
Graphics Editor
Reference Manual

CHAPTER 3
MA~ 1 6 1985

GRAPHICS EDITOR

Graphics Editor Reference Manual

3.1 INTRODUCTION

The SCALD Graphics Editor serves as the primary
interface between you and the design data base. The
Graphics Editor is used to create logic drawings
(schematics) and body drawings (shapes of devices) using a
high resolution CRT display, alphanumeric keyboard, and
graphics tablet (Figure 1). In addition to allowing you to
create and modify drawings, the Graphics Editor handles the
interaction with the operating system to retrieve and store

Figure 1. SCALDsystem Design Station

To edit a drawing, you type:
EDIT drawing name

followed by the "return" key. If the drawing already

3-3

Graphics Editor
Reference Manual

exists, then the Graphics Editor will access the appropriate
file from the design data base and will display it on the
CRT. If the drawing does not exist, that is, it is a new
drawing you wish to create, then a blank page will be
displayed on the CRT.

In addition to the drawing displayed on the CRT, there
is a menu along the right side of the screen. Commands are
issued to the Graphics Editor using both the menu and the
keyboard. These commands let you place bodies on the
drawing, connect pins with wires, add signal names, and
other text information, and generally manipulate the
information contained in the drawing.

CRT DISPLAY

The CRT display is a 20 inch monochromatic CRT with a
resolution of 1024 by 800 pixels. There are four intensity
levels per pixel; consequently light, normal, and bright
lines may appear on the dark background.

The menu of most frequently used commands is displayed
along the right side of the CRT (Figure 2).

Stt1tus I 1 ne

~
~u~·.o •. LOGIC. 1. 1 GRID 0. J 5 UStA.W.

Cursor-

Command menu

PAOPtRT

Input I 1 ne

"'"

Figure 2. CRT display -- command menu

In addition to the menu, there is a status line
displayed along the top of the screen. This status line
tells you which file is currently being edited, the status
of the grid (to be described later), and the name of the

3-4

Graphics Editor
Reference Manual

current working directory.

Along the bottom of the screen is the current text
line. As you type on the keyboard, the characters typed
will be displayed along this command line. This allows you
to make corrections to text prior to its use.

KEYBOARD

The SCALDsystem keyboard is a standard alphanumeric
keyboard with programmable function keys along the top and
on either side of the main keyboard (Figure 3). The primary
purpose of the keyboard is to allow you to type commands,
signal names, properties, notes, and other text information
required to create a drawing. In addition, the programmable
function keys allow you to perform complex operations with a
minimum number of key strokes.

DOD
DOD
DOD
ODD

GRAPHICS TABLET

CJCJCJCJCJCJ 0
OGJ GJ GJ GJ GJGJGJGJ GJ GJ EJDDO DOD

000 D GGEJ Elc:Jl:J(!JC!Jc:JGDO D
0888088~~@~0c::J DOD
D C!JEJEJEJEJ8GJOOO DD DOD
D D

Figure 3. Keyboard

The graphics tablet is built into the table on which
the CRT display and keyboard are mounted. You manipulate
the puck (Figure 4) in order to move the cursor on the CRT.
There are four cursor buttons on the puck that are used to
signal to the Graphics Editor that a command is to be
selected or executed.

The differences between the four cursor buttons will be
described in a later section. For the time being, consider
just the use of the yellow butt~n. Throughout this manual,
the use of this particular button will be assumed unless
explicitly stated to the contrary.

3-5

Graphics Editor
Reference Manual

Figure 4. Graphics tablet puck

3.2 INTRODUCTION TO COMMANDS

The form of commands given to the Graphics Editor is
command name argument list

The commands may be issued totaTly from the keyboard,
totally fr6m th• graphics tablet (using the men~ on the
display), or using a combination of the tablet and keyboard
operations. In general, those commands that require you to
type text information, for example, adding a note to a
drawing, are issued from the keyboard. On the other hand,
those commands that require no text information, for
example, the MOVE command, may be executed from the graphics
tablet without use of the keyboard. If a command not on the
menu is typed from the keyboard,_that command is replaces
the command in the last menu box. This box can then be
selected using the puck just like any other menu command.
Initially, the GRID command is in this last menu box.

When the system first starts, the -status line reads
UNNAMED.LOGIC.1.1

If one wishes to create a new drawing called "PERIPHERAL
INTERFACE", then the command:

EDIT PERIPHERAL INTERFACE(cr)
may be typed. ((er) indicates that the "RETURN" key should
be pressed.) As the command is typed, it will appear along
the lower edge of the CRT display (Figure 5). The status
line will then indicate the name of the drawing to be
created (Figure 6). Since this is a new drawing, the
message "New diagram started" will be displayed. (If a
drawing called "PERIPHERAL INTERFACE" already existed, then
the Graphics Editor would have displayed that drawing.) Note
that the last menu box has been changed to read EDIT.

3-6

<l_lriNrtt1ED . ~-UC.JC. l. I Gl'llD el. l 5

Graphics Editor
Reference Manual

USER.wRK ~---,

HELP

CIAQ..C

VERSION

GROl.P

SPLIT

COPY

DELETE

110VC

WIRE

WINoc::.J

;

SIGNAME

CHANGE

PROPCRTY

DOT

Lorr

Figure 5. "EDIT PERIPHERAL INTERFACE" Typed and Displayed

GRID 0. 1 5 USER. Wl<K

HELP

CIRO..£

UCRSlON

GROl.P

SPLlT

COPY

DELETE

110VC

WIRE

WJN()()W

;

SIGNAME

CHANGE:

PROPCRTY

nor

(0[T

Figure 6. New Diagram Started

3-7

Graphics Editor
Reference Manual

For another example of the use of the Graphics Editor
commands, consider the addition of bodies to a drawing.
Referring to Figure 6, suppose that one wishes to add a NAND
gate to the blank page. This is done by typing

ADD NAND(cr)
The Graphics Editor interprets the ADD command and searches
through its directories to find the appropriate body. If
the body is found an instance of it is attached to the cross
hair cursor on the CRT. Next, you must indic~te the point
on the drawing at wh~ch the body should be placed. This is
done by manipulating the puck so that the cursor is in the
appropriate position on the screen and pressing the yellow
button. The command .to add a body is then completed; the
result is shown in Figure 7.

<UN\!At'EO>. LOGIC. l. l GRID 0.1 S

HE:LI'

CIACLE

UCASION

GROUI'

SPL.IT

COl'Y

DEL.ETE

liP MOUE

WIRE

WINDOW

SIGNAHE:

CHANGE:

DOT

EDIT

Figure 7. NAND Gate Added

In addition to adding bodies to a drawing, one needs to
connect pins on those bodies using wires. For example,
Figure 8 shows a drawing with a. NAND gate and a flip-flop.
To connect the output of the NAND gate to the clock input of
the flip-flop, the WIRE command is used. This is done by
moving the puck so that the cursor is over the WIRE command
on the menu (Figure 9) and pressing the yellow button. ~he
WIRE command is highlighted on the menu so that you kn6w
what operation is being performed.

3-8

<UNNAMED>.LOGIC. 1. l GRID el. I 5

Graphics Editor
Reference Manual

USER. WRI"

FR
1 0

D .
I(0

CL

Figure 8. NAND and JK FF bodies added

<UNNAMED>. LOGIC. 1. 1

D

Figure 9.

3-9

GRID el. I 5 USER.WRK

FR
1 0

I(0
CL

WIRE command selected

f-
HELP

CIAa.£

UCAS[ON

GROUP

SPLIT

COPY

DELETE

HOU£

WIRE

WINDOW

;

SIGNAHE

CHANGE

PROPERTY

DOT

EDIT

HELP

CIRCLE

VEASION

GRO<P

SPLIT

COPY

DELETE

HOUE:

WIRE

WINDOW

;

SIGNAME

CHANGE

PRC>PCRTY

DOT

EDIT

Graphics Editor
Reference Manual

<U~D>.LOGIC. I. I GRID I!!. I 5 USCR.WRIC

PR
1 Q

D

Figure 10.

<UNNAl"ED>.LOGIC.1.1

I(0
CL

Selecting the starting point for a wire

GRID 1!1. I 5 USCR.WRIC

PR
1 Q

t< 0
CL

Figure 11. Wire started

3-10

HEl.P

CillQ.£

UEASION

GAOi.i'

SPLIT

COPY

llEIEIE

~

WIRE

WINDOW

:
SI-

~

_.,.

DOT

GRID

HELP

CIAa.£

UEASIOH

GAOi.i'

SPLIT

COPY

DELETE

~

WIRE

WINDOW

:

SIGtA11:

c-
PAOPCRTY

DOT

GQID

)

Graphics Editor
Reference Manual

In order to draw a wire, you must first specify the
starting point for that wire. This is done by moving the
puck so the cursor is over the starting point on the drawing
(Figure 10) and pressing the yellow button. If the cursor
is now moved away from that point, you will see that there
is a wire connected from the starting point on the drawing
to the current positi~n of the cursor. As the cursor moved
about the drawing, the wire will follow the cursor (Figure
11). Note that whatever direction the puck is moved, the
wire always remains fixed in the horizontal direction (e.g.
is orthogonal or bent in the middle). Changing the
direction of the wire is discussed in the section on the
uses of the puck buttons below.

To place the other end of the wire on the clock input
pin of the flip-flop, simply move the cursor (by
manipulating the puck) to that pin and press the yellow
button. The connection is made and the wire is terminated.
A wire is terminated when connected directly to a pin.

GRID li!I~ l S USCR.WRt<

HE:LP

CIRCL.E

VERSION

GROUP

SPLIT

COPY

DELETE

WIRE

WINDOW

SIGN"'1E:

CHANGE

PROP!:RT

DOT

EDIT

Figure 12. Wire connected to a second pin

3-11

Graphics Editor
Reference Manual

PR
1 Q

I(0
~L.

Figure 13. · End of wire run

PR
------------~1 , o.._ __ _

------------~IC CL.!Q rl----

+

Figure 14. Wires connected to a pin at one end only

3-12

Graphics Editor
Reference Manual

Wires do not have to be added from one pin to another.
They may, in fact, be added anywhere on a drawing. Usually,
however, a wire is connected at one end or the other to a
pin on a body. Figure 14 shows several wires that have been
added to the drawing shown in Figure 13. Each wire was
placed by starting a wire at the appropriate pin, moving the
wire to the point at which the wire is to be terminated, and
pressing the yellow button twice without moving the cursor
from that final position. Whenever a wire is routed to a
point in a drawing other than a pin, it is not terminated.
Another piece of wire is attached to the cursor so that you
can continue the wire to yet another point. In order to
terminate a wire that is not ending on a pin, you must press
the yellow button twice in the same location.

Now consider the requirement to move an object from one
point to another on the drawing. The MOVE command is
selected by moving the cursor to the MOVE command on the
menu and pressing the yellow button. Next, the cursor is
moved so that it is close to the object that is to be moved
(it does not have to be exactly on the object) and the
yellow button is pressed. This causes the selected object
to be highlighted (intensified) and to move wherever the
cursor is ~oved (Figure 15).

J PR Q

+

Figure 15. Flip flop moved -- wires remain connected
and orthogonal

3-13

Graphics Editor
Reference Manual

Note that wires remain connected and orthogonal (bent)
as objects are moved about the drawing. This is done so
that the user will not have to reconnect or straighten those
wires after a body has been moved.

To place the object in its final position, simply move
the cursor until the body is positioned correctly and press
the yellow button one more time. This deposits the object
at the indicated position.

To move the vertical wire on the left to the right,
select MOVE from the menu, select the top of the vertical
wire with the yellow cursor button and push the cursor to
the right. When the wire is in the correct position, place
it down by pressing the yellow button again (Figure 16).

J PRO _

K CL 0

Figure 16. Wires moved

3-14

Graphics Editor
Reference Manual

Figure 17 and its related text have been removed from the
SCALD Graphics Editor Reference Manual.

3-15

Graphics Editor
Reference Manual

Figure 18 and its related text have been removed from the
SCALD Graphics Editor Reference Manual.

WINDOWING AND SCALING

The SCALD Graphics Editor manages drawings which, i£
plotted in a single piece, would be as large as 64 inches on
a side. If that much area were to be displayed on the
screen, then the objects on. the drawing would be so small
that they would be very difficult to manipulate. The
Graphics Editor lets you view that large drawing area
through a "window." By positioning this window and changing
the scale at which images are viewed through that window,
you are able to display anything from a very small portion
of a drawing to the entire drawing on the CRT display.

There are several ways that.you may make use of the
WINDOW command to change the portion of the drawing that is
currently being displayed on the CRT. For example, suppose
that the display is as shown in Figure· 19. One may pan
about the drawing by defining a point on the drawing that
should be moved to the center of the screen. This is done
by selecting the WINDOW command and establishing a point on
the display that is to be moved to the center. An asterisk
will appear on the drawing at that point (the S02 gate at
the right of the drawing).

3-16

<UN'IAl'£0>.LOGIC. l. l

>
40P

: CL O

GRID 0. l 5 USER.~t<

. 23P

i---+------t------ir PR 0

Sll2

22P

34P

Graphics Editor
Reference Manual

20P

+·
:502

HELP

ClACU:

VEASlON

GROLP

SPL[T

COP'I'

DELETE

HOV£

WIRE

WINDOW

;

9IGNAl1E

CHANCE

PROPOn"Y

DOT

GRID

Figure 19. Panning with the WINDOW command

As will be seen later, the WINDOW command may have a
variable number of arguments. In the above example, a
single argument was used (the point that is to be used as
the new center point for the display). Since the WINDOW
command may be expecting more arguments, the end of the
argument list must be indicated. This is done by selecting
the semicolon on the menu. The WINDow·command, having
received a single argument, interprets that command and
redraws the display as shown in Figure 20.

3-17

Graphics Editor
Reference Manual

<UNNAMEO>.t..OGIC.1.1

23P

S!lO

GRID 1!1.1 S USl:A. WAI<

!9P

vcc

20P
38P

K CL 0
:50a

Figure 20. Panning completed

HELP

CIACI.£

VERSION

-
llP\.11"·

COPY

DEL.£TE

ltOVE

WIRE

WINDOW

nor

CRlD

Another variation of the WINDOW command that uses a
single argument is the one that fills the screen with all of
the information that is contained on that particular
drawing. For example, if one is.working with a B-size
drawing (11" x 17"), then it would be very convenient to
display that entire drawing at a somewhat reduced scale on
the CRT. This is done by selecting the WINDOW command on
the menu (if it has not already been done), typing.the
letter "F" on the keyboard, and either depressing the return
key on the keyboard or selecting the semicolon on the menu.
The Graphics Editor then examines the entire page and
adjusts both the windowing scale factor and the window
position such that all information is displayed on the CRT.
The result is as shown in Figure 21.

3-18

<l..K'l'".afif1C:0>.LOG1C. l-1

L=:=-' , .. __ .. ,..... _....,. .. __ -·----____ .. _.
...,._ .. _ ... -.. --··--

GR!D fl. 1 '.:>

Graphics Editor
Reference Manual

SPLIT

COPY

DELETE

MOVE

::.:.· -··· ..._ __________________ _
WIRE

e1v111 •• • c°"""" WINDOW

SIGNfV"E

~

PROERTY

OOT

·-·

Figure 21. Display filled with a B-size drawing

A third use of the WINDOW command lets you define a
rectangular area that he wishes to display on the CRT. The
rectangular area that will be enlarged to fill the screen is
defined by establishing two points on the diagonal of the
rectangle. This is done .by selecting the WINDOW command,
positioning the cursor at one corner of the rectangular
area, pressing the yellow button, moving the cursor to the
opposite corner of the rectangular area, and pressing the
yellow button again. The result shown in Figure 22 is a
pair of asterisks at the appropriate points on the display.
The WINDOW command is then terminated by selecting the
semicolon on the menu and pressing the yellow button.
Figure 23 shows the drawing after it has been redrawn.

3-19

Graphics Editor
Reference Manual

<Ul'f'..,:V1E.O>.LOGJC. 1. l

I I_-..... ·---·-· __ _ -----... -.. _ _ --... -

Figure 22.

<~D>.LOGIC. 1.1

Figure 23.

GR!O 0. J 5

HELP

CIRCLE

~QSION

COPY

DEU:TE

11()4,.£

WIRE

WINDOW

SIGNAl'E

01FoNGE

CN•

PQOEATY

, OOT
I

Gl>ID

Region to be displayed has been selected

GR!O 0. J 5

HELP

CIQCLE

DIVIDE BY 5 COUNTER ~"5ION

' GQOUP

'si>LIT

COPY

DELETE

11()4,.£

WIRE:

•um.1•·~

WINDOW

SIGl'W£

01FoNGE

l..IDC~).

1• .. PQOEQTY

..c.os~ •l~ ::;3 OOT

Gl>ID

Display re-drawn, showing the desired region

3-20

Graphics Editor
Reference Manual

The final use of the WINDOW command allows you to
specify a center point and a scaling ratio so that panning
and scaling may be done simultaneously. This is done by
selecting WINDOW on the menu, selecting a center point (with
the cursor and yellow button), selecting a first distance by
placing an asterisk the appropriate distance away from the
center point in any direction, and finally, by selecting a
second distance by placing a third asterisk. Figure 24
shows the distances that were selected in this example.

<U!'f'u.ir1C:O>. LOGIC. I. l GR!D e. l ':,',

CIRCLE:

DIVIDE BY 5 COUNTER VEWSION

" I GROUP

SPLIT

COPY

DELETE

MOVE:

WIRE

•vc:a,,r • WlN[)()&.,I

SIGNAr"I!:

CHF.NGE:

"'9D<I) • ---
PROCRTY

oor
~ .. •14 m.1:

~;::o

Figure 24. Simultaneous panning and scaling

Since the maximum number of· arguments that may be given
to the WINDOW command is three, the command is automatically
executed upon pressing the yellow button the third time.
The result of this operation is shown in Figure 25.

3-21

Graphics Editor
Reference Manual

<Ut-.-~D>.L.OGIC. t.1

.36P

SlP
vcc

35P

GR!D O. 1 '.-,

27P

see

r· Pi:(a

5112

40P
K CL Q

26P

500

USl~. WRI<

HELP

· CIRCLE

VERSION

&:.

5PL.IT

!100
COPY'

DELCTE

MOU':

+ WIRE

WINDOW

SIGNAME

2.'.2P

34P
500 i oor

Gl'ID

Figure 25. Result of the WINDOW operation

As was the case with the MOVE command described above,
it is not necessary to reselect the WINDOW command on the
menu if it is already highlighted. This is generally the
case with sequences of commands; once the command has been
selected, it need not be reselected to execute the command
again.

GRID

The Graphics Editor uses a grid to define where an
object may be placed. The grid makes it easy to create
drawings that are pleasing to the eye. If the grid is too
fine (the spacing is very small), then it is difficult to
space objects uniformly and to draw wires that are
horizontal or vertical. On the other hand, if the grid is
too coarse, then it will be impossible to move objects or
wires as close to one another as might be desired.

The grid used by the Graphics Editor is specified in
terms of inches on the final drawing.

3-22

Graphics Editor
Reference Manual

The grid does not ref er to size on the CRT display
since the you may wish to make the drawing appear larger or
smaller on the display. When this is done (using the WINDOW
command), the grid scales with the drawing. In other words,
things that are placed on a 0.1 inch grid will appear
separated by precisely that distance on the final print
regardless of the scale that was in effect at the time that
drawing was viewed on the CRT.

It is frequently desirable to have the grid displayed
on the CRT along with the drawing. If a 1/10 inch grid was
being used and if every grid line was displayed, then the
drawing would appear as shown in Figure 26. This causes too
much clutter on the display; it would be preferable to
show, say, every fifth grid line and to leave the remaining
lines invisible. The result is shown in Figure 27.

cUl"•K-4MC:O>.LOC.1(. t .. J GA!O O. l '5

HELP

CIRCLE:

OOT

Figure 26. Fine grid displayed

3-23

Graphics Editor
Reference Manual

OGJ('". l. l

-

~
"=-r..r:-'~~

-
.-.. l

GR!O O. 1 .• 1_1~.1 ;~.""QI(

--

:

'

-:;:;:-;:;
y

.--
HELP
1---

CIRCLE:

.I---
VEkSIOU

II--

GROUP

·- SPL..lT

CoPY

I---
OCLCTC

""~

WIRE:

WINO()l..I

;

I---
5IGNA'1E

°'""Cl£:
I---

PROE:RTY

IY.)T

1----1
~ID

~

Figure 27. Normal grid for logic drawings

The default grid for logic drawings is a hidden grid
line every 0.1 inch and a visible grid line every 0.5
inches. The grid spacing may be changed by typing the
command

GRID spacing display ;
For example, if one wishes to change the grid from the
default to show every other grid line, one might type on the
keyboard:

GRID 0.1 2 ;
This will cause a visible grid line to appear every other
hidden grid line or five per inch, as is shown in Figure 28.

We have found that a 0.1 inch grid is the optimal size
for logic drawings and a 0.05 inch grid is the optimal size
for body drawings where more detail is needed. If the grid
size in logic drawings is altered, it is difficult to later
connect wires to devices. To see the effects of a coarse
grid, we may attempt to place a wire from one point to
another with the grid set to 0.5. Note that it is very easy
to draw horizontal and vertical lines, but we cannot draw
lines that are very close to one another. An attempt to
position one end of a line off the grid (Figure 29) will
cause it to snap to the nearest grid point (intersection of
grid lines) as shown in Figure 30.

3-24

< Ut•K~1ED>. LOG I(. I. I GR!O O. I ll':-.l.I~. hQK

r'P'-T~
:.:::"7"'~.,,,....---

.. -: J ~OO>: r
r""

Graphics Editor
Reference Manual

,..----

t£LP
~
CIACl.£

~
-k.E:A5tON

I---
GR'lUP

f----i
SPLIT

COPY

ocu:n:
1----1
l10VC

1----1
WIRE

WINDOW

;

51GNAME:

·1---
'~
1--

PROEATY

•f----r ; OOT

·1--
I GO'ID

~L-

Figure 28. Coarse grid displayed

LOGIC I. l GR!D O. I ~ 1~U~.t..'RK .-----,

t£LP
1----1
ClACLE
1--
vt:RSIOH

:+ GROUP

SPLIT

COPY

ocu:n:

l10VC

WIRE

WINDOW

;

51GNAME:

~=--=----- 1 ~W>l r I I : O<ANGE ---------·-... _._,_,,..__ • ~
....

• :-.:: --1. T .-:
PROCATY

~
,OOT

1:...-
:GO'ID
•L_

Figure 29. Positioning a wire

3-25

Graphics Editor
Reference Manual

<IHR1!:0 >.l..OGIC. l. l

·-=:=--~
____ .. _........,. __
... ~--.:..-----

• ..l_ .

GRID e.1 5 USOI."""

~

I ~[D)l [

:I I

.----
HELP
I-
ClAC:LE

I-
UEIHllON

I I-
CAOU'

-.n
I-
COPY

I-
ll£LETE -1---
WIAIC

I---
WINDOW

11------i
or.......:

1---
°""""'
pc;;.)ll[ATY

I ::t_ aor

I-
Gq:.,
'----

Figure 30. Wire snapped to nearest grid intersection

The use of arbitrary grids should be avoided. It is
best to use the default grids exclusively until you are more
familiar with the effects of other grid settings.

As a final note on the use of grids, it may be
desirable to use a dot grid instead of a line grid. To do
this, type:

GRID DOTS ON

3.3 EDITOR PRIMITIVES AND VERTICES

All SCALD drawings are constructed from seven
primitives: bodies, wires, signal names, dots, arcs, notes,
and properties. Each of these items refers to one or more
vertices. They all use one vertex each except for lines
which use two and bodies which have one vertex to ref er to
the body itself and one for each pin. The vertex is
normally used to select an object.

Figures 31 through 38 show examples of each of these
primitives with the corresponding vertices indicated by
arrows. Note that the vertex for any string of text (signal
name, note, or property) is at the lower left hand corner of

3-26

Graphics Editor
Reference Manual

that string. This is the default position for the vertex of
a text string and cannot be changed.

In the discussion of commands above, there was no
reference made to vertices; the commands were described in
an intuitive manner. In the formal description of each
command, the function of those commands will be described in
terms of vertices.

GRID 0. 1 5 USER.WQK

1-ELP

CIRCLE

VERSION

GROUP

SPLIT

COPY

DELETE

MOUE

WIRE

WINDOW

;

SIGNAME

+ CHANGE

PROERTY

DOT

GRID

Figure 31. Body -- vertices at center and at pins

3-27

Graphics Editor
Reference Manual

Figure 32.

Figure 33.

GRID 0. 1 5 use:~. WQK

HELP

CIRCLE:

VE:"15ION

GROUP

COPY

OCLE:TE

WIRE

WINDO'..r

5IGNAME

CHANGE.

PROERTY

oor

Wire -- vertices at each end and corner

GRID 0. 1 5

HELP

CIRCLE

VE:RSION

GROUP

SPLIT

CLOCK ENABLE

---"I >---
COPY

OCLETE

MOUE

WIRE

WlNDO'..,

SIGNAi'£

CHF'.NGE

PROEPTY

oor

GRID

Signal name -- vertex at lower left corner

3-28

Figure 35.

GRID 0. 1 5

<}Jo

Figure 34. Dot

GRID 0. 1 5

Graphics Editor
Reference Manual

H!:LP

CIRCLE

VERSION

Gl><lUP

SPLIT

COPY

DELETE

MOVE

WIRE

WINDOW

SIGNf'V-£

CHANGE

PROEATY

OOT

GRID

vertex at center

USER. W'>K

CIRCLE

VERSION

GROUP

SPLIT

COPY

DELETE

HOVE

WIRE

WINDOW

SIGNl'1HE

PROERTY

OOT

GRID

Circle (360 degree arc) -- vertex at center

3-29

Graphics Editor
Reference Manual

GRID 0. I 5 USCR.WRI<

HCLP

CIRCLE:

Vl:RSION

GROUP

SPLIT

COPY

lll:LCTI:

WIRE:

WINDOW

SIGNAi'£

PROERTY

OOT

GRID

Figure 36. Arc -- vertex at center

<~D;.LO(ilC.1.1 GR!D 0. J 5 USER.WRK

HCLP

CIRCLE:

Vl:RSION

GROUP

SPLIT

COPY

lll:Ll:TI:

THE PURPOSE Or THIS CIRCLHOU£
WIRE:

+ WINDOW

SIGNA"E

CHANG£

PROERTY

OOT

GRID

Figure 37. Note -- vertex at lower left corner (default)

3-30

<~AME:O>.LOGIC.1.1

Figure 38.

GRID 0. l S USE:R. WRI<

5IZE=4B

0

Graphics Editor
Reference Manual

CIQCLE

UERSION

GROUP

SPLIT

COPY

DELETE"

WIRE

WIN[)Ol.ol

5IGNAt£

CH""'lE

DOT

E:OtT

Property -- vertex at lower left corner

3-31

Graphics Editor
Reference Manual

3.4 CURSOR AND CURSOR BUTTONS

When one of the cursor buttons on the puck is pressed,
the coordinates of a point on the drawing are reported to
the Graphics Editor. This is the normal mechanism for
indicating "points" to. the Graphics Edi tor commands. The
interpretation of the point depends both on the position of
the cursor when the button was pressed and the particular
button (of the four) that was pressed.

Figure 39 shows how the SCALD Graphics Editor
interprets the use of the four different cursor buttons.
The yellow and white buttons always use the nearest grid
intersection as the point for the operation being performed.
The green and blue buttons, on the other hand, always refer
to the nearest vertex.

Wh1tQ and green buttons
toggle betweQn orthogonal
and diagonal wire
representat1ons.

White and green buttons
a I :so operate on groups ..

Figure 39.

Yellow button operates
on nearest gr1d
1ntersec:t1on.

Blue button operates on
nearest vertex.

YQI low and blue buttons
operate on 1nd1v1dual
objects.

Cursor control buttons

For example, if a wire is being added and the yellow
button is used to start that wire, then the Graphics Editor
will place the start of that wire at the grid intersection
nearest to the cursor (Figure 40).

3-32

Figure 40.

GRID 0. 1 5 USER.WRK

0

'

•- a ..,.
L_.

.,.
s ..a..

][-
• ..M.. .-
1.•

.. "!""
• u...._ --

-....-

,_._
""'

,

Graphics Editor
Reference Manual

:
0-CLP

icIRCLE

VERSION

GRouP

SPLIT

COPY

DELETE

• MOVE
WIRE

WINDOW

;

---_J.2 SIGNAME: - CHANGE

PROERTY

OOT

GRID

Starting a wire -- nearest grid intersection

Frequently, you wish to start a wire on another vertex.
By using the blue button in precisely the same way that the
yellow button was used above, the start of that wire will
snap to the nearest vertex (Figure 41).

3-33

Graphics Editor
Reference Manual

<U1'«~11::v1e:n). LOGIC. 1. l

1

Figure 41.

GRID 0. ! 5 USCR.WRK .--

~

ICIRCl.E

VERSION

3 4 I---
GROUP
1---
SJ:IL.IT

I---
2 COPY

1-----1
IEU:TE:

5 H-1 7 8 MOUE

~ wr...:
1-----1

WINDOW

9_,.,_ I---...,,,.

1~ _J2
~

...,,,. SIOl'-IAl"E

I---
6 1_1_

CHANGE,...
I--

PROPERTY
-

DOT

EDIT
'----

Starting a wire -- nearest vertex

The white and green buttons are used when placing the
succeeding points of a wire and are used to fix the
direction of wire. Figure 42 shows a NAND gate and a
FLIP-FLOP that are to be wired from point A to point B. The
wire is started by placing the cross hair cursor at A and
pressing the blue button. This attaches the beginning of
the wire to the nearest vertex (the output pin of the NAND).
The cursor is then moved to point Y. No matter how the puck
is moved, diagonally, horizontally or vertically, the
resulting wire is always fixed in, the horizontal direction.
At this point, if the yellow button is pressed, the wire
will end at the nearest grid intersection (point Y) and a
new segment of the wire can be started• However, Figure 43
shows that if the white or green button is pressed instead
of the yellow button, the wire becomes fixed in the vertical
direction and the direction of the bend also changes.
Again, the wire can be put down at Y by pressing the yellow
button. If, instead of putting the wire down, the white
button is pressed again, the wire becomes diagonal or mobile
in both the horizontal and vertical directions (Figure 44).
Figure 45 shows that a fourth press of the white button
refixes the wire in the horizontal direction.

3-34

<L.NlilAl"ED>. 1...0GIC. 1 .. 1 GRID e. ! 5

Graphics Editor
Reference Manual

CIACL.E

VEi:ISION

SPLIT

COPY

DEU:TE:

WIRE:

WINDOW

SIGNAl'E

DOT

COIT

Figure 42. Starting ~ wire fixed in the horizontal direction

GRID e. ! 5 USCR.WRK

CIACU:

!IPl..IT

DEU:TE:

WIRE

WINDOW

SIGNAi£

DOT

EDIT

Figure 43. Pressing the white button fixes the wire in the
vertical direction

3-35

Graphics Editor
Reference Manual

<Ut+IAMED>. t.OGIC. L 1 GRID 0.1 5

HELP

CIRCLE

VERSION

GROUP

SPLIT

COPY

DEU:TC

WIRE

WINDOW

SIGNAME

CHANGE

DOT

EDIT

Figure 44. Pressing the white button again makes the wire
diagonal

3-36

<U~0>.1..01:iIC. ! • .l GRID 0. l 5 USE:R. WRt<

Graphics Editor
Reference Manual

HEL.P

CIRCLE

t..E:RSION

GROUP

SPLIT

COPY

DEl..E:TE:

WIRE

WINDOW

CH...CZ

DOT

EDIT

Figure 45. Another press puts the wire back in the horizontal
direction

To finish connection point A to point B, place the wire
down at Y using the yellow butto~. Then move the cursor to
point B (Figure 46). To change the direction of the wire,
press the white button and then snap to the FLIP-FLOP clock
pin at B (the nearest vertex) by pressing the blue button.
The result is shown in Figure 47.

3-37

Graphics Editor
Reference Manual

<U~0>.1...0GIC. l.1

A

GRID 0.1 S USER.WRK

y

>£LP

CIRCLE

VERSION

GROUP

SPLIT

COPY

DELETE

WINDOW

SIGNAME

DOT

EDIT

Figure 46. To finish the connection, move the cursor to point B

<Ul"l"4AME:D>. L..OGIC. l. 1

Figure 47.
and place

GRID 0. 1 5 USER.Lo.IRK

>£LP

CIRCLE

VERSION

GRQJP

SPLIT

COPY
B

y DELETE

MOVE:

WIRE

WINDOW

SIGNFl"C

CHRNGE

DOT

EDIT

Redirect the wire with the white button
the wire down with the blue button.

3-38

Graphics Editor
Reference Manual

When ending a wire that does not terminate on a pin,
the use of the blue button makes it convenient to generate
the zero-length segment required to terminate a wire; the
cursor need only be moved close to the ending vertex and the
blue button pressed.

The remaining distinction between the white and green
buttons and their counterparts, yellow and blue, involves
operations on groups. If a group has been defined (See
GROUP command) and if a group operation is permissible
(MOVE, COPY, DELETE), then the white or green button may be
used to operate on the group where as the yellow or blue
button operates on individual objects or points.

3.5 DRAWING NAMES

The drawing name is used to identify logic drawings and
bodies. Drawing names are of the form

name.type.version.page
The first part of the drawing name is the user-defined
identification of the drawing. In general, "name" describes
the intended function of the object. Some examples are:

ANSI DISK CONTROLLER
32 BIT ALU
LS112
10109
HIGH-SPEED RAM

Note that the name is not restricted to short alphabetic
identifiers; it may be up to 255 characters long and may
contain any printing ASCII character except ".".

The second part of a drawing name, "type", identifies
the particular type of drawing. The SCALD III language
requires that each piece of a design, that is, each macro,
be represented by a body drawing and a logic drawing. The
former describes what the item looks like when it appears on
a schematic; the latter describe,s how it is implemented.

Since there are two types of drawings in SCALD III,
there are two permissible extensions to the drawing name:

BODY
LOGIC

If the extension is not specified then the Graphics Editor
will use "LOGIC" as the default. Consequently, typing:

EDIT 32 BIT ALU
would have the same effect as typing:

EDIT 32 BIT ALU.LOGIC

The next field, "version", is used to identify
different versions of a drawing. Generally, you need only
concern yourself with drawings that have just one version.
There are, however, two cases where versions are of

3-39

Graphics Editor
Reference Manual

interest.

In the first case, one may wish to have several
different versions of a body. For example, a NAND gate has
two representations that the designer may use (Figures 45
and 46). In this example, one of the body drawings is
called

LSOO.BODY.l.
and the other is called

LSOO.BODY.2
The use of the different versions of a body will be
described below under the "VERSION" command.

<U~AMED>. LOGIC. 1. l GRID 0. l 5

Figure 48. LSOO body

3-40

C:i:~L£:.

k'EQS:c....: \
!----'
1~CU1:J i

W!~

WI~O:.o= . ,_____,

LJ
Is=~~,,,.,!'.;

version 1

<UN\IAME:O>. l..OGIC. l. 1 GRID eJ, 1 S USE~.wRK

~

Graphics Editor
Reference Manual

t-!E:t..P

CT~1-E

VERSIO"' i
GROUP

SP;.. Ir

COPY

OCLE'!"E

MOVE

wt...:

Wl'l!JOW

Sl~;:llM!:

CM~GE

l=~oPCRT

loor

~

Figure 49. LSOO body -- version 2

The second case where versions of drawings are of
interest has to do with the use of select-expressions within
a macro (see: SCALD III Language Reference Manual). If the
designer wishes to create a macro that is different
depending on the value of a' parameter that is passed to that
macro, then there will be more than one version of that
logic drawing.

If the version is not specified, then the Graphics
Editor will assume the default v,rsion-number 11 1".

The final field, <page), is used to create drawings
that extend over more than one page. This is useful in the
case where the amount of logic required to define a
particular macro will not fit on a single page.

The default value of <page) is "1".

3-41

·Graphics Editor
Reference Manual

Table 1 shows some examples of drawing names as typed by you
and the fully expanded names assumed by the Graphics Editor.

I===

In the context of EDITing or WRITEing a drawing:

I User types: System assumes: I
---!

32 BIT ALU
NAND.BODY
REGISTER •• 2
MUX BOX ••• 4

32 BIT ALU.LOGIC.1.1
NAND.BODY.1.1
REGISTER.LOGIC.2.1
MUX BOX.LOGIC.1.4

================================·========================
In the context of ADDing a body:

NAND
LSOO •• 2

NAND.BODY.1.1
LSOO.BODY.2

================a==

3-42

Graphics Editor
Command Summary

Graphics Editor Command Summary

3.6 INTRODUCTION

Commands are issued to the Graphics Editor either from
the keyboard or from the graphics tablet or both. Commands
consist of a command name followed by zero or more operands
and zero or more points.

The command syntax may be described by the following:

command name [operands •••] [points •••]

In this representation, lower case words are variables to be
replaced by the appropriate value. For example, the command
to add a NAND gate to a specific point would be issued by
typing

ADD NAND
and indicating the desired point with the puck and cursor
control buttons.

The command name may be specified either by selecting
the appropriate command on the menu with the cursor and
pressing one of the cursor control buttons, or by typing the
command name on the keyboard. Operands, where they are
appropriate, are specified from the keyboard. Points may be
specified either with the cursor and the cursor control
buttons or by typing

(x integer y integer)
The range of-the x and-y integers is -16384 to +16383.

Some commands have a fixed number of arguments
(operands and points). For example, the EDIT command has
only one operand, the drawing name. More frequently,
however, commands may have a variable number of arguments.
An example of the latter is the NOTE command; it may have
an unlimited number of operand-point pairs as arguments.

In order to represent optional arguments in a command
syntax description, the following conventions are used:

1. Wl\en fields are enclosed in brackets, "[]", one of
the fields may be specified.

2. If fields are enclosed in braces, "{}", one of the
fields must be specified.

3-43

Graphics Editor
Command Summary

3. The use of ellipsi's, ·" ••• ", indicates that the
preceding may be r•peated any number of times.

4. If a sequence of items is enclosed in parentheses,
''()", followed by ellipsis, the enclosed sequence may be
repeated any number of times •

. s. Choices are indicated by stacking:
{A}
{B}

means that either "A" or "B" may be entered.

6. If a field has a default value, it is shown by being
underlined.

For example,
command [arg]

m~ans that an appropriate argument may be used but is not
required. ·When a choice is available but one must be
chosen, then the choices are listed one over the other,
enclosed in braces:

·· · ·,command {arg 1}
{arg 2}
{arg 3}

Commands may·be classified into several categories,
dep~ndtng on the oper•tion performed:

-File *anipulation commarids
DIRECTORY
DIAGRAM
EDIT

"FILENOTE
FORMAT
GET
IGNORE

•· LIBRARY
REMOVE
RETURN
SCRIPT
USE
WRITE

3-44

/

-Commands to add items
ADD
AUTO
CIRCLE
COPY
DOT
NOTE
PROPERTY
SIGN AME
WIRE
PASTE

-Commands to modify items
BUBBLE
CHANGE
DELETE
DISPLAY
MOVE
REPLACE
ROTATE
VERSION
SPLIT
SWAP

-Display modification commands
GRID
SHOW
WINDOW

-group manipulation commands
COPY
DELETE
DISPLAY
GROUP
MOVE
CUT
PASTE

-Miscellaneous commands
ASSIGN
BACKANNOTATE
CHECK
ERROR
FILENOTE
FIND
FORMAT
HARD COPY
HELP
MIRROR
NEXT
PINSWAP
QUIT
REDO

3-45

Graphics Editor
Command Summary

Graphics Editor
Command Summary

SCALE
SECTION
SHOW
SET
UNDO
VECTORIZE

These commands are described in the following sections.

3-46

3.7 COMMANDS

ADd I [(directory>]body.name[.[type][.[version]]]
- . BODY 1

Graphics Editor
Command Summary

point •••

The ADD command is used to add bodies to logic
drawings. The body name refers to the name of the body
drawing which is to-be added. The type may be sp~cified,
but is not required; since adding a logic drawing to
another drawing is not permitted, the drawing type always
defaults to BODY. The version defaults to ''1", but any
version of a body may be added provided, of course, that it
exists. If no directory is specified, each SCALD directory
in the list is searched until the device with name body_name
is found.

If an attempt is made to add a body that does not
exist, then the message:

body name type WITH VERSION version DOES NOT EXIST
will be displayed.

Once the body has been added to the drawing, additional
copies can also be added by picking up a copy of the body by
pressing the yellow cursor button and then placing it down
in the desired place by pre~sing the button again.

Because the Compiler doesn't allow time or simulator
devices in logic drawings, time and sim devices cannot be
added to logic drawings. Similarly, sim devices cannot be
added to time drawings, etc. The command ''DIR<*>" will
tell whether any of the SCALD directories in your list are
of the wrong type for the currently edited drawing (e.g.
using the TIME library when editing a LOGIC drawing). If
you try to ADD a body from an illegal library, then the
message "Device X is not legal in this drawing'' will be
displayed.

To substitute one body for another, see the REPLACE
command.

3-47

Graphics Editor
Command Summary

ASsign key quoted-string

The ASSIGN command assigns a text string, contained in
quotes, to a function key. The special key must be tine of
the program function keys (LF2 - LF9, RF1· - RF12 and TFl -
TF6). The text string may be any text of less than 60
characters. For example, to assign LF6 to "DIS 2.0", type:

ASSIGN (press LF6 key) "DIS 2.0"
After an assign, pressing the function key is identical to
typing in the string. A RETURN is always appended to the
end of the assigned string. You should not reassign the
keys defined for the SCALDsystem (LFl, LFlO, LFll and LF12).
The current assignments can be displayed with the SHOW KEYS
command.

The default values for the function keys is in
/uO/editor/softkeyassign. The entties are similar to using
the ASSIGN command in the Graphics Editor, but instead of a
key press, the actual value pf the key is given. For the
example using LF6 above, the entry in the file would be

ASSIGN -@ "DIS 2.0"
Keys are assigned these default values when the Graphics
Editor is invoked. Users can define their own softkeys by
putting ASSIGN statements thei~ startup.ged files. The
values for all special keys are given in the table on the
next page.

3-48

(SUPER) (HYPER)

ALONE LFlO LFll
LF2 -@1 -n1 -H!
LF3 -@" -n" -H"
LF4 -@n -nu -H#
LFS -@$ -n$ -H$
LF6 -@% -n% -H%
LF7 -@& -n& -H&
LFS -@' -n' -H'
LF9 -@c -nc -H(
TFl -@s -ns -Hs
TF2 -@9 -n9 -H9
TF3 -@: -n: -H:
TF4 -@; -n; -H;
TFS -@< -n< -H<
TF6 -@= -n= -H=
RFl -@' -n, -H,
RF2 -@- -n- -H-
RF3 -@. -n. -H.
RF4 -@1 -n/ -H/
RFS -@o -no -Ho
RF6 -@1 -01 -Hl
RF7 -@2 -02 -H2
RFS -@3 -n3 -H3
RF9 -@4 -04 -H4
RFlO -@s -ns -Hs
RFll -@6 -n6 -H6
RF12 -@7 -07 -H7

3-49

(META)

LF12 CONTROL
-p1 -B!
-p" -B"
-pg -B#
-p$ -B$
-p% -B%
-p& -B&
-p' -B'
-p(-B(
-pg -BS
-p9 -B9
-p: -B:
-p; -B;
-p(-B<
-p= -B=
-p, -B,
-p- -B-
-p. -B.
-p/ -B/
-po -Bo
-p1 -Bl
-p2 -s2
-p3 -B3
-p4 -B4
-ps -BS
-p6 -B6
-p7 -B7

Graphics Editor
Command Summary

SHIFT
-A!
-A"
-A#
-A$
-A%
-A&
-A'
-A(
-As
-A9
-A:
-A;
-A<
-A=
-A,
-A-
-A.
-A/
-Ao
-Al
-A2
-A3
-A4
-As
-A6
-A7

Graphics Editor
Command Summary

AU to { Path }
{ Dots }

---~------------

The AUTO command is used to automatically assign
certain objects to drawings. The PATH option assigns a PATH
property to each body on a drawing. Each body is examined
to make sure that it does not already have a PATH property
and th.at it is not a "special" body. (Special bodies are
those bodies that have special meaning to the SCALDsystem.)
Each remaining body is then assigned a property "PATH = nP"
where n is a unique integer. For each device on the
drawing, AUTO PATH places the property directly over any
visible body property closest to the body origin.

The use of the PATH option makes it unnecessary for the
user t-0 manually assign the PATH property to each body. The
use of the PATH property by the SCALDsystem is described in
the SCALD III Language Reference Manual.

If a librarian wishes to place a the PATH property on a
device.when defining the body., the property "PATH= ?P" can
be added to the body definition. The "?" acts as a place
holder so that when the body' is added to a drawing, the
AUTOPATH command replaces the "?" with a number.

Whenever a drawing is written, it is automatically auto
pathed. When bodies are copied, the path property is not
copied.

The DOTS option places a dot at each connection point
in the current drawing. The user has the option of having
these dots displayed in an open ~r filled mode. This option
is specified with the SET command.

3-50

Graphics Editor
Command Summary

--
BAckannotate

--
The BACKANNOTATE command allows you to annotate your

designs with information from the Packager. The Graphics
Editor reads a schematics annotation file produced by the
Packager. To generate a back annotation file for the
Graphics Editor, use the following Packager directive when
running the Packager:

output backannotation;
You have the option of backannotating location designators,
pin numbers, and physical net names. The backannotation
file generated by the Packager, pstback.dat, must be renamed
to backann.cmd for the Graphics Editor.

After creating the file backann.cmd, start up the
Graphics Editor and type the command BACKANNOTATE. The file
backann.cmd must be in the current UNIX directory. The
Graphics Editor reads the file, edits each named drawing in
turn, adds the appropriate physical information and finally
writes the drawing.

The annotated properties added by the Graphics Editor
are "soft" properties. This means that the property names
begin with $ (e.g. $LOCATION) and are not written into the
connectivity file. By not including them in the annotated
properties, the Packager can reassign the physical
information when it is run again~ In addition, soft
properties can only be moved or deleted, not changed or
added. To make a soft property a hard property, simply add
the same property name, minus the $ (e.g. if a component
has a $LOCATION property, add a LOCATION property).

The PN (pin number) property is special to the Graphics
Editor and cannot be added to any part on a drawing.
However, PN placeholders can be incorporated into device
definitions just as PATH property placeholders. The PN
property with the value '?' can be attached to the pin when
defining the body. This placeholder is just a location and
size indicator; when the pin on the instance of the device
is backannotated, GED looks to see if there is a PN property
on the pin and replaces it with the $PN property at the same
location. Unlike the PATH placeholder, when the device is
added to a drawing, the PN property does not appear (this is
true of all pin properties on device definitions).
Additionally, if the PN property on the pin has a value of
'?', the property is not written into the connectivity file.

3-51

Graphics Editor
Command Summary

BUbble point •• ~

The BUBBLE command permits you to change the state of a
pin from "bubbled" to ''unbubbled" and visa-versa, provided
that the body has been defined to permit this conversion.

For example, an inverting buffer may be drawn with the
bubble either on the input or the output pin (but not both).
If, in the definition of the body, the pins were established
as part of a BUBBLE GROUP, then the BUBBLE command may be
used to convert the-body from one form to another •.
Inst~uctions for defining bubble groups follows this Command
Summary in a section titled, "Defining Bubble Groups in the
Graphics Editor."

3-52

CHAnge point •••

Graphics Editor
Command Summary

The CHAnge command invokes an editor to alter text
strings. The text strings indicated can be edited using the
line editor or the UNIX screen-oriented editor VI. While
simple changes can be made with the line editor, VI is
preferable for editing many lines of text.

The Line Editor

The text string selected is displayed in the bottom
left side of the CRT above the input line. The text strings
are chosen with the puck and are altered with control keys.
As many strings as necessary can be indicated at one time,
and each one is edited in turn.

The line editor uses a vertical-line cursor; the
cursor may be moved by typing any of the following
control-key combinations:

o control-F to move forward one character,

o control-B to move back one character,

o control-E to move to the end of the line,

o control-A to move to the beginning of the line.

To delete a character, position the vertical-line cursor
just to the lef~ of the character and type:

o control-D to delete one character, and

o control-K to delete the remainder of the line.

To search for specific characters in the text, use:

o control-S to search to the right of the cursor's
position.

Type the character being searched for and a carriage return
immediately after typing control-S.

o control-R to search to the left of the cursor's
position.

3-53

Graphics Editor
Command Summary

Again, type the character being searched for and a carriage
return immediately after typing control-R. Both of these
commands are case sensitive ('n' is not the same as 'N').

To repeat a command a given number of times, type:

o control-U [number] command

For example,
characters.

typing "control-U 6 control-D" deletes six
If no number is given, the default is four.

To insert text to the right of the cursor, simply type
the characters to be inserted, followed by the return key.
If the character to the right of the cursor is to be deleted
at the same time that one or more characters is to be
inserted, then the user has the option of typing control-D
rather than the return key.

To reposition the text after it has been modified,
type:

o control-X to exit from the line editor.

It is necessary to exit from the line editor in order to
execute Graphics Editor commands. As explained above,
cont rol-X qui ts the text editor; in addition, the re are two
other ways to quit the editor:

o Pointing to another piece of text repositions the
current text and edit the new piece of text.

o Control-Z aborts any changes to the text currently in
the edit line and repositions the original back onto the
drawing. The use of control-Z within the line editor
overrides its usual function for job control.

The help file for the line editor may be displayed while in
line-edit mode by typing:

o control-I for immediate help.

The VIsual Editor

Those who are new to VI may find it helpful to create
command files with the line editor; those who have used Vt
in the C-shell may prefer to use VI because it is a
full-screen editor. While in VI, the user will not be able
to use the puck or the SCALDsystem softkeys~

3-54

\.

Graphics Editor
Command Summary

To invoke VI, type control-V. Then, using VI commands,
edit the strings. Lines can be lengthened, shorted and
moved. VI has separate documentation in a chapter in the
UNIX Manual. Those who are new to the editor should bear in
mind that the program has two modes, one for commands and
the other for text entry. A carriage return, for example,
does not open a line for new text unless the user is in the
insert mode. The insert mode is entered by typing either i
for insert, a for append, o for opening a line below the
current line, or 0 for opening a line above the current
line.

When the user exits from VI, the changes are put into
the drawing. To exit from VI, type either of the following
commands:

o :wq

0 zz

It is possible to exit and abandon all changes by typing :q!
while in the command mode.

To protect users from making illegal changes to
properties, the strings are labeled. Properties are labeled
with !PROP (for user-added properties) and !DEF (for default
or body properties). Both the name and value are given for
that property string. If a default name is changed, the old
name is replaced after exiting VI.

Lines added to the end of the list of strings are made
into notes and added, consecutively, in one-grid-space
increments after the last item in the list. If lines are
deleted while in VI, the last set of notes and properties in
the list are not changed.

3-54A

Graphics Editor
Command Summary

This page has intentionally been left blank.

3-54B

CHEck

Graphics Editor
Command Summary

The CHECK command checks a drawing for several problems
which are difficult to see but will result in compile
errors. These include: ·

1. Wires which are connected, but which do not appear to be
connected

2. Pins attached to more than 2 wire segments

3. Two identical components in the same place

4. Wires connected to only one pin and not named (NC wires)

5. Nets that are named but not connected to any pins

All of the parts in a drawing are also checked for path
properties. If any errors are detected, they are reported
and their location is saved. You can step through the
errors with the ERROR command.

3-55

Graphics Editor
Command Summary

Circle (center_point radius_point [arc_point]) •••

The CIRCLE command is used to place both circles and
arcs. To place a circle on the drawing, the first point is
used to defini the center and the second point, the radius.
As soon as the second has been specified, the circle will
appear.

The use of circles and arcs is rarely necessary on
logic drawings. Both, however, are commonly used when
creating body drawings.

An arc is defined by a center, a radius, and starting
and ending angles. To draw an arc, use the CIRCLE command
followed by a center point:

*
and then the radius. Notice that the center star disappears
and the completed circle appears as soon as the radius point
is specified.

0
If an arc is desired, the point designating the radius

is also the starting angle. The next point given determines
the final angle of the arc (co~nterclockwise) and, of
course, must be on the circle. · In the figure., below, the
cursor is moved along the dotted path and the resulting arc
is created.

3-56

I

Graphics Editor
Command Summary

COpyl({source_pt} destination_point [propertyreattach_point])
({group_name} .) •••

-~---

The COPY command may be used to copy any object or
group of objects for use elsewhere on the same drawing. The
first point identifies the object which is to be copied, and
the second identifies the point at which the new copy should
be placed.

If the yellow button is used to copy an object, the
cursor position serves as a reference point for pQsitioning
the copy. When the blue cursor button is used, one vertex
of the copy is snapped to the cursor.

The COPY command operates on groups as well as on
individual objects. If either the white or the green cursor
button is used to pick up an object, the group nearest the
current cursor position will be copied. If the green button
or the group name is used, the group will snap to the cursor
and only a destination point needs to be given. If the
white cursor button is-used t.o indicate the group to be
copied, then the current cursor position is used as a
reference point to position the group. Individual
properties can be copied by selecting the property to be
copied, the new location for the property and the new owner.
Once the new location has been specified, a rubber band line
is drawn from the cursor to, the property so that the new
owner can be selected more easily. The new owner can be a
device, a pin, a wire or a signal name. Default body
properties and those properties generated by the SECTION,
PINSWAP and BACKANNOTATE commands cannot be copied.

Default properties and user'added body properties are
included in copies made of devices. Properties that aren't
copied with the body are PATH, those properties generated by
the PINSWAP, SECTION and BACKANNOTATE commands, and pin
properties. Wire properties are not copied when a wire is
copied.

To copy objects or groups from one drawing to another,
see the CUT and PASTE commands.

3-57

Graphics Editor
Command Summary

CUt { point
{ group

}
name }

The CUT command, in conjunction with the PASTE command,
allows objects to be copied from one drawing to another.
Objects to be copied are placed in a "cutting" buffer by
typing CUT and selecting the object (with the yellow button)
or the group (with the white button) to be cut. The cutting
buffer can only contain one group or object at a time. The
CUT command highlights the object or group selected and also
gives the number of objects, wires and notes put into the
buffer.

Default body properties and user added body properties
are included in copies made of devices. Properties that
aren't copied with the body are PATH, those properties
generated by the PINSWAP, SECTION, and BACKANNOTATE
commands, and pin properties. Ln addition, wire properties
are copied when a wire is cut; usually the cut buffer is
transferred to another drawing and the designer wants to
copy the s~gnal names to the new drawing.

3-58

DElete ({point})
({group_name}) •••

Graphics Editor
Command Summary

The DELETE command is used to remove objects from a
drawing. The DELETE command operates on the geometrically
closest object; a line or arc may be deleted by pointing to
any point along that line or arc.

An entire group may be deleted by selecting either the
white or green cursor control button or by identifying the
group by name. The group nearest the current cursor
position will be deleted.

Default properties on bodies cannot be deleted by the
user once an instance of the body has been added to a
drawing. In addition, pin number properties (PN) generated
by the PINSWAP command cannot be deleted.

3-59

I

Graphics Editor
Command Summary

I
IDIAgram I [<directory)]drawing_name[.[type][.[version][.[page]]]] I

LOGIC 1 1
- - I I

The DIAGRAM command is used to change the name of the
current drawing. For example, you may wish to use the
drawing SHIFTER.LOGIC as a pattern for a new drawing NEW
SHIFTER.LOGIC. You'd type:

EDIT SHIFTER
and then change the name by typing

DIAGRAM NEW SHIFTER
The DIAGRAM command also allows you to save a copy of a
drawing under a different name before making any significant
changes.

The DIAGRAM command does not write the new name into a
SCALD directory; you must explicitly do this.

3-60

.4

Graphics Editor
Command Summary

I I
DI Rectory I [(directory>] [drawing name] [. [type] [.[version] [. [page]]]]

* -

The DIRECTORY command is used to list the names and
contents of the SCALD directories in the current directory
list (see USE, LIBRARY and IGNORE). There is no limit to
the number of SCALD directories in use at one time. The
DIRECTORY command displays the contents in the order that
the directories are searched, with the current working
directory displayed first. •

Wild card characters are permitted in directory names
and drawing names. A '*' matches anything, and a '?'
matches any single character.

If only the drawing_name is given (e.g. (100K)100102,
(100k)1001* or <lOOk)*}, then only the drawing names will be
listed and no drawing types (e.g. only 100102-and not
100102.LOGIC.1.1, 100l02.BODY.1.1, etc). However, if a
drawing type is specified, then only the drawings of that
type will be listed. Some examples are:

DIR <*> lists all directories (but no
drawing_ names)

DIR * lists all drawing names in the current
directory·

DIR <er) same as DIR *

DIR ls* lists all drawing names beginning
with LS in the.current directory

DIR *.body* lists all bodies in the current directory

DIR (time>* lists all drawing_names in directory time

DIR <*>* lists all drawing names in all active
directories -

3-61

The DISPLAY command is u~ed to change the way objects
are displayed on a drawing •. DISPLAY can be given a point
specifying either ~ single item or a group or it can be
given a group name. If a group name is given, it must be
quoted. For instance, the following line makes all
properties in group A invisible:

DISPLAY INVISIBLE' "A"
The group can contain any type of item. The DISPLAY command
will select the correct type of items to change.

The first four options, Name through Invisible, deal
with the way property values are.displayed on the drawing.

Properties consist of name-value pairs; - one may wish
to display the name alone, the value alone, or both, or
neither the name nor the value. When a property is added to
a drawing, just the value of that property appears. In
order to change the display, type the command DISPLAY
followed by a space, followed by the letter N (name), V
(value), B (both), or I (invisible), and select one or more
properties using the cursor. Generally, it is more
efficient to change a large number of properties at once as
this eliminates the need to type the command over and over
again.

The next two options deal with the size of the text on
the drawing.

3-62

Graphics Editor
Command Summary

When a text string is added to a drawing, it is defined
by a vertex at the lower left corner of the text string.
The text, whether in the form of notes, signal names, or
properties, is added to a scale of approximately 12
characters per inch. This yields text that is quite legible
on the hard copy of the_ drawing without taking up more space
than is absolutely necessary.

To change the size of a string of text, type the
command DISPLAY followed by a space and the real number
indicating the factor by which the size of the currently
displayed text string should be multiplied. Then, using the
cursor, select a string of text to be changed. For example,
if one wishes to make the value of the title property appear
larger than the remaining text, then the number 2~0 could be
typed in. This will double· the size of that text.
Similarly, one may wish to add "fine print'' to a drawing.
If the number 0.8 is typed in, then the size of the text
will be reduced by that factor.

If the number used with the DISPLAY command is an
integer, then it is not necessary to type the ".O" following
the integer. If the number is less than 1, then a zero need
not be typed before the period.

To return the text to the default scale, use the
command DISPLAY D (pt). The command SHOW SIZE (pt) will
print the current size of the indicated text, as compared to
the default size.

Once the display form of a property has been changed
then that change will remain in force until it is overridden
by another use of the DISPLAY command. For example, if a
body bas been defined and that body has a default property
SIZE = lB to indicate that the default value of SIZE is one
bit, then one may wish to suppress the -display of the "lB.''
This is done by using the DISPLAY I command while editing
that body. When that body is subsequently added to a logic
drawing then the property SIZE = lB wiil be hidden from
view. If, on that logic drawing, the SIZE property is
changed, say, to read SIZE = 32B, then the fact that the
original property was invisible will be ignored; the new
property will be displayed in the normal manner.

The next three options will change the way an existing
wire looks. DISPLAY HEAVY will make the net thicker, to
look like a bus. DISPLAY THIN will return a heavy line back
to the default wire thickness. DISPLAY PATTERN changes a
net to one of six patterned lines. Pattern 1 is a filled
line (the default) and patterns 2-6 are a variety of dotted
and dashed lines. To get a patterned line type, DISPLAY P
pattern_number <pt).

3-63

Graphics Editor
Command Summary

Again, in a LOGIC
whereas in a BODY
will be changed.
pictures or doing

drawing, the entire net will be changed
or DOC drawing, only the wire pointed to
This is £or convenience when drawing
documentation.

The next two options allow users to change the display
of dots already added to the design. If there .are a group
of open dots that should be filled, the command DISPLAY
FILLED "group name" will change them all to filled mode.
Open dots scaTe when the WINDOW command is used, filled dots
do not.

The last two options allow users to change the
justification of text on the screen. By default, all user
added text is left justified. To change the justification
to the right end of the string, type DISPLAY RIGHT and point
to the string. For instance, DISPLAY RIGHT to a left
justified string appear as follows:

THIS IS A PIECE OF TEXT
THIS IS A PIECE OF TEXT

When a right justfied string is moved, the cursor attaches
to the end (the final T in the above example). As with
other DISPLAY options, justification works on groups as well
as single objects. See the SET command to change the
default justification. ··

3-64

DOt point •••

Graphics Editor
Command Summary

The DOT command is·used to add dots to drawings. Dots
are used in logic drawings to indicate that lines crossing
one another are connected. (By default~ lines crossing are
not connected unless "dotted''• Lines joining at a "tee" are
conneeted, even without ·a dot.) Dots are used in body
drawirtgs to indicate pin connection points.

Dots can be filled or open. By default, all added dots
are open. See the SET FILLED/OPEN commands to change the
default. To fill or open one or a group of dots, see the
DISPLAY FILLED/OPEN commands.

To dot all the connections in a logic drawing, see the
AUTO DOTS command.

3-65

Graphics Editor
Command Summary

EDit {[(directory)]drawing name[.[type][.[version][.[paga]]]] }
- LOGIC 1 1

{ point

This is the basic command for calling a drawing .onto
the display. To manipulate tha drawing "EXAMPLE'', type

EDIT EXAMPLE (er)
If EXAMPLE exists, it will appear on the screen. Otherwise
the message "new diagram" will be displayed. If another
drawing was being edited and some changes had been made,
EDIT will save the old version in a temporary file before
bringing in the new drawing.

If the named drawing was edited during this session and
was saved in a temporary file while another drawing was
edited, EDIT will use the saved version of the drawing. The
SHOW HISTORY command gives a list of all drawings which have
been edited during the current session.

The EDIT command also allows you to examine the logic
definition of a component. For example, if the body B
appears in a drawing then EDIT (pt), where (pt) specifies
the body B, will call in the diagram B.LOGIC, and make it
available for editing.

If no SCALD directory is given, each directory in the
list is searched until a drawing of the name drawing name is
found. If the drawing name is not found, the new drawing is
assumed to belong to the current SCALD directory. If no
drawing name type specification is given, the Graphics
Editor assumes the drawing is a logic drawing. To edit
another type of drawing, for exa~ple the time drawing "size
shifter", you must type

EDIT SIZE SHIFTER.TIME
All conventions for sim and time drawings are the same as
for logic drawings.

Pages are ignored for body drawings but each body can
have multiple versions. Any other drawings (e.g. logic,
time or sim) may have multiple versions and/or pages. See
Chapter 3.

3-66
.···~
'4

\
)

\
)

ERror

Graphics Editor
Command Summary

The ERROR command steps through the errors found by
CHECK. It centers each error on the screen, and draws a
star at the location of the error. In addition, the nature
of the error is displayed on the screen.

3-67

Graphics Editor
Command Summary

EXIT

The EXIT command is used to leave the Graphics Editor.

3-67A

(

(

\

1
/

FILenote file_name point

Graphics Editor
Command Summary

The FILENOTE command adds the named text file to a
drawing at the point specified. Each line in the file is
converted into a note and can be individually moved, copied,
deleted and changed once the file is added.

3-68

Graphics Editor
Command Summary

This page has intentionally been left blank.

3-68A

FI Nd pattern

Graphics Editor
Command Summary

The FIND command searches through the current drawing
for all notes, property names and values, and body names
that match the given pattern. The pattern can have wild
cards just like the argument for the DIRECTORY command. For
instance, typing FIND *P will find all path properties. All
such items found are placed on a list which can be stepped
though using the NEXT command. Each object found is
centered on the display where it can be changed, deleted,
etc. FIND and NEXT are much like the CHECK and ERROR
commands.

The items found are aiso put into a group. The one
letter name of the group (A-Z) is given along with the
number of items found. Below are examples of things that
might be done to a found group:

HIGHLIGHT ALL PATH PROPERTIES:
type FIND PATH to get all the properties
the message displayed is

Group A
100 items found

type SHOW GROUP A

DELETE ALL PATH PROPETIES
type FIND PATH to, get all the properites
type DELETE A

MAKE ALL PATH PROPERTIES INVISIBLE
type FIND PATH to get all the properties
the message displayed is

Group A
25 items found

type DISPLAY I "A" to make them invisible

In the last example, the group name (A) must be quoted
in the DISPLAY command.

3-69

Graphics Editor
Command Summary

FOrmat text file <er) new_drawing_name

-----------~--

The FORMAT command adds drawings to an existing text
file and creates a new Graphics Editor drawing containing
both sets of information. It takes a UNIX iSCII text file
that has the names of the drawings you want to ins~rt within
it, and creates a new drawing name.DOC drawing from it.
There MUST be a carriage return between the file name and
the new drawing name. The UNIX file can be a text file that
has been formated by runoff (on the VAX) or nroff (in UNIX).
Each page of the text file is turhed into a page of a
drawing. A page ends with the 60-th line or a use~ inserted
"L (formfeed).

Each page created by FORMAT is 8-1/2 by 11 inches, with
6 liries per inch. The characters are slightly larger than
the default character font (1.29 times the default) for
easier readability.

Space must be left in the text file to allow the
insertion of drawings into the document. At least two lines
are needed for each drawing. The first line must have an
'&' in the first column, followed by the name of the drawing
you want to insert. The second line must have the number of
lines, N, that are allotted for the drawing (6 lines = 1
inch). You must then insert N blank lines. The Graphics
Editor reads the named drawing, smashes it ~nd then scales
it to fit into the alotted space~

For more information on creating mixed text and
graphics documents using GED, see Mixed Text and Graphics
Documents later in this chapter.

3-70

Graphics Editor
Command Summary

GEt {[(directory)]drawing name[.[type][.[version][.[page]]]]
- LOGIC 1 1

{ point

The GET command operates in a manner similar to the
EDIT command, but it uses the instance of the drawing stored
on disk under the specified drawing name, rather than the
most recently modified instance. GET is useful if, while
editing a drawing, it becomes necessary to disregard the
current work and to revert to an earlier instance.

If no SCALD directory is given, each directory in the
list is searched until a drawing of the name drawing name is
found. If the drawing name is not found, the new drawing is
assumed to belong to the current SCALD directory. GET
followed by a carriage return will re-edit the current
drawing.

3-71

I
}

}
I

Graphics Editor
Command Summary

-------------------~-------------------~----~-~-----------~-------

GRid [{
[{
[{
[{
[{

ON
OFf
Dots
Lines
grid_siz·e grid_multiple

}
}
}
}
}

]
]
]
]
]

--. .

The GRID command is used to specLfy the way the grid is
displayed •. The current values of the grid multiple are
displayed on the status line at the top of the CRT. The
grid may be turned on and off, that is, made visible or
totally invisible, by selecting the ON or OFF options.

The grid multiple (a positive integer) indicates how
the grid should be displayed, if i~ is to be displayed at
all. If the multiple is one, then every grid line may be
displayed on the CRT. If it is two, . then ev.ery other grid
line will be displayed, and so ori. The default multiple for
editing a logic drawing is five.

The grid_size is a value in inches, defining the
sepa ration o-f the grid 1 in es.· The size for editing logic,
time and sim drawings is 0.1 or 1/10 of an inch. Be careful
when changing the grid size ~ecause bodies could be placed
off grid and if the grid size is again changed, wires may
not connect up correctly. The command to change the grid
size is:

GRID grid size grid multiple;
The grid size (a real number)-must be a multiple of 0.002
inches -= the smallest possible grid separation.

The GRID command must be terminated by either
any command from the menu. For ~xample:

, . ,
'

or

GRID 0.1 2 ON ;
However, there is one exception,
grid on or off. So, if the grid
turn it off. This will not work
menu; in this case, select GRID

'GRID (er)' will toggle the·
is on, type 'GRID (er)' to
if GRID is chosen from the
and then type 'ON;'.

The grid, by default, is off when a new drawing is
edited or retrieved. In order to change the default to
always on, use the 'SET GRID ON' command. The grid size is,
by default, o.os on .BODY drawings, 0.166 on .DOC drawings
and 0.1 on all other drawing types. To change the default
for all types but .BODY and .DOC, use the 'SET DEFAULT GRID
grid_size' command.

3-72:

Graphics Editor
Command Summary

The default grid units are grids per inch. The SET
DECIMAL/METRIC/FRACTIONAL command allows the grid units to
be expressed in different systems.

The Graphics Editor uses 500 internal units per
physical inch on the Versatec plotter. The grid multiple
displayed on the status line of the display is in grids per
inch.

To base plots on the metric system, use the SET METRIC
command. The Graphics Editor then uses 512 internal units
per physical inch or 20 internal units per physical
millimeter. The grid multiple displayed on the status line
is expressed in grids per millimeter. Metric users can use
standard Valid libraries since pins are on 2.5 mm centers.

With 500 internal units per inch, users cannot use a
1/8 inch grid (the grid can be set to .124 or .126 but not
.125). If you use the SET FRACTIONAL command, the Graphics
Editor resets the internal units to 400 per inch. 400 was
chosen so that the Valid libraries would still be usable.
The bodies will appear 25% larger and the pins will be
placed on 1/8 inch centers.

3-73

Graphics Editor
Command Summary

GROup [group_name] point point point •••

The GROUP command is used to create a group. The
command is issued and a polygon is drawn around a group of
objects on the CRT. The polygon may be closed by pressing
the blue button when the cursor is near the starting point.
All of the vertices that were contained within the polygon
will be included in the group just defined. For reference
purposes, a one letter group name is displayed in the upper
left corner of the screen. Also, the number of devices,
arcs, notes and wires in the group is also listed.

Note that vertices are made members of a group. If a
wire is partially in a group and partially out of a group,
then only one vertex defining that wire is in the group.
The effect of this is described in the use of commands that
operate on groups. These commands are MOVE, COPY, CUT,
DELETE and DISPLAY.

3-74

HArdcopy { A - E
{ real number

}
}

Graphics Editor
Command Summary

{ drawing_name }
{ }

The HARDCOPY command is used to send drawings to a
plotter to produce a hardcopy. Plots can be made on either
an electrostatic or pen plotter, including Versatec, Hewlett
Packard and Benson models. The SET command specifies what
type of device is to be used.

The user has a choice of using default settings or
user-specified ones. If no drawing_name is given, the
current drawing is assumed. If a page size is given
(letters A through E), then the plot is adjusted to that
size. If a real number is entered, the plot is scaled from
the normal size.

The drawing_name need not be the drawing currently
being edited or in the current working directory. The names
should be given in the same format as for the DIRECTORY
command (e.g. foo.logic*). If the drawing is from a
directory other than the current working directory, the
directory name must be given (e.g. <lou.wrk)foo.logic*).
If another drawing name is given, a scale factor MUST be
given (a real number or A - E). It is necessary to give a
';' after the scale factor to plot the current drawing. For
example:

HA <er>
HA A

HA C *.logic*

plots the current drawing
plots the current drawing on an
A size page (must end with '; ')
plots all LOGIC drawings in the
current directory on C size pages

HA 1 <100k)l00112.body*

HA 1 hyper mux

plots the 100112 part from
the lOOk library with the default
drawing size.
plots all drawing types for the
drawing "hyper mux" (e.g. BODY,
LOGIC, SIM, etc.)

As indicated by the options for the SET command, there
are several brands and sizes of plotters that are supported.
As of 7.25 software, the plotters supported are the
Versatec, Hewlett-Packard, and Benson models.

3-75

Graphics Editor
Command Summary

Versatec electrostatic plots and Hewlett-Packard bed
plots can be written to a file and plotted later on a remote
or local printer. See the SPOOLED and LOCAL options to the
SET command for further information.

There are different procedures for printing files
intended for the Versatec and Hewlett Packard plotters while
in the SET SPOOLED PLOT mode. To plot more than one drawing
on an electrostatic plotter, issue the GED command HA B *·*·
This command writes all drawings into a file called
vw.spool. The UNIX command vpl can then be used to plot the
drawing or drawings stored there.

Only one drawing can be spooled at a time on the
Hewlett Packard plotter. The resultant file is called
hpplot.dat. To print a file on a local machine, it is first
necessary to return to the UNIX prompt and type

/uO/editor/lib/hpfilter (hpplot.dat > /dev/hp

These printing instructions differ if the user wishes
to plot a drawing on a Hewlett Packard plotter that is
attached to another machine on the Ethernet. In this case,
return to the UNIX prompt and type

/uO/editor/lib/hpfilter (hpplot.dat) /net/machine_name/dev/hp

It is possible to vary the resolution on electrostatic
output. The Versatec plots two pixels for each one pixel on
the screen, a feature that creates darker and more distinct
plots. To plot one pixel instead of two, use the SET
SINGLE WIDTH command.

To select the Hewlett-Packard plotter option, use the
comment "SET MONO HPPLOT". "SET HP PLOT" is no longer in
use. The mono specification causes-the plotter to use only
one pen, as opposed to the color setting, which uses more
than one pen. The HP plotter prints filled dots, rotated
text, rotated bodies, justified text, and patterned lines.

The HP plotter can plot more than one drawing at a
time. To do so, use the metacharacter, as in, for example,
HA B FOO*. After each drawing, GED will ask you to type
(RETURN) when ready for the next plot, thereby allowing the
user to load the paper.

There are two methods for doing hardcopy: HPR
(hardcopy print) and VGB (video graphics board). The VGB
method, which dates from version 6.0 software, uses the
integral graphics board for rasterizing the plot. After
version 7.25, it is retained only for compatibility
purposes.

3-76

'\j,

Graphics Editor
Command Summary

The default hardcopy method is HPR. Developments
subsequent to 7.25 software, such as new plotters to be
supported and color workstations, are enhancements to HPR
and not VGB. On the color design station 2310C, for
example, only the HPR method is supported. Version 7.25
software supports monochrome plotters.

Compared to the VGB method, HPR will appear both faster
and slower. It is faster in that a user will regain the use
of a design station much quicker. It is slower in that HPR
takes a while to rasterize the plot and get it to the
plotter. HPR does the rasterization using the 68010 in the
S32. It also queues the plots, allowing more than one
design station to plot at the same time.

The VGB method is a compatibility mode. While the
Peripheral Interface Board code is much more robust, be
warned that this method has certain drawbacks and problems.
The VGB method, in contrast to HPR, requires a design
station (2310). While plotting with the VGE method, the
design station can only be used for rasterization, not for
other purposes. Only one design station can plot at a time
since the plots are not queued. If the graphics board or
peripheral interface board crashes while rasterizing, the
design station is not usable. The use of the HPR method
avoids all these problems.

The Benson metric 22" (model 9424) plotter is supported
beginning with version 7.25 software. It uses the HPR
method only. The SET B9424 command is used to initialize
the system.

1-76A

Graphics Editor
Command Summary

HElp command name

This command causes the contents of the specified help
file to be displayed. The help file describes the syntax
and (briefly) the semantics of the selected command.

HELP HELP or HELP <er) displays the list of topics on
which help is available.

3-77

Ignore [{ SCALD_directory_name }]
[{ library_name }]

Graphics Editor
Command Summary

This command causes the specified SCALD directory or
library to be deleted from the active list. The argument
specified may have wild cards. If more than one directory
matches the pattern, each one is ignored. For example,
"IGNORE *" ignores all directories. In addition, IGNORE
followed by a carriage-return ignores the current directory.
(See the USE command.)

All bodies from the ignored directory or library are
made into place-holders. That way a drawing edited in the
current session has the body name as a note attached to it
and will remind the user to use another library or SCALD
directory to replace the place-holder.

If a body is replaced by a place-holder, the other
active SCALD directories and libraries are searched for
bodies with the same name and version. If one is found,
then the place-holder body is replaced by the body from the
other directory.

See also the USE and LIBRARY commands.

3-78

Graphics Editor
Command Summary

LED

This command allows a SCALDstar user to compare signal
names on the logic design and layout.

To use the command, type LED while in the GED window.
Next, use the window manager to go to the LED window and
type GED. The two programs will then connect.

Subsequently, whenever the SHOW NET command is used in
either the GED or LED window, the net is found and
highlighted in both places.

3-78A

Library [library_name]

Graphics Editor
Command Summary

The LIBRARY command adds the specified library to your
search list. Library names are defined by your SCALD
library manager. To list the possible names, type "LIBRARY
<er)".

3-79

Graphics Editor
Command Summary

Mirror I point •••

The MIRROR command creates a mirrored version of a body, as
opposed to a rotated version. This command mirrors, about
the Y axis, all lines, arcs and text in a body drawing. For
the mirrors, only the justification of the text is changed
(left --> right, right --> left), and no further rotation is
done.

For instance, two versions would resemble the following
drawings:

Pl o-- --o Pl

MIRROR
P2 o-- BODY.I BODY.2 --o P2

-->
P3 o-- --o P3

--------- ---------
The MIRROR command should be used with caution,

especially with bodies with unmarked pins, such as the
Valid-supplied merge bodies. Reversing the bits causes
subtle, hard-to-find bugs in the design.

The MIRROR command operates differently from the ROTATE
command, which allows users to rotate bodies in increments
of 90 degrees. Allowing 180 degree rotations of devices
will, in some cases, reverse the order of the pins, thereby
causing problems in the design. Therefore, a 180 degree
rotation of a device will be, in reality, a mirror of a 0
degree rotation (about the Y axis). A 270 degree rotation
of a device will be a mirror of a 90 degree rotation (about
the X axis).

There are some applications, however, where all four
rotations and all four mirrors might be needed. The ROTATE
command gives you two rotations (0 and 90) and two mirrors
(180 and 270). To get the other two mirrors (O and 90) and
the other two rotations (180 and 270), create another
version of the body and use the MIRROR command to mirror it.

Note that MIRROR works differently in body drawlngs
than it does in logic drawings. In a body drawing, the
MIRROR command does not require a point. The entire body
definition is flipped over, and the procedure is useful for
creating other versions of a body.

3-80

Graphics Editor
Command Summary

The SPIN command is used in cases where a true rotation
of a body is needed. This command rotates the body O, 90,
180, 270 degrees without mirroring any of the four
representations.

3-80A

Graphics Editor
Command Summary

This page has been intentionally left blank.

3-80B

Graphics Editor
Command Summary

--
Move ({ from_point }

({ group_name }
to_point) •••

)

--
MOVE is the command used to move objects from one

position to another on the drawing. To use the MOVE
command, you select the command on the menu and then move
the cursor to the object that is to be moved. The object is
picked up by pressing one of the cursor buttons (usually the
yellow button) and moved to a new position by manipulating
the cursor. The object may be deposited in its new location
by, again, pressing the appropriate cursor button.

If the yellow button is used to select an object, the
current cursor position acts as a reference point for
placing the object. If the blue button is used, the nearest
object or vertex is snapped to the current cursor location.

The MOVE command operates on groups as well as on
individual objects. If either the white or the green cursor
buttons are used to pick up an object, then the nearest
group is selected. If the green cursor button or the
group name is used, the object is snapped to the current
cursor location. If the white cursor button is used to
select the group, the point serves as reference point for
moving the group.

When an object or group of objects is moved and there
are electrical connections (wires) leading to that object or
group, then the MOVE command will preserve electrical
connectivity as well as keep the wires orthogonal.

If users do not want wires to be moved orthogonally,
there is a SET option to turn off orthogonal move:

SET MOVE DIRECT
To return to orthogonal movement, type.

SET MOVE ORTHOG

When objects to which properties are attached
(including SIG NAME) are moved, the properties will move
with the object. In addition, the properties themselves may
be moved independently of the object.

3-81

Graphics Editor
Command Summary

NExt

The NEXT command steps through the items found by FIND.
It centers each item on the screen, and draws a star at the
location of its vertex. The user can only go through the
list once.

3-82

NOte (text_line ••• point •••) •••

Graphics Editor
Command Summary

Notes are text strings that appear on the drawing which
in no way affect the evaluation of the drawing by the
SCALDsystem. They may be used to document a drawing.

Notes are placed, line by line, using the NOTE command.
Once the command has been issued, then any further text will
be interpreted as a note. To leave the note command, a
semicolon followed by the return key must be pressed.
Alternatively, the";" or any other command on the.menu may
be selected.

3-83

Graphics Editor
Command Summary

-------------~--

PAste point •••

The PASTE command, in conjunction with the CUT command,
allows objects to be copied from one drawing to another. To
copy a group or object that has been CUT, simply type PASTE
then select the point where the group or object should be
placed.

The command works like the ADD command. When the PASTE
command is entered, followed by a carriage return, the cut
buffer is attached to the cursor. The group can then be
placed down using the yellow or blue cursor button.
Additional copies of the cut buffer can be added by pressing
the yellow cursor button and then placing the buffer down in
the desired place by pressing the button again.

See the CUT command for restrictions on properties that
are copied.

3-84

Plnswap ({ pin number
c { point

} point
}

) . . .
) . . .

Graphics Editor
Command Summary

--
The PINSWAP command can only be used after section

assignment has occurred for the part. Also, pin swapping
can only occur between pins which have been defined in the
library as swappable. Thus it may be legal to swap the two
input pins of a NAND gate, but not the input and output pins
of the gate.

To swap pins, one can either point at the two pins to
be swapped, or one can type in a new pin number for the
selected pin. In the latter case, the selected pin will be
swapped with the pin with the user specified pin number.

The properties attached by the PINSWAP command cannot
be changed, only deleted and moved. They are not written
into the connectivity file. Once pins on a part have been
swapped, the part cannot be resectioned using the SECTION
command.

Only devices in libraries with chips files can be
sectioned.

3-85

Graphics Editor
Command Summary

--
I

PRoperty I (attach_point (name value text_point) •••) ••• I

Properties consist of name-value pairs. A property may
b~ used to specify something about an object on the drawing.
For example, if the designer wishes to specify that a
particular register is 32 bits wide, then he may attach a
property to the register body, the name of which is SIZE,
having a value of 32B. For a more thorough discussion of
properties see Chapter 3.

A property must be attached to an object; either a
body, pin, wire, or signal name. Properties are specified
by typing PROPERTY, or selecting the PROPERTY command on the
menu, then using the cursor to specify the object (vertex)
to which the property should be attached. Next the name and
value are typed, separated by a space. To complete the
operation, the location on the drawing at which the property
text should appear is specified.

Property names may be any string of alphanumeric
characters and underscores provided that the first character
is an alphabetic character. A property name may not contain
any spaces or punctuation (other than the underscore). The
property value, on the other hand, may be any string of
text. Spaces and punctuation may be included in the
property value. As is described in Chapter 3, there are no
restrictions on the use, names, or values of properties.
Certain kinds of properties, such as SIZE, are known to the
SCALDsystem and handled in a consistent manner. Properties
that are not known to the SCALDsystem are simply passed
through to the output.

The names of properties attached to a given object must
be unique; if a newly entered property has the same name as
an old property currently attached to that vertex, then the
old property value will be replaced by the new property
value.

When a property is added to a drawing, only the
property value appears. It is possible to temporarily
display the names of all the properties on a drawing by
using the "SHOW PROPERTIES" command. It is also possible to
change the permanent display of the properties such that
either the name, value, both or neither are displayed. This
is accomplished by using the "DISPLAY" command. Properties
can also be manipulated using the commands SWAP, REATTACH,
COPY and MOVE.

3-86

Quit

Graphics Editor
Command Summary

This command is used to terminate an editing session.
If, after issuing the QUIT command, the system recognizes
that drawings have been modified but not written, then the
Graphics Editor will so indicate. If you wish to override
the warning and terminate the session, then the QUIT command
should be issued a second time.

3-87

Graphics Editor
Command Summary

REAttach (text_point attach_point) •••

The REATTACH command is used to move properties from
one object to another. If, for example, a property is
attached to the input pin of a device and must be moved to
the output pin, the REATTACH command is used.

Once the property to be moved is indicated, a line is
attached from the current cursor position to the property.
You then point to the new attachment point for the property.

Since signal names are simply properties (name =
SIG NAME, value = text string) attached to wires, the
REATTACH command may be used to move signal names from one
wire to another.

Some properties cannot be reattached, such as default
body properties and those produced by the BACKANNOTATE,
PINSWAP and SECITON commands. An error message is given
when an attempt is made to reattach one of these properties.

RE Do

Graphics Editor
Command Summary

The REDO command redoes the previous operation
affecting the screen. A list of operations performed during
the current editing session is kept and REDO will repeat
events according to this list. The REDO log is reset after
each read or write, therefore, REDO can't repeat file
operations.

3-89

Graphics Editor
Command Summary

---------------------~----------------------~-----------------------

REMove I [(directory)]drawing_name[.[type][.[version][.[page]]]]
·* ·* ·*

This command deletes a drawing from a SCALD directory.
You type REMOVE followed by a drawing name. The editor will
echo the names of the files to be deleted, but will not
delete the files until another command is selected from the
menu. REMOVE can be aborted at any time by typing ABORT, or
selecting any command except ";" from the menu. In this
case the message 'No changes made' will be displayed. If,
after seeing the files to be deleted, you wish to go ahead
and delete them, the command is terminated by either a ";"
standing alone on a line or selecting the ";" box from the
menu. Then the directory entries will be deleted and the
files purged.

Wild cards are allowed in the file names specified in
the REMOVE command. The wild card '?' will match any
character; and '*' will match any number of anything. If
just the drawing name is given (8 BIT MUX) with no wild
cards, all types-(body, logic, sim, binary, etc) will be
deleted. To delete just the binary, for example, type
'REMOVE 8 BIT MUX.LOGIC BN*'•

If no SCALD directory is given, then the directory list
is searched for the first drawing whose name matches the
drawing name. The REMOVE command only takes one argument.
In order to delete more than one drawing, type the
following:

REMOVE drawing namel
REMOVE drawing name2

When all the drawings have been listed, type ';' alone on a
line. Then all the named drawings will be deleted at once.

To delete all drawing types of a specific drawing (SIM,
LOGIC, BODY, etc), type

REMOVE drawing_namel

To delete only the logic type, for instance, type
REMOVE drawing_namel.logic.*

To delete only the first page of a logic type drawing, for
instance, type

REMOVE drawing_namel.logic.1.1

3-90

REPlace I

Graphics Editor
Command Summary

[<directory)]body name[.[type)[.[version]]) point •••
- BODY 1

The REPLACE command is used to substitute one device
for another. The device to be replaced is selected with a
puck point, and the new device is given by name. Any
properties attached to the selected device are reattached to
the new device. Pin properties are reattached if a pin name
on the new device is the same as a pin name on the first
device. If no pin name match exists, the pin property
becomes a body property. All properties but those generated
by the BACKANNOTATE, SECTION and PINSWAP commands are kept.
Any wire connections to the original device are only kept if
pins are in the same place.

3-91

I

Graphics Editor
Command Summary

I Restore

--~-

The Graphics Editor RESTORE command has been deleted.
An automatic recovery routine has been implemented and is
documented in the Advanced Information section of this
chapter of the manual.

However, if you wish to restore a saved temporary ged
file from UNIX, type,

/uO/editor/ged/gedrestore tempFileName drawing~name directory

where

tempFileName is a GED saved file of the form a?aaaaa?.xyz
the drawing name is .in quotes (e.g. "TEMP ONE")
the directory is the directory where the drawing is
to be stored.

When the program is done, you can start up ged, edit
drawing_name and either delete it or rename it, if you wish.

The Graphics Edit~r cannot be running when you do a
UNIX restore.

3-92

RE Turn

Graphics Editor
Command Summary

This command causes the Graphics Editor to return to
the drawing previously being edited. If the current drawing
was modified but not written, then the system will save a
copy of that drawing before returning to the previous
drawing. The SHOW HISTORY command lists the drawing that
you were previously editing.

3-93

Graphics Editor
Command Summary

Rotate point ••••

To rotate a body, type ROTATE and then point to the
device or text string to be rotated. Each indication of a
device rotates it 90 degrees.

Rotations are in increments of 90 degrees (0, 90, 180
and 270). When a body is rotated, all notes and properties
are also rotated. The properties can be rotated or
justified independently.

Allowing 180 degree rotatations of devices will, in
some cases, reverse the order of the pins (e.g. mergers).
This will cause many subtle bugs in users' designs.
Therefore, a 180 degree rotation of a device will be, in
reality, a mirror of a 0 degree rotation (about the Y axis).
A 270 degree rotation of a device will be a mirror of a 90
degree rotation (about the X axis). In the 90 degree
rotation, body notes will be rotated 90 degrees and left in
their original justification.

For the mirrors, only the justification of the text
will be changed (left --> right, right --> left), and no
further rotation is done. Text rotations (properties and
drawing notes) will be really rotated, not mirrored. To get
the other four rotations, create another version of the body
using the MIRROR command.

3-94

SCAle (point point) drawing_name

Graphics Editor
Command Summary

The SCALE command adds the named drawing to the current
diagram in the rectangle indicated by the two points. The
drawing is smashed (all devices turned into wires, arcs and
text). SCALE is most useful for doing documentation
drawings (see the FORMAT command).

3-95

Graphics Editor
Comm~nd Summary

SCRipt file name

The SCRIPT command allows you to specify editor
commands in a script file. This is most frequently, but not
always, used to initialize the list of working directories.
(See also USE and IGNORE.)

A special file, "startup.ged" is expected by the
Graphics Editor as an initialization script. If that file
does not exist then a warning message will be displayed.

3-96

SECtion [pin_number] point ••••

Graphics Editor
Command Summary

The SECTION command allows the user to step through the
different sections of a chip and have the pin numbers of
these sections displayed on the drawing. Sectioning a part
will automatically auto path the drawing.

The SECTION command works like the VERSION command by
pointing to the body or pin of a part. Currently, only
parts that can be assigned to a particular section are
either SIZE wide parts with a size of 1 or HAS_FIXED_SIZE
parts. Assigning sections to a HAS FIXED SIZE part is
accomplished by pointing to the pin-of the section to be
assigned. It is an error to point to the body of a
HAS_FIXED_SIZE part.

If the part selected can be assigned to a section, the
pin numbers for the selected section will be back annotated
to the part. If the same part is selected again, the next
section will be selected and the new pin numbers will be
back annotated to the part. Thus, by pointing to the same
part, you can step through all the different possible
sections. To assign a specific section directly, first type
in a pin number that uniquely defines the section before
pointing at the part.

The pin number properties will be schematic annotation
properties ($PN), so they cannot be changed, only deleted
and moved. They are not written into the connectivity file.

Only devices in libraries with chips files can be
sectioned.

See the PINSWAP command for information on swapping the
pin assignments once a part has been sectioned. If any pins
are swapped, the part can no longer be sectioned.

3-97

.... _ ,.

Graphics Editor
Command Summary

SET {

{
{
{
{
{
{
{
{

{
{

{
{

{
{
{

{
{

{
{

{
{

{
{

{
{

{

{
{

{
{
{
{
{
{

{
{

SIZe scale factor

Ascii
NOAscii
Binary
NOBinary
Conn
NO Conn
DEpendency
NODependency

Orthog_wire
Direct wire

STOp_at_pin
GO at _pin

DECimal
MOVE_Orthog
MOVE Direct

DOTS_ Open
DOTS Filled

STICKY OFf
STICKY ON

CAPSLOCK OFf
CAPSLOCK-ON

GRID OFf
GRID ON

MEtric
Fractional

DEFault_grid number

HPr
VGb

B9424
MONo_HPplotter
Wll versatec
W22 versatec
W36-versatec
W42-versatec

LOcal_plot
SPooled_plot

3-98

}

}
}
}
}
}
}
}
}

}
}

}
}

}
}
}

}
}

}
}

}
}

}
}

}
}

}

}
}

}
}
}
}
}
}

}
}

{
{

{
{

{

{
{
{
{
{
{

DOUble width -
SINgle width -

LE Ft justification
Right justification

}
}

}
}

Graphics Editor
Command Summary

USER SIM simulatorfilename }

COLOR Wire color }
COLOR Prop color } -
COLOR Dot color }
COLOR Arc color } -
COLOR Note color }
COLOR_Body color }

The SET command is used to assign various default
parameters. To see how the options are currently set, type
SET (er).

The size argument sets the default size of entered
text. For example, SET SIZE 1.5 makes all text (signal
names, notes and properties) 1.5 times the height of the
default character set (as if a DISPLAY 1.5 had been done to
each piece of text). To return to the default text size,
use SET SIZE 1. The default text size will plot 0.082 inch
high characters on the electrostatic plotter. If the
default size is set to N, then the plotted characters will
be N times 0.082 inches high. The maximum height is 2
inches (or 24 times the default size).

The next eight arguments are write options and allow
you to specify which types of files the Graphics Editor
saves when a write is done. Four different types of files
are usually written: ASCII, BINARY (makes for faster
reads), CONNECTIVITY (used by the Compiler), and DEPENDENCY
(for update procedure). If you are creating a flow chart,
for example, you might not want to write the connectivity
file. SET NOCONN will cause the write command not to output
the connectivity file. To reset the option to write
connectivity files, type SET CONN. The default values for
the write option are ASCII, CONN, BINARY, DEPENDENCY.

ORTHOG_WIRE/DIRECT_WIRE: These arguments are wire
options. ORTHOG WIRE is the automatic orthogonal wire mode;
the white and grien cursor buttons are used to change the
direction of the wire. DIRECT WIRE is the non-orthogonal
wire mode; the white and green cursor buttons are used to
end and create orthogonal wire segments. The default
setting is ORTHOG WIRE. See the description of the WIRE

3-99

Graphics Editor
Command Summary

command for more information.

STOP AT PIN/GO AT PIN: These arguments affect the WIRE
command. -To-end a wire requires 2 cursor button presses.
This is often awkward when you connect a wire to a pin on a
body. The STOP_AT_PIN option causes the wire to terminate
when a wire reaches a pin. The GO AT PIN option does not
end the wire. The default value is STOP AT PIN.

MOVE ORTHOG/MOVE DIRECT: These arguments are move
options. -When an object is moved, all wires electrically
connected to it are also moved. MOVE ORTHOG is the
orthogonal movement mode and preserves the bends in the
wires when an object or wire is moved. MOVE DIRECT is the
non-orthogonal movement mode; wires become diagonal when an
object or wire is moved and must be reorthogonalized with
the SPLIT command. The default setting is MOVE ORTHOG.

DOTS OPEN/DOTS FILLED: The DOTS OPEN and DOTS FILLED
arguments-allow the-users to set the default at which DOTS
will be displayed on the drawing. To create solder dots
type, SET DOTS FILLED. The default is to leave them OPEN

STICKY ON/STICKY OFF: If a property is deleted from a
body definition, what-happens to the property on all the
drawings with an instance of that body. These two arguments
determine whether deleted default properties are deleted
from instances on logic drawings (STICKY OFF) or whether
they are converted into non-default properties (STICKY ON).
This property deletion or transaction occurs when the logic
drawing is read in. The default is to delete them
(STICKY_OFF).

CAPSLOCK ON/CAPSLOCK OFF: The CAPSLOCK ON argument
creates a software capslock. All keyboard input is
upper-cased. If the capslock key is not pressed in, all
input will echo as lower case but The Graphics Editor will
upper case it internally. The default is CAPSLOCK OFF.

GRID ON/GRID OFF: When a drawing is first edited, the
grid is, by default, off. To turn the grid on for that
particular drawing, you type GRID <CR). However, if you
want the grid to be on when drawings are first edited, you
use the GRID ON argument. To then turn the grid off for
that particular drawing, you type GRID <CR). The default
setting is GRID_OFF.

DECIMAL/METRIC/FRACTIONAL: GED uses 500 internal units
per physical inch on the Versatec plotter. The grid
multiple displayed on the status line of the display is in
grids per inch.

3-100

Graphics Edi.tor
Command Summary

To base plots on the metric system, use the SET METRIC
command. GED then uses 512 internal units per physical inch
or 20 internal units per physical millimeter. The grid
multiple displayed on the status line is expressed in grids
per millimeter. Metric users can use standard Valid
libraries since pins are on 2.5 mm centers.

With 500 internal units per inch, users cannot use a
1/8 inch grid (the grid can be set to .124 or .126 but not
.125). If you use the SET FRACTIONAL command, The Graphics
Editor resets the internal units to 400 per inch. 400 was
chosen so that the Valid libraries will still be usable.
The bodies will appear 25% larger and the pins will be
placed on 1/8 inch centers.

DEFAULT GRID: The grid size is, by default, 0.05 on
.BODY drawings, 0.166 on .DOC drawings and 0.1 on all other
drawing types. To change the default for all types but
• BODY and • DOC, use the 'SET DEFAULT GRID grid_size'
command.

As indicated in the discussion of the HARDCOPY command,
there are two methods for directing files to a printer. The
default hardcopy method is HPR, and the compatibility mode
is the VGB method.

Wll VERSATEC / W22 VERSATEC / W36 VERSATEC /
W42_VERSATEC / HP_PLOTTER: We now support several sizes of
Versatec electrostatic plotters. If a user has a 22 inch
Versatec and sets the option to 11 inch, the plot will
appear normally but won't fill up the paper. If a user has

plot
The

an 11 inch Versatec and sets the option to 22 inch, the
will be garbage. The default setting is Wll VERSETEC.
user may also switch to an HP plotter by setting the
HP PLOTTER.

LOCAL PLOT/SPOOLED PLOT: Output for the Versatec and
the Hewlet~-Packard ele~trostatic plotters can now be
written to a file to be plotted later or to be plotted on a
remote SCALDsystem. The default setting is LOCAL_PLOT. For
information on the SPOOLED_PLOT option, see the detailed
instruction given in the entry for the HARDCOPY command.

DOUBLE WIDTH/SINGLE WIDTH: The electrostatic plotter
now prints ~wo pixels wh~re it previously printed one
(DOUBLE_WIDTH option). This makes the resulting plots
darker and clearer. The DOUBLE_WIDTH option is the default.

LEFT JUST/RIGHT JUST: These 2 options change the
default jistificatio~ of text strings (both properties and
notes).

3-101

Graphics Editor
Command Summary

USER SIM: The USER SIM option allows you to give the
UNIX path name of the Simulator to run with the SIMULATE
command in GED. The default is /uO/scald/simulator/sim.

3-lOlA

\

Graphics Editor
Command Summary

I --

SH ow { Attach }
{ Body_name point }
{ coordinate point ••• }
{ CONnections }
{ Group { group_name } }

{ point } }
{ History }
{ Keys }
{ Net { point }

{ net name }
{ Origins }
{ Pins }
{ PRoperties }
{ Release }
{ Size text_point }
{ Vectors object_point }

The SHOW command is used to make classes of objects
visible on the display. The effect of the SHOW command is
temporary; objects that are made visible with this command
revert to their original state when the drawing is written
to the disk file or when the screen is redrawn. The SHOW
command may be executed with any of a number of arguments
that define which objects are to be shown.

To see a list of all the SHOW options, type "SHOW
(er>".

The ATTACH option is used to display connection between
properties and the objects to which they are attached.

The BODY NAME option will print the name of the
indicated device (with its SCALD directory name) on the CRT.

The COORDINATE option is used to display the pixel
coordinate of the indicated point.

The CONNECTIONS option is used to display wire
connections in the drawing.

The GROUP option causes the specified group to be
highlighted. If a point ls indicated, the closest group is
highlighted and its group name is given. If a group name is
given, that group is highlighted. In addition, the number
of devices, notes, arcs and wires in the group is listed.

3-102

Graphics Editor
Command Summary

The HISTORY option lists the drawings you have edited.
It shows which edited files have been modified but
unwritten. In addition, it lists the drawing the RETURN
command will return to.

The KEYS option causes the function key assignments
(which function key represents which string) to be
displayed.

The NET option lists the name of the indicated net as
well as highlighting its segments. The net can be indicated
by either typing the name or pointing to a net with the
cursor.

The ORIGINS option is used to display the origins of
the bodies on the screen.

The PINS option is used to display the pin connection
points on bodies.

The PROPERTIES option is used to show all of the
properties, both name and value, on the drawing. Since
signal names are handled internally as properties attached
to the wire, the use of the SHOW PROPERTIES will also cause
the text "SIG_NAME =" to appear with each signal name.

The RELEASE option gives the release number of the
Graphics Editor.

The SIZE option gives the display size of the
characters in the indicated text string. This size is the
multiple of the default text size.

The VECTORS option gives the pin names from the body
definition for the indicated part.

3-103

(

(

\

Slgname (point ••• signal_name •••) •••

Graphics Editor
Command Summary

The SIGNAME command allows you to attach signal names
to wires or pins. The point specified identifies the
location at which the text (signal name) will be placed.
The signal name will be attached to the wire or pin that is
closest to the specified point.

Signal names are handled internally as properties. For
example, attaching a signal called ''BUS ENABLE" to a wire is
equivalent to attaching a property "SIG NAME=BUS ENABLE" to
that wire.

When editing a body drawing, signal names are called
Pin names and can only be attached to the connection points
as identified with dots.

Signal names can be up to 80 characters long.

3-104

SMash point •••

Graphics Editor
Command Summary

--~---------------------

The SMASH command breaks a body into pieces. The
device is no longer considered one object but individual
wires, arcs and notes. Any properties attached to the body
are deleted. The SMASH command is useful for creating
library body drawings. For example, once a 2 input AND gate
is created, N input AND gates can be made by specifying the
following:

edit N AND.body
add 2 AND (pt)
smash (pt)

Now the N inputs can be attached and the drawing written.
Because the 2 AND is no longer a body, the graphics editor
will not complain when the drawing is written (as it would
when a body is added to a body drawing and an attempt is
made to write the result).

The SMASH command can only be used on bodies.

3-105

\

Graphics Editor
Command Summary

SP In (point point) •••

The SPIN command is used in cases where a true rotation
of a body is needed. This command rotates the body O, 90,
180, 270 degrees without mirroring any of the four
representations. See also MIRROR and ROTATE.

3-IOSA

SP lit (point point) •••

Graphics Editor
Command Summary

The SPLIT command can be used to perform two functions.
First, to split a single wire into two wires by adding a
vertex along that wire. The second use of the SPLIT command
allows objects that have been co-located (placed at the same
vertex) to be disconnected from one another. For example,
if a wire is connected to one pin and the designer wishes to
disconnect it and move it to a different pin, then the SPLIT
command would be used.

To split a single wire into two wires (adding a vertex
along the wire between the original two vertices), select
the SPLIT command and identify a point along the wire. Once
the new vertex has been added to the wire, the SPLIT command
operate~ much like the MOVE command; the vertex selected
may be moved about the drawing until it is in the desired
location. The new vertex may be placed by s.pecifying a
second point.

In order to disconnect two items that are co-located,
the vertex in question is specified. This will cause one of
the objects to be disconnected and made mobile on the
cursor. If the object that was split off was not the
desired one, then simply select the original vertex again
and the second object will be pulled off. Continue
selecting the vertex until the correct item has been
selected. Once an object has been split off, it can be
placed at a new location by moving the cursor and pressing
the appropriate button. If all the objects have been split
off the vertex and one item is not relocated, selecting the
vertex one more time will place down the last item. One
more selection will begin the cycle again, splitting off
each item in turn.

Whenever possible, the SPLIT command attempts to
operate on wires.

3-106

SWap { text_point text_point } •••

Graphics Editor
Command Summary

The SWAP command is used to swap two properties or two
notes. For instance, SWAP might be used to change the pin
ordering on a part from <0 •• 7) to <7 •• 0). Only two notes or
two properties can be swapped, not a note and a property.
Default properties and tho.se generated by the PINSWAP,
SECTION, and BACKANNOTATE commands cannot be swapped.

3-107

Graphics Editor
Command Summary

UNdo

The UNDO command undoes the previous operation
affecting the screen. A list of operations performed during
the current editing session is kept and repeated
applications of UNDO will undo events according to this
list. Each read or write of a diagram causes the UNDO log
to be reset, therefore UNDO cannot undo past file
operations.

3-108

Graphics Editor
Command Summary

--
UPDATE (a UNIX command)

--
UPDATE is a UNIX command. It must be run from a design

station with no Graphics Editor running. The command cannot
be run in the background.

To update the drawings in your SCALD directory, use the
command

/uO/editor/update { (er)
{ -n
{ -b
{ -a
{ -f

from UNIX. The parameters are:

"drawing name"
"part_name"

}
}
}
}
}

(er) (no parameter): find all drawings in the current
directory that need updating and remake them. First deletes
the binary and reads in the ASCII version of the drawing so
that changes to properties are handled correctly.

-n: find all the drawings in the current directory
that need updating and list them.

-b: find all drawings in the current directory that
need updating and remake them. Does not delete the binary
versions first, so if a binary version exists, property
changes are not handled correctly. This option is faster
than the first (no parameter) option and is preferred if the
user knows that only the body shapes have changed, not the
properties.

-a "drawing name'': whether or not the named drawing is
out of date, remake it. The drawing name should be in
quotes and fully specified with no wildcards. For instance,

/uO/editor/update -a "SIZE SHIFTER.LOGIC.l.1 11

-f "part name": find and list all drawings that use
the named part. The part name is quoted and of the same
form as the Graphics Editor ADD command. For instance,

/uO/editor/update -f "3 MERGE"

anything else: lists the parameters for
/uO/editor/update and the meaning of each.

3-109

Graphics Editor
Command Summary

The search path used to find the components in the
drawings is the path defined in your STARTUP.GED. The
drawings updated are those in the current UNIX directory.

3-110

use directory_name

Graphics Editor
Command Summary

The USE command allows you to specify the current
working directory. There is no limit to the number of
directories that can be in use at one time.

The form of "directory" is:
name.extension

where name is an alpha-numeric string beginning with an
alphabetic character, not exceeding 8 characters in length.
The ''extension" is an alpha-numeric string of 1-3
characters. The extension should be either WRK (for a user
directory) or LIB (for a part library). In addition, there
should only be one SCALD directory per UNIX directory.

To USE a SCALD directory other than one in the current
UNIX directory, the UNIX pathname must be given. For
instance,

USE /uO/job/common.wrk

See also the IGNORE command.

3-111

Graphics Editor
Command Summary

VECtorize

The VECTORIZE command creates a file called vector.dat
that contains the current drawing in vector format. See
"Vector Plot Format from GED" for information on the format.

3-112

VE Rs ion point •••

Graphics Editor
Command Summary

Bodies may be created with several different symbolic
representations. For example, the NAND gate is equivalent
to an INVERT-OR gate by DeMorgan's Theorem. Similarly, a
NOR gate is equivalent to an INVERT-AND gate.

In order to step from one representation of a body to
another, you select the VERSION command and, using the
cursor and cursor buttons, point to the body in question.
On pressing the cursor button, the Graphics Editor will
determine which version of that body is currently being
displayed, and will replace it with the next version in
sequence. If the n-th version of a body that only has n
versions was being displayed, then the use of the VERSION
command will cause version number one to be redisplayed.

The separate versions of a body must all make reference
to the same logic drawing. The use of a different version
of a body has no influence on the logic drawing defining it.

3-113

Graph~cs Editor
Command Summary

WINdow {
{
{
{
{
{
{

point point point }
point point; }
point; }
Fit }
;- }
positive or negative integer }
positive fixed point number }

The WINDOW command was described in detail in the
section on "Windowing and Scaling." Basically, the WINDOW
command is used to change the view of the drawing .on the
CRT. This command may be used with zero, one, two, or three
arguments. If fewer than three arguments are used, then you
must enter a semicolon, either by selecting that character
on the menu or by typing a semicolon followed by the return
key.

If the WINDOW command is presented with no arguments,
just a semicolon, the Graphics Editor will simply redraw the
image without changing the center or the scale. This option
is useful if the left side of the drawing has several error
messages which cover up part of the drawing.

Entering only one point as an argument, followed by a
semicolon, causes that point to become the center of the
drawing. The scaling is the same as before.

With two arguments (two points followed by a
semicolon), the WINDOW command will cause the area, defined
by the rectangle having those two points at opposite
corners, to be expanded to fill the screen.

If all three points are used with the WINDOW command,
then the first point defines the new center of the drawing,
the distance between the second point and the first point
defines a first distance, and the distance between the third
point and the first point defines a second distance. The
drawing is redisplayed with the first point at the center of
the screen and is scaled by the ratio of the second distance
to the first distance. If the second distance is greater
than the first distance, then items will appear larger; if
the second distance is smaller than the first distance, then
items will appear smaller.

The WINDOW command may be used to fit the entire
drawing to the screen. This is done by typing WINDOW F(cr)
or by selecting WINDOW on the menu and typing F(cr) on the
keyboard. It is not necessary to follow the F with a

3-114

I

I
t
I
I

I

semicolon.

Graphics Editor
Command Summary

If an integer or a real number is used as the argument
to the window command, then the view of the drawing will be
scaled. The center of the window will remain as is. For
example:

WIN 2
will make the drawing appear twice as large

WIN -2
will reduce the size by a factor of 2

WIN 1.5
will make the drawing one and a half times larger

WIN 0.5
does the same as WIN -2

3-115

Graphics Editor
Command Summary

WI Re (point point •••) •••

The WIRE command is used to add wires to a drawing.
The wire will begin at the first point specified and run to
the second. Additional points may be specified in order to
draw a wire that consists of one or more segments. To
terminate the run, a zero length segment is specified
(usually by pressing one of the cursor buttons twice at the
final point). If a wire is attached at the pin, it is
automatically terminnated without the seco~d press of the
cursor button. To change this, use the SET
STOP AT PIN/GO AT PIN command. - - - -

The automatic orthogonal wire mode described below is
the default wire mode. However, the non-orthogonal wire
mode that was available before the 4.2 release is also
available. This compatibility mode is described below,
after the explanation of the automatic orthogonal wiring.

Because schematics almost exclusively use orthogonal
wires, wires added to drawings are orthogonalized. After
the wire is started, as the puck is moved in any direction
-- horizontally, vertically or diagonally -- the attached
wire stays bent in the middle. To change the orientation of
the bend, press the white (or green) button. If the white
(or green) button is pressed a second time, the wire will
become diagonal. A third press will put the wire in the
first orthogonal position. An example is given below:

To create an orthogonal wire from point A to point B,
place the puck at A and press the blue button (to snap to
the connection).

BOPRo
K CL 0

3-116

Graphics Editor
Command Summary

As the puck is moved from A towards B (along the dotted
path) an orthogonal wire is created along the solid path.

If, you want the wire bent in the other direction, press the
white button to get:

0 B

y

Another press of the white button before the wire is put
down will un-orthogonalize the wire to look like this:

B 0
To complete the wire, press the white or green button again,
then press the yellow button to bend the wire at Y. Drag
the wire towards the clock input and press the blue button
twice to snap to the connection and lay the wire down.

y B 0

3-117

Graphics Editor
Command Summary

The compatibilty mode for the wire command as it worked
before the 4.2 release of the Graphics Editor is available
by typing "SET DIRECT WIRE". The command can be typed at
the keyboard or added-to the user's startup.ged file. ·In
this mode, all wires are diagonal until they are placed
down. Finishing a wire with the yellow or blue button
creates a diagonal wire. Ending a wire with the white and
green cursor button creates orthogonal wire segments.
Pressing the green button to end a wire will create
orthogonal wires from the start point to the nearest vertex.
Ending the wire with the white button creates orthogonal
segments to the nearest grid point.

If in compatibility mode, the automatic orthogonal
wiring mode can be entered be typing "SET ORTHOG WIRE".

Below, the user wants to create a wire from point A to
point B. Placing the puck at A, press the yellow button,
pushing the puck to B and pressing either the yellow or blue
button results in the diagram below.

To create an orthogonal wire, start the wire at point A by
pressing the yellow button.

BOPRQ
Ka... Q

Then, push the puck to point B and press either the white or
green button.

-L.) A

3-118

\

)

WRite

Graphics Editor
Command Summary

{[(directory)]drawing name[.[type][.[version][.[page]]]]}
{ - LOGIC 1 1
{ (er) }

This command writes out the current drawing onto disk.
If no drawing name is specified, the drawing is written into
the drawing name specified on the status line at the top of
the display.

If no directory is given, the drawing is written to the
SCALD directory it was retrieved from. If the drawing is a
newly created drawing and no directory is given, then the
drawing is written to the current directory.

If a drawing name other than the one listed in the
status line is given and that drawing name is already in a
SCALD directory, a warning message is given. You must
select WRITE again in order to actually write the drawing.
Selecting any other command aborts the write.

3-119

Graphics Editor
Advanced Information

Advanced Information on the Graphics Editor

3.8 INTRODUCTION

This section is intended as a technical reference for
experienced, not novice, users of the the Graphics Editor.
This section describes the files used by the editor, the
editor's interaction with other parts of the SCALDsystem,
and specifics about Graphics Editor commands.

To learn about building libraries, see "Defining Bubble
Groups in the Graphics Editor," in the next section, and
"Library User's Guide" and "Valid Library Styles and
Standards" in Chapter 11.

3.9 SYSTEM-WIDE FILES

Several files are used by the Graphics Editor for
initialization. These are:

/uO/editor/startup.ged
/uO/editor/softkeyassign
/uO/lib/ged/config.dat
/uO/lib/master.lib

The /uO/lib/master.lib file, which is also used by the
SCALD compiler, replaces the former file
/uO/lib/ged/master.dir. The file /uO/editor/doc contains
the help files. The file /uO/editor/startup.ged is a
system-wide initialization file. It defines some of the
directories referenced by the Graphics Editor. It is
referenced by all users of the system. Currently
startup.ged defines the keys on the workstation keyboard.
See the file /uO/editor/softkeyassign for the default key
assignments. To see how one can assign different values to
the keys, type HELP ASSIGN in the Graphics Editor.

The other two initialization files have to do with
component library initialization: /uO/lib/ged/config.dat
defines the characters that are used for signal name
definitions (e.g. -signal name or signal name* for a low
asserted signal), and /uO/lib/master.lib is a file of name
translations for the SCALD component libraries. The file
entries contain the short-hand name for the Graphics Editor
LIBRARY command and the UNIX pathname to the location of the
Library. An example entry in master.lib would appear as
follows:

'sttl' '/uO/lib/sttl/sttl.lib';

Instead of typing USE /uO/lib/sttl/sttl.lib, you can type

3-120

LIBRARY sttl.

Graphics Editor
Advanced Information

There are several reasons for including this
translation file. First, it is a nuisance to have to
remember the long UNIX path names. Second, most of you will
not have permission to modify library components; the
translation file keeps the libraries somewhat hidden.

The master.lib file is also used by the Compiler.

3.10 USER OWNED FILES

Individual users have several files in their own login
directories that are used by the Graphics Editor. The two
most important are startup.ged and your SCALD directory.

STARTUP.GED

Startup.ged is used for initialization, as is
/uO/editor/startup.ged, discussed above. The file contains
standard Graphics Editor commands. The last line should
tell the Graphics Editor the name of your SCALD directory.
The startup file may also contain library commands. If you
don't like any of the Graphics Editor defaults (such as a
display grid that is off), any other lines would change
these defaults. For example, your startup.ged might be:

library lOOk
grid dots on ;
use steve.wrk

3.11 SCALD DIRECTORIES

The SCALD directory is used as a name translation file
between SCALD drawing names and UNIX directory names. The
translation file is used because SCALD drawing names can be
any length and can have spaces in the name while UNIX
directory names are fixed length and one word.

FORMAT

The format of the SCALD directory is important for the
Graphics Editor to run correctly. If you ever need to
change a SCALD directory manually (without the aid of the
Graphics Editor), this format must be followed.

A SCALD drawing name has four parts:
SCALD drawing name.drawing type.version.page (e.g. SIZE
SHIFTER.LOGIC.1.1). There-is a UNIX directory for each
SCALD drawing name. In the directory is stored all the
drawing types (SIM, LOGIC, PRIM, BODY, etc) and all versions
and pages. An example of a SCALD directory is:

3-121

Graphics Editor
Advanced Information

file type = logic dir ;
"SIZE SHIFTER" 'slzeshifter'·

'
II Ls 11 2 II , ·l s 11 2 , ;
"LS373" 'ls373';
"SUPER HYPER MUX BOX" .' sup.erhypermuxb' ;
END.

All drawings named SIZE SHIFTER are stored in the UNIX
directory /uO/username/sizeshifter. The SCALD drawing name
(the name in double quotes) MUST be in uppercase.

CREATING AND USING A SCALD DIRECTORY

When your home UNIX directory is created with the UNIX
utility mkusr, a startup.ged file is created with the entry:

use user name.wrk

When the Graphics Editor is used for the very first time,
the message ''user name.wrk doesn't exist and will be created
when you write into it" will appear. Additional SCALD
directories can be created at any time with the USE command.
The Graphics Editor will create a directory if the name
given does nbt exist.

When specifying SCALD directories in the USE command,
the full UNIX path name must be given. For instance, to use
another user's directory, you might type:

USE /UO/MIKE/MIKE.WRK

3.12 OTHER FILES

While using the Graphics Editor, two other f~les will
be created: editor.log? and undo?.log. (? stands for the
number of the design station the Graphics Editor was run on.
It will be set equal to O, 1, 2 or 3.) Editor.log? is a
history of all messages written on the left hand size of the
display.

The file undo?.log is us*d by the Graphics Editor
commands REDO and UNDO. 'The undo log can be used to restore
drawings that were not saved if the SCALDsystem crashed
while you were in the Graphics Editor.

These files are deleted *hen the Graphics Editor
terminates normally.

3-122

Graphics Editor
Advanced Information

3.13 BODIES AND PROPERTIES KNOWN TO THE GRAPHICS EDITOR

The Graphics Editor, in general, has no knowledge of
rules about how the logic design works or how components can
be connected together. However, the Graphics Editor does
use and know about several bodies and properties. These are
discussed below.

SPECIAL BODIES

The Graphics Editor uses three special bodies from the
STANDARD library.
1) Origin Body -- used to mark the origin reference point in
bodies
2) Drawing Body -- GED sets the last modified property
3) Pin Names -- shows the pin names of the body for current
logic (sim, time) drawings

All other bodies have no special meaning to the
Graphics Editor. The Origin Body is only used by the
Graphics Editor while the Drawing and Pin Names bodies are
used by the Compiler and other programs in the SCALDsystem.

Special Properties

The Graphics Editor currently knows about the
properties:

Last modified (on the drawing body)
Pin Name
Sig-Name
Properties added by BACKANNOTATE, SECTION and

PINSWAP commands

The Graphics Editor knows about the Pin Name and
Sig Name properties so that they can be attached to
components correctly. All other properties are passed to
the other programs in the SCALDsystem.

The Graphics Editor also has rules about which commands
can be performed on which properties. For instance, default
body properties cannot be deleted and their names cannot be
changed. Or, properties generated by the PINSWAP, SECTION
and BACKANNOTATE commands aren't written into the
connectivity file. The Graphics Editor gives an error
message if an illegal operation is performed on a property.

The placeholder property '?' can be used in body
drawings. For instance, to indicate to the Graphics Editor
where the PATH property is to be placed on a body, add the
property PATH=? when defining the body. Once the body is
added to a drawing, the Graphics Editor checks for a
property value of '?' and does not write those properties

3-123

Graphics Editor
Advanced Information

into the connectivity file. However, once the property has
been given a real value (for instance, the AUTO PATH command
was given), the propety i~ written into the connectivity
file.

3.14 RULES ABOUT DRAWINGS

Currently there are few enforced rules about what can
be put in drawings. The rules that are enforced are as
follows:

1) Users can't write a drawing into a drawing of a different
type (e.g. if editing shifter.logic, can't write
shifter.sim) Use the DIAGRAM command to change the drawing
type of the drawing.

2) Bodies cannot be added into other body drawings and
saved. Although other bodies can be added to other bodies
for comparison purposes, the Graphics Editor will complain
if the body drawing is written out. If you want to use
another device as a model, add the device to the body
drawing and use the SMASH command.

3) Users cannot add incompatible bodies to diagrams. For
instance, sim devices are illegal in time diagrams. Both
the Graphics Editor and the Compiler will complain about
illegal bodies in drawings. If a directory is illegal for
the drawing currently being edited, the DIRECTORY command
listing will state it is illegal.

3.15 DRAWING FORMATS

The Graphics Editor stores drawings in four formats:
binary, ASCII, connectivity and dependency. See the Editor
File Formats section later in this chapter for an exact
description of the syntax of these files. The binary, ASCII
and dependency representations are used exclusively by the
Graphics Editor. The ASCII file can be printed, is easy to
understand, but is slow for the Graphics Editor to read.
The binary file can't be printed, isn't easily understood,
but is quicker to read. If a binary file exists, the
Graphics Editor reads it instead of the ASCII file. The
connectivity file is used by the Compiler.

When a drawing is written, all four formats are
created. The files are stored in the same UNIX directory
using the SCALD drawing name as the UNIX directory name. If
a drawing is named SIZE SHIFTER.LOGIC, then the three
formats will be:

sizeshifter/logic.1.1 ASCII
sizeshifter/logic_bn.1.1 binary

3-124

sizeshifter/logic cn.1.1
sizeshifter/logic=dp.1.1

Graphics Editor
Advanced Information

connectivity
dependency

For sim and time drawings, substitute sim or time for logic,
above. Body drawings are only stored in a binary
representation. SIZE SHIFTER.BODY.1.1 would be stored as:

sizeshifter/body.1.1

When writing a DOC drawing (generated by the FORMAT
command), only the binary and ASCII representation is
written. DOC drawings are assumed to be drawings, rather
than schematics, so the connectivity representation isn't
necessary.

The SET command allows users to not write either the
binary, ASCII, connectivity, or dependency files.

3.16 TEMPORARY FILES AND RECOVERY FROM CRASH

When you edit a second drawing without writing out the
first one, the Graphics Editor saves a copy of the first
drawing. The saved file is in binary only and is named
aTaaaaa?.xyz where ? is the number of the Nth temporary
file stored in your UNIX directory and T is the number of
your design station. Temporary files are not written into
your SCALD directory. Saving only a binary version makes it
faster to read in a re-edited drawing.

These temporary files are deleted from the UNIX
directory if the Graphics Editor terminates normally.
However, if the Graphics Editor or the cluster crashes, all
drawings but the last one can be restored via the temporary
files.

If GED or UNIX crashes, it is possible to recover the
drawings that were being edited while GED was running. This
recovery feature was altered In version 7.25 software to
make the procedure simpler. In the event of a crash, a user
can recover files by simply answering "yes" to the query
about recovering files. Every time GED is called to the
screen, this query appears as one of the first messages from
the editor. For normal operations it can be ignored; in
the event of a crash, it is easy to recover files.

If a user elects to recover drawings, they are all
placed in a SCALD directory called restore.wrk. The
recovered drawings are called RESTORED!, RESTORED2, • • • If
restore.wrk exists, it will be overwritten. A warning
message is printed about this, and it is possible to elect
not to recover. The user must type USE RgSTORE.WRK to get
the recovered drawings.

3-125

Graphics Editor
Advanced Information

3.17 UPDATING OUT-OP-DATE DRAWINGS

If library parts change, it is often difficult and time
consuming to look through a SCALD directory to determine if
any drawings are effected. An update facility is provided
with the Graphics Editor to make this process easier. This
update facility should perform several functions. First, it
should allow you to ask which drawings are out of date and
then remake them, using the new parts. This can be done
from UNIX and in a 'batch' mode. Second, when editing a
drawing, the Graphics Editor should inform you when parts
are out of date and, if a new library or directory is used
with parts already in the current drawing, you should have
the option of replacing the parts. Currently, the first
function is implemented;

In order to update a drawing, several things are
needed. First, a list of all the parts used by a drawing
must be compiled. This list can then be used to determine
whether any of the parts are newer than the drawing.
Second, changed properties on parts must be handled
correctly. For instance, if a property on the part is added
or deleted, that property must also be added or deleted on
the drawing. In addition, if you have modified a part
property value, that value should over-ride any default
value.

DEPENDENCY P,ILES

In addition to writing ASCII, binary and connectivity
files for drawings, the Graphics Editor writes a dependency
file for each drawing. This file lists the bodies used by a
drawing as well as which UNIX directory the parts came from.
When running the update facility, the date on the file
containing each part is compared to the date of the last
write for the drawing. If any of the parts are newer than
the drawing, the drawing needs to be updated.

UPDATING A DRAWING

To update the drawings in your directory, use the
command

/uO/editor/update { (er) }
{ -n }
{ -b }
{ -a "drawing name" }
{ -f "part_name" }

from UNIX. The parameters are:

(er> (no parameter): find all drawings ln the current

3-126

Graphics Editor
Advanced Information

directory that need updating and remake them. First deletes
the binary and reads in the ASCII version of the drawing so
that changes to properties are handled correctly.

-n: find all the drawings in the current directory
that need updating and list them.

-b: find all drawings in the current directory that
need updating and remake them. Does not delete the binary
versions first, so if a binary version exists, property
changes are not handled correctly. This option is faster
than the first (no parameter) option and is preferred if you
know that only the body shapes have changed, not the
properties.

-a ''drawing name": whether or not the named drawing is
out of date, remake it. The drawing name should be in
quotes and fully specified with no wildcards. For instance,

/uO/editor/update -a "SIZE SHIFTER.LOGIC.1.1"

-f "part name": find and list all drawings that use
the named part. The part name is quoted and of the same
form as the Graphics Editor ADD command. For instance,

/uO/editor/update -f "3 MERGE"

anything else: lists the parameters for
/uO/editor/update and the meaning of each.

The search path in your STARTUP.GED file is used to
determine which libraries to use and in what order to use
them. UPDATE will work only for drawings in the current
UNIX directory. Be sure your present working directory is
the same directory used when running GED when you use the
UPDATE command.

The UPDATE command is run from UNIX. It must be run on
a design station without a Graphics Editor running. The
command cannot be run as a background process.

3.18 ADVANCED GRAPHICS EDITOR COMMANDS

This section is divided into two parts. The first is a
detailed description of several Graphics Editor commands.
The second section is a list and short description of all
Graphics Editor commands. The second section is available
on-line with the Graphics Editor HELP command.

FEATURES AND COMMANDS UNIQUE TO THE GRAPHICS EDITOR

Several features of the Graphics Editor are unique to
it and ignored by other programs in the SCALDsystem. Most
of these features have to do with how the drawings are

3-127

Graphics Editor
Advanced Information

displayed. For example, left justifying a property has no
effect on the drawing, only the way it is displayed. Notes
are also ignored by other parts of the system.

HARDCOPY

To produce a permanent copy of a drawing, the Graphics
Editor provides the HARDCOPY command. Drawings can be
plotted on A through E size paper (sizes greater than B are
printed in strips) and between 0.4 and 2.5 times the nominal
size. Virious sizes of Versatec plotters are supported --
11, 22, 36, and 42 inches.

In addition, model 7580A and 7580B HP Pen Plotters are
supported.

SCRIPTS

Although you can't capture your keystrokes while in the
editor, prewritten files of the Graphics Editor commands can
be used in batch mode. For example, you may want to plot
all the logic drawings in several directories. You can
create a file called printAll containing the following:

use userl.wrk
use user2.wrk
use user3.wrk
use user4.wrk
ha A <*>*.logic.*
force quit

(The forcequit command is described below.) You would change
your startup.ged to contain only:

script printAll

and start the Graphics Editor.

Several Graphics Editor commands have been added for
use in scripts. FORCENOTE and FORCESIG must be used in
place of NOTE and SIGNAME, respectively. The CHANGE command
(text editor) is not allowed in scripts. The commands are:

1) FORCEADD component name
point ; -

The ADD command complains if a component is not found
in the current working directories and libraries and does
not add the component. Forceadd, however, creates a place
holder for the component in the drawing. If a library used
later contains that component, it is added to the correct
places in the drawing.

3-128

2) FORCENOTE note
point ;

Graphics Editor
Advanced Information

The interactive note command takes combinations of
notes and points until you enter another Graphics Editor
command. This does not work in a batch mode and the note
command is not allowed in a script. To add notes, use the
forcenote command which takes one note and the point where
it should be placed.

3) FORCEQUIT

The quit command, like the note command, is only for
interactive use. To exit from a script, use the forcequit
command.

4) FORCESIG signal name
point ; -

The forcesig command adds a signal name to the
specified point. The signame command is not allowed in
scripts, only the forcesig command.

3-129

Graphics Editor
Section and Pin Assignments

Section and Pin Assignments

3.19 INTRODUCTION

Users want to be able to do section and pin assignments
in their drawings and have the Packager perform these
assignments for the actual physical design. To provide
these capabilities, the Graphics Editor has the commands
SECTION and PINSWAP which place special properties in the
drawings that are understood by the Packager.

3.20 USER INTERFACE

SECTION ([pin_number] point) •••

The SECTION command works like the VERSION command.
Currently, only parts that can be assigned to a particular
section are either SIZE wide parts with a size of 1 or
HAS FIXED SIZE parts. Assigning sections to a
HAS-FIXED-SIZE part is accomplished by pointing to the pin
of the section to be assigned. It is an error to point to
the body of a HAS_FIXED_SIZE part.

If the part selected can be assigned to a section, the
pin numbers for the selected section will be back annotated
to the part. If the same part is selected again, the next
section will be selected, and the new pin numbers will be
back annotated to the part. Thus, by pointing to the same
part, you can step through all the different possible
sections. To assign a specific section directly, first type
in a pin number that uniquely defines the section before
pointing at the part.

If you delete the pin numbers back annotated to a
SECTIONed part, the section assignment is still there. The
only way to de-assign a section is to REPLACE the part with
a new copy of itself.

PINSWAP ({ pin number
({ point

} point
}

) . . .
) . . .

The PINSWAP command can only be used after section
assignment has occurred for the part. Also, pin swapping
can only occur between pins which have been defined in the
library as swappable. Thus, it may be legal to swap the two
input pins of a NAND gate, but not the input and output pins
of the gate.

To swap pins, you can either point at the two pins to
be swapped, or you can type in a new pin number for the
selected pin. In the latter case, the selected pin will be

3-130

Graphics Editor
Section and Pin Assignments

swapped with the pin with the user specified pin number.

Once pin swaps have been performed on a part, further
section assignments are no longer allowed for the part.
This means that if you wish to assign a part to a different
section after performing pin swaps, the part must first be
de-assigned by using the REPLACE command. You can then
assign the new part to the desired section.

3.21 MAKING INDIVIDUAL CHIP FILES

Only devices in libraries with chips files can be
sectioned and pin swapped. Only chips files created with
the 6.0 or later release of the compiler can be used. If
VALID-provided libraries are used, devices from the 4.1 or
later release must also be used.

Release 4.1 or later version of the libraries provided
by Valid are already set up so that the SECTION and PINSWAP
commands will work. User-defined libraries must have the
library's chips file divided and distributed to each part in
the library.

To create a chips file for a user-defined library, you
must create a library drawing containing one each of all
devices. For the Valid supplied lOOK Library, this drawing
is called lOOK LIBRARY. Theo physical information such as
pin numbers, input load, output load, etc., is attached to
each device on the drawing. The drawing is then compiled
for LOGIC and output with the directive OUTPUT CHIPS. The
Compiler then produces a file called chips.dat. This file
is renamed to lihrary_name.prt for Valid libraries, e.g.
lOOk.prt.

The chips file contains the physical information for
all the library devices. In order for the SECTION and
PlNSWAP commands to work, the chips file must be divided
into a separate file for each part in the library. To
divide a chips file, use the command:

% /usr/bin/makechipsfiles chips_file library_name

For example, to break up the lOOK library,

% cd /uO/lib/lOOk
% /usr/bin/makechlpsfiles lOOk.prt lOOk.lib

3-l1l

Graphics Editor
Section and Pin Assignments

The new files are stored in the subdirectory for each part.
For example,

100171/chips_prt

is the individual chips file for the device 100171.

If the chips file for the library is not separated, the
SECTION and PINSWAP commands will not work.

To use the SECTION and PINSWAP commands, installations
must have the program:

/usr/bin/section/section

This is the program that figures out the section and
pin assignments for the various parts. Installations must
also include the following files:

/usr/bin/secassign
/usr/bin/makechipsfiles
/usr/bin/makedrawingnames
/usr/bin/maketextfile
/usr/bin/makewritefiles

3-132

Graphics Editor
Mixed Text and Graphics Documents

Mixed Text and Graphics Documents

3.22 INTRODUCTION

You can create mixed text and graphics documents
interactively using the Graphics Editor's set of graphics
tools. You can also add graphics to existing text. The
need to physically cut and paste drawings into text is
eliminated.

To avoid confusion, the term ''document" means a
text and graphics paper like this one. A drawing is
schematic created using the Graphics Editor. A text
an ASCII file that is part of the UNIX file system.
files are created using a text editor such as VI (in
or emacs (on a VAX).

mixed
a
file is
Text
UNIX)

This document is divided into several sections. The
first explains how to add drawings to an existing text file,
thus creating a document. The next two sections describe
how to create a document interactively with the Graphics
Editor and how to edit an existing document. These first
two sections will allow you to begin creating documents.
The final sections are more advanced and give specific
warnings and conventions.

3.23 ADDING DRAWINGS TO EXISTING TEXT FILES

The FORMAT command is used to add drawings to an
existing text file. It is useful when documentation is
already written and there are figures that must be cut and
pasted into the document. By adding the drawing names to
the existing text files and formatting them using the
Graphics Editor, no cutting and pasting need be done.

FORMAT UNIX file name <CR) SCALD_drawing_name

The FORMAT command takes a UNIX ASCII text file,
followed by a carriage return, and the name of the drawing
the document is to be called. It then creates a SCALD .DOC
document from it called SCALD drawing name.DOC. The UNIX
file can be a text file that has been-formatted by runoff
(on the VAX) or nroff (under UNIX). Each page of the text
file is turned into a page in a SCALD drawing. A page ends
with the 60th line or a user inserted ~L (formfeed).

Each page created by FORMAT is 8 1/2 by 11 inches, with
6 lines per inch. The characters are slightly larger than
the default character font (1.29 times the default) for
easier readability.

3-133

Graphics Editor
Mixed Text and Graphics Documents

Space must be left to allow the insertion of drawings
into the document. At least two lines are needed for each
inserted drawing. The first line must have an "&'' in the
first column, followed by the name of the SCALD drawing you
want to insert. The second line must have the number of
lines, N, that are allotted for the drawing (6 lines = 1
inch). You must then insert N blank lines. The Graphics
Editor reads the named drawing, smashes it and then scales
it to fit into the stated space. For instance:

& AN EXAMPLE.LOGIC.1.1
3

The following examples, the first in runoff and the
second in nroff, will produce Figure 1.

In runoff Format:

.p
The 2 to 1 MUX. IF S is high, the output, Y, is
Il. If S is low, the output is IO •
• sk 2
.br; &MUX.BODY
• br ;4
.sk 4

In nroff format:

.PP
The 2 t~ 1 MUX. IF S is high, the output, Y, is
Il. 'If S is low, the output is IO •
• sp 2
• br
&MUX.BODY
• br
4
.sp 4

The 2 to 1 MUX. IF S is high, th~ output, Y, is Il.
If S is low, the output is IO.

8UBBLE_GROUP=<I0:IllY>

Il <SIZE-1. hl y <SIZE-1.. 0>
I0 <SIZE-1. v

s

Figure 1: Using the FORMAT command

3-134

Graphics Editor
Mixed Text and Graphics Documents

The FORMAT command adds tick marks on each corner of
the document so that you can cut the Versatec output to the
correct size.

3.24 CREATING DOCUMENTS INTERACTIVELY

Creating a document while in the Graphics Editor
requires being able to add both text and drawings. To add
text lines, use either the NOTE command or create a file of
text using another editor and then add it to the document
using the FILENOTE command. To add a figure, you create the
drawing with the Graphics Editor and add it to the document
using the SCALE command.

As a illustration, to create Figure 1, make a file with
the text ("The 2 to 1 MUX ••• ") using VI or ed and then
create the MUX using the Graphics Editor. Now, from the
Graphics Editor, edit the drawing EXAMPLE.DOC. Type
FILENOTE UNIX file and point to the spot where the note
should go. The results of this operation are in Figure 2.

Next, use the SCALE command to add the drawing. Type
''SCALE MUX.BODY" and point to the corners of the rectangle
where the figure should go. The results are shown in Figure
3. Note that using the SCALE command causes all bodies to
be "smashed" into their primitive pieces. The BODY
definitions are not maintained.

The 2 to 1 MUX. If S 1s high, the output,

Y ,s !1. IFS 1s low, the output 1s I0.

Figure 2: Using the FILENOTE command

3-135

Graphics Editor
Mixed Text and Graphics Documents

Thg 2 to 1 MUX. I~ S 1s high, thg output, Thg 2 to 1 MUX. If S 1s high, thg output,
y 1e I!. IF S 1s low, the o~tput 1s 10. Y 1s I1. IF 5 1s low, the output 1e 10.

Figure 3: Using the SCALE command

3.25 EDITING A DOCUMENT IN THE GRAPHICS EDITOR - WARNINGS
AND CONVENTIONS

CHANGING AN EXISTING DOCUMENT

Once a document is created, either using the FORMAT
command or interactively with the FILENOTE and SCALE
commands, it can be edited using the Graphics Editor. You
may want to, for instance, rescale figures or make simple
changes to lines of text. Modifications can be made using
regular Graphics Editor commands such as MOVE, COPY, CHANGE,
WIRE and GROUP.

As an example, Figure 4, is an existing document.
Several changes need to be made. First, the word 'First' is
misspelled in the second line. This can be corrected using
the CHANGE command. Second, to add emphasis, the words
Data, Wing Span and Accommodation might be underlined using
the WIRE command. Finally, the scale of the drawing is too
small. Delete the drawing by defining a group and then
doing a group delete, and then read it at a different scale
using the SCALE command. The results are in Figure 5.

Aerotec 122 U1rapuru <Eraz1I>
Frst Flight !965

Data: Standard T-23 m1t1tary version
Cu1s1ng speed <Model A-122A> 1a 155mph
Powerea by 108hp Lycom1ng Eng1ne
W1ng Span: 27 ft 10 3/4 1n <8.5m>

Accommodat1on: Two seats aide by a1dei......w1th dual controls.
Eaggage compartment, capacity oo lb <33 kg>, aft of
seats.

Figure 4: An Existing Document to Edit

3-136

Graphics Editor
Mixed Text and Graphics Documents

Agrotgc 122 U1rapuru <Braz, I>

F"lr9t F"l1ght 1985

Dali;: Standard T-29 m1I1tary 11grs1on
Cu1s1ng Sp99d <ModQI A-122A) JS 155mph
Powsr~c by, 108hp Lycoming Eng1ns
Wing Span: E? ft 10 3/4 In c8.5ml

Accommodation: Two eaate slds by s1dg, with dual controls.
Saggags compartmsnt, capacity 66 lb <33 kg> a~t 0 ~ agate. 1

Figure 5: The Existing Document Changed

THE .DOC DRAWING TYPE IN THE GRAPHICS EDITOR

Documents made using the FORMAT command are .DOC
drawings in the Graphics Editor. Editing a .DOC drawing is
different from editing a regular schematic (.LOGIC, .TIME,
.BODY, etc.). First, the grid is set up so that there are 6
grid spaces per inch on the final plot (the grid is set to
0.166) In addition, when a DOC drawing is written, only the
ASCII and binary representations are saved. There is no
need to create a connectivity representation because
documents are not read by the SCALD Compiler.

PRINTING A DOCUMENT WITH THE GRAPHICS EDITOR

When a document is created using the FORMAT command,
tick marks are placed at the corners of the page. These
tick marks serve 2 purposes. First, they allow you to
hardcopy at the default scale (HA 1 ;) and get an 8 1/2 by
11 inch page. Second, the tick marks are used to cut the
plotter paper to the correct size. Therefore, you should be
sure not to delete the tick marks on the sides of the
document or to palce text outside the tick marks, otherwise
the page will not hardcopy correctly. If the marks are
deleted or the page is created manually, type the following
to create the tick marks:

DOT (410,4864)
DOT (410,-50)
DOT (4648,4864)
DOT (4648,-50)

Make sure that all the text and graphics lie within the box
created by the dots, and the page will always be plotted
correctly.

3-137

Graphics Editor
Mixed Text and Graphics Documents

3.26 USING RUNOFF ON THE VAX TO CREATE A TEXT FILE

SETTING UP THE PAGE MARGINS

Several rules must be followed when setting up the page
margins for a runoff text file. The default page length
works fine (59 - 60 lines per page) so this doesn't need to
be altered. However, you need to be aware of the margins
that are used. The FORMAT command centers documents created
with the default margins; if the margins are changed, the
page may not be centered.

INCLUDING REFERENCES TO DRAWINGS

When including GED drawings, you must know where the
first column is on the page. For instance the runoff
example above will work correctly with the default margin.
If, for example, a drawing is included in a list, the runoff
input might look like this:

.ls

.le
Administation:

.i-9; &ADMIN ORG CHART.LOGIC.1.1

.i-9;9

.sk 9

COPYING THE FORMATTED TEXT TO THE CLUSTER

When coying a document that has been formatted from the
VAX to the SCALD station, use the cpfromvax utility. Do not
use cp because runoff puts 2 carriage returns at the end of
every line. The cpfromvax utility deletes the extra
carriage return. (Don't use cpfromvax to copy format ASCII
documents because the lines will be all strung together).
If you don't use cpfromvax on your runoff files, your
documents will be double spaced when run through the
Graphics Editor.

ITALICS, BOLDFACE AND UNDERLINING

The Graphics Editor only supports one text font
(although it can vary in height). Therefore, the Graphics
Editor ignores any italcize and boldface commands.

3.27 USING NROFF IN UNIX TO CREATE A TEXT FILE

Several rules must be followed when using nroff. The
-ms macros should be used to create the document. For more
information on these macros, see "Typing Documents on the

3-138

Graphics Editor
Mixed Text and Graphics Documents

UNIX System: Using the -ms Macros with Troff and Nroff" by
M.E. Lesk.

SETTING UP THE PAGE MARGINS

The default page length is too long for the font
created by the Graphics Editor. To create pages with 59
lines, use the command

.pl -7

at the beginning of the file. The default page margins
centec correctly on the Graphics Editor drawing page.

ITALICS, BOLDFACE AND UNDERLINING

Because the Graphics Editor only supports one text font
(although it can vary in height), italicize and boldface
commands are ignored.

3-139

Graphics Editor
Defining Bubble Groups

Defining Bubble Groups in the Graphics Editor

3.28 INTRODUCTION

This section describes how bodies with bubble groups
are created. It is assumed that you have an understanding
of how bodies are created.

3.29 CREATING BODIES WITH BUBBLE GROUPS

For a pin to be bubbleable, it must have two
characteristics : The correct physical construction and the
correct bubble group properties. The correct physical
properties are-needed since the pin can be drawn in two
different physical states, and the bubble groups are needed
to indicate which pins bubble simultaneously.

The physical requirements for a bubbleable pin are
simple: The connection must be directly on the circle, and
there must be a line from the pin that goes across the
diameter of the circle. When the body is displayed, either
the circle or the line (but not both) will be displayed. If
the circle is displayed, the pin is in the BUBBLED state, if
the line is displayed the pin is in the NON-BUBBLED state.

Bubble groups define which pins change state when a
given pin is bubbled. For example, if pins A, B and C are
in one bubble group, then if any of them is bubbled they all
will be bubbled.

Bubble groups are indicated by properties with the name
BUBBLE GROUP attached to the origin of the body. Each
BUBBLE-GROUP property defines one bubble group. The syntax
is:

<bubble_group_name>(<abbrev>l<abbrev>l<abbrev>l<abbrev) •••)

Where (abbrev> is a non-ambiguous abbreviation for a pin
name (of a bubbleable pin). The character 'I' is the
vertical bar character; it should not appear in your pins
names.

The bubble group name is a single letter (case not
relevant). All-bubble group properties of the same name
together define one large bubble group. It is not necessary
to name bubble groups unless you wish to define one that
cannot fit on a single line in the editor. (This limit is
80 characters.)

3-140

/

;

Graphics Editor
Defining Bubble Groups

There is an additional feature called an ASYMMETRICAL
bubble group. If pins A and B are members of such a group,
then bubbling A will bubble B, but bubbling B will have no
effect on A. This is only useful for a small number of
bodies, of which the most prominent example is the XOR gate
(or any parity generator). If an XOR gate has inputs A and
B, and output Y, then the bubble behavior should be:

If you bubble
A
B
y

Then should also bubble
y
y
A (but not B)

There is no way to express this using conventional bubble
groups, but it can be expressed as follows:

An asymetrical bubble group has the syntax

((pinl)A(pin2>l<pin3>1 •••)

Which means that if the pin (pinl) is bubbled, all the other
pins are bubbled, but if any of the other pins are bubbled,
there is no effect.

Once the groups have been defined, the next step is to
tell which pins start in the bubbled state, and which start
in the non-bubbled state. The BUBBLED property, also
attached to the origin of the body, contains this
information. The syntax of the bubbled property is:

(<abbrev>l<abbrev>l<abbrev) ••••)

Where the (abbrev>s are the abbreviations for the pins that
are default bubbled.

3-141

Graphics Editor
Editor File Formats

3.30 INTRODUCTION

Editor File Formats

This document describes the format of files written and
read by the Graphics Editor. These formats are subject to
change without notice; they have been changed several times
in the past and will continue to be changed in the future.

3.31 TYPES OF FILES

The editor writes out five types of files:

o ASCII files: These files are script files that can be
used to generate any drawing except for BODY drawings.
Consisting of a set of editor commands, they are
sufficient to recreate the drawing from point zero.
They work as if the commands were typed at the keyboard.
In releases before 7.25 these ASCII files were called
LOGIC files.

o BINARY files: These files contain the same information
as the ASCII file described above, but in a binary
format that is quicker to read and write. This format
is strictly internal and not described in this document.

o BODY files: These files contain descriptions of bodies
in ASCII format. They include line segments, arcs, pin
names, bubble groups, connection points, and default
properties.

o CONNECTIVITY files: These files describe all the bodies
on a drawing. The information includes the names of the
bodies, the names of the signals tied to their pins
(with bubble state), and the properties that belong to
the body. Connectivity files, which are in ASCII
format, are the only files used by the Compiler.

o DEPENDENCY files: These files list the UNIX directories
that were the source for all bodies added to a drawing.
These files are used by the update procedure, which
allows drawings to be updated if any bodies are out of
date. There are DEPENDENCY files for all drawings
except BODY drawings.

3-142

3.32 ASCII LOGIC FILE FORMAT

Graphics Editor
Editor File Formats

These ASCII logic files are a specific type of text
files that consist of commands to add each part in a
drawing. In this sense they are ''logic" files. The file is
kept in no particular order; reading and writing a drawing
reverses the order of items in a file.

Points are represented in text files by their
coordinates, enclosed in parenthesis. Thus the point x=lOO,
y=200 is represented by (100 200). In the rest of this
section, a point is represented by (pt).

Angles are represented by a number 0 •• 7 where
0: 0 degrees
1: 90 degrees
2: mirror of 0 degrees
3: mirror of 90 degrees
4: 180 degrees
5: 270 degrees
6: mirror of 180 degrees
7: mirror of 270 degrees

ASCII LOGIC FILE IDENTIFICATION

Each ASCII logic file starts with the line:

FILE_TYPE = MACRO_DRAWING;

This line identifies the type of file to the system.

ASCII LOGIC FILE CONTENTS

BODIES can use as many as four lines in the ASCII logic
files. The description of the body in the ASCII logic file
follows the form listed below:

FORCEADD (name)
[R angle]
(pt) ;

The name includes the version. The angle is optional.
FORCEADD is used so that a placeholder is created if the
body is not found. If the body has a color, then the next
line is

PAINT color (pt)

Descriptions of wires in the ASCII logic files consist
of a single line that follows the form:

3-143

Graphics Editor
Editor File Formats

WIRE line_type pattern (pt) (pt) ;

The linetype includes both the color information and whether
the wire is thin or heavy. If the number is converted to
binary, the least significant bit is the thin/heavy bit (O =
thin, 1 = heavy). The remaining seven bits pertain to the
color.

-16384 <= pattern < 16384. If the pattern = -1, the
line is filled. Using the "DISPLAY PATTERN" command, one
finds that there are six defined patterns in GED:

1. -1

2. 273

3. 682

4. 2175

5. 3135

6. 4383

DOTS are written out as:

DOT type (pt) ;

where type = 0 if the dot is open and 1 if it is filled.
(If the type is not 0 or 1, the dot is assumed to be open.)
If the dot is colored, it is followed by a PAINT command.

CIRCLES and ARCS are written out as:

CIRCLE (ptl) (pt2)
or
CIRCLE (ptl> (pt2) (pt3)

where they are specified in the same way as described in GED
manual. If the circle is colored, it is followed by a PAINT
command.

NOTES are written out on three or four lines. The
fic-st two are:

FORCE NOTE
(contents>
(pt) angle;

The forcenote command is similar to the note command in the
editor except that the forcenote command terminates after

3-144

Graphics Editor
Editor File Formats

reading one note. This limitation is necessary because the
normal note command continues to interpret the rest of the
file as notes. If the note is not the default size, there
is a fourth line:

DISPLAY (size) (pt) ;

This procedure makes the text the correct size.
is colored, it is followed by a PAINT command.

If the note

PROPERTIES are written out as two to four lines.
occur directly after the object they are attached to.
format of the first two lines is:

FORCEPROP (default status) LAST (name> <value)
[R angle]
J justification_type
(pt) ;

They
The

The forceprop command is similar to the property command in
the editor except it takes a <default_status> flag. This
flag is necessary for correctly handling changes to
properties on library bodies. The (default status) flag can
have three values: two if the property is known to be
non-default (i.e. one that the user added to the ASCII
logic drawing); one if the property is known to be default
(i.e. one that comes from the body definition); or 0 if
the status of the property is unknown (i.e. an undefined
variable whose status is determined when the body definition
is searched). LAST is a keyword indicating the property is
to be attached to the last object or wire entered.

The angle is optional.

The next line describes the text justification. A
value of 0 means that the text is left justified, and a
value of 2 means it is right justified. If no justification
is given, the property is created with the current default
justification. If an illegal justification is given, the
system assumes that the user wishes to have left
justification.

If the property does not have the standard visibility,
it is followed by a DISPLAY command to set the visibility of
the name and the value. If the property is a PIN property,
then the keyword LAST is replaced by the keyword LASTPIN
followed by a (pt) describing the location of the pin in
absolute coordinates. If the property is attached to
another property, then the keyword LAST is replaced by the
keyword LASTPROP.

3-145

Graphics Editor
Editor File Formats

If the property is colored, it is followed by a PAINT
command.

Bubbled pins for an object are written out using the
format:

FORCEBUBBLE (pt) ••••

All pins that are not in their default bubbled state are
listed.

END OF THE ASCII LOGIC FILE

The file ends with a line simply containing:

QUIT

3.33 FORMAT OF BODY FILES

Body files are written out in an abbreviated format.
They are not read with the main editor input parser, so they
are not tolerant of errors. Bodies are composed of seven
elements: Lines, Arcs, Text, Connections, Bubble groups,
body properties, and pin properties. As in the ASCII logic
files, all coordinates are in 0.002 inch units.

Lines require 1 line each in the body file. A thin
line has the format:

L xl yl x2 y2 pattern

A thick line has the format

M xl yl x2 y2 pattern

The pattern is optional and -16384 <= pattern < 16384.
If the pattern is -1, the line is filled.

Arcs require one line each in the body file. The line
has the format:

A Xcenter Ycenter Radius Start_angle Stop_angle

The center and radius are in integer units, and the start
and stop angles are measured in degrees counterclockwise
from the X axis. They are in floating point.

Text strings require 2 lines each in the body file.
The fir.st line gives the specification of the text; the
second gives the contents. The first line has the format:

3-146

/

Graphics Editor
Editor File Formats

T x y angle slant size over inv just font Nch color

x, y
angle
slant
size
over
inv
just
font
Nch

integer
real
real
integer
0-1
0-1
0-2
0-4
integer

reference point for text
o.oo, 90.00, 180.00, 270.00
(not implemented)
height of characters
(not implemented)
(not implemented)
O=left justified, 2=right justified
(not implemented)
number of characters

The next line consists only of the NCH c~aracters of the
text string.

Connections require one line each in the body file.
The contents of the line depend on whether the pin is
bubbleable of not. The format is:

C x y Name bubbleable (default_state x2 y2 x3 y3) f size angle just

In this command line, the portion in parentheses is present
only if the pin is bubbleable. The term name is a quoted
string containing the name. The terms bubbleable and
default state are both integers: 1 if TRUE and 0 if FALSE.
The points represented by X2,y2 and x3,y3 are those for the
bubbleable pins. The letter f is 1 if the dot on the
connection is filled, and 0 if open. Size is the size of
the pin name string, and the GED default is 41. The word
angle in the line above is the angle of the pin name string
attached to the connection (O = 0 degrees, 1 = 90 degrees, 2
= 180 degrees, 3 = 270 degrees). The abbreviation just
shows the justification of the string (R = right, L = left).

For example, an entry for a bubblable pin could read
as:

C SO SO "Y<O>" 1 0 100 SO SO SO 0 41 0 R

For a non-bu bbl able pin, the entry might be:

C 50 50 "Y<O>" 0 0 41 2 L

Body properties require one line each in the body file.
The format is

P name value x y angle slant size over inv just font NV VV IP

name
value
NV

quoted string
quoted string
0-1

name of property
default value of property
name is visible by default

3-147

Graphics Editor
Editor File Formats

vv
IP

0-1
0-1

value is visible by default
1 if property is a parameter

The other numbers describe the text in the same manner as
the T command.

Pin properties require one line each. The start with
an X, rather than a P, and occur directly after the
connection they are associated with.

Bubble groups require several lines apiece in the body
file. They start with a line beginning with B and end with
a line containing only the word END. Each bubble group is
on a line by itself, with the format:

(namel, name2, name3, •••)

where all the names are quoted strings. If the bubble group
is asymmetrical, the first comma is replaced by a colon.

3.34 FORMAT OF CONNECTIVITY FILES

Connectivity files de~cribe the components in a
drawing, how they are interconnected, and the names of the
signals that connect them. Connectivity files are the only
files read by the compiler. This file format was changed in
the 7.0 release of GED. First the new format is described
and then the old one. The SCALD Compiler will continue to
read the old format but post-6.0 Compiler features will not
be supported won't be supported in the old format.

Connectivity Format

There are only four types of items in a connectivity
file: the header, the NET section, INVOKE commands, and
comments.

Each connectivity file has the form:

FILE TYPE = CONNECTIVITY;
{GED-Release: date and number}
[<expr property)]
[<nets)]
[<invokes>]
END.

where the second line is a comment, the third is the EXPR
property from the drawing body, the fourth is the net
section, the fifth is the invoke commands, and finally an
END. The EXPR, net, and invoke sections are optional. The

3-148

Graphics Editor
Editor File Formats

continuation character for lines in a connectivity file is
,_, This character can occur anywhere in the line, even in
the middle of words, but must be followed by <CR)(LF). GED
limits line length to 80 characters, so it puts out a
continuation character for lines longer that 80 characters.

Comments

Comments begin with an open brace "{" and end with a
close brace "}". They may appear anywhere in a connectivity
file except in the middle of identifiers or quoted strings
and may cross lines.

Expr Property on Drawing Body

<expr property) ::= EXPR=<expression string);

The expression string is the expression property value
from the drawing body. For example

EXPR="SIZE=lO";

Nets

Each time GED writes a connectivity file, it numbers
the all nets. The NC net is always net 0 and unnamed
signals are also numbered. These numbers will not be the
same each time the connectivity file is written.

(nets) ::=(constant) <net name string) [<property list)]

The constant is the net number. The net name is either the
signal name for the net or the unnamed string created by
GED; the net names string is always quoted. The property
list is optional.

(property list) ::= {(identifier) <string) }

The identifier is the proptrty name; it can only contain
letters, digits, and underbar (' ')and must begin with a
letter. There are two reserved identifiers -- FILE TYPE and
END. The string is quoted. An example of several net
entrys is:

2"UN$1$2P$A";
3"A\NWC"LOAD"37"CONNECTED TO"PAGE 4";

3-149

Graphics Editor
Editor File Formats

Invocation of Coaponenta

Each component in the drawing is described as follows
in the connectivity file:

(invokes> : : =
%<invoke name string>
<version str>,<xy str>,<rotation),(directory str>,<path str>;
[<parameter property list>] ;
[<property list>] ;
{ (pin name string> [<property list)] <constant); }

The invoke name string is the name of the component and is
quoted. The next line contains body properties that are
always output -- the body version number, in quotes, the
(x,y) coordinate of the body on the page, the rotation of
the body, in quotes, the name of the directory where the
body came from (not rooted, so /uO/lib/lsttl/lsttl.lib is
shortened to lsttl.lib), and the path property. If any of
these properties doesn't exist, the null string("") is
used. The rotation string is :

0: 0 degree rotation
1: 90 degree rotation
2: mirror of 0 degrees
3: mirror of 90 degrees
4: 180 degree rotation
5: 270 degree rotation

The property list is optional but the semicolon is not.
The parameter property list is the PARAMETER ••• END PARAMETER
block in the old format. It is optional and is the same
format as a property list. The pin name string is quoted
and the constant is the number of the net attached to it.
The net numbers are assigned in the net section. The (pin
name string) ••• line takes the place of PIN and BINDING
section in the old connectivity format. An example of an
invoke:

%"LSOO" {body name}
"1", "(100, 345)", "O", "lsttl.lib", "2P"; {body information}
SIZE"SIZE"; {parameter property list}
COLOR"RED"SECTION"U32"; {body property list}
"A"23; {pin names}
"B"5;
"Y"OUTPUT_LOAD"(50. 0, -50. O) "3;

An example with no path property string and no body property
list:

%"LS02" {body name}

3-150

"2", "(500, 1234)", "3", "lsttl.lib", ""; .
' COLOR"RED";
"A"23;
"B"S;
"Y"OUTPUT_LOAD" (SO. 0, -50. O) "3;

The Old Format (pre-7.0 release)

Graphics Editor
Editor File Formats

{body information}
{parameter property list}
{body property list}
{pin names}

There are only three types of items in a connectivity
file: the header, INVOKE commands, and comments.

Connctivity File Identification

Each connectivity file begins with the 3 lines:

FILE TYPE = MACRO DEFINITION;
- {GED_Release: date and number}

MACRO

where the second line is a comment and ends with the line:

END MACRO.

Comments

Comments begin with an open brace "{" and end with a
close brace "}". They may appear anywhere in a connectivity
file except in the middle of identifiers or quoted strings.

Invocation of Components

Each component in the drawing is described as follows
in the connectivity file:

INVOKE (name)
PROPERTY
<property list)
END_PROPERTY;

BINDINGS
(bindings list)
END_BINDING;
END_INVOKE;

Both the properties section and the binding section are
optional. The (property list> describes the properties of

3-151

Graphics Editor
Editor File Formats

the component, both pin properties and body properties. The
(bindings list> describes the pins of each component, their
bubble state, and the signals to which they are connected.

rormat of the Property List

The property list consists of PIN properties (those
belonging to a specific pin of a component) and BODY
properties, which belong to the component as a whole.

A body property is represented as:

BODY
name = value;
END_BODY;

The name is an identifier and is not quoted. The value is
an arbitrary string and is quoted. All bodys have an XY
property that gives the location of the body origin.

Pin properties are represented as:

PIN pin_name :
name = value;
END_PIN;

The pin name is quoted.

Bindings

Bindings are represented as follows:

BINDINGS
pin_name = signal_name
pin_name = signal_name
etc.
END_BINDINGS;

Both the pin name and the signal name are quoted. The pin
name has a "\B" appended to it if the pin is bubbled.
Unnamed signals are named according to the standard
convention. All named signals are given a unique number and
that unique number ls output as the NN property.

3-152

Properties On Properties

Properties are written as

prop_name = prop_value : pl="vl",

pN="vN";

Graphics Editor
Editor File Formats

with the property's properties listed after a colon and
separated by commas.

3.35 DEPENDENCY FILE FORMAT

The first line of a dependency file is a logic file
name, followed by ': ', followed by a blank separated list of
body file names. The names are all UNIX file names with
paths. For example, for the logic drawing 'MY
EXAMPLE.LOGIC.1.1', the dependency file might be:

myexample/logic.1.1 : \<er)
/uO/lib/standard/lsOO/body.1.1 \(er)
/u0/lib/standard/ls03/body.l.1 \(er)
adder/body.1.1 \(er)
shifter/body. 1.1

'(er)' is used to continue across lines. Lines continued in
this way must begin with (tab). It is assumed that files
are referenced from the UNix directory with the
SCALDdirectory that contains the logic drawing. From
the directory /uO/class, it is only necessary to say
shifter/logic.1.1, not /uO/class/shifter/logic.1. 1.
However, parts that are added from scalddirectories not in
the current UNIX directory must be given a full path, as in,
for example

/uO/lib/standard/lsOO/body.1.1).

The entire path name must be written out, and no wild cards
are allowed.

The last line in the dependency file is

/uO/editor/MakeAddToList "drawing_name.extension.version.page 11

The d raw in g name i s quo t e d, and a 11 f our pa r t s o f the name
must be given.

3-152A

Graphics Editor
Editor File Formats

This page has been intentionally left blank.

3-152B

(

/
I
\

Graphics Editor
Back Annotation File Format

Back Annotation File Foraat

3.36 INTRODUCTION

This document gives the format for the file read by the
Graphics Editor BACKANNOTATE command. If users do not use
the backannotation file generated by the Packager, there is
no guarantee that such information is consistent with the
physical design.

3.37 WHAT THE GRAPHICS EDITOR EXPECTS

The back annotation file contains physical information
grouped by drawing. The file should be called backann.cmd.
The first line is

FILE TYPE = BACK_ANNOTATION;

The information in the file includes:

1. The name of the drawing. The line should look like:

DRAWING = "SCALD drawing name";

The drawing name must be quoted.

2. The name of the body within the drawing. This is
specified by giving the body's name and path property
and any information to be attached to the body. If
there is no information to be attached, the line should
be:

BODY = "name", "path_property";

If properties are to be attached, the above ends with a
colon and is followed by property name/value pairs,
separated by commas. For instance:

BODY = "name", "path property":
prop 1 = "value 1 "'

propN = "valueN";

Property names must be 15 characters or less. Property
values are quoted, but not property names. There MUST
be spaces around any equals sign (=). The only property
that should be attached to a body is the LOCATION
designator.

3-153

Graphics Editor
Back Annotation File Format

3. The name of a pin on the body, as well as any
information to be attached to the pin. Vectored pins
cannot be annotated. The pin name should be quoted. If
a pin does not have any properties, the pin should not
be listed. For instance:

"pin name": propl = "valuel";

Property names must be 15 characters or less. Property
values are quoted, but not property names. There MUST
be spaces around any equals sign (=). The only
information given should be the pin number (PN
property).

4. The name of a net, in user syntax form, and any
information attached to the net. Only scalar nets can
be annotated. The form is:

NET= "net name": propl = "valuel",

propN = "valueN";

The last line in the file should be

END.

The back annotation file should not contain information
for bodies with SIZE and/or TIMES properties except as
follows:

1. A LOCATION property for the body should be output only
if ALL SIZE replicated logical sections of the body are
allocated to the same physical part.

2. Pin numbers for pins of SIZE replicated components
should be output only if the pin is common to all
sections and appears on the same pin for all.

There should be no information for a drawing that is
used more than once in the design.

3.38 AN EXAMPLE

FILE TYPE = BACK ANNOTATION;
DRAWING= "C C.LOGIC.1.1";
BODY = "LS74", "6P":
LOCATION = "U32";
"CLOCK*": PN = "l";
"D": PN = "2";
BODY = "LS08", "SP":

3-154

LOCATION • "U34";
"Y(O)": PN = "l";
NET = "XOUT":
FOO = "BAR";
DRAWING= "CC 2.LOGIC.1.1";
BODY = "LS74", "6P":
LOCATION = "U34";
"CLOCK*": PN = 11 3";
"D": PN = "2";
BODY = "LS08", "SP":
LOCATION = "U32";
"Y<O>": PN = "7";
NET = "XOUT":
FOO = "MUMBLE";
END.

Graphics Editor
Back Annotation File Format

3.39 WHAT THE GRAPHICS EDITOR DOES WITH THE INFORMATION

The Graphics Editor reads the file containing the
information to be added to drawings. The file contains the
following items:

1. The name of the drawing.

2. The object to which the information is to be attached.
The object may be a body, a pin or a signal.

3. The information to be added in the form of a property
name/value pair.

The Graphics Editor decides where the information to be
.added is to be placed. The Editor may use some heuristics
or may use manually entered placeholders. The information
added is in the form of properties.

Information added to a drawing through back annotation
is interpreted differently than properties added manually to
a drawing. The Editor considers back annotated information
to be "comments" and they are not output to the connectivty
file. That is, information back annotated does NOT appear
in the SCALD system data bases; it only resides in the
drawings. Properties added by the BACKANNOTATE command
begin with the character $. For instance, LOCATION becomes
$LOCATION.

Back annotated information will replace values that are
already present in the drawing {a new $LOCATION value will
replace an old $LOCATION value). However, a hard property
value CANNOT be replaced by a back annotated value (a
$LOCATION value will not replace a LOCATION value).
Furthermore, back annotated information cannot be manually
changed or reattached, but may be moved or deleted.

3-155

Vector Plot Format From GED

3.40 INTRODUCTION

This section describes the vector plot format of the plot file
produced with the Graphics Editor's VECtorize command.
Execution of this command produces an ASCII plot file that can
be used for transmission to other machines or that can be used
to drive a pen plotter (with the aid of a format conversion
program).

3.41 THE FORMAT

The vector output file represents a plot of the entire circuit
as maintained in the display list (i.e., the file contains the
entire drawing, not just the portion shown on the screen).

All drawing are defined by three types of primitives: LINES,
ARCS, and TEXT STRINGS. Each primitive begins on a separate
line of the file. The first character of the line specifies the
primitive type. Individual parameters within the line are
separated by spaces. All units are nominally 0.002 inches.

Line Primitive

A line primitive is identified by an "L" as the first character
in the line. The line primitive is defined by the six integers
that follow. Note that each integer is separated by a space.

---I a
L Xl Yl X2 Y2 pattern line type

The first four integers (Xl,Yl,X2,Y2) are the line's endpoint
coordinates. Pattern is an integer from -16384 to 16383 with -1
representing a solid line. The line type describes both the
color and thickness of the line; if line type is converted to a
binary value, bit 0 defines the thickness (O=thln) and the seven
most-significant bits define the color.

Arc Primitive

An arc primitive is identified by an "A" as the first character
in the line. The arc primitive is defined by the five numbers
that follow.

A X Y radius start_angle stop_angle

3-156

Vector Plot Format

The angles, which are in degrees, are in floating point; all
other numbers are integers. X and Y are the coordinates of the
center of the arc or circle. The angles are measured
counter-clockwise from the X axis. If radius is negative, the
circle is filled; otherwise it is open.

Text String Primitive

A text string primitive is identified by a "T" as the first
character in the line. Each text string primitive consists of
the following four lines; each line is terminated by a line
feed character.

(7 T X o y 0
--) an g 1 e s 1 an t

y 1

size
font

0

overbar inverse video
justification
string 0

The individual parameters within each line are:

X, Y: origin point of text string
angle: 0, I, 2, 3 (for 0, 90, 180 and 270 degrees respectively)
slant: not implemented
size: integer (height)
overbar: not implemented
inverse video: not implemented
justifi~ation: 0 = left, 2 = right
font: not implemented
string: the text string (not quoted)

For an example of how to convert the Valid Vector Plot Format to
the HPGL (hewlett packard graphics language) format for display
on an hp pen plotter, see the source in
/uO/editor/lib/hpfilter.pas.

L

3-157

