CONFERENCE
PROCEEDINGS

USENIX
WINTER 1992
TECHNICAL

CONFERENCE

SAN FRANGISCO
JANUARY 20-24, 1992

s
768

vs4

1920w
c.3

USENIX Association

Proceedings of the
Winter 1992 USENIX Conference

XEROX PARC
[MENRMATION CENTER

January 20 — 24, 1992
San Francisco, California

a For additional copies of these proceedings write:

USENIX Association
2560 Ninth Street, Suite 215
Berkeley, CA 94710-2565 USA

The price is $30 for members and $39 for non-members.

Outside the USA and Canada, please add
$22 per copy for postage (via air printed matter).

Past USENIX Technical Conferences

1991 Summer Nashville 1987 Winter Washington, DC
1991 Winter Dallas 1986 Summer Atlanta

1990 Summer Anaheim 1986 Winter Denver

1990 Winter Washington, DC . 1985 Summer Portland

1989 Summer Baltimore 1985 Winter Dallas

1989 Winter San Diego 1984 Summer Salt Lake City
1988 Summer San Francisco 1984 Winter Washington, DC
1988 Winter Dallas 1983 Summer Toronto

1987 Summer Phoenix 1983 Winter San Diego

© 1991 Copyright by The USENIX Association
All Rights Reserved.
This volume is published as.a collectiverwork. * ¢ ', *
Rights to individual papers remain’ _ * _
;‘; mth thf lauthor or the author s employer R
UNIX is a reglstered trademark of UNIX System Laboratones
DEC and Ultrix are trademarsk of Digital Equipment Corp.
Ethernet is a trademeark of Xerox Corp.
Sun is a trademark of Sun Microsystems, Inc.
IBM-RT is a trademark of IBM Corp.
Other trademarks are noted in the text.

y

Printed in the United States of America on 50% recycled paper, 10-15% post-consumer waste.
® This book is printed on recycled paper.

TABLE OF CONTENTS

ACKNOWIEAZEMENLSccvccreieiiricrcrinnsnsacsiessssasssessessssassasassanssasssassasssnesessssasassnssasessen
Preface
Author Index .

Wednesday, January 22, 1992

8:30 - 10:00

10:30 - 12:00

1:30 - 3:00

3:30 - 5:00

Keynote Session
Chair: Eric Allman, University of California, Berkeley

Building the Open Road: The Internet as a Testbed
for the National Public NEtWOIKccccevessanerisesssesssssasasasonsesnansases
Mitch Kapor, Electronic Frontier Foundation ‘

Libraries
Chair: Greg Rose, IBM Thomas J. Watson Research Center
COLA: Customizing Overlaying

Eduardo Krell and Balachander Krishnamurthy,
AT&T Bell Laboratories, Murray Hill

LIBTP: Portable, Modular Transactions for UNIXccccceeererercennncsescenenenrsssnenee
Margo Seltzer and Michael Olson, University of California, Berkeley

Exploiting the Advantages of Mapped Files for Stream I/Occ.cceevvrerecrseererenrenens
Orran Krieger, Michael Stumm, and Ron Unrau, University of Toronto

File System Implementations
Chair: Andrew Birrell, Digital Equipment Corporation, Systems Research Center
The Episode File System

Sailesh Chutani, Owen T. Anderson MtchaelL Kazar Bruce W Leverett,
W. Anthony Mason, and Robert N. Sidebotham, Transarc Corporation

An Implementation of Large Files for BSD UNIX
Dave Shaver, Eric Schnoebelen, and George Bier,
CONVEX Computer Corporation

Storage Efficient Reliable Filesccceverrersrsnsasasearens
Walt Burkhard and Petar D. Stojadinovic, University of Calzforma San Dzego

Innovative Applications
Chair: Bob Gray, U S WEST Advanced Technologies

Multimedia Mail From the Bottom Up or Teaching Dumb Mailers to Sing
Nathaniel S. Borenstein, Bellcore

archie - An Electronic Directory Service for the Intemetcocoveeccrervenrnscsccssones
Alan Emtage and Peter Deutsch, McGill University

X Widget Based Software Tools for UNIXcccceimnviniseennensesssssassnscssssssssisesassene
Doug Blewett, Scott Anderson, Meg Kilduff, and Mike Wzsh
AT&T Bell Laboratories, Murray Hill

USENIX — Winter 92

vi

vi

27

43

61

69

79

93

111

Thursday, January 23, 1992

8:30 - 10:00

10:30 - 12:00

1:30 - 3:00

3:30 - 5:00

iv

Practicum
Chair: Rick Adams, UUNET Technologies, Inc.

Purify: Fast Detection of Memory Leaks and Access Errors

Reed Hastings and Bob Joyce, Pure Software

Creating MANs Using LAN Technology: Sometimes You Gotta Break
the Rules

Stanley P. Hanks, Technology Transfer Associates
Realtime Workstation Performance for MIDI

Robin Schaufler, Silicon Graphics, Inc.

Hacking and Cracking
Chair: David Rosenthal, SunSoft

agrep-A Fast Approximate Pattern-Matching Tool cerreseeneeseneasansananss

Sun Wu and Udi Manber, University of Arizona, Tucson

An Evening with Berferd in Which a Cracker is Lured, Endured, and Studied
Bill Cheswick, AT&T Bell Laboratories, Murray Hill

Hijacking AFS

P. Honeyman, L.B. Huston, and M.T. Stolarchuk, The University of Michigan,
Center for Information Technology Integration

UNIX Meets the Real World
Chair: Pat Parseghian, AT&T Bell Laboratories, Murray Hill .

An Information Bus Architecture for Large-Scale, Decision-Support

ENVIIONMENLSvooveerecrrecneracsansseseersncsssssessesssssessesssssasassssssssssnsssasssssssossasssasassoss

Dale Skeen, Teknekron Software Systems, Inc.

.......

Application Software: Product Management and Privileges
Bernard Wagner, Ciba-Geigy AG and Bruce K. Haddon,
Storage Technology Corporation

Applying Threads
Jay Littman, Hewlett-Packard

Hardware Issues
Chair: Thomas Ferrin, University of California, San Francisco

Open BOOL FITMWATEvovvesnsisnrvssmssssmsessonseressrsasasassereresasessnssasssassasesen

Mitch Bradley, Sun Microsystems Computer Corporation

Loge: A Self-Organizing Disk CONIOLIETccccorerenreneenrnsereencrerassnsssssesesanses

Robert M. English and Alexander A. Stepanov, Hewlett-Packard
How and Why SCSI is Better Than IPI for NFS

Bruce Nelson and Yu-Ping Cheng, Auspex Systems

125

439

139

153

163

175

183

197

209

223

237

253

USENIX — Winter 92

Friday, January 24, 1992

8:30 - 10:00

10:30 - 12:00

1:30 - 3:00

3:30 - 5:00

Load Balancing
Chair: Steve Johnson, Athenix

Process Control and Communication in Distributed CAD
Environments

Douglas Rosenthal, Wayne Ailen, and Kenneth Fiduk,
Microelectronics and Computer Technology Corporation

Supporting Checkpointing and Process Migration Outside the UNIX Kernel

Michael Litzkow and Marvin Solomon, University of Wisconsin, Madison

The OpenSim Approach — Tools for Management and Analysis
of Simulation Jobs

Matt W. Mutka and Philip K. McKinley, Michigan State University, East Lansing

Filesystem Performance
Chair: Brent Welch, Xerox PARC

Multi-level Caching in Distributed File Systems -or- your cache ain’t nuthin’
but trash

D. Muntz and P. Hon;ymn. }‘he University of Michigan, Center for lnfonnatior;m

Technology Integration

A Trace-Driven Analysis of Name and Attribute Caching
in a Distributed System

Ken W. Shirriff and John K. Ousterhout, University of California, Berkeley
NFS Tracing by Passive Network Monitoring

Matt Blaze, Princeton University

Scheduling
Chair: Teus Hagen, OCE

Issues in Implementation of Cache-Affinity Scheduling

Murthy Devarakonda and Arup Mukherjee, IBM T. J. Watson Research Center)
Control Considerations for CPU Scheduling in UNIX Systemsccccreevrsernennenees

Joseph L. Hellerstein, IBM T.J. Watson Research, Yorktown Heights
Realtime Scheduling in SunOS 5.0

Sandeep Khanna, Michael Sebree, and John Zolnowsky, SunSoft

Off the Beaten Track
Chair: Andrew Hume, AT&T Bell Laboratories, Murray Hill

Camels and Needles: Computer Poetry Meets the Perl Programming Language

Sharon Hopkins, Telos Corporation

3DFS: A TiMe-Oriented File SEIVETccccvscssersrecsssssrssssessssossssssssossessasssssssssssonsosss

W. D. Roome, AT&T Bell Laboratories, Murray Hill
Faster String Functions ...

Henry Spencer, University of Toronto

A History of the COSNIX Operating System: Assembly Language
UNIX 1970 to July 1991

Alan E. Kaplan, AT&T Bell Laboratories, Murray Hill

USENIX — Winter “92

271

283

291

305

315

333

345

359

375

391

405

419

429

ACKNOWLEDGEMENTS

PROGRAM CHAIR
Eric Allman, University of California, Berkeley

PROGRAM COMMITTEE
Rick Adams, UUNET Technologies, Inc.
Andrew Birrell, Digital Equipment Corporation, Systems Research Center
Tom Ferrin, University of California, San Francisco
Bob Gray, U S WEST Advanced Technologies
Teus Hagen, OCE
Steve Johnson, Athenix
Pat Parseghian, AT&T Bell Laboratories
Dennis Ritchie, AT&T Bell Laboratories
Greg Rose, IBM Thomas J. Watson Research Center
David Rosenthal, SunSoft
Brent Welch, Xerox PARC

TECHNICAL PROGRAM REVIEWERS
Keith Bostic, University of California, Berkeley
Steve Coffin, U S WEST
Kirk McKusick, University of California, Berkeley
Mike Schwartz, University of Colorado, Boulder
Curt Stevens, University of Colorado, Boulder
Dave Taenzer, U S WEST

PROGRAM COMMITTEE SCRIBE
George Neville-Neil, University of California, Berkeley

PROCEEDINGS PRODUCTION
Carolyn Carr, USENIX Association
Evi Nemeth, University of Colorado, Boulder
Eric Allman, University of California, Berkeley

INVITED TALKS COORDINATORS WORK-IN-PROGRESS COORDINATOR
Tom Cargill, Consultant Lisa A. Bloch, Sun User Group
Andrew Hume, AT&T Bell Laboratories
BOF COORDINATOR TERMINAL ROOM COORDINATOR
Kevin C. Smallwood, Purdue University Eve Podet, mt Xinu
TUTORIAL COORDINATOR USENIX MEETING PLANNER
Daniel V. Klein, USENIX Association Judith F. Deshamnais, USENIX Association

USENIX — Winter ‘92

PREFACE

Welcome to San Francisco for the USENIX 1992 Winter Technical Conference.

I believe that USENIX conferences are unusual in that they provide ‘‘something for
everyone.”’ This conference is no exception. Papers range from the hard academic variety to
pragmatic discussions, with some ‘‘fun’’ work thrown in for good measure. In all cases, the
Program Committee looked for practical results. We had the luxury of selecting 33 papers from
104 submissions, albeit coupled with the painful task of rejecting some fine papers that just didn’t
fit into the program. We hope you find our selections enjoyable and useful.

Since my first days with UNIX, networking has changed from being virtually nonexistent to
being common. However, it is not yet pervasive: I cannot send email to my sister, who works
with Macintoshes at a design firm. This will certainly change soon: our keynote speaker, Mitch
Kapor, will talk about how. Thanks to Barry Shein for suggesting Mitch and making the
introductions.

I have the dubious honor of having chaired two USENIX conferences. This one has been
very different than my previous experience, four and a half years ago in Phoenix. The conference
has gotten larger and expectations have been raised. For example, the Invited Talks are now a
regular feature; in 1987, they hadn’t been conceived. We also provided reviewer comments on
all submissions; prior conferences usually provided comments on only a few papers (this turned
out to be a lot of work).

However, the good news is that many tasks that were previously on my shoulders have been
spread among many people. The USENIX office staff has helped in a hundred ways. I'd like to
give particular thanks to Carolyn Carr, the USENIX Publications Manager, who provided
tremendous ongoing assistance for these proceedings; her work started well before the program
committee meeting and is still continuing as I write these words. Evi Nemeth from the
University of Colorado, Boulder flew to Berkeley to once again help with proceedings
production.

As with any large endeavor, many volunteers have generously donated their time. My
special thanks go to all of them.

Eric Allman
University of California, Berkeley

USENIX — Winter ‘92 vii

AUTHOR INDEX

Wayne Allen 271 Bruce W. Leverett 43
Owen T. Anderson 43 Jay Littman 209
Scott Anderson 111 Michael Litzkow 283
George Bier 61 Udi Manber 153
Matt Blaze 333 W. Anthony Mason 43
Doug Blewett 111 Philip K. McKinley 291
Nathaniel S. Borenstein 79 Arup Mukherjee 345
Mitch Bradley 223 D. Muntz 305
Walt Burkhard 69 Matt W. Mutka 291
Yu-Ping Cheng 253 Bruce Nelson 253
Bill Cheswick 163 ’ Michael Olson 9
Sailesh Chutani 43 John K. Ousterhout 315
Peter Deutsch 93 W. D. Roome 405
Murthy Devarakonda 345 Douglas Rosenthal - 271
Alan Emtage 93 Robin Schaufler 139
Robert M. English 237 Eric Schnoebelen 61
Kenneth Fiduk 271 Michael Sebrée 375
Bruce K. Haddon 197 Margo Seltzer 9
Stanley P. Hanks 439 Dave Shaver 61
Reed Hastings 125 Ken W. Shirriff 315
Joseph L. Hellerstein 359 Robert N. Sidebotham 43
P. Honeyman 175 Dale Skeen 183
P. Honeyman 305 Marvin Solomon 283
Sharon Hopkins 391 Henry Spencer 419
L.B. Huston 175 Alexander A. Stepanov 237
Bob Joyce 125 Petar D. Stojadinovi¢ 69
Alan E. Kaplan 429 M.T. Stolarchuk 175
Mitch Kapor 1 Michael Stumm 27
Michael L. Kazar 43 Ron Unrau 27
Sandeep Khanna 375 Bemard Wagner 197
Meg Kilduff 111 Mike Wish 111
Eduardo Krell 3 Sun Wu 153
Orran Krieger 27 John Zolnowsky 375

Balachander Krishnamurthy 3

viii USENIX — Winter ‘92

Building the Open Road:
The Internet as a Testbed for the National Public Network

Mitch Kapor, Electronic Frontier Foundation

(Abstract only)

A debate has begun about the future of America’s communications infrastructure. At stake is the future of the
web of information links organically evolving from computer and telephone systems. By the end of the next
decade, these links will connect nearly all homes and businesses in the U.S in a national public network. They will
serve as the main channels for commerce, leaming, education, and entertainment in our society.

This talk will focus on how the Internet and NREN can serve as vital laboratories for social experiments in
public information networking. I will examine what approaches to technical architecture of the net and regulatory
policies are most likely to stimulate the development of innovative end-user applications and services. We must
ensure that the design and use of the network remains open to diversity and to safeguarding the freedom of users.

The chance to influence the shape of a new medium usually arrives when it is too late: when the medium is
frozen in place. Today, because of the gradual evolution of the National Public Network, and the unusual aware-
ness people have of its possibilities, there is a rare opportunity to shape this new medium in the public interest.

USENIX — Winter ’92 1

COLA: Customized Overlaying

Eduardo Krell! Balachander Krishnamurthy
(ekrell@ulysses.att.com) (bala@research.att.com)

AT&T Bell Laboratories
600 Mountain Avenue
Murray Hill, NJ 07974
USA

System calls are the basic building blocks for writing programs in the UNIX? operating

system. From the canonical read, write, open, close, seek, ... to the more obscure
ones, programs have been written to use system calls in a variety of ways. Often there
is a need to intercept a few system calls to perform some special task. Given that it is
hard to go below the level of system calls and still write portable programs, it is easy
to see the need for intercepts at the system call level. A simple example of a useful
interception facility is a library that watches for file creation and modifications.

In this paper we describe COLA, an elegant, customizable and dynamic facility to
overlay a variety of system call intercepts. With COLA, users can specify an arbitrary
number of system call filters, each of which may intercept different system calls and
perform different actions upon interception. The set of overlaying filters can be modified
at any time during the session. A program run under COLA will have any of the filtered
system calls processed at each layer before control is passed on to the next layer. The
final layer always is the standard UNIX system call layer. System calls not intercepted by
any of the overlaying filters will execute transparently. No recompilation of programs or
static relinking is necessary. It should be noted that this facility depends on availability
of shared libraries.

1. Motivation

The motivation for COLA came from two separate projects in our department. The first project
is the 3D File System [KK90] which intercepts some twenty odd system calls to provide the users
with a file version facility and a transparent viewpathing mechanism.

The second is Yeast [KR91], an event-action tool, that watches for changes in attributes of objects
such as files, directories, etc. The initial implementation of Yeast polled the file system periodically
to watch for these events. Polling has the inherent trade-off of a low frequency polling interval
leading to missed events, or a high frequency interval leading to a larger overhead. Automatic
detection of file system events would eliminate this problem.

! Author’s present address: Fundacion Chile, Casilla 773, Santiago, Chile. Email: ekrell@fundch.cl
2UNIX is a registered trademark of Unix System Laboratories, Inc.

USENIX — Winter 92

COLA: Customized Overlaying Krell, Krishnamurthy

We sought to generalize the system call interception mechanism and implement both the automatic
detection facility and the 3D File System under this. As it turned out, we were not only able to do
this, but were also able to create other useful applications thanks to the customizability of COLA.
By layering these intercept libraries we can dynamically filter the system calls through as many
layers as needed for each application.

Related work in this area appears to be sparse: apart from the 3-D File System we were also
influenced by Presotto and Ritchie’s streams mechanism [PR90]. Also, in the Silicon Graphics
version of UNIX, there is an inode watching mechanism that is provided via the File Alteration
Monitor (fam) facility. The facility is available at the kernel level. We believe that trying to achieve
specific instances of intercepts by changing the kernel is not practical. A generic mechanism that
works not only for file changes, but for any subset of system calls (e.g. non-file system related
ones), is preferable. This is precisely the goal of COLA.

In the rest of the paper we look at an example COLA library in detail, discuss the implementation
and a brief performance study. We conclude with the lessons learned thus far and some future
plans.

2. Examples

In this section we present a sample COLA application in depth and mention other COLA applica-
tions.

Often, users are interested in knowing when some operating system phenomena have occurred.
Chief among them are changes in the file system; e.g. when a file has been created, changed or
removed. Currently, in UNIX, the common recourse is to poll the file system to look for changes in
the file’s status. With a COLA library, however, it is possible to intercept the creat, close, open,
unlink, write etc. system calls and make precise deductions as to the change in the status of files.

A brief mention of the event-action specification tool Yeast is necessary. Users register specifications
with Yeast consisting of patterns of events and an action; when event patterns are matched by
Yeast, the action is triggered. Events can be simple temporal events (at 9:30am wednesday) or
object events (file foo mtime changed), or user-defined events. Yeast has the capability to be
notified of occurrences of events via its announce mechanism. An announcement packet includes
the object, attribute and the new value of the attribute. Thus, when file foo is modified, the
following announcement is generated and sent

announce file foo mtime = 12:53 November 20 1991

Without COLA, Yeast would have to poll the file system to check for file related events. With
the announce COLA library, the relevant system calls are intercepted and file related events are
announced to Yeast.

The detection itself is a simple matter of recording the stat information of a file that has been
opened for writing, and checking it against the stat information at the time close is called. If the
stat information differ, a Yeast announcement is generated. Similarly, announcements are gener-
ated when a file is created or removed (corresponding to creat and unlink). The announcements
themselves are asynchronous writes to a well-known port on which the Yeast daemon is listening,
Thus announcements of file changes are immediately handled by the Yeast daemon and any user

4 USENIX — Winter 92

Krell, Krishnamurthy COLA: Customized Overlaying

action that has to be executed upon changes in the file system is triggered immediately, without
any polling. The overhead on the file system is negligible and performance measurement shows
that the automatic detection model is vastly superior to any polling model.

The announce COLA library itself is very simple since it intercepts half a dozen system calls and
all but one of the corresponding routines are less than ten lines of code. The longest routine, open,
is twenty lines long.

A library that permits users to use emacs or vi style of editing (like ksh) while interacting with
any command, needs only to trap the read system call. Other libraries include a trivial system
call tracing facility, a program profiler, a user level file system, a single library that enables moving
away from hacks like /dev/fd and /dev/tcp etc. A user recently wrote a automatic file retrieval
library simply by trapping open; if the file was not locally available a fip connection was opened in
background to retrieve the file from the remote site.

8. Implementation

The prototype implementation uses a shared library (which we will call the COLA library) to
intercept all system calls. An initialization function in this library uses the dlopen() interface to
the dynamic link-editor to load into the process’ address space the COLA libraries wanted by the
user. The user sets an environment variable called LD_COLA to a colon-separated list of libraries
of system call traps.

The COLA library looks into each library in this list for definitions of the system calls (open(),
stat(), etc.). When it finds one, it stores a pointer to it in a jump matrix. The contents of the
[s,]] element in this matrix is a pointer to system call number s in the library number 1. If a library
does not contain a definition for a system call, the corresponding pointer is NULL. The current
prototype implements system calls only but the COLA concept really applies to all the functions
in the C library. In that case, the numbering of the functions would be arbitrary and could be
" generated on the fly.

In normal operation, when a user-level program issues a system call (like a open()), it will be
intercepted by the open() function in our COLA library. It will then call the first function whose
address was stored in the fifth row of the jump matrix described above (the system call number for

open() happens to be five), after storing the index of the column where that pointer was found.
All NULL pointers are skipped.

When the open() function in the first library wants to call the open() in the next library, it does
this by calling .COLA_OPEN(). The COLA library also defines these special names and so this
call transfers control back to the COLA library. The job of the COLA library at this point is to
call the open() function in the next library. Since we stored the index of the column we called last,

we start looking for a non-null pointer from the column to the right of the last one searched, and
the process continues.

When we run out of columns, it is time to call the actual open() system call using the syscall()
mechanism, and returning the value we get back. System calls that are not trapped will proceed
directly since the first entry in the matrix would be NULL requiring no further processing.

USENIX — Winter 92 5

COLA: Customized Overlaying Krell, Krishnamurthy

3.1. Writing COLA Libraries

A writer of a COLA library needs to follow certain guidelines. If the library implements the
open() function, then it should have the same interface as the system call (same number and types
of arguments, same return values, etc.). Moreover, the writer must make sure that a call is made
to the next COLA library layer by calling the .COLA_OPEN() function, else the chain would not
be completed.

3.2. COLA Support Library

The COLA support library provides some support functions for the writers of COLA libraries. For
instance, the printf() function in the standard C library can not be used since it calls the write()
system call. If a call to printf() is made from within a write() function in a COLA library, it will
cause an infinite loop. We rewrote printf() to use the syscall primitive instead of calling write()
directly. As more of these cases are found, they will be added to the support library.

In addition, we plan to provide a safe version of the signal() interface to handle interrupts in a
transparent way.

4. Performance

Since COLA works by intercepting system calls we decided to measure this overhead. The imple-
mentation requires some initialization to be performed before the LD_COLA. environment variable
is checked. This is done regardless of the number of libraries through which system calls have to
be filtered. The goal of the performance measurement was to measure the overhead introduced by
the COLA library and to examine the extra time spent in a user’s system call trap library. Since
the work done inside the user’s library varies with the application we considered a skeleton library,
libtrace, which merely traps the system calls and prints out the name of the call and its arguments.
For purposes of the study, the printing was suppressed.

The performance study was conducted on a 21 MIPS SPARCServer 490 with 32 MB memory. A
simple C program that made three system calls in a loop was used as the benchmarking program.
Three sets of measurements were made. The loop variable was set to be 1000, 10000 and 33333
thus generating 3000, 30000 and 100000 (almost) system calls. Each measurement figure presented
is an average of multiple runs.

The first set of measurements did not have LD_PRELOAD set and is the base figure. The second
set has the LD_.PRELOAD variable set to the COLA library but with the LD_.COLA environment
variable unset (i.e. no system calls are actually trapped). The third set of measurements represents
the figures with both LD_.PRELOAD and LD_.COLA environment variables set. The LD_COLA
variable was set to be libtrace, the COLA library which traps all the system calls. Since the
benchmark program referred to three system calls (open, close, unlink), the overhead involved

in going through one layer (viz. libtrace) was measured in addition to the initialization overhead
of the COLA library.

6 USENIX — Winter ‘92

Krell, Krishnamurthy COLA: Customized Overlaying

Table 1 shows the result of the study. As can be seen the overhead introduced is negligible.

Table 1: Overhead of libcola

of Syscalls | Raw syscalls | LD_.PRELOAD set { LD_.PRELOAD + libtrace
3000 0.07 + 2.65 0.16 4+ 3.45 0.21 + 3.80
30000 0.97 4 29.35 1.63 + 32.88 2.14 + 33.26
100000 4.11 4+ 2m9.65 6.26 + 2m10.5 9.00 + 2ml2.75

It must be stressed that if the COLA. libraries were to do actual work the overhead would be
necessarily greater. We picked the libtrace COLA library since it merely printed out the name of
the system call along with its arguments. For the measurement period the printing was suppressed,
since the goal of the measurement was to study the overhead in setting up and navigating through
the layers rather than the work done inside the individual libraries.

5. Conclusion

As a result of COLA, we believe that intercepting system calls in a generic and customizable
manner enables several applications that have hitherto not been implemented or implemented with
difficulty and high overhead. Our implementation of COLA and the set of libraries we wrote has
already demonstrated its usefulness to us. Rather than having a special facility to watch for file
changes or making changes in the kernel, we were able to write a small COLA library that performs
this task. This is very much in keeping with the UNIX philosophy of writing small tools and being
able to combine them into larger ones. We believe that several system call filters will be written,
spanning a rich class of applications.

There are some tricky aspects to writing COLA libraries - watching out for recursion, use of
malloc(), etc. By moving some commonly used and potentially tricky routines into the COLA
support library we can help minimize this problem. Users have to be careful about the order
of layering the libraries but this is to be expected. The library writers have to adhere to the
conventions mentioned in Section 3.1. Our future work will consist of improving the prototype and
expanding the user community, apart from writing new COLA libraries.

6. References

[KK90] David G. Korn and Eduardo Krell. ‘A New Dimension for the UNIX File System’. Soft-
ware Practice and Experience, 20(S1):19-34, June 1990.

[KR91] Balachander Krishnamurthy and David Rosenblum. An event-action model of computer-
supported cooperative work: Design and implementation. In Proceedings of International
Workshop on Computer Supported Co-operative Work, Berlin, FRG. IFIP, April 1991.

[PR90] David L. Presotto and Dennis M. Ritchie. ‘Interprocess Communication in the Ninth
Edition UNIX System’. Software Practice and Experience, 20(S1):3-17, June 1990.

USENIX — Winter 92 7

LIBTP: Portable, Modular Transactions for UNIX

Margo Seltzer
Michael Olson
University of California, Berkeley

Abstract

Transactions provide a useful programming paradigm for maintaining logical consistency, arbitrating con-
current access, and managing recovery. In traditional UNIX systems, the only easy way of using transactions is to
purchase a database system. Such systems are often slow, costly, and may not provide the exact functionality
desired. This paper presents the design, implementation, and performance of LIBTP, a simple, non-proprietary tran-
saction library using the 4.4BSD database access routines (db(3)). On a conventional transaction processing style
benchmark, its performance is approximately 85% that of the database access routines without transaction protec-
tion, 200% that of using fsync(2) to commit modifications to disk, and 125% that of a commercial relational data-
base system.

1. Introduction

Transactions are used in database systems to enable concurrent users to apply multi-operation updates without
violating the integrity of the database. They provide the properties of atomicity, consistency, isolation, and durabil-
ity. By atomicity, we mean that the set of updates comprising a transaction must be applied as a single unit; that is,
they must either all be applied to the database or all be absent. Consistency requires that a transaction take the data-
base from one logically consistent state to another. The property of isolation requires that concurrent transactions
yield results which are indistinguishable from the results which would be obtained by running the transactions
sequentially. Finally, durability requires that once transactions have been committed, their results must be preserved
across system failures [TPCB90].

Although these properties are most frequently discussed in the context of databases, they are useful program-
ming paradigms for more general purpose applications. There are several different situations where transactions
can be used to replace current ad-hoc mechanisms.

One situation is when multiple files or parts of files need to be updated in an atomic fashion. For example, the
traditional UNIX file system uses ordering constraints to achieve recoverability in the face of crashes. When a new
file is created, its inode is written to disk before the new file is added to the directory structure. This guarantees that,
if the system crashes between the two I/O’s, the directory does not contain a reference to an invalid inode. In actu-
ality, the desired effect is that these two updates have the transactional property of atomicity (either both writes are
visible or neither is). Rather than building special purpose recovery mechanisms into the file system or related tools
(e.g. fsck(8)), one could use general purpose transaction recovery protocols after system failure. Any application
that needs to keep multiple, related files (or directories) consistent should do so using transactions. Source code
control systems, such as RCS and SCCS, should use transaction semantics to allow the *‘checking in”’ of groups of
related files. In this way, if the ‘‘check-in’’ fails, the transaction may be aborted, backing out the partial *‘check-
in’” leaving the source repository in a consistent state.

A second situation where transactions can be used to replace current ad-hoc mechanisms is in applications
where concurrent updates to a shared file are desired, but there is logical consistency of the data which needs to be
preserved. For example, when the password file is updated, file locking is used to disallow concurrent access. Tran-
saction semantics on the password files would allow concurrent updates, while preserving the logical consistency of
the password database. Similarly, UNIX utilities which rewrite files face a potential race condition between their
rewriting a file and another process reading the file. For example, the compiler (more precisely, the assembler) may
have to rewrite a file to which it has write permission in a directory to which it does not have write permission.
While the ““.0’" file is being written, another utility such as nm(1) or ar(1) may read the file and produce invalid
results since the file has not been completely written. Currently, some utilities use special purpose code to handle

USENIX — Winter 92

LIBTP: Portable, Modular... Seltzer, Olson

such cases while others ignore the problem and force users to live with the consequences.

In this paper, we present a simple library which provides transaction semantics (atomicity, consistency, isola-
tion, and durability). The 4.4BSD database access methods have been modified to use this library, optionally provid-
ing shared buffer management between applications, locking, and transaction semantics. Any UNIX program may
transaction protect its data by requesting transaction protection with the db(3) library or by adding appropriate calls
to the transaction manager, buffer manager, lock manager, and log manager. The library routines may be linked
into the host application and called by subroutine interface, or they may reside in a separate server process. The
server architecture provides for network access and better protection mechanisms.

2. Related Work

There has been much discussion in recent years about new transaction models and architectures
[SPEC88][INODI90]{CHEN911[MOHA91]). Much of this work focuses on new ways to model transactions and the
interactions between them, while the work presented here focuses on the implementation and performance of tradi-
tional transaction techniques (write-ahead logging and two-phase locking) on a standard operating system (UNIX).

Such traditional operating systems are often criticized for their inability to perform transaction processing
adequately. [STONBI] cites three main areas of inadequate support: buffer management, the file system, and the
process structure. These arguments are summarized in table one. Fortunately, much has changed since 1981. In
the area of buffer management, most UNIX systems provide the ability to memory map files, thus obviating the
need for a copy between kernel and user space. If a database system is going to use the file system buffer cache,
then a system call is required. However, if buffering is provided at user level using shared memory, as in LIBTP,
buffer management is only as slow as access to shared memory and any replacement algorithm may be used. Since
multiple processes can access the shared data, prefetching may be accomplished by separate processes or threads
whose sole purpose is to prefetch pages and wait on them. There is still no way to enforce write ordering other than
keeping pages in user memory and using the fsyne(3) system call to perform synchronous writes.

In the area of file systems, the fast file system (FFS) [MCKUB84] allows allocation in units up to 64KBytes as
opposed to the 4KByte and 8KByte figures quoted in [STON81]. The measurements in this paper were taken from
an 8KByte FFS, but as LIBTP runs exclusively in user space, there is nothing to prevent it from being run on other
UNIX compatible file systems (e.g. log-structured [ROSE91], extent-based, or multi-block [SELT91]).

Finally, with regard to the process structure, neither context switch time nor scheduling around semaphores
seems to affect the system performance. However, the implementation of semaphores can impact performance
tremendously. This is discussed in more detail in section 4.3.

The Tuxedo system from AT&T is a transaction manager which coordinates distributed transaction commit
from a variety of different local transaction managers. At this time, LIBTP does not have its own mechanism for
distributed commit processing, but could be used as a local transaction agent by systems such as Tuxedo
[ANDR89].

The transaction architecture presented in [YOUN91] is very similar to that implemented in the LIBTP. While
[YOUN91] presents a model for providing transaction services, this paper focuses on the implementation and per-
formance of a particular system. In addition, we provide detailed comparisons with alternative solutions; traditional

Buffer Management e Data must be copied between kernel space and user space.
¢ Buffer pool access is too slow.
e There is no way to request prefetch.
e Replacement is usually LRU which may be suboptimal for databases.
e There is no way to guarantee write ordering.

File System e Allocation is done in small blocks (usually 4K or 8K).
e Logical organization of files is redundantly expressed.
Process Structure o Context switching and message passing are too slow.

e A process may be descheduled while holding a semaphore.

Table One: Shortcomings of UNIX transaction support cited in [STONS1].

10 USENIX — Winter ‘92

Seltzer, Olson LIBTP: Portable, Modular...

UNIX services and commercial database management systems.

3. Architecture

The library is designed to provide well defined interfaces to the services required for transaction processing.
These services are recovery, concurrency control, and the management of shared data. First we will discuss the
design tradeoffs in the selection of recovery, concurrency control, and buffer management implementations, and
then we will present the overall library architecture and module descriptions.

3.1. Design Tradeoffs

3.1.1. Crash Recovery

The recovery protocol is responsible for providing the transaction semantics discussed earlier. There are a
wide range of recovery protocols available [HAER83], but we can crudely divide them into two main categories.
The first category records all modifications to the database in a separate file, and uses this file (log) to back out or
reapply these modifications if a transaction aborts or the system crashes. We call this set the logging protocols.
The second category avoids the use of a log by carefully controlling when data are written to disk. We call this set
the non-logging protocols.

Non-logging protocols hold dirty buffers in main memory or temporary files until commit and then force these
pages to disk at transaction commit. While we can use temporary files to hold dirty pages that may need to be
evicted from memory during a long-running transaction, the only user-level mechanism to force pages to disk is the
fsync(2) system call. Unfortunately, fsync(2) is an expensive system call in that it forces all pages of a file to disk,
and transactions that manage more than one file must issue one call per file.

In addition, fsync(2) provides no way to control the order in which dirty pages are written to disk. Since
non-logging protocols must sometimes order writes carefully [SULL92], they are difficult to implement on Unix
systems. As aresult, we have chosen to implement a logging protocol.

Logging protocols may be categorized based on how information is logged (physically or logically) and how
much is logged (before images, after images or both). In physical logging, images of complete physical units
(pages or buffers) are recorded, while in logical logging a description of the operation is recorded. Therefore, while
we may record entire pages in a physical log, we need only record the records being modified in a logical log. In
fact, physical logging can be thought of as a special case of logical logging, since the ‘‘records’’ that we log in logi-

cal logging might be physical pages. Since logical logging is both more space-efficient and more general, we have
chosen it for our logging protocol.

In before-image logging, we log a copy of the data before the update, while in after-image logging, we log a
copy of the data after the update. If we log only before-images, then there is sufficient information in the log to
allow us to undo the transaction (go back to the state represented by the before-image). However, if the system
crashes and a committed transaction’s changes have not reached the disk, we have no means to redo the transaction
(reapply the updates). Therefore, logging only before-images necessitates forcing dirty pages at commit time. As
mentioned above, forcing pages at commit is considered too costly.

If we log only after-images, then there is sufficient information in the log to allow us to redo the transaction
(go forward to the state represented by the after-image), but we do not have the information required to undo tran-
sactions which aborted after dirty pages were written to disk. Therefore, logging only after-images necessitates
holding all dirty buffers in main memory until commit or writing them (0 a temporary file.

Since neither constraint (forcing pages on commit or buffering pages until commit) was feasible, we chose to
log both before and after images. The only remaining consideration is when changes get written to disk. Changes
affect both data pages and the log. If the changed data page is written before the log page, and the system crashes
before the log page is written, the log will contain insufficient information to undo the change. This violates tran-

saction semantics, since some changed data pages may not have been written, and the database cannot be restored to
its pre-transaction state.

The log record describing an update must be written to stable storage before the modified page. This is
write-ahead logging. If log records are safely written to disk, data pages may be written at any time afterwards.
This means that the only file that ever needs to be forced to disk is the log. Since the log is append-only, modified
pages always appear at the end and may be written to disk efficiently in any file system that favors sequential order-
ing (e.g., FFS, log-structured file system, or an extent-based system).

USENIX — Winter 92 11

LIBTP: Portable, Modular... Seltzer, Olson

3.1.2, Concurrency Control

The concurrency control protocol is responsible for maintaining consistency in the presence of multiple
accesses. There are several alternative solutions such as locking, optimistic concurrency control [KUNG81], and
timestamp ordering [BERN8O0]. Since optimistic methods and timestamp ordering are generally more complex and
restrict concurrency without eliminating starvation or deadlocks, we chose two-phase locking (2PL). Strict 2PL is
suboptimal for certain data structures such as B-trees because it can limit concurrency, so we use a special locking
protocol based on one described in [LEHMS1].

The B-tree locking protocol we implemented releases locks at internal nodes in the tree as it descends. A lock
on an internal page is always released before a lock on its child is obtained (that is, locks are not coupled [BAY77]
during descent). When a leaf (or internal) page is split, a write lock is acquired on the parent before the lock on the
just-split page is released (locks are coupled during ascent). Write locks on internal pages are released immediately
after the page is updated, but locks on leaf pages are held until the end of the transaction.

Since locks are released during descent, the structure of the tree may change above a node being used by
some process. If that process must later ascend the tree because of a page split, any such change must not cause
confusion. We use the technique described in [LEHM81] which exploits the ordering of data on a B-tree page to
guarantee that no process ever gets lost as a result of intemal page updates made by other processes.

If a transaction that updates a B-tree aborts, the user-visible changes to the tree must be rolled back. How-
ever, changes to the internal nodes of the tree need not be rolled back, since these pages contain no user-visible data.
When rolling back a transaction, we roll back all leaf page updates, but no internal insertions or page splits. In the
worst case, this will leave a leaf page less than half full. This may cause poor space utilization, but does not lose
user data.

Holding locks on leaf pages until transaction commit guarantees that no other process can insert or delete data
that has been touched by this process. Rolling back insertions and deletions on leaf pages guarantees that no
aborted updates are ever visible to other transactions. Leaving page splits intact permits us to release internal write
locks early. Thus transaction semantics are preserved, and locks are held for shorter periods.

The extra complexity introduced by this locking protocol appears substantial, but it is important for multi-user
execution. The benefits of non-two-phase locking on B-trees are well established in the database literature
[(BAY77], [LEHMSI]. If a process held locks until it committed, then a long-running update could lock out all other
transactions by preventing any other process from locking the root page of the tree. The B-tree locking protocol
described above guarantees that locks on internal pages are held for extremely short periods, thereby increasing con-
currency.

3.1.3. Management of Shared Data

Database systems permit many users to examine and update the same data concurrently. In order to provide
this concurrent access and enforce the write-ahead logging protocol described in section 3.1.1, we use a shared
memory buffer manager. Not only does this provide the guarantees we require, but a user-level buffer manager is
frequently faster than using the file system buffer cache. Reads or writes involving the file system buffer cache
often require copying data between user and kernel space while a user-level buffer manager can return pointers to
data pages directly. Additionally, if more than one process uses the same page, then fewer copies may be required.

3.2. Module Architecture

The preceding sections described modules for managing the transaction log, locks, and a cache of shared
buffers. In addition, we need to provide functionality for transaction begin, commit, and abort processing, necessi-
tating a transaction manager. In order to arbitrate concurrent access to locks and buffers, we include a process
management module which manages a collection of semaphores used to block and release processes. Finally, in
order to provide a simple, standard interface we have modified the database access routines (db(3)). For the pur-
poses of this paper we call the modified package the Record Manager. Figure one shows the main interfaces and
architecture of LIBTP.

3.2.1. The Log Manager

The Log Manager enforces the write-ahead logging protocol. Its primitive operations are log, log_commit,
log_read, log_roll and log_unroll. The log call performs a buffered write of the specified log record and returns a
unique log sequence number (LSN). This LSN may then be used to retrieve a record from the log using the
log_read call. The log interface knows very little about the internal format of the log records it receives. Rather, all

12 USENIX — Winter 92

Seltzer, Olson LIBTP: Portable, Modular...

Txn Manager Record Manager
Tock g
unlock _all unlock log bﬂfzg::;)in
/ log_commit
log_unro
Lock Log Buffer

buf_get
U

Manager Manager buf onpin Manager

wake
wake sleep_on wake
sleep_on sleep_on

Process Manager

Figure 1: Library module interfaces.

log records are referenced by a header structure, a log record type, and a character buffer containing the data to be
logged. The log record type is used to call the appropriate redo and undo routines during abort and commit process-
ing. While we have used the Log Manager to provide before and after image logging, it may also be used for any
of the logging algorithms discussed.

The log_commit operation behaves exactly like the log operation but guarantees that the log has been forced
to disk before returning. A discussion of our commit strategy appears in the implementation section (section 4.2).
Log_unroll reads log records from the log, following backward transaction pointers and calling the appropriate undo
routines to implement transaction abort. In a similar manner, log_roll reads log records sequentially forward, cal-
ling the appropriate redo routines to recover committed transactions after a system crash.

3.2.2. The Buffer Manager

The Buffer Manager uses a pool of shared memory to provide a least-recently-used (LRU) block cache.
Although the current library provides an LRU cache, it would be simple to add alternate replacement policies as
suggested by [CHOUB5] or to provide multiple buffer pools with different policies. Transactions request pages
from the buffer manager and keep them pinned to ensure that they are not written to disk while they are in a logi-
cally inconsistent state. When page replacement is necessary, the Buffer Manager finds an unpinned page and then
checks with the Log Manager to ensure that the write-ahead protocol is enforced.

3.2.3. The Lock Manager

The Lock Manager supports general purpose locking (single writer, multiple readers) which is currently used
to provide two-phase locking and high concurrency B-tree locking. However, the general purpose nature of the lock
manager provides the ability to support a variety of locking protocols. Currently, all locks are issued at the granu-
larity of a page (the size of a buffer in the buffer pool) which is identified by two 4-byte integers (a file id and page
number). This provides the necessary information to extend the Lock Manager to perform hierarchical locking
[GRAY76]. The current implementation does not support locks at other granularities and does not promote locks;
these are obvious future additions to the system.

USENIX — Winter 92 13

LIBTP: Portable, Modular... Seltzer, Olson

If an incoming lock request cannot be granted, the requesting process is queued for the lock and descheduled.
When a lock is released, the wait queue is traversed and any newly compatible locks are granted. Locks are located
via a file and page hash table and are chained both by object and by transaction, facilitating rapid traversal of the
lock table during transaction commit and abort.

The primary interfaces to the lock manager are lock, unlock, and lock_unlock_all. Lock obtains a new lock
for a specific object. There are also two variants of the lock request, lock_upgrade and lock_downgrade, which
allow the caller to atomically trade a lock of one type for a lock of another. Unlock releases a specific mode of lock
on a specific object. Lock_unlock_all releases all the locks associated with a specific transaction.

3.2.4. The Process Manager

The Process Manager acts as a user-level scheduler to make processes wait on unavailable locks and pending
buffer cache I/O. For each process, a semaphore is maintained upon which that process waits when it needs to be
descheduled. When a process needs to be run, its semaphore is cleared, and the operating system reschedules it. No
sophisticated scheduling algorithm is applied; if the lock for which a process was waiting becomes available, the
process is made runnable. It would have been possible to change the kernel’s process scheduler to interact more
efficiently with the lock manager, but doing so would have compromised our commitment to a user-level package.

3.2.5. The Transaction Manager

The Transaction Manager provides the standard interface of txn_begin, txn_commit, and txn_abort. It keeps
track of all active transactions, assigns unique transaction identifiers, and directs the abort and commit processing.
When a txn_begin is issued, the Transaction Manager assigns the next available transaction identifier, allocates a
per-process transaction structure in shared memory, increments the count of active transactions, and returns the new
transaction identifier to the calling process. The in-memory transaction structure contains a pointer into the lock
table for locks held by this transaction, the last log sequence number, a transaction state (idle, running, aborting, or
committing), an error code, and a semaphore identifier.

At commit, the Transaction Manager calls log_commit to record the end of transaction and to flush the log.
Then it directs the Lock Manager to release all locks associated with the given transaction. If a transaction aborts,
the Transaction Manager calls on log_unroll to read the transaction’s log records and undo any modifications to
the database. As in the commit case, it then calls Jock_unlock_all to release the transaction’s locks.

3.2.6. The Record Manager

The Record Manager supports the abstraction of reading and writing records to a database. We have
modified the the database access routines db(3) [BSD91] to call the log, lock, and buffer managers. In order to pro-
vide functionality to perform undo and redo, the Record Manager defines a collection of log record types and the
associated undo and redo routines. The Log Manager performs a table lookup on the record type to call the
appropriate routines. For example, the B-tree access method requires two log record types: insert and delete. A
replace operation is implemented as a delete followed by an insert and is logged accordingly.

3.3. Application Architectures

The structure of LIBTP allows application designers to trade off performance and protection. Since a large
portion of LIBTP’s functionality is provided by managing structures in shared memory, its structures are subject to
corruption by applications when the library is linked directly with the application. For this reason, LIBTP is
designed to allow compilation into a separate server process which may be accessed via a socket interface. In this
way LIBTP’s data structures are protected from application code, but communication overhead is increased. When
applications are trusted, LIBTP may be compiled directly into the application providing improved performance.
Figures two and three show the two alternate application architectures.

There are potentially two modes in which one might use LIBTP in a server based architecture. In the first, the
server would provide the capability to respond to requests to each of the low level modules (lock, log, buffer, and
transaction managers). Unfortunately, the performance of such a system is likely to be blindingly slow since modi-
fying a piece of data would require three or possibly four separate communications: one to lock the data, one to
obtain the data, one to log the modification, and possibly one to transmit the modified data. Figure four shows the
relative performance for retrieving a single record using the record level call versus using the lower level buffer
management and locking calls. The 2:1 ratio observed in the single process case reflects the additional overhead of
parsing eight commands rather than one while the 3:1 ratio observed in the client/server architecture reflects both

14 USENIX — Winter ‘92

Seltzer, Olson LIBTP: Portable, Modular...

Single Process
Application Program
txn_begin .
txn_commit ¢ socket interface—> db_ops
txn_abort | Application T
Server Process xn_begin
txn_commit db_ops
driver txn_abo!
LIBTP LIBTP
Figure 2: Server Architecture. In this configuration, Figure 3: Single Process Architecture. In this
the library is loaded into a server process which is ac- configuration, the library routines are loaded as part of
cessed via a socket interface. the application and accessed via a subroutine interface.

the parsing and the communication overheard. Although there may be applications which could tolerate such per-
formance, it seems far more feasible to support a higher level interface, such as that provided by a query language
(e.g. SQL [SQLS6]).

Although LIBTP does not have an SQL parser, we have built a server application using the toolkit command
language (TCL) [OUST90]. The server supports a command line interface similar to the subroutine interface
defined in db(3). Since it is based on TCL, it provides control structures as well.

4, Implementation

4.1. Locking and Deadlock Detection

LIBTP uses two-phase locking for user data. Strictly speaking, the two phases in two-phase locking are a
grow phase, during which locks are acquired, and a shrink phase, during which locks are released. No lock may
ever be acquired during the shrink phase. The grow phase lasts until the first release, which marks the start of the
shrink phase. In practice, the grow phase lasts for the duration of a transaction in LIBTP and in commercial data-
base systems. The shrink phase takes place during transaction commit or abort. This means that locks are acquired
on demand during the lifetime of a transaction, and held until commit time, at which point all locks are released.

If multiple transactions are active concurrently, deadlocks can occur and must be detected and resolved. The
lock table can be thought of as a representation of a directed graph. The nodes in the graph are transactions. Edges
represent the waits-for relation between transactions; if transaction A is waiting for a lock held by transaction B,
then a directed edge exists from A to B in the graph. A deadlock exists if a cycle appears in the graph. By conven-
tion, no transaction ever waits for a lock it already holds, so reflexive edges are impossible.

A distinguished process monitors the lock table, searching for cycles. The frequency with which this process
runs is user-settable; for the multi-user tests discussed in section 5.1.2, it has been set to wake up every second, but
more sophisticated schedules are certainly possible. When a cycle is detected, one of the transactions in the cycle is
nominated and aborted. When the transaction aborts, it rolls back its changes and releases its locks, thereby break-
ing the cycle in the graph.

4.2. Group Commit

Since the log must be flushed to disk at commit time, disk bandwidth fundamentally limits the rate at which
transactions complete. Since most transactions write only a few small records to the log, the last page of the log will

be flushed once by every transaction which writes to it. In the naive implementation, these flushes would happen
serially.

USENIX — Winter ‘92 1s

LIBTP: Portable, Modular... Seltzer, Olson

Elapsed Time
(in seconds)

K}

S

2

cemponents record component record
Single Process Client/Server

Figure 4: Comparison of High and Low Level Interfaces. Elapsed time in seconds to perform a single record retrieval from a command line
(rather than a procedural interface) is shown on the y axis. The *‘component’® numbers reflect the timings when the record is retrieved by
separate calls to the lock manager and buffer manager while the *‘record’” timings were obtained by using a single call to the record manager.
The 2:1 ratio observed for the single process case is a reflection of the parsing overhead for executing eight separate commands rather than one.
The additional factor of one reflected in the 3:1 ratio for the client/server architecture is due to the communication overhead. The true ratios are
actually worse since the component timings do not reflect the search times within each page or the time required to transmit the page between the
two processes.

LIBTP uses group commit [DEWI84] in order to amortize the cost of one synchronous disk write across
multiple transactions. Group commit provides a way for a group of transactions to commit simultaneously. The
first several fransactions to commit write their changes to the in-memory log page, then sleep on a distinguished
semaphore. Later, a committing transaction flushes the page to disk, and wakes up all its sleeping peers. The point
at which changes are actually written is determined by three thresholds. The first is the group threshold and defines
the minimum number of transactions which must be active in the system before transactions are forced to participate
in a group commit. The second is the wait threshold which is expressed as the percentage of active transactions
waiting to be committed. The last is the logdelay threshold which indicates how much unflushed log should be
allowed to accumulate before a waiting transaction’s commit record is flushed.

Group commit can substantially improve performance for high-concurrency environments. If only a few tran-
sactions are running, it is unlikely to improve things at all. The crossover point is the point at which the transaction
commit rate is limited by the bandwidth of the device on which the log resides. If processes are trying to flush the
log faster than the log disk can accept data, then group commit will increase the commit rate.

4.3. Kernel Intervention for Synchronization

Since LIBTP uses data in shared memory (e.g. the lock table and buffer pool) it must be possible for a process
to acquire exclusive access to shared data in order to prevent corruption. In addition, the process manager must put
processes to sleep when the lock or buffer they request is in use by some other process. In the LIBTP implementa-
tion under Ultrix 4.0', we use System V semaphores to provide this synchronization. Semaphores implemented in
this fashion turn out to be an expensive choice for synchronization, because each access traps to the kernel and exe-
cutes atomically there.

On architectures that support atomic test-and-set, a much better choice would be to attempt to obtain a spin-
lock with a test-and-set, and issue a system call only if the spinlock is unavailable. Since virtually all semaphores in
LIBTP are uncontested and are held for very short periods of time, this would improve performance. For example,
processes must acquire exclusive access to buffer pool metadata in order to find and pin a buffer in shared memory.
This semaphore is requested most frequently in LIBTP. However, once it is acquired, only a few instructions must

! Ultrix and DEC are trademarks of Digital Equipment Corporation.

16 USENIX — Winter 92

Seltzer, Olson LIBTP: Portable, Modular...

be executed before it is released. On one architecture for which we were able to gather detailed profiling informa-
tion, the cost of the semaphore calls accounted for 25% of the total time spent updating the metadata. This was
fairly consistent across most of the critical sections.

In an attempt to quantify the overhead of kernel synchronization, we ran tests on a version of 4.3BSD-Reno
which had been modified to support binary semaphore facilities similar to those described in [POSIX91]. The
hardware platform consisted of an HP300 (33MHz MC68030) workstation with 16MBytes of main memory, and a
600MByte HP7959 SCSI disk (17 ms average seek time). We ran three sets of comparisons which are summarized
in figure five. In each comparison we ran two tests, one using hardware spinlocks and the other using kernel call
synchronization. Since the test was run single-user, none of the the locks were contested. In the first two sets of
tests, we ran the full transaction processing benchmark described in section 5.1. In one case we ran with both the
database and log on the same disk (1 Disk) and in the second, we ran with the database and log on separate disks (2
Disk). In the last test, we wanted to create a CPU bound environment, so we used a database small enough to fit
completely in the cache and issued read-only transactions. The results in figure five express the kernel call syn-
chronization performance as a percentage of the spinlock performance. For example, in the 1 disk case, the kernel
call implementation achieved 4.4 TPS (transactions per second) while the semaphore implementation achieved 4.6
TPS, and the relative performance of the kernel synchronization is 96% that of the spinlock (100 * 4.4 / 4.6). There
are two striking observations from these results:

o even when the system is disk bound, the CPU cost of synchronization is noticeable, and
e when we are CPU bound, the difference is dramatic (67%).

4.4. Transaction Protected Access Methods

The B-tree and fixed length recno (record number) access methods have been modified to provide transaction
protection. Whereas the previously published interface to the access routines had separate open calls for each of the
access methods, we now have an integrated open call with the following calling conventions:

DB *dbopen (const char *file, int flags, int mode, DBTYPE type,
int dbflags, const void *openinfo)

where file is the name of the file being opened, flags and mode are the standard arguments to open(2), type is one of
the access method types, dbflags indicates the mode of the buffer pool and transaction protection, and openinfo is
the access method specific information. Currently, the possible values for dbflags are DB_SHARED and DB_TP

Throughput as a %
of Spintock Throughput

100 -
40 {%

1 Disk 2 Disks Read-only

Figure 5: Kernel Overhead for System Call Synchronization. The performance of the kemel call synchronization is expressed as a percentage
of the spinlock synchronization performance. In disk bound cases (1 Disk and 2 Disks), we see that 4-6% of the performance is lost due to kemel
calls while in the CPU bound case, we have lost 67% of the performance due to kemel calls.

USENIX — Winter 92 17

LIBTP: Portable, Modular... Seltzer, Olson

indicating that buffers should be kept in a shared buffer pool and that the file should be transaction protected.
The modifications required to add transaction protection to an access method are quite simple and localized.

1. Replace file open with buf open.

2. Replace file read and write calls with buffer manager calls (buf_get, buf_unpin).
3. Precede buffer manager calls with an appropriate (read or write) lock call.

4. Before updates, issue a logging operation.

5. After data have been accessed, release the buffer manager pin.

6. Provide undo/redo code for each type of log record defined.

The following code fragments show how to transaction protect several updates to a B-tree.2 In the unprotected case,
an open call is followed by a read call to obtain the meta-data for the B-tree. Instead, we issue an open to the buffer
manager to obtain a file id and a buffer request to obtain the meta-data as shown below.

char *path;
int fid, flags, len, mode;

/* Obtain a file id with which to access the buffer pool */
fid = buf_open(path, flags, mode);

/* Read the meta data (page 0) for the B-tree */
if (tp_lock(fid, 0, READ_LOCK))

return error;
meta_data_ptr = buf_get(fid, 0, BF_PIN, &len);

The BF_PIN argument to buf get indicates that we wish to leave this page pinned in memory so that it is not
swapped out while we are accessing it. The last argument to buf get returns the number of bytes on the page that
were valid so that the access method may initialize the page if necessary.

Next, consider inserting a record on a particular page of a B-tree. In the unprotected case, we read the page,
call _bt_insertat, and write the page. Instead, we lock the page, request the buffer, log the change, modify the page,
and release the buffer.

int fid, len, pageno; /* Identifies the buffer */

int index; /* Location at which to insert the new pair */
DBT *keyp, *datap; /* Key/Data pair to be inserted */
DATUM *d; /* Key/data structure to insert */

/* Lock and request the buffer */
if (tp_lock(fid, pageno, WRITE_LOCK))
return error;
buffer_ptr = buf_get(fid, pageno, BF_PIN, &len);

/* Log and perform the update */

log_insdel (BTREE_INSERT, fid, pageno, keyp, datap);
_bt_insertat(buffer_ptr, d4d, index);
buf_unpin(buffer_ptr);

Succinctly, the algorithm for turning unprotected code into protected code is to replace read operations with lock
and buf get operations and write operations with log and buf _unpin operations.

5. Performance

In this section, we present the results of two very different benchmarks. The first is an online transaction pro-
cessing benchmark, similar to the standard TPCB, but has been adapted to run in a desktop environment. The
second emulates a computer-aided design environment and provides more complex query processing.

% The following code fragments are examples, but do not define the final interface. The final interface will be determined after LIBTP has
been fully integrated with the most recent db(3) release from the Computer Systems Research Group at University of California, Berkeley.

18 USENIX — Winter 92

Seltzer, Olson LIBTP: Portable, Modular...

5.1. Transaction Processing Benchmark

For this section, all performance numbers shown except for the commercial database system were obtained on
a DECstation 5000/200 with 32MBytes of memory running Ultrix V4.0, accessing a DEC RZ57 1GByte disk drive.
The commercial relational database system tests were run on a comparable machine, a Sparcstation 1+ with
32MBytes memory and a 1GByte external disk drive. The database, binaries and Iog resided on the same device.
Reported times are the means of five tests and have standard deviations within two percent of the mean.

The test database was configured according to the TPCB scaling rules for a 10 transaction per second (TPS)
system with 1,000,000 account records, 100 teller records, and 10 branch records. Where TPS numbers are
reported, we are running a modified version of the industry standard transaction processing benchmark, TPCB. The
TPCB benchmark simulates a withdrawal performed by a hypothetical teller at a hypothetical bank. The database
consists of relations (files) for accounts, branches, tellers, and history. For each transaction, the account, teller, and
branch balances must be updated to reflect the withdrawal and a history record is written which contains the account
id, branch id, teller id, and the amount of the withdrawal [TPCB90)].

Our implementation of the benchmark differs from the specification in several aspects. The specification
requires that the database keep redundant logs on different devices, but we use a single log. Furthermore, all tests
were run on a single, centralized system so there is no notion of remote accesses. Finally, we calculated throughput
by dividing the total elapsed time by the number of transactions processed rather than by computing the response
time for each transaction.

The performance comparisons focus on traditional Unix techniques (unprotected, using flock(2) and using
fsync(2)) and a commercial relational database system. Well-behaved applications using flock(2) are guaranteed
that concurrent processes’ updates do not interact with one another, but no guarantees about atomicity are made.
That is, if the system crashes in mid-transaction, only parts of that transaction will be reflected in the after-crash
state of the database. The use of fsync(2) at transaction commit time provides guarantees of durability after system
failure. However, there is no mechanism to perform transaction abort.

5.1.1. Single-User Tests

These tests compare LIBTP in a variety of configurations to traditional UNIX solutions and a commercial
relational database system (RDBMS). To demonstrate the server architecture we built a front end test process that
uses TCL [OUST90] to parse database access commands and call the database access routines. In one case
(SERVER), frontend and backend processes were created which communicated via an IP socket. In the second case
(TCL), a single process read queries from standard input, parsed them, and called the database access routines. The
performance difference between the TCL and SERVER tests quantifies the communication overhead of the socket.
The RDBMS implementation used embedded SQL in C with stored database procedures. Therefore, its
configuration is a hybrid of the single process architecture and the server architecture. The graph in figure six shows
a comparison of the following six configurations:

LIBTP Uses the LIBTP library in a single application.

TCL Uses the LIBTP library in a single application, requires query parsing.
SERVER Uses the LIBTP library in a server configuration, requires query parsing.
NOTP Uses no locking, logging, or concurrency control,

FLOCK Uses flock(2) for concurrency control and nothing for durability.
FSYNC Uses fsync(2) for durability and nothing for concurrency control.
RDBMS Uses a commercial relational database system.

The results show that LIBTP, both in the procedural and parsed environments, is competitive with a commer-
cial system (comparing LIBTP, TCL, and RDBMS). Compared to existing UNIX solutions, LIBTP is approximately

15% slower than using flock(2) or no protection but over 80% better than using fsync(2) (comparing LIBTP,
FLOCK, NOTP, and FSYNC).

5.1.2. Multi-User Tests

While the single-user tests form a basis for comparing LIBTP to other systems, our goal in multi-user testing
was to analyze its scalability. To this end, we have run the benchmark in three modes, the normal disk bound
configuration (figure seven), a CPU bound configuration (figure eight, READ-ONLY), and lock contention bound
(figure eight, NO_FSYNC). Since the normal configuration is completely disk bound (each transaction requires a

USENIX — Winter 92 19

LIBTP: Portable, Modular... Seltzer, Olson

TPS
10

N

TCL SERVER NOTP FLOCK FSYNC RDBMS

Figure 6: Single-User Performance Comparison.

random read, a random write, and a sequential write®) we expect to see little performance improvement as the mul-
tiprogramming level increases. In fact, figure seven reveals that we are able to overlap CPU and disk utilization
slightly producing approximately a 10% performance improvement with two processes. After that point, perfor-
mance drops off, and at a multi-programming level of 4, we are performing worse than in the single process case.

Similar behavior was reported on the commercial relational database system using the same configuration.
The important conclusion to draw from this is that you cannot attain good multi-user scaling on a badly balanced
system. If multi-user performance on applications of this sort is important, one must have a separate logging device
and horizontally partition the database to allow a sufficiently high degree of multiprogramming that group commit
can amortize the cost of log flushing.

By using a very small database (one that can be entirely cached in main memory) and read-only transactions,
we generated a CPU bound environment. By using the same small database, the complete TPCB transaction, and no
fsync(2) on the log at commit, we created a lock contention bound environment. The small database used an
account file containing only 1000 records rather than the full 1,000,000 records and ran enough transactions to read
the entire database into the buffer pool (2000) before beginning measurements. The read-only transaction consisted
of three database reads (from the 1000 record account file, the 100 record teller file, and the 10 record branch file).
Since no data were modified and no history records were written, no log records were written. For the contention
bound configuration, we used the normal TPCB transaction (against the small database) and disabled the log flush.
Figure eight shows both of these results.

The read-only test indicates that we barely scale at all in the CPU bound case. The explanation for that is that
even with a single process, we are able to drive the CPU utilization to 96%. As a result, that gives us very little
room for improvement, and it takes a multiprogramming level of four to approach 100% CPU saturation. In the
case where we do perform writes, we are interested in detecting when lock contention becomes a dominant perfor-
mance factor, Contention will cause two phenomena; we will see transactions queueing behind frequently accessed
data, and we will see transaction abort rates increasing due to deadlock. Given that the branch file contains only ten
records, we expect contention to become a factor quickly and the NO-FSYNC line in figure eight demonstrates this
dramatically. Each additional process causes both more waiting and more deadlocking. Figure nine shows that in
the small database case (SMALL), waiting is the dominant cause of declining performance (the number of aborts
increases less steeply than the performance drops off in figure eight), while in the large database case (LARGE),
deadlocking contributes more to the declining performance.

3 Although the log is written sequentially, we do not get the benefit of sequentiality since the log and database reside on the same disk.

20 USENIX — Winter 92

Seltzer, Olson

Throughput
in TS "

LIBTP: Portable, Modular...

ALARGE

h hput Aborts per 500
Tor m'ﬁwsp . lransaglions
26
160 . 100
READ{ONLY /
80 \ 50

3 N

tLIBTP 4(

/LSMALL

/

/.

Multiprogsramming

Figure 7: Multi-user Performance.
Since the configuration is completely
disk bound, we see only a small im-
provement by adding a second pro-
cess. Adding any more concurrent
processes causes performance degra-

dation.

Ny

1

0

25
N
FSYNG _ﬁz
0

10

5
Multiprogramming

Figure 8: Multi-user Performance
on a small database. With one pro-
cess, we are driving the CPU at 96%
utilization leaving little room for im-
provement as the multiprogramming
In the NO-FSYNC
case, lock contention degrades perfor-

level increases.

Mul(iprogramming

Figure 9: Abort rates on the TPCB
Benchmark. The abort rate climbs
more quickly for the large database
test since processes are descheduled
more frequently, allowing more

processes to vie for the same locks.

mance as soon as a second process is
added.

Deadlocks are more likely to occur in the LARGE test than in the SMALL test because there are more oppor-
tunities to wait. In the SMALL case, processes never do 1/O and are less likely to be descheduled during a transac-
tion. In the LARGE case, processes will frequently be descheduled since they have to perform I/O. This provides a
window where a second process can request locks on already locked pages, thus increasing the likelihood of build-
ing up long chains of waiting processes. Eventually, this leads to deadlock.

5.2. The O0O1 Benchmark

The TPCB benchmark described in the previous section measures performance under a conventional transac-
tion processing workload. Other application domains, such as computer-aided design, have substantially different
access patterns. In order to measure the performance of LIBTP under workloads of this type, we implemented the
001 benchmark described in [CATT91].

The database models a set of electronics components with connections among them. One table stores parts
and another stores connections. There are three connections originating at any given part. Ninety percent of these
connections are to nearby parts (those with nearby ids) to model the spatial locality often exhibited in CAD applica-
tions. Ten percent of the connections are randomly distributed among all other parts in the database. Every part
appears exactly three times in the from field of a connection record, and zero or more times in the fo field. Parts
have x and y locations set randomly in an appropriate range.

The intent of OO1 is to measure the overall cost of a query mix characteristic of engineering database applica-
tions. There are three tests:

e Lookup generates 1,000 random part ids, fetches the corresponding parts from the database, and calls a null
procedure in the host programming language with the parts’ x and y positions.

o Traverse retrieves a random part from the database and follows connections from it to other parts. Each of
those parts is retrieved, and all connections from it followed. This procedure is repeated depth-first for seven

USENIX — Winter 92 21

LIBTP: Portable, Modular... Seltzer, Olson

hops from the original part, for a total of 3280 parts. Backward traversal also exists, and follows all connec-
tions into a given part to their origin.

e Insert adds 100 new parts and their connections.

The benchmark is single-user, but multi-user access controls (locking and transaction protection) must be
enforced. It is designed to be run on a database with 20,000 parts, and on one with 200,000 parts. Because we have
insufficient disk space for the larger database, we report results only for the 20,000 part database.

5.2.1. Implementation

The LIBTP implementation of OO1 uses the TCL [OUST90] interface described earlier. The backend
accepts commands over an IP socket and performs the requested database actions. The frontend opens and executes
a TCL script. This script contains database accesses interleaved with ordinary program control statements. Data-
base commands are submitted to the backend and results are bound to program variables.

The parts table was stored as a B-tree indexed by id. The connection table was stored as a set of fixed-length
records using the 4.4BSD recno access method. In addition, two B-tree indices were maintained on connection
table entries. One index mapped the from field to a connection record number, and the other mapped the fo field to a
connection record number. These indices support fast lookups on connections in both directions. For the traversal
tests, the frontend does an index lookup to discover the connected part’s id, and then does another lookup to fetch
the part itself.

5.2.2. Performance Measurements for Q01

We compare LIBTP’s Q01 performance to that reported in [CATT91]. Those results were collected on a Sun
3/280 (25 MHz MC68020) with 16 MBytes of memory and two Hitachi 892MByte disks (15 ms average seek time)
behind an SMD-4 controller. Frontends ran on an 8MByte Sun 3/260.

In order to measure performance on a machine of roughly equivalent processor power, we ran one set of tests
on a standalone MC68030-based HP300 (33MHz MC68030). The database was stored on a 300MByte HP7959
SCSI disk (17 ms average seek time). Since this machine is not connected to a network, we ran local tests where the
frontend and backend run on the same machine. We compare these measurements with Cattell’s local Sun 3/280
numbers.

Because the benchmark requires remote access, we ran another set of tests on a DECstation 5000/200 with
32M of memory running Ultrix V4.0 and a DEC 1GByte RZ57 SCSI disk. We compare the local performance of
001 on the DECstation to its remote performance. For the remote case, we ran the frontend on a DECstation 3100
with 16 MBytes of main memory.

The databases tested in [CATT91] are
e INDEX, a highly-optimized access method package developed at Sun Microsystems.
e OODBMS, a beta release of a commercial object-oriented database management system.

e RDBMS, a UNIX-based commercial relational data manager at production release. The OO1 implementation
used embedded SQL in C. Stored procedures were defined to reduce client-server traffic.

Table two shows the measurements from [CATT91] and LIBTP for a local test on the MC680x0-based
hardware. All caches are cleared before each test. All times are in seconds.

Table two shows that LIBTP outperforms the commercial relational system, but is slower than CODBMS and
INDEX. Since the caches were cleared at the start of each test, disk throughput is critical in this test. The single
SCSI HP drive used by LIBTP is approximately 13% slower than the disks used in [CATT91] which accounts for
part of the difference.

OODBMS and INDEX outperform LIBTP most dramatically on traversal. This is because we use index look-
ups to find connections, whereas the other two systems use a link access method. The index requires us to examine
two disk pages, but the links require only one, regardless of database size. Cattell reports that lookups using B-trees
instead of links makes traversal take twice as long in INDEX. Adding a link access method to db(3) or using the
existing hash method would apparently be a good idea.

Both OODBMS and INDEX issue coarser-granularity locks than LIBTP. This limits concurrency for multi-
user applications, but helps single-user applications. In addition, the fact that LIBTP releases B-tree locks early is a
drawback in OOl. Since there is no concurrency in the benchmark, high-concurrency strategies only show up as

22 USENIX — Winter 92

Seltzer, Olson LIBTP: Portable, Modular...

Measure | INDEX | OODBMS | RDBMS | LIBTP | Measure Cache | Local | Remote

Lookup 54 129 27 272 Lookup cold 15.7 20.6
Traversal 13 98 90 473 warm 7.8 124
Insert - 7.4 1.5 22 9.7 Forward traversal cold 28.4 52,6

warm 23.5 474
Backward traversal | cold 24.2 474
warm 24.3 47.6
Insert cold 15 10.3
warm 6.7 10.9

Table 2: Local MC680x0 Performance of Several Table 3: Local vs. Remote Performance of
Systems on OO1. LIBTP on OOL1.

increased locking overhead. Finally, the architecture of the LIBTP implementation was substantially different from
that of either OODBMS or INDEX. Both of those systems do the searches in the user’s address space, and issue
requests for pages to the server process. Pages are cached in the client, and many queries can be satisfied without
contacting the server at all. LIBTP submits all the queries to the server process, and receives database records back:
it does no client caching.

The RDBMS architecture is much closer to that of LIBTP. A server process receives queries and returns
results to a client. The timing results in table two clearly show that the conventional database client/server model is
expensive. LIBTP outperforms the RDBMS on traversal and insertion. We speculate that this is due in part to the
overhead of query parsing, optimization, and repeated interpretation of the plan tree in the RDBMS’ query executor.

Table three shows the differences between local and remote execution of LIBTP’s OO1 implementation on a
DECstation. We measured performance with a populated (warm) cache and an empty (cold) cache. Reported times

are the means of twenty tests, and are in seconds. Standard deviations were within seven percent of the mean for
remote, and two percent of the mean for local.

The 20ms overhead of TCP/IP on an Ethernet entirely accounts for the difference in speed. The remote
traversal times are nearly double the local times because we do index lookups and part fetches in separate queries.
It would make sense to do indexed searches on the server, but we were unwilling to hard-code knowledge of OO1
indices into our LIBTP TCL server. Cold and warm insertion times are identical since insertions do not benefit from
caching.

One interesting difference shown by table three is the cost of forward versus backward traversal. When we
built the database, we inserted parts in part id order. We built the indices at the same time. Therefore, the forward
index had keys inserted in order, while the backward index had keys inserted more randomly. In-order insertion is

pessimal for B-tree indices, so the forward index is much larger than the backward one®. This larger size shows up
as extra disk reads in the cold benchmark.

6. Conclusions

LIBTP provides the basic building blocks to support transaction protection. In comparison with traditional
Unix libraries and commercial systems, it offers a variety of tradeoffs. Using complete transaction protection is
more complicated than simply adding fsync(2) and flock(2) calls to code, but it is faster in some cases and offers
stricter guarantees (atomicity, consistency, isolation, and durability). If the data to be protected are already format-
ted (i.e. use one of the database access methods), then adding transaction protection requires no additional complex-
ity, but incurs a performance penalty of approximately 15%.

In comparison with commercial database systems, the tradeoffs are more complex. LIBTP does not currently
support a standard query language. The TCL-based server process allows a certain ease of use which would be
enhanced with a more user-friendly interface (e.g. a windows based query-by-form application), for which we have

4 The next release of the 4.4BSD access method will automatically detect and compensate for in-order insertion, eliminating this problem.

USENIX — Winter 92 23

LIBTP: Portable, Modular... Seltzer, Olson

a working prototype. When accesses do not require sophisticated query processing, the TCL interface is an ade-
quate solution. What LIBTP fails to provide in functionality, it makes up for in performance and flexibility. Any
application may make use of its record interface or the more primitive log, lock, and buffer calls.

Future work will focus on overcoming some of the areas in which LIBTP is currently deficient and extending
its transaction model. The addition of an SQL parser and forms front end will improve the system’s ease of use and
make it more competitive with commercial systems. In the long term, we would like to add generalized hierarchical
locking, nested transactions, parallel transactions, passing of transactions between processes, and distributed commit
handling. In the short term, the next step is to integrate LIBTP with the most recent release of the database access
routines and make it freely available via anonymous ftp.

7. Acknowledgements

We would like to thank John Wilkes and Carl Staelin of Hewlett-Packard Laboratories and Jon Krueger. John
and Carl provided us with an extra disk for the HP testbed less than 24 hours after we requested it. Jon spent count-
less hours helping us understand the intricacies of commercial database products and their behavior under a variety
of system configurations.

8. References

[ANDR89] Andrade, J., Carges, M., Kovach, K., ‘‘Building an On-Line Transaction Processing System On UNIX
System V*’, CommUNIXations, November/December 1989.

[BAY77] Bayer, R., Schkolnick, M., ‘‘Concurrency of Operations on B-Trees”’, Acta Informatica, 1977.

[BERN8O] Bernstein, P., Goodman, N., ‘‘Timestamp Based Algorithms for Concurrency Control in Distributed
Database Systems’’, Proceedings 6th International Conference on Very Large Data Bases, October 1980.

[BSD91] DB(3), 4.4BSD Unix Programmer's Manual Reference Guide, University of California, Berkeley, 1991.

[CATT91] Cattell, R.G.G., ‘“‘An Engineering Database Benchmark”’, The Benchmark Handbook for Database and
Transaction Processing Systems, J. Gray, editor, Morgan Kaufman 1991.

[CHEN91] Cheng, E., Chang, E., Klein, J., Lee, D., Lu, E., Lutgardo, A., Obermarck, R., *‘An Open and Extensible
Event-Based Transaction Manager’’, Proceedings 1991 Summer Usenix, Nashville, TN, June 1991,

[CHOUS85] Chou, H., DeWitt, D., ‘‘An Evaluation of Buffer Management Strategies for Relational Database Sys-
tems’’, Proceedings of the 11th International Conference on Very Large Databases, 1985.

[DEWI84] DeWitt, D., Katz, R., Olken, F., Shapiro, L., Stonebraker, M., Wood, D., ‘‘Implementation Techniques
for Main Memory Database Systems”’, Proceedings of SIGMOD, pp. 1-8, June 1984.

[GRAY76] Gray, J., Lorie, R., Putzolu, F., and Traiger, I, *‘Granularity of locks and degrees of consistency in a
large shared data base’’, Modeling in Data Base Management Systems, Elsevier North Holland, New York, pp.
365-394.

[HAER83] Haerder, T. Reuter, A. *‘Principles of Transaction-Oriented Database Recovery’’, Computing Surveys,
15(4); 237-318, 1983.

{KUNG81] Kung, H. T., Richardson, J., ‘‘On Optimistic Methods for Concurrency Control’’, ACM Transactions on
Database Systems 6(2); 213-226, 1981.

[LEHM81] Lehman, P., Yao, S., ‘‘Efficient Locking for Concurrent Operations on B-trees”’, ACM Transactions on
Database Systems, 6(4), December 1981.

[MOHA91] Mohan, C., Pirahesh, H., ‘‘ARIES-RRH: Restricted Repeating of History in the ARIES Transaction
Recovery Method’’, Proceedings 7th International Conference on Data Engineering, Kobe, Japan, April 1991.

24 USENIX — Winter 92

Seltzer, Olson LIBTP: Portable, Modular...

[NODI90] Nodine, M., Zdonik, S., ‘‘Cooperative Transaction Hierarchies: A Transaction Model to Support Design
Applications”, Proceedings 16th International Conference on Very Large Data Bases, Brisbane, Australia,
August 1990.

[OUST90] Ousterhout, J., ““Tcl: An Embeddable Command Language’’, Proceedings 1990 Winter Usenix, Wash-
ington, D.C., January 1990.

[POSIX91] ‘‘Unapproved Draft for Realtime Extension for Portable Operating Systems’’, Draft 11, October 7,
1991, IEEE Computer Society.

[ROSE91] Rosenblum, M., Ousterhout, J., ‘‘The Design and Implementation of a Log-Structured File System’’,
Proceedings of the 13th Symposium on Operating Systems Principles, 1991.

[SELT91] Seltzer, M., Stonebraker, M., ‘‘Read Optimized File Systems: A Performance Evaluation’’, Proceedings
7th Annual International Conference on Data Engineering, Kobe, Japan, April 1991.

[SPEC88] Spector, Rausch, Bruell, ‘‘Camelot: A Flexible, Distributed Transaction Processing System’’, Proceed-
ings of Spring COMPCON 1988, February 1988.

[SQL86] American National Standards Institute, ‘‘Database Language SQL”’, ANSI X3.135-1986 (ISO 9075), May
1986.

[STONS1] Stonebraker, M., *‘Operating System Support for Database Management’”, Communications of the ACM,
1981.

[SULL92] Sullivan, M., Olson, M., ‘‘An Index Implementation Supporting Fast Recovery for the POSTGRES
Storage System’’, to appear in Proceedings 8th Annual International Conference on Data Engineering,
Tempe, Arizona, February 1992.

[TPCB90] Transaction Processing Performance Council, *““TPC Benchmark B’’, Standard Specification, Waterside
Associates, Fremont, CA., 1990.

[YOUN91] Young, M. W., Thompson, D. S., Jaffe, E., *‘A Modular Architecture for Distributed Transaction Pro-
cessing’’, Proceedings 1991 Winter Usenix, Dallas, TX, January 1991.

Margo L. Seltzer is a Ph.D. student in the Department of Electrical Engineering and Computer Sciences at the
University of California, Berkeley. Her research interests include file systems, databases, and transaction process-
ing systems. She spent several years working at startup companies designing and implementing file systems and
transaction processing software and designing microprocessors. Ms. Seltzer received her AB in Applied Mathemat-
ics from Harvard/Radcliffe College in 1983.

In her spare time, Margo can usually be found preparing massive quantities of food for hungry hordes, study-
ing Japanese, or playing soccer with an exciting Bay Area Women’s Soccer team, the Berkeley Bruisers.

Michael A. Olson is a Master’s student in the Department of Electrical Engineering and Computer Sciences
at the University of Califomia, Berkeley. His primary interests are database systems and mass storage systems.
Mike spent two years working for a commercial database system vendor before joining the Postgres Research
Group at Berkeley in 1988. He received his B.A. in Computer Science from Berkeley in May 1991.

Mike only recently transferred into Sin City, but is rapidly adopting local customs and coloration. In his spare
time, he organizes informal Friday afternoon study groups to discuss recent technical and economic developments.
Among his hobbies are Charles Dickens, Red Rock, and speaking Dutch to anyone who will permit it.

USENIX — Winter 92 25

Exploiting the Advantages of Mapped Files
for Stream I/0O

Orran Krieger, Michael Stumm and Ron Unrau

Department of Electrical Engineering, Universily of Toronto

Abstract

A new approach for providing user level support for fast stream I/O is motivated by four factors
common to most modern systems: 1) the capability of the operating system to support mapped files, 2)
the increasing number of applications that use threads, 3) the increasing discrepancy between processor
speed and disk latency, and 4) the increasing amount of available main memory.

In this paper, we first describe the advantages and disadvantages of using mapped files to support
stream access to files, and then describe a new interface, the Alloc Stream Interface (ASI), that allows for
improved performance over existing stream interfaces. A library that supports ASI has been implemented
on several systems (including IRIX and SunOS). In addition, the Stdio library has been re-implemented
to use ASI. Significant performance advantages are demonstrated for Stdio applications that are linked
to this new library and particularly for applications that are modified to use ASI directly. For example,
on typical Unix platforms, some standard I/O intensive utilities are shown to run up to twice as fast
when re-linked to use this library and up to three times as fast when converted to use ASI.

1 Introduction

In Unix, applications access files by using the Uniz I/O interface (i.e. read, write, ...). A major reason
for the success of Unix is that the Uniz I/O interface is used uniformly for all I/O. A uniform interface is
important so that a program can be written to be independent of the type of data sources and sinks with
which it is communicating. However, there are two main disadvantages with the Uniz I/O interface: Firstly,
as the interface definition now stands, an excessive number of system calls will result if a user process accesses
a file with many small read and write operations. Secondly, the user supplies a private buffer into which
data should be read, or from which data should be written. This can result in a large performance cost when
data is copied to and from the system buffers.

To reduce the number of interactions with the operating system, the Stdio run-time library buffers data
in the application’s address space (refer to Figure 1.1) and thus amortizes the cost of interactions with the
operating system over several application requests. However, buffering at the user level introduces yet another
layer of copying, namely between the library and application buffers. Moreover, most implementations of
Stdio are not re-entrant, and of the few that are re-entrant, we are not aware of any that allow more than
one thread to concurrently access data from a single stream.

Since the speed of file I/O is so crucial to the performance of many applications, most modern operating
systems support mapped files' where a file can be bound to a virtual address space such that a reference to
memory is effectively a reference to the corresponding location in the file. As discussed in Section 2, mapped
file I/O can result in less copying of data between different buffers, and can allow for different threads in
an application to concurrently access different parts of the same file. However, the main disadvantage of
mapped file I/O is that it cannot provide a uniform interface for all 1/O; for example, it cannot be used for
I/0 to terminals or network connections (i.e. sockets).

To incorporate some of the advantages of mapped files while preserving the advantages of uniformity that
a byte-oriented stream interface provides, the Stdio and Uniz I/0 interfaces can be implemented by a user

! For example, Mach [ABB+86], AIX [Mis90)], Hurricane [SUK] ...

USENIX — Winter 92 27

Exploiting the Advantages ... Krieger, Stumm, Unrau

Application program

52 2 e

Application program

1.1 Typlcal Implementation: Stdlo 1.2 Tho MSIO approach: Stdlo and 1.3 The MSIO (Ibrary: Stdlo and Emulated
Imptemented using Unix VO Emulated Unix /O implemented Unix /O lmpten%mod 3;‘129 A'é'n"
using Mapped Flles

Figure 1: Layers of interaction between Stdio, Uniz I/0 and ASI. Lightly shaded blocks are user level libraries. Dark
shaded boxes indicate interfaces supported by the operating system.

level library that whenever possible uses mapped files, as shown in Figure 1.2. This approach is referred to
as Mapped Stream I/0 (MSIO) and is discussed in Section 3. To differentiate between the Uniz I/O interface
supported by the operating system and a similar interface supported by a user level library, we refer to the
latter as Emulated Uniz I/0. Emulated Uniz I/0O has the disadvantage that the full Uniz I/0 semantics
(e.g. shared file semantics) cannot be supported by a user level library. However, these semantics are not
supported by most distributed file systems [LS90]. Moreover, significant performance gains can be obtained
by having file servers support only block oriented operations, as discussed in [Che87].

The primary contribution of this paper is the definition of a new I/O interface, called the Alloc Stream
Interface (ASI) that improves on the Stdio and emulated Uniz I/0 interfaces by significantly reducing the
amount of data copying that is necessary. The Stdio and Uniz I/O interfaces force the library (or operating
system) to copy data into a buffer specified by the application. In contrast, ASI provides the application
access to the internal buffers (mapped regions) of the library. With ASI, on a read operation, the underlying
library returns to the application a pointer to a region of memory containing the requested data, and on a
write operation, the library returns a pointer to a region where the data should be put. ASI has a number
of advantages, especially when implemented using MSIO:

1. Overhead (i.e. cost not associated with disk I/O) is greatly reduced. Whenever an I1/O request can
be serviced directly from the file cache, with Stdio and Uniz I/0 most of the I/O overhead is due to
copying data between various system, library and user buffers. Since MSIO uses mapped files, there is
no copying of data between the system and library buffers. Moreover, since with ASI the application
is given access to the mapped regions maintained by the library, there is no copying of data between
library and application buffers. This advantage is becoming increasingly important, since more and
more memory is being made available for file caching.

2. Threads in a multi-threaded application [Jon91] can concurrently access a stream. The behaviour of
ASI operations are well defined regardless of the number of threads accessing a stream. Also, the
stream is only locked when the library’s internal data structures are being modified, since with ASI
data does not have to be copied to or from user buffers. Hence, data is accessed by the application
while the stream is unlocked, which allows the I/O requests of multiple threads to the same stream to
be sent concurrently to the file system.

3. The interface is simple and easy to use. As we describe in Section 4, ASI is closely modeled on the
Unix memory allocation interface (i.e. malloc, realloc, free), providing programmers an interface
they are already familiar with. Our experience indicates that in most cases it is just as easy to write
an application using ASI as it is using the Uniz I/0 or Sidio interfaces.

A library, called the Mapped Stream I/O (MSIO) library has been implemented on several systems
including IRIX and SunOS. This library uses the MSIO approach to support the Alloc Stream Interface.

28 _ USENIX — Winter "92

Krieger, Stumm, Unrau Exploiting the Advantages ...

SunOS 4.1.1 SunOS 4.0 IRIX
[command | option || pages | KBytes || pages | KBytes H pages | KBytes |
read 147] 500 068] 548] 203] 8.13]
mmapr 1.89 7.5 2.22 17.78 5.62 22.47
mod 0.63 2.51 0.05 0.38 1.11 443
mmapw 1.91 7.64 2.08 16.67 4.25 16.88
write page || 1.19| 477| 006| 045 234 9.39
byte 5.46 21.83 4.17 33.33 5.13 20.51

Table 1: Measured performance of mapped files versus Uniz I/0 on SunOS 4.1.1, SunOS 4.0 and IRIX.
Performance numbers are in pages or KBytes per millisecond (i.e. the larger the number the better). The
Sun OS 4.1.1 system and the IRIX system have {KByte pages. The Sun OS 4.0 system has 8KByte pages.

As shown in Figure 1.3, the MSIO library also supports the Stdio and emulated Uniz I/O interfaces, which
are implemented on top of ASI. Applications that use this library can freely intersperse calls to all three
interfaces even if they are directed to the same stream. This allows application programmers to get the full
performance advantage of ASI by rewriting just the I/O intensive parts of the application.

In related work, the Sfio library [KV91] is a replacement library for Stdio. As well as providing a much
more consistent, powerful and natural interface than Stdio, Sfio uses algorithms that are more efficient than
those used by typical Sidio implementations and uses mapped file I/O for reading from files. Moreover, Sfio
provides an operation, called sfpeek(), that allows applications access to the internal buffers of the library.

Our work differs from Sfio in that: 1) it is better suited for multi-threaded environments, due to the
re-entrant nature of the library, and the short periods of time locks need to be held, 2) the MSIO library
can make use of mapped files in more situations, and 3) it provides a more versatile interface for accessing
library buffers. '

This paper is structured as follows. In the following section, the advantages and disadvantages of mapped
file I/O over Uniz I/O are described. The section contains performance numbers as measured on several
typical Unix systems. Section 3 describes the MSIO approach in detail, and Section 4 describes ASI. Section §
describes the current implementation of the MSIO library. Finally, Section 5.4 compares the performance
of applications linked to the standard system libraries against the performance of these same applications
re-linked to use the MSIO library, and re-written to use ASI. We close with a discussion of future directions.

2 Mapped File I/O

In this section, we first present the result of some simple experiments on SunOS and IRIX systems, and then
discuss the advantages and disadvantages of mapped file I/O over Uniz I/O in the context of these numbers.

The mmap/munmap [JCF*83] interface is a typical interface for mapping files into an address space. Mmap
takes as parameters the file number, protection flags, the length of the region to be mapped, and an offset
into a file. It returns a pointer to the mapped region. Munmap accepts as parameters the address and length
of the mapped region. This interface will be assumed throughout this paper.

Measured performance numbers for some simple programs on three different systems are shown in Table 1.
Experiment read accesses a large file (3MBytes) by using read operations that read the entire page from a
page aligned portion of the file into a page aligned buffer.? Experiment mmapr maps in an entire file, and
then touches each page to cause a page fault. Experiment mod, for each page in the file, reads the page,
seeks back to the beginning of the page and then writes it. Experiment mmapw maps in an entire file and
then modifies one byte in each page. Experiment write writes each page in a file either by writing the entire
page, or by writing one byte and then seeking to the next page. Note that these performance numbers were
measured on very different hardware platforms (the SunOS 4.0.3 system is a Sun 4/280S, the SunOS 4.1.1
gystem is a Sun 4/40 and the IRIX system is a SGI Iris 4D/240S) and therefore only allow a comparison

214 is fair to compare a read of an entire page to a touch of a mapped page, since these correspond to the system cost to get
a page of data into the application address space.

USENIX — Winter 92 29

Exploiting the Advantages ... Krieger, Stumm, Unrau

between different experiments on the same system. All experiments where performed many times, with the
minimum number chosen. This reflects best the measure of the performance when all data being accessed is
in the file cache.

As can be seen from the table, using mapped files for reading is nearly three times as fast as using Unix
read operations on both the IRIX and SunOS 4.0 systems. Also, the system cost of modifying a page using
mapped files is substantially less than if the page is read and written with Uniz I/0. Finally, the system cost
for modifying a mapped page is substantially less than writing the entire page. However, the performance
improvements with mapped file I/O need not always be as significant. For example, on the Sun OS 4.1.1
system, mapped files are only 20% faster than read operations for reading from a file.3 Also, if only a small
amount of data is being written (and the application does not require the previous contents of the data) the
combination of doing write and 1seek operations seems very effective on all three systems.

2.1 Advantages of Mapped File I/0

Using mapped files has a number of advantages:

Copying Overhead: With mapped files, data need never be copied between system and user buffers. The
processor time saved by not copying data is responsible for most of the performance advantage shown
in Table 1. However, there are hidden advantages not evident in these numbers. As observed in [CK91],
copying data can cause memory contention, which can be very important in the case of multiprocessor
systems or if high bandwidth I/O devices are concurrently trying to DMA data to the system. Also,
when data is copied through the processor cache, a large portion of the cache context may be lost.

It is possible for a smart application and operating system implementation to obtain similar advantages
using the Unix I/O interface. For example, if the application always uses a page aligned region of
memory for accessing a page aligned portion of a file, and if the amount of data being accessed is
a multiple of the page size, then the OS can bind the portion of the file into the application space
copy-on-write. However, in practice, this entails an excessive increase in complexity for most user
applications. Although system utilities and library packages (e.g. Stdio) could be written to use this
approach, the resulting performance may still not be as good as is the case for mapped file I/O. For
example, if a file is being modified rather than written in its entirety, with Uniz I/O the application
must do a read operation to get the data to be modified, modify the data (which will cause a page
fault if the data is mapped copy-on-write) and then perform a write operation. Using mapped files,
the application need only map in the data and then modify it.

Interactions with the Operating System: When mapped file I/O is used, applications generally map
large portions of a file into their address space; if it turns out that the application accesses a small
amount of the data, only pages actually touched will be read from the file system. In contrast, if Unix
I/0 is used, the application must be pessimistic about the amount of data it will require, since a read
operation incurs the I/O cost when invoked. Therefore, with mapped files, the number of system calls
is greatly reduced over if Uniz I/O is used. However, the cost of a page fault is incurred every time a
new mapped page is accessed.

The cost of a page fault is generally greater than the cost of a read or a write system call (not
including the copy of data) on systems where all functions of the operating system are provided by
a single monolithic kernel. This is shown in Table 1, since the cost of experiment mmapw is greater
than the single byte write experiment. However, the cost of a page fault may be less than a read
or a write operation on micro-kernel based operating systems, such as V [Che88], Mach [ABB*86]
or Hurricane [SUK] 4. For example, on Hurricane, page faults are handled by the micro-kernel with
no communication to the file servers if the data is already in the file cache, resulting in a substantial
performance gain.

31t is interesting to note that read performance on this system becomes much worse when files greater then 4MBytes are
accessed, therefore, the relative performance of mmap looks better for these files.

4Hurricane is an experimental operating system designed to study scalability issues for large scale multiprocessors. It is the
operating system used on the Hector multiprocessor [VSWL91}

30 USENIX — Winter 92

Krieger, Stumm, Unrau Exploiting the Advantages ...

Concurrency of Reads: With mapped files, the mapping operation is independent from the actual faulting
for the data. Therefore, if several application threads access the same mapped region, each thread may
independently cause a page fault that initiates an I/O operation to disk. This allows the application
to exploit high bandwidth file systems (e.g. if disk I/O is spread across many disks [PGK88, FPD91]).

Reduced Memory Usage: When an application uses Uniz I/O, there are often multiple copies of the
same data resident in memory, since data is copied from the file cache to application specific buffers.
This can result in paging or swapping activity. In contrast, if mapped file I/O is used, no extra copies
of the data are made, so the system memory is used more effectively. Moreover, in the case where
there is insufficient main memory, if the data in the file cache is not modified it does not need to be
paged out, since the data is already on disk, whereas with Uniz I/0, the copy of the file data read in
the application address space must be paged out to disk.

Shared file access: With mapped files, two programs accessing the same file will share the same physical
memory pages. Therefore, programs can actively share file data and, for example, directly share
synchronization variables in the file.

2.2 Disadvantages of Mapped File I/O

The specific implementation of the operating system or even the hardware may have a large impact on the
performance of mapped file I/O relative to that for Uniz I/0. For example, if the cost of a page fault is very
expensive, the performance of mapped files will compare unfavorably to the performance of Uniz I/0. One
instance where page faults are expensive is on operating systems that require that the processor cache be
flushed or invalidated on each page fault.

Page size may also have a dramatic impact on performance. Small page sizes increase the number of
page faults that will occur when mapped files are used. On the other hand, large page sizes can result in
superfluous I/0.

Another disadvantage of using mapped file I/O is that some operating systems will zero-fill the page on
the first access to a new file block. Therefore, even in the case that the application will modify the the entire
page, the cost of the zero-fill will be incurred. One way many operating systems reduce this expense is to
maintain a list of pre-zeroed pages. This cost can be entirely eliminated if the operating system allows the
application to map files such that pages are not pre-zeroed.

When an application uses Uniz I/0, the operating system generally pre-fetches data on sequential reads
to a file, thus reducing the user visible latency of the file system. Although some operating systems do
not directly pre-fetch data in the case of mapped files, several operating systems do provide an interface to
advise the operating system that mapped data will soon be accessed (e.g. SunOS has the madvise() system
call). In effect, this is more powerful than having the operating system implicitly pre-fetch pages, since it
can be applied to non-sequential accesses. Also, it allows the advantages of asynchronous reading [BJ 91],
without requiring a special mechanism to inform the application that the requested data is available. If the
application attempts to access the data before it is available, a page fault will occur that allows the operating
system to defer the access until the data is available.

Although support for mapped files is becoming a common feature of many operating systems, few ap-
plications have yet been written to use it. The most important reason for this is that mapped files cannot
provide a uniform interface for all I/O. With Uniz I/0 or Stdio, applications can use the same operations
whether the I/O is directed to a file, terminal or network connection. Mapped file I/O can only be used for
I/0O directed to a device which can be used to handle page faults, that is, a random access block oriented
I/O devices such as a disk. In the next section, we introduce an approach, called MSIO, for supporting a
uniform I/O interface while exploiting some of the performance advantages of mapped file 1/O.

3 Mapped Stream I/0

Mapped Stream I/O (MSIO) is an approach for supporting stream I/O interfaces such as emulated Uniz
I/0 or Stdio with a user level run-time library that exploits the advantages of mapped files. With MSIO a
portion of the file being accessed is mapped into the application address space. Read operations are handled

USENIX — Winter ‘92 31

Exploiting the Advantages ... Krieger, Stumm, Unrau

by copying data from the mapped region to the buffer specified by the application. Similarly, for write
operations, data is copied from the application buffer to the mapped region. The library keeps track of
the current position in the file, modifying it every time the application performs a read, write or seek
operation. When the region is exhausted, it is freed and a new region (usually the one directly following it)
is mapped in.

In many ways, a stream I/O library based on mapped files is similar to the I/O libraries that buffer
blocks, such as Stdio. For example, for reading, Stdio reads a block of data from the file and then services
application reads from this block. However, in practice, supporting a stream interface using mapped files is
substantially easier. First, the same code can be used for allocating a region for either reading or writing;
with Stdio, the buffers for reading and writing have to be managed in different ways. Second, when a file is
open for both read and write access, the same region can be used for both modes, making it much simpler for
a stream to change modes (e.g. when doing a read after a write). In contrast, many implementations of Stdio
require the application to perform explicit seek operations when changing modes [KV91].5 Finally, since the
file offset is maintained by the library, seek operations can be supported without any communication to the
file system.

It is possible to use a hybrid approach, where mapped files are used when the resulting performance is
expected to be high and Unix I/O is used otherwise. For example, the Sfio library uses mapped files for
reading only. The MSIO library described in Section 5 can be configured in three different ways, namely: (1)
to use mapped files for all file I/O, (2) to use mapped files for modifying data before the end-of-file (EOF),
and write operations for modifying data past the EOF, and (3) to use Uniz I/O for all file operations.

There may be reasons other than performance for not using mapped files for all file I/O. For example,
with mapped files, some operating systems ignore modifications to a file block past EOF. Therefore, to ensure
that the data will not be lost, the application must first change EOF® before adding the new data. The
disadvantage of this approach is that the EOF changes before the new data becomes available, which means
that other programs cannot use EOF to determine how much valid data is contained in the file. In contrast,
with Uniz I/0, the application prepares the data for a write operation in a private buffer. When the write
operation is performed, the file system copies the data from the private buffer to the system buffers and then
(if necessary) updates the EOF.

The file system of the Hurricane operating system allows mapped files to be modified without forcing
EOF to be extended. Applications explicitly set EOF when a modification is complete.” This approach has
the advantage Uniz I/0 has in that data remains private to the application performing the write, while not
having the disadvantage that data must be copied from a private buffer. This makes it possible to configure
the MSIO library on Hurricane to use mapped files for all file I/O. On SunOS and IRIX, the MSIO library
is configured to use write operations whenever the file size must be extended.

4 The Alloc Stream Interface

In the course of developing a new user level I/O library to support the emulated Uniz I/0 and Stdio interfaces,
we observed that a large proportion of the library time was being spent copying data between the library
and application buffers. This motivated the design of a new interface called the Alloc Stream Interface, with
the following goals:

1. Applications must be able to use the same interface for all I/O whether to files or stream devices such
as terminals.

2. For performance, the interface should allow the application access to the internal buffers (mapped
regions) of the library, rather than forcing the library to always copy data between the library and
application buffers.

5As another example, with every implementation of Stdio with which we have experimented, the library does not properly
handle interspersed getc and putc operations, while correct behaviour can be trivially supported using mapped files.

6This can be accomplished by doing a ftruncate to the new file size, or a 1seck and then a write operation. IRIX supports
an optional flag to mmap that causes the file to grow every time a page past the current EOF is modified.

7When all open references to a file are complete, the file system garbage collects any blocks that have been written to disk
past EOF.

32 USENIX — Winter 92

Krieger, Stumm, Unrau Exploiting the Advantages ...

3. The interface should allow for implementations that can exploit mapped files.

4. Multi-threaded applications should be supported. This implies that the interface semantics must be
clearly defined in the case where multiple threads are accessing the same stream, and it implies that
the amount of time a stream needs to be locked should be minimized.

5. The interface should be easy to use, and preferably be similar to an interface programmers are already
familiar with.

6. Because of the wide acceptance of current I/O interfaces, and in order to gain acceptance, the interface
must in some way be compatible the other interfaces being used, such as Stdio.

4.1 The High Level ASI
The most important operations defined by ASI are:

FILE *sopen(char *path, int access_flags, int creat_flags, int *rc) ;
int sclose(FILE *fl) ;

void *salloc(FILE *fl, int *length) ;

int sfree(FILE *fl, void *ptr) ;

void *sallocAt(FILE *fl, int *length, int *offset, int whence) ;

void *srealloc(FILE *fl, void *start, int oldlen, int *newlength) ;

Sopen opens the file named by path and, if the open succeeds, returns a handle to be used to identify the
stream in subsequent accesses. The stream will always be in one of two modes, namely read mode or write
mode. If the stream is opened for read-only or read-write access, the mode of the stream defaults to read
mode; otherwise it defaults to write mode. (The mode of the stream can changed using the set_alloc_flags
macro.) Sclose closes the named stream after unmapping any mapped files and flushing any buffered data.
The remaining operations are modeled after the Unix memory allocation interface (i.e. malloc, realloc,
free).

ASI considers only files to be truly read-write streams. If a non-file stream, such as a terminal or a socket
stream is opened for read-write access then it is handled as if there are two independent streams (i.e. a read
and a write stream) addressed by the same handle. In other words, only with files will a write access change
what data a subsequent read access will obtain.

Reading from a Stream

Salloc is used together with sfree for accessing a stream. Salloc returns a pointer to a region of memory
that contains the requested data, and advances the stream offset (i.e. the offset in the stream for the next
access) by the specified length. Sfree tells the library that the application has finished accessing the data,
at which point the library can discard any state associated with it. The length parameter to salloc is a
value return parameter, initialized to the amount of requested data and modified on return to indicate the
amount of allocated data. In the case of an error, a NULL pointer is returned and the length parameter is
set to a negative error code.

The name salloc was chosen to indicate that data is allocated from a stream for use by a particular
thread. That is, the library considers data requested by a salloc operation private until a sfree operation
indicates that the thread has finished using the data. In no case will two salloc operations return pointers
to the same data. If two threads wish to concurrently access the same data, then the one that allocated the
data must pass the pointer to the other thread.

For a file in read mode, only data already in the file can be allocated. If an application attempts to
allocate past the EOF, a length of 0 will be returned. The application should never modify data obtained
from salloc in read mode. If the stream is not associated with a file, then the modifications will not be visible
on the other side of the stream (e.g. the screen of a terminal). If a file is opened read-only, modifications
could cause the program to segment fault.

Note that because salloc returns a pointer to the data, it can ensure that the alignment allows for
memory mapping optimizations.

USENIX — Winter 92 33

Exploiting the Advantages ... Krieger, Stumm, Unrau

Writing to a Stream

In write mode, salloc returns a pointer to a region of memory where the data should be placed, and
advances the stream offset by the specified length. The application can then use this region as a private
buffer in which to place data to be written to the stream. Sfree tells the library that the application has
finished putting data in that region, at which point the library can write out the modified data. If the stream
is to a file, the length of the file is automatically extended on sfree if the allocated data is past EOF. For
a non-file stream, the order of writes are guaranteed to be in the same order as the corresponding salloc
operations even if the sfree operations occur in a different order.

Repositioning in a stream

SallocAt can only be used for files. It causes the stream offset to move to a particular location in the file
and performs a salloc at that location. It is equivalent to a Stdio £seek followed by a salloc. For parallel
applications, the Stdio and Uniz I/O stream interfaces have the disadvantage that if a thread performs a
seek operation in order to access data at a particular location in the file, it is possible for another thread to
(indirectly) modify the file offset before the first thread is able to access the data. To resolve this problem,
sallocAt causes the stream to be locked until the requested data has been allocated. The offset parameter
to sallocAt is a value return parameter, which on return indicates the position of the file offset in the file.

As stated earlier, when a thread allocates data from a stream, the library makes sure that no other thread
can allocate the same data. To ensure this, sallocAt blocks until all allocated regions are freed, if it causes
the file offset to move backwards in the file. While this handling of sallocAt is stricter than necessary, it
has the advantage that it reduces the amount of state that needs to be maintained for salloc and sfree. A
less restrictive policy would allow for more concurrency, but would reduce the performance for these common
operations.

Changing the amount of data allocated

If more data than necessary was allocated, it should be possible to return data so that it can be allocated
later (possibly by another thread). Also, since library buffers are a convenient location to prepare data for
writing, the application may want to salloc a large data space, and then shrink the region back to the
actual amount of data prepared.

Srealloc allows the application to shrink or grow a previously allocated region. In the case of the last
allocated region, srealloc will reposition the offset in the stream. For example, if salloc allocated bytes
1-200 of a file, and realloc shrinks the region to bytes 1-20, then the stream offset for the next access
will be moved to byte 21 of the file. Moreover, if the file size would change with the corresponding free
operation, then it changes according to the srealloc and not the original salloc operation. Using the
previous example, if the file size was originally 0 bytes, then the file size is set on sfree to be 20 bytes and
not 200 bytes.

Error Codes

All ASI operations return full error codes, which always have a negative value. Sopen returns the error code
in rc, and salloc, sallocAt and srealloc return (negative) error codes in the length parameter. This is in
contrast to Uniz [/O and Stdio that return the error code in the global variable errno, which is not suitable
for multi-threaded applications.

4.2 The Low Level ASI

The high level interface described above supports simultaneous access to a stream by multiple application
threads. Therefore, all operations require the stream to be locked when various critical data structures of
the library are being accessed. Also, the mode of the file (i.e. read or write) always determines whether a
salloc operation is for reading or writing. There is a lower-level interface to ASI that includes less restrictive
operations for accessing a stream.

34 USENIX — Winter "92

Krieger, Stumm, Unrau Exploiting the Advantages ...

unlocked operations: The operations u_salloc, u_sfree, u_srealloc and u.sallocAt have the same
parameters as the corresponding operations in the high level interface, but differ in that they do not
lock the stream. These operations are useful in two cases: 1) if the application is sequential and does
not want to incur the overhead of locking, 2) if in a parallel application a particular thread wishes to
acquire a lock for the stream while performing a number of operations to that stream. SLock(stream)
and SUnlock(stream) operations can be used by the application to explicitly lock a stream when
the unlocked operations are being used.

mode variable operations: The (capitalized) Salloc, Srealloc and SallocAt operations differ from the

corresponding (un-capitalized) high level operations in that the mode is specified on each call. For
example, in

void *Salloc(FILE *fl, int flags, int *length) ;

the flags parameter can either be set to SA_READ or SA_WRITE to indicate whether the thread is allocating
for reading or for writing. This interface is useful if different threads are concurrently accessing the
same stream, some for reading and some for writing.

macro operations: With ASI, the actual amount of code executed to access a stream is very small in
the common case (i.e. when the data to be allocated is already in a buffer or mapped region), so the
overhead of a procedure call is significant. Therefore, to minimize the cost for performance critical
portions of a program a set of fas! macros that correspond to both the high and low level procedures
are provided. For example, £_Salloc, f Srealloc and £_SallocAt, have the same parameters as the
Salloc Srealloc and SallocAt calls, but are implemented as macros.

5 The Mapped Stream I/O Library

The Mapped Stream I/O (MSIO) Library is an implementation of the ideas presented in this paper. It
supports: emulated Uniz I/0, Stdio, and the Alloc Stream Interface (ASI). The emulated Uniz I/0 and
Stdio interfaces are supported by a layer of software above ASI. Implementations of the MSIO library exist
on the Hurricane, IRIX and SunOS operating systems.

In this section, we consider the data structures of the MSIO library and the way these structures are
used for typical stream accesses. As shown in Figure 2, there is one Client 1/O State structure (CIOS)
‘associated with each stream and either one or two sorted lists of regions, where a region is either a portion
of the address space mapped to a file, or a buffer holding data associated with that stream. In the case of a
mapped file, there is only one region list used for both read and write accesses. Otherwise, if the stream is
open for read-write access, there are two region lists; one for read accesses and one for write accesses. The
CIOS structure contains the following important fields:

_buf points to the current region, the region that will be used for the next access to the stream,
creg points to the region list element corresponding to the current region,

_bufsiz is the size of the current region,

_ptr points to the data to be used for servicing the next access to the stream,

-cnt indicates the number of bytes remaining to be allocated in the current region.

For each region in the region list, the MSIO library maintains the offset into the file, a reference count
for the number of outstanding references to the region (i.e. the number of sallocs performed without a
corresponding sfree), and the length of the region. The current region always has a reference count of at
least one.

USENIX — Winter 92 35

Exploiting the Advantages ... Krieger, Stumm, Unrau

. L Buffers or
CIOS entries Region List Mapped Regions
file length foffset region ‘
Tock refcount
—ent length
_bufsiz
creg foffset .
region
_buf refcount g >
-ptr length
@
o
o
foffset
tl‘lleliength refcount region N
oC
length
_cnt) e
_bufsiz
cre "
3 foffset .
_buf region
u refcount
P length

Figure 2: Client I/O State

5.1 The Common Case

The most common ASI operations are salloc and sfree. In this section, we describe the algorithms used
for these operations assuming the region being accessed is the current region, which is the common case.

The algorithm for salloc is shown in Figure 3. On salloc, the library first locks the CIOS structure
to ensure that no other thread is currently accessing it. It then checks whether the operation is allowed on
that region and ascertains that the salloc can be satisfied by the current region3. The _cnt is then reduced
by the size of the access and _ptr is increased accordingly, the refcount of the region is incremented by
salloc to indicate that the region is actively being accessed, the CIOS is unlocked, and the original version
of _ptr is returned. At this point, _ptr points to the next byte to be allocated from the stream.

For sfree, the library locks the CIOS, searches the region list to find the region that includes the data
being freed, and decrements the reference count of that region. If the reference count of the region is not
zero, sfree returns to the application. Otherwise, sfree deallocates the region as described below. In
the common case, the data being freed is in the current region, so the code can be optimized as shown in
Figure 3, since the refcount is guaranteed to always be greater than zero.

5.2 Mapped Files

When salloc can not be satisfied by the current region and the operation is to a mapped file, then the
MSIO library: 1) maps a new region that includes the requested data into its address space, 2) initializes a
new region structure to point to the region and inserts it into the region list, 3) initializes the _buf, _bufsiz,
-ptr, and _cnt variables, and finally 4) changes creg to point to the new region structure.

8That is, either the _cnt is greater than the amount of requested data, or the salloc is for writing and there is sufficient
room in the buffer.

36 USENIX — Winter ‘92

Krieger, Stumm, Unrau Exploiting the Advantages ...

void *salloc(FILE *cios, int *length)
{
acquire(cios->lock) ;
if((mode of region and operation match) &&
(cios->_cnt >= *length) ||
((operation for write) && (room in buffer)))
{
char *tmpptr = cios->_ptr ;
cios->_cnt -= *length ;
cios->_ptr += *length ;
cios~>creg->refcount++ ;
release(cios->lock) ;
return tmpptr ;
}
~ add a new region and allocate the data from that ;
}
int sfree(FILE %*cios, void *ptr)
{
acquire(cios->lock) ;
if(operation to creg)
{
cios->refcount-- ;
release(cios->lock) ;
return OK ;
}

free region from region list ;

Figure 3: Code for salloc and sfree

When the reference count is zero, on a sfree, the library discards the mapped region. This entails
removing the region from the region list, unmapping the region and freeing the structures associated with it.
In the case where data has been modified, the library need not inform the operating system that the page
has been modified, since the memory manager will detect this on its own through the dirty bit associated
with the page.

As discussed in Section 3, data allocated past the end of file must be handled in a special manner. The
MSIO library can be configured to either handle writes past EOF as mapped files or by doing regular Uniz
I/0 write operations to extend the file. The latter case is described in the next section. For the former, the
MSIO library must interact with the file system to indicate that the file length has changed. Whether the
file length has increased is checked whenever creg is changed (for example, when a new current region is
mapped in). This can be determined from the information in the CIOS structure and region list element.’
If the file length has changed the new file length is recorded in the CIOS structure. Whenever a region is
discarded, the library informs the file system that the file length has changed to include this new region.

The library could also inform the file system that the file length has changed: 1) when sfree is called,
and 2) when the file is closed. The approach we chose is a compromise between reducing the number of
library/OS interactions and making the data available to other applications as soon as possible.

9Special care must be taken when sallocAt is called, however, this is beyond the scope of this discussion.

USENIX — Winter 92 37

Exploiting the Advantages ... Krieger, Stumm, Unrau

int read(int fd, char *buf, int length)

{
int rc ;
ptr = Salloc(stream, &length, SA_READ) ;
if(length < 0) RETURN_ERR(length) ;
becopy(ptr, buf, length) ;
if((rc = sfree(stream)) < 0)

RETURN_ERR(rc) ;

return length ;

Figure 4: Read implemented using ASI

5.3 Non-mapped I/0O

If a non-mapped stream is being accessed for both read and write operations, the MSIO library maintains
a separate region list for reading and writing. If the mode of the current region does not correspond to the
mode of the operation, it is necessary to change the mode of the stream, and with it the region list being
used and the corresponding variables in the CIOS structure.

When salloc cannot be satisfied by the current region, the library: 1) allocates a new buffer that is
(at minimum) large enough to satisfy the request, 2) copies the portion of the data in the current region to
the new buffer and, 3) if the salloc is for a read, performs a read operation to the operating system for the
remainder of the data. After this point, the reference is handled in the same manner as if it was to a file.

As with mapped files, a region is not discarded until the reference count is zero. At this point, if the
buffers are for reading, they are discarded by removing the buffers from the region list, and by freeing both
the buffers and the associated structures. A write buffer cannot be discarded until all previous regions have
also been discarded. This is important to ensure the order of modifications according to the order of salloc
operations. When a region can be discarded, the data in that region and all subsequent regions with zero
reference counts are written out before discarding the regions.

5.4 Conversion between ASI, emulated Unix I/O and Stdio interfaces:

ASI is more general than the emulated Uniz I/0 or Stdio interfaces because ASI can be used to implement
both of the other interfaces with little or no overhead. In the MSIO library, emulated Uniz I/0 and Stdio
interfaces are supported by a layer of software above the ASI layer. A simplified version of the algorithm
used to implement an emulated Uniz I/O read with (mode variable) ASI operations is shown in Figure 4.
Read first calls salloc to allocate the data from the stream, then copies the data from the allocated region
to the user specified buffer, frees the allocated region, and finally returns to the application the amount of
data read.

One major advantage of using ASI for implementing other interfaces is that the copying of data from
the library to the application is performed with the stream unlocked. This restricts the concurrency to a
particular stream far less than if the stream had to be locked for the entire read operation.

An application can freely intersperse calls to all three interfaces. To support this, the CIOS contains a
superset of the information used in the _iobuf structure of the Stdio library. This allows for source code
compatibility to programs that assume the structure used by Stdio. The stdio.h file that is included with
the library defines the _iobuf structure as a CIOS structure. Therefore, no conversion between a ASI stream
and a Stdio stream is necessary; that is, they are pointers to the same data structure type. The CIOS
structures are organized into an array, so that by indexing into the array emulated Uniz I/0 calls can refer
to the same stream. If a stream was created using an emulated Uniz I/O call, the application can use ASI
commands on that stream after converting the file descriptor to a pointer to a CIOS structure using the
fileptr macro defined in stdio.h. Similarly, the application can convert the CIOS structure pointer to a
file descriptor using the £ileno macro.

Although the current implementation does not support this, Stdio object code compatibility may be
important, for example, in the case that the operating system supports dynamically linked libraries. Since

38 USENIX — Winter 92

Krieger, Stumm, Unrau Exploiting the Advantages ...

[command T Stdio/Unix I/O | msio lib, Stdio | msio lib, ASI |

cmp 0.90 0.60
wc 2.05 2.00
diff 1.40 0.90 0.55
compress 28.20 27.10 27.00
uncompress 8.45 8.35 7.50
cut 4.00 3.45 2.75

Table 2: Measurements, in seconds, on IRIX of a number of BSD4.8 Reno release system utilities.

the Stdio interface is fully supported, the only considerations are the data structures and macros provided
by Stdio. The macros defined by Stdio work with the subset of the CIOS that is compatible with the _iobuf,
therefore, the macros are not a problem. In order to be object code compatible, rather than having all
information in the CIOS in a single table, it would have to be split into a table of _iobuf structures, and a
parallel table that contained the remainder of the information in the CIOS structure.

Although the Stdio interface is fully supported by the MSIO library, the application writer should take
care in using Stdio operations that constrain buffering, for example, by calling setbuf. These operations
are typically used to increase the performance of I/O, but with the MSIO library, setbuf actually hurts
performance, since data must be copied to and from the specified buffer on each call to the Stdio interface.

6 Measurements of MSIO Library

The MSIO library was originally written for the Hurricane operating system, and is used on a daily basis
by users of that system. In order to allow MSIO to be compared to Uniz I/0O and other implementations of
Stdio, it was ported to SunOS and IRIX.

The measurements shown in Table 2 are in seconds of time as obtained by the Unix time program.
For utilities that use Stdio, there are three versions of the code: the original version (under the heading
Stdio/Unix I/0O) linked to the IRIX version of the Stdio library, the original version linked to the MSIO
library, and the version modified to use ASI. The dataset used in these tests was either one or two 3 million
byte files.

The performance numbers for applications using the MSIO library on machines using IRIX or SunOS
does not match the results obtained on Hurricane, an operating system designed with mapped files in mind.
However, significant performance advantages have been demonstrated. In particular:

1. Stdio applications that are re-linked to use the MSIO library uniformly perform better. For example,
as can be seen in Table 2, diff takes 40% less time and cut takes 14% less time. Even compress and
uncompress, which are computationally intensive, show some improvement.

2. Stdio applications that are re-written to use ASI directly perform significantly better than the Stdio
version linked to the MSIO library. For example, diff improves by a further 40% (or close to 3 times
as fast as the original), and cut improves by a further 20%.

3. Applications that use the Unix I/O interface for reading also get significant performance advantages
when converted to ASI directly. For example, cmp is 35% faster.!®

7 Conclusions

File I/O is increasingly becoming a performance bottleneck on many systems, prompting researchers to
address this problem through hardware and software techniques. In this paper we have explored software

10gc is a special case, where even though the I/O time improved substantially certain compiler optimizations where not
possible with ASI, leading to performance that was about the same for the Unix and ASI versions.

USENIX — Winter 92 39

Exploiting the Advantages ... Krieger, Stumm, Unrau

based techniques that reduce the overhead of file 1/0 by, for example, reducing data copying and the number
of system calls as well as improving the use of memory. Our techniques exploit memory mapped files as
much as possible, leading to substantial performance gains as shown in Section 2. For a further reduction
in overhead, we found it necessary to define a new interface for I/O we call ASI. This new interface was
prompted not only by performance arguments, but by the inadequacy of Stdio and Uniz I/0 for multi-
threaded applications. ASI has the following advantages:

Generality: ASI is a byte-oriented stream interface, which allows an application to access an arbitrary
number of bytes without specifying a particular offset (e.g. location in a file). This type of an interface
can be uniformly used for all types of 1/0.

High Performance: Since salloc returns a pointer to the library buffers, the library never has to copy
data between application and library buffers; instead the application just uses the buffers provided
by the library. Moreover, since the library chooses the address of the data, it can ensure that the
alignment allows for such optimizations as memory mapping.

Support for multi-threaded applications: In order to be re-entrant, an interface must have a well de-
fined behaviour when multiple threads are accessing the same stream. Allowing the application access
to the internal buffers of the library can have significant performance advantages. However, it is then
necessary for the application to inform the library when it has completed using allocated data, so that
the buffer can be re-used. With ASI, sfree is used for this purpose. In contrast, Sfio has no such
operation and their sfpeek operation (which corresponds to salloc) can therefore only be used by
single threaded applications (where any operation to the stream implicitly frees the data allocated by
a previous sfpeek).

Another way in which ASI supports multi-threaded applications is that it allows for a high degree
of concurrency in accesses to a particular stream. Since with ASI data is not copied to or from user
buffers, the stream is locked only while the library’s internal data structures are being modified. Hence,
the stream is locked only for a short period of time, and, since access to data occur while the stream is
unlocked, multiple threads can page fault on different pages in the same mapped region and thus have
their I/O performed in parallel.

All operations defined by ASI return an error code. In contrast, most Stdio implementations return
error codes in a single errno variable that is used for all streams. This is not suitable for multi-threaded
applications.

Finally, with sallocAt, a thread can allocate data from a particular location in a file without in-
terference from other threads. With most implementations of re-entrant Stdio, the application must
explicitly lock the stream if it wants to read data from a particular location in a file.

Ease of use: ASI closely parallels the Unix memory allocation interface (i.e. malloc, realloc, free) pro-
viding programmers with an interface they are already familiar with. Our experience indicates that
in most cases, it is just as easy to write an application using ASI as it is using the Uniz I/0 or Stdio
interfaces. In fact, for some applications ASI is easier to use, since buffer management and I/O are
combined into a single set of calls (i.e. the application need not do a malloc and then a read or write).

We have implemented a library that supports the ASI interface, together with the emulated Uniz I/0
and Stdio interfaces. The emulated Uniz I/0 and Stdio interfaces are implemented using ASI for all 1/0,
proving the generality of the ASI interface. It is important to note that the performance advantages of ASI
can be exploited by re-writing just the I/O critical portions of a program; calls to all three interfaces can
be freely interspersed. We have ported the library to a number of platforms, including SunOS, IRIX and
Hurricane, and have shown (in Section 5.4) that the performance of applications is consistently better when
linked to our library rather then the original system library.

In future work, we intend to explore the effectiveness of ASI on systems with parallel disks, for which we
think ASI is particularly appropriate. Chervenak and Katz [CK91] found that the performance advantage
of parallel disks was severely limited by the overhead of data copying in memory. We believe that ASI
would allow for better exploitation of parallel disks (especially on multiprocessor systems) not only because

40 USENIX — Winter 92

Krieger, Stumm, Unrau : Exploiting the Advantages ...

ASI reduces data copying substantially, but also because of the higher degree of concurrency ASI naturally
allows.

Another project related to this work is a transaction management system that uses mapped file I/0 for
accessing the data base. With this system, transaction servers communicate by accessing shared mapped
files, and synchronize using locks placed directly in data base files.

Acknowledgements

We would like to thank K.-Phong Vo, Ken Lalonde, Dave Galloway and Mark Moraes, for their help and
useful comments. Bill Shannon and Dean Kemp from Sun were very useful in advising us about difficulties
we had in porting our package to SunOS. Finally, Benjamin Gamsa and Jonathan Hanna contributed in
improving the presentation of this paper.

References

[ABB*86] M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid, A. Tevanian, and M. Young. Mach: A
New Kernel Foundation for UNIX Development. In 1986 Summer USENIX Conference, 1986.

[BJ91] A. Lester Buck and Robert A. Coyne Jr. An Experimental Implementation of Draft POSIX
Asynchronous 1/0. In USENIX-Winter 91, pages 289-306, 1991.

[Che87) David R. Cheriton. UIO: A Uniform I/O System Interface for Distributed Systems. ACM
Transactions on Computer Systems, 5(1):12-46, February 1987.

[Che88] D.R. Cheriton. The V Distributed System. Communications of the ACM, 31(3):314-333, March
' 1988.

[CK91] Ann L. Chervenak and Randy H. Katz. Performance of a Disk Array Prototype. In ACM
Sigmetrics Conference, 1991.

[FPD91] J. French, T. Pratt, and M. Das. Performance Measurement of a Parallel Input/Output System
for the Intel iPSC/2 Hypercube. In ACM Sigmetrics Conference, pages 178-187, 1991.

[JCF+83] William Joy, Eric Cooper, Robert Fabry, Samuel Leffler, Kirk McKusick, and David Mosher.
4.2BSD System Manual. 1983.

[Jon91] Michael B. Jones. Bringing the C Libraries With Us into a Multi-Threaded Future. In USENIX-
Winter 91, pages 81-91, 91.

[KV91] David G. Korn and K.-Phong Vo. SFIO: Safe/Fast String/File I/O. In USENIX-Summer’l-
Nashville, TN, 1991.

[LS90] Eliezer Levy and Abraham Silberschatz. Distributed File Systems: Concepts and Examples.
ACM Computing Surveys, 22(4):323-374, December 1990.

[Mis90] Mamata Misra, editor. IBM RISC System/6000 Technology, volume SA23-2619. IBM, 1990.

[PGK88] D. Patterson, G. Gibson, and R. Katz. A Case for Redundant Arrays of Inexpensive Disks
(RAIDS). In ACM SIGMOD Conference, pages 109-116, Chicago, Illinois, June 1988.

[SUK] M. Stumin, R. Unrau, and O. Krieger. Hurricane, A Shared-Memory Multiprocessor Operating
System Structured for Scalability. submitted for publication, 1991.

[VSWL91] Zvonko G. Vranesic, Michael Stumm, Ron White, and David Lewis. “The Hector Multiprocessor”.
Computer, 24(1), January 1991.

[Zho88] S. Zhou. A Trace-Driven Simulation Study of Dynamic Load Balancing. IEEE Trans. on Softw.
Eng., 14(9):1327-1341, September 1988.

USENIX — Winter 92 41

Exploiting the Advantages ... Krieger, Stumm, Unrau

Availability

The MSIO library, as well as all programs used in our tests are available on request from the authors:
Orran Krieger (okrieg@eecg.toronto.edu), Michael Stumm (stumm@eecg.toronto.edu) and Ron Unrau (un-
rau@eecg.toronto.edu). Mail can be sent to:

Orran Krieger

Graduate Office

Department of Electrical Engineering
University of Toronto

Toronto, Canada, M5S-1A4

Biography:

Ron Unrau received his BSc in Computer Engineering from the University of Alberta in 1984, and his
MASc in Biomedical Engineering from the University of Toronto in 1988. He is now a PhD candidate in
Computer Engineering at the University of Toronto. His current research area is memory management
on NUMA architectures.

Michael Stumm is an assistant professor in the Departments of Electrical Engineering and Computer
Science at the University of Toronto. His research interests are in the area of computer systems.
Stumm received a diploma in mathematics and a PhD in computer science from the University of
Zurich in 1980 and 1984, respectively. He is a member of the Computer Society of IEEE and the
Association for Computing Machinery.

Orran Krieger received a BASc from the University of Ottawa in 1985, and a MASc from the University
of Toronto in 1989, both in Electrical Engineering. He is currently a doctoral candidate in Computer
Engineering at the University of Toronto. His research interests include operating systems, parallel
programming, multiprocessor and distributed systems. He is interested in designing a real fast file
system for a shared memory multiprocessor.

42 USENIX — Winter 92

The Episode File System

Sailesh Chutani
Owen T. Anderson
Michael L. Kazar
Bruce W. Leverett
W. Anthony Mason

Robert N. Sidebotham

Transarc Corporation

Abstract

We describe the design of Episode,TM a highly portable POSIX-compliant file system. Episode is
designed to utilize the disk bandwidth efficiently, and to scale well with improvements in disk capacity and
speed. It utilizes logging of meta-data to obtain good performance, and to restart quickly after a crash.

Episode uses a layered architecture and a generalization of files called containers to implement filesets.
A fileset is a logical file system representing a connected subtree. Filesets are the unit of administration,
replication, and backup in Episode.

The system works well, both as a standalone file system and as a distributed file system integrated
with the OSF’s Distributed Computing Environment (DCE). Episode will be shipped with the DCE as
the Local File System component, and is also exportable by NFS. As for performance, Episode meta-data
operations are significantly faster than typical UNIX Berkeley Fast File System implementations due to
Episode’s use of logging, while normal 1/O operations run near disk capacity.

Introduction

This paper describes the EpisodeTM file system, the local file system for the OSF Distributed Com-
puting Environment (DCE). Episode was intended as a file system for distributed file servers, and is designed
to be exported by various network file systems, especially the OSF DCE’s Distributed File Service (DFS).

Episode separates the concepts of disk storage and logical file system structure, and provides a
number of features not found in most UNIX™ file systems, such as those based on the Berkeley Fast File
System [MCK 84]. In particular, Episode provides POSIX-style (Draft 11) access control lists, a useful
form of replication for slowly changing data, data representations that support storage files of size 232
fragments (at least 242 bytes), and logging techniques that reduce post-crash recovery time and improve
the performance of operations that update meta-data. This paper explains the overall architecture of the
file system.

Background

As part of the design process for AFS®4 (which became the Distributed File System component of
the DCE), the Episode design team looked at the AFS 3 [SAT 85] file system’s file server. Two significant
features of AFS 3 were viewed as valuable to preserve for Episode: access control lists and AFS 3 volumes
— which were renamed filesets.

Access control lists are valuable in large distributed systems primarily because of the size of the

USENIX — Winter 92

43

The Episode File System Chutani, Anderson, Kazar, ...

user community in such systems. In such a large community, users require a flexible mechanism to specify
exactly who should be able to access their files. The more traditional UNIX protection mechanism of
grouping everyone into one of three categories is often insufficient to express flexible controls on data.
While AFS 3 provides ACLs only on directories, Episode provides ACLs on both files and directories,
thereby enabling POSIX 1003.6 compliance.

AFS 3 volumes support the separation of disk block storage from the concept of logical file system
structure, so that a single pool of disk blocks can provide storage to one, or thousands of separate file
system hierarchies [SID 86]. In Episode, each logical file system contains its own anode table, which is
roughly the equivalent of a Berkeley Fast File System’s (BSD) inode table [MCK 84]. Various anodes within
a fileset describe its root directory, as well as subsidiary files and directories. Each fileset is independently
mountable, and — when a distributed file system is present — independently exportable.!

The data representation of filesets facilitates their movement from one partition to another with
minimum disruption, even while they are exporting data in a distributed file system. All data within
a fileset can be located by simply iterating through the anode table, and processing each file in turn.
Furthermore, a file’s low-level identifier, which is used by distributed file systems and stored in directories,
is represented by its index in the fileset’s anode table. This identifier remains constant even after moving
a fileset to a different partition or machine.

The general model for resource reallocation in the Episode design is to keep many filesets on a
single partition. When a partition begins to fill up, becomes too busy, or develops transient 1/O errors,
an administrator can move filesets transparently to another partition while allowing continuous access by
network and even local clients. Tools are provided to facilitate this move across multiple disks (or multiple
servers, using the OSF’s DCE). Note that this model of resource reallocation requires the ability to put
more than one fileset on a single partition; without this, the only resource reallocation operations available
are equivalent to the exchanging of file system contents between partitions, a move of limited utility.

Episode’s implementation of fileset moving, as well as other administrative operations, depend upon
a mechanism called fileset cloning. A fileset clone is a fileset containing a snapshot of a normal fileset,
and sharing data with the original fileset using copy-on-write techniques. A cloned fileset is read-only,
and is always located on the same partition as the original read-write fileset. Clones can be created very
quickly, essentially without blocking access to the data being cloned. This feature is very important to the -
administrative operations’ implementation: the administrative tools use clones instead of the read-write
data for as much of their work as possible, greatly reducing the amount of time they require exclusive
access to the read-write data.

Episode’s underlying disk block storage is provided by aggregates. Aggregates [KAZ 90] are simply
partitions augmented with certain operations, such as those to create, delete and enumerate filesets.

In a conventional BSD file system, one of the biggest practical constraints on how much disk space
a file server can hold is how long the disk check program fsck [KOW 78] would run in the event of a crash.
Episode uses logging techniques appropriated from the database literature [HAE 83, HAG 87, CHA 88] to
guarantee that after a crash, the file system meta-data (directories, allocation bitmaps, indirect blocks and
anode tables) are consistent, generally eliminating the need for running “fsck.”

This idea is not new. The IBM RS/6000’s local file system, JFS [CHA 90}, uses a combination of
operation logging for the allocation bitmap and new value-only logging for other meta-data. Hagmann
followed a similar approach in building a log-based version of the Cedar file system [HAG 87]. On the
RS/6000, JFS also uses hardware lock bits in the memory management hardware to determine which
records should be locked in memory mapped transactional storage. This technique was earlier supported
by the IBM RT/PC’s memory mapping unit, although on that system it was not used for a commercially
available file system [CHA 88]. Veritas Corporation’s VxFS [VER 91] apparently also uses new value-only
logging technology. Another system using logging technology is the Sprite LFS [ROS 90], in which all the

11n principle at least; at present, the DCE tools only allow the exporting of all of the filesets in a partition.

44 USENIX — Winter ‘92

Chutani, Anderson, Kazar, ... The Episode File System

data is stored in a log. LFS uses operation logging to handle directory updates, and new value-only logging
for other operations.

Data Architecture

The central conceptual object for storing data in Episode is a container. A container is an abstraction
built on top of the disk blocks available in an aggregate. It is a generalization of a file that provides read,
write, create and truncate operations on a sequence of bytes. Containers are described by anodes, 2562 byte
structures analogous to BSD inodes [LEF 89], and are used to store all of the user data and meta-data in
the Episode file system.

Aggregate header (“superblock™)~ ==«

A Fi 4)‘/Aggregate Fileset Table container
B9GP
Bitmap anode/'/ s Bitmap container
Log anode s pd

\~\
-
oD
~
~ . Log container
\~~ \\
‘\ \\\
~
= A
-,
- ‘\
~eo N ~
/ ~~~~~~ -~ Fileset Anode Tables
Fileset anodes =

-~
S - \‘\ / l \
-
eela
- —
o Seeo
-
. ————— —--—v
L A I | L

------ | A —_ —

[
X]
vee [
{
!
R

R
R

Figure 1: Bird’s-eye view of an Episode Aggregate.

A bird’s-eye view of an aggregate is provided in Figure 1. Each of the rectangular blocks in the figure
represents a file system block, and vertical columns of these blocks represent containers. Each Episode

aggregate has three specialized containers, the Bitmap container, the Log container, and the Aggregate
Fileset Table.

USENIX — Winter 92 45

The Episode File System Chutani, Anderson, Kazar, ...

The bitmap container stores two pieces of information about each fragment in the aggregate: whether
the fragment is allocated, and whether the fragment represents logged or unlogged data. This last distinc-
tion is necessary because certain buffer pool operations have to be performed when reusing a logged block
as an unlogged block, and vice versa.

The aggregate fileset table is organized as an array of anodes, one for each fileset in the aggregate. The
anode corresponding to a particular fileset describes that fileset’s anode table, which is roughly equivalent
to a file system’s inode table in a BSD file system. An Episode fileset’s anode table contains individual
anodes describing that fileset’s directories, files, symbolic links and access control lists.

References to file system anodes generally come from two sources: names found in directories, and
file IDs arriving via network file systems. These references name an anode by its fileset ID and its index
within the fileset’s anode table. Thus, a reference to a particular anode within a fileset starts by searching
the aggregate’s fileset table for the desired fileset. Once found, the fileset’s anode table container contains
an array of anodes, and the specified anode within the fileset is simply selected by its index. In typical
operation, all of these steps are significantly sped up by caching.

The log container provides the storage allocated for the aggregate’s transaction log. All meta-data
updates are recorded in this log. The log is processed as a circular buffer of disk blocks, with the tail of
the log stored in memory and forced to disk only when necessary. The log is not actually constrained to
be on the same aggregate as the data that it is logging, but this restriction is currently imposed by our
initialization utilities.

Containers provide a uniform mechanism for data storage in Episode. All the disk data abstractions
in Episode, including the allocation bitmap, the transaction log, the fileset table, all of the individual filesets’
anode tables, and all directories and files are stored in containers. Because containers can dynamically
grow and shrink, all meta-data allocated to containers can, in principal, be dynamically resized. For
example, there is no need for a static allocation of anodes to an individual fileset, since a fileset’s anode
table container can simply grow if a large number of files are created within that fileset. In addition, since
the container abstraction is maintained by one piece of code, the logic for allocating meta-data exists in
only one place.

Despite the potential for dynamic resizing all of the meta-data stored in containers, certain containers
do not, in the current implementation, change dynamically. The log container does not grow or shrink
under normal system operation, since the information that ensures that the log is always consistent would
have to be placed in the same log whose size is changing. The partition’s allocation bitmap is created by
the Episode equivalent of “newfs,” but does not change size afterwards. Finally, directories never shrink,
except when truncated as part of deletion.

As mentioned above, a fileset clone is a read-only snapshot of a read-write fileset, implemented using
copy-on-write techniques, and sharing data with the read-write fileset on a block-by-block basis. Episode
implements cloning by cloning each of the individual anodes stored in that fileset. When an anode is
initially cloned, both the original writable version of the anode and the cloned anode point to the same
data block(s), but the disk addresses in the original anode, both for direct blocks and indirect blocks,
are tagged as copy-on-write (COW), so that an update to the writable fileset does not affect the cloned
snapshot. When a copy-on-write block is modified, a new block is allocated and updated, and the COW
flag in the pointer to this new block is cleared. The formation of clones is illustrated in Figure 2.

Component Architecture

Episode has the layered architecture illustrated in Figure 3. The operating system independent layer
(not shown in the diagram), and the asynchronous 1/O (async) layer comprise the portability layers of
the system. The operating system independent layer provides system-independent synchronization and
timing primitives. The async layer acts as a veneer over the device drivers, hiding small but significant
differences in the interfaces between various kernels. It also provides a simple event mechanism, whose

46 USENIX — Winter 92

Chutani, Anderson, Kazar, ... The Episode File System

Original anode Clone anode
— k
COW bit
cleared ‘ e
\:' 1 i 4 I
i § -
'._. f .,
kY]
. _
cosv:tbu T e Data Block ‘
A |
h I | 1 Indirect Block 1| mdirect Brock -
g’ - L
; T e, > & Data Block
M. - Data Block

Figure 2: A Container: After Cloning and Extending.

primary purpose is providing operations for awaiting I/O completion events.

Above these base layers is the log/buffer package. This package provides an abstraction very much
like the Unix buffer pool, buffering blocks from the disk and writing them as requested. This package also
mediates all buffer modifications so that they can be logged as required by the logging strategy employed
[HAE 83, MOH 89].

In Episode, all the updates to the meta-data are grouped into transactions that are afomic, meaning
that either all the updates within a transaction (if a transaction commits), or none of them (if a transaction
aborts), will be applied. By making all file system meta-data modifications within atomic transactions, the
file system can be restored to a consistent state after a crash.

Episode implements atomic transactions through a a combination of write-ahead and old value/new
velue logging techniques [MOH 89]. In a nutshell, this form of logging works by logging, for every update
made to any file system meta-data, both the original and new values of the updated data. Furthermore,
before the buffer package allows any dirty meta-data buffer to be written back out to the disk, it writes
out these log entries to the disk. In the event of a crash, only some of the updates to the file system
meta-data may have made it to the disk. If the transaction aborted, then there is enough information in
the log to undo all of the updates made to the meta-data, and restore the meta-data to its state before the
transaction started. If the transaction committed, there is enough information in the log to redo all of the
meta-data updates, even those that hadn’t yet made it from the disk buffers to the disk.

The recovery procedure runs after a crash, replaying the committed transactions and undoing the
uncommitted transactions, and thus restoring the file system to a consistent state. Since the log only
contains information describing transactions still in progress, recovery time is proportional to the activity
at the time of the crash, not to the size of the disk. The result is that the log-replaying operation runs orders
of magnitude faster than the BSD fsck program. There are some cases in which the recovery procedure

USENIX — Winter 92

47

The Episode File System Chutani, Anderson, Kazar, ...

Fileset Utilities User Space Salvage/Verify
File System Independent Kernel
Vnode Interface
Episode
VES+ Interface Layer
Fileset ACL
Operations Vnode Operations XCRED
Directory
Anode Layer
Buffer
Log Recovery
Async I/O

Figure 3: Layering in Episode.

can not regenerate a consistent file system, however, such as when hard I/O errors occur while updating
critical meta-data. In such cases, the Episode salvager utility needs to be run; the salvager’s performance
characteristics are very similar to fsck.

The anode layer manages all references to data stored in containers. The container abstraction pro-
vides for three modes of storage: The inline mode uses extra space in the anode to store small quantities
of data. This allows for efficient implementation of symbolic links, ACLs, and very small files. The frag-
mented mode enables several small containers, too big for inline storage, to share a disk block. Fragments
are used for files smaller than a block. Finally, the blocked mode describes large containers. Four levels of
indirect blocks [MCK 84] can be used to address 23! block addresses. Due to other restrictions however,
the maximum size of a file is bound by MIN(232 & fragmentSize, 23! * blockSize). Thus, if the fragment
size is 1K, and the block size is 8K, a file can grow to 2?2 bytes.? Block allocation policies try to ensure

2 Additional kernel modifications, such as changes to the lseek system call interface, are required to use files of this size

48 USENIX — Winter ‘92

Chutani, Anderson, Kazar, ... The Episode File System

contiguity, and support is provided for sparse files.

Directories are implemented straightforwardly as specially typed containers. Episode augments the
directory implementation with hash tables to reduce search processing. Each 8K directory page contains
its own separate hash table.

The Episode vnode layer extends the vnode operations designed by Sun Microsystems [KLE 86,
ROS 90] with support for ACLs and filesets. In addition, the vnode operations that read or write files
are integrated with the virtual memory system on SunOS 4.0.3c and AIX 3.1, allowing Episode to use
the virtual memory pool as a file cache. This greatly improves the performance of the read and write
operations on files, due to the increased cache size. Episode has also been optimized to detect sequential
access and coalesce adjacent reads and writes.

Logging Architecture

Typical transactional systems use {wo-phase locking (2PL) for ensuring consistency of data that is
modified within a transaction. In two-phase locking, a transaction may, from time to time, obtain new
locks, but it can never release any locks until the second “phase,” when the transaction commits. By
forbidding the release of locks until after the commit, this scheme guarantees that no other transactions
ever read uncommitted data. Without two-phase locking rules, one transaction could lock, modify and
commit data already modified and unlocked by a still-running transaction. An example is given below.

2PL ensures serializability and atomicity of the transactions, but at a cost: it reduces the concurrency
in the system if the data being locked is a hot spot, since all the transactions that wish to obtain a lock
on the hot spot must wait for the entire transaction currently holding the lock to complete.

~ In addition, using 2PL can add complexity to interface design in layered, modular systems. In a
layered system, code in a higher layer typically calls code in a lower layer, which may lock its own private
objects for the duration of a call. Quite often these locks are not exported. In order to use 2PL in such
a model, one has to export details of the locks obtained by the lower level modules, since the locks they
obtain remain locked until the high level transaction commits, and failure to set these low-level locks in
the proper order could lead to deadlock. Two-phase locking thus greatly increases the complexity of such
a layered interface.

To better understand the problem addressed by two-phase locking, which is known in the database
literature as the problem of cascading aborts, consider the scenario in Figure 4, where two-phase locking is
not performed:

transaction 1

transaction 2

eeseascennssncsfecnce

sl lal 1bl wubl s2 b2 ub2 e2 crash el

time =

Figure 4: Formation of an Equivalent Class.

Transaction 1 starts at time s1, and locks two objects, A and B, at times lal and 1b1, respectively.
Transaction 1 shortly thereafter unlocks object B at time ubl. Next, before transaction 1 commits,
transaction 2 modifies object B: transaction 2 starts at time s2, and locks object B at time 1b2 and finally

within most kernels.

USENIX — Winter 92

49

The Episode File System Chutani, Anderson, Kazar, ...

unlocks object B at time ub2. Finally, transaction 2 commits this change to object B at time e2. Now,
assume the system crashes shortly thereafter, at the time marked crash. After the log replay occurs,
object B will contain the changes made by transactions 1 and 2, since transaction 2 committed these
changes to this object. However, object A does not have the change made by transaction 1 committed,
since transaction 1 never committed. The result is that only one of the changes made by transaction 1,
the change to object B, is actually made permanent..

Episode’s transaction manager avoids these problems by using a type-specific approach to transac-
tional locking instead of two-phase locking. Episode transactions can acquire locks when they need them,
and drop them as soon as they are finished using them, rather than waiting for the transaction’s end. This
allows for greater concurrency in the system, but required alternate mechanisms to prevent uncommitted
data from being read by other transactions.

In order to avoid the problem of updating uncommitted data, Episode aborts transactions that might
have otherwise been able to commit, if a crash intervenes. Specifically, all active transactions that lock the
same object during their lifetime are merged into an equivalence class (EC). An EC has the property that
either all of its transactions commit or none do.3 In the example above, transaction 1 and 2 would form
an EC. An EC can be viewed as an umbrella transaction that subsumes all the transactions that belong
to it. ECs are formed whenever active transactions exhibit read-write sharing amongst themselves.

If the system crashes before all of the transactions in an EC have committed, all the transactions in
the EC are aborted. It is therefore desirable to minimize the duration and the number of ECs formed in the
system. To this end, transactions typically delay the use of “hot” data until as close to the transaction’s
end as possible to minimize the chance that some other transaction will have to read this data before it
commits.

The primary goal of the logging system in Episode is to guarantee the consistency of the file system.
This decision impacted a number of other design choices:

Meta-data changes to the disk itself can often be deferred, unless specifically requested by an oper-
ation like fsync. Consistency of the file system doesn’t require that the system be current.

No transactional guarantees are required about the user-data, since consistency of the file system
requires only that the meta-data be consistent. Episode logs only meta-data changes. Although restricting
logging to meta-data greatly reduces log traffic, mixing logged and unlogged blocks in the same file system
introduces some complexity.

To illustrate some of these issues, note that if a crash occurs between the time that a data block
is allocated to a file and the time that the block is first written, the former data may appear in the new
file as uninitialized data. The problem arises because the allocation update commits transactionally while
the data update fails, since the data update occurs outside of the transaction system. Episode fixes this
problem by starting another transaction when the block is allocated, and ending it when the first write
to it completes. If the system crashes and the transaction aborts, the recovery procedure for this special
transaction zeroes the contents of the block.

Since users do not define the start and end times of transaction, transaction sizes can be bounded
when they begin. This allows the use of a very simple algorithm to ensure that running transactions never
exceed the space available in the log. Transactions that run too long or modify too much data represent
programming errors.

As mentioned above, Episode logs both the new value and the old value of the data being modified.
A number of other systems simply log the new value of the modified data. In systems that log only new
data, dirty data can not be written out to its final home on the disk until the transaction actually commits,
since the log does not contain enough information to undo the updates, and the transaction manager can

3Each transaction by itself forms an equivalence class with one member.

50 USENIX — Winter 92

Chutani, Anderson, Kazar, ... The Episode File System

not redo the updates to get to a consistent state until the transaction has ended and thus made all of its
modifications. Our design choice was significantly influenced by our concern that using new value-only
logging would seriously constrain the buffer package’s choice of which buffers to write out to the disk, and
when to write these buffers. Old value / new value logging, on the other hand de-couples the writing of
buffers from the end of transactions, at the expense of having to write more data to the log.

Introducing logging in Episode affected the implementation of all the vnode operations. The bound
on the transaction size required by our log space allocation policy dictated that complicated and time
consuming operations be broken up into smaller bounded operations, each of which can be bracketed
transactionally. For example, a delete of a large file is broken into a sequence of separate file truncation
operations, followed by a deletion of the empty file. After each transaction, the file system is consistent, if
not in the final desired state.

Performance

This section details the result of running benchmarks that measure the performance of Episode and
a reference file system (The IBM RS/6000’s JFS or Sun’s BSD file system), both on meta-data and I/O
operations. Comparison with Sun’s BSD illustrates the effects of logging in Episode, while comparison
with JFS, which also uses logging, measures the efficiency of our implementation. All measurements were
taken on the following platforms:

e A SUN SPARCstation 1 running SunOS 4.0.3c, with 8MB memory and 200MB Seagate ST1239NS
SCSI disk (peak data transfer rate 3.0 Mbytes/sec average latency 8.33 msec).

e An IBM RS/6000 Model 320 running AIX 3.1, with 32MB of memory and 320MB IBM 0661-371
SCSI disk (peak data transfer rate 2.0 Mbytes/sec, average latency 7.0 msec).

Our performance goals were that Episode perform meta-data update operations significantly faster
than the Berkeley Fast File system, while doing large I/O operations essentially as fast as the native
disk driver would perform large transfers. We expect that our meta-data update operations would be
considerably faster than BSD’s because Episode batches meta-data updates into writes to the file system
log.

In terms of the experiments done in this section, we thus would hope to do meta-data update

operations considerably faster than the SunOS BSD implementation, and normal read and write operations
essentially as fast as the JFS implementation.

One would also expect that Episode would perform I/O somewhat faster than the SunOS 4.0.3
BSD implementation. However, our integration of Episode with the SunOS virtual memory system is not
yet complete. In particular, on that platform, Episode does no read-ahead, nor are any write operations
asynchronous, and these problems significantly impact the SunOS read and write performance figures.
Under AIX 3.1, we have completed this level of virtual memory system integration, and on that platform,
we expected that our performance would be essentially as good as IBM’s JFS. As an aside, the problems
in doing read-ahead and asynchronous I/O in AIX 3.1 and SunOS 4.X are quite similar, and we do not
expect any serious problems in completing the SunOS implementation.

In the next sections, we present the results of various performance tests, and some discussion on the
results.

Connectathon Benchmark

The connectathon test suite tests the functionality of a UNIX-like file system by exercising all the
file system related system calls. It consists of nine tests:

USENIX — Winter 92 51

The Episode File System Chutani, Anderson, Kazar, ...

o Testl creates a multi-level directory tree and populates it with files. A meta-data update intensive
test.

o Test2 removes the directories and files created by testl. A meta-data update intensive test.

o Test3 does a sequence of getwd and stat on the same directory. Primarily meta-data read operations.
o Tesi4 executes a sequence of chmod and siat, on a group of files. A meta-data update intensive test.
o Test5 writes a 1 MB file sequentially, and then reads jt. Primarily 1/O operations.

o Test6 reads entries in a directory. Primarily meta-data read operations.

o Test7 calls rename and link on a group of files. A meta-data update intensive test.

o Test8 creates symbolic links and reads them by symlink and readlink calls respectively, on multiple
files. Primarily a meta-data update intensive test, with significant meta-data reading, too.

o Test9 calls staifs.

Figures 5 and 6 compare Episode performance with JFS on an RS/6000, and with BSD on a
Sparcstation.*

The most interesting numbers in this section come from a comparison of Episode and BSD on the
Sun platform. Those tests representing primarily meta-data updates (tests 1, 2, 4, 7 and 8) show the
benefits of logging on meta-data updates; in all but one test, Episode does at least twice as well as BSD in
elapsed time. The test that gives Episode difficulty, test2, does a lot of directory I1/O operations. These

operations use a private buffer cache, one that appears from our examination of read and write counts to
be too small.

In addition, we compared Episode with another log-based file system, JFS. This was done as an
additional check on our implementation, to verify that our performance was approaching that of a highly
tuned commercial file system with a somewhat similar architecture. These figures show that Episode
performance on meta-data operations is comparable or better than that of JFS in terms of elapsed time.

In addition to comparing Episode in elapsed time, we also measured the CPU utilization in Figures
7 and 8. In both of these sets of figures, Episode’s CPU utilization is higher than that of the native file
system. We will discuss reasons for this below, but we should point out that we expect this situation to
improve as Episode’s performance is tuned further. In particular, for the meta-data reading tests, Episode
is CPU-bound, and we expect further reductions in CPU usage to map directly to reductions in elapsed
time.

Meta-data updates | Other {f

test]l test2 testd test7 test8 || testd testd test6 test9 ||

Elapsed Episode 4 3 2 1 2 10 2 4 0]
Time ~JFS 6§ 3 1 5 6] 3 10 8 0]

Figure 5: Comparison of Episode with JFS on the RS/6000 platform, executing the Connectathon tests.
The numbers listed are averages of several runs. All figures are elapsed times in seconds.

Other Benchmarks

We also ran two tests representing a mix of file system operations: the modified Andrew benchmark
OUS 90, HOW 88], and the NHFSTONE benchmark from Legato Systems (v1.14).

4In some instances, elapsed time appears to be less than the CPU time, due to difference in the granularity of measurement.

52 USENIX — Winter ‘92

Chutani, Anderson, Kazar, ... The Episcde File System

(i Meta-data updates Il Other

[testl test2 testd test7 test8 || testd testd test6 test9
Elapsed Episode 7 6 4 2 4 0 46 6 1
Time __ SunOS 15 6 17 11 13 H 0 25 14 0

Figure 6: Comparison of Episode with BSD on the Sun platform, executing the Connectathon tests. The
numbers listed are the averages of several runs. All figures are elapsed times in seconds.

Meta-data updates f Other |

test] test2 testd test7 test8 || test3 testd test6 test9 ||

CPU Episode | 1.7 1.2 26 17 2.0 100 18 4.0 0.6
Time " JFS 06 05 1.0 08 09 29 19 14 0.3 |

Figure 7: Comparison of Episode with JFS on the RS/6000 platform, executing the Connectathon tests.
The numbers listed are averages of several runs. All figures are CPU times in seconds.

The modified Andrew benchmark was originally devised to measure the performance of a distributed
file system, and operates in a series of phases, as follows:

The benchmark begins by creating a directory tree, and copying the source code for a program in
that tree. It then performs a stat operation on every file in the hierarchy. It subsequently reads every
file as part of compiling them, using a modified GNU C compiler that generates code for an experimental
machine.

The results of running this benchmark on the RS/6000 configuration above were that JFS completed
the test in 90.0 seconds, while Episode took 102.2 seconds. Most of the difference between the two tests
occurred on the stat and copy phases of benchmark.

The NHFSTONE benchmark from Legato Systems, Inc. (v1.14) was altered to be a local file system
benchmark instead of an NFS benchmark. The dependence on kernel NFS statistics was removed and the
benchmark was run locally on the server rather than over the network from a client that has mounted an
NFS exported file system. The standard mix of operations was used to test the throughput of JFS and
Episode, i.e., 13% fstat, 22% read, 15% write, etc. The tests were run on a 32MB IBM RS/6000 running
AIX 3.1 release 3003. A Fujitsu M2263 disk was used to hold the file systems in the tests.

The test results indicate that JFS reaches a peak throughput level of about 233 file system operations
per second (with 2 processes) while Episode reaches about 300 operations per second (with about 10
processes). In doing so, Episode used roughly twice as much CPU per operation as JFS to achieve these
higher throughput levels.

In short, Episode ran slightly slower than JFS on the modified Andrew benchmark, and slightly faster
than JFS on the NHFSTONE benchmark. We feel that the performance of Episode on these benchmarks
is quite acceptable, given the tuning that will be done as vendors ship Episode.

Read and Write

Episode’s ability to utilize the available disk bandwidth is shown in the comparison with JFS on
the RS/6000 on the read and write tests. Two types of tests were run, one type measuring cached read
performance, and one type measuring uncached read and write performance.

Both the cold cache read performance numbers (Figure 9) and the cold cache write performance
numbers (Figure 11) show quite similar performance between JFS and Episode. We believe that this
indicates that Episode’s algorithms for doing I/O operations in large chunks are working reasonably well.

The Episode warm cache read rate is a bit slower than the corresponding JFS rate, as can be seen in

USENIX — Winter ‘92 ' 53

The Episode File System Chutani, Anderson, Kazar, ...

Meta-data updates | Other |

test] test2 testd test7 testS || test3 testp test6 testd
CPU Episode 2.8 2.1 3.8 2.0 40 0.7 154 5.1 0.9 "
Time “Sun05 || 13 08 20 03 19| 03 61 15 04

Figure 8: Comparison of Episode with BSD on the Sun platform, executing the Connectathon tests. The
numbers listed are the averages of several runs. All figures are CPU times in seconds.

MBytes/sec

0 A I 1 1 'l 1 1 I A ' L 1 1

1k 2k ak 8k 16k 32k 64k 128k 256k 512k 1M 2M M 8M
Bytes (log scale)

Figure 9: Comparison of Episode and JFS Read Rates - Cold VM Cache.

Figure 10. This rate measures how quickly the file system can locate its data and copy it, or map it, from
the virtual memory system into the caller’s buffers. As such, it is not as much of a file system performance
tests as a virtual memory integration performance test. These figures peak between 16 and 20 megabytes
per second, well above the disk’s actual data transfer rate.

It is clear from comparing the warm and cold read performance numbers that the key to good system
performance is successful integration with the virtual memory system.

Performance Summary

Episode performs well in handling basic read and write operations, doing I/O in as large a chunk as
useful. In this area of our design, we borrowed heavily from the work done on both AIX’s JFS and SunOS’s
BSD file systems [MCV 91] on obtaining extent-like performance from BSD-style file system organizations.

Episode’s greatest performance benefits come in its performance on meta-data operations. In these
operations, the use of logging greatly reduces the number of synchronous write operations required, signif-
icantly improving system performance.

In addition, Episode is a relatively new file system, and is still undergoing significant performance
measurement, profiling and tuning. We used the tracing and profiling facility on the RS/6000 to produce
traces that recorded each procedure entry and exit along with timing information. A detailed study of the
these traces on micro-benchmarks identified a wealth of targets for optimization. In particular we found
that:

54 USENIX - Winter "92

Chutani, Anderson, Kazar, ... The Episcde File System

20 T T v T T T T ¥ T T T T T

oot
o sl

MBytes/sec

o 1 Il (| 1 1 [Il L). A I 1 I

1k 2k 4k 8k 16k 32k 64k 128k 256k 512k 1M 2M 4aM 8M
Bytes (log scale)

Figure 10: Comparison of Episode and JFS Read Rates - Warm VM Cache.

1 L T Ll L) L] T T L] L) LJ L) L) o '_"
SN o

- o E

R

MBytes/sec
o
w
L]

04 A I 1 A 1 1 (] A 1 1 Il 1 1

1k 2k 4k 8k 16k 32k 64k 128k 256k 512k 1M 2M aM 8M
Bytes (log scale)

Figure 11: Comparison of Episode and JFS Write Rates.

Episode is not passing enough context information between layers,

e certain invariant computations are being performed repeatedly,

common data paths are using expensive general-purpose interfaces, where a special case data path
would be more efficient, and

e various parameters, like the size of in-core caches for the vnodes, anodes and buffers, have not been

tuned.

We expect CPU usage to drop considerably as we further optimize the code.

USENIX — Winter "92 55

The Episode File System Chutani, Anderson, Kazar, ...

The integration of Episode with the virtual memory system under SunOS is still incomplete; in
particular, read-ahead and asynchronous write are not yet implemented on that platform. As a result,
the performance of Episode on the Sun, using test5, is relatively poor as compared with BSD. On the
RS/6000 Episode is better integrated with the native virtual memory system, does perform read-ahead
and asynchronous writes, and exhibits read-write performance comparable with the local file system, JFS.
This leads us to expect that the implementation on the Sun will perform equally well, once the Sun port
is completed. ‘

Recovery Time

Episode’s time to recover depends primarily on the size of the active portion of transaction log. The
active portion of the log is that part of the log that needs to be replayed after a crash, and must include all
of the uncommitted transactions, since these must be undone in the event of a crash. The active portion
of the log may go back even further, should the buffer cache still contain dirty meta-data blocks that were
modified by committed transactions. In this case, the updates are in the log and only in the log, requiring
the replay of that part of the log in the event of a crash. The operation of writing buffers modified by
committed transactions and discarding those portions no longer required to ensure the permanence of those
transactions is generally called checkpointing the log.

In order to estimate the size of the active portion of the log after a crash, note first that no matter how
often the system is checkpointed, there is no way to avoid an active portion of the log containing at least
those transactions that are currently executing. Thus, as system activity at the time of a crash increases,
we should see the minimum recovery time rise correspondingly. In addition, if the log is checkpointed only
every T seconds, as is the case with Episode, then the active portion of the log can rise to include all the
transactions that modified the dirty buffers still resident in the buffer cache. Of course, Episode will not
permit the log to become full, but it is difficult to guarantee any other bound on the size of the active
portion of the log.

Of course, the time to replay a block of the active log is not constant, but is bounded: There is a
maximum number of meta-data blocks whose updates can be described by a block of the log, but many
log blocks will effect considerably fewer meta-data blocks.

From the above discussion, the reader can see that the recovery time for an Episode partition should
rise in proportion to the number of processes actively modifying the file system at the time of the crash,
but that there will be a number of recovery calls that take somewhat longer than the minimum, because
of uncheckpointed, but committed, transactions.

In order to verify this state of affairs, we ran some experiments, timing recovery on a 900 megabyte
aggregate, with a 9 megabyte log, in two configurations: with 6 megabytes of new data stored in the
aggregate, and with 260 megabytes of new data stored in the aggregate.

After crashing the system with 10 active processes modifying the 6 MB file, recovery took between
4.1 and 6.7 seconds to execute, while after crashing the system with 20 active processes modifying the same
6 MB file system, recovery took 10.5 seconds on the single instance we ran. Similarly, in an experiment
on the 260 MB file system, crashing the system with 10 active processes took between 5.1 and 8.8 seconds
to recover, while crashing the system with 20 active processes took 2.7 seconds to recover on the single
instance we ran. From this data, we can see that recovery takes essentially the same amount of time on
small and large aggregates.

On the other hand, there was a noticible, if highly varying, correspondence between system activity
at the time of a crash, and recovery time. In tests with the 6 megabyte file system, recovering after a crash
with one active process took between 1.7 and 2.7 seconds. Recovering after a crash with 5 processes took
between 1.9 and 9.2 seconds. Recovering with 10 processes took between 4.1 and 6.7 seconds. Recovering
with 20 processes took 10.5 seconds (one data point), and recovering after a crash with 49 active processes
took 19.6 seconds.

56 USENIX — Winter “92

Chutani, Anderson, Kazar, ... The Episode File System

In conclusion, we note that the time to recover depends in a complex way upon a number of variables,
none of which, however, are the aggregate size. Despite this complexity, it also appears that in typical
configurations, recovery times will be under 30 seconds.

Status

Episode is functionally complete, and is undergoing extensive stress testing and performance analysis.
Episode will ship with the DCE as the Local File System (LFS) component, and also works with Sun’s
Network File System [SAN 85]. Episode is designed to be portable to many kernels, and presently runs on
SunOS 4.0.3¢, SunOS 4.1.1 and AIX 3.1.

The design of Episode began in 1989, and full-scale implementation began in January 1990. The
file system was first tested in user space and then plugged into the kernel, saving considerable amounts of
debugging in the kernel environment. The present code, which includes substantial debugging code, test
suites, scaffolding to run tests in user space, and utilities, is about 70K lines of C, according to “wc”.

Conclusions

The abstraction of containers has proved to be very useful. By separating the policy from the
mechanism for placing the data on the disk, the container abstraction helps isolate the code responsible
for data location and allocation, as well as making many structures extensible “for free.” The resulting
flexibility in data layout policies enables future releases of Episode to use more knowledge in allocating
space for user data and meta-data, while leaving the disk format itself formally unchanged.

Our experience with Episode also shows that a general purpose transactional system is not required
for a file system. The Episode log implements only a small subset of the functionality needed in a database
system, and our log and recovery packages are but a fraction of the size of those in traditional database
products.

On the other hand, the Episode transaction manager must deal with a few technicalities not present
in most database systems. There are some complications introduced by a design storing both meta-data and
unlogged user data on the same disk. Furthermore, the decision to form equivalence classes of transactions
instead of using two-phase locking also required new code.

The original motivation for implementing a log-based system was fast crash recovery, but we are
obtaining substantial performance benefits as well. Logging has improved the performance of meta-data
updating operations and reduced the cumulative disk traffic by permitting Episode to batch repetitive
updates to meta-data.

The key to obtaining good performance of read and write operations was a successful integration
with the virtual memory system, and performing I/O in large blocks. We confirmed the results that
disk bandwidth is utilized more efficiently when data transfers occur in large chunks. The virtual memory
system provides a very effective memory cache for files, and also enables the merging of requests for adjacent
disk blocks into one large request. In general, however, virtual memory systems exhibit a great deal of
idiosyncratic behavior, and are sufficiently diverse that the integration process is very difficult.

Acknowledgements
We are grateful to Alfred Spector for comments and corrections. Thanks go to Mike Comer, Jeffrey
Prem, Peter Oleinick and Phil Hirsch for running some of the benchmarks, and the POSIX compliance

tests.

We would also like to thank various people in IBM for discussing various file system performance
issues with us, including Al Chang, Carl Burnett, Bryan Harold, Liz Hughes, Jack O’Quin, and Amal

USENIX — Winter 92

57

The Episode File System Chutani, Anderson, Kazar, ...

Shaheen-Gouda.

References

CHA 88 A. Chang, and M. F. Mergen. 801 Storage: Architecture and Programming. ACM Trans.
Computer Systems 6, February 1988.

CHA 90 A.Chang, M. F. Mergen, R. K. Rader, J. A. Roberts, and S. L. Porter. Evolution of storage facil-
ities in AIX Version 3 for RISC System/6000 processors. IBM Journal of Research and Development,
Vol. 34, No. 1, January 1990.

GIN 87 Robert A. Gingell, Joseph P. Moran, and William A. Shannon. Virtual memory architecture in
SunOS. Useniz Conference Proceedings, Summer 1987.

HAE 83 T. Haerder, A. Reuter. Principles of Transaction-Oriented Database Recovery. Computing Sur-
veys, Vol. 15, No. 4, December 1983.

HAG 87 Robert B. Hagmann. Reimplementing the Cedar File System Using Logging and Group Commit.
Proceedings of the 11th Symposium on Operating Systems Principles, November 1987.

HOW 88 J. H. Howard, M. L. Kazar, S. G. Nichols, D. A. Nichols, M. Satyanarayanan, R. N. Sidebotham,
and M. J. West. Scale and Performance in a Distributed File System. ACM Transactions on Com-
puter Systems, Vol. 6, No. 1, February 1988.

KAZ 90 Kazar, Leverett et al. DEcorum File System Architectural Overview. Useniz Conference Pro-
ceedings, June 1990.

KLE 86 S. R. Kleiman. Vnodes: an Architecture for Multiple File System Types in Sun UNIX. Useniz
Conference Proceedings, Summer 86.

KOW 78 T. Kowalski. FSCK: the UNIX system check program. Bell laboratory, Murray Hill, NJ 07974.
March 1978. :

LEF 89 S. Leffler, M. McKusick, M. Karels, and J. Quarterman. The Design and Implementation of the
4.3BSD UNIX Operating System. Addison-Wesley, 1989.

MCK 84 McKusick, M.K., W.N. Joy, S.J. Leffler, R.S. Fabry. A Fast File System for UNIX. Transactions
on Computer Systems, Volume 2, No. 3, August 1984.

MCK 90 M. McKusick, M. J. Karels, and Keith Bostic. A Pageable Memory based File System. Useniz
Conference Proceedings, Summer 1990.

- MCV 91 L. W. McVoy, and S. R. Kleiman. Extent-like Performance from a UNIX File System. Useniz
Conference Proceedings, Winter 91.

MOG 83 Jeffrey Mogul. Representing Information about Files. Computer science department, Stanford
university, CA 94305. September 1983.

MOH 89 C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, P. Schwarz. ARIES: A Transaction Recov-
ery Method Supporting Fine-granularity Locking and Partial Rollbacks using Wrile-ahead Logging.
Research report, IBM research division, Almaden Research Center, San Jose, CA 95210. January
1989.

OUS 90 John K. Ousterhout. Why aren’t Operating Systems getting faster as fast as Hardware ? Useniz
Conference Proceedings, June 1990.

PEA 88 J. K. Peacock. The Counterpoint Fast File System. Useniz Conference Proceedings, Winter 1988.

RED 89 A. L. Narasimha Reddy, and P. Banerjee. An Evaluation of Multiple-Disk I/O Systems. IEEE
Transactions on Computers, Vol. 38, No. 12, December 1989.

58 : USENIX — Winter ‘92

Chutani, Anderson, Kazar, ... The Episode File System

REN 89 R. Van Renesse, A. S. Tannenbaum, and A. Wilschut. The Design of a High-Performance File
Server. Proc. Ninth Int’l Conf. on Distributed Comp. Systems, IEEE, 1989.

ROS 90 Mendel Rosenblum, John K. Ousterhout. The LFS Storage Manager. Useniz Conference Pro-
ceedings, June 1990.

ROSD 90 David S.H. Rosenthal. Evolving the Vnode Interface. Useniz Conference Proceedings, Summer
1990.

SAN 85 R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and B. Lyon. Design and Implementation of
the Sun Network File System. Useniz Conference Proceedings, Summer 1985.

SAT 85 M. Satyanarayanan, J. H. Howard, D. A. Nichols, R. N. Sidebotham, and A. Z. Spector. The
ITC Distributed File System: Principles and Design. Proceedings of the 10th ACM Symposium on
Operating Systems Principles, 1985.

SID 86 R. N. Sidebotham. Volumes: The Andrew file system data structuring primitive. European Uniz
User Group Conference Proceedings, August 86.

STA 91 C. Staelin, and H. Garcia-Molina. Smart File Systems. Useniz Conference Proceedings, Winter
1991.

VER 91 Veritas Software Corporation. VERITAS Overview (slides). Veritas Software, 4800 Great Amer-
ica Parkway, Suite 420, Santa Clara, CA 95054.

Biographical Information

Owen T. Anderson is a member of the File Systems Development group. He worked on file system
security while a member of the Andrew File System group at Carnegie Mellon University’s Information
Technology Center. At Transarc, he continues this specialization and also contributes to design efforts and
kernel development. Before coming to Carnegie Mellon, Mr. Anderson worked for ten years at the Lawrence
Livermore National Laboratory in Livermore, California. There he obtained a wide variety of experience
ranging from the design of an operating system and two multi-processor architectures to debugging digital
hardware. Owen Anderson graduated from the Massachusetts Institute of Technology in 1979 with an S.B.
degree in Physics. He can be reached via e-mail at ota@transarc.com.

Sailesh Chutani has been involved with the Andrew File System (AFS) project since June 1988
when he joined Carnegie Mellon University’s Information Technology Center. At Transarc, he was one of
the designers of AFS 4. He continues work on the design and development of AFS. Mr. Chutani holds an
M.S. in Computer Science from the University of North Carolina at Chapel Hill and a B.Tech. in Computer
Science and Engineering from the Indian Institute of Technology at Kanpur, India. He can be reached via
e-mail at chutani@transarc.com.

In his role as Manager of File Systems Architecture, Dr. Michael L. Kazar, one of Transarc’s
founders, has full responsibility for the development of Transarc’s distributed file systems products. This
undertaking is a natural combination of Dr. Kazar’s previous work as “Senior Data Stylist” at Carnegie
Mellon University’s Information Technology Center. In that position since 1984, he was instrumental in
the design and implementation of the Andrew File System, assuming responsibility for the management of
that project in early 1988. While at the ITC, Dr. Kazar also worked on other aspects of file systems and on
user interfaces. Dr. Kazar received two S.B. degrees from the Massachusetts Institute of Technology, and
his Ph.D. in Computer Science from Carnegie Mellon University, in the area of optimizing multiprocessor
computations to minimize communications costs. He can be reached via e-mail at kazar@transarc.com.

Prior to joining Transarc, Dr. Bruce W. Leverett worked for seven years at Scribe Systems
(formerly Unilogic). There he participated in development of the Scribe document production system,

USENIX — Winter "92

59

The Episode File System Chutani, Anderson, Kazar, ...

including the Scribe text formatter and an X-Windows-based PostScript Previewer. He developed source-
to-source program translation technology to enable Scribe software to be ported to multiple platforms.
Dr. Leverett completed his doctoral dissertation at Carnegie Mellon in 1980. His thesis research, in
optimizing compilers, was an outgrowth of previous work in that field, including development of compilers
for the BLISS language, and research in language design and implementation for multiprocessors, including
implementation of a variant of Algol 68 for the Hydra operating system. He holds an A.B. from Harvard
in Physics and Chemistry, completed in 1973. While at Harvard, he implemented a chess-playing program,
which competed in the ACM Computer Chess Championship in 1972. He can be reached via e-mail at
bwl@transarc.com.

W. Anthony Mason is a member of the AFS team and specializes in data communications. Prior
to joining Transarc, Mr. Mason served as a Systems Programmer in the Distributed Systems Group at
Stanford University in the Department of Computer Science. He was involved in the development of both
the V distributed system and the VMTP transport protocol. Mr. Mason received his B.S. degree in
Mathematics from the University of Chicago. He can be reached via e-mail at mason@transarc.com.

Robert N. Sidebotham was a key designer of the Andrew File System at the Information Tech-
nology Center of Carnegie Mellon University, and the inventor of volumes (now filesets), which pervade the
design, implementation, and administration of AFS and its descendents. Bob has been involved in a variety
of other software projects, from digitizing and imaging of satellite data from the Canadian satellite, ISIS-II,
to the rendering of architectural drawings, to the design and implementation of an operating system for
Sweden’s Teletex system. He is also a founder of a Pittsburgh-based niche software company, which he left
in 1991 to join Transarc. Mr. Sidebotham graduated from the University of Calgary, Alberta, Canada, in
1974, with a BSc. in Computing Science. He can be reached via e-mail at bob@transarc.com.

Availability
Episode is designed to be portable to many kernels, and presently runs on SunOS 4.0.3c, SunOS

4.1.1 and AIX 3.1. It is available as the Local File System component of the OSF’s Distributed Computing
Environment, and is also licensable as a separate standalone product from Transarc Corporation.

60 USENIX — Winter ‘92

An Implementation of Large Files for BSD UNIX

Dave Shaver, Eric Schnoebelen, George Bier - CONVEX Computer Corporation

Abstract

The design of the ConvexOS! filesystem, based on the BSD Fast File System, allows for a theoretical
maximum file size of about 4402G? with a 4K filesystem block size (or about 64T with 8K blocks.)
Unfortunately, the actual limit of the CONVEX filesystem has been 2G-1 because key kernel values and
file offset pointers are 32-bits in size. This is a problem shared by many other Ule? vendors. This
paper describes the path CONVEX has taken to implement files and filesystems larger than 2G. The
implementation is based on a new set of 64-bit system calls and new library interfaces; it requires no
changes to the on-disk i-node representation. The large file programming models and the kernel and
utilities changes are described. Measurements of read and write I/O rates are presented and show that
there is little performance penalty for manipulating large files using the chosen implementation.

Introduction

The Berkeley Software Distribution (BSD) Fast File System (FFS) is a relatively high-performance filesystem
for uNIX. (See [McKusick84] and [Lefller89) for a full description of the FFS.) The key data structure of
each file is the i-node. Data within the FFS is referenced via the i-node and is stored in both direct blocks
and in single, double, and triple indirect blocks. Within the i-node there are twelve direct block pointers,
each of which point to a block of on-disk file data. The single indirect pointer is a reference to a filesystem
block full of direct pointers. Double and triple indirect pointers are implemented in a similar manner. In
theory, by using triple indirect blocks, the FFS supports very large files (up to 64T with 8K filesystem
blocks, for example.) The on-disk FFS i-node also has 64 bits set aside to hold the file size. However, most
FFS implementations do not use the triple indirect blocks [Leffler89] and only use 32 of the 64 bits in the
on-disk i-node to hold the file size.

Although cONVEX’s on-disk i-node structure supports very large files, our system call interface limits
file sizes to 2G-1. The key variable that causes this limitation is the 32-bit file offset pointer. The file offset
pointer must be able to point to any location within a file; thus a signed, 32-bit file offset pointer implicitly
limits file sizes to 2G-1. At CONVEX, a leading supplier of air-cooled supercomputers, we have addressed the
issue that all high performance vendors will eventually face: creating files larger than 2G-1. This issue is
similar to the transition from a 16-bit, block-oriented interface under UNIX V6 (seek), to a 32-bit interface
under UNIX V7 (1seek).

In the next section we describe the programming models we considered to overcome the 32-bit file offset
problem. The advantages and disadvantages of each scheme are discussed and the chosen implementation is
described in detail. Although the selected implementation does not have the most elegant C programming
interface, it does meet our primary goal that FORTRAN programs only need to relink with the latest version
of the FORTRAN libraries to manipulate large files. Subsequent sections describe the changes we made to
the kernel and the utilities to support large files. Finally, performance evaluation results are given, showing
that the I/O rates for large, sequential reads and writes degrade only slightly as file sizes grow beyond 2G.

Programming model alternatives

The problem we needed to solve was the implications of changing the file offset pointer from 32 to 64 bits
at the system call level. The major constraints on our solution were:

1ConvexOS and CONVEX are trademarks of cONVEX Computer Corporation.
2Throughout this paper we use K for kilobytes, M for megabytes, G for gigabytes, and T for terabytes.

3UNIX is a registered trademark of UNIX Systems Laboratories.

USENIX — Winter "92

61

An Implementation of Large ... Shaver, Schnoebelen, ...

1. Not changing the on-disk i-node, and
2. Remaining backwards compatible with binaries and sources that do not require large files

Had we not been able to meet the first constraint, we probably would not have implemented large
files under our current FFS-based filesystem. This constraint arose out of concern for the impacts our
implementation would have on our customers.

The second constraint on our solution implied two things. First, we needed to solve the burdensome
issue of how the kernel treats applications that do not comprehend large files, yet attempt to manipulate an
existing large file. Second, we had to provide both the existing 32-bit versions of the system calls as well as
new 64-bit versions.

We coined the term “large file unaware” to describe an application that does not know files may be larger
than 2G. Because of the first major constraint on our solution, we wanted a large file unaware application to
view an existing large file as a file 2G-1 in size. For example, if an unaware application opens an otherwise
quiescent large file in 0_APPEND mode, it receives an EINVAL error at write() time. This normal appearance
of large files to unaware applications extends beyond just the read() and write() semantics at the 2G-1
boundary. We do not want an unaware application to write() to or read() from a location to which it can
not 1seek(). This arises out of a concern for maintaining our POSIX compliance for unaware applications.
Once we had chosen how an unaware application would be treated if it attempted to manipulate a large file,
we addressed the programming model alternatives for both FORTRAN and C.

Since FORTRAN I/O is record based and accessed only through library routines, we were able to modify
the libraries to exclusively use the new 64-bit system calls. Thus FORTRAN programs become large file aware
automatically, simply by relinking. However, there is still an implicit restriction on file sizes under FORTRAN
since record numbers must fit in a 32-bit data type. Although a FORTRAN application can still not create
files that contain more than 232 records, they can build files up to 1T-512 as long as they do not exceed the
record limit.

Unlike the seamless introduction of large files to FORTRAN, it was difficult to choose the C large file
programming model. The existing standards PosiXx.1 and ANSI C were consulted to see if they might
influence our large file interface, since ConvexOS is Posix.1 compliant in the ANSI C environment (see
[convEX89-1][cONVEX89-2] for more information.) The ANsI ¢ standard [ANSI90] requires a long as the
data type passed to £seek() and the type returned by £tell(). However, it places no restrictions on the
data type used and returned by £setpos() and £getpos(). The PosIX.1 standard [IEEE8S], when used in
the ANSI C environment, requires that off_t be an integral, arithmetic, type. With these restrictions in
mind, several programming models were considered, including the following:

1. Using segments or block offsets in addition to straight byte offsets during a 1seek() call. This is how
UNIX V6 solved the problem of specifying an offset larger than allowed by the PDP-11’s 16 bit integers.

2. Add mode bits on the a.out image that allow the kernel to determine if the application is large file
aware.

3. Create new system calls that use a larger file offset, but make them invisible to the programmer.
4. Create new system calls that use a larger file offset, but make them visible to the programmer.

We felt that the first model, using segments, is too dissimilar to modern UN1x-like operating systems to
be seamlessly integrated into ConvexOS. We also noted that the UNIX V6 segmented solution with seek()
was later dropped in favor of 1seek().? Thus, in an attempt to learn from UNIX history, we didn’t want to
create another block-oriented interface.

The second model involves a new mode bit within the application. Although ConvexOS has used the
mode bit solution in the past—most notably for our Posix.1 support—we felt that this model required too
much effort to be implemented in the time available. Specifically, implementing this solution requires kernel,
compiler, loader, and library work. ,

With the segmented interface and mode bit models eliminated, only two alternatives for the C large file
programming model were seriously considered. The first alternative was to hide the 64-bit versus 32-bit

*[Kernighan], p. 164-5.

62 USENIX — Winter 92

Shaver, Schnoebelen, ... An Implementation of Large

system call issue from the user, as we did in the FORTRAN programming model. The second alternative, and
the one implemented, is to expose the new 64-bit system calls to the user.

The first alternative, hiding the 64-bit versus 32-bit system calls, has the advantage that existing ANSsI c-
conforming code can be recompiled and instantly becomes large file aware. However, this requires that our
long type become a 64-bit data type. A disadvantage of this model is that non-ANsI c-compliant code that
assumes sizeof (int) == sizeof (long) might not execute correctly when compiled in ANSI C mode.

The second alternative forces the programmer to explicitly call the new 64-bit system calls for large file
access. This has the advantage that, without compiler changes, we could implement, test, and deliver a
large file product in the time that was available. The data type for the 64-bit file offset pointer that is used
by the new system calls is an of£64_t. This is a typedef to our compiler’s preexisting 64-bit data type,
the long long. The disadvantage is that this large file C programming model is not compliant with either
ANSI ¢ or POSIX.1. However our chosen C programming model meets most customer needs.

From a C programmer’s standpoint, both proposed C programming models require about the same
amount of work to make a program large file aware. The first requires finding potential standards violations
in the source, while the second requires recoding the application to use the new system call interface. Thus,
potentially, both models require code modifications.

A key point we kept in mind while developing our programming models for C and FORTRAN was that
having large filesystems benefits even large file unaware applications. Although an unaware application can
not manipulate large files, large filesystems can ease administration of disk resources. In our environment,
customer demand for large filesystems is certainly stronger than demand for large files.

Kernel changes

Since the chosen programming model increases the file offset pointer to 64 bits, the new maximum file
size is theoretically 263 — 1 bytes. However, because the design required that the on-disk filesystem i-node
representation not change, we were unable to achieve this maximum size. The internals of the coNvEx
kernel and filesystem may perform I/O in blocks as small as 512 bytes; thus a file is logically broken into
sequentially-numbered 512 byte blocks. Since these block numbers are stored as a signed 32-bit value, the
largest file that can be created is limited to the maximum number of 512 byte blocks this value can represent.
Therefore, the maximum large file size becomes (23! — 1) x 512 = 240 — 512 = 1T — 512. This limitation is
considered acceptable given current disk technology and customer applications. We believe that by the time
the 1T limit becomes inhibitive, we will either have a new filesystem or an entirely new OS technology. Also
note that increasing the size of the block pointer to 64 bits requires work within the filesystem itself and
within other kernel subsystems. This task could easily quadruple the work necessary to implement large
files.

Since no major filesystem modifications were desired, we did not need to take actions as radical as MSS-I1I
did to implement large filesystems under Amdahl’s UTS [NAsA90]. The UTS filesystem is based on the
standard SystemV filesystem, thus the MSS-II work needed to change the on-disk filesystem structure. Also,
since ConvexOS already supported disk striping, we did not need to solve the problem of building filesystems
larger than a single physical disk partition (see [CONVEX91] and [Landherr91] for a full description of our
disk striping implementation.) Given the limitations of our proposed large file implementation, the kernel
work broke down into two main tasks:

1. Programming interface changes needed to implement our programming model, and
2. Internal filesystem changes.

Each of these tasks is described below in detail. Note that both performance tuning of the filesystem and
the scalability of existing filesystem algorithms were not addressed during this project.

The programming interface was enhanced to include new 64-bit versions of key system calls. The new
system calls are: 1seek64(), truncate64(), ftruncate64(), stat64(), fstat64(), and 1stat64(). Each
call matches the functionality of its 32-bit counterpart, but works with files larger than 2G. We added new
open() (0_LARGEFILE) and fcnt1() (FLARGEFILE) large file flags. If an application uses either flag during
the appropriate system call, it will have access beyond a file’s 2G point; without the flag, the application is
considered large file unaware and it will view an existing large file as a 2G-1 file. Applications accessing large

USENIX — Winter 92

oo

63

An Implementation of Large ... ' Shaver, Schnoebelen, ...

files via NFS are considered large file unaware, thus only the first 2G-1 bytes of a large files are accessible
via NFS.® When 1seek64() is called, it sets the FLARGEFILE bit as a side effect since any application that
uses this system call is considered implicitly large file aware.

The internal filesystem changes involved adding 64-bit versions of the key system calls and correctly inter-
preting the file size field of the existing on-disk i-node. To eliminate duplication of code, both 1seek() and
lseek64() are stubs that call seek_internal(). seek_internal() knows the type of seek desired, works
exclusively with 64-bit offsets, and enforces the old 2G-1 file limit on large file unaware applications. In a
similar fashion, truncate() and truncates4() call truncate_i(), while ftruncate() and ftruncate64()
call ftruncate_i().

Correctly interpreting the file size field of the i-node is important. The on-disk i-node already used a
quad® for the file size, thus we did not need to enlarge it. Before the implementation of large files, one of the
two longs in the quad was unused since only 32 bits were needed. Unfortunately, due to an error originally
made while porting the BSD kernel to the CONVEX C series architecture, the wrong long was in use. Thus,
a macro was written to swap the two longs in the quad each time the value is read from or written to disk.
However, after the quad has been read from disk and the longs have been swapped, the value is strictly
treated as an o££64_t. This movement from 32 to 64 bit offsets within the kernel is not a performance issue
since the CONVEX C-series architecture has 64-bit scalar registers. An additional feature is the ability to
disallow the creation of large files on a per-filesystem basis. Besides the new functionality, we spent time
changing or adding type casts within the filesystem code.

Testing of the new kernel and library functionality took about six programmer weeks and was accom-
plished using normal filesystem semantics regarding holes in files. Since on-disk data blocks are not allocated
for a hole, we could create very large files on a small physical disk stripe. Although much of our develop-
ment was carried out with ten 1G drives striped together in various ways, a single filesystem of over 80G of
physical storage was created since large file support was released.

Library work to support large files broke down into these tasks:

Adding fseek64() and £tel164() to stdio.

Enhancing £getpos() and £setpos().

Adding support for the new 1 flag to fopen(), fdopen(), and freopen().

Adding the remaining entry points for the new system calls.

The total effort required for the kernel work was about 18 programmer weeks. C library work took about
three programmer weeks while FORTRAN support took four programmer weeks.

Utility changes

The major problem in making programs large file aware is caused by code that assumes the key system calls
and library functions accept and return a long. To resolve this assumption requires careful review of the
code. The number of utilities that we made large file aware for the first release was limited because of time
constraints. We found the following basic set of utilities adequate:

Utilities for creating and maintaining filesystems: £sck, ncheck, mkfs, fsirand, mount, newfs, dumpfs,
newst, putst, getst,7 dump, xdump,® and restore.

Utilities identified as essential for the reasonable use of large files: 1s, cp, mv, rep, £tp, £ind, tail, cat,
dd, chkpnt, restart,9 compact, cmp, tar, and cpio.

5This was due to concern for compatibility with other NFS implementations and 32-bit pointers within the NFS
definition.

5 A quadis two longs wide, for a total of 64 bits.
"The *st utilities are used for maintaining our implementation of disk stripes.
8 xdump is a fast dump utility fully described in [Polk88].

?Both chkpnt and restart are used in the ConvexOS implementation of a checkpoint/restart system.

64 USENIX — Winter 92

Shaver, Schnoebelen, ... An Implementation of Large ...

Since we were adding support for large filesystems in addition to support for large files, it was necessary
to enhance the utilities used for creating and maintaining filesystems. Thus we considered it essential, from
project inception, that all existing filesystem manipulation and maintenance utilities be large file aware.

It was difficult to choose the subset of remaining utilities to make large file aware. Given our project
schedule and staffing, it was necessary that only a minimal set of utilities be made fully large file aware.
There was neither time nor resources to examine and enhance all 400 utilities that are part of ConvexOS.

1s is an obvious choice to be made large file aware since it displays the sizes of files. cp and mv are two
other obvious candidates for large file awareness, although both were further enhanced to preserve sparse
files (“holes”) during copying. Both rcp and £tp were enhanced and are capable of transferring large files
over the network, although neither preserves sparse files. £ind was also made large file aware since it includes
both a -1s and -size option.

tail was made large file aware because it allows users to look at the end of a file, and it allows the
continual monitoring of a file using the —f option. The corresponding head utility was left large file unaware
since it only works with the first 2G of a file.

Since we considered making our shells (sh, csh, and ksh)large file aware an immense task, I/O redirection
with large files is not implemented. This issue can be avoided since, with a data source and a data sink, a
pipeline—that has no size limits—can be created. For example, the output of an application can be piped
into a large file aware data sink, that can then write the output to a large file. We provide both data sources
(cat or dd) and a datasink (dd) that are large file aware. Thus, rather than using shell redirection like this:

% application > large_file
the user pipes application output into a data sink like this:
% application | dd of=large_file

Both chkpnt and restart required changes since, in conjunction with the kernel, they recover and
restore file offsets to/from in-core process images. If these utilities had been left large file unaware, it would
be impossible to checkpoint applications that use large files. '

compact and cmp were added late in the project. Although neither one is efficient enough to be pleasantly
used with large files, the effort required to make them large file aware shows the relative ease of making an
application large file aware under our chosen programming model.

tar and cpio were special enhancements. We wanted them to be large file aware since they give users
some form of file level archiving other than the dump and restore suite. Because of limitations in the archive
header formats imposed by [IEEE88], these two utilities are limited to archiving files smaller than 8G.

There are some seemingly useful tools, such as editors and other data manipulation tools, noticeably
missing from the list of large file aware utilities. We feel that interactive editors are not useful on files larger
than 1G, even if the user does have enough space in /tmp. Qur reasoning is that large files are manipulated
by applications, not by manual editing. Also, in general, the editing of such large files should be batch-based,
using either specially written tools, or sed.

Further, tools such as sed and grep were not enhanced since they are designed to read from standard
input and write to standard output. When used in this mode they are inherently large file aware. It is
simple enough to create a pipeline with a large file aware data source at one end, the data manipulation
tool(s) in the middle, and a large file aware data sink at the other end.

Finally, utilities that examine filesystem data seem to be prime candidates to become large file aware, but
are frequently found to not require modification when inspected more closely. For example, many utilities
such as du and df do their computations in terms of filesystem blocks, not byles. As we continue to use our
large file implementation, we will find and fix additional utilities that need to be large file aware.

The process of making a program large file aware generally takes the following steps:

¢ Cleaning up the source to compile in the ANSI c-conforming mode of our compiler. This is necessary
since large files are only available when using the ANsI ¢ mode of our compiler. They are only available

in this mode since, generally, we do not add new functionality to the backwards compatible mode of
our compiler.

USENIX — Winter “92 65

An Implementation of Large ... Shaver, Schnoebelen, ...

e Correcting incorrect data type assumptions. For example, this includes converting code to use off_t
for file offsets (for ANSI ¢ conformance), correcting the assumption that the number of bytes in a
filesystem can be expressed as a 32-bit value, etc.

e Changing instances of creat () into calls to open() with the O_CREAT flag,.

e Addingeither the new O_LARGEFILE flag on calls to open() or the new 1 modifier on calls to fopen(),
fdopen() or freopen(). Both additions give the resulting file descriptor access to large files.

e Changing calls to £stat() or 1stat() into calls to £stat64() 1lstat64(), with the corresponding
change of the struct stat to a stat64_t.!° Any use of the st_size field must be verified to make
sure proper data types are being used.

o Changing calls to £seek() or 1seek() into calls to £seek64() or 1seek64(), with the corresponding
change of the offset parameter from an of£_t to an off64_t.

e Changing calls to truncate() or ftruncate() into calls to truncate64() or ftruncate64(). This
also requires that the offset parameter passed to these functions be an o££64_t, either directly or via
a cast.

The total effort required for utilities conversion was about 20 programmer weeks. The most difficult
utilities to convert were fsck, dump, and xdump since they had intimate knowledge of the filesystem. Testing
of the utilities took about nine programmer weeks.

Performance evaluation

At the time large files were implemented, CONVEX’s high performance disk drive was the Seagate Sabre 5
HP2, a 1.1G IPI-2 drive. After formatting, a drive has about 800M of data space available. Thus, to create
a filesystem larger than 2G, requires striping multiple drives together. On large sequential reads and writes,
each drive in a stripe will achieve a throughput of 5.2M/sec until the maximum number of drives that the
CPU can drive at full speed is reached.

1/0O performance is evaluated using a C program that does large sequential reads or writes. Parameters
for the program are the size per read or write system call and the total file size to read or write. The total
number of system call requests per run is obtained by dividing the file size by the size per request. The read
times reported avoid interference from the buffer cache by flushing the cache before each measurement run.
Writes go through the buffer cache, but include the time to do a £sync() system call, guaranteeing that the
data has been transferred to disk.

The results that follow were obtained on a cONVEX C3220 reading and writing to an eight-way striped
filesystem with a total capacity of 7.4G. The read and write request sizes are held constant at 256K. Graph 1
gives the total time in seconds to read and write files ranging in size from 1G to 7G on a filesystem with a
64K block size. Graph 1 shows that the elapsed time increases linearly with file size and that reading a 7G
file on a C3220 with a high performance disk stripe takes about six minutes. Writing a 7G file takes a little
over eight minutes.

Graph 2 plots the read and write I/O rate in M/sec as the file size increases from 1G to 7G. The
1/0 rate for reads is a little less than 19M/sec and shows a slight decrease as the file size increases. The
write rate shows a slightly larger decrease; at 1G the performance is 15M/sec and at 7G, the rate drops to
14.6M/sec. The largest decrease is between 1G and 2G. This corresponds to the move from single to double
indirect blocks that occurs at 1.7G on a filesystem with a block size of 64K, indicating that this move has
a slight impact on performance for large sequential writes. This effect is smaller than might be expected
because the performance bottleneck for a high speed striped filesystem is the movement (copying) of data
between buffers, and not the file system structure. Experiments with filesystems using unrealistically small
filesystem block sizes (to force the use of triple indirect blocks) have shown that a similar slight decrease in
performance can be expected when moving from double to triple indirect blocks.

105tat64.t is a typedef for the new kernel structure used during stat64() calls on large files. stat_t was also
added for orthogonality.

66) USENIX — Winter 92

Shaver, Schnoebelen, ... An Implementation of Large ...

—&— Reading a file —&— Reading a file
-8~ Writing a file -@- Writing a file

500 / 20
450 19
~ 400
3 i 18
g 350 // 2
3 A]
< 300 v g 17
= / A ' o)
'_§ 250 f / . g" 16
2 p=
200
& -+
8 15
m 150 L \“‘_T__'__"'_4
100 14
1 2 3 4 5 6 7 1 2 3 4 5 6 7
File size (Gbytes) File size (Gbytes)
Graph 1: Data Using Elapsed (Wall Clock Time) Graph 2: Data Using Rates
Conclusion

We were able to limit the kernel changes required to support large files since the filesystem already had
on-disk support for large files up to 1T-512 and ConvexOS already supported disk striping. Our major
addition to ConvexOS was providing a second, 64-bit system call interface for key system calls. The most
difficult decision we had to make was choosing the C programming model to implement. The model we
choose was the simplest to implement from a kernel, compiler, and library standpoint while still meeting
our customers’ requirements. We were able to meet our primary goal of seamless FORTRAN support.

Our implementation of large files took approximately 45 programmer weeks to implement. This included:

o 20 weeks for utility work
o 18 weeks for kernel work
e 4 weeks for FORTRAN support
o 3 weeks for library work

In addition, 15 weeks were spent testing the kernel, utilities, and libraries. Our performance investigations

show that the large file implementation had little effect on the I/O rates for large, sequential reads and
writes.

Availability

Our implementation of large files is part of ConvexOS beginning with version 10.0. Source code is part of
the standard OS source distribution and is available to ConvexOS source code licensees.

References

[ANsI90] Accredited Standards Committee X3, Information Processing Systems, American Na-
tional Standard for Information Sysiems — Programming Language C, X3 Secretariat:
Computer and Business Equipment Manufacturers Association, Washington, DC, Febru-
ary 14, 1990.

[convEX89-1] ¢oNVEX Computer Corporation, CONVEX POSIX Concepis, Part Number 710-005030-
000, Richardson, TX, December 1989.

USENIX — Winter 92

67

An Implementation of Large ... Shaver, Schnoebelen, ...

[convEX89-2] CONVEX Computer Corporation, CONVEX POSIX Conformance, Part Number 710-
002030-200, Richardson, TX, December 1989.

[conVEX91] CoNVEX Computer Corporation, ConvezOS System Manager’s Guide, Order Numbers
DSW-030 and DSW-031, Richardson, TX, November 1991.
[IEEESS] The Institute of Electrical and Electronic Engineers, IEEE Standard Portable Operating

System Interface for Computer Environments, IEEE Std 1003.1-1988, The Institute of
Electrical and Electronics Engineers, Inc, New York, NY, September 30, 1988.

[Kernighan)] Brian Kernighan, Dennis Ritchie, The C Programming Language, Prentice-Hall, Engle-
wood Cliffs, NJ, 1978.

[Landherr91) Steve Landherr, “Directions in Disk Striping: The Virtual Volume Manager,” Presented
at Convex Users Group Conference, May 1991.

[Leffier89) Sammuel J. Leffler, Marshall Kirk McKusick, Michael J. Karels, John S. Quarterman,
The Design and Implementation of the 4.3BSD UNIX Operating System, Addison-Wesley,
Reading, MA, 1989.

[McKusick84] Marshall Kirk McKusick, William N. Joy, Samuel J. Leffler, Robert S. Fabry, “A Fast File
System for UNIX”, Computer Systems Research Group, Department of EECS, Berkeley,
CA, February 18, 1984.

[NASA90] Jonathan Hahn, Bob Henderson, Ruth Iverson, Alan Poston, Tom Proett, Bill Ross,
Mark Tangney, and Dave Tweten, MSS-II Ezternal Reference Specification, NAS Systems
Division, NASA Ames Research Center, 1990.

[Polk88] Jeff Polk, Rob Kolstad, “A Faster UNIX Dump Program,” USENIX Winter Conference
Proceedings, pp 125-129, February 1988.

Author Information

Dave Shaver is a kernel engineer at CONVEX and worked on the kernel and filesystem during the large
file project. He is currently involved in OS design and implementation for future and existing CONVEX
hardware platforms. He received his BSCS from Iowa State University. He can be reached electronically at
shaverQconvex. com.

Eric Schnoebelenis a utilities engineer at CONVEX. He received his BSCS from Iowa State University. He is
responsible for new development and continuing support of the ConvexQS utilities and system libraries. Prior
projects include the addition of POsIX.1 support into the libraries and utilities. Continuing projects include
preliminary incorporation of some P0sixX.2 functionality into ConvexOS. He can be reached electronically at
schnoebe@convex.comor ericQ@cirr.com.

George Bier is an OS performance specialist at CONVEX. He is responsible for measuring, modeling and
improving the performance of OS and networking products. Before joining CONVEX in 1990, he was a
graduate student at the University of Wisconsin for seven years, receiving his MSCS in 1984. He received
his BS in Computer Engineering in 1983 from Columbia University. He can be reached electronically at
bierQ@convex.com.

All three authors can be reached by US mail at:

coNVEX Computer Corporation
PO Box 833851
Richardson, TX 75083-3851

68 USENIX — Winter ‘92

Storage-Efficient Reliable Files
Walter A. Burkhard and Petar D. Stojadinovié

Gemini Storage Systems Laboratory
Computer Science and Engineering Department
University of California, San Diego
9500 Gilman Drive
La Jolla, California 92092-0114 U.S.A.

Abstract

The File Dispersal Shell is a storage-efficient reliable data storage prototype facility for local area networks.
Rabin’s information dispersal algorithm provides an attractive data organization scheme which potentially uses less
physical storage space than replication while obtaining excellent data reliability and access times comparable to
those obtained for a single disk. We have constructed Rabin’s information dispersal algorithm within a UNIX sys-
tem shell that provides almost all the traditional shell facilities augmented with two additional commands to create
and delete dispersed files. We present analytical mean-time-to-data-loss results, storage requirements, together with
our prototype implementation and preliminary access-time measurements. For practical purposes, dispersed files
are invisible to the user except for the improved reliability at modest disk space cost.

1. Introduction

Data replication has served as the principal tool to provide improved data reliability as well as improved access
times within distributed computation environments [1,2,3]. Data replication has the inherent drawback of requiring
large amounts of storage space at least double the size of the file stored. More recently, the redundant array of inex-
pensive disks (RAID) five level organizational strategy [8] has been explored; this ultimately utilizes less storage
space than data replication while providing less fault tolerance. The level 5 RAID organization can accommodate
single disk failures without information loss. We are interested in considering the efficacy of other data representa-
tions that potentially utilize less disk storage space than replication while providing high data reliability in the pres-
ence of multiple disk failures.

Rabin’s information dispersal algorithm (IDA) [9] provides a very attractive generalization of both the RAID
[4,8] organizations and data replication [S] which provides a wide spectrum of alternatives for storage efficiency,
fault tolerance and access time performance. The IDA scheme can provide storage-efficient organizations, excellent
data reliability, and access times comparable to those obtained by a single disk. We do not study this tradeoff expli-
citly within this paper; rather we are concemned with the viability of IDA as a fault-tolerant alternative suitable for
local area networks. We show experimentally that these ideas are worthy of exploration. Our paper is structured as
follows: section 2 contains a brief presentation of IDA, section 3 contains a discussion of our File Dispersal Shell
(FDS) system implementation of IDA, within section 4 we present our data reliability analysis of the mean time to
failure for several system configurations together with storage requirements, section 5 contains our preliminary per-
formance measurements and evaluation of the FDS system, and finally within the conclusion we recapitulate our
results as well as mention areas for future study.

2. The Information Dispersal Algorithm

We present an overview of Rabin’s Information Dispersal Algorithm for storing and retrieving a file. Interspersed
with the presentation is an example which is very similar to the version utilized in our experiments. IDA organizes
a file into n equal-sized pieces, referred to as fragments, with each stored as an ordinary file at a different site. We
can construct the file if we have access to all n fragments, but this approach need not provide any fault tolerance.
For example, we could store every n™ file character within the same fragment and we would require all n fragments
to construct the file from the fragments. Moreover, if the fragments are each identical to the file itself, we have (re-
named) file replication; this of course will provide excellent fault tolerance but with extravagant disk storage space

This study supported in part by the NCR Corporation, the University of Califomia MICRO program, and the Hughes Fellowship Thesis Program.

USENIX — Winter ‘92 69

Storage-Efficient Reliable Files Burkhard, Stojadinovié

requirements. A fundamental property within IDA is that a fixed number m of fragments will always suffice to
reconstruct the file. We would like the fragments to be as small as possible roughly 1/m® the size of the file,
thereby efficiently utilizing disk space. For a file F containing N bytes values, py, p; . p2, ***, pn-;, €ach fragment
will contain (N+m—1)/m byte values.

The process of creating the n fragments is referred to as file dispersal and the process of recreating the con-
tents of the file from m fragments is referred to as file reconstruction. File dispersal and reconstruction are
computationally-efficient linear transformations of the contents of the file or the contents of m fragments. The
dispersal transformation maps m contiguous message bytes to n byte values. The mxn dispersal matrix D specifies
the transformation. The dispersal matrix must have the property that any m columns are linearly independent; this
condition assures that the fundamental IDA property will hold and we refer to it as the independence property. We
will return to the issue of selecting such matrices after introducing IDA.

As an example, we let n=4 and m=2; within this configuration, each fragment will be approximately one-half
the size of the file and since there are four fragments stored we are using as much disk space as if we had created a
mirrored disk. As an aside, if n=10 and m=9 then we obtain a RAID Level V reliability group with 10 disks or if
n=2 and m=1 we obtain a replicated file. Returning to our n=4 and m=2 example, our dispersal matrix is

_[1011

D = [o 115]

File dispersal is accomplished using D such that two contiguous file characters are mapped to four fragment charac-
ters.

(P2js P21)D = (foj f1jo f2jo f3)
Each fragment character f; ; is stored within fragment F;.
For a detailed example, suppose that our file contains the ASCII encoded text:

The old man and the sea.\n

Then the four fragments contain the following byte values expressed in octal notation:

Fy 124 145 157 144 155 156 141 144 164 145 163 141 012
F, 150 040 154 040 141 040 156 040 150 040 145 056 000
F, 074 105 003 104 014 116 017 104 034 105 026 117 012
F3 355 305 302 304 371 316 306 304 315 305 363 367 012
Fragments Fy and F; consist of every other value within F as we show here:

Fy T e o d m n a d t e 8 a \n
F, h\40 1 \40 a \40 n \40 h \40 e . \O

The contents of fragments F, and F3 require more explanation. We desire to store the sum and products of byte
values within a byte; for addition there may be carry overflow and for multiplication the potential for overflow is
more acute. We use the finite field GF(2%) which is defined over the 8-bit byte value domain to avoid these
overflow problems. Both addition and subtraction are particularly straightforward here as both are the bit-wise
exclusive-or operation. Multiplication and division are more intricate; the interested reader is referred to Chapters 3
and 4 of MacWilliams and Sloane [7] for a mechanism to create the multiplication table.

The reconstruction process is defined as a transformation that maps byte values from m fragments to m mes-
sage byte values for file F. Since any m columns within D are linearly indepentdent, we construct the mxm inverse
matrix R for the columns associated with the m fragments participating within the reconstruction. The fragment
entries are processed sequentially.

Within our =4 and m=2 example, we can reconstruct a pair of message byte values within the original file
by solving a pair of linear equations in two unknowns since any pair of columns within D is linearly independent.
Suppose we have access to fragments i; and i,; then we will have

(forir f i) R, = (P2j P2jrr)

where R;, ;, is the 2x2 inverse matrix for the columns associated with the specific fragments. For our example,
there are six different inverse matrices to store or determine on the fly. The inverse matrix for fragments 2 and 3 is

70 USENIX — Winter ‘92

Burkhard, Stojadinovié Storage-Efficient Reliable Files

1[5 1 11]!
RZ-?:Z[l 1] = [1 5] :
The individual reconstruction computations are
(D2j+P2j1 » P2j+5P2p1)Ra3 = (P3js Pajer)

The sequence of computations to reconstruct the file from fragments F; and F; would be

(074,355)R, 3, (105,305)R, 3, (003,302)R; 3, (104,304)R; 3, ...
yielding the ASCII character code data for F.

(124, 150), (145, 040), (157, 154), (144, 040),

We observe that there are two varieties of fragments within our example; Fragments F, and F; allow very
easy file reconstruction since merging them is all that is necessary. Any other combination of fragments will require
“‘real’® computation during reconstruction. While the presence of fragments allowing this simplistic reconstruction
is not required by the information dispersal algorithm, it is certainly advantageous. Dispersal schemes containing
these ease-of-reconstruction fragments are said to have the systematic property.

More generally, we will require that our dispersal matrices always have the systematic property; that is, the
leftmost m columns of the dispersal matrix constitute an identity matrix. Reconstruction will be the very straightfor-
ward merging of files for the m fragments associated with these columns. We refer to these m fragments as primary
fragments and the others as secondary fragments. In the absense of failed sites and other conditions being equal
(such as site load) the reconstruction process will access only the primary sites.

Finally, we return to the issue of selecting a dispersal matrix. We have two requirements: (1) the systematic
property and (2) the independence property. The independence property ensures that any m fragments suffice to
reconstruct the file F from the fragments. The systematic property ensures that for one combination of m fragments,
reconstruction is accomplished by merging the fragments. The Vandermonde matrix [7] provides an nXn matrix
having non-zero determinant thereby assuring linear independence of its columns. Our dispersal matrix can be con-
structed from this matrix by truncating the bottom n—m rows of the Vandermonde matrix. Since any m *‘‘shor-
tened’’ columns constitute an 7 Xm Vandermonde matrix, any combination of m columns will be linearly indepen-
dent as required. We then utilize elementary matrix transformations to obtain a dispersal matrix in which the left-
most m columns form the identity matrix. We may construct such a matrix over GF(2%) with as many as 256
columns. For practical applications this is probably more than adequate. A general presentation of the information
dispersal algorithm is provided within Schwarz and Burkhard [10].

The parameters n and m together provide two useful measures for our data organization schemes. The differ-
ence n—m is the maximum number of simultaneous failures allowed without losing our ability to reconstruct the file
F. The ratio N(n—m)/m measures the additional storage utilized to improve data reliability. Within our example, as
many as two disks can fail together without loss of our data. While our additional storage equals the size of the file
itself, we obtain a much larger data reliability figure with the data spread over the four disks rather than using two
disks each containing one copy of the file. One interpretation of this result is that the extra pair of disk arms yields
additional data reliability! We present the general discussion of data reliability in section 4.

3. File Dispersal Shell Architecture

The File Dispersal Shell (FDS) is a UNIX system shell providing the usual shell commands together with dispersed
files. Each fragment is implemented as an ordinary file. Dispersed files are recognized within the command line
and processed as described here. There are two new commands dcreate and dremove to create and delete a
dispersed file. Our goal is primarily run-time performance measurements; nonetheless our prototype is realistic.
The user accesses both dispersed and non-dispersed files through traditional shell commands. However script-like
commands, such as make, will not access dispersed files properly.

Internally FDS is implemented as a set of trusted servers communicating via sockets. There are two varieties
of local servers fdshell and dcreate and one remote server rs. We provide an overview of the operation
of the three; the interesting details will be discussed within the implementation paragraphs that follow.

USENIX — Winter 92 7

Storage-Efficient Reliable Files Burkhard, Stojadinovié¢

fdshell client algorithm

1. The command-line is broken into tokens and each is checked to determine whether it names a dispersed file. The
user privileges at the remote sites are analyzed as well.

2. The dispersed files are reconstructed at the client site.
3. The command is executed, via a system command, using the reconstructed files and ordinary files as parameters.
4. The modified reconstructed files are dispersed.

This schema will suffice for many UNIX commands; it certainly suffices for our testing purposes. However, several
non-script commands must be handled as special cases. For example, the creation and deletion of a dispersed file,
the addition of a single fragment to a dispersed file, the mv command, and the cp command are specific cases.
Dispersed file creation is handled as a separate client algorithm below. The deletion command dremove removes
all fragments of a dispersed file by means of the rm command which remains unchanged; in otherwords, you can
remove a single fragment,

The dcreate command is similar to the £dshell command; its parameters are a sequence of site names
together with the name of either an existing non-dispersed or non-existent file.

dcreate client algorithm

1. The user’s access privileges are checked at each named site. The specified file is checked to determine whether it
is present as a dispersed- or ordinary file or not present.

2. If it exists as an ordinary file, it is dispersed to the sequence of sites. If it does not exist, the named sites are
informed of the dispersed-file name.
This scheme does not modify an already dispersed file.

Finally we present the remote server xs algorithm which at the high level is a message processor. There are
three varieties of messages; those associated with privilege checking, dispersal and reconstruction. Of course there
are ‘‘special case’” messages for the exceptional commands mentioned previously. The activities described are
undertaken by the server when the messages is received.

server algorithm

1. Privileges check and response.

2. Dispersal.

a) The create message records the presence of the dispersed file name.
b) The send file message initiates the fragment transfer process.

c) Datablock arrival.

d) The update file information data structure message.

3. Reconstruction.,

a) Initializes reconstruction process.

b) Begin sending blocks.

Some of these messages have associated acknowledgement messages that we describe in the following section con-
cerned with Fault Tolerance.

This prototype was implemented primarily to measure the response time performance of the information
dispersal algorithm within a local area network. We have utilized standard UNIX System files without enhance-
ments such as NFS or VFS. We store all information regarding the location of fragments within the UNIX System
file directory; nothing is stored within the fragments other than *‘fragment’’ data. We store the following informa-
tion within the softlink associated with each file.

names of sites where the fragments are located
pathnames at each site to the fragment
file size when reconstructed

72 USENIX — Winter 92

Burkhard, Stojadinovié Storage-Efficient Reliable Files

The size of the softlink (1024 characters) limits the information we can store here, but the same softlink is stored at
each fragment.

3.1. Fault Tolerance

There are numereous sources of faults and failures within storage environments — the human operator, the software
system and the hardware system. Our work is motivated primarily with robust file storage in the presence of
hardware failures. Nevertheless, our work can improve the tolerance of various varieties of human and software
failures too.

Our model of faults is fairly simplistic for this study. We assume that the storage subsystem enters a fail-stop
mode when a failure occurs [11]. Moreover we assume no Byzantine behavior. We assume that all failures are
detected by timeouts and that these failures may be detected during either dispersal or reconstruction. There are
acknowledgement messages during either dispersal or reconstruction.

During dispersal, after a fixed number of blocks have been sent to each site, each remote site is to relay its
satisfactory progress with an acknowledgement message. This message is to be sent only after the most recent
block has been written to disk. The fdshell client can determine whether a time-out has occurred.

During reconstruction, the blocks arrive without associated messages once they begin moving across the net-
work. However the client requests a fixed number of blocks from each site when additional blocks are necessary. If
a block arrives too late, the fdshell client can decide a time-out has occurred.

4. Data Reliability Analysis

Our analysis of data reliability provides measurements allowing the comparison of various data organization
schemes. We present a general analysis of IDA in which the scheme is modeled as a finite state continuous Markov
chain and utilize standard techniques [9]. We begin by assuming the fragment failure rate A is constant, the repair
rate |1 is constant, and that failure and repair events are independent. The states within the Markov chain correspond
to the number of fragments accessible at a given time. Our analysis is general and applies to various versions of
IDA including RAID Level V, mirrored disks etc. The measurement we calculate is the ““mean time to failure”
(MTTE) for these Markov chains. Figure 1 presents our Markov chain model.

nA @A @i+1)A iA (m+1)A mh

Figure 1. IDA Markov Model

The state labels designate the number of operational and accessible fragments. Associated with each state is proba-
bility P;(t) which designates the probability of being in state i at time ¢. The failure state F is absorbing in our model
since it is entered only if fewer than m fragments are operational and accessible. The MTTF is the expected time to
enter state F. Thus our computations are rather conservative since an inaccessible fragment need not contain stale
(not current) information. The reliability function R(z) is the probability of being in one of the non-failure state-
ments at time ¢; that is,

R(1) = Pu(‘)""’n—l(‘)"’ e +Pm+l(t)+Pm(t)
The MTTF is given by

USENIX — Winter 92 73

Storage-Efficient Reliable Files ' Burkhard, Stojadinovi¢

MTIF = }R(t) dt
0

The state transition equations for our model are as follows

dP:

Tt‘ = (i+1)A-Pyy — (i-Ah+ (n—i) WP; n>izm 6))

dt" = —nAP,+| zl; JPuj @
=

and we assume initially that P,(0) = 1 and the other probabilities are zero for the remaining states. We can solve
these differential equations using the Laplace transformation and since our interest is only in the MTTF for the model
we utilize the transform final value property to obtain our result. We designate the Laplace transform of f{z) by f{(s).

MITF = lim [R(x)dx = lim R(s) = S P0)
ndad” s i=m

We compute P;forn2i>m by solving equations 1 and 2 within the transform domain;
(i+1)APyy = iAP;+(n-i) P, n>izM an)

ﬂll_) "=]J.jzl ji; nj (2’)

1

Since we are only interested in P,-(O) we have replaced the differential equation with recurrence equations we can
readily solve. The zero arguments for each P; are implicit in these equations and the solution is given by

5 _ (n-ijutdip :
Py = (+Dh P; n>izm
= 1

P, = e

The ratio @ = p /A is very large within reliability calculations and we obtain the following useful approximations.

P, = T op ;
P) o P; n>iz2m
We finally determine that
. _ -
- nAC(n-1,m-1) ®
x!

where C(x,y) is the binomial coefficient —————.
. yH(x=y)!

As an example we analyze an n=4, m=2 system as well as n=3, m=2 and finally n=m=2 configurations.
For comparison we consider three file mirroring configurations that contain two, three and four replicas respectively.
We also consider organizations in which the no repair is undertaken. This requires-analyzing a similar Markov
model without any “‘repair’’ transitions which we have labeled with . in our model. No approximation is needed
and result is

111, 1 1
Mg = 3| Ty * YT
Table 1 contains both the MTTF and MTTFyiout repair Values as well as the # and n/m parameter values.
The column labeled n/m specifies the normalized aggregate size of the components representing the file; that is the
value k indicates space utilization k times that of a file itself. The n column specifies the number of disks involved:
each fragment or replica is stored on a separate disk.

A modern disk with an expected life time of 100,000 hours and a repair rate of one day per repair yields the
MTTF results presented within Table 2. Various organizations utilizing identical amounts of storage space can have
vastly different reliability measures. The four fragment versus two replicas configurations both use twice as much
storage but the four fragment version is clearly the reliability winner.

74 USENIX — Winter 92

Burkhard, Stojadinovié Storage-Efficient Reliable Files

configuration MTTF MTTFyithout repair nim n
two fragments 1/20 172\ 1 2
three fragments ®/6\ 5/6A 312 3
four fragments /48 13 /120 2 4
two replicas of2A 3/2M 2 2
three replicas w?/12) 11 /6 3 3
four replicas ©*/144) 2512\ 4 4

Table 1: General Mean Time to Failure Results

configuration MTTF (years) MTTF yithout repair (Years)
two fragments 5.71x10° 5.7
three fragments 7.93% 10? 9.5
four fragments 4,13x10° 124
two replicas 2.38x10* 17.1
three replicas 1.65x 107 21.0
four replicas 5.73x10° 23.8

Table 2: Specific Mean Time to Failure Results.

Finally we compare the storage required by the various file organization schemes. The FDS system can be
space efficient but at the expense of fault tolerance. The n=3, m=2 configuration provides smaller MTTF values.
We can move even further along these lines to an n=4, m=3 configuration which trades reliability for disk storage
space. The MTTF is @/(12-A) which is one-half the value obtained for the three fragment configuration. The mean
time to failure for either the three or four fragment dispersal scheme is most likely acceptable in practice.

5. Run-Time Performance

We present the results for a system configuration consisting of three very similar Sun SPARCstation 1 systems. We
utilize a local disk at each system for our data storage and communication is obtained via a local area network with
no gateways separating them. We have measured the response time performances for a test suite that consists of the
following file sizes (measured in bytes:)

2000 4000
10000 50000
100000 250000
500000 1000000
1250000 1500000
2000000

Our results are presented within Figure 2 which contain response time curves labeled dispersal and reconstruc-
tion. The dispersal response curve measures the time required for step 4 within the fdshell algorithm. The
reconstruction curve measures the time required for step 2 within f£dshell . The test suite generated 100
dispersal and reconstruction times for processing these 11 dispersed files. Our measurements reflect the overhead
associated with the dispersal and reconstruction management processes. The running times grow approximately
linearly with the size of the file as we would expect, except for very small files. The reconstruction time reflects
slightly heavier network usage than the dispersal times. Within these experiments, during reconstruction every
block is requested from each server by the client; and during dispersal the remote sites acknowledge receiving and
writing to disk every 16 blocks. If the acknowledge/request message rate is the same, we would expect the dispersal
time to slightly exceed the reconstruction since a greater number of sites is involved. Our block size for these
experiments is 1000 bytes.

USENIX — Winter 92 75

Storage-Efficient Reliable Files Burkhard, Stojadinovié

We always disperse the files to the three sites which we view as one secondary and two primary sites. We
present, within Figure 2, the response times for dispersal to three sites and reconstruction from two primary sites.,
This reflects operation in normal fault-free situations. We also present the results of dispersal to the three sites and
reconstruction from a primary and secondary site. These response times are very similar even in the failure mode.
The 95% confidence intervals for these response times are very small — much less than 1 percent of response times.

These operations will have different response times during recovery of a failed fragment/disk. The dispersal

operation can actually run faster if fewer than three fragments are to be created. Of course, if fewer are created, a
future background recovery process will incur additional system load.

6. Conclusions

We have presented the File Dispersal Shell prototype system. Our initial measurements indicate that the fault-free
run-time performance of the shell is excellent. The fault tolerance achievable by FDS is excellent. The expected
time to failure for the system far exceeds several thousand years with three fragments present. One conclusion
from this study is that we can trade only performance (and then a very little) and obtain excellent reliability figures
for our storage systems. The n=4, m=2 and the n=2, m=1 (replication) configurations demonstrate this point;
both only double the storage size while the former markedly improves the reliability.

We would implement the recovery procedure in the future. While analytic estimates of the performance
degradation incurred by recovery are possible, we would like to obtain empirical data as well. When a failure
occurs, recovery could be initiated either when the fragment becomes available again or if a stand-by disk is avail-
able. The use of stand-by disks is a very attractive approach.

In the future, we plan to redesign our implementation of the information dispersal algorithm. The recon-
structed file could be located, for example, within the /tmp subdirectory thereby avoiding disk quota problems.
We could improve step 1 of fdshell using standard lexical analysis techniques rather than our ad hoc approach.
We could use out-of-band messages to implement acknowledgements thereby avoiding polling when can occur in
our system. Another direction would be to extend the standard input-output library to include dispersed files.

7. References
[11 AS400™ Programming: Backup and Recovery Guide: IBM Form No. SC21-8079-0, 1988.

[2] Alsberg, P.A. and Day, J.D. *‘A principle for resilient sharing of distributed resources,’’ Proceedings of the
2nd International Conference on Software Engineering, 1976, pp. 562-570.

(3] Burkhard, W.A,, Martin, B.E., and Paris, J.-F., *“The Gemini Replicated-File System Testbed,’’ Information
Sciences, Volume 48, 1989, pp. 119-134.

[4] Katz, R. “Disk Array Is Moving Up to RAID 6 Option,”* Computer Technology Review 1991, pp. 24-28.

(5] Katzman, J.A., *‘A Fault Tolerant Computer System,”” Proceedings of the Eleventh Hawaii Conference on
Systems Sciences, January 1978, pp. 85-102.

[6] MacWilliams, F.J. and N.J.A. Sloane, The Theory of Error-Correcting Codes, North-Holland Publishing
Company, New York, 1977.

(71 Mirsky, L., An Introduction to Linear Algebra, Dover Publishers, New York, 1982.

(8] Patterson, D., Gibson, G. and Katz, R., “‘A Case for Redundant Arrays of Inexpensive Disks (RAID),”” ACM
SIGMOD Conference Proceedings, 1988, pp. 109-116.

[91 Rabin, M.O. “‘Efficient Dispersal of Information for Security, Load Balancing and Fault Tolerance,”’ Journal
of the Association for Computing Machinery, Volume 36, 1989, pp. 335-348.

[10] . Schwarz, T.J.E. and Burkhard, W.A. “‘RAID Performance via Queueing Network Analysis,” International
Conference on Distributed Computation Systems, submitted.

[11] Schlicting, R. and F.B. Schneider, *‘Fail-stop processors: An approach to designing fault-tolerant computing
systems,”” ACM Transactions on Computer Systems, Volume 1, 1982, pp. 222-238.

(12] Shooman, M.L. Probabilistic Reliability, An Engineering Approach, Kreiger Publishing, 1990.

76 USENIX — Winter "92

Burkhard, Stojadinovié Storage-Efficient Reliable Files

Walter A. Burkhard is Professor of Computer Science and Engineering at the University of California, San Diego.
His computer science and engineering interests include analysis of algorithms, databases, programming languages
and distributed computation. Currently he is studying disk array performance and organization. He is a member of
the Association for Computing Machinery and a senior member of The Institute for Electrical and Electronics
Engineers. He obtained the Ph.D. degree in Electrical Engineering and Computer Science from the University of
California, Berkeley and the B.S. in Engineering Science from The Pennsylvania State University.

Petar D. Stojadinovi¢ is a bio-medical engineer at the Veterans Administration Medical Center where he is
involved with ultrasound and radiology. He obtained the B.S. degree in Computer Engineering from the University
of California, San Diego.

15
— reconstruction 1
Dispersal to three sites
Reconstruction
1: primary and secondary site
2: pair of primary sites
10 —
— reconstruction 2
— dispersal
seconds
5
Flle size MB
T | 1 I
0.5 1.0 1.5 2.0

Figure 2. Response Times vs File Sizes

USENIX — Winter 92 77

Multimedia Mail From the Bottom Up
or
Teaching Dumb Mailers to Sing

Nathaniel S. Borenstein
Bellcore

Abstract

Multimedia mail systems have exhibited great potential, but the widespread use of
multimedia mail has so far been inhibited by the lack of interchange standards and
the heterogeneity of mail-reading software. This paper describes a new approach
that seeks to break the existing log-jam and make multimedia mail a practical reality.
The paper begins with a brief summary of the state of the art in multimedia mail
systems. It then outlines the new, "bottom-up" approach, and describes the
configuration mechanism that is central to its operation. Next, it describes a
prototype implementation and its deployment on top of over a dozen different mail-
reading programs at Bellcore and elsewhere. Finally, problems in the prototype
installation are discussed, along with future prospects for multimedia mail using this
approach. The paper ends by outlining a vision of a new and better "lowest common
denominator” for electronic mail.

The Promise of Multimedia Mail

Electronic mail (email) is a widely-used and much-appreciated technology. Ever
since the inception of electronic mail, there has been much discussion of its even
greater potential. For most people, email today is a text-only medium, in which
unformatted textual messages can be sent rapidly to even the most distant of
correspondents. In principle, the limitation to plain text is artificial. Email is
fundamentally capable of carrying richly formatted text, images, audio, video, and
indeed anything that can be encoded in a digital form. In practice, however, the vast
majority of the world's email users are still restricted to plain text, due to a lack of
interchange standards and a profusion of heterogeneous software for reading mail.
The relatively few users of advanced multimedia mail systems such as Andrew
[Borenstein, 1991a] and Diamond [Forsdick, 1984] can only interchange multimedia
mail with other users of the same software. An Andrew user and a Diamond user
cannot, for example, send mail with pictures to each other. The result is that no
multimedia mail technology has reached "critical mass" and made anything beyond
plain text a part of the standard email infrastructure for the masses.

The approach taken by most multimedia mail system to date can be characterized as a
"top-down" approach. The developers of such systems said to their potential users,
like prophets bearing revealed truth, "Behold! I give you multimedia mail. All you
need to do, in order to reap its blessings, is to change your mail reading program,
your mail sending program, your text editor, your drawing editor, and generally
everything about the way you work on a computer. And, by the way, all your
correspondents must do the same as well." When viewed in this way, it is perhaps
unsurprising that the world has not rushed headlong to embrace any of these
systems.

USENIX — Winter 92 79

Multimedia Mail From the Bottom ... Borenstein

The situation is best illustrated by considering the two different types of sites where
the Andrew Message System is in use. At some sites, including the Carnegic Mellon
University campus, where Andrew was developed, the use of Andrew is nearly
ubiquitous. (This was typically accomplished by administrative fiat.) Given this fact,
the sender of a message can rely on the ability of the recipients to see a multimedia
message in all its splendor. In such environments, a substantial portion of all mail
messages contain at least multi-font text, and mail containing images, hypertext
links, or other multimedia objects are not uncommon. At the other extreme,
however, are sites where a few individuals have elected to use Andrew. While such
individuals, like the users of any mail-reading software, may wax lyrical at times
about the virtues of Andrew, they rarely, in practice, make use of its multimedia
facilities, for the simple reason that their ability to send multimedia messages is
useless if the people they're sending them to can't read them. Somewhere between
these two situations, it seems, a community reaches critical mass with respect to the
use of multimedia facilities. Clearly the Internet community as a whole is nowhere
near reaching such critical mass, nor does it even seem to be moving in that
direction.

It is difficult to doubt that multimedia mail would be greatly appreciated if it were
widely available. The question, then, is how a transition can be effected from the
current text-only mail world to a world of multimedia mail. The top-down approach
that has been tried up to now shows little prospect of imminent widespread success.
Convincing users to change to a new mail-reading program is, at best, a difficult
proposition. It is made even more difficult by the fact that most users do not perceive
themselves as "needing" multimedia mail and are unlikely to see its value until after
they have already had it for a while.

The Bottom-Up Approach to Multimedia Mail

What is needed, then, is a way to introduce multimedia mail without traumatizing
users with an enormous transition, such as a transition to a new mail-reading
program. To put it starkly, what is really needed is to give the users of each existing
mail reading program a new version of that program that has been enhanced to
understand all the desirable kinds of multimedia mail.

When stated this way, the goal is nearly prohibitive.” The cross product of the
number of mail readers times the number of possible multimedia mail formats results
in an enormous number of combinations. Moreover, each time the set of mail
formats grows, each of the mail readers would need to be modified again. This is
clearly impractical. However, there is a simplifying bottom-up architecture that
makes the problem tractable once more.

. In the bottom-up architecture, each existing mail reader is modified once, and only
once. It is modified in a relatively simple way, without any knowledge about specific
multimedia mail formats. In this modification, the only thing that changes is that,
when the user asks to see a message, the mail reader first checks to see if the mail is
non-textual. In Internet mail, this means checking the "Content-type" header field.
The emerging standards for multimedia Internet mail [Borenstein and Freed, 1991]
use "Content-type" to specify a major type, such as image, audio, video, etc., and a
format-specific "subtype", such as pbm, u-law, mpeg, etc. Note that although
type/subtype terminology is used, there is no inheritance and only a single level of
subtyping.

80 USENIX — Winter 92

Borenstein Multimedia Mail From the Bottom

If the message contains non-textual data, then instead of simply showing the message
body to the user, the mail reader checks a configuration file that lists a series of
locally-recognized mail types, along with the locally-installed programs that can be
used to view mail of these types. Such a configuration file might specify, for
example, that mail with a content-type of "image/gif" can be displayed with the
"showpicture" program.

The key point here is that each mail reader is modified only once, and that all mail
readers are then able to obtain multimedia configuration information from a shared
configuration file. Once this is the case, the addition of new media types at a site
becomes a relatively straightforward matter: A binary program that can be used for
viewing the type is installed, and a single line is added to the configuration file.
Even if dozens of different mail readers are used at the site, their shared use of the
configuration file means that users of any of those mail readers can now view the
new type of mail.

In the prototype implementation, to be described below, the software situation is
simplified even further by the introduction of an intermediate program, called
"metamail”. This program encapsulates all knowledge of the configuration files
(called "mailcap" files in the prototype implementation), so that each mail reading
program need only be modified to call "metamail” in order to display non-text mail.
The resulting architecture is pictured graphically in Figure 1.

Whether a mail reader includes knowledge about configuration files directly, or
simply calls an external program like metamail, is not crucial. Some mail readers at a
given site might work one way, and some the other way. What is more crucial,
however, is that all the mail readers share a single configuration file mechanism, so
that all the mail readers at a given site can be extended to handle new mail types via a
common mechanism. Eventually, it is likely that users will gradually migrate to
integrated mailers that handle multiple media types quite seamlessly, but the
technique of modifying existing mail programs to be configurable for new media
types is, at a minimum, extremely useful as a transition strategy for making
multimedia mail widely available.

Mailcap Files: Encapsulating Multimedia Mail Configuration
Information

The mechanism by which configuration information is conveyed to mail-reading
programs (or to an intermediate program such as metamail) is the most critical part
of the bottom-up approach. In order to permit multimedia mail to flourish in a
heterogeneous environment, it is crucial that a wide range of mail reading programs
should be able to share such a configuration mechanism. If a site administrator had
to change a different configuration file, with a different syntax, for each mail reader
at a site, it is unlikely that multimedia mail would ever work very well at sites that
run a wide variety of mail reading programs.

However, if such a configuration mechanism is to be shared by all mail readers, it
must be designed very carefully in order to insure that it provides enough
information for a diverse range of mail-reading interfaces. The information that
must be provided is not obvious without considering a range of mail readers.

USENIX — Winter 92

soe

81

Multimedia Mail From the Bottom ... Borenstein

For example, a relatively "low-end" mail reader, such as the Berkeley Mail program,
never does anything more complicated than show text to the user. If the user sets an
appropriate option, such text may be filtered through a paging program, such as the
unix "more" program, in order to keep it from scrolling too quickly off the screen. If
the Mail program is configured to run an external program for some non-textual
mail type, it wants to be able to tell that program to use a paging program if it is
going to produce large quantities of output. However, it cannot simply assume that it
is safe to send the output from such a program to a pager, because the program might
instead want to interact with the user, conducting a dialog on the screen with which
a paging program would substantially interfere. This might suggest that whether or
not to run "more" or some other pager is a function of the external program, rather
than of the mail program. This, too, is an oversimplification. Consider a window-
oriented mail reader, such as XMH, Andrew Messages, Xmail, or MailTool. If an
external viewing program produces large quantities of output when called from one
of these programs, such output should not be passed through a pager, because it is
being inserted directly into a scrollable window on the screen. On the other hand, if
the external program needs to interact with the user on a terminal, a terminal
emulator window needs to be created. In short, the situation is more complicated

than it looks. The answer, in this particular case, seems to be that a pager is desirable
only if it is appropriate for both the mail reading program and the external viewing
program. The former information can be taken care of by the mail reading program
(or, in the prototype implementation, by a command-line option to the metamail
program), but the latter information must be encapsulated in the configuration file.

The mailcap format used in the prototype implementation was the result of
considerable trial and error, and the resolution of the kind of problems described
above. A full specification of this format has been submitted as an Internet Draft, in
order to promote a widely-shared format for the configuration file. Those interested
in implementing a bottom-up mail reader, compatible with the ones described here,
should consult the Internet Draft for a complete specification of the file format and
location. In this paper, we include only a partial description, to give the reader the
flavor of the configuration format.

Configuration information is derived from a set of "mailcap" files, the location of
which can be derived from a path given as the MAILCAPS environment variable, for
which a standard default definition is also specified. Each mailcap file consists of
comments (lines beginning with "#") and mailcap entries. Each mailcap entry
(typically one line, although they can be continued on subsequent lines) describes
how one particular type of multimedia mail can be handled. For example, consider
this mailcap entry:

IMAGE/pbm; xloadimage -quiet -geometry +1+1 %s; nsb

‘This specifies that if a message has a header field of "Content-type: IMAGE/pbm" (the
matching is case insensitive), then a file containing the body should be shown to the
user with the "xloadimage" command, with the options specified. The "nsb" is a
required field indicating the person who installed this mailcap entry locally. This
particular mailcap entry is minimal, in the sense that it only uses the three fields
that are required for each mailcap entry. However, additional fields are defined for
specifying additional information about the format. For example, a "needsterminal”
option specifies that a given application requires an interactive terminal, so that
before it is called from a window-based mail reader, a terminal emulation window
should be created:

82 USENIX — Winter 92

Borenstein Maultimedia Mail From the Bottom ...

Application/ATOMICMAIL; atomicmail %s; nsb ; needsterminal

Similarly, a "copiousoutput” option can be used to indicate that the application
produces output that might be most appropriately passed through a pager such as
"more”, depending on the windowing environment. Additional options can be used to
specify external mechanisms to print messages, or to compose new messages of this
type:

X-BE2; ezview %s; nsb; print=ezprint %s; compose = ez %s

The mailcap syntax is quite simple; the options relating to terminal characteristics
are the most complex part. The syntax is fully specified in [Borenstein, 1991b].

The Metamail Program

Given a well-defined mailcap file syntax, it is not too hard to modify any mail reading
program to handle non-text content types. It is simpler still, however, to modify
existing mail reading programs to simply pass non-text mail off to a separate
program entirely. This is the way the prototype implementation at Bellcore was
developed, with the resulting program known as "metamail."

The advantage of separating the mailcap-handling functions into a separate
program is that it simplifies the modifications to mail readers, and makes it easier to
develop such a system in the prototype phase, because it is simpler to change the one
program than to change all the mail readers each time a revision is called for. The
disadvantage is that it becomes necessary for mail readers to be able to convey
additional information about their situation to the metamail program.

In particular, mail readers need to be able to tell metamail whether or not it is
running on a terminal (the normal isatty() call is inadequate because some mailers
communicate with the window system via pseudoterminals), whether or not lengthy
output should be passed through a paging program, and so on. It is also useful for
mail readers to be able to tell metamail a few things about the format of mail
messages, such as whether they are in Internet format or consist of X.400-style
separate body and envelope information. (Metamail was designed to work with either
Internet or X.400 mail readers, although it has only been used with Intemet mail
readers so far.)

Finally, the metamail program also assumes responsibility for recognizing and
acting upon the "Content-Transfer-Encoding” header field, as described in
[Borenstein and Freed, 1991]. This field provides a standardized mechanism for
encoding 8-bit and binary data for transmission via 7-bit SMTP mail. (SMTP, the
Internet mail transport standard, does not permit binary files, or any files with long
lines or 8-bit characters, to pass unchanged through mail transport. The Content-
Transfer-Encoding allows such data to be passed cleanly through Internet mail.)
Metamail undoes any 7-bit encodings before passing the data to a handler program,
so that mailcap-based format handlers do not need to know anything such encodings.

Despite all these complications, metamail remains a very small program, little more
than one thousand lines of C code, over a quarter of which is devoted to handling
Content-Transfer-Encoding. Its overall simplicity comes from the fact that it is
really nothing more than a switch: it knows nothing of any particular multimedia
type, but only knows how to read configuration files and call an appropriate external

USENIX — Winter 92 83

Multimedia Mail From the Bottom ... Borenstein

viewer for a given type. (There are a few exceptions to this: in particular, there is
built-in support for the content-types of "text/plain" and "multipart," as defined in
[Borenstein and Freed, 1991]. However, even this built-in support can be overridden
by mailcap-specified handlers, if there is ever any reason to do so.

Also built-in to metamail is a rudimentary default behavior for unrecognized mail
types. For unrecognized types, metamail will offer to undo any 7-bit encoding and
write the resulting body or body part into an uncoded file, for further processing.
Although, in the absence of a proper mailcap entry, such further processing is not
automated, metamail at least provides the user with a version in which all traces of
mail transport -- notably the mail headers and any 7-bit transport encoding -- have
been completely removed.

The metamail program is publicly available, as explained in the note at the end of
this paper.

Deployment of the Prototype at Bellcore

The deployment of the prototype system at Bellcore has been completely successful in
one of its key goals: it has been accomplished with an absolute minimum of impact
on the existing user community, even in its earliest versions. The same cannot be
claimed of the deployment of the interpreters for specific content-types, as will be
mentioned later.

At Bellcore, modified versions of the following message-reading programs have been
installed in several separately-administered laboratories:

-- Berkeley Mail (four different versions)

-- Xmail (an X-based interface to Berkeley Mail)

-- Mailtool (a SunTools interface to Berkeley Mail)
-- Imail (an internal Bellcore mail reader)

-- PCS mail (another internal Bellcore mail reader)
-- MH (the Rand Message Handling System)

-- XMH (an X interface to MH)

-- Rmail (an Emacs mail-reading package)

-- VM (another Emacs mail-reading package)

-- Elm (a mail reading system from Hewlett Packard)
-- Msgs (the Berkeley simple bulletin board system)
-- Messages (the multimedia Andrew Message System)

-- CUI (dumb terminal interface to Andrew)

84 USENIX — Winter ‘92

Borenstein Multimedia Mail From the Bottom ...

-- VUI (smarter terminal interface to Andrew)

Nearly all of these provided interesting lessons in the difficulty of creating a shared
multimedia infrastructure. Berkeley Mail was hard to deal with simply because it
comes in so many variants, many of which have been hacked at by too many

different people over the years. The Xmail and Mailtool programs were particularly
interesting because they operate by talking to the Berkeley Mail program over a
pipe, so that when Mail calls metamail, the latter program doesn't even have a
terminal on which to ask a question, and needs to open a terminal emulator window if
a question is required. The Emacs interfaces proved challenging environments in
which to run terminal-oriented programs, though this eventually proved possible
using an Emacs package that allows Emacs to act as a transparent conduit between the
application and the terminal. The Andrew interfaces were interesting because they
already knew how to handle certain Content-type values, and had to be modified to
call metamail only for unrecognized content-types. The bottom line, however, is that
it proved reasonably straightforward to modify each of these diverse programs to
display multimedia mail through the common mechanism of metamail/mailcap. (In
particular, it generally took the author no more than a day per mail reading

program. Although I was of course quite familiar with the use of metamail, I was
usually entirely ignorant of the internal code of the mail readers I was modifying.
Thus it seems likely that others can make similar modifications with comparable ease,
especially by using the existing patches as a starting point.)

After the first few releases, which exhibited the usual bugs and glitches, the
metamail software quickly became entirely transparent to the normal mail user's
daily work with textual email. It provided an infrastructure, however, on top of
which people could begin to experiment with more interesting forms of mail. Very
quickly, for example, it became possible to send multipart mail, containing text,
pictures, and audio, between two users in remagkably different operating
environments. Such mail works smoothly, for example, between a user running
Berkeley Mail under the MGR window system and a user running Andrew Messages
under the X11 window system. Figure 2 shows a user of Berkeley Mail, one of the
simplest and most primitive of text-only mail readers, reading a mail message that
includes a picture. '

One apparent mistake in the initial deployment, however, is worth mentioning. In
the first release, metamail ran the external viewing program automatically for the
user when he tried to read the mail. That is, the user would say the equivalent of
"show me the next message" and the next thing he knew, he would see a message
such as

metamail: Executing the xloadimage command to show you a picture...

Perhaps predictably, many users found this extremely disconcerting, and were not
entirely comforted at being told that there was an option that would cause metamail
to ask for their permission before running such programs. The default was changed,
in a subsequent release, to always ask before running external programs unless the
user had set the customization option that suppressed such questions.

Now that the system is installed and working smoothly, it would seem obvious to ask
whether or not it is proving to be useful. That question, however, is premature. The
fact that everyone can now read multimedia mail does not mean that most people, as
yet, have any ability to send such mail. Tools to make composing such mail easy for
casual users are still under development. Already, however, a few non-text messages

USENIX — Winter 92 85

Multimedia Mail From the Bottom ... Borenstein

are being sent regularly. Andrew users at Bellcore now feel much more free to send
richly-formatted Andrew messages to anyone else in the lab, since metamail has
been configured to show Andrew messages no matter what mail reader is being used.
A simple script has made it easy for Sun SPARCstation users to send voice mail. A
modified version of Berkeley mail has been developed that makes it easy for users of
the MGR window system to mix text, audio, images, and annotated window snapshots
in their mail messages. And specialized applications that use computation as a media-
type [Borenstein, 1991c] have made it easy for users to compose mail-based surveys,
in which the reader of the mail is engaged in a question/answer dialog and the
answers are delivered automatically via mail. As such tools improve and become
more widely available, we will begin to see whether or not a truly heterogeneous
text-only mail environment can evolve gradually and naturally into a multimedia
mail environment.

It is also worth noting that the process of modifying the various mail-reading
interfaces, though the modifications are small and self-contained, is cumbersome and
error-prone. It is a process that is unlikely to be taken up with alacrity by every
system administrator in the world. This, however, is not really the idea. The hope,
rather, is that the people or organizations supporting each mail reader will take the
necessary steps to support a mailcap-based facility in future releases of their
software, thus freeing local administrators of the need to modify the distributed
versions of the mail-reading software.

Performance and Usability

It would be misleading to claim that metamail provides a permanent solution to the
problem of multimedia mail. Quite the contrary, mail readers that have been
modified to use metamail compare rather unfavorably to mail readers that have been
built with integrated multimedia mail 4n mind from the start. This was always the
author's expectation, and must be understood within the context of the transitional
role metamail is intended to play.

With integrated multimedia mail readers, such .as Andrew, Slate, Montage, Next mail,
and many others, multimedia mail messages appear naturally and as part of the
overall user interface. In Andrew, for example, the "message body" subwindow may
contain multifont text, images, and animations, all seamlessly integrated. @With a
metamail-modified mail reader, in contrast, such a message might cause several new
and essentially unrelated windows to be opened on the user's screen. This is
undeniably less efficient and more confusing than the integrated approach.

It is not, however, unusable. Performance is determined largely by the startup speed
of the format-handling programs. For example, it is relatively easy to use metamail
to automatically invoke a word processor on data in -a specific word processor format.
For word processors that start quickly, this is in fact a reasonable approach. Some
word processors, however, try to take care of a great deal of things at startup time, so
that later editing performance is improved. This approach is anathema to metamail,
and such word processors are quite unsatisfactory when used as mailcap-based mail
displaying programs. Because metamail must initiate a new process to view non-text
mail, the startup time of such processes is absolutely critical to the usability of the
system as a whole.

In the long run, it still seems reasonable to expect that most people will generally
prefer to use an integrated multimedia mail reading program than a text-oriented

-

86 USENIX — Winter 92

Borenstein Multimedia Mail From the Bottom ...

mail program that has been modified to use metamail. This, however, is the wrong
comparison to make. Experience with multimedia mail readers such as Andrew has
shown that it is often hard for individuals to see the benefits of switching to
multimedia mail. Especially at sites where multimedia mail remains unknown, there
is little incentive for individuals to change mail readers. Doing so inevitably
requires pain and effort, and as long as users only receive or expect to receive text
mail, there is little perceived benefit from the change. ’

Metamail serves largely to defer and delay the need to change mail reading software.
By giving people the ability to receive multimedia mail in their existing mail readers,
metamail makes it reasonable for pioneering individuals to start sending multimedia
mail more freely. If the users receive enough multimedia mail that they begin to
gripe about the klunkiness of the metamail approach, they then have the proper
incentive and understanding to consider switching to a more integrated multimedia
mail reader. Ultimately, most users will probably switch, but they can do so at a time
and pace of their own choosing, based in some measure on the frequency with which
they receive multimedia mail and the degree to which they find the non-integrated
approach undesirable.

The metamail approach thus should not be seen as competing with integrated systems
such as Andrew, Slate, Next, and the others, but rather as complementing them by
offering a transition path to a multimedia world. Integrated mail readers remain
more pleasant for receiving multimedia mail, and often provide the only path for
sending such mail. Metamail actually promotes the use of such systems by making
the multimedia mail they generate accessible to a larger number of users. Moreover,
even highly integrated systems can benefit from a hybrid strategy, using the
mailcap paradigm for unrecognized mail types. For example, the author has recently
modified the Andrew Message System so that it will provide well-integrated support
for the mail types it can recognize, but will read mailcap files and execute external
programs for new or unrecognized types of mail.

The Future of Email: Toward a New Lowest Common
Denominator

Advanced multimedia mail systems such as Andrew and Diamond have shown the
attractiveness and value of multimedia mail, but have for the most part failed to win
over enough users to establish their high-level capabilities as part of the standard
user's environment. More than most other computer applications, mail is inherently
limited by the lowest common denominator. Unless nearly everyone with whom a
user exchanges email is able to properly handle advanced email types, the user is
unlikely ever to try to compose such types.

The real goal, then, for those who would have email live up to its potential, is to
create a new and higher-functionality lowest common denominator. A configurable
bottom-up approach, such as the metamail/mailcap system described here, provides a
transition path from the current world of text-only email to a future in which the
level of the lowest common denominator has been raised. But what will that raised
level be?

It is unlikely, for example, that a new lowest common denominator could include full-
motion video any time soon. Relatively few users have machines that are capable of
displaying such data, and even fewer are connected by networks that can offer the
requisite bandwidth. A more reasonable target, it would seem, for a new lowest

USENIX — Winter 92

87

Multimedia Mail From the Bottom ... Borenstein

common denominator would be a set of functionality that is accessible to nearly all
users of modern computer system. As such a new lowest common denominator, I
would propose the following four media types, along with auxiliary types such as the
"multipart” type that allows these to be combined arbitrarily:

1. Text. This is obviously already a reality. It seems plausible, in addition, to
make a simple version of richly-formatted multifont text widely available, too.
If the definition is simple enough, it will be a simple matter for a single-font
terminal to remove the formatting information and show only the raw text.
Thus a relatively portable version of formatted text could also become part of
the lowest common denominator, if suitably standardized. Such a simple rich
text format is defined in [Borenstein and Freed, 1991) and proposed as a
standard facility for Internet mail. That document also proposes mechanisms
to permit international text (text in multiple character sets) as a standard
capability of Internet mail.

2. Image. A growing percentage of computer users already work on
computers with bitmap screens that are capable of displaying digital images.
Moreover, nearly all such users are within shouting distance of a FAX
machine. It is not unreasonable, then, to imagine that all computer users
would have the capability to receive images in the mail; those without the
necessary display technology should be able to specify the phone number of a
FAX machine to which the image can be delivered.

3. Audio. Similarly, more and more computer have audio capability, and users
of computers that lack this capability are rarely far from a telephone, and
could reasonably expect to have the audio portions of their messages delivered
to the nearest telephone.

4. Computation. Recent research by the author [Borenstein, 1991c] has shown
that it is possible to define a computer programming language that is both safe
enough and portable enough to be executed automatically when received via
insecure email. Such programs, if defined in a suitably portable language, can
run on any computer terminal in the world. Thus it is not unreasonable to
imagine computation, in a suitably standardized language, as part of the new
lowest common denominator, allowing users to send each other messages that
interact directly with the recipients and take actions based on that interaction.

Crucial to the evolution of a new lowest common denominator is clear, concise, and
implementable standards. A recent Internet memo [Borenstein and Freed, 1991]
defines an interoperable set of mechanisms and formats that are intended to evolve
into such standards, and that seek to define a new lowest common denominator for
electronic mail. The bottom-up approach described in this paper is wholly
compatible with these mechanisms, though it is not the only possible way to
implement them.

Acknowledgments

The development of metamail and mailcap was stimulated by an initial conversation
with Jonathan Rosenberg. Along the way, I've had immense amounts of help, from
more people than I can really recall. I'm particularly grateful to Steve Uhler for

picking up the ball and running with it, to Mike Bianchi for words of support at just
the right moment, and to Bob Kraut, Al Buzzard, and the many others at Bellcorée who

88 USENIX — Winter 92

Borenstein Multimedia Mail From the Bottom ...

have been extremely supportive and helpful in this work. Special thanks are due to
Laurence Brothers for his comments on an earlier draft of this paper.

References

[Borenstein, 1991a] Borenstein, Nathaniel S., and Chris A. Thyberg, "Power, Ease of
Use, and Cooperative Work in a Practical Multimedia Message System", International
Journal of Man-Machine Studies, April, 1991.

[Borenstein, 1991b] Borenstein, Nathaniel S., "A User Agent Configuration
Mechanism for Multimedia Mail Format Information", Internet Draft borenstein-
configmech-00, June, 1991.

[Borenstein, 1991c] Borenstein, Nathaniel S., "Secure and Portable Active Messaging:
A New Platform for Distributed Applications and Cooperative Work", in preparation.

[Borenstein and Freed, 1991] Borenstein, Nathaniel S., and Ned Freed, "Mechanisms
for Specifying and Describing the Format of Internet Message Bodies"”, Internet Draft
822ext-messagebodies-01, October, 1991 (should be available as an RFC by the
publication date of this article.)

[Forsdick, 1984] Forsdick, H.C., Thomas, R.H., Robertson, G. G., and Travers, V. M.,
"Initial Experience with Multimedia Documents in Diamond", Computer Message
Service, Proceedings IFIP 6.5 Working Conference, IFIP, 1984.

Biographical Information

Nathaniel S. Borenstein is a Member of Technical Staff in the Interpersonal
Communications Research group at Bellcore. His research interests include human-
computer interfaces in general, and electronic mail in particular. He is one of the
primary authors of the Andrew Message System, from Carnegie Mellon University,
where he received his Ph.D. in Computer Science in 1985. He is the author or co-
author of numerous technical articles, the new proposed Internet standard for
multimedia mail formats, a pending Bellcore patent on secure computational
electronic mail, and two books, including Programming As If People Mattered:
Friendly Programs, Software Engineering, and Other Noble Delusions, recently
published by Princeton University Press. He can be reached by email as
nsb@bellcore.com.

USENIX — Winter 92 89

Multimedia Mail From the Bottom ...

Figure 1 -- The Metamail "Bottom-Up" Architecture

B3D Mail

MH

v

Elm

V7

Nietameail

multipart
viewer

\

ewer

Andrew

Mail-Reader

ailcap
mailcap

Borenstein

ODA
viewer

RTF
viewer

Note: For efficiency, in the current implementation, the "multipart" functionality
has been incorporated directly into the metamail program, so the above diagram
shows its architectural role but does not reflect this one aspect of the program

structure.

90

USENIX — Winter ‘92

Borenstein Multimedia Mail From the Bottom ...

Figure 2 -- A Berkeley Mail User Reads a Piece of Multimedia
Mail

xtorn @)
4 nsb@thumper .bellcore.com Mon Jun 11 14:19 37/1557 A normel text messaege
5 nsb@thusper.bellcore.com Mon Jun 11 14:19 278/6765 My Picture
6 nsb@thumper.bellcore.com Mon Jun 11 14:19 586/22321 A Printable PostScrip

t me
7 nsb@thumper.bellcore.com Mon Jun 11 14:19 10/260 A SPARC sudio file me

8
8 nsb@thumper.bellcore.com Mon Jun 11 14:13 4809/303851 A SPARC sudio messag

9 nsb@thumper.bellcore.com Mon Jun 11 14:19 2474/189858 fAn xba for

10 nsb@thumper.bellcore.com Mon Jun 11 14:19 9/206 A ppas form
le re

| 11 nsb@thumper.bellcore.com Mon Jun 11 14:19 4277/264749 A ppa for
&9

{To: nsb

{This message i3 in “x-xba” format.

Do you want to view it using the “showpicture” comsand [y/nl] ? y
Executing: /u/nsb/bin/showpicture normal /tap/metamail.4099.928

i (You may interrupt or quit this progras to return to your mailer.)

| /tap/netanall .4093.928 is a 425x684 X11 bitmep file titled “reagan3”

0

groorbush neb 1 T metl -f Testisgs
00t CCoreonbuth nsb 2 X xtern ~fn 1224

nsd 3 I xtora -fn 10x20

0
grearbush neb 5 I “2°2xtern: Command not found,
| %l. Exit 1 “2*2tern —fn 10x20

ixtorn ~fon 10x20 &

Ht1) s

nsb 6 X cd witing/negicaal l/sem-talk
ma-talk 7 X xud -framo > reogan-fail.xwd

H

USENIX — Winter ‘92 o1

archie - An Electronic Directory Service for the Internet
Alan Emtage
MCcGill University, Montréal, Canada
Peter Deutsch
MCcGill University, Montréal, Canada

Abstract

The huge size and continued rapid growth of the Internet offers a particular challenge to systems design-
ers and service providers in this new environment. Before a user can effectively exploit any of the services offered
by the Internet community or access any information provided by such services, that user must be aware of both
the existence of the service and the host or hosts on which it is available. Adequately addressing this “resource dis-
covery problem” is a central challenge for both service providers and users wishing to capitalize on the possibili-
ties of the Internet. This paper describes archie, our attempt at an on-line resource directory service for an
internetworked environment.

The current implementation of archie automatically indexes and makes available all filenames stored at known
anonymous FTP sites. The filename information is updated automatically ensuring users access to authoritative
information. The system also makes available the names and descriptions of several thousand packages found on
the Internet.

1. What is archie?

The archie system is designed to automatically build, maintain and make available databases of informa-
tion to users of the Internet. The system was originally created to track the contents of anonymous FTP archive
sites, and now makes available to users the name and location of all files available at some 900 such sites across
the net.

The current implementation of archie makes available two databases. The first, the filenames or files database,
lists the names and locations of files at archive sites that provide anonymous FTP archive access. Altogether this
database currently makes available the names of approximately 1,500,000 files totalling some 92 Gigabytes of
information. Queries to this database can be issued, allowing the user to search for specific file names (using a vari-
ety of matching strategies), list specific site names or dump the contents of specific sites. Entries in the files data-
base are generated and updated automatically using the archie server system described in this paper. We claim that
the archie files database is “authoritative” in a strong sense. If an entry in the database claims that a file appears at

a particular site, it is because an entry corresponding to that file was actually obtained from that site the last time
that site listing was updated.

The second database, the package description or whatis database, contains the names and descriptions of approx-
imately 3,500 different software packages, documents and other information available on the Internet. These
entries are organized as simple keywords and associated short descriptions upon which users can perform case-
insensitive text string searches. These searches apply to both the keywords and the associated descriptions, so
users have no need to assume any knowledge of the database structure or its contents when seeking description
information. Entries in the whatis database usually correspond to files available through anonymous FTP, but this
does not always have to be the case. Entries are simple text strings and can be added or changed easily.

Currently the information for this database is not generated automatically, and is thus not authoritative in the same
sense as the files database. Rather, this information is gathered from secondary sources such as Usenet postings,
email submissions by authors, ezc. and entered into the database by hand. This is one of many areas in the archie

USENIX — Winter 92

93

archie - An Electronic Directory Emtage, Deutsch

system that would benefit from additional automation and work in this area is planned.

There are now nine archie servers on the Internet. Five servers provide general access to the entire Internet com-
munity. These are based in Canada, the U.S., Finland and Australia. Four additional servers are available to certain
communities where limited network bandwidth or other considerations force users to limit general network access.
These operate in Japan, New Zealand, Israel and Great Britain. Additional servers are also planned to improve
accessibility and allow specialized indexing services. For further details, refer to the section Future Work.

The archie system has been described as a “low-tech solution” to the problem of resource discovery and the
description is an accurate one. We have chosen to implement a basic information indexing system that monitors
resources using existing mechanisms (such as the convention of anonymous FTP archive sites). Access is provided
using standard Internet facilities, including telner(1) and email.

In operation, the archie service require no input from the managers of the tracked archive sites (although there are
steps that a site administrator can take to make our life easier which will be discussed later).We have also
attempted to provide universal access to the system. Currently, users can connect to an archie server through tel-
net(1), send requests via electronic mail, or through stand-alone clients using a Prospero file system interface.
There are no restrictions on who can use the system, and there is no charge for the service.

Throughout the design and development of archie the system has been made available to vsers, and their feedback
and comments were invaluable in shaping the project. We have always worked under severe limitations on availa-
ble resources (the archie project is not yet funded by anything other than volunteer labour and equipment). In such
an environment user feedback has been a great help in determining direction for what little development time and
effort we have had available. '

We believe that the basic design elements of archie, minimizing our demands on archive site administrators, pro-
viding universal access through a variety of access methods and close cooperation with our user community to
shape future development, were all major contributors to the success of the pilot implementation.The archie sys-
tem is a project of limited scope, built and operated using a modest amount of resources. We believe that its suc-
cess demonstrates the feasibility of building such services in an incremental fashion using readily available tools.

2. Design Goals

In this section we present a brief overview of the general design goals that drove the archie project from
its inception.

* Provide rapid location of, and access to, information through proactive data gathering.

In essence, the archie system is a simple resource discovery service that helps users find things on the net.
In its most basic form, we have managed to address at least part of the resource discovery problem by incorporat-
ing knowledge about the network into a single “smart” tool, so that users can concentrate on functionality, not
mechanics. This simple model guides our work.

The basic architecture of the archie system was defined by the authors in early 1990, when one of us (Emtage) cre-
ated the first scripts to automate the fetching of site listings for anonymous FTP archive sites. This was followed
shortly after when the other (Deutsch) suggested that we add an interactive front end to allow users to access this
collection of data without a user code on the host system. This first front-end provided the capability of executing
a regex(3) search on the files directly.

The generalization of this basic system is an architecture that permits the archie system to gather information from
a variety of sources, collate and make this information available to users across the network. Although we have not
had the time or resources to develop this idea to track additional collections of information as quickly as we would
have hoped, we believe that it holds out great promise as a model for Internet service providers and it continues to
guide our on-going work.

* Provide universal access to all Internet users.

From the beginning it was decided to allow full access to all Internet users. This has presented us with
serious problems, since we have not yet been able to adequately address the problem of funding and support for
such a service, but fortunately to date we have been able to use the early and ongoing acceptance by users to per-
suade others to donate equipment, time or network connectivity. It is hoped that in the long run suitable funding
can be obtained to allow us to continue to satisfy this goal as the system continues to grow in popularity.

Y] USENIX — Winter 92

Emtage, Deutsch archie - An Electronic Directory

» We required a “simple” design, easy to implement and explain for first time users.

The basic goal of the initial system, as implemented and deployed, was to become a simple network serv-
ice provider. Ideally, someone would be able to use our system to locate and access information without having a
great deal of computing or networking knowledge, much as they can use a telephone without knowledge of elec-
tricity or switching technology.

We believe that this simple model has contributed to the success of archie, and thus our ability to continue to find
volunteers and other resources. More complex systems offer the promise of greater functionality, but the archie
system has now been deployed and used by network users for over a year and a half and it continues to grow in
popularity. We believe that there is some merit in its simplicity.

* Minimize operational dependence upon others.

The number of sites tracked and the volunteer nature of many of those sites has made it impractical for us
to require any interactions with anonymous FTP site administrators to ensure that the system would work. We have
often explained this by saying that if we must require the cooperation of 900 volunteers spread across the Internet
to make something happen then the system would be doomed. We simply did not have the resources to coordinate
and communicate with that many people.

By using existing networking tools and mechanisms for obtaining our raw listings and gathering the names of
additional archive sites from ordinary users and other volunteers we were able to start providing a useful service
right from the beginning, with little interaction with site administrators. Although the level of interaction with
some sites has grown (many sites now provide an “Is-IR” file that we can use, initially only a fraction did) we are
still able to provide complete coverage of a site with little more than an email message informing us of its exist-
ence.

 Low access “entry cost” for users.

Most sites that are directly connected to the Internet offer relner(1) capability. The great majority of the
remainder can send and receive electronic mail. With these two basic mechanisms we were able to satisfy our twin
goals of universal accessibility and low entry cost.

This does not rule out the use of better front-ends as they became available, but we have undertaken to always pro-
vide some basic measure of telnet and email connectivity, since we believe that this is of benefit to the greatest
number of users.

* Low development cost.

The archie system was built as a part-time project on borrowed equipment using only student and other
volunteer labour. The limitations and directions this imposed are reflected in many of the design decisions we have
made. The various components of the archie system were all built using standard UNIX tools, and successively
refined and improved as we gained operational experience. This feedback during the development phase proved
invaluable in allocating scarce development resources to features and changes that would provide maximum bene-
fit to our user community.

Elegant, but time consuming solutions were always passed over for expedient ones on the understanding that we
needed to minimize programming and design effort. This has in many cases resulted in “computational expensive”
solutions, where we use brute force and overnight machine cycles to compensate for non-optimal algorithms. We
offer no apologies for this approach, although we do hope to one day have the opportunity to re-implement some of

these decisions with fewer constraints. Even if we cannot, we have a usable service, available today. We take pride
in that.

* Don’t be afraid to spend cycles.
In a number of cases, we have elected to use runtime resources to replace scarce development resources.

At the same time, we were conscious of the need to preserve network bandwidth: Montréal has a relatively low-
speed link to the Internet backbone and the current site updating algorithm and other operating practices ensure
that the archie server is actually a fairly benign network resident. The biggest problems have related to the sheer
volume of query traffic generated by our users. Additional servers have helped address this concern.

USENIX — Winter 92

95

archie - An Electronic Directory Emtage, Deutsch

Site Descriptions Database Database
scsulc.odusy: Gathering
a.gp.cacmu.edyiiinns -R:
a.nl.cscmu.oduiimuno -R: Component
o,p:,e&::mtmun!:] D G C)
e ujumachasl ae| Retrieval (
socuvax.nwa.odusiy:
scd.ucer.eduiinino ANOTYMOKS:
acf4.sry.odvizncn't connect
scfB.nyu.oduz:inino enonymous:
scfchisterny.cdu::ninon unix:

P Raw Listing Files
[
pr-wrarn 3 oot whee! S13 Nov # LH9O bl pla bl
: 'I;'.:Ii:l.'.‘.".'.’i?." viohu R e
Anonymous FTP host ialURTIPOWI S
z‘: oot wheel 37 Nov 9 £990 gronp ol "y
(: ! :) o
"——_> Anon FTP ::::-n-; 2116 4remon 302 M) 29 9220 Ume .37 time |7:37 time
—— Fronien
c—— Foteaes 118613 101330 Sep 14 1037
= LineCProgrammenithqu
= Dl:-l.-l‘l: l'lt 13570879 3¢p 14 3437 Lime- Lime. Lime.
= 1, 2 2 I‘Illll“la" Sep 14 1457 Lime- Lime. Lime:
Database
Maintenance
Component
(DMOC)
Archie Database Files User
Access
' Component
e -
(UAC)
telnet server email server Prospero server

Prospero
Clients

——— r—
The Archie System Components

96 USENIX — Winter ‘92

Emtage, Deutsch archie - An Electronic Directory

3. Related Work

There have been a number of different information discovery and delivery paradigms developed. The
Domain Name System [1] was designed primarily to perform translation from fully qualified domain names to IP
addresses, DNS is also used to distribute information about host hardware, operating systems configurations and
electronic mail exchanger addresses, among other uses.

The Domain Name System has been an operational success. Figures released by SRI show over 530,000 host-
names registered with DNS as of October, 1991 and this number grew by 40 percent in the period from June to
October of that year [2].

Despite its success, there are problems with DNS. Maintenance of the system is distributed, with the required
information entered into flat text files (usually by hand) at the site of each authoritative subdomain server. This can
lead to inconsistencies and errors in the database that can only be corrected through human intervention. There is
no internal consistency checking of this information by the system itself (for example, to verify that registered
hosts actually exist on the net).

Another problem can arise during operation. If the authoritative server for a particular subdomain becomes
unreachable then users will find that they cannot perform hostname to address conversion. In this case, users can
find themselves unable to access a host, even though that particular host is available. The problem can be alleviated
by the used of suitably chosen replicating servers (or by using the IP address itself, where it is known) but the con-
figuration and operation of these replicated servers is not automatic and is again prone to human error.

Despite these drawbacks, DNS illustrates the feasibility of large network-based database server applications in an
Internet environment.

Distributed file systems such as NFS [3] and Prospero [4] allow site administrators to distribute file systems across
multiple hosts in a network environment.

Among other features, the Prospero file system (actually one component of the larger Prospero virtual computing
environment now under development) provides the capability of creating customized views of available files
through user specified links. Such a customized view can then, in turn, be exported and accessed by others.

This configuration information is itself a form of “value added” processing of the file system information over and
above the contents of the individual files themselves. This ability to create and share such customized views holds
great promise for reducing the indexing information needed for any one user of the system.

Public domain implementations of both client and server programs are available for Prospero and a number of sites
are providing data through Prospero servers. Clients exist for a number of environments. For further information
on the Prospero system, you can send email to info-prospero-request@isi.edu.

Internet white pages directory services [5] are intended to provide the on-line equivalent of a white pages phone
book. Such services are intended to provide users with access to user login names, email addresses and other con-
tact information. A White Pages Directory Service project based upon the X.500 protocol is described in [6].

Although the X.500 system provides a model for a hierarchical directory service, there are currently some prob-
lems with serving dynamically changing data, such as represented by the contents of archive sites, Usenet news-
groups, etc. An interesting project would be to wed an X.500 server with an automatically updated database system
such as archie. Although we do not have time for this in the short term, we are studying the idea for the future.

Work on the X.500 project is carried out through a number of fora, including the Internet Engineering Task Force,
ISO standards committees and the U.S. government GOSIP program.

The Wide Area Information System (WAIS) is an example of a network-based document indexing system that has
proved useful for accessing large collections of textual data [7]. This system, based upon the ANSI Z39.50 proto-
col standard, provides an indexing and search mechanism that allows the user to rapidly perform keyword searches
on documents that can be tens or hundreds of megabytes in size. The WAIS system can locate the desired key-
words and then return the appropriate portion of the document to the user’s machine.

Public domain implementations of both client and server programs are available and they exist for a number of
environments. A number of sites are now providing data to the Internet through WAIS servers.

The WorldWideWeb system [8] extends the model of document servers to include the use of hypertext links in a
network of document servers. Again, publicly available implementations exist.

USENIX — Winter 92 97

archie - An Electronic Directory Emtage, Deutsch

Mike Schwartz of the Univerisity of Colorado at Boulder heads the Internet Research Task Force working group
on resource discovery. This group is chartered to investigate research problems in this area and has been working
with the authors to this end.

3.1. The role of archie in an Internet Publishing System

When we began work on the archie system there were no similar directory indexing services on the Inter-
net with which to compare our work. We have therefore spent a certain amount of time seeking to articulate the
role of the archie paradigm in an Internet information delivery architecture, contrasting it with such services as
WAIS, Prospero, or the X.500 white pages directory service.

The basic paradigm for archie, as we now define it, is that of a “cycle server”, in which the user can make requests
to have searches performed on their behalf. This functionality is available in such systems as WAIS or X.500 (or
even DNS), but the distinguishing feature of archie is that the databases to be searched are themselves culled from
a huge range of sources (which can remain hidden from the user) and the information is updated automatically, so
users can have a high degree of confidence in the authority of the information served.

We assign to the archie system the role of “magazine publisher” in an Internet publishing environment.The role of
a magazine publisher is to cull, sort, edit and organize information in a specific domain for some intended audi-
ence, removing inappropriate material while preserving suitable subject matter, formatting it and presenting it in a
useful manner to the readership.

This role as an active editing and processing agent for readers is exactly the role we seek for archie, and it perhaps
mostly closely resembles the user configured file views of the Prospero system. In the case of archie, this editing
function has to a certain degree been automated, which frees users from a great deal of the resource discovery
problem, allowing them to concentrate on content, not mechanisms.

We believe that the marriage of such services as Prospero, WAIS, X.500 and archie offers the possibility of signif-
icant advance in network based information services. Identifying the role and strengths of the various components
remains an interesting research topic.

4. Architectural Overview

The archie system offers the user a simple model for building, maintaining and accessing a set of infor-
mation databases in an Internet environment (see Fig. 1). The entire system currently consists of only three major
subsystems, including the Data Gathering Component (DGC), the Database Maintenance Component (DMC) and
the User Access Component (UAC).

Currently, the DGC and DMC are used only to maintain the files database. The whatis database is maintained
entirely by hand, although both are accessed through the same UAC channels. As mentioned previously, this is
regarded as a serious shortcoming and will be changed in a coming release.

4.1. Data Gathering Component

The DGC is a fairly simple subsystem, consisting of standard UNIX shell scripts that are executed every
24 hours using the UNIX cron(1) facility. These scripts are used to connect to each monitored site, in turn, to fetch
a recursive listing of the site’s contents. This information is written to a “raw site listing” file on the archie server
host, one for each site tracked.

Any number of strategies could be used to control the frequency of site updates. On the prototype archie server in
Montréal we use a simple round-robin algorithm, cycling through the entire list of sites about once a month. This
scheme was chosen for its simplicity and to assure site administrators and network powers-that-be that the archie
system would not constitute an unwarranted drain on their resources.

Unfortunately, this simple updating strategy also means that some site information in the files database will be as
much as 30 days out of date. Fortunately, few sites actually undergo radical change from month to month,and since
a 30 day update cycle corresponds to 15 day average latency for the database as a whole, this has proved accepta-
ble in practice.

Other archie servers use more complicated updating schemes. As an example, the Australian archie (archie.au)
server operated by AARnet currently cycles through all Australian archive sites every night, but tracks overseas
sites by mirroring them synchronously from Montréal. This reduces the load somewhat on the heavily used trans-

98 USENIX — Winter 92

Emtage, Deutsch archie - An Electronic Directory

Pacific link yet assures timely tracking of changes to those sites most visited by their users. The Australians also
mirror a number of the most popular archived files onto a local archive to reduce the need for trans-oceanic access.

Since the archie site updating algorithm is implemented using a simple shell script and the cron(1) utility, changing
the scheduling algorithm or frequency of updates is a relatively straightforward procedure, and we have seen a
variety of techniques in this area among the archie site administrators. Balancing the need for accuracy and cur-
rency in the databases, the cost of gathering data and the cost of performing database site updates is currently done
using empirical estimates and our previous experience with the system. We believe it is an area that would benefit
from further study in the coming months.

Now that there are multiple archie sites, we will also have to begin addressing the issue of maintaining consistency
between archie servers, with the twin goals of ensuring accuracy of the multiple databases and minimizing net-
work bandwidth. We are currently working with individual archie site administrators to investigate mirroring and
update strategies. Work in this area is expected to continue.

4.1.1. The site listings files

The recursive site listing is normally performed during the fetch operation by the UNIX fip(1) client
(using the “dir -R” command), but in many cases the site administrator has prepared a preprocessed listing in
advance. Where such an “Is-IR” file is available and viable we will take this file rather than performing the listing
ourselves. The result is a set of “raw listings files” that are then made available to the DMC for processing and
insertion into the database. They are also available from the archie server via anonymous FTP. Although their
worth to users is somewhat questionable, they are thus available for copying by other archive sites.

In many cases the “Is-IR” file is unusable, in other cases the file is corrupt and requires additional processing before
it can be made usable. Site listings are often not rooted in the FTP home directory and many files contain errors
generated by the Is(1) or “dir” command. We also encounter cases where the file has been edited by hand and the
resulting information is inconsistent.

4.1.2. The Site Descriptions Database

Operation of the DGC is controlled through a Site Descriptions Database (SDD) that lists each anony-
mous FTP site that we have discovered, along with additional information such as the operating system in use at
that site, whether a site is capable of providing a usable “Is-IR” file, commands to issue to the fip(1) session during
the fetch and whether we are currently tracking that site.

Currently the SDD is maintained entirely by hand. This is one of a number of pieces of archie that would benefit
considerably from automation as time and resources permit. We also plan to make such site information available
as an additional archie database in a future release. This would include a description of the site, access and storage
policies, etc. Users would be able to search these entries in a manner similar to the whatis database entries.

4.1.3. Discovering New Sites

As there is still no generalized resource discovery or registration mechanism on the Internet we continue
to rely on site administrators or users to report new sites to us. This has become easier as we have become better
known, and we currently are aware of some 1,200 anonymous FTP sites on the Internet, although due to difficulties
in obtaining usable site listings we currently actively track only about 900 of these.

There are several problems we face in obtaining usable site listings from the DGC. The operating system used at
many sites do not allow the automatic generation of recursive site listings. For other sites (notably VMS-based sys-
tems) such a listing can be obtained but the format is different from that produced by the UNIX Is(/) command and
our current parser cannot handle these differences.

Although we still lack a suitable parser to convert raw site listings for any system except UNIX into a format suit-
able for the DMC, a parser for VMS has now been written and remains to be tested and installed in the prototype
system. It is our hope that such parsers will enter service with the next release of the archie system. This will allow
us to expand coverage to over 100 known non-UNIX archive sites for which we have entries in the Site Descrip-
tions database, but lack only a suitable parser. For other sites, we will need some way to substitute for the lack of a
recursive listing mechanism and do not anticipate covering such sites in the near future.

The DGC uses proactive data gathering to ensure the internal accuracy and consistency of the archie files database.

USENIX — Winter 92

99

archie - An Electronic Directory Emtage, Deutsch

By automating the data gathering step, we provide the database maintenance component with information that has

been verified to be accurate and in a suitable format. By periodically repeating this data gathering step we ensure
database accuracy over time.

4.2. Database Maintenance component

The DMC is responsible for verifying the consistency of the raw site listings files and converting them
into a format suitable for entry into the files database. This is currently done by three programs, each operating on
one site at a time (see Fig. 2).

The first program is the Site Listings Filter (SLF), which removes erroneous information (such as error messages
generated by the Is(1) command) from a raw site listing. The clean site listing is then passed to the Verify And
Enter Program (VAEP). The VAEP parses the clean listing file, rebuilding the directory hierarchy of the site in
memory to verify the listing’s consistency.

[z
pir-x2.x0-n 3 rost whee 313 Now § 1996 bin.

Jr-c7-x2-x 2 re0t wheel $L2 Nov # 1990 cxc

Site listings en‘::;igoz;:m
hken § el wheel $T344 Nov § 1990 —
filter (SLF) » (VAEP)

re reovebest 3T Hevs 930 e files database

[€=+ st whee 34 Nov 9 1990 pourwé

otel |

Figure 2: Database Maintenance Component

Once the directory structure is verified to be correct, the VAEP scans the tree, inserting the information into the
archie files database. If the verification step fails, the update aborts and the operator is notified.

There is no attempt made to allow partial insertions or updates to a site listing. Given the dedicated format used for
the files database and the problems that would have been encountered in maintaining consistency while processing
updates on an active database, it was decided that writing and debugging the needed code was not worth the effort.
Instead, a site’s entries are all deleted using a separate delete program before running the VAEP for that site. Any
entries that remain unchanged are simply re-inserted.

Although this approach makes the VAEP (and thus site updates) computationally expensive to perform, it also
makes implementation easier and allowed us to get the new system up and running that much faster.

As with many other parts of archie, the lack of resources (especially time for development) was a major factor
influencing our design decisions. In this case we have traded runtime resources needed to perform deletion and re-
insertion for ease of implementation and maintenance. In practice, it is a decision that only archie site administra-
tors have regretted.

A new database format has been designed for the next version of archie and these design decisions are being re-
examined.

4.3. User Access component

The UAC allows individual Internet users to access and query the various archie databases using a
number of access methods or channels. These include telnet(1), electronic mail, or through the Prospero File Sys-
tem protocol. Work is also underway by others to make the archie databases available directly through the WAIS
and WWW systems. Collaboration with other projects is welcomed.

4.3.1. Telnet Command Interpreter
The first user interface channel to the archie databases was provided by a simple command line inter-

100 USENIX — Winter ‘92

Emtage, Deutsch archie - An Electronic Directory

preter, a version of which runs on each archie server. Access to this Telnet Command Interpreter (TCI) is through
the relnet(1) command, which is assumed to be available on most Internet connected sites.

The original TCI was nothing more than a simple C program that allowed users to specify arguments to the UNIX
regex(3) command that in turn was used to search through the raw listings files. This version of the TCI was very
slow and no more than 20 simultaneous logins could be attempted before the system (at that point a Sun 4/280)
was overloaded.

Once the decision was made to continue with development of the archie project, this version was replaced by a
more functional version of the TCI written in C and using the dedicated files database format. This version was
first brought into service in December, 1990 and continues in service (with updates and improvements) to the
present.

The TCI provides the full functionality of the archie system using a simple (and relatively primitive) interface.
Users can specify searches in either of the available databases or access information about each site. There is also
access to an email interface to have either search results or the archie manual page sent back via email. Users can
also access on-line help, list available archie servers or manipulate a number of variables that are used to control
operation.

In operation, the TCI has proved to be a serious resource drain under high load. Each archie telnet session requires
a copy of the command interpreter to be launched, and each instantiation requires a large number of open files to
access the various components of the databases, along with significant amounts of other machine resources (such
as core memory, swap space, efc.).

Each instantiation of the TCI accesses the single copy of the archie files database. This database is large (currently
over 110 Megabytes) and the current version of the access routines maps the appropriate files into memory using
the SunOS mmap(2) call to improve performance (a corresponding functionality is used in the latest servers, which
operate on the IBM RS-6000 class machines). This allows reasonable response time but, an archie server will ben-
efit from all the RAM its owners can provide.

As the popularity of archie has grew, it was not uncommon to see over 40 simultaneous telnet sessions, at which
point the server would become almost unusable.

To address these problems, a limit has been placed on the number of simultaneous archie login sessions at the pilot
Montréal server. This was done after a client-server access model became available with the arrival of the Prospero
user interface (see below). Since this was done total system throughput (as measured in the number of file database
searches per day) has gone up, since the Prospero interface is far less resource intensive.

There are plans to rewrite the TCI so that it uses a client-server access model. The idea is to the have the current
TCI generate queries and send them to the Prospero interface using the UDP-based Prospero protocol. This would
address the problem of machine resources (only one set of open database file pointers would needed within the
Prospero interface, for example). It would also allow the relnet(1) interface to access other resource providers
(such as an archie WAIS interface) as they are developed.

4.3.2. The Email Interface Server

Historically, the Email Interface Server (EIS) was the second developed. Users can send in queries to the
archie databases via email to the EIS, which performs the specified search and returns the results in an email mes-

sage back to the user. The EIS is based in concept upon the KISS mail server package, available from a number of
archive sites.

Functionality of the email interface has always lagged behind that of the TCI. For example, the email interface
does not currently support the ability (present in the TCI) to set variables to control system operation. Rationaliz-
ing the various user interface channels to permit a consistent view and full functionality through all mechanisms is
yet another item that we have appended to the list of things to be addressed as time permits.

Although the archie system itself is not capable of performing an anonymous FTP transfer for users of the email
interface, there is a system operated by Digital Equipment Corporation that will perform such fetches via email.
Details on both the archie email interface and the DEC email anonymous FTP services can be obtained by sending
an email message to archie@archie.mcgill.ca with the word “help” in either the subject or message body.

USENIX — Winter 92 101

archie - An Electronic Directory

102

Emtage, Deutsch

Total number of sites known

Total number of sites indexed

Total number of files referenced

Total number of unique filenames

Total size of referenced files

Average file size

Average number files/site
Average archive size

archie database size

1025

886

1,502,976

686,104
91,897,324,072 bytes
61143.6 bytes

1696.4

103,721,585 bytes
120,030,000 bytes

Table 1: archie.mcgill.ca statistics (as of Oct 30, 1991)

Austria
Australia
Belgium
Brazil
Canada
Chile
Columbia
Costa Rica

Cyprus

Denmark
Ecuador
Egypt
Estonia
Finland

France

Czechoslovakia

Germany Peru

Greece Poland
HongKong Portugal
Hungary Saudi Arabia
Iceland Singapore
India South Africa
Ireland Soviet Union
Israel Spain

Italy Sweden
Japan Switzerland
Korea Tiawan
Malaysia Turkey
Mexico United Kingdom
Netherlands United States
New Zealand Yugoslavia
Norway

Table 2: Countries which have accessed archie

USENIX — Winter ‘92

Emtage, Deutsch ‘ archie - An Electronic Directory

4.3.3. The Prospero Interface Server

In early June, 1991 we entered into a successful collaboration with Clifford Neuman of ISI, when he
ported his Prospero file server to the archie system, giving us the archie Prospero Interface Server (PIS).

The PIS allows users of the Prospero system to access the archie files and whatis databases through the Prospero
server without the need to log onto the archie server directly.

The Prospero system uses a UDP-based protocol that is far less resource intensive than the telner(1) client. The
server architecture also allows the use of sophisticated scheduling algorithms for selecting queries to be performed.
This is useful because the different types of available searches have widely varying impacts on system perform-
ance. For example, exact match searches can be performed in O(1) time, while full regular expression matches take
approximately O(n), where n is the number of unique strings in the database (there is also some dependency on the
length of the strings). In operation, the PIS query scheduler will give preference to exact match requests to maxi-
mize throughput.

The PIS also caches some of the most common queries. Such queries can be satisfied in O(1) time, further improv-

ing response time. The use of the PIS also requires only a single set of system resources, such as open file pointers,
etc.

The existence of the Prospero archie server has spurred the development of a number of stand-alone archie client
programs based upon the Prospero protocol. These now include a command line version (one that runs on the
user’s machine, not the archie server), an X version, as well as others. These programs are now available to users
from a number of Internet archives, including the anonymous archive on archie.mcgill.ca itself.

4.4. Future Work on the User Interface

Neuman continues to work with us on improving the Prospero archie interface and we have elected to
standardize our current client-server efforts for accessing the files database via this method. Steps must still be
taken to extend the full functionality of the TCI interface to the Prospero server and this is planned.

The work on the Prospero interface has been followed by recent efforts by Brewster Kahle of Thinking Machines
Inc., who has been investigating the possibility of making the archie databases available through the WAIS system.
Initially, the information in the archie files database has simply been reformatted into a single huge text file and
then indexed using a WAIS server.

Although this does make the information available, it is very resource intensive and presents problems with updat-
ing (whenever the database is modified the index must be regenerated). Thus, each archie database update is poten-
tially a very CPU-intensive operation. Adequately addressing this problem is the subject of on-going research.

In the long term we would like to create a WAIS server for the archie system to permit a complete WAIS interface
to the databases. We also plan to add a number of additional databases and are investigating the possibility of using
WAIS as our search and retrieval engine for accessing them. Most of our planned offerings will take the form of
large textual databases, which make them ideal candidates for the WAIS system.

5. Implementation and Operational Issues

The archie service has now been in use on the Internet for over a year, with widespread availability since
December, 1990, Table 1 lists some basic information about the number of files and sites tracked by the archie
service (as of November, 1991).

The McGill University archie server has performed well over 1,200,000 searches to date (as of November, 1991)
and is currently receiving about 3,500 search queries per day. We have now received queries from at least 48 coun-
tries, including every continent except (perhaps) Antarctica (some of these countries are not directly connected to
the Internet and have so far generated queries only via email queries to the EIS).

There were a number implementation and operational issues that we have examined in the first year and a half of
work on the system. Some of these will be outlined here.

5.1. Instrumenting archie

We have only recently begun to investigate the kind of work to which people are putting the archie serv-
ice. Given the demands on our time in getting the initial service up and running, and the effort required to keep

USENIX — Winter 92 103

archie - An Electronic Directory

104

Weekly average number of interactive sessions

Emtage, Deutsch

1600

1400

1200

1000

N
\

800

600

400

/\/

200

N/”

0

4

i

Dec 1 Jan 1 Feb 1

Mar 1

Apr 1 May 1

Time

Jun 1

Jul 1

Aug 1

Sep 1

Graph 1: Interactive Sessions at archie.mcgill.ca (Jul 22 - Aug 3 1991 not available)

Weekly average number of email searches

400

o
—____‘>-0

200

150

100

50

S,

Jan 1 Feb 1l Mar 1 Apr 1 May 1 Jun 1 Jul 1 Aug 1l Sep 1 Oct 1 Nov 1

Graph 2: email searches performed at archie.mcgill.ca

Time

USENIX — Winter 92

Emtage, Deutsch archie - An Electronic Directory

ahead of the continually growing demand, we have had little time or thought to give to the question of designing
suitable instrumentation or even as to what would be suitable measurements to perform. We have now started to
address this.

We do have some basic connectivity information, Table 2 lists the countries we have identified from which users
have generated EIS queries. This is regarded as a minimum list, since it is sometimes difficult to identify the coun-
try of origin. There may also have been countries that have accessed archie only through the TIC, but unfortu-
nately because of the limited length of the associated field in the /etc/utmp file, felnetd(8) logging on the system
truncates long site names, causing us to lose needed identifying information.

Graph 1 shows the growth in the weekly average number of logins to the TIC over the period December, 1990 to.
August, 1991. We have determined that on average, each such login has generated an average of 1.6 files database
search queries per session.

We observe a flattening of growth in recent months on this graph which we believe is due primarily to the fact that
we have saturated the capability of the existing archie server (currently a borrowed Sun SPARC 1+, supplied cour-
tesy of the McGill School of Computer Science).

There have also been additional archie servers which have come on-line over this period. However, we continue to
receive roughly the same numbers of logins during the most recent survey period as we received prior to the com-
missioning of the latest server at SURAnet and thus feel confident that our primary problems are in the power of
our hardware, and not in a slackening in demand.

Although survey figures from the other archie servers have not been available to us, higher throughput than expe-
rienced on the Montréal server has already been observed on the newer SURAnet archie server, which runs on an
IBM RS/6000 model 530. Unfortunately, that server has not been in operation long enough to supply figures for a
meaningful period.

Graph 2 shows the growth in files database queries through the EIS. We note that the number of email queries con-
tinued to grow as the machine became more saturated. We attribute this to users turning to the EIS to run their
searches in the background as connectivity and response deteriorated under load. This demand peaked just before
the arrival of the SURAnet archie, and has since remained stable at about 300 email requests a day.

Note that the time scale for these two graphs is not identical. This is due to the fact that a number of log files for the
TIC were not preserved.

Unfortunately, we also do not have complete statistics for the Prospero interface, although the numbers we do have
show a current average of about 1,300 queries per day as of November, 1991, with a significant growth in this traf-
fic as the choice of Prospero client programs has grown. This was only to be expected. SURAnet staff report that
they are currently server over 5,000 Prospero queries per day at their site.

5.1.1. Other useful numbers we could be gathering

There are a number of things we could monitor using the existing system that might be of interest, espe-
cially to operators of archive sites or those concerned with implementing mirroring strategies to reduce link load.

These could include:

» What kinds of things are people looking for?

» What are they finding?

* Where are they finding it?

Information such as this could also be used to reduce the unnecessary storage of stale or out of date information.
5.2. Scalability problems and how we address them

There have been a number of concerns expressed about scalability problems in the context of distributed
Internet resource providers, and a lot of work has been done to implement distributed systems for such applications
(one notable example is DNS). We believe that archie has demonstrated the feasibility, and even desirability in cer-
tain applications, of “brute force” approaches that instead attempt the collation and serving of large databases.

This is not to say that we advocate using an archie-like server for an application such as DNS. At issue are the rel-
ative costs of gathering the data and satisfying user queries. In DNS the client may be required to make several

USENIX — Winter ‘92 105

archie - An Electronic Directory Emtage, Deutsch

queries in sequence to a number of distributed DNS servers to resolve a fully qualified domain name, but each

query is relatively inexpensive (a single packet per query and O(1) access for each query) and thus can be resolved
in a reasonable time.

In the case of an archive site indexing service, each query of an anonymous FTP site can be relatively expensive
(in both network traffic and search time) and the task of searching all suitable sites for a single query could easily
involve some 1,000 searches. In addition, there remains the unresolved resource discovery problem of locating all
those servers, given that we still lack a suitable Resource Name Service architecture for the Internet.

In this example, gathering and collating the information into a central site, optimizing the search and retrieval
functions and centralizing the site registration and maintenance functions appears to be the most suitable approach.
We have demonstrated that it is also feasible in practice.

We foresee no problems in increasing the number of sites and files tracked by archie by an order of magnitude,
assuming a more powerful server is available. Further, we anticipate that a measure of specialization and structur-
ing of multiple archie servers, plus the provision of a workable Resource Name Service, would allow us to handle
anticipated growth for the foreseeable future in this type of application.

5.3. Concurrency and Loading Issues with Multiple archie Servers

There are a number of unresolved issues involved in the operation of multiple archie servers in an
extended Internet environment. Ideally users of such a network would not have to be aware of the underlying net-
work topology (after all, few users of the telephone system know anything about the technology of cross-country
phone trunks). In practice, the existing Internet network topology still seriously affects operations such as archie,
bringing it to the attention of users.

As a simple example of this, the Montréal archie server is connected to the U.S. Internet T3 backbone via a single
112 Kb link to the United States. Although the archie maintenance traffic needed to perform the basic site listing
updates is fairly modest (on the order of a few Megabytes per day), we have been informed by CA*net operations
staff (the Canadian national network operators) that traffic to and from the archie server now makes up some 50
percent of all Montréal-bound Internet traffic.

This traffic is generated by other archie sites mirroring or copying our raw site listings files and by the huge vol-
ume of archie user traffic. This is a significant load on a circuit that is frequently saturated and raises concerns
about the survival of volunteer services such as ours.

Since the service generates no funding to pay for line upgrades, we are thus forced to consider mechanisms to
reduce traffic to the Montréal site. Schemes we are currently investigating include organizing an “updating topol-
ogy” that will involve transferring responsibility for the accurate gathering of site listings to other archie sites, then
having sites mirror off of these more favourably connected sites in the U.S. This does move responsibility for a pri-
mary part of the archie system away from its implementors and principal supporters, so this approach does cause
us some concern, but we continue to investigate the issue.

Another idea we are investigating is to perhaps implement some form of zone system, in which different archie
servers would be authoritative for different sites. Each archie would then mirror the raw files for which it is respon-
sible to the other archie servers, with multiple sites across a slow link (notably the multiple archies now in Europe
on the other side of a saturated link to North America) sharing a single mirror feed with a local explosion.

All of this discussion of organizing an extended archie service implies a level of design and operational support
that is perhaps impossible to realize in a volunteer service such as ours. From our initial attempts at finding support
we suspect that addressing such non-technical issues as funding and donation of resources will perhaps be more
difficult than designing and operating the service itself.

5.4. Archive Administrators’ Errors

The archie system allows us to come into contact with a large number of archive sites, and thus we have
been exposed to a number of operating practices that have caused problems, either for us or ordinary users of the
site.

Here’s a representative sample:

* File names with bizarre characters or strange names

106 USENIX — Winter 92

Emtage, Deutsch archie - An Electronic Directory

These range from the obvious, such as control characters, to the unbelievable such as those with embed-
ded newlines.

* The problems of entropy at volunteer archive sites.

A number of anonymous archive sites are run simply as a labour of love by local site administrators, and
when such administrators move on or succumb to the demands of their “real” work, their archives begin the slide
into disorder. “Is-IR” files become out of date or corrupted, the structure of the file hierarchy degenerates, with
locked directories, unresolvable links and other problems that make obtaining accurate site listings difficult or
impossible. We would encourage site administrators to not be too ambitious with their contents. If a popular pack-
age is already available at a number of other sites perhaps you can forgo storing it locally and devote that space to
information or other data unique to your site. Perhaps there will be more incentive to keep such information cur-
rent.

« Compatibility problems

This item could be subtitled “how to minimize the impact of 900 volunteer site administrators on a production
indexing system”. There is still no standard for naming directories and ordering the contents of an anonymous FTP
archive and this shows in the wide range of naming conventions and structures we observe on the Internet. The
authors have recently inaugurated the Internet Anonymous FTP Archives Working Group (IAFA-WG) under the
auspices of the Internet Engineering Task Force. One of the mandates of this group is to examine such issues, with
a goal of preparing a “Recommended Operating Procedures” document for site administrators. More details on this
working group are available by sending email to iafa-request@cc.mcgill.ca.

5.5. Users’ Errors

It is our understanding that the original purpose behind of the anonymous FTP convention was to allow
the public sharing of information among the Internet community without the need to grant generalized access to
the sharing site’s system.

Over time a number of users have elected to distribute private information via this mechanism, perhaps because it
is easy and the possibility of detection was remote. Thus private files are left for brief periods in anonymous FTP
directories for retrieval by others, even though the contents of such files is not intended for public consumption.

In the past this practice could be expected to be reasonably secure, since the very existence of the archive site was
often shrouded in mystery and there was little chance, short of continuously logging on to hundreds of sites, of
spotting such files as they transit a site.

We have now received documented evidence of a number of cases where users who have tried this practice are
now finding out that archie has exposed their files and information has leaked out to others. This is not to say that
such leaks did not occur before the arrival of archie (we also know of such cases in which archie was not
involved) but the number of such leaks does appear to have risen.

We harbour some concemns that archie could be used to abuse the use of anonymous FTP in this way, but we cur-
rently believe that at least in the cases of which we are aware, archie functions merely as a catalyst, allowing such
leaks to occur much more frequently, without actually being the cause of such leaks.

In the case of leaking private files in this manner, we feel that the basic error is in attempting to distribute private
information using public channels. We encourage users who engage in this practice to either consider the use of
password-protected FTP user codes or encryption of the distributed information to protect the contents of private
file from unwanted view. Of course, we will also remove any site from archie at the request of the site administra-
tors.

5.6. Problems with the Current Implementation

We conclude with a brief overview of the known problems and shortcomings we have identified with the
current implementation of archie. Some of these are addressed in the version 3.0 release of archie (tentatively
planned for the end of the first quarter, 1992, provided resources and time can be made available). Others are
addressed in the so-called “son of archie”, which is our architecture for a follow-on to the archie system that
addresses more completely the more basic issues of resource discovery and delivery, including the need to provide
the facility to document, index and search on meta-level description information.

USENIX — Winter 92 107

archie - An Electronic Directory Emtage, Deutsch

* File names not always good indicator of file contents.

Although when searching for a package it is usually enough to specify the name of the desired file, in
many cases users would like to search on a more loosely defined notion of information. At the same time, many
people still choose file names that do not accurately reflect the contents of the file. This leads us to the following
item.

* Additional description information is needed.

This is a generalization of the canonical archive site administrators’ problem, in which files are renamed,
version control information is unavailable or lost, and so on. The solution is to provide a generalized mechanism to
include descriptions and package information.

To address this, our follow-on architecture will have a method of including a brief description for each file at an
archive site into an archie database. This will allow users to search for a package description, also allowing them to
obtain information without having to copy the file to their site, possibly unpacking a set of files, ezc.

* whatis database not “authoritative”.

This must be addressed by automating the registration and updating of entries in the whatis database.
* No mechanism for automatically registering new sites.

The new system would include a Resource Name System, that permits automatic registration of new sites.
* Better interfaces needed

Some work in this area has already been done. There is now a reasonable X implementation of a Prospero
client, but there is definitely need for better information discovery and access clients for the Internet. Existing tools
all assume and require a significant knowledge of the Internet and this must be addressed as more naive computer
users come on-line.

* Incomplete functionality in the Prospero interface.

The PIS still lacks certain functionality found in the TCI. We plan to work with Clifford Neuman to add
this functionality to allow further expansion of the client-server model.

The TCI should also be rewritten to use the Prospero server as appropriate.
* Interface to large text databases needed (WAIS?)

This will be needed if we are to provide the multiple automatically updated databases that we would like
to see. WAIS is our prime target for this functionality, but other projects (such as WWW and even X.500) should
also be investigated with an eye to integrating the archie information into their world view, and perhaps offering
their functionality through an archie-like server.

* Maintaining consistency across multiple archies

As mentioned, there is work to be done to better ensure that all general purpose archies return similar
responses to the same query. The alternative is that users will use only a small subset of the available servers.

6. Future Work

Work has now begun through the IAFA-WG of the IETF to document a standard method for encoding
text description information at each archive site. Once this work is complete it is anticipated that the archie servers
will gather and index such information automatically, using an expanded selection of whatis-like databases. Such
databases could include at least basic archive site descriptions, archive access policies and annotated software
package descriptions. Additional automatically maintained databases are planned for such regularly changing sub-
ject categories as an annotated list of mailing lists, available on-line library catalogue systems, and Frequently
Asked Questions compilations from Usenet. It is our belief that basically any changing collection of popular data is
a candidate for inclusion in an archie-like indexed database.

In a certain sense, the archie system now acts as an unofficial registry of anonymous FTP sites, but we believe that
such a registry should not be left to the mercies of a volunteer service such as ours. Thus, a long term goal of the
archie group is to develop a “Resource Name Service” and see it deployed on the Internet. Such a service, analo-
gous to the Domain Name Service would permit automatic registration and location of Internet service providers
and would track not just archive sites, but archie servers, news servers, on-line library catalogues and any other

108 USENIX — Winter ‘92

Emtage, Deutsch archie - An Electronic Directory

useful services that can be accessed on the net.

Such a system, when deployed, will allow user software to automatically discover the existence such service pro-
viders and would thus open the way for the development of generalized information discovery tools that do not
require an intimate knowledge of the network to. One possible architecture for such a service is under development
as part of our archie follow-on work.

We would welcome contact from other groups working on information discovery or delivery tools. We would be
happy to provide assistance in porting servers to our service to allow the archie databases to be made available in
other environments.

7. Miscellaneous Information

The initial archie service was offered by the authors in cobperation with the McGill University School of
Computer Science. At the time this paper was prepared, archie servers were available from archie.mcgill.ca,
archie.funet.fi, archie.au, archie.sura.net and archie.ans.net. Additional servers are available to local users only
in New Zealand, Japan, Israel and Great Britain. Additional servers are coming on-line in the near future, so we
recommend that you use the servers command (available through either the relner(1) or email interfaces) to obtain
an up-to-date list of active servers.

Code to the archie system is not in the public domain, but we have made it available where appropriate, to further
the development of the archie system or to promote other research projects. Anyone who believes that their work
would benefit from access to the archie databases or other components of the system is invited to contact the
authors to discuss collaborative projects.

It should be noted that the name archie is not capitalized, and in no way is connected with the popular comic book
character or with any television personalities. It is, in fact, derived from the word archive.

8. Availability

Readers wishing to try the archie system, can telnet(1) to archie.mcgill.ca and login as user “’archie” (no
password required). Type ‘help’ for a full explanation of available commands. Additional documentation can be
retrieved via anonymous FTP from the same host in the archie/dec directory. archie client program sources are
available in archie/doc

9. Acknowledgments

The authors began the archie system while graduate students at the McGill University School of Compu-
ter Science. The system was conceived and designed by the authors and Bill Heelan of the School’s technical staff
and the system was implemented primarily by one of us (Emtage) and Heelan.We have continued to be able to
offer the service only through the coperative effort and support of a large number of individuals. It is important
that the role of these volunteers be acknowledged, for without them archie would surely have already collapsed
under the weight of its own success.

Our special thanks go to Bill Heelan, who is the third leg of the “archie group” and very involved in the day to day
operation of the Montréal archie server. If you send mail to the archie group, there’s a good chance that Bill will be
the person who answers. He has been instrumental in designing and implementing a number of components in the
current archie and continues to offer a guiding hand to the Montreal server. Thanks, Bill.

Mike Parker of the McGill Research Centre for Intelligent Machines donated a number of pieces of code, including
the email interface and a new string search algorithm that promises an order of magnitude improvement in search
times, if ever we get the time to merge it into the current system!

Clifford Neuman of ISI (designer of Prospero) was instrumental in bringing a true client-server model to archie.
He is entirely responsible for the Prospero server port and continues to maintain and expand its functionality.

Brewster Kahle of Thinking Machine Inc. (implementor of their public domain WAIS port) has been a valuable
source of information, especially in areas relating to the use of WAIS, Prospero and archie in an integrated infor-
mation discovery and delivery system.

The archie client authors (Brendan Kehoe, George Ferguson and Khun Yee Fung) have each made available free
clients for archie. Thanks, guys!

USENIX — Winter 92 109

archie - An Electronic Directory Emtage, Deutsch

The email interface server is based in part upon the KISS package, written by T. William Wells. The telnet(1)
interface help facility was borrowed from the GNUplot help facility written by Collin Kelley and Thomas Wil-
liams. Our thanks go out to the authors of such public domain software whose work has made our project easier.

John Granrose, Ed Vielmetti and Jerry Peek have all provided feedback, site information and encouragement, espe-
cially in the early days when we were first getting started.

Luc Boulianne, who replaced one of us (Deutsch) as Systems manager at the McGill School of Computer Science,
has allowed us to continue to offer an archie client from McGill even after the initial project was completed and
the authors moved on from the School. He also was a valued colleague at work during the period in which archie
was conceived and written,

R.P. C. Rodgers and Nelson H. F. Beebe both contributed portions of the archie manual page.

Resources to operate archie servers have been donated by several sites. We are grateful to the following for their
support:AARnet in Australia (Craig Warren and Peter Elford), FUnet in Finland (Petri Ojala), SURAnet (Brad
Passwaters and the rest of the gang), Advanced Network & Services (Ittai Hershman and Dennis Shiao), New Zea-
land (Jonathan Stone), Israel (Amos Shapira), Great Britain (Lee McLoughlin) and Japan (Nakamura Motonori).

Finally, we’d like to thank the many users who have sent in comments, bug reports and other feedback. Your input
has been instrumental in improving the system in many ways. Keep the comments coming to archie-group@ar-
chie.mcgill.ca. Rest assured, we read them all...

10. References

(1] Mockapetris, P., RFC 1034 Domain Names - Concepts and Facilities, November 1987

[2] SRI International, Internet Domain Survey, October, 1991.

[3] Sun Microsystems, RFC 1094 NFS: Network File System Protocol Specification. March, 1989.

[4] Neuman, Clifford, The Virtual System Model for Large Distributed Operating Systems, University of Wash-
ington, 1989.

(5] Sollins, Karen, RFC 1107, A Plan for Internet Directory Services (White Pages). June, 1989.
[6] Deutsch, Debra, An Introduction to the X.500 Series Network Directory Service. June, 1988.
[7] Kahle, Brewster, Wide Area Information Server Concepts, Thinking Machines Inc., November 1989

[8] Berners-Lee, T., Cailliau, R., Groff, J-F., Pellow, N., Pollermann, B., WorldWideWeb: An Information Infra-
structure for High Energy Physics, to appear 2" International Workshop for Software Engineering, Artificial Intel-
ligence and Expert Systems for High Energy Physics, L’ Agelonde, France. January 1992,

11. About the Authors

Alan Emtage recently completed his M.Sc. (Applied) at the School of Computer Science, McGill University. Peter
Deutsch is currently working to complete his M.Sc. thesis (entitled The Architecture for an Electronic Publishing
Service in a Networking Environment) at the same institution. The work presented in this paper was implemented
as part of their studies.

Both authors are now employed by the Computing Centre, McGill University, where in addition to their regular
duties, they continue to codrdinate the “archie group”, a collection of volunteers working to expand and improve
the archie project. '

Mailing address: c/o Computing Centre, McGill University, room 200 Burnside Hall, 805 Sherbrooke Street West,
Montréal, Québec, CANDA H3A 2K6

110 USENIX — Winter ‘92

. X* Widget Based Software Tools for UNIX**

Doug Blewett
Scott Anderson
Meg Kilduff
Susan Udovic
Mike Wish

AT&T Bell Laboratories
Murray Hill, New Jersey, 07974

Abstract

This paper describes a small language and IPC protocol that can be used for specifying UNIX
style, X Toolkit based, graphics software tools. The language is unusual in that it integrates the X
Toolkit widget world and the UNIX philosophy of creating applications from collections of small
reusable filters. Filters can be constructed from old Xt based graphics processes or specified
directly in the small language. The system is based on an easily reproducible macro interpreter
and IPC system that can be used with any collection of widgets. A multi-process application
builder constructed with the system is used as an example of how the software tools philosophy
can be effectively used to construct graphics applications. We present data on the use of the
system by both research organizations and development groups.

1. Introduction

We have taken a ‘‘software tools’’ approach to writing graphics applications. By this statement we want to
emphasize that we produce applications from collections of reusable processes. In implementing this approach we
were faced with two problems. First we had to actually write the reusable processes. It is well known that writing
graphics applications is a very labor intensive task. To get over this *‘startup hurdle’” we have created an executable
specification system that allows us to quickly produce X Toolkit (Xt)/widget[1,2] based applications. Unlike other
specification systems, ours does not limit applications to a subset of Xt functionality. Any program that can be
written using Xt and widget libraries can be specified with our system.

The second problem we faced in our graphics software tools environment was what to use as a common protocol for
controlling these collections of processes. Ideally a protocol should be terse, efficient, reliable, and extensible.
Adding “‘extensible’’ to the list usually breaks the other constraints. The protocol we have selected is that of a
macro interpreter modeled around the syntax of X resource files. Values stored in the per process resource database
and resource values in widgets can be manipulated as strings. As the protocol is embodied in a simple programming
language, expressions can be sent to be evaluated in the context of the remote graphics process. Similarly, functions
can be down loaded into a process to reduce the need for distributing large quantities of data.

Specification systems and protocols abound. What makes this specification system and this protocol somewhat
unique is that they are both based on the same simple language. We call the language Xtent. This common
language approach allows us to incrementally or interactively develop Xt applications as well as query and

* X Toolkit (Xt) and X Window System are trademarks of the Massachusetts Institute of Technology.
** UNIX is a trademark of USL.

USENIX — Winter 92 111

X Widget Based Software ... Blewett, Anderson, ...

arbitrarily modify the state of running applications. As the system is based on a distributed protocol, we only need
to port the interprocess communication library to provide application interfaces to other languages. With Lisp, for
example, we send Xtent specifications to the Xt processes and return Lisp. We do not have to rewrite the widget and
Xt libraries in Lisp. The language provided by Xtent seems to be a good mix of the declarative, specnﬁcatnon based
style and a traditional small programming language.

Xtent is a simple system that [N
takes advantage of the X resource |
manager and the huge body of X
Toolkit code and widgets. The X
resource manager is a simple, in
memory, name/value pair
database, that is wused for
specifying widget parameters.
Widgets are interface objects that
are built using the X Toolkit.
Widgets are controlled from
application programs via set and
get style, C based, messaging
interface. The combination of
simple database and object
system is a powerful one. Xtent
adds a thin layer to this that adds
distribution (IPC) and a simple Figure 1. Xtent based applications.

specification interpreter. The

syntax of Xitent specifications is based on that of X resources, which helps to integrate the system both
architecturally and in terms of acceptance by the X community.

In our research program, we have been creating applications using this technology for over two years. Applications
built around the software tools notions scale well to serious projects. We have just completed an application builder
and our system has been used by development groups around AT&T. We were most pleased with one large project
that moved to our technology when they releaized that they could not afford a lengthy development process. Their
original schedule called for 2 years and 75 people. Using our software tools techniques the project was delivered in
9 months with 20 full time people.

There are, of course, many other systems that have approached the same graphics application development
problems. And in the last year we have seen two new systems emerge that use techniques similar to ours. Tcl[3]
has struck out on its own, essentially ignoring the growing body of Xt source and Xt trained developers. Wcl[4] has
followed Xt, but has put an extra layer of interface on top of a “‘subset’ed’’ Xt library. UIL[5], the OSF user
interface language, allows applications to specify widgets and their parameters in a language somewhat like C++[6].
UIL is not a language per se. All semantic actions are coded in some other language, usually C. Worst of all, UIL,
in our opinion, continues the trend toward the construction of monolithic graphics applications.

In contrast to the other systems that have emerged, Xtent allows complete access to all of the features in Xt and
allows developers to freely choose between widgets and widget sets[7,8,9,10). The Xtent IPC mechanism allows
existing Xt based programs to be bundled (by adding two lines of C code) in with newly created Xtent scripts. The
Xtent IPC mechanism encourages reuse and allows developers to create small/modular reusable processes.

The majority of the paper will be used to describe our specification language. We will close the paper with a
description of how we built our application builder using the software tools techniques that Xtent encourages. The
application builder is a set of cooperating, Xtent based, processes that produce Xtent code. First we will provide a
bit more detail on how Xtent works.

112 ' USENTX — Winter ‘92

Blewett, Anderson, ... X Widget Based Software ...

2. Xtent as a Simple Language and IPC Protocol

As we mentioned above, the syntax of Xtent is based on the X resource file format. Our intent in writing Xtent was
to produce a complete system in terms of coverage of Xt while doing as little damage as possible to the syntax and
semantics of X resources. Most X users are familiar with the syntax and semantics of resource files. In Xtent,
resource lines are treated as if they had been entered by xrdb or a defaults file. This constrains the sorts of
expressions that can be used in the system, but can be viewed as a feature in that the parsing is very simple and fast,
and resource files are portable across machine architectures. This architecture independence is critical for our
multi-processor applications. The X resource file syntax seems to be a good one for our purposes.

The Xtent system can be used in three forms: a stand alone specification interpreter, a subroutine package for
specifying widgets, and/or as a subroutine package for use as a protocol converter. The most popular use of Xtent is
as a stand alone specification interpreter. The examples that decorate this paper were produced with the interpreter.
The interpreter can be used in concert with other programs via the IPC mechanisms. When used as a library, Xtent
may be used as a specification system for creating widgets or as an IPC protocol handler. When used as a
specification system, applications use Xtent to handle the drudgery of manipulating widgets. Once the widgets are
created, C functions may be used for callbacks and other application specific processing. Xtent and C coexist well
together. As a protocol handler, Xtent may be added to existing applications so that the applications may be more
easily reused. We will cover these three uses in more detail in the paper.

Unfortunately there is no hard and fast definition for specification systems. Generally they are systems that allow for
applications to be described at a higher level of abstraction and/or faster than would normally occur by directly
programming them. Specification systems usually have a declarative rather than procedural style. Specification
systems are usually based in something that could be called a language, albeit usually one lacking for doing
traditional programming.

2.1 Using X Resources for Function Call Based Specifications

X resource files meet the declarative and high level criteria for a specification language. X resource files are in fact
at a much higher level of abstraction than the equivalent C code. The following piece of resource code is a good
example:

*font: 6x13B

This line will result in the font 6x13B being used wherever a font is required, but not explicitly specified (within
Xt/widget based applications). Of course, this sort of parameterization is inherently declarative.

The resource mechanism is definitely limited in terms of its use as a programming language. We mean this to be
humorous, as resource files are not used by the majority of the X community for anything other than specifying
parameters. The parameterization, however, has a simple object-oriented style that can be extended for
programming. Consider the following line:

xtent.allowShellResize: True

This line allows the toplevel window (actually shell widget) to be resized when it is required by the application. The
sense of the line is to set a variable, allowShellResize, associated with the application xtent to True.
Notice that this implies that the string True will be converted to an appropriate type. In object-oriented terms, one
could also say, that the allowShellResize procedure associated with the object xtent is called with or sent
the message True. '

This object/message notion can also be written in a style more closely matching that of C++:
object.procedure: message (or arguments)

Using this syntax and semantics we have added all of the procedures required to do Xt level specifications (and then
some). XtCreateManagedWidget (), one of the functions used to create widgets, might be used in
applications as follows:

USENIX — Winter 92 113

X Widget Based Software ... Blewett, Anderson, ...

xtent .Hello.XtCreateManagedWidget: pushButton

The line causes a widget with the name ‘‘Hello’’ to be created. The parent widget is the toplevel widget for the
xtent application. The widget class is pushButton. The C interface to the X toolkit (Xt) uses the following
function call to create the widget.

Hello = XtCreateManagedWidget ("Hello",
XwpushButtonWidgetClass,
parent,
args, arg_count);

The C based XtCreateManagedWidget () interface has four more parameters. Using the Xtent format, the
name is given on the left hand or object side of the expression. As widget names are hierarchical*, the parent name
is included in the widget name, and so it does not have to be provided. In the C version, the args array is for
setting widget resources. The standard X widget resource mechanism handles that for us. On a function by function
basis, Xtent can be argued to be conceptually simpler than using Xt directly.

As an aside, the one line Xtent entry above is all that is required to specify a complete (one widget) Xt program.
The same program written directly in C using the X toolkit takes about a page and a half of code[11]. Using X alone
takes 5 or 6 pages. After the widget has been created by the one line above, the two applications run at the same
speed. This is because Xt programs run from a data structure, not unlike a display list.

Some Xt functions require more than one argument. In those cases Xtent uses a syntax that is similar to that used by
C.

xtent.image.XtTranslateCoords: (25, 33, x, y)

The line above calls the function XtTranslateCoords() for the widget xtent.image. It has four
arguments. The line above is used to translate widget specific coordinates into display specific coordinates.
XtTranslateCoords always takes four arguments. However, some functions, for example XtGetValues
take a variable number of arguments. These VARARGS style functions are handled as they are in C. Arguments are
simply added by separating the arguments by commas.

2.2 Variables in Resource Files

In all X widget based programs, there are two sets of data that can loosely be called databases. These are the per
process resource database and the values associated with the widgets in the process. The per process resource
database is the amalgam of four sources: the resources placed on the root window with xrdb, input from application
specific resource files, —xrm command line options, and application specified resources. Input from these sources
is applied in the same order as we have listed them. As with any real database the last entry overrides all previous
entries.

The other database in each process is composed of the values associated with the widgets. Each widget class has
variables associated with it. These variables are created for each widget instance. The variables are called widget
resources. Widget resources are normally set and retrieved with the C functions XtSetValues() and
XtGetValues (). This interface is the essential element in the object-oriented applications interface to widgets.

Accessing variables in the resource database and widget resources can be somewhat tedious from C based
applications. To retrieve a variable from a widget, an application must setup an argument block, call
XtGetValues () with a pointer to the correct value type, and then convert the returned value (if any) to the
required type.

* The widgets in Xt applications form a tree-like data structure. The toplevel or shell widgets have child widgets, which may also have children.
A pushbutton widget, within a form widget, within the toplevel xtent widget might be specified by the following string,
xtent.form.button.

114 USENIX — Winter ‘92

Blewett, Anderson, ... X Widget Based Software ...

Xtent allows applications to access variables in the two databases by name and work with the values as simple
strings. Values in the resource database can be accessed with ~ (resource-name).

xtent .XtWriteImage: (" (image—-name), ~ (outputfile),\
postscript)

The line above writes an image to an output file in PostScript format. The name of the image is retrieved from the
resource variable image-name and the output file name is retrieved from outputfile. Notice that the string
**postscript’’ does not require any quoting. All objects in Xtent are treated as a strings.

Resource values in widgets can be accessed with ~ {widget.resource—name}.

xtent.form.in.XtWarpPointer: (" {xtent.form.in.width},\
“{xtent.form.in.height})

The line above moves (i.e. warps) the mouse pointer to the lower right hand corner of the widget,
xtent.form.in. This is done by setting the cursor position to the width and height of the widget. Xtent handles
all coercion of types to and from strings. This would take 5 or 10 lines of C to perform this same function.

2.3 Flow of Control

Xtent has the usual set of control flow operations found in small shell like languages: if, case, iterate, while, and
foreach. As all Xtent operations are functions, the syntax is fairly simple and exceedingly easy to parse. The
following if is a good example.

xtent .XtIf: (==, X~ (xtent.font)X, XX, *font:fixed)

The if testsif xtent.font is equal to the null string. If it is then X" (xtent. font) X will macro expand to
XX and the string *font:fixed will be executed. In this case, this will result in a value for *font being
entered into the resource database. If an else clause is required, it is entered as the next comma separated
argument.

2.4 Data as Program

Code can be stored in the resource database and later executed. This provides a system reminiscent of Lisp where
there is little differentiation made between code and data.

widget—-switch: xtent.XtEvalLines:;\
input-style: file;\
xtent.form.switch.set.XtSetvalue: True

The lines above create a resource database entry for the variable widget-switch. The value of the variable is a
bit of Xtent code that will set the variable input-styleto file and set the widget resdurce set in the widget
xtent.form.switchto True. XtEvallines is a function that allows groups of Xtent lines to be executed,
similar to lambda in Lisp.

Code put into the resource database may be subsequently executed by referring to it through its associated variable
name. Of course, the code may also be treated as any other database entry. It can be retrieved and updated just like
any other piece of data. The following line shows how the entry above might be used in an application.

xtent.file.select.XtAddCallback: ~(widget-switch)

This line sets up a Callback for the widget xtent.file on the widgets select internal event or state.
Callbacks are the X Toolkit method for doing procedural attachment. This allows an application to run application
specific code when an particular event occurs within a widget. The line above will result in the code under the
variable widget-switch being executed when the widget is selected with a mouse or other pointing device.

USENIX — Winter ‘92 ' 115

X Widget Based Software ... Blewett, Anderson, ...

2.5 Application Supplied Functions

Builtin functions in xtent are executed by including them in lines of the form:
xtent...XtFunctionName: args

Applications may also add and rename functions to Xtent. The following adds a function that prints a parameter N
times.

xtent.XtAddFunction: (PrintN, PrintN-script, n, arg)
PrintN-script: xtent.XtEvallines:;\

xtent .XtLocalVariables: (i);\

xtent .XtIterate: (i, <, 0, “(n), 1, xtent.XtPrint: " (arg))

The body of the function is found under the resource database variable PrintN-script. Entering
xtent .XtPrintN: (3, Bell Labs) willresultin Bell Labs being printed 3 times.

xtent .XtPrintN: (3, Bell Labs)
Bell Labs
Bell Labs
Bell Labs

Notice that the variable n is bound to the number 3 and the variable arg is bound to the string AT&T when this
command is issued. These variables are reset to their former values, if any, when the function returns.

2.6 Mixing C and Xtent Code

Some Xt functions expect a pointer to a C function to be given as one of their arguments. When using Xtent, these
functions may all be passed Xtent code in lieu of a function pointer. Xtent code may be supplied wherever the X
Toolkit normally expects a pointer to a function. This includes Callbacks, translation tables, timeouts, workprocs,
actions and events, as well as alternate input sources. Xtent adds two input sources, interprocess communication
(IPC) and shell escapes. The IPC will get some special attention in the next section. Shell escapes may be used to
provide an instruction stream, similar to the use of backquotes in shell commands. If Xtent is used as a library, then
in all cases where Xt expects C functions, C and Xtent code may be freely intermixed. The Xtent mechanisms
follow the standard C function interface rules. If an application, for example, needs to use some Xtent code for
callbacks, the application may also use C code for callbacks.

2.7 Xtent as an IPC Protocol

We have been working on schemes for connecting graphics processes for some time now. The technique that we
like best involves a client/server model quite like the model upon which X and NeWS[12] is based. The reusable
graphics processes are clients of a server that coordinates their activity. This client/server model seems to fit the
AT&T Bell Labs application development process well.

We have constructed a small IPC library that allows us to use this client/server model. Messages are transported as
arbitrary length, asynchronous, datagrams. We have used a number of ad hoc protocols that sit above the basic
message passing software level. The scheme that seems to work best is to send Xtent code.

Xtent code has a number of benefits over fixed protocol techniques. First of all, it requires no architecture specific
mechanisms for interpreting the protocol. Most other schemes we have used required byte order hacking techniques
to handle multiple architectures. Next, Xtent is Xt complete. We know that when we use Xtent as the protocol
converter, anything that can be specified in an application can also be specified remotely. Last of all, Xtent allows
us to download complete functions into an application, thus reducing the amount of interaction that is required
between elements of a system.

Xtent may be used as the IPC protocol for an existing Xt based application. To do this, the application developer
has to add two lines of C to the application:

116 USENIX — Winter 92

Blewett, Anderson, ... X Widget Based Software ...

XtentInitializeForXIpcHandler (argc, argv);
XtAddXIpc (toplevel ptr, ipc_name, XtentHandleIpcToClient);

The initialization line installs the Xtent type converters and the XtAddXIpc () installs the IPC input and output
sources. The function XtentHandleIpcToClient () is the Xtent protocol converter.

In Xtent specifications the IPC may be installed with the following line:
xtent .XtAddXIpc: " (ipc—name)

Once the IPC has been installed in the application, the interprocess communication is handled automatically. When
messages come in, they are read and processed without any intervention from the application.

2.8 Xtent Compared with Optimized C Code

Because Xtent is used as an executable specification system, it must have performance comparable to other X
applications. Xtent compares favorably with shell scripts for its looping and other control flow operations. The real
test, is of course, how it fairs against optimized, compiled, C code. Once the widgets have been created at start up
time, both C and Xtent programs run from a widget tree. This means that once the applications have been
initialized, Xtent based systems have the same performance as hand crafted C code for the critical graphics and
widget operations. One would hope that the startup performance difference between a hand crafted system and one
produced from a specification would be less than an order of magnitude.

The sample application that we designed for the test consists of 128 OpenLook oblong button widgets contained
within a control area. A control area is a container or composite widget, a widget that manages other widgets. The
control area is created with Xtent’s VARARG:S interface to XtCreateManagedWidget as follows:

xtent.ca.XtVaCreateManagedWidget: (controlArea,\
layoutType, fixedcols, measure, 8)

This creates a container widget that will arrange its children widgets in fixed rows of eight widgets cach. The
oblong buttons are created with Xtent’s iterate function:

xtent .Xt_Iterate: (i, <, 0, 128, 1, xtent.XtEvallLine:\
xtent.ca.” (i) .XtCreateManagedWidget: oblongButton

This is a simple loop with an extra call to XtEvalLine: to force macro expansion of ~ (i). This is done to
generate widget names, the integers 0 through 127.

We are only interested in startup performance, so we want the application to exit as soon as the application is
mapped or displayed. This can be done by adding a simple translation to the toplevel widget. In Xtent this can be
done with the following two lines.

xtent . XtAppAddAction: DoThis
xtent .XtOverrideTranslations: <Map>: DoThis ("xtent.XtExit: 0")

Our four or five lines of Xtent turn into four or five times as many lines of C code and eight header files, four from
Xt and the following from OpenLook.

#include <Xol/OpenLook.h>
#include <Xol/ControlAre.h>
#include <Xol/OblongButt.h>
#include <X0l/01Strings.h>

The following figure contains the C version of the test. The calls to initialize the X toolkit, realize the toplevel
widget, and the main Xt loop are provided automagically by Xtent.

USENIX — Winter 92 117

X Widget Based Software ... Blewett, Anderson, ...

void
main (argc, argv)
unsigned int argc;
char **argv;
{
Widget toplevel, controlArea;
register int 1i;
char buf[64];
XtActionsRec action;
XtTranslations text_trans;
static void DoThis ();

toplevel = OlInitialize (argv[0], "Test", NULL, 0, &argc, argv):

controlArea = XtVaCreateManagedWidget ("controlArea",
controlAreaWidgetClass, toplevel,
XtNlayoutType, OL_FIXEDCOLS,
XtNmeasure, 8, NULL);

for (i = 0; i < 128; i++) {
sprintf (buf, "%d", i);
XtCreateManagedWidget (buf, oblongButtonWidgetClass,
controlArea, (Arg *) NULL, 0);

}

action.string = "DoThis";
action.proc = DoThis;
XtAppAddActions (XtWidgetToApplicationContext (toplevel), &action, 1);

text_trans = XtParseTranslationTable ("<Map>: DoThis()");
XtOverrideTranslations (toplevel, text_trans);

XtRealizeWidget (toplevel);
XtMainLoop ():
}

static void
DoThis ()

{

exit (0);
}

Figure 2. C code for the startup comparison.

Unlike usual benchmarks that are produced to promote a hidden agenda, this comparison is biased toward the C
program. Looping in an interpreter always involves overhead that is not required in compiled code. Most Xtent
based descriptions contain little or no looping. Widgets are simply declared one after the other in most applications.
The following table contains timing results from 20 runs performed on a Sun 4/260 using X11R4 from MIT.
Timing was performed using the time builtin command from the Korn Shell. The programs were run with
override redirect set to eliminate window manager interactions.

118 USENIX — Winter 92

Blewett, Anderson, ...

X Widget Based Software ...

Average Startup Time in Seconds

Application

Source Type real user sys
Optimized C .71 | 0.62 | 0.34
Xtent 1.99 | 0.81 | 041

TABLE 1. Startup Time Comparison

The Xtent startup performance is within a third of a second of the optimized C code. End users report that they
cannot tell the difference between the compiled C code and the Xtent based applications.

3. The Application Builder

The application builder is a tool for
creating and maintaining widget based
graphics applications. The builder, itself,
is constructed from a collection of Xtent
based processes. These processes have
proven to be useful tools in and of
themselves. The piece parts are editors for
manipulating and maintaining X widget
based applications. The following is the
list of editors that we have created:

» resource — an editor that allows one to
manipulate the state of an instantiated
widget. This can be used for both a
learning tool and a debugging aid.

« layout — an editor for manipulating the
visual layout of a single widget based
application. Graphics applications are
notorious for being plus one buggy.
The layout editor eliminates many of
these errors.

+ connection — an editor for setting the
connections between widgets and
widget states. When a button is poked
an application may, for example, wish
to display a menu. This sort of inter-
widget communication can be
described and maintained with the
connection editor.

Multi-Process

Application Builder

Figure 3. Processes in the application builder.

 widget tree — an editor for displaying and manipulating the parent child relationships between widgets. This is
~ useful as a navigational aid for selecting and inspecting widgets. Many widgets have no visible representation.

USENIX — Winter 92

119

X Widget Based Software ... Blewett, Anderson, ...

The application builder creates a prototype Xtent process, a separate process controlled via messages. The four
editors that comprise the builder send messages to the router process that result in changes being sent to the
prototype. The four editors have no notion of the specific process that is being acted on or the existence of the other
editors. This clean separation of components allows the editors to be easily reused.

Operations

Widget Hierarchy
O

Figure 4. The application builder at work.

Figure four shows the application builder being run in a typical construction session. The upper and lower windows
are from the layout editor process. They allow the end user to create, destroy, and generally manage widget
placement within the prototype. The middle window is the widget tree editor. It shows the widget structure of the
prototype that is running on the right. The widget tree editor allows the end user to quickly navigate the widget tree
and select specific widgets. Not all widgets have a visible representation. The application that we are manipulating
in this example is an X to PostScript program. This program was used to create all of the examples that are included
in this paper.

120 USENIX — Winter 92

Blewett, Anderson, ... X Widget Based Software ...

Figure 5. The resource editor editing widget colors.

Figure five demonstrates how the the resource editor is used to manipulate widget resources in a running application.
The resource editor can be used to edit the resources of any X toolkit based application. The application need<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>