UniX System Manager’s Manual

E
0p
2
&
=
=
&
=
147
@
H\.
7))
=
&
=]
e
=

Printed by the USENIX Association as a service to the UNIX Communi-
ty. This material is copyrighted by The Regents of the University of
California and/or Bell Telephone Laboratories, and is reprinted by per-
mission. Permission for the publication or other use of these materials
may be granted only by the Licensors and copyright holders.

Cover design by John Lassetter, Lucasfilm, Ltd.

4.2 BSD edition:

First Printing July 1984
Second Printing December 1984
Third Printing September 1985
Fourth Printing March 1986

4.3 BSD edition:
First Printing November 1986

UNIX System Manager’s Manual
(SMM)

4.3 Berkeley Software Distribution
Virtual VAX-11 Version

April, 1986

Computer Systems Research Group
Computer Science Division
Department of Electrical Engineering and Computer Science
University of California
Berkeley, California 94720

Copyright 1979, 1980, 1983, 1986 Regents of the University of
California. Permission to copy these documents or any portion
thereof as necessary for licensed use of the software is granted
to licensees of this software, provided this copyright notice and
statement of permission are included.

Documents SMM:17, 18, and 21 are copyright 1979, AT&T
Bell Laboratories, Incorporated. Documents SMM:9 and 19
are modifications of earlier documents that are copyrighted
1979 by AT&T Bell Laboratories, Incorporated. Holders of
UNIX™/32V, System III, or System V software licenses are
permitted to copy these documents, or any portion of them, as
necessary for licensed use of the software, provided this
copyright notice and statement of permission are included.

Document SMM:10 is part of the user contributed software.

This manual reflects system enhancements made at Berkeley
and sponsored in part by the Defense Advanced Research
Projects Agency (DoD), Arpa Order No. 4871 monitored by
the Naval Electronics Systems Command under contract No.
N00039-84-C-0089. The views and conclusions contained in
these documents are those of the authors and should not be
interpreted as representing official policies, either expressed or
implied, of the Defense Research Projects Agency or of the US
Government.

SMM Contents

UNIX System Manager’s Manual (SMM)
4.3 Berkeley Software Distribution, Virtual vAX-11 Version

April, 1986

This volume contains manual pages and supplementary documents useful to system administra-
tors. The information in these documents applies to the Virtual VAX-11 version of the system as dis-
tributed by U.C. Berkeley.

@®)

Reference Manual - Section 8

Section 8 of the UNIX Programmer’s Manual contains information related to system operation,
administration, and maintenance.

System Installation and Administration

Installing and Operating 4.3BSD on the VAX SMM:1
The definitive reference document for those occasions when you find you need to start
over again.

Building 4.3BSD UNIX Systems with Config SMM:2

In-depth discussions of the use and operation of the config program, and how to build your
very own Unix kernel.

Using ADB to Debug the Kernel SMM:3
Techniques for figuring out after the fact why the kernel crashed.

Disc Quotas in a UNIX Environment SMM:4
A light introduction to the techniques for limiting the use of disc resources.

Fsck — The UNIX File System Check Program SMM:5
A reference document for using the fSck program during times of file system distress.

Line Printer Spooler Manual SMM:6
This document describes the structure and installation procedure for the line printer spool-
ing system.

Sendmail Installation and Operation Guide SMM:7

The last word in installing and operating the sendmail program.

Timed Installation and Operation Guide SMM:8
Describes how to maintain time synchronization between machines in a local network.

SMM Contents

UUCP Implementation Description SMM:9
Describes the implementation of uucp; for the installer and administrator.

USENET Version B Installation SMM:10
How to install and maintain the News system.

Name Server Operations Guide SMM:11
If you have a network this will be of interest.

Supporting Documentation

Bug Fixes and Changes in 4.3BSD © SMM:12
This document summarizes changes visible to the user accustomed to 4.2BSD.

Changes to the Kernel in 4.3BSD SMM:13
A summary for the hard-core of changes in the kernel from 4.2BSD to 4.3BSD.

A Fast File System for UNIX SMM:14
A description of the 4.2BSD file system organization, design and implementation.

4.3BSD Networking Implementation Notes SMM:15
A concise description of the system interfaces used within the networking subsystem.

Sendmail - An Internetwork Mail Router SMM:16
An overview document on the design and implementation of sendmail.

On the Security of UNIX SMM:17
Hints on how to break UNIX, and how to avoid your system being broken.

Password Security — A Case History SMM:18

How the bad guys used to be able to break the password algorithm, and why they cannot
now (at least not so easily).

A Tour Through the Portable C Compiler SMM:19
How the portable C compiler works inside.

Writing NROFF Terminal Descriptions SMM:20
A description of how to add a printer with new characteristics to Version 7 nroff.

A Dial-Up Network of UNIX Systems SMM:21
Describes UUCP, a program for communicating files between UNIX systems.

The Berkeley UNIX Time Synchronization Protocol SMM:22
The protocols and algorithms used by timed, the network time synchronization daemon.

TABLE OF CONTENTS

8. System Maintenance

4.3BSD

intro introduction to system maintenance and operation commands
T login accounting
adduser L. oo oo e e . . . procedure for adding new users
1 ¢ archiver and copier for floppy
ap e e e e e e e e e e e e e e e address resolution display and control
badi44« .« ... read/write dec standard 144 bad sector information
badsect e e e e e e e e e e e e e e e e e e e create files to contain bad sectors
bugfiler e e e e e e e e e e e e e e e e e file bug reports in folders automatically
catman e e e e e e e e e e e e e e .+ createthe cat files for the manual
ChOWD . . . v i i e change owner
125 e e e e e e e e e e clear i-node
COMSAL & v o v ¢ o o o o o o o o o o o s o o o o o o o o o e e e e e biff server
config e e e e e e e e e e .+« . . build system configuration files
crash e e e e e . « . . . what happens when the system crashes
[(o)« C e e e e e e e e e e e e e e e e e e clock daemon
dcheck o ool s file system directory consistency check
diskpart e e e e e e e . « .« .. calculate default disk partition sizes
dmesg N co]lect system diagnostic messages to form error log
drtest e e e e e e e standalone disk test program
dump e e e e e e e e e e incremental file system dump
dumpfs . . . L L e e e e e e e e e e e e e e e dump file system information
edquota edit user quotas
fastboot e e e e e e e e e e e e reboot/halt the system without checking the disks
fingerdo e e remote user information server
format e how to format disk packs
fsck e e e e e e e e e file system consistency check and interactive repair
9 P . . DARPA Internet File Transfer Protocol server
gettable e e e e e e e e e e e e . . get NIC format host tables from a host
=112, . set terminal mode
halt e e e e e e 4 s e e e e s e e e e e .. stopthe processor
htable e e e e e e e e e e e e e e e convert NIC standard format host tables
icheck t e e e e e e e e e e e e e e .. Mflesystem storage consistency check
ifconfig 00 e e configure network interface parameters
IMPIOg & v v i e . IMP log interpreter
implogd e e e e e e e e e e e e et e e e IMPloggerprocess
inetd, 000 e e e e e e e e e e e e e internet “super-server”
1 01 process control initialization
kgmon generate a dump of the operating system’s profile buffers
IpC & v e e e e e e e e e e e e e e e e e line printer control program
Ipd e line printer daemon
makedev e e 4 e e e e s e s e e e e e e e .. makesystem special files
makekey00 e e e e e e e e e e e generate encryption key
mkfs e et e e e e e e s e e e e e e e e e e e constructa file system
mkhosts L0 e e e e e e generate hashed host table
mklost+found e e e e e e+ e+« .. makealost+found directory for fsck
mknod e e e e e e e e e e e e e e e e e s e e e s e e e« . Dbuildspecial file
mkpasswd e e e e e e e .« . . . generate hashed password table
mkproto e e s+ e« .. constructa prototype file system
MOUNt & v & v v v v o o o o o o o o o o o mount and dismount file system
named e e e e e e e . « . . Internet domain name server
ncheck generatenamesfrom i-numbers
NEWES e e e e e e e e e e e e e e e e e e e construct a new file system
pac e e e e e e e e e e e e e printer/plotter accounting information

April 1986

T

Table of Contents

ping send ICMPECHO_REQUEST packets to network hosts
pstat . . . print system facts
QUOL & v v vt ot e et e e e s e e e e e e e e e e summanzeﬁlesystemownershlp
quotacheck Mfilesystem quota consistency checker
qQuotaon 4 4 4 e 4 s s e e o tumn file system quotas on and off
FC « e o e ¢ o s oo o s o s s« . . command script for auto-reboot and daemons
rdump¢......... Cfilesystem dump acrossthe network
reboot+ e e UNIX bootstrapping procedures
TENICE « « ¢ « ¢ « ¢ o « o ¢« « o ¢« s« o« o+« .+ o . alter priority of running processes

TEPQUOLA & v ¢ v v v e e e e e e e e e e e e summarize quotas for a file system
restore .+ . v i e e e+ 4 e+ e Iincrementalfile system restore
rexeed¢.c0cc remoteexecution server
rlogind 0000 oo e e e e e e 7. remote login server

Mt v v v e o e e v s o v oo ... remotemagtape protocol module
route t 4 e e e e e e et manually manipulate the routing tables
routed e e e e e e e e e e e e e e e« + « s+« .. network routing daemon
rrestore W e e e v s e e e e ... restore a file system dump across the network
rshd s e e st e s e e e e e et e e e e e e ... remoteshell server

rwhod L Lo e e e . . . system status server
rxformatcccccve...... formatfloppy disks
sa C e system accounting

SAVECOTE + + « o « « + o o o « « o « « « « » saveacore dump of the operating system
sendmail s e e s e e s e st e e e e e sendmail over the internet
shutdown closedown the system at a given time
slattach e e e e s e s s e e e e« attach serial lines as network interfaces
sticky4¢¢.e¢...... persistenttextandappend-only directories
swapon e e e e e s e e ... specify additional device for paging and swapping
sync C e e e e e e e e e e e e e e e e e e e . . . update the super block
syslogd e e e e e e e e e e e e e e e e e e log systems messages
talkd remoteusercommunication server
telnetld DARPATELNET protocol server
ttpd DARPA Trivial File Transfer Protocol server
timed ¢ ¢ i it et i i e e e e e e e e e time server daemon
timedc t e e e s 4 e s e e e e s e e e e e ... timedcontrol program
8 5) « « + « .+ ... transliterate protocol trace
TSP+ « « « « ¢ s 4+ e e s transliterate sequenced packet protocol trace
tunefs tuneup an existing file system
update e ¢ s e e e periodically update the super block
uucico e e et e e e s e e e e e e transfer files queued by uucp or uux
uucleano ot e e ... uucpspool directory clean-up
uupoll e e e e s e s 4 e e e s e e s s e pollaremote UUCP site
UUSNAD + « ¢+ + ¢+« o o o s o s s o o+« .+ .. showsnapshot of the UUCP system
uuxqt C e e s s s s e e e s e e e e e UUCPexecution file interpreter
VIDW v i i i i i it e et e e et e e e e e e e ... editthe password file
XNSrouted NSRouting Information Protocol daemon

April 1986 4.3BSD

INTRO(8) UNIX Programmer’s Manual INTRO(8)

NAME
intro - introduction to system maintenance and operation commands

DESCRIPTION
This section contains information related to system operation and maintenance. It describes
commands used to create new file systems, newfs, verify the integrity of the file systems, fsck,
control disk usage, edquota, maintain system backups, dump, and recover files when disks die
an untimely death, restore. The section format should be consulted when formatting disk
packs. Network related services are distinguished as 8C. The section crash should be con-
sulted in understanding how to interpret system crash dumps.

4.2 Berkeley Distribution May 29, 1986 1

AC(8) UNIX Programmer’s Manual AC(8)

NAME
ac - login accounting

SYNOPSIS
letc/ac[-wwtmp][-p][-d] [people] ...

DESCRIPTION
Ac produces a printout giving connect time for each user who has logged in during the life of
the current wtmp file. A total is also produced. -w is used to specify an alternate wtmp file.
-p prints individual totals; without this option, only totals are printed. —d causes a printout
for each midnight to midnight period. Any people will limit the printout to only the specified
login names. If no wtmp file is given, /usr/adm/wtmp is used.

The accounting file /usr/adm/wtmp is maintained by init and login. Neither of these programs
creates the file, so if it does not exist no connect-time accounting is done. To start account-
ing, it should be created with length 0. On the other hand if the file is left undisturbed it will
grow without bound, so periodically any information desired should be collected and the file
truncated.

FILES
/usr/adm/wtmp

SEE ALSO
init(8), sa(8), login(1), utmp(5).

4th Berkeley Distribution April 27, 1985 1

ADDUSER(8) UNIX Programmer’s Manual ADDUSER(8)

NAME

adduser — procedure for adding new users

DESCRIPTION

A new user must choose a login name, which must not already appear in /etc/passwd. An
account can be added by editing a line into the passwd file; this must be done with the pass-
word file locked e.g. by using vipw(8).

A new user is given a group and user id. User id’s should be distinct across a system, since
they are used to control access to files. Typically, users working on similar projects will be
put in the same group. Thus at UCB we have groups for system staff, faculty, graduate stu-
dents, and a few special groups for large projects. System staff is group “10” for historical
reasons, and the super-user is in this group.

A skeletal account for a new user ‘“‘ernie” would look like:
ernie::235:20:& Kovacs,508E,7925,6428202:/mnt/grad/ernie:/bin/csh

The first field is the login name “ernie”. The next field is the encrypted password which is
not given and must be initialized using passwd(1). The next two fields are the user and group
id’s. Traditionally, users in group 20 are graduate students and have account names with
numbers in the 200’s. The next field gives information about ernie’s real name, office and
office phone and home phone. This information is used by the finger(1) program. From this
information we can tell that ernie’s real name is “Ernie Kovacs” (the & here serves to repeat
“ernie” with appropriate capitalization), that his office is 508 Evans Hall, his extension is x2-
7925, and this his home phone number is 642-8202. You can modify the finger(1) program if
necessary to allow different information to be encoded in this field. The UCB version of
finger knows several things particular to Berkeley — that phone extensions start “2-", that
offices ending in “E” are in Evans Hall and that offices ending in “C” are in Cory Hall. The
chfn(1) program allows users to change this information.

The final two fields give a login directory and a login shell name. Traditionally, user files live
on a file system different from /usr. Typically the user file systems are mounted on a direc-
tories in the root named sequentially starting from from the beginning of the alphabet, eg /a,
/b, /c, etc. On each such file system there are subdirectories there for each group of users, i.e.:
“/a/staff” and ““/b/prof’. This is not strictly necessary but keeps the number of files in the top
level directories reasonably small.

The login shell will default to “/bin/sh” if none is given. Most users at Berkeley choose
“/bin/csh” so this is usually specified here. The chsh(1) program allows users to change their
login shell to one of the shells in the approved list given in /etc/shells.

It is useful to give new users some help in getting started, supplying them with a few skeletal
files such as .profile if they use “/bin/sh”, or .cshrc and .login if they use *“/bin/csh”. The
directory “/usr/skel” contains skeletal definitions of such files. New users should be given
copies of these files which, for instance, arrange to use tset(1) automatically at each login.

FILES

letc/passwd password file

/usr/skel skeletal login directory
SEE ALSO

passwd(1), finger(1), chsh(1), chfn(1), passwd(5), vipw(8)
BUGS

User information should be stored in its own data base separate from the password file.

4th Berkeley Distribution May 23, 1986 1

ARFF (8V) ‘UNIX Programmer’s Manual ARFF(8V)

NAME

arff, flcopy - archiver and copier for floppy

SYNOPSIS

/etc/arff [key] [name ...]
letc/ficopy [-h] [-tn]

DESCRIPTION

FILES

Arff saves and restores files on VAX console media (the console floppy on the VAX 11/780
and 785, the cassette on the 11/730, and the console RL0O2 on the 8600/8650). Its actions are
controlled by the key argument. The key is a string of characters containing at most one func-
tion letter and possibly one or more function modifiers. Other arguments to the command
are file names specifying which files are to be dumped or restored. The default options are
correct for the RX01 floppy on the 780; for other console media, the f and m flags are
required.

Files names have restrictions, because of radix50 considerations. They must be in the form
1-6 alphanumerics followed by "." followed by 0-3 alphanumerics. Case distinctions are lost.
Only the trailing component of a pathname is used.

The function portion of the key is specified by one of the following letters:

r The named files are replaced where found on the floppy, or added taking up the
minimal possible portion of the first empty spot on the floppy.

X The named files are extracted from the floppy.

d The named files are deleted from the floppy. Arff will combine contiguous deleted
files into one empty entry in the rt-11 directory.

t The names of the specified files are listed each time they occur on the floppy. If no

file argument is given, all of the names on the floppy are listed.

The following characters may be used in addition to the letter which selects the function
desired.

v The v (verbose) option, when used with the t function gives more information
about the floppy entries than just the name.

f causes arff to use the next argument as the name of the archive instead of
/dev/floppy.

m causes arff not to use the mapping algorithm employed in interleaving sectors

around a floppy disk. In conjunction with the f option it may be used for extract-
ing files from rt11 formatted cartridge disks, for example. It may also be used to
speed up reading from and writing to rx02 floppy disks, by using the ‘c’ device
instead of the ‘b’ device. It must be used with TUS8 or RLO2 media.

c causes arff to create a new directory on the floppy, effectively deleting all previ-
ously existing files.

Flcopy copies the console floppy disk (opened as ‘/dev/floppy’) to a file created in the current
directory, named “floppy”, then prints the message “Change Floppy, hit return when done”.
Then flcopy copies the local file back out to the floppy disk.

The -h option to flcopy causes it to open a file named “floppy” in the current directory and
copy it to /dev/floppy; the -t option causes only the first # tracks to participate in a copy.

/dev/floppy or /dev/rrx??
floppy (in current directory)

4th Berkeley Distribution May 20, 1986 1

ARFF(8V) UNIX Programmer’s Manual

SEE ALSO
crl(4), f(4), rx(4), tu(4), rxformat(8V)

AUTHORS
Keith Sklower, Richard Tuck

BUGS
Device errors are handled ungracefully.

4th Berkeley Distribution May 20, 1986

ARFF(8V)

ARP(8C) UNIX Programmer’s Manual ARP(8C)

NAME
arp — address resolution display and control

SYNOPSIS
arp hostname
arp -a [vmunix | [kmem]
arp -d hostname
arp -s hostname ether_addr [temp] [pub] [trail]
arp -f filename
DESCRIPTION
The arp program displays and modifies the Internet-to-Ethernet address translation tables
used by the address resolution protocol (arp(4p)).

With no flags, the program displays the current ARP entry for hostname. The host may be
specified by name or by number, using Internet dot notation. With the -a flag, the program
displays all of the current ARP entries by reading the table from the file kmem (default
/dev/kmem) based on the kernel file vimunix (default /vmunix).

With the -d flag, a super-user may delete an entry for the host called hostname.

The -s flag is given to create an ARP entry for the host called hostname with the Ethernet
address ether_addr. The Ethernet address is given as six hex bytes separated by colons. The
entry will be permanent unless the word temp is given in the command. If the word pub is
given, the entry will be "published"; i.e., this system will act as an ARP server, responding to
requests for hostname even though the host address is not its own. The word trail indicates
that trailer encapsulations may be sent to this host.

The -f flag causes the file filename to be read and multiple entries to be set in the ARP tables.
Entries in the file should be of the form

hostname ether_addr [temp] [pub] [trail]
with argument meanings as given above.

SEE ALSO
inet(3N), arp(4P), ifconfig(8C)

4.3 Berkeley Distribution May 20, 1986 i 1

BAD144(8) UNIX Programmer’s Manual BAD144(8)

NAME

bad144 - read/write dec standard 144 bad sector information

SYNOPSIS

fetc/bad144 [-f][—c] [-v] disktype disk [sno [bad ...]1]
/etc/bad144 -a [-f][—c] [-v] disktype disk [bad ...]

DESCRIPTION

Badl44 can be used to inspect the information stored on a disk that is used by the disk
drivers to implement bad sector forwarding. The format of the information is specified by
DEC standard 144, as follows.

The bad sector information is located in the first 5 even numbered sectors of the last track of
the disk pack. There are five identical copies of the information, described by the dkbad
structure.

Replacement sectors are allocated starting with the first sector before the bad sector informa-
tion and working backwards towards the beginning of the disk. A maximum of 126 bad sec-
tors are supported. The position of the bad sector in the bad sector table determines the
replacement sector to which it corresponds. The bad sectors must be listed in ascending
order.

The bad sector information and replacement sectors are conventionally only accessible
through the “c” file system partition of the disk. If that partition is used for a file system, the
user is responsible for making sure that it does not overlap the bad sector information or any
replacement sectors. Thus, one track plus 126 sectors must be reserved to allow use of all of
the possible bad sector replacements.

The bad sector structure is as follows:
struct dkbad (

long bt_csn; /* cartridge serial number */
u_short bt_mbz; /+ unused; should be 0 */
u_short bt_flag; /* -1 => alignment cartridge */
struct bt_bad (
u_short bt_cyl; /* cylinder number of bad sector */
u_short bt_trksec; /% track and sector number */

} bt_bad[126];
I
Unused slots in the bt_bad array are filled with all bits set, a putatively illegal value.

Badl44 is invoked by giving a device type (e.g. k07, rm03, rm05, etc.), and a device name
(e.g. hkO, hpl, etc.). With no optional arguments it reads the first sector of the last track of
the corresponding disk and prints out the bad sector information. It issues a warning if the
bad sectors are out of order. Badl44 may also be invoked with a serial number for the pack
and a list of bad sectors. It will write the supplied information into all copies of the bad-
sector file, replacing any previous information. Note, however, that bad144 does not arrange
for the specified sectors to be marked bad in this case. This procedure should only be used to
restore known bad sector information which was destroyed. It is necessary to reboot before
any change will take effect.

With the -a option, the argument list consists of new bad sectors to be added to an existing
list. The new sectors are sorted into the list, which must have been in order. Replacement
sectors are moved to accommodate the additions; the new replacement sectors are cleared.
The entire process is described as it happens in gory detail if -v (verbose) is given. The —¢
option forces an attempt to copy the old sector to the replacement, and may be useful when
replacing an unreliable sector.

4th Berkeley Distribution May 20, 1986 1

BADI144(8) UNIX Programmer’s Manual BAD144(8)

If the disk is an RP06, RM03, RMO05, Fujitsu Eagle, or SMD disk on a Massbus, the -f
option may be used to mark the new bad sectors as “bad” by reformatting them as unusable
sectors. NOTE: this can be done safely only when there is no other disk activity, preferably
while running single-user. This option is required unless the sectors have already been
marked bad, or the system will not be notified that it should use the replacement sector.

SEE ALSO

BUGS

badsect(8), format(8V)

It should be possible to format disks on-line under UNIX.
It should be possible to mark bad sectors on drives of all type.

On an 11/750, the standard bootstrap drivers used to boot the system do not understand bad
sectors, handle ECC errors, or the special SSE (skip sector) errors of RM80-type disks. This
means that none of these errors can occur when reading the file /vmunix to boot. Sectors 0-
15 of the disk drive must also not have any of these errors.

The drivers which write a system core image on disk after a crash do not handle errors; thus
the crash dump area must be free of errors and bad sectors.

4th Berkeley Distribution May 20, 1986 2

BADSECT (8) UNIX Programmer’s Manual BADSECT (8)

NAME

badsect — create files to contain bad sectors

SYNOPSIS

/etc/badsect bbdir sector ...

DESCRIPTION

Badsect makes a file to contain a bad sector. Normally, bad sectors are made inaccessible by
the standard formatter, which provides a forwarding table for bad sectors to the driver; see
bad144(8) for details. If a driver supports the bad blocking standard it is much preferable to
use that method to isolate bad blocks, since the bad block forwarding makes the pack appear
perfect, and such packs can then be copied with dd(1). The technique used by this program is
also less general than bad block forwarding, as badsect can’t make amends for bad blocks in
the i-list of file systems or in swap areas.

On some disks, adding a sector which is suddenly bad to the bad sector table currently
requires the running of the standard DEC formatter. Thus to deal with a newly bad block or
on disks where the drivers do not support the bad-blocking standard badsect may be used to
good effect. |

Badsect is used on a quiet file system in the following way: First mount the file system, and
change to its root directory. Make a directory BAD there. Run badsect giving as argument
the BAD directory followed by all the bad sectors you wish to add. (The sector numbers must
be relative to the beginning of the file system, but this is not hard as the system reports rela-
tive sector numbers in its console error messages.) Then change back to the root directory,
unmount the file system and run fsck(8) on the file system. The bad sectors should show up
in two files or in the bad sector files and the free list. Have fsck remove files containing the
offending bad sectors, but do not have it remove the BAD/nnnnn files. This will leave the bad
sectors in only the BAD files.

Badsect works by giving the specified sector numbers in a mknod(2) system call, creating an
illegal file whose first block address is the block containing bad sector and whose name is the
bad sector number. When it is discovered by fsck it will ask “HOLD BAD BLOCK™? A
positive response will cause fsck to convert the inode to a regular file containing the bad
block.

SEE ALSO

bad144(8), fsck(8), format(8V)

DIAGNOSTICS

BUGS

Badsect refuses to attach a block that resides in a critical area or is out of range of the file sys-
tem. A warning is issued if the block is already in use.

If more than one sector which comprise a file system fragment are bad, you should specify
only one of them to badsect, as the blocks in the bad sector files actually cover all the sectors
in a file system fragment.

4th Berkeley Distribution April 27, 1985 1

BUGFILER(8) UNIX Programmer’s Manual BUGFILER (8)

NAME

bugfiler - file bug reports in folders automatically
SYNOPSIS

bugfiler [mail directory]
DESCRIPTION

Bugfiler is a program to automatically intercept bug reports, summarize them and store them
in the appropriate sub directories of the mail directory specified on the command line or the
(system dependent) default. It is designed to be compatible with the Rand MH mail system.
Bugfiler is normally invoked by the mail delivery program through aliases(5) with a line such
as the following in /usr/lib/aliases.

bugs:" |bugfiler /usr/bugs/mail”

It reads the message from the standard input or the named file, checks the format and returns
mail acknowledging receipt or a message indicating the proper format. Valid reports are then
summarized and filed in the appropriate folder; improperly formatted messages are filed in a
folder named “‘errors.” Program maintainers can then log onto the system and check the sum-
mary file for bugs that pertain to them. Bug reports should be submitted in RFC822 format
and aremust contain the following header lines to be properly indexed:

Date: <date the report is received>

From: <valid return address>

Subject: <short summary of the problem>

Index: <source directory>/<source file> <version> [Fix]

In addition, the body of the message must contain a line which begins with “Description:”
followed by zero or more lines describing the problem in detail and a line beginning with
“Repeat-By:” followed by zero or more lines describing how to repeat the problem. If the
keyword ‘Fix’ is specified in the ‘Index’ line, then there must also be a line beginning with
“Fix:” followed by a diff of the old and new source files or a description of what was done to
fix the problem.

The ‘Index’ line is the key to the filing mechanism. The source directory name must match
one of the folder names in the mail directory. The message is then filed in this folder and a
line appended to the summary file in the following format:

<folder name>/<message number> <Index info>
<Subject info>

The bug report may also be redistributed according to the index. If the file maildir/.redist
exists, it is examined for a line beginning with the index name followed with a tab. The
remainder of this line contains a comma-separated list of mail addresses which should receive
copies of bugs with this index. The list may be continued onto multiple lines by ending each
but the last with a backslash (‘\’).

FILES
/usr/lib/sendmail mail delivery program
/usr/lib/unixtomh converts unix mail format to mh format
maildir/.ack the message sent in acknowledgement
maildir/.format the message sent when format errors are detected
maildir/.redist the redistribution list
maildir/summary the summary file
maildir/Bf??2?7? temporary copy of the input message
maildir/Rp?????? temporary file for the reply message.

SEE ALSO

mh(1), newaliases(1), aliases(5)

4.2 Berkeley Distribution May 20, 1986 1

BUGFILER(8) UNIX Programmer’s Manual BUGFILER(8)

BUGS
Since mail can be forwarded in a number of different ways, bugfiler does not recognize for-

warded mail and will reply/complain to the forwarder instead of the original sender unless
there is a ‘Reply-To’ field in the header.
Duplicate messages should be discarded or recognized and put somewhere else.

4.2 Berkeley Distribution May 20, 1986

CATMAN(8) UNIX Programmer’s Manual CATMAN(8)

NAME

catman - create the cat files for the manual

SYNOPSIS

/etc/catman [-p] [-n] [-w] [-M path] [sections]

DESCRIPTION

Catman creates the preformatted versions of the on-line manual from the nroff input files.
Each manual page is examined and those whose preformatted versions are missing or out of
date are recreated. If any changes are made, catman will recreate the whatis database.

If there is one parameter not starting with a ‘-, it is taken to be a list of manual sections to
look in. For example

catman 123
will cause the updating to only happen to manual sections 1, 2, and 3.

Options:
-n prevents creations of the whatis database.
-p prints what would be done instead of doing it.

-w causes only the whatis database to be created. No manual reformatting is done.

-M updates manual pages located in the set of directories specified by path (/usr/man by
default). Path has the form of a colon (*.’) separated list of directory names, for exam-
ple ‘/usr/local/man:/usr/man’. If the environment variable ‘MANPATH’ is set, its
value is used for the default path. '

If the nroff source file contains only a line of the form ‘.so manx/yyy.x’, a symbolic link is
made in the catx directory to the appropriate preformatted manual page. This feature allows
easy distribution of the preformatted manual pages among a group of associated machines
with rdist(1). The nroff sources need not be distributed to all machines, thus saving the associ-
ated disk space. As an example, consider a local network with 5 machines, called machl
through mach5. Suppose mach3 has the manual page nroff sources. Every night, mach3 runs
catman via cron(8) and later runs rdist with a distfile that looks like:

MANSLAVES = (mach! mach2 mach4 mach5)
MANUALS = (/usr/man/cat[1-8no] /usr/man/whatis)
${MANUALS) -> ${MANSLAVES)

install -R;
notify root;

FILES
/usr/man default manual directory location
/usr/man/man?/.x raw (nroff input) manual sections
/usr/man/cat?/=.» preformatted manual pages
/usr/man/whatis whatis database
/usr/lib/makewhatis command script to make whatis database
SEE ALSO
man(1), cron(8), rdist(1)
BUGS

Acts oddly on nights with full moons.

4th Berkeley Distribution May 28, 1986 1

CHOWN(8) UNIX Programmer’s Manual CHOWN(8)

NAME
chown - change owner

SYNOPSIS
/etc/chown [-f -R] owner[.group] file ...

DESCRIPTION
Chown changes the owner of the files to owner. The owner may be either a decimal UID or a

login name found in the password file. An optional group may also be specified. The group
may be either a decimal GID or a group name found in the group-ID file.

Only the super-user can change owner, in order to simplify accounting procedures. No errors
are reported when the -f (force) option is given.

When the -R option is given, chown recursively descends its directory arguments setting the
specified owner. When symbolic links are encountered, their ownership is changed, but they
are not traversed.

FILES
/etc/passwd

SEE ALSO
chgrp(1), chown(2), passwd(5), group(5)

4th Berkeley Distribution May 22, 1986

CLRI(8) UNIX Programmer’s Manual CLRI(8)

NAME
clri - clear i-node

SYNOPSIS
/etc/clri filesystem i-number ...

DESCRIPTION
N.B.: Clri is obsoleted for normal file system repair work by fsck(8).

Clri writes zeros on the i-nodes with the decimal i-numbers on the filesystem. After clri, any
blocks in the affected file will show up as ‘missing’ in an icheck(8) of the filesystem.

Read and write permission is required on the specified file system device. The i-node
becomes allocatable.

The primary purpose of this routine is to remove a file which for some reason appears in no
directory. If it is used to zap an i-node which does appear in a directory, care should be
taken to track down the entry and remove it. Otherwise, when the i-node is reallocated to
some new file, the old entry will still point to that file. At that point removing the old entry
will destroy the new file. The new entry will again point to an unallocated i-node, so the
whole cycle is likely to be repeated again and again.

SEE ALSO
icheck(8)

BUGS
If the file is open, clri is likely to be ineffective.

4th Berkeley Distribution April 27, 1985 1

COMSAT(8C) UNIX Programmer’s Manual COMSAT(8C)

NAME

comsat - biff server
SYNOPSIS

/etc/comsat
DESCRIPTION

FILES

Comsat is the server process which receives reports of incoming mail and notifies users if they
have requested this service. Comsat receives messages on a datagram port associated with the
“biff” service specification (see services(5) and inetd(8)). The one line messages are of the
form

user@mailbox-offset

If the user specified is logged in to the system and the associated terminal has the owner exe-
cute bit turned on (by a “biff y”’), the offset is used as a seek offset into the appropriate mail-
box file and the first 7 lines or 560 characters of the message are printed on the user’s termi-
nal. Lines which appear to be part of the message header other than the “From”, “To”,
“Date”, or “Subject” lines are not included in the displayed message.

/etc/utmp to find out who’s logged on and on what terminals

SEE ALSO

BUGS

biff(1), inetd(8)

The message header filtering is prone to error. The density of the information presented is
near the theoretical minimum.

Users should be notified of mail which arrives on other machines than the one to which they
are currently logged in.

The notification should appear in a separate window so it does not mess up the screen.

4.2 Berkeley Distribution May 20, 1986 1

CONFIG(8) UNIX Programmer’s Manual CONFIG(8)

NAME

config - build system configuration files

SYNOPSIS

/etc/config [-p] SYSTEM_NAME

DESCRIPTION

FILES

Config builds a set of system configuration files from a short file which describes the sort of
system that is being configured. It also takes as input a file which tells config what files are
needed to generate a system. This can be augmented by a configuration specific set of files
that give alternate files for a specific machine. (see the FILES section below) If the —p option
is supplied, config will configure a system for profiling; c.f. kgmon(8) and gprof(1).

Config should be run from the conf subdirectory of the system source (usually /sys/conf). Its
argument is the name of a system configuration file containing device specifications,
configuration options and other system parameters for one system configuration. Config
assumes that there is already a directory ../.SYSTEM_NAME created and it places all its out-
put files in there. The output of config consists of a number of files; for the VAX, they are:
ioconf.c contains a description of what I/0O devices are attached to the system,; ubglue.s con-
tains a set of interrupt service routines for devices attached to the UNIBUS; ubvec.s contains
offsets into a structure used for counting per-device interrupts; Makefile is a file used by
make(1) in building the system; a set of header files contain definitions of the number of vari-
ous devices that will be compiled into the system; and a set of swap configuration files contain
definitions for the disk areas to be used for swapping, the root file system, argument process-
ing, and system dumps.

After running config, it is necessary to run “make depend” in the directory where the new
makefile was created. Config prints a reminder of this when it completes.

If any other error messages are produced by config, the problems in the configuration file
should be corrected and config should be run again. Attempts to compile a system that had
configuration errors are likely to meet with failure.

/sys/conf/Makefile.vax generic makefile for the VAX

/sys/conf/files list of common files system is built from
/sys/conf/files.vax list of VAX specific files

/sys/conf/devices.vax name to major device mapping file for the VAX
/sys/conf/files. ERNIE list of files specific to ERNIE system

SEE ALSO

BUGS

“Building 4.3BSD UNIX System with Config”
The SYNOPSIS portion of each device in section 4.

The line numbers reported in error messages are usually off by one.

4th Berkeley Distribution May 20, 1986 1

CRASH(8V) UNIX Programmer’s Manual CRASH (8V)

NAME
crash — what happens when the system crashes

DESCRIPTION
This section explains what happens when the system crashes and (very briefly) how to analyze
crash dumps.

When the system crashes voluntarily it prints a message of the form
panic: why i gave up the ghost

on the console, takes a dump on a mass storage peripheral, and then invokes an automatic
reboot procedure as described in reboot(8). (If auto-reboot is disabled on the front panel of
the machine the system will simply halt at this point.) Unless some unexpected inconsistency
is encountered in the state of the file systems due to hardware or software failure, the system
will then resume multi-user operations.

The system has a large number of internal consistency checks; if one of these fails, then it will
panic with a very short message indicating which one failed. In many instances, this will be
the name of the routine which detected the error, or a two-word description of the incon-
sistency. A full understanding of most panic messages requires perusal of the source code for
the system.

The most common cause of system failures is hardware failure, which can reflect itself in
different ways. Here are the messages which are most likely, with some hints as to causes.
Left unstated in all cases is the possibility that hardware or software error produced the mes-
sage in some unexpected way.

iinit This cryptic panic message results from a failure to mount the root filesystem during
the bootstrap process. Either the root filesystem has been corrupted, or the system is
attempting to use the wrong device as root filesystem. Usually, an alternate copy of
the system binary or an alternate root filesystem can be used to bring up the system to
investigate.

Can’t exec /etc/init
This is not a panic message, as reboots are likely to be futile. Late in the bootstrap
procedure, the system was unable to locate and execute the initialization process,
init(8). The root filesystem is incorrect or has been corrupted, or the mode or type of
/etc/init forbids execution.

10 err in push

hard IO err in swap
The system encountered an error trying to write to the paging device or an error in
reading critical information from a disk drive. The offending disk should be fixed if it
is broken or unreliable.

realloccg: bad optim

ialloc: dup alloc

alloccgblk: cyl groups corrupted

ialloccg: map corrupted

free: freeing free block

free: freeing free frag

ifree: freeing free inode

alloccg: map corrupted
These panic messages are among those that may be produced when filesystem incon-
sistencies are detected. The problem generally results from a failure to repair dam-
aged filesystems after a crash, hardware failures, or other condition that should not
normally occur. A filesystem check will normally correct the problem.

4th Berkeley Distribution May 20, 1986 1

CRASH(8V) UNIX Programmer’s Manual CRASH (8V)

timeout table overflow
This really shouldn’t be a panic, but until the data structure involved is made to be
extensible, running out of entries causes a crash. If this happens, make the timeout
table bigger.

KSP not valid

SBI fault

CHM? in kernel
These indicate either a serious bug in the system or, more often, a glitch or failing
hardware. If SBI faults recur, check out the hardware or call field service. If the
other faults recur, there is likely a bug somewhere in the system, although these can be
caused by a flakey processor. Run processor microdiagnostics.

machine check %x:
description

machine dependent machine-check information
Machine checks are different on each type of CPU. Most of the internal processor
registers are saved at the time of the fault and are printed on the console. For most
processors, there is one line that summarizes the type of machine check. Often, the
nature of the problem is apparent from this messaage and/or the contents of key regis-
ters. The VAX Hardware Handbook should be consulted, and, if necessary, your
friendly field service people should be informed of the problem.

trap type %d, code=%x, pc=%x
A unexpected trap has occurred within the system; the trap types are:

reserved addressing fault
privileged instruction fault
reserved operand fault
bpt instruction fault

xfc instruction fault
system call trap
arithmetic trap

ast delivery trap
segmentation fault
protection fault

10 trace trap

11 compatibility mode fault
12 page fault

13 page table fault

VRO NP WNN—O

The favorite trap types in system crashes are trap types 8 and 9, indicating a wild
reference. The code is the referenced address, and the pc at the time of the fault is
printed. These problems tend to be easy to track down if they are kernel bugs since
the processor stops cold, but random flakiness seems to cause this sometimes. The
debugger can be used to locate the instruction and subroutine corresponding to the
PC value. If that is insufficient to suggest the nature of the problem, more detailed
examination of the system status at the time of the trap usually can produce an expla-
nation.
init died

The system initialization process has exited. This is bad news, as no new users will
then be able to log in. Rebooting is the only fix, so the system just does it right away.

out of mbufs: map full
The network has exhausted its private page map for network buffers. This usually

4th Berkeley Distribution May 20, 1986 2

* CRASH(8V) UNIX Programmer’s Manual CRASH(8V)

indicates that buffers are being lost, and rather than allow the system to slowly
degrade, it reboots immediately. The map may be made larger if necessary.

That completes the list of panic types you are likely to see.

When the system crashes it writes (or at least attempts to write) an image of memory into the
back end of the dump device, usually the same as the primary swap area. After the system is
rebooted, the program savecore(8) runs and preserves a copy of this core image and the
current system in a specified directory for later perusal. See savecore(8) for details.

To analyze a dump you should begin by running adb(1) with the -k flag on the system load
image and core dump. If the core image is the result of a panic, the panic message is printed.
Normally the command “$c” will provide a stack trace from the point of the crash and this
will provide a clue as to what went wrong. A more complete discussion of system debugging
is impossible here. See, however, “Using ADB to Debug the UNIX Kernel”.

SEE ALSO
adb(1), reboot(8)
VAX 11/780 System Maintenance Guide and VAX Hardware Handbook for more information
about machine checks.
Using ADB to Debug the UNIX Kernel

4th Berkeley Distribution May 20, 1986 3

CRON(8) UNIX Programmer’s Manual CRON(8)

NAME

cron - clock daemon

SYNOPSIS

/etc/cron

DESCRIPTION

FILES

Cron executes commands at specified dates and times according to the instructions in the files
/usr/lib/crontab and /usr/lib/crontab.local. None, either one, or both of these files may be
present. Since cron never exits, it should only be executed once. -This is best done by run-
ning cron from the initialization process through the file /etc/rc; see init(8).

The crontab files consist of lines of seven fields each. The fields are separated by spaces or
tabs. The first five are integer patterns to specify:

e minute (0-59)

hour (0-23)

day of the month (1-31)

month of the year (1-12)

day of the week (1-7 with 1 = Monday)

Each of these patterns may contain:

® o 00

e a number in the range above

e two numbers separated by a minus meaning a range inclusive

e alist of numbers separated by commas meaning any of the numbers
e an asterisk meaning all legal values

The sixth field is a user name: the command will be run with that user’s uid and permissions.
The seventh field consists of all the text on a line following the sixth field, including spaces
and tabs; this text is treated as a command which is executed by the Shell at the specified
times. A percent character (“%”) in this field is translated to a new-line character.

Both crontab files are checked by cron every minute, on the minute.

/usr/lib/crontab
/usr/lib/crontab.local

7th Edition May 16, 1986 1

DCHECK(8) UNIX Programmer’s Manual DCHECK (8)

NAME

dcheck - file system directory consistency check

SYNOPSIS

/etc/dcheck [—i numbers] [filesystem]

DESCRIPTION

FILES

N.B.: Dcheck is obsoleted for normal consistency checking by fsck(8).

Dcheck reads the directories in a file system and compares the link-count in each i-node with
the number of directory entries by which it is referenced. If the file system is not specified, a
set of default file systems is checked.

The -i flag is followed by a list of i-numbers; when one of those i-numbers turns up in a direc-
tory, the number, the i-number of the directory, and the name of the entry are reported.

The program is fastest if the raw version of the special file is used, since the i-list is read in
large chunks.

Default file systems vary with installation.

SEE ALSO

fsck(8), icheck(8), fs(5), clri(8), ncheck(8)

DIAGNOSTICS

BUGS

When a file turns up for which the link-count and the number of directory entries disagree,
the relevant facts are reported. Allocated files which have O link-count and no entries are also
listed. The only dangerous situation occurs when there are more entries than links; if entries
are removed, so the link-count drops to 0, the remaining entries point to thin air. They
should be removed. When there are more links than entries, or there is an allocated file with
neither links nor entries, some disk space may be lost but the situation will not degenerate.

Since dcheck is inherently two-pass in nature, extraneous diagnostics may be produced if
applied to active file systems.

Dcheck is obsoleted by fsck and remains for historical reasons.

4th Berkeley Distribution April 27, 1985 1

DISKPART (8) UNIX Programmer’s Manual DISKPART(8)

NAME

diskpart — calculate default disk partition sizes

SYNOPSIS

/etc/diskpart [-p] [—-d] disk-type

DESCRIPTION

Diskpart is used to calculate the disk partition sizes based on the default rules used at Berke-
ley. If the —p option is supplied, tables suitable for inclusion in a device driver are produced.
If the -d option is supplied, an entry suitable for inclusion in the disk description file
/etc/disktab is generated; c.f. disktab(5). On disks that use badl44 -style bad-sector forward-
ing, space is left in the last partition on the disk for a bad sector forwarding table. The space
reserved is one track for the replicated copies of the table and sufficient tracks to hold a pool
of 126 sectors to which bad sectors are mapped. For more information, see bad144(8).

The disk partition sizes are based on the total amount of space on the disk as given in the
table below (all values are supplied in units of 512 byte sectors). The ‘c’ partition is, by con-
vention, used to access the entire physical disk. The device driver tables include the space
reserved for the bad sector forwarding table in the ‘c’ partition; those used in the disktab and
default formats exclude reserved tracks. In normal operation, either the ‘g’ partition is used,
or the ‘d’, ‘e’, and ‘f partitions are used. The ‘g’ and ‘f* partitions are variable-sized, occupy-
ing whatever space remains after allocation of the fixed sized partitions. If the disk is smaller
than 20 Megabytes, then diskpart aborts with the message “disk too small, calculate by hand”.

Partition 20-60 MB 61-205 MB 206-355 MB 356+ MB

a 15884 15884 15884 15884
b 10032 33440 33440 66880
d 15884 15884 15884 15884
e unused 55936 55936 307200
h unused unused 291346 291346

If an unknown disk type is specified, diskpart will prompt for the required disk geometry
information.

SEE ALSO

BUGS

disktab(5), bad144(8)

Certain default partition sizes are based on historical artifacts (e.g. RP06), and may result in
unsatisfactory layouts.

When using the -d flag, alternate disk names are not included in the output.

4th Berkeley Distribution May 30, 1986 1

DMESG(8) UNIX Programmer’s Manual DMESG(8)

NAME

dmesg - collect system diagnostic messages to form error log
SYNOPSIS

letc/dmesg [-]
DESCRIPTION

N.B.: Dmesg is obsoleted by syslogd(8) for maintenance of the system error log.

Dmesg looks in a system buffer for recently printed diagnostic messages and prints them on
the standard output. The messages are those printed or logged by the system when errors
occur. If the - flag is given, then dmesg computes (incrementally) the new messages since the
last time it was run and places these on the standard output.

FILES
/usr/adm/msgbuf scratch file for memory of - option

SEE ALSO
syslogd(8)

4th Berkeley Distribution May 19, 1986 1

DRTEST(8) UNIX Programmer’s Manual DRTEST(8)

NAME
drtest ~ standalone disk test program

DESCRIPTION
Driest is a standalone program used to read a disk track by track. It was primarily intended as
a test program for new standalone drivers, but has shown useful in other contexts as well,
such as verifying disks and running speed tests. For example, when a disk has been formatted
(by format(8)), you can check that hard errors has been taken care of by running drtest. No
hard errors should be found, but in many cases quite a few soft ECC errors will be reported.

While drtest is running, the cylinder number is printed on the console for every 10th cylinder
read.

EXAMPLE
A sample run of drtest is shown below. In this example (using a 750), drtest is loaded from the
root file system; usually it will be loaded from the machine’s console storage device. Boldface
means user input. As usual, “#” and “@” may be used to edit input.

>>>B/3

%%

loading hk(0,0)boot

Boot

: hk(0,0)drtest

Test program for stand-alone up and hp driver |

Debugging level (1=bse, 2=ecc, 3=bse+ecc)?

Enter disk name [type(adapter,unit), e.g. hp(1,3)]? hp(0,0)
Device data: #cylinders=1024, #tracks=16, #sectors=32
Testing hp(0,0), chunk size is 16384 bytes.

(chunk size is the number of bytes read per disk access)
Start ...Make sure hp(0,0) is online

(errors are reported as they occur)

(...program restarts to allow checking other disks)
(...to abort halt machine with “P)

DIAGNOSTICS
The diagnostics are intended to be self explanatory. Note, however, that the device number in
the diagnostic messages is identified as typeX instead of fype(d,u) where X = a*8+u, e.g.,
hp(1,3) becomes hpl1.

SEE ALSO
format(8V), bad144(8)

AUTHOR
Helge Skrivervik

4.2 Berkeley Distribution May 19, 1986 1

DUMP(8) UNIX Programmer’s Manual DUMP(8)

NAME

dump - incremental file system dump
SYNOPSIS

/etc/dump [key [argument ...] filesystem]
DESCRIPTION

Dump copies to magnetic tape all files changed after a certain date in the filesystem. The key
specifies the date and other options about the dump. Key consists of characters from the set
0123456789fusdWn.

0-9 This number is the ‘dump level’. All files modified since the last date stored in the file
/etc/dumpdates for the same filesystem at lesser levels will be dumped. If no date is
determined by the level, the beginning of time is assumed; thus the option 0 causes the
entire filesystem to be dumped.

f Place the dump on the next argument fiie instead of the tape. If the name of the file is
“=”, dump writes to standard output.

u If the dump completes successfully, write the date of the beginning of the dump on file
/etc/dumpdates. This file records a separate date for each filesystem and each dump
level. The format of /etc/dumpdates is readable by people, consisting of one free format
record per line: filesystem name, increment level and ctime(3) format dump date.
/etc/dumpdates may be edited to change any of the fields, if necessary.

s The size of the dump tape is specified in feet. The number of feet is taken from the
next argument. When the specified size is reached, dump will wait for reels to be
changed. The default tape size is 2300 feet.

d The density of the tape, expressed in BPI, is taken from the next argument. This is used
in calculating the amount of tape used per reel. The default is 1600.

W Dump tells the operator what file systems need to be dumped. This information is
gleaned from the files /etc/dumpdates and /etc/fstab. The W option causes dump to print
out, for each file system in /etc/dumpdates the most recent dump date and level, and
highlights those file systems that should be dumped. If the W option is set, all other
options are ignored, and dump exits immediately.

w Islike W, but prints only those filesystems which need to be dumped.

n Whenever dump requires operator attention, notify by means similar to a wal/l(1) all of
the operators in the group ‘“‘operator”.

If no arguments are given, the key is assumed to be 9u and a default file system is dumped to
the default tape.

Dump requires operator intervention on these conditions: end of tape, end of dump, tape
write error, tape open error or disk read error (if there are more than a threshold of 32). In
addition to alerting all operators implied by the n key, dump interacts with the operator on
dump’s control terminal at times when dump can no longer proceed, or if something is grossly
wrong. All questions dump poses must be answered by typing “yes” or “no”, appropriately.

Since making a dump involves a lot of time and effort for full dumps, dump checkpoints itself
at the start of each tape volume. If writing that volume fails for some reason, dump will, with
operator permission, restart itself from the checkpoint after the old tape has been rewound
and removed, and a new tape has been mounted.

Dump tells the operator what is going on at periodic intervals, including usually low estimates
of the number of blocks to write, the number of tapes it will take, the time to completion, and
the time to the tape change. The output is verbose, so that others know that the terminal
controlling dump is busy, and will be for some time.

4th Berkeley Distribution May 23, 1986 1

DUMP(8) UNIX Programmer’s Manual DUMP (8)

FILES

Now a short suggestion on how to perform dumps. Start with a full level 0 dump
dump Oun

Next, dumps of active file systems are taken on a daily basis, using a modified Tower of
Hanoi algorithm, with this sequence of dump levels:

3254769899...
For the daily dumps, a set of 10 tapes per dumped file system is used on a cyclical basis.
Each week, a level 1 dump is taken, and the daily Hanoi sequence repeats with 3. For weekly
dumps, a set of 5 tapes per dumped file system is used, also on a cyclical basis. Each month,
a level 0 dump is taken on a set of fresh tapes that is saved forever.

/dev/rrplg default filesystem to dump from
/dev/rmt8 default tape unit to dump to
/etc/dumpdates new format dump date record
letc/fstab dump table: file systems and frequency
/etc/group to find group operator

SEE ALSO

restore(8), dump(5), fstab(5)

DIAGNOSTICS

BUGS

Many, and verbose.

Dump exits with zero status on success. Startup errors are indicated with an exit code of 1;
abnormal termination is indicated with an exit code of 3.

Fewer than 32 read errors on the filesystem are ignored. Each reel requires a new process, so
parent processes for reels already written just hang around until the entire tape is written.

Dump with the W or w options does not report filesystems that have never been recorded in
/etc/dumpdates, even if listed in /etc/fstab.

It would be nice if dump knew about the dump sequence, kept track of the tapes scribbled on,
told the operator which tape to mount when, and provided more assistance for the operator
running restore.

4th Berkeley Distribution May 23, 1986 2

DUMPFS(8) UNIX Programmer’s Manual DUMPFS(8)

NAME

dumpfs — dump file system information
SYNOPSIS

dumpfs filesys|device
DESCRIPTION

Dumpfs prints out the super block and cylinder group information for the file system or spe-
cial device specified. The listing is very long and detailed. This command is useful mostly
for finding out certain file system information such ds the file system block size and minimum
free space percentage.

SEE ALSO
fs(5), disktab(5), tunefs(8), newfs(8), fsck(8)

4.2 Berkeley Distribution April 27, 1985 1

EDQUOTA(8) UNIX Programmer’s Manual EDQUOTA(8)

NAME

edquota — edit user quotas
SYNOPSIS

edquota [—p proto-user] users...
DESCRIPTION

Edquota is a quota editor. One or more users may be specified on the command line. For
each user a temporary file is created with an ASCII representation of the current disc quotas
for that user and an editor is then invoked on the file. The quotas may then be modified, new
quotas added, etc. Upon leaving the editor, edquota reads the temporary file and modifies the
binary quota files to reflect the changes made.

If the -p option is specified, edquota will duplicate the quotas of the prototypical user
specified for each user specified. This is the normal mechanism used to initialize quotas for
groups of users.

The editor invoked is vi(1) unless the environment variable EDITOR specifies otherwise.
Only the super-user may edit quotas.

FILES

quotas at the root of each file system with quotas

/etc/fstab to find file system names and locations
SEE ALSO

quota(l), quota(2), quotacheck(8), quotaon(8), repquota(8)
DIAGNOSTICS

Various messages about inaccessible files; self-explanatory.
BUGS

The format of the temporary file is inscrutable.

4.2 Berkeley Distribution May 19, 1986 . 1

FASTBOOT (8) UNIX Programmer’s Manual FASTBOOT (8)

NAME
fastboot, fasthalt — reboot/halt the system without checking the disks

SYNOPSIS
/etc/fastboot [boot-options)
/etc/fasthalt [halt-options]

DESCRIPTION
Fastboot and fasthalt are shell scripts which reboot and halt the system without checking the
file systems. This is done by creating a file /fastboot, then invoking the reboot program. The
system startup script, /etc/rc, looks for this file and, if present, skips the normal invocation of
fsck(8).

SEE ALSO
halt(8), reboot(8), rc(8)

4.2 Berkeley Distribution April 27, 1985 1

FINGERD (8C) UNIX Programmer’s Manual FINGERD (8C)

NAME

fingerd — remote user information server
SYNOPSIS

/etc/fingerd
DESCRIPTION

Fingerd is a simple protocol based on RFC742 that provides an interface to the Name and
Finger programs at several network sites. The program is supposed to return a friendly,
human-oriented status report on either the system at the moment or a particular person in
depth. There is no required format and the protocol consists mostly of specifying a single
“command line”.

Fingerd listens for TCP requests at port 79. Once connected it reads a single command line
terminated by a <CRLF> which is passed to finger(1). Fingerd closes its connections as soon
as the output is finished.

If the line is null (i.e. just a <CRLF> is sent) then finger returns a ‘“default” report that lists
all people logged into the system at that moment.

If a user name is specified (e.g. eric<CRLF>) then the response lists more extended informa-
tion for only that particular user, whether logged in or not. Allowable “names” in the com-
mand line include both “login names” and ‘“user names”. If a name is ambiguous, all possi-
ble derivations are returned.

SEE ALSO

BUGS

finger(1)

Connecting directly to the server from a TIP or an equally narrow-minded TELNET-protocol
user program can result in meaningless attempts at option negotiation being sent to the
server, which will foul up the command line interpretation. Fingerd should be taught to filter
out IAC’s and perhaps even respond negatively (IAC WON'T) to all option commands
received.

4.3 Berkeley Distribution May 23, 1986 1

FORMAT (8V) UNIX Programmer’s Manual FORMAT (8V)

NAME
format — how to format disk packs

DESCRIPTION
There are two ways to format disk packs. The simplest is to use the format program. The
alternative is to use the DEC standard formatting software which operates under the DEC
diagnostic supervisor. This manual page describes the operation of format, then concludes
with some remarks about using the DEC formatter.

Format is a standalone program used to format and check disks prior to constructing file sys-
tems. In addition to the formatting operation, format records any bad sectors encountered
according to DEC standard 144. Formatting is performed one track at a time by writing the
- appropriate headers and a test pattern and then checking the sector by reading and verifying
the pattern, using the controller’s ECC for error detection. A sector is marked bad if an unre-
coverable media error is detected, or if a correctable ECC error too many bits in length is
detected (such errors are indicated as “ECC” in the summary printed upon completing the
format operation). After the entire disk has been formatted and checked, the total number of
errors are reported, any bad sectors and skip sectors are marked, and a bad sector forwarding
table is written to the disk in the first five even numbered sectors of the last track. It is also
possible to reformat sections of the disk in units of tracks. Format may be used on any
UNIBUS or MASSBUS drive supported by the up and hp device drivers which uses 4-byte
- headers (everything except RP’s).

The test pattern used during the media check may be selected from one of: 0xf00f (RH750
worst case), Oxec6d (media worst case), and 0xa5a5 (alternating 1’s and 0’s). Normally the
media worst case pattern is used.

Format also has an option to perform an extended ‘“severe burn-in,” which makes a number
of passes using different patterns. The number of passes can be selected at run time, up to a
maximum of 48, with provision for additional passes or termination after the preselected
number of passes. This test runs for many hours, depending on the disk and processor.

- Each time format is run to format an entire disk, a completely new bad sector table is gen-
erated based on errors encountered while formatting. The device driver, however, will always
attempt to read any existing bad sector table when the device is first opened. Thus, if a disk
pack has never previously been formatted, or has been formatted with different sectoring, five
error messages will be printed when the driver attempts to read the bad sector table; these
diagnostics should be ignored.

) Formatting a 400 megabyte disk on a MASSBUS disk controller usually takes about 20
minutes. Formatting on a UNIBUS disk controller takes significantly longer. For every hun-
dredth cylinder formatted format prints a message indicating the current cylinder being for-
matted. (This message is just to reassure people that nothing is is amiss.)

Format uses the standard notation of the standalone I/0 library in identifying a drive to be
formatted. A drive is specified as zz(x,y), where zz refers to the controller type (either /Ap or
up), x is the unit number of the drive; 8 times the UNIBUS or MASSBUS adaptor number
plus the MASSBUS drive number or UNIBUS drive unit number; and y is the file system par-
tition on drive x (this should always be 0). For example, “hp(1,0)” indicates that drive 1 on
MASSBUS adaptor 0 should be formatted; while “up(10,0)” indicates that UNIBUS drive 2
on UNIBUS adaptor 1 should be formatted.

Before each formatting attempt, format prompts the user in case debugging should be enabled
in the appropriate device driver. A carriage return disables debugging information.

Format should be used prior to building file systems (with newfs(8)) to insure that all sectors
with uncorrectable media errors are remapped. If a drive develops uncorrectable defects after
- formatting, either bad144(8) or badsect(8) should be able to avoid the bad sectors.

- 4th Berkeley Distribution May 22, 1986 1

FORMAT(8V) UNIX Programmer’s Manual FORMAT(8V)

EXAMPLE
A sample run of format is shown below. In this example (using a VAX-11/780), format is
loaded from the console floppy; on an 11/750 format will be loaded from the root file system
with boot(8) following a “B/3” command. Boldface means user input. As usual, “#” and
“@” may be used to edit input.

>>>L FORMAT

LOAD DONE, 00004400 BYTES LOADED
>>>S 2
Disk format/check utility

Enable debugging (0=none, 1=bse, 2=ecc, 3=bse+ecc)? 0
Device to format? hp(8,0)
(error messages may occur as old bad sector table is read)
Formatting drive hp0O on adaptor 1: verify (yes/no)? yes
Device data: #cylinders=_842, #tracks=20, #sectors=48
Starting cylinder (0):
Starting track (0):
Ending cylinder (841):
Ending track (19):
Available test patterns are:

1 - (f00f) RH750 worst case

2 - (ec6d) media worst case

3 - (a5a5) alternating 1’s and 0’s

4 - (ffff) Severe burnin (up to 48 passes)
Pattern (one of the above, other to restart)? 2
Maximum number of bit errors to allow for soft ECC (3):
Start formatting...make sure the drive is online

(soft ecc’s and other errors are reported as they occur)
(if 4 write check errors were found, the program terminates like this...)

Errors:

Bad sector: 0

Write check: 4

Hard ECC: 0

Other hard: 0

Marked bad: 0

Skipped: 0

Total of 4 hard errors revectored.

Writing bad sector table at block 808272

(808272 is the block # of the first block in the bad sector table)
Done

(...program restarts to allow formatting other disks)
(...to abort halt machine with “P)

DIAGNOSTICS
The diagnostics are intended to be self explanatory.

USING DEC SOFTWARE TO FORMAT
Warning: These instructions are for people with 11/780 CPU’s. The steps needed for 11/750
or 11/730 cpu’s are similar, but not covered in detail here.

4th Berkeley Distribution May 22, 1986 2

FORMAT (8V) UNIX Programmer’s Manual FORMAT (8V)

The formatting procedures are different for each type of disk. Listed here are the formatting
procedures for RK07’s, RP0X, and RMOX disks.

You should shut down UNIX and halt the machine to do any disk formatting. Make certain
you put in the pack you want formatted. It is also a good idea to spin down or write protect
the disks you don’t want to format, just in case.

Formatting an RK07. Load the console floppy labeled, "RX11 VAX DSK LD DEV #1" in the
console disk drive, and type the following commands:

>>>BOOT

DIAGNOSTIC SUPERVISOR. ZZ-ESSAA-X5.0-119 23-JAN-1980 12:44:40.03

DS>ATTACH DW780 SBI DW0 3 5

DS>ATTACH RK611 DMA

DS>ATTACH RK07 DW0 DMAO

DS>SELECT DMAO

DS>LOAD EVRAC

DS>START/SEC:PACKINIT

Formatting an RP0X. Follow the above procedures except that the ATTACH and SELECT
lines should read:

DS>ATTACH RH780 SBI RHO 8 5

DS>ATTACH RP0X RHO DBAO(RPOX is, e.g. RP06)

DS>SELECT DBAO

This is for drive 0 on mba0; use 9 instead of 8 for mbal, etc.

Formatting an RMOX. Follow the above procedures except that the ATTACH and SELECT
lines should read:

DS>ATTACH RH780 SBI RHO 8 5

DS>ATTACH RM0X RHO DRAO

DS>SELECT DRAO

Don’t forget to put your UNIX console floppy back in the floppy disk drive.

SEE ALSO
bad144(8), badsect(8), newfs(8)

BUGS
An equivalent facility should be available which operates under a running UNIX system.

It should be possible to reformat or verify part or all of a disk, then update the existing bad
sector table.

4th Berkeley Distribution . May 22, 1986 3

FSCK(8) UNIX Programmer’s Manual FSCK(8)

NAME

fsck - file system consistency check and interactive repair

SYNOPSIS

letc/fsck -p [filesystem ...]
/letc/fsck [-b block#] [-y] [-n] [filesystem] ...

DESCRIPTION

The first form of fsck preens a standard set of filesystems or the specified file systems. It is
normally used in the script /etc/rc during automatic reboot. In this case fsck reads the table
/etc/fstab to determine which file systems to check. It uses the information there to inspect
groups of disks in parallel taking maximum advantage of i/o overlap to check the file systems
as quickly as possible. Normally, the root file system will be checked on pass 1, other “root”
(“a” partition) file systems on pass 2, other small file systems on separate passes (e.g. the “d”
file systems on pass 3 and the “e” file systems on pass 4), and finally the large user file sys-
tems on the last pass, e.g. pass 5. Only partitions in fstab that are mounted “rw” or “rq” and
that have non-zero pass number are checked.

The system takes care that only a restricted class of innocuous inconsistencies can happen
unless hardware or software failures intervene. These are limited to the following:

Unreferenced inodes

Link counts in inodes too large
Missing blocks in the free list
Blocks in the free list also in files
Counts in the super-block wrong

These are the only inconsistencies that fsck with the —p option will correct; if it encounters
other inconsistencies, it exits with an abnormal return status and an automatic reboot will
then fail. For each corrected inconsistency one or more lines will be printed identifying the
file system on which the correction will take place, and the nature of the correction. After
successfully correcting a file system, fsck will print the number of files on that file system, the
number of used and free blocks, and the percentage of fragmentation.

If sent a QUIT signal, fsck will finish the file system checks, then exit with an abnormal return
status that causes the automatic reboot to fail. This is useful when you wish to finish the file
system checks, but do not want the machine to come up multiuser.

Without the -p option, fsck audits and interactively repairs inconsistent conditions for file
systems. If the file system is inconsistent the operator is prompted for concurrence before
each correction is attempted. It should be noted that some of the corrective actions which are
not correctable under the —p option will result in some loss of data. The amount and severity
of data lost may be determined from the diagnostic output. The default action for each con-
sistency correction is to wait for the operator to respond yes or no. If the operator does not
have write permission on the file system fsck will default to a —n action.

Fsck has more consistency checks than its predecessors check, dcheck, fcheck, and icheck com-
bined.

The following flags are interpreted by fsck.

-b Use the block specified immediately after the flag as the super block for the file system.
Block 32 is always an alternate super block.

-y Assume a yes response to all questions asked by fsck; this should be used with great
caution as this is a free license to continue after essentially unlimited trouble has been
encountered.

4th Berkeley Distribution May 21, 1986 1

FSCK (8) UNIX Programmer’s Manual FSCK (8)

-n Assume a no response to all questions asked by fsck; do not open the file system for
writing.

If no filesystems are given to fsck then a default list of file systems is read from the file

/etc/fstab.

Inconsistencies checked are as follow..

Blocks claimed by more than one inode or the free list.
Blocks claimed by an inode or the free list outside the range of the file system.
Incorrect link counts.
Size checks:
Directory size not of proper format.
Bad inode format.
Blocks not accounted for anywhere.
Directory checks:
File pointing to unallocated inode.
Inode number out of range.
8. Super Block checks:

Hw—

Now

More blocks for inodes than there are in the file system.
9. Bad free block list format.
10. Total free block and/or free inode count incorrect.

Orphaned files and directories (allocated but unreferenced) are, with the operator’s con-
currence, reconnected by placing them in the lost+found directory. The name assigned is the
inode number. If the /ost+found directory does not exist, it is created. If there is insufficient
space its size is increased.

Checking the raw device is almost always faster.

FILES
/etc/fstab contains default list of file systems to check.

DIAGNOSTICS
The diagnostics produced by fsck are fully enumerated and explained in Appendix A of “Fsck
-~ The UNIX File System Check Program” (SMM:5).

- SEE ALSO
fstab(5), fs(5), newfs(8), mkfs(8), crash(8V), reboot(8)

BUGS
There should be some way to start a fsck -p at pass n.

4th Berkeley Distribution May 21, 1986 2

FTPD(8C) UNIX Programmer’s Manual FTPD(8C)

NAME

ftpd - DARPA Internet File Transfer Protocol server
SYNOPSIS

fetc/ftpd [-d] [-1] [-ttimeout]
DESCRIPTION

Fipd is the DARPA Internet File Transfer Prototocol server process. The server uses the TCP
protocol and listens at the port specified in the “ftp” service specification; see services(5).

If the -d option is specified, debugging information is written to the syslog.
If the -1 option is specified, each ftp session is logged in the syslog.

The ftp server will timeout an inactive session after 15 minutes. If the -t option is specified,
the inactivity timeout period will be set to timeout.

The ftp server currently supports the following ftp requests; case is not distinguished.

Request Description

ABOR abort previous command

ACCT specify account (ignored)

ALLO allocate storage (vacuously)

APPE append to a file

CDUP change to parent of current working directory
CWD change working directory

DELE delete a file

HELP give help information

LIST give list files in a directory (“Is -1g”)
MKD make a directory

MODE specify data transfer mode

NLST give name list of files in directory (“Is”)
NOOP do nothing

PASS specify password

PASV prepare for server-to-server transfer
PORT specify data connection port

PWD print the current working directory
QUIT terminate session

RETR retrieve a file

RMD remove a directory

RNFR specify rename-from file name

RNTO specify rename-to file name

STOR store a file

STOU store a file with a unique name

STRU specify data transfer structure

TYPE specify data transfer fype

USER specify user name

XCUP change to parent of current working directory

XCWD change working directory

XMKD make a directory

XPWD print the current working directory
XRMD remove a directory

The remaining ftp requests specified in Internet RFC 959 are recognized, but not imple-
mented.

The ftp server will abort an active file transfer only when the ABOR command is preceded by
a Telnet "Interrupt Process” (IP) signal and a Telnet "Synch" signal in the command Telnet
stream, as described in Internet RFC 959.

4.2 Berkeley Distribution April 27, 1985 1

FTPD(8C) UNIX Programmer’s Manual FTPD(8C)

Ftpd interprets file names according to the ‘‘globbing” conventions used by csh(1). This
allows users to utilize the metacharacters “*?[]{)™.
Ftpd authenticates users according to three rules.

1) The user name must be in the password data base, /etc/passwd, and not have a null
password. In this case a password must be provided by the client before any file
operations may be performed.

2) The user name must not appear in the file /etc/ftpusers.
3) The user must have a standard shell returned by getusershell(3).
4) If the user name is “anonymous” or “ftp”, an anonymous ftp account must be present

in the password file (user “ftp”). In this case the user is allowed to log in by specify-
ing any password (by convention this is given as the client host’s name).

In the last case, fipd takes special measures to restrict the client’s access privileges. The server
performs a chroot(2) command to the home directory of the “ftp” user. In order that system
security is not breached, it is recommended that the “ftp” subtree be constructed with care;
the following rules are recommended.
“ftp) Make the home directory owned by “ftp”” and unwritable by anyone.
“ftp/bin)
Make this directory owned by the super-user and unwritable by anyone. The program
Is(1) must be present to support the list commands. This program should have mode
111.
“ftp/etc)
Make this directory owned by the super-user and unwritable by anyone. The files
passwd(5) and group(5) must be present for the Is command to work properly. These
files should be mode 444.
“ftp/pub)
Make this directory mode 777 and owned by “ftp”. Users should then place files
which are to be accessible via the anonymous account in this directory.

SEE ALSO

BUGS

ftp(1C), getusershell(3), syslogd(8)

The anonymous account is inherently dangerous and should avoided when possible.

The server must run as the super-user to create sockets with privileged port numbers. It
maintains an effective user id of the logged in user, reverting to the super-user only when
binding addresses to sockets. The possible security holes have been extensively scrutinized,
but are possibly incomplete.

4.2 Berkeley Distribution April 27, 1985 2

GETTABLE(8C) UNIX Programmer’s Manual GETTABLE(8C)

NAME

gettable - get NIC format host tables from a host
SYNOPSIS

/etc/gettable [-v] host [outfile]
DESCRIPTION

Gettable is a simple program used to obtain the NIC standard host tables from a “nicname”
server. The indicated host is queried for the tables. The tables, if retrieved, are placed in the
file outfile or by default, hosts.txt.

The -v option will get just the version number instead of the complete host table and put the
output in the file outfile or by default, hosts.ver.

Gettable operates by opening a TCP connection to the port indicated in the service
specification for “nicname”. A request is then made for “ALL” names and the resultant
information is placed in the output file.

Gettable is best used in conjunction with the htable(8) program which converts the NIC stan-
dard file format to that used by the network library lookup routines.

SEE ALSO
intro(3N), htable(8), named(8)

BUGS
If the name-domain system provided network name mapping well as host name mapping,
gettable would no longer be needed. .

4.2 Berkeley Distribution May 22, 1986 1

GETTY (8) UNIX Programmer’s Manual GETTY (8)

NAME
getty - set terminal mode

SYNOPSIS

Jetc/getty [type [tty 1]

DESCRIPTION

Getty is usually invoked by init(8) to open and initialize the tty line, read a login name, and
invoke login(1). gerty attempts to adapt the system to the speed and type of terminal being
used.

The argument ¢ty is the special device file in /dev to open for the terminal (e.g., “ttyh0”). If
there is no argument or the argument is “-, the tty line is assumed to be open as file descrip-
tor 0.

The type argument can be used to make getty treat the terminal line specially. This argument
is used as an index into the gettytab(5) database, to determine the characteristics of the line.
If there is no argument, or there is no such table, the default table is used. If there is no
letc/gettytab a set of system defaults is used. If indicated by the table located, getty will clear
the terminal screen, print a banner heading, and prompt for a login name. Usually either the
banner of the login prompt will include the system hostname. Then the user’s name is read, a
character at a time. If a null character is received, it is assumed to be the result of the user
pushing the ‘break’ (‘interrupt’) key. The speed is usually then changed and the ‘login:’ is
typed again; a second ‘break’ changes the speed again and the ‘login:’ is typed once more.
Successive ‘break’ characters cycle through the same standard set of speeds.

The user’s name is terminated by a new-line or carriage-return character. The latter results in
the system being set to treat carriage returns appropriately (see ty(4)).

The user’s name is scanned to see if it contains any lower-case alphabetic characters; if not,
and if the name is nonempty, the system is told to map any future upper-case characters into
the corresponding lower-case characters.

Finally, login is called with the user’s name as an argument.

Most of the default actions of getty can be circumvented, or modified, by a suitable gettytab
table.

Getty can be set to timeout after some interval, which will cause dial up lines to hang up if
the login name is not entered reasonably quickly.

DIAGNOSTICS

FILES

ttyxx: No such device or address. ffyxx: No such file or address. A terminal which is turned
on in the #tys file cannot be opened, likely because the requisite lines are either not configured
into the system, the associated device was not attached during boot-time system configuration,
or the special file in /dev does not exist.

letc/gettytab

SEE ALSO

gettytab(5), init(8), login(1), ioctl(2), tty(4), ttys(5)

4th Berkeley Distribution May 22, 1986 1

HALT(8) UNIX Programmer’s Manual HALT(8)

NAME
halt - stop the processor

SYNOPSIS
letc/halt [-n][-q]1[-Vy]

DESCRIPTION
Halt writes out sandbagged information to the disks and then stops the processor. The
machine does not reboot, even if the auto-reboot switch is set on the console.

The —n option prevents the sync before stopping. The —q option causes a quick halt, no grace-
ful shutdown is attempted. The -y option is needed if you are trying to halt the system from
a dialup.

Halt normally logs the shutdown using syslog(8) and places a shutdown record in the login

accounting file /usr/adm/wtmp. These actions are inhibited if the -n or -q options are
present.

SEE ALSO
reboot(8), shutdown(8), syslogd(8)

BUGS
It is very difficult to halt a VAX, as the machine wants to then reboot itself. A rather tight
loop suffices.

4th Berkeley Distribution May 24, 1986 1

HTABLE(8) UNIX Programmer’s Manual HTABLE(8)

NAME
htable — convert NIC standard format host tables

SYNOPSIS
/etc/htable [—c connected-nets | [-1 local-nets] file

DESCRIPTION
Htable is used to convert host files in the format specified in Internet RFC 810 to the format
used by the network library routines. Three files are created as a result of running htable:
) hosts, networks, and gateways. The hosts file may be used by the gethostbyname(3N) routines
in mapping host names to addresses if the nameserver, named(8), is not used. The networks
file is used by the getnetent(3N) routines in mapping network names to numbers. The gate-
ways file may be used by the routing daemon in identifying “passive” Internet gateways; see
routed(8C) for an explanation.

If any of the files localhosts, localnetworks, or localgateways are present in the current direc-
tory, the file’s contents is prepended to the output file. Of these, only the gateways file is
interpreted. This allows sites to maintain local aliases and entries which are not normally
present in the master database. Only one gateway to each network will be placed in the gate-
o ways file; a gateway listed in the localgateways file will override any in the input file.

If the gateways file is to be used, a list of networks to which the host is directly connected is
specified with the —c flag. The networks, separated by commas, may be given by name or in
Internet-standard dot notation, e.g. -c arpanet,128.32,local-ether-net. Htable only includes
gateways which are directly connected to one of the networks specified, or which can be
reached from another gateway on a connected net.

If the -1 option is given with a list of networks (in the same format as for —c), these networks
will be treated as “local,” and information about hosts on local networks is taken only from
\ the localhosts file. Entries for local hosts from the main database will be omitted. This
allows the localhosts file to completely override any entries in the input file.

- Htable is best used in conjunction with the gettable(8C) program which retrieves the NIC
database from a host.

SEE ALSO
intro(3N), gettable(8C), named(8)

BUGS
If the name-domain system provided network name mapping well as host name mapping,
htable would no longer be needed.

4.2 Berkeley Distribution May 22, 1986 1

ICHECK(8) UNIX Programmer’s Manual ICHECK (8)

NAME

icheck - file system storage consistency check

SYNOPSIS

fetc/icheck [-s] [-b numbers] [filesystem]

DESCRIPTION

N.B.: Icheck is obsoleted for normal consistency checking by fsck(8).

Icheck examines a file system, builds a bit map of used blocks, and compares this bit map
against the free list maintained on the file system. If the file system is not specified, a set of
default file systems is checked. The normal output of icheck includes a report of

The total number of files and the numbers of regular, directory, block special and
character special files.

The total number of blocks in use and the numbers of single-, double-, and triple-
indirect blocks and directory blocks.

The number of free blocks.
The number of blocks missing; i.e. not in any file nor in the free list.

The -s option causes icheck to ignore the actual free list and reconstruct a new one by rewrit-
ing the super-block of the file system. The file system should be dismounted while this is
done; if this is not possible (for example if the root file system has to be salvaged) care should
be taken that the system is quiescent and that it is rebooted immediately afterwards so that
the old, bad in-core copy of the super-block will not continue to be used. Notice also that the
words in the super-block which indicate the size of the free list and of the i-list are believed.
If the super-block has been curdled these words will have to be patched. The -s option causes
the normal output reports to be suppressed.

Following the -b option is a list of block numbers; whenever any of the named blocks turns
up in a file, a diagnostic is produced.

Icheck is faster if the raw version of the special file is used, since it reads the i-list many
blocks at a time.

FILES
Default file systems vary with installation.

SEE ALSO
fsck(8), dcheck(8), ncheck(8), fs(5), clri(8)

DIAGNOSTICS
For duplicate blocks and bad blocks (which lie outside the file system) icheck announces the
difficulty, the i-number, and the kind of block involved. If a read error is encountered, the
block number of the bad block is printed and icheck considers it to contain 0. ‘Bad freeblock’
means that a block number outside the available space was encountered in the free list. ‘n
dups in free’ means that n blocks were found in the free list which duplicate blocks either in
some file or in the earlier part of the free list.

BUGS

Since icheck is inherently two-pass in nature, extraneous diagnostics may be produced if
applied to active file systems.

It believes even preposterous super-blocks and consequently can get core images.
The system should be fixed so that the reboot after fixing the root file system is not necessary.

4th Berkeley Distribution April 27, 1985 1

IFCONFIG(8C) UNIX Programmer’s Manual IFCONFIG (8C)

NAME

ifconfig — configure network interface parameters

SYOPNSIS

/etc/ifconfig interface address_family [address [dest_address 11 [parameters]
fetc/ifconfig interface [protocol_family]

DESCRIPTION

Ifconfig is used to assign an address to a network interface and/or configure network interface
parameters. Ifconfig must be used at boot time to define the network address of each inter-
face present on a machine; it may also be used at a later time to redefine an interface’s
address or other operating parameters. The interface parameter is a string of the form “name
unit”, e.g. “en0”.

Since an interface may receive transmissions in differing protocols, each of which may require
separate naming schemes, it is necessary to specify the address_family, which may change the
interpretation of the remaining parameters. The address families currently supported are
“inet” and “ns”.

For the DARPA-Internet family, the address is either a host name present in the host name
data base, hosts(5), or a DARPA Internet address expressed in the Internet standard ‘“dot
notation”. For the Xerox Network Systems(tm) family, addresses are net:a.b.c.d.e.f, where net
is the assigned network number (in decimal), and each of the six bytes of the host number, a
through f, are specified in hexadecimal. The host number may be omitted on 10Mb/s Ether-
net interfaces, which use the hardware physical address, and on interfaces other than the first.

The following parameters may be set with ifconfig:

up Mark an interface “up”. This may be used to enable an interface after an
“ifconfig down.” It happens automatically when setting the first address on an
interface. If the interface was reset when previously marked down, the
hardware will be re-initialized.

down Mark an interface “down”. When an interface is marked “down”, the system
will not attempt to transmit messages through that interface. If possible, the
interface will be reset to disable reception as well. This action does not
automatically disable routes using the interface.

trailers Request the use of a “trailer” link level encapsulation when sending (default).
If a network interface supports trailers, the system will, when possible, encap-
sulate outgoing messages in a manner which minimizes the number of
memory to memory copy operations performed by the receiver. On networks
that support the Address Resolution Protocol (see arp(4P); currently, only 10
Mb/s Ethernet), this flag indicates that the system should request that other
systems use trailers when sending to this host. Similarly, trailer encapsula-
tions will be sent to other hosis that have made such requests. Currently
used by Internet protocols only.

—trailers Disable the use of a “trailer” link level encapsulation.

arp Enable the use of the Address Resolution Protocol in mapping between net-
work level addresses and link level addresses (default). This is currently
implemented for mapping between DARPA Internet addresses and 10Mb/s
Ethernet addresses.

-arp Disable the use of the Address Resolution Protocol.

metric n Set the routing metric of the interface to #, default 0. The routing metric is
used by the routing protocol (routed(8c)). Higher metrics have the effect of
making a route less favorable; metrics are counted as addition hops to the
destination network or host.

4.2 Berkeley Distribution May 22, 1986 1

IFCONFIG (8C) UNIX Programmer’s Manual IFCONFIG(8C)

debug Enable driver dependent debugging code; usually, this turns on extra console
error logging.
—debug Disable driver dependent debugging code.

netmask mask (Inet only) Specify how much of the address to reserve for subdividing net-
works into sub-networks. The mask includes the network part of the local
address and the subnet part, which is taken from the host field of the address.
The mask can be specified as a single hexadecimal number with a leading 0x,
with a dot-notation Internet address, or with.a pseudo-network name listed in
the network table networks(5). The mask contains 1’s for the bit positions in
the 32-bit address which are to be used for the network and subnet parts, and
0’s for the host part. The mask should contain at least the standard network
portion, and the subnet field should be contiguous with the network portion.

dstaddr Specify the address of the correspondent on the other end of a point to point
link.

broadcast (Inet only) Specify the address to use to represent broadcasts to the network.
The default broadcast address is the address with a host part of all 1’s.

ipdst (NS only) This is used to specify an Internet host who is willing to receive ip

packets encapsulating NS packets bound for a remote network. In this case,
an apparent point to point link is constructed, and the address specified will
be taken as the NS address and network of the destinee.

Ifconfig displays the current configuration for a network interface when no optional parame-
ters are supplied. If a protocol family is specified, Ifconfig will report only the details specific
to that protocol family.

Only the super-user may modify the configuration of a network interface.

DIAGNOSTICS
Messages indicating the specified interface does not exit, the requested address is unknown, or
the user is not privileged and tried to alter an interface’s configuration.

SEE ALSO
netstat(1), intro(4N), rc(8)

4.2 Berkeley Distribution May 22, 1986 2

IMPLOG (8C) UNIX Programmer’s Manual IMPLOG(8C)

NAME

implog — IMP log interpreter
SYNOPSIS

Jetc/implog [-D][-f][-c][-r)[-11link]][-h host#][-i imp#] [-t message-type]
DESCRIPTION

Implog is program which interprets the message log produced by implogd(8C).

If no arguments are specified, implog interprets and prints every message present in the mes-
sage file. Options may be specified to force printing only a subset of the logged messages.

-D Do not show data messages.

-f Follow the logging process in action. This flags causes implog to print the current
contents of the log file, then check for new logged messages every 5 seconds.

-C In addition to printing any data messages logged, show the contents of the data in
hexadecimal bytes.

-r Print the raw imp leader, showing all fields, in addition to the formatted interpreta-
tion according to type.

-1 [link#]

Show only those messages received on the specified “link”. If no value is given for
the link, the link number of the IP protocol is assumed.
~h host#
Show only those messages received from the specified host. (Usually specified in con-
junction with an imp.)
-i imp#
Show only those messages received from the specified imp.
-t message-type
Show only those messages received of the specified message type.
SEE ALSO
imp(4P), implogd(8C)
BUGS
Can not specify multiple hosts, imps, etc. Can not follow reception of messages without look-
ing at those currently in the file.

4.2 Berkeley Distribution May 5, 1986 1

IMPLOGD (8C) UNIX Programmer’s Manual IMPLOGD (8C)

NAME
implogd - IMP logger process

SYNOPSIS
/etc/implogd [-d]

DESCRIPTION
Implogd is program which logs error messages from the IMP, placing them in the file
Jusr/adm/implog.

Entries in the file are variable length. Each log entry has a fixed length header of the form:

struct sockstamp {
short sin_family;
u_short sin_port;
struct in_addr sin_addr;
time_t sin_time;
int sin_len;
I
followed, possibly, by the message received from the IMP. Each time the logging process is
started up it places a time stamp entry in the file (a header with sin_len field set to 0).

The logging process will catch only those message from the IMP which are not processed by a
protocol module, e.g. IP. This implies the log should contain only status information such as
“IMP going down” messages, “host down” and other error messages, and, perhaps, stray NCP
messages.

SEE ALSO
imp(4P), implog(8C)

4.2 Berkeley Distribution May 22, 1986 1

INETD(8) UNIX Programmer’s Manual INETD(8)

NAME
inetd - internet “super—server”

SYNOPSIS
/Jetc/inetd [-d] [configuration file]

DESCRIPTION
Inetd should be run at boot time by /etc/rc.local. It then listens for connections on certain
internet sockets. When a connection is found on one of its sockets, it decides what service
the socket corresponds to, and invokes a program to service the request. After the program is
finished, it continues to listen on the socket (except in some cases which will be described
below). Essentially, inetd allows running one daemon to invoke several others, reducing load
on the system.

Upon execution, inetd reads its configuration information from a configuration file which, by
default, is /etc/inetd.conf. There must be an entry for each field of the configuration file, with
entries for each field separated by a tab or a space. Comments are denoted by a “#” at the
beginning of a line. There must be an entry for each field. The fields of the configuration file
are as follows:

service name

socket type

protocol

wait/nowait

user

server program

server program arguments

The service name entry is the name of a valid service in the file /etc/services/. For “internal”
services (discussed below), the service name must be the official name of the service (that is,
the first entry in /etc/services).

The socket type should be one of “stream”, “dgram”, “raw”, “rdm”, or “segpacket”, depend-
ing on whether the socket is a stream, datagram, raw, reliably delivered message, or sequenced
packet socket.

The protocol must be a valid protocol as given in /etc/protocols. Examples might be “tcp” or
6‘udp9’.

The wait/nowait entry is applicable to datagram sockets only (other sockets should have a
“nowait” entry in this space). If a datagram server connects to its peer, freeing the socket so
inetd can received further messages on the socket, it is said to be a “multi-threaded” server,
and should use the “nowait” entry. For datagram servers which process all incoming
datagrams on a socket and eventually time out, the server is said to be “single-threaded” and
should use a “wait” entry. “Comsat” (“biff’) and “talk™ are both examples of the latter type
of datagram server. Tfipd is an exception; it is a datagram server that establishes pseudo-
connections. It must be listed as “wait” in order to avoid a race; the server reads the first
packet, ¢reates a new socket, and then forks and exits to allow inetd to check for new service
requests to Spawn new Servers.

The user entry should contain the user name of the user as whom the server should run. This
allows for servers to be given less permission than root. The server program entry should con-
tain the pathname of the program which is to be executed by inetd when a request is found on
its socket. If inetd provides this service internally, this entry should be “internal”.

The arguments to the server program should be just as they normally are, starting with
argv[0], which is the name of the program. If the service is provided internally, the word
“internal” should take the place of this entry.

4.3 Berkeley Distribution May 26, 1986 1

INETD(8) UNIX Programmer’s Manual INETD(8)

Inetd provides several “trivial” services internally by use of routines within itself. These ser-
vices are ‘“echo”, ‘discard™, “chargen” (character generator), “daytime” (human readable
time), and “time” (machine readable time, in the form of the number of seconds since mid-
night, January 1, 1900). All of these services are tcp based. For details of these services, con-
sult the appropriate RFC from the Network Information Center.

Inetd rereads its configuration file when it receives a hangup signal, SIGHUP. Services may
be added, deleted or modified when the configuration file is reread.

SEE ALSO
comsat(8C), ftpd(8C), rexecd(8C), rlogind(8C), rshd(8C), telnetd(8C), tftpd(8C)

4.3 Berkeley Distribution May 26, 1986 2

INIT(8) UNIX Programmer’s Manual INIT(8)

NAME

init - process control initialization

SYNOPSIS

/etc/init

DESCRIPTION

Init is invoked inside UNIX as the last step in the boot procedure. It normally then runs the
automatic reboot sequence as described in reboot(8), and if this succeeds, begins multi-user
operation. If the reboot fails, it commences single user operation by giving the super-user a
shell on the console. It is possible to pass parameters from the boot program to init so that
single user operation is commenced immediately. When such single user operation is ter-
minated by killing the single-user shell (i.e. by hitting “D), init runs /etc/rc without the reboot
parameter. This command file performs housekeeping operations such as removing tem-
porary files, mounting file systems, and starting daemons.

In multi-user operation, init’s role is to create a process for each terminal port on which a
user may log in. To begin such operations, it reads the file /etc/ttys and executes a command
for each terminal specified in the file. This command will usually be /etc/getty. Getty opens
and initializes the terminal line, reads the user’s name and invokes /ogin to log in the user
and execute the Shell.

Ultimately the Shell will terminate because of an end-of-file either typed explicitly or gen-
erated as a result of hanging up. The main path of init, which has been waiting for such an
event, wakes up and removes the appropriate entry from the file utmp, which records current
users, and makes an entry in /usr/adm/wtmp, which maintains a history of logins and logouts.
The wtmp entry is made only if a user logged in successfully on the line. Then the appropri-
ate terminal is reopened and getty is reinvoked.

Init catches the hangup signal (signal SIGHUP) and interprets it to mean that the file /etc/ttys
should be read again. The Shell process on each line which used to be active in #tys but is no
longer there is terminated; a new process is created for each added line; lines unchanged in
the file are undisturbed. Thus it is possible to drop or add terminal lines without rebooting
the system by changing the tys file and sending a hangup signal to the init process: use ‘kill
-HUP 1.’

Init will terminate multi-user operations and resume single-user mode if sent a terminate
(TERM) signal, i.e. “kill -TERM 17, If there are processes outstanding which are deadlocked
(due to hardware or software failure), init will not wait for them all to die (which mlght take
forever), but will time out after 30 seconds and print a warning message.

Init will cease creating new getty’s and allow the system to slowly die away, if it is sent a ter-
minal stop (TSTP) signal, i.e. “kill ~-TSTP 1”. A later hangup will resume full multi-user
operations, or a terminate will initiate a single user shell. This hook is used by reboot(8) and
halt(8).

Init’s role is so critical that if it dies, the system will reboot itself automatically. If, at
bootstrap time, the init process cannot be located, the system will loop in user mode at loca-
tion 0x13.

DIAGNOSTICS

letc/getty gettyargs failing, sleeping. A process being started to service a line is exiting quickly
each time it is started. This is often caused by a ringing or noisy terminal line. Init will sleep
Jor 30 seconds,

WARNING: Something is hung (wont die); ps axl advised. A process is hung and could not be

killed when the system was shutting down. This is usually caused by a process which is stuck
in a device driver due to a persistent device error condition.

4th Berkeley Distribution May 22, 1986) 1

INIT(8) UNIX Programmer’s Manual INIT(8)

FILES
/dev/console, /dev/tty=, /etc/utmp, /usr/adm/wtmp, /etc/ttys, /etc/rc

SEE ALSO
login(1), kill(1), sh(1), ttys(5), crash(8V), getty(8), rc(8), reboot(8), halt(8), shutdown(8)

4th Berkeley Distribution May 22, 1986 2

KGMON (8) UNIX Programmer’s Manual KGMON(8)

NAME

kgmon - generate a dump of the operating system’s profile buffers
SYNOPSIS

fete/kgmon [-b] [-h] [-r][-p][system] [memory]
DESCRIPTION

Kgmon is a tool used when profiling the operating system. When no arguments are supplied,
kgmon indicates the state of operating system profiling as running, off, or not configured. (see
config(8)) If the —p flag is specified, kgmon extracts profile data from the operating system and
produces a gmon.out file suitable for later analysis by gprof(1).

The following options may be specified:

-b Resume the collection of profile data.

-h Stop the collection of profile data.

-p Dump the contents of the profile buffers into a gmon.out file.

-r Reset all the profile buffers. If the —p flag is also specified, the gmon.out file is gen-
erated before the buffers are reset.

If neither -b nor -h is specified, the state of profiling collection remains unchanged. For
example, if the —p flag is specified and profile data is being collected, profiling will be momen-
tarily suspended, the operating system profile buffers will be dumped, and profiling will be
immediately resumed.

FILES

/vmunix - the default system
/dev/kmem - the default memory

SEE ALSO
gprof(1), config(8)

DIAGNOSTICS
Users with only read permission on /dev/kmem cannot change the state of profiling collection.
They can get a gmon.out file with the warning that the data may be inconsistent if profiling is
in progress.

4.2 Berkeley Distribution April 27, 1985 1

LPC(8) UNIX Programmer’s Manual LPC(8)

NAME

Ipc - line printer control program
SYNOPSIS

/etc/lpc [command [argument ...]]
DESCRIPTION

Lpc is used by the system administrator to control the operation of the line printer system.
For each line printer configured in /etc/printcap, Ipc may be used to:

® disable or enable a printer,

° disable or enable a printer’s spooling queue,

° rearrange the order of jobs in a spooling queue,

(] find the status of printers, and their associated spooling queues and printer dameons.

Without any arguments, /pc will prompt for commands from the standard input. If argu-
ments are supplied, [pc interprets the first argument as a command and the remaining argu-
ments as parameters to the command. The standard input may be redirected causing /pc to
read commands from file. Commands may be abreviated; the following is the list of recog-
nized commands.

? [command ...]

help [command ...]
Print a short description of each command specified in the argument list, or, if no
arguments are given, a list of the recognized commands.

abort { all | printer ... }
Terminate an active spooling daemon on the local host immediately and then disable
printing (preventing new daemons from being started by /pr) for the specified printers.

clean { all | printer ... }
Remove any temporary files, data files, and control files that cannot be printed (i.e.,
do not form a complete printer job) from the specified printer queue(s) on the local
machine.

disable { all | printer ...)
Turn the specified printer queues off. This prevents new printer jobs from being
entered into the queue by Ipr.

down { all | printer } message ...
Turn the specified printer queue off, disable printing and put message in the printer
status file. The message doesn’t need to be quoted, the remaining arguments are
treated like echo(1). This is normally used to take a printer down and let others know
why (Ipq will indicate the printer is down and print the status message).

enable { all | printer ...)
Enable spooling on the local queue for the listed printers. This will allow /pr to put
new jobs in the spool queue.

exit

quit
Exit from Ipc.

restart { all | printer ...)
Attempt to start a new printer daemon. This is useful when some abnormal condition
causes the daemon to die unexpectedly leaving jobs in the queue. Lpg will report that

there is no daemon present when this condition occurs. If the user is the super-user,
try to abort the current daemon first (i.e., kill and restart a stuck daemon).

4.2 Berkeley Distribution April 27, 1985 1

LPC(8) UNIX Programmer’s Manual LPC(8)

start { all | printer ... }
Enable printing and start a spooling daemon for the listed printers.

status { all | printer ... }
Display the status of daemons and queues on the local machine.

stop { all | printer ...)
Stop a spooling daemon after the current job completes and disable printing.

topq printer [jobnum ...] [user ...]
Place the jobs in the order listed at the top of the printer queue.

up { all | printer ... }
Enable everything and start a new printer daemon. Undoes the effects of down.

FILES
/etc/printcap printer description file
/usr/spool/* spool directories

- lusr/spool/*/lock lock file for queue control

SEE ALSO
1pd(8), Ipr(1), Ipq(1), Iprm(1), printcap(5)

DIAGNOSTICS
?Ambiguous command abreviation matches more than one command
?Invalid command no match was found
IPrivileged command command can be executed by root only

4.2 Berkeley Distribution April 27, 1985 2

LPD(8) UNIX Programmer’s Manual LPD(8)

NAME
Ipd - line printer daemon

SYNOPSIS
/usr/lib/lpd [-1] [port #]

DESCRIPTION

Lpd is the line printer daemon (spool area handler) and is normally invoked at boot time
from the rc(8) file. It makes a single pass through the printcap(5) file to find out about the
existing printers and prints any files left after a crash. It then uses the system calls listen(2)
and accept(2) to receive requests to print files in the queue, transfer files to the spooling area,
display the queue, or remove jobs from the queue. In each case, it forks a child to handle the
request so the parent can continue to listen for more requests. The Internet port number used
to rendezvous with other processes is normally obtained with getservbyname(3) but can be
changed with the port# argument. The -1 flag causes Ipd to log valid requests received from
the network. This can be useful for debugging purposes.

Access control is provided by two means. First, All requests must come from one of the
machines listed in the file /etc/hosts.equiv or /etc/hosts.Ipd. Second, if the “rs” capability is
specified in the printcap entry for the printer being accessed, /pr requests will only be honored
for those users with accounts on the machine with the printer.

The file minfree in each spool directory contains the number of disk blocks to leave free so
that the line printer queue won’t completely fill the disk. The minfree file can be edited with
your favorite text editor.

The file lock in each spool directory is used to prevent multiple daemons from becoming
active simultaneously, and to store information about the daemon process for Ipr(1), Ipq(l),
and Iprm(1). After the daemon has successfully set the lock, it scans the directory for files
beginning with ¢f. Lines in each ¢f file specify files to be printed or non-printing actions to be
performed. Each such line begins with a key character to specify what to do with the
remainder of the line.

J Job Name. String to be used for the job name on the burst page.
C Classification. String to be used for the classification line on the burst page.
L Literal. The line contains identification info from the password file and causes the

banner page to be printed.

T Title. String to be used as the title for pr(1).

H Host Name. Name of the machine where /pr was invoked.

P Person. Login name of the person who invoked /pr. This is used to verify ownership
by prm.

M Send mail to the specified user when the current print job completes.

f Formatted File. Name of a file to print which is already formatted.

1 Like “f” but passes control characters and does not make page breaks.

P Name of a file to print using pr(1) as a filter.

t Troff File. The file contains troff(1) output (cat phototypesetter commands).

n Ditroff File. The file contains device independent troff output.

d DVI File. The file contains Tex(l) output (DVI format from Standford).

g Graph File. The file contains data produced by plot(3X).

c Cifplot File. The file contains data produced by cifplot.

4.2 Berkeley Distribution December 8, 1985 1

LPD(8) UNIX Programmer’s Manual LPD(8)

The file contains a raster image.

The file contains text data with FORTRAN carriage control characters.

Troff Font R. Name of the font file to use instead of the default.

Troff Font I. Name of the font file to use instead of the default.

Troff Font B. Name of the font file to use instead of the default.

Troff Font S. Name of the font file to use instead of the default.

Width. Changes the page width (in characters) used by pr(1) and the text filters.
Indent. The number of characters to indent the output by (in ascii).

Unlink. Name of file to remove upon completion of printing.

Zc—‘ékwl\)'—"'<

File name. The name of the file which is being printed, or a blank for the standard
input (when /pr is invoked in a pipeline).

If a file can not be opened, a message will be logged via syslog(3) using the LOG_LPR facility.
Lpd will try up to 20 times to reopen a file it expects to be there, after which it will skip the
file to be printed.

Lpd uses flock(2) to provide exclusive access to the lock file and to prevent multiple deamons
from becoming active simultaneously. If the daemon should be killed or die unexpectedly,
the lock file need not be removed. The lock file is kept in a readable ASCII form and con-
tains two lines. The first is the process id of the daemon and the second is the control file
name of the current job being priuted. The second line is updated to reflect the current status
of Ipd for the programs /pg(1) and Iprm(1).

FILES

/etc/printcap printer description file

lusr/spool/* spool directories

/usr/spool/*/minfree minimum free space to leave

/dev/lp=* line printer devices

/dev/printer socket for local requests

/etc/hosts.equiv lists machine names allowed printer access

/etc/hosts.Ipd lists machine names allowed printer access,

but not under same administrative control.

SEE ALSO

Ipc(8), pac(1), Ipr(1), Ipg(1), Iprm(1), syslog(3), printcap(5)
4.2BSD Line Printer Spooler Manual

4.2 Berkeley Distribution December 8, 1985 2

MAKEDEV (8) UNIX Programmer’s Manual MAKEDEYV (8)

NAME

makedev — make system special files
SYNOPSIS

/dev/MAKEDEY device...
DESCRIPTION

MAKEDEY is a shell script normally used to install special files. It resides in the /dev direc-
tory, as this is the normal location of special files. Arguments to MAKEDEV are usually of
the form device-name? where device-name is one of the supported devices listed in section 4
of the manual and “?” is a logical unit number (0-9). A few special arguments create assorted
collections of devices and are listed below.

std Create the standard devices for the system; e.g. /dev/console, /dev/tty. The VAX-
11/780 console floppy device, /dev/floppy, and VAX-11/750 and VAX-11/730 console
cassette device(s), /dev/tu?, are also created with this entry.

local Create those devices specific to the local site. This request causes the shell file
/dev/MAKEDEV .local to be executed. Site specific commands, such as those used to
setup dialup lines as “ttyd?” should be included in this file.

Since all devices are created using mknod(8), this shell script is useful only to the super-user.

DIAGNOSTICS
Either self-explanatory, or generated by one of the programs called from the script. Use “sh
-x MAKEDEV” in case of trouble.

SEE ALSO
intro(4), config(8), mknod(8)

4.2 Berkeley Distribution May 19, 1986 1

MAKEKEY (8) UNIX Programmer’s Manual MAKEKEY (8)

NAME
makekey — generate encryption key

SYNOPSIS
/usr/lib/makekey

DESCRIPTION
Makekey improves the usefulness of encryption schemes depending on a key by increasing the
amount of time required to search the key space. It reads 10 bytes from its standard input,
and writes 13 bytes on its standard output. The output depends on the input in a way
intended to be difficult to compute (that is, to require a substantial fraction of a second).

The first eight input bytes (the input key) can be arbitrary ASCII characters. The last two (the
salt) are best chosen from the set of digits, upper- and lower-case letters, and .” and /. The
salt characters are repeated as the first two characters of the output. The remaining 11 output
characters are chosen from the same set as the salt and constitute the output key.

The transformation performed is essentially the following: the salt is used to select one of
4096 cryptographic machines all based on the National Bureau of Standards DES algorithm,
but modified in 4096 different ways. Using the input key as key, a constant string is fed into
the machine and recirculated a number of times. The 64 bits that come out are distributed
into the 66 useful key bits in the result.

Makekey is intended for programs that perform encryption (for instance, ed and crypt(1)).
Usually makekey’s input and output will be pipes.

SEE ALSO
crypt(1), ed(1)

7th Edition April 27, 1985 1

MKFS(8) UNIX Programmer’s Manual MKFS(8)

NAME

mkfs — construct a file system

SYNOPSIS

/ete/mkfs [-N] special size [nsect [ntrack [blksize [fragsize [ncpg [minfree [rps [nbpi [
opt]11111111

DESCRIPTION

N.B.: file system are normally created with the newfs(8) command.

MFkfs constructs a file system by writing on the special file special unless the —-N flag has been
specified. The numeric size specifies the number of sectors in the file system. Mkfs builds a
file system with a root directory and a lost+found directory. (see f5ck(8)) The number of i-
nodes is calculated as a function of the file system size. No boot program is initialized by
mkfs (see newfs(8).)

The optional arguments allow fine tune control over the parameters of the file system. Nsect
specify the number of sectors per track on the disk. Ntrack specify the number of tracks per
cylinder on the disk. Blksize gives the primary block size for files on the file system. It must
be a power of two, currently selected from 4096 or 8192. Fragsize gives the fragment size for
files on the file system. The fragsize represents the smallest amount of disk space that will be
allocated to a file. It must be a power of two currently selected from the range 512 to 8192.
Nepg specifies the number of disk cylinders per cylinder group. This number must be in the
range 1 to 32. Minfree specifies the minimum percentage of free disk space allowed. Once
the file system capacity reaches this threshold, only the super-user is allowed to allocate disk
blocks. The default value is 10%. If a disk does not revolve at 60 revolutions per second, the
rps parameter may be specified. If a file system will have more or less than the average
number of files the nbpi (number of bytes per inode) can be specified to increase or decrease
the number of inodes that are created. Space or time optimization preference can be specified
with opt values of “s” for space or “t” for time. Users with special demands for their file sys-
tems are referred to the paper cited below for a discussion of the tradeoffs in using different
configurations.

SEE ALSO

BUGS

fs(5), dir(5), fsck(8), newfs(8), tunefs(8)

M. McKusick, W. Joy, S. Leffler, R. Fabry, “A Fast File System for UNIX”, ACM Transac-
tions on Computer Systems 2, 3. pp 181-197, August 1984. (reprinted in the System
Manager’s Manual, SMM:14)

There should be some way to specify bad blocks.

4th Berkeley Distribution May 21, 1986 1

MKHOSTS(8) UNIX Programmer’s Manual MKHOSTS(8)

NAME

mkhosts — generate hashed host table
SYNOPSIS

/etc/mkhosts [-v] hostfile
DESCRIPTION

Mkhosts is used to generated the hashed host database used by one version of the library rou-
tines gethostbyaddr() and gethostbyname(). It is not used if host name translation is per-
formed by named(8). If the —v option is supplied, each host will be listed as it is added. The
file hostfile is usually /etc/hosts, and in any case must be in the format of /etc/hosts (see
hosts(5)). Mkhosts will generate database files named hostfile.pag and hostfile.dir. The new
database is build in a set of temporary files and only replaces the real database if the new one
is built without errors. Mkhosts will exit with a non-zero exit code if any errors are detected.

FILES
hostfile.pag - real database filenames
hostfile.dir
hostfile.new.pag - temporary database filenames
hostfile.new.dir

SEE ALSO

gethostbyname(3), gettable(8), hosts(5), htable(8), named(8)

4.3 Berkeley Distribution May 23, 1986 1

MKLOST+FOUND(8) UNIX Programmer’s Manual MKLOST+FOUND(8)

NAME
mklost+found - make a lost+found directory for fsck

SYNOPSIS
/etc/mklost+found

DESCRIPTION)
A directory lost+found is created in the current directory and a number of empty files are
created therein and then removed so that there will be empty slots for fsck(8). This command
should not normally be needed since mkfs(8) automatically creates the lost+found directory
when a new file system is created. '

SEE ALSO
fsck(8), mkfs(8)

4th Berkeley Distribution April 27, 1985 1

MKNOD(8) UNIX Programmer’s Manual MKNOD(8)

NAME

mknod - build special file
SYNOPSIS

/etc/mknod name [¢] [b] major minor
DESCRIPTION

Mknod makes a special file. The first argument is the name of the entry. The second is b if
the special file is block-type (disks, tape) or c if it is character-type (other devices). The last
two arguments are numbers specifying the major device type and the minor device (e.g. unit,
drive, or line number).

The assignment of major device numbers is specific to each system. They have to be dug out
of the system source file conf.c.

SEE ALSO
mknod(2), makedev(8)

4th Berkeley Distribution May 19, 1986 1

MKPASSWD(8) UNIX Programmer’s Manual MKPASSWD (8)

NAME

mkpasswd - generate hashed password table
SYNOPSIS

/etc/mkpasswd [-v] passwdfile
DESCRIPTION

Mkpasswd is used to generated the hashed password database used by the library routines
getpwnam() and getpwuid(). If the -v option is supplied, each entry will be listed as it is
added. The file passwdfile is usually /etc/ptmp (invoked by vipw(8)), and in any case must be
in the format of /etc/passwd (see passwd(5)). Mkpasswd will generate database files named
passwdfile.pag and passwdlfile.dir. Mkpasswd will exit with a non-zero exit code if any errors
are detected.

FILES
passwdfile.pag - database filenames
passwdfile.dir

SEE ALSO
getpwent(3), vipw(8), passwd(5)

4.3 Berkeley Distribution June 3, 1986 1

MKPROTO(8) UNIX Programmer’s Manual MKPROTO(8)

NAME

mkproto - construct a prototype file system

SYNOPSIS

/etc/mkproto special proto

DESCRIPTION

Mkproto is used to bootstrap a new file system. First a new file system is created using
newfs(8). Mkproto is then used to copy files from the old file system into the new file system
according to the directions found in the prototype file proto. The prototype file contains
tokens separated by spaces or new lines. The first tokens comprise the specification for the
root directory. File specifications consist of tokens giving the mode, the user-id, the group id,
and the initial contents of the file. The syntax of the contents field depends on the mode.

The mode token for a file is a 6 character string. The first character specifies the type of the
file. (The characters -bed specify regular, block special, character special and directory files
respectively.) The second character of the type is either u or - to specify set-user-id mode or
not. The third is g or - for the set-group-id mode. The rest of the mode is a three digit octal
number giving the owner, group, and other read, write, execute permissions, see chmod(1).

Two decimal number tokens come after the mode; they specify the user and group ID’s of the
owner of the file.

If the file is a regular file, the next token is a pathname whence the contents and size are
copied.

If the file is a block or character special file, two decimal number tokens follow which give the
major and minor device numbers.

If the file is a directory, mkproto makes the entries . and .. and then reads a list of names and
(recursively) file specifications for the entries in the directory. The scan is terminated with
the token $.

A sample prototype specification follows:

d--7773 1

usr d--7773 1
sh ——-755 3 1 /bin/sh
ken d--75561

$
b0 b—6443100
c0 c—6443100
$

SEE ALSO

BUGS

fs(5), dir(5), fsck(8), newfs(8)

There should be some way to specify links.
There should be some way to specify bad blocks.

Mkproto can only be run on virgin file systems. It should be possible to copy files into
existent file systems.

4.2 Berkeley Distribution April 27, 1985 1

MOUNT(8) UNIX Programmer’s Manual MOUNT (8)

NAME

mount, umount — mount and dismount file system

SYNOPSIS

/etc/mount [special name [-r]]
/etc/mount -a

/etc/umount special

/etc/umount -a

DESCRIPTION

Mount announces to the system that a removable file system is present on the device special.
The file name must exist already; it must be a directory (unless the root of the mounted file
system is not a directory). It becomes the name of the newly mounted root. The optional
argument —r indicates that the file system is to be mounted read-only.

Umount announces to the system that the removable file system previously mounted on dev-
ice special is to be removed.

If the —a option is present for either mount or umount, all of the file systems described in
/etc/fstab are attempted to be mounted or unmounted. In this case, special and name are
taken from /etc/fstab. The special file name from /etc/fstab is the block special name.

These commands maintain a table of mounted devices in /etc/mtab. If invoked without an
argument, mount prints the table.

Physically write-protected and magnetic tape file systems must be mounted read-only or errors
will occur when access times are updated, whether or not any explicit write is attempted.

FILES
/etc/mtab mount table
/etc/fstab file system table
SEE ALSO

BUGS

mount(2), mtab(5), fstab(5)

Mounting file systems full of garbage will crash the system.
Mounting a root directory on a non-directory makes some apparently good pathnames
invalid.

4th Berkeley Distribution April 27, 1985 1

NAMED(8) UNIX Programmer’s Manual NAMED(8)

NAME

named - Internet domain name server
SYNOPSIS

named [—d debuglevel | [-p port#] [bootfile |
DESCRIPTION

Named is the Internet domain name server (see RFC883 for more details). Without any argu-
ments, named will read the default boot file /etc/named.boot, read any initial data and listen

for queries.

Options are:

-d Print debugging information. A number after the “d” determines the level of mes-
sages printed.

-p Use a different port number. The default is the standard port number as listed in
letc/services.

Any additional argument is taken as the name of the boot file. The boot file contains infor-
mation about where the name server is to get its initial data. The following is a small exam-

ple:
; boot file for name server
; type domain source file or host
homain berkeley.edu
primary berkeley.edu named.db
secondary cc.berkeley.edu 10.2.0.78 128.32.0.10
cache named.ca

The first line specifies that “berkeley.edu” is the domain for which the server is authoritative.
The second line states that the file “named.db” contains authoritative data for the domain
“berkeley.edu”. The file “named.db” contains data in the master file format described in
RFC883 except that all domain names are relative to the origin; in this case, “berkeley.edu”
(see below for a more detailed description). The second line specifies that all authoritative
data under “cc.berkeley.edu” is to be transferred from the name server at 10.2.0.78. If the
transfer fails it will try 128.32.0.10 and continue trying the address, up to 10, listed on this
line. The secondary copy is also authoritative for the specified domain. The fourth line
specifies data in “named.ca” is to be placed in the cache (i.e., well known data such as loca-
tions of root domain servers). The file “named.ca” is in the same format as “named.db”.

The master file consists of entries of the form:

$INCLUDE <filename>

$ORIGIN <domain>

<domain> <opt_ttl> <opt_class> <type> <resource_record_data>
where domain is "." for root, "@" for the current origin, or a standard domain name. If
domain is a standard domain name that does not end with “.”, the current origin is appended
to the domain. Domain names ending with *“.” are unmodified. The opt_ttl field is an
optional integer number for the time-to-live field. It defaults to zero. The opt_class field is
the object address type; currently only one type is supported, iN, for objects connected to the
DARPA Internet. The type field iis one of the following tokens; the data expected in the
resource_record_data field is in parentheses.

4th Berkeley Distribution 15 November 1985 1

NAMED(8) UNIX Programmer’s Manual NAMED (8)
A a host address (dotted quad)
NS an authoritative name server (domain)
MX a mail exchanger (domain)
CNAME the canonical name for an alias (domain)
SOA marks the start of a zone of authority (5 numbers (see RFC883))
MB a mailbox domain name (domain)
MG a mail group member (domain)
MR a mail rename domain name (domain)
NULL a null resource record (no format or data)
WKS a well know service description (not implemented yet)
PTR a domain name pointer (domain)
HINFO host information (cpu_type OS_type)
MINFO mailbox or mail list information (request_domain error_domain)
NOTES
The following signals have the specified effect when sent to the server process using the kill(1)
command.
SIGHUP Causes server to read named.boot and reload database.
SIGINT Dumps current data base and cache to /usr/tmp/named_dump.db
SIGUSR! Turns on debugging; each SIGUSR1 increments debug level.
SIGUSR2 Turns off debugging completely.
FILES
/etc/named.boot name server configuration boot file
/etc/named.pid the process id
/usr/tmp/named.run debug output
/usr/tmp/named_dump.db dump of the name servers database
SEE ALSO

kili(1), gethostbyname(3N), signal(3c), resolver(3), resolver(5), RFC882, RFC883, RFC973,
RFC974, Name Server Operations Guide for BIND

4th Berkeley Distribution 15 November 1985 2

NCHECK(8) UNIX Programmer’s Manual NCHECK (8)

NAME
ncheck - generate names from i-numbers
SYNOPSIS
/ete/ncheck [-i numbers] [-a] [-s] filesystems ...
DESCRIPTION
N.B.: For most normal file system maintenance, the function of ncheck is subsumed by
J5ck(8).

Ncheck with no options generates a pathname vs. i-number list of all files on every specified
filesystem. Names of directory files are followed by ‘/.”. The -i option reduces the report to
only those files whose i-numbers follow. The -a option allows printing of the names ‘.’ and
‘..”, which are ordinarily suppressed. The -s option reduces the report to special files and files
with set-user-ID mode; it is intended to discover concealed violations of security policy.

The report is in no useful order, and probably should be sorted.

SEE ALSO
sort(1), dcheck(8), fsck(8), icheck(8)

DIAGNOSTICS

When the filesystem structure is improper, ‘??’ denotes the ‘parent’ of a parentless file and a
pathname beginning with ‘...’ denotes a loop.

4th Berkeley Distribution January 13, 1986 1

NEWFS(8) UNIX Programmer’s Manual NEWFS(8)

NAME

newfs - construct a new file system

SYNOPSIS

/etc/newfs [-N] [=v] [-n] [mkfs-options] special disk-type

DESCRIPTION

Newfs is a “friendly” front-end to the mkfs(8) program. Newfs will look up the type of disk a
file system is being created on in the disk description file /etc/disktab, calculate the appropri-
ate parameters to use in calling mkfs, then build the file system by forking mkfs and, if the file
system is a root partition, install the necessary bootstrap programs in the initial 8 sectors of
the device. The -n option prevents the bootstrap programs from being installed. The -N
option causes the file system parameters to be printed out without actually creating the file
system.

If the —v option is supplied, newfs will print out its actions, including the parameters passed to
mkfs.

Options which may be used to override default parameters passed to mkfs are:
-s size The size of the file system in sectors.

~b block-size
The block size of the file system in bytes.

—f frag-size
The fragment size of the file system in bytes.

—t #tracks/cylinder

—c #cylinders/group
The number of cylinders per cylinder group in a file system. The default value
used is 16.

-m free space %
The percentage of space reserved from normal users; the minimum free space
threshhold. The default value used is 10%.

-0 optimization preference (‘“space” or “time”)
The file system can either be instructed to try to minimize the time spent allocat-
ing blocks, or to try to minimize the space fragmentation on the disk. If the value
of minfree (see above) is less than 10%, the default is to optimize for space; if the
value of minfree greater than or equal to 10%, the default is to optimize for time.

-r revolutions/minute
The speed of the disk in revolutions per minute (normally 3600).

-S sector-size
The size of a sector in bytes (almost never anything but 512).

-i number of bytes per inode
This specifies the density of inodes in the file system. The default is to create an
inode for each 2048 bytes of data space. If fewer inodes are desired, a larger
number should be used; to create more inodes a smaller number should be given.

FILES
/etc/disktab for disk geometry and file system partition information
/etc/mkfs to actually build the file system
/usr/mdec for boot strapping programs

SEE ALSO

disktab(5), fs(5), diskpart(8), fsck(8), format(8), mkfs(8), tunefs(8)

4.2 Berkeley Distribution May 21, 1986 1

NEWFS(8)

UNIX Programmer’s Manual NEWFS(8)

M. McKusick, W. Joy, S. Leffler, R. Fabry, “A Fast File System for UNIX”, ACM Transac-
tions on Computer Systems 2, 3. pp 181-197, August 1984. (reprinted in the System
Manager’s Manual, SMM:14)

BUGS

Should figure out the type of the disk without the user’s help.

4.2 Berkeley Distribution

May 21, 1986

PAC(8) UNIX Programmer’s Manual PAC(8)

NAME

pac - printer/plotter accounting information

SYNOPSIS

/etc/pac [~Pprinter] [—pprice][-s][-r][-] [-m] [name ...]

DESCRIPTION

Pac reads the printer/plotter accounting files, accumulating the number of pages (the usual
case) or feet (for raster devices) of paper consumed by each user, and printing out how much
each user consumed in pages or feet and dollars. If any names are specified, then statistics
are only printed for those users; usually, statistics are printed for every user who has used any
paper.

The -P flag causes accounting to be done for the named printer. Normally, accounting is
done for the default printer (site dependent) or the value of the environment variable
PRINTER is used.

The -p flag causes the value price to be used for the cost in dollars instead of the default value
of 0.02 or the price specified in /etc/printcap.

The —c flag causes the output to be sorted by cost; usually the output is sorted alphabetically
by name.

The -r flag reverses the sorting order.

The -s flag causes the accounting information to be summarized on the summary accounting
file; this summarization is necessary since on a busy system, the accounting file can grow by
several lines per day.

The -m flag causes the host name to be ignored in the accounting file. This allows for a user
on multiple machines to have all of his printing charges grouped together.

FILES
/usr/adm/?acct raw accounting files
/usr/adm/?_sum summary accounting files
/etc/printcap printer capability data base
SEE ALSO
printcap(5)
BUGS

The relationship between the computed price and reality is as yet unknown.

4.2 Berkeley Distribution QOctober 30, 1985 1

PING(8) UNIX Programmer’s Manual PING(8)

NAME
ping — send ICMP ECHO_REQUEST packets to network hosts

SYNOPSIS
/etc/ping [-x] [=v] host [packetsize] [count]

DESCRIPTION

The DARPA Internet is a large and complex aggregation of network hardware, connected
together by gateways. Tracking a single-point hardware or software failure can often be
difficult. Ping utilizes the ICMP protocol’s mandatory ECHO_REQUEST datagram to elicit
an ICMP ECHO_RESPONSE from a host or gateway., ECHO_REQUEST datagrams
(“pings”) have an IP and ICMP header, followed by a struct timeval, and then an arbitrary
number of “pad” bytes used to fill out the packet. Default datagram length is 64 bytes, but
this may be changed using the command-line option. Other options are:

-r Bypass the normal routing tables and send directly to a host on an attached network.
If the host is not on a directly-attached network, an error is returned. This option can
be used to ping a local host through an interface that has no route through it (e.g.,
after the interface was dropped by routed(8C)).

-v Verbose output. ICMP packets other than ECHO RESPONSE that are received are
listed.

When using ping for fault isolation, it should first be run on the local host, to verify that the
local network interface is up and running. Then, hosts and gateways further and further away
should be “pinged”. Ping sends one datagram per second, and prints one line of output for
every ECHO_RESPONSE returned. No output is produced if there is no response. If an
optional count is given, only that number of requests is sent. Round-trip times and packet
loss statistics are computed. When all responses have been received or the program times out
(with a count specified), or if the program is terminated with a SIGINT, a brief summary is
displayed.

This program is intended for use in network testing, measurement and management. It
should be used primarily for manual fault isolation. Because of the load it could impose on
the network, it is unwise to use ping during normal operations or from automated scripts.
AUTHOR
Mike Muuss
SEE ALSO
netstat(1), ifconfig(8C)

4.3 Berkeley Distribution May 23, 1986 1

PSTAT(8) UNIX Programmer’s Manual PSTAT(8)

NAME
pstat — print system facts

SYNOPSIS
/etc/pstat —aixptufT [suboptions] [system] [corefile]

DESCRIPTION
Pstat interprets the contents of certain system tables. If corefile is given, the tables are sought
there, otherwise in /dev/kmem. The required namelist is taken from /vmunix unless system is
specified. Options are

-a Under -p, describe all process slots rather than just active ones.
-i Print the inode table with the these headings:

LOC The core location of this table entry.

FLAGS Miscellaneous state variables encoded thus:

locked

update time (/5(5)) must be corrected

access time must be corrected

file system is mounted here

wanted by another process (L flag is on)

contains a text file

changed time must be corrected

shared lock applied

exclusive lock applied

someone waiting for a lock

CNT Number of open file table entries for this inode.

DEV Major and minor device number of file system in which this inode resides.

RDC Reference count of shared locks on the inode.

WRC Reference count of exclusive locks on the inode (this may be > 1 if, for example, a
file descriptor is inherited across a fork).

INO I-number within the device.

MODE Mode bits, see chmod(2).

NLK Number of links to this inode.

UID User ID of owner.

SIZ/DEV
Number of bytes in an ordinary file, or major and minor device of special file.

Nmuo—SsZ»>ar

-X Print the text table with these headings:

LOC The core location of this table entry.

FLAGS Miscellaneous state variables encoded thus:

ptrace(2) in effect

text not yet written on swap device

loading in progress

locked

wanted (L flag is on)

resulted from demand-page-from-inode exec format (see execve(2))

wE R g

DADDR Disk address in swap, measured in multiples of 512 bytes.
CADDR Head of a linked list of loaded processes using this text segment.
RSS Size of resident text, measured in multiples of 512 bytes.

SIZE Size of text segment, measured in multiples of 512 bytes.

IPTR Core location of corresponding inode.

4th Berkeley Distribution May 24, 1986 1

PSTA'I'(8) UNIX Programmer’s Manual PSTAT(8)

CNT Number of processes using this text segment.

CCNT Number of processes in core using this text segment.
FORW Forward link in free list.

BACK Backward link in free list.

-p Print process table for active processes with these headings:
LOC The core location of this table entry.
S Run state encoded thus:
0 no process
1 waiting for some event
3 runnable
4 being created
5 being terminated
6 stopped (by signal or under trace)
F Miscellaneous state variables, or’ed together (hexadecimal):

0001 loaded
0002 the scheduler process
0004 locied for swap out
0008 swapped out
0010 traced
0020 used in tracing
0080 in page-wait
0100 prevented from swapping during fork(2)
0200 will restore old mask after taking signal
0400 exiting
0800 doing physical 1/0 (bio.c)
1000 process resulted from a vfork(2) which is not yet complete
2000 another flag for vfork(2)
4000 process has no virtual memory, as it is a parent in the context of vfork(2)
8000 process is demand paging data pages from its text inode.
10000 process using sequential VM patterns
20000 process using random VM patterns
100000 wusing old 4.1-compatible signal semantics
200000 process needs profiling tick
400000 process is scanning descriptors during select
1000000 process page tables have changed
POIP number of pages currently being pushed out from this process.
PRI Scheduling priority, see setpriority(2).
SIG Signals received (signals 1-32 coded in bits 0-31),
UID Real user ID.
SLP Amount of time process has been blocked.
TIM Time resident in seconds; times over 127 coded as 127.
CPU Weighted integral of CPU time, for scheduler.
NI Nice level, see setpriority(2).
PGRP Process number of root of process group.
PID The process ID number.
PPID The process ID of parent process.
ADDR If in core, the page frame number of the first page of the ‘u-area’ of the process. If
swapped out, the position in the swap area measured in multiples of 512 bytes.
RSS Resident set size — the number of physical page frames allocated to this process.
SRSS RSS at last swap (0 if never swapped).

4th Berkeley Distribution May 24, 1986 2

PSTAT(8) UNIX Programmer’s Manual PSTAT(8)

SIZE Virtual size of process image (data+stack) in multiples of 512 bytes.
WCHAN Wait channel number of a waiting process.

LINK Link pointer in list of runnable processes.

TEXTP If text is pure, pointer to location of text table entry.

-t Print table for terminals with these headings:

RAW Number of characters in raw input queue.

CAN Number of characters in canonicalized input queue.

ouT Number of characters in putput queue.

MODE See try(4).

ADDR Physical device address.

DEL Number of delimiters (newlines) in canonicalized input queue.

COL Calculated column position of terminal.

STATE Miscellaneous state variables encoded thus:

delay timeout in progress

waiting for open to complete

open

outq has been flushed during DMA

carrier is on

busy doing output

process is awaiting output

open for exclusive use

output stopped

hangup on close

PGRP Process group for which this is controlling terminal.

DISC Line discipline; blank is old tty OTTYDISC or “new tty” for NTTYDISC or “net”
for NETLDISC (see bk(4)).

-u print information about a user process; the next argument is its address as given by
ps(1). The process must be in main memory, or the file used can be a core image
and the address 0. Only the fields located in the first page cluster can be located
succesfully if the process is in main memory.

-f Print the open file table with these headings:
LOC The core location of this table entry.

TYPE The type of object the file table entry points to.
FLG Miscellaneous state variables encoded thus:

TUX>WOTMO g

R open for reading

w open for writing

A open for appending

S shared lock present

X exclusive lock present

I signal pgrp when data ready

CNT Number of processes that know this open file.

MSG Number of messages outstanding for this file.

DATA The location of the inode table entry or socket structure for this file,
OFFSET The file offset (see Iseek(2)).

-s print information about swap space usage: the number of (1k byte) pages used and free is
given as well as the number of used pages which belong to text images.

-T prints the number of used and free slots in the several system tables and is useful for
checking to see how full system tables have become if the system is under heavy load.

4th Berkeley Distribution May 24, 1986 3

PSTAT(8) UNIX Programmer’s Manual PSTAT(8)

FILES
/vmunix namelist
/dev/kmem default source of tables

SEE ALSO
iostat(1), ps(1), systat(1), vmstat(1), stat(2), fs(5),
K. Thompson, UNIX Implementation

BUGS
It would be very useful if the system recorded “maximum occupancy” on the tables reported
by -T; even more useful if these tables were dynamically allocated.

4th Berkeley Distribution May 24, 1986 4

QUOT(8) UNIX Programmer’s Manual QUOT(8)

NAME

quot - summarize file system ownership
SYNOPSIS

/etc/quot [option] ... [filesystem]
DESCRIPTION

Quot prints the number of blocks in the named filesystem currently owned by each user. If no
filesystem is named, a default name is assumed. The following options are available:

-n Cause the pipeline ncheck filesystem | sort +0n | quot -n filesystem to produce a list
of all files and their owners.
- Print three columns giving file size in blocks, number of files of that size, and cumula-
tive total of blocks in that size or smaller file.
-f Print count of number of files as well as space owned by each user.
FILES '

Default file system varies with system.
/etc/passwd to get user names

SEE ALSO
Is(1), du(1)

4th Berkeley Distribution April 27, 1985 1

QUOTACHECK (8) UNIX Programmer’s Manual QUOTACHECK (8)

NAME

quotacheck - file system quota consistency checker

SYNOPSIS

/etc/quotacheck [-v] [-p] filesystem...
/etc/quotacheck [-v][-p] -a

DESCRIPTION

FILES

Quotacheck examines each file system, builds a table of current disc usage, and compares this
table against that stored in the disc quota file for the file system. If any inconsistencies are
detected, both the quota file and the current system copy of the incorrect quotas are updated
(the latter only occurs if an active file system is checked).

If the -a flag is supplied in place of any file system names, quotacheck will check all the file
systems indicated in /etc/fstab to be read-write with disc quotas.

Normally quotacheck reports only those quotas modified. If the —v option is supplied, quota-
check will indicate the calculated disc quotas for each user on a particular file system.

If the -p flag is supplied then parallel passes will be run on the filesystems required, using the
pass numbers in /etc/fstab in an identical fashion to fsck(8).

Quotacheck expects each file system to be checked to have a quota file named gquotas in the
root directory. If none is present, quotacheck will ignore the file system.

Quotacheck is normally run at boot time from the /etc/rc.local file, see rc(8), before enabling
disc quotas with quotaon(8).

Quotacheck accesses the raw device in calculating the actual disc usage for each user. Thus,
the file systems checked should be quiescent while quotacheck is running.

/etc/fstab default file systems

SEE ALSO

quota(2), setquota(2), quotaon(8), fsck(8)

4.2 Berkeley Distribution September 15, 1985 1

QUOTAON(8) UNIX Programmer’s Manual QUOTAON(8)

NAME

quotaon, quotaoff - turn file system quotas on and off

SYNOPSIS

/etc/quotaon [-v] filsys...
/etc/quotaon [-v] -a
/etc/quotaoff [-v] filsys...
/etc/quotaoff [-v] -a

DESCRIPTION

Quotaon announces to the system that disc quotas should be enabled on one or more file sys-
tems. The file systems specified must have entries in /etc/fstab and be mounted at the time.
The file system quota files must be present in the root directory of the specified file system
and be named quotas. The optional argument -v causes quotaon to print a message for each
file system where quotas are turned on. If, instead of a list of file systems, a -a argument is
give to quotaon, all file systems in /etc/fstab marked read-write with quotas will have their
quotas turned on. This is normally used at boot time to enable quotas.

Quotaoff announces to the system that file systems specified should have any disc quotas
turned off. As above, the -v forces a verbose message for each file system affected; and the -a
option forces all file systems in /etc/fstab to have their quotas disabled.

These commands update the status field of devices located in /etc/mtab to indicate when quo-
tas are on or off for each file system.

FILES
/etc/mtab mount table
/etc/fstab file system table
SEE ALSO

setquota(2), mtab(5), fstab(5)

4.2 Berkeley Distribution April 27, 1985 1

RC(8) UNIX Programmer’s Manual RC(8)
NAME
rc — command script for auto-reboot and daemons
SYNOPSIS
’ letc/re
/etc/reJocal
DESCRIPTION

Rc is the command script which controls the automatic reboot and re.local is the script hold-
ing commands which are pertinent only to a specific site.

When an automatic reboot is in progress, rc is invoked with the argument autoboot and runs a
fsck with option -p to “preen” all the disks of minor inconsistencies resulting from the last
system shutdown and to check for serious inconsistencies caused by hardware or software
failure. If this auto-check and repair succeeds, then the second part of rc is run.

The second part of r¢, which is run after a auto-reboot succeeds and also if rc is invoked when
a single user shell terminates (see init(8)), starts all the daemons on the system, preserves edi-
tor files and clears the scratch directory /tmp. Rc.local is executed immediately before any
other commands after a successful fsck. Normally, the first commands placed in the rc.local
file define the machine’s name, using hostname(l), and save any possible core image that
might have been generated as a result of a system crash, savecore(8). The latter command is
included in the rc.local file because the directory in which core dumps are saved is usually site
specific.

SEE ALSO

BUGS

init(8), reboot(8), savecore(8)

4th Berkeley Distribution April 27, 1985 1

RDUMP(8C) UNIX Programmer’s Manual RDUMP(8C)

NAME

rdump - file system dump across the network
SYNOPSIS

/etc/rdump [key [argument ...] filesystem]
DESCRIPTION

Rdump copies to magnetic tape all files changed after a certain date in the filesystem. The
command is identical in operation to dump(8) except the fkey should be specified and the file
supplied should be of the form machine:device.

Rdump creates a remote server, /etc/rmt, on the client machine to access the tape device.

SEE ALSO
dump(8), rmt(8C)

DIAGNOSTICS
Same as dump(8) with a few extra related to the network.

4.2 Berkeley Distribution April 27, 1985 1

REBOOT (8) UNiX Programmer’s Manual REBOOT (8)

NAME
reboot — UNIX bootstrapping procedures

SYNOPSIS
Jetc/reboot [-n][-q]

DESCRIPTION
UNIX is started by placing it in memory at location zero and transferring to the entry point.
Since the system is not reenterable, it is necessary to read it in from disk or tape each time it
is to be bootstrapped.

Rebooting a running system. When a UNIX is running and a reboot is desired, shutdown(8) is
normally used. If there are no users then /etc/reboot can be used. Reboot causes the disks to
be synced and allows the system to perform other shutdown activities such as resynchronizing
hardware time-of-day clocks. A multi-user reboot (as described below) is then initiated. This
causes a system to be booted and an automatic disk check to be performed. If all this
succeeds without incident, the system is then brought up for many users.

Options to reboot are:
-n option avoids the sync. It can be used if a disk or the processor is on fire.
-q reboots quickly and ungracefully, without shutting down running processes first.

Reboot normally logs the reboot using syslog(8) and places a shutdown record in the login
accounting file /usr/adm/wtmp. These actions are inhibited if the -n or -q options are
present.

Power fail and crash recovery. Normally, the system will reboot itself at power-up or after
crashes. Provided the auto-restart is enabled on the machine front panel, an automatic con-
sistency check of the file systems will be performed, and unless this fails, the system will
resume multi-user operations.

Cold starts. These are processor type dependent. On an 11/780, there are two floppy files for
each disk controller, both of which cause boots from unit 0 of the root file system of a con-
troller located on mba0 or uba0. One gives a single user shell, while the other invokes the
multi-user automatic reboot. Thus these files are HPS and HPM for the single and multi-user
boot from MASSBUS RP06/RM03/RMO5 disks, UPS and UPM for UNIBUS storage module
controller and disks such as the EMULEX SC-21 and AMPEX 9300 pair, or HKS and HKM
for RKO07 disks. There is also a script for booting from the default device, which is normally
a copy of one of the standard multi-user boot scripts, but which may be modified to perform
other actions or to boot from a different unit. The situation on the 8600 is similar, with
scripts loaded from the console RLO2.

Giving the command
>>>BOOT HPM
Would boot the system from (e.g.) an RP06 and run the automatic consistency check as
described in fsck(8). (Note that it may be necessary to type control-P and halt the processor
to gain the attention of the LSI-11 before getting the >>> prompt.) The command
>>>BOOT ANY
invokes a version of the boot program in a way which allows you to specify any system as the

system to be booted. It reads from the console a device specification (see below) followed
immediately by a pathname.

The scripts may be modified for local configuration if necessary. The boot device type is set
in register 10 as the device major number. The flags and minor device are placed in register
11. The register is used in four one-byte fields; from least to most significant, they are boot
flags (as defined in <sys/reboot.h>), disk partition, drive unit, and adaptor number (UNIBUS

4th Berkeley Distribution May 28, 1986 1

REBOOT(8) UNIX Programmer’s Manual REBOOT(8)

FILES

or MASSBUS as appropriate).

On an 11/750, the reset button will boot from the device selected by the front panel boot dev-
ice switch. In systems with RK07’s, position B normally selects the RKO7 for boot. This will
boot multi-user. To boot from RK07 with boot flags you may specify

>>>B/n DMAO

where, giving a n of 1 causes the boot program to ask for the name of the system to be
bootstrapped, giving a n of 2 causes the boot program to come up single user, and a n of 3
causes both of these actions to occur. The “DM” specifies RK07, the “A” represents the
adaptor number (UNIBUS or MASSBUS), and the “0” is the drive unit number. Other disk
types which may be used are DB (MASSBUS), DD (TU58), and DU (UDA-50/RA disk). A
non-zero disk partition can be used by adding (partition times 1000 hex) to 7.

The 11/750 boot procedure uses the boot roms to load block 0 off of the specified device.
The /usr/mdec directory contains a number of bootstrap programs for the various disks which
should be placed in a new pack automatically by newfs(8) when the “a” partition file system
on the pack is created.

On any processor, the boot program finds the corresponding file on the given device (vmunix
by default), loads that file into memory location zero, and starts the program at the entry
address specified in the program header (after clearing off the high bit of the specified entry
address).

The file specifications used with “BOOT ANY” or “B/3” are of the form:
device(unit,minor)

where device is the type of the device to be searched, unit is 8 » the mba or uba number plus
the unit number of the disk or tape, and minor is the disk partition or tape file number. Nor-
mal line editing characters can be used when typing the file specification. The following list
of supported devices may vary from installation to installation:

hp MASSBUS disk drive

up UNIBUS storage module drive
ht TE16,TU45,TU77 on MASSBUS
mt TU78 on MASSBUS

hk RKO07 on UNIBUS

ra storage module on a UDASO

rb storage module on a 730 IDC

rl RLO02 on UNIBUS

tm TM11 emulation tape drives on UNIBUS
ts TS11 on UNIBUS

ut UNIBUS TU45 emulator

For example, to boot from a file system which starts at cylinder 0 of unit 0 of a MASSBUS
disk, type “hp(0,0)vmunix” to the boot prompt; “up(0,0)vmunix” would specify a UNIBUS
drive, “hk(0,0)vmunix” would specify an RK07 disk drive, “ra(0,0)vmunix” would specify a
UDASO disk drive, and “rb(0,0)vmunix” would specify a disk on a 730 IDC. For tapes, the
minor device number gives a file offset.

On an 11/750 with patchable control store, microcode patches will be installed by boot if the
file psc750.bin exists in the root of the filesystem from which the system is booted.

In an emergency, the bootstrap methods described in the paper “Installing and Operating
4.3bsd” can be used to boot from a distribution tape.

/vmunix system code
/boot system bootstrap
/usr/mdec/xxboot sector-0 boot block for 750, xx is disk type

4th Berkeley Distribution May 28, 1986 2

REBOOT(8) UNIX Programmer’s Manual REBOOT(8)

/usr/mdec/bootxx second-stage boot for 750, xx is disk type
/usr/mdec/installboot program to install boot blocks on 750
/pcs750.bin microcode patch file on 750

SEE ALSO

arff(8V), crash(8V), fsck(8), halt(8), init(8), newfs(8), rc(8), shutdown(8), syslogd(8)

4th Berkeley Distribution May 28, 1986 3

RENICE(8) UNIX Programmer’s Manual RENICE(8)

NAME

renice — alter priority of running processes

SYNOPSIS

/etc/renice priority [[-p] pid ...][[-g] pgrp ...] [[-u] user ...]

DESCRIPTION

FILES

Renice alters the scheduling priority of one or more running processes. The who parameters
are interpreted as process ID’s, process group ID’s, or user names. Renice’ing a process group
causes all processes in the process group to have their scheduling priority altered. Renice’ing a
user causes all processes owned by the user to have their scheduling priority altered. By
default, the processes to be affected are specified by their process ID’s. To force who parame-
ters to be interpreted as process group ID’s, a -g may be specified. To force the who parame-
ters to be interpreted as user names, a —u may be given. Supplying —p will reset who interpre-
tation to be (the default) process ID’s. For example,

/etc/renice +1 987 -u daemon root -p 32

would change the priority of process ID’s 987 and 32, and all processes owned by users dae-
mon and root.

Users other than the super-user may only alter the priority of processes they own, and can
only monotonically increase their “nice value” within the range 0 to PRIO_MAX (20). (This
prevents overriding administrative fiats.) The super-user may alter the priority of any process
and set the priority to any value in the range PRIO_MIN (-20) to PRIO_MAX. Useful prior-
ities are: 20 (the affected processes will run only when nothing else in the system wants to), 0
(the “base” scheduling priority), anything negative (to make things go very fast).

/etc/passwd to map user names to user ID’s

SEE ALSO

BUGS

getpriority(2), setpriority(2)

Non super-users can not increase scheduling priorities of their own processes, even if they
were the ones that decreased the priorities in the first place.

4th Berkeley Distribution May 19, 1986 1

REPQUOTA(8) UNIX Programmer’s Manual REPQUOTA (8)

NAME

repquota — summarize quotas for a file system
SYNOPSIS

repquota filesys...
DESCRIPTION

Repquota prints a summary of the disc usage and quotas for the specified file systems. For
each user the current number files and amount of space (in kilobytes) is printed, along with
any quotas created with edquota(8).

Only the super-user may view quotas which are not their own.

FILES
quotas at the root of each file system with quotas
/etc/fstab for file system names and locations

SEE ALSO
quota(1l), quota(2), quotacheck(8), quotaon(8), edquota(8)

DIAGNOSTICS
Various messages about inaccessible files; self-explanatory.

4.2 Berkeley Distribution April 27, 1985 1

RESTORE(8) UNIX Programmer’s Manual RESTORE(8)

NAME

restore — incremental file system restore

SYNOPSIS

letc/restore key [name ...]

DESCRIPTION

Restore reads tapes dumped with the dump(8) command. Its actions are controlled by the key
argument. The key is a string of characters containing at most one function letter and possi-
bly one or more function modifiers. Other arguments to the command are file or directory
names specifying the files that are to be restored. Unless the h key is specified (see below),
the appearance of a directory name refers to the files and (recursively) subdirectories of that
directory.

The function portion of the key is specified by one of the following letters:

r The tape is read and loaded into the current directory. This should not be done lightly;
the r key should only be used to restore a complete dump tape onto a clear file system or
to restore an incremental dump tape after a full level zero restore. Thus

letc/newfs /dev/rrp0Og eagle
/etc/mount /dev/rpOg /mnt
cd /mnt
restore r

is a typical sequence to restore a complete dump. Another restore can be done to get an
incremental dump in on top of this. Note that restore leaves a file restoresymtab in the
root directory to pass information between incremental restore passes. This file should
be removed when the last incremental tape has been restored.

A dump(8) followed by a newfs(8) and a restore is used to change the size of a file sys-
tem.

R Restore requests a particular tape of a multi volume set on which to restart a full restore
(see the r key above). This allows restore to be interrupted and then restarted.

x The named files are extracted from the tape. If the named file matches a directory
whose contents had been written onto the tape, and the h key is not specified, the direc-
tory is recursively extracted. The owner, modification time, and mode are restored (if
possible). If no file argument is given, then the root directory is extracted, which results
in the entire content of the tape being extracted, unless the h key has been specified.

t The names of the specified files are listed if they occur on the tape. If no file argument
is given, then the root directory is listed, which results in the entire content of the tape
being listed, unless the h key has been specified. Note that the t key replaces the func-
tion of the old dumpdir program.

This mode allows interactive restoration of files from a dump tape. After reading in the
directory information from the tape, restore provides a shell like interface that allows the
user to move around the directory tree selecting files to be extracted. The available
commands are given below; for those commands that require an argument, the default is
the current directory.

-,

Is [arg] - List the current or specified directory. Entries that are directories are
appended with a “/”. Entries that have been marked for extraction are prepended
with a “s”. If the verbose key is set the inode number of each entry is also listed.

cd arg - Change the current working directory to the specified argument.

pwd - Print the full pathname of the current working directory.

4th Berkeley Distribution March 27, 1986 1

RESTORE(8) UNIX Programmer’s Manual RESTORE(8)

add [arg] - The current directory or specified argument is added to the list of files to be
extracted. If a directory is specified, then it and all its descendents are added to
the extraction list (unless the h key is specified on the command line). Files that
are on the extraction list are prepended with a “s” when they are listed by Is.

delete [arg] — The current directory or specified argument is deleted from the list of files
to be extracted. If a directory is specified, then it and all its descendents are
deleted from the extraction list (unless the h key is specified on the command line).
The most expedient way to extract most of the files from a directory is to add the
directory to the extraction list and then delete those files that are not needed.

extract — All the files that are on the extraction list are extracted from the dump tape.
Restore will ask which volume the user wishes to mount. The fastest way to
extract a few files is to start with the last volume, and work towards the first
volume.

setmodes — All the directories that have been added to the extraction list have their
owner, modes, and times set; nothing is extracted from the tape. This is useful for
cleaning up after a restore has been prematurely aborted.

verbose — The sense of the v key is toggled. When set, the verbose key causes the Is
command to list the inode numbers of all entries. It also causes restore to print
out information about each file as it is extracted.

help — List a summary of the available commands.

quit — Restore immediately exits, even if the extraction list is not empty.

The following characters may be used in addition to the letter that selects the function
desired.

b

The next argument to restore is used as the block size of the tape (in kilobytes). If the -b
option is not specified, restore tries to determine the tape block size dynamically.

The next argument to restore is used as the name of the archive instead of /dev/rmt?. If
the name of the file is “-”, restore reads from standard input. Thus, dump(8) and
restore can be used in a pipeline to dump and restore a file system with the command

dump Of - /usr | (cd /mnt; restore xf -)

Normally restore does its work silently. The v (verbose) key causes it to type the name
of each file it treats preceded by its file type.

Restore will not ask whether it should abort the restore if gets a tape error. It will
always try to skip over the bad tape block(s) and continue as best it can.

Restore will extract by inode numbers rather than by file name. This is useful if only a
few files are being extracted, and one wants to avoid regenerating the complete path-
name to the file.

Restore extracts the actual directory, rather than the files that it references. This
prevents hierarchical restoration of complete subtrees from the tape.

The next argument to restore is a number which selects the file on a multi-file dump
tape. File numbering starts at 1.

DIAGNOSTICS
Complaints about bad key characters.

4th Berkeley Distribution March 27, 1986 2

RESTORE(8) UNIX Programmer’s Manual RESTORE(8)

FILES

Complaints if it gets a read error. If y has been specified, or the user responds *‘y”, restore
will attempt to continue the restore.

If the dump extends over more than one tape, restore will ask the user to change tapes. If the
x or i key has been specified, restore will also ask which volume the user wishes to mount.
The fastest way to extract a few files is to start with the last volume, and work towards the
first volume.

There are numerous consistency checks that can be listed by restore. Most checks are self-
explanatory or can “never happen”. Common errors are given below.

Converting to new file system format.
A dump tape created from the old file system has been loaded. It is automatically con-
verted to the new file system format.

<filename>: not found on tape
The specified file name was listed in the tape directory, but was not found on the tape.
This is caused by tape read errors while looking for the file, and from using a dump tape
created on an active file system.

expected next file <inumber>, got <inumber>
A file that was not listed in the directory showed up. This can occur when using a dump
tape created on an active file system.

Incremental tape too low
When doing incremental restore, a tape that was written before the previous incremental
tape, or that has too low an incremental level has been loaded.

Incremental tape too high
When doing incremental restore, a tape that does not begin its coverage where the previ-
ous incremental tape left off, or that has too high an incremental level has been loaded.

Tape read error while restoring <filename>

Tape read error while skipping over inode <inumber>

Tape read error while trying to resynchronize
A tape read error has occurred. If a file name is specified, then its contents are probably
partially wrong. If an inode is being skipped or the tape is trying to resynchronize, then
no extracted files have been corrupted, though files may not be found on the tape.

resync restore, skipped <num> blocks
After a tape read error, restore may have to resynchronize itself. This message lists the
number of blocks that were skipped over.

/dev/rmt? the default tape drive

/tmp/rstdirs file containing directories on the tape.

/tmp/rstmode* owner, mode, and time stamps for directories.
J/restoresymtable information passed between incremental restores.

SEE ALSO

BUGS

rrestore(8C) dump(8), newfs(8), mount(8), mkfs(8)

Restore can get confused when doing incremental restores from dump tapes that were made
on active file systems.

A level zero dump must be done after a full restore. Because restore runs in user code, it has
no control over inode allocation; thus a full restore must be done to get a new set of direc-
tories reflecting the new inode numbering, even though the contents of the files is unchanged.

4th Berkeley Distribution March 27, 1986 3

REXECD(8C) UNIX Programmer’s Manual REXECD(8C)

NAME

rexecd - remote execution server

SYNOPSIS

/etc/rexecd

DESCRIPTION

Rexecd is the server for the rexec(3X) routine. The server provides remote execution facili-
ties with authentication based on user names and passwords.

Rexecd listens for service requests at the port indicated in the “exec” service specification; see
services(5). When a service request is received the following protocol is initiated:

1) The server reads characters from the socket up to a null (‘\O’) byte. The resultant
string is interpreted as an ASCII number, base 10.

2) If the number received in step 1 is non-zero, it is interpreted as the port number of a
secondary stream to be used for the stderr. A second connection is then created to
the specified port on the client’s machine.

3) A null terminated user name of at most 16 characters is retrieved on the initial
socket.

4) A null terminated, unencrypted password of at most 16 characters is retrieved on the
initial socket.

5) A null terminated command to be passed to a shell is retrieved on the initial socket.

The length of the command is limited by the upper bound on the size of the system’s
argument list.

6) Rexecd then validates the user as is done at login time and, if the authentication was
successful, changes to the user’s home directory, and establishes the user and group
protections of the user. If any of these steps fail the connection is aborted with a
diagnostic message returned.

7) A null byte is returned on the initial socket and the command line is passed to the
normal login shell of the user. The shell inherits the network connections established
by rexecd.

DIAGNOSTICS

Except for the last one listed below, all diagnostic messages are returned on the initial socket,
after which any network connections are closed. An error is indicated by a leading byte with
a value of 1 (0 is returned in step 7 above upon successful completion of all the steps prior to
the command execution).

“‘username too long”
The name is longer than 16 characters.

“password too long”
The password is longer than 16 characters.

“command too long ”’
The command line passed exceeds the size of the argument list (as configured into the sys-
tem).

“Login incorrect.”
No password file entry for the user name existed.

“Password incorrect.”
The wrong was password supplied.

“No remote directory.”
The chdir command to the home directory failed.

4.2 Berkeley Distribution May 9, 1986 1

REXECD(8C) UNIX Programmer’s Manual REXECD(8C)

“Try again.”

A fork by the server failed.

“<shellname>: ...”

The user’s login shell could not be started. This message is returned on the connection associ-
ated with the stderr, and is not preceded by a flag byte.

SEE ALSO
rexec(3X)

BUGS
Indicating “Login incorrect™ as opposed to “Password incorrect” is a security breach which
allows people to probe a system for users with null passwords.

A facility to allow all data and password exchanges to be encrypted should be present.

4.2 Berkeley Distribution May 9, 1986 2

RLOGIND (8C) UNIX Programmer’s Manual RLOGIND(8C)

NAME

rlogind - remote login server

SYNOPSIS

/etc/rlogind [-d]

DESCRIPTION

Rlogind is the server for the rlogin(1C) program. The server provides a remote login facility
with authentication based on privileged port numbers from trusted hosts.

Rlogind listens for service requests at the port indicated in the “login” service specification;
see services(5). When a service request is received the following protocol is initiated:

1) The server checks the client’s source port. If the port is not in the range 0-1023, the
server aborts the connection.

2) The server checks the client’s source address and requests the corresponding host
name (see gethostbyaddr(3N), hosts(5) and named(8)). If the hostname cannot be
determined, the dot-notation representation of the host address is used.

Once the source port and address have been checked, rlogind allocates a pseudo terminal (see
pty(4)), and manipulates file descriptors so that the slave half of the pseudo terminal becomes
the stdin , stdout , and stderr for a login process. The login process is an instance of the
login(1) program, invoked with the -r option. The login process then proceeds with the
authentication process as described in rshd(8C), but if automatic authentication fails, it
reprompts the user to login as one finds on a standard terminal line.

The parent of the login process manipulates the master side of the pseduo terminal, operating
as an intermediary between the login process and the client instance of the rlogin program. In
normal operation, the packet protocol described in pry(4) is invoked to provide “S/°Q type
facilities and propagate interrupt signals to the remote programs. The login process pro-
pagates the client terminal’s baud rate and terminal type, as found in the environment vari-
able, “TERM?”; see environ(7). The screen or window size of the terminal is requested from
the client, and window size changes from the client are propagated to the pseudo terminal.

DIAGNOSTICS

BUGS

All diagnostic messages are returned on the connection associated with the stderr, after which
any network connections are closed. An error is indicated by a leading byte with a value of 1.

“Try again.”
A fork by the server failed.

“/bin/sh: ...”
The user’s login shell could not be started.

The authentication procedure used here assumes the integrity of each client machine and the
connecting medium. This is insecure, but is useful in an “open” environment.

A facility to allow all data exchanges to be encrypted should be present.
A more extensible protocol should be used.)

4.2 Berkeley Distribution May 24, 1986 1

RMT(8C) UNIX Programmer’s Manual RMT(8C)

NAME
rmt — remote magtape protocol module

SYNOPSIS
/etc/rmt

DESCRIPTION
Rmt is a program used by the remote dump and restore programs in manipulating a magnetic
tape drive through an interprocess communication connection. Rmt¢ is normally started up
with an rexec(3X) or remd(3X) call.

The rmt program accepts requests specific to the manipulation of magnetic tapes, performs
the commands, then responds with a status indication. All responses are in ASCII and in one
of two forms. Successful commands have responses of

Anumber\n

where number is an ASCII representation of a decimal number. Unsuccessful commands are
responded to with

Eerror-number\nerror-message\n,

where error-number is one of the possible error numbers described in intro(2) and error-
message is the corresponding error string as printed from a call to perror(3). The protocol is
comprised of the following commands (a space is present between each token).

O device mode Open the specified device using the indicated mode. Device is a full path-
name and mode is an ASCII representation of a decimal number suitable for
passing to open(2). If a device had already been opened, it is closed before a
new open is performed.

C device Close the currently open device. The device specified is ignored.

L whence offset Perform an Iseek(2) operation using the specified parameters. The response
value is that returned from the /seek call.

W count Write data onto the open device. Rmt reads count bytes from the connec-
tion, aborting if a premature end-of-file is encountered. The response value is
that returned from the write(2) call.

R count Read count bytes of data from the open device. If count exceeds the size of
the data buffer (10 kilobytes), it is truncated to the data buffer size. Rmt then
performs the requested read(2) and responds with Acount-read\n if the read
was successful; otherwise an error in the standard format is returned. If the
read was successful, the data read is then sent.

I operation count
Perform a MTIOCOP ioctl(2) command using the specified parameters. The
parameters are interpreted as the ASCII representations of the decimal values
to place in the mt_op and mt_count fields of the structure used in the ioct/
call. The return value is the count parameter when the operation is success-
ful.

S Return the status of the open device, as obtained with a MTIOCGET ioct/
call. If the operation was successful, an “ack™ is sent with the size of the
status buffer, then the status buffer is sent (in binary).

Any other command causes rm¢ to exit.

DIAGNOSTICS
All responses are of the form described above.

4.2 Berkeley Distribution April 27, 1985 _ 1

RMT(8C) UNIX Programmer’s Manual RMT (8C)

SEE ALSO
rcmd(3X), rexec(3X), mtio(4), rdump(8C), rrestore(8C)

BUGS
People tempted to use this for a remote file access protocol are discouraged.

4.2 Berkeley Distribution April 27, 1985 2

ROUTE(8C) UNIX Programmer’s Manual ROUTE(8C)

NAME
route — manually manipulate the routing tables

SYNOPSIS
letc/route [f] [-n] [command args]

DESCRIPTION
Route is a program used to manually manipulate the network routing tables. It normally is
not needed, as the system routing table management daemon, routed(8C), should tend to this
task.

Route accepts two commands: add, to add a route, and delete, to delete a route.
All commands have the following syntax:
/etc/route command [net | host] destination gateway [metric]

where destination is the destination host or network, gateway is the next-hop gateway to
which packets should be addressed, and metric is a count indicating the number of hops to
the destination. The metric is required for add commands; it must be zero if the destination
is on a directly-attached network, and nonzero if the route utilizes one or more gateways. If
adding a route with metric 0, the gateway given is the address of this host on the common
network, indicating the interface to be used for transmission. Routes to a particular host are
distinguished from those to a network by interpreting the Internet address associated with
destination. The optional keywords net and host force the destination to be interpreted as a
network or a host, respectively. Otherwise, if the destination has a “local address part” of
INADDR_ANY, or if the destination is the symbolic name of a network, then the route is
assumed to be to a network; otherwise, it is presumed to be a route to a host. If the route is
to a destination connected via a gateway, the metric should be greater than 0. All symbolic
names specified for a destination or gateway are looked up first as a host name using
gethostbyname(3N). If this lookup fails, getnetbyname(3N) is then used to interpret the name
as that of a network.

Route uses a raw socket and the SIOCADDRT and SIOCDELRT ioctl’s to do its work. As
such, only the super-user may modify the routing tables.

If the —f option is specified, route will “flush” the routing tables of all gateway entries. If this
is used in conjunction with one of the commands described above, the tables are flushed prior
to the command’s application.

The -n option prevents attempts to print host and network names symbolically when report-
ing actions.

DIAGNOSTICS
‘“add [host | network] %s: gateway %s flags %x”
The specified route is being added to the tables. The values printed are from the routing table
entry supplied in the ioctl call. If the gateway address used was not the primary address of
the gateway (the first one returned by gethostbyname), the gateway address is printed numeri-
cally as well as symbolically.

“delete [host | network] %s: gateway %s flags %x”

As above, but when deleting an entry.

“%s %s done”

When the -f flag is specified, each routing table entry deleted is indicated with a message of
this form.

“Network is unreachable”
An attempt to add a route failed because the gateway listed was not on a directly-connected
network. The next-hop gateway must be given.

4.2 Berkeley Distribution May 24, 1986 1

ROUTE(8C) UNIX Programmer’s Manual ROUTE(8C)

‘“not in table”
A delete operation was attempted for an entry which wasn’t present in the tables.

“routing table overflow”
An add operation was attempted, but the system was low on resources and was unable to allo-
cate memory to create the new entry.
SEE ALSO
intro(4N), routed(8C), XNSrouted(8C)

4.2 Berkeley Distribution May 24, 1986 2

ROUTED(8C) UNIX Programmer’s Manual ROUTED(8C)

NAME
routed — network routing daemon
SYNOPSIS ,
fetc/routed [-d] [-g1[-s 1 [-q][-t][logfile]
DESCRIPTION

Routed is invoked at boot time to manage the network routing tables. The routing daemon
uses a variant of the Xerox NS Routing Information Protocol in maintaining up to date ker-
nel routing table entries. It used a generalized protocol capable of use with multiple address
types, but is currently used only for Internet routing within a cluster of networks.

In normal operation routed listens on the udp(4P) socket for the route service (see services(5))
for routing information packets. If the host is an internetwork router, it periodically supplies
copies of its routing tables to any directly connected hosts and networks.

When routed is started, it uses the SIOCGIFCONF ioct! to find those directly connected inter-
faces configured into the system and marked “up” (the software loopback interface is
ignored). If multiple interfaces are present, it is assumed that the host will forward packets
between networks. Routed then transmits a request packet on each interface (using a broad-
cast packet if the interface supports it) and enters a loop, listening for request and response
packets from other hosts.

When a request packet is received, routed formulates a reply based on the information main-
tained in its internal tables. The response packet generated contains a list of known routes,
each marked with a “hop count” metric (a count of 16, or greater, is considered “infinite”).
The metric associated with each route returned provides a metric relative to the sender.

Response packets received by routed are used to update the routing tables if one of the follow-
ing conditions is satisfied:

(1) No routing table entry exists for the destination network or host, and the metric indi-
cates the destination is “reachable” (i.e. the hop count is not infinite).

2) The source host of the packet is the same as the router in the existing routing table
entry. That is, updated information is being received from the very internetwork
router through which packets for the destination are being routed.

3) The existing entry in the routing table has not been updated for some time (defined to
be 90 seconds) and the route is at least as cost effective as the current route.

“4) The new route describes a shorter route to the destination than the one currently
stored in the routing tables; the metric of the new route is compared against the one
stored in the table to decide this.

When an update is applied, routed records the change in its internal tables and updates the
kernel routing table. The change is reflected in the next response packet sent.

In addition to processing incoming packets, routed also periodically checks the routing table
entries. If an entry has not been updated for 3 minutes, the entry’s metric is set to infinity
and marked for deletion. Deletions are delayed an additional 60 seconds to insure the invali-
dation is propagated throughout the local internet.

Hosts acting as internetwork routers gratuitously supply their routing tables every 30 seconds
to all directly connected hosts and networks. The response is sent to the broadcast address on
nets capable of that function, to the destination address on point-to-point links, and to the
router’s own address on other networks. The normal routing tables are bypassed when send-
ing gratuitous responses. The reception of responses on each network is used to determine
that the network and interface are functioning correctly. If no response is received on an
interface, another route may be chosen to route around the interface, or the route may be
dropped if no alternative is available.

4.2 Berkeley Distribution May 24, 1986 1

ROUTED (8C) UNIX Programmer’s Manual ROUTED(8C)

Routed supports several options:
-d Enable additional debugging information to be logged, such as bad packets received.

-g This flag is used on internetwork routers to offer a route to the “default” destination.
This is typically used on a gateway to the Internet, or on a gateway that uses another
routing protocol whose routes are not reported to other local routers.

-S Supplying this option forces routed to supply routing information whether it is acting
as an internetwork router or not. This is the default if multiple network interfaces are
present, or if a point-to-point link is in use.

-q This is the opposite of the —s option.

-t If the -t option is specified, all packets sent or received are printed on the standard
output. In addition, routed will not divorce itself from the controlling terminal so
that interrupts from the keyboard will kill the process.

Any other argument supplied is interpreted as the name of file in which routed’s actions
should be logged. This log contains information about any changes to the routing tables and,
if not tracing all packets, a history of recent messages sent and received which are related to
the changed route.

In addition to the facilities described above, routed supports the notion of “distant” passive
and active gateways. When routed is started up, it reads the file /etc/gateways to find gateways
which may not be located using only information from the SIOGIFCONF ioctl. Gateways
specified in this manner should be marked passive if they are not expected to exchange rout-
ing information, while gateways marked active should be willing to exchange routing informa-
tion (i.e. they should have a routed process running on the machine). Passive gateways are
maintained in the routing tables forever and information regarding their existence is included
in any routing information transmitted. Active gateways are treated equally to network inter-
faces. Routing information is distributed to the gateway and if no routing information is
received for a period of the time, the associated route is deleted. External gateways are also
passive, but are not placed in the kernel routing table nor are they included in routing
updates. The function of external entries is to inform routed that another routing process will
install such a route, and that alternate routes to that destination should not be installed. Such
entries are only required when both routers may learn of routes to the same destination.

The /etc/gateways is comprised of a series of lines, each in the following format:
< net | host > namel gateway name2 metric value < passive | active | external >
The net or host keyword 1ndicates if the route is to a network or specific host.

Namel is the name of the destination network or host. This may be a symbolic name located
in /etc/networks or /etc/hosts (or, if started after named(8), known to the name server), or an
Internet address specified in “dot” notation; see inet(3N).

Name? is the name or address of the gateway to which messages should be forwarded.
Value is a metric indicating the hop count to the destination host or network.

One of the keywords passive, active or external indicates if the gateway should be treated as
passive or active (as described above), or whether the gateway is external to the scope of the
routed protocol.

Internetwork routers that are directly attached to the Arpanet or Milnet should use the Exte-
rior Gateway Protocol (EGP) to gather routing information rather then using a static routing
table of passive gateways. EGP is required in order to provide routes for local networks to
the rest of the Internet system. Sites needing assistance with such configurations should con-
tact the Computer Systems Research Group at Berkeley.

4.2 Berkeley Distribution May 24, 1986 2

ROUTED(8C) UNIX Programmer’s Manual ROUTED(8C)

FILES
/etc/gateways for distant gateways

SEE ALSO
“Internet Transport Protocols”, XSIS 028112, Xerox System Integration Standard.
udp(4P), XNSrouted(8C), htable(8)

BUGS
The kernel’s routing tables may not correspond to those of routed when redirects change or
add routes. The only remedy for this is to place the routing process in the kernel.

Routed should incorporate other routing protocols, such as Xerox NS (XNSrouted(8C)) and
EGP. Using separate processes for each requires configuration options to avoid redundant or
competing routes.

Routed should listen to intelligent interfaces, such as an IMP, and to error protocols, such as
ICMP, to gather more information. It does not always detect unidirectional failures in net-
work interfaces (e.g., when the output side fails).

4.2 Berkeley Distribution May 24, 1986 3

RRESTORE(8C) UNIX Programmer’s Manual RRESTORE(8C)

NAME

rrestore — restore a file system dump across the network
SYNOPSIS

letc/rrestore [key [name ...]
DESCRIPTION

Rrestore obtains from magnetic tape files saved by a previous dump(8). The command is
identical in operation to restore(8) except the f key should be specified and the file supplied
should be of the form machine:device.

Rrestore creates a remote server, /etc/rmt, on the client machine to access the tape device.

SEE ALSO
restore(8), rmt(8C)

DIAGNOSTICS
Same as restore(8) with a few extra related to the network.

4.2 Berkeley Distribution June 3, 1986 1

RSHD(8C)

NAME

UNIX Programmer’s Manual RSHD (8C)

rshd - remote shell server

SYNOPSIS

/etc/rshd

DESCRIPTION

Rshd is the server for the remd(3X) routine and, consequently, for the rsh(1C) program. The
server provides remote execution facilities with authentication based on privileged port
numbers from trusted hosts.

Rshd listens for service requests at the port indicated in the “cmd” service specification; see
services(5). When a service request is received the following protocol is initiated:

1)

2)

3)

4

5)

6)

7

8)

9)

DIAGNOSTICS

The server checks the client’s source port. If the port is not in the range 0-1023, the
server aborts the connection.

The server reads characters from the socket up to a null (‘\0’) byte. The resultant
string is interpreted as an ASCII number, base 10.

If the number received in step 1 is non-zero, it is interpreted as the port number of a
secondary stream to be used for the stderr. A second connection is then created to
the specified port on the client’s machine. The source port of this second connection
is also in the range 0-1023.

The server checks the client’s source address and requests the corresponding host
name (see gethostbyaddr(3N), hosts(S5) and named(8)). If the hostname cannot be
determined, the dot-notation representation of the host address is used.

A null terminated user name of at most 16 characters is retrieved on the initial
socket. This user name is interpreted as the user identity on the client’s machine.

A null terminated user name of at most 16 characters is retrieved on the initial
socket. This user name is interpreted as a user identity to use on the server’s
machine.

A null terminated command to be passed to a shell is retrieved on the initial socket.
The length of the command is limited by the upper bound on the size of the system’s
argument list.

Rshd then validates the user according to the following steps. The local (server-end)
user name is looked up in the password file and a chdir is performed to the user’s
home directory. If either the lookup or chdir fail, the connection is terminated. If the
user is not the super-user, (user id 0), the file /etc/hosts.equiv is consulted for a list of
hosts considered “equivalent”. If the client’s host name is present in this file, the
authentication is considered successful. If the lookup fails, or the user is the super-
user, then the file .rhosts in the home directory of the remote user is checked for the
machine name and identity of the user on the client’s machine. If this lookup fails,
the connection is terminated.

A null byte is returned on the initial socket and the command line is passed to the
normal login shell of the user. The shell inherits the network connections established
by rshd.

Except for the last one listed below, all diagnostic messages are returned on the initial socket,
after which any network connections are closed. An error is indicated by a leading byte with
a value of 1 (0 is returned in step 9 above upon successful completion of all the steps prior to
the execution of the login shell).

4.2 Berkeley Distribution May 24, 1986 1

RSHD (8C) UNIX Programmer’s Manual RSHD (8C)

“locuser too long”
The name of the user on the client’s machine is longer than 16 characters.

“remuser too long”
The name of the user on the remote machine is longer than 16 characters.

“command too long ™

The command line passed exceeds the size of the argument list (as configured into the sys-
tem).

“Login incorrect.”

No password file entry for the user name existed.

“No remote directory.”

The chdir command to the home directory failed.

“Permission denied.”

The authentication procedure described above failed.

“Can’t make pipe.”

The pipe needed for the stderr, wasn’t created.

“Try again.”

A fork by the server failed.

“<shellpame>: ...”

The user’s login shell could not be started. This message is returned on the connection associ-
ated with the stderr, and is not preceded by a flag byte.

SEE ALSO

BUGS

rsh(1C), remd(3X)

The authentication procedure used here assumes the integrity of each client machine and the
connecting medium. This is insecure, but is useful in an “open” environment.

A facility to allow all data exchanges to be encrypted should be present.
A more extensible protocol should be used.

4.2 Berkeley Distribution May 24, 1986 2

RWHOD (8C) UNIX Programmer’s Manual RWHOD (8C)

NAME

rwhod - system status server

SYNOPSIS

/etc/rwhod

DESCRIPTION

Rwhod is the server which maintains the database used by the rwho(1C) and ruptime(1C) pro-
grams. Its operation is predicated on the ability to broadcast messages on a network.

Rwhod operates as both a producer and consumer of status information. As a producer of
information it periodically queries the state of the system and constructs status messages
which are broadcast on a network. As a consumer of information, it listens for other rwhod
servers’ status messages, validating them, then recording them in a collection of files located
in the directory /usr/spool/rwho.

The server transmits and receives messages at the port indicated in the “rwho” service
specification; see services(5). The messages sent and received, are of the form:

struct outmp {
char out_line[8];/* tty name %/
char out_name[8];/* user id */
long out_time;/* time on */

%

struct whod {

char wd_vers;

char wd_type;

char wd_fill[2];

int wd_sendtime;

int wd_recvtime;

char wd_hostname[32];

int wd_loadav[3];

int wd_boottime;

struct whoent {

struct outmp we_utmp;
int we_idle;

} wd_we[1024 / sizeof (struct whoent)];
I
All fields are converted to network byte order prior to transmission. The load averages are as
calculated by the w(1) program, and represent load averages over the 5, 10, and 15 minute
intervals prior to a server’s transmission; they are multiplied by 100 for representation in an
integer. The host name included is that returned by the gethostname(2) system call, with any
trailing domain name omitted. The array at the end of the message contains information
about the users logged in to the sending machine. This information includes the contents of
the utmp(5) entry for each non-idle terminal line and a value indicating the time in seconds
since a character was last received on the terminal line.

Messages received by the rwho server are discarded unless they originated at an rwho server’s
port. In addition, if the host’s name, as specified in the message, contains any unprintable
ASCII characters, the message is discarded. Valid messages received by rwhod are placed in
files named whod.hostname in the directory /usr/spool/rwho. These files contain only the
most recent message, in the format described above.

Status messages are generated approximately once every 3 minutes. Rwhod performs an
nlist(3) on /vmunix every 30 minutes to guard against the possibility that this file is not the
system image currently operating.

4.2 Berkeley Distribution May 24, 1986 1

RWHOD (8C) UNIX Programmer’s Manual RWHOD (8C)

SEE ALSO
rwho(1C), ruptime(1C)

BUGS
There should be a way to relay status information between networks. Status information
should be sent only upon request rather than continuously. People often interpret the server
dying or network communtication failures as a machine going down.

4.2 Berkeley Distribution May 24, 1986 2

RXFORMAT(8V) UNIX Programmer’s Manual RXFORMAT (8V)

NAME

rxformat — format floppy disks
SYNOPSIS

/etc/rxformat [~d] special
DESCRIPTION

The rxformat program formats a diskette in the specified drive associated with the special
device special. (Special is normally /dev/rx0, for drive 0, or /dev/rx1, for drive 1.) By
default, the diskette is formatted single density; a —d flag may be supplied to force double den-
sity formatting. Single density is compatible with the IBM 3740 standard (128 bytes/sector).
In double density, each sector contains 256 bytes of data.

Before formatting a diskette rxformat prompts for verification if standard input is a tty (this
allows a user to cleanly abort the operation; note that formatting a diskette will destroy any
existing data). Formatting is done by the hardware. All sectors are zero-filled.

DIAGNOSTICS

‘No such device’ means that the drive is not ready, usually because no disk is in the drive or
the drive door is open. Other error messages are selfexplanatory.

FILES
/dev/rx?

SEE ALSO
rx(4V)
AUTHOR
Helge Skrivervik

BUGS
A floppy may not be formatted if the header info on sector 1, track 0 has been damaged.
Hence, it is not possible to format a completely degaussed disk. (This is actually a problem in
the hardware.)

4.2 Berkeley Distribution June 3, 1986 1

SA(8)

NAME

UNIX Programmer’s Manual SA(8)

sa, accton — system accounting

SYNOPSIS

/ete/sa [—abedDfijkKlInrstuv] [=S savacctfile] [-U usracctfile] [file]
/etc/accton [file]

DESCRIPTION

With an argument naming an existing file, accton causes system accounting information for
every process executed to be placed at the end of the file. If no argument is given, accounting
is turned off.

Sa reports on, cleans ﬁp, and generally maintains accounting files.

Sa is able to condense the information in /usr/adm/acct into a summary file /usr/adm/savacct
which contains a count of the number of times each command was called and the time
resources consumed. This condensation is desirable because on a large system /usr/adm/acct
can grow by 100 blocks per day. The summary file is normally read before the accounting
file, so the reports include all available information.

If a file name is given as the last argument, that file will be treated as the accounting file;
/usr/adm/acct is the default.

Output fields are labeled: “cpu” for the sum of user+system time (in minutes), “re” for real
time (also in minutes), “k” for cpu-time averaged core usage (in 1k units), “avio” for average
number of i/0 operations per execution. With options fields labeled “tio” for total i/o opera-
tions, “kssec” for cpu storage integral (kilo-core seconds), “u” and “s” for user and system
cpu time alone (both in minutes) will sometimes appear.

There are near a googol of options:

a Print all command names, even those containing unprintable characters and those
used only once. By default, those are placed under the name ‘s*xother.’

b Sort output by sum of user and system time divided by number of calls. Default sort
is by sum of user and system times.

Besides total user, system, and real time for each command print percentage of total
time over all commands.

o

Sort by average number of disk i/o operations.
Print and sort by total number of disk i/o operations.

Force no interactive threshold compression with —v flag.
Don’t read in summary file.

—

Instead of total minutes time for each category, give seconds per call.
Sort by cpu-time average memory usage.
Print and sort by cpu-storage integral.

Separate system and user time; normally they are combined.
Print number of processes and number of CPU minutes for each user.

=

Sort by number of calls.

Reverse order of sort.

s Merge accounting file into summary file /usr/adm/savacct when done.

t For each command report ratio of real time to the sum of user and system times.

4th Berkeley Distribution July 29, 1985 1

SA(8) UNIX Programmer’s Manual SA(8)

u Superseding all other flags, print for each command in the accounting file the user ID
and command name.

v Followed by a number »n, types the name of each command used » times or fewer.
Await a reply from the terminal; if it begins with ‘y’, add the command to the
category ‘*xjunk=*x.” This is used to strip out garbage.

S The following filename is used as the command summary file instead of
fusr/adm/savacct.
U The following filename is used instead of /usr/adm/usracct to accumulate the per-user
statistics printed by the -m option.
FILES
/usr/adm/acct raw accounting
/usr/adm/savacct summary
/usr/adm/usracct per-user summary
SEE ALSO
ac(8), acct(2)
BUGS

The number of options to this program is absurd.

4th Berkeley Distribution July 29, 1985 2

SAVECORE(8) UNIX Programmer’s Manual SAVECORE(8)

NAME

savecore — save a core dump of the operating system

SYNOPSIS

/etc/savecore dirname [system]

DESCRIPTION

FILES

BUGS

Savecore is meant to be called near the end of the /etc/rc file. Its function is to save the core
dump of the system (assuming one was made) and to write a reboot message in the shutdown
log.

Savecore checks the core dump to be certain it corresponds with the current running unix. If
it does it saves the core image in the file dirname/vmcore.n and its brother, the namelist,
dirname/vmunix.n The trailing ".n" in the pathnames is replaced by a number which grows
every time savecore is run in that directory.

Before savecore writes out a core image, it reads a number from the file dirname/minfree. If
the number of free kilobytes on the filesystem which contains dirname is less than the number
obtained from the minfree file, the core dump is not saved. If the minfree file does not exist,
savecore always writes out the core file (assuming that a core dump was taken).

Savecore also logs a reboot message using facility LOG_AUTH (see syslog(3)) If the system
crashed as a result of a panic, savecore logs the panic string too.

If the core dump was from a system other than /vmunix, the name of that system must be
supplied as sysname.

/vmunix current UNIX

Can be fooled into thinking a core dump is the wrong size.

4th Berkeley Distribution May 24, 1986 1

SENDMAIL(8) UNIX Programmer’s Manual SENDMAIL(8)

NAME
sendmail - send mail over the internet

SYNOPSIS
/usr/lib/sendmail [flags] [address ...]

newaliases
mailq [-v]
DESCRIPTION
Sendmail sends a message to one or more recipients, routing the message over whatever net-

works are necessary. Sendmail does internetwork forwarding as necessary to deliver the mes-
sage to the correct place.

Sendmail is not intended as a user interface routine; other programs provide user-friendly
front ends; sendmail is used only to deliver pre-formatted messages.

With no flags, sendmail reads its standard input up to an end-of-file or a line consisting only
of a single dot and sends a copy of the message found there to all of the addresses listed. It
determines the network(s) to use based on the syntax and contents of the addresses.

Local addresses are looked up in a file and aliased appropriately. Aliasing can be prevented
by preceding the address with a backslash. Normally the sender is not included in any alias
expansions, e.g., if john’ sends to ‘group’, and ‘group’ includes ‘john’ in the expansion, then
the letter will not be delivered to ‘john’.

Flags are:

-ba Go into ARPANET mode. All input lines must end with a CR-LF, and all
messages will be generated with a CR-LF at the end. Also, the “From:”
and “Sender:” fields are examined for the name of the sender.

~bd Run as a daemon. This requires Berkeley IPC. Sendmail will fork and
run in background listening on socket 25 for incoming SMTP connections.
This is normally run from /etc/rc.

-bi Initialize the alias database.

~bm Deliver mail in the usual way (default).

-bp Print a listing of the queue.

-bs Use the SMTP protocol as described in RFC821 on standard input and out-
put. This flag implies all the operations of the -ba flag that are compatible
with SMTP.

-bt Run in address test mode. This mode reads addresses and shows the steps
in parsing; it is used for debugging configuration tables.

~bv Verify names only - do not trytto collect or deliver a message. Verify
mode is normally used for validating users or mailing lists.

~bz Create the configuration freeze file.

-Cfile Use alternate configuration file. Sendmail refuses to run as root if an alter-
nate configuration file is specified. The frozen configuration file is
bypassed.

-dX Set debugging value to X.

-Ffullname Set the full name of the sender.

~fname Sets the name of the “from” person (i.e., the sender of the mail). -f can

only be used by “trusted” users (normally root, daemon, and network) or if
the person you are trying to become is the same as the person you are.

4th Berkeley Distribution May 22, 1986 1

SENDMAIL(8)

-hN

-n
-oxvalue
—q[time]

-rname
-t

-V

UNIX Programmer’s Manual SENDMAIL(8)

Set the hop count to N. The hop count is incremented every time the mail
is processed. When it reaches a limit, the mail is returned with an error
message, the victim of an aliasing loop. If not specified, “Received:” lines
in the message are counted.

Don’t do aliasing.
Set option x to the specified value. Options are described below.

Processed saved messages in the queue at given intervals. If time is omit-
ted, process the queue once. Time is given as a tagged number, with ‘s’
being seconds, ‘m’ being minutes, ‘h’ being hours, ‘d’ being days, and ‘w’
being weeks. For example, “-~q1h30m” or “~q90m” would both set the
timeout to one hour thirty minutes. If time is specified, sendmail will run
in background. This option can be used safely with —bd.

An alternate and obsolete form of the —f flag.

Read message for recipients. To:, Cc:, and Bce: lines will be scanned for
recipient addresses. The Bcc: line will be deleted before transmission.
Any addresses in the argument list will be suppressed, that is, they will not
receive copies even if listed in the message header.

Go into verbose mode. Alias expansions will be announced, etc.

There are also a number of processing options that may be set. Normally these will only be
used by a system administrator. Options may be set either on the command line using the -o
flag or in the configuration file. These are described in detail in the Sendmail Installation and
Operation Guide. The options are:

Afile
c

dx

€ex

Fmode

Hfile

Ln

4th Berkeley Distribution

Use alternate alias file.

On mailers that are considered “expensive” to connect to, don’t initiate
immediate connection. This requires queueing.

Set the delivery mode to x. Delivery modes are ‘i’ for interactive (synchro-
nous) delivery, ‘b’ for background (asynchronous) delivery, and ‘q’ for
queue only - i.e., actual delivery is done the next time the queue is run.

Try to automatically rebuild the alias database if necessary.

Set error processing to mode x. Valid modes are ‘m’ to mail back the error
message, ‘W’ to “write” back the error message (or mail it back if the
sender is not logged in), ‘p’ to print the errors on the terminal (default), ‘q’
to throw away error messages (only exit status is returned), and ‘e’ to do
special processing for the BerkNet. If the text of the message is not mailed
back by modes ‘m’ or ‘w’ and if the sender is local to this machine, a copy
of the message is appended to the file “dead.letter” in the sender’s home
directory.

The mode to use when creating temporary files.

Save UNIX-style From lines at the front of messages.

The default group id to use when calling mailers.

The SMTP help file.

Do not take dots on a line by themselves as a message terminator.
The log level.

Send to “me” (the sender) also if I am in an alias expansion.

May 22, 1986 2

SENDMAIL(8) UNIX Programmer’s Manual SENDMAIL(8)

FILES

o If set, this message may have old style headers. If not set, this message is
guaranteed to have new style headers (i.e., commas instead of spaces
between addresses). If set, an adaptive algorithm is used that will correctly
determine the header format in most cases.

Qqueuedir Select the directory in which to queue messages.

rtimeout The timeout on reads; if none is set, sendmail will wait forever for a
mailer. This option violates the word (if not the intent) of the SMTP
specification, show the timeout should probably be fairly large.

Sfile Save statistics in the named file.

s Always instantiate the queue file, even under circumstances where it is not
strictly necessary. This provides safety against system crashes during
delivery.

Ttime Set the timeout on undelivered messages in the queue to the specified time.

After delivery has failed (e.g., because of a host being down) for this
amount of time, failed messages will be returned to the sender. The
default is three days.

tstz,dtz Set the name of the time zone.
uN Set the default user id for mailers.

In aliases, the first character of a name may be a vertical bar to cause interpretation of the
rest of the name as a command to pipe the mail to. It may be necessary to quote the name to
keep sendmail from suppressing the blanks from between arguments. For example, a com-
mon alias is:

msgs: "|/usr/ucb/msgs -5"

Aliases may also have the syntax “:include;filename” to ask sendmail to read the named file
for a list of recipients. For example, an alias such as:

poets: ":include:/usr/local/lib/poets.list"
would read /usr/local/lib/poets.list for the list of addresses making up the group.
Sendmail returns an exit status describing what it did. The codes are defined in <sysexits.h>

EX_OK Successful completion on all addresses.

EX_NOUSER User name not recognized.

EX_UNAVAILABLE Catchall meaning necessary resources were not available.
EX_SYNTAX Syntax error in address.

EX_SOFTWARE Internal software error, including bad arguments.
EX_OSERR Temporary operating system error, such as “cannot fork”.
EX_NOHOST Host name not recognized.

EX_TEMPFAIL Message could not be sent immediately, but was queued.

If invoked as newaliases, sendmail will rebuild the alias database. If invoked as mailg, send-
mail will print the contents of the mail queue.

Except for /usr/lib/sendmail.cf, these pathnames are all specified in /usr/lib/sendmail.¢f. Thus,
these values are only approximations.

/usr/lib/aliases raw data for alias names
/usr/lib/aliases.pag

/usr/lib/aliases.dir data base of alias names
/usr/lib/sendmail.cf configuration file
/usr/lib/sendmail.fc frozen configuration
/usr/lib/sendmail.hf help file

4th Berkeley Distribution May 22, 1986 3

SENDMAIL(8) UNIX Programmer’s Manual SENDMAIL(8)

Jusr/lib/sendmail.st collected statistics
/usr/spool/mqueue/* temp files
SEE ALSO

binmail(1), mail(1), rmail(1), syslog(3), aliases(5), sendmail.cf(5), mailaddr(7), rc(8);
DARPA Internet Request For Comments RFC819, RFC821, RFC822;

Sendmail - An Internetwork Mail Router (SMM.:16);

Sendmail Installation and Operation Guide (SMM:7)

4th Berkeley Distribution May 22, 1986 4

SHUTDOWN(8) UNIX Programmer’s Manual SHUTDOWN (8)

NAME

shutdown - close down the system at a given time

SYNOPSIS

letc/shutdown [-k) [-r] [-h][-f] [-n] time [warning-message ...]

DESCRIPTION

FILES

Shutdown provides an automated shutdown procedure which a super-user can use to notify
users nicely when the system is shutting down, saving them from system administrators, hack-
ers, and gurus, who would otherwise not bother with niceties.

Time is the time at which shutdown will bring the system down and may be the word now
(indicating an immediate shutdown) or specify a future time in one of two formats: +number
and hour:min. The first form brings the system down in number minutes and the second
brings the system down at the time of day indicated (as a 24-hour clock).

At intervals which get closer together as apocalypse approaches, warning messages are
displayed at the terminals of all users on the system. Five minutes before shutdown, or
immediately if shutdown is in less than 5 minutes, logins are disabled by creating /etc/nologin
and writing a message there. If this file exists when a user attempts to log in, /ogin(1) prints
its contents and exits. The file is removed just before shutdown exits.

At shutdown time a message is written in the system log, containing the time of shutdown,
who ran shutdown and the reason. Then a terminate signal is sent to init to bring the system
down to single-user state. Alternatively, if -r, -h, or -k was used, then shutdown will exec
reboot(8), halt(8), or avoid shutting the system down (respectively). (If it isn’t obvious, -k is
to make people think the system is going down!)

With the —f option, shutdown arranges, in the manner of fastboot(8), that when the system is
rebooted the file systems will not be checked. The -n option prevents the normal sync(2)
before stopping.

The time of the shutdown and the warning message are placed in /etc/nologin and should be
used to inform the users about when the system will be back up and why it is going down (or
anything else).

/etc/nologin tells login not to let anyone log in

SEE ALSO

BUGS

login(1), reboot(8), fastboot(8)

Only allows you to kill the system between now and 23:59 if you use the absolute time for
shutdown.

4th Berkeley Distribution May 26, 1986 1

SLATTACH (8C) UNIX Programmer’s Manual SLATTACH (8C)

NAME

slattach - attach serial lines as network interfaces
SYOPNSIS

/etc/slattach ttyname [baudrate)
DESCRIPTION

Slattach is used to assign a tty line to a network interface, and to define the network source
and destination addresses. The ttyname parameter is a string of the form “ttyXX™, or
“/dev/ttyXX". The optional baudrate parameter is used to set the speed of the connection. If
not specified, the default of 9600 is used.

Only the super-user may attach a network interface.

To detach the interface, use ‘ifconfig interface-name down’ after killing off the slattach pro-
cess. interface-name is the name that is shown by netstat(1)

EXAMPLES
/etc/slattach ttyh8
[etc/slattach /dev/tty01 4800

DIAGNOSTICS
Messages indicating the specified interface does not exit, the requested address is unknown,
the user is not privileged and tried to alter an interface’s configuration.

SEE ALSO
rc(8), intro(4N), netstat(1), ifconfig(8C)

4.3 Berkeley Distribution February 17, 1986 1

STICKY (8) UNIX Programmer’s Manual STICKY (8)

NAME

sticky — persistent text and append-only directories

DESCRIPTION

The sticky bit (file mode bit 01000, see chmod(2)) is used to indicate special treatment for cer-
tain executable files and directories.

STICKY TEXT EXECUTABLE FILES

While the ‘sticky bit’ is set on a sharable executable file, the text of that file will not be
removed from the system swap area. Thus the file does not have to be fetched from the file
system upon each execution. Shareable text segments are normally placed in a least-
frequently-used cache after use, and thus the ‘sticky bit’ has little effect on commonly-used
text images.

Sharable executable files are made by the ~n and -z options of /d(1).
Only the super-user can set the sticky bit on a sharable executable file.

STICKY DIRECTORIES

BUGS

A directory whose ‘sticky bit’ is set becomes an append-only directory, or, more accurately, a
directory in which the deletion of files is restricted. A file in a sticky directory may only be
removed or renamed by a user if the user has write permission for the directory and the user
is the owner of the file, the owner of the directory, or the super-user. This feature is usefully
applied to directories such as /tmp which must be publicly writable but should deny users the
license to arbitrarily delete or rename each others’ files.

Any user may create a sticky directory. See chmod(1) for details about modifying file modes.

Since the text areas of sticky text executables are stashed in the swap area, abuse of the
feature can cause a system to run out of swap.

Neither open(2) nor mkdir(2) will create a file with the sticky bit set.

4th Berkeley Distribution June 3, 1986 1

SWAPON(8) UNIX Programmer’s Manual SWAPON(8)

NAME
swapon - specify additional device for paging and swapping

SYNOPSIS

/etc/swapon -a
/etc/swapon name ...

DESCRIPTION
Swapon is used to specify additional devices on which paging and swapping are to take place.
The system begins by swapping and paging on only a single device so that only one disk is
required at bootstrap time. Calls to swapon normally occur in the system multi-user initiali-
zation file /etc/rc making all swap devices available, so that the paging and swapping activity
is interleaved across several devices.

Normally, the -a argument is given, causing all devices marked as “sw” swap devices in
/etc/fstab to be made available.

The second form gives individual block devices as given in the system swap configuration
table. The call makes only this space available to the system for swap allocation.

SEE ALSO
swapon(2), init(8)
FILES
/dev/[ru][pk]?b normal paging devices

BUGS
There is no way to stop paging and swapping on a device. It is therefore not possible to make
use of devices which may be dismounted during system operation.

4th Berkeley Distribution April 27, 1985 1

SYNC(8) UNIX Programmer’s Manual SYNC(8)

NAME
sync - update the super block

SYNOPSIS
/etc/sync

DESCRIPTION
Sync executes the sync system primitive. Sync can be called to insure that all disk writes have
been completed before the processor is halted in a way not suitably done by reboot(8) or
halt(8). Generally, it is preferable to use reboot or halt to shut down the system, as they may
perform additional actions such as resynchronizing the hardware clock and flushing internal
caches before performing a final sync.

See sync(2) for details on the system primitive.

SEE ALSO
sync(2), fsync(2), halt(8), reboot(8), update(8)

4th Berkeley Distribution May 28, 1986 1

SYSLOGD (8) UNIX Programmer’s Manual SYSLOGD(8)

NAME

syslogd - log systems messages
SYNOPSIS

fete/syslogd [—fconfigfile] [-mmarkinterval | [-d]
DESCRIPTION

Syslogd reads and logs messages intc a set of files described by the configuration file
/etc/syslog.conf. Each message is one line. A message can contain a priority code, marked by
a number in angle braces at the beginning of the line. Priorities are defined in
<sys/syslog.h>. Syslogd reads from the UNIX domain socket /dev/log, from an Internet
domain socket specified in /etc/services, and from the special device /dev/klog (to read kernel
messages).

Syslogd configures when it starts up and whenever it receives a hangup signal. Lines in the
configuration file have a selector to determine the message priorities to which the line applies
and an action. The action field are separated from the selector by one or more tabs.

Selectors are semicolon separated lists of priority specifiers. Each priority has a facility
describing the part of the system that generated the message, a dot, and a leve/ indicating the
severity of the message. Symbolic names may be used. An asterisk selects all facilities. All
messages of the specified level or higher (greater severity) are selected. More than one facility
may be selected using commas to separate them. For example:

».emerg;mail,daemon.crit
Selects all facilities at the emerg level and the mail and daemon facilities at the crit level.

Known facilities and levels recognized by syslogd are those listed in syslog(3) without the
leading “LOG_". The additional facility “mark” has a message at priority LOG_INFO sent
to it every 20 minutes (this may be changed with the -m flag). The “mark” facility is not
enabled by a facility field containing an asterisk. The level “none” may be used to disable a
particular facility. For example,

+.debug;mail.none
Sends all messages except mail messages to the selected file.

The second part of each line describes where the message is to be logged if this line is
selected. There are four forms:

o A filename (beginning with a leading slash). The file will be opened in append mode.

© A hostname preceeded by an at sign (“@”). Selected messages are forwarded to the sys-
logd on the named host.

® A comma separated list of users. Selected messages are written to those users if they are
logged in.

e An asterisk. Selected messages are written to all logged-in users.
Blank lines and lines beginning with ‘#’ are ignored.
For example, the configuration file:

kern,mark.debug /dev/console
».notice;mail.info /usr/spool/adm/syslog
».Crit fusr/adm/critical
kern.err (@ucbarpa

«.emerg *

=.alert eric,kridle
».alert;auth.warning ralph

4.2 Berkeley Distribution May 26, 1986 1

SYSLOGD(8) UNIX Programmer’s Manual SYSLOGD(8)

logs all kernel messages and 20 minute marks onto the system console, all notice (or higher)
level messages and all mail system messages except debug messages into the file
/usr/spool/adm/syslog, and all critical messages into /usr/adm/critical; kernel messages of error
severity or higher are forwarded to ucbarpa. All users will be informed of any emergency
messages, the users “eric” and “kridle” will be informed of any alert messages, and the user
“ralph” will be informed of any alert message, or any warning message (or higher) from the
authorization system.

The flags are:

-f Specify an alternate configuration file.

-m Select the number of minutes between mark messages.

-d Turn on debugging.

Syslogd creates the file /etc/syslog.pid, if possible, containing a single line with its process id.
This can be used to kill or reconfigure syslogd.

To bring syslogd down, it should be sent a terminate signal (e.g. kill ‘cat /etc/syslog.pid’).

FILES
/etc/syslog.conf the configuration file
fetc/syslog.pid the process id
/dev/log Name of the UNIX domain datagram log socket
/dev/klog The kernel log device
SEE ALSO

logger(1), syslog(3)

4.2 Berkeley Distribution May 26, 1986 2

TALKD (8C) UNIX Programmer’s Manual TALKD (8C)

NAME
talkd - remote user communication server

SYNOPSIS
/letc/talkd

DESCRIPTION

Talkd is the server that notifies a user that somebody else wants to initiate a conversation. It
acts a repository of invitations, responding to requests by clients wishing to rendezvous to
hold a conversation. In normal operation, a client, the caller, initiates a rendezvous by send-
ing a CTL_MSG to the server of type LOOK_UP (see <protocols/talkd.h>). This causes the
server to search its invitation tables to check if an invitation currently exists for the caller (to
speak to the callee specified in the message). If the lookup fails, the caller then sends an
ANNOUNCE message causing the server to broadcast an announcement on the callee’s login
ports requesting contact. When the callee responds, the local server uses the recorded invita-
tion to respond with the appropriate rendezvous address and the caller and callee client pro-
grams establish a stream connection through which the conversation takes place.

SEE ALSO
talk(1), write(1)

4.3 Berkeley Distribution May 21, 1986 1

TELNETD(8C) UNIX Programmer’s Manual TELNETD(8C)

NAME

telnetd - DARPA TELNET protocol server
SYNOPSIS

/etc/telnetd
DESCRIPTION

Telnetd is a server which supports the DARPA standard TELNET virtual terminal protocol.
Telnetd is invoked by the internet server (see inetd(8)), normally for requests to connect to
the TELNET port as indicated by the /etc/services file (see services(5)).

Telnetd operates by allocating a pseudo-terminal device (see pty(4)) for a client, then creating
a login process which has the slave side of the pseudo-terminal as stdin, stdout, and stderr.
Telnetd manipulates the master side of the pseudo-terminal, implementing the TELNET pro-
tocol and passing characters between the remote client and the login process.

When a TELNET session is started up, telnetd sends TELNET options to the client side indi-
cating a willingness to do remote echo of characters, to suppress go ahead, and to receive ter-
minal type information from the remote client. If the remote client is willing, the remote ter-
minal type is propagated in the environment of the created login process. The pseudo-
terminal allocated to the client is configured to operate in “cooked” mode, and with XTABS
and CRMOD enabled (see tty(4)).

Telnetd is willing to do: echo, binary, suppress go ahead, and timing mark. Telnetd is willing
to have the remote client do: binary, terminal type, and suppress go ahead.

SEE ALSO

BUGS

telnet(1C)

Some TELNET commands are only partially implemented.

The TELNET protocol allows for the exchange of the number of lines and columns on the
user’s terminal, but telnetd doesn’t make use of them.

Because of bugs in the original 4.2 BSD telnet(1C), telnetd performs some dubious protocol
exchanges to try to discover if the remote client is, in fact, a 4.2 BSD telnet(1C).

Binary mode has no common interpretation except between similar operating systems (Unix
in this case).

The terminal type name received from the remote client is converted to lower case.

The packet interface to the pseudo-terminal (see pty(4)) should be used for more intelligent
flushing of input and output queues. .

Telnetd never sends TELNET go ahead commands.

4.2 Berkeley Distribution May 28, 1986 1

TFTPD(8C) UNIX Programmer’s Manual TFTPD (8C)

NAME
tftpd - DARPA Trivial File Transfer Protocol server

SYNOPSIS
/etc/tftpd

DESCRIPTION
Tfipd is a server which supports the DARPA Trivial File Transfer Protocol. The TFTP server
operates at the port indicated in the “tftp” service description; see services(5). The server is
normally started by inetd(8).

The use of tfip does not require an account or password on the remote system. Due to the
lack of authentication information, #fipd will allow only publicly readable files to be accessed.
Files may be written only if they already exist and are publicly writable. Note that this
extends the concept of “public” to include all users on all hosts that can be reached through
the network; this may not be appropriate on all systems, and its implications should be con-
sidered before enabling tftp service. The server should have the user ID with the lowest pos-
sible privilege.

SEE ALSO
tftp(1C), inetd(8)

4.2 Berkeley Distribution May 26, 1986 1

TIMED (8) UNIX Programmer’s Manual TIMED(8)

NAME

timed - time server daemon

SYNOPSIS

/letc/timed [-t] [-M] [-n network] [-i network]

DESCRIPTION

Timed is the time server daemon and is normally invoked at boot time from the rc(8) file. It
synchronizes the host’s time with the time of other machines in a local area network running
timed(8). These time servers will slow down the clocks of some machines and speed up the
clocks of others to bring them to the average network time. The average network time is
computed from measurements of clock differences using the ICMP timestamp request mes-
sage.

The service provided by fimed is based on a master-slave scheme. When timed(8) is started
on a machine, it asks the master for the network time and sets the host’s clock to that time.
After that, it accepts synchronization messages periodically sent by the master and calls adj-
time(2) to perform the needed corrections on the host’s clock.

It also communicates with date(1) in order to set the date globally, and with timedc(8), a
timed control program. If the machine running the master crashes, then the slaves will elect a
new master from among slaves running with the -M flag. A timed running without the -M
flag will remain a slave. The -t flag enables timed to trace the messages it receives in the file
/usr/adm/timed.log. Tracing can be turned on or off by the program timedc(8). Timed nor-
mally checks for a master time server on each network to which it is connected, except as
modified by the options described below. It will request synchronization service from the first
master server located. If permitted by the ~M flag, it will provide synchronization service on
any attached networks on which no current master server was detected. Such a server pro-
pagates the time computed by the top-level master. The -n flag, followed by the name of a
network which the host is connected to (see networks(5)), overrides the default choice of the
network addresses made by the program. Each time the -n flag appears, that network name is
added to a list of valid networks. All other networks are ignored. The -i flag, followed by the
name of a network to which the host is connected (see networks(5)), overrides the default
choice of the network addresses made by the program. Each time the -i flag appears, that
network name is added to a list of networks to ignore. All other networks are used by the
time daemon. The -n and -i flags are meaningless if used together.

FILES
/usr/adm/timed.log tracing file for timed
/usr/adm/timed.masterlog log file for master timed
SEE ALSO

date(1), adjtime(2), gettimeofday(2), icmp(4P), timedc(8),
TSP: The Time Synchronization Protocol for UNIX 4.3BSD, R. Gusella and S. Zatti

4.3 Berkeley Distribution May 28, 1986 1

TIMEDC(8) UNIX Programmer’s Manual TIMEDC(8)

NAME

timedc - timed control program

SYNOPSIS

DESCRIPTION

/etc/timedc [command [argument ...]]

Timedc is used to control the operation of the timed program. It may be used to:
. measure the differences between machines’ clocks,

. find the location where the master time server is running,

° enable or disable tracing of messages received by timed, and

° perform various debugging actions.

Without any arguments, timedc will prompt for commands from the standard input. If argu-
ments are supplied, timedc interprets the first argument as a command and the remaining
arguments as parameters to the command. The standard input may be redirected causing
timedc to read commands from a file. Commands may be abbreviated; recognized commands
are:

? [command ...]
help [command ...]

Print a short description of each command specified in the argument list, or, if no
arguments are given, a list of the recognized commands.

clockdiff host ...
Compute the differences between the clock of the host machine and the clocks of the
machines given as arguments.
trace { on | off }
Enable or disable the tracing of incoming messages to timed in the file
/usr/adm/timed.log.
quit
Exit from timedc.
Other commands may be included for use in testing and debugging timed; the help command
and the program source may be consulted for details.

FILES
/usr/adm/timed.log tracing file for timed
/usr/adm/timed.masterloglog file for master timed
SEE ALSO
date(1), adjtime(2), icmp(4P), timed(8),
TSP: The Time Synchronization Protocol for UNIX 4.3BSD, R. Gusella and S. Zatti
DIAGNOSTICS
?Ambiguous command abbreviation matches more than one command
?Invalid command no match found
?Privileged command command can be executed by root only

4.3 Berkeley Distribution May 28, 1986 1

TRPT(8C) UNIX Programmer’s Manual TRPT(8C)

NAME
trpt — transliterate protocol trace

SYNOPSIS
trpt[-a][-s] [-t][-f]1[-j][-p hex-address][system [core]]

DESCRIPTION
Trpt interrogates the buffer of TCP trace records created when a socket is marked for “debug-
ging” (see setsockopt(2)), and prints a readable description of these records. When no options
are supplied, ¢rpt prints all the trace records found in the system grouped according to TCP
connection protocol control block (PCB). The following options may be used to alter this

behavior.

-a in addition to the normal output, print the values of the source and destination
addresses for each packet recorded.

-s in addition to the normal output, print a detailed description of the packet sequencing
information.

-t in addition to the normal output, print the values for all timers at each point in the
trace.

-f follow the trace as it occurs, waiting a short time for additional records each time the
end of the log is reached.

-j just give a list of the protocol control block addresses for which there are trace
records.

-p show only trace records associated with the protocol control block, the address of

which follows.

The recommended use of trpt is as follows. Isolate the problem and enable debugging on the
socket(s) involved in the connection. Find the address of the protocol control blocks associ-
ated with the sockets using the —A option to netstat(1). Then run trpt with the —p option, sup-
plying the associated protocol control block addresses. The —f option can be used to follow
the trace log once the trace is located. If there are many sockets using the debugging option,
the —j option may be useful in checking to see if any trace records are present for the socket
in question. The

If debugging is being performed on a system or core file other than the default, the last two
arguments may be used to supplant the defaults.

FILES
/vmunix
/dev/kmem

SEE ALSO
setsockopt(2), netstat(1), trsp(8C)

DIAGNOSTICS
“no namelist” when the system image doesn’t contain the proper symbols to find the trace
buffer; others which should be self explanatory.

BUGS
Should also print the data for each input or output, but this is not saved in the race record.

The output format is inscrutable and should be described here.

4.2 Berkeley Distribution May 26, 1986 1

TRSP(8c) UNIX Programmer’s Manual TRSP(8c)

NAME
trsp — transliterate sequenced packet protocol trace

SYNOPSIS
trsp[-a][-s] [-t][-j][-phex-address][system [core]]

DESCRIPTION
Trpt interrogates the buffer of SPP trace records created when a socket is marked for “debug-
ging” (see setsockopt(2)), and prints a readable description of these records. When no options
are supplied, trsp prints all the trace records found in the system grouped according to SPP
connection protocol control block (PCB). The following options may be used to alter this

behavior.

-s in addition to the normal output, print a detailed description of the packet sequencing
information,

-t in addition to the normal output, print the values for all timers at each point in the
trace,

-j just give a list of the protocol control block addresses for which there are trace
records,

-p show only trace records associated with the protocol control block who’s address fol-
lows,

-a in addition to the normal output, print the values of the source and destination

addresses for each packet recorded.

The recommended use of trsp is as follows. Isolate the problem and enable debugging on the
socket(s) involved in the connection. Find the address of the protocol control blocks associ-
ated with the sockets using the —A option to netstat(1). Then run trsp with the -p option,
supplying the associated protocol control block addresses. If there are many sockets using the
debugging option, the -j option may be useful in checking to see if any trace records are
present for the socket in question.

If debugging is being performed on a system or core file other than the default, the last two
arguments may be used to supplant the defauits.

FILES
/vmunix
/dev/kmem

SEE ALSO
setsockopt(2), netstat(1)

DIAGNOSTICS -
“no namelist” when the system image doesn’t contain the proper symbols to find the trace
buffer; others which should be self explanatory.

BUGS
Should also print the data for each input or output, but this is not saved in the race record.

The output format is inscrutable and should be described here.

4.2 Berkeley Distribution October 8, 1985 1

TUNEFS(8)

NAME

UNIX Programmer’s Manual TUNEFS(8)

tunefs - tune up an existing file system

SYNOPSIS

/etc/tunefs tuneup-options special | filesys

DESCRIPTION

Tunefs is designed to change the dynamic parameters of a file system which affect the layout
policies. The parameters which are to be changed are indicated by the flags given below:

-a maxcontig

This specifies the maximum number of contiguous blocks that will be laid out before
forcing a rotational delay (see —d below). The default value is one, since most device
drivers require an interrupt per disk transfer. Device drivers that can chain several
buffers together in a single transfer should set this to the maximum chain length.

-d rotdelay

This specifies the expected time (in milliseconds) to service a transfer completion
interrupt and initiate a new transfer on the same disk. It is used to decide how much
rotational spacing to place between successive blocks in a file.

-e maxbpg

This indicates the maximum number of blocks any single file can allocate out of a
cylinder group before it is forced to begin allocating blocks from another cylinder
group. Typically this value is set to about one quarter of the total blocks in a cylinder
group. The intent is to prevent any single file from using up all the blocks in a single
cylinder group, thus degrading access times for all files subsequently allocated in that
cylinder group. The effect of this limit is to cause big files to do long seeks more fre-
quently than if they were allowed to allocate all the blocks in a cylinder group before
seeking elsewhere. For file systems with exclusively large files, this parameter should
be set higher.

-m minfree

This value specifies the percentage of space held back from normal users; the
minimum free space threshold. The default value used is 10%. This value can be set
to zero, however up to a factor of three in throughput will be lost over the perfor-
mance obtained at a 10% threshold. Note that if the value is raised above the current
usage level, users will be unable to allocate files until enough files have been deleted to
get under the higher threshold.

-0 optimization preference

SEE ALSO

The file system can either try to minimize the time spent allocating blocks, or it can
attempt minimize the space fragmentation on the disk. If the value of minfree (see
above) is less than 10%, then the file system should optimize for space to avoid run-
ning out of full sized blocks. For values of minfree greater than or equal to 10%, frag-
mentation is unlikely to be problematical, and the file system can be optimized for
time.

fs(5), newfs(8), mkfs(8)

M. McKusick, W. Joy, S. Leffler, R. Fabry, “A Fast File System for UNIX”, ACM Transac-
tions on Computer Systems 2, 3. pp 181-197, August 1984. (reprinted in the System
Manager’s Manual, SMM:14)

BUGS

This program should work on mounted and active file systems. Because the super-block is
not kept in the buffer cache, the changes will only take effect if the program is run on
dismounted file systems. To change the root file system, the system must be rebooted after

4.2 Berkeley Distribution May 22, 1986 1

TUNEFS(8) UNIX Programmer’s Manual TUNEFS(8)

the file system is tuned.
You can tune a file system, but you can’t tune a fish.

4.2 Berkeley Distribution May 22, 1986 2

UPDATE(8) UNIX Programmer’s Manual UPDATE(8)

NAME

update - periodically update the super block
SYNOPSIS

/etc/update
DESCRIPTION

Update is a program that executes the sync(2) primitive every 30 seconds. This insures that
the file system is fairly up to date in case of a crash. This command should not be executed
directly, but should be executed out of the initialization shell command file.

SEE ALSO
sync(2), sync(8), init(8), rc(8)

BUGS
With update running, if the CPU is halted just as the sync is executed, a file system can be
damaged. This is partially due to DEC hardware that writes zeros when NPR requests fail. A
fix would be to have sync(8) temporarily increment the system time by at least 30 seconds to
trigger the execution of update. This would give 30 seconds grace to halt the CPU.

7th Edition April 27, 1985 1

UUCICO(8C) UNIX Programmer’s Manual UUCICO(8C)

NAME
uucico, uucpd - transfer files queued by uucp or uux

SYNOPSIS
/usr/lib/uucp/uucico [—-dspooldir | [-ggrade 1 [-rrole] [-R] [-ssystem] [-xdebug 1[-L] [
—tturnaround |

/etc/uucpd

DESCRIPTION
Uucico performs the actual work involved in transferring files between systems. Uucp(1C) and
uux(1C) merely queue requests for data transfer which uucico processes.

The following options are available.

-dspooldir
Use spooldir as the spool directory. The default is /ust/spool/uucp.

—ggrade Only send jobs of grade grade or higher this transfer. The grade of a job is specified
when the job is queued by uucp or uux.

-rrole role is either 1 or 0; it indicates whether wuucico is to start up in master or slave role,
respectively. 1 is used when running uucico by hand or from cron(8). 0 is used when
another system calls the local system. Slave role is the default.

-R Reverse roles. When used with the -r1 option, this tells the remote system to begin
sending its jobs first, instead of waiting for the local machine to finish.

-ssystem
Call only system system. If -s is not specified, and -rl is specified, uucico will
attempt to call all systems for which there is work. If -s is specified, a call will be
made even if there is no work for that system. This is useful for polling.

—xdebug
Turn on debugging at level debug. Level 5 is a good start when trying to find out
why a call failed. Level 9 is very detailed. Level 99 is absurdly verbose. If role is 1
(master), output is normally written to the standard message output stderr. If stderr
is unavailable, output is written to /usr/spool/uucp/AUDIT/system. When role is 0
(slave), debugging output is always written to the AUDIT file.

-L Only call “local” sites. A site is considered local if the device-type field in L.sys is
one of LOCAL, DIR or TCP.
~tturnaround

Use turnaround as the line turnaround time (in minutes) instead of the default 30. If
turnaround is missing or 0, line turnaround will be disabled. After uucico has been
running in slave role for turnaround minutes, it will attempt to run in master role by
negotiating with the remote machine. In earlier versions of uucico, a transfer of
many large files in one direction would hold up mail going in the other direction.
With the turnaround code working, the message flow will be more bidirectional in
the short term. This option only works with newer uucico’s and is ignored by older
ones.

If uucico receives a SIGFPE (see kill(1)), it will toggle the debugging on or off.

Uucpd is the server for supporting uucp connections over networks. Uucpd listens for service
requests at the port indicated in the “uucp” service specification; see services(5). The server
provides login name and password authentication before starting up uucico for the rest of the
transaction.

Uucico is commonly used either of two ways: as a daemon run periodically by cron(8) to call
out to remote systems, and as a “shell” for remote systems who call in. For calling out

4.3 Berkeley Distribution May 15, 1986 1

UUCICO(8C) UNIX Programmer’s Manual UUCICO(8C)

periodically, a typical line in crontab would be:
0 . * . * /usr/lib/uucp/uucico -rl

This will run uucico every hour in master role. For each system that has transfer requests
queued, uucico calls the system, logs in, and executes the transfers. The file L.sys(5) is con-
sulted for information about how to log in, while L-devices(5) specifies available lines and
modems for calling.

For remote systems to dial in, an entry in the passwd(5) file must be created, with a login
“shell” of uucico. For example:

nuucp:Password:6: 1 ::/usr/spool/uucppublic:/usr/lib/uucp/uucico

The UID for UUCP remote logins is not critical, so long as it differs from the UUCP Admin-
istrative login. The latter owns the UUCP files, and assigning this UID to a remote login
would be an extreme security hazard.

FILES
fusr/lib/uucp/ UUCP internal files/utilities
Jusr/lib/uucp/L-devices Local device descriptions
fusr/lib/uucp/L-dialcodes Phone numbers and prefixes
/usr/lib/uucp/L.aliases Hostname aliases
/Jusr/lib/uucp/L.cmds Remote command permissions list
/ust/lib/uucp/L.sys Host connection specifications
fusr/lib/uucp/USERFILE Remote directory tree permissions list
lusr/spool/uucp/ Spool directory
/usr/spool/uucp/AUDIT/» Debugging audit trails
/usr/spool/uucp/C./ Control files directory
/usr/spool/uucp/D./ Incoming data file directory
fusr/spool/uucp/D.hostname/ Outgoing data file directory
lusr/spool/uucp/D.hostnameX/ Outgoing execution file directory
fusr/spool/uucp/CORRUPT/ Place for corrupted C. and D. files
fusr/spool/uucp/ERRLOG UUCP internal error log
/usr/spool/uucp/LOGFILE UUCEP system activity log
fusr/spool/uucp/LCK/LCK..» Device lock files
lusr/spool/uucp/SYSLOG File transfer statistics log
/usr/spool/uucp/STST/» System status files
fusr/spool/uucp/TM./ File transfer temp directory
lusr/spool/uucp/X./ Incoming execution file directory
/usr/spool/uucppublic Public access directory

SEE ALSO

uucp(1C), uuq(1C), uux(1C), L-devices(5), L-dialcodes(5), L.aliases(5), L.cmds(5), L.sys(5),
uuclean(8C), uupoll(8C), uusnap(8C), uuxqt(8C)

D. A. Nowitz and M. E. Lesk, 4 Dial-Up Network of UNIX Systems.
D. A. Nowitz, Uucp Implementation Description.

4.3 Berkeley Distribution May 15, 1986 2

UUCLEAN(8C) UNIX Programmer’s Manual UUCLEAN (8C)

NAME

uuclean - uucp spool directory clean-up

SYNOPSIS

/usr/lib/uucp/uuclean [-m] [-ntime] [-ppre]

DESCRIPTION

FILES

Uuclean will scan the spool directory for files with the specified prefix and delete all those
which are older than the specified number of hours.

The following options are available.
—-ppre Scan for files with pre as the file prefix. Up to 10 —p arguments may be specified.

-ntime Files whose age is more than time hours will be deleted if the prefix test is satisfied.
(default time is 72 hours)

-m Send mail to the owner of the file when it is deleted.

~dsubdirectory
Only the specified subdirectory will be cleaned.

This program will typically be run daily by cron(8).

fusr/spool/uucp Spool directory

SEE ALSO

uucp(1C), uux(1C), uucico(8C)

4.2 Berkeley Distribution April 24, 1986 1

UUPOLL(8C) UNIX Programmer’s Manual ‘UUPOLL(8C)

NAME

uupoll - poll a remote UUCP site

SYNOPSIS

uupoll [-ggrade] [—n] system

DESCRIPTION

Uupoll is used to force a poll of a remote system. It queues a null job for the remote system
and then invokes uucico(8C).

The following options are available:
—ggrade Only send jobs of grade grade or higher on this call.
-n Queue the null job, but do not invoke uucico.

Uupoll is usually run by cron(5) or by a user who wants to hurry a job along. A typical entry
in crontab could be:

0 0,8,16 * * * /usr/bin/uupoll ihnp4

0 4,12,20 = * * /usr/bin/uupoll ucbvax
This will poll ihnp4 at midnight, 0800, and 1600, and ucbvax at 0400, noon, and 2000.
If the local machine is already running uucico every hour and has a limited number of outgo-
ing modems, a more elegant approach might be:

0 0,8,16 =* * * /usr/bin/uupoll -n ihnp4
0 4,12,20 * * /usr/bin/uupoll -n ucbvax
5 * * * * /usr/lib/uucp/uucico -rl

This will queue null jobs for the remote sites at the top of hour; they will be processed by
uucico when it runs five minutes later.

FILES
/usr/lib/uucp/ UUCEP internal files/utilities
/usr/spool/uucp/ Spool directory

SEE ALSO

uucp(1C), uux(1C), uucico(8C)

4.3 Berkeley Distribution April 24, 1986 1

UUSNAP (8C) UNIX Programmer’s Manual UUSNAP(8C)

NAME
uusnap - show snapshot of the UUCP system

SYNOPSIS
uusnap

DESCRIPTION
Uusnap displays in tabular format a synopsis of the current UUCP situation. The format of
each line is as follows:

sitet NCmds N Data N Xqts Message
Where “site” is the name of the site with work, "N" is a count of each of the three possible

types of work (command, data, or remote execute), and "Message" is the current status mes-
sage for that site as found in the STST file.

Included in "Message” may be the time left before UUCP can re-try the call, and the count of
the number of times that UUCP has tried (unsuccessfully) to reach the site.

SEE ALSO
uucp(1C), uux(1C), uug(1C), uucico(8C)
UUCP Implementation Guide

4.2 Berkeley Distribution April 24, 1986 1

UUXQT(8C) UNIX Programmer’s Manual UUXQT(8C)

NAME
uuxqt - UUCP execution file interpreter

SYNOPSIS
/usr/lib/uucp/uuxqt [-xdebug]

DESCRIPTION
Uuxqt interprets execution files created on a remote system via uux(1C) and transferred to the
local system via uucico(8C). When a user uses uux to request remote command execution, it
is uuxqt that actually executes the command. Normally, uuxgt is forked from uucico to pro-
cess queued execution files; for debugging, it may also be run manually by the UUCP adminis-
trator.

Uuxgt runs in its own subdirectory, /usr/spool/uucp/XTMP. It copies intermediate files to
this directory when necessary.

FILES
/usr/lib/uucp/L.cmds Remote command permissions list
/usr/lib/uucp/USERFILE Remote directory tree permissions list
/usr/spool/uucp/LOGFILE UUCP system activity log
fusr/spool/uucp/LCK/LCK.XQT Uuxqt lock file
/usr/spool/uucp/X./ Incoming execution file directory
/usr/spool/uucp/XTMP Uuxgqt running directory

SEE ALSO

uucp(1C), uux(1C), L.cmds(5), USERFILE(S), uucico(8C)

4.3 Berkeley Distribution April 24, 1986 1

VIPW (8) UNIX Programmer’s Manual VIPW (8)

NAME
vipw - edit the password file

SYNOPSIS
vipw

DESCRIPTION
Vipw edits the password file while setting the appropriate locks, and does any necessary pro-
cessing after the password file is unlocked. If the password file is already being edited, then
you will be told to try again later. The vi editor will be used unless the environment variable
EDITOR indicates an alternate editor. Vipw performs a number of consistency checks on the
password entry for root, and will not allow a password file with a “mangled” root entry to be
installed.

SEE ALSO
passwd(1), passwd(5), adduser(8), mkpasswd(8)

FILES
/etc/ptmp

4th Berkeley Distribution May 19, 1986 1

XNSROUTED(8C) UNIX Programmer’s Manual XNSROUTED (8C)

NAME

XNSrouted - NS Routing Information Protocol daemon
SYNOPSIS

/etc/XNSrouted [-s] [-q] [-t] [logfile]
DESCRIPTION

XNSrouted is invoked at boot time to manage the Xerox NS routing tables. The NS routing
daemon uses the Xerox NS Routing Information Protocol in maintaining up to date kernel
routing table entries.

In normal operation XNSrouted listens for routing information packets. If the host is con-
nected to multiple NS networks, it periodically supplies copies of its routing tables to any
directly connected hosts and networks.

When XNSrouted is started, it uses the SIOCGIFCONEF joct! to find those directly connected
interfaces configured into the system and marked “up” (the software loopback interface is
ignored). If multiple interfaces are present, it is assumed the host will forward packets
between networks. XNSrouted then transmits a request packet on each interface (using a
broadcast packet if the interface supports it) and enters a loop, listening for request and
response packets from other hosts.

When a request packet is received, XNSrouted formulates a reply based on the information
maintained in its internal tables. The response packet generated contains a list of known
routes, each marked with a ‘“hop count” metric (a count of 16, or greater, is considered
“infinite””). The metric associated with each route returned provides a metric relative to the
sender.

Response packets received by XNSrouted are used to update the routing tables if one of the
following conditions is satisfied:

(1) No routing table entry exists for the destination network or host, and the metric indi-
cates the destination is “reachable” (i.e. the hop count is not infinite).

) The source host of the packet is the same as the router in the existing routing table
entry. That is, updated information is being received from the very internetwork
router through which packets for the destination are being routed.

3) The existing entry in the routing table has not been updated for some time (defined to
be 90 seconds) and the route is at least as cost effective as the current route.

4) The new route describes a shorter route to the destination than the one currently
stored in the routing tables; the metric of the new route is compared against the one
stored in the table to decide this.

When an update is applied, XNSrouted records the change in its internal tables and generates
a response packet to all directly connected hosts and networks. Routed waits a short period of
time (no more than 30 seconds) before modifying the kernel’s routing tables to allow possible
unstable situations to settle.

In addition to processing incoming packets, XNSrouted also periodically checks the routing
table entries. If an entry has not been updated for 3 minutes, the entry’s metric is set to
infinity and marked for deletion. Deletions are delayed an additional 60 seconds to insure
the invalidation is propagated to other routers.

Hosts acting as internetwork routers gratuitously supply their routing tables every 30 seconds
to all directly connected hosts and networks.

Supplying the —s option forces XNSrouted to supply routing information whether it is acting
as an internetwork router or not. The -q option is the opposite of the -s option. If the -t
option is specified, all packets sent or received are printed on the standard output. In addi-
tion, XNSrouted will not divorce itself from the controlling terminal so that interrupts from

4.3 Berkeley Distribution June 3, 1986 1

XNSROUTED (8C) UNIX Programmer’s Manual XNSROUTED(8C)

the keyboard will kill the process. Any other argument supplied is interpreted as the name of
file in which XNSrouted’s actions should be logged. This log contains information about any
changes to the routing tables and a history of recent messages sent and received which are
related to the changed route.

SEE ALSO
“Internet Transport Protocols”, XSIS 028112, Xerox System Integration Standard.
idp(4P)

4.3 Berkeley Distribution June 3, 1986 2

Installing and Operating 4.3BSD on the VAX SMM:1-1

Installing and Operating 4.3BSD on the VAX
April 1, 1986

Michael J. Karels
James M. Bloom
Marshall Kirk McKusick
Samuel J. Leffler
William N. Joy

Computer Systems Research Group
Department of Electrical Engineering and Computer Science
University of California, Berkeley
Berkeley, California 94720
(415) 642-7780

ABSTRACT

This document contains instructions for the installation and operation of the
4.3BSD release of the VAX* UNIX** system, as distributed by The University of
California at Berkeley.

It discusses procedures for installing UNIX on a new VAX, and for upgrading
an existing 4.2BSD VAX UNIX system to the new release. An explanation of how
to lay out file systems on available disks, how to set up terminal lines and user
accounts, and how to do system-specific tailoring is provided. A description of how
to install and configure the networking facilities included with 4.3BSD is included.
Finally, the document details system operation procedures: shutdown and startup,
hardware error reporting and diagnosis, file system backup procedures, resource con-
trol, performance monitoring, and procedures for recompiling and reinstalling sys-
tem software.

* DEC, VAX, IDC, SBI, UNIBUS and MASSBUS are trademarks of Digital Equipment Corporation.
** UNIX is a Trademark of Bell Laboratories.

April 16, 1986

SMM:1-2 Installing and Operating 4.3BSD on the VAX

1. INTRODUCTION

This document explains how to install the 4.3BSD release of the Berkeley version of UNIX for
the VAX on your system. Because of the file system organization used in 4.3BSD, if you are not
currently running 4.2BSD you will have to do a full bootstrap from the distribution tape. The pro-
cedure for performing a full bootstrap is outlined in chapter 2. The process includes booting stan-
dalone utilities from tape to format a disk if necessary, then to copy a small root filesystem image
onto a swap area. This filesystem is then booted and used to extract a dump of a standard root
filesystem. Finally, that root filesystem is booted, and the remainder of the system binaries and
sources are read from the archives on the tape(s).

The technique for upgrading a 4.2BSD system is described in chapter 3 of this document. As
4.3BSD is upward-compatible with 4.2BSD, The upgrade procedure involves extracting a new set of
system binaries onto new root and /usr filesystems. The sources are then extracted, and local
configuration files are merged into the new system. 4.2BSD user filesystems may up upgraded in
place, and 4.2BSD binaries may be used with 4.3BSD in the course of the conversion. It is desirable
to recompile most local software after the conversion, as there are many changes and performance
improvements in the standard libraries.

1.1. Hardware supported

This distribution can be booted on a VAX 8650, VAX 8600, VAX-11/785, VAX-11/780, VAX-
11/750, VAX-11/730 or VAX-11/725 cpu with any of the following disks:

DEC MASSBUS: RMO03, RM05, RM80, RP06, RP07
EMULEX MASSBUS: AMPEX Capricorn, 9300, CDC 9766, 9775,
FUJITSU 2351 Eagle

DEC UNIBUS: RKO07, RL0O2, RA80, RA81, RA60, RC25

EMULEX SC-21V, SC-31 AMPEX DM980, Capricorn, 9300,
UNIBUS*: CDC 9762, 9766, FUJITSU 160M, 330M

EMULEX SC-31 UNIBUS*: FUJITSU 2351 Eagle

DEC IDC: R80, RL02

The tape drives supported by this distribution are:

DEC MASSBUS: TE16, TU4S, TU77, TU78
EMULEX MASSBUS: TC-7000

DEC UNIBUS: TS11, TU80

EMULEX TC-11, AVIV UNIBUS: KENNEDY 9300, STC, CIPHER
TU45 UNIBUS*: S1 9700

The tapes and disks may be on any available UNIBUS or MASSBUS adapter at any slot with
the proviso that the tape device must be slave number 0 on the formatter if it is a MASSBUS tape
drive.

This distribution does not support the DEC CI780 or the HSC50 disk controller. As such, this
distribution will not boot on the standard VAX 8600 and VAX 8650 cluster configurations. You will
need to configure your system to use only UNIBUS and MASSBUS disk and tape devices.

* Other UNIBUS controllers and drives may be easily usable with the system, but will likely require minor
modifications to the system to allow bootstrapping. The EMULEX disk and SI tape controllers, and the
drives shown here are known to work as bootstrap devices.

April 16, 1986

Installing and Operating 4.3BSD on the VAX SMM:1-3

1.2. Distribution format
The basic distribution contains the following items:

(3) 1600bpi 2400’ magnetic tapes, or
(1) 6250bpi 2400’ magnetic tape, and
(1) TUS58 console cassette, and

(1) RXO0I console floppy disk.

Installation on any machine requires a tape unit. Since certain standard VAX packages do not include
a tape drive, this means one must either borrow one from another VAX system or one must be pur-
chased separately. The console media distributed with the system are not suitable for use as the stan-
dard console media; their intended use is only for installation.

The distribution does not fit on several standard YAX configurations that contain only small disks.
If your hardware configuration does not provide at least 75 Megabytes of disk space you can still
install the distribution, but you will probably have to operate without source for the user level com-
mands and, possibly, the source for the operating system. The RKO07-conly distribution format once
provided by our group is no longer available. Further, no attempt has ever been made to install the
system on the standard VAX-11/730 hardware configuration from DEC that contains only dual RL02
disk drives (though the distribution tape may be bootstrapped on an RL211 controller and the system
provides support for RLO2 disk drives either on an IDC or an RL211). The labels on the distribution
tape(s) show the amount of disk space each tape file occupies, these should be used in selecting file
system layouts on systems with little disk space.

If you have the facilities, it is a good idea to copy the magnetic tape(s) in the distribution kit to
guard against disaster. The tapes are 9-track 1600 BPI or 6250 BPI and contain some 512-byte
records followed by many 10240-byte records. There are interspersed tape marks; end-of-tape is sig-
naled by a double end-of-file.

The basic bootstrap material is present in three short files at the beginning of the first tape. The
first file on the tape contains preliminary bootstrapping programs. This is followed by a binary image
of a 2 megabyte “mini root” file system. Following the mini root file is a full dump of the root file
system (see dump(8)*). Additional files on the tape(s) contain tape archive images (see tar(1)). See
Appendix A for a description of the contents and format of the tape(s). One file contains software
contributed by the user community; refer to the accompanying documentation for a description of its
contents and an explanation of how it should be installed.

1.3. VAX hardware terminology

This section gives a short discussion of VAX hardware terminology to help you get your bear-
ings.

If you have MASSBUS disks and tapes it is necessary to know the MASSBUS that they are
attached to, at least for the purposes of bootstrapping and system description. The MASSBUSes can
have up to 8 devices attached to them. A disk counts as a device. A tape formatter counts as a dev-
ice, and several tape drives may be attached to a formatter. If you have a separate MASSBUS
adapter for a disk and one for a tape then it is conventional to put the disk as unit 0 on the
MASSBUS with the lowest “TR” number, and the tape formatter as unit 0 on the next MASSBUS.
On a 11/780 this would correspond to having the disk on “mba0” at “tr8” and the tape on “mbal”
at “tr9”. Here the MASSBUS adapter with the lowest TR number has been called “mba0” and the
one with the next lowest number is called “mbal”.

To find out the MASSBUS that your tape and disk are on you can examine the cabling and the
unit numbers or your site maintenance guide. Do not be fooled into thinking that the number on the
front of the tape drive is a device number; it is a slave number, one of several possible tapes on the
single tape formatter. For bootstrapping, the slave number must be 0. The formatter unit number

* References of the form X(Y) mean the subsection named X in section Y of the UNIX programmer’s
manual.

April 16, 1986

SMM:1-4 Installing and Operating 4.3BSD on the VAX

may be anything distinct from the other numbers on the same MASSBUS, but you must know what it
is.

The MASSBUS devices are known by several different names by DEC software and by UNIX.
At various times it is necessary to know both names. There is, of course, the name of the device like
“RMO03” or “RM80”; these are easy to remember because they are printed on the front of the device.
DEC also names devices based on the driver name in the system using a convention that reflects the
interconnect topology of the machine. The first letter of such a name is a “D” for a disk, the second
letter depends on the type of the drive, “DR” for RM03, RMO0S5, and RM80’s, “DB” for RP06’s. The
next letter is related to the interconnect; DEC calls the first MASSBUS or UNIBUS adapter “A”, the
second “B”, etc. Thus, “DRA” is a RM drive on the first MASSBUS adapter. Finally, the name
ends in a digit corresponding to the unit number for the device on the MASSBUS, i.e. “DRAO” is a
disk at the first device slot on the first MASSBUS adapter and is an RM disk.

1.4. UNIX device naming

UNIX has a set of names for devices which are different from the DEC names for the devices,
viz.:

RM/RP disks hp
TE/TU tapes ht
TU78 tape mt

The normal standalone system, used to bootstrap the full UNIX system, uses device names:
xx(y,z)

where xx is either hp, ht, or mt. The value y specifies the MASSBUS to use and also the device. It is
computed as

8 * mba + device

Thus mba0 device 0 would have a y value of 0 while mbal device 0 would have a y value of 8. The z
value is interpreted differently for tapes and disks: for disks it is a disk partition (in the range 0-7),
and for tapes it is a file number on the tape.

Each UNIX physical disk is divided into 8 logical disk partitions, each of which may occupy
any consecutive cylinder range on the physical device. The cylinders occupied by the 8 partitions for
each drive type are specified in section 4 of the programmers manual and in the disk description file
/etc/disktab (c.f. disktab(5)).* Each partition may be used for either a raw data area such as a paging
area or to store a UNIX file system. It is conventional for the first partition on a disk to be used to
store a root file system, from which UNIX may be bootstrapped. The second partition is traditionally
used as a paging area, and the rest of the disk is divided into spaces for additional “mounted file sys-
tems” by use of one or more additional partitions.

The third logical partition of each physical disk also has a'conventional usage: it allows access to
the entire physical device, including the bad sector forwarding information recorded at the end of the
disk (one track plus 126 sectors). It is occasionally used to store a single large file system or to access
the entire pack when making a copy of it on another. Care must be taken when using this partition
not to overwrite the last few tracks and thereby clobber the bad sector information.

The disk partitions have names in the standalone system of the form “hp(y,z)” with varying y as
described above. Thus partition 1 of a RM05 on mba0 at drive 0 would be “hp(0,1)”. When not
running standalone, this partition would normally be available as ‘“/dev/hpOb”. Here the prefix
“/dev” is the name of the directory where all “special files” normally live, the “hp’’ serves an obvious

* It is possible to change the partitions by changing the code for the table in the disk driver; it is often

desirable to do this, therefore these tables should be read off each pack; they may be in a future version of
the system.

April 16, 1986

Installing and Operating 4.3BSD on the VAX SMM:1-5

purpose, the “0” identifies this as a partition of hp drive number “0” and the “b” identifies this as
the second partition.

In all simple cases, a drive with unit number O (in its unit plug on the front of the drive) will be
called unit O in its UNIX file name. This is not, however, strictly necessary, since the system has a
level of indirection in this naming. If there are multiple controllers, the disk unit numbers will nor-
mally be counted sequentially across controllers. This can be taken advantage of to make the system
less dependent on the interconnect topology, and to make reconfiguration after hardware failure
extremely easy. We will not discuss that now.

Returning to the discussion of the standalone system, we recall that tapes also took two integer
parameters. In the normal case where the tape formatter is unit O on the second mba (mbal), the
files on the tape have names “ht(8,0)”, “ht(8,1)”, etc. Here “file” means a tape file containing a sin-
gle data stream. The distribution tape(s) have data structures in the tape files and though the tape(s)

contain only 9 tape files, they contain several thousand UNIX files.

For the UNIBUS, there are also conventional names. The important DEC names to know are
DM?? for RKO7 drives and DU?? for drives on a UDAS50. For example, RK07 drive 0 on a con-
troller on the first UNIBUS on the machine is “DMAQ”. UNIX calls such a device an “hk” and the
standalone name for the first partition of such a device is “hk(0,0)”. The first number is calculated
from the drive number and UNIBUS adapter as

8 * uba + drive
If the controller were on the second UNIBUS its name would be “hk(8,0)”. If we wished to access
the first partition of an RK07 drive 1 on uba0 we would use “hk(1,0)”.
The UNIBUS disk and tape names used by UNIX are:

RK disks hk
TS tapes ts
UDA disks ra
RC25 disks ra

IDC disks rb
SMD disks up
TM tapes tm
TMSCP tapes tmscp
TU tapes ut

Here SMD disks are disks on an RM-emulating controller on the UNIBUS, and TM tapes are
tapes on a controller that emulates the DEC TM11. TU tapes are tapes on a UNIBUS controller that
emulates the DEC TU45. IDC disks are disks on an 11/730 Integral Disk Controller. TS tapes are
tapes on a controller compatible with the DEC TS11 (e.g. a TU80). The naming conventions for
partitions in UNIBUS disks and files in UNIBUS tapes are the same as those for MASSBUS disks
and tapes.

1.5. UNIX devices: block and raw

UNIX makes a distinction between “block” and “raw” (character) devices. Each disk has a
block device interface where the system makes the device byte addressable and you can write a single
byte in the middle of the disk. The system will read out the data from the disk sector, insert the byte
you gave it and put the modified data back. The disks with the names ‘““/dev/xx0a”, etc are block
devices. There are also raw devices available. These have names like “/dev/rxx0a”, the “r” here
standing for “raw”. Raw devices bypass the buffer cache and use DMA directly to/from the
program’s I/O buffers; they are normally restricted to full-sector transfers. In the bootstrap pro-
cedures we will often suggest using the raw devices, because these tend to work faster. Raw devices
are used when making new filesystems, when checking unmounted filesystems, or for copying quies-
cent filesystems. The block devices are used to mount file systems, or when operating on a mounted
filesystem such as the root.

April 16, 1986

SMM:1-6 Installing and Operating 4.3BSD on the VAX

You should be aware that it is sometimes important whether to use the character device (for
efficiency) or not (because it wouldn’t work, e.g. to write a single byte in the middle of a sector).
Don’t change the instructions by using the wrong type of device indiscriminately.

April 16, 1986

Installing and Operating 4.3BSD on the VAX SMM:1-7

2. BOOTSTRAP PROCEDURE

This section explains the bootstrap procedure that can be used to get the kernel supplied with
this distribution running on your machine. If you are not currently running 4.2BSD you will have to
do a full bootstrap. Chapter 3 describes how to upgrade an existing 4.2BSD system. An understand-
ing of the operations used in a full bootstrap is very helpful in performing an upgrade as well. In
either case, it is highly desirable to read and understand the remainder of this document before
proceeding.

2.1. Converting pre-4.2BSD Systems

The file system format was changed between 3BSD and 4.0BSD, and again between 4.1BSD and
4.2BSD. At a minimum you will have to dump your old file systems, and then restore them onto the
4.3BSD file system. Sites running 3BSD or 32/V may be able to modify the restore program to under-
stand the old 512 byte block file system, but this has never been tried. The dump format used in
4.0BSD and 4.1BSD is backward-compatible with that used in 4.3BSD (which is unchanged from
4.2BSD). That is, the 4.3BSD restore program understands how to read 4.0BSD and 4.1BSD dump
tapes, although 4.3BSD dump tapes cannot be restored under 4.0BSD or 4.1BSD. It is also desirable
to make a convenient copy of system configuration files for use as guides when setting up the new sys-
tem; the list of files to save from 4.2BSD systems in chapter 3 may be used as a guideline.

The first step is to dump your file systems with dump(8). For the utmost of safety this should
be done to magtape. However, if you enjoy gambling with your life (or you have a VERY friendly
user community) and you have enough disk space, you can try converting your file systems while
copying to a new disk partition by piping the output of dump directly into restore after bringing up
4.3BSD. If you select the latter tack, a version of the 4.1BSD dump program that runs under 4.3BSD
is provided in /etc/dump.4.1. Beware that file systems created under 4.3BSD can use about 5-10%
more disk space for file system related information than under 4.1BSD. Thus, before dumping each
file system it is a gocd idea to remove any files that may be easily regenerated. Since most all pro-
grams will likely be recompiled under the new system your best bet is to remove any object files. File
systems with at least 10% free space on them should restore into an equivalently sized 4.3BSD file
system without problem.

2.2. Booting from tape

The tape bootstrap procedure used to create a working system involves the following major
steps:

1) Format a disk pack with the format program.

2) Copy a “mini root” file system from the tape onto the swap area of the disk.
3) Boot the UNIX system on the “mini root”.

4) Restore the full root file system using restore(8).

5) Build a console floppy, cassette, or RL02 pack for bootstrapping.

6) Reboot the completed root file system.

7) Build and restore the /usr file system from tape with tar(1).

8) Extract the system and utility files and contributed software as desired.

Certain of these steps are dependent on your hardware configuration. Formatting the disk pack
used for the root file system may require using the DEC standard formatting programs. Also, if you
are bootstrapping the system on an 11/750, no console cassette is created.

Bootstrapping an 8650 or 8600 is a bit more difficult than bootstrapping the other machines.
The procedures for loading the toggle program and reading the tape bootstrap monitor described in
Appendix B must be used if you do not have access to a console RL02 pack with a UNIX bootstrap.
Such a pack may be made on an 8600 already running UNIX, or on another 4.3BSD system with an

April 16, 1986

SMM:1-8 Installing and Operating 4.3BSD on the VAX

RLO2 drive using the procedures in 4.1.1. One may be required to enter the toggle program more
than once. After the bootstrap monitor is loaded, device addresses will be the same as if the machine
were an 11/780 or 11/785.

The following sections describe the above steps in detail. In these sections references to disk
drives are of the form xx(n,m) and references to files on tape drives are of the form yy(n,m) where xx
and yy are names described in section 1.4 and »n and m are the unit and offset numbers described in
section 1.4. Commands you are expected to type are shown in Roman, while that information
printed by the system is shown emboldened. Throughout the installation steps the reboot switch on
an 11/785, 11/780 or 11/730 should be set to off; on an 8650, 8600 or 11/750 set the power-on action
to halt. (In normal operation an 11/785, 11/780 or 11/730 will have the reboot switch on and an
8650, 8600 or 11/750 will have the power-on action set to reboot/restart.)

If you encounter problems while following the instructions in this part of the document, refer to
Appendix C for help in troubleshooting.

2.2.1. Step 1: formatting the disk

All disks used with 4.3BSD should be formatted to insure the proper handling of physically cor-
rupted disk sectors. If you have DEC disk drives, you should use the standard DEC formatter to for-
mat your disks. If not, the format program included in the distribution, or a vendor supplied format-
ting program, may be used to format disks. The format program is capable of formatting any of the
following supported distribution devices:

EMULEX MASSBUS: AMPEX Capricorn, 9300, CDC 9766, 9775,
FUJITSU 330M, 2351 Eagle
EMULEX SC-21V, SC-31 AMPEX 9300, Capricorn, CDC 9730, 9766,
UNIBUS: FUJITSU 160M, 330M
EMULEX SC-31 UNIBUS: FUJITSU 2351 Eagle

If you have run a pre-4.1BSD version of UNIX on the packs you are planning to use for
bootstrapping it is likely that the bad sector information on the packs has been destroyed, since it was
accessible as normal data in the last several tracks of the disk. You should therefore run the for-
matter again to make sure the information is valid.

On an 11/750, to use a disk pack as a bootstrap device, sectors 0 through 15, the disk sectors in
the file “/boot” (the program that loads the system image), and the file system indices that lead to this
file must not have any errors. On an 8650, 8600, 11/785, 11/780 or 11/730, the “boot” program is
loaded from the console medium and includes device drivers for the “hp” and ‘“up” disks that do
ECC correction and bad sector forwarding; consequently, on these machines the system may be
bootstrapped on these disks even if the disk is not error free in critical locations. In general, if the
first 15884 sectors of your disk are clean you are safe; if not you can take your chances.

To load the format program, insert the distribution TU58 cassette or RX01 floppy disk in the
appropriate console device (on the 11/730 use cassette 0) and do the following steps.

If you have an 8650 or 8600 start the bootstrap monitor using the procedure described in
Appendix B. Then give the command:

= format

If you have an 11/785 or 11/780 give the commands:

>>>HALT
>>>UNJAM

>>> INIT
>>>LOAD FORMAT
>>>START 2

April 16, 1986

Installing and Operating 4.3BSD on the VAX SMM:1-9

If you have an 11/750 give the commands:

>>>1
>>>B DDAO
= format

If you have an 11/730 give the commands:

>>>H

>>>1

>>>L DD0:FORMAT
>>>82

The format program should now be running and awaiting your input:
Disk format/check utility

Enable debugging (1=bse, 2=ecc, 3=bse+ecc)?

If you made a mistake loading the program off the TU58 cassette or using the bootstrap monitor
loaded for the 8650 or 8600 the “="" prompt should reappear and you can retype the program name.
If something else happened, you may have a bad distribution cassette or floppy, or your hardware
may be broken; refer to Appendix C for help in troubleshooting. If you are unable to load programs
off the distributed medium, consult Appendix B for an alternate (more painful) approach.

Format will create sector headers and verify the integrity of each sector formatted by using the
disk controller’s “write check” command. Remember format runs only on the up and hp drives listed
above. Format will prompt for the information required as shown below. Questions with default
answers appear with the default in parentheses at the prompt; a carriage return will take the default.
If you err in answering questions, “Delete” erases the last character typed, and ‘““U” erases the
current input line.

April 16, 1986

SMM:1-10 Installing and Operating 4.3BSD on the VAX

Enable debugging (0=none, 1=bse, 2=ecc, 3=bse+ecc)?
Device to format? xx(0,0)
...(the old bad sector table is read; ignore any errors that occur here)...
Formatting drive xx0 on adaptor 0: verify (yes/no)? yes
Device data: #cylinders=842, #tracks=20, #sectors=48
Starting cylinder (0):
Starting track (0):
Ending cylinder (841):
Ending track (19):
Available test patterns are:
1 - (f00f) RH750 worst case
2 - (ec6d) media worst case
3 - (a5a5) alternating 1’s and 0’s
4 - (fiff) Severe burnin (up to 48 passes)
Pattern (one of the above, other to restart)? 2
Maximum number of bit errors to allow for soft ECC (3):
Start formatting...make sure the drive is online
...(soft ecc’s and other errors are reported as they occur)...
...(if 4 write check errors were found, the program terminates like this)...
Errors:
Bad sector: 0
Write check: 4
Hard ECC: 0
Other hard: 0
Marked bad: 0
Skipped: 0
Total of 4 hard errors revectored.
Writing bad sector table at block 524256
...(524256 is the block # of the first block in the bad sector table)...
Done

Once the root d