
CHAPTER 5

COMPILER

An Overview of the Compiler

5.1 INTRODUCTION

Compiler
Overview

This section is intended to introduce the user of the
SCALDsystem to the SCALD Compiler. It describes the purpose
of the Compiler, its inputs and outputs, the tasks it
performs, and how to interpret the messages it produces.
Several other sections are mentioned that describe in detail
topics summarized here.

The SCALDsystem user creates drawings with the Graphics
Editor. These drawings may be "flat", this is, containing
only "real'' components (references to real devices such as
TTL or ECL parts,) or they may be hierarchical, containing
references to "abstract" drawings that refer to some other
collection of components that may, in turn, be defined in
terms of other components, etc.

Physical design systems, in general, expect designs
that are "flat"; they are designed to connect (layout)
circuits made up of physical components and cannot handle
abstractions. One of the major tasks of the Compiler is to
remove the abstractions from the design replacing them with
physically realizable equivalents.

The Compiler also has the task of converting the
graphical description of the design into a form
interpretable by the rest of the SCALDsystem analysis
programs and to provide a standard interface to the user's
physical design systems.

The SCALDsystem process starts with the creation of
drawings with the Graphics Editor. The Compiler reads the
drawings, checks for errors, and outputs a description of
the entire design with all abstractions removed. DIAL reads
this description and outputs a net list for the user's
physical design system. This net list is the only interface
between the SCALDsystem and the user's physical design
system.

5.2 THE COMPILATION PROCESS

The Compiler has several phases each of which is
described below. The Compiler is run on all machines with
the command COMPILE.

5-3

Compiler
Overview

COMPILER DIRECTIVES
The Compiler directives are used to direct the
compilation process. There are two directives
that must always be specified. The ROOT DRAWING
directive specifies the name of the drawing that
is used as the start of the compilation. The
DIRECTORY directive lists the SCALD directories
and libraries to be used in the compilation.
These directories list the names of all the
drawings that might be used in the design. The
Compiler directives are read from a file created
by the user. This file can be easily created with
a text editor.

PROPERTY ATTRIBUTES
Properties can be given attributes that describe
how the property is to be interpreted by the
Compiler. These attributes include specification
if the contexts in which the property is to be
inherited, whether it is a parameter and its type,
and whether it has special characteristics when
used in a signal name. These attributes are read
from a file. The Compiler always reads a Valid
supplied standard property file which can be found
on the VAX in SYS$SCALD:PROPERTY.DAT, on the S-32
in /uO/scald/property.dat, and on the 370 in
PROPERTY DATA C. You may add additional property
attributes in a file specified with the
PROPERTY FILE Compiler directive.

TEXT MACROS
Special text macros can be declared that are
globally known and reserved throughout the
compilation. These text macros are used, for
instance, to support the short form of the Timing
Verifier properties in signal names. Once a text
macro has been declared as reserved, another text
macro of the same name is forbidden. The Compiler
always reads a Valid supplied standard text macro
file which can be found on the VAX in
SYS$SCALD:TEXTMACRO.DAT, on the S-32 in
/uO/scald/textmacro.dat, and on the 370 in
TEXTMACR DATA C. You may add additional text
macros in a file specified with the
TEXT MACRO FILE Compiler directive.

5-4

ROOT DRAWING

Compiler
Overview

Once the Compiler has been initialized (the above
steps), it reads in the specified root drawing;
the drawing which is to be used as the start of
the compilation.

DRAWING PROCESSING
The drawings of the design are processed. The
Compiler reads each drawing used in the design and
checks the properties and signals for errors. The
compilation proceeds by first processing the
signals and properties attached to each body used
in the drawing. Second, the drawing associated
with each body is read and the process is
repeated. Finally, a drawing is reached that
contains no bodies (that is, it is not defined in
terms of other drawings) and the process stops.
The result is the creation of a "tree". The
"root" of the tree is the drawing specified (with
the ROOT DRAWING directive) and the lowest level
drawings-(the bottom of the tree) form a "flat
expansion" of the design. Each of these bottom
level drawings are "primitives" in that they are
not defined in terms of other drawings; they are
complete in themselves.

OUTPUT OF THE DESIGN
The output expansion file is generated. At this
time, the Compiler selects base signal names for
all of the signals in the design.

OUTPUT OF THE SIGNAL SYNONYMS
The synonyms file is generated. For each signal
encountered in each page of each drawing, the name
of the base signal as it appears in the design is
Generated.

ERROR HELP
Documentation of the error messages encountered
during the compilation are output if enabled with
the ERROR_HELP Compiler directive. This
documentation is intended to help you to
understand and correct the errors.

s-s

Compiler
Overview

5.3 A SUMMARY OF THE FILES INPUT BY THE COMPILER

The following files are read by the Compiler. A short
description of each is intended as a reminder; they are
described fully elsewhere. The form of each file as well as
how the file is created is described.

COMPILER DIRECTIVES
This is a text file created by the user containing
Compiler directives used to direct the compilation
process. See the Compiler Directives section for
details.

CONFIGURATION
This file contains the signal syntax specification
for the user's site. This file is not modifiable
by the user; only by Valid Systems Engineers.

MASTER LIBRARIES
This is a file that describes the name and
location of the libraries in the system. For
example, an entry might describe the LSTTL library
as being in the /uO/lib/lsttl/lsttl.lib SCALD
directory. The Compiler always reads the
system-wide master library file (supplied by
Valid) and will read additional master library
files supplied by the user (see the MASTER LIBRARY
directive.)

PROPERTY ATTRIBUTES
This is a text file containing attribute
assignments for properties used in the design.
These assignments are automatically read from
standard Valid property attributes file and you
may specify an additional file as well. See the
Property section for details.

RESERVED TEXT MACROS
This is a text file containing definitions of
globally known reserved text macros. These
definitions are automatically read from Valid
standard text macro file and you may specify an
additional file as well. See the Text Macro
section for details.

5-6

Compiler
Overview

CMPERRORS.MEM
This file contains error message documentation.
It is read by the Compiler to output error
documentation at the end of the compilation. See
the Compiler Error Message section for details.

DIRECTORIES
These files are specified with the DIRECTORY
Compiler directive. They are used by the Compiler
to find the drawings used in the design.
Directories are only created by the Graphics
Editor. See the SCALD Directory section for
details.

DRAWINGS
These files contain descriptions of drawings; one
drawing per file. The Compiler reads these as
needed. The ROOT DRAWING is always read and all
other drawings encountered during the compilation
are first found in the directories and then read.

5.4 A SUMMARY OF THE FILES OUTPUT BY THE COMPILER

The following files are written by the Compiler.
short description of each is intended as a reminder;
are described fully elsewhere. The form of each file
well as how the file is created is described.

MONITOR

A
they
as

This file is the standard output file. It shows a
summary of the execution of the Compiler listing
each phase of the compilation and the time each
phase took. A summary of the errors, oversights,
and warnings is given at the end. This file is
directed to the standard output device; the
terminal or a line printer. This file cannot be
suppressed.

CMPLOG
This file contains all error, warning, and
oversight messages produced during the compilation
(as well as those warning and oversight messages
that were suppressed). Any internal errors (error
187) detected are also printed here. Execution
statistics are output as well. This file is
intended to provide Valid personnel with
information needed when fixing problems with the
programs. It should be saved whenever an

5-7

Compiler
Overview

LIST

ASSERTION FAILURE error message is encountered.
The file cannot be suppressed.

This file contains the execution summary and all
error messages. It is an expanded form of the
information written to MONITOR. A message is
printed for each drawing processed. This file can
be suppressed with the OUTPUT Compiler directive.

EXPAND
This file contains the ''flat expansion" for the
design. It is a list of all the "real" components
and how they are connected. This file can be
suppressed with the OUTPUT Compiler directive,
except with separate compilation when it is always
produced.

SYNONYM

CHIPS

This file contains lists of signal synonyms (or
aliases) detected during the compilation. It is
used by other SCALDsystem programs to refer to all
names for a given net. This file can be
suppressed with the OUTPUT Compiler directive,
except when there is separate compilation in which
case it is always produced.

This file contains chip definitions used by the
SCALD Packager. The process for generating this
file is described in the Generating Physical
Libraries documentation. This file can be
suppressed with the OUTPUT directive.

5.5 ERRORS DETECTED BY THE COMPILER

As the Compiler processes the design, it detects
several types of errors. The Compiler makes an attempt to
"correct" errors as they are detected to reduce the number
of error messages that would be produced as the error
propagates through the design. The Compiler attempts to
have each error cause one error message to be printed.

ERROR MESSAGE TYPES

The Compiler groups error conditions into three types:
warnings, oversights, and errors. A warning condition can
usually be ignored. An oversight is more serious, but the

5-8

Compiler
Overview

design as produced by the Compiler is probably okay for some
types of analysis. An error should be corrected before
continuing. See the Compiler Error Messages section for a
complete discussion of error messages.

ERRORS DETECTED

The Compiler detects many different types of errors.
The general types are described below.

SYNTAX ERRORS
These errors are detected as the Compiler reads
various files such as the Compiler directives,
reserved text macros, or property attributes
files. The syntax (form) of the statements within
these files is checked for correctness. When the
form is incorrect, a syntax error is generated.

Syntax errors can also appear in signal names. In
this case, the form of a signal name is in error.
The Compiler guesses at the form the signal is
supposed to take.

DRAWING ERRORS
These errors are detected as the Compiler reads a
drawing. They include errors such as: undefined
drawing name (missing from directories), selection
expression errors (such as more than one selection
evaluates true), incompatible drawing types (such
as .PRIM and .PART), missing standard properties
(such as ABBREV and PATH), and invalid file type
(the file that is supposed to contain the drawing
definition has the wrong type).

SIGNAL ERRORS
A large number of errors may be detected in the
processing of signals. Signal errors are detected
as the Compiler processes the bodies found in a
drawing. For each body, the pin names and signal
names are read and checked.

5-9

Compiler
Overview

The checks performed on pin names and signals
connected to them are:

l. Check that the pin name is not a
constant, a concatenated or replicated
signal, has consistent properties, and is
unique (that is, different from all other
pin names on the body).

2. Make sure the signal name has the correct
scope, that it exists, and is used
correctly.

3. Check that the signal name's width
matches the pin name's width.

4. Check that the signal name's assertion
matches the pin's bubble state.

5. Check that the pin properties do not
conflict with the signal or its
properties.

Whenever a signal error is de tee ted, the Compiler
prints the drawing currently being read, the body
to which the signal in error is connected, the
name of the pin on that body, and the signal
itself. The Compiler tries its best to repair the
incorrect signal. It recovers by concatenating an
NC signal (for width errors), replacing it with an
NC (for catastrophic errors), etc. The attempt is
made to reduce the impact of the error on the rest
of the compilation.

5.6 HOW TO COMPILE FOR TIMING VERIFICATION OR SIMULATION

The Compiler always produces output intended for some
other SCALDsystem program or for transfer to another CAD
system (using DIAL). By default, the Compiler compiles to
physical parts. This can be used by the Packager or by
DIAL. The output of the Compiler intended for the Packager
consists of a description of the design at the physical part
level; that is, the design is compiled until only "real"
parts are left (such as TTL or ECL components). The
Packager has information about these components (their pin
numbers, loading characteristics, etc.) that it uses to
package the design.

5-10

Compiler
Overview

The Timing Verifier, on the other hand, understands a
different collection of components. These components are
called Timing Verifier Primitives. A design must be
expressed in terms of these parts if the Timing Verifier is
to understand it. The Valid supplied library components
have Timing Verifier models as well as physical models. The
designer can compile the design for timing verification by
informing the Compiler with the COMPILE directive in the
Compiler directives file. The compile directive is used to
specify the drawing extension to be used in place of a
.PART. Compilation for the Timing Verifier uses drawings
with the .TIME extension. The Compiler directive to use is
COMPILE TIME.

Compilation for the Simulator is accomplished in a
manner similar to that for Timing Verification. The drawing
extension to be used is .SIM. The Compiler directive is
COMPILE SIM.

For a more complete description of the use of SCALD
directories and drawing extensions, see the SCALD Directory
section.

5-11

Compiler
SCALD Directories

SCALD Direct.oriea

S.7 INTRODUCTION

In the SCALDsystem, drawings are given names invented
by the designer and placed in unique physical files. There
are no restrictions placed on the form SCALD drawing names
may take but the operating system used to support the
SCALDsystem (both in UNIX and on the user's host) bas a
restrictive file naming convention. For this reason, it is
not possible to use the SCALD drawing name as the physical
file name.

The solution is a special directory, called the SCALD
directory, which maps SCALD drawing names to physical file
names created automatically by the Graphics Editor. These
SCALD directories serve two purposes. First, they permit
the designer to refer to the drawings by the drawing name
and to ignore system names. Second, the directories permit
the designer to ignore system specific file naming
conventions since these are handled automatically. The
SCALD directories make the file system of the supporting
machines (in UNIX or the host) transparent to the designer.
Since many hardware designers may have little knowledge of
the computer systems being used for CAD, hiding detailed
operational knowledge is a big advantage.

S.8 THE SCALD DIRECTORY TYPES

SCALD directories are given special "types" that
identify the function of the directdry. There are three
standard directory types: LOGIC, TIME, and SIM. Each of
these is described below.

LOGIC

A LOGIC directory (type = LOGIC DIR) contains drawings
created by the designer. This is the default directory
type and it is unlikely the designer will ever have to
work in another type of directory. Drawings with any
type can be placed in a LOGIC directory (see the
section on drawing types). The standard types are
BODY, LOGIC, TIME, SIM, PART, and PRIM. When a new
directory is created with the Graphics Editor, it is a
LOGIC directory.

5-12

TIME

SIM

Compiler
SCALD Directories

A TIME directory (type = TIME DIR) contains drawings
that describe Timing Verifier-primitives (those special
parts that are understood by the Timing Verifier and
used to construct timing models). A TIME directory may
contain only drawings with the TIME or PRIM types.
Timing Verifier primitives are defined by drawings with
the .PRIM type. These primitives are predefined within
the Timing Verifier and should not be changed.

A SIM directory (type = SIM DIR) contains drawings that
describe Logic Simulator primitives (those special
parts are that understood by the Logic Simulator and
used to construct simulation models). A SIM directory
may contain only drawings with the SIM or PRIM types.
Logic Simulator primitives are defined by drawings with
the .PRIM type. These primitives are predefined within
the Logic Simulator and should not be changed.

The designer may create special directory types. If,
for example, a special purpose simulator is available for
which a special set of primitives is needed, a directory
containing these primitives can be created and given the
name (for example) MYSIM DIR. Withi~ this directory,
drawings with the MYSIM and PRIM types are permitted.

There are two directory types that are forbidden:
PRIM DIR and PART DIR. The types PRIM and PART have special
meanings in the SCALDsystem and directories of these types
are meaningless. The Compiler will produce an error message
if it encounters directories of these types.

Within the libraries supplied by Valid are a number of
directories with special types. Some examples are
SPICE_DIR, MCLDL_DIR, LOGCAP_DIR, and TEGAS5 DIR.

5.9 DRAWING TYPES

A SCALD drawing is given a type name that identifies
the drawing type. Several drawings may have the same name
but different types. There are six standard drawing types:
BODY, LOGIC, TIME, SIM, PART, and PRIM. For each BODY
drawing there must be a corresponding LOGIC drawing and,
occasionally, a TIME and SIM drawing as well. Each of these
drawing types is described below.

5-13

Compiler
SCALD Directories

BODY

LOGIC

TIME

SIM

PART

A BODY is the symbolic representation for a drawing.
It is used to refer to a collection of logic without
the need to include that logic in a drawing.

A LOGIC drawing is the standard type drawing created by
the designer. It is used to define a circuit made up
of parts (such as TTL or CMOS) defined in libraries or
in directories created by the designer. A LOGIC
drawing may contain bodies defined in LOGIC directories
only (bodies defined in TIME or SIM directories may not
be added to a LOGIC drawing).

A TIME drawing is used to define a timing model for
some other part. A TIME drawing may contain bodies
defined in a LOGIC directory or a TIME directory. If a
body from a LOGIC directory is used, that body should
refer orily to drawings that use timing verifier
primitives; that is, no drawings referring to Logic
Simulator primitives should appear. The Compiler will
produce an error message if this is not true.

A SIM drawing is used to define a simulation model for
some other part. A SIM drawing may contain bodies
defined in a LOGIC directory or a SIM directory. If a
body from a LOGIC directory is used, that body should
refer only to drawings that use. Logic Simulator
primitives; that is, no drawings referring to Timing
Verifier primitives should appear. The Compiler will
produce an error message if this is not true.

A PART drawing is used to define a part; usually
within a library of parts. The part drawing contains
physical information such as power, cost, size, weight,
etc. that is of some use to the designer's physical
design system. The .PART drawing itself contains no
logic; it is a place holder for physical information.
The presence of this drawing informs the Compiler that
the corresponding component is a physical part.

5-14

PRIM

Compiler
SCALD Directories

PART and PRIM are the same. For identification, use
.PART for real parts and .PRIM for simulator
primitives. To the compiler however, they are
identical. The Compiler simply ignores .PRIM and .PART
drawings that are not uniquely defined if a SCALD
Directory of the correct type for the compilation being
performed. For example, when compiling for TIME, only
.PRIM (or .PART) drawings in a TIMEDIR will be used.

Other drawing types are possible. In the previous
section, the MYSIM directory was introduced to contain
primitives for a special purpose simulator. Drawings that
contain MYSIM primitives are given the MYSIM type (exactly
as drawings containing TIME primitives are given the TIME
type).

5.10 AN EXAMPLE LIBRARY PART CONSTRUCTION

The following example is included to demonstrate the
use of drawing types and directories.

Let us assume we wish to make a TTL library and to
start with the LSOO part. The following steps should be
followed (the order is not crucial in most cases, but the
order used is the most obvious).

1. Create the TTL 1 i brary directory. Create the
directory file file TTL.LIB with the Graphics
Editor (the file name is not important; choose
whatever you like. Presumably, you'll want a name
that refers to TTL and library.

2. Create the shape for the LSOO. Edit LSOO.BODY and
draw the shape. Make sure that all of the pins are
given pin names. Save the drawing as LSOO.BODY.1.1
(which means drawing with name "LSOO", body version
1, and page 1).

3. Add the LSOO to the TTL LIBRARY drawing. This
drawing should contain one example of each of the
parts in the library.

4. Physical information should be attached to the LSOO
within the TTL LIBRARY drawing. This information
should not be placed within the LSOO.BODY drawing.
If placed there, the information will appear in
every drawing and expansion file used. This makes

5-15

Compiler
SCALD Directories

these files unnecessarily large. Properties are
attached to the pins that describe the pin number,
sect ions (if the part has sections), input and
output loading, etc. Properties are attached to
the body that describe the power and ground pins,
power, size, cost, inventory part numbers,
reliability, or what have you.

5. Create the part description. Edit LSOO.PART and
attach an ABBREV property to a DRAWING body there.
Also add a DEFINE body. Save the drawing as
LSOO.PART.1.1.

6. Create the timing model.
Timing Verifier primitives
to create a timing model.
LSOO.TIME.1.1.

Edit LSOO.TIME and add
(from the TIME library)
Save the drawing as

7. Create the Logic Simulator model.
and add Simulator primitives (from
to create a Simulator model. Save
LSOO.SIM.1.1.

Edit LSOO.SIM
the SIM library)
the drawing as

8. Compile the TTL LIBRARY drawing. Make sure the
Compiler directive OUTPUT CHIPS; is used. When
done, rename the CHIPS.DAT file to TTL.PRT. This
is the TTL library chips file needed by the
Packager and DIAL. It contains all of the physical
information about the TTL parts. This should be
done only after all parts have been entered. It is
not necessary to do for each separate part.

The TTL directory TTL.LIB should have the following entries:

LSOO.BODY.1.1
LSOO.PART.1.1
LSOO.TIME.1.1
LSOO.SIM.1.1
TTL LIBRARY.LOGIC.1.1

which form a complete library entry for the LSOO part.
Repeat for every TTL component and you have a complete TTL
library! But step eight only has to be done once after
steps one through seven have been completed for all
components.

5-16

Compiler
SCALD Directories

5.11 WHAT DOES THE COMPILER DO WITH ALL OF THIS?

The drawing types are used by the Compiler to determine
which drawings are to be used during the compilation. Each
compilation is done with a destination in mind: the Timing
Verifier, the Simulator, the Packager, etc. The COMPILE
directive is used to specify the intended compilation
destination. For instance, to compile for timing
verification, the directive:

COMPILE TIME;

is used. This causes the Compiler to ignore all directories
that are not LOGIC or TIME directories. The Compiler
ignores .PRIM and .PART drawings that are not defined in a
SCALD Directory of the correct type for the compilation
being performed. PRIM (and PART) drawings are read only
within the TIMEDIR directories.

Similarly, if the directive COMPILE SIM; is used, the
Compiler only reads in LOGIC and SIM directories and
drawings with the types LOGIC, SIM, and PRIM. The output of
this compile is sent to the Simulator.

When compilation for the Packager (and from there to
the user's physical design system) is intended, the
directive COMPILE LOGIC; is used (if no COMPILE directive
appears, the Compiler assumes COMPILE LOGIC;). The Compiler
reads only LOGIC directories and drawings with the types
LOGIC and PART (or PRIM). The output is sent to the
Packager and from there to the physical design system.

5.12 A SUMMARY OF THE ABOVE

The information presented above is summarized below.
There are four rules to be followed for using drawing types
and SCALD directories.

5-17

Compiler
SCALD Directories

Directories

Types

LOGIC directories can contain drawings with any types.

xxx directories can contain drawings with the xxx type
or the PRIM (or PART) type only.

The directories PRIM DIR and PART DIR are ilLegal.

A drawing with the xxx type can contain bodies from a
LOGIC directory or an xxx directory only.

5.13 SUMMARY OF WHAT ·THE COMPILER DOES

The response of the Compiler to the COMPILE directive
is summarized below.

COMPILE LOGIC;

The Compiler reads all LOGIC directories. Within these
directories, those drawings with the PART (or PRIM) and
LOGIC types are read. All others are ignored.

COMPILE xxx;

The Compiler reads all LOGIC directories and xxx
directories. Within these directories, those drawings
with the xxx or LOGIC types are read. Within xxx
Directories, those drawings with the PRIM (or PART)
type are read. All others are ignored.

5-18

Compiler
Directives Summary

Compiler Directives Summary

5.14 INTRODUCTION

The Compiler directives are used to direct the
compilation process. Each directive is used to inform the
Compiler about how to compile the design, control error
checking and reporting, or to select Compiler outputs. The
directives are placed in a text file and given to the
Compiler. Each of the directives is described below. The
Compiler directives and their parameters are not case
sensitive. An example Compiler directives file is located
at the end of this section.

Directives are not case sensitive and neither are their
arguments. The only exception is file names (in UNIX only).
The Compiler preserves the case of file names because the
UNIX operating system is case sensitive.

Except for a few exceptions, no directive may appear in
the directives file more than once. The Compiler flags each
repeat appearance of a directive with an error message. The
directives that may be used more than once in the directives
file are:

DIRECTORY
FILTER PROPERTY
LIBRARY
MASTER LIBRARY
OUTPUT
PASS PROPERTY
PRIMITIVE
PROPERTY FILE
REPORT
SUPPRESS
TEXT MACRO FILE

5.15 COMPILER DIRECTIVES

BUBBLE CHECK

Used to control whether bubble checking is
performed. When the Compiler processes a signal
connected to a pin, it checks to make sure that
the assertion of the signal matches the bubble
state of the pin. That is, a signal that asserts
low can only be attached to a pin that has a
bubble and a signal that asserts high may only be
connected to a pin with no bubble. There may be
times when bubble checking is a nuisance (as, for
instance, early in a design, or when some other

5-19

Compiler
Directives Summary

problem is being looked for, or when the designer
doesn't wish to follow bubble conventions). This
directive is used as follows:

BUBBLE CHECK ON;

BUBBLE_CHECK OFF;

check all signals and
pins for bubble
violations.

don't perform any
bubble checks.

If unspecified, the Compiler assumes ON.

COMPILE

Used to specify the type of compilation to be
performed. The Compiler produces output used by
the Timing Verifier, the Logic Simulator, and the
Packager. Each of these understands a different
set of parts: the Timing Verifier only recognizes
timing primitives, the Logic Simulator only
recognizes simulator primitives, and the Packager
only understands "real" parts. The COMPILE
directive is used to inform the Compiler which
primitives to output. This directive accepts a
single parameter that specifies the directory type
in which primitive components are found. For
example,

COMPILE LOGIC;

is used to compile for the Packager. The Compiler
reads all SCALD directories with the LOGIC DIR
type and outputs as primitives those components
with the .part (or .prim) drawing type. A
compilation for the Timing Verifier is specified
as:

COMPILE TIME;

The Compiler only outputs components with the
.prim (or .part) type found in TIME DIR
directories (the Timing Verifier primitives
library). The rule for the COMPILE directive is
as follows:

COMPILE <x>; causes the Compiler to read all
drawings with the .LOGIC, .prim (or .parts),
and .(x) extensions from directories of the
LOGIC DIR and (x) DIR types only.

5-20

Compiler
Directives Summary

If the COMPILE directive is unspecified (either in
the directives file or on the command line), the
Compiler assumes LOGIC (compilation for the
Packager).

CONST BUBBLE CHECK

Used to control whether bubble checking is
performed on constants or not. This is a similar
function to BUBBLE CHECK but applies only to
constants. See the description of the
BUBBLE CHECK directive (above) for details about
bubble-checking. It should be noted that the
signal 1* is the same as the signal 0 (except for
the assertion) since 0 is the complement of 1.
This directive is used as follows:

CONST BUBBLE CHK ON;

CONST BUBBLE CHK OFF;

check all constants and
pins for bubble violations.

don't perform any bubble
checks.

If unspecified, the Compiler assumes OFF.

DIRECTORY

Used to specify the names of the directories where
the drawings may be found. Directories are used
to map the drawing names to system file names.
Directories can be of many types with LOGIC DIR
the standard. Library directories have the-types
TIME DIR (Timing Verifier primitives) and SIM DIR
(Logic Simulator primitives). At least one -
directory must be specified (the one containing
the root drawing). The directories are specified
in a list with each file name appearing in quotes.
For example:

DIRECTORY 'SPECIAL.LIB', 'USER. WRK';

Many directory directives are permitted, each
specifying one or more directory files.

5-21

Compiler
Directives Summary

A directory file name can be fully rooted. The
Compiler will user the path name in the directory
file name to determine where the files in the '
directory can be found. If no directories are
specified, an error is generated and the
compilation is aborted.

ERROR HELP

Used to control the printing of error message
documentation at the end of the compilation. When
enabled, the Compiler prints a short description
of each error that was detected during the
compilation. This description explains what the
error means (in the several contexts in which it
may appear) and gives some suggested fixes. The
documentation is printed to the main Compiler list
file (controlled by the LIST option of the OUTPUT
directive).

ERROR HELP ON;

ERROR HELP OFF;

Print documentation
for all occurring
errors.

Do not print any error
documentation.

If unspecified, the Compiler outputs error
documentation.

FILTER PROPERTY

Used to control whether specific properties appear
in the Compiler's output files. The
FILTER PROPERTY directive takes a list of property
names. For example:

FILTER PROPERTY FOO,GRBX, BAR;

prevents the properties FOO, GRBX, and BAR from
appearing in the Compiler's expansion file. The
FILTER PROPERTY directive will supercede any
attributes in the property attributes files. In
this manner a user may cause a property to be
suppressed that is normally output. See also the
PASS PROPERTY directive.

5-22

LIBRARY

Compiler
Directives Summary

Used to specify one of the libraries. This
command is similar to the library command in the
Graphics Editor. It frees the user from needing
to know the location of the libraries being used.
The user can refer to the library by name and the
Compiler will find it. The form of the Library
directive is:

LIBRARY (library name list>;

where (library name list) is a list of one or more
library names separated by commas. The library
names must be in quotes unless they are
identifiers (start with a letter and consist of
only letters, digits, and '_'). The library names
are kept in a special file in the SCALD area and
correspond to a similar file read by the Graphics
Editor. The standard library can be selected with
the directive:

LIBRARY STANDARD;

OR

LIBRARY 'STANDARD';

Any number of LIBRARY directives can be used as
long as a given library is not specified more than
once. The standard libraries (supplied with every
machine) that can be referenced are:

STANDARD - standard components
TIME - Timing Verifier primitives
SIM - Simulator primitives
PHANTOM - phantom gates

Other libraries (ordered by the customer) are
added to this list when they are installed on the
system.

MASTER LIBRARY

Used to specify the names of master library files.
These files contain the names of the libraries
referred to by the LIBRARY directive. Any number
of files can be specified but the libraries
specified in the master libraries must all be
unique. The directive has the form:

5-23

Compiler
Directives Summary

MASTER LIBRARY (file list) ;

where (file list) is a list of file names in
quotes. An error is generated if the specified
master library file does not exist. The Compiler
always reads the standard SCALD master library
file shipped as part of the Valid libraries.

MAX ERRORS

Used to specify the maximum number of errors
permitted before the Compiler gives up. The error
limit can be set to 2000 as follows:

MAX ERRORS 2000;

If unspecified, the Compiler assumes 1000.

OUTPUT

Used to control which output files are produced by
the Compiler. There are several files that are
always produced: MONITOR (an execution summary to
the standard list device), and CMPLOG (a log of
suppressed warning messages, assertion failures,
and runtime statistics). There are other files
that may be selectively produced. The names of
these files are listed separated by commas or
separate output directives may be used. For
instance, the directive:

OUTPUT LIST, EXPAND, CHIPS;

is equivalent to:

OUTPUT LIST;
OUTPUT EXPAND;
OUTPUT CHIPS;

The output file specifiers are:

LIST

EXPAND

Causes the CMPLST file to be
created. This file contains the
compilation summary and all the
error messages.

5-24

SYNONYM

CHIPS

Compiler
Directives Summary

Causes the CMPEXP file to be
created. This is the output file
of the Compiler used as input by
the Timing Verifier, Simulator, and
Packager.

Causes the CMPSYN file to be
created. This file contains the
signal synonyms found in the
design. Used when aliases of
signals are needed.

Causes the CHIPS file to be
created. This file is used by the
Packager. It describes the library
of physical components that the
Packager understands. See the
Library Structure document for a
description of how to create CHIPS
files.

If unspecified, the Compiler produces the LIST,
EXPAND, and SYNONYM files.

OVERSIGHTS

Used to control whether oversight messages are
printed or not. An oversight is a type of
diagnostic message more severe than a warning and
less severe an error. The Compiler will produce
(probably) correct output in the presence of
oversights, but these conditions should be
remedied by changing the drawings. The form is as
follows:

OVERSIGHTS ON;
OVERSIGHTS OFF;

Print oversight messages.
Do not print oversights.

If unspecified, the Compiler assumes ON.

PASS PROPERTY

Used to control whether a specif tc property
appears in the Compiler's output files. The
PASS PROPERTY directive takes a list of properties
like-the FILTER PROPERTY directive above. The

5-25

Compiler
Directives Summary

PASS PROPERTY directive will supercede any FILTER
attributes in the property attributes files. In
this manner a user may cause a property to be
output that is normally suppressed. See also the
FILTER PROPERTY directive.

PERMIT NO ASSERT

This directive is used to control whether the
Compiler requires every signal to have an explicit
high-assertion character. The signal syntax may
specify a high-assertion character (such as H or
+) or NULL. If NULL, all signals without a
low-assertion specifier are assumed to be
high-asserted. If a character is specified, the
Compiler requires that character to be used on all
high-asserted signals. If you wish to make the
presence of the high-assertion character optional,
the directive PERMIT_NO_ASSERT ON; is used. This
permits you to use no assertion character for
high-asserted signals. The form is as follows:

PERMIT NO ASSERT ON;

PERMIT NO ASSERT OFF;

Do not require high-asserti
characters.

Require all signals to have
high-assertion character.

If this directive is not specified, the Compiler
requires all signals to have an explicit
high-assertion character if a high-assertion
character is defined.

PRIMITIVE

Used to force a drawing to be a primitive even
though its drawing type is not .PRIM or .PART.
This directive can be used to stop the compilation
of some drawing. When a primitive drawing is
encountered (whether primitive because it has the
.PRIM or .PART type or because of this directive)
the Compiler assumes that it is not to be compiled
and does not compile any drawings referenced by it.
If the drawing (or instance) is a .prim or a .part,
the directive has no effect. Otherwise the result
is the removal of the drawing (or instance) from
the compilation. Compilation will stop with the
specified output (or instance), but it will not be
output unless it is a real .prim or a real .part.

5-26

Compiler
Directives Summary

A drawing is set to the primitive type as follows:

PRIMITIVE '<drawing name)';

where <drawing name) is the name of the drawing to
be made primitive. Note that the drawing name MUST
appear in quotes. When the Compiler encounters
this drawing, it will assume it is a primitive
REGARDLESS OF ITS REAL DRAWING TYPE. The above
form of the directive forces ALL instances of a
drawing to be primitive. It is also possible to
force a specific instance of a drawing to be a
primitive leaving all other instances unaffected.
This form of the directive is:

PRIMITIVE '(<path name>)<drawing name)';

where <path name) is the path name of the specific
instance to be forced to primitive type and
(drawing name) is the name of the drawing. If the
instance specified is part of a SIZE replication of
the drawing (the path name will have a 'In' as part
of the last element), the drawing is forced to be
primitive and the SIZE replication is stopped. For
instance, assume the FOO drawing with path name (A
B F) is SIZE replicated by 5. The drawing
instances would be:

(A B F)FOO
(A B Fll)FOO
(A B Fl2)FOO
(A B F#3)FOO
(A B F#4)FOO

If the PRIMITIVE directive:

PRIMITIVE '(A B Fl2)FOO';

is specified, only the following instances of the
drawing FOO will be created:

(A B F)FOO
(AB Fll)FOO
(A B Fl2)FOO

with (A B Fl2)FOO being a primitive. See the
Compiler path name documentation for a complete
description of path names and drawing extension
types. If this directive is unspecified, the
Compiler forces no drawings to be primitive.

5-27

Compiler
Directives Summary

PROPERTY FILE

Used to specifiy the name of a file containing
property attributes. Property attributes determine
how properties are interpreted by the Compiler.
There are several attributes that can be assigned
to a property. These attribute assignments are
read from the file specified by this directive.
The file ATTRIBUTE.DAT may be specified as the
property attributes file as follows:

PROPERTY FILE 'ATTRIBUTE.DAT';

Certain predefined properties are given attributes
automatically. See the property documentation for
a complete description of properties and
attributes. The PROPERTY FILE directive accepts a
list of property attribute files. For example, the
files ATTRIBUTE.DAT and STANDARD.DAT can be
specified with:

PROPERTY FILE 'standard.dat', 'attribute.dat';

PRINT WIDTH

Used to control the width of the output listings.
The width of of the output files LIST, SYNONYM,
EXPANSION can be specified with this directive.
The width may be be set to any value from 80 to 132
columns. The output formatter tries to produce
listings that look ''pleasing" in the width
specified. The widths of the three files cannot be
separately controlled. The width can be set to 120
as follows:

PRINT WIDTH 120;

If unspecified, the Compiler assumes a width of
132.

REPORT

Used to control the generation of reports to the
listing file. The Compiler can generate several
reports. These can be individually turned on or
off.

5-28

Compiler
Directives Summary

Each report is started on a new page.
three reports: PATH_NAMES, HIERARCHY,
For example:

There are
and SUMMARY.

REPORT HIERARCHY;

causes the hierarchy report to be generated. A
report can be turned off by using a ' in front of
the report name. For example:

REPORT -PATH_NAMES;

turns off the path names report.
be turned on with the REPORT ALL;
all reports can be turned off with
directive. Each of the reports is

All reports can
directive and
the REPORT -ALL;
described below.

The PATH NAMES report consists of the path
names of each-drawing compiled. This report is
normally produced by the Compiler. As each drawing
instance is encountered, its path name, drawing
name, and non-default parameters are printed. This
list can be useful when interpreting error
messages.

The HIERARCHY report describes the drawing
hierarchy. For each drawing in the design, the
hierarchical drawings used are listed. Indentation
is used to show the depth of hierarchy. Plumbing
bodies (MERGE, NOT, etc.) are not included in this
list. Primitive parts are also omitted but the
total number is summarized. The HIERARCHY report
for a flat design consists of just the root drawing
name and number of parts used.

The SUMMARY report summarizes the use of
signals and drawings within the design. For
signals, the total number of signals in the design,
the number of unnamed signals, the number of local
signals, the number of global signals, and the
number of interface signals are reported. For
drawings, the total number of drawings, the number
of instances of those drawings, the number of
"plumbing" drawings (MERGE, NOT, etc.), and the
number of primitive drawings are reported.

If no REPORT directive is used, the Compiler
assumes REPORT PATH NAMES.

5-29

Compiler
Directives Summary

ROOT DRAWING

Used to specify the root drawing for the
compilation. The Compiler must be given the name
of a drawing so that it knows where to start
compiling. Any drawing in the design may be
specified; the most global (if the entire design
is to be compiled) or some low level drawing (if a
small portion of the design is to be compiled).
The drawing name must be placed in quotes. This
directive must always appear since the Compiler
cannot start the compilation without the name of
the root drawing. To compile starting at the
drawing ROOT DRAWING OF THE DESIGN, the following
would be used:

ROOT DRAWING 'ROOT DRAWING OF THE DESIGN';

Optional if the root drawing is specified in the
command line.

SINGLE DRAWING

Used to control whether the Compiler compiles a
single drawing (the one specified with the
ROOT DRAWING directive) or compiles the entire
design. This feature is supported to allow the
separate compilation of drawings that are to be
sent to other CAD tools (such as a logic
simulator). It is assumed that the other CAD know
how to process separately compiled drawings, i.e.,
the separately compiled drawings must be linked
together. The SCALDsystem does not support this
linking function for this directive.

When SINGLE DRAWING is ON, the Compiler does
not compile any hierarchical bodies called within
the drawing. It does compile all plumbing bodies
(MERGERs, NOTs, etc.) The hierarchical bodies are
output as though they were primitives. Such an
expansion file is converted to a "module" by a DIAL
Interface. These "modules" are linked together by
the destination CAD system (such as Tegas).

5-30

Compiler
Directives Summary

The AUTO_GEN=TRUE property is attached to each
hierarchical body that is not compiled and is
output into the expansion file. This property is
used by DIAL and the Packager to automatically
generate pin numbers and input/output descriptions
for the component in the absence of a chips file.
See the Packager documentation for a complete
description of this property.

WARNING: Several restrictions must be placed on
the use of the SCALD design language in order
for compilations of a single drawing to work.
No global signals may be used. The
destination CAD system cannot handle
references to global signals. No parameters
may be ·used. Parameters are properties passed
into a drawing to customize it. The most
common parameter in the SCALDsystem is SIZE.
Since the value of the SIZE property is NOT
known, a compilation of a drawing using the
SIZE property will produce an incorrect design
(parameters may be pre-defined in the text
macro file but, since every drawing to be
compiled may need a different text macro file,
this involves considerable logistical
difficulties). No inheriting pin properties
are permitted on hierarchical bodies. Since
these need to be inherited down through the
hierarchy, they cannot be properly handled
when compiling a single drawing. All plumbing
bodies used must have either one (or more) NWC
pin or a PART TYPE = 'PLUMBING' property on
the body.

This directive is used as follows:

SINGLE DRAWING ON; compile only the root drawing.

SINGLE DRAWING OFF; compile the entire design.

If unspecified, the Compiler assumes
SINGLE DRAWING OFF.

5-31

Compiler
Directives Summary

SUPPRESS

Used to suppress specific warning and oversight
messages. When information is left out of some
drawings (such as definitions for X FIRST or X STEP
or SIZE), the Compiler generates warnings or -
oversights to bring this fact to the attention of
the designer. The designer may choose to add this
information (which is suggested since it improves
the level of documentation) or the specific warning
or oversight message may be suppressed. For
example, the warning #193 may be suppressed as
follows:

SUPPRESS 193;

A list of messages may be specified as, for
instance:

suppress 193, 194, 195;

All warning messages can be suppressed with the
WARNING directive (see below). All oversight
messages can be suppressed with the OVERSIGHTS
directive (see above). Error messages cannot be
suppressed. If unspecified, the Compiler
suppresses no warnings or oversights.

TEXT MACRO FILE

Used to specify the name of the file containing
globally known reserved text macro names. The
Compiler permits the designer to specify text macro
names that are known within all drawings in the
design (can be used in all signal names). The
Compiler makes sure that these names are reserved;
i.e., no text macro of the same name may be defined
(in a DEFINE body) anywhere within the design. The
Timing Verifier timing assertion text macros are
defined with a system-wide text macro file. The
designer may specify any other text macros as well.
See the Compiler text macro documentation for more
details. The name of the file must be in quotes.
The file TEXTMACRO.DAT may be specified as the text
macro file as follows:

TEXT MACRO FILE 'TEXTMACRO.DAT';

5-32

Compiler
Directives Summary

The TEXT MACRO FILE directive accepts a list of
text macro files. For example, the files
MACROS.DAT and STANDARD.DAT can be specified with:

TEXT MACRO FILE 'standard.dat', 'macros.dat';

WARNINGS

Used to control whether the Compiler prints warning
messages. Several conditions are detected by the
Compiler that are not as severe as errors, but need
to be brought to the attention of the designer.
Rather than print an error message, the Compiler
prints a warning indicating that the condition may
be an error and should be checked. All warning
conditions can be eliminated by adding the needed
information (described in the warning message) to
the drawing. All warning messages may be
suppressed (though it is a good idea to add the
information to the drawings - this information
helps to more clearly document the design). The
directive is specified as follows:

WARNINGS ON; display all warning messages to
the Compiler's list file.

WARNINGS OFF; display no warning messages.

If unspecified, the Compiler outputs all warning
messages.

5-33

Compiler
Directives Summary

S.16 AN EXAMPLE OP A COMPILER DIRECTIVES PILE

The Compiler directives file can be created with a text
editor. The Compiler does not pay any attention to the
end-of-line or to multiple spaces. The letter case of the
directives is unimportant. This is true both for directive
names as well as file names within strings (except under
operating systems where filename case is important (for
example, UNIX). Comments may be placed in the file if
enclosed with '{' and '}'. The directives below cause the
directories USERDIR.DAT, PRIMITV.DAT, and PARTS.DAT to be
searched for drawings during compilation. The root drawing
of the compilation is MAIN ALU BOX. Note that all Compiler
directives must be separated by';' and the file must end
with an 'end.'.

directory 'USERDIR.WRK',
'PRIMITV.WRK',

'PARTS.WRK';

root_drawing 'MAIN ALU BOX';

BUBBLE CHECK
MAX ERRORS

on;
1000;

PRINT WIDTH 132;

error_help on; report all;

end.

5-34

{my user macros}
{the primitives used in this
design}
{more primitives used in the
design}

{name of the highest level
drawing in the design}

{just to make sure}
{I'm careless}

{for the line printer}

{multiple directives per line
are fine}

{this marks the end of the
file}

5.17 INTRODUCTION

Compiler
Separate Compilation

Separate Compilation

Separate compilation is the process of compiling
portions of a design independently and then linking them
together to form a complete design. If a change is made to
a design, only those drawings involved in the change need to
be recompiled. Once compiled, these drawings are then
linked with the rest of the compiled drawings to form the
complete design. In general, the process of linking takes
less time than compiling. This means that separate
compilation and linking is faster than compiling the design
as a single piece.

The biggest advantage occurs when the design is
hierarchical and reuses many drawings. For example, if the
design consists of SO instances of the FOO drawing, the FOO
drawing can be compiled once and linked into the design in
the SO places where it is used. This process is probably 2S
times faster than compiling the design completely.

Separate compilation in the SCALDsystem is supported by
the Compiler and Linker. The Linker produces an expansion
file that is identical to the expansion file produced by the
Compiler if the design is compiled as one piece. Therefore,
there are two paths that can be used to compile designs:

Normal Compilation

+------------+
I Compiler --------------------------->
+------------+

5-3S

Expansion
File

Compiler
Separate Compilation

Separate Compilation

+------------+
Compiler ------+

I
+------------+
+------------+ +----------+

+-->
Compiler ---------> Linker

+-->
+------------+ +----------+
+------------+

Compiler ------+
+------------+

5.18 HOW DOES SEPARATE COMPILATION WORK?

-----> Expansion
File

The Compiler operates in one of two modes: normal
compilation, where the entire design is compiled as a single
piece, and separate compilation, where the design can be
compiled in portions which are linked together to form the
complete design.

When compiling a design as a single piece, the name of
the highest level drawing is given (the ROOT drawing). The
Compiler compiles the root drawing and all drawings used by
the root drawing and so on until all drawings have been
compiled. The result is an expansion file that describes
the entire design. When a change is made to any drawing in
the design, the entire design must be recompiled.

When separately compiling a design, the name of the
drawing to be compiled is specified. However, the design
itself also must be named so that the Compiler and Linker
know to which design the drawing belongs. The concept of a
design is central to separate compilation. The design is
the name given to a collection of drawings that together
form some circuit. The design name corresponds to the ROOT
name when compiling the design as a single piece.

When compiling the design FOO as a single piece, the
following command is used:

compile foo

5-36

Compiler
Separate Compilation

This assumes the existence of the compiler.cmd file that
contains compiler directives. The ROOT DRAWING directive in
the compiler.cmd file is ignored and ROOT DRAWING FOO; is
assumed. The Compiler produces an expansion file for the
entire FOO design.

When separately compiling the design foo, the following
command is used:

seplink foo

Again, a compiler.cmd file is assumed to exist. This file
compiles (separately) all modules (drawings) which are
needed by the design "foo," and, if no fatal errors have
occurred, links them together. Necessary modules to perform
this compilation are automatically determined for each
drawing (for example, 'ABC').The ROOT DRAWING ABC;
directive overrides whatever ROOT DRAWING directive appears
in the directives file. The Compiler's output is an
expansion file describing the drawing ABC and must be linked
with the rest of the design FOO to create a complete
expansion file for FOO.

Once all of the pieces of the design have been
compiled, they can be linked together with the SCALD Linker.
The Linker reads each of the individually compiled portions
of the design, determines how they fit together, and creates
the expansion and synonym files. The output of the Linker
has the same format and contents as the expansion and
synonym files produced by the Compiler when the design is
compiled as a single piece (it is generally impossible for a
program to tell whether the expansion file was produced by
the Linker or the Compiler).

The Linker always produces an expansion file and a synonyms
file.

5.19 LIMITATIONS ON SEPARATE COMPILATION

Drawings that use parameters are difficult to handle
when performing separate compilation. This is because the
parameters may have different values everywhere the drawing
is used. Take, for example, the SIZE parameter. An LSOO
(nand gate) may be given the SiiE parameter to specify the
number of bits it represents. The LSOO body is defined as
follows:

+--\
A (SIZE-1 •• 0) - \

0 Y <SIZE-1 •• 0)*
B <SIZE-1 •• 0> - I

+--!

5-37

Compiler
Separate Compilation

Notice that the width of each pin depends on the value of
SIZE. The TIME model for the LSOO is, therefore,
parameterized. This means that the drawing depends upon
some parameter (in this case SIZE). If the LSOO.TIME
drawing is compiled separately, it cannot be linked wherever
the LSOO is used because each instance may involve a
different value of the SIZE parameter.

The SCALD Compiler detects when a drawing is
parameterized and will not permit one to be separately
compiled. A drawing that is not parameterized and,
therefore, separately compilable, is called a module. The
Linker links modules together to form a complete design. It
operates under the assumption that a module can be used
anywhere in the design without change. This is true because
modules are not parameterized.

When the Compiler is compiling a module, it must decide
which of the bodies in the module correspond to other
modules. These are not compiled since they are to be linked
together with the Linker. Bodies that are not modules are
compiled out flat. These include all plumbing bodies (such
as MERGE or NOT) and all parameterized bodies (such as those
that use the SIZE parameter). A module can correspond to
one drawing or to many, depending upon how much
parameterization occurs and how many plumbing bodies there
are.

The result of the compilation is an expansion file for
the drawing specified, with all parameterized portions
compiled out. Modules may be referenced that are to be
linked in by the Linker.

The following is a summary of the restrictions placed
on separate compilation.

1. Only non-parameterized drawings may be compiled. In
particular, this means that few (if any) library
components can be separately compiled since they
typically use the SIZE parameter.

2. The Compiler detects parameters and flags an error if
a parameterized drawing is separately compiled.

3. All plumbing and parameterized drawings are compiled
completely just as though separate compilation was not
being performed.

4. All pages of a drawing must be compiled together.
This means that a flat design gains nothing from
separate compilation since the entire design is a
single drawing.

5-38

A SEPARATE COMPILATION EXAMPLE

Compiler
Separate Compilation

The following example shows a design hierarchy. The
root of the design, the design's name, is 'A'. The other
drawings in design 'A' are 'B', 'C', 'D', 'E', 'F', 'G',
'H', and 'I'. The drawings marked with an'*' are
parameterized; that is, they use one or more parameters
such as SIZE or DELAY. The parameterized drawings are 'C',
'F', and 'E'. For purposes of discussion each drawing is
assumed to be represented by the file '<drawing).LOGIC.1.1'.
For example, the drawing 'A' is represented by the file
'A.LOGIC.1.1'.

A
I \

l \
B C*

I \ \
I \ \

D E* F*

I I \
I \

G H I

When the 'A' design is separately compiled, six modules
are created: 'A', 'B', 'D', 'G', 'H', and 'I'. For each
compiled module, there are four pieces of information kept:
the expansion data, the synonyms data, a list of the files
that were compiled to produce the module, and the list of
modules used by the module that were not compiled. These
are shown below:

Module name

A

B

D

G

H

I

Files compiled
to produce module

A. LOGIC. 1. 1
C.LOGIC.1.1
F.LOGIC.1.1

B.LOGIC.1.1
E.LOGIC.1.1

D.LOGIC.1.1

G.LOGIC.1.1

H.LOGIC.l.l

I. LOGIC. 1.1

5-39

Modules used
but not compiled

B

D

G

Compiler
Separate Compilation

Note that the drawings 'C', 'E', and 'F' are not modules.
Note further that the files for these drawings are included
in the files for the 'A', 'B', and 'A' modules respectively.
When the Compiler compiles the 'A' drawing, it also compiles
the 'C' and 'F' drawings since these are not modules; they
are parameterized. If the user tries to compile the 'C',
'F', or 'E' drawings, the Compiler will generate an error
message.

S.20 THE CONCEPT OF THE DESIGN

Separate compilation implies the notion of a design.
This is the name given to the entire circuit being created
and comprises all of the drawings. Currently, the design
name and the root drawing name of the design must be the
same.

Whenever a drawing is separately compiled, the name of
the drawing and the name of the design to which the drawing
belongs must be specified. This is· done automatically by
the SEPLINK command. This action is required to allow the
SCALDsystem to organize and keep track of the separately
compiled pieces of the design so that they may be linked
together.

Currently, a design has no structure; that is, a
design may not comprise other designs. The design is
managed in the same directory in which the compilations take
place. This will be discussed further below. Drawings may
be part of more than one design, and more than one design
can be compiled and processed in the same directory.

S.21 BOW TO SEPARATELY COMPILE AN EXISTING DESIGN

An existing design that has never been separately
compiled can be easily set up for separate compilation. The
user simply links the design. The Linker determines which
drawings have not been compiled (which at the start is all
of the design's drawings) and compiles them automatically.

For example, assume that a design exists with the root
drawing !BOX. To set up the design for separate compilation
and to get an expansion file for the design, use the
command:

seplink IBOX

The Linker starts by searching for the root of the given
design (IBOX) which is !BOX. If IBOX has not been compiled,
the Linker calls the Compiler to compile it. A check is
made to see if the modules used by the IBOX module are up to
date. In this case, they do not even exist, so the Linker

5-40

Compiler
Separate Compilation

starts the Compiler to compile each module. Once these
modules are compiled, they are checked to see if the modules
THEY use are up to date. If not, these modules are
compiled. This process continues until all modules that
make up the design !BOX are compiled. At this point, the
modules are linked together to form an expansion file
(cmpexp.dat) and a synonyms file (cmpsyn.dat) for the design
!BOX.

From this point on, the user simply types the command

seplink !BOX

to get a new compiled version of the design.

5.22 HOW TO DETERMINE WHAT NEEDS TO BE COMPILED

Once a design is set up for separate compilation (all
of the modules in the design have been separately compiled),
the system can easily handle changes in the design.

Consider, for example, a design whose name is FOO
comprised of the modules FOO, A, B, and c. FOO is the root
and it uses the other modules. Assume that a drawing within
module A is edited. The user now wishes to create an
expansion file for the design FOO. This is done with the
command:

seplink FOO

The Linker first checks to see if each of the modules is up
to date. In this case, it finds that the drawing files from
which module A is created have been modified. It therefore
calls the Compiler to recompile module A with the command:

sepcomp FOO A

Once this is complete, all modules are up to date and the
Linker links them together to produce the output expansion
file.

5.23 DRAWING TYPES

The Compiler ALWAYS compiles with a specific
destination in mind. The COMPILE directive is used to
specify what type of compilation is to be performed. When
compiling for the Timing Verifier, the directive
COMPILE TIME; is used. When compiling for the Packager,
the directive COMPILE LOGIC; is used and so on. Compile
types are used in separate compilation as well.

5-41

Compiler
Separate Compilation

If the FOO design is to be timing verified, simulated, and
packaged, it must be separately compiled for TIME, SIM, and
LOGIC respectively. To link a design, the design name and
compile type should be specified. For example, the FOO
design can be linked together to create an expansion file
for the Timing Verifier with the command:

seplink FOO TIME

The Linker will check to make sure that all of the modules
in the FOO design have been compiled for TIME, compile those
that have not, and then link the design together. If the
compile type is not specified, the Linker assumes LOGIC.

5.24 SEPARATE COMPILATION DATA BASE

This section mentions the notion of a "current
directory". On UNIX and VMS, this is self-explanatory. The
interpretation of this information for CMS follows in the
next section.

The compiler output for each separate compilation must
be kept around so that it is available for the linker when
linking is done. This is done by maintaining a hierarchical
file structure within the current directory. This structure
is contained within a subdirectory (of the current
directory) called "complink''. As long as all SEPCOMP and
SEPLINK commands for a design are done from the same
directory, all of the compiled modules for that design can
be found by SEPLINK. Three additional commands (RMCOMP,
SHOWCOMP, and GETCOMP) exist to remove compilations from
this structure, show what drawings have been compiled, and
to get the compiler output for a specified compilation so
that it can be examined. For example, suppose you run:

seplink f oo

where the design "foo" contains a drawing "bar''. To examine
what happened when "bar" was compiled, the command:

getcomp foo bar

is used. Once this command has been issued, the compiler
output for "bar" can be examined from the current directory.
This makes it unnecessary to know the details of the
separate compilation data base to use separate compilation
and get at the results of any of the compilations that have
been done.

The data base also maintains the linker files for each
design. To examine what happened when "foo'' was linked, the
command:

5-42

getlink foo

Compiler
Separate Compilation

is used. Once this command has been issued, the linker
output for "foo" can be examined or used from the current
directory. Note that "getlink" gets you the results of the
last "seplink" performed on that design for a particular
compile type, while "seplink" updates the results (if
necessary) and makes them available within the current
directory.

The user can see what drawings have been compiled with
the "showcomp" command. For example, to see what drawings
have been compiled for the "foo" design, the commands:

showcomp foo all
showcomp foo all TIME
showcomp foo all SIM

-or-
showcomp foo all all

can be used. All of the drawings for the specified design
and compile type are shown.

If the drawing "bar" becomes obsolete and is no longer
in design "foo", then the commands:

rm comp foo bar
rm comp foo bar time
rm comp foo bar sim

-or-
rm comp foo bar ALL

remove it from the data base, assuming that these are the
compilations that have been done on this drawing. (If "foo"
has been linked for LOGIC, TIME, and SIM, it is likely that
each of these compilations will exist for a given drawing.)

5.25 SEPARATE COMPILATION DATA BASE ON CMS

Since there are no hierarchical directories on CMS, all
files "in" the separate compilation data base are in the
current directory. All of the commands available on UNIX
and VMS are available on CMS with slight changes in
interpretation. Commands that make files available within
the current directory (on UNIX) copy files from their data
base names to their standard names on CMS. For example,
running:

getcomp foo bar

on CMS causes the compiler output for the LOGIC compilation
of drawing "bar" for design "foo" to be copied to the files:

5-43

Compiler
Separate Compilation

CMPEXP DATA A
CMPSYN DATA A
CMPLOG DATA A
CMPLST DATA A

if they are found.
course) be copied,
not exist.

Those that are not found will not (of
and the standard file for that data will

Since all files are accessible within the current
directory, it is recommended that the following command be
used in lieu of "getcomp'' to look at the results of a
compilation. Executing:

showcomp -files f oo bar

causes the showcomp command to list the drawing foo AND the
files which contain the results of that compilation. They
can then be examined directly. This saves having to copy
them.

5.26 DETAILS OF SEPARATE COMPILATION COMMANDS

There are three commands used to compile and link
designs. They are compile, sepcomp, and seplink. There are
three additional commands associated with separate
compilation maintenance at the drawing level (rmcomp,
showcomp, and getcomp) and similar commands for maintenance
at the design level (rmlink, showlink, and getlink). These
will be described below. In the following, letter case is
not important for command arguments. That is, the argument
may be in upper case, lower case, or mixed case. If the
argument contains "special'' characters (characters other
than letters and digits), it should be placed in quotes.
Command names should be in lower case.

The command line arguments in the following commands
replace directives in the directives file (compiler.cmd).
The compiler.cmd file is always read. If a command argument
appears for the ROOT DRAWING or COMPILE directive, the
corresponding directives are ignored in the directives file.
An empty argument ("") is considered the same as if the
argument was not specified.

compile (drawing name> (compile type)

This command is used to run the Compiler to compile a
complete design. The output of the Compiler is used
directly without processing by the Linker. The output
is not saved in the separate compilation database.
(drawing name) is the name of the drawing to be

5-44

Compiler
Separate Compilation

compiled. It replaces the the ROOT_DRAWING directive.
If this argument does not appear or is null, then the
ROOT DRAWING directive specified in the compiler.cmd
file-is used. <compile type) specifies the type of
compilation to be performed. It replaces the COMPILE
directive. If this argument is null or omitted then
the COMPILE directive (in the compiler.cmd file) is
used. LOGIC is assumed if omitted in both places.
Some example compile commands:

compile f oo
Compile the drawing "foo". Compile type is
specified by the COMPILE directive in the
compiler.cmd file. If it does not appear, LOGIC
is assumed.

compile "My Drawing" TIME
Compile the drawing "My Drawing" for TIME. The
ROOT DRAWING and COMPILE directives (if they
exist) in the compiler directives file are
ignored.

compile 1111 SIM
Compile the drawing specified by the
ROOT DRAWING directive in the compiler
directives file for SIM. Ignore any COMPILE
directive in the directives.

compile 11 thisdrawing ""
Compile the drawing "thisdrawing'' ignoring any
ROOT DRAWING directive in the compiler
directives file. The compile type is specified
in the compiler directives file (with the
COMPILE directive).

sepcomp <design name) <drawing name) [<compile type)]

This command is used to separately compile a module
within a design. The modules so compiled can be
linked together by the Linker to produce an expansion
file for use elsewhere in the SCALDsystem.
<design name) is the name of the design of which the
specified drawing is a part. The design name MUST be
the same as the name of the root drawing of the design
and must ALWAYS be specified. <drawing name) is the
name of the drawing (module) to be compiled. This
drawing is a part of the specified design. The
drawing name must ALWAYS be specified. <compile type)
is the type of compilation that is to be performed.
If unspecified, LOGIC is assumed. Some example
SEPCOMP commands:

5-45

Compiler
Separate Compilation

sepcomp foo "my Drawing"
Separately compile the drawing "my Drawing"
which is a part of the "FOO" design. Compile
for LOGIC.

sepcomp designone designone sim
Separately compile the drawing "designone" which
is a part of the "designone" design (and is the
root as it has the same name). Compile for SIM.

seplink [-fl [-forcecompile] (design name) [(compile type)]

This command is used to run the Linker to link the
design creating an expansion and synonyms file.
(design name) is the name of the design to be linked
and is the same as the design name used when
separately compiling. It must be specified.
(compile type) is the compilation type. If
unspecified, the Linker assumes LOGIC. The Linker
calls the Compiler to compile portions of the design
that are not up to date. The linker is run if any
drawing has been changed and no drawing contained
errors affecting the integrity of the separate
compilation. The "-f" flag forces linking to occur
(following the compilation of any out-of-date
drawings) regardless of the the state of the design or
any errors that occurred in compilation. The
"-forcecompile" flag causes all drawings, whether or
not they a re up-to-date, to be com pi led. Some examp 1 e
link commands are:

seplink foo
Check all drawings used in design foo and
compile those found to have been changed since
their last compile for LOGIC. If no drawings
have severe errors, then make the linker results
available in the current directory either by (1)
linking the design (if any drawing has changed
since the last link) or by (2) making the
results from the last link available in the
current directory (if no drawings have changed
since then).

seplink -f "ABC" TIME
Check all drawings used in design ABC and
compile those found to have been changed since
their last compile for TIME. Link the design
"ABC" for TIME regardless of whether or not it
seems necessary.

5-46

Compiler
Separate Compilation

getcomp [-list] [-log] [-exp] <desn name) <draw name) [<comp type)]

This command is used to retrieve the compiler output
for the separate compilation specified. If a SEPCOMP
has been done for the specified arguments in this
directory, then a GETCOMP will make the results of
that compilation available in the current directory.
They can then be examined. This is especially useful
when many separate compilations have automatically
been done for the design in response to a SEPLINK
command. <desn name) is the name of the design of
which the specified drawing is a part. The design
name must ALWAYS be specified. <draw name> is the
name of the drawing (module) to be retrieved. This
drawing is a part of the specified design. The
drawing name must always be specified. <comp type) is
the type of compilation to be retrieved. If
unspecified, LOGIC is assumed. The "-list" flag
requests the retrieval of the compiler listing
(CMPLST) file. The "-log" flag requests the retrieval
of the compiler log (CMPLOG) file. The "-exp" flag
requests the retrieval of the compiler expansion
(CMPEXP) and synonyms (CMPSYN) files. If no flags are
specified then all of the above files are retrieved.
Some example GETCOMP commands:

getcomp foo "my Drawing"
Gets the output files for the last time the "my
Drawing" drawing of the "foo" design was
compiled for LOGIC.

getcomp -list designone designone sim
Gets the listing file for the last time the
"designone" drawing of the "designone" design
was compiled for SIM. This allows the compiler
errors for drawing designone to be viewed.

getlink [-log] [-exp] <design name) [<compile type)]

This command is used to retrieve the linker output for
the design specified. If a SEPLINK has been done
followed by other actions on other designs, then a
GETLINK will make the results of that linking
available again in the current directory. They can
then be examined or used. <design name> is the name
of the design whose results are to be retrieved. It
must ALWAYS be specified. <compile type) is the type
of compilation to be retrieved. If unspecified, LOGIC
is assumed. The "-log" flag requests the retrieval of
the linker log (LNKLOG) file. The "-exp" flag

5-47

Compiler
Separate Compilation

requests the retrieval of the linker expansion
(CMPEXP) and synonyms (CMPSYN) files. If no flags are
specified, then all of the above files are retrieved.
Some example GETLINK commands:

getlink "my Design"
Gets the output files for the last time "my
Design" was linked for LOGIC.

getlink -log designone sim
Gets the linker log file for the last time
"designone" was linked for SIM. This allows the
examination of the linker errors for that
design.

showcomp [-files] (design name) (drawing name) [<compile type)]

This command is used to display the contents of the
separate compilations data base. (design name) is the
name of the des~gn of which the specified drawing is a
part. The design name must ALWAYS be specified.
(drawing name) is the name of the drawing (module)
(from that design) to be shown. The drawing name must
ALWAYS be specified. (compile type) is the type of
compilation that was performed. If unspecified, LOGIC
is assumed. Wildcards are used to determine what is
to be displayed. The wildcards are "all" or "*" (both
of which mean ALL of that thing). The "-files" flag
causes the listing of the files used to capture the
compiler/linker results as well as the names of the
drawings and designs themselves. Some example
SHOWCOMP commands:

showcomp foo all
Shows the drawings that are part of the design
"foo" that have been compiled for LOGIC.

showcomp -files "foo" all TIME
Shows the drawings that are part of the design
"foo" that have been compiled for TIME. Also
lists the files holding the Compiler and Linker
results for design "foo"

showcomp "foo" all all OR
showcomp "f oo" "*" "*"

Shows the drawings that are part of the design
"foo" that have been compiled for any type.
They are summarized by compile type.

showcomp all all all

5-48

Compiler
Separate Compilation

For each design in the data base, all drawings
for all compilation types are displayed. They
are summarized by compile type.

showlink [-files] (design name) [<compile type)]

This command is used to display the contents of the
separate compilations data base at the design level.
(design name) is the name of the design of which the
specified drawing is a part. The design name must
ALWAYS be specified. <compile type) is the type of
compilation that was performed. If unspecified, LOGIC
is assumed. Wildcards are used to determine what is
to be displayed. The wildcards are "all" or "*" (both
of which mean ALL of that thing). The specified
designs are displayed, showing the specified compile
types that have been done. If the (compile type) is
unspecified, LOGIC is assumed. The "-files" flag
causes the listing of the files used to capture the
linker results as well as the names of the designs
themselves. Some example SHOWLINK commands:

showlink f oo all
Shows all compile types that exists in the data
base for design "FOO".

showlink -files "foo" TIME
Indicates whether or not compile type TIME
exists (in the data base) for design "FOO" and
lists the linker output files for this design
and type if there are any.

showlink all all
Shows all designs and compile types in the data
base.

rmcomp [-1 is t] [-log] [-exp] (design name) (drawing name) [(compt ype) ~,

This command removes the specified separate
compilation from the separate compilations data base.
This separate compilation will no longer exist (in the
current directory) and must be redone before the
drawing can be linked. <design name) is the name of
the design of which the specified drawing is a part.
The design name must ALWAYS be specified.
(drawing name) is the name of the drawing (module) to
be fully or partially removed. This drawing is a part
of the specified design. The drawing name must ALWAYS

5-49

Compiler
Separate Compilation

be specified. (comptype) is the type of compilation
for which the removal is to occur. If unspecified,
LOGIC is assumed. The "-list" flag requests the
removal of the compiler list (CMPLST) file. The
"-log" flag requests the removal of the compiler log
(CMPLOG) file. The "-exp-" flag requests the removal
of the compiler expansion (CMPEXP) and synonyms
(CMPSYN) files. If no flags are specified, then all
files and the drawing itself (for that compile type)
are removed. Wildcards ("all" and "*") can be used to
remove larger amounts of data. Some example RMCOMP
commands:

rmcomp foo "my Drawing"
Remove from the separate compilation data the
LOGIC separate compilation done on the drawing
"my Drawing" which is a part of the "FOO"
design.

rmcomp designone all all
Remove all separate compilations concerning the
design "designone" from the separate
compilations data base in the current directory.
The design "designone" will also be removed.

rmcomp -log all all all
Remove the log file from all drawings in all
designs and for all compile types. (This can be
done to conserve disk space.)

rmcomp all all all
Remove the entire separate compilations data
base (ALL designs) from the current directory.

rmlink [-list] [-log] [-exp] (design name) [<comptype)]

This command is similar to the rmcomp command except
that it operates at the level of designs and linker
output files rather than at the level of drawings and
compiler output files. (design name) is the name of a
design. It must ALWAYS be specified. (comptype) is
the type of compilation type to be fully or partially
removed. If unspecified, LOGIC is assumed. The
"-log" flag requests the removal of the linker log
(LNKLOG) file. The "-exp" flag requests the removal
of the linker expansion (CMPEXP) and synonyms (CMPSYN)
files. If no flags are specified, then all files and
all drawings and the design itself (for that compile
type) are removed. Wildcards ("all" and "*") can be
used to remove larger amounts of data. Some example

5-50

RMLINK commands:

rmlink foo

Compiler
Separate Compilation

Remove from the separate compilation data all
compilations done for LOGIC for the design
"FOO".

rmlink designone all
Remove all separate compilations concerning the
design "designone" from the separate
compilations data base in the current directory.
The design "designone" will also be removed.

rmlink -log foo all
Remove the log file from the linker results for
all compile types of design "FOO". (Note that
linker error listings would no longer be
available for design ''FOO" unless it was linked
again.)

rmlink all all
Remove the entire separate compilations data
base (ALL designs) from the current directory.

5-51

Compiler
Separate Compilation

5.27 ESCAPING WILDCARDS AND NAMES BEGINNING WITH "-"

This section applies to the separate compilation
commands only. It does not apply to the ''compile" command.

Many of the separate compilation commands take flags
and some take wildcards. All of the flags begin with the
character "-" and anything beginning with that character is
considered to be an attempt to specify a flag. Design and
drawing names beginning with "-" or matching one of the
wildcards must be treated specially to show that they are
not flags or wildcards. This is done by proceeding the name
with the flag argument "-". The following examples
illustrate this.

rmcomp -list -exp time
Remove the list, expansion, and synonyms files
from the data stored for drawing "time" for
compile type LOGIC.

rmcomp -list - -exp time
Remove the list file from the compilation data
stored for drawing "-exp" for compile type TIME.

rmcomp -log all all all
Remove the log file from the compiler results
for all drawings of all designs and for all
compile types.

rmcomp -log - all all all
Remove the log file from the compiler results
for all drawings of design "all" and for all
compile types.

rmcomp -log - - all all
Remove the log file from the compiler results
for all drawings of design "-" and for all
compile types.

5-52

Compiler
Selection Expressions

Selection Expressions for SCALD Dravinaa

5.28 INTRODUCTION

Parameters attached to bodies can be used to
"customize" the body's drawing. The most common parameter
is SIZE which is used to specify the number of bits
represented by the body. Another commonly used parameter is
DELAY. The use of parameters allows the designer to have
each instance of a body represent a slightly different
implementation without having many different bodies and
drawings.

In some cases, there is a need for radical differences
between implementations of a single circuit. These
differences are not simply parametric, which can be handled
easily with body parameters, but involve changes in the
circuit topology. For example, a gate may be d~signed with
several different versions, one version having input
protection diodes, one with internal pullups, one with high
capacitance load drive capability, and others with
combinations of these. Since each version represents the
same gate, the user would prefer to define a single body
representing the gate and then use some parameter to control
which of the gate representations is used. This is
supported in the SCALDsystem by drawing versions and
selection expressions.

5.29 DRAWING VERSIONS

Each different implementation of a single circuit is
called a drawing version. There is no limit to the number
of versions that can be defined for a single drawing. Each
of the drawing versions corresponds to the same body. In
the gate example described above (a NAND gate), the
following drawings might be created:

NAND.BODY.1.1
NAND.LOGIC.1.1
NAND.LOGIC.2.1
NAND.LOGIC.3.1
NAND.LOGIC.4.1

•

<- "generic'' NAND representation
<- NAND with input diodes
<- NAND with internal pullups
<- NAND with high-C drive

Four versions are shown above (though more can be defined)
and each of the versions shown has only one page (though a
drawing version can have any number of pages).

5-53

Compiler
Selection Expressions

5.30 SELECTION EXPRESSIONS

If a drawing has more than one version, there must be a
method of selecting which one is to be used for any
particular instance. This is done with the use of
parameters. When the NAND body is placed in a drawing, a
parameter must be attached that specifies which of the NAND
drawing versions is to be used to allow each instance of the
body to refer to a different implementation.

Once the parameters have been attached to the bodies,
there must be a method of selecting the appropriate drawing
version. This is done with a selection expression. The
selection expression defines the "context" in which the
drawing is valid. In the case of the NAND, the context is
used to select which·of the drawing versions (or NAND gate
implementations) is to be used.

A selection expression can be an arbitrary integer or
Boolean expression. In the NAND example, assume that the
parameter TYPE is used to select among the drawing versions.
Four selection expressions are needed; one for each drawing
version:

NAND.LOGIC.1.1
NAND.LOGIC.2.1
NAND.LOGIC.3.1
NAND.LOGIC.4.1

•
•
•

(TYPE=O)
(TYPE=l)
(TYPE=2)
(TYPE=3)

The selection expressions (TYPE=O, TYPE=l, •••) define for
which values of the parameter TYPE a particular drawing
version is to be used. The user sets the value of the TYPE
parameter to select the desired version of the NAND.LOGIC
drawing.

Selection expressions are defined in the drawing as the
EXPR property which must be attached to the DRAWING body of
the drawing. If a drawing has more than one version, each
version must be given a selection expression to specify
under what conditions that version is to be used.

5.31 BOW SELECTION EXPRESSIONS ARE EVALUATED

Whenever a component is found that has more than one
implementation (more than one drawing version), the Compiler
must decide which version is to be used. This is done by
evaluating the selection expressions for each version and
picking the version whose selection expression evaluates
TRUE.

5-54

Compiler
Selection Expressions

If the selection expression is a Boolean expression, as
in SIZE)2, the selection expression is TRUE if the
expression evaluates TRUE. If the selection expression is
an integer expression, as in SIZE+l, the selection
expression is TRUE if its value is not O. If the selection
expression is empty (or absent), it evaluates to TRUE.

Only one version's selection expression may evaluate
TRUE for any given instance. An error is generated if the
Compiler finds that the selection expressions for more than
one version are TRUE. For example, the following selection
expressions are in error because two of them evaluate TRUE
for SIZE=2:

(SIZE)l)
(SIZE=2)
(SIZE(=l)

In the above examples, the selection expressions have
been shown using the SIZE parameter although any parameter
or text macro may be used in a selection expression.

If the Compiler discovers an error when evaluating
selection expressions, it will output the selection
expressions for all of the versions to make it easier for
the user to see what has happened and to provide a guide to
solving the problem.

S.32 SELECTION EXPRESSIONS IN DRAWINGS

As mentioned above, the selection expression is defined
by the EXPR property attached the DRAWING body of the
drawing. It is important to note that the EXPR property
must appear in the first page of the drawing. If the
drawing has more than one page, the first page is the lowest
numbered page; the first page need not be numbered 1.

The EXPR property in the first page of the drawing
defines the context for the entire drawing. Once the
drawing has been selected, further selection can be
performed. If EXPR properties are used in other pages of
the drawing, the Compiler will evaluate them to decide if
that page is to be used. This gives the user the ability to
define a selection expression for the entire drawing, and to
specify a second selection expression for each page to
determine whether it is used.

5-55

Compiler
Selection Expressions

5.33 EXPRESSION EVALUATION

Selection expressions follow the standard SCALDsystem
expression evaluation rules. Only integer expressions are
supported for selection expressions. There are five
built-in functions:

NOT(x)
ORD(x)
ABS(x)
MIN(x,y, •••)
MAX(x, y, •••)

logical NOT of the operand X
ordinal value of the operand X
absolute value of the operand X
minimum value of the operands X,Y, •••
maximum value of the operands X,Y, •••

There are two logical operators:

There

There

a OR b
a AND b

are six

<
<=
=
<>
>=
>

logical OR of A, B
logical AND of A, B

relational operators:

less than
less than or equal
equal
not e~ual
greater than or equal
greater than

are five arithmetic operators:

+ addition
subtraction

* multiplication
I division
a MOD b "remainder" of A I B

The operator precedence is given in the following chart.
The highest precedence is given first. Operators with the
same precedence are shown on the same line.

* I MOD
+ -
< <= = <> >= >
AND
OR

The consequences of this ordering are important for
evaluating expressions without parentheses to describe the
evaluation order. The following examples show expressions
in two forms. The first without parentheses. The second
has parentheses added to show how the expression would be
evaluated. Parentheses can always be added to override
default evaluation order. When there are several operators

5-56

Compiler
Selection Expressions

with the same precedence, evaluation is from left to right.

SIZE)2 AND SIZE(4
(SIZE)2) AND (SIZE(4)

3+4*10=5/3+2
(3+(4*10)) = ((5/3)+2)

1+2-3+4
(((1+2)-3)+4)

SIZE+1)3(43+X=O
(((SIZE+1)>3)<(43+X))=O

5.34 A NOTE TO 6.0 SCALDsystem USERS

In the 6.0 release of the Compiler, an error is
generated if the EXPR property does not appear in each
drawing version. This was to prepare the users for the 7.0
release. The 7.0 Compiler will continue to process the 6.0
style selection expressions (using MENU bodies in version 1
of the drawing) only if the drawings are in the old format
(not written with the 7.0 Graphics Editor). If the drawings
are to be modified, or if complete compatiblity with the 7.0
release is desired, the following steps should be taken:

1. Make sure that the EXPR property appears attached to the
DRAWING body in the first page of each of the drawing
versions. This property should define the selection
expression for that drawing version.

2. Delete version 1 of the drawing. This version contains
the MENU body and is no longer needed. MENU bodies are
not supported in the 7.0 Compiler for new drawings.

3. Make sure that the first page (containing the EXPR
property) for each drawing version has been written with
the 7.0 Graphics Editor. This can be done by reading
and writing it as part of checking for the existence of
the EXPR property. No other pages of the drawing need
to be changed or written with the 7.0 Graphics Editor.

5-57

Compiler
Selection Expressions

5.35 EXPRESSION BNF

The following is the BNF for expressions in the
Compiler.

(expression) ::=(Boolean expression) I
(expression) (Bool OP) (Boolean expression)

(Bool OP) ::=OR I XOR

(Boolean expression) ::=
(relational expression) I
<Boolean expression) AND <relational expression)

(relational expression) ::=
(simple expression> I
(simple expression) (rel OP) (simple expression)

<rel OP) ::= < I > I <> I = I >= I <=

<simple expression) ::=(term) I
(sign) (term) I

(sign) ::=+I -

(add OP) ::=+I -

<term) ::=(factor> I

(simple expression) <add OP) (term)

(term) <mul OP> (factor)

(mul OP) ::= * I I I MOD

(factor) ::=(unsigned constant)
(<expression)) I
NOT (factor) I
ABS (<expression))
ORD (<expression))
MIN (<expression) , <expression>)
MAX (<expression) , <expression))

(unsigned constant) ::=<unsigned number)

5-58

Compiler
Error Messages

S.36 COMPILER ERROR MESSAGES:

One of the purposes of the Compiler is to detect
problems in the user's design. There are several problems
that are detected and for each a message is produced by the
Compiler. The message is intended to inform the user of
what problem has been encountered, where it is in the
design, and its severity. In addition, the Compiler will
print an explanation of each message generated. These
messages are extracted from this document. The purpose of
this document is to explain the messages produced by the
Compiler and, for each, to give some suggestions about how
to correct the problem.

S.37 CLASSES OF PROBLEMS

Problems detected by the Compiler are assigned a
particular severity. This is done to emphasize important
problems (those that cause the design to not function) and
de-emphasize those that can wait. There are three classes
of problems:

1. Errors
An error is a problem that must be fixed before
further progress can be made. For example, a
missing drawing would be considered an error since
some portion of the design is missing. Some
errors are fatal. That is, their presence causes
the Compiler to stop. For example, if the user
specifies no drawing to be compiled, the Compiler
will generate an error message and stop.

2 • Over s i g ht s
An oversight is a problem that is not so severe as
to cause the design to be obviously
non-functional. For example, if there are no PATH
properties on bodies, the Compiler generates
oversight messages. The design will work, but,
since the path names will be assigned by the
Compiler, they will not be easily interpreted by
the user. This may make the design difficult to
work with. It is also dangerous since such path
names may not be consistent between Compiler runs.
In general, oversights may be ignored for a while,
but should be fixed eventually.

3. Warnings
A warning is a problem that is very minor. For
example, if a default value for a parameter is
used, the Compiler generates a warning message.
There is no reason to remedy this condition since
the Compiler will always produce the same output.

5-59

Compiler
Error Messages

5.38 FORMAT OF MESSAGES

The Compiler's error, oversight, and warning messages
have the following format:

#n ERROR(m): <message)
#n OVERSIGHT(m): <message)
#n WARNING(m): <message)

where <n> indicates how many of the particular class of
message have occurred so far, <m> is the message code, and
<message) is the text of the message. For example:

#287 ERROR(22): String length exceeded

is the 287th error found in the compile (lots of problems
here), the error code is 22 indicating "String length
exceeded" which means some string (a quoted sequence of
characters) is longer than the maximum allowed (255).

Following the message are several lines describing the
drawing in which the error was detected, the body in the
drawing, the pin of the body, etc. These are intended to
specify the location of the error as accurately as possible
to simplify finding and correcting the problem.

The error, oversight, and warning messages are counted
separately. At the end of compilation, the total number of
each is reported. For example:

47 errors detected
No oversights detected
6 warnings detected

5-60

5.39 SPECIAL MESSAGE REPORTING

Compiler
Error Messages

Some problems are detected while reading input files.
These usually are syntax problems (for example, the text was
mistyped). For these errors, the Compiler prints the text
being read and points to the position in the text where the
problem was detected. For example, given the signal name:

FOO (0 [the first bit} •• 31 {the last bit} >

an error #20 will be displayed as follows:

'FOO' (0 [the first bit} •• 31 {the last bit})

#1 ERROR(20): Unmatched closing comment symbol

The error really occurs earlier where the '['was used
instead of '{'. It is, in general, impossible for the
Compiler to accurately determine the true position of the
error; the pointer is always at the position where the
error was detected.

If an error occurs in an expanded text macro, the
Compiler prints the input line then prints it again with the
expanded text macro inserted. For instance, given the
signal:

FOO (SUBSCRIPT) \G \R 2

and the text macro SUBSCRIPT= '0 •• -12', the following will
be printed when the compiler detects the error:

'FOO' (SUBSCRIPT) \G \R 2
'FOO' (0 •• -12) \G \R 2

#1 ERROR(16): Bit value invalid

Only the text macro being currently read is expanded.
Notice also that the signal name (FOO) is in quotes. The
Compiler quotes signal names internally to make them easier
to read. The quotes are included in the error output so
that the designer can make sure that the compiler has
interpreted the signal name portion correctly.

With some problems, the pointer into the line points
not to the position where the error was detected but to the
position where the error occurred. For instance, given the
signal:

FOO (0 •• BARF)

5-61

Compiler
Error Messages

with BARF undefined (never defined as a text macro or a
parameter) the Compiler produces the following:

'FOO' <0 •• 1 BARF)

Ill ERROR(59): identifier has not been declared

'FOO' (0 •• 1 BARF)

#2 ERROR(ll): expected >

The Compiler knows it found an undefined text macro when it
was expecting either the end of the bit subscript or another
element in the bit list. Since it got neither, it points to
the beginning of the identifier and indicates that it wanted
a ')' to end the subscript. Whenever the error message
starts with 'expected', the Compiler prints a pointer to the
position where it wants what it expected.

5.40 SUMMARY OF MESSAGES BY NUMBER

The rest of this document contains an ordered (by
message code) listing of the Compiler messages and some
hints and suggestions about the causes of each problem and
how to recover. Whenever the message is "special" (causes
the input line being read to be displayed as described
above), it is so noted.

Each error number is listed below with one of the
following:

1. Error message text.

2. Oversight message text.

3. Warning message text.

4. "Not used". This means that the error message number is
available for future use.

5. "Reserved". This means that the error number is used
for debugging or other Valid internal operations.

5-62

ERROR #1: Expected identifier

Compiler
Error Messages

This error is generated whenever the Compiler is
expecting an identifier (a string of letters, digits,
or ' ' starting with a letter) and finds some other
data~ Identifiers are used as names in properties,
text macros, and as operands for Compiler directives.
The Compiler prints the input line along with a
pointer to the position in the line where the problem
was detected.

ERROR #2: Expected =

This error is generated whenever the Compiler is
expecting an equal (=) and finds some other data.
Equals are used in many places: between property
names and values, in expressions, and in the FILETYPE
specification at the beginning of data files. The
Compiler prints the input line along with a pointer to
the position in the line where the problem was
detected.

ERROR #3: Unused.

ERROR #4: Unused.

ERROR #5: Expected ,

This error is generated whenever the Compiler is
expecting a comma (,) and finds some other data.
Commas are used to separate elements in list and are
required, for example, in the argument list for the
MIN and MAX functions. The Compiler prints the input
line along with a pointer to the position in the line
where the problem was detected.

ERROR #6: Unused.

ERROR #7: Expected)

This error is generated whenever the Compiler is
expecting a right parenthesis ()) and finds some
other character. The Compiler prints the input line
along with a pointer to the position in the line where
the problem was detected.

5-63

Compiler
Error Messages

ERROR #8: Unused.

ERROR #9: Wrong file type for text macros

This error is generated whenever the Compiler finds a
file with an incorrect FILETYPE specification. All
SCALDsystem data files have a FILETYPE at the
beginning to allow each program to verify the file
contents. In this case, the text macro file being
read has the wrong file type Make sure the correct
file was specified. The correct file type is
FILETYPE=TEXTMACROS. The Compiler prints the input
line along with a pointer to the position in the line
where the problem was detected.

ERROR #10: Expected <

This error is generated whenever the Compiler is
expecting a less than character (<) and finds some
other character. The Compiler prints the input line
along with a pointer to the position in the line where
the problem was detected.

ERROR #11: Expected)

This error is generated whenever the Compiler is
expecting a less than character (<) and finds some
other character. The Compiler prints the input line
along with a pointer to the position in the line where
the problem was detected.

ERROR #12: Expected ;

This error is generated whenever the Compiler is
expecting a semi-colon (;) and finds some other
character. The Compiler prints the input line along
with a pointer to the position in the line where the
problem was detected. The Compiler will continue to
correctly compile the input even though there was a
missing semi-colon. A semi-colon is required as a
means of clearly delimiting the end of a command or
data item. When some error occurs, the Compiler
searches for the semi-colon in order to find the
beginning of the next item to read. This helps the
Compiler successfully recover from an error.

5-64

ERROR #13: Expected :

Compiler
Error Messages

This error is generated whenever the Compiler is
expecting a colon(:) and finds some other character.
The Compiler prints the input line along with a
pointer to the position in the line where the problem
was detected.

ERROR #14: Unexpected symbol in integer expression

This error is generated whenever the Compiler is
reading an expression (such as in a selection
expression or a bit subscript) and finds something
unexpected. The Compiler prints the input line along
with a pointer to the position in the line where the
problem was detected. When this error occurs, the
compiler is expecting one of the following:

1. A constant.
2. An expression in parentheses, e.g. (2+3).
3. NOT followed by an item from this list.
4. A function (ORD, ABS, MAX, MIN).
5. An identifier whose value is one of the

above (such as a text macro whose value is
an integer expression such as (23+56) or a
parameter whose value is an integer, e.g.
SIZE = 1).

ERROR #15: Expected (

This error is generated whenever the Compiler is
expecting a left parenthesis (() and finds some
other character. The Compiler prints the input line
along with a pointer to the position in the line where
the problem was detected.

ERROR #16: Bit value invalid

This error is generated whenever the Compiler is
reading a bit subscript and finds an illegal bit
value. The Compiler prints the input line along with
a pointer to the position in the line where the
problem was detected. The bit value is printed as
well. Bit values are invalid if they are negative or
are greater than the largest allowed bit number.
Since the largest allowed bit number is 231-1
(2147483647) this error usually means that the bit
value is negative. This error is most likely to occur

5-65

Compiler
Error Messages

when specifying a bit with an expression. For
example, FOO(SIZE-2 •• 0) when SIZE=l.

ERROR #17: Unused.

ERROR #18: Unused.

ERROR #19: Unused.

ERROR #20: Unmatched closing comment character

This error is generated when the Compiler encounters a
closing comment character (}) without a matching
starting comment character ({). The Compiler prints
the input line along with a pointer to the position in
the line where the problem was detected. Either this
symbol is extraneous or the beginning of the comment
was never specified. If the symbol really is
extraneous, the compiler continues the compilation
with no further errors. If it isn't, bogus errors
will probably have been generated as the compiler
tried to read the text of the comment.

ERROR #21: Unused.

ERROR #22: String length exceeded

This error is generated as the Compiler is reading a
string and finds that the string is too long. Strings
are limited to 255 characters. The Compiler prints
the input line along with a pointer to the position in
the line where the problem was detected. The string
is truncated at the current position (pointed to by
the compiler) and the compiler reads until it finds
the closing quote or the end of the input line. Make
the string shorter!

ERROR #23: Illegal character found

This error is generated when the Compiler finds an
illegal character in an input file. All non-printing
characters except TAB are illegal. The Compiler
prints the input line along with a pointer to the
position in the line where the problem was detected.
Remove the character.

5-66

ERROR #24: Expression value overflow

Compiler
Error Messages

This error is generated when the Compiler evaluates an
expression whose value overflows. The Compiler prints
the input line along with a pointer to the position in
the line where the problem was detected. An overflow
does not cause the Compiler to abort; it assigns the
value 0 to the result (unless it knows a more
reasonable value) and continues with the compilation.

ERROR #25: Division by zero

This error is generated when the Compiler detects
division by 0 during evaluation of an expression. The
Compiler prints the input line along with a pointer to
the position in the line where the problem was
detected. Division by 0 does not cause the Compiler
to abort; it skips the division and continues with
the compilation.

ERROR #26: Unused.

ERROR #27: Unused.

ERROR #28: Unused.

ERROR #29: Unused.

ERROR #30: Unexpected symbol in bit subscript

This error is generated when the Compiler finds
unexpected characters in a bit subscript. The
Compiler prints the input line along with a pointer to
the position in the line where the problem was
detected. The symbols expected by the Compiler in a
bit subscript are:

1. A subrange symbol (••).
2. A colon (:) specifying a bit step.
3. A comma (,) specifying start of next element

in a bit list.
4. A greater than symbol ()) indicating the end

of the subscript.

5-67

Compiler
Error M~ssages

ERROR #31: Unknown REPORT specification

This error is generated when the Compiler finds a
report specification for the REPORT directive that is
unknown by the Compiler. The Compiler prints the
input line along with a pointer to the position in the
line where the problem was detected. The most likely
cause is a mis-type of the report name.

ERROR #32: Non-printing character found

This error is detected when the Compiler is reading
characters from an input file. A non-printing
character has been. This is not permitted. The
Compiler prints the input line along with a pointer to
the position in the line where the problem was
detected.

ERROR #33: Expected a string

This error is detected when the Compiler is expecting
a string (a quoted sequence of printing characters)
and finds some other data. The Compiler prints the
input line along with a pointer to the position in the
line where the problem was detected. Strings are
expected in the following places, among others:

1. In signal names: a signal property must
have a property value specified as a string.

2. In compiler directives: the file names for
input directories must be specified as
strings.

3. In compiler directives: the name of the
root drawing for the compilation must be
specified as as a string.

4. In the text macro file: the definition of
each text macro must be specified as a
string.

5-68

ERROR #34:

Compiler
Error Messages

Comment not closed before end of input

This error is detected when the Compiler does not find
the end of a comment before the end of the file. A
comment is started with the "{'' character and ended
with the ''}" character. The Compiler prints the input
line along with a pointer to the position in the line
where the problem was detected.

ERROR #35: Specified parameter # > allowed # params

This error is generated when the Compiler is
processing text macro parameters and finds a parameter
number greater than 4. The Compiler prints the input
line along with a pointer to the position in the line
where the problem was detected. Text macros may have
up to 4 parameters. Each parameter is referenced by
%n where <n> is the parameter number. This error is
generated when <n> exceeds the maximum.

ERROR #36: Signal MUST have high assertion char

This error is generated when the Compiler finds a
signal that does not have an explicit assertion
specification. The signal syntax can be configured so
that there are characters to be used to specify
whether the signal is high-asserted or low-asserted.
If a character is specified for both of these, one
must be used for every signal. If no high-assertion
character is to be used, the signal syntax
configuration should be changed to make the
high-assertion character NULL (''). The Compiler
prints the input line along with a pointer to the
position in the line where the problem was detected.
The Compiler directive PERMIT NO ASSERT ON; can be
used to cause the Compiler to-allow the absence of an
assertion character and to default to high-asserted.

OVERSIGHT #37: Expected •

This oversight is generated when the Compiler is
expecting a period (.) and finds some other character.
The Compiler prints the input line along with a
pointer to the position in the line where the problem
was detected. This oversight is most commonly caused
by omitting the '.' following the END at the end of
the directives or text macro file.

5-69

Compiler
Error Messages

ERROR #38: File name has already been specified

This error is generated whenever the Compiler finds a
file name, in a list of files, specified more than
once. This can happen with the PROPERTY FILE,
TEXT MACRO FILE, and MASTER LIBRARY directives. The
Compiler prints the input line along with a pointer to
the position in the line where the problem was
detected. Check the file list and remove duplicate
entries.

ERROR #39: Undefined identifier in expression

This error is generated whenever the Compiler finds an
undefined identifier (a string of letters, digits, or
' ' starting with a letter) in an expression.
Identifiers are used as names in properties and text
macros. The Compiler prints the input line along with
a pointer to the position in the line where the
problem was detected. If the identifier is supposed
to be a defined text macro, check the DEFINE bodies to
make sure it was correctly defined. If it was
supposed to be a parameter of the body, check the body
definition to make sure that it was correctly defined
there.

OVERSIGHT #40: Expected END

This warning is generated when the Compiler reaches
what it expects to be the end of a file and no END is
found. An END must be present at the end of the
directives, text macro, and property attributes files
(among others). The Compiler prints the input line
along with a pointer to the position in the line where
the problem was detected. The END is used to inform
the compiler that the file is complete and that it
isn't unfinished or missing some text. This is not a
fatal.

OVERSIGHT #41: Identifier length exceeded

,--·----~--

This oversight is generated when the Compiler
encounters an identifier (a string of letters, digits,
or '_' starting with a letter) that has more than 16
characters. Identifiers are used as names in
properties and text macros. The Compiler prints the
input line along with a pointer to the positi-0n in the
line where the problem was detected. The compiler
ignores the rest of the identifier and continues with

5-70

the compilation.

ERROR #42: Reserved.

Compiler
Error Messages

ERROR #43: Text macro parameter exceeds max length

This error is generated when the Compiler encounters a
text macro parameter whose definition exceeds 16
characters (the maximum permitted). The Compiler
prints the input line along with a pointer to the
position in the line where the problem was detected.
Reduce the length of the parameter.

ERROR #44: Constant width value out of range

This error is generated when the Compiler finds an
illegal width specification for a signal constant. An
illegal width is one that is <= 0 or greater than the
maximum allowed signal width (2147483647). The
Compiler prints the input line along with a pointer to
the position in the line where the problem was
detected. When this error occurs, it is probable that
the constant specified is simply ridiculous since the
compiler is capable of representing a very large
constant internally. If the constant being specified
is supposed to be huge, it may have to be created in
pieces that are concatenated together. For instance,
a 1000 bit constant 0 may be generated as follows:
0(250) : 0(250) : 0(250) : 0(250) or (more simply):
0 r 1000.

ERROR #45: Directive has already been specified

This error is generated when the Compiler finds a
directive that is used more than once. Most
directives can only appear in the directives file
once. Some exceptions are PROPERTY FILE, DIRECTORY,
and LIBRARY. The Compiler prints the input line along
with a pointer to the position in the line where the
problem was detected. Delete the extra directive.

ERROR #46: Duplicate global text macro definition

This error is generated when the Compiler finds a
global text macro definition for a text macro that has
already been defined. Global text macros are defined
with the text macro file. The text macro may have

5-71

Compiler
Error Messages

been already defined by the Compiler, the standard
SCALD text macro file, or one of the user's text macro
files. The Compiler prints the input line along with
a pointer to the Check to make sure the text macro
name is spelled correctly and check the rest of the
text macro file for duplications. See the text macro
documentation for a complete list of predefined text
macros.

ERROR #47: Invalid specification for inheritance

This error is detected when the Compiler is processing
a property attributes file and detects an illegal or
unknown specification for the INHERIT attribute. The
Compiler prints the input line along with a pointer to
the position in the line where the problem was
detected. The INHERIT attribute can be specified with
PIN, BODY, and/or SIGNAL. See the compiler property
documentation for a complete description.

ERROR #48: Unknown property attribute

This error is detected when the Compiler is processing
a property attribute file and finds an unknown
attribute specification. The Compiler prints the
input line along with a pointer to the position in the
line where the problem was detected. Among the
supported property attributes are: INHERIT,
PARAMETER, FILTER, and PERMIT. See the property
documentation for a complete descriptioq of the use of
the property file.

ERROR #49: Unused.

ERROR #SO: Unused.

ERROR #51: Unknown compiler directive

This error is generated when the Compiler is reading
the directives file and encounters an unknown Compiler
directive. The Compiler prints the input line along
with a pointer to the position in the line where the
problem was detected. For a complete list of the
compiler directives, see the compiler directive
documentation. This error will not (normally) prevent
the compiler from reading the rest of the directives.

5-72

Compiler
Error Messages

ERROR #52: Invalid specification for directive

This error is detected when the Compiler is processing
a directive from the directives file and it encounters
an invalid operand. The Compiler prints the input
line along with a pointer to the position in the line
where the problem was detected. There are several
directives that require an operand (such as WARNINGS
which takes either ON or OFF as its operand) rather
than a string (such as ROOTDRAWING). If the operand
for any of these directives is not what the Compiler
expected, this error is generated. See the Compiler
directives documentation for a complete description of
the directives.

ERROR #53: Input line exceeds maximum length

This error is detected when the Compiler tries to read
a line greater than its 255 character input buffer.
The input line (up to the point the Compiler;s buffer
was filled) is printed with a pointer to the last
character in the buffer (just in case the line is
filled with ' '). The input line will need to be
broken before the Compiler can read it. The
compiler's input buffer is 255 characters but an 80
character maximum input line is advisable (so that
compiler output can be easily viewed on a TTY).

ERROR #54: Unused.

ERROR #55: Wrong file type for property attributes

This error is generated when the Compiler finds that
the specified property attributes file has the wrong
file type. The Compiler prints the input line along
with a pointer to the position in the line where the
problem was detected. Each SCALD~ystem data file is
identified by its FILETYPE specification which appears
as the first line in the file. The FILETYPE for
property attributes is ATTRIBUTES.

ERROR #56: Text macro parameter cannot be found

This error is generated when the compiler is expanding
a text macro which refers to a parameter (as in %1)
which cannot be found. The Compiler prints the input
line along with a pointer to the position in the line
where .the problem was detected. The name of the text

5-73

Compiler
Error Messages

macro and the missing parameter number are both
printed. Make sure that all text macros that expect
parameters are given them and that each parameter is
delimited with a space.

ERROR #57: End of input before end of expression

This error is generated when the Compiler finds the
end of input before the end of the expression being
evaluated. The Compiler prints the input line along
with a pointer to the position in the line where the
problem was detected. If the line printed is blank
(empty) the input line was null. This occurs, for
instance, when an empty string is given as a parameter
to a text macr6 that expects and integer parameter
(such as r or w). It can also occur when a null value
is given to a property with the INTEGER(PARAMETER)
attribute.

ERROR #58: Extraneous characters at end of expr

This error is generated when the Compiler finds extra
characters at the end of an expression. All
characters in a string (such as a property value) that
are to be evaluated as an expression must be part of
the expression. When this error is generated, the
Compiler has found some characters that do not form
part of a legal expression. The Compiler prints the
input line along with a pointer to the position in the
line where the problem was detected.

ERROR #59: Identifier has not been declared

This error is generated when the Compiler finds a
reference to an indentifier (a string of letters,
digits, or ' ' starting with a letter) that has not
been defined~ Identifiers are used as names in
properties, text macros, and as operands for Compiler
directives. The Compiler prints the input line along
with a pointer to the position in the line where the
problem was detected. If the identifier is supposed
to be a defined text macro, check the DEFINE bodies to
make sure it was correctly defined. If it was
supposed to be a parameter of the body, check the body
definition to make sure that it was correctly defined
there. This error is fatal to separate compilation.

ERROR #60: Unused.

5-74

ERROR #61: Radix must be in range 2 •• 16

Compiler
Error Messages

This error is generated when the Compiler is
processing a constant signal name that has an explicit
radix specification that is not permitted. The
Compiler prints the input line along with a pointer to
the position in the line where the problem was
detected. Signal constants may be specified in any
base from 2 to 16. All other bases are illegal. The
default base is 2.

ERROR #62: Extraneous junk at end of menu version

This error is generated when the Compiler is
processing the·VERSION property of a MENU body and
finds its value (which should be a constant) to
contain unexpected characters. The Compiler prints
the input line along with a pointer to the position in
the line where the problem was detected. Check the
menu definition. One of the version specifiers is
incorrect. Correct it.

ERROR #63: Extraneous junk at end of Boolean expression.

This error is generated when the Compiler is
processing the EXPR property of a MENU body and finds
its value (which should be an expression) to contain
unexpected characters. The Compiler prints the input
line along with a pointer to the position in the line
where the problem was detected. Check the menu
definition. One of the expression specifiers is
incorrect. Correct it. Check the menu body and
correct the selection expression. Refer to the
drawing and body definition documentation for a
description of the form for a selection expression.

ERROR #64: Max text macro recursion depth exceeded

This error is generated when the Compiler finds that a
text macro refers to itself and recurses too deeply.
The Compiler prints the current text macro definition
with a pointer to the position where the error was
detected. The drawing name and the name of the text
macro being expanded are also printed. Recursive text
macros are dangerous and should be avoided. Correct
the definition of the given text macro.

ERROR #65: Compile extension name is too long

5-75

Compiler
Error Messages

This error is detected when the Compiler is processing
the COMPILE directive and finds a specification that
is too long. A limit of 11 characters is placed on a
drawing type. The Compiler prints the input line
along with a pointer to the position in the line where
the problem was detected. Change the type given in
the directive and recompile. For a more complete
description of the COMPILE directive, see the Compiler
directives documentation.

ERROR #66: Compilation to .PRIM files not permitted

This error is detected when the Compiler is processing
the COMPILE directive and finds that PRIM is
specified. PRIM is not permitted as a COMPILE type.
The Compiler prints the input line along with a
pointer to the position in the line where the problem
was detected. The PRIM extension is used to specify a
primitive part regardless of whether the compilation
is to produce output for timing verification,
simulation, or the Packager. The PRIM extension
cannot be used here. Some correct extensions are:
LOGIC, SIM, and TIME. See the Compiler directives
documentation for a complete description of this
directive. See the SCALD overview documentation for a
description of drawing extensions.

ERROR #67: Reserved.

WARNING #68: Library file has already been specified

This warning is generated when the Compiler is
processing the LIBRARY directive and finds a library
specified that was previously specified. The Compiler
prints the input line along with a pointer to the
position in the line where the problem was detected.

ERROR #69: Reserved.

ERROR #70: Version number is outside allowed range

This error is generated when the Compiler finds an
illegal value for a drawing versions. Drawing
versions are allowed to be from 1 to 10000. The name
of the drawing is printed. The version number for
this drawing should be changed.

5-76

Compiler
Error Messages

ERROR #71: Page number is outside allowed range

This error is generated when the Compiler finds an
illegal value for a drawing page. A drawing may not
have more than 10000 pages. The name of the drawing
is printed.

ERROR #72: Duplicate page number

This error is generated when the Compiler finds that a
page of a drawing is duplicated (appears more than
once in the SCALD directories). This occurs by
accidentally writing a page of the drawing to more
than one SCALD.directory. One of the copies should be
deleted. The other way in which this error occurs is
by having two drawings with the same name (even though
they are different drawings). The name of one of the
drawings will have to be changed.

ERROR #73: Reserved.

ERROR #74: Reserved.

ERROR #75: Reserved.

ERROR #76: Boolean expression already defined for this version.

This error is generated when the Compiler is
processing a MENU body and finds a selection
expression specified for a drawing version that
already had an expression assigned for it. Check the
VERSION and EXPR properties of all of the MENU bodies
to make sure that each drawing version is referenced
only once.

ERROR #77: Specified version is not in directory

This error is generated when the Compiler is
processing a MENU body and finds a VERSION property
referring to a version of the drawing that does not
exist. Check the VERSION property to make sure that
it was correctly entered. Check the SCALD directory
to make sure that the desired drawing version exists.

ERROR #78: Only MENU bodies are allowed here

5-77

Compiler
Error Messages

This error is generated when the Compiler is reading
version 1 of a drawing with more than 1 version and
finds a body that is not a MENU body. Version 1 of a
multi-version drawing must contain the MENU body and
no other.

ERROR #79: Expected a version 1 with MENU body(s)

This error is generated when the Compiler finds a
drawing with multiple versions but without a version
1. Version 1 must exist and contain a MENU body when
the drawing has multiple versions.

OVERSIGHT #80: Illegal property on MENU body

This oversight is generated when the Compiler finds a
property other than EXPR or VERSION on a MENU body.
The Compiler associates the value of property EXPRj
with the version specified by the property value of
VERSIONj. Any other property name here is an
oversight. Check for a misspelling.

ERROR #81: Illegal MENU property number

This error is generated when the Compiler is
processing EXPRj and VERSIONj properties on MENU
bodies and finds j to be outside the range 1 to 256.
The compiler associates the value of property EXPRj
with the version specified by the property value of
VERSIONj. Check the property names for a mistype.

ERROR #82: Same MENU expression property found twice

This error is generated when the Compiler finds an
EXPRj property specified more than once on a MENU
body. The compiler associates the value of property
EXPRj with the version specified by the property value
of VERSIONj. Check the MENU body definition to make
sure that the property names are correct.

ERROR #83: Expected signal name or constant

This error is generated when the Compiler is reading a
signal and finds it to be malformed. A signal must
have a name string or be a signal constant. If the
Compiler finds neither of these, it generates this
error. The Compiler prints the input line along with

5-78

Compiler
Error Messages

a pointer to the position in the line where the
problem was detected. The most likely cause of this
error is the illegal use of reserved characters are
quoted). Check the signal name and correct it.

ERROR #84: Replication factor is out of range

This error is generated when the Compiler is
processing a signal and finds a replication property
value that is illegal. The value of this property is
outside the allowed range (that ist it is <• 0 or
greater than the maximum allowed number of bits in a
signal). The Compiler prints the input line along
with a pointer to the position in the line where the
problem was detected. The maximum number of bits in a
signal is 2147483647 so this error usually means that
the replication specified is <= O.

ERROR #85: Expected FILE_TYPE specification

This error is generated when the Compiler starts
reading an input file and does not find a FILETYPE
specification. All SCALDsystem data files are
identified with a FILETYPE specification at the
beginning to allow programs to check their inputs.
The Compiler prints the input line along with a
pointer to the position in the line where the problem
was detected. The Compiler skips the rest of the
offending file. The directives file is the only
Compiler input file that does not need a FILETYPE
specification. Check the given file to make sure that
it is the correct file. If it is, add the proper
FILETYPE specification.

ERROR #86: File is not of the correct type

This error is generated when the Compiler finds that
an input file has the wrong FILETYPE specification.
All SCALDsystem data files are identified with a
FILETYPE specifier which allows the programs to check
the validity of input data. The Compiler prints the
input line along with a pointer to the position in the
line where the problem was detected. The Compiler
skips the rest of the offending file. The directives
file is the only Compiler input file that does not
need a FILETYPE specification. Check the given file
to make sure that it is the correct file. If it is,
change its FILETYPE specification.

5-79

Compiler
Error Messages

ERROR #87: Directory file name previously specified

This error is generated when the Compiler finds a
SCALD directory has been specified more than once with
a DIRECTORY directive in the directives file. The
Compiler prints the input line along with a pointer to
the position in the line where the problem was
detected. Directory files should be specified only
once.

ERROR #88: Unused.

ERROR #89: String not closed before the end of line

This error is generated when the Compiler finds that a
string (a quoted sequence of characters) does not have
a closing quote before the end of the current line is
reached. The Compiler prints the input line along
with a pointer to the position in the line where the
problem was detected. Check the line to make sure
that the string is correctly specified. All strings
must be closed. This most commonly occurs when a
quote is accidentally placed into a signal name.

ERROR #90: Reserved.

ERROR #91: Unused.

OVERSIGHT #92: Invalid (warnings and oversights only)

This oversight is generated when the Compiler finds an
error message code number specified as an operand of
the SUPPRESS directive. Only oversight and warning
messages may be suppressed. The Compiler prints the
input line along with a pointer to the position in the
line where the problem was detected.

ERROR #93: Expected directory file name

This error is generated when the Compiler is
processing a DIRECTORY directory and does not find a
directory file name where it expected one. The
Compiler prints the input line along with a pointer to
the position in the line where the problem was
detected. This error may occur for three reasons:

5-80

ERROR #94:

Compiler
Error Messages

1. The file name may simply have been
forgotten.

2. The file name may not have been put in
quotes.

3. A comma was found after a file name
indicating another file name was to follow
in a list of files but another file name was
not found.

Invalid value for print width

This error is generated when the Compiler is
processing the PRINT WIDTH directive and finds an
illegal print width value specified. The Compiler
prints the input line along with a pointer to the
position in the line where the problem was detected.
Print width values must lie in the range 80 to 132.

OVERSIGHT #95: Drawing has not been written w/ 5.5 GED

This oversight is generated when the Compiler finds
drawing that has ndt been written with the 5.5 or
later Graphics Editor. The proper processing of
inheritable pin properties requires the Compiler to
understand the graphical representation of nets within
the drawing. This is becauses pin properties inherit
along graphical structures and not along electrical
ones. For example, the signal X may have an
inheritable pin property in one part of the drawing
but may not have it on another part of the same
drawing. They are electrically connected because they
have the same name (X) but are not connected for
purposes of inheriting pin properties properties.
Versions 5.5 and later of the Graphics Editor pass
Graphical information to the Compiler so that
inheritable pin processing can be performed correctly.
If a drawing is read by the Compiler which has NOT
been written by the 5.5 or later GED, it generates
this oversight and continues. It WILL process the
drawing correctly but will use MORE memory and take
longer. All drawings should be written with the new
Graphics Editor.

ERROR #96: Bit subscript on constant not permitted

This error is generated when the Compiler is
processing a constant signal and finds a bit
subscript. Constants may not be given bit subscripts.

5-81

Compiler
Error Messages

The Compiler prints the input line along with a
pointer to the position in the line where the problem
was detected. There are two mechanisms for specifying
the widths of constants:

1. A replication factor may be used such as:
Or 32

2. An explicit width specification may be used
such as: 0(32).

OVERSIGHT #97: Unknown output file name

This oversight is generated when the
illegal specification for the OUTPUT
valid OUTPUT directive operands are:
EXPAND, and SYNONYM.

ERROR #98: Unused.

ERROR #99: Reserved.

ERROR #100: Reserved.

Compiler finds an
di rec ti ve. The

LIST, CHIPS,

ERROR #101: Drawing path name is missing closing)

This error is generated when the Compiler is reading
the PRIMITIVE directive and finds a path name without
a closing ')'. The Compiler prints the input line
along with a pointer to the position in the line where
the problem was detected. A path name is delimited
with '(' and ')'; both must appear.

ERROR #102: Reserved.

ERROR #103: Library not found in master directory

This error is generated when the Compiler finds a
library specified with the LIBRARY directive that does
not appear in the master library. The Compiler prints
the input line along with a pointer to the position in
the line where the problem was detected. All
libraries that are to be accessible with the LIBRARY
directive must be listed in the master library file.

5-82

Compiler
Error Messages

ERROR #109: Body properties are not allowed here

This error is generated when the Compiler finds an
illegal property on a body. The property name is
printed along with the body name. The given property
does not have the body permission attribute. That is,
it is not allowed to be attached to a body. Check the
drawing to make sure that the property is attached to
the correct object. Check the property attributes
file if the property is supposed to have the body
permission attribute.

ERROR #110: Undefined text macro (null value)

This error is detected whenever a text macro is used
that has a null definition. The text macro name is
printed. An undefined text macro definition may
result from some input error. The text macro expands
as a null and the compile continues. Check the other
error messages and the DEFINE body to correct the
definition. This error is fatal to separate
compilation.

ERROR #111: No directory was specified

This error is detected at the end of reading the
compiler directives file. All of the directives have
been read in but no DIRECTORY directive was found
informing the Compiler of the directories to use in
the compilation. Since the Compiler needs at least
one directory, such a condition is an error. Change
the compiler directives file to specify the
directories to be used. The directories are the same
ones used by the graphics editor.

ERROR #112: Separate AND single drawing compilation

This error is generated when the Compiler finds that
the SEPARATE COMPILE and SINGLE DRAWING directives
have both been set to ON. This-is not permitted.
These two compilation modes are incompatible. One of
the directives must be eliminated. Check the
directives file and delete one of the directives. The
SINGLE DRAWING directive is only useful when preparing
a hierarchical design for processing by an interface
program for transfer to some system OTHER THAN THE
SCALDsystem.

5-85

Compiler
Error Messages

ERROR #113: Replication is not permitted on pin name

This error is
name with a r
drawing. Pin
replication.

generated when the Compiler finds a pin
replication used within the body
names are not allowed to have signal
Remove the replication specification.

ERROR #114: Text macro has already been defined

This error is detected when the compiler is reading a
DEFINE body. Two text macros of the same name have
been found. The text macro name is printed along with
the drawing in which the DEFINE body appears. All
text macro names (within the same drawing) must have
unique names. ·Check the DEFINE bodies for duplicate
names.

ERROR #115: Same MENU version property found twice

This error is detected when the compiler is reading a
MENU body. It found the same version property
(VERSIONn) specified more than once on the MENU body.
The drawing name and the property name are both
printed. Check the MENU body definition to make sure
that the property names are correct.

ERROR #116: Expanded string exceeds max string len

This error is generated when a text macro is expanded
that exceeds the maximum internal string length. This
is most likely to happen when recursion or iteration
is used. The number of characters needed to represent
the entire string is too long to be represented. The
text macro name is printed along with its definition.
Correct the definition. This expansion only occurs
when property values are being processed for output.

ERROR #117: Textmacro and parameters exceeds max len

This error occurs when the compiler is trying to
expand a text macro and its parameters. The resulting
string is too large for the internal string
representation. This error can occur wherever a text
macro is used. Check the definition of the text macro
to be sure that any recursion or iteration is being
used correctly.

5-86

ERROR #118: Expression value is empty

Compiler
Error Messages

This error is detected when the compiler is processing
the value for an integer expression. The value given
is NULL (empty). This error occurs when processing
integer parameters on bodies or the value specified
for the signal properties r and w. The name of the
parameter or property whose value is empty is also
printed. Check the property or parameter name and
correct it. Make sure that parameters to all text
macros (such as r and w) are delimited with spaces
(that is, a space must appear at the beginning and end
of each text macro parameter).

ERROR #119: NC is not permitted as a pin name

This error is generated when the Compile finds a body
with a pin name called NC. The NC signal is not
permitted as a pin name. The name of the drawing
where the body was found and the name of the body with
the illegal pin name are printed. Edit the body and
change the name of the pin.

ERROR #120: Path name exceeds maximum length

This error is generated when the Compiler finds that
the path name has exceeded the maximum allowed (255
characters). This happens when the hierarchy gets too
deep. Deep hierarchies can be created with recursion.
The path name is made up of individual path elements
from each drawing in the hierarchy. This is a FATAL
error. That is, the appearance of this error will
prevent the compilation from continuing. To correct,
reduce the depth of the drawing hierarchy or shorten
the path elements (e.g., reduce the length of the
drawing abbreviations). The most common cause of
excessively long path names is the use of recursive
drawings.

ERROR #121: Path element name exceeds maximum length

This error is detected when the compiler creates a
path element for a given drawings. If this error
occurs, there is a serious problem. Either the
drawing abbreviation or the path property is
excessively long. FIX IT! The drawing name, the
using drawing name, and the drawing's PATH property
are printed. If this error occurs it is quite likely
that error #120 will also appear. The maximum length

5-87

Compiler
Error Messages

of a path element is 255 characters.

ERROR #122: Drawing has incompatible extensions

This error is detected as the compiler is reading a
directory. A drawing with two extensions that are
incompatible has been found. The drawing name as well
as the two extensions for the drawing are printed.
Incompatible drawing extensions are, for example,
LOGIC and PART. One of these drawings must be removed
from the directory. See the documentation on
directories for a more complete description of the
restrictions and use of SCALD directories.

OVERSIGHT 11123: Selection expr and MENU expr mismatch

This oversight is detected when a drawing is read.
The compiler checks the selection expression specified
in the drawing menu (if the drawing has more than one
version) with the selection expression specified in
the drawing (as the EXPR property on the drawing's
DRAWING body). If the two expressions are not the
same, this error is generated. The drawing name, the
selection expression used for the directory (the
expression defined in the MENU), and the selection
expression found in the drawing are printed. Correct
the drawing and menu so that they agree. The compiler
always uses the menu expression when the two
expressions are different.

ERROR #124: Versioned drawings not written with 7.0 GED

This error is generated when the Compiler is
processing a drawing with multiple versions. If there
is no MENU body, and the first drawing version was
writ ten with 7. 0 or later GED, ALL drawing versions
must be written with the 7.0 or later GED. This is
because selection expressions are handled differently
(automatically) in release 7.0 and later. Edit and
write all of the versions of the drawing with a 7.0 or
later version of GED. Make sure that EVERY drawing
version has an EXPR property on its DRAWING body so
that the Compiler will know what the selection
expression should be. This takes the place of the
MENU body.

ERROR #125: Pin properties are not permitted here

5-88

Compiler
Error Messages

This error is generated when the Compiler finds an
illegal property on a pin. The property name is
printed along with the pin name. The given property
does not have the pin permission attribute. That is,
it is not allowed to be attached to a pin. Check the
drawing to make sure that the property is attached to
the correct object. Check the property attributes
file if the property is supposed to have the pin
permission attribute.

ERROR #126: Text macro is not an identifier

This error is generated when the Compiler is expanding
text macros in property values. These text macros are
identified by a '%' preceding them. All text macro
names MUST be identifiers which are strings of
letters, digits, and ' ' starting with a letter and no
more than 16 characters long.

OVERSIGHT #127: ABBREV property not found for the drawing

This oversight is generated when the drawing is found
that does not have an ABBREV property. Every drawing
must have a macro abbreviation (attached as the ABBREV
property to the DRAWING body of the drawing). A NULL
drawing abbreviation is allowed. The Compiler creates
an abbreviation and continues. The drawing name and
the created abbreviation are printed.

ERROR #128: ABBREV value must be letters, digits & _

This error is generated when the compiler finds an
ABBREV property value consisting of characters other
than letters, digits, or ' '. The compiler creates a
new abbreviation for the drawing. The drawing name,
the ABBREV property value, and the new abbreviation
are printed.

ERROR #129: Menu entry for version is not permitted

This error is detected when the compiler is reading
the a MENU. A multi-version drawing has been found.
When the Compiler read the menu (in version 1 of the
drawing) it found a menu entry for version 1 of the
drawing. This is not permitted; version 1 (the menu)
is used only for menus and cannot itself appear in the
menu. The drawing name is printed. Change the menu
to remove the reference to version 1.

5-89

Compiler
Error Messages

ERROR #130: Scalar reference to vector signal

This error is generated when the Compiler encounters a
scalar signal (a signal with no bit subscript and
therefore 1 bit wide) after previously encountering
the same signal as a vector (a signal with a bit
subscript and therefore 1 or more bits wide). A
signal cannot be both a scalar and a vector. The
signal name is printed. Make them both scalars or
vectors. The compiler forces the scalar to be a
single bit vector.

ERROR #131: Vector reference to scalar signal

This error is generated when the Compiler encounters a
vector signal (a signal with a bit subscript and
therefore 1 or more bits wide) after previously
encountering the same signal as a scalar (a signal
with no bit subscript and therefore 1 bit wide). A
signal cannot be both a scalar and a vector. The
signal name is printed. Make them both scalars or
vectors. The Compiler forces the vector to be a
replicated scalar.

ERROR #132: Concatenated signal as pin name

This error is generated when the Compiler finds a pin
name on a body that is the concatenation of two or
more names such as, F(l):F<2>. Concatenation is not
permitted in pin names. The pin name can be fixed by
either using a bit list to combine the signals (the
above pin name would be F<l, 2) or F<l •• 2)) or using
separate pins for each piece of the concatenated
signal. The Compiler gives the pin the first name in
the concatenated signal and ignores the rest.

ERROR #133: This property has already been defined

This error is generated when the Compiler finds a
property attached more than once to the drawing. This
error is detected when processing the DRAWING bodies
for a drawing. Since a drawing may have more than one
drawing body (one on each page, for example) the
potential exists for accidentally attaching a property
to more than one. Since such properties are
cumulative (that is, they don't replace each other but
add up), the Compiler informs the user that the
property has appeared more than once.

5-90

Compiler
Error Messages

OVERSIGHT 11134: Terminal drawing is not a primitive part

This oversight is generated when the Compiler finds a
drawing that has no bodies in it. This is called a
TERMINAL drawing for the reason that the design
expansion terminates here. The Compiler does not
allow a drawing to be a terminal unless explicitly
told to permit it. There are two ways of giving such
permission. The drawing can be made into a primitive
part (such as a .PART drawing) or the TERMINAL=TRUE
property may be attached to the drawing's DRAWING
body.

ERROR 11135: Cannot open compiler directives file

This error is generated when the Compiler tries to
open the compiler directives files and finds it
cannot. Either the file does not exist or it was
incorrectly specified. This is a fatal error; the
Compiler needs this file. Correctly specify it and
recompile.

ERROR 11136: Signals cannot be attached to this body

This error is generated when the Compiler finds
signals attached some "special" body (such as a DEFINE
or DRAWING body) that cannot have signals attached to
it. The most probable cause is accidentally creating
a user drawing with one of these names. If this is
the case, change the name of the drawing. The name of
the body is printed.

ERROR 11137: Text macro nesting depth exceeded

Text macros are capable of referring to other text
macros (and may refer to themselves). Each time a
text macro refers to another, the current definition
is saved on a stack and the new definition is started.
If the stack becomes filled, this error is generated.
The most likely cause is the use of a recursive text
macro that has no way of terminating (that is, the
text refers to itself which refers to itself, ad
infinitum). Care must be taken when using recursive
text macros to guarantee they will eventually
terminate. The maximum nesting depth is 10.

ERROR 11138: Cannot open error documentation file

5-91

Compiler
Error Messages

This error is generated when "the Compiler cannot open
the file containing error documentation. This is
usually due to the file being incorrectly bound to the
logical file ERRDOC. It may also be due to an access
problem (such as the user not having read access to
the file).

ERROR #139: More than 1 selection expression is true

This error is detected when the Compiler attempts to
read a specific drawing. The drawing of interest has
more than one version and, after evaluating all of
them, the Compiler discovers that more than one
selection expression is true. The name of the drawing
being processing and all the selection expressions are
printed. Only one selection expression may evaluate
true for any given drawing instance. Correct the
selection expressions to ensure they are unique.

OVERSIGHT #140: This signal cannot be DECLAREd

This oversight is detected as the Compiler processes
DECLARE body within a drawing. Constant signals (that
is, signals that are constants) cannot be DECLAREd.
The current drawing name as well as the name of the
body (DECLARE) is printed along with the signal name.
Remove the constant signal from the signal list of the
body. See the Compiler signal documentation for a
complete description of signal scopes if there is some
confusion.

WARNING #141: SIZE property on non SIZE-wide body

This warning is generated if the compiler encounters
an instance of a body that is not size dependent, but
has a SIZE parameter attached to it. The warning is
issued as it is quite likely that the SIZE parameter
is superfluous and will be ignored.

ERROR #142: MENU bodies are not supported

This error is generated when the Compiler finds a MENU
body in a drawing written with the 7.0 or later GED.
This is not supported. Selection expressions are
supported in release 7.0 by placing the EXPR property
on the DRAWING body of each drawing version. The
Compiler reads this property to determine the
selection expression for the drawing. If a drawing

5-92

Compiler
Error Messages

with a MENU body (version 1) ·exists, it should be
deleted. Check to make sure that EXPR properties
exist and read and write every drawing version with
the 7.0 or later GED. This has been designed to make
selection expressions easier to use since a summary
MENU drawing, which was difficult to use in any case,
does not need to be made.

ERROR #143: Illegal rotation on this body

This error is generated when a body with an illegal
rotation is detected. Logic symbols have definite
rotational semantics. Throughout The SCALDsystem, MSB
to LSB ordering (independent of signal syntax bit
ordering) is from top to bottom or left to right. For
example, a 2 MERGE merges 2 signals into one with the
top signal becoming the MSBs. Rotations are
restricted to the following: 0 degrees (right), 90
degrees (up), mirror about Y of 0 degrees (left), and
mirror about X of 90 degrees (down). All other (180
and 270 degree rotations) are disallowed.

OVERSIGHT #144: This body should not be given SIZE prop

This oversight is generated when the Compiler finds a
SIZE property on a body that cannot be given one.
This is true if the body has a HAS FIXED SIZE or a
NEEDS NO SIZE property. The name of the-body and
drawing are printed. Remove the SIZE property from
the body.

ERROR #145: Pin name does not exist

This error is generated when the Compiler finds a
reference to a pin name (interface signal) that does
not exist on the drawing's corresponding body. The
drawing in which the error was found (as well as the
body to which the signal is connected) are printed
along with the name of the signal. Check the body
definition to make sure that the pin names have been
correctly assigned and check the signal name for
misspellings. A list of all of the pin names on the
body is printed to make it easier to identify the
problem.

ERROR #146: Pin name does not have this bit

This error is generated when the Compiler finds an

5-93

Compiler
Error Messages

interface signal that references a bit that does not
exist on the pin (as defined by the body). The name
of the drawing in which the error was found (as well
as the name of the body to which the signal is
connected) are printed along with the name of the
signal. Check the body definition and signal name.

ERROR #147: Root drawing is a primitive.

This error is generated when SINGLEDRAWING is ON and
the compiler finds that the root drawing has been
specified as a primitive. Forcing any drawing to a
primitive is unnecessary with this option, and forcing
the root to a primitive is not functional under any
option. Check the directives (compiler.cmd) file for
an ISPRIMITIVE directive on the root drawing name and
check for .prim or .part drawings for the root.

ERROR #148: No root drawing was specified

This error is generated when the Compiler finds that
no drawing name has been specified for compilation.
The Compiler cannot continue without the name of the
drawing it is to compile. This error is fatal: it
causes the Compiler to stop immediately. Make sure
the drawing name has been specified with the
ROOT DRAWING directive in the Compiler's directives
file~

ERROR #149: Synonyms must use single assertion

This error is generated when the Compiler finds
signals whose assertions differ being synonymed
together. This is not permitted. This error is also
generated if all of the assertions of signals within
concatenated signals being synonymed do not have the
same assertions. Synonyms of signals with differing
assertions can only be synonymed with the NOT body.
This should be used.

ERROR #150: PERMIT attribute value invalid

This error is generated when the Compiler is
processing the PERMIT attribute in the property
attributes file and finds an unknown specification.
The allowed permission attributes are PIN, BODY, and
SIGNAL. Check the property attributes file for
misspellings.

5-94

Compiler
Error Messages

ERROR #151: This property not permitted on a SIGNAL

This error is generated when the Compiler finds a
property (without the PERMIT(SIGNAL) attribute)
attached to a signal. It is most likely that the
property was accidentally attached to the signal. The
name of the drawing, signal, and property are output.
Check the attachment of the property within the
drawing to make sire that it has been correctly
attached. If this property is supposed to be attached
to a signal, correct the property attributes file to
give the property the PERMIT(SIGNAL) attribute.

ERROR #152: This property not permitted on a BODY

This error is generated when the Compiler finds a
property)without the PERMIT(BODY) attribute) attached
to a body. It is most likely that the property was
accidentally attached to the body. The name of the
drawing, body, and property are output. Check the
attachment of the property within the drawing to make
sire that it has been correctly attached. If this
property is supposed to be attached to a body, correct
the property attributes file to give the property the
PERMIT(BODY) attribute.

ERROR #153: This property not permitted on a PIN

This error is generated when the Compiler finds a
property (without the PERMIT(PIN) attribute) attached
to a pin. It is most likely that the property was
accidentally attached to the pin. The name of the
drawing, body, pin, and property are output. Check
the attachment of the property within the drawing to
make sire that it has been correctly attached. If
this property is supposed to be attached to a pin,
correct the property attributes file to give the
property the PERMIT(PIN) attribute.

ERROR #154: Unused

ERROR #155: Attempt to synonym 0 and 1

This error is generated when the compiler finds the
constant signal 'O' and the constant signal '1' being
synonymed together. The drawing name, the body in the
drawing where the signals are connected, and the
signals are printed.

5-95

Compiler
Error Messages

Only like constant signals may be synonymed.

ERROR #156: Signal's width cannot be determined

This error is generated when the Compiler finds a pin
name, an NC signal, or an UNNAMED signal whose width
(number of bits) cannot be determined from context.
The name of the signal, the drawing it appears in, and
the name of the body and pin to which it is connected
are printed. The width of a signal is determined
whenever it is connected to a pin whose width is known
or is synonymed to a signal whose width is known. In
some circuits, notably those involving complex merger
structures, it may not be possible for the Compiler to
determine the widths of all of the signals. To
correct this problem, the user should use SLASH bodies
or give the signals names with the proper number of
bits.

ERROR #157: Reserved.

ERROR #158: Unused.

ERROR #159: Synonym of unequal width signals

This error is generated when the Compiler finds two
signals synonymed that have different widths. The
name of the signal, the name of the drawing in which
the signal appears, and the name of the body and pin
to which the signal is attached are printed. Check to
make sure that the signals were not mistyped. The
most frequent cause of this problem is the misuse of
MERGE bodies. Synonyms are created whenever two
signals are connected to the same pin. Check to make
sure that, if a wire has more than one signal name,
the signals have the same width.

ERROR #160: Cannot SIZE replicate plumbing drawings

This error is generated when the Compiler finds that a
plumbing drawing (such as a MERGE or a NOT) is being
SIZE replicated in the Compiler (X STEP <> SIZE).
This is not permitted. The name of the drawing is
printed.

ERROR #161: 2 signals with timing assertions synonymed

5-96

Compiler
Error Messages

This error is generated when two signals are synonymed
that have a Timing Verifier assertion. Such a signal
is FOO !C 0-4. This is forbidden since the one of the
assertions will be lost following the synonym (since
only one of the signals can be the case signal name).
The name of the drawing, the body and pin to which the
signals are connected, and the signal names are
printed.

ERROR /1162: Interface and local signals conflict

This error is generated when the Compiler finds a
local and an interface signal with the same name. For
example, A\L and A\I. This is not permitted. A
signal can only have one scope. That is, it must be
either interface, local, or global. The name of the
drawing, the name of the body and pin to which the
signal is attached, and the name of the signal are
printed.

ERROR #163: Local and global signals conflict

This error is generated when the Compiler finds a
local and a global signal with the same name. For
example, A\L and A\G. This is not permitted. A
signal can only have one scope. That is, it must be
either interface, local, or global. The name of the
drawing, the name of the body and pin to which the
signal is attached, and the name of the signal are
printed.

ERROR /1164: Global and interface signals conflict

This error is generated when the Compiler finds an
interface and a global signal with the same name. For
example, A\I and A\G. This is not permitted. A
signal can only have one scope. That is, it must be
either interface, local, or global. The name of the
drawing, the name of the body and pin to which the
signal is attached, and the name of the signal are
printed.

ERROR #165: This signal cannot have scope property

This error is generated when the SCOPE property is
found on a signal that should not be given one. For
example, the presence of the SCOPE property (specified
with \I, for example) on a pin name in a body drawing

5-97

Compiler
Error Messages

would cause this error to be generated. The name of
the drawing, the name of the body and pin to which the
signal is connected, and the signal are printed.

ERROR #166: Unused.

ERROR #167: Cannot open synonyms file for input

This error is generated if the Compiler is unable to
open the temporary scratch synonyms file written
during signal processing. This temp file contains
synonym information which is to be reformatted and
output to CMPSYN. This error indicates that something
fundamental has broken. Contact a Valid Service
Engineer to get help.

ERROR #168: Cannot close file

This error is generated whenever the Compiler is
unable to close a file that was open for either read
or write. This is usually due to some protection or
disc space problem. The name of the file (either the
file name itself or a logical file name) is printed.
Check the protections for the file and the user to
make sure they are compatible.

ERROR #169: Cannot open file for output

This error is generated when the Compiler fails to
open a file for output (write). This is usually due
to some protection or disc space problem. The name of
the file (either the file name itself or a logical
file name) is printed. Check the protections for the
file and the user to make sure they are compatible.

ERROR #170: Cannot open master library file

This error is generated when the Compiler fails to
open the file containing the master list of libraries
for the SCALDsystem. This list is used by the LIBRARY
directive. The file name is printed. This is usually
due to some protection or disc space problem. The
name of the file (either the file name itself or a
logical file name) is printed. Check the protections
for the file and the user to make sure they are
compatible.

5-98

Compiler
Error Messages

ERROR #171: Bit subscript increment of 0 not allowed

This error is generated when the Compiler finds a bit
subscript increment of 0 in the bit subscript for a
signal. The Compiler prints the input line along with
a pointer to the position in the line where the
problem was detected. Increments can be any value but
o.

ERROR #172: Bit subscript should be right to left

This error is generated when the Compiler finds a bit
subscript whose bits are out of order. That is, they
are opposite that allowed. For example, if the
standard bit ordering is right to left (n •• O) then a
subscript of the form 0 •• 5 is an error. The Compiler
prints the input line along with a pointer to the
position in the line where the problem was detected.
If a "bit reversed'' bit subscript is desired, an
increment of -1 can be used. For example, the
subscript 0 •• 5:~1 is perfectly legal. The -1 serves
to clearly specify that a reversal of the normal
ordering is desired.

ERROR #173: Bit subscript should be left to right

This error is generated when the Compiler finds a bit
subscript whose bits are out of order. That is, they
are opposite that allowed. For example, if the
standard bit ordering is left to right (O •• n) then a
subscript of the form 5 •• 0 is an error. The Compiler
prints the input line along with a pointer to the
position in the line where the problem was detected.
If a "bit reversed" bit subscript is desired, an
increment of -1 can be used. For example, the
subscript 5 •• 0:-1 is perfectly legal. The -1 serves
to clearly specify that a reversal of the normal
ordering is desired.

ERROR #174: Unused.

ERROR #175: Unused.

ERROR #176: Unused.

ERROR #177: Selection expr for drawing is FALSE

5-99

Compiler
Error Messages

This error is generated if a drawing is found in which
every page has a selection expression that evaluates
FALSE. This can happen whether there is more than one
version of the drawing or not. A selection expression
attached to the first page (whichever that is) is used
as the selection expression for the entire drawing.
However, each additional page of the drawing may have
its own selection expression that must evaluate TRUE
in order that that page be valid. If all pages have
selection expressions that evaluate FALSE, and there
is not more than one version of the drawing, this
error occurs. Check the EXPR properties on the
DRAWING bodies of each drawing page to make sure that
they are correct. If they are, check to make sure
that the parameters referred to in the selection
expression (such as SIZE) are defined properly.

ERROR #178: Max error value must be>= 1

This error is generated when the Compiler finds a zero
or negative value specified for the MAX ERRORS
directive. The Compiler prints the input line along
with a pointer to the position in the line where the
problem was detected. Make sure the number is
positive.

ERROR #179: Extraneous junk at end of signal

This error is generated when the Compiler finds more
characters at the end of a signal name: characters
that the Compiler cannot recognize as belonging to the
signal name. The Compiler prints the input line along
with a pointer to the position in the line where the
problem was detected. Possible causes are:

1. A concatenation character is missing so that
the next signal is misinterpreted.

2. A property was misplaced (before the bit
subscript) making the compiler think it had
found the end of the signal.

3. The junk at the end of the signal really is
JUNK!

ERROR #180: Parameter was declared twice

This error is generated when the Compiler finds a
property with the PARAMETER attached to a body more
than once. This is an error since the Graphics Editor

5-100

Compiler
Error Messages

does not permit this. The name of the drawing, the
name of the body to which the property is attached,
and the property are printed.

ERROR #181: Cannot access specified drawing directory

This error is generated when the Compiler cannot open
a drawing directory specified by a SCALD directory as
containing the files for a drawing. Check to see that
the specified directory exists and is accessible
(readable and executable) by you.

WARNING #182: Drawing title does not match directory

This warning is generated when the Compiler finds that
the TITLE property on the DRAWING body does not match
the drawing's name. The Compiler prints the input
line along with a pointer to the The drawing name
(specified as the TITLE property on the DRAWING body)
does not match the name given in the directory. The
directory name and the name given in the drawing are
both printed.

ERROR #183: X_FIRST must be)= 0 (set to O)

This error is generated when an X FIRST text macro is
found which has a negative value.- This is not
permitted. The value must be positive or zero. The
name of the drawing in which the definition appears is
printed. Check and correct the definition. The value
is set to O.

WARNING #184: PIN_EQUIVALENT no longer supported

This warning is generated when the PIN EQUIVALENT
attribute specification is found in the property
attributes file. This attribute is obsolete and has
been replaced by the INHERIT(PIN) attribute which has
the same meaning. The Compiler assumes INHERIT(PIN)
instead of PIN EQUIVALENT and continues. All property
attribute files should be updated to use INHERIT(PIN)
in place of PIN_EQUIVALENT.

ERROR #185: SIZE must be >= 0 (set to 1)

This error is generated when a SIZE parameter whose
value is negative is found. All SIZE parameters must

5-101

Compiler
Error Messages

have positive values (or O). The name of the drawing
and the body to whi~h the SIZE parameter is attached
are printed. Correct the SIZE value. The most common
cause of this error is an incorrect expression for the
SIZE parameter that evaluates to a negative number in
some contexts.

ERROR #186: X STEP must be) 0 (set to 1)

This error is generated when an X STEP text macro is
found which has a zero or negative value. This is not
permitted. The value must be positive. The name of
the drawing in which the definition appears is
printed. Check and correct the definition. The value
is set to O.

ERROR #187: Assertion chk failure: save CMPLOG file

This error is generated whenever the compiler
discovers some internal data problem. The compiler is
constantly checking to make sure that its internal
data is consistent. If it detects some problem, this
message is generated. Contact Valid Logic Systems for
a work around and/or corrections. This message
indicates an internal compiler error and usually
cannot be fixed by the user. Save the data that
caused the error as it will be very helpful in finding
the problem. It is very important that the CMPLOG
file be saved (at a minimum). Valid may also request
any of the input or output files for the Compiler.
Try to be ready to reproduce the problem for the
Service Engineer.

ERROR #188: Parameters not permitted on this body

This error is generated when an instance parameter (a
body property with \PARAMETER at the end of the
property value) is found on a body that cannot be
given a parameter. There are several "special" bodies
to which parameters cannot be attached. They are:
DRAWING, INTERFACE, DECLARE, DEFINE, DIRECTIVE,
STRUCTURE, and MENU. Since parameters may only be
added when the body is edited, the most common cause
of this error is the creation of a user drawing with
one of these reserved names.

ERROR #189: Timing assertion not allowed on pin name

5-102

Compiler
Error Messages

This error is generated when a Timing V~rifier
assertion is found as part of a pin name. A example
Timing Verifier assertion is IC 0-4. These may NOT be
assigned to pin names or interface signals. The name
of the drawing, the name of the body and pin to which
the signal is attached, and the signal or pin name are
printed.

ERROR #190: No selection expression evaluates true

This error is generated if the Compiler finds that no
selection expression evaluates to true (or 1) for a
drawing. Since none is true, the compiler has no
drawing to compile. The name of the drawing is
printed along with the all the selection expressions
(if the drawing has more than one version). Correct
the selection expressions so that one will be
selected. A NULL expression always evaluates true.

ERROR #191: Drawing not found in the directories

This error is generated when the Compiler finds a body
that does not have a corresponding logic (or time,
sim, •••) drawing. The drawing name is printed. Some
possible causes are:

1. The directory containing the drawing was not
specified in the compiler directives.

2. The drawing has not been implemented yet.

This error is fatal to separate compilation.

OVERSIGHT #192: PATH name element is not unique

This oversight is generated when the Compiler detects
that the path element for a body is not unique within
the drawing. The path element is constructed from the
page number of the drawing, the PATH property attached
to the body, the abbreviation for the body (from the
ABBREV property), and the SIZE replication index (X).
If the path element is no~ unique, the path name for
the body or signal will not be unique causing severe
problems. The compiler makes the element unique by
appending an instance identifier (it enumerates the
bodies that appear in the drawing). The instance
identifier is separated from the rest of the path
element by a ':'. This condition cannot occur if the
automatic path generation feature of the graphics
editor is used and drawing abbreviations have been

5-103

Compiler
Error Messages

s pee if ied. To correct, change the pa th properties of
the drawing instances (that were manually assigned) to
make them unique. The name of the drawing, body, and
the path property are printed.

ERROR #193: No usable extension found for drawing.

This error is generated when the Compiler finds a body
that was listed in an appropriate SCALD directory, but
does not have a usable extension for the type of
compilation being performed. The drawing name is
printed. Some possible causes are:

1. The drawing directory containing the drawing
was deleted or moved.

2. The drawing directory containing the drawing
could not be opened (such as because of a
protection violation).

3. The drawing has not been implemented yet.
4. There are no versions of the drawing with

legal extensions for the specified compile
type. If compiling for LOGIC, legal
extensions are LOGIC and PART. Otherwise,
if compiling for XXX, legal extensions are
LOGIC, XXX, and PRIM.

WARNING #194: Text macro refers to itself (recursive)

This warning is generated when the Compiler detects a
macro recursion.

ERROR 11195: Cannot open specified attributes file

This error is generated when the Compiler is unable to
open a property attributes file. The name of the file
is printed. Make sure the file exists. This error
can also be due to some protection or disc space
problem. The name of the file (either the file name
itself or a logical file name) is printed. Check the
protections for the file and the user to make sure
they are compatible.

WARNING #196: Default value used for SIZE (1)

This warning is generated when a definition for SIZE

5-104

Compiler
Error Messages

is absent and the SIZE param~ter is used. The value 1
is assumed. The name of the drawing is printed. SIZE
is defined by attaching it to the body.

OVERSIGHT #197: PATH property not found for body

This oversight is generated when the Compiler cannot
find a PATH property attached to a body. The PATH
property is used to identify a body within a drawing
and in the construction of path names which are used
to uniquely identify every part and signal in the
design. The Compiler automatically generates a PATH
property. PATH properties should be assigned so that
they may be referenced in the drawings.

ERROR #198: Bit subscript on undefined width pin

This error is generated when the Compiler finds a
vectored interface signal referring to a pin with the
NWC property. The NWC property means that the width
of the pin is not known and must be derived from its
context. When referring to such a pin, the ENTIRE
signal must be referenced. Since the width is not
known, it is not possible to refer to a specific bit.
The entire signal can be referenced as though the pin
was a scalar. For example, the pin A\NWC is referred
to by the interface signal A\I. The name of the
drawing, the name of the body and pin to which the
signal is attached, and the name of the offending
interface signal are printed.

ERROR #199: Pin name conflicts with previous pin

This error is generated when conflicting pin names are
found on a body. Pin may have the same (identical)
names or may reference different bits of the same pin.
name. For example, the pin names A<O>, A<l •• 2>, and
A<3> are legal. The pin names A<O>, A<0 •• 2>, and A<3>
are illegal since bit 0 of the pin is referenced by
two pins. The name of the body and its pins are
printed.

ERROR #200: Pin name and signal widths do not match

This error is generated when a signal is connected to
a pin whose width is not the same as the width of the
signal. Signal widths must match the widths of pins.
The name of the drawing, the name of the body and pin

5-105

Compiler
Error Messages

to which the signal is attached, and the name of the
signal are printed. Check these signals to make sure
their bit subscripts have been correctly defined.

ERROR #201: Signal fails bubble check on this pin

This error is generated when the Compiler finds a
signal whose assertion (high or low) does not match
the assertion of the pin to which it is attached. A
high-asserted signal must be connected to a pin
without a bubble. A lowasserted signal must be
connected to a pin with a bubble. The name of the
drawing, the name of the body and pin to which the
signal is connected, and the name of the signal are
printed. These checks can be turned off with the
BUBBLE CHECK OFF; directive.

ERROR #202: Pin name with NWC cannot have subscript

This error is generated if a pin name (on a body) is
found with both a subscript and the NWC property. The
presence of one make the presence of the other
meaningless. A subscript defines the width of the pin
while NWC specifies that the width is unknown. Remove
one of them from the pin name. The name of the body
as well as the pin are printed.

WARNING #203: Reserved

ERROR #204: Pin name cannot use signal negation

This error is generated when a pin name that uses
signal negation is found. For example, -A or -A.
Signal negation is not permitted in pin names. The
name of the body and the pin name are printed. Don't
do this.

ERROR #205: Cannot open DRAWING file

This error is generated when the Compiler fails to
open the file that contains the specified drawing.
The name of the drawing and the file name are printed.
Make sure the file exists. This error can also be due
to some protection or disc space problem. The name of
the file (either the file name itself or a logical
file name) is printed. Check the protections for the
file and the user to make sure they are compatible.

5-106

Compiler
Error Messages

This error does NOT mean that the drawing does not
exist in the SCALDdirectories; it was found, but the
drawing file cannot be opened.

ERROR #206: Cannot open specified directory file

This error is generated when the Compiler fails to
open a SCALDdirectory file. The file was specified
with the DIRECTORY directive. The name of the file is
printed. Make sure the file exists. This error can
also be due to some protection or disc space problem.
The name of the file (either the file name itself or a
logical file name) is printed. Check the protections
for the file and the user to make sure they are
compatible.

ERROR #207: Cannot open syntax configuration file

This error is generated when the Compiler fails to
open the system-wide signal syntax configuration file.
The name of the file is printed. Make sure the file
exists. This error can also be due to some protection
or disc space problem. The name of the file (either
the file name itself or a logical file name) is
printed. Check the protections for the file and the
user to make sure they are compatible.

ERROR #208: Too many errors in this compile!

This error is generated when the compiler finds too
many errors. The error limit is set with the
MAX ERRORS compiler directive. It is set to 1000 by
default. After this error is displayed, the compiler
halts.

ERROR #209: Cannot open specified text macro file

This error is generated when the Compiler fails to
open a text macro file. The file was specified with
the TEXT MACRO FILE directive. The name of the file
is printed. Make sure the file exists. This error
can also be due to some protection or disc space
problem. The name of the file (either the file name
itself or a logical file name) is printed. Check the
protections for the file and the user to make sure
they are compatible.

5-107

Compiler
Error Messages

ERROR #210: - Primitive cannot have NWC pin

This error is generated when a primitive is found that
has a pin with the NWC property. This is not
permitted. Primitives are ''physical" components in
that they have specific characteristics and
definitions. The SCALDsystem does not permit such a
"physical" component to have a pin whose width is
unknown (how are pin numbers assigned to such a pin?).
The name of the primitive and the drawing in which it
is used are printed. Change the definition of the
primitive to remove the NWC pin.

ERROR #211: Unused.

ERROR #212: A pin name cannot be a constant

This 'error is generated when the Compiler finds a pin
name that is a constant. For example, the pin name
"2". Such pin names are illegal. The name of the
body and pin are printed. Change the name of the pin.
For example, the addition of a single prefix character
will form a legal pin name.

OVERSIGHT #213: Versioned drawing must have EXPR prop

This oversight is generated when the Compiler finds a
drawing that has more than one version and one of the
versions does not have an EXPR property attached to
its DRAWING body to specify the selection expression.
An EXPR property is used to inform the Compiler for
which contexts the drawing is valid. If the user is
using MENU bodies for the drawings, the selection
expression is also specified as a property there. The
values of these two EXPR properties MUST be identical.
This may seem to be redundant but is necessary to
eliminate MENU bodies. If no MENU version was used,
then either this version will be the one that is
picked (since omitted selection expressions evaluate
TRUE) or multiple versions will evaluate TRUE,
resulting in an ERROR message.

ERROR #214: String not closed before end of signal

This error is generated when a string is found in a
signal name that does not have a closing quote.
Strings can appear around the name of the signal, or
embedded within it, and are part of signal property

5-108

Compiler
Error Messages

specification (the property value). Check the signal
to make sure there are no unmatched quotes.

ERROR #215: Pin name is scalar but used as vector

This error is generated when the compiler finds a
vectored interface signal that refers to a scalar pin
name. For example, A<O>\I referring to the pin A.
The name of the drawing, the body name where the
signal was found, and the signal are printed. Fix the
interface signal or the pin name; they must be
consistent.

OVERSIGHT #216: PART not allowed; COMPILE LOGIC assumed

This oversight is generated when the COMPILE PART
directive is found in the directives file. This is
not permitted. The Compiler prints the input line
along with a pointer to the position in the line where
the problem was detected. The COMPILE directive
specifies the "type" of primitive to be output by the
Compiler. COMPILE TIME causes the Compiler to produce
an expansion file in containing only Timing Verifier
primitives. COMPILE SIM causes the Compiler to
produce an expansion file containing only Logic
Simulator primitives. The Compiler considers a
primitive to any component with the .PART or .PRIM
extension. For this reason, COMPILE PART makes no
sense since there is no such thing as "part"
primitives. "Logic" primitives, on the other hand,
are physical components and have a very obvious
meaning. The Compiler assumes COMPILE LOGIC and
continues.

ERROR #217: Fatal error(s) encountered - run stopped

This error is generated whenever a fatal error has
been encountered that is causing compilation to stop.
This is the last message printed by the Compiler. It
is used to inform the user that fatal errors have
occurred.

ERROR #218: Bit lists are not permitted in pin names

This error is generated when a pin name is found that
uses bit lists (list of bits or subranges) in its bit
subscript. Pin names may only be given single bit or
simple subrange bit subscripts. For example, A<O> or

5-109

Compiler
Error Messages

A<S •• O> but not A<5,4t3,2, 1,0). The name of the body
and offending pin are printed along with the name of
the drawing in which the body is used. Correct the
pin name.

ERROR #219: DECLARE bodies are no longer supported

This error is generated whenever a DECLARE body is
found in a drawing. These are no longer supported.
Please contact your Valid Logic Systems Service
Engineer for details and assistance.

OVERSIGHT #220: PART_NAME property should not be used

This oversight is generated when the Compiler finds a
PART NAME property being used that does not match the
body's name. The PART NAME is used to change the name
of the primitive output by the Compiler from the name
of the body (the default) to the name specified by the
PART NAME property value. This feature was added to
make-it possible to perform strange and wonderful name
transformations. It is, in general, a bad idea. The
rest of the system needs to know the name of a given
body within the drawing so that this information may
be conveyed to the Graphics Editor. The best example
of this need is for back annotation. If the name of
the body has been transformed with the PART NAME
property, it is very difficult to tell the Graphics
Editor what body to use. The Packager gets around
this problem, but this may not be possible for other
programs (such as ones written by the user). This
oversight is only produced when the chips file is
generated. In this way, it becomes clear during
library creation that something is amiss while users
of the library are not effected.

ERROR #221: Bodies with NWC cannot expand to parts

This error is generated when a body is found that has
a pin with the NWC property and the body expands to
primitives. This is not permitted. Bodies with pins
with the NWC property are considered to be plumbing
bodies. That is, they are used to synonym signals
together or to otherwise combine or separate signals.
MERGErs, NOTs, and TAPs are all ~lumbing bodies.
These bodies are handled in a special manner that ts
not compatible with bodies whose definitions include
primitives. The name of the body is printed along
with the name of the drawing in which the body is

5-110

Compiler
Error Messages

used. Remove the NWC property from all of the body's
pin names.

ERROR #222: PRIMITIVE specifies unfound drawing

This error is generated when the Compiler cannot find
the drawing specified with the PRIMITIVE directive.
The most likely cause is the absence of the proper
SCALDdirectory (specified with the DIRECTORY
directive). The name of the drawing is printed.
Check the directives file to verify that all of the
required SCALDdirectories have been specified.

ERROR #223: Unused.

ERROR #224: Unused.

ERROR #225: Unused.

ERROR #226: Unused.

ERROR #227: Unused.

ERROR #228: Unused.

ERROR 11229: Unused.

ERROR 11230: Unused.

ERROR #231: Unused.

ERROR #232: Unused.

ERROR 11233: Unused.

ERROR #234: Unused.

ERROR #235: Signal synonymed to its own complement

5-111

Compiler
Error Messages

This error is generated when "the a signal is synonymed
its own opposite. For example, (if standard syntax is
used) signal A and -A are complements of each other,
both of which are high asserted. Signal -A* is
equivalent (in polarity) to A, and A* is equivalent
(in polarity) to A-, except that -A* and A* are low
asserted. Within the SCALD language, A and -A* are
the SAME signal and -A and A* are both taken to
represent the complement of it. It is illegal to
synonym A (or -A*) to -A (or A*) in any way. The
error is fixed by finding where the synonyming took
place, and correcting this. Often, this is caused by
using A* where -A* is actually correct (where a low
asserted version of A is desired).

ERROR #236: Unused.

ERROR #237: Unused.

ERROR #238: Unused.

ERROR #239: Unused.

ERROR #240: .PRIM and .PART both found for drawing

This error is generated when both a .PRIM extension
and a .PART extension have bein defined for the same
drawing. This is confusing as both mean the same
thing so the compiler does not know which to use. Fix
by removing one of these extensions from the drawing.
NOTE: earlier versions of the compiler treated these
differently, so be sure to keep the one that specifies
all necessary drawing properties.

5-112

ERROR 11241:

Compiler
Error Messages

Signal synonymed to its own complement

This error is generated when a pin is synonymed
to its own opposite. For example, a bubbled pin
Q* (or Q) is connected to the same signal as the
unbubbled version of Q (or Q*) on the same body.
(Note that the BUBBLE command of GED can
sometimes be used to switch the bubble from an
A* pin to an A pin -- the point is that either
way, the signals are meant to be complements and
therefore should not be synonymed together.) The
error message prints the name of the (unbubbled)
pin and, if a vector pin, the bits that were
synonymed to the same bits of the bubbled
version of the pin. The error typically occurs
by accidental connection of the wire attached to
one pin to the wire attached to the other. It
can also occur by inadvertently synonyming one
of the attached signals to the other. It is
fixed by finding where the two wires have been
attached or synonymed, and undoing the
connection.

5-113

