
BASIC PROGRAM'M,ING

DIVISION OF SPERRY RAND CORPORATION

© '0157. SPERRY RAND CORPORATION

Preface

This manual is a basic text in programming the Univac II Data-Automation System.

It is an introduction to the foremost data processing system yet developed, and to

dynamic and advanced concepts in the field of data processing.

Study of this manual will also acquaint you with the language of the Univac II

Data Automation System, and the principles of efficient Systems Design so'that

maximum utilization of the capabilities of the Univac II Data Automation System

can be achieved.

Although intended primarily as a text for a course of instruction conducted by the

Remington Rand Univac Training Department, it is recognized that many may not

have the opportunity to attend such a formal training course. With this in mind,

each topic has been introduced with a thorough explanation followed by illu stra­

tive examples and student exercises.

This mannal is for the beginner. No prior knowledge of programming, electronics,

or data processing is necessary to its understanding. The prime requisite is a

willingness to learn coupled with diligent application.

Table

Of Contents

I INTRODUCTION

Data Processing Areas in Business .

Present Electronic Computer Applications.

Data Processing Equipment

Electronic Computer Classifications

II ELEMENTS OF THE UNIVAC DATA AUTOMATION SYSTEM

Input-Output Units

The Univac Central Computer ..

The Memory Unit ...

The Control Unit
The Arithmetic Unit

III INTRODUCTION TO CODING

Arithmetic Instructions - List A

Illustrative Example

Student Exercises

, Arithmetic Instructions - List B

The Decimal Point .

PAGE

1

2

6

9

12

17

23

26

28

3.1

32

35

37

44

47

47

50

Rule for Addition and Subtraction. 50

Rule for Multiplication. 51

Rule for Division. 51

Student Exercises. 52

The Control Unit. 53

Three Stage Cycle of Operation .. 54

Transfer of Control Instructions. 63

Illustrative Example. 67

Student Exercises . 69

Summary. .. 70

IV INTRODUCTION TO FLOW CHARTS

Illustrative Example

Student Exercises.

Summary

V MODIIFICATION OF INSTRUCTIONS

Iterative Coding
Iterative Flow Chart Symbols

Illustrative Example.

Arithmetic Instructions - List C .

Student Exercises

Function Table Look-Up
Illustrative Example

Function Table Look-Up in Flow Charts

Shift Instructions

PAGE
72 \/

78

. ...• 80

. 82

84

88

93

94

96

99

. 99

99

101

102

Student Exercises. 107

Summary. 107

VI ITEM PROCESSING 109

The Item

The Field

Representing Fields on Flow Charts ..

Illustrative Example.

Working Storage

Item Registers
Student Exercise

Field Selection Instructions .

Illustrative Example

109

109

110

111

113

11,5

121

122

124

Student Exercises. 125

Summary'. 128

VrI SUBROUTINES AND VARIABLE CONNECTORS 129

Common Subroutines. . . . 129

Illustrative Example. . 129

Variable Connectors . . .

Student Exercise

Subr outines

137

143

1-13

Summary .. 145

PAGE
VIII DETAILED DESCRIPTION OF INSTRUCTIONS 147

Transfer of Control Instructions 147

Shift Instructions . 149

Multiword Transfer Instructions. 149

Arithmetic Instructions. .. 152

Overflow. 155

Undesired Overflow

Student Exercises ..

Summary

IX INPUT - OUTPUT

162

162

163

166

Character Representation. 167

The Uniservo 169

Buffering and Backward Read 170

Tape Instructions.

Tape Instructions on Flow Charts

Sentinels 0 ••••••••

The Instruction Tape 0 • • 0 • • • • • • • • • • 0 • • • • • •

Servo Delta 0 • • •

Illustrative Example . 0 •••••• 0 •••••••

Student Exerc ise 0 • • • •

Summary

X TIMING AND EFFICIENT USE OF BUFFERS

Preselection
Illustrative Example ..

Student Exercise 0 • • • • • • • • • • • • •

Routine Timing

Timing a Straight Line Routine

172

176

176

177

177

178

186

187

188

189

189

196

196

199

Timing an Iterative Routine. 200

Timing a Branch Routine. 200

Tape Instructions. 201

Timing a Routine Involving Tape. ... 203

Graphical Representation 207

Timing a Branch Routine Involving Tape. 208

Standy Block Method • • • • • •• . 212

Student Exercise. • • • • • • • • .. 215

XI SUPERVISORY CONTROL PANEL OPERATIONS

The 10m Instruction
Conditional Transfer Breakpoints

Printing from the Supervisory Control Panel

The All Conditional Transfer Breakpoint Selector Button

Interrupted Operation.
Other Breakpoints .

Manual Alteration of Instructions in the Memory

The Fill Operation .. .

SCICR
Generating Data
Debugging Proc edure .. .

The Empty Operation .

Memory Dump

Verifying the Output
Summary of Procedures to Follow for Test Running a Routine

Sumnlary

XI I SORTING AND MERGING

Collation

Digital Sort

PAG E

216

217

217

218

219

220

221

221

221

222

222

222

223

223

224

224

225

227

228

233

Function Table Sort 236

XI I I PREPARATION AND DISPOSITION OF DATA

Keyboard to Tape Recording

Univac Unityper

Univac Verifier
Card-To-Tape Recording

Univac 80 Column Card-to-Tape Converter

Univac 90 Column Card-to-Tape Converter

Paper to Magnetic Tape Recording

Univac High..;Speed Printer.

Tape to Punched Cards

Magnetic to Paper Tape . .

241

241

241

242

243

243

246

247

247

249

251

Summary. 251

XIV SYSTEMS DESIGN

Choosing the Application

PAGE
252

252

Preparing the Program .. 253

Input Verification. .. 21:)6

Item Rearranging " ... ,.......................... 21>7

Output Preparation ... " • 258

The Process Chart .. 21>8

Time Estimation .. 264-

Computer Running Time. • . . • . . • • 264

Unityping .. 264

V'erifying .. 264

Card-to-Tape .. 264

Univac High-Speed Printer • 265

Approximate Time Estimating .. 265

Planning the Cut-Over .. 266

Future Planning. .. 267

XV OPERATIONAL ROUTINES 268

l'ape Summary. • 269

l"able Look Up • • • •. 273

Explosion '. • 276

XVI STORAGE OF INFORMATION 282

Mercury Tank 283

Magnetic Core. . . . •' . . . • • • • • 284

The Memory. • • • 286

Summary. • • • .. 287

XV I I MANIPULATION OF INFORMATION 288

Representation of Information. . . • • • • • • • • • • • . • • • . .. 288

Binary Addition. • • • • • . • • . . • • . . • .. . • • . • . • • • ••. 290

Addition of Two Numbers with Opposite Signs . . . • 290

The Arithmetic Unit. . • . . . • . . • . • • • • • • • • • . • • • . • • • • • • •• 293

Coded Binary . • • . • • • • • • • • • • • • • • • • • . • • • • • . • • • • • • • •• 294

Excess Three Arithmetic . • • • • • . . • . • 295

Student Exercises. • . . . • • 297

Addition of Two Excess Three Numbers. • • . . • 297

Student Exercises. .. 298

PAGE
Logical Building Blocks. • . • . • • • . . • • • • • 298

Logical Circuits•••..•............... ' . . . • . . • 301

Magnitude Comparator. • . . . • • . • . • . . . • 302

Half Adder. • • • • • . • • • • • • • . • . • • • • • • • • 302

Binary Adder .•..•..•..•... ' • • • . . • . 303

Equality Comparator. . • • . • • • • 304

XV I I I INSURING ACC URACY OF PROCESSING

Operator Accuracy •..••..•..••..••.............

301)

306

Rerun. . . . • • • • • . . • • • 306

Computer Accuracy. • • 306

Types of Failures. 307

Error Detection . 307

Programmed Error Detection Diagnostic Routines•••• 307

Duplicate Runs 308

Programmed Checks .•.•.....•...................... 308

Built in Checks. . . • . • • • . . . • • • • . . • 309

Built in Checks of the Univac Central Computer•.... 309

Odd Even Check. • • . . .• ...•.... . . • • . • • • 309

Duplicated Circuitry • • • . . . • • • • • . • . . 3 10

Counting Checks • • • • • . • • '" • . • . . . • • . . . • • 310

Logical Checks. • • • . • . • . • • . • . • • • • • • • . • • . • • . • 310

Input-Output Checks. • • • • • . • . • • • . . • • • • . • • . . • • • 311

chapter 1

Introduction

DATA PROCESSING AREAS IN BUSINESS

A first step in a study of electronic computers is to survey the areas of business

operations wherein a computer may become a useful managerial tool. These areas

are called data processing areas. In its day-to-day functioning a manufacturing

concern is composed of myriad channels through which money and material flow in

fulfillment of the company's obligations to its stockholders, employees, vendors,

customer and the government. From a data processing point of view, these areas
are concerned with management's attempts to record, measure and effectively con­

trol this flow. Because of its broad yet familiar activities the manufacturing com­

pany's activities will be considered. Figure 1-1 is a generalized block diagram of

a typical manufacturing company and its environment.

The most common data processing areas have been indicated on the chart. A very

brief description of each is listed below.

1
UNIVAC®II

DATA AUTOMATION SYSTEM

A TYPICAL MANUFACTURING ORGANIZATION

AND ITS DATA PROCESSING ENVIRONMENT

UNIONS

DUES REPORTS

ACCTS. PAYABLE

VENDORS

PURCHASING
•

RECEIVING

FEDERAL, STATE

AND LOCAL

GOVERNMENT

STOCKHOLDERS

TAX REPORTS STOCK TRANSFERS-DIVIDENDS

OPERATING

MANAGEME..-T

ACCTS. RECEIVAB LE

ENGINEERING
CALCULATIONS

CUSTOMERS

MARKET FORECAST

SALES
•

SHIPPING

PRODUCTION
INVENTORY ------IIiIIII..-.I MANU FACT U R ING ~_S_C_H_E_D_U_L_I_NG_
CONTROL

FIGURE 1.1

2

INVENTORY

CONTROL

MARKET FORECASTING AND SALES ANALYSIS:

To attempt to find the beginning of the movement through the channels pictured

would be to search for the beginning of a circle because of the multitudipous cross­

references and interdependencies which exist. From . the point at which planning

for the next year commences, howeverl a certain sequence does follow.

At that point the big question is, "How good will the new year be?". The answer

can be found by making a reliable sales forecast to serve as a basis upon which

all operational planning will be laid.

The past sales history is essential to such a forecast. Thus, many concerns break

down their sales as often as once per week according to the products sold, the

regions in which they were sold, the dollar values of the sale, the percentage gross

and/ or net profit obtained and other significant criteria. In addition to predicating

any immediate action which needs to be taken, such reports, if compiled over a

period of years, will yield information on the seasonal and regional fluctuations of

the sales of various products.

A further study of such a sales analysis may bring out some revealing correlation

between the concern's sales and the general business trends and cycles, customer

activities and similarly relevant factors. Such correlations are not always easy to

find; but once discovered, they offer the means of making a reliable forecast of the

sale of each product in each marketing area. An evaluation of the market forecast
will affect the budget and production levels to be maintained during the year.

PRODUCTION SCHEDULING:

The sales forecast and any adjustments to it which may be necessary as the year

progresses are the sources of the production orders. The production orders indicate

the date of completion and size of each batch of every product to be manu factured.
Referencing these orders against a bill of materials listing is then the basis of the

production scheduling operation. This listing contains the material, machines and
time required for the completion of each phase in the manufacture of the product.

Working backwards from the t«due date" it is possible to list the times at which

materials and machines must be available if the due date is to be met. Proper

planning is essential since any misscheduling of machine requirements may result

in delays and extra production expense for overtime, or idle machinery and idle
men. In addition to yielding a machine schedule, the bill of materials listing yields

the requisitions for the total raw material requirements and the time in the produc­
tion line at which they must be available.

3
UNIVAC®/1

DATA AUTOMATION SYSTEM

INVENTORY CONTROL:

From the bill of materials listing, information is also obtained for the inventory

control. As a by-product of the machine scheduling, the quantities of raw materials

needed during each manufacturing phase are also determined. These raw material

requirements are used for the publication of requisitions. In addition, they are com­

pared to the current inventory level of the material and posted to it. If the reorder

level is reached, production or purchasing orders, depending on whether the material

is processed within the company or purchased, are issued in order to replenish the

stock. Proper use of reorder levels can offer considerable savings by accurate

control of the minimum inventory level to be maintained. Accurate inventory con­

trol is essential in reducing the capital investments and storage obsolescence

costs of large inventories, or the costs of emergency reorders and delays resulting

from shortages.

ACCOUNTS PAYABLE:

The accounts payable operation IS initiated by the receipt of an invoice from the

vendor. This invoice is first checked for amounts billed against quantities received

and priced against the current price list. Then, although immediate payment of all

accurate invoices is possible, payment is usually postponed temporarily to allow

further use to be made of the available cash. Such unpaid invoices are listed on

the accounts payable ledger. Cash balances and the efficient use of any discount

privileges determine the time for selection from this ledger for payment. Checks

are produced and appropriate entries made in the vendor's account. Information

a vailable may also be extracted for such things as general ledger and property
accounting, and reports on vendor activity.

PAYROLL AND LABOR DISTRIBUTIONS:

This area is commonly the most highly mechanized data processing area in busi­

ness today. In spite of the fact that all payrolls are designed primarily to produce

paychecks, the variety in important payroll details caused by unusual or individual

labor contracts, differing local and state regulations and plant policies preclude
a complete uniformity of description. With this precautionary statement in mind,

consider payroll data processing to be divided into three parts: determination of

gross pay, computation of net pay from the gross, and labor distribution.

Determination of gross pay may be a trivial operation in the case of a salaried

4

payroll. Here gross pay is a fixed, constant amount for each pay p,eriod agreed to

in advance by the employee and employer . Usually no calculations are necessary,

and the determination of gross pay amounts to simply calling for it from the em­

ployee's record. In most cases, however, the determination of gross pay is an in­

volved process. Gross pay is more often based upon the number of hours worked in

each of several hourly rate categories (regular and overtime factor~) during the pay

period. This may be modified in many plants to include bonus or efficiency pay­

ments determined by the output of groups of workers or by a piecework schedule.

The net pay calculation involves the computation of tax deductions imposed by
state, local and federal governments and such other deductions, usually variable
in amount from one pay period to the next, as specified by union contracts and

fringe benefits or employee options. The end product of the net pay calculations

is a series of paychecks (or pay slips if payment is by cash) and various payroll

registers listing gross and net pay and the several deductions. In addition to these,

the individual earnings record must be updated for end-of-quarter and end-of-year

government tax reports.

The labor distribution phase is used by management to establish product costs and

selling prices. Gross-pay and hours-worked data for each employee, established in

the gross pay phase, are distributed to each product, account or activity he has

engaged in during the pay period. These are then summarized to produce labor

costs for each of the distributed categories.

TAX REPORTS - UNION DUES REPORTS, ETC.:

Under present labor-management practices, management assumes many of the em­

ployee's obligations to his environment. Taxes, union dues and various voluntary

deductions are withheld. The necessity arises for the firm to make reports to the

government, union dues reports to the unions, hospitalization and insurance re­

ports, etc. The information for such reports is available from the payroll process­
ing itse~f.

Year-to-date totals of gross pay, income tax withheld and FICA tax are sufficient

for the preparation of W-2 forms. Similarly a compilation from the employee files

and payroll processing results is all that is necessary in the preparation of most
other reports.

5
UNIVAC®II

DATA AUTOMATION SYSTEM

ACCOUNTS RECEIVABLE:

The accounts receivable operation commences when a shipping document is re­

ceived indicating that delivery of an order has been made. Products listed on this

document are priced and the shipment is extended to produce the invoice sent to

the customer. At the same time, the total dollar charge is posted to the customer's

records on the accounts receivable ledger.

This ledger is often scanped daily. Cash receipts and any earned discounts are

credited to it. Appropriate information is entered into the customers' credit history.

Ageing accounts are extracted, checked, their credit history examined and appropri­

ate action is taken. At the end of the month, the information present is compiled

to form monthly statements, which also may be sent to the customer.

STOCK DIVIDENDS AND TRANSFERS:

In addition to the data processing involved in the manufacturing company's obliga­

tions to supplier and customer, employees and government, some arise from its

basic obligations to the stockholders, namely, allowing them a voice in the manage­

ment and a share in the profits.

Up-to-date listings of holders are essential to the proper satisfaction of these

obligations. Consequently the holder listings must be periodically maintained to

assure that they reflect the latest results of all stock issues, cancellations and

transfers. When a dividend is declared, it is then only necessary to select the

owners as of that date from the listing and multiply the dividend rate by the number

of their shares to make the proper disbursement. Similarly a scanning of this list
is sufficient when it is necessary to print and distribute the proxy ballots for the

annual stockholders meeting. Year-to-date dividends paid and other information on

this listing may be employed in the preparation of the year-end state and federal
tax reports and of any statistical reports desired.

PRESENT ELECTRONIC COMPUTER APPLICATIONS

In the preceding section a manufacturing company's operations were discussed to

bring into focus some of the data processing areas in which electronic computers

are being considered as a more effective managerial tool. In this section specific

applications for which organizations have profitably employed computers are listed

and classified by the type of industries.

6

This list is intended to be indicative and not exhaustive due to the constantly in­

creasing number of installations and to the continuing expansion of applications at

current installations.

ADVERTISING:

Calculation of sales volume predictions based upon past sales, employing

least squares fit technique; monthly tabulation of editorial lineage by pre­

determined classifications.

AIRCRAFT MANUFACTURING:

Payroll, labor distribution, efficiency ratings; engineering and scientific prob­

lems including trajectory and matrix calculations.

CHEMICAL MANUFACTURING:

Payroll, engineering problems, central billing, inventory and production con­

trol, accounts receivable, sales statistics. solution of differential equations.

El,ECTR ICAl AND ELECTRONIC MANU FACTUR IN G:

Production control including scheduling, inventory control, preparation of

shipping documents, production scheduling and market forecast; financial con­

trol including payroll, preparation of invoices, cost and general ledger account­

ing and budget preparation.

GOVERNMENT AGENCIES:

HEADQUARTERS UNITED STATES AIR FORCE - Aircraft scheduling, budg­

eting, determination of supply requirements, calculations of projected aircraft
engine inventory for several engine types.

AIR MATERIEL COMMAND - Payroll, procurement, supply, contro'! -- fiscal
and budget.

ATOMIC ENERGY COMMISSION - Problems arising In the design and con­
struction of power and research reactors; problems in nuclear physics.

7
UNIVAC®II

DATA AUTOMATION SYSTEM

BUREAU OF CENSUS - Population statistics; seasonal business trends.

DEFENSE DEPARTMENT - Tables of phased requirements in personnel and
material for the support of operational programs.

WEATHER BUREAU - The circulation acceleration of atmosphere at different

levels computed from radiosonde data.

GENERAL INDUSTRIAL:

Payroll, cost distribution, stores accounting, market forecasting; production

control including material scheduling, inventory control and production sched­

uling; general accounting including invoicing, cost and general ledger account­

ing, and budget preparation; capital accounting; stock transfer; prediction of

the variability of product mixture based on changing components employing

regression techniques; material utilization analysis; explosion and summariza­

tion of parts and sub-assemblies for production orders.

INSURANCE COMPANIES:

Premium billing and accounting, agents' commission payments, dividend cal­

culation, policy loan accounting, actuarial computation, market analysis,

annual statement preparation, mortgage loan billing, file maintenance, agency

statistics, field auditing, policy loans, reserve valuation, payroll, check issue,

actuarial statistics.

OIL COMPANIES:

Oil payment accounting, gas payment accounting, payroll, bulk station check­

ing, sales and stock statistics, matrix calculations, calculations for optimiza­

tion of amount of end product from raw input.

PUBLIC UTILITIES:

COMMUNICATIONS - Computation of minimum cost for the transmission of

information through a nationwide network; summarization of data by over 700

classifications; computations of trend correlations.

8

LIGHT AND GAS - Billing, payroll, matrix calculations, computation of utility

rate tables.

TRANSPORTATION .. Revenue, material, vehicle accounting; payroll, person­

nel records, cost distribution, plant accounting.

PUBLISHING:

Advertising space and sales analysis; preparation of mailing list using statis­

tical sampling technique.

RAILROADS:

Freight revenue accounting, payrolt capital accounting, stock transfer, labor

distribution, I.C.C. reports.

DATA PROCESSING EQUIPMENT

In the preceding section, the general data processing areas in industry were briefly

described, and some of the applications for which computers are currently being

utilized were listed. To the beginning student of electronic data processing many

of these areas must have appeared so unrelated to each other as to warrant objec­

tions to their being lumped together as being only different aspects of a common

operation. Prior to the advent of electronic computers, management usually be­

lieved there were no common grounds between them -- that payroll and premium

billing are too different to allow their study b'y general techniques. The desire to

apply electronic computers to business problems required computer designers to

search out the fact that payroll and premium hilling were indeed susceptible to
study by a universal technique. This means that a generalized description of data

processing can be developed without the necessity of studying each individual

area of application. Figure 1-2 is a general block diagram of a data processing

system.
DATA GATHERING UNITS
FOR VARIABLE INFORMATION

MASTER DATA
FILES

DATA PROCESSOR

FIGURE 1.'2

9

PERIODIC
REPORTS
OR OTHER
PR I NTEi>
OUTPUTS

~---

UNIVAC®//

DATA AUTOMATION SYSTEM

Each of the data processing areas described above consists of the four elements

shown in Figure 1-2. A data processing system is best described by its outputs.

These are the various reports, summaries, statistics, bills, checks, invoices, etc.,

either required by management or government, or which are a necessary part of the

detailed operation of the company. The information required on these printed out­

puts and their frequency establish the general requirements for the remaining three
elements.

The inputs to the data processing system from which the output reports are to be

compiled usually consist of two types; master data that remains essentially un­

changed from one reporting cycle to the next or which changes in a known and

fixed way; and variable information which is produced by the unpredictable activi­

ties of the business. Master data is the permanent information records containing

identifying and historical data about the individual, account, item, product or

service being reported. Examples of master data are: names and addresses, account

numbers, current credits and debits, running inventories, wear-out rates, etc.

Variable information is data introduced to the data processing system reflecting

current operations. It is generated by human activity and is thus essentially un­

predictable. Examples of variable information are: the hours worked by an employee,

receipts, expenditures, sales, shipments, etc. Since the transaction producing

these variables are often physically dispersed (coming from different departments

or branch offices) some means of gathering the data for injection into the system

is required.

The data processor IS the converter of master and variable data into the output

reports. As the block diagram indicates it also posts changes, when necessary,

to the master data files. These changes are introduced to the processor through

essentially the same data gathering units which are used for the variable information.

The data processor may be a clerical staff or an electronic computer with all
gradations between these two extremes. In order to be able to produce the output
reports, the data processor must be able to

1. read documents,

:2. record documen ts and reports,

3. sort and classify data,

4. calculate,

5. make simple decisions.

The comparison of traditional data processing systems and electronic computer

systems which follows is intended to point out the similarities and differences in­
overall approach required by each type of equipment.

10

MANUAL METHODS:

The postwar growth in American business has been characterized by streamlining

factory and production methods in order to achieve high production at a lower unit

cost. Office management, howe.ver, has increased the data processing output re­

quired by this higher factory production more by simply increasing the clerical

force than by improving unit costs through cleaning up or redesigning the data

processing system. Admittedly system redesign is a difficult and involved task,

requiring a careful study of each data processing system extant so that overlapping

or useless operations may be removed.

For low volume work the human being has the considerable advantage of requiring

no translation of business records or transactions, and his methods can be changed

with relative ease. He is, however, susceptible to error especially if the work is

highly routine or if the work load is heavy; his speed of calculating, posting and

printing is slow; and for large volume work his cost is disproportionately high.

KEY DRIVEN DEVICES:

The next step in the direction of the automatic office is in improving a manual

system by adding key-driven devices. This includes such standard office equip­

ment as typewriters, adding machines, calculators and accounting machines. In

general, these devices mechanize the calculation and printing functions of the

data proce~sor. In their simplest form, these key driven devices are either a type­

writer performing the printing function only or an adding machine performing addi­

tion or subtraction functions. By appropriately combining the print and calculate

functions, and further, by building in a more elaborate control mechanism which

can govern addition and subtraction, a class 'Of calculators capable of performing

aU four arithmetic operations and the automatic printing of results has been pro­

duced and is in common use.

A further extension of the printing calculator principle to provide greater flexibili­

ty in the format of printed results has led to the typical accounting machine. A

trend of very recent origin is the connection to th~se accounting machines of 9aper

tape punches which provide a means of direct communication to other types of

calculating and computing mechanisms without the need for re-transcription of

data. These devices are members of a common language data processing system.

For moderate volumes of data involving relatively short sequences of calculations,
unit cost is low, speed and accuracy is greater than manual methods, and trained

and experienced personnel are available. Changes in procedure and forms can be

11 UNIVAC®II

DATA AUTOMATION SYSTEM

accommodated with relative ease. Machines with punched paper tape output provide

a means for further calculations to be done without the necessity for manual re-en­

try of data.

One disadvantage of key driven devices is that data translation to a machine read­

able form is necessary, with translation consisting of the entry of data into a key­

board. Another disadvantage is that the sorting and classifying of data, decision

making and the sequencing of operations must be done by human intervention.

PUNCHED CARD MACHINES:

Prior to 1953 punched card ~quipment, commonly referred to as tabulating equip­
ment, marked the apex of office auto,mation. The general plan of tabulating equip­

ment is to provide specialized machines which perform each of the five basic

elements of the requirements listed for a data processor, although in some cases a

single machine may perform several such functions. These machines are sorters,

tabulators, calculators, interpreters, collators, key punches a.nd reproducers. These

machines form a common language group. The punched card serves as a data com­

munication and storage medium.

As compared with key-punch or manual methods punched card machines have speed,'

accuracy, and low unit cost for relatively large volumes of work as well as permit­

ting variety and completeness in reports. Changes in procedure and forms may be

relatively difficult, and the scope of operations performed is limited so that ex­

ceptions must be handled manually. There is in addition the arbitrary limitation of

record size to either 80 or 90 digits or multiples of 80 or 90 digits.

ELECTRONIC COMPUTER CLASSIFICATION'S:

IN-LINE COMPUTERS:

Although the logical roots of modern electronic computers extend back over a

century, the advent of their application to office automation was in 1953. Since

then, the development of electronic data processors (or computers for short) has
proceeded in two main directions: the fC in-line" or ureal-time" computers con­
trasted with noff-line" or ICdelayed" computers. The distinction is primarily' a

matter of application rather than the computing equipment itself, since the deter­

minant of the mode in which any particular computer will be employed is strictly

12

one of economics. Considerations of economic design has led to the development

of computers intended for but not restricted to each mode, and this has often led

to the equipment itself being identified as in-line or off-line.

An in-line application is one in which transaction information reflecting current

activity is introduced into the data processor as it occurs resulting in the immediate

modification of the master data record. Thus, these master records are always up

to date. Thus modification of these master records is in effect directly tt in the line"

of the company's operations.

The basis for the in-line computer is the development of relatively high-speed

storage facilities of exceptionally large capacities capable of storing the entire

master file of data processing area. Further, this large capacity file storage must

make available to the other components of the computer its stored information at a

very rapid rate.

Once the existence of this type of storage became available, it was possible to

connect the data gathering units to the computer so that transactions could be

entered directly into the computer, which can then consult the master file informa­

with minimum delay. The calculations or other processing is done on an item-by­

item basis, that is, on demand. Through the use of a stored program principle, the

computer can sort and classify data, perform long sequences of involved calcula­

tions, and can exercise simple decisions in a completely automatic manner. Aux­

iliary units attached to the computer can be used to print final results or reports

of such calculations if desired.

An example of this type of computer is the airline reservations system. The Univac

File Computer is an example of equipment which can be applied to a variety of in­

line operations. An obvious advantage of in-line computers is that it permits the

coupling of ttpo.int of sale recording" with direct inHuiry units. Where fully current

information in readily available form on each account or item is essential, the

in-line computer offers high-speed and accuracy of operation. Another feature is

that the task of pre- sorting the batches of transaction data (which is a characteristic

of the off-line applications) is unnecessary with these so-called random access
memories.

One limitation of these applications is that the volume of transactions of a particu­

lar type must justify a special piece of equipment. However, most business applica­

tions will require that the eJectronic system perform other operations than simply

the modification of master records by the posting of transactions - such operations

as records of the posting, order issuance and summary report preparation. Hence,

this equipment must be made adaptable for off-line operations as well as in-line.

13
UNIVAC®//

DATA AUTOMATION SYSTEM

Another problem which may arise with these computers is caused by the expansion

and contraction of the master file. If an electronic device is purchased of just the

size necessary to store the current master file, difficulty arises when adding new

i terns to the file, especially when a record must be fitted to an already full sec­

tion. Contrasted to this, the deletion of items causes gaps. If a device is purchased

sufficiently large to hold all possible numbers, a great many more critical gaps may

occur in the areas of inactive and non-existent items.

In general the in-line computer is inflexible'in the numbering or identifying of data

for the items in the master file, and a further difficulty is that there are no provi­

sions for the searching of files by other than the key criterion on which the items

have been stored. For example, the master records in a stock inventory applica­

tion may be stored by the stock number key, yet an inquiry or a summarization may

be required on a selected supplier's code.

The major subject of this manual is the application of the off-line computer, al­

though many of the techniques illustrated are applicable to in-line computers.

OFF-LINE COMPUTERS

A major area of data automation interest is in the application of the off-line elec­

tronic computer. Instead of handling each transaction as it occurs (as would be the

case for the in-line computer) transactions are batched until an economical work

load is gathered. These batched transactions are then run against the master files
to produce the desired reports, documents, or posting operations. While data is

accumulating for one .aspect of an operation, another operation isbeing perform­
ed on the computer.

As contrasted with the in-line computer, the off-line computer cannot be- used

economically on a demand basis. This is primarily because the media for storing

the large volume master files of a business operation are generally magnetic tapes.
Access to information on these tapes must be accomplished in a sequential fashion

rather than in a random fashion as would be required if the computer is to be used

on demand. This is, of course, not a limitation of flexibility of the computer, but
is simply a matter of economics.

The electronic computer performs automatically all of the five basic data proces­
sing operations previously discussed. This is achieved by recording on a magnetic

tape the sequence of instructions which the computer is to follow in its role as a

data processor.

14

The instructions recognized by the computer permit it to ,perform: the reading of

documents after they have been transcribed onto a magnetic tape, the writing of

documents or reports, sorting and classifying information, calculating and exer­

cising simple decisions as required.

The off-line computer incorporates the advantages of the in-line system in per­

forming its operations at high-speed with a great degree of accuracy and at low

unit cost for high volume processing; but it eliminates one disadvantage in that

file contraction and expansion is simply a matter of the amount of magnetic tape

used (a much more economical storage medium), and its flexibility is such that

all aspects of a data processing area can be automated. The fact that a batching
operation is required for efficient use (and that completely current files are thereby

precluded) is meliorated by the speed at which operations are performed -- so that,

in general, files are more current than would be possible with any other data pro­

cessing system except an in-line computer relegated exclusively to one application.

In contrasting in-line equipment with off-line equipment, it has been implied that
existing in-line equipment is most often cc special purpose". The Univac File-Com­

puter is an example of one computer which is not U special purpose" and yet may

be used in line. The term tc general purpose" is applied to systems which can be

applied to any data processing area for which the computer is given appropriate

instructions. General purpose computers are characterized by having stored pro­

grams of alterable instructions.

ANALOGUE AND DIGITAL COMPUTERS

There are two methods of measuring quantities, and two types of computers de­

signed around the two methods. Quantities are represented with numbers or with

comparisons to the quantity to be represented. A man says a fish is 12 inches
long or indicates its length with the distance between extended palms. Computers

which count with numbers are called digital computers and those which operate

without counting, but derive their results directly from the magnitudes of electric

currents, voltages, or shaft rotations, are called analogue computers. Digital com­

puters, exclusively, are used for data processing. These systems employ an in­
dividual code for each number and for each letter of the alphabet, and often for

punctation marks, for abbreviations such as $, %, & etc., and other symbols.

15
UNIVAC®//

DATA AUTOMATION SYSTEM

COMMERCIAL AND SCIENTIFIC COMPUTERS

While the Univac II Data Automation System IS frequently employed for the solu­

tion of scientific problems, its more common use is for business applications such
as the computation of large payrolls, inventories, etc. These problems are charac­

terized by the vast quantity of input and output data. Very few calculations must

be performed to compute each individual paycheck; the problem lies in the number

of pay checks to be computed. The name tt data processing" is applied to these
problems.

Scientific problems, on the other hand, involve small amounts of information upon
which a vast number of operations must be performed. Because of this difference in
the nature of business and scientific problems, there are computers designed for
emphasis in each field ..

The Univac II Central Computer is a general purpose, digital computer used off­
line primarily for data processing applications.

16

chapter 2

Elements of the Univac

Data Automation System

To determine the elements of a data processing system, examine the steps in the
manual solution of a data processing application. Consider a company that- keeps
a record of its stock in a ledger. Each day a clerk is supplied with a sales form.

On the basis of the form the clerk brings the inventory up to date by writing a new

column in the ledger.

17 UNIVAC®//

DATA AUTOMATION" SYSTEM

INPUT~

PROCESSING~

OUTPUT~

FIGURE 2· 1

To do the processing the man goes through certain st.eps . •
READ THE FIRST

INVENTORY
STOCK NUMBER

READ THE

NEXT ONE

IS THERE A SALES
ITEM FOR IT?

YES NO

WRITE THE
INVENTORY

_-II·.~itltQUANTITY IN THE
~--~~------~ HEW COLUMN

SUBTRACT THE
SALES QUANTITY

FROM THE INVENT­
ORY QUANTITY

IS THIS THE
LAST INVENTORY
STOCK NUMBER?

.. ----------------~~NO~-~IY~E~S~~
PUT THE
LEDGER

AWAY FIGURE 2·2

18

SUBTRACT THE
Thus, the clerk must be able to perform arithmetic; SALES QUANTITY

FROM THE INVENT-

FIGURE 2·3

he must be able to make logical decisions;

FIGURE 2.4

he must be able to remember information;

READ THE FIRST
INVENTORY

STOCK NUMBER

IS THERE A SALES
ITEM FOR IT?

NO

ORY QUANTITY

IS THERE A SALES
ITEM FOR IT?

NO

WRITE THE
INVENTORY

_ .. ~ QUANT I TY I,N THE
~------~------~ NEW COLUMN

READ THE

NEXT ONE

SUBTRACT THE
SALES QUANTITY

FROM THE INVENT­
ORY QUANTITY

F I'GURE 2·5

19 UNIVAC®II

DATA AUTOMATION SYSTEM

and he must either execute the steps in the sequence shown or do something

logically equivalent to this sequence of steps.

..liliiii

THEN,

DO THIS

+
THEN

....

.... DO OR

TH IS I THIS

., ,.
THEN,

DO THIS

THEN,
DO THIS

~ ~

DO
THIS

F I'GURE '2·6

This example involves six elements.

1 Input

2 Arithmetic

3 Logical Decisions

4 Memory

5 Control

6 Output

FIRST,
DO THIS

THEN,
DO THIS

~ ~

,
THEN

OR NOW, STOP

I THIS +

Contrasted to the manual system, the Univac Data Automation System keeps the

inventory recorded on magnetic tape. Initially the tape would have been prepared

by means of the ·Univac Unityper, a modified typewriter that produces, in addition

to typewritten copy, the recorded tape.

20

S Toe K 1--..,..--r--,-......,....~---.---1 SOURCE DOCUMENT

UNITYPER

F I'GURE '2· 7

INVENTORY
TAPE

Instead of a sales form, a sales tape is produced daily, also by the Unityper. In­

stead of the clerk, the Univac Central Computer does the processing.

UNIVAC

PROCESSING
FIGURE 2·8

21 UNIVAC®//

DATA AUTOMATION SYSTEM

The inventory tape is read by means of a tape handling mechanism called a Unis~rvo.

UNISERVO

FIGURE 2.9

The sales tape is read from another Uniservo.

The clerk brought the inventory up to date by writing a new column in the ledger.

The Central Computer brings the inventory up to date by writing an updated inven­
tory tape on a third Uniservo.

In this application the Central Computer requires three Uniservos - two for reading

and one for writing. Reading and writing requirements vary from application to

application. To provide maximum flexibility, the Central Computer has access to a

bank of 16 Uniservps, any of which can be used for reading or writing.

In the manual solution, the column the clerk writes in the ledger on anyone day,

that is, the inventory output, becomes the inventory input on the next day. The

sales form continues to originate each day from outside the data processing sys­

tem.

Similarly, In the Univac System, the updated inventory tape written one day be­

comes the next day's inventory tape, while the sales tape continues to originate

each day from outside the system. Once the inventory tape has initially been uni­
typed it need never be unityped again, since it is kept up to date by the Central
Computer.

22

DATA PR CESSIN

SALES
TAPE

UNIVAC

INPUT OUTPUT UNITS

SYSTE

UNITYPER

UPDATED

SOURCE
DOCUMENT

BANK OF
UNISERVOS

I NVENTORY TAPE

FIGURE 2. 10

In many cases, input data does not come, and output data is not desired, in tape

form. The Univac Data Automation System includes several input units to convert

data from some other form to tape, and output units to convert tape data to some

other form.

INPUT UNITS

The Unityper has already been discussed as an input unit.

23
UNIVAC®//

DATA AUTOMATION SYSTEM

The Univac Card-to-Tape Converter converts data punched on cards to tape.

CARD-TO-TAPE CONVERTER

FIGURE 2.11

The lJnivac PTM converts data punched on paper tape to magnetic tape.

,

FIGURE 2.12

, • '. * '. ''t".-.
'. " "" ~, '*" ":,-

>.fI '\lJI"'iI¥~ v'~~'iI "'<i~GI. ~

•••••••••••••• »

P,APER-TO-MAGNETIC TAPE

OUTPUT UNITS

The Univac High-Speed Printer.

FIGURE 2· 13 HIGH-SPEED PRINTER

The Univac Tape-to-Card Converter.

FI'GURE 2.14 TAPE -TO- CARD CONVERTER

25 UNIVAC®II

DATA AUTOMATfON SYSTEM

The Univac MTP converts magnetic to paper tape.

FI GURE 2.15 MAGNETIC -TO-PAPER TAPE CONVERTER

KEYBOARD INPUT OUTPUT

Besides using tape, the Central Computer can also accept and produce small volume

data directly by means of a keyboard and a typewriter.

The Central Computer accepts data directly from an operator's key strokes on the

Supervisory Control Keyboard.

The Central Computer produces printed data directly on the Supervisory Control

Printer, which is a modified typewriter.

THE UNIVAC CENTRAL COMPUTER

To satisfy the requirements of an automatic data processor, the Univac Data Auto­

mation System must not only be able to accept input and produce output, but must

also incorporate the other functions of a data processor, memory, control, arithme;..

tic and logical decision.

26

FI'GURE 2.16

FIGURE 2. 17

SUPERViSORY

CONTROL PRINTER

27

UNIVAC@/I

DATA AUTOMATION SYSTEM

These functions are performed by the Central Computer of the Univac System. The

memory function is performed by the Central Computer's memory unit; the control

function, by the Central Computer's control unit; and the arithmetic and logical
decision functions, by the arithmetic unit.

THE MEMORY UNIT

In the manual system des.cribed above, all information .necessary to the processing
is made available to the clerk in some form.

1. The stock number and inveritory and sales quantities are on the ledger
page and sales form.

2. The date of the current updating is on a calendar.

3. The instructions for updating the inventory are in a procedures manual.

The above information can be classified as:

1. data,

2. constants,

3. instructions.

Simila1l'ly, in the Univac System, all necessary information is made available to the

Central Computer; the data, on an input tape; the constants and instructions, on an
instruction tape.

However, to have the information available is not sufficient for the clerk to do the

processing. While processing, the clerk must remember the information bearing on

the current processing step. Moreover, the clerk must remember the results of any

calculation done at least until he writes the results in the ledger. Similarly the

Central Computer must tCremember" the data, constants and instructions that it

reads from tape, and must "remember" the results of calculations until it writes

them on the output tape. The Central Computer tcremembers", or stores, informa­

tion in its memory unit. The memory is divided into cells. Any cell can be used to

28

store data, constants or instructions. The 63 characters used to represent informa­

tion are shown below.

i r t 1:

II , " 13

- . I :

0 .) + ,
1 A J I
2 B K S

3 C L T

4 0 M U

5 E N V

FIGURE 2· 18 6 F 0 W

CHARACTERS 7 G P X

8 H Q y

9 I R Z

, # $ %

& ¢ * =

(@ ? NOT
USED

One cell can store one "wordH
, a word being any permutation ,:>f twelve characters.

The following are examples of words.

JOHN~J~JONES

JUNE~I O~1926

0123~5678901

AOOIOOC00200

29
UNIVAC®II

DATA AUTOMATION SYSTEM

The positions of the characters in a word are named as follows.

~

, r ,

FIRST DI'GIT POSITION OR SrGN POSITION
SECOND OR MOST SIGNIFICANT DrGIT POSITION
THIRD DIGIT POSITION
FOURTH DIGIT POSITION
FIFTH DIGIT POSITION
SIXTH DIGIT POSITION
SEVENTH DIGIT POSITION
EIGHTH DIGIT POSITION
NINTH DIGIT POSITION
TENTH DIGIT POSITION
ELEVENTH DIGIT POSITION
TWELFTH OR LEAST SIGNIFICANT DIGIT POSITION

I I I I I I I' 1 1 1 1 I I
FI'GURE 2·19

If a word represents an algebraic quantity, the sign of the quantity must be in the

sign position. A plus sign is represented by a zero; a minus sign, by a minus.

FIGURE 2·20

WORD AS A SIGNED QUANTITY

The basic memory size is 2000 cells, with a 10,000 cell memory available. For the

purpose of referring to words in the memory, each cell is given a distinct address.

A word in the memory is distinguished from all other words in the memory by the

address of the cell in which it is stored. The cells are addressed consecutively

from 0000 to 1999. For the 10,000 cell memory the enumeration is continued to 9999.

30

Once a word has been transferred to a cell, it remains in that cell until another

word is transferred to take its place.

Figure 2-21 is a stylized version of the memory unit storing instructions, data and

constants.

FI'GURE '2-2 t

THE CONTROL UNIT

Tlie code for an instruction is represented in SiX characters. Consequently, two

instructions, called an instruction pair, are represented in one word.

FIGURE 2-22

PAIR

LEFT HAND
INSTRUCT I ON

(I I 1 I
WORD

The function of the control unit is to select, in the proper sequence, each instruc­

tion in the memory, interpret it and execute it. Instructions are selected in pairs,

one word, at a time. The left hand instruction (LHI) is executed, and then the right

hand instruction (RHI). Thus, the control unit operates on a three stage cycle.

1. Select an instruction pair from the memory.

2. Execute the LHI.

3. Execute the RHI.

The selection of instruction pairs is performed in a sequential manner. That is, if

the instruction pair just executed is in cell 0019, the next pair to be executed is

in cell 0020.

31
UNIVAC®/1

DATA AUTOMATION SYSTEM

Initially the control unit begins the sequential execution of instruction pairs with

the pair in cell 0000. Thus, to have instructions executed in sequence, it is only

necessary to represent the first instruction in the LHI of the word in cell 0000;

the second in the RHI of the word in cell 0000; the third in the LBI of cell 0001;

and so on.

CONTROL

FI'GURE 2·23

THE ARITHMETIC UNIT

LIFT HAND
I .. TRUCTION

RIGHT HAND
I "STRUCT I ON

INSTRUCT I ON
INSTRUCTION
INSTRUCTION
INSTRUCTION
INSTRUCTION
INSTRUCTION

The arithmetic unit has characteristics In common with a desk calculator in that

it contains an adder to produce the sum or difference of two words, a multiplier

the product, and a divider to produce their quotient. In addition, to enable the

Central Computer to make logical decisions, the arithmetic unit contains a com­

parator, which inspects two words to determine their equality or relative magnitude.

To operate on a word in the memory, the Central Computer must transfer the word

to the arithmetic unit. To provide storage for such words, the arithmetic unit con­

tains four registers named A, X, Land F. The arithmetic registers are identical

to memory cells except that they are auxiliary to the memory. The registers serve

the arithmetic unit in the same way as dials serve a calculator; each register stor­
ing either a word to be operated on or the result of an operation.

Figure 2-24 is a stylized version of a portion of the arithmetic unit.

ARITHMETIC
UNIT

FIGURE 2·24

FROM
MEMORY

TO THE
q...--~I----4+-----40--"" MEMORY

SI6UL
_-.. TO

COHROL
UKIT

The memory, control and arithmetic units and their interrelations are shown here:

(The 60 word registers I and 0, used for input and output and the multiword regis­

ters Wand Z will be described in detail in a later chapter).

32

chapter 3

Introduction to Coding

The preparation of a problem for its solution by The Univac Data Automation Sys­

tem is called programming. Programming is done in three steps.

1. Process Charting - The layout of the data processing system in terms of

input, output and processing.

2. Logical Analysis - The analysis of the processing into a sequence of
tc small" logical steps.

3. Coding - The translation of the logical analysis into instructions.

PROCESS CHARTING

Figure 3-1 is a process chart.

In this manual all problems requiring logical analysis and coding are given in dis­

cursive form. All the problems specify three things - input, processing and output
and could be put in process chart form which is the usual basis for analysis and cod­

ing.

35
UNIVAC®//

DATA AUTOMATION SYSTEM

PROCESS CHART

FIGURE 3· 1

CODING

L

UP DATE ON
HAND AMOUNT

~ INPUT

...- PROCESSI NG

~OUTPUT

Computers usually perform a function in a series of operations. Each operation is

executed under the influence of an instruction. An instruction specifies at least

two things.

1. the operation to be performed.
2. the data to be operated on.

The data is usually specified in terms of the storage in which the data is to be

found. For example, the data might be specified in terms of the address of the cell
in which it is stored.

A computer might perform the function of adding two quantities together and record­

ing the sum in three operations.

1. Select one quantity.

2. Add the second quantity to the first.

3. Record the sum.

36

If one quantity is in cell 1880; the other, in 1881; and if the sum is to be stored in
cell 1882; the instructions to cause the computer to do the above operations might be:

1. BRING 1880
2. ADD 1881

3. CLEAR 1882

where BRING, ADD and CLEAR are code for the operations to be done; and 1880,

1881 and 1882, the addresses of the cells in which the data is stored.

In the central computer of the lJnivac Data Automation System an instruction con­

sists of six characters, named as follows.

FIRST SECOND THIRD FOURTH FIFTH

I.NSTRUCTION DIGITS
FIGURE 3.'2

SIXTH

The first and second instruction digits indicate what operation is to be performed;

the third through sixth digits, the address of the word affected by the operation.

~ !
I

AT lH IS

~
~ ____________ ~ ____________ ~;7

WHAT TO DO .. TO •••• THE WORD ADDRESS
FIGURE 3.3

The instruction

.501880

tells the central computer to perform the operation indicated by n50" on the word

in cell 1880.

ARITHMETIC INSTRUCTIONS - LIST A

An «f m" is used to symbolized the third through sixth instruction digits. Paren­
theses are used to symbolize C C the contents of". The symbol

(m)

37
UNIVAC®II

DATA AUTOMA liON SYSTEM

means nthe contents of cell m". An tt r" IS used to symbolize nregister". The

symbol

rA

means Cf register A". An arrow is used to symbolize n is (are) transferred to". The

symbol

(m) A

means n(m) are transferred to rA".

To process data, the computer must read the data from tape and store it in the

memory. There are ins~ructions that, when executed, do the reading. These lfi­

structions will not be discussed at this time. Instead, reading data will be in­
dicated by the words, "Read Data".

INSTRUCTION OPERATION MNEMONIC

BOrn (m)--......rA, rX Bring

Transfer (m) to rA and rX, or bring (m) to rA and rX.

INSTRUCTION OPERATION MNEMONIC

COm (rA) m; O--lll--rA Clear

Transfer (rA) to m. Transfer a word of zeros to rA, or clear rA.

One of the possible uses of these instructions is to transfer a word from one cell

to another. If the word in cell 1880 is to be transferred to cell 1881, the sequence

of instructions might be

B01880 C01881

INSTRlJCTION OPERATION MNEMONIC

HOm (rA) Ii m Hold

Transfer (rA) to m.

The mnemonIC IS to hold (rA) after the transfer to memory. The HOm instruction

differs from the COm instruction only in that (rA) remains unchanged.

38

1881

rA

rX

B o 1 8

1011\21311115161 7181 9101"

/012131 11 IsI617Its\9\011\2\

FI GURE 3-4

INSTRUCTION

10m

8
1880

o 1881

roI3"/ 11\5\6\7\8\9\ 0 \1 \2 \31 rA

\ 0 11115\617\8191 0 II 12\3 111 \ rX

8 8

1 ••••••••••••• 111 •••• 1.'.' 0 I 0 I 0 I 0 I 0 \ 0 \ 0 I 0 \ 0 \ 0 \ 0 /0/

10\1/2/3\11\5\6\7\8\9\0\11

OPERATION

(rX)~m

Transfer (rX) to m.

1

1880

1881

rA

rX

One of the possible uses of these instructions is to duplicate the contents of a

certain cell in several other cells. If the contents of cell 1880 are to be duplicated

in cells 1881, 1882 and 1883, the instructions might be

801880 H01881

101882 C01883

or: B01880 101881
101882 101883

or: 601880 H01881
H01882 H01883

etc.

INSTRUCTION OPERATION MNEMONIC

AOm (m) rX; (rA) + (rX)---..rA Add

Add (rA) and (m), and transfer the sum to rA.

39 UNIVAC®II

DATA AUTOMATION SYSTEM

B 8

1880

1881

I Ai A I A I A I A/ A I A I A I A I A I A / A I

/B/BIBIBIBI BIBIBIBIBIBlal

1882 I c I c I c I c I c I c I c I c I c I c I c I c I

1883 . I DID I DID I DID / DID I DID I DID I

rX

J o 1 8 8

1880 [A I A I A I A I A I A I A I A I A I A I A I A I

1881 IA'lAIAIAIAIAIAIAIAIAIAIAI

1882 IAIAI AI AI AI AI AI AI AIAIAI A'

18e3 I DID I DID I DID I DID I DID I DID I

FIGURE 3.5

o

2

40

18BO

la(BIBIB/BIBIBIBlaIBIBIBI 1881

I c I c I c I c I c I c I c I c J c I c I c I c I 1882

I DID I DID I DID I DID I DID I DID I 1883

I E I E I EI E I E I E I E I E.I E I E I E I E I rA

IFIFIFIFIFIFIF\FIFIFIFIFI rX

H

I A I A I A I AI A I A I A I A I A I A I A I A I 18eo

IA IAIA I A IAI AI A IAIA I A IAI AI 1881

IclclClclclClclclclclclcl 1882

IDIDIDIDIDIDIDIDIDIDIDIDI t883

IAIAIAIAIAIAIAIAIAIAIAIAI rA

rX

C 0 I 1 8 I 8 I 3

I A I A I A / A I A I A I A I A I A I A I A I A I 18eo

I A I A I A I A I A I A I A I A I A I A I A I A I 1881

I A I A I A I A I A I A I A I A I A I A I A I A I 1882

•• t IAIAIAI AIAIAI AIAIAI AI A/AI le83

"""""""'.'."'1'.; 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 10 I rA

IAIAIAIAIAIAIAIAIifiTAJ!l rX

The mnemonic is to add (rA) and (m). The computer executes the AOm instruction

as follows. (m) are transferred to rX. (rA) and (rX) are added. The sum .is trans­

ferred to rA.

To add the contents of cell 1880 to the contents of cell 1881 and store the sum in

1882, the sequence of instructions might be

B

1880

1881

rA

rX

c

o 1

B01880 A01881

C01882

8 8

I 0 II I 2/31 ~ l·s16171 8/ 9/ 0 /1 /

o

ADDER

o 1 8 8 2

1880 10 II 1213111IsI6\7/8\91 0 II I

1881 lo121al~ls161718191011121

1880

1881

\ 0 \3\ ~ \S\6\7\8191 0 II 1213\ 1882

I 0 I ~ I S/6/7/8/9/ 0 /1 /2/3 I ~ I rA

\ 0 lsi 6\ 7\8\9\ 0 /1 \2\al ~ lsi rX

[A I 0 I 1 8 8 1

1881

1882

rA

rA

1882 @illIT£]IEI!D~I0_ ••••••••••••••• -

or

rA

rX I 0 1213/lIlsI6/718191 0 II 121

B01880 A01881

H01882

if it is desired to preserve the sum in rA.

41

FrGURE 3·6

UNIVAC®//

DATA AUTOMATION SYSTEM

INSTRUCTION OPERATION

XOm (rA) + (rX)---..rA

Transfer the sum of (rA) and (rX) to rAe

When executing the XOm instruction the computer ignores m.

One of the possible uses of the XOm instruction is to add the same number to a

sum more than once. Assuming that a quantity is in cell 1880, the sequence of

instructions to build up three times the quantity might be

B01880 XOOOOO

XOOOOO

I BID I 1 1 8 1 8 I 0 I

1880

rA x
rX

ADDER

x I 0\ 0 \ 0 \ 0 o

FLGURE 3·7

42

o

101112131415161711J1910111

101213 /4/516171819101112/

10 1 0 1 0 II 1210 101 0 I 0 II 1210·1

o o o

IA~O

rA

rX

rA

rX

o

101010 II 1210101010 II 1210 1 1880

INSTRUCTION OPERATION MNEMONIC

SOm -(m)~rX; (rA) + (rX)-.....rA Subtract

Subtract (m) from (rA). Transfer the difference to rAe

The mnemonic is to subtract (m) from (rA). The computer executes the SOm in­

struction as follows. Minus the (m) are transferred to rX. (rA) and (rX) are added.
The sum is transferred to rA:

1880

rA

rX I A I B II 12131 q Ie I D II 121 31 q I

ADDER

s o 1 I 81 8 o

FIGURE 3.8

loin I 0 1010 10/0/0/0/1/ S /0 I

SIGN
CHANGER

1880

rA

rX

If the contents of a cell are negative, minus the contents would be positive.

INSTR UCTION OPERATION

50m (m)-......SCP

Print (m) on the Supervisory Control Printer (SCP).

1880

5 o 1 8 8 o

ALP H A X X BRA V 0

FI'GURE 3.9

43
UNIVAC®/1

DATA AUTOMATION SYSTEM

INSTRUCTION OPERATION

90m Stop

Stop operation

In executing the 90m instruction, the computer ignores m.

ILLUSTRA TIVE EXAMPLE:

Reading the data stores the ON HAND quantity of a commodity in cell 1880, the

ON ORDER quantity in cell 1881, and the EXPECTED REQUIREMENTS for the

next 60 days in cell 1882. Print (on hand) + (on order) - (required). (Data will

frequently be stored in memory starting at cell 1880 because of programming con­
venience. Reasons for this will be described in a later chapter.)

LOGICAL ANALYSIS

1. Read the data.
2. Add the on order to the on hand.
3. Subtract the required from the sum.
4. Print the difference.

5. Stop.

CODING

0000 READ } Read the data

DATA

0001 B01880 } Add the on order to the on hand
A01881

0002 S01882 Subtract the required from the sum

C01883 }
0003 501883 Print the difference

900000 Stop

The following is a description of the thinking that might have accompanied this

coding. (The next new material begins on page 46.)

Since the computer executes instruction pairs by starting with the pair in cell 0000

44

and moving sequentially through the instruction pairs following, the instruction

pairs should be stored in logical sequence, starting in cell 0000. Furthermore,

since the computer executes the LHI of an instruction pair before the RHl, the

first instruction of a pair to be executed should be coded as the LHI.

The .logical analysis shows that the first st~p is to read the data. This step is
shown by writing HRead Data" in cell 0000.

The next 'step in the analysis is to add the on order quantity to the on hand quantity.

The computer will add two quantities if it is given an AOm instruction. But the

AOm instruction adds those quantities stored in rA and m. The on hand and on order

quantities are in cells 1880 and 1881. Before the quantities can be added together
one must be stored in rA. To store a quantity in rA, the BOrn instruction can be

used. To store the on hand quantity in rA the LHI in cell 0001 should be:

B01880

At the completion of the B01880 instruction the on hand quantity will be in rA. To

add the on order quantity to (rA), the instruction needed is

A01881

which should be the RHI of cell 0001.

After the execution of the AOm instruction the computer will have stored the sum

of the on hand and on order quantities in rA. The next step is to subtract the re­
quired quantity from the sum. This step calls for an SOm instruction where the
minuend is in rA and the subtrahend is in the memory. This situation is present,

so a S01882 instruction will subtract the required quantity from the sum of the on

hand and on order in rA.

The next step is to print the difference. The 50m instruction prints the contents

of a cell, but the difference is in rA. Therefore, the contents of rA must be stored

in a cell. This storage can be done by means of the COm instruction. The cell

specified by the COm instruction must not contain anything necessary to the execu­

tion of the remainder of the coding. Cell 1883 meets this requirement, and the in­

struction could be C01883. The execution of this instruction transfers the differ­

ence to cell 1883. Then the execution of the instruction, 501883, will print the

difference on SCP.

The last step is to stop operation. The execution of a 90m instruction does this.

45
UNIVAC®II

DATA AUTOMATION SYSTEM

It is customary to draw a line under 90m instructions to separate the coding into

related segments.

It is also customary to stagger the coding in such a manner that each instruction

appears on a separate line. In this way it is possible to identify each step in the

logical analysis with certain instructions in the coding. Coding paper has been

designed for this purpose.

MEMORY
CELL

ADDRESS CONTENTS OF THIS CELL

~ (
A ,

LHI RHI
(

A
'I (

A ,
REMARKS

0

2

3

4

5

6

7

8

9

o

F I'GURE 3· 10

The left hand side of the paper is for the address of the cell in which an instruc­

tion pair is to be stored. The least significant digits of the address are preprinted.

Two rows are allotted to each cell" the upper for the LHI, the lower for the RHI,

as indicated by the squares, one square per character. The right hand side of the

paper is for remarks.

46

STUDENT EXERCISES

1. Reading the data stores a quantity in cell 1880. Store the quantity in cells
1881 and 1882.

2. Reading the data stores two quantities in cells 1880 and 1881. Interchange the

quantities.

3. Reading the data stores five receipt"amounts in cells 1880 - 1884. Print the
\..6 ~J. l~l •

sum of the receipt amounts.

4>' Reading the data stores four quantities, A, B, C and D, in cells 1880-1883. If

E = A + B
F = A + B
G = A + B

print E, F and G.

5. Reading the data stores four quantities, A, B, C, and D, in .. cells 1880-1883.lf

R = 2A - B + 3 (C + D)

print R.

ARITHMETIC INSTRUCTIONS - LIST B

INSTRUCTION OPERATION MNEMONIC

LOrn Load

Transfer (m) to rL and rX, or load rL and rX with (m).

INSTRUCTION OPERATION

KOm (rA)--....rL; O~rA

Transfer, (rA) to rL. Transfer a word of zeros to'rA.

In executing the KOm instruction, the computer ignores m.

INSTRUCTION OPERATION MNEMONIC

10m (rL)---...m Into

Transfer (rL) to m, or transfer (rL) into m.

47
UNIVAC®//

DATA AUTOMATION SYSTEM

INSTRUCTION OPERATION MNEMONIC

POrn {m)---JIIooorX; 31 (rL) l~rF; . Precision

(rL) x {rX) rA [11 MSD], rX [11 LSD] Multiply

Multiply (rL) by (m). Transfer the 11 most significant digits of the product to ~A;

the 11 least significant digits to rX.

The execution of the POrn instruction produces a prec.ise 22 digit product. The

mnemonic is to precision multiply (rL) by (m). The computer executes the POrn

instruction as follows. (m) are· transferred .to rX. Three times the absolute value of
(rL) are transferred to· rF. (The reason for this is described in a later chapter.)

(rL) are multiplie.d by (rX). The 11 IT!0st significant digits of the product are trans­

ferred to digit positions 2-12 of rA; the 11 least significant digits, to positions

2-120f rX. The sign of the product is transferred to the· sign positions of rA and rX ..

INSTRUCTION

MOm

OPERATION

{m}-+-rX; 3 1 (rL) l---+-rF;

(rL) x {rX) rA [11 MSD rounded] ,

r X [11 LSD + . 5]

MNEMONIC

Multiply

Multiply (rL) by (m). Transfer the product to rA.

The execution of the MOm instruction produces an 11 digit rounded product in rA.

The mnemonic is to multiply (rL) by (m). The computer executes the MOm instruc­

tio~ in the same way as it executes the POrn instruction except that, after the

operation associated with the POrn instruct~on is complete, five is added to the

most significant digit of (rX), and if a carry is produced, it is added to the least

significant digit of (rA).

INSTRUCTION

NOm

OPERATION

- {m}-.-rX; 31 (rL) l rF;

(rL) x {rX)--....rA [- 11 MSD rounded],

r X [11 LSD + .5]

MNEMONIC

Negative Multiply

Multiply (rL) by minus (m). Transfer the product to rA.

The mnemonic is to negative multiply (rL) by (m). The computer executes the NOm

instruction as follows. Minus (rX) are transferred to rX. The remainder of the opera-

48

tion 1S exactly as in the execution of the MOm instruction. The following figure

shows the difference in tbe effect of the execution of the POrn, MOm, and NOm

instructions.

rL

1019101010 Ivlo 10 10 1010 11/
GIVEN

18$0

1019 10/0/0/ 0 10hlililiEJ

rA rX

P01880: 101811101010101010/0/011/ I 0 I d I 0 I 0 I ilililiIiIilITiJ
rX

M01880: lo/s/I /%/%/o~ lilD/ 0 I 0 I 0 / 0 /0 / 0 / 0 / 0 / ill
rA rX

N01880: O/e·lllolololololololo\2\ OI~\olo\olo\olo\olo\oll\

IN ALL CASES
rF

1217101010101010101010131

FIGURE 3·11

INSTRUCTION OPERATION MNEMONIC

DOm (m)~rA; Divide

(rA) • (rL)----....rA [roundedl,

rX [unrouded]

Di vide (m) by (rL). Transfer the rounded quotient to rA and the unrounded quotient

to rX. [(rL) must be larger in absolute value than (m)]

The execution of the Dam instruction produces an 11 digit rounded quotient in rA

and an 11 digit unrounded quotient in rX. The mnemonic is to divide (m) by (rL).

The computer executes the Dam instruction as follows. ~m) are transferred to rA.

(rA) are divided by (rL). The unsigned, unrounded, 12 digit quotient is transferred

to rX. Five is added to the least significant digit of (rX) and the sum is transferred

to rA. (rA) and (rX) are shifted right one digit position. The sign of the quotient is

transferred to the sign position of rA and rX.

For example:
In executing DOOI 01:

411522630566

+000070tooo 5 \
411522630571

Of)(0 h dO 0 Shl t 1 place ng t an Insert sign
JI ~

rA rX

0411522263057 041152263056

49

rL 030000000000
0101 012345678917

12 digit quotient without sign

UNIVAC®//

DATA AUTOMATION SYSTEM

THE DECIMAL POINT

The computer fixes the decimal point between the sign and most significant digit

positions. Because every algebraic number begins with a sign followed by a decimal

point, as far as the computer is concerned, every algebraic quantity lies between

plus one and minus one, the largest being

+.99999999999

the smallest

-.99999999999

How can algebraic quantities of magnitude one or larger, or minus one or less, be

represented? This problem is really no different in kind than the similar one pre­

sented by an ordinary desk calculator. Like the computer, the calculator fixes the

decimal point at some specific place, usually immediately after the least signi­

ficant digit position. Yet operators have no difficulty in treating fractional quanti­

ties on a calculator. Such quantities are handled as follows. All quantities are

entered into the calculator as whole numbers, and decimal points are assumed in

the numbers to create the fractional quantities. During the calculation the ·assumed

decimal points are ignored. After the calculation is complete, the decimal point is

assumed in the result according to certain rules. The same kind of solution applies

to the computer. Decimal points can be assumed in a word wherever wanted. At the
end of the calculation the following rules apply.

RULE FOR ADDITION AND SUBTRACTION

To add two words, or to subtract one word from another, the decimal point must

be assumed in the same place in both words. The word that represents the sum

will have the assumed decimal point in the same place as it is assumed in the
words entering the calculation.

A carat indicates the assumed decimal point.

$3600.05
156.23

$3756.28

03600",.0500000
001562300000

1\

037562800000
1\

50

000000 3600
A
O 5

000000015623
A

000000375628
A

RULE FOR MULTIPLICATION

When multiplying one word by another, if the assumed decimal point is m digit

positions to the right of the fixed decimal point in one word, and n position to the

right in the other, the product will have the assumed point m plus n positions to
the right.

RULE FOR DIVISION

When dividing one word by another, if the assumed point is m positions to the right

of the fixed point in the dividend, and n positions to the right in the divisor, the

quotient will have the assumed point m minus n positions to the right.

For example, if

and

then

A = OXXXXXXXXXXX
1\

B = OXXXXXXXXXXX
"

AB = OXXXXXXXXXXX
1\

and A+ B = OXXXXXXXXXXX
1\

m=4

n = 3

m +n = 7

m-n = 1

If the assumed point is p positions to the left of the fixed point, it is - p positions

to the right. The fact that assuming the decimal point p places to the right of the

fixed point is equivalent to multiplying the word by lOP makes the proof of the

above rules immediate.

For example

0,21200000000

031200000000
1\

.312 (no assumption made)

.312 x 102 = 31.2 (where the assumption is p = 2)

When n and/or m are zero the above rules give the following results. If m and n

are zero then m plus nand m minus n are zero. Thus, if in two words, the decimal

point is assumed at the fixed decimal pointt the assumed decimal point in the

product or quotient of the words will be at the fixed point.

51
UNIVAC®//

DATA AUTOMATION SYSTEM

If n is zero, then m plus nand m minus n equal m. Thus, if the point is assumed m

positions .to the right of the fixed point in a given word, and is as summed at the

the fixed point in a second given word; the product of the given words, and the

quotient of the first word divided by the second, will have the assumed decimal

point m positions to the right. For example, if

A = OXXXXXXXXXXX
"

m=9

and B = OXXXXXXXXXXX n = ° 1\

then

AB = OXXXXXXXXXXX
"

m + n = 9

and A+ B = OXXXXXXXXXXX
"

m- n = 9

STUDENT EXERCISES

1. If A has the form O"XXXXXXXXXXX; and B, the form O"XXXXXXXXXXX; what is
the form of AB and A ..:- B?

2. If A has the form OXXXXXXXXXXX; and B, OXXXXXXXXXXX; what is the ·form
I\. "

of AB and A -:- B?

3. If A has the form OXXXXXXXXXJX; and B, »XXXXXXXXXXX; what is the form

of AB and A -:- B?

4. Reading the data stores three quantities of form

o"QQQQQQQQQQQ

in cells 1880 - 1882. Print the product of the quantities.

5. Reading the data stores

DATA

Quantity A
Quantity B

Quantity C

Quantity D

FORM

O,POAAAAAAAAA
O"OOBBBBBBBBB

O"OOCCCCCCCCC

O"OODDDDDDDDD

52

CELL

1880

1881

1882

1883

If

print E, F and G.

E AB

AB
F = .9C

AB
G =--- D

.9C

6. Reading the data stores

DATA

Income

Number of Dependents

Deductions other than
for Dependents

FORM

o I I I 'I I I) 10 0 0

OONNOOOOOOOO
" OOOAAAAAAOOO

I\.

CELL

1880

1881

1882

A deduction of $600 is allowed for each dependent. The tax is twenty percent of

taxable income. Print the tax in form

OOOOOOTTTTI\.TT

THE CONTROL UNIT

The function of the control unit is to select instructions from the memory and

execute them in proper sequence. The control unit is made up of three registers.

1. The Static Register (SR), a half word register.

2. The Control Register (CR), a one word register.

3. The Control Counter (CC), a one word register.

To execute an instruction the computer must transfer the instruction to the Static

Register, the only place in the computer where an instruction can be interpreted.

Since the computer can only execute one instruction at a time, only one instruction

can be stored in SR at anyone time. Thus, SR is built with a six character capacity.

The computer transfers instructions from the memory to the control unit one word

at a time and uses the Control Register to store the instruction pair while the

instructions are waiting to be executed.

53
UNIVAC®//

DATA AUTOMATION SYSTEM

Having transferred an instruction pair from a given cell to CR, the computer must

store the address of the cell immediately following the given cell in order that,

when the instruction pair in CR has been executed, it will know in what cell to
find the next pair. The computer stores this address in the four least significant

digits of the word in the Control Counter.

In short,

1. SR is an interpred ve device,

2. CR contains the current instruction pair
3. CC contains the address of the next instruction pair.

THE THREE STAGE CYCLE OF OPERATION

The computer's three stage cycle is as follows.

1. Transfer the next instruction pair to CR.

2. Execute the LHI.

3. Execute the RHI.

To transfer the next instruction pair to CR, the computer must know the address of

this pair. This address is stored in the four least significant digits of (CC). To

interpret this address, the computer must first transfer it to SR. Since SR has a six
character capacity, the computer transfers the six least significant digits of (CC)

to SR. The computer can then transfer to CR the contents of the cell specified by

the four least significant digits of (SR).

At the same time that the computer transfers the current instruction pair to CR, it
adds one to (CC) and transfers the sum to CC.CC then contains the address of the

next instruction pair. To perform this addition the computer uses the algebraic

adder, which only adds whole words. This fact is why CC has a one word capacity.

The stages of the cycle are called "beta (fJ) time", cc gamma (y) time" and ccdelta
(8) time". For each stage to be executed, the proper information must first be
transferred to SR. The time for this transfer is called t'Time Out" (TO).

{3 TO Transfer the six least significant digit of (CC) to SR.

54

f3 Time On

\s\o\l\e\e\2\c\o\t\e\eI3]
/3 TI~ aJT: (CC) --+ SR

F I GU R E 3. l' 2

Transfer to CR the contents of the cell specified by the four

least significant digits of (SR). Add one to (CC), and transfer the
sum to CC.

/3 T I~ ()\J I (M) ---II» CR
FrGURE 3.13 (CC)+1, .. CC

YTO Transfer the LHI in CR to SR.

Y Time On Execute the instruction in SR.

cc
lololololololololol~

8
0002

Is I 0 IIIelel21 c 10 III ililiJ

FrGURE 3.14
TI~ a.fT I Uil .. SR

'Y T I ~ (J\J I EXEOJTE

55 UNIVAC®II

DATA AUTOMATION SYSTEM

oTO Transfer the RHI in CR to SR.

o Time On Execute the instruction in SR.

FIGURE 3·15

LHI RHI

cc
10 1010 10 I 0 1010 I 0 1010 10131

0002

IsloIIIsIsl21cl011lslsl31

S TIM: CUT : RHI ---.... SR
TIM: (]\I: EXEOJTE

The cycle is then repeated for the next instruction pair .

•

FI'GURE 3·16

The elements of the memory, control and arithmetic units and their interrelations

are shown in the following figure.

56

COMPLETION OF FIRST CYCLE
SR

1 I " 1 II
CC CR

10101010101010101010108
LHI RHI

CONTROL

rA rX ~ ~

""111"1

ARITHMETIC
I I I 1 I I I I II I I I 1IIIIfllllllllllllllllili

0000 READ DATA
0001 801880 AOl881
0002 501882 COl883
0003 501883 900000

UNIT

1880
1881

1882

1883

FIGURE 3.20

1999c=J

On f3 TO the six least significant digits of (CC), 000001, are transferred to SR.

SECOND CYCLE: COMPLETION OF ~ TO
cc CR

I 0 I 01 0 I 01 0 /0 I 0 10 I 0 I 0 I 0 II' :R E A D: I :0 A T A

LHI RI1I

CONTROL UNIT

rX ~ ~

1 1\ I 1 1 I I I I I I I , " , , , I , I 'I I I , I I I I \ I I \ \1

MEMORY

READ DATA
BO 1880 AO 188 I
501882 COl883
501883 900000

1880 000000 000231
1881 000000 000350
1882 000000 000600
1883

1999 [==::J

F I GU R E 3 .' 2 t

On f3 Time On the contents of the cell specified by the fOQr least significant digits

of (SR), cell 0001., are transferred to CR, and one is~ added to (CC), the sum being
transferred to CC.

SECOND CYCLE: COMPLETION OF ~ TIME ON
SR CC

101010/0/01 11 10\ 0\0,01010\ 01 010\ 01 01
LHI RHI

CONTROL UNIT

~ ~

I I I I I I I I-I , I I I I I I I I I I I I I I I
rA rX

1111111111111 I11I1I1111111

ARITHMETIC UNIT

0000 READ DATA 1880 000000 000231
0001 BOl880 AOl881
0002 501882 COl883
0003 501883 900000

1881 000000 000350
1882 000000 000600
1883 1999 L'::':J

FI'GURE 3·22

59
UNIVAC®//

DATA AUTOMATION SYSTEM

On y TO the LHI in CR, B01880, is transferred to SR.

SECOND CYCLE: COMPLETION OF Y TO
SR cc CR

aaalll 10 10101 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 21 I 8 101118181 01 A I 0 III 818111
LIII RHI

CONTROL UNIT

rA rX rL rF

11I/IIIltllllll"I/111111111111I1111111111I111111111

ARITHMETIC UNIT

OCOO READ DATA 1880 000000 00023 I
0001 BOISSO AOISSI 1881 000000 000350
0002 SO ISS2 CO 1883 1882 000000 000600
0003 SO 1883 900000 1883

MEMORY UNIT
FI'GURE 3·23

On y Time On the instruction in SR,B01880, is executed.

SECOND CYCLE: COMPLETION OF Y TIME OM
SR

I 8 10 II 18181 01

CONTROL UNIT

CC

1010101010101010101010121
CR

18101 "8IaI0IA/0/ d8/81 d LIII RHI

rL rf .rX

[III II 01010101010101010121311

ARITHMETIC UNIT

0000 READ DATA 1880 000000 000231
0001 80lSS0 AOl881 1881 000000 000350
0002 SOl882 COIS83 1882 000000 000600
0003 SOl883 900000 1883

MEMORY UNIT FrGURE 3·24

On :0 TO the RBI, A01881, is transferred to SR.

SECOND CYCLE: COMPLETION OF 8 TO

SR

amlllll
CONTROL UNIT

CC

1010101010101010/01010121

1999c===J

CR

IBI0/llslsI0IAI01l/818Id
LHI RHI

rA rX rL rF

10101010101010101012131" 1010lol01010101010hl31d 1 I II I I I II I II I I I I I II I I I I I II
ARITHMETIC UNIT

ocoo READ DATA
0001 80lSS0 AOIS81
0002 so 1882 CO 18S3
0003 SOl883 900000

MEMORY UNIT

1880
1881
1862
1883

FI'GURE 3·25

60

1999c:=J

On 0 Time On the instruction, A01881, is executed.

SECOND CYCLE: COMPLETION OF 8 TIME ON

SR

I A 10 Ills lsi I I

CONTROL UNIT

cc

1010101010101010101010121

_______________ '''''''' ____ ~w~~

CR

IBlolilslalolAlolllslsld
LHI RHI

r L r F
Ir-r-'I r-I r-I Ir--r-'I "-1 i-=-I "-1 "-1 "'-1 '--'1 1 1 1 1 I I I 1 1 1 1 1 II

ARITHMETIC

0000 REAO DATA 1880 000000 000231
0001 BOIS80 AOl8S1
0002 SO 1882 cO 18S3
0003 50 1883 900000

1881 000000 000350
1882 OOOuOO 000600
1883 1999r:=:=J

FIGURE 3·26

On f3 TO the contents of CC, 000002, are transferred to SR.

THIRD CYCLE: COMPLETION OF ~ TO
cc CR

1010101010101010101010121 I B I 0 II 18 Isio I A 10 I, 18181, I
LH I RH I

rX rL rF

1010101010101010101315101 III I II I I I I I I I 1 I 1 I I I I II 1 1 I I

1880 000000 000231
1881 000000 000350
1882 000000 000600
1883

FI'GURE 3.27

1999r=:=J

On fJ Time On the contents of the cell specified by the contents of SR, cell 0002,

are transferred to CR and one is added to (CC).

THIRD CYCLE: COMPLETION OF ~ TIME ON
SR CC CR

10 I a 1010 I 0 10 1010 10 I a 1011 mnDIlD
LH I RHI

UNIT
r-T'"......--r-.--.~r~A ~-.--........, r ~ r L r f
1010101010101010101518\11 1010101010101010101315101 1 1 II 1 1 1 1 I 1 1 1 1 OTJ""TI--'I--r-I Y-I "'I-rl--'I-I"""I

1880 000000 000231
1881 000000 00C350
1882 000000 000 600
1883

FIGURE 3.28

61

1999~

UNIVAC®//

DATA AUTOMATION SYSTEM

On y Time the instruction S01882 is transferred to SR and executed.

THIRD CYCLE: COMPLETION OF Y TIME
SR

Dmadlll

CONTROL UNIT

rA

CC

1010101010101010101010131
CR

Isloll18181del0 1.1818131
LHI RHI

IIIIIIIIIIDIII
ARITHMETIC UNIT

rl(

-ioiooioloioioioisiolo
rL rF

I I I II I I I I I I I 1 r-I r-I r--I 1r--1""':"1r,1""""'1'---'lr--Ilr--Ilr-II---'1

0000 REAO DATA
0001 BOl880 201881
0002 SO 1882 CO 1883
0003 501883 900000

MEMORY UNIT

IMO 000000 000231
IMI 000000 000350
1M2 000000 000600
1883

FrGURE 3·'29

On 0 Time C01883 is transferred to SR and executed.

THIRD CYCLE: COMPLETION OF 8 TIME

SR ... -
CONTROL UNIT

CC

10 I 0 I 01 0 10 I 0 I 0 I 0 I 0 I 0 I 0 131

1999r:==J

CR

Isiol "slah. 1:101 dsl8131
LH I RH I

rA rX rL rF

11111_ /-/0/0/010101010101610101 1111111111111 1111111111111

ARITHMETIC UNIT

0000 READ DATA
0001 BOl880 AOl881
0002 SO 1882 CO 188 3
0003 501883 900000

MEMORY UNIT

1880 000000 000231
IMI 000000 000350
1882 000000 000600
1883 •••••

FIGURE 3·30

1999c:=J

On f3 Time 000003 IS transferred to SR; the contents of the cell specified t cell

0003, are transferred to CR; and (CC) are increased by one.

FOURTH CYCLE: COMPLETION OF ~ TIME

SR amBBaa
CONTROL UNIT

CC

10 I 0 10 10 10 10 10 10 I 0 10 loll

rlI rX r~ rF

lilololololololololololol /-1010\010101010101610101 I 11111 I I \ I II I 1"""1 "1\'1"'1"'1'1'-"1 'T"I'"T'I""TI--.I-I I
ARITHMETIC UNIT

0000 READ DATA
0001 BOl880 AOl881
0002 SOl882 COl883
0003 501883 900000

MEMORY UNIT

1880
1881
1882
1883

FrGURE 3·31

62

1999 C:=J

On y Time 501883 is executed, printing -00000000019.

FOURTH CYCLE: COMPLETION OF Y TIME
SR CC CR

10 10 10 I 0 I 0 I 0 I 0 10 101 0 10 I ijl 15101 II 81 81 31 91 01 01 01 01 01

LH I RH I

T

rA r X rL r F

10 10 10 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1- 1 0 10 1 0 1 0 1 0 1 0 1 0 I 0 161 0 I 0 I DIIIIIIIIIII IIII111111111

0000 REA D D fI TA
0001 801880 1\01881
0002 801882 HOl883
0003 501883 900000

1880 000000 000231
1881 000000 000350
1882 000000 000600
1883 -00000 000019

FIGURE 3·32

1999c=J

On 0 Time 900000 is transferred to SR and executed, stopping the computer.

FOURTH CYCLE: COMPLETION OF 8 TIME
CC CR

10 10 101 0 I 0 I 0 I 0 101 0 I 01 01 ijl 1 I 1 /I I I I I I I
LH I R HI

rA rX rL rF

1010101010101010101010101 1-10101010101010101610101 Ollllllllill I.........-I.,....I..,...I-TI I......,I.........-I.,....I..,...I-TI I--.I

0000 READ DATA
0001 801880 AOl881
0002 801882 COl883
0003 501883 900000

1880 000000 00023

u 1881 000000 000350
1882 000000 000600
1883 -00000 0000 19

FI'GURE 3·33

1999C==:J

TRANSFER OF CONTROL INSTRUCTIONS

Having executed the instruction pair in cell ttk", It 1S sometimes advantageous

for the next instruction pair to be in a cell other than cell Uk + 1 ". This breaking

of the computer's sequential operation is called transfer of control.

INSTRUCTION OPERATION MNEMONIC

UOm 00000000 (CRr--+--CC Unconditional Trans­
fer of Control

Transfer control to m. Sequential operation is broken at cell k

and resumes at cell m.

63 UNIVAC®//

DATA AUTOMATION SYSTEM

The mnemonic is unconditional transfer of control to m, since the execution of the

UOm instruction results in transfer of control regardless of the conditions present

in the computer. The computer executes the UOm instruction as follows. CC con­

tains the address of the next instruction pair. If the execution of the UOm instruction

is to transfer control to m, the execution must transfer the address part of the UOm

instruction to CC. Actually, the UOm instruction is executed by transferring the
four least significant digits of (CR) to the four least significant digit positions of

CC. This method of execution will achieve the purpose of the UOm instruction pro­

vided that the address part of the UOm instruction is the four least significant
digits of the word in which the UOm instruction appears. In effect, this fact means

that the UOm instruction should be coded as a RHI.

CR

CC @ITlo I 0 1 0 101 0 10 10 10 II III

0010

I u I 0 o o o 6 CR

cc

FrGURE 3·34

If a UOm instruction is properly coded in cell k, when the instruction pair in cell

k has been executed, the next pair of instructions to be executed are not in cell

k + 1, but in cell m.

Consider the following.

SR CC CR

10 1010 I 0 I 010 10 10 1010 I "01 I B I 0 II I 8181, I s I 0 II (8 181 0 I
LH I R HI

rA rX rL rF

1010171010101010101010101 1-10131010101010101010101 1010piOIOI0iOIoiOIOIOI01 111111 I III III

UNIT

f:MORY UNIT

~C=:J

0010~
1881[~O~

1999c==J

FI'GURE 3·35

64

Assume that the computer has just completed f3 TO. On f3 Time .on the contents of

cell 0010, C01881 U00006, are transferred to CR, and (CC) are increased by one.
SR CC CR

10101 01011101 10 10 101 0 I 0 10 I 0 I 0\ 0 \ 0 aD ammmumlUlllD
LHI RHI

rA rX rL rF

l'o'lo'17""T"lo""Tlo-rI-'01"-0T-'lo'lo""T"lo'"1-'01""'01 1-1(1131010101010101010101 ~Ioioioioioioioiol I III II 1111 III

T

1881E~3
()010~ 1999c==J

MEMORY
FIGURE 3.36

CR contains the current instruction pair, and the four least significant digits of

(CC) specify that the next instt:uction pair is in cell 0011. On y Time On C01881

is executed.

SR CC CR

I 0 I 0 I 0 10 I 0 I 0 I 0 10 101 0 I II 'I Ie 10 I, Is lsi, I u I 0 I 0 I 0 10 I 61
LH' RH I

rX rL rF

1-1013101010/0/0/0/0/010/ roTOI3[Olololol%loliilol I /11 II I II I III

ooooc==J 18f!,!
1999r==J

FI'GURE 3.37

On 8 Time, lJ00006.

CR

Iclol dslsl,lu 101 01010161
LHI RH'

rA rX rL rF

r-lo.,....lo lo""T"l"""To/-,ol-o..--lo.,....lo....-lo lo.,.10-'1-'01 1-/0/31010101010101010101 [iliTIlilolololololololol 1111 II 1/ I / / II

M

o~c=:J

OOIO~
1881~
1999c:=J

FIGURE 3·38

65
UNIVAC®//

DATA AUTOMATION SYSTEM

The four least significant digits of (CC) no longer specify that the next instruction

pair is in cell 0011, but instead specify that the pair is in cell 0006. The computer's

sequential operation has been broken, and control has been transferred to cell

0006. With the instruction pair in cell 0006 the sequential operation w ill resume and

continue until another transfer of control <;>r stop instruction is executed.

INSTRUCTION OPERATION

OOm Skip

Pass control to the next stage of the three stage cycle.

In executing the OOm instruction, the computer ignores m. The execution of the

OOm instruction does not alter the contents of any cell or register. One use of the

OOm instruction is as follows. The situation may arise where the next instruction

to be coded is both a LHI and a UOm instruction. To be coded proper! y, the U Om

instruction should be coded as a RBI. Yet the computer cannot skip a stage of its

three stage cycle and must have some instruction to execute on 8 Time. The OOm

instruction is used in such situations.

In contrast to the UOm instruction are the conditional transfer of control instruc­
tions.

INSTRUCTION

QOm

OPERATION

If (rA) = (rL), then QOm acts
as UOm; if not,as OOm

MNEMONIC

Equality Transfer of
Control

If (rA) are identical to (rL), interpret QOm as UOm; if not, as OOm.

The mnemonic is: on equality of (rA) and (rL), control is transferred.

INSTRUCTION

TOm

OPERATION

If (rA) > (rL), then TOm acts as

UOm; if not, as OOm

If (rA) are greater than (rL),

interpret TOm as UOm; if not, as OOm.

MNEMONIC

Threshold ITransfer

of Control

The mnemonic is: if (rA) are greater than the threshold set up by (rL), control IS

transferred.

•

Does the TOm Instruction
(rA) (rL) Transfer Control?

012 345 678 910 009 761 835 011 Yes

-12 345 678 910 009 761 835 011 No

012 345 678 910 - 99 999 999 999 Yes

-12 345 678 910 - 99 999 999 999 Yes

I':"or purposes of the TOm instruction an order of magnitude has been assigned to

all characters. In figure 2-18, reading down the first column, then down the second,

then the third, and finally the fourth, is equivalent to reading the characters in

their ascending order of magnitude. The smallest character is i, the largest is = .

(rA)

OBCDEFGHIJKL

- BCDEFGHIJKL

OBCDEFGHIJKL

- BCDEFGHIJKL

(rL)

023456789ABC

023456789ABC

-DEFGHIJKLMN

- DEFGHIJKLMN

Does the TOm Instruction

Transfer Control?

Yes

No

Yes

Yes

If (rA) and (rL) have signs, the TOm instruction treats both quantities as signed

numbers. If either word has no sign, the TOm instruction treats the words in their

entirety.

(rA)

0123456789AB
34567890ABCD
67890ABCDEFG

(rL)

234567890ABC
-567890ABCDE
7890ABCDEFGH

Does the TOm lnstruction

Transfer Control?

No
Yes

No

The function of the conditional transfer of control instructions is to allow the

computer to choose between different processing possibilities dependent on the
nature of the data.

Illustrative Example

Reading the data stores

DATA

Account Number
Delinquent Account Number

FORM

OAAAAAAAAAAAA
ODDnDDDDDDDDD

67

CELL

1880

1881

UNIVAC®//

DATA AUTOMATION SYSTEM

If the account number is equal to the delinquent account number print

ANOACREDITA

If not, print

CREDITAGOOD.

LOGICAL ANALYSIS

1. Read the data

2. Is the account number equal to the delinquent account number?

2a.No 2b. Yes
3. Print CREDIT GOOD 3. Print NO CREDIT

4. Stop

CODING

0000 READ

0001 B01880

0002 ~

0003 500005

0004 500006

0005 CREDIT

0006 ANOACR

DATA

L01881

QOOO04

900000

900000

GOOD.

EDIT.A

}

I
Read the data

Is tbe account number equal to
. the delinquent account number?

Print CREDIT GOOD.

Stop

Print NO CREDIT

Stop

Constants

For ease in writing, a LHI or RHI consisting of six zeros in customarily written

as '--. It is also customary to draw a line under all transfer of control instructions.

The following is a description of the thinking that might have accompanied this

coding. The student exercises begin on page 69 .

68

After the read data and the execution of the BOrn and LOrn instructions, the proper

quantities are in rA and rL, and the QOm instruction can be coded. But the next

instruction to be coded is a LHI. Since the QOm instruction can be interpreted as

a UOm instruction, to be properly coded, the address 'part of the QOm instruction

must be the four least significant digits of the .word in which the QOm instruction

appears. The simplest way to achieve this situation is to code a OOm instruction

for the LHI ..

It makes no difference what cell 1S specified by the QOm instruction as long as

the processing called for by the condition of equality begins in that cell. To con­

serve memory space it is convenient not to specify any cell at this time, and in­

stead, code the processing called for by the condition of inequality, which must

begin in cell 0003.

The execution of a 50m instruction is required to print CREDIT GOOD. It makes

no difference what cell is specified by the 50m instruction as long as the word

CREDIT~GOOD.

1S stored in it. It is convenient not to specify any cell at this time, and instead

continue the coding. The 90m instruction completes this logical branch of the coding.

The next free cell is cell 0004, which can be specified by the QOm instruction. A

50m instruction and a 90m instruction in cell 0004 complete the coding.

The next free cells are cells 0005 and 0006, which can be specified by the 50m in­
structions ..

STUDENT EXERCISES

1. Reading the data stores:

DATA

Pay

Deduction

FORM

OOOOOOPPP~PP

OOOOOOOODD,PD

CELL

1880

1881

If the deduction does not reduce the pay to less than $15, make the deduction;
r---

other wise, print the deduction'. In either case, print the pay:

2. Reading the data stores a charge in the form:

OOOOOOCCCCCC
1\

69 UNIVAC@/I

DATA AUTOMATION SYSTEM

If the charge is greater than or equal to $150.00, apply a discount of three percent,

and print the resulting charge. Otherwise, print the or.iginal charge.

3. Reading the data stores

DATA FORM CELL

Stock Number NNNNNNNNNNNN 1880

On Hand 0000000000,,00 1881

Sold 000000 S S S S S S
"

1882

Minimum Required 000000 RRRRRR 1883
1\

Update the on hand. If the sales reduce the on hand below the required, print the

stock number.

4. Reading the data stores

DATA

Quantity Ordered
Unit Price

FORM

OOOOQQQQ[}QOO

OP~PPOOOOOOO

CELL

1880
1881

If the quantity is greater than or equal to 10Q" apply a discount of 40%. Otherwise,

apply a discount of 30%. Print the charge.

SUMMARY

Instruction format: Of the six digits the first two indicate the operation to be per­

formed on the word in the cell whose address is that of the last fqur instruction

digits.

INSTRUCTION OPERATION MNEMONIC

AOm: (m)-.......rX; (rA) + (rX)~ rA Add
BOrn: (m)~rA; rX Bring
COm: (rA)--+--m: O~(rA) Clear

DOm: (rn)--+-rA; (rA) -:- (rL) ~rA rounded Divide
~rX unrounded

HOm: (rA)~m Hold
10m: (rL)--+--m Into

JOm: (rX)~m

70

INSTRUCTION OPERATIO~

KOm:

LOrn:

MOm:
c/NOm:

(rA)~rL; O----I rA, ignore m

(m)----rL, rX

(m)~ rX; (rL) x (rX)--......rA, rounded

- (m)--..rX; (rL) x (rX)--......rA, rounded

MNEMONIC

POrn: (m) ____ rX; (rL) x (rX)--... rA, rX, 22 digits

Load

Multiply

Negative Multiply
Precision Multiply

QOm:

). SOm:

TOm:

UOm:
, XOm:

OOm:

SOm:
90 m:

if (rA) = (rL),transfer control to m

- (m)--..rX, (rA) + (rX~rA

if (rA) > (rL), transfer control to m

transfer control to m

(rA) + (rX)--.....< A
skip, ignore m

print (m) on the SCP

stop, ignore m

CONTROL UNIT

Equality Transfer

Subtract

Threshold Transfer

Unconditional Transfer

Control Counter - 1 word register - holds the address of the next pair of instructions.

Control Register - 1 word register - holds the c:urrent pair of instructions.
Static Register - one half word register - decodes or interprets one instruction or

address.

Three Stage Cycle of Operation

f3 - (CC~SR
(m) II CR
(CC)+l~CC

y - LHIcr~ SR and execute

[) - RHIcr-+--SR and execute

71
UNIVAC®//

DATA AUTOMATION SYSTEM

chapter 4

Introduction

to Flow Charts
EXAMPLE

Reading the data stores:

DATA

Days of Medical Absence

Days of Allowable Medical
Leave Remaining

Hourly Rate of Pay

FORM

OAAOOOOOOOOO

" o L LOOOOOOOOO
1\

ORRRRROOOOOO
1\

Update the medical leave, and print the employee's medical pay in form

OOOOOOOOPP"PP

12

CELL

1880

1881

1882

LOGICAL ANALYSIS

1. Read data.

2. Is medical absence equal to zero?

2a No. 2b Yes.

3. Is medical leave equal to zero?

3a No. 3b Yes.

4. Is medical leave greater than medical absence?

4a No. 4b Yes

5. Store medical leave in storage. 5. Store medical absence
in storage.

6. Store zero in medical leave. 6. Reduce medical leave

7. Multiply storage by eight. by medical absence.

8. Multiply product by rate.

9. Print product. 9. Print zero.

10. Stop.

This analysis IS precise but bulky. As the size and .complexity of problems in­

crease such written analyses- would become less and le~s helpful because of the

large amount of writing necessary.

The analysis can be made clearer by putting the steps in boxes and using arrows

to indicate the sequence of steps.

IS MEDICAL YEa
START f--- READ DATA ~ AlSENCE EQUAL

1 TO ZERO?

-1 NO

IS MEDICAL LEAVE
YES

EQUAL TO ZERO? ~ PRINT ZERO

-
l~lIO

IS MEDICAL LEAVE YES STORE MEDICAL REDUCE MEDICAL
GREATER THAN ~ A BSENCE IN .-. LEAVE BY MEDICAL -
MEDICAL ABSENCE? STORAGE ABSENCE

NO

STORE MEDICAL .-. STORE ZERO IN
LEA VE I N nORA OE MEDICAL LEAVE

I

1 1 !

MULTIPLY STORAGE -MULTIPLY PRODUCT .-. ~ BY EIOHT BY RATE PA I NT PRODUCT STOP

FIGURE 4·1

73 UNIVAC®II

DATA AUTOMATION SYSTEM

This solution to the problem of picturing the analysis is superior but would still

result in a massive chart for a large problem. A furthel reduction can be made by

using letters to denote the quantities processed and arithmetic symbols to define
the processing. The use of symbols requires a legend on the analysis to define

each letter so there will be no confusion as to the nature of the quantities.

nUT READ DATA

LUEIID

A - MEDICAL AISEIICE
L - MEDICAL LEAYE
R - PAY UTE

FIGURE 4.2

An analysis involves, at most, three types of processing.

1. Transfer of data.

2. Arithmetic operations.

3. Logical decisions.

FIGURE 4·3

14

STORE L-A III L

To further reduce· the size of the analysis, transfers and arithmetic operations will
be shown in rectangles. The distinguishing feature of a transfer or arithmetic

operation is the inclusion of an arrow in the rectangle to indicate the substitution

of one quantity for another.

Decisions are shown in flattened ovals. The distinguishing features of a decision

are:

1. The inclusion of a colon In the oval to indicate the comparison of one

quantity with another

and 2. Two arrows coming out of the oval to indicate that, on the basis of the

decision, one of two possible paths of processing will be followed.

Each of these paths IS labelled. with the condition which must exist for that path

to be followed.

The decision tt is A = 0" (ye.s or no) will be shown as

FI'GURE 4.4

If the two quantities are equal, the next step follows the arrow labelled with the

equal sign; if unequal, it follows the arrow labelled with the unequal sign.

The decision ((is L > A" (yes or no) will be shown as

FIGURE 4·5

75
UNIVAC(~I/

DATA AUTOMATION SYSTEM

If L is greater than A, the next step follows the arrow labelled with the tcgreater

than" sign (»; if L is not greater than A (Le., less than or equal to A), the next
step is written following the arrow labelled with the ct less than or equal to" sign (~).

LEGEND

A - MEDICAL ABSENCE
L - MEDICAL LEAVE
R - PAY RATE

FJ'GURE 4·6

To reduce the length of the arrows indicating the sequence of steps, Hfixed con­

nectors" are used. A fixed connector is a numbered circle. When an arrow leads to

a fixed connector,

FI'GURE 4.7

the next step follows the arrow leading out of the fixed connector enclosing the same

number.

FIGURE 4.8

Thus,

O~SCP

FIGURE 4.9

76

is the same as

F I'GURE 4·10

A fixed connector enclosing a given number and having an arrow leading to it can

appear in an analysis as many times as is necessary, but to avoid ambiguity, only

one fixed connector enclosing the number and having an arrow leading out of it can

appear.

The boxes enclosing the words, start and stop, serve a function similar to that of

connectors in that they show the beginning and the end of the processing steps.

The start and stop are also shown in circles.

LUEIID

A - MEDICAL ABSENCE
L - MEDICAL LEAVE
R - PAY RATE

~----~.-----------------------~.~

FIGURE 4.11

Often, parts of a complex analysis extend beyond the paper on which the analysis
is made. When such a situation arises, a fixed connector can be used to direct the

processing to a point on the paper where there is room - a mechanism analogous

to the carriage return on a typewriter.

An analysis drawn according to the above conventions IS called a cc flow chart."

77
UNIVAC®II

DATA AUTOMATION SYSTEM

CODING

0000 READ read data
DATA

0001 801880

l LOOO12 A:O
0002 ~

QOO011
0003 B01881 } QOO011 L:O

0004 L01880 } TOOO09 L:A

0005 KOOOOO L.-.e
C01881 O"L CD 0006 MOOO13
KOOOOO

0007 M01882 8RS-.....sCP
C01883

0008 501883
900000 Stop

0009 S01880 } C01881
L-A~

0010 '--'
UOOO06

0011 500012 O SCP
900000 Stop

0012 ~
~

0013 000080 -....---...
ILLUSTRATIVE EXAMPLE

Reading the data stores

DATA FORM CELL

Year-to-Date FICA Earnings OOOOOOEEEEEE 1880
" Year-to-Date FICA Tax OOOOOOOOTTJT 1881

Current Pay OOOOOOPPPPPP
1\

1882

Update the year-to-date FICA earnings and tax, and print the current FICA tax in form

OOOOOOOOCCkC

11

FLOW CHART

t------..I 0 --.. sCP t--------1...,

.0225P SCP

LEGEND
9ij.50-T SCP

E - YEAR TO DATE FICA EARNINGS
T - YEAR TO DATE FICA TAX
P - CURRENT PAY FI'GURE 4·12

CODING

0000 READ read data
DATA

0001 B01880

l LOOO15
0002 L E : 4200

")

QOOO14
0003 BOOO15

! S01880
0004 L01882 4200 - E : P

TOOOIO
0005 BOOO15 } 4200~E C01880
0006 BOOO16

} SOl881 94.50 - T--....sCP
0007 C01883

BOOO16 } 0008 501883 94.50-...T

C01881
0009 900000 Stop

~

0010 B01880 } A01882 E+P'~E

0011 C01880
MOOO17 } .0225 P~SCP

0012 H01883
A01881 T+C~T

0013
UOOO08

79
UNIVAC®//

DATA AUTOMATION SYSTEM

0014 500018 O--..SCP

900000 Stop

0015 ~
420000

0016 '----t

009450

0017 002000
'-----l

0018 ~

STUDENT EXERCISES

Flow chart and code the following.

1. Reading the data stores a quantity of form

±QQQQQQQQQQQ"

in cell 1880. If the quantity is negative,print

1\1\NEGA TIVE. 1\

if positive, but less than 500,

1\1\~SMALL. 1\1\1\

if greater than or equal to 500, but less than 1000,

1\1\1\MEDIUM.1\1\1\

if greater than or equal to 1000,

1\1\1\LARGE.1\1\1\

2. Reading the data stores three quantities of form

OQQQQQQQQQQQ"

in cells 1880 - 1882.

P·rint the smallest of the quantities.

80

3. Reading the data stores

DATA

Badge Number

Bond Deduction

Cumulative Bond Deduction
Bond Price

FORM

NNNNNNNNNNNN
000000000000

" OOOO.OOOCGCCC
'1\1

0000000 PP~PP

CELL

1880

1881
1882
1883

Update the cumulative bond deduction, and if a bond can be purchased, print the
badge number and the bond price.

4. Reading the data stores

DATA

Salesman's Number
Quantity Sold i, " ,

Unit Price

FORM
NNNNNNNNNNNN

0,00000 QQQ~QQ
OPP,fPO 00,0000

CELL

1880
1881
1882

If more than 50 units are sold, a discount of 10% is applied to the entire order. The
salesman receives a 5% commission on the charge to the customer. Print the sales­

man's number and commission in form

OOOOOOOCCCCC
1\

5. Reading the data stores a employee's pay of form

o 00000 PPPP»P

in cell 1880. The percentage tax is given in the following table.

PAY TAX PERCENTAGE

$ 1 - 14 99 1%
15 00 - 2999 2%
30 00 - 4499 3%
4500 - 5999 4%
60 00 or over 5%

Deduct the tax, and print the net pay in form

OOOOOONNNNNN
A

81 UNIVAC®/I

DATA AUTOMATION SYSTEM

6. Reading the data stores

DATA

Year-to-Date Sales

Year-to-Date Commission

Current Sales

FORM

OOOOS S S S S S"S S
000000 CCCCCC

" 000000 AAAAAA
/\

CELL

1880

1881

1882

The salesman's basic commission is 5% of sales with an extra 2% for total sales

in excess of $50,000. Update the year to date sales and commission, and at the

point where year to date sales exceed $20,000 print

7. Reading the data stores

DATA

Inventory Quantity

Sales Quantity

Minimum Requirements

~QUOTA~MET .~

FORM

OOOOOOQQQQQq 1\

OOOOOOSSSSSS 1\

OOOOOORRRRRR /\

CELL

1880

1881

1882

Update the inventory. If the inventory quantity falls below the mInImum require­

ments, print the quantity needed to restore the inventory to its minimum level.

This quantity is to be in form

OOOOOOpppppp 1\

SUMMARY

A flow chart is a method for efficient logical analysis of computer applicat:ons

and consists of

1. a set of symbols

and 2. rules for organizing the symbols.

The symbols are as follows.

A directed line segment

•
FI'GURE 4.13

82

indicates the logical line of flow. The start symbol

FJ'GURE 4-14

indicates the beginning of the logical line of flow; the stop symbol,

FIGURE 4-1.5

the end of the logical line of flow. Transfer and arithmetic operations are shown

in rectangles;

FIGURE 4.16

decisions, in flattened .ovals.

FIGURE 4·17

Connectors

FJ'GURE 4·18

indicate the merging of divergent lines of flow.

83
UNIVAC®II

DATA AUTOMATION SYSTEM

chapter 5

Modification

of Instructions

Both data and instructions are stored in the memory. The computer recognizes an

instruction as such only when it is in SR. At no other time does the computer

make distinction between data and instructions. Both are simply words stored in

the memory. This arrangement enables a word which has been interpreted as in­

structions at one time in a program to be processed as data by other instructions

in the same program, thus allowing the computer to modify its own instructions.

The following is an example of the modification of instructions.

84

CODING

0000 500003
'---"'"'

0001 BOOOOO
AOOO05

0002 COOOOO
UOOOOO

0003 ~~ELEC

TRONIC

0004 ~COMPU Constants
TER.~~

0005 000001
900000

The execution of this coding will print:

ELECTRONIC COMPUTER.

and stop the computer.

First three stage cycle

f3 Time - The contents of cell 0000

500003000000.

are transferred to CR.

y Time The LHI

500003

is transferred to SR and executed, printing the contents of cell 0003:

ELECTRONIC

o Time - The RHI

000000

is transferred to SR and executed, skipping to the next stage.

85 UNIVAC®"

DATA AUTOMATION SYSTEM

Second three stage cycle

f3 Time - The contents of cell 0001

BOOOOOA00005

are transferred to CR.

Y Time - The LBI

BOOOOO

IS transferred to SR and executed, transferring the contents of the cell
specified, cell 0000,

500003000000

to rA and rX. This word is treated as an instruction pair only when it is

in CR; at all other times it is treated as data or a constant. This word,

which was treated as an instruction during the first three stage cycle, is

now treated as data being processed by an instruction in SR.

o Time .. The RHI

A00005

is transferred to SR and executed, transferring the contents of cell 0005

to rX, adding the contents of

r A: 500003000000

and rX: 000001900000

and transferring the sum

500004900000

to rA.

Third three stage cycle

f3 Time - The contents of cell 0002

COOOOO UOOOOO

are transferred to CR.

Y Time - The LHI

COOOOO

86

is transferred to SR and executed, transferring the contents of rA:.

5000004900000

to the cell specified, cell 0000.

8 Time - The RHI

UOOOOO

is transferred to SR and executed, transferring control to cell 0000.

Fourth three stage cycle

f3 Time - The contents of cell 0000, which now contains the word

500004900000

are transferred to CR.

y Time - The LBI

500004

is transferred to SR and executed, printing

COMPUTER

8 Time - The RHI

900000

is transferred to SR and executed, stopping the computer.

On 8 Time of the second three stage cycle the computer added a positive 11 digit

quantity

000001900000

to an 11 digit quantity with a five in the sign position

50000300000b

to arrive at an eleven digit sum with a five in the sign position

500004900000

This sum resulted because of the following characteristics of the adder.

87
UNI VAC® II

DATA AUTOMATION SYSTEM

Of two words to be added at least one must have an actual sign, 0 or -, in the

sign position. If neither has a sign, the computer stalls and lights a neon on the

Supervisory Control Panel, thus indicating that an error, called an adder-alpha­

betic error, has occurred.

For purposes of the addition, any character in the sign position other than a minus

sign is treated as. a plus sign, when the other word to be added has a legitimate

sign. For example, the character A would be treated as a plus sign. When the sum

is transferred to rA, the sign position will contain, not the sign of the sum, but the

character A. In any digit position other than the sign position, the addition of

1. two numbers produces an algebraic sum,

2. a number and an alphabetic produces the alphabetic,

3. two alphabetics produces an adder alphabetic error.

ITERATIVE CODING

Example

Reading the data stores a credit account number of form

AAAAAAAAAAAA

in cell 1820, and 60 delinquent account numbers of form

DDDDDDDDDDDD

in cells 1880 - 1939. If the credit account number is equal to one of the delinquent
account numbers print

L\NOL\CREDIT . L\

if not,
CREDITL\GOOD.

FLOW CHART

LEGEND

- A CREDIT ACCOUNT NUMIER ~--IOICREDIT GOOD-IooSCP
D I - THE FIRST DEL IIiQUENT ACCOUNT IIUMBER
D2 - THE SECOIID DEL IIIQUENT ACCOUNT NUMIER
D3 - THE THIRD DELINQUENT ACCOUNT IIUMBER

Deo - THE eOTH DEL IIIQUEIiT ACCOUNT IIUMBER

F rGURE 5. 1

88

CODING
0000 READ } DATA read data

0001 L01820

} :> A: Dl
0002 B01880

QOO063
0003 B01881 } A : D2

QOO063

0004 B01882 } A: D3
QOO063

0061 IB01939 } A: D60 QOO063
0062 .·500064 CREDIT GOOD ... SCP

CD
900000 stop

0063 500065 NO CREDIT ~ SCP
900000 stop

0064 CREDIT

} ~GOOD.

0065 ~NO~CR
constants

EDI'f.~

The coding shows that each delinquent account number is processed the same way.

The coding to process one delinquent account number, after executing the L01820,
takes the form

BOXXXXQ00063

where XXXX is the address of the delinquent account number being processed.

Since there are 60 delinquent account numbers to be processed, and since each

delinquent account number is in a different cell, the above instructions are repeated

60 times. However, the above instructions can be stored only once and can be used

to process all 60 delinquent account numbers by modifying the address specified
by the BOrn instruction and transferring control to repeat the processing.

0000 READ } read data
DATA

0001 B01880

} L01820 Does the credit account number match
0002 C

) the current delinquent account number?
QOOO08

89
UNIVAC®//

DATA AnOMATION SYSTEM

0003 BOOOOI
C)

0004 (
)

~
0005 AOO010

COOOOI
0006 '-----,

UOOOOI

0007 '-)

<=--~
0008 500012

900000

0009 ~
(

"/
0010 000001

0011 c ~
"/

'---:,
0012 ~NO~CR

EDIT.~

B01880L0182~rA

Take the next delinquent account number.

add 000001 000000
B01881 L01820..a00l,

NO CREDIT SCP

stop

constants

This coding allows the credit ~ccount number to be compared to the delinquent

account numbers in succession as long as there is inequality. If the credit account

number is not one of the delinquent account numbers, cell 0001 will eventually

contain the instruction pair

B01939L01760

After each iteration the contents of cell- 0001 can be compared for identity with

the above word. This comparison determin~s the end of the processing, much as a

student reading an assignment might check each page number to see if he has

completed the assignment.

0000 READ

0001 [B01880

0002 '------:>

DATA

L01820J

Q00008
------.--.-----

}

}
read data

Does the credit account number match
the current delinquent account number?

so

0003 BOOOOI

0004 ~

0005 AOO010

0006 ~

LOOO09

QOOO07·

COOOOI

UOOOOI

}
}

Is the current delinquent account number

the last delinquent account number?

'\ Take the next delinquent account number.
I

, 6007 500011 CREDIT GOOD ~ SCP

"!j;

900000 stop

0008 500012 NO CREDIT SCP

900000

0009 B01939

stop
\

L01820
0010 000001 ,

<.
':)

0011 CREDIT
constants

~GOOD.

0012 ~NO~CR

EDIT.~

By custom, lines of coding that are subject to alteration are enclosed in brackets

to distinguish them from lines which do not vary. This custom is of help in check­

ing coding for correctness, both before and after it is run on the computer.

The principle shown in this example is called iterative coding.

Care must be taken in stopping the iteration at the right time. In the coding' on

page 91 the constant used to determine if all delinquent account numbers have

been processed is

B01939L01820

In the following coding the constant is

0000 READ
DATA

0001 [B01880
L01820J

0002 '----->
QOOO07

}

B01940L01820

read data

Does the credit account number match

the current delinquent account number?

91 UNIVAC®II

DATA AUTOMATION SYSTEM

0003 BOOO01

I LOOO08 Is the current delinque"nt account number
0004 AOOO09 the last delinquent account number?

QOOO06
0005 COOOOI Take the next delinquent account number.

UOOOOI
0006 500010 CREDIT GOOD ~ SCP

900000 stop
0007 500011 NO CREDIT ~ SCP

900000 stop
0008 B01940

L01820
0009 000001

~ constants
0010 CREDIT

~GOOD.

0011 ~NO~CR

EDIT.~

The reason for the difference in constants is that,in the coding on page 91, the

execution of the QOm instruction, which determines if all delinquent account

numbers have been processed, precedes the execution of AOm instruction, which

alters the address to process the next delinquent account number; while in the

coding on page 92, the execution of the AOm instruction precedes the execution
of the QOm instruction.

Item Just Processed

1st

2nd

3rd

58th
59th
60th

(rA) During Execution of QOm Instruction

In Coding on Page 91

B01880L01820

B01881L01820

B01882L01820

B01937L01820
B01938L01820
B01939L01820

In Coding on Page 92

B01881 L01820

B01882L01820

B01883L01820

B01938L01820
B01939L01820

B01940L01820

Iterative coding conserves memory space in that fewer instructions need be stored

in the memory to do the processing.

92

The memones of computers are limited in capacity because of the high costs for

memory per digit stored. Consequently, the more processing that can be done per

instruction stored, the greater is the area of the memory freed for the storage of

data and other instructions. Iterative coding is a powerful technique in the efficient

programming of computers.

ITERATIVE FLOW CHART SYMBOLS

In a word flow chart, the solution might appear as:

F rGURE 5·'2

TAKE THE FIRST
DELINQUENT

ACCOUNT NUMBE R
ITEM

DOES THE ACCOUNT
NUMBER MATCH

THIS DEliNQUENT
ACCOUNT NUMBER?

NO

IS THIS DELINQUENT
ACCOUNT NUMBER ITEM
THE LAST DELIN­
QUENT ACCOUNT
NUMBER ITEM?

NO

C
AKE THE NEXT

DEliNQUENT
ACCOUNT NUMBER

ITEM

"0 CRED I T-...sCP

CREDIT GOO~SCP

A set of data is represented by a capital letter. The set of delinquent account

numbers might be represented as D.

To distinguish between units in a set, numeric subscripts are used. In the set 0

Dl represents the first delinquent account number.

D2 represents the second delinquent account numb~r.

D3 represents the third delinquent account number.

D60 represents the 60th delinquent account number.

Only one unit in a set is processed at a time and may be identified by an alpha­

betic subscript. For example, Di might represent the delinquent account number

currently being processed from the set D. The alphabetic subscript is used be­

cause, although only one unit is processed at a time, it cannot be stated specific­

ally which unit is being processed at a given time.

93
UNIVAC®II

DATA AUTOMATION SYSTEM

Units are processed sequentially. Unit D1 is processed first, D 2, secon<\; D3,

third; etc. In general, after unit Di has been processed, unit Di + 1 is to be pro­

cessed. The operation

FIGURE '5.3

provides this sequence. The operation box has a double line on the left to dis­

tinguish it from an operation which processes data. The initial condition for the

sequence is that i be equal to one so that D i = D 1. Initial conditions of the pro­

cessing are shown in an assertion flag placed immediately after the start symbol.

ILLUSTRATIVE EXAMPLE

Reading the data stores 60 receipt amounts of form

OOOOOORRRRRR
A

in cells 1880-1939. Print the sum of the amounts.

i= t

i+l i

LEGEND

A AN ACCOUNT NUMBER
D A SET OF DELINQUENT ACCOUNT NUMBER ITEMS
Il>i THE iTH ITEM IN D, i= 1, ... ,60

94

FIGURE 5-4

FLOW CHART

READ DATA S-+SCP

LEGEND

R - SET OF RECEIPT AMOUNTS
R I - I TH AMOUNT IN R, I • If ••• f 60

FIGURE 5.5

The following is a description of the thinking that might have accompanied the

flow chart. The coding is on page 22.

Flow chart the general processing

&I READ DATA

FI'GURE5.6

Specify the general. Initially, i is equal to one; and the sum, equal to zero.

1

S 0

F I'GURE .5.7

After the first amount is processed, the computer should advance to the second

amount.
1

S 0

READ DATA S+Ri-S H
FIGURE 5.8

95
UNI VAC® II

DATA AUTOMATlDN SYSTEM

The second amount should be processed in the same way as the first.

1
S = 0

READ DATA

FIGURE 5.9

S + Ri--...S

Thus, specifying the general sets up the iterative loop.

Finally, providing the exit from the iterative loop and

+ l--..... i

flow charting

routine completes the flow chart, which is shown in figure 5-5.

0000 READ } read data
DATA

CD 0001 [801880
AOOO07] } S+Ri S

0002 COOO07

BOOOOI

0003 LOOO08 } i : 60
QOOO06

0004 AOOO09 } i + l i
COOOOI

0005 <----:>
UOOOOI

0006 500007 S SCP

900000 stop

0007 [<---;,
~] } S

0008 B01939 } AOOO07 constants

0009 000001

<----:>

ARITHMETIC INSTRUCTIONS - LIST C

the ending

The function of certain pairs of instructions have been combined into single In­

structions, resulting in a saving of computer time and memory space. One such in­

struction, the Allm instruction, has a powerful application in iteration and summa­

tion.

INSTRUCTION OPERATION MNEMONIC

AHm (m)~rX; (rA) +(rX)~rA; (rA) .. m Add and Hold

Add (m) to (rA). Transfer the sum to m, and hold the result in rA.

The mnemonic is to add (m) to (rA) and hold the sum in rA, after transferring it to
m. The computer executes the AHm instruction as follows. (m) are transferred to

96

rX. (rA) and (rX) ar.e added. The sum is transferred to rA. (rA) are transferred to m.

ADDER

A H o o o 6

FI'GURE 5-10

One of the possible uses of the Allm instruction is to add a quantity to the con­

tents of a cell. Suppose that the contents of cell 0007 are to be added to the con­

tents of cell 0003. Without the use of the AHm instruction the coding might be

0001 B00003

A00007

0002 C00003

Using the Allm instruction

0001 B00007

AH0003

The AHm instruction is used to reduce the number of instructions needed to do a

processing operation. This reduction is achieved because the AHm instruction

combines in one instruction the function of the AOm and HOm instructions. Another

saving is in the reduction of the computer time required to perform the operations.

INSTRUCTION OPERATION MNEMONIC

SHm - (m)--+--rX; (rA) + (rX)-+-rA; (rA}-+-m Subtract & Hold

Subtract (m) from (rA). Transfer the difference to m.

The mnemonic is to subtract (m) from (rA) and hold the difference in rA. The com­

puter executes the Slim instruction the same way as it .executes the AHm instruc­

tion except that minus (m) are transferred to rX.

Using the AHm instruction, the coding for the flow chart in figure 5-5 might be as

follows.

97 UNIVAC®II

DATA AUTOMATION SYSTEM

0000 READ } DATA

CD 0001 BOOO07
AHOO03

0002 LOOO08

read data

i : 60 m rX; (rA) +{rX)~rA; (rA) .. m

QOOO05
0003 [B01878

A01879] }
0004 AHOO06

S + Ri S
m+-rX; (rA) + {rX) rA; {rA~m

UOOO01
0005 500006 S--+-SCP

900000 stop

0006 [C--,
<----,] } S

0007 000002
000002

constants
0008 B01940

A01941

The steps in this coding and the steps in the flow chart are not in the same se­

quence, and the summation step is not even the same. However, the two approaches

are logically equivalent and lead to the same result. It is not necessary that the

coding steps follow the flow chart slavishly; it is only required that the coding

accomplish the same purpose as the flow chart. Neither is it necessary that the

flow chart reflect in complete detail the steps in the coding. Actually, such a i

situation is generally impossible since at the flow charting stage, it is not likely

that the exact steps in the coding can be predicted. The only requirement is that

both the flow chart and the coding solve the problem - the flow chart, logically; the

coding, on the computer. If a flow chart were to reflect the above coding, it would

be as follows.

LEGEND

I '"' -I
S 0

R - SET OF RECEIPT AMOUNTS
R i - i TH AMOUNT IN R, I • I ••••• 60

FIGURE 5. 11

98

S+R i +R i +1"-----" S

STUDENT t:XERCISES

1. Reading the data s,tores 60 quantities of form

± QQQQQQQQQQQ"

in cells 1880 -1939. Print the number of negative quantities.

2. Reading the data stores

1. a pay of form

oooqpoPPPPPP

in cell 1880

and 2. ten deductions of form

OOOOOOOOODOO
A ,

in cells 1881 - 1890.

Each deducjion is processed as follows. If the deduction will not reduce the pay

below $15, it is applied. If the deductien will reduce the pay below.$15: it is not·

applred .. l?~t is printed in~te.ad. When all deductions have- been processed, print the
pay. '\

3. Reaaing the data stored 60 SJuantities of form.

OOOOOOQQQQQQ 1\

in cells 1880 -1939. Print the subtotal of each group of ten quantities and

the total of the quantities.

FUNCTION TABLE LOOK-UP

ILLUSTRATIVE EXAMPLE

Reading the data stores

1. an employee's base pay of form

in cell 1880,

99
UNIVAC®//

DATA AUTOMATION SYSTEM

2. the employee's shift of form

OOOOOOOOOOOS

in cell 1881, where S is a key and can take values 1-6,

3. six percentages of form

<},.PPPOOOOOOOO

in cells 1821 - 1826.

The employee is paid a shift differential, each shift drawing a different percentage

of base pay. The shifts and the cells in which the applicable percentages are

stored are in the following relationship.

SHIFT

1

2

3
4
5
6

Print the pay in form

CELL

1821
1822

1823

1824

1825

1826

OOOOOOAAAJ\AA

The problem could be solved by testing the shift key against each possible value,

and on the basis of the tests, choosing the appropriate percentage. However, if this

approach were used, the majority of the coding would be concerned, not with the

problem of computing the pay, but with choosing the appropriate percentage, which

is merely preparatory to the problem solution. The following approach eliminates

this disadvantage. The table in the example shows that the shift key is in a one

to one relationship with the units digit of the address of t·he cell in which the

appropriate percentage is stored. If S represents the shift key; and m, the address

of the appropriate cell; the following holds.

m = 1820 + S

This relationship, or function, can be used to derive the appropriate cell directly
from the shift key.

100

0000 READ
DATA read data

0001 B01881
AOOOO6 Derive cell from shift.

0002 COOO03 ,
::>

0003 I L01880
M0182S I Print pay.

0004 C01882
501882

0005 900000 stop
c

)
0006 L01880 } M01820.

constant

Since this coding uses a function to look up the appropriate percentage from a

table, it is an example of the technique called H function table look-up". Function

table look-up is a programming principle that makes use' of a relationship between

the data and the addresses of the cells in which the data is stored to increase

computer efficiency with respect to the conservation of both memory space and

computer time.

FUNCTION TABLE LOOK-UP IN FLOW CHARTS

If a capital letter is used to represent the table, the table entries can be represent­

ed by subscripts. The entry desired depends on the argument with which the table

is entered. If P represents the percentage table in the above example; and S, the

shift key; the entry desired can be represented as P s .

READ DATA

LEGEND

S - SHIFT
P - A SET OF PERCENTAGES
PI - TH E I TH PERCENTAGE IN P, I == I, ••• , 6
B - BASE PAY

FrGURE 5 .. 12

101
UNIVAC@/I

DATA AUTOMATION SYSTEM

SHIFT INSTRUCTIONS

n is used to represent a variable second instruction digit.

INSTRUCTION OPERATION

Onm Shift (rA), excluding sign, n position left.

With the exception of the sign digit, shift (rA) left n

digit positions. Transfer zeros to the vacated positions.

When executing the Onm instruction, the computer ignores m. Characters shifted

beyond the capac it) of rA are lost.

INSTRUCTION OPERATION

-nm Shift (rA), excluding sign, n positions right.

With the exception of the sign digit, shift (rA) right n digit positionso

Transfer zeros to the vacated positions.

When executing the -nm instruction, the computer ignores nL Characters shifted

beyond the capacity of rA are lost.

rA loll121 alili AIBI clol9161 al

0 4 0 0 0 0

rA loiAIsiclol9161aloioioioi

7 0 0 0 0
rA lololololololololAIBlclol

FI'GURE 5. 13

INSTRUCTION OPERATION

;nm Shift (rA) left n positions

Shift (rA) left on digit positions. Transfer zeros to the vacated positions.

When executing the ;nm instruction, the computer ignores m. Charcters shifted be­

yond the capacity of rA are lost.

102

INSTRUCTION OPERATION

. nm Shift (rA) n positions right .

Shift (rA) right n digit positions. Transfer zeros to the vacated positions.

When executing the .nm instruction, the computer ignores m. Characters shifted be­

yond the capacity of rA are lost.

• 1510101010J

· 81 010 1 0 1 0J

FIGURE 5·14

EXAMPLE

Reading the data stores

1. the weight, in pounds, of a package of form >

OOOOOWW.W~OOO

in cell 1820

and 2. 60 shipping rates in dollars and cents per pound, of form

o ~RROOOOOOOO

in cells 1900 - 1959.

103
UNIVACCBl/l

DATA AUTOMATION SYSTEM

For WEIGHT

0000 - 0099

0100 - 0199

0200 - 0299

5900 - 5999

apply rate stored in CELL

1990

1901

1902

1959

Print the cost to ship the package.

FLOW CHART

CODING

READ DATA

LEGEND

W - WEIGHT
R - A SET OF RATE ITEMS
Rj - THE iTH ITEM IN R, i

FIGURE 5·15

I , ••• , 60

The table in the example shows that the thousands and hundreds digits of the

weight are in a one to one relationship with the tens and units digits of the address

of the cell in which the appropriate rate is stored. Thus, the address of the appro­

priate cell is 1900 added to the two most significant digits of the weight. Dividing

the weight by 100 will give the quantity to be added to 1900, since the table in­

tervals are 100 pounds. However, since the weight may not be multiple of 100, the

quotient may also contain a fractional part. If the weight were 4627,

4627
100

46.27

t t fractional part

~ntegral part

Thus if W IS the weight, the quantity to be added to 1900 is the integral part of

104

represented b}'

W

100

If m represents the appropriate cell, the function is

m = 1900 +~)
\100 IP

If the computer divides the weight by 100, both the integral and fractional parts of

the quotient will be transferred to rA. The parts might be separated by use of a

shift instruction.

In the following coding no divide instruction is actually used, since division by

100 can be performed by moving the assumed decimal point two positions to the

left.

0000 READ } DATA
read data

0001 801820
1". ~

50000
0002 AOOO06

COOO03
0003 E1820

M019wwi
Rw W SCP

0004 C01821

501821
0005 900000 stop

000000
0006 L01820 }

M01900
constant

EXAMPLE

Reading the data stores

10 the weight in pounds of a package of form

OOOOWWWWW~OOO

in cell 1820

105 UNIVAC®//

DATA AUTOMATION SYSTEM

and 2. 60 shipping rates per pound of form

o RARROOOOOOOOO

in cells 1900 - 1959

For WEIGHT apply rate stored in CELL

00000 - 00249

00250 - 00499

00500 - 00749

14750 - 14999

1900

1901

1902

1959
Print the cost to ship the package.

FLOW CHART

CODING

See Figure 5-15

If W represents the weight;and m, the appropriate cell; the function i~

Om = 1900 + l~)
'250 IP

In the following coding a multiply rather than a divide instruction is used, because

for a known number, it is al ways faster for the computer to multiply by the recipro­

cal of the number than to divide by the number itself.

0000 READ }
DATA

read data

0001 L01820

POOO06

0002 AOOO07

COOO03 Rw W SCP

0003 E1820
MOl 9;;]

0004 C01821

501821

0005 900000 stop
L..)

0006 000000

400000 constants

0007 L01820

M01900

106

STUDENT EXERCISES

1. Reading the data stores

DATA

Quantity A

Quantity B

FORM

±AAAAA~OOOOO

±OOOOO B B B B B B"

Print the sum of the quantities in form

+OOOOSSSSSSS"

2. Reading the data stores three quantities, A, 13 and C, of form

in cell 1880. Print the quantities, each in form

OOOOOOOOQQQQ"

SUMMARY

CELC

1880

1881

A word is only treated as an instruction pair if and when it is transferred to the

Control Unit. At other times it has the same properties as all Univac words.

ITERATIVE CODING: the method of processing a set of units by modifying the in­

structions which refer to the first unit and repeating the

instructions.

IIi + l-"'i)

represents the ith unit of set D:

the assertion flag indicates that the initial

value of i is 1.

Select the next unit in the set

~if i = 1, 2, 3, ... ,L; i = L indicates that the last unit has

-l ~'f:. been processed.

107
UNI VAC® II

DATA AUTOMATION SYSTEM

FUNCTION TABLE LOOK·UP:the technique of locating an entry in a stored table

by means of some function between the address of the entry and the entry. In a

flow chart Ps might indicate the desired shift differential, S, in a table P.

Instructions

AHm: (m)----....rX·, (rA) + (rX)--....... rA, m

SlIm: -(m)~rX; (rA) + (rX)~rA, m

.nm: shift (rA) right n places, including sign

- nm: shift (rA) right n places, excluding sign

; nm: shift (rA) left n places, including sign

Onm: shift (rA) left n places, excluding sign

108

chapter 6

I tern Processing

THE ITEM

A unit of data is called an item. For example, each delinquent account number in

the set of delinquent account numbers in the example on page 88 is a unit of data,

or an item.

THE FIELD

Up to this point an item has been a single piece of information. In general, an item

consists of more than one piece of information, called fields, and is generally· com­

posed of more than one word. An inventory item may contain at least the following

fields.

1. Stock number.

2. Description

3. On hand quantity

4. On order quantity

5. Minimum requirements

6. Unit price

109 UNIVAC®/I

DATA AUTOMATION SYSTEM

An inventory item might have the form

word 0: NNNNNNNNNNNN
1 : DDDDDDDDDDDD
2: 01 IHHHHHII 0000

" 3: o OOOOOOO,pOOO

4: ORRRRRRROOOO
/\

5: OP~PPPOOOOOO

where N - Stock number

D - description

II - on hand quantity

0 - on order quantity

R - minimum requirements
p - unit price

REPRESENTING FIELDS ON FLOW CHARTS

Fields are represented by superscripts to the item symbol. If I IS the set of In­

ventory items; and Ii, tht~ ith item in I,

I~ is the stock number of Ii
1

I~ - tbe description of Ii
1 •

I: I - on hand quantity of Ii
1

{l _ on order quantity of Ii
1

Ir:t - minimum requirements of Ii
1

P I. - unit price of Ii
1

WRITING DATA

Up to this point problems have been such that the results of processing, or output

data, have been small in quantity, and the SCP has been used to print the output

data. Generally, output is large, and printing it directly from the computer would

be inefficient, since a printer operates much more slowly than a computer.

110

Computer output is generally recorded on tape. There are instructions, called write

instructions, which when executed, perform the writing. Write instructions will not

be described here. Instead, writing data will be indicated by the words, "Write

Datau
•

Just as it is generally inefficient to read input data an item at a time, it is general~
ly inefficient for a computer to write output an item at a time. Instead, output

items are grouped in the memory and are written on tape as a group.

ILLUSTRATIVE EXAMPLE

Reading the data stores, in cells 1880-1939, 12 five word job items of the form:

where N -
C -
L -
M -
0 -

job number

contract price

labor cost

material cost

overhead cost

NNNNNNN 00000
OOOOOOOCCCCC

1\

0000000 L L LL L
1\

0000000 MMMMM
" 000000000000
A

For each job item produce a two word profit item of form:

where N - job number

A - profit

Write the profit items.

NNNNNNNOOOOO

0000000 AAAAA
A

111
UNIVAC®11

DATA AUTOMATION SYSTEM

FLOW CHART ,= ,

LEGEND

J - SET OF JOB ITEMS

J I - I TH I TEM III J, , • ', ••• , 12
J1 - lUMBER OF J,
Jy - PR ICE O.F J,
JT - MATERIAL COST OF J,
J~ - LABOR COST OF J I
Jf - OVERHEAD COST OF J I
P - SET OF PROFIT ITEMS
PI - I TH ITEM P, I • I, ••• , 12
p1 - lUMBER OF PI
pT - PROFIT OF PI

CODING

0000 READ
DATA

C0 0001 [B01880
C01940]

0002 [B01881
S01882]

0003 [S01883
S01884]

0004 [C01941
BOOool]

0005 LOOO13
QOO011

0006 AOOO14
COOO01

0007 BOO015
AHOO02

0008 BOO015
AHOO03

0009 BOOO04
AOOO16

0010 COOO04
UOOO01

}
}

}

FIGURE 6. 1

read data

J~
N

.... Pi

eLM 0 A
Ji-Ji-Ji-Ji "'P i

i : 12

i + 1 i

112

0011 WRITE
DATA

0012 900000

'----->
0013 B01935

C01962
0014 000005

000002

0015 000005
000005

0016 000002

~

WORKING STORAGE

} write data

stop

constants

A considerable portion of the above coding is composed of the instructio'ns in cells

0004-0010, the instructions that alter the addresses of the processing instructions.

This alteration is necessary so that after processing one item, the next will be

processed. This set of instructions is called the item advance coding. The reason

for the many instructions in the item advance coding is that each time an item is

addressed by a processing instruction, that address must be modified to refer to

the next item. The more an item is addresse d in the processing, the longer the

item advance coding will become. This disadvantage is removed by using working

storage.

Using the previous method of item advance, the processtng coding IS initially

directed toward the first item in the set.

PROCESSING

FI'GURE 6-2

ITEM q. ITEM 6

When the first item has been processed, the direction of the processing is changed

from the first to the second item.

PROCESSING

FIGURE 6 - 3

ITEM I ITEM 3 ITEM q. ITEM 6

113 UNIVAC®//

DATA AUTOMATION SYSTEM

When the second item has been processed the direction of the processing is changed

to the third item, then the fourth item, etc.

A different approach to this problem is as follows. Initially the processing is direct­

ed toward the first item as shown in Figure 6-2. When the first item has been 'pro­
cessed, instead of changing the direction of the processing to the second item,

the second item is transferred to the location of the first.

PROCESSING

ITEM ij ITEM 5

FI'GURE 6·4

Thus, the second item can be processed with the same set of instructions. When

the second item has been processed the third item is transferred to the first item

location, etc.

PROCESSING

ITEM ij ITEM 6

FI'GURE 6.5

The area of the memory toward which the processing is directed is called working

storage, since it is the area in which the item being processed.

114

The area in which items to be processed are stored is called the input area;, the

area in which the items resulting from processing are stored, the output area.

Although working storage areas can be independent of the input and output areas,
• this situation is not necessarily the case. The first item location in the input area

and the last item location in the output area are generally available for use as

working storage areas, and for conservation of memory space, these locations are

generally used. '

By using working storage, the number of times an item is addressed in the pro­

cessing has no affect on the amount of item advance coding. This amount is small,

since it takes few instructions to move an item to working storage.

ITEM REGISTERS

To facilitate the movement of items, the computer has two item registers: register

W [rW], which has a nine word capacity, and register Z [rZl, which has a 60 word

capacity. Register W is made up of nine cells, each of w hic h has a one word

capacity. Register Z is made up of 60 such cells.

INSTRUCTION OPERATION

Vnm (m, ... , m + n - l)~ rW

Transfer the contents of n consecutive memory cells, starting with m, to the

first n cells of rW.

INSTRUCTION OPERATION

Wnm (rW)---,liIo-m, ... , m + n - 1

Transfer the contents of the first n cells of rW to consecutive memory cells
starting with m.

If the execution of a Vnm instruction is followed by the execution of a Wnm in­
struction, and if the second instruction digit is the same in both instructions, the

execution of the Wnm instruction will store the words in the same sequence that

the execution of the Vnm instruction selected them. The cases where the second

instruction digit is not the same in each instruction is explained in a later chapter.

UNIVAC®II

DATA AUTOMATION SYSTEM

v 5 1 8

1880 123 ij 5 6 7

1881 000 0 0 0 0
1-. __ •

1882 000 0 0 0 0

1883 0 0 0 0 0 0 0
r"

1884 0 0 0 0 0 0 0
.....

1885 2 3 ~ 5 6 7 8
--

1886 0 0 0 0 0 0 0
~"

1887 0 0 0 0 0 0 0 _.
1888 0 0 0 0 0 0 0

1889 0 0 0 0 0 0 0

1880 J 2 3 ij 5 6 7
f-.

1881 0 0 0 0 0 0 0
i--"

1882 0 0 0 0 0 0 0
i---

1883 0 0 0 0 0 0 0

1884 0 0 0 0 0 0 0

1885 2 3 It. 5 6 7 8

1886 0 0 0 0 0 0 0

1887 0 0 0 0 0 0 0 --
1888 0 0 0 0 0 0 o
1889 0 0 0 0 0 0 0

8

0

8

I

J

J

0

9

J

J

J

0

8

J

I

J

0

9

I

5

0 0 0 0

7 6 5 ij

J 2 3 ij

2 3 ij 5

3 ij 5 6

0 0 0 0 --
8 7 6 5

ij 5 6 7
"-5 6 7 8

6 7 8 9

0 0 0 0

7 6 5 ij

J 2 3 ij
... _--

2 3 " 5 .-
3 ij 5 6

0 000

8 765 -
It. 6 6 7 .--
5 6 7 8

678 9

BEFORE
EXECUTION

--

+
~

....
II'"

AFTER

EXECUTION

9

8

7

6

5

4

3

2

9

8

7

6

5

4

3

2

FIGURE 6.6

116

rW

J 2 3 " 5 6 7 8 9 0 I 2

2 3 " 5 6 7 8 9 0 J 2 3

3 " 5 6 7 8 9 0 J 2 3 "
" 5 6 7 8 9 0 J 2 3 " 5

5 6 7 8 9 0 J 2 3 ij 5 6

6 7 8 9 0 I 2 3 " 5 6 7

7 8 9 0 J 2 3 " 5 6 7 8

8 9 0 J 2 3 " 5 6 7 8 9

9 0 J. 2 3 " 5 6 7 8 9 0

rW

I 2 3 " 5 6 7 8 9 0 J 2

2 3 " 5 6 7 8 9 0 J 2 3

3 " 5 6 7 8 9 0 I 2 3 It.

It. 5 6 7 8 9 0 J 2 3 " 5

2 3 It. 5 6 7 8 0 0 0 0 0

0 0 0 0 0 0 0 9 8 7 6 5

0 0 0 0 0 0 0 I " 5 6 7

0 0 0 0 0 0 0 J 5 6 7 8

0 0 0 0 0 0 0 J 6 7 8 9

8 I 0 I

rW

1880 I 2 3 ~ 5 6 7 0 0 9 I 2 3 ~ 5 6 7 8 9 0 I 2

1881 0 0 0 0 0 0 0 8 7 8 2 3 ~ 5 6 7 8 9 0 I 2 3

1882 0 0 0 0 0 0 0 I 7 3 ~ 5 6 7 8 9 0 I 2 3 ~
BEFORE

1883 0 0 0 0 0 0 0 2 EXECUT I ON 6 ~ 5 6 7 8 9 0 I 2 3 ~ 5

1884 0 0 0 0 0 0 0 I 3 5 2 3 ~ 5 6 7 8 0 0 0 0 0

1885 2 3 ~ 5 6 7 8 0 0 4 0 0 0 0 0 0 0 9 8 7 6 5

1886 0 0 0 0 0 0 0 9 8 3 0 0 0 0 0 0 0 I ~ 5 6 7

1887 0 0 0 0 0 0 0 ~ 2 0 0 0 0 0 0 0 I 5 6 7 8

1888 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 I 6 7 8 9

1889 0 0 0 0 0 0 0 6

rW

1880 2 3 ~ 5 6 7 8 0 0 0 0 9 I 2 3 ~ 5 6 7 8 9 0 I 2

1881 0 0 0 0 0 0 0 9 8 7 8 2 3 ~ 5 6 7 8 9 0 I 2 3

1882 0 0 0 0 0 0 0 ~ 5 7 3 ~ 5 6 7 8 9 0 I 2 3 ~

1883 0 0 0 0 0 0 0 5 6 6 ~ 5 6 7 8 9 0 I 2 3 ~ 5

1884 0 0 0 0 6 7 5 2 3 ~ 5 6 7 8 0 0 0 0 0

1885 5 6 7 8 0 0 0 AFTER 4 0 0 0 0 0 0 0 9 8 7 6 5

1886 0 0 0 0 9 8 7 EXECUT I ON 3 0 0 0 0 0 0 0 I ~ 5 6 7

1887 0 0 0 0 0 0 0 I ~ 5 2 0 0 0 0 0 0 0 I 5 6 7 8

1888 0 0 0 0 0 0 0 5 6 0 0 0 0 0 0 0 I 6 7 8 9

1889 0 0 0 0 0 0 0 6 7

FIGURE 6.7

117 UNIVAC®11

DATA AUTOMATION SYSTEM

INSTRUCTION OPERATION

Ynm (m, ... , m+ IOn - l)~rZ

Transfer the contents of IOn consecutive memory cells, starting with m, to the
first IOn cells of rZ.

y

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1890

1891

1892

1993

1894

1895

1896

1897

1898

1899

1 1 8 9 o 1

A A A A A A A A ~-~ .. !..~
B B B B B B B B B B B B

-~"----."-~-"--.----,-------'-~-

C C C C C C C C C C C C --"---------"-----
D D D D D D D D D D D D

--,-------,-"-'-'".~--

E E E E E E E E E E E E

F F F F F F F F F F F F

G G G G G G G G G G G G

[~~~ H H H H H H H H H H

I I I I I I I I I I I I

J J J J J J J J J J J J

.~ ;;:m:;~'

A A A A .A~""A_,_!"."A....,"LL

~".,"lL.,Jt"~B_p_,.]-,lJL."~--ILJ!-!LJL-

1-,"f.",f".".~~~"C~".f_.L~",.~~"~ C c C
,'-' .. _.-,-

D D D D D D D D D D D D

r E E E E E E E E E E E E

F F F F F F F F F F F F

L G G G G G G G G G G GG-

[H H H H H H H H H H H H

I I I I I I I I I I I I I

J J J J J J J J J J J J

AFTER
EXECUT I ON

BEFORE
EXECUTION

I----..

13

12

11

1 o

1

1

1

~
~

~

-......
~ --.

-..
..
. ..
-......
-..

9

8

7

6

5

4

3

2

3

2

o

9

8

7

6

5

4

3

2

FIGURE 6·8

113

rZ
~ - -666 6 66 6 6 6

6 6 6 6 5 5 5 6 6

~ ~ ~ ~ ~ ~ ~ ~ ~

3 3 3 3 3 3 3 3 3

2 2 2 2 2 2 2 2 2

I I I I I I I I I

0 0 0 0 0 0 0 0 0

Z Z Z Z Z Z Z Z Z

Y Y Y Y Y Y Y Y Y

X X X X X X X X X

W W W W W W W W W

V V V V V V V V V

U U U U U U U U U

rZ
~-6 6 666 6 666

5 5 556 5 6 6 6

~ ~ ~ ~ ~ ~ ~ ~ ~

A A A A A A A A A

B B B B B B B B B

C C C C C C C C C

D 0 D D D D 0 D D

E E E E E E E E E

F F F F F F F F F

G G G G G G G G G

H H H H H H H H H

I I I I I I I I I

J J J J J J J J J

~

6 T 6

6 5 5

~ ~ ~

3 3 3

2 2 2

I I I

0 0 0

Z Z Z

Y Y Y

X X X

W W W

V V V

U U U

-
6 6 6

5 5 5

~ ~ ~

A A A

B B B

C C C

D D D

E E E

F F F

G G G

H H H

I I I

J J J

INSTRUCTION OPERATION

Znm (rZ)--....m, ... , m + IOn - 1

Transfer the contents of the first IOn cells of rZ to consecutive memory cells

starting with m.

z 1 1 8 8 I 0 I

1880 KKK KKK KKK K

1881 l l l l l l l l l l

1882 M M M M M M M M M M

1883 N N N N N N N N N N N N

1884 0 0 0 0 0 0 0 0 0.0 0

1885 P P P P P P P P P P P

1886 Q Q Q 0 Q Q Q Q Q Q Q
1887 R R R R R R R R R R

1888 S S S S S S S S S S S

1889 T T T T T T T T T T T

1880 A A A A A A A A A A

1881 B B B B B B B B B B

1882 C C C C C C C C C C

1883 0 0 0 0 0 0 0 0 0 0 0 0

1884 E E E E E E E E E E E E

1885 F F F F F F F F F F F F

1886 G G G G G G G G G G G G

1887 H H H H H H H H H H H H

1888 I

BEFORE
EXECUT I ON

13

12

11

.----__ 10

.----- 9

.----- 8

.... ---7
.----6

5

4

3

2

13

12

11

10

9

8

7

6

5

1889 J J J J J J J J J J J J #4-----.1 4

AFTER
EXECUT I ON

FIGURE 6.9

119

rZ - - -- -
6 6 6 6 666 6 6 6 6 6

5 5 5 5 5 5 5 5 5 5 5 5

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

A A A A A A A A A A A A

B B B B B B B B B B B "B

C C C C C C C C C C C C

0 0 0 0 0 0 0 0 0 0 0 0

E E E E E E E E E E E E

F F F F F F F F F F F F

G G G G G G G G G G G G

H H H H H H H H H H H H

I I I I I I I I I I I I

J J J J J J J J J J J J

rZ
~~

6 6 6 6 6 6 6 6 6 6 6 6

5 5 5 5 5 5 5 5 5 5 5 5

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

A A A A A A A A A A A A

B B B B B B B B B B B B

C C C C C C C C C C C C

0 0 0 0 0 0 0 0 0 0 0 0

E E E E E E E E E E E E

F F F F F F F F F F F F

G G G G G G G G G G G G

H H H H H H H H H H H H

I I I I I I I I I I I I

J J J J J J J J J J J J

UNIVAC®//

DATA AUTOMATION SYSTEM

If the execution of a Ynm instruction is followed by the execution of a Znm lR­

struction, and if the second instruction digit is the same in both instructions, the

execution of the Znm instruction will store the words in the same sequence that

the execution of the Y nm instruction selected them. The cases where the second
instruction digit is not the same in each instruction is explained in a later chapter.

The following coding uses working storage to solve the preceding example.

0000 READ

o 0001

DATA
B01880

C01962
0002 B01881

S01882
0003 S01883

S01884
0004 C01963

B00007
0005 L00012

Q00010
0006 V21962

000000
0007 W21940

V51885
0008 W51880

A00013
0009 C00007

UOOOOI
0010 WRITE

DATA
0011 900000

c.
)

0012 W21962

V51940
0013 000002

000005

}
}

}

}

}

read data

N N J P.
1 1

i : 12

Output WS-...output area

Input item input WS

write data

stop

constants

The item advance coding is in cells 0004-0009. The variable word is in cell 0007.
The BOrn, LOrn and QOm instructions in cells 0004 and 0005 test i against 12. The
variable word will be

W21962V51940

immediately after the last item has been processed. The Vnm instruction in cell

0006 and the Wnm instruction in cell 0007 transfer the output item just produced

from output working storage to its proper location in the output area. The V nm

instruction in cell 0007 and the Wnm instruction in cell 0008 transfer the next in­

put item from its location in the input area to input working storage. The AOm and

COm instructions in cells 0008 and 0009 increase the addresses of the instructions

it:J. the variable word. The VOm instruction in cell 0009 transfers control to· the
processing instructions.

STUDENT EXERC ISE

Reading the data stores, in cells 1880-1939, 15 four word inventory items of form

where N - stock number

H - on hand quantity

o - on order quantity

OOOOOONNNNNN

0000000 HHHHH"

0000000000001\

" 000000,0 RRRRRI\

R - minimum required quantity

and,in cells 1820-1849, 15 two word sales items of form

where N - stock number

Q - sales quantity

OOOOOOONNNNN
OOOOOOOQQQQQI\

The inventory item in cells 1880-1883 and the sales item in cells 1820 and 1821

have the same stock number; the item in cells 1884-1887 and the item in cells

1822 and 1823 have the same stock number; the item in cells 1888-1891 and the

item in cells 1824 and 1825 have the same number; and so on. Write the updated

inventory items. If the sales quantity for an inventory item reduces the sum of the

on hand ~nd on order quantities below the required quantity, print the stock number

of the inventory item and the quantity needed to bring the sum back up to the re­

quired quantity in form

OOOOOODDDDDD"

121
UNIVAC®II

DATA AUTOMATION SYSTEM

FIELD SELECTION INSTRUCTIONS

INSTRUCTION

FOm

INSTRUCTION

GOm

OPERATION

(m)~rF

Transfer (m) to rF, or fill rF with (m).

OPERATION

(rF)~m

Transfer (rF) to m.

MNEMONIC

Fill

A word may contain more than one field. The shift instructions are one means of

separating one field of a word from others. Field selection instructions are used

for the same purpose, but are faster and more versatile.

Starting with the ni" and moving up the collation sequence of characters, every

other character is called odd. The remaining characters are called even. Recall

that the relative magnitude of characters can be determined by reading down the

chart, which is figure 2-18.

INSTRUCTION OPERATION MNEMONIC

EOm "oddU characters of (rF) extract (m)~rA Extract

Replace the characters of (rA) that correspond to the odd characters of (rF)

with the corresponding characters of (m), or extract (m) into rA.

1 8 8

1880 I A I DID I R I E I sis I-I " I ·1iO
rA

o

FI GURE 6·10

1880

rA Icl"TlvI61"sI61<'l16161<'l1

rF I 0 I 0 I 0 10 10 1010 I 0 II II IJI q

If an F is coded in the second instruction digit of a BOrn, AOm, SOm, LOrn, POrn,

MOm, NOm or DOm instruction, the instruction will be executed as usual except

122

that, of the 12 characters of the word being transferred from the memory to the

arithmetic unit, only those characters corresponding to the odd characters of (rF)

will be transferred; zeros will substituted for the remaining characters.

INSTRUCTION OPERA TION MNEMONIC

BFm "odd" characters of (rF) extract (m)--+--rA, rX Bring Field
Select

Transfer to rA and rX the characters of (m) that correspond to the odd 'characters

of (rF). Transfer zeros to the other digit positions of rA and rX.

B F 1 8 8 o 1880

rA I 012131~15161718191011m

rX I 0131~151s171819101q2131

rF 1IIIIIIIIIIljoioioioioioi

1880 I 0 II I 2131 ~ I 51 sl71s1 91 0 II

rA CiliITI:iliIili~n---

rX CiliITI:iliIili~n---
FIGURE 6· 11

INSTRUCTION OPERATION

EFm "even" characters of (rF) extract (m)~rA; (rA)~m

Replace the characters of (rA) that correspond to the ~ characters of (m).

Transfer (rA) to m.

E F

1880

rA

rF

1 8 8 o

1010101010101010111111111
FIGURE 6·12

123

1880

rA I A I DID I R I E I sis I-I N 1 .1 y I .1

rF 1010 I 0 10 10 I 0 1 0 10 I II q II q

UNIVAC®//

DATA AUTOMATION SYSTEM

The field selection instructions facilitate the computerts ability to handle' data

regardless of how the fields of an item are distributed over words. Consequently,

fields can be packed into an item, thus reducing the item size. This reduction re­

sults in less tape space per item.

ILLUSTRATIVE EXAMPLE

Reading the data stores, in cells 1880-1939. 20 three word job items of form

where N - job number

C - contract price

L - labor cost

M - material cost

° -overhead cost

NNNNNNNOOOOO
o O.cCCfCLL~LL
o OMMMAMMOOOAOO

For each job item produce a one word profit item of form

where N - job number

A - profit

Write the profit items.

FLOW CHART
i • I

LEGEIID

J - SET OF JOB ITEMS
J I - ITII ITEM III J, I • 1, ,20
J1 - JOB IIUMBER OF J I
J~ - PRICE OF J I
Ji - LABOR COST OF J I
JT - MATERIAL COST OF J,

NNNNNNNAAAAA
A

FIGURE 6· 13

124

Jf - OVERHEAD COST OF J I
P - SET OF PROFIT ITENS
PI - I TH I TEN III P, I • 1, ••••• , 20
p1 - JOB IIUMBER OF PI
pT - PROFIT OF PI

CODING

0000 READ } read data

0
DATA.

0001 B01880 } 1~.....,.;P~
C01959

1 1

0002 FOOOIJ 001111100000 ~ rF

BF1881 OOCCCCCOOOOO~rA, rX

0003" , S.F1882 (r A) - 1~ A

;'50000 Ie: - 1~ - 11: - 1<? ~p~
0004 F00014 ' 1 1 1 1 1

SF1881
L

(rA) - 1 t A

0005 SF1882 (rA) - 1? A
EF1959 P~-IHll

J
0006 BOOO09

LOOO15
i : 20

0007 AOOO16
QOO011

0008 COOO09 i + 1 ~ i

B01959

0009 [C01939
V31880]

0010 W31880
UOOOOI

0011 WRITE } write data
DATA

0012 900000 stop
c.. ,

0013 001111
100000

0014 ~
011111 constants

0015 C01959
V31940

0016 000001
000003

STUDENT EXERCISES

1. Reading the data stores, in cells 1880 and 1881, two one word items of form

OAAAOBBHOCCC ..
1\ " "

125 UNIVAC®II

DATA AUTOMATION SYSTEM

where A, B, and C are numeric quantities. Print the sum of -the C fields in form

2. Reading the data stores

DATA

Quantity A

Quantity B

o 0 0 000 0 0 S S S SA

FORM

OOOA~AAOOOOO

OOOOOOBBBBBBA

Print the sum of the quantities in form

o 0 0 S S S S S S SAS S

CELL

1880
1881

3. Reading the data stores in cells 1880-1932; 30 two word census items of form

where S - state code

C - city code

A- age

M - marital status code

I - income bracket code

G - sex code

OSSOOOCCCCOO

OAAAOMOIOOOG

Print the number of single (marital status code S) females (sex code F), age 21

or older, living in Sheboygan (city code 1313), Wisconsin (state code 24), and

earning $10,000 or more (income bracket code U)~

4. Reading the data stores, in cells 1880-1939,30 two word inventory items ofform

where N - stock number

H - on hand quantity

o - on order quantity

NNNNNN 0 HHHBH"

OOOOOO"RRRRRRI\

R - minimum required quantity

and in cells 1820-1849, 30 one word sales items of form

where N - stock number

Q - sales quantity

NNNNNNOQQQQQ"

126

The inventory item in cells 1880 and 1881 and the sales item in cell 1820 have

the same stock number, the item in cells 1882 and 1883 and the item in cell 1821
have the same stock number, the item in cells 1884 and 1885 and the item in cell

1822 have the same number, and so on. Write the updated inventory items. If the

sales quS:ntity for an inventory item. reduces the' sum of the on hand and on order
quantities below the required quantity, print the stock number of the inventory

item and the quantity needed to bring the sum back up to the required quantity in
form -,

where N - stock number
D - quantity needed

~;. Design the following items:

1. Inventory item

FIELD

Stock Number
Description

Unit of measure
On-ha.nd amount
On-order amount
Minimum Reorder Level
Unit Price

2. Master Employee Item

FIELD

Badge N urn ber
S<;,>cial Security Number
Hourly rate of pay
Number of exemptions

Job description code

Year-to-date gross pay

Year-to-date FICA tax

3. Transaction Item

FIELD

Key
Transaction Code
Transaction Information

NNNNNNhDDDDD"

127

NUMBER OF CHARACTERS

8
24

1

5
5
5
6

S

NUMBER OF CHARACTERS

8

9
4
2

2

7

6

NUMBER OF CHARACTERS

8
4

12

UNIVAC®II

DATA AUTOMATION SYSTEM

SUMMARY

An item is a group of characters, usually several words, which completely defines

a unit of data.

A fiel~ of an item is a group of characters which defines one characteristic of an

item.

The notation for field U of the ith item in set D would be D y. i+l ... i still indicates

the selection of the next item, regardless of the item size.

Working storage is an area used to store one item for input or output advance, or

processing.

INSTRUCTIONS

Vnm: n words starting at m--+-rW

Wnm: n words from rW-...memory, starting at m

Y nm: IOn words starting at m--....rZ

Znm: IOn words from rZ memory, starting at m

FOOl: (m)--......rF

Gam: (rF)~m

Earn: (rF), "odd" characters, extract (m) rA

EFm: (r F), t t even" characters,extract (m)~rA, m

If an F is placed in the second instruction digit of an AOm, Bam, Dam, LOrn,

MOm, NOm, Pam or Sam instruction, the instruction will be executed as defined

except that only those characters in (m) which correspond to the odd characters

of (r F) will be transferred; zeros will be substituted for the remaining characters.

128

chapter 7

Subroutines and

Variable Connectors
COMMON SUBROUTINES

ILLUSTRATIVE EXAMPLE

Reading the data stores, in cells 1880-1939, 30 two word job items of form

OSLLLLLPPPPP
I\. 1\

o 0 MM~MM00<W0

where S - salesman code and can be

Print

and

A - if salesman A made the contract

B - if salesman B made the contract

P - contract price

L - labor cost

M - material cost

o - overhead cost

l.

2.
3.
4.

the gross sales of salesman A,

the number of contracts netting $250 or more made by A,

the gross sales of 8,

the number of contracts netting $250 or more made by B.

129 UNIVAC®//

DATA AUTOMATION SYSTEM

FLOW CHART

I .. I

Ga • Gb ~ Na • Nb • 0

~------------------~~ 2

LEGEND

J - SET OF JOB I T04S

J i - iTH IT04 IN J, I . I, ••• , 30

JS
;' I - SALESMAN OF J j

JI? -
I

PRICE OF J i

J? - OVERHEAD COST OF J i
JL

I - LABOR COST OF J I

JT - MATERIAL COST OF J I

FIGURE 7-1

CODING

0000 READ } DATA
read data

(0 0001 FOO031
BF1880

J~ : A
0002 LOO032 1

QOOO13
0003 BOO028

FOOO33 GB + J~--"GB
0004 AF1880 ,

COO028

130

0005 BF1880
SF1881

0006 ,50000
FOO034 J~ - J? - J~ - J~ : 249.99

0007 SF1880 1 1 1 1

SF1881
0008 LOO035

G)
TOO020

0009 BOO011

(
LOO036

i : 30
0010 AOO037

QOO024
0011 [V21882

W21880]
0012 COO011 i + .1~i

UOOOOI
0013 BOO027

(
FOO033

p
GA + J-C~GA

0014 AF1880
COO027

0015 BF1880
SF1881

0016 ,50000
FOO034 J~ - J? - J~ - J~ 0017 SF1880 : 249:99

1 .1 1 1

SF1881
0018 LOO035

TOO022
0019 (----:>

UOOO09
0020 BOO029

} AOO038 NA + l~NA
0021 COO029

UOOO09
0022 BOO030 } AOO038 NB + l~NB
0023 COO030

UOOO09
0024 500027 GA'~SCP

500029 NA~SCP

0025 500028 GB-"SCP
500030 NB~SCP

0026 900000 Stop
L.----'")

131 UNIVAC®//

DATA AUTOMATION SYSTEM

0027 [~] }
~--:>

GA
0028 [<-----J] } <----:> GB
0029 [L----;] } L----; NA
0030 [L----)

] } ~ NB
0031 010000

L-~

0032 OAOOOO

'----"J

0033 <-----;
011111

0034 001111
100000

0035 002499
constants

900000
0036 V21942

W21880
0037 000002

<-----J
0038 <-----J

000001

The coding in cells 0005-0008 is duplicated in cells 0015-0018. This duplication

can be eliminated, with the consequence that memory space will be conserved, by

means of the programming principle of the common subroutine.

In the flow chart the duplication is shown by the repetition of the relative magni­

tude test. This test can be made a common subroutine. The subroutine entrance,

or starting point, is represented by a triangle with an arrow leaving it; the exit,

by a triangle with an arrow entering it. Subroutine symbols are distinguished from

each other by letters, the letter used for a particular subroutine usually being a

mnemonic for the operation done by the subroutine. In the following the letter P is
used for (C profit" .

Whenever, on a logical line of flow, it is desired that a subroutine be executed

two concentric circles containing the letter of the subroutine are drawn. This

symbol means that, once the subroutine exit is reached, the logical line of flow

continues from the point where the subroutine was entered.

132

J~ - JO;- Jl;- J m: 249~.99

<

FIGURE 7-'2

For example, in the following flow chart (Figure 7-4) after the operation, G A + J~
1

~GA' the subroutine symbol

FIGURE 7.3 @
means tc execute subroutine P, and when the subroutine exit is reached, continue
with the operation, NA + l N A " •

...... ----....... ~2

LEGEIID

J - SET OF JOB ITEMS
J I - I TH I TEM III J, i .. I, ••• , 30

JT ~ SALESMAN OF J i
Jf - PRICE OF J 1
Jy - OVERHEAD COST OF J i
Jl - LABOR COST OF J i
J i - MATERIAL COST OF J 1

FIGURE 7.4

133
UNIVAC®//

DATA AUTOMATION SYSTEM

In coding from a flow chart containing common subroutines, every time the logical

line of flow encounters a subroutine symbol, it is necessary to code a VOm in­

struction to transfer control to the common subroutine entrance. When the common

subroutine exit is reached, another UOm instruction is needed to. transfer control

back to the point in the coding from which control was originally transferred. But

since the common subroutine may be entered from more than one point in the coding,

the address portion of the VOm instruction at the common subroutine exit cannot

be fixed, but must vary according to the point in the coding from which the common

subroutine was entered. For example, if a common subroutine can be entered by

means of a VOm instruction in cell 0005 and also by means of a VOm instruction

in cell 0010, the VOm instruction at the common subroutine exit must at times be

U00006, and at other times be U00011. In this situation the ROm instruction is use­

ful.

INSTRUCTION

ROm

OPERATION

OOOOOOVO(CC)~m

MNEMONIC

Record

Store a word consisting of six zeros, a U, a zero and the four least

significant digits of (CC) in m, or record OOOOOOUO(CC) in m.

o o 2 1

0021

cc [ITo 10 10 10 10 10 I 0 10 I 0 loFJ

FIGURE 7.5

Consider the following. (BTO has just been completed)

I 0 I 0 I 0 I 0 I 0 I ;'0 I 0 I 0 I 0 I 0 I 51
CR

IAlflllsisioicioiolol21s1
LH I RHI

rX rL rf

roJiliI 0 \ 0 \ 0 \ 0 \7\5\ 3\2\ 5\ \ 0 \ A \ 0 \ 0 \ 0 I 0 \ 0 I 0 \ 0 I 0 \ 0 I 0 I 10 \ 0 I 0 \ 0 I 010 \ 0 II II II \1 II I

0021~

1999c===J
FIGURE 7.6

134

On f3 Time On

SR CC CR

10 I 0 1010 10151 • 10101010101010101010108
LHI R"I

UNIT

rA rX rL I'f.

Lili:lolololololololololol 1010101010101017151312161 \oIAlolololololololololo\ 1010101010101011\111\1\11

~5 ~0021 uoo~ 1999 ['---__ :=J_---I
UNIT FIGURE 7.7

On y Time
SR CC CR

IIIPID 101010101 01 01 01 01 01 01 0161 I Rio 10 J 01 2111 u I 0 I OJ 0111 31
L I R I

CONTROL UNIT

rA rX rL rf

Roioioioioioiol 010101 ~ 1010101010101017hl312151 lolA 101010101010101010[01 101010101010101111\111111

ARITHMETIC UNIT

0005 [R'O'M;;- U 00 0 I 3 1
FIGURE 7.8

On 8 Time

SR CC CR

IIIIUI ,0101910101 oLol 01 01 01 113 IRIololol2111uloioiol q 31
LHI RHI

UNIT

rA rX

lololololololololololol~ lo10101010101017/61s121sl
rL rF

~Ioioioioioioioiol I 0 I 0 I 01 01 ~ 0 I 0 II II II II III

ARITHMETIC UNIT
I

I

0005~1~
FIGURE 7.9

If cell 0013 were the entrance of a common subroutine; and cell 0021, the exit;" and

if the common subroutine were to be entered from cell 0005; the execution of the

135
UNIVAC®II

DATA AUTOMATION SYSTEM

UOm instruction transfers control to the common subroutine. The ROm instruction

executed on y Time guarantees that, when the common subroutine exit is reached,

the instruction pair

000000

·UOOO06

will be executed, transferring control to cell 0006, to continue the processing be-

gun before transferring to the subroutine.

0000 READ } read data
DATA

CD 0001 FOO029

} BF1880
J~ LOO030

A
0002

QOO08

0003 BOO026

} FOO031
GB + J1~B 0004 AF1880

COO026

0005 ROO021 } @) UOOO13
OOOOOOUO(CC~

0006 800028 } AOO032 NB + l~NB

0007 COO028

UOOO17

0008 IJOO025

} FOO031 p

0009 AF1880
GA + J i GA

COO025

0010 ROO021 } @) UOOO13 OOOOOOUO(CC)~

0011 BOO027 } AOOO32 NA + l--~··t{l\

0012 COO027

[?>
UOOO17

0013 BF1880

SF1881

0014 , 50000

FOO033 POL M

0015 SF1880
J i -Ji-J i -J i :249.99

SF1881

0016 LOO034

TOO021

136

@ 0017 BOOO19
LOO035

!
i : 30

0018 AOO036
QOO022

0019 C'21882
W218;]

0020 COOO19 i + l--.....i
UOOOOI

0021 [~ UOVAR~ ~
0022 500025 GA---+-SCP

500027 NA-"SCP
0023 500026 GB'-""SCP

500028 NB SCP

0024 900000 stop

L---:>
0025 [L--)

~ } GA

0026 [L---; L---;] } GB

0027 ~ ~J } NA

0028 r ~J NB

0029 010000 L---;
0030 OAOOOO

)

0031 L---;

011111
0032

000001
0033 001111 constants

100000
0034 002499

900000
0035 V21942

W21880
0036 000002

VARIABLE CONNECTORS

fhe example can be flow charted in another way. (The notation from G) to (1)

137 UNIVAC®//

DATA AUTOMATION SYSTEM

in figure 7-10 is incomplete}.

i = I
Ga = Gb = "a ~ "b = 0

READ DATA

J~ - J9 - J~ - Jm,' , , ,

+ I~i ~--~~

LEGEND

J - A SET OF JOB ITEMS

J i - THE ITH ITEM IN J, i • I, .•• , 30

J8 I - THE SALESMEN OF J i

Jf - THE PRICE OF J i
Jf - THE OVERHEAD COST OF J I
JL I - THE LA BOR COST OF J i

JT - THE MATERIAL COST OF J I

FIGURE 7.10

This flow chart has a point of indetermination at connector three. In some cases

the logical line of flow is to the operation, NA + l NA ; in other cases, to the

operation, NB + l~NB' Thus, connector three must be variable. That is, con­

nector three must act as a switch, sometimes switching the logical line of flow to

.138

one operation; sometimes, to the other - just as a railroad switch sometimes

switches a train to one track; sometimes, to another. A variable connector is

actually represented on a flow chart as a switch, with poles and a terminal. The

terminal is a connector with a subscript "v" to the number. The poles are con­

nectors with consecutive alphabetic subscripts to the number.

FIGURE 7.11

For clarity, the terminal of the variable connector should be symmetrical with the

poles.

For a variable connector to operate correctly, it must be set, just as a switch is

set. The setting of a variable connector is represented on a flow chart as a square,

called a set box, containing a period and the pole of the connector to be set. For

example, the set box

-~· I.3a -
FIGURE 7.12

means that, when the logical line of flow reaches the terminal of variable con­

nector three, it will be switched to pole a. Just as the controls that operate a

railroad switch may be separated from the switch by an intervening distance, the

set box that .sets a variable connector may be, and usually is, separated from the

variable connector by intervening operations. In the following flow chart, the test

for relative magnitude intervenes between the set boxes for variable connector

three and the variable connector itself.

139
UNIVAC®//

DATA AUTOMATION SYSTEM

j = I
Ga = Gb = "a = Nb = 0

READ DATA

+ I~i~--~~
LEGEND

J .. SET OF JOB ITEMS

J I .. I TH ITEM IN J, = " •••• 30
J!

I .. SALESMAN OF J i
J P ..

I PRICE OF J i
JO I .. OVERHEAD COST OF J j

J~ .. LABOR COST OF Jj

JT .. MATERIAL COST OF Jj

FIGURE 7-13

This flow chart is logically equivalent to the flow chart in figure 7-4 and can be

coded in the same way. The difference between the two is that one uses the pro­

gramming principle of the common subroutine; the other, the principle of tbe vari­

able connector. The programming principle of the variable connector is more

general than that of the common subroutine and is used many times when there

is np common subroutine. For example, it often occurs in a problem that for a

certain number of items to be processed a given operation m~st be performed, but

for the processing of the remainder of the items the operation is not necessary.

140

The operation can be removed from the processing coding by means of a variable

connector.

Variable connectors can be set by means other than the use of the ROm instruction.

Setting the variable connectors with nOm COm instruction pairs, the coding for

the exam!"lle might be as follows.

CD

0000 READ

0001 F00029

0002 L00030

0003 B00026

0004 AF1880

0005 £300032

0006 nF1880

0007 , 50000

0008 SF1880

0009 [L00034

0010 800012

0011

0012

0013

A00037

[V21SS2

C00012

0014 B00025

0015 AF1880

0016 000036

0017 L-----)

DATA

UF1880

Q00014

F00031

C00026

C00009

SF1881

F00033

SF1881

TOVAHJ

L00035

Q00022

UOOOOI

F00031

C00025

C00009

1)00006

} read data

J~ A

J~ - J<? - J1; - J~ :249.99
1 1 1 1

30

+ l--...i

.3a

141
UNIVAC®11

DATA AUTOMATION SYSTEM

® 0018 800027

I AOO038 NA + 1---NA
0019 COO027

UOO010

® 0020 BOO028 I AOO038 NB + l--+-NB
0021 COO028

UOO010
0022 500025 GA SCP

500026 NA~SCP

0023 500027 GB--"""'SCP
500028 NA-+-SCP

0024 900000 stop

[L-~
'----->

0025

~J } GA

0026 [~~ } ~J GB
0027 [~--:J

L---;] } NA

[~ 0028)] } NB

0029 010000
L---)

0030 OAOOOO
~

0031 <----;
011111

0032 LOO034
TOO020

0033 001111
100000

0034 002499 constants

900000
0035 V21942

W21880
0036 LOOO34

TOOO18
0037 000002

(
"/

0038 ~~

000001

142

In this coding variable connector three is embodied in the address part of the TOm

instruction in cell 0009. This address part varies between 0018 and 0020, depend­

ing on whether control is to be switched to pole a or b. The variable connector is

set to pole a by the BOrn COm instruction pair in cell 0016, to pole b by the pair

in cell 0005.

In some flow charts using variable connectors it occurs that initially a variable

connector should be set to some given state. This fact is indicated by showing the

notation for the setting of the variable connector, not in a set box, but in the as­

sertion flag.

STUDENT EXERCISE

Reading the data stores:

1. six ten word A items in cells 1880-1939

2. six ten word B items in cells 1820-1879

Each A item has for its first word a key, and the items are in ascending order by

key. Similar remarks hold for the B items. Create a set of 12 items, consisting of

the six A items and the six B items, which is in ascending order by key. (Such an

operation is called a "mergett
). Write the merged items.

SUBROUTINES

The coding that, when executed, performs a large operation is called a routine. The

coding that performs a payroll operation could be called a payroll routine.

The coding that, when executed, does a suboperation of a routine is called a sub­
routine. A payroll routine might consist of the following subroutines~

1. Determination of gross pay.

2. Determination of medical pay.

3. Determination of withholding tax.

4. Determination of FICA tax.

5. Determination of group insurance contribution.

6. Determination of union dues.

7. Determination of net pay.
8, Item advance.

143 UNIVAC®//

DATA AUTOMATION SYSTEM

Using the concept of the subroutine, a routine can be organized into

1. a set of subroutines,

and 2. a framework, or main chain, which specifies the order in which the subrou­

tines are to be executed and performs minor processing.

For example, the payroll routine might be flow charted as follows.

I • I

b DETERM I MAT I 011 OF b GROSS PAY

[> OETERM I MATI OM OF Dr DETERMINATION OF

FICA TAX UNION DUES

[> ""'''''''~}b NET PAY

FIGURE 7.14

rhe subroutine concept allows the programmer to flow chart first in terms of sub­

routines. lIe can then flow chart each subroutine as an essentially distinct entity.

fhe subroutine concept not only saves memory space when used with respect to

the common subroutine, but also simplifies both the flow charting and coding of a

complex routine. Therefore, all of the following problems will be flow charted and

coded in subroutine form. Generally each subroutine performs one operation and

may be categorized as follows:

1. Starting subroutine - initial operations

2. Input subroutines

3. Processing subroutines

4. Output subroutines

5. Ending subroutine

144

In the illustrative and student exerCIses In this manual initial, processing, and

ending operations, because they are short, may be coded in the main chain of the

program. Whenever these operations are lengthy or detailed, however, they should

be treated as distinct subroutines.

SUMMARY

A routine is the coding for a complete operation.

A subroutine performs one suboperation of a routine, and is a distinct sequence of

instructions.

A common subroutine is one which IS common to several parts of the routine. Its

exit must, therefore, be variable.

Because of the advantages of coding subroutines they arc used even where not
common to several parts of the routine.

Execute subroutine P

ENTRANCE

PROCESS $
EXIT

FIGURE 7.15

Subroutine P

A variable connector is a connector which allows for alternate paths of processing.

Its use is usually to perform:

a. one operation for a time and then a different operation
b. one of a series of possible operations depending on tLe conditions

imposed

145
UNIVAC®II

DATA AUTOMATION SYSTEM

PROCESS ~

FIGURE 7·16

INSTRUCTION OPERATION MNEMONIC

ROm OOOOOOUO(CC)~m Record

Replace (m) with a skip instruction and a U instruction to the address

specified by (CC).

ROXXXXUOYYYY pair of instructions can always be coded for

FIGURE 7.17

where XXXX is the address of the,/entrance'and YYYY the address of the ~f
the subroutine.

146

chapter 8

Detailed

Description

of Instructions
TRANSFER OF CONTROL INSTRUCTIONS (for review, see pages 63,67)

It has been stated that for the proper execution of the instructions, UOm, QOm and

TOm, the address part of the instruction m\1st be the four least significant digits

of the word in which the instruction appears. Up to this point this requirement has

been met by always coding a transfer of control instruction as a RHI. In certain

situations it is possible and advantageous to code a transfer of control instruc­

tion as a LHI, and the above requirement can still be met.

Suppose that one processing path is to be taken if the contents of cell 1820 are

greater than or equal to the contents of cell 1880, and another is to be taken if

the contents of cell 1820 are less than the contents of cell 1880. The coding might

be

0010 B01820

L01880

0011 J'
TOO020

0012 ~
QOO020

147
UNIVAC®//

. DATA AUTOMATION SYSTEM

In this coding, the LHI in cells 0011 and 0012 are wasted, since they are skips.

It would be more efficient if the QOm instruction were the LUI in cell 0011. This

situation is possible, since the address part of the QOm will still be the four

least significant digits of the word in which it appears.

0010 B01820

L01880

0011 QOOOOO

T00020.

If the contents of cells 1820 and 1880 are unequal, the QOm instruction will be

interpreted as a skip, and the coding takes an already familiar form. If the ,contents

of the cells are equal, the following occurs.

SR CC CR

101010101" q I 0 I 0 I 01 010 10 10 10 I 0 I 0 II 121 IQl oioioioiopioiolol2101
LH I RHI

CONTROL UNIT
rA rX rL rF

101112131~lsI617hI9101" II I I I II I I I I I I 101d2131~ls18171819101d 1IIIII1I I I I I 1

ARITHMETIC UNIT

0010

MEMORY UNIT 001' - ______ - 1999 I--C __ =:1---1
FIGURE 8. 1

Assume that the computer has just completed (3 Time. (CC) specify that the next

instruction pair is in cell 0012. On y Time QOOOOO is transferred to SR and execut­

ed. Since (rA) are equal to (rt), the execution transfers the four least significant

digits of (CR) to CC.

cT CR

ElIlJEIiIiIIDl:JIlJIlJOB IQ /%/O/0/OIT/O/O/O/2/0/
LH I RH I

CONTROL UNIT
rA rX rL rF

10 II 12 13 I ~ Is 16171 d 191 0 I " ITT I 1 I I I I I I I 1 I 0 I' i 2131 ij 15 16 17 18 191 0 I' 1 I I I I I I 1 I I 1 I I I
ARITHMETIC UNIT

OOlO~~g80
MEMORY UNIT 0011 ~OOOO T00020

'820~
'R80~

'94CC==:J
~-I GURE 8 - 2

148

(CC) now specify that the next instruction pair is in cell 0020, where the coding

for the condition of equality begins. On 8 Time T00020 is transferred to SR and

executed. Since (rA) are not greater than (rL), T00020 is interpreted as a skip.

SHIFT INSTRUCTIONS (for review, see pages 102, 103),

Any character other than a 0-9 in the second instruction digit of a shift instruction,

Onm, - nm, ;nm or .nm, causes the computer to stall and light a neon on the Super­

visory Control Panel to indicate that an instruction has been improperly coded. A

zero in the second instruction digit of a Onm instruction transforms the instruction

into a skip instruction. A zero in the second instruction digit of any other shift

instruction causes the computer to stall and light a neon indicating that it has

stalled.

MULTIWORD TRANSFER INSTRUCTIONS (for review, see pages 115-121).

The question might arise as to what happens if the second instruction digit of a

V nm instruction is different from the second instruction digit of the W nm instruc­

tion that follows it.

The cells of rW can be thought of as being numbered 1-9 as shown below.

9

e
7

6

5

4

3

2

A

B

C

D

E

F

G

H

. I

A A

B B

C C

D D

E E

F F

G G

H H

I I

rW

A A A A A A A A A

B B B B B B B B B

C C C C C C C C C

D D D D D D D D D

E E E E E E E E E

F F F F F F F F F

G G G G G G G G G

H H H H H H H H H

I I I I I I I I I

FIGURE 8.3

When a Vnm or Wnm instruction is executed a Hpointer" is set to the cell indicated

by n.

141 UNIVAC®II

DATA AUTOMATION SYSTEM

v 6

9

8

7

.................... ~6
5

4

3

1 8 8 o 2

FIGURE 8.4

A A

B B

C C

0 0

E E

F F

G G

H H

I I

A A A

B BI B

C C C

o 0 0

E E E

F F F

G G G

H H H

I I I

rW

A A A A A A A

B B B B' B B B

C C C C C C C

0 0 0 0 0 0 0

E E E E E E E

F F F F F F F

G G G G G G G

H H H H H H H

I I I I I I I

The first word to be transferred to or from rW is stored in, or transferred from, the

cell indicated by the pointer.

1880

1881

1882

1883

1884

1885

rW

A A A A A A A A A A A

B B B B B B B B B B B

C C C C C C C

FIGURE 8.5

The pointer then moves to the next lower numbered cell, and the second word to be

transferred to rW is stored in the cell indicated by the pointer.

150

FIGURE 8.6

1880

1881

1882

1883

1884

1885

This process continues until the number of words specified by the second instruc­

tion digit of the Vnm or Wnm instruction have been transferred, at which time the

pointer will indicate cell one.

The following demonstrates the effect of a V 6 m instruction followed by a W 8m

instruction.

1880

1881

1882

1883

18&4

188!!

1876

1877

1878

1879

lB80

lB81

1882

1M3

r-
-~

~- I-

..
~
~

-.. ---.

J J J JJJJJJ J J J

II II II II II II II II II II II II

L L L L L L L L L L L L

M M M M M M M M M M M M

II II II II II II II II II II II II

o 0 o 0 o 0 0 0 0 0 0 0

rW
A A A A A A A A A A A A

B B B B 8 B B 8 B B B B l-

e e e e e e e e e e e e I-~

J J J J J J J J J J J J ~ ~~

II II II II II II II II II II II II

L L L L L L L L L L L L

M M M M III M III III III M III III

II II II II II II II II II II II II

o 0 o 0 0 0 0 000 o 0

B B B B B B B B B B B B ..
e e e e e e e e e e e e ...
J J J J J J J J J J J J ..-
II II II II K II II K K II II II .& -
L L L L L L L L L L L L --
M M III M M III III III M M M M
II II II II II II II II II II II II -
o 0 o 0 o 0 0 0 o 0 0 0

~

FIGURE 8.7

151
UN I VA C (8,) II

DATA AUTOMATION SYSTEM

What happens when the second instruction digit of a Ynm instruction is different

from the second instruction digit of the Znm instruction that follows it can be

determined in a similar way. The cells of rZ can be thought of as being numbered

1-60 from the bottom to the top. When a Y nm or a Znm instruction is executed a

pointer is set to the cell indicated by IOn. The first word to be transferred to, or

from, rZ will be, or is, stored in the cell indicated by the pointer. The pointer

then moves to the next lower numbered cell, and the second word to be transferred

is stored in the cell indicated. This process continues until the number of words

specified by the second instruction digit of the Ynm or Znm instruction have been

transferred, at which time the pointer will indicate cell one.

A zero in the second instruction digit of a multiword transfer instruction and a

seven, eight or nine in the second instruction digit of a Y nm or Znm instruction

causes the instruction to be interpreted as a skip. Any character other than 0-9 in

the second instruction digit of a multiword transfer instruction causes the computer

to stall and light a neon indicating that an instruction has been improperly coded.

The attempt to execute an instruction, the address part of which is 2000 or more,

causes the computer to stall and light a neon indicating that an instruction has

been imporperly coded. However, the execution of a multiword instruction, which

does not specify, but does imply, an address of 2000 or more, will result in a

ttcircling of the memory". For example, if the instruction V71998 is executed, the

words transferred to rW will be the contents of cells 1998, 1999, 0000, 0001, 0002,

0003 and 0004.

ARITHMETIC INSTRUCTIONS

ADD INSTRUCTIONS

Some details of the add instructions have been given on page 88 In digit

positions 2-12, the characters, minus, apostrophe, ampersand and left parenthesis,

are treated by add instructions, not as alphabetics, but as numerics. The minus is

usually treated as a minus one (see tbe following illustration); the apostrophe, as

a plus ten; the ampersand, a plus 11; and the left parenthesis, plus 12.

&

+ 6 + +_5_
5 ~ 16

152

SUBTRACT INSTR UCTIO NS (for review, see page 43).

All rules pertaining to add instructions hold for subtract instructions. During the

execution of a subtract instruction the computer changes the sign of the word being

transferred from the cell specified to rX. Specifically, if the computer finds a zero

in the sign position of the word, it changes it to a minus; if it finds a minus, it

changes it to a zero. Actually, the computer effects this change as follows. The

first two rows in figure 2-18 form pairs of characters in each column; the next two

rows form other pairs of characters in each column; and so on. The characters,

zero and minus constitute a pair; A and B constitute a pair; and so on. No matter

what character the computer finds in the sign position it changes it to the paired

character. Thus, a minus becomes a zero, and a zero becomes a minus. Likewise,

an A becomes a B, and so on. If cell 1880 contains

B12345678901

and the instruction

S01880

is executed, rX will contain

A12345678901

MULTIPLY INSTRUCTIONS (for review, see pages·48,49).

The computer performs multiplication by repeatc:!d addition. This principle can be

exemplified as follows.

7 times --------------7(8) = 8+8+8+8+8+8+8 = 56

Because each addition requires a given period of time, the computer conserves

multiplication time by first building three times the value of the multiplicand and

using the resulting quantity in the repeated addition.

3(8) = 24 (r1 ..)

7(8) = 24 + 24 + 8 =: 56

In this manner, the computer saves the time required to perform four additions
when multiplying by seven. The number of additions required by each numeric

multiplier are as follows.

153
UNIVAC®II

DATA- AUTOMATION SYSTEM

MUL TIPLIER (rX) NUMBER OF ADDITIONS

0 0

1 1

2 2

3 1

4 2

5 3
6 2

7 3

8 4

9 3

In the computer, the multiplicand is stored in rL. Thus, the computer builds up

three times (rL) and transfers this quantity to rF for storage. Since three times

(rL) may be a 12 digit number, it occupies an entire word and it has no sign. Thus,

rF only contains the absolute value of three times (rL). To conserve multiplication

time, the programmer should, whenever possible, treat the word requiring the fewest

additions as the multiplier.

In the sign position of

than a minus is treated

in the sign position,

shown below.

FIGURE 8.8

a word entering into a multiplication any character other

as a plus sign, and the product will have the proper sign

In digit positions 2-12 the product of two characters is as

MULTIPLICATION TABLE

MULTIPLICAND
---,----,r---.--,----

I 11 -: 0 I 2 4

MULTIPLIER - --- f--- -----+--~-- --- -- r---
r , .!; ABC 0 E ".

J K l M N 0

---~-~--+-~·-~--~·~--1r--~-+--+--1
p:+ /STUVW Z %

t I 2~_~ _~ 13 26 39 52 65 78 91 104 1117 130 143 156

22 4(2 I 0 14 28 42 56 70 84 98 112 126 140 154 168

o ;

35 50 -; -I 0 15 30 45 60 75 90 105 120 1135 150 165 180

: t-: -U.---1I-:- or c;: 00 00 • [, 10 II 12

,-- t-~- -- --f---

1 A

2 B K S

3 C l T

4 0 M U

_ (11 J 00. 2 4 6 8 r-I~-~ _ 1~16_l18 20 22 2~
7 10 r 9 12 15 18 21 24 27 30 33 36

I - c·-· --... -.. -4-- ---.. - -- .. --f--.--r-- .. -.. -
4 111 (i 0 4 8 12 16 20 24 28 32; 36 40 44 48

.---- - 1-.- .----.-- ---. f··· -

8 Hay 111 2(0 8 16 24 32 40 48 56 64 72 80 88 96
---.....- ~... -- 1--.-- --- - 1--.-- --- ~ .. --f-- - -----
9 I R Z 21 30 7 0 9 18 27 36 45 54 63 72 81 90 99 lOB
---- ... --t--.-tt----+---4--t--- +-+---+----f--t---+---+--+----+--t-~-+---I

I .",. S o/., 211 311 10 20 30 40 50 60 70 80 90 100 10' II'
... ... _- ---.. --- --

2& 3(5 11 22 33 44 55 66
-- - .- -- -- I--
28 40 4 0 12 24 36 48 60 72

88 l 99 110 11& 12(

96 I, 108 120 132 I-~-

& ; •
-. -- --

((,/ '

77

84
I

154

THE DIVIDE INSTRUCTION (for review, see page 49).

In the sign position of a word any character other then a minus is treated as a plus

sign. In digit positions 2-12 any character, regardless of whether or not it is a

number, is treated as the number in its row. (See figure2-18, i.e., M=4 in division).

ONE DIGIT AND TWO DIGIT INSTRUCTIONS

It has been stated that the function of the first and second instruction digits IS to

represent the operation to be performed. Some instructions represent the operation

in one digit; some, in two. The former can be called one digit instructions; the

la·tter, two digit instructions.

Two digit instructions represent the operation in the first and second instruction

digits; one digit instructions, in the first instruction digit. Of the instructions

covered thus far, the AFm, AHm, BFm, DFm, EFm, LFm, MFm, NFm, PFm, SFm,

Vnm, Wnm, Ynm, Znm, 0 Om, .nm, ;nm, -nm, Onm, and 50m instructions are

two digit instructions; all others are one digit instructions. The character placed

in the second instruction digit position of a one digit instruction is immaterial as

long as it is not such that it ~hanges the instruction from a one digit instruction

to a two digit instruction. A K7m instruction is the same as a KOm instruction.

By custom, if a particular digit is not desired in the second instruction digit of a

one digit instruction, a zero is placed there. However, it is a common coding

practice not to write a second instruction digit zero. For example, 801880 would

be written as B 880, but still recorded as B01880.

OVERFLOW

The sum of two numbers with eleven significant integers in each will be a twelve

integer number if a carry is produced. If a decimal point immediately precedes the

most significant digit of each number, the carry is a whole number. In the computer

this carry would go into the sign position, but this position is occupied by the

sign. The computer makes the assumption that the absolute value of all quantities

is less than one by preventing a carry into the sign position. An attempted carry

into the sign position is called overflow.

Overflow can occur in arithmetic operations other than addition. In subtraction,

only if a negative number of eleven significant integers is subtracted from a posi-

155 UNIVAC®//

DATA AUTOMATION SYSTEM

tive number of eleven significant integers can there be overflow.

+ .50000000000
- (- .50000000000)

1 . 00000000000

Division in which, as far as the computer is concerned, the absolute value of the

dividend is larger than the absolute value of the divisor causes overflow, because

the quotient would be greater than one .

. 60000000000

. 30000000000 = 2.0000000000

Similar reasoning guarantees that, in general, multiplication cannot cause over­

flow, since two fractional quantities must produce a fractional product. There are

certain uncommon exceptions to this last statement which arise because it is

possible to symbolize, in only eleven digit positions, a quantity which is greater

than one by using the characters t, & and (.

Overflow occurs during y or 0 Time. The carry into the sign position is lost. If
overflow occurs on y Time, 0 Time will be executed. At the end of the cycle during

which overflow occurred, six zeros rather than the (CC) are transferred to SR. There­
fore, on the next three stage cycle, the pair of instructions in cell 0000 are execut­

ed. On the succeeding three stage cycle, control returns to the pair of instructions

in the cell specified by (CC). But (CC) were one greater than the address ofthe

line being executed when overflow occurred, and since then an additional three

stage cycle has been completed,again increasing (CC) by one. If overflow occurred

due to an instruction in cell k, thel] the instructions in cell k + 2, now specified

by the present (CC), will be executed; provided that neither cell k, nor cell 0000,

contains a transfer of control instruction.

Consider how this principle might be employed in programming. Addition is some­

times used for purposes other than summation. One of these uses is to alter ad­

dresses in an iterative routine. For eX9.mple, with a series of two word items,

where the first word is a social security number, the next social security number

may be selected by adding two to the address of the current social security num­

ber. There will be a limit to the number of these social security numbers with

which it is necessary to deal. When the limit is reached the computer must take
some other action.

By adding to a word each time the address is advanced, overflow will eventually

occur. The number of addresses that have been advanced can be counted by this

156

addition. Suppose that after processing sixty words it is necessary to take some

other action. With a two word item there will be 30 items. If a 70 is placed in the

2nd and 3rd digit positions of the word used as a counter, and 1 is added in the

3rd digit position each time 2 is added to the address, overflow will occur after

the 30th ite:m has been processed, since 70 + 30 produces a carry. If the add order

occurred in cell k, then the instructions for taking the new course of action would

be stored in cell k+ 2. When overflow occurs control will be transferred to this cell.

The add order, as has been pointed out, is being used to advance the address part

of an instruction. It will not be necessary to have another add order to increase

the word used as a counter. There are two instructions per word, and only one in­

struction has been used for the transfer order. The other instruction in this same

i~struction line may be used as the counter. At the same time the address part is

being advanced, the item counter can be advanced by adding to the appropriate

digits of the same instruction line. However, the first digit position of the counter

must be either a part of the program, or an instruction which will not adversely

effect the program. A superfluous ({Om instruction may be used, for example, if

(rA) and (rL) are of no concern. The variable word which contains the counter and

the variable address might initially have the following appearance.

K70000V21882

and the following constant could be added to it.

001000000002

In summary, overflow permits an alternate course of action based on the decision,

"have all the items in the set been processed?" The routine to which transfer is

to be madle on reaching this limit will begin with the instructions in cell k + 2.

The instructions in cell k + 1 will relate to the normal item advance routine. The

instructions in cell k + 2 will be reached only on overflow, and instructions in
cell k + 1 will not be executed when overflow does occur.

Consider the following example.

Each of a set of 30 two word items is to be processed. The items will be processed

in a working storage. The problem is to replace the contents of the wo~.kingstorage

with successive items of the set and wilen the set (cells 1880 -1939), is exhausted,

transfer control to some other cell where an ending routine is coded.

Without utilizing overflow the item advance routine might be as follows.

157
UNIVAC®II

DATA AUTOMATION SYSTEM

0020 BOO022

L00024 }
0021 AOO025 i:30

QOOO15 to ending routine

0022 fV21882
W21880i

0023 COO022 i + l---...i

UOOO02 to processing

0024 V21942

} Constants W21880

0025 000002 ~

In this coding there is one section identified with the decision i:30 and a separate

section for the operation i + I---+- i.

Employing overflow in the coding below there remains a subroutine associated with

the operation i -t l i. However, the coding for the decision i:30 is not obvious.

The decision i:30 is incorporated into the coding of the operation i + l i by

taking advantage of the effect of overflow.

0000 L_ -----J

.
0020 K70000

0021 800026

0022 W21880

0023

0024

0025

0026 001000

~

V21882

AH0020 *

UOOO02

000002

} i + l--"'i (cell k)

(cell k + 1)

to processing

(cell k + 2)

ending subroutine

constant

The asterisk In the remarks column indicates that overflow IS being used as a

control.

The routine operates as follows. When control initially reaches the item advance

routine, the superfluous KOm instruction is executed on y Time. On 0 Time the

158

contents of cells 1882 and 1883 are transferred to rW. The address in CC is now

0021, and the word in this cell will be the next executed. On y Time the constant

for advancing the counter and the address - the contents of cell 0026 - is trans­

ferred to fA. On 0 Time (rA) and (0020) are added, and the sum is transferred to
cell 0020, so that it now contains

K71000V21884

(CC) now contains 000000000022 and the instruction pair in cell k + 1 will be the

next executed. On y Time the second item is transferred to working storage. On 0

Time cont:rol is transferred to processing. Afterprocessing the second item, control

once morc:~ returns to the item advance subroutine. Each iteration through the item

advance subroutine operates as described above with the result that the contents

of cell 0020 are successively

K72000V21886

K73000V21888

K74000V21890

and so on, until the 30th item is processed . .At that point the contents of cell

0020 are

K99000V21940

After processing the 30th item control returns to the item advance subroutine. The

KOm instruction is executed. The contents of cells 1940 and 1941 are transferred

to rW.· The contents of cell 0020 are transferred to rA. The execution of the AHm

instruction adds one to the 99 in the second and third digit positions of the con­

tents of cell 0020, and overflow occurs. The carry is lost, six zeros are trans­

ferred to SR, the skips in cell 0000 are executed, and control returns to the cell

specified by (CC). When overflow occurred on line 0021 (or k), (CC) were 0022.

Prior to the execution of (0000), this reading was increased by one, so that (CC)

now reads 0023 (or k + 2). Consequently, control goes to the ending subroutine.

In the above example, the end of the set of items was determined by counting the

items as they were processed. The end of the set can also be determined by using

overflow to n test" the address of the item currently being processed against the

address of the last item.

~Note that if the data had been stored in cells 1940 -1999 the last V2m order, V22000, would cause
the computer to stall because the address is non-existent.

159 UNIVAC®II

DATA AUTOMATION SYSTEM

0000 ~

.
0020 V21882

B00026

•
} i + l~i

0021 AH0020
A00027 i : 30

0022 W21880
U00002 to processing

0023

0024 ending subroutine

0025

0026 000002

0027 078058 constants

Tliis coding operates in essentially the same way as the previous example. When

the 30th item is being processed cell 0020 will contain

V21940B00026

After the 30th item has been processed, control returns to the item advance subrou­

tine. The contents of cells 1940 and 1941 are transferred to rW. The constant

000002000000

is transferred to rA. The contents of cell 0020 are added to (rA), and the sum

V21942B00026

is transferred to rA and cell 0020. The constant

078058000000

1S added to (rA), causing overflow and thus directing control to the ending sub­

routine.

The above are examples of ct generalized overflow" with an increment of one. The

overflow is called generalized, because no matter in what cell, k, overflow occurs,

control is always directed to the contents of cell k + 2. The overflow is said to
have an increment of one, because overflow always directs control to the contents

160

of the cell whose address is one plus the address of the cell to which control

would otherwise pass.

Overflow can be used in a special, as well as in a general, sense. If a 90m in­

struction were stored in cell 0000, the use of overflow would be special rather

than general, since in no matter what cell overflow occurs, the result is some

specific operation, namely, the computer stops.

By means of a coded generalized overflow routine, generalized overflow with an

increment other than one can be used.

0000 ROO024
UOO023

0020 1\:70000

V21882

0021 000025 I * + l~i AH0020

0022 W21880

UOOO02 to processing
0023

0024

800026

I AII0024 generalized overflow with increment
L-----:> of five

UOVAR

0025

0026

001000

I 000002 constants

000004

0027

0028 ending subroutine

0029
This coding is identical to the first example in this chapter except that it uses

generalized overflow with an increment of five. When overflow occurs, (CC) are

000000000022

On f3 Time (CC) are increased by one. The execution of the ROm instruction

transfers the word

000000U00023

to cell 0024. The (j()m instruction transfers control to cell 0023. The constant

161
UNIVAC®//

DATA AUTOMATION SYSTEM

000000000004

is transferred to rA. The contents of cell 0024 are added to (rA), and the sum

000000U00027

is transferred to cell 0024. On the next three stage cycle the OOm UOm instruction

pair just fabricated is executed, transferring control to cell 0027, the address of

which is five more than the address of the cell to which control would have passed

if overflow had not occurred.

iThis coding can be used for generalized overflow with any increment desired. The

I
,
only variant is the constant used in the generalized overflow subroutine, this con­

stant always being one less than the value of the increment desired.

The only caution that must be observed in the use of generalized overflow is as

follows. No matter what increment, n, is used, and no matter where and how many

times overflow is used for control purposes, the subroutine to be followed when

overflow occurs must be coded n + 1 cells below the cell in which overflow occurs.

UNDESIRED OVERFLOW

There are many uses of arithmetic instructions in which the unplanned occurrence

of overflow would result in an incorrect solution. Although the occurrence of over­

flow can not be prevented, a minus sign coded in the second instruction digit of

an instruction on which overflow occurs will stop the computer on the completion

of the execution of the instruction.

STUDENT EXERC ISES

Utilize overflow as a control.

1. Reading the data stores 60 one word quantity items of form

OOOOOOQQQQQQ
A

in cells 1880-1939.

a. Print the sum of the quantities.

b. Print the sum of the quantities and the subtotal of the first ten quanti­

ties, the subtotal of the next ten, and so on, up to and including the sub­

total of the last ten.

162

2. Reading the data stores 60 one word credit account number items of form

OAAAAAAAAAAA

1n cells 1820-1879, and 60 one word delinquent account number items of
form

ODDDDDDDDDOD

in cells 1880-1939. Write 60 one word credit items of form

KAAAAAAAAAAA

where A - credit account number

K - credit key, and may take values

G - credit good

B - no credit.

3. Reading the data stores six ten word A items in cells'1820-1879 and six

ten word B items in cells 1880-1939. The first word of each item is a key.

The A and B items are each arranged in ascending order by key. Write the

merged items.

SUMMARY

TRANSFER OF CONTROL INSTRUCTIONS

The UOm, QOm, and TOm may be coded as left hand instructions providing that

the address, m, is the address of the right hand instruction .. Thus a Q-T pair of

instructions is legitimate and will transfer control if (rA) 2. (rL).

MUL TIWORD TRANSFER INSTRUCTIONS

If the pair of instructions Vn1 ffil, Wn2m2 (Yn1 m1, Zn2ffi2) is executed and n1 =/n2
the following results:

IF

nl > n2 The first nl - n2 (tens of) words transferred to rW (rZ) are not transferred

to m2'

163 UNIVAC®//

DATA AUTOMATION SYSTEM

n1 < n2 The n2 - n1 (tens of) words transferred to rW (rZ) by a previous instruc­

tion are transferred to m2, followed by the (ten) n1 words of the current

instruction.

SHIFT INSTRUCTIONS

Onm: Error if n 10 to 9, skip if n = o .
. nm, -nm, or ;nm: error if n 11 to 9.
(rA) are unaltered by the error.

ARITHMETIC INSTRUCTIONS

The following tables illustrate the effect of adding any combination of characters.

N: 1 thru 9, " &, or (. ',&, and}are treated as 10,11, and 12,respectively.

c: any character except 0, -, or HN" (as defined above).

S: the sign of the larger in absolute value of the two words being added.

~: Space.

A. For any position except the sign

N C 0 -
Normal

N Sum C r' " N-l
C - C Error C C

0 N C 0 -
- N-l C - L\

B" In the sign position

N C 0 -
N Error Error N N

C Error Error C C

0 N C 0 S

- N C S -

In the SO m and SlIm orders the character in tI.e sign position 1S changed to its

paired character (cL p .153)- The rules above then apply.

Multiplication is performed by repeated additions.3 ~ rL) 1 s stored in r F and used

164

In this process. Overflow will occur while forming3 (rL) if one of the characters

, & or (is the most significant digit. Multiplication by non-numeric characters is

shown in figure 8-8.

Division is performed by repeated additions and subtractions, but will always pro­

duce a numeric quotient even if the dividend and/or divisor contain non-numeric

characters. Overflow will occur if (rL) ::: (m).

Overflow occurs when there is an attempted carry into the sign position during an

arithmetic order. Following the cycle during which overflow occurred, (CC) are

stepped, and (0000) are executed. The instructions which can cause overflow are

the AOm, AHm,DOm, ~10'ffi, NOm, POrn, SOm, XOm, as well as these when used

as field selection instructions,

Overflow is used as a control as follows:

A. To stop the computer: if a minus sign is placed in the second instruction

digit position of the instruction causing overflow.

B. Specialized: to perform one particular operation, or sertes of operations,

regardless of where overflow occurs.

C. Generalized: to perform any number of distinct operations depending on

where overflow occurs.

j'f the instruction causing overflow i's in cell k and:

1. if (0000) is a pair of skip instructions, the instructions In cell k + 2 will

be executed following the execution of the skips.

2. if (0000) is R O(L + 1) UOL and if the following instructions are stored in

cells L, L + 1, and L + 2
L

L + 1

L + 2

DO (L + 2)

[EXIT

~

All (L + 1)

LINE]

OOOOOn

the sequence of instructions following those in cell k will beOOOO, L, L + 1,

L + 2 and k + 2 + n.

165
UNIVAC®II

DATA AUTOMATION SYSTEM

chapter 9

Input - Output

Magnetic tape is the means of introducing, ,and removing, large volumes of data to,

and from, the memory, The tape may be metal or plastic, both being about one half

inch wide and .002 inches thick. Data may be written on a tape, read and erased,

and 'new data written on the same tape reliably over 1000 times, thus cutting the

cost of supplies. Magnetic tape comes in various lengths, the longest metallic tape

being about 1550 feet; plastic, about 2400 feet.

Characters are recorded on tape in coded form. The code for each character con­

sists of a unique combination of magnetic and non-magnetic spots. The characters

are recorded on the tape serially, and the coded bits of anyone character are re­

corded in parallel.

166

u II 11111111
M II 1111

111111
v 11111111
A II II 1111
e II 111111

2 3 'l S 5 6 7

FIGURE 9.1

CHARACTER REPRESENTATION

The code for' each character can be represented as a series of ones and zeros,re­

ferred to as bits, and corresponding to the magnetic and nonmagnetic spots on

tape, The basic representation of each character is given in the following figure,

167
UNIVAC®//

DATA AUTOMATION SYSTEM

CODE COMBINATIONS OF

THE 63 UNIVAC 11 CHARACTERIi

FIGURE 9.2

0000

0001

0010

0011

0100

0101

OliO

Dill

IOO~

1001

1010

1011

liDO

1101

1110

""

00

i

lJ.

-
0

1

2

3

4

5

6

7

8

9

,
&

(

01 10 II

r t 1:
, It (3

I :

;) +
A J I
B K S

C l T

0 M U

E N V

F 0 W

G P X

H Q y

I R Z

$ %

¢ * =
@ ? NOT

USED

In the basic representation:, from left to right, the zone of the character precedes

the excess three portion. Thus,

010100

is the basic representation of the character A.

Electronically, there is the possibility of gaining or losing a one in a bit position

when a character is transferred from one storage to another. To check for such an

occurrence, an extra bit position, called the check bit position, precedes the basic

representation of each character. The basic representation of a character may con­

tain an odd or even number of ones. Those characters whose basic representation

contains an even number carry a one in the check bit position; those with an odd

number, a zero. When a character is transferred, the ones in its representation are

counted. If an even count results, a one has been gained or lost, and an error,

called the odd-even error, has occurred. The occurrence of an odd-even error stalls

the computer and lights an appropriate neon.

168

Thus,

1010100

is the representation of the character A,

000C)100

the character one.

When a character is written on tape, one additional magnetic spot, called a sprocket

pulse, is rec:orded for checking purposes.

THE UNISERVO

The Uniservo is the device by which the computer reads from and writes on tape.

The Uniservos are named i thru 9, -, and A thru F.

FIXED RIGHT HAND WHEEL

REMOYABLE

TAPE------______________ -+ __ ~~~

CONNECTION--------t--..... l
READ WRITE HEAD

FORWAR----______________ -J~bJ_l~~

BACKWAR~--------________ _+~--~------------_IU

PRE-,THREADED LEADER-------+l1II

"RE!SSURE lUBES~=--__

FIGURE 9.3

169
UNI.VAC®//

DATA AUTOMATION SYSTEM

Since the right hand reel is permanently fixed, a tape to be read from or written on

is mounted on the left hand reel. The tape is connected to a pre-threaded leader

which is fastened to the right hand reel. Because of the pre-threaded leader, re­

moval of a reel and the mounting of a new reel takes only one half minute.

Since characters are written on tape serially, the meaning of the characters de­

pends on the sequence in which they were written, just as the meaning of the

frames on a movie reel depends on the sequence in which they were shot. The

permanently fixed right hand reel guarantees that, when a tape is mounted, the

characters on the tape are in the sequence in which they were written.

When tape is passing from the left hand to the right hand reel, the tape is said to

be moving forward; from right to left, backward.

THE BLOCK

To reduce the amount of time required for starting and stopping tapes, data is

grouped into units called blocks. A block is the unit of data that the computer

reads or writes with the execution of a single instruction and is composed of 60

words.

BUFFERING AND BACKWARD READ

Data is processed by the Univac Central Computer at electronic speed. Computer

processing time may be increased by the relatively slow electro-mechanical means

employ.ed to provide input and output. Transfer of data from tape to electronic

I storage is not as rapid as transfer from one electronic storage to another, but to

overcome this, simultaneous read-write features are employed. A comparison of a

system incorporating the simultaneous read-write feature with a system not in-

corporating this feature is shown in figure 9-4. By providing a system of reservoirs,

called "buffers", which hold a reserve of data, a delay in processing is avoided

b"y parallel operation. The lJniservos work simultaneously with the computer, thus

I enabling tapes to be written, read, and rewound at the same time that the computer

is processing. A comparison of a completely buffered system with a system in­

corporating the simultaneous read-write feature in shown in figure 9-4.

170

READ READ
BLOC K I

READ
BLOC K 2 i BLOCK 3

PRO­
CESS
B LOCK I

WR I TE
BLOCK I

PROCESS \

L-BL_O_C_K __ 2~:_~_~_~_~_~)

UNBUFFERED WITHOUT SIMULTANEOUS READ WRITE

I REA' READ READ
BLOC K I BLOC K 2 BLOC K 3

PRO- PROCESS PROCESS CESS
B L~CK BLOCK 2 BLOC K 3

WR ITE WR ITE
BLOC K I BLOC K 2

UNBUFFERED WITH SIMULTANEOUS READ WRITE

1 REA' READ READ REA' I READ
BtOCK I BLOCK 2 BLOCK 3 BLOC K ~ BLOC K 5

PRO- PROCESS PROCESS PROCESS CESS
B LVCK BLOCK 2 BLOC K 3 BLOC K ~

WRITE I WRI TE ,I WR ITE
BLOC K I BLOC K 2 BLOCK 3

BUFFEFtED

READ
BLOC K

WR ITE
BLOC K

PROCESS
BLOC K 3

, 1

.1

WR ITE
BLOC K 3

~ __ ~ ______ ~ ______ ~ ______ ~I ______ ~I ______ -L ______ ~ ____ ~

o 50 100 150 200 250 300 350 400

TIME I.INE (MILUSECONDS)

FIGURE 9.4

Many applications require more than one pass over the data. Rewind time is measur­

ed in minutes,and considerable time can be lost waiting for a tape to be rewound

in 'order'that it can be reread. If a computer can read data from a tape while the

tape is moving backward, a second pass can be made without the delay for rewind.

The Central Computer of the Univac System incorporates both buffers and the

backward read feature.

171 UNIVAC®//

DATA AUTOMATION SYSTEM

THE BUFFERS

Data to be written is transferred from its location in the memory ~o register 0 (rO),

a 60 word register. The data in rO is then transferred to a Uniservo one character

at a time to be written on tape. Once rO has been filled, the computer is released

to perform other operations because the separate output control circuits direct the

write operation independently of the computer.

Data to be read is initially transferred character by character from tape and ac­

cumulated in register I (rI), a 60 word register. The data in rI can then be trans­

ferred to the memory. Once the transfer of data from tape to rl has begun, the com­

puter is released to perform other operations.

The use of these registers between the computer and the Uniservos evables the

computer to be held up for only the small amount of time necessary to fill the out­

put buffer, rO, or to empty the input buffer, rl, or to initiate a read operation.

TAPE INSTRUCTIONS

tC T" represents n tape", and n n" represents the Uniservo affected (1, ... ,9, A,

... , F).

INSTRUCTION OPERATION

1nm Tn ~rI

Read a block forward from Tn to rI.

When executing the 1nm instruction, the. computer ignores m.

INSTR UCTION OPERATION

2nm r1~Tn

Read a block backward from Tn to rI.

When executing the 2nm instruction, the computer ignores m.

As defined, the 1nm and 2nm instructions allow the possibility of reading a given

block into r1 and then, without transferring the given block from rI into the memory,

reading another block into rI, thus destroying the given block. To guard against

such a loss of data, the computer - after executing a 1nm or 2nm instruction and

172

before executing another 1nm or 2nm instruction- checks to see if the given block

has been transferred from rI into the memory at least once. If such is not the case,

the computer stalls and lights a neon to indicate the situation.

INSTRUCTION OPERATION

30m (rI)~ m, ... , m + 59

Transfer (rI) to 60 consecutive cells starting with m.

The 30m instruction is a two digit instruction.

I1\S TR UCTION OPERATION

40m (d) ~ m, ... , m+ 59

Transfer (rI) to 60 consecutive cells starting with m.

The 40m instruction is a two digit instruction and is ,identical .in effect to the 30m

instruction.

INSTRUCTION OPERATION

3nm (rI)-+- m, , m + 59; Tn~rI

Transfer (rl) to 60 consecutive cells starting with m.

Read a block forward from Tn to rl.

ThlSTRUCTION OPERATION

4nm (rI) --....m, ... , m + 59; rI Tn

Transfer (rI) to 60 consecutive cells starting with m.

Read a block backward from Tn to rI.

Since the forward read instructions, 1 nm and 3nm, read the first word of the block

first; the second word second; the third, third; and so on; until the 60th word is

read last; while the backward read instructions, 2nm and 4nm, read the 60th word

of the block first; the 59th word, second; the 58th, third; and so on; until the first

word is read last; the question arises, how is the block stored in the 60 cells that

constitute rl? The cells can be thought of as being numbered 1-60 from top to

bottom. When a forward read instruction is executed, rI is filled from the top down,
~----- •• ".-~"'~, .. --,~'". ,',' ,.......... " . ., --"-,, "!"" -.'.".".~'.~~., ... "'-. " .. '.'. ", .. ~ , -_ . .-." ., , .• -- .. ,-,."-.,,.,-.. >~

with the consequence that 'theflr'st word of the blockis"s'tore<l in c,ell 1; the second

word of the block, in cell 2; the third word, in cell 3; etc.; until the 60th word is

stored in ~c:ell 60. When a backward read in~,!.!':!,£J~,9~ 1S executed,?"r!.!,~,.filled fro~ ..
-----------"

173 UNIVAC®//

DATA AUTOMATION SYSTEM

the bottom up, with the consequence that the 60th word of the block is stored in

cell 60; the 59th word of the block, in cell 59; the 58th word, in cell 58; and so on;

until the first word is stored in cell 1. Therefore, both forward and backward read

instructions store the block in rI in the same final configuration.

INSTRUCTION UPERATION

5nm (m, .•. , m + 59) ~ Tn

Write the contents of 60 consecutive cells, starting with m, on Tn at 250
characters per inch.

The 5nm instruction is executed by filling rO, releasing the computer, and then

writing from rO onto the tape on Uniservo n.

INSTRUCTION OPERATION

6nll) RWD Tn

Rewind Tn.

When executing the 6nm instruction, the computer ignores m.

INSTRUCTION OPERATION

7nm (m, ... , m + 59)--....10

Write the contents of 60 consecutive cells, starting with m, on Tn at 50

characters per inch.

INS TR UCTION OPERATION

8nm RWD* Tn

Rewind Tn; set interlock. Any subsequent instruction involving Tn

stalls the computer.

When executing the 8nm instruction, the computer ignores m.

After the execution of a 8nm instruction Tn is referred to as interlocked. The func­

tion of interlock is that, once an output tape has been written and rewound, the

tape is automatically protected against the possibility of another write, which

would destroy the output data. Interlock is released by removing the tape from the

Uniservo.

174

Another method llsed to protect information is to insert a metal snap ring in the

reel of an input tape. This causes the Uniservo on which the tape is mounted to be

interlocked for writing, but not for reading or rewinding, thus protecting against

the possibility of a write, which would destroy the input data.

Rlng ... --.......

FIGURE 9.5

Essentially, the input-output orders are executed in the following steps:

1. Interlock Tests
This step is used to determine if:

a. the desired servo is already 10 usc. (an input-output error has the

same effect as if the servo were in use)

b. there is another input (output) order in effect if the present order is

one of input (output).

If one of the above is true the computer waits, or IS interlocked, until the

interlock causing order is completed. In the case of an error the wait is

relatively long, because the order cannot be completed, and will draw the

attention of the computer operator.

2. Initiation of the order
This varies for the orders so that for:

a. 1n,2n, 6n, or 8n,. tape movement begins.

b. 30m or 40m, (rI)are transferred to the memory, completing the order.

c. 3nm or 4nm, (rI)are transferred to memory and tape movement begins.

d. 5nm or 7nm, the block is transferred to rOo

3. Completion of the order

The entire block is read or written, or the tape is rewound.

175
UNIVAC®II

DATA AUTOMATION SYSTEM

Steps 1 and 2 require the use of the Control Unit, while step three, the greater

part of the order, takes place under the control of the input-output circuits. These
steps result in the computer being able to read, write, rewind, and process at the

same time.

TAPE INSTRUCTIONS ON FLOW CHARTS

There is a symbol for each tape instruction.

INSTRUCTION EXAMPLE SYMBOL

1nm I Tj --.... r1 I
2nm I r1-Tj I
30m,40m I rI --... J I

rI ~J

I Tj------ rI
3nm

rI .-.. J I rI ~Tj
4nm

5nm, 7nm P.-... Tp I
6nm RWD Tj I
8nm RWD * Tj I

In the flow chart Tp may be a reel of tape in file P; Tj, a reel in file J; etc.

SENTINELS

Generally the amount of data on a tape is unknown and varies from one application

to the next. To determine when all the data has been- processed, a s'entinel conven­

tion is used. Six Z's in digit positions one through six are placed in the key of the

item immediately following the last data item and in the last word of the block con­

taining this item. Immediately following this block is a second block with the six
Z's in the first six digits of the key of the first item and of the last word of the

block.

176

000 ~
046 QQQ
047 RRRRRR SSSSSS
048 QQQQQQ QQQKKK
049 RRRRRR SSSSSS First

Last , 050 QQQQQQ QQQKKK Sentinel
O"ata Item 051 RRRRRR SSSSSS Block

052 ZZZZZZ 123~56
053 ABCDEF 66~321

- .-- ~ -
058 122~56 ABCDEF
059 ZZZZZZ 001950

000 zzzzzz LMNOPQ
001 98765~ 321012
002 ABCDEF GHIJKL

Sentinels Second
Sentinel

056 Block
057 LLLOOO
058 CCCCCC
059 AAAAAA

FIGURE 9.6

THE INSTRUCTION TAPE

An instruc:tion tape may be designed to be mounted on any Univac Uniservo. For

purposes of this manual Uniservo 1 will be used ..

The Uniservo to be initial read is selected by a manual operation on the Supervisory

Control Panel. The initial read operation reads a block from the Uniservo select­

ed, the tape moving forward, and transfers the block to cells 0000-0059. All sub­

sequent movements of the instruction tape are ordered by instructions stored in

the memory.

SERVO DELTA

On the Supervisory Control Pan"el is a set of 16 buttons called 6. Tape Selector

buttons and labelled with the names of the Uniservos. If a delta is coded in the

177 UNIVAC®II

DATA AUTOMATION SYSTEM

second InstructIon digit of a tape instruct1on~ tllt! computer executes the instruc­

tion with respect to the Uniservo whose f1 Tape Selector button is depressed.

ILLUSTRATIVE EXAMPLE
L-i

A tape contains a series of tiJee word job items of form

where N - job number

C - contract price

L - labor cost

M - material cost

o - overhead cost

·NNNNNNNOOOOO
OOCCCCCLLLLL

A " OOMMMMMOOOOO
." A:,"""

.I

There is at least one full block of data on the tape.

For each job item, produce a one word profit item of form

where N - job number

P - profit

Write the profit items.

SERVO ALLOCATION

NNNNNNNPPPPP
"

To solve the problem, Uniservos must be allocated to the input and output tapes.
The servo allocation might be.

UNISERVO

2

3

178

TAPE

Job = Tj
Profit::: T p

FLOW CHART

LEGE liD

J - SET DF JOI ITEMS

J I - iTH ITEM III J, I • I ••••• 20

J? •. IUMIER OF J I

JV·· PRICE OF JI

)o-------~ ..

JT - MATERIAL COST OF 01 I

0I~ - LAlOR COST Of 011

Jy - OVERHEAD COST Of 01 I

J' - SEIITIIIEL OF 01

FIGURE 9.7

" - SET OF PROF I T ITEMS

"k - KTII ITEN III " k • I ••••• 10

,,~ - IIUMIER Of "k

P: - ANoun OF 'k
,. - SEIITIIIEL OF ,

The following is a description of the thinking that might have accompanied this

flow chart. (The coding for this example is on page184~

The first thing to be done is to read a block of job items from Tj into the memory.

To effect this transfer, the block must first be read into rl.

2

FIGURE 9.8

119 UNIVAC@//

DATA AUTOMATION SYSTEM

(rl) must be transferred to the memory. This transfer could be done with a 30m

instruction. Ho-wever, to take full advantage of the buffer system, while the job

items stored in the memory are being processed, the next block of items should

be read from tape into rl. By using the 3nm instruction this situation can be effected.

2

FIGURE 9.9

rl~J

Tj~ rl

With a block of job items in the memory processing can begin.

FIGURE 9.10

180

When a block of job items is exhausted the input item counter equals 20. To con­

tinue processing, the next block of job items, currently stored in rl, must be trans­

ferred to the memory, and the input item counter must be reset to one.

+ '-"j

FIGURE 9.11

When the output block is filled, the output item counter will equal 60. The output

item counter is reset to one to prepare for the next output block, and the current

output block is written.

P-....... ~~T p

k + ' k t-------.... "'"
FIGURE 9.12

The only problem remaInIng is to determine when all of the job items have been

processed. Any block of items but the first may be the last block. If it is, there

will be six Z's in digit positions 1-6 of the last word of the block. If it is not,

the Z's will not be present. An equality test can dis'tinguish between the two con­

ditions.

I-....j

+ ,-..i -

FIGURE 9.13

181
UNIVAC®/1

DATA AUTOMATION SYSTEM

When the sentinel is found in the last word of the block to be processed, Tj can be

rewound, and the key of each item must be tested before processing to determine

whether or not it is a sentinel. A variable connector inserts this sentinel test.

l-k .. 1 j=2 p .. 3 ~

FIGURE 9.14

When the key of the item to be processed is a sentinel all the data has been pro­

cessed. Sentinels must be written on Tp. The last block of output is in the memory.

A sentinel must be stored in the key of the item immediately following the last

data item. This sentinel item must be Pk, since the output item counter always

reads one more than the last item stored. A sentinel is store in pN and in pS, the
k

last word of the block. The block is written on T p' thus writing the last block of

data. which is also the first sentinel block.

A second sentinel block must be written on Tpo A sentinel is already stored in the

last word of P. A sentinel is stored in pr, the key of the first item on the block,

and the block is written on T p'

Tn is now complete and can be rewound. Processing IS stopped, thus completing
[

the flow chart.

The computer cannot recognize a sentinel until tbe first sentinel block is in tbe

memory. By setting up the flow chart to take advantage of the buffer system, it

182

t

becomes impossible for the computer to transfer the first sentinel block from rI to

the memory without initiating apother read from Tj. The function of the second

sentinel block is to prevent the computer from. reading past the data in a search

for another block to read.

MEMOR.Y ALLOCATION

To facilitate the allocation of the memory, it is customary to store instructions by

starting at the front of the memory and working back, and to store data by starting

at the back and working forward. For this problem the memory allocation might be

CELLS

1940-1999
l880-1939

CODING

0000 ~

0001 120000

0002 321880

(1) 0003 B01880

0004 FOO035

0005 SF1882

0006 FOO036

0007 SF1882

0008 ROOO16

0009 ROO022

~QY 0010 [<---->
0011 LOO037

~

810000

'----:>

C01999

BF1881

.50000

SF1881

EF1999

UOOO13

UOOO12

UOOO03]

QQQQ3Q

183

DATA

Output
Input

Tj'~rI

rI~J ; Tj~rl

} J~~pr

}

C M LOA J. - J. - J. - J . ~Pk 1 1 1 1

®
®

N J i ': Z

UNIVAC®//

DATA AUTOMATION SYSTEM

0012 L--J

[;>
UOOO03

0013 F01999
800014

0014 [G01940
A-0038]

k +l~k

0015 rl00014
A00039] * k : 60

Q) 0016 <-----)

~ UOOO09
0017 BOO040 } l--+-k

COOO14
0018 531940 P--+-Tp

UOOO16

~ 0019 [V31883
800019]

0020 A~0041 i + l--..i
1100019

0021 AOO042 * i : 20
W31880

G) 0022 C---:>

D> UOO010

0023 321880
}

rI~J . T·--'-rI , J
BOO043 l~i

0024 COOO19
FOO044

0025 BF1939
LOO037 JS: Z

0026 ~
QOO028

0027 L----;

UOO022
0028 820000

}
RWO* T·

800045 .1b J

0029 COO010
UOO022

0030 FOO037 } Z---..ps
G01999

0031 ROOO15
UOOO14

0032 531940 P--...Tp
G01940 Z~p~

1

184

0033 531940 P~Tp

830000 RWD* Tp

0034 900000 Stop

L---:>
0035 001111

100000

0036 L~

011111

0037 ZZZZZZ
<-----")

0038 000001
L-----)

0039 098001

~
0040 G01940 constants

A-0038

0041 000003
L-----)

0042 068057

~
0043 V31883

BOOO19

0044 111111
~

0045 FOO044
BF1880

Coding the resetting of an item counter consists of resetting the variable line in

the item advance routine to its initial state, as shown in cells 0017,0023 and 0024.

To store a sentinel in the key of the item immediately following the last data item,

the following coding technique is used. The address of the key is specified by the

address part of the GOm instruction in cell 0014,. The sentinel is transferred to rF

by the FOm instruction in cell 0030. The lJOm instruction in cell 0031 transfers

control to the GOm instruction, which transfers the sentinel to the proper key. The

ROm instruction in cell 0031 guarantees that, after the GOm instruction has been

executed, control returns to cell 0032 to complete the ending routine.

185 UNIVAC®II

DATA AUTOMATION SYSTEM

STUDENT EXERCISES

1. A tape contains a series of two word consumption items of form

whereN - meter number

C - amount

NNNNNNNNNNNN
0000 0 0 CCCCCC"

There is at least one full block of data on the tape. Print the body of the following

table.

RANGE

1 - 100

101 - 500

501 - 1000

1001 or over·

CONSUMPTION METERS

. 2. A tape contains a series of ten word inventory items of form

where 1'\ - stock number

Q - quantity

X - other data

NNNNNNNNNNNN
OOOOOOIQQQQQQ"
xxxxxxxxxxxx
XXXXXXXXXXXX
XXXXXXXXXXXX
XXXXXXXXXXXX
XXXXXXXXXXXX
XXXXXXXXXXXX
XXXXXXXXXXXX
XXXXXXXXXXXX

Another tape contains a series of two word items of form

where N - stock number

A - quantity

NNNNNNNNNNNN
00000 0 AAAAA~

186

The first item on the inventory and sales tapes have the same stock number; the

second item on the tapes have tbe same number; and so on. There is at least one

full block of data on each tape. Write the updated inventory.

SUMMARY

r.lagnetic tape: filay be 1:1etal or mylar plastic, about .002 inches thick, one half

inch wide, and up to 2400 feet in length.

Information:, is written on tape in blocks of 720 characters or 60 words.

Buffers: rl and rO, one block buffers, allow for simultaneous reading, writing,

processing, and rewinding.

Sentinels: following the data on tape are sentinel words consisting of six Z's in

the six most significant digit positions of the words. One sentinel is placed in the

key word following the last data. item and another in the last word of the block.

A second sentinel block has a sentinel in the first keyword of the block and an­

other in the:: last word of the block.

INSTRUCTIONS

1nOOOO: Read forward: Tn - rI

2nOOOO: Read backward: rI· Tn

30m: (rl)--...m

3nm: Forward Continuous Read: (rl} m; Tn rI
40m: . (rl) m

4nm: Backward Continuous Read: (rl).....m; rl ~ Tn

5nm: 60 words ~ Tn, 250 characters/in.
6nOOOO: Rewind Tn

7nm: 60 words In, 50 characters/in.

8nOOOO: Rewind Tn; set interlock

Protection: is given to data and instructions by placing snap rings in the tape

reels. These rings prevent recording but do not affect reading or rewinding. All

recorded information can be protected by using the 8nOOOO order when rewinding.

The interlock prevents further use of the Uniservo until the tape is changed.

187 UNIVAC®II

DATA AUTOMATION SYSTEM

chapterlO

Timing and

Efficient Use of Buffers

Generally a computer data pl'Ocesswg application involves more than one input.

For example, an inventory application involves, at least, an inventory tape and a

sales tape. To use the computer in such an application, the computer must main­

tain, in its memory. items from both the inventory and sales tapes. Moreover, for

computer efficiency both the reading of a block from the inventory tape and the

reading of a block from the sales tape must be bufferred. Use of multiple buffers,

one buffer for the inventory tape and another for the sales tape, is one solution to

this problem. However, a buffer is an expensive piece of hardware, and the provi­

sion of multiple buffers would increase the computer's cost significantly. Thus, a

technique must be found whicL ,viII funnel the data through one buffer, rl, without

sacrificing processing time.

188

PRESELECTION

The programming principle of preselection is one solution to the problem of buffer­

ing multiple inputs. Consider the following.

ILLUSTRATIVE EXAMPLE

A tape contains a series of ten word inventory items of form

Where N - stock number

Q - quantity

D - description
X - other data

NNNNNNNNNNNN
OQQQQ<WDDDDD

XXXXXXXXXXXX
XXXXXXXXXXXX
XXXXXXXXXXXX
XXXXXXXXXXXX
XXXXXXXXXXXX
XXXXXXXXXXXX
XXXXXXXXXXXX
XXXXXXXXXXXX

Another tape contains a series of two word sales items of form

Where .N - stock number

A - quantity
D - description

NNNNNNNNNNNN
OAAAA~DDDDD

The items are in ascending order by stock number on both tapes. There is at least

one full block of data on each tape. Write on updated inventory.

SERVO ALLOCATION

2 - Inventory

3 - Sales
4 - Updated Inventory

189
UNIVAC®//

DATA AUTOMATION SYSTEM

FLOW CHART

Once a block of inventory items and a block of sales items have been read in the

memory, the processing can begin. But before beginning the processing, the read

into rI of the next block of data to be required by the computer should be initiated.

The question is - Will the computer next need a block of inventory items or a block

of sales items?

The example places no restriction on the nature of the stock numbers of the items.

Thus,

1.. There may be inventory items to which no sales items refer; that is, there

may be inventory items whose stock numbers are not the same as the stock

number of any sales item;

and 2. There may be more than one sales item referring to the same inventory

item.

INVENTORY TAPE SALES TAPE

I 1l~2
8~O NUTS

II ~2
250 NUTS

I I ~2

5~06~ 150 NUTS
II ~2

~35 NUTS
1160

8~0 BOLTS
1150

250 BOLTS
1150

~3218 585 BOLTS

FIGURE 10.1

If all the sales items in the memory refer to inventory items in the memory, there

may be more sales items not yet read into the memory which refer to the current

block of inventory items. Thus, the computer will next need another block of sales

190

items. For example,

or

INVENTORY ITEM

STOCK NUMBERS

1142
1145
1149
1150
1153
1154

INVENTORY ITEM
STOCK NUMBERS

1142
1145·
1149
1150
1153
1154

SA'bES ITEM
STOCK NUMBERS

1142
1142
1142

1153

SALES ITEM
STOCK NUMBERS

1142
1142
1142

1154

If some of the sales items in the memory refer to inventory items that have not yet

been read into the memory, the current block of inventory items will be processed

and written before the current block of sales items is exhausted. Thus, the com­

puter will next need another block of inventory items. For example,

INVENTORY ITEM

STOCK NUMBERS

1142
1145
1149
1150
1153
1154

From the above, it is apparent that

SALES ITEM

STOCK NUMBERS

1142
1142
1142

1165

1. When the stock number of the last sales item in the memory is less than or

191 UNIVAC·@//

DATA AUTOMATION SYSTEM

equal to the stock number of the last inventory item In the memory, the

computer will next need another block of sales items.

2. When the stock nwnber of the last sales item is greater than the stock num­

ber of the last inventory item, the computer will next need a block of in­

ventory items.

flased on this fact, a test for relative magnitude between the stock numbers of the

last sales and inventory items permits the initiation of the read into rI of the next

block of data to be required by the computer. Since the tape from which the read is

to be initiated is selected before the items "in the memory are processed, this pro­

gramming principle is called preselection, which the following flow chart incorpor­

ates in subroutine P.

------~·8

I - SET OF INVENTORY ITENS

I j - jTH I TEN I M I, j • I, •••• e
I] - STOCK MUNIER Of 1 j
1,- QUANTITY Of I j
I" - SEN T 1 NEL OF I

S - SET OF SAlES ITENS

S k - KTH I TE II 1M'S, k • I..... 30

se - STOCK MUNIER Of Sk

S: - QUANTITY Of Sk

S· - SENTINEL Of S

FIGURE 10.2

As shown in the flow chart, when a block of items lfi tlie memory is exhausted, the

only operation necessary to get the next block of items into the memory is to trans­

fer the block from rI, since the preselection subroutine has already reat! the block

192

into rl from the proper tape. Control must then go to the preselection subroutine to

again determine from which tape rI is to be filled.

When a sentinel is discovered in the last word of a block, the sentinel is transferred

to the key of the last item in the block to assure the proper operation of th.e pre­
selection subroutine.

MEMORY ALLOCATION

CODING

0000

0001

0002

0003

0004

CD 0005

0006

0007

0008

@,@ 0009

CD 0010

0011

1820 - 1879 - Sales Area

1880 - 1939 - Inventory Input Area

1940 - 1999 - Inventory Output Area

<....
")

(
)

120000 T i ---+-- rl

810000
FOO049

331880 rl----I; Ts.-..rl
301820 rl--....S

~

® ROO041 } UOO038
B01880

I L01820
N <----:> I j : SN

k
QOOO09

ROOO17 } ® UOOO13

L----:>
UOOO05

[BF1881 ~]
I~ - S~~I~ SF1821

J J
EF1881

ROO029 } @ UOO026

193
UNIVAC®II

DATA AUTOMATION SYSTEM

0012 '--J

0>
UOOO05

0013 Yl1880
BOOO14

0014 [Z11940
Y11890J j + l-+-j

0015 [A- 0050
1100014]

0016 AOO051 * j : 6
Zl1880

<D 0017 ~

G> UOOO08
0018 BOO052 } COOO14 l---"'j

0019 541940 I--...TO
301880 rI~I

0020 BF1939

I LOO053
0021 ~ IS : Z

QOO024
@) 0022 ROO041 } 0 UOO038

0023 L--J
lJOOO17

0024 820000 RWD* Ti
C01930 IS~IN

6
0025 ~

UOO022

e> 0026 [V21822
BOO026J

0027 A- 0054 k + l--+--k
1100026

0028 AOO055 *k : 30
W21820

<V 0029 <----:>

~ UOOO12
0030 800056 } COO026 I-Jllo-k

0031 301820 rI---...S

BF1879
0032 LOO053 .-,S

: ~t~ :-,

QOOO35

0 @ 0033 ROOO41 } UOOL1~S

194

0034 ~
UOO029

0035 830000 RWO· Ts
C01878 SS--"SN

30
0036 BOO057 .2b

COOO09
0037 <--:>

~
UOO033

0038 (301878
L01930 N N

0039 <-----)
S 30: 16

TOO042
0040 130000 rs--..rI

® 0041 [L--) ::J f'.
~p,>

0042 120000
l,..

Ti~1

UOO041
@ 0043 LOO053 } .N

:Z
QOO045

Ij

0044 BF1881
lJOO010

0045 ROOO15
UOOO13

0046 101999
541940 1-... TO

0047 101940 Z IN
1

541940 I---......TO
0048 840000 RWO· TO

900000 Stop
0049 111111

~
0050 000010

000010
0051 088000

<----J
0052 Z11940

Y11890
0053 ZZZZZZ

Constants
<----")

0054 000002
<----)

0055 078118

<-----:>
0056 V21822

000026
0057 BF1880·

UOO043

195 UNIVAC®//

DATA AUTOMATION SYSTEM

STUDENT EXERCISE

A tape contains a series of twenty word policy items, each item having a policy

number of form

NNNNNNNNNNNN

in the zero word. No two policy items have the same policy number. Another tape

contains a series of one word policy number items of form

NNNNNNNNNNNN

No two policy number items are the same. Th~ items are In ascending order by

policy number on both tapes. There is at least one full block of data on each tape.

Write a tape containing the policy items for which there is a policy number item on

the policy number tape.

ROUTINE TIMING

The basic unit in the timing of routines is the minor cycle (mc), which is the time

required for a Univac Computer word to pass a given point in the computer. For

example, the time needed to transfer a word from memory to rA is one mc . The

duration of a me is 40 microseconds (f1s).

The time needed to execute f3 Time On is one mc, Slflce the execution involves

transferring one word from memory to CR; and one word from CC, through the adder

and back to CC; both of which occur simultaneously.

The time needed to execute y and 0 Time On varies with the instruction being

executed. The time need to execute a TO period, f3 TO, y TO or 0 TO, is. one mc.

The time needed to execute an instruction, the execution of which consists of

transferring one word from one storage to another, is one mc. These instructions

are Bam, BFm, COm, EOrn, FOm, GOm, HOm, 10m, JOm, KOm, LOm, LFm, ROm,

{JOm, and XOm. One mc is also required to execute the OOm instruction.

The time needed to execute a multi word transfer instruction depends on the number

of words being transferred. n mc are needed to execute the V nm and W nm instruc­

tions; IOn mc, to execute the Ynm and Znm instructions.

The shift instructions are executed by shifting (rA) one digit position each mc.

Thus, n me are needed to execute the Onm, -nm, ;nm and .nm instructions.

196

The conditional transfer of control instructions are executed in three steps.

1. Compare (rA) and (rL).

2. Set up to transfer control or skip.

3. Transfer control or skip.

One mc is needed to execute each step. Thus, three mc are needed to execute the
QO m and TOm instructions.

The add instructions are executed 'in three steps.

1. Transfer (m) to rX.

2. Set up to add.

3. Transfer the sum of (rA) and (rX) to rA.

One mc is needed to execute each step. Thus, three mc are needed to execute the

AOm, AFm, SOm and SFm instructions.

The AHm and SHm instructions are executed in the same way as the add instruc­

tions except that two extra steps are taken.

4. Set up to transfer (rA) to m.

5. Transfer (rA) to m.

One mc is needed to execute each of the extra steps. Thus, five mc are needed to

execute the AHm and SHm instructions.

The EFm instruction is executed in three steps.

1. E'V'en characters of (rF) extract (m) into rA.

2. Set up to transfer (rA) to m.

3. Transfer (rA) to m.

One mc is needed to execute each step. Thus, three mc are needed to execute the

EFm instruction.

For multiplication twenty mc, plus one mc for each addition required, are needed to

execute the MOm, MFm, NOm, NFm, POrn and PFm instructions. For example, 42

mc are needed to execute a M Om instruction specifying a cell containing the word

044444444444

The computer does division by a series of additions and subtractions. The time

needed to execute a divide instruction depends on the number of additions and

subtractions needed to develop the quotient, which depends on the nature of the

divisor. The only time a divide instruction is usedis when the nature of the divisor

191
UNIVAC®II

DATA AUTOMATION SYSTEM

is not known. Thus, the only meaningful execution time for the D Om and DFm in­

structions is an average execution time, which ,is 86 mc.

SUMMARY

INSTRUCTION EXECUTION TIME
IN MINOR CYCLES

AOm 3
AFm 3
AHm 5
BOrn 1
BFm 1
COm 1
DOm1 86
DFm1 86
EOm 1
EFm 3
FOm 1
GOm 1
HOm 1
10m 1
JOm 1
KOm 1
LOrn 1
LFm 1
MOm2 20 + X
MFm 2 20 + X
NOm 2 20 + X
NFm 2 20 + X
POm 2 20 + X
PFm 2 20 + X
QO'm 3
ROm 1
SOm 3
SHm 5
SFm 3
TOm 3
UOm 1
Vnm n

Wnm n
XOm 1
Ynm IOn
Znm IOn

198

1 A'verage

INSTRUCTION

OOm
.nm
;nm
-nm
Onm

2 X = number of additions needed

TIMING AN INSTRUCTION PAIR

EXECUTION TIME
IN MINOR CYCLES

1
n

n

n

n

The above information allows the timing of an instruction pair. For example, the

timing for the instruction pair

B01880A01881

would be as follows.

f3 TO
fJ Time On

y TO

y Time On

o TO

o Time On

TIMING A STRAIGHT LINE ROUTINE

EXECUTION TIME

1

1
1

1

1
3
8 mc

x 40

320fls

Timing a routine that involves no iteration, a straight line routine, consists of

timing each" instruction pair in the routine and summing the times. For example,

the timing for the processing part of the routine on page 44 would be as follows.

199
UNIVAC®//

DATA AUTOMATION SYSTEM

CODING

0001 B01880 A01881

0002 S01882 C01883

TIMING AN ITERATIVE ROUTINE

EXECUTION TIME

8

8

16 me

x 40

640 p.s

Timing an iterative routine consists of timIng the instruction pairs, multiplying

each of these times by the number of times the associated instruction pair is

executed and summing the products. For example, the timing for the processing

part of the routine on page 98 would be as follows.

CODING

0001 B00007 AII0003

0002 L00008 QOOOO 5

0003 801878 A01879

0004 AH0006 UOOOOI

* milliseconds

EXECUTION
TIME

10

8

8

10

TIMING A BRANCH ROUTINE

NO. OF TIMES
EXECUTED

31

31

30

30

TOTAL TIME

310

248

240

310

1098 me

x 40

43,920 p.s

x .001

43.92 m8.*

A branch routine is an iterative routine in which an item can be processed in one

of many ways depending on the nature of the item. For example, ~he routine on

page 136 is a branch routine, the processing of a job item being dependent on whether

salesman A or salesman B closed the contract, and also on whether or not the job
netted more than $250. To determine the number of times each instruction pair in a

branch routine is executed it is necessary to know

1. How many contracts salesman A closed

2. How many contracts salesman U closed

3. How many of the jobs contracted for by salesman A netted more than $250,

and 4. How many of tile jobs contracted for by salesman 13 netted more than $250?

200

Usually this information will not be available for the specific 30 job items to be

processed, but statistics may be available for jobs in general. For example, it may

be known that, in general, salesman A closes about as many contracts as salesman

B, and that one out of every five jobs contracted for by salesman A nets more than

$250, while one out of every three contracted for by salesman B nets more than

$250. On the basis of such statistics a branch routine can be timed. Using the

above statistics, the timing would be as follows.

EXECUTION NO.OF TIMES TOTAL
CODING TIME EXECUTED TIME

0001 F00029 BF1880 6 30 180
0002 L00030 QOOO08 8 30 240
0003 B00026 FOO031 6 15 90
0004 AF1880 COO026 8 15 120
0005 R00021 UOOO13 6 15 90
0006 B00028 AOO032 8 5 40
0007 C00028 UOOO17 6 5 30
0008 B00025 FOO031 6 15 90
0009 AF1880 COO025 8 15 120
0010 R00021 UOOO13 6 15 90
0011 B00027 AOO032 8 3 24
0012 C00027 UOOO17 6 3 18
0013 BF1880 SF1881 8 30 240
0014 , 50000 FOO033 10 30 300
0015 SF1880 SF1881 10 30 300
0016 L00034 TOO021 8 30 240
0017 B00019 LOO035 6 30 180
0018 A00036 QOO022 10 30 3"00
0019 V21882 W21880 8 29 232
0020 C00019 UOOOOI 6 29 174
0021 L~ UOVARI 6 8 48

3146 mc
x 40

125,840 IlS

x .001
125.84 ms

TAPE INSTRUCTIONS

There is associated with the execution of a tape instruction an execution time,
that is, a c'haracteristic duration of time during which the computer is concerned

with the exc:!cution of the instruction. However, also associated with the execution

201
UNIVAC®II

DATA AUTOMATION SYSTEM

of a tape instruction is a tape time, a characteristic duration of time during which

the specified Uniservo is concerned with .the execution of the instruction. The

execution time of a tape instruction is included in the tape time, which is 43.8 ms

for 250 character per inch density.

At the end of the execution time of a tape instruction, the computer is freed to con­

tinue processing. However, if, during the tape time of the tape instruction, the

computer is instructed to execute an input-output instruction that either

1. is of the same kind as this tape order (there are two kinds of in put-output

instructions, read instructions and write instructions)

or 2. specifies the same Uniservo as this tape instruction,

the computer will wait until the end of this tape time before continuing to execute

instruc tions. During the waiting time the computer is said to be in terlocked.

Thus, if the computer initiates the execution of a 1nm instruction, 43.8 ms will

pass before the computer can execute a read instruction or a tape instruction

specifying Unise'rvo n. At the end of the ~xecution time of tlte 1nm instruction and

during the remainder of the 43.8 ms, the computer will execute any other combina­

tion of instructions except two write instructions, since 43.8 ms must also pas.s

between the execution of two write instructions.

At the beginning of the execution of a tape instruction the read-write head of the

specified Uniservo is located at the space between blocks, halfway between the

block to the right and the block to the left. During the execution of the tape in­

struction the read head passes over the rest of this space between blocks; over

the block being read or written; and at the end of the execution of the instruction,

will once more be located at a space between blocks, halfway between blocks.

BEFORE EXECUTION

+- TAPE MOVEMENT

AFTER EXECUTION

f~ I GU R E 1 0 • 3

202

No reading or writing is done while the read-write head is passing over the space

between blocks. This passage is used to accelerate the tape before the read or

write operation and to decelerate the tape after the read or write operation. That

part of tape time during which a read or write operation is occurring is known as

read-write time; that part during which the read-write head is passing over the

space between blocks is known as start-stop time. A Uniservo is being developed

that will operate as follows. If the computer is interlocked during any part of the

time betwleen the execution of two consecutive tape instructions that specify the

same Uniservo and move the tape in the same direction, the tape w ill not be stopped

and restarted between the execution of the instructions. Instead, the tape will con­

tinue to move at 100" per sec. from the initiation of the first instruction to the

end of the execution of the second. Such operation will reduce start-stop time, and

consequently, tape time, by 5 ms.

EXECUTION TIME

The execution and tape times of all input-output instructions are as follows:

INSTRUCTION EXECUTION TIME TAPE TIME

1nm 2500 JlS 43.8 ms

2nm 2500 JlS 43.8 ms

30m 2680 JlS

3nm 2680 JlS 43.8 ms

40m 2680 JlS

4nm 2680 JlS 43.8 ms
5nm 2680 JlS 43.8 ms

7nm 2680 JlS 43.8 ms

TIMING A ROUTINE INVOLVING TAPE

The timing of a routine involving tape must take into consideration, not only pro­

ces~ing time, but also the possibility of interlock, since both affect running time.

Interlock :is taken into consideration in the following way.

203 UNIVAC®//

DATA AUTOMATION SYSTEM

The running of a routine involving tape can be considered a repetition of a pro­

cessing circle. For example, the circle of the routine on page 183 - 185 IS as

follows.
1. A block of items is read from the job tape to rI (the 321880 instruction in

cell 0023).

2. The block of job items is processed (the instructions 10 cells 0003-0010,

0013-0016 and 0019-0027).

3. (rI) are transferred to the input area (the 321880 instruction in cell 0023).

4. Steps 1 - 3 are repeated.

5. Steps 1 and 2 are repeated.

6. The output item counter is reset (the instructions in cell 0017).

7. The block of profit items is written (the 531940 instruction in cell 0018).

8. The end of block coding for profit items is executed (the instructions in

cells 0009, 0016, 0018 - 0021).

9. (rI) are transferred to the input area (the 321880 instruction in cell 0023).

The circle is complete, and processing returns to step 1.

The timing of a routine involving tape consists of timing the circle, which is done

as follows. Within the circle will be certain input-output instructions dIe combina­

tion of which may cause interlock. These instructions divide the circle into por­

tions. Each portion is timed, and the sum of these times will be the circle time of

the routine.

A portion IS timed as follows. The processing time for the portion is calculated.

If this time is 43.8 ms or more, the computer will not be interlocked, and running

time fOll" the portion will be processing time; otherwise, the computer will be inter­

locked, and running time will be tape time, 43.8 ms.

In the above circle the portions are as follows.

A. Between steps 1 and 3.

B. Between steps 1 and 9 after the second repetition of step 1 in the circle.

204

The following is the timing for portion A.

CODING

0000 ~ '------,
0003 B01880 C01999
0004· F00035 BF1881
0005 SF1882 . 50000
0006 F00036 SF1881
0007 SF1882 EF1999
0008 R00016 UOOO13
0009 R00022 UOOO19
0010 L--,UOOO03
0013 F01999 BOOO14
0014 G01940 A-0038
0015 H00014 AOO039
0016 ~ UOOO09
0019 V31883 BOOO19
0020 A-0041 HOOO19
0021 A00042 W31880
0022 L--, UOO010
0023 321880 BOO043
0024 C00019 FOO044
0025 BF1939 LOO037
-0026 L---, QOO028
0027 L-----, UOOO22

EXECUTION
TIME

6me
6me
6me

12me
8me

lOme
6me
6me
6me
6me
8me
8me
6me
8me
8me

lOme
6me

NO.OF TIMES
EXECUTED

J
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20

5me + 2680 Ils 1
6me 1
6m~ 1
8me 1
6me 1

TOTAL
TIME

6me
120me
120me
240me
160me
200me
120me
120me
120me
120me
160me
160me
120me
160me
160me
200me
120me

5me + 2 680 IlS

6me
6me
8me
6me

2437me + 2680 IlS
x 40

97,480
+ 2680

100,16O lls
x.001

100.16 ms

100.16 ms are greater than 43.8 ms. Thus, running time for portion A is processing
time, 100.16 ms.

The following is the timing for portion B,

205
UNIVAC®//

DATA AUTOMATION SYSTEM

EXECUTION NO.OF TIMES TOTAL

CODING TIME EXECUTED TIME

0000 L---J ") 6me 2 12me
0003 B01880 C01999 6me 20 120me
0004 FOO035 BF1881 6me 20 120me
0005 SF1882 .50000 12me 20 240me
0006 FOO036 SF1881 8me 20 160me
0007 SF1882 EF1999 lOme 20 200me
0008 ROOO16 UOOO13 6me 20 120me
0009 ROO022 UOOO19 6me 20 120me
0010 ~ UOOO03 6me 20 120me
0013 F01999 BOOO14 6me 20 120me
0014 G01940 A-0038 8me 20 160me
0015 HOOO14 AOO039 8me 20 160me
0016 l----J UOOO09 6me 20 120me
0017 BOO040 COOO14 6me 1 6me
0018 531940 UOOO16 5me + 2680 IlS 1 . 5me+2680 IlS

0019 V31883 BOOO19 8rne 20 160me
0020 A- 0041 HOOO19 8me 20 160me
0021 AOO042 W31880 lOme 20 200me
0022 <---, UOO010 6me 20 120me
0023 321880 BOO043 5me + 2680 IlS 1 5 me + 2680 Il s
0024 C00019 FOO044 6me 1 6me
0025 BF1939 LOO037 6me 1 6me
0026 <-----; QOO028 8me 1 8me
0027 C----J UOO022 6me 1 6me

2454me + 5360 IlS

x 40
98,160

+ 5,360
103,520 IlS

x .001
103.52 ms

Thus, running time for portion B is processing time, i03.52 ms.

In one circle portion A is executed twice, and portion B, once.

Thus, circle time is

2 (Portion A Time) = 2(100.16) = 200.32
Portion B Time 103.52

Circle Time 303.84 ms

206

In one circle three blocks of job items are processed. Dividing circle time by three
will give an average block time.

303.84 -7- 3 = 101.28 ms

Running time for a routine involving tape always depends on the number of blocks

to be pro(:essed. For example, if the job tape contained 4500 blocks of data, run­

ning time would be calculated as follows.

101.28
x 4500

455,780 ms
x .001

455.78 sec.

Di viding 455.78 by 60 gives a running time of 7.6 minutes.

In the above time estimate, time needed to execute, the beginning and ending sub­

routines was ignored. This procedure is customary, since this time is trivial.

GRAPHICAL REPRESENTATION

The running time of a routine may be represented graphically. For example, the

following is the graphical representation of the running time just computed.

READ LOCK I

PROCESS

WRITE

BLOCK 2 I

BLOCK I

DUMP
"1-

DUMP
R I

BLOCK 3 I

BLOCK 2

~;]

DUMP
"I

BLOCK 3

FIGURE 10.4

BLOCK 5 I

BLOCK ..

BLOCKS I
"- 2, 3

DUMP
AI

DUMP
"I

Graphical representation presents a conCIse picture that can be easily inspected

to determine whether or not the most efficient use of rI is being made.

201
UNIVAC®/I

DATA AUTOMATION SYSTEM

TIMING A BRANCH ROUTINE INVOLVING TAPE

Consider the routine on page 193. To time this routine, it is necessary to know the

ratio of inventory items to sales items, called the activity of the inventory file.

Suppose the activity were 16.7%, that is, for every six inventory items there is,

in general, one sales item. The circle would then be as follows.

1. A block of inventory items is written (the 541940 instruction in cell 0019).

2. A block of inventory items, and one sales item are processed (the instruc­

tions in cells 0005-0019, 0023, 0026-0029, 0041 and 0042).

3. Steps 1 and 2 are repeated 28 times.

4. A block of inventory items is written (the 541940 instruction in cell P019).

5. Control goes to cell 0040 (the instructions 1n cells 0019-0022, 0038, and

0039).

6. A block of items 1S read from the sales tape to rI (the 130000 instruction

in cell 0040).

7. A sales item is processed (the instructions in cells 0005, 0006, 0008-0011,
0017, 0023, 0026-0028, 0030, 0040 and 0041).

8. (rI) are transferred to the sales input area (the 301820 instruction in cell

0031).

9. A block of inventory items is processed (the instructions in cells 0005-

0008, 0012-0018, 0029, 0031-0034, 0038, 0039, 0041 and 0042).

The circle is complete, and processing returns to step 1. The portions are as follows.

A. netwcen step 1 and the repetition of step 1.

~1. Between steps 6 and 8.

208

In addition to the time for the portions, the time for steps 5 and 9 must be included

in circle time, since they are not included in either portion. The following is the

timing for portion A.

EXECUTION NO.OF TIMES TOTAL

CODING TIME EXECUTED TIME

0000 <---~ L......------:> 6me 1 6me
0005 B01880 L01820 6me 6 36me
0006 <--J QOOO09 8me 6 48me
0007 ROOO17 UOOO13 6me 6 36me
0008 <----...-., UOOO05 6me 6 36me
0009 BF1881 <-----, 6me 1 6me
0010 SF1821 EF1881 lOme 1 lOme
0011 ROO029 UOO026 6me 1 6me
0012 L-----, UOOO05 6me 1 6me
0013 Yl1880 BOOO14 15me 6 90me
0014 Z11940 Y11890 24me 6 144me
0015 A-0050 HOOO14 8me 6 48me
0016 AOOO51 Z11880 17me 6 102me

·0017 '--~ UOOO08 6me 6 36me
0018 BOOO52 COOO14 6me 1 6me
0019 541940 301880 4me + 5360 p.s 1 4rne + 5360 p.s
0020 BF1939 LOO053 6me 1 6me
0021 <-~ QOO024 8me 1 8me
0022 ROOO41 UOO038 6me 1 6me
0023 <-----, UOOO17 6me 1 6me
0026 V21822 BOO026 7me 1 7me
0027 A-0054 1100026 8me 1 81l1e
0028 AOOO55 W21820 9me 1 9me
0029 <-----., UOOO12 6me 1 6me
0038 B01878 L01930 6me 1 6me
00.39 L--, TOO042 8me 1 8me
0041 '---...., lJOVARI 6me 1 6me

0042 120000 tJOO041 5me + 2500 p.s 1 5me + 2 500 p.s
701 me + 7860 p.s
x40

28,040
+ 7860
35,900 p.s
x .001
35.9 ms

35.9 ms are not greater than 43.8 ms. Thus, running time for portion A 1S tape

time, 43.8 ms.

209
UNIVAC®/I

DATA AUTOMATION SYSTEM

The following is the timing for portion B.

EXECUTION NO.OF TIMES TOTAL

CODING TIME EXECUTED TIME

0000 ~ ~ 6me 1 6me
0005 B01880 L01820 6me 1 6me
0006 <-----, QOOO09 8me 1 8me
0008 <-----, UOOO05 6me 1 6me
0009 BF1881 <--------- 6me 1 6me
0010 SF 1821 EF1881 lOme 1 lOme
0011 ROO029 UOO026 6me 1 6me
0017 ~ UOOO08 6me 1 6me
0023 ~ UOOO17 6me 1 6me
0026 V21822 BOO026 7me 1 7me
0027 A- 0054 HOO026 8me 1 8me
0028 AOO055 W21820 9me 1 9me
0030 800056 COOO26 6me 1 6me
0031 301820 ~ 3me 1 1 3me
0040 130000

t

2me + 2 500 /lS 2 1 2me + 2 500 /lS

0041 '------1 UOVARI 6me 1 6me
101me+2500 /ls

x40
4040

+ 2500
6540/ls

x .001
6.54 /lS

1. f3 TO, f3 Time On, y TO; the rest of this three stage cycle is part of step 9

2. y Time On, 0 TO, 0 Time On; the rest of this three stage cycle is part of

step 5.

Thus, running time for portion B is tape time, 43.8 /lS.

210

The following is the timing for step 5.

CODING

0019 541940 301880
0020 OF1939 LOO053
0021 L--, QOO024
0022 ROO041 UOO038
0038 B01878 L01930
0039 <----, TOO042
0040 130000 ~

EXECUTION NO. OF TIMES TOTAL
TIME TIME

1rne + 5360 p.s
6rne
8rne
6rne
6rne

8rne
3rne

EXECUTED

1
1
1
1

1rne + 5360 p.s
6rne
8rne
6rne

1 6rne
1 8rne
1 3rne

38rne + 5360 p.s
x 40
1520

+ 5360
6880 p. s

x .001
6.88 rns

The following is the timing for step 9.

EXECUTION NO.OF TIMES TOTAL

CODING TIME EXECUTED TIME

0000 '----> L-----, 6rne 1 6rne
0005 001880 L01820 6rne 6 36rne
0006 <--"") QOOO09 8rne 6 48rne
0007 ROOO17 UOOO13 6rne 6 36rne
0008 <----...... UOOO05 6rne 5 30rne
0012 <----, UOOO05 6rne 1 6rne
0013 Y11880 000014 16rne 6 96rne
0014 Z11940 Yl1890 24rne 6 144rne
0015 A-0050 HOOO14 8rne 6 48rne
0016 AOO051 Z11880 17rne 6 102rne
0017 ~ UOOO08 6rne 5 30rne
0018 BOO052 COOO14 6rne 1 6rne
0019 541940 ~ 3rne 1 3rne
0029 ~ UOOO12 6rne 1 6rne
0031 301820 BF1879 2rne + 2680 p.s 1 2rne + 2680 p.s
0032 LOO053 QOO035 8rne 1 8rne
0033 ROO041 UOO038 6rne 1 6rne
0034 ~ UOO029 6rne 1 6rne
0038 B01878 L01930 6rne 1 6rne
0039 L..---, TOO042 8rne 1 8rne
0041 "----I lJOVARI 6rne 1 6rne
0042 120000 UOO041 5rne + 2500 p.s 1 5rne + 2 500 p.s

674rne + 5180 p.s
x 40

26,960
+ 5,180

32,140p.s
x .001
32.14 rns

211
UNIVAC®//

DATA AUTOMATION SYSTEM

In one circle portion A is executed 29 times; and portion B and steps 5 and 9,

once each. Thus, cycle time is

29 (Portion A Time)

Portion B Time

Step 5 Time

Step 9 Time

Cycle Time

29(43.8) 1270.2

43.8

6.88

32.14

1353.02 ms

In one circle 30 blocks of inventory items are processed. Thus, average block

time is

1353.02

30

45.101 ms

If the inventory tape contained 4500 blocks, running time would .be

or 3.38 minutes.

45.101

x 4500

202,954.5 ms

x .001

202.955 sec.

STANDBY BLOCK METHOD

The standby block method is another programming technique for the solution of

the problem of buffering multiple inputs. While requiring more memory space than

th~ preselection subroutine, the standby block subroutine is usually more efficient

in terms of running time.

The principle of the standby block method is to allocate to each input a 60 word

standby area as well as a 60 word input area. For example, for two input tapes,

Ta and Tb, an input area and a standby area, A and A, ,", .. ould be allocated to Ta;

and an input area and a standby area, Band B, to Tb.

Initially, the first block of items from Ta is read into area A; the first block from

Tb, into area B; the second block from Ta , into A; and the second block from Tb,

212

into rl; giving: the following configuration, which will be referred to as configura­

tion 1.

i'

D
RI

Q
CONFIGURATION I

FIGURE 10.5

The following discussion of the operation of the standby block technique is based

on figure 10-6.

CONFIGURATION 3 CONFIGURATION ~ CONFIGURATION 6 CONFIGURATION e

A A B

D D D D
A i A i A i A i

D D D D
RI II I R I R I

A A B

D D D
RI

T.-[J
CONFIGURATION I CONFIGURATION 2 CONFIGURATION 2 CONFIGURATION I

FIGURE 1'0.6

213
UNIVAC®/I

DATA AUTOMATION SYSTEM

If in configuration 1, the B items are exhausted first (configur~tion 3), (rI) are

transferred to area B, and a block is· read from Tb into rI, recreating configuration 1.

If, in configuration 1, the A items are exhausted (configuration 4), the contents of

area A are transferred to area A, (rI) are transferred to area D, and a block is read

from T a into rI, creating configuration 2.

If, in configuration 2, the A items are exhausted (configuration 5), (rl) are trans­

ferred to area A, and a block is read from T a into rl, recreating configuration 2.

If, in configuration 2, the B items are exhausted (configuration 6), the contents of

area B are transferred to area B, (rI) are transferred to area A, and a block is read

from Tb into rl, creating a configuration I.

Configurations 1 - 6 exhaust the possibilities. Thus, besides the block of A items

and the block of B items currently being processed, there is always another block

of A items and another block of B items in electronic storage, either in rI or in a

standby area.

The following is an abbreviated flow chart of the standby block technique.

GET A BLOCK OF A I TENS

COIIFIGURATIOII I TO PROCESS 1110

SET UP FOR COIIFIGURAlIOII 2

COIIF I auRAl I 011 2

GET A BLOCK OF B ITENS

COIIF I GURAl I 011 I

SET U" FOR COIIF I GURAl I 011 I

FIGURE 10.7

214

Basically, the reason why the standby block method is faster then the preselection

technique is that it requires only one input order, a 3nm, whereas preselection

requires two: a Inm followed by a 30m. Then, because the amounts of data in in­

put files usually differ greatly, the master file is advanced with a minimum number

of instructions besides the 3nm.

STUDENT EXERCISE

Flow chart and code the standby block technique.

215 UNIVAC®II

DATA AUTOMATION SYSTEM

chapter 11

Univac Supervisory

Control Panel Operations

The Supervisory Control Panel permits manual intervention into the otherwise

automatic operation of the computer. There are two ways in which manual opera­

tions become of use to the programmer. First, the running of a routine - the execu­

tion of the routine by the computer - requires certain manual operations, such as

clear C and initial read. Secondly, manual operations are of use in debugging.

An error in a routine - an aspect of a routine which causes the routine, when run,

to produce unexpected results - is called a bug, and the process of eliminating

bugs from a routine is called debugging. A programmer cannot be sure that a rou­

tine is correct - that is, has no bugs - until he has run the routine against all

possible types 9f input and determined that the routine produces the expected out­

put. If, in such a debugging run, a bug is detected, pertinent information about the

bug can often be obtained by manual intervention into the running of the routine.

The execution of the 10m instruction is an example of a manual operation that may

be required for the running of a routine.

216

THE 10m INSTRUCTION

INSTRUCTION OPERATION

10m SCK--..m

Transfer the word typed on the Supervisory Control Keyboard (SCK) to m.

The 10m instruction is a two digit instruction.

The SCK is a modified typewriter keyboard located on the Supervisory Control

Panel. Besides the standard typewriter keys, the SCK includes

1. keys for Univac characters not found on a typewriter keyboard,

2. a special bank of numeric keys for rapid typing of numeric information,

and 3. other keys used in the manual operation of the computer.

The computer executes the 10m instruction as follows. When the 10m instruction

is transferred to SR, the computer stalls and lights a neon, called the input ready

neon, on the Supervisory Control Panel, thus indicating that it is ready to accept

the type in of one word on the SCK. The operator types 12 characters on the SCK

and then depresses the tCword release" key. The word typed is transferred to the

cell specified by the 10m instruction.

One use of the 10m instruction is to allow the type in of constants which vary from
one running of a routine to the next, such as the date.

CONDITIONAL TRANSFER BREAKPOINTS

There is, on the Supervisory Control Panel, a bank of 12 buttons called conditional

transfer breakpoint selector buttons. Ten of the buttons are numbered 0-9, one is

labelled naIl", and one is labelled ccrelease". If a number, 0-9, is coded in the

second instruction digit of a conditional transfer of control instruction, the com­

puter can be made to stop with this instruction in the SR. To cause the stoppage

the conditional transfer selector button corresponding to the second instruction

digit of the Qnm or Tnm must be depressed. The computer makes the comparison

and indicates whether or not transfer of control will occur, stopping before the

transfer is effected. If the computer is to transfer control, the conditional transfer

neon on the Supervisory Control Panel will be lit; if not, the no transfer neon will

be lit. If transfer of control is not indicated, the operator can cause a transfer of

control by depressing a button, called tt force transfer". If transfer of co~trol is

indicated, the operator can prevent transfer of control by depressing a button,

called tt no transfer".

217
UNIVAC®//

DATA AUTOMATION SYSTEM

One use of conditional transfer breakpoints is for manual control. A conditional

transfer breakpoint can be coded at a crucial point in a routine, and when the com­

puter reaches this point, the operator, by operating the transfer buttons, can choose

the processing that the computer is to follow. For example, some routines are

coded for a certain number of Uniservos but provide an option for using less. The

option can be in the form of a conditional transfer breakpoint that normally does

not transfer control. If the lesser number of Uniservos is to be used, the operator

can depress the appropriate conditional transfer breakpoin t selector button and

force transfer when the computer reaches the breakpoint, thus causing the computer

to follow a path other than normal.

Breakpoints are also used in bugshooting. If a bug cannot be found by desk check­

ing, conditional transfer breakpoints can be inserted at crucial points in the rou­

tine. If the associated conditional transfer breakpoint selector buttons are de­

pressed, the computer will stop every time the conditional transfer instructions are

set up in the SR. The contents of crucial cells and registers can then be investi­

gated for correctness before continuing with the routine. This in vestigation is

conducted after the computer has been set to operate on other than the continuous

mode and can be made as follows: (Non-continuous operation is made possible

by operating the Interrupted Operation Buttons, which will be described later).

PRINTING FROM THE SUPERVISORY CONTROL PANEL

By means of switches on the Supervisory Control Panel the operator can stop the

computer, set up an instruction in SR, cause the computer to execute the instruc­

tion, and still prevent the computer from losing its place in the routine whose

execution has been interrupted. Thus, if a programmer wants to know the contents

of a given cell, the operator can set up a 50m instruction, with m the given cell,

in SR and cause the computer to print the contents of the cell. The contents of a

register can be investigated in a similar fashion, as follows.

There is, on the Supervisory Control Panel, a bank of eight buttons, called type

out selector buttons and labelled M, F, L, A, X, CR, C and n empty". Only when

type out selector button M is depressed will the computer execute the 50m instruc­

tion as defined. If, for example, type out selector button A was depressed when a

50m instruction was executed, the contents of, not m, but rA would be printed.

Similarly, type out selector button F causes (rF) to be printed; L, (rL); X, (rX);

CR, (CR); and C, (CC). Thus, if a programmer wants to know the contents of a

given register, the operator can set up a 50m instruction, depress the appropriate

type out selector button, and cause the computer to print the contents of the

register.

218

Whenever printing on the SCP takes place the characters are monitored according

to the position of a function switch. Some characters cause printer action, such as

carriage return, tabulate, space, etc. There are times, however, when it is desired

to know what the character is rather than have the action take place. When the

function switch is in the Normal position action takes place whereas when the

switch is in the Computer Digit position a substitute character is printed.

The character chart in the back of the manual indicates the action, or character
printed, when a given character is transferred to the printer.

THE ALL CONDITIONAL TRANSFER BREAKPOINT SELECTOR BUTTON

Depressing the conditional transfer breakpoint selector button labelled H all" causes

the computer to stop on all conditional transfer instructions. One use of the HaHn

button is in the debugging of a type of bug called a closed loop. It is not uncommon

for a routine to be coded in such a manner that a loop of instructions are created

from which there is no exit. There is a characteristic noise, created by the trans­

fer of data from one storage to another, which is amplified and emitted from a

speaker behind the Supervisory Control Panel. When a closed loop is entered, the

noise takes on a repetitious character. If the "all" button is then depressed, the

computer will stop on the first conditional transfer instruction encountered, if there

is one in the loop. Depressing a bar, called the start bar, on the SCK will cause

the computer to continue executing instructions until the next conditional trans­

fer instr·uction is reached. If this process is continued; and if each time the com­

puter stops, the programmer notes

1. the location and nature of the conditional transfer of control instruction on

which the computer stopped

and 2. whether or not the computer is going to transfer control;

the path or the closed loop through the coding will soon be determined. The con­

ditional transfer of control instruction on which the computer stopped can be de­

termined in one of two ways.

1. The operator can read (SR) from a series of neons on the Supervisory

Control Panel. Thus, the operator can tell the programmer on what con­

ditional transfer of control instruction the computer stopped, and the pro­

grammer can locate the instruction in his copy of the coding.

219 UNIVAC@//

DATA AUTOMATION SYSTEM

2. (CC) can be printed. The address printed will be one more than the ad­

dress of the cell in which the conditional transfer of control instruction

is stored.

If the closed loop does not contain aay conditional transfer of control instructions,

the path of the closed loop can be determined by executing the instructions in the

loop one at a time.

INTERRUPTED OPERATION

Interrupted Operation is controlled by a bank of five buttons on the Supervisory

Control Panel. The buttons are labelled one addition, one step, one operation,

one instruction and continuous. Of these, only the continuous and one instruction

buttons are of significance here.

If the continuous button is depressed, the computer is said to be tc on continuous"

and operates in the following manner. When the start bar is depressed, the com­

puter starts executing instructions and will not stop until either a 90m instruction

is executed or a breakpoint is reached. Once the computer stops, it will not start

again until the bar is depressed. However, if the computer is placed in the one·

instruction mode by depressing the one instruction button and the start bar is then

depressed, the computer will stop during a TO period, f3 TO, y TO or 8 TO. Thus,

if a closed loop contains no conditional transfer of control instructions, the oper­

ator can place the computer on one instruction, and the computer will stop on the

first TO period encountered. Depressing the start bar will cause the computer to

complete the execution of the current stage of the three stage cycle and stop dur­

ing the next TO period. If this process is continued; and if each time the computer

stops on y or 8 Time, the programmer notes the location and nature of the instruc­

tion just transferred to SR; the path of the closed loop, and possibly the reason

for it, will soon be determined.

THE RELEASE CONDITIONAL TRANSFER

BREAKPOINT SELECTOR BUTTON

With the exception of the conditional transfer breakpoint selector button labelled

urelease", the conditional transfer breakpoin t selector buttons are such that,

when depressed, they remain depressed. The depression of the tcrelease" button

releases all of the buttons.

220

OTHER BREAKPOINTS

There are breakpoints other than conditional transfer breakpoints. One is the comma

breakpoint. If a comma is coded in the first instruction digit of an instruction, and

if a switch, caned the comma breakpoint switch7 on the Supervisory Control Panel

is locked in the down position. the· computer will stop when the ,Om instruction is

transferred to SR. If the comma breakpoint switch is in the normal position, the

computer interprets a ,Om instruction as a skip.

A third breakpoint is the fifty breakpoint. If a switch, called the type out break­

point switch, on the Supervisory Control Panel is locked in the down position,

every time a 50m instruction is transferred to SR the computer will stop before

printing. If the type out breakpoint switch is put in the center position, the normal

position, the computer interprets 50m instructions as defined. The switch can also

be locked in the up position, called the skip type out position, which causes the

computer to interpret all 50m instructions as skips. The skip type out position of

the type out breakpoint switch allows the programmer to speed up the execution of

a routine by skipping .type outs that otherwise would normally occur.

MANUAL ALTERATION OF INSTRUCTIONS IN THE MEMORY

It often happens that, in a debugging run, the computer will stall, or "hang up", on

a bug, and after a short investigation the programmer decides that, by a slight

alteration of the instructions, the bug can be eliminated. Rather than preparing a

new instruction tape to test his theory, the programmer can make the alterations

in the memory by the following manual operations.

The instruction tape is initial read. By placing the COillputer on one instruction,

the operator can then step the computer, stage by stage, through the instructions

that read the rest of the instructions into the memory. At this point the operator

can set up, in SR, 10m instructions to the cells the contents of which the pro­

grammer wants to modify. The execution of the 10m instructions completes the

modification, and the corrected routine can then be run by putting the computer on

continuous. It is normal operating procedure to first print out the words to be

altered.

THE FILL OPERATION

If the programme·r wants to modify the contents of a series of consecutive cells,

he can use a procedure, called the fill operation, that is faster than the setting up

221
UNIVAC®//

DATA AUTOMATION SYSTEM

of 10m instruction in SR. By operation of the fill memory switch, the operator can

cause the computer to set up in SR a 10m instruction to the cell specified by the

four least significant digits of CC. After this 10m instruction has been executed,

the computer automatically increases (CC) by one and once more sets up a 10m

instruction to the cell specified. This process can be continued for the contents

of as many cells as the programmer wants to modify.

If the programmer wants to start the fill operation with cell 0000, a word of zeros

can be transferred to CC by depressing a button, called the clear C button. De­

pression of the clear C button is the operation referred to as H clear C". If the

programmer wants to start the fill operation with some cell other than cell 0000,

the proper address can be transferred to CC by the SCICR operation.

SCICR

By operation at the Supervisory Control Panel, the operator can perform the oper­

ation known as SCICR (Supervisory Control Input to CR). This operation allows the

operator to type 12 characters on SCK and have the resulting word transferred to

CR. If, for example, the programmer wanted to start a fill operation at cell 0029,

the operator could SCICR a OO·m UO m instruction pair. The UOm instruction would

specify cell 0029. Then, by putting the computer on one instruction, the operator

could cause the computer to execute the O.om UOm instruction pair. At the end of

the execution the address in CC would be 0029. The operator can then begin the

fill operation at cell 0029.

GENERATING DATA

To debug a routine, data must first be provided for the routine. Knowledge of the

nature of the data aids materially in locating bugs. Thus, initial data is usually

prepared by the programmer. In many cases it is not necessary for the programmer

to write out such data and have the data unityped. Instead, a rather simple routine

can be coded that, when executed, generates the data as its output. The correct­

ness of such a generator routine can be checked visually by printing the output on

theUni vac High-Speed Printer.

DEBUGGING PROCEDURE

When the programmer takes his routine on the computer for a debugging run, he

should have ·with him all information pertinent to the routine, and always a copy of

222

the flow chart and coding. Usual debugging procedure is to run the routine for the

first time with the computer on continuous. The routine may hang up on a bug,

enter a closed loop or run to completion. When the computer encounters a bug, the

programmer ~ust note all pertinent information about the bug, preferably by writing

it down. F'or example, if the routine were to hang up on an adder-alphabetic error,

the pertinent information would be the answers to the questions:

1. How long after the execution of the routine started did the routine hang up?

2. What instruction was the computer executing when the routine hung up?

3. What was (rA) immediately before the execution of this instruction?

4. What is the word that was being added to (rA) when the routine hung up?

When the computer is on continuous, the only part of the central computer group

that moves slowly enough for the mind of the programmer to keep up with is the

tape on the Uniservos. This tape movement can usually be predicted from the
nature of the routine, and before the debugging run the programmer should figure

out and fix in his mind every detail of the expected tape movement. During the

debugging run the programmer's main interest should be directed toward the move­

ment of the tapes. not at the SCP. Any deviation from the expected tape movement

is usually a good indication of a bug.

THE EMPTY OPERATION

It sometimes happens that, after a bug has been detected, the programmer could

profitably utilize a record of the contents of a certain portion of the memory. If the

portion is not too large, t,is record can be printed on SCP by means of the empty

operation. The empty operation is initiated by depressing the type out selector

button labelled "empty" and operates as follows. The contents of the cell speci­

fied by the four least significant digits of (CC) are printed. (CC) are automatically

increased by one, and the contents of the next specified cell is printed. The pro­

cess can be continued until the contents of all cells wanted by the programmer
are printed.

MEMORY DUMP

If the portion of the memory, a record of which the programmer wants, is too large

to be printed in a short amount of time, a memory dump can be used to obtain the

223
UN/ VAC® II

DATA AUTOMATION SYSTEM

record. Memory dump consists of writing the contents of the memory on tape in

order that the tape can be printed on the High-Speed Printer. To produce the

memory dump, a routine that will write the contents of the memory on a tape is

coded, unityped on the instruction tape, and read into the memory at the same time

as the routine to be debugged is read. When a memory dump is desired, control is

transferred to the memory dump routine by means of an SCICR. It is standard de­

bugging procedure to obtain a memory dump whenever a bug occurs and cannot

immediately be corrected.

VERIFYING THE OUTPUT

If a routine runs through the debugging run to completion, and the programmer has

been unable to detect any bugs from the tape movement, the output of the routine

must then be checked to verify that it is the output expected from the given input.

The verification can be done visually by printing the output on the High-Speed

Printer. However, it is often possible, especially if the input data has been generat­

ed, to code a routine that will accept the output of the routine to be debugged as

input, and compare it with the expected results. Such a checking routine u'sually

prints all pertinent information about any discrepancies on the SCP.

SUMMARY OF PROCEDURES TO FOLLOW FOR TEST RUNNING A ROUTINE

A. Prior to running the routine

1. Prepare a detailed memory allocation including working storage.

2. Prepare detailed operating instructions including:

a. servo allocation - inputs, instructions, blanks

b. a description of SCP printouts and necessary type-ins

c. breakpoints included in routine - how and when used

d. a list of servo buttons to be depressed

e. the disposition of output

3. Code a data generator and a checking routine if applicable

4. Thoroughly desk check the routine

5. Determine the nature of tape movement

B. To run the routine

1. \!ount tapes

2. Inform the computer operator of buttons and switches to be used

224

3. Initial Read the instruction tape

4. Place computer on continuous

C. While the routine runs

1. Observe tapes for characteristic movement

2. Listen for characteristic sound of a closed loop or stoppage.

D. If the computer stalls

1. Determine the type of error (neons lit, SR, CR)

2. Examine the contents of affected registers and memory cells (type-outs,

empty, etc.)

3. Determine the location of the error (type out (CC))

4. If the error can be corrected and the routine continued, do so. (type-ins,

fill, etc.)

5. If necessary, write the memory on tape (the coding to do this should be in

th(~ routine - or fill the coding)

6. When appropriate, employ service routines to locate the source of the error.

7. De'sk check the routine and list the corrections to be made.

E. If there is a closed loop in the routine

1. Depress tc all" breakpoint selector button

2. Dc:~press start bar (as many times as is !necessary) noting the Qm and Tm

instructions and the condition of the conditional transfer neons.

3. When a pattern is determined proceed to D3, above.

4. If there are no Qm's or Tm's in the loop,execute the loop one instruction

at a time.

F. When tape movement is not as expected

1. Stop computer

2. Proceed to D5, above.

G. When the routine runs completely, check the output.

SUMMARY

Interrupted Operation: by depressing appropriate buttons, instructions, either from

the program or set up in SR by means of switches, can be executed.individually.

225
UNIVAC®//

DATA AUTOMATION SYSTEM

SCICR: type one word into CR on SCK.

Fill: in a continuous operation, any number of words may be typed into consecutive

memory locations.

Empty: in a continuous operation, any number of words, In consecutive memory

cells, may be printed on SCP.

Retain Instruction: a particular stage of the 3 stage cycle may be retained to per­

form manual operations. This prevents "losing one's place" in a routine.

Retain C: alteration of (CC) is prevented. This has a function similar to Retain

Instruction.

SOm: may print (rA), (rL), (rX), (rF), (CC), or (CR) depending on the selection of

the Output Selector Button.

BREAKPOINTS

Qnm, Tnm: stops computer, In conjunction with Conditional Transfer Selector

Buttons, 0-9 and All, after the comparison had been made. The result of the com­

parison is shown in two neons and may be altered by two buttons.

,Om: stops computer where Comma Breakpoint Switch is depressed; interpreted

as a skip otherwise.

SOm: will stop the computer, be treated as a OOm, or as a normal SOm depending

on the position of the Typeout Breakpoint Switch.

226

chapter12

Sorting and Merging

A cLaracteristic of most commercial data processing is the necessity of assembling

with a master file one or more files containing additional information about the

items before their processing can begin. Each item of the master file as well as

the subsidiary files are usually identified by a key contained within the item. For

example, payroll items are identified by a badge number; inventory records, by a

stock number. Tbe assembly process consists of selectinb an item from the master

file and then selecting from the subsidiar) files items with a matching key.

227 UNIVAC®//

DATA AUTOMATION SYSTEM

The central problem in such matching operations is the cost at which the informa­

tion for a given item can be selected from the subsidiary files. The speed at

which this selection can be performed will affect this cost. The longer the selection

takes, the more equipment and operative personnel are necessary to accomplish

it within the time available.

In investigating the speed of selecting an item, define access time as that time

necessary to select a given item when that item is one of many items 1fi a file.

The given item may be chosen in two ways, with each manner of choice giving

a different access time. Random access time is the time required to select an

item designated in random fashion. Sequential access time is the time required to

select item k + 1 after having already selected item k. The random and sequential

access times for the memory are essentially the same.

The. files of most commercial applications are of very large size. The master file

for a 10,000 man payroll might contain 12,000,000 bits of information, and this is

a relatively small file compared to the million accounts in the master file of a

public utility company. Yet only a part of such a file could be stored in the memory.

The cost of memory storage prohibits the expansion of the memory.

The cost of storing files on tape is economically feasible. The random access

time of tape files depends on the number of items stored, but even for 27,000 ten

word items this time needed to select one item is over one and one half minutes.

The sequential access time for such a file is only about ten ms.

The initial order of one or more files in an application is usually not controllable .

. For example, the receipt of payments never come in account number sequence.

With tape storage items should be arranged in a sequence to take advantage of the

short sequential access time. The usual sequence is an ascending one. Sorting is

that process which arranges a tape of items in sequence by a given key.

COLLATION

Collation combines two or more similarly ordered sets of items to produce another

ordered set composed of information from the original sets.

228

Assume a random sequence of items on tape. Each i.tem has a four character alpha­

numeric key by which the items are to be arranged in ascending sequence. In the

following figure the tape is shown on· Univac Uniservo 2. Only the key of each

item is shown. Blank tapes are mounted on Uniservos 3, 4, 5 and 6.

2 3 4 5 6

M969
·C11S
T762
F196
M138
U280
A014
S969
N170
S 162
R070
H970
T278
A126
E048
POOl
FOOO
D254
E274
H312
H178
T274
F168
B642
C574
U204
G368
J 628
T226
L318
K498
N500

FIGURE 12.1

229 UNIVAC®//

DATA AUTOMATION SYSTEM

The first step is to read down tape 2, and write the items alternately on tapes 5
and 6.

3 4

FIGURE 12.2

5

M969
T762
M138
A014
N170
R070
T278
E048
FOOO
E274
H178
F168
C574
G368
T226
K498

6

Cll8
F196
U280
S969
S162
H970
A126
POOl
D254
H312
T274
8642
U204
J628
L318
N500

Tapes 5 and 6 are now said to consist of one item strings. Next a merge is per­

formed on the strings. Tapes 5 and 6 are read backwards. The first items from

each tape are written in ascending order on tape 3. The second items are written
in ascending order on tape 4. The process is continued, paired items being written

alternately on the output tapes. At the end of the merge, tapes 3 and 4 contain

two item strings, as shown in the following figure, where lines are used to in­

dicate the separation of the strings.

3 4 5 6

K498 L318 D D N500 T226
G368 C574
J 628 U204
8642 H178
F168 T274
E274 D254
H312 FOOO
E048 A126
POOl T278
H970 N170
R070 S162
A014 M138
S969 U280
F196 C1l8
T762 M969

FIGURE 12.3

230

Tapes 5 and 6 are shown as blank to indicate that they are rewound and may be

used to store other data.

Tapes 3 and 4 are read backwards, the first strings on each tape being merged into

a four item string in descending order which is written on tape 5. The second

strings are merged and written on tape 4, and so forth.

3 4 5 6

o [J T762 U280

M969 S969
F196 M138
CU8 A014
S162 T278
R070 POOl
N170 E048
H970 A126
H312 T274
FOOO H178
E274 F168

FIGURE 12.4 Q.254 8642
l.J204 T226
J 628 H500
G368 L318
C574 K498

The four itt!m strings are merged into eight item strings.

3 4 5 6

C574 8642 [G368 0254

J 628 E274
K498 FOOO
L318 F168

....... -
N500 H178

T226 H312
U204 T274
A126 A014
E048 C1l8
11970 F196
N170 M138 FIGURE 12.5
POOl M969
ROiO S969
S 162 T762
T278 U280

~

231
UNIVAC®//

DATA AUTOMATION SYSTEM

The eight item strings are merged into 16 item strings. Since there are 32 items,

there are two strings.

3 4 5 6

U280 U204
T762 T274
T278 T226
S969 N500
S162 L318
R070 K498
POOl J 628
N170 11312
M969 1-1178
M138 G368
1-1970 F168
F1~6 FOOO
E048 E274

FIGURE 12.6 Cll8 D254
A126 C574
A014 B642

The last pass merges the 16 item strings onto tape 3.

/3 4 6

A014

D A126
B642
Cll8
C574
D254
E048
E274
FOOO
F168
F196
G368
1-1178
1-1312
11970
J 628
K498
L318
~138

M969 FIGURE 12.7
M70
MOO
POOl
R070
S 162
S969
T226
T274
T278
T762
U204
t:280

232

Thus, collation consists of successive string merges. Each merge doubles the

string length and halves the number of strings. The same number of passes sort

the items regardless of the size key involved.

When collation is done on the computer, each block of input to the first pass is

sorted in the memory, and one block strings are dispersed. Thus, if tw 0 word

items were to be sorted, the first pass would disperse 30 item strings.

To guarantee that the last pass will produce an ascending sequence, the follow­

ing rule is used. G.iven k blocks of items, determine n such that

If n is odd, the first merge should be ascending; if even, descending.

The above is called two way collation. The minimum number of Uniservos required

is four, since once the instructions have been read and the d~ta dispersed, the

instruction and input data tapes can be dismounted, freeing their Uniservos for

blanks. The number of passes to sort a tape containing 4500 blocks is 14. When

enough Uniservos are available, which is usually the case, three way collation is

more efficient. Three way collation proceeds exactly as two way except that the

first pass disperses over three tapes, thus permitting a series of three way merges.

Consequently, the number of blocks in the strings increase by powers of three

rather than two as in two way collation. In three way collation the sequence of
the first merge is determined by the same method used in two way except that the

formula becomes

Using three way collation, the number of passes to sort a tape containing 4500

blocks of items is nine.

DIGITAL SORT

While collation provides a powerful general sorting method, there are occaSIons

when the nature of the items to be sorted permits specialized techniques that, for

those cases only, are more efficient. One such technique is the digital sort. A

digital sort is feasible when the key is numeric and small.

233
UNIVAC®//

DATA AUTOMATION SYSTEM

Assume a random sequence of items on Uniservo 2. Blank tapes are mounted on

Uniservos 3, 4, 5, 6, 7, 8, 9, -, A, Band C.

81

85
68
52
27

I
II
36
50
75

39
13
79
89
26
99

FIGURE 12.8

The dispersion run reads down the data and examines each key. If the least signifi­

cant digit of the key is zero, the item is written on tape 4; if one, on tape 5,; if

two, on 6; and so on.

FIGURE 12.9

c

~
9

79
89
99

The next step is the collection. Tape 4 is read backwards. Each 0 item is re­

corded on tape 3. After the 0 items have been recorded on tape 3, the 1 items are

selected from tape 5, again reading backwards, and written on tape 3. This pro­

cess is continued until all the items have been collected on tape 3. The items are

now arranged in ascending order by the least significant digit of the key.

234

50

II
I

81
52
13

75
85
26

36
27

68
99
89
79
39

FIGURE 12.10

Tape 3 is now read backwards to repeat the dispersion run, but this time the digit
in the second column of the key is examined.

FIGURE 1 2. 11

Next the collection run is repeated. The items are now sorted.

3

II
13
26

27

36
39
50
52
68
75

79
81

85
89
99

FIGURE 12.12

235
UNIVAC®//

DATA AUTOMATION SYSTEM

The digital sort proceeds in this fashion for each additional digit in the key.

Using the digital sort, the numbers of passes to sort a tape is twice the number of

digits in the key. The time required for each pass is about the same as for the

collation method on like size items, since the same general operations are neede~.

The number of passes required in this example is four as compared with nine for

three way collation. Of course, the digital sort is not of universal application, but

on sufficiently restricted data it is efficient. Thus, the nature of the items to be

sorted should be given careful study to determine if a special sorting technique is

applicable before recourse to the general method of collation is made.

FUNCTION TABLE SORT

Another specialized sorting technique is the function table sort. This technique

is feasible when the following conditions are met.

1.. The key is numeric ~
2. The range of the key is small.
3.. All items having the same key can be summarized in a single item.

4, The item size is small.

Assume a series of two word items with keys ranging from 0 to 4999.

The first run reads the items on tape 2 and disperses them on tapes 4-8. Those

items with keys 0-999 are written on tape 4; items with keys 1000-1999, on tape 5;

and so on.

The second dispersion run reads tape 4 backwards and distributes the items be­

tween tapes 5 and 6, the items being written following the first dispersion items.

Sentinel blocks may be used to mark the separation between the two sets of items.

Items with keys 0-499 are written on tape 5; the others, on tape 6.

66~o6
0- .000- 2000- 1000- l1000-

ItI .1tI 2IH 3HI 'H'

66
0- 500-

-~T
3 FIGURE 12.13

236

The third step is the function table sort proper. One thousand consecutive cells

are reserved in the memory. These cells will store 500 items; they are cleared to

zero initially. The items with keys 0-499 from tape 5 are read into the computer.

The key of each item determines the cells in which the item is to be placed. Cells

1000 and 1001 are reserved for items with key 0, 1002 and 1003 for items with key

1, and so forth. The address, m, is determined from the formula

m = 1000 + 2 (k - 250n)

where k is the key and n = 0 initially. Then the item is transferred with a V2mW2m

instruction pair to cell m and m + 1. If more than one item with a given key is

possible, the quantity fields in the items are added to the quantity fields already

stored in the paired cells.

Thus, as each item is read into the computer an address is fabricated from its key

and the item stored in that cell and the one succeeding. If an item is -already in

the cell th(~ quantity field is added to the item stored. The process is akin to a

post office pigeonhole set-up where letters selected at random are stuffed into the

proper rouU! box. After all the 0-499 items have been stored in their appropriate

cells the computer cclooks" in cells 1000 and 1001. If an item is present, it is

written on the output tape and cells 1002 and 1003 ate examined. If no item is

stored here, cells 1004 and 1005 are examined. In this manner the items which

were stuffed into the proper pigeonholes in random fashion are now extracted and

written on tape 3 in sequence.

After all 500 paired cells have been examined, they are cleared to zero, and the

items from tape 6 with keys 500-999 are read into the computer. These items are

stored in the appropriate cells, the address being fabricated from the fonnula

given above~, with n = 1. Thus, the item with key 256 is stored in cells 1012 and

1013. Again, after all these items have been stored, the cells are emptied sequen­

tially and their contents written on Uniservo 3. Then the second dispersion and

function table runs are repeated for each of the items on tapes 5, 6, 7 and 8. Tape

3 now contains the sorted items.

Only four passes over the information are required: one for first dispersion, one

for second dispersion and two for the function table sort (one pass to store the

items, one pas,s to pick them out of the cells and write them on tape 3). To do

thIS sort by three way collation would require nine tape passes; by the digital

sort, eight tape passes. The number of passes needed by a function table sort can

be determined by the following formula.

p = 2 +(;~ + .999 ...) IP

237
UNIVAC®II

DATA AUTOMATION SYSTEM

Where p - number of passes

w - number of words in the item

k - range of the key
c - number of cells available for the function table sort

u - number of Uniservos available for dispersion

The sorting methods described sort one reel of data only. Where the amount of data

to be sorted exceeds one tape, a merge must be done to produce the muiti-reel

ordered items. For example, if three reels of data are to be sorted, the three reels

are first individually sorted by that sorting method most efficient for this data.

Then the three sorted reels are put through a three-way merge to form a single

ordered file of three reels.

The merging time is not trivial for large amounts of data. Generally speaking, the

merging time depends on the number of Uniservos available and the number of full

reels to be merged. The objective in sorting and merging is to keep the number of

passes to a minimum. Because of this it is desirable to have the maximum number

of input reels to merging runs as the Uniservos available will allow.

Care should be taken in the manner in which merging operations are performed.

As an example, consider the merging of 12 reels with the number of Uniservos

permitting a maximum of 3-way merging. The straightforward approach would be to

do four 3-way merges producing four ordered piles of three reels each. Then three

of these piles would be merged to form one ordered pile of nine reels which is

then merged with the fourth three-reel pile to form one pile of twelve reels. The

number of tape passes is 33.

000000000000

\J/\J/\J/\J/
o 0 0 0

F I GU R E 1 2 • 1 4 (]]]]))]

238

However, by mel'ging in the manner shown in figure 12-15, only 29 passes are in­

volved.

000000000000

\V\V\V~ o 0 0 0

----Q)

FIGURE 12.15

An algorithm exists for expressing the exact manner in which the merging may be

done for minimum tape passes. The algorithm is as follows. Given k ~apes to merge

and enough Uniservos to do a b way merge find In such that

Form b groups, G1 , G2 , G3 , ... Gb , each consisting of bn-2 tapes. Add the remaining

tapes to the groups according to the following rules.

1. No group may contain more than bn-1 tapes.

2. Bring G 1 to its maximum first, then G2; then G3; ... ; and finally G b .

To use the algorithm:

A. Decide on b- commonly 3, 4, or 5.

B. Establish n using k and b.

C. Word backwards from k, fixing the size of the groups following rules 1 and

2, above,

Applying the algorithm to the 12 reels:

k == 12 }
b = 3
n = 3
b n-2 = 3

239 UNIVAC®II

DATA AUTOMATION SYSTEM

The groups are:

INITIALLY FINALLY

6 (Maximum G = 9)

3

3

These, in turn, must be taken as new k's. G 2 and G3 result from 3 way merges of

single reels. G1 is derived using the algorithm with k = 6 to give

n=2

INITIALLY FINALLY

3 (Maximum G = 3)

2

1

Thus, the SiX reels are formed by a 3 way merge and a t":o way merge of single

reels, and then a three way merge of tbe three reel strin.'~. the two reel string and

the single reel.

240

chapter13

Preparation and

Disposition of Data

INPUT UNITS

The Central Computer of the Univac Data-Automation System efficiently accepts

large volume data only from tape; therefore, all such data is prerecorded on this

medium. In addition to computer recording, three other means are available for

recording tape.

1. Ke'yboard (0 tape recording.
2. Card-to-tape recording.

3. Paper to magnetic tape recording.

KEYBOARD TO TAPE RECORD~NG

UNIVAC UNITYPER

The Univac Unityper .1S keyboard operated and records each key stroke on tape

while also producing a printed copy. It is the pl'imary device for recording source

documents on tape. The Unityper is desk size and consists of a modified electric

241
UNIVAC®//

DATA AUTOMATION SYSTEM

typewriter contawlng a recording head, a tape transport mechanism and housing

unit, and a power supply. The keyboard is similar to the standard typewriter key­
board with the fot'lowing modifications.

1. In addition to the standard numeric keys, there is a special set of 10

numeric keys arranged to facilitate more rapid recording of numerical data.

2. All alphabetics are printed as capitals.

3. Special keys are available for representing characters peculiar to the

Univac Computer code and for controlling the operation of the Unityper.

The Unityper prints 120 characters to a line, each printed line being recorded on

tape as a blockette at a density of 50 characters per inch. A blockette is a group

of ten words. A space of 2.4 inches is left between blockettes. Any errors made

while typing a blockette, as evidenced in the printed copy, can be corrected:

singly, by backspacing the tape to the error and retypling the blockette from that

point; or for a complete blockette, by depressing the Erase Key, causing the whole

blockette to be erased and the tape to be positioned for retyping.

In some cases, the data to be recorded may not completely fill a blockette, or it

may be desirable to simplify the computer processing by insertion of spaces or

zeros between fields. Special Unityper keys provide for automatically filling a

blockette, or portions of a blockette, with zeros or spaces. This is done by first

setting the Fill Selector Switch to either the space or zero position. Then when the
Fill Key is depressed the carriage will be advanced either to the next tab stop or

to the end of the line, if no tab stops have been set. The character chosen by the

Fill Selector Switch is recorded on tape in the positions transversed by the car­

riage. The average recording rate on the Unityper is 10,000 characters per hour.

UNIVAC VERIFIER

The main function of the Univac Verifier is to verify the correctness of tapes pre­

pared on the Unityper. In addition, the Verifier can be used to prepare tapes in the

same way in which the Unityper is used.

The Verifier consists of three units housed in a standard size typist's desk. The

units are the typewriter unit, the tape reader unit, and the control and checking unit.

Verification consists of comparing, digit by digit, the data on a Unityped tape with

a second typing of the source document. A printed copy, produced on the type­

writer unit, records the actions performed in the verification process.

242

The Verifier's tape reader reads, and sets up in the thyratron memory of the con­

trol unit, the first character on tape. The operator then strikes the key of the first

character on the source document. If the character of the key struck and the

character on tape agree, the typewriter prints the character' in red. If there is a

disagreement between the characters, the character is printed and then the key­

board locks. The determination of what the error is can be made by backspacing

and viewing the character from tape on a neon display. The character on tape can

be changed by use of the Correct Key, or if correct, may be reverified to continue

the operation. If an entire blockette requires correction, the Change One Line Key

is used. Both of these keys will switch the Verifier's function temporarily to

recording ..

As each character is transferred from tape to the Verifier's memory it is counted.

More or less than 120 digits from a blockette will stop the Verifier with the digit

count error neon lit.

Tbe maximum rate of verification is 12 characters per second. Nonsignificant in­

formation can be skipped without printing or verifying at the rate of 80 characters

per second.

PUNCHED CARD-TO-MAGNETIC TAPE RECORDING

UNIVAC 80-COLUMN PUNCHED CARD-TO-MAGNETIC TAPE CONVERTER

The Univac SO··Column Punched Card-To-Magnetic Tape Converter is a device for

automatic:ally rccording data from SO-column punched cards on tape. The card to

tape conversion is a checked operation. The rate of conversion is 240 cards per

minute. Each card is recorded as a blockette. The Converter consists of three

cabinets, the tape cabinet, the card reader cabinet and the control and memory

cabinet.

A card is init~ally read at the first reading station of the card reader, and the

data is store'td in the magnetic core memory of the control cabinet. As the data IS

read it is edited by a plugboard. The edited data is then written on tape.

The tape is then read back to the beginning of the blockette just written. As this

is bcing done, a second reading is made of the card. Each column is read at a

different reading station from that of the first reading and stored in a different

243
UNIVAC®II

DATA AUTOMATION SYSTEM

pOSItiOn In the memory. The blockette. is then read forward, and a comparison IS

made between the tape recording and the second card reading in the memory. During

this comparison, and as the tape is re~d back, each character is counted and its

binary code checked. If an even binary code or a digit count error is present, or if

there is disagreement between the h}pe and card recordings, the card will be

ejected into an error bin, and the tape :will be repositioned at the beginning of the

faulty blockette for rerecording. When this occurs, the operator has the following

choices of action.

If the sequence of cards must be maintained on tape. the error card may be rein­

serted in the card reader at the head of the cards and the conversion continued. If

the error was transient, the card should be converted successfully, but if the card

again fails to convert,an adjustment may be necessary.

If card sequence is not important, the, error cards can be accumulated till the end

of the run, reinserted in the card read~r, and converted in a group.

If all checks pass, the card counter will be stepped and the next card converted.

The failure .to feed a card is automatically detected by requiring each card fed to

generate the signal which causes the next card to be fed.

The SO characters of each card may be rearranged in any way in the 120 character

blockette by the wiring of a detachablF plugboard. If desired, up to 24 overpunched

columns (X or Y) on a card may be separately recorded as a minus and ampersand,

respectively, for the overpunches, an~ as the corresponding numeral for any other

punch in the column. The overpunch symbols may be distributed anywhere in the

blockette. Thus, the data may be spread over as many as 104 characters within

each blockette. Unused characters of the blockette and unpunched columns in the

card are recorded as zeros or space symbols as determined by the setting of the

Blank Column Selector, a special plugboard control. The method of complement

plugging is used as a check on the, correct functioning of the plugboard during

conversion. This method requires all·wires of the plugboard to emit a continuous

signal throughout the conversion.

The SO-Column Card-To-Magnetic Tape Converter can accept combinations of

punches representing 26 alphabetics, 10 numerals and 12 miscellaneous symbols.

244

All the acceptable card punches and their corresponding Univac Computer charac-

ters are listed below.

UNIVAC UNIVAC

CARD COMPUTER CARD COMPUTER
PUNCH CHARACTER PUNCH CHARACTER

No Punch 11. or 0 (Determined by 12-8 H
12 & blank col umn 12-9 I
11 selector) 11-1 J

0 0 11-2 K
1 1 11-3 L
2 2 11-4 M
3 3 11-5 N
4 4 11-6 0
5 5 11-7 P
6 6 11-8 Q
7 7 11-9 R
8 8 0-1 /
9 9 0-2 S

12-1 A 0-3 T
12-2 B 0-4 U
12-3 C 0-5 V
12-4 D 0-6 W
12-5 E 0-7 X
12-6 F 0-8 Y
12-7 G 0-9 Z

Some punched card installations make use of triple punched columns, known as
the 407 code. A slight modification of the 80 Column Converter, an optional

feature, will translate these triple punches into Univac Computer characters, as

shown below.

CARD PUNCH

3-8
4-8

Y-3-8
Y-4-8
X-3-8
X-4-8
0-3-8
0-4-8

UNIVAC
COMPUTER CHARACTER

II
@

$
*

%

Unless the triple punch modifications are present, the 80 Column Converter will
interpret triple punched card columns as mispunches, and will eject the triple

punched card intro an error bin.

245 UNIVAC®//

DATA AUTOMATION SYSTEM

UNIVAC 90-COLUMN PUNCHED 'CARD-TO-MAGNETIC TAPE CONVERTER

The Univac 90-Column Punched Card~ To-Magnetic Tape Converter is a device for

reading data from 90-column punched cards and recording it on tape. The differ­

enc'es between the 90 and SO-Column Converters are as follows. In all other re­

spects the Converters are identical. The card data may be spread over as many as
114 characters of the blockette. The 90-Column Card-To-Magnetic Tape Converter

can accept the combination of holes representing 26 alphabetic symbols, 10 numer­

als and 7 miscellaneous symbols. All of the acceptable card punches and their

corresponding Univac Computer charafters are listed below.

UNIVAC UNIVAC
CARD COMPUTER CARD COMPUTER

PUNCH CHARACTER PUNCH CHARACTER

no punch ~ or 0 (Determined by 3-7 H
0 o blank column 3-5 I
1 1 selector) 1-3-5 J

1-9 2 3-5-9 K
3 3 0-9 L

3-9 4 0-5 M
5 5 0-5-9 N

5-9 6 1-3 0
7 7 1-3-7 P

7-9 S 3-5-7 Q

9 9 1-7 R
1-5-9 A 1-5-7 S

1-5 B 3-7-9 T
0-7 C 0-5-7 U

0-3-5 D 0-3-9 V
0-3 E 0-3-7 W

1-7-9 F 0-7-9 X
5-7 G 1-3-9 Y

5-7-9 Z

If cards containing 4 or more punches in any column are fed into the 90-Column
Converter, they will be ejected into an error bin, unless the modified Converter

is used. The modified Converter permits cards to be converted which contain 4 or

more punches as follows.

CARD PUNCH

1-3-5-7
1-3-5-9
1-3-7-9
1-5-7-9

3-5-7-9

1-3-5-7-9

246

UNIVAC
COMPUTER CIIARACTER

+

/

PAPER TO MAGNETIC TAPE RECORDING

The Univac Paper-To-Magnetic Tape Converter, PTM, translates the five, six, or

seven level code of perforated paper tape to magnetic tape. The PTM consists of

-three components housed in a single cabinet: the paper tape reader, the translator

and the control unit.

The paper tape reader reads the paper tape code into the translator unit at the rate

of 200 characters per second. As each character enters the translator it is con­

verted into the Univac Computer code. The translated characters are then stored

in a 120 character memory. When the memory is filled the 120 characters are re­

corded on tape as a blockette at the density of 128 characters per inch; a space

of an inch is left between blockettes.

OUTPUT UNITS

The computer efficiently produces large volume data only on tape. Three means

are available for converting data on tape to some other form of output.

1. Tape to printed copy.
2. Tape to punched cards.

3. Magnetic to paper tape.

TAPE TO PRINTED COPY

UNIVAC HIGH-SPEED PRINTER

The Univac High-Speed Printer is a device for large volume printing of data. The

standard printing speed is 600 printed lines per minute, with up to seven legible
carbons. The Printer accepts paper from 4 If to 27 II in width and up to card stock

in thickness, and has a 130 character printing line. Paper may be preprinted and

serrated. There are 51 printable characters: 26 alphabetics, 10 numerics and 15

miscellaneous symbols: II $ % • () / - + : ; . , ' and &.

Tapes recorded in blockette form at densities up to 128 character per inch with

a minimum of one inch between blockettes are acceptable to the Printer. These

tapes include tapes produced by the Unityper, the Verifier, the Card-to-Tape Con-

247
UNIVAC®II

DATA AUTOMATION SYSTEM

verters, the PTM, and the computer. The computer writes a tape for the High­

Speed Printer as follows.

On the Supervisory Control Panel are a senes of 16 buttons, called Block Sub­

division Buttons and labelled with the names of the Uniservos. If a Block Sub­

division Button is depressed, all writing done on the corresponding Uniservo will

be in blockette form. The space between blockettes on Uniservos 8, 9 and - will

be one tenth of an inch, on all other servos, one inch.

Also on the Supervisory Control Panel are a similar series of buttons called Tape

Density Buttons. If a Tape Density Button is depressed, all 5nm instructions

executed with respect to the corresponding Uniservo will write, not at a density

of 250 characters per inch, but at 124 per inch.

The High-Speed Printer is housed in four cabinets, the tape cabinet, the printing

cabinet, the control and checking cabinet, and the power supply cabinet.

Through the use of a detachable plugboard, the horizontalformat for each blockette

printed can be set up in such a manner that

1. any character of the blockette can be printed in anyone of the 130 print

positions,

2. fields of the blockette can be printed on as many as six consecutive lines.

and 3. fields of the blockette can be printed as many as three times on any or all

of the six consecutive lines.

The plugboard also enables the suppression of the printing of nonsignificant zeros

in a numeric field.

The vertical format of printing IS regulated by a 7 channel punched paper loop

located in the printing cabinet, which advances in synchronism with the paper.

The sensing of holes in certain channels of this loop will cause the paper feed to

either fast feed the paper or else to ,discontinue a fast feed presently in progress.

No printing occurs while the paper is being fast fed. There are two ways in which

a fast feed can be initiated: by a symbol on tape or by a hole in the paper loop.

As a blockette is read from tape to the memory, each character is counted. More or

less than 120 characters in a blockette stops the Univac High-Speed Printer and

lights the character count error neon.

As each character is transferred from tape to the memory, and from the memory to

248

the comparator, it is given an odd even check. An illegitimate character code

stops the High-Speed Printer and lights the odd even error neon.

The Univac High-Speed Printer also checks against

1. the failure of a character to print

2. the printing of more than one character in a print position

and 3. the printing of a character other than the character meant to be printed.

The occurrence of any of the above stops the High-Speed Printer and lights an

appropriate neon.

MAGNETIC TAPE TO PUNCHED CARDS

The Univac Magnetic Tape-to-Card Converter transfers data from magnetic tape

to SO-column punched cards. Input to the Converter is tape recorded in blockette

form, a space of 1/10 inch between blockettes. An SO-column card is punched from

selected portions of each blockette. fhe conversion is checked and proceeds at

120 cards per minute. The Converter consists of three cabinets, the tape cabinet,

the card punching cabinet and the control cabinet.

A blockette is read from tape and stored in the magnetic drum memory, located in

the control cabinet. The format of the blockette on the drum is controlled by a

detachable plugboard. This plugboard is used to select the SO characters of each

blockette for punching and the positions on the card where they are to be punched.

Any character can be punched in any column.

The edited blockette, in the drom memory, is sent to the card punch to be punched.

Columns which are not plugged on the plugboard are ,not punched. After a blockette

has been punched, the next blockette, having been read and edited during the

punching of the preceding blockette, is sent to the card punch.

The converSIon continues 10 this manner until a blockett'c contammg a printer

stop symbol is read. The blockette containing the printer stop is not punched.

As a blockette is read from tape to the Converter's memory each character IS

counted. If this count is other than 120, the Converter stops with the character

count error neon lit.

249 UNIVAC®//

DATA AUTOMATION SYSTEM

As each character is read from tape to the memory its code is checked. If a charac­

ter with an even number of pulses in its code is present, the Converter stops with

the Digit Odd-Even Error Neon lit.

After each card is punched it is read at a second station in the punch unit. This

data is stored in a special section of the memory. A character by character com­

pari~on is then made between the data punched on the card and the data originally

read from the tape. If any inequalities are detected, the card punched is ejected

into an error bin, and the Converter stops with the appropriate error neon lit.

As the card data is sent to the card punch each character's code is checked. If a

character with an even number of pulses in its code is detected, the Converter

stops with the appropriate error neon lit. If an} of the above errors occur, the

Converter can be restarted to either reread the blockette or repunch the card. If

the error is transient, the conversion will be successful on the second attempt.

The conversion table showing the equivalent tape characters and card punch com­

binations is shown below.

UNIVAC UNIVAC

COMPUTER CARD COMPUTER CARD
CHARACTER PUNCH CHARACTER PUNCH

none 12 G 12-7
11 H 12-8

0 0 I 12-9
1 1 J 11-1
2 2 K 11-2
3 3 L 11-3
4 4 M 11-4
5 5 N 11-5
6 6 0 11-6
7 7 P 11-7
8 8 Q 11-8
9 9 R 11-9

12-0 S 0-2
11-0 T 0-3

/ 0-1 U 0-4
A 12-1 V 0-5
B 12-2 W 0-6
C 12-3 X 0-7
D 12-4 Y 0-8
E 12-5 Z 0-9
F 12-6 none Blank

250

MAGNETIC TO PAPER TAPE

The Univac Magnetic-to-Paper Tape Converter, MTP, translates magnetic tape into

the five, six, or seven level code of perforated paper tape. The MTP consists of

a magnetic tape reader and a paper tape punch.

The punch operates at 60 characters per second. The MTP automatically punches

teletypewriter function codes in the paper tape.

SUMMARY

INPUT UNITS

Univac Unityper: a key driven device which records directly on magnetic tape

while producing a typewritten copy of the information.

Univac Verifier: may be used as a Unityper or as a verification device for Uni­

typed tapes.

Univac Punched Card-to-Magnetic Tape Converter: records on tape the information

stored in punched cards. One model converts SO-column; and another,90-column

cards.

Univac Paper-to-Magnetic Tape Converter: converts information in punched paper

tape to magnetic tape.

OUTPUT UNITS

Univac High-Speed Printer: prints the information recorded on magnetic tape.

Univac Magnetic Tape-to-Card Converter: punches the information recorded on

magnetic tape into SO-column punched cards.

Univac Magnetic-to-Paper Tape Converter: punches In paper tape the information

recorded on magnetic tape.

251

chapter 14

System Design
This chapter is concerned with the use of the Univac Data-Automation System in

commercial applications, and particularly, deals with the development of process

charts.

Some factors to be taken into consideration 1n the use of the Univac System for

data processing are

1. choosing the appli\.!ation,

2. preparing the program,

3. planning the cutover

and 4. future planning.

CHOOSING THE APPLICATION

Generally, the use of computers by business to date has been to apply the computer

to applications already being performed and which will guarantee savings. There

has been some reluctance among management to underwrite the acquisition of a

252

niillion to a million and a half dollars worth of equ.ipment and to undergo con­

siderable expense in re .. vamping procedures and organization structure to tackle

problems which give only a theoretical chance of achieving savings. Many computer

evaluation committees state that it is a problem to convince management to utilize

computers let alone sell them on changing systems. Companies will tackle payroll,

premium billing, and customer accounting applications as justification of the com­

puter, but are reluctant to justify a computer on the chance that a more scientific

control of inventory may be able to reduce costs. This is not to say that the solv­

ing of business problems through the use of operations research or mathematical

techniques cannot give even grea"er savings than standard accounting methods. It

is simply that little experience has yet been had to prove that such savings,

phenomenal as they may appear on an Operations Research Report, can actually be

achieved. Therefore, selection of the initial applications will usually be made from

data processing operations now being done. The following factors should also be

taken into consideration in the selection of the initial applications.

The initial applications should be limited to as few as possible which will guaran­

tee reaching the break-even point at the earliest date. Care should be taken not to

attempt too ambitious a conversion at the beginning as the experience of the com­

pany in applying the computer will be nil. The area attacked should be kept as

small as possible so as to concentrate both the available persQnnel and' the in­

evitable mistakes. This purpose can usually be achieved by selecting as the
initial applications those areas involving the greatest volume of work and cost and

adding to this the next largest application until the break-even point is reached.

The remaining applications can be converted on a more leisurely basis. These con­
versions will, in general, be more efficient because of the now experienced staff.

PREPARING THE PROGRAM

The chronological steps in preparing a program are

1. process charting,
2. flow charting,

and 3. coding.

Flow charting and coding have been explained. Process charting will now be dis­
cussed. A process chart is a flow diagram specifying the input, processing, and
output of a data processing system. The determination of the input, processing and

output required by the system underlies the development of a process chart.

253
UNIVAC®II

DATA AUTOMATION SYSTEM

The basic question is "What is wanted as output from the system?" Consider the

area of payroll. One of the outputs of the system will be a paycheck for each

employee. Data needed on the paycheck is

1. the net pay,

2. the employee's name,

3. the check number,

4. the date of the check

and 5. the employee's badge number.

The check is only one part of the output. Each employee will also receive a stub

on which is listed

1. badge number,

2. gross pay,

3. withholding tax,

4. FICA tax,

5. retirement plan contribution,

6. union dues,

7. hospitalization premium,

8. adjustments to gross and net pay,

9. bond deduction

and 10. miscellaneous deductions.

Writi.ng a periodic stub and check is only a part of the output of the system. Other
outputs might be

1.
2.
3.
4.
5.
6.

and 7.

reports to federal, state and local governments,
reports of labor distribution,
lists of employees who are to receive savings bunds,

reports of union dues collected,

check registers for bank reconciliation,

payroll registers for visual reference

file of relatively permanent data concerning each employee updated each

tit:ne paychecks are printed.

An analysis of the outputs reveals that certain data must be introduced into the

system. The first piece of output was net pay. Net pay is obtained by subtracting

all deductions from gross pay. Gross pay must be available in the system. Gross

pay is a function of hours worked and hourly rate of pay. These factors are not the

result of computation and must be input to the system.

254

Hours worked may vary considerably from one pay period to the next. Rate of pay

changes at infrequent intervals. Hours worked and rate of pay are examples of two

general types of input.

A further examination of the output reveals that additional relatively permanent

data must enter the system. This data is called master data and includes

1. employee badge number,
2. name,

3. address,

4. social security number,

5. number of dependents,
6. union dues,

7. hospitalization premium,

and 8. bond deduction.

The second type of data is called transaction data. In the case of payroll the
transaction data is the clock card data and contains

1. employee badge number,

2. hours absent - medical,

3. hours absent - laid off,

4. hours absent - personal,

5. hours worked,
6. information on shift differentials

and 7. overtime data.

The company contemplating the use of a computer will have already organized its

operations to some degree. One of the first tasks, is to obtain "process charts" of

the existing system if such charts exist. If not, charts must be drawn.

These charts are used to list the data which is currently th~ input and output of

the system, the frequency of updating which takes place in the files and the for­
mat in which the data appears. This information provides the base on which develop­

ment may proceed. It is not intended, nor is it always desirable, that the computer

system be a copy of the existing system.

Many existing systems show some of the following disadvantages.

1. Duplication of information.
2. Unnecessary reports.

3. Unused reports.

255 UNIVAC@//

DATA AUTOMATION SYSTEM

4. Incomplete reports.

5. Reports too late to be of use.

6. Separate reports wbich should be consolidated.

Changing to a computer system offers the opportunity for a review of existing pro­

cedures to eliminate inefficiencies and to incorporate reports not currently avail­

able. Interviews with management will in most cases be the source of information

regarding the desirabili ty of reports.

The existing system is usually the starting point In assembling the information

needed as input and output. Other sources of information are

1. Legal Requirements: In the payr<;,ll syster.l certain reports are demanded of

employer by the government such as tbe quarterly FICA and income tax

reports, annual W-2 forms and others. The requirements in these areas are

mandatory and must be output of the system.

2. Consulting Services: The experience of the manufacturer can be a source

of information concerning the general requirements of a data processing

system. Management consulting services are generally keeping abreast of

computer developments, amI some are specializing in electronic data

processing.

A computer run converts a particular input to a particular output. The converSlOn

may consist of one or more passes of the data through the computer. A description

of some types of runs follows.

INPUT VERIFICATION

The accuracy of output can be no better than the accuracy of the input. Input verI­

fication is designed to detect various types of errors in the input.

The first type of error is called implausible. An implausible error stalls the com­

puter, because it is unintelligible to it, and must be detected. An alphabetic in a

numeric field is an example of an imrlausible error. An attempt to add the alpha­

betic to another would stall the computer. The operator is normally not familiar

with the routine and would have no means of correcting the situation. Nor could

the operator step the computer past this point. The occurrence of an implausible

error stops the system. The routine must be designed to protect itself against

implausible errors and write the error items on an error tape.

256

The second type of error is called "plausible but wrong". A "plausible but wrong"

error does not stall the computer but does produce incorrect output. The reporting

of 28 hours worked in a day is an example of a Ctplausible but wrong" error. This

type of error item would also be written on an error tape.

A third type of error is called "plausible but probably wrong". The reporting of 12

hours overtime in one day is an example of a C cplausible but probably wrong" error.

Such an error can be processed and flagged for later inspection by the payroll de­

partment.

Input errors can also be studied from the standpoin t of their sourc e. The opera­

tions performed by the Univac System may be considered the function 0f an organi­

zation called the data processing center. The data processing center is an organi­

zation formed to render services to such subscribers as the payroll, purchasing,

accounting and engineering departments. Errol'S in data exist because of introduc­

tion by either the data processing center or the subscriber. The center may alter

valid data during the transcription of data from document to tape. To minimize such

errors unityped tapes are verified on the Verifier.

The detection of input errors caused by improperly prepared source data is the sub­

ject of input verification. This run may test the input for

1. alphabetic characters in numeric fields,

2. numeric fields within certain limits,

3. key field validity

and 4. consistency of data.

The validity of keys can be determined by checking for the presence of a correct

final digit in the key. Consistency errors are typified by a case such as a medical

absence entry in a clock card item also containing a standard work week key.

ITEM REARRANGING

It is occasionally desirable to edit certain kinds of input - put it into a form which

will effectively reduce the elapsed time of later runs of the system. In using the

Card-to-Tape Converter, for example, not all columns are always utilized. It may

be desirable to reduce the 120 digit 10 word item to a 2 word item if between 13

and 24 columns have been used, thereby reducing the volume of tape necessary to

hold the information by 80%. The reduced volume of tape reduces the read time in

later runs by 80%.

257
UNIVAC®//

DATA AUTOMATION SYSTEM

SORTING AND MERGING

Sorting and merging have already been discussed in chapter XII.

PROCESSING

The processing run is a catch-all title for the productive runs of the system. In the

processing run the computations are performed, records are formed, files are main­

tained, and desired output is compiled.

OUTPUT PREPARATION

The output units require that data be in a particular format. The final processing

run may not record the output in the desired format, because if the processing is

complex, editing the output in tbe main run may take longer than a separate editing

run.

In many instances one or more of the operations just described can be done during

one pass over the data.

THE PROCESS CHART

The symbols used on a process chart are as follows.

FIGURE 14.1 o
A single reel of tape. The symbol contains a description of the data on the tape

and may represent an input or output file, transactions, errors, etc.

o FIGURE 14.2

A multi-reel file. The symbol contains a description of the file.

258

FIGURE 14.3

A run. The symbol contains a run number and a description of the run. The number­

ing system should be flexible in order that additional runs can be inserted when

necessary. One such scheme uses a letter and a number, such as AI.O, AI.I, etc.,

for each run.

FIGURE 14.4

System flow - shows the flow of data through the system.

---...... FIGURE 14.5

System cycle - shows that the output of the current system cycle becomes the In­

put of the next cycle.

FIGURE 14.6

Unityper conversion of source document to tape, and verification of the unityping.

FIGURE 14.7

Printed output from the High-Speed Printer or Supervisory Control Printer.

FIGURE 14.8

Card-to-tape conversion.

259
UNIVAC®//

DATA AUTOMATION SYSTEM

FIGURE 14.9

Tape-to-card conversion.

FIGURE 14.10
PTM

Paper to magnetic tape conversion.

F I GU R E 1 4. 1 1
MTP

Magnetic to paper tape conversion.

To continue the reference to the P8iyroll system, it will be recalled that at least

two inputs were necessary to supply the output. One contained the variable data

such as hours worked; the other ~as a file of relatively permanent data - the

master file.

The master file being relatively permanent infers that occasional changes will be

made to its contents. Some possible changes are

1.

2.
:3.

and 4.

effecting a transfer of an employee from one section of the master file to

another,

additions required by hiring new employees,

deletions required by the termination of employment

subsitutions of new information for old.

260

The effecting of such changes is called file maintenance. The file must be main­
tained on some cyclical basis: hourly, daily, weekly, biweekly, monthly, etc. The

file must be updated at least as often as it is utilized in a processing operation.

For example, if payroll is being run weekly, changes to the master file must be

administered at least weekly if accurate processing is to be achieved. Even dis­

tribution of the work load may require the processing of one fifth of the master

file daily.

The master file will be assembled in sequence at the time it is originated. Sub­

sidiary files such as the change file will be prepared on tape and sorted into the

same sequence as tJ\e master file. Applying the changes becomes a match-merge

operation.

SORT

TO RUII 11.0

--------------------,

I
I
I
I

SORT

I ----~
I
I L ________________ J

FIGURE 14.12

261
UNIVAC®//

DATA AUTOMATION SYSTEM

The following is the process chart of a typical payroll cycle.

FROM RUII AI.O FROM RUI A2. 0

RUI CI.O RUI C2.0

IOIT SORT MEReE

RUI C3.0

PAYROLL

TO RUI AI.O

FIGURE 14.13

262

In run C3.0 a gross pay is computed by multiplying hours worked by hourly rate of

pay and then adjusting, if necessary. A net pay is derived by subtracting all deduc­

tions from gross pay. This net pay is recorded along with the employee's name,

etc., on the paychec.k tape. The other outputs are self explanatory. Run C3.0 might

use the following servo allocation

2

3
4
5
6
7

8

9

A
B

C

Paycheck
Paycheck Alternate

Pay Register

Pay Register Alternate

Bond List

Labor D.istribution

Sorted Clock Card

Sorted Adjustment

Master File

Master File Alternate

Updated Master File

Updated Master File Alternate

The run might also use the following memory allocation for input-output blocks.

1520 - 1579 - Master File

1580 - 1639 - Sorted Adjustment

1640 - 1699 - Sorted Clock Card

1700 - 1759 - Labor Distribution

1760 - 1819 - Bond List

1820 - 1879 - Pay Register

1880 - 1939 - Paycheck

1940 - 1999 - Updated Master File

The number of available Uniservos and the memory capacity will determine the

amount of processing that can be done in one run. If the number of Uniservos

available is exceeded by the requirements of the input and output, or if the in­

structions exceed the memory capacity, the run may be sub-divided into two runs

with an intermediate output.

A run is said to be tape limited when the reading or writing of data takes longer

than the processing of the data. A run is said to be computer limited when the pro­

cessing takes longer than the reading or writing.

263
UNIVAC®//

DATA AUTOMATION SYSTEM

In applying the computer to a data pro:cessing system it is economically desirable

to keep the time spent on the computer to a minimum. In general, the programmer

will be faced with this antithesis: fewer iterative routines will decrease running

time but use. more memory space, more iteration will cost more in time but use

less memory space. The nature of the data processing system may dicta te the

processing to be done in a run. The programmer's job is to (1) do the processing,

(2) in the shortest period of time and ,(3) keep the time versus memory relation in

balance.

TIME ESTIMATION

COMPUTER RUNNING TIME

Routine timing has already been discussed on pages 196-212.1n addition to running

time about one half minute must be allowed for each tape mounted while the com­

puter is not processing other data. Moreover, rewind time must be allowed for each

group of Uniservos rewinding in parallel while the computer is not processing. By

allocating two Uniservos to every file consisting of more than one tape, mounting

time can be eliminated for all tapes but the first, and rewind time, for all tapes

but the last. By a judicious allocation of Uniservos between runs it is often

possible to eliminate even this mounting and rewind time.

UNITYPING

Approximately 13 blocks can be unityped per hour.

VERIFYING

Verifying time is approximately the same as unityping time.

CARD- TO-TA PE

The Card-to-Tape Converter converts 240 cards per minute. For each tape con­

verted rewind time plus about one half minute for set up time must be allowed.

2&4

UNIVAC HIGH-SPEED PRINTER

The High-Speed Printer prints 600 lines per minut~~nd fast feeds at 20 inches per

second. For each tape printed rewind time plus about one half minute for set up

must be allowed.

APPROXIMATE TIME ESTIMATING

It is sometimes convenient to ascertain the approximate running time of a run

without going into the detailed timing of the coding. This. approximation will

only be as accurate as the estimate of the processing time but may aid in the

choice of ooe.of several possibleapproa(':hes to a system.

The following steps are required to make an appr~ximate time estimate.

1. Determine the number of blocks written. or to be written on each reel in

the ~ystem.

2. Preparation of Input: the time needed for unityping, verifying, etc., IS

calculated as explained above.

3. Estimation of processing time - this is usually an estimate to produce one

block of output from one block of input .. If there is . little processing and/or

the item size is large, assume that the operation is tape limited. If there

is much processing and/or the item size is small, assume that there oper­

ation is computer limited. Thus the processing time may be assumed to be

tape time, etc.

4. Overall Processing T~me: because rea<:iing, wrIting, and processing take

plac~ simultaneously, the ov~rallpr~cessing time is determined either by

the amount of input or the amount of' output, whichever is l~rg~r. The

number of blocks, as determined in 1, is then multiplied by the processing
time assumed in 3.

5. To this add the inputpreparatioh tiine, from 2, and the tim;e required for

the High;.SpeedPrinter, or any output unit used.

265
UNIVAC®//

DATA AUTOMATION SYSTEM

TAPE
CHARAC-

TYPE OF
BLOCKS REAO-WRITE TIME MINUTES FEET

USE
SPACING IN INCHES TERS

TAPE
PER REEL MI L..L.ISe;CONOS MINUTES REWIND UTILIZED

PER INCH ('BLOCKETTES) PER BL.OCK PER R.EEL PER REEL PER REEL

3.6/bloc:k 200
M.tallic 4000 3.60 3.07 1533

54.0
1 b.tw.en blocks Mylar 6200 5.58 4.75 2377

COMPUTER
Metallic 4,700

2.88/block 250 3.43 3.04 1520
43.8

1 between block. Mylar 7,400 5.4 4.79 2393

UNITYPER
2.4 / blackelle
2.4 between blacketles 50 • Metallic 500' 293.0 24.41 sec 2~ sec. 200

II 2.4 between blocks

CARD-TO- .9375/blockette Metallic 6,400' 3.12 3.03 1513
TAPE 1.8 between block.tles 128 175.25

CONVERTER 2.4 between blocks Mylar 10,000' 4.83 4.73 2365

TAPE-TO- .9375/blockette Metallic 12,900' 3.23 3.06 1527

CARD .1 between blocketles 128 90.25
CONVERTER 2.4 between blocks Mylar 20,000' 5.01 4.74 2368

HIGH SPEED .9375/blockette Metallic 8,400' 3.16 3.04 1520

PRINTER 1.0 between blocketles 128 135.25

2.4 between blocks Mylar 13,200' 4.96 4.78 2388

PLANNING THE CUT-OVER

When the routines have been prepared, some method must be devised for converting

from the present system to the computer system. In preparation for this cutover the

master data must be converted from its present form to tape files. Once this con­

version has started some provision must be made for keeping a record of every

change of the data that occurs after the time of conversion. This change record

will be used to bring the tape files up to date when use of the computer system

actually begins.

Another problem to be faced in the cutover period is the retraining of personnel

concerned with the application. Those persons concerned with the origination of

data for the system must be familiarized with the forms to be used in introducing

data into the system, their proper completion and their channelling to the com­

putell' area. Those people concerned with the use of data provided by the system

must become informed of the information they can expect from the system, the form

in which it will come and its frequency.

A third area of concern in the cutover period is the debugging of the routines,

which then leads to the conversion of the present system to the Univac system.

It is not usually possible to convert from one system to another merely by halting

operations on the old system and starting on the new. There is characteristically

a period of time during the conversion when the two systems are run in parallel.

The parallel operation is usually entered gradually. Thus, a billing operation

might be cut over one district at a time. In this way the initial cutover provides an

266

opportunity for trial runs of the routines against real data. The results of these

trial runs must be verified in complete detail.

The duration of parallel 0peration depends on vanous factors, among them being

the degree of success with which the routines execute the trial runs and the vari­

ability possible in the input data. The parallel operation should be rather firmly

scheduled in order that it run as long as necessary for assurance of accuracy in

the routines but no longer than necessary, since parallel operation is, by itself,

an uneconomical procedure. It is customary to speed up the rate of cutover as the

cutover period proceeds.

FUTURE PLANNING

The initial applications of a computer have as one of their purposes the defraying

of the cost of the computer. In the usual case~ this is not the end but only the be­

ginning of the use of the computer. To put the computer to its fullest use key per­

sonnel throughout the company should· become acquainted with the capabilities of

the computer. Then, valid conclusions can be drawn as to the operations to be

prepared for the computer and the priority to set up for the chosen operations. One

of the better methods for acquainting personnel with the computer appears to be a

series of company seminars given to department heads and supervisors.

In deciding on the initial applications of a computer the usual consideration 1S

savings of cost in the specific sense. The question asked is, ftHow much can be

saved by putting this operation on the computer?". Savings in cost is always the

basic consideration in deciding on a computer application, but in later applica­

tions, this savings may be conceived of in a more general sense. Instead of asking
specifically about savings in cost, the question brought forward might be, flIf we

put this operation on the computer, can we get the information we want in a better

form than we do now?" or nCan we get information .that we need but which was

never before available?" or nCan we realize a significant savings in time?" It is

criteria such as suggested by the above questions that determine the feasibility of

an application. Some possible applications of this nature are scientific inventory

and .production control, operations research, market analysis using census data,

and determination of product mix. Another field that should not be overlooked is

the improvement of already existing routines, thus taking advantag"e of the experi­

ence garnered from the initial preparation of these routjnes.

267

UNIVAC®II

DATA AUTOMATION SYSTEM

chapter 15

Operational Routines
In this chapter there will be described solutions to problems frequently encounter­

ed in using a computer as a data processor. Each solution will be shown in an

abbreviated flow chart. The operations making the next input item available or of

recording on tape the current output item will be indicated by a double-lined box

adding 1 to a letter subscript:

. [I + l---+-i

This symbol will stand for all operations implied by selecting the next item of a

l)lock. This includes getting the next block when the current one is exhausted, or

l:he next tape when the present one is completely read. A similar symbol will

J'epresent the appropriate output operations.

268

TAPE SUMMARY

A frequent problem encountered in computer applications 1S to print a summariza­

. tion of a detail tape. To illustrate the problem and its solution, a practical example

will be given. Consider a file of insurance policies, each policy represented in the

file by an item, P b containing at least the following fields:

1. The insured's occupation classification code, pf
2. The age of the insured at the time of issuing the policy, pr

3. Type of insurance issued (the plan), pi
4. The amount of insurance purchased (face value), pI

A table is to be produced, similar to the one illustrated in Figure 15-2,showing a

summary of the total amount of insurance and number of policies, by type of insur­

ance, by age at issue, and by occupation of insured.

Of course, not all occupations, nor all ages, nor all plans may be contained in this

file. Further, assume that the total combinations of occupation, age and plan ex­

ceed the memory capacity of the computer.

SORT BY:

1. OCCUPATION

2 AGE

3. PLAN

SUMMARIZE

269

FIGURE '·5.1

UNI VAC® II

DATA AUTOMATION SYSTEM

OCCUPATION AMOUNT NUMBER

CODE AGE AT ISSUE PLAN INSURED OF POLICIES

A 1,230,000 850
B 2,000,000 501
C 1,600,000 350

25 4,830,000 1701
A 2,000,000 900
B 650,000 100
C 15,050,000 1500
D 205,000 73

30 17,905,000 2573
401 22,735,000 4274

A 6,365,000 1055
C 6,160,000 1231

27 12,525,000 2286
A 3,121,000 630
G 8,900,000 2461

28 12,021,000 3091
A 4,221,000 1347

29 4,221,000 1347
435 28,767,000 6724

FIGURE 15.2

The- main steps in the solution are shown in Figure 15-1. The first operation is to

sort the policy file into an ascending sequence in order by, from major to minor,

occupation, age and plan. This is accomplished by one of the standard sorting

routines which were discussed in Chapter XII. The output of the sort is the sorted

policy file which forms the input to the next operation which is the summarizing

run. Figure 15-3 represents th~ essential steps in this summarization.

~~---.Q)

~~------------------.---.C)

FIGURE 15.3

270

Since the policy tape has been sorted, the policy items with given occupation, plan

and age will be adjacent to each other on the tape. The first operation, froJ,ll CD to

®, is to store the occupation code, age and plan fields of the first policy item.

In addition, six tallys are set to zero which will be use~ in accumulating the total
face value and number of policies issued for each classification. At @ the o'ccupa­

tion code and age and plan.of the ith policy item are compared with the occupation

code and age and plan stored. They must agree, and the face value of the policy

is added to S5, and one is added to S6, which is the count of the number of policies

issued with classification CAP. The next policy item is selected, and control is

transferred to ® to process this item.

The keys of the record item and the ones following are compared in turn to the

keys stored. When a change of key occurs, control is transferred to the output

routine (connectors ® to @).

Each output item, Bj, consists of the following five fields:

B~
J

B~
J

B~
J

n!
J

B~
J

The occupation code field

The age field

The tY(Je of insurance field

The accumulated face value of policies with
keys CAP

The total numbers of policies with keys CAP

When an item with a different plan key is found, @ is set and control is trans­

ferred to ®. Non-printing characters (space symbols, ~) are inserted into Bj
and B,. The plan, P, is inserted into B~, and S5 and S6, the totals, are inserted

respectively into B f and Bj. The next operation is the addition ofS5 to S3 and S6

to S4 (sub-totals for occupation code C and age A), since the plan, P, has changed.
The box

..

implies all operations necessary to place Bj on the output tape. Connector@ was

set and, therefore, control is transferred" to ® where S5 and S6 are reset to zero

in preparation for totaling the next plan. In addition, the new plan is stored in P,
and control is transferred to G) .

271 UNIVAC®II

DATA AUTOMATION SYSTEM

When an item is found which contains a new age key, connectors ® and ~ are

set, and control is again transferred to ® where an output item containing the'

totals under P is formed as previously. In this case, since ® is set, an output

item containing the age totals in formed. ~'s are inserted into B j and B 1. The age,

A, is inserted into B~, and the totals under classification CA, S 3 and S4' are in­

serted into B J and B1 respectively. Then the age totals are added to Sl and S2

(the totals for class C). Connector @ then transfers control to Q) where S3, S4,

S5, and S6 are reset to zero, and the new age and plan are inserted into A and P.

When an item with a new occupation code is found, connectors ® and @ are

set, and control is transferred to ® where, as SHown previously, output items for

the plan and age totals are formed. Then @ causes an output item to be formed

for the totals under the classification code C. C is inserted into Bj; and ~'s, into

Bj and B~. Sl and S2 are inserted into 13) and B j respectively~ and the output

operations, executed. Control is then transferred to CD where all the totals Sl to

S6 are reset to zero, and the new occupation code, age, and plan are inserted into

C, A, and P, respectively.

The reader will note that at any time a new policy item is selected for a different

plan, age or occupation code the totals to date are placed in an output item I3 j' and

the totals for this category and its' subcategories are reset.

The output of this summary run, then, consists of the items B j which represent the

totals for each CAP. Printing this tape, produces the table of Figure 15-2.

If it is desired to have the table list the summaries in the order: 1. occupation code,

2. age, aDd 3. plan, the procedure should be modified in this fashion: Since the

output items representing the totals for the major'categories follow the items with

summaries for the minor categories, each completed output tape, instead of simply

being rewound when it has been filled, should be" read backwards, its items being

written on a new output tape exactly in the order they are read .

Thus, this second output tape now contains the major totals first, then, the minor

totals. The last reel of tape coming from the summary run should be the first one

printed, then the next to the last tape should be printed, etc. Of course, this would

give a table arranged in descending sequence. To avoid this, the sort routine

should produce a descending sequence rather than an ascending one. The summary

run itself is not changed.

272

TABLE LOOK-UP

Many data processing problems involve ttTable Look-Up" operations. That is,

given a quantity x, select from among a set of quantities Y a quantity y which is

assigned to x. Wherever possible, keep the size of the table Y as small as possible.

In some cases it may be possible to reduce the table to a formula from which yean

be computed, given x. However, in some applications it is not possible to reduce

the table to a size which can be stored in the memory or to a formula. In these

cases, it is necessary to consider table look-up solutions that are completely

general as far as table size and argument interval are concerned.

Consider the following problem. A file contains a series of billing items, Bi, con­

taining among other things, the following fields:

1. Location code of point of origin from which item purchased was shipped, B~

2. Destination code where item was shipped to, B1
3. Commodity classification of item, 31

It is desired to obtain the shipping rate by looking this rate up in a table which is

entered by origin code, destination code, and commodity classification code.

Consider the table to be a file consisting of items Tj containing the following fields:

1. Point of origin code, Tj

2. Point of destination code, T1

3. Commodity classification code, Tj
4. Rate for this origin, destination, and commodity, T~

The file of items Tj which constitute the table are assumed to be arranged in an

ascending sequence, from major to minor, by origin, destination and commodity.

This arrangement is effected once, and once only, at the time the table is developed.

The main steps in the table look-up are shown in Figure 15-4.

213
UNIVAC®II

DATA AUTOMATION SYSTEM

SORTED
BILLING

FILE

BILLING
FILE

MATCH
MERGE

SORT BY
I. ORIGIN CODE
2. .DESTINATION CODE
3. COMMODITY CODE

BILLING
FILE
WITH

RATES

RATE
TABLE

FIGURE 15.4

The first operation is to sort the billing items Bi into an ascending sequence, from

major to minor, by origin code, destination code and commodity classification.

This is accomplished by a standard sort routine. The next operation is to match

merge the sorted billing file and the table, thus producing an output which consists

of the same billing items with the appropriate rate inserted in them.

The essential elements of the match merge operation are shown in the flow chart

which is Figure 15-5.

FIGURE 15.5

274

The table items Tj are examined successively until an item with onglO, destina­

tion and commodity code is encountered which matches those codes in the current

billing item B i . When the match occurs, an output item Rk is formed by attaching

to the billing item the rate field of the table item, Tf. The bOx...f I k + 1 ~ k ,...

implies the output operations necessary to record Wk on tape, while the box

----f I i + 1 ~ i ~ selects the next billing for the table look-up.

In some applications the table look-up operation may involve an interpolation be­

tween near lying entries in the table. In this case, while the general procedures

shown in Figure 15-4 are unchanged, a modification of the match merge operation

is needed.

Assume that the billing item, 13., contains an argument, B i, which is the basis of

of the table look-up(this corres~onds in function to the fields B f' B~, and '8), of

the previous ex.ample). Suppose further that four point interpolation is needed in

selecting the rate. That is, if the symbol E~ represents the argument of the nth

table entry, then if

E~-l < B~ S. E~

a a a- a
the table values for arguments E n-2 , En- 1 , En' and En+ 1 will be needed. The

mathematical formula using these entries and their arguments to calculate the

interpolated rate will be indicated by F(E n-2' E n- 1 ' En, En+1)·

The flow chart shown in Figure 15-6 is the required match merge necessary to

select the required table entries En noted above.

CALCULATE RATE
BY

'NTERPOLAT, ON

r- I GU R E 1 5.6

The first two entries of the table must correspond to arguments below the range

of arguments B~. Sitl'ilarly, the last two entries of tbe table must correspond to

275
UNIVAC®II

DATA AUTOMATION SYSTEM

arguments above the range of B~. The initial operations, performed once only, are

CD t00 . These steps stored the first four entries and their arguments (T l' T 2' T 3

and T
4

) as items E1, E2, E3 and E4, respectively. At CD the table look-up begins.

The first billing item argument I3~ is compared with the argument E~. If B~ is

greater, each En is displaced down one position with E 1 being dropped and the next

Tj becoming E4. When, finally, the first E~ is located which is just greater than

(or equal to) B t the four items E 1, E2, E 3, and E4 contain the proper entries for

interpolation. An outP,ut item Wk is formed consisting of the billing item and the

interpolated rate. This item is sent through the output operation+-! I k + l k I~
necessary to record it on tape, and the next billing item selected.

The extension of this flow chart to handle 2, 3, 5 point, or higher interpolation is

obvious.

EXPLOSION CALCULATION

The explosion calculation can be described by the following problem. A company

manufactures a number of models of a prod,uct. For each model a bill of materials

exists which lists the basic sub-assemblies or units and the number required for

each model. This data can be termed a bill of materials file consisting of items Mi'

Each item represents a unit or sub-assembly for a particular model. It contains,

among other things, the following fields:

1. The model code to wh,ich this unit belongs, ~1T
2. The part number of a part llsed on this model, i~'I?n

1

3. The number of such parts used on this model, "Mr

This bill of materials file is kept in model code sequence to facilitate the problems

of file maintenance and the explosion run to be described.

A second file, the production schedule, is also available. This file consists of a

series of items, P" containing the following fields:
J

1. The model code, pj
n

2. The number of suclt models to be constructed, P j

The problem is to determine the total number of sub-assemblies required by the pro­

duction schedule. That is, the production schedule is to be "exploded" into the

pieces that make up the models.

276

Figure 15-7 depicts the major operations required 1n exploding the production

schedule.

SORTED
PROD.

SCHED.

SORT BY
MODEL CODE

PROD.
SCHED.

FILE

SORT BY
PART NUMBER

SUMMARIZE
BY

PART NUMBER

)

RAW
REQMTS

FILE

SORTED
RAW

REQMTS
FILE

REQMTS
FILE

BILL OF
MATERIALS

FILE

FIGURE 15.7

Assuming a random development of the production schedule, the first step is to

sort this schedule into model code order to facilitate its "multiplication" by the

bill of materials. This is accomplished through one of the standard sorting routines.

277
UNIVAC®II

DATA AUTOMATION SYSTEM

The output of this run is called the sorted production schedule which forms with

the bill of materials file the input to the explosion calculation. In this operation,

the number of units or sub-assemblies required to produce the quantity of each

model listed on the production schedule is determined. The output of this calcula­

tion is called the raw requirements file. Now, because many models contain common

sub-assemblies, it is necessary to; summarize the raw requirements file.

First, of course, the file must be sorted to part number sequence not only for the

summary to follow but also for the convenience in reading the printed sub-assembly

requirements table. The summarization operation has already been described.

Figure 15-8 is a flow chart showing the method of calculating the raw requirements.

1
U

ERROR III
PROD. SCHED.

FIGURE 15.8

At CD the model codes of the first production schedule item and the first bill of

materials item are compared. If the model code called for by the production schedule

is the larger, it means that its corresponding bill of material items are further up

the bill of materials file. Accordingly, this file is advanced item by item until a

model code is reached equal to (or less than) the production schedule model code.

Next a test is made to detect improper model codes which may have slipped in

during the manual operations used in preparing the production schedule. Next, an

278

output item I\ is built up. The part number of the current bill of materials item is

stored in Rpn, and then the number of such parts needed is calculated by multiply­

ing the numkber of the model to be built, Pj, by the number of this part used in that

model, M? This field is the requirement for this part by the production for this

model and is designated R~. The box~(-+.l k ~arries out the steps

necessary to record this requirement item on tape. The bill of materials file is

then advanced one item and this item~s model code checked against the current

production schedule item's model code. If they agree, another extension is made.

This process continues until a bill of materials item for a different model code

turns up. This signifies that all of the extensions for current production schedule

item~s model code have been made, and the production schedule file is then ad­

vanced one item.

Having seen how a simple explosion run is performed, consider a somewhat more

involved and, thus, more practical problem. Suppose that our production schedule

consists of a series of items giv ing the required production per month, per

model for a certain number of months. That is, each production schedule item, P. ,
J

contains the following fields:

1. Model Code, p~

2. Number of unit; to be produced this month, pj
3. Coded representation of this month, p~

Further, suppose that if a model is to be produced for a given month, each of the

sub-assemblies will have a lead time peculiar to the assembly unit. For example,

if a model is to be completed on day X, sub unit A must be available on day X-L,

or L days earlier. Thus, modify the bill of materials file so that it includes the

appropriate lead time. Each bill of materials item will now contain the fields:

1. The model code to which this unit belongs, MT
2. The part number of this unit, Min
3. The number of such units used on this model, M~
4. The amount of lead time required for this unit, M 1

Now compute the ttphased" requirements. That is, determine not only what and

how many sub-assemblies are required for this production schedule, but also on

what date they are required. Figure 15-9 shows the general sequence of steps re­

quired in calculating the phased requirements.

279 UNIVAC@//

DATA AUTOMATION SYSTEM

SORTED
PROD.

SCHED.

SORT BY
MODEL CODE

PROD.
SCHED.

FILE

EXPl;.OSION
CALCULATION

RAW
REQMTS

FILE

I.

SORTED
RAW

REQMTS
FILE

SUMMARIZE BY
PART NUMBER

AND DATE

PHASED
REQMTS

FILE

BILL OF
MATERIALS

FILE

FIGURE 15.9

280

The same essential steps are found in this solution as described earlier for Figure

15-7. Of course, the explosion calculation will necessarily be different. The flow

chart of this explosion run is shown in Figure 15-10.

FIGURE 15.10

At CD the model code of the first production schedule item is stored as a key K.

Beginning at 0 each production schedule item with the same model code K is

stored in the memory. These stored production items are called F, any particular

one being F n. As soon as a production item is found for a different model code, go

to G) where the bill of materials file is advanced -to the first item for model code K.

Beginning at @ start exploding the production schedule. The first stored produc­

tion item, Fp with p = 1, is selected and the number of units to be produced during
month 0 is multiplied by the number of sub-assemblies M1 required. Then, the lead

time,M f is subtracted from the completion date, F g, and these two fields and the

sto.ck number of the sub-assembly are plac(!d in an output item, Rk . The box

...f I k + 1 k ~implies the output operations necessary to record the item Rk

on the raw requirements tape. The box.(l£:::~) p ~"ielects the next stored
production item, and it is processed in a similar fashion. When all of the stored

production items, F P' have been extended the bill of materials file is advanced to
the next sub-assembly for this model and the process repeated. When all s ub­

assemblies for model K have been processed this entire procedure beginning at

CD is repeated for the next scheduled model.

281 UNIVAC®//

DATA AUTOMATION SYSTEM

chapter 16

Storage of

Information

Consider the following circuit.

'SWITCH

II/I---- A

FIGURE 16.1

When the switch is closed a voltage is produced at point A; when open, no voltage
is produced. Suppose the switch is operated once every p.s in the following way -

open, open, close, open, close, open, close - and the voltage at point A is plotted.

282

TIME
7 6 5 4 3

FIGURE 16.2

2

VOLTAGE
AT A

If voltage represents a one; and no voltage, zero; the operation of the switch sent

the representation of the character A past point A. Voltage patterns, or pulse com­

binations, on a time scale i~ the method of transferring data in the computer.

The representation of a character is called a binary representation, since the

'representation consists of a permutation of two digits, one and zero. A one or a

zero in a binary representation is called a bit, the name given to a binary digit.

Thus, a specific character consists of seven bits, or in general, a character con­

sists of seven bit positions. In the computer, the duration of a voltage level, or

pulse, to represent one bit position is .4 p.s rather than one p.s.

MERCURY TANK

Consider the following audio circuit.

SPEAKER

A B

FIGURE 16.3

283 UNIVAC®II

DATA AUTOMATION SYSTEM

If the switch were operated as before, the pulse combination will be the same at

point B as at point A during the first seven microseconds. If the switch is then

left open, the following will occur. When a voltage level, or pulse, reaches the

speaker, it will vibrate a thin slab of crystal similar to that in the earpiece of a

telephone. The vibration creates a sound wave that travels through the air until

it reaches the receiver. Suppose the distance between the speaker and receiver is

such that it takes seven p,s for the sound wave to cover this distance. When the

sound wave reaches the receiver, it vibrates a crystal in the receiver, thus con­

verting the sound wave back into a pulse. Compared to the speed of the sound wave,

it can be assumed that it takes no time for the pulse to travel from the receiver to

the speaker. With this circuitry, the pulse combination of the character A w ill be

recreated at point B every seven microseconds. The air between the speaker and

the receiver has stored the pulse combination. This fact is the storage principle

of the mercury tank, except that for echo and power considerations, mercury, rather

than air, is used to propagate the sound wave. Register A, rX, rL, rF, CC and CR

use mercury tanks as their storage medium.

MAGNETIC CORE

A piece of magnetizable material is thought of as consisting of elementary bar

magnets, called domains. The material has two possible states. The domains can

be arranged randomly, in which case the material is not magnetized; or the north

poles of all the domains can point in one direction, in which case the material is

magnetized, or polarized.

If a wire is coiled about a piece of magnetizable material, the following relation
, .

holds between the current passing through the wire and the polarity of the material.

o __ Er---

A. B

FIGURE 16-4

1f sufficient current is passing through the wire from A to fl, the north poles of the

domains will point to the left, and the material can be said to be in a zero state.

H sufficient current is passing from l3 to A, the north poles w ill point to the rigbt,

and the material can be said to be in a one sJate.

284

The above relationship has the following properties. Once the material is placed

in a state by a flow of current, it remains in that state after the current has been

removed. Also, a characteristic amount of current must be flowing through the wire

before the material will change its state. When the material goes from one state

to the other, the material is said to flip. For purposes of discussion, say that it
takes one jolt of current to flip the material.

Since the zero and one states of the piece of magnetizable marerial present two

easily distinguishable stable states, the material can be used to store one bit

position of information. In practice, the piece of material is in the form of a dough­

nut and is called a core. Instead of being coiled about the core, the wire is passed

through the center of the core, the wire thus having a half turn about the core.

Storing information in a core and reading information from a core occurs in two

phases, phase I and phase I I.

c c

A I--__ A
I----_D

PHASE I
FIGURE 16.5

PHASE II

During phase I a half jolt of current is always sent along each of wires A and B in

the directions shown in Figure 16-5. Phase II is the same as phase I except that

the direction of the current is reversed.

STORING INFORMATION IN A CORE

During phase I the core is placed in the zero state. If a one is to be stored in the

core, during phase II the core is flipped to the one state. If a zero is to be stored,

during phase II a half jolt is sent along wire D. This current cancels the effect of

the half jolt of current flowing along wire A. The half jolt of current on wire B is

not sufficient to flip the core, and it remains in the zero state.

285
UNIVAC®II

DATA AUTOMATION SYSTEM

READING INFORMATION FROM A CORE

Just as current on a wire passing through a core flips the core, if a core is flipped,

a current is produced on the wire.

If the core is in the one state, die core will flip during phase I, thus producing

current on wire C. If the core is in the zero state, the core will not flip durin·g

phase I, and no current will be produced on wire C. Only if no current is on wire C

during phase I is a half jolt of cqrrent sent along wire D during phase II. Thus,

phase II restores the core to its original state.

THE MEMORY

Figure 16-6 shows a four cell memory, each cell having the capacity to store one

two bit position word.

PLARE
2

286

FIGURE 16.6

The first bit positions of the words are stored in plane 1, the second bit positions,

in plane 2. To store or read information in or out of cell 1, a half jolt of current is

sent along lines Al and 01 in both planes. Similarly, lines Al and 82 are associat­

ed with cell 2; lines A2 and 01, with cell 3; and A2 and B2, with cell 4.

Univac's memory works in an analogou·s way, except that! the memory consists of

84 planes each containing 2000 cores. In Univac the diameter of a core is about .06

inch. Besides the memory, rW, rZ, rI and rO consist of cores, thus providing com­

pact storage that permits rapid access.

SUMMARY

The storage medium of rA, rX, rL, CC and CR is mercury tank. The storage medium

of the memory, rW, rZ, rI and rO is core.

287
UN I-VA C(FllII

DATA AUTOMATION SYSTEM

chapter 17

Manipulation

of Information
REPR ESENTAT ION OF INFORMAT ION

An) positive number can be represented by a row of marks such as

111111111 (or 9)

although all but the smallest numbers become unwieldy in such notation. For ease

of manipulation a positional notation using symbols to represent different rows of

marks is more convenient. One such notation is the Arabic, which uses ten differ­

ent symbols or digits, 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9.

The number of different digits used in a positional notation or system is known as

the base of the system. Thus, Arabic. notation is known as a base ten or decimal

system. Using one digit position, quantities as large as nine can be represented

in the decimal system. To represent a quantity larger than nine another digit posi­

tion must be used. Thus, to represent the quantity ten a carry is made into the

digit position to the left and the original digit position reverts to zero. The expan­

sion of this system is exemplified by the speedometer of a car.

288

In positional notation each digit position, or column, implies a power of the base as

a multiplier of the digit in the column". The decimal number 1076 is Posiliomd

notation for the expression

(1 x 1000) + (0 x 100) + (7 x 10) + (6 x 1)

The columns imply powers of ten,

1
10

100

1000

1
10

10 x 10

10 x 10 x 10

and, appropriately enough, are named the units column, the tens column, the hun­
dreds column, and so on.

A computer that represents numbers in decimal notatio? must have storage elements

capable of assuming ten easily distinguishable, stable states, one for each possi­

ble digit. While such elements exist, their cost prohibits the construction of a com­

puter that represents numbers in decimal notation. Electronic elements lend them­

selves most naturally to two stable state devices. Thus, computers usually repre­

sent numbers in the base two or binary system. The binary system can be built up

in a way analogous to the decimal. There are two possible digits, 0 and 1, used
in conjunction with successive powers of two

Thus, the binary equivalent of a decimal nine is 1001, which is binary notation for
the expression

(1 x 8) + (0 x 4) + ·(0 x 2) + (1 x 1)

STUDENT EXERCISES

Write the binary equivalents of the decimal numbers 6, 13, 15, 27 and 43.

289
UNIVAC®II

DATA AUTOMATION SYSTEM

BINARY ADDITION

The addition table for the binary system is

o + 0 0

o + 1 1

1 + 1 10
1 + 1 + 1 11

The sum of two binary ones is the binary number 10, the binary equivalent of a

decimal two. The binary number 10 is not what is called ten, which is a decimal,

not a binary, number. Similar remarks mold for the sum of three binary ones, which

is the binary number 11, not the decimal num ber el even.

Example

DECIMAL

13
14
27

STUDENT EXERCISES

Add the following

1011
1111

1010
10111

BINARY

'1101
1110

11011

11001
10111

ADDITION OF TWO NUMBERS WITH OPPOSITE SIGNS

While addition of two numbers with opposite signs could be done by use of a

• 'subtraction" table, computers use the method of complementation. For any given

number there exists a second number which when added to the first will produce a

sum consisting of a one followed by as many zeros as there are digits in the first

number. The second number is the complement of the first. To get the complement

of a binary number

1. Replace the ones with zeros and the zeros with ones and

2. Add a binary one to the result.

290

For example, given

1101

replace ones with zeros and zeros with ones, and add a binary one

Complement

Proof: 1101 + 0011 = 10000

To add two numbers with opposite signs

0010

1
0011

1. consider as many digit positions of the smaller in absolute value of the

two numbers as there are in the larger by inserting as many nonsignificant

zeros as are necessary

2. take the complement of the absolute value of the smaller in absolute value

3. Add the absolute value of the other number to the result

4. drop the most significant carry

and 5. prefix the sign of the larger in absolute value.

Example

ADD

STEP 1.

-101101
+ 1011

-101101

+001011

STEP 2. The smaller in absolute value is

STEP 3.

001011

110100
1

110101

101101
110101

1100010

291
UNIVAC®//

DATA AUTQMAT10N SYSTEM

STEP 4. 100010

STEP 5. -100010

Translating the numbers into decimal notation, the steps form the expression

(64 - 11 + 45 - 64) -- ----t ______
Step

4

...... _____ ,Step 3

.... ________ uteps 1 and 2

"'--__________ Step 5

The expression reduces to - 45 + 11, which is the decimal equivalent of the origi­

nal problem.

STUDENT EXERCISES

Add the following

-1011

+ 1111

SUBTRACTION

+ 1010

- 10111
!

-11001

-10111

Subtraction is to change the sign of the subtrahend and add the result to the minu­
end. Thus, subtraction can be dorieby addition.

MULTIPLICATION

Binary multiplication can be done by a series of additions just as decimal multi­

plication can, as shown on pages 153. Thus, multiplication can be done by

addition.

292

DIVISION

Binary division can be done by a senes of additions and subtractions just as

decimal division can.

123
1

11
111

~dition

12 }1476
12
27
12
15
12

36
Subtraction

12
24
12
12
12

0

Thus, division can be done by addition.

THE ARITHMETIC UNIT

The above discussion demonstrates that the arithmetic unit of a binary computer

can be made if

1. a binary adder,

2. a complementer,

3. a sign changer,

4. a counter to keep track of the additions and subtractions in multiplication

and division.

5. an equality comparator,

and 6. a magnitude comparator

can be made.

293
UNIVAC®II

DATA AUTOMATION SYSTEM

CODED BINARY

Binary representation IS used in computers in one of. two forms. The first is the

binary notation just described called pure binary representation. The other is

(:alled coded binary representation. In this representation, only the pure binary

(:quivalents of the .ten decimal digits are used.

DECIMAL PURE BINARY

0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001

Any decimal number greater than nine is represented by a combination of the above

codes. For example, the decimal number 147 would be represented as

0001 0100 0111

]f a computer uses pure binary representation either

1. input must be prepared and output received in pure binary repr~sentation

or 2. the computer must be able to convert inpltt received in decimal representa­

tion to pure binary representation and convert output produced in pure

binary to decimal.

The first approach is awkward and the second requires expensive hardware. But if
a computer uses coded binary representation, data may be introduced and removed

from the computer directly in decimal representation.

294

The Central Computer of the Univac Data-Automation System uses a modification

of coded binary representation called excess three representation. In this represen­

tation each decimal digit is represented by the binary equivalent of the digit plus

a decimal three.

DECIMAL

o
1
2
3
4
5
6
7
8
9

EXCESS THREE (XS-3)

0011
0100
0101
0110
0111
1000
1001
1010
1011
liDO

Excess three representation has three advantages over straight coded binary.

1. The addition of two excess three numbers produces a carry if and only if
the addition of their decimal equivalents produces a carry.

2. An excess three number can be complemented in the same way a pure

binary number is.

3. Excess three representation provides three digits ,,0000, ,0001 and 0010,
whose decimal equivalents have a value less than zero.

EXCESS THREE ARITHMETIC

If two like signed excess three digits are added~ the decimal equivalent of their

sum is not equal to the sum of the decimal equivalents of the digits.

DECIMAL

5
1

6

EXCESS THREE

1000
0100
1100

The decimal equivalent of the excess three digit 1100 is not six, but nwe. The
reason for this fact is that if the addition does not produce a carry the sum is not

in excess three representation, but in excess six notation. To convert the sum to

295 UNIVAC®II

DATA AUTOMATION SYSTEM

excess three representation it is necessary to subtract the pure binary equivalent

of a decimal three, 0011. The complement of the pure binary number 0011 is 1101.

Thus, to t t correct" the sum of two excess three digits that do not produce a carry,

add the pure binary number 1101 to the sum.

1100
1101

1001

The excess three digit 1001 is the equivalent of a decimal six.

However, if the addition of two excess three digits produces a carry, the sum IS

not represented in excess six.

5
6

.... 1

The arrow indicates a carry.

1000
1001

",.. 0001

The reason for the above fact is that the carry in the excess three addition carries

the equivalent of a decimal 16 out of the sum. Ten of this 16 is the decimal carry

to the next column, which is desired; three of the 16 is what previously produced

an excess six sum, and its carry is of no concern; but the last three is what was

necessary to produce an excess three sum. Thus, the sum comes out in pure binary

representation. To convert the sum to excess three representation it is necessary

to add the pure binary equivalent of a decimal three, 0011, to the sum.

0001

0011

0100

The excess three digit 0100 is the equivalent of a decimal one.

In summary, to add two like signed excess three numbers

1. add the numbers according to the rules of pure binary addition

and 2. apply Cfcorrection factors" to each digit in the sum. The correction fac­

tors are as follows:

a. If the column in which the digit appears did not produce a carry, add

the correction factor 1101.

b. If the column produced a carry, add 0011.

296

For example,

01.00 0111 1010
1001 0110 1000

Intermediate sum - 1101 1110 t"'- 0010
Correction factors - 11.01 1101 0011
Excess three sum - 1010 1011 0101

Since the correction factors apply only to individual digits and not the entire sum,

any carry produced is ignored.

STUDENT EXERCISES

Add

0110 1010 0011
0111 1000 1010

1000 0101 1100
1010 0111 0101

ADDITION OF TWO EXCESS THREE NUMBERS WITH OPPOSITE SIGNS

Two excess three numbers with opposite signs are add'ed in the same way as two

pure binary numbers with opposite signs are.

Example

ADD -1010 0111 1001 0100
+ 0100 0110 1100

STEP 1. -1010 0111 1001 0100
+0011 0100 0110 1100

STEP 2. 1100 1011 1001 0011
1

1100 1011 1001 0100

297
UNIVAC®II

DATA AUTOMATION SYSTEM

STEP 3.

STEP 4.

STEP 5.

STUDENT EXERCISES

ADD

1010, 0111 1001
'1100 101r 1001

~0111 J(.{)O 11 "+-'0010
;0011 0011 0011
~1010 0110 0101

1010 0110 0101

- 1010 0110 0101

+1010
- 0101

0011
0011

0111
1010

- 0111
+ 1000

1011
0110

1100
0101

ALPHABETIC REPRESENTATION

0100
0100
1000
1101
0101

0101

0101

\

J

To represent the ten decimal digits ~nd the 26 alphabetics, the computer must have

.
36 different representations. Four binary digit (bit) positions only allow 16 differ­

ent representations. Consequently, to t~e excess three part of the representation

" of a character a two bit position zone is added, allowing a maximum of 64 differ­

ent representations as shown in figure 9-2.

LOGICAL BUILDING BLOCKS

For purposes of representation, certain electronic circuits can be represented by

symbols. A wire is shown as an artow. It is assumed that current can flow along

the wire only in the direction indicaied by the arrowhead.

THE FLIPFLOP

A flipflop (FF) is shown as a rectangle having two input lines and two outputs.

298

FIGURE 17.'

One input and one output are associated with one side of a FF, called the set side

(S); the other input and output, with the other side, called ~the reset side (R). AFF

has the following characteristics. It always emits a steady voltage, called a signal,

the signal coming from the set side or the reset side, but never from both. If the

signal is coming from the set side, the FF is said to be set; from the reset side,

reset. If a FF is reset, a pulse applied to the set side will set the FF. The FF ,will

then remain set until a pulse is applied to the reset side, which will reset the FF,

and vice versa.

THE GATE

A gate (G) is shown as a square having, one output and one or more inputs.

FIGURE 17.2

The inputs are of two types, permissive inputs, shown as arrows with the arrow­

heads touching the G; and inhibitory, shown as arrows with circles between the G

and the arrowheads.

Some inputs are identified by circles with numbers in them, the circle representing

the source of the input.

A G emits a signal on the output under the influence of signals on the inputs.

When a G emits a signal the G is said to be permissed. A signal on an inhibitory

input or the absence of a signal on a permissive input prevents a G from being

permisse,? Thus, a G is permissed only if all permissive signals are present; and

all inhibitory signals, absent. The G in Figure 17-2 is permissedonly when signals

2, 3 and 4 are present; and signal 1, absent. The G in the following figure is per­

missed when signal 1 and signal 2 or 3 are present.

299
UNIVAC®//

DATA AUTOMATION SYSTEM

G

2 3

FIGURE 17.3

THE BINARY COUNTER

A binary counter (Be) is shown as a rectangle having three inputs and three outputs.

FIGURE 17.4

One input and one output are associated with one side of a Be, called the zero

side; another input and output, with the other side, called the one side. A Be
always emits a signal from either the zero or one side. If the signal is coming

from the zero side, the Be is said to be in the zero state; from the one side, in

the one state. A pulse applied to the z!ero side will put the Be in the zero state;

applied to the one side, in the one state.

The third input to a Be is called the stepping input. If a Be is in the zero state,

a pulse on the stepping input will put the Be in the one state, and vice versa.

Each time a Be changes state it is said to be stepped. Every time a Be is stepped

from the one to the zero state, it emits a pulse on the third output, called the carry

output.

One use of a Be is as an odd even checker.

Be

FIGURE 17.5

300

If a pulse from source 2 initially puts the Be in the zero state, and a character is

then transferred from source 1, at the end of the transfer the Be will be in the one

state if the character contained an odd number of ones, in the zero state if it con,:,
tained an even number.

Be's can also be connected together.

o
BC ... ~

o
BC-3

o
BC-2

FIGURE 17.6

o
BC-I

The above string of Be's will count in pure binary from 0000 to 1111.

THE DELAY

A delay is shown as a rectangle containing a D with a numeric subscript.

0~-"'.,,--1 _D
7
--' I-.. ·

FIGURE 17.7

Tbe subscript· indicates the number of pulse times needed for a ~ulse on the input

to emerge on the output, where a pulse time is the time needed for a pulse to pass
a given point in the circuitry. A mercury tank is a type' of delay.

LOGICAL CIRCUITS

The following circuits are built to operate on unsigned pure binary numbers in the

form of a pulse combination traveling least significant bit first.

301
UNIVAC®II

DATA AUTOMATION SYSTEM

MAGNITUDE COMPARATOR

G-li - S -

FF

2 t----... -----4... G- 2 R 1---...

FIGURE 17.8

If a pulse from source 3 initially reSets the FF, and a number A is then transferred

from source 1 at the same time as another number B is transferred from source 2,

at the end of the transfer the FF will be set if A is greater than B and reset if A

is less than or equal to B. When A and 13 have an identical column neither G-1 nor

G-2 is permissed, and the FF remains in its present state. When A has a one in a

column in which B has a zero, G-2 is inhibited, but G-1 is permissed, and the FF

is set. In the reverse situation, G-l· is inhibited, but G-2 is permissed, and the FF

is reset.

HALF ADDER

SUM

2

CARRY

FIGURE 17.9

If a number A is transferred from source 1 at the same time as another number B is

transferred from source 2, the sum "rithout carry of A and B will be produced on the

sum output, and the carry will be produced on the· other output, called the carry
output.

A
B

Sum without carry

Carry

302

0011
0101
0110

0001

If both A and B have a zero in the same column, neither G-1 nor G-2 is permissed,

and a zero is produced on both the sum and carry outputs. If either A or B has a

one in a column in which the other has a zero, G-1 is permissed, and a one is pro­

duced on the sum output, but G-2 is not permissed, and· a zero is produced on the

carry output. If both A and B have a one in the same column, G-2 is permissed.

(The delays :are min!lte but insure G-2 output before G-1 output.) G-2 output is a

binary 1, a carry, which inhibits G-1, so that the sum of the bits is binary zero.

A half adder (HA) is customarily represented as in the figure below.

~ HA~ ~SUM :

FIGURE 17.10

If a number consisting of all ones is transferred from source 2 at the same time as

a number A is transferred from source 1, the HA will act as a complementer, pro­

ducing a number on the sum output that has ones where A has zeros and zeros
where A has ones.

A HA is used as the ct sign changer" for the subtract and negative multiplication

instructions. The binary configuration 1000001 is added to the characters in the

sign position of the word transferred to rX and the sum, without carry, becomes the
new sign. Thus:

1000001
(-) 0000010

(+) 1000011

1000001

(+) 1000011

(-) 0000010

The HA is also used in the circuitry of

1. a binary adder

and 2. an equality comparator.

BINARY ADDER

SUM

H A- I

303

1000001
(A) 1010100

(B) 0010101

SUM

1000001
(B) 0010101

(A) 1010100

FIGURE 17. 11

UNIVAC®II

DATA AUTOMATION SYSTEM

HA-l produces the sum without carryon its sum output, and HA-2 adds in the carry

to produce a sum wit4 carryon its sum output. The delay of one assures that the

carry is added in the right digit positions.

EQUALITY COMPARATOR

FIGURE 17.12

If a pulse from source 3 initially resets the FF, and a number A is then transferred

from source 1 at the same time as another number B is transferred from source 2,

at the end of the transfer the FF will be reset if A equals B and set if A is not

equal to B. As long as A and B have id~ntical columns no pulse is produced on the

sum line, and the FF remains in the reset state. However, as soon as either A or B

llas a one in a column in which the other has a zero a pulse is produced on the

sum line, and the FF is set. Once set the FF remains set for the rest of the com­

parison.

304

chapter18

Insuring Accuracy
of Processing

In any data processing system one of the chief concerns is the accuracy of the re­

sults. In a computer data processing system, errors may be introduced in one of

three ways.

1. Erroneous data fed into the system.

2. Erroneous intervention by an operator into the system.

3. Malfunctioning of the computer.

INPUT DATA ACCURACY

The accuracy of input data can be assured by validity runs, described on pages
256 and 257.

305
UNIVAC®//

DATA AUTOMATION SYSTEM

OPERATOR ACCURACY

There are points at which an operator must manually intervene in the otherwise

automatic operation of a computer. For example, to run a routine, an operator

must mount input tapes. The stored program allows the computer to check all oper­

ator interventions for accuracy. For example, by convention, the first block of each

input tape contains, not data, but an. identification of the data on the tape. By

means of this identification block, the computer can check that the data mounted

is actually the data associated with the stored routine.

RERUN

Rerun is designed to handle situatioQs where processing IS interrupted during a

run. Power failure or removal of a rouJine for one of higher priority are examples

of such interruptions. Rerun consists of periodically writing, or dumping, the con­

tents of the memory on tape. Then, no matter where processing is interrupted, it

can be restarted at the point of the lasJ memory dump by using the memory dump to

reconstitute the memory. Rerun elimin~tes the necessity to restart an interrupted

run from the beginning, thus conservin~ computer time.

COMPUTER ACCURACY

In computers every pulse has a significance which, if lost, alters the content of

the whole message. A power failure of only .4 IlS duration can cause the loss of a

binary one. Such a loss could change a six to a five.

DECIMAL

6
5

EXCESS THREE WITH ZONE

001001
001000

If such a situation occurred when two: words were being compared, the comparator

may indicate inequality when equality.is the case.

If such an error occ urrcd when the' k¢y 60032 is being checked for equality be­

tween files A and B in figure 18-1, i no item following the item with key 60029

would be processed, since the comput;er would exhaust file B in a vain search for
equality of keys.

, 306

FILE A FILE B

50031 50031
50032 50032
59999 59999
60028 60028
60029 60029
60032 ---..50032 60032
60034 60034

FIGURE 18.1

No malfunction can be tolerated in a computer, SlOce even a minute failure may

have disastrous results.

TYPES OF FAILURES

Errors can be produced by permanent or intermittent failures of equipment. A blown

fuse is ,an example ()f a permanent failure. A gradually weakening tube that some­

times overloads under the influence of a particular pulse combination is an example

of an intermittent failure.

ERROR DETECTION

It is not possible to build a computer that will never malfunction. The only solu­

tion is to provide some means of detecting errors as they occur and preventing the

the propagation of the error. The responsibility for detecting errors can be placed

on the programmer or checks can be buil t into the computer.

PROGRAMMED ERROR DETECTION

DIAGNOSTIC ROUTINES

A computer can execute a routine the output of which is known. If the output is as

expected, the routine guarantees that the computer has not developed a permanent

failure. However, the routine provides no assurance that an intermittent failure

will not occur during a production run. Moreover, running time for the routine is

lost time as far as production is concerned.

307
UNIVACC!SJII

DATA AUTOMATION SYSTEM

DUPLICATE RUNS

After a computer has executed a production routine, it can execute the routine a

second time. The results of the runs. can be compared, the computer usually being

used to make the comparison. If the comparison checks out, and .if a permanent

failure has not developed since the last diagnostic run, the output is correct.

Such an approach more than doubles, and may more than triple, the computer time

required to produce the output. Moreover, if the comparison does not check out, it

is impossible to know if a failure occurred during the first or second production

run or during the comparison or during any combination of the three.

PROGRAMMED CHECKS

The production routine can be programmed in such a manner that, immediately after

the execution of a subroutine, a second subroutine, checking the results of the

fii'st for accuracy, is executed. For example,

0010 B01880

} A-1S81

0011 H01882

addition

S-1880

} 0012 L01881

QOO020

check

If control is transferred to cell 0020, the addition was correct; if control passes to

cell 0013, incorrect.

Programmed checks increase the running time of a production routine by a factor of

at least two thirds. The increase in memory space required by the programmed

checks is even more drastic. Moreover, there are operations that do not lend them­

selves to a programmed check. Selection of the next instruction to be executed and

selection of the cell specified by an instruction are examples of such operations.

By themselves, programmed checks cannot assure output accuracy.

If a c:omputer failure occurs, the failure must be corrected before the computer can

return to operation. Thus, the fault must be located in the computer hardware. Since

programmed error detection may not stop the computer at the point when an error

occurs, this method provides little or no help to the technician in locating the

fault. The time required for the technician to locate the fault further reduces pro­

ductive computer time.

308

BUILT IN CHECKS

Checking circuits can be built into a computer in' such a manner that the computer

stops the instant an error occurs and lights a neon on the control panel, thus in­

dicating the nature of the error. These circuits operate in conjunction with the

processing circuits. No computer time is lost because of the existence of checking

circuits. Admittedly, checking circuits cost money, but they save

1. productive computer time lost because of diagnostic runs,

2. produ.ctive computer time lost because of duplicate operation, either by

duplicate runs or by programmed checks,

3. productive computer time lost because runs must be subdivided to provide

memory space for programmed checks,

4. productive computer time lost because the computer does not stop the in­

stant the error occurs, thus requiring the technician to locate the fault with

little or no help from the checking routines.

5. productive computer time lost because of errors that escape programmed

checks,

6. company embarrassment caused by such errors

and 7. productive programmer time lost in the search for the elusive perfect pro-

gram check.

Built in checks represent a fixed initial cost; checking routines, a continual, and

basically, hidden cost. It is estimated that built in checks will pay for themselves

in less than a year.

BUILT IN CHECKS OF THE UNIVAC CENTRAL COMPUTER

ODD EVEN CHECK

The odd even checker IS a reliable, inexpensive checking circuit which checks

against the proper storage of data and the proper transfer of data from one storage

to another. There is an odd even check located

1. on· the High-Speed Bus (HSB) which is the transmission line between the

registers and the memory,

2. on each of the adder inputs,

3. between theUniservos and rI

and 4. between rO and the Uniservos.

However, there are failures that the odd even check cannot detect. For this reason

duplicate, counting and logical checks are also used.

308
UNIVAC®//

DATA AUTOMATION SYSTEM

DUPLICATED CIRCUITRY

Several elements of the Central COlnputer of the Univac System are duplicated. In

the case of storage or transmission elements, such as the registers and the HSB,

the contents of the duplicated elements are continuously compared for identity.

In the case of processing elements, such as the adder and comparator, equality

of output is the basis of the check.' The duplicated elements are

1. the HSB,.

2. each ·of the adder inputs,

3. the adder,

4. rA,

5. rL,
6. rX,
7. rF,

8. the comparator,

9. the memory counter, in which the address in SR IS stored, and which ad­

, vances the cell addresses' during the execution of multi word transfer and

tape instructions,

and 10. the Time Out circuits, which determine whether Univac is on TO or Time

On.

COUNTING CHECKS

The representation

1111111

contains an odd number of ones, but for electronic reasons, is not used. To prevent

such a representation from passing across the HSB, an all ones detectoris located

on the HSB.

A counter checks that no more nor less than 720 characters are transferred to d
during the execution of a read instruction.

LOGICAL CHECKS

When storing a one in a core, duri~g phase II the core flips. from the zero to one

state, thus producing current on th~ output line. This current is used to detect the

incorrect storage of a one in a core~

310

When transferring a word from the arithmetic or c:ontrol units to the memory, a pulse,
called a staticizing pulse, is required to gate the word from the HSB to the memory.

The production of the staticizing pulse is checked.

Checks are also made to determine that

1. the proper memory cell is sel·ected at the beginning of the execution of an

instruction,

2. only one cell IS selected during the execution of instructions involving

the memory,

3. an instruction is legitimate,

4. the address specified by an instruction is legitimate,

5. an instruction is properly executed,

6. the proper cell in rW or rZ is selected at the beginning of the execution of

a multiword transfer instruction,

7. one cell in rW or rZ is selected during each stage of the execution of a

multiword transfer instruction

and 8. the cycling unit, which synchronizes the! computer's operation, is function­

ing properly.

INPUT - OUTPUT CHECKS

(The checks employed in the input-output units have been described in Chapter
XIII.)

A counter is used to control the transfer of data from rO to the Uniservos and from

the Uniservos to rI.

A check is made to determine that the counter is properly set at the beginning of

the execution of a tape instruction.

The counter produces signals to control the transfer of the data. A check is made

against the proper production of the signals.

Additional checks are made to determine that

1. the proper cell in rO is selected at the beginning of the execution of a

write instruction,

2. one cell in rO is selected during each word transfer in the execution of a

write instruction,

311 UNIVAC®/I

DATA AUTOMATION SYSTEM

3. the proper cell in rI IS selected at the beginning of the execution of a

read instruction,

4. one cell in rI is selected during each word transfer in the execution of a

read instruction,

5. a sprocket pulse is read every time a character is read

and 6. only one Uniservo is selected during the execution of a tape instruction.

The interlock circuitry produces signals that inhibit

1. the initiation of a read instruction while rI is engaged In the transfer of

data.

2. the initiation of a write instruction while rO is engaged in the transfer of

data.

and 3. the initiation of tape instruction while the tape specified is moving or re­
wound with interlock.

A check is made against the proper functioning of the interlock circuitry.

THE EFFECT OF ERRORS

If an error is detected in any part of the computer other than the input-output

circuitry, the computer immediately stalls. If an error is detected in the input­

outpUt circuitry, the computer stalls as soon as another attempt to use the faulty

part of the circuitry is made. For example, if an error was detected during the

writing of a block on T6, the computer would stop as soon as another write in­

struction or another tape instruction involving T6 was transferred to SR. Given an

error, such a situation prevents the computer from p~opagating the error. In either

case, as soon as an error occurs, a rteon on the Supervisory Control Panel lights,.

indicating the specific error that has occurred.

BU.ILT IN CHECKS ON THE PROGRAM

Besides checking the accuracy of its operations, the computer also checks for the

occunence of

1. an adder-alph error,

and 2. the attempt, after reading a given block into rI, to read another block into

rI without first transferring the given block from rI to the memory.

In either case, the computer immediately stalls and lights an appropriate neon on

the Supervisory Control Panel.

312

HEATERS

'ii)QilQi)eQi)~i)
F F' L L A A x X CRI CR2 C

e e e e
IN~K ~~[~'i.E STAN. POWER IMRHEAT

\9 e lORE
~~ OFF

TRANSFER REGISTER R Z W

LM RM ~

~i)
GRaJ> I i) i) TPG

• [ij RM0 ~ •

[:~ ••• ii.f(.'. J
, [i ~ ~ ~ ~ ~ ~ ~

OFF

Ji~ i) ~ "EAR _START _TANK
R CL~R

~ CYCLE CNTR ., •

.Q~
STALL Y

- LI

PROGRAM COUNTER
READ BINARY SUM PlUS ONE

,i'~. ~~H~~
il (i) i) STOP ~ (i e (i

000000
0 ••• 00
Oa09&O
r.~"O&e

CLEARC

•
.ii
ONE ONE ONE ONE

RE1l'JN
INST

ADD STEP OP IN ST ODNT

o 00000 0

I c:

--MASTER
DELETE

e
ON ERROR STATIC EMPTY HI RETAIN INST REG

; DVQR 0 (ii ~ T~r

AUTO RE-READ

e ~
ON REAtXNG

ALL
MEr.!

INPUT OUTPUT 12tl1 INPUT

~~~e 



HEATERS 

t)(i)9i)~i)i)~ 
[: A it X "X" CRt CR2 C 

- e e ~~:: STAN. I'OWER OYERI£AT _ iRE 
~~ OFF 

OUTPUT BUFFER 

, 
ii •••• J 
i CR2 27P 7P i3P STAT HSB 

0009000000000.00 OOOGOOOOGOOOO.OG 
oeeGOOGaOOOQOOOO Ge.eooeaO~OQOOOO 
o~oee0800GOOQOOO o •• oeOGOOOOOGOOO 
nO&OG000aOOOOOo. ooeOGoomOOOOO~G. 

(fiE (fiE (fiE (fiE 

AIlO STEP OP IN ST CONT 

o 00000 0 




	0.001
	0.002
	0.003
	0.004
	0.005
	0.006
	0.007
	0.008
	0.009
	0.010
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	035
	036
	037
	038
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302
	303
	304
	305
	306
	307
	308
	309
	310
	311
	312
	ctlPanelLeft
	ctlPanelRight
	zBack

