.

DOT TYPE

Correctly defined timing models have pin properties on
dottable outputs. These properties inform the
Verifier what logic function is performed when such
outputs are connected together. If the properties are
missing, or outputs with inconsistent logic function
specifications are dotted, the Verifier needs to make
some choice for the bus. This choice is specified
with the DOT TYPE directive.

DOT TYPE DOT OR; unspecified buses are dot
DOT -AND· unspecified buses are dot - ,

AND
DOT TS; unspecified buses are - tri-state

If this directive is missing, unspecified buses are
simulated DOT AND.

LATCH ERR MODEL

OR

This directive changes the model used for latches.
There are three models for latches, OPEN, CLOSED, and
CONSERVATIVE. The differences between these models is
defined in the definition of the latch model.

LATCH ERR MODEL CLOSED; changes the model used for
latches to the closed model.

If this directive is missing, the default model to use
for latches is CONSERVATIVE.

6-62

LIST

Timing Verifier
Directives Summary

This directive takes a list of options separated by
commas that control the output listing. These options
are:

1. BY_NAME/NOBY_NAME (default BY_NAME) BY_NAME means
that signals are to be listed sorted by name
instead of by path name. NOBY NAME results in the
old format, with signals sorted by path name.
Signals with unique names will be listed by name
only, and signals with multiple path names will be
listed with each path name indented:

CLRINIT !C 0+1.0
(TST123221 .123.lOP) •
(TST123221 .221.9P)

1:0.0, 0:1.0
1:0.0, 0:1.0

This eliminates many superfluous path names from
the signal listing.

2. CHIP/NOCHIP (default NOCHIP) CHIP means that local
signals of timing models should be listed.

3. DOT/NODOT (default NODOT) DOT means that the
signals generated automatically for the inputs of
wire-dots should be listed.

4. HISTOGRAM/NOHISTOGRAM (default NOHISTOGRAM)
HISTOGRAM means to generate the histograms on
timing error statistics.

5. NC/NONC (default NONC) NC means that the "not
connected" signals should be listed.

6. TRAN INPUT/NOTRAN INPUT (default NOTRAN INPUT)
Transmission gates have two bi-directional pins,
Tl and T2. TRAN INPUT means to list the value
that bi-directional transmission gates see at
their pins Tl and T2 that the other drivers on
those nets have generated. This feature is useful
in debugging complicated circuits with a lot of
bi-directional transistors in them.

7. UNNAMED/NOUNNAMED (default NOUNNAMED) UNNAMED
means that unnamed signals should be listed in the
output listing.

8. VIOLATIONS/NOVIOLATIONS (default NOVIOLATIONS)
VIOLATIONS will cause a report of all types of
timing violations to be printed. The violations
will be sorted in order of descending severity:

6-63

Timing Verifier
Directives Summary

Violation

52.0
30.1
17.5
7.0
2.7
2.7
2.6

Setup Time Violations

Time

509.5
546.0
546.0
583.0

6.9
6.9

595.0

Error II

11
22
20
12
15

9
17

Primitive

(MAR TIMllP SUH4P)
(MAR TIMllP SUH14P)
(MAR TIMllP SUH4P)
(MAR TIMllP SUH4P)
(MAR TIMllP SUH14P)
(MAR TIMllP SUH4P)
(MAR TIMllP SUH4P)

Included in this report are: Setup and Hold
violations, Low and High pulse width violations,
and Minimum and Maximum Edge-to-Edge timing
violations.

An example LIST directive is:

MAX ERRORS

LIST UNNAMED, NODOT, VIOLATIONS,
HISTOGRAM, NOBY_NAME, CHIP;

If more than MAX ERRORS occur during the reading of
the input files to the Timing Verifier, verification
is aborted.

MAX ERRORS 2.
' abort this run if there are

more than two errors

The Timing Verifier will be aborted if MAX ERRORS is
reached. (If unspecified, then MAX ERRORS-is zero.)
However, this does not include fatal errors.

MAX EVAL PASSES

If more than MAX_EVAL_PASSES occur during the
simulation of the design then verification is aborted.

MAX EVAL PASSES 50; abort this run if there
are more than fifty passes.

6-64

Timing Verifier
Directives Summary

If unspecified then MAX EVAL PASSES is 200.

MAX EXP ERRORS

If more than MAX EXP ERRORS are detected in the
expansion file then verification is aborted.

MAX EXP ERRORS 4.
'

abort this run if there are
more than four errors

If unspecified then MAX EXP ERRORS is 0;

NC SIGNALS

This directive tells what value NC (non-connected)
inputs should be set to. There are 5 possible values,
0, 1, S, ASSERTED, and DEASSERTED. The values 0 and 1
set all non-connected inputs to either 0 or 1,
ignoring any bubbled inputs. For example, 0 will make
a bubbled input true, and a non-bubbled input false.
A value of S will set all non-connected inputs to
stable. The value ASSERTED will set all inputs to
true (i.e., bubbled inputs to zero, and non-bubbled
inputs to one), and DEASSERTED will set all inputs to
false. For ECL circuits, DEASSERTED is generally the
right thing to do because of the resistor pull-downs
on the inputs.

NC SIGNALS DEASSERTED; set non-connected inputs to
deasserted

If unspecified, the default value is S.

PREC CLOCK SKEW

The directive PREC CLOCK SKEW is identical to
CLOCK_SKEW except it affects only signals with "P"
name properties. If unspecified the PREC CLOCK SKEW
is 0 ns.

PRINT WIDTH

This directive tells the Timing Verifier how many

6-65

Timing Verifier
Directives Summary

columns may be used in the TVLST file. The output is
formatted according to this specification.

PRINT_WIDTH 80;

132;

format output for an 80 column
display.

If unspecified, the width is 132.
are permitted.)

(Only 80 and 132

PULSE FILTER

This directive turns a pulse filter on that is used by
the register and latch model. If a pulse has a large
amount of skew, such that the skew is larger than the
width of a pulse, then the two edges skew together,
causing a changing value to occur. This directive
makes the register and latch models recognize this
case, and causes it handle it as if the leading edge
of the pulse was extended through the changing value.

PULSE FILTER on;

If unspecified, this directive is OFF.

RECONV FANOUT

This directive tells the Timing Verifier it should
analyze the circuit to understand reconvergent fanout,
which will eliminate false error messages that are
currently generated for circuits that count on
correlated signal skews to work.

Reconvergent fanout is where a signal fans out from a
common point in a circuit through different paths,
which then reconverge at some other point. When these
signals come together at a primitive like a setup-hold
checker, the skew which is common to them needs to be
subtracted out before the check is done, or else false
error messages may be generated.

One of the most common cases of this is a shift
register. Skew on the clock to the register is common
to all of the bits of the register and needs to be
subtracted out before checking the setup and hold

6-66

Timing Verifier
Directives Summary

times of the shift bits.

Other common terms for reconvergent fanout are
correlated skews and common ambiguity.

RECONV FANOUT ON; do analysis to understand correlated
signal skews.

If unspecified, the analysis is not done.

RISE FALL ANAL

This directive tells the Timing Verifier if it should
analyze cascades of inverting logic (with asymetric
rise and fall delays) to obtain correct behavior,
taking into account the difference between the rising
and falling delays, even when the value of the signal
is not known (i.e. for stable/changing behavior.)

RISE FALL ANAL ON; do analysis exploiting
different rise and fall
delays for stable/changing
values of signals.

If unspecified, the analysis is done.

RISE FALL MODELS

This directive tells the Timing Verifier if it should
analyze cascades of inverting logic (with asymetric
rise and fall delays) when the value of the signal is
O, 1, RISE, or FALL. If this directive is turned off,
then RISE FALL ANAL is also turned off.

RISE FALL MODELS ON; do analysis exploiting
different rise and fall
delays

If unspecified, the analysis is done.

SET MIN DELAYS

This option allows all minimum delays above the
specified value to be set to that value. This

6-67

Timing Verifier
Directives Summary

direct~ve is useful when there is concern that the
minimum delays along a path may be longer than the
allowed maximum delay for a path, causing an error to
go undetected.

SET MIN DELAYS 5.0; set all minimum delays greater
than 5.0 nsec to 5.0 nsec

If unspecified, then this feature is turned off.

TIMING DIAGRAMS

If set, then the Timing Verifier outputs a file that
is used to automatically generate Timing Diagrams.

TIMING DIAGRAMS ON; generate timing diagram
output file

If unspecified, then this feature is turned off.

TS BUS TYPE

The Timing Verifier has two modes for simulating
tri-state buses: the true tri-state function and a
modified DOT OR function. The need for the second
mode is to handle designs with stable/changing
behavior on the enables of the tri-state driver.

TS BUS TYPE DOT_OR;

DOT_ TS;

do TS buses in forgiving
mode
do TS buses exactly

The actual logic functions performed by the bus and
the TS BUF for the two simulation modes are described
earlier in this section of the manual.

If unspecified, then tri-state buses are simulated
DOT TS.

USE DRAWING WD

This directive tells the Timing Verifier that it
should use any wire delays specified in the drawings.
This directive should normally be turned off when
using the delay estimator, because any delays in the

6-68

Timing Verifier
Directives Summary

drawings will be added to delays calculated by the
delay estimator.

USE DRAWING WD OFF; turn off use of wire delays
specified in drawings

If unspecified, this directive is on.

WIRE DELAY

The default wire delays in a design are specified
using these directives.

WIRE DELAY 0.1-2.0; unless otherwise specified,
wires have between 0.1 ns
and 2 ns delay

If unspecified, the minimum default wire delay is 0 ns
and the maximum default wire delay is 0 ns.

WIRE ESTIMATE

To estimate wire delay, the number of stops on each
net is counted. The number of stops is converted to
equivalent loads by table lookup using a table
specified by this directive. WIRE ESTIMATE takes an
argument list of fixed point numbers and an optional
FAMILY specification. A net with j stops receives a
wire delay estimate given by the jth number in the
list. The family specification allows for a number of
different WIRE ESTIMATE tables to be used in the same
Timing Verification run. If a FAMILY body property is
given on a primitive, then the WIRE ESTIMATE table
with the same FAMILY specification will be used. If
no FAMILY body property is given on a primiti~e, then
the WIRE ESTIMATE table without a FAMILY specification
will be used. An example set of WIRE ESTIMATE
directives are given below:

WIRE ESTIMATE 1.0, 2.0, 3.0, 4.0;
WIRE-ESTIMATE ECL: 0.5, 1.0, 2.0, 3.0;
WIRE-ESTIMATE TTL: 1.0, 2.0, 3.1, 4.0;
WIRE-ESTIMATE ON GATE ARRAY: 0;3, 0.6, 1.0, 1.3;
WIRE-ESTIMATE BET GATE ARRAY: 1.0, 2.0, 3.1, 4.5;

If unspecified, the default is 0.0;

6-69

Timing Verifier
Directives Summary

6.16 AN EXAMPLE OF A TIMING VERIFIER DIRECTIVES FILE

The following gives an example of a Timing Verifier
directives file. This file can be created with a text
editor. The Timing Verifier does not pay any attention to
the end-of-line or to multiple spaces. The letter case of
the directives is unimportant. Comments may not be placed
in the file. The comments in the example below are only for
purposes of documentation. Note that all Timing Verifier
directives must be separated by a ';' and th~ file must end
with an 'end.'.

CLOCK PERIOD 132.0;
CLOCK-INTERVALS 12;
CLOCK-SKEW 1.0;
PREC CLOCK SKEW 0.1;
WIRE DELAY-0.0-2.0;
DOT TYPE DOT_AND;
END.

set the clock period to 132 ns
clock has 12 intervals of 11 ns
the clock skew is +/- 1.0 ns
precision clock skew is +/- 0.1 ns
wires may be O.O to 2.0 ns long
non-tri-state busses are dot ANDs
marks end of the file, note "•"

6-70

Timing Verifier
Case Analysis

Timing Verifier Case Analysis

6.17 INTRODUCTION

Some digital systems are designed so that data
dependent delays are exploited. That is, although paths
through the system exist that are very long, they are never
used. For example consider the contrived example:

The Timing Verifier will assume that the SELECT signal
is stable and that the delay through the system is 60 ns.
However, simulating this system twice, once with SELECT set
and once with it cleared shows that the actual delay is 50
ns. To timing verify systems like this, the Timing Verifier
has a mechanism called ~ analysis.

A case specifies a list of signals, and for each signal
a value to substitute for those intervals when the signal is
stable (O, 1, or S). Case analysis proceeds by verifying
the circuit in the usual manner, except that signals
specified in the case file use the specified value instead
of the stable value. For example, consider the select
signal above:

Without case analysis it might have the value:

SELECT • S:O.O, C:20.0, S:21.l

Using case analysis, assuming the case specified that SELECT
be set to 0:

SELECT • 0:0.0, C:20.0, 0:21.1

6-71

Timing Verifier
Case Analysis

As a second example of the use of case analysis, consider
the following circuit:

DATA 1

FAST CLOCK

DATA 2

SLOW CLOCK

+-----+
-----1I T1------+I +---------+

I REG +---- I

-----1> I
+-----+ I LOGIC

+----1
+-----+ I +---------+

-----II Tl------+
REG

----- >
+-----+

Suppose that there are hundreds of transitions on FAST CLOCK
for every transition on SLOW CLOCK. This could be modeled
by using a very long period for analysis (the period of SLOW
CLOCK) and specifying the full behavior of FAST CLOCK over
that period. This is time consuming and will result in much
redundant information.

A better way to handle this kind of circuit is to
consider that there are only two cases of interest. The
first case is that time when SLOW CLOCK remains stable
during a period of FAST CLOCK. (i.e., only the upper
register is being clocked). The second case is when both
registers are being clocked.

To do this, a clock assertion is used on FAST CLOCK:

FAST CLOCK !C 0-5 ••• 1:0.0, 0:50.0

(assuming 10 clock intervals per clock period with a 100.0
ns period). If the behavior of SLOW CLOCK is unspecified
(assuming that it is undriven as well) then:

SLOW CLOCK • • • • • • • • • • S:O.O

is stable throughout the period of analysis. The two cases
of interest may be specified:

'SLOW CLOCK' = '!S 0-10';
'SLOW CLOCK' = '!C 0-5';

6-72

in the case file as described below.

6.18 CASE SPECIFICATION

Timing Verifier
Case Analysis

For any run of the Timing Verifier an arbitrary number
of cases may be done. All of the cases are in a file (whose
logical name is CASEFILE). Each case is a list of signals
and the value that they are to assume.

CASE FILE SYNTAX

The syntax for the case file is:

<case file)::= <case list) END. END.

<case list)::= <case>; I <case); <case list)

<case) .. -.. - (signal assignment list) I

(signal assignment list)
::=(signal assignment)

<signal assignment), <signal assignment list)

(signal assignment)
::=<signal name)= <value)

<value) ::= 'O' , 1 ,

Signal names consisting of only alphanumeric characters and
11 11 need not be quoted, all other signal names must be
quoted. Signal names must be entered in Valid canonical
syntax. (That is, all low asserted signals specified with a
11 11 to the left of the signal. All high asserted signals
contain no assertion or negation symbols.)

Signal assignments may refer to scalar signals,
complete buses, subranges of a bus, or individual bits of a
bus. For example, if the signal DATA<lS •• 0) occurs in the
design, then DATA<lS •• 0), DATA(S), DATA<3 •• l), or
DATA(ll •• 4) may appear in the case file. If subscripts are
specified, they must be outside the quoted signal name.

6-73

Timing Verifier
Case Analysis

EXAMPLE CASE FILE

Assume that a design contains the signals SELECT Al,
SELECT B2, CLOCK RATE and DATA(3 •• 0) • Then a sample case
file is:

'SELECT Al' .
' 'SELECT Al'
'-SELECT B2'
CLOCK RATE
-DATA-= 'O'·

' 'SELECT Al' =
'-DATA'(3 •• 0)
eNd.

= , 0,;

= , 1, '
= , 0, '

= , 1,;

, 1 , '
= , 1, ;

Notice that case files are not case sensitive.

The case file specifies five cases are to be run.

1. The first case sets SELECT Al to 0 during its stable
intervals.

2. The second case does not alter any of the signals. It
is equivalent to running the Timing Verifier with no
case file.

3. The third case sets SELECT Al to 1, SELECT B2 to 0 and
CLOCK RATE to 1 during each stable interval.

4. The fourth case sets the bus DATA(3 •• 0) to 1 during its
stable interval.

S. The last case sets the bus DATA(3 •• 0) to 1 during its
stable intervals and sets SELECT Al to 1 during its
stable intervals.

6.19 USE OF THE CASE FILE FOR TIMING EXPERIMENTS

Often the user wishes to try a number different
assertions on a signal or group of signals, to test timing,
or discover the correct resetting sequence for his circuit.
It is time consuming to do this by modifying the drawings.
To facilitate this kind of experimentation, timing
assertions may be associated with a signal in the case file.

This is done with an extension to the signal assignment
syntax:

(signal assignment) ::=(signal name)= (value) I
(signal name) = '(timing assertion)'

6-74

Timing Verifier
Case Analysis

where (timing assertion) is as described earlier in this
chapter.

Associating a timing assertion with a signal in the
case file is identical to associating the assertion with the
signal on the print. Note that if the original signal had a
timing assertion as part of its name, the timing assertion
must appear as part of the name in the signal assignment.

As an example, consider a design with the signals,
RESET, !NIT IC 0-3, DATA(l 5 •• 0) and ID IS 2-4<3 •• 0) in it.
Then the following is a correct case file:

-RESET= 'O',
'INITIC 0-3' = 'IP 2-4(-2,+5)',
DATA(l5 •• 0> ='IS 14-17,19';

'-RESET'= 'IC 0-4',
'!DIS 2-4' = 'ID 2-4';

END.

An extension to the case file syntax allows specifying
a signal's period as different from that specified by the
CLOCK PERIOD directive. The period may be included as part
of the timing assertion between the I character and the
assertion character, C, P, S, or D. With CLOCK PERIOD =
lOOns, and CLOCK INTERVALS = 50, the following case file is
correct:

'CLKA' = '125C 10-20
'CLKB' = 'llOC 1-2';
END.

In this example, CLKA would have a period of 50ns, and would
be low for the first 20ns, high for 20ns, and low for lOns.
CLB would have a period of 20ns, be low for lns, high for
lns, and low for 18ns. The signal's period must divide
evenly into the number of CLOCK INTERVALS.

6-75

Timing Verifier
Wire Delays

Wire Delays and the Timing Verifier

6.20 INTRODUCTION

The SCALD Timing Verifier models circuits that contain
both component and wire delays. Wire delays are specified
in four ways:

1. Simple estimated delays -- these are placed on the logic
drawings by the designer.

2. Estimated delays that are dependent upon the
interconnect delay and the size of the load. This
method is described in detail in the following section,
SCALD Timing Verifier Delay Estimator.

3. Calculated delays -- these delays are computed by the
physical design system and fed back to the Timing
Verifier.

4. Default values -- if neither estimated or calculated
delays are provided then default values may be
specified.

6.21 ESTIMATED WIRE DELAYS

Estimated wire delays are placed on the drawings by the
designer using the general signal property WD. An example
is included here:

RESET 'WD 2.0-4.3 RESET 'WD 0.0-1.5
B2 Bl

Then the behavior of RESET is:

RESET
RESET

RESET

0:0.0, 1:10.0,
O. O. O, R: 12. O,
(at Bl)
0.0.0, R:lO.O,
(at B2)

0:20.0 (at the driver)
l : 14. 3, F : 2 2. 0, 0 : 2 4. 3

1:11.5, F:20.0, 0:21.5

Delay properties are handled this way so that systems where
delays are different on different "stubs" of a net may be
modelled.

6-76

6.22 CALCULATED WIRE DELAYS

Timing Verifier
Wire Delays

The Timing Verifier will read a file which associates
delays with input pins of the components in the system.
These delays are applied to the signal driving that pin
before the component is simulated. In this fashion, a delay
may be associated with each stub on a net. This file is
typically generated by a delay calculator which is part of
the user's physical design sub-system.

The format of this file is a list. Each element of the
list consists of a signal name, a list of the path names of
the components that the signal drives and a delay for each
pin:

'SIGNAL l' (5 •• 0) :
'(SYS ALU MUX)' = '2.3-3.4',
'(SYS REG)' = '0.2-1.7,0.1-1.2';

'SIGNAL 2' (7 •• 5) :
'(SYS SHIFTER)' '0.0-1.1';

'SIGNAL 2' (4 •• 1) :
'(SYS SHIFTER)' = '0.5-3.1';

'SIGNAL 2' (0) :
'(SYS SHIFTER)' = '0.5-3.1';

end.

If no bit numbers are given after a signal name, then
the delay will apply to all of the bits of a bus.

WIRE DELAY FILE FORMAT

The detailed syntax for the wire delay file is:

(delay file) ::= END. I (delay list>; END.

(delay list) ::=(signal delay list>; (delay list)

(signal delay list) ::=(signal name) : (stop delay list)
(stop delay list) : := (stop delay>; I

(stop delay), <stop delay list)

<stop delay) : := (quoted path name) = (quoted rise/fall
range)

(signal name) ::=(quoted signal name) I
(quoted signal name) < (bit range))

(quoted signal name) ::= ' (signal name) '
(bit range) ::=(bit number) I (bit number) •• (bit number)

6-77

Timing Verifier
Wire Delays

(bit number) ::=(integer)

(quoted path name) ::= ' (path name) '

(quoted rise/fall range)
::= '(delay) ' I ' (delay range) ' I

' (rise delay range) , (fall delay range) '

(rise delay range) ::=(min delay) - (max delay)

(fall delay range) ::=(min delay) - (max delay)

(delay range) ::=(min delay) - (max delay)

(delay) ::=(fixed-point number)

(min delay) ::=(fixed-point number>

(max delay) ::=(fixed-point number)

To simplify feeding back of wire <lelays, a (path name)
in the <stop delay list) may be a unique left substring of
the actual path name.

6-78

Timing Verifier
Delay Estimator

SCALD Timing Verifier Delay Estimator

6.23 DELAY ESTIMATION

In many technologies, the time required for the output
of a device to reach its loads is affected by both the
interconnect delay and the size of the load:

Tr = Tdr + Kr(load on the net) + Tir
Tf = Tdf + Kf(load on the net) + Tif where

Tdr
Kr

Tir

Tdf
Kf

Tif

Note:

is the device's rise delay
is a device-specific constant related to changes in
the output's rise time as a function of device loading
is the rising edge delay due to wires

is the devices fall delay
is a device specific constant related to changes in
the outputs fall time as a function of device loading
is the falling edge delay due to wires

Tdr, Tdf, Kr, Kf are device specific;
(load on the net) is net specific; and
Tir, Tif input specific.
All quantities can assume both a min and max value.

We can lump the net loading term and interconnect term of
the delay. Then the delay due to all interconnection
effects can be modeled as an input specific wire delay. If
interconnection delays are computed (or estimated) this way
by the physical design sub-system, and then fed back to the
Timing Verifier as wire delays {the DELAY.DAT file), we
obtain an accurate timing representation of the system.
Early in the design cycle however, it may be impractical to
provide such detailed delay information -- estimators are
required.

The Timing Verifier can use estimated wire delays
provided by the designer on his print set, or use a global
default value for wire delays. (See Wire Delays and the
Timing Verifier.) This is often adequate if the signal delay
due to loading effects is small.

If the loading effect is not small, the Timing Verifier
has a more accurate delay estimator that takes into account
static load, and provides a wire delay estimate based on the
number of stops (inputs and outputs) on the net. This delay
estimate is added to the basic device delay (RISE, FALL, or
DELAY parameter on the body) and overides any other
specified wire delays.

6-79

Timing Verifier
Delay Estimator

Tr(estimated) = Tdr + Kr(loads on the net + wire delay)
Tf(estimated) = Tdf + Kf (loads on the net + wire delay)

where constants Tdr, Kr, Tdf, Kf are as above.

The load term is a weighted sum of inputs and outputs on the
net which approximates the true capacitive and DC load on
the net. The wire delay is estimated by counting the number
of stops on the net and converting stops into load
equivalents.

COMPUTING NET DEPENDENT DELAYS

The Timing Verifier estimates the net delay on each net
in six steps:

1. The load is estimated by taking a weighted sum of
the inputs and outputs on the net.

2. The number of stops on the net is counted.

3. The number of stops is converted to an
interconnection delay estimate (in units of load
equivalents) by table look-up.

4. An effective net load is computed by adding the
interconnect and load estimates.

S. The effective net loading is multiplied by the
drive constants (Kr and Kf) of the drivers of the
net to obtain rise and fall delays due to net
loading.

6. These delays are added to the drivers zero-load
parameters (Tdr and Tdf).

Counting Loads

Counting the inputs and outputs on a net is complicated
by the presence of TIMES parameters and dots.

If an input pin is part of a device with a TIMES
parameter of Ni on it, the input is counted Ni times. If an
output pin of a device has a times parameter of No on it, it
is counted once and the number of inputs on the net is
divided by ~ If several outputs are dotted together the
previous rules apply with two changes. The number of
outputs on the net is the sum of all the outputs ignoring
their times parameters. The number of inputs on the net is
counted as before and then divided by the smallest TIMES

6-80

Timing Verifier
Delay Estimator

parameter of any device with an output on the net.

If phantom gates are used, they are collapsed to an
explicit dot for the counting procedure.

Finally, the user may place an optional pin property,
LOAD FACTOR, on any pin. LOAD FACTOR takes a fixed point
number as a value. If LOAD FACTOR is specified, a pin is
counted LOAD FACTOR times (or LOAD FACTOR Ni times if it is
an input pin and a TIMES parameter-of Ni is present) rather
than once in the above counting procedure.

Estimating Wire Delays

To estimate wire delay, the number of stops on each net
is counted. If phantom gates are used, they are collapsed
into an explici~ dot for the stop counting process. The
number of stops is converted to equivalent loads by table
lookup using a table specified with the Timing Verifier
directive WIRE ESTIMATE. WIRE ESTIMATE takes an argument
list of fixed point numbers and an optional FAMILY
specification. A net with j stops receives a wire delay
estimate given by the jth number in the list. The family
specification allows for a number of different WIRE ESTIMATE
tables to be used in the same Timing Verification run. If a
FAMILY body property is given on a primitive, then the
WIRE_ESTIMATE table with the same FAMILY specification will
be used. If no FAMILY body property is given on a
primitive, then the WIRE ESTIMATE table without a FAMILY
specification will be used. An example set of WIRE ESTIMATE
directives are given below:

WIRE ESTIMATE 1. 0, - 2. o, 3. 0, 4.0;
WIRE ESTIMATE ECL: - 0. 5, 1. 0, 2. 0, 3. 0;
WIRE ESTIMATE TTL: - 1. 0, 2. o, 3. 1, 4.0;
WIRE ESTIMATE ON GATE - ARRAY: 0. 3, 0. 6, 1. 0, 1 • 3;
WIRE ESTIMATE BET GATE ARRAY: 1. 0, 2. O, 3. 1, 4. 5;

Computing Load Dependent Net Delays

Each Timing Verifier primitive within a component
model, that drives an output pin of the part being modelled,
can have an optional drive constant body property, DRIVE.
This property takes a pair of fixed point ranges as a value,
the first number is the driver's Kr factor, the second its
Kf factor. A range is required to specify both a minimum
and maximum value. If no DRIVE property is specified, Kr
and Kf are set to a global default. This default is
specified in the.directives file with the directive
DEFAULT DRIVE. If this is unspecified as well, Kr and Kf
are set to 0-0. If only one fixed point number is provided,

6-81

Timing Verifier
Delay Estimator

Kr and Kf are both set to the value.

After the effective net loading has been computed for a
device's output net, the device's output delays (DELAY, or
RISE/FALL) are adjusted ~ ~ bit-by-bit basis, by the time
obtained by multiplying its drive constant(s) by each output
bit's effective net loading.

Load estimation can be disabled using the
DELAY ESTIMATOR directive.

USING LOAD DELAY ESTIMATION

Using load estimation entails the following:

1. Load estimation is turned on and off with the load
estimator directive: DELAY_ESTIMATOR { ON I OFF }. OFF
is the default value.

2. Specifying drive constants (Kr, and Kf). This can be
done in two ways:

a) By attaching a the DRIVE body property to each
Timing Verifier primitive whose output is to display
load-dependent behavior:

(drive) ::=DRIVE= (rise and fall delay) I
DRIVE = (rise delay>, (fall delay)

(rise and fall delay> ::=(delay) I (min delay>-<max delay>

(rise delay) ::=(delay) (min delay)-(max delay)

(fall delay> ::=(delay> (min delay)-(max delay)

(min delay) : := (delay)

(max delay) ::=(delay)

(delay) ::=(fixed point number)

b) If no body property is specified, a default value is
used. It is set with the default drive directive:

DEFAULT DRIVE (rise and fall delay factor) or
DEFAULT DRIVE (rise delay factor), (fall delay factor)

the default value for DEFAULT DRIVE is O.

6-82

Timing Verifier
Delay Estimator

3. Specifying pin loading. This is done by attaching the
LOAD_FACTOR property to a pin of the Timing Verifier
primitive that connects to the interface signal that
represents the pin of the part whose load is to be
specified.

(pin load) ::=LOAD FACTOR= (fixed point number)

If no property is specified, a default LOAD FACTOR
6f 1 is used.

4. Specifying a conversion table from stops to load
equivalents. This is done with the WIRE ESTIMATE
directive:

(wire estimate directive) ::=WIRE ESTIMATE (wire estimate options)

(wire estimate options) ::=(list of delays)
(family) : (list of delays)

(list of delays) ::=(fixed point number) I
(fixed point number),(list of delays)

(family) ::=(identifier up to 16 characters long)
where

a net with j stops receives a delay estimate given by the
jth fixed point number in the list. This list may have a
maximum of 100 entries, and runs with over 100 stops will use
the last entry.

NOTES ON THE COUNTING MODELS

This scheme for counting stops and loads on a net is
independent of the actual wiring of a net. In two
significant cases this results in delay estimates that are
too large.

Drivers with TIMES parameters, especially feeding
phantom gates, are often wired with a careful partitioning
and placement of the loads. The estimation scheme does not
take this into account. It assumes a load that results from
an even partitioning of the loads into a number of pieces
equal to the driver with the smallest TIMES parameter.

Physical parts often have common input pins which are
modelled as separate pins. For example two SIZE=4B,
74LS374s might be driven by the same clock signal and hence
be allocated to the same package. However, since two
logical parts appear on the prints, two 74LS374 clock pins

6-83

Timing Verifier
Delay Estimator

will appear on the net instead of one.

In order to ensure correct counting of loads, timing
models should only connect one primitive (not counting
checker bodies) to each interface signal. This can always
be accomplished using zero delay non-inverting buffers, as
shown below:

Higher Level Drawing Timing Model

+-----+

1-> AND

+-----+

I BUF I
I
+-----+

SIG ---------+---> ->
I

+-----+

+-----+

-) OR

I
+-----+

6.24 INTERACTION OF WIRE DELAYS WITH DELAY ESTIMATOR

The delays calculated by the delay estimator are used
to adjust the delays of the driving components, and as such
will be added to wire delays specified in the drawings or
fed back wire delays specified in the wire delay file. The
directive USE DRAWING WD allows the user to control whether
the wire delays specified in the drawings will be used or
not. In general, any fed back wire delays will override any
wire delays specified in the drawings. It is suggested that
USE DRAWING WD normally be turned off when the
DELAY ESTIMATOR is on.

6-84

Timing Verifier
Plot time

Timing Diagram Plotter (PLOTTIME)

6.25 INTRODUCTION

The timing diagram plotting program PLOTTIME converts
the tabular output of the Timing Verifier or the Logic
Simulator to conventional timing diagrams for display by the
Graphics Editor and for hardcopy output through the Graphics
Editor's hardcopy facility. The Plottime program runs
exclusively on the S-32 cluster controller.

6.26 DIRECTIVES FILE

The Plottime program requires a directives file
(td.cmd) to define the input file to be plotted, the SCALD
directory and file name of the output or "plot" file, and
the timing diagram display parameters (e.g., number of
signals displayed, nanoseconds per centimeter, etc.). A
typical td.cmd directives file looks like this:

DIRECTORY 'MY SCALD DIRECTORY';
INPUT 'MY INPUT FILE';
OUTPUT 'MY TIMING DIAGRAM.MY EXTENSION';
NS PER INCH = 20;- -
NS_PER TICK = 10;
SIGNALS PER PAGE = 15;
END.

Referring to the above directives file, each entry is
on a single line and must be terminated by a semicolon; an
"END." statement is required following the last entry. The
individual entries are defined as follows:

o DIRECTORY -- the name of the SCALD directory to
contain the output (plot) file; if this entry is
omitted, the program PLOTTIME wi 11 abort.

o INPUT -- the name of the input file to be plotted from
the Timing Verifier or Logic Simulator; if this entry
is omitted, the file "plotsig.dat" is used by default.
Note that the name of the Timing Verifier output file
is always "plotsig.dat"; the default name of the
Logic Simulator output file is "plotsig.dat" or the
file name specified in the Plot command.

o OUTPUT -- the name of the plot file used by the
Graphics Editor to display the timing diagram. If an
output (plot) file is not specified, the file
"timing.timing" is written to the corresponding SCALD
directory as the default timing drawing. Note that a

6-85

Timing Verifier
Plot time

version or page number extension is ignored in the
file name.

o NS PER INCH -- the number of nanoseconds represented
by-an inch of timing diagram display. Note that a
NS_PER_CM entry alternately can be used.

o NS PER TICK -- the number of nanoseconds per tick mark
on-the timing diagram.

o SIGNALS PER PAGE -- the number of timing signals
plotted per page. The Plottime program plots all
signals within a design; when the number of signals
to be plotted exceeds the SIGNALS PER PAGE entry, a
set of plot files (pages) are generated (i.e.,
TIMING. TIMING. 1. 1, TIMING. TIMING. 1. 2, etc.).

6.27 EDITING THE TABULAR INPUT

The input file specified in the Plottime directives
file is the tabular output ASCII file generated by the
Timing Verifier or Logic Simulator (i.e., plotsig.dat).
This file can be edited with one of the UNIX text editors
(e.g., vi) prior to running Plottime in order to remove any
unwanted signals from the timing diagram. The first part of
the file defines the labels that appear across the bottom of
the timing diagram. The actual timing signal descriptions
follow the labels and are defined as a sequence of
state-time values. The timing signals generated by the
Timing Verifier are listed in alphabetical order; timing
signals generated by the Logic Simulator are listed in the
order in which they are "opened" in the Waveforms mode and,
if specified, their display position (row). The signal name
is enclosed in single quotes at the beginning of a line;
the signal description can be any number of lines and is
terminated by a semicolon. The following example shows a
typical timing signal description.

'CLOCK SYNC l'O:O.O,il:l0.0,10:50.0, 1:60.0;

6.28 CREATING TIMING DIAGRAMS

In order to create a timing diagram using Plottime, the
drawing must be compiled (for TIME or SIM) and the Timing
Verifier or Logic Simulator must be run to generate the
tabular output file (plotsig.dat). Remember that when
setting up the Timing Verifier's directive file
(verifier.cmd), the TIMING DIAGRAMS flag must be set to
"ON." When running the Logic Simula tor, the PLot command is
used to create the tabular output file (see Simulator

6-86

commands in Chapter 7).

Timing Verifier
Plot time

If the Timing Verifier or Logic Simulator is run on the
host (VAX or IBM), the tabular output file must be
transferred to the cluster controller using the file copy
utility (see Chapter 12).

Next, edit (or create) the "td.cmd" directives file.
Note that if the timing diagram(s) are to fit on a B size
(llx17) page, the total length of the timing diagrams should
be 10 inches (e.g., to display a 200 nanosecond waveform,
the NS PER INCH entry would be set to 20). The total length
of a plot should not exceed 30 inches. The maximum number
of signals that can be plotted on a B size page is 15.

After the corresponding tabular output file and the
Plottime directi~es file are created, run the Plottime
program (from UNIX) by entering:

plot time

after the UNIX prompt and then pressing RETURN. Plottime
will create the required number of pages of the timing
drawing and will automatically update the drawing name in
the SCALD directory (default name "timing.timing").

Once the drawing file has been created, enter the
Graphics Editor and display (edit) the drawing file.

NOTE

The Plottime program automatically updates the SCALD
directory. However, if the Graphics Editor is running
(open) when the Plottime program is run, the directory
currently referenced by the Graphics Editor (and not
the updated directory) will be used. To update the
SCALD directory without exiting the Graphics Editor,
the following sequence of Graphics Editor commands
is used:

IGNORE MY SCALD DIRECTORY - -USE MY SCALD DIRECTORY

6-87

Timing Verifier
Plot time

When the number of timing signals exceeds the SIGNALS PER PAGE
directive, the Graphics Editor displays the first page of-the
timing diagram (default file name timing.timing.1.1). To
display a subsequent page, enter

EDIT ••• n

where "n" is the page number to be displayed. Note that the
timing diagrams are conventional drawings and can be manipulated
using the Graphics Editor (e.g., a timing signal can be grouped
and then moved or deleted). The Graphics Editor's HArdcopy
command is used to plot the displayed timing diagram.

6.29 TIMING VERIFIER ERROR MESSAGES

Error messages are generated by the Timing Verifier for a large
number of erroneous conditions. Each occurrence of a specific
type or "class" of error is assigned a sequential number. This
number, the error class, the specific error number, and a brief
description of the error are written to the Timing Verifier's
list file (tvlst.dat). The sections that follow define the
classes of errors and describe each error and its probable
cause.

6.30 CLASSES OF ERRORS

Errors detected by the Timing Verifier fall into one of the
following three classes:

o Syntax Errors
Syntax errors are typographical errors or violations
in the specified form of a character string and are
detected when the Timing verifier is searching any
of its four input files.

o Timing Errors
Timing errors are detected by the checker
primitives. Common timing errors include setup and
hold violations and minimum pulse width violations.

o Runtime Errors
Runtime errors occur after the input files are read
and while the Timing Verifier is processing the
design. An error that is not a syntax or a timing
error is a runtime error.

6-88

6.31 FORMAT OF MESSAGES

Timing Verifier
Error Messages

Syntax, timing, and runtime error messages are formatted in
the list file as follows:

#(n} Syntax error(m): <message)

#(n) Timing error(m): <message)

#(n) Runtime error(m): <message)

In the above formats, "n" is a running count of the number of
occurrences of the corresponding class of error, "m" is the
actual error number, and <message) is a brief description of
the error. For example

#287 Syntax error(22): String length exceeded

indicates that the this entry is the 287th syntax error and
that this specific error is error #22, "string length
exceeded" (i.e., a character string in excess of 255 was
encountered).

Following each error message entry may be several lines that
describe the location of the error (e.g., the drawing, the
body on the drawing, or the pin on the body where the error
was detected). This information is included to assist the
designer in finding and correcting the problem.

Syntax, timing, and runtime error messages are counted
separately. At the end of the verification run, the total
number of errors for each class is reported. For example:

12 syntax errors detected.
No timing errors detected.
One runtime error detected.

6.31 SUMMARY OF THE MESSAGES BY NUMBER

The remainder of this section contains an ordered (by error
number) description of each Timing Verifier error message.
Included with the descriptions are suggestions on the probable
cause of the error and how to recover from the error.

6-89

Timing Verifier
Error Messages

Each error number is listed with one of the following:

o Syntax error message text.

o Timing error message text.

o Runtime error message text.

o "Unused'' (the error message number is available for
future use).

o "Reserved" (the error number is used for debugging or
other Valid internal operations).

Error 110: Unimplemented error message

An error of undetermined type bas been detected.

Syntax error Ill: Expected identifier

This error is generated whenever the Verifier is
expecting an identifier (a string of letters, digits, or
'_' starting with a letter) and finds some other data.
Identifiers are used as names in properties, text
macros, and as operands for Verifier directives. The
Verifier prints the input line along with a pointer to
the position in the line where the problem was detected.

Syntax error 112: Expected =

Syntax

Syntax

This error is generated whenever the Verifier is
expecting an equal (=) and finds some other data.
Equals are used in many places: between property names
and values, and in expressions. The Verifier prints the
portion of the input line it read before it encountered
the error.

error fl 3 : Reserved.

error 114: Reserved.

Syntax error fl 5 : Reserved.

Syntax error 116: Reserved.

6-90

Syntax error #7: Expected)

Timing Verifier
Error Messages

This error is generated whenever the Verifier is
expecting a right parenthesis ()) and finds some other
character. The Verifier prints the portion of the input
line it read before the error was encountered.

Syntax error #8: Expected ,

This error is generated whenever the Verifier is
expecting a comma (,) and finds some other data.
Commas are used to separate elements in lists and are
required, for example, in specifying options to the LIST
command. The Verifier prints the portion of the input
line it read before the error was encountered.

Syntax error #9: Reserved.

Syntax error #10: Expected <

This error is generated whenever the Verifier is
expecting a less than character (<) and finds some other
character. The Verifier prints the portion of the input
line read before the error was encountered.

Syntax error #11: Expected >

This error is generated whenever the Verifier is
expecting a less than character ()) and finds some other
character. The Verifier prints the portion of the input
line read before the error was encountered.

Syntax error #12: Expected ;

This error is generated whenever the Verifier is
expecting a semicolon (;) and finds some other
character. The Verifier prints the portion of the input
line read before the error was encountered.

Syntax error #13: Expected :

This error is generated whenever the Verifier is
expecting a colon (:) and finds some other character.
The Verifier prints the portion of the input line read
before the error was encountered.

6-91

Timing Verifier
Error Messages

Syntax error #14: Reserved.

Syntax error #15: Expected (

This error is generated whenever the Verifier is
expecting a left parenthesis (() and finds some other
character. The Verifier prints the portion of the input
line read before the error was encountered.

Syntax error #16: Reserved.

Error #17: Unused.

Error #18: Unused.

Error #19: Unused.

Syntax error #20: Unmatched closing comment character

This error is generated when the Verifier encounters a
closing comment character (}) without a matching
starting comment character ({). The Verifier prints the
portion of the input line read before the error was
encountered. Either this symbol is extraneous or the
beginning of the comment was never specified. If the
symbol really is extraneous, the Verifier continues with
no further errors. If it isn't, bogus errors will
probably have been generated as the Verifier tried to
read the text of the comment.

Syntax error #21: Nested comments not allowed

Comments within comments are not allowed in Timing
Verifier input files. This error is generated if input
of the form:

{ This is a comment { This is a nested comment }}
is encountered.

6-92

Timing Verifier
Error Messages

Syntax error #22: String length exceeded

This error is generated as the Verifier is reading a
string and finds that the string is too long. Strings
are limited to 255 characters. The Verifier prints the
portion of the input line read before the error was
encountered. The string is truncated at the current
position and the Verifier reads until it finds the
closing quote or the end of the input line. Make the
string shorter!

Syntax error #23: Illegal character found

This error is generated when the Verifier finds an
illegal character in an input file. All non-printing
characters except TAB are illegal. The Verifier prints
the portion of the input line read before the error was
encountered. Remove the character.

Syntax error #24: Expression value overflow

Syntax

Error

Error

Error

Error

This error is generated when the Verifier evaluates an
expression whose value overflows. The Verifier prints
the portion of the input line read before the error was
encountered. An overflow does not cause the Verifier to
abort; it assigns the value 0 to the result (unless it
knows a more reasonable value) and continues with the
verification.

error #25: Reserved.

#26: Unused.

#27: Unused.

#28: Unused.

#29: Unused.

Syntax error #30: Reserved.

Error #31: Unused.

6-93

Timing Verifier
Error Messages

Syntax error #32: Non-printing character found

This error is detected when the Verifier is reading
characters from an input file and a non-printing
character is encountered (non-printing characters are
not permitted). The Verifier prints the portion of the
input line read before the error was encountered.

Syntax error #33: Expected a string

This error is detected when the Verifier is expecting a
string (a quoted sequence of printing characters) and
finds some other data. The Verifier prints the portion
of the input.line read before the error was encountered.

Syntax error #34: Comment not closed before end of input

This error is detected when the Verifier does not find
the end of a comment before the end of the file. A
comment begins with a "{" character and ends with a "}"
character. The Verifier prints the portion of the input
line read before the error was encountered.

Error 135: Unused.

Syntax error #36: Reserved.

Syntax error #37: Expected •

This error is generated when the Verifier is expecting a
period (.) and finds some other character. The Verifier
prints the portion of the input line read before the
error was encountered. This error is most commonly
caused by omitting the '•' following the END at the end
of the directives, case, or wire delay file.

Error #38: Unused.

Syntax error #39: Reserved.

6-94

Timing Verifier
Error Messages

Syntax error #40: Expected END

Syntax

Error

Error

Error

Error

Error

Error

Error

Syntax

Syntax

Syntax

Syntax

Error

Syntax

Syntax

This error is generated when the Verifier reaches what
it expects to be the end of a file and no END is found.
An END must be present at the end of the directives,
case, and delay files. The Verifier prints the portion
of the input line read before the error was encountered.
The END is used to inform the Verifier that the file is
complete and that it isn't unfinished or missing some
text.

error #41: Reserved.

#42: Unused.

#43: Unused.

#44: Unused.

#45: Unused.

#46: Unused.

114 7 : Unused.

#48: Unused.

error #52: Reserved.

error 1153: Reserved.

error 115 4: Reserved.

error II 55: Reserved.

1156: Unused.

error 115 7: Reserved.

error 1158: Reserved.

6-95

Timing Verifier
Error Messages

Error #59: Unused.

Syntax error #60: Reserved.

Syntax error #61: Reserved.

Error #62: Unused.

Error #63: Unused.

Error #64: Unused.

Error #65: Unused.

Error #66: Unused.

Syntax error #69: Reserved.

Syntax error #70: Reserved.

Error #71: Unused.

Syntax error 117 2: Reserved.

Syntax error 117 3: Reserved.

Syntax error 117 4: Reserved.

Syntax error 117 5: Reserved.

Syntax error 117 6: Reserved.

Syntax error 117 7 : Reserved.

Syntax error 117 8: Reserved.

6-96

Syntax error 179: Reserved.

Timing Verifier
Error Messages

Syntax error #80: Output digits must be 0, 1, 2, or 3

This error will occur if an illegal numerical value is
given to the OUTPUT DIGITS directive. Legal values are
0 (display nanoseconds) through 3 (display picoseconds.)
See the directives section for more information.

Error #81: Unused.

Error #82: Unused.

Error #83: Unused.

Error #84: Unused.

Syntax error #85: Reserved.

Runtime error #86: Reserved.

Syntax error #87: Reserved.

Error #88: Unused.

Syntax error #89: Reserved.

Syntax error #90: Reserved.

Syntax error #91: Reserved.

Error #92:. Unused.

Syntax error #93: Reserved.

Error #94: Unused.

6-97

Timing Verifier
Error Mes•a~es

E~ror #95: Unused.

Error #96: Unused.

Syntax error #97: Reserved.

Syntax error #98: Reserved.

Runtime error #99: Reserved.

Runtime error #100: Assertion check failure: save Log File.

This error is generated whenever the Verifier discovers
some internal data problem. The Verifier. is constantly
checking to make sure that its internal data is '
consistent. If it detects some problem, this message is
generated. Contact Valid Logic Systems for a work
around and/or corrections. This message indicates an
internal Verifier error and usually cannot be fixed by
the user. Save the data that caused the error as it
will be very helpful in finding th~ problem. It is very
important that the TVLOG file be saved (at a minimum).
Valid may also request any of the input or output files
for the Verifier. Try to be ready to reproduce the
problem for the Service Engineer.

Runtime error #101: Cannot open compiler output (CMPEXP)

This error is generated when the Verifier cannot find­
the compiler output file, CMPEXP.DAT (CMPEXP DATA on the
IBM). This file must be in the directory (mini-disk on
the IBM) where you are running the Timing Verifier. See
the SCALD Compiler documentation in Chapter 5 for
information on how to compile your drawing for the
Timing Verifier.

Rqntime error #102: Compiler expansion file has wrong type

This error occurs when an expansion file is found, but
the drawing has not been compiled ·for the Timing
Verifier. Possibly the drawing was compiled for the
SCALD Logic Simulator. Check the compiler directives
file (compiler.cmd) and iead the SCALD Compiler
documentation.

6-98

Syntax error #103: 'Number too large

Timing Verifier
Error.Messages

This error is generated when the Verifier detects an
integer value that is larger than 99999. This could
occur when reading any of the input files: the compiler
expansion file, the directives file, the case file, or
the wire delay feedback file.

Syntax error #104: Illegal character in number

This error is generated when the Verifier finds a
character other than a digit or a decimal point in a
number. This could occur when reading any of the input
files: the compiler expansion file, the directives
file, the cas'e file, or the wire delay feedback file.

Syntax error #105: EOF encountered

The end of an input file (EOF) was found prematurely.
This means before "END." appeared in the file.

(

Syntax error #106: Reserved.

Runtime error #107: Reserved.

Syntax error #108: Continuation character not at EOL.

The Verifier found a line in an input file that was not
ended properly. A string was being read, and it
contained a newline character. Strings that extend past
character 80 in an input file should have a continuation
character c-> to indicate that they continue on the next
input line.

Syntax error #109: String too long

This ~rror is generated when the Verifier finds a string
that extends over 255 characters. Make the string
shorter.

Syntax error #110: Bad delimiter

This error occurs when the Verifier is expecting some
delimiter (such as a double quote ending a string), and
finds a different one. The expected delimiter is
printed with the portion of the input line read before

6-99

Timing Verifier
Error Messages

the error was encountered.

Syntax error 1111: Expected quoted string

This error is generated when the Verifier encounters
something other than a string in quotes when it is
expecting a quoted string. The portion of the input
line read before the error was encountered is printed
out.

Runtime error #112: Reserved.

Syntax error 1113: Invalid width of signal

This error occurs if the Verifier computes a signal that
has a period the is not equal to the CLOCK PERIOD. This
is a serious error, and if it ever occurs,-should be
reported immediately.

Syntax error 1114: Reserved.

Syntax error #115: Multiple values given for signal

This error is generated if more than one value is given
for a signal in one case in the case file. This
obviously makes no sense, so remove the incorrect case
specification.

Runtime error #116: Max number of evaluation passes executed

If the circuit does not converge within the number of
evaluation passes specified by the MAX EVAL PASSES
directive (which currently defaults to-200)~ this error
is generated. Many evaluation passes may be required
for circuits with feedback loops in them.

Runtime error #117: Resistor connected to constants at both ends

This error occurs when the Verifier tries to orient the
resistors in the design. A resistor connected to a
constant signal (1 or O) at both ends is not allowed for
the Timing Verifier and usually indicates a design
error.

6-100

Timing Verifier
Error Messages

Runtime error #118: Resistor driven at both ends

The Verifier generates this error when it finds a
resistor that has primitive outputs attached to both
ends. This resistor cannot be oriented. The
verification run continues, but the resistor is ignored.
Change the circuit so that all resistors are driven at
only one end.

Runtime error #119: Part not orientable

This error is generated
oriented. Each resistor
input and output sides;
truly bidirectional.

if a resistor cannot be
must have unique, unambiguous
they are not allowed to be

Runtime error #120: The following parts are unorientable

This error is generated if more than one resistor cannot
be oriented; see Runtime error #119 above.

Syntax error #121: Max time is smaller than min time

This error is generated by the Verifier whenever it
finds a maximum time that is less than the corresponding
minimum time. Specifying DELAYzS.0-4.0, for example,
would cause this error.

Syntax error #122: Single time variable expected, not range

This error occurs when a minimum-to-maximum range
(min-max) is specified where only a single time value is
expected. Examples: setup times, hold times, minimum
pulse widths, etc.

Syntax error #123: Reserved.

Syntax error #124: Illegal transition type specified

This error in generated when the Verifier finds a
Transition Type other than SMOOTH or GLITCHY in the
expansion file.

6-101

Timing Verifier
Error Messages

Syntax error #125: Illegal strength type specified

This error in generated when the Verifier finds a
strength other than SOFT or HARD in the expansion file.

Syntax error #126: Illegal character in evaluation string

Evaluation characters must be either: A, I, E, Z, H, or
w. See the section of the documentation on Evaluation
strings.

Syntax error #127: Bit numbers specified are out of range

This error is generated when bit subscripts specified in
the case file do not agree with the signal width found
in the expansion file. If a signal has bits (5 •• 2) in
the design, any specification in the case file for that
signal may only refer to bits 5 through 2 or to the
whole signal.

Syntax error #128: Illegal character in signal list

This error is generated by the Verifier if it finds
extraneous or incorrect input in the properties
connected to a signal in the expansion file. The
various property names must be spelled correctly, and
the other elements such as equal signs (=) and
semicolons (;)must be in the proper places.

Syntax error #129: Time range given for clock delay

The value of a CLOCK_DELAY property must be a single
value, not a minimum-maximum range.

Syntax error #130: Undefined pin

This error is generated if an incorrect pin name is
found for a Timing Verifier primitive in the expansion
file. The correct pin names are documented in the
section on Verifier primitives.

6-102

Timing Verifier
Error Messages

Syntax error #131: No signal passed to parameter

This error in generated if there is no signal bound to a
pin of a Timing Verifier primitive in the expansion
file. If this happens, without any Compiler errors, it
is indicative of a SCALD Compiler bug.

Syntax error #132: Missing parameter

This error is generated if a required pin of a primitive
is not found in the expansion file. If optional pins
such as enables on checker primitives do not exist, this
error will not be generated. This is indicative of
either a library or a SCALD compiler bug.

Runtime error #133: Incorrect width parameter passed to formal

This error is generated when a signal and the pin to
which it is connected are found to have different widths
in the expansion file. This should have caused an error
to be generated by the SCALD Compiler.

Syntax error #134: Illegal value given to boolean option

Boolean Verifier directives must be given either the
value TRUE or the value FALSE. Any other value will
generate this error.

Syntax error #135: Illegal value given to on/off option

Verifier directives such as RECONV FANOUT and
DELAY ESTIMATOR require either the-value ON or the value
OFF. Any other value will generate this error.

Syntax error #136: Unknown dot type specified

The legal values for the DOT TYPE directive are:
DOT_OR, DOT_AND, and DOT TS. Any other value will
generate this error.

Syntax error #137: Expected bit ordering specifier

This error is generated if the BIT ORDERING directive is
read, and the value assigned is not either RIGHT TO LEFT
or LEFT TO RIGHT.

6-103

Timing Verifier
Error Messages

Syntax error #138: Too many entries given in wire estimate list

The maximum number of wire estimates that can be
specified in a wire estimate list is currently 100. Any
additional estimates will be ignored and will cause this
error to be generated.

Syntax error #139: Unknown option given

This error is generated if an unknown (illegal or
undefined) Timing Verifier directive is specified in the
directives file. It is also generated if the value of
the DELAY MODEL directive is not one of the legal
values: MIN, MAX, MIN/MAX, RISE/FALL, or a combination
of the legal values. This is most likely caused by a
spelling error.

Syntax error #140: Unknown syntax specification

Signal specifications have up to five parts: the
property specifier, the assertion specifier, the
subscript specifier, the name specifier, and the
negation specifier. If the values given for the SYNTAX
specification are anything else, this error will be
generated.

Syntax error #141: Invalid clock period specified

If the CLOCK PERIOD is specified as less than one
nanosecond, this error will be generated, and the
CLOCK PERIOD set to the default, 100 nanoseconds.

Syntax error #142: Invalid number of clock intervals specified

If the number of CLOCK INTERVALS specified to the
CLOCK INTERVALS directive is less than one or greater
than Toooo times the CLOCK_PERIOD, this error will be
generated.

Syntax error #143: Invalid tri-state bus type

The only legal values for the TS BUS TYPE directive are
DOT OR and DOT TS. This error is generated if any other
val;e is speciTied. The value is then set to the
default, DOT TS, or to DOT OR if a previous TS BUS TYPE
directive had the value DOT OR.

6-104

Timing Verifier
Error Messages

Syntax error #144: NC SIGNALS set to illegal value

The legal values for the NC SIGNALS directive are: O,
1, S, ASSERTED, and DEASSERTED. Using any other value
will generate this value and cause the value S (stable)
to be used.

Syntax error #145: PULSE EDGE CORR must be between 0 and 1

Legal values for the PULSE EDGE CORR directive range
between 0 and 1. See the directives summary for more
information. If an illegal value is used that generated
this error, the value 1 will be used as a default.

Syntax error #146: Print width invalid

Valid values for the PRINT WIDTH directive are from 80
to 132, inclusive. Specifying other values will
generate this error. When this occurs, the value will
default to 132. See the PRINT WIDTH directive for more
information.

Syntax error #147: Invalid number of passes specified

Specifying a value less than one for the MAX EVAL PASSES
directive will generate this error. Values less than
one are meaningless, so the value will default to 200 if
this error in encountered.

Syntax error #148: Expected FILE_TYPE

This error is generated when the Verifier finds a file
called CMPEXP.DAT but the first line in the file is not
"FILE TYPE'' (the first line of a compiler expansion file
for the Verifier must be either
"FILE TYPE=CMP EXPANSION;" or
"FILE-TYPE=TIME EXPANSION;"). Make sure the proper
expansion file is in your current directory, and that
the drawing was compiled for TIME.

6-105

Timing Verifier
Error Messages

Syntax error #149: Unknown primitive

This error is generated by the Verifier when it reads a
primitive from the expansion file that has an unknown
type. This should only happen if the expansion file is
edited by hand, and a primitive's name is changed
accidently. The primitive will be ignored.

Syntax error 11150: Expected "END_PRIMITIVE"

This is another error that should only be caused by
erroneous hand editing of an expansion file. Every
primitive in the expansion has the keyword,
"END_PRIMITIVE" at the end of its description. This can
be hard to recover from, and in some cases can cause
many extraneous errors to be generated.

Syntax error #151: Unknown block type in expansion file

This is another error that should not ever be generated
unless an incorrectly hand-edited expansion file is
used. Legal block types are: DIRECTIVES, TIME,
PRIMITIVE, and END.

Runtime error #152: Reserved.

Timing error #153: Edge to Edge timing violation

This error is generated by a Timing Verifier Edge to
Edge checker primitive. This indicates a timing error
in the design. See the documentation section on checker
primitives for more information on this and the other
Timing errors.

Error #154: Unused.

Error #155: Unused.

Timing error #156: Setup time violation

This error is generated by a Timing Verifier Setup Hold
checker primitive. This indicates a timing error in the
design. See the documentation section on checker
primitives for more information on this and the other
Timing errors.

6-106

Timing error #157: Hold time violation

Timing Verifier
Error Messages

This error is generated by a Timing Verifier Setup Hold
checker primitive and indicates a timing error in the
design. See the documentation section on checker
primitives for more information on this and the other
Timing errors.

Timing error #158: Setup/Hold time violation

This error is generated by a Timing Verifier Setup Hold
checker primitive and indicates a timing error in the
design. See the documentation section on checker
primitives for more information on this and the other
Timing errors.

Timing error #159: Minimum pulse width timing violation

This error is generated by a Timing Verifier Minimum
Pulse Width checker primitive and indicates a timing
error in the design. See the documentation section on
checker primitives for more information on this and the
other Timing errors.

Timing error #160: Delay is greater than CLOCK_PERIOD

Before doing the actual verification, the Timing
Verifier checks that all delays are less than the
CLOCK PERIOD. All delays that are greater than the
CLOCK-PERIOD are flagged with this warning error
message. (This is a feature only available in release
7.5 and later releases). As always, greater delays are
used modulo the CLOCK PERIOD during the verification.
That is, with CLOCK PERIOD set to 102 ns, a delay of
104.2 ns will use 2~2ns (104.2 mod 102) a~ a delay.

Syntax error #161: Too many entries given in load
coefficient table

This error is generated when more than 100 entries are
given for a LOAD COEFF table. See the section on
non-linear delay-estimation for more information.

Error #162: Unused.

6-107

Timing Verifier
Error Messages

Syntax error #163: Illegal latch directive

The legal values for the LATCH ERR MODEL directive are:
OPEN, CLOSED, and CONSERVATIVE; Specifying any other
value will generate this error.

Syntax error #164: Reserved (debug).

Runtime error #165: Multiple evaluation directives on primitive

The use of evaluation directives is restricted to only
ONE pin of a primitive. See the section Evaluation
Directives For Clock Tuning for more information.

Timing error #166: Input changing while clock is asserted

This error indicates that the conditions required by an
"A" evaluation directive have not been met by the
circuit. While the clock input to an AND gate or an OR
gate is asserted, the other input is not stable. See
the section Evaluation Directives For Clock Gating for
more information.

Syntax error #167: Reserved.

Runtime error #168: Wire-tie error - mixed and/or

This error is generated by the Verifier when some
illegal combination of wire-and and wire-or logic is
used on a signal. See the sections Dot Gate Primitives,
Signal Strengths in the Timing Verifier, and DOT TYPE
directive for more information.

Syntax error #169: Illegal value given

This error is generated if a value given in the case
file is illegal. Legal values are 0, 1, S, and clock
assertions. See the section on Case Analysis for more
information.

Syntax error #170: Invalid casefile syntax

This error is generated if the proper case file syntax
if not used. In particular, signal names and values
must be enclosed in single quotes (').

6-108

Timing Verifier
Error Messages

Syntax error #171: Case signal not used in network

This error is generated if a signal found in the case
file is not found in the design. This type of erroneous
case specification is ignored.

Syntax error #172: Reserved.

Syntax error #173: Expected ; or ,

This error is generated if a case specification is not
ended properly. Ending a specification with a comma,
(,) means that more specifications will follow for the
current case. Ending a specification with a semicolon
(;) means that the current specification is the last for
the current case. See the Case Analysis section for the
exact syntax and more information.

Syntax error #174: Signal not found - delay spec ignored

This error is generated if a signal is found in the wire
delay feedback file (delay.dat) that is not found in the
design. The signal is printed out, and the
specification is ignored. Usually this indicates a
spelling error.

Syntax error #175: Signal does not drive pin, delay ignored

This error is generated if a signal is found in the wire
delay feedback file (delay.dat) with an incorrect path
name. See the section Calculated Wire Delays for the
exact syntax required and for more information.

Runtime error #176: Dotted signal name too long

This error is generated as a warning when a signal name
and it path name are too long to be concatenated to form
a dotted signal name. The limit on signal name lengths
is 255 characters. The Verifier picks an intelligent
substitute and prints out that substitute name.

6-109

Timing Verifier
Error Messages

Runtime error #177: Too many outputs are wire-tied together

Currently, only 1000 primitive outputs may be wire-tied
together. If this error occurs, and there is not an
error in the drawing, please report the problem and the
size will be increased.

Syntax error #178: Error in timing assertion

This error is generated if any of a number of signal
name syntax errors is detected. The exact error is
printed out with the signal in question. If possible,
an intelligent substitute or default is used.

Syntax error #179: Illegal List option

This error refers to the LIST directive which has many
possible options of the form (option) and NO(option).
See the LIST directive documentation in the Timing
Verifier Directives Summary.

Runtime error #180: No option file or TIME DIRECTIVES block

This error is generated when the Timing Verifier cannot
find any directives. The file verifier.cmd does not
exist in the current directory AND there is no
TIME DIRECTIVES block in the expansion file. Either
create a file called verifier.cmd and put any desired
directives from the Timing Verifier Directives Summary
into it or add a TIME DIRECTIVES body from the Standard
library (with the desired directives) to your schematic.

Syntax error #181: Verification aborted-expansion file errors

This error is generated when more errors are detected
while reading in the expansion file than the value given
to the MAX EXP ERRORS directive. See the Timing
Verifier Directives Summary for information on the
MAX EXP ERRORS directive.

Runtime error #182: Cannot open file for write

This error is generated by the Verifier when it cannot
open the monitor (screen output) file. Check for space
on the disk, no write access to the current directory,
etc.

6-110

Runtime error #183: Reserved.

Timing Verifier
Error Messages

Runtime error #184: Verification aborted-too many input errors

This error is generated when more errors are detected
while reading in the input files (not just the expansion
file) than the value given in the MAX ERRORS directive.
See the Timing Verifier Directives Summary for
information on the MAX ERRORS directive.

Runtime error #185: Illegal evaluation modes

This is an internal error that should not occur. If it
does, please note the two evaluation modes, save the
list and log files, and notify a Valid Service Engineer.

Runtime error #186: Wire table already defined, redefining

This error in generated when more than one wire estimate
list is given for a single family. In the directives
file or the TIME_DIRECTIVES block, more than one
WIRE ESTIMATE directive was found with either no family
specification, or the same family specification.

Runtime error #187: Undefined wire delay table given

This error is generated when a FAMILY specification is
given for a primitive, but a wire estimate list for that
family is not in the directives file or in the
TIME DIRECTIVES block of the drawing.

Runtime error #188: Undefined load coefficient table given

This error is generated when a FAMILY specification is
given for a primitive, but a load coefficient list for
that family is not in the directives file or in the
TIME DIRECTIVES block of the drawing.

Runtime error #189: Load table already defined, redefining

This error in generated when more than one load
coefficient list is given for a single family. In the
directives file or the TIME DIRECTIVES block, more than
one LOAD COEFF directive was found with either no family
specification, or the same family specification.

6-111

Timing Verifier
Error Messages

Error #190: Unused.

Error #191: Unused.

Error #192: Unused.

Runtime error #193: No name string in print_signal_formatted

This error is an internal error that should not occur.
If it does, and is repeatable, please save the input and
output files and report the problem to Valid.

Runtime error #194: Invalid margin in print_signal_formatted

This error is an internal error that should not occur.
If it does, and is repeatable, please save the input and
output files and report the problem to Valid.

Errors #195 through #200: Unused.

6.33 GLOSSARY

The following is a short glossary of the terms used in the
SCALD Timing Verifier documentation. It is not intended to be
comprehensive since most of the terms are described in detail
elsewhere within this chapter. A short description of each
term is given along with a reference to the chapter or section
where it is more fully described.

6.34 TERMS

ASSERTION

A timing assertion is a statement about the behavior of
a signal during the execution of the system of which it
is a part. Assertions are named or general signal
properties that specify the stable/changing, or in the
case of clock signals (see below) the zero/one behavior
of a signal. (See Signal Assertions in this chapter.)

6-112

Timing Verifier
Glossary

BASE SIGNAL

CASE

The SCALD language allows the user to associate several
different signal names with a single electrical node.
The base signal is the name which the verifier uses to
refer to a signal node. It will be one of the (possibly
many) names that the user has associated with the node.
(See Chapter 4, "SCALD III Language".)

Sometimes circuits have timing behavior that depends on
the actual logic values of certain data signals (not
just whether they are stable or changing). The Timing
Verifier supports ~ analysis to check these systems.
A particular assignment of zero/one values to a set of
signals in a design for a verifier run is called a CASE.
(See Timing Verifier Case Analysis in this chapter.)

DIRECTIVE

See Evaluation Directive.

EVALUATION DIRECTIVE

CLOCK

An evaluation directive is a general signal property
that directs the Timing Verifier to treat the signal it
is associated with specially. Evaluation directives are
provided to verify designs that contain tuned or gated
clock signals. (See Timing Verifier Directives in this
chapter.)

A clock is a signal with a clock assertion. Signals
with clock assertions are special in two ways. First,
assertions specify zero/one (not stable/changing)
behavior on clocks. Second, evaluation directives may
be applied to clocks. (See Timing Verifier Signal
Syntax.)

6-113

Timing Verifier
Glossary

CLOCK SKEW

The Timing Verifier assumes that clocks have some kind
of skew over the entire system. Clock skew is a single
value (fixed point number) that denotes a symmetric
uncertainty in the time of occurrence of an edge in a
clock signal. The Timing Verifier allows two skews to
be specified in a system, CLOCK SKEW and PRECision CLOCK
SKEW. These skews differ only in the details of the
clock assertion syntax (see Timing Verifier Signal
Syntax).

IDENTIFIER

An identifier is a name made up of letters (A-Z), digits
(0-9), and underscores () starting with a letter. The
case (whether upper or lower) makes no difference; the
compiler upper-shifts all letters on input. An
identifier must start with a letter so that the compiler
can tell the differLace between a name and a number
(since numbers may have alphabetic characters following
them to make them easier to read, for instance, SIZE =
3Bits). All the names the compiler expects (except for
signals and macros) must be identifiers. These names
include those for text macros, structures, properties,
and parameters.

PATHNAME

The path from the root macro down the tree to some other
macro is given a name to distinguish it from the other
paths in the tree. The path name is crucially important
in identifying macro and signal instances and guarantees
that signal names will be unique. See the compiler
overview for a further description.

PRECISION CLOCK SKEW

(See CLOCK SKEW above.)

6-114

SCALAR

Timing Verifier
Glossary

A scalar is a single bit signal that is not a part of a
vector signal. Normally, a signal has labeled bits.
That is, its bits are given numbers to identify them as,
for example:

F00(2) SNARF<0 •• 4) WHOOPS<S6, 59)

In each of these signals, the bits have been numbered to
distinguish them from other bits that are part of the
signals FOO, SNARF, and WHOOPS. A scalar signal, on the
other hand, has only one bit. There is no need to give
it a number to distinguish it; it is always unique.
Scalar signals never have bit subscripts since the
subscript's only function is to number the bits of the
signal.

TEXT MACRO

A text macro is a symbolic reference to some string of
characters that replaces the text macro name wherever it
is used. Text macros are defined in a DEFINE body
within a macro drawing. Text macros are used to provide
a shorthand notation for commonly used items (such as
signal properties) or to allow easy changes of
fundamental values (by naming the value, the value can
be easily changed). Text macros are described in
Chapter 4.

TIMING VIOLATION

A timing violation is a point in time in a signal's
value history where the setup time, hold time, or pulse
width requirements of some part driven by the signal are
not met or the signal's value is inconsistent with its
timing assertion.

VALUE HISTORY

The value history of a signal is the ordered list of
values (O, 1, S, R, F, C, U and Z) and durations of
those values that a signal assumes during system
operation.

6-115

Timing Verifier
Glossary

VECTOR

A vector is a signal representing more than one bit
(such as a bus) or representing a portion of a base
signal that represents more than one bit. A vector is
always given a bit subscript; the presence of a
subscript makes a signal a vector. When a signal refers
to a portion of a base si~nal (signal definition) that
is a vector, it must be specified as a vector even if

.the signal refers to only one bit of the vector. The
reason for this is that the bits of a multibit signal
are referred to by number. When a signal refers to a
portion of a signal that contains many bits, the bits of
interest must be specified by number. See also SCALAR
and "Signal Name Syntax" in Chapter 4.

6-116

