
•

-·

•
U01-251 Rev. 3)73

System 80

Concepts & Facilities

This Library Memo announces the release and availability of "SPERRY UNIVAC® Operating System/3 (OS/3)
System 80 Concepts and Facilities", UP-8870 Rev. 1.

This revision presents material some of which is new and some of which expands upon and clarifies topics covered
previously. The new material includes:

• Menu processing

• Editor enhancements

•

COBOL editor
Screen mode processing
Error file processor

New workstation features
Auxiliary printer
Remote workstation support
Workstation programming aids

• ICAM enhancements

• DDP enhancements

• Printerless System 80s

• New application programs

• IBM System/32 and System 34 conversion aids

• A new table of peripheral device characteristics

Topics covered in previous releases and clarified in this rev1s1on include the concepts and facilities behind
consolidated data management; job control; and the differences among screen formats, dialogs, and menus (new to
this release).

Mailing Lists BZ,
CZ and MZ

Mailing Lists BOO, B01, 28U, and 29U
(Cover and 191 pages)

Library Memo for
UP-8870 Rev. 1

September, 1982

Destruction Notice: If you are going to OS/3 release 8.0, use this revision and destroy all previous copies. If you are
not going to OS/3 release 8.0, retain the copy you are now using and store this revision for future use.

Copies of UP-8870, UP-8870-A and UP-8870-B will be available for 6 months after the release of 8.0. Should you
need additional copies of this edition, you should order them within 90 days of the release of 8.0. When ordering the
previous edition of a manual, be sure to identify the exact revision and update packages desired and indicate that
they are needed to support an earlier release.

Additional copies may be ordered by your local Sperry Univac representative.

•

•

•

•

System 80

•

•
H UNIVAC UP-8870 Rev. 1

<s 1982 - SPERRY CORPORATION

This document contains the latest information available at the time of preparation.
Therefore, it may contain descriptions of functions not implemented at manual
distribution time. To ensure that you have the latest information regarding levels of
implementation and functional availability, please consult the appropriate release
documentation or contact your local Sperry Univac representative.

Sperry Univac reserves the right to modify or revise the content of this document. No
contractual obligation by Sperry Univac regarding level, scope, or timing of functional
implementation is either expressed or implied in this document. It is further understood
that in consideration of the receipt or purchase of this document, the recipient or
purchaser agrees not to reproduce or copy it by any means whatsoever, nor to permit
such action by others, for any purpose without prior written permission from Sperry
Univac.

Sperry Univac is a division of the Sperry Corporation.

FASTRAND, SPERRY UNIVAC, UNISCOPE, UNISERVO, and UNIVAC are registered
trademarks of the Sperry Corporation. ESCORT, MAPPER, PAGEWRITER. PIXIE, and
UNIS are additional trademarks of the Sperry Corporation.

This document was prepared by Systems Publications using the SPERRY UNIV AC UTS
400 Text Editor. It was printed and distributed by the Customer Information
Distribution Center (CIDC), 555 Henderson Rd., King of Prussia, Pa., 19406.

PRINTED IN U.S.A.

•

•

•

•

•

•

UP-8870 Rev. 1

Part/Section
Page

Number

Cover/Disclaimer

PSS 1

Preface 1, 2

Contents 1 thru 8

PART 1
Title Page

1 1 thru 7

PART2

Title Page

2 1 thru 5

3 1 thru 5

4 1 thru 37

PART3
Title Page

5 1 thru 23

6 1 thru 7

7 1 thru 14

PART4
Title Page

8 1, 2

19 1 thru 5

10 1 thru 8

11 1 thru 5

PART5
Title Page

12 1 thru 8

PART6
Title Page

13 1 thru 15

14 1 thru 3

*New pages

SPERRY UNIV AC

SYSTEM 80

PAGE STATUS SUMMARY

ISSUE:
RELEASE LEVEL:

UP-8870 Rev. 1
8.0 Forward

Update
Level Part/Section

Page
Number

PART 7

Title Page

15 1 thru 6

PARTS

Title Page

Appendix A 1 thru 3

Appendix B 1 thru 6

Index 1 thru 11

User Comment
Sheet

Update
Level Part/Section

PSS 1

Page
Number

Update
Level

All the technical changes are denoted by an arrow r-J in the margin. A downward pointing arrow (t) next to a line indicates that

technical changes begin at this line and continue until an upward pointing arrow (+) is found. A horizontal arrow(-) pointing to

a line indicates a technical change in only that line. A horizontal arrow located between two consecutive lines indicates technical

changes in both lines or deletions.

•

•

•

•

•

•

UP-8870 Rev. 1 SPERRY UNIV AC
SYSTEM 80

Preface 1

Preface

This manual is one of a series designed to instruct and guide the programmer in the use
of the SPERRY UNIVAC Operating System/3 (OS/3). It offers a presentation on the
overall operation and use of the System 80 data processing system. Included are
descriptions of all available software productions and explanations of such procedures
as program preparation and file cataloging.

This manual is intended for the experienced programmer who is unfamiliar with System
80 or Operating System/3 (OS/3).

This concepts and facilities manual is divided into the following parts:

• PART 1. INTRODUCTION

Presents an overall view of the system describing the types of users and the
processing environment.

• PART 2. SYSTEM OPERATION FACILITIES

Details the use and operation of the System 80 Workstation, describes the purpose
and function of the supervisor, and explains the operation of the data management
routines and discusses programmer considerations for using various types of data
files.

• PART 3. PROGRAMMING FACILITIES

•

Describes the various programming facilities available including the programming
languages: BASIC, COBOL, RPG II, FORTRAN IV, ESCORT, and the basic assembly
language; the job control language, including the job control dialog; and the
interactive program development. It also describes how the user can develop his
own interactive software.

PART 4. SYSTEM UTILITIES

Discusses the utilities used to install the system and support the day-to-day
operation. Explanations of file cataloging, sorting, spooling, and diagnostic
procedures are included.

UP-8870 Rev. 1 SPERRY UNIV AC
SYSTEM 80

• PART 5. APPLICATIONS PROGRAMS

Preface 2

Describes the various user applications available to meet specific user data
processing requirements.

• PART 6. COMMUNICATIONS AND DATA BASE FACILITIES

Introduces the integrated communications access method, the information
management system, and the data base management system and highlights their
salient features.

• PART 7. CONVERSION

Describes the conversion aids available to users migrating from other data
processing systems. Systems for which conversion aids are provided are: SPERRY
UNIVAC 9200/9300 and 9400/9480 (OS/4); IBM System 3 and Systems 32 and
34; Honeywell Series 60, 100, and 200/2000.

•

Each of the aforementioned parts consists of one or more sections that cover the
different aspects of the subject matter contained in each part. Because of the nature of
this manual, the discussions are necessarily brief; however, detailed descriptions are
available in other Sperry Univac publications. The appropriate document is referenced in
each section. In addition, you should be familiar with the OS/3 system index and
publications guide, UP-8874. •

•

•

•

•

•

UP-8870 Rev. 1

PAGE STATUS SUMMARY

PREFACE

CONTENTS

1 . SYSTEM OVERVIEW

1.1. GENERAL

SPERRY UNIV AC
SYSTEM 80

PART 1. INTRODUCTION

1.2. PROCESSING ENVIRONMENT

PART 2. SYSTEM OPERATION FACILITIES

2. THE WORKSTATION

2.1. GENERAL

2.2. WORKSTATION OPERATION

2.3. WORKSTATION USAGE

2.4. ADDITIONAL WORKSTATION FEATURES
2.4.1 . Remote Workstation Capability
2.4.2. Auxiliary Printer
2.4.3. Screen Bypass
2.4.4. Menus
2.4.5. Security Maintenance Utility

Contents 1

Contents

1-1

1-2

2-1

2-1

2-2

2-4
2-4
2-4
2-5
2-5
2-5

UP-8870 Rev. 1 SPERRY UNIV AC
SYSTEM 80

3. THE SUPERVISOR

3.1. GENERAL

3.2. SUPERVISOR OPERATION

3.3. SUPERVISOR SERVICES

4. CONSOLIDATED DATA MANAGEMENT

4.1. GENERAL

4.2 WHAT IS CONSOLIDATED DATA MANAGEMENT?

4.3. HOW CONSOLIDATED DATA MANAGEMENT WORKS

4.4. DATA STRUCTURE

4.5. AVAILABILITY OF CONSOLIDATED DATA MANAGEMENT

4.6. DATA UTILITIES

4.7. CARD FORMATS AND FILE CONVENTIONS
4.7.1. File Organization
4.7. 1. 1. Card Input Files
4.7.1.2. Card Output Files

4.8. PRINTER FORMATS AND FILE CONVENTIONS
4.8.1. File Organization
4.8.1.1. Text
4.8.1.2. Tabular Data
4.8. 1.3. Data on Preprinted Forms
4.8.2. Printer Record Formats
4.8.3. Vertical Format and Load Code Buffers

4.9. MAGNETIC TAPE FORMATS AND FILE CONVENTIONS
4.9.1. Tape Volume and File Organization
4.9.1.1. EBCDIC Standard Volume Organization
4.9.1.2. EBCDIC Nonstandard Volume Organization
4.9.1.3. EBCDIC Unlabeled Volume Organization
4.9. 1.4. ASCII Standard Volume Organizations
4.9.1.4.1. ASCII End-of-File and End-of-Volume Coincidence
4.9.1.5. Magnetic Tape File Record Formats

Contents 2

3-1

3-2

3-4

4-1

4-1

4-1

4-3

4-6

4-6

4-7
4-7
4-8
4-8

4-9
4-9
4-9
4-9
4-10
4-11
4-12

4-12
4-12
4-13
4-16
4-18
4-18
4-22
4-24

4.10. DISK AND FORMAT LABEL DISKETTE FORMATS AND FILE CONVENTIONS 4-27
4.10.1. How Disk Files are Organized 4-27
4.10.2. Disk Access Method - MI RAM 4-27
4.10.3. MIRAM File Organization 4-29
4.10.3.1. Data Partition 4-29
4.10.3.2. MIRAM Index Structure 4-31
4.10.3.3. Entries in the Index Partition 4-32
4.10.4. Disk File Sharing 4-33

•

•

•

•

•

•

UP-8870 Rev. 1 SPERRY UNIV AC
SYSTEM 80

4.11. DATA SET LABEL DISKETTE FORMATS AND FILE CONVENTIONS
4.11.1. Volume Organization
4.11.2. File and Record Organization

4.12. WORKSTATION FORMATS AND FILE CONVENTIONS
4.12.1. File Organization
4.12.2. Record Formats
4.12.3. Additional Workstation Programming Aids

PART 3. PROGRAMMING FACILITIES

5. JOB AND PROGRAM PREPARATION

5.1. GENERAL

5.2. JOB CONTROL LANGUAGE
5.2.1. Defining Your Job
5.2.2. Executing a Program
5.2.3. Running Your Job
5.2.4. Program Libraries
5.2.5. Job Control Dialog
5.2.6. Interactive Job Control and Job Processing Commands

5.3. GENERAL EDITOR
5.3.1. Sample EDT Session
5.3.2. Screen Mode

5.4. RPG II EDITOR

5.5. COBOL EDITOR

5.6. ERROR FILE PROCESSOR

5.7. LINKAGE EDITOR

6. LANGUAGE PROCESSORS

6.1. GENERAL

6.2. BASIC

6.3. COBOL

6.4. REPORT PROGRAM GENERATOR II

6.5. FORTRAN IV

6.6 . BASIC ASSEMBLY LANGUAGE (BAL)

6.7. ESCORT

Contents 3

4-34
4-34
4-35

4-36
4-36
4-37
4-37

5-1

5-2
5-3
5-6
5-7
5-8
5-9
5-11

5-11
5-13
5-16

5-16

5-19

5-22

5-23

6-1

6-1

6-2

6-4

6-5

6-5

6-6

UP-8870 Rev. 1 SPERRY UNIV AC
SYSTEM 80

7. DESIGNING YOUR OWN INTERACTIVE SOFTWARE

7.1. GENERAL
7.1.1. Screen Formats
7.1.2. Dialogs
7.1.3. Menus
7.1.4. Summary

7.2. SCREEN FORMAT GENERATOR

7.3. DIALOG SPECIFICATION LANGUAGE

7.4. MENU GENERATOR

PART 4. SYSTEM UTILITIES

8. SYSTEM INSTALLATION FACILITIES

8.1. SYSTEM INSTALLATION
8.1.1. Software Installation Facilities
8.1.2. System Generation Facilities

8.2. INSTALLATION VERIFICATION PROGRAMS

9. 1/0 UTILITIES

9.1. DISK, DISKETTE, AND TAPE INITIALIZATION

9.2. DISK DUMP/RESTORE

9.3. 8419 DISK COPY

9.4. DAT A UTILITIES

9.5. SYSTEM LIBRARIANS
9.5.1. SAT Librarian
9.5.2. MIRAM Librarian

10. SUPPORT OPERATIONS

10.1. FILE CATALOGING FACILITY

10.2. SORTING
10.2.1. Sort/Merge
10.2.2. SORT3

10.3. SPOOLING AND JOB ACCOUNTING

10.4. SOFTWARE MAINTENANCE PACKAGES

Contents 4

• 7-1
7-2
7-3
7-4
7-6

7-6

7-9

7-12

8-1
8-1
8-1

8-2 •
9-1

9-2

9-2

9-3

9-4
9-4
9-5

10-1

10-2
10-2
10-3

10-4

10-7 -·

•

•

•

UP-8870 Rev. 1

10.5.

10.6.

SPERRY UNIV AC
SYSTEM 80

SECURITY MAINTENANCE UTILITY

SYSTEM ACTIVITY MONITOR

11. DIAGNOSTICS

11.1. DUMP ROUTINES
11 . 1 . 1 . System Dump
11.1.2. Job Dumps
11.1.3. EOJ Dump

11.2. PROGRAM ERROR CHECKING (UPSI BYTE)

11.3. ERROR LOGGING

11.4. HARDWARE DIAGNOSTICS

PART 5. APPLICATIONS PROGRAMS

12. APPLICATIONS PROGRAMS

12.1 . UNIVAC INDUSTRIAL SYSTEM 80

12.2. UNIVAC INDUSTRIAL SYSTEM 80 - EXTENDED

12.3. INFORMATION COLLECTION SYSTEM 80

12.4. UNIVAC DISTRIBUTION INFORMATION SYSTEM - WHOLESALE

12.5. UNIVAC FINANCIAL ACCOUNTING SYSTEM 80

12.6. ACCOUNTING MANAGEMENT SYSTEM

12.7. WHOLESALE APPLICATIONS MANAGEMENT SYSTEM 80

PART 6. COMMUNICATIONS AND DATA BASE FACILITIES

13. COMMUNICATIONS

13.1. INTEGRATED COMMUNICATIONS ACCESS METHOD
13.1.1. Message Control Program Structure
13.1.1.1. Communications Physical Interface
13.1.1.2. Direct Data Interface
13. 1. 1.3. Standard Interface
13. 1.1.4. Transaction Control Interface

Contents 5

10-8

10-8

11-1
11-2
11-3
11-3

11-3

11-4

11-5

12-1

12-3

12-3

12-4

12-6

12-7

12-8

13-1
13-4
13-6
13-7
13-7
13-8

UP-8870 Rev. 1 SPERRY UNIVAC
SYSTEM 80

13.2. DISTRIBUTED DATA PROCESSING
13.2.1. Transfer Facility
13.2.1.1. Job Distribution Function
13.2. 1.2. File Transfer Function
13.2.2. Program-to-Program Communications Facility
13.2.3. IMS-DDP Transaction Facility

13.3. UTS SUPPORT
13.3.1. UTS COBOL
13.3.2. UTS Edit Processor
13.3.3. UTS Load/Dump Facilities

13.4. INFORMATION MANAGEMENT SYSTEM

14. DATA BASE MANAGEMENT

14.1. GENERAL

14.2. OMS OPERATIONS

PART 7. CONVERSION

15. CONVERSION AIDS

15.1. GENERAL

15.2. SPERRY UNIVAC SYSTEMS
15.2.1. SPERRY UNIVAC 9200/9300 System
15.2.2. SPERRY UNIVAC Operating System/4 (OS/4)

15.3. IBM SYSTEMS
15.3.1. IBM System/3
15.3.2. IBM System 32/34

15.4. HONEYWELL SYSTEMS
15.4. t. Honeywell 100 Series
15.4.2. Honeywell 200/2000 Series
15.4.3. Honeywell 60 Series. Level 62 and Level 64

PART 8. APPENDIXES

A. SYSTEM FILE DESCRIPTIONS

B. FUNCTIONAL CHARACTERISTICS OF INPUT/OUTPUT DEVICES

INDEX

USER COMMENT SHEET

Contents 6

13-9
13-10
13-10
13-10
13-11
13-12

13-12
13-13
13-13
13-13

13-14

14-1

14-1

15-1

15-1
15-1
15-2

15-3
15-3
15-4

15-5
15-5
15-6
15-6

•

•

•

•

•

•

UP-8870 Rev. 1 SPERRY UNIVAC
SYSTEM 80

Contents 7

FIGURES

1-1.
1-2.
1-3.

4-1.
4-2.
4-3.
4-4.
4-5.
4-6.
4-7.
4-8.
4-9.
4-10.
4-11.

4-12.

4-13.
4-14.
4-15.
4-16.
4-17 .
4-18.
4-19.

4-20.
4-21.
4-22.
4-23.
4-24.
4-25.
4-26.

5-1.
5-2.
5-3.
5-4.
5-5.
5-6.
5-7.
5-8.
5-9.
5-10.
5-11.
5-12.
5-13 .

Switching CPU Control between Two Programs in a Multiprogramming Environment
Job Path
Typical System 80 Processing Environment

Relationship of Consolidated Data Management to a Program
Consolidated Data Management and Program Execution
Organization of Data on Peripheral Devices
Typical Card File Structure
Fixed-Length, Unblocked Record Format for Card Input Files
Record Formats for Card Output Files
Sample Tabular Data
Sample of Data on Preprinted Form
Printer Record Formats
Organization for a Standard Labeled EBCDIC Magnetic Tape Volume (Single File)
Organization for a Standard Labeled EBCDIC Magnetic Tape Volume (Multifile
Volume with End-of-File Condition)
Organization for a Standard Labeled EBCDIC Magnetic Tape Volume (Multifile Volume
with End-of-Volume Condition)
Organization for a Nonstandard EBCDIC Magnetic Tape Volume (Single File)
Organization for a Nonstandard EBCDIC Magnetic Tape Multifile Volume
Organization for an Unlabeled EBCDIC Magnetic Tape Volume
Organization of ASCII Single File, Single Volume, and Multivolume Sets
Volume Organization, ASCII Multifile, Single Volume Set
Volume Organization, ASCII Multifile, Multivolume Set
Label Configuration Options, ASCII Multifle, Multivolume Set (when End-of-Volume and
End-of-File Coincide)
Record and Block Formats for Magnetic Tape Files (ASCII and EBCDIC)
Disk (MIRAM) Data Record Slots Spanning Physical Sector Boundaries
Disk (MIRAM) Data Record Formats
Fine-Level Index Block
Coarse- or Mid-Level Index Block
Data Set Label Diskette File Layout
Data Set Label Diskette Record Formats

Program Preparation Flowchart
Graphic Representation of Job Control Device Assignment Statements
Initial Job Control Dialog Screen Display
First Screen of System Explanation of JCL Dialog
Creating a File Using the General Editor
Creating an RPG II Program
Formatted RPG II Calculation Specification Screen
Positional RPG II Calculation Specification Screen
Freeform RPG II Specification Screen
Creating a COBOL Program
Initial COBOL Editor Screen
Typical Screen in Ordered Creation Mode
Typical Screen in Selective Creation Mode

1-3
1-4
1-7

4-2
4-3
4-4
4-7
4-8
4-8
4-9
4-10
4-11
4-13

4-14

4-15
4-16
4-17
4-18
4-19
4-20
4-21

4-23
4-24
4-29
4-30
4-32
4-33
4-35
4-36

5-2
5-4
5-9
5-10
5-12
5-17
5-18
5-18
5-19
5-19
5-20
5-21
5-21

UP-8870 Rev. 1 SPERRY UNIVAC
SYSTEM 80

7-1. Typical Screen Format Display
7-2. Typical Dialog Session Screen Displays
7-3. Typical Menu Display
7-4. Screen Format Generator Home Screens
7-5. Relationship of Components during Screen Format Generation
7-6. Relationship of Components during Dialog Generation
7-7. Dialog Processor Input and Output Flow
7-8. Relationship between the Job Control Stream and Application
7-9. Relationship between Menu Generator and Menu Library File
7-10. Menu Processor in System Mode
7-11. Menu Processor in Workstation Mode

9-1. Block Diagram of Data Utilities Operation

Program

10-1. Flow of Information between Main Storage and Low Speed Devices
in a System Configured with Spooling

13-1. ICAM Structure and Interface Organization

TABLES

4-1. Data Set Label Diskette Characteristics

8-1. 0719 Card Reader Subsystem Characteristics
8-2. 0608 Card Punch Subsystem Characteristics
8-3. 0776 and 0789 Printer Subsystem Characteristics
8-4. Disk and Diskette Subsystem Characteristics
8-5. UNISERVO 10 Magnetic Tape Subsystem Characteristics
8-6. Workstation Subsystem Characteristics

Contents 8

7-2 • 7-4
7-5
7-7
7-8
7-9
7-11
7-12
7-13
7-13
7-14

9-3

10-5

13-5

4-34

8-1
8-2 • 8-2
8-4
8-5
8-6

•

•

PART 1. INTRODUCTION

•

•

•

•

•

•

•

UP-8870 Rev. 1

1.1. GENERAL

SPERRY UNIV AC
SYSTEM 80

1-1

1 . System Overview

The SPERRY UNIV AC System 80 is a multipurpose business computer system that
provides a sophisticated, yet easy to use, data processing environment. Executing under
the control of the Operating System/3 (OS/3) software and offering advanced
programming facilities, it permits completely interactive access to the system and
supports the development and implementation of interactive applications programs.
Interactivity is a convenient method of accessing the system resources through a
workstation to quickly perform work that might otherwise take hours or even days to
complete. When using an interactive system such as System 80, you are, in effect, in
direct communication with the system software .

The system provides a powerful set of interactive workstation commands enabling you
to control its operation. Facilities are provided to assist programmers in the interactive
development and execution of programs. In addition, facilities can be included that
permit nonprogramming personnel to use system resources to perform a variety of
operations. To extend the advantages of interactive operation to all phases of
commercial data processing, the system also provides facilities for the development of
applications programs that interface with workstations for online data entry and
retrieval.

The interactive environment supports the configuration of a large number of
workstations that can be placed where needed within the organization. These
workstations can be used by programmers or by data entry and retrieval personnel.
Individual programmers can use the workstation to perform all of their own processing.
Workstations used as data entry and retrieval devices can be placed at the various
departments or work locations within your organization, providing convenient access to
the system.

Noninteractive applications programs can also be developed and processed concurrently
with interactive operations. The system responds immediately to interactive requests
and on an as-time-permits basis for the noninteractive applications where time is less
critical. Even in a predominately interactive environment, a number of noninteractive
programs must be executed to handle day-to-day operations. In fact, the very
development of an applications program, interactive or noninteractive, necessitates the
execution of a number of noninteractive programs during the normal course of program
development. Even if no -interactive applications programs are contemplated, the
interactive program development and operational facilities can significantly improve
programmer productivity and enhance system efficiency and usability.

UP-8870 Rev. 1 SPERRY UNIV AC
SYSTEM 80

1-2

The following subsections discuss the basic operating concepts of System 80 and
describe how the system schedules and processes the various activities that can
demand the use of system resources at any given time.

1.2. PROCESSING ENVIRONMENT

The productive capacity of any system is largely determined by how efficiently it uses
its resources and, specifically, its central processing unit (CPU). Because all work
performed by a system ultimately requires the CPU to execute one or more program
instructions (a program being defined as an executable segment of code), productive
capacity can be improved through more efficient CPU scheduling. System 80 achieves
optimum CPU scheduling efficiency through multiprogramming.

If a system could only execute one program at a time, much valuable CPU time would
be lost while the system performed operations not involving the CPU (such as an
input/output operation). This lost CPU time could be recovered if the CPU could execute
another program while the first program performed the 1/0. This technique of switching
control of the CPU between programs is the heart of multiprogramming. Because the
performance of such activities as 1/0 operations is substantially slower than CPU
operations, the multiprogramming technique can be applied to large numbers of
programs. Figure 1-1 illustrates the switching of CPU control between two concurrently
executing programs.

For System 80 to process multiple programs concurrently, it requires more information
about the needs of a program than is supplied in the program itself. This includes the
resources a program is to use, such as data files, peripheral devices, and main storage.
For those programs that can be executed interactively - the general editor and so on -
the system supplies the necessary control information. However, for executing your
own programs or the noninteractive system programs, you must supply this information
by using the OS/3 job control language.

Using the job control language, you prepare a series of job control statements to
produce a job control stream. Together, the job control stream and the programs
executed by it are called a job. When generating a job control stream, you must include
information relevant to each program executed by the job and also information used to
control the processing of the job itself.

The job control language statements are interpreted and acted upon by the various job
control routines. These routines control the scheduling of your job and ensure the
proper loading and execution of the programs included in the job. In addition, job
control can be used to perform a variety of specific functions, such as file allocation and
deallocation. Jobs can be run that perform only these job control functions and execute
no other programs.

Each function performed by a job, a program execution, file allocation, etc, represents a
single job step. Every job consists of one or more job steps, and the job steps are
executed serially within the job. In other words, a job step is completely processed
before the next job step is started. Transfer of CPU control between programs being
concurrently executed occurs as a result of a request to perform an external event and
also at job step completion or termination.

•

•

•

•

•

•

UP-8870 Rev. 1

PROGRAM A

BEGIN

PERFORM 1/0

EXECUTION
SUSPENDED

RESUME

END

SPERRY UNIV AC
SYSTEM 80

CONTROL

CENTRAL
PROCESSING

UNIT

PROGRAM B

BEGIN

PERFORM 1/0

EXECUTION
SUSPENDED

RESUME

END

Figure 1-1. Switching CPU Control between Two Programs in a Multiprogramming Environment

1-3

Job control streams can be prepared interactively through an easy-to-use system
program called job control dialog. This program displays a series of questions
concerning the needs of your job on the workstation screen. Your responses to the
questions are used to generate the required job control statements. The output
produced by job control dialog is automatically placed in the system job control stream
library, YJCS. Once placed in this library, a job control stream can be run by issuing
a workstation RUN command specifying the name assigned to the job.

Because of its multiprogramming capability, the system is able to process up to 14 jobs
concurrently. The concurrent processing of jobs is referred to as multijobbing. The
system maintains a control area for each job currently being processed. These areas are
called job slots .

UP-8870 Rev. 1 SPERRY UNIVAC
SYSTEM 80

1-4

Figure 1-2 shows the path of a job from job entry through program execution. When a •
request to run a job is issued, the run processor interprets the request and locates the
specified job control in YJCS. The run processor places the name of the job on the
job queue, generates a temporary run library (YRUN) for the job, and places the job
control stream into this run library.

Once a job is entered on the job queue, 1t 1s considered to be a scheduled job. A
component called the job scheduler determines which job of those currently scheduled
is to be the next job initiated. If a job slot is available, the job is usually processed
immediately. The exception is when resources required by the job are currently
unavailable. If the system is currently processing 14 jobs or if the resources for a job
are not available, the job remains queued until a current job terminates or the resources
become available.

-
• v

RUN
PROCESSOR

1

WORKSTATION
REQUEST
TO RUN
JOB

JOB
QUEUE

--"" --.

MY JOB

YJCS L+- YRUN

--"" .--.

1--

JOB SWITCH

SLOT LIST
JOB PROGRAM

...... _..
SWITCHER SCHEDULER ,~ ~

MY JOB PROGRAM

I
G ~

MAIN
t-STORAGE

Figure 1-2. Job Path

If more than one job is currently on the job queue, the job scheduler selects the job that
has the highest scheduling priority. You can specify one of three scheduling priorities in
the job control stream or on the workstation command that entered the job:
preemptive, high, and normal.

Preemptive jobs are initiated first; in fact, the system attempts to make room for
preemptive jobs by temporarily suspending the execution of lower priority jobs and
moving them from main storage to disk. If no preemptive jobs are currently on the job
queue, the system initiates all high priority jobs and then any normal priority jobs.

If you do not specify a scheduling priority, the system automatically assigns normal
priority to your job. Within each priority level, the first job entered is usually the first job
initiated unless the resources for the job are not available. In such cases, the system
selects the next job entered for which the resources are available.

•

•

UP-8870 Rev. 1 SPERRY UNIV AC
SYSTEM 80

1-5

• When a job is selected for execution, the job scheduler removes the job name from the
job queue and displays it on the system console. The job scheduler also allocates the
main storage required to process the job. The amount of main storage required is equal
to the size of the largest program executed by the job.

•

•

Under certain conditions, the system can determine how much main storage is required.
In many cases, however, the main storage requirements must be specified in the job
control stream. During the processing of a job consisting of more than one job step
(that is, a job that executes more than one program), the first program is loaded in the
allocated area and executed. The next program to be executed overlays the first and so
on until all the job steps are processed.

The mechanism the system uses to coordinate the execution of programs is the system
switch list. The switch list has an entry for every program currently being processed by
the system. When a job is initiated, job control makes an entry on the switch list for
that job. As the system processes a job by executing the programs, it deletes the entry
made for a completed program and generates a new entry for the next program. Most
jobs have only one entry on the system switch list at any point in time.

Control of the CPU is passed among the programs scheduled for execution based on
the system switch list entries. The program switcher determines which program is to be
executed based on each program's execution priority. The system can support up to 60
levels of program execution priority. The number of priority levels available is
determined during system generation. Even though the system supports 60 levels of
priority, 10 to 15 levels should be sufficient for most systems.

The execution priority of a program should not be confused with the scheduling pnonty
of the job. The scheduling priority is used only to determine when a job should be
processed in relation to the other jobs entered on the job queue. The program
execution priority is used to determine when programs should be executed in relation to
the other programs in the system after a job has been initiated.

When searching the switch list to determine which program to execute next, the
program switcher selects the program with the highest execution priority. You can
specify the execution priority of a program in the job control stream. When selecting a
program for execution, the system does not have to check the availability of required
resources because the job, and thus the program, would not have been selected for
processing if the resources were unavailable.

If your job executes more than one program, you can assign a different priority level to
each program. If no priority is specified for a particular program, the system
automatically assigns the lowest program execution level configured into the system.

Interactive system programs are initiated directly through the workstation either by
using the RUN/RV command or by entering the specific command that executes the
program. Those executed through the RUN/RV command are processed as any job
would be processed. They occupy job slots and are executed through the switch list .

UP-8870 Rev. 1 SPERRY UNIVAC
SYSTEM 80

1-6

The programs that are executed by a direct workstation command, including the
commands themselves, are executed as supervisor symbionts. A symbiont is a high
priority program that is executed directly by the supervisor. Symbionts vie with the jobs
running in the system for resources such as main storage and devices.

Symbionts have, however, a higher scheduling and execution priority and are usually the
next function initiated when a symbiont request is issued. The symbionts are placed on
the system switch list but at a high priority. When a request for the execution of a
symbiont is made, the system interprets the request, locates the proper symbiont, loads
it into main storage, and makes the appropriate entry for that symbiont on the system
switch list.

Those programs executed through job control are scheduled in the same way described
for your jobs. The job control information is stored in YJCS. The RUN/RV command
you enter to initiate the interactive program is interpreted by the run processor, the
appropriate control stream is located, and the job is scheduled.

In addition to being able to interactively generate job control streams, programmers can
also control, to a certain extent, the way a control stream is executed. It is possible to
have portions of the control stream skipped or to have new values inserted into the
control stream. Through available workstation commands, programmers can also
interactively cancel a job and receive a display showing the jobs presently in the
scheduling queue.

As you can see, the System 80 processing environment supports a variety of program
and job types. It extends the resources of the system to more users through its
interactive capabilities and offers a fast and efficient method of performing data
processing activities. Figure 1-3 illustrates a typical processing environment detailing the
different types of activities that can be going on at any given moment.

•

•

•

.--

•

•

•

UP-8870 Rev. 1

JOBONE

®
JOBTWO

i--------
SCREEN
FORMAT

SERVICES

1---------

COBOL

DATA

J c JOBONE J

NOTES:

SPERRY UNIV AC
SYSTEM 80

EDT JOB FOR

RPG EDT JOBFIV

CPU
JC$BUILD

,.."1
JOBTHR

SUPER-
,..

/
1--- _____ _,

VISOR ,..
DIALOG ,.. ,..

SPECIFICATION ,..
JOB / LANGUAGE / CONTROL

IL"" TRANSLATOR

©
1

JOBTWO c JOBTHR l

1-7

-
@

G) Three workstation operators using the general editor. One is using the RPG II editor, which is a superset of the
general editor used specifically for developing RPG II programs. The general editor provides interactive program and
text editing capabilities as well as file generation and program and data storage operations.

@ One workstation operator initiating two independent jobs. Results from the jobs are routed to the initiating
workstation. Results can be routed to the system console if the system is directed to do so or if the originating
workstation is unavailable (logged off).

@ One workstation operator initiating job control dialog (JC$BUILD). This program is used to generate and store job
control streams that can be executed immediately or stored for subsequent execution.

© Three jobs entered through an optionally configured card reader. The system executive, consisting of job control
routines and the supervisor, ensures that the needs of all executing programs are satisfied.

@ Workstation operator executing the data utilities dialog to perform a data utilities operation, such as a file copy or
compare.

@ JOBTWO is in interactive communications with three workstation operators who are providing input to and
accepting output from an executing COBOL program through the screen format services.

Figure 1-3. Typical System 80 Processing Environment

•

•

•

•

PART 2. SYSTEM OPERATION FACILITIES

•

•

•

•

•

•

•

UP-8870 Rev. 1 SPERRY UNIV AC
SYSTEM 80

2-1

2. The Workstation

2.1. GENERAL

The workstation is the primary means of communicating with the system. All
processing that can occur on the system can be prepared, entered, and controlled
through the workstation. Through the services provided by the workstation and the
various system processors that it interfaces with, you can:

• prepare source and edit source programs and job control streams;

• prepare and edit data;

• initiate a number of interactive programs, such as the data utilities, screen format
services, and the editors;

• control the scheduling, running, processing of a job; and

• interactively create data files and program libraries.

The workstation can be used as a freestanding data entry or control device, a program
and job preparation tool, or as a device dedicated to a job. Each workstation configured
into the system can operate simultaneously with no significant impact on the
performance of each device, even if all devices are using the same function.

The following subsections offer brief discussions on the operation and usage of the
workstation. For complete information on the workstation, refer to the current version
of the interactive services commands and facilities user guide/programmer reference,
UP-8845.

2.2. WORKSTATION OPERATION

The workstation consists of a keyboard used to make entries and a video screen that
displays all entries and the system responses or queries. The workstation must be
turned on, and you must issue a LOGON command to connect the device with the
system. TileTOGON--command must be entered with the appropriate user identifier.
Once accepted by the system, you can begin to perform any function desired.

UP-8870 Rev. 1 SPERRY UNIV AC
SYSTEM 80

2-2

The keyboard is essentially the same as that of a typewriter with a number of additional
keys, such as the transmit and cursor control keys. Your workstation may also include
cursor control and arithmetic operation pads. The keyboard includes a variety of
function keys. These keys, when pressed, cause a predetermined action to occur. Some
of these keys are dedicated to specific functions, others perform a variety of functions
depending upon the component with which your workstation is in communication. In
addition, if you are using the basic assembler language, you can set certain function
keys to cause a specific event to occur within your program.

The workstation display screen is a cathode ray tube providing an image area of 12 or
24 lines (user option), 80 characters to a line. The images are white characters against
a dark background. You can highlight fields within the screen by reversing the display
for dark characters against a white area. You can control the brightness of the screen
image by using the intensity control knob located on the front bottom panel of the
video display unit. The power on/off switch is located here also.

Your workstation operates in two modes: system mode and workstation mode. System
mode is used to enter any of the available workstation commands or to initiate the
various interactive features. Workstation mode is in effect when you have connected
your workstation to a system program such as the editor. Each time you want to enter
a workstation command, you must press the function and system mode keys
simultaneously. After doing so, you can enter one command. For example, to execute
the editor, you would follow this procedure:

1 . Press and hold the function key

2. Press the system mode key

3. Enter EDT at the cursor

4. Press the transmit key

This initiates the editor and you can proceed to use it. Your workstation is now in
workstation mode. If you wanted to enter another command to the system but did not
want to terminate the editor, you can enter system mode by using the function key and
system mode keys. The top two lines of your current workstation display are placed in
a buffer; you can enter the system command and the cursor will move to the first line.
You can then enter your system command. To return to the editor, press the function
key and the workstation key. The first two lines are returned and the cursor moves to
the appropriate last location. This procedure is the same if using any of the interactive
features.

2.3. WORKSTATION USAGE

As stated, to use the workstation you must turn it on and connect it to the system by
issuing a LOGON message. After doing so, you are free to perform any function you
desire. Those things that you can initiate directly from the workstation and use are:

• the general editor, COBOL editor, and RPG editor;

•

•

•

•

•

UP-8870 Rev. 1

• the data utilities;

SPERRY UNIV AC
SYSTEM 80

• the job control stream preparation dialog; and

• the screen format services.

2-3

In addition, you have a set of workstation commands that provide a full range of
capabilities to perform the following functions:

• Initiate and terminate workstation sessions

• Copy prefiled jobs and jprocs from a diskette to a library file

• Initiate the running of a job

• Alter the execution of a scheduled job

• Connect a workstation to a job

• Control the job processing environment

• Control the processing of a job

• Control the output spooling environment

• Allocate and manipulate data files and program libraries

• Run a prefiled stream of workstation commands as a batch job

These workstation commands and the commands that initiate the system components
can only be issued from a workstation in system mode.

A workstation can also be used as an input/output device for an executing program. In
such cases, it functions essentially as a substitute for input and output files. The
workstation operator would enter input information and possibly receive output from the
program.

You can have several workstations dedicated to a single program. The system offers a
great deal of flexibility for workstations dedicated to a program. You can develop
programs and assign workstations to meet your own requirements. However, it is
essential that those who are to use dedicated workstations be aware of how their
workstations are interfaced because it can affect the manner in which they use the
workstation. You can identify specific workstations to be assigned to a program or
allow the workstation operators to issue connects. You can also assign workstations to
a program by user identifiers. This allows you to specify that any workstations logged
on with specified user identifiers are to be connected to the program .

When dedicating multiple workstations to a program, you can specify that all
workstations must be available (that is, logged on) before the program can be executed,
or that only a specified number of those workstations need be available. Workstations
can be connected to a program as they are logged on or operators can disconnect their
workstations from a program.

UP-8870 Rev. 1 SPERRY UNIV AC
SYSTEM 80

2-4

Depending upon the particular program or your requirements, you can have
workstations interfaced directly with the program or through system programs that
provide screen format or dialog processing services. Screen format services generate
screen displays that the workstation operator fills in to enter the required data. Dialog
processing involves the presentation of a series of questions to which the workstation
responds. Use of screen formats and dialogs permits you to enforce uniform data entry
and can eliminate errors or omissions. Screen formats and dialogs are discussed in
Section 7.

2.4. ADDITIONAL WORKSTATION FEATURES

In addition to the workstation capabilities we've described so far, there are other
features that extend the usefulness of your workstation. These include:

• remote workstation capability

• auxiliary printer

• screen bypass

• menus

• security maintenance utility

These features are described in 2.4. 1. through 2.4.5.

2.4.1. Remote Workstation Capability

One feature that allows you to extend the range of your workstation is remote
workstation capability. Using communications software, you can operate workstations
at a distance from your system ranging from a few feet to thousands of miles. Even at
these distances, you can give remote workstations the same capability as local
workstations (those attached directly to your system) to initiate and control jobs,
perform other system-related functions, and act as input/output devices to user
programs. (See 13. 1 for more information.)

2.4.2. Auxiliary Printer

You can also extend the usefulness of your System 80 workstation by attaching an
auxiliary printer directly to it. This feature gives you two advantages:

1. Using job control statements, you can direct program output to your auxiliary
printer when the system printer is busy.

2. Auxiliary printers can be attached to local or remote workstations; thus you can get
printed output on the spot even when your workstation is physically distant from
the system.

More information on auxiliary printers is included in 10.3.

•

•

•

•

•

•

UP-8870 Rev. 1

2.4.3. Screen Bypass

SPERRY UNIV AC
SYSTEM 80

2-5

Closely related to the auxiliary printer feature, the screen bypass feature is available with
some local System 80 workstations. Normally, data destined for output to the auxiliary
printer has to use the same workstation buffer that the screen display uses. Thus,
printer data first appears on the workstation screen, overwriting anything else there.
With the screen bypass feature, the workstation has two separate buffers, one holding
the data that's displayed on the workstation screen and the other holding the data
that's being printed on the auxiliary printer. Neither buffer overwrites the other so
screen and printer data remain separate.

2.4.4. Menus

Your OS/3 workstation provides you with menus. Like other types of menus, these are
lists of items or options from which to choose.In OS/3, these lists are numbered; you
simply read the menu, choose an item (usually a program or function to execute) and
enter the item's number. After execution has finished,the menu usually returns for you
to make another entry. To narrow your range of choices, a menu may call other menus.
Or if you are not sure what to choose, you can ask the system to display "help"
screens that explain the menu options in greater detail.

Sperry Univac supplies menus and help screens as aids in understanding and using the
OS/3 interactive services. In addition, you can create menus for your own use either
with interactive services or with your own programs. More information on menu
creation and use is included in Section 7.

2.4.5. Security Maintenance Utility

Another workstation feature is the security maintenance utility. It performs the following
functions

helps the system administrator enforce system security;

controls access to the system's interactive facilities;

enables the administrator to account for computer time; and

provides an automatic method of executing predefined sets of interactive
commands when logging on

The security maintenance utility is discussed in Section 10.5 .

--- -- ----~--------

•

•

•

•

•

•

UP-8870 Rev. 1

3.1. GENERAL

SPERRY UNIV AC
SYSTEM 80

3-1

3. The Supervisor

The SPERRY UNIV AC Operating System/3 (OS/3) Supervisor is a package of routines
that form the heart of OS/3. It is the supervisor that allows other parts of OS/3 to
work together and makes possible such useful OS/3 features as multijobbing and
spooling.

As far as your user programs are concerned, the supervisor has two main functions:

• It interacts with user programs and symbionts to provide the services and control
they need.

• It acts when necessary to handle randomly occurring external events, such as
errors. It ensures that an error occurring in one job causes only that job to be
terminated, leaving all other jobs unaffected.

The supervisor is built around executable modules, or routines, each of which has a
specialized function. Those routines commonly used by the supervisor always reside in
main storage. Other less often used routines, called transients, are stored on the
SYSRES volume and are loaded in main storage only when the supervisor needs them.
This arrangement promotes supervisor efficiency: it minimizes the amount of main
storage the supervisor uses by overlaying unneeded transients with newly loaded
transients, and it eliminates the input/output time needed to load the most commonly
used routines by keeping them resident.

The following is a brief description of the operation of the supervisor and the services it
provides. If you want to learn more about the supervisor, see the supervisor concepts
and facilities user guide, UP-8831 (current version).

As stated, the supervisor provides the central control for all system activities. It
manages the processing of multiple batch jobs by allocating resources, loading into
main storage, and executing each batch job based upon information provided by the job
control routines. For the interactive user, the supervisor initiates activities requested by
the workstation operator. For all users, the supervisor, through the physical input/output
control system, performs the actual movement of information within the system.

UP-8870 Rev. 1 SPERRY UNIV AC
SYSTEM 80

3-2

The supervisor also manages the main storage region available to users. It makes sure
that sufficient main storage is available for each new job before execution can begin. If
sufficient main storage exists but in scattered pieces, the supervisor can consolidate
these into a single block large enough to hold the job.

The supervisor also provides the facilities to support the diagnostic and debugging aids.
Included are the dump routines, the error logging facility, automatic recovery procedures
for hardware and software failures, and the online maintenance procedures.

In a system configured with the spooling option, the supervisor manages the various
spooling modules and ensures the proper operation of the spooling routines. Spooling is
configured into the system during the generation of the supervisor, and it is at that time
that the various optional features of spooling can be included.

A timer and day clock can be included in the supervisor to provide not only an interval
timing facility but also date and time stamps for all applications. As part of its
management of system resources, it can be configured to include a facility to suspend
the execution of low priority jobs and place them onto a disk for temporary storage and
load another job having preemptive priority. This is called the rollin/rollout facility. The
preempted jobs are rolled out of main storage and are rolled back in once sufficient
memory resources are available.

The operation of the system console is supported directly by the supervisor. This

•

support includes the management of messages to and from the console and other •
workstations or executing jobs. The operator also has commands to directly control or
alter the operation of the supervisor.

Your supervisor is configured during the system generation procedure (SYSGEN). During
SYSGEN, you enter supervisor-related parameters to indicate those supervisor features
you want to include which are resident (always in main storage), and which are
transient (called into main storage when needed). Additional features increase the main
storage requirements of your supervisor that may be a consideration for smaller
systems.

A number of supervisor generation parameters are used to provide default values that
the supervisor uses to handle certain conditions. You can generate a number of
separate supervisors during system generation, but only one supervisor at a time can be
operating. For example, if your system is used primarily for one type of operation during
certain periods of the day, you may want to generate a separate supervisor to handle
that activity more efficiently than your regular supervisor.

3.2. SUPERVISOR OPERATION

Every job that enters the system is divided into tasks. Every task is a unit of specific
work to be done and is the smallest entity that can compete for central processing unit
(CPU) time. Each job is made up of at least one task. •

t , •

•

•

UP-8870 Rev. 1 SPERRY UNIV AC
SYSTEM 80

3-3

Each task is assigned a task switching priority. The supervisor uses these priorities to
determine task-processing order. Because the supervisor passes control from
task-to-task, several jobs can be processed concurrently. While one job is reading data
from a disk file, for example, another job might be printing a report. In OS/3, up to 14
jobs can be active in the system at a given time.

The supervisor coordinates executing tasks through interrupts. An interrupt is a break in
program flow that passes processing control to the supervisor, which in turn diverts
processing to another program component or task. When the new program or task is
completed or another interrupt occurs, the supervisor returns control to the task that
was executing when the first interrupt occurred or to another task if the first task is not
ready to resume processing.

The general types of interrupts are:

• Supervisor call - occurs in response to the SUPERVISOR CALL (SVC) machine
instruction. Your programs routinely use the supervisor call to request supervisor
services.

• Exigent machine check - indicates a malfunction in or around the processor from
which the supervisor cannot recover.

• Repressible machine check - indicates a malfunction in or around the processor
from which recovery is possible.

• External interrupt - generated either by the processor interval timer or the system
console interrupt key.

• Program check - occurs when the processor attempts to execute a nonexistent
instruction or to execute an existing instruction in an illegal manner.

• Program event recording (PER) - provides dynamic monitoring of executing
programs by storing information about the current instruction whenever a specified
event occurs.

• Input/output - occurs in response to signals from 1/0 channels.

• Restart - occurs when the restart key on the system console is pressed and can be
used to take a dump (see 11 . 1 . 1) and reload the system.

Some interrupts, like the supervisor call or input/output, are routinely encountered;
others, like program or machine checks, represent serious errors that the supervisor
must handle with minimal system interruption. In addition to coordinating the activities
of executing jobs, the supervisor is responsible for monitoring the activities of
symbionts .

UP-8870 Rev. 1 SPERRY UNIV AC
SYSTEM 80

3-4

Symbionts are system programs or routines that execute directly under the control of
the supervisor and perform functions that are usually critical in nature or are extremely
time dependent. Symbionts are loaded by the supervisor in response to a request made
by another system component, one of your executing programs, or an interactive user.
For example, a number of the workstation command functions are symbionts that are
executed by the supervisor in response to the command entry. Symbionts do not
occupy job slots during execution.

3.3. SUPERVISOR SERVICES

While the supervisor performs its functions automatically in nearly all cases without user
intervention, there are occasions that it becomes necessary to closely control its
operations. These needs arise from special programming requirements and the like.
Thus, the assembler program is provided with the capability to control the operation of
the supervisor directly through a series of declarative and imperative macroinstructions
that can be included as part of a basic assembly language (BAL) program. In some
cases, the user is merely issuing the macroinstructions that other system components
would have issued in response to a user request made, for example, through a higher
level language. However, there are some features of which only the assembler
programmer can take advantage. Those items that the assembler programmer can
control directly through macroinstructions are:

• Disk and diskette space management

• System access technique

• Multitasking

• Program execution management

• Diagnostic and debugging features

• Spooling control

The disk and diskette space management macroinstructions allow you to obtain detailed
information on files and volumes in your system.

The system access technique (SAT) declarative and imperative macroinstructions allow
you to generate and manipulate block level disk and tape files. SAT files are partitioned
sequential files. Most program libraries are partitioned SAT files.

The supervisor permits the BAL programmer to create multiple tasks within a job step.
This capability is called multitasking, or the concurrent execution of multiple tasks. It
enables you to overlap processing with external occurrences (input/output functions or
operator intervention) within a job step to obtain maximum throughput. When a task is
interrupted to perform external processing, the central processor is freed, and the
system searches for another task to be performed (that is, not waiting for an external
event to be completed). This task could be in the same job step, or be in any other job
step currently being processed.

•

•

•

UP-8870 Rev. 1 SPERRY UNIV AC
SYSTEM 80

3-5

• If you program in BAL, you can, through the inclusion of the program execution
management macroinstruction, closely control the loading and execution of your
program. By using these macroinstructions, you can directly control the loading of
program phases and the initiation and termination of your job, and link your program to
island code subroutines. In addition, you can obtain the current date and time to be
used by your program and set an interval timer to control processing. Included also are
macroinstructions to access the prologue of your job for information retrieval.

•

•

Diagnostic services are provided that allow you to obtain the following types of dumps:

• Terminate job and dump job region

• Dump and continue processing

• Complete system dump

These dump routines are discussed in Section 11.

In addition, supervisor macroinstructions are available for performing dynamic dumps of
selected portions of main storage during your program's execution. The dynamic dumps
do not affect the program's execution and are referred to as snapshot dumps.

Included are diagnostic macroinstructions to generate checkpoints and a checkpoint file
to be used to recover program-generated data files in the event of a program
termination to the last established checkpoint before the termination. The terminated
program can be restarted and it will begin generating the file from the checkpoint. This
is especially useful when dealing with large data files.

A number of message transfer facilities are available and they allow you to:

• write a message to the system log file, either with or without displaying it on the
workstation or system console; and

• display a message on a workstation or console without writing it in the system log
file and with or without requiring an operator response.

These message transfer facilities are explained in the consolidated data management
macroinstructions user guide/programmer reference (current version).

The supervisor provides a breakpoint facility for those systems configured with
spooling. Breakpointing allows you to have incomplete print and punch files processed
by the output writer by including the breakpoint macroinstruction in your assembler
program. The print or punch spool file is closed at the point where the breakpoint is
issued, the incomplete file is printed or punched, then the file is reopened and your
program can continue to place records in the spool file for subsequent printing or
punching .

•

•

•

•

•

•

UP-8870 Rev. 1

4.1. GENERAL

SPERRY UNIV AC
SYSTEM 80

4-1

4. Consolidated Data
Management

As you know, all computer programs process data in one form or another; however,
the data and the program are in two different places. The program is executed in the
main storage section of the central processing unit (CPU) and the data is contained on
devices external to the CPU.

To process the data and produce the desired results, data must be moved in from and
out to these peripheral devices. Because the physical and electronic characteristics of
the various devices differ, this can lead to problems if you have to take the
characteristics of a device into consideration each time you want to perform an
input/output operation.

Obviously, there is a need for some way to specify an input/ output operation in a
program on a logical level. The answer to this need is consolidated data management.

4.2. WHAT IS CONSOLIDATED DATA MANAGEMENT?

Consolidated data management is a collection of program modules that are written for
each of the input/output devices supported by your system. These modules handle the
actual movement of data. They take care of all the device characteristic requirements;
consequently, you need not worry about this when you want to perform input/ output
operations. All you need to do is make a formal request in your program to data
management and it moves the data in from or out to the particular input/output device.
Figure 4-1 illustrates the relationship between data management and your program. As
you can see, data management acts as the data transfer mechanism between your
program and the input/output devices.

4.3. HOW CONSOLIDATED DATA MANAGEMENT WORKS

When you write your program, you establish a unique file name for each input/output
file you intend to use. You then describe the characteristics for each file. Once this is
done, you use these file names in conjunction with input/output commands at each
point that you want to move data into or out of your program. The input/output
commands act as formal requests to data management.

UP-8870 Rev. 1 SPERRY UNIV AC
SYSTEM 80

CONSOLI DA TED DAT A
MANAGEMENT MODULES

FORMAL
REQUESTS TO

DATA
MANAGEMENT

Figure 4-1. Relationship of Consolidated Data Management to a Program

4-2

•

•

•

•

•

•

UP-8870 Rev. 1 SPERRY UNIV AC
SYSTEM 80

4-3

When the time comes to execute your program, the appropriate data management
modules are placed in main storage at this time as shown in Figure 4-2. Thereafter,
each time an input or output command is encountered during processing, the applicable
data management module gets data from or sends data to the appropriate device.

PROGRAM
EXECUTION

NOTE:

COPY REQUIRED
MODULES
(See Note)

YLOD

CONSOLIDATED
DATA

MANAGEMENT
LOAD

MODULES

Based on device assignment sets for files in the job control stream, the required modules
are copied at execution time.

Figure 4-2. Consolidated Data Management and Program Execution

4.4. DATA STRUCTURE

Consolidated data management recognizes the following as structural entities:

• Volume

The largest physical unit for data storage such as tape reel or disk pack.

• File

A delimited storage space having an identifying file name and consisting of a
collection of related data

• Record

A collection of contiguous characters within a file that you have designated to be
handled as a unit.

• Block

•

That portion of a file that is transferred into or out of main storage by a single
access. A block may contain a single record or, for some devices, it may contain
several records.

Field

One or more contiguous characters within a record that represents a single piece of
information.

UP-8870 Rev. 1 SPERRY UNIV AC
SYSTEM 80

4-4

The volume concept is not truly applicable to printers, workstation, or card devices. On
disk, diskettes, and magnetic tape, a file may be larger then a volume; that is, a file
may require more than one physical unit to hold it. In this case, you have what is called
a multivolume file. Figure 4-3 shows the organization of data on the peripheral devices
supported by consolidated data management.

A FILE COMPRISES ONE OR MORE SPANS
OF TRACKS ON ALL SURFACES OF PACK

NOTE:

BLOCK ,_,._,,_
I FIELD'

DI I !fS ID
t

RECORD

a. Disk pack

The set of tracks at a specific radius on all recording surfaces is called a cylinder.

Figure 4-3. Organization of Data on Peripheral Devices (Part 1 of 3)

•

•

•

UP-8870 Rev. 1

•

•

FILE

•

0
0

0

SPERRY UNIV AC
SYSTEM 80

FIXED SECTORS

b. Diskette

RECORD=ONE LINE OF PRINTING

O ~AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
0
0
0

0

0
0

0

0
0

0

0

0

c. Printer

0

0

0

0

0

0

0

0
0

0

0
0

0

0

0

0

RECORD

----::i
111 I

I
I I I

'1
1 1 I

I I

I I

I I

d. Punched card

I I
I I

I
I

Figure 4-3. Organization of Data on Peripheral Devices (Part 2 of 3)

4-5

UP-8870 Rev. 1

FILE

0
FILE OR
VOLUME

SPERRY UNIV AC
SYSTEM 80

__=J[]

e. Magnetic tape

FIELD

I I
I I

I

--..-
RECORD

RECORD=ONE LINE OR ENTIRE SCREEN

-,

kAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA~

f. Workstation

Figure 4-3. Organization of Data on Peripheral Devices (Pan 3 of 3)

4.5. AVAILABILITY OF CONSOLIDATED DATA MANAGEMENT

4-6

D?

Consolidated data management is available to programmers using COBOL, FORTRAN IV,
RPG II, BASIC, or ESCORT by means of the various input/output operations available in
each of these languages. Basic assembly language programs can interface directly with
consolidated data management through the data management macroinstructions.
Whatever the language, the functions of consolidated data management are the same
for all users. For more about consolidated data management, see the consolidated data
management concepts and facilities, UP-8825 (current version).

4.6. DATA UTILITIES

Sperry Univac provides a system routine to transfer large amounts of data between the
various peripheral devices configured into your system. This routine, called the data
utilities, can be used to perform a number of data transfer functions including:

• Transferring files from one media to another

• Making copies of files either on the same media type or another type

•

•

•

•

•

UP-8870 Rev. 1 SPERRY UNIV AC
SYSTEM 80

• Performing certain compare, delete, and reformatting operations

More detailed information on the data utilities can be found in Section 9.

4.7. CARD FORMATS AND FILE CONVENTIONS

4-7

A punched card file consists of a card deck that is input via a card reader or output via
a card punch. Records can comprise either a portion of a card or a complete card. The
basic punched cards for the card subsystems are the standard 80-column cards.
However, optional hardware features allow you to read 51- or 66-column cards. Refer
to Appendix B for the functional characteristics of the card subsystems that are
supported.

4. 7 .1 . File Organization

Punched card files are sequential files; that is, the records are handled one at a time in
sequential order. The card deck consists of a job control start-of-data card (optional),
data cards containing one record each, and a job control end-of-data card.

Figure 4-4 shows a typical card file structure .

END-OF-DATA /*
JOB CONTROL~

CARD

1 TO n CARDS
EACH CONTAINING~

A SEPARATE RECORD

START-OF-DATA /$
JOB CONTROL

CARD ~
(OPTIONAL)

Figure 4-4. Typical Card File Structure

FOR INPUT FILES
THESE CARDS MAY HAVE

51, 66, 80, OR 96
COLUMNS

FOR OUTPUT FILES
THESE MUST

BE BO-COLUMN CARDS

- ----------------------------

UP-8870 Rev. 1 SPERRY UNIV AC
SYSTEM 80

4-8

4. 7 .1 .1. Card Input Files

A card input file consists of fixed-length, unblocked records; that is, all records are the
same size. When a record is read, it is placed in the input/output area. Figure 4-5
shows the record format for fixed-length, unblocked records.

data J

A ------1
LEGEND:

A Data record length. The 1/0 area must be at least the same size as the record length and must be an even
number of bytes. If you are using 51-column cards, the 1/0 area must be specified as 52 bytes.

Figure 4-5. Fixed-Length, Unblocked Record Format for Card Input Files

4. 7 .1.2. Card Output Files

A card output file consists of data that is formed into records, either in the input/output
area or a designated work area, and then is sent to the card punch, where the records
are punched in the standard 80-column card format. The output records can be fixed
length or variable length. These record formats are shown in Figure 4-6.

FIXED LENGTH

data

VARIABLE LENGTH

data

I- D -•ti-----
c

F ~--------------------i

LEGEND:

b Block size field, four bytes A Data record length

Record length field, two bytes c Variable record length

u Reserved (two bytes); may be any two characters chosen by the user D Record Size field

F 1/0 area layout. The 1/0 area must be an even number of bytes and its size must equal the maximum record size
plus the block size and record size fields if you are dealing with variable-length records.

Figure 4-6. Record Formats for Card Output Files

•

•

•

•

•

•

UP-8870 Rev. 1 SPERRY UNIV AC
SYSTEM 80

4.8. PRINTER FORMATS AND FILE CONVENTIONS

4-9

A printer file consists of data that you create in your program and cause to be printed,
one line at a time, on a printer device. Each printed line can have up to 160 characters
depending upon the printer subsystem you use. Refer to Appendix B for the functional
characteristics of the printer subsystems that are supported.

4.8.1. File Organization

Printer files can be organized to produce text, tabular data, or data on preprinted forms.
In each case you must set up the data you want printed on each line, must control the
vertical separation between lines, and must provide for skipping to the next page when
the space on the current page is exhausted. {See the applicable programming language
user guide for details.)

4.8.1.1. Text

The simplest printer file is one that consists entirely of text. An example of this is the
lines you are presently reading. If you had to write a program to produce these lines,
each line would be a record and you would form each line in an 1/0 area or work area.
Then you would cause it to be printed. This process is repeated for each line until the
end of the page is reached at which point you issue an instruction to skip to the top of
the next page.

4.8.1.2. Tabular Data

The records for tabular data and reports are formed in the same manner as in text files
{in an 1/0 area or work area). In these cases, your program is more complex because of
vertical and horizontal spacing requirements, page and column headings, and other
repetitive items {Figure 4-7).

COLUMN [-PART- - - - - - - lfE"M

HEADINGS _ _lil.J.!1B.,1:!i _____ D_i:.SC.l\JeI.IJ).N
OOOIOE CAPACITOR
OOOIOr ROTOR
OOOIOG POINT1IGN

PAGE HEADING

~

____ UAILY ACTIVITY REPORT
TRANS- QUAN

ACTION
OF<DER
ORDER
ORDEH

ON-HAND

Figure 4-7. Sample Tabular Data

REO

PO

DEPARTMENT

BILLED
PRODUCTION
PRODUCTION
l'lAINTENANCe

UP-8870 Rev. 1

4.8.1.3. Data on Preprinted Forms

SPERRY UNIV AC
SYSTEM 80

4-10

A printer file that places data on a preprinted form is easy to use once it is organized.
You form your records in an 1/0 or work area as with text or tabular data. The
difference, as you can see in Figure 4-8, is that you have to closely control the
positioning of your data.

P. 0. BOX !SCIO
ewe BEU.. PA. 19422

INT
SITE 3-1

ATTNI CATHY SMITH

D6866M 8598 UP 8071
AOOAEtlS COAAECTION REQUESTED

RETURN POSTAGE GUARANTEED

UDHl27

Figure 4-8. Sample of Data on Preprinted Form.

UMS

00851

•

•

•

•

•

•

UP-8870 Rev. 1

4.8.2. Printer Record Formats

SPERRY UNIV AC
SYSTEM 80

4-11

The printer record formats are shown in Figure 4-9. As you can see, a record may
contain a control character that specifies line spacing or skipping when the file is
printed. This character is not printed but is a part of the record in storage.

FIXED LENGTH

H data, fixed length

I A

UNDEFINED

H data, variable length ~?
A

VARIABLE LENGTH

b data, variable length

c

F

LEGEND:

b Block size field, four bytes
cc Control character. one byte, optional

Record length field, two bytes. binary
u Reserved (two bytes); can be any two characters you choose.
A Data record length
C Variable record length
D Record size field
F 1/0 area layout

Figure 4-9. Printer Record Formats

UP-8870 Rev. 1 SPERRY UNIV AC
SYSTEM 80

4.8.3. Vertical Format and Load Code Buffers

4-12

All printers contain a vertical format buffer and a load code buffer. The vertical format
buffer is used to define the printer page in terms of the number of lines per page, the
density of the lines, the overflow line, and the codes you can use with your program
instructions to skip to specific lines on a page.

The load code buffer specifies the 8-bit codes that are associated with the graphic
symbols on the print cartridge, band, or drum. These cannot be changed.

The vertical format buffer and the load code buffer are set up at system generation time
for each printer type. For details refer to the system installation user guide/programmer
reference. You can use job control to override vertical format buffer parameters
established at system generation time.

Normally, your only concern with these buffers is to know what standards are
established for the printer you are going to use with your program. In most cases,
these standards allow you to produce the printed output you require.

4.9. MAGNETIC TAPE FORMATS AND FILE CONVENTIONS

Magnetic tape files consist of data records that are recorded on one or more volumes
(reels) of magnetic tape. These files are sequential files; the data records are recorded
on tape in the order in which they are submitted, and they are read from the tape
starting with the first record on tape and continuing with each successive record. The
recording and reading is accomplished via a tape subsystem. Refer to Appendix B for
the functional characteristics of the magnetic tape subsystems that are supported.

4.9.1. Tape Volume and File Orgranization

Consolidated data management allows you to process magnetic tape files encoded in
Extended Binary Coded Decimal Interchange Code (EBCDIC) as well as in the American
National Standard Code for Information Interchange (ASCII) X3.4-1977. The file
structure, organization, and processing specifications for ASCII magnetic tape files is
described in American National Standard Magnetic Tape Labels for Information
Interchange, X3.27-1969. Both of these standards are followed when ASCII magnetic
tape files are processed. The tape volumes (reels) can be organized as follows:

• EBCDIC

Standard labeled

Nonstandard labeled

Unlabeled

• ASCII

Standard labeled

The paragraphs that follow explain and illustrate the different types of volume
organization.

•

•

•

•

•

•

UP-8870 Rev. 1 SPERRY UNIV AC
SYSTEM 80

4.9.1.1. EBCDIC Standard Volume Organization

4-13

A standard volume has system standard labels and required tape marks; it may also, at
your option, contain standard user header and trailer labels (UHL and UTL). All standard
tape labels are written in blocks of 80 bytes. Data management assumes that the labels
appear on tape in the order shown in Figures 4-10, 4-11, and 4-12, which illustrate
the reel organization for standard labeled EBCDIC volumes with an end-of-file (EOF) and
an end-of-volume (EOV) condition. A standard labeled EBCDIC volume processed by
data management ends in either an end-of-file or an end-of-volume label group, followed
by two tape marks. The second tape mark indicates that no valid information follows.
No provision is made for creating additional volume, header, or EOF/EOV labels on
output files; if they exist on input files, data management bypasses them.

LEGEND:

WITH END-OF-FILE CONDITION

VOL1 label

HDR1 label

HDR2 label

user header labels
UHL1-UHL8

tape mark

data
blocks

tape mark

EOF1 label

EOF2 label

user trailer labels
UTL1-UTL8

D Content supplied by user.

~ These bytes are required and generated by data management .

WITH END-OF-VOLUME CONDITION

VOL1 label

HDR1 label

HDR2 label

user header labels
UHL1-UHL8

tape mark

data
blocks

tape mark

EOV1 label

EOV2 label

user trailer labels

UTL1-UTL8

D These bytes are generated by data management; user supplies content for certain fields.

1111 These bytes are generated by user's routine for processing these labels; content is at user's
option except for content of 4-byte label ID fields. User is limited to eight UHL and eight UTL.

Figure 4-10. Organization for a Standard Labeled EBCDIC Magnetic Tape Volume {Single File)

UP-8870 Rev. 1

"

LEGEND:

D Content supplied by user.

SPERRY UNIV AC
SYSTEM 80

VOL1 label

HDR1 label of file A

HDR2 label of file A

tape mark

data blocks
of file A

tape mark

EOF1 label of file A

EOF2 label of file A

tape mark

HDR1 label of file B

HDR2 label of file B

tape mark

data blocks
of file B

tape mark

EOF1 label of file B

EOF2 label of file B

~ These bytes are required and generated by data management.

4-14

D These bytes are generated by data management; user supplies content for certain fields.

NOTE:

Assume that file B completes on this volume.

Figure 4- 11. Organization for a Standard Labeled EBCDIC Magnetic Tape Volume (Multifile Volume with
End-of-File Condition)

•

•

•

•

•

•

UP-8870 Rev. 1

LEGEND:

REEL 1

VOL1 label

HOR1 label of file A

HDR2 label of file A

tape mark

data blocks
of file A

tape mark

EOF1 label of file A

EOF2 label of file A

tape mark

HDR1 label of file B

HDR2 label of file B

tape mark

data blocks
of file B

tape mark

EOV1 label of file B

EOV2 label of file B

tape mark

tape mark

0 Content supplied by user.

SPERRY UNIV AC
SYSTEM 80

~
~

~~
~~

'4J

~ These bytes are required and generated by data management.

REEL 2

VOL1 label

HDR1 label of file B

HOR2 label of file B

tape mark

data blocks
of file B

tape mark

EOF1 label of file B

EOF2 label of file B

tape mark

HOR 1 label of file C

HDR2 label of file C

tape mark

data blocks
of file C

tape mark

EOV1 label of file C

EOV2 label of file C

0 These bytes are generated by data management; user supplies content for certain fields .

NOTE:

4-15

~
~ ~
~

,.v

Assume that file C is not completed on reel 2, but carries over (like file B) onto another volume. If file C were
completed on reel 2, its EOV1 and EOV2 labels shown here would be replaced with EOF1 and EOF2 labels.

Figure 4-12. Organization for Standard Labeled EBCDIC Magnetic Tape Volumes (Multifile Volume with

End-of-Volume Condition)

UP-8870 Rev. 1 SPERRY UNIV AC
SYSTEM 80

4.9.1.2. EBCDIC Nonstandard Volume Organization

4-16

A nonstandard volume is any volume that contains only nonstandard labels and certain
required tapemarks. Figures 4-13 and 4-14 show the formats for EBCDIC nonstandard
volumes.

The optional user header and trailer labels may be of any format, length, or number
because they are handled by a label processing routine that you supply in your program.

The tape mark following the user header label is only required if you intend to use
read-backward operations in your program or if you intend to omit label checking. It is
not required and may be omitted if you intend to perform label checking. Normally, this
tape mark is automatically generated by data management unless you specify
otherwise.

The tape mark following the data blocks is required and is automatically generated by
data management. If user trailer labels are present, data management automatically
generates the two required tape marks that must follow these labels. If the user trailer
labels are not present, data management writes only one additional tape mark after the
one following the data blocks. This second tape mark is always present when a file is
the only file or is the last file on the volume. If the volume is a multifile volume, this
second tape mark is overwritten by the next file placed on this volume.

optional user
header labels

tape mark

data blocks

tape mark

optional user
trailer labels

tape mark

tape mark

LEGEND:

D
~

D

Content supplied by user.

These bytes are required and generated by data management; only two tape marks follow data blocks
if UTL are not present.

These bytes are generated by data management unless user specifies otherwise; required only if label
checking is omitted or read-backward operations are specified.

1111 The presence, content, format, and number of these bytes are entirely at user's option.

Figure 4- 73. Organization for a Nonstandard EBCDIC Magnetic Tape Volume (Single File)

•

•

•

•

•

•

UP-8870 Rev. 1 SPERRY UNIV AC
SYSTEM 80

4-17

optional user
header labels

tape mark

data blocks
of file A

tape mark

optional user
trailer labels

tape mark

optional user
header labels

tape mark

data blocks
of file B

tape mark

optional user
trailer labels

tape mark

tape mark

LEGEND:

D
II

•

Content supplied by user.

These bytes are required and generated by data management; only two tape marks follow data blocks of last file on
volume if UTL are not present.

These bytes are generated by data management unless user specifies otherwise; required only if label checking is
omitted or read-backward operations are specified.

Presence, content, format, and number of these bytes are entirely at user's option .

Always present; written by data management.

Figure 4-14. Organization for a Nonstandard EBCDIC Magnetic Tape Multifile Volume

UP-8870 Rev. 1 SPERRY UNIV AC
SYSTEM 80

4.9.1.3. EBCDIC Unlabeled Volume Organization

4-18

Consolidated data management can also process unlabeled tape volumes. Figure 4-15
shows the organization for unlabeled EBCDIC volumes.

A tape mark normally precedes the data block unless you specify otherwise. The tape
mark following the data blocks is required on both single file and multifile volumes and
is automatically generated by data management. A second tape mark is always written
by data management following the last or only file on each volume. If the volume is a
multifile volume, this second tape mark is overwritten by the next file placed on this
volume.

SINGLE-FILE VOLUME MULTIFILE VOLUME

tape mark

data blocks

tape mark tape mark

tape mark

data blocks
of file B

tape mark

tape mark

LEGEND:

D
~

D

Content supplied by user.

These bytes are required and generated by data management; two marks follow data blocks of last file on volume.

These bytes are generated by data management unless user specifies otherwise; required only when user specifies
read-backward operations.

Figure 4-15. Organization for an Unlabeled EBCDIC Magnetic Tape Volume

4.9.1.4. ASCII Standard Volume Organizations

The American National Standard X3.2 7-1969 provides for the following file sets
(collections of one or more related files recorded on one or more volumes):

• Single file, single volume • Multifile, single volume

• Single file, multivolume • Multifile, multivolume

•

•

•

•

•

•

UP-8870 Rev. 1 SPERRY UNIV AC
SYSTEM 80

4-19

These volume organizations are shown in Figures 4-16 through 4-19. Note that all
ASCII tape files contain standard labels. Since data management follows the standard, it
expects to find these labels on ASCII input files and it generates them for ASCII output
files.

SINGLE FILE, SINGLE VOLUME

VOL1 label

HDR1 label, file A

HDR2 label, file A

tape mark

data
blocks

of
file A

tape mark

EOF1 label, file A

EOF2 label, file A

tape mark

tape mark

LEGEND:

D Content supplied by user .

SINGLE FILE, MULTIVOLUME

REEL 1

VOL1 label

HDR1 label, file A

HDR2 label, file A

tape mark

data
blocks,

first
part of
file A

tape mark

EOV1 label, file A:

EOV2 label, file A ,

tape mark

tape mark

~ These bytes are required and generated by data management.

B These bytes are generated by data management; user supplies data for certain fields.

REEL 2

VOL1 label

HDR1 label, file A

HDR2 label, file A

tape mark

data
blocks,

last
part of
file A

tape mark

EOF1

EOF2

tape mark

tape mark

Figure 4-16. Organization of ASCII Single File, Single Volume, and Multivolume Sets

UP-8870 Rev. 1 SPERRY UNIV AC
SYSTEM 80

MULTIFILE, SINGLE VOLUME

0 Content supplied by user.

~ These bytes are required and generated by data management.

• These bytes are generated by data management; user supplies data for certain fields.

Figure 4-1 7. Volume Organization, ASCII Multifile, Single Volume Set

4-20

•

•

•

•

•

UP-8870 Rev. 1

LEGEND

REEL 1

HDR2 label, file A

tape mark

data
blocks,
file A

tape mark

EOF1 label, file A

EOF2 label, file A

tape mark

HDR1 label, file B

HDR2 label, file B

tape mark

data blocks,
first part of

file B

tape mark

EOV2 label, file B

tape mark

tape mark

D Content supplied by user.

SPERRY UNIV AC
SYSTEM 80

MULTIFILE, MULTIVOLUME

REEL 2

HDR1 label, file B

HDR2 label, file B

tape mark

continuation
of

file B

tape mark

EOV1 label, file B

EOV2 label, file B

tape mark

tape mark

~ These bytes are required and generated by data management .

• These bytes are generated by data management; user supplies data for certain fields.

Figure 4-18. Volume Organization, ASCII Multifile, Multivolume Set

REEL 3

VOL1 label

HDR1 label, file B

HDR2 label, file B

tape mark

last part
of

file B

tape mark

EOF1 label, file B

EOF2 label, file B

tape mark

HDR1 label, file C

HDR2 label, file C

tape mark

file C
(completes

this volume)

tape mark

EOF1, file C

EOF2, file C

tape mark

tape mark

4-21

UP-8870 Rev. 1 SPERRY UNIVAC
SYSTEM 80

4.9.1.4.1. ASCII End-of-File and End-of-Volume Coincidence

4-22

The American National Standard X3.27-1969, provides that whenever a volume ends
within a file, the last block of the file is followed by an end-of-volume label (EOV 1). It
also allows a second end-of-volume label (EOV2) which is standard in data management
(an EOV1 label is always followed by an EOV2 label). A single tape mark precedes and
two tape marks follow the EOV 1 and EOV2 labels.

The standard also states that no file set may be terminated by end-of-volume labels;
consequently, provision is made for those cases where the end-of-volume and
end-of-file coincide. In these situations the standard provides that the labeling
configuration shall be one of the two options shown Figure 4-10. Option 1 occurs
when the end-of-tape warning mark is reached while the last block of a file is being
written. Option 2 occurs when the end-of-tape warning mark is reached after the EOF1
and EOF2 label group has been started.

•

•

•

•

•

•

UP-8870 Rev. 1 SPERRY UNIV AC
SYSTEM 80

MUL Tl Fl LE, MUL Tl VOLUME

1:.
LEGEND:

OPTION 1
REEL 1

file A
data blocks

tape mark

EOV1. file A

EOV2, file A

tape mark

tape mark

REEL 2

VOL1 label

HDR1 label, file A

HDR2 label, file A

tape mark

tape mark

EOF1 label, file A

EOF2 label, file A

tape mark

HDR1 label, file B

HOR2 label, file B

tape mark

file B
data blocks

O Content supplied by user .

_J"

OPTION 2
REEL 1

tile A
data blocks

tape mark

EOF1, file A

EOF2, file A

tape mark

HDR1 label, file B

HDR2 label, file B

tape mark

tape mark

EOV1 label, file B

EOV2 label, file B

tape mark

tape mark

REEL 2

VOL1 label

HDR1 label, file B

HDR2 label, file B

tape mark

L..
file B

data blocks

"-----~~------~--::r

~ These bytes are required and generated by data management.

ii These bytes are generated by data management; user supplies data for certain fields.

4-23

Figure 4-19. Label Configuration Options, ASCII Multifile, Multivolume Set (when End-of-Volume and End-of-File Coincide)

UP-8870 Rev. 1 SPERRY UNIV AC
SYSTEM 80

4.9.1.5. Magnetic Tape File Record Formats

4-24

The data records on magnetic tape files may be fixed length, blocked or unblocked;
variable length, blocked or unblocked; or undefined. Figure 4-20 shows these formats
as they appear on EBCDIC and ASCII magnetic tape files. Note that the formats
illustrated in Figure 4-20 do not show the optional use of padding because it is not
supported. If your input blocks have been padded, the 1/0 area in your program must
be large enough to accommodate this padding and your program should take care of
detecting and removing the padding characters before it processes the data.

EBCDIC
FIXED-LENGTH, UNBLOCKED RECORD

[~~J data record

I
I: D :I

FIXED-LENGTH, BLOCKED RECORDS

[_oo J data record
1 data record2 I

data record3 I
I. D, .1. D2 I· D3 :I

VARIABLE-LENGTH, UNBLOCKED RECORD

r---
I
I bn

block record

I header length
L ___

t""l:-RL~

VARIABLE-LENGTH, BLOCKED RECORDS

r--
1
I bn

"11111

L __ _

~

block record
header length1

data record

D :I
record

data record1 length2 data record2

tBH--t.._____~L~ - D1 ---'-·t-RL--+1 __ 02 __...:I
Figure 4-20. Record and Block Formats for Magnetic Tape Files (ASCII and EBCDIC) (Part 7 of 3)

•

•

•

•

•

•

UP-8870 Rev. 1

UNDEFINED RECORD FORMAT

r--
1
I bn

SPERRY UNIV AC
SYSTEM 80

EBCDIC (cont)

data record

4-25

L----L--------------------------------'

ASCII

FIXED LENGTH, UNBLOCKED RECORD (FORMAT Fl

r---

I
I bsi data record
I L ___

I: D

FIXED-LENGTH, BLOCKED RECORDS (FORMAT F)

[m; J data record
1

data record2

I: Dl .. 1 .. D2

VARIABLE-LENGTH, UNBLOCKED RECORD (FORMAT D)

r---
1
I bsi

I

buffer offset

field

(optional)

record

length

I
:I

data record3

I

.... 1 .. D3 :I
data record

L ___ _._~~~~~~~~~~---1.~~~-'-~~~~~~~~~~~~~~~~~--'

I._: BO~tRL~
D :I

VARIABLE-LENGTH, BLOCKED RECORDS (FORMAT D)

r---.~~--.~~-,,-~~~~~.-~~-.--~~~~~~--r--~~--r-~~~~~~~

I
buffer
offset

I bsi field
record

length 1
data record

1
record

length
2

data record
2

record data record
3 length

3 I (optional) L - - __._ __ __._ __ _._ _____ _.L_ __ ...L._ _____ ---'-----1.--------.J

~RL3_j
D3 ~

.....

Figure 4-20. Record and Block Formats for Magnetic Tape Files (ASCII and EBCDIC) (Part 2 of 3)

UP-8870 Rev. 1 SPERRY UNIV AC
SYSTEM 80

4-26

ASCII (cont)

UNDEFINED RECORD FORMAT (FORMAT U)

r--

I
I
I bsi data record
I
L __

14

LEGEND:

D Record length, measured in bytes. This measure is entered in the most significant two bytes of the 4-byte record
length field; the two least significant bytes are reserved.

Block length, measured in bytes. Minimum block length is 18 bytes. This measure is entered in the most significant
two bytes of the 4-byte block header of EBCDIC variable-length records (block or unblocked); the two least
significant bytes are reserved. When the buffer offset field of ASCII variable records is a 4-byte field, for output,
data management writes the block length in it in ASCII. For input, data management assumes that it contains the
length of the block in four bytes of ASCII.

RL Record length field of variable-length records; a 4-byte field in ASCII and EBCDIC records. Its own length is
included in the measure inserted here. In EBCDIC records, record length is read and written in binary; in ASCII
records. it is recorded on tape in ASCII, although you present it to data management in binary and process it in
binary.

BH Block header, a 4-byte field at the head of the block format in which all EBCDIC variable-length records, blocked or
unblocked, appear on magnetic tape. Most significant two bytes contain the length of the block, which includes the
length of the header itself; the two least significant bytes are reserved.

bn Optional 3-byte block number in EBCDIC. May not be created for output files. Data management accepts the block
number in EBCDIC input files, but does not process it.

BO Buffer offset field, an optional block prefix that may be placed at the head of each block of ASCII variable records.
Its content is recorded in ASCII; its length ranges from 0 to 99 bytes for fixed and undefined records and is 0 or 4
for variable records. For variable records, when its length is four bytes, data management assumes that this field
contains the length of the block (which includes the length of this field itself).

·.•
bsi Optional 1-byte block sequence indicator for ASCII files in ASCII numeric code. May not be created for output files.

Data management accepts the block sequence indicator in input files, but does not process it.

T The index register specified by the IOREG keyword parameter points here, to the first byte of the record length
field of variable-length records.

NOTES:

1. Although the American National Standard X3.27-1969 also provides for a variable ASCII record with its record
length specified in binary (the so-called "V-format" record). data management does not support this format.

2. Spanned records (those extending beyond one block) are neither allowed in ASCII magnetic tape files (in which
there must be an integral number of records per block) nor supported by data management in EBCDIC tape files.

Figure 4-20. Record and Block Formats for Magnetic Tape Files (ASCII and EBCDIC) (Part 3 of 3)

•

•

•

•

•

•

UP-8870 Rev. 1 SPERRY UNIV AC
SYSTEM 80

4.10. DISK AND FORMAT LABEL DISKETTE FORMATS AND
FILE CONVENTIONS

4-27

Whenever "disk file" is used in the following discussion, it refers to both disk and
format label diskette files. A format label diskette file is treated exactly the same as any
other disk file.

Disk files consist of data records that are recorded on one or more volumes (disk
packs). These files differ from other types of files in that the data records can be
retrieved not only sequentially but also randomly by relative record number (the position
of a record in the file relative to the beginning of the file) or by the record key (a
character string specified within each record to uniquely identify that record). The data
records are retrieved or written on the disk volume via a disk subsystem. Refer to
Appendix B for the functional characteristics of the disk subsystems that are supported.

Usually, there is more than one file on a disk volume. In order to keep track of where
these files are located, each volume contains a volume table of contents (VTOC). Also,
each file contains system standard labels that identify and delineate it.

4.10.1. How Disk Files are Organized

Disk files fall into two general categories: nonindexed and indexed .

A nonindexed file is organized consecutively. Its records are written on the disk in the
order in which they are presented. The records are processed consecutively in the same
order as they appear on the disk.

A nonindexed file can also be one that is organized relatively; each record in the file is
written on the disk in a specific position relative to the beginning of the file. This allows
any record in the file to be retrieved directly without processing any preceding records
when the location (relative record number) of the record is specified.

An indexed file contains data records and an index of the record keys. The data records
appear on the disk in the order in which you submitted them and the index is arranged
in ascending key order. The records can be processed sequentially or randomly by
record key. If the records are processed sequentially, the processing commences with
the record that has the lowest key value. For random retrieval, you need only specify
the key of the record you want retrieved.

4.10.2. Disk Access Method - MIRAM

Consolidated data management uses one access method for all disk files. This access
method, called MIRAM (Multiple Indexed Random Access Method), provides the
functions that were previously provided by separate access methods .

UP-8870 Rev. 1 SPERRY UNIV AC
SYSTEM 80

4-28

MIRAM has a number of features and concepts that distinguish it from other disk
access methods.

• The data record slots in MIRAM files, for either fixed- or variable-length records,
are of uniform size and may span physical blocks, sectors, tracks, and cylinders as
required. They may even extend from one volume to another (unless the file was
created for processing only a single volume on line at a time).

• Data records are written on disk compactly as a continuous string of bytes.

• The string of data records can always be accessed sequentially (consecutively) or
by relative record number. In addition, the data can be indexed by up to five keys;
this causes MIRAM to build a suitable index structure for each key type in a
partition that is separate from the data.

• An indexed MIRAM file can be accessed by the additional random-by-key or
sequential-by-key modes using a given key of reference, which can be changed.

• Indexed MIRAM files, either multivolume or single volume, may be created by
means of an orderly load (records submitted in ascending key order) or a disorderly
load (records submitted in no particular key order) and they may be extended by
appending records in either manner. MIRAM does not sort the index at the
completion of a disorderly load, but maintains the index current on a
record-by-record basis.

• Duplicate keys are permitted.

• A new record is immediately available for retrieval whether it has been added to an
indexed or nonindexed file.

• Multivolume MIRAM files may be created for processing with either one volume on
line at a time or with all volumes on line. They must be processed in the same
manner as they were created.

• All programs that access a MIRAM file need not use the same darn buffer size for
input/output as was used to create the file. Those that access an indexed MIRAM
file, however, must use the same index buffer size.

• MIRAM allows you to logically delete records in your files; that is, it allows you to
mark records so that in subsequent processing they will be ignored.

• The restrictions are:

the maximum key length is 80 bytes;

no byte of a record key may contain the hexadecimal value 'FF'; and

the minimum size for the index and data buffer is 256 bytes.

•

•

•

•

•

UP-8870 Rev. 1

4.10.3. MIRAM File Organization

SPERRY UNIV AC
SYSTEM 80

4-29

All MIRAM files contain two partitions: the data part1t1on which contains the data
records and the index partition which contains an index for each of the keys in your
records. If the file is a nonindexed file, the index partition is not used; that is, no entries
are placed in it and no space is allocated to it. If the file is indexed, entries are placed
in the index partition and space is allocated to it. For indexed files, the data partition
precedes the index partition, which begins on a separate cylinder.

4.10.3.1. Data Partition

The data partition is arranged in the same way for both nonindexed and indexed files. It
is cylinder-aligned and consists of a single compact string of data records that may be
keyed or unkeyed.

When data records are stored in a MIRAM file, the records are placed in uniform -size
record slots and are arranged in the same order you originally presented them. These
data records are stored in 256-byte physical sectors on your disk packs. Because the
record slot size does not have to conform to the physical sector size, the records may
span these physical boundaries as shown in Figure 4-21 .

EXAMPLE 1

PHYSICAL SECTOR 1 PHYSICAL SECTOR 1 PHYSICAL SECTOR 1

2 I I 2 3 I I 3 I 4 I · I
EXAMPLE 2

PHYSICAL SECTOR 2 PHYSICAL SECTOR 2 PHYSICAL SECTOR 2

I I I 2 I I 2 3

EXAMPLE 3
PHYSICAL SECTOR 3 PHYSICAL SECTOR 3 PHYSICAL SECTOR 3

I ·I I · I 9

I
10 I 11 H

NOTES:

1. All physical sectors are 256 bytes.

2. 1, 3, 3 ... n represent record slots.

3. Record slots in Example 1 are approximately 190 bytes each .

4. Record slots in Example 2 are approximately 300 bytes each.

5. Record slots in Example 3 are approximately 70 bytes each.

Figure 4-2 1. Disk (MIRAM) Data Record Slots Spanning Physical Sector Boundaries

UP-8870 Rev. 1 SPERRY UNIV AC
SYSTEM 80

4-30

Your data records may also span track boundaries, cylinder boundaries, and volume
boundaries (except when a multivolume file is created for processing with only one
volume on line at any one time). When new records are added to a file, they are
appended to the existing data record string; that is, they are added at the end as a
continuation of the original string. The formats of the disk data records are shown in
Figure 4-22.

FIXED-LENGTH WITHOUT KEYS

I : I data.

I R

s
FIXED-LENGTH WITH KEYS

I : I key 1 data

I
key 2 data

I:
L2 . ,

R

s
VARIABLE-LENGTH WITHOUT KEYS

I I : 11 . ., ,
data key 2 data

RDWj

L,

Figure 4-22. Disk (MIRAM) Data Record Formats (Part 1 of 2)

•

•

•

•

•

•

UP-8870 Rev. 1

LEGEND:

SPERRY UNIV AC
SYSTEM 80

4-31

rcb Record control byte (optional). Used to indicate that a record has been logically deleted from the file. For
MIRAM fixed-length records, this byte is placed at the beginning of each record. For variable-length records,
the third byte of the record descriptor word (ROW) is used as the rcb.

R Length of the logical record (ROW plus keys plus data). You specify this length as the number of bytes. For
variable-length records, this value, expressed in binary, must be placed in the first two bytes of the ROW.

ROW ~ 4-byte record descriptor word for variable-length records. The first two bytes contain the logical record
length (r) expressed in binary; the third byte may be used as the rcb; the fourth byte is not used.

L n The starting location of record key n (n .~ 1 through 5) of a MIRAM file data record when the key does not
start in the first byte of the record. L n represents the number of bytes (ROW plus data) that precede key n.
The starting location of key n must be the same in each record. Key n must have the same length in each
record (a minimum of 1 byte and a maximum of 80), and no byte may contain the hexadecimal value 'FF'.

S Slot size. All records are written into fixed-size slots. Slot size equals the record size + 1 for fixed-length
records with a record control byte; otherwise, slot size equals the record size.

P Padding.

Figure 4-22. Disk (MIRAM) Data Record Formats (Part 2 of 2)

4.10.3.2. MIRAM Index Structure

As you know, you can specify up to a maximum of five keys for a file. For each key
that you specify, MIRAM builds a separate index structure. In those files where you
have more than one key, these separate index structures allow you to use any of the
key types as the key of reference to access your data records when you subsequently
use the file in a program.

When MIRAM builds an index structure for your file, it creates a minimum of two levels
of index: a fine-level index and a coarse-level index. If your file is very large, one or
more mid-level indexes are created as needed.

The fine-level index consists of one entry for every record in the data part1t1on of your
file. The fine-level entries are filed in ascending key order until an index block (256
bytes) is filled. At this time, one coarse-level entry is made that contains the high key
entry of that filled block of the fine-level index.

As each fine-level index block is filled, another coarse-level entry is made. This process
continues until all your records are on file.

The coarse-level index is automatically allocated by MIRAM. If the coarse-level index is
filled before all your records are on file, a mid-level index is created .

UP-8870 Rev. 1 SPERRY UNIV AC
SYSTEM 80

4-32

4.10.3.3. Entries in the Index Partition

If you have keyed records, entries are placed in the index partition as these records are
loaded into the data partition. MIRAM extracts all the keys from each record (a
maximum of five keys is permitted) and constructs a 3-byte pointer for each of the keys
from the file relative record number of the position the record was written to. From
these it forms an index entry for each of the keys in the record and stores them in the
index partition.

The index entry for each key consists of the key plus three bytes (equal to the specified
key length plus three bytes) and is stored in an area of the index partition, which is
called a fine-level index. If you have three keys in each record, the index entry for each
key is stored in a separate fine-level index; that is, the entry for key 1 is stored in the
fine-level index for key 1, the entry for key 2 is stored in the fine-level index for key 2,
the entry for key 3 is stored in the fine-level index for key 3, and so on.

A fine-level index is not formatted for hardware search, unlike the other levels of index
that are described subsequently. It is treated as a chain of multi sector blocks where
each sector is 256 bytes long. All entries in a fine-level index are maintained in
ascending key order. Figure 4-23 shows a typical fine-level index block of three
sectors.

FLAG BYTE CHAIN TO NEXT
FINE BLOCK

CURRENT NUMBER OF ACTIVE BYTES~ ~

~--~"T"'"""""'T'--~...,..~ ~
CONTROL AR EA i
IS LAST SIX _...
BYTES OF INDEX
BLOCK

\
INACTIVE AREA \

ACTIVE ENTRIES

I I I I I
CONTROL AREA

Figure 4-23. Fine-Level Index Block

\
\

\

•

•

•

•

•

UP-8870 Rev. 1 SPERRY UNIV AC
SYSTEM 80

4-33

When a fine-level index is created, another hierarchical level of index is always created -
the coarse-level index. This is hardware searchable and is composed of 256-byte
blocks that contain entries similar to those in the fine-level index. They differ, however,
in that the 3-byte pointer in each coarse-level entry does not represent the file-relative
number of a record in the data partition. Instead, it points to another index block at a
lower level - either a fine-level block or a block in what is called a mid-level index.
Another difference is that instead of having a 6-byte control area, each coarse-level
block uses its final byte to indicate the number of active entries. The high key of the
block is the first one encountered by the hardware search. Both the coarse-level and
mid-level index blocks have the same format (Figure 4-24).

ACTIVE ENTRIES INACTIVE AREA
________ _..,,.....____ _______ --------------

HIGH
KEY

Figure 4-24. Coarse- or Mid-Level Index Block

4.10.4. Disk File Sharing

FINAL
BYTE

---OF

SECTOR

A data management file is a collection of related records stored on an external medium.
If that medium is a disk storage device, then the individual records in the file are directly
accessible. Any given reference to the file is independent of a prior reference to the file.
This capability gives disk files the potential of being shared between programs.
References to the file (from different programs) may be independent of one another, but
they are dealing with a common set of records.

If multiple programs are sharing a file and at least one of the programs is writing
(adding, updating, or deleting) to the file, then this may affect the other programs that
are sharing the file. It is possible for one program to read a record and take an action
based on the contents of that record, and then have another program update or delete
that same record.

All programs that use a particular file are potential candidates to use the file at the
same time (share the file), but this should only be done if the particular applications are
suited to such an environment.

A determination must be made for each candidate program as to what its "share
requirements" are. The share requirements reflect how a program intends to use the file
(read use only or read/write use) and how other programs can concurrently use the file .

UP-8870 Rev. 1 SPERRY UNIV AC
SYSTEM 80

4.11. DATA SET LABEL DISKETTE FORMATS AND FILE CONVENTIONS

4-34

Data set label diskette files consist of data records that are recorded on one or more
volumes (diskettes). The data records can be retrieved sequentially or randomly by
relative record number (the position of a record in the file relative to the beginning of
the file). The data records are recorded and retrieved via a diskette subsystem. Refer to
Appendix B for the functional characteristics of the diskette subsystems that are
supported.

4.11 .1 . Volume Organization

Data set label files are recorded on one or both sides of the diskette, depending on the
diskette type used. The diskette type also determines the size of the fixed-length
sectors on the diskette volume, the maximum number of files that the volume can
contain, and the maximum number of data bytes the volume can contain. The effect of
the diskette type is shown in Table 4-1.

Table 4-1. Data Set Label Diskette Characteristics

Maximum Maximum Maximum

Diskette Physical Sectors per Number of Number of Number of

Type Sector Size
Track Sectors per Data Bytes Files per

in Bytes Diskette per Diskette Diskette
Volume Volume Volume

Single Sided, 128* 26* 1898* or 242,944* or 19
Single Density• 1924 246,272

256 15 1110 284.160 19

512 8 592 303.104 19

S111gle Sided. 256 26 1924 492,544 19
Double Density

512 15 1110 568,320 19

Double Sided. 128 26 3848 492,544 45
Single Density

256 15 2220 568,320 45

512 8 1184 606.208 45

Double Sided. 256 26 3848 985,088 45
Double Density

512 15 2220 1.136,640 45

• Applies to files written in basic data exchange (BDE) mode - IBM System/3 and SPERRY UNIVAC
90/30 compatibility. The number of sectors available for BDE files is reduced to have compatibility
between systems. Only tracks 1-73 are used in this mode. This is the only configuration available on
the 84 13 diskette subsystem. BDE has a logical record size ~ 128, fixed-length unblocked-unspanned
records. and a file name of eight characters or less. Tracks 1-74 are used for all other modes.

•

•

•

•

•

UP-8870 Rev. 1 SPERRY UNIV AC
SYSTEM 80

4-35

Regardless of the recording mode used, the information on a data set label diskette is
organized into two areas: the index track (track 0) on which data management writes
the file labels, and tracks 1-74 where the data records for the file are written.

Data set label files may be either single volume or multivolume files. In the latter case,
the file can only be processed with one volume online at a time.

4.11 .2. File and Record Organization

The file layout and the record formats for data set label diskette files are shown in
Figures 4-25 and 4-26, respectively.

UNBLOCKED, UNSPANNED FILE

slot 1 u slot 2 u slot 3 u l
LS1 LS2 LS3

PS1 PS2 S3

BLOCKED. UNSPANNED FILE

~

slot 1 slot 2 u slot 3 slot 4 u slot 5 slot 6 u
~

BLOCKED. SPANNED FILE

slot 1 slot 2 slot 3 !
LEGEND:

LS Logical sector

PS Physical sector

U Unused portion of physical sector (PS-LS=U)

Figure 4-25. Data Set Label Diskette File Layout

UP-8870 Rev. 1

FIXED-LENGTH RECORDS

VARIABLE-LENGTH RECORDS

-Row-j

LEGEND:

data

data

SPERRY UNIV AC
SYSTEM 80

4-36

p

R Length of the logical record; record descriptor word (ROW) plus data. For variable-length records, this
value, expressed in binary, must be placed in the first two bytes of the ROW.

RDW = 4-byte record descriptor word for variable-length records. The first two bytes contain the logical record
length (r) expressed in binary.

s Slot size. All records are written into fixed-size slots.

P Padding.

Figure 4-26. Data Set Label Diskette Record Formats

4.12. WORKSTATION FORMTS AND FILE CONVENTIONS

A workstation is an input/output device that contains a keyboard and a video screen.
Workstation input files consist of data records that you type in via the keyboard and
output files consist of data records, created by your program, that are displayed on
the video screen. Refer to Appendix B for the functional characteristics of the
workstation subsystems that are supported.

Workstation files can be either single volumE: or multivolume files. If a file is a single
volume file, this means that one workstation (volume) is assigned to that file. If it is a
multivolume file, this means that more than one workstation is assigned to that file.

4.12.1. File Organization

Workstation files differ from card, tape, printer, disk, and diskette files in that data
cannot be permanently stored on them. This is true because a workstation data record
exists on the input or output file only as long as it appears on the screen. Once the
screen is cleared, the record is gone; that is, it ceases to exist physically. As you can
readily see, a workstation file is a sequential file; that is, you present your input one
record at a time and your output is displayed one record at a time.

•

•

•

•

•

•

UP-8870 Rev. 1

4.12.2. Record Formats

SPERRY UNIV AC
SYSTEM 80

4-37

Workstation records consist of alphabetic, numeric, or alphanumeric data. This data
must consist of displayable characters. If you include any device control characters
(hexadecimal equivalent 00 through 3F) this may cause hardware errors. A record can
range from one character in length to the full extent of the screen. For example, if each
line on a screen can contain 80 characters and there are 24 lines on a screen, the
maximum record size would be 1920 characters.

4.12.3. Additional Workstation Programming Aids

If you want to use the full workstation screen, OS/3 provides several program
products that let you easily create and manage entire screens. These include:

• Screen format services

• Dialog processing

• Menu services

To find out more about these products, see Section 7 .

•

•

•

•

PART 3. PROGRAMMING FACILITIES

•

•

•

•

•

•

•

•

UP-8870 Rev. 1

5.1. GENERAL

SPERRY UNIV AC
SYSTEM 80

5-1

5. Job and Program Preparation

In Section 1.2, we discuss the concept of job processing. You should know that a job
is a unit of work for the system to perform. In this section we discuss the preparation
of jobs. You are introduced to the various job preparation facilities including the job
control language, the job control dialog, and the interactive job control commands. In
addition, the program preparation procedure is outlined from source code generation to
final execution.

The facilities used to prepare a program, with the exception of the source languages
discussed in a separate section, include the general editor, the RPG II editor, and
linkage editor. Also discussed are the function and use of the system program
libraries, as well as generating and using your own program libraries.

The first step when preparing a program for execution is to write the source code.
You can write your source program on coding forms and have it keypunched, or you
can enter it interactively from the workstation.

If you are writing an RPG II program, you can use the RPG II editor. If you are writing a
COBOL, FORTRAN IV, or BAL program, then use the general editor. The general editor
stores your source module in either your own program library or the systems source
program library, YSRC.

After generating your source program, you must have it compiled or assembled by the
appropriate language processor. The language processors translate your source
program into a nonexecutable object module. You can direct the processor to store
the object module in the system object module library, Y0BJ, or in your own
program library.

Once you have successfully compiled or assembled your program and have an object
module stored in a library, you submit that object module to the linkage editor.

The linkage editor converts the object module into an executable load module. You can
have the linkage editor place a copy of the load module into the system load module
library, YLOD, or in your own program library. Figure 5-1 presents a flowchart of
the program preparation procedure.

UP-8870 Rev. 1

PREPARE
SOURCE

PROGRAM

COMPILE OR
ASSEMBLE

SOURCE CODE

LINK-EDIT
OBJECT
MODULE

EXECUTE
LOAD MODULE

(PROGRAM)

SPERRY UNIV AC
SYSTEM 80

STORE
SOURCE
MODULE

STORE
OBJECT
MODULE

STORE
LOAD

MODULE

Figure 5-1. Program Preparation Flowchart

5-2

Each of the steps shown in Figure 5-1 can be performed as separate jobs or they can
be combined into a single job. In either case, you must write a job control stream
using the job control language. The job control stream tells the system what your job
is going to do and what resources it requires.

5.2. JOB CONTROL LANGUAGE

To submit a job to the system for processing, you must prepare a job control stream
using the job control language. The job control stream identifies the job to the system,
tells the system what the job is going to do, and what resources are required. This
section briefly describes the function and usage of the job control language. More
detailed information can be found in the current version of the job control user guide,
UP-8065.

The job control language consists of job control statements and job control procedures
(jprocs). Job control statements are instructions to the operating system that tell it
how to process your job. A job control procedure is a predefined series of job control
statements that perform a specific function.

•

•

•

•

•

•

UP-8870 Rev. 1 SPERRY UNIV AC
SYSTEM 80

5-3

The jproc is called by a single job control statement. For example, the jproc for the
COBOL compiler generates the job control statements that identify the files and
devices needed and executes the processor to compile your COBOL source program.
Jprocs are available for a number of command functions and use of the jprocs can
significantly reduce your job control coding. In addition, you can generate your own
jprocs to meet your particular job control requirements.

The OS/3 job control language offers an extensive repertoire of control statements and
jprocs providing a wide range of job processing features. However, the discussions
that follow focus on only those most commonly used and the job control statements
required for every job.

5.2.1. Defining Your Job

The first job control statement that must be present in your job control stream is the
JOB control statement. You use this statement to identify your job to the system by
specifying a unique jobname. A typical JOB control statement looks like this:

II JOB PAYROLL

In addition to specifying the name of your job, you can also enter other information on
the JOB statement. You can indicate the execution priority level of your job. The priority
levels available are: preemptive, high, and normal.

If you do not specify a priority level, your job is scheduled and executed as a normal
priority job. Minimum and maximum main storage requirements can also be entered on
the JOB statement. Normally, you can allow the system to automatically determine your
main storage requirement. However, there are instances when the system is unable to
determine accurately how much main storage your job requires, such as if your job
executes a load module that does not reside in the system load module library or
executes a program designed to conserve main storage. In such cases, the system
could allocate more or less main storage than your job requires.

After you identify your job through the JOB control statement, you must tell the system
what resources your job requires. Each device (printer, workstation, etc), data file, and
private program library needed by your job must be identified and assigned.

To assign a resource to your job you use a specific group of job control statements
known as the device assignment set. The job control statements used to generate a
device assignment set are: // DVC, // VOL, // EXT, // LBL, and // LFD.

Figure 5-2 shows the relationship of the device assignment control statements to the
physical device. A resource assigned to a job is assigned for the duration of the entire
job, even if it is used by only one job step .

UP-8870 Rev. 1 SPERRY UNIV AC
SYSTEM 80

5-4

LBL (LABEL) = PHYSICAL FILE OR LIBRARY NAME

EXT (EXTENTS) = CYLINDERS OR BLOCKS LFD (LOGICAL FILE DESCRIPTOR) = LOGICAL FILE

\
\
\
\
\
\
\
\
\

-- --- NAME USED IN
L-~~~---L PROGRAM

7
I
I
I
I
I
I
I
I

}

VOL (VOLUME) = VOLUME
SERIAL NUMBER

\ I
I \

\
\
\
\
\

E3
DVC (DEVICE) =

LOGICAL UNIT NUMBER

I
I
I
I

Figure 5-2. Graphic Representation of Job Control Device Assignment Statements

You use the DVC job control statement to specify the logical unit number of a device
required by your job. The logical unit number is often referred to as the device number
and every device configured has a device number assigned to it. In addition, each
device type has a general device number that is used when any available device of a
particular type can be used. For example, if your job requires a particular printer, you
would specify the device number for that printer. If, on the other hand, any available
printer could be used, then you could specify the general device number for printers.

•

•

•

•

•

UP-8870 Rev. 1 SPERRY UNIV AC
SYSTEM 80

5-5

When assigning a disk file to your job, you would specify the device number of the disk
drive that holds the disk containing your file. You could specify the specific device
number or you could use the general device number for that disk type. If you use the
general disk type number, the system locates your disk by the volume serial number
you specify.

You use the VOL job control statement to specify the volume serial number of the disk,
diskette, or tape volume used in your job. The volume serial numbers are assigned
when you prep the devices for use. A typical VOL job control statement would be I I
VOL DSP028.

If you are initially allocating or expanding a disk or a diskette file, you would include the
EXT job control statement in the device assignment set. A number of other parameter
entries can be made on this statement including: the type of file, whether space is
allocated by cylinders or tracks, if the space is to be contiguous, and information about
dynamic expansion. For example, this statement:

II EXT MI,C,2,CYL,10

would allocate a MIRAM file with 10 contiguous cylinders with a dynamic expansion of
2 cylinders.

Following either the VOL or EXT statements is the LBL job control statement. You use
this statement to specify the file name of a disk, diskette, or tape file. This file name is
often referred to as the file label and is the physical name of a data file or program
library. Other parameters on this statement allow you to enter information for cataloging
the file, multivolume file checking, file sequence numbering, and creation date. The file
name you specify could be up to 44 alphanumeric characters in length. Thus, a typical
LBL statement could be:

II LBL PAYFILE

or

II LBL SOURCE.PROGRAM.LIBRARY.00231.COBOL.

The final job control device assignment statement is the LFD statement. If you are
creating a device assignment set for a data file, this statement forms a logical bridge
between the device assignment set and the file as it appears in your program. For
example, if you have defined an input file in a COBOL program with an FD of RECRDIN,
then you would specify that name on the LFD statement of the device assignment set
for that file. If the device assignment set were for a program library, the name you
specify on the LFD would be used wherever your job references the program library.
Suppose these were the last two statements of a device assignment set for a program
library:

• II LBL COBOL.PROGRAM.LIBRARY
11 LFD PROGLIB

UP-8870 Rev. 1 SPERRY UNIV AC
SYSTEM 80

5-6

A reference to the library in your job would be made using the specified LFD name. For
example:

II EXEC PAYPROG,PROGLIB.

This statement causes the system to execute the load module named PA YPROG
residing in the program library identified in a device assignment set as PROGLIB. In this
case, it would be COBOL.PROGRAM.LIBRARY.

In addition, a number of system programs require specific LFD names for input and
output files. For example, a file used as input to the sort/merge routine must be
identified by an LFD name of SORTINn where n is a numeric value used for multiple
input files.

Here are some typical device assignment sets for a variety of files and devices.

• To define any system printer:

II DVC 20
11 LFD PRNTR

• To define a data file:

II DVC 50
II VOL DSP028
II LBL PAYROLL.FILE.SALARIED
II LFD PAYFIL

• To define a workstation:

II DVC 200
II LFD WRKSTN

5.2.2. Executing a Program

The EXEC job control statement is used to execute a program. As mentioned, a
program must be compiled and then processed by the linkage editor to produce a load
module before it can be executed. To execute the program, you specify the load
module name on the EXEC statement. System programs are also executed by the EXEC
statement. If the system program has associated control statements, they would
immediately follow the EXEC statement as embedded data. Thus, to execute the
librarian (which has a program name of LIBS) with control statements, you would use
the following statements:

11 EXEC LIBS
1$

FIL D0=FILE01,D1=FILE02
COP D0,S,MOD01,D2
LST 02,S

I*

•

•

•

•

•

•

UP-8870 Rev. 1 SPERRY UNIV AC
SYSTEM 80

5-7

The /$ and /* job control statements indicate the start and end of embedded data,
respectively. Any embedded data entered in a job control stream must be bracketed
with these two statements and the embedded data itself must be indented at least one
column. The end of a job control stream is indicated by the /& end-of-job statement.

5.2.3. Running Your Job

You can generate your job control streams interactively by using the interactive job
control dialog or the general editor, both of which are described later in this section. If
you use one of these interactive features, you would store the generated control
streams in the system job control stream library, YJCS. To run a job stored in
YJCS, you issue a RUN command from the workstation or console specifying the
name of the job.

To run a job control stream on cards, you place the cards in the card reader and press
the run button. You could also run your control stream by placing the cards in the card
reader and issuing a RUN/RV command from the console specifying the name of your
job.

In addition, you can have job control streams currently on cards placed into YJCS or
an alternate library by using the FILE symbiont. The FILE symbiont is executed from the
system console and places the control streams into the specified library without
executing them.

When you initiate the running of a job, a component called the run processor reads
your control stream into the system. The run processor scans your control stream to
translate the job control statements and expands any jproc calls. At this point, your
control stream is checked for order and syntax errors. If no errors are detected, the job
is scheduled and a temporary run library is generated for the job. Generally speaking,
jobs are scheduled within each priority level on a first-in, first-fit basis; preemptive jobs
are scheduled first, followed by high, then normal priority jobs.

A translated job control stream normally disappears after the job is finished. But it may
take a long time to translate and expand the control stream each time it's called,
especially if it contains a number of jprocs. To save time, you can use the OS/3
save/restore facility.

With a I I OPTION SA VE or I I OPTION NOSCHED job control statement, you can save
a copy of the translated stream, its jprocs expanded, in the YSAVE system file.
Later, you can call back (restore) the stream using the SC/SI system console or
workstation command. The job runs just as if it were called by a RUN/RV command.
However, by using a control stream that was previously translated, save/restore lets
you bypass the translation process each time the control stream is subsequently called .

UP-8870 Rev. 1

5.2.4. Program Libraries

SPERRY UNIV AC
SYSTEM 80

5-8

The system includes a number of program libraries used to hold the various system
programs included as part of your system and the program modules you generate
during the normal course of system operation. The system program libraries are always
prefixed with Y and normally reside on your system resident disk pack, SYSRES.
There is one system program library to hold each of the various module types. The
program libraries included with your system vary depending upon the software
configured in your system. However, every system includes the following five system
program libraries:

• YSRC - system source program library

• Y0BJ - system object module library

• YLOD - system load module library

• YJCS - system job control stream and jproc library

• YMAC - system macroinstruction library

In addition to the permanent program libraries, the system maintains a temporary run
library, YRUN, for each job currently running. During the job scheduling operations,
the YRUN library is generated for a job and the job control stream is placed in it
along with information relevant to the job's execution and resource requirements. In
addition, YRUN passes information from job step to job step and holds copies of all
modules used or generated by your job.

For example, if your job involved the compilation and link-editing of a COBOL program,
the object modules resulting from the compilation would be placed in your job's
YRUN library. The linkage editor would then locate the object module in YRUN and
process it. The contents of a job's YRUN library are lost after the job terminates, so
any generated modules to be saved must be permanently stored prior to the job's
termination.

You can use the system's permanent program libraries to store your own program
modules or you can generate your own program libraries. You can generate your own
program libraries through job control or you can do it interactively by using the general
editor. If using your own program libraries, you are responsible for ensuring that the
libraries have sufficient space to hold your modules. On the other hand, the system
handles space allocation and extension automatically for system libraries. In addition,
system program libraries do not have to be identified to a job through a device
assignment set. If using your own program library in a job, that library must be
identified through a device assignment set.

•

•

•

UP-8870 Rev. 1 SPERRY UNIV AC
SYSTEM 80

5-9

• The system provides utilities for maintaining program libraries. The utilities are the SAT
librarian, used to maintain program libraries organized as system access technique (SAT)
files and the MIRAM librarian used to maintain libraries organized as MIRAM files. A
brief description of these two librarians can be found in 9.4.1 and 9.4.2. Detailed
information for program libraries, including usage and format, and the librarians can be
found in the system service programs user guide, UP-8841 (current version).

•

•

5.2.5. Job Control Dialog

The job control dialog allows you to interactively build the control streams required to
run your jobs and to store the generated control streams in the system's job control
stream library or your own program library. The dialog guides you step by step through
the process of building a control stream by presenting a series of queries to which you
respond with the appropriate entries to build the desired control stream. You initiate the
job control dialog by entering the following command at the workstation:

RV JC$BUILD

This command has a number of optional parameters used to:

• indicate audit files (discussed later in this section);

• specify the library the generated control stream is to be placed in; if not specified it
is defaulted to YJCS; and

• identify the printer that is to be used to produce the summary report of your dialog
entries, which is defaulted to any available printer.

Once you have entered this command, the system responds by displaying the first
screen of the job control dialog. Figure 5-3 shows the first screen.

DIALOG FOR JOB CONTROL

THIS DIALOG PREPARES A JOB CONTROL STREAM OR PROCEDURE CJPROC). FOR AN EXPLANA
TION OF THE DIALOG PROCESS, ENTER 'HELP' IN THE SPACE PROVIDED.

----...._~----~-----~----~----------------------~---i
Figure 5-3. Initial Job Control Dialog Screen Display

As you can see in Figure 5-3, the display offers a brief explanation of the job control
dialog function. If you need further information, you can enter HELP as indicated. If you
do so, the screen shown in Figure 5-4 is displayed .

UP-8870 Rev. 1 SPERRY UNIV AC
SYSTEM 80

THE DIALOG FOR JOB CONTROL IS A METHOD OF CONSTRUCTING JOB CONTROL STREAMS AND
PROCEDURES (JPROCS) USING COMPUTER ASSISTANCE. PROMPTING FOR;DATA ENTRY OR
SELECTING FROM AMONG AVAILABLE OPTIONS IS ALWAYS PROVIDED, AND YOU CAN ASK FOR
MORE DETAILED EXPLANATIONS OF STATEMENTS, PARAMETERS, AND OPTIONS. AFTER A
STATEMENT IS COMPLETED, THE IMAGE BUILT BY THE COMPUTER AS A RESULT OF YOUR
CHOICES IS DISPLAYED ON THE WORKSTATION SCREEN. YOU MAY ACCEPT IT FOR OUTPUT,
CORRECT IT, OR REJECT IT ALTOGETHER.

Figure 5-4. First Screen of System Explanation of JCL Dialog

5-10

You can enter HELP at any point in the dialog and receive an explanation of the part of
job control you are at in the dialog. The HELP facility stays in effect only until you have
successfully entered correct responses to the section of the dialog you were working
on at the time you requested assistance. Once you have done so, the dialog returns to
the standard display for the next portion of the dialog.

As mentioned earlier, the command to initiate the job control dialog has parameters that
relate to the audit facility. The audit facility allows you to save your response to a
dialog in an audit file, and then specify at the start of a subsequent dialog session
which entries to the dialog are taken from the audit file and which you will change
during the current session. You can also indicate that the new responses to the dialog,
including those taken from the audit file and those you enter, are to be placed in the
audit file.

Each time you use the job control dialog, you receive a printed summary that lists your
entries to the dialog. This summary is useful in providing a listing of the entries and
also showing what is presently in the audit file. Using the summary listing, you can
determine which portions of the dialog are to be taken from that file and which require
new entries. You can also use the job control dialog to build user-defined jprocs. These
jprocs can be stored in your own user library or be placed in YJCS by default. The
HELP and audit facilities are available for building jprocs.

Embedded data can be entered through the dialog. When, in response to the dialog,
you enter the /$ job control statement indicating the start of embedded data, a blank
screen appears for you to begin entering data.

For more information on the interactive job control dialog, see the current version of the
job control user guide.

•

•

•

•

•

•

UP-8870 Rev. 1 SPERRY UNIV AC
SYSTEM 80

5.2.6. Interactive Job Control and Job Processing Commands

5-11

You have available a number of workstation commands and job control statements that
allow you to interactively control your job processing environment. You can place
certain job control statements within your control stream to cause the job to query the
workstation for variable data during job execution. In addition, there are available a
number of workstation commands allowing you to interactively control the execution of
your jobs.

The two interactive job control statements are OPTION QUERY and QGBL. The OPTION
QUERY allows you to interactively alter job execution by skipping portions of the job
control stream. The QGBL is used to change the value of prespecified global symbols
used in the job control stream. When a QGBL statement is detected, a screen display
requests that you enter the new value and all global symbols in the control stream are
changed to that value.

The interactive job processing commands are issued from the workstation and allow
you to:

• Initiate the execution of a presaved job control stream

•

•

Stop the execution of a job, delete a job from the job queue, and stop the
execution of a symbiont or transient routine

Temporarily suspend job execution or reschedule a job

• Attach a workstation to a job

• Display the contents of a job queue and system status

• Perform job step main storage region dumps

• Generate spool file breakpoints

For more information on the interactive job control and job processing commands, see
the current version of the job control user guide.

5.3. GENERAL EDITOR

The general editor, commonly known as EDT, is a user-oriented interactive program that
enables you to create and update library and data files from your workstation. With
EDT, you can interactively create and update your source programs, job control
streams, and data files, plus update system files without using cards. In fact, you can
use EDT to access any type of file .

UP-8870 Rev. 1 SPERRY UNIV AC
SYSTEM 80

You initiate the general editor via the workstation command EDT.

5-12

When you use EDT, it creates and maintains a temporary disk file where all the file
manipulation takes place. This file is known as the workspace file and it lasts for the
duration of the EDT session. When you create a file, the text is first placed in the
workspace file, then written to your designated file. When you update a file, a copy of
the existing file is written to the workspace file, then written to your designated file. By
using this workspace file, you always have a backup copy of your file. Figure 5-5
shows how EDT operates when creating a file.

PERMANENT
FILE

EDT

CARDS

EDT
WORKSPACE

FILE

LISTING

Figure 5-5. Creating a File Using the General Editor

•

•

•

UP-8870 Rev. 1 SPERRY UNIV AC
SYSTEM 80

5-13

• 5.3.1. Sample EDT Session

•

•

From the time you key in the workstation command EDT to the time you terminate
EDT, you are engaged in what is called an EDT session. (Another way of looking at it is
that you use the same workspace file throughout the entire session.) We show you a
sample EDT session that should give you a general idea of what it is and how it works.
What you see is the text of an existing COBOL program to be changed with EDT. Mixed
in with the program text are a number of EDT commands which we use to read and
write the text in the workspace file, change the text, display portions of it on the
workstation, and output a copy to the system printer.

The existing program prints address labels for magazines like this:

NAME
ADDRESS
CITY STATE ZIP

By using EDT, we update that program to doubles pace the lines and include an account
number next to the name like this:

NAME ACCT-NO

ADDRESS

CITY STATE ZIP

We begin this session by transferring a copy of the program LABELS into the EDT
workspace file from the program library MAGAZINE on disk volume USE RO 1. We then
update it, using the available EDT facilities. The session ends when we return a copy of
the workspace file (the program LABELS) to the library. The old version of the program
LABELS will be replaced by the updated version .

UP-8870 Rev. 1 SPERRY UNIV AC
SYSTEM 80

5-14

Sample EDT Session: •

Transfers our source program 1. 0000@READ MO= LABELS, FI L=MAGAZ INE, VSN=USER01
into the work-space file

Displays the contents of 5 1 . 0000@P R I NT &
the work-space file (our
source program) on the
workstation screen

Our source program
displayed

1.0000
2.0000
3.0000
4.0000
5.0000
6.0000
7.0000
8.0000
9.0000

10.0000
11.0000
12.0000
13.0000
14.0000
15.0000
16.0000
17.0000
18.0000
19.0000
20.0000
21.0000

IDENTIFICATION DIVISION.
PROGRAM-ID. LABELS.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER.UNIVAC-OS3.
OBJECT-COMPUTER.UNIVAC-OS3.
INPUT-OUTPUT SECTION.
FILE CONTROL.

SELECT CARDIN, ASSIGN TO CARDREADER-CARDIN-F.
SELECT PRINTOUT, ASSIGN TO PRINTER-PRINTOUT-F.

DATA DIVISION.
FILE SECTION.
FD CARDIN

LABEL RECORDS
01 CARD-INPUT.

02 NAME
02 STREET
02 CITY
02 STATE
02 ZIP
02 FILLER

ARE OMITTED.

PIC XC25).
PIC XC25).
PIC XC15).
PIC X(2).
PIC X(5).
PIC X(8).

22.0000 FD PRINTOUT
23.0000 LABEL RECORDS ARE STANDARD.
24.0000 01 PRINTLINE PIC XC29).
25.0000
26.0000
27.0000
28.0000
29.0000
30.0000
31.0000
32.0000
33.0000
34.0000
35.0000
36.0000
37.2000
38.4000
39.0000
40.0000
41.0000
42.0000
43.0000
44.0000
45.0000
46.0000
47.0000
48.0000
49.0000
50.0000

WORKING-STORAGE SECTION.
01 CITY-STATE-ZIP-LINE.

02 CITY·OUT PIC XC 15).
02 FILLER PIC X(1) VALUE SPACES.
02 STATE-OUT PIC XC2).
02 FILLER PIC X(2) VALUE SPACES.
02 ZIP-OUT PIC X(5).

PROCEDURE DIVISION.
BEGIN-JOB.

OPEN INPUT CARDIN, OUTPUT PRINTOUT.
READ-CARD.

READ CARDIN, AT END GO TO END-OF-JOB.
MOVE SPACES TO PRINTLINE.
WRITE PRINTLINE.
MOVE NAME TO PRINTLINE.
WRITE PRINTLINE.
MOVE STREET TO PRINTLINE.
WRITE PRINTLINE.
MOVE CITY TO CITY-OUT.
MOVE STATE TO STATE-OUT.
MOVE ZIP TO ZIP-OUT.
WRITE PRINTLINE FROM CITY-STATE-ZIP-LINE.
GO TO READ-CARD.

END-OF-JOB.
CLOSE CARDIN, PRINTOUT.
STOP RUN.

•

•

•

•

•

UP-8870 Rev. 1

New line to program keyed

in at the workstation

Moves the contents of line

4g to line 16.5

Changes the · 8 · on line 2 1

to ·4·

New line to program keyed

in at the workstation

Moves the contents of line

51 to line 37. 5

New lines to program keyed

in at the workstation

Copies the contents of line

52 to lines 38 2. 40.2 and

44.2

Deletes line 52

Copies the contents of line

53 to lines 38.4. 40.4 and

44.4

Deletes line 53

Displays lines 12 through

31 of our work-space file

New line added

Change made to existing line

Displays lines 3 7 -46

of work-space file

New line added

New line added

New lme added

New lme added

New lme added

51.0000

52. 0000(aJMOVE 51

5 2. 0000@10N 21

52.0000

53. 0000@1MOVE 52

53.0000
54.0000

55. 0000(.(iiCQPY 53

SPERRY UNIV AC
SYSTEM 80

02 ACCT·NO PIC XC4).

TO 16.5

CHANGE 181 to 141

MOVE ACCT-NO TO PRINTLINE.

TO 39.5

MOVE SPACES TO PRINTLINE.
WRITE PRINTLINE.

TO 40.2, 42.2, 46.2

55.0000(aOELETE 53

55.0000(a~OPY 54 TO 40.4, 42.4, 46.4

55.0000(aOELETE 54

55.0000@PRINT 12:31

12.0000 FILE SECTION.
13.0000 FD CARDIN
14.0000 LABEL RECORDS ARE OMITTED .
15.0000 01 CARD-INPUT.
16.0000 02 NAME PIC XC25).
16.5000 02 ACCT-NO PIC XC4).
17.0000 02 STREET PIC XC25).
18.0000 02 CITY PIC XC15>.
19.0000 02 STATE PIC XC2).
20.0000 02 ZIP PIC X(5).
21.0000 02 FILLER PIC XC4).
22.0000 FD PRINTOUT
23.0000 LABEL RECORDS ARE STANDARD.
24.0000 01 PRINTLINE PIC XC29).
25.0000 WORKING-STORAGE SECTION.
26.0000 01 CITY-STATE-ZIP-LINE.
27.0000 02 CITY-OUT PIC xc 15).
28.0000 02 FILLER PIC XC1) VALUE
29.0000 02 STATE-OUT PIC XC2).
30.0000 02 FILLER PIC XC2> VALUE
31.0000 02 ZIP-OUT PIC XC5).

55.0000(<1PRINT 39:48

39.0000 MOVE NAME TO PRINTLINE.
MOVE ACCT-NO TO PRINTLINE.
WRITE PRINTLINE.
MOVE SPACES TO PRINTLINE.
WRITE PRINTLINE.
MOVE STREET TO PRINTLINE.
WRITE PRINTLINE.
MOVE SPACES TO PRINTLINE.
WRITE PRINTLINE.
MOVE CITY TO CITY-OUT.
MOVE STATE TO STATE-OUT.
MOVE ZIP TO ZIP-OUT.

SPACES.

SPACES.

39.5000
40.0000
40.2000
40.4000
41.0000
42.0000
42.2000
42.4000
43.0000
44.0000
45.0000
46.0000 WRITE PR!NTLINE FROM CITY-STATE-ZIP

LINE.

5-15

(continued)

UP-8870 Rev. 1

New line added

New line added

Lists the contents of the

work-space file (our entire

program)

SPERRY UNIV AC
SYSTEM 80

MOVE SPACES TO PR!NTLINE.

WRITE PRINTLINE.

GO TO READ-CARD.

46.2000

46.4000

47.4000

48.0000 END·OF·JOB.

55. 0000(u LI ST &

Punches lines 12 through 45 5 5. 0000(u PUNCH 12: 45

on cards

Writes our program to a

permanent file on disk

55.00000WRITE MO=LABELS,FIL=MAGAZINE,VSN=USER01

Reminds us that this module IS100 LABELS, MAGAZINE EXISTS; OK TO WRITE to IT? CY ,N) Y
already exists. and asks 1f

we want to overwrite 1t

We select Y, causing the

previous version of 0ur program

to be overwritten

5.3.2. Screen Mode

5-16

The sample EDT session shows that EDT can operate in what we call "line mode" -
you transmit one line at a time as you enter data or source code. But there is a second
way of entering code or data through EDT, using what we call "screen mode." With
screen mode, you can key in up to 14 lines on your workstation screen before
transmitting them to EDT. This feature can save you time by having EDT accept larger
blocks of text or data each time you transmit to it. And you can see more of your data
at once as you enter it. You have the same range of EDT commands in screen mode as
in line mode.

There are additional features available to you through screen mode. If you're a COBOL,
RPG II, or FORTRAN IV programmer, you can ask the EDT screen mode to show you
formatted screens for entering source code. Also, if you're programming in basic
assembler language (BAL), or if you want to enter uniform data, screen mode provides
you with a freeform screen. The freeform feature is especially useful for data entry
personnel who can use it to create or update data files independently of any program.
You then can use any of these data files with any program you write.

You can activate screen mode immediately upon entering EDT, and you can switch
modes whenever you wish.

5.4. RPG 11 EDITOR

The RPG II editor is a specialized language editor used to create and update RPG II
source programs interactively from a workstation. The RPG II editor is actually a
subeditor of the general editor (EDT). Just like EDT, your program creation and changes
are done in the workspace file. Thus, you always have a backup program. Figure 5-6
shows a flowchart creating an RPG II source program.

•

•

•

•

•

•

UP-8870 Rev. 1

DISK
FILE

EDT

CARD
OUTPUT

SPERRY UNIV AC
SYSTEM 80

ACTIVATE
RPG II EDITOR

l

RPG II EDITOR

EDT COMMANDS

T
WRITING

DISKETIE
FILE

CREATING RPG II
SOURCE PROGRAM

WRITING RPG II
SOURCE PROGRAM

TO OUTPUT
FILE OR PERMANENT

LIBRARY FILE

PRINTER
OUTPUT

Figure 5-6. Creating an RPG II Program

5-17

WORKSPACE
FILE

In a noninteractive programming environment, you code your RPG II source program on
RPG II specification forms. Well, using the RPG II editor interactively, it gives you a
choice of the type of specification screens depending on your level of expertise .

UP-8870 Rev. 1 SPERRY UNIV AC
SYSTEM 80

5-18

For the novice user, you are provided with a screen similar to the c0ding specification
forms. This type of screen is called a formatted specification screen where all the
column headings and the number of character positions are shown. Figure 5-7 shows a
formatted calculation specification screen.

1.0000
SEQUENCE NUMBER:

LINE -
6 FORM TYPE C 7 CONTROL LEVEL:

INDICATORS: 9:

28 OPERATION:

12: 15:

33 FACTOR 2:

18 FACTOR 1:

43 RESULT FIELD:

49 RESULT FIELD LENGTH: 52 DECIMAL POSITIONS: 53 HALF ADJUST:

ARITHMETIC:

COMPARE:

LOOKUP (FACTOR 2> IS:

PLUS

1>2

HIGH

MINUS ZERO

1<2 1=2

LOW EQUAL

RESULTING INDICATORS: 54 56 58

60 COMMENTS: NEXT SPECIFICATION TYPE, ST, OR CMD:

Figure 5- 7. Formatted RPG II Calculation Specification Screen

For the more experienced programmer, a positional specification screen is provided.
This screen type is not as detailed as the formatted type because it only shows the
starting field column numbers. Figure 5-8 shows a positional calculation screen.

LINE - 1.0000
2

6 7 9. N N 8-FACTOR 8-0P

c ---------
3 4 4 5 5 5 6
3-FACTOR 2 3-NAME 9 2 3 4PMMZZ 0

NEXT SPECIFICATION TYPE, ST, OR CMD: (

Figure 5-8. Positional RPG II Calculation Specification Screen

For the most experienced programmer, a freeform specification screen is provided.
Here, only column numbers are displayed making you responsible for proper field
locations and entries. Figure 5-9 shows a freeform specification screen.

•

•

•

•

•

•

UP-8870 Rev. 1 SPERRY UNIV AC
SYSTEM 80

1 2 3 4

1£~~2~Z§2!1£~~2~Z§2!1£~~2~Z§2!1£~~2~Z890
4 5 6 7 8

1£~~2~Z§2!1£~~2~Z§2!1£~~2~Z§2!1£~~2~Z890
ENTER ST, OR CMO:

LINE - 0001.0000

Figure 5-9. Freeform RPG II Specification Screen

5-19

In conjunction with the various types of screens being provided, the RPG II editor also
provides some syntax checking, thus preventing these errors from appearing in your
compilation.

For more information about the RPG II editor, see the current version of the RPG II
editor user guide/programmer reference, UP-8803.

5.5. COBOL EDITOR

The COBOL editor is a specialized language editor used to create and update COBOL
source programs. Like the RPG II editor described in 5.4, it runs as a subeditor under
EDT, which means you call EDT first, then the COBOL editor. Just like EDT, you create
and change programs in the workspace file. Thus, you always have a backup copy of
your program. The flowchart in Figure 5-10 shows how you go about creating a COBOL
program.

DISK
FILE

EDT

CARD
OUTPUT

ACTIVATE
COBOL EDITOR

COBOL EDITOR

EDT COMMANDS

WRITING

@

DISKETIE
FILE

CREA TING COBOL
SOURCE PROGRAM

WRITING COBOL
SOURCE PROGRAM

TO OUTPUT
FILE OR PERMANENT

LIBRARY FILE

PRINTER
OUTPUT

Figure 5-10. Creating a COBOL Program

WORKSPACE
FILE

UP-8870 Rev. 1 SPERRY UNIV AC
SYSTEM 80

5-20

In a batch programming environment, you code a COBOL source program line by line on
coding forms. You then input the program to the COBOL compiler, using input media
such as punch cards or diskettes. The COBOL editor, however, lets you do all this
interactively. With it, you can see source lines displayed on the workstation screen as
you key them in and therefore can check them immediately for coding and typographical
errors.

A feature of the COBOL editor that is not available in batch environment is that when
you finally transmit your source code, the COBOL editor does some syntax checking.
Your COBOL source code will thus have fewer errors in it even before it is first
compiled.

The COBOL editor works with screen formats that contain such things as required
COBOL statements and directions for entering variable data. When you first call the
COBOL editor, you see this screen:

OS/3 EDT/COBOL COBOL EDITORCV8.0/1)

Select Creation Mode : <2>

1=Create in COBOL Program Order
2=Create Selected Portions of the COBOL Program

Abbreviations to be used : C1>
1=None 2=COBOL Keywords 3=User Specified 4=BothCCOBOL and User>

Display COBOL Keyword or Abbreviation File Abbreviations (1) 1=No

Abbreviation File to be Read and/or written C1>
1=No 2=Read File 3=Write File 4=Read and Write File

Enter File Name <-->
Enter FILE VSN C)

Continuation Code CNRM)
NRM=Normal Continuation CMD=Enter EDT Command Mode

2=Yes

EDT Command: --

Figure 5- 11. Initial COBOL Editor Screen

The screen in Figure 5-11 gives you a choice of how you enter your COBOL source
code. If you are a novice COBOL programmer, the ordered creation mode of the COBOL
editor will display screens in sequence to guide you through the creation of a COBOL
program. Figure 5-12 shows one of the screens displayed in this mode.

•

•

•

•

•

•

UP-8870 Rev. 1

OS/3 EDT/COBOL

SPERRY UNIV AC
SYSTEM 80

COBOL EDITORCV8.0/1)-0rdered Creation Mode

Identification Division Line nnnn.nnnn
A B
IDENTIFICATION DIVISION.

PROGRAM-ID. ------------------------------[(AUTHOR. ___)]
[(INSTALLATION. ___)]
[COATE-COMPILED. __)]
[COATE-WRITTEN. ___)]
[(SECURITY. ___)]

Continuation Code CNRM) [(Next
NRM = Normal Continuation
CMD = Enter EDT Command Mode

Screen is Environment Division)]
SEL Enter Selective Creation Mode
CON = Display Control Division Screen

EDT Command=---

Figure 5-12. Typical Screen in Ordered Creation Mode

5-21

More experienced programmers may want to use the selective creation
mode, you may work on any part of the program you wish. Figure 5-13
the screens displayed in this mode.

mode. In this
shows one of

OS/3 EDT/COBOL COBOL EDITORCV8.0/1)-Selective Creation Mode

Standard COBOL Coding Form Line nnnn.nnnn
C A B

Continuation Code CNRM [(Next Screen is the Standard COBOL Coding
Form)]

NRM = Normal Continuation TMP = Display Creation Screen List
CMD = Enter EDT Command Mode sss = Display Creation Screen sss
Display vvvvvvvvv Verb Skeleton Screen-RET = Return to Ordered Mode

vvvvvvvv = Display vvvvvvvv Verb Skeleton

EDT Command=---

Figure 5-13. Typical Screen in Selective Creation Mode

UP-8870 Rev. 1 SPERRY UNIV AC
SYSTEM 80

5-22

For more information about the COBOL editor, see the current version of the COBOL
editor user guide/programmer reference, UP-9106.

5.6. ERROR FILE PROCESSOR

So far we've shown you how useful EDT can be in helping you prepare source
programs for compilation. Its usefulness doesn't stop here, however. Besides allowing
you to update source code to eliminate errors, EDT has a component called the error
file processor (EFP) that lets you see these errors on the spot.

EFP helps you in two ways. It lets you see compilation errors immediately after the
language compiler you're using has compiled your program, rather than after the
compiler prints an error listing. And it can display these errors along with the source
lines containing them. You can then use all of EDT' s facilities to correct the source code
on the spot. This reduces the time you spend between compilations. You can use EFP
with programs written in COBOL, RPG II, and FORTRAN IV.

EFP uses two input files. One is your source program on disk. The other is an error file
created by your language compiler at the time the program was compiled. Error files
can be created by the COBOL, RPG II, and FORTRAN IV compilers; each of these allows
you to request an error file, and lets you direct the data to any file of your own. (See
the appropriate language manual for more information on creating error files.)

When the compilation has finished, you activate the EFP through the general editor.
Upon activation, EFP:

1. Asks you to identify the error file you had previously created.

2. Uses information from the error file to locate the source module, report an error
summary at your workstation, and display a system message identifying all files
and modules involved.

3. Directs EDT to write your source module to the EDT workspace.

From then on, you can control your source module through regular EDT commands, and
you can control your error file through EFP commands.

EFP can't correct your source program if it's on cards, but it does give you the error
summary. Nearly the same restriction holds for programs you compile using your
compiler's option for correcting the module at the same time you're compiling it. In this
case, the corrections you make don't correct your source module, but will give you a
correct object module.

For more information on EFP, see the current version of the general editor user
guide/programmer reference, UP-8828.

•

•

•

•

•

•

UP-8870 Rev. 1

5.7. LINKAGE EDITOR

SPERRY UNIV AC
SYSTEM 80

5-23

The linkage editor is used to convert the nonexecutable object modules produced by
the various language processors into executable load modules. Every object module
must be submitted to the linkage editor after compilation before it can be executed. The
load modules produced by the linkage editor consist of all specified object modules,
links to all sharable modules required, and information required to control the loading
and execution of the load module.

You control the linkage editor through a set of control statements. These control
statements specify alternative or optional processing and are inserted in the control
stream immediately following the statement that executed the linkage editor.

The linkage editor can combine a number of separate object modules into a single load
module. Unless otherwise directed, it will include all object modules in YRUN at
linkage editor execution time into the generated load module. It can construct load
modules, called multiphase and multiregion load modules, that, by employing main
storage overlay techniques, require less main storage to execute than the overall length
of the job. It can also create sharable load modules.

The linkage editor produces a printed listing detailing the operations performed and the
structure of the load module produced. This listing is called the link-edit map and also
contains any error messages associated with the linkage editor operation .

More detailed information on the linkage editor can be found in the current version of
the system service programs user guide, UP-8841 .

---------~~------

•

•

•

•

•

•

UP~8870 Rev. 1

6.1. GENERAL

SPERRY UNIV AC
SYSTEM 80

6-1

6. Language Processors

OS/3 offers you flexibility in program development by supporting a number of
programming language processors. The supported languages are:

• BASIC

• COBOL

• Report Program Generator II (RPG II)

• FORTRAN IV

• The Basic Assembly Language (BAL)

• ESCORT

Source programs for each of these languages can be entered through the workstation
using the general editor or you can enter them through a card reader. Before the
programs can be executed, they must be compiled by the appropriate language
processor and processed by the linkage editor.

The compilation, linking, and execution of a program can be performed as a single
operation or each step can be performed separately. In either case, you are required to
enter your program as part of a job control stream. The following subsections describe
the capabilities and usage of each of the supported languages as well as detailing some
of the job control requirements for each language.

6.2. BASIC

The Beginner's All-purpose Symbolic Instruction Code (BASIC) language is an interactive
programming language designed to be easy to use, yet meet the requirements of both
business and scientific programming. The BASIC language available on the OS/3
operating system complies with the American National Standard Minimal BASIC,
X3.60-1978 and includes Dartmouth features and compatibility. It provides a powerful,
yet simple set of commands allowing the novice to learn the language quickly, and yet
gives the experienced programmer an extensive list of features for various applications.

UP-8870 Rev. 1 SPERRY UNIV AC
SYSTEM 80

6-2

BASIC is an interactive language and all source statements can be entered directly at
the workstation with the results and error messages displayed on the screen. All source
statements are checked for syntax errors as they are entered and a message appears
on the screen if an entered line is in error. The BASIC source program can be compiled
directly at the workstation and compilation errors can be corrected immediately. During
an interactive BASIC session, you can input, modify, execute, and save programs.

The OS/3 BASIC compiler has facilities for arithmetic operations, data file processing,
matrix generation and processing, and logical operations. Subroutines and string
operations may be used in a BASIC program.

6.3. COBOL

The common business oriented language (COBOL) is a high-level, general purpose
programming language designed to meet the programming needs of today's business.
COBOL programs can be generated for a wide range of applications including payroll,
accounting, billing, shipping and receiving, and so on. COBOL uses a syntax structure
similar to that of English employing verbs and clauses that produce English-like
statements to express programming operations. The following is a brief description of
the COBOL language. More detailed information on the capabilities and use of COBOL
can be found in the current version of the 197 4 ANSI COBOL programmer reference,
UP-8612.

OS/3 COBOL is compatible with the American National Standard COBOL X3.23-1974
with extensions for more advanced programming and to meet the requirements of your
Sperry Univac system.

COBOL programs are divided into segments called divisions. Each division performs a
specific function within the program. The four COBOL divisions and their functions are:

• Identification division

This division contains information identifying the source program and the output of
a compilation. Additionally, other information may be included such as the program
author, installation, and so forth.

• Environment division

This division specifies the system· s hardware characteristics, input/ output control
techniques, and other information of a similar nature.

• Data division

This division defines the data that your program is using. This division is further
divided into sections to facilitate the d·escription of data contained in input or
output files or developed during the program execution. Data constants are also
defined in this section.

•

•

•

•

•

•

UP-8870 Rev. 1 SPERRY UNIV AC
SYSTEM 80

6-3

• Procedure division

This division describes the logical steps that must be taken in the solution of the
processing problem. The functions performed can be arithmetic operations; file
opening and closing; record sorting and merging; record movement, deletion, and
insertion; and program branching operations. Conditional test statements are also
available to directly control the execution of your program.

The COBOL compiler can be initiated one of two ways. You can use the job control
EXEC statement with the compiler name:

II EXEC COBL74

or you can use the jproc supplied by Sperry Univac:

II COBL 74

The jproc is easier to use because it provides minimum job control requirements as
default values that you have to specify if you use the EXEC statement. Additionally, the
jproc can be issued to perform a compile and link operation:

II COBL74L

or a compile, link, and execute:

II COBL74LG

Again, these jprocs supply the minimum job control requirements for each operation.

When generating the job control stream for your COBOL program, you must provide
device assignment sets for each of the files that you defined in your data division. The
job control device assignment sets are related to the files in the COBOL program
through the specified LFD name which must be the same as the name you specified on
the assign clause of the select statement.

The COBOL compiler requires three disk work files during the compilation of your
program. These files are provided automatically through the jprocs, but you must
include a device assignment set for each one if you use the EXEC statement.

Your COBOL program can be compiled, linked, and executed from the workstation and
error messages resulting from any of these operations can be returned to the
workstation. In addition, your COBOL program can accept and display information on
the workstation screen either directly through the available statements or through the
screen format or dialog processing services. The method you select depends upon your
requirements. More information on the use of screen formats and dialogs is included in
Section 7 .

UP-8870 Rev. 1 SPERRY UNIV AC
SYSTEM 80

6.4. REPORT PROGRAM GENERATOR 11

6-4

Report program generator II (RPG II) is a nonprocedural programming language designed
to meet business programming needs through simple, straightforward programming.
While primarily designed as a means of generating printed reports from data records,
OS/3 RPG II can be used for a wide range of business applications. It provides the
processing required to:

• write programs to control inventories;

• process payrolls;

• provide accounting and billing facilities;

• develop sales and marketing analysis; and

• perform a variety of other business-oriented operations.

The following is a brief description of the RPG II language; for more information, see the
report program generator II user guide, UP-8067 (current version).

To make the language as simple to use as possible, RPG II source statements are
created by making entries on specific positions on fixed specifications formats. A
specification format is available for each phase of program development. The formats
are:

• Control specification

• File description specification

• File extension specification

• Line counter specification

• Telecommunication specification

• Input format specification

• Calculation specification

• Output format specification

RPG 11 programs can be developed interactively through the RPG II editor. The RPG II
editor is initiated at the workstation and assists you in developing your programs by
displaying the RPG II formats and explanations of available entries. You can also enter
freeform RPG II statements to the RPG II editor. Once you have entered all the
statements required for your program, you use the general editor to store the program
as a source module in either a system program library or one of your own libraries.

•

•

•

•

•

•

UP-8870 Rev. 1 SPERRY UNIV AC
SYSTEM 80

6-5

You can also use the RPG II auto report facility to generate an RPG II source program.
The auto report facility allows you to enter simplified specifications and standard RPG II
statements to generate a complete RPG II source program from prefiled specifications.

6.5. FORTRAN IV

FORTRAN IV is a high-level, easy-to-use programming language best suited for
applications requiring the performance of mathematical computations required for
engineering and scientific applications. In addition, it is ideally suited for business
applications that can make use of its extensive computational capabilities. OS/3
FORTRAN IV adheres to the American National Standards FORTRAN X3. 10-1966. In
addition, OS/3 FORTRAN IV contains many extensions to the standard that provide
compatibility with IBM 360/370 DOS FORTRAN IV and SPERRY UNIVAC Series 70
FORTRAN. The following is a brief description of the capabilities and usage of
FORTRAN IV. For more detailed information, see the current version of the FORTRAN IV
programmer reference, UP-8814.

A FORTRAN IV program consists of one main program, containing the steps required to
solve a given problem, and any number of required subprograms. The subprograms
perform procedures that may be repeated several times, 1/0 operations, and the
standard library functions supplied to perform a variety of common mathematical
operations. The main program and the subprograms are compiled separately and
included in a single executable load module by the linkage editor.

You must supply a separate 1/0 subroutine to interface the FORTRAN 1/0 operations
with the consolidated data management routines. This subroutine is included in the load
module by the linkage editor and consists of consolidated data management
macroinstructions.

Your FORTRAN IV program can be interfaced with the screen formatting and dialog
processing services for variable data input through the workstation. Additionally, you
can interactively generate a FORTRAN IV program through the general editor and initiate
the compilation, linking, and execution of your program from the workstation with error
messages sent to the initiating workstation.

6.6. BASIC ASSEMBLY LANGUAGE (BAL)

The basic assembly language is a versatile and detailed symbolic language designed for
the highly skilled programmer who requires system level control of the processing the
program is to perform. The assembler language instruction repertoire consists of
instructions, macroinstructions, procedural calls, assembly directives, and conditional
statements .

UP-8870 Rev. 1 SPERRY UNIV AC
SYSTEM 80

6-6

The instruction is the basic control element of the assembler. Each instruction is
assigned a mnemonic to denote the particular hardware function performed. Using the
instructions set, you can perform:

• storage definition;

• various branching operations;

• logical operations;

• arithmetic operations; and

• miscellaneous special operations.

The assembler macro facility is a dual purpose facility that allows the inclusion in your
program of macroinstructions supplied by Sperry Univac and the generation of your own
macroinstructions and procedural calls. Macroinstructions and procedural calls (procs)
are identical in concept and usage. A macroinstruction or a proc is a single statement
coded into your program that, when the program is assembled, is expanded into a
series of assembler instructions designed to perform a specific task or tasks. The use
of macroinstructions and procs eliminates the need to write code required for frequently
used operations. You can write your own macroinstructions or procs, assign names to
them, and insert the names into the program wherever that particular set of coding is
required.

Conditional statements control the processing of your assembler program by various
testing operations. These statements respond to various conditions and can alter
processing or cause additional processing to occur.

The assembler includes a set of directives used to specify instructions to the assembler
itself. These directives allow you to control program sectioning, base register
assignment, the format of output listings, sequence checking, and other auxiliary
functions.

For more detailed information on the basic assembly language, see the assembler user
guide, UP-8913 (current version).

6.7. ESCORT

ESCORT is an easy-to-use programming language that helps you solve common
business problems. Unlike most programming languages, you don't have to be a
programmer to use it. With ESCORT, you write (or let ESCORT create) programs to
handle such common business tasks as those relating to payroll, personnel files, and
inventory.

Much of its ease of use lies in its English-language program statements and its two
operating modes:

•

•

•

•

•

•

UP-8870 Rev 1 SPERRY UNIV AC
SYSTEM 80

6-7

• Tutorial Mode

Tutorial mode introduces you to ESCORT and allows you to create programs even
if you may know little or nothing about programming. In this mode, ESCORT
displays a series of questions on the workstation screen. You respond to these
questions by filling in blanks or choosing from a list of functions. ESCORT uses
these answers to create a program tailored to your needs. To aid you when you
don't understand a question, many screen displays include a choice called HELP,
which provides an explanation.

• Program Mode

As you become more familiar with ESCORT, you'll want to use program mode,
which is faster and more versatile than tutorial mode. Program mode lets you
create programs either through a series of screen menus or through direct entry of
program statements. This mode also provides HELP screen displays to explain
menu selections.

The ESCORT language has three components: programs, structures, and jobs.

• Programs

•
Means by which you solve your business problems

Structures

Data definitions that tell ESCORT what your file records look like or describe a
logical file for input or output devices (for example, workstation display or printer
output).

• Jobs

Not an OS/3 job, but a group listing of related programs that are executed
together. For example, in a payroll job one program might calculate hours worked,
another might calculate pay and taxes, and another might update a permanent
payroll file.

For more information on ESCORT, see the ESCORT user guide, UP-8855 (current
version) .

--------~---------

•

•

•

•

•

•

UP-8870 Rev. 1

7.1. GENERAL

SPERRY UNIV AC
SYSTEM 80

7-1

7. Designing Your Own
Interactive Software

As we mentioned earlier, you can use your System 80 workstation as an interactive
device. An operator using a workstation can enter data to a user program, receive
output from the program, or direct the program to take some action. While you can
design and program workstation screens yourself, you can save yourself a great deal of
programming effort by using these Sperry Univac features:

• Screen formats

• Dialogs

• Menus

Each of these manages your workstation screen on behalf of a user program (or
interactive services in the case of some menus). Each consists of constant and variable
fields. Constant fields contain data and empty space which cannot be changed. The
data can consist of screen titles, captions, lists, etc. Variable fields are used to input
data to or output data from a program. An input variable field is one into which the
operator enters data for transmittal to the program. An output variable field displays
data sent to the screen by the program. A bidirectional variable field can be used for
both input and output.

You can develop screen formats, dialogs, and menus independently of the programs
that call them. For example, one programmer can code a source program at the same
time that another programmer is creating the screens that go with it. Screens also are
interchangeable. You can use different screens for the same program or the same
screen with different programs.

Another feature of screens is that you don't have to include extensive code in your
source program to use any of these. In most cases, it takes no more programming to
call a screen than it does to read a single card from a card reader. That's because
consolidated data management treats workstation features as files like any other type
of file available to System 80.

UP-8870 Rev. 1 SPERRY UNIV AC
SYSTEM 80

7-2

Use of screen formats, dialogs, or menus provides you with the following advantages:

Uniform operator responses. You achieve this by limiting responses so that the
operator can only fill in preset blanks or answer predetermined questions. You can
ensure yourself that all data entered is uniform in content and format.

Elimination of a number of data entry errors and omissions, thus reducing the
number of inaccurate or incomplete data record

Simple entry of complex data items

Ready accessibility of the system to nonprogramming personnel

Following are examples of each feature:

7. 1 . 1 . Screen Formats

Screen formats are screens that present information to, and solicit information from, a
workstation operator. As Figure 7-1 shows, a screen format resembles a form with
blanks that the workstation operator fills in. The data thus entered is used to build
records which are then passed to the user program.

..
PERSONAL CREDIT REPORT I I

' NAME:

' ADDR: STATE: Z IP:

' SOCIAL SECURITY:

' ACCOUNT NUMBER:

' PAST DUE AMOUNT:

' NEW BALANCE: PAYMENT DUE DATE: I I

••• * ••••

Figure 7-1. Typical Screen Format Display

•

•

•

•

•

•

UP-8870 Rev. 1 SPERRY UNIV AC
SYSTEM 80

7-3

In Figure 7-1, all variable fields (in underscores) are for input only. But you can also
include output fields, and even bidirectional fields which first display output data then
accept input data on the same field.

A screen format appears as a fixed screen. Each time it is called, the same variable and
constant fields appear in the same places on the screen.

Screen formats are called from user programs. When the operator finishes a screen by
transmitting it to the system, control returns to the user program calling it. A screen
with no variable fields at all may also be created, for example, as a help screen.

7 .1.2. Dialogs

Like a screen format, a dialog is a screen or series of screens that present information
to, and request information from, a workstation operator. Unlike screen formats or
menus, dialogs can use non-fixed screens. You can not only program the sequence of
dialog screens you want to appear, you can also program the layout of the screens
themselves. Each dialog screen is built, at dialog execution time, from constant and
variable fields. The selection of which fields to display and which to suppress can be
based entirely on previous dialog replies.

The two sample dialogs in Figure 7-2 (a and b) illustrate this important feature. They
are called by a program that records department store purchases. The first screen of
each dialog asks how a purchase was paid (cash, check, or charge plate), and in all
three cases the second screen then asks for the purchase amount. But if the purchase
was charged to a customer's account, the second screen asks for one additional piece
of information, the account number (Figure 7-2b). If the purchase was by cash or check
(Figure 7-2), that request does not appear.

Dialogs are input-only screens used for data entry. As Figure 7-2 shows, they may
appear like either screen formats, with blank fields for the operator to fill in, or like
multiple-choice screens. They can also display data entered previously in the dialog.
(Although being input-only screens, they cannot display data output from the user
program.)

When a dialog gets control of a workstation screen, it keeps control until the operator
reaches the end of the entire dialog. After the dialog finishes, control returns to the user
program, and the data collected by the dialog becomes available to the program .

UP-8870 Rev. 1

PURCHASE ENTRY SCREEN 1

HOW WAS PURCHASE PAID FOR?~

SPERRY UNIV AC
SYSTEM 80

CENTER C FOR CASH, K FOR CHECK, OR H FOR CHARGE CARD)

PURCHASE ENTRY SCREEN 2

WHAT IS THE AMOUNT OF THE PURCHASE? $----B!lfll

a. Dialog when entering cash purchase

PURCHASE ENTRY SCREEN 1

HOW WAS PURCHASE PAID FOR? II
CENTER C FOR CASH, K FOR CHECK, OR H FOR CHARGE CARD)

PURCHASE ENTRY SCREEN 2

WHAT IS THE AMOUNT OF THE PURCHASE? $----f:t:i.Jj
WHAT IS THE CUSTOEMR' S CHARGE NUMBER? rJ£iiiJ:i¥J

b. Dialog when entering charge plate purchase

Figure 7-2. Typical Dialog Session Screen Displays

7 .1 .3. Menus

The third interactive feature is a menu, an example of which appears in Figure 7-3.

7-4

As Figure 7-3 shows, a menu is a numbered, multiple-choice list of actions. The
workstation operator chooses one action, enters its number in the space provided on
the menu screen, and transmits the screen to the system. After the action takes place,
the menu returns to the screen, ready to accept another choice.

•

•

•

•

•

•

UP-8870 Rev. 1

1 . PAYROLL DATA ENTRY

2. PAYROLL INQUIRY

3. PAYROLL EDIT

4. PAYROLL CHECKS

SPERRY UNIV AC
SYSTEM 80

7. RESTORE PAYROLL FILES

8. EXIT FROM THIS MENU

9.

10.

5. PAYROLL ANALYSIS REPORTS 11.

6. BACKUP PAYROLL FILES 12.

ENTER SELECTION NUMBER:--

Figure 7-3. Typical Menu Display

7-5

Let's look more closely at how to use the menu of Figure 7-3. If the operator wants to
enter payroll data, he chooses item 1 (PAYROLL DATA ENTRY) by entering the numeral
1 in the field after ENTER SELECTION NUMBER and pressing the transmit key.

The system then calls a job control stream to execute a program that allows the
operator to enter payroll data. Upon termination of that job, the menu reappears so the
operator can make another choice .

The same sequence of events applies to items 2 through 7. Item 8 (PAYROLL DAT A
ENTRY) allows the operator to end the menu session and return to system mode.

Menus are primarily used for multiple-choice applications, not for data entry. A menu
may be called from a user program, for example, to ask the operator what action the
program is to take next. As with a dialog, input from a menu appears to the program
as merely another input file. This allows you easily to substitute a menu for other files
and devices used by a program.

Unlike screen formats or dialogs, menus aren't limited to use with user programs. The
MENU workstation command lets the operator call a menu which usually offers a choice
of job control streams to run and workstation commands to perform related system
functions. The menu of Figure 7-3, for example, could easily be called with MENU.

Like screen formats, menus use fixed screens. The same items appear each time the
menu is called, and each item performs the same action when it's chosen.

Menu actions are usually keyed to the environment in which the menu is used. A menu
developed for use with a program is generally not called with MENU, and vice versa. All
menus, however, are capable of executing menu function commands, actions unique to
menu processing that allow menus to call other menus, return to previously displayed
menus, and perform other menu-related functions. It isn't necessary to use these
commands, but an experienced programmer can find them quite useful in designing
more sophisticated menus. Some of these commands let a menu call screen formats
(input-only) on behalf of a user program. The menu relays any data entered on a screen
back to the program.

UP-8870 Rev. 1 SPERRY UNIV AC
SYSTEM 80

7-6

When an operator chooses a menu option and transmits the menu to the system, the
menu usually reappears, waiting for another operator choice. Only by programming the
menu or by an external interrupt (usually depressing a function key) does it give up
control.

7 .1 .4. Summary

We have given you an overview of how OS/3 interactive features can work for you.
Following in 7 .2 through 7 .4, we introduce the OS/3 program products that make it
possible to design your own interactive screens, and briefly discuss the job control and
source program requirements for using them. After reading these subsections, you
should have an idea of what is entailed in designing your own interactive software.

7.2. SCREEN FORMAT GENERATOR

The screen format generator is used to generate screen displays to be used to input
variable data to a program or to display output data through the workstation. It is an
interactive feature allowing you to generate the screen formats right at the workstation.
During generation you specify the format's layout, as well as other characteristics that
best enable the format to reflect the input and output requirements of your program.

The actual process of laying out the screen formats involves first initiating the screen
format generator via the RV SFGEN command.

The system responds by displaying a sequence of two initial (home) screens. Figure 7-4
shows the home screens.

As you can see from Figure 7-4, the home screens request information concerning the
nature of the screen or screens that you are going to generate. It is beyond the scope
of this document to explain the various options available, but suffice it to say that the
information you enter in response to these screens will depend on whether you are
creating new screens, updating existing ones, or performing a maintenance function on
the file holding your screens.

After you complete and transmit the home screens, the system will display a blank
screen. Here, you fill in the information that you wish displayed. You indicate the
location and size of the fields to be used for variable data and whether those fields are
input, output, or both. After you complete a screen, the system returns you to the
home screens. At that point you indicate whether you wish to generate more screens
or terminate the screen format generator.

•

•

•

•

•

•

UP-8870 Rev. 1 SPERRY UNIV AC
SYSTEM 80

FUNCTION (1) 1 CREATE 2 CREATE-FROM 3 MODIFY 4 DELETE

5 SHOW 6 LIST 7 SPOOL 8 TERMINATE

OLD FORMAT NAME (--------) IS ON THE FOLLOWING LIBRARY:
FILE NAME: (SYSTEM) VOLUME: CRES
NEW FORMAT NAME (--------) IS TO BE STORED ON THE FOLLOWING LIBRARY.)
FILE NAME: CSYSFMT) VOLUME: CRES)
IF THIS FILE DOES NOT EXIST, ALLOCATE C2) CYLINDERS. INCREMENT IS C1) CYL.

** FUNCTION KEYS ARE: F1-GO TO HOME SCREEN, FS-BREAKPOINT SPOOL FILE, F13-HELP,
F14-EXIT HELP, F2C-RESTORE SCREEN

GLOBAL CHARACTERISTICS FOR FORMAT ABC:
LOWER CASE TRANSLATION (1): 1 YES 2 NO
ALPHABET: (ENGLISH) SCREEN FORMAT IS (1): 1 ORIGINAL 2 OVERLAY
ERASE/UNLOCK OPTION (1): 1 NONE 2 REPLENISH SCREEN 3 ERASE SCREEN

4 UNLOCK KEYBOARD 5 CONDITIONAL INDICATOR IN USER PROGRAM
ERROR RETRY COUNT: C2> SPECIAL EDITING CHARACTERS (1): 1 NO 2 YES
SPECIAL DISPLAY CONTROL? C1>: 1 NO 2 YES
DO YOU WISH TO SPECIFY AN ERROR MESSAGE FIELD? (1) 1 NO 2 YES
DISPLAY RETENTION ON ALL FIELDS? C1>: 1 NO 2 YES
FUNCTION OR COMMAND KEYS TO BE DEFINED? (1) 1 NO 2 YES
DOES THIS FORMAT HAVE A NON-DISPLAYED CONSTANT? C1>: 1 NO 2 YES

Figure 7-4. Screen Format Generator Home Screens

7-7

To assist you in generating screen formats, the screen format generator provides a help
facility. This facility allows you, at any point in the screen formatting procedure, to
request prompting information on building a screen. If you request assistance at the
beginning of the procedure, an explanation of the basics of screen formatting is
displayed at the workstation. Once you understand the displayed explanation, the
operation you were performing is redisplayed and you can continue generating your
screens.

The screens that you create are automatically stored in the system screen format
library, YFMT, or you can store the screen formats in your own library. If you use
your own library, that library must be a MIRAM library. If using your own library, you
must include a device assignment set for that library in the job control stream for the
program that uses the screens. You assign a name to each screen that you generate
and it is this name that is used to access the screen format. Figure 7-5 shows the
relationship of the components used during the screen format generation procedure .

UP-8870 Rev. 1

D

SPERRY UNIV AC
SYSTEM 80

SCREEN
FORMAT

GENERATOR

YFMT
OR

USER
LIBRARY

Figure 7-5. Relationship of Components during Screen Format Generation

7-8

If your program uses screen formats for data input, the program itself must include the
appropriate commands, statements, or verbs to access and display the formats and to
access the data records generated. In addition, the job control stream that executes
that program must include the job control statements that relate to the screen formats.
COBOL, RPG II, FORTRAN IV, and BAL include facilities for accessing and displaying
formats and the data generated. You must also make certain that the data records
generated by the screen formats match the record formats defined in your program.

The job control requirements for your program are:

• A device assignment set for the workstation or workstations that are inputting data
to the program.

• The job control statement for using the screen formats:

USE SFS

This is included in the device assignment set for the workstation.

• A device assignment set for the program library holding the screen formats if it is
not YFMT.

During the execution of a program that uses screen formats, an internal system
component, called the screen format coordinator, handles the transfer of data between
the program and the screen format. The coordinator is responsible for accessing and
displaying the requested screens and ensures that the data is in the proper format. The
screen format coordinator is also responsible for detecting errors directly relating to
screen format processing. When it detects an error, it displays a message so that you
can take the appropriate corrective action.

Screen formats often prove to be the easiest and quickest way to have variable data
entered into a program. This is especially so when those entering the data are
nonprogramming personnel. The facilities provided by Sperry Univac make it easy for
you to take advantage of this and include screen formats in your own programs. If you
wish to find out more about screen formatting, see the screen formatting concepts and
facilities, UP-8802 (current version).

•

•

•

•

•

•

UP-8870 Rev. 1 SPERRY UNIV AC
SYSTEM 80

7.3. DIALOG SPECIFICATION LANGUAGE

7-9

The dialog specification language allows you to generate dialogs to be displayed on the
workstation screen. You can include dialog sessions for your own applications to
simplify data entry, to eliminate data entry errors, to ensure uniform data entry, and to
make the system accessible to inexperienced personnel. Not only can you write new
programs to use dialog input, but your existing programs can take advantage of dialogs
with little or no modification to the source programs themselves. The majority of
changes when adapting existing programs occur in the job control associated with
those programs. Figure 7-6 depicts the relationship of components used to generate
dialogs.

DEPT: DATA \ A5 \ "SALES"
NAME: DATA \ A20 \
DISPLAY "ENTER NAME:
ENTER NAME;
OUTPUT NAME

SUMMARY
LISTING

DIALOG
SPECIFICATION

LANGUAGE
TRANSLATOR

USER
SUPPLIED
DIALOG

FILE

DIALOG
SPECIFICATION

LANGUAGE
SOURCE
MODULE

Figure 7-6. Relationship of Components during Dialog Generation

To generate a dialog, you first determine the information the dialog is to gather and
how the dialog screens are to appear on the workstation. Having made this
determination, you use the dialog specification language to write a program that
generates the desired dialog screens. The dialog specification language program is
written just like any other high level language program. A major difference is that the
component that accepts your source code and translates it into machine executable
code (the dialog specification language translator) only accepts input from a program
library. Thus, you must place the source program into a library either using the general
editor or the SAT librarian.

UP-8870 Rev. 1 SPERRY UNIV AC
SYSTEM 80

7-10

The translator places the translated source code, in the form of an encoded dialog, into
a file that you supply. Once placed in the file, your applications program can access that
dialog by specifying that file name on a job control statement. If your dialog is to output
records to a program, you must format the output records so that they match the
format used in the program.

In most cases, programs that utilize dialogs are executed in response to a workstation
operator's request. When a request is issued, the system loads the program and a
component called the dialog processor. The dialog processor locates and begins to
display the dialog that the program uses. The dialog processor manages the dialog
session by controlling the screen displays and passing the desired records to your
application program.

One of the modifications you make to the job control is to substitute the dialog for the
input file that the program normally uses. When your program issues an instruction to
open the file and requests an input record, control is passed to the dialog processor
which begins to display the dialog. The workstation operator's responses are used to
construct a record and as soon as one record is complete, it is sent to the programs
input buffer. At that point, control is passed back to the application program.

When another request for an input record is issued, the dialog resumes until another
record is generated and sent to the input buffer. This process of generating and
returning single records continues until the program issues an instruction to close the
file. Figure 7-7 shows the relationship of the components used for dialog processing.

As shown in Figure 7-7, the dialog processor can produce a printed listing of each
dialog session. This listing can include all user responses to dialog questions, the output
records generated in response to the dialog, and other pertinent information. The
printing and contents of this listing are both options.

The dialog processor includes a facility to store the responses made to a dialog in a file
so that the next time that dialog is encountered, the dialog processor can be instructed
to use the response stored in the file. This is called the audit facility and the file is
referred to as the audit file.

The dialog processor can use all the responses or only selected responses stored in the
audit file. The workstation operator specifies those portions of the dialog that are to
use the audit file for responses and which are to be changed during the current session.
You can also have the current changes included in the audit file. You indicate to the
dialog processor that you wish to use the audit facility in the job control statement that
executed the dialog processor.

If an audit file does not exist for that dialog session, your responses during the current
session are entered in the audit file. If one exists, the dialog processor displays a screen
to which you respond by indicating whether or not it should use the audit file and, if so,
which portions of the dialog should be completed using the audit file. You are also
asked at that point which responses to the current session are to be included in audit
file.

•

•

•

•

•

•

UP-8870 Rev. 1

t'-- /
ENCODED
DIALOG

FILE

REQUEST
FOR

OUTPUT
RECORD

SPERRY UNIV AC
SYSTEM 80

APPLICATION
PROGRAM

OUTPUT
RECORD

I
I I USER --I DIALOG INPUT

I PROCESSOR
I DIALOG ------

TEXT

SUMMARY
OF DIALOG

SESSION

.......... _

D
E!i!!!!!!!!!!!!

WORKSTATION

Figure 7-7. Dialog Processor Input and Output Flow

7-11

There are no source program requirements for using dialogs as input other than
establishing a normal input file and matching the format for the input records to that of
the records output by the dialog processor. The file name for the input file must match
the LFD name specified in the device assignment set for the workstation or
workstations to be using the dialog to input data. The job control stream that executes
your program must include the following:

• A device assignment set for the workstation or workstations that input data to the
program

• The / / USE DP job control statement included in the device assignment set for the
workstations

• A device assignment set for the dialog file. The LFD name specified in this device
assignment set must match the dialog file name parameter specified on the USE
statement .

UP-8870 Rev. 1 SPERRY UNIV AC
SYSTEM 80

7-12

Figure 7-8 shows the relationship between the job control stream and the applications
program.

For more detailed information on using the dialog specification language to generate
screen dialogs, see the dialog specification language user guide/programmer reference,
UP-8806 (current version). For further information on the operation of the dialog
processor, refer to the dialog processor user guide/programmer reference, UP-8858
(current version).

JOB CONTROL STREAM APPLICATION PROGRAM

II DVC 60 Program instruction to
II VOL DSKOl open CARDIN
11 LBL DSLTOUT
I I LFD DIALOG 1

Program instruction to
close CARDIN

II DVC 200
I I USE DP,DIALOGl
I I LFD CARDIN

Figure 7-8. Relationship between the Job Control Stream and Application Program

7.4. MENU GENERATOR

The menu generator is an easy-to-use program product that lets you create and
maintain menus interactively for operator use. With it you can create menus and store
them in a menu library file for later use. With the menu generator, you can design the
menu screen, specify exactly what action is to be taken for each item, and even create
the help screens to go with the menu. And you can do all this in a single session that
you begin by keying in the command MENUGEN. Figure 7-9 shows the relationship
between the menu generator and menu library file.

•

•

•

•

•

•

UP-8870 Rev. 1

MENU
GENERATOR

SPERRY UNIV AC
SYSTEM 80

MENU
LIBRARY

FILE

Figure 7-9. Relationship between Menu Generator and Menu Library File

7-13

After you create a menu, it's the job of an OS/3 component called the menu processor
to display the menu, accept an operator reply, carry out the action intended by the
reply, and display a help screen if the operator wishes it. When you call a menu from
system mode with the MENU command, interactive services automatically calls upon the
menu processor to display the desired menu. Figure 7-10 shows how the menu
processor works in system mode .

MENU
LIBRARY

FILE

MENU
PROCESSOR

INTERACTIVE
SERVICES

Figure 7-10. Menu Processor in System Mode

You can also adapt menus for use with programs. Typically, a program treats a menu
as an input-only workstation file. When the program issues a request for input from
that file, the menu processor automatically intercepts the request, displays the menu,
and returns as input to the program a string of data that corresponds to the operator's
choice. Figure 7-11 summarizes this process .

UP-8870 Rev. 1 SPERRY UNIV AC
SYSTEM 80

7-14

MENU
LIBRARY

FILE

MENU
PROCESSOR

REQUEST FOR - -- - -DATA

INPUT

DATA

DISPLAY SCREEN

RETURN OPERATOR'S REPLY

Figure 7-11. Menu Processor In Workstation Mode

USER
PROGRAM

D
It's easy to use menus with programs because the menu processor makes the menu file
appear like a punch card file. So, if your program already accepts input from a file on
punch cards, you won't have to change it. All you use is job control to link that file to
the menu. The job control needed to do this includes:

• A device assignment set for the library file containing the menu if it 1s not
YFMT.

• A device assignment set for the workstation that is using the menu. The LFD name
specified for this file is the same as the one used for the punch card file if one had
originally been used.

• The job control statement for using menus:

USE MENU

This is included in the device assignment set for the workstation.

Unlike screen formats or dialogs, each menu item is programmed to send the same
string of data to a program every time it is selected. The programming is done by the
menu generator, and the data can only be changed by the menu generator. But since
the menu returns only the data that you program into it, you can write your program to
expect that same date without risk of unexpected input. This feature can help your
system's security by guarding against wrong or unauthorized operator input.

For more information on creating menus and integrating them into your other OS/3
software, see the current verison of menu services concepts and facilites, UP-9317.

•

•

•

•

PART 4. SYSTEM UTILITIES

•

•

•

•

•

•

•

•

UP-8870 Rev. 1 SPERRY UNIV AC
SYSTEM 80

8-1

8. System Installation Facilities

8.1. SYSTEM INSTALLATION

System installation is the essential process of installing the SPERRY UNIV AC System 80
hardware, integrating with it the OS/3 software, and generating this software so that it
fits your special needs.

8.1 .1. Software Installation Facilities

Sperry Univac delivers your OS/3 software on release diskettes. Software installation
involves transferring this delivered software to the integrated nonremovable disk pack in
the System 80 processor complex. We call this disk pack your system resident volume,
or SYSRES, because we designed it to contain all your system software and because it
must be online when you operate the system. Appendix A lists the various system files
contained in your system, along with descriptions of their type and use.

For software installation, Sperry Univac provides installation routines as part of your
standard OS/3 release. These routines give you the ability to install:

• your initial release of OS/3 software;

• updated software as Sperry Univac releases major enhancements to OS/3; and

• any new software that you receive between major releases.

8.1.2. System Generation Facilities

System generation, or SYSGEN, is the process whereby you define your OS/3 hardware
configuration and generate, or create, the control elements needed to satisfy your
particular processing requirements .

-- ---

UP-8870 Rev. 1 SPERRY UNIV AC
SYSTEM 80

Sperry Univac provides several facilities that simplify system generation:

• SYSGEN dialog

• SYSGEN parameter processor

• a set of SYSGEN job control streams.

8-2

The SYSGEN dialog is easy to use. It helps you prepare and process your SYSGEN
parameters, or requirements, directly from your workstation. With it, you make SYSGEN
parameter selections in response to queries displayed on your screen.

For parameters that you omit or specify incorrectly, OS/3 supplies default values that
build a useful system. The dialog accepts your choices and supplies them to the
SYSGEN parameter processor. The parameter processor, in turn, checks to see that
your choices are correct and valid, generates a series of job control streams based on
your selections, and lists these streams. When you execute the SYSGEN job control
streams, using simple key-ins, they actually perform the system generation.

8.2. INSTALLATION VERIFICATION PROGRAMS

Sperry Univac supplies a series of installation verification programs to be run after

•

SYSGEN is completed, ensuring the functional capability and operation of the various •
components included on the resident disk pack.

For more information on the installation verification programs, see the installation
verification procedures user guide/programmer reference, UP-8820 (current version).

•

•

•

•

UP-8870 Rev. 1 SPERRY UNIV AC
SYSTEM 80

9-1

9. 1/0 Utilities

System 80 offers a number of utilities to assist you in using and maintaining the various
devices and the files that are stored on these devices. The utilities range from the
initialization utilities that prepare the devices for use to the librarians that maintain the
various program libraries. The 1/0 utilities are:

• Disk, diskette, and tape preps

• Disk dump/restore

• 84 19 disk copy

• Data utilities

• System librarians (SAT and MIRAM)

9.1. DISK, DISKETTE, AND TAPE INITIALIZATION

The various tape, disk, and diskette initialization, or prep routines check the condition of
the magnetic storage media and prepare them for use. The disk and diskette prep
routines respond to a set of keyword parameters inserted into the job control stream
while the tape prep routine is executed with a tape parameter on the / / VOL job control
statement. Associated with the disk prep routine is a utility to automatically assign
alternate tracks for each defective track identified by the disk prep routine. A complete
discussion on the disk, diskette, and tape prep routines can be found in the system
service programs user guide, UP-8841 (current version) .

UP-8870 Rev. 1

9.2. DISK DUMP/RESTORE

SPERRY UNIV AC
SYSTEM 80

9-2

The disk dump/restore routine allows you to make backup copies of a disk volume.
You can use dump/restore in either batch or interactive mode. To use it in batch mode,
you run the program DMPRST and specify what you want it to do using parameters
entered on punched cards. In batch mode, you can use dump/restore to:

copy all or any part of a disk to a magnetic tape, diskette, or disk in sequential
mode (a dump operation);

copy a magnetic tape, disk (sequential), or diskette to a disk (a resotre operation);

copy all or any part of a disk to another disk (a disk copy operation);

copy a tape created by a previous dump/restore operation to another tape (a tape
copy operation); or

copy a diskette created by a previous dump/restore operation to another diskette
(a diskette copy operation).

You can run the dump/restore routine interactively using the HU workstation command.
What HU gets you is a series of menus and other types of screens with which you
specify the operation you want performed, the files and volumes involved, and other
information to guide the dump/restore routine in making the backup copies you want.
Using dump/restore interactively, you can:

copy some or all the files on a disk to a magnetic tape, disk (sequential), or
diskette (a dump operation);

copy some or all the files on a magnetic tape or diskette to a disk (a restore
operation); or

copy some or all the files on a disk to another disk volume (a disk copy operation).

More detailed data on the disk dump/restore routine can be found in the current version
of the system service programs user guide, UP-8841.

9.3. 8419 DISK COPY

One dump/restore function lets you copy disks to other disks. Another routine for
copying disk volumes is the 84 19 disk copy routine (SU$C 19). With SU$C 19, you can
create and verify up to six copies of a single 8419 disk, regardless of the disk's·
contents. Verifying ensures that your disk has been copied correctly by comparing the
contents of the input volume with those of the output volume. You can also use
SU$C 19 in a separate operation tO verify copies that have been made by a previous
SU$C 19 copy operation or by a disk copy operation performed using the dum/restore
routine.

•

•

•

•

•

•

UP-8870 Rev. 1 SPERRY UNIV AC
SYSTEM 80

9-3

You can use SU$C 19 in either batch or interactive mode. To use it in batch mode, you
execute the SU$C 19 program and specify what you want it to do with parameters
entered on punched cards. To use it in interactive mode, you key in the HU workstation
command, just as you do with dump/restore. You then see a series of menus and other
screens that ask you what operation you want to perform, what volumes to use, and
so on. Though you call SU$C 19 interactively the same way you call dump/restore, the
two routines operate apart from each other.

The SU$C 19 routine is described in the current version of the system service programs
user guide, UP-8841.

9.4. DATA UTILITIES

The data utilities program is a straightforward, easy-to-use method for reproducing and
maintaining your data files. It provides the capabilities of transferring files between the
various peripheral devices and editing or correcting data files. Figure 9-1 shows the
data utilities operation.

You can use the data utility program via either a dialog presented on the workstation or
through cards. When using a dialog, a series of questions is displayed on the
workstation screen for you to answer. If you don't understand a question, a help screen
is displayed which further defines the question. After you have answered all the
questions, processing begins.

When using cards, there is a control statement for each type of operation (card-to-tape,
disk-to-disk, etc.). Along with the control statement, there are parameters which further
define the operations.

For more information on data utilities, see the data utilities user guide/programmer
reference, UP-8834 (current version).

DISK
DATA
FILES

DISKETIE
DATA
FILES

DATA UTILITIES
CONTROL

STATEMENTS

DATA UTILITIES i----- COMPARE OR COPY i----
OPERATIONS

PRINTED LISTING

DISK
DATA
FILES

DISKETIE
DATA
FILES

Figure 9-1. Block Diagram of Data Utilities Operation

UP-8870 Rev. 1

9.5. SYSTEM LIBRARIANS

SPERRY UNIV AC
SYSTEM 80

9-4

The system librarians are used to maintain your program libraries. Because there are
two types of libraries, MIRAM and SAT, the system supports two librarians, one for
each library type. By using the librarians, you can perform such functions as adding new
program modules to a library, deleting unwanted program modules, or printing a listing
of the contents of a program module.

Librarian operations are executed as jobs; therefore, you must supply a job control
stream. Both librarians are controlled through control statements and associated
parameters and these are embedded within the job control stream. In addition, any
program libraries that you are going to manipulate, other than system libraries (YLOD,
Y0BJ, etc.), must be identified in the executing job control stream through the
appropriate device assignment set. The LFD name you declare for each file must match
the file name you specify in the file declaration librarian control statement.

The capabilities of each librarian differs. The following subsections describe the
capabilities of each. For a more complete description of the SAT and MIRAM librarians,
refer to the current version of the system service programs user guide, UP-8841.

9.5.1. SAT Librarian

The SAT librarian is used to maintain program libraries organized as system access
technique (SAT) files. It can be used to perform such functions as:

• adding or deleting modules from a program library;

• copying, comparing, and renaming modules;

• correcting the contents of a module;

• printing the contents of a module; or

• placing sequence numbers on the records of a source module.

The librarian allows you to place modules within a program library into a group and
assign a group name. Grouping allows you to process defined groups of modules as a
single element. You can also perform librarian operations on modules of the same type
within a library. This is called gang operation and allows you to process all the source,
object, load modules, etc. within the program library as a single element.

You can optionally specify that the librarian is to produce a printed listing of all
operations performed during the current librarian operation. This listing is called a
librarian map and can contain such items as:

• the contents of specified program libraries;

•

•

•

•
UP-8870 Rev. 1 SPERRY UNIV AC

SYSTEM 80

• librarian control statements used during current session; and

• appropriate diagnostic messages.

9-5

The librarian executes as a job and, thus, requires a job control stream. A librarian
control stream might look like this:

II JOB LIBJOB

II DVC 20 II LFD PRNTR

II EXEC LIBS

1$

: } Ubrn<;.o control statements

I*
I&

The librarian requires a printer for execution and is executed by specifying the librarian
program name, LIBS, on the EXEC job control statement. The librarian control
statements are placed in the control stream as embedded data immediately following
the execute statement.

• 9.5.2. MIRAM Librarian

•

The MIRAM librarian is used to perform maintenance functions on program libraries
organized as MIRAM files. Program libraries containing screen format modules or
expanded saved job stream modules and MIRAM program libraries generated by the
general editor can be maintained by the MIRAM librarian. Using this librarian, you can
perform the following functions:

• delete or change the names of modules;

• copy modules from one library to another; and

• print the contents of a module or a library directory.

The MIRAM librarian responds to a set of control statements. These control statements
are placed within the control stream that executed the librarian. To execute the librarian,
you specify the MIRAM librarian program name, MLIB, on the execute job control
statement:

11 EXEC MLIB

The appropriate control statements would follow immediately as embedded data .

•

•

•

•

•

•

UP-8870 Rev. 1

10.1. FILE CATALOGING FACILITY

SPERRY UNIV AC
SYSTEM 80

10-1

10. Support Operations

The file cataloging facility allows you to protect your files from unauthorized use by
assigning passwords to the file. In addition, it can simplify the job control requirements
for referencing a file. The file cataloging facility consists of:

• the system catalog file; and

• the catalog manipulation utility .

Files are cataloged by using the I I CAT job control statement in conjunction with the
device assignment set of the file to be cataloged. When you catalog a file, the device
assignment set is placed in the system catalog file along with the passwords you are
using to protect the file. Once cataloged with passwords, only those knowing the
passwords can access it. In addition, cataloged files can be accessed by using only one
job control statement (LBL) instead of the entire device assignment set. Files are
decataloged through the / / DECA T job control statement.

The file cataloging facility also allows you to maintain easy recording and processing of
generation files. Generation files consist of the various update levels of the same file.
The file identifier remains the same for each update level, or generation; however, a
unique 2-digit generation number is appended to the file identifier for each generation.
Generation files allow you to retain noncurrent versions of a data file as backup and
eliminate the need for your computer operators to keep records of backup files.

The catalog manipulation utility (JC$CA T) allows the system administrator to obtain a
printed listing of the catalog to copy the catalog to another file as backup. The system
administrator can also assign a password to the catalog through JC$CAT. Once the
password is protected, only those who know the password can catalog a file or access
the catalog through JC$CA T.

For more information on file cataloging, refer to the current version of the file cataloging
concepts and facilities, UP-8860 .

UP-8870 Rev. 1

10.2. SORTING

SPERRY UNIV AC
SYSTEM 80

10-2

To meet your sorting needs, Sperry Univac provides two easy-to-use, yet sophisticated
sort programs:

• Sort/merge

• SORT3

Sort/merge provides extensive file sorting and merging facilities; it can be run as an
independent operation under the control of job control or as a subroutine to another
program. SORT3 is functionally equivalent to the IBM System/3 sort routine.

10.2.1. Sort/Merge

Sort/merge is a system program that can be run as an independent operation under the
control of job control or as a subroutine to another program. Either way, it provides the
same capabilities:

• Establishing an interface that permits disk or magnetic tape to be used as
workareas

• Handling input and output on disk, diskette, or magnetic tape

• Sorting of blocked or unblocked records

• Sorting of fixed-length or variable-length records

• Handling of seven types of key field formats:

Character

Binary (signed or unsigned)

EBCDIC data in ASCII collating sequence

Decimal (signed zoned or unsigned zoned)

Leading and trailing sign numeric

Overpunched leading and trailing sign numeric

Floating point (single and double precision)

• Specifying up to 255 key fields

• Sorting of noncontiguous key fields in ascending or descending sequence

•

•

•

•

•

•

UP-8870 Rev. 1 SPERRY UNIV AC
SYSTEM 80

• Specifying an alternate collating sequence

• Executing input and output own code

10-3

• Sorting of two or more different characters having the same collating value
(multiple character sort)

• Using shared input and reserved output devices

• Performing data validity and data integrity checks during sorting

• Providing convenient restart procedure

Detailed information on using sort/merge as an independent routine can be found in the
independent sort/merge user guide/programmer reference, UP-8819 (current version).
For more information on using sort/merge as a program subroutine, see the current
version of the sort/merge macroinstructions user guide/programmer reference,
UP-9072.

10.2.2. SORT3

SORT3 is functionally equivalent to the IBM System/3 sort program and accepts control
input in the same form. It is an independent program that runs under the control of job
control. SORT3 can process disk, diskette, and tape files and card input. It performs the
following functions:

• Rearranges the records in a file

• Selects specific records from a file

• Reformats the records in a file

• Summarizes fields in the records

SORT3 is capable of performing three different types of sorts:

• Full record sort

• Tag sort

• Summary sort

UP-8870 Rev. 1 SPERRY UNIV AC
SYSTEM 80

10-4

The output from the full record sort is 10-byte (binary) relative record numbers of the
records in the input file. The tag sort output is a file of sorted records that can contain
control fields and data, control fields only, or data only. And the output of the summary
sort can be any of the following:

• Control fields, data fields, and summary data

• Control fields only

• Data fields only

• Data fields and summary data

• Summary data fields only

• Control fields and summary data fields

More detailed information on the operation and use of SORT3 can be found in the
current version of the SORT3 user guide/programmer reference, UP-8836.

10.3. SPOOLING AND JOB ACCOUNTING

Spooling (simultaneous peripheral operations online) is an optional system feature that
increases your system throughput. With it, your programs can read from and write to
low-speed devices - like card readers and printers - while taking advantage of the
greater speed of the disk.

To see how useful spooling is, consider a program that reads data from a card reader
and writes output to a line printer. First, consider how the program works in a system
without spooling. In such a system, all low-speed devices work directly with the
programs using them.

Since a low-speed device cannot be shared among different programs, it's necessary to
dedicate it to a single program for the entire time it takes to run that program. This
means that the program has to wait for a printer to become available before it runs.
Then when it does run, other programs have to wait until it finishes before they can get
their turn on the printer.

What makes this arrangement doubly inefficient is that large time gaps are possible
between consecutive operations on a device. For example, the program may print one
line on a printer, process some data for 10 seconds, then print the next line. Those 10
seconds of idle time can be put to better use. And with spooling, they are.

•

•

•

•

•

•

UP-8870 Rev. 1 SPERRY UNIV AC
SYSTEM 80

10-5

Now consider the same program, using a card reader and printer, in a system that has
spooling. First, before even running the program, you transfer the card data to a disk
file called the spool file. Then you run the program. When it asks for card input, the
program actually gets it from the spool file, at a speed far greater than that attainable
with the card reader itself. Likewise, when it outputs data to the line printer, the
program is really transferring data to the spool file, again at a speed greater than would
be possible going directly to the printer. Later, the system automatically transfers the
disk data to the line printer. Aside from speed, this spooling feature makes it possible
to use a single printer to print the output of multiple programs, one after another.

What's important to remember is that all this proceeds without any knowledge on the
part of the program. While input data to the program is actually coming from a disk, it
seems to the program that the data is coming from a card reader. That's why we call
such an input file a virtual card reader. And output to the spool file on disk seems to
the program to be going to a printer; hence, we call such a file a virtual printer. You can
use spooling for input or output without having to change any part of the program.
Figure 10-1 graphically represents the spooling operation.

INPUT
LOW SPEED

DEVICE

SPOOL
FILE

SYSPOOL

OUTPUT
LOW SPEED

DEVICE

REDIRECTED
OUTPUT

JOB LOG
.....,~~1r---·--·-·-·~

MAIN
STORAGE

(YOUR PROGRAM)

CONSOLE
LOG -------

WORKSTATION
LOGS

Figure 10-1. Flow of Information between Main Storage and Low Speed Devices in a System Configured with Spooling

UP-8870 Rev. 1 SPERRY UNIV AC
SYSTEM 80

10-6

Low speed devices supported by spooling include such local devices as the system
printer, card reader, diskette in data set label mode, and card punch. Spooling also
supports remote printers, readers, and punches. The transfer facility of distributed data
processing (13.2. 1) lets you transfer spool files from one system to another. And in
addition, spooling can transfer program files to a workstation for output on an auxiliary
printer attached to the workstation.

There is only one spool file on your system. It is divided into subfiles, each of which is
a collection of data that acts as a file to a program. For instance, in our example above,
each time your program reads an input file, it is reading a subfile that had earlier come
from a card reader. And each time the program outputs data to the spool file, it is
creating a subfile for later output to a low-speed device.

Your spool file is a permanent part of your system. For the most efficient use of disk
space, its subfiles are dynamically created and destroyed as the need arises. Once the
contents of a subfile are read by a program (on input) or written to the intended device
(on output), the data normally disappears .. There are two exceptions:

1. You can redirect output data to a disk, diskette, or tape. Later, you input that same
data back into spooling for output to a low-speed device. Although this action
destroys the output subfile, its data is preserved for later use.

2. You can also retain an input or output subfile in the spool file after its data has
been read or written, when it would otherwise be destroyed. This enables you to
use the same subfile over and over again.

The system operator has at his disposal a number of spooling commands that control
input and output spooling. Many of these commands permit spooling to be selective
about the files it processes; all files produced by a particular job, for example, or all files
destined for a particular type of printer. A workstation operator has some control over
spooling, too. If his workstation has an auxiliary printer attached to it, he can use it to
print output files, produced by jobs he has run, right where he sits.

As we said, spooling frees you from the need to have a printer available on the spot
when you run a program. You can redirect spooled output for later printing on your
system printer; or you can send the output to a remote printer, or even to another
system. This gives rise to another spooling feature - indirect printers.

You can design your System 80 without any printers at all physically attached to it.
This feature is usedful in situations where you may wish to generate output at one
System 80 but perform the actual printing at another System 80. You configure indirect
printers at system installation time, a process described in the current version of the
system installation user guide/programmer reference.

•

•

•

•

•

UP-8870 Rev. 1 SPERRY UNIV AC
SYSTEM 80

10-7

Along with spooling, you can also get job accounting information. This information
includes such items as:

number of 1/0 operations,

CPU time used,

number of transient requests, and

supervisor interrupts.

You can use this information for billing purposes or to create a new job mix for more
efficient use of the system. The information is listed via the system log accumulation
routine and the job log report program.

More information concerning the usage and operation of spooling services is discussed
in the spooling and job accounting concepts and facilities, UP-8869 (current version).

10.4. SOFTWARE MAINTENANCE PACKAGES

To enhance the reliability of your System 80, Sperry Univac periodically sends you
software changes in diskette form which are called software maintenance packages
(SMPs). You are responsible for installing each SMP within a specified period of time of
receiving it.

These packages, thoroughly tested by Sperry Univac, enhance your system performance
with no loss in productivity because you install them yourself with easy-to-use canned
job control streams. The SMP installation procedure gives you several options:

• Apply an SMP to the system.

• Print the SMP document, which gives you guidelines for installing an SMP, such as
the estimated time needed to complete installation.

• Remove a previously installed SMP. This option is useful if the SMP causes
problems in the system after it has been installed. To make this feature possible,
all software elements affected by an SMP are copied to a backup file so that they
can be restored if the SMP fails.

• Display the correction log, which is a history of all SMPs previously installed in your
system.

• Select and apply optional corrections.

• Automatically regenerate the supervisor or ICAM as required.

• The SMP installation procedure displays menu screens to help you use many of these
options. For more information on installing SMPs, see the system installation user guide,
UP-8839 (current version).

UP-8870 Rev. 1 SPERRY UNIV AC
SYSTEM 80

10.5. SECURITY MAINTENANCE UTILITY

10-8

The security maintenance utility lets the system administrator control access to your
system's interactive facilities through the security information in the system security file
(YSEC). The utility performs its tasks by creating user profiles and execution profiles.
A user profile contains security and accounting information and execution profile names.
An execution profile contains interactive commands that are automatically executed at
logon time.

The user profile contains a user-id, which identifies the user to the system. It may also
contain any of the following:

• A password that, with the user-id, controls the user's access to the system

• An account number that identifies the accounts being charged for computer time

• The name of a default execution profile to be used at logon time

When a user logs on, the system checks the user profile to determine whether the user
is allowed on. If so, the system then looks for the execution profile name, either one
specified at logon time or a default name in the user profile. If the system finds a name,
the interactive commands in the execution profile are automatically executed. If,
however, the system does not find a name, the workstation continues normal
processing.

For more information on the security maintenance utility, see the current version of the
security maintenance utility user guide/programmer reference, UP-8823.

10.6. SYSTEM ACTIVITY MONITOR

The system activity monitor (SAM) is an OS/3 product that lets you monitor and record
your system's activity. It aids in the detection of production bottlenecks, optimizes
production job mixes, and identifies and changes system variables that influence system
performance. For instance, it helps you determine whether you are making optimum use
of disks or whether your printer is keeping up with production.

SAM consists of two components: a data collection symbiont and a stand-alone report
program called SAMRPT. The data collection symbiont continuously records statistical
data about the operating system for output to the system console and, optionally, to a
disk file. With program SAMRPT, you can print out the disk file data in formats tailored
to your needs.

For more information on the system act1v1ty monitor, see the current version of the
system activity monitor user guide/programmer reference, UP-8812.

•

•

•

•

•

•

UP-8870 Rev. 1 SPERRY UNIV AC
SYSTEM 80

11-1

11 . Diagnostics

The operating system provides a number of diagnostic tools to help you determine the
nature of abnormal conditions within the system itself or the jobs or programs that are
running. These diagnostic routines can be implemented (1) prior to the execution of a
job as a precaution, (2) after the unsuccessful completion of a job, or (3) dynamically as
the abnormal condition persists in the system.

The diagnostic routines consist of:

• Dump routines

• Program error checking

• Error logging

• Hardware diagnostics

The following subsections describe the diagnostic routines available and detail their
functions and use.

11.1. DUMP ROUTINES

A dump is a printed hexadecimal image of the system main storage at the time the
problem occurred. By examining a dump, you can determine why a particular problem
occurred and whether or not you need the assistance of a Sperry Univac representative.
OS/3 provides three types of dumps. While all are basically hexadecimal images of
main storage at the time they were taken, they differ in scope and purpose as follows:

• SYSDUMP

Dumps all or part of main storage and is run in two phases: main storage write and
dump printout. The printout provides a picture of your system in charts and text .

UP-8870 Rev. 1

• JOBDUMP

SPERRY UNIV AC
SYSTEM 80

11-2

Dumps a user's job region upon abnormal termination of the job or execution of a
DUMP or CANCEL macroinstruction. The dump is supplemented by charts and text
interpreting the state of the job.

• EOJ dump

The end-of-job (EOJ) dump dumps a user job region without the charts and text,
but includes the contents of the registers and the program status word (PSW).

The following subsections briefly describe the various dumps and show how you can
get the dump that best suits your needs. A complete discussion of the SYSDUMP,
JOB DUMP, and EOJ dump routines is presented in the current version of the dump
analysis user guide/programmer reference, UP-8837.

11.1.1. System Dump (SYSDUMP)

A system dump is a printout showing the complete contents of your system's main
storage. The system dump listing is divided into several parts each corresponding to a
system component. The sections are clearly labeled with the appropriate heading for
ease of use. A typical system dump listing includes:

• the contents of low order storage;

• the physical unit, system information, and channel control blocks;

• the system switch list;

• translated job region;

• the supervisor;

• hexadecimal job region; and

• free region.

The system generates a system dump in two steps. First, it writes a copy of main
storage on the YDUMP file on the SYSRES volume. Then a system program uses the
information in $YRDUMP to print the system dump listing.

There are several ways to obtain a system dump listing. You can request a listing using
the // OPTION SYSDUMP statement in a job control stream. Then, if your job
terminates abnormally or if it includes an assembler program that issues a CANCEL or
DUMP macroinstruction, a SYSDUMP listing results. Also, if the system halts, you can
perform the main storage write step from the console workstation, reload the system,
and get a SYSDUMP listing by entering the RV SYSDUMPO command.

•

•

•

•

•

•

UP-8870 Rev. 1 SPERRY UNIV AC
SYSTEM 80

11-3

Another way to obtain a system dump listing is by entering the SYSDUMP command,
which automatically performs the main storage write step and schedules a job to print
the system dump listing. Finally, some supervisor routines automatically generate a
system dump when a supervisor error occurs.

No matter how you obtain a system dump, the system dump program gives you control
over the format and makeup of the printed output. It also lets you save the contents of
the system dump by writing it to a file on diskette or tape and, later, copying that file
back into the same system or one at another site. With this ability, you can move
system dumps between sites in compact diskette or tape form.

11.1.2. Job Dump (JOBDUMP)

A job dump gives you a listing of the state of the job region at the time your job
terminated abnormally or crashed. It consists of:

• a translated listing of the state of the job region presented as charts and text; and

• a label hexadecimal/character main storage dump.

To obtain a job dump, include the // OPTION JOBDUMP job control statement in your
job control stream. You will receive a job dump if your job terminates abnormally or if it
includes an assembler program that issues a CANCEL or DUMP macroinstruction.

An abbreviated job dump, called ABRDUMP, provides you with a shortened listing of
the full job dump. Only the area in the vicinity of the last instruction executed is shown.
The ABRDUMP is initiated by the / / OPTION ABRDUMP job control statement.

11.1.3. EOJ Dump

An EOJ dump gives you a hexadecimal listing divided into four sections: problem
program registers, job preamble, task control blocks, and your program region. In
addition, the dump gives you the program status word (PSW) at interrupt time, the
error code that caused the abnormal termination, and the next task control block (TCB).

11.2. PROGRAM ERROR CHECKING (UPSI BYTE)

The OS/3 system provides every job with a 12-byte communications region residing in
the job preamble. The last byte of this region is the user program switch indicator
(UPSI). The UPSI byte is used to pass information from one job step to the next job
step and to indicate the presence of program errors. The librarian, the linkage editor,
the utilities and dump routines, and other executable system components set the UPSI
byte if errors are detected. You can test the UPSI byte during program execution to
determine the nature and severity of any errors .

UP-8870 Rev. 1 SPERRY UNIV AC
SYSTEM 80

11-4

The UPSI byte can be useful in contingency error processing. For example, the byte can
be examined and, if certain conditions prevail, can cause a branch to error handling
routines. The SKIP job control statement is used to perform the test. For more
information on using the UPSI byte, see the system service programs user guide,
UP-884 1 (current version).

11.3. ERROR LOGGING

Error logging provides the mechanism to record software detected hardware errors in
the system error log file, YELOG. Information placed in YELOG can be
subsequently retrieved and statistical reports prepared. The type of hardware errors that
can be logged include:

• Peripheral device errors

• Machine check errors

• Communication errors

• User specified errors

These errors, when detected, are buffered in main storage and placed in the error log
file by a supervisor transient routine.

The number of resident main storage buffers is determined during SYSGEN. At the
beginning of each session, you may specify whether the current error log file is to be
saved. If saved, detected errors are added starting after the last recorded error from the
previous session.

At the end of each session, you should run a job to retrieve the logged errors from the
error log file and either transfer them to another permanent file or produce a printed
listing. Sperry Univac supplies the canned job control stream ONUERL for this purpose.

You can change the types of records that are to be logged during operation of the
system by using the SET ELOG console command. By using this command you can turn
off the error logging facility, stop the logging of previously logged errors, or commence
the logging of previously unlogged errors.

•

•

•

•

•

UP-8870 Rev. 1

11.4. HARDWARE DIAGNOSTICS

SPERRY UNIV AC
SYSTEM 80

11-5

The hardware diagnostics are used by you and Sperry Univac personnel to isolate and
identify system hardware faults. The hardware diagnostic system consists of:

• Resident diagnostics

• Offline diagnostics

• Online diagnostics

The hardware diagnostics routines are designed to operate in an interactive
programming environment and make use of displayed dialogs and messages for
initiation and entry of console information.

The resident diagnostic routines are an integral part of the system control software and
perform basis error checking on the central processor complex. The central processor
complex includes the central processor, control storage, and the resident disk control
hardware. The resident diagnostics also check the paper peripheral, diskette, and
workstation controllers along with the single line communications adapter. These checks
are performed automatically whenever the system is powered on or reset.

The offline diagnostic routines consist of microdiagnostic and macrodiagnostic routines .
The microdiagnostic routines isolate detected hardware faults to the particular
component responsible. Initiated at the workstation, these routines diagnose problems
in the central processor and control storage and main storage. The macrodiagnostics
check the operability of the complete repertoire of system instructions. Initiated at the
workstation, they can additionally be used to verify the basic operational soundness of
the integrated 8417 disk subsystem.

The online diagnostic routines check all peripheral and communications devices to
ensure proper functioning and operation. These routines operate under control of the
operating system and run concurrent with user jobs. During normal system operation,
errors are logged to allow interrogation and analysis by these routines. Error log edit
and analysis programs are available to display individual error events and summary
information.

•

•

•

•

PART 5. APPLICATIONS PROGRAMS

•

•

-----------~--------------.

•

•

•

•
UP-8870 Rev. 1 SPERRY UNIV AC

SYSTEM 80

12-1

12. Applications Programs

Sperry Univac offers a wide variety of applications programs with the System 80 data
processing system. These programs are designed to meet the data processing
requirements of particular applications. The list of available packages varies as Sperry
Univac institutes changes to meet the needs of its customers. The applications
programs now available are:

• Univac Industrial System 80

• Information Collection System 80

• • Univac Distribution Information System - Wholesale

• Order Entry 80

• Univac Financial Accounting System 80

• Accounting Management System

• Wholesale Applications Management System 80

12.1. UNIVAC INDUSTRIAL SYSTEM 80

The Univac Industrial System 80 (UNIS 80) is a comprehensive production and inventory
control system. The modular construction of UNIS 80 allows you to implement those
specific features needed to meet your requirements; UNIS 80 provides both online and
batch features and uses database technology.

UNIS 80 includes the following functions:

• Bill of material processing provides the capability to add, delete, change, and copy
product-defining records. Indented, summary, and single-level explosions and
where-used lists are included.

• • Standard routine processing provides the capability to add, delete, change, and
copy manufacturing routing data. Retrieval capability is included.

UP-8870 Rev. 1 SPERRY UNIV AC
SYSTEM 80

12-2

• Tool data processing provides the capability to add, delete, and change tool master
and tool reference data. A tool where-used report and tool lists are included.

• Standard cost buildup includes the ability to calculate the standard cost of a part
based upon material cost and standard routings in both regenerative and net
change modes.

• Inventory posting and control includes the ability to record stock issues and
receipts, work and purchase order data, or vendor information.

• Forecasting utilizes exponential smoothing techniques and provides constant, trend,
seasonal, and mixed models. Model analysis capability is available to determine the
proper model and starting values based upon past history.

• Material requirements planning provides both net change and regenerative
processing.

• Stock and order monitoring provides replenishment order recommendations
selectively and for all parts.

• Customer order entry and control capability is provided. This includes: online
maintenance of customer and customer order data; line item pricing; availability
checking; pick lists; picking confirmation; back order generation and control;
shipment notification; order status review and update; and order control reports.

• ABC analysis provides an ABC ranking of parts based upon usage at standard cost.

• Work order release both automatically and upon request is available.

• Work order scheduling provides the capability to use splitting, overlapping, queue
time reduction, and backward and forward scheduling. UNIS 80 also provides
network scheduling capability.

• Infinite capacity planning shows the workload by work center without regard to
work center capacity. Detail and summary reports are provided.

• Finite capacity planning loads each work center to the limit of its capacity and
reschedules work orders which exceed that capacity. Both detail and summary
reports are produced.

• Master schedule load analysis determines the production capacity required by the
master schedule.

• Shop reporting of time, quantity, operation, and job is provided.

• Dispatch lists are provided listing the jobs to be run in each work center in priority
sequence.

• Work order status information may be obtained upon request.

•

•

•

•

•

•

UP-8870 Rev. 1 SPERRY UNIV AC
SYSTEM 80

12.2. UNIVAC Industrial System 80 - Extended

12-3

The Univac Industrial System 80 - Extended (UNIS 80-E) is a version of the UNIS 80
system offering all of the features of that system. In addition, UNIS 80-E allows the
user to modify the system to meet particular needs. Included in the system are the
following UNIS 80 modules:

• Production engineering data management

• Product costing

• Customer order processing

• Inventory status and control

• Forecasting and analysis

• Master scheduling

• Material requirements management

• Production planning

• Work order control

12.3. INFORMATION COLLECTION SYSTEM 80

The Information Collection System 80 (ICS 80) is a highly efficient online information
collection system implemented as action programs to IMS. It offers a practical and
economical solution to information and data collection problems. The system helps to
ensure optimum utilization of computer resources, aids in the introduction of online
information processing, and provides the following important capabilities:

• Online collection of data and information. The same workstation used for the
collection of data and information may also be used for file inquiry and updating.

• A full range of data validation and checking routines. These may be
application-dependent checks specified by you.

• Information and data collection handled simultaneously with other processing in a
multiprogramming environment.

• A simple implementation language for specifying the formats to be used to enter
data .

UP-8870 Rev. 1 SPERRY UNIV AC
SYSTEM 80

12.4. UNIVAC DISTRIBUTION INFORMATION SYSTEM - WHOLESALE

12-4

The Univac Distribution Information System - Wholesale (UNIDIS - WHOLESALE) offers
a complete distribution control system designed to optimize cash flow, increase profits,
streamline operations, and improve customer service. UNIDIS ordering strategies
maximize inventory while holding down cost, and offers positive control over all goods
flowing into and out of your organization. It is a real-time system allowing you to
respond immediately to customer orders and retrieve billing information quickly and
easily.

UNIDIS functions can be broken into order entry, stock control, and inventory
management as follows:

• Order Entry

UNIDIS offers real-time, online order entry with immediate response capability. In
addition, order entry offers:

Online availability determination/reservation

Specialized delivery instructions and comments including item substitution

Standard ship-to and bill-to address

Automatic discount and pricing capabilities

Profitability control

Customer credit limit control

Automatic pick list generation and route optimization

Inventory and demand history updating

Pre- and post-billing accounting procedures

Blanket order, back order, and drop shipment processing

Invoice transactions

Automatic assignment of customer order identifiers

•

•

•

•

•

UP-8870 Rev. 1 SPERRY UNIV AC
SYSTEM 80

12-5

•

•

Stock Control

Stock control provides for the control of goods from their receipt on the shipping
dock, through count verification, inspection, repair, and rework until the goods
reach stock or scrap. Stock control offers the following:

Online processing

Receipt verification against purchase orders

Quantity tolerance verification

System control of goods movement

Inventory updating

Generation of financial transactions

Location control of all goods, stock, and nonstock

Inventory Management

Inventory management provides a sophisticated set of statistical features to analyze
demand patterns and suggest replenishment strategies. The system provides the
following features:

Demand models with automatic model analysis

Service level specification

EOQ calculation

Tracking signal/demand filters

Alarm reports

Graphic representation of demand patterns and forecast model

Product group of warehouse processing

UP-8870 Rev. 1 SPERRY UNIV AC
SYSTEM 80

12.5. UNIVAC FINANCIAL ACCOUNTING SYSTEM 80

12-6

The UNIVAC Financial Accounting System 80 (UNIFACS 80) is a group of packaged
application programs, written in COBOL, that provides the user with all the standard
features and functions of a business accounting package and gives the user added
capabilities in the areas of personnel record-keeping and budgeting. Some of its
function are:

• Accounts Payable

The accounts payable subsystem provides all functions needed to maintain accounts
payable records, select invoices for payment, issue appropriate checks, and provide
product reports needed for control and future planning. The subsystem performs such
functions as invoice entry and validation, duplicate invoice monitoring, recurring payment
processing, cash requirements forecasting, check printing, invoice aging, federal form
1099 reporting, and use tax reporting.

• Accounts Receivable

The accounts receivable subsystem provides all functions needed to maintain accounts
receivable records. The subsystem is designed to allow maximum control and flexibility
in processing cash payments and in controlling outstanding receivables.

•

General ledger transactions created by the accounts receivable subsystem are accepted •
directly by the UNIFACS 80 general ledger subsystem. The accounts receivable
subsystem also creates the sales history necessary for sales analysis functions.

• Payroll/Personnel

The payroll/personnel subsystem provides a comprehensive, easy-to-use payroll
processing system, with additional features for personnel record-keeping.
Payroll/personnel supports a variety of pay categories and all federal and state tax
calculations. It can process up to 20 regular deductions per employee, manually override
pay rates, and process hand-written and voided checks.

The payroll/personnel subsystem also provides for labor distribution, payroll distribution,
EEO reporting, and personnel history maintenace.

• General Ledger /Budgeting

The general ledger /budgeting subsystem maintains all necessary general ledger and
budgeting information for many types of users, including those with multicompany
requirements. The subsystem can process different companies, divisions, departments,
etc., as well as any combination of accounting periods in the same run.

•

•

•

•

UP-8870 Rev. 1 SPERRY UNIV AC
SYSTEM 80

12-7

General ledger /budgeting is capable of handling current period transactions for financial
systems ranging from 4 quarterly periods per fiscal year up to 13 four-week periods,
including the standard 12 monthly periods. The general ledger /budgeting subsystem
accepts automated input from the UNIFACS 80 accounts payable, accounts receivable,
and payroll/personnel subsystems.

In addition to the general ledger functions, the subsystem provides the user with
budgeting functions. Multiple budgets may be created and maintained. Customized
budget reports and actual-versus-budget comparisons are available through the use of
the financial reporter budgeting subsystem.

12.6. ACCOUNTING MANAGEMENT SYSTEM

The Accounting Management System (AMS) provides a group of packaged financial
applications, written in RPG II, that provides all functions necessary for standard
business accounting. AMS consists of the following subsystems:

• Accounts Payable

The accounts payable subsystem includes all functions needed to build and maintain the
accounts payable files, select the invoices to be paid, issue the appropriate checks, and
print reports reflecting the system operations. These files contain all the needed vendor
information, such as name, address, telephone number, year-to-date purchases and
payments, and discount-lost data.

• Accounts Receivable

The accounts receivable subsystem includes all functions needed to build and maintain
the accounts receivable files. These files contain all required information on customers,
such as name, address, telephone number, year-to-date sales figures, and credit limits.
Daily accounts receivable transactions are summarized by the system to generate
appropriate entries for the AMS general ledger subsystem.

• Payroll

The multistate payroll subsystem is modeled on the manual methods familiar to
accountants and bookkeepers. Personnel working with the payroll subsystem need no
data processing training or experience. The payroll subsystem is ready to use and
provides all accounting records required by the Internal Revenue Service. It can
accommodate multicompany and multidivisional payrolls. Special trade contractors will
find that the AMS multistate payroll subsystem satisfies their particular needs.

• General Ledger

The general ledger subsystem provides control of accounting records, including an audit
trail of entries, and the balancing and validation of all bookkeeping entries. Balance
sheets and income statements are produced. This subsystem accepts input from the
accounts payable, accounts receivable, and payroll subsystems.

UP-8870 Rev. 1 SPERRY UNIV AC
SYSTEM 80

12.7. WHOLESALE APPLICATIONS MANAGEMENT SYSTEM 80

12-8

The Wholesale Applications Management System 80 (WAMS 80) is an online,
interactive system that provides the basic wholesale distribution management functions
required in today's business environment. It contains the following four subsystems:

• Inventory /Sales Analysis

The inventory /sales analysis subsystem includes the functions necessary to create and
maintain the inventory file. The file includes required information on a product such as
pricing levels, stock levels, reorder levels, sales data, vendor number, and substitute
product designation.

• Order Entry /Billing

The order entry /billing subsystem, an online interactive product, allows you to keep
inventory and customer information instantly available for the user, while accurately
performing all of the required order processing operations. These goals include
identifying products, determining stock availability and pricing, identifying the shipping
customer, discounts applicable, commission allocations, applicable taxes, producing
invoices and pick slips, producing billing records for accounts receivable, maintaining all
sales records, and producing management reports.

• Credit Return

The credit return subsystem, an online interactive system, allows you to keep inventory
and customer information readily available while accurately performing all of the required
returned merchandise operations. This includes identifying products, discerning pricing
and customer discounts, identifying the shipping customer, determining commission,
allocations and tax liabilities, producing credit invoices, producing credit records for
accounts receivable, maintaining credit records a11d information, and. producing various
management reports.

• Expanded Sales Analysis

The expanded sales analysis subsystem provides expanded sales reports to the user.
The reports produced by this subsystem are detailed and tailored to the needs of each
user. This subsystem is used in conjunction with the W AMS 80 order entry /billing and
credit return subsystems to extract input data. The extracted data is then reformatted,
stored, and utilized in the various reports. Files from the WAMS 80 accounts receivable
subsystem and inventory/ sales analysis are accessed to obtain supporting data for
these reports.

This subsystem provides monthly reports on product analysis, customer analysis,
territory analysis, and monthly and year-to-date sales reports by customer /product
class, as well as by salesman/customer/product class. Comparative analysis by
customer /product class and salesman/customer /product class is also provided.

•

•

•

•

•

•

PART 6. COMMUNICATIONS AND
DATA BASE FACILITIES

•

•

•

•

•

•

UP-8870 Rev. 1 SPERRY UNIV AC
SYSTEM 80

13-1

13. Communications

13.1. INTEGRATED COMMUNICATIONS ACCESS METHOD

The integrated communications access method (ICAM) is an optional software
component that provides for:

• the inputting of data from a network of remote terminals into a program for
processing;

• the distribution of messages to the terminals within the network; and

• the transfer of messages from terminal to terminal.

The following discussions offer brief descriptions of the components that make up the
integrated communications access method. For more detailed information, refer to the
ICAM concepts and facilities, UP-8194 (current version).

Generally, you will have only one network defined and operating on your system.
However, ICAM permits you to define several distinct networks and to have these
networks operating simultaneously. Each network is defined during system generation
(SYSGEN) by submitting a set of macroinstructions that define the terminals, lines,
buffers, and queues for each network. In addition, you must specify which of the four
available communications interfaces each network is to use. A terminal can be included
in more than one network definition; however, only one of those networks can be
running at a time.

ICAM supports two types of networks: dedicated and global. A dedicated network can
be accessed by only one program at a time. A global program permits several
programs to access the network concurrently. Only one global network can be
operating at any given time .

UP-8870 Rev. 1 SPERRY UNIV AC
SYSTEM 80

The four interfaces your networks can use are:

• Communications physical interface (CPI)

• Direct data interface (DDI)

• Standard interface (STDMCP)

• Transaction control interface (TCI)

13-2

You are also provided with an extended set of macroinstructions you can use to
optionally specify message handling procedures including functions such as date and
time stamping. This extended set of macroinstructions is called the message processing
procedure specification (MPPS).

Once your network is configured, you can code your programs to interface with ICAM.
These programs, interfacing with ICAM, retrieve data for processing from the remote
terminals and send messages to them. You do this by including ICAM interface
macroinstructions in your programs. Your programs normally initiate message transfers
through the ICAM macroinstructions. However, through the use of the MPPS
macroinstructions, you can have message transfers performed automatically.

•

Based on the information you specify in your network definition, the OS/3 system
generation process includes and links all of the modules required to support your •
particular configuration into a single module. This module is loaded into low order
storage as a symbiont. Once in main storage, it is referred to as the message control
program and functions essentially as an extension of the supervisor.

ICAM provides the following internal services:

• Internal services to control communications lines and terminals.

• Queueing of messages in main or disk storage. A network may contain one or
more message queues associated with lines and terminals.

• Multiple destination routing to allow up to 255 destinations for a single message.

• Activity scheduling and priority control of scheduled activities.

• A centralized timing service for control of active data buffers and activity
scheduling.

• Restart procedures to reconstruct message queues after a system hardware or
software failure.

• Accumulation of stat1st1cs including totals on messages received and transmitted,
input and output retransmission requests, poll messages, and no-traffic responses. •

•

•

•

UP-8870 Rev. 1 SPERRY UNIV AC
SYSTEM 80

13-3

In addition, ICAM provides the following major external services:

• User programs

Support of assembly language programs is provided in all ICAM interfaces.

COBOL programs are supported using the ICAM COBOL message control
system (CMCS) feature.

• RPG II Telecommunications

The ICAM system interfaces with the telecommunications facilities of RPG 11
through the direct data interface to provide RPG II remote input/output capability.

• Remote batch processing

•

•

ICAM supports the entering of jobs through remote batch devices. The remote
batch devices may request job output to be printed at the remote site or at the
central site. Commands are available for the terminal operator to request status of
jobs.

Information management system

ICAM provides support for the information management system (IMS) through the
transaction control interface. IMS is an interactive, transaction-oriented
communications data management system.

ICAM device emulation system

This system permits System 80 to emulate the capabilities of certain large-scale
data communications terminals and permits System 80 to connect to another
processor to perform remote batch processing.

• Nine thousand remote (NTR) system utility

ICAM interfaces with the NTR system utility to permit a System 80 to be
connected to a SPERRY UNIV AC 1100 operating system as a remote
communications device.

• ANSI 1974 COBOL Communications

•

Enables COBOL programs using the communications facilities of ANSI 1974 COBOL
to send and receive messages.

Remote terminal processor

This data communications program permits your System 80 to work as a remote
job entry terminal for one or more IBM host processors.

UP-8870 Rev. 1 SPERRY UNIV AC
SYSTEM 80

13-4

• IBM 3270 remote terminal handler

This facility lets you use an IBM 3270 terminal system with your System 80. It
also lets you use any other terminal that supports 3270 protocol. The 3270
terminal system includes the 3271 control unit, 3277 display station, and the 3284
and 3286 printers.

• IBM 32 70 Emulator

Like the remote terminal handler, the IBM 3270 emulator links System 80 to IBM
hardware. Just as the handler connects an IBM terminal system to a System 80
host, the emulator connects a System 80 acting as a terminal to an IBM host
system. This allows System 80 workstation users to access applications and IBM
program products running on an IBM host. To do this, Sytem 80 operates in
emulation mode, pretending to be a 3270 terminal system. The emulator uses the
standard interface.

• Public data network support

•

ICAM supports the capability to connect Sytem 80 to several popular
packet-switched and circuit-switched public data networks using the X.25 interface.
This support provides the user with an alternative to using costly leased lines. It
provides high reliability and low cost because of packet-switched efficiencies and
the ability to share links through the use of virtual circuits. •

13.1 .1. Message Control Program Structure

The message control program generated from your network definition and loaded into
main storage consists of:

• an activity control module;

• either channel control routines or a set of remote device handlers;

• the particular system interface; and

• the communications control area and message processing procedure specification,
if any.

The makeup of the message control program is based upon the interface you choose
and the network definition you submitted. Figure 13-1 depicts the message control
program structure for each interface type and shows the relationship of the message
control programs with the operating system.

•

•
CPI

USER PROGRAM

,--
1

I.---~~-,

-------------,
CCRU MESSAGE CONTROL 1 I

PROGRAM 1MCPI I J

DOI
USER PROGRAM

DOI MESSAGE CONTROL
PROGRAM (MCPI

•
TCI
IMS

•
STDMCP

USER PROGRAM
USER PROGRAM SYSTEM

}

05'3

05/3 SUPERVISOR

,----- ----------------,r-----
srnM;;0~E~!~~~~~1NTAO L : 1

USER MESSAGE STAGING

GETCP/PUTCP
MPPS

1 I
JI
1 I

I

MESSAGE SOFTWARE

PROCESSING

PROGRAM <MPPI ----- -----------

------- -------- - -,
TCI MESSAGE CONTROL

PROGRAM (MCP)

USER MESSAGE STAGING
MREAD/MWAITE

MPPS

I
I
I
I
I
I

I 1
11
11
11
11
11

lJIAECT DATA

1
I
I
I
I
I
I
I
I
I

MESSAGE QUEUEING/BUFFERING I
I
I
I

MESSAGE QUEUEING/BUFFERING

I
I
I
I
I

I ICAC~~~~~~TY

'1
: I
1 I
1 I
, 1

11
, 1

11
, 1

ICAM ACTIV!TY
CONTROL

L~_-_-_-_~_ - - - - ---- ------------

LEGEND

level interfaces common to other
message control programs

COMMUNICA
TIONS

CONTROL
AREA

ICAM ACTIVITY

CONTROL

NETWORK MESSAGE STAGING
AND CONTROL ICNC)

COMMUNICA- I I
TIONS (

CONTROL
AREA 1 I

11
1 I
JI
1 I
11
1 I
1 I
11

!CAM ACTIVITY
CONTROL

NETWORK MESSAGE STAGING
AND CONTROL (CNC)

L __ __'. _____ 1 _____ , _____ '.___ ____ '.__I l__ ___________ --

SYSTEM 80 COMMUNICATIONS HARDWARE

REMOTE TERMINALS

Figure 13-1. /CAM Structure and Interface Organization

COMMUNICA
TIONS

CONTROL I
I
I
I
I
I
I
I
I

_I

COMMUNICATIONS
USER

PROGRAM

c
-0
00
OJ
-.J
0
:::0
cP
<

(J)

(J) ~
-< :::0
(J) :::0
~ -<
m
s:: c z
OJ <
0)>

()

w
I

(11

UP-8870 Rev. 1 SPERRY UNIV AC
SYSTEM 80

13-6

The ICAM activity control module performs the central control functi.ons for all act1v1ty
within the system. It is this module that receives and interprets all activity requests and
interfaces with the supervisor to have all requests performed. The channel control
routines and the remote device handlers are the interface between the system software
and the terminals configured into the network.

The four interfaces each support a different level of ICAM programming and offer
different levels of support and capabilities.

Each interface is defined via specific sets of declarative macroinstructions issued during
the generation of the message control program. The transfer of messages through each
interface is initiated by interface macroinstructions issued by the communications user
program (CUP). Each interface responds to a different set of macroinstructions.

The operation and capabilities of each interface are described in 13. 1 . 1 . 1 through
13.1.1.4.

13.1.1.1. Communications Physical Interface

This interface (CPI) provides physical level definition and control of the communications
data transfer. It requires the least amount of main storage of any of the available
communications interfaces, but offers the fewest number of services. You must supply
your own device and line protocol, polling, error detection and recovery, and message
management.

You are not required to supply a network definition using the CCA macroinstructions,
but you must code a control structure called the communications physical input/ output
control packet. This packet provides the interface between your CUP and the
supervisor's channel control routines. The packet is used to pass software command
codes generated by your program and software status codes generated by the system.
These codes are standardized so that the message processing program need not
recognize or generate specific hardware codes required by the communication system
hardware.

Specific macroinstructions are provided to generate the communications input/output
control packet. A set of macroinstructions, unique to the communications physical
interface, is used to control data transfers. These macroinstructions are issued by your
communications user program.

•

•

•

UP-8870 Rev. 1 SPERRY UNIV AC
SYSTEM 80

13-7

• 13.1.1.2. Direct Data Interface

•

•

The direct data interface (DOI) provides communications capability and services for small
configurations of the system while offering a reasonable amount of device
independence. This interface has many advantages for the user who is willing to invest
more programming effort to gain a more flexible data communications capability. This
interface also allows you to implement special applications that could not be efficiently
supported by the standard message control program interface. This interface can only
be used for a dedicated network.

At this level of support, your program interfaces with the remote device handlers that,
in turn, interface with the physical input/output control system through the
communications physical interface Your program's interface with the remote device
handler routines is through the message control table. This table resides in your
program area and is generated by a supplied declarative macroinstruction. The message
control table, along with specific macroinstructions, allows you to open, connect,
disconnect, assign, and release a communications line, send and receive data, and set
either the interactive or batch (card) mode.

When configuring the DOI you must supply a network definition. A simple method of
line and terminal identification is provided to reduce the complexity of network
definition. The interface provides a demand type operation in which data transfers to
and from remote devices are directly into and out of buffer areas in your CUP. Demand
operation means that each message must have a response issued before another
message is issued. No message queueing, network buffering, or message processing
procedure specification functions are supported by the message control program with a
direct data interface. Your CUP must handle these services directly.

13.1.1.3. Standard Interface

The standard interface (STDMCP) provides a general telecommunications capability
offering queued message processing and optional automatic processing control of
message transfers. You must code a network definition by using the set of supplied
network definition macroinstructions. Your program accesses the standard interface by
means of logical standard interface macroinstructions. This interface can be used for
either a dedicated or global network.

This interface requires more main storage, but it offers greater services as well as the
advantage of logical level control and complete device independence once the message
control program is operational. This is made possible through the inclusion of a
communications network controller in your message control program. This component
interfaces your network and CUP queue interface packets with the remote device
handlers by automatically generating the required message control table .

UP-8870 Rev. 1 SPERRY UNIV AC
SYSTEM 80

13-8

Within your network definition, you include queues to hold messages being sent
through the system - input queues for message input to your program from the
network and output queues for messages from your program to the network. You must
also include interface packets within your program. The user communications interface
packets you defined within your user program are accessed when you issue a message
transfer macroinstruction. The information within the packet is used to transfer the
message to the appropriate destination.

You can optionally specify special message handling procedures through the inclusion of
the message processing routine macroinstructions within your network definition. Use of
these macroinstructions provides your network with ability to automatically handle
message transfers. You can specify message switching routines, date and time
stamping, certain tests, and a variety of other operations that can be performed without
a CUP being accessed.

13.1 .1 .4. Transaction Control Interface

The transaction control interface (TCI) is a modified version of the standard message
control program designed to meet the unique requirements of transaction programs
including the IMS. This interface provides for automatic scheduling of your program as
each message arrives in the system. Your program has the ability to examine the
leading text field identifiers of each incoming message and to selectively retrieve the
message for immediate processing or defer the message for later processing. Thus, you
may specify concurrent processing of transactions without being involved with complex
message send and receive procedures. This interface can be used for either a dedicated
or global network.

You must provide a network definition and you may also include the MPPS functions.
You must also define a transaction control area within your program. This area (defined
through a supplied declarative macroinstruction) and the transaction control interface
imperative macroinstructions provide the interface between your user program and the
message control program. The transaction control area declarative macroinstructions
generate a transaction control table and a series of transaction terminal tables. A
transaction terminal table must be generated for each terminal defined in your network.

Among the services provided by this interface are:

• asynchronous and concurrent message processing;

• optional disk nonqueued disk buffering for both input and output messages;

• buffering of unsolicited output to a terminal during multiple message transactions
between your program and the terminal; and

• dynamically controlled multiple destination routing.

•

•

•

UP-8870 Rev. 1 SPERRY UNIV AC
SYSTEM 80

13-9

• 13.2. DISTRIBUTED DATA PROCESSING

•

•

The SPERRY UNIV AC distributed data processing (DDP) system allows a number of
separate processing systems to be tied together in a network so that all systems can
share the processing load of the entire organization. This interchange is based on a
standard SPERRY UNIV AC DDP command language implemented within each of the
supporting operating systems. In such a distributed data processing network, a person
at one site can control the operations of another site, and can perform such functions
as:

• Site-to-site data file and program library transfers

• Operator console control over remote site and routing of messages to remote
operator console

• Initiation of jobs at the remote site

• Inputting of data through the local site to the remote site for processing

• Program-to-program communications

The software required to support a DDP network includes a configured communications
network to physically link the included sites and distributed data processing processors
at each site. The DDP processors interpret all DDP related commands and perform the
requested functions. The DDP processors are designed to operate in an interactive
environment and respond to commands issued from a workstation.

The DDP software can be used to copy data files and program libraries from one
system to another, or to add data to an existing data file in a remote system. Data files
can be deleted from a remote system. Data files and program libraries can be
transferred between OS/3-based systems.

You can utilize the DDP commands to submit and initiate a job to a remote system
through the local system. Output from the job can remain at the processing site or can
be directed back to the initiating site. Jobs running at another site can also be cancelled
from the initiating system.

Messages can be sent to the system console of a remote system and the answer
routed back to the initiating device. A device on a system can, in a limited way,
operate as the system console for a remote system.

The capability to distribute the processing workload among systems in a DDP network
can provide improved business operations and management control. Jobs can be
decentralized and given to the location responsible for gathering and using the data.
Distributed data processing also provides greater control over work priority, improved
response time, and a recovery system in the event of local system failures .

UP-8870 Rev. 1

The OS/3 DDP consists of:

• a transfer facility;

SPERRY UNIV AC
SYSTEM 80

• a program-to-program communications facility; and

• an IMS-DDP transaction facility.

13.2.1. Transfer Facility

13-10

The DDP transfer facility allows you to view each system in the DDP network as an
available resource for scheduling and executing your work. Using simple commands, you
can initiate job distribution and file transfer within the system without concern for the
requirements of the hardware and software of each system or the communications
protocols needed to initiate and monitor the distribution of a job. The facility has two
functions: job distribution and file transfer.

13.2.1.1. Job Distribution Function

The job distribution function allows you to 1rnt1ate execution of a job on any system
within the DDP network and to monitor the execution from the initiating site. Any
printed or punched output generated by the job is normally routed to the initiating
system. However, the initiator can request routing of this output to any available system
in the network.

The job distribution function provides commands to:

• submit jobs to the DDP network;

• monitor the execution of submitted jobs;

• cancel a submitted job;

• communicate with a remote operator's console;

• issue instructions to a remote operating system; and

• respond to messages issued by a job executing on a remote system.

13.2.1 .2. File Transfer Function

The file transfer function provides the capability to transfer sequential files from one
system to another or to duplicate file structures between systems.

•

•

•

•

•

•

UP-8870 Rev. 1 SPERRY UNIV AC
SYSTEM 80

13-11

Files can be transferred between systems that contain the same file handling facilities, in
which case no data transcription is required. Files with serially-accessible records may
be transferred between systems of dissimilar architecture with or without character
conversion. That is, a file can be transferred as a bit stream to be manually reformatted
or it can be converted (character translation only) during the transfer process to the
internal code recognized by the receiving system.

The file transfer function does not support automatic reformatting of items within a file,
or converting items to their equivalent form in the destination system, when transfer is
between systems of dissimilar architectures. In this· case, the contents of the file are
treated as all character data or bit string data. No record sensitivity, record sequence,
or numeric field characteristics are recognized or adjusted during the transfer operation.

File transfer can be directed in the file area of the destination system or, if the
destination file area is in use, to a temporary file area in the destination system.
Transfer from the temporary file to the destination file is made when the destination file
becomes available.

Files transmitted between systems can include:

•

•

Data Files

Data formatted in the OS/3 MIRAM format. Files transmitted from OS/3 are
MIRAM files; files transmitted to OS/3 will be created in MIRAM format.

Program Libraries

Any directly-accessible module in a program library can be transferred between
systems or an entire library can be transferred.

The file transfer function permits the user to:

• generate a file directory to catalog the characteristics of files;

• transfer copies of data files and program libraries;

• delete a file from the file directory; and

• obtain a listing of a file's characteristics from the file directory.

13.2.2. Program-to-Program Communications Facility

The DDP program-to-program communications facility (P-T-P) enables your executing
program to communicate with another executing user program and controls activity
between the programs. The programs can be on the same host or different hosts .

UP-8870 Rev. 1 SPERRY UNIV AC
SYSTEM 80

13-12

Two programs tied together by P-T-P converse with each other. The program that
initiates the conversation is called the primary user application program (primary UAP)
and the other program is called the surrogate UAP. For certain operations, the two
programs can exchange status, the primary UAP becoming the surrogate UAP and vice
versa. There is no limit to the number of times the UAPs can exchange status. And you
can also establish P-T-P communications among more than two independent hosts, with
as many as 255 workstations connected to each host computer.

13.2.3. IMS-DDP Transaction Facility

The IMS-DDP transaction facility lets you process information management system (IMS)
transactions at a remote OS/3 computer. (For an overview of IMS, see 13.4.) In a DDP
transaction, a terminal operator at one IMS system, called the primary IMS, initiates the
transaction. The primary IMS, through the transaction facility, routes the transaction to a
remote system where a secondary IMS processes the transaction and sends back a
response.

The remote transaction may be processed by user action programs (written in COBOL,
RPG II, or basic assembly language) or by UNIQUE. There is little difference between the
way action programs process a remote transaction and the way they process a local
transaction. Most IMS features are available, including the use of screen format
services.

There are three ways in which IMS can route a transaction to a remote system:

1 . Directory routing

2. Operator routing

3. Action program routing

These differ mainly in how each 1nit1ates a transaction. All three allow messages to be
sent to the remote system and back.

13.3. UTS SUPPORT

OS/3 offers the following software components to support the SPERRY UNIVAC
Universal Terminal System 40 (UTS 40) and the SPERRY UNIVAC Universal Terminal
System 400 (UTS 400):

• UTS COBOL

• UTS edit processor

• UTS load/dump facilities

•

•

•

------------------- -

•

•

•

UP-8870 Rev. 1

13.3.1. UTS COBOL

SPERRY UNIV AC
SYSTEM 80

13-13

UTS COBOL is a high-level, business-oriented international language with features to
complement the capabilities of the programmable UTS terminals. The UTS COBOL
compiler meets the ANSI X3.23-1974 standards and the ISO recommendations for
COBOL. The compiler also contains extensions to provide for interactive data entry,
program control, and screen management. The UTS COBOL compiler executes under
control of OS/3 and produces a compiled program that can be downline loaded to the
terminal or placed on a diskette.

For more information on UTS COBOL, see the current version of the UTS COBOL
programmer reference, UP-8481.

13.3.2. UTS Edit Processor

The UTS edit processor allows you to create and manipulate text data on a diskette
file. It provides an easy and efficient way to create and update line-oriented files of
data. Lines may be inserted, replaced, deleted, or changed in any order.

The edit processor permits functions such as string searches, insert or delete lines,
moves, and print. Error messages advise the user of mistakes made in entering data.
Lines up to 118 characters in length may be inserted in an edit processor file .

For more information on the UTS edit processor, see the current version of the
universal terminal system 4000 (UTS 4000) edit processor user guide/programmer
reference, UP-8932.

13.3.3. UTS Load/Dump Facilities

The UTS load/dump facilities provide two ways of exchanging data between your
System 80 and a local or remote terminal. One way uses two workstation commands,
DLOAD and ULD.

• The DLOAD command extracts a UTS load module from the system YLOD load
library and transmits this module to a UTS terminal (downline load).

• The ULD command dumps the main storage of a terminal to an OS/3 dump file
(upline dump). Additional ULD options format and print a copy of the dump and
save or erase the file after the print operation has finished. This capability is
available only with the UTS 400 terminal, not the UTS 40.

The other method of exchanging data involves communications software which
performs the same upline dump/downline load operations as DLOAD and ULD. We
provide this software for compatibility with previous releases .

For more information on DLOAD and ULD, see the interactive services concepts and
facilities. Refer to the current version of the interface UTS 400-0S/3 user
guide/programmer reference, UP-8611, for more information on loading UTS terminals
using communications software.

UP-8870 Rev. 1 SPERRY UNIV AC
SYSTEM 80

13.4. INFORMATION MANAGEMENT SYSTEM

13-14

The information management system (IMS) is a transaction-oriented, file processing
system operating in a communications environment that utilizes a simplified
inquiry /update language for manipulating data files. IMS allows nonprogramming
personnel to access and update a data base from a workstation or terminal. This
discussion of IMS offers a brief look at the capabilities, use, and components of the
system. For more detailed information, see the IMS applications user guide/programmer
reference, UP-8614 (current version).

IMS is a transaction-oriented processing system. Stated simply, this means that the
system responds to each request you make on a one-to-one basis. Each entry you
make results in some type of system response: the information that you seek,
verification that the request action was performed, or an error message. You cannot
make another request until the system responds to a prior request. This one-to-one
message processing simplifies the system for the nonprogramming individual by
preventing the issuing of multiple requests that can lead to confusing results.

You configure a tailored IMS system to handle your particular file processing
applications. An IMS configuration consists of data files, a network of workstations or
terminals, action programs to process the inquiry messages issued from the terminals,
and resident information management routines to control the system.

IMS offers a simplified terminal language for the nonprogramming personnel to use to
access and update data files. This language, called UNIQUE, is actually a set of IMS
action programs each designed to perform a specific function and initiated by an
entered UNIQUE command. The use of UNIQUE is optional, as you can write your own
action programs in COBOL, RPG II, or BAL to process your files. If you choose to use
UNIQUE, the data files that are to be part of the IMS system must be defined using a
supplied data definition language. This language lets you structure logical file and record
formats that differ from the actual format of the data files. If you write your own action
programs, you can use the data definition language or your programs can access the
data files directly.

Data bases generated by the data base management system can also be accessed
through IMS. You can either use the IMS data definition language to define the files to
IMS or you can code IMS action programs in COBOL and include OMS data manipulation
language statements in the program.

The information management system supports concurrent users. The number of
concurrent users is limited only to the number of workstations and terminals configured
into the system. File locks are used to prevent destructive interference among
concurrent users accessing the same data file.

•

•

If you use UNIQUE, a password protection capability is provided to facilitate security
measures in the interactive environment of IMS. Using this feature, you can limit system
access to authorized personnel and also limit those persons to only selected elements
within those files. •

•

•

•

UP-8870 Rev. 1 SPERRY UNIV AC
SYSTEM 80

13-15

IMS also provides commands for a terminal or workstation designated as a master
terminal to assist in monitoring the system. There are additional commands that can be
issued from any terminal that can be used for educational purposes or to resolve
various operations or administrative problems.

Extensive file recovery features guard against permanent destruction of data files
accessed by IMS. An automatic rollback feature is automatically initiated if a transaction
is abnormally terminated or cancelled by the workstation operator. Any file modified by
the terminated transaction is returned to its logical state as it existed before the
transaction was initiated. IMS also provides an offline recovery facility that can
reconstruct data files adversely affected by a system failure .

--------~--------

•

•

•

•

•

•

UP-8870 Rev. 1 SPERRY UNIV AC
SYSTEM 80

14-1

14. Data Base Management

14.1. GENERAL

The data base management system (OMS) is a system facility that supports the
development and usage of integrated data bases. It consists of a series of routines that
define the data included in the data base, describe the physical structure of the data
base, and manipulate the data. Also included are a number of recovery, maintenance,
and audit routines. The following is a brief description of the data base management
system. For more detailed information on OMS, see the OMS system support functions
user guide/programmer reference, UP-8272 (current version) .

14.2. OMS OPERATIONS

In OMS, the description of data is separate from the manipulation of that data by
applications programs. This results in data independence from applications programs
and eliminates redundancy in the data base. Once a data base is defined (using the
supplied data description language) and included in the system, it may be accessed by
several programs concurrently.

Programs that can access the data base include:

• COBOL programs using the OMS data manipulation language

• Information management system (IMS) action programs

• IMS UNIQUE terminal language.

In addition to allowing concurrent access of a single data base by several programs,
OMS permits a single program to access several data bases during the course of a
single execution.

The logical structure and data retrieval methods for an entire data base are described
using the schema data description language. The description, called the schema,
includes the name and description of all areas, records, and sets in the data base. For
purposes of data base security, a subschema must be defined for each application
program or group of programs that access the data base.

UP-8870 Rev. 1 SPERRY UNIV AC
SYSTEM 80

14-2

An application program can only access that portion of the data base defined in its
associated subschema. However, the entire data base may be included in a subschema.
Subschemas are defined using the subschema data description language. The schema
and subschema data description languages are derived from the CODASYL data base
specifications.

The physical structure of the files that hold your data base is defined using the device
media control language. Using this language, you define the media characteristics of the
data base files such as page and area sizes and the number of required buffers.

Your data base is divided into segments called areas. Areas represent the first level of
logical division of the data base. All occurrences of a record of a given type must be
stored in the same area. However, an area can also hold records of various types. Each
area is assigned a specific number of pages, each page being a unit of storage that is a
multiple of 2048 bytes in size. Space within an existing page is allocated to a record
when it is stored. When a record is deleted, the allocated space within the page
containing the record is released and made available for reallocation.

Records are related in sets in which a record of one type is designated as an owner
and records of one or more other types are designated as members. Sets are
implemented as record occurrences linked into chains by data base keys. A given
record type may be an owner of multiple set types and a member of multiple set types.
The set mechanism can be used to relate records in sequential, hierarchical, or network
structures.

The physical placement of records can be controlled to opt1m1ze performance. The
physical location of a record is referred to as its location mode. The location mode of a
given type of record can be specified in several ways. It can be specified as direct to
allow programs to dynamically specify where each occurrence is to be stored. The
location mode can be specified as calculated to cause records to be stored as a
function of an algorithm. It can also be defined by set to cause each member record
occurrence to be stored in or near the page containing the corresponding owner record.
When a record is entered into the data base, a unique direct address, called a data
base key, is assigned to it. This key is never altered throughout the lifetime of the
record.

Each data base that you define will have a data dictionary containing descriptions
generated by the schema and subschema data description language and the device
media control language compilers. The data dictionary is referenced by the compilers to
generate reports describing the data. It can also be accessed by programs written by
the data base administrator to generate specialized data dictionary reports.

A data base is accessed through data manipulation language statements included in the
procedure division of a COBOL program. COBOL programs containing data manipulation
language statements are processed by a DMS preprocessor to produce a standard
COBOL source module that can be subsequently compiled by a COBOL compiler. These
programs can be batch-oriented or serve as IMS transaction-oriented action programs.

•

•

•

•

•

•

UP-8870 Rev. 1 SPERRY UNIV AC
SYSTEM 80

14-3

Data manipulation statements are used to establish contact with the data base
management system, access a specific subschema, and open and close areas of the
data base. You can also locate records and place them in working storage; store,
modify, and delete records; and insert and delete records from set occurrences. Locks
are used to prevent destructive interference by concurrent active users and they can be
applied on the area, page, and record level.

The data base management system provides extensive facilities for recovery of data
base records in the event of abnormal conditions or the inadvertent destruction or
alteration of record information. When you are defining your data base, you also define
recovery files called the QBL and journal files.

The quick before look (QBL) file is used by automatic backward recovery (ABR) to
rollback a file to its state prior to an abnormal termination of an application program or
system failure. The journal file is used by offline recovery to restore the data base.

Each time information on a page in the data base is to be altered, a copy of the page
before it was altered is placed in the QBL and journal files. A copy of the altered page
is also placed in the journal file. If, for some reason, the information on the data base
page is incorrectly altered or lost through abnormal conditions, you can, through the use
of one of several recovery utilities, restore the data base to its original state or to the
correct altered state .

The information in a journal file is saved for the duration of a data base session. Utilities
also exist to audit the journal file and produce reports on selected information in the
journal file.

Other utilities are available to dump the contents of a data base from disk to tape or
disk and to perform such functions as editing and printing the contents of a data base
page and verifying and altering the contents of a data base .

•

•

•

PART 7. CONVERSION

•

•

•

•

•

•
UP-8870 Rev. 1

15.1. GENERAL

SPERRY UNIV AC
SYSTEM 80

15-1

1 5. Conversion Aids

In the rapidly changing world of the computer industry, the need is constantly arising to
upgrade the present computing system to one that is more powerful, economical, or
that meets changing needs. Because of its advanced design, offering power and
versatility with economical operation, System 80 is seen as being the growth path for a
number of other systems including:

• SPERRY UNIVAC 9200/9300 and SPERRY UNIVAC 9400/9480

• • IBM System/3, System/32, and System/34

•

• Honeywell 100 series, 200/2000 series, and 60 Series (Level 62/64 systems.)

As a result, Sperry Univac supplies a number of conversion aids if you decide to
convert from one of these systems to System 80. In addition, there are a number of
areas of compatibility between System 80 and the other systems that make the
conversion a fairly straightforward process.

15.2. SPERRY UNIVAC SYSTEMS

Sperry Univac supplies conversion aids for the SPERRY UNIVAC 9200/9300 and
9400/9480 (OS/4) Systems.

15.2.1. SPERRY UNIVAC 9200/9300 System

The following areas of compatibility exist between the SPERRY UNIVAC 9200/9300
System and $ystem 80:

• The OS/3 RPG II compiler provides a 9200/9300 mode that permits direct
compilation 9200/9300 RPG programs on System 80 without source code
translation.

UP-8870 Rev. 1 SPERRY UNIV AC
SYSTEM 80

15-2

• 9200/9300 sequential tape files developed on the UNISERVO Vl-C or UNISERVO
12 tape devices can be mounted on System 80 UNISERVO 10 tape drives and
processed directly by OS/3 programs.

In addition, Sperry Univac supplies a number of conversion aids for those areas of
incompatibility between OS/3 and the 9200/9300 system. These aids are:

• 9200/9300 Data File Transcriber (UNLOAD/DATA)

The data file transcriber (UNLOAD) supplied by Sperry Univac is executed on the
9200/9300 system to copy 9200/9300 disk data files to a tape file. This tape file
can be used as input to the OS/3 data utility, which, in turn, generates the
appropriate disk file from the tape.

• 9200/9300 Assembly Language Translator (TRASM3)

The 9200/9300 assembly language source statements can be translated into OS/3
basic assembly language statements through the 9200/9300 to OS/3 assembly
language source translator (TRASM3).

• COBOL and COPY Translator (COBTRN305)

•

The 9200/9300 COBOL source programs and COPY library elements can be •
converted directly into OS/3 compatible ANSI 1974 COBOL through the
COBTRN305 translator.

• 9200/9300 Library Transcriber (COPY93)

The 9200/9300 library files can be converted to OS/3 format through the OS/3
COPY93 library transcriber. COPY93 accepts a 9200/9300 formatted tape as input
and produces an OS/3 formatted disk file.

15.2.2. SPERRY UNIVAC Operating System/4 (05/4)

OS/3 offers a high degree of compatibility with SPERRY UNIVAC 9400/9480 systems
operating under OS/4. OS/4 RPG and FORTRAN source programs can, for the most
part, be recompiled by the OS/3 compilers. Any changes required will be minor. A
conversion guide that details all the steps required to migrate from OS/4 to OS/3 is
available. For those areas of incompatibility, Sperry Univac supplies the following
conversion aids:

•

•

•

•

UP-8870 Rev. 1 SPERRY UNIV AC
SYSTEM 80

15-3

• OS/ 4 Job Control Converter (JCON 1)

The OS/4 to OS/3 job control language converter (JCON 1) supplied by Sperry
Univac converts OS/4 job control source statements to OS/3 compatible job
control statements. Input to the JCON 1 utility can be a magnetic tape containing
only control streams (no procs) produced by an OS/4 FILE command, cards, or an
OS/3 disk file created by an OS/3 FILE command, the COPY94 utility, or the OS/3
librarian. JCON 1 outputs to cards, the printer, or to a disk file.

• OS/4 Assembly Language Translator (ASMTRN)

OS/4 basic assembly source statements can be translated into OS/3 assembly
statements through the OS/4 to OS/3 assembly translator (ASMTRN).

• COBOL and COPY Translator (COBTRN301)

•

•

OS/4 COBOL source programs and COPY library elements can be converted directly
into OS/3 compatible ANSI 1974 COBOL through the COBTRN301 translator.

Disk Data File Converter (DCON4)

Disk data files can be converted to OS/3 format by using the disk data file
converter (DCON4) to dump the files onto tape and then inputting the tape to the
OS/3 data utility that, in turn, builds the appropriate data file.

OS/4 Library Transcriber (COPY94)

OS/4 library files can be converted to OS/3 format through the OS/3 COPY94
library transcriber. COPY94 accepts an OS/4 formatted tape as input and produces
an OS/3 formatted disk file. The input tape must be generated through the OS/4
tape and disk librarians.

15.3. IBM SYSTEMS

Sperry Univac supplies conversion aids for those who are migrating from the System/3
and System 32/34 IBM systems.

15.3.1. IBM System/3

SPERRY UNIVAC OS/3 software provides a significant amount of compatibility with the
IBM System/3. Among the major areas of compatibility are:

• A System/3 compatible sort, SORT3, that accepts System/3 parameters

UP-8870 Rev. 1 SPERRY UNIV AC
SYSTEM 80

15-4

• An access method, MIRAM, that is functionally compatible with the System/3 disk
access method

• A System/3 mode on the OS/3 RPG II compiler that permits direct compilation of
System/3 RPG II source programs

• Parameter specifications for $DELET, $COPY, $KCOPY, $DCOPY, and $MAINT that
can be used directly on System 80 to duplicate the utility functions

• An OCL processor that accepts and processes System/3 OCL control streams

In addition, Sperry Univac supplies a number of conversion aids for those areas of
incompatibility between OS/3 and System/3:

• Disk Data File Conversion

System/3 data files must first be dumped to a magnetic tape using one of the
System/3 utilities such as $KCOPY. The tape is then submitted to the OS/3 data
utilities to reload the files to disk storage devices.

• Models 10, 12, and 15 Source and Proc Transcriber

•

You can transcribe IBM System/3 source and proc modules to your System 80
using the source and proc transcriber COPYS3. This utility accepts tape or diskette •
input that you create as follows:

For diskette input, you copy the source and proc modules directly to diskette
using the IBM $MAINT utility.

For tape input, you follow a 2-step procedure: first, you use $MAINT to copy
your source and proc modules from a source library on disk to another disk
file; then, you copy the second file to tape using the IBM $COPY utility.

15.3.2. IBM System 32/34

If you are migrating from an IBM System/32 or IBM System/34 data processing
system, you will find a high degree of compatibility in OS/3 program products. The RPG
II programming language used in OS/3 is highly compatible with System 32/34 RPG II,
and we even have RPG II auto report, a feature that should be familiar to System 32/34
users. Other compatible programming tools include:

• A sort program (SORT3)

• The COBOL and FORTRAN languages

•

•
UP-8870 Rev. 1 SPERRY UNIV AC

SYSTEM 80

• A general editor for creating language source code interactively.

15-5

• A conversion program that accepts System 32/34 S & D specifications to create
formatted screen displays.

• A system program that enables you to create menus and their associated help
screens.

When the time comes to carry your IBM software to OS/3, we provide conversion aids
that let you:

• Transcribe System 32/34 data files to OS/3 disk files by first running the IBM
TRANSFER or $COPY procedure to produce a diskette. This diskette is then input
to the OS/3 data utilities to produce a user-tailored OS/3 file.

• Transcribe System 32/34 source and proc files to OS/3 disk files by first copying
the files to a diskette with the IBM $MAINT utility, then running the SPERRY
UNIVAC COPYS3 source and proc transcriber (also a System/3 conversion aid).

• Convert System 32/34 operation control language (OCL) to OS/3 job control
language (JCL) with the JCLCON802 utility program.

• 15.4. HONEYWELL SYSTEMS

•

Sperry Univac provides you with conversion aids if you are converting from the
following Honeywell computer systems: 100 Series, 200/2000 Series, and 60 Series,
Level 62 and Level 64.

15.4.1. Honeywell 100 Series

If you are migrating from the Honeywell 100 Series data processing systems, you will
find a high degree of compatibility with System 80. For those areas of incompatibility,
Sperry Univac offers the following conversion aids:

• COBOL Translator (COBTRN304)

•

Honeywell 100 Series COBOL source programs can be converted directly into OS/3
compatible ANSI 1974 COBOL through the COBTRN304 translator.

Data File Translator (T APCON)

Honeywell data files can be converted to OS/3 format by using the data file
translator (T APCON). The Honeywell data files must be copied to tape or card, then
submitted to T APCON for reformatting. The resultant tape file can be converted to
the ultimate intended file media .

UP-8870 Rev. 1

15.4.2. Honeywell 200/2000 Series

SPERRY UNIVAC
SYSTEM 80

15-6

Sperry Univac provides the following conversion aids if you are converting from the
Honeywell 200/2000 Series systems to System 80:

• COBOL Translator (COBTRN302)

Honeywell 200/2000 Series COBOL source programs can be converted directly into
OS/3 compatible ANSI 1974 COBOL through the COBTRN302 translator.

• EASYCODER Converter (ETC3)

Honeywell EASYCODER source programs can be converted directly into OS/3
compatible ANSI 197 4 COBOL through the ETC3 translator.

• Data File Transcriber (T APCON)

Honeywell data files can be converted to OS/3 format by using the data file
translator (TAPCON). The Honeywell data files must be copied to tape or card, then
submitted to T APCON for reformatting. The resultant tape file can be converted to
the ultimate intended file media.

15.4.3. Honeywell 60 Series, Level 62 and Level 64

The following conversion aids are available if you are converting to System 80 from the
Honeywell 60 Series, Level 62 and Level 64 systems:

• Program Library and Data File Transcriber

Honeywell data files and program libraries can be transcribed to OS/3 format
through the program and data file transcriber (T APCON). The Honeywell data files
and program libraries must be copied to tape or card, then submitted to T APCON
running on OS/3 for reformatting. The resultant tape files can be converted to the
ultimate intended file media.

• COBOL Translator

Sperry Univac provides a translator to convert Honeywell 60 Series COBOL to
OS/3 compatible ANSI 1974 COBOL.

•

•

•

•

PART 8. APPENDIXES

•

•

•

•

•

•

•

•

UP-8870 Rev. 1 SPERRY UNIV AC
SYSTEM 80

A-1

Appendix A. System File Descriptions

The following is a list of system file descriptions.

File Name

SM PM I RAM

YESUM

YSAVE

YCAT

SMCAUDIT

YELOG

YFMT

$VTOC

SMCBSAT

SG$XXX

YSCLOD

YJCS

File Type

MIRAM

MIRAM

MIRAM

SAT

SAT

MIRAM

MIRAM

MIRAM

SAT

SAT

SAT

SAT

Description

Backup file for SMP applications. This file is
allocated at run time.

System 80 error log summary

Saved run-library modules

Used by job control to record cataloged files made
by the customer

Audit trail of SMP application. This file is allocated
at run time.

A storage area that the supervisor uses to record
the 1/0 error history

Contains the system screen formats and the menu
generator screens and help screens

Used to allocate and deallocate disk space on the
SYSRES

Used to back up SMC applications. This file is
allocated at run time.

Used by SYSGEN for separately priced products

Shared code load library

Contains stored job control streams and job control
procedures

UP-8870 Rev. 1

File Name

IVPLIB

YSJF

YMIC

Y0BJ

SG$JCS

YHELP

YSHR

YMAC

SG$LOD

YSDF

YLOD

YSRC

SG$MAC

YDIALOG

YTRAN

YDUMP

YSMCLOG

File Type

SAT

MIRAM

SAT

SAT

SAT

MIRAM

SAT

SAT

SAT

MIRAM

SAT

SAT

SAT

MIRAM

SAT

MIRAM

MIRAM

SPERRY UNIV AC
SYSTEM 80

Description

Installation verification program library

A-2

System journal file, used to record changes in
hardware status

System microcode library

Contains the object module subroutines for data
management and run-time library for each compiler

SYSGEN-related job control procedures

Contains help screen modules

Holds information about files that are currently open
in the system and their ability to be shared

Contains the interface procedures and macros for
the components that may be referenced from
assembled code

Contains the SYSGEN load modules required to
perform a RESGEN

Contains the system defintion that permits
down-line loading of microcode to peripherals such
as workstations

Contains the system load modules

Contains the source and copy modules provided

Contains the procedures and macros for generation
of supervisors and ICAMS

Contains system dialogs for SYSGEN and JCL

Contains the OS/3 transient modules and the
canned messages for console and printed display

The storage area used by SYSDUMP processing

Used for the software maintenance correction log
(SMC LOG)

•

•

•

UP-8870 Rev. 1

• File Name File Type

$IPL MIRAM

$1MPL MIRAM

SMCFILE SAT

YTRANA SAT

YSYSTEMT ABLES MIRAM

YDDP SAT

SMCBMIR MIRAM

SMCBTRAN SAT

•

•

SPERRY UNIV AC
SYSTEM 80

Description

A-3

Contains the OS/3 software that initially performs a
load of the desired supervisor or utility program

Microcode load file

Contains the software maintenance corrections
(SMC) processed for the system

Alternate YTRAN file

Contains system tables

DDP recovery file. This file is allocated at run time.

Backup file for SMC. This file is allocated at run
time.

Backup file for SMC transient file. This file is
allocated at run time .

•

•

•

,
•

•

•

UP-8870 Rev. 1 SPERRY UNIV AC
SYSTEM 80

B-1

Appendix B. Functional Characteristics
of Input/Output Devices

The tables in this appendix summarize the SPERRY UNIV AC System 80 functional
characteristics of the input/output devices that are supported by consolidated data
management.

Table 8-1. 0719 Card Reader Subsystem Characteristics

Characteristic Description

Card orientation Face down, column 1 to left and row 9 facing away
(80-, 66-, and 51-column cards)

Card rate 300 cpm

Read technique Two columns of photosensitive sensors and
light-emitting diodes

Dual redundant column amplifier checking

Read modes Image mode: 160 six-bit characters per card
Translate mode: 80 characters per card

Read station sensing Column by column

Hopper capacity 1000 cards

Stacker capacity 1000 cards
Normal 1000 cards
Reject

UP-8870 Rev. 1 SPERRY UNIV AC
SYSTEM 80

Table 8-2. 0608 Card Punch Subsystem Characteristics

Characteristic Description

Media 80-column cards

Punch mode 2-column serial

Check mode Punch motion check

Feed mode On demand

Punch rate 75 cpm (full card)
160 cpm (28 columns only)
120 columns/second advance speed

Input capacity 700 cards

Output capacity 700 cards (primary stacker)
100 cards (auxiliary stacker)

Reading Optional

Read rate 160 cpm

Table 8-3. 0776 and 0789 Printer Subsystem Characteristics (Pan 1 of 2)

Characteristic Description

0776 Printer Subsystem

Print speed 210 to 1250 lpm depending on character contingencies:

Available character sets Number of sets Nominal print
(characters/set) per band rate (lpm)

384 1 210
192 2 395
128 3 560
96 4 710
64 6 980
48 8 1200
32 12 1250
24 16 1250

Line advance timing Advance and print Time (ms)
(number of lines)

6 lpi 8 lpi

1 16.7 14.1
2 24.6 20.9
3 30.9 25.9
4 35.0 30.9
5 38.9 34.1
6 42.6 37.1
7 45.9 39.9
8 49.3 42.6

B-2

•

•

•

•

•

•

UP-8870 Rev. 1 SPERRY UNIV AC
SYSTEM 80

Table 8-3. 0776 and 0789 Printer Subsystem Characteristics (Pan 2 of 2)

Characteristic Description

0776 Printer Subsystem (cont)

Number of print 136 print positions (columns)
pos1t1ons

Forms advance control Vertical format buffer

Forms advance rate 50 inches (12 7 cm) per second

Form dimensions 4 to 18.75 inches (1016 to 47.62 cm) wide
1 to 18 inches (45 72 cm) long

Horizontal spacing 10 characters per inch

Vertical spacing 6 or 8 lines per inch, operator-selectable

0789 Printer Subsystem

Print speed 180, 300, and 640 lpm depending on character contingencies

Available character Number of sets Nominal print
sets per band rate (lpm)

48 4 (plus 16 char) 317
64 3 (plus 16 char) 306
96 2 (plus 16 char) 246

128 1 (plus 80 char) 177

Line advance t1m1ng Advance and Time (ms)
print 6 lp1 8 lp1

1 line 40 40
2 lines 52 52
3 lines 64 64
n • 1 lines 76. 12

l
76+ 12

Number of print 120 print pos1t1ons (columns) by standard printer;
pos1t1ons 132 columns by feature

Forms advance control Controlled from host processor

Forms advance rate 15 inches (38 1 cm) per second

F orrn d1rnens1ons 3 to 15 inches (7 62 to 38.10 cm) wide
1 to 22 inches (55 88 cm) long

Horizontal spacing 10 characters per inch

Vertical spacing 6 or 8 lines per inch, operator-selectable

8-3

UP-8870 Rev. 1 SPERRY UNIV AC
SYSTEM 80

Table 8-4. Disk and Diskette Subsystem Characteristics

Description
Characteristics

8417 Disk 8419 Disk 8420/8422
Subsystem Subsystem Diskette Subsystem

Data capacity (8-bit bytes) 118.2 million 72.39 million Single densitv© Double densitv©
1 side 303, 10401 side 563,320
2 sides 606,208 2 sides 1, 136,64o0

Number of disk units 1 to 8 1 to 8 1 to 4

Disk/diskette speed (rpm) 3400 2800 360

Rotation period 17.6 21 166
(ms/rotation)

Data bit rate (MHz) 9.05 6.2 -

Bit density (ppi) 6366 5050 -

Track density 476 - -
(tracks/inch)

Track capacity (bytes/track) 15,360 12,800 3328 to 768oG)

Number of tracks 550 + 10 spare 808 + 7 spare 77 total, 750or data
tracks per disk usable tracks per use per diskette
surface disk surface surface

Number of surfaces per 14 7 2
disk unit

Positioning time (seek time)
Minimum (ms) 7 10 3
Average (ms) 35 33 15
Maximum (ms) 70 60 35

Transfer rate 1130 784 Dependent on sector sequence
(kilobytes/second) arrangement

NOTES:

CD 242,944 for data set label BOE (basic data exchange) diskette file.

@ 971, 776 for format label diskette file.

@ Maximum value. Actual value is dependent on diskette type (single sided,
single density; single sided, double density; double sided, single density;
double sided, double density), physical sector size (128, 256, or 512 bytes)
and file type (format label or data set label).

@) 73 for format label diskette file and data set label BOE (basic data exchange) file.
75 for other data set label non-BOE files.

B-4

•

•

•

UP-8870 Rev. 1

•

•

•

SPERRY UNIV AC
SYSTEM 80

Table 8-5. UN/SERVO 10 Magnetic Tape Subsystem Characteristics

Characteristic Description

Tape units per subsystem 1 to 8

Data transfer rate (maximum) 40,000 frames per second

Tape speed 25 inches per second

Tape direction
Reading Forward or backward
Writing Forward

Tape length (maximum) 2400 ft.

Tape thickness 1.5 mils

Block length Variable

Maximum block 65,535
size (bytes)

Minimum 18
block size
(bytes)

lnterblock gap 0.6 in.

lnterblock gap time
Nonstop 24 ms
Start-stop

Pulse density 1600 ppi on 9-track phase encoded
800 ppi on 9-track NRZI

Recording mode Phase encoded or NRZI

Reversal time 16 ms

Rewind time 3 min.

Simultaneous operation Optional

B-5

UP-8870 Rev. 1

Characteristic

Type of display

Number of display lines

Characters per line

Number of units

Keyboard arrangements

Character sets

SPERRY UNIV AC
SYSTEM 80

Table 8-6. Workstation Subsystem Characteristics

Description

Cathode ray tube (CRT)

24 plus 1 indicator

80

1 to 8

B-6

Typewriter layout, typewriter layout with numeric and function pads, or Katakana/English

Domestic, United Kingdom, Germany, France, Spain, Denmark/Norway, Sweden/Finland,
Italy, or Katakana/English

•

•

•

UP-8870 Rev. 1

•

Term Reference

A

ABR file 14.2

Accounting, job 10.3

Activity monitor, support operations 10.6

Additional features, workstation

• aids, programming 4.12.3
auxiliary printer 2.4.2.
menus 2.4.4
remote capability 2.4.1
screen bypass 2.4.3
security maintenance utility 2.4.5

AMS (accounting management system) 12.6

ANSI 1974 COBOL communications 13.1

Applications programs
accounting management (AMS) 12.6
distribution information - wholesale

(UNIDIS - WHOLESALE) 12.4
financial accounting (UNIFACS 80) 12.5
industrial (UNIS 80) 12.1
industrial extended 12.2
information collection (ICS) 12.3
wholesale applications management

(WAMS 80) 12.7

Area, data base 14.2

ASCII volume organization, magnetic tape 4.9.1.4
4.9.1.4.1

Audit file 5.2.5

• Auxiliary printer, workstation 2.4.2

SPERRY UNIV AC
SYSTEM 80

Page Term

14-3 BAL language processor

10-4 BASIC language processor

10-8 Block

Breakpointing
4-37
2-4 Buffers, printer
2-5 load code
2-4 vertical format
2-5
2-5 Bypass, workstation screen

12-7

13-3

12-7

12-4
12-6
12-1
12-3
12-3

12-8

14-2

4-18
4-22

5-10

2-4

Index 1

Index

Reference Page

B

6.6 6-5

6.2 6-1

4.4 4-3

3.3 3-5

4.8.3 4-12
4.8.3 4-12

2.4.3 2-5

UP-8870 Rev. 1 SPERRY UNIV AC
SYSTEM 80

Index 2

UP-8870 Rev. 1

• Term Reference

Device assignment set 5.2.1

Diagnostics, system utilities
dump routines 11.1
EOJ dump 11.1.3
error logging 11.3
hardware diagnostics 11.4
job dump 11.1.2
macro/micro 11.4
program error checking 11.2
system dump 11.1.1

Dialog
interactive software 7.1.2

7.3
job control language 5.2.5

Disk
access method, MIRAM 4.10.2
copy, 1/0, 8419 9.3
dump/restore, 1/0 9.2
initialization, 1/0 9.1
pack Fig. 4-3

• Disk formats/file conventions
disk access method (MIRAM) 4.10.2
disk file sharing 4.10.4
file organization 4.10.1
MIRAM file organization 4.10.3

Diskette initialization, 1/0 utilities 9.1

Disk/ diskette characteristics Table B-4
Fig. 4-3

Distributed data processing (DDP)
command language 13.2
P-T-P communications facility 13.2.2

DLOAD command 13.3.3

Dump routines, diagnostics
end-of-job (EOJ) 11.1.3
job (JOBDUMP) 11.1.2
system (SYSDUMP) 11.1.1

DVC statement 5.2.1

Dump/restore, disk 9.2

•
--- ----------

SPERRY UNIV AC
SYSTEM 80

Page Term

5-3

EBCDIC volume organization
11-1 nonstandard
11-3 standard
11-4 unlabeled
11-5
11-3 Edit processor, UTS support
11-5
11-3 Editor, job/program preparation
11-2 COBOL

general
linkage

7-3 RPG II
7-9
5-9 Editor, linkage

EDT command
4-27 command
9-2 sample session
9-2
9-1 EFP (error file processor)
4-4

Emulation
ICAM device

4-27 IBM 3270
4-33
4-27 Environment, processing, system
4-29

EOJ dump routine
9-1

Error
B-4 checking, program (UPSI byte)
4-4 file processor

logging

13-9 ESCORT language processor
13-11

EXEC statement, COBOL
13-13

E

Execution, program, job control language

11-3 EXT statement
11-3
11-2 Extended industrial system

5-4

9-2

Index 3

Reference Page

4.9.1.2 4-16
4.9.1.1 4-13
4.9.1.3 4-18

13.3.2 13-13

5.5 5-19
5.3 5-11
5.7 5-23
5.4 5-16

5.7 5-23

5.3 5-11
5.3.1 5-13

5.6 5-22

13.1 13-3
13.1 13-4

1.2 1-2

11.1.3 11-3

11.2 11-3
5.6 5-22
11.3 11-4

6.7 6-6

6.3 6-3

5.2.2 5-6

5.2.l 5-5

12.2 12-3

UP-8870 Rev. 1

Term Reference

F

Facilities
distributed data processing (DDP) 13.2
UTS load/dump 13.3.3

Field 4.4

File
audit 5.2.5
cataloging, support operations 10.l
conventions Section 4
description 4.4
record formats, magnetic tape 4.9.1.5
system description Appendix A
transfer function, DDP 13.2.1.2

File conventions
card formats 4.7
data set label diskette formats 4.11
disk formats 4.10
format label diskette formats 4.10
magnetic tape formats 4.9
printer formats 4.8
workstation formats 4.12

File descriptions, system Appendix A

File orgnaization
card formats 4.7.l
data set label diskette formats 4.11.2
disk formats 4.10.l

4.10.3
format label diskette formats 4.10.1

4.10.3
magnetic tape formats 4.9.l
printer formats 4.8.l
workstation formats 4.12.l

Format label diskette formats/file
conventions 4.10

See also disk formats/file conventions.

Formatted screen Fig. 5-7

FORTRAN IV language processor 6.5

F reeform screen 5.3.2
Fig. 5-9

Function characteristics; 1/0 devices Appendix B

SPERRY UNIV AC
SYSTEM 80

Page Term

General editor (EDT)
13-9 sample EDT session
13-13 screen mode

4-3 Generator
menu
screen format

5-10
10-1 Global network

4-3
4-24

13-10

4-7
4-34
4-27
4-27
4-12
4-9
4-36

4-7
4-35
4-27
4-29
4-27
4-29 Hardware diagnostics
4-12
4-9 HELP screen, job processing
4-36

Honeywell systems
description

4-27 60 Series, Level 62/64
100 Series

5-18
200/2000 Series

6-5

5-16
5-19

Index 4

Reference Page •
G

5.3.l 5-13
5.3.2 5-16

7.4 7-12
7.2 7-6

13.1 13-1

•
H

11.4 11-5

5.2.5 5-10

15.4 15-5
15.4.3 15-6
15.4.l 15-5
15.4.2 15-6

•

UP-8870 Rev. 1 SPERRY UNIV AC Index 5
SYSTEM 80

• Term Reference Page Term Reference Page

1/0 utilities
data utilities 9.4 9-3

IBM system disk initialization 9.1 9-1
description 15.3 15-3 disk dump/restore 9.2 9-2
System/3 15.3.1 15-3 diskette initialization 9.1 9-1
System 32/34 15.3.2 15-4 MIRAM librarian 9.5.2 9-5

SAT librarian 9.5.1 9-4
ICAM interfaces tape initialization 9.1 9-1

communications physical interface (CPI) 13.1.1.1 13-6 8419 disk copy 9.3 9-2
direct data interface (DOI) 13.1.1.2 13-7
message control program structure 13.1.1 13-6
standard interface (STDMCP) 13.1.1.3 13-7
transaction control interface (TCI) 13.1.1.4 13-8

ICS 80 (information collection system) 12.3 12-3

IMS (information management system) 13.1 13-3
13.4 13-14

IMS-DDP transaction facility 13.2.3 13-12

Indexed disk file 4.10.1 4-27 J

Index, MIRAM Job • partition entries 4.10.3.2 4-31 accounting, support operations 10.3 10-4

structure 4.10.3.3 4-33 distribution function 13.2.1.1 13-10
dump routine 11.1.2 11-3

Indirect printer 10.3 10-4 processing commands 5.2.6 5-11
slots 1.2 1-3

Initialization, 1/0 utilities 9.1 9-1
Job control language

Input files, card formats 4.7.1.1 4-8 commands 5.2.6 5-11
defining your job 5.2.l 5-3

Interactive job control executing a program 5.2.2 5-6

commandds 5.2.6 5-11 interactive commands 5.2.6 5-11

dialog 5.2.5 5-9 job control dialog 5.2.5 5-9
job processing commands 5.2.6 5-11

Interactive software design program libraries 5.2.4 5-8

description 7.1 7-1 running your job 5.2.3 5-7

7.1.4 7-6
dialogs 7.1.2 7-3 Job control stream library (YJCS) 5.2.4 5-8

7.3 7-9
menus 7.1.3 7-4 JOBDUMP routine 11.1.2 11-3

7.4 7-12
screen format 7.1.l 7-2 Job/program preparation

7.2 7-6 COBOL editor 5.5 5-19
description 5.1 5-1

Interrupts, supervisor 3.2 3-3 error file processor 5.6 5-22
general editor 5.3 5-11

Installation facilities, system job control language 5.2 5-2

description 8.1 8-1 linkage editor 5.7 5-23

software 8.1.l 8-1 RPG II editor 5.4 5-16

• system generation 8.1.2 8-1
verification programs 8.2 8-2 jproc statement 5.2 5-2

6.3 6-3

1/0 devices, functional characteristics Appendix B
Journal file 14.2 14-3

UP-8870 Rev. 1 SPERRY UNIV AC
SYSTEM 80

Index 6

UP-8870 Rev. 1

• Term Reference

MPPS (message processing procedure specification) 13.1

Multiple jobbing 1.2

Multiphase/multiregion load module 5.7

Multiprogramming environment 1.2
Fig. 1-1

Multitasking 3.3

Multivolume file 4.4

•

N

Network (dedicated/global) 13.1

Nonindexed disk file 4.10.l

Nonstandard EBCDIC volume organization 4.9.1.2

NTR utility 1.3.1

•

SPERRY UNIV AC
SYSTEM 80

Page Term

13-2

1-3 Object module library (Y0BJ)

5-23 Online/offline diagnostics

1-2 ONUERL canned job control stream
1-3

Operation

0

3-4 data base management (OMS)
supervisor

4-4 workstation

OPTION QUERY command

Ordered creation mode, COBOL

Output files, card formats

p

Peripheral device, data organization

13-1
description

errors
4-27

Position screen
4-16

13-3
Preemptive priority

Preprinted forms data

Primary user application program

Printer characteristics

Printer record formats

Index 7

Reference Page

5.2.4 5-8

11.4 11-5

11.3 11-4

14.2 14-1
3.2 3-2
2.2 2-1

5.2.6 5-11

Fig. 5-12 5-21

4.7.l.2 4-8

4.4 4-4
Fig. 4-3 4-4
11.3 11-4

Fig. 5-8 5-18

5.2.1 5-3

4.8.1.3 4-10

13.2.2 13-12

Table B-3 B-2
Fig. 4-3 4-5

4.8.2 4-11

UP-8870 Rev. 1

Term

Printer formats/file conventions
file organization
load code buffers
printer record formats
vertical format buffers

Printer, auxiliary, workstation

Priority
levels
scheduling
task switching

Processor
error file
UTS edit

Processors, language

Processing environment, system

Program
error checking (UPSI byte)
execution, job control language
libraries, job control language
mode, ESCORT

Program preparation

Programming aids, workstation

Program-to-program communications facility
(P-T-P)

Punch characteristics, card

Public data network support

Q

QBL file

QGBL command

Reference

4.8.1
4.8.3
4.8.3
4.8.3

2.4.2

5.2.l
1.2
3.2

5.6
13.3.2

See language
processors.

1.2

11.2
5.2.2
5.2.4
6.7

SPERRY UNIV AC
SYSTEM 80

Page Term

4-9
4-12 RBP (remote batch processing)
4-11
4-12 Reader characteristics, card

2-4 Record formats
description
printer

5-3 workstation
1-4
3-3 Remote capability, workstation

Resident diagnostics
5-22
13-13 Restore, disk

RPG II
editor
language processor

1-2
RTH (remote terminal handler)

11-3 RTP (remote terminal processor)
5-6
5-8 RUN command
6-7

Run library, temporary (YRUN)
See job/program
preparation. Running a job, job control language

4.12.3 4-37

13.2.2 13-11

Table B-2 B-2

13.l 13-4

14.2 14-3

5.2.6 5-11

Index 8

Reference Page •
R

13.1 13-3

Table 3-1 B-1

4.4 4-3
4.8.2 4-11
4.12.2 4-37

2.4.l 2-4

11.4 11-5

9.2 9-2

5.4 5-16
6.4 6-4

13.l 13-4

13.1 13-3 • 1.2 1-3

5.2.4 5-8

5.2.3 5-7

•

UP-8870 Rev. 1 SPERRY UNIV AC
SYSTEM 80

Index 9

UP-8870 Rev. 1 SPERRY UNIV AC
SYSTEM 80

Index 10

UP-8870 Rev. 1

• Term

v
Verification programs, system installation

Vertical format buffers, printer

VOL statement

Volume

VTOC (volume table of contents)

• w
WAMS 80 (wholesale applications

management system)

Workstation
additional features
auxiliary printer
description
formats/file conventions
menus
mode
operation
remote capability
screen bypass
security maintenance
usage

Workstation characteristics

Workstation formats/file conventions
additional programming aids
data organization
file organization
record formats

•

Reference

8.2

4.8.3

5.2.1

4.4

4.10

12.7

2.4
2.4.2
2.1
4.12
2.4.4
2.2
2.2
2.4.1
2.4.3
2.4.5
2.3

Table B-6

4.12.3
Fig. 4-3
4.12.l
4.12.2

SPERRY UNIV AC
SYSTEM 80

Page Term

8-2 X.25 interface

4-12
8419 disk copy, 1/0 utilities

5-5

4-3

4-27

12-8

2-4
2-4
2-1
4-36
2-5
2-2
2-1
2-4
2-5
2-5
2-2

B-6

4-37
4-4
4-36
4-37

Index 11

Reference Page

x
13.1 13-4

9.3 9-2

•

•

•

I
I
I
I .,

C>

•

•

I
I
I
I
I
I
I
I
I
I
I

USER COMMENT SHEET

Your comments concerning this document will be welcomed by Sperry Univac for use in improving
subsequent editions.

Please note: This form is not intended to be used as an order blank.

(Document Title)

(Document No.) (Revision No.) (Update No.)

Comments:

From:

(Name of User)

(Business Address)

Fold on dotted lines, and mail. (No postage stamp is necessary if mailed in the U.S.A.)
Thank you for your cooperation

FOLD

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 21 BLUE BELL, PA.

POSTAGE WILL BE PAID BY ADDRESSEE

SPERRY UNIVAC

ATIN.: SYSTEMS PUBLICATIONS

P.O. BOX 500

BLUE BELL, PENNSYLVANIA 19424

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

-----:::~---
FOLD

•

•

•

.;
c

"'

·~ :::l (.)

•

ST='E~Y+ UNIVAC

USER COMMENT SHEET

Your comments concerning this document will be welcomed by Sperry Univac for use in improving
subsequent editions.

Please note: This form is not intended to be used as an order blank.

(Document Title)

(Document No.) (Revision No.) (Update No.)

Comments:

From:

(Name of User)

(Business Address)

Fold on dotted lines, and mail. (No postage stamp is necessary if mailed in the U.S.A.)
Thank you for your cooperation

FOLD

I II II I

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 21 BLUE BELL, PA.

POSTAGE WILL BE PAID BY ADDRESSEE

SPERRY UNIVAC

ATTN.: SYSTEMS PUBLICATIONS

P.O. BOX 500

BLUE BELL, PENNSYLVANIA 19424

NO POSTAGE
NECESSARY

IF MAILED
INTHE

UNITED STATES

.·.
I
I •
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I

-~~---!
FOLD I

I
I
I
I

1 •

:.

•

•

I
I .
I 51-'E~Y+UNIVAC
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

USER COMMENT SHEET

Your comments concerning this document will be welcomed by Sperry Univac for use in improving
subsequent editions.

Please note: This form is not intended to be used as an order blank.

(Document Title)

(Document No.) (Revision No.) (Update No.)

Comments:

.,; I
.:

From:

(Name of User)

(Business Address)

Fold on dotted lines, and mail. (No postage stamp is necessary if mailed in the U.S.A.)
Thank you for your cooperation

FOLD

I II II I

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 21 BLUE BELL, PA.

POSTAGE WILL BE PAID BY ADDRESSEE

SPERRY UNIVAC

ATTN.: SYSTEMS PUBLICATIONS

P.O. BOX 500

BLUE BELL, PENNSYLVANIA 19424

FOLD

NO POSTAGE
NECESSARY
IF MAILED

INTHE
UNITED STATES

•

