
CHAPTER 4

SCALD III LANGUAGE

4.1 AN OVERVIEW OF THE SCALD III LANGUAGE

SCALD III Language
Syntax

Logic design is supported on the SCALDsystem with a unique set
of software tools and a proven methodology. One of the most
important aspects of SCALDsystem is the SCALD III language that
is used to express the logical design of an electronic circuit.
Within this chapter, the signal and path name syntax is defined
and the concepts of properties and text macros are explained.

As with any language, the SCALD III language has been developed
to provide clear and concise communication between system and
designer and specifically to allow logic design concepts to be
expressed in a predictable and consistent manner. The language
is explicitly designed to allow the definition of complex logic
circuits while still retaining its user-comprehensible nature.
Since the language is understood by the SCALDsystem, error
detection, circuit analysis, and physical descriptions can be
generated automatically.

In the development of the SCALD III language, the following
criteria were followed:

o The language is complete. That is, the language is
capable of describing any logic circuit.

o The language is easy to understand. It is consistent,
simple, and logical and includes no surprises.

o The language adapts to existing design conventions.
Logic design conventions such as signal naming
conventions and schematic layout are accommodated
within the language - the language does not require
the user to follow a specific design style.

o The language supports hierarchical as well as flat
designs.

o The language is error resistant. Constructs that are
error-prone and that do not provide significant
advantages in return are avoided.

4-3

SCALD III Language
Syntax

o The language supports conci•e repr~sentations.
Commonly encountered circuit elements are represented
in as concise a manner as possible.

o The language does not require the addition of
"special" information in a drawing that normally would
not be placed on a vellum print. A drawing needs only
enough information to describe the schematic.

4.2 DRAWINGS

Logic designs are entered into the SCALDsystem as drawings. A
drawing is nothing more than a graphical schematic - it is the
same as a schematic drawn by hand on paper. The Graphics Editor
is used to create all drawings in the SCALDsystem. Drawings are
used to specify all information about a schematic throughout the
SCALDsystem.

To describe a schematic, the components or "parts" are
specified, positioned, and interconnected with wires.
Components come from libraries that define sets of parts within
a logic family. Valid offers a wide range of libraries that
include the TTL, ECL, and CMOS technologies. A schematic
drawing is complete when all components and wires have been
entered and the drawing has been written to the disk.

The Graphics Editor creates two descriptions of each drawing; a
graphical description that shows the shape and placement of all
parts and wires, and a description of the circuit's electrical
connectivity that describes how the· parts are interconnected,
but contains no graphical information. The Graphics Editor is
the only SCALDsystem analysis tool that knows what the drawing
''looks like" and is the only tool that reads the graphical
descriptions. The remainder of the analysis tools use the
electrical connectivity descriptions.

The SCALD Compiler reads the drawings created by the Graphics
Editor, performs error checking and hierarchical expansion, and
outputs the connectivity and synonym files for use by the other
analysis tools. A drawing is entered by the designer using the
Graphics Editor, is compiled by the Compiler, and is packaged by
the Packager; DIAL produces net and parts lists required for
circuit fabrication and documentation. The optional Timing
Verifier and Logic Simulator analysis tools (available only in
the network configuration) perform electrical verification of
the design.

4-4

4.3 SIGNALS AND INTERCONNECTIONS

SCALD III Language
Syntax

Every interconnection between two or more components represents
a signal, and every signal has a name. Signal names can be
assigned by the designer (using the Graphics Editor's SIGNAME
command); unnamed signals automatically are given unique names
by the Graphics Editor. Signal name assignment by the designer
allows descriptive or mnemonic references to be used; signal
names assigned by the Graphics Editor are more cryptic and are
not as easily interpreted. A signal is ref erred to by name and
can be referenced from many drawings.

The SCALD III language recognizes interconnections in two ways:
the direct connection of two (or more) points with a wire, or
the designer's assignment of the same signal name to two or more
wires (i.e., there is an implicit connection among wires of the
same name). Implicit connections by signal name make it easy to
interconnect components without having to use continuous wire
connections that can add unnecessary complexity to a schematic.
As an example, consider a clock signal that drives multiple
components. While a single wire with multiple tie points can be
used, labeling each clock input with the same signal name is
logically and functionally identical and eliminates having to
route the signal to each input.

4.4 SIGNAL NAMING CONVENTIONS

Signals in the SCALDsystem represent interconnections of parts.
These interconnections are given names that serve to identify
and distinguish them. Signals have several attributes that are
specified within the signal name. These attributes are:

o The name by which the signal is known

o Its assertion level (high or low)

o The number of bits the signal represents

o The properties it possesses

A signal's name is a string of characters chosen to provide some
descriptive or mnemonic reference for the signal. The name is
used to identify the signal, and all signals with the same name
are interpreted as being the same signal.

4-5

SCALD III Language
Syntax

The assertion level describes the a~tive stat~ of the signal
when asserted. By convention, a signal is active high for
positive logic and is active low for negative logic. Two
signals with the same name, but with different assertion levels
are NOT the same signal.

A signal that represents a single bit is called a "scalar"
signal. Within SCALDsystem, signals can represent multiple bits
(i.e., a bus). Multiple bit signals are called "vector"
signals; the bit subscript portion of the signal name specifies
the number of bits (and which ones) the vector signal
represents. Scalar signals do not have bit subscripts. Vector
signals always have bit subscripts even when the signal
represents only a single bit. A signal cannot be a scalar in
one place and a vector in another; the use of a signal must be
consistent.

Signals can be given properties that describe characteristics of
the signal, control how the signal is interpreted by the
Compiler, convey physical information, etc. Several properties
are predefined by th~ Compiler and have special meanings. The
designer can define additional properties that are passed
through the Compiler to post processing programs to allow
information to be added to the drawings that is not used by the
other design tools, but has meaning in the user's design
environment. Signals that have different properties but are
otherwise identical are considered to be the same signal (except
signals with different values for the SCOPE property). See
under Properties, later in this chapter.

4.5 SIGNAL NAME SYNTAX

The complete signal name syntax can include the following
parameters:

o negation symbol
o signal name
o bit subscript
o assertion symbol
o general properties

With the exception of the name, all of the other signal
parameters are optional.

NEGATION SYMBOL

The negation symbol indicates that the entire signal is the
negated form of a corresponding "base" signal (i.e., the
complement of the signal without the negation symbol). As an
example, the signal -CLOCK A is the negated form or complement

4-6

SCALD III Language
Syntax

of the signal CLOCK A. The default negation symbol is the "-"
character (see section 4.7 and the library chapter for optional
symbols).

NAME

The name portion of a signal is the "name" by which the signal
is known. Within a name, a timing assertion may be included. A
signal name may be made up of any characters except the
following reserved characters:

bit subscript start character ("<")
general property prefix character ("\")
assertion character ("*")
signal concatenation character (":")

The following additional characters have special meanings within
the signal name:

,
II

delimiter for a single quote
delimiter for a double quote

{} delimiters for a comment

$
pref ix for a timing assertion
signal class separator

string
string

A signal name can be further divided into three parts:
class, name string, and timing assertions.

Signal Class

signal

Signal class is an optional character. string prefix that is used
to identify groups or sets of related signals. As part of the
signal name, signals with the same name string, but with a
different signal class, are NOT identical. A signal class
string must be separated from the name string by the $
character. As an example, all signals in an ALU portion of a
design would be placed in the same class (i.e., the "ALU" class)
by prefixing each signal with "ALU."

ALU$A=B
ALU$BUS ENABLE
ALU$CARRY IN

The signal class of a signal is ignored by the Compiler; it Ls
interpreted as part of the name. Signal class can be used by
the designer both to sort signals and to improve the readability
of signal names. As will be explained later ln this chapter,
unnamed signals automatically are assigned signal class "UN."

4-7

SCALD III Language
Syntax

Name String

The name string is a string of characters that form the "name"
of the signal; user-assigned names are usually descriptive or
mnemonic. Names may be made up of any characters except for the
special characters previous described (special characters can be
used if enclosed in single or double quotes). For example, the
name

A*B enable

is illegal while the following names are legal:

'A*B enable'
'A*B' enable
A'*'B enable

Timing Assertions

Timing assertions are used to define timing characteristics of a
signal. The most common use is in defining clock periods for
clock signals. The form of a timing assertion is described in
detail in the Timing Verifier and Logic Simulator chapters. The
general form is

(timing assertion) (data)

where "!" is the timing assertion prefix character,
(timing assertion) is the name of the timing assertion (i.e., C,
P, D, or S), and <data) specifies the value for the timing
assertion. Some examples:

CLOCK !S 4-6
CLOCK !C2-4

The Compiler ignores timing assertions. However, since timing
assertions are considered to be part of the signal name, the two
signals in the above example are NOT the same signal (i.e., they
have unique signal names).

4-8

\

BIT SUBSCRIPT

SCALD III Language
Syntax

Bit subscripts are used with vector signals to specify the
number of bits that the signal represents (e.g., the bit range)
and to identify the bits included. Bit subscripts can be of the
following forms:

< bit >
or
< bit .. bit >
or
< bit •• bit step >
or
< bit width >
or
< bit width step >
or
< bit list >

where "bit" is some bit number. The bit number must be equal to
or greater than zero (negative bit numbers are not allowed).
The "<" character marks the beginning of a bit subscript, and
the ">" character marks the end. If a bit subscript does not
appear in a signal name, the signal is a scalar.

(bit)

Specifies a single bit of a vector signal. Note that
although such a signal represents only a single bit, it is
called a vector since it represents a specific bit of a
multibit (vectored) signal. Some examples:

(31) <O> <6> (5334773)

(bitl •• bit2)

Specifies a subrange of bits from bitl to bit2 inclusive.
The order of the bits is determined by the signal syntax
being used; the default bit order is from right to left
(i.e., bitl is greater than bit2). See also section 4.7 and
Chapter 11, "Valid Component Libraries." Some examples:

<31 •• 0> (9 •• 2) (7 •• 0>

(bitl •• bit2 : step)

Specifies a subrange of bits beginning with bit2 and
including ever:y bit that is "step" bits apart up to bltl
(default right-to-left bit order). The "step" value is a

4-9

SCALD III Language
Syntax

(bit

positive integer. (a negative integer can be specified to
reverse the bit order signal syntax); a step value of "1"
is equivalent to no step value. Some examples:

(31 •• 0:2) results in 30 28 26 • • • 6 4 2 0
(11 •• 0:4> results in 8 4 0
(9 •• 1:3) results in 7 4 1
<0 •• 31:-1) results in 31 30 29 ••• 3 2 1 0
(15 •• 0:20) results in 0

. width> .
Specifies a field of "width" bits using "bit" as the
high-order bit (default right-to-left bit order) or
low-order bit (left-to-right btt order). Width must be a
non-zero positive integer. Some examples:

(31: 8)
(15:16)
(0:16)

same as (31 •• 24>
same as (15 •• 0>
same as <0 •• 15) (left-to-right bit order)

(bit : width : step>

Specifies a field of "width" bits using "bit" as the
high-order bit (default right-to-left bit order) or
low-order bit (left-to-right bit order) and including only
those bits that are "step" bits apart. Width must be a
non-zero positive integer, and step can be either a positive
or negative non-zero integer. Some examples:

<31:8:2)
<0:16:3)

(31:8:-1)

(bit list>

same as (31 •• 24:2), results in 30 28 26 24
same as <0 •• 15:3) (left-to-right bit order),

results in 0 3 6 9 12 15
same as (24 •• 31)

A bit list is a list of any of the above forms of subscript
specifiers. Each subscript specifier must be separated by a
comma, and any number of specifiers may be included in the
list. An example:

(1, 7 •• 4, 19:8:2) results in 18 16 14 12 7 6 5 4 1

4-10

ASSERTION

SCALD III Language
Syntax

In the default signal syntax, the assertion level of a signal is
determined by the presence or absence of the "*" low assertion
character (i.e., the presence of the low assertion character
indicates that the signal is active in it low state). For a
high assertion character that must be explicitly specified to
define a signal that is active in its high state, see the
alternate signal syntax formats described in section 4.7.

SIGNAL PROPERTIES

Signal properties are used to add information to a signal that
can be interpreted by the Compiler or post processing programs.
A property is a name/value pair that is used to convey almost
any kind of information. For a complete description of
properties, see the section later in this chapter.

The form of a signal property when it appears in a signal name
is:

\ (property name) = ('property value')

The \ is the property prefix character, (property name> is a
character string identifier, and ('property value') is a string
of characters enclosed in single quotes. Some common signal
properties have been given abbreviations (with text macros) to
make them easier to use. These abbreviations are:

L
G
I
R (n)

NWC
NAC
WD (n) -

CD (n) -
E (n)

gives local scope to a signal
gives global scope to a signal
identifies a signal as an interface signal
specifies signal replication
no width check directive
no assertion check directive
wire delay
chip delay
evaluation directive

They are used as follows:

\L equivalent to \SCOPE='LOCAL'
\WD 2.0-3.0 equivalent to \WIRE DELAY='2.0-3.0'
\R 2 equivalent to \REP=7 2'

For a more complete description of how to use text macros to
specify general properties, see the section, Text Macr.o
Facility, later in this chapter.

4-11

SCALD III Language
Syntax

4.6 THE COMPLETE SIGNAL SYNTAX

The signal name parameters are combined to form a complete
signal name. To summarize, a signal name may include the
following parameters:

negation specifier
name portion
bit subscript
assertion specifier
general properties

With the default signal name syntax, the order in which the
signal name parameters must appear is as follows:

(negation> (name> (subscript) (assertion) (properties>

The (negation>, (assertion>, <subscript>, and (properties>
parameters are optional; (name) must appear in every signal
name. The examples in table 4-1 demonstrate the default signal
syntax.

Table 4-1. Default Signal Syntax

Signal Name Interpretation

CLOCK Active high "CLOCK" scalar signal.

-CLOCK Negated (complementary) active
high "CLOCK" scalar signal.

ENABLE* Active low "ENABLE" scalar signal.

-ENABLE* Negated active low "ENABLE" scalar
signal.

-DATA IN (15 •• 0>* Negated active low 16-bit DATA IN
vector signal (DATA IN 0 through
DATA IN 15).

DATA OUT (2)* \WD 2.0-3.0 \L Active low "DATA OUT 2'' single-bit
vector signal with 2.0-3.0 nanosecond
wire delay and "local" scope.

SYSINIT* \G Active low "SYSINIT" scalar signal
with global scope.

ADDR <15 •• 0, 18) \I\WD 3.0-5.6 Active high 17-bit "ADDR" vector
signal (ADDR 0-15, ADDR 18) with
"interface" scope and 3.0-5.6
nanosecond wire delay.

4-12

,f

SCALD III Language
Syntax

Note that in the signal examples with properties, a space is
required to separate the property name from its associated value
and that a space also is required to separate a property value
from a subsequent property name (the Compiler uses spaces to
determine the beginning and end of a text macro parameter; a
space is not required between the \I and \WD properties in the
last example since the \I text macro does not have an associated
property value).

4.7 OPTIONAL SIGNAL NAME SYNTAX

The default syntax for signal names described in the previous
sections is referred to as the Valid standard library format or
"Library Format l" and is defined as follows:

<negation)(name) (subscript)(assertion) (general_props)

Several other formats for the signal name syntax are supported.
To use these formats, the component libraries must be translated
from the Valid format to the library format desired as described
in Chapter 11, "Valid Component Libraries." Note that library
translations normally are performed by Valid field service
personnel when the system is installed. The signal name syntax
for the optional library formats is as follows; the negation,
assertion, and bit subscript order and subrange indicator for
each format are outlined in Table 4-2.

Library Format 2:

<negation)(name) (subscript) (assertion) (general_props)

Library Format 3:

(negation)(name) (subscript) (assertion) (general_props)

Library Format 4:

(assertion)(name) (subscript) (general_props)

Library Format 5:

<negation)(name) (subscript) (assertion) (general_props)

4-13

SCALD III Language
Syntax

Table 4-2. Optional Library Formats

Format Low Assertion High Assertion Bit Subrange
Number Character Character Order Indicator

l* II* II none right to left II
••

2 llL II llH" right to left " : "
3 "L II "H" right to left " ••
4 11_ 11 11+11 left to right If : "

5 "L II II Hll left to right II
• •

*Valid standard default format

Note that with the formats that use the "L'' and "H" for assertion
level, a space prefix is required to avoid signal name ambiguity
with scalar signal names.

4.8 CONCATENATED SIGNALS

Signals can be concatenated (linked} to form signal bus
structures by separating each signal name with the concatenation
character (":"}. For example, the signals A and 'Bare
concatenated as follows:

A:B

Concatenated signals are completely unrelated; concatenation is
merely a shorthand notation for two or more signals that appear
together and is the same as running the signals side by side. A
concatenated signal is separated back into its individual signals
with a "merge" or "tap" body (see section 4.11}.

4.9 CONSTANT SIGNALS

A constant is a special type of signal name. The SCALD III
language allows constant signals to be specified in binary,
octal, hexadecimal, and other number systems. The syn tax for a
constant signal name is the same as for other signal names,
except bit subscripts are not allowed. These fields are allowed:

(neg) (constant name) (assertion> (properties>

Constants may have assertions although no assertion checking is
performed on them unless explicitly enabled (see the Compiler
chapter for a discussion of assertion checking}.

The syntax for a constant name is as follows:

(radix) # (constant value) (<width)}

4-14

II

"
II

SCALD III Language
Syntax

<radix) specifies the number system (or base) used to specify the
constant value. Radix must be a base 10 integer between 2 and
16. If <radix) is not specified, binary (base 2) is assumed.
The "II" character separates (radix) from <constant value).

The <constant value) is a string of digits. The legal digits are
determined by the radix specified as follows:

Radix Legal Digits

2 0 1
3 0 1 2
4 0 1 2 3
5 0 1 2 3 4
6 0 1 2 3 4 5
7 0 1 2 3 4 5 6
8 0 1 2 3 4 5 6 7
9 0 1 2 3 4 5 6 7 8
10 0 1 2 3 4 5 6 7 8 9
11 0 1 2 3 4 5 6 7 8 9 A
12 0 1 2 3 4 5 6 7 8 9 A B
13 0 1 2 3 4 5 6 7 8 9 A B c
14 0 1 2 3 4 5 6 7 8 9 A B c D
15 0 1 2 3 4 5 6 7 8 9 A B c D E
16 0 1 2 3 4 5 6 7 8 9 A B c D E F

<width) explicitly specifies the number of bits used to express
the constant (in the specified radix) and must be greater than
zero. If (width) is omitted, it is calculated from the number of
bits per digit (radix) and the number of digits in the constant.
Note that (width), if specified, must be enclosed in parentheses.

Radix Bits per Digit

2 1
3 4 2
5 6 7 8 3
9 10 11 12 13 14 15 16 4

Example constants:

Constant Value (base 10) Number of Bits

0101 5 4
2110000 0 4
0000(3) 0 3
10110 0 4
16 llFFFF 65535 16
811377 255 9
811377(8) 255 8

4-15

SCALD III Language
Syntax

4.10 PATH NAME SYNTAX

Path names are used to uniquely identify every component within a
design. Just as every wire has a signal name, every component
appearing within a design has a unique path name. Since the same
component can be used many times within a design, the component
path name must be more specific than just the name of the
component. Path names are assigned exclusively by the
SCALDsystem based on the path followed from the root drawing down
through the hierarchy to each individual component. Users may
not specify their own path names. Path names are used by the
Compiler (the Compiler listing file ''cmplst.dat" references path
names in its error reports), the Logic Simulator (opening signals
with the same name within a design are resolved with path names),
and by the Packager.

The path name itself is made up of path element names for each of
the bodies encountered in the path from the root drawing to the
component. A path element name is created by the Compiler for
each body within a design. The path element name syntax is:

(page) (abbreviation) (PATH) [(SIZE)] [(unique_number)]

page

The number of the drawing page on which the body appears. If
the page number is "l," the (page) reference is omitted from
the path element name.

abbreviation

An abbreviation for the drawing name. The abbreviation is
normally assigned by the user by attaching the ABBREV
property to the DRAWING body within the drawing. If an
ABBREV property is not assigned to a drawing, the Compiler
creates an abbreviation by truncating the drawing name.
(Library components are preassigned an ABBREV property.) When
(abbreviation) begins with a number, a period (".") is
prefixed to the abbreviation as a delimiter to separate
(abbreviation) from (page) even if the page number is "l"
(omitted). For example:

.lALU =page 1 of drawing lALU
2.lALU =page 2 of drawing lALU

2ALU = page 1 of drawing ALU

4-16

I

I
\

PATH

SCALD III Language
Syntax

The value of the PATH property attached to the body. Unique
PATH properties are automatically assigned to each body in a
drawing by the Graphics Editor when the drawing is written.
They can also be assigned by the user with the Property
command. When PATH is assigned by the Graphics Editor, it
takes the form:

(integer) P

as in:
37P 85P 4P

If (abbreviation) ends with a number, a period (".") is
prefixed to (PATH) as a delimiter.

SIZE

The value of the SIZE property attached to the body for size
replication. If the SIZE value is greater than O, the value
is included in the path element and prefixed by a "fl"
character; if the SIZE value is 0 or not specified (i.e., no
size replication is to be performed), SIZE is omitted.

unique_number

If the comb ina ti on of the (page), <abbreviation), (PATH), and
<SIZE) values does not form a unique path name element (e.g.,
vectored signals with size rep 1 ica ted components), an
incrementing number, prefixed by a colon (":"), is added
following the SIZE value to make each path name element
unique.

PATH ELEMENT NAME EXAMPLES

The path element name for a 74LS74 with an assigned PATH property
of 34P that appears on page 3 of a drawing is:

3LS74.34P

In the above example, note the period delimiter between LS74 (the
abbreviation for an 74LS74 device) and the PATH property (34P).
A more complex path element name is:

.2DAC8Pl8:3

This path element name is for a body on page 1. Note the
omission of a page number at the beginning; the leading period

4-17

SCALD III Language
Syntax

indicates that the body drawing abbreviation begins with a
numeral (2DAC). The body has an assigned PATH property of SP (a
period delimiter is not required between the ABBREV and PATH
properties since the ABBREV property ends with a character). The
"118" indicates a size replicated part, and the ":3" makes the
path name element unique among the eight size-replicated bodies.

PATH NAME·

In a hierarchical design, the path name for any component within
a design is constructed by concatenating each path element name
for each body in the hierarchical path from the root drawing down
to the component. Path names are enclosed in parentheses ().
Each individual path ~lement name is separated by a space. An
example of a path name using the two path element names described
above is:

(CONVT .2DAC8P#8:3 3LS74.34P)

This example describes a 74LS74 that appears on page 3 of the
drawing "2nd DAC stage'' (abbreviated as 2DAC) which itself
appears as a body on page one of the root drawing "converter"
(abbreviated as CONVT). Note that since "CONVT'' is the root
drawing, there is no corresponding body and no page number or
PATH or SIZE property.

4.11 SPECIAL SCALD BODIES FOR SIGNAL MANIPULATION

There are several special bodies that can be used in SCALD
drawings. These bodies are used to make it easier to express a
design concisely. The bodies can be found in the SCALD
libraries. The SCALDsystem does not treat these bodies as
special; each one is defined in terms of more basic concepts.
The designer may create special bodies that behave in exactly the
same manner as the ones provided.

MERGERS

Mergers are used to combine several signals into one signal.
The result of merging several signals is a single signal that
is the concatenation of the input signals. An equivalent
signal can be created by explicitly specifying the
concatenation of the input signals. For instance, the signals
A, B, and C can be merged together to form the signal A:B:C
with a merger. The output signal is equivalent to A:B:C. If
the output signal were named A:B:C, the merger would not be
needed. The merger provides a graphical representation for
combining signals. For a more detailed explanation, see under
Plumbing Bodies below.

4-18

SCALD III Language
Syntax

DEMERGERS

NOT

Demergers are simply mergers turned around. The input signals
are now output signals, and the output signal is now the input
signal. A demerger is used to separate a signal into several
pieces. In fact, a demerger is exactly the same as a merger.
Its use determines its meaning; that is, if a merger is used
to combine signals, it is a merger; but if it is used to
separate signals, it is a demerger. For a more detailed
explanation, see under Plumbing Bodies below.

The not body is used to change the logic convention of a
signal. If a signal is asserted low, it is considered to be a
negative logic signal. If a signal is asserted high, it is
considered to be a positive logic signal. The not body is
used to change the logic convention of a signal without
introducing an actual logical inversion. That is, the state
of the signal is not changed, it is just considered to be of
the opposite logic convention. The consistent use of logic
conventions makes designs easier to read and understand. The
not body is used as escape in those cases where strict
adherence to a logic convention is not possible. The not body
is a notational assistance and does not affect the physical
implementation of the circuit. The not body must be used if
bubble checking is to be performed.

SLASH

A slash body performs two useful functions. First, it is used
to document the widths of signals. Normally, a signal's width
is apparent from its bit subscript, but occasionally the
signal name is not present or visible where the signal is
used. In these cases, it may not be clear what the signal's
width is. The slash body is used to remind the designer. The
Compiler always checks the signal's actual width with that
specified on the slash body.

The second use of the slash body is to specify signal widths
that are not otherwise specified. NC and unnamed signals, for
instance, have no particular widths. The Compiler assigns
widths to these signals, but, when the Compiler is unable to
determine the width, the slash body can be used to specify it.

SYNONYM

The synonym body is used to tell the Compiler that two signals
with different names are to be considered the same signal.
For more Information, see below under Signal Synonyms.

4-19

SCALD III Language
Syntax

TAP

The tap body is used to select a portion of a signal while
leaving the original signal unchanged. In this fashion it is
different from a merger which splits a signal into several
pieces. A tap can be used to select either the most
significant or least significant portion of the input signal.
The number of bits selected by the tap i~ specified with a
SIZE property attached to the tap body. For a more detailed
explanation, see under Plumbing Bodies below.

4.12 SIGNAL SYNONYMS

When a signal has more than one signal name, the signal names are
said to be synonymous (i.e., the names all reference the same
signal). Synonyms are useful for creating locally-meaningful
names for signals known throughout a design~ Sy~onyms also
provide a means of interconnecting nets. As an example, the two
nets A and B can be connected together by simply synonyming the
signals A and B.

The easiest way to create a synonym is to assign two signal names
to a single wire. Syno~yms also are created whenever more than
one signal is connected to the same pin. A SYNONYM body is
provided in the Valid Standard Library (see Chapter 11) that can
be used to create a synonym. The SYNONYM body appears as three
parallel lines; the center line has two common pins (one at each
end). Every signal connected to the pins of the synonym body
will be synonymed together.

When two signals are synonymed, the Compiler selects one of the
signal names as the "base" signal. The Compiler's expansion file
(cmpexp.dat) contains only base signals. The synonyms file
(cmpsyn.dat) lists all of the signals in the design and their
corresponding base signal name. A signal is its own base signal
if is is not synonymed to any other signals or if it is selected
as the base signal. The rules for selecting a base signal are as
follows. The rules are applied in the order listed; lf base
signal name selection cannot be determined by one rule, the next
rule is applied.

1. Select the lower bit number of two signals with the same
name (e.g., X<O> is selected over X(3)).

2. Select a constant signal over a non-constant signal.

3. Select a signal with name properties over a signal without
name properties (e.g., CLOCK !C 0-4 is selected over
CLOCK).

4-20

SCALD III Language
Syntax

4. Select the signal with the most global scope.

5. Select the root-level interface signal.

6. Select a user-assigned signal name over an "unnamed" or
"NC" signal.

7. Select a scalar signal over a vector signal.

8. Select the signal that is lexicographically smaller (e.g.,
CLK is selected over CLOCK).

The synonyms file is described in detail in Chapter 5,
"Compiler."

4.13 PLUMBING BODIES

Plumbing bodies are used to combine (concatenate) signals into a
single (vectored) signal or to separate a vectored signal into
individual signals. A "plumbing" body looks like a wire or wires
and simulates interconnections. For example, if two signals are
to be combined into a bus, the user might draw a structure as
follows:

A
---------·-\

\ C<l •• O>

>------------
B I
---------!

The signals A and Bare combined into the bus C(l •• O). Combining
signals in this manner is called merging. If the above structure
ls drawn with wires, the result is the same as drawing:

A B C(l •• 0)

The signals A, B, and C(l •• O> are synonymed together. This is
not what was meant at all, and is an error besides (since the
widths of the signals are different). The intended function
could be drawn as:

A:B C <1 •• O>

In this example, the signal A:B (the concatenation of the signals
A and B) is synonymed to the signal C(l •• 0). This is precisely
the functLon desired for merging.

4-21

SCALD III Language
Syntax

The last example, however, does not give a good graphical
representation of the function of merging. What is needed is to
define a body that looks like the merge function and has the same
function. This is done in a family of bodies called 2 MERGE,
3 MERGE, 4 MERGE, etc. that merge 2, 3, or 4 etc. signals into
one signal. The definition of the MERGE is a synonym of the
concatenation of all of the input signals to the output bus.
MERGERs are described further below.

"Plumbing" bodies are special in that the Compiler processes them
before processing other bodies in a drawing. This done to
resolve widths and assertions of signals whose widths or
assertions are unknown (this is discussed in detail elsewhere).
A "plumbing" body is identified by the presence of the NWC
property on a pin of .the body. The NWC property indicates that
the pin has no known width; the width of the pin is determined
by the widths of the signals connected to it. Another method of
specifying a "plumbing" body is the presence of the
BODY TYPE="PLUMBING" body property. A "plumbing" body can not
contain any primitives.

The designer may create "plumbing'' bodies that follow design
conventions already being used. In this manner, SCALDsystem
drawings can be customized to follow existing design and drawing
styles.

4.14 SIGNALS OF UNDETERMINED WIDTH

Some signals in a design do not have an explicit width
specification. The width of these signals must be determined
from con text; that is, the widths are determined by how they a re
used. The most common example of signals with undetermined
widths are NC and unnamed signals.

NC and unnamed signals are special signals. An NC signal is used
to specify an unconnected pin. The use of this signal serves to
make the drawing easier to understand. It is inconvenient to
have to specify the width of an unconnected pin so the Compiler
coerces the width of the signal NC to the width of whatever pin
it is connected to. Unnamed signals are created by the Graphics,
Editor.

For both NC and unnamed signals, the Compiler determines the
signal width from con text. Most of the time, the Com pi le r sets
the width of the signal to the width of the pin to which it ls
connected. In some cases, however, the pin itself has no width
(as in the case of a MERGER or NOT body). In these cases, the
Compiler must search further to find the width of the signal.
Typically, all the "plumbing" bodies in a drawing must be
processed before the widths of all the unnamed and NC signals can
be determined. 1f the width of a signal cannot be determined, an
error message is printed.

4-22

SCALD III Language
Syntax

Signals with unknown widths are given the bit subscript
<UNDEFINED) when printed to indicate to the designer that the
width could not be determined. In such cases, the designer can
specify the width in one of the following ways:

1. Give the signal a name with the width specified (in the
bit subscript).

2. Use a SLASH body to specify the width of the signal.

4.15 SIGNALS OF UNDETERMINED ASSERTION

The assertion of unnamed signals must be determined from context
as ls the width. The assertion of the signal is determined
whenever the signal is connected to a pin with a known assertion
or when the signal is synonymed to a signal with a known
assertion. Some pins do not have known assertions. These pins
have the NAC property which causes the assertion of the pin to be
inherited from the signals connected to it. The existence of the
NAC property forces the Compiler to look at another body to find
the assertion of a signal.

Most "plumbing'' bodies have pins with the NAC property. For this
reason, the Compiler processes all of the "plumbing'' bodies first
in order to determine the assertions of the unnamed signals in
the design. If the assertion of a signal cannot be determined,
the Compiler generates an error message.

4.16 EXPRESSIONS

In general, anywhere a number is expected, an expression can be
used. This allows the designer to use expressions that clearly
represent the source or structure of a number. For example, if a
half of some other quantity is needed, it is much better to enter
Y/2 than 4 (if Y is 8). This has two advantages. First, if the
value of Y changes, all other quantities that depend on Y also
change. Second, it shows that the second quantity depends on Y.

The expression syntax in the SCALD III language supports
expressions that evaluate to integer quantities only.

4-23

SCA~D III Language
Syntax

The following operators are supported:

OR - inclusive OR
value is 0 (false) or 1 (true)

XOR - exclusive OR
value is 0 (false) or 1 (true)

AND - AND
value is 0 (false) or 1 (true)

< - signed less than
value is 0 (false) or 1 (true)

> - signed greater than
value is 0 (false) or 1 (true)

<= - signed less than or equal
value is 0 (false) or 1 (true)

>= - signed greater than or equal
value is 0 (false) or 1 (true)

= - equal
value is 0 (false) or 1 (true)

<> - not equal
value is 0 (false) or 1 (true)

+ - signed addition
value is integer

- signed subtraction
value is integer

* - signed multiplication
value is integer

I - signed division
value is integer

MOD - remainder
value is integer

NOT - logical complement
value is either 0 or 1

ORD - ordinal value
value is either 0 or 1

ABS - absolute value
value is positive integer

MAX - maximum of n values
value is integer

MIN - minimum of n values
value is integer

Operator precedence refers to the order in which operations are
performed when evaluating an expression. Operators with highest
precedence are evaluated first. The operator precedence can be
demonstrated by considering the following expression:

X)l OR Y(2 AND X=4

This is obviously confusing. Thts expression is evaluated as
though there were parentheses as follows:

((X>l) OR ((Y(2) AND (X=4)))

4-24

SCALD III Language
Syntax

Operator precedence is shown in the following table:

NOT <- highest precedence

MAX MIN ABS ORD

* I MOD

+ -

< > = <= >= <>

AND

OR XOR <- lowest precedence

Parentheses can be used to force expression evaluation order if
desired. For operators that have the same precedence, evaluation
is performed left to right.

4.17 ADVANCED SIGNAL NAME TOPICS

All nets in a design are named. Many of these names are assigned
by the user while others are assigned by the Graphics Editor.
The Compiler uses the name given a net to refer to the net. If
there is more than one name for a net, the Compiler selects one
name for the net and outputs a list of synonyms (or aliases) for
that name so that the other names are known. Special cases of
signal names will be described below.

UNUSED PIN NAMES

In a number of instances, a pin on a body will be intentionally
left unconnected by design. Any unconnected pins are tied to the
signal NC (no connect). There are cases where this can lead to
problems. For instance, assume a drawing has two bodies
connected with a signal which happens to also be an interface
signal (a pin of the body corresponding to the drawing).
Normally, the Compiler replaces the pin name as used in the
drawing with the name of the signal connected to the pin. This
means that a global signal name is propagated down into the
design via the pins it is connected to. This makes it very easy
to trace a signal and reduces confusion caused by preserving pin
names (which aren't real signals in any case). In the case
mentioned above, the real signal is NC (no connect).
Substituting NC for the pin name in the drawing disconnects the
two bodies since the signal is now a non-connected signal. To
prevent this from happening, the Compiler creates a new signal
name when it encounters a unconnected pin name. The new signal
name is created as follows:

4-25

SCALD III Language
Syntax

1. Start with PINNAME$.

2. Append the pin name.

3. If the name is not unique, make it unique by appending a
number preceded by a '$'.

For example, the pin name SNARF would be transformed into the
signal PINNAME$SNARF. This signal has the same scope as the pin
name; that is, it is known throughout the subtree below the
drawing.

NC SIGNALS

Occasionally, a signal (or pin) is to be left unconnected. To
make this clear in a drawing, it can be given the special signal
name NC. The Compiler (and the rest of the SCALDsystem programs)
understand that NC is a special signal name. It has the
following characteristics:

1. Unlike other signals, nets with the name NC are not
connected together; each one is considered to be a unique
net.

2. The signal NC has no particular width:
width of whatever it is connected to.

it assumes the

3. The signal NC has no particular assertion: it can be
connected to bubbled as well as non-bubbled pins.

4. NC can be given an expltcit width through the use of the
replication operator (\R n).

If a pin is left unconnected, the Graphics Editor automatically
assigns the signal NC to it. See the section on undetermined
width signals for a complete discussion of NC signal width.

UNNAMED SIGNALS

The Graphics Editor will name each net that is not given a name
by the designer. The name is selected as follows:

1. Start with UN$.

2. Append the page number of the drawing in which the net is
found followed by a '$'.

4-26

SCALD III Language
Syntax

3. Find all the bodies that the net connects to. Sort the
names of the bodies alphabetically and select the first in
the list. Append this name followed by a '$'.

4. Append the value of the PATH property attached to the body
(selected above) followed by a '$'.

5. Append the name of the pin of the body (selected above)
that the net connects to.

6. If the signal so constructed is not unique within the
drawing, append a number, prefixed with a '$', to make it
unique.

For example, an unnamed signal on the third page of some drawing
connected to an LSOO, an LS138, a BLIVET, and a GRBX would be
named as follows:

UN3$BLIVET$

If the pin the signal connects to on the BLIVET body is ENABLE
and the BLIVET body has the PATH property 31P, the signal would
be named as follows:

UN3$BLIVET$31P$ENABLE

Finally, if this signal name is not unique, it is made unique:

UN3$BLIVET$31P$ENABLE$2

This is the complete form of the signal name. If the body name
or the pin name have special characters (those with special
meanings in signal names such as '<', ')', '\', ':') the body or
pin name is placed in quotes. For instance, if the pin on the
BLIVET body was ENABLE\l, the signal name would be formed as:

UN3BLIVET$31P$"ENABLE_\1"$2

The Graphics Editor does not assign an assertion to the unnamed
signal. This is because, in general, the assertion of a signal
cannot be determined from the drawing alone; it can only be
determined by processing the synonyms and ''plumbing" bodies.

Unnamed signals have no particular width; they assume the width
of the pins of the bodies to which they are connected. See the
section describing signals of undetermined width for details.

4-27

SCALD III Language
Syntax

4.18 BNF FOR EXPRESSIONS

The following is the BNF for expressions within the SCALD III
language.

<expression) ::=<boolean expression> I
<expression) <bool OP> <boolean expression>

<bool OP> ::=OR I XOR

(boolean expression) ::=
<relational expression> I
<boolean expression> AND <relational expression>

<relational expression> ::=
<simple expression) I
<simple expression) <rel OP) <simple expression>

<rel OP> ::= < I > I <> I = I >= I <=

<simple expression> ::=<term> I
<sign> <term> I
(simple expression> <add OP) <term>

<sign) ::= + I -

<add OP) ::= + I -
<term> ::=<factor) I

<term) <mul OP) <factor>

<mul OP> ::= * I I I MOD

<factor> ::=<unsigned constant>
(identifier> I
((expression)) I
NOT <factor) I
ABS (<expression>) I
ORD (<expression))
MIN ((expression list))
MAX ((expression list))

<expression list) ::=<expression) I
<expression <expression list>

<unsigned constant) ::=(unsigned number) I
<string)

4-28

I
I
\

SCALD III Language
Properties

The Use of Properties in the SCALD III Language

4.19 INTRODUCTION

This section introduces the concept of a property. Properties
serve important and varied functions in the SCALDsystem. They
are used to convey a wide range of information about the design
and to control analysis processes. A property is a name/value
pair that can be attached to certain objects in a design to
convey almost any information. A number of predefined
properties are used by the SCALDsystem to record information
needed by the Timing Verifier, the Simulator, and the Packager.
Other properties can be defined by the user to convey
information to design programs, or to be passed through the
SCALDsystem to other systems (such as simulators, physical
design systems, etc.)

Properties also provide a mechanism for adding physical
information to drawings (which represent only a logical design),
that can be passed on to the Packager and other physical design
systems. With the ability to define and use properties, the
designer can customize the SCALDsystem to fit into an existing
or evolving CAD system.

A property consists of a name by which the property is known
(property name) and an associated value (property value).
Properties can be attached to certain objects on any drawing in
the Graphics Editor. Property name/value pairs can be attached
to bodies, signals, and pins. Properties can also be attached
to an entire drawing by attaching them to a DEFINE body or a
DRAWING body on that drawing.

Properties are then passed along to the Compiler in the editor
output files. From the Compiler they are passed to all the
other SCALDsystem programs (as well as programs written by the
user) in the Compiler expansion output file. (Some properties
can be filtered out by the Compiler to reduce file size.)

4.20 WHAT IS A PROPERTY?

A property is a name/value pair assigned to a particular object.
The property ~ is an identifier, that is,

a string of not more than 16 characters that includes
letters, digits, and ' '(underscores) and starts with
a letter.

4-29

SCA~D III Language
Properties

Some examples of property names are:

SIZE
TIMES
MY PROP NAME
THE 40TH NAME
SATURDAYl027
COST OF PART
PIN NUMBER
PART NAME

Notice that the underscore is used instead of a space. Spaces
are not allowed in property names because a space delimits a
property name from a property value.

Many properties have been defined by Valid for use in the
SCALDsystem and have a specific meaning. Each of these are
described, one to a page, in alphabetical order, later in this
section.

A property value is associated with each property name. The
property value is a string of up to 255 printing characters.
Property values can be empty. Property values should be
enclosed in single quotes when a property is added to a signal
name (and text macros are not used). Property values need no
quotes when a property is added using the PROPERTY command.
Here are some representative property values:

1
25oct82 10:31:46.03
(SIZE + 4) I 5 + 35 MOD A
This is a long property value
Property value with special chars !@#$%A&*()-}{[]><

A property always consists of the property name and its value.

4.21 SPECIFYING PROPERTIES

Properties are specifled with the Graphics Editor.
Editor ignores double quotes ("), it does not pass
the Compiler. Where a double quote is needed, use
quotes ('') instead.

The Graphics
them on to
two single

There are basically two ways of adding properties to drawings;
using the PROPERTY command or including the property in a signal
name. The two methods are used in different situations. Body
properties are always added using the PROPERTY command. Signal
properties are usually included in a signal name, but can also
be added to the signal using the PROPERTY command. Pin
properties are usually included in the pin name, but can also be
added using the PROPERTY command. A pin property can also be
inherited by a pin from a signal connected to the pin.

4-30

SCALD III Language
Properties

The meaning of the properties is the same regardless of the
method used to assign them.

THE PROPERTY COMMAND

The PROPERTY command of the Graphics Editor is used to specify a
property name and its value and to attach the property to an
object in the drawing. Properties are attached to the origin of
an object. Any property value can be entered, except one with
leading spaces. Double quotes are ignored by GED. A property
specification appears as:

NAME VALUE

where NAME is the property name and VALUE is the property value.
When displayed on the drawing, the property appears as:

NAME=VALUE

PROPERTIES WITHIN SIGNALS

The other method of specifying properties is to include them as
part of signal names. Commonly used properties can be added to
a signal name using predefined text macros. Other properties
included in a signal name take the form:

\NAME='VALUE'

For more information on the exact syntax used for adding
properties to signal names, see below under Signal Properties.

The user can define additional text macros to support other
properties. See under Text Macro Facility, in this chapter.

4.22 SIGNAL PROPERTIES

The syntax for a property in a signal name is:

\NAME='VALUE'

where backslash (\) flags the start of a property. Note that
the property value appears in single quotes. This is
recommended to unambiguously identify the beginning and end of
the property value. Do not use double quotes (GED restriction).

Text macros are used to make it easier to specify properties.
For example, the property "SCOPE" specifies the scope of a.
signal. It can assume the values "LOCAL", "GLOBAL", or
"INTERFACE". Instead of adding the property SCOPE='J...OCAL' or
SCOPE='GLOBAL' to a signal, text macros for each are predefined
for the Compiler in a file. These text macros are:

4-31

SCALD III Language
Properties

L = 'SCOPE="LOCAL"'
G = 'SCOPE="GLOBAL"'
I = 'SCOPE="INTERFACE"'

When used in a signal name the text macros are expanded by the
Compiler into the proper form. For example:

CLOCK * \I
I
v

CLOCK * \SCOPE="INTERFACE"

To define additional global text macros for property name/value
pairs, see section 4.34. The designer may define additional
text macros with a DEFINE body in ~ drawing. See section 4.30.

Text macro parameters can be used to create property name/value
pairs whose values need to be assigned on an instance by
instance basis. For example, assume a property called LENGTH
which can take on many values. A global text macro definition
of the property might be:

LEN = 'LENGTH="%1"'

where %1 refers to the first text macro parameter (text macro
parameters are separated by spaces). When used in a signal name
the value of the property is placed after the text macro as
follows:

\LEN 2

which expands to:

\LENGTH=2

This is the manner in which Timing Verifier properties are
supported. For example, a wire delay may be added to a wire as
follows:

SIGNAL* \WD 2.0-5.6

which is equivalent to:

SIGNAL* \WIRE_DELAY='2.0-5.6'

This text macro is globally defined as follows:

4-32

WD = 'WIRE DELAY="%!"'

SCALD III Language
Properties

where %1 references the first parameter of the text macro.

Other standard signal name properties are supported with
built-in, reserved text macros. See the text macro section for
a complete description.

For a complete description of the syntax for a SCALD signal
name, see under Signal Name Syntax in this chapter.

Properties on signal names are passed through the Compiler to
the output expansion file. In this way, properties are
available to the Packager, the Timing Verifier, the Logic
Simulator, and any user provided programs.

Properties are associated with specific bits of the signal.
Different bits of a multi-bit signal can have different
propertles.

PIN PROPERTIES

Properties can be attached to pins three ways. They may be
attached by adding the property to the pin with the PROPERTY
command of the Graphics Editor. They may be .included as
properties of the pin name for the pin. They may also be
inherited from signals connected to the pin.

Adding PIN Properties with the PROPERTY Command

PIN properties can be added to pins of bodies with the Graphics
Editor PROPERTY command. The user points to the pin and
specifies the property name and value to be assigned to the pin.
Default properties may be attached to pins in the body drawing.
The most common example of a default pin property is PIN NAME
which is used to specify the logical name of the pin. -

Adding PIN Properties as Part of the Pin Name

Each pin of a body has a pin name which serves to identify that
pin. A pin name can have signal properties just like any other
signal; they are included in the signal name in exactly the
same manner. Some examples of pin names with pin properties:

DATA INPUT \NAC
CLOCK* \PIN NUMBER='2'
OUTPUT \OUTPUT_TYPE='(TS, TS)'

PIN Properties Inherited from Signals

Properties can be inherited from the signals that are connected
to them. The most common example of a property of this type is

4-33

SCALD III Language
Properties

WIRE DELAY. This property is assigned as a signal property, but
since it has a special inheritance attribute (see the section on
property attributes), it is copied from the signal to the pin to
which the signal is attached.

4.23 PROPERTIES ATTRIBUTES

A property attribute is used to control property processing
within the Compiler. Every property is given some attributes by
default and the user can modify or add to these. Attributes are
assigned in property attributes files read by the Compiler.
There is a Valid supplied attributes file that is always read by
the Compiler to assign attributes to standard SCALD properties.
The user may supply an additional property attributes file
specified by the PROPERTY FILE directive.

The attributes file contains a list of property names and
associated attributes. The file has the following form:

FILE TYPE = ATTRIBUTES;
(pro~erty name) : (attribute specification)

END.

(property name) is the name of the property, and
<attribute specification) is a list of attributes for the
property.

The attributes that can be assigned to properties are:

parameter
inherit
permit
filter

-> used on body properties only
-> controls property inheritance
-> permission for property attachment
-> removes property from output files

These are described in the following sections.

PARAMETER ATTRIBUTE

The PARAMETER attribute is used to make the name and value of a
body property known within the drawing corresponding to the
body. Normally, body properties are attached to bo<lles and pass
through the Compiler to other analysis tools. For example, the
LOCATION property is used to specify the LOCATION name for a
physical component. This property means nothing to the
Compiler; it passes it through to the Packager, which uses it
to guide its package allocation.

Some properties, however, are used to pass information into the

4-34

SCALD III Language
Properties

drawing. The most common example of such a property is SIZE.
This property is used to convey information about the number of
bits the body represents. This information is needed by the
drawing. To make it available, the SIZE property is given the
PARAMETER attribute. This causes two things to happen. First,
the name of the property, and its value, are available in the
drawing. It can be used as though it were a text macro.
Second, any text macros within the property value are expanded.

For example, assume the WIDTH=45*X property is attached to the
FOO body. If the WIDTH property has the PARAMETER attribute,
its value will be known within the FOO.LOGIC drawing. It can be
used, for example, in signal names:

SIGNAL WITHIN FOO (WIDTH-1 •• 0)

Further, the value of the WIDTH property is expanded by the
Compiler. Its value is '45*X' where 'X' is some text macro
(assume, for the purpose of example, that X=2). The WIDTH
property value is expanded to be: "45*2". The signal name
shown above then becomes:

SIGNAL WITHIN FOO (45*2-1 •• 0)

If the WIDTH property does not have the PARAMETER attribute, the
Compiler will generate an error since WIDTH will be undefined.

Some properties that are to be parameters are used to pass
information about a primitive component through to some analysis
tool. For example, the TIMES property is attached to components
to specify to the Packager that additional versions of the
component should be generated. It may be necessary for the
value of the TIMES property to be related to other design
information; for example, the SIZE of the component:

TIMES=SIZE*2

If the TIMES property has the PARAMETER attribute, the Compiler
will substitute the value of the SIZE parameter (the SIZE
property has the PARAMETER attribute by default). If SIZE=l,
the TIMES property value becomes "1*2". The Packager, on the
other hand, is expecting the TIMES property to have an integer
value; it won't accept "2*1". The Compiler can be told to
completely evaluate the property's value by giving it the
PARAMETER(INTEGER) attribute. The Compiler expands text macros
within the property value and evaluates the property value as an
integer expression (an error is generated if the property value
is a malformed integer expression). The TIMES property shown
above is then output with the value "2". In all other respects,
the PARAMETER(INTEGER) attribute behaves just like the PARAMETER
attribute.

4-35

SCALD III Language
Properties

A property can be given the PARAMETER attribute in one of two
ways: the property can be specified as a PARAMETER when
creating the body in the Graphics Editor, or the property can be
given the PARAMETER attribute in the property attributes file.
To give the property the PARAMETER attribute in a body drawing,
append a \PARAMETER to the end of the property value. For
example, the following property (attached to a body) has the
PARAMETER attribute:

FOO="value for FOO\PARAMETER"

The property FOO has the PARAMETER attribute only for this
particular instance. If the property FOO appears anywhere else
(and does not have the \PARAMETER appended) it is not a
PARAMETER. The second way to give a property the PARAMETER
attribute is with the property attributes file. When given the
attribute via the attributes file, the property has that
attribute everywhere it is used (regardless of whether it has
the \PARAMETER appended or not).

INHERIT ATTRIBUTE

A property may appear on an object automatically when objects
become related or attached in some manner. This copying of
properties from one object to another is called property
inheritance. Inheritance can be controlled with the INHERIT
attribute. Inheritance behavior for a particular property can
be controlled for three independent contexts: BODYs (DRAWINGs),
SIGNALs, and PINs. These will be discussed separately.

Body Property Inheritance

Inheritance of body properties is controlled with the
INHERIT(BODY) attribute. When a property is attached to a body,
it may be inherited down the hierarchy to appear on all of the
bodies within the drawing corresponding to the body. For
example, if the X property is attached to the FOO body, and the
X property has the INHERIT(BODY) attribute, every body within
the FOO.LOGIC drawing will have the X property. If the X
property does not have the INHERIT (BODY) at t ri bu te, the X
property only appears on the bodies to which it is attached (the
FOO body in this example).

Properties attached to the DRAWING body within the FOO drawing
will also inherit to every body within the drawing if the
properties have the INHERIT(BODY) attribute. In this manner,
properties attached to the body for FOO and those attached
DRAWING body within FOO are processed in the same manner.

Care should be taken when using properties on bodies. If the
properties all have the INHERIT(BODY) attribute (which all
properties do by default), they all appear in .the Compiler's

4-36

SCALD III Language
Properties

output files. For example, if each drawing is given the
property ENGINEER to specify the responsible engineer, and there
are 7 levels of hierarchy and 5 pages to every drawing, the
primitives produced by the Compiler will each have 35 ENGINEER
properties attached. This is probably not desirable. It can be
corrected by removing the INHERIT(BODY) attribute from the
property ENGINEER.

Signal Property Inheritance

Inheritance of signal properties is controlled with the
INHERIT(SIGNAL) attribute. When a property is attached to a
signal, it may be inherited by other signals synonymed to it.
For example, if the signal FOO has the X property and FOO is
synonymed to the GRBX signal, the GRBX signal will get the X
property if the X property has the INHERIT(SIGNAL) attribute.
Since MERGERs, NOTs, and all other plumbing bodies are
implemented with synonyms, this attribute allows properties to
move along a net within a drawing.

Properties with the INHERIT(SIGNAL) attribute are considered to
be properties of the net (since all of the signal names for the
net will have the properties). These properties are output by
the Compiler as properties of the net and are available for
processing by the Packager, DIAL, etc. Properties without the
INHERIT(SIGNAL) attribute are properties of a particular signal
and not the entire net. These properties are not output from
the Compiler. SCOPE is one such property. It is a property of
a particular signal and should not be inherited by the entire
net. In general, the user will never create a signal property
without the INHERIT(SIGNAL) attribute.

All properties are given the INHERIT(SIGNAL) attribute by
default.

Pin Property Inheritance

Inheritance of pin properties is controlled with the
INHERIT(PIN) attribute. When a property ls attached to a pin,
it becomes a property of that pin. If it has the INHERIT(PIN)
attribute, it inherits to the interface signal for the pin.
Once on a signal, an INHERIT(PIN) property is copied to other
pins. A property with the INHERIT(PIN) attribute is
automatically given the INHERIT(SIGNAL) attribute.

For example, suppose the X property ls attached to the A pin of
the FOO body. Within the FOO.LOGIC drawing, the signal A\I
appears and connects to the B pin of a GRBX body. If the X
property has the INHERIT(PIN) attribute, it will first appear as
a property of the A\I signal and finally a property of the B pin
of the GRBX body.

4-37

SCALD III Language
Properties

The WIRE DELAY property has the INHERIT(PIN) attribute by
default (assigned in the system-wide property attributes file).
When used as a signal property (with the WD text macro) as
follows:

CLOCK \WD s.o-6.0

It appears as a signal property
connected to the CLOCK signal.
property and can inherit deeper
with the INHERIT(PIN) attribute
the end of processing.

but is copied to each pin
It is then available as a pin
into the hierarchy. Properties
are stripped from all signals at

Properties are not assigned the INHERIT(PIN) property by
default; this attribute must be assigned in the property
attributes file.

Summary of the INHERIT Attribute

The INHERIT attribute is assigned as INHERIT(PIN),
INHERIT(SIGNAL), and/or INHERIT(BODY). If a property can be
inherited by more than one object, a list can be used:

INHERIT(PIN, SIGNAL)

INHERIT() can be used to remove all inheritance attributes for a
property.

PERMIT ATTRIBUTE

The PERMIT attribute is used to control the objects to which a
property may be attached. It is possible to accidentally attach
a property to the wrong object. If the property does not have
permission to be attached to that object, an error is generated
by the Compiler. Permission can be granted for a property to be
attached to a BODY, PIN, or SIGNAL (WIRE) with the PERMIT(BODY),
PERMIT(PIN), or PERMIT(SIGNAL) attributes.

The SIZE property, for example, has the PERMIT(BODY) attribute
since it is an error for it to be attached to any other object.
The SCOPE property has the PERMIT(SIGNAL) attribute. By
default, a property has all three attributes.

If a property is to be given permission to be attached to more
than one ooject, the PERMIT attribute can be specified with a
list:

PERMIT(PIN, SIGNAL)

Permission for a property to be attached to all objects can be
removed with PERMIT(). Such a property cannot be attached to
any object and is, therefore, useless.

4-38

FILTER ATTRIBUTE

SCALD III Language
Properties

The FILTER attribute is used to prevent a property from
appearing in the Compiler's output files. For example, the
LAST MODIFIED property, which specifies the date on which the
drawing page was last written, is filtered from the output by
default since it is normally of no interest to analysis
programs. The intent of supporting filtering is to reduce the
size of design files and to reduce superfluous properties.

The FILTER attribute is assigned in the property attributes
file. The user can override this attribute with the
PASS PROPERTY directive which causes the property to be output
regardless of its attributes. The FILTER PROPERTY directive can
be used to filter properties from the output even if they do not
have the FILTER attribute.

USER PROPERTY ATTRIBUTE FILE

The user can supply a property attributes file by using the
PROPERTY FILE directive in the Compiler command file. The
attributes assigned in the user attribute file override the
attributes assigned in the system-wide attributes file. Care
should be taken to not override important attributes. The only
safe attribute is the FILTER attribute. All other attributes
should be left unchanged; they are assigned as required for the
SCALDsystem.

DEFAULT PROPERTY ATTRIBUTES

The default attributes for a property are:

PERMIT(SIGNAL,PIN, BODY), INHERIT(SIGNAL, BODY);

4-39

SCALD III Language
Properties

These may be changed in the property attributes file. The
following SCALD properties have attributes assigned (as shown)
within the Compiler and cannot be changed by the user (if the
property is normally used via a text macro, the text macro name
appears as a comment):

SIZE: inherit(),permit(body),
parameter(integer);

TIMES: inherit(),permit(body),
parameter(integer);

PATH: inherit(),permit(body);
REPLICATION: inherit(),permit(signal); { \R }
TITLE: inherit(),permit(body);
EXPR: inherit(),permit(body);
VERSION: inherit(),permit(body);
ABBREV: inherit(),permit(body);
SCOPE: inherit(),permit(signal); { \I \L \G }
PART NAME: inherit(),permit(body);
TERMINAL: inherit(),permit(body);
NEEDS NO SIZE: inherit(),permit(body);
HAS FIXED SIZE: inherit(),permit(body);
WIRE DELAY: inherit(pin),permit(pin, signal);
NOWIDTH: inherit(),permit(signal), { \NWC }

filter;
NOASSERT: inherit(),permit(signal), { \NAC }

filter;
BODY TYPE: inherit(),permit(body);
X: inherit(), filter;
X FIRST: inherit(),filter;
X STEP: inherit(), filter;

AN EXAMPLE PROPERTY ATTRIBUTES FILE

The following example is used to demonstrate the syntax and form
for the property attributes file. The list of standard property
attributes in the previous section is also, except for
FILE_TYPE, a legal attributes file.

FILE TYPE = ATTRIBUTES;

CLOCK:
STABLE:
WIRE DELAY:
EVAL:
CHIP DELAY:

END.

inherit(signal);
inherit(signal);
inherit(pin);
inherit(pin);
inherit(pin);

4-40

SCALD III Language
Properties

4.24 DRAWING PROPERTIES

Properties may be "attached'' to an entire drawing by attaching
them to a special body called DRAWING. These properties are
used to convey standard information about the drawing itself.
The Compiler understands a few standard property names. These
properties are:

TITLE =
ABBREV =
EXPR =

PART NAME =

TERMINAL =

title of the drawing.
abbreviation for the drawing.
selection expression (if the drawing
has)1 version).

name of the primitive part if this
is a primitive drawing.
indicates that the drawing is a terminal
drawing in the expansion but is not a
primitive component.

These properties are discussed in detail later in this section.

Properties of the DRAWING are inherited by all bodies within the
drawing if they have the INHERIT(BODY) attribute. Drawing
properties behave exactly as body properties except they are
common for all instances of the drawing.

4.25 TEXT MACRO PROCESSING WITHIN PROPERTIES

It is convenient to be able to use text macros within property
values. One mechanism for doing this was described above in the
section about the PARAMETER attribute. The problems with this
method are:

1. It only works for body properties.

2. The syntax of the property value must be severely
restricted so that the text macros can be found.

3. If there is any text in the property value which
coincidentally matches a text macro name, it is expanded.
This can result in very strange results.

To solve these problems, another mechanism has been implemented
that is much more flexible. Each of the problems above has been
addressed as follows:

1. It works for all properties regardless of where they are
attached.

4-41

SCALD III Language
Properties

2. The content of the property value can be whatever is
desired since the text macros are clearly identified and
are separate from the rest of the text.

3. The user has explicit control over what is expanded and
what is not.

To use this feature, the property cannot be given the PARAMETER
attribute. That is, the PARAMETER attribute mechanism and this
mechanism are mutually exclusive.

Text macros need to be identified within the property with the
'%' character. This character serves to mark the presence of
the text macro and to prevent confusion between text macros and
normal text. For example:

PARMS = "W=%WIDTH, L=%LENGTH"

Note the presence of the two text macros (WIDTH and LENGTH) in
the property value. They are flagged with the '%' character.
By coincidence, the character 'L' is also text macro, defined to
be SCOPE="LOCAL". Without the use of the '%', the property
value would be turned into garbage.

The text macro name must be an identifier: a string of letters,
digits, and ' ' starting with a letter and no more than 16
characters long. If the text macro is to be embedded in text so
that the text macro name cannot be easily identified, the name
must be quoted. For example,

PARMS = "This property value is %'TM'ed."

The text macro 'TM' is identified by the quoted name.

These text macros are processed on output only. That is, they
are ignored until the Compiler outputs them to the output file.

4.26 ADVANCED PROPERTY TOPICS

This section describes some advanced topics that require some
SCALD III language knowledge.

\NAC PROPERTY

A signal of either assertion can be connected to a pin with the
\NAC property. The Compiler assigns the assertion of the first
signal connected to the pin as the pin's assertion. This forces
any other signals connected to that pin to have the same
assertion as the first signal. For example, assume the signals
A, B, and C* are connected to the pin CLOCK \NAC. If the A

4-42

SCALD III Language
Properties

signal is the first signal connected to the pin, the CLOCK pin
is forced to be asserted high (since A is asserted high). This
is the same as saying that pin CLOCK does not have a bubble.
Since the signals B and C* are also connected to pin CLOCK, they
are synonymed with the signal A. However, the signal C* is low
asserted which will be flagged as an error. The \NAC property
can only be used in pin names.

If, in the above example, the signal C* was the first signal
connected to the pin, CLOCK would be forced to be low asserted
(since C* is low asserted). This is the same as saying that the
CLOCK pin has a bubble. The signals A and B will be flagged as
errors since they have the wrong assertion.

The first signal connected to a pin is chosen at random by the
compiler. There is no way to predict which signal will be
chosen. This is not a problem since assertion errors will be
caught regardless of which signal is chosen first.

The \NAC is used when the assertion level of signals is not
important but all the signals must be compatible.

For an example of the use of the \NAC property, see the MERGER
bodies in the standard Valid library. The NAC property can be
used on any body desired.

\NWC PROPERTY

The \NWC property is used when the width (in bits) of a pin is
not known or when it is desired that signals of any width be
connectable to the pin. If a pin has the \NWC property, the
compiler determines the actual width from the context in which
it is used. Once the width has been determined, the pin is
assigned that width. This means that the pin inherits the width
of the first signal connected to it. All other signals
connected to that pin must have the same width as the first. In
this manner, the \NWC behaves like the \NAC property (see
above). The \NWC property can only be used in pin names.

The first signal connected to a pin is determined at random by
the compiler. There is no way to predict which signal will be
chosen. This is not a problem, since all width
incompatibilities are detected regardless of which signal is
chosen first.

For an example of the use of the \NWC property, see the MERGER
bodies in the standard Valid library.

The presence of the NWC property on any pin of a body defines
that body as a "plumbing" body. This means that the body's
definition contains only signal synonyming to "plumb" its

4-43

SCALD III Language
Properties

signals around. A MERGER is an example of a plumbing body. The
NWC property cannot be used on hierarchical bodies that expand
to primitives. The Compiler generates an error message when
this is done.

4-44

SCALD III Language
Properties

4.27 PROPERTIES RECOGNIZED BY THE SCALD COMPILER

The SCALD Compiler recognizes several predefined properties that
convey information about the design and control the compilation.
These properties are described below, one to a page. The box at
the top of each page shows the property name, the object(s) to
which the property can be attached, and the inheritance of the
property. The objects to which properties can be attached are:

BODY - attached to a body
PIN - attached to a pin
SIGNAL - attached to a signal (wire)
DRAWING - attached to a DRAWING body

The inherit field shows the objects that can inherit the
property. These are body, pin, signal. When a property cannot
be inherited, the field shows:

INHERIT ()

This is the syntax used in the property attributes file for no
inheritance.

Here, as an example, is the box for the NEEDS_NO_SIZE property:

+--+
NEEDS NO SIZE : BODY : INHERIT()

+--+
This means that the NEEDS NO SIZE property is interpreted only
if it is attached to a body.- If it appears anywhere else, it is
an error detected by the Compiler. The property is not
inheritable.

4-45

SCALD III Language
Properties

+--+
ABBREV : DRAWING : INRERIT() I

+--+
The ABBREV property is used to specify an abbreviation for a
drawing. It should be attached to the DRAWING body. (Each
drawing must have a DRAWING body added to it. See Chapter 11,
under STANDARD Library for more information on a DRAWING body.)
The abbreviation is used by the Compiler to create path names
(see the Compiler chapter for a description of path names).

If the ABBREV property is not found, the Compiler makes an
abbreviation, derived from the name of the drawing. The ABBREV
property value can 6nly include letters, digits, and the
underscore '_'. The Compiler will produce an error message if
any other characters are used.

4-46

SCALD III Language
Properties

+--+
I I BODY TYPE : BODY : INHERIT()

+--+
The BODY TYPE property is used to specify certain special
bodies. -It can be given the following values:
COMMENT

The body is a comment and to be totally ignored. This
property replaces the previous COMMENT BODY property.

FLAG BODY
The body is used to indicate an I/O signal. Used by the
Packager and DIAL to process module interface signals. It
should be noted that parts identified as FLAG BODYs are only
output by the Compiler if they appear in the root level
drawing.

REL REF
The origin of the body is used as the reference point for the
XY properties attached to all other bodies within the
drawing. This property usually appears on the B SIZE PAGE or
similar drawing. The system also interprets it to be a
comment (same as BODY TYPE=COMMENT above).

ABS REF
Causes the Graphics Editor to use absolute coordinates for
the XY property if found on any body within the drawing.

PLUMBING
The body is a plumbing body. Standard plumbing bodies are
MERGERs, NOTs, SYNONYMs, etc. They are used to "plumb''
signals in the drawing. Normally, the presence of the NWC
(NOWIDTH) property on any pin of the body is used to
determine whether a body is a plumbing body. If the body is
a plumbing body but does not have any NWC pin (as is the case
with the SLASH body) this property is attached.

4-47

SCALD III Language
Properties

+--~

BUBBLED : PIN : INHERIT()

+--+
The BUBBLED property is used by the Graphics Editor to indicate
when a pin is bubbled (has a bubble). The property only makes
sense in this context and is an error everywhere else. Indeed,
this property should NEVER be entered, assigned, or attached by
the user; it is mentioned here only so that the user may know
how the bubble information is passed to the Compiler.

The presence of the BUBBLED property on a pin means that only
low-asserted signals may be connected to it. The assertion of
the pin name has no bearing on assertion checking. The reason
for this is the BUBBLE command capability of the editor which
changes the graphical representation of the body (adds or
deletes a bubble) without changing the pin name. The Compiler
needs to know whether a pin has a graphical bubble on it since
the pin name does not (and cannot) convey this information.

4-48

SCALD III Language
Properties

+---------------------------------~----------------+

I I I EXPR : DRAWING : INHERIT() I

+--+
The EXPR property is used to specify the selection expression
for a drawing. Drawings can be conditionally compiled. The
specific condition for which a particular drawing is intended is
determined by the selection expression. For example, given the
drawing PARTI, there may be three versions with the following
selection expressions:

PARTl. LOGIC. I. I
PARTl.LOGIC.2.I
PARTI.LOGIC.3.I

(SIZE<4)
(SIZE)=4) and (SIZE<8)
(SIZE)=8)

The PARTI drawing has three versions. Each version, presumably,
is different. The Compiler selects one of the versions based on
the value of its selection expression. If the selection
expression has a non-zero value, that version of the drawing is
used. The Compiler checks to make sure that one and only one of
the selection expressions evaluates true. If no selection
expression evaluates true, the Compiler outputs an error
message.

The value
involving

< *' I'
operators
the SCALD

of the EXPR property can be any integer expression
constants, text macros, arithmetic operators
+, MOD), logical operators (OR, AND, NOT), relational
(<, <=, =,)=, >, <>), or functions (ORD, ABS). See
III Language section for a complete description of

expressions.

4-49

SCALD III Language
Properties

+---~------+

HAS FIXED SIZE : BODY : INHERIT()

+---+
The HAS FIXED SIZE property is used to identify those bodies
which have a fixed size. These bodies should not be given a
SIZE property; indeed, it is an error to do so. The
HAS_FIXED_SIZE property has two functions. First, it informs
the Compiler that the body it attaches to has a fixed known size
(specified in the property value); the Compiler will not
produce a warning (# 196). Second, it causes an error mes sage to
be produced if a SIZE property is found.

Many of the bodies in the standard Valid libraries have this
property attached to them. It is used for versions of physical
parts that display all sections. The vectored version of the
body typically represents a one bit section of the part. The
second body version represents all sections of the part. If the
part has, for example, four sections, then the second body
version will be given a HAS FIXED SIZE="4" property to specify
that it represents 4 bits. -This Ts important since the models
(for the Timing Verifier and Logic Simulator) are modeled as
one-bit sections with the SIZE property specifying the actual
number of bits for each instance. The HAS FIXED SIZE property
causes a "default" SIZE property to be attached to support the
models. The presence of a user assigned SIZE property on these
bodies is always an error since none of the pins of the body or
the definition of the body use the SIZE property.

The HAS FIXED SIZE property can be attached as a default body
property (attached to the ORIGIN body in the .BODY drawing) or
it can also be attached to the body when used in a drawing (with
the PROPERTY Graphics Editor command).

4-50

SCALD III Language
Properties

+--+
I

I NEEDS NO SIZE : BODY : INHERIT()

+--+
The NEEDS_NO_SIZE property is used to identify those bodies
which need no SIZE property; indeed, it is an error to attach a
SIZE property to one of these bodies. The NEEDS NO SIZE
property has two functions. First, it informs the Compiler that
the body it attaches to does not need a SIZE property; the
Compiler will not produce a warning (#196). Second, it causes
an error message to be produced if a SIZE property is found.

Many of the bodies in the standard Valid libraries have this
property attached to them. Most notable are the NOT and MERGER
bodies. These bodies automatically conform to the widths of the
signals they are attached to. The presence of the SIZE property
on these bodies is always an error since none of the pins of the
body or the definition of the body use the SIZE property.

The NEEDS NO SIZE property can be attached as a default body
property (attached to the ORIGIN body in the .BODY drawing) or
it can also be attached to the body when used in a drawing (with
the PROPERTY Graphics Editor command).

4-51

SCALD III Language
Properties

+--+
NOASSERT PIN

SIGNAL
: INHERIT()

+--+
The NOASSERT property can only be used as a PIN property or as a
property of the pin name (signal name for a pin) It is not
permitted on other signals. The presence of the property causes
the Compiler to interpret the pin's assertion specially. The
NOASSERT property is not permitted as a property of a pin or pin
name that also has an explicit assertion specification (such as
'*').

A pin with the NOASSERT property is interpreted as having no
particular assertion. The pin assumes the assertion of the
first signal connected to it. For example, if the signal CLOCK
is connected to a pin with the NOASSERT property, the pin would
become high asserted. If the signal ENABLE* were attached, the
pin would become low asserted. If more than one signal is
attached to the pin, all the signals would have to have the same
assertion (the assertion of the first signal encountered since
it is this assertion that the pin inherits).

A pin with the NOASSERT property may assume a different
assertion for each instance of the body on which it appears.
The best example of a body with pins with the NOASSERT property
is the MERGE body. The MERGE body can be used on signals of any
assertion; it assumes the assertion of whatever signal it is
connected to.

To make the NOASSERT property easier to use, the standard text
macro "NAC" (No Assertion Check) is provided with the following
definition:

NAC = NOASSERT=""

The property value for the NOASSERT property is unimportant;
just the presence of the property is significant. The signal:

PIN NAME \NAC

is equivalent to the signal:

PIN NAME \NOASSERT=""

4-52

SCALD III Language
Properties

+--+
I

NOWIDTH PIN
SIGNAL

: INHERIT()

+--+
The NOWIDTH property can only be used as a PIN property or as a
property of the pin name (signal name for a pin) It is not
permitted on other signals. The presence of the property causes
the Compiler to interpret the pin's width specially. The
NOWIDTH property is not permitted as a property of a pin or pin
name that also has an explicit bit width specification (bit
subscript).

A pin with the NOWIDTH property is interpreted as having no
particular width. The pin assumes the width of the first signal
connected to it. For example, if the signal CLOCK is connected
to a pin with the NOWIDTH property, the pin would be assigned
the width 1. If the signa1 DATA(3 •• 0> were attached, the pin
would assume the width 4. If more than one signal is attached
to the pin, all the signals would have to be the same width (the
width of the first signal encountered since it is this width
that the pin inherits).

A pin with the NOWIDTH property may assume a different width for
each instance of the body on which it appears. The best example
of a body with pins with the NOWIDTH property is the NOT body.
The NOT body can be used on signals of any width; it assumes
the width of whatever signal it is connected to.

The presence of the NOWIDTH property can cause signals that have
indeterminate widths. If an UNNAMED signal connects to a pin
with the NOWIDTH property, the Compiler must look further to
determine the width of both the signal and the pin (since the
width of an unnamed signal is determined from how it is used.)
In some cases, there may be insufficient information available
to determine the width. Such cases are detected in Pass 2 of
the Compiler and reported.

To make the NOWIDTH property easier to use, the standard text
macro "NWC" (No Width Check) is provided ~ith the following
definition:

NWC = NOWIDTH=""

4-53

SCALD III Language
Properties

The property value for the NOWIDTH property is unimportant;
just the presence of the property is significant. The signal:

PIN NAME \NWC

is equivalent to the signal:

PIN NAME \NOWIDTH=""

4-54

SCALD III Language
Properties

+--+
I

I PART NAME : DRAWING : INHERIT()

+--+
The PART_NAME property is used to specify the name of a
primitive component. When the Compiler is ready to output a
primitive component into the expansion output file, it has to
determine the name of the component. Normally, this name is
just the name of the primitive component. There are times,
however, when it is desired to have the primitive component name
be different from the logical component name.

For example, the LSTTL library components are called LSOO, LSOl,
LS02, etc. Each pa~t, however, is known in the Compiler
expansion file as 74LSOO, 74LS01, etc. since this is a more
explicit name. The '74' that is left off the logical component
name makes the name easier to type. Of course, giving the LSOO
the PART NAME 74LS74 is counter-productive. The PART NAME
properties are found attached to the DRAWING body within the
.PART drawing for the component.

If the Compiler finds a PART NAME property, it uses it as the
name of the primitive component otherwise, it uses the logical
component's name.

4-55

SCALD III Language
Properties

+--+
PATH : BODY : INHERIT()

+--+
The PATH property is used by the Compiler in the formation of
path name elements. It is attached to each body in a drawing
(either manually with the PROPERTY command or automatically in
the Graphics Editor). The PATH property value can be any string
of letters or digits. The Graphics Editor creates a PATH
property of the form (n)P where <n> is unique for each body on
the drawing.

The PATH property can be added as a default body property (by
attaching the property to the origin body in the .BODY drawing)
but is normally not a good idea. If more than one of the bodies
(with a default PATH property) is used within the same drawing,
the Compiler will output an error message since the path element
created for the two bodies is the same. If default PATH
properties are used, the property value will have to be changed
if there is more than one of these bodies in the drawing.

4-56

(

SCALD III Language
Properties

+--+
I

REP : SIGNAL : INHERIT()

+--+
The REP property is used to replicate a signal in much the same
way that SIZE is used to replicate a body. The REP property
causes the Compiler to create multiple copies of the signal and
append them to the original to form one signal. For example,
the signal:

BUS SIGNAL(4 •• l) \REP="2"

is equivalent to:

BUS SIGNAL(4 •• l) BUS SIGNAL(4 •• l)

To make the REP property easier to use, the standard text macro
'R' is available which has the definition:

R = REP="%1"

where %1 is the parameter of the macro. The signal given above
would appear as follows when this text macro is used:

BUS SIGNAL(4 •• 1) \R 2

4-57

SCALD III Language
Properties

+--+
SCOPE : SIGNAL : INHERIT()

+--+
The SCOPE property is used to define the scope of a signal.
There are three possible values for this property, defined as
follows:

LOCAL Signals on different pages of the same drawing
are equated.

GLOBAL Signals at all levels of a hierarchical design
are equated.

INTERFACE - Used in hierarchical design and library
de•elopment to indicate an interface signal
from a higher level drawing.

By default, the scope of all signals is LOCAL. The SCOPE
property is usually included in the signal name by using one of
three standard text macros:

I = SCOPE="INTERFACE"
L = SCOPE="LOCAL"
G = SCOPE="GLOBAL"

as, for example, in the signal DATA <15 •• 0> \L. For the correct
syntax, see under Signal Name Syntax/General Properties, earlier
in this chapter.

A signal cannot be given more than one scope, and cannot inherit
its scope from some other signal.

4-58

SCALD III Language
Properties

+--+
I

I SIZE : BODY : INHERIT()

+--+
The SIZE property is one of the most powerful and basic of SCALD
III properties. Only bodies can be given the SIZE property.
For more information, see elsewhere in this chapter under:

Signal Name Syntax/Parameter Attributes
Text Macro Facility/Use in Body Parameters

4-59

SCALD III Language
Properties

+--+
TERMINAL : BODY : INHERIT()

+--+
The TERMINAL property is used to tell the Compiler that an empty
drawing is not an error. Normally, the Compiler will generate
an error message if a drawing is found that is empty; that is,
it contains no bodies. It is expected that the drawing was not
written, accidentally deleted, or otherwise ruined.

There are some drawings that are intentionally empty. The
SYNONYM.LOGIC drawing is one of these. The entire purpose of
the SYNONYM body is to synonym signals together. This it does
by virtue of the fact that all of its pins have the same name.
There is nothing else to be done and, therefore, the
SYNONYM.LOGIC drawing is empty. The Compiler will generate an
error. To inform the Compiler that the drawing is intentionally
empty, the TERMINAL=TRUE property is attached to the DRAWING
body within the SYNONYM drawing.

4-60

SCALD III Language
Properties

+--+
I

TIMES BODY
DRAWING

: INHERIT(BODY)

+--+
The TIMES property is one of the most powerful and basic of
SCALD III properties. Its use is complex and proper justice
cannot be given it here. See Chapter 8 on the Packager for a
complete discussion.

Here it is appropriate to mention that the TIMES property is
inherited. If a high level body is given the TIMES property
(either by attaching it to the BODY or to the DRAWING body with
the corresponding LOGIC drawing), it is inherited by all bodies
within the corresponding LOGIC drawing. This makes it possible
to assign a TIMES property to a large group of components
without having to assign it individually.

4-61

SCALD III Language
Properties

+--+
TITLE : DRAWING : INHERIT() I

+--+
The TITLE property is used to specify the name of the drawing.
The property can only be attached to the DRAWING body found
within the drawing. If the drawing's name and the TITLE
property's value are different, the Compiler will output an
error message. The names must be identical (character for
character) if the Compiler is not to produce this error.

The TITLE property is used to document, within the drawing, the
name of the drawing. It it not required; no error, oversight,
or warning message is output if it does not appear.

4-62

SCALD III Language
Properties

+--+
I I WIRE DELAY : PIN

SIGNAL
: INHERIT(PIN)

+--+
The WIRE DELAY property is used to specify wire delays on
signals.- The text macro WD has been defined to take a single
parameter, as follows:

WD = 'WIRE DELAY="%!"'

Wire delay can,
a signal name.

therefore, be succinctly added as a property in
Here are some examples:

\WD 2.0-5.6
\WD 1.0-2.0

Wire delay can also be attached as a signal property directly to
a signal, or as a pin property directly to an input pin. To do
so, use the property command and enter:

WIRE DELAY 2.0-5.6

Remember the underscore in WIRE DELAY (to make the entire string
the property name), and the space after WIRE DELAY (to separate
property name from property value).

When wire delay is added to a signal, it is inherited by the pin
attached to that signal.

The general form of the property value for wire delay is a
minimum and maximum rising delay followed by a minimum and
maximum falling delay, as in:

WIRE_DELAY 2.0-5.6, 2.5-6.2

When only one range is given, the rising and falling delays are
assumed to be the same. See Delay Properties in Chapter 6
(Timing Verifier) for additional information.

4-63

SCALD III Language
Text Macro Facility

Text Macro Facility

4.28 INTRODUCTION

This section describes the text macro facility of the SCALD
Compiler. Text macros are used to globally replace one string
of characters with another. The first section explains what
text macros are and how they are used. The following sections
describe the specific syntax used to define text macros and
their use in signal names and properties. Examples are given to
demonstrate various features. Knowledge of the SCALD signal
name syntax is helpful as the examples refer frequently to
signal names.

4.29 WHAT IS A TEXT MACRO?

A text macro is a string of characters (usually short) that
represents another string of characters. The Compiler replaces
each occurrence of each text macro with the string it
represents. For example, the text macro "VLS" can represent the
string "Valid Logic Systems", and the text macro
"CURRENT ADDRESS" can represent "2820 Orchard Parkway, San Jose,
CA 95134". Then, the sentence:

Company headquarters of VLS are at CURRENT ADDRESS.

appears as follows after the text macros have been replaced:

Company headquarters of Valid Logic Systems are at 2820
Orchard Parkway, San Jose, CA 95134.

The process of replacing the text macros with the strings of
characters they represent is called text macro expansion.

Text macros serve two basic functions, both of which are
demonstrated by the above example. VLS is a useful abbreviation
for the longer and more cumbersome Valid Logic Systems.
CURRENT ADDRESS represents a parameter that could change. The
text macro lets you concentrate the variable information in one
place. When the parameter changes value, you need only change
the definition of the macro. Text macros are useful for
defining global information that is needed in many places and is
likely to change.

In the SCALD language, text macros are most commonly used in
signal names. For example, if the text macro ADDRESS BUS is
defined as:

ADDRESS BUS = "23 •• 0"

then signals that reference the address bus can be named as

4-64

follows:

INTERFACE (ADDRESS BUS)

This expands to:

INTERFACE (23 •• 0>

SCALD III Language
Text Macro Facility

If the size of the address bus is changed to, for instance,
31 •• 0, the text macro definition is all that need be changed.

A more typical use might be the assignment of bit fields that
represent register fields within an instruction or portions of
some interface bus. The bit assignments need be determined only
once and can be used throughout the design with little chance of
error. Again, should the bit assignments be changed, only the
text macro definitions have to be altered. For example:

interface bus= "0 •• 63"
address bus = "0 •• 23"
data bus = "24 •• 39"
inte~rupts = "40 •• 42"
flags = "43 •• 50"
control = "51 •• 61"
reset
power_fail

= "62"
= "63"

WHERE TO DEFINE TEXT MACROS

There are two places within the SCALDsystem to define text
macros: on individual drawings, and in a text file used by the
compiler. A text macro that is defined on a particular drawing
is operative (in full compilation) within that drawing and all
other drawings under it in the hierarchy. A text macro that is
defined in a text file is globally operative each time the
compiler is used. (For separate compilation, text macros should
either be globally defined, or explicitly defined on each
drawing.) When you define a global text macro (in a text file)
that macro cannot be overridden. Certain global text macros
have been predefined for use in signal names. See "Globally
Defined Text Macros" below.

A text macro defined on a particular drawing can be overridden
by a macro on a drawing lower in the hierarchy. For example,
take the drawing ALU.LOGIC that contains the drawings
PARTl.LOGIC, PART2.LOGIC, AND PART3.LOGIC, and also contains the
text macro definition CTR= counter. If the drawing PART3.LOGIC
contains the text macro definition CTR = counterl, the compiler
will expand all occurrences of CTR in ALU.LOGIC, PARTl.LOGIC,
and PART2.LOGIC into "counter", but it will expand the
occurrences of CTR in PART3.LOGIC into ''counterl". This
expansion lets you use text macros in higher level drawings to

4-65

SCALD III Language
Text Macro Facility

designate general cases, and override these macros for a
specific case on a lower level drawing.

When you define a text macro on a page of a drawing (for
example, ALU.LOGIC.I), the text macro is operative on all pages
of that drawing (ALU.LOGIC.I, ALU.LOGIC.2, •••). A given text
macro cannot be defined more than once in the same drawing. The
Compiler generates an error message when this happens.

4.30 DEFINING A TEXT MACRO ON A DRAWING

A text macro is an identifier, that is,

a string of not more than 16 characters that includes
letters, digits, and ' '(underscores) and starts with
a letter.

The text macro definition can be any character string (with a
maximum length of 255 characters). Text macros are defined in a
DEFINE body placed in a drawing. To define a text macro for a
drawing, add a DEFINE body and use the PROPERTY command to
attach properties to the DEFINE body. The PROPERTY command
expects a name/value pair separated by a space. If, at the
PROPERTY command, you enter:

xxxx yy zz

The Compiler will interpret xxxx to be the text macro and yy zz
to be the macro definition. Each time it finds xxxx on the
drawing, it will expand that macro to yy zz. Any number of
properties may be attached to the DEFINE body and any number of
DEFINE bodies may appear in a drawing. Text macros defined on
one page of a drawing are operative on all pages of that
drawing.

See also Globally Defined Text Macros below.

4.31 HOW TO USE TEXT MACROS

Text macros may be used in several places: in other text
macros, in signal names, in properties, and in body parameters.
Each of these is described below.

USE IN OTHER TEXT MACROS

Text macros can be nested one inside the other.
COPYRIGHT can be defined as:

Copyright CURRENT_YEAR, VLS Inc.

The macro

where CURRENT YEAR and VLS are also macros, that represent,
respectively,-"I985" and "Valid Logic Systems". To make a

4-66

SCALD III Language
Text Macro Facility

current copyright page, you need only type COPYRIGHT.
expands to:

Copyright 1985, Valid Logic Systems Inc.

This

The text macros CURRENT YEAR and VLS are nested inside of the
text macro COPYRIGHT. The text macro "COPYRIGHT" has a nesting
depth of 2. The Compiler permits a maximum text macro nesting
depth of 10. The Compiler rescans strtngs for macros until no
more are found.

A text macro that is defined in terms of itself, either directly
or indirectly (through another text macro that references the
first), is a recursive text macro. A recursive text macro
causes an error condition in the compiler, but it is difficult
for the Compiler to detect the cause of the error condition.
Usually, a recursive text macro results in one of the following
error messages:

TEXT MACRO NESTING DEPTH EXCEEDED

EXPANDED TEXT MACRO EXCEEDS MAX LENGTH

USE IN SIGNAL NAMES

The use of text macros within signals requires some care. The
Compiler recognizes a text macro by searching for an identifier
and checking to see if the identifier is a text macro. Since
SCALD signal names can contain almost any character sequence, it
is conceivable that a signal name may inadvertently contain a
sequence of characters that formed an identifier that just
happened to be a text macro; it would be an error if the
Compiler were to expand it.

For this reason, text macros are not permitted within the name
portion of signal names. Remember, a signal name has these
parts:

ne name bits assertion pro erties
(class)(name)(timing)

Since text macros would not be appropriate in the negation and
assertion fields, macros wtthin signal names are used only to
define bit subscripts and properties.

USE IN PROPERTIES

The Compiler allows text macros to be placed within property
values and have them expanded. Text macros are not allowed
within property names. This capability is different than that
supported for body parameters (see below).

4-67

SCALD III Language
Text Macro Facility

Text macros need to be identified within the property value with
the '%' character. This character serves to mark the presence
of the text macro and to prevent confusion between text macros
and normal text. For example:

PARMS= 'W=%WIDTH,L=%LENGTH'

Note the presence of the two text macros (WIDTH and LENGTH) in
the property value. They are flagged with the '%' character.
The Compiler only expands the identifier following the '%'
character. The text macro name must, as always, be an
identifier. The comma marks the end of the identifier. The
character L is also a text macro, defined to be SCOPE=LOCAL
within the SCALD III Language. But because it is not preceded
by '%' it is not interpreted as a text macro. Because it is
preceded by a comma, it is not interpreted as part of the text
macro WIDTH.

If WIDTH = 2, and LENGTH = 3, then the above property expands
to:

PARMS= 'W=2,L=3'

If the text macro is to be immediately followed by text (that
is, by any character acceptable in an identifier), enclose it in
quotes. For example,

PARMS = "This property value is %'TM'ed."

The text macro TM is identified by the quote marks. Text macros
within property values cannot include parameters nor can they
have embedded text macros. If such appear, they are ignored.

USE IN BODY PARAMETERS

A body parameter is a special body property that is evaluated in
the Compiler and made available to the drawing associated with
the body as though it were a text macro. The best example of
such a property is SIZE. This is attached to a body and used to
specify the width of pin names, signal names, and to control
size expansion.

The value of the body parameter may be changed on an instance by
instance basis thereby providing a means of passing information
from the using drawing to the used drawing (hence the name body
parameter). The body parameter may refer to text macros. The
text macros must he defined in the drawing in which the body
appears or in drawings above the containing drawing. A body
parameter cannot refer to a text macro defined within the
drawing to which the body corresponds.

All strings of characters that are identifiers (a string of

4-68

SCALD III Language
Text Macro Facility

letters, digits, and ' ' starting with a letter and no more than
16 characters long) that happen to be text macro names are
expanded. This means that body parameters must have very
restricted formats. Typically, they are defined as simple
integer expressions such as 'X+l' or 'SIZE-1'.

The most common text macro used within the SCALD language is
SIZE. This is defined by the user to specify the number of bits
a component represents or the width of a bus. Pin names are
often defined as "SIZE" bits wide as follows:

PINA (SIZE-1 •• 0)

When the SIZE text macro is expanded, the width of the pin can
be determined.

4.32 WHERE TEXT MACROS MAY NOT BE USED

There are several places where text macros are not permitted.
They are described below.

DRAWING NAMES

Drawing names are assigned in the Graphics Editor and are stored
in the TITLE property of the drawing and the drawing directory.
Text macros are not permitted here because the Graphics Editor
would have to know about them and how to expand them.

PROPERTY NAMES

The name of property is exactly as entered. It cannot contain,
reference, or otherwise depend upon text macros.

4.33 TEXT MACROS WITH PARAMETERS

The text macro capabilities described above are useful but
inadequate for some applications where simple text substitution
does not provide enough flexibility. The SCALD Compiler text
macro processor also supports text macros with parameters.

At times, Lt is advantageous to allow the use of a text macro to
be customized on an instance by instance basis. For example,
suppose a text macro is to be defined that specifies a bus by
specifying the width desired. This could be supported as
follows:

BUS8 = "O •• 7"
BUS16 = "O •• 15"
BUS24 = "0 •• 23"

etc.

4-69

SCALD III Language
Text Macro Facility

Since the relationship between the left and right sides of these
text macros is the same (8 = 7+1, 16 = 15+1, 24 = 23+1), all
three macros can be replaced by a single text macro that
includes a parameter describing the size of the bus. For
example:

BUS= "0 •• %1-1"

where '%1' will be replaced by the parameter that the user gives
to the text macro "BUS".

BUS 8 is expanded into 0 •• 7
and

SIGNAL (BUS 8) is expanded into SIGNAL (0 •• 8-1 >

A text macro parameter may have up to 16 characters, and may
include any character except a space. Note that the text macro
parameter (in this case, 8) is preceded and followed by at least
one space. If the trailing space is left out, as in:

SIGNAL (BUS 8)

the Compiler interprets 8) to be the parameter. This results
in:

SIGNAL <0 •• 8)-1

and will produce an error message from the Compiler. The
Compiler uses spaces to delimit parameters in text macros. If
there are several parameters in a text macro, they must be
separated by spaces.

When the Compiler detects an error in the syntax of the line it
is reading, it prints out the line and all text macros that are
being expanded so that is it clear how the expansion has been
done. This makes it easier to find errors such as this one.

MULTIPLE PARAMETERS IN TEXT MACROS

Text macros can include up to 9 parameters (1 through 9). The
parameters are numbered from left to eight (following the text
macro) starting with one. For example, given the text macro
"FOO" with 5 parameters and a use as follows:

FOO 23-4 9 •• 4+1 w, SNARF

4-70

SCALD III Language
Text Macro Facility

the parameters are:

parameter 1 = "23-4"
parameter 2 = "9 •• 4+1"
parameter 3 = II Wit

parameter 4 = II II ,
parameter 5 = "SNARF"

A text macro parameter may itself be a text macro.
given the following text macro definitions:

FOO = "Beginning %1 the %2"
LAST = "ENDING"
MIDDLE = "PRECEDES"

The use of "FOO" as follows:

FOO MIDDLE LAST

expands as follows:

Beginning PRECEDES the ENDING

For example,

The text macro "FOO" is given two parameters; "MIDDLE" and
"LAST". The two parameters are themselves text macros which are
expanded to "PRECEDES" and "ENDING" respectively. Text macros
that require parameters (such as FOO above) should not be used
as parameters of other text macros. They will be expanded, but
the parameter order and binding is very obscure. Parameterized
text macros should NOT be used as parameters of text macros.

4.34 GLOBALLY DEFINED T~XT MACROS

There are many predefined text macros created by the Compiler.
These text macros are globally known (that is, they are
accessable by every drawing within a design) and are reserved;
the designer is prevented from creating a text macro with the
same name. These predeclared text macros are:

L => gives local scope to a signal
G => gives global scope to a signal
I => identifies a signal as an interface signal
R => used to specify signal replication

B => indicates that a pin has a bubble
NWC =) no width check directive
NAC => no assertion check directive

TRUE => constant 1
FALSE => constant 0
X =) current value of the X variable

4-71

SCALD III Language
Text Macro Facility

Their definitions are:

R
G
L
I
NWC
NAC
B
TRUE
FALSE

REP="%1"
SCOPE="GLOBAL"
SCOPE="LOCAL"
SCOPE=" INTERFACE"
NOWIDTH=""
NOASSERT=""
BUBBLED=""
1
0

The designer may define additional globally known reserved text
macros. These are given to the Compiler in a text macro file
(see the TEXT MACRO FILE directive in the Compiler directives
section for a-description of the method). The form of the file
is:

FILE TYPE = TEXT MACROS;
<text macro name) = (text macro definition>

•
•
•

END.

where (text macro name> is the name of the text macro being
defined and (text macro definition> is the text macro value
enclosed with quotes. There are a few text macros that should
be defined for the Timing Verifier. They appear below as an
example of what the text macro file· should look like.

FILE TYPE=TEXT MACROS;
S =-'S ASSERT;"%1"';
P = 'P-ASSERT="%1"';
C = 'CLOCK="%1"'· ,
WD = 'WIRE DELAY="%1"';
CD= 'CHIP-DELAY="%1"';
E = 'EVAL="%1" I;
END.

These text macros are used to support the timing assertion
properties used by the Timing Verifier. Note that all of them
require one parameter. For example, the "WD" text macro could
be used in a signal as follows:

SIGNAL NAME (0 •• 31> \WD 3.2-4.5

The parameter for the "WD" text macro is "3.2-4.S". Note also
that these text macros are used as shorthand for property
specifications in signal names. A property in a signal name is

4-72

SCALD III Language
Text Macro Facility

specified by the property name followed by '=' followed by the
property value in quotes. Since the text macro definition
contains quotes, two kinds of quotes are used to reduce
confusion. An alternate, and equivalent, method of defining the
"WD" text macro appears below:

WD = 'WIRE DELAY=''%!'''•
- t

Two quotes in a row are taken to mean a single quote when found
within a character string.

4-73

