
·-

•

Sort/Merge
Macroinstructions

User Guide/Programmer
Reference

This Library Memo announces the release and availability of Updating package A to "SPERRY®
Operating System/3 (OS/3) Sort/Merge Macroinstructions User Guide/Programmer Reference",
UP-9072 Rev. 1.

This update corrects Table 1-2, Comparison of Transfer Rates for Magnetic Tape Devices. It adds two
co!umns to this table.

Copies of Updating Package A are now available for requ1s1t1oning. Either the updating package only or the
complete manual with the updating package may be requisitioned by your local Sperry representative. To
receive only the updating package, order UP-9072 Rev. 1-A. To receive the complete manual, order UP-9072
Rev. 1.

Mailing Lists
BZ, CZ, and MZ

Mailing Lists BOO, 818, 28U, and 29U
(Package A to UP-9072 Rev. 1,
9 pages plus Memo)

Library Memo for .
UP-9072 Rev. 1-A

January, 1985

--··

•

•

•

•

•
• UNISYS

•

•

OS/3
Sort/Merge
Macroi nstructions
Programming
Guide

Copyright© 1987 Unisys Corporation
All Rights Reserved
Unisys is a trademark of Unisys Corporation.
Previous Title: OS/3 Sort/Merge Macroinstructions

User Guide/Programmer Reference

Relative to Release
Level 9.0

Priced Item

August 1987

Printed in U S America
UP-9072 Rev. 1

NO WARRANTIES OF ANY NATURE ARE EXTENDED BY THE
DOCUMENT. Any product and related material disclosed herein are only
furnished pursuant and subject to the terms and conditions of a duly
executed Program Product License or Agreement to purchase or lease
equipment. The only warranties made by Unisys, if any, with respect to
the products described in this document are set forth in such License or
Agreement. Unisys cannot accept any financial or other responsibility that
may be the result of your use of the information in this document or
software material, including direct, indirect, special or consequential
damages.

You should be very careful to ensure that the use of this information
and/or software material complies with the laws, rules, and regulations of
the jurisdictions with respect to which it is used.

The information contained herein is subject to change without notice.
Revisions may be issued to advise of such changes and/or additions.

FASTRAND, +SPERRY, SPERRY+UNIVAC, SPERRY, SPERRY UNIVAC,
UNISCOPE, UNISERVO, UNIS, UNIVAC, and + are registered trademarks
of Unisys Corporation. ESCORT, PAGEWRITER, PIXIE, PC/IT, PC/HT,
PC/microlT, SPERRYLINK, and USERNET are additional trademarks of
Unisys Corporation. MAPPER is a registered trademark and service mark
of Unisys Corporation. CUSTOMCARE is a service mark of Unisys
Corporation.

•

•

•

•

•

•

UP-9072 Rev. 1

Page
Part/Section Number

Cover

Title Page/Disclaimer

PSS 1

Preface 1, 2

Contents 1

2 thru 4

1 1, 2

3 thru 5

6 thru 11

2 1 thru 49

3 1 thru 6

4 1 thru 14

5 1 thru 14

Appendix A 1 thru 3

Appendix B 1 thru 4

Appendix C 1 thru 11

Appendix D 1 thru 13

Index 1 thru 7

User Comment Form

"New pages

SPERRY OS/3
SORT /MERGE MACROINSTRUCTIONS

PAGE STATUS SUMMARY

ISSUE:
RELEASE LEVEL:

Update B - UP-9072 Rev. 1
9.0 Forward

Update

Level

B

B"

B

Orig.

A

Orig.

Orig.

A

Orig.

Orig.

Orig.

Orig.

Orig.

Orig.

Orig.

Orig.

Orig.

Orig.

Part/Section
Page

Number

Update

Level
Part/Section

PSS 1
Update B

Page

Number

Update

Level

All the technical changes are denoted by an arrow (=>) in the margin. A downward pointing arrow (J>) next to a line indicates that
technical changes begin at this line and continue until an upward pointing arrow (1t) is found. A horizontal arrow (=>) pointing to a line
indicates a technical change in only that line. A horizontal arrow located between two consecutive lines indicates technical changes in both
lines or deletions.

•

•

•

•

•

•

UP-9072 Rev. 1 SPERRY OS/3 Preface 1
SORT /MERGE MACROINSTRUCTIONS

Preface

This manual is one of a series designed to instruct and guide the programmer in the use
of the SPERRY Operating System/3 (OS/3). It specifically describes the use of the
subroutine sort/merge program available to the System 80 user of OS/3. The intended
audience is the experienced programmer with a thorough knowledge of data processing
and programming experience in basic assembler language (BAL).

An introductory manual, the introduction to sort/merge, UP-8835, also is available. It
briefly describes the general characteristics and facilities offered by the sort/merge
programs for OS/3 .

Other current OS/3 publications referenced in this manual that are helpful when using
sort/merge macroinstructions are:

• System service programs (SSP) user guide, UP-8841

Describes various system utilities (e.g., librarian, linkage editor).

• Consolidated data management concepts and facilities, UP-9978

Describes the organization and record formats of various file types.

• Consolidated data management macroinstructions user guide/programmer reference,
UP-9979

Describes the data management macroinstructions

• Basic data management user guide, UP-8068

Describes the effective use of OS/3 basic data management

• Job control user guide, UP-9986

Describes the job control language used under OS/3 .

• General editor user guide/programmer reference, UP-9976

Describes the OS/3 general editor (EDT).

UP-9072 Rev. 1 SPERRY OS/3 Preface 2
SORT /MERGE MACROINSTRUCTIONS

In this manual, subroutine sort/merge subject matter is divided into the following
sections:

• Section 1 . Basic Concepts

Introduces you to subroutine sort/merge, gives you some program restrictions and
considerations, tells you how to structure your data, and describes the operational
phases.

• Section 2. Sort/Merge Requirements You Supply

Describes what you must do to run your sort/merge program, including:

initiating the operation;

defining files;
"'

explaining run requirements (MR$PRM macro);

getting data into and out of the sort process;

assembling, linking, and executing your program; and

submitting sort parameter table entries via the job control stream.

• Section 3. User Own-Code Routines

Describes the record sequence own-code routine (RSOC) and the data reduction own
code routine (DROC).

• Section 4. Special Applications

Describes tag sorts, restart facilities, and the merge-only function.

• Section 5. Program Examples

Provides program examples for a tape sort. a tape sort with restart, a tape sort using
an own-code routine, and an internal sort.

The following appendixes are also included:

• Appendix A. Statement Conventions

• Appendix B. Contents of Sort Parameter Table

• Appendix C. Standard EBCDIC and ASCII CoUating Sequences

• Appendix D. Summary of Sort/Merge Macroinstructions

•

•

•

UP-9072 Rev. 1 SPERRY OS/3
SORT /MERGE MACROINSTRUCTIONS

•

PAGE STATUS SUMMARY

PREFACE

CONTENTS

1. BASIC CONCEPTS

• 1.1. GENERAL

1.2. WHAT SORT/MERGE DOES FOR YOU

1.3. PROGRAM RESTRICTIONS AND CONSIDERATIONS
1.3.1. Main Storage Allocation
1.3.2. Auxiliary Storage Work Area Assignments
1.3.3. 1/0 Data File Organization
1.3.4. Sort Options

1.4. STRUCTURING YOUR INPUT/OUTPUT DATA

1.5. ELEMENTS AFFECTING PERFORMANCE OF A SORT PROGRAM

1.6. SORT/MERGE OPERATION

1.7. SORT/MERGE OPERATIONAL PHASES
1.7.1. Sort Initialization and Assignment
1.7.2. Initial Sort
1.7.3. Preliminary Merge
1.7.4. Final Merge

2. SORT/MERGE REQUIREMENTS YOU SUPPLY

2.1. GENERAL • 2.2. INITIATING THE OPERATION

2.3. DEFINING FILES

Contents 1
Update A

Contents

1-1

1-2

1-3
1-4
1-4
1-6
1-6

1-6

1-9

1-10

1-10
1-10
1-11
1-11
1-11

2-1

2-3

2-4

UP-9072 Rev. 1 SPERRY OS/3 Contents 2
SORT /MERGE MACROINSTRUCTIONS

2.4. EXPLAINING RUN REQUIREMENTS TO SORT /MERGE 2-7 • 2.4.1. Required MR$PRM Parameters 2-7
2.4.2. Optional MRSPRM Parameters 2-14
2.4.2.1. Device Assignment Parameters 2-15
2.4.2.2. Record Definition Parameters 2-17
2.4.2.3. Restart Parameter 2-21
2.4.2.4. Miscellaneous Parameters 2-21
2.4.3. MR$PRM for the Disk Sort Program 2-27

2.5. ACTIVATING SORT/MERGE (MR$0PN) 2-28

2.6. GETTING DATA INTO THE SORT PROCESS 2-29

2.7. PASSING CONTROL TO THE OUTPUT PROCESS 2-30

2.8. DRAWING DATA FROM THE SORT PROCESS 2-31

2.9. ENDING THE SORT RUN 2-32

2.10. SORT /MERGE MACROINSTRUCTION PARAMETERS 2-36

2.11. ASSEMBLING, LINKING. AND EXECUTING YOUR PROGRAM 2-37
2.11.1. Assembling the Program 2-37
2.11.2. Link Editing the Program 2-39
2.11.3. Executing the Program 2-39
2.11.4. Typical Subroutine Disk Sort Job Control Stream 2-41 • 2. 11.4.1 . Alternate Job Control Stream 2-45
2.11.5. Job Control Stream for Tape Work File Assignment 2-47

2.12. SUBMITTING SORT PARAMETER TABLE ENTRIES VIA THE JOB
CONTROL STREAM 2-47

2.13. RUNNING YOUR SORT JOB FROM A WORKSTATION 2-48

3. USER OWN-CODE ROUTINES

3.1. GENERAL 3-1

3.2. RECORD SEQUENCE OWN-CODE ROUTINE (RSOC) 3-1

3.3. DATA REDUCTION OWN-CODE ROUTINE (DROC) 3-3

4. SPECIAL APPLICATIONS

4.1. TAG SORT 4-1

4.2. RESTART FACILITIES 4-2

4.3. MERGE-ONLY FUNCTION 4-2
4.3.1. What Merge-Only Does for You 4-3 • 4.3.2. Merge-Only Requirements You Supply (MG$REL and MG$RET) 4-3
4.3.3. Assembling, Link Editing, and Executing a Merge-Only Program 4-13

UP-9072 Rev. 1 SPERRY OS/3 Contents 3
SORT /MERGE MACROINSTRUCTIONS

• 5. PROGRAM EXAMPLES

5.1. GENERAL 5-1

5.2. TAPE SORT 5-1

5.3. TAPE SORT WITH RESTART USING PARAM STATEMENT 5-6

5.4. TAPE SORT USING OWN-CODE ROUTINE 5-10

5.5. INTERNAL SORT 5-14

APPENDIXES

A. STATEMENT CONVENTIONS

A.1. GENERAL FORMAT RULES A-1

A.2. MACROINSTRUCTION FORMAT RULES A-3

B . CONTENTS OF SORT PARAMETER TABLE

• c. STANDARD EBCDIC AND ASCII COLLATING SEQUENCES

C.1. GENERAL C-1

C.2. EBCDIC/ASCII/HOLLERITH CORRESPONDENCE C-1
C.2.1. Hollerith Punched Card Code C-2
C.2.2. EBCDIC C-2
C.2.3. ASCII C-2

C.3. OS/3 COLLATING SEQUENCE FOR EBCDIC GRAPHIC CHARACTERS C-8

C.4. OS/3 COLLATING SEQUENCE FOR ASCII GRAPHIC CHARACTERS C-10

D. SUMMARY OF SORT/MERGE MACROINSTRUCTIONS

D.1. GENERAL D-1

D.2. MG$REL D-1

D.3. MG$RET D-2

D.4. MR$0PN D-3

• D.5 . MR$PRM D-4

UP-9072 Rev. 1 SPERRY OS/3 Contents 4
SORT /MERGE MACROINSTRUCTIONS

D.6. MR$REL D-12 • D.7. MR$RET D-12

D.8. MR$SRT D-13

INDEX

USER COMMENT SHEET

FIGURES

1-1. Input Data Records before Sort 1-7
1-2. Data Records after Sort 1-8

2-1. Disk Sort Program Flowchart 2-2
2-2. Data Management Macroinstruction Specifications 2-5
2-3. Sort/Merge Disk Sort Coding 2-6
2-4. Key Field on Byte Boundary 2-8
2-5. Binary Key Field with Bit-Byte References 2-8
2-6. Main Storage Area Allotted by STOR without Number of Bytes Specified 2-12
2-7. Main Storage Area Allotted by STOR Specifying Maximum Number of Bytes 2-13
2-8. Input File, Unsorted Records (Additional Data Fields Not Shown) 2-18 • 2-9. Tag-Sorted Output Files 2-18
2-10. Variable-Length Records and BIN Size 2-19
2-11. ADT ABL Parameter Adding Table Entries within the Same Program 2-22
2-12. ADT ABL Parameter Referencing Table in Previous Program 2-23
2-13. Disk Sort Parameters 2-27
2-14. Disk Sort Program Coding 2-33
2-15. User Program Interface with Sort/Merge 2-35
2-16. Assembly, Linkage Edit, and Execution Run System Flowchart 2-40
2-17. Disk Sort Program Job Control Stream 2-41
2-18. Typical Job Control Stream for a Sort/Merge Application 2-45
2-19. Alternate Job Control Stream for a Disk Sort Program 2-46

4-1. Subroutine Merge-Only Program Flowchart 4-4
4-2. Merge-Only Program Coding 4-11
4-3. User Program Interface with Merge-Only 4-14

TABLES

1-1. Comparison of Data Capacities and Access Speeds for Direct Access Devices 1-5 ._.. 1-2 . Comparison of Transfer Rates for Magnetic Tape Devices 1-5

2-1. Data Format Codes 2-9
2-2. Summary of Sort/Merge Parameter Usage 2-38

B-1. Sort Parameter Table B-2 • C-1. Cross-Reference Table: EBCDIC/ ASCII/Hollerith C-2
C-2. OS/3 Collating Sequence: EBCDIC Graphics C-8
C-3. OS/3 Collating Sequence: ASCII Graphics C-10

•

•

•

UP-9072 Rev. 1 SPERRY OS/3 1-1
SORT /MERGE MACROINSTRUCTIONS

1 . Basic Concepts

1.1. GENERAL

Subroutine sort/merge is a modular sort program that requires a good working knowledge
of basic assembler language (BAL) and data management macroinstructions. It is not a
canned service program; i.e., you will have to assemble, link, and execute subroutine
sort/merge in addition to programming many of the other activities that are automatically
performed by canned programs. However, this allows you to write the sort program you
want using the modules provided by subroutine sort/merge and gives you greater control
over the sort process, including flexibility in specifying:

• external input record formats;

• sources of input records;

• externa I output record formats; and

• disposition of final output records.

When using subroutine sort/merge, you get directly involved with job control, data
management, and the assembler. Your responsibilities include:

• providing the routines for inputting and outputting data;

• establishing the necessary communication links between your program and
subroutine sort/merge;

• opening and closing files;

• defining files;

• reserving buffer areas;

• manipulating register addresses;

• delivering data to and retrieving data from the sort; and

• initiating and terminating the sort process .

UP-9072 Rev. 1 SPERRY OS/3 1-2
SORT /MERGE MACROINSTRUCTIONS

By design, subroutine sort/merge can be incorporated as part of a much larger program
or, if combined with input and output routines, it can be part of a more conventional run
where sorting is the primary objective. BAL serves as the medium through which you
establish the communications link to subroutine sort/merge.

When we refer to subroutine sort/merge as a modular program, we mean that rather than
writing separate sort programs for every conceivable type of sort, we have broken the sort
process into a group of interrelated, yet independent, functional subtasks. The subtasks
are coded as executable routines and provided to you as load modules residing in the
system load library (YLOD).

The implementation of load modules into your job is based on the structure you establish
in your job stream. That is, you define the type of sort you want performed through
parameterized statements in your job control stream, and the sort program will structure
the sort/merge process accordingly. One of the advantages of modular programming is
that it conserves main storage space. The sort program loads only those modules needed
for the particular sort/merge phase being executed.

In addition to the sort modules, the subroutine sort/merge has a call module to interface
each sort module or routine with the system. This call module is the sort common module
(SG$0RT), which resides in the system object library file (Y0BJ).

If you wish to copy subroutine sort/merge into your own user library file, you can do .so by
means of the librarian, as described in the system service programs (SSP) user guide, UP-
8841 (current version). Be sure to include the following modules:

• Sort common module (SG$0RT) from the system object library file (Y0BJ)

• Five sort/merge macroinstructions beginning with MR$ and two merge-only
macroinstructions beginning with MG$ from the system macro library file (YMAC)

1.2. WHAT SORT/MERGE DOES FOR YOU

Subroutine sort/merge assists you in producing an ordered, tailored output file from
your existing input data files. Through the sorting and merging techniques employed in
subroutine sort/merge, you can:

• sort records in ascending or descending sequence;

• sort fixed-length or variable-length records;

• sort records with noncontiguous key fields;

• recognize key fields in the following formats:

character

binary (signed or unsigned)

•

•

•

•
UP-9072 Rev. 1 SPERRY OS/3

SORT /MERGE MACROINSTRUCTIONS

decimal (signed zoned and unsigned zoned)

packed decimal

leading and trailing sign numeric

EBCDIC data in ASCII collating sequence

floating point (single and double precision)

1-3
Update A

• sort two or more different characters having the same collating value (multiple
character sort);

• sequence files in accordance to user-specified (alternate) collating sequence;

• perform data validity and data integrity checks during sorting; and

• perform restart procedures for tape sorts.

The successful execution of your job results in a terminated normally indication printed on
your job log and a list of the total number of records included in the sort and the total
number of records deleted from the sort.

• 1.3. PROGRAM RESTRICTIONS AND CONSIDERATIONS

•

Variation in program design, capability, and implementation sometimes restricts the use
of a subroutine sort program for specific applications or for specific system
configurations. Consideration should be given to the following:

• All sorting is limited to storage-only, disk-only, or tape-only, single-cycle sorts.

• Input and output files can be diskette, disk, card, or tape.

• Auxiliary storage work areas can be either disk or tape, but not both. Subroutine
sort/merge is limited to eight disk files or six tape files.

• Volume of data sorted and merged is limited by the type and physical capacity of
the tape or disk space assigned as auxiliary work storage.

• User own-code routines can be substituted for the sort routines provided only if
they satisfy the requirements of the program and OS/3 programming conventions.

• Subroutine sort/merge can only be executed in a batch environment; i.e., it cannot
be initiated from a workstation.

• The FIL TYPE parameter is ignored when the system is generated to support only
consolidated data management mode file access .

UP-9072 Rev. 1 SPERRY OS/3
SORT /MERGE MACROINSTRUCTIONS

1-4
Update A

• If the system supports both consolidated data management and DTF file access,
the FIL TYPE parameter may be used to specify the file type as IRAM (for MIRAM),
NI, or SAM.

If the FIL TYPE parameter is not specified, the output file type will be the same as the
input file type. Or, if an input file is not specified, the output file type will be MIRAM.

1.3.1. Main Storage Allocation

In general, the more main storage available to a sort program, the more efficient the
performance. It decreases the number of 1/0 functions because fewer passes are
needed to produce strings of sequenced data for final merging. Therefore, proper
consideration to main storage requirements reduces processing time and increases
program efficiency.

Subroutine sort/merge requires a minimum of 12,400 bytes of main storage. If the record
length is greater than 100 bytes, you should allow 12;400 bytes plus five times the input
record length. (These figures do not include the requirements for your program, its
preamble, or your own-code routines.)

An internal-only sort/merge (performed entirely in main storage) requires sufficient main
storage to hold the entire input file, plus eight bytes for each record, in addition to the
preceding requirements.

Performing large-volume sorts is most efficient when 50,000 to 150,000 bytes of main
storage are allocated.

1.3.2. Auxiliary Storage Work Area Assignments

Work areas may be assigned as auxiliary storage on either tape or disk, but not both. If
disk storage is used, all work area disks must be the same general type, i.e., sectorized or
nonsectorized. It is important not to underestimate the amount of auxiliary storage
required. When possible, avoid assigning the bare minimum of auxiliary storage needed;
otherwise, the sort program must perform a greater number of intermediate merge passes
to sequence records. This wastes time and reduces program efficiency. Because the
volume of data processed varies with the quantity and type of magnetic tapes or disks
assigned as auxiliary storage, selecting auxiliary storage devices with faster data transfer
rates results in a faster sort. Data volume doesn't reduce sort performance.

Disk space is assigned by using standard sort work file names DM01, ... ,DMOn or system
scratch space file names $SCR1 , ... ,$SCRn (in consecutive order) on LFD job control
statements, or by using WORK jproc calls. If one work file is allocated, the file name
DM01 or $SCR1 must be assigned; if two are used, the names DM01 and DM02 or
$SCR1 and $SCR2 must be assigned, and so forth. A maximum of eight disk files may be
assigned to subroutine sort/merge programs. The amount of disk space requested must be
sufficient to hold the entire volume of data to be sorted, plus 10 to 20 percent additional
space for overhead requirements. (An additional 10 to 20 percent space should be
requested if data involves variable-length records.) In addition, all disk files used in the
sort operation must be the same type; i.e., mixed disk types are unacceptable. Table 1-1
contains data capacities and access speeds of the direct access storage devices.

•

•

•

•

•

•

UP-9072 Rev. 1 SPERRY OS/3
SORT /MERGE MACROINSTRUCTIONS

1-5
Update A

Table 1-1. Comparison of Data Capacities and Access Speeds for Direct Access Devices

Disk Subsystem Type

Characteristics
8416 8417 8418-92/93 8418-94/95 8419 8430 8433 8470

Maximum data capacity 28,958,720 118,270,000 28,958,720 57,917,440 72,396,800 100,018,280 200,036,560 491,520,000
(8·bit bytes per disk pack)

Maximum track capacity 10,240 15,360 10,240 10,240 12,800 13,030 13,030 24,576
(bytes)

Minimum cylinder access 10 7 10 10 10 7 7 4
time (ms)

Average cylinder access 30 35 27 33 33 27 27 23
time (ms)

Maximum cylinder access 60 70 45 60 60 50 50 46
time (ms)

When tape is used, the auxiliary storage work areas use labeled or unlabeled tapes.
Work files are assigned by using standard tape sort file names SM01 through SM06 (in
consecutive order) on LFD job control statements. A minimum of three tape units, and a
maximum of six, may be assigned. Each tape work file must be large enough to contain
all of the input data; i.e., the volume of data that can be processed in a tape sort is
limited to the capacity of the smallest reel of tape assigned to the sort. The speed (rate)
of data transfer varies according to the tape density (number of bits recorded across
the width of the tape) and tape device. Refer to Table 1-2.

Tape Density
(bpi*)

9-track
(phase encoded)

1600

9-track
(NRZI)
800

* bpi = bits per inch
**bps = bits per second

Table 1-2. Comparison of Transfer Rates for Magnetic Tape Devices

Data Transfer Rate (bps**)

UNISERVO 10 UNISERVO 22 UNISERVO 24 UNIVERSO 26 UNIVERSO 28

40,000 120,000 200,000 120,000 200,000

20,000 60,000 100,000 60,000 100,000

t

UP-9072 Rev. 1 SPERRY OS/3 1-6
SORT /MERGE MACROINSTRUCTIONS

1.3.3. 1/0 Data File Organization

Data file organization begins with record layouts. If you assume that you have a fixed
number of records, a file of large records takes longer to sort than a file of smaller records.
Also. larger keys and more keys per record increase sort time because lengthier
comparisons are needed.

Record sizes that exceed one-half track in length may require up to 100 percent more
space or twice the normal space calculated by multiplying the number of records to be
sorted by the record size.

1.3.4. Sort Options

When using subroutine sort/merge, there are two optional parameters in the MR$PRM
macroinstruction that can affect sort/merge performance time:

• NOCKSM

• USEQ

By specifying NOCKSM=D or NOCKSM=T, you suppress the calculation of a checksum
word for blocks written to disk (D) or tape (T). A checksum word is used to verify the
integrity of data blocks transferred from sort/merge to work files. The calculation and
operation of a checksum word increases overall sort/merge operation time. Similarly, if
you specify the USEQ optional parameter to indicate a special collation sequence other
than EBCDIC or ASCII, you again increase sort/merge execution time.

1.4. STRUCTURING YOUR INPUT /OUTPUT DATA

When you first consider the problem of sorting data, you may be faced with a large volume
of information that may or may not be organized into workable units. Dividing information
into records, blocks, and files helps both you and the computer identify where the data is
located and control the changes or manipulations you want performed. After carefully
examining the nature and content of the input data and determining the record layout and
block size that best suits your needs, you must indicate, via your control stream, what size
records and blocks you intend to input for processing and output after the sorting
operation is completed.

Records can be divided into smaller units called fields. Specific fields, called key fields or
just keys, are used for comparing records to arrange them in the order you want. To tell
the sort program which keys to use, you must specify the size and position of the keys
within records.

Figure 1-1 illustrates what the data contained in key fields of the first two input data
record blocks might look like before the sort:

•

•

•

--------- --

•
UP-9072 Rev. 1 SPERRY OS/3

SORT /MERGE MACROINSTRUCTIONS

Key Field -------------------
RECORD 1 I 0 I 0 I 3 1 2 I 1 1 6 1 5 1 4 I

RECORD 2 I 1 I 0 I 0 I 0 I 7 I 0 I 0 15 I

RECORD 3 I s l s 17 I 919 I 8 I 6 I 3 I I Block
1

RECORD 4 1914 16 I 0 I 0 I 0 15 1 4 I

RECORD 5 I 2 I 0 1416 13 I s I 4 14 I
RECORD 6 I s I 414 I a 16 I 5 I 5 I 5 I

• RECORD 7 I 0 I 3 I 0 H 0 I 6 I 0 I 0 I
RECORD 8 I a I a I a 15 15 I 2 19 16 I I Block 2

RECORD 9 1413 13 I 0 I 0 I 0 I 0 I 0 I
RECORD 10 171 0 15 I 0 19 I 31 0 I 0 I

Figure 1-1. Input Data Records before Sort

•

1-7

UP-9072 Rev. 1 SPERRY OS/3 1-8
SORT /MERGE MACROINSTRUCTIONS

Of course, your volume of data is much larger than the two 400-byte record blocks shown
in Figure 1-1, but the results of sorting the records in ascending order by key fields should
be as shown in Figure 1-2.

Key Field

RECORD 1

RECORD 2

RECORD 3 Block 1

RECORD4

RECORD 5

RECORD 6

RECORD 7

RECORD 8 Block 2

RECORD 9

RECORD10

Figure 1-2. Data Records after Sort

•

•

•

UP-9072 Rev. 1 SPERRY OS/3 1-9
SORT /MERGE MACROINSTRUCTIONS

• 1.5. ELEMENTS AFFECTING PERFORMANCE OF A SORT PROGRAM

•

•

The careful user should be aware of elements affecting the performance of his sort
program. These elements are:

• Available main storage

• Number and type of assigned auxiliary storage devices

• Record characteristics

• Input and output data file organization

• Options under which the sort program operates

Remember to be explicit in supplying instructions to your sort program and to be careful in
setting up your file and record formats. This results in faster sorts that require less central
processor time and reduces the number of 1/0 operations required. To improve program
efficiency, consider these factors during record and file preparation:

• Record size

• File size

• Key field size

• Number of key fields

• Record format

• File format

As a rule, simplfication reduces processing and the time needed to perform a function. By
simplifying the key fields and decreasing their number and size, you decrease the number
of comparisons and the length of time needed to make each comparison. Sort performance
improves when input and output records are blocked. Decrease record size and you
increase efficiency because a greater number of records are processed at one time for a
given amount of main storage.

To improve processing speed and efficiency:

• Be generous with storage; assign more than one 1/0 device to the sort for auxiliary
storage and more than the minimum amount of main storage.

• Simplify your file and record formats.

• Be explicit in defining your output file requirements to the sort program .

UP-9072 Rev. 1 SPERRY OS/3 1-10
SORT /MERGE MACROINSTRUCTIONS

1.6. SORT /MERGE OPERATION

Between your input stage and the output results, the program you write activates the
subroutine sort/merge to perform the sort and return control to your program. The
sort/merge modules reside in the system load library file (YLOD) located on the SYSRES
volume. When your program activates the subroutine sort/mege, it calls the appropriate
sort/merge modules into main storage as they are needed.

To call subroutine sort/merge, you must first link the SG$0RT object module to your
program. This module resides in Y0BJ and is automatically linked to your program
when you specify the label MR$0RT as an EXTRN. SG$0RT initiates subroutine
sort/merge when the MR$0PN macroinstruction is executed.

Before sorting can begin, your program must open the input file and read the input file
records from the appropriate input device. Your program reads input records, block by
block, into an 1/0 area in main storage called a buffer area. Buffer areas compensate for
the differences in speed between low-speed 1/0 devices and high-speed main storage
processing.

Using two buffer areas for record processing substantially increases sort speed. This
increase occurs because we can read records into one buffer while we empty the other
buffer into a work area for further processing.

As the input records are read, they are passed to subroutine sort/merge, where they are
sorted into sequenced strings of data and stored on disk work files. These strings are then
repeatedly merged to produce a single string of sorted data.

When a single merge pass produces one string of ordered records, the sort returns to your
program, which may then request the return of records one at a time in the order desired.
Your program can then put the records in the output buffer and write them to your output
file.

1.7. SORT /MERGE OPERATIONAL PHASES

The subroutine sort/merge operation consists of two or four phases. Each phase employs
a specified sort/merge module to perform a distinct function. As each phase of the
sort/merge is performed, the modules needed during that phase are loaded into main
storage and executed. The phases and the functions they perform are discussed in the
following subsections.

1.7.1. Sort Initialization and Assignment

The sort initialization and assignment phase is always executed first. It collects and
analyzes all information required by the phases that follow it to determine the overall
sort/merge requirements. It extracts this information from the data your program provides
via parameter statements either in the MR$PRM macroinstruction or the PARAM job
control statement. When the assignment function is completed, control normally passes to
the initial sort phase, except in a merge-only procedure, in which case, control passes to
the final merge phase.

•

•

•

UP-9072 Rev. 1 SPERRY OS/3 1-11
SORT /MERGE MACROINSTRUCTIONS

• 1.7.2. Initial Sort

•

•

In this phase, subroutine sort/merge accepts successive records from your program,
compares sort keys, and initially sorts them according to your specification (e.g., ascending
or descending sequence). The records are accumulated in sequential lists called record
strings. These strings are then written out to disk or tape. If you assign insufficient
auxiliary storage to your program, the sort job step terminates.

1.7.3. Preliminary Merge

The preliminary merge phase is initiated by the release of the last record to subroutine
sort/merge, which then repeatedly merges the record strings produced during the intitial
sort so that each successive pass produces fewer but longer sequential record strings. It
continues this process until only one final merge is needed to produce a single string of
sorted records. At this point, subroutine sort/merge passes control to the final merge
phase.

If the record strings produced during the initial sort phase can be sequenced in one merge
pass, preliminary merge is unnecessary and it is bypassed. This occurs when input to the
initial sort is small or closely resembles the final sequence desired, or a large amount of
main storage is available to the program. When a bypass occurs, the preliminary merge is
skipped and control passes from the initial sort phase to the final merge phase .

1.7.4. Final Merge

This phase performs the final merge of the sequenced record strings and produces a
single string of sorted records. These records are then made available to your program. At
this point, your program is responsible for requesting the return of the sorted records and
for writing them into your output file .

•

•

•

•

•

•

UP-9072 Rev. 1 SPERRY OS/3 2-1
SORT /MERGE MACROINSTRUCTIQNS

2. Sort/Merge Requirements
You Supply

2.1. GENERAL

Subroutine sort/merge (which we'll call simply sort/merge) provides greater control over
the sort/merge process than other sort programs available with OS/3. Naturally, the
benefits you receive for this control cost something - an increase in the programming you
must do. You will have to program many of the activities that are done automatically by
other canned sort/merge programs.

Writing your own routines requires a good working knowledge of basic assembler
language (BAL) and data management macroinstructions.

In this section, we'll discuss a disk sort/merge program showing the use of BAL
instructions and data management macros.

To activiate sort/merge, you use sort/merge macroinstructions, which you code as part of
your program. These instructions bring the sort/merge into your program as they are
needed. You will also need a job control stream consisting of control statements that

• name the devices used by your program and the sort/merge modules;

• describe label and space allocations; and

• call for the execution of assembly and linkage editor routines as they are needed.

An easy way to remember the sort/merge requirements you supply is to think of the word
IDEAS. Each letter of this word represents something your program must do when you use
sort/merge:

Initiate the operation.

D Define files.

E Explain sort/merge run requirements .

A Activate sort/merge services.

S Stop or end the sort/merge process.

UP-9072 Rev. 1 SPERRY OS/3 2-2
SORT /MERGE MACROINSTRUCTIONS

Before coding any program, a flowchart is helpful. The flowchart for a disk sort program
might look like Figure 2-1.

START

DEFINE MR$0RT AS EXTRN
TO LINK SORT COMMON

MODULE
(SGSORTl

SORT

DEFINE 1/0
FILES TO

DATA
MANAGEMENT

MR$PRM BUI LOS
SORT PARAMETER

TABLE

MR$0PN
OPENS

SORT/MERGE

SORTIN

OPEN DATA
INPUT
FILE

8 G,.E_TR_E_c __ _

READ
INPUT

RECORD

MRSREL
LOCATES AND

RELEASES
INPUT DATA

RECORD TO THE
SORT

CLOSE INPUT
DATA FILE

(NOT NECESSARY
TO CONTINUE

PROGRAM)

MRSSRT
INDICATES

END OF INPUT
DATA FILE

SOR TOUT

OPEN
OUTPUT

DATA FILE

,-;:\ RECRET \J--

NO

MRSRET
REQUESTS

SORT /MERGE TO
RETURN SORTED

RECORDS TO
YOUR PROGRAM

WRITE
SORTED
RECORD

CLOSE INPUT
DATA FILE (IF
NOT BEFORE).
CLOSE OUTPUT

DATA FILE

EOJ

Figure 2-1. Disk Sort Program Flowchart

•

•

•

•

•

•

UP-9072 Rev. 1 SPERRY OS/3 2-3
SORT /MERGE MACROINSTRUCTIONS

2.2. INITIATING THE OPERATION

The first thing you must do is name your program (we will use SRTEXMPL) and set the
location counter to 0. The location counter always contains the address of the current
instruction. To set the location counter to 0, use the START assembler directive.

1 0 16

SRTEXMPL START 0

Part of initiating sort/merge is to establish a communications interface between your
program and the sort/merge program via a sort common module. The sort common
module (SG$0RT) is a standard interface module that resides in the system object library
file (Y08J). To establish the communications interface between your program and the
subroutine sort/merge, you must link the sort common module to your program in the link
edit run.

The linkage editor links the sort common module (SG$0RT) in Y08J to the user object
module produced by the assembler.

To specify linkage, define the entry point for the common sort module in your program by
naming MR$0RT as an external reference (EXTRN). This is done by coding line 2 as
follows:

1. SRTEXMPL START 0
2. EXTRN MR$0RT

When the linkage editor processes your program, EXTRN tells it that MR$0RT is not
defined in your program but refers to an object module that must be linked to it. The
linkage editor makes the sort common module part of your program when it builds the
load module for your program in the job run library file (YRUN). This must be done
before your program is loaded into main storage for execution. Once your program load
module is loaded into main storage, the sort common module loads the sort initialization
and assignment phase into main storage, and the sort common module remains there for
the duration of sort/merge processing and provides a link between your program and the
sort.

Naturally, you want to make your program relocatable. This can be done by using base
register addressing; in our program, we will use base register 4. To do this, we code:

BALR 4,0
USING ',4

The branch and link assembler instruction loads the starting address of your program into
register 4. When your program is loaded into main storage, its starting address is loaded
into register 4, the base register. The 0 operand indicates that no branching is to occur .

t

UP-9072 Rev. 1 SPERRY OS/3 2-4
SORT /MERGE MACROINSTRUCTIONS

The USING assembler directive assigns general register 4 to your program as the base
register. The asterisk (*) operand indicates that the value assumed to be in register 4
when the program is assembled is the current value in the location counter.

Next we must branch to the beginning of our program. This is accomplished by coding:

10 16

B START

START is the label of the first instruction in our sort/merge program.

We have now completed the initialization of our program. To summarize, the coding for
our disk sort program up to this point looks like this:

SRTEXMPL START e
EXT RN MR$0RT

BALR 4,0
USING . ,4

B START

2.3. DEFINING FILES

DEFINES MR$0RT AS AN EXTRN
LINKS SORT COMMON MODULE TO
YOUR PROGRAM

For model 8 users, software supplied by SPERRY includes consolidated data
management (COM) and basic data management (BDM). These are groups of routines
that handle several types of data functions, such as sequential or random processing.
Features such as COi (common data interface), used in COM, and DTF (define the files),
used in BDM, are applicable to such processing. For additional information, refer to the
current versions of consolidated data management concepts and facilities, UP-9978, or
basic data management user guide, UP-8068. When using subroutine sort/merge, you
must provide your own 1/0 routines. Each record is read in order of its physical location
on tape or disk (subroutine tape sorts are shown in Section 5). To operate properly,
data management needs specific information defining your program's data files.

File definitions such as record size, record format, and buffer size, in addition to other
file information, must appear in your program in the form of resource information blocks
(RIBs). You specify an RIB with the RIB macroinstruction. Only those RIB parameters that
cannot assume default values need be specified. Take note, however, that one RIB does
not necessarily define one file; this is the function of the common data interface block
(CDIB), one of which you specify for each file used in your program.

The CDIB is specified by a CDIB macroinstruction. You also use macroinstructions to
link the CDIB of a file with the attributes of that file (record size, record format, etc) as
defined in an RIB. Data management permits you to link two or more CDIBs to a single
RIB that correctly defines all the files involved. Data management uses the information
contained in your CDIBs and RIBs to supply file information to the system when your
program requires it. You can find the descriptions and formats of the RIB and CDIB
macroinstructions in the consolidated data management macro language user
guide/programmer reference, UP-9979 (current version).

•

•

•

UP-9072 Rev. 1 SPERRY OS/3 2-5
SORT /MERGE MACROINSTRUCTIONS

• The coding for the input and output file definitions for our sample disk sort program is
illustrated in Figure 2-2.

10

SORTRIB RIB

INPUT CDIB
OUTPUT CDIB

16

BFSZ=S 12, RCSZ=80, I OA l=BUFF 1. I OA2=BUFF2 .WORK=YES.
RCFM=FIX.OPTN=YES.MODE=SEQ

Figure 2-2. Data Management Macroinstruction Specifications

72

x

In this disk sort, we're specifying two files named INPUT and OUTPUT, each with a CDIB
macroinstruction. In addition, we specify an RIB labeled SORTRIB with the following
characteristics:

• a buffer size of 512 bytes;

• a record size of 80 bytes;

• an IOA 1 called BUFF1 for the primary 1/0 buffer area;

• • an additional IOA2 called BUFF2 to speed up 1/0 processing;

•

• a record format of fixed blocks; and

• sequential access.

In addition, we're specifying the optional parameters WORK and OPTN. WORK indicates
that all input and output operations take place using data contained in a work area. As you
will see, you must specify the symbolic address of that work area in every input or output
macroinstruction in the program. OPTN=YES indicates that all files associated with
SORTRIB are optional; i.e .. you won't always use them. We're coding only one RIB
because it defines the characteristics of both files INPUT and OUTPUT.

10 16 72

USING CDSCDIB.5
VTOC CDIB=YES

For 1/0 processing later in the program we will need to attach labels to certain areas
within the two CDIBs. Using their standard names, these labels are:

• CD$CDIB - the address of the first byte within a CDIB.

• CD$1SUCC - a CDIB bit set after an 1/0 operation to indicate whether the operation
was successful (set to 1) or unsuccessful (set to 0) .

• CD$1EOF - a CDIB bit set after an input operation to indicate that data management
has reached the end of the file (set to 1) or that more records remain (set to 0).

UP-9072 Rev. 1 SPERRY OS/3 2-6
SORT /MERGE MACROINSTRUCTIONS

You won't have to concern yourself with the exact location of these indicators if you use
the VTOC macroinstruction. When coded with the keyword parameter CDIB=YES. it
generates a DSECT, which in effect is a map of the CDIB. The USING directive coded just
above VTOC associates register 5 with the address of the first CDIB byte, CO$COIB.
Statements generated by VTOC then fix the indicators CD$ISUCC and C0$1EOF as offsets
from register 5. All you need to do, as a result, is to load register 5 with the address of
any actual CDIB, and you can then test the bit indicators within the CDIB as symbols
rather than having to know where exactly within the CDIB they lie. The use of register 5
with vroc does not affect register 4 since the remainder of the program continues to use
register 4 as its base register.

When you specify IOA 1 and IOA2, you must also define how much main storage is
required to handle the block size you indicated on the BFSZ parameter. Thus, somewhere
in your program you write the define storage statements as illustrated in lines 2 and 3 of
the following coding:

1 .

2. BUFFl
3. BUFF2

1 0

DS
DS
DS

16

OH
CL512
CL512

Not only does data management associate IOA 1 and IOA2 with their names, BUFF1 and
BUFF2, but it also looks for the needed space, indicated by character length 512 (CL512).
This data management space accommodates alternate input and output block processing.
If your input files are on 8417 or 8419 fixed-sector disks, or if you want to make your
program device independent, you must allow a multiple of 256 bytes for each buffer area.
1/0 buffers must be half-word aligned (line 1 in the preceding coding). Up to this point,
our coding looks like Figure 2-3.

10 16

1. SRTEXMPL START B
2. EXTRN MR$0RT

3. BALR 4.B
4. USING ",4
S. B START

DEFINES MR$0RT AS AN EXTRN
LINKS SORT COMMON MODULE TO
YOUR PROGRAM

72

6. SORTRIB RIB BFSZ=512.RCSZ=8B.10Al=BUFF1,IOA2=BUFF2.WORK=YES, X
7. RCFM=FIXBLK.OPTN=YES.MODE=SEQ
8. INPUT CDIB
9. OUTPUT CDIB
10. USING CD$CDIB,5
ll~TOC CDIB=YES

19:-- DS OH
20. BUFFl DS CL512
21. BUFF2 DS CL512
22. INOUTBUF DS CLSB

Figure 2-3. Sort/Merge Disk Sort Coding

•

•

•

---------~-----

UP-9072 Rev. 1 SPERRY OS/3 2-7
SORT /MERGE MACROINSTRUCTIONS

• 2.4. EXPLAINING RUN REQUIREMENTS TO SORT /MERGE

•

•

Your program must describe its requirements for sorting to sort/merge. You use the
MR$PRM macroinstruction to do this. Sort/merge uses the information specified by
MR$PRM to build a sort parameter table. Each keyword parameter you specify with
MR$PRM becomes an entry in the sort parameter table. (See Appendix B.)

Since the MR$PRM macroinstruction has many parameters, we are going to show its
format in two parts. The first part illustrates only the required parameters. After discussing
the use of these parameters, the second part of the format shows the optional parameters
followed by a discussion of their use. To complete the explanation, 2.4.3 explains the
MR$PRM parameters for our sample disk sort program. Finally, 2.10 provides the entire
MR$PRM macroinstruction format and Table 2-2 summarizes the use of the parameters.

2.4.1. Required MR$PRM Parameters

The MR$PRM format for the required parameters is:

LABEL 60PERATION6

[symbol] MR$PRM

• Defining sort key fields (FIELD)

OPERAND

{

F I E l 0= (s t r t - po s - 1 , I g t h - 1 [, f o rm - 1] [, s e q - 1]) ,
[,order-1][, ... ,strt-pos-n, lgth-n
[,form-n][,seq-n][,order-n)])

RSOC=symbol

FI N=symbo I,

IN=symbol,

OUT=symbol,

RCSZ=max-bytes,

STOR={symbol }
(symbol ,number-of-bytes)

The first thing you must do is choose either the FIELD or RSOC parameter. One or the
other of these parameters is required but not both. If you are sorting by key field
comparison, you indicate the FIELD parameter. It has subparameters that define the
sort key fields to sort/merge. The key field definition includes starting position,
length, data format, sorting sequences, and order of significance. You must specify at
least the starting position and the length of key field. Specifications for the other
subparameters are generated by default.

By writing a decimal number for starting position, you indicate the starting point of a
key field relative to the beginning of the record. For sort/merge, there are two
numbering scales for bytes in records: the byte number and the byte position number.
Both byte numbers and byte position numbers proceed from most significant to least
significant (left to right); however, byte numbers begin at 1 and increase, while byte
position numbers begin at 0 and increase. Remember to specify key field starting
positions by byte position in the record, not by byte number.

UP-9072 Rev. 1 SPERRY OS/3 2-8

I~

SORT /MERGE MACROINSTRUCTIONS

Using the record layout in Figure 1-1 as an example, notice that the first key field
starts at byte 1 of each record. You would specify 0 for the strt-pos-1 subparameter
because byte 1 corresponds with byte position 0 of the record (Figure 2-4).

RECORD 1

01234567

81
Pos 0

01234567

82
Pos 1

0 1234567

83
Pos 2

Key Field

01234567 01234567

84 85
Pos 3 Pos4

Key Field Length
8 Bytes

01234567 01234567 01234567

86 87 88
Pos 5 Pos6 Pos 7

~I
LEGEND:

B - Byte
Pos - Position

Figure 2-4. Key Field on Byte Boundary

All key fields, with the exception of binary key fields, start on a full-byte boundary so
you can easily specify their starting points by using the byte position number in the
record. When you want to specify a binary key field, the starting position is not limited
to a byte boundary but can start at any bit position within a byte. Sometimes you
might need to specify the binary key field starting position in a byte-bit format.
Suppose that instead of starting in record byte 1 or byte position number 0, your 8-
byte key field starts in bit position 2 of record byte 6. You would specify 5.2 for byte
position number 5, bit 2 (Figure 2-5).

RECORD 1

01234567

Bl
Pos 0

LEGEND:

B - Byte
Pos - Position

01234567

B2
Pos 1

0 1234567 01234567 01234567 01234567

B3 B4 B5 B6
Pos 2 Pos 3 Pos4 Pos 5

...._ --

Figure 2-5. Binary Key Field with Bit-Byte References

01234567 01234567

B7 B8
Pos6 Pos 7

Key Field Length
22 Bits or

2 Bytes and 6 Bits

•

•

•

•

•

•

UP-9072 Rev. 1 SPERRY OS/3 2-9
SORT /MERGE MACROINSTRUCTIONS

The key field length subparameter (lgth) is also a mandatory specification. When you
specify a key field in full bytes, lgth is a whole number indicating the total number of
bytes the field occupies relative to the byte position number you specified in the strt
pos subparameter (Figure 2-4). Since your record key fields from the disk sort
example are each eight bytes, you would write an 8 for the lgth subparameter as
follows:

10 16

MR$PRM FIELD=(0.8)

A binary key field's length is based upon the number of full bytes plus the number of
bits the field occupies. Using Figure 2-5, you would specify 2.6 for the lgth
subparameter, indicating a total of 22 bits or 2 bytes and 6 bits.

The form subparameter is not mandatory. It is a 2- or 3-character code that specifies
the key field's data format. If you did not specify one of the format codes in Table 2-1,
the default would be CH for character code (form).

Table 2-1. Data Format Codes (Part 1 of 2)

Format Code Description
Maximum Allowable
Field Length (Bytes)

AC Character (EBCDIC in ASCII collation sequence) 1-256

ASL ASCII leading sign numeric 2-256

AST ASCII trailing sign numeric 2-256

Bl Unsigned binary 1 bit-256

• Character (EBCDiC or ASCII) 1-256

CLO Overpunched leading sign numeric 1-256

CSL Leading sign numeric 2-256

CST Trailing sign numeric 2-256

CTO Overpunched trailing sign numeric 1-256

Fl Fixed-point integer 1-256

UP-9072 Rev. 1 SPERRY OS/3 2-10
SORT /MERGE MACROINSTRUCTIONS

Table 2-1. Data Format Codes (Part 2 of 2)

Format Code Description
Maximum Allowable
Field Length (Bytes)

FL Floating point 1-256

MC Multiple character. user-specified 1-256
collating sequence

PD Packed decimal 1-32

USO Character. user-specified collation sequence 1-256

ZD Zoned decimal 1-32

Seq, the sorting sequence subparameter, could be A for ascending or D for
descending. By not writing a specification, you accept ascending sequence, the
default condition.

As many as 12 different key fields may be specified. The order subparameter
designates the significance of multiple key fields from major to minor. The major key
field is always numbered 1; the next most significant key field is 2; and so on up to
the maximum specification of 12 key fields. If you omit the order subparameter,
sort/merge assumes the order in which you define the key fields to be the order of
significance. If you use order for one field, you must use it for all fields.

In the following coding example, line 1 describes a single key field. The key field strt
pos-1 begins in byte position 0 and extends for seven bytes (lgth-1). The key field's
data format (form-1) is EBCDIC in ASCII collation sequence (AC). The D indicates a
descending sort sequence (seq-1). Line 2 describes three keys. Each key has its own
parameter specifications. The first key has a starting position of byte position 5
extending through byte position 12 (eight bytes). The format is assumed character
(EBCDIC or ASCII), and sort sequence is assumed ascending by default. The first key
field is the second most significant key field (order-1). The second key field starts in
byte position number 16 and extends through byte position number 18 (three bytes).
Character format and ascending sort sequence are assumed by default, and the
second key field is the major key since order-2 indicates 1. Finally, the third key field
starts in byte position number 58 and extends through byte position number 67 (10
bytes). Again, by default. the format is assumed to be character and sequence,
ascending. Key field 3 is the third in order of major to minor key fields. Line 3 shows
three key fields with varying data formats to be sorted in ascending sequence.

10 16

1 . MRSPRM F I EL D= (II • 7 . A C • D)

2. MR$PRM F I E L D= (5 • 8 , , , 2 • 1 6 . 3 , , , 1 . 5 8 • 1 II • • • 3)

3. MR$PRM F I E L D= (8 5 • 3 • PD , • 8 8 , 3 , PD , , 8 , 9 • CH)

•

•

•

•

•

•

UP-9072 Rev. 1 SPERRY OS/3 2-11

•

SORT /MERGE MACROINSTRUCTIONS

Writing your own record sequencing routine (RSOC)

If you elect to write your own routine for record sequencing, you would choose the
record sequencing own-code parameter (RSOC) instead of specifying the FIELD
parameter. You would code RSOC and the symbolic name of your own-code routine.
For example:

10 16

MR$PRM RSOC=MYROUT

This parameter overrides the FIELD parameter if you specify both FIELD and RSOC.

• Naming your output end-of-data routine (FIN)

•

As soon as the last sorted record is returned to your program, you've reached the
output end-of-data and you must tell sort/merge where to pass control. The FIN
parameter indicates your symbolic name for the output end-of-data routine:

MR$PRM FIN=MYEND

Specifying your program's entry address (IN)

The macro that initializes sort/merge is discussed in 2.5. Once initialization is
complete, sort/merge looks for the entry address of your program. You define this
entry location by specifying a symbolic name via the IN parameter of the MR$PRM
sort macroinstruction:

MR$PRM IN=MYOPN

• Specifying the return address (OUT)

After the sort/merge process is complete and sort/merge is ready to return records to
your program, it looks for the return location. The OUT parameter symbolic name
specifies this location:

MR$PRM OUT=MYCLSE

• Specifying record size (RCSZ)

The last required MR$PRM parameter is RCSZ. You must specify the size of fixed
length data records or the maximum size of variable-length data records to be sorted.
Indicate a decimal number of bytes after the equal sign, e.g., RCSZ=80.

MR$PRM RCSZ=80

Size specified for variable-length records must include the 4-byte record length field
that precedes each record. If a tag sort has been indicated (ADDROUT keyword
parameter specified), the record size must equal the combined length of all key fields
specified plus the 10-byte record access address field. Maximum allowable record size
depends somewhat upon the system hardware configuration.

---- ---- --~- ------------------------------------
UP-9072 Rev. 1 SPERRY OS/3 2-12

•

SORT /MERGE MACROINSTRUCTIONS

Allocating main storage (STOR)

In addition to the areas you've set aside for the program itself and for input/output
buffers, you need space in main storage for the sort/merge modules and operations.

Using the STOR parameter, you can indicate either:

1. the symbolic name of the first main storage location available for sort/merge; or

2. the symbolic name and maximum number of bytes (decimal) available in main
storage, starting at that name.

If you do not give a maximum number of bytes, sort/merge uses main storage
locations starting at the address you specify (e.g., WORK) to the upper limit of main
storage allocated to your job region (Figure 2-6).

10 16

MR$PRM STOR=WORK

USER
PROGRAM

REGION

STARTING
ADDRESS FOR - - -
SORT/MERGE

SORT/MERGE
REGION

I
<

..;

I

MAIN STORAGE

USER PROGRAM

SORT COMMON MODULE

1/0 BUFFER AREA

SORT /MERGE MODULES

WORK AREA FOR
SORT/MERGE OPERATIONS

STORAGE AREA ALLOCATED
BY STOR=WORK

\

I/

JOB REGION
AS DEFINED

IN JOB PROLOGUE

Figure 2-6. Main Storage Area Allotted by STOR without Number of Bytes Specified

•

•

•

•

•

•

UP-9072 Rev. 1 SPERRY OS/3 2-13
SORT /MERGE MACROINSTRUCTIONS

If, for example, you specify a maximum number of main storage bytes by writing
STOR=(WORK, 15000), the main storage area allocated for sort/merge would extend
15,000 bytes from your starting address of WORK. Main storage space allocation
would look like Figure 2-7.

10 16

MR$PRM STOR=(WORK,15000)

USER
PROGRAM

REGION

STARTING
ADDRESS

FOR
SORT/MERGE

SORT/MERGE
REGION

I
(

MAIN STORAGE

USER PROGRAM

SORT COMMON MODULE

1/0 BUFFER AREA

SORT /MERGE MODULES

WORK AREA FOR
SORT/MERGE OPERATIONS

STORAGE AREA ALLOCATED
BY STOR=(WORK,15000)

UNUSED

I\

JOB REGION
AS DEFINED

IN JOB PROLOGUE

Figure 2-7. Main Storage Area Allotted by STOR Specifying Maximum Number of Bytes

If you use the STOR parameter to specify the amount of main storage available to
sort/merge, be sure to allocate a sufficient amount. See 1.3.1 for minimum main
storage requirements .

UP-9072 Rev. 1 SPERRY OS/3 2-14
SORT /MERGE MACROINSTRUCTIONS

2.4.2. Optional MR$PRM Parameters

In addition to required parameters, MR$PRM has many optional parameters. Some are
more frequently used than others. The following format shows all the MR$PRM optional
parameters:

LABEL 60PERATION6

[symbol] MR$PRM

OPERAND

[,ADTABL=symbol]

[
.BIN=1bytes)]

(min-bytes,size-1,freq-l[, ...• size-n,
freq-n])

[·CALC={~~s}]

[CSPRAM=(~s ~

[(

D I S C = { (a d d r ~ s s • m ~ x - d i s k - f i I e - n um b e r) }l~
max-d1sk-f1 le-number

TAPE={label-type

(I ab e I - type. max - f i I e - number) }

[
.DROC={DELETE}]

symbol

[MERGE={~s}]

[N 0 CK SM= { ~}]

[,PAD=bytes]

['PRINT={~: IC Al}]
[,RESERV=sort-f i le name]

[,RESUME=(PASS. recovery-number)]

[,SHARE=sort-fi lename]

[,SIZE-number]

[.USEQ=(to-address,from-address)]

To help you relate these optional parameters with their functions. we will discuss them
under these categories:

• Device assignment parameters

• Record definition parameters

• Restart parameter

• Miscellaneous parameters

Before each categorical explanation we will list the parameters to be discussed.

•

•

•

UP-9072 Rev. 1 SPERRY OS/3 2-15
SORT /MERGE MACROINSTRUCTIONS

• 2.4.2.1. Device Assignment Parameters

Parameters used to define devices include:

•

•

LABEL .60PERATION.6 OPERAND

[symbol) MR$PRM

[{

DI SC={ (add r ~ s s , m~ x · d i s k · f i I e ·numb e r) }~
max-d1sk-f 1 le-number

TAPE={ label-type
(label -type.max-ti le-number)}

[, RESERV=so rt· f i I ename)

[, SH AR E=s or t · f i I en a me)

• Identifying the storage medium (DISC and TAPE)

The DISC and TAPE parameters identify the storage medium assigned to your work
files. You must first decide whether to use tape or disk. Suppose you choose disk. You
would decide whether to specify:

address and maximum disk file number; or

maximum disk file number .

The address subparameter specifies the symbolic name of a list of your own user
supplied disk file names. The max-disk-file-number subparameter specifies the
maximum number of files available to sort/merge. This number must not exceed 8.
Line 1 in the following coding shows an example of the address and max-disk-file
number specification. On the other hand, you can specify only the max-disk-file
number. This indicates the maximum number of standard disk file names (not to
exceed eight) assigned to sort/merge. Line 2 of the following coding shows a
maximum of seven disks to be used for work files.

1 .
2 .

10 16

MR$PRM DISC=(MYLABEL,7)
MR$PRM DISC=7

By using the TAPE parameter, you can identify the tape labels you want for all work
(scratch) tape files in your program and specify the maximum number of sort files that
may be assigned for sort/merge use. If you chose tape as your storage medium, you
have to decide whether to specify:

label type (NO or STD); or

label type and maximum file number .

UP-9072 Rev. 1 SPERRY OS/3 2-16

•

SORT /MERGE MACROINSTRUCTIONS

Tapes are either unlabeled or labeled standard. In the following example, the first
specification indicates that you are assigning unlabeled tapes as scratch tape files;
the second specification assigns standard label tapes as scratch tape files.

1 .
2.

10 16

MR$PRM TAPE=NO
MR$PRM TAPE=STD

If you specify both label type and max-file-number, you write the label type and a
decimal number to indicate a maximum number of tape files you want assigned as
working storage. The minimum is three; the maximum is six. For example, if you want
to use standard labels and a maximum of four auxiliary working-storage tapes, you
code:

MR$PRM TAPE=(STD,4)

This TAPE parameter specifies only the assignment of standard labels to four tape
work files. It does not assign standard sort tape file names. The LFD job control
statement does that.

If you omit both the DISC and TAPE parameters, sort/merge will determine the type
and number of work files from your LFD statements in the job control stream. For
tape files, standard labels are assumed.

Reserving a tape unit (RESERV)

The RESERV parameter reserves a tape unit for use by a sort work file and by an
output file. Sort/merge uses the tape unit as a work file during the initialization
phase, the initial sort phase, and the preliminary merge phase. At the beginning of
the final merge phase when sort/merge transfers control to your program at the
address specified in the OUT parameter, the work file is closed and rewound to the
unload point. After you demount it and mount your data output file, the reserved tape
unit accepts your output file on the same device. You might specify a standard tape
sort file name (SM01,. ... SM06) as follows:

MR$PRM RESERV=SM04

• Sharing a tape unit (SHARE)

The SHARE parameter allows a tape unit assigned to sort/merge to be used (shared)
as a device for an input file during the initial sort phase and as a work file during the
remaining phases of sort/merge operation. You designate a standard sort tape name
(SM01,. ... SM06) for the SHARE parameter:

MR$PRM SHARE=SM01

Remember, a shared tape cannot be reserved and a reserved device cannot be
shared. Associate the SHARE parameter with a dual-purpose input device and the
RESERV parameter with a dual-purpose output device.

•

•

•

UP-9072 Rev. 1 SPERRY OS/3 2-17
SORT /MERGE MACROINSTRUCTIONS

• 2.4.2.2. Record Definition Parameters

The following parameters define records:

•

•

LABEL 60PERATION6

[symbol] MR$PRM

OPERAND

['ADD ROUT={~}]

[.
8 1

N=(~ ~ ! ~~bytes . s i z e - 1 , f re q - 1 [..... s i z e - n .)]
f re q - n])

[,USEQ=(to-address.from-address)]

• Performing a tag sort (ADDROUT)

The ADDROUT parameter is related to a special sort application called a tag sort. The
tag sort is a method of sorting in which the output file contains only the direct access
addresses. or the addressses and key fields, of the records in the original file. The
first 10 bytes of each reconstructed record contain the direct access address field. The
total length of all key fields per tag sort record cannot exceed 256 bytes. Multiple
input files cannot be tag sorted. When you want to perform a tag sort, you tell
sort/merge via the ADDROUT parameter:

1 0 1 6

MR$PRM ADDROUT=A
MR$PRM ADDROUT=D

The ADDROUT parameter has two options:

D

A

Specifies that both the address field and the record key fields are returned
to your program in the sorted record.

Specifies that the sorted records returning to your program include only the
address field.

If you want to construct a separate file containing the sorted key fields you need and
you also want to save the original addresses of the whole record that you tag sorted,
specify D. Use A if you don't need to know the key field contents of the sorted records
but want only their addresses for retrieving the entire orginal record at a later time.
Figures 2-8 and 2-9 show unsorted key fields from four records and the resulting
records returned to your output file after a tag sort. It is not the intent to show actual
record formats in these figures, but only to illustrate the concept of record sorting by
key fields and the outputs produced by a tag sort operation .

---~-------- ------ ---~--------------------------------------.

UP-9072 Rev. 1 SPERRY OS/3 2-18
SORT /MERGE MACROINSTRUCTIONS

RECORD MINOR KEY
ADDRESS FIELD

540 33 001654

360 04 002992

180 06 007959

001 10 004570

Figure 2-8. Input File, Unsorted Records (Additional Data Fields Not Shown)

INPUT FILE
(UNSORTED RECORDS)

540 33 001654

360 04 002992

1 80 06 007959

001 10 004570

WORK FILE

(RECORDS SORTED ON MAJOR
KEY FIELDS)

360
540 33 001654

001 10 004570

180 06 007959

360 04 002992

ADDROUT=A
_J

-..,
ADDROUT=D

L

180

OUTPUT FILE
(RECORD ADDRESSES

ONLY)

540

001

OUTPUT FILE
(RECORD ADDRESSES AND

CONTROL FIELDS)

540 33 001654

001 10 004570

180 06 007959

360 04 002992

Figure 2-9. Tag-Sorted Output Files

• Specifying fixed-length subrecord size (BIN)

Although the BIN parameter is shown as optional, it is required if your records are
variable length. To conserve main storage space and provide optimum processing
speed, sort/merge divides variable-length records into fixed-length subrecords called
bins. Remembering that a 4-byte record-length field is considered as part of variable
length records, several of them with key fields might look like Figure 2-10.

•

•

•

•

•

•

UP-9072 Rev. 1 SPERRY OS/3 2-19

RECORD 1

RECORD 2

RECORD 3

LEGEND:

B - Byte

Record-Length Field
~

Pas Pas Pas Pas
0 1 2 3

Record-Length Field
~

81

Pas Pas Pas Pas

0 2 3

Record-Length Field

Pas Pas Pas Pas

0 1 2 3

B5 B6

Pas Pas
4 5

B5 B6

Pas Pas
4 5

B5 B6

Pas Pas
4 5

SORT /MERGE MACROINSTRUCTIONS

Key Field 1 -------------
B7 BB B9 B10

Pas Pas Pas Pas
6 7 8 9

Key Field 1
~

B7 BB B9 B10

Pas Pas Pas Pas
6 7 8 9

Key Field 1
~

B7 BB B9 B10

Pas Pas Pas Pas
6 7 8 9

B11 B12 B13

Pas Pas Pas
10 11 12

B11 B12 B13

Pas Pas Pas
10 11 12

B11 B12 B13

Pas Pas Pas
10 11 12

Key Field 2

-~

B14 B15

Pas Pas
13 14

Key Field 2

~

B14 B15

Pas Pas
13 14

Key Field 2

~

614 615

Pas Pas
13 14

1BO BPR

BPR - Bytes per record
Pos - Position

Figure 2-10. Variable-Length Records and BIN Size

There are two formats for the BIN parameter. The first format allows you to define the
size of these subrecords (bins), and the second format allows you to supply
information that sort/merge uses to calculate the bin size for you. If you specify the
bin size yourself, remember that the size must be large enough so that the first bin
may contain all the sort key fields within a record as well as the 4-byte record-length
field. Examining Figure 2-10 to determine the number of bytes for the format 1 BIN
parameter, notice that each record contains two key fields that extend 15 bytes into
the record. Therefore, the minimum number you can specify is 15. However, since
you have record lengths of 180, 80, and 100 bytes, all divisible by 20, a more efficient
bin size to specify might be 20.

10 16

MR$PRM BIN=21l

Suppose you have the same record information from Figure 2-10 but you decide to let
sort/merge calculate the bin size. To calculate this number, sort/merge needs:

the minimum number of bytes that can accommodate all sort key fields for each
variable-length record plus the 4-byte record length field (min-bytes);

the record length (size-1) appearing most frequently in the input file; and

the number of percentage of size-1 records in the input file (freq-1). If the
number specified is less than 100, sort/merge assumes it to be percentage. If
100 or greater, it is assumed to be an estimate of the number of records in the
file.

UP-9072 Rev. 1 SPERRY OS/3 2-20
SORT /MERGE MACROINSTRUCTIONS

The same information can optionally be specified for additional record sizes appearing
in the input file. The following coding specifies that 15 bytes are needed to
accommodate all key fields, that 50 percent of your input file contains 180-byte
records, and that there are approximately two hundred 80-byte records and three
hundred 100-byte records in the file. You need not specify every record size appearing
in your input file.

10 16

MR$ P RM B I N= (1 5 . 188 , 5 8 , 8 8 , 2 BB , 18 B , 3 BB)

• Specifying your own collation sequence (USEQ)

In our discussion of the FIELD parameter, we learned that there are many format
codes used to perform collation sequences (Table 2-1). If you have a collation
sequence for 8-bit character data differing from EBCDIC or ASCII representation, you
may specify USO on the form-1 subparameter of the FIELD keyword parameter. In
addition to the FIELD parameter, you specify the USEQ parameter of the MR$PRM
macro instruction.

MR$PRM FIELD=(B,8,USQ)

USEQ=(MYCOOE.CODTRAN)

The to-address subparameter on the USEQ parameter specifies the address of a 256-
byte table that translates the record fields into your own collation sequence. The
from-address subparameter is the address of a 256-byte table that translates the
fields back to the original data format code for output.

Usually one table is sufficient to perform the necessary translations and since both
positional subparameters must be specified, you code the same address on both
subparameters. Thus, you would probably write the following coding if one table is
sufficient for the translations:

MR$PRM FIELD=(B,8,USQ),

USEQ=(MYCOOE.MYCOOE)

•

•

•

UP-9072 Rev. 1 SPERRY OS/3 2-21
SORT /MERGE MACROINSTRUCTIONS

~~~~~~~~~~~~~~~~~ 

• 2.4.2.3. Restart Parameter 

• 

• 

Suppose that somewhere in the middle of merging records into your desired sequence, the 
sort/merge program was interrupted. The number of collation passes previously made is 
shown on the system console. To restart your tape sort. you code the most recent collation 
pass number on the RESUME parameter: 

LABEL 60PERATION6 OPERAND 

[symbol] MR$PRM [ .RESUME=(PASS.recovery-number)] 

Example: 

1 0 16 

MR$PRM RESUME=(PASS.053) 

Instead of coding RESUME on the MRSPRM macroinstruction and having to reassemble 
your program, you can enter it from the job control stream by submitting a PARAM job 
control statement (2.12), as in the following example: 

II PARAM RESUME=(PASS,053) 

In order to enter RESUME on a PARAM statement, you must have coded CSPRAM=YES 
on your MRSPRM macroinstruction (2.4.2.4). 

Only tape sorts can be restarted. The disk cannot be repositioned as a tape is repositioned 
for a restart. 

2.4.2.4. Miscellaneous Parameters 

The remaining optional parameters are: 

LABEL 60PERATION6 

[symbol] MR$PRM 

OPERAND 

[ .ADTABL=symbol] 

[·CALC={~~S}] 

['CSP RAM= { ~S }] 

[
,DROC={DELETE}] 

symbol 

['MERGE={~s}J 

[' N 0 CK SM= g }] 
[ ,PAD=bytes] 

[PR INTo{r:T: ICAL~ 
[ ,SIZE=number] 



UP-9072 Rev. 1 SPERRY OS/3 2-22 
SORT /MERGE MACROINSTRUCTIONS 

• Generating and linking additional parameter tables (ADTABL) 

Just as MR$PRM builds the sort parameter table, the ADTABL parameter allows you 
to generate additional parameter tables and link them to the existing sort parameter 
table. It is important to code ADTABL as the last parameter of the MRSPRM it is used 
in, because sort/merge ignores all parameter entries following the ADTABL 
parameter (Figure 2-11 ). This symbolic label may be the beginning of an additional 
parameter table or any number of parameter tables. In addition to coding the ADTABL 
parameter last on your MRSPRM macroinstruction, you must create another sort 
parameter table in the current program or reference a sort parameter table from 
another program. To link tables within the same program later in the program, you 
indicate the symbolic label specified on the ADTABL and write a MRSPRM there as 
follows (line 13). 

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 
10. 
11. 
12. 
13. 
14. 

10 16 72 

SORT MRSPRM FIELD=(8.8). c 
IN=SORTIN. c 
OUT=SORTOUT. c 
FIN=SORTFIN. c 
RCSZ=88. c 
STOR=WORK. c 
PAD=l2. c 
AD TAB L=MYT AB L 

MYTABL MRSPRM DISC=4. c 
ADDROUT=D 

Figure 2-11. ADTABL Parameter Adding Table Entries within the Same Program 

To reference sort parameter tables from other programs, you must indicate your 
symbolic name from the ADTABL parameter as an external reference in your 
program and as an entry point in the program being referenced (Figure 2-12). If 
duplicate fields exist in the two parameter tables, the first occurrence is used. 

• 

• 

• 



• 

• 

• 

UP-9072 Rev. 1 SPERRY OS/3 2-23 

• 

SORT /MERGE MACROINSTRUCTIONS 

10 16 72 

SORT MR$PRM F I ELD=( 0 , 8) , c 
IN=SORTIN, c 
OUT=SORTOUT, c 
FIN=SORTFIN, FIRST PROGRAM SORT c 
RCSZ=80, PARAMETER TABLE c 
STOR=WORK, c 
PAD=l 6, c 
ADT AB L=MYT AB L 

EXTRN MYTABL 

ADDED SRTAB MR$PRM F I ELD=( 1 2 , 4 ) , ' c 
AFTER IN=SORTIN, c 
FIRST OUT=SORTOUT, c 
TABLE FIN=SORTFIN, SECOND PROGRAM SORT c > 

{MYTABL RCSZ=l20. PARAMETER TABLE c 
DISC=4, c 
ADDROUT=D 

ENTRY MYTABL 

Figure 2-12. ADTABL Parameter Referencing Table in Previous Program 

Calculating optimum working storage (CALC) 

Another very useful optional parameter is the CALC parameter. This parameter may 
be specified only for disk sorts. If you want sort/merge to calculate optimum working 
storage, display information produced during sort initialization, and then terminate the 
job step, you must indicate CALC=NO (line 1 ). 

1 . 
2. 

10 16 

MR$PRM CALC=NO 
MR$PRM CALC=YES 

The YES specification (line 2) causes sort/merge to calculate optimum working 
storage, display sort information, and proceed with the sort as defined by the current 
sort parameter table. In either case, you must have specified the SIZE parameter in 
MR$PRM, as well as all required record description keyword parameters. The 
information displayed specifies the estimated sort time in minutes and the number of 
cylinders required for work space. 

MR$PRM SIZE=2000,CALC=YES 



UP-9072 Rev. 1 SPERRY OS/3 2-24 

• 

SORT /MERGE MACROINSTRUCTIONS 

Entering parameters in the sort parameter table (CSPRAM) 

Sort/merge also accepts sort/merge parameters from the job control stream by 
means of the PARAM job control statement. See 2.12 for parameters you can submit 
to subroutine sort/merge via the job control stream at run time. If you use this 
convenient method of entering parameters in the sort parameter table, you specify 
your intention via the CSPRAM keyword parameter by coding YES (line 2). If you omit 
the CSPRAM parameter or code CSPRAM=NO (line 1 ). sort/merge will not look for 
PARAM statements in the job control stream. 

1. 
2. 

10 16 

MR$PRM CSPRAM=NO 
MR$PRM CSPRAM=YES 

It is advisable to specify CSPRAM=YES. Then, if you decide to add other parameters 
to your sort parameter table, you may do so; or, if you don't, the execution of your 
program is not affected. If you choose the default condition of CSPRAM=NO. you 
have to recode the MR$PRM macroinstruction and recompile your program to add 
parameters. Only BIN, DISC, NOCKSM, RESERV, RESUME, SHARE, and TAPE may be 
entered into the parameter table via the PARAM job control statement. 

• Eliminating or combining records with equal key fields (DROC) 

Suppose you know that your data files contain a large quantity of records with equal 
key fields. To avoid unnecessary key field comparison and redundancy in your output 
file, there is a convenient method of eliminating or combining these records with 
equal key fields. It's called data reduction own-code routine (DROC). This parameter 
allows you to specify automatic data reduction to be performed by sort/merge or by 
your own-code routine. Remember that record fields are duplicated in your files and 
that these whole records may be either eliminated or combined. Therefore, all records 
in your data files for data reduction must be fixed-length records. Never specify the 
DROC parameter for variable-length records. If you specify DELETE (otherwise known 
as auto delete), sort/merge performs data reduction automatically (line 1 ). 
Sort/merge uses registers to handle the saving and deleting of records with duplicate 
keys. For a more detailed description of how it performs deletion, read 3.3. 

1 . 
2. 

MRSPRM DROC=DELETE 
MRSPRM DROC=MYWORK 

Otherwise, the symbol you indicate on the DROC parameter specifies the symbolic 
label of your own-code data reduction routine entry address (line 2). Own-code 
routines can delete records with equal keys, summarize duplicate keys creating new 
records, or use a combination of keeping, deleting, or summarizing records. Thus, if 
you are interested in combining keys (summarizing) or a combination of deleting and 
combining, you must write your own routine and specify its name on the DROC 
parameter of the MR$PRM macroinstruction. 

• 

• 

• 



• 

• 

• 

UP-9072 Rev. SPERRY OS/3 2-25 

• 

SORT /MERGE MACROINSTRUCTIONS 

Performing a merge-only operation (MERGE) 

Sort/merge is capable of performing a merge-only application. You tell sort/merge to 
perform merge-only via the MERGE parameter: 

1 . 
2. 

10 16 

MR$PRM MERGE=YES 
MR$PRM MERGE=NO 

If you omit this parameter. sort/merge assumes NO by default, a merge-only 
operation is not performed. You can also specify that this is not a merge-only 
operation by coding NO (line 2). 

• Suppressing calculation of the checksum word (NOCKSM) 

Normally, sort/merge generates a checksum word for each output data block written 
to the tape or disk working-storage areas. The checksum word provides a check of 
data integrity during read and write transfer operations (1/0 processing) between the 
sort/merge operation and the sort work files. 

The checksum word is calculated by logically summing, into a 1-word field, the 
records in the data block before they are written out to the sort work file. This 
checksum word is placed in the data block that is written to the sort work file . 

Later, after the data blocks are read back into main storage from the sort work file, a 
checksum word is recalculated. Data integrity is then verified by comparing the new 
checksum word with the old checksum word. If the new word equals the old, the sort 
continues. If the comparison is unequal, the sort terminates. The checksum operation 
works as follows: 

INPUT BLOCK 1 MAIN STORAGE 

REC1 I 00000000 I 11111111 I 
R ECA LCU LA TE 

INPUT CHECKSUM 

Fl LE REC2 I 11111111 I 00000000 1 WORD FOR 
INPUT BLOCK1 

I 00000000 I 0000000 1 I WRITE SORT READ 
REC3 OATA OR WORK 

Fl LE BLOCK 

REC4 \ 10000000 I 00000000 I 
SORT 

TERMINATES 

REC5 \ 11111111 i 00000000 I 
/ ' I ' / " / ' / ' I ' / ' I ' CHECKSUM WORD ' CHECKSUM WORD 

00000000 00000000 10000000 11111110 COMPARE 
00000000 00000000 10000000 11111110 

SORT CONTINUES 



-- -----------------------------------------------
UP-9072 Rev. 1 SPERRY OS/3 2-26 

SORT /MERGE MACROINSTRUCTIONS 

You can suppress this calculation of the checksum word by specifying the NOCKSM 
keyword parameter for the device type to which output data blocks are written. 

1. 
2. 

10 16 

MR$PRM NOCKSM=D 
MR$PRM NOCKSM=T 

The D indicates no checksum word calculation for blocks written to disk (line 1 ). 
Specify T for no checksum word calculations on blocks written to tape (line 2). Since 
checksum word calculations are time consuming, it is wise to specify this parameter. 

• Adding parameters to the sort parameter table (PAD) 

Another special optional parameter, PAD, allows you to augment the sort parameter 
table beyond its generated length. This enables you to enter additional parameters 
into the table from your own program at run time. The decimal number you enter 
specifies the number of additional bytes to be added to the sort parameter table. 
Remember that these bytes must be expressed in multiples of 4. 

The PAD parameter is used with the ADTABL parameter. The ADTABL specifies the 
name of the additional sort parameter table or the table being referenced in another 
program, and PAD specifies the number of extra bytes required for the additional 
parameter table entries. 

The following coding illustrates two PAD parameters: 

MR$PRM PAD=l2 
MR$PRM PAD=8 

Also, see Figure 2-11, line 7 and Figure 2-12, line 7. 

• Writing messages in the job log (PRINT) 

Sort/merge generates messages that are displayed on the system console or written 
in the job log in the spool file. The parameter PRINT allows you to specify that you 
want all messages (ALL), only critical messages (CRITICAL), or no messages (NONE) 
written into the job log. 

• Indicating the number of records (SIZE) 

In the SIZE parameter. you indicate the approximate number of records to be sorted. 
This permits sort/merge to optimize its procedures. If you omit the SIZE parameter, 
sort/merge assumes a file of 25,000 records and the sort may not be optimized. 

• 

• 

• 



UP-9072 Rev. 1 SPERRY OS/3 2-27 
SORT /MERGE MACROINSTRUCTIONS 

• 2.4.3. MR$PRM for the Disk Sort Program 

• 

• 

Let's consider the specifications you might make in the parameter table for a disk sort 
program. Specifying the required parameters and other parameters pertinent to your disk 
sort (Figure 2-13), you might write: 

1 2 . SORT 
1 3 . 
14. 
1 5 . 
16. 
1 7. 
1 8 . 

10 16 

MR$PRM FIELD=(0,8,CH), 
IN=SORTIN, 
OUT=SORTOUT, 
FIN=SORTFIN, 
RCSZ=80, 
STOR=WORK, 
DISC=4 

Figure 2-13. Disk Sort Parameters 

72 

c 
c 
c 
c 
c 
c 

The FIELD parameter indicates that each of your record key fields start in byte position 
number 0, are eight bytes long, and are in the EBCDIC or ASCII character format (CH). 
Since your sorting sequence is ascending, you don't need to code an A for the seq-1 
subparameter because A is the normal default. In this case, you are not sorting on more 
than one key field so there is no need to specify the order-1 subparameter for major or 
minor sort key fields. You assign the name SORTIN to the entry location of your program 
by using the IN parameter. You also assign the name SORTOUT to the location in your 
program where sort/merge can return control after it has sorted the records and it is 
ready to return them to your program. 

When sort/merge returns the last sorted record to your program, it looks for the name of 
your output end-of-data routine. In your FIN parameter, you specified the name SORTFIN. 
Your records for the disk sort are 80-byte, fixed-length data records, so you specify a 
record size of 80 bytes. 

On the STOR parameter, you indicate that the name of the first main storage location 
available for working storage is WORK and that this area extends to the upper limit of 
main storage allocated to your job region (Figure 2-6). 

Since your sort/merge is being performed on disk, you specify in the DISC parameter that 
you want to use disk space for additional working storage on the sort. For this program, 
you choose to indicate only the maximum number of standard disk file names assigned to 
sort/merge. The 4 specifies that four file names are assigned to sort/merge . 



UP-9072 Rev. 1 SPERRY OS/3 2-28 
SORT /MERGE MACROINSTRUCTIONS 

2.5. ACTIVATING SORT /MERGE (MR$0PN) 

Once you define the input and output files, establish the communications interface with 
sort/merge modules (MR$0RT), define the sort requirements (MR$PRM), and reserve 
input and output buffer areas, you need some way to activate the sort initialization and 
assignment phase. The MR$0PN imperative macroinstruction generates linkage to call the 
sort/merge initialization module into main storage. This module performs the initialization 
procedure before actual sort/merge execution. You may choose to open the input data 
files before or after you open sort/merge; however, you must be sure to open both 
sort/merge and your input data files before releasing records to the sort. 

A label on the MR$0PN macroinstruction is optional, but for the operand you must 
indicate either the symbolic label (address) of the sort parameter table or the number 1 
indicating register 1 where you have previously loaded the address of your sort parameter 
table. A blank operand field will also indicate that register 1 was loaded with the 
parameter table address. In our disk program, we indicate the symbolic label of the sort 
parameter table on the MR$0PN macroinstruction. Continuing the disk sort program 
coding from the last coding examples of Figure 2-3 and Figure 2-13, you would write: 

10 16 

23. START EQU 
24. MR$0PN SORT OPEN THE SORT/MERGE SUBROUTINE. 
25. SORT IN LA 5. INPUT 
26. OPEN INPUT. (SORTRIB) OPEN THE INPUT FI LE. 
27. TM CD$1SUCC,L'CD$1SUCC SUCCESSFUL OPERATION? 
28. BZ IOERROR IF NOT, BRANCH TO IOERROR. 
29. GETREC EQU 
30. DMINP INPUT, INOUTBUFF GET RECORD FROM INPUT FILE. 
3 1 . TM CD$1EOF,L'CD$1EOF INPUT FILE EMPTY? 
32. BO EOF IF EMPTY, BRANCH TO EOF. 
33. TM CD$1SUCC,L'CD$1SUCC 
34. BZ IOERROR 
35. LA 1, I NOUTBUF LOAD Rl WITH RECORD ADDRESS. 

When the MR$0PN has opened sort/merge, it passes control to your program at the 
address you specified in the IN keyword parameter of the MR$PRM macroinstruction. 
According to your specification on the IN parameter for the disk sort program, your 
program receives control at the address of symbolic label SORTIN. 

At this point, you begin your own program input routine. This routine opens your input 
data file (if you haven't already opened it), reads each record, and sets the address of the 
record in register 1, preparing it for release to the sort. You label your first input routine 
instruction SORTIN because you want your program to receive control from sort/merge at 
that point. 

Before doing any 1/0 operation you will want to link bit indicators CD$1SUCC and 
CD$1EOF to the file whose condition they are to test. As explained in 2.3, you do this by 
loading register 5 with the address of the input file CDIB, an operation that takes place at 
location SORTIN. As long as register 5 remains unchanged, CD$ISUCC and CD$1EOF will 
reflect the condition of file INPUT. 

• 

• 

• 



• 

• 

• 

UP-9072 Rev. 1 SPERRY OS/3 2-29 
SORT /MERGE MACROINSTRUCTIONS 

When you open your input file (line 26) you associate it with the RIB named SORTRIB, 
thus giving INPUT all the attributes specified in SORTRIB. Note that lines 27 and 28 
contain a pair of instructions that recur throughout the program. The test under mask (TM) 
instruction at line 27 tests the COi-successfui-operation indicator CD$1SUCC that is set 
during the preceding OPEN operation. The branch on zero (BZ) instruction at line 28 
causes a branch to routine IOERROR only if the CD$1SUCC indicator has been set off (the 
1/0 operation has failed for some reason); otherwise, the operation has been successful 
and control passes to the next sequential instruction. You code these TM and BZ 
instructions after each data management macroinstruction in your program. 

With the file open, you can read the input file by designating the DMINP imperative 
macroinstruction (line 30). Since you plan to read many records and you'll need to repeat 
this instruction, you label it GETREC, giving yourself a place to return for reading 
subsequent records. Data management automatically loads the first data record address 
into register 2 when you specify IORG=(2) on the RIB macro. Because sort/merge expects 
the address of the record being released to it to be in register 1, you must load register 1 
with the record address (in our case, the work area INOUTBUF). In this example, a load 
address (LA) instruction is used. 

2.6. GETTING DATA INTO THE SORT PROCESS 

You've read the record and now you must pass it to sort/merge before returning to read 
subsequent records . 

The MR$REL macroinstruction generates code to release unsorted records one at a time to 
sort/merge for processing. 

36. 

37. 

l 0 l 6 

MR$REL 
B GETREC 

RELEASE RECORD TO THE SORT 
GET NEXT RECORD 

After the transfer occurs, sort/merge returns control to your program at the instruction 
immediately following the MR$REL macroinstruction. Now you want to read the next 
record, so you branch back to your DMINP macroinstruction labeled GETREC. Reading 
records, setting their address in register 1, and releasing records to the sort procedure are 
repeated until the end of the input file is reached. At this point, the CDIB end-of-file 
indicator CD$1EOF is set on (it has previously remained off). The TM and branch on ones 
(BO) instructions at lines 31 and 32, which before have passed control to the next 
instruction, now cause a branch to the routine beginning at EOF. This is your means of 
exiting the read record loop. 

If you are using disk work files and are not certain whether you have assigned enough 
auxiliary storage, you can include a routine that will check on the availability of work area 
before each record is passed to sort/merge. When control is returned to your program 
immediately following the MR$REL macroinstruction, register 1 will be set to a positive 
value if more records can be accepted or to a negative value if work space may be 
insufficient to complete the sort. Use a load and test register (LTR) instruction to set 
register 1, followed by a branch minus (BM) instruction, which will cut short the read 
record loop. 



--- -----------------------------------

UP-9072 Rev. 1 SPERRY OS/3 2-30 
SORT /MERGE MACROINSTRUCTIONS 

You have several alternatives at this point. You can complete the sort with only the 
records read thus far by branching to EOF; branch to your error processing routine, 
IOERROR (2.9, line 61 ); or write a special routine to handle this condition in some other 
way. In the example, we have labeled this routine NOROOM. 

37a. 

37b. 

10 16 

LTR 
BM 

1 . 1 
NO ROOM 

LOAD Rl AND CHECK FOR NEGATIVE VALUE 
GO TO 'NOROOM' ROUTINE 

2.7. PASSING CONTROL TO OUTPUT PROCESS 

After you read the last data record of the input file and reach the end of file, you designate 
the end-of-file routine and issue a CLOSE imperative macro to close the input file 
(although this is not required for continuing your program). 

This is followed by the MR$SRT sort macro, which tells sort/merge that you have reached 
the end of input data and that it may now complete the process of sorting and merging to 
produce the final results. 

38. EOF EQU THIS LOCATION IS SPECIFIED 
39. . AS THE END OF FILE ADDRESS. 
40. CLOSE INPUT CLOSE INPUT FILE. 
41. TM CD$ I SUCC. L' CD$ I SUCC 
42. BZ IOERROR 
43. MR$SRT TELLS THE SORT THAT THE END-OF-FILE 

HAS BEEN REACHED. 

After the sort receives all input data records, it completes a preliminary merge of record 
strings. Sort/merge may skip this phase if your input file is small. The final merge always 
occurs, and sort/merge looks in your sort parameter table for the symbolic label you 
indicated on the OUT parameter of the MR$PRM. ~t passes control to this label address 
when it is ready to return the records to your program. Since you designated SORTOUT as 
the symbolic label for the disk sort program, sort/merge returns control to that label 
address, which is the beginning of your output routine. 

• 

• 

• 



UP-9072 Rev. 1 SPERRY OS/3 2-31 
SORT /MERGE MACROINSTRUCTIONS 

• 2.8. DRAWING DATA FROM THE SORT PROCESS 

Your output routine coding might continue as follows: 

• 

• 

1 0 16 

44. SORTOUT EQU OUT ADDRESS 
4 5. LA 5,0UTPUT 
46. OPEN OUTPUT, (SORTRIB) OPEN OUTPUT FI LE. 
47. TM CD$1SUCC,L'CD$1SUCC 
48. BZ IOERROR 
49. RECRET MR$RET REQUEST A RECORD RETURNED. 
50. LA 2, INOUTBUF LOAD R2 WITH BUFFER ADDRESS. 
5 1 . MVC 0(80,2),0(1) MOVE THE SORTED RECORD TO THE 

OUTPUT BUFFER AREA. 
52. DMOUT OUTPUT, I NOUTBUF OUTPUT THE RECORD RETURNED. 
53. TM CD$ I SUCC, L 'CD$ I SUCC 
54. BZ IOERROR 
55. B RECRET 

To begin your output routine, you load register 5 with the address of the OUTPUT file 
CDIB. This action causes bit indicator CD$1SUCC to reflect the condition of file OUTPUT, 
the program having finished processing file INPUT. You then open the output file (line 46) 
and request sort/merge to return sorted records to your program via the MR$RET sort 
macro (line 49). Records are released to your program one at a time. Consequently, the 
MR$RET macro must execute for each returning sorted record. Because record writing is a 
repetitive process, and the MR$RET must execute for each record, assign a symbolic label 
to the MR$RET macro to develop your output record processing loop (line 49). MR$RET 
returns the address of sorted records one at a time to register 1 and returns control to 
your program at the line of coding immediately following the MR$RET. 

When you open the output file and specify WORK=YES in its RIB, you must specify for 
each DMOUT the symbolic address of the work area from which the data is written to the 
file. When control returns to your program (following the MR$RET), the record to which 
register 1 points must be moved to the output work area INOUTBUF (lines 50 and 51 ). 
When you issue a DMOUT macroinstruction specifying INOUTBUF as the work area, data 
management moves the contents of INOUTBUF to the buffer, tests to see if the buffer is 
full, and, if it is full, writes the block to the output file. 

Next, you write the sorted record to disk via the DMOUT imperative macro (line 52) and 
issue an unconditional branch (line 55) to MR$RET, which you labeled RECRET (line 49). 
This loop repeats until it reaches the end of data, indicating that all sorted records have 
been returned to your program. 

When sort/merge has returned all sorted records, it looks for a point in your program to 
pass control and exit the return records loop. This point is specified as a symbolic label 
address in the FIN parameter of your sort parameter table. You indicated the label address 
FIN=SORTFIN in your disk sort parameter table, so sort/merge returns control to your 
program at SORTFIN (the beginning of your close-output-file routine). In this way, you exit 
the return record loop . 



UP-9072 Rev. 1 SPERRY OS/3 2-32 
SORT /MERGE MACROINSTRUCTIONS 

2.9. ENDING THE SORT RUN 

Programming the ending of a sort run follows the same basic procedure as ending any 
other program. If there are no other calculations or data manipulations to be performed on 
the sorted data, you issue the CLOSE imperative macro to close the output data file and an 
EOJ supervisor macro to notify the supervisor that the job step is completed. 

10 16 

56. SORTFIN EQU FIN ADDRESS 
57. CLOSE OUTPUT CLOSE THE OUTPUT F I LE . 
58. TM CD$ I SUCC, L 'CD$ I SUCC 
59. BZ IOERROR 
60. EOJ END OF JOB STEP 

Another good addition to any program is an error routine to tell the system what 
procedures it should take when an error occurs. As described in 2.5, you address the error 
routine by a BO instruction that branches to the routine if indicator CD$ISUCC has not 
been set (an unsuccessful operation). 

Suppose you name your error processing routine IOERROR. You might use the following 
approach to handle an error condition by using the CANCEL supervisor macro (line 62) to 
halt the current job run. 

61. IOERROR EQU 
62. CANCEL 
63. LTORG 
64. WORK EQU 

65. END SRTEXMPL 

CANCEL THE JOB. 
DEFINE ALL LITERALS HERE. 
START OF SORT WORK AREA. 
THIS SET UP ALLOWS THE SORT 
TO USE ALL MEMORY FROM 
THIS LOCATION TO THE END OF 
THE JOB REGION. 

Finally, to lead into the necessary job control statements for your disk sort program, you 
would write the LTORG assembler directive (line 63), which generates into your source 
module all previously defined literals. 

In the STOR parameter of the MR$PRM macroinstruction, you specified the symbolic label 
WORK. That name indicated the starting address of the main storage area available to 
sort/merge. Here, at the end of your program, you place your designation of that area (line 
65). Your equate (EQU*) statement with the current location counter symbol (*) tells 
sort/merge that it should use the area starting with the address in the current location 
counter (now showing the address of the end of your program) to the end of the job region 
as the space for its ma in storage work area. Figure 2-14 shows the coding of your disk 
sort program to th is point and the diagram following it, Figure 2-15, illustrates your 
program's interface with sort/merge. 

Notice the use of equate statements in this program coding. In all cases except the last, 
these statements are located at the beginning of input, sort, output, end, or error routines, 
as indicated by their labels. Use of the equate statement is a valuable programming 
technique that allows you to change or insert instructions at these points at a later time. 

• 

• 

• 



• 

• 

• 

UP-9072 Rev. 1 SPERRY OS/3 
SORT /MERGE MACROINSTRUCTIONS 

10 16 

1. SRTEXMPL START 0 
2. EXTRN MR$0RT 

3. 
4. 
5. 

BALR 
USING 
B 

4,0 
• ' 4 
START 

SETS LOCATION COUNTER TO ZERO. 
MR$0RT DEFINES AN EXTRN, 
LINKS COMMON SORT MODULE 
TO YOUR PROGRAM. 

6. SORTRIB 
7. 

RIB BF S Z=5 l 2 , RCS Z=8 0 , I OA l=B U FF 1 , I 0 A 2=B U FF 2 , WO R K=YE S , 
RCFM=FIX,OPTN=YES,MODE=SEQ 

8. INPUT 
9. OUTPUT 
10. USING 
11. VTOC 

12. SORT 
1 3 . 
14. 
1 5 . 
16. 
17. 
18. 

CDIB 
CDIB 
CD$CDIB,5 
CD I B=YE S 

MR$PRM FIELD=(0,7,CH), 
IN=SORTIN, 
OUT=SORTOUT, 
FIN=SORTFIN, 
RCSZ=80, 
STOR=WORK, 
DISC=4 

1 9. D S 
DATA MANAGEMENT WORK AREA 
OH 

20. BUFFl OS CL512 
21. BUFF2 OS CL512 
22. INOUTBUF OS CL80 

23. START 
24. 
25. SORTIN 
26. 
27. 
28. 
29. GETREC 
30. 
3 1 . 
32. 
33. 
34. 
35. 
36. 

37. 

38. EOF: 
3 9 . • 

40. 
4 1 . 
42. 

EQU 
MR$0PN SORT 
LA 5, INPUT 
OPEN INPUT,(SORTRIB) 
TM CD$1SUCC,L'CD$1SUCC 
BZ IOERROR 
EQU 
DMINP INPUT,INOUTBUF 
TM CD$1EOF,L'CD$1EOF 
BO EO F 
TM CD$1SUCC,L'CD$1SUCC 
BZ IOERROR 
LA 1, I NOUTBUF 
MR$REL 
B GET REC 

EQU 

CLOSE INPUT 
TM CD$1SUCC,L'CD$1SUCC 
BZ IOERROR 

43. MR$SRT 

44. SORTOUT EQU 

OPEN THE SORT/MERGE SUBROUTINE 

OPEN THE INPUT FILE 
SUCCESSFUL OPERATION? 
IF NOT, BRANCH TO IOERROR. 

GET RECORD FROM INPUT FILE 
INPUT FILE EMPTY? 
IF EMPTY, BRANCH TO EOF. 

LOAD Rl WITH RECORD ADDRESS. 
RELEASE RECORD TO THE SORT. 
GET NEXT RECORD. 

THIS LOCATION IS SPECIFIED 
AS THE END OF FILE ADDRESS. 
CLOSE THE INPUT FILE. 

TELLS THE SORT THAT THE END 
OF FILE HAS BEEN REACHED. 
OUT ADDRESS. 

Figure 2-14. Disk Sort Program Coding (Pan 1 of 2) 

2-33 

72 

c 

c 
c 
c 
c 
c 
c 



UP-9072 Rev. 1 SPERRY OS/3 2-34 
SORT /MERGE MACROINSTRUCTIONS 

10 16 • 4 5. LA 5,0UTPUT 
46. OPEN OUTPUT,(SORTRIB) OPEN THE OUTPUT FILE. 
47. TM CD$1SUCC,L'CD$1SUCC 
48. BZ IOERROR 
49. RECRET MR$R ET REQUEST A RECORD RETURNED. 
50. LA 2, INOUTBUF LOAD R2 WITH BUFFER ADDRESS 
5 1 . MVC fl ( 89' 2) 'fl ( 1) MOVE THE SORTED RECORD TO 

THE OUTPUT BUFFER AREA. 
--

52. DMOUT OUTPUT. I NOUTBUF OUTPUT THE RECORD RETURNED. 
53. TM CD$1SUCC,L'CD$1SUCC 
54. BZ IOERROR 
55. B RECRET 

56. SO RTF IN EQU FIN ADDRESS 
57. CLOSE OUTPUT CLOSE THE OUTPUT FILE. 
58. TM CD$1SUCC,L'CD$1SUCC 
59. BZ IOERROR 
60. EOJ END OF JOB STEP. 

ERROR ADDRESS FOR DATA MANAGEMENT 

61 . IOERROR EQU 
62. CANCEL CANCEL THE JOB. 
63. L TORG DEFINE ALL LITERALS HERE. 
64. WORK EQU START OF SORT WORK AREA. 

THIS SETUP ALLOWS THE SORT • TO USE ALL MEMORY FROM 
THIS LOCATION TO THE END OF 
THE JOB REGION. 

65. END SRTEXMPL 

Figure 2-14. Disk Sort Program Coding (Part 2 of 2) 

• 



• 

• 

• 

UP-9072 Rev. 1 

START 

, 

The user program interfaces with sort/merge 
through the sort common module. The sort 
common module must be linked to the user's 
program by the linkage editor. Specify 
EXTRN MR$0RT. 

The sort parameter table, which is created 
by the MR$PRM macro, specifies to the sort 
the different sorting options the user wants 
to use. The other sort macros interact with 
sort/merge via the sort common module. 

The user provides all input and output data 
processing and may modify records before, 
during, and after the sort. 

USER PROGRAM 

SPERRY OS/3 2-35 
SORT /MERGE MACROINSTRUCTIONS 

r----
1 

----------------. 

--

I 
MR$0PN I 

I 
I (Sort initialization 
I phase) 

Return via IN parameter 

I 
I 
I 
I 
I 
I 

MR$REL (record address 

loaded in register 1 ) 
I 
I 
I 

(Initial sort 
phase) 

Returns to instruction 

following MR$REL macro 

I 
I 
I 
I 
I 

MR$SRT I 
--'-
T 
I 
I 
I 
I 
I 
I 

(Preliminary 
merge phase) 

Return via OUT parameter 

I 
I 

I 
I 
I 
I 

MR$RET I 

T 
I 

(Final merge 
phase) 

Returns to instruction 

following MR$RET macro 
(record address in register 2) 

l 
I 

'--- -

Information from snrt 
parameter table and job 
control statements is 
processed. 

Input record is given to the 
sort which builds initial 

strings in sort work areas. 

After all records have been 
given to the sort, a 
preliminary merging of the 
record strings may occur. 
If file is small or partially 
sequenced, this phase may 
be skipped. 

A final merge of all the 
record strings occurs. 

The sort releases to the 
user one sorted record 
every time MR$RET 
macro is issued. 

-- __ _J 
OS/3 SORT/MERGE 

Figure 2-15. User Program Interface with Sort/Merge 



-----------------------------------------------

UP-9072 Rev. 1 SPERRY OS/3 2-36 
SORT /MERGE MACROINSTRUCTIONS 

2.10. SORT /MERGE MACROINSTRUCTION PARAMETERS 

We've examined the required and optional MR$PRM macroinstruction parameters and a 
typical disk sort program MR$PRM specification. The entire MR$PRM macro format is: 

LABEL 60PERATION6 

[symbol] MRSPRM 

OPERAND 

{

FIELD=(strt-pos-1, lgth-l[,form-1][ .seq-1] 1· 
[,order-1][, ... ,strt-pos-n,lgth-n[,form-n] 
[,seq-n][.order-n]]) . 

RSOC=symbol 

FIN=symbol, 

I N=symbo I, 

OUT=symbo I, 

RCSZ=max-bytes. 

STOR={symbol } 
(symbol .number-of-bytes) 

[ ADDROUT={ ~}] 

[ .ADTABL=symbol] 

[
.BI N=1 bytes )] 

(min-bytes,size-1.freq-l[, ... ,size-n. 
freq-n]) 

[ CALC={ ~~ S}] 

[ CSPRAM={~s}J 

[{ DISC={::::~:~:k~~~;:~::~!!!;-number)}I~ 
TAPE={label-type } 

(label-type.max-ti le-number) 

[ .DROC={DELETE}] 
symbol 

['MERGE={~slJ 

[NOCKSM=gn 

[ ,PAD=bytes] 

[ p R I NT={:!!~ I CA L)] 

[ .RESERV=sort-f i lename] 

[,RESUME=( PASS, recovery-number)] 

[ ,SHARE=sort-f i lename] 

[ ,SIZE=number] 

[ ,USEQ=(to-address.from-address)] 

• 

• 

• 



• 

• 

• 

UP-9072 Rev. 1 SPERRY OS/3 2-37 
SORT /MERGE MACROINSTRUCTIONS 

Table 2-2 summarizes the macroinstructions required for sort/merge execution in single
cycle sort/merge, merge-only, or internal (main storage) sort/merge operations including 
MR$PRM subparameter use. 

2.11. ASSEMBLING, LINKING, AND EXECUTING YOUR PROGRAM 

Up to this point, you have written your program. Now you must assemble, link, and 
execute it. This is done by embedding your program in a job control stream. The job 
control stream consists of job statements that name devices used by your program and 
sort/merge; describe labels and space allocations; and assemble, link, and execute your 
program. 

2 .11 .1 . Assembling the Program 

When you submit your program (including the job control statements before and after the 
source coding) to the assembler, it prepares a machine language program from your 
program's source code. This machine language is called object code; the assembler's 
translation of your source code to object code is an object module that the assembler 
places in the temporary job run library file ($Y$RUN), in the object library file ($Y$0BJ), or 
in some other library. The whole process is called the assembly run. 

On the assembly run, no data is manipulated. The assembler simply analyzes each 
statement and converts it into a form acceptable to the machine. Instructions called 
assembler control directives direct the operation of the assembler. In your disk sort 
program, the START assembler directive sets the initial location counter value. The END 
directive indicates the end of your source program and the location where control is 
transferred after your program is loaded into main storage. 

You specify the EXTRN assembler directive and the assembler includes it in your program 
object module as an unresolved external reference. The EXTRN directive tells the 
assembler that you want the linkage editor to call in the sort common module in object 
code form from the object library file ($Y$0BJ). 

Another assembler directive, LTORG, tells the assembler to generate all literals that were 
not previously defined in your source program. In other words, the assembler builds a 
literal table, a collection of constant values assigned to symbolic names . 



UP-9072 Rev. 1 SPERRY OS/3 2-38 
SORT /MERGE MACROINSTRUCTIONS 

Table 2-2. Summary of Sort/Merge Parameter Usage • 
Single-Cyde 

Macros 
Sort/Merge Merge- Internal 

and 
Only Sort/Merge 

Parameters Disk Tape 

Required Optional Required Optional Required Optional Required Optional 

MR$PRM x x x x 
MR$0PN x x x x 
MR$REL x x x 
MR$SRT x x x 
MR$RET x x x 
MGSREL x 
MGSRET x 

Normal Linkage Sort Parameter Table Entries 

DROC x x x x 
FIN x x x x 
IN x x x x 
OUT x x x 
RSOC x x x x 

Device Assignment Sort Parameter Table Entries 

DISC x 
RESERV x 
SHARE x 
STOA x x x x • TAPE x 

Record Definition Sort Parameter Table Entries 

ADDROUT x x x 
BIN x x x 
FIELD x x x x 
RCSZ x x x x 
USEO x x x x 

Restart Sort Parameter Table Entries 

RESUME x 

Miscellaneous Sort Parameter Table Entries 

ADTABL x x x x 
CALC x 
CSP RAM x x x x 
MERGE x 
SIZE x x x 
NOCKSM x x 
PAD x x x x 
PRINT x x x x 

• 



UP-9072 Rev. 1 SPERRY OS/3 2-39 
SORT /MERGE MACROINSTRUCTIONS 

• 2.11.2. Link Editing the Program 

• 

• 

You now have an object module representing your source program in $Y$RUN. The 
linkage editor begins its activities by taking the object module as its input. If you elect to 
write a control stream for the link edit job step, linkage editor scans its control stream data 
set for linkage editor control statements and finds the LOADM and INCLUDE statements 
which tell it to name the load module it is creating SRTEXM and to include the object 
module named SRTEXMPL. (See Figure 2-19, lines 18 through 22.) Otherwise, if you use 
the short way of linking the object module named SRTEXMPL, you use the LINK job 
control procedure instead of the linkage editor statements. (See Figure 2-17, line 8.) The 
linkage editor also scans your program object module for external references and finds 
MR$0RT. It looks for MR$0RT in $V$0BJ, finds it is an entry point to the object module 
SG$0RT, and includes SG$0RT in the load module SRTEXM. Normally, linkage editor 
places the load modules it produces in the temporary job run library file ($Y$RUN) unless 
you specify that the load modules be placed in your user load library (a file separate from 
the system-resident library files). 

2.11.3. Executing the Program 

Now you have a load module that is acceptable to the system for the execution run. At this 
point. you need the sort data files and device assignment set information. You supplied the 
device assignment data after the linkage editor jproc call. (See Figure 2-17, lines 9 
through 21.) At the end of your job control stream, the EXEC statement tells the supervisor 
to execute your load module named SRTEXM. Your program load module normally comes 
from $Y$RUN and the execution begins. In the execution run, the load modules for 
sort/merge are called from $Y$LOD into main storage, as needed by your program. When 
the sort/merge phases are completed, your sorted records are written to the output files 
on the volumes and devices you specified in the job control stream. (See Figure 2-17, 
lines 13 through 16.) 

Figure 2-16 illustrates the assembly, linkage edit, and execution runs for a disk sort 
program . 



UP-9072 Rev. 1 

r::: SYSRES 
......... _..,,,. 

('...... ....-1 

t--_ _s~:M~=- - -1 

\.... -
1 

ASSEMBLY 
LISTING 

....... _ 
c SYSRES ') 

"" _./ 
SORT COMMON 

' SYSOBJ ... ______ _, MODULE 
ISGSORTI 

'- _.... 

LINK EDIT 
LISTING 

"'--
-~ 

I 
JOB CONTROL 

STREAM 

,Llof 
INPUT 

!USER PROGRAM MAY ALSO 
GENERATE ITS OWN INPUT INTERNALLY! 

~ 

SPERRY OS/3 2-40 
SORT /MERGE MACROINSTRUCTIONS 

SUBROUTINE SORT/MERGE SYSTEM FLOWCHART 

MRSPRM / 

MRSOPN i MACROS L 
MRSREL USED IN L 

"'""' '"""' ( SORT/MERGE 
MERGE MR$RET COOING 

MACROS ONL y \ MGSREL \ SOURCE CODE t-
I MGSRET t-

I-
IMRSORT COOED 
IN PROGRAM AS EXTERNAL SYMBOL! 

OS/3 
ASSEMBLER ISORT MACROS GET EXPANDED! 

IOR 
COMPILER I 

c SYSRES ::i 
('...... _.,; 

USER OBJECT 
MODULE t-- __ s_;~R_u_'.'.' __ ,... 

-.. 
....... -
1 

OS/3 
LINKAGE 
EDITOR 

~ SYSRES "") 
USER LOAD 

...._ ......, MODULE 

-_s~s~i:_N_ _ ... I INCLUDING 
....-- SORT COMMON 

MODULE I 

'-- _./ 

c SYSRES-::: 
SORT/MERGE 

LOAD MODULES 

""' 
_.... 

SYSLOD 
ICALLED IN BY SORT 

..... ----- _, 
COMMON MODULE 
WHENEVER NEEDED! 

'-... ....,, 

o~LJ OS!3 
PROCESSOR 

I I 
l 

AUXILIARY STORAGE 
M y 

USER PROGRAM OUTPUT 
I A NOT BE NEEDED IF ENOUGH 

MAIN STORAGE IS SPECIF I EDI 

Figure 2-16. Assembly, Linkage Edit, and Execution Run System Flowchart 

• 

• 

• 



UP-9072 Rev. 1 SPERRY OS/3 2-41 
SORT /MERGE MACROINSTRUCTIONS 

• 2.11.4. Typical Subroutine Disk Sort Job Control Stream 

• 

• 

In order to schedule your program and allocate system resources to it. you must assign a 
name to the job so that the system can distinguish it from other jobs. The job control 
statement that identifies the job and signifies the beginning of control information for the 
job is the JOB statement. Figure 2-17 shows the entire job control stream required for our 
disk sort program. Each line is explained in detail following the figure. 

It is important to note that this example employs very low volume input files. Under 
normal disk sort conditions, input files are much larger, and the same disk used as it is in 
this example for input, output, and the work file will result in the least efficient sort. The 
most efficient disk sort is achieved when you use one work file per disk and a separate 
disk for the input and output files. 

10 16 

1 . II JOB SRTEXMPL, .7888.9888.2 
2. II DVC 2 8 I I LFD PRNTR 
3. II WORKl 
4. II WORK2 
5. II EXEC ASM 
6. 1$ 

I Your program coding 

7. I• 
8. llSRTEXM LINK SRTEXMPL 
9. II DVC 5" 
10. II VOL DSP828 
11 . II LBL MYFILEl 
12 . II LFD INPUT 
13. II DVC 5" 
14. II VOL DSP828 
15 . II LBL MYFILE2 
16. II LFD OUTPUT .. INIT 
17. II DVC 5" 
18. II VOL DSP828 
19. II EXT ST.C .. CYL.5 
20. II LBL $SCR1 
2 1 . II LFD DM81 
22. II EXEC SRTEXM. $Y$RUN 
23. I& 
24. II FIN 

Figure 2-17 . Disk Sort Program Job Control Stream 



UP-9072 Rev. 1 SPERRY OS/3 2-42 

• 

SORT /MERGE MACROINSTRUCTIONS 

Line 1 

SRTEXMPL is the 8-character alphanumeric name of your job. The double comma 
indicates that the job priority parameter is omitted. Because it is omitted, the system 
assumes normal (N) priority. The numbers 7000 and 9000 are hexadecimal values 
(equivalent to 28,672 and 36,864 in decimal) that represent the minimum number of 
main storage bytes (including job prologue) required to execute the largest job step of 
this job and the maximum number of main storage bytes requested but not required 
to execute the largest job step of this job. The number 2 indicates that no more than 
two tasks can be active at the same time in any job step. A task is a unit of work that 
the supervisor schedules. 

• Lines 2-6 

In order to process incoming information, the system needs hardware devices to 
handle the processing and you must assign devices to various routines in your 
program. A device assignment set consists of at least two or as many as five job 
control statements; i.e., the DVC and LFD statements or the DVC, VOL, EXT, LBL, and 
LFD statements. 

I I DVC 20 assigns device number 20 to the printer device designated by the system 
filename, PRNTR (line 2). The two following job control statements, // WORK1 and 
I I WORK2 (lines 3 and 4), are job control procedure (jproc) calls that allot temporary 
files for the assembly job step by automatically supplying the DVC, VOL, EXT, LBL, 
and LFD parameter information you would otherwise have to specify for assembler 
use. Two of these temporary files are needed by the assembler so that it can 
assemble an object module from the source code you supply immediately after the 
start-of-date (/$) control statement (line 6). 

Finally, the I I EXEC ASM statement (line 5) tells the system to load and execute the 
assembler. The /$ indicates the start-of-data to the assembler. This data is your 
program. 

• Line 7 

At the end of your source coding, you code a /* delimiter statement to indicate the 
end of data (your program) to the assembler. 

• Line 8 

So far, we have generated an object module called SRTEXMPL (label of the ST ART 
assembler directive) and it is in $Y$RUN. Now we must use the linkage editor to 
prepare a load module. The simplest way to do this is to use the LINK job control 
procedure call (line 8). The LINK jproc generates a load module called SRTEXM 
from the object module (called SRTEXMPL). Load module SRTEXM is then 
automatically placed in $Y$RUN, unless you specify an alternate library via the OUT 
keyword parameter. For more information about job control procedures, refer to the 
job control user guide, UP-9986 (current version). 

• 

• 

• 



• 

• 

• 

UP-9072 Rev. 1 SPERRY OS/3 2-43 
SORT /MERGE MACROINSTRUCTIONS 

When you execute the load module SRTEXM (line 22), you tell the supervisor to 
retrieve it from $Y$RUN. Otherwise, the supervisor searches for the SRTEXMPL load 
module in the $Y$LOD first before going to $Y$RUN. Thus, by specifying $Y$RUN, 
you save processing time. 

• Lines 9-21 

Your next series of job control statements (lines 9 through 21) follow a pattern in 
assigning input, output, and sort work files. The pattern of specifications for each file 
is the file name within a volume name on a specific device. 

DEVICE NUMBER 

VOLUME NAME 

FILE NAME 

Each device assignment set begins with a DVC statement that assigns a device 
number (lines 9, 13, and 17). For specific 1/0 device numbers, check the list of 
device types and features in the job control user guide, UP-9986 (current version). 

Your first DVC statement assigns device number 50 to your input file named MYFILE1 
(lines 9 and 11 ). The second DVC statement assigns the same device to your output 
file named MYFILE2 (lines 13 and 15). Looking at the next DVC statement (line 17), 
notice that device number 50 is assigned for the sort work file $SCR1. Next, you must 
identify the disk volume to be used. The VOL statement supplies volume serial 
numbers that uniquely identify tape or disk volumes (lines 10, 14, and 18). The name 
you assign to your input and output file volume is the alphanumeric name DSP028 
(lines 10 and 14). For the sort work file volume name you specify the same volume, 
DSP028 (line 18). 

To provide disk space for the sort work file and to designate information needed to 
create new files or extend existing disk files, you specify the EXT job control 
statement on the device assignment set for the sort work file. The EXT statement 
applies to the first volume specified on the immediately preceding VOL statement (line 
19). Notice that there is no EXT statement for either input or output files because 
these files already exist. ST indicates that your work file is accessed via the system 
access technique (SAT). The C allocates contiguous space for the extent, a comma 
indicates omission of an optional parameter, CYL specifies that space must be 
allocated in cylinders, and the 5 indicates the number of cylinders allocated for the 
work file . 



UP-9072 Rev. 1 SPERRY OS/3 2-44 
SORT /MERGE MACROINSTRUCTIONS 

Data management needs to know the file names you designate for your program. The 
LBL job control statement supplies this information by specifying label information for 
tape or disk volumes. Only one LBL statement is allowed per device assignment set. 
You specify the disk sort program's input file identifier as MYFILE1 (line 11 ), the 
output file identifier as MYFILE2 (line 15), and the sort work file identifier as $SCR1 
(line 20). 

To link the file information in the job control stream with the data management file 
definition, you specify the CDIB file label on the LFD job control statement of the 
device assignment set for each file (lines 12 and 16). Thus your first two LFD 
statements in the job control stream would specify the names INPUT and OUTPUT. 
Although job control allows 8-character names, data management requires that 
logical file names not exceed seven characters, the first of which must be alphabetic. 
Because the logical file names on the LFD statements (lines 12 and 16) come from 
the file label on the data management CDIB macros, lines 12 and 16 must be the 
same as the file names in the labels of corresponding CDIB declarative macros. They 
also must not exceed seven characters. The INIT parameter on the LFD statement for 
the output file (line 16) indicates that you want to start writing at the beginning of the 
file, overlaying its previous contents. 

When specifying the LFO statement for your sort work file, you must specify the 
link file name OMO 1 or $SCR 1, because only these standard names are recognized 
internally by data management for the sort work file area. Thus, the third LFO 
statement specifies the name OMO 1 (line 21). 

An easier way to allocate work areas on disk is with the WORK jproc call. A 
WORK jproc automatically generates a device assignment set allocating system 
scratch space as a work area. The format for a jproc call that would take the place 
of lines 17 through 21 is //OMO 1 WORK 1 or just / / WORK 1 . The WORK jproc, 
used without parameters, allocates 4000 blocks of 256-bytes each (equivalent to 
one cylinder) of scratch space on your system resident device (SYSRES) or the disk 
containing your system run library ($Y$RUN). You can increase the amount of work 
space and specify the use of other disk devices through optional parameters. For 
more information about the WORK jproc, see the job control user guide, UP-9986 
(current version). 

• Line 22 

After you execute your program load module (line 22), the /& delimiter card must 
indicate the end of your job control stream and the FIN job control statement, the end 
of the card reader operation. 

Figure 2-18 shows the job control stream required to assemble, link, and execute a 
disk sort program. 

• 

• 

• 



• 

• 

• 

UP-9072 Rev. 1 SPERRY OS/3 
SORT /MERGE MACROINSTRUCTIONS 

II FIN 

Marks the end ----i 
of the job ...--------. 

Terminates 
i------- card reader 

operation 

control stream. II PARAM if 
required by the 

i------ user program II EXEC name1 
II EXEC name1. ----- ,,,-------, for the sort. 
Required to (See 2.12.I 

DVC, VOL, LBL (for disk), 

2-45 

execute the user 
program "name1" 
which calls the sort. 

DVC, VOL, LBL (for disk), ------1 --====-----. 
and LFD job control statements 
required to assign auxiliary 
storage, if needed. EXT statement 
may also be needed for disk files. 

_____ and LFD job control statements 
required to assign the output 
file. EXT statement also needed 
to allocate a new disk file. 

(See 2.11.4.) 

step if any 

II JOB name 

(See 2.11.4.) 

1----- DVC, VOL, LBL (for disk),and 
LFD job control statements 
required to assign the input 
file. (See 2.11.4.) 

Linkage editor job control procedure call 

User program source statements. (See 2.11.4.I 

-----//JOB name is always required to initiate the job and assign main storage. 

Figure 2-18. Typical Job Control Stream for a Sort/Merge Application 

2.11.4.1. Alternate Job Control Stream 

The job control stream shown in Figure 2-17 illustrates shortcuts in assigning work files 
to the assembler and the linkage editor. If you choose to use the standard job control and 
link editor statements equivalent to the WORK and LINK job control procedures, you ·can 
do so (Figure 2-19); however, it makes lengthier coding and does not increase efficiency. 
To set up the assembler and linkage editor work files, write DVC, VOL, EXT, LBL, and LFD 
job control statements; to write a data stream for the linkage editor, use the LOADM and 
INCLUDE linkage editor control statements, as shown in Figure 2-19 . 



UP-9072 Rev. 1 SPERRY OS/3 2-46 
SORT /MERGE MACROINSTRUCTIONS 

1 0 16 

1 . II JOB SRTEXMPL .. 7888. 9888, 2 
2. II DVC 28 II LFD PRNTR 
3 . II DVC RES 
4. II EXT ST., l.BLK. (256,4888) 
5. II LBL $SCR1 
6. II L FD $SCR1 • 11 WORK I 
7. II DVC RUN II WORK2 
8. II EXT ST., l,BLK, (256.4888) 
9. II LBL $SCR2 
1 0. II LFD $SCR2 
1 1 . II EXEC ASM 
1 2 . 1$ I 

1 3 . 

.} 14. Your program coding 
1 5 . 
16. I• ' 17. II WORKl 
18. II EXEC LNKEDT 
1 9. 1$ > I I LINK SRTEXMPL 
20. LO ADM SRTEXM 
2 1 . INCLUDE SRTEXMPL 
2 2 . I• 
23. II DVC 58 }De•;.,. ,.,;gnmont ••I 1 24. II VOL DSPlll 
25. II LBL MYFILEl 
26. II LFD INPUT 

}De•;.,. '"~nmont "' 2 

27. II DVC 58 
28. II VOL DSPlll 
29. II LBL MYFILE2 
30. II LFD OUTPUT .. INIT 
3 1 . II DVC 5 1 

)De,;oe '"~nmont "' 3 

32. II VOL DSP128 
33. II EXT ST.C .. CYL.28 
34. II LBL SRTWKl 
35. II LFD DM81 
36. II EXEC S RTEXM 
37. I& 
38. II FIN 

Figure 2-19. Alternate Job Control Stream for A Disk Sort Program 

Notice that your load module name in the EXEC statement (line 36) must specify the name 
from the LOADM control statement (line 20). 

Using the WORK jproc statement (line 17) without any of its optional parameters 
generates: 

• the device and volume numbers of your SYSRES volume; 

• an extent of 4000 256-byte blocks; 

• the label name $SCR1; and 

• the LFD name $SCR1. 

• 

• 

• 



UP-9072 Rev. 1 SPERRY OS/3 2-47 
SORT /MERGE MACROINSTRUCTIONS 

• 2.11.5. Job Control Stream for Tape Work File Assignment 

• 

• 

If you want to use tape work files, your program requires the following series of job 
control statements in your job control stream: 

10 16 

1. I I DVC 90 
2. II VOL TAP150 
3. II LBL SRTWKl 
4. II LFD SM03 

Line 1 specifies the logical device unit number. Lines 2 and 3 specify the volume serial 
number and file label. The LBL statement is optional for tape files. Line 4 gives the 
standard sort tape file name, SM03. Three to six tape work files are required when you 
are using tape auxiliary storage. You must assign the LFD names SM01, SM02, and SM03 
if you are using three tape files, SM04 for one additional file, and so on. 

2.12. SUBMITTING SORT PARAMETER TABLE ENTRIES VIA THE JOB CONTROL 
STREAM 

You can change, add, delete, or override existing parameters in the sort parameter table by 
coding PARAM job control statements in your control stream. Only the following keyword 
parameters can be accepted from the control stream at program execution time: 

BIN Bin size 

DISC Disk work file allocation 

NOCKSM Checksum suppression 

RES ERV Tape work file device reserved for output file 

RESUME Resumption of interrupted tape sort 

SHARE Tape unit shared by input file and work file 

TAPE Tape work file allocation 

To code parameters you want to include in the control stream, use the same keyword 
format as described for the MR$PRM macroinstruction (2.10) and begin writing your 
PARAM statement keyword parameters in column 10. Separate each parameter by a 
comma, if necessary, continue through column 71. If more parameters must be included 
on that PARAM statement, follow the last keyword parameter by a comma and code a 
nonblank character in column 72 to indicate more parameters to come. You may also 
submit multiple PARAM statements as in the following example. 

II PARAM TAPE=(STD,6),SHARE=SM01 
II PARAM NOCKSM=T 



UP-9072 Rev. 1 SPERRY OS/3 2-48 
SORT /MERGE MACROINSTRUCTIONS 

PARAM control statements should appear in your job control stream immediately following 
the EXEC statement that initiates execution of your program. The following example 
illustrates the proper placement of the PARAM job control statement to add keyword 
parameters to the sort parameter table in the disk sort program. 

10 16 

1. // EXEC SRTEXM 
2. // PARAM DISC=7.NOCKSM=D 
3. /& 
4. // FIN 

Line 1 specifies the sort program to be executed. On line 2, the first keyword parameter 
would change the disk sort program's original specification of four disks to seven disks for 
sort work file use. The NOCKSM keyword parameter specifies no checksum calculations 
on disk. Both parameters are being added to the sort parameter table from the job control 
stream. 

In addition to coding PARAM job control statements, you must include the CSPRAM=YES 
keyword parameter in your sort parameter table via the MR$PRM macro. Otherwise, if you 
do not specify the CSPRAM or specify CSPRAM=NO, control stream processing is 
bypassed. To avoid recompiling your program, it is wise to specify CSPRAM=YES on your 
original program. If you do not add keyword parameters from the job control stream, the 
CSPRAM=YES specification won't affect your program's execution. For an example of a 
subroutine tape sort with a restart capability using a PARAM statement, see 5.3, line 28 
and line 114. 

2.13. RUNNING YOUR SORT JOB FROM A WORKSTATION 

OS/3 provides you with the capability of running your sort job interactively. This means 
two things: 

1. You can build your control stream at a workstation, as opposed to punching it on 
cards or writing it to a diskette. 

2. You can initiate the running of the control stream from the workstation, as opposed to 
asking the system operator to run your job for you. 

The easiest way to build a job control stream from a workstation is by using the general 
editor. This allows you to key in your control stream statements and have them stored on 
a library file. Then at some later time you can initiate the running of the program by 
keying in the RV system command. 

If you are not familiar with job control, use the job control dialog for assistance. The job 
control dialog is an interactive facility of OS/3 that allows you to describe your job's 
requirements to it in English, in response to a series of questions, and then produces as 
its output, the job control stream needed by OS/3 to run your job. The control stream 
produced by the job control dialog is virtually identical to the control stream that you 
would have to produce if you were running your job in a batch environment. Only now, 
you do not have to be concerned with the intricacies of the job control language. The job 
control dialog eliminates this requirement on your part. 

• 

• 

• 



• 

• 

• 

UP-9072 Rev. 1 SPERRY OS/3 2-49 
SORT /MERGE MACROINSTRUCTIONS 

After you have answered all the questions presented to you by the job control dialog, it 
builds a control stream and stores it in a permanent library file for you. From here, you 
can initiate its running by simply keying in the appropriate system RUN command, or if 
you'd rather, you can change the contents of the control stream by using the general 
editor. 

The procedures for activating the general editor are detailed in the general editor user 
guide/programmer reference, UP-9976 (current version). 

The procedures for activating the job control dialog and initiating the running of a job 
are detailed in the job control user guide, UP-9986 (current version) . 



• 

• 

• 



• 

• 

• 

UP-9072 Rev. 1 SPERRY OS/3 3-1 
SORT /MERGE MACROINSTRUCTIONS 

3. User Own-Code Routines 

3.1. GENERAL 

Subroutine sort/merge handles two types of user own-code routines during sort 
processing: 

• Record sequence own-code (RSOC) 

• Data reduction own-code (DROC) 

Whenever you use own-code routines, you must indicate that you are using them and 
what you are naming them. By writing the RSOC or DROC keyword parameters in the 
MR$PRM sort macroinstruction, you can fulfill both of these requirements. The result is 
that your keyword specifications appear in the sort parameter table. 

Both RSOC and DROC routines require registers 11, 12, 14, and 15 for communication 
with sort/merge. All other registers are available for use by the own-code routine. 
Information contained in the registers and the action to be performed depend on the 
specific own-code routine executed. 

3.2. RECORD SEQUENCE OWN-CODE ROUTINE (RSOC) 

Using the RSOC routine provides a powerful method of handling sort sequences that 
involve more than a comparison for ascending or descending sequences. It enables you to 
write your own routine for record comparisons that might include a variety of record key 
field tests. RSOC allows you to compare the key fields of two records and to set the 
condition code to indicate the order you want. If you specify RSOC on the MR$PRM macro, 
do not specify the FIELD parameter. Nevertheless, the RSOC parameter overrides the 
FIELD parameter if you should forget and specify both. 

When two records are ready to be compared to determine which should precede the other, 
sort/merge transfers control to your own-code routine at the address (symbolic label 
name) you specified on your RSOC keyword parameter. Sort/merge places the RSOC 
address in register 15 and stores the sort/merge return address in register 14 . 



UP-9072 Rev. 1 SPERRY OS/3 3-2 
SORT /MERGE MACROINSTRUCTIONS 

The first instruction in your own-code routine must be the USING assembler directive. It 
must assign register 15 for use as the base register of your RSOC routine. Your RSOC 
routine automatically receives the addresses of the two records to be compared in 
registers 11 and 12. For variable-length records, addresses supplied to your RSOC routine 
are those of the first bin of each record. The 4-byte length field is part of the bin. You pass 
the result of the comparison to sort/merge via condition code settings. If the record for the 
address in register 11 is first, your own-code routine must set the condition code to low 
(cc=1 ). If the record for the address in register 12 is first, your routine must set the 
condition code to high (cc=2). If the sequence of the two records is arbitrary, your routine 
must set the condition code to equal (cc=O). 

After you set the condition codes resulting from the comparison, you may optionally write 
a DROP assembler directive to disengage the use of base register 15 before you return 
control to sort/merge via a branch to register 14. A sketch of the key instructions needed 
for using RSOC follows: 

:} 
MY ROUT 

:} 

:} 

10 16 

MR$PRM RSOC=MYROUT 

USING *,15 

DROP 15 
BR 14 

YOUR PROGRAM 

ASSIGN BASE Rl5 TO OWN-CODE ROUTINE 

YOUR OWN-CODE ROUTINE 

DISENGAGE BASE Rl5 

RETURNS TO SORT/MERGE 

For a complete program example illustrating a user own-code routine for a sort. see 5.4. 

Use of the RSOC routine is not frequent but its availability can prove very valuable. For 
example, your company might use a nonstandard arithmetic sign with data. In this case, 
an RSOC routine can provide the necessary transsystem sign interpretation. The following 
diagram illustrates file contents before and after the execution of a RSOC routine to 
arrange the file in ascending sequence: 

• 

• 

• 



• 

• 

• 

UP-9072 Rev. 1 SPERRY OS/3 3-3 
SORT /MERGE MACROINSTRUCTIONS 

Before After 

I 
Rec 1 I I Rec 1 

I I 
\ I 

& 5 3 7 \ I 6 0 9 
\ I 
I I 
I I 
\ I 

Rec 2 I I Rec 2 

I I I I 
\ I 

I I I x 6 0 9 \ I 5 3 7 
\ I 
\ I 
\ I 
I I 

Rec 3 I I Rec 3 
\ 

x 5 3 7 \ I 2 4 5 
RSOC 
and 
Final 

Rec 4 Sort 
Rec 4 I \ 

I I I I x 2 4 5 I \ + 0 
I I I 

\ I 
I \ 

Rec 5 
I \ Rec 5 

I I I I I I \ I I I & 8 9 I I + 5 3 7 
I I 
I \ 
I 

\ I 

Rec 6 I \ Rec 6 

& , , I I 
I \ I + I 8 I I 1 0 I \ 1 9 

I \ 
I \ 

LEGEND: 

X=-
&=+ 

3.3. DATA REDUCTION OWN-CODE ROUTINE (DROC) 

DROC routines concern final disposition of fixed-length or variable-length records with 
equal key field values. When you specify the DROC keyword parameter on the MR$PRM 
sort macroinstruction, you can specify: 

• automatic data reduction by deletion of duplicate records (DELETE), also called auto 
delete; or 



UP-9072 Rev. 1 SPERRY OS/3 3-4 

• 

SORT /MERGE MACROINSTRUCTIONS 

the name of your own-code routine, which can handle the data reduction in three 
ways: 

1. by deleting one of the records containing equal keys; 

2. by combining data contained in the two records to create a new record; and 

3. by using a combination of keeping, deleting, and combining records with 
duplicate keys. 

Like the RSOC routine, DROC uses register 15 as a base register to contain its address. 
Thus, the first instruction in your DROC routine should be the USING assembler directive 
specifying register 15 as a base register. Registers 11 and 12 contain the addresses of the 
two records with equal keys. If you wish to retain only one record, the retained record 
address is in register 11 and the deleted record address is in register 12 unless, in your 
own-code routine, you overlay the address in register 11. Such an overlay forces the 
deletion of the address in register 11 and uses the address in register 12 as your saved 
record address. Normally, register 11 addresses the saved record and control returns to 
sort/merge four bytes beyond the sort/merge return address specified in register 14. If 
you want to retain both records, control must return to sort/merge at the address 
specified in register 14. Because register 14 contains the sort/merge return address, take 
great care not to change its contents. 

To end your DROC routine, you return control to sort/merge at the address specified in 
register 14. You may optionally include the DROP assembler directive to disengage 
register 15 from use as your routine's base register. The following shows the coding 
required to specify your own DROC routine. Notice in the diagram the file contents before 
and after the execution of a DROC routine, which specifies your own-code routine 
symbolic label name, MYWORK. 

:} 
MYWORK 

.) 

. } 

10 16 

MR$PRM DROC=MYWORK 

USING ",15 

DROP 15 
BR 14 

YOUR PROGRAM 

ASSIGN BASE Rl5 TO OWN-CODE ROUTINE 

YOUR OWN-CODE ROUTINE 

DISENGAGE BASE Rl5 

RETURNS TO SORT/MERGE 

• 

• 

• 



• 

• 

• 

UP-9072 Rev. 1 

Before 

Rec 1 

2 3 4 

Rec 2 

2 

Rec 3 

Rec4 

6 0 9 3 

Rec 5 

4 

Rec 6 

9 4 7 6 

SPERRY OS/3 3-5 
SORT /MERGE MACROINSTRUCTIONS 

I I 
\ I 
\ I 
\ I 
\ I 
\ I 
\ I 
\ I 

I 
\ I 
\ I 
\ I 
\ I 
\ I 
\ I 
\ I 
\ I 
I I 

DROC 
and 
Final 
Sort 

I ' 
I ' I \ 

I \ 
I \ 
I \ 
I \ 
I \ 
I \ 
I ' 
I \ 
I \ 
I \ 
I \ 
I ' 
I \ 

After 

Rec 1 

2 3 4 

r---------------, 
I Previous Rec 2 deleted I L _______________ J 

Rec 2 

4 

Rec 3 

6 0 9 3 

Rec4 

B 

r- ---- --- -- -------, 
I Previous Rec 6 deleted I 
L---------------~ 

You also have the alternative specification of DELETE on the DROC parameter. Before 
using this, you should be very sure that the records are exactly duplicated or that the key 
fields you need are exactly duplicated, because sort/merge performs automatic data 
reduction by arbitrarily deleting one of the records with equal keys. Your program receives 
no control in this instance. The illustration which follows shows the coding required and a 
file before and after the execution of a DROC=DELETE specification in the MR$PRM sort 
macro. 

10 16 

MR$PRM DROC=DELETE 



UP-9072 Rev. 1 SPERRY OS/3 3-6 
SORT /MERGE MACROINSTRUCTIONS 

Before After • \ I 
Rec 1 \ I Rec 1 

\ I 
6 0 5 5 I 3 2 

\ 
\ 

I 
I 

\ I 
Rec 2 \ Rec 2 

I I I 
I 

I I I I 3 2 
\ I \ 5 0 3 2 

\ I 
\ I 

I 
Rec 3 \ I Rec 3 

I I 
\ I I I I I 7 5 8 8 6 0 5 5 

DROC 
and 
Final 
Sort 

Rec 4 I \ Rec 4 

I I I I 2 
I \ I I 8 I 8 5 0 3 I 7 5 

\ 
I 

\ I 
I \ 

Rec 5 I \ 

I I I I \ 
r------------ -----, • 6 0 5 5 

I 
I Previous Rec 5 deleted I 

\ L __ - __________ _! 
I \ 
I \ I 

\ Rec 6 I 

I I I I \ 
r - - - - - - - - - - - - - - -I 

1 3 2 I \ I Previous Rec 6 deleted I 

I \ L - - - - - - - - - - - - - _J 

• 



• 

• 

• 

UP-9072 Rev. 1 SPERRY OS/3 4-1 
SORT /MERGE MACROINSTRUCTIONS 

4. Special Applications 

4.1. TAG SORT 

A tag sort produces a sorted output file that contains only the direct access address or the 
address and key fields of records. The main purpose of a tag sort is to reduce the amount 
of storage required for your data files when you want the same files sorted in several 
different ways. A tag file allows you to access your original file in the sequence you desire 
without having to duplicate its entire contents. A tag sort can be performed only if you 
have nonindexed or MIRAM disk files. 

By specifying the ADDROUT parameter on the MR$PRM macroinstruction, you indicate 
that you want to perform a tag sort. If you specify ADDROUT=A. only the 10-byte record 
address is returned to your program. If you specify ADDROUT=D, sort/merge returns both 
the address and the record key fields to your program. The length of a tag sort record 
cannot exceed 256 bytes, including the 10-byte address field. Sometimes you may be 
interested in creating a new file of key fields, as well as saving the addresses of the 
records they came from for later reference. If this is your need, specify ADDROUT=D. 
Otherwise, specify ADDROUT=A to indicate that you want only the addresses of the tag 
sort records returned to your program. In this case, you would only be interested in sorting 
the tag sort records and saving their addresses but not contents. The addresses would still 
enable you to retrieve their record contents at a later time. (See 2.4.2.2.) 

Tag sort records are not available to your own-code routines (RSOC and DROC). Because 
the records are reconstructed during a tag sort, you may not know the exact location of 
key fields in the tag sort record. It is up to you to obtain the disk address of that input 
record being reconstructed and place it into the 10-byte address field of the new tag sort 
record. To do this, you first define the file with the RIB data management 
macroinstruction, using the SKAD keyword parameter to specify a location in your 
program that is to contain the 4-byte relative disk address of the record. Then, when you 
issue a DMINP macroinstruction, data management places the relative disk address of the 
input record at the SKAD location. You can then move the disk address to the address field 
of the tag sort record, and the input record key to the key field of the tag sort record. After 
loading register 1 with the address of the tag sort record, you issue a MR$REL 
macroi nstruction to release that record to the sort. 

The following coding example illustrates the key instructions needed for a tag sort that 
returns only the address field to your program. 



UP-9072 Rev. 1 

INPUT 
MYRIB 
INBUFl 

GET REC 

INPUTB 

TAG REC 

SPERRY OS/3 
SORT /MERGE MACROINSTRUCTIONS 

10 16 

MR$PRM ADDROUT=A. 
FIELD=(B,88) 

CDIB 
RIB RCSZ=l88,WORK=YES.SKAD=INPUTB, ... 
OS CL188 

OPEN INPUT,(MYRIB) 

DMINP INPUT.INBUF 
TM CD$1EOF,L'CD$1EOF 
BO EOF 
TM CD$1SUCC.L'CD$1SUCC 
BZ IOERROR 
MVC TAGREC+4(4), INPUTB 

MVC TAGREC+l8(88). INBUF 

LA l,TAGREC 
MR$REL 
B GET REC 

OS F 

DC Xll8'88' 
OS CL88 

READS RECORD 

IF END OF FILE, GO TO EOF. 

IF ERROR, GO TO IOERROR. 
PLACES INPUT REC ADDR IN TAG 
SORT REC ADDR AREA 
PLACES KEY FIELD IN TAG SORT 
RECORD 
PLACES TAG SORT REC ADDR IN Rl 
RELEASES RECORD TO THE SORT 
GETS NEXT RECORD 

AREA IN WHICH DATA MANAGEMENT 
PLACES INPUT RECORD ADDRESS 
TAG SORT REC ADDR 
TAG SORT KEY FIELD 

4.2. RESTART FACILITIES 

4-2 

72 

c 

If your program is interrupted in the middle of a tape sort/merge, there is a way to restart 
it from the point of interruption. By coding the RESUME parameter on your MR$PRM 
macroinstruction, or on a PARAM job control statement, you can indicate that you want to 
recover your tape sort. You must specify the most recent collation pass number displayed 
on the system console. (See 2.4.2.3.) For additional program examples, see 5.3. 

4.3. MERGE-ONLY FUNCTION 

The merge-only function combines two or more similarly ordered (presorted) input files 
into one output file arranged in the same order as the input files. The merge-only function 
can combine 2 to 16 previously sequenced files into one final output file. 

In a situation that requires merge-only, you start with a number of files presorted in some 
sequence. You are interested in expanding the size of your data files while reducing the 
number of files you have to work with. At the same time, you don't want to resort any 
files. As long as the files you are combining have been presorted in the same sequence 
(i.e., ascending or descending), your application is definitely a merge-only operation. 
Because the merge-only function is a part of sort/merge, you must indicate to sort/merge 
that you want merge-only processing by writing the MERGE=YES parameter on your 
MR$PRM macroinstruction. This places the merge-only indication in your sort parameter 
table. 

• 

• 

• 



UP-9072 Rev. 1 SPERRY OS/3 4-3 
SORT /MERGE MACROINSTRUCTIONS 

• 4.3.1. What Merge-Only Does for You 

• 

• 

The merge-only operation is activated in basically the same way as the sort/merge, with 
two exceptions: the sort macro, MR$SRT, is not needed, and the release and return 
macros, MR$REL and MR$RET, are replaced by MG$REL and MG$RET. These two macros 
are unique to merge-only processing. 

Their formats are: 

LABEL LiOPERATIONLi OPERAND 

[symbol] MGSREL 

LABEL LiOPERATIONLi OPERAND 

[symbol] MGSRET 

When you initiate the merge-only operation, the final merge phase is performed. Multiple 
input files of the same sequence must be combined so that the one final output file, 
though expanded, has the same overall sequence. To determine the proper sequence, 
sort/merge performs a tournament sort to find the record that meets the output file 
sequence that you specified in your program. Initially, your program releases the first 
record of each input file to sort/merge for comparison by pairs. Sort/merge continues 
until a final comparison results in a single winner record. A tournament sort is similar to 
the elimination process used in a tennis match or tournament playoff. 

The record selected as the winner is returned to your program and the file identifier points 
your program to the next record to be released. After the first record is released, each new 
record released to the merge is always obtained from the input file associated with the 
returned winner record. The other records involved in the merge do not return to your 
program but remain in the merge for the next comparison. This and all succeeding 
comparisons are initiated as soon as your program replaces the returned winner record 
with the new record to be included in the merge via the MG$RET macro. This new record 
is always the next record of the winner record's input file. The merge process repeats until 
sort/merge processes all records from each input file and returns them to your program. 

4.3.2. Merge-Only Requirements You Supply (MG$REL and MG$RET) 

Before we start to explain a sample merge-only program, let's look at a flowchart of that 
program (Figure 4-1) and the job description that follows . 



---------------------------------------------------------

UP-9072 Rev. 1 

MERGE 

START 

DEFINE MR$0RT 

AS EXTRN 
TO LINK SORT 

COMMON 
MODULE 
ISG$0RTI 

DEFINE 110 
FILES TO DATA 
MANAGEMENT 

(CDIB. 
RIB) 

MR$PRM BUI LOS 

PARAMETER 
TABLE FOR 

MERGE·ONLY 

FOR INITIAL 
MERGE - DEFINE 

ADDRESS CONSTANTS 
FOR INPUT!. INPUT2, 

AND INPUTJ FILES 

DEFINE STORAGE 
FOR WORK AREA. 
INPUT BUFFERS. 

AND OUTPUT BUFFER 

OPEN DATA 
INPUT FILES 

1. 2. & 3 

MRSOPN OPENS 
MERGE-ONLY 
PROCESSING 

MERGEIN 

MERGE 
HOUSEKEEPING 

ROUTINE 

FILSET 

INITIALIZE 

FILES AND 
READ 1ST REC OF 
EACH INPUT Fl LE 

MG$REL 
RELEASE THE 
INPUT DA"FA 

RECORD TO THE 
MERGE 

SPERRY OS/3 
SORT /MERGE MACROINSTRUCTIONS 

MG$RET 
REQUEST A 

WINNER RECORD 

GETREC 

WRITE 
WINNER 
RECORD 

GET A 
NEW 

RECORD 

REACHED 

NO 
FILSET 

NO 
RE TR EC 

Figure 4-1. Subroutine Merge-Only Program Flowchart 

This merge-only program has the following characteristics: 

EDF 

CLOSE THAT 
INPUT FILE 

INDICATE EOF 
TO MERGE 

FOR ALL INPUT 

END OF 
DATA REACHED 
CLOSE OUTPUT 

FILE 

(~"~' ) 

4-4 

NO 
RETA EC 

1. This program merges records of three previously sequenced files to produce a single 
output file. 

2. It is a disk merge. 

3. Previously sequenced files are in ascending sequence. 

4. This program needs a table of file addresses to help locate input files for initiation of 
the first record merge from each file. 

• 

• 

• 



UP-9072 Rev. 1 SPERRY OS/3 4-5 
SORT /MERGE MACROINSTRUCTIONS 

• 5. Buffer and output processing areas must be reserved in main storage for input and 
output file processing. 

• 

• 

6. All three input files are assigned to disk device 51. 

7. Both input and output files use fixed-length, blocked records. 

8. Each record contains 80 bytes. 

9. The first input file contains 1024 bytes per block, the second input file contains 512 
bytes, and the third input file contains 2048 bytes. 

10. The program produces a single output file of records merged in ascending order from 
the three input files. 

After coding your initial job control statements and assigning a base register to your 
program to make it relocatable (lines 1 through 10), you issue the EXTRN assembler 
directive, which links the sort common module from $Y$0BJ to your program (line 11 ), 
and you define your input and output files to data management (lines 14 through 25). 

1 0 1 6 

1 . 
2. 
3. 
4. 
5 . 
6. 

II JOB MRGEXMPL .. 7000,9000,2 
II DVC 20 II LFD PRNTR 
II WORKl 
II WORK2 
II EXEC ASM 
1$ 

7. MRGEXMPL START 0 
8. BALR 4,0 
9. USING *,4 
10. B START 
11. EXTRN MR$0RT 
1 2 . • 
1 3 . • 
14. INPUTl CDIB 

DEFINES THE SORT COMMON MODULE 
TO BE INCLUDED BY THE LINKAGE 
EDITOR. 

1 5 . M E R G R I B 1 R I B B F S Z = 1 0 2 4 , RC S Z = 8 0 , I 0 A 1 =BU F F 1 , I 0 R G = ( 2 ) , RC FM= F I X , 
16. OPTN=YES 
17. INPUT2 CDIB 
18. MERGRIB2 RIB BFSZ=512,RCSZ=80,10Al=BUFF2,IORG=(2),RCFM=FIX, 
19. OPTN=YES 
20. INPUT3 CDIB 

MERGRIB3 RIB 

OUTPUT CDIB 

B F S Z = 2 0 4 8 , R C S Z = 8 0 , I 0 A 1 = B U F F 3 , I 0 R G = ( 2 ) , R C F M= F I X , 
OPTN=YES 

72 

c 

c 2 1 . 
2 2 . 
2 3 . 
24. 
2 5 . 

OUT RIB RIB BFSZ=512,RCSZ=80, 10Al=OUT01, IOA2=0UT02,WORK=YES, 
RCFM=FIX,OPTN=YES 

c 

Your MR$PRM macroinstruction, which creates the parameter table for your program, 
supplies all the information needed by sort/merge to perform the merge. All the following 
parameters coded for the merge-only program example are required (lines 26 through 31 ). 
For other optional merge-only parameters that may be included in the sort parameter table 
generated by MR$PRM, see 2.10 . 



UP-9072 Rev. 1 

26. MERGE 
27. 
28. 
29. 
30. 
3 1 . 

SPERRY OS/3 
SORT /MERGE MACROINSTRUCTIONS 

10 16 
MR$PRM IN=MERGEIN, 

FIN=MERGEFIN. 
STOR=WORK, 
RCSZ=80. 
FIELD=( 0. 8. CST) • 
MERGE=YES 

4-6 

72 
c 
c 
c 
c 
c 

Initially, sort/merge needs a way to locate the first record of each input file. Lines 32-34 
show the way to provide that information to your program when it begins the initial merge 
comparison. 

32. FILTABL DC 
33. DC 
34. DC 

A(INPUTl) 
A(INPUT2) 
A(INPUT3) 

ADDRESS OF INl CDIB 
ADDRESS OF IN2 CDIB 
ADDRESS OF IN3 CDIB 

To test the status of your input and output files after performing 1/0 operations on them, 
you use the bit indicators CD$ISUCC and CD$1EOF as described in 2.3; as you recall, they 
indicate, respecitively, a successful operation and an end-of-file condition. To link these 
with the specific file whose status you want to test, you first set up register 1 as a base 
register for the DSECT, called by the VTOC macroinstruction, that maps the CDIB. 

3 5 · I 
36. 

USING CD$CDIB.l 
VTOC CD I B=YES 

The second step in testing the status of a file is to load the address of the CDIB for that 
file in register 1. Because every imperative 1/0 macroinstruction uses register 1 to hold 
the CDIB address of the file being operated on (loading the address in register 1 if 
necessary), and because that address remains unchanged after the operation finishes, you 
can at that point test CD$1SUCC and CD$IEOF with the assurance that they reflect the 
status of the file just operated on. This assumption underlies every instruction in the 
program testing CD$ISUCC and CD$IEOF. 

To begin your program, you open all the input files and the output file (lines 38 through 
49). By issuing the MR$0PN (line 50) and refencing the table from your MR$PRM sort 
parameter table specifications (line 26), you open the subroutine merge (lines 37 through 
50). 

• 

• 

• 



• 

• 

UP-9072 Rev. 1 SPERRY OS/3 4-7 
SORT /MERGE MACROINSTRUCTIONS 

1 0 1 6 

37. START EQU 
38. OPEN INPUTl,(MERGERIBl) OPEN INPUT FI LE. 
39. TM CD$1SUCC,L'CD$1SUCC 
40. BZ IOERROR 
4 1 . OPEN INPUT2, (MERGERIB2) OPEN INPUT F I LE . 
42. TM CD$ I SUCC. L' CD$ I SUCC 
43. BZ IOERROR 
44. OPEN INPUT3.(MERGERIB3) OPEN INPUT F I LE . 
45. TM CD$1SUCC,L'CD$1SUCC 
46. BZ IOERROR 
47. OPEN OUTPUT .(OUTRIB) OPEN OUTPUT FILE 
48. TM CD$1SUCC,L'CD$1SUCC 
49. BZ IOERROR 
50. MR$0PN MERGE OPEN SORT/MERGE SUBROUTINE 

REFERENCING MR$PRM MACRO 
GENERATED AT MERGE. 

The next routines consist of handling the registers that receive initial file addresses and 
index later file address references. You must read the initial record of each input file 
before you release it to the merge via the MG$REL macro (line 56). This means that you 
must increment the full length of your input file to get to the second file (line 57). This is 
the value of setting up your file table of address constants earlier in lines 32 through 34. 

51. MERGEIN 
5 2 . 

53. 
54. FILSET 

55. 
56, 
57. 
58. 

EQU 
LA 5 . 3 

LA 6,FILTABL 
10. 0 ( 6) 

BAL 7,GETREC 
MG$REL 
LA 6,4(6) 
BCT 5,FILSET 

IN ADDRESS 
LOAD R5 WITH THE NUMBER OF 
INPUT FILES 
GET FILE TABLE ADDRESS 
LOAD CDIB ADDRESS IN RIO AND 
USE AS AN INDEX TO IDENTIFY 
INPUT FI LE TO MERGE AND TO 
YOUR PROGRAM. 
GET FIRST RECORD FOR EACH FILE 
RELEASE RECORD TO MERGE. 
INCREMENT TO NEXT CDIB ADDR. 
TEST FOR LAST INPUT FILE: IF 
YES, CONTINUE. IF NO, GET FIRST 
RECORD OF NEXT FILE. 

Before continuing, let's examine the function of the MGSREL macroinstruction. The 
MG$REL is used to release only the initial record of each previously sequenced data file to 
the subroutine merge. After the initial record of each input file has been released and the 
merge begins, do not use MG$REL macro for releasing any subsequent records to the 
merge-only. Issue the MG$REL macro only after your program has: 

• defined input and output files and assigned devices on which they are located; 

• created the interface between sort/merge and your program (EXTRN MRSORT); 

• defined merge-only processing (MR$PRM); •• opened input and output files; and 

• initiated sort/merge for merge-only processing (MRSOPN) . 



UP-9072 Rev. 1 SPERRY OS/3 4-8 
SORT /MERGE MACROINSTRUCTIONS 

Two registers, R1 and R10, play important roles in receiving and storing addresses used by 
sort/merge. Before releasing the initial record of an input file to sort/merge, you must 
identify both the record to be released and the file it belongs to. You identify the records 
and files by loading the address of the record's first byte into register 1 (line 71, GETREC 
routine) and the address or identifier of the file into register 10 (line 54, FILSET routine). 

10 16 72 

59. RETREC EQU 
60. MG$RET REQUEST WINNER RECORD. 
6 1 . BAL 7,PUTREC WRITE RECORD TO OUTPUT F I LE . 
62. BAL 7,GETREC GET NEW RECORD FROM INPUT F I LE . 
63. B RETREC GET NEW WINNER RECORD. 
64. GETREC EQU GET A RECORD ROUTINE 
65. LR 1 . 10 POINT TO INPUT FILE CDIB. 
66. DM IN P ( 1 ) INPUT RECORD. 
67. TM CD$1EOF,L'CD$1EOF 
68. BO EOF IF END OF F I LE , GO TO EOF. 
69. TM CD$1SUCC,L'CD$1SUCC 
70. BZ IOERROR I F ERROR, GO TO IOERROR. 
71. LR 1. 2 POINT TO NEW RECORD. 
72. BR 7 RETURN 

Your record and file identification coding must precede the MG$REL macro (line 55 
branches out to the GETREC routine, which points to the next record in line 71 before 
branching back to the MG$REL macro). After you release the initial record of the first 
input file, sort/merge returns control to your program at the instruction immediately after 
the MG$REL macro (line 56). Your program must then point to (identify) the next input file, 
where you must retrieve the first record for release to the merge (line 56). You create a 
processing loop from the initial record accessing to its release. When the initial records 
from each input file have been released, your program can request sort/merge to compare 
them. Select one winner record that fulfills the output sequence requirements you 
specified, and return it to your program. To return the winner record, you issue the 
MG$RET macro (line 60). Once you issue MG$RET and it executes, the MG$REL macro is 
no longer required to release subsequent records to the merge. The succeeding MG$RET 
executions automatically release the next winner record. In addition, MG$RET initiates 
each succeeding merge process just by requesting the return of a record. 

Because of the double function of the MG$RET macro after the initial input file records are 
merged, you must be cautious to avoid overlaying a previous winner record with the next 
new record for merge, when submitting subsequent records for merge-only processing. If 
you do not write your winner record to the output file before the next MG$RET execution, 
the next record is called in, destroying your previous winner record. This can easily occur 
because sort/merge does not move records accessed by your program during the merge
only processing. Sort/merge, however, does make the winner record available to your 
program by placing the address of its first byte into register 1 and by returning control to 
the instruction immediately following the MG$RET macro (lines 71, 72, 63, and 61) in 
your program. 

• 

• 

• 



• 

• 

• 

UP-9072 Rev. 1 SPERRY OS/3 4-9 
SORT /MERGE MACROINSTRUCTIONS 

At this point, you must make certain that your program does not lose the winner record by 
having it returned to your program and consequently overlayed by the next record. This 
can occur because register 1 is the same register in which your program identifies the 
address of the next record to be released to the merge. To avoid this error, place your 
winner record into the output or work area (lines 73 through 78) before placing the 
address of the next record to be released into register 1 (line 71 ). The following coding 
shows how to avoid overlaying the winner record in our merge-only program: 

10 16 72 

59. RETREC EQU 
60. MG$RET REQUEST WINNER RECORD. 
6 1 . BAL 7,PUTREC WRITE RECORD TO OUTPUT F I LE . 
62. BAL 7,GETREC GET NEW WINNER RECORD. 
6 3 . B RETREC GET NEW WINNER RECORD. 
64. GETREC EQU GET A RECORD ROUTINE 
6 5 . LR 1 . 1 0 POINT TO INPUT FILE CDIB. 
66. DMINP ( 1 ) INPUT RECORD. 
67. TM CD$1EOF, L'CD$1EOF 
68. BO EOF I F END OF F I LE , GO TO EOF. 
69. TM CD$1SUCC,L'CD$1SUCC 
70. BZ IOERROR I F ERROR, GO TO IOERROR. 
7 1 . LR 1 . 2 POINT TO NEW RECORD. 
7 2 . BR 7 RETURN 
7 3 . PUT REC EQU OUTPUT RECORD ROUTINE 
74. MVC WORKAREA,0( 1) MOVE WINNER RECORD TO WORKAREA 
75. DMOUT OUTPUT ,WORKAREA OUTPUT THE RECORD 
76. TM CD$1SUCC,L'CD$1SUCC 
77. BZ IOERROR I F ERROR, GO TO IOERROR. 
78. BR 7 RETURN 

After you write the winner record to your output file, your program must always replace 
that record in the merge with the next record from the winner record input file (lines 62 
and 64 through 72). Sort/merge enforces this requirement by placing the identifier of the 
winner record input file in register 10 at the same time it returns the winner record 
address to your program. You use this file identifier (address) from register 10 as a pointer 
to locate the next record you want released to the merge (lines 60 through 66). Thus, it is 
very important that you be careful not to alter the contents of register 10; otherwise, the 
merge will be in error. 

After obtaining the next record from the selected file, your program must load this record 
address into register 1 (line 71 ). Execution of the MG$RET macroinstruction then releases 
the new record to the merge for processing (PUTREC and GETREC routines). 

The entire cycle repeats until your program encounters an end-of-file condition for one of 
the input files (identified by the file address in register 10). Your program must close this 
depleted file and indicate an end-of-file condition to sort/merge before releasing additional 
records to the merge (EOF routine, lines 79 through 85). 

79. EOF EQU END-OF-FILE ADDRESS 
80. LR 1 . 1 0 LOAD Rl WITH CDIB ADDRESS 
8 1 . CLOSE ( 1 ) CLOSE THAT INPUT F I LE 
82. TM CD$1SUCC,L'CD$1SUCC 
83. BZ IOERROR 
84. XR 1 . 1 INDICATE EOF CONDITION TO MERGE 
8 5 . B RETREC REQUEST ANOTHER WINNER. 



UP-9072 Rev. 1 SPERRY OS/3 4-10 
SORT /MERGE MACROINSTRUCTIONS 

By loading binary O's into register 1 and executing the MG$RET macroinstruction, your 
program can indicate end-of-file status to sort/merge (lines 59, 60, 84, and 85). 

The merge is complete when all input files have been closed and the last winner record 
has been returned to your program. Sort/merge looks for the symbolic label specified on 
the FIN parameter of your sort parameter table (lines 27 and 79). 

1 0 16 72 

86. MERGEFIN EQU FIN ADDRESS 
87. CLOSE OUTPUT CLOSE OUTPUT FILE 
88. TM C0$1SUCC.L'C0$1SUCC 
89. BZ IOERROR 
90. EOJ 
9 1 . IOERROR EQU 
92. CANCEL CANCEL JOB. 
93. L TORG DEFINE LITERALS HERE. 

In this routine, you close the output file and indicate an end-of-job condition to job control 
(lines 87 and 88 through 89). Finally, you add the error routine named IOERROR as 
specified in your BZ instructions (lines 40, 43, 46, 49, 70, 77, 83, and 89). The LTORG 
assembler directive in line 93 defines all literals from your program and line. Line 94 
defines the work area specified in your output RIB (line 24). All 1/0 buffers must be half
word aligned. Lines 98 and 99 indicate 400-byte buffer areas for each output buffer, and 
lines 95-97 define the three 400-byte input buffers. 

9 4 . WORKAREA OS CL80 
95. BU FF 1 OS CL1024 INPUT AREA 1 
96. BUFF2 OS CL512 INPUT AREA 2 
97. BUFF3 OS CL2048 INPUT AREA 3 
98. OUT0 l OS CL512 OUTPUT AREA 1 
99. OUT02 OS CL512 OUTPUT AREA 2 
100. WORK EQU 
101 . ENO MRGEXMPL 

Line 100 equates the value of the location counter at this point in your program to the 
beginning of the work area you specified in your MR$PRM macro (line 28). The END 
assembler control directive indicates the end of your source program. Figure 4-2 
illustrates a printout of the entire source program. 

• 

• 

• 



• 

• 

• 

UP-9072 Rev. 1 SPERRY OS/3 4-11 
SORT /MERGE MACROINSTRUCTIONS 

1 . 

2. 
3. 
4. 
5. 
6. 

10 16 

II JOB MRGEXMPL. ,7000,9000,2 
II DVC 20 II LFD PRNTR 
II WORK! 
II WORK2 
II EXEC ASM 
1$ 

7. MRGEXMPL START 0 
8. 
9. 
1 0 . 
1 1 . 
1 2 . 
1 3 . 

BALR 4,0 
USING ',4 
B START 
EXTRN MR$0RT 

14. INPUT! CDIB 

} ~l/ASM 

DEFINES THE SORT COMMON MODULE 
TO BE INCLUDED BY THE LINKAGE 
EDITOR. 

15. MERGRIBl RIB BFSZ=l024.RCSZ=80.10Al=BUFF1.IORG=(2),RCFM=FIX, 
16. OPTN=YES 
17. INPUT2 CDIB 
18. MERGRIB2 RIB BFSZ=512.RCSZ=80,10Al=BUFF2,IORG=(2).RCFM=FIX. 
19. OPTN=YES 
20. INPUT3 CDIB 
21. MERGRIB3 RIB 
2 2 . 

CDIB 

BF S Z=2 0 4 8 . RCS Z=8 0 . I OA l=B U FF 3 . I 0 R G= ( 2) . RC F M=F I X . 
OPTN=YES 

23. 
24. 
25. 
26. 
27. 
28. 
29. 
30. 
3 1 . 
32. 
33. 
34. 
35. 
36. 
37. 
38. 
39. 
40. 
4 1 . 
42. 
43. 
44. 
45. 
46. 
47. 
48. 
49. 
50. 

OUTPUT 
OUTRIB RIB BFSZ=512,RCSZ=80, 10Al=OUT01, IOA2=0UT02,WORK=YES. 

5 l . 
52. 

53. 

MERGE 

FILTABL 

START 

MERGE IN 

RCFM=FIX.OPTN=YES 
MR$PRM IN=MERGEIN, 

FI N=MERGEF IN, 
STOR=WORK. 
RCSZ=80. 

DC 
DC 
DC 
USING 
VTOC 
EQU 
OPEN 
TM 
BZ 
OPEN 
TM 
BZ 
OPEN 
TM 
BZ 

F I El D= ( 0 . 8 . CST ) . 
MERGE=YES 
A( INPUT!) 
A( INPUT2) 
A( INPUT3) 
CD$CDIB.l 
CD I B=YE S 

INPUT!. (MERGER I Bl) 
CD$ I SUCC. L 'CD$ I SUCC 
IOERROR 
INPUT2, (MERGERIB2) 
CD$ I SUCC. L 'CD$ I SUCC 
IOERROR 
INPUT3. (MERGERIB3) 
CD$ I SUCC. L 'CD$ I SUCC 
IOERROR 

OPEN OUTPUT.(OUTRIB) 
TM CD$1SUCC,L'CD$1SUCC 
BZ IOERROR 
MR$0PN MERGE 

EQU 
LA 5. 3 

LA 6,FILTABL 

' 

ADDRESS OF INl CDIB 
ADDRESS OF IN2 CDIB 
ADDRESS OF IN3 CDIB 

OPEN INPUT FILES. 

OPEN OUTPUT FILE. 

OPEN SORT/MERGE SUBROUTINE 
REFERENCING MR$PRM MACRO 
GENERATED AT MERGE. 
IN ADDRESS 
LOAD RS WITH THE NUMBER OF 
OUTPUT FILES 
GET FI LE TABLE ADDRESS 

Figure 4-2. Merge-Only Program Coding (Part 1 of 3) 

72 

c 

c 

c 

c 
c 
c 
c 
c 



UP-9072 Rev. 1 

54. FILSET 

55. 
56. 
57. 
58. 

59. RETREC 
60. 
6 1 . 
6 2. 
63. 
64. GETREC 
65. 
66. 
67. 
68. 
69. 
70. 
7 1 . 
7 2. 
73. PUTREC 
74. 
7 5. 
76. 
77. 
78. 
79. EOF 
80. 
8 1 . 
82. 
83. 
84. 
8 5. 
86. MERGEFIN 
87. 
88. 
89. 
90. 
91. IOERROR 
92. 
93. 
94. WORKAREA 
95. BUFFl 
96. BUFF2 
97. BUFF3 
98. OUT01 
99. OUT02 
100. WORK 
101 . 
102. /* 

- - --- - -----------------------------------

SPERRY OS/3 4-12 
SORT /MERGE MACROINSTRUCTIONS 

10 16 

10' 0 ( 6) 

BAL 7,GETREC 
MG$REL 
LA 6,4(6) 
BCT 5,FILSET 

EQU 
MG$RET 
BAL 7,PUTREC 
BAL 7,GETREC 
B RETREC 
EQU 
LR 
DMINP 
TM 
BO 
TM 
BZ 
LR 
BR 
EQU 
MVC 
DMOUT 
TM 
BZ 
BR 
EQU 
LR 
CLOSE 
TM 
BZ 
XR 
B 
EQ U 
CLOSE 
TM 
BZ 
EOJ 
EQU 
CANCEL 
LTORG 
OS 
OS 

1,10 
( 1 ) 
CD$1EOF ,L'CD$1EOF 
EOF 
CD$ I SUCC. L 'CD$ I SUCC 
IOERROR 
1 ' 2 
7 

WORKAREA,0(1) 
OUTPUT,WORKAREA 
CD$1SUCC,L'CD$1SUCC 
IOERROR 
7 

1,10 
( 1 ) 
CD$ I SUCC. L' CD$ I SUCC 
IOERROR 
1 ' 1 
RE TR EC 

OUTPUT 
CD$ I SUCC. L' CD$ I SUCC 
IOERROR 

CL80 
CL1024 

OS CL512 
OS CL2048 
OS CL512 
OS CL512 
EQU 
END MRGEXMPL 

LOAD CDIB ADDRESS IN RlO AND 
USE AS AN INDEX TO IDENTIFY 
INPUT FILE TO MERGE AND TO 
YOUR PROGRAM. 
GET FIRST RECORD FOR EACH FILE 
RELEASE RECORD TO MERGE. 
INCREMENT TO NEXT CDIB ADDR. 
TEST FOR LAST INPUT FILE: IF 
YES, CONTINUE. IF NO, GET FIRST 
RECORD OF NEXT FI LE. 

REQUEST WINNER RECORD. 
WRITE RECORD TO OUTPUT FILE. 
GET NEW WINNER RECORD. 
GET NEW WINNER RECORD. 
GET A RECORD ROUTINE 
POINT TO INPUT FILE CDIB. 
INPUT RECORD. 

!FEND OF FILE, GO TO EOF. 

IF ERROR, GO TO IOERROR. 
POINT TO NEW RECORD. 
RETURN 
OUTPUT RECORD ROUTINE 
MOVE WINNER RECORD TO WORKAREA 
OUTPUT THE RECORD 

IF ERROR, GO TO IOERROR. 
RETURN 
END-OF-FILE ADDRESS 
LOAD Rl WITH CDIB ADDRESS 
CLOSE THAT INPUT FILE 

INDICATE EOF CONDITION TO MERGE 
REQUEST ANOTHER WINNER. 
FIN ADDRESS 
CLOSE OUTPUT FILE 

CANCEL JOB. 
DEFINE LITERALS HERE. 

INPUT AREA 
INPUT AREA 2 
INPUT AREA 3 
OUTPUT AREA 1 
OUTPUT AREA 2 

Figure 4-2. Merge-Only Program Coding (Part 2 of 3) 

• 

• 

• 



• 

• 

• 

UP-9072 Rev. 1 SPERRY OS/3 4-13 
SORT /MERGE MACROINSTRUCTIONS 

10 16 

103. II WORKl l =//MERBI 

104. II EXEC LNKEDT 
105 . 1$ LINK MRGEXMPL 
106. LOADM MERiil 
107. INCLUDE MRGEXMPL 
108. I• 
109. II DVC 5 1 
1 1 0 . II VOL DSPll28 
1 11 . II LBL MYL I B 1 
11 2 . II LFD INPUT! 
11 3 . II DVC 5 1 
114 . II VOL DSPll28 
11 5 . II VOL MYL I B 2 
116 . II LFD INPUT2 
11 7 . II DVC 1 
11 8 . II VOL DSPll28 
11 9 . II LBL MYL I B 3 
120. II LFD INPUT3 
121 . II DVC 5 1 
1 2 2 . II VOL DSPll28 
1 2 3 . II LBL MYL I 84 
124. II LFD OUTPUT,.INIT 
1 2 5 . II EXEC MERll1,$Y$RUN 
126. I& 
1 2 7 . II F IN 

Figure 4-2. Merge-Only Program Coding (Part 3 of 3) 

To eliminate extra coding, lines 3, 4, and 5 can be replaced by the ASM jproc call, which 
automatically supplies two work areas for the assembler. Also, lines 103 through 108 may 
be replaced by the single jproc call I /MER01 LINK MRGEXMPL. 

4.3.3. Assembling, Link Editing, and Executing a Merge-Only Program 

The process of assembling, link editing, and executing the merge-only program is basically 
the same as our sort/merge disk sort program (2.11.4). Job control statements precede 
and follow the merge-only program. Some execute the assembler which produces an 
object module. The linkage editor uses this object module as input to create a load module. 
Further job control following the source program specifies device assignment sets and end 
statements (line 109 through 127). They tell us that the three input files named MYLIB1, 
2, and 3 are contained on the same volume, DSP028, on the same input device 51 and 
that after merge processing, the records will be written to one output file, MYLIB4 on that 
same volume DSP028 on device 51. The load module to be executed can be found in the 
$Y$RUN library. Refer to the system flowchart (Figure 2-16) which depicts assembly, 
linkage edit, and execution runs. Figure 4-3 illustrates your program's interface with 
merge-only . 



UP-9072 Rev. 1 

An interface is set up through the sort 
common module. The merge-only option. 
however, must be specified in the 
MRSPRM macro. 

The user performs all input and output 
operations. The user must release the first 
record of each input file before the merge 
can start. This initial release is via the 
MGSREL macro. 

Merging is commenced and carried out via 
the MG$RET macro, which selects a winner 
from among the different records from each 
file. This winner record, after being 
processed by the user, must be replaced by 
the user from the same file that the winner 
came from. 

When an end-of-file condition is reached, 
this information is relayed via the MG$RET 
macro, with register 1 binarily zeroed out. 
Another winner is then chosen from the 
records already released from the remaining 
files. 

USER PROGRAM 

SPERRY OS/3 4-14 
SORT /MERGE MACROINSTRUCTIONS 

r-----------------, 
I 
I 
I 
I 

MR$0PN I 
I 
I 

I 
Return via IN parameter 

MG$REL (record address loaded_., 

in register 1) 

Returns to instruction ... 
~ following MG$REL macro 

I 
I 

I 
I 
I 
I 
I 
I 

MG$RET (address of new 

record loaded in register 1) 

I 
I 
I 

-

Returns to instruction following 
MG$RET macro (Register 1 loaded 

with winner record address. Register 
10 loaded with winner record file 
addresst 

MG$RET (register 1 loaded with 
...... -binary Ot 

If all input files are closed, returns via 

FIN parameter. Otherwise, same as 
above. 

I 

I 

Information from the sort 
parameter table and job 
control statements is 
processed. 

The first record of each input 
file is given to the sort in order 
to initialize a tournament 
among these records. 

Among the records from each 
input file, a winner is selected 
and returned to the user. The 
input file address of the 
winner record is also given to 
the user so that a new record 
may be read in to replace the 
winner. The sort is also 
informed by the user when an 
input file is closed and a new 
winner from the other files has 
to be chosen. 

I __ 
- - - - -- ---- --- __ ....J 

OS/3 SORT /MERGE 
MERGE-ONLY 

Figure 4-3. User Program Interface with Merge-Only 

• 

• 

• 



• 
UP-9072 Rev. 1 SPERRY OS/3 5-1 

SORT /MERGE MACROINSTRUCTIONS 

5. Program Examples 

5.1. GENERAL 

This section contains complete program coding examples and explanations of: 

• 
• 

• 

A tape sort 

A tape sort using the PARAM statement to add parameters to the sort parameter 
table 

A tape sort using a record sequence own-code routine (RSOC) 

•· An internal (main storage) sort 

• 

Each example illustrates the job control stream requirements needed to assemble, link, 
and execute the program. Following each example is a line-by-line description of what 
each instruction or group of instructions does. 

5.2. TAPE SORT 

The following example illustrates the general requirements for performing a typical sort 
operation using tape work files and disk input and output files. 

10 16 

1 . II JOB SRT EXMP2 .. 71lllll. Bllllll. 2 
2 . II DVC 2 ll II LFD PRNTR 
3 . II WORKl 
4. II WORK2 
5 . II EXEC ASM 
6. 1$ 
7. SRTEXMPL START ll 
8. BALR 4. ll 
9. USING . ,4 
10. B START 
11 . EXT RN MR$0RT THIS DEFINES THE COMMON SORT 
1 2 . MODULE FOR INCLUSION BY THE 
1 3 . LINKAGE EDITOR. 
14. 
1 5 . INPUT CDIB 
1 6 . OUTPUT CDIB 



UP-9072 Rev. 1 

17. 
18. 
19. 
20. 
2 1 . 
22. 
23. 
24. 
25. 
26. 
27. 
28. 
29. 
30. 
31. 
32. 
33. 
34. 
35. 
36. 
37. 
38. 
39. 
40. 
41. 
4 2. 
43. 
44. 
4 5. 
46. 
47. 
48. 
49. 
50. 
5 1 . 
52. 
53. 
54. 
55. 
56. 
57. 
58. 

MYRi Bl 

MYRIB2 

SORT 

BUFF 1 
TAPE REC 

START 

SORT IN 

GETREC 

59. EOF 
60. CLOSE 
61. 
62. 
63. 
64. 
65. 
66. 
67. 
68. 
69. 
70. 
71. 
7 2. 

SORTOUT 

SPERRY OS/3 
SORT /MERGE MACROINSTRUCTIONS 

10 16 

RIB BFSZ=4096,RCSZ=256, IOAl=BUFFl,RCFM=FIXBLK, 
OPTN=YES,WORK=YES,TYPEFLE=INPUT 

R I B B F S Z =4 0 9 6 , RC S Z = 2 5 6 , I 0 A 1 =BU FF 1 . RC FM= F I X B L K . 
OPTN=YES,TYPEFLE=OUTPUT 

USING CD$CDIB,l 
VTOC CDIB=YES 
MR$PRM IN=SORTIN, 

DS 
DS 
DS 

OUT=SORTOUT, 
FIN=SORTFIN. 
STOR=WORK. 
TAPE=(N0,3), 
RCSZ=256, 
FIELD=(0,8.CH) 

DATA MANAGEMENT WORK AREAS 

OH 
CL4096 
CL256 

EQU • 
MR$0PN SORT 
OPEN INPUT,(MYRIBl) 
TM CD$1SUCC,L'CD$1SUCC 
BZ IOERROR 

I OAR EA 
WORK AREA 

OPEN SORT/MERGE SUBROUTINE. 
OPEN THE INPUT FILE. 

INPUT AND RECORD RELEASE ROUTINE 

EQU 
DMINP 
TM 
BO 
TM 
BZ 
LA 

MR$ REL 

INPUT, TAPEREC 
CD$1EOF,L'CD$1EOF 
EOF 
CD$1SUCC,L'CD$1SUCC 
IOERROR 
l,TAPEREC 

B GETREC 

EOF ROUTINE 

EQU 
CLOSE INPUT 
TM CD$1SUCC,L'CD$1SUCC 
BZ IOERROR 
MR$SRT 

GET RECORD FROM INPUT FILE. 

LOAD Rl WITH ADDR OF RECORD 
TO BE RELEASED. 
RELEASE RECORD TO THE SORT. 

CLOSE THE INPUT FILE. 

INFORM THE SORT OF THE 
EOF CONDITION. 

OUTPUT AND RECORD RETURN ROUTINE. 

EQU 
OPEN 
TM 
BZ 

OUTPUT,(MYRIB2) 
CD$1SUCC,L'CD$1SUCC 
IOERROR 

OPEN THE OUTPUT FI LE. 

72 

c 

c 

c 
c 
c 
c 
c 
c 

5-2 

• 

• 

• 



UP-9072 Rev. 1 SPERRY OS/3 5-3 
SORT /MERGE MACROINSTRUCTIONS 

• 10 16 

73. REQREC MR$RET REQUEST THE RETURN OF A 
74. RECORD. 
75. MVC TAPEREC,8(1) MOVE THE SORTED RECORD TO 
76. OUTPUT BUFFER AREA. 
77. 
78. DMOUT OUTPUT,TAPEREC OUTPUT THE RECORD. 
79. TM CD$1SUCC.L'CD$1SUCC 
80. BZ IOERROR 
8 1 . B REQREC REQUEST NEXT RECORD. 
82. 
83. END OF SORT ROUTINE. 
84. 
85. SO RTF IN EQU 
86. CLOSE OUTPUT CLOSE THE OUTPUT FI LE. 
87. TM CD$1SUCC,L'CD$1SUCC 
88. BZ IOERROR 
89. EOJ 
90. 
91. ERROR ADDRESS FOR DATA MANAGEMENT 
92. 
93. IOERROR EQU 
94. CANCEL CANCEL THE JOB 
95. LTORG DEFINE ALL LITERALS HERE 
96. WORK EQU SORT WORK AREA. 
97. END S RTEXMP L 
98. I• • 99. II WORKl 
100. II EXEC LNKEDT 
101 . 1$ 
102. LO ADM SORT82 
103. INCLUDE SRTEXMPL 
104. /* 
105. II DVC 58 
106. II VOL DSP881 
107. II LBL SORT IN 
108. II LFD INPUT 
109. II DVC 58 
11 0 . II VOL DSPOOl 
111 . II LBL SORTOUT 
11 2 . II L FD OUTPUT 
11 3 . II DVC 90 
114 . II VOL SCRCHl 
11 5 . II LFD SM81 
116 . II DVC 91 
11 7 . II VOL SCRCH2 
l 18 . II LFD SM02 
11 9 . II DVC 92 
120. II VOL SCRCH3 
l 2 l . II LFD SMB3 
122. II EXEC SORT02. SYS RUN 
123. I& 
124. II FIN 

• 



UP-9072 Rev. 1 SPERRY OS/3 5-4 
SORT /MERGE MACROINSTRUCTIONS 

Line 
Number Explanation 

2 

3-4 

The name of the job is SRTEXMP2; it requires 28,672 decimal (700016 ) bytes 
of main storage as a minimum and requests 32,768 decimal (900016) bytes 
maximum. A maximum of two tasks can be active simultaneously in any job 
step. 

These job control statements assign the printer to sort/merge for displaying 
messages during program execution. 

The WORK 1 and WORK2 statements set up temporary files for the 
assembler job step. 

5 This statement initiates the execution of the assembler. 

6 /$ job control delimiter statement indicates the start-of-data to the 
assembler. 

7-11 This group of assembler directives and instructions initializes your location 
counter to zero, assigns register 4 as a base register, and defines the sort 
common module. 

15-20 

21-22 

23-29 

33 

34 

35 

38-39 

40-42 

46-55 

59-64 

68-71 

These COIB and RIB macroinstructions describe input and output files to 
data management. 

The VTOC macroinstruction sets up a map of the COIB, associated by the 
USING directive to base register 1. 

This MR$PRM macro sets up the sort parameter table and is referenced 
later by the MR$0PN macro (line 39). For information about these 
parameters, see 2.4. 

This OS statement half-word aligns the 1/0 buffer. 

This define storage statement sets up 4096 bytes for input/output buffer 1. 

This OS statement defines the 256-byte work area that all files use for input 
and output. 

The MR$0PN macro opens sort/merge. 

The sort input routine opens the input data file. 

The input and record release routine reads records and releases them to the 
sort. 

The end-of-file routine closes the input data file and tells the sort that it has 
reached the end-of-file (MR$SRT). 

The sort output routine opens the output data file. 

-------------------------··-

• 

• 

• 



UP-9072 Rev. 1 

• Line 
Number 

73-81 

85-89 

93-94 

95 

96-98 

99 

100 • 101-104 

105-108 

109-112 

113-1 21 

122 

123 

124 

• 

SPERRY OS/3 5-5 
SORT /MERGE MACROINSTRUCTIONS 

Explanation 

This routine returns records from the sort/merge, writes the record, and 
requests the next record. 

The end-of-sort routine closes the output file and notifies job control that 
the end-of-job condition was reached. 

The IOERROR routine is the error handling routine for data management. 

LTORG assembler control directive defines all literals at this point in your 
program. 

The EQU statement indicates that the address of the current location 
counter be used as the beginning of the main storage work area you 
designated in the STOR parameter (line 26). The END assembler directive 
concludes your source program and the /* is a job control delimiter 
statement indicating the end-of-data (your source program) to the 
assembler. 

Sets up a temporary work file for the link edit step. 

This statement executes the linkage editor. 

These statements indicate the data set to control the building of the load 
module named SORT02. 

Assigns the input file named SORTIN to volume DSP001, on device 50. 

Assigns the output file named SORTOUT to volume DSP001 on device 50. 

Assigns the tape sort work files with LFD names SM01, SM02, and SM03 
to volumes SCRCH1, SCRCH2, and SCRCH3 on devices 90, 91, and 92, 
respectively. 

Executes your program named SORT02, which is found in $Y$RUN library. 

Marks the end of the job stream. 

Marks the end of reader operations. 



-- --------------------------------------------

UP-9072 Rev. 1 SPERRY OS/3 5-6 
SORT /MERGE MACROINSTRUCTIONS 

5.3. TAPE SORT WITH RESTART USING PARAM STATEMENT 

The following example illustrates requirements to perform a restart after a sort/merge 
program is interrupted. This example includes the RESUME parameter via the job control 
PARAM statement and the CSPRAM parameter indication. 

10 16 

II JOB SRTEXM13 .. 7BB0.9BBB 
II DVC 28 
II LFD PRNTR 
II WORKl 
II 
II 

WORK2 
EXEC ASM 

/$ 
SRTEXMPL START 

BALR 
USING 
B 
EXT RN 

INPUT CDIB 
OUTPUT CDIB 

B 
4,B 
•. 4 
START 
MR$0RT THIS DEFINES THE COMMON SORT 

MODULE FOR INCLUSION BY THE 
LINKAGE EDITOR. 

1 . 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 
10. 
11. 
12. 
13. 
14. 
1 5 . 
16. 
17. 
18. 
19. 
20. 
2 1 . 
22. 
23. 
24. 
25. 
26. 
27. 
28. 
29. 
30. 
31. 
32. 
33. 
34. 
35. 
36. 

MYRIB RIB BFSZ=4B96,RCSZ=256, IOAl=BUFFl,RCFM=FIXBLK, 
OPTN=YES,WORK=YES 

MYRIB2 RIB BFSZ=4B96, RCSZ=256, I OAl=BUFF 1. RCFM=F I XBLK, 
OPTN=YES,WORK=YES,TYPEFLE=OUTPUT 

USING CD$CDIB.l 
VTOC CDIB=YES 

SORT MR$PRM IN=SORTIN, 

OS 

OUT=SORTOUT, 
FIN=SORTFIN, 
STOR=WORK, 
TAPES= ( N 0 , 3) , 
RCSZ=256, 
CSPRAM=YES, 
F I E L D= ( B , 8 , CH ) 

DATA MANAGEMENT WORK AREA 
OH 

37. BUFFl OS 
38. INOUTREC OS 
39. 

CL4B96 
CL256 

40. 
41. START 
42. 
43. SORTIN 
44. 
45. 
46. 

EQU 
MR$0PN SORT 
OPEN INPUT,(MYRIBl) 
TM CD$1SUCC,L'CD$1SUCC 
BZ I OERROR 

IOAREA 

OPEN SORT/MERGE SUBROUTINE 
OPEN THE INPUT FILE. 

47. INPUT AND RECORD RELEASE ROUTINE 
48. 
49. 
50. 
51. 
52. 

GETREC EQU 
DMINP 
TM 
BO 

INPUT INOUTREC 
CD$ I EOF, L' CD$ I EOF 
EOF 

GET RECORD FROM INPUT FILE. 

72 

c 

c 

c 
c 
c 
c 
c 
c 
c 

• 

• 

• 



UP-9072 Rev. 1 SPERRY OS/3 5-7 
SORT /MERGE MACROINSTRUCTIONS 

• 10 16 

53. TM CD$1SUCC.L'CD$1SUCC 
54. BZ IOERROR 
55. LA l, I NOUTREC LOAD Rl WITH ADDR OF 
56. RECORD TO BE RELEASED. 
57. MR$REL RELEASE RECORD TO THE SORT. 
58. B GET REC GET THE NEXT RECORD. 
59. 
60. EOF ROUTINE 
6 1 . 
62. EOF EQU 
63. CLOSE INPUT CLOSE THE INPUT FILE 
64. TM CD$1SUCC.L'CD$1SUCC 
6 5. BZ IOERROR 
66. MR$SRT INFORM THE SORT OF THE END-
67. OF-DATA CONDITION. 
68. 
69. OUTPUT AND RECORD RELEASE ROUTINE 
70. 
7 1 . SORT OUT EQU 
72. OPEN OUTPUT, (MYRIB2) OPEN THE OUTPUT FILE. 
73. TM CD$1SUCC,L'CD$1SUCC 
74. BZ IOERROR 
75. 
76. REQREC MR$RET REQUEST THE RETURN OF A 
77. RECORD. 
78. MVC INOUTREC,0(1) MOVE THE SORTED RECORD TO THE 

• 79. OUTPUT BUFFER AREA 
80. DMOUT OUTPUT, I NOUTREC OUTPUT THE RECORD. 
8 1 . TM CD$1SUCC,L'CD$1SUCC 
82. BZ IOERROR 
83. B REQREC REQUEST THE NEXT RECORD. 
84. 
85. END OF SORT ROUTINE 
86. 
87. SORTFIN EQU 
88. CLOSE OUTPUT CLOSE THE OUTPUT FILE. 
89. TM CD$1SUCC.L'CD$1SUCC 
90. BZ IOERROR 
9 l . EOJ 
92. 
93. ERROR ADDRESS FOR DATA MANAGEMENT 
94. 
95. IOERROR EQU 
96. CANCEL CANCEL THE JOB. 
97. LTORG DEFINE ALL LI TERA LS HERE. 
98. WORK EQU SORT WORK AREA 
99. END S RTEXMP L 
100. I• 
1 0 l . II WORKl 
102. II EXEC LNKEDT 
103. 1$ 
104. LO ADM SORT03 
105. INCLUDE SRTEXMPL 
l 0 6. I• 
107. II DVC 50 

• 108. II VOL DSP001 
109. II LBL SORT IN 
11 0 . II LFD INPUT 
l 11 . II DVC 50 



UP-9072 Rev. 1 SPERRY OS/3 5-8 

11 2 . II 
1 1 3 . II 
114 . II 
11 5 . II 
1 1 6 . II 
11 7 . II 
118 . II 
11 9 . II 
120. II 
1 2 1 . II 
1 2 2 . II 
1 2 3 . II 
124. II 
1 2 5 . II 
1 2 6 . /& 
127. II 

Line 
Number 

2-5 

6 

7 

8-14 

16-22 

23-24 

26-33 

36 

37 

38 

41-42 

SORT /MERGE MACROINSTRUCTIONS 

10 16 

VOL DSP001 
LBL SORTOUT 
LFD OUTPUT 
DVC 90 
VOL SCRCHl 
L FD SM01 
DVC 91 
VOL SCRCH2 
L FD SM02 
DVC 92 
VOL SCRCH3 
L FD SM03 
EXEC SORT03.$Y$RUN 
PARAM RESUME=(PASS.233) 

F IN 

Explanation 

The JOB statement names the program SRTEXM13 and specifies 
approximately 28,000 decimal (700016) bytes minimum main storage and 
32,000 decimal (9000 16) bytes maximum main storage. 

Assigns the printer to the job and sets up two temporary work files. 

Executes the assembler. 

/$ indicates the start-of-data (your source program) to the assembler. 

These instructions set the location counter to zero, register 4 as base 
register to the program, and define the sort common module. 

The CDIB and RIB macros describe input and output files to data 
management. 

The VTOC macro sets up a map of the CDIB, and the USING directive 
associates it with base register 1. 

SORT is the label of the MR$PRM macro that specifies sort parameter table 
entries. (See 2.4 for details.) Line 32 must be specified if you intend to enter 
the RESUME parameter via a PARAM statement in line 125. 

This DS statement half-word aligns the 1/0 buffer. 

This DS statement defines the storage area for the 1/0 buffer. 

This DS statement defines the 256-byte work area used to hold 
input/output records. 

MR$0PN opens sort/merge by specifying the name of the sort parameter 
table (line 26). 

• 

• 

• 



UP-9072 Rev. 1 

• Line 
Number 

43-45 

49-58 

62-67 

71-83 

87-91 

95-96 

97 

98-100 

• 101-102 

103-106 

107-114 

115-123 

124 

125-126 

127 

• 

SPERRY OS/3 5-9 
SORT /MERGE MACROINSTRUCTIONS 

Explanation 

This sort input routine opens the input file. 

This sort input routine reads records and releases them to the sort. 

This end-of-file routine closes the input file and indicates the end-of-data 
(MR$SRT). 

This output sort routine opens the output file, requests the return of sorted 
records, and writes sorted records. 

The end-of-sort routine, SORTFIN, closes the output file and tells job control 
that the end-of-job condition was reached. 

IOERROR is the error routine for data management. 

LTORG defines all literals. 

The EQU, END, and /* statements specify the beginning of the sort work 
area, the end of the source program, and the end-of-data to the assembler. 

WORK1 provides a temporary work file to the linkage editor and EXEC 
executes the linkage editor. 

This is the data set to the linkage editor (the load module SORT03). 

Disk input and output data files named SORTIN and SORTOUT are assigned 
to volume DSP001, on device 50. 

Tape work files with LFD names SM01, SM02, and SM03 are assigned to 
volumes SCRCH1, 2, and 3 on devices 90, 91, and 92, respectively. 

Your program named SORT03 is executed from the $Y$RUN library. 

The PARAM statement includes the RESUME parameter to provide the 
restart capability. (See 2.4.2.3 for more details.) The /& delimiter statement 
indicates the end-of-job to job control. 

Marks the end of reader operations . 



UP-9072 Rev. 1 SPERRY OS/3 5-10 
SORT /MERGE MACROINSTRUCTIONS 

5.4. TAPE SORT USING OWN-CODE ROUTINE 

The following example shows the use of a record sequence own-code routine (RSOC). 

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 
10. 
11. 
1 2 . 
1 3 . 
14. 
I 5. 
16. 
17. 
18. 
1 9 . 
20. 
21. 
22. 
23. 
24. 
25. 
26. 
27. 
28. 
29, 
30. 
31. 
32. 
33. 
34. 
35. 
36. 
37. 
38. 
39. 

10 16 

II 
II 

JOB SRTEXM15,,7000,9000 
DVC 20 

II LFD PRNTR 
II WORKl 
II WORK2 
II EXEC ASM 
/$ 
SRTEXMPL 

INPUT 
OUTPUT 
INRIB 

OUT RIB 

START 
BALR 
USING 
B 
EXT RN 

CDIB 
CDIB 
RIB 

RIB 

USING 
VTOC 

0 
4,0 
• '4 
START 
MR$0RT THIS DEFINES THE COMMON SORT 

MODULE FOR INCLUSION BY THE 
LINKAGE EDITOR. 

BFSZ=48B, RCSZ=8B, I OAl=BUFF 1. 
WORK=YES,OPTN=YES,TYPEFLE=INPUT 
BF S Z=4 80, RCS Z=8 0, I OA l=BU FF 1 , WO R K=YE S, 
OPTN=YES,TYPEFLE=OUTPUT 
CD$CDIB,l 
CDIB=YES 

SORT MR$PRM IN=SORTIN 

OS 
BUFF 1 OS 
INOUTBUF OS 

OUT=SORTOUT, 
FIN=SORTFIN, 
S TOR=WORK, 
TAPES=(N0,3) 
RCSZ=80, 
RSOC=RECCMPR 

DATA MANAGEMENT WORK AREAS 
OH 
CL400 I OAR EA 
CL80 WORK AREA 

40. START EQU 
41. 
42. SORTIN 
43. 
44. 
4 5. 
46. 
47. 
48. GETREC 
49. 
50. 
51. 
52. 
53. 

MR$0PN SORT 
OPEN INPUT,(INOUTRIB) 
TM CD$1SUCC,L'CD$1SUCC 
BZ IOERROR 

OPEN SORT/MERGE SUBROUTINE 
OPEN THE INPUT FILE. 

INPUT AND RECORD RELEASE ROUTINE 

EQU 
DMINP INPUT,INOUTBUF GET RECORD FROM INPUT FILE. 
TM CD$1EOF,L'CD$1EOF 
BO EOF 
TM CD$1SUCC,L'CD$1SUCC 
BZ IOERROR 

72 

c 

c 

c 
c 
c 
c 
c 
c 

• 

• 

• 



• 

• 

• 

UP-9072 Rev. 1 

54. 
55. 
56. 
57. 
58. 
59. 
60. 
6 1 . 
62. 
63. 
64. 
65. 
66. 
67. 
68. 
69. 
70. 
7 1 . 
72. 
73. 
74. 
75. 
76. 
77. 
78. 
79. 
80. 
8 1 . 
82. 
83. 
84. 
8 5. 
86. 
87. 
88. 
89. 
90. 
9 1 . 
92. 

EOF 

SORTOUT 

REQREC 

SORTFIN 

93. RECCMPR 
94. 
95. 
96. 
97. 
98. 
99. 
100. 
101 . • 
102 . • 
103 . • 
104. • 
105 . 

SPERRY OS/3 5-11 
SORT /MERGE MACROINSTRUCTIONS 

10 16 72 

LA 1, I NOUTBUF 

MR$REL 
B GET REC 

LOAD REG 1 WITH ADDR OF 
RECORD TO BE RELEASED. 
RELEASE RECORD TO THE SORT. 
GET THE NEXT RECORD. 

EOF ROUTINE 

EQU 
CLOSE INPUT CLOSE THE INPUT FILE 
TM CD$1SUCC,L'CD$1SUCC 
BZ IOERROR 
MR$SRT 

EQU 
OPEN 
TM 
BZ 

MR$RET 

MVC 

DMOUT 
TM 
BZ 
B 

EQU 
CLOSE 
TM 
BZ 
EOJ 

EQU 

INFORM THE SORT OF THE END
OF-DATA CONDITION. 

RECORD RETURN AND OUTPUT ROUTINE 

OUTPUT ,(OUTRIB) 
CD$1SUCC,L'CD$1SUCC 
IOERROR 

INOUTBUF ,0( 1) 

OUTPUT. I NOUTBUF 
CD$ I SUCC, L 'CD$ I SUCC 
IOERROR 
REQREC 

END OF SORT ROUTINE 

OUTPUT 
CD$1SUCC,L'CD$1SUCC 
IOERROR 

RSOC ROUTINE 

OPEN THE OUTPUT FI LE. 

REQUEST THE RETURN OF A 
RECORD. 
MOVE SORTED REC TO OUTPUT 
BUFFER AREA. 
OUTPUT THE RECORD. 

REQUEST THE NEXT RECORD. 

CLOSE THE OUTPUT FILE. 

USING '.15 
IN THIS LOCATION A ROUTINE IS TO BE INSERTED TO PERFORM 
KEY COMPARISONS. REGISTERS 11 AND 12 CONTAIN THE ADDRESS 
OF THE RECORDS TO BE COMPARED. IF THE RECORD POINTED TO 
BY REGISTER 11 IS THE WINNER, THE CONDITION CODE IS TO BE 
SET T 0 LOW (CC= 1 ) . I F THE REC 0 RD F 0 R THE ADDRESS I N 
REGISTER 12 IS THE WINNER, THE CONDITION CODE IS TO BE 
SET TO HIGH (CC=2). IF THE TWO RECORDS ARE EQUAL. THE 
CONDITION CODE IS TO BE SET TO EQUAL (CC-0). THE RSOC 
ROUTINE RETURNS TO THE SORT VIA REGISTER 14. 



--------------------------------------

UP-9072 Rev. 1 

10 16 
CLC 8(8,11),8(12) 

DROP 15 
BR 14 

SPERRY OS/3 
SORT /MERGE MACROINSTRUCTIONS 

COMPARE FOR ASCENDING SEQUENCE. 
IF THE SEQUENCE WERE DESCENDING 
REGISTER 11 AND REGISTER 12 
WOULD BE SWITCHED SO THAT THE 
INSTRUCTION WOULD READ; 
CLC 8(8, 12),8(11) 

5-12 

DISENGAGE USE OF Rl5 AS RSOC BASE RG 
RETURN TO THE SORT WITH THE 
CONDITION CODE SET BY THE 
COMPARE INSTRUCTION. 

106. 
10 7. • 
108. • 
10 9. • 
11 0 . • 
111 . • 
112. 
11 3 . 
114 . • 
11 5 . • 
1 1 6 . • 
1 1 7 . • 
11 8 . • 
11 9 . • 

ERROR ADDRESS FOR DATA MANAGEMENT 

120. IOERROR EQU 
121. CANCEL CANCEL THE JOB. 
1 2 2 . . 
1 2 3 . 
124. . 
1 2 5 . LTORG DEFINE ALL LITERLAS HERE TO 
126 . . FREE THE WORK AREA. 
127. WORK EQU SORT WORK AREA 
1 2 8 . END SRTEXMPL 
129. I• 
130. II WORKl 
1 3 1 . II EXEC LNKEDT 
1 3 2 . 1$ 
1 3 3 . LOADM SORT83 
134. INCLUDE SRTEXMPL 
135. I• 
136. II DVC 138 
137. II VOL DSP881 
138. II L·B L SORT IN 
139. II LFD INPUT 
140. II DVC 138 
14 1 . II VOL DSP881 
142. II LBL SORTOUT 
143. II L FD OUTPUT 
144. II DVC 98 
145. II VOL SCRCHl 
146. II LFD SM81 
147. II DVC 91 
148. II VOL SCRCH2 
149. II LFD SM82 
150. II DVC 92 
151 . II VOL SCRCH3 
152. II L FD SM83 
153. II EXEC SORT83, $Y$RUN 
154. I& 
155. II FIN 

• 

• 

• 



UP-9072 Rev. 1 SPERRY OS/3 5-13 
SORT /MERGE MACROINSTRUCTIONS 

• Line 
Number Explanation 

• 

• 

1-6 The program named SRTEXM15 uses approximately 28,000 decimal 
(7000 16 ) bytes minimum main storage space and approximately 32,000 
decimal (9000 16) bytes maximum main storage. Two temporary work files 
and a printer (if needed) are made available to the assembler and it is 
executed. 

7 This is the start-of-data to the assembler. 

8-14 These instructions set the location number counter to zero, designate 
register 4 as the base register, and define the sort common module 
(MR$0RT). 

15-20 

21-22 

25-31 

35 

36-37 

40-41 

42-44 

48-57 

61-66 

69-72 

74-81 

85-89 

93-117 

120-121 

CDIB and RIB macroinstructions define the input and output files to data 
management. 

The VTOC macro maps out a CDIB, and the USING directive associates it 
with base register 1 . 

MR$PRM defines the sort parameter table. Notice the name of the record 
sequence own-code routine is RECCMPR (line 31 ). For more details, see 
2.4.1 . 

This DS statement half-word aligns the 1/0 buffer. 

These instructions define storage for the half-word aligned 110 buffer area 
and the work area. 

The MR$0PN macro opens sort/merge. 

The sort input routine opens the input file. 

This input routine reads input records and releases them to the sort. 

The end-of-file routine closes the output file and informs the sort of the end
of-data condition. 

The sort output routine opens the output file. 

This routine requests the return of records from the sort and writes the 
record. 

The end-of-sort routine closes the output file and informs job control that 
end-of-job was reached. 

RECCMPR is the name of the user's own-code routine for record 
sequencing. 

IOERROR is the data management error handling routine. 



UP-9072 Rev. 1 SPERRY OS/3 5-14 
SORT /MERGE MACROINSTRUCTIONS 

Line 
Number Explanation 

125 

127-129 

130-135 

136-143 

144-152 

153-154 

155 

LTORG assembler directive defines all literals. 

This EQU statement points to the beginning of the work area. The END 
assembler directive names the source module that is ending and /* 
indicates to job control that end-of-data was reached. 

Execute the linkage editor by using one temporary work file. /$ and /* mark 
the beginning and end of the data set used by the linkage editor. 

Both diskette input file SORTIN and disketta output file SORTOUT on volume 
DSP001 use the same device 130. 

Tape work files named SM01, 02, and 03, on volumes SCRCH1, 2, and 3 
reside on devices 90, 91, and 92, respectively. 

Execute the program SORT03 from $Y$RUN library and indicate end-of-job 
to job control (/&). 

Marks end of reader operation. 

5.5. INTERNAL SORT 

The distinguishing characteristic of an internal sort/merge is that the entire sort process 
is accomplished in main storage without the use of tape or disk work files. The general 
program coding for an internal-only sort is identical to that for a disk or tape sort (Figure 
2-14 and 5.2) except for the following modifications: 

• The DISC and TAPE keyword parameters specified in the MR$PRM macroinstruction 
for the tape and disk sorts are omitted for the internal sort. 

• Disk and tape work files are not assigned for internal sorts. (The assignment of work 
files in the examples for tape and disk sorts appears in the job control stream.) 

An internal sort/merge is feasible only if the input file is relatively small, since all of the 
data must be in main storage at the same time. If you do not assign adequate main 
storage, the sort will terminate. See 1.4.1 for minimum main storage requirements. 

• 

• 

• 



• 

• 

• 

UP-9072 Rev. 1 SPERRY OS/3 A-1 
SORT /MERGE MACROINSTRUCTIONS 

Appendix A. Statement Conventions 

A.1. GENERAL FORMAT RULES 

The following general conventions apply to the coding formats illustrated in this manual 
for sort/merge control statement and macroinstructions. 

• Lowercase letters and words are generic terms representing information that must be 
supplied by you. Such lowercase terms may contain hyphens and acronyms (for 
readability). 

• 

Example: 

[.USEQ=(to-address.from-address)] 

Capital letters, commas, equal signs, and parentheses must be coded exactly as 
shown. 

Example: 

[ .RESUME=(PASS,recovery=number)] 

• Information contained within braces I l represents alternate choices, of which only 
one may be chosen. 

Example: 

{ 

F I E L D= ( s t r t - po s - 1 • I g t h - 1 I [ . f o rm - 1 l I [ . s e q - 1 l I [ . o rd e r - 1 l } 

[ ....• st rt - po s - n. I gt h - n [ . form - n 11 [ • seq - n 11 [ • order - n] ] ) 

RSOC=symbo 11 



UP-9072 Rev. 1 SPERRY OS/3 A-2 

• 

SORT /MERGE MACROINSTRUCTIONS 

Information contained within brackets [ ] represents optional entries that (depending 
upon program requirements) are included or omitted. Braces within brackets [fl] 
signify that one of the specified entries must be chosen if that parameter is included. 

Examples: 

Brackets: 

[ . SI ZE=n umber] 

Braces within brackets: 

[ . DROC={DELETE}] 
symbol 

• Optional parameters having lists of optional entries may have default specifications 
supplied by the operating system when the parameters are not specified by you. 
Although the default may be specified by you with no adverse effect. it is considered 
inefficient to do so. For easy reference, when a default specification occurs in the sort 
macro or sort control statement format, it is printed on a shaded background. If, by 
parameter omission, the operating system performs some complex processing other 
than parameter insertion, it is explained in text. 

Examples: 

[MERGE={~S}] 

[CSPRAM={~S}] 

• An ~llipsis (series of three periods) indicates the presence of a variable number of 
entries. 

Example: 

F I E L D= ( s t r t - p o s - 1 . I g t h - 1 [ . f o rm - 1 ] [ , s e q - 1 ] [ . o r d e r - 1 ] 
[ .... ,strt-pos-n,lgth-n[.form-n][.seq-n](.order-n]]) 

• A keyword parameter consists of a word or a code usually, but not always, followed 
by an equal sign and a specification. Keyword parameters can be written in any order 
in the operand field and are separated by commas. 

Example: 

Assume that MR$PRM, the sort macroinstruction, is specifying three of the 
required keyword parameters: FIN, IN, and OUT. 

SORTl 
SORT2 
SORT3 
SORT4 

10 16 

MR$PRM FIN=SORTFIN, IN=SORTIN.OUT=SORTOUT 
MRSPRM FI N=SORTF IN. OUT=SORTOUT. I N=SORT IN 
MR$PRM IN=SORTIN.FIN=SORTFIN.OUT=SORTOUT 
MRSPRM OUT=SORTOUT. IN=SORTIN.FIN=SORTFIN 

• 

• 

• 



UP-9072 Rev. 1 SPERRY OS/3 A-3 
SORT /MERGE MACROINSTRUCTIONS 

•· Positional parameters are presented in lowercase letters and require insertion of a 
value. 

• 

• 

Example: 

MR$ 0 P N= {Ila r am e t e r - t ab I e - name} 

• A keyword parameter may contain a sublist of parameters called subparameters, 
which are separated by commas and enclosed in parentheses. The parentheses must 
be coded as part of the specification. All subparameters presented in this manual are 
positional. They must be coded in the order shown, and the comma must be retained 
when a subparameter is omitted, except for trailing commas. 

Examples: 

1 0 1 6 

MR$PRM FIELD=(0,l,AC,D,3) 
MR$PRM FIELD=(0,l .. D) 
MR$PRM FIELD=(0,l) 

A.2. MACROINSTRUCTION FORMAT RULES 

Macroinstructions provide an interface between sort/merge and your program. By using 
these macroinstructions, you define the sort run; control the function, structure, and 
execution of sort/merge by building a sort parameter table; and link the various functional 
modules of sort/merge with your program. The following rules apply to the use of the 
sort/merge macroinstructions presented in this manual. 

1. Sort/merge control statements and macroinstructions are coded in the operation 
field, which may begin in any column except column 1. 

2. Parameters are specified in the operand field. This field is separated from the 
operation field by one or more blanks and must begin on the same line of the card. 

3. At least one space must separate the operand field from the comments field, if 
included. 

4. 

5. 

6. 

7. 

8. 

Embedded blanks are not allowed. Anything after a blank is regarded as a comment. 

Values can be written with up to eight alphanumeric characters. 

Commas, equal signs, parentheses, and blanks are used only as field delimiters; they 
may not be used in values. 

Periods are used to separate byte-bit specifications in the FIELD and FIELDS 
parameters and input and output file-partition-numbers in the COPY parameter . 

Any nonblank character in column 72 indicates that the statement is continued on 
the following card. The continuation of an operand starts in column 16; the 
continuation of comments starts in column 17. A continuation statement may not 
begin with a comma in column 16. 



• 

• 

• 



• 

• 

• 

UP-9072 Rev. 1 SPERRY OS/3 B-1 
SORT /MERGE MACROINSTRUCTIONS 

Appendix 8. Contents of Sort 
Parameter Table 

The sort parameter table is the primary interface between your program and the modules 
of the sort/merge program. Through this table, you define the requirements that 
sort/merge uses to sequence your input files and produce an output file ordered to your 
specifications. 

The sort parameter table is generated inline in your program by execution of the MR$PRM 
macroinstruction (2.4). Parameters can be modified via entries you submit on sort 
parameter statements issued in your job control stream. (See 2.12.) Table B-1 is the 
resulting parameter table generated inline after the MR$PRM macro is executed. 

Each sort keyword generates a code. When you want to modify the location of certain sort 
keyword parameters, you find their code in your program printout. The value next to each 
code specifies the value you want to change. You may want to change some, all, or none 
of these parameters. 

Lowercased letters in the value column of Table B-1 represent variable information which 
you supply via your sort keyword parameters on the MR$PRM sort macro. Their meaning 
is explained under the description of values in Table B-1. The codes, values, and keyword 
parameters are the only information actually generated inline in your sort/merge program . 



UP-9072 Rev. 1 SPERRY OS/3 B-2 
SORT /MERGE MACROINSTRUCTIONS 

Table 8-1. Sort Parameter Table (Part 1 of 3) • 
Code Value 

Keyword 
Description of Values 

Parameter 

()() 000000 000000 - Indicates the end of a parameter table 

()() aaaaaa ADTABL aaaaaa - Is the address of an additional parameter table containing information 
which applies to this sort 

01 aaaaaa IN aaaaaa - The address specified by IN keyword. This address identifies the 
location to which control returns following the opening of the 
sort/merge. 

02 aaaaaa OUT aaaaaa - The address specified by the OUT keyword. This address specifies 
the location to which control returns when the sequenced records are 
ready to be returned. 

03 aaaaaa FIN aaaaaa - Specifies the location to which control returns after the last record 
has been returned to the user 

04 aaaaaa RSOC aaaaaa - Specifies the address at which the user own-code record sequencing 
routine is located 

05 aaaaaa DROC aaaaaa - Specifies the address at which the user own-code data reduction 
routine is located 

07 aaaaaa STOA aaaaaa - The address of the first byte of the work area reserved for the sort 

FF nnnnnn nnnnnn - A binary value indicating the number of bytes available for sort 
usage in the work area. This value is zero if the number of bytes is 
absent. • 08 00 nnnn RCSZ nnnn - A binary value specifying size of the record to be sorted. This 
specifies the maximum record size for variable-length records and 
includes the 4-byte record length field. 

09 000000 MERGE 09 - Indicates a merge-only application 

OA 00 nnnn BIN nnnn - A binary number specifying the BIN size for variable-length records 
(form 11 

OA 00 nnnn BIN nnnn - A binary number specifying the minimum BIN size for variable-length 
(form 21 records 

FF ssssss SSS SSS - A binary number specifying a record size within the file to be sorted 

FF 00 vvvv vvvv - A binary number specifying the number of times this record size occurs 
in the file or percentage of occurrences 

FF ssssss Each size-n and freq-n subparameter pair requires two BIN continuation words in the 
FF OOvvvv parameter table. 

• 



UP-9072 Rev. 1 SPERRY OS/3 B-3 
SORT /MERGE MACROINSTRUCTIONS 

• Table 8-1. Sort Parameter Table (Part 2 of 3) 

Code Value 
Keyword 

Description of Values 
Parameter 

OB ii PPPP FIELD ii - A binary number specifying the length of the field in bytes represented 
FF cc qq rr as length-1 for all but binary fields that are in the byte bit format where 

FF 00 II bb it is defined as true length. (~ii< 255) 

pp pp - The location of the first byte of the key field relative to the start 
of the record. (0,,:;; pppp,,:;; 32767) 

cc - Binary code of the FIELD form parameter 

00 = CH - character 

01 = Bl - unsigned binary 

02 = Fl - fixed pointer integer 

03 = PD - packed decimal 

04 = ZD - zoned decimal 

05 = FL - floating point 

06 = MC - multiple character, user-specified 
collating sequence 

07 = AC - EBCDIC data in ASCII collation sequence-
08 = CSL - leading sign numeric 
09 = CST - trailing sign numeric 
OA = CLO - numeric data overpunched leading sign 
OB = CTO - numeric data overpunched trailing sign 
oc = ASL - ASCII numeric data leading sign 
OD = AST - ASCII numeric data trailing sign 

I I I I OE = USO - user specified collation sequence 

• qq - Binary code of the field sequence parameter 
00 =ascending sequence, A 
01 =descending sequence, D 

rr - Binary value specifying the order of significance of this field 
(01<rr ~255) 

II - A binary value, used only when Bl is specified. Specifies a 
number of bits when the length of a 'Bl' field is not an even multiple 
of bytes 
(OO<ii <o7l 

bb - A binary value used only in Bl fields to specify the first bit 
location of a Bl field within the byte location specified by pppp. 
(OO<bb<07l 

oc 0000 nn DISC nn - A binary value specifying the maximum number of disk file names which 

FF aaaaaa may be assigned 
(O<nn<Bl 

aaaaaa - The address of the list of user-supplied disk file names 

OD 00 nn xx TAPE nn - A binary value specifying the maximum number of tape file names which 
may be assigned 
(O~nn ~6) 

xx - A binary code indicating the tapes label parameter 
00 = standard labels, STD 
01 = no labels, NO 

OE 0000 bb SHARE bb - Two unsigned decimal d191ts representmg the last two characters of 
the file name of the tape unit to be shared (SMOG, bb"" 6 or less) 

OF 0000 bb RESERV bb - Two unsigned decimal d191ts representing the last two characters of 
the file name of the tape unit to be reserved ISM06, bb - 6 or less I • 14 rrrrrr RESUME= rrrrrr - Three-character pass recovery-number parameter 

(PASS, .. ) 



UP-9072 Rev. 1 SPERRY OS/3 B-4 
SORT /MERGE MACROINSTRUCTIONS 

Table 8-1. Sort Parameter Table (Part 3 of 3) • 
Code Value 

Keyword 
Dascription of Values 

Parameter 

1A 00 gg hh NOCKSM gg-hh - Binary code indicating checksum to be omitted 

gg = 01 - omit tape checksum 

hh = 01 - omit disk checksum 

1B aaaaaa USEO aaaaaa - The address of a 256-byte translation table specifying the desired 
collation sequence 

FF dddddd dddddd - The address of a 256-byte translation table specifying the inverse 
of the first table 

20 000000 PAD The null PAD entry is used to reserve space in thP. parameter table. The entry is repeated 
(bytes+3114 times, where bytes in (bytes+31 represents the PAD 'bytes' parameter. 

21 0000 jj CSPRAM jj - Binary code indicating the CSPRAM option 
01 - OPTION 
02 - YES 
03 - NO 

22 0000 nn ADD ROUT nn - A binary code specifying the tag-sort option. 

00 - A - return only the direct access address of record 

01 - D - return the disk address and the record key fields 

25 0000 nn CALC nn - A binary code signifying that sort optimization information is to 
be calculated and displayed. The sort may be executed or terminated. • 00 - NO - no execution 

01 - YES - execution 

26 nnnnnn SIZE nnnnnn - A binary number indicating the approximate number of records to be 
sorted 

29 0000 nn PRINT nn - A binary code indicating the type of messages to be displayed 

00 - ALL 
01 - CRITICAL 
02 - NONE 

• 



• 

• 

• 

UP-9072 Rev. 1 SPERRY OS/3 C-1 
SORT /MERGE MACROINSTRUCTIONS 

Appendix C. Standard EBCDIC and 
ASCII Collating Sequences 

C.1. GENERAL 

Appendix C provides three useful tables containing collating sequences. The first (Table 
C-1) presents a cross-reference table that enables you to compare the following standard 
codes commonly used in data processing and in OS/3: 

• Hollerith punched card code 

• EBCDIC (Extended Binary Coded Decimal Interchange Code) 

• ASCII (American National Standard Code for Information Interchange) 

• Binary bit-pattern (bit-configuration) representation for an 8-bit system 

• Hexadecimal representation 

Table C-2 provides a convenient chart of OS/3 EBCDIC graphics only, and Table C-3 lists 
OS/3 ASCII graphics only. 

C.2. EBCDIC/ ASCII/HOLLERITH CORRESPONDENCE 

Table C-1 is a cross-reference table depicting the correspondences among the Hollerith 
punched card code, ASCII, and EBCDIC. The table is arranged in the sorting (or collating) 
sequence of the binary bit patterns which have been assigned to the codes, with 0000 
0000 being the lowest value in the sequence and 1111 1111 the highest. These binary bit 
patterns are sorted in a left-to-right sequence (most significant to least significant bit). 

Note that the column headed Decimal uses decimal numbers to represent the positions of 
the codes and bit patterns in this sequence, but counts the position of the lowest value as 
the zero position rather than the first. Thus, the position of the highest value bit pattern 
1111 1111 is represented in the decimal column by 255, whereas it is actually the 256th 
in the sequence. This scheme corresponds to the common convention for numbering 
bytes, in which the first byte of a group is byte 0, and is convenient when you are 
constructing a 256-byte translation table . 



UP-9072 Rev. 1 SPERRY OS/3 C-2 
SORT /MERGE MACROINSTRUCTIONS 

The column headed Dec. also represents the collating sequence for the ASCII graphic 
characters shown in the fourth column of the table; the fifth column, Hollerith Code, 
contains the hole patterns assigned to these ASCII graphics. The ASCII space character is 
represented in the fourth column by the conventional notation SP at decimal position 32, 
and the corresponding card code is no punches. The shading in the ASCII graphic 
character column indicates where the 128-character ASCII code leaves off: there are no 
ASCII graphic or control characters that correspond to the bit patterns higher in collating 
sequence than 0111 1111 (the 128th in Table C-1 ). 

The EBCDIC graphic characters, listed in the sixth column of Table C-1, are also in their 
collating sequence, and the hole patterns in the seventh column correspond to the EBCDIC 
graphics. The EBCDIC space character is represented by the notation SP in the sixth 
column at decimal position 64; the corresponding card code is, again, no punches. The 
empty space in the sixth column represents the positions of the EBCDIC control 
characters. 

C.2.1. Hollerith Punched Card Code 

The standard Hollerith punched card code specifies 256 hole-patterns in 12-row punched 
cards. Hole-patterns are assigned to the 128 characters of ASCII and to 128 additional 
characters for use in 8-bit coded systems. These include the EBCDIC set. Note that no 
sorting sequence is implied by the Hollerith code itself. 

C.2.2. EBCDIC 

EBCDIC is an extension of Hollerith coding practices. It comprises 256 characters, each of 
which is represented by an 8-bit pattern. Table C-1 shows the EBCDIC graphic characters 
only; the EBCDIC control characters are not indicated. 

C.2.3. ASCII 

ASCII comprises 128 coded characters, each represented by an 8-bit pattern, and includes 
both control characters and graphic characters. Only the latter are shown in Table C-1. 

Table C-1. Cross-Reference Table: EBCDIC/ASCII/Hollerith (Pan 1 of 6) 

Numeric Values ASCII EBCDIC 

ASCII Hollerith EBCDIC Hollerith 
Dec. Hex. Binary Char. Code Char. Code 

0 00 0000 0000 NUL 12-0-9-8-1 12-0-9-8-1 
1 01 0000 0001 12-9-1 12-9-1 
2 02 0000 0010 12-9-2 12-9-2 
3 03 0000 0011 12-9-3 12-9-3 
4 04 0000 0100 9-7 12-9-4 

5 05 0000 0101 0-9-8-5 12-9-5 
6 06 0000 0110 0-9-8-6 12-9-6 
7 07 0000 0111 0-9-8-7 12-9-7 
8 08 0000 1000 11-9-6 12-9-8 
9 09 0000 1001 12-9-5 12-9-8-1 

• 

• 

• 



UP-9072 Rev. 1 

• 

• 

• 

SPERRY OS/3 
SORT /MERGE MACROINSTRUCTIONS 

Table C-1. Cross-Reference Table: EBCDIC/ASCII/Hollerith (Part 2 of 6) 

Numeric Values 

Dec. Hex. Binary 

10 OA 
11 OB 
12 oc 
13 OD 
14 OE 

0000 1010 
0000 1011 
0000 1100 
0000 1101 
0000 1110 

15 OF 00001111 
16 10 0001 0000 
17 11 0001 0001 
18 12 0001 0010 
19 13 0001 0011 

20 14 0001 0100 
21 15 0001 0101 
22 16 0001 0110 
23 17 0001 0111 
24 18 0001 1000 

25 19 0001 1001 
26 lA 0001 1010 
27 1 B 0001 1011 
28 lC 0001 1100 
29 10 0001 11 01 

30 1 E 0001 1110 
31 lF 0001 1111 
32 20 0010 0000 
33 21 0010 0001 
34 22 0010 0010 

35 23 
36 24 
37 25 
38 26 
39 27 

0010 0011 
0010 0100 
0010 0101 
0010 0110 
00100111 

40 28 0010 1000 
41 29 0010 1001 
42 2A 0010 1010 
43 28 0010 1011 
44 2C 0010 1100 

45 20 0010 1101 
46 2E 0010 1110 
47 2F 0010 1111 
48 30 0011 0000 
49 31 0011 0001 

50 32 0011 0010 
51 33 0011 0011 
52 34 0011 0100 
53 35 0011 0101 
54 36 0011 0110 

55 37 
56 38 
57 39 
58 3A 
59 38 

0011 0111 
0011 1000 
0011 1001 
0011 1010 
0011 1011 

ASCII 
Char. 

SP 

$ 

% 
& 

* 
+ 

I 
0 
1 

2 
3 
4 
5 
6 

7 
8 
9 

ASCII 

Hollerith 
Code 

0-9-5 
12-9-8-3 
12-9-8-4 
12-9-8-5 
12-9-8-6 

12-9-8-7 
12-11-9-8-1 
11-9-1 
11-9-2 
11-9-3 

9-8-4 
9-8-5 
9-2 
0-9-6 
11-9-8 

11-9-8-1 
9-8-7 
0-9-7 
11-9-8-4 
11-9-8-5 

11-9-8-6 
11-9-8-7 
No punches 
12-8-7 
8-7 

8-3 
11-8-3 
0-8-4 
12 
8-5 

12-8-5 
11-8-5 
11-8-4 
12-8-6 
0-8-3 

11 
12-8-3 
0-1 
0 
1 

2 
3 
4 
5 
6 

7 
8 
9 
8-2 
11-8-6 

EBCDIC 

EBCDIC Hollerith 
Char. Code 

12-9-8-2 
12-9-8-3 
12-9-8-4 
12-9-8-5 
12-9-8-6 

12-9-8-7 
12-11-9-8-1 
11-9-1 
11-9-2 
11-9-3 

11-9-4 
11-9-5 
11-9-6 
11-9-7 
11-9-8 

11-9-8-1 
11-9-8-2 
11-9-8-3 
11-9-8-4 
11-9-8-5 

11-9-8-6 
11-9-8-7 
11-0-9-8-1 
0-9-1 
0-9-2 

0-9-3 
0-9-4 
0-9-5 
0-9-6 
0-9-7 

0-9-8 
0-9-8-1 
0-9-8-2 
0-9-8-3 
0-9-8-4 

0-9-8-5 
0-9-8-6 
0-9-8-7 
12-11-0-9-8-1 
9-1 

9-2 
9-3 
9-4 
9-5 
9-6 

9-7 
9-8 
9-8-1 
9-8-2 
9-8-3 

C-3 



UP-9072 Rev. 1 SPERRY OS/3 C-4 
SORT /MERGE MACROINSTRUCTIONS 

Table C-1. Cross-Reference Table: EBCDIC/ASCII/Hollerith (Part 3 of 6) • 
Numeric Values ASCII EBCDIC 

ASCII Hollerith EBCDIC Hollerith 
Dec. Hex. Binary Char. Code Char. Code 

60 3C 0011 1100 < 12-8-4 9-8-4 
61 30 0011 1101 = 8-6 9-8-5 
62 3E 0011 1110 > 0-8-6 9-8-6 
63 3F 0011 1111 ? 0-8-7 9-8-7 
64 40 0100 0000 @ 8-4 SP No punches 

65 41 0100 0001 A 12-1 12-0-9-1 
66 42 0100 0010 B 12-2 12-0-9-2 

I 67 43 0100 0011 c 12-3 12-0-9-3 

I 68 44 0100 0100 0 12-4 12-0-9-4 

I 69 45 0100 0101 E 12-5 12-0-9-5 

70 46 0100 0110 F 12-6 12-0-9-6 
71 47 0100 0111 G 12-7 12-0-9-7 
72 48 0100 1000 H 12-8 12-0-9-8 
73 49 0100 1001 I 12-9 12-8-1 
74 4A 0100 1010 J 11-1 [ 12-8-2 

75 4B 0100 1011 K 11-2 12-8-3 
76 4C 0100 1100 L 11-3 < 12-8-4 
77 40 0100 1101 M 11-4 ( 12-8-5 
78 4E 0100 1110 N 11-5 + 12-8-6 
79 4F 0100 1111 0 11-6 ! 12-8-7 

80 50 0101 0000 p 11-7 & 12 
81 51 0101 0001 a 11-8 12-11-9-1 • 82 52 0101 0010 R 11-9 12-11-9-2 
83 53 0101 0011 s 0-2 12-11-9-3 
84 54 0101 0100 T 0-3 12-11-9-4 

85 55 0101 0101 u 0-4 12-11-9-5 
86 56 0101 0110 v 0-5 12-11-9-6 
87 57 0101 0111 w 0-6 12-11-9-7 
88 58 0101 1000 x 0-7 12-11-9-8 
89 59 0101 1001 y 0-8 11-8-1 

90 5A 0101 1010 z 0-9 l 11-8-2 
91 58 0101 1011 [ 12-8-2 $ 11-8-3 
92 5C 0101 1100 \ 0-8-2 * 11-8-4 
93 50 0101 1101 l 11-8-2 ) 11-8-5 
94 5E 0101 1110 b. 11-8-7 11-8-6 

95 SF 0101 1111 - 0-8-5 6. 11-8-7 
96 60 0110 0000 8-1 - 11 
97 61 0110 0001 a 12-0-1 I 0-1 
98 62 0110 0010 b 12-0-2 11-0-9-2 
99 63 0110 0011 c 12-0-3 11-0-9-3 

100 64 0110 0100 d 12-0-4 11-0-9-4 
101 65 0110 0101 e 12-0-5 11-0-9-5 
102 66 01100110 f 12-0-6 11-0-9-6 
103 67 0110 0111 9 12-0-7 11-0-9-7 
104 68 0110 1000 h 12-0-8 11-0-9-8 

105 69 0110 1001 i 12-0-9 0-8-1 
106 6A 0110 1010 j 12-11-1 I 12-11 
107 6B 0110 1011 k 12-11-2 0-8-3 • 108 6C 0110 1100 I 12-11-3 % 0-8-4 
109 60 01101101 m 12-11-4 - 0-8-5 



UP-9072 Rev. 1 SPERRY OS/3 C-5 
SORT /MERGE MACROINSTRUCTIONS 

• Table C-1. Cross-Reference Table: EBCDIC/ASCII/Hollerith (Part 4 of 6) 

Numeric Values ASCII EBCDIC 

ASCII Hollerith EBCDIC Hollerith 
Dec. Hex. Binary Char. Code Char. Code 

110 6E 0110 1110 n 12-11-5 > 0-8-6 
111 6F 0110 1111 0 12-11-6 0-8-7 
112 70 0111 0000 p 12-11-7 12-11-0 
113 71 0111 0001 q 12-11-8 12-11 -0-9-1 
114 72 0111 0010 12-11-9 12-11-0-9-2 

115 73 0111 0011 s 11-0-2 12-11 -0-9-3 
116 74 0111 0100 t 11-0-3 12-11-0-9-4 
117 75 0111 0101 u 11-0-4 12-11-0-9-5 
118 76 0111 0110 v 11-0-5 12-11-0-9-6 
119 77 0111 0111 w 11-0-6 12-11-0-9-7 

120 78 0111 1000 x 11-0-7 12-11-0-9-8 
121 79 0111 1001 y 11-0-8 8-1 
122 7A 0111 1010 z 11-0-9 8-2 
123 78 0111 1011 12-0 # 8-3 
124 7C 0111 1100 12-11 @ 8-4 

125 70 0111 1101 11-0 8-5 
126 7E 0111 1110 11-0-1 8-6 
127 7F 0111 1111 12-9-7 8-7 
128 80 1000 0000 11-0-9-8-1 12-0-8-1 
129 81 1000 0001 0-9-1 a 12-0-1 • 130 82 1000 0010 0-9-2 b 12-0-2 
131 83 1000 0011 0-9-3 c 12-0-3 
132 84 1000 0100 0-9-4 d 12-0-4 
133 85 1000 0101 11-9-5 e 12-0-5 
134 86 1000 0110 12-9-6 f 12-0-6 

135 87 1000 0111 11-9-7 g 12-0-7 
136 BB 1000 1000 0-9-8 h 12-0-B 
137 B9 1000 1001 0-9-B-1 12-0-9 
13B BA 1000 1010 0-9-B-2 12-0-B-2 
139 B8 1000 1011 0-9-B-3 12-0-B-3 

140 BC 1000 1100 0-9-8-4 12-0-B-4 
141 BO 1000 1101 12-9-B-1 12-0-8-5 
142 BE 1000 1110 12-9-B-2 12-0-8-6 
143 BF 1000 1111 11-9-B-3 12-0-B-7 
144 90 1001 0000 12-11-0-9-B-1 12-11-8-1 

145 91 1001 0001 9-1 j 12-11-1 
146 92 1001 0010 11-9-B-2 k 12-11-2 
147 93 1001 0011 9-3 12-11-3 
148 94 1001 0100 9-4 m 12-11-4 
149 95 1001 0101 9-5 n 12-11-5 

150 96 1001 0110 9-6 0 12-11-6 
151 97 1001 0111 12-9-B p 12-11-7 
152 9B 1001 1000 9-B q 12-11-8 
153 99 1001 1001 9-8-1 12-11-9 
154 9A 1001 1010 9-B-2 12-11-B-2 

• 155 98 1001 1011 9-B-3 12-11-B-3 
156 9C 1001 1100 12-9-4 12-11-B-4 
157 90 1001 1101 11-9-4 12-11-B-5 
15B 9E 1001 1110 9-B-6 12-11-B-6 
159 9F 1001 1111 11-0-9-1 12-11-B-7 



UP-9072 Rev. 1 SPERRY OS/3 C-6 
SORT /MERGE MACROINSTRUCTIONS 

Table C-1. Cross-Reference Table: EBCDIC/ASCII/Hollerith (Part 5 of 6) • Numeric Values ASCII EBCDIC 

Hollerith EBCDIC Hollerith 
Dec. Hex. Binary Code Char. Code 

160 AO 1010 0000 12-0-9-1 11-0-B-1 
161 A1 1010 0001 12-0-9-2 11-0-1 
162 A2 1010 0010 12-0-9-3 s 11-0-2 
163 A3 1010 0011 12-0-9-4 t 11-0-3 
164 A4 1010 0100 12-0-9-5 u 11-0-4 

165 A5 1010 0101 12-0-9-6 v 11-0-5 
166 A6 10100110 12-0-9-7 w 11-0-6 
167 A7 1010 0111 12-0-9-B x 11-0-7 
16B AB 1010 1000 12-B-1 y 11-0-B 
169 A9 1010 1001 12-11-9-1 z 11-0-9 

170 AA 1010 1010 12-11-9-2 11-0-B-2 
171 AB 1010 1011 12-11-9-3 11-0-B-3 
172 AC 1010 1100 12-11-9-4 11-0-B-4 
173 AD 1010 1101 12-11-9-5 11-0-B-5 
174 AE 1010 1110 12-11-9-6 11-0-B-6 

175 AF 1010 1111 12-11-9-7 11-0-B-7 

176 BO 1011 0000 12-11-9-B 12-11-0-B-1 

177 Bl 1011 0001 11-B-1 12-11-0-1 
17B B2 1011 0010 11-0-9-2 12-11-0-2 
179 B3 1011 0011 11-0-9-3 12-11-0-3 

1 BO B4 1011 0100 11-0-9-4 12-11-0-4 • 1 Bl B5 1011 0101 11-0-9-5 12-11-0-5 
1 B2 B6 1011 0110 11-0-9-6 12-11-0-6 
1B3 B7 1011 0111 11-0-9-7 12-11-0-7 
1 B4 BB 1011 1000 11-0-9-B 12-11-0-B 

1B5 B9 1011 1001 O-B-1 12-11-0-9 
1 B6 BA 1011 1010 12-11-0 12-11-0-B-2 

1B7 BB 1011 1011 12-11-0-9-1 12-11-0-B-3 
188 BC 1011 1100 12-11-0-9-2 12-11-0-B-4 
189 BD 1011 1101 12-11-0-9-3 12-11-0-B-5 

190 BE 1011 1110 12-11-0-9-4 12-11-0-8-6 

191 BF 1011 1111 12-11-0-9-5 12-11-0-B-7 

192 co 1100 0000 12-11-0-9-6 { 12-0 

193 Cl 1100 0001 12-11-0-9-7 A 12-1 

194 C2 11000010 12-11-0-9-B B 12-2 

195 C3 11000011 12-0-8-1 c 12-3 
196 C4 1100 0100 12-0-8-2 D 12-4 
197 C5 11000101 12-0-8-3 E 12-5 
19B C6 11000110 12-0-B-4 F 12-6 
199 C7 11000111 12-0-8-5 G 12-7 

200 CB 1100 1000 12-0-8-6 H 12-B 
201 C9 1100 1001 12-0-B-7 I 12-9 
202 CA 1100 1010 12-11-B-1 12-0-9-B-2 
203 CB 1100 1011 12-11-8-2 12-0-9-B-3 
204 cc 11001100 12-11-8-3 12-0-9-B-4 

205 CD 1100 1101 12-11-8-4 12-0-9-8-5 
206 CE 1100 1110 12-11-8-5 12-0-9-B-6 • 207 CF 1100 1111 12-11-B-6 12-0-9-B-7 
20B DO 1101 0000 12-11-8-7 l 11-0 
209 Dl 1101 0001 11-0-8-1 J 11-1 



UP-9072 Rev. 1 SPERRY OS/3 C-7 
SORT /MERGE MACROINSTRUCTIONS 

• Table C-1. Cross-Reference Table: EBCDIC/ASCII/Hollerith (Part 6 of 6) 

Numeric Values ASCII EBCDIC 

Hollerith EBCDIC Hollerith 
Dec. Hex. Binary Code Char. Code 

210 02 1101 0010 11-0-8-2 K 11-2 
211 03 1101 0011 11-0-8-3 L 11-3 
212 04 1101 0100 11-0-8-4 M 11-4 
213 05 1101 0101 11-0-8-5 N 11-5 
214 06 1101 0110 11-0-8-6 0 11-6 

215 07 1101 0111 11-0-8-7 p 11-7 
216 08 1101 1000 12-11-0-8-1 Q 11-8 
217 09 1101 1001 12-11-0-1 R 11 -9 
218 DA 1101 1010 12-11-0-2 12- 11 -9-8-2 
219 DB 1101 1011 12-11-0-3 12-11 -9-8-3 

220 DC 1101 1100 12-11-0-4 12-11 -9-8-4 
221 DD 1101 1101 12-11-0-5 12-11 -9-8-5 
222 DE 1101 1110 12-11-0-6 12-11-9-8-6 
223 OF 1101 1111 12-11-0-7 12-11-9-8-7 
224 EO 1110 0000 12-11-0-8 \ 0-8-2 

225 E1 11100001 12-11-0-9 11-0-9-1 
226 E2 1110 0010 12-11-0-8-2 s 0-2 
227 E3 11100011 12-11 -0-8-3 T 0-3 
228 E4 1110 0100 12-1 1 -0-8-4 u 0-4 
229 E5 11100101 12-11-0-8-5 v 0-5 

• 230 E6 11100110 12-11-0-8-6 w 0-6 
231 E7 1110 0111 12-11-0-8-7 x 0-7 
232 ES 1110 1000 12-0-9-8-2 y 0-8 
233 E9 1110 1001 12-0-9-8-3 z 0-9 
234 EA 1110 1010 12-0-9-8-4 11 -0-9-8-2 

235 EB 11101011 12-0-9-8-5 11-0-9-8-3 
236 EC 11101100 12-0-9-8-6 11-0-9-8-4 
237 ED 11101101 12-0-9-8-7 11-0-9-8-5 
238 EE 1110 1110 12-11 -9-8-2 11-0-9-8-6 
239 EF 11101111 12-11-9-8-3 11-0-9-8-7 

240 FO 1111 0000 12-1 1 -9-8-4 0 0 
241 F1 1111 0001 1 2-1 1 -9-8-5 1 1 
242 F2 1111 0010 12-11 -9-8-6 2 2 
243 F3 1111 0011 12-11-9-8-7 3 3 
244 F4 1111 0100 11-0-9-8-2 4 4 

245 F5 1111 0101 11-0-9-8-3 5 5 
246 F6 11 11 01 10 11-0-9-8-4 6 6 
247 F7 1111 0111 11-0-9-8-5 7 7 
248 F8 1 1 11 1000 11-0-9-8-6 8 8 
249 F9 1111 1001 11-0-9-8-7 9 9 

250 FA 111 1 1010 12-11-0-9-8-2 12- 11 -0-9-8-2 
251 FB 11 11 1011 12-11-0-9-8-3 12-11 -0-9-8-3 
252 FC 1111 1100 12-11 -0-9-8-4 12-11 -0-9-8-4 
253 FD 11 11 1101 12-11 -0-9-8-5 12-11 -0-9-8-5 
254 FE 1 111 1110 12-11 -0-9-8-6 12-11 -0-9-8-6 
255 FF 1111 1111 12-11-0-9-8-7 12-11-0-9-8-7 

• 



UP-9072 Rev. 1 SPERRY OS/3 C-8 
SORT /MERGE MACROINSTRUCTIONS 

C.3. OS/3 COLLATING SEQUENCE FOR EBCDIC GRAPHIC CHARACTERS 

Table C-2 shows the OS/3 collating sequence for EBCDIC characters and unsigned 
decimal data. The collating sequence ranges from low (0000 0000) to high (1111 1111 ). 
The bit configurations that do not correspond to symbols (e.g., 0-73, 81-89, etc) are not 
shown. Some of these correspond to control commands for printers and other devices. 

Packed decimal, zoned decimal, fixed-point, and normalized floating-point data is collated 
algebraically; i.e., each quantity is interpreted as having a sign. 

Table C-2. 0513 Collating Sequence: EBCDIC Graphics (Part 1 of 2) 

Collating 
Bit Configuration Symbol Meaning 

Sequence 

0 0000 0000 
64 0010 0000 SP Space 

74 0100 1010 I Opening bracket 
75 0100 1011 Period, decimal point 

76 0100 1100 < Less than sign 

77 0100 1101 ( Left parenthesis 
78 01001110 t Plus sign 

79 0100 1111 ! Exclamation point 

80 0101 0000 & Ampersand 

90 0101 1010 I Closing bracket 
91 0101 1011 $ Dollar sign 

92 0101 1100 . Asterisk 
93 0101 1101 ) Right parenthesis 
94 0101 1110 Semicolon 

95 0101 1111 I Logical NOT 

96 0110 0000 Minus sign, hyphen 

97 0110 0001 I Slash 

106 0110 1010 I Vertical bar 

107 0110 1011 Comma 
108 0110 1100 % Percent sign 
109 0110 1101 - Underscore 
110 0110 1110 > Greater than sign 
111 0110 1111 7 Question mark 

122 0111 1010 Colon 
123 0111 1011 :ti: Number sign 

124 0111 1100 @ At sign 

125 0111 1101 Apostrophe, prime 
126 0111 1110 ~ Equals sign 
127 0111 1111 .. Quotation mark• 

129 1000 0001 a 
130 1000 0010 b 
131 1000 0011 c 
132 1000 0100 d 
133 1000 0101 e 

134 1000 0110 f 

135 1000 0111 g 
136 1000 1000 h 
137 1000 1001 i 

145 1001 0001 i 
146 1001 0010 k 

147 1001 0011 I 

148 1001 0100 m 

• 

• 

• 



UP-9072 Rev. 1 SPERRY OS/3 C-9 
SORT /MERGE MACROINSTRUCTIONS 

• Table C-2. OS/3 Collating Sequence: EBCDIC Graphics (Part 2 of 2) 

Collating 
Bit Configuration Symbol Meaning 

Sequence 

149 1001 0101 n 
150 1001 0110 0 

151 10010111 p 
152 1001 1000 q 

153 1001 1001 r 

161 1010 0001 "' Tilde 
162 1010 0010 s 
163 1010 0011 t 
164 1010 0100 u 
165 1010 0101 v 
166 1010 0110 w 
167 1010 0111 x 

168 1010 1000 y 

169 1010 1001 l 

192 1100 0000 { Opening brace 
193 1100 0001 A 
194 1100 0010 B 
195 1100 0011 c 
196 1100 0100 D 
197 1100 0101 E 
198 1100 0110 F 
199 1100 0111 G • 200 1100 1000 H 

201 1100 1001 I 

I 
208 1101 0000 I Closing brace 

209 1101 0001 J 

210 1101 0010 K 

211 1101 0011 L 

212 1101 0100 M 
213 1101 0101 N 
214 1101 0110 0 
215 1101 0111 p 

216 1101 1000 Q 

217 1101 1001 R 

224 11100000 .... Reverse slant 

226 11100010 s 
227 1110 0011 T 
228 1110 0100 u 
229 1110 0101 v 
230 1110 0110 w 
231 1110 0111 x 
232 1110 1000 y 

233 1110 1001 z 

240 1111 0000 0 
241 1111 0001 1 
242 1111 0010 2 
243 1111 0011 3 
244 1111 0100 4 

• 245 1111 0101 5 
246 1111 0110 6 
247 1111 0111 7 
248 1111 1000 8 
249 1111 1001 9 



UP-9072 Rev. 1 SPERRY OS/3 C-10 
SORT /MERGE MACROINSTRUCTIONS 

C.4. OS/3 COLLATING SEQUENCE FOR ASCII GRAPHIC CHARACTERS 

Table C-3 shows the OS/3 collating sequence for ASCII characters and unsigned decimal 
data. The collating sequence ranges from low (0000 0000) to high (0111 1111 ). Bit 
configurations that do not correspond to symbols are not shown. 

Packed decimal, zoned decimal, fixed-point normalized floating-point data, and the signed 
numeric data formats are collated algebraically; i.e., each quantity is interpreted as having 
a sign. 

Table C-3. OS/3 Collating Sequence: ASCII Graphics (Part 1 of 2) 

Collating 
Bit Configuration Symbol Meaning 

Sequence 

0 0000 0000 Null 
32 0010 0000 SP Space 
33 0010 0001 I Exclamation mark 
34 0010 0010 .. Quotation mark 
35 0010 0011 # Number sign 
36 0010 0100 $ Dollar sign 
37 00100101 % Percent sign 
38 0010 0110 & Ampersand 
39 0010 0111 Apostrophe, prime 
40 0010 1000 ( Opening parenthesis 
41 0010 1001 ) Closing parenthesis 
42 0010 1010 . Asterisk 
43 0010 1011 + Plus sign 
44 0010 1100 Comma 
45 0010 1101 Hyphen. minus sign 
46 00101110 Period, decimal point 
47 0010 1111 I Slant 
48 0011 0000 0 
49 0011 0001 1 
50 0011 0010 2 
51 0011 0011 3 
52 0011 0100 4 
53 0011 0101 5 
54 0011 0110 6 
55 0011 0111 7 
56 0011 1000 8 
57 0011 1001 9 
58 0011 1010 Colon 
59 0011 1011 Semicolon 
60 00111100 < Less than sign 
61 0011 1101 ~ Equals sign 
62 0011 1110 > Greater than sign 
63 0011 1111 7 Question mark 
64 0100 0000 @ Commercial at sign 
65 0100 0001 A 

66 0100 0010 8 
67 0100 0011 c 
68 0100 0100 D 
69 0100 0101 E 
70 0100 0110 F 
71 01000111 G 
72 0100 1000 H 
73 0100 1001 I 
74 0100 1010 J 
75 0100 1011 K 
76 0100 1100 L 
77 01001101 M 

• 

• 

• 



UP-9072 Rev. 1 SPERRY OS/3 C-11 
SORT /MERGE MACROINSTRUCTIONS 

• Table C-3. OS/3 Collating Sequence: ASCII Graphics (Part 2 of 2) 

Collating 
Bit Configuration Symbol Meaning 

Sequence 

78 01001110 N 
79 0100 1111 0 
80 0101 0000 p 

81 0101 0001 Q 

82 0101 0010 R 
83 0101 0011 s 
84 0101 0100 T 
85 0101 0101 u 
86 0101 0110 v 
87 0101 0111 w 
88 0101 1000 x 
89 0101 1001 y 

90 0101 1010 z 
91 0101 1011 ( Opening bracket 
92 0101 1100 \ Reverse slant 
93 0101 1101 I Closing bracket 
94 0101 1110 /\ Circumflex 
95 0101 1111 - Underscore 
96 0110 0000 Grave accent 
97 01100001 a 
98 0110 0010 b 
99 0110 0011 c 
100 01100100 d 

• 101 0110 0101 e 
102 01100110 f 
103 0110 0111 g 
104 0110 1000 h 

105 0110 1001 i 
106 0110 1010 j 

107 0110 1011 k 

108 0110 1100 I 

109 0110 1101 m 
110 0110 1110 n 
111 0110 1111 0 

112 0111 0000 p 
113 0111 0001 q 

114 0111 0010 r 

115 0111 0011 s 
116 0111 0100 t 
117 0111 0101 u 
118 0111 0110 v 
119 0111 0111 w 
120 0111 1000 x 
121 0111 1001 y 

122 0111 1010 z 
123 0111 1011 { Opening brace 
124 0111 1100 I Vertical line 
125 0111 1101 l Closing brace 
126 0111 1110 Tilde 

• 



• 

• 

• 



• 

• 

• 

UP-9072 Rev. 1 

0.1. GENERAL 

SPERRY OS/3 D-1 
SORT /MERGE MACROINSTRUCTIONS 

Appendix D. Summary of 
Sort/Merge 
Macroinstructi ons 

This appendix summarizes the sort/merge macroinstructions and is provided for quick 
reference only. Section 2 describes the macroinstructions in more detail. 

D.2. MG$REL 

Function: 

Releases the initial record of a previously sequenced data file to sort/merge for 
merge-only processing. Since two or more input files are required for a merge-only 
process, the MG$REL macroinstruction must be executed for each input file involved 
in the merge. After the initial record of each input file has been released and the 
merge process begun, the MG$REL is not to be used for releasing subsequent records 
to sort/merge. 

Prior to issuing the MG$REL macroinstruction, the user program must: 

• define the input and output files and assign the devices on which they are 
located; 

• establish the interface (EXTRN MR$0RT) between sort/merge and the user 
program; 

• define the conditions (MR$PRM) under which sort/merge is to perform the 
merge-only processing; 

• open the input and output files; and 

• initiate (MR$0PN) sort/merge for merge-only processing . 



UP-9072 Rev. 1 SPERRY OS/3 D-2 
SORT /MERGE MACROINSTRUCTIONS 

Before releasing the initial record of an input file to sort/merge, the user program 
must identify both the record to be released and the file to which it belongs. This is 
done by loading the address of the first byte of the record into register 1 and the 
identifier for the file into register 10. Upon the release of the initial record of the first 
file involved in the merge, sort/merge returns control to the user program at the line 
of code immediately following the MG$REL macroinstruction. The user program must 
point to the next input file from which the initial record is to be accessed and 
released to sort/merge for merge-only processing. The procedure is repeated until the 
initial record of each input file involved in the merge is released to sort/merge. 

Format: 

LABEL 60PERATION6 OPERAND 

[symbol] MG$REL 

No parameters are associated with the MG$REL macroinstruction. 

D.3. MG$RET 

Function: 

Requires the return of a record processed by sort/merge in a merge-only application. 
The execution of this macroinstruction also initiates the process for merging data 
records and, with the exception of the initial record for each input file involved in the 
merge, releases subsequent records from these files to sort/merge for merge-only 
processing. 

Prior to executing the MG$RET macroinstruction, the user program must release the 
initial record of each input file to sort/merge by execution of the MG$REL 
macroinstruction. 

After the initial record of each input file has been released for merging, the MG$RET 
macroinstruction is issued, initiating the merging process. The record which meets 
the sequencing requirements of the program is declared the "winner". The address of 
the winner record is placed into register 1 and control is returned to the user program 
at the line of code immediately following the MG$RET macroinstruction. Make certain 
that the winner record is not overlayed before it is returned to your program. This can 
occur since register 1 is the same register in which the user program identifies the 
address of the next record to be released to the merge. To avoid this error. place the 
winner record into the output file or work area before placing the address of the next 
record to be released into register 1. 

• 

• 

• 



UP-9072 Rev. 1 SPERRY OS/3 D-3 
SORT /MERGE MACROINSTRUCTIONS 

• After the winner record is written to the output file, it must be replaced in the merge 
with another record from the same input file. Sort/merge places the identifier of the 
winner record input file into register 10 at the same time it returns the winner record 
address to the user program. This file identifier is used as a pointer to locate the file 
from which the next record is to be released to the merge. It is important not to alter 
the contents of register 1 O; otherwise, the merge will be in error. To obtain the next 
record from the selected file, the user program must load the address of the record 
into register 1. Execution of the MG$RET macroinstruction releases the record to the 
merge for processing. 

The entire cycle repeats itself until an end-of-file condition is encountered for one of 
the input files (identified by the file identifier in register 10). The user program must 
close this file and inform sort/merge of the end-of-file condition by loading a binary O 
into register 1 before releasing additional records to the merge. 

Format: 

LABEL L::.OPERATIONL::. OPERAND 

[symbol) MG$RET 

No parameters are associated with the MGSRET macroinstruction. 

• D.4. MR$0PN 

Function: 

• 

Generates the linkage necessary to activate the sort initialization module. This module 
performs the actual initialization procedures required prior to sort/merge execution. 
Sort/merge must be opened before data records are delivered to it for sorting and 
merging. Once the subroutine is opened, control is returned to the user program at 
the address specified by the IN keyword parameter of the MR$PRM macroinstruction. 
Before executing the MR$0PN macroinstruction, the user program must: 

• define the input and output files; 

• establish a communications interface (EXTRN MR$0RT) for modules of 
sort/merge; 

• generate the sort parameter table (MR$PRM) to define the requirements of the 
sort; 

• establish input and output data areas; and 

• open the input data files for processing. The input file can also be opened after 
sort/merge has been opened; however, no attempt must be made to release 
records to the sort until the input data files are opened . 



UP-9072 Rev. 1 SPERRY OS/3 D-4 
SORT /MERGE MACROINSTRUCTIONS 

Format: 

LABEL 60PERATION6 OPERAND 

[symbol] MR$0PN {Ea r am e t e r - ta b I e - name} 

Positional Parameter: 

parameter-table-name 

Specifies the symbolic label of the address of the sort parameter table (MR$PRM 
macro instruction). 

( 1 ) 

Indicates that register 1 has been loaded with the address of the parameter 
table. 

0.5. MR$PRM 

Function: 

Generates a sort parameter table that defines the requirements of a particular 
sort/merge run. The specifications governing the operations to be performed are 
defined by the keyword parameters associated with this macroinstruction. Each 
keyword parameters specified becomes an entry in the sort parameter table to be 
used by sort/merge during program execution. All table entries pertaining to a 
particular sort/merge operation must be properly defined before attempting program 
execution. 

• 

• 

• 



UP-9072 Rev. 1 

• Format: 

LABEL 60PERATION6 

[symbol] MR$PRM 

• 

• 

SPERRY OS/3 
SORT /MERGE MACROINSTRUCTIONS 

OPERAND 

{

FIELD=(strt-pos-1, lgth-1(,form-l][,seq-l]} 
[ ,order-1][, ... ,strt-pos-n, lgth-n , 
[.form-n][,seq-n](,order-n]]) 

RSOC=symbol 

FI N=symbo I, 

I N=symbo I, 

OUT=symbo I, 

RCSZ=max-bytes, 

STOR={symbol } 
( s ymb o I , number - of - bytes) 

[ ADDROUT={ ~}] 

[ ,ADTABL=symbol] 

[
, B I N=1 by t es IJ 

(min-byte~,size-l,freq-1 

[, .... s1ze-n,freq-n]) 

['CALC=t~~s}] 

['CS PRAM= ~S }] 

[{

DI SC={~::~~~:~ ~7~~ ~~!:!~!;I e -number) }I~ 

TAPE=tlabel-type } 
(label -type.max-ti le-number) 

[ , DROC={DELETE}J 
symbol 

['ME RG E=t~s}] 

[' NOCKSM={ nJ 
[ ,PAD=bytes] 

['PR INT=\h'!: IC Al)] 
[, RESERV=so rt - f i I ename) 

[,RESUME=( PASS, recovery-number)] 

[ ,SHARE=sort-fi lename] 

[ , SI ZE=n umber] 

[ ,USEQ=(to-address.from-address)) 

D-5 



UP-9072 Rev. 1 SPERRY OS/3 D-6 
SORT /MERGE MACROINSTRUCTIONS 

Keyword Parameters: 

F I E L D= ( s t r t - po s - 1 , I g t h - 1 [ , f o rm - 1 ] [ , s e q - 1 ] [ , o r de r - 1 ] [ , ... , s t r t - po s - n , I gt h - n 
[ , form- n] [ , seq - n] [ , order - n]]) 

Defines the sort key fields to sort/merge. Key field definition includes starting 
position, length, data format, sorting sequence, and order of significance. A 
maximum number of 12 key fields can be specified. When variable-length 
records are involved, the 4-byte record length field is considered a part of the 
record. All key fields of the record must be contained within the first bin of the 
record. 

This keyword parameter should not be coded if an own-code routine is supplied 
for record sequencing; in this case, RSOC must be specified. 

Positional Subparameters: 

strt-pos-n 

A decimal number specifying the starting point of a key field relative to the 
beginning of a record. 

Key fields, with the exception of binary key fields, start at a full byte 
boundary, and their starting point is defined by specifying their byte position 
within the record. Byte positions are numbered from 0 while byte numbers 
begin at 1, so the byte position of a key field is always 1 less than its byte 
number. For example, if the first key field begins at byte 10 of a record, the 
strt-pos-1 subparameter would be specified as 9. 

The starting position for a binary key field is not limited to a byte boundary 
but can start at a bit position within a byte. In this case, the key field 
starting position is defined in a byte-bit form of reference. For example, if a 
key field starts at bit position 2 of byte 10 of the record, its starting position 
would be defined as 9.2. 

I gt h - n 

A decimal number specifying the length of the key field. Key field length is 
defined in full bytes beginning and ending on a byte boundary except for 
binary key fields. A binary key field may be specified in the byte bit format, 
based upon the number of bits that the field occupies. For example, assume 
that the binary key field extends from bit position 2 of byte 10 through bit 
position 5 of byte 12, a total of 20 bits. This would be specified as 2.4. 

form - n 

A 2- or 3-character code specifying the data format of the key field. If 
omitted, the format is assumed to be character (CH). The format codes and 
their maximum allowable field lengths are shown in Table 2-1. 

seq - n 

Defines the sorting sequence for the key fields, A for ascending and D for 
descending sequence. If omitted, ascending sequence is assumed. 

• 

• 

• 



• 

• 

• 

UP-9072 Rev. 1 SPERRY OS/3 D-7 
SORT /MERGE MACROINSTRUCTIONS 

order - n 

A decimal number specifying the significance of the record key fields from 
major to minor. The major key field is numbered 1, the next most significant 
is 2, and so on. The maximum number of key fields that can be specified is 
12. 

If omitted, sort/merge assumes the order of key field definition as the order of 
significance; that is, the first key field defined is the major key field, etc. 
However, if this subparameter is specified for one key field, it must be specified 
for all key fields. 

RSOC=symbol 

Required when key field comparisons for record sequencing are to be performed 
through a user own-code routine. This keyword parameter specifies the symbolic 
address of the own-code routine and overrides the specifications of the FIELD 
keyword parameter if both are coded. 

FIN=symbol 
Defines the symbolic address in the user program to which control is returned 
when the output end-of-data has been reached. 

IN=symbol 
Defines the location within the user program to which control is returned after 
sort/merge has been initiated . 

OUT=symbol 

Defines the location within the user program to which control is returned when 
sort/merge is ready to return records to the program. 

RCSZ=max-bytes 
Defines the size of fixed-length records or the maximum size of variable-length 
records of the data to be sorted. The size specified for variable-length records 
must include the 4-byte record length field that precedes each record. If tag sort 
has been specified (ADDROUT keyword parameter), the record size must equal 
the combined length of all key fields specified plus the 10-byte record access 
address field. The maximum allowable record size specified by this keyword 
parameter is dependent upon the hardware configuration. 

STOR=symbol 

Specifies the symbolic address of the main storage area available to sort/merge. 
When this form is used, the sort will utilize all main storage in the job region 
from the location specified by the symbol to the end of the job region as defined 
in the job prologue. 

STOR=(symbol ,number-of-bytes) 

Positional Subparameters: 

symbol 
Specifies the symbolic address of the available main storage. 



UP-9072 Rev. 1 SPERRY OS/3 D-8 
SORT /MERGE MACROINSTRUCTIONS 

number-of-bytes 

A decimal number indicating the maximum number of bytes available in 
main storage starting at the address specified. 

ADDROUT={~} 

Specifies that a tag sort is to be performed. The first 10 bytes of the record to be 
released must contain the record access address field. 

ADDROUT=A 

Specifies that only the direct access addresses of the input records are to appear 
in the output file. 

ADDROUT=D 

Specifies that both the direct access addresses and the sort key fields of each 
record are to comprise the final output. 

ADTABL=symbol 

Specifies the symbolic address of an additional sort parameter table within the 
user program which is to be linked to the existing sort parameter table. Any 
number of tables may be linked in this manner. ADTABL should be coded as the 
last parameter on the MR$PRM macro; any subsequent parameter entries are 
ignored. 

BIN={bytes } 
(min-bytes,size-1,freq-l[, ... ,size-n,freq-n]) 

Required when variable-length records are to be sorted. Defines the size of fixed
length subrecords (bin size), or provides the information from which sort/merge 
can calculate the bin size. 

BIN=bytes 

Specifies the number of bytes (bin size) in which variable-length records are to 
be subdivided. The bin size must be large enough to contain all sort key fields 
within each record plus the 4-byte record length field. 

BI N= (mi n - bytes , s i z e - 1 , f re q - 1 [ , ... , s i z e - n , f re q - n ] ) 

Positional Subparameters: 

min-bytes 

Specifies the minimum number of bytes into which variable-length records 
may be subdivided. The number must be large enough to accommodate all 
sort key fields within each record plus the 4-byte record length field. 

s i z e - 1 

Defines the record length (in bytes) that appears most frequently in the file. 

freq-1 

Specifies either the frequency (percentage) or estimated number of size-1 
records in the file. If the number is less than 100, sort/merge assumes that 
it is a percentage; if greater than 100, it is assumed to be an estimate of the 
number of records in the file. 

• 

• 

• 



• 

• 

• 

UP-9072 Rev. 1 SPERRY OS/3 D-9 
SORT /MERGE MACROINSTRUCTIONS 

s i z e - n 
Optionally defines additional record lengths (in bytes) that appear frequently 
in the file. Up to six record lengths may be defined. 

f re q - n 

CALC=NO 

Specifies either the frequency (percentage) or estimated number of size-n 
records in the file. The sum of the records specified does not have to equal 
100 percent of the file. 

Specifies that sort/merge is to calculate the optimum working-storage area in a 
disk sort, display the estimated sort time in minutes and the number of cylinders 
required for work space, and then terminate the job step. 

CALC=YES 
Specifies that sort/merge is to calculate optimum working-storage area, display 
information, and then execute the sort. 

If the CALC parameter is used, the SIZE keyword parameter and all record description 
keyword parameters must be specified. 

CSPRAM=YES 
Specifies that sort/merge parameters may be accepted from the job control 
stream at run time through PARAM control statements. The keyword parameters 
that can be entered through the control stream are BIN, DISC, NOCKSM, 
RESERV, RESUME, SHARE, and TAPE. 

If CSPRAM is omitted, sort/merge parameters will not be accepted from the 
control stream. 

DISC=(address,max-disk-f i le-number) 
Indicates the symbolic address of a list of user-supplied file names for disk work 
files and the maximum number of file names in the list. 

DI S K=m ax - d i s k - f i I e - numb e r 
Indicates the maximum number of standard disk files (DM01 through DM08 or 
$SCR1 through $SCR8) assigned to sort/merge as working storage. 

TAPE=I abe I - type 
Identifies tape work files as unlabeled or standard labeled. For unlabeled tapes, 
specify NO; for standard labeled tapes, specify STD. 

TAPE=( label-type,max-fi le-number) 
Identifies tape work files as unlabeled (NO) or standard labeled (STD) and 
specifies the maximum number of tape files assigned to sort/merge as working 
storage. Three to six tape files may be assigned. 

If the DISC and TAPE keyword parameters are omitted, sort/merge determines 
the type and number of work files from job control. If work files are not assigned, 
an internal (main storage) sort is performed. 



UP-9072 Rev. 1 SPERRY OS/3 D-10 
SORT /MERGE MACROINSTRUCTIONS 

DROC=DELETE 
Specifies that sort/merge is to perform automatic data reduction; i.e., eliminate 
or combine records with equal key fields. 

DROC=symbol 
Specifies the symbolic address of a user own-code routine for data reduction. 

MERGE=YES 
Specifies a merge-only application. If omitted, a sort/merge operation is 
assumed. 

NOCKSM=D 
Suppresses the calculation of a checksum word for disk work files. The 
checksum word is normally calculated and written for each output data block, 
then verified for each input block read to ensure data integrity. 

NOCKSM=T 
Suppresses the checksum calculation for tape work files. 

PAD=bytes 
Augments the parameter table beyond its generated length, allowing the user to 
enter additional parameters into the table at run time. The number of additional 
bytes must be specified in multiples of 4. 

PRINT=ALL 
Specifies that all error messages are to be written to the job log for subsequent 
printing. 

PRINT=CRITICAL 
Specifies that only fatal error messages are to be written to the job log. 

PRINT=NONE 
Specifies that no error messages are to be written to the job log. 

NOTE: 

Regardless of PRINT option, all error messages are displayed on the system console. 

RESERV=sort-f i lename 
Allows a tape unit to function as a work file device during the input and 
intermediate phases of sort/merge operation and as the device for the output 
data file during the output phase. The reserved tape file is identified by a 
standard sort work file name (SMnn) and is associated with this name thorugh 
an LFD job control statement. Messages instructing the operator when to unload 
the scratch tape and mount the output tape are displayed on the system console. 
The same device cannot be used for both RESERV and SHARE. 

RESUME=( PASS. recovery-number) 
Restarts an interrupted tape sort/merge operation. The interrupted sort can be 
resumed at a tape collation pass. 

• 

• 

• 



UP-9072 Rev. 1 SPERRY OS/3 D-11 
SORT /MERGE MACROINSTRUCTIONS 

• Positional Subparameters: 

• 

• 

PASS 

Specifies resumption of a sort that was interrupted during tape collation. 

recovery-number 

Specifies the most recent collation pass number displayed on the system 
console for recovery of a tape sort. 

SHARE=sort-f i lename 

Allows a tape unit assigned to sort/merge as an input device to be used as a 
sort work file during the intermediate and output phases. The shared tape file is 
identified by a standard sort tape file name (SMnn) and is associated with this 
name through an LFD job control statement. Messages instructing the operator 
when to unload the input tape and mount the scratch tape are displayed on the 
system console. The same device cannot be used for RESERV and SHARE. 

SI Z E=numbe r 

Specifies the approximate number of records in the input file. This information is 
used for calculating optimum working-storage area when the CALC parameter is 
specified. If SIZE is omitted, a file of 25,000 records is assumed. 

USEQ=(to-address. from-address) 

Required to perform a collation sequence for 8-bit character data differing from 
EBCDIC or ASCII representation. Both positional subparameters must be 
specified regardless of whether or not two translation tables are used. Usually 
one table is sufficient to perform the necessary translations. In such cases, both 
subparameters are coded with the same address. This keyword must be included 
if USEQ is speciifed in the form subparameter of the FIELD keyword parameter. 

Positional Subparameters: 

to-address 

Specifies the address of a 256-byte translation table that translates the 
record field or fields into the user collation character format for the desired 
sequence. 

from-address 
Specifies the address of a 256-byte translation table that translates the field 
or fields back to the original data format for output. 



UP-9072 Rev. 1 SPERRY OS/3 D-12 
SORT /MERGE MACROINSTRUCTIONS 

D.6. MR$REL 

Function: 

Releases unsorted records to sort/merge for processing. The user program must 
identify each record before it is released. To do this, precede the MR$REL 
macroinstruction with an instruction to load register 1 (R1) with the address of the 
first byte of the record to be transferred. Execution of the MR$REL macroinstruction 
generates the linkage required to release the record identified in R1. After the 
transfer has taken place, sort/merge returns control to the user program at the line of 
coding immediately following the MR$REL macroinstruction. The user program may 
now get the next record to be released to the sort. The process of releasing records to 
the sort repeats itself until an end-of-file condition is detected, indicating that all 
records are released to the sort; the input may now be closed. The user program must 
then execute the MR$SRT macroinstruction to request sort/merge to complete the 
sort. 

If work files are on disk, a routine can be included which will check on the availability 
of work space before each record is passed to sort/merge. When control is returned 
to the user program after the MR$REL instruction, R1 will be set to a positive value if 
more records can be accepted, or to a negative value if work space is insufficient to 
complete the sort. The user program can check R1 and branch to end-of-file or an 
error routine. 

Format: 

LABEL 60PERATION6 OPERAND 

[symbol] MG$ REL 

No parameters are associated with the MR$REL macroinstruction. 

D.7. MR$RET 

Function: 

Requests the return of sorted records to the user program. Sort/merge notifies the 
user program that is is ready to return the sorted records by returning control at the 
address specified by the OUT keyword parameter in the sort parameter table. At this 
time, the user program may open its output data file and then request the return 
records by executing the MR$RET macroinstruction. Since the records are released 
one at a time, the user program must request the return of each record. 

• 

• 

• 
--------------------------------------·--·······-····-------



• 

• 

UP-9072 Rev. 1 SPERRY OS/3 D-13 
SORT /MERGE MACROINSTRUCTIONS 

One method of accomplishing this is to set up a loop within the program that 
requests the return of a record and handles the disposition of that record to the 
output data file. The loop functions in the following manner: The MR$RET 
macroinstruction requests the return of a record from sort/merge. After MR$RET is 
executed, sort/merge places the address of the record being returned into register 1 
and returns control to the user program at the line of code immediately following the 
MR$RET macroinstruction. The user program, at this point, must move the record into 
the user output buffer area; final disposition of the records in the output buffer area is 
the responsibility of the user. The program can then branch back to the MR$RET 
macroinstruction and request sort/merge to return the next record. This loop process 
repeats itself until an end-of-data condition is encountered indicating that all of the 
sorted records have been returned to the user program. Control at this point is 
returned to the user program at the address specified by the FIN keyword parameter 
in the sort parameter table. This address is the line of code following the record 
request loop and usually pertains to closing the output data file. 

Format: 

LABEL 60PERATION6 OPERAND 

[symbol] MR$RET 

No parameters are associated with the MR$RET macroinstruction . 

0.8. MR$SRT 

Function: 

Notifies sort/merge that the end of input data has been reached and that it may now 
complete the processing of the input data records. 

The MR$SRT macroinstruction should not be executed until all of the input data 
records have been released to sort/merge. The user program may then close the 
input data file, but this is not required for continuing the program. When all the 
records are sequenced, sort/merge returns control to the user program at the address 
specified by the OUT keyword parameter in the sort parameter table. The output data 
file can now be opened, and return of the sorted records to the program can be 
requested. The request for the return of the sorted data records is made by use of the 
MR$RET macroinstruction. 

Format: 

LABEL 60PERATION6 OPERAND 

[symbol] MR$SRT 

• No parameters are associated with the MR$SRT macroinstruction. 



• 

• 

• 



UP-9072 Rev. 1 SPERRY OS/3 Index 1 
SORT /MERGE MACROINSTRUCTIONS 

• 
Index 

Term Reference Page Term Reference Page 

A Binary key fields 
bit ·byte references Fig. 2-5 2-8 
specifying 2.4.l 2-8 

Access speeds, direct access devices Table 1-1 1-5 Braces in formats A.l A-1 

ADDROUT keyword parameter Brackets in formats A.l A-2 
description 2.4.2.2 2-17 
tag sort 4.1 4-1 Branch minus (BR) instruction 2.6 2-29 

• ADTABL keyword parameter Buffer areas 1.6 1-10 
adding table entries within same program Fig. 2-11 2-22 
description 2.4.2.4 2-22 Byte-bit format, binary key fields 2.4.l 2-8 
PAD keyword parameter 2.4.2.4 2-26 
referencing table in previous program Fig. 2-12 2-23 Byte numbers 2.4.l 2-7 

ASCII Byte position numbers 2.4.l 2-7 
code correspondence C.2 C-1 
collating sequence C.4 C-10 

Table C-3 C-10 
cross-reference table Table C-1 C-2 
description C.2.3 C-2 

Automatic data reduction See data 
reduction own-code 
routine (DROC). 

Auxiliary storage work area assignments 1.3.2 1.4 c 
CALC keyword parameter 2.4.2.4 2-23 

Call module (SG$0RT) 1.1 1-1 

CANCEL supervisor macro 2.9 2-32 

B Capital letters in formats A.l A-1 

Base register addressing 2.2 2-3 Checksum word 2.4.2.4 2-25 

• BIN keyword parameter CLOSE macroinstruction 

description 2.4.2.2 2-18 ending sort run 2.9 2-32 
PARAM statement 2.12 2-47 passing control to output routine 2.7 2-30 



UP-9072 Rev. 1 SPERRY OS/3 Index 2 
SORT /MERGE MACROINSTRUCTIONS 



UP-9072 Rev. 1 SPERRY OS/3 Index 3 
SORT /MERGE MACROINSTRUCTIONS 

• Term Reference Page Term Reference Page 

E Fixed-length subrecords (BIN parameter) 2.4.2.2 2-18 

EBCDIC Format codes, data Table 2-1 2-9 
code correspondence C.2 C-2 
collating sequence C.3 C-8 Formats, general rules A.l A-1 

Table C-2 C-8 
cross-reference table Table C-1 C-2 
description C.2.2 C-2 

Ellipses in formats A.1 A-2 

Equal signs in formats A.l A-1 G 
Equate statements 2.8 2-31 

GET imperative macro 2.5 2-29 

Error processing routine 2.9 2-32 

EXEC ASM statement 2.11.4 2-42 

EXEC statement 2.11.4.1 2-46 

EXT job control statement 2.11.4 2-43 H 
EXTRN assembler directive 2.11.1 2-37 

• Hollerith punched card code 
correspondence C.2 C-1 
cross-reference table Table C-1 C-2 
description C.2.1 C-2 

F 

FIELD parameter 
description 2.4.1 2-7 
RSOC 3.2 3-1 

File organization, data 1.3.3 1-6 
IN keyword parameter 2.4.1 2-11 

Files 
defining 2.3 2-4 INCLUDE statement 2.11.2 2-39 
disk See disk 2.11.4.1 2-45 

files. 
organization 1.3.3 1-6 Initial sort phase 1.7.2 1-11 
tape See tape 

files. Initialization and assignment phase 1.7.1 1-10 
work See work 

files. Initiating sort/merge 2.2 2-3 

FIN job control statement 2.11.4 2-44 Input/ output data 
file organization 1.3.3 1-6 

FIN keyword parameter structuring 1.4 1-6 
description 2.4.1 2-11 

• use 2.8 2-31 Interface, user program See user 
program 

Final merge phase 1.7.4 1-11 interface. 

Fixed-length records, DROC routine 3.3 3-3 Internal sort 5.5 5-14 



UP-9072 Rev. 1 SPERRY OS/3 Index 4 
SORT /MERGE MACROINSTRUCTIONS 

Term Reference Page Term Reference Page • 
J Load address (LA) instruction 2.5 2-29 

Job control streams Load and test register (LTR) instruction 2.6 2-29 
alternate disk 2.11.4.1 2-45 

Fig. 2-19 2-46 LOADM statement 2.11.2 2-39 
disk sort program 2.11.4 2-41 2.11.4.1 2-45 

Fig. 2-17 2-41 
submitting sort parameter Lowercase terms in formats A.1 A-1 

ta01e entries 2.12 2-47 
tape work file assignment 2.11.5 2-47 L TORG assembler directive 
typical disk Fig. 2-18 2-45 assembling the program 2.11.1 2-37 

ending the sort run 2.9 2-32 
JOB 1ob control statement 2.11.4 2-41 



UP-9072 Rev. 1 SPERRY OS/3 Index 5 
SORT /MERGE MACROINSTRUCTIONS 

• Term Reference Page Term Reference Page 

Messages, printing 2.4.2.4 2-26 NOCKSM keyword parameter 
MR$PRM macro 2.4.2.4 2-25 

MG$REL macroinstruction 4.3.1 4-3 option 1.3.4 1-6 

4.3.2 4-7 PARAM statement 2.12 2-48 

D.2 D-1 
NOTE imperative macro 4.1 4-1 

MG$RET macroinstruction 4.3.l 4-3 
4.3.2 4-8 
D.3 D-2 

Modular programming l.l 1-2 0 

Modules, sort l.l 1-2 OPEN macroinstruction 2.5 2-28 

1.7 1-10 
OPTION keyword parameter 2.3 2-5 

MR$0PN macroinstruction 
description 2.5 2-28 Optional entries in formats A.1 A-2 

D.4 D-3 
merge-only operation 4.3.2 4-6 

Optional parameters A.l A-2 

MR$0RT external reference 2.2 2-3 
OUT keyword parameter 2.4.1 2-11 

2.11.2 2-39 
Output files, tag-sorted Fig. 2-9 2-18 

MR$PRM macroinstruction 

• description 2.4 2-7 
Output routine 

device assignment parameters 2.4.2.1 2-15 
FIN keyword parameter 2.4.1 2-11 

disk sort program Fig. 2-13 2-27 
passing control 2.7 2-30 

format 2.10 2-36 
sample coding 2.8 2-31 

merge-only 4.3 4-2 
4.3.2 4-5 

Own-code routines 

miscellaneous parameters 2.4.2.4 2-21 
DROC See data 

optional parameters 2.4.2 2-14 reduction 

parameter summary Table 2-2 2-38 own-code 

record definition parameters 2.4.2.2 2-17 routine. 

required parameters 2.4.1 2-7 RSOC See record 

restart parameter 2.4.2.3 2-21 
sequencing 

summary D.5 D-4 own-code 
routine. 

MR$REL macroinstruction 2.6 2-29 
D.6 D-12 

MR$RET macroinstruction 2.8 2-31 p 
D.7 D-12 

PAD keyword parameter 2.4.2.4 2-26 
MR$SRT macroinstruction 2.7 2-30 

D.8 D-13 PARAM job control statement 
CSPRAM keyword parameter 2.4.2.4 2-24 
example 5.3 5-6 
use 2.12 2-47 

Parameter table See sort param-
eter table . • N Parameters 

Naming your program 2.2 2-3 
general rules A.l A-2 
sort, summary Table 2-2 2-38 



UP-9072 Rev. 1 SPERRY OS/3 Index 6 
SORT /MERGE MACROINSTRUCTIONS 

Term Reference Page Term Reference Page • 
Parentheses in formats A.l A-1 RESUME keyword parameter 

description 2.4.2.3 2-21 
Phases 1.7 1-10 example 5.3 5-6 

PARAM statement 2.12 2-47 
Preliminary merge phase 1.7.3 1-11 restart facilities 4.2 4-2 

PRINT keyword parameter 2.4.2.4 2-26 RSOC keyword parameter 2.4.l 2-11 

Programs See sort programs. Run requirements 2.4 2-7 

s 
Sequence, sorting See collation 

R sequence. 

RCSZ keyword parameter 2.4.l 2-11 SG$0RT 1.1 1-2 
1.6 1-10 

Record comparisons, RSOC 3.2 3-1 2.2 2-3 

Record definition, SHARE keyword parameter 
MR$PRM macro parameters 2.4.2.2 2-17 description 2.4.2.l 2-16 

PARAM statement 2.12 2-47 
Record sequencing own-code routine 

(RSOC) SIZE keyword parameter 2.4.2.4 2-26 • description 3.1 3-1 
3.2 3-2 Sort common module (SG$0RT) 1.1 1-2 

example 5.4 5-11 1.6 1-10 
keyword parameter 2.4.l 2-11 2.2 2-3 

Record size Sort initialization and assignment phase 1.7.l 1-10 
BIN keyword parameter 2.4.2.2 2-19 
RCSZ keyword parameter 2.4.l 2-11 Sort options 1.3.4 1-6 

Records Sort parameter table 
data file organization 1.3.3 1-6 description Appendix B 
equal key fields (DROC) 2.4.2.4 2-24 entering additional parameters 
indicating number to be sorted (SIZE) 2.4.2.4 2-26 (PAD parameter) 2.4.2.4 2-26 
variable-length See variable- linking (ADTABL parameter) 2.4.2.4 2-22 

length records. submitting entries via job 
control stream 2.12 2-47 

Registers 
base 2.2 2-3 Sort process 
DROC routine 3.3 3-4 activating 2.5 2-28 
RSOC routine 3.2 3-1 drawing data from 2.8 2-31 

ending 2.9 2-32 
RESERV keyword parameter internal 5.5 5-14 

description 2.4.2.l 2-16 passing control to output 2.7 2-30 
PARAM statement 2.12 2-47 releasing records 2.6 2-29 

Restart Sort programs 
example 5.3 5-6 assembling 2.11.1 2-37 
facilities 4.2 4-2 assembly, linkage, edit, and • RESUME parameter 2.4.2.3 2-21 execution run system flowchart Fig. 2-16 2-40 

disk See disk 
Restrictions 1.3 1-3 sort program 

examples. 



UP-9072 Rev. 1 SPERRY OS/3 Index 5 
SORT /MERGE MACROINSTRUCTIONS 

.Term Reference Page Term Reference Page 

Messages, printing 2.4.2.4 2-26 NOCKSM keyword parameter 
MR$PRM macro 2.4.2.4 2-25 

MG$REL macrotnstruction 4.3.1 4-3 option 1.3.4 1-6 

4.3.2 4-7 PARAM statement 2.12 2-48 

D.2 D-1 
NOTE imperative macro 4.1 4-1 

MG$RET macroinstruction 4.3.1 4-3 
4.3.2 4-8 
D.3 D-2 

Modular programming 1.1 1-2 0 

Modules, sort 1.1 1-2 
OPEN macroinstruction 2.5 2-28 

1.7 1-10 
OPTION keyword parameter 2.3 2-5 

MR$0PN macroinstruction 
description 2.5 2-28 

Optional entries in formats A.l A-2 

D.4 D-3 
merge-only operation 4.3.2 4-6 

Optional parameters A.l A-2 

MR$0RT external reference 2.2 2-3 
OUT keyword parameter 2.4.l 2-11 

2.11.2 2-39 
Output files, tag-sorted Fig. 2-9 2-18 

MR$PRM macroinstruction 

• description 2.4 2-7 
Output routine 

device assignment parameters 2.4.2.l 2-15 
FIN keyword parameter 2.4.1 2-11 

disk sort program Fig. 2-13 2-27 
passing control 2.7 2-30 

format 2.10 2-36 
sample coding 2.8 2-31 

merge-only 4.3 4-2 
4.3.2 4-5 

Own-code routines 

miscellaneous parameters 2.4.2.4 2-21 
DROC See data 

optional parameters 2.4.2 2-14 reduction 

parameter summary Table 2-2 2-38 
own-code 

record definition parameters 2.4.2.2 2-17 
routine. 

required parameters 2.4.l 2-7 RSOC See record 

restart parameter 2.4.2.3 2-21 sequencing 

summary D.5 D-4 own-code 
routine. 

MR$REL macroinstruction 2.6 2-29 
D.6 D-12 

MR$RET macroinstruction 2.8 2-31 p 
D.7 D-12 

PAD keyword parameter 2.4.2.4 2-26 
MR$SRT macroinstruction 2.7 2-30 

D.8 D-13 PARAM job control statement 
CSPRAM keyword parameter 2.4.2.4 2-24 
example 5.3 5-6 
use 2.12 2-47 

Parameter table See sort param-
eter table . • N Parameters 

Naming your program 2.2 2-3 
general rules A.l A-2 
sort, summary Table 2-2 2-38 



UP-9072 Rev. 1 SPERRY OS/3 Index 6 
SORT /MERGE MACROINSTRUCTIONS 

Term Reference Page Term Reference Page • 
Parentheses in formats A.l A-1 RESUME keyword parameter 

description 2.4.2.3 2-21 
Phases 1.7 HO example 5.3 5-6 

PARAM statement 2.12 2-47 
Preliminary merge phase 1.7.3 Hl restart facilities 4.2 4-2 

PRINT keyword parameter 2.4.2.4 2-26 RSOC keyword parameter 2.4.l 2-11 

Programs See sort programs. Run requirements 2.4 2-7 

s 
Sequence, sorting See collation 

R sequence. 

RCSZ keyword parameter 2.4.l 2-11 SG$0RT 1.1 1-2 
1.6 HO 

Record comparisons, RSOC 3.2 3-1 2.2 2-3 

Record definition, SHARE keyword parameter 
MR$PRM macro parameters 2.4.2.2 2-17 description 2.4.2.l 2-16 

PARAM statement 2.12 2-47 
Record sequencing own-code routine 

(RSOC) SIZE keyword parameter 2.4.2.4 2-26 • description 3.1 3-1 
3.2 3-2 Sort common module (SG$0RT) 1.1 1-2 

example 5.4 5-11 1.6 1-10 
keyword parameter 2.4.l 2-11 2.2 2-3 

Record size Sort initialization and assignment phase 1.7.l 1-10 
BIN keyword parameter 2.4.2.2 2-19 
RCSZ keyword parameter 2.4.l 2-11 Sort options 1.3.4 1-6 

Records Sort parameter table 
data file organization 1.3.3 1-6 description Appendix B 
equal key fields (DROC) 2.4.2.4 2-24 entering additional parameters 
indicating number to be sorted (SIZE) 2.4.2.4 2-26 (PAD parameter) 2.4.2.4 2-26 
variable-length See variable- linking (ADTABL parameter) 2.4.2.4 2-22 

length records. submitting entries via 1ob 
control stream 2.12 2-47 

Registers 
base 2.2 2-3 Sort process 
DROC routine 3.3 3-4 activating 2.5 2-28 
RSOC routine 3.2 3-1 drawing data from 2.8 2-31 

ending 2.9 2-32 
RESERV keyword parameter internal 5.5 5-14 

description 2.4.2.l 2-16 passing control to output 2.7 2-30 
PARAM statement 2.12 2-47 releasing records 2.6 2-29 

Restart Sort programs 
example 5.3 5-6 assembling 2.11.l 2-37 
facilities 4.2 4-2 assembly, linkage, edit. and • RESUME parameter 2.4.2.3 2-21 execution run system flowchart Fig. 2-16 2-40 

disk See disk 
Restrictions 1.3 1-3 sort program 

examples. 

------------------------------------------·--··· 



UP-9072 Rev. 1 SPERRY OS/3 Index 7 
SORT /MERGE MACROINSTRUCTIONS 



• 

• 

• 



CUT 

• 

• 

• 

USER COMMENT SHEET 

We will use your comments to improve subsequent editions. 

NOTE: Please do not use this form as an order blank. 

(Document Title) 

(Document No.) (Revision No.) (Update No.) 

Comments: 

From: 

(Name of User) 

(Business Address) 

Fold on dotted lines, and mail. (No postage stamp is necessary if mailed in the U.S.A.) 
Thank you for your cooperation 



~---------------------

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 21 BLUE BELL, PA. 

POSTAGE WILL BE PAID BY ADDRESSEE 

SPERRY CORPORATION 

ATTN.: SOFTWARE SYSTEMS PUBLICATIONS 

P.O. BOX 500 
BLUE BELL, PENNSYLVANIA 19424 

FOLD 

NO POSTAGE 
NECESSARY 
IF MAILED 

INTHE 
UNITED STATES 

CUT 

• 

• 

• 



• 

• 

• 

-'LSPE~Y .,r 

USER COMMENTS 

We will use your comments to improve subsequent editions. 

NOTE: Please do not use this form as an order blank. 

(Document Title) 

(Document No.) (Revision No.) (Update Level) 

Comments: 

From: 

(Name of User) 

(Business Address) 

Fold on dotted lines, and mail. (No postage is necessary if mailed in the USA.) 
Thank you for your cooperation 



FOLD 

FOLD 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 21 BLUE BELL, PA. 

POSTAGE WILL BE PAID BY ADDRESSEE 

SPERRY CORPORATION 

ATTN: SYSTEM PUBLICATIONS 

P.O. BOX 500 
BLUE BELL, PENNSYLVANIA 19422-9990 

NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 

1 ••• 111.1 ••• 1 •• 1 •• 1.1 •• 1.11.1 •• 1.1 •• 1.1 •• 11 •••• 1.1.1 

• 

• 

• 



I •1 

I .I 
I 

• UNISYS 

USER COMMENTS 

We will use your comments to improve subsequent editions. 

NOTE: Please do not use this form as an order blank. 

(Do.cument Title) 

(Document No.) (Revision No.) (Update Level) 

Comments: 

From: 

(Name of User) 

(Business Address) 

Fold on dotted lines, and mail. (No postage is necessary if mailed in the U.S.A.) 
Thank you for your cooperation 



FOLD 

FOLD 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 21 BLUE BELL, PA. 

POSTAGE WILL BE PAID BY ADDRESSEE 

Unisys Corporation 
E/MSG Product Information Development 
PO Box 500 Cl-NE6 
Blue Bell, PA 19422-9990 

I 

I 111III1I111I11I11I1I11I1II1I11I1I11I1I1III111II1I1 I 

NO POSTAGE 
NECESSARY 
IF MAILED IN THE 
UNITED STATES 

:e 
I 

I 

_1 

• 

:e 
I 



• 

• 

• 




