UNIVACIII

TECHNICAL BULLETIN

Programmer’s Guide

August 9,1962

The mnemonics for machine operation codes as printed in this manual are
considered acceptable but non-standard by UNIVAC. This means that:

1., The UTMOST processor will accept programs written using either this
set of mnemonics or the standard UNIVAC III set.

or,
2. A orogram will be furnished which will convert source programs with
the non-standard mnemonics to source programs containing standard

mnemonics,

The following table gives the relationship between standard and non-standard
mnemonics:

SALT UTMOST
(standard) (non-standard)

L LA
LGS LAN
EXT LF
ST SA
STCS SAN
-— SZ
A DA
S DS
AH DAH
SH DSH
M DM
D DD
BA BA
BAH BAH
BS BS
BSH BSH
SR DSR
SL . DSL
SAR ASR
SAL ASL
SBC BRR
CA o™
Cc C
CONE CPA
CZRO CPZ
TEQ JE
THI JG
TLO JL
TPOS JP
TUN J
TR Nyrs i
SSI SS
RSI RS

TSI Js

SALT UTMOST

(standard) (non-standard)
ATD LAD
DTA SAA
P LAE
SUP OR
ERS AND
LX LX
STX SX
IX IX
ICX IXC
TCI TC
RCI RC
TPE TPE
RPE RPE
TI0 TIO
TIO W
TIO TR
TCI TOV
TCI TOP
RIO RIO
RIO RW
RIO RR
ATO AT
PIO PI
TIOP JIP
IOF LC
IOF LWC
IOF LRC
NOP NOP
STMC sC
TR¥* SCJ
STMC SL
STMC SWC
ST™MC SRC
STCR ST
STCR SRT
STCR SWT
WAIT ;8]
LT RCK
DIS WD
RT RT
WT WT
ACT AT

An assembler directive will be supplied for specifying the desired set of
mnemonics., The method of accomplishing this will be specified later.

Manual Number:

N¢ 01047

UNIVAC Il UTMOST

MANUAL REGISTRATION SHEET

CHARGE TO: NAME

BRANCH

ADDRESS

DATE

This registration entitles the holder of this manual to receive all updating materials.

Remove this sheet and supply the above information. Immediately mail to:

MANAGER, PROGRAM LIBRARY SERVICES

UNIVAC
315 PARK AVENUE SOUTH
NEW YORK 10, NEW YORK

" U-3520 (REGIS)

UNIVAC Il UTMOST

N? 01047

UNIVAC IIT UTMOST

REVISION:

SECTION:

Index

DATE:

July 1, 1962

PAGE:

TABLE OF CONTENTS

1. INTRODUCTION

II. BASIC INTRODUCTION TO UTMOST ASSEMBLER LANGUAGE

Computers and Languages
The UTMOST Assembler

Symbolic Coding Format

a. Label Field

b. Operation Field
c. Operand Field

d. Line Control
Expressions

a. Elementary Items

b. Operators
Data Word Generation

a. ICW, Increment and Compare Word
b. TWC, Two Word Constants
c. + or - Operation Fields

Mnemonic Instructions
Line Items
Assembler Directives

EQU
RES
USE
FORM
SET
FLD

ro e v

I- 1

Im- 1

II -
I -
I -
I -

SO W

IIr- 7

om- 7
II-12

IIT - 18
II-18
II-19

II- 22
II - 23
I-25

II - 26
II - 26
II - 27
II-28
Io- 30
Im-31

UNIVAC IIT UTMOST

REVISION:

SECTION:

Index

DATE:

July 1, 1962

PAGE:

9-

10.

11.

TABLE OF CONTENTS (Cont'd)

g. END

h, DO

i. PROC

Je NAME

k. Procedure Reference Lists

Sample Problem
Sample Floating Dollar Sign Editing Procedure

Sample MOVE Procedure

PROGRAMMER'S REFERENCE GUIDE

Ao

Line Control

Label Field

Operation Field

Operand Field
Expressions

Mnemonic Instructions
Line Item

Addressing

Assembler Directives
Procedure Reference Line

Inter-Program Communication

Io-31
II - 32
II- 33
II-35
II - 36

om- 1

oI- 1

Im- 2

Im - 2

Im- 5

m- 7

or- 7

oI - 11

oI -11

REVISION: SECTION:

UNIVAC IIT UTMOST | Index

DATE: PAGE:

July 1, 1962 3

TABLE OF CONTENTS (Cont'd)

IV. OPERATING PROCEDURES Iv-1
V. TUNIVAC OI CENTRAL PROCESSOR V-1
VI. BOSS III COMMUNICATIONS Vi- 1

VI. MNEMONIC INSTRUCTIONS Vii- 1

UNIVAC IIT UTMOST

REVISION:

SECTION:

Notes

DATE:

July 1, 1962

PABE:

REVISION: SECTION:

UNIVAC IIT UTMOST

DATE: PAGE:

July 1, 1962

I. INTRODUCTION

UTMOST (UNIVAC THREE MACHINE ORIENTED SYMBOLIC TRANSLATOR)} is
an easy to learn and easy to use assembly language designed to permit rapid
efficient coding for UNIVAC III. UTMOST is a two-pass assembly system pro-
viding rapid translation from symbholic to object coding,

The UTMOST system contains a wide and sophisticated variety of operators
which provide the ability to fabricate fields during assembly without restrictions
on the programmer. The mnemonic operation codes describe machine functions
and prevent the programmer from having to learn a wide variety of octal machine
codes. The system has a series of ten assembly directing instructions which aid
greatly in promoting easy communication with input-output and executive systems.
In addition, the assembly directives provide the programmer with the ability to
write short routines which are variable at assembly time. These routines and
standard routines are easy to incorporate in the program, thereby reducing the
effort of the programmer and increasing programming production.

UTMOST produces relocatable binary output in a card form suitable for processing
by a binary card loader. It also supplies a listing of the original symbolic coding
together with an octal representation of the word generated. Certain error flags
are also supplied in the listing.

The UTMOST manual is in several sections. Section II is designed to aid the pro-
grammer unfamiliar with this type of system. Section III is designed to act as a
brief programmers' reference guide to the UTMOST system.

UNIVAC IIT UTMOST

REVISION: SECTION:

DATE: PAGE:

July 1, 1962

II. A BASIC INTRODUCTION TO THE UTMOST ASSEMBLER LANGUAGE

A. GENERAL

1.

Computers and Languages

In order to solve a problem, a computer must be given a series of
instructions which determine how the computer is to operate. In
addition, the computer must be given one or more sets of data upon
which to operate. This combination of instructions and data is called
a program. A program must define in complete detail exactly what
the computer is to do, under every conceivable combination of cir-
cumstances, with the data which is read into or processed by the
computer. The number of instructions required for the complete
solution of a problem may be a few hundred or many thousands,
depending upon the problem. The computer may refer to these
instructions one after another. I can also be instructed to repeat,
modify, or skip over certain instructions, depending upon inter-
mediate results or circumstances. The ability to repeat operations,
usually called looping, combined with other facilities of modifying
and skipping over instructions, permits a significant reduction in
the number of instructions required to perform a given job. For
example, two sets of numbers exist and it is desired to add the
corresponding numbers of each set together. Instructions may be
written to add the first number of the first set to the first number

of the second set, then to repeat this operation with the second, third,
fourth, etc., numbers of each set. In this way, a few instructions
may cause thousands of additions.

Since the computer.does not respond to the English language, the
program must be encoded in a form known as machine language.
Considerable time and effort have been expended in developing
programming systems that allow the programmer to write in a
symbolic lIanguage more easily comprehensible to him than machine
language. Associated with a programming system is a machine
language program called a processor. The processor accepts a
program written in the symbolic language (source program) and
converts it into a machine language program (object program). The
symbolic language utilized to program for UNIVAC II is known as
UTMOST (Univac Three Machine Oriented Symbolic Translator).

REVISION: SECTION:

I

UNIVAC IIT UTMOST

DATE: PAGE:

July 1, 1962 2

2. The UTMOST Assembler

The UTMOST assembly program was designed to provide a programmer
with an easy to learn and easy to use assembly system. UTMOST is

a straightforward data processing program, accepting input data
(symbolic coding) and processing it and producing as system output,
object coding usable by UNIVAC III directly.

As the symbolic coding is processed, the UTMOST assembler tallies
the number of lines produced in a location counter. The location
counter can be referenced by the programmer in his symbolic coding
and may be utilized throughout his program., UTMOST also provides
the programmer with a series of 'operators' permitting him to fab-
ricate any object code values which he may need. A small number of
extremely powerful assembly directives are also made available which
allow the programmer to direct the assembly in an extremely positive
manner during the actual assembly. In addition, the programmer
may use mnemonic operation codes which explain machine functions
by their very nature rather than having to learn the machine code bit
configurations,

The UTMOST assembler provides output in the form of a loadable
object program plus a listing of the symbolic program and the object
program. The listing also provides the programmer with error flags
at whatever points the assembly system detected the errors.

In the section following, each feature of the UTMOST assembly system
is examined in detail with examples of each operation, as well as an
illustrative problem demonstrating a legitimate approach to the
solution of a simple data processing problem for UNIVAC II utilizing
the UTMOST language.

3. Symbolic Coding Format

In writing a program in UTMOST symbolic language, the programmer
is primarily concerned with three fields, a label field, . operation field
and operand field, In addition, it is possible to annotate the symbolic
language at the time it is written through the use of comments which
will provide clarity for the programmer and relate the coding to its
associated flowchart,

REVISION: SECTION:

UNIVAC IITI UTMOST I

DATE: PABE:

July 1, 1962 3

In writing in UTMOST language, the programmer is not bound by a
fixed length field concept as is the case with older assembly languages,
All of the fields in UTMOST are in free form, and are designed to
provide the greatest convenience possible for the programmer.

PROGRAM PROGRAMMER DATE PAGE ___OF _ PAGES
, LABEL A OPERATION A OPERAND A COMMENTS 72rs ”
cor b b b de e b b b b b b b b b e b b pan i
co b bbb b b e b b b b b b b o b ey foaa b
b by b b b b b b b b b b b o b b b b P e
b b b b b b b b b b b b b b b b Lo P b
Illllll‘lll|ll|ill||ll||lll||Illlll!lllllll||||||I|||!I|III||I||!ll‘(|| |||||ll
o b b b b b b e Lo b b b b b e b b b P e i
||I|ll|!|||l|s||||||l|1|||||~|||IH‘|I||||1|1|1|1||1||||1|||||||x|||1l| |||I|II
c e b b b o b b b b b b b b b b b D baa b
bt bbb b b b b b b b b b benn b bvn b b
|| I'll]ll!llllllIlIIIIlLlIIIII|||I|III|I|I|!II|IlllLllllL||II‘I!|

o N ENEE RS AN Pl e boiapani e
'|| ll'| I'|||I||||1|||||I‘

|

a.

Label Field

A label is a method of identifying either a symbolic line of coding,
or a word of data, In writing a label in UTMOST, the programmer
may use any meaningful combination of one to eight characters,

Of these eight characters, the first must be an alphabetic (A. .. Z),
and the others, if present, may be either alphabetics or numerics
(0-9). Sample labels are listed below:

PRNT ARRANGE
ONE ADOL
A OVER2

In writing a label in the label field of a symbolic line, the first
character of the label must be left justified within the line and
the field terminated by a blank. There must be no blanks within
the label field itself. When the label is analyzed by the UTMOST
assembly program, it is equated to the current value of the
location counter except in the cases of a label associated with
the EQU, FORM, DO, FLD, PROC and NAME assembly direc-
tives. Each of these special cases is discussed separately in
the portions of the manual dealing with the specific directive.

REVISIQON: SECTION:

I

UNIVAC IIT UTMOST

DATE: PAGE:

July 1, 1962 4

. LABEL A OPERATION a OPERAND
OvicAl NeB L b b b b
e beee b e bene b b b
D'IEJ_LIILIMII)IQEII‘SIIJ_Ll.[IllllllllIJl
ol b be e b b b b
l lll |

Iﬂ&ﬁﬂm&_& Ll 2B

In the symbolic lines illustrated above, each of the labels in the
label field, OVER, ONE and ARRANGE follow the requirements
of the label field. Each starts with an alphabetic in column 1,
is from one to eight characters in length, and is terminated by
a space.

b. Operation Field

The operation field of a symbolic line informs the assembler of
the purpose of the line, An operation field may be up to eight
characters in length, and may contain a mnemonic machine
operation code, an assembler directive, a label associated with
a FORM NAME or PROC directive or a data generating code.
Each of the above categories will be discussed in detail in its
appropriate section.

An entry in the operation field is terminated by a blank unless

it is a plus or minus sign, in which case the operand field may
begin in the succeeding column, If the line does not have a label,
the operation field may begin in the second column of the coding
form,

If an operation field contains an assembler directive other than
RES (which increments the location counter), the location counter
will not be affected. In all other cases, the location counter will
be incremented by one after the line has been generated.

REVISION: SECTION:

UNIVAC IIT UTMOST i

DATE: PAGE:

July 1, 1962 5

. LABEL A OPERATION A OPERAND
ME&\MHHJ}@,«\‘BM||\11|||||||ll‘|1¢
em Lz b oo o e e
|1|ng1.§£‘1:1||31>1||l|\||1|||||l|1\||¢
||li||uL9'naLi|i|jlﬁi}|31|iul‘llii%iu
1 1 I l | | |

In the illustration of operation fields above, Line 1 contains an
operation field LA following the label ONE,

Line 2 contains an operation field, CM, starting in column 2,
showing that no label is present.

Line 3 contains an assembler directive as an operation field,
RES.

Line 4 also contains an assembler directive in the operation
field, USE.

Note that each operation field follows the rules stated above.

c. Operand Field

The operand field of a symbolic line follows the label and opera-
tion fields. It consists of one or more expressions defining the
information required by the operation field of the line.

Expressions within the operand field are separated by commas,
and the comma indicates that another expression follows. Ter-
mination procedures are discussed under Line Control, below,
The maximum number of expressions on a line is determined by
the content of the operation field of the line. However, any line
may contain less than the maximum number of expressions
indicated by the operation field; so long as it has at least one.
The unwritten expressions will be assumed by the assembler to
be zero.

REVISION: SECTION:

I

UNIVAC III UTMOST

DATE: PAGE:

July 1, 1962 6

, LABEL A OPERATION A OPERAND

wA e o b b b b b
wxl | 1 et gl boen by b

wia kb b b b b
' ' , | | | |

In the examples, the 0 following LA represents a single
expression in the operand field, The second line of symbolic
coding represents a three expression operand field, each
expression separated from the previous one by a comma.,

d. Line Control

The information content of a line to the assembler consists of

a label, operation, and operand fields, The information content
is normally terminated when the maximum number of expressions
required by the operation have been encountered (or maximum
number of lists in the case of a procedure reference, or by
column 72, whichever occurs first, There are two special marks
which override the normal rule:

1) Continuation: If a '";" is encountered outside of an alpha-
betic item, the current line is continued with the first non-
blank on the following line and there is no more information
to the assembler on the line in which the '";" occurred.

2) Termination: If a '"," followed by a blank is encountered
outside of an alphabetic item, the line is terminated at
this point, If additional expressions are required by the
operation field, they are assumed by the assembler to be
Zero,

A continuation or termination mark may occur anywhere on a
line. Following the information control of a line, any characters
may be entered.

UNIVAC IIT UTMOST

REVISION: SECTION:

II

DATE: PAGE:

July 1, 1962 7

L

L

. LABEL A OPERATICON A OPERAND

LlBlBlElz.llﬂollell||||i|\11||ui|||i||i

mﬂ||;x|||u|||u|||1||1|i|||||u

IJIIJx‘QI‘fH\|||\1||||l|‘|ll‘1ll‘lll

il bbb b b b

The semicolons indicate that the line is continued on the next
line, The assembler would treat the three lines as though
they were the following line.

2 bbb b b b b b b b

‘|||i¢

III‘IIIIIII|lII|IIL}III[1IIIIII!Illl!llllll|lll||lll|‘

|

EENEE

£10

LpplEls 1Ecdrin ol a6 | gwids LiiNg) s TR0 plamaN B trse ey

o ITHICS Al mE 1181 Blis e Imarmliwamen: Bl TwlE PaRi Gl (Srnlcen 1

o] |

1

Lol

|

JIIILI

o 1A e st 8 AR D o] TiHiEl SR e s ST mlr 1ol 1)1
! -]...l...l||.|..:'---!»-n!-lx‘||||1|||ll

The three lines above use a period followed by a space to
terminate the lines, Any information following the period
space is considered to be a comment and will be printed on
the symbolic output listing. The assembler will take no
action on the information following the period,

Expressions

An expression is an elementary item or a series of elementary
items connected by operators. It normally appears in the operand
field of a symbolic line,

Elementary Items

UTMOST permits the utilization of a series of elementary
items which may be used in expressions.

1) Label: Any label may be used as an elementary item.
The structure of a label corresponds to the description
of the label field discussed earlier. A label may be
from one to eight characters in length, the first of which

" must be an alphabetic. When a label has been encount-
ered in the label field of a symbolic line (with exceptions

llll!l

UNIVAC IIT UTMOST

REVISION: SB8ECTION:

I

DATE: PAGE:

July 1, 1962 8

noted under Label Field), it is assigned the current
value of the location counter. Thereafter, when it is
encountered within an expression, the integer value
initially assigned to it will be substituted for the label
within the expression,

i lirdma Lo b b b L

L ez b b b v g |

[||ll|M&N]6|EJllllljllllll“lllllll

L Lvebswslaz Lo Lo by L |

2)

3)

Various sample labels are illustrated above as they
would appear as elementary items in the operand field.

Location:

The current value of the location counter may be used
as an elementary item within the operand field of a sym-
bolic line. The format of a reference to th}e location
counter is the dollar sign ($). When this sign appears
in an expression, the value of the location counter is
substituted for it. It is useful in reflexive addressing.

Locdoa g bvr g be el
g Lo b b

Lo b bvee b by

In the example above, if the current value of the loca~
tion counter was 5280, the integer value 5280 would be
substituted for the dollar sign ($) in its expression, and
right justified within the object field,

Octal: Octal values (base eight) may be represented in
expressions as elementary items by preceding the des-
ired value with a zero. The assembler will convert these
values to their corresponding binary (base two) equival-
ents, The converted binary integer will be right justi-
fied in its object coded field.

REVISION: SECTION:

II

UNIVAC IIT UTMOST

DATE: PAGE:

July 1, 1962 9

—— A A R R R .

Lt bbb by g g bbbyl
.|I||IOUl7|IIlJJIJ‘IIlllllll
cic b e bewa by b by
i lezelaz s b aa b bl
pea b bva b bean b by
In the examples above:
017 is equivalent to 000 000 000 000 000 000 001 111

07007 is equivalent to 000 000 000 000 111 000 000 111
in their converted object code,

4) Decimal: Decimal values may be used as elementary
items within an expression. Where they appear, decimal
values (base 10) will be converted into their binary equiva-
lents and right justified within their object fields, A
decimal item is represented as a non-zero digit followed
by decimal (0-9) digits.

oo b b bl
lllll(?JLL¢;ljiLl
Lt lzopl cia |
JIIIIIIlIIJ‘llLI

| t [}
In the examples above:
9 is equivalent to 000000000000000000001001

1024 is equivalent to 000000000000010000000000

5) BCD: TUNIVAC III binary coded decimal excess three
values in four bit notation may be utilized in elementary
items by preceding the value with a colon (:). When a
decimal value appears in this format, it will be trans-
lated by the assembler into its corresponding 4 bit base
16 value and right justified within its field.

REVISION: SECTION:

UNIVAC III UTMOST I

6)

7)

DATE: PAGE:

July 1, 1962 10
e Lo Lo boaa o
11\;|i10u\&L1|||\||||t|lll

| I I ! 1
In the examples above:
:9 is equivalent to 0000 0000 0000 0000 0000 1100

:1024 is equivalent to 0000 0000 0100 0011 0101 0111

Alphabetics: Excess three six bit alphabetic characters
may be represented in an elementary item by enclosing
the desired characters within apostrophes (). Since the
assembler recognizes an apostrophe as the end of the
alphabetic value, it is not permitted to use an apostrophe
within the alphabetic grouping. The six bit object code
resulting from an alphabetic item will be right justified
within its field and preceded by binary zeros (space
codes).

T O 1 N R A O O A A B I
L Meaeler Lo boa b
bzl b b

.||||||‘|||I|||||II|II

In the example above:

'"PAGE' is equivalent to 101010 010100 011010 011000
'Z' is equivalent to 000000 000000 000000 111100

Floating Point Numbers: Floating point numbers may be
represented within an elementary expression by including
a decimal point (period) within the desired decimal value.
the converted value will be in standard UNIVAC excess
50 floating point format with a ten digit mantissa and a
two digit characteristic.

N U W R N T N T T T T S S W N ST S SR

lLl’@l.l/lﬁ’lllllllllll,lll

| | | 1 1
In the example above:

3.14 is equivalent to 513140000000 in 4 bit BDC digits.

UNIVAC IIT UTMOST

REVISION: SECTION:

I

DATE: PAGE:

July 1, 1962 11

8)

9)

10)

Field: A field may be referenced as an elementary
expression by writing a field label followed by an expres-
sion enclosed in parentheses representing the address

of the partial word. The field item is discussed in
greater detail in the section on Assembler Directives,

FLD directive.
PR U N N T NN TN N TS U A T N A

e laiuED Ty

In the example above:

EXT represents the bit control pattern for field selection,
(VALUE) represents the address from which the field
will be selected.

Parameter; A parameter may exist as an elementary
item by following the procedure label with one or two
expressions enclosed in parentheses. The parameter

‘item is discussed in detail under Assembly Directives,

PROC directive,

Line: An entire line may exist as an elementary item by
enclosing the line within parentheses. The assembler
will generate the value of the word that the line would
generate if it existed as a separately coded line.

I N T T O T T T T O Y O

el b b

In the above example:

('DON'") would generate the constant DON in six bit excess
three alphabetics preceded by binary zeros in the same
manner that 'DON' would on a symbolic line by itself.

REVISION: SECTION:

II

UNIVAC III UTMOST

DATE: PAGE:

July 1, 1962 12

b. Operators

An expression may consist either of an elementary item, or a
series of elementary items connected by operators as shown
in the table below:

+ Arithmetic Sum

- Arithmetic Difference

* Arithmetic Product

/ Arithmetic Quotient

++ Logical Sum (OR)

- Logical Difference (EXCLUSIVE OR)
** TLogical Product (AND)

// Covered Quotient (a//b = a+b-1)
b
= Equals

> Greater Than
< Less Than
b

+ a+b = a*10

k- g*-b= a*lO-b

1) + Arithmetic Sum : The arithmetic sum operator may be
used to combine two or more items. The assembler will
sum the integer values of the items and the resultant

integer value will be utilized in the resulting expression.

Lo KA Lo b b by |

|1||+|,5‘|+|/L511||||||||J||||l||||

In the above examples

7 + 3 would produce the integer 10 in binary.
$ + 15 would produce the current value of the location
counter incremented by 15 in binary,

2) - Arithmetic Difference : The arithmetic difference
operator may be used to subtract one item from another.
The assembler will subtract the integer value of the
second item from that of the first, and the resultant
integer difference will be substituted in the expression.

REVISION: SECTION:
II
UNIVAC IIT UTMOST
DATE: PAGE:
July 1, 1962 13
I I N WU I N WO Y N AN NS N S T T N N
BER =t RENE RN RN
|1 I'I'!YIRILULIE-I*IIIGI Lol
o L=l oo Lo b |
! | | | |

In the above examples:

$ - 3 will produce the current contents of the location
counter less three.

VALUE - 10 will produce the integer equivalent of the
label "VALUE" minus ten.

7 -4 will produce the integer three.

3) * Arithmetic Product: The arithmetic product operator
may be used to multiply one item by another producing
the arithmetic product. The assembler will multiply the
integer value of the first item by the integer value of the
second item and the resultant integer value will be sub-
stituted in the expression,

[T N T O N TN T N TN TN N N NN T O Sy S S Ty S

Lz Lo b b b

Mliﬂullalllliilllll

| I | | ! !
In the above examples:

7*3 will produce the integer value 21,
$*2 will produce an integer value equivalent to the current
contents of the location counter times 2,

4) / Arithmetic Quotient: The arithmetic quotient operator
may be used to divide one item by another producing the
arithmetic quotient. The assembler will divide the
integer value of the first item by the integer value of the
second item, and the resultant quotient will be utilized in
the expression. The remainder is discarded by the
assembler.

REVISION: SECTION:

UNIVAC III UTMOST » 1

DATE: PAGE:
July 1, 1962 14
llllﬂ%lﬂllfﬂlllulllllll
1||+|:i/1/|o|.:2|¢|||||||||1J_|
II‘“IIBL’BI/LQ.IIIIIIIIIII[J
R A |

In the above examples:

44/4 will produce the integer value 11,

$/1024 will produce an integer value equivalent to the
number of possible index registers required for area
addressing in the program up to this point in the program.
33/2 will produce an integer value of 16 (remainder has
been discarded).

5) ++ Logical Sum (OR): The logical sum operator (OR)
may be used to logically sum the binary equivalents of
two items, The assembler will logically add the two
values and the resulting logical sum will be utilized in
the expression,

|11||||1|1||l|lllllllll
||+1i|\|ﬂ|’|+|-h\|8|’|||ill|i||L

In the above example:

'A' in six bit code is 010100
'3" in six bit code is 000110
Logical sum generated 010110

6) -- Logical Difference (EXCLUSIVE OR): The logical
difference operator may be used to obtain the logical
difference between the integer values of two items. The
assembler will perform an EXCLUSIVE OR on the two
items (where a bit is present in corresponding position
in both items, the result is binary 0, where no bit is
present in corresponding positions, the result is binary
0, where a bit is present in either one of corresponding
positions, the result is 1). The resultant integer is then
utilized as the value of the expression,

REVISION: SECTION:
I
UNIVAC IITI UTMOST
DATE: PAGE:
July 1, 1962 15
prr b b b b e b b gl
e LS e =S e b b
!) '

0

8)

In the above example:

V' in six bit code is 111000
'T? in six bit code is 110110
Logical difference is 001110

** Logical Product (AND): The logical product operator
may be used to AND (Logically multiply) the integer

value of one item by another. The assembler will logically
multiply the two values and the resulting logical product
will be utilized in the expression.

ettt b brea b b

o B v A

In the above example:

V' in six bit code is 111000
'T! in six bit code is 110110
Logical product is 110000

atb-1

b)
operator may be used to divide the integer value of an item
by the integer value of a second item or expression. The
effect is the same as adding one to the integer value of the
quotient in straight division (A/b) if there were a remainder.
The resultant integer will be utilized in the expression.
piadra b be e b by

// Covered Quotient (a//b = The covered quotient

L1 l(,lﬂl-ls'l?'lemm)l/l/lllolsuf'/i Ll

|ll'|||‘|-.‘-..‘ '
In the above example:

($-START)//1024 (where START is the first location
required by the program and greater than 1024) will produce
a covered quotient equivalent to the number of index reg-
isters required for area addressing up to the pomt where
the expressionappeared,

UNIVAC III UTMOST

REVISION: SECTION:

i}

DATE: PAGE:

July 1, 1962 16

9)

10)

11)

= Equal: The equals operator may be used to compare

the integer values of two items or expressions. If the
two integer values are equal, the assembler will generate
a binary 1 as the resultant field. If the two integer values
are not equal, the assembler will generate a binary 0 as
the resultant field,

b rv ep 1 p bbbt
[(I,III’IIIIIIIIIII

L WEmolga Ll

In the above example:

If $= 7083, a value of binary 1 will be generated.
If $# 7083, a value of binary 0 will be generated,

> Greater Than: The greater than operator may be used
to compare the integer values of two items or expressions.
If the integer value of the first item or expression is
greater than the integer value of the second, the assembler
will generate a binary 1 as the resultant field, If the first
value is less than or equal to the second, the assembler
will generate a binary 0 as the resultant field.

cttlrrr ey e br bbb

In the above example:

If the value of AMOUNT is greater than 2, a binary 1 will
be generated, otherwise a binary 0 will be generated.

< Less Than: The less than operator may be used to
compare the integer values of two items or expressions,
If the integer value of the first item or expression is less
than the integer value of the second, the assembler will
generate a binary 1 as the resultant field., If the first
value is greater than or equal to the integer value of the
second, a binary 0 will be generated.

A R I IO 1 T 1 T I S N O I

L owalTieid Lol
A

i |
| T

|||‘I !

REVISION: SECTION:

II

UNIVAC IIT UTMOST

DATE: PAGE:

July 1, 1962 17

In the above example:

If the value of COUNT is less than 5, a binary 1 will be
generated, otherwise a binary 0 will be generated.

12) *+ Positive Exponent: The positive exponent operator
may be used to create a two word floating point constant
in %Xcess 50 notation where a * + b is equivalent to a
*10°. Both words must be excess three binary coded
decimal numerics.

PRRETURSN SN TS NN NN AN NS VNN N NN NN NN SN TN N N N O Y B |

L1l |J_I) |§|I|Oula|i|+1£ll 151 1 I Lol
| 1 | | | |

In the above example:
:10, 0*+:15 will produce 671000000000

13) *- Negative Exponent: The negative exponent operator is
similar to the positive exponent operator except that it
will produce a floating point word in excess 50 notation
with a characteristic from 0 to 50,

[N T N T T T T T T o
L1|f|L||:|l|$'lolc|~m—|3l3|||IUIL

bbb b b

In the above example:

:15, 0*-:3 will produce 491500000000 as the integer equiv-
alent in standard UNIVAC excess 50 floating point format,

In all of the foregoing cases where items are connected by operators, if
the value produced by an expression is a negative integer, it will be represented
by a 2's complement unless the operation field of the line contains an EQU directive
or, in some cases, the operation field is + or -.

UNIVAC IIT UTMOST

REVISION: SECTION:

I

DATE: PAGE:

July 1, 1962

Data Word Generation

The UTMOST assembly system provides three means of generating
data words other than expressions. These data words consist of
Increment and Compare Words, two word constants; and words with
a plus (+) or minus (-) operation field, The last category provides
the ability to generate one word constants, indirect address words
and field select words with or without index register indices.

a,

Increment and Compare WORD, ICW

The increment and compare word is used to prepare a word
suitable for incrementing and comparing an index register
(with the IX and IXC instructions).

The Increment and Compare word is written with ICW in the
operation field of the line, followed in the operand field by two
expressions, e, and e_. The first expression, e , represents
the comparison amount and the second expression, e_, repre-
sents the increment. The format of the generated word is
illustrated below:

P4 10{9 1

ICW S e1 ez

N T T T T T T I O O

| zent 1 ditlsioy, Lot

In the above example:

ICW informs the assembler that this is an increment and
compare word, $+ 30, the first expression represents the
comparison amount;1, the second expression, represents the
increment,

Two Word Constant Generation, TWC

A two word constant may be generated by placing TWC in the
operation field of a line, and the constant in the operand field,
This symbolic line must have a label., The assembler will
generate the value of the expression in the operand field, right
justify filling with binary zeros the resultant value in the two
word field, and assign an address to the label, The left half

18

UNIVAC III UTMOST - age: E
July 1, 1962 19

of the two word constant may be addressed by using the label,
the right half by using the label plus one,

N T T T O O A A N O B
zERel 1 mmes 1 o Lo Lo b lvaa g
con b b by b b by aa b
#@RlEIT‘WIC-l:II(I\iPIﬁIGLEE |M01'iﬁ)1|511151||§;

In the above examples: .

ZERO TWC (0) will produce a two word constant of binary
Zeros,

HDR TWC ("PAGE NO.'") will generate a header line for
editing purposes.

The first example may be referenced by ZERO+1 and a two
register indicator in the "a'' field of an instruction, the second
by HDR+1, and a two register indicator in the "a' field,

¢. + or - Operation Field: A + or - operation field plus from one
to four expressions in the operand field may be used to generate
specific constants consisting of a one word constant of datum,
an indirect address word, a field select word without index
register notation (or implied index notation), and a field
select word with specific index register notation,

1) One word data constants: One word constants may be
generated by placing a + or a - in the operation field
followed by one expression in the operand field. It is
not necessary to leave a blank between the + or - sign
in the operation field and the operand field,

UNIVAC III UTMOST

REVISION: SBECTION:

I

DATE: PAGE:

July 1, 1962 20

'nllﬂ\blﬂn‘M’ll[lll||1|||111§

2)

- |llL|IIIlllllIlI|Ill|
||1|+N|A|L|u|E|+|1|q1||1||l|1||

Lzlsiad b i bl

In the above examples:

A will produce a one word alphabetic constant in six bit
code containing the word "DATA",

B will produce a one word constant containing the current
value of the location counter in binary, right justified
with preceding binary 0s and a negative sign,

C will produce a positive binary constant containing
the address plus ten of label "VALUE",

D will contain a negative constant in excess three binary
coded decimal notation preceded by binary zeros of the
value "'5280",

Indirect Address Words: Indirect address words may be
generated through the use of a + or - operatjon field plus
two expressions in the operand field, The first expression
will be generated as a fifteen bit UNIVAC III address, and
the second expression will be generated as a four bit index
register code. The sign of the word will be the sign in

the operation field,

L L by v gy

I HlDlRlTlm,«—lnohl L9 g

In the above example:

An indirect address word will be generated containing

the fifteen bit address of the expression 'DATA+10! in the
least significant fifteen bits of the word, Index Register
#9 in the four most significant bits of the word, and the
sign of the word will be positive, indicating that no chain-
ing of indirect addresses is desired.

UNIVAC IIT UTMOST

REVISION: SECTION:

I

DATE: PAGE:

July 1, 1962 21

3) Field Select Words: Field select words may be generated

4)

through the use of a + or - operation field plus three
expressions in the operand field, The first expression
will be generated into a five bit left bit control (plus
binary three) integer indicating the left boundary of the
field to be selected. The second expression will generate

the right boundary of the field, also as a five bit binary

integer plus binary three,

The third expression will generate a ten bit binary address
for the word(s) from which the field is to be selected, The
sign of the generated word must be positive,

oot beaa

L1t |z|g“| i1 [dauda | |1y

1]] 1 !
In the above example:

The first expression will generate 01111 (binary 15) as
the left bit control, the second will generate 01000
(binary 8) as the right bit control, and the ten bit address
equivalent to "'VALUE' from the third expression,

Field Select Words: As in 3, above, a field select word
may be generated using four expressions in the operand
field following a + or - operation field, The first express-
ion will generate the left bit parameter, the second ex-
pression the right bit parameter, the third expression the
ten bit 'm' address, and the fourth will be used to generate
the index register designator.

cp e bbb
IIIH/IQI)I\EIJ:IV|AILJNJEIJI8'|llIL

Illllllllllllllllllll
In the above example:

The first expression will generate binary 15 as the left

it control, the second will generate binary 8 as the right
bit control, the third will generate a ten bit address equiv-
alent to 'VALUE', as modified by the index register, 8,
specified in the fourth expression,

REVISION: SECTION:

UNIVAC III UTMOST I

DATE: PAGE:

July 1, 1962 22

Mnemonic Instructions

The UTMOST assembly system utilizes a series of mnemonic instruct-
ions corresponding to the octal machine code instructions in object
coding which are recognizable by the computer, The mnemonic opera-
tion codes describe the function of the instructions, thereby removing
the problem of learning the octal operation codes, or their binary
equivalents. In some cases, a combination of octal operation code

and bits in the AR portion form instructions. Mnemonics have been
created to save a programmer from writing or knowing the parameter
AR bit configuration for most of these.

UNIVAC II's instruction word consists of a 24 bit word with the sign
in bit 25 used to indicate either indirect addressing or field selection.
The format of the word on a bit basis is illustrated below:

24 2120 1514 1110 1

where ""b" indicates the index register designator,

"op'" the operation code,

"a" the arithmetic register(s) designator, and

"m" the ten bit area address of the operand,
Since UTMOST provides semi-automatic insertion of area index
register assignments, it is unnecessary to write a "b" designator
in many cases.
(USE Directive) The order of writing a symbolic instruction line has
been altered from the hardware format to provide greater convenience

in programming, The format is:

op a,'m,b

REVISION: SECTION:

H\

UNIVAC IIT UTMOST

DATE: PAGE:

July 1, 1962 23

Type 0 Instructions: Type 0 instructions have three fields repre-
senting the "a'", "m'", and "b" fields of the instruction word, re-
spectively. The sign of the instruction will be + unless the "m"
portion of the instruction is preceded by an asterisk indicating
indirect addressing or field selection,

’l)llhllulllll
0RL | :lm | |T|Em|01f-|én| HI i

||6‘1m||h|n1"1£|mpl+lé|\||llu|||r||

In the above illustration:

LA, OR, and SA are mnemonic instruction codes of type 0 category,
requiring in each case the "a", "m'", and "b" fields., (The "b" field
may be omitted, if the USE assembler directive has been inserted in
the program prior to the assembly encountering these instructions.

Type 1 Instructions: Type 1 instructions have two fields representing
the "m" and "b*"* portions of the instruction word, respectively, The
sign of the instruction word will be + unless the "m' portion of the
instruction is preceded by an asterisk indicating indirect addressing
or field selection,

rJunEleDnllulnl|||I|||l|1|l1|uI[|
||H|rullulmllulllnlr

_QJ_BJﬁJ&RJAJNJé@‘“I)IllIIIIIJIIIIIIIt

In thé above illustration:

J is the mnemonic code for the Jump instructions, the first instruct-
ion utilizing direct addressing, the second indirect addressing.

7. Line Item

A line item is an instruction line,. form reference line, or data
word line without label field and without leading or trailing blanks,
enclosed in parentheses.

Lo bt by P by b b

LA |l|,.| Yo W OO T Lo by
i ikt raorderner Aoy 1411

1At |‘/1J.| WSMpoN) o b b
] I 1 N N

: SECTION: o
UNIVAC IIT UTMOST - PAGE:
July 1, 1962 24

In the above examples:

TA 1, (J $+5) The last expression is an instruction line written as
line item,

LA 2, (MASK 70707070) The parenthetical expression (MASK 70707070)
is a form reference line written as a line item.

LA 4 ('DON') The parenthetical expression (*"DON') is a data word
line written as a line item,

In each case, the assembler will generate an address which will be

the address of the translated parenthetical expression. The translated
parenthetical expression is called a literal. I the literal is identical
to any other literal, the location assigned is the location of the previous
literal, thus eliminating duplication,

‘When a line item appears in the address field of an IX or IXC instruct-
ion and has two expressions, it is evaluated as a data word with ICW
in the operation field.

In the above example:

The assembler will generate an index register increment and compare
word equivalent to the same expressions in an ICW line.

A literal will be double precision if the line was a TWC line or if it
was a data line with one expression and the mode of the expression
was floating.

A L3y mwel Sienles N /0l 11
b b b b b by
A L apl e g Lo b b
In the above examples:

The first example will generate a two word constant (double precision)
of the alphabetic constant "PAGE NO.,"

The second example will generate a two word excess 50 floating point
constant where 3, 14 is equivalent to 513140000000,

UNIVAC IIT UTMOST

REVISION:

SECTION:

o

DATE:

July 1, 1962

PABE:

25

Assembler Directives

The UTMOST assembler provides the programmer with a series of
powerful operation codes in the form of Assembler Directives. These
assembler directives do not produce coding in and of themselves, but
effectively provide a programmed means of controlling the process of

assembly,

There are ten assembler directives as shown in the table below:

Directive | ~ Purpose
1, EQU Equate operand value to label field,
2.1 RES Reserve memory locations,
3.| USE Assign index registers for area addressing,

4, FORM Designate arbitrary word format,

5. FLD Specify Field Selection pattern,
6. END Designate end of program or procedure,
7. DO Generate designated line(s) of coding,

8. PROC Generate associated coding if referenced,

9. NAME Qualify procedural coding,

10, SET Set index register to assumed value,

None of the assembler directives except RES will cause the location
counter to be incremented, However, if coding is generated as a

result of an assembler directive, the location counter will be incre-
mented in the usual manner. A detailed discussion of each directive

follows in this section.,

UNIVAC IIT UTMOST

REVISION: SECTION:

II

DATE: PAGE:

July 1, 1962 26

a.

EQU
The EQU assembler directive causes the label in the label field
of its line to be equated in all succeeding references in the coding
to the value of the expression in the operand field of the symbolic
line, Thereafter, the label may be used in an expression, and
the assembler will substitute for the label the integer value of
the original expression in the operand field of the EQU line,

TR SN NN WA NN TN N SN WOUN NN S (O NN SN SO SN S N |

nmulE@m|sall||1l[|||

@mm!a®wl|&n‘||||nxnl
R aew | Ll]

In the above example:

The four arithmetic register names have been equated to the
binary values utilized in object code to address the respective
registers, After these four EQU directives have been encountered
by the assembler, the AR portion of an instruction may contain
the label names of the registers, and the assembler will recog-
nize them as the associated binary values. Accordingly, coding
referencing these registers could read as follows:

et lrer b b b d

| | ILIM 1 nﬁlﬂlilhﬁlklé’l BENE 1

L asler L wlREARK g]

Ll el b bl

: o
RES

The RES assembler directive causes the value of the expression

in the operand field to be added to the location counter. It may

be used to reserve a specific or variable number of locations
for input/output storage, or any other programmable purpose.

(If the expression in the operand field is negative, the value of

the expression will effectively be deducted from the location
counter,) If it is desired to address any location within a reserved
area, the label associated with the reserve directive may be used.

REVISION: SECTION:

o

UNIVAC IIT UTMOST

DATE: PAGE:

July 1, 1962 27

In the above example:

The RES directive will cause 32 words of storage to be set
aside (32 will be added to the location counter). These 32 words
are equivalent to the 32 words or 128 characters required for
one line on the High Speed Printer,

TR U W NN A (N T T I T W N S N T T A S O B B B e
LAY |A1R|1l»élAlRlall.|P|ml~irﬂm&|_£m|ﬁ 51 L1 l 1
sio BiRimea] eI RN RN

The two symbolic lines reference words 15 and 16, and 31 and
32 in the reserved area respectively.

c. USE

The USE assembler directive is utilized to load index registers
with base values relative to the value contained in the location
counter at the time the USE directive is encountered by the
assembler. After a USE directive is encountered, it is not
necessary to indicate index register designators in the operand
field of a symbolic instruction line, since the assembler will
insert the values automatically, unless a specific index register
is desired by the programmer.

The USE directive, when encountered by the assembler will
assign the current value of the location counter to the first
index register specified in the operand field of the USE line,
the current value plus 1024 to the second, and so on through the
number of index registers specified in the operand field of the
line.

It is possible to use more than one USE directive in a program,
however, the value assigned an index register by a USE directive
is loaded into that register at object time. Therefore, any
particular index register may not be referred to more than one
in a USE directive, or series of USE directives,

UNIVAC III UTMOST

REVISION: SECTION:

I

DATE: PAGE:

July 1, 1962

28

lllllIllllllllllllllllljll

.—J—LJ_LlwﬁELlﬁLa_I_JQ}llﬂlllllllll

In the above example:

Assuming that the location counter reads 4000 at the time the
directive is encountered, IR 5 will contain the value 4000, IR 6
will contain 5024, and IR 7 will contain 6048, IR's 5, 6, and 7
will automatically be inserted into object code where required
by the program, and no indexing has been specified by the
symbolic coding.

FORM

The FORM assembler directive may be used to define arbitrary
word formats, label these formats, and thereafter reference
the format by using the associated format label as an operation
code in the operation field, When the assembler encounters a
FORM directive, it notes the pattern specified in the operand
field, Thereafter, the expressions in the operand field of the
associated label, appearing as an operation code, will be inter-
preted and generated in the "form" specified by the initial
directive,

In writing a FORM directive, the label field must contain a label,

the operation field must contain the directive FORM, and the
operand field must contain a series of expressions whose sum
is equal to 25, the total number of bits in a UNIVAC III word
(a single expression = 25 is illegal)

REVISION: SECTION:

UNIVAC IIT UTMOST

DATE: PAGE:
July 1, 1962
crd bbb b e beaa b g d
ZN31T] IFIQRIMH1|i|,,|‘4n|ém‘ﬁ.[/|a ANENENNRE RERE
el 19,
cor b b b b bvee b b b
Illl‘INI/S'ITlIIAId’skylIIOIJIJIJIJBIIA lowttiolor 11 | 40|
b b b beea bevae b be o by g |

In the above example:

The FORM directive has been used to define an object code
format equivalent to a UNIVAC III instruction word, When INST
is encountered by the assembler in the operation field of a
symbolic line, the eéxpressions in the operand field will be
generated into a sign bit, 4 bit "b" field, 6 bit ""op" field, 4 bit
"a' field, and a 10 bit "m" field,

pmsicl 1Foifm 111l 31y18],121,18],131, 13181018 1y

b b b b b b by
Bl ’ <) ol lol, o

e b by o b Lo b by

In the above example:

The FORM directive has been used to provide a simple means
of writing a masking constant in octal mode equivalent to a
UNIVAC III word, Whenever the label MASK appears in the
operation field, the assembler will generate the appropriate
masking constant, As illustrated in the second line above, the
use of MASK in the operation field followed by the expressions
0,0,0,7,0,0,0,0,7 will generate a masking constant in the
following pattern: + 000 000 111 000 000 000 000 111,

REVISION: SECTION:

UNIVAC IIT UTMOST =

DATE: PAGE:
July 1, 1962 30
RT 1Flolm 1 | | L, :el; lflr,lll_\lilﬁ'l [111]
vl b b b b by |
L liprwln o1 Loy islizil 1 1ok o |
L L printn 1 Loy aal oo o1y
Ll eRiNT | on |b|.s$2|;|l|nll.3|ﬂflf2| |

In the above example:

The FORM directive has been used to define a printer control
word. The first example below the form directive will generate
a line of object code which will cause the paper to be spaced

5 lines, and printing fo take place from location 1004 through
location 1035, The second example will cause the paper to be
spaced 2 lines, The third example will cause the generation of
a line which will cause the paper to be spaced 6 lines, and
printing to take place from location 13254 through location
13285, In all cases interrupt is specified.

3. SET

The SET assembler directive may be used to arbitrarily indicate
to the assembler that a specific value should be assigned to an
index register for assembly purposes. The value assigned will
be utilized by the assembler for automatic index register assign-
ment until another SET directive specifying the same index
register is encountered by the assembler, The assembler does
not load the index register, that is the responsibility of the
programmer. The format of a SET directive consists of SET

in the operation field followed by two expressions. The first
expression indicates the index register to be sef, the second
expression indicates the value to which the register is to be set.

SN NN NN
._l_l_l_uljllllllﬁ)lglllll|
£11 14 /

In the above éxample:

Index Register 15 will be assumed by the assembler to contain the
integer value equivalent to the current content of the location
counter. The index register load instruction immediately pre-
ceding physically will accomplish the actual loading of IR 15 with
the value of $.

REVISION: SECTION:

UNIVAC III UTMOST ' 1

DATE: PAGE:

July 1, 1962 31

f,

g

FLD

The FLD assembler directive may be used to define the leftmost

and rightmost bit limits of a field, A FLD directive line must

have a label in the label field, FLD in the operation field, and

the operand field must contain two expressions defining the left

and right bit boundaries of the field. After a FLD directive has
AAfiwnnd o £1213 4l n TalhAal wnaxr avand FATlavernd hee dlan 1AL

UCLLIICU a 1iT1U, ulC label ilidy IJU UdTU 1LULIUWCU Uy ulic J.dJJUl J.[l

parentheses of the word(s) containing the field.

pti | Fad Ih2«|\|h INENE NN

1|l|||||||;||1|||||||11|

L1l I/-uﬁ | !ﬂﬁ,l’l;l 1LMFﬂ(1V:A|L!UJET)| |

In the above example:

The label LMT has been defined as a field label through the use
of the FLD directive, Its leftmost bit is bit 12, its rightmost
bit is bit 1,

In the symbolic coding following, AR1 is being loaded from word
VALUE as defined by the field LMT; i.e., bits 1-12 of word
VALUE are being loaded into AR1.

END

The END assembler directive indicates to the UTMOST assembler
that the last line of symbolic code in a program or procedure
(PROC assembler directive) has been read by the assembler,

This directive is required both at the end of a program and of a
procedure. In the case of a procedure, the operand field is
ignored by the assembler, In the case of a program, the starting
address of the program should be placed in the operand field in
the form of an expression,

REVISION: SECTION:

UNIVAC IIT UTMOST a

DATE: PABE:

July 1, 1962 32

'Illlllllllllllllllllllllllllllllll

IJ-IIWIEIXmIIIIIllllll'lllllll‘llllll
L EBMD | STIRT. L WD loF BROGRAM. | | | |

In the above example:

END indicates that the last line of coding in the program has
preceded the END directive, The label STRT will be the starting
address of the assembled program,

Lt bbbt b b

| END | END G Plﬁ|C|C«£D|UlRI§|_:LIQBf_BlﬁNJQLL_L

NN Lo FlhEaD 1S liewmoReD | | A NEEE NN

In the above example:

END indicates that the last line of coding of a procedure has
been read. The content of the operand field of a procedural
END directive is ignored.

h, DO
The DO assembler directive may be used to optionally generate
a line of coding a variable number of times. A DO symbolic
line consists of an optional label, DO in the operation field, an
expression in the operand field stating the number of times the
DO is to be performed, and any symbolic line.

The format of a DO assembler directive is:

label DO el, line,

The label associated with a DO directive varies from the usual
type of label in that, when referenced, its integer value will be

equal to the number of times that the DO directive has been
performed.

REVISION: SECTION:

1}

UNIVAC IIT UTMOST

DATE: PAGE:

July 1, 1962 33

The expression of a DO directive, e_, is a value which indicates
to the assembler the number of times the associated line is to
be generated. The 'line' may be any legitimate symbolic line

of coding, or any directive except EQU, FORM, PROC, NAME,

and END,
IIlllllllllllllllllllllllllllll
™NA o el s 5 2 prlA 1 T T I
L1 1 STIRTHAY 712 s ISE #5114 |
\ . J_I s

In the above example:

If the current value of the location counter is greater than the
initial value of the location counter plus 3072 (3x1024), a 1

will be generated by the = operator. In that case, the assembler
will be controlled by the USE directive line in the DO symbolic
line, and three additional index registers will be set up by the
assembler, If the condition is not met, a 0 will be generated,
and the USE line will not become effective,

i, PROC

A PROC assembler directive informs the assembler that all
succeeding symbolic lines until an END directive is read, are
not to be assembled, but retained by the assembler until refer-
enced by some other portion of the symbolic program, When
the PROC (procedure) is referenced, the symbolic coding
associated with the PROC will then be assembled and inserted
into the object program,

A PROC directive line must have a label and the expression in
the operand field indicates the maximum number of lists of
expressions associated with the procedure, if any,* If no
expression is given, the number of lists is indeterminate. (No
expression is indicated by a period followed by a blank, In this
case, every reference to the PROC must have a period followed
by a blank following the last line,)

* .
A discussion of PROC lists follows under the NAME directive.

REVISION: SECTION:

UNIVAC III UTMOST

DATE: PAGE:

July 1, 1962 34

e o e b b a Ly
TRANL 1 IPROC O Ly a Loy]y
lllllIIU-I&IIIIE‘I)L@LLBIIIIIII

LllllIIISIALJIIIDIJIOI\IHIIIIIIE
(llllillfl)q_llla\lw'llllllillll
1||11|ﬁ’:Xu||91)||’_7L||1|||lllli
ol EMD L L e b

1] 1 i . t

In the above example:

The PROC line has the label TRAN (for TRANsfer), PROC in
the operation field and a 0 in the operand field indicating that
there are no lists associated with the PROC, The four lines

of coding following make up a very simple straight line four word
transfer routine followed by an END directive,

The previous procedure may be referenced by the following
symbolic coding:
L g b bl bt

L1 WX |5|.| (RESERVED) 1 |1
1|||L)(||HanM(ﬂMK]ﬁlﬂWNIMI
IIIDOIIIS)IJP—RIﬂMIIIJLIlIII

The DO directive line will cause the procedure to be generated
five times, since the expression in the DO line is 5, effectively
generating the following symbolic coding transferring twenty
words,

REVISION: SECTION:

UNIVAC IIT UTMOST

DATE: PAGE:

July 1, 1962 35

, LABEL A OPERATION A OPERAND

LLIIL'AJ_LI4IIS;\1QI\IBJIJIIIIIIII|II!J
tlanFhrln/Sh ;0|,:|9':||||||L1||||||J

J||ﬁ!)(11|||91\1|1(1‘7‘} NERENEEREEENEE
IIILLJ|J}|'J’L;uxll&lilllllllll.li]
IIIBIQIIII/513,_[|o¢}\v11|21|1|IlllllillIIJ

- |
lllm)ﬁllngu\h|(|‘;‘D||||J||||||||HJ
IIIMIALI|I/&sfl@)l&lLllllLlllllIIJ

|

Qllﬁlqull)lﬁn Oi\ oo b b
lII’hfinlllB(\llJ(H‘Dlll‘lll'lll]lll’
Hl‘l/)(ullgh 1¢(h‘|§|u NEEERNE NS
J_LIIL1A|I|4115L1 1ana oo by |
LllMIIJKJO[.:IQHLLuILHIM|||

|

|||V|Xl|]|5|\|||/lm||||!|11|u|11|

MMMM

lIIS‘I_AIIII/IST)IOIJ;IHIllllllLJlJll!!v

IIImXIIlIIQI}IIICI)'H)IIIIII'IIIIIII
i, NAME

A NAME directive, or several NAME assembler directives,
may be used to qualify a PROC procedure. The NAME line(s)
must follow the PROC line within the procedure, Each NAME
line must have a label, and may have an expression in the
operand field,

A procedure may be referenced by placing any of the procedure
names or the label associated with the PROC line in the operation

field of the referencing line.

UNIVAC IIT UTMOST —=
July 1, 1962 36
Illl'l4lllll[llIJIIJIJIIII
h:lﬁblla!:llf\:lelcdl Ol bl
el ol bl

.dll'l!llllulll

In the above example:

The procedure is a routine to generate a floating dollar sign
edit routine. The two names applying to the routine are ADOL
and NDOL respectively, ADOL if the value to be edited is in
six bit excess three format, and NDOL if the value is in 4 bit
numeric format,

ol b b b b b

PRRANGE | b | Ty B3y 100 L

|lﬁ|DO|L4|1|||||||||||||11|1
llsﬁlnlfgl':’lusﬁl\/ltl‘f'lﬂul|||1|l

The coding above references the floating dollar subroutine, Since
the alphanumeric variant of the routine is applicable to the data
to be edited, the subroutine is called by writing the NAME of

the alphanumeric version in the operation field, ADOL and since
there are no lists required by the routine, nothing need be
written in the operand field of the symbolic line. When the
assembler encounters this symbolic line, the floating dollar
procedure will be generated and inserted in the program at this
point,

Procedure Lists

Procedures may be written referencing lists of variables which
are submitted by the calling program, During the assembly of
the procedure, when variables are required, the assembler will
call upon the lists submitted with the calling line,

1) PROC symbolic line: As stated under the PROC directive,
the PROC symbolic line consists of a label, PROC in the
operation field, and an expression in the operand field
indicating the number of lists expected by the procedure
during generation, If the procedure expects a variable
number of lists, the expression should be a period followed
by a blank.

UNIVAC IIT UTMOST —
July 1, 1962 37

Lo bvaa bbby fena g

' ¢ bbb b

In the above example:

The PROC line states that the procedure does not require
any lists,
ket dyv g by e by gy g
O/E .
! ' [

In the above example:

The PROC line states that the procedure requires a
variable number of lists.

2) List References within a procedure: When information is
required by a procedure from the calling program, it is
obtained by referencing the label of the procedure by an
expression in the operand field stating the procedure label.

a) To reference an expression within a list, the expres-
sion is written as: label (s, e) where label is the
label of the procedure, s is the number of the list,
and e is the number of the expression within list s,

, LABEL A OPERATION A OPERAND

NEEEREE . I’)i&%ﬁ’({hil”;ﬂ))l |(1M0!VIE|&}|}|ID|31

In the example above which is taken from the MOVE
PROC, line 22:

MOVE(1, 4) refers to list #1, 4th expression in the
calling symbolic line in the main program. In this
case, it would be the number of an index register,

MOVE(1,1) refers to list #1, 1st expression. This
expression within the list provides the address of
the first word to be moved.

UNIVAC IIT UTMOST

REVISION: SECTION:

i

DATE: PAGE:

July 1, 1962

38

b)

To reference the number of lists supplied by the
calling symbolic line in the main program, the
expression is written as: label where label is the
label of the procedure. The assembler will substi-
tute the number of lists currently submitted by the
referencing line as the integer value of the
expression,

, LABEL A OPERATION A OPERAND
illpﬂlllmqwa)ﬁl\illﬁLllllIllIll

In the above example:

The condition MOVE >3, refers to the number of
lists submitted by the referencing line in the main
program, If the number of lists is greater than
three an integer 1 will be generated.

If the expression had been written:
MOVE(1)>3,

it would refer to the number of expressions within
the first list of the referencing line,

To reference the expression in the operand field of
a NAME line within a procedure, the expression is
written as: label (0, 0) where label is the label of
the procedure, and (0, 0) is the operand field of the
NAME line which is currently referencing the
procedure.

REVISION: SECTION:
UNIVAC IIT UTMOST L
DATE: PAGE:
July 1, 1962 39
I Y T O O A A O O
Forend 1 PRleie v Lo Lo bvaabvi beva b
il 1 wale Lo Lo Lo b b L |
IPIOIL.!IINIAIMIEIIIIHII|IIJ__IlliIII|l|||III.I_
b b b b s e v L |
FiDo14C 0 =0 f 12
| i rEmprr 1]
| |] 1 | \ i

3)

In the above example:

The operand field of the ADOL NAME line is 0, the
operand field of the NDOL Name line is 1. The two
DO lines reference the procedure label, FDOL,

with the expression FDOL(9, 0) and the equal

operator will generate an integer 1 in whichever

line the condition is met, causing the associated

line to be generated once, In this way, the assembler
has determined which NAME was used to reference
the procedure in the main program,

References to a procedure from outside the procedure:

The label of the appropriate procedure or qualifying NAME
line is written in the operation field of the referencing
line. It is followed by the lists of parameters required by
the procedure, if any.

LISTS

When referencing a procedure, the operand field of the
calling line contains the lists required by the procedure,
A list consists of a series of expressions separated by
commas, Lists are separated by blanks. If the PROC
line contains a pericd followed by a blank in the operand
field indicating an indeterminate number of lists required
by the procedure, the last list of the calling line must be
terminated by a period followed by a blank.

REVISION: SECTION:

UNIVAC IIT UTMOST I

DATE: PAGE:

July 1, 1962 40

Ll e vttt by ol
AlDlolhnxlnlulllxllll

In the above example:

The floating dollar procedure requires no lists, therefore
the operand field of the calling line will be ignored by the
assembler.

AR NN

i t 1 I 1

In the example above:

The MOVE procedure requires a variable number of lists.
The example line calls for straight line move coding to
be generated through the use of the ST name in the operation
field, Three lists are submitted. The lists are terminated
by a period followed by a blank since the MOVE procedure
calls for an indeterminate number of lists.
Ll e b n b e b r bbb r b e g
ciraNGE 1 LT | eREl o) rarel o1 5o 1 o

I I I | I | ! ' |
In the example above:

The example line calls for iterative coding to be generated.
Four lists are submitted, The expressions within the

lists are separated by commas, the lists by a blank, The
last list is terminated by a period followed by a blank,

UNIVAC III UTMOST

REVISION: SECTION:

II

DATE: PAGE:

July 1, 1962

41

Sample Problem--Two Way Merge with Editing

The attached sample problem is deliberately simple and designed to
illustrate a number of the features of the UTMOST assembler for
UNIVAC III. It consists of a basic business oriented two way merge
between a master file and a change file. Where record identifiers
are identical, the change record is substituted for the master record,
and the dollar value of the change record edited by a floating dollar
sign editing routine in preparation for printing. In addition, the
floating dollar sign routine is generated by a procedural reference,
and all data transfers are accomplished by a MOVE procedure which
will provide iterative or straight line transfers at the option of the
user.

Input/output record advance routines are shown as subroutines, but
not included within the coding. (All input/output area addresses are
supplied by the record advance routines in Index Registers at the
time of return to the main program.)

PROGRAM .2 WAY MERGE _a//ENi7 PRIN__ PROGRAMMER B3 VARNEY DATE PAGE _{__OF _3L PAGES
1 LABEL A OPERATION A OPERAND A COMMENTS 72173 80
| wmel 1,2z Lo en lae dmaex] misslrsizels: Flew aliiom ovglesisilme Lo L bl

LJ&Mif JCJQ&A

| giss] s Lo L erinMasie mewilaver sirarlace ooy Lol b Lo L

ll((lllll

i

|||JI]II|

RN RN

5D&IJM¢Ld,uJ_Lu4J_LLJ~LI_LLLiLLJLLLI__LL_LLiLLLLJ1111|Llllllifllllll

|LJ/;I-'l l [

w16l pwplkEss| Lokl firevngrl Eneln

HEENREEE

Ill]lJI

1L1X) jQI Jrud-imel |1 luaml AR 17, 1819 wrrisd 18insle we binagdsizg lmm nriMﬁg Al urlpar bRl |

1SOWILN IOI DVAINN

uP-2807 CODING FORM

JQdemmfwﬂJﬂm&ﬂﬁmMm dmamelel ple gy pwor lprmlrer) burdar eloiwa prewl-i 110

141X l'n;,JCJFANlu o bl ,,I_i¢i4,,u_L_u_LJ_J_LJ ot b b Popn b b b oy By g
 siixt ey elRemAaga Lo Loce b Do Lo Do b boc b e Do b b b D o b

pwier | 1m0 | 11,818 98T lup Wempalnzsdm 1Bele malnem ok wleg el prelcadadee L Lo ool

IlLMJ1L5|l3|!71|Illllll]llllllllllllIII]JIII|LLJLIJ_LI[IJ[1!|¢IIIIII|IIIIIII Lol
L Tl | |Q|#|,9|Mé;.g.” lzeL Mo ek REKL. | yAAs wiTiew el ; ; ‘ o RIFICkIe

L gplema L oA slecuelnes nad nekleg QMHJ;MMJ&M_@Q&MV!MMﬁ EpzTTal 11

L@t 19, 4. |017.r?l wiow| zwdlEer krewlncmd IAIZINL’:JJ elhwevEled wasirele mNAun [re Pusrdn prlacedlu ra

! 18|LLT: L Mk i) 1 bﬂxmclwﬂﬂjﬁum/’uﬂ !R|Q/_’J¢]i"u1 IﬂIﬁVIAINICIEL lcm’imrmﬁlh L L ce i b b b b

; : ‘ : | AEENE RN AR AR

llllllllllllllll

i duzs Pesadaa L

B talfLZ'lA/lLLIILILI!I|JIllllll bl

B’uﬁﬁlammlm*mlulilulruLln||||L1|||1 EREEEE

e Lo b b b b bvoa b b boa g by

PAY) e s ReeaAzme Lo L b b b ber e beon Lo b

: ; SANATS ' g lzard wezlna ﬁlamm;flmntwiﬂ | | Lol | IJ 11|

ILI-IT'IOLF:IIQIJQII.‘SI!IIIII[G!Lll\/li'{lx)lﬁ}lllfllmal[FIK«MD!-J/‘/GLILJlll\llll[l[illll'lll]lllllll lllllll
_I_L.SJ_J:LM (7TZ[M’AI[IIII[IIllJill[LlLllll[lllllllllliJ

oo bbb by by b b b ba g

47

o] A

> m

o <

g7

o]

- z

—_ <
[—y
\O
o
N

) w

> m

Q 0

m 4

m 3

z

II

43

M@ oNl WHO04 ONIQOD cosz-dn

SECTION:
PAGE:

July 1, 1962

REVISION:
DATE:

UNIVAC IIT UTMOST

LU LI LI L B O AL BB B |I|I]|Illlll[lll|lll|llIllII|III|I|||1|I|II:II|I||III
T T T e Illlllllllll‘lll‘llllllllllllIlllIIIIIIT—[IIIIIIIIIII
|ll|ll| I|]|IIIII|[rII I T ’!llllllllllIIITTII[TIITIIIFTIIITII I I ‘ IIII“I’T"[TT"T‘
—lllllll T1 llllrllllll I 1 IIII]i]TrII]III\IIIIIIII'I!I‘IIIIIII'II | IPIIIIIIII
llllllf [1]lll]llllll l i IllI|IIII”’T[I[lllTlllllli[llllTlllIlIlII] PTIIT—[[IT
l'IIlII 1L]Illllllll! I 1 Ilflllll‘TllIlI|11llIl\]llllll[1[lil]’ll] Illllll]lll
T TTT T]11|[l|||11 [T |IH{||||'1TTI||||1|||Hx|:||||r1rr"T‘rT|| [TTTprrTTTT
Tt ||]l|[|x1]||x]|| llll]lll]’[llllll]III[IIT'IIIlrrlllllllll [TTT T
AnERERRERERE IT'I”’V—(—TTIIIIIIIIIIITTITITIIllllIIIIIT_I'T[“T’T’III||||ITIII [T T rTT]
T T T (T T [T i rp o T[T'T'TI'TII|F\!]lillTTTI’TlIIT!IIIII]II [T rrTpT
T T T T T [T T[T [T T T[T T[T T[T [T T[T T[T T[T T T T T T TT
l|l|lTl T IIIIllll_rllllllll ||l|ll"TllllH]|I1[m”]‘TTT““ITT‘|—[(I||l1 1 lp]r*T‘W
IR A [lll[lllFl!llIlll T |1|'T||||||1|H|lxl|111|l|ll|||I|| [TTTrTTyrTT
T v T o T TII]TIIl*HrlII[‘II|TII[III||}!|II [TTTirTTrTT
I|l|||| Il]ll]lllllll| llllll]ll[[lll|I’lwl€I]2I|*;'I;A”]?]|rllI:M)[I('Wl;jf'llllll|llI'}LTB’UA%"[TTC‘W[:Y[TTw
T[T T[T Tyt I L L L L L L O B B B R BB =</ B B I BRI I IR R B VY UL I LA o
‘TW?WWWWW?TWD]‘ TS"VWW A I:'ﬂ.llflla'{slmll]:JuiUl«7|:7!/Vlﬂl9| rr | T] (A [Bl /Uﬂ]Z.f“‘f@ﬂ—ﬁrﬂ'
Tll\lll llllll]]|||llli‘rITjH]TTTT|IH |ll]|l|[!l|l|||‘|||j|t|{||&‘VTZVV{V[JI"?,Q?T?T"W]LS-T‘
TTT v |||||||‘lz||HWI:;}.{.WTFB[JT"T?ww"wq:ﬁﬁ:ﬂl’wmm‘Q‘I?Fpplfﬂy' |,£.IJWE7]T| rprTTTTT ITL}I "']&1“[?:{7]‘”131‘1?“
T[T T T T e T e Erw-;wvymmmmjﬂ'w rszmmTr‘TT’Tr'r"r"l"lgrq.;mmsprﬁprirms’ﬁ
|[|||1| HITIHWHTPWﬂlquWWWWWWQI lll[llllll'[H”Ilwlwlwl
TTT l I B | T T l T lE!'IEI 'ST’IW/' |,zl[.’17wq Id];rl-l.]a‘ljr—[yrgi Wi{:ﬂﬁmﬁlﬂ/ﬂ IGTM‘![‘NTTWLW‘TM | lwﬂ 1 Ile;IN|VIXIM6'
T T T[T T[T T[T T e T TT T T I I]ITWIIrTHIHHIHIWINI
TTrTTd |l||1||IrlITH![TLI!H]rl|1|’W'%TWWTTZIHM’Iﬁfﬂz}[ﬂwﬁqTTTTF‘I_F["‘TW‘l"“['l’TT]”'IT?.W]@HW
EERERRENERE [TrT Ty TroT FWVRLAZ| AN ‘Wﬁﬁrwm'wumpm TUT EOT [T T MET-I ST MY
o8 ELies SLNIWWOD v aNV¥3dOo V NOILV¥3dO [V T3gvl
$39Vd N> 40 A9Vd 3iva ZFNYUA T/ 43anwveoodd ~TNTYJ '_{Z_G_-j/JM '3'98?W7{%7W?wvuooud

UNIVAC IIT UTMOST

REVISION: SECTION:

II

DATE: PAGE:

July 1, 1962 44

10,

Sample Floating Dollar Sign Editing Procedure

The following coding represents a procedure designed to edit an

11 character field, inserting a decimal point, commas where
required, and floating a dollar sign to the character position immed-
iately preceding the first significant digit in the field.

The procedure will accept either 6 bit alphanumeric values or 4 bit
numeric values, and the coding generated is dependent upon the name
by which the procedure is referenced in the main body of coding.

Programming reference:

The routine expects the value to be edited to be present in AR's, 2, 3,
and 4 if in alphanumeric format, in AR's 3 and 4 if numeric format,
To call the Alphanumeric version, ADOL should be written in the op-
eration field of the line where it is desired to generate the routine, If
the numeric version is desired, NDOL should be written in the opera-
tion field of the referencing line,

PROGRAM FLURTING DLLLAR PRI CEDURE PROGRAMMER B2 vAANIEY DATE FAGE /__OF_IS'_ PAGE>
1LABEL A . OPERATION A OPERAND A COMMENTS 7273 80
il ewrglerwon | Lo Lo b b b b b b b b b b b b b b
|FI‘|£]fi|1||ll|llll[J_L|Il(lllil(lllltl||ll|l(Lol beoba o oo

il wamle o Lo b Lo e b b bbb by b b b v b s by
gl Lo oo e o b b b b b b b b b b oo faaa b
remo) el A L v b b b b b b b be b beer b b bvga b b a1
| o | irwieleitiey oo melyma ba s o Locc g bocn booc beoc beng o beva b b e b
& F,L;!LJ,L&LJJ,J&&HLJABELM%;MLMHMH IS NN NS TS N N A
II.WLIH,IUODIILIIIIIIJIlJlLIllLIIII]IJ_LII)III NANEEEEEE NN ln|1]||1|!;|l b b
lQl!llf’ﬁlMlPl'f‘L-lelllllilllllllll|lll||lL||IIlI| L bl b b b b b b
ugiwru?llunlr; llll]llllJ}J_lllJl!llIlIJ!ll l RN |1| IIllIJJJIJIL[bl
YA yﬂ&ml[?lfléjll ‘llljllllllLllllllll|l||l|l Illl\ll |11 ||Il|lll|111| 11ty llll
L daglaz o L b v b b b b b s b b b bea b b b bea b by
e i ‘|~|{1_)1|11l|||||||||||||||||||i|w Lot b b b b b o b
A l= o o Lo b b b b b s b b Do b b v b b e b
nLlAlan1(|0|1|7|0|o|o|ou|l|||||||11LLIJL¢||||||||ll||1|||||| Lo b b b beas b b
,g,g;dm,.zl@melg Aol b e b e b baa s b b b e b b s b
J1A |z|,7_‘|£&1m/'|.’hll||ll|||||||||||l||l||| R |ILL‘II ||11|||||1|||||1l Lt llll
wd bl Lo Lo b e b b b b e Do b Do b b b b b g
0P IRIJIﬂEMfIMI ||11|||1|||x\:||||||||| Loaa oo b b b b b v poaa by
_Elélllellllllllll ||||1|II|LLLIILLIII||II 111 IllJ\[L lllllllllllllllll [||11
8 L gy Lo b b b b b b b by B e b b v D e L IIIIIII
TN R A SN N RSN R RN RN N RS N RN NN N Lo bbb b b b lll| Ll
y 2 l]ll Inlll IlliJ_LIIIllllLlll ||| |1[JIII_LI11 |1|1|||1|I|ll L] lJ_L
ﬁlélllclll|ll‘ll ||1|| 11|||1|||||1||||| ||1| lllLL’Il [lLLllllllll‘ [|l|
e Ly Loy b b b b e b b b v b b v Do by i 1y gy

up.2807 CODING FORM nG. Bk.

1SOWIN III DVAINN

!

E a
3 <
< " 0
fom
]
- z
= z
[—
\O
(=)
N
] m
> m
n] [v)
m 3
]
z
S —
o —t

PAGE <2_oF % pacEs

1SOWIN III DVAINN

PROGRAM FLPATING DgliAP PRELEDURE _ PROGRAMMER _B¢'A VARNEY DATE
1 LABEL A OPERATION A OPERAND A COMMENTS V 72(73 80
skl @, Lo e b T e b bee b Beee b b b beee v b b ey
Lepd @ rreme L Lo Lo Lo Lo b b e b b P b b b B P L
e e L b v b b b b b b b b by o b b b i b
B | eyl e e v Lo Do by be v b b e b b by b e b e b g
'LIAIl|8|,,1Llom7|a|o.mmdo|)11lnlxiull.i||11111|1||11]|1||1||||l||11|||1|l||||||1 il
e gyrreme o o b Loy o Lo b b b brve b b bonn b b b o La
lelllé‘-lll|11J1||||1||||||11|l|ll'|I!L1|1||11||11|1|||||||1||i1|||l|||||| Lol
g Lty (o Db b e o b b Do b e b b B D b P L
LRl gnl oo bev e b oo ben bv P b b b b b b e b Dvnn P b
Jﬂg{_@lrkmmﬂn1||1||||»|l|||||11|tHLLHI|1||llx||ul|||||1||||||||||||1 il
e Laa Lo Lo b Do Do b b b b b Do b b bena Dy b fa b
IBBIll#l_}lillmllllu||ll||||||)l||l|||l|||||||ll|ll||1|||(||ll||L1l|1I|||||1 11||||l
_JBJSIR1|8|,-UI|||111|1|4||||ILHI|11||1||1||1|141[11|l||||11111|||||||||||||1 Ll
ewpid 8y el o Lo b Lo b b b b benc b e b b b b P L
e Lo b b b b b b b b b e b b b b b b b a by
1RLS’!|;41,.1(.|I|\1|||1|||||||Jl||x|||u|(|1||11||1|l|1|!1||l||||||1||1||1|||||| il
|A1.S'|Rl|9|311|||||1|||1||llll||||||1||1l|l||tl|x1l111|||||||;[|uf||||||||||| EREEEE
‘JQ|P|2-|18|;|'T}EIMP|""'III1|||11[n|||||||1||||||||11l|1|||||[11111||[||a|||||||ll||t cia b
J|é|||0;11||1|111|||1||||llLl|||1L[l|1Lll111111111|||||1|x|1|1||||||1|]||| Ll
131.5’[]141’;1(|l|5||111|||41]1|111||||11111|||I1‘|i11||1||1||1||||||i1|1|i¢||||1 ol
|L|91I@l}ltloﬂj'/u:‘!mcmc-lm)l|Ill!ll|||||1|||||!|11UL|1|)|||1]|H’JII|III|Ilt|||| 1|l|lll
ez Lo b b boaa b b b Do b b b b b Lo p o e
glé‘l‘lclllIl,llllIIlllllllllll||1ll|l||l|llllllllllll!llJlJlll]llll|ll|||l IIIIIII
Iﬂlsill‘iljll.lll)llllllltll|III|IIIII1|IIIIIIIIIIII|III|1|1II|IIIII|III‘lllllll ERENEN!
asrl eyl e b b Lo b b b b b b Do B b D B By e e

uP.2807 CODING FORM NG BK.

8] 2
> m
- <
g " @
= 0
< z
— 4
[N
O
=N
)
v 1]
> m
] =]
m 4
: 3]
z
g =

M8 ONL WHOd ONIQOD tosz-dn

[
= <H

z

a .

s u

0 G}

W <

n oL
o
O
N
—

. —

z

g A=Y

o <

4 [}

UNIVAC IIT UTMOST

TTTrr1 |I||ll|‘I"I—IIIIIIIIIIIT|III1|III}]TI]IIIIII]'III‘IIIIlIIIIIlIIlFIl{,I—{,ﬂIIIP
TTT T ll||H|]|i|||Hr|slluulllrl|11||||||11]||ilxulllll]llllm,T’Tl’ﬁT;’\UrﬁTTTW‘
1|llll| Ilrl'lllllflllllrlll‘llllrllllllllllllllllll’llllllllll1|lll[l|€]llﬁ,l|‘7(‘§lUI
T T 1|||xl|'|||||r11||||llrr]||||IH’Hq|IHTH|||1|||||||[T|I1|§|4.|J|W%TWF[T1§
"III]IIIllllllllIIIIIII!IIIIIIIIIIF]'TII]I|I|I1IIIII[III+LIJIX |Irllr|l||H|qw|37[TTT‘
7II[T7_I lllllll||l‘lllllllll‘l'[l‘lll‘|II!1{||I]]IIII‘III]III{IIIllll‘laglgl"lrlllllwv
T rTT |||T|l|Ilr||l|||||||||||||||||||||||1||||1rllmlrullil||T“T’]([;mﬁm—pm71—
TTTrTT ||||ll!|llr1||l|u|{|||||l|||ll||1||l|||t|r[|lr|‘T‘I'TT'I‘TT“rT‘TﬁprJW?F'J‘LWTTW
TTT 7T l|||1||Ilrlln||Hr]||||11|]'l‘llIHIIIHlsl|]||l||||||1!|1T|||*FW’V1"&,*rT7:g1gr
TTTTTTT l|||lllllll]lllllllllll'TTTT‘l‘rlrw||I|||Illl]I1||llll!Il|IT'YPTJIWI§7F!J'*I”,’T‘["’IGI’7I’"‘
TTTTTT lll]]llIllI]IIIIIllllII|ll|]IIIIlll|Il[l|ll[|||‘lll|llll!lI';I-H.-/'I(W
UL L LA L L e O L O O O R O B O IO R v e P R]
TTT T llllllllﬁll1||IIH‘||||lrr]‘l’I"TTTTT[‘I—VTFT‘T‘]“T"I‘T]—TT‘I’]‘ﬁ—T—ﬁ(r,T"rlUr'ri;pT"u“rTgﬁrW
TIT T 1||||||[|||Ii|||1||111llllr]'rll[lll|lllll||||II+4|J.|XMlllIIH"[’IT'W@MEJF]TI_N“
lII|l|I ll|]lll||ﬁllll|lll]l]_r|il|]llllll||lf|[IlT“"['T'Tﬁ|lHrll|||T||llylg|7tl'rlf_-’1]lyl7l
TTT]T 11 ||u|||l|||lllll[x||[1|||1||[rlllrﬁlul||IITI|llllTlllllllllwgrﬂ'lm
T T T T[T T T[T T T T T T T o P T T [T oML e
7|I]Il1 |lu||||l|||||||||||l||l||1[|'l’||ll|l||||||l' ‘TT'TTT'lr—TI1"“!*]"ITl‘“[‘"IT'F;‘I"IIyl"T"T?l_[f‘“
TTT Tl llri]mll]lllullu|||||||1'r1’rl|]HT|||I|||llH||l"r'rT’I‘“r"r”]'ITmﬁrmrg{ﬂlrgf“"fz14171“
TTTTTT |M|1|l|||l|l|!lul]'lr"l]rrr]|I|||i1[||||l|ll'rl|]|l"r’['l'l"'r“[lTl|’11“E‘l'rlLrg;rTz'rs1yf—
I L L L L T L I L L L L L L B B I L L LY
TTT T llf]!wlltI|llrl!|||||||"T'I‘T‘]T'r"l|l||[||||||||||l]1"1‘|||1|||1rc1.4.|¢|zmﬂ,u’Igr‘]:fra'r:)r“
TT T T [AT T T T [TV T T T T v r T T T T T T VT b e Cr T T 1 g yisg
TV TTd IIIIIII,II"T'T!III‘III!ITI!I|IIT’I‘1|I|l|l]|II[I[T'TI'I’]'I‘"T“I’T'TT"ITII’"‘]‘T"‘Fi»'["ll',_jI"Tk?}lﬁw
TTT T I 1111711llli’T!Hl‘TTT"[H||||1]1|1|||1T'||1||1|1‘T1||1||[llr]1r|z¢|.:.[,/wgp1‘rgrgwl:;”‘
08 Eelee SLNIWWO0D v ANVY¥3dO V NOILV¥3dO V¥ 73gvl |
$39Vd 77407 39vd Jiva AZNUT A Z27 H¥INWVYOONd Wﬁ‘wgyé@“ijvaoou

1SOWIN III DVAINN

PROGRAM _[~L BATZ, L4 7R £ ___ PROGRAMMER _BZA3 VARNEZY DATE PAGE ¥ oF 5 PAGES
) LABEL A OPERATION A OPERAND A COMMENTS 72{73 80
el b b b b Lo b b b b b NN
|L|A|13||7i1|| co e b b b P b b B b b D b b b v L
_LJ.SLAJ_MJjﬁiéwuﬂﬁulnnlunlluInulllnlu Clo e b b by b b b b p i b
errla o b b b b b b b b b Do b b b oo L
1BalLJJJ#“lII|||J||II‘III|III|||LJJ_L11II |I|lllil|1LlJJ_Ll‘LLl| b b b b
e ool Lo Lo b e b Do b b b v b b D b b el
coA il G LDl b b b b b e b b b b B b b P e
1lmR|m.|"[£|mm+|a|||| Cla e b b b b b b b Lo b by b b Lo
M%ﬁmmwmwlﬂﬁwﬂmﬂml|11111|l|||||1||11|1 NENERE EREE NENE NN
L el o Lo b b b bbb b b b b b b bera P b
_L_Jalslkual;lhulu||u|||1.||x||111|11|||u||||l|||i|l|||1|l||x| Ly b e b
lIHIﬂ‘RlJ‘I.‘J_LI‘I||||lI||II|lLl||||IIIIII|lllLll Clac Lo b b b s L
_J_MELJ_EJ,J_QmMn,SHIn1||11|||s||||1|111||1|||1|illlllulunlllul b b P g
Pt L ot b b b b b b b b i
alLlAlulll,lTJEmplnulllulunluullu|11|||||||||1u11|||lu1|11|l v b bl
LAl g lremeed L Lo oo b bon boo b P b b Lo b by L nnlLl
||L|n||nll}l(na)lh||1|1||t|11LL|l||||11||unlnnlllllliuhu[ull o b o b
lplﬂ?llllllllllllllllllllll[llllIllll_LllJALlllllllLll |I!l‘[ll | | 1 i
|J£|||6|Il]llil"ll[lLlllilIlllllll‘||||l||,lilllll'||l||||l llllllll 1l I 11
_4_1_5v5'1119‘t}|(|71)1|11|l|1|l|||||1||11||1L|lll||11|||||||1|||l||11|| |||||l|| L1 | 11
Al % Pljjl‘lllllll|l|l|lIlIlLll!III1L[1Illll¢l[1¢lllllI lllJ_Ul NENERE NN
lll.ﬂlll&l(llngll>lllllll o b b b b boaa b b b Lo b b bra g b g
1A|§'|Ll||8||-nﬂz|mlmu[|1|[e b b b b b b b b v b b Lo b
uﬂlll/l;l‘flEmll"'ﬂﬂllllll ||1|||1|1|t|x||‘|||||||l11||||||11111|1[111111| Ll
_.MMMPPBHIHI o b b b b bena b b b b b b b L

uUP-2807 CODING FORM inG. BK.

87

g a

il 3

g @

a

< z

= 2
[—
\O
o
N

) 2]

> m

) a

n 3

2]

z

‘Ne 'SNI WHOd 9NIQOD c0sz-dn

(o7}
= <

r 4

a .

- "

o a

W «

0 o
Nl
O
[,
—

. ';

r4

: l

a W

S E

u <4

o 2]

UNIVAC IIT UTMOST

$39vd & 40 [39vd

Trrrrt I|I|II|llII|IllllI|llll]ITFrTIIIIIIIIIIIIIIIIIllll[llll]llI|IIITIII|IIT
Ill|ll! |lIlTIITIIIIIIllllllIII[IIIIlllllllrllIIllIIIIII]IIlTII]lIIlIIIIII1]’II
Illllll Ilf"l_rlllllllllllllllllliIIIIIllIIIITII[]I!I[III‘TI![IIIIIll"[ll‘llllIlll
IIIIIII IITTIIIIIIITIIIIlll'ITIIllllIIITIIlTlllI]lI[lllrlllllllllIIIIIW]III|Ill
Illllll lll]ll]llllllllllll|III|ITTrTTFT1_Fr1TT“|'TﬁTTT7_[TVFTTVFTmTTTTWFTTGWGF
L I I L L L L L L N A BN BRI IR B I lllll]l\ll[lT(’q‘pllallWl—tl
TTTTTT llqlug|||||||||:1|[|||||x|'r|l||| ||1||||nlnlr]Illllll||\IW|/W17[_/MMIWW
T[TTIII‘lllllll|lll|lll|lll|lTI]1TTrlllllll]llllll"lIIIIIIIT*T—ITTT*TTWFT‘FWFIW
FTT T III]II]Illlllllllll]lfl!ll?[lll'III|II|IIIT[IIATIjIIIIIIIlll](lllﬂw\ljl"lkllﬂ-ﬂ
TTT 7T lll]lll]III[IITTIIl[lll|117[TIIIIIl[llllllf]ll1—rlll|IllllllelJl
IIITIII IlIllli[ll||||||[Irj|llllTTrHl||||||Tr]lll[l!|]|||lIITTHI lul([,;ly'.},llgyl
TTT T IIIIIIlllll]lll]lll]lllll]]l||II|I||III|II1|I|IIIII]IIIIIIIIIIIIIQWF
rTrprTT llllIll||||[|IIIIII||1IIIIIIIIITHITIIIIIII}IH“HIIIIIWWTTWWW
TTTTTT I.IllllfrlTrIllIIIIIIIITTIII’lll]lllTlll[lll]llllll1||ll|llllllllrﬂ1m“‘r"ll‘l_
lllllll lll]lllllll]lII,I'I[llIIIH]III]II[TIIITHllll||T|||l||||ll(|/117|g1"\‘WW
TTTTT] ‘H]ln{lHlxlllllilllllwl]ill‘lllllllllll[||||||||l||||11rllfll/|/ulm
rrrprTd ||l|ll|||||l|||||||||1l|l||llll]l[l|1|[|||l]lll|l||l|||||||g~|+ldlmg2|’"ﬁ]ﬂ“[“rm—|“
T HrTlllllit[\llllnillllflllllllllllllllllll|111rllr‘rl|l||lIl(lngf\l]TfT]“‘Wﬁﬂ_
TTTTrT l||||||T||l]|rlIr|11111T711lIl|T1|||IIIIfTI“lH|[|'H]|||] l[ruu]lél.llgllyl_ﬁ
lll‘ill Illllll||||T{TT¥1Il}lll]llllillll'\llll\lilI[IIIIIHIIIIIIII[ITT(‘EWP(W]*[T
TTT rrT lllllllluwlllltll[lll(llllllllltlTllrrlll}lllll||[||llllI|1|I}|3i4~|¢"|ulﬁ"
lllri!l lllllll‘lllTl!l[F!Iilll]l!lITl||l\\|l|l]I|IIIIIIIIIIIIIIIIITIIII(I/I.;.I”IQI!‘I
III|I|| lll’ll|]|lI[IIIT!II]IIITTIIIIII|Ill[|11‘|’llI[III|I|I||I'rTI|ITT/TEI)IIL|II’)T
TTTTTT |l|[||||||l|l|[|l||||||||H||\||||\[l||||[||l|l|||l|ﬁ_l*rr9‘r‘l_|w1fj‘1’([ﬁrl“1?|'5'l_rf
lllrlll IIIIIIT‘|I1IlllIlilllllI|Ill]’Tﬁ_‘—l_l_l_rrﬁ‘rﬁ’ﬂj‘r]"rflT"LL&F\'T?I—TT‘ITTTT“E»IdITﬂIFU_‘F
o ez SLNIWWO0D v GNY3¥3IdO V NOILVY¥3IdO V T3gvl |
atva ADNGEA (FBE INWVEOONd — FING I I YU77IT SWNII @D 7] WYuo0ud

I
UNIVAC III UTMOST
July 1, 1962 50

11,

Sample MOVE PROCEDURE

This MOVE PROC is a generalized routine to move n words from
one area in memory to another. It is activated and appropriate coding
generated by a procedure reference line: one of the following

IT Label Label #of words IR (4 lists)

ST Label Label # of words (3 lists)
IT 0,IR 0, IR # of words (3 lists)
ST o0,IR ¢, IR # of words (3 lists)

[N

The above reference lines indicate that the sending and receiving
addresses may be given as a label or in an index register. If itera-
tive coding is called for but the number of words (list 3) is not greater
than twenty, then straight line coding will be provided., This allows
the number of words to be computed elsewhere in the program and the
routine to determine the better coding,

The MOVE procedure is composed of a number of procedures to deter-
mine which coding should be generated and how much coding is needed
in the case of straight line coding.

Lines1 - 6

The opening lines are the entrances to the MOVE PROC. The period
in the MOVE statement indicates that the number of lists provided to
the PROC is variable, The DO statement in line 4 tests to see whether
STraight line or ITerative coding is called for, If ITerative coding is
desired PROC A will be generated, if STraight line coding is desired,
PROC B will be generated,

Lines 7 - 10 PROC A

PROC A is reached by IT in the reference line. These lines further
determine whether the addresses (sending and receiving) were given
as a label or in an index register.

Lines 11 - 14 PROC B

PROC B makes the same test as PROC A, but the switches are
different as they must create coding to handle straight line coding.

REVISION: SECTION:

i

UNIVAC IIT UTMOST

DATE: PAGE:

July 1, 1962 51

Line 15 -18 PROC C

PROC C performs the test for the number of words to be moved, It
is generated in PROC A and therefore is a continuation of the coding
necessary to generate iterative coding with an address supplied in an
index register. If the number of words were 20 or less, then straight
line coding would be generated,

Lines 19 - 22 PROC D

This procedure makes the same test as PROC C but sets the switches
so that the coding generated will handle the words to be moved with
labels provided instead of in an index register.

Lines 23 - 36 PROCE

PROC E would be generated if there were more than 20 words to be
moved and the addresses to be manipulated were in index registers.
Line 24

First a test is made to determine and move any words not multiples

of four. PROC L would be called for and it has one list. The express-
ion given would create the correct bit pattern to be placed in the AR
portion of the word., Lines 25 - 30 are used to manipulate the beginn-
ing address and create the proper increment and compare control

word for use in iteration.

Lines 31 - 35 compromise the entire coding needed to move four
words iterating on index register given as containing the beginning
area address. Line 36 is the conclusion of a PROC, an END line,

Lines 37 - 44 PROCTF

PROC F, generated by PROC D, moves the words iteratively; the
addresses having been supplied as labels, Note in this PROC that
the non-multiples of four words are moved at the conclusion of the
4-word-multiples.

Lines 45 - 48, PROC G

This PROC isused by both straight line and iterative coding procedures
to move non-multiples of four when the addresses were given in labels
rather than index registers.

REVISION: SECTION:

II

DATE: PAGE:

July 1, 1962 52

UNIVAC III UTMOST

Lines 49 - 52 PROCH

These lines would be generated if straight line coding would be desired
and the area address were given as labels. The first DO determines
if there are any non-multiples of four words and generates a PROC to
move them,

Line 51 creates the number of four word loads and stores necessary
to move all multiples of four. The DO statement has a '"label" which
will be used by the M PROC called for in this DO line.

Lines 53 - 56 PROC J

This PROC accomplishes the same thing as PROC H, but the switches
here would call for a PROC necessary to create straight line coding

where the index register contain the area addresses.

Lines 57 - 60 PROCK

This PROC contains the two four word load and store lines for straight line
coding, Note the use of the indexing feature of the DO "label" to incre-
ment the m address. Each time the coding is generated the COUNT

will be one greater and when multiplied by four will give the proper
address increment,

Lines 61 - 64 PROC L

This PROC is called for in PROC E where the non-multiples of 4 have
to be moved before the iterative process can commence.

Lines 65 - 68 PROC M

This PROC generates the coding necessary to move words in straight
line coding, but it differs from PROC K, in that the addresses of the
sending and receiving areas are in index registers. Notice the use
of the indexing feature of a DO "label",

procram _ [YJOVE PROC. _ PROGRAMMER.. DM PRIGGE DATEMZ_ pacE | oF .3 pacEs

1SOWILN III DVAINN

:3lva

NOISIA3IY

2961 ‘1 &mn[

. LABEL A: OPERATION A OPERAND COMMENTS 72|73 80
??0|V|E1111U°|R|01d.111.1¢,1,1,L|l1|||l||||||1|l||||1||||||\||1[||||||||||1||t||||1I|||||||
Zr L Wamel o L L b b b b b e b b b boa b b B L
ST Lo wamE o Lo by b e b b b b boa b b b b e b B by
JJlllLJ!DIOII|ImlOlV,EI(IOI\]0DI—RD'I!HI)I.IIIIPIIIlllIlllllllllllllLlillll)l,llillll‘}l)lllli
_L_L_J__LJ_J_x_mL__LJ_ﬂQME(lOIIODI—iILLBllt1||1|[1LL|||L|1|||||||1||||x||l|||||1|x|| N EEN
T
AL PRocda s b Lo b b b b b b b b b b b M L
tic b e LimoME Ghy =0y € L b Lo Lo b b b be o bvnn b b @ b
cer b o LimeviE I dely DL b Lo b boec e b becc b b Lo @ e
ot BV by b b b b b b b b b b by b b b ren s L
Bl PRoCl ol s Lo b b b b e b b b b b Lo e b
||||1||ID|O|||U7)1.V|L|(|I||I3|-1d\|M|||||1|||1.|1|n|l|||11|||||||||||ltlltlLluu/é’.unlnu
|||1111[D01;IMOIVL&QH\II)DPMG'ILH[||||;||11J11||||x||||11|||||||||1|L|1||/1311||u
il M L L b oo oo oo oo b b b b b b b g L
111111|P|R|0|0—|~||||||1|||1l|||ll||lll||t||||1|Il|||||ll||11||||ll||1|1|||1i|5|<1|||1
IIJLJLIIDDJIIJPIQIVE-I(Isl\“DI>IEIOI\IIEIllllllllll]III!ll||l|lll|l||l|||1illll|lll/lé'lllllL
||||1||[D|O||iMOME|(&]IDI‘(lﬁllmHll:1||11||||‘||l|||||1|||1|11|||||||||||||||l|7||||lL
nnllulEMblllululllllllnu|||1|||||||1|lHtlunllll|||Ll|||l||||||11||1/81||1LL
b]ll[llllP|RQd°|||ll||lll]lllllLJJll]lI|||l|lllllll||||||||||l||l|||l|l||| iIQ|i||ll
sl PO ﬂxQVIEJ(I3|\|I\)|>|&|QuLFL1n||||||||||||||1|.||||||1|||||||n|||||||||ZIO||||1L
11111“llelIMOMEI(BI\I/DKJZVNMI11||||||l||xll1|||||||||1|||||||ll||||||||2’.|I||||1l
IIlIlIIENIDllL![III[lllllllllIIIlllllIIIllllllllllllllLIlllIlllllllllllZIleIIII
11|1HIPRlQOJoH|||1|||||1|l|lll|ll|||||1|1[1[||||x|1|||l|111[1|l|l:1||tlal3|1||lj
Lol Do | MoVEGS: 1) eirlZ0] i ((3exovE(31 100 wiE3D /2ett 1 | L b b g L
||1111|4LS_|X|_|_LQQME_(|_A;_2DJ_}|_IZZMIl||111l111LuL||||11|||l||||11|1|||I|||1||,_2451'|||||

uP-2807 CODING FORM InG. BK.

r3Igvd
:NOILO3S

13
I

procrAM __ NIV £ PR

PROGRAMMER @N_Eﬁ_/__éc_.__ DATEM PAGE _2, OF »3_ PAGES

1SOWILN IOII DVAINN

. LABEL A OPERATION A OPERAND COMMENTS 72|73 80
_;_JI_LLJI_IIILI l||8||le£MlP|IIJJI11IlII[l[lillllllllllllllll:l\llluillllH|[ll|26\!‘”1
LLBMJMMQM@%LMJJJl N NENE FE NN RN T NS SN NEE FEEN /AR
L1111 BRR | |81.|UL5'|1111J11||L||lIILJHII|!|l|||||L||LL|l|||li|l|lnll||| BLiliil
1ulu1bﬂilnﬁ)nl(ffmllu|l|11 oo bora o bee b b b b bvva b Lo R b
gmp ol b b b bt b e b b b i B b

Ll WA nlﬁ\l|3|\|lmale1(|Im£D|ul|111|11|11|L111_L||1|ull||1]|U||||l||131[1|]|||
1JJ|11115161|||/51151\|UDOMEIGZHZDHII||11||||1||[1[LJ||llluLlul:uI:||I|||%e.nltn
Ll I |mE|!ll||||||||||1lllllslaljlulujll|||L||||1|%l'-hlllll
ulltltfl‘xuIW)LOMEL(IZI\JZDI1|(|‘)‘|)1ILH pva b b bre v b b b b b 3k e b
Jll]ulﬂ_lqll&r‘HillludJlnll;lLLlLJ ol e bea e bver b b e B& L
cia oo Ewae L b b b b b b b b b b b b bypa b et L
L PRoeds o L b b b b b b b b b b b Lo 0 48 L
Lo Lo X | imowiE (A DI\LKMIOI\/LEIGII\’H))III!'IIllIllllll|ll||||||llI|JIllJl 3% 0l
||||||L1ﬁxx||/6'l§h|Lm0ME(x41|lDH|||1’|Jf|t|ll|11||||||||||||||||ln|||||13|‘7|||1||
xlll;Hlsﬁu||/15'|\||51|lM|01\/b(|21\lh)r‘MOMEn(V\u\HlSH pia b b bera b brea b gt b
MM&MQ‘E@l(MQlVIEI(B|UDIIII‘!)I)-}'M@JVIEI(LU_\[IDI\I S S SRR R N I S
1L1|14|J3'|Lu||»$'3]u1||||||||l|||||1|||||||11||n||||111||l4x|l||||1ulua4-ﬁ|n||n
oV ¥3> 1u(b3ﬁ<molv@(al)nhm& t&)l,/lzrﬁ‘ﬂnl‘[llnhuuhx er_illll
llll[llElNlDIllI1,lIIIIIIIIII|1lll|Ill|illIIIJIIJ_LIIIIIIIJLIIIIIIIllllll lllll
o L PR b b b b b b b b b b b b b b st Ly
11111u%ﬁu[ﬁr(;/lllvllmovltn(x/«lI\MI0|V|L|(l3|\|ID|"Ji|llnlnullnltullLHlnnllu"6111111
ol 8A] g‘l(llxlll)l1ﬂQVE1<12.L\I/D'I+M|OIVIEJ£BIL1DI oo b bens b by v g L
llllllwlbjll|l]lllLJlLllLlILJlLllLJlLl]llllllllllll'llllldlLlllllll11461|||||
Hoo Lo PRoC o b Lo Lo b b b b b by b b b b b 0 0 g
LMMM*MMMMMM(@#&MM&M.MHMHM. Q11111

up.2807 CODING FORM inG. Bk.

7S

o a

> m

3 <

R

0

< z

—_ 4
P
O
o
N

] m

> m

[n] 0

m 4

n 5

z

I

1SOWIN III DVAINN

PROGRAM \’Yl CV £ PRocC. PROGRAMMERL/V FRIG-C-E DATE;.TM_/)_L%Z_ PAGE iOF_s_PAGES
, LABEL A OPERATION A OPERAND A COMMENTS 723 50
QDM¢LLJDOL1J_MMLI(BI)IDI/ ci e o b b s b b by ce b b b b B
111114JE1MD1I1:LullluﬁuLllllll|a|Ll,u1|t|,1l,,1,11,,l,,1|,1|1ulullllnllu'ﬁz;rlul
Il vdProch ool oo bl o b e bbb b b by b b b Pen o 8B Ly
L Do | mowle @@yl Do) |61 I(SkamonviE (B, Do3rBiadt o Lo Lo Lo Lo S L
UINh’TIlDOIII/’?]OMEI(SI\!/DJ/#I\IlllKll|llll!IIjlll|Illl1|1]llillllllll|IJlJllvl{;g.llllll
b BN e e e b b b b b b b L i s L
}iu,,,,l,uJPﬁDQlaJ,LL,l,J1_1,,J111 iLl],L||||11|||riz_111 il e b e b b S L
A,LJ,,J,,L},ILLILIHIlIJ’lsl:)lMLOIVJEJ(I/I)U)*(##EOk/NW|/I)IIIL_ll] Ll b b b b Lo SE L
FEREEEES: Jhﬁ)lmolvtl(zl,h)rh(#ﬂﬁ&owwn'-'“)|Il11||l||ll|||||z||||||l|lI|||||l5I7|||1||
llIILIILIENIDIlllLlllJJlllllLlll|l|III|II||ILIIIII|II]’II1|III|IIIIIIIIlllé‘ollllll
".L.J_J.lHJPlR@lEJhL_luJuLLJLLJLLLll|1||1|lu|||||||||||.1|1|||||11ulllnlfll| 11
EERRRRIY RR R INTDING 7= G N/D IV INN ., 1 T IN-) I AN R SRS RN NN NN ER NS RN RN -
J.lllllLBlAL.lwl_lL'L(‘_l}L/DJ}lII’MNIEJ(BI)/DLJ!J;JMM@J_),&J)]llll[llllllillllllll!|||Ill|él3|l|||]
Lo B Lo Do b Lot e b b b b b boa b baaa b et b i
llllI‘IPRCIC-LJLLllIJlIJlllllllllllll]llll]ll|ll||lll|llllllllllllIlIIlllél(gllllll
.l.,.lJ,_J,lll%lﬂl]]lﬁlﬂ#lﬁﬂbblill}m@l\lsl(lll\lzl)llIllllJlllLl|111|lil[1II|lll|Illlllléléllllll
Ll AR [syl #ADDEILL PIOVE oo b b b b b e e Ly
L.Al,,,ll l[]igNlI)lJllJ_lllllllll|L|Illl|||||l]||lll‘llllll||lll|ll|||l|||lli!l|_|_61811l|'|
,LLJVLJ_J_LJ,,,I,[I,IJIL,,Ll,l_l,,, l;llllllI,LLL,ngLJi,L,LJJ,,lJ.LJ ,,Llllll|lllllllll[Illllll!l I||||||
111|1lli'llljjil_[llJJlllhllllLl[lLLLlllI1111111[111]111|||||||1||||l11| Illllll
bbb b b b b b b b Lo b b b b e b Lo i
con ol e s b b b b b e b e b o b b ben g by
||J]1llAullll.llL.le,L.L_L.Ll,.,L.,L.l_L,J.lLLlI!lll||||lllllllllllllll||l||||l||lll|ll]lllll'
v e e e b e b b b e e b b b beaa b b b b
o b b b b b b b b b b by b b bven b b b

uP-2807 CODING FORM nG. Bk,

) 2
> m
N n
E a
= z
— z
p—
)
o
)
] ()]
2 E
n A
m 2
z
(91} —t
o i

UNIVAC IIT UTMOST

REVISION:

SECTION:

Notes

DATE:

July 1, 1962

PAGE:

: SECTION: -
UNIVAC IIT UTMOST oaTE: PAGE:
July 1, 1962 1

IIT. PROGRAMMERS' REFERENCE SECTION

A. LINE CONTROL

The information content of a line to the assembler consists of the label,
operation and operand fields. The information content is normally terminated
when the maximum number of expressions required by the operation have been
encountered (or maximum number of lists in the case of a procedure reference).

There are two special marks which override the normal rule:

1. Continuation
Ifa ™" is encountered (outside of an alphabetic item) the current
line is continued with the first non-blank on the following line, and
there is no more information to the assembler on this line,

2. Termination
Ifa "." followed by a blank is encountered (outside of an alphabetic
item) the line is terminated at this point. If any more expressions

are required, they are taken to be zero.

A continuation or termination mark may occur anywhere on the line. Following
the information content of a line any characters may be entered.

B. LABEL FIELD

If a line is to have a label, it is written in the label field. A label is composed
of one to eight alphanumeric characters, the first of which is an alphabetic
character. The label field starts in column one and is terminated by a blank.
Except for the EQU, FORM, DO, FLD, PROC and NAME directives, the label
is equated to the current value of the location counter.

C. OPERATION FIELD

The operation field is up to eight characters in length, and may contain an
assembier directive, a mnemonic machine operation code, a label associated
with the FORM, PROC or NAME directive, or a data generating code. The
operation field starts in the first non-blank following the label field and is
terminated by a blank unless it consists of & + {plus} or ~ {minus) sign, in
which case the + or - signs is the operation field and the next column need

: szc‘nnN:HI
UNIVAC IIT UTMOST - PagE:
July 1, 1962 2

not be blank. If the operation field contains an assembler directive other than
RES (which increments the location counter), the location counter will not be
affected. If the operation field contains TWC, the location counter is incre-
mented by two. In all other cases, the location counter is incremented by one
after the line is generated.

OPERAND FIELD

The operand field starts in the first column following the operation field and
is composed of lists of expressions. Lists are separated by blanks. The
number of lists is one except in the case of a procedure reference line. Each
expression in a list except the last is terminated by a comma.

EXPRESSIONS

An expression is an elementary item or a series of elementary items
connected by the operators shown in the table below. An item may have
preceding blanks.

+ Arithmetic Sum

- Arithmetic Difference

* Arithmetic Product

/ Arithmetic Quotient

++ Logical Sum (OR)

- Logical Difference (exclusive or)
** Logical Product (AND)

// Covered Quotient (a//b=a+b-1)
b

= Equal a=b is 1 if a=b

a=b is 0 if a#b

> Greater Than a>bis 1 if a>b
asb is 0 if a<b

< ILess Than a<b is 1 if a<b
a<b is 0 if a>b

+ a+b=a*10b

o a-b=a*10">

An expression may also have a leading + or - sign. Any negative value
produced by an expression will be represented by a 2's complement unless
the operation field of the line contains an EQU assembler directive, or TWC,
or, in some cases, if the operation field is + or -.

REVISION: SECTION:
m
UNIVAC IIT UTMOST
DATE: PAGE:
July 1, 1962 3
If an expression represents an address, it may be preceded by an *. This

will cause the sign of the generated word containing the expression fo be -

(indirect address or field select).

The various types of items and their values are given in the following table.

REVISION: SECTION:
I
UNIVAC IIT UTMOST
DATE: PAGE:
July 1, 1962 4
TYPE FORM VALUE EXAMPLE
Label any label value assigned to label L
Location $ value of location counter $
Octal the digit 0 followed value interpreted as base 017
by octal (0-7) digits 8 (binary representation)
Decimal non-zero digit value interpreted as base 14
followed by decimal 10 (binary representation)
(0-9) digits
BCD : followed by value interpreted as :14
decimal digits base 16 (Excess 3)
Alphabetic ' (apostrophe) value of each character 'BOB'
followed by any in corresponding position
characters except
' followed by '
Floating decimal digits values represented in 3.14
followed by . internal floating point
followed by decimal format (always double
digits precision)
Field field label followed address of word OP ($ +2)
by expression enclosed selecting the field
in parentheses
Parameter procedure label or value of corresponding MAX (2, 1)
procedure label followed parameter as defined by
by 1 or 2 expressions the current reference
enclosed in parentheses (see Procedure Reference)
Line * (followed by line value of the word the line J$+2)

followed by)

would generate

All items in the above table will be right justified in their generated resultant field,

and leading bit positions will be binary zeros,

* See description of line item.

UNIVAC TIT UTMOST =
July 1, 1962 5

F. MNEMONIC INSTRUCTIONS

The operation field may contain any of the mnemonic instruction names listed
in Appendix 1. The instructions are of two types. Type 0 instructions have
three expressions representing the "a', "m' and '"b" fields of the
instruction respectively. Type 1 instructions have two expressions repre-
senting the "m'" and 'b'"" fields of the instruction respectively. The
absolute operation code is placed in the operation field of the instruction

word and, if the instruction is type 1, the absolute '"a'" register code listed
is placed in the 'a" field of the instruction word. These fields are described

by the format:

24 21 20 15 14 11 10 1

The sign of the instruction will be + unless the first character of "m'" is
* (indirect address or field select) or an implied literal is generated
(see Section Ij.

G. DATA WORD GENERATION

There are two methods of indicating a data word (other than an instruction).

1. Increment and Compare Word, ICW

This data generation operation is used to prepare a word suitable
for incrementing and compating an index register (with the IX and
IXC instructions). It is followed by two expressions: e_ repre-
senting the comparison amount, and e, representing the increment.

The format of the generated word is illustrated below:

24 " 10 9 1
ICW S e e

The sign of the word generated is the sign of e, and bits 9 to 1
contain the magnitude of -e,-mod 512. —— = o

REVISION: SECTION:
1
UNIVAC III UTMOST
DATE: PAGE:
July 1, 1962 6
2. + or - Operation Field
A + or - operation field causes generation of a one-word constant
whose format depends upon the number of expressions in the operand
field. The formats generated for the corresponding number of
expressions are described below:
24 21 1
1 S ey one-word datum
24 21 15 1
2 S e, e indirect address word
24 21 20 16 15 11 10 1
3 + | 0 e1+3 e2+3 ey field select word
24 21 20 16 15 11 10 1
i 1 3 |
4 + l e, e1+3 e2+3 eq field select word

3. Two Word Constant, TWC

A TWC data generating word will actually generate two words. All
floating point expressions should be preceded by TWC (except in the
case of literals). The sign of both words will be the same and equal
to the sign of the value of the expression given.

LINE ITEM

A line item is an instruction line, form reference line, or data word line
without label field and without leading or trailing blanks, enclosed in paren-
theses. The line item has the value which the word generated by the line
would have unless the line occurred in the address field of an IX or IXC
instruction and has two expressions. In this latter case, it is evaluated as
a data word with ICW in the operation field. If the line is a data word line,
the leading + or - may be omitted. If an entire expression (except for
possible leading *) consists of such an item, the value of the expression is
the address of the cell containing the word generated by the line. The word
generated is called a literal. If the literal is identical to any other literal,
the location assigned is the location of the previous literal, thus eliminating
duplication.

UNIVAC IIT UTMOST

REVISION:

SECTION:

It

DATE:

July 1, 1962

PABE:

A literal will be doubie precision if the line was a "TWC' line or if it was
a data line with one expression and the mode of the expression was floating.

An item within such an item can be of this fype up to a level of 8 parentheses.

a~OAS a0 T

normally is not concerned with the fact that they are 10-bit quantities. The
resultant object code generated depends upon which of the following cases is
satisfied (where m represents the value of the address expression and b
represents the value of the index expression of an instruction and x, are
the index registers assigned to the assembler by USE directives).

ADDRESSING
The programmier writes add
1. m < 210
2. b =0, and
m > 210 and
for some i
0<m - (Xi)<210
3.
4.
Note:
ASSEMBLER DIRECTIVES

24 21 20 15 14 11 10 1

S b op a m
24 21 20 15 14 11 10 1

S X, op a m-(%;)

If neither 1 nor 2 is satisfied, the object code generated will be

identical to that which would have been generated if the programmer
had enclosed m,b in parentheses and preceded the left parenthesis

by an *., (This is an implied literal.)

If the address addresses a literal logation, y, (implied or otherwise)
and does not satisfy 0 <y - (x.) < 2

is set and the address contains y (mod 210),

In1and 2, Sis + unless the first character of m is *.

for any i, a range error flag

Assembler directives supply information to the UTMOST assembler. There

are several assembler directives as listed below and described on succeeding
pages. Any labels referred to in an expression on a directive line must have
been previously defined (i.e., they must have previously appeared in the label

field).

UNIVAC IIT UTMOST

REVISION:

SECTION:

1

DATE:

July 1, 1962

PAGE:

ot
(=]

O 00 ~J O U1 = W DN =
o e e e e e e e

EQU
RES
FLD
FORM
END
PROC
NAME
DO
USE
SET

EQU
The EQU assembler directive causes the label in the label field
of its symbolic line to be equated to the value of the expression in

the operand field of the symbolic line.

FORMAT: label EQU e1

RES

The RES assembler directive causes the value of the expression
in the operand field to be added to the location counter.

FORMAT: RESe

1

FLD

The FLD assembler directive is utilized to indicate the leftmost
and rightmost bit limits of a field. It must have a label. The first
expression represents the leftmost bit limit, the second expression,
the rightmost bit limit.

FORMAT: label FLD e ©

2

USE FORMAT: op AR, label (m)

When a field reference item is used as an address, a field select
literal selecting the field is generated and the address is the
address of this literal. The sign of the instruction generating the
literal is minus.

: SECTION: III
UNIVAC III UTMOST - -
July 1, 1962 9

4. FORM

The FORM assembler directive is used to define arbitrary data
formats. This directive must have a label in the label field, and
the sum of the values of the expressions in the operand field must
equal 25. A single expression equal to 25 is not permitted.

The FORM directive perm vits the programmer to define arbitrarv

ine FORM Gireciiv T L vail £ QRALA11IT L VYU MUUTLINT QA MLiviGay

word formats by callmg upon the pattern specified with a line of
coding having the associated label in the operation field and the
appropriate number of expressions in the operand field.

FORMAT: label FORM e - ep

REFERENCE: labele_, e_, ... €
1° 2 n

5. END

The END assembler directive indicates to the assembler that the
last line of symbolic coding for the procedure or program has been
read by the assembler. In the case of a procedure, the operand
field is ignored. In the case of an entire program, the expression
in the operand field represents the starting address.

FORMAT: END e

6. PROC

A PROC directive line must have a label, and the expression in

the operand field indicates the maximum number of lists of
expressions associated with the procedure (if any). If no expres-
sion is given, the number of lists is indeterminate. (No expression
is indicated by a period-blank. In this case, every reference to the
PROC must have a period-blank following the last list).

A procedure must be defined previous to any references to the
procedure.

The PROC line is (optionally) followed by NAME lines (see NAME
directive) and any valid symbolic lines up to and including an END
line. If there are n intervening PROC lines, the n + first END
line will terminate the procedure.

. SECTION: -
UNIVAC III UTMOST — Aoe:
July 1, 1962 10

Any labels defined within the procedure are considered not defined
outside the procedure unless the label is followed by an "*'', in
which case the label is treated as if it appeared in the referencing
procedure without an asterisk. H a label is referred to within the
procedure and is not defined within the procedure, the definition of
the label outside of the procedure (if any) is taken.

7. NAME

All NAME directives associated with a given procedure must follow
the PROC line immediately. A NAME line must be given a label.
Its operand field contains an expression.

FORMAT: label NAME e

A procedure may be referenced by placing any of the Procedure
names (including the name on the procedure line) in the operation
field of a line.

8. DO
The DO directive is used to generate a line a given number of times.
If a label is present, the value of the label will be n the n'th time
the line is done. The expression in the operand field indicates the
number of times the line is to be done. The line may be any line of
svmbolic coding except EQU, FORM, PROC, NAME and END,

FORMAT: label DO €y line of coding

9. USE
This directive is followed by not more than 16 expressions which
represent index registers. The first of these registers is assigned
the current value of the location counter. Succeeding registers are
assigned the value of the preceding register plus 210, These
registers are loaded with their assigned values when the program'is
loaded and cannot be modified by the program unless a SET directive
is given referring to the register. The same index register should
not appear in more than one USE directive.

UNIVAC TIT UTMOST —
July 1, 1962 11

10. SET

The SET directive has two expressions. The first expression
represents an index register and the second expression represents
a memory address. The assembler will assume the value given is
in the index register from the point the set is given until another set
referring to the same register is given.

The register is essentially a "USE'" register and the information
supplied by the SET directive will be used for addressing purposes
as explained under "ADDRESSING''.

Note that the assembler will not cause the register to be loaded.

K. PROCEDURE REFERENCE LINE

Lists of variables may be submitted when referincing a procedure. Expres-
sions within a list are separated by commas; lists are separated by blank
columns.

If the name of the procedure is P, within procedure coding, P refers to

the number of lists supplied by the current reference, P(e) refers to the
number of expressions in the e'th list and P(e,f) refers to the value of the

f'th expression of the e'th list (e and f are expressions). The list containing
the procedure name (operation field) is considered list 0 and is always present.
The procedure name may be followed by expressions. P (0, 0) refers to the
value of the expression on the NAME line by which the procedure was
referenced, and P (0, e) refers to the e'th expression in the name list (list 0).

L. INTER-PROGRAM COMMUNICATION

1. Definition

If a label in the label field is immediately followed by an "' and
the line is not within a procedure, this is an external label which
can be referenced by other programs, assembled separately, when
the set of programs is loaded. References to the external label in
the program which defines it are the same as for any other label.

2, References
If an address expression consists of a label plus or minus a constant,

and the label is not defined within this program, a reference to an
external label will be generated.

UNIVAC IIT UTMOST

REVISION:

SECTION:

Notes

DATE:

July 1, 1962

PAGE:

UNIVAC III UTMOST

REVISION: SECTION:
v
DATE: PAGE:
July 1, 1962 1

Operating procedures will be specified later.

UNIVAC IIT UTMOST

REVISION:

SECTION:

Notes

DATE:

July 1, 1962

PAGE:

REVISION: SECTION:

UNIVAC III UTMOST Y

DATE: PABE:

July 1, 1962 INTRO.

Section V is a reprint of UT 2465, the UNIVAC III Central Processor
Manual, with illustrations changed to the UTMOST language and with notes
brought up to date by the latest information on the hardware aspects of the
computer. It is here included in order to make this manual as comprehensive

as possible.

UNIVAC IIT UTMOST

REVISION:

SECTION:

NOTES

DATE:

July 1, 1962

PAGE:

UNIVAC IIT UTMOST

REVISION: SECTION:
\
DATE: PAGE:
July 1, 1962 1

CENTRAL PROCESSCR

The Centrai Processor consists of five modules:
the memory unit, the arithmetic and control unit,
the general purpose channels, the power supply
and the power control. The functions of the first
three are described below.

Control Unit

The control unit contains a number of special
registers and additional circuitry whose func-
tions are to select in proper sequence, inter-
pret, and initiate the execution of the individual
instructions of the stored program governing the
operations of the entire system. The instruction
logic is 1—address and the instructions are exe-
cuted sequentially.

In addition to the normal sequencing, addressing,
and control registers, the control unit includes up
to 15 index registers, and a Memory Address Adder.
The Memory Address Adder is separate from the
adder of the arithmetic unit. The index registers
together with the special adder permit the system
to make the indexing cycle an integral part of the
instruction set-up cycle. Therefore, no additional
memory cycles are required for indexing. The
instruction execution cycle is explained in detail
in Section 3.

Arithmetic Unit

The arithmetic unit contains an adder for both
decimal and binary arithmetio, four arithmetic
registers, and additional circuitry to permit a
wide range of logical abilities.

Addition in the UNIVAC III System is parallel by
bits of a digit and serial by digits. Because the
digit rate through the adder is ! microsecond,
the serial additions of the six digits within a
word ate completed in the 4—microsecond basic
memory cycle.

The four arithmetic registers can be linked in
all processing operations to permit the handling
of two- three - or four-word operands. Utilizing
this feature, the programmet is able to refeiérce,
with a single instruction, 4, 8, 12 or 16 alpha-
betic characters; 6, 12, 18 or 24 decimal digits;
or 24, 48, 72 or 96 binary digits.

All additions and subtractions are automatically
checked by congruence arithmetic on a modulo 3
basis.

Magnetic Core Storage

The primary storage of the UNIVAC III System
is a ferrite core storage unit of 8,192 UNIVAC
III words. Additional modules of storage can be
added to increase this capacity to 16,384; 24,576;
or 32,768 UNIVAC III words.

The complete memory cycle including selection,
read-out and regeneration of a word is 4 micro-
seconds.

The basic unit of storage in the UNIVAC III Data-
Processing System is a fixed-length word consist-
ing of 27 binary bits. Twenty-five information bits
represent data, instructions, or control words. A
twenty-fifth bit is used to indicate the sign in a
data word. The remaining two bits are used to check
the accuracy of the transfer of all information to
and from magnetic core storage.

UNISERYO Ill SYNCHRONIZER AND TAPE
UNITS

The UNISERVO* III synchronizer serves as a
communication device linking the system’s core
storage to its UNISERVO IH tape units. When re-
ceiving or transmitting data, the Central Pro-
cessor is never linked directly with the com-
paratively slower UNISERVO III tape units, but
instead with the high-speed synchronizer.

Once a UNISERVO III input-output instruction is
initiated by the Central Processor, the subsequent
control of the operation is relegated to the syn-
chronizer. This device automatically carries out
the execution of the function specified, releasing
the control unit so that the Central Processor
continues with the execution of subsequent in-
structions.

Each UNISERVO IIl synchronizer has a pair of data
channels with separate control circuitry. The
result is that UNISERVO III tape reading and
tape writing proceed in parallel with one another
and with Central Processor computation (and with
operations of the general purpose input-output
channels which are introduced below). Data
entering or leaving magnetic core storage through
the high-speed tape channels requires a memory
cycle of 4 microseconds per word.

In transfers from core storage, the tape syn-
chronizer receives the 27-bit word and segments
the word into three 9—-bit groups, called frames.

.
Trademark of the Sperry Rand Corporation

MAX

T s
UNITS|

CONSOLE
TYPEWRITER

UNISERVO I
SYNCHRONIZER

UNISERVO 1l
' SYNCHRONIZER

T
|
|
|
!
!

|
|
|
1

CENTRAL PROCESSOR

CORE STORAGE - 8,192/32,768

UNISERVO I
SYNCHRONIZER

(e} Q
[] °
HIGH-SPEED CARD-PUNCH
READER UNIT
HIGH-SPEED
PRINTER

i 16
(UNITS

|
|
I
|

ele}
o 0

Q00

PAPER TAPE
READER
AND PUNCH

| .

ADDITIONAL PERIPHERALS MAY
BE ADDED TO THESE CHANNELS

Figure 1-1. Maximum Configuration of the UNIVAC Il

System

1SOWIN III ODVAINN

———

g a

3 2

"E° n 7]

g D

< Z

< z
[u—
O
O\
N

L] 0]

> m

Q (4]

m n

o]

z
[\V]

UNIVAC IIT UTMOST

REVISION: SECTION:
\%
DATE: PAGE:
July 1, 1962 3‘

The frames are transferred serially to the read-
write head of the specified UNISERVO III tape
unit. Each 9-bit frame is then written in parallel
channels across the tape. On transfers into core
storage the synchronizer essentially reverses its
role. Nine-bit frames are sensed at the read-write
head, transferred serially to the synchronizer,
composed into a 27-bit word, and the entire word
transferred to the magnetic core storage.

A single UNISERVO III synchronizer with as-
sociated power, control and switching circuitry
can control up to 16 UNISERVO III tape units.
Two UNISERVO III synchronizers can be attached
to a UNIVAC III System, each operating inde-
pendently of the other.

The pair of data channels on each UNISERVO III
synchronizer is normally used to provide simul-
taneous read and write in parallel with internal
computation., As an optional feature, the write
channel may be enabled to read as well as write.
With this read-read feature installed, the write
channel will accept and execute read orders in
all respects as if it were a read channel. This
feature thus gives the UNIVAC III System, with
a single UNISERVO III synchronizer, the ability
to accommodate two simultaneous reads in parallel
with computation.

The UNISERVO III tape units are the principal
means of input and output to the UNIVAC III
System and will be the only input-output devices
used in the large majority of UNIVAC III pro-
cessing runs. They employ as their storage
medium MYLAR base, oxide-coated magnetic
tape of ! inch width. The length of magnetic
tape on a single reel is 2,400 feet.

As noted above, data is transferred from the
synchronizer and recorded across the magnetic
tape in 9 information channels. A single 9—posi-
tion pattern of bits across the width of the tape
represents one frame and thrée consecutive
frames constitute a UNIVAC III word in magnetic
core storage. The information-packing density on
tape is in excess of 1,000 frames per inch, and,
during reading or writing, tape speed under the
read-write head is maintained at 100 inches per
second. These specifications provide an in-
stantaneous transfer rate in excess of 100,000
frames per second, representing over 800,000
binary digits, 200,000 decimal digits or 133,300
alphabetic characters per second.

*
MYLAR is a registered trademark of E.I. du Pont de
Nemours & Co., Inc.

Data may be grouped on magnetic tape in blocks
varying in length, at the programmer’s option, in
multiples of three frames (one UNIVAC III word).
The interblock spacing is approximately 0.7 inch.
Assuming 2,000 word blocks, a fully recorded
2,400-foot reel of magnetic tape would contain
from 34,000,000 characters (if the data was
completely alphabetic) to 51,000,000 digits (if
the data was completely in numeric form). A data
file equivalent to 515,820 cards (assuming 50%
numeric and 50% alpha-numeric data) occupying
one full reel of UNISERVO II! tape can be read,
modified in the Central Processor and reproduced
in updated form in less than 5 minutes.

The UNISERVO III tape unit employs a phase
modulation recording and sensing technique to
achieve high density packing with highest re-
liability reading. This form of data-recording on
magnetic tape enables the UNISERVO III tape
unit to discriminate bit patterns accurately at
very high packing densities. The skew registers
permit the UNISERVO III tape unit to accept,
without fault, the normal skew associated with
high-speed tape movement.

The detailed functional specifications and control
operations for the UNISERVO III tape unit and the
UNISERVO III synchronizer will be found in a
separate technical bulletin.

GENERAL PURPOSE CHANNELS AND PERI-
PHERAL INPUT-OUTPUT DEVICES

In addition to the four high-speed data channels
associated with the two UNISERVO III syn-
chronizers (and a fifth associated with the UNI-
SERVO II or compatible tape synchronizer), eight
general purpose channels are attached to the
UNIVAC III System. These channels serve as the
communication circuits linking the Central Pro-
cessor’s magnetic core memory with the card,
paper-tape and printing peripherals. (The term
peripherals, as used in these technical bulletins,
indicates the group of input-output devices ex-
clusive of UNISERVO tape units.)

The general purpose channels synchronize the
operation of any combination of peripherals with
the magnetic core storage and provide the same
function of parallel operations for the peripherals
that the tape synchronizer provides for the UNI-
SERVO tape units. As a result, up to 13 input-
output operations (plus unlimited rewinds of

UNIVAC III UTMOST

REVISION: SECTION:

DATE: PAGE:

July 1, 1962

1. UNIVAC Il Data-Processing System

The UNIVAC®III System is a medium-cost, high
performance electronic data-processing system
designed and engineered to provide maximum pro-
ductivity at minimal cost in a wide variety of busi-
ness applications. The UNIVAC IIl System is
modular in its major components and flexible in
the variety and numbers of peripheral units which
can be attached. These components utilize solid-
state circuitry of proven reliability.

The high rate of basic internal speed in the UNIVAC
IIl System is enhanced by advanced concepts of
systems organization and design logic and it is
matched with high-speed input-output units to per-
mit extremely efficient, low-cost-per-unit per-
ductivity in the broadest range of commercial
applications.

A UNIVAC III Data-Processing System consists of
a Central Processor with magnetic core storage and
the arithmetic and control units, magnetic tape
units, and varying types and numbers of peripheral
devices. An expanded UNIVAC III System is sche-
matically represented in Figure 1—1. The general
specifications of these major components are
discussed in this section. Detailed functional
specifications and analysis of operations are
covered in the separate technical bulletins on
each component.

FEATURES

M Systems modularity providing the ability for
smooth and efficient expansion by the addition
of magnetic core storage, magnetic tape units
and a full array of punched card, punched paper
tape and printing peripherals.

B Sustained magnetic tape to magnetic tape pro-
cessing with concurrent peripheral operations
on-line, ’

ORegisteted trademark of the Sperty Rand Cotporation

Up to 13 simultaneous input-output operations
paralleling computer processing.

The fastest magnetic tape system available,
providing a tape transfer rate of 133,300
alphabetic and 200,000 numeric characters.

Fast access, magnetic core storage available
in memory sizes of 8,192; 16,384; 24,576 ; or
32,768 words,

A 4 —microsecond machine cycle providing
internal processing speeds usually associated
with computers designed for engineering and
scientific applications (for example, LOAD,
ADD, STORE, BRANCH, and so on, are all

accomplished in 8 microseconds).

A multiple-word operand feature plus field
selection which allows the system to take full
advantage of word addressable storage and of
the high incidence of short fields in data-
processing applications with no offsetting
disadvantages.

Bit-handling facilities which enable the UNIVAC
Il to be programmed to perform many types of
special manipulations and allowing the system
to utilize a variety of binary input-output codes.

A powerful programming logic based on o com-
prehensive single-address instruction repertoire
and including automatic index register modi-
fication, multiple word operands, field selection,
indirect addressing, and scatter-read-gather-
write tape operations.

A completely integrated software package con-
taining an executive routine capable of con-
trolling concurrent peripheral operations on-line,
a COBOL compiler, an advanced symbolic
assembly system incorporating macro-instruc-
tions and an extensive library of common rou-
tines, and a sort/merge generator as well as
the usual complement of service and diagnostic
routines.

UNIVAC IITI UTMOST

REVISION: SECTION:
v
DATE: PAGE:
July 1, 1962 5

UNISERVO tape units) could occur in parallel
with one another and simultaneously with Central
Processor operations.

High-Speed Reader

Both 80—column or 90—column card readers are
available with the UNIVAC III System. Any
number of card readers may be under simultaneous
control of a single system up to the number of
available general purpose channels.

Data is read into the system from punched cards
at the maximum rate of 700 cards per minute. The
data may be represented internally in either card
code (a binary one per hole in the equivalent
punch position) or in machine code (as the result
of an automatic translation during the read-in of
data).

The card transport system of the High-Speed
Reader is unclutched and consists of: a 2,000-
card input magazine; a read station for transfer
of data to memory; a separate read station for
check reading, providing automatic verification
of sensing; and three program-selectable 1,000-
card-capacity stackers.

Program controlled functions include:

Feed Card

Translate Image
Select Stacker

Select Memory Address

Interrupt Program

Misfeeds, row misregistrations, card jams, full
stackers and empty magazine are detected and
indicated by signal to the program and to the
operator.

Card-Punch Unit

Both 80—column or 90-~column punch units are
available with the UNIVAC III System and multi-
ple punches may be operated simultaneously
under the control of a single UNIVAC III System
up to the number of available general purpose
channels.

Data from magnetic core storage is punched into
cards at the maximum rate of 300 cards per minute.
As with the card reader, data may be transferred
in either card code or machine code.

Under program control, cards move in a succession
of 4 card cycles along a path composed of a
1,000—card input magazine; a clutched first wait
station; a clutched second wait station; a clutched
punch station; and a check-read station which
provides automatic verification of card-punching,
At the check-read station the card enters con-
tinuously driven eject rollers to be delivered
to one of two program-selectable, 1,000—card-
capacity stackers.

Program controlled functions include:

Feed Card

Move Card from Station to Station
Translate Image

Punch

Select Stacker

Interrupt Program

An empty input magazine, card jam, full stacker
and full chip-box are detected and signalled to
the program and to the operator.

High-Speed Printer

The High-Speed Printer of the UNIVAC III System
has a line printing rate from a minimum of 700
lines per minute with alpha-numeric information
and up to 922 lines per minute with completely
numeric printing. Multiple High-Speed Printers
may be operated simultaneously under the control
of a single UNIVAC III System up to the number
of available general purpose channels.

The printing span of a single line of print is 128
characters. Any of the 128 print positions can
contain any of the 26 alphabetic characters, the
ten digits 0 through 9, or one of 15 special symbols,
as follows:

, comma / solidus
period ! apostrophe

= equals sign * asterisk

< less than > more than

; semicolon $ dollar sign

— minus or hyphen (open parenthesis

+ plus) close parenthesis
colon

UNIVAC IIT UTMOST

REVISION: SECTION:
\Y

DATE: PAGE:
July 1, 1962 6

The internally stored program specifies the 32
consecutive words of memory which will com-
pose the print line. To satisfy the requirements
of the particular format, each of the 128 con-
secutive print positions may contain printing
characters to produce a solid line of type, or the
positions may be subdivided into words or fields
of various lengths. This completely variable
format is under the control of an editing program.

The printed characters are spaced 10 per inch
horizontally. Vertical spacing of 6 or 8 lines
per inch may be selected by the operator. Skip-
ping or advancing of paper proceeds at the rate
of 22 inches per second.

The paper-feed mechanism accommodates con-
tinuous form, sprocket-fed paper ranging up to
card stock in weight. The form may be either
blank or preprinted, varying in over-all width
from 4 to 22 inches.

Up to five carbon copies of the printing can be
produced with paper between 11 and 13.5 pounds
in weight. Further, impression control permits
variation in the strength of the print-hammer stroke.
Fine vertical adjustments of the paper position
may be made while the printer is in operation.

No paper and paper runaway are detected and
signalled to the operator.

The detailed functional specifications and the
control of the operation for the peripheral input-
output devices will be found in separate technical
bulletins on each device.

SYSTEMS ORGANIZATION

It has long been a design objective of computer
engineers to provide an EDP system which is
able to co-ordinate and control all of the elements
of data-processing and data conversion from a
single set of electronic circuitry. Such a system
would relieve the user of the expensive support
of special purpose auxiliary equipment and pro-
vide him with a maximum processing power
relative to his investment in electronic circuits.

The design of such a system is predicated upon:

m The existence of electronic components of
sufficient reliability to insure against total
systems failure.

m An input-output logic sufficiently flexible to
permit a variety of input-output devices to
operate in parallel with one another and with
the Central Processor.

m The attainment of internal operating speeds
considerably out of balance with top speeds
obtainable from card, printing and paper tape
peripherals.

m A transference from engineering to programming
of the responsibility for systems control. Re-
ducing the cost of computer development, and
allowing for maximum flexibility through the
creation of sophisticated and efficient control
routines.

The UNIVAC III System, while basically a tape-
to-tape system, provides for concurrent peripheral
operations to proceed on-line through:

m The utilization of reliable solid-state equipment,
proven in use on the UNIVAC Solid-State and
and the UNIVAC LARC*Systems.

m The provision of eight fully-buffered general
purpose channels (in addition to the five high-
speed tape channels) and the automatic pro-
gram interrupt feature,

m The seven-fold increase in internal operating
speeds contrasted to the 1.1 to 2.8 increase
obtainable within electromechanical limitations
with peripheral equipment.

m The development of an executive routine,
CHIEF, which controls error conditions, pro-
vides for input-output control, and allows itself
to be modified to meet the specific requirements
of an operating installation.

The UNIVAC III System from its inception was
planned and designed to permit peripheral opera-
tions, which, while functionally ‘‘out of (the
tape-to-tape processing) line,’”” would proceed
through peripherals controlled ‘‘in-line’’ through
the Central Processor and concurrently with the
tape-to-tape processing.

A simple application of the concept of concurrent
peripheral operations on-line would require that a
payroll run not use the printer for paychecks
directly, but rather produce edited output data on

»
Trademark of the Sperry Rand Corporation

UNIVAC IIT UTMOST

REVISION: SECTION:
A
DATE: PAGE:
July 1, 1962 7

magnetic tapes. This tape data would, in turn, be
printed concurrently with a subsequent run. This
approach has the added advantage that processing
speed will not be limited to the speed of the
printer. The magnetic tape will be used as a
buffer between the high internal speeds and the
slower printer speeds.

It should be noted that, when the edited payroll
tape is printed, concurrently with a subsequent
tape-to-tape run, during a half-hour of operation
over 21,000 lines could be printed; however,
high-speed storage would be required for a total
of 45 seconds during the half-hour and the read
channel of the UNISERVO III synchronizer would

be required for a total of 28 seconds.

UNIVAC IIT UTMOST

REVISION: SECTION:
A%
DATE: PAGE:
July 1, 1962 8

The UNIVAC III word is the basic unit of storage
in the system. It is fixed in length and consists
of 27 binary digits. Twenty-four bits are used to
represent data, and a twenty-fifth bit denotes the
sign. The remaining two bits are modulo 3 check
bits required to produce a modulo 3 sym of zero
for the 27 bits. They are used to automatically
check the accuracy of word transfers and, by
congruence arithmetic, to automatically check all
addition and subtraction operations.

MODULO 3 CHECK BITS (00-01-10)
vy

SIGN

21(26 |25 24 1

DATA WORD FORMATS

Data may be represented in any of the three formats
shown in Figure 2—2, or in any combination. The
processing circuits do not distinguish between
data formats. This distinction is completely a
function of the program.

Six decimal digits plus sign may be represented
in a word. Each digit is expressed in excess-
three binary coded decimal format. All decimal
arithmetic operations assume the values to be
in this format.

Four alphabetic or special characters may be
represented in alpha-numeric data word format.
Each character is composed of six bits, two bits
for the zone (00 to 11) and four bits for the numeric
portion (0000 to 1111); sixty-four different char-
acters may therefore be represented.

2. UNIVAC Il Word

See Figure 2-1 for the UNIVAC III Character
Code.

Values may be expressed in pure binary with
values up to 224_1. All binary arithmetic opera-
tions assume the values to be in this format.

ZONE
00 o 10 n
0000 A +
0001 ;) * (
0010 - . $,
o011 0]
0100 1 A J /
0101 2 B K s
0110 3 C L T
E o 4 D M U
g 1000 5 E N v
z 1001 6 F 0 W
1010 7 G P X
1om 8 H Q Y
1100 9 | R z
1101 =
110
nm

Figure 2—1. UNIVAC Ill Character Code

UNIVAC TIT UTMOST

REVISION:

SECTION:

DATE:

July 1, 1962

PAGE:

DECIMAL WORD™

Six 4-bit numeric digits along with sign constitute a decimal word.

S

| oIGIT DIGIT DIGIT DIGIT DIGIT DIGIT
ﬁ 6 5 4 3 2 1
25 |24 21|20 17]16 1312 98 5 (4

S—Bit 25 indicates the sign, 1 for minus and 0 for plus.

Digits—6, 5, 4, 3, 2, 1-Each digit is expressed in excess-three code. See Figure 2-1.

0000000000000 00080060080000000000000000000000E008000C

ALPHA-NUMERIC wORD™

Four 6-bit alpha-numeric characters constitute an alpha-numeric word.

S

|| CHARACTER | CHARACTER CHARACTER CHARACTER
ﬁ 4 3 2 1

25 (24 1918 13(12 706

S—Sign.

Characters—4, 3, 2, 1-Each character is represented by 6 bits.

$0006000000008000000040000000000

BINARY WORD*

The entire 24-bit data portion of any memory location can be used to represent a

binary value ranging from 0 through plus or minus 16,777,215.

=G —)

24-BIT BINARY VALUE

25

24

S-Bit indicates the sign, 1 for minus and 0 for plus.

*
Two check-bit positions are omitted for illustrative purposes.

Figure 2-2. Data Word Formats

REVISION: SECTION:
MOST .
UNIVAC III UTMOS PagE:
July 1, 1962 10
l: 2 21020 15[14 1110 1
'
A
X | OPCODE | AR m
GENERAL INSTRUCTION FORMAT . OPERAND ADDRESS
SHIFT INSTRUCTIONS v/ X | OPCODE | AR SHIFT COUNT/m
; »| X | OPCODE | X0 m
INDEX REGISTER INSTRUCTION A OPERAND ADDRESS
INDICATOR,|
INDICATOR INSTRUCTIONS AR OP CODE | = INDICATOR/m
CHANNEL
ADDRESS OF 1/0
INITIATE 1/0 INSTRUCTION ' x| op cope | coamwer FUNCTION
SPECIFICATION

Figure 2-3. Instruction Word Formats

INSTRUCTION WORD FORMATS

UNIVAC III Central Processor Instructions are
in five basic formats. In each format the functional
grouping of bits is the same. Some bit groups
perform the identical function regardless of the
operation to be performed, while the functions of
other groups vary, depending on the operation to
be performed (Figure 2-3).

BIT POSITION 25

Indirect Addressing or Field Selection Option
Designation. Indirect Addressing provides the
ability to express an operand location, indirectly,
through an intermediate control word. Nearly all
instructions of the UNIVAC III repertoire are
capable of utilizing this feature. In this form, the
address in the basic instruction does not refer
directly to the operand to be accessed but rather
to a control word, which in turn contains the
operand address. The word containing the operand
address is termed the Indirect Address Control
Word (INAD).

Field Selection provides the ability for an in-
struction to operate directly upon data fields
that are not multiples of a word. This feature is
available for processing instructions in which
bit positions 1-10 would normally designate an
operand address. When field selection is desired,
bit positions 1-10 specify the location of a

Field Select Control Word (FSEL). The FSEL
provides the definition of the field size and
specifies the address of the operand.

Either option is expressed by the presence of a
1-bit. The specific choice is determined by the
format of the control word.

BIT POSITIONS 21-24

Binary Address (0001-1111) of the Index Register
(X) Selected, The contents of the specified index
register are used to increment bit positions 1-10
of the instruction. The m-address bits of all in-
structions, regardless of type, are automatically
indexed while being staticized in the control unit—
bits 1-10 + (X) produce m’. If 0000 is specified,
m = m’. Neither the contents of the index register
specified nor the instruction in memory is altered
by the indexing.

BIT POSITIONS 15-20

Operation Code.

BIT POSITIONS 11-14

Depending on the operation to be performed the
function of this group varies. The function of
this group depends on the type of instruction.
It will be the designation of the arithmetic reg-
ister(s) selected, the binary address of the index

UNIVAC IITI UTMOST

REVISION: SECTION:
\'
DATE: PAGE:
July 1, 1962 11

register to be operated on, the indicator or group
of indicators to be tested, or the selected input-
outpu! channel.

BIT POSITIONS 1-10

This bit group is always indexed (if only by
0’s) and becomes a 15-bit group called m’.
This is done in the Memory Address Adder during
the instruction set-up cycle.

indexed (if an

-

The function of m’ varies with the operation per-
formed as reflected in the above formats.

However, if position 25 is a 1-bit, positions 1-10
reflect the unindexed address of either an Indirect
Address Control Word or a Field Select Control
Word. The original function of positions 1-10 of
the basic instruction will in these cases be rele-

gated to the control words.

UNIVAC IITI UTMOST

REVISION: SECTION:
\
DATE: PAGE:
July 1, 1962 12

The functions of the control registers, a schematic
of their relationship, and the control cycle of the
UNIVAC III Processor are given in this section.

CONTROL COUNTER (CC)

This register is used to locate the next instruc-
tion to be accessed from memory for execution.
On the last memory cycle of an instruction, the
15-bit value of the CC (the address of the in-
struction currently in progress) is incremented
by 1 or 2 in the Memory Address Adder and re-
turned to the Control Counter. The new value
is also transferred to the Memory Switch Register
in order to address memory for read-out of the
instruction in the next memory cycle.

(CC) + 1 or ZE MSR
ccC

INDEX REGISTER (X)

These registers are used to develop the final
operand address. When the instruction is read
from memory into the Central Processor Re-
gister, the 10-bit m address (or 15-bit if it is
a control word) is added to the contents of the
selected index register. This addition is ac-
complished in the Memory Address Adder. The
sum is then used by the Memory Switch Register
to locate the operand to be accessed from memory
in the next memory cycle. The modified storage
address is also delivered to the Memory Address
Register. Indexing occurs during the cycle in
which the instruction was read from memory.
The contents of the index register are not af-
fected by the indexing.

m + (X) I%MSR

> MAR

3. Control Unit

MEMORY SWITCH REGISTER (MSR)

This register contains the result of all additions
of the Memory Address Adder. The Memory Switch
Register addresses the magnetic core storage for
read-in or read-out of all data, control words, and
instructions.

MEMORY ADDRESS REGISTER (MAR)

This register contains the 15—bit result of m + (X).
It will only be utilized if the instruction specifies
a multi-word operand. In the event of a reference
to a multi-word operand, the contents of the MAR
will be decremented in the Memory Address Adder
with the result used to address the next word of
the operand to be read from memory. The result
of (MAR) — 1 is also returned to the MAR.

(MAR) - 1 —>MSR
L

—> MAR

MEMORY ADDRESS COUNTERS (MAC)

These counters, one for each of the thirteen
input-output channels, contain the 15—bit address
of the last word of input-output data transferred
to or from memory through the synchronizer cir-
cuitry of the related channel, When any channel is
granted a memory access, the contents of its
related MAC are read out and incremented through
the Memory Address Adder. The result will then
be used to access memory for read-in or read-out
in the next memory cycle.

CENTRAL PROCESSOR REGISTER (CPR)

Operands, instructions and their associated con-
trol words, when accessed, are read from memory
directly into the CPR register. If an instruction
is read, the OP Code, the AR portion, and the X

UNIVAC IIT UTMOST

REVISION: SECTION:
\
DATE: PAGE:
July 1, 1962 13

portion are read out and stored in decoders, in
order to alert the designated AR and X and to
build up function table signals for the execution
of the instruction. The m address is added to the
contents of the selected index register to produce
the etfective operand address. During multiplica-
tion or division it has the special requirement of
retaining the multiplicand or divisor.

Input-output data and input-output function speci-
fications do not utilize this register.

WRITE REGISTER

All data transferred to memory is routed through
the Write Register. Its function is to accept in-
formation from a 4-bit parallel transmission line
and to transfer it to the memory location specified
by the MSR over a 27-bit parallel line.

Arithmetic Unit
Channel

Synchronizers

Wrifem

Register MSR

INPUT-OUTPUT REGISTER

When read from memory, all output, including tape
control words and input-output function specifica-
tions, pass through this register. Its function is to
convert the 27-bit parallel transmission from
memory to a 4-bit parallel transmission to the
channel synchronizers.

(m)—— :)—>1/0 %Channel
MSR Register Synchronizers
or

Tape Control
Word Registers

TAPE CONTROL WORD REGISTERS (TCWR)

The four TCWR’s (one for each UNISERVO III
channel) are used in conjunction with the scatter-
reading and gather-writing features. When memory
access is granted to any of the four channels
(and control words for scatter-read or gather.
write are being used), the contents of the ap-
propriate TCWR are transferred through the Memory
Address Adder where the word-count portion is
decremented by one and the address portion is
iicremented by 1. The new address is then used
to access memory for the read-in or read-out of
the input-output data in the next memory cycle.
The adjusted control word is also returned to the
TCWR. When control words are used for tape
teading or writing, the Memory Address Counters

for the UNISERVO III Read and Write Channels
are used to access the next control word when
required, If control words are not used, the UNI-
SERVO III Memory Address Counters are used to
access memory for input or output data.

Count -1 —>TCWR

(TCWR)]

—~+

L > MSR

MEMORY PRIORITY CIRCUITS (MPC)

The MPC circuits govern access to the magnetic
core storage by controlling the selection of the
contents of the CC, the MAR, an MAC, or a
TCWR to be transferred to the MSR through the
Memory Address Adder,

The selection is based, in the case of the MAC
and TCWR, on the transfer speed of the related
peripheral unit. As each peripheral unit’s syn-
chronizer circuitry determines a memory access
requirement, a request is sent to the MPC. At every
4-microsecond memory cycle all memory requests
are evaluated and the channel with the highest
priority will be selected. The contents of the
MAC for the selected channel will be sent to the
Memory Address Adder and memory read-in or
read-out performed according to the new setting
of the MSR. The request is then eliminated from
the MPC.

This action will be repeated as long as any
channel synchronizer requests memory access.
At the time when all requests from the channel
synchronizer have been accommodated, either the
Control Counter or the Memory Address Register
will be given access to memory.

The general order of priority for memory access is
as follows:

UNISERVO III Channel Synchronizer
UNISERVO II Channel Synchronizer
General Purpose Channels
Accessing Multi-Word Operands

Accessing Instructions

UNIVAC [Il PROCESSOR BLOCK DIAGRAM

The functional relationship of the elements of the
control unit are schematically represented by the
UNIVAC III Processor Block Diagram, Figure 3-1,
on page 3-3.

s TO WRITE

REGISTER
r >
R | 0 S A S SV W N N A MEMORY
SWITCH
REGISTER
U-11l | GENERAL PURPOSE ju-n| u-In
TCWR TCWR TCWR TCWR TAPE CHANNELS TAPE]
L] »2 3 L2 T WRITE
A i MEMORY
N REG. 3
Rlw|t]z2fs]|a]|s|e|7]e|e|r]|wW .
] L —-——-—J A
- /0 >
~* REGISTER
N SUM
/ cp
TO REGISTER ‘2
\ MAC M MEMORY
I ADDRESS
> ADDER
> AR 4
/]
IR AR/MAC
DECODER DECODER
> AR2 >
~ INST]
DECODER
ADDER) W —
L T {FuncTio
ﬁ >~ ARS TABLE N -
WYrey
AR4 cc > > IR #1
IR #2
MAR
_ IR #3
MAC #1
o IR #4
MAC #2
TO WRITE
" REGISTER
MEMORY AC CESS MAC #3

ACCESS GRANTED

PRIORITY
CIRCUITS

THTTHTHTTHT

REQUESTS FOR
MEMORY ACCESS
FROM I/O UNITS

‘_-L_> ENABLE MAC,
MAR, TCWR,

OR CC

SIGNAL

N\~

MAC #11% >
MAC #12
- MAC #13 -

Figure 3—-1. UNIVAC Il Processor Block Diagram

g IR #12

IR #13

IR #14

IR #15

TO WRITE
REGISTER

1SOWIN III DVAINN

0 b
|2
— m =
E - 5
< Zz
— &
[a—y
\©
(2.
N
T n
> m
G [s]
m .
HA]
z
[
e <

UNIVAC IITI UTMOST

REVISION: SECTION:

DATE: PAGE:

July 1, 1962 15

THE CONTROL CYCLE

The major function of the control unit is to se-
quentially select each instruction from memory,
interpret it, and perform all of the operations
necessary for its execution,

The sequencing of instructions is a function of
the Control Counter (CC). The CC contains the
memory address of the instruction being exe-
cuted in a 15-bit binary format.

The control unit sequence is divided into 4-
microsecond memory cycles. The description
of the control cycle will be in terms of these
cycles rather than in microseconds.

Single-Word Operand

During the final Execution Cycle of the preceding
instruction, the 15—bit address currently contained
in the CC Register is transferred to the Memory
Address Adder. The other input to the adder, the
increment amount, is specified as a function of
the nature of the previous instruction. Most in-
structions generate an increment of 1 and step
the program to the next sequential location.
General branching operations may replace the CC
reading with a new address rather than increment
the current address. Special test operations
cause the CC to be incremented by either 1 or 2,
depending on the set of the conditions tested.

The address fabricated by the Memory Address
Adder is sent to the Memory Switch Register
(MSR) and returned to the CC Register replacing
its previous contents.

Last Cycle
of the Pre-

. /(CC)+ Increment Memory Switch
vious |nstruc-2 | Register (MSR)

fi
fon L> Control Counter
(CC)

Instruction Sei-Up Cycle

During the Instruction Set-Up Cycle, the 27 bits
at the storage location selected by the Memory
Switch Register are sent to the Central Processor
Register (CPR) where they are staticized. During
the initial part of this cycle, the instruction
being received from memory is decoded through
the Index Register, the Arithmetic Register, and

Instruction Decoders. The appropriate index re-
gister and AR are selecied and function table
signals are generated which will affect the exe-
cution of the instruction.

During the latter part -of the Instruction Set-Up
Cycle, the contents of the index register speci-
fied by the instruction, and the memory address
(from the CPR) are combined in the Memory Ad-
dress Adder, and the result is sent to the Memory
Switch Register and the Memory Address Register.
The MSR, which now contains the full 15-bit
address of the operand, is used to address memory.

—> CPR——>Decoders
R IR Selected

Instruction [(m)
MS

Set-Up AR Selected
Function Table

Cycle Signals Gen-
erated

(X) +m 1——>MSR

‘— MAR

Execution Cycle

During the Execution Cycle, the contents of the
Memory Switch Register select the memory location
which contains the data to be used in the opera-
tion. This data will be routed through the Central
Processor Register to the specified AR(s) which
have been alerted by the decoding of the AR
portion of the instruction on the previous cycle.

During this Execution Cycle, the contents of the
CC are being read out and are being adjusted
by a selected increment. Thus, there is a con-
tinuous overlap between the Execution Cycle of
the previous instruction and the fabrication of
the location of the next instruction.

AR
'(m)MSR-—-_% CPR—

(CC) + Increment —>MSR
ECC

Execution

Cycle

REVISION: SECTION:
UNIVAC TIT UTMOST .
DATE: PAGE:
July 1, 1962 16
Multi-Word Operand Instruction (m)MSR——>CPR~>Decoders
The incrementing of the CC during the execution IR Selected
of an operation employing a multi-word operand Set-Up { :R S?Iecfed
is delayed until the final Execution Cycle of the T Signals
operation. The control unit is required during all Cycle (X) SR Generated
other Execution Cycles to decrement the contents ME:M
of the Memory Address Counter to select in turn MAR
the other words of the operand. Execution
(m) —>CPR—> AR
Cycle MSR
Last Cycle (MAR) -1 MSR
(first word) MAR
. (CC) + Increment MSR
of Previous
CccC .
Instruction Execution
(m) —>CPR—> AR
MSR
Cycle
(CC) + Increment MSR
(last word) J cc

UNIVAC IIT UTMOST

REVISION: SEECTION:
\
DATE: PAGE:
July 1, 1962 17

4. UNIVAC I

PROGRAMMING FEATURES

The UNIVAC IIlI System provides a number of pro-
gramming features greatly expanding the power of
its basic command repertoire and providing addi-
tional flexibility to the systems designer as well
as to the programmer.

Index Registers

In the UNIVAC III System nine or fifteen index re-
gisters make possible address modification, pro-
gram loop control, and the setting of counters with-
out additional time being spent onthe execution of
an instruction. This occurs as all instructions
(and control words) go through an indexing phase
in order to develop the final operand address. The
net result of this feature is an expansion of the
memory.

Index registers may be used effectively to reduce
the number of instructions required for anyapplica-
tion., Their basic function is to permit the modifi-
cation of referenced data locations. They do this
by changing the ‘‘effective’’ address sought, with-
out altering the ‘‘base’’ address itself, Therefore,

Command Repertoire

the entire processing routine remains unaltered in
memory available for application to any setof data.

Modifying the base operand address of any instruc-
tion without reference to the arithmetic registers
has also eliminated the need to handle each varia-
ble individually.

Each index register contains a 15-bit unsigned
binary value and is specified in binary (0001-
1111) in bits 21-24 of the instruction word.

During the access of each instruction from memory,
bit positions 1-10 of the instruction and the con-
tents of the specified index register are automatic-
ally added in binary [m + (X)]. A 15-bit effec-
tive operand address, m’, is produced. Address
modification in the UNIVAC III System does not
require an additional cycle. Any carry beyond
bit 15 is ignored. The instruction in memory and
the index register addressed are not affected as a
result of the indexing,

If 0000 is specified in bit positions 21~24 of the
instruction, no effective indexing occurs.

UNIVAC IIT UTMOST

REVISION: SECTION:
A%
DATE: PAGE:
July 1, 1962 18

Mulﬁ-Word_ Operands

The UNIVAC III System contains four one-word
arithmetic registers — AR1, AR2, AR4, and ARS.
The arithmetic register involved in the execution
of the instruction is designated by a 1-—bit in bit
positions 11-14 of the instruction word as shown
below:

Bit Positions
14 13 12 11
1 0 0 0 ARS
0 1 0 0 AR4
0 0 1 0 AR2
0 0 0 1 AR1

Through any combination of these bit designations
it is possible to manipulate operands of from one
to four words with a single instruction. The number
and position of 1-bits control the size of the
operand and its placement within the arithmetic
registers. AR’s not specified will not be affected
by the instruction execution (Figure 4-1).

The AR’s selected may be adjacent or non-ad-
jacent and in either case they will act as a single
extended register. Multi-word operands in memory,
however, must be from adjacent locations.

The contents of the memory location specified in
the instruction (m’) are considered the least signi-
ficant word of the operand and are used in con-
junction with the lowest numbered AR designated.
The balance of the operand in the lower ordered
memory location(s) are related to thehighernum-
bered designated AR’s.

The sign of the least significant word of a multi-
word operand is treated as the sign of the entire
operand regardless of the sign of the more signifi-
cant words. After arithmetic operations the correct
algebraic sign will be placed in all AR’s involved,
regardless of their previous signs.

A carry from the least significant AR is propagated

to the next higher numbered register designated in
the instruction. Only a carry beyond the most sig-

nificant AR designated causes the Arithmetic

Overflow Indicator to be set and a Contingency

Interrupt to occur.

Generally, when a multi-word operand is specified
an additional machine cycle for each word beyond
one should be added to the basic execution time,

Indirect Addressing

In some programming instances, it is valuable to
be able to specify the location where the address
of an operand is stored rather than to specify the
location of the operand directly. This method of
addressing an operand is called indirect address-
ing. It is of use in writing compilers, sort and
merge routines, manipulating subroutines, and in
the formation of various control words for the UNIVAC
Il System, Indirect addressing has therefore proven
valuable in reducing programmer effort, processing
time and instruction storage area.

Indirect addressing is specified by placement of a
1-bit in bit position 25 of the instruction word.
The indexed address of the instruction word in
this case will not be the location of the operand,
but rather the location of an Indirect Address Con-
trol Word {INAD). The indexed address of the INAD
will specify the location of the data.

[oo
/| X 000 § L-Addr.
A 5
25124 21120 18]1716{15 1
I/A Indirect address/field selection
option
X Binary address of index register,
1tol5
Bits 18-20 Must be 0’s
Bits 16-17 Unassigned
L-Address If I/A is a 1-bit, the L-address

specifies the unindexed location
of another INAD or a Field Select
Control Word (FSEL).

If 1/A is a 0-bit, the L-address
specifies the unindexed address
of the data.

If it is desired to delay the expression of the
operand address through another level, a 1-bit
should be placed in bit position 25 of the first
level INAD and its indexed L-address made the
location of the second INAD. In this way, indirect
addressing can be made to extend through several

REVISION:

SECTION:

UNIVAC IIT UTMOST

DATE:

July 1, 1962

PAGE:

19

Adjacent Registers Used

AR DESIGNATION

|
KN
0
SIGN OF

OPERAND
ARS8

NOT + NOT
INVOLVED | |- | (m-1) (m) INVOLVED

/\/

CARRY VALID
PRODUCING CARRY
OVERFLOW

{'4— OPERAND —

—r
N

Lol K7H

[T -
—t

Non-Adjacent Registers Used

AR DESIGNATION

1] o1 | SIGN OF
OPERAND
ARS8 AR4 AR2 AR1
+ NOT + +
m-2 | [wvowven| [-| @1 | |-] @
VALID ‘\\“"//
CARRY C:RRY VALID
PRODUCING CARRY
OVERFLOW

T 1
}— OPERAND

Figure 4-1. Examples of Multi-Word Oparands

UNIVAC IIT UTMOST

levels until an INAD with a 0O—bit in bit position
25 is accessed. The original instruction will then
be executed, using the operand address of the last
INAD. There is no arbitrary limit to the possible
levels of ‘“‘cascading.’’

Indirect addressing is not restricted to referencing
data.

Instructions utilizing indirect addressing are exe-
cuted in the following manner:

a. The basic instruction word is set-up in the
Instruction Register, an indexed address de-
veloped m + (X) and bit 25 is examined.

b. If bit 25 is a 1-bit, execution of the instruc-
tion is delayed and the contents of the indexed
address are accessed. Again an indexed loca-
tion is developed L + (X) and bit position 25
is again examined.

(If bit position 25 is a 1-bit, Step b is repeated
until the word accessed contains a 0—bit.)

c. If bit position 25 is a 0-bit, the control word
is further examined. If bit positions 18—20 con-
tain binary 0’s the developed L-address is the
address of the data.* The instruction is then
executed.

Though the Control Counter is not altered, indirect
addressing will require an additional memory cycle
for each INAD accessed.

Ilustration

Load the contents of DATA (0651) into Arithmetic
Register 4 using the indirect address option.
The operand address is stored in the 15 least
significant bits of the Indirect Address Control
Word located at 0700 and tagged CONTROL.

LA 4, * CONTROL,
|
£ X OP Code AR m
1| 0000 12 0100 0700

*A 1-bit in posgition 25 may also indicate field selection; however,
field selection is specified by the presence of bits other than O—
bits in positions 16—20 of the control word (FSEL).

REVISION: SECTION:
v
DATE: PAGE:
July 1, 1962 20
(0700) CONTROL + DATA
/X L
A
0| 0000 | 000 | 00 0651

(0651) DATA

25124 21120 17|16 13|12 9|8 54 1

Field Selection

When a data field is not a multiple of a word, field
selection should be employed in order to isolate
only those bits, digits or characters to be operated
on during the instruction execution. The position
of the field to be selected is defined in a Field
Select Control Word (FSEL) as is the field’s ad-
dress.

The indexed m address of the basic instruction
word is made the location of the FSEL and bit
25 records a 1-bit. The FSEL has the following
format:

Left Right
X Boundary | Boundary m
Bit Bit
25124 21120 16 (15 11110 1
Bit 25 Always 0
X Binary address of index register
0-15

Left Boundary Most significant bit position of

Bit field to be selected, The bit posi-
tion is specified in excess-three
and ranges from 4 (LSB of word)
to 27 (MSB of word).

If a multi-word operand is speci-
fied in the instruction, the Left
Boundary Bit Designator must be
within the most significant word
of the operand.

REVISION: SECTION:
MOST Y
UNIVAC TII UT
July 1, 1962 21
Right Boundary Least significant bit position of INSTRUCTION
Bit the field to be selected. The bit
* * £~ L3
position is specified in excess- DA L CONTROL
three and ranges from 4 (LSB of |
word) to 27 (MSB of word). If a |/| X OP Code | AR m
; . e . A
multi-word operand is specified in
the instruction, the Right Boundary |1| 0000 20 0001 0266
Bit must be within the least signi-
ficant word of the operand.
m Unindexed address of the word CONTROL (0266)
Z.otnta;i;z;ngi't?; least significant + 12, 1, LOC B,
1ot the fie | Left | Right
/ X Boundary | Boundary m
Notes A Bit Bit
1. The sign bit(s) will not be selected; the signs 0] 0 15 4 0739

of all fields selected will be positive.

2. Portions of the word(s) beyond the boundaries
specified are binary 0’s. If decimal add or
decimal subtract is specified, these binary 0’s
are treated as excess-three 0’s.

3. Field Selection from memory affects or acts in
conjunction with the same relative bit positions
of the arithmetic register(s) unless a carry re-
sults beyond the most significant bit or digit
within the register. Such carries may be propa-
gated up to the limits of the most significant
arithmetic register designated. Beyond this
limit overflow will occur,

4. When a multi-word operand is specified in the
basic instruction the arithmetic registers may
be non-adjacent but the bits of the operand from
memory must be contiguous.

S. The FSEL may be indirectly addressed. But
indirect addressing may not extend beyond the
field select cycle., Hence bit position 25 of a
FSEL must be 0.

6. One machine cycle is required to access and
analyze the FSEL. The Control Counter is not
affected by this accessing.

IHustration

Arithmetic Register 1 contains a value of 770111,
Add to it the three least significant digits of the
value 99933 in LOC B (0739). The FSEL is loca-
ted in CONTROL (0266).

RESULT IN AR1 = 770444

INSTRUCTION FORMAT

The purpose of this section is to provide the
reader with a complete summary of the UNIVAC III
Central Processor command repertoire as well as a
knowledge of the subtle considerations applicable
to each instruction.

Each instruction description contains a symbolic
representation of the operation as well as its for-
mat (Figure 4-2). This format is further elaborated
upon by the use of an example illustrating the
operation described. Each example is illustrated
in two ways. One illustration will be in the equiva-
lent of machine representation. That is, the coded
instruction will contain the machine binary equiva-
lent when applicable, or its decimal equivalent, in
various segments of the instruction word. (For
example, the index registers will be designated by
a4—bit binary configuration ranging from 0000-1111)
The same illustration will be coded in

UTMOST (UNIVAC Three Machine Oriented
Symbolic Translator).

REVISION: SECTION:
UNIVAC TII UTMOST !
DATE: PAGE:
July 1, 1962 22
ccC The Control Counter
UTMOST
INSTRUCTION'S FUNCTION MNEMONIC | L A 15-bit unindexed address
oo Symbolic Representation of In-| L’ A 15-bit indexed address
Operation: . .
struction Execution
MAC; One of thirteen Memory Address
. Operation Code Expressed as Counters
0P Code: Two Octal Digits
MAR Memory Address Register
Cycles: Binary Operation Code Express-
' ed as Two Octal Digits SL; One cf thirteen stand-by locations
Description: Definition of Instruction TBR Typewriter Buffer Register
. TCWR; One of four Tape Control Word Regis-
Instruction Format ters
ICW Index Register Modification Control

Explanation of Each Function of the Instruction
Format

Notes
Considerations in Instruction Usage
Hiustration

[llustration of Instruction Usage Showing

UTMOST Mnemonic and Machine Equivalent

Figure 4-2.

Instruction Layout

SYMBOLOGY AND ABBREVIATIONS USED

() The contents of

(x The contents of,as specified by x

a—»b a is transferred to b

m A 10-bit unindexed address

m’ A 15-bit indexed address

ARi One of the four arithmetic registers

Xi One of the fifteen index registers
used to modify m

X0 One of the fifteen index registers to

be affected

Word

OPERAND TRANSFER INSTRUCTIONS

These instructions transfer operands from memory
to the arithmetic registers or from the arithmetic
registers to memory.

Reading from memory or the arithmetic registers
does not alter their contents. Reading into memory
locations or the arithmetic registers will replace
the original contents with the operand read in.

LOAD | LA

Operation: (m')—»AR;
0P Code: 12
Cycles: 2

Description: Transfer an operand from the indexed
memory location(s) to the arithmetic register(s)
designated,

REVISION: SECTION:
UNIVAC III UTMOST Y
DATE: PAGE:
July 1, 1962 23
| |
/X OP Code AR m /I X GP Code AR m
A A
2524 21)20 1514 11110 1 25124 21|20 1514 11110 1
I/A Indirect addressing/field selection
I/A Indirect addressing/field selection option
option X Binary address of index register, Oto
15
X Binary address of index register, 0
to 15 AR Positional designation of arithmetic
register(s)
AR Positional designation of arithmetic
register(s) m Unindexed address of the operand
m Unindexed address of the operand
Notes
Notes 1. Arithmetic register(s) are first automatically

1. Arithmetic register(s) are first automatically
cleared to binary 0’s.

2. Contents of memory location(s) accessed are
not altered.

3. Indirect addressing, field selection and multi-
word operand(s) may be employed.
Iflustration

Transfer the operand, FIELD (0689), to AR2.

cleared to binary 0’s.

2. Contents and sign of memory location(s) ac-
cessed are not altered.

3. If field selection is used, the sign of the AR
will always be negative.

4. Indirect addressing, field selection, and multi-
word operands may be employed.

I1lustration

Transfer the operand, FIELDB (1002), to ARS8 re-
versing the sign(s) of the operand.

LA 2 FIELD A, LAN 8, FIELDB

|

£ X 0p Code AR m ‘I{\ X 0P Code AR m

0| 0000 12 0010 0689 0| 0000 12 1000 1002
—

LOAD FIELD INTO REGISTER LF
LOAD A NEGATIVELY LAN

Operation: (m’) —>ARi

Operation: (m)—>ARi FSEL

0P Code: 13 OP Code: 14

Cycles: 2 Cycles: 3

Description: Transfer an operand from the indexed
memory location(s) to the arithmetic register(s)
designated, reversing each of the signs,

Description: Selectively replace consecutive bits
within the arithmetic register(s) designated with
the bits from corresponding positions of the memory
location(s) specified.

REVISION: SECTION:
UNIVAC TIT UTMOST !
DATE: PAGE:
July 1, 1962 24
'/ X OP Code AR m STORE ST
A
Operation: (ARi) e m’
25124 21{20 1514 1110 1 0P Code: 10
Cycles: 2
Description: Transfer the contents of the arithme-
i i ignated to t indexed
¥ Binary address of index register, 0 tic re:gzster(s) designated to the indexed memory
location(s).
to 15
AR Positional designation of arithmetic l/ X OP Code AR m
regdister(s) A
m Unindexed location of Field Select |25]24 21|20 1514 11110 1
Control Word
Notes I/A Indirect addressing option
. . X Binary address of index register, 0
1.Bit positions to be replaced and operand ad- to 15
dress are specified in a Field Select Control
Word. (FSEL). AR Positional designation of arithmetic
register(s)
2.If the field selection option is not exercised,
the instruction functions as the Load instruc- m Unindexed address of the operand
tion except that the sign of AR remains un-
changed. Notes

3. Bits outside the limits specified remain un-
changed.

4. The sign of the arithmetic register(s) will not
be affected.

5. Indirect addressing and multi-word operands
may be employed.

6. See Field Selection, page 4—4.

IHustration

Extract bit position 1—-12 of FIELDA {0789) into

1. The indexed memory location(s) are first auto-
matically cleared to binary 0’s.

2. Contents of the arithmetic register(s) are not
altered.

3. Indirect addressing, multi-word operands, but
not field selection, may be employed.

“ Hlustration

Transfer the contents of AR2 and 4 to FIELDB
(0551-0552).

AR1, The Field Select Control Word is located in SA 6 FIELDB
0289. !
LF 1, * (12, 1, FIELDA) l/ X OP Code | AR o
| A
/1 X 0P Code AR m
A 0| 0000 10 0110 0552
1] 0000 14 0001 0289
FSEL (0289)
| Left Right STORE A NEGATIVELY SAN
/X Boundary . Boundary L *
A Bit Bit Operation: (ARi)=—sm’
o] 0000 15 4 0789 g: cfe"s",e')

UNIVAC III UTMOST

REVISION: SECTION:
\
DATE: PAGE:
July 1, 1962 25

Description: Transfer the contents of the arithme-
register(s) designated to the indexed memory loca-
tion(s) reversing the sign(s) of the operand.

|

/] X OP Code AR m

A

25124 21120 15/14 11{10 1

I/A Indirect addressing/field selection
option

X Binary address of index register, 0
to 15

AR Positional designation of arithmetic
regdister(s)

m Unindexed address of the operand

Notes

1. The indexed memory location(s) are first auto-
matically cleared to binary 0’s.

2. Contents of the arithmetic redister(s) are not
altered.

3. Indirect addressing and multi-word operands,
but not field selection, may be employed.

IHlustration

Transfer the contents of AR4 to FIELDC (0482)
reversing the sign.

SAN 4, FIELDC
|
/1 X 0P Code AR m
A
0{ 0000 11 0100 0482

ARITHMETIC INSTRUCTIONS

All arithmetic operations are performed in the
adder. One input to the adder, the primary, always
comes from some combination of the four arithme-
tic registers: AR1, AR2, AR4, ARS8. The other in-
put, the secondary, is from the indexed location
specified by the instruction. The result of an
arithmetic operation is usually returned to the
same arithmetic register or registers from which
the primary operand was secured; this return of
the result replaces the original operand in the

arithmetic register(s). However, the result may be
placed in some other arithmetic register, in which
case the primary operand is wnchanged. The rule
is: The result of an arithmetic operation will be
Iocated in one place and one place only. In decimal
or binary subtractions and additions, the Equal
Comparison Indicator (ECI) is set, if the result is
decimal or binary 0; if the result is non-zero, the

Tt cat
Ll 1S 1eSel.

DECIMAL ADD DA
Operation: (ARi) + (m’)—» AR

0P Code: 20

Cycles: 2

Description: Algebraically add in decimal the
operand (augend) in the indexed memory location(s)
and the value (addend) in the designated arithme-

tic register(s). The result is placed in the same
arithmetic regis’er(s).

l

/I X 0P Code AR m

A

25(24 21|20 15|14 11j10 1

I/A Indirect addressing/field selection
option

X Binary address of index registers, 0
to 15

AR Positional designation of arithmetic
register(s)

m Unindexed address of the augend

Notes

1. Binary0’s(0000)in either the addend or augend
will be treated as decimal excess-three 0’s
(0011). See Appendix for treatment of non-
numeric binary codes.

2. Indirect addressing, field selection, and multi-
word operands may be employed.

3. Additional considerations if the operand is
multi-word, or if field selection is to be em-
ployed, are discussed in Multi-Word Operands,
and Field Selection Sections,

UNIVAC IIT UTMOST

REVISION: SECTION:
\Y%
DATE: PAGE:
July 1, 1962 26

4. See Arithmetic Modes for a discussion ofrecom-
plementation and determination of signs.

Illustration

Add FIELDA (0525) to ARS.

DA 8, FIELDA
V' x | opcode | AR m
A
0| o000 | 20 1000 0525

DECIMAL ADD HIGHER

Operation: (ARi) + (m’)=»ARi where i’ < i
0P Code: 22
Cycles: 2

Description: Algebraically add, in decimal, the
operand (augend) in the indexed memory location(s)

and the value (addend) in the higher arithmetic
register(s), placing the result in the designat-
ed arithmetic register(s).
|
/1 X 0P Code AR m
A
25(24 21|20 15({14 11|10 1
I/A Indirect addressing/field selection
option
X Binary address of index register, 0
to 15
AR Positional designation of arithmetic
register(s)
m Unindexed address of the augend
Notes

1. The addend will be undisturbed.

2. Pure binary 0’s (0000) in either the addend or
augend will be treated as decimal excess-three
0’s (0011). See Appendix for treatment of non-
numeric binary codes.

3. For single-word operands, all possible
cases of i and i' are:

if i is 8, i’ may be4, 2 or 1

if i is 4, i’ may be2 or 1.

if i is 3, i’ may be 1 only.
i may not bel.

4. Multi-word usage is restricted to Arithmetic
Register 12. The sum will always appear
in Arithmetic Register 3. Bits 11-14 of
the instruction word in this case should be all
I’s.

5. Indirect addressing and field selection may be
employed.

6. Additional considerations if the operand is
multi-word, or if field selection is to be em-
rloyed, are discussed in the Multi-Word Operands,
and Field Selection Sections.

7. See Arithmetic Modes for a discussion of re-
complementation and determination of signs.
lustration

Add FIELDD (0585) to ARS8 and place the sum in
AR2.

DAH 10, FIELDD
l/ X OP Code. AR m
A
0| 0000 22 1010 0585
DECIMAL SUBTRACT DS

Operation: (ARi) — (m’)~>ARi
0P Code: 21
Cycles: 2

Description: Algebraically subtract in decimal the
operand (subtrahend) in the indexed memory loca-
tion(s) from the value (minuend) in the designated
arithmetic register(s), placing the result in the
same arithmetic register(s).

0P Code AR m

>~
>

2524 21|20 1514 1110 1

REVISION: SECTION:
T A%
UNIVAC IIT UTMOS
July 1, 1962 27
I/7A Indirect addressing/field selection |
option /X OP Code AR m
A
X Binary address of index register, 0
to 15 25/24 21120 15 |14 1110 1
AR Positional designation of arithmetic I74 Indz‘rect addressing/tield selection
. option
register(s)
.. L. L o X Binary address of index register, 0
m Unindexed address ol the subtrahend to 15
N AR Positional designation of arithmetic
otes .
register(s)
. , . .
1. Pure bxnafy 0’s (O,OOO) in either the sub.tra- m Unindexed address of the subtrahend
hend or minuend will be treated as decimal Not
otres

excess-three 0’s (0011). See Appendix for
treatment of non-numeric binary codes.

2. Indirect addressing, field selection and multi-
word operands may be employed.

3. Additional considerations if the operand is
multi-word, or if field selection is to be em-
ployed, are discussed in Multi-Word Qperands,
and Field Selection Sections.

4. See Arithmetic Modes for a discussion of re-
complementation and determination of signs.

Ilustration

Subtract FIELDA (0565) from AR].

DS 1, FIELDA
|
£ X 0P Code AR m
0| 0000 21 0001 0565

DECIMAL SUBTRACT HIGHER DSH

Operation: (ARi) — (m’')—>ARi’, where i’ <i
GP Code: 23
Cycles: 2

Description: Algebraically subtract in decimal the
operand (subtrahend) in the indexed memory loca-
tion(s) from the value (minuend) in the designated
arithmetic register(s), placing the resultin a higher
designated arithmetic register(s).

1. The minuenda will be undisturbed.

2. Pure binary 0’s (0000) in either the subtrahend
or minuend will be treated as decimal excess-
three 0’s (0011). See Appendix for treatment of
non-numeric binary codes.

3. For singie-word operands, all possible
cases of i and i' are:

if i is 8, i’ may be 4, 20rl,
if i is 4, i’ may be 2 or 1.
if i is 2, i’ may be 1 only.

i may not be 1.

4. Multi-word usage is restricted to Arithmetic
Register 12, The difference will always
appear in Arithmetic Register 3. Bits
11-14 of the instruction word in this case
should be all 1’s.

5. Indirect addressing, and field selection may be
employed.

6. Additional considerations if the operand is
multi-word, or if field selection is to be em-
ployed, are discussed in Multi-Word Qperands,
and Field Selection Sections,

7. See Arithmetic Modes for a discussion of re-
complementation ard determination of signs.
[Hlustration

Subtract FIELDS (0782) from AR4 placing the
difference in AR2.

DSH 6, FIELDS
i
{\ X OP Code AR m
0| 0000 23 0110 0782

REVISION: SECTION:
V
UNIVAC IIT UTMOST
DATE: PAGE:
July 1, 1962 28
DECIMAL MULTIPLY DM DECIMAL DIVIDE DD
Operation: '(m') x (AR8)= AR4 and AR2 Operation: (AR12) + (m’)T*AR4(quotient)
0P Code: 30 AR8(remainder)
Cycles: 12 to 31 Depending on multiplier OP Code: 31

digits.

Description: Algebraically multiply the contents
of the indexed memory location (multiplicand) by
the contents of Arithmetic Register 8 (multiplier),
placing the six most significant digits of the pro-
duct in Arithmetic Register 4 and the six least
significant digits in Arithmetic Register 2,

X
/| X OP Code AR m
A
25(24 21120 1514 1110 1
I/A Indirect addressing option
X Binary address of index register, 0
to 15
AR Will designate AR14
(1110)
m Unindexed address of the multiplicand
Notes

1. The multiplier and the multiplicand will not be
disturbed.

2. All O’s in the multiplier (AR8) and the multi-
plicand (m) must be excess-three (0011).

3. Indirect addressing but not field selection may
be employed.

4. Multi-word operands may not be used, but note
that a 12-digit product is produced.

5. See Arithmetic Modes for determination of signs
and Appendix for timing.

Cycles: 17-36 Depending

digits

upon quotient

Description: Algebraically divide the contents of
Arithmetic Register 12 (dividend) by the con-
tents of the indexed memory location (divisor)
placing the 6—digit quotient in Arithmetic Register
4 and the 6-—digit remainder in Arithmetic Regis-
ter8 .

YWox | opcode | AR n

A

2524 21|20 1514 1110 1
I/A Indirect addressing option

X Binary address of index register,

to 15

AR Will designate AR12 (1100)
m Unindexed address of the divisor
Notes

1. Decimal 0’s in the divisor (m) and the divi-
dend AR12 must be excess-three (0011).

2. If the absolute magnitude of the divisor (m) is
less than or equal to that of ARS8, the Overflow
Indicator will be set and a Contingency Inter-
rupt will occur,

3. The sign of the remainder will be that of the
dividend. ‘

4. Indirect addressing but not field selection may
be employed.

5. See Arithmetic Modes for determination of
signs and timing.

Illustration [llustration
Multiply the contents of AR8 by FieldB (0538). I(jc;s‘:;:j the contents of AR12 by FIELDD
DM FIELDB DD FIELDD 4
I e
z X OP Code | AR m £ X OP Code | AR m
0| 0000 30 1110 0538 0 0000 31 1100 0685

UNIVAC IIT UTMOST

REVISION: SEGTION:
\%
DATE: PAGE:
July 1, 1962 29

D S
BINARY ADD BA
T

Operation: (ARi) + (m')——>ARi
0P Code: 24
Cycles: 2

Description: Algebraically add in binary the oper-
and (augend) in the indexed memory location(s)
and the value (addend) in the designated arithme-
tic register(s) placing the result in the same arith-
metic register(s).

————————— E————
BINARY ADD HIGHER BAH
s

Operation: (ARi) + (m’)=»ARi’ where i’ > i
0P Code: 26
Cycles: 2

Description: Algebraically add in binary the oper-
and (augend) in the indexed memory location(s) and
the value (addend) in the designated arithmetic
register(s), placing the result in a higher designa-
ted arithmetic register(s).

|
/i X OP Code AR m
A
2524 21|20 15|14 11{10 1
I/A Indirect addressing/field selection
option
X Binary address of index register, 0
to 15
AR Positional designation of arithmetic
register(s)
m Unindexed address of the augend
Notes

1. Indirect addressing, field selection and multi-
word operands may be employed.

2. Additional considerations if the operand is
multi-word, or if field selection is to be em-
ployed, are discussed in Multi-Word Qperands,
and Field Selection Sections.

3. See Arithmetic Modes for a discussion of re-
complementation and determination of signs.

Ilustration

Add in binary, FIELDA (0789) to AR2.

BA 2, FIELDA
|
{‘ X OP Code AR m
0| 0000 24 0010 0789

|
{\ X 0P Code AR m
25124 21|20 15114 11]10 1
I/A Indirect addressing/field selection
option
X Binary address of index register, 0
to 15
AR Positional designation of arithmetic
register(s)
m Unindexed address of the augend
Notes

1. The addend will be undisturbed.

For single-word operands, all possible

cases of i and i' are:
if i is 8, i’ may be 4, 2 or 1.

N

i

if i is 4, i’ may be 2 or 1.

if i is 2, i’ may be 1 only.
i may not be 1.

3. Multi-word usage is restricted to Arithmetic
Register 12. The sum will always appear
in Arithmetic Register 4, Bits 11-14 of
the instruction in this case should be all I’s.

4. Indirect addressing and field selection may be
employed.

5. Additional considerations ifthe operand is multi-
word, or if field selection is to be employed, are
discussed in Multi-Word Operands, and Field
Selection Sections,

6. See Arithmetic Modes for a discussion of re-
complementation and determination of signs,

REVISION: SECTION:
Vv
UNIVAC III UTMOST
DATE: PAGE:
July 1, 1962 30
[Hlustration: Iiustration
Add FIELDD (0832)to AR4 and place sum in AR1. Subtract in binary FIELDD (0823) from AR2,
BAH 5, FIELDD BS 2, FIELDD
i 1
{\ X OP Code | AR m £ X OP Code | AR m
0! 0000 26 0101 0832 0| 0000 25 0010 0823
BINARY SUBTRACT BS BINARY SUBTRACT HIGHER BSH
Operation: (ARi) — (m’)—>ARi Operation: (ARi) — (m')—=ARi’ where i’ > i.
0P Code: 25 0P Code: 27
Cycles: 2 Cycles: 2

Description: Algebraically subtract in binary the
operand (subtrahend) in the indexed memory loca-
tion(s) from the value (minuend) in the designated
arithmetic register(s), placing the result in the
same arithmetic register(s).

|

/X 0P Code AR m

A

25(24 21420 1514 11{10 1

I/A Indirect addressing/field selection
option

X Binary address of index register, 0
to 15

AR Positional designator of arithmetic
register(s)

m Unindexed address of the subtrahend

Notes

1. Indirect addressing/field selection and multi-
word operands may be employed.

2. Additional considerations if the operand is
multi-word, or if field selection is to be em-
ployed, are discussed in Multi-Word Qperands,
and Field Selection Sections.

3. See Arithmetic Modes for a discussion of re-
complementation and determination of signs.

Description: Algebraically subtract in binary the
operand (subtrahend) in the indexed memory loca-
tion(s) from the value (minuend) in the designated
arithmetic register(s), placing the result in a
lower designated arithmetic register(s).

Y X | opcode | AR n
A
25124 21{20 15|14 11{10 1
I/A Indirect addressing/field selection
option
X Binary address of index register, 0
to 15
AR Positional designation of arithmetic
register(s)
m Unindexed address of the subtrahend
Notes

1. The minuend will be undisturbed.
2. For single-word operands, all possible
cases of i and i' are:
if i is 8 i’ may be 4, 2 or 1.
if i is4, i’ may be 20r 1.
if i is 2, i’ may be 1 only.
i may not be 1.

3. Multi-word usage is restricted to Arithmetic
Register 12, The result will always
appear in Arithmetic Register 3. Bits
11—14 of the instruction in this case should be
all I’s.

UNIVAC IITI UTMOST

4. Indirect addressing and field selection may be
employed.

5. Additional considerations if the operand is
multi-word, or if field selection is to be em-
ployed, are discussed in Multi-Word Operands,
and Field Selection Sections.

6. See Arithmetic Modes for a discussion of re-
complementation and determination of signs.
[Hustration

Subtract in binary FIELDD (0930) from ARS8 plac-
ing the difference in AR4.

BSH 12 FIELDD
|
/I X OP Code AR m
A
0| 0000 21 1100 0930

SHIFT INSTRUCTIONS

The contents of the arithmetic registers may be
altered by the shift instructions. Three distinct
methods of shifting, a separate method for each
of the three types of data format, may be designa-
ted.

DECIMAL SHIFT RIGHT

OP Code:
Cycles: 4

40

Description: Shift the contents of the arithmetic
register(s) designated right the number of decimal
digit positions specified in bit positions 1-10 of
the instruction.

|

é X 0P Code AR Shift Count

25124 21)20 15/14 11]10 1
I/A Indirect addressing option

X Binary address of index register, 0

to 15

REVISION: SECTION:
Vv
DATE: PAGE:
July 1, 1962 31
AR Positional designation of arithmetic
register(s)
Shift Unindexed number of places to be
Count shifted expressed in pure binary
Notes

1. Digits shifted to the right of the least signifi-
cant digit position of the operand are lost, and

decimal 0’s (0011) are inserted in the vacated
most significant decimal digit positions.

2. The sign bit(s) are not shifted.

3. A maximum of a 2-word operand, in adjacent
or non-adjacent arithmetic registers may be
shifted. The results in either case will always
appear in the same registers, leaving the other
registers undisturbed.

4. Two-word operands cannot be shifted right from
one register into another with a higher numerical
designation, for example, shifting right AR1
and AR4.

5. A shift count greater than that of the operand
size will example,
shifting a 1-word operand nine places. The
shift will occur with Modulo 3 check error
which causes a processor error interrupt.

result in an error, for

6. Indirect addressing, but not field selection,

may be employed.

Ilustration
Shift the contents of ARG6 four decimal
places right,
DSR 6, 4
|
l{ X OP Code AR Shift Count
0| 0000 40 0110 0004

DECIMAL SHIFT LEFT

OP Code: 41

Cycles: 3

Description: Shift the contents of the arithmetic
register(s) designated left the number of decimal
digit positions specified in bit positions 1—10 of
the instruction.

UNIVAC IIT UTMOST

REVISION: SECTION:
v
DATE: PAGE:
July 1, 1962 32

|
l/\ X 0P Code AR Shift Count
2524 21420 15{14 11110 1
I/A Indirect addressing option
X Binary éddress of index register, 0
to 15
AR Positional designation of arithmetic
register(s)
Shift Unindexed number of places to be
Count shifted expressed in pure binary
Notes

1. Digits shifted to the left of the most significant
digit position of the operand are lost and deci-
mal 0’s (0011) are inserted in the vacated least
significant decimal digit positions of the oper-
and.

2. The sign bit(s) are not shifted.

3. A maximum of a 2—word operand in adjacent or
non-adjacent arithmetic registers may be shift-
ted. The results in either case will always ap-
pear in the same registers leaving the other
registers undisturbed,

4. Two-word operands cannot be shifted left from
a register into another with a higher numerical
designation, for example, shifting left AR4 and
AR1.

5. A shift count greater than that of the operand
size will result in an error, for example,
shifting a 1~word operand nine digits. The
shift will occur, causing a modulo 3 (parity)
error and a processor error interrupt.

6. Indirect addressing, but not field selection, may
be employed.

IHustration

Shift the contents of AR4 three decimal positions
left.

DSL 4, 3

X 0P Code AR Shift Count

0000 41 0100 0003

ALPHABETIC SHIFT RIGHT

0P Code:
Cycles: 4

42

Description: Shift the contents of the arithmetic
register(s) designated right the number of alpha-
numeric character positions specified in bit posi-
tions 1—10 of the instruction.

|
‘/\ X 0P Code AR Shift Count
2524 21120 1514 11)10 1
I/A Indirect addressing option
X Binary address of index register, 0
to 15
AR Positional designation of arithmetic
register(s)
Shift Unindexed number of places to be
Count shifted expressed in pure binary
Notes

1. Characters shifted to the right of the least
significant character position are lost and
binary 0’s (000000) are inserted in the vacated
most significant character positions of the
operand.

2. The sign bit(s) are not shifted.

3. A maximum of a 2-word operand in adjacent
or non-adjacent arithmetic registers, may be
shifted. The results in either case will always
appear in the same registers, leaving the other
registers undisturbed.

4. Two-word operand cannot be shifted right from a
register into another with a lower numerical
designation, for example, shifting right ARl
and AR 4.

5. A shift count greater than the operand size will
result in an error, for example, shifting a
1-word operand nine character positions. The

shift will occur, causing a modulo 3 {parity)

error and a processor error interrupt.

UNIVAC IIT UTMOST

REVISION: SECTION:
Y
DATE: PAGE:
July 1, 1962 33

6. Indirect addressing, but not field selection
may be employed.

Illustration

Shift the contents of ARS8 two character positions
right.

ASR 8, 2
:{\ X OP Code | AR Shift Count
0| 0000 12 1000 0002

ALPHABETIC SHIFT LEFT

OP Code: 43
Cycles: 3

Description: Shift the contents of the arithmetic
register(s) designated left the number of alpha-
numeric character positions specified in bit posi-
tions 1—-10 of the instruction.

|
/1 X 0P Code AR Shift Count
A
2524 21|20 15114 11}10 1
1/A Indirect addressing option
X Binary address of index register, 0
to 15
AR Positional designation of arithmetic
register(s)
Shift Unindexed number of places to be
Count shifted expressed in pure binary
Notes

1. Characters shifted to the left of the most signi-
ficant character position of the operand are
lost. Binary 0’s (000000) are inserted in the
vacated least significant character positions
of the operand.

2. The sign bits are not shifted.

3. A maximum of a 2-word operand, in adjacent
or non-adjacent arithmetic registers, may be
shifted. The results in either case will always
appear in the same registers leaving the other
registers undisturbed.

4. Two-word operands cannot be shifted left from
a register into another with a lower numerical

. - el o hlifii. s T Li A PP
designation, for example, shifting left AR4 and
AR1.

5. A shift count greater than the operand size will
not result in any error, for example, shifting a
l1-word operand nine character positions. The
shift will occur, causing a modulo 3 (parity)

error and a processor error interrupt.

6. Indirect addressing, but not field selection may
be employed.

Ilustration

Shift the contents of AR2 ‘wo character positions
left.

ASL 2, 2
|
£ X 0P Code AR Shift Count
0, 0000 43 0010 0002

BINARY ROTATE RIGHT

0P Code: 44
Cycles: 4

Description: Shift circularly the contents of the
arithmetic register designated right the number of
bit positions specified in bit positions1—10 of the
instruction.

|
£ X OP Code AR Shift Count
5124 21120 15/14 11]10 1
I/A Indirect addressing option
X Binary address of index register, 0
to 15
AR Positional designation of arithmetic
register

UNIVAC III UTMOST

REVISION: secTion:
A

DATE: PAGE:
July 1, 1962 34

Shift Unindexed number of places to be
Count shifted expressed in pure binary
Notes

1. Bits shifted beyond the least significant bit
position re-enter in the most significant bit
positions of the same register so that no bits are
lost.

2. The sign bit is shifted.

3. The maximum size of the operand is one word.

4. A shift count greater than 25 will result in
an error,

5: Indirect addressing, but not field selection, may
be employed.

IHustration

Shift the contents of ARg twenty bit positions right.

BRR 8, 020

|

{\ X 0P Code AR Shift Count
0 0000 44 1000 0020

COMPARISON INSTRUCTIONS

These instructions perform four distinct types of
comparisons. In eack case the contents of the arith-
metic register is compared to the contents of the
indexed address. Each of these instructions sets
one of the comparison indicators reflecting the re-
lationship of the contents of the arithmetic regis-
ter(s) to those of the indexed memory location.
The setting of the individual indicators may later
be tested and a logical branch operation executed
as a result. If Field Selection is employed, only

the selected bits are compared.

COMPARE MAGNITUDE

Operation: |(ARi)| : |(m)|
OP Code: 55
Cycles: 2

Description: Compare the absolute magnitude of
the arithmetic register(s) designated with the ab-
solute magnitude of an operand in memory. Set the

appropriate comparison indicator according to the
following:

if |(ARi)| > |(m’)|, set Greater Comparison Indicator

if |(ARi)| < |(m’)|, set LessComparison Indicator
if |(ARi)| = |(m’)|, set Equal Comparison Indicator

|
/A X 0P Code AR m
25(24 21120 15114 11{10 1
I/A Indirect addressing/field selection
option
X Binary address of index register, 0
to 15
AR Positional designation of arithmetic
register(s)
m Unindexed address of the operand
Notes
1. Prior to the setting of the appropriate indicator

all comparison indicators are automatically reset.

2. The operands are not altered.

Comparison is based on the binary value of the
operands regardless of word format,

See Figure 2-1.

4. Indirect addressing, field selection and multi-

word operands may be employed.

Itlustration

Compare the absolute magnitude of AR2 with the
absolute magnitude of FIELD A (0732).

cM g, FIELDA .,
b'x | opcode | AR v

A

o o000 | 55 0010 0732

COMPARE ALGEBRAIC

Operation: (ARi) : (m’)
0P Code: 54
Cycles: 2

REVISION: SECTION:
UNIVAC TIT UTMOST Y
DATE: PAGE:
July 1, 1962 35
Description: Algebraically compare the contents of , o
the arithmetic register(s)designated with an operand COMPARE PRODUCT WITH CPA

in memory. Set the appropriate comparison indicator
according to the following:

If (ARi) > (m'), set Greater Comparison Indicator

If (ARi) < (m’), set LesSComparison Indicator
If (ARi) = (m’), set Equal Comparison Indicator

i
/1 X OP Code AR m
A
2524 21,20 15/14 11110 1
I/A Indirect addressing/field selection
option
X Binary address of index register, 0
to 15
AR Positional designation of arithmetic
register(s)
m Unindexed address of the operand
Notes

1. Prior to the setting of the appropriate indicator,
all comparison indicators are automaticallyreset.

2. Plus 0 will compare greater than a minus 0,
3. The operands are not altered.

4. Comparison is based on the binary value of the
operands regardless of word format,

See Figure 2-1.

5. Only the sign of the least significant word of a
multi-word operand is considered. All other signs
are ignored,

6. Indirect addressing, field selection and multi-
word operands may be employed.
[ustration

Compare algebraically the contents of AR1 with
FIELDA (0835).

c 1, FIELDA
I
A X 0P Code AR m
0| 0000 54 0001 0835

A REGISTER

——_—

Operation: (ARi) 1-bits : (m’) 1-bits
0P Code: 57
Cycles: 2

Description: Compare the 1—bits of the arithmetic
register(s) designated with the 1-bits of the oper-
and in memory. If the latter contains a I1-bit in
every bit position in which the arithmeticregister(s)
contains a 1-bit, set the Equal Comparison Indica-

tor; otherwise set the High Comparison Indicator.

|
/1 X 0P Code AR m
A
25|24 21120 15|14 1110 1
I/A Indirect addressing/field selection
option
X Binary address of index register, 0
to 15
AR Positional designation of arithmetic
register(s)
m Unindexed address of the operand
Notes

1. Sign bits are included in the comparison.

2. Before setting the appropriate indicator all com-
parison indicators are automatically reset.

3. The operands are unaltered.

4. Indirect addressing, field selection and multi-
word operands may be employed.

Ilustration

Compare the 1—bits of AR4 with the I1—bits of
FIELDD (0823).

CPA 4, FIELDD |
|
[ox OP Code | AR m
0| 0000 57 0100 0823

UNIVAC IIT UTMOST

REVISION: SECTION:

DATE: PAGE:

July 1, 1962 36

COMPARE PRODUCT WITH ZERO

Operation: (ARi) 1-bits : (m') 0—bits
OP Code: 56
Cycles: 2

Description: Compare the 1-bits of the arithmetic
register(s)designated with the O—bits of the operand
in memory. If the latter contains a O—bit in every
bit position in which the arithmetic register(s)
contains a 1-bit, set the Equal Comparison Indicator;
otherwise set the High Comparison Indicator.

1
£ X OP Code AR m
2524 2120 15114 11|10 1
I/A Indirect addressing/field selection
option
X Binary address of index register, 0
to 15
AR Positional designation of arithmetic
register(s)
m Unindexed address of the operand
Notes

1. Sign bits are included in the comparison.

2. Before setting of the appropriate indicator all
comparisons indicators are reset.

3. The operands are unaltered.

4. Indirect addressing, field selection and multi-
word operands may be employed.

Ilustration

Compare the 1-bits of AR2 with the 0-bits of
FIELDD (0834).

CPz 2, FIELDD
;/\ X OP Code | AR m
0| 0000 56 0010 0834

LOGICAL BRANCHING INSTRUCTIONS

The sequence of execution of instructions may be
altered depending upon the state (set or reset) of
the indicators affected by previous instructions,
Thus a branch in the program or a conditional trans-
fer of control may be accomplished. If the indicator
tested is reset, the next instruction in sequence
will be accessed and executed. If the indicator is
set, control will be transferred to any point in the
program desired. Control may also be transferred un-
conditionally.

JUMP IF EQUAL JE

Operation: Test Indicator:

If set, m’"—»CC,

If reset, (CC) + I—»CC
0P Code: 60

Cycles: 1 if set; 2 if reset

Description: Test the Equal Comparison indicator.
If set, transfer control to the indexed memory ad-
dress. Otherwise, access the next instruction in
sequence.

|
£ X 0P Code Indicator m
2524 21120 1514 11{10 1
1/A Indirect addressing option
X Binary address of index register, 0
to 15
Indicator 0110
m Unindexed address of the next instruc-
tion to be accessed if indicator is set
Notes

1. The condition of the indicator will not be affec-
ted by the test.

2. The state of this indicator may also be affecteg
by addition and subtraction instructions. If %,
zero result is produced, it will be set. It will
be reset if a non-zero result is produced,

3. Indirect addressing may be employed.

REVISION: SECTION:
A%
UNIVAC IIT UTMOST —
DATE: PAGE:
July 1, 1962 37
Ifiustration Hlustration

Transfer control to LOCC (0932) if the Equal Com-
parison Indicator is set.

Transfer control to LOCD (0839) if the Greater Com -
parison Indicator is set.

JE LOCC JG LOCD
| L
£ X OP Code | Indicator m Al X OP Code | Indicator m
0| 0000 60 0110 0932 0| 0000 60 0111 0839
JUMP IF HIGH JG JUMP IF LESS JL
Operation: Test Indicator: Operation: Test Indicator:
If set, m'=——2CC If set, m'=——CC
If reset, (CC) + 1—->CC If reset (CC) + 1=—>CC
0P Code: 60 0P Code: 60
Cycles: 1 if set; 2 if reset Cycles: 1 if set; 2 if reset

Description: Test the Greater Comparison Indic.
If set, transfer control to the indexed memory ad-

Description: Test thel.ess Comparison Indicator.
If set, transfer control to the indexed memory ad-

dress, Otherwise, access the next instruction in dress. Otherwise access the next instruction In
sequence. sequence.
! . l .
£ X OP Code | Indicator m £ X OP Code | Indicator m
2524 21(20 1514 1110 1 2524 21|20 15 |14 11110 1
I/A Indirect addressing option 1/A Indirect addressing option
X Binary address of index register, 0 X Binary address of index register, 0
to 15 to 15
Indicator 0111 Indicator 0101
m Unindexed address of the next instruc- m Unindexed address of the next instruc-
tion to be accessed if indicator is set tion to be accessed if indicator is set
Notes Notes

1. The condition of the indicator will not be af-
fected by the test,

2. Indirect addressing may be employed.

1. The state of the indicator will not be affected
by the test.

2. Indirect addressing may be employed.

UNIVAC IIT UTMOST

REVISION: SECTION:
v
DATE: PAGE:
July 1, 1962 38

Illustration

Transfer control to LOCB (0938) if the LesSCom-
parison Indicator is set.

3. Indirect addressing may be employed.

IMustration

Transfer control to LOCD (0659) if the sign of AR2

is positive,

JL LOCB
|
I/\ X OP Code |Indicator m
0| 0000 60 0101 0938
JUMP IF POSITIVE JP
Operation: Test Indicator:

If set, m'——— CC

If reset, (CC) + 1—»CC
OP Code: 60
Cycles: 1 if set; 2 if reset

Description: Test the Sign Indicator of the arithme-
tic register addressed. If set, transfer control to the
indexed address. Otherwise, access the next in-
struction in sequence.

|
;/\ X OP Code | Indicator m
2524 21120 15114 1110 1
1/A Indirect addressing option
X Binary address of index register, 0
to15
Indicator Designation (See below.)
m Unindexed address of the next instruc-
tion to be accessed if indicator is set
Notes

1. Each 8ign Indicator will be set or reset depend-
ing on the sign of the word currently in the re-
spective arithmetic register. If the sign is posi-
tive the indicator will be set, if negative it will
be reset.

2. The designations of the Sign Indicators are:

ARS8 0001 1
AR4 0010 2
AR2 0011 3
AR1 0100 4

TPOS 3, LOCD ,
|
£ X OP Code | Indicator m
0| 0000 60 0011 0659
JUMP J
Operation: m'—» CC
0P Code; 06
Cycles: 1

Description: Replace the contents of the Control

Counter with the indexed address of the instruction.
|

i
ﬁ X OP Code AR m
75(24 21|20 1514 11| 10 1
1/A Indirect address option
X Binary address of index register, 0
to 15
AR Not relevant
m Unindexed address of the next instruc-
tion to be accessed
Notes

1. Indirect addressing but not field selection may
be employed.

Hlustration

Transfer control to LOCC (0783).

J LocC
|
{\ X OP Code AR m
0| 0000 06 0000 0783

UNIVAC IIT UTMOST

REVISION: SECTION:
v
DATE: PAGE:
July 1, 1962 39

STORE LOCATION AND JUMP S1J

STORE CHANNEL AND JUMP I SCJ

Operation: (CC)+1—pm’
and
m+ 11— CC
0P Code: 07
Cycles: 3

Description: Transfer the contents of the Control
Counter, incremented by 1 (or if specified the MAC
incremented by 1) into bit positions 1—15 of the in-
dexed memory location and replace the contents of
the Control Counter with the indexed memory ad-
dress incremented by 1.

:/\ X OP Code | CC/MAC m
2524 21120 1514 1110 1
I/A Indirect addressing option
X Binary address of index register, 0
to 15
CC/MAC Normally 0001 (See note 2 below.)
m Unindexed address minus 1 of the
next instruction to be accessed
Notes

1. Bit positions 16—25 of the indexed location will
be binary 0’s.

2. If a Memory Address Counter plus 1 is desired,
the designations are:

UNISERVO Il Basic Write 0011 3
UNISERVO Il Basic Read 0100 4
General Purpose #1 0101 5
General Purpose #2 0110 6
General Purpose #3 0111 T
General Purpose #4 1000 8
General Purpose #5 1001 9
General Purpose #6 1010 10
General Purpose #7 1011 11
General Purpose #8 1100 12
Compatible Tape Read-Write 1101 13
UNISERVO 1l Additional Write 1110 14
UNISERVO Il Additional Read 1111 15

3. The contents of the Memory Address Register
(15 bits)plus 1 may also be transferred to memory by
placement of 0010 in bit positions 11—14 of the
instruction.

4. Indirect addressing but not field selection may
be employed.

Illustration

Store the contents of the Control Counter incremen-
ted by 1 in LOCB (0839) and transfer control to
0840.

SLJ LOCB
I
14 X OP Code |CC/MAC m
0| 0000 07 0001 0839

SENSE INDICATOR INSTRUCTIONS

The following instructions refer to eight indicators
that may be used for program control. Each may be
set, or reset and tested, with branching occurring
if the indicator is set.

SET SENSE INDICATOR

0P Code:
Cycles: 2

62

Description: Set the Sense Indicator (1-8) speci-
fied in bits 11—14 of the instruction.

i

£ X 0P Code | Indicator m

5124 21120 15(14 11 1707 1
I/A Not relevant

X Not relevant

Indicator Designation

m Not relevant

UNIVAC IIT UTMOST

REVISION: SECTION:
\
DATE: PAGE:
July 1, 1962 40

Notes

1. The designations of the Sense Indicators are:

Sense Indicator #1 1000 8
Sense Indicator #2 1001 9
Sense Indicator #3 1010 10
Sense Indicator #4 1011 11
Sense Indicator #5 1100 12
Sense Indicator #6 1101 13
Sense Indicator #7 1110 14
Sense Indicator #8 1111 15

2. Indirect addressing, field selection and multi-
word operands are not applicable.

Illustration

Set Sense Indicator # 8.

sS , 15,
|

{\ X OP Code | Indicator m
0| 0000 62 1111 0000

RESET SENSE INDICATOR

0P Code: 61
Cycles: 2

Description: Reset the Sense Indicator (1-8) speci-
fied in bits 11—14 of the instruction.

|
£ X OP Code Indicator m
2524 21120 15{14 1110 1
I/A Not relevant
X Not relevant
Indicator Designation
m Not relevant
Notes

1, See Note 1 above for Sense Indicator designa-
tions (bits 11-14).

2. Indirect addressing, field selection and multi-
word operands not applicable.

Hlustration

Reset Sense Indicator #4.

RS, 11'
|
l/\ X QP Code | Indicator m
0 0000 61 1011 0000

JUMP |F SENSE
INDICATOR SET

Operation: Test Indicator:

If set, m’—CC

If reset,(CC) + 1—>CC
OP Code: 60
Cycles: 1 if set; 2 if reset

Description: Test the Sense Indicator designated.

If set, transfer control to the indexed address.
Otherwise access the next Instruction in sequence.
' .
£ X OP Code | Indicator m
2524 21|20 15/14 1110 1
I/A Indirect addressing option
X Binary address of index register, 0
to 15
Indicator Designation
m Unindexed address of the next instruc-
tion
Notes

1. The condition of the indicator is not affected
by the test.

2. See Note 1 above for sense indicator designa-
tions (bits 11—14).

3. Indirect addressing may be employed.

UNIVAC IIT UTMOST

REVISION: SECTION:
'
DATE: PAGE:
July 1, 1962 41

Illustration

Transfer control to LOCC (0832) if Sense Indica-
tor #3 is set.

Js, 10, LoccC ,
|
{\ X QP Code | Indicator m
0| 0000 60 1010 0832

CONVERSION INSTRUCTIONS

These instructions provide the facility to convert
data in decimal format to alpha-numeric format or
data in alpha-numeric format to decimal format, and
to convert non-significant characters to non-printing
codes. Such instructions may be used to prepare in-
put data for processing and/or output.

LOAD A CONVERTING TO DECIMAL

Operation: (m'=2, m'~1, m')—=~AR; - 1, AR;
0P Code: 72
Cycles: 7

Description: Transfer the contents of three con-
secutive memory locations of alpha-numeric for-
mat into two adjacent arithmetic registers in decimal
format by removing the zone bits.

|
£ X OP Code AR m
25/24 21{20 15114 11110 1
1/A Indirect addressing option
X Binary address of index register, 0
to 15
AR Positional designation of arithmetic
register(s)
m Unindexed address of the operand
in alpha-numeric format
Notes

1. A 3—word alpha-numeric operand in memory is
‘““‘compressed’’ into a 2—word decimal operand
in the arithmetic registers.

2. It is assumed that the operand in memory is a
numeric (in 6—bit code) rather than alphabetic

representation. There Is no check for the pre-
sence of zone bits,

3. The signs of the result in the arithmetic regis-
ters will be that of the least significant word of

the operand in memory.

4. The operand in memory will not be altered.

Illustration

Convert FIELDB (0830-0832) from alpha-
numeric format to decimal format and locate the
result in AR12,

LAD, 12, FIELDB -+ 2,
|
£ X 0P Code AR m
0| 0000 72 1100 0832

STORE A CONVERTING TO
ALPHA-NUMERIC

Operation: (AR; — 1, AR;})—>m' -2, m' -1, m'
0P Code: 71
Cycles: 8

Description: Transfer the contents of two adjacent
arithmetic registers of decimal format into three
consecutive indexed memory locations in alpha-
numeric format by inserting zero zone bits.

|
/X 0P Code AR m
A
2524 21120 15/14 11110 1
I/A Indirect addressing option
X Binary address of index register, 0
to 15
AR Positional designation of arithmetic
register(s)
m Unindexed address of the operand in
alpha-numeric format
Notes

1. A 2—word decimal operand in the arithmetic
registers is ‘‘expanded’’ to a 3—word alpha-
numeric operand in memory.

UNIVAC IIT UTMOST

REVISION: SECTION:
Vv
DATE: PAGE:
July 1, 1962 42

2. The signs of the result in memory will be that
of the least significant word of the operand in
the arithmetic registers.

3. The contents of the arithmetic registers are not
altered.

4. Indirect addressing, but not field selection may
be employed.

Itlustration

Convert to alpha-numeric format a decimal operand
located in AR12, storing it in FIELDB
(0681—0683).

SAA, 12, FIELDB + 2
|
{\ X OP Code AR m
0| 0000 71 1100 0683

ZERO SUPPRESS

0P Code: 73
Cycles: 2

Description: Transfer the contents of the indexed
memory location(s) to the arithmetic registers de-
signated replacing alpha-numeric 0’s (00 0011) and
commas (11 0010) to the left of the first significant
non-zero character with non-printing space codes

(00 0000).

|
;/\ X OP Code | AR m
25124 21,20 15114 1110 1
I/A Indirect addressing option
X Binary address of index register, 0
to 15
AR Positional designation of arithmetic
register(s)
m Unindexed address of the operand
(See #3 below.)
Notes

1. The operand in memory is unaltered.

2. The original sign(s) are retained.

3. A multi-word operand must be located in con-
secutive memory locations, but the suppressed
result may be in non-adjacent arithmetic regis-
ters.

4. When the operand is multi-word, the indexed
memory location must be the address of its most
significant word.

5. Indirect addressing, but not field selection may
employed.

Ilustration

Zero suppress FIELDB (0689-0690) placing the

result in AR12,

LAE, 12, FIELDB
i
,{\ X OP Code AR m
0| 0000 73 1100 0689

LOGICAL INSTRUCTIONS

These instructions allow bit manipulation in the
UNIVAC III System. The operation table which ap-
plies to each affected bit of the arithmetic regis-
ter(s) has the following form:

AR;
m (AR;) before execution
(m’) \ (AR;) after execution
OR OR

Operation: (m’) —>AR;
OP Code: 15 1-bits
Cycles: 2
Description: Transmit all 1-bits in the indexed

memory location(s) to the corresponding bit posi-
tions in the arithmetic register(s) designated.

OP Code AR m

N
>

2524 2120 15,14 11j10 1

L

REVISION: SECTION:
UNIVAC TII UTMOST !
DATE: PAGE:
July 1, 1962 43
1/A Indirect addressing/field selection 1
option é X OP Code | AR m
X Binary address of index register, 0 o5 104 21120 1514 1110 1
to 15
1/A Indirect addressing/field selection
AR Positional designation of arithmetic option
register(s)
X Binary address of index register, 0
m Unindexed address of the operand to 15
Notes AR Positional designation of arithmetic
register(s)
1. Bit positions in the arithmetic register(s) that .
correspond to O-bits in the operand are not al- m Unindexed address of the operand
tered.
Notes
2., The operand in memory is not altered.
1. Bit positions in the arithmetic register(s) that
3. A logical “‘or’’ operation is performed on the correspond to 1—bits in the operand are not al-
entire operands, including sign bits. The truth tered.
table is:
2. The operand in memory is not altered.
AR 4
m L 0 1 3. A Iogical ‘‘and’’ operation is performed on the
0 0 1 entire operand, including sign bits, for which
the truth table is:
1 1 1
. . . . AR
4. Indirect addressing, field selection and multi- m l 0 1
word operands may be employed.
0 0 0
Hlustration 1 0 1
LOGICAL"OR'FIELDB (0823)with AR2 4. Indirect addressing, field selection and multi-
OR 2 FIELDB word operands may be employed.
’ ’,
| .
{\ X OP Code AR m Illustration
i 1" 2l
0l 0000 15 0010 0823 LOGICAL "AND" FIELDE (0832)with AR1
AND 1, FIELDE
|
{\ X OP Code AR m
AND AND
i . 0, 0000 16 0001 0832
Operation: {m')—>AR;
0-bits
0P Code: 16
Cycles: 2 INDEX REGISTER INSTRUCTIONS

Description: Transmit all O-bits in the indexed
memory location(s) to the corresponding bit posi-
tions in the arithmetic register(s) designated.

The following instructions provide for the loading,
storing, incrementing and comparing of index regis-

ter

contents used forthe indexing of allinstructions.

UNIVAC IIT UTMOST

REVISION: SECTION:
A%
DATE: PAGE:
July 1, 1962 44

LOAD INDEX REGISTER

Operation: (m’)—>XO0;
bits 1-15

OP Code: 51

Cycles: 3

Description: Transfer bits 1-15 of the indexed
memory location to the index register designated in

bit positions 11—14 of the instruction.

|
£ X 0P Code X0 m
25(24 21|20 1514 11110
1/4 Indirect addressing option
X Binary address of index register,
to 15
X0 Binary address of index register (1 to
15) operand
m Unindexed address of value to be load-
ed
Notes

1. Indirect addressing may be employed. Field
selection and multi-word operands do not apply.

IHustration

Load index register 12 with the value found in AMTA

(0389).

LX 12, AMTA
{: X OP Code X0 m
0} 0000 51 1100 0389

STORE INDEX REGISTER

Operation: (X0i) —>m’

OP Code: 50
Cycles: 3

SX

Description: Transfer the contents of the index re-
gister designated in bit positions 11-~14 of the in-
struction to bit positions 1—-15 of the indexed
memory location.

|
/1 X OP Code X0 m
A
25124 21120 15/14 11110 1
I1/A Indirect addressing option
X Binary address to index register, 0
to 15
X0 Binary address of index register (1 to

15) operand

m Unindexed address of storage location

Notes

1. Bit positions 16—25 of the indexed memory loca-
tion will be binary 0’s.

2. If X0 is 0000, bit positions 1—25 of m’ will con-
tain binary 0’s.

3. Indirect addressing may be employed. Field
selection and multi-word operands do not apply.

Ilustration

Store Index Register 10 in AMTB (0834).

SX, 10, AMTB
|
l/\ X OP Code X0 m
0| 0000 50 1010 0834
INCREMENT INDEX REGISTER 1X

Operation: (X0;) + (m') ——>X0;
bits 1-9

0P Codes: 52

Cycles: 3

Description: Algebraically add in binary bit posi-
tions 1-9 (augend) of the indexed memory location
to the index register designated (addend) in bits
11—14 of the instruction.

UNIVAC III UTMOST

REVISION: SECTION:

DATE:

July 1, 1962

PAGE:

2N
n

|
/I X OP Code X0 m
A
25124 21120 1514 11110 1
1I/A Indirect addressing option
X Binary address to index register, 0
to 15
X0 Binary address of index register (1 to
15) operand
m Unindexed address of increment
Notes

1. If the sign of the indexed memory location is
negative, the addition to the index register is in
effect a decrementation.

2. Any carry beyond the most significant bit posi-
tion of the index register is ignored.

3. Indirect addressing may be employed. Field
selection and multi-word operands do not apply.

lilustration

Increment Index Register 12 by the value in AMTB
(0772),

X 12, AMTB
|
£ X 0P Code X0 m
0| 0000 52 1100 0772

INCREMENT INDEX REGISTER AND
COMPARE

Operation: (X0;) + (m') — XO;
. bits1-9
I(x0)|: [(m)] .
0P Code: 53 bits 10-24
Cycles: 4

Description: Algebraically add in binary bit posi-

tions !—9 (increment amount) of the indexed Incre-
ment and Compare word (ICW) to the

index register designated in bits 11—-14 of the in-
struction. Compare in absolute the new contents of
the index register with bit positions 10-24 (com-
parison amount) of the [CW and set the appropri-
ate comparison indicator according to the following:

if |(X0i)| > |(m')| bits 10-24, set Greater Com-
parison Indicator.
if |(X0i)| < |(m")| bits 10-24, set Less Compar-

ison Indicator.

if |(X0i)| = |(m’)| bits 10-24, set Equal Comparison

Indicator
|
/X 0P Code X0 m
A
25124 21120 15(14 11410 1
1/A Indirect addressing option
X Binary address of index register, 0
to 15
X0 Binary address of index register (1 to
15) operand
m Unindexed address of XMOD
Notes
1. The
ICW is in the following format:
S
| Comparison Amount Increment Amount
;
25/24 10{9 1

2. If the sign bit (25) of the ICW is one, the in-
crement amount is added as a negative value, in
effect decrementing the index register,

3. Any carry beyond the most significant bit posi-
tion of the index register is ignored.

4. Prior to the setting of the appropriate indicator,
all comparison indicators are reset.

5. Indirect addressing may be employed. Field
selection and multi-word operands do not apply.

I REVISION: SECTION:
i
UNIVAC III UTMOST : v
| DATE: PAGE:
J’ July 1, 1962 46
Illustration Class 0010
Indicator(s) Positional designation of specific

Increment Index Register 5 by 3 and compare the
contents to the value 45. The [CW 1is located in
INCR (0489).

I, 5 INCR

|

£ X 0P Code X0 m

0(0000 53 0101 0489
(0489)

INCR ICW 45,3,

S

é Comparison Amount Increment Amount
f

0 45 3

PROCESSOR INTERRUPT INSTRUCTIONS

The cause of two classes of automatic program in-
terrupt, Processor Error and Contingency, may be
determined by these instructions. When the condi-
tion is rectified, the affected indicator may then be

reset, and normal processing may continue.

TEST CONTINGENCY INDICATOR

Operation: Test Indicator:

If set, (CC) + I—>CC

If reset, (CC) + 2—»CC
OP Code: 64
Cycles: 2

Description: Test the contingency indicator(s)speci-
fied in bit positions 1—10. If one or more is set,
access the next instruction in sequence. Otherwise,
skip the next instruction in sequence.

|

‘{\ X OP Code | Class Indicator

25124 21|20 15|14 11}10 1
I/A Indirect address option
X Binary address of index registers, 0

to 15

indicator(s)
Notes

1. Any number of indicators may be tested by place-
ment of 1-bits in bit positions 1-10. If an in-
dicator is set, the next instruction in sequence
will be accessed, (CC) + 1—» CC.

2. The condition of the indicator(s) will not be
affected by the test.

3. Indicators are designated by 1—bits in the follow-
ing bit positions. (Bit positions 7—-10 should be
0’s.)

ADDRESSES
Overflow 000001 01
Invalid OP Code 000010 02
Console Typewriter Interrupt 000100 04
Keyboard Request 001000 010
Keyboard Release 010000 020
Contingency Stop 100000 040

4. The location immediately following the instruc-
tion will normally be an unconditional transfer.

5. Indirect addressing may be employed.

IHlustration

Test the Contingency Stop Indicator.

TC 040
]
£ X OP Code | Class Indicator
0| 0000 64 0010 0000100000

RESET CONTINGENCY INDICATORS

0P Code: 65
Cycles: 2
Description: Reset the Contingency Indicator(s)

specified in bit positions 1—10 of the instruction,

REVISION: SECTION:
UNIVAC III UTMOST E
DATE: PAGE:
July 1, 1962 47
l Description: Test the Process error indicator(s)
/ X OP Code | Class Indicator specified in bit positions 1—10. If one or more is
A set, access the next instruction in sequence. Other~
2s 21020 15]14 110 wise, skip the next instruction in sequence.
| .
1/A Indirect addressing option {\ X OP Code | Class Indicator
X Bin;a;y address of index register, 0 05|24 21120 15/14 11]10 1
to
cl 0010 1/A Indirect address option
ass 1
) . . X Binary address of index register, 0
Indicator(s) Positional designation of specific to 15
indicator(s)
Notes Class 0001
1. Any number of indicators may be reset. The in- Indicator(s) I_’osjtional designation of specific
clusion of several 1-—bits will result in the re- indicator(s)
setting of all indicators designated. Notes

2. Indicators are designated in the same way as for

Test Contingency Indicator

Note 3

3. Any attempt to reset an indicator in a reset con-
dition will not result in an error.

4. Resetting of any indicator will automatically
reset the Contingency Interrupt Mode Indicator
and inhibit all interrupts until after execution

of the following instruction.

5. Indirect addressing may be employed.

[llustration

Reset the Overflow Indicator.

RC 1
]
{\ X OP Code | Class Indicator
0| 0000 65 0010 0000000001

Operation:

0P C:ae:
Cycies.

TEST PROCESSOR ERROR
INDICATOR(S)

Test Indicator:
If set, (CC) + 1= CC
If reset,(CC) + 2= CC

64
2

1. Any number of indicators may be tested by
placement of 1-bits in bit positions 1-10. [f
an indicator is set, the next instruction in sequ-
ence will be accessed; (CC) + 1 —» CC,

2. The condition of the indicator(s) is not affected

by the test.

3. Indicators are designatedby the following

address:

Memory Address Error during:

Instruction Access

Operand Access

Synchronizer Access by:
UNISERVO Il Basic Write
UNISERVO Il Basic Read
General Purpose #1
General Purpose #2
General Purpose #3
General Purpose #4
General Purpose #5
General Purpose #6
General Purpose #7
General Purpose #8
Compatible Tape

UNISERVO Il Additional Write
UNISERVO IIl Additional Read

Modulo 3 Check on Instruction
Modulo 3 Check on Operand
Adder Error Check

UTMOST

[
O WD U W gy

O GO ket b et e b
RO O U N

UNIVAC III UTMOST

REVISION: SECTION:
\4
DATE: PAGE:
July 1, 1962 48

4. The Iocation immediately following the instruction
will normally be an unconditional transfer.

5. Indirect addressing may be employed.

IHiustration

Test thev Modulo 3 Check On Instruction Indicator.

TPE 16,
|
/A X OP Code | Class Indicator
0| 0000 64 0001 0000010000

RESET PROCESSOR ERROR
INDICATOR(S)

0P Code: 65
Cycles: 2

Description: Reset the Processor Error Indicator(s)
specified in bit positions 1-10 of the instruction.

|
{\ X OP Code | Class Indicator
25124 21420 1514 1110 1
I/74 Indirect addressing option
X Binary address of index register 0 to
15
Class 0001
Indicator(s) Positional designation of specific in-
dicator(s)
Notes

1. Any number of indicators may be reset. The in-
clusion of several 1-bits will result in the re-
setting of all the indicators designated.

2. Indicators are designated in the same way as
for Test ProcessorError!ndicators) Note 3

3. Any attempt to reset an indicator already in a
reset condition will not result in an error.

4. Resetting of any indicator will automatically
reset the Processor Error Interrupt Mode Indi-
cator and inhibit all interrupts until after execu-
tion of the following instruction.

5. Indirect addressing may be employed.

[Tlustration

Reset the Adder Error Check Indicator.

RPE 64
|
£ X OP Code | Group Indicator
G| 0000 65 0001 0001000000

INPUT-OUTPUT INTERRUPT INSTRUCTIONS

The third class of automatic program interrupt, I

put-Output, is handled by these instructions. Th
channel synchronizer originating the interrupt and
the specific cause of it may be determined. Normal
processing will be resumed when the affected in-
dicators are reset.

TEST INPUT-OUTPUT INDICATORS

Operation: Test Indicator:
If set, (CC) + 1=—>CC
If reset, (CC) + 2=—»CC
OP Code; 64
Cycles: 2
Description: Test the Input-Output Indicator(s)

specified in bit positions 1-10 for the channel
specified in bit positions 11—14. If one or more is
set, access the next instruction in sequence. Other-
wise, skip the next instruction in sequence,

|
{‘ X OP Code |Channel Indicator
2524 21120 15114 11{10 1 ‘
I/A Indirect addressing/field selection
option
X Binary address of index register, 0 to

15

REVISION: SECTION:
UNIVAC III UTMOST v
DATE: PAGE:
July 1, 1962 49
Channel Designator (See below.) Bit
Positions
Indicator Positional designation of specific Error A (UNISERVO Units
indicator Only) 3
Busy (UNISERVO UnitsOnly) 4
Notes
Error B
1. Any number of indicators may be tested by place- Error for General Purpose
ment of 1-bits in positions 1-10, If an indicator Channels 5
is set, the next instruction in sequence will be .
accessed; (CC) + 1 —» CC. End of File (727 Tape) 5
End of Tape (UNISERVO III
2. The condition of the indicator(s) will not be Unit Only) 6
affected by the test.
Qut-of-paper (High-Speed
3. The location immediately following this instruc- Printer) 6
should normally contain an unconditional trans- Wired Stop Character (Paper
fer. Tape) 6
4. Any attempt to reset an undefined indicator for Fault 7
a given channel or an indicator already in a reset Low on Paper (Paper Tape) 2and6
condition will not result in an errot.
Bad Line Printed S5and7

5.

7.

Indirect addressing may be employed.

Channel designations (bits 11—14) are as follows:

UNISERVO Il Basic Write 0011 3
UNISERVO Illl Basic Read 0100 4
General Purpose #1 0101 5
General Purpose #2 0110 6
General Purpose #3 0111 7
General Purpose #4 1000 8
General Purpose #5 1001 9
General Purpose #6 1010 10
General Purpose #7 1011 11
General Purpose #8 1100 12
Compatible Tape Read Write 1101 13
UNISERVO I Additional

Write 1110 14

UNISERVO III Additional Read 1111 15

Indicators are designated by 1—bits in the follow-
ing bit positions (bits 8—10 should be 0):

Bit
Positions

Stand-by Location Interlock 1
Indicator

Completion/Initiation
Interrupt 2

Itlustration

Test the Stand-by Location Interlock Indicator for
UNISERVO IIl Basic Write Channel.

TIO 3 1
|
I/\ X OP Code |Channel Indicator
0| 0000 64 0011 0000000001

RESET INPUT-OUTPUT
INDICATOR(S)

OP Code: 65
Cycles: 2

Description: Reset the input-output indicator(s)
specified in bit positions 1-10 for the channel
specified in bit positions {1-]4.

OP Code |Channel Indicator

P
>

2524 21{20 1514 1110 1

UNIVAC IIT UTMOST

REVISION: SECTION:
\

DATE: PAGE:
July 1, 1962 50

1/A Indirect address option

X Binary address of index register, 0 to
15

Channel Designator (See below.)

Indicator(s) Positional designation of specific
indicator(s)

Notes

1. Any number of indicators may be reset. The in-
clusion of several 1-bits will result in the re-
setting of all indicators designated.

2. For channel designations (bits 11—14) see Note 6
of preceding instruction.

3. Indicators are designated by 1-bits as speci-
fied in Note 7 of the preceding instruction.

4. Any attempt to reset an undefined indicator for
a given channel or an indicator already in a reset
condition will not result in an error,

5. Resetting of any indicator will automatically
reset the Input-Output Interrupt Mode Indicator
and inhibit all interrupts until after execution of
the following instruction.

6. Indirect addressing may be employed.

Description: Set the Inhibit Input-Output Interrupt
Indicator thereby preventing all subsequent Input-
Output Interrupts from occurring.

|
{\ X OP Code | Indicator m
25124 21|20 15114 11{10 1
I/A Should be 0
X Not relevant
Indicator Should be 0000
m Not relevant
Notes

1. Storage of the Control Counterreading and trans-
fer of control to location 0020 will be blocked
as long as the indicator is set.

2. The setting of the indicator will not affect any
subsequent setting or resetting of the Input-
Output Indicators.

3. Indirect addressing and field selection are not
applicable.

[lustration

Inhibit all Input-Output Interrupts from occurring.

Iliustration Pl 0
Reset the Stand-by Location Interlock Indicator for l/ X OP Code |Indicator m
UNISERVO IIl Basic Read Channel. A
RIO 4, 1 0] 0000 62 0000 0000
IA X 0P Code |[Channel Indicator
0| 0000 65 0100 0000000001

PREVENT INPUT-OUTPUT
INTERRUPT

0P Code: 62
Cycles: 2

ALLOW INPUT-OUTPUT
INTERRUPT

0P Code: 61
Cycle: 2

Description: Reset the Inhibit Input-Output Interrupt
Indicator thereby allowing the occurrence of all
subsequent input-output interrupts.

REVISION: SECTION:
UNIVAC TIT UTMOST v
DATE: PAGE:
July 1, 1962 51
I X Binary address of index register, 0 to
/X OP Code | Indicator m 15
2o 21020 15114 11]10 1 Indicator Should be 0000
m Unindexed address of the next in-
I/A Should be 0 structionto be accessed if indicator is
set
X Not relevant €
Indicator Should be 0000 Notes
m Not relevant 1. The condition of the indicator is not affected by
the test.
Notes

1. An Input-Output Interrupt or Input-Output Error
Indicators may be set during the time Input-Out-
put Interrupts are inhibited. A normal Input-Output
Interrupt will occur when this indicator is reset.

2. Indirect addressing and field selection are not
applicable.

IHlustration

Allow input-output interrupts to occur.

Al 0
|
£ X OP Code | Indicator m
0{ 0000 61 0000 0000

JUMP IF INPUT-QUTPUT
INTERRUPT PREVENTED

Test Indicator:

If set, m'——»-CC

If reset, (CC) + 1=—»CC
OP Code: 60

Operation:

Cycles: 1 if set; 2 if reset

Description: Test the Inhibit Input-Output Indicator.

If set, transfer control to the indexed address.
Otherwise access the next instruction in sequence.

OP Code |Indicator m

D~
>

25124 21120 15{14 11{10 1

1/A Indirect addressing option

2. Indirect addressing may be employed.

Illustration

Transfer control to LOCE
interrupt is inhibited.

(0839) if input-output

JIP LOCE
k X OP Code | indicator m
0 0000 60 0000 0839

INITIATE INPUT-OUTPUT INSTRUCTION

Input-output function specifications, denoting the
particular input-output operations to be performed,
are not decoded and executed in the Central Proces-
sor. Execution of Initiate Input-Output Instruction
makes the input-output function specification avail-
able to the appropriate channel synchronizer which
executes it.

LOAD CHANNEL STANDY
REGISTER

—

LC

(m')=»SLi and set appropriate
Stand-by Location Interlock Indicator
0P Code: 70

Operation:

Cycles: 3
Description: Transfer the function specification
from the indexed memory location to the fixed

stand-by location in memory associated with the
channel designated in bit positions 11—-14 and set
the respective Stand-by Location Indicator.

UNIVAC IIT UTMOST

REVISION: SECTION:
\4
DATE: PAGE:
July 1, 1962 52

:/\ X OP Code | Channel m

25024 21|20 15(14 11110 1

I/A Indirect addressing option

X Binary address of index register, 0
to 15

Channel Channel designator

m Unindexed address of the function
specification

Notes

1.

Input-output operations, except those pertaining
are executed by

means of two instructions — the initiate input-

to the Console Typewriter,

output instruction and a function specification

(FS). The latter serves to direct the peripheral
unit to perform a specific function — read a card,
read a block, print a line, and so on. Function

specifications have the following formats.

TAPE FUNCTIONS

Servo | Function .
0 Number Code ' L-Addr.
5(24 21120 17]16{15 1

HIGH-SPEED PRINTER FUNCTIONS

Number of |~ u
0| LinesPaper |3 o}l L-Addr.
Advance |2 °
2524 19181716|15 1

HIGH-SPEED CARD READER AND CARD-PUNCH

FUNCTIONS

Function

00000 Code

L-Addr.

25 21120 1716

15 1

PAPER-TAPE READER AND PUNCH
FUNCTIONS

L-Addr.

(=]

No. of Words

FUNCT'N
CODE

5|24 19

—
oo
—
~1

1615 1

The initiate input-output function places the F§
in the memory location associated with the
channel so that it may be picked up by the
channels control circuitry, decoded, and execut-
ed. To inform the channel circuitry that a FS is
available, the Stand-by LocationIndicator is set.

Operation of the initiate input-output function
and the input-output function specification is as
follows:

Execution of the initiate input-output func-
tion places an input-output function speci-
fication into the stand-by location for the
synchronizer designated and sets the cor-
responding Stand-by Location Indicator.

When the related synchronizer successfully
completes the execution of a previous in-
struction, the synchronizer requests access
to its stand-by location if its Stand-by
Location Interlock Indicator is set. When
the Memory Priority Circuits grant the Syn-
chronizer the requested access, and the
contents of the stand-by location are trans-
ferred to the Channel Control Circuitry where
the function is defined. During the transfer,
bit functions 1-15 are loaded into the syn-
chronizer’s Memory Address Counter. The
Stand-by Location Interlock Indicator will be
reset when the operation is successfully
initiated and the instruction execution begins
(when the instruction applies to the tape
units and to the Printer.)

If the Stand-by Location Interlock Indicator
is set, and an initiate input-output function
is executed, the associated, input-output
function specification will replace the one
in the stand-by location. In normal use the
indicator should be tested and found reset
prior to the execution of an initiate input-
output function. If the Indicator is found
set, and the initiate { -® command is
executed, there is the possibility that
the instruction already in the stand-by
location will not be executed while the
new one is being entered. PResetting of
the Indicator may be accomplished by
the RIO instruction.

Whenever input-output functions can-

not be successfully completed because
of error or abnormal conditions, the

stand-by location Interlock Indicator for
the appropriate synchror izer remains
reset. The instruction in its stand-by
location will therefore not be transferred
for execution.

REVISION: SECTION:

\

UNIVAC IIT UTMOST

DATE: PAGE:

July 1, 1962 53

2. The address of the memory locations associated STORE LOCATION l &1,
with the channel is the binary value of the STORE CHANNET, sC
channel designator. —

Operation: (MACi) = m’

3. Indirect addressing but not field selection may (p Code: 04
be employed. Cycles: 3
4. See Note 2 of for channel addresses. Description: Transfer the contents of the Memory

Address Counter (MAC) for the channel specified in
bit positions 11—14(or the Control Counter if speci-
fied) into bit positions 1—-15 of the indexed memory

llustration

Initiate a tape operation for the Basic Read Channel.

The function specification is located in LOCB location.
(0839).
Lc 4 LocB lﬁ X | OPCode |MAC/CC n
|
Al X | OPCode | Channel m hsl24 21]20 1514 11]10 1
0| 0000 70 0100 0839
I/A Indirect addressing option
MISCELLANEOUS INSTRUCTIONS X Binary address of index register, 0
to 15

MAC/CC Normally channel designator (See

NO OPERATION below,)
Operation: (CC) + I—»=CC m Unindexed address
OP Code: 00
Cycles: 2

Notes

Description: No operation is performed. Access the

next instruction in sequence. 1. Bit positions 16—25 of the indexed location will

be binary 0’s.

2. If the Control Counter is desired, bit positions
Y'ox | opcede | AR n 11-14 should be 0001 (SL) If a Memory
A Address Counter is desired, the channel designa-
tions are:
25(24 21|20 15|14 11]10 1
I/A 0 UNISERVO III Basic Write 0011
UNISERVO Il Basic Read 0100
X Not Relevant General Purpose #1 0101
General Purpose #2 0110
OP Code 00 General Purpose #3 0111
AR Not Relevant General Purpose #4 1000
General Purpose #5 1001
m Not Relevant General Purpose #6 1010
General Purpose #7 1011
Notes General Purpose #8 1100
Compatible Tape Read-Write 1101
1. Memory, arithmetic regdisters and indicators UNISERVO III Additional Write 1110

are not affected. UNISERVOIII Additional Read 1111

REVISION: SECTION:
UNIVAC III UTMOST
DATE: PAGE:
July 1, 1962 54
3. The Memory Address Counter for the channel)
designated at the time of transfer will contain: I/\ X OP Code |Channel m
UNISERVO U Unit — Address of the Tape Con- 25 24 21 20 15 14 11 10 1
Scatter Read trol Word currently effec-
or tive in the UNISERVO I . . .
I/A Ind t add t
Gather Write Read or Write Synchronizer. / ndirect addressing option
X . d . .
Compatible Servos — Address to or from which fo";z:y address of index register, 0
or UNISERVO 111 the last data word trans-
Unit Read W/O fer took place. Channel For channel designation, see Note 2
Control Word below.
Unindexed locati
High-Speed Printer — Address of last word m mndexed memory location
transferred to the Printer
Synchronizer Buffer. Notes
Card-Punch Unit — Address of the last word 1. The indexed memory location will contain the
transferred from Punch following information:
Synchronizer. Bits 1-15 Binary address of the last word
. transferred to or from the synchro-
High-Speed Reader — Address of the last word nizer channel
transferred from High-
Speed Reader Synchronizer. Bits 16—24 Original count as contained in they,
Scatter Read/Gather Write Controf{
4. The contents of the Memory Address Register Word, decremented by one for each
(15 bits) may also be transferred to memory by word transferred
placement of 0010 in bit positions Bit 25 Sign; Positive
11—14 of the instruction,
2. The UNISERVO Read or Write Ch 1 Syn-
5. Indirect addressing but not field selection may © .NIS RV. I". ead or Write annel Syn
chronizer Designations
be employed.
BITS 11-14
iHustration Basic Write 1000
. . Basic Read 0100
S(;;;eg the MAC for the Basic Read Channel in LOCB Additional Read 0010
(0839). Additional Write 0001
SC 4, LOCB
i Note: The above designations apply to this in-
l/\ X OP Code |Channel m struction only.
ol 0000 04 0100 0839 3. Indirect addressing, but not field selection may
be employed.
Iltustration

STORE TAPE CONTROL REGISTER

Operation: (TCRi) = m’
0P Code: 05
Cycles: 3

Description: Transfer the contents of the Tape Con-
trol Word Register (TCWR) for the UNISERVO Il
synchronizer channel specified in bits 11-14 to
the indexed memory location,

Store the TCWR of the Basic Write Synchronizer
Channel in FIELDD (0832).

ST 4, FIELDD
|
l/\ X 0P Code |Channel m
0| 0000 05 1000 0832

UNIVAC IIT UTMOST

REVISION: SECTION:
VvV
DATE: PAGE:
July 1, 1962 55

BALT AND JUMP | HJ READ CLOCK i RCK
e e

Operation: m'~—s CC and

Stop Arithmetic and Control Unit
0P Code: 77
Cycles: 2

Description: Replace the contents of the Control
Counter with the indexed address of the instruc-
tion and stop the arithmetic and control unit.

|
Al X | oPCode | AR m
2528 21120 15(14 11410 1
I1/4 Indirect address option
X Binary address of index register, 0
to 15
AR Not relevant
m Unindexed address of the next instruc-
tion to be accessed
Notes

1. When the Start Key on the console is depressed,
the program is resumed at the location specified
by the Control Counter reading.

2. The arithmetic and control unit ceases to request
memory access. All peripheral operations in
progress continue to request memory until they
are completed. Any function specifications in
stand-by locations will be accessed and execu-

ted.

3. Indirect addressing but not field selection, may
be employed.

Iflustrations

Stop the arithmetic and control unit. Then resume
the pregram with the instruction located in LOGCB
(0839).

HJ LOCB
|
{\ X 0P Code AR m
0| 0000 77 0000 0839

Operation: (Clock)—» ARi
0P Code: 76
Cycles: 2

Description: Transfer the reading of the clock to
the arithmetic register designated.

|
£ X OP Code AR m
25|24 21120 15|14 11110 1
I/A Should be 0
X Should be 0
AR Positional designation of arithmetic
register
m Should be 0’s
Notes

1. If the clock is cycling, one-half second every
six seconds, an invalid time is transferred to
ARi and the next instruction in sequence is
accessed; (CC) + |—»CC.

2. If the clock is not cycling, a valid time is trans-
ferred to bit positions 1-20 of ARi with 21-25
binary 0’s and the next instruction in sequ-
ence is skipped; (CC) + 2= CC.

3. The valid time is expressed in five 4—bit ex-
cess-three digits in the following format:

00000

25 20120 17|16 13|12 98 514 1

e —————— ~ N —
Hour Minute Tenfth

0
Minute

4. If more than one arithmetic register is designat-
ed, the clock reading will be transferred to the
highest arithmetic register designated.

5. If the UNIVAC III System does not include the
clock and the instruction is executed, ARi will
receive binary 0’s and the next instruction in
sequence will be accessed.

UNIVAC TIT UTMOST

REVISION: SECTION:
v
DATE: PAGE:
July 1, 1962 56

The clock, modulo 24 hours, is located inside
the Console and is not normally visible to the
operator. Knobs are provided on the clock hous-
ing to set the hour and minute hands. Power is
supplied directly from a 115-volt AC, 60-cycle line.

If the power to the clock was disrupted, any
Load Time instructions executed will set the
Overflow Indicator resulting in a Contingency
Interrupt. The operator must reset the clock to
prevent further Contingency Interrupts when
accessing the clock. This is accomplished by
depression of a button located on the clock
housing.

Indirect addressing, field selection and muliti-
word operands are not applicable.

Hlustration

Store the clock reading in ARL,

RCK 1L 0
k X OP Code AR m
0| 0000 76 000l 0000
WRITE DISPLAY wbD
Operation: (m')=—> Display
OP Code: 03

Cycles: 2

Description: Transfer the 27—-bits of the indexed
memory location to the visual display on the Main-
tenance Panel.

|
£ X 0P Code AR m
2524 21120 15114 11110 1
I/A 0
X Binary address of index register, 0
to 15
AR Not relevant
m Unindexed address of operand
Notes
1. The Display switch on the panel must be set to
position 0. i
Ilustration

Display the contents of LOCB (0839).

WD LocB
I
{\ X OP Code AR m
0| 0000 03 0000 0839

UNIVAC IIT UTMOST

REVISION: SECTION:
A
DATE: PAGE:
July 1, 1962 57

The UNIVAC III Operator’s Console contains, in
addition to the Console Typewriter and Keyboard
and its controls, buttons and lights to control the
Central Processor and monitor the peripheral
equipment.

AC On-Off Button-Light

Depression of this button when in the off-
state, will supply power to the system. If
this button is depressed when in the on-stiate,
power will be lost. Use of this button is
controlled by a key lock located under the
Console apron.

Ready Light

When lit, it indicates that power has been
supplied and the Central Processor is ready
to operate. There will normally be some lag
in its lighting after power has been supplied.

General Clear Button

Depression of the General Clear Button causes
the following indicators to be reset:
Processor Error Interrupt Indicators
Contingency Interrupt Indicator
Input-Output Interrupt Indicators
Interrupt Mode Indicators
Inhibit Input-Output Interrupt Indicator

Sense Indicators

Depression of the General Clear Button also
causes the following registers to be cleared to
binary 0’s:

Control Counter

Index Registers

Memory Address Counters

5. Operator’s Console

Load Button

Depression of this button causes logical
UNISERVO III 0000 to read forward one block
without control word. The starting address
of the transfer is determined by the Memory
Address Counter of the UNISERVO III Read
Synchronizer. The Stop Light must be lit for
the button to be effective.

Rewind Button

Depression of this button causes the logical
UNISERVO III 0000 to rewind without inter-
lock. The button will only be effective if the
Stop Light is lit.

Program Run Button-Light

Depression of this button causes the Central
Processor to begin execution of instructions
the location of which is specified by the
Control Counter. The light is lit only during
the execution of instructions.

Processor Error Stop/Program Stop

This is a two-section button-light. When the
top section, Processor Error Stop, is lit, it
indicates that a second Processor Error oc-
curred while in a Processor Error Interrupt
Mode causing a stop condition. When the
lower section is lit, it indicates that the stop

resulted from the execution of a Halt Instruction.

When this button is depressed. the Contin-
gency Stop Indicator will be set causing a
Contingency Interrupt.

Prevent 1/0 Interrupt

This light is lit when the Inhibit I/0 Interrupt
Indicator is set.

oam

UNIVAC III UTMOST

REVISION: SECTION:
V
DATE: PAGE:
July 1, 1962 58

Monitor Panel

Eight pairs of lights, indicate the line status
of the general purpose channels (lit if off-line)
and whether an abnormal (fault) condition
exists in any unit requiring operator inter-
vention. Two additional pairs of lights in-
dicate the same conditions for the servo power
supplies and the Central Processor.

If an abnormal condition such as no airflow,
overheat, power supply failure, and so on,
occurs, the appropriate light will be lighted
and sound a buzzer. The buzzer may be turned
off by depressing the Buzzer Override Button
which is on the panel., The indicator light is
extinguished when the abnormal condition is
corrected. (This panel is not illustrated.)

CONSOLE TYPEWRITER

The UNIVAC III Operator’s Console contains in
addition to lights and buttons for the operation
of the Central Processor, a Console Typewriter
and Keyboard.

The typewriter and keyboard are used for the
following purposes:

m Typing out data or the contents of the address-
able registers, for control purposes under pro-
gram control.

m Changing the contents of memory location ad-
dressable registers by program controlled
type-ins.

m Manual typing independent of program control
when in an off-line condition.

Specifications:

CHARACTERS
Fifty-one printing alpha-numeric (6-=bit)
characters as programmed input or output

(Figure 5-2).
FORMAT CONTROL

Programmed typewriter actions are controlled
by 6-—bit non-printing characters. They are:

m Tab Stop (advance carriage to next tab
stop).

® Return carriage and space one or two lines.

® Form Feed will advance paper to the pre-set
first printing line of the next 5% ' or 11"’ form,

® Bell Ring.

SPEED
Ten characters printed per second.
SPACING

Ten characters per inch horizontal spacing
and six lines per inch vertical spacing.

FORM FEED
Sprocket Fed

PAPER WIDTH

Eight and one-half inches including sprocket
holes.

NUMBER OF COPIES

Up to five copies plus the original may be
produced.

MODES

On-line typewriter functions under program
control. Off-line functions as a conventional
electric desk typewriter.

ZONE
00 o1 10 n
0000 A &
0001) * %
0010 - . $,
ARRIAS RETURN RING
0011 0 cnm ::e :z:n BELL +
0100 1 A J /
0101 2 B K S
0110 3 c L T
v 011 4 D M u
o
3| 1000 5 E N v
2
z 1001 6 F o] w
1010 7 G P X
1011 8 H Q Y
1100 9 1 R z
1101 / #
HORIZONTAL FORM
1110 ; TAB FEED
1nn (

Figure 5-2. UNIVAC Il Console Typewriter Code

UNIVAC IITI UTMOST

REVISION: SECTION:
| v
DATE: PAGE:
July 1, 1962 59

On-Line Mode of Operation

Input from the keyboard and output to be printed
is accomplished character-by-character through
the 6-bit Typewriter Buffer Register (TBR).

Execution of a Write Typewriter Character (WT)
will transfer from memory one 6-bit printable or

non-printing typewriter character and initiate a

typewriter cycle. Once this is accomplished the
Central Processor accesses the next instruction.
The character is then printed or the non-printing
function executed. At this time, the Console
Typewriter Interrupt Indicator is set, causing a
Contengency Interrupt.

In order to use the keyboard for input, the Acti-
Typewriter (AT) instruction must be exe-
cuted, before depressing a character key. De-
pressing a character key will enter in the TBR
the proper 6—bit code and set the Console Type-
writer Interrupt Indicator causing a Contingency
Interrupt. Execution of a Read Typewriter Char-
acter (RT) instruction will then transfer the
character to the arithmetic register designated.
Depression of a character key will not result in
a printing or typewriter controlled function.

Typewriter Control Buttons and Associated
Indicators

In addition to the keyboard with its printing
and non-printing character keys, the following
buttons and testable indicators are associated
with the Console Typewriter:

KEYBOARD REQUEST BUTTON

Depression will set the Keyboard Request
Indicator and cause a Contingency Interrupt
to occur. The indicator is tested and reset by
programming.

This button is inactive when the typewriter
is off-line.

KEYBOARD RELEASE BUTTON

Depression will set the Keyboard Release In-
dicator and a Contingency Interrupt will occur.
The indicator is tested and reset by pro-
gramming.

This button is inactive when the typewriter is
off-line.

KEYBOARD ACTIVE LIGHT

Lit by the execution of an Activate Typewriter

(AT) instruction. It is extinguished when
either a key or the Keyboard Release Button
is depressed. There is no associated program
testable indicator.

TYPEWRITER ON-OFF LINE BUTTON-LIGHTS

Indicates the status of the typewriter by the
section lit. If on-line, the typewriter is under
the direct control of the program. Depression
of the button when on-line will put it off-line,
The typewriter may then be used manually
with printing or non-printing functions occurring
when a key is depressed. Depression of the
On-Off Line button-light when off-line will put
the typewriter on-line.

CONSOLE TYPEWRITER INTERRUPT
INDICATOR

This indicator is set when the typewriter is
on-line by the depression of a character key
or the execution of a printing or non-printing
function initiated by a WT instruction.

There is no light indicating the status of this
indicator; it is testable and resettable by

program only.

Console Typewriter Instructions

The UNIVAC III Console Typewriter will function
under program control utilizing these instructions.

WRITE TYPEWRITER CHARACTER

Operation:

If Typewriter on-line: (m’) —> TBR
one character

Then print and(CC)+2-—> CC

If Typewriter off-line: (CC)+1—>CC

0P Code: 02

Cycles: 2

Description: If the Console Typewriter is on-
line, transfer the alpha-numeric character or
function code specified in bit positions 11-14 of
the instruction from the indexed memory location
to the Typewriter Buffer Register (TBR), initiate
a Typewriter Print Cycle, and skip the next
instruction in sequence,

REVISION: SECTION:
UNIVAC IIT UTMOST Y
DATE: PAGE:
July 1, 1962 60
| |
i\ X OP Code | Character m /1 X OP Code AR m
A
2524 21420 1514 11}10 1 25|24 2120 15(14 1110 1
I/A Indirect addressing option I/A Should be 0
X Binary address of index register, X Should be 0’s
0tol5
AR Should be @’s
Character Designation of character position to
be printed, 0000—0011. See Note 1. m Should be 0’s
m Unindexed Address of character to Notes
be printed
Notes 1. The Keyboard Activate Light on the Console

1. The character to be transferred and printed is
designated in bits 11—12 as shown below. Bits
13—14 are not examined and therefore may be

1 or 0.

CHAR. 4 3 ? 1

gits |2 19]18 13]12 716 1
AR 12]11 1211 12]11 12]11
BITS 11 10 ol1 0o

SALT 3 2 1 0

2. When the character is printed or function per-
formed, the Typewriter Interrupt Indicator is
set causing Céntingency Interrupt.

3. If the Typewriter is off-line the instruction is
aborted and the next instruction (normally an
unconditional transfer) is accessed.

IHlustration:

Print character 4 from FIELDB (0683).

WT 3, FIELDB
I
/I X OP Code | Character m
A
0 0000 02 0011 0683

ACTIVATE TYPEWRITER AT

OP Code: 66
Cycles: 2

Description: Allow one alpha-numeric character
to be typed in the Typewriter Buffer Register.

will be turned on when the instruction is ex-
ecuted. When a character key is depressed, the
light will be extinguished and the Typewriter
Interrupt Indicator will be set causing a
Contingency Interrupt,

2. Depression of a character key will not result
in the character being printed,

3. The Central Processor will not be interlocked
while the character is being typed.

4. Indirect addressing, field selection and multi-
word operands are not applicable.

IHlustration

Activate the Console Typewriter.

AT 0
|
/I X 0P Code AR m
A
0| 0000 66 0000 0000

READ TYPEWRITER CHARACTER

Operation: (ARi)+(TBR)—> ARi

0P Code: 01

Cycles: 2

Description: Add the alpha-numeric character

in the Typewriter Buffer Register (TBR) to bit
positions 1-6 of the designated Arithmetic Re-
gister,

v
UNIVAC IIT UTMOST oaTe: PAGE:
July 1, 1962 61

| 3. The rules for binary addition apply for bit
/1 X OP Code AR m positions 1-5. For bit position 6, the rules
A are:

P5(24 21120 15|14 11110 1 w [f a carry from bit position 5 exists, the

result in bit position 6 is a 1.

w [f a carry from bit position 5 does not

I/74 Should be 0 exist, the rules for binary addition apply
X Should be 0’s to bit position 6.

. i . . w In any case, no carry from bit position 6
AR Positional designation of arith-

k . Is propagated to bit position 7.
metic register

I .
m Should be 0’s [Hustration

Unload the Typewriter Buffer Register into ARZ,
Notes RT 2 0

?

1. Bits 7-25 of the designated arithmetic re-]
gister will not be affected, £ X 0P Code AR M
2. Indirect addressing, field s‘electzon and multi- 0l 0000 01 0010 0000
word operands are not applicable.

UNIVAC IIT UTMOST

REVISION: SECTION:

DATE:

July 1, 1962 62

PAGE:

The purpose of this section is to explain briefly
the operation of each arithmetic process so that
details of the individual instructions may be more
fully appreciated,

All arithmetic operations exclusive of those
relative to the control unit are accomplished
by the arithmetic unit which consists of the
adder, arithmetic registers, Central Processor
register, and their related circuitry. Each of the
five registers involved performs a unique function
during all of the arithmetic processes as shown
in Figure 6-1,

ADDITION
Signs Equal - True Addition

In either a binary or decimal add with like signs,
the operands are transferred to the adder four bits
in parallel, the augend from memory and the ad-
dend from the arithmetic register(s) specified.
The addition is actually binary with any carries
resulting from a 4—bit group retained and added to
the next higher 4-bit group entering the adder.
If a binary add were specified, the result of the
addition would be read into the arithmetic register
designated. A decimal addition will require the
binary sum produced to be corrected prior to its
being read in the designated arithmetic registers.
This adjustment, requiring no additional time, is
the addition of correction factors to each 4-bit
group and the ignoring of decimal carries, since
the decimal values expressed were in excess-
three.

6. Arithmetic Modes

Unequal Signs — Addition with Complementation

Addition with complementation takes place if the
signs of both quantities are unequal. In an addition
with unequal signs, the data word from memory
entering the adder is automatically converted to
its 10’s Complement.** A normal addition then
takes place.

The result will take the sign of the input with
the greater absolute value, If it is a decimal add,
the result would have been corrected for excess-
three notation.

Addition with Complementation :

AR (addend) +226385 -226385
m (augend) -~ 214360 +214360
Effective Addend (AR) 226385 226385
Complemented Augend (m) 785640 785640

+1 012025 -1 012025

N the carry is igno‘@_

In complementing, a O remaing a 0, a 1 becomes a 9, a 2
becomes an 8, a 3 becomes a 7, and so on. For all digits
after the first least signitficant non-zero digit the 9’s
complement is used. Therefore in complementing 214360
the followi ng takes place: 9 9 9 9 10

21 43 60

10’s complement 7 8 56 4 0

ADDITION" SUBTRACTION" MULTIPLICATION DIVISION

AR1 ADDEND MINUEND AND MULTIPLIER 6 MSD OF DIVIDEND
AND SUM DIFFERENCE AND REMAINDER

AR2 ADDEND MINUEND AND 6 MSD OF PRODUCT 6 LSD OF DIVIDEND
AND SUM DIFFERENCE AND QUOTIENT

AR3 ADDEND MINUEND AND 6 LSD OF PRODUCT NEVER INVOLVED
AND SUM DIFFERENCE

AR4 ADDEND MINUEND AND NEVER INVOLVED NEVER INVOLVED
AND SUM DIFFERENCE

CPR AUGEND SUBTRAHEND MULTIPLICAND DIVISOR

'Dnly those AR’'s specified in the instruction will be involved.

Figure 6-1.

Functions of Arithmetic Registers in Arithmetic Processes

UNIVAC IITI UTMOST

REVISION: SECTION:
)\
DATE: PAGE:
July 1, 1962 63

Addition with complementation ignotres the carry
from the most significant digit position and takes
the sign of the inpui with the greater absoiute
value. Although complementation will occur in an
addition with unequal signs, no additional exe-
cution time will be expended.

Addition with Recomplementation

in an addition with unequai signs recompiementa-
tion will be necessary if the result will change
the sign of the addend. Recomplementation will
be necessary if the absolute value of the quantity
in the AR is less than the absolute value of the
quantity from memory. This relationship will
necessitate a change in the sign of the AR(s)

with recomplementation automatically taking

place.

Addition with Recomplementation:

AR (addend) +218684 218684

m (augend) -221896 +221896

Effective Addend (AR) 218684 218684

Complemented Augend (m) 778104 778104
996788 996788

This is the 10's complement of the
correct result and must be recom-
plemented to

-003212 taking +003212
the sign
of the input
with the greater
absolute value,

In these examples, the result of the addition with
complementation alone is, in reality, the 10’s
complement of the true result. This complemented
result will be sent through the adder and be re-
complemented. Because recomplementation is
necessary, a minimum of one additional cycle time
will be needed to complete the execution of the
instruction. In addition, one cycle time must be
added for each word of the result to be recom-
plemented.

Recomplementation will therefore take place in
an addition with unequal signs, if the absolute
value of the contents of the AR(s) are less than
the absolute value of the contents of the data
word from memory.

The three factors which affect the sign and the
result of an addition are:

The sign of the AR
The sign of the data word from memory
The absolute value of the operands

AR
+ —
*

WITH SIGN OF THE
EQUAL + GREATER IN
SIGN ABSOLUTE VALUE*

m +
*
WITH SIGN OF THE
UNEQUAL] = GREATER IN _
SIGNS | ABSOLUTE VALUE **

So long as the signs are equal, the result is a sum even
if the signs are both negative.

*3
Although the command is for addition, the presence of
unequal signs makes the operation effectively a sub-
traction. The result is, in reality, a difference.

Note: If a zero result is developed, its sign is
always positive and the Equal Comparison In-
dicator is set. If the result is not zero, the in-
dicator will be reset,

SUBTRACTION

The same rules which apply to addition apply
to subtraction. However, because subtraction
affects the sign of the subtrahend (m), the rules
are the converse of those for addition.

In a subtraction the sign of the operand from
memory is reversed and an addition is performed.
If the signs were originally equal, the sign of the
subtrahend would change and an algebraic addition
occurs. This addition would then involve two
quantities with unequal signs. The rules govern-
ing complementation and recomplementation take
effect if the sign of the AR will change because
of the absolute values of the input. In this case,
recomplementation automatically occurs.

UNIVAC IIT UTMOST

REVISION: SECTION:
\Y
DATE: PAGE:
July 1, 1962 64

The factors which will affect the sign and the
result of a subtraction are:

The sign of quantity in the AR
The sign of the quantity from memory
The absolute values of the operands

AR
+ —_
*
SIGN OF THE
+ GREATER IN +
ABSOLUTE VALUE**
m
*
SIGN OF THE
— — GREATER IN
ABSOLUTE VALUE

The result of this subtraction ls, in reality, a sum be-
cause the subtraction operation changes the sign of the
subtrahend (m) before the execution of the operation. A
true addition would then take place without com-
plementation.

.Ths result of this operation is a difference. The reverging

of the sign of the subtrahend would make this operation
an addition with unequal signs. This type of operation
necessitates complementation. Recomplementation would
be necessary if the absolute value of the quantity in the
AR were less than the absolute value of the quantity
from memory because the relationship would force a
change in the sign of the AR(s).

Note: If a zero result is developed, its sign is
always positive.

MULTIPLICATION

Multiplication is accomplished by repeated ad-
ditions of multiples of either the multiplicand
or its tens complement to AR4 (initially cleared
to binary 0’s.) The selection of the value and
number of times it is to be used is governed by
the value of each multiplier digit as determined
by the value of the multiplier digit to its im-
mediate right. A 12-digit product is produced;
the six most significant digits in AR4 and the
six least significant digits in AR2,

MULTIPLIER
+ —

+| + ~

MULTIPLICAND

SIGNS OF THE
PRODUCT

During the exeeution of a multiplication, no
accesses to memory are required since the multi-
plier is held in the Central Processor Register
and the multiplicand digits in AR4 during the
process.

UNIVAC IIT UTMOST

REVISION: SECTION:
\
DATE: PAGE:
July 1, 1962 65

7. Automatic Program Interrupt

Automatic program interrupt in the UNIVAC III
Data-Processing System causes, upon automatic
recognition of special conditions in the system,
the automatic interruption of the program in pro-
gress. Depending on the cause of the interrupt,
the contents of the Control Counter will be stored
in a specific location and control transferred to
the succeeding location where the reason for the
interruption may be investigated and suitable ac-
tion taken. Return to the point in the program at
which the interrupt occurred may be accomplished
by use of the stored Control Counter reading.

The three main causes or classes of interrupt in
decending order of priority are Process Error,
Contingency and Input-Output.

When a condition which calls for interrupt arises,
the following occurs within the Central Processor:

m A program testable indicator, or group of in-
dicators, is set to specifically identify the
cause of the interrupt. The special indicators
set will generally belong to the same class of
interrupt.

m For each of the three classes of interrupt there
is an Interrupt Mode Indicator. These indicators
cannot be program set, reset or tested; their
functions are automatically controlled. If one is
set, interrupts of its respective class or of any
class of a lower priority are inhibited; those of
a higher class are not.

The setting of any Mode Indicator will not in-
hibit the setting of any specific indicator when
the appropriate conditions arise,

In general, when an ending pulse is generated
at the end of the execution of each instruction
in the Central Processor, the indicators are
automatically probed in groups according to the
class of interrupt in decending order of priority.
In the case of certain Processor Errors, the
respective indicators are examined every 4
microseconds. If any specific indicator is found
to be set, and if the interrupt Mode Indicator
for its class or for classes of higher priority is
not set, interrupt will take place. At this time
the appropriate Interrupt Mode Indicator is auto-
matically set.

Depending on the class of interrupt to which the
specific indicator found set belongs the current
contents of the Control Counter is stored in one
of three addressable fixed memory locations;
bit positions 1-15 containing the Control Coun-
ter reading and bit positions 16—25 containing
binary 0’s. Control is then transferred to one of
three fixed memory locations depending on the
class of interrupt.

The specific locations associated with each
class of interrupt is as follows:

Storage Location

Class of of Transfer of
Interrupt Controi Counter Control to
“Processor Error 0016 0017
Contingency 0018 0019
Input-Qutput 0020 0021

Transfer in thus effected to one of three loca-
tions where J UMP to a program may be ini-
tiated to determine the exact nature of the
interrupt. This

UNIVAC III UTMOST

REVISION: SECTION:
v
DATE: PAGE:
July 1, 1962 66

determination is made by testing the condition
of the specific indicators related to the class
of interrupt. During this time the specific in-
dicators are probed as above. When it is known,
appropriate action may then be taken, and the
specific indicators reset. The reset instruction
(RI0O, RPE or RC) will automatically reset the
Interrupt Mode Indicator for the class of inter-
rupt involved. Interrupts of all classes will then
be inhibited, provided all the specific indicators
are reset, until the completion of the instruction
following the reset instruction,

m After the execution of the J instruction, and
before the next instruction is accessed, the
specific indicators for the class of interrupt
just effective, as well as those of a lower class,
are again automatically tested for a set condi-
tion. If any is found set, the appropriate Inter-
rupt Mode Indicator is set and the Control Coun-
ter, containing the return address of the pre-
vious interrupt, is stored in the fixed location
associated with the class of interrupt of higher
priority for which a specific indicator was found
set. Control is then transferred to the location
associated with the class of interrupt.

m During the course of operation within an Inter-
rupt Mode, that is, an Interrupt Mode Indicator
is set, occurrence of an interrupt of a higher
priority is always possible and cannot be pre-
vented. Interrupts for all classes will be in-
hibited until the instruction following the in-
terrupt reset instruction has been executed.

PROCESSOR ERROR INTERRUPT

At the completion of every instruction, regardless
of whether any Mode Indicator is set, the Pro-
cessor Error Indicators are probed for a set condi-
tion. If any is set, and the Processor Error Inter-
rupt Mode Indicator (PEIMI) is not set, a Processor
Error Interrupt will always result immediately
without regard to the condition of the lower pri-
ority Interrupt Mode Indicators. The PEIM| will be
set, the Control Counter reading stored in memory
location 0016 and control transferred to memory
location 0017. If any other Processor Error
Indicator is set when the PEIMI is set, the
.Central Processor will stop. The Control
Counter will contain the address plus one of
the instructions which caused the error.

During the time the PEIMI is set, the setting of
specific indicators for the same or lower priority
interrupts will not be inhibited. Their action,
though, will not be effective until the instruction
following the instruction resetting the specific
Processor Error Indicator has been executed.

If a Processor Error Indicator is set during the
time when either (or both) of the lower priority
Interrupt Mode Indicators is set, a Processor
Interrupt will occur.

The conditions causing a Processor Interrupt and
the special indicator addresses in bit positions
1-10 of the Test (TPE) and Reset (RPE) instruc-
tions are listed below.

Memory Address Check

Incorrect memory addressing of internal and ex-
ternal instructions or operands by the Central Pro-
cessor (accessed in current instruction cycle) or
channel synchronizer (accessed during previous
instruction cycle). If the error occurs during a
synchronizer access a specific Input-Output Inter-
rupt is set after the Processor Error Interrupt Mode
Indicator has been reset.

Depending on when the error occurred, the follow-
ing designation in bit position 1-4 will test or
reset this indicator:

0001
0010

During access of an input-output data 0011to1111
word or function specification by
the channel addresses specified
(See descriptions of RPE and TPE.)

During access of an internal instruction

During access of an internal operand

Modulo 3 Check On Instruction

The instruction or function specification failed the
modulo 3 check when accessed from memory. This
error is detected after the instruction execution
begins.,

The indicator is designated by a 1-bit in bit posi-
tion 5 of the TPE and RPE instructions.

Modulo 3 Check On Operand

The operand or input-output data word failed the
modulo 3 check when transferred to or from memory.

UNIVAC IIT UTMOST

REVISION: SECTION:
\%
DATE: PAGE:
July 1, 1962 67

The instruction will be partially executed before
the error is detected. An ending pulse is then
generated and an interrupt will occur. This error
cannot occur on instructions in which a transfer
of control is involved.

The indicator is designated by a 1-bit in bit posi-
tion 6 of the TPE and RPE instructions.

Adder Error Check

The results of certain instructions failed the mod-
ulo 3 check. The check bits of the operand are
used to determine the check bits of the result
which, in turn, are compared with check bits gener-
ated from the bits of the result. If the two pair of
check bits are not equal, an error will result. The
instructions checked are all Add and Subtracts,
Load and Compare, and Compare Absolute.

The indicator is designated by a 1-bit in bit posi-
tion 7 of the TPE and RPE instructions.

CONTINGENCY INTERRUPT

The Contingency Interrupt Indicators are probed
on the completion of the execution of an internal
instruction when an ending pulse is produced. If
any is set and neither the Processor Error Inter-
rupt Mode Indicator nor Contingency Interrupt Mode
Indicator (CIMI) is set, a Contingency Interrupt
will result without regard to the state of the Input-
Output Interrupt Mode Indicator. The CIMI will be
set, the Control Counter reading stored in memory
location 0018 and control transferred to memory
location 0019.

Any specific indicators for the same or lower
priority set subsequent to the setting of the CIMI
and prior to it being reset, will not effect another
interrupt, on this or a lower class. If a Processor
Error Indicator is set during this time a Processor
Error Interrupt will occur.

The conditions resulting in a Contingency Inter-
rupt and the specific indicator addresses in bit
positions 1-10 of the test (TC) and reset (RC)
instructions are listed below.

Overflow

A carry beyond the most significant bit or digit
was detected in an add or subtract operation, or in
a division, when the absolute magnitude of the

divisor in memory is less than that of the most
significant half of the dividend in ARS8 or it is
equal to 0.

This indicator will also be set if power to the
Program Clock has been dropped at any time prior
to the execution of a Load Time instruction with-
out subsequently resetting the clock.

The indicator is designated by a 1—bit in bit posi-
tion 1 of the TC and RC instructions.

Invalid Op Code

Attempted execution of an instruction whose oper-
ation code is not part of the repertoire immediately
producing an ending pulse. No registers or memory
locations will be affected by this condition.

The indicator is designated by a 1-bit in bit posi-
tion 2 of the TC and RC instructions.

Console Typewriter

The release of a character key on the Console
Typewriter Keyboard or a character printed by the
Console Typewriter will set the indicator.

The indicator is designated by a 1-bit in bit posi-
tion 3 of the TC and RC instructions.

Keyboard Request

This indicator will be set when the Keyboard Re-
quest Button is depressed.

The indicator is designated by a 1-bit in bit posi-
tion 4 of the TC and RC instructions.

Keyboard Release

This indicator will be set when the Keyboard Re-
lease Button is depressed.

The indicator is designated by a 1-bit in bit posi-
tion 5 of the TC and RC instructions.

Contingency Stop

Depression of the Stop Button will result in this
indicator being set.

The indicator is designated by a 1-bit in bit posi-
tion 6 of the TC and RC instructions.

UNIVAC IIT UTMOST

REVISION: SECTION:
v
DATE: PAGE:
July 1, 1962 68

INPUT-OUTPUT INTERRUPT

The Input-Output Interrupt Indicators for all chan-
nels are probed by an ending pulse produced by
the completion of an internal operation. If any is
set, and the Processor Error Interrupt Mode In-
dicator, Contingency Interrupt Mode Indicator and
Inhibit Input-Output Indicator are reset an Input-
Output Interrupt will occur. The Input-Output In-
terrupt Mode Indicator will be set, the Control
Counter reading stored in memory location 0020
and control transferred to memory location 0021.

Since this is the lowest priority interrupt any
specific indicators of a higher priority interrupt
set while the Input-Output Interrupt Mode Indicator
is set will immediately result in another interrupt,
of the higher class.

The subsequent setting of specific indicators for
other channels will not be affected during the time
that the Input-Output Interrupt Mode Indicator is set.

Input-Output Interrupt will occur as a result of the
following conditions:

m Successful completion or initiation of an input-
output operation if called for in the function
specification.

m Occurrence of an error or some condition requir-
ing manual instruction when the synchronizer
attempts to perform an operation.

See the appropriate bulletin forthe specific causes
of interrupt and indicators effected.

UNIVAC III UTMOST

REVISION: SECTION:

DATE:

July 1, 1962 69

PAGE:

The following shift instructions

Decimal Shift Right DSR
Decimal Shift Left DSL
Alphabetic Shift Right ASR
Alphabetic Shift Left ASL

will cause a stall when executed if more than
two AR's are specified.

The following instructions

Decimal Add Higher DAL
Decimal Subtract Higher 1 DSH
Binary Add Higher TAH
Binary Subtract Higher BSH

will cause a stall when executed, if one or
three AR's are specified.

8. SPECIAL CONSIDERATIONS

The conversion instructions

Load A Converting to Decimal LAD

Store A Converting to Alphanumeric SAA

will cause a stall when executed if one, three
or four AR's are specified.

Reference to arithmetic register zero can
result in a processor error. It should not be
used.

Multiplication involving zero generates as a
result a properly signed zero.

A store memory address counter instruction
specifying the control counter will store the
current value rather than the current value
plus one.

UNIVAC IIT UTMOST

REVISION: SECTION:
\Y%
DATE: PAGE:
July 1, 1962 70

TIMING OF MULTIPLICATION
Terminology

The multiplier is the factor in Arithmetic Reg-
ister 8. Each digit is a number from O through 9,
tepresented as n. Each digit has a position with-
in the multiplier, from 1 through 6, represented as
a subscript 7 to the number n. The value of the
number varies according to the value of the digit
on its right, except for the number in position 1,
and this digit on the right is represented by the
subscript i—1. The final value of the number for
timing of multiplication purposes is represented
by n'. The following formulae state the method
of computing n’, and the following table gives the
number of 4-—microsecond cycles required for
multiplication according to the value of n’.

Fori=1,n";=ny.

Fori>1,n;=n, ifn';_y <5.

Fori>1,n';=n+lifn';_; > 5 butifn+ 1= 10,
n'i=0,andn'i+1=ni+l+1.

The n-, is a constructive digit position created to

allow for the “righthand” value ofn'6.
n'7=0ifn"g<5

n'y=lifn'g25

7
Execution time in 4 g cycles = 5 +i§1Ti where T;
is found in the following table: ’

I
0

1,2
3, 4
5
6,7
8,9

Nwawmml—I

Thus, for example, if the multiplier is 945270, the
execution time is determined as follows:

!

i ﬂi ni T
1 0 0 2
2 7 7 3
3 2 3 3
4 5 5 4
5 4 5 4
6 9 0 1
7 0 1 2

2 Ti = 19

Multiplication time = 5 + 19 = 24 cycles.

Note: If n'i > 5, the ten’s complement of the

multiplicand is used.

UNIVAC IIT UTMOST

REVISION: SECTION:
A
DATE: PAGE:
July 1, 1962 71

TIMING OF DIVISION
Terminology

Timing of division is computed in a fashion anal-
ogous to timing of multiplication. Each digit is a
number from 0 through 9, represented as n, but
the time for execution of division depends entirely
upon the digits of the quotient. Each digit has a
position within the quotient, from 1 through 6,
represented as a subscript i to the number n; but
the value of the number varies according to the
value of the digit on its left, except for the
number in position 6. The digit on the left is rep-
resented by the subscript 1 + 1. The final value
of the number for timing of division purposes is
represented by n. The following formulae state
the method of computing n, and the following
table gives the number of 4 ¢ cycles required for
division according to the value of n .

Fori=6,1n';

n

ﬂ6.
Fori<6,n’,=nIF n';, 1is ODD.
+

Fori<6,ni:9—ni1Fni+1isEVEIV.

6
Execution time in 4 p cycles = 5+ X T,, where
T, is found in the following table: i=1
nll T
0,1 2
2,3 3
4,5 4
6,7,8,9 5

Thus, for example, if the quotient is 806491, the
execution time is determined as follows:

| ni n i T
6 8 8]
5 0 9 5
4 6 6 3
3 4 H] 4
2 9 9 5
1 1 1 2

3T = 26

Division Time = 5 + 26 = 31 cycles

MODULO 3 CHECKING IN UNIVAC IIl SYSTEM
The Parity Bits

The UNIVAC III fixed word consists of twenty-
seven bits, two of which are parity bits. These
parity bits can be used for two purposes:

1. Checking the transmission of the word to
determine if any bits were lost, picked up,
or transposed as a result of this process.

2. Checking the result of arithmetic operations
without the necessity for programmed checks
or duplicated circuitry.

Casting Out of Elevens ’

The casting out of elevens used to check arith-
metic is analogous to modulo
arithmetic.

3 congruence

The modulo 11 check value for any number is its
remainder when it is divided by 11. As a result
of this division, the greatest number of 11’s are
“cast out” (the quotient) leaving a value less
than 11 to be used as the check value. We detet-
mine the modulo 11 check value for the following
numbers thus:
2762
251 3438 312

11} 2762 1 = check value 11)3438 6 = check
value

Another way the check value may be determined
is to subtract the sum of the even numbered
digits from the sum of the odd numbered digits.*
The units digit is considered odd; the tens digit,
even and so on, to the left.

Sum of Odd Sum of Even
Numbered Digits Numbered Digits Check Value
2162 2+7=9 6+2=8 §-8=1
3438 8+4=12 3+3=6 12-6=6

We may determine whether the sum of two quantities
is correct by adding the modulo 11 check values
of the operands and comparing it to the check
value of the sum..

Check Value

2762 1
+3438, 6
6200 7

*
If the sum of the even numbered digits is greater than the

sum of the odd numbered digits, a multiple of 11 is added
to the latter. When the difference is obtained, the largest
mualtiple of 11 is subtracted.

UNIVAC IIT UTMOST

REVISION: SECTION:
v
DATE: PAGE:
July 1, 1962 72

From the above computation it can be seen that
the sum arrived at is correct. The above relation-
ship is always valid no matter how many digits
there are in the operands or how many operands
there are.

The same theory can also be used for other arith-
metic processes. In the case of multiplication,
for example, instead of adding the check values
of the two operands, we would multiply them and
compare it to the check value of the product.
They should be equal when the multiplication is
corréct.

When numbers are copied, digits may often be
dropped or inverted. For example, if we were to
read the number 2762 and record it, it might be
recorded as 2726. Without the original number
with which to compare the copy we would never
know that the unit and ten digits were transposed.
However, if we determine a modulo 11 check
value and carry it with the number, any trans-
position of the original number as 2726 would
indicate an error in “transmission.”

check check
value value
1 {2762 9

therefore transmission

\2726 z check value incorrect,
incorrect.

In conclusion, the check value determined by
congruence arithmetic, in the above case modulo
11, can be used to check arithmetic functions
and transcriptions of numbers.

Modulo 3 Checking

Using the principles outlined above, we may
examine a binary number and develop a method of
checking its transmission and arithmetic functions.

Two bits are used in the UNIVAC III System for
checking. These two bits may represent values:
00, 01, 10 and 11, or 0, 1, 2, and 3. Since a
modulo 3 check is used, the value 3(11) is not
possible.

Let us determine the parity or check value,
modulo 3, for the following binary configuration:

111101

The decimal value is 61. Since a modulo 3 check
value is desired, the quantity is divided by 3,
and its remainder becomes its modulo 3 check
value.

20
3) 61 1 = check value
60 01 = binary check value
1

The modulo 3 check value may also be determined
by subtracting the total number of the even num-
bered bits from the total number of the odd num-
bered bits.

Number of Odd Number of Even
Numbered Bits Numbered Bits

3 - 2 =1

As a result of this subtraction, the parity would
be 01.

The binary configuration would carry its modulo 3
check value and would appear as:

Modulo 3
Parity Value
01 111101

In any transmission, a bit which is lost or trans-
posed, would be revealed by the modulo 3 check.

Just as the modulo 11 check value was used to
check the results of a decimal addition, so the
modulo 3 parity bits may also be used to check a
binary addition. For example:

Modulo 3
Parity Value
01 011001 = 25
+ 10 001110 =14
11 100111 =39
or
00

UNIVAC IIT UTMOST

REVISION: SECTION:
\
DATE: PAGE:
July 1, 1962 73

Advantages of Modulo 3 Checking

1.

RESU

. The check bits can be

The loss of an odd number of bits will be
detected.

. The loss of an even number of non-con-

secutive bits will be detected.

“crossfooted” in
addition and subtraction giving a reliable
check through the adder.

LTS OF DECIMAL ARITHMETIC WITH

NON-NUMERIC OPERANDS

A pro

cedure follows for determining the results

of decimal add which involves non-numerics (sum

with 1

Al

A2,

A3.

A4,

A5.

ike signs, difference with unlike signs).

. Calculate the results of a binary add,
retaining carry information from bits 4 to
5,81t09, 12 to 13, 16 to 17, 20 to 21 and
24 to overflow.

Group the result according to decimal for-
mat (1-4, 5-8,...21-24)..

Note each 4-bit group with a carry from
its most significant bit of the same group.

Convert the 4-bit
the following table:

result according to

Decimal Character

4-bit
Group No Carry Carry

0000 a 0101 2 0011 0
0001b | 01103 0100 1
0010c * Oll14 0101 2
00110 | 0000a 0110 3
01001 - 000lb 0111 4
01012 00l0¢ 1000 5
01103 00110 1001 6
0111 4 01001 1010 7
1000 5 0101 2 1011 8
1001 6 01103 11009
1010 7 0111 4 1101 f
1011 8 1000 5 1110 ¢
1100 9 1001 6 i 1111 h
1101 f 1010 7 1000 5
1110 ¢ 1011 8 1001 6
1111 h 11009 1010 7

The result is the final result of an add.
Overflow will cause a Contingency In-
terrupt.

The following procedure is to be followed for
subtract (add unlike signs, subtract like signs):

S1.

S2.
S3.

S4.

S5.

Complement the contents of ARi, and
binary add 00...001 to (m’). Use the results
as the contents of ARi and m’ for the next
step.

Follow add steps Al through A4.

If overflow results, the answer has been
obtained, and will be negative.

If no overflow results, the answer will be
positive and must be recomplemented.
Repeat subtract step 1 and add steps 1-2
with the contents of m' assumed to be
binary 0’s.

This result is the answer.

The following example will illustrate:

Decimaladd +f37b28 =(AI’?i)
-alf36h =(m)
Step S1. (ARi) =0 1101 0110 1010 0001 0101 1011
Complement (ARi) =0 0010 1001 0101 1110 1010 0100
(m") =1 0000 0100 1101 0110 1001 1111
Binary add 1 0 0000 0000 0000 0000 0000 0001
1 0000 6100 1101 0110 1010 0000
Step S2. A1. 0010 1001 0101 1110 1010 0100
Binary add. 0000 0100 1101 0110 1010 0000
Step S2. A2. 0010 1110 0011 0101 0100 0100
StepS2. A3. carry 0 0 1 1 1 0
Step S2. A4, 0111 1011 0110 1000 0111 0001
Step S3. No carry, therefore S4 applies
Step S4. (ARi) =0 0111 1011 0110 1000 0111 0001
(m'y =0 0000 0000 0000 0000 0000 0000
Complement (ARi) = 1000 0100 1001 0111 1000 1110
Addto (m") = 0000 0000 0000 0000 0000 0001
Step S4. Al. A2. 1000 0100 1001 0111 1000 1111
Step S5. (ARi) =+51645h.

UNIVAC IIT UTMOST

REVISION:

SECTION:

Notes

DATE:

July 1, 1962

PAGE:

REVISION:

SECTION:

VI

UNIVAC IIT UTMOST

DATE:

July 1, 1962

PAGE:

Communications with the executive system (BOSS II) will be specified later.

UNIVAC IIT UTMOST

REVISION:

SECTION:

Notes

DATE:

July 1, 1962

PAGE:

UNIVAC III UTMOST

REVISION:

SECTION:

VII

DATE:

July 1, 1962

PAGE:

Octal

oP
Code

61
16
43
42
66
24
26
44
25
27
54
55
57
56
20
22
31
30
21
23
41
40
77

A
Field

00

00

14
16

00

Instruction is type 0 unless an A value is listed

Al
AND
ASL
ASR
AT
BA
BAH
BRR
BS
BSH

CM
CPA
CPZ
DA
DAH
DD
DM
DS
DSH
DSL
DSR
HJ

MNEMONIC INSTRUCTIONS

Instructions' Function

Allow Interrupt

AND

Alphabetic Shift Left
Alphabetic Shift Right
Activate Typewriter
Binary Add

Binary Add Higher
Binary Rotate Right
Binary Subtract

Binary Subtract Higher
Compare

Compare Magnitude
Compare Product with A
Compare Product with Zero
Decimal Add

Decimal Add Higher
Decimal Divide

Decimal Multiply
Decimal Subtract
Decimal Subtract Higher
Decimal Shift Left
Decimal Shift Right

Halt and Jump

f
=
=

NN N M N DN N DN A NN DN S W NN

17-36
12-31

N AW NN

UNIVAC IIT UTMOST

REVISION:

SECTION:

Vil

DATE:

July 1, 1962

PAGE:

Octal

oP
Code

A
Field

52
53
06
60
60
60
60
60
60
12
72
73
13
70
14
70
70
51
00
15
62
65
76
65
65
65
61
01

06
07
00
05

04
03

00
02

01
04

IX
IXC

JE
JG
JIP

LRC
LWC
LX
NOP
OR
Pl
RC
RCK
RIO
RPE
RR
RS
RT

Instructions' Function

Increment indeX

Increment indeX and Compare
Jump

Jump if Equal

Jump if Greater

Jump if Interrupt Prevented
Jump if Less

Jump if Positive

Jump if Sense indicator set
Load A

Load A converting to Decimal
Load A Edited

Load A Negatively

Load Channel

Load Field

Load Read Channel

Load Write Channel

Load irdeX

No OPeration

OR

Prevent Interrupt

Reset Contingency

Read ClocK

Reset Input-Output

Reset Processor Error
Reset Read

Reset Sense

Read Typewriter character

Timin

Do [SR o] oo N Do] [N I W wW W w [\V] [SV] ~3 [\

]

UNIVAC IIT UTMOST

REVISION:

SECTION:

ViI

DATE:

PAGE:

July 1, 1962

Octal

oP A
Code Field Instructions' Function

65 03 RW Reset Write

10 SA Store A

71 SAA Store A in Alphanumeric

11 SAN Store A Negatively

04 SC Store Channel

07 SCJ Store Channel and Jump

04 01 SL Store Location

07 01 SLJ Store Location and Jump

04 04 SRC Store Read Channel

05 04 SRT Store Read Tape control

62 SS Set Sense

05 ST Store Tape control

04 03 SwWC Store Write Channel

05 10 SWT Store Write Tape control

50 SX Store indeX

50 00 Sz Store Zero

64 02 TC Test Contingency

64 TIO Test Input-Output

64 01 TPE Test Processor Error

64 04 TR Test Read

64 03 ™ Test Write

03 00 WD Write Display

02 WT Write Typewriter character

Timin,

NONNNDMNDMDN DN W W W W W N W W W W W W N oo NN

UNIVAC III UTMOST

REVISION:

SECTION:

Notes

DATE:

July 1, 1962

PAGE:

UNIVAC

DIVISION OF SPERRY RAND CORPORATION

PRINTED IN U.S.A. U-3520

	001
	002
	003
	004
	005
	006
	007
	008
	009
	1-01
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	2-35
	2-36
	2-37
	2-38
	2-39
	2-40
	2-41
	2-42
	2-43
	2-44
	2-45
	2-46
	2-47
	2-48
	2-49
	2-50
	2-51
	2-52
	2-53
	2-54
	2-55
	2-56
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	4-01
	4-02
	5-001
	5-002
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	5-29
	5-30
	5-31
	5-32
	5-33
	5-34
	5-35
	5-36
	5-37
	5-38
	5-39
	5-40
	5-41
	5-42
	5-43
	5-44
	5-45
	5-46
	5-47
	5-48
	5-49
	5-50
	5-51
	5-52
	5-53
	5-54
	5-55
	5-56
	5-57
	5-58
	5-59
	5-60
	5-61
	5-62
	5-63
	5-64
	5-65
	5-66
	5-67
	5-68
	5-69
	5-70
	5-71
	5-72
	5-73
	5-74
	6-01
	6-02
	7-01
	7-02
	7-03
	7-04
	xBack

