ANALYSIS OF INSTRUCTIONS

PX 696

January 1958

T'Remingtove Thaned Thaivace ${ }^{\circledR}$
 division of sperry rand corporation univac park, st. Paul 16, minnesota

UNIVAC II

ANALYSIS OF INSTRUCTIONS

VOLUME III

TABLE OF CONTENTS

Paragraph Title Page

1. General 1
2. Glossary of Abbreviations and Symbols 3
3. Analysis of Instructions 6
4. Condensed Instruction Reference 83
5. Description of Function Table Signals 90
LIST OF ILLUSTRATIONS
Figure Title Page
6. Logical Diagram, Function Table Signals 91

1. GENERAL .

The "Analysis of Instructions" manual contains three sections relevant to the analysis and understanding of the routines performed by the computer. These sections include l) a format which relates the discrete operations of each sequence by description, and with the corresponding control Function Table (FT) signal, in such a manner that the time of occurrence of each operation is clearly delineated; 2) a roster of the computer routines by code with the Function Table signals as they appear with regard to time of occurrence in the routine; and 3) a list of the Function Table signals with pertinent information concerning each signal.

The basic period in the performance of an instruction routine is the Program Counter (PC) step. Depending on the complexity of the routine, the number of PC steps varies: only one is required to conclude many instructions, while sixteen are required for the division, D, routine. Each PC step is comprised of two distinct cycles, the Time-out (T0) cycle and the Time-on cycle (exceptions to this occur in the division, multiplication, and shift routines). Timeout is always one minor cycle (91 pulse times) in duration. Time-on, however, exists for as long a period as is necessary to complete the operations required during a particular PC step. Time-out provides time for the FT signals to become fully alerted and to perform some operations that require no FT signals. Time-on determines the life of the FT signals and, therefore, is essentially the time in which the operations to be performed during a PC step are accomplished.

The Function Table signals provide most of the control necessary to accomplish the computer routines. Each FT signal provides a unique function, the proper combination of which enables the computer to execute the various instructions. There are 101 discrete FT signals. For purposes of identification these are numbered, the numbers ranging between 100 and 861 . The appropriate $F T$

UNIVAC II
signals are alerted by a signal generated from the proper combination of the instruction character code and the PC step during which the routine produced by the FT signal is to occur. A descriptive presentation of the FT signal decoding is made in Figure l, page 91.

The PC steps and the FT signals provide the basis for the instruction analysis. Subroutines occurring in the proper sequence produce the routines specified by the instructions.
2. GLOSSARY OF ABBREVIATIONS AND SYMBOLS.

AOC All Ones Checker
BC Binary Counter
BCI The binary counter which controls the order, right-hand or lefthand, of reference to a word in register I.

BCM The binary counter which controls the order, right-hand or lefthand, of reference to a word in main memory.

BCO The binary counter which controls the order, right-hand or lefthand, of reference to a word in register 0 .

Backward Interlock Release signal
BP Backward Pick-up signal
CC The Control Counter
Comp Comparison
CRI The 91 pulse register of the Control Register
CR2 The 42 pulse register of the Control Register
CT Conditional Transfer
CU The Cycling Unit
CY The Cycle Counter
EP Ending Pulse
FF Flip-flop
FIR Forward Interlock Release signal
FIR-BIR The Uniservo tape is in the First Block condition.
FT Function Table
FTIC The Function Table Intermediate Checker
FTOC The Function Table Output Checker
HSB The High-Speed Bus
IER The multiplIER signal
IER-OR A signal used by both multiplication and division routines
IO-INT Input-Output Interlock checker

IOS Interrupted Operation Switch
IRG Interlock Release Gate output
IRP Interlock Release Pulse
LE Leading Edge
LM Left-hand section of the main memory
LSB Least Significant Bit
LSD Least Significant Digit
$M_{1} \quad$ The half-word magnetic switching core register of the rMBit Plane Control

The half-word magnetic-switching core register of the rI Bit Plane Control

The half-word magnetic-switching core register of the r0 Bit Plane Control

The half-word magnetic-switching core register of the Output Distributor
min Minuend
MQC
MQC-FT The output matrix of MQC
MSD Most Significant Digit
MTO Memory Time Out
$N_{5} \quad$ The seven-bit magnetic-switching core register of the Input Distributor

Uniservo selector signal
Odd-Even
OEC Odd-Even Checker
OR The divisOR signal
PC The Program Counter
PPI Pulses per inch
PS Pulse Stretcher
rA
The one-word A register

ANALYSIS OF INSTRUCTIONS
$: L$
rM

RM
ro
RP
rW
rX
rZ
S/NS
S1CP
SIX
S2

SC
SCI-CR
sub
t

TE
T0 Time-0ut
TRI Input section transfer pulses
TRO Output section transfer pulses
TT
TZ
WP
Z Decimal zero
() The contents of
Transmit
A word in rM from which a specified field is selected

Duplicated X register

3. ANALYSIS OF INSTRUCTIONS.

This section provides a detailed analysis of the various computer instructions. The instructions are listed in the binary order of the character code which specifies the routine. This code occupies the first-character position of the six-character instruction word. Where the instruction routine is altered by a symbol in the second character position, the routine is again presented but with the modification that has been made. An "F" in the second instruction character "field selects" the operand as it is transferred from storage and an " H " returns the results of an operation to storage. For the input-output operation, the second instruction character addresses the Uniservo required by the instruction. Other instruction modifications are made by use of the second instruction character. These are described in the instructions concerned. The " m " section of the instruction word designates an address in storage.

The analysis of each instruction begins with a shorthand presentation of the routine to be accomplished by the instruction. Following this, and organized with regard to time of occurrence; i.e., by PC steps, is a description of the functions performed by the various FT signals that are alerted for the routine. In the column to the right of the page is the number of the FT signal described. Appropriate footnotes are supplied where clarification or qualification is necessary.

The CY outputs of β, β COMPUTE, γ, and δ and the RETAIN INSTRUCTION routine are not considered instructions, but they do control FT signals as part of the automatic internal programming of the computer. The routine accomplished during these cycles and the FT signals required to perform these routines are described on page 7.

Beta	(CC) $+1 \longrightarrow$ CC; $\mathrm{LH}(\mathrm{CR}) \longrightarrow$ SR Distributor Set up adder for twelve-piace addition. Operate adder OE and sum comparison checkers. Connect CRI to SR Distributor Line. Connect CC to adder min input. Cycling Unit (000000000001) to adder sub input. Clear CC and read the sum from the unbarred adder to CC. (Transfer to CC ends $t 12$ of TO). Supply reset pulse to Overflow FF's	714 435 \} $204+$ 212 737
Beta Computer	$(\mathrm{m}) \longrightarrow \mathrm{CR}$ Operate rM address exceeded and preset checkers. Set BCM to RM Operate HSB - OEC. Operate HSB - AOC. Set rM Read FF, set Ml cores. Strobe, rM sense amplifiers. Develop Serialize Pulse. Connect HSB to CR, and clear CR. Set MTO. Supply EP. (rM address sets up at $\mathrm{t7}$ of Beta TO, unless overflow occurs, which delays Set-up until t35, thereby setting SR to Z^{\prime} s.)	860 827 429 428 820 821 824 $201+$ 825 206
Gamma	$\mathrm{RH}(\mathrm{CR}) \longrightarrow$ SR Distributor; Execute LH instruction. Connect CR1 to CR2. (LH Instruction sets up at t 7 of Gamma T0)	$\begin{aligned} & 203 \\ & 203 \mathrm{~K} \end{aligned}$
Delta	$\mathrm{RH}(\mathrm{CC}) \longrightarrow$ SR Distributor; Execute RH Instruction. Connect CC to SR via CR2\#. \#RH Instruction is set up at t 7 of Delta TO.	850 $203 \mathrm{~K}$
RETAIN INSTRUCTION	```Repeat routine performed during a selected CY cycle. \beta cycle: Inhibit FT 201, 204,212, 435 Alert FT }85 cycle: Inhibit FT 203 Alert FT 204, 203K and specified in- struction FT signals \delta cycle: Inhibit FT }85 Alert FT 203, 203K and specified in- struction FT signals```	

FT

\begin{tabular}{|c|c|c|}
\hline A F m

1. \& | $(\mathrm{m}) \longrightarrow \mathrm{rX}$; $(\mathrm{rX})+(r A) \longrightarrow r A$ |
| :--- |
| Operate rM address exceeded and preset checkers. Set BCM to RM. |
| 0 perate HSB - OEC. |
| operate HSB - AOC. |
| Set rM Read FF, set M1 Cores. |
| Strobe rM sense amplifiers. |
| Develop Serialize Pulse. |
| Connect HSB to rX. |
| Operate rX, clear gate. |
| Operate extract circuit in rF.* |
| Set MTO. |
| Step PC, Set T0. |
| *Transfer is controlled by (rF). If the LSB of the corresponding digit in rF is a binary zero, the digit from rM is read onto the HSB. If the LSB is a binary one, the digit from $r M$ is replaced with a decimal zero. | \& \[

$$
\begin{aligned}
& 860 \\
& 827 \\
& 429 \\
& 428 \\
& 820 \\
& 821 \\
& 824 \\
& 126 \\
& 120 \\
& 193 \\
& 825 \\
& 214
\end{aligned}
$$
\]

\hline T0 \& Compare (rA) and (rX). \& NONE

\hline 2. \& | Operate adder for eleven-place addition.* Operate adder $O E$ and sum comparison checkers. Connect rX to HSB. |
| :--- |
| Connect HSB to adder sub input, rA to adder min input. Clear rA and transfer sum from adder to rA (Transfer to rA ends at tl2 of TO). Supply EP. |
| *If decimal carry occurs from eleventh digit position, set Overflow FF。 | \& \[

$$
\begin{aligned}
& 160 \\
& 435 \\
& 125 \\
& \\
& 109 \\
& 206
\end{aligned}
$$
\]

\hline
\end{tabular}

FT

A H m 1.	```(m) }->\textrm{rX;}(\textrm{rA})+(rX)->rA; (rÅ)-> Operate rM address exceeded and preset checkers. Set BCM to RM. Operate HSB - OEC. Operate HSB - AOC. Set rM Read FF, set M1 Cores. Strobe rM sense amplifiers. Develop Serialize Pulse. Connect HSB to rX. Operate rX clear gate. Set MTO. Step PC, set TO.```	860 827 429 428 820 821 824 126 120 825 214
T0	Compare (rA) and (XX) .	NONE
2 。	Operate adder for eleven-place addition.* Operate adder 0 E and sum comparison checkers. Connect rX to HSB. Connect HSB to adder sub input, rA to adder min input. Clear rA, and read sum from adder to rA. (Transfer to rA ends at tl2 of T0.) Step PC, set TO. *If decimal carry occurs from llth digit position, set Overfiow FF. + FT206 is present, but its effect is suppressed by FT214.	$\begin{aligned} & 160 \\ & 435 \\ & 125 \\ & \\ & 109 \\ & 214 \\ & 206+ \end{aligned}$
$\begin{gathered} \mathrm{TO} \\ 3 . \end{gathered}$	Operate rM address exceeded and preset checkers. Connect rA to HSB. Operate HSB - OEC. Operate HSB - AOC. Set rM Read FF, set M1 Cores. Develop Staticize Pulse. Set MTO. Supply EP.	$\begin{aligned} & 860 \\ & 100 \\ & 429 \\ & 428 \\ & 826 \\ & 823 \\ & 825 \\ & 206 \end{aligned}$

ANALYSIS OF
INSTRUCTIONS

B 0 m	$(\mathrm{m}) \longrightarrow \mathrm{rA}, \mathrm{rX}$. Operate rM address exceeded and preset checkers. Set BCM to RM. Operate HSB - OEC. operate HSB - AOC. Set rM Read FF, set M1 Cores. Strobe rM sense amplifiers. Develop Serialize Pulse. Connect HSB to rA. Operate rA clear gate. Connect HSB to rX. Operate rX clear gate. Set MTO. Supply EP.	860 827 429 428 820 821 824 105 101 126 120 825 206
B F m	$(\underline{m}) \rightarrow r A_{i} r X$. Operate rM address exceeded and preset checkers. Preset BCM to RM. Operate HSB - OEC. Operate HSB - AOC. Set rM Read FF, set M_{1} Cores. Strobe rM sense amplifiers. Develop Serialize Pulse. Operate Extract Circuit in rF.* Connect HSB to rA. Operate ra clear gate. Connect HSB to rX. Operate rX clear gate. Set MTO. Supply EP. *Transfer is controlled by (rF). If the LSB of the corresponding digit in rF is a binary zero. the digit from $r M$ is read onto the HSB. If the LSB is a binary one, the digit from rM is replaced with a decimal zero.	860 827 429 428 820 821 824 193 105 101 126 120 825 206

C 0 m	$(\mathrm{rA}) \longrightarrow \mathrm{m} ; \mathrm{Z} \longrightarrow \mathrm{rA}$ Operate rM address exceeded and preset checkers. Connect rA to HSB. Operate HSB - OEC. Operate HSB - AOC. Set rM Read FF_{q} set M_{1} Cores. Develop Staticize Pulse。 Operate ra clear gate. Connect CU (000000 000000) to rA. Set MTO. Supply EP.	$\begin{aligned} & 860 \\ & 100 \\ & 429 \\ & 428 \\ & 826 \\ & 823 \\ & 101 \\ & 108 \\ & 825 \\ & 206 \end{aligned}$
$\begin{aligned} & \text { D } 0 \mathrm{~m} \\ & 1 . \end{aligned}$	$(\mathrm{m}) \rightarrow \mathrm{rA} ;(\mathrm{rA}) \div(r \mathrm{~L}) \longrightarrow r A$ rounded, $r X$ unrounded Operate rM address exceeded and preset checker. Preset BCM to RM. Operate HSB - OEC. Operate HSB - AOC. Set rM Read FF, set M_{1} Cores. Strobe rM sense amplifiers. Develop Serialize Pulse. Connect HSB to rA. Operate rA clear gate. Delete rX input to comparator, connect HSB.* Delete rA input to comparator, connect rL.* Preset $\mathrm{BC}-120$ in MQC to non-complement position, thus alerting the non-complementing gates between MQC and MQC-FT. Clear MQC to decimal zero. Set MTO. Step PC , set TO . *Sign comparison is performed between (rA) and (rL).	860 827 429 428 820 821 824 105 101 152 151 138 825 214

$\begin{gathered} \text { D } 0 \mathrm{~m} \\ \mathrm{~T} 0 \end{gathered}$$2 .$		
	Retain results of sign comparison in comparator. Operate rA clear gate. Operate rA left shift path (including sign).* Insert decimal zero in LSD position of rA. Set Repeat FF. Step PC, set TO. *Shifting (rA) left deletes sign digit.	$\begin{aligned} & 159 \\ & 101 \\ & 103 \\ & 171 \\ & 226 \\ & 214 \end{aligned}$
T0		
3.	Retain results of sign comparison in comparator. Operate adder for twelve-place addition. Operate adder OE and sum comparison checkers. Connect rL to HSB. Transfer (rL) to HSB, replacing sign digit with a decimal zero. Step PC upon completion of 0R CYCLE. Set T0 and Stop FF's after each time on minor cycle if IOS is in "One Addition". Connect HSB to adder sub input, rA to adder min input clearing rA and transferring sum from adder to rA. Gate non-complement output of $\mathrm{BC}-120$ as SIX signa to operate the complementer in adder sub, thus (rL) are subtracted from (rA). Gate non-complement output of $\mathrm{BC}-120$ to operate Improper Division Detector in MQC.* Step MQC at t2 following each subtraction until the ThroughZero signal is developed, at which time generate OR CYCLE. $\#$ If rA or rX comp error occurs, set $T 0$ at following $t 1$. *If rL $\geq r A$, Improper Division occurs at $t 2$ of the eleventh minor cycle of PC-3. \#The Through-Zero signal indicates that the subtraction produced a negative remainder, since no decimal carry occurred from the twelfth-digit position. At the beginning of the OR CYCLE, the MQC-FT will contain a digit equal to the number of subtractions performed minus the one which produced the Through-Zero signal.	159 714 435 188 109 145 246

$\text { D } 0 \mathrm{~m}$ OR CYCLE	Delete functions of FTIO9, except HSB to adder sub input. Inhibit the transfer of (rL) to HSB. Delete functions of FT435. Operate rA and rX clear gates. Operate rX left shift path. Transfer quotient digit from MQC-FT to LSD position of rX. Clear $M Q C$ to decimal zero. Step $B C-120$ to alert the complement gates connecting the MQC and MQC-FT. (MQC-FT now reads nines complement of MQC.) Step PC at end of OR-CYCLE. Operate rA left shift path inserting a decimal zero in the LSD position Inhibit alerting signal to complementer and the stepping signal to the MQC. NOTE: Those FT signals present on PC-3 are also present during the OR CYCLE, performing the same functions except as noted above.	$\begin{aligned} & \text { IER-OR }+1 \\ & \text { IER }=0 \mathrm{R}+2 \\ & \\ & \text { IER }-0 \mathrm{R}+3 \\ & \text { IER }-0 \mathrm{R}-2 \end{aligned}$ 0R-1 OR-2 OR+1
4.	Retain results of sign comparison in comparator. Operate adder for twelve-place addition. Operate adder $O E$ and sum comparison checkers. Connect rL to HSB. Transfer (rL) to HSB, replacing sign digit with a decimal zero. Step PC upon completion of OR CYCLE. Set TO and Stop $\mathrm{FF}^{\text {'s }}$ after each Time-on minor cycle if IOS is in "One Addition". Connect HSB to adder sub input, rA to adder min input. Clear rA and transfer sum from adder to rA. Step MQC at t2 following each addition, until the Through-Zero signal is developed, at which time, generate OR CYCLE.* If rA or rX comp error occurs, set TO at following t. *The Through-Zero signal indicates that the addition produced a positive number, since a decimal carry occurred from the twelfth digit position. At the beginning of the OR CYCLE, the MQC will contain a digit equal to the number of additions performed, minus the one which produced the Through-Zero signal, and the MQC-FT will contain the nines complement of this digit.	159 714 435 188 109 145 246

ANALYSIS OF INSTRUCTIONS

$\begin{aligned} & \text { D } 0 \mathrm{~m} \\ & \mathrm{TO} \\ & 15 \end{aligned}$	Retain results of sign comparison in comparator. Operate adder for twelve-place addition. Operate adder $O E$ and sum comparison checkers. Operate rA clear gate.* Connect rX to HSB. Connect HSB to adder sub input, rA to adder min input. Clear rA and transfer sum from adder to rA. Connect CU (round-off, 000000000005) to adder min input. Step PC, set TO. *Operating rA's clear gate destroys the divide remainder and, consequently, nothing is read from rA to the adder min input. Thus the results of the addition are $(r X)+($ round $-0 f f) \longrightarrow r A$.	$\begin{aligned} & 159 \\ & 714 \\ & 435 \\ & 101 \\ & 125 \\ & \\ & 109 \\ & 111 \\ & 214 \end{aligned}$
T0		
16	Retain results of sign comparison in comparator. Operate rA clear gate. Operate right shift path of rA. Transfer sign from comparator to rA and rX. Operate rX clear gate. Operate right shift path of rX. Transfer sign from comparator to $r A$ and $r X_{8}$ deleting the insertion of a decimal zero to rA. Supply EP。	$\begin{aligned} & 159 \\ & 101 \\ & \\ & 106 \\ & 120 \\ & 123 \\ & \\ & 161 \\ & 206 \end{aligned}$

ANALYSIS OF INSTRUCTIONS

D F m		
T0		
3.	Retain results of sign comparison in comparator. Operate adder for twelve-place addition. Operate adder $O E$ and sum comparison checkers. Connect rL to HSB . Transfer (rL) to HSB , replacing the sign digit with a decimal zero. Step PC upon completion of OR CYCLE. Set TO and Stop after each time on minor cycle if IOS is in "One Addition"。 Connect HSB to adder sub inputs $r A$ to adder min input. Clear rA and transfer sum from adder to rA. Gate non-complement output of $\mathrm{BC}-120$ as SIX signal to operate the Complementer on adder sub input, thus (rL) is subtracted from (rA). Gate non-complement output of $\mathrm{BC}-120$ to operate the Improper Division Detector in MQC.* Step MQC t2 following each subtraction, until the ThroughZero signal is developed, at which time generate OR CYCLE.\# If rA or rX comp error occurs s_{8} set TO at following tl. ${ }^{*}$ If $(r L) \leq(r A)$, Improper Division occurs at $t 2$ of the eleventh minor cycle of $\mathrm{PC}-3$. \#The Through-Zero signal indicates that the subtraction produced a negative remainder, since no decimal carry occurred from the twelfth digit position. At the beginning of the OR CYCLE s the MQC-FT will contain a digit equal to the number of subtractions performed minus the one which produced the Through-Zero signal.	
OR CYCLE	Delete Functions of FT109, except HSB to adder sub input. Inhibit the transfer of (rL) to HSB. Delete functions of FT435. Operate rA and rX clear gates. Operate rX left shift path. Transfer quotient digit from MQC-FT to LSD position of rX. Clear $M Q C$ to decimal zero. Step $B C-120$ to alert the complement gates connecting the MQC and MQC-FT. (MQC-FT now reads nines complement of MQC) Step PC at end of OR CYCLE. Operate rA left shift path, insert a decimal zero into the LSD position of (rA). Inhibit alerting signal to complementer and the stepping signal to the MQC. NOTE: Those FT signals present on PC-3 are also present during the OR CYCLE performing the same functions except as noted above.	$\begin{aligned} & \text { IER }-0 R+1 \\ & \text { IER }-0 R+2 \\ & \text { IER }-0 R+3 \\ & \text { IER }-0 R-2 \\ & \\ & 0 R-1 \\ & 0 R-2 \\ & \text { OR+1 } \end{aligned}$

D F m	Retain results of sign comparison in comparator. Operate adder for twelve-place addition. Operate adder $O E$ and sum comparison checkers. Connect rL to IISB. Transfer (rL) to HSB replacing the sign digit with a decimal zero. Step PC upon completion of OR CYCLE. Set TO and Stop FF's after each Time-on minor cycle if $10 S$ is in "One Addition". Connect HSB to adder sub input, rA to adder min input. Clear rAs and transfer sum from adder to rA. Step MQC at t 2 following each addition, until the Through-Zero signal is developed, at which time generate OR CYCLE.* If rA or rX comp error occurs, set $T 0$ at following ti. *The Through-Zero signal indicates that t he addition produced a positive number since a decimal carry occurred from the twe fth digit position. At the beginning of the OR CYCLEs the WQC wili contain a digit equal to the number of additions performed, minus the one which produced the Through-Zero signal, and the MQC-FT will contain the nines complement of this digit.	159 714 435 188 109 145 246
5-13	All OR CYCLES are identical. All odd PC-Steps are identical to PC-3. All even PC-Steps are identical to PC-4. Initially the divisor, (rL), is subtracted from the shifted dividend, ($\mathrm{r} A$), until the Through-Zero signal occurs, indicating that the remainder in rA is negative. During the OR CYCLE, (rA) and (rX) are shifted one digit position left, a decimal zero is inserted into the LSD position of rA and the quotient digit from the MQC-FT is inserted into the LSD position of $r X$. (rL) is then added to (rA) until the Through-Zero signal occurs, in this case indicating that (rA) is again positives and an OR CYCLE occurs. (rL) is thus alternately subtracted and added to (rA) as the quotient is built up in rX. After each OR CYCLE PC is stepped.	

$\begin{array}{r} \text { D F m } \\ 14 . \end{array}$	Retain results of sign comparison in comparator． Operate adder for twelve－place addition． Operate adder OE and sum comparison checker． Connect rL to HSB．Transfer（rL）to HSB，replac－ ing the sign digit with a decimal zero．Step PC upon completion of OR CYCLE．Set TO and Stop FF＇s after each Time－on minor cycle if IOS is in ＂One Addition＂。 Connect HSB to adder sub input，rA to adder min input．Clear rA and transfer sum from adder to rA． Step MQC at t 2 following each addition，until the Through－Zero signal is developed，at which time generate OR CYCLE． If rA or rX comp error occurs；set TO at following t1。 Reset Repeat FF at end of OR CYCLE． Set TO at end of OR CYCLE	159 714 435 188 109 145 246 228 244
OR CYCLE	Same as previous OR CYCLES，except that in addi－ tion： Reset Repeat FF． Set T0．	$\begin{aligned} & \text { IER-OR-1 } \\ & \text { OR-1 } \end{aligned}$
T0		
15.	Retain results of sign comparison in comparator． Operate adder for twelve－place addition． Operate adder 0 E and sum comparison checker． Operate rA clear gate。＊ Connect rX to HSB． Connect HSB to adder sub input，rA to adder min input．Clear rA and transfer sum from adder to rA． Connect CU roundoff，（ 000000 000005）to adder min input． Step PC，set TO． ＊Operating rA＇s clear gate destroys the divide remainder and，consequently，nothing is read from rA to the adder min input．Thus the results of the addition are：（rX）+ （round－off）$\longrightarrow \mathrm{rA}$ 。	$\begin{aligned} & 159 \\ & 714 \\ & 435 \\ & 101 \\ & 125 \\ & \\ & 109 \\ & \\ & 111 \\ & 214 \end{aligned}$

D F m		
T0		
16	Retain results of sign comparison in comparator. Operate rA clear gate. Operate right shift path of rA. Transfer sign from comparator to rA and rX. Operate rX clear gate. Operate right shift path of rX. Transfer sign from comparator to rA and rX , delet ing the insertion of a decimal zero to rA. Supply EP.	159 101 106 120 123 161
E 0 m	(rF) Odd digits extracts (m) \rightarrow rA. Operate rM address exceeded and preset checker. Set BCM to RM. Operate HSB-0EC. Operate HSB-AOC. Set rM Read FF, Set M1 Cores. Strobe rM sense amplifiers. Develop Serialize Pulse Connect HSB to rA. Operate rA clear gate. Operate extract circuit in rF.* Delete CU (000000000000) input to extract circuit and connect rA.* Set MTO. Supply EP. *Transfer is controlled by (rF). If the LSB of the corresponding digit in rF is a binary zero. the digit from rM is read onto the HSB. If the LSB is a binary one, the digit from $r \mathrm{M}$ is deleted and the corresponding digit from rA is transferred to the HSB.	$\begin{aligned} & 860 \\ & 827 \\ & 429 \\ & 428 \\ & 820 \\ & 821 \\ & 824 \\ & 105 \\ & 101 \\ & 193 \\ & 832 \\ & 825 \\ & 206 \end{aligned}$

ANALYSIS OF
INSTRUCTIONS

INSTRUCTION

E F m	(rF) Even Digits Extracts (m) $\rightarrow \mathrm{rA}$; (rA) $\rightarrow \mathrm{m}$ Operate rM address exceeded and preset checkers. Set BCM to RM. Operate HSB-OEC. Operate HSB-AOC. Set rM Read FF, set M_{1} cores. Strobe rin sense amplifiers. Develop Serialize Pulse. Connect HSB to rA. Operate ra clear gate. Operate extract circuit in rF.* Complement the operation of the extract circuit." Delete CU (000000 000000) input to extract circuit and connect rA. Set MTO. Step PC, set TO. *Transfer is controlled by (rF).If the LSB of the corresponding digit in rF is a binary one, the digit from rM is read onto the HSB. If the LSB is a binary zero, the digit from rM is deleted and the corresponding digit from $\overline{\mathrm{r}} \hat{\mathrm{A}}$ is transîerred to HSB . + FP206 is present, but its effect is suppressed by FT214.	860 827 429 428 820 821 824 105 101 193 831 832 825 214 $206+$
$\begin{array}{r} \text { T0 } \\ 2 . \end{array}$	Operate rM address exceeded and preset checkers. Connect rA to HSB. Operate HSB-OEC. Operate HSB-AOC. Set rM Read FF, Set M_{1} cores. Develop Staticize Pulse. Set MTO. Supply EP.	$\begin{aligned} & 860 \\ & 100 \\ & 429 \\ & 428 \\ & 826 \\ & 823 \\ & 825 \\ & 206 \end{aligned}$
F 0 m	$(\mathrm{m}) \rightarrow \mathrm{rF}$ Operate rM address exceeded and preset checkers. Set $B C M$ to RM. Operate HSB-0EC. Operate HSB-AOC. Set rM Read FF, set M_{1} cores. Strobe rM sense amplifiers. Develop Serialize Pulse. Connect HSB to rF , and operate rF clear gate. Set MTO. Supply EP。	$\begin{aligned} & 860 \\ & 827 \\ & 429 \\ & 428 \\ & 820 \\ & 821 \\ & 824 \\ & 190 \\ & 825 \\ & 206 \end{aligned}$

G 0 m	$(\mathrm{rF}) \rightarrow \mathrm{m}$ Operate rM address exceeded and preset checkers. Connect rF to HSB. Operate HSB-OEC. Operate HSB-AOC. Set rM Read FF, set M_{1} cores. Develop Staticize Pulse. Set MTO. Supply EP.	$\begin{aligned} & 860 \\ & 192 \\ & 429 \\ & 428 \\ & 826 \\ & 823 \\ & 825 \\ & 206 \end{aligned}$
H 0 m	```(rA)}->\textrm{m Operate rM address exceeded and preset checkers. Connect rÂ to HiSB. Operate HSB-OEC. Operate HSB-AOC Set rM Read FF, set M cores. Develop Staticize Pulse. Set MTO. Supply EP.```	$\begin{aligned} & 860 \\ & 100 \\ & 429 \\ & 428 \\ & 826 \\ & 823 \\ & 825 \\ & 206 \end{aligned}$
I 0 m	```(rL)}->\textrm{m Operate rM address exceeded and preset checkers. Connect rL to HSB. Operate HSB-OEC. Operate HSB-AOC. Set rM Read FF, set M1cores. Develop Staticize Pulse. Set MTO. Supply EP.```	$\begin{aligned} & 860 \\ & 187 \\ & 429 \\ & 428 \\ & 826 \\ & 823 \\ & 825 \\ & 206 \end{aligned}$
J 0 m	```(rX)}->\textrm{m Operate rM address exceeded and preset checkers. Connect rX to HSB. Operate HSB-OEC. Operate HSB-AOC. Set rM read FF, set M1 cores. Develop Staticize Pulse. Set MTO. Supply EP.```	$\begin{aligned} & 860 \\ & 125 \\ & 429 \\ & 428 \\ & 826 \\ & 823 \\ & 825 \\ & 206 \end{aligned}$

ANALYSIS OF INSTRUCTIONS

K 0	```(rA)}->rL; Z T rA. Connect rA to HSB. Operate rA clear Gate. Connect CU (000000 000000) to rA. Connect HSB to rL, operating rL clear gate. Operate HSB-0EC. Operate HSB-AOC. Supply EP.```	$\begin{aligned} & 100 \\ & 101 \\ & 108 \\ & 185 \\ & 429 \\ & 428 \\ & 206 \end{aligned}$
L 0 m	```\[(m) \longrightarrow r L, r X \] \\ Operate rM address exceeded and preset checkers. \\ Set BCM to RM. \\ Operate HSB-OEC. \\ Operate HSB-AOC. \\ Set rM iead FF , set \(\mathrm{M}_{1}\) cores \\ Strobe rM sense amplifiers. \\ Develop Serialize Pulse. \\ Connect HSB to rL, operate rL clear gate. \\ Operate rX clear gate. \\ Connect HSB to IX input gate. \\ Supply EP. \\ Set MTO.```	$\begin{aligned} & 860 \\ & 827 \\ & 429 \\ & 428 \\ & 820 \\ & 821 \\ & 824 \\ & 185 \\ & 120 \\ & 126 \\ & 206 \\ & 825 \end{aligned}$
L F m	$(\mathrm{m}) \longrightarrow \mathrm{rL}, \mathrm{rX}$ Operate rM address exceeded and preset checkers. Set BCM to RM. Operate HSB-OEC. Operate HSB-AOC. Set rM Read FF, set M1 Cores. Strobe rM sense amplifiers. Develop Serialize Pulse. Operate extract circuit in rF.* Connect HSB to rL, operate rL clear gate. Operate rX clear gate. Connect HSB to rX. Set MTO. Supply EP. *Transfer is controlled by (rF). If the LSB of the corresponding digit in rF is a binary zero, the digit from rM is read onto the HSB. If the LSB is a binary one, the digit from $r M$ is replaced with a decimal zero.	$\begin{aligned} & 860 \\ & 827 \\ & 429 \\ & 428 \\ & 820 \\ & 821 \\ & 824 \\ & 193 \\ & 185 \\ & 120 \\ & 126 \\ & 825 \\ & 206 \end{aligned}$

ANALYSIS OF
UNIVAC II

\begin{tabular}{|c|c|c|}
\hline \multirow[t]{2}{*}{M 0 m} \& \[
(\mathrm{m}) \rightarrow \mathrm{rX} ; \quad(\mathrm{rL}) \quad \mathrm{x} \quad(\mathrm{rX}) \longrightarrow \underset{\mathrm{rX}}{\mathrm{rA}} \quad \text { (rounded) } \begin{array}{ll}
11 \& \mathrm{MSD} \\
\text { ll } \& \mathrm{LSD}
\end{array}
\] \& \\
\hline \& \begin{tabular}{l}
Operate rM address exceeded and preset checkers. \\
Set BCM to RM. \\
Operate HSB-OEC. \\
Operate HSB-AOC. \\
Set rM Read Fr, set M1 cores. \\
Strobe rM sense amplifiers. \\
Develop Serialize Pulse. \\
Operate rA clear gate. \\
Connect CU (000000000000) to rA. \\
Connect rL to adder sub input. Transfer (rL) \\
to adder, replacing sign digit with a decimal zero \\
Connect rA to adder min input, clear rA, and read \\
sum from the adder to rA. (Transfer ends at tl2 of TO.)* \\
Operate adder OE and sum comparison checkers. \\
Connect HSB to rX. \\
Operate rX clear gate. \\
Preset \(\mathrm{BC}-120\) to the complement state, thereby alerting the complement gates connecting the MQC and MOC-FT. \\
Set MTO. \\
Step PC, set TO. \\
*If decimal carry occurs from eleventh digit position, set Overflow flip-flop.
\end{tabular} \& \begin{tabular}{l}
860 827 429 428 820 821 824 101 108 \\
110 \\
113 \\
435 \\
126 \\
120 \\
139 \\
825 \\
214
\end{tabular} \\
\hline \multirow[t]{2}{*}{T0

2} \& \&

\hline \& | Operate adder for twelve-place addition. |
| :--- |
| Operate adder OE and sum comparison checkers. |
| Co nnect rL to sub input of adder. Transfer (rL) |
| to adder, replacing the sign digit with a decimal zero. |
| Connect rA to adder min input. Clear rA, and read sum from adder to rA. (Transfer ends at tl2 of T0) |
| Step PC, set TO. | \& | 714 435 |
| :--- |
| 110 |
| 113 |
| 214 |

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \[
\begin{array}{r}
\text { M } 0 \mathrm{~m} \\
\mathrm{~T} 0 \\
\\
3
\end{array}
\] \& \begin{tabular}{l}
Operate adder for twelve-place addition. Operate adder \(0 E\) and sum comparison checkers. Connect rL to sub input of adder. Transfer (\(r \mathrm{~L}\)) to adder, replacing the sign digit with a decimal zero. \\
Delete rA input to comparator and connect rL.* Connect rA to adder min input, clear rA, and read sum from adder to rA. (Transfer ends at t12 of T0.) \\
Step PC, set TO. \\
*rX is connected to the comparator via a direct path. A sign comparison is performed between (rL) and (rX), and the sign of the product is stored in the comparator.
\end{tabular} \& \[
\begin{aligned}
\& 714 \\
\& 435 \\
\& \\
\& 110 \\
\& 151 \\
\& \\
\& 113 \\
\& 214
\end{aligned}
\] \\
\hline \multirow[t]{2}{*}{\[
\begin{array}{r}
\mathrm{T0} \\
4 .
\end{array}
\]} \& \& \\
\hline \& \begin{tabular}{l}
Store results of sign comparison in comparator. Operate adder \(O E\) and sum comparison checkers. Operate HSB-OEC. \\
Operate HSB-AOC. \\
Connect rA to HSB \\
Operate rA clear gate. \\
Connect CU (000000 000000) to rA. \\
Connect HSB to rF, operate rF clear gate. \\
Connect CU (050000 000000) to adder sub input. Transfer the LSD of (rX) to the MQC and set the nines complement of the digit into the MOC. Connect rA to adder min input, clear rA, and read sum from adder to rA. (Transfer ends at tI2 of T0.) \\
Operate right shift path in rX \\
Operate rX clear gate. \\
Set Repeat flip-flop. \\
Step PC,set TO. \\
NOTE: At the completion of PC-4, rA contains the roundoff, rL contains the multiplicand, rF contains three times the multiplicand, rX contains the multiplier shifted one digit right, the MQC contains the nines complement of LSD shifted out of rX , and the comparator contains the sign of the product. The sign position of rX is vacant.
\end{tabular} \& 159
435
429
428
100
101
108
190

112

113
123
120
226
214

\hline
\end{tabular}

M 0 m T0		
5	Store results of sign comparison in comparator. Operate adder for twelve-place addition. Operate adder $O E$ and sum comparison checkers. Connect rL and rF to the $\geq 3 \mathrm{FF}$ control circuits. Transfer of (rL) to the HSB and replace the sign with a decimal zero during the transfer. Step PC at end of each IER CYCLE. Set TO and Stop FF's at end of each Time-on minor cycle if IOS is in One Addition. Connect HSB to adder sub input, rA to adder min input, clear rA and transfer the sum from the adder to rA. Sample (MOC-FT). If digit is < 3, reset the ≥ 3 FF , which transfers (rL) to HSB, and supply one stepping pulse to MQC. If digit is ≥ 3, set the ≥ 3 FF, which transfers (rF) to HSB and supplies three stepping pulses to MQC. If digit $=0$, set $I E R$ and IER-OR FF's at following t_{2} 。 If rA or rX comp error occurs, set TO at following t_{1}. NOTE: At the beginning of the operation, the MQCFT will contain the LSD from rX. If the digit is ≥ 3, three times the multiplicand (rF) is added to the partial product in rA, and the MQC is stepped three times, thus reducing the digit in the $M Q C-F T$ by three. If the digit in the MQC-FT is <3, the multiplicand (rL) is added to the partial product in rA and the MQC is stepped once. thus reducing the digit in the MQC-FT by one. Successive additions occur until the digit in the MQC-FT is reducen to zero, at which time the IER CYCLE is generated. At the beginning of the IER CYCLE, rA will contain (r L) times the original LSD of (rX).	159 714 435 188 109 147

ANALYSIS OF INSTRUCTIONS

M F m

T0
5
Store results of sign comparison in comparator.
Operate adder for twelve-place addition.
Operate adder $O E$ and sum comparison checkers.
Connect rL and rF to the $\geq 3 \mathrm{FF}$ control circuits. Transfer of (rL) to the HSB and replace the sign with a decimal zero during the transfer. Step PC at end of each IER CYCLE. Set TO and Stop FF's at end of each Time-on minor cycle if IOS is in"One Addition".
Connect HSB to adder sub input, rA to adder min input. Clear rA and transfer the sum from the adder to rA.
Sample (MQC-FT). If digit is <3, reset the $\geq 3 \mathrm{FF}$, which transfers (rL) to HSB, and supplies one stepping pulse to MQC. If digit is ≥ 3, set the $\geq 3 \mathrm{FF}$, which transfers (rF) to HSB, and supplies three stepping pulses to MQC. If digit is $=0$, set IER and IER-OR FF's at following t2. If rA or rX comp error occurs, set $T 0$ at following tl.

NOTE: At the beginning of the operation, the MQCFT will contain the LSD from rX. If the digit is ≥ 3, three times the multiplicand (rF) is added to the partial product in rA , and the MQC is stepped three times, thus reducing the digit in MQC-FT by three. If the digit in $M Q C-F T$ is <3, the multiplicand (rL) is added to the partial product in rA and MQC is stepped once, thus reducing the digit in MQC-FT by one. Successive additions occur until the digit in the MQC-FT is reduced to zero, at which time the IER CYCLE is generated. At the beginning of the IER CYCLE, rA will contain (rL) times the original LSD of (rX).

IER CYCLE
Operate the right shift path of ra and insert a decimal zero into the sign position of (rA). Operate the right shift path of rX transferring LSD of $r X$ to the $M Q C$ distributor line. Operate rA and rX clear gates.
Clear MCC to binary zero and set up the complement of the LSD from ($r X$) in the MOC.
Transfer LSD of (rA) to the MSD position of rX and step PC at the end of the IER CYCLE.
Inhibit the transfer of ($r \mathrm{~L}$) and the decimal zero for the sign position of (rL) to the HSB.
Disconnect $r F$ from the HSB and inhibit the stepping of the MQC.
Inhibit the min input of the algebraic adder.
(Delete the functions of FT109)
Inhibit the adder odd-even and the adder sum comparison checkers. (Delete the functions of FT435)

IER-6
IER-4
IER-OR-2
IER-3
IER-1
IER-OR+2
IER +1
IER-OR+1

M F m
6
through
13

T0
15

PC 15
IER CYCLE

N 0 m
1

Same as PC-5.
Same as PC-5. .

$\begin{gathered} \mathrm{N} 0 \mathrm{~m} \\ \mathrm{TO} \end{gathered}$		
2	Operate adder for twelve-place addition. Operate adder OE and sum comparison checkers. Connect rL to sub input of adder. Transfer (rL) to adder, replacing sign digit with a decimal zero. Connect ra to adder min input. Clear rA, and read sum from adder to rA. (Transfer ends at t 12 of TO.) Step PC, set TO.	714 435 110 113 214
T0		
3	Operate adder for twelve-place addition. Operate adder $O E$ and sum comparison checkers. Connect rL to sub input of adder. Transfer (rL) to adder, replacing the sign digit with a decimal zero. Delete rA input to comparator, connect rL.* Connect râ to adder min input. Clear rÂ, and read sum from adder to rA. (Transfer ends at t12 of TO.) Step PC, set TO. *rX is connected to the comparator via a direct path. A sign comparison is performed between (rL) and (rX), and the sign of the product is stored in the comparator.	714 435 110 151 113 214

DESCRIPTION

\begin{tabular}{|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
\mathrm{N} 0 \mathrm{~m} \\
\mathrm{TO}
\end{gathered}
\]} \& \& \\
\hline \& \& \\
\hline 4 \& \begin{tabular}{l}
Store results of sign comparison in comparator. \\
Operate adder \(O E\) and sum comparison checkers \\
Operate HSB-OEC. \\
Operate \(\operatorname{HSB}-A O C\). \\
Connect rA to HSB. \\
Operate rA clear gate. \\
Connect CU (000000000000) to rA. \\
Connect HSB to rF, operate rF clear gate. \\
Connect CU (050000000000) to adder sub input. \\
Transfer the LSD of (rX) to the MQC and set up the nines complement of the digit into the MOC Connect rA to min input of the adder. Clear rA, and read sum from adder to rA. (Transfer ends at \(t 12\) of TO.) \\
Operate right shift path in rX. \\
Operate rX clear gate. \\
Set Repeat flip-flop. \\
Step PC, set TO. \\
NOTE: At the completion of \(\mathrm{PC}-4\), rA contains the roundoff. rL contains the multiplicand, rF contains three times the absolute value of the multiplicand, \(r X\) contains the multiplier shifted one digit right, the MQC contains the nines complement of LSD shifted out of \(r X\), and the comparator contains the sign of the product. The sign position of \(r X\) is vacant.
\end{tabular} \& 159
435
429
428
100
101
108
190

112

113
123
120
226
214

\hline
\end{tabular}

N 0 m T0		
5	Store results of sign comparison in comparator. Operate adder for twelve-place addition. Operate adder $O E$ and sum comparison checkers Connect rL and rF to the $\geq 3 \mathrm{FF}$ control circuits. Transfer of (rL) to the HSB and replace the sign with a decimal zero during the transfer. Step PC at end of each IER CYCLE. Set TO and Stop FF's at end of each Time-on minor cycle if IOS is in "One Addition". Connect HSB to adder sub input, rA to adder min input. Clear rA and transfer the sum from the adder to rA. Sample (MQC-FT). If digit is <3, reset the ≥ 3 FF, which transfers (rL) to HSB and supplies one stepping pulse to MQC. If digit is ≥ 3, set the $\geq 3 \mathrm{FF}$, which transfers (rF) to HSB and supplies three stepping pulses to MQC. If digit is $=0$, set IER and IER-OR FF's at following t2. If if or ix comp errón occurs, set to at following tl. NOTE: At the beginning of the operation, the MQCFT will contain the LSD from $r X$. If the digit is ≥ 3, three times the multiplicand ($r F$) is added to the partial product in rA, and the MQC is stepped three times, thus reducing the digit in $M Q C-F T$ by three. If the digit in the MOC-FT is <3, the multiplicand (rL) is added to the partial product in rA and the MQC is stepped once, thus reducing the digit in MQC-FT by one. Successive additions occur until the digit in MQC-FT is reduced to zero, at which time the IER CYCLE is generated. At the beginning of the IER CYCLE, rA will contain (rL) times the original LSD of (rX).	159 714 435 188 109 147 246

INSTRUCTION

DESCRIPTION
FT

N 0 m IER CYCLE (PC-5)	Operate the right shifit path of râ and insert a decimal zero into the sign position of (rA). Operate the right shift path of rX, transferring LSD of $r X$ to the MQC distributor line. Operate rA and rX clear gates. Clear MCC to binary zero and set up the complemen of the LSD from $r X$ in the MQC. Transfer LSD of (rA) to the MSD position of rX, step PC at the end of the IER CYCLE. Inhibit the transfer of (rL) and the decimal zero for the sign position of (rL) to the HSB. Disconnect rF from the HSB and inhibit the stepping of the MQC. Inhibit the min input to the algebraic adder. (Delete the functions of FT109) Inhibit the adder odd-even and the adder sum comparison checkers. (Delete the functions of FT435.)	IER-6 IER-4 IER-OR-2 IER-3 IER-1 IER-OR +2 IER +1 IER-OR+1 IER-OR+3
$\begin{gathered} 6 \\ \text { through } \\ 13 \\ 14 \end{gathered}$	Same as PC=5.	
	Same as PC-5 except for one additional FT signal which is used to set TO at the end of the IER CYCLE.	244
T0		
15	Same as PC-5 except for four additional FT signal which are used during PC-15 IER CYCLE.	
PC 15 IER CYCLE	Insert sign into sign position of (rA) and (rX). Inhibit the generation of a second IER CYCLE in case a decimal zero is set up in the MQC. Reset Repeat FF. Supply EP.	161 plus IER-5 149 plus IER-1 228 plus IER-0R-1 215-plus IER-2

\begin{tabular}{|c|c|c|}
\hline N F m \& \begin{tabular}{l}
Operate rM address exceeded and preset checkers. Set BCM to RM \\
Operate HSB-OEC \\
Operate HSB-AOC \\
Set rM Read FF, set \(\mathrm{M}_{1}\) cores. \\
Strobe rM sense amplifiers. \\
Develop Serialize Pulse. \\
Operate rA clear gate \\
Connect CU (000000 000000) to rA. \\
Connect rL to adder sub input, transfer (rL) to adder, replacing sign digit with a decimal zero. Connect rA to adder min input. Clear rA, and read the sum from the adder to rA. (Transfer ends at tl2 of TO.)* \\
Operate adder OE and sum comparison checkers Operate extract control circuit in rF。+ Connect HSB to rX, via sign reversal gates.\# Operate rX clear gate. \\
Preset \(\mathrm{BC}-120\) to the complement state, thereby alerting the complement gates connecting the MQC to MQC-FT. \\
Set MTO. \\
Step PC, set TO. \\
*If decimal carry occurs from eleventh digit position, set Overflow flip-flop. \\
\#The sign reversal gates complement the LSB and check pulse of the sign digit during transfer to rX. \\
+Transfer is controlled by (rF). If the LSB of the corresponding digit in \(r F\) is a binary zero, the digit from \(r M\) is read onto the HSB. If the LSB is a binary one, the digit from \(r M\) is replaced with a decimal zero.
\end{tabular} \& 860
827
429
428
820
821
824
101
108

110

113
435
193
153
120

139
825
214

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{N F m} \\
\hline \multicolumn{3}{|l|}{T0} \\
\hline 2 \& \begin{tabular}{l}
Operate adder for twelve-place addition. Operate adder OE and sum comparison checkers. Connect rL to sub input of adder. Transfer (rL) to adder, replacing sign with a decimal zero. \\
Connect rA to adder min input. Clear rA, and read sum from adder to rA. (Transfer ends at tl2 of TO.) \\
Step PC, set TO.
\end{tabular} \& \begin{tabular}{l}
714 \\
435 \\
110 \\
113 \\
214
\end{tabular} \\
\hline \multicolumn{3}{|l|}{T0} \\
\hline 3 \& \begin{tabular}{l}
Operate adder for twelve-place addition. Operate adder OE and sum comparison checkers. Connect rL to sub input of adder. Transfer (rL) to adder, replacing the sign with a decimal zero. Delete rA input to comparator, connect rL.* Connect rA to adder min input. Clear rA, and read sum from adder to rA. (Transfer ends at tl2 of TO.) \\
Step PC, set TO. \\
*rX is connected to the comparator via a direct path. A sign comparison is performed between (rL) and (rX), and the sign of the product is stored in the comparator.
\end{tabular} \& 714
435

110
151

113
214

\hline
\end{tabular}

NFm		
T0		
	Store results of sign comparison in comparator.	159
	Operate adder OE and sum comparison checkers.	435
	Operate HSB-OEC.	429
	Operate HSB-AOC.	428
	Connect ra to HSB.	100
	Operate rA clear gate.	101
	Connect CU (000000 000000) to rA.	108
	Connect HSB to rF, operate rF clear gate. Connect CU (050000 000000) to adder sub input.	190
	Connect CU (050000 000000) to adder sub input. Transfer the LSD of (rX) to the MQC, set up the	
	nines complement of the digit into the MQC. Connect rA to min input of the adder. Clear rA, and read sum from adder to rA. (Transfer ends	112 113
	at $t 12$ of TO.)	113
	Operate right shift path in rX.	123
	Operate rX clear gate.	120
	Set Repeat flip-flop.	226
	Step PC, set TO.	214
	NOTE: At the completion of PC-4, rA contains the roundoff, rL contains the multiplicand, rF contains three times the absolute value of the multiplicand, rX contains the multiplier shifted one digit right, the MQC contains the nines complement of LSD shifted out of $r X$, and the comparator contains the sign of the product. The sign position of rX is vacant.	

$\begin{array}{r} \mathrm{NFm} \\ \mathrm{TO} \end{array}$		
5	Store results of sign comparison in comparator. Operate adder for twelve-place addition. Operate adder $O E$ and sum comparison checkers. Connect rL and rF to the $\geq 3 \mathrm{FF}$ control circuits. Transfer of (rL) to the HSB and replace the sign digit with a decimal zero during the transfer. Step PC at end of each IER CYCLE. Set TO and Stop FF's at end of each Time-on minor cycle if IOS, is in"One Addition". Connect HSB to adder sub input, rA to adder min input. Clear rA and transfer the sum from the adder to rA. Sample (MQC-FT). If digit is <3, reset $\geq 3 \mathrm{FF}$, which transfers (rL) to HSB and supplies one stepping pulse to MQC. If digit is ≥ 3, set the ≥ 3 FF, which transfers (rF) to HSB and supplies three stepping pulses to MQC. If digit is $=0$, set IER and IER-OR FF's at following t2. If rA or rX comp error occurs, set TO at following tl. NOTE: At the beginning of the operation, the MQCFT will contain the LSD from $r X$. If the digit is ≥ 3, three times the multiplicand (rF) is added to the partial product in $r A$, and the $M O C$ is stepped three times, thus reducing the MQC-FT by three. If the digit in MOC-FT is <3, the multiplicand (rL) is added to the partial product in rA and the MQC is stepped once, thus reducing the digit in MQC-FT by one. Successive additions occur until the digit in MQC-FT is reduced to zero, at which time the IER CYCLE is generated. At the beginning of the IER CYCLE, rA will contain (rL) times the original LSD of (rX).	159 714 435 188 109 147 246

P 0 m	$\begin{aligned} (\mathrm{m}) \rightarrow \mathrm{rX} ;(\mathrm{rL}) X(\mathrm{rX}) \rightarrow \mathrm{rA} & =11 \mathrm{MSD} \cdot \mathrm{~s}, \\ \mathrm{rX} & =11 \mathrm{LSD}, \end{aligned}$ Operate rM Address exceeded and preset checkers. Set BCM to RM. Operate HSB-AOC. Operate HSB-OEC. Set rM Read FF, set M_{1} cores. Strobe rM sense amplifiers. Develop Serialize Pulse. Operate rA clear gate. Connect CU (000000 000000) to rA. Connect rL to adder sub input, transfer ($r \mathrm{~L}$) to adder and replace sign digit of (rL) with a decimal zero. Connect rA to adder min input, Clear rA and read sum from adder to rA. (Transfer ends at $t 12$ of TO.)* Operate adder $O E$ and sum comparison checkers. Connect HSB to rX. Operate rX ciear gate. Preset $\mathrm{BC}-120$ to the complement state, thereby alerting the complement gates connecting the $M Q C$ and $M Q C-F T$. Set MTO. Step PC, set TO. *If decimal carry occurs from the eleventh digit position, set Overflow FF.	
$\begin{array}{r} \text { T0 } \\ 2 \end{array}$		
	Operate adder for twelve-place addition. Operate adder $O E$ and sum comparison checkers. Connect rL to sub input of adder, transfer (rL) to adder, replacing the sign digit with a decimal zero. Connect rA to adder min input. Clear rA and read sum from adder to rA. Step PC, set TO.	714 435 110 113 214

$\begin{array}{r} \text { PO m } \\ \text { T0 } \end{array}$		
	Operate adder for twelve-place addition. Operate adder 0 E and sum comparison checkers. Connect rL to sub input of adder, transfer (rL) to adder, replacing the sign digit with a decimal zero. Delete rA input to comparator and connect rL.* Connect rA to adder min input. Clear rA and read sum from adder to ra. Step PC, set TO. *rX is connected to the comparator via a direct path. A sign comparison is performed between (rL) and (rX), and the sign of the product is stored in the comparator.	$\begin{aligned} & 714 \\ & 435 \\ & \\ & 110 \\ & 151 \\ & 113 \\ & 214 \end{aligned}$
T0		
4	Store results of sign comparison in comparator. Operate HSB-OEC. Operate HSB-AOC. Connect rA to HSB. Operate rA clear gate. Connect CU (000000 000000) to rA. Connect HSB to rF and operate rF clear gate. Connect CU (050000 000000) to adder sub input. Transfer the LSD of (rX) to the MQC and set up the nines complement of the digit into the MQC. Operate right shift path in rX. Operate rX clear gate. Set Repeat FF. Step PC, set TO. NOTE: At the completion of PC-4, rA contains decimal zeros, rL contains the multiplicand, rF contains three times the multiplicand, and rX contains the multiplier shifted one digit right, the MQC contains the nines complement of the LSD shifted out of $r X$, and the comparator contains the sign of the product. The sign position of rX is vacant.	$\begin{aligned} & 159 \\ & 429 \\ & 428 \\ & 100 \\ & 101 \\ & 108 \\ & 190 \\ & \\ & 112 \\ & 123 \\ & 120 \\ & 226 \\ & 214 \end{aligned}$

$\begin{gathered} \text { P } 0 \mathrm{~m} \\ \text { TO } \\ \text { PC-5 } \end{gathered}$		
	Store result of sign comparison in comparatór. Operate adder for twelve-place addition. Operate adder $O E$ and sum comparison checkers. Connect ri and rF to the ≥ 3 FF control circuits. Transfer of (rL) to the HSB and replace the sign with a decimal zero during the transfer. Step PC at end of each IER CYCLE. Set TO and Stop FF's at end of each Time-on minor cycle if IOS is in "One Addition". Connect HSB to adder sub input, rA to adder min input. Clear rA and transfer the sum from the adder to rA. Sample (MQC-FT). If digit is < 3, reset the $\geq 3 \mathrm{FF}$, which transfers (rL) to HSB and supplies one stepping pulse to MQC. If digit is ≥ 3, set the $\geq 3 \mathrm{FF}$, which transfers (rF) to HSB and supplies three stepping pulses to MQC. If digit $=0$, set IER and IER OR FF's at following t2. If rA or rX comp. error occurs, set to FF at following tl. NOTE: At the beginning of the operation, the $M O C-F T$ will contain the LSD from $r X$. If the digit is ≥ 3, three times the multiplicand (rF) is added to the partial product in rA, and the MOC is stepped three times, thus reducing the digit in the MOC-FT by three. If the digit in the MQC-FT is <3, the multiplicand (rL) is added to the partial product in rA and the MOC is stepped once, thus reducing the digit in the MOC-FT by one. Successive additions occur until the digit in the $M Q C-F T$ is reduced to zero, at which time the IER CYCLE, rA will contain (rL) times the original LSD of (rX).	159 714 435 188 109 147 246
$\begin{aligned} & \text { IER } \\ & \text { PC-5 } \end{aligned}$	Operate the right shift path of ra and insert a decimal zero into the sign position. Operate the right shift path of rX, including the sign, transfer LSD of rX to the MQC distributor line. Operate rA and rX clear gates. Clear MQC to binary zero and set up the complement of the LSD from $r X$ in the $M Q C$. Transfer LSD of (rA) to the MSD position of rX, step PC at the end of the IER CYCLE. Inhibit the transfer of (rL) and the decimal zero for the sign position of (rL) to the HSB. Disconnect rF from the HSB and inhibit the stepping of the MQC. Inhibit the min input to the algebraic adder. (Delete the functions of FT109) Inhibit the adder odd-even and the adder sum comparison checkers. (Delete the functions of FT435.)	$\begin{aligned} & \text { IER-6 } \\ & \text { IER-4 } \\ & \text { IER-0R-2 } \\ & \text { IER-3 } \\ & \text { IER-1 } \\ & \text { IER-0R+2 } \\ & \text { IER+1 } \\ & \text { IER-OR+1 } \\ & \text { IER-OR+3 } \end{aligned}$

P 0 m 6 Through	Same as PC-5.	
PC-14	Same as PC-5 except for one additional FT signal which is used to set TO at the end of the IER CYCLE.	244
IER PC-15	Insert sign into the sign position of (rA) and ($r X$). Inhibit the generation of a second IER CYCLE. in case a decimal zero is set up in the MQC. Reset Repeat FF. Supply EP.	161 Plus IER-5 149 Plus IER-1 228 Plus IER-OR-1 215 Plus IER-2
P F m	$\begin{aligned} &(\underline{m}) \longrightarrow r X ;(r L) X(r X) \longrightarrow r A, \quad 11 M S D^{i} s \\ & r X, \text { 11 } L S D^{i} s \end{aligned}$	
1	Operate rM address exceeded and preset checkers.	860
	Set BCM to RM.	827
	Operate HSB-0EC.	429
	Operate HSB-AOC.	428
	Set rM Read FF, set M cores.	820
	Strobe rM sense amplifiers.	821
	Develop Serialize Pulse.	824
	Operate ra clear gate.	101
	Connect CU (000000000000) to rA. Connect rL to adder sub input, transfer (rL)	108
	to adder, replacing sign digit with a decimal zero. Connect rA to adder min input. Clear rA, and read the sum from the adder to rA. (Transfer ends at	110 113
	$t 12$ of TO.)** Operate adder OE and sum comparison checkers.	$\begin{aligned} & 113 \\ & 435 \end{aligned}$
	Operate extract control circuit in rF.+	193
	Connect HSB to rX.	126
	Operate rX clear gate. Preset $\mathrm{BC}-120$ to the complement state, thereby alerting the complement gates connecting the MQC to the MOC-FT.	120 139
	Set MTO.	825
	Step PC, set TO.	214
	*If decimal carry occurs from eleventh digit position, set Overflow flip-flop.	
	+ Transfer is controlled by (rF). If the LSB of the corresponding digit in rF is a binary zero, the digit from rM is read onto the HSB. If the LSB is a binary one, the digit from rM is replaced with a decimal zero.	

FT

\begin{tabular}{|c|c|c|}
\hline \& \&

\hline P F m
T0

5 \& | Store results of sign comparison in comparator. |
| :--- |
| Operate adder for twelve-place addition. |
| Operate adder OE and sum comparison checkers. |
| Connect rL and rF to the $\geq 3 \mathrm{FF}$ control circuits. Transfer of (rL) to the HSB and replace the sign with a decimal zero during the transfer. |
| Step PC at end of each IER CYCLE. Set TO and stop FF's at end of each Time-on minor cycle if IOS is in "One Addition". |
| Connect HSB to adder sub input, rA to adder min input. Clear rA and transfer the sum from the adder to ra. |
| Sample (MุC-FT). If digit is < 3, reset $\geq 3 \mathrm{FF}$, which transfers (rL) to HSB and supplies one stepping pulse to $M Q C$. If digit is ≥ 3, set the $\geq 3 \mathrm{FF}$, which transfers (rF) to HSB and supplies three stepping pulses to MOC. If digit is $=0$, set IER and IER-OR FF at following t2. |
| If rA or rX comp error occurs, set TO FF at following tl. |
| NOTE: At the beginning of the operation, the MQCFT will contain the LSD from rX. If the digit is ≥ 3, three times the multiplicand (rF) is added to the partial product in rA, and the MQC is stepped three times, thus reducing the MQC-FT by three. If the digit in MQC-FT is < 3, the multiplicand (rL) is added to the partial product in rA and the MQC is stepped once, thus reducing the digit in MQC-FT by one. Successive additions occur until the digit in MOC-FT is reduced to zero, at which time the IER CYCLE is generated. At the beginning of the IER CYCLE, rA will contain (rL) times the original LSD of (rX). | \& 159

714
435

188

109

147
246

\hline | P F m |
| :--- |
| IER CYCLE |
| (PC-5) | \& | Operate the right shift path of rA, inserting a decimal zero into the sign position. Operate the right shift path of $r X$, transferring LSD of $r X$ to the MQC distributor line. Operate rA and rX clear gates. Clear MQC to binary zero and set up the complement of the LSD from (rX) in the MOC. |
| :--- |
| Transfer LSD of (rA) to the MSD position of rX, step PC at the end of the IER CYCLE. |
| Inhibit the transfer of (rL), and the decimal zero for the sign position of (rL) to the HSB. |
| Disconnect rF from the HSB and inhibit the stepping of the MOC. |
| Inhibit the min input to the algebraic adder. (Delete the functions of FT109.) |
| Inhibit the adder odd-even and the adder sum comparison checkers. (Delete the functions of FT435.) | \& | IER-6 |
| :--- |
| IER-4 |
| IER-OR-2 |
| IER-3 |
| IER-1 |
| IER-OR+2 |
| IER +1 |
| IER-OR +1 $\text { IER-OR }+3$ |

\hline
\end{tabular}

$\begin{gathered} \text { P F M } \\ 6 \\ \text { through } \\ 13 \end{gathered}$	Same as PC-5.	
14 T0 15	Same as PC-5 except for one additional FT signal which is used to set $T 0$ at the end of the IER CYCLE.	244
	Same as PC-5 except for four additional FT signals which are used during PC-15 IER CYCLE.	
PC-15 IER CYCLE	Insert sign in sign position of (rA), (rX). Inhibit the generation of a second IER CYCLE in case a decimal zero is set up in the MQC. Reset Repeat FF。 Supply EP.	161 Plus IER 5 149 Plus IER-1 228 Plus IER-OR-1 215 Plus IER 2
Q n m	If $(r A)=(r L)$, Transfer control $\longrightarrow m$. Operate HSB-OEC. Operate HSB-AOC. Connect rL to HSB. Eanble comparator to perform equality comparison.* Delete rX input to comparator and connect HSB. If 2nd Instruction Digit " n " equals Conditional Transfer Breakpoint Selector setting, pass tl to set Stop FF. Step PC, set TO. *If (rA) $=$ (rL), the Conditional Transfer FF is set at t 5 of $\mathrm{PC}-2 \mathrm{TO}$.	429 428 187 156 152 236 214
T0 2	Retain results of comparison in comparator. Operate HSB-OEC. Operate HSB-AOC. Connect CR and CU (000000 00) to HSB.* If Conditional Transfer FF is set, connect HSB to CC and operate CC clear gate. Supply EP. *The four LSD's of (CR) are merged with eight decimal zeros from CU to make the complete word which is transferred to the HSB.	$\begin{aligned} & 159 \\ & 429 \\ & 428 \\ & 200 \\ & 209 \\ & 206 \end{aligned}$

\begin{tabular}{|c|c|c|}
\hline \[
\text { R } 0 \mathrm{~m}
\] \& \begin{tabular}{l}
\[
\text { (000000 UO (CC) } \quad) \longrightarrow m
\] \\
Operate rM address exceeded and preset checkers. \\
Operate HSB-OEC. \\
Operate HSB-AOC. \\
Connect CC and CU (000000 UO) to HSB.* \\
Set rM Read FF , set \(\mathrm{M}_{1}\) cores. \\
Develop Staticize Pulse. \\
Set MTO. \\
Supply EP. \\
*The four LSD's of (CC) are merged with (000000 UO) from the CU to make the complete word which is transferred to the HSB.
\end{tabular} \& \[
\begin{aligned}
\& 860 \\
\& 429 \\
\& 428 \\
\& 245 \\
\& 826 \\
\& 823 \\
\& 825 \\
\& 206
\end{aligned}
\] \\
\hline S 0 m

1 \& | $-(m) \longrightarrow r X ; \quad(r X)+(r A) \longrightarrow r A$ |
| :--- |
| Operate rM address exceeded and preset checkers. |
| Set BCM to RM. |
| Operate HSB-OEC. |
| Operate HSB-AOC. |
| Set rM Read FF, set M_{1} cores. |
| Strobe rM sense amplifiers. |
| Develop Serialize Pulse. |
| Connect HSB to rX via sign reversal gates.* |
| Operate rX clear gate. |
| Set MTO. |
| Step PC, set TO. |
| *The sign reversal gates complement the LSB and check pulse of the sign during transfer to rX. | \& 860

827
429
428
820
821
824
153
120
825
214

\hline т0 \& Compare (IA) and (rX). \& None

\hline 2 \& | Operate adder for eleven place addition.* Operate adder OE and sum comparison checkers. Connect rX to HSB. |
| :--- |
| Connect HSB to adder sub input, rA to adder min input. Clear rA and transfer sum from adder to rA. |
| Supply EP. |
| *If decimal carry occurs from eleventh digit position, set Overflow FF. If Second Instruction Digit is a minus sign, overflow sets Stop FF. | \& \[

$$
\begin{aligned}
& 160 \\
& 435 \\
& 125 \\
& \\
& 109
\end{aligned}
$$
\]

\hline
\end{tabular}

S F m	$-(\underline{m}) \rightarrow r X ;(r X)+(r A) \rightarrow r A .$ Operate rM address exceeded and preset checkers. Set BCM to RM. Operate HSB-OEC. Operate HSB-AOC. Set rM Read FF, set M1 cores. Strobe rM sense amplifiers. Develop Serialize Pulse. Connect HSB to rX via sign reversal gates.+ Operate rX clear gate. Operate extract circuit in rF.* Set MTO. Step PC, set TO. *Transfer is controlled by (rF). If the LSB of the corresponding digit in $r F$ is a binary zero, the digit from $r M$ is read onto the HSB. If the LSB is a binary one, the digit from $r M$ is replaced with a decimal zero. +The sign reversal gates complement the LSB and check pulse of the sign during transfer to rX.	$\begin{aligned} & 860 \\ & 827 \\ & 429 \\ & 428 \\ & 820 \\ & 821 \\ & 824 \\ & 153 \\ & 120 \\ & 193 \\ & 825 \\ & 214 \end{aligned}$
T0	Compare (rA) and (rX).	None
2	Operate adder for eleven place addition.* Operate adder OE and sum comparison checkers. Connect rX to HSB. Connect HSB to adder sub input and rA to adder min input. Clear rA and transfer sūn from adder to rA. Supply EP. *If decimal carry occurs from eleventh digit position, set Overflow FF.	$\begin{aligned} & 160 \\ & 435 \\ & 125 \\ & \\ & 109 \\ & 206 \end{aligned}$

ANALYSIS OF INSTRUCTIONS
INSTRUCTION

SHm	$-(m) \longrightarrow r X ; \quad(r X)+(r A) \longrightarrow r A \longrightarrow \dot{m}$ Operate rM address exceeded and preset checkers. Set BCM to RM. Operate HSB-OEC. Operate HSB-AOC. Set rM Read FF, set M_{1} cores. Strobe rM sense amplifiers. Develop Serial Pulse. Connect HSB to rX via sign reversal gates.* Operate rX clear gate. Set MTO. Step PC, set TO. *The sign reversal gates complement the LSB and check pulse of the sign during transfer to rX.	$\begin{aligned} & 860 \\ & 827 \\ & 429 \\ & 428 \\ & 820 \\ & 821 \\ & 824 \\ & 153 \\ & 120 \\ & 825 \\ & 214 \end{aligned}$
T0	Compare (rA) and (rX).	None
2	Operate adder for eleven place addition.* Operate adder OE and sum comparison checkers. Connect rX to HSB. Connect HSB to adder sub input, rA to adder min input. Clear rA and transfer sum from adder to rA. Step PC, set TO. *If decimal carry occurs from eleventh digit position, set Overflow FF. + FT206 is present, but its effect is suppressed by FT214.	$\begin{aligned} & 160 \\ & 435 \\ & 125 \\ & \\ & 109 \\ & 214 \\ & 206+ \end{aligned}$
3	Operate rM address exceeded and preset checkers. Connect rA to HSB. Operate HSB-OEC. Operate HSB-AOC. Set rM Read FF, set M_{1} cores. Develop Staticize Pulse. Set ITTO. Supply EP.	$\begin{aligned} & 860 \\ & 100 \\ & 429 \\ & 428 \\ & 826 \\ & 823 \\ & 825 \\ & 206 \end{aligned}$

ANALYSIS OF INSTRUCTIONS

V nm	$(\mathrm{m}),(\mathrm{m}+1) \cdot . \cdot(\mathrm{m}+\mathrm{n}-1) \longrightarrow \mathrm{r} W$ Operate rM address exceeded and preset checkers. Set BCM to RM. Operate HSB-OEC. Operate HSB-AOC. Set rM Read FF , set M_{1} cores. Preset rZW units counter to elevens complement of the 2nd Instruction Digit. When the rZW units counter reads zero, gate a t59 to set MT0.*+\# Read and restore rZW simultaneously with the reading and restoring of rM. When MTO is set, supply EP. Strobe rM sense amplifiers. Develop Serialize Pulse. Step rM counters and rZW units counter once each minor cycle until rZW units counter reads zero. Supply EP. *If 2nd Instruction Digit is a zero and if compatibility switch on SC is set to Univac II, treat instruction as a Skip. +If Compatibility switch is set to Univac I, the rZW units counter is unconditionally set to nine. \#The "Tens" 7 or W line is always up except during the Y or Z instructions.	$\begin{aligned} & 860 \\ & 827 \\ & 429 \\ & 428 \\ & 820 \\ & \\ & 817 \\ & \\ & \\ & 818 \\ & 821 \\ & 824 \\ & 833 \\ & 206 \end{aligned}$

W n m	$(r W) \longrightarrow m, m+1 \ldots \ldots m+n-1$ Operate rM address exceeded and preset checkers. Set BCM to RM. Operate HSB-OEC. Operate HSB-AOC. Set rM Read FF, set $M 1$ cores. Preset rZW units counter to elevens complement of the 2nd Instruction Digit. When the rZW units counter reads zero, gate a t59 to set MTO.*+\# Read and restore rZW simultaneously with the reading and restoring of rM . When MTO is set, supply EP. Strobe rZW sense amplifiers. Develop Serialize Pulse. Step rM counters and rZW units counter once each minor cycle until rZW units counter reads zero. Supply EP. *If 2nd Instruction Digit is a zero and if Compatibility switch on SC is set to Univac II, treat instruction as a Skip. +If Compatibility switch is set to Univac I the rZW units counter is unconditionally set to nine. "The "Tens" 7 or W line is always up except during the Y or Z instructions.	$\begin{aligned} & 860 \\ & 827 \\ & 429 \\ & 428 \\ & 820 \\ & \\ & 817 \\ & \\ & 818 \\ & 819 \\ & 824 \\ & \\ & 833 \\ & 206 \end{aligned}$
X 0 m	$(r A)+(r X) \longrightarrow r A$	
T0	Compare (rA) and (rX).	None
	Operate adder for eleven place addition.* Operate adder OE and sum comparison checkers. Connect rX to HSB. Connect HSB to adder sub input, rA to adder min input. Clear rA and transfer sum from adder to rA. Supply EP. *If decimal carry occurs from eleventh digit position, set Overflow FF. If second instruction digit is a minus sign, overflow sets Stop FF.	$\begin{aligned} & 160 \\ & 435 \\ & 125 \\ & \\ & 109 \\ & 206 \end{aligned}$

$$
x_{0}
$$

Y n m	$(m),(m+1) \ldots \ldots . .(m+10 n-1) \longrightarrow r Z$ Operate rM address exceeded and preset checkers. Set BCM to KM . Operate HSB-OEC. Operate HSB-AOC Set rM Read FF, set M_{1} cores. Preset rZW tens counter to elevens complement of the 2nd Instruction Digit. Preset rZW units counter to one. When the rZW tens and units counters read zero, gate a 559 to set MTO. *+ Read and restore rZW simultaneously with the reading and restoring of rM . When MTO is set, supply EP. Strobe rM sense amplifiers. Develop Serialize Pulse. Step rM counters and rZX units counter once each minor cycle. When the rZW units counter passes trhough zero it steps the rZW tens counter. Supply EP. *If 2nd Instruction Digit is a 7, 8, 9, or 0, and if Compatibility switch on SC is set to Univac II, treat instruction as a Skip. +If Compatibility switch is set to Univac I, the rZW tens counter is preset to zero.	860 827 429 428 820 816 818 821 824 833 206
2 n m	$(r Z) \rightarrow m, m+1 \ldots \ldots \ldots \ldots m^{m+10 n-1}$ Operate rM address exceeded and preset checkers. Set BCM to RM. Operate HSB-OEC. Operate HSB-AOC. Set rM Read FF , set M_{1} cores. Preset rZW tens counter to elevens complement of the 2nd Instruction Digit. Preset rZW units counter to one. When the rZW tens and units counters read zero, gate a 559 to set MTO. *+ Read and restore rZW simultaneously with the reading and restoring of rM . When MTO is set, supply EP. Strobe rZW sense amplifiers. Develop Serialize Pulse. Step rM counters and rZW units counter once each minor cycle. When the rZW units counter passes through zero it steps the rZW tens counter. Supply EP. *If 2nd Instruction Digit is a 7, 8. 9, or 0, and if Compatibility switch on SC is set to Univac II, treat instruction as a Skip. +If Compatibility switch is set to Univac I, the rZW tens counter is preset to zero.	$\begin{aligned} & 860 \\ & 827 \\ & 429 \\ & 428 \\ & 820 \\ & \\ & \\ & 816 \\ & \\ & 818 \\ & 819 \\ & 824 \\ & \\ & 833 \\ & 206 \end{aligned}$

. n m Aill	Shift ra right, with sign, n places	
	Preset rZ̄W units counter to the elevens complement of the 2nd Instruction Digit. When counter reads zero, gate t59 to set MTO. Operate rA clear gate. Operate right shift path of rA and insert a decimal zero into the sign position.* Step rZW and rM counters once each minor cycle until rZW units counter reads zero. Step PC once per minor cycle. + When MTO is set, supply EP at following tl. *rA shifts one digit right during each minor cycle of Time-on. +If PC is adyanced in excess of thirteen, an Overshift signal is developed which stalls machine operation by setting the FT Intermediate Checker FF, and TO.	$\begin{gathered} 817 \\ 101 \\ 106 \\ \\ 833 \\ 213 \\ 818 \end{gathered}$
-n m All	Shift rA right, without sign, n places	
	Preset rZW units counter to the elevens complement of the 2nd Instruction Digit. When counter reads zero, gate t59 to set MTO. Operate rA clear gate, except for sign position. Operate right shift path of rA and insert a decimal zero into the (MSD) position.* Step $r Z W$ and $r M$ counters once each minor cycle until rZW units counter reads zero. Step PC once each minor cycle. + When MTO is set, supply EP and set TO at following tl. *ra shifts one digit right during each minor cycle of Time-on. +If PC is advanced in excess of thirteen, an Overshift signal is developed which stalls machine operation by setting the FT Intermediate Checker FF and T0.	$\begin{aligned} & 817 \\ & 170 \\ & 107 \\ & 833 \\ & 213 \\ & \\ & 818 \end{aligned}$

$\begin{gathered} ; \mathrm{n} \mathrm{~m} \\ \text { All } \end{gathered}$	Shift rA left, with sign, n places	
	Preset rZW units counter to elevens complement of the 2nd Instruction Digit. When counter reads zero, gate $t 59$ to set MTO. Operate rA clear gate. Operate left shift path of rà. * Insert decimal zero into LSD position of (rA). Step rZW and rM counters once each minor cycle until rZW units counter reads zero. Step PC once each minor cycle. + When MTO is set, supply EP and set TO at following tl. *rA shifts one digit left during each minor cycle of Time-on. +If PC is advanced in excess of thirteen, an Overshift signal is developed which stalls machine operation by setting FT Intermediate Checker FF and TO.	$\begin{aligned} & 817 \\ & 101 \\ & 103 \\ & 171 \\ & 833 \\ & 213 \\ & 818 \end{aligned}$
0 n m All	Shift rA left, without sign, n places	
	Preset rZW units counter to elevens complement of the 2nd Instruction Digit. When counter reads zero, gate $t 59$ to set MTO. Operate rA clear gate, except for sign position. Operate left shift path of rA. * Insert decimal zero into LSD position of (rA). Step rZW and rM counters once each minor cycle until rZW units counter reads zero. Step PC once each minor cycle. + When MTO is set, supply EP at following $t 1$. *rA shifts one digit left during each minor cycle of Time-on. +If PC is advanced in excess of thirteen, an Overshift signal is developed which stalls machine operation by setting FT Intermediate Checker FF and TO.	$\begin{aligned} & 817 \\ & 170 \\ & 104 \\ & 171 \\ & 833 \\ & 213 \\ & 818 \end{aligned}$

00 m	Skip instruction (Supply Ending Pulse and proceed to next iñstruction) Supply EP.	206
0 m	Stop computation if Breakpoint switch on SC is depressed Set Stop FF if Breakpoint switch is depressed. Supply EP.	$\begin{aligned} & 217 \\ & 206 \end{aligned}$
90 m	Stop computation Set Stop FF. Supply EP.	$\begin{aligned} & 218 \\ & 206 \end{aligned}$
$1 \mathrm{~nm}$	60 words from tape to rI, forward Gate nS (Servo Selector) signal from second Instruction Digit to determine if Uniservo desired will pass interlock. Gate, FIR, BIR or FIR-BIR to determine if computer will pass interlock to start read operation. $\neq+$ If FIR, BIR or FIR-BIR passes interlock test, set Interlock Release FF. At following tl generate IRP.* Gate IRP as Sequence I Preset. + Computer will pass interlock if: 1. Read Interlock is reset. 2. Reversal Memory is reset. 3. First Block Memory is reset. 4. IO-INT FF is reset. 5. No rewind has been initiated within 3 ms . * IRP is used to: 1. Step PC. 2. Set TO. 3. Supply set pulse to Direction Memory. 4. Set Reversal Memory if BIR was returned from Uniservo. 5. Reset Interlock Release FF. 6. Supply Sequence I Preset. \neq If FIR-BIR is returned from Uniservo, set First Block Memory gated by FIR-BIR and set output of Interlock Release FF. (If First Block Memory is set, Reversal Memory will also be set.)	629 606 None 621

$\begin{gathered} 1 \overline{\mathrm{n}} \overline{\mathrm{~m}} \\ \mathrm{TO} \\ 2 \end{gathered}$		
	Gate nS signal to üniservo (n) to alert Read and Forward thyratrons. Gate RP and FP signals to fire Read and Forward thyratrons in Uniservo (n). Gate RP to set Read Interlock. Gate LE of FT604 to ending pulse delay. If Direction Memory agrees with first instruction digit, supply Read Tape Preset and gate an EP to control circuits. Gate EP to set Read Forward and Start Read FF's after appropriate delay. * Length of time before Read Forward FF is set is determined by condition of Reversal Memory. Length of time before Read Control FF is set is determined by condition of Reversal Memory and First Block Memory.	$\begin{aligned} & 629 \\ & 604 \\ & 609 \\ & 614 \end{aligned}$

$2 \mathrm{~nm}$ 1	60 mords from tape to ri, backward Gate nS (Servo Selector) signal from Second Instruction Digit to determine if Uniservo desired will pass interlock. Gate FIR, BIR or FIR-BIR to determine if computer will pass interlock to start read operation. $+\neq$ If FIR, BIR or FIR-BIR passes interlock test, set Interlock Release FF. At following tl gate a pulse to generate IRP. Gate IRP as Sequence I Preset. + Computer will pass interlock if: 1. Read Interlock is reset. 2. Reversal Memory is reset. 3. First Block Memory is reset. 4. IO-INT FF is reset. 5. No rewind has been initiated within 3 ms. * IRP is used to: 1. Step PC. 2. Set T0. 3. Supply reset pulse to Direction Memory. 4. Set Reversal Memory if FIR was returned from Uniservo. 5. Reset Interlock Release FF. 6. Supply Sequence I Preset. \neq If FIR-BIR is returned from Uniservo, set First Block Memory gated by FIR-BIR and set output of Interlock Release FF. (If First Block Memory is set, Reversal Memory will also be set.)	629 606 None 621
T0		

$\begin{aligned} & 2 \mathrm{~nm} \\ & 2 \end{aligned}$	Gate nS signal to Uniservo (n) to alert Read and Backward thyratrons. Gate RP and BP signals to fire Read and Backward thyratrons in Uniservo (n). + Gate RP to set Read Interlock. Gate LE of FT604 to ending pulse delay. If Direction Memory agrees with First Instruction Digit, supply Read Tape Preset and gate an EP to control circuits. Gate EP to set Read Backward and Start Read FF's after appropriate delay.* * Length of time before Read Backward FF is set is determined by condition of Reversal Memory. Length of time before Read Control FF is set is determined by condition of Reversal Memory and First Block Memory.	$\begin{aligned} & 629 \\ & \\ & 604 \\ & 609 \\ & 614 \end{aligned}$
$3 \mathrm{~nm}$ 1	(rI) $\longrightarrow \mathrm{m}$ THRU $\mathrm{m}+59$; 60 words $\longrightarrow \mathrm{rI}$, forward Operate rM address exceeded \mathcal{E} preset checkers. Gate nS (Servo Selector) signal from Second Instruction Digit to determine if Uniservo desired will pass interlock. Gate FIR, BIR or FIR-BIR to determine if computer will pass interlock to start read operation. $+\neq$ If FIR, BIR or FIR-BIR pass interlock test set Interlock Release FF. At following tl generate IRP. Gate IRP as Sequence I Preset. + Computer will pass interlock if: 1. Read Interlock is reset. 2. Reversal Memory is reset. 3. $\mathrm{IO}-\mathrm{INT} \mathrm{FF}$ is reset. 4. First Block Memory is reset. 5. No rewind has been initiated within 3 ms . * IRP is used to 1. Step PC. 2. Set TO. 3. Supply set pulse to Direction Memory. 4. Set Reversal Memory if BIR was returned from Uniservo. 5. Reset Interlock Release FF. 6. Supply Sequence I Preset. \neq If FIR-BIR is returned from Uniservo, set First Block Memory gated by FIR-BIR and set output of Interlock Release FF. (If First Block Memory is set, Reversal Memory will also be set.)	860 629 606 None 621

$4 \mathrm{n} \text { m }$ 1	$(\mathrm{rI}) \longrightarrow \mathrm{m}$ THRU $\mathrm{m}+59$; 60 words $\longrightarrow \mathrm{rI}$, backward Operate address exceeded \mathcal{E} preset checkers. Gate nS (Servo Selector) signal from Second Instruction Digit to determine if Üniservo desired will pass interlock. Gate FIR, BIR or FIR-BIR to determine if computer will pass interlock to start read operation. $+\neq$ If FIR, BIR or FIR-BIR passes interlock test, set Interlock Release FF. At following tl generate IRP. Gate IRP as Sequence I Preset. + Computer will pass interlock if: 1. Read Interlock is reset. 2. Reversal Memory is reset. 3. First Block Memory is reset. 4. IO-INT FF is reset. 5. No rewind has been initiated within 3 ms . * IRP is used to: 1. Step PC. 2. Set TO. 3. Supply reset pulse to Direction Memory. 4. Set Reversal Memory if FIR was returned from Uniservo. 5. Reset Interlock Release FF. 6. Supply Sequence I Preset. \neq If FIR-BIR is returned from Uniservo, set First Block Memory gated by FIR-BIR and set output of Interlock Release FF. (If First Block Memory is set, Reversal Memory will also be set.)	$\begin{aligned} & 860 \\ & 621 \\ & 606 \\ & \\ & \text { None } \\ & 629 \end{aligned}$
T0		
$\begin{aligned} & 4 \mathrm{~nm} \\ & 2 \end{aligned}$	Set rM Read FF. Set BCM to RM. Inhibit set of M_{1} cores, strobe rI sense amplfiers, transfer $M_{2} \rightarrow M_{1}$ and $M_{2} \rightarrow r i$. Step rI address counters for each word trans- ferred until "59" signal occurs at which time set MTO, step PC, and set TO. Develop Serialize Pulse. Operate HSB-OEC. Operate HSB-AOC. Step rM and rZW address counters. Gate $n S$ signal to Uniservo (n). Gate RP to set Read Interlock. Gate LE of FT604 to ending pulse delay.	820 827 641 824 429 428 833 629 604

InSTRUCTION	DESCRIPTION	FT
$\begin{aligned} & 5 \mathrm{~nm} \\ & \mathrm{~T} 0 \\ & 2 \end{aligned}$	Sequence rM for RH timing. Strobe rM sense amplifiers. Transfer $\mathrm{Ml}_{1} \longrightarrow \mathrm{M}_{3}$ 。 Transfer $\mathrm{M}_{3} \longrightarrow$ r0. Step ro address counters for each word transferred until " 59 " signal occurs, at which time set MTO, step PC, and set TO. Step rM, rZW address counters. Develop Serialize Pulse Operate HSB-OEC. Operate HSB-AOC. Gate nS signal to Uniservo (n) and alert Write and Forward thyratrons. Gate WP and FP signals to fire Write and Forward thyratrons in Uniservo (n). Gate WP signal to set Write Interlock. Gate LE of FT604 to ending pulse delay. + + If nS signal agrees with Tape Density Selector switch, gate WP to pick up Tape Density relay for 108 PPI.	$\begin{aligned} & \hline 820 \\ & 821 \\ & 829 \\ & \\ & 681 \\ & 833 \\ & 824 \\ & 429 \\ & 428 \\ & 629 \\ & \\ & 604 \end{aligned}$
T0		
3	Supply Write Tape Preset and gate an EP to control circuits. Gate EP to set Write Forward and Start Write FF's after appropriate delay.* * Length of time before Write Forward FF is set is determined by condition of Reversal Memory. Length of time before Write Control FF is set is determined by condition of Reversal Memory and First Block Memory.	$\begin{aligned} & 609 \\ & 615 \end{aligned}$

INSTRUCTION	DESCRIPTION	FT
	Set riin kead FF, set iin cores. Strobe rM sense amplifiers. Transfer $\mathrm{M}_{1} \rightarrow \mathrm{M}_{3}$. Step $\mathrm{rM}, \mathrm{rZW}$ address counters. Transfer $H_{3} \rightarrow$ ro. Step r0 address counters for each word transferred until "59" signal occurs at which time set MTO, step PC, and set TO. Develop Serialize Pulse. Operate HSB-OEC. Operate HSB-AOC. Set 54 pulses per inch thyratron to write at 54 PPI. Gate nS signal to Uniservo (n) to alert Write and Forward thyratrons. Gate WP and FP signals to fire Write and Forward thyratrons in Uniservo (n). Gate WP signal to set Write Interlock. Gate LE of FT604 to ending pulse delay.	820 821 829 833 681 824 429 428 None 629 604
$\begin{aligned} & \text { T0 } \\ & 3 \end{aligned}$		
	Gate an EP to control circuits. Gate an EP to set Write Forward and Start Write FF's after appropriate delay.	$\begin{aligned} & 609 \\ & 615 \end{aligned}$

10 m 1	Supervisory keyboard $\longrightarrow \mathrm{rM}$ Operate rin address exceeded \mathcal{E} preset checkers. Generate signal to pass Supervisory Control interlock provided that no Read, Supervisory Control Typerout, or Supervisory Control Type-in is in progress. Set Supervisory Control Input FF. Set Interlock Release FF provided that Reversal Memory, and First Block Memory is reset, and no rewind has been initiated within 3 ms . Gate following tl as IRP. Gate IRP as Sequence I Preset. * IRP is used to: 1. Step PC. 2. Set TO. 3. Reset Interlock Release FF. 4. Set Supervisory Control Input FF. 5. Supply Sequence I Preset.	$\begin{aligned} & 860 \\ & 616 \\ & \\ & \text { None } \\ & 621 \end{aligned}$
T0		
2	The Sequence I Preset clears and presets the input counters. The K signals (result of setting Supervisory Control Input FF) control the Input Distributor Control circuits to facilitate a Supervisory Control input. Type in 6 digits, digit by digit, checking each digit for any odd-even error, and step TRI counters after each key is depressed. Transfer each digit from the N_{5} cores to M_{2}. After the 6th digit is typed, transfer $M_{2} \rightarrow M_{1}$ and type in 6 more digits to M_{2}. After the 12 th digit is typed, set Stop FF and depress Word Release which will step PC and set $T O$.	No FT
T0		
3	Set rM Read FF. Transfer $\mathbb{W} 2 \rightarrow M_{1}$, inhibit set of M_{1} cores. Develop Serialize Pulse. Operate HSB-OEC. Operate HSB-AOC. Set MTO. Supply EP.	$\begin{aligned} & 820 \\ & 645 \\ & 824 \\ & 429 \\ & 428 \\ & 825 \\ & 206 \end{aligned}$

$\begin{aligned} & 50 \\ & \text { T0 } \\ & 2 \end{aligned}$		
	The Sequence 0 preset clears and presets the out－ put counters．The T signals（result of setting the Supervisory Control Output FF）control the Output Distributor control circuits to facilitate a Supervisory Control output． Set rZW Read FF。 Set rM Read FF，set M_{1} cores． Strobe rM sense amplifiers． Develop Serialize Pulse。 Operate HSB－OEC． Operate HSB－AOC． Set MTO． Step PC，set TO． Above steps are for readout of rM ．With FT 820，821，and 824 deleted，and FT 823，826， 861 and the read out FT of a particular register inserted，a register type out is accomplished．The sequence for type out from a register is： Set rZW Read and Write FF＇s Transfer（ rA ）\longrightarrow HSB． Operate HSB－OEC． Operate HSB－AOC． Develop Staticize Pulse Set MTO． Step PC，set TO． Set rZW Read FF，set M_{1} cores． Inhibit set of rM Read／Write FF。 + Up only if rA Output Selector button is depressed． Other FT signals are： 1． rF 192 2．rL 187 3． rA 100 4．rX 125 5．CC 210 6．CR 248 ＊The EP gated by FT818 in the Control Circuits is suppressed by FT214．	818 820 821 824 429 428 825 214 818＊ 100＋ 429 428 823 825 214 826 861
T0		

50 3	Operate HSB－OEC． Operate HSB－AOC． Set rZV Read／Write $\mathrm{FF}^{\text {＇s }} \mathrm{s}$ 。 Strobe rZW sense amplifiers． Set rZW Read FF，set M_{l} cores． Develop Serialize Pulse。 Set MTO． Transfer $\mathrm{M}_{1} \rightarrow \mathrm{M}_{3}$ ． Inhibit set of $r M$ Write $F F$ ． Transfer $\mathrm{M}_{3} \longrightarrow \mathrm{M}_{4}$ 。 Step PC，set T0．	429 428 818 819 820 824 825 829 861 685 214
T0		
4	Supply EP．	206
50 Breakpoint	（Register determined by $S C$ output button） \rightarrow SC printer Stop computer if Type Out Breakpoint switch on SC is operated． Operate rM address exceeded \mathcal{E} preset checkers． Generate signal to pass write interlock at Write Interlock gate provided that Supervisory Control Interlock FF and Write Interlock FF is reset． Set Interlock Release FF provided that，First Block Memory，Reversal Memory，IO－INT are reset， and no rewind has been initiated within 3 ms ． Gate output of Interlock Release FF with a tl to generate IRP．＊ Gate IRP to generate Sequence 0 Preset． Gate IRP to set Supervisory Control Output FF， set Write Interlock． Set Stop FF if Output Breakpoint switch is thrown． ＊IRP is used to： 1．Step PC 2．Set TO 3．Reset Interlock Release FF 4．Set Supervisory Control Output FF 5．Supply Sequence O Preset + FT 629 is picked up for a 50 instruction，but is used only in the FTOC．	$\begin{aligned} & 860 \\ & 606 \\ & \\ & \text { None } \\ & \text { None } \\ & 669 \\ & \\ & 617 \\ & 218 \\ & 629+ \end{aligned}$

$\begin{aligned} & \text { T0 } \\ & 50 \text { Breakpoint } \\ & 2 \end{aligned}$		
	The Sequence 0 Preset clears and present the ouit put counters. The T signals (result of setting the Supervisory Control Output FF) control the Output Distributor control circuits to facilitate a Supervisory Control output. Set rZW Read FF. Set rM Read FF, set Ml Cores. Strobe rM sense amplifiers. Develop Serialize Pulse. Operate HSB-OEC. Operate HSB-AOC. Set MTO. Step PC, set TO. Above steps are for read out of rM . With FT 820, 821, and 824 deleted and FT 823, 826. 861, and the read out FT of a particular register inserted, a register type out is accomplished. The sequence for read out from a register is: Transfer (rA) \longrightarrow HSB. Operate HSB-OEC. Operate HSB-AOC. Develop Staticize Pulse. Set MTO. Step PC, set T0. Set rZW Read FF. Inhibit set of rM Read/Write FF's. Set rZW Read FF. + Up only if rA Output Selector button is depressed. 0ther FT signals are: 1. rF 192 2. rL 187 3. rA 100 4. rX 125 5. CC 210 6. CR 248 *The EP gated by FT818 in the control circuits is suppressed by FT214.	818 820 821 824 429 428 825 214 $100+$ 429 428 823 825 214 826 861 818
T0		

50 Breakpoint 3	Operate HSB-OEC. Operate HSB-AOC. Set rZW Read/Write FF^{\prime} s. Strobe rZW sense amplifiers. Set rZW Read FF, Set M_{1} Cores. Develop Serialize Pulse. Set MTO. Transfer $M_{1} \rightarrow M_{3}$. Inhibit rM Write FF. $\underset{\text { Transfer }}{ } \mathrm{M}_{3} \rightarrow \mathrm{M}_{4}$. Step PC, set T0.	$\begin{aligned} & 429 \\ & 428 \\ & 818 \\ & 819 \\ & 820 \\ & 824 \\ & 825 \\ & 829 \\ & 861 \\ & 685 \\ & 214 \\ & \hline \end{aligned}$
T0		
4	Supply EP.	206
50 Skip	(Register determined by SC output button) \longrightarrow Printer. Skip the type out if Skip Type Out switch on SC is operated. Supply EP (if switch is operated)	206
Empty 1	$r M$, successive words \longrightarrow SC printer Operate rM address exceeded \mathcal{E} preset checkers. Insert decimal zeros onto HSB. Operate HSB-OEC. Operate HSB-AOC. Operate HSB $\longrightarrow C R$ gate, operate CR clear gate. Generate a signal to pass write interlock at Write Interlock gate provided the Supervisory Control Interlock FF and Write Interlock are reset. Set Interlock Release FF provided the First Block Memory, Reversal Memory, IO-INT are reset and no rewind has been initiated within 3 ms . Gate output of Interlock Release FF with a tl to generate IRP. Gate IRP to generate Sequence 0 freset. Gate IRP to set Supervisory Control Output FF, to Write Interlock. * IRP is used to: 1. Step PC. 2. Set TO. 3. Reset Interlock Release FF. 4. Set Supervisory Control Output FF. 5. Supply Sequence 0 Preset. +FT629 is picked up for an EMPTY instruction, but is used only in FTOC.	$\begin{aligned} & 860 \\ & 401 \\ & 429 \\ & 428 \\ & 201 \\ & \\ & 606 \\ & \\ & \text { None } \\ & \\ & \text { None } \\ & 669 \\ & \\ & 617 \\ & 629+ \end{aligned}$
T0		

2	The Sequence 0 Preset clears and presets the output counters. The T signals (result of setting the Supervisory Control Output FF) control the Output Distributor control circuits to facilitate a Supervisory Control output. Set rM Read FF , Set M_{1} cores. Strobe rM sense amplifiers. Develop Serialize Pulse. Operate HSB-OEC. Operate HSB-AOC. Set MTO. Step PC, set T0.	$\begin{aligned} & 820 \\ & 821 \\ & 824 \\ & 429 \\ & 428 \\ & 825 \\ & 214 \end{aligned}$
T0		
$\begin{aligned} & \text { Empty } \\ & 3 \end{aligned}$	Operate HSB-OEC. Operate HSB-AOC. Set rZW Read/Write FF's. Set rM Read FF, Set M_{1} Cores. Strobe rZW sense amplifiers Develop Serialize Pulse. Set MT0. Transfer $\mathrm{M}_{1} \longrightarrow \mathrm{M}_{3}$. Inhibit set of rM Read/Write FF's. Read M3, transfer $\mathrm{M}_{3} \longrightarrow \mathrm{M}_{4}$. Step PC, set TO.	429 428 820 819 824 825 829 861 685 214
$\begin{aligned} & \text { Empty } \\ & \text { T0 } \end{aligned}$		
4	Transfer $\mathrm{CC} \longrightarrow$ min input adder, (000000000001) sub input adder. Transfer sum from unbarred adder to CC after clearing CC. operate adder for 12-place addition. Operate adder OE and sum comparison checkers. Supply reset pulse to Overflow FF. Transfer $(C R) \rightarrow$ SR distributor line without delay. Supply EP. Note: EMPTY instruction is started by depressing the Empty switch on SC. It is executed in Beta time with the typed information being read from $r M$ location, designated by SR the current CC reading. After the EP, two skip instructions will be executed because of the decimal zeros read into $C R$ during PG1, thus permitting (CC) to set up into SR with next memory to be emptied.	$\begin{aligned} & 212 \\ & 714 \\ & 435 \\ & 737 \\ & 204 \\ & 206 \end{aligned}$

ANALYSIS OF INSTRUCTIONS

INSTRUCTION
DESCRIPTION
FT

3	Set rM Read FF , set M_{1} Cores. Read M_{2}. Transfer $\mathrm{M}_{2} \rightarrow \mathrm{M}_{1}$. Develop Serialize Pulse. Operate HSB-OEC. 0perate HSB-AOC. Transfer CC \longrightarrow min input adder, (000000 000001) to sub input adder. Transfer sum from unbarred adder to CC after clearing CC. Operate adder for 12-place addition. Operate adder OE and sum comparison checkers. Supply reset pulse to Overflow FF. Transfer (CR) \longrightarrow SR Distributor Line without delay. Set MTO. Supply EP. Note: FILL instruction is started by moving the CR Interlock/Fill Mem switch on Supervisory Control to the Fill Mem position. It is executed in Beta time with the typed information going to the memory location designated by the SR, which contains the current CC reading. After the EP two skip instructions will be executed because of the decimal zeros read into CR during PC-1, thus permitting (CC) to set up in SR the next memory address to be filled.	$\begin{aligned} & 820 \\ & 645 \\ & 844 \\ & 429 \\ & 428 \\ & \\ & 212 \\ & 714 \\ & 435 \\ & 737 \\ & \\ & 204 \\ & 825 \\ & 206 \end{aligned}$
Clear CC	CU (000000000000$) \longrightarrow \mathrm{CC}$ Connect CU (000000000000) to HSB. Operate HSB-OEC. 0 perate HSB-AOC. Connect HSB to CC, clear CC. Supply EP. Note: By depressing the clear C switch on Supervisory Control, CY is automatically jammed to Beta, and the addition of one to (CC) is inhibited.	$\begin{aligned} & 401 \\ & 429 \\ & 428 \\ & 208 \\ & 206 \end{aligned}$

$\begin{aligned} & \text { SCI-CR } \\ & 1 \end{aligned}$	One word S C keyboard $\longrightarrow \mathrm{CR}$ Generate signal to pass Supervisory Control interlock provided that no read, Supervisory Control type-out, or Supervisory Control typein is in progress. Set Interlock Release FF provided that Reversal Memory, First Block Memory, and Rewind Frequency control is reset. Gate tlafter setting Interlock Release FF as IRP. Gate IRP as Sequence I Preset. Gate IRP to set Supervisory Control FF. Supply reset pulse to Overflow FF. * IRP is used to: 1. Step PC. 2. Set T0. 3. Reset Interlock Release FF. 4. Set Supervisory Control FF. 5. Supply Sequence I Preset.	616 None 621 616 737
T0		
2	The Sequence I preset clears and presets the input counters. The K signals (result of setting Supervisory Control Input FF) control the Input Distributor control circuits to facilitate a Supervisory Control input. Type in 6 digits, digit by digit, check each digit for an odd-even error, and step TRI counters after each key is depressed. Transfer each digit from the N_{5} cores to M_{2}. After the 6 th digit is typed, transfer $M_{2} \rightarrow M_{1}$ and type in 6 more digits to M_{2}. After the 12 th digit is typed, set Stop FF, depress Word Release which will step PC and set TO.	No FT
T0		
3	Inhibit set of rM Read/Write FF's. Enable set of rZW Read FF. Develop Serialize Pulse. Set rZW Read FF, set M_{1} Cores Read M_{2}, transfer $M_{2} \rightarrow M_{1}$. Set MTO. Operate $\operatorname{HSB}-0 E C$ Operate HSB-AOC Step PC, set TO, and inhibit EP supplied by FT818.	861 818 824 820 645 825 428 214

INSTRUCTION	DESCRIPTION	FT
$\begin{aligned} & \text { SCI-CR } \\ & 4 \end{aligned}$	Preset BCM to RM. Inhibit rM Read/Write FF. Enable set of rZW Read/Write FF's. Set rZW Read FF. Strobe rZW sense amplifiers. Develop Serialize Pulse. Operate HSB-OEC. operate HSB-AOC. Connect HSB to CR, clear CR. Read $\mathrm{LH}(\mathrm{CR}) \longrightarrow$ SR. Set MTO. Supply EP NOTE: CR TYPE IN switch will jam CY to Beta, and set up SR for SCI-CR.	$\begin{aligned} & 827 \\ & 861 \\ & 818 \\ & 820 \\ & 819 \\ & 824 \\ & 429 \\ & 428 \\ & 201 \\ & 204 \\ & 825 \\ & 206 \end{aligned}$
Memory Clear	Connect CU (000000000000) to HSB. Operate HSB-0EC. 0 perate HSB-AOC. Develop Staticize Pulse. Set rM Read FF, set M_{1} Cores. 0perate rM address exceeded and preset checkers. Set MTO.	401 429 428 823 826 860 825

4. CONDENSED INSTROCTION REFERENCE.

This section is similar to Section 3 in that it lists the instructions, in order and by PC steps. However, it lists the FT signals associated with each PC step by number only, and not with description. This offers a rapid reviewal of FT signals present during maintenance routines.

ANALYSIS OF INSTRUCTIONS

UNIVAC II

ANALYSIS OF INSTRUCTIONS

UNIVAC II

EF	2	$\begin{aligned} & 193,214,429,820,821,824,101 \\ & 825,827,831,832,860,428,105 \\ & 100,206,429,823,825,826 \\ & 860,428 \end{aligned}$
F		$\begin{aligned} & 190,206,429,820,821,824 \\ & 825,827,860,428 \end{aligned}$
G		$\begin{aligned} & 192,206,429,823,825,826 \\ & 860,428 \end{aligned}$
H		$\begin{aligned} & 100,206,429,823,825,826, \\ & 860,428 \end{aligned}$
I		$\begin{aligned} & 187,206,429,823,825,826, \\ & 860,428 \end{aligned}$
J		$\begin{aligned} & 125,206 ; 429,823,825,826, \\ & 860,428 \end{aligned}$
K		$\begin{aligned} & 100,101,108,185,206, \\ & 429,428 \end{aligned}$
L		$\begin{array}{llll} 120, & 126,185, & 206, & 429, \\ 821, & 824, & 825, & 827, \\ 860, & 428 \end{array}$
LF		$\begin{aligned} & 120,126,185,193,206,429, \\ & 820,821,824,825,827,428,860 \end{aligned}$
MP	1	$\begin{aligned} & 101,108,110,113,120,126, \\ & 139,214,429,435,820, \\ & 824,825,827,860, \\ & 428 \end{aligned}$
MNP	2	110, 113, 214, 435, 714
MNP	3	110, 113, 151, 214, 435, 714
MN	4	$\begin{array}{llll} 100, & 101, & 108, & 112, \\ 123, & 159, & 190, & 1214, \\ 435, & 428, & 429 \end{array}$
NMP	5-15	$\begin{aligned} & 109,147,159,188,246, \\ & 435,714 \end{aligned}$
MNP	14	244
MNP	15	149, 161, 215, 228

MF-PF	1	$\begin{array}{llllll} 101, & 108, & 110, & 113, & 120, & 126, \\ 139, & 193, & 214, & 429, & 435, & 820, \\ 821, & 824, & 825, & 827, & 860, & 428 \end{array}$	
*N	1	101, 108, 110, 113, 120, 139 153, 214, 429, 435, 820, 821, 824, 825, 827, 860, 428	* (N, NFP and PF have P C steps and same FT signals
*Nf	1	$\begin{array}{llllll} 101, & 108, & 110, & 113, & 120, & 139, \\ 153, & 193, & 214, & 429, & 435, & 820, \\ 821, & 824, & 825, & 827, & 860, & 428 \end{array}$	cept as noted)
*P	4	$\begin{aligned} & 100,101,108,112,120,123, \\ & 159,190,214,226,429,428 \end{aligned}$	**If 2nd Inst. digit is zero treat
Q	2	$\begin{aligned} & 152,156,187,214,236,429 \\ & 428 \\ & 159,200,206,209,429,428 \end{aligned}$	skip if compatibility switch is set to Univac II.
R		$\begin{aligned} & 206,245,429,823,825,826 \\ & 860,428 \end{aligned}$	
S	2	$\begin{aligned} & 120,153,214,429,820,821, \\ & 824,825,827,860,428 \\ & 109,125,160,206,435 \end{aligned}$	
SF	1	$\begin{aligned} & 120,153,193,214,429,820 \\ & 821,824,825,827,860,428 \end{aligned}$	
SH	1 2 3	$\begin{aligned} & \text { Same as S PC l } \\ & 109,125,160,214,435 \\ & 100,206,429,823,825,826 \\ & 860,428 \end{aligned}$	
T	2	$\begin{aligned} & 152,172,187,214,236,429, \\ & 428 \\ & 159,200,206,209,429,428 \end{aligned}$	
U		200, 206, 208, 429, 428	
\checkmark		$\begin{aligned} & 429,817,818,820,821,824 \text {, } \\ & 827,833,860,428,206 * * \end{aligned}$	

ANALYSIS OF

INSTRUCTIONS

W	$\begin{aligned} & 429,817,818,819,820,824 ; \\ & 827,833,860,428,206 \text {; } \end{aligned}$
X	109, 125, 160, 206, 400, 435
Y	$\begin{aligned} & 429,816,818,820,821,824, \\ & 827,833,860,428,206^{*} \end{aligned}$
Z	428, 429, 816, 818, 819, 820 $824,827,833,860,206$
on all	101, 106, 213, 817, 818, 833
-n all	107, 170, 213, 817, 818, 833
; n all	$\begin{aligned} & 101,103,171,213,817,818 \\ & 833 \end{aligned}$
0 n all	$\begin{aligned} & \text { 104, } 170,171,213,817,818 \text {, } \\ & \text { 833. } \end{aligned}$

00		206
. 0		206, 217
90		206, 218
ln	1 2	$\begin{aligned} & 606,621,629 \\ & 609,604,614,629 \end{aligned}$
2 n	1 2	$\begin{aligned} & 606,621,629 \\ & 609,604,614,629 \end{aligned}$
3 n	1 2 3	$\begin{aligned} & 606,621,629,860, \\ & 429,604,629,641,820,824, \\ & 827,833,428 \\ & 609,614 \end{aligned}$
4 n	1 2 3	$\begin{aligned} & 606,621,629,860 \\ & 429,604,629,641,820,824 \\ & 827,833,428 \\ & 609,614 \end{aligned}$
$5 n$	1	606, 629, 669, 860

ANALYSIS OF INSTRUCTIONS

5n	2 3	$\begin{aligned} & 429,604,629,681,820,821, \\ & 824,829,833,428 \\ & 609,615 \end{aligned}$
6n	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 606,608,629 \\ & 619,629 \end{aligned}$
7n	1 2 3	$\begin{aligned} & 606,629,669,860 \\ & 429,604,629,681,820,821, \\ & 824,829,833,428 \\ & 609,615 \end{aligned}$
8 n	1 2	$\begin{aligned} & 606,607,608,629 \\ & 607,619,629 \end{aligned}$
10 m	1 2 3	$616,621,860$ $206,428,429,645,820,824,825$
10, CR	1 2 3 4	$\begin{aligned} & \text { 616, 621, 737, } \\ & 645,818,820,825,861,214,428,429,824 \\ & 201,203,428,429,818,819, \\ & 820,824,825,827,861,206 \end{aligned}$
30		Same as 3 n except 0 Selector signal prevents tape operation.
40		Same as 4 n except 0 Selector signal prevents tape operation.
50	1 2	$606,617,669,629 *, 860$ *Note 629 is picked up but used only in $214,429,685,825,818,428$ FTOC. M $820,821,824$ A $100,823,826,861$ X $125,823,826,861$

ANALYSIS OF INSTRUCTIONS

50
50

UNIVAC II

5. DESCRIPTION OF FUNCTION TABLE SIGNALS.

The Function Table signals described on the following pages generate the minor sequences which compiete the instruction routines. The FT signals are initiated by either the decoding of a programed instruction or by some element of the automatic interval programing of the computer. Figure 1 presents, logically, the signals which control the alerting of the FT signals.

The FT signals are listed in the numerical order of their assigned numbers. Duplicated signals are indicated with the barred notation, e.g., 100 and $\overline{100}$. In the instances where an FT signal originates from several drivers, symbols are used following the FT signal number to differentiate between the various outputs to facilitate identification in the outlying circuits, e.g. FTl60A, FTl60B, FTl60C, etc. Most FT signals are negative-going, those that are not usually carry a plus sign following the FT number; e.g. FT645+.

Pertinent information concerning the FT signals is presented in the columns following the FT number. Column l locates the chassis in which the FT signal is generated and gives the output terminal on which the FT signal appears. Column 2 lists the test terminal, for maintenance purposes, on which the full signal appears. Column 3 names the vacuum tube on the chassis from which the FT signal appears. Column 4 lists the signal-no signal condition of the FT signal; i.e., the voltage levels that appear on the corresponding test terminal of the FT. Column 5 provides a logical description of the function performed by each FT signal.

ANALYSIS OF
INSTRUCTIONS

Figure 1. Logical Diagram, Function Table Signals

Figure 1. Logical Diagram, Function Table Signals (cont'd.)

Function Table	Chassis	TT	Tube	S/NS	Definition
$\checkmark 100$	B5T28	A2	V1	60/90	Connect rA to HSB.
\bigcirc	B5T29	A4	V2	60/90	
$\cdot 101$	B3T65	C2	v5	60/90	Operate rA clear gate.
. 101	B3T33	Cl	V4	60/90	
1103	B10T54	Al2	V1	60/90	Operate left shift path of ra (including sign).**
$\overline{103}$	B10T29	Al3	V2	60/90	
$\checkmark 104$	B10T85	G6	V13	60/90	Operate left shift path of rA (excluding sign).
$\overline{104}$	B10T87	G7	V14	60/90	
${ }^{\prime} 105$	B3T43	E4	V8	60/90	Connect HSB to rA.
$\overline{105}$	B3T38	C7	v7	60/90	
106 A	Bl2T56	A4	V2	60/90	Operate right shift path of rA.
$\overline{106 A}$	B12T54	A2	V1	60/90	
才06B	Bl2T62	A7	V4	60/90	Insert decimal zero into sign position in rA.
$\overline{106 B}$	B12T60	A6	V3	60/90	
i106C	Bl2T39	C4	V6	60/90	Transfer sign from comparator to rA and rX.
$-\overline{106 C}$	B12T35	C3	V5	60/90	
$\checkmark 107$	B10T46	G1	V11	60/90	Operate right shift path of $r A_{8}$ and insert a decimal zero into the MSD position.*
107	B10T81	G3	V12	60/90	
$\checkmark 108$	ClV66	C6	V6	60/90	Connect CU (000000 000000) to rA.
$\overline{108}$	Clv33	C3	V5	60/90	
$\therefore 109 \mathrm{~A}$	C4V60	A6	V3	60/90	Connect HSB to adder sub input.
- $\overline{109 \mathrm{~A}}$	C4V62	Cl	V4	60/90	

\$\# rA shifts one digit left for each minor cycle of Time-On.

* rA shifts one digit right for each minor cycle of Time-On.

$\begin{aligned} & \text { Function } \\ & \text { Table } \\ & \hline \end{aligned}$	Chassis	TT	Tube	S/NS	Definition
-109D	C4V66	C4	V5	60/90	Connect ra to adder min input. Clear rA and transfer sum from adder to ra.
$\checkmark 109 \mathrm{D}$	C4V68	C6	V6	60/90	
- 110	$\begin{aligned} & \text { C3B56 } \\ & \text { C3v5 } 6 \end{aligned}$	A2	V1	60/90	Connect rL to adder sub input. Transfer (rL) to adder, replacing sign digit with a decimal zero.
$\overline{110}$	C3V29	A4	V2	60/90	
V11	B5T85	G5	V13	60/90	Connect CU (round-off 000000000005) to adder min input.
$\frac{1}{\sqrt{111}}$	B5T87	G7	V14	60/90	
$\checkmark 112 \mathrm{~A}$	Bl1770	C7	v7	60/90	Connect CU (050000 000000) to the adder sub input.
$\overline{\text { İ12A }}$	B11773	E3	v8	60/90	
112 B	B11T75	E6	v9	60/90	Clear MQC to binary zero and set up nines complement of digit in $M Q C$.
$\overline{112 \mathrm{~B}}$	BllT77	E8	V10	60/90	
- i12C	Biitil	G2	Vii	60/90	Transfer the LSD of (rX) to MoC.
- $\overline{112 \mathrm{C}}$	B11T83	G4	V12	60/90	
$\bigcirc 113$	В3T87	G7	V14	60/90	Connect râ to adder min input. Clear rA and read sum from adder to ra (transfer ends at tl2 to TO).
$/ \overline{113}$	B3T83	G6	V13	60/90	
$\checkmark 120$	B3T31	A7	V3	60/90	Operate rX clear gate.
$\checkmark \overline{120}$	B3T58	A6	V2	60/90	
123	Clv62	A8	V4	60/90	Operate right shift path in rX.
$\checkmark \overline{123}$	Clv31	A7	V3	60/90	
-125	B5T67	C6	V6	60/90	Connect rX to HSB.
$\overline{125}$	B5T72	C8	V7	60/90	
- 126	Clv73	E3	v8	60/90	Connect HSB to rX.
$\overline{126}$	C1V70	C6	V7	60/90	
$\checkmark 138 \mathrm{~A}$	B8T60	A7	v3	60/90	Clear MQC to decimal zero.
\cdots	B8T64	A8	V4	60/90	

Function

Table	Chassis	TT	Tube	S/NS	Definition
$\checkmark 138 \mathrm{~B}$	B8T66	C3	v5	60\%90	Preset $\mathrm{BC}-120$ in MQC to the noncomplement state thereby alerting the non-complementing gates between MQC and MOC-FT.
$\sqrt{138 \mathrm{~B}}$	B8T68	C6	V6	60/90	
-139	B8T71	E2	v7	60/90	Preset BC - 120 to the complement state, thereby alerting the complement gates connecting the MOC and MOC-FT.
$\sqrt{139}$	B8T73	E3	v8	60/90	
145A	C5V62	Cl	V4	60/90	Gate non-complement output of BC-120 to operate Improper Division Detector in MOC. $\#$

$\sqrt{145 B}$	C5V66	C3	V5	60/90	
145C	C5V73	E3	v8	60/90	Step MQC at t 2 following each subtraction until the Through-Zero signal is developed, then produce the
$\sqrt{145 \mathrm{C}}$	C5B71	E2	v7	60/90	OR CYCLE.
V147A	B6T83	G3	V12	60/90	Sample (MOC-FT). If digit is < 3,

 set the \(\geq 3 F F\), this transfers (rL)
 to HSB and supplies one stepping pulse
 to \(M Q C\). If digit is \(\geq 3\), set the
 \(\geq 3 F F\), this transfers (rF) to HSB
 and supplies three stepping pulses to MQC.
 | $\sqrt{147 \mathrm{~A}}$ | B6T87 | G7 | V14 | 60/90 | MQC. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\lambda_{147 B}$ | B6T81 | G2 | V11 | 60/90 | If digit in MOC-FT $=0$, set IER and IER-OR FF's at following t2. |
| | | | | | |
| $\sqrt{147 B}$ | B6'95 | G6 | V13 | 60/90 | |
| $\checkmark 149$ | B12T73 | E3 | v8 | 60/90 | Inhibit generating a second IER CYCLE in the case that a decimal zero is set up in the MQC. |
| | | | | | |
| $\overline{149}$ | B12T71 | C7 | v7 | 60/90 | |
| 1-151C | $\begin{aligned} & c 3 v 60 \\ & 69 B 6 \theta \end{aligned}$ | A6 | V3 | 60/90 | Disconnect rA input to comparator and connect rL.* |
| $1 \overline{151}$ c | C3V33 | A8 | V4 | 60/90 | |

\# If rLS $r A$, Improper Divison occurs at t2 of the eleventh minor cycle
of PC-3.

* Sign comparison is performed on (rA) and (rL).

UNIVAC II

Function Table	Chassis	TT	Tube	S/NS	Definition
152A	C3v68	C5	V6	60/90	Disconnect $r X$ input to comparator and connect HSB.*
- $\overline{52 \mathrm{~A}}$	C3V66	C3	v5	60/90	
-152B ${ }^{-1}$	C3V42	E3	v8	60/90	Connect HSB to comparator.
$\overline{152 B}^{\text {- }}$	C3V39	C8	V7	60/90	
亿153A	B8T75	E6	V9	60/90	Connect HSB to rX via sign reversal gates.
- $\overline{153 A}$	B8T44	E7	V10	60/90	
$\checkmark 153 \mathrm{~B}$	B8T81	G2	V11	60/90	Operate sign reversal gates in rX.
$\overline{153 \mathrm{~B}}$	B8T48	G4	V12	60/90	
$-156 \mathrm{~A}$	C3V87	--	V14	60/90	Set up comparator to perform equality comparison.\#\#
$\overline{156 A}$	C3V85	--	V13	60/90	
- 156 B	C3V48	--	V12	60/90	
$\overline{156 B}$	C3V79	--	V11	60/90	
-156C	C3V77	E7	V10	60/90	
- 156 C	C3V75	E5	v9	60/90	
-159	B6T46	E5	v9	60/90	Retain results of comparison in comparator.
. $\overline{159}$	B6T48	E6	V10	60/90	

* Sign comparison is performed on (rA) and (rL).
\# The sign reversal gates complement the LSB and Check Pulse of the sign digit during transfer to rX.
\#\# If rA $=$ rL develop CT signal.

Function Table	Chassis	TT	Tube	S/NS	Definition
-160A	C4V70	C7	V7	60/90	Operate adder for eleven-place addition.
160A	C4V71	E3	v8	60/90	
, 160B	C4V75	E5	V9	60/90	
$\sqrt{1608}$	C4V77	E8	V10	60/90	
- 160C	C4V79	G2	V11	60/90	
$\checkmark \overline{160 C}$	C4V81	G3	V12	60/90	
160D	C4v85	G6	V13	60/90	
$1 \overline{1600}$	C4V87	G7	V14	60/90	
$\checkmark 161 \mathrm{~A}$	B12T44	E8	V10	60/90	Transfer sign from comparator to rA and rX .
$\sqrt{161 A}$	B12T75	E5	V9	60/90	
$1261+$	B12T81	G3	$\mathrm{V} 12,1090 / 60$		Inhibit the insertion of a decimal zero into rA.
$\sqrt{161+}$	B12T79	G2	V11, ${ }^{\circ}$	90/60	
	B10T75	E5	V9		Operate rA clear gate, except for sign position.
$\sqrt{170}$	B10T77	E7	V10	60/90	
${ }^{\prime} 171$	B10T60	A17	v3	60/90	Insert decimal zero in LSD position of r.
$\sqrt{171}$	B10T62	Cll	V4	60/90	
$-172 \mathrm{~A}$	B9731	A6	v3	60/90	Set up comparator to perform algebraic comparison.
$-\overline{172 A}$	B9729	A5	V2	60/90	
- 172B	B9T66	C3	V5	60/90	
$\sqrt{172 \mathrm{~B}}$	B9T64	Cl	V4	60/90	

** If decimal carry occurs from eleventh digit position, set Overflow FF. If Second Instruction Digit is a minus sign, overflow sets Stop FF.

* If $r A>r L_{\text {, }}$ develop CT signal.

Function Table	Chassis	TT	Tube	S/NS	Definition
-185A	ClV77	E5	V9	60/90	Connect HSB to rL. Operate rL clear gate.
$\overline{185 A}$	Clv83	G3	V12	60/90	
-187	B9T75	E5	V9	60/90	Connect rL to HSB.
$\overline{187}$	B9T40	E3	v8	60/90	
$\checkmark 188 \mathrm{~A}$	C5V77	E7	V10	60/90	With<3 signal. Transfer (rL) to HSB.
$\sqrt{188 \mathrm{~A}}$	C5V75	E5	V9	60/90	
,188B	C5V83	G4	V12	60/90	Replace sign digit with a decimal zero. Set T0 and STOP FF's after each Time-on minor cycle if IOS is in "One Addition".
$\sqrt{188 \mathrm{~B}}$	C5V81	G1	V11	60/90	
$\checkmark 188 \mathrm{C}$	C5v87	G7	V14	60/90	With ≥ 3 signal. Connect rF to HSB. Step PC upon completion of each IER-OR CYCLE.
$\overline{188 \mathrm{C}}$	C5v85	G6	V13	60/90	
/190	B3T78	E2	V9	60/90	Connect HSB to rF , and operate rF clear gate.
$\checkmark \overline{190}$	B3T50	E7	V10	60/90	
$\checkmark 192$	B5T41	E2	V8	60/90	Connect rF to HSB.
$\overline{192}$	B5T74	E5	V9	60/90	
493	B3T29	(A3) 44	V1	60/90	Operate extract circuit in rF.*
$\overline{193}$	B3T28	(E5) ${ }^{5}$	V6	60/90	
-200	Bl1T66	C3	V5	60/90	Connect CR and $\mathrm{CU}(000000$ 00) to HSB. ${ }^{* *}$
$\sqrt{200}$	B11T68	C6	v6	60/90	

* Transfer is controlled by (rF). If the LSB of the corresponding digit in rF is a binary zero, the digit from rM is read onto the HSB. If the LSB is a binary one, the digit from $r M$ is replaced with a decimal zero.
** The four LSD's of (CR) are merged with eight decimal zeros from CU to make a complete word which is transferred to HSB.

ANALYSIS OF
INSTRUCTIONS

Function Table	Chassis	TT	Tube	S/NS	Definition
-201	B2T26	A2	V1	60/90	Operate HSB CR gate, operate CR clear gate.
$\checkmark 203$	C2V46	G1	V11	60/90	Connect CR1 to CR2. (LH Instruction sets up at t 7 of Gamma T0)
203K	C2V28	A3	$\mathrm{V1}$	60/90	To FTOC.
204	C2V83	G4	V12	60/90	Connect CR1 to SR Distributor Line.
-206	B2T64	C1	V4	60/90	Supply EP.
$\sqrt{206}$	B2T65	C2	v5	60/90	
-208A	C1V53	G7	V14	60/90	Connect HSB to CC.
- 208B	C1V51	G5	V13	60/90	Operate CC clear gate.
, 209A	B11T85	G6	V13	60/90	If Conditional Transfer FF is set, connect HSB to CC. \qquad \qquad
, 209B	B11T87	G8	V14	60/90	If CT FF is set, operate CC clear gate.

210	C2V44	E8	V10	60/90	Connect CC to HSB.
-210	C2V75	E5	v9	60/90	
- 212A	C2V62	A8	V4	60/90	Connect CC to adder min input.
$\sqrt{212 \mathrm{~A}}$	C2V60	A5	v3	60/90	
212B	C2V71	E3	v8	60/90	Clear CC.
. 212C	C2V70	C7	v7	60/90	Transfer sum from unbarred adder to CC. \qquad \qquad \qquad \qquad
$\times 212 \mathrm{D}$	C2v37	C5	V6	60/90	Connect CU (000000 000001) to adder sub input.
$\overline{2120}$	C2V66	C3	V5	60/90	
- 213 CK	B8T87	G17	V14, ${ }^{1}$	-20/+5	Operate shift selector checker.
'213	B10T70	C7	V7	60/90	Step PC once each minor cycle.*
$\longdiv { 2 1 3 }$	B10T73	E3	v8	60/90	

* If PC is advanced in excess of thirteen, an Overshift signal is developed which stops machine operation by setting FT Intermediate Checker FF and TO.

ANALYSIS OF INSTRUCTIONS

UNIVAC II

Function Table	Chassis	TT	Tube	S/NS	Definition
214	B2T51	G4	V12	60/90	Step PC, set TO.
$\overline{214}$	B2T52	G5	V13	60/90	
$\checkmark 215$	B7T68	C6	V7	60/90	Supply EP.
$\sqrt{215}$	B7T37	C5	V6	60/90	
W217	B7T87	G7	V14	$60 / 90$	Set Stop FF if Comma Breakpoint switch is depressed.
$\sqrt{217}$	B7T85	G6	V13	60/90	
- 218	19	Gl	V11	60/90	Set Stop FF.
- $\overline{218}$	B9T44	E7	V10	60/90	
-226	B10T64	C3	v5	60/90	Set Repeat FF.
$\overline{226}$	B10T37	$\begin{aligned} & C 5 \\ & E 5 \end{aligned}$	V6	60/90	
$\sqrt{228}$	B12T87	G7	V14	60/90	Reset Repeat FF at end of IER OR CYCLE.
$\sqrt{228}$	B12T85	G6	V13	60/90	
-236	B9785	G5	V13	60/90	Set Stop FF with CT Selector. Switch signals during Q or T instructions.
-236	B9T48	G3	V12	60/90	
$/ 244$	B7T48	G3	V12	60/90	Set T0 at end of IER OR CYCLE.
$\sqrt{244}$	B7T79	G1	V11	60/90	
1245	B5T77	(E16) 1	V10	60/90	Transfer 4 LSD's of (CC) and
$\sqrt{245}$	B5T79	G1IG1	V11	60/90	O00000 00 from CU to HSB.
- 246	C4V56	A2	V1	60/90	If rA or rX comp error occurs, set TO at following tl.
$\overline{246}$	C4V58	A4	V2	60/90	
- 248	B7T66	C3	V5	60/90	Connect CR to HSB.
- $\overline{248}$	B7T62	A8	V4	60/90	
$\checkmark 401$	B2T49	E8	V10	60/90	Connect CU (000000 000000) to HSB.
- $\overline{401}$	B2T50	G2	V11	60/90	

ANALYSIS OF
INSTRUCTIONS

UNIVAC II

Function

Table	Chassis	TI	Tube	S/NS	Definition
, 428	Bl1T58	Al	V1	60/90	Operate HSB-AOC.
$\overline{428}$	B11T57	A3	V2	60/90	
$\checkmark 429$	B11T62	A7	V3	60/90	Operate HSB-OEC.
$\sqrt{429}$	Bl1T64	Cl	V4	60/90	
$\sqrt{435 A}$	B3T48	G4	V12	60/90	Operate adder 0 E and sum comparison checkers.
-435B	B3T46	G2	V11	60/90	
604A	B4T42	E4	V9	60/90	Gate LE of FT604 to ending pulse delay.
$\sqrt{604 B}$	B4T54	Al	V1	60/90	
$\checkmark 606$	B4T31	A6	V3	60/90	Gate "O Select" signal to determine if computer will pass interlock to start transfer operation.*

607	B4T50	G6	V13	60/90	Gate IRG to pick Interlock relay in Uniservo (n).
.608	B4T64	Cl	V4	60/90	Inhibit step PC, supply EP if Uniservo is rewound.
$\checkmark 609$	B4T79	Gl	V11	60/90	If Direction Memory agrees with instruction, gate EP to control circuits.
609G	B4T46	Notub	51	$n \tau$	To FTIC.
$\sqrt{614}$	B4T77	E7	V10	60/90	Gate EP to set Read Forward and Start Read FF ${ }^{\text {s }}$ s after appropriate delay.
/615	B4T48	G4	V12	60/90	Gate EP to set Write Forward and Start Write FF^{P} s after appropriate delay.

产 Computer will pass interlock if: l. Read Interlock is reset.
2. Reversal Memory is reset.
3. IO INT-FF is reset.
4. First Block Memory is reset.
5. No rewind has been initiated within 3 ms .
\%* Length of time before Write Forward FF is set is determined by condition of Reversal Memory.

Function

Table
$\sqrt{616}$
Chassis TT

Tube	S/NS
V8	$60 / 90$

Definition

Generate signal to pass Supervisory Control interlock provided that no read, Supervisory Control type-out, or Supervisory Control type-in is in progress.

$\sqrt{617}$	B4T28	A4	V2	60/90	Gate IRP to set Supervisory Control Output FF, set Write Interlock.
$\checkmark 619$	B4T53	G7	$\frac{\sqrt{V 16}}{\sqrt{2}, 4}$	60/90	Generate BP signal and supply pulse to initiate Rewind Start circuits.
$\sqrt{621}$	B4T66	C5	V6	+5/-20	Gate IRP as Sequence I Preset.
. 629 G	B4T38	Cl4	V5	30/90	Generate nS (servo select) signal from Second Instruction digit.
L641+	B5V62	A18	$\text { V4, } 1$	+5/-20	Inhibit set of M_{1} cores, strobe rI sense amplifiers, and transfer $\mathrm{M}_{2} \rightarrow \mathrm{M}_{1}$ and $\mathrm{M}_{2} \rightarrow \mathrm{rI}$. Step rI address counters once for each word transferred until " 59 " signal occurs, at which time set MTO, step PC , and set TO .

641+	B5V71	E12	v8, $5+5 /-20$
$\checkmark 641$	B5V31	A16	V3, $4,1-20 /+5$

Permits the rI Preset error to be recognized during $\mathrm{PC}-2$ only in the $3 n$ or $4 n$ instruction.

/645+	B5V44	E16	V10, $9+5 /-20$	Operate Input Distributor for typein.
-669	B7T58	Al3	v2, $3+5 /-20$	Gate IRP to generate Sequence 0 Preset.
, 681+	B4V41	E12	v8, ${ }^{\text {S }}+5 /-20$	Transfer M3 \longrightarrow r0. Step r0 address counters once for each word transferred until "59" signal occurs at which time set MTO, step PC, and set T0.
$\overline{681+}$	B4V79	G11	V12,9 +5/-20	
$\sqrt{681}$	B4V38	E18	$\begin{aligned} & \text { V11-20/+5 } \\ & 12,9 \end{aligned}$	Permits the ro No Address error to be recognized during PC-2 only of the $5 n$ or $7 n$ instruction.

Function Table	Chassis	TT	Tube	S/NS	Definition
$685+$	B5V81	G12	V12, ${ }^{\prime}$	+5/-20	Read M_{3}, transfer $M_{3} \longrightarrow M_{4}$, type out digit on SC printer.
$\checkmark 714 \mathrm{~A}$	B6T60	Cl	V4	60/90	Operate adder for $12-$ place addition.
$\overline{714 \mathrm{~A}}$	B6T31	A6	v3	60/90	
$\sim 144 \mathrm{~B}$	B6T35	C6	V6	60/90	
$\longdiv { 7 1 4 \mathrm { B } }$	B6T33	C4	V5	60/90	
$\checkmark 714 \mathrm{C}$	B6T77	E3	v8	60/90	
$\overline{714 \mathrm{C}}$	B6T44	E2	V7	60/90	
$\stackrel{737}{ }$	C2v87	G8	V14	60/90	Enables a tl pulse to reset the Overflow flip-flop.
$\checkmark \overline{737}$	C2V85	G6	V13	60/90	
-816+	B7V30	Al5	v3, 1	+5/-20	When the rZW tens and units counters read zero, gate a t59 to set MTO.*\#
$\sqrt{816 t}$	BTV67	C15.	v6, 4	$\div 5 /-20$	
L817+	B7V46	G12	V11,9	+5/-20	Preset rZW units counter to the elevens complement of the 2nd Instruction Digit. when counter reads zero, gate t59 to set MTO.
	B7U5O	G17	V13, 14,12	+5/-20	
$\sqrt{817+}$	B7V52	G18	V14,12,	+5/-20	
-818+	B6V62	Al7	V4, 3	+5/-20	Whable the set of the rZMAR Read FF. following tl.
-818+	B6V64	C12	V5, 6	+5/-20	
$-819+$	B3V76	E3	v9, 8	+5/-20	Strobe rZW sense amplifiers.
- $820+$	B2V27	A12	V1, 2	+5/-20	Enable set of rM, rZW Read/Write FF's, set M_{1} cores.
\checkmark 821+	B2V37	C15	v6, 5	+5/-20	Generate Strobe rM signal.
-823+	B3V55	C17	v2, 1	+5/-20	Develop Staticize Pulse, Read M_{1} cores, $M_{1} \longrightarrow P S, M_{1}$ to staticizer.
$\checkmark 823$	B3V83	G16	V14	60/90	

* If 2nd Instruction Digit is a 7, 8, 9, or 0, treat instruction as a Skip if Compatibility switch is set to Univac II.
\# If Compatibility switch is set to Univac I, the rZW tens counter is preset to zero.

Function Table	Chassis	TT	Tube	S/NS	Definition
/824B	B2V31	${ }^{4}{ }^{4} 7$	(v3)	$+5 /-20$	Develop Serialize Pulse, Read M_{1} Cores, $M_{1} \longrightarrow P S, M_{I} \longrightarrow$ Serializer.
824A	B2V79	E16\% 6	V11	60/90	0perate $\mathrm{rM} \longrightarrow$ HSB "extract" circuits.
$\overline{824 A}$	B2V51	G8	V14	60/90	
. 825-	B4V55	All	V1, ${ }^{2}$	-25/gnd	Set MTO. \times
. $\overline{825}$	B4V59	Cll	V4, ${ }^{3}$	$-25 / \mathrm{gnd}$	X
/826+	B3V37	C15	V7, 6	$+5 /-20$	Set $\mathbf{r M}$ and rZW Read/Write $\mathrm{FF}^{\text { }} \mathrm{s}$, Set M_{1} cores.
- 827+	B2V74	E18	V10,9	$+5 /-20$	Set BCM to RM.
$\overline{827}$	B2V69	C18	VT, X	$+5 /-20$	
L. $829+$	B2V81	G2G12	V12, 1	-5/-20	Transfer $\mathrm{M}_{1} \rightarrow \mathrm{M}_{3}$.
-831	B9T54	Al	V1	60/90	Complement the operation of the "extract" circuit.*
- $\overline{831}$	B9T87	G7	V14	60/90	
832	B9T37	C6	V6	$60 / 90$	Disconnect CU (000000 000000) input to "extract" circuit, connect rA.
$\checkmark \overline{832}$	B9T70	C7	V7	60/90	
$\longdiv { 8 3 3 + }$	B6V79	Gl	$\mathrm{V} 11 / 2$	$+5 /-20$	Step rM counters and rZW units counter once each minor cycle until rZW units counter reads zero.
$\checkmark \overline{833+}$	B6V86	G7	V14,/3	$+5 /-20$	
- 850	ClV47	G1	V11	60/90	Connect CC to SR via CR2.\#
C860+	B7V71	E12		$+5 /-20$	Operate rin address exceeded and preset checkers.
$\downarrow^{\prime 860}$	B7V26	Ell	V7	+30/+90	
$\checkmark 861 \mathrm{~A}$	B7T47	$\mathrm{Al}_{\mathrm{E}} \mathrm{t}$	V10, 1	-20/+5	Inhibit rM line drivers.
$\checkmark \overline{861 A}$	B7T41	E12	$\text { v8, } 1$	$-20 /+5$	
$\checkmark 861 \mathrm{~B}$	B7T72	$\begin{array}{r} \text { A } \\ \times \text { E14 } \end{array}$	V9 V':	+30/+90	
Dumay 1	B8V26	(A2) G/2	サ 112	60/90	Enforce order of "eveness" in FTOC.

\# RH Instruction set up at t7 of Delta T0.

