

PROGRAMMING

lnsf:rucf:i~n C~des and

Pr~gramming E~amples

@ 1960 •SPERRY RAND CORPORATION

Contents

1. INSTRUCTION CODES AND EXAMPLES.. 1

Instruction Format 1

Instruction Cycle ·' ... 2

Address Modification with Index Registers .. 3

Instruction Conventions . 4

Transfer Instructions .. 4

Addressing Registers 5

Arithmetic Instructions 5

C + 1 Conditions . 6

Logical Instructions .. 6

Translate Instructions .. 8

Input-Output Instructions (Read-Punch Unit) .. 9

Input Instructions (High-Speed Reader) .. 9

Printing Instructions (High-Speed Printer) .. 10

2. OVERCAPACITY PUNCHING .. . 11

General .. 11

Editing an Input Overcapacity Punch .. 11

Editing an Output Overcapacity Punch .. 12

Suggested Coding for Overcapacity Input-Editing Routine 14

Suggested Coding for Overcapacity Output-Editing Routine 15

APPENDIX .. 16

Key to Card Interlace Table .. 16

Interlace Table- Read-Punch Unit .. 17

Interlace Table- High-Speed Reader , ... 17

Key to Print Interlace Table .. 18

Interlace Table-High-Speed Printer .. 19

Translation Table .. 20

INSTRUCTION FORMAT

The UNIVAC Solid-State 90 Computing
. System employs a 11/2-address instruction
code system, with one instruction per com
puter word. The digit positions in a 10-
digit computer word are numbered, left to
right, 1 through 10. Digit position 1 is con
sidered the most significant digit (MSD)
and digit position 10 is considered the least
significant digit (LSD). The format of an
instruction word is illustrated below:

The m address is usually the address of a
word in storage. The operation code tells
the Processor what to do with this word,

OPERATION
CODE

M ADDRESS
(Operand Address}

DATA AT THIS

1. Instruction Codes
and Examples

and the c address is the storage location of
the next instruction word. The m and c ad
dress portions have different significance
for some special instructions, as noted in
the instruction definitions.

When a word is transferred from a storage
location or register, the contents of the stor
age location or register from which the

·word was transferred remain unchanged.

When a word is transferred into a storage
location or register, the previous contents
of the storage location or register are
erased, except in the 20 and 35 instructions.

C ADDRESS
{Instruction Address)

WHAT TO DO •••• to LOCATION • • • • • ••• then
WHERE TO FIND THE
NEXT INSTRUCTION

1

2

INSTRUCTION CYCLE

A three- or four-phase cycle (with an addi
tional phase if index registers are used) is
associated with each instruction, depending
upon whether an operand is required from
drum storage. If setting up the instruction
is considered the starting point, the in
struction cycle is :

(1) Staticize the Instruction: The instruc
tion located by the previous search (5) is
transferred from the drum location to the
static register (operation code only) and
register C (the entire word). This step re
quires one word time, which is 17 micro
seconds.

(2) Index Register Moditication: When mod
ification is indicated, the m address of the
instruction is altered by the index register
specified. This step requires one word time.

(3) Search tor the Operand: If the first ad
dress part of the instruction does not ref er
to a drum storage location or a register,
this step is ignored and no time is required.
·If it does refer to a drum location, the ad
dress of the next available storage location
on the drum is compared with the first ad
dress part of the contents of register c
every word time until a match is obtained.
Register C contains the entire instruction.
If an operand is required from storage, this
step requires a minimum of one word time
and a maximum of 200 word times.

(4) Execute the Instruction: The operation
indicated in the instruction is performed.
The time required depends upon the type
of operation performed.

< 5) Search tor the Next Instruction: Every
word time, the address of the next avail
able storage location on the drum is com
pared with· the second address part of the
contents of register C until a match is ob
tained. This step requires a minimum of
one word time and a maximum of 200 word
times.

ADDRESS MODIFICATION WITH
INDEX REGISTERS

If an instruction is to be modified by the
use of index registers, it must contain an
indication of the index register to be used.
The indication is a combination of the sign
bit and the second, or least significant, digit
of the operation code. Only the 4 bit of the
5 4 2 1 bits of this digit is used. Since this
bit is not utilized in the least ·significant
digit of any operation code, the normal exe
cution of an instruction is not otherwise
affected. The index register must be loaded
initially with the desired increment.

The four combinations of the two bit posi
tions are interpreted as shown in the table
below:

Band Modification Feature

A band modification feature enables modi
fication with index registers to be restricted
to the same band in which it was initiated.
If, during modification, the m address is
altered to refer to another band, the Proces
sor will cause a return to the correspond
ing location in the original band. This band
modification occurs when at least two of the
following conditions are present:

1. The hundreds ·digit of the contents of
the index register is odd. ·

2. The hundreds digit of the instruc
tion's m address is odd.

3. During modification, a carry occurs
from the tens digit to the hundreds
digit.

MODIFICATION TABLE

SIGN O C

BIT 5421 5421 CONDITION TYPE OF MODIFICATION

o·
0
1
1

xxxx
xxxx
xxxx
xxxx

xoxx
Xl:XX
xoxx
Xl:XX

0
1
2
3

During the staticizing phase, all instruc
tions are examined for the presence of one
of the above conditions. If condition 0 is
found to be present, the modification phase
is bypassed, and the instruction is executed
in the normal manner with a three- or four
phase cycle. If condition 1, 2, or 3 exists,
however, the second phase of the instruc
tion cycle is the addition of the specified
index register's contents to the m address
of the contents of register C. The Proces
sor then searches for the new m address
during the third phase, and the execution
of instructions proceeds in the normal
manner.

No Modification
Modify with Index Register 1 (rB.)
Modify with Index Register 2 (r82)
Modify with Index Register 3 (r81)

The figure below represents the conditions
which, in combination, cause band modifi
cation to be effected.

+
XI

2 M X MM

3 s s s s • KEY

CONDITION

Index Register

Instruction m address

Sum (modified m address)

X ==an odd digit S ==a digit of the sum
of the index register

.. == a carry and the m portion

3

4

Note: When the four digits of them address are added to.th~se
of the index register, any carry from the most signifi
cant digit position is lost.

MSD

I I I I
MMMM
s s s s ...

Index Register

Digits of them portion

Sum (modified address)

This carry is lost.

INSTRUCTION CONVENTIONS

In describing the instructions used with the
UNIVAC Solid-State 90 System, the fol
lowing conventions are used :

seconds can be obtained by multiplying the
word times given by 0.017.

m

c

()

rA
rL
rX
rC

represents the address of a storage lo
cation or register which usually con
tains the operand.
represents the address of a storage lo
cation or register which usually con
tains the next instruction.
represents the contents of a storage
location or register; for example
(4309) ==contents of storage location
4309.
represents register A.
represents register L.
represents register X.
represents register C.

A dash substituted for them or c portion of
an instruction means the Processor ignores
that portion when the instruction is exe
cuted.

The timing for each instruction is shown
in the right-hand column following the
description of the instruction. Timing is
shown as the number of word times re
quired to execute the entire instruction
cycle in minimum latency. Timing in milli-

TRANSFER INSTRUCTIONS
WORD
TIME

25 me Transfer (m) to rA. 4
05 me Transfer (m) to r X. 4
30 me Transfer (m) to rL. 4

*60 me Transfer (r A) to m. 4
*65 me Transfer (rX) tom. 4
*50 me Transfer (rL) tom. 4
77-e Transfer (rA) to rL. 3
26m- Clear r A to zero and set 3

its sign storage to plus.
The next instruction is at m.

06m- Clear r X to zero and set 3

its sign storage to plus.
The next instruction is atm.

61 m- Clear rL to zero and set 3

its sign storage to plus.
The next instruction is at m.

36m- Clear r A to zero and leave 3
its sign unchanged.
The next instruction is at m.

86m- Clear r A and r X to zero. 14

Set the sign of r A and r X
to that of rL. The next
instruction is at m.

23m- Transfer (rC) to rA. 3

The next instruction is at m.

*Registers A, X, or L cannot be used as them address.

Examples:
1. Place the contents of 4302 into registers A and L.
The next instruction is at 0357. Begin in line 0350.

Solution:
0350 25 4302 .0354 (4302)- rA
0354 77 0000 0357 (rA)- rl

2. Clear storage location 3172 to all zeros. Leave
registers A and X undisturbed. The next instruction
is at 0174. Begin in line 0167.

Solution:
0167 31 0170 0000 O's rl
0170 50 3172 0174 (rl) 3172

ADDRESSING REGISTERS

As a result of their addressability, registers
A, X, or L may be them address of many,
and the c address of all, instructions. The
sole restriction is that they cannot be used
in them portion of the 50, 60, and 65 orders,
nor in the m portion of instructions which
do not address a one-word storage location.
The arithmetic registers are addressed by
nonnumeric digits in the least significant
digit of c or m. The addresses of the three
registers are as follows :

LSD of m or c
BITS CHARACTER

rA=OlOl 4/1
rX=Olll 4/3
rl=OllO 4/2

Examples:
1. Starting in storage location 1301, place the con·
tents of 4503 in registers A, X, and L.

Solution:
1301 25 4503 1305
1305 05 0004/1 1309
1309 30 0004/3 1313

(4503)-rA
(rA)-rX
(rX)-rl

2. Place the contents of rl in rA. The next instruc·
tion is in rX. Start at 0021.

Solution:
0021 25 0004/2 0004/3 (rl):---rA, next in-

85 m c

55 m c

MSD

Multiply (rL) by (m) and
store the 10 most significant
digits of the product in rA
and the 10 least significant
digits in rX. Both rA and
r X will have the sign of the
product. Multiplication can
be shortened for multipliers
having less than 10 signifi
cant digits by placing a sen
tinel* just to the left of the
most significant digit of the
multiplier, m. This sentinel
stops the multiplication af
ter the last significant mul
tiplier digit is used.
Divide (m) by (rL) and put
the unrounded 10 digits of
the quotient with sign in rA
and the remainder in rX.
If the absolute value of the
contents of register L are
less than or equal to the
contents of the storage lo
cation specified, overflow
occurs. A sentinel may be
placed in r X to stop the di
vision after the desired
number of digits has been
developed in the quotient.
For the placement of the
sentinel, the digit positions
are numbered, from the
MSD to the LSD, O through
9, instead of in the usual
way.

WORD
TIME
5 plus the
number of
digits in
the multi·
plier plus
the sum of
these
digits
(maximum
=105)

5+2
times the
number of
digits in
the
quotient
+the
sum of the
digits in
the odd
positions
in the
quotient
+the
sum of
the nines
comple·
ment of
the digits
in the even
positions
in the
quotient
(maximum
=115)

LSD

struction is in rX Digit positions for division sentinel only
WORD

ARITHMETIC INSTRUCTIONS TIME

70 m c Add algebraically (m) to 5
(rA) and place the sum in
rA.

75 m c Subtract algebraically (m) 5

from (r A) and store the
difference in rA.

The sentinel (0101) is placed as follows:

PURPOSE POSITION

To develop 2 digits in the quotient.. 2 All other
To develop 4 digits in the quotient.. 4 positions
To develop 6 digits in the quotient. 6 must con·
To develop 8 digits in the quotient. 8 tain zeros.

*Code 0101 or 1101.

5

6

When 10 digits are to be developed, the con
tents of r X need not be changed, provided
that there is no possibility that any charac
ter in register X has a bit in both the 4 and
the 1 bit positions. If there is a possibility
that the combination is present, r X should
be cleared to all zeros.

Note: Only an even number of digits should be
developed in the quotient.

Examples:
1. Add the contents of 1411 and 4115. Place the
sum in 4420. Begin in 0009.

Solution:
0009 25 1411. 0013 (1411)__.. rA
0013 70 4115 0018 (4115) + (rA~ rA
0018 60 4420 0022 (rA)_. 4420

2. Reduce the contents of storage locations 4491
and 4691 by l, which is a constant stored in 2087.
Place the results in 4600 and 4700. Begin in 2085.

Solution:
2085 30 2087 2089 OOOOOOOOOl~rl

2087 00 0000 0001 CONSTANT
2089 25 4491 2093 (449l)~rA

2093 75 0004/2 ·2098 (rA) - (rl)~ rA
2098 60 4600 2102 (rA)._.4600
2102 25 4691 2143 (4691)_.rA
2143 75 0004/2 2148 (rA) - (rL)----.. rA
2148 60 4700 (rA)_.4700

3. Multiply the contents of 4391 by the contents of
4100. Place the 10 most significant digits of the
product in 4705, and the 10 least significant digits
in 4709. Begin in 0189.

Solution:
0189 30 4391 0193 (4391)_.rl
0193 85 4100 0203 (rl) x (4100).,..rA; rX
0203 60 4705 0207 (rA)~4705

0207 65 4709 (rX)~4709

C + 1 CONDITIONS

'l\vo types of c + 1 conditions can occur in
the Processor. The first is an arithmetic
overflow, indicating that the result of an
arithmetic operation exceeds the capacity
of the register. The second is an abnormal
condition in an input or output unit (for
example, Printer out of paper, a card jam
in the High-Speed Reader or Read-Punch
Unit). In both cases, the system continues
to operate. However, when such a condition
does occur, the next instruction is found
not at c, but at c+ 1.

It should be noted that c and c + 1 must be
in the same band· on the drum. If the c ad
dress is the last location in any band (for
example, 0199, 0399, and so forth), the c + 1
address is the first word of the same band
(for example, 0000, 0200, and so forth).
When the address of the next instruction is
a register address, proceed to that register
whether or not overflow occurs. In this in
stance, overflow causes a delay of one word
time.

Example:

Add (3178) to (3182). Place the sum in
3187. If overflow occurs, place 0000000001
in 3192 and (rA) in 3187. In both cases, the
next instruction (following storage of the
sum) is in 0189. Begin in 0176.

Solution:
0176 25 3178
0180 70 3182
0185 60 3187

c+ 2 0186 05 0188
0188 00 0000
0190 65 3192

0180
0194
0189
0190
0001
0185

LOGICAL INSTRUCTIONS

Buff

(3178)~rA

(3182) + (rA)..,..rA
(rA).-3187

0000000001 rx
CONSTANT

(rX).-3192

WORD
TIME

20 m c Superimpose the 1 bits of (m) 4
onto (rA) and leave the result
in rA. The sign of rA is undis
turbed.

Examples:

1. Superimpose m == 0020406080
on r A ..:.___ 0103050709

Result in r A == 0123456789
2. Superimpose m = 0000093800

on r A == 9873100000
Result in rA = 9873193800

Note: This superimposition is performed
on a bit-by-bit basis on each digit
individually. Many combinations are
possible using this instruction. For
example, superimposing 4 (0100)
on 1 (0001) produces the non nu
meric (0101), and 6 (1001) on
2 (0010) produces 8 (1011).

Erase ~~o
35 m c Erase the contents of the bit 4

positions of register A corres
ponding to the bit positions in
the specified storage location
that contains zero bits. The
sign of r A is undisturbed.

Examples:

1. Erase (rA) = 1 1 1 1 1 2 2 2 2 2
on the basis of (m) =0 8/4 8/4 8/4 8/4 8/4 8/4 8/4 8/4 8/4
Result in rA =0 1 1 1 1 2 2 2 2 2

2. Erase (rA) =12 3 4 5 678 9 6
on the basis of (ml =00 8/4 8/4 8/4 000 8/4 8/4
Result in rA =00 · 3 4 5 000 9 6

Note: This instruction is like the 20 m c,
since it also operates on a bit-by-bit basis.
A zero (0000) in m will erase a whole digit
in rA; an 8/4 (1111) will retain it.

Right Circular Shift
320NOOc Shift (rA) to the right N 3+N

places into r X, which also is
shifting to the right into rA.
The sign positions are not
involved in this shift. The N
can vary between 0 and 10, *
and is a single digit inserted
in the next-to-most signifi-
cant digit position of m.

Left Shift
37 ONDO c Shift (r A) to the left N 3 + N

places, losing the most sig
nificant digits and bringing

Skip

in zeros in the least signifi-
cant digit positions on the
right. The N can vary from
0 to 10* and is a single digit
inserted in the next-to-most
significant digit position of
m. The sign of r A is not dis
turbed.

oo m - Skip to the next instruction 2
at address m.

Magnitude Comparison
87mc If (rA) are algebraically 3

greater than (rL), the next

*The special character (1101) is used to represent 10.

WORD
TIME

instruction is in m ; if not,
the next instruction is in c.

Equality Comparison
82mc If (rA) equal (rL), then 3

the next instruction is in m ;
if not, the next instruction is
inc.

Examples:

1. 4392 contains the value A and 4396 contains the
value B. If A is the same as or less than B, place it in
rX. Begin in 0290.

Solution:
0290 25 4392
0294 30 4396
0298 87 0301

(A > B) 0301 05 0004/2
(A~ B) 0302 05 0004/1

2. 0900 contains X
0904 contains y

0294
0298
0302

A-rA
e-rL
test A against B
e-rx
A-rx

If X=y, add the two numbers and store the sum in
4216. If X is greater than (>) y,subtract y from X
and store the difference in 4220. If X is equal to or
less than (<) y, merely store X in 4216 and y in
4220. Beginin 0098.

Solution: c X: y).____-

- _ - = • lx+y-42161
-:t:___,l,..._-

x-4216

y-4220

Solution:

0098 25 0900 0102 (0900)-rA
0102 30 0904 0106 (0904)-rl
0106 82 0109 0309 rA : rl for equality
0309 87 0312 0112 rA: rl for magnitude

x > y 0112 60 4216 0118 x-4216
0118 50 4220 y~4220

x = y 0109 70 0004/2 0114 X+ y- sum
0114 60 4216 sum-4216

x < y 0312 75 0004/2 0317 X-y- rA
0317 60 4220 difference- 4220

7

8

Zero Suppression WORD TIME

62 - c This instruction is used to sup- 4
press printing (or punching)

Stop

of nonsignificant ~eros or com
mas to the left of the most sig
nificant digit of a field. Zero
suppression is performed on
the words in the print (or
punch) interlace* before the
print (or punch) instruction is
given. The primed word of the
pair must be in rX and the un
primed word in r A.

67 m c Stop the Processor. The Proc
essor stops with the stop in
struction in rC, but before the
search for the next instruction
is started. Normally, when the
Processor is restarted, the first
step will be to search for the
next instruction specified by
the c address. In this case the m
digits are ignored and may be
used as a code to indicate the
reason for stopping. ·However,
if desired, the m address may
be used as an alternate restart
location by depressing the m
button on the control panel.

Load Index Register

02 m c Transfer the four digits com- 3
posing m into the specified in
dex register. The same combi
nation (see Note) which indi
cates normal index .register
modification specifies the index
register to be loaded.

Increment and Unload
Index Register

07 m c Using the address modification 4
method, add the four digits
composing m to the contents
of the specified index register.
The sum is placed in the index

*The interlace is the pattern in which data is placed in a
storage band. See the interlace patterns in the Appendix.

register specified and also in
the m portion of rA. The re
mainder of r A is cleared to
zeros, and the sign of r A is set
to plus.

Note: These two instructions will serve all
three index registers. The same combina
tion which indicates normal modification
with index registers is used to specify the
index register to be used. This combination
of the sign bit and the 4 bit of the operation
code's least significant digit has been ex
plained under "Address Modification with
Index Registers."

TRANSLATE INSTRUCTIONS

Data enters the Central Processor from
punched cards in Remington Rand card
code. This data may be moved from place
to place within the Processor in this code
by instructions. For the arithmetic opera
tions 70 m c, 75 m c, 85 m c and 55 m c, and
the logical operation 87 m c, the data must
be translated into computer code* to give
correct results. However, before this data
can be punched in output cards, or printed,
it must be translated back to card code.

The following translate instructions permit
the translation of data from one code to the
other:

12-c

17-c

WORD
TIME

Translate from Remington 3
Rand card code to computer
code,* deposit the result in rA,
and clear r X to zeros. The sign
of rA and rX remains un
changed. Before this command
is given, r A must contain the
unprimed word of the card
image and r X the primed word.
Translate from computer code 3
to Remington Rand card code*
and deposit the two resulting
words in r A and r X. The signs
of both results are positive. rA
will contain the unprimed word
and r X the primed word. All

·~See Translation Table in the Appendix.

computer-code zeros are trans
lated to card code punching
zeros. Before this command is
given, 'PA must contain the
computer-coded word.

INPUT-OUTPUT INSTRUCTIONS
(READ-PUNCH UNIT)

WORD
TIME

Four instructions direct the operation of
the Read-Punch Unit:

Card Cycle-Buff er Load

81 xxoo c Initiate card movement in 203

the Read-Punch Unit and
a storage-to-buff er trans-
fer. The two most signifi
cant digits of the m ad
dress (XX) designate the
storage band. When the
transfer is completed, the
unit will punch the data
from the punch buff er
area into the card in the
punch station and read the
cards now in both read
stations, storing their im
ages in the Read-Punch
input buff er in the read
interlace pattern.* Final-
ly, all cards are advanced
one station, and the end
card goes into its prese
lected stacker. For mini
mum latency, this instruc
tion should be placed on
level 0198.

Note: If an abnormal condition exists, the
next instruction is found in c + 1. The ab
normal conditions in the Read-Punch Unit
may be: no card in read station 1 or 2,
empty input magazine, full stacker, full
chip box, and card jam.

Buffer Unload

46 xxoo c Transfer the contents of 203

the Read-Punch input buf-
fer into the storage band
designated by the two

*See Read-Punch Unit interlace pattern in the Appendix.

most significant digits of
m (XX). The data is not
translate,d. In storage, it
is arranged according to
an interlace pattern.

Buffer Test

WORD
TIME

22mc TesttheRead-Punchinput 3ifc
buffer. If the buffer is address

1 taken;
oaded, (rC) are trans'." otherwise

ferred to r A and the next 4
instruction is found at m.
If the buff er is not loaded,
the next instruction is
found at c. The contents
of r A are not altered in
this case.

Stacker Select

57 - c Select output stacker 1 3
(sort).

INPUT INSTRUCTIONS
(HIGH-SPEED READER)

Four instructions direct the operation of
the High-Speed Reader:

Card Cycle-Buffer Load
72 m c Initiate card movement

into the continuously mov
ing rollers of the feed. The
card will be read at each
station, in turn, and the
data stored in the buffer
band. The Central Proces
sor is free to operate on
other instructions during
the moving and reading
of the cards. If an inter
lock* occurs, the contents
of rC are sent to rA and
the next instruction is at
m.

3 if c
address
taken;
otherwise
4

Note: If an abnormal condition exists, the
next instruction is found inc+ 1. Abnormal
conditions in the High-Speed Reader may
be: output bin full, card jam, input maga
zine empty, and registration check failure.

*Interlock is the postponement of an instruction until the
previous instruction has completed its operation,

9

10

Buff er Unload WORD
TIME

96 XXOO c Transfer the contents of 203
the High-Speed Reader
buffer into the storage
band according to its pre
determined interlace pat
tern.* The data is trans
ferred untranslated. Only
the two most significant
digits of m (XX) de:;ig
nate the storage band.

Buffer Test

42 m c Test the High-Speed Read
er buffer. If the buffer is
loaded, (rC) are transferred
torAand the next instruc
tion is found at m. If the
buff er is not loaded, the
next instruction is found
at c. Register A is not
altered in this case.

Stacker Select

3 if c
address
taken;
otherwise
4

47 ONDO c Select the output stacker 3
on the High-Speed Reader
(N == stacker 0, 1, or 2).

Note: If a 96 instruction is given with only
one card present in either read station, the
buffer-interlace locations of the station not
occupied by a card will read all binary l's.

PRINTING INSTRUCTIONS
(HIGH-SPEED PRINTER)

The following instructions govern the
printing operation:

Advance and Print

11 XXNN c Advance the paper NN 592

lines (NN = 00 through
79), and print one line.
While the paper advance
is taking place, data is
transferred from the stor
age band indicated by the
two most significant digits
of m (XX) to the print
buff er. Registers A and X

*See High-Speed Reader interlace pa,ttern in the Appendix.

are used for the transfer,
and their previous con
tents are therefore de
stroyed. Before this in
struction is given, the data
to be printed must be ar
ranged in the storage band
(XX) according to the
print interlace pattern.* It
is possible to advance the
paper as many as 79 lines
in the following manner :

WORD
TIME

4/lN where N = 0 to 9 moves paper 50-59 lines
4/2N where N = 0 to 9 moves paper 60·69 lines
4/3N where N = 0 to 9 moves paper 70·79 lines

For minimum latency, the
11 instruction should be
placed on level 0197.

Advance Paper

16 DONN c When the previous Printer 4
operation is completed,
advance the paper NN
lines. Once paper move
ment is started, the Proc
essor is free for other op
erations. The advance is
the same as defined in the
11 instruction above.

Note: On either the 11 m c or 16 m c in
struction, if an abnormal condition exists
in the High-Speed Printer, the next in
struction is found in c + 1. The abnormal
conditions in the High-Speed Printer may
be: out of paper, out of ribbon, print-code
error, one-line print, carriage out, paper
jam, and buffer parity error.

Printer Test
27 me Test the status of the

Printer. If a printorpaper
advance is in process, the
next instruction is selected
from c ; otherwise the next
instruction is at m and
(rC) are transferred tor A.

3 if c
address
is taken;
otherwise
4

GENERAL

Occasionally, extra digits, beyond the nor
mal ninety, are needed on a card.When such
need arises, overcapacity punching may
be used.

These punches are placed in the zero punch
ing area of each column. The number of
columns (or zero punch positions) re
quired to indicate the digit, is dependent
upon its potential range of values.

For example, assume that a one-digit code
is to be punched in the zero area as an ad
dition to the normal ninety columns. If the
range of this code is from zero to one, only
one punch is required. The presence of a
punch would indicate one. The absence of
a punch would indicate zero. If the range
of the code is from zero to nine, more
punches are needed. The one-digit code
could be punched in a biquinary form cov
ering four punch positions (nine punched
in four adjacent zero columns would be
1100, eight 1011, seven 1010, and so on).
The code might be punched in six zero
positions, each one corresponding to an
actual row on the card (that is, the first
position represents the zero row, second ==
1, 2 row, third == 3, 4 row, fourth == 5, 6
row, fifth == 7, 8 row, and sixth == the 9
row). This system facilitates punching as
wide a range of values as available in the
normal punching mode.

Any mode of punching is valid as long as

2. Overcapacity
Punching

the program interprets the overpunches
correctly.

The program must interrogate the over
punch in the unprimed portion of an input
word before translation. The punches will
fall into the zero bit of a digit. If the pro
gram is to produce output overpunches,
they must be placed in the zero bit of each
digit of the unprimed word as well.

Since alphabetic punching requires the use
of the zero punch area, the positions chosen
for overcapacity punching must contain
purely numeric information. If a zero ex
ists among the numerics, it must be a space
or nonpunching zero.

EDITING AN INPUT
OVERCAPACITY PUNCH

An example of editing an input overcapac
ity punch follows:

Given:

Storage location 4221 contains the un
primed portion of an input word. Over
capacity punches have been placed in the
last four digit positions of this word. They
are in biquinary form. The punch in digit 7
represents the 5 bit, digit 8 represents the
4 bit, digit 9 represents the 2 bit, and digit
10, the 1 bit.

Problem:

Edit these four bits into the most signifi
cant digit position of rA.

11

12

STORAGE
LOCAT•N OP. M

()011 ;J..{ lj-)..J-/

00'-3 ,SS' oo~r

LJ,a-t5 orJ ~OOtJ

0()'-7 70 otJ ~1

[ot>,_~ ~o daOCJ

()032 35 tJo3y

Coo Er ~{) ~oao

003fo ~f:, {)d39

1)039 ~). O/tJO

()~1/3 ~ ()()0fL3

!JtJJ/7 3.:l o/(JO

()()'SJ 37 ()/t)(J

1Jarr "'° t)OO'f h
OtJ'f9 32 ~;)<1()

!)Obj 37 O:J.tJO

()IJUJ9 ~ 0001~

~~73 S2 0$()0

~079 37 ~JotJ

!)!)Yb ~ ()OtJl//J

()09 () gr (}d]:;.

[tJ092 7lJ ()(JOO

EDITING AN OUTPUT
OVERCAPACITY PUNCH

c

t/0-'3

00~7

/Ill]

()(}..3.:l..

13/D]
tJtJ3fo

"fl/ .:in

OtJl/3

tJtJfJ

tJO '::>7

()0))

O{)~

oo !Pl/
oo h!f_

'

(}t; 73

ooJ9
otJ J>'{,

1)1) 9 IJ

t-1(111.J
f:.wt1~

a~~o]

)
)

)

}
t
J

Isolate four overcapacity punches from unprimed
portion of word.

Add constant which places bits in 5, 4, 2 and 1
positions if appropriate.

Erase all but 5, 4, 2 and 1 positions.

Buff all bits into one digit position.

An example of editing an output overcapacity punch follows:
Given: Problem:

Register X contains a word in the form Edit this for overcapacity biquinary punch-
OOOOOOOOOX, in which X is any number ing and place it in the four least significant
from zero to nine. digits of the word in 4221.

STORAGE
OP,

LOCAT 0 N

01~0 '-s-
OI ~-'/ 70

(p;u 00

0/;2.9 -~.(

[o1a1 00

0133 g7

b/31 77
0111 ;..{'

C>ll/? 3,-

[0117 ()0

O!'f9 70

[01·n ()(J

0/-s'f .6~

[oJ\)b oD
01-rr -37

OI'~ J.o

.O/fi,' 77

01 h 'J i{

b/13 3)

~/75 OtJ

0177 70
017'7 00

t)/<{)_ 3~

[01~1 00

0/f'{p ~{)

{J/ C/lJ 71

tJ/93 j<

0197 3)

[0199 00

O)..tJ/ ~"
tJ~tH~ ~()

tJ).'-3 ~{)

M

1)()1)1/3

()/~6

O()OIJ

()/81

tJOOO

O~oO

OOOf/3

0/17

0000

()/".}/

dtJOd

DI ~-i:,

() 6()tJ

0/ (}()

0001/;;.

ooo1h
o/7'i'

0000

0/79

dOOO

i)f~I/

OOO{)

tJaa1/~

0/JtJl.j/3

0199

otJtJtJ

()/)I) 'I Ii.
1~

Jj:J.'-1

c

O/~'f

01~9

ooo~

0/33

0010]

0/:3~

Oii//

t>/1~

0119

t1001f]

011'1

0006]

/)/~

00/'~

()/62.

bl fs,fO

01"9

0/73

o/77

dtM,ij

0/11

()OO rl
l>/S'b

()0/0]

t>!C/O

01ra
()/tj''f

O~t>/

()801]

O~tJ~

O;l:J:3

/YJF>/I{
PA or:,.

Edit 5 bit into punching position.

Edit 4 bit into punching position .

Edit 2 bit into punching position.

Edit 2 bit (cont.)

Edit 1 bit into punching position.

Buff overcapacity punches into unprimed
portion of word. 13

14

SUGGESTED CODING FOR OVER-
. CAPACITY INP-UT-EDITING ROUTINE

(1) Unprimed Word to rA as HHHHH
XXXXX (must be +) (XXXXX ==
portion containing overcapacity;
HHHHH == irrelevant).

(2) Exit Line to rX.

a OC m c

1015 31 1018
1018 35 1020 1022
1020 00 0001 1111
1022 82 1026 1025
1025 75 1027 1030
1027 00 0000 9999
1030 87 0004/3 1033
1033 70 1035 1038
1035 00 0000 9002
1038 87 0004/3 1041
1041 70 1043 1046
1043 00 0000 0902
1046 87 0004/3 1049
1049 70 1051 1054
1051 00 0000 0092
1054 87 0004/3 1057
1057 25 1059 0004/3
1059 00 0000 0009
1026 26 0004/3

Notes:

Remarks

Oto rl
Erase all but o/c digits
CONSTANT
Test for Zero
Subtract 9999
CONSTANT
> = 1 or 2 in LSD of rA
Add 9002
CONSTANT
>=3 or4 in LSD of rA
Add 902
CONSTANT
> = 5 or 6 in LSD of rA
Add 92
CONSTANT
> = 7 or 8 in LSD of rA
9 to rA and EXIT
CONSTANT
Zero to rA and EXIT

(1) At the end of the routine, the appro
priate overcapacity digit (0 through
9) is in LSD position of rA.

(2) It is presumed thatthe main program
will shift left and buff in the balance of
the field to complete the editing.

(3) Total time is 46 word times.

(4) The instruction locations shown are
not intended to be compatible with the
existing or forthcoming Library Rou
tines. The programmer should choose
suitable locations compatible with his
own program.

(5) It is conceivable that this subroutine
can be effectively coded in the regular
bands if the programmer will time his
entrances and exits appropriately.

Explanation: The overcapacity combina
tions ranging 1 through 0
are shown in the column
labeled o/c (overcapacity).

Step 1. Subtract 9999.
If answer is plus, difference is o/c

digit (1or2).
If answer is minus, perform Step 2.

Step 2. Add 9002.
If answer is plus, sum is o/c digit

(3 or 4).
If answer is minus, perform Step 3.

Step 3. Add 902.
If answer is plus, sum is o/c digit

(5 or 6).
If negative, perform Step 4.

Step 4. Add 92.
If answer is plus, sum is o/c digit

(7 or8).
If negative, bring 9.

Dec o/c Subtract Diff Add Sum Add Sum Add Sum

1 10000 -9999 = 1;-
2 10001 2+
3 01000 8999- + 9002 = 3+
4 01001 8998- 4+
5 00100 9899- 897- +902 = s+
6 00101 9898- 896- = 6+
7 00010 9989- 987- =85- +92 =7+
8 00011 9988- 986- =84- =8+
9 00001 9998- 996- =94- =2-
0 00000 Eliminate by initial test

SUGGESTED CODING FOR OVER·
CAPACITY OUTPUT-EDITING ROUTINE

(1) Overcapacity digit, in computer code,
to rA as OOOOOOOOOX.

(2) Exit Line to rX.

a oc m c Remarks

1215 37 0400 1222 Shift left 4
1222 70 1224 0004/1 Form Bring Order
1224 25 1229 0004/3 CONSTANT

(0004/ 1 25 1229 0004/3) Not punched. Brings
(thru) appropriate constant
(1238) to rA
1229 00 0000 0000 "O"
1230 00 0001 0000 "l"
1231 00 0001 0001 .. 2"
1232 00 0000 1000 u3••

1233 00 0000 1001 "4"
1234 00 0000 0100 "5"
1235 00 0000 0101 "6"
1236 00 0000 0010 "7"
1237 00 0000 0011 .. 8"
1238 00 0000 0001 "9"

(0004/3 EXIT. Not punched. Drum leve1=1240 max.)

Notes:

(1) At the end of the subroutine, the five
level card code is formed in the 1 level
of the five LSD positions of rA. The
main program would arrange to posi
tion these bits and buff with the appro
priate card image.

(2) Total maximum is 25 word times.

(3) The instruction locations given are not
intended to be compatible with exist
ing or forthcoming Library Routines.
The programmer should choose loca
tions compatible with his own pro
gram.

(4) It is possible that this subroutine can
be effectively coded in the regular
bands if the programmer will time his
entrances and exits appropriately.

(5) Words 1229 thru 1238 can be readily
coded to punch any type code : biquin
ary (5-4;..2-1) or straight binary
(8-4-2-1) as well as card code (1-3-5-
7-9).

15

16

Appendix

KEY TO CARD INTERLACE TABLE

The 90-column punched card is represented
in the Central Processor as twenty words.
Every group of ten columns forms a data
word of two images called the unprimed
and primed images or a word-pair. (Col
umns 41-45 and 86-90 are each treated as

Row

0
1
3
5
7
9

Columns

0
1
3
s
7
9

Columns

0

O'

1-10

5

5'

46-55

1

1'

11-20

6

6'

56-65

10-column groups and are placed into the
five least significant digit positions in the
computer words.) Each image is a com
puter word and is an exact representation
of the holes appearing on a particular sec
tion of the card-a punch equals a 1 bit. The
signs of all images are positive.

Any combination of punches may be repre
sented within the system; however, trans
lation instructions are provided only for the
standard Remington Rand code.

To locate the interlace factor, the base of
the symbol is

I ==input on Read-Punch Unit

J ==input on High-Speed Reader
O==output on Read-Punch Unit

The first subscript added to this base indi
cates the station; e.g., J 2 refers to input

2 3 4

2' 3' 4' ,_

21-30 31-40 41-45

7 8 9

7' 8' 9'

66-75 76-85 86-90

from the second read station of the High
Speed Reader. The second subscript refers
to the column group on the card (see
above).

The a~sence of an apostrophe refers to the
unprimed ·word, and a prime indicates the
primed word; e.g.,0' 12 refers to the primed
word of card-column group 2 which is out
put on the first (and only) punch station
of the Read-Punch Unit.

With a symbol such as this, the correspond
ing interlace factor can be added to them
band of the input or output instructfon to
determine the exact location of the card
group.

;

"

;

·,

l
;

;

INTERLACE TABLE
Read-Punch Unit

STORAGE LOCATION STORAGE LOCATION
ooxx OlXX

00 50 00 50
01 51 01 110 51 122
02 115 52 127 02 52
03 53 03 0'19 53 0'12
04 54 04 54
05 55 05 55
06 56 06 1'10 56 1'22
07 1'15 57 1'27 07 57
08. 58 08 010 58 017
09 59 09 59
10 60 10 60
11 61 11 120 61 113
12 125 62 118 12 62
13 63 13 0'10 63 0'17
14 64 14 64
15 65 15 65
16 66 16 1'20 66 1'13
17 1'25 67 1'18 17 67
18 68 18 015 68 013
19 69 19 69
20 70 20 70
21 71 21 111 71 123
22 116 72 128 22 72
23 73 23 0'15 73 0'13
24 74 24 74
25 75 25 75
26 76 26 I'll 76 1'23
27 1'16 77 1'28 27 77
28 78 28 011 78 018
29 79 29 79
30 80 30 80
31 81 31 121 81 114
32 126 82 119 32 82
33 83 33 0'11 83 0'18
34 84 34 84
35 85 35 85
36 86 36 1'21 86 1'14
37 1'26 87 1'19 37 87
38 88 38 016 88 014
39 89 39 89
40 90 40 90
41 91 41 112 91 124
42 117 92 129 42 92
43 93 43 0'16 93 0'14
44 94 44 94
45 95 45 95
46 96 46 1'12 96 1'24
47 1'17 97 1'29 47 97
48 98 48 012 98 019
49 99 49 99

I
INTERLACE TABLE
High-Speed Reader

STORAGE LOCATION STORAGE LOCATION
ooxx OlXX

00 50 00 50
01 JlO 51 J22 01 51
02 52 02 Jl5 52 J27
03 53 03 53
04 54 04 54
05 55 05 55
06 J'lO 56 J'22 06 56
07 57 07 J'15 57 J'27
08 58 08 58
09 59 09 59
10 60 10 60
11 J20 61 J13 11 61
12 62 12 J25 62 Jl8
13 63 13 63
14 64 14 64
15 65 15 65
16 J'20 66 J'l3 16 66
17 67 17 J'25 67 J'l8
18 68 . 18 68
19 69 19 69
20 70 20 70
21 Jll 71 J23 21 71
22 72 22 Jl6 72 J28
23 73 23 73
24 74 24 74
25 75 25 75
26 J'll 76 J'23 26 76
27 77 27 J'l6 77 J'28
28 78 28 78
29 79 29 79
30 80 30 80
31 J21 81 Jl4 31 81
32 82 32 J26 82 Jl9
33 83 33 83
34 84 34 84
35 85 35 85
36 J'21 86 J'l4 36 86
37 87 37 J'26 87 J'19
38 88 38 88
39 89 39 89
40 90 40 90
41 J12 91 J24 41 91
42 92 42 Jl7 92 J29
43 93 43 93
44 94 44 94
45 95 45 95
46 J'l2 96 J'24 46 96
47 97 47 J'l7 97 J'29
48 98 48 98
49 99 49 99

17

18

KEY TO PRINT INTERLACE TABLE

The 130 characters that can be printed on
one line are divided into thirteen ten-digit
print words. These words, and their cor
responding print positions, are shown in
the diagram. Before a print instruction is
executed, the thirteen print words are ac
cumulated, by program instructions, on a
specific main-storage band,in fixed word lo
cations of the print interlace pattern.

To locate the interlace factor, the base of

Print line
Posit ion

the symbol is P. The first subscript indi~
cates the print-line position, 1 through 13
(see diagram) . The absence of a prime
refers to the unprimed word of a word
pair; a prime denotes the primed word.

The interlace factor corresponding to the
symbol can be added to the m band of the
print· instruction to determine the place
ment of data to be printed.

INTERLACE TABLE
High-Speed Printer

STORAGE LOCATION STORAGE LOCATION
OOXX OlXX

00 Pl 50 P4 00 50
01 51 01 51
02 52 02 52
03 53 03 P7 53
04 54 04 54
05 P'l 55 P'4 05 55
06 56 06 56
07 57 07 57
08 58 08 P'7 58
09 PIO 59 09 59
10 60 10 60
11 61 11 61
12 62 P13 12 62
13 63 13 63
14 P'lO 64 14 64
15 65 15 65 P3
16 66 16 66
17 67 P'13 17 67
18 P6 68 18 68
19 69 19 69
20 70 20 70 P'3
21 71 21 71
22 72 22 72
23 P'6 73 23 73
24 74 24 74
25 75 25 pg 75
26 76 26 76
27 77 27 77
28 78 28 78 Pl2
29 79 29 79
30 80 30 P'9 80
31 Sl P2 31 Sl
32 S2 32 S2
33 S3 33 S3 P'12
34 S4 34 P5 S4
35 S5 35 85
36 S6 P'2 36 S6
37 S7 37 S7
38 SS 38 88
39 S9 39 P'S 89
40 90 40 90
41 PS 91 41 91
42 92 42 92
43 93 43 93
44 94 Pll 44 94
45 95 45 95
46 P'S 96 46 96
47 97 47 97
4S 9S 48 9S
49 99 P'll 49 99

19

TRANSLATION TABLE UNIVAC SOLID-STATE 90
Remington Rand Computer I Remington Rand Computer

Card Code to Code Ca rd Code to Code

Primed Unprimed Primed Unprimed

Character XX97 5310 54-21 Character XX97 5310 54-21
0 0000 0001 0000 T 0011 0100 II II
I 0000 0010 0001 u 0001 1001 1010
2 0010 0010 0010 v 0010 0101 0100
3 0000 0100 0011 w 0001 0101 1011
lJ. 0010 0100 0100 x 0011 0001 1011
5 0000 1000 1000 y 0010 0110 0110
6 0010 1000 f 001 z 0011 1000 1011
7 0001 0000 1010 Space 0000 0000 0000
8 0011 0000 1011 : 0011 0110 II II
9 0010 0000 1100 , (comma) 0010 1101 1101
A 0010 1010 1011 $ 0010 II II II II

B 0000 IOIO 1001 - 0001 1101 1011
c 0001 0001 1010 ti 0001 1011 1011
D 0000 1101 1011 * 0000 0011 0001
E 0000 0101 0011 % 0000 1011 1001
F 0011 0010 1011 ; 0011 II 10 II II
G 0001 1000 1010 I 0011 1100 II II
H 0001 0100 1011 + 0011 1010 1011
I 0000 1100 1011 0010 II 10 II II
J 0000 II 10 1011 & 0001 II II 1011
K 0010 1100 1101 I 0011 0111 II II
L 0010 0001 1100 (0011 1001 1011
M 0000 1001 1000) 0001 1110 1011
N 0010 1001 1001 0010 0110 0101
0 0000 0110 0011 0010 0110 0110
p 0001 0110 1011 0010 0100 0111
Q 0001 1100 I 011 0010 0000 1101
R 0001 0010 1011 0011 0000 II 10
s 0001 1010 1011 0011 0000 I JI I

20

U-1741.4 REV.2

