
•

•

1974 American
Standard COBOL
Programming
Reference Manual

This Library Memo announces the release and availability of Update F to the OS/3 1974 American Standard COBOL
Programming Reference Manual, UP-8613 Rev. 2.

This manual is a standard library item (SLI). It is part of the standard library provided automatically with the purchase of
the product.

This manual presents the rules for writing COBOL programs compiled by the 1974 American National Standard COBOL
compiler and executed under the control of the Unisys Operating System/3 (OS/3). The COBOL language described in
this manual conforms to the specifications of the American National Standard COBOL, X3.23-1974 and supports Federal
Information Processing Standards (FIPS) Publication 21-1.

The update for release 12.0 provides an additional parameter (SUBCK) for the PARAM job control statement, which you
can use to specify that the compiler is to generate code to check for subscript or out-of-range conditions. Several
diagnostic messages have been added and changed as well.

All other changes in this document are expanded descriptions applicable to items present in the software prior to this
release.

Copies of Update F are now available. You can order the update only, or the complete manual with all updates, through
your local Unisys representative. To receive only the update, order UP-8613 Rev. 2-F. To receive the complete manual,
order UP-8613 Rev. 2.

Mailing Lists
MBZ, MCZ, MMZ, Ml8, M18U,
M19, M20, M21, M28U, M29U,
M75, M75U, M76, and M76U

Mailing Lists
MBOO, MBW, and MB13
(49 pages plus Memo)

Library Memo for
UP-8613 Rev. 2-F

October 1988

UC Hcv

I

·-

•

•

• l Operating System/3 (OS/3) I
''··~··•·•=···•••·.••• ·····••••·•='° %°'-•=••••••••••••"•••••••·••••"·••···• ·=••••••••=w•••~

1974 American National Standard I
COBOL
Programmer Reference

This Library Memo announces the release and availability of Update D to "SPERRY® Operating
System/3 (OS/3) 1974 American National Standard COBOL Programmer Reference", UP-8613 Rev. 2.

This manual presents the rules for writing COBOL programs compiled by the 1974 American National Standard
COBOL compiler and executed under the control of the operating system. The COBOL language described in
this manual conforms to the specifications of the American National Standard COBOL, X3. 23-19 7 4 and
supports Federal Information Processing Standards Publication 21-1 .

This update for release 10.0 provides:

• An additional parameter for the IMSCOD option of the COBOL PARAM statement. You can now select
IMSCOD=REN to compile reentrant action programs.

• A new compiler diagnostics message concerning reentrant action programs.

•· New information about compiler parameter specification and work area usage for reentrant action
programs.

•

All other changes are technical corrections or clarifications that apply to American National Standard COBOL
prior to this release.

Copies of Update D are now available. You can order the update only or the complete manual with the update
through your local Sperry representative. To receive only the update, order UP-8613 Rev. 2-D. To receive the
complete manual, order UP-8613 Rev. 2 .

Mailing Lists
BZ, CZ, MZ, 18, 18U,
19, 19U, 20, 21, 21U,
28U, 29U, 75, 75U,
76 and 76U

Mailing Lists AFO 1, AOO, A 13,
BOO, MBW, and B13

(Package D to UP-8613 Rev. 2,
81 pages plus Memo)

Library Memo for
UP-8613 Rev. 2-D

May 1986

•

•

•

•

•

SPERRY UNIVAC OS/3
197 4 AMERICAN NATIONAL
ST AND ARD COBOL

Programmer Reference

This Library Memo announces the release and availability of Updating Package C to "SPERRY®
Operating System/3 (OS/3) 1974 American National Standard COBOL Programmer Reference",
UP-8613 Rev. 2.

This manual presents the rules for writing COBOL programs to be compiled by the 197 4 American National
Standard COBOL compiler and executed under the control of the operating system. The COBOL language
described in this manual conforms to the specifications of the American National Standard COBOL,
X3.23-1974 and supports Federal Information Processing Standard Publication 21-1.

This update includes information on the compilation summary listing and updates the procedure call statement
for the job control stream requirements (Appendix H).

All other changes are corrections or expanded descriptions applicable to features present in 197 4 American
National Standard COBOL to the 8.2 release.

Copies of Updating Package C are now available for requ1s1t1oning. Either the updating package only or the
complete manuals with the updating package may be requisitioned by your local Sperry representative. To
receive only the updating package, order UP-8613 Rev. 2-C. To receive the complete manual, order UP-8613
Rev. 2.

Mailing Lists
BZ, CZ, MZ, 18, 18U,
19, 19U, 20, 20U, 21,
21 U, 28U, 29U, 75,
75U, 76 and 76U

Rave i

ailing Lists AOO, A 13, BOO, and B 13
(Package C to UP-8613 Rev. 2,)
41 pages plus Memo)

Library Memo for
UP-8613 Rev.2-C

November, 1984

•

•

•

•

•

•

197 4 American National Standard
COBOL

Programmer Reference

This Library Memo announces the release and availability of Updating Package B to "SPERRY
Operating System/3 (OS/3) 1974 American National Standard COBOL Programmer Reference",
UP-8613 Rev. 2.

This update for release 8.2 provides the following:

• Additional names for the SOURCE-COMPUTER and OBJECT -COMPUTER paragraphs

• An additional name for the SPECIAL-NAMES paragraph

• Information about size of COMPUTATIONAL items in a PICTURE character string

• Additional information on the procedure division storage map listings

• Additional reserved words

All other changes are technical corrections or clarifications applicable to American National Standard COBOL
prior to release 8.2.

Copies of Updating Package B are now available for requisitioning. Either the updating package only or the
complete manual with the updating package may be requisitioned by your local Sperry representative. To
receive only the updating package, order UP-8613 Rev. 2-B. To receive the complete manual, order UP-8613
Rev. 2.

Mailing Lists
BZ, CZ and MZ

Mailing Lists AOO, A13, BOO, B13, 18,
18U, 19, 19U, 20, 20U, 21, 21U, 28U,
29U, 75, 75U, 76 and 76U

(Package B to UP-8613 Rev. 2,
82 pages plus Memo)

Library Memo for
UP-8613 Rev. 2-B

UDl-251 Rav. 11/83 February, 1984

•

•

•

• ~/

vo•-251 Re~. -:1173

District cf Coq'i~itbun
Adlninistra t1on

1974 American National
Standard COBOL

Programmer Reference

This Library Memo announces the release and availability of Updating Package A to "SPERRY UNIVAC Operating
System/3 (OS/3) 1974 American National Standard COBOL Programmer Reference", UP-8613 Rev. 2.

This update incorporates additional information about 1974 American National Standard COBOL for release 8.0:

• RESERVE clause

• OCCURS DEPENDING clause

All other changes are corrections or expanded descriptions applicable to features present in 1974 American National
Standard COBOL prior to the 8.0 release.

Copies of Updating Package A are now available for requisitioning. Either the updating package only or the complete
manual with the updating package may be requisitioned by your local Sperry Univac representative. To receive only
the updating package, order UP-8613 Rev. 2-A. To receive the complete manual, order UP-8613 Rev. 2.

Mailing Lists
BZ, CZ and MZ

Mailing Lists AOO,A13,BOO,B13,18,18U,
19, 19U,20,20U,21,21U,28U,29U,75,75U,
76 and 76U

(Package A to UP-8613 Rev. 2,
39 pages plus Memo)

Library Memo for
UP-8613 Rev. 2-A

RELEASE DATE:

January, 1983

•

•

• ----------------

U01-25l Rev, 3173

1974 American National
Standard COBOL

Programmer Reference

This Library Memo announces the release and availability of "SPERRY UNIVAC® Operating System/3 (OS/3) 1974
American National Standard COBOL Programmer Reference", UP-8613 Rev. 2.

This revision describes the following 1974 ANS COBOL features for release 8.0:

• Multiworkstation support through ACCEPT and DI SPLAY statements

• Error file processing

• ERR FIL parameter

• COM 10 parameter

• SYSTEM LINES options of the LINAGE clause

All other changes are corrections or expanded descriptions applicable to features present in 1974 ANS COBOL
before the 8.0 release.

Destruction Notice: If you are going to OS/3 release 8.0, use this revision and destroy all previous copies. If you are
not going to OS/3 release 8.0, retain the copy you are now using and store this revision for future use.

Copies of UP-8613 Rev. 1 and UP-8613 Rev. 1-A will be available for 6 months after the release of 8.0. Should you
need additional copies of this edition, you should order them within 90 days of the release of 8.0. When ordering the
previous edition of a manual, be sure to identify the exact revision and update packages desired and indicate that
they are needed to support an earlier release.

Additional copies may be ordered by your local Sperry Univac representative.

Mailing Lists
BZ, CZ and MZ

Mailing Lists AOO, A13, BOO, B13, 18, 18U, 19, 19U, 20,
20U, 21, 21U, 28U, 29U, 75, 75U, 76, and 76U

(Cover and 411 pages)

Library Memo for
UP-8613 Rev. 2

•

•

•

•

•

•

•
• UNISYS

•

•

OS/3
1974 American
Standard COBOL
Programming
Reference Manual

Copyright© 1987 Unisys Corporation
All Rights Reserved
Unisys is a trademark of Unisys Corporation.
Previous Title: OS/3 1974 American Standard

COBOL Programmer Reference

Relative to Release
Level 10.0

Priced Item

August 1987

Printed in U S America
UP-8613 Rev. 2

NO WARRANTIES OF ANY NATURE ARE EXTENDED BY THE
DOCUMENT. Any product and related material disclosed herein are only
furnished pursuant and subject to the terms and conditions of a duly
executed Program Product License or Agreement to purchase or lease
equipment. The only warranties made by Unisys, if any, with respect to
the products described in this document are set forth in such License or
Agreement. Unisys cannot accept any financial or other responsibility that
may be the result of your use of the information in this document or
software material, including direct, indirect, special or consequential
damages.

You should be very careful to ensure that the use of this information
and/or software material complies with the laws, rules, and regulations of
the jurisdictions with respect to which it is used.

The information contained herein is subject to change without notice.
Revisions may be issued to advise of such changes and/or additions.

FASTRAND, +SPERRY, SPERRY+UNIVAC, SPERRY, SPERRY UNIVAC,
UNISCOPE, UNISERVO, UNIS, UNIVAC, and + are registered trademarks
of Unisys Corporation. ESCORT, PAGEWRITER, PIXIE, PC/IT, PC/HT,
PC/microlT, SPERRYLINK, and USERNET are additional trademarks of
Unisys Corporation. MAPPER is a registered trademark and service mark
of Unisys Corporation. CUSTOMCARE is a service mark of Unisys
Corporation.

•

•

•

UP-8613 Rev. 2

•
Part/Section

Page
Number

Cover

Title Page/Disclaimer

PSS 1, 2

Acknowledgment 1

Preface 1
2

Contents 1
2

3.4
5
6 thru 8

9
10 thru 12

1 Tab Breaker
1 thru 5

2 Tab Breaker

1 thru 9
10
11 thru 17

3 Tab Breaker
1, 2

4 Tab Breaker
1, 2
3,4

4a

5
6
Sa
7
8
9
10
11
12, 13

14

15 thru 17
18, 19
20
20a
21

22
23,24
25,26

5 Tab Breaker
1 thru 7

8 •

SPERRY UNIVAC OS/3
1974 AMERICAN NATIONAL STANDARD COBOL

PAGE STATUS SUMMARY

ISSUE:
RELEASE LEVEL:

Update F - UP-8613 Rev. 2
12.0 Forward

Update
Level

Part/Section
Page Update

Number Level
Part/Section

E 5 (cont) 9, 10 F 9
11 D

E 12 thru 15 Orig.

16 B

F 17, 18 D 10
19 thru 22 Orig.

Orig. 23, 24 B
25 thru 28 Orig.

B 29 A 11

Orig. 30, 31 Orig.

32 B

Orig. 32a c
D 33 thru 36 B 12
Orig. 37 thru 62 Orig.
F
Orig. 6 Tab Breaker D 13
c 1 thru 20 Orig.
D 21 c

22 B 14
D 22a D
Orig. 23 D

24 c
D 25,26 Orig. Appendix A
Orig. 27,28 F
c 29 thru 32 Orig.
Orig. 33 A

34 F Appendix B
D 35 thru 37 Orig.
Orig. 38 thru 40 A

41 thru 60 Orig.
D 61,62 F Appendix C
Orig. 63 thru 114 Orig.
F 115 B
F" 116 A
c 117 thru 120 Orig.
B
c 7 Tab Breaker D
F 1 thru 3 Orig.
c 4 F
Orig. 5 F"
c
A 8 Tab Breaker D
Orig. 1,2 Orig.

B 3,4 F
Orig. 5,6 Orig.

c 7 D
A 8 Orig. Appendix D
A 9 B
Orig. 10 Orig. Appendix E
A 11 B
Orig. 12 thru 14 Orig. Appendix F
F 15 B

16, 17 Orig.
D
Orig .
D Appendix G

PSS 1
Update F

Page Update
Number Level

Tab Breaker D
1 thru 4 Orig.

5 D

Tab Breaker D
1 thru 3 Orig.
4, 5 F

Tab Breaker D
1 c
2 Orig.

Tab Breaker D
1 thru 5 Orig.

Tab Breaker D
1 thru 4 Orig.

Tab Breaker D
1 thru 7 Orig.

Tab Breaker D
1, 2 Orig.

3.4 F
5 D

1 c
2 B
3 F

1 thru 10 Orig.
11, 12 F
12a F"
13 thru 15 Orig.
16 F
17 thru 20 Orig.
21, 22 F
22a F"
23 thru 26 Orig.
27, 28 D
29 thru 31 Orig.
32 F
32a F"
33 B
34 F

1, 2 Orig.

1 thru 4 Orig.

1, 2 Orig.
3 A
4, 5 B

6 Orig.

1 thru 3 D
4 5 D

"New pages

All the technical changes are denoted by an arrow {==>) in the margin. A downward pointing arrow (JJ) next to a line indicates that
technical changes begin at this line and continue until an upward pointing arrow (11) is found. A horizontal arrow {==>) pointing to a line
indicates a technical change in only that line. A horizontal arrow located between two consecutive lines indicates technical changes in both
lines or deletions.

UP-8613 Rev. 2

Part/Section
Page

Number

Appendix H 1, 2

3, 4

5 thru 16

Appendix I 1,2

3

Appendix J 1 thru 4

Appendix K 1

2
3, 4

5

6
7 thru 9

10

11, 12

13

14

Glossary 1 thru 17

18 thru 20

20a

21 thru 23

Index Tab Breaker

1, 2

3

4

5

6

7

8

9
10
11

User Comments

*New pages

SPERRY UNIVAC OS/3
1974 AMERICAN NATIONAL STANDARD COBOL

PAGE STATUS SUMMARY

ISSUE:
RELEASE LEVEL:

Update F - UP-8613 Rev. 2
12.0 Forward

Update

Level

c
F
Orig.

B

F

Orig.

B

c
B

c
D
B

D

B

D

D

Orig.

D
D*

Orig.

D
Orig.

A

Orig.

D

Orig.

B
F
B

F
Orig.

Part/Section
Page

Number

Update

Level
Part/Section

Page

Number

PSS 2
Update F

Update

Level

All the technical changes are denoted by an arrow (==) in the margin. A downward pointing arrow (J).) next to a line indicates that
technical changes begin at this line and continue until an upward pointing arrow (1t) is found. A horizontal arrow {=>) pointing to a line
indicates a technical change in only that line. A horizontal arrow located between two consecutive lines indicates technical changes in both
lines or deletions.

•

•

•

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 Acknowledgment 1
1974 AMERICAN NATIONAL STANDARD COBOL

Acknowledgment

The following acknowledgment is reproduced from the American National Standard COBOL, X3.23-1974 as
requested in that publication:

"Any organization interested in reproducing the COBOL standard and specifications in whole or in part, using
ideas from this document as the basis for an instruction manual or for any other purpose, is free to do so.
However, all such organizations are requested to reproduce the following acknowledgment paragraphs in their
entirety as part of the preface to any such publication (any organization using a short passage from this
document, such as in a book review, is requested to mention "COBOL" in acknowledgment of the source, but
need not quote the acknowledgment):

"COBOL is an industry language and is not the property of any company or group of companies, or of any
organization or group of organizations.

"No warranty, expressed or implied, is made by any contributor or by the CODASYL Programming Language
Committee as to the accuracy and functioning of the programming system and language. Moreover, no
responsibility is assumed by any contributor, or by the committee, in connection therewith.

"The authors and copyright holders of the copyrighted material used herein

FLOW-MATIC (trademark of Sperry Corporation), Programming for the UNIVAC® I and II, Data Automation
Systems copyrighted 1958, 1959, by Sperry Corporation; IBM Commercial Translator Form No. F 28-8013,
copyrighted 1959 by IBM; FACT, DSI 27 A5260-2760, copyrighted 1960 by Minneapolis-Honeywell

have specifically authorized the use of this material in whole or in part, in the COBOL specifications. Such
authorization extends to the reproduction and use of COBOL specifications in programming manuals or similar
publications."

•

•

•

•

•

•

UP-8613 Rev. 2 SPERRY UNIVAC OS/3
1974 AMERICAN NATIONAL STANDARD COBOL

Preface 1
Update B

Preface

This manual presents the rules for writing COBOL programs to be compiled by the 1974 American National
Standard COBOL compiler and executed under the control of the operating system. The COBOL language
described in this manual conforms to the specifications of the American National Standard COBOL, X3.23-1974
and supports Federal Information Processing Standards Publication 21-1 (Appendix D).

Sections 1 and 2 explain the overall structure of the language and introduce the language elements. Section 1
describes the structure of the language and the rules for its use; Section 2 provides the general specifications of
the language.

Sections 3 through 6 provide a detailed description of the four divisions of the language: identification division,
environment division, data division, and procedure division .

Sections 7 through 14 summarize the following COBOL features: table handling, file processing techniques,
sort/merge, segmentation, library usage, debugging language, interprogram communications, and
communication facility.

The appendixes provide the following information:

• Appendixes A. B, and C provide compiler options, listings, and diagnostics, respectively.

• Appendix D explains the Federal Information Processing Standard (FIPS PUB 21-1).

• Appendix E describes intermediate results in arithmetic operations.

• Appendix F describes the non-English language feature.

• Appendix G describes IMS COBOL action programs.

• Appendix H describes job control stream requirements for invoking the COBL74 compiler.

• Appendix I provides a listing of reserved words.

• Appendix J contains the character sets.

• Appendix K provides a tutorial description of the PICTURE clause.

Other current OS/3 publications, referenced in this manual. will be necessary or useful to the programmer
working with COBOL.

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 Preface 2
1974 AMERICAN NATIONAL STANDARD COBOL

• System 80

Document name and number

Consolidated data management macro language
user guide/programmer reference, UP-8826

System service programs user guide, UP-8841

• Series 90 systems (90/25, 30, 30 B, and 40)

Document name and number

Data management user guide, UP-8068

System service programs user guide, UP-8062

• Both System 80 and Series 90 Systems

Document name and number

System messages programmer/operator reference,
UP-8076

Job control user guide, UP-8065

COBOL editor user guide/
programmer reference, UP-9106

General editor user guide/
programmer reference, UP-8828

IMS action programming in COBOL
and basic assembly language (BAL)
user guide, UP-9207

IMS system support functions user guide,
UP-8364

ICAM utilities user guide, UP-8552

Description

Describes the data management
macroinstructions

Describes various system utilities,
such as librarian, linkage editor, etc

Description

Describes the data management
macroinstructions

Describes various system utilities, such as
librarian, linkage editor, etc

Description

Lists and describes the system console
messages issued during comilation
by COBOL

Provides information on the format and
usage of job control statements and
linkage editor job control procedure call
(jproc)

Describes the use of the COBOL
editor to create and update
COBOL source code

Describes the general editor,
including its use in entering
COBOL source code

Describes IMS action programming

Describes IMS utilities and recovery

Describes the communication message
control system (CMCS)

A glossary of terms relating to the language follows the appendixes.

•

•

•

•

•

•

UP-8613 Rev. 2 SPERRY UNIV AC OS/3
1974 AMERICAN NATIONAL STANDARD COBOL

PAGE STATUS SUMMARY

ACKNOWLEDGMENT

PREFACE

CONTENTS

1. INTRODUCTION

2.

1.1.

1.2.
1.2.1.
1.2.2.

1.3.
1.3.1.
1.3.2.
1.3.3.

SCOPE

STRUCTURE OF COBOL LANGUAGE
Module Overview
Extensions to COBOL

SYMBOLS. RULES. AND NOTATIONS USED IN THIS MANUAL
Format
Rules
Elements

GENERAL SPECIFICATIONS

2.1. COBOL CHARACTER SET

2.2. SEPARATORS

2.3. CHARACTER-STRINGS
2.3.1. COBOL Words
2.3.1 .1. User-Defined Words

2.3.1.2. System Names
2.3.1 .3 . Reserved Words
2.3.2. Literals
2.3.3. PICTURE Character-String
2.3.4. Comment-Entries

Contents 1

Contents

1-1

1-1
1-2
1-3

1-4
1-4
1-4
1-4

2-1

2-4

2-5
2-5
2-5
2-6
2-6
2-7
2-11
2-11

UP~8613 Rev. 2 SPERRY UNIV AC OS/3
1974 AMERICAN NATIONAL STANDARD COBOL

2.4. CLASSES OF DATA

2.5. STANDARD ALIGNMENT RULES

2.6. UNIQUENESS OF REFERENCE
2.6.1. Qualification
2.6.2. Subscripting
2.6.3. Indexing
2.6.4. Identifier
2.6.5. Condition-Name

2.7. REFERENCE FORMAT

3. IDENTIFICATION DIVISION

3.1. GENERAL

3.2. STRUCTURE

4. ENVIRONMENT DIVISION

4.1. GENERAL

4.2. STRUCTURE

4.3. CONFIGURATION SECTION
4.3.1. SOURCE-COMPUTER Paragraph
4.3.2. OBJECT-COMPUTER Paragraph
4.3.3. SPECIAL-NAMES Paragraph

4.4. INPUT-OUTPUT SECTION
4.4.1. FILE-CONTROL Paragraph
4.4.2. 1-0-CONTROL Paragraph

5. DATA DIVISION

5.1. GENERAL

5.2. STRUCTURE
5.2.1. Heading and Sections
5.2.2. Entries
5.2.2.1. Level-Indicators
5.2.2.2. Level-Numbers
5.2.2.3. Special Level-Numbers

5.3. FILE SECTION
5.3.1. File Description
5.3.1.1. BLOCK CONTAINS Clause
5.3.1.2. RECORD CONTAINS Clause
5.3.1.3. LABEL RECORDS Clause
5.3.1.4. VALUE OF Clause

Contents 2
Update D

2-11

2-12

2-12
2-12
2-13
2-13
2-14
2-14

2-15

3-1

3-1

4-1

4-1

4-2
4-3
4-3
4-4

4-15
4-15
4-23

5-1

5-1
5-1
5-2
5-2
5-2
5-3

5-4
5-4
5-6
5-10
5-11
5-12

•

•

•

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 Contents 3
1974 AMERICAN NATIONAL STANDARD COBOL

• 5.3.1.5. DATA RECORDS Clause 5-12
5.3.1.6. LINAGE Clause 5-13
5.3.1.7. CODE-SET Clause 5-17
5.3.2. Sort/Merge File Description 5-17
5.3.3. Data Description 5-18
5.3.3.1. Level-Number 5-21
5.3.3.2. Data-Name/FILLER Clause 5-21
5.3.3.3. REDEFINES Clause 5-22
5.3.3.4. PICTURE Clause 5-23
5.3.3.5. USAGE Clause 5-33
5.3.3.6. SIGN Clause 5-36
5.3.3.7. OCCURS Clause 5-38
5.3.3.8. SYNCHRONIZED Clause 5-41
5.3.3.9. JUSTIFIED Clause 5-44
5.3.3.10. BLANK WHEN ZERO Clause 5-45
5.3.3.11. VALUE Clause 5-45
5.3.3.12. RENAMES Clause 5-48

5.4. WORKING-STORAGE SECTION 5-49
5.4.1. 77-Level Description Entry 5-50
5.4.2. Record Description Entry 5-51

5.5. LINKAGE SECTION 5-51
5.5.1. 77-Level Description Entry 5-52
5.5.2. Record Description Entry 5-53

• 5.6. COMMUNICATION SECTION 5-53
5.6.1. Input Communication Description 5-53
5.6.2. Output Communication Description 5-57

6. PROCEDURE DIVISION

6.1. GENERAL 6-1
6.1.1. Declaratives 6-1
6.1.2. Procedures 6-1
6.1.3. Procedure Division Structure 6-2
6.1.3.1. Procedure Division Header 6-2
6.1.3.2. Procedure Division Body 6-3

6.2. CATEGORIES OF STATEMENTS 6-4
6.2.1. Imperative Statements 6-4
6.2.2. Conditional Statements 6-5
6.2.3. Compiler-Directing Statements 6-6

6.3. ARITHMETIC EXPRESSIONS 6-6
6.3.1. Arithmetic Operators 6-6
6.3.2. Formation and Evaluation Rules 6-7

6.4. CONDITIONAL EXPRESSIONS 6-8
6.4.1. Simple Conditions 6-8

• 6.4.1.1 . Relation Condition 6-9
6.4.1.1.1. Comparison of Numeric Operands 6-10
6.4.1.1.2. Comparison of Nonnumeric Operands 6-11

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 Contents 4
1974 AMERICAN NATIONAL STANDARD COBOL

6.4.1.1.3. Comparisons Involving Index-Names or Index Data Items 6-11 • 6.4.1.2. Class Condition 6-12
6.4.1.3. Condition-Name Condition 6-12
6.4.1.4. Switch-Status Condition 6-13
6.4.1.5. Sign Condition 6-13
6.4.2. Complex Conditions 6-13
6.4.2.1. Negated Simple Conditions 6-14
6.4.2.2. Combined and Negated Combined Conditions 6-15
6.4.2.3. Abbreviated Combined Relation Conditions 6-16
6.4.3. Condition Evaluation Rules 6-17

6.5. COMMON PHRASES AND GENERAL RULES FOR STATEMENT FORMATS 6-17
6.5.1. The ROUNDED Phrase 6-17
6.5.2. The SIZE ERROR Phrase 6-18
6.5.3. The CORRESPONDING Phrase 6-18
6.5.4. The Arithmetic Statements 6-19
6.5.5. Overlapping Operands 6-20
6.5.6. Multiple Results in Arithmetic Statements 6-20
6.5.7. WHEN-COMPILED Special Register 6-20

6.6. COBOL VERBS 6-20
6.6.1. ACCEPT Statement 6-20
6.6.2. ADD Statement 6-25
6.6.3. ALTER Statement 6-26
6.6.4. CALL Statement 6-27
6.6.5. CANCEL Statement 6-28 • 6.6.6. CLOSE Statement 6-29
6.6.7. COMPUTE Statement 6-33
6.6.8. COPY Statement 6-33
6.6.9. DELETE Statement 6-36
6.6.10. DISABLE Statement 6-37
6.6.11. DISPLAY Statement 6-38
6.6.12. DIVIDE Statement 6-41
6.6.13. ENABLE Statement 6-43
6.6.14. EXHIBIT Statement 6-44
6.6.15. EXIT Statement 6-44
6.6.16. GO TO Statement 6-45
6.6.17. IF Statement 6-46
6.6.18. INSPECT Statement 6-47
6.6.19. MERGE Statement 6-53
6.6.20. MOVE Statement 6-56
6.6.21. MULTIPLY Statement 6-59
6.6.22. ON Statement 6-60
6.6.23. OPEN Statement 6-60
6.6.24. PERFORM Statement 6-64
6.6.25. READ Statement 6-72
6.6.26. RECEIVE Statement 6-76
6.6.27. RELEASE Statement 6-77
6.6.28. RETURN Statement 6-78
6.6.29. REWRITE Statement 6-79
6.6.30. SEARCH Statement 6-81
6.6.31. SEND Statement 6-85 • 6.6.32. SET Statement 6-88
6.6.33. SORT Statement 6-90

UP-8613 Rev. 2 SPERRY UNIVAC OS/3
1974 AMERICAN NATIONAL STANDARD COBOL

• 6.6.34. START Statement

6.6.35. STOP Statement
6.6.36. STRING Statement

6.6.37. SUBTRACT Statement

6.6.38. TRACE Statement

6.6.39. TRANSFORM Statement

6.6.40. UNSTRING Statement

6.6.41. USE Statement

6.6.42. WRITE Statement

6.6.43. *DEBUG Statement

7. TABLE HANDLING SUMMARY

7.1. GENERAL

7.2. LANGUAGE CONCEPTS

7.2.1. Table Definition

7.2.2. References to Table Items

7.2.2.1. Subscripting

7.2.2.2. Indexing

7.2.2.3. Range Checking

7.3. DATA DIVISION CONSIDERATIONS

• 7.4. PROCEDURE DIVISION CONSIDERATIONS

7.4.1. Table-Handling Statements

7.4.2. Comparisons Involving Index-Name or Index Data Items

7.4.3. Overlapping Operands in a SET Statement

8. FILE PROCESSING SUMMARY

8.1. GENERAL

8.2. LANGUAGE CONCEPTS

8.2.1. File Organization and Access Methods

8.2.1.1. Sequential Organization

8.2.1.2. Relative Organization

8.2.1.3. Indexed Organization

8.2.1.4. SAM Organization

8.2.1.5. ISAM Organization

8.2.2. Current Record Pointer

8.2.3. 1/0 Status
8.2.4. The AT END Condition

8.2.5. The INVALID KEY Condition

8.2.6. LINAGE-COUNTER

8.3. SEQUENTIAL FILE PROCESSING

8.3.1. Level Characteristics

8.3.2. Clauses and Statements for Sequential File Processing

• 8.3.2.1. Environment Division

8.3.2.2. Data Division

8.3.2.3. Procedure Division

8.3.3. Printer-Destined Files

8.3.4. Multivolume Sequential Files

Contents 5
Update F

6-94
6-96
6-97
6-99
6-100
6-101
6-103
6-106
6-114
6-119

7-1

7-1
7-1
7-2
7-3
7-3
7-4

7-4

7-4
7-4
7-5
7-5

8-1

8-1
8-1
8-1
8-1
8-2
8-2
8-3
8-3
8-3
8-5
8-5
8-5

8-5
8-5
8-6
8-6
8-6
8-7
8-8
8-8

UP-8613 Rev. 2 SPERRY UNIV AC OS/3 Contents 6
1974 AMERICAN NATIONAL STANDARD COBOL

8.4. RELATIVE FILE PROCESSING 8-8 • 8.4.1. Level Characteristics 8-8
8.4.2. Clause and Statements for Relative File Processing 8-8
8.4.2.1. Environment Division 8-8
8.4.2.2. Data Division 8-9
8.4.2.3. Procedure Division 8-10

8.5. INDEXED FILE PROCESSING 8-11
8.5.1. Level Characteristics 8-11
8.5.2. Clauses and Statements for Indexed File Processing 8-11
8.5.2.1. Environment Division 8-11
8.5.2.2. Data Division 8-12
8.5.2.3. Procedure Division 8-12

8.6. SAM FILE PROCESSING 8-13
8.6.1. Environment Division 8-13
8.6.2. Data Division 8-14
8.6.3. Procedure Division 8-14
8.6.4. Multivolume SAM Files 8-15

8.7. ISAM FILE PROCESSING 8-15
8.7.1. Environment Division 8-15
8.7.2. Data Division 8-16
8.7.3. Procedure Division 8-16

9. SORT /MERGE SUMMARY • 9.1. GENERAL 9-1

9.2. LANGUAGE CONCEPTS 9-2
9.2.1. Relationship with File Processing Facility 9-2
9.2.2. Sort Special Registers 9-2

9.3. ENVIRONMENT DIVISION CONSIDERATIONS 9-2
9.3.1. File Control Entry 9-3
9.3.2. 1-0-CONTROL Paragraph 9-3

9.4. DATA DIVISION CONSIDERATIONS 9-3

9.5. PROCEDURE DIVISION CONSIDERATIONS 9-4
9.5.1. RELEASE Statement 9-4
9.5.2. RETURN Statement 9-4
9.5.3. SORT Statement 9-4
9.5.4. MERGE Statement 9-5

9.6. OBJECT TIME SUBROUTINE SORT /MERGE MAIN STORAGE REQUIREMENTS 9-5

•

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 Contents 7
1974 AMERICAN NATIONAL STANDARD COBOL

• 10.1. GENERAL 10-1

10.2. ORGANIZATION 10-1
10.2.1. Fixed Portion 10-1
10.2.2. Independent Segments 10-2

10.3. SEGMENTATION CLASSIFICATION 10-2

10.4. SEGMENTATION CONTROL 10-3

10.5. STRUCTURE OF PROGRAM SEGMENTS 10-3
10.5.1. Segment Numbers 10-3
10.5.2. SEGMENT-LIMIT Clause 10-3
10.5.3. Object Module Naming Convention 10-3
10.5.4. Linkage Editor Control Statement Considerations 10-4

10.6. COBOL VERBS AFFECTED BY SEGMENTATION 10-4
10.6.1. ALTER Statement 10-4
10.6.2. PERFORM Statement 10-4
10.6.3. SORT Statement 10-5
10.6.4. MERGE Statement 10-5

11 . LIBRARY SUMMARY

• 11.1. GENERAL 11-1

11.2. COPY STATEMENT 11-1

11.3. SOURCE PROGRAM CORRECTIONS DURING COMPILATION 11-2

12. DEBUGGING LANGUAGE SUMMARY

12.1. GENERAL 12-1

12.2. LANGUAGE CONCEPTS 12-1
12.2.1. DEBUG-ITEM Register 12-2
12.2.2. Compile-Time Switch 12-2
12.2.3. Object-Time Switch 12-2

12.3. ENVIRONMENT DIVISION CONSIDERATIONS 12-2
12.3.1. WITH DEBUGGING MODE Clause 12-2

12.4. PROCEDURE DIVISION CONSIDERATIONS 12-3
12.4.1. USE FOR DEBUGGING Statement 12-3
12.4.2. Debugging Lines 12-3
12.4.3. The Extended Debugging Facility 12-3
12.4.3.1. ON Statement 12-3
12.4.3.2. EXHIBIT Statement 12-4
12.4.3.3. TRACE Statement 12-4

• 12.4.3.4. The Debugging Packet (*DEBUG) 12-4

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 Contents 8
1974 AMERICAN NATIONAL STANDARD COBOL

13. INTERPROGRAM COMMUNICATION SUMMARY • 13.1. GENERAL 13-1
13.1.1. Transfer of Control 13-1
13.1.2. Access to Data Items 13-2
13.1.3. Level Characteristics 13-2

13.2. DATA DIVISION CONSIDERATIONS 13-2
13.2.1. Noncontiguous Linkage Storage 13-2
13.2.2. Linkage Records 13-3
13.2.3. Initial Values 13-3

13.3. PROCEDURE DIVISION CONSIDERATIONS 13-3
13.3.1. Procedure Division Header 13-3
13.3.2. CALL Statement 13-3
13.3.3. CANCEL Statement 13-3
13.3.4. EXIT PROGRAM Statement 13-4

13.4. OBJECT PROGRAM EXECUTION CONSIDERATIONS 13-4

14. COMMUNICATION SUMMARY

14.1. GENERAL 14-1

14.2. MESSAGE CONTROL SYSTEM 14-1 • 14.3. COBOL OBJECT PROGRAM 14-2

14.4. RELATIONSHIP OF COBOL PROGRAM TO MCS AND
COMMUNICATION DEVICES 14-2

14.4.1. Invoking the COBOL Object Program 14-3
14.4.1.1. Scheduled Initiation 14-3
14.4.1.2. MCS Invocation 14-4
14.4.1.3. Determining the Method of Invocation 14-4

14.5. CONCEPT OF MESSAGES AND MESSAGE SEGMENTS 14-4

14.6. CONCEPT OF QUEUES 14-5
14.6.1. Enabling and Disabling Logical Connectives 14-5
14.6.2. Enqueueing and Dequeueing Methods 14-5
14.6.3. Queue Hierarchy 14-5

14.7. MESSAGE CONTROL SYSTEM GENERATION 14-7

APPENDIXES

A. COMPILER OPTIONS

A.1. GENERAL A-1 • A.2. COMPILER OPTION SPECIFICATION A-1

A.3. COMPILER OPTION SPECIFICATION CONSISTENCY CHECK A-4

UP-8613 Rev. 2 SPERRY UNIV AC OS/3
1974 AMERICAN NATIONAL STANDARD COBOL

• B. COMPILER LISTINGS

B.1. COMPILATION SUMMARY LISTING

B.2. DIAGNOSTIC LISTING

B.3. SOURCE LISTING

B.4. OBJECT CODE LISTING

B.5. LOCATOR/MAP/CROSS-REFERENCE LISTINGS

B.6. ALPHABETICALLY ORDERED CROSS-REFERENCE LISTING

B.7. OBJECT CODE MAP LISTING

c. COMPILER DIAGNOSTICS

C.1. GENERAL

C.2. DIAGNOSTIC LISTING

D. FEDERAL INFORMATION PROCESSING STANDARD

• FLAGGING FACILITY

D.1. FIPS PUB 21-1 COBOL LEVELS

D.2. FLAGGING OPTIONS

E. OBJECT PROGRAM PROCESSING CONSIDERATIONS

E.1. INTERMEDIATE RESULTS IN ARITHMETIC OPERATIONS
E.1.1. Floating-Point Operands
E.1.2. ADD and SUBTRACT Statements
E.1.3. MULTIPLY Statement
E.1.4. DIVIDE Statement

E.2. EXPRESSIONS

F. NON-ENGLISH LANGUAGE FEATURE

F.1. FUNCTION

F.2. LANGUAGE CONCEPTS
F.2.1. Control Division

F.2.2. CLASS-NAME Clause
F.2.3. Extended Class Condition • F.3. COMPOSITE LANGUAGE FORMAT

Contents 9
Update C .

B-1

B-1

B-1

B-2

B-2

B-3

B-3

C-1

C-1

D-1

D-2

E-1
E-2
E-2
E-2
E-2

E-3

F-1

F-1
F--1
F-2
F-2

F-2

UP-8613 Rev. 2 SPERRY UNIV AC OS/3
1974 AMERICAN NATIONAL STANDARD COBOL

F.4. CONTROL DIVISION

F.5. ENVIRONMENT DIVISION
F.5.1. CLASS-NAME Clause

F.6. PROCEDURE DIVISION
F.6.1. Extended Class Condition

F.7. NON-ENGLISH TEXT UTILITY PROGRAM

G. IMS ACTION PROGRAMS

G.1. GENERAL

G.2. ACTION PROGRAMS

G.3. COMPILER PARAMETER SPECIFICATION AND CONFIGURATION
SPECIFICATIONS

G.4. REENTRANT ACTION PROGRAM WORK AREA USAGE

H. JOB CONTROL STREAM REQUIREMENTS

H.1. GENERAL

H.2. PROCEDURE CALL STATEMENT

H.3. COMPILER STATUS INDICATORS

H.4. DATA DEFINITION (DD) JOB CONTROL STATEMENT KEYWORD
PARAMETERS

I. RESERVED WORDS

J. CHARACTER SETS

K. PICTURE CLAUSE

K.1. GENERAL

K.2. USE OF THE PICTURE CLAUSE AND ITS SYMBOLS

K.3. DESCRIPTIONS AND EXAMPLES OF PICTURE CLAUSE SYMBOLS

GLOSSARY

INDEX

Contents 10
Update D

F-3

F-4
F-4

F-6
F-6

F-6

G-1

G-1

G-4

G-4

H-1

H-1

H-15

H-16

K-1

K-1

K-2

•

•

•

•

•

•

UP-8613 Rev. 2 SPERRY UNIVAC OS/3
1974 AMERICAN NATIONAL STANDARD COBOL

USER COMMENT SHEET

FIGURES

3-1.

4-1.
4-4.

5-1.
5-2.
5-3.
5-4.
5-5.
5-6.

6-1.
6-2.
6-3.
6-4.
6-5.

Sample Identification Division Entries

Sample Environment Division Entries
Compiler Default Value of the RESERVE Clause

Sample File Section Entries
Logical Page Format for Format 1 LINAGE Clause
Sample Sort File Description Entries
Sample Working-Storage Section Entries
Sample Linkage Section Entries
Sample Communication Section Entries

Sample Procedure Division
Flowchart for the VARYING Phrase Having One Condition
Flowchart for the VARYING Phrase Having Two Conditions
Flowchart for the VARYING Phrase Having Three Conditions
Flowchart for a Format 1 Search Operation Containing Two WHEN Phrases

14-1. COBOL Communication Environment
14-2. Hierarchy of Queues

G-1. IMS Work Area Usage

TABLES

1-1.

4-1.
4-2.
4-3.

5-1.
5-2.
5-3.
5-4.
5-5.
5-6.
5-7.
5-8.
5-9.
5-10.
5-11.
5-12 .

COBOL Language Processing Levels

Status Key Values for Workstations
Effects of CONNECT-FREE Reporting
Effects of FUNCTION-KEYS Input

File Description Entry Clauses
Block Size Calculations for Tape, Card Reader, Card Punch, and Printer Files
Block Size Calculations for Mass Storage SAM and ISAM Files
Block Size Calculations for Mass Storage Sequential, Relative, and Indexed Files

Data Description Entry Clauses
Class and Category of Elementary and Group Data Items
Type of Editing Permissible for Each Data Category
Results Produced by Editing Sign Control Symbols
PICTURE Character Precedence Chart
Alignment Boundaries for Various Type Elementary Items
Communication Status Key Condition

Error Key Codes

Contents 11
Update D

3-2

4-2
4-20

5-6
5-16
5-18
5-50
5-52
5-62

6-4
6-67
6-69
6-70
6-83

14-3
14-6

G-5

1-1

4-8
4-9
4-9

5-5
5-8
5-9
5-10
5-20
5-24
5-29
5-30
5-32a
5-41
5-60
5-61

UP-8613 Rev. 2 SPERRY UNIVAC OS/3
1974 AMERICAN NATIONAL STANDARD COBOL

6-1. Permissible Symbol Combinations in Arithmetic Expressions
6-2. Permissible Comparisons for Relation Conditions
6-3. Logical Operators and the Resultant Values
6-4. Combinations of Conditions, Logical Operators, and Parentheses
6-5. Relationship of Categories of Files and the Options of the CLOSE Statement
6-6. Permissible MOVE Statement Data Transfers
6-7. Permissible Input/Output Statements for Each OPEN Mode
6-8. Valid Uses of the Format 1 SET Statement
6-9. Combination of FROM and TO Options in a TRANSFORM Statement

8-1. Status Key Values and Meanings

12-1. Debug Conditions and Contents of DEBUG-item

A-1. Options of the PARAM Statement
A-2. Parameter Consistency Checks

D-1. Federal Standard COBOL Levels

~ G-1. IMS Configuration

J-1. Correspondence between EBCDIC, ASCll-8, and Punched Card Codes

Contents 12
Update D

6-8
6-9
6-14
6-15
6-30
6-58
6-62
6-90
6-102

8-4

12-5

A-2
A-5

D-1

G-4

J-2

•

•

•

•

•

•

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 1-1
1974 AMERICAN NATIONAL STANDARD COBOL

1 . Introduction

1.1. SCOPE

This manual describes the 1974 American National Standard COBOL compiler operating in both the Series 90
environment (90/25, 90/30, 90/30 B, and 90/40) and the System 80 environment. Keeping this in mind, two of
the Sperry Univac extensions that enhance the capabilities of COBOL apply only to the Series 90 environment.
They are the sequential access method (SAM) and the indexed sequential access method (ISAM). When these
extensions appear throughout the manual, they are footnoted to act as a reminder. All other extensions are
supported in both environments, as well as all other language features.

1.2. STRUCTURE OF COBOL LANGUAGE

COBOL is structured into a nucleus and a number of functional processing modules. The nucleus contains language
elements for internal processing. The functional processing modules are: table handling, sequential 1-0, relative 1-0,
indexed 1-0, sort/merge, segmentation, library, debug, interprogram communications, and communication.

Each module contains either two or three levels. Those with three levels contain a null set attheir lowest level, a low
processing level (level 1), and a high processing level (level 2). In all cases, lower levels are subsets of higher levels
within the same module. Table 1-1 lists all modules and levels implemented on the operating system.

Table 1-1. COBOL Language Processing Levels

Module Level

Nucleus 2
Table handling 2
Sequential 1-0 2
Relative 1-0 2
Indexed 1-0 2
Sort/merge 2
Segmentation 2
Library 2
Debug 2
lnterprogram communication 2
Communication 2

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 1-2
1974 AMERICAN NATIONAL STANDARD COBOL

1 .2.1. Module Overview

• Nucleus

The nucleus contains the language elements for internal processing. This module is divided into two levels.
The Level 1 elements perform basic internal operations, i.e., elementary options of the various clauses and
verbs. Level 2 provides more extensive and sophisticated internal processing capabilities.

• Table handling

The table handling module contains the language elements necessary for:

1 . the definition of tables;

2. the identification, manipulation, and use of indexes; and

3. reference to the items within tables.

This module is divided into two levels. Level 1 provides the ability to define fixed-length tables of up to three
dimensions and to refer to items within them using either a subscript or an index. Level 2 provides for the
definition of variable-length tables. In addition, facilities for serial and nonserial lookup are provided by the
SEARCH verb and its attendant data division clauses.

• Sequential 1-0

The sequential· 1-0 module contains the language elements necessary for the definition and access of
sequentially organized external files. The module is divided into two levels. Level 1 contains the basic facilities
for the definition and access of sequential files and for the specification of checkpoints. Level 2 contains more
complete facilities for defining and accessing these files.

• Relative 1-0

The relative 1-0 module provides the capability of defining and accessing mass storage files in which records
are identified by relative record numbers. This module contains a null set as its lowest level and two processing
levels. Level 1 provides basic facilities. Level 2 provides more complete facilities, including the capability of
accessing the file both randomly and sequentially in the same COBOL program.

• Indexed 1-0

The indexed 1-0 module provides the capability of defining mass storage files in which records are identified by
the value of a key and accessed through an index. This module contains a null set as its lowest level, and two
processing levels. Level 1 provides basic facilities. Level 2 provides more complete facilities, including
alternate keys, and the capability of accessing the file both randomly and sequentially in the same COBOL
program.

• Sort/Merge

•

The sort/merge module allows for the inclusion ofone or more sorts in a COBOL program and consists of a null
set and two processing levels. Level 1 contains facilities to sort a single file only; Level 2 provides extended
sorting capabilities, including a merge facility.

Segmentation

The segmentation module provides for the overlaying at object time of procedure division sections. This
module consists of a null set and two processing levels. Level 1 provides for section segment-numbers and
fixed segment limits; Level 2 adds the capability for varying the segment limit.

•

•

•

•

•

•

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 1-3

•

1974 AMERICAN NATIONAL STANDARD COBOL

Library

The library module consists of a null set and two processing levels. It provides for the inclusion into a program
of predefined COBOL text. Level 1 contains the basic COPY verb; Level 2 adds the REPLACING phrase.

• Debug

The debug module provides a means by which the user can specify his debugging algorithm - the conditions
under which data or procedure items are monitored during execution of the program. It consists of a null set
and two processing levels. Level 1 provides a basic debugging capability, including the ability to specify
selective or full paragraph monitoring. Level 2 provides the full COBOL debugging capability.

• lnterprogram Communication

•

The interprogram communication module provides a facility by which a program can communicate with one or
more other programs. This module consists of a null set and two processing levels. Level 1 provides a capability
to transfer control to another program known at compile time and the ability for both programs to have access
to certain common data items. Level 2 adds the ability to transfer control to a program not identified at compile
time as well as the ability to determine the availability of object time main storage for the called program. The
high level also provides the capability for the release of main storage areas occupied by called programs.

Communication

The communication module provides the ability to access, process, and create messages or portions of
messages, and to communicate through a COBOL message control system with local and remote
communication devices. This module consists of a null set and two processing levels. Level 1 provides basic
facilities to send or receive complete messages. Level 2 provides a more sophisticated facility including the
capability to send or receive segments of a message.

r.---------------------------------------1
11 .2.2. Extensions to COBOL I
I I
I Sperry Univac has provided a number of extensions to the standard COBOL language. These extensions are I
I indicated in the manual by dashed-line boxes. The extended language elements are as follows: I
I Apostrophe as quotation mark I
I USAGE COMPUTATIONAL-n I
I DISPLAY floating-point data item I
I Floating point literal I
I Hexadecimal literal I
I . CALL USING argument I

IF THEN statement
TRANSFORM statement

ISAM* file processing facility
Extended debugging facility
ON statement
WHEN-COMPILED special register
Non-English language feature
APPLY clauses
SAM* file processing facility
Extended RERUN option
Standard user tape labels
Sort special registers
Assign clause in SPECIAL-NAMES
Format 4 of ACCEPT statement
Format 2 of DISPLAY statement

..__ ----- - - - - -- --- --
*Applies only to 90125, 90130, 90130 8 and 90140 systems

- - - - - - - - - - - - - - - _1

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 1-4
1974 AMERICAN NATIONAL STANDARD COBOL

1.3. SYMBOLS, RULES, AND NOTATIONS USED IN THIS MANUAL

1.3.1. Format

A format is the specific arrangement of the elements of a clause or a statement. A clause or a statement consists of
elements as defined in 1.3.3. Throughout this document. a format is shown adjacent to information defining the
clause or statement. When more than one specific arrangement is permitted, the format is separated into numbered
formats. Clauses must be written in the sequence given except where specifically stated in the rules associated with
a given format. (Clauses that are optional must appear in the sequence shown if they are used.) Applications.
requirements, or restrictions are shown as rules. Throughout this document, specifications unique to Level 2 of a

.... 112.~~~e are enclosed inlboxes.land Sperry Univac extensions to the COBOL language are enclosed in dashed-line
L.~~e~J(1.2.2). Default values throughout this document are indicated by shading the 11 I

1.3.2. Rules

Rules are used to define or clarify:

1. the syntax or arrangement of words or elements in a larger structure, such as a clause or statement; or

2. the meaning or relationship of meanings of an element or set of elements in a statement and the effect of the
statement on compilation or execution.

1.3.3. Elements

Elements that make up a clause or a statement consist of uppercase and lowercase words, level-numbers, brackets,

braces, connectives, and special characters.

• Words

All underlined uppercase words are called key words and are required when the functions of which they are a
part are used. Uppercase words that are not underlined are optional to the user and may or may not be present
in the source program. Uppercase words, whether underlined or not, must be spelled correctly.

Lowercase words, in a general format, are generic terms used to represent COBOL words, literals, PICTURE
character-strings, comment-entries, or a complete syntactical entry that must be supplied by the user. Where
generic terms are repeated in a general format, a number or letter appendage to the term serves to identify that

term for explanation or discussion.

• Level-Numbers

When specific level-numbers appear in data description entry formats, those specific level-numbers are
required when such entries are used in a COBOL program. In this document, the form 01, 02, ... , 09 is used to
indicate level-numbers 1 through 9. (See 5.2.2.2.)

• Brackets and Braces

When a portion of a general format is enclosed in brackets, [],that portion may be included or omitted at the
user's choice. Braces, { }, enclosing a portion of a general format means a selection of one of the options
contained within the braces must be made. In both cases, a choice is indicated by vertically stacking the
possibilities. When brackets or braces enclose a portion of a format, but only one possibility is shown, the
function of the brackets or braces is to delimit that portion of the format to which a following ellipsis applies. If
an option within braces contains only reserved words that are not key words, then the option is a default option
(implicitly selected unless one of the other options is explicitly indicated).

•

•

•

•

•

•

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 1-5

•

1974 AMERICAN NATIONAL STANDARD COBOL

Ellipsis

In text. the ellipsis (... } may show the omission of a portion of a source program. This meaning becomes
apparent in context.

In the general formats, the ellipsis represents the position at which repetition may occur at the user's option.
The portion of the format that may be repeated is determined as follows:

Given ... in a clause or statement format, scanning right to left. determine the] or l immediately to the left ofthe
... ; continue scanning right to left and determine the logically matching [or { ; the ... applies to the words
between the determined pair of delimiters.

• Format Punctuation

•

The punctuation characters comma and semicolon are shown in some formats. They are optional and may be
included or omitted by the user. In the source program, these two punctuation characters are interchangeable
and either one may be used anywhere one of them is shown in the formats. Neither one may appear
immediately preceding the first clause of an entry or paragraph.

If desired, a semicolon or comma may be used between statements in the procedure division.

Paragraphs within the identification and procedure divisions, and the entries within the environment and data
divisions, must be terminated by the separator period.

Use of Certain Special Characters in Formats

The characters + - > < =, when appearing in formats, although not underlined, are required when such
formats are used .

•

•

•

•

•

•

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 2-1
1974 AMERICAN NATIONAL STANDARD COBOL

2. General Specifications

2.1. COBOL CHARACTER SET

The most basic and indivisible unit of the language is the character. The set of 51 characters used to form COBOL
character-strings and separators includes the letters of the alphabet. digits, and special characters. For nonnumeric
literals, comment-entries, and comment lines, the character set is expanded to include the entire computer
character set.

The COBOL character set consists of the following characters:

0,1 9

A,B, ... ,Z

Blank or space (written on coding form as /::,. or a blank space)

Period (decimal point)

< Less than

Left parenthesis

+ Plus sign

$ Currency sign

* Asterisk

Right parenthesis

Semicolon

Minus sign or hyphen

Comma (decimal point)

> Greater than

Equal sign

UP-8613 Rev. 2 SPERRY UNIVAC OS/3
1974 AMERICAN NATIONAL STANDARD COBOL

"lor -;1 Quotation mark i; __ J

I Slash (stroke, virgule)

The collation sequence for these characters is given in Appendix J.

These characters may be used as follows:

• Characters Used for Words

A COBOL word is a sequence of not more than 30 of the following characters:

0,1, ... ,9

A,B, ... ,Z

-(hyphen)

A word may neither begin nor end with a hyphen, or contain a space.

• Characters Used for Punctuation

COBOL punctuation characters are:

,---,
"1or '1 ._ __ J

Left parenthesis

Right parenthesis

Blank or space (written on coding form as !::::. or a blank space)

Period

Comma

Semicolon

Quotation mark

Equal sign

• Characters Used in Relational Expressions

The COBOL characters used to represent relational operators are:

Equals

> Greater than

< Less than

2-2

•

•

•

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 2-3
1974 AMERICAN NATIONAL STANDARD COBOL

• • Characters Used in Arithmetic Expressions

The characters used in arithmetic expressions are:

+ Plus sign (addition)

Minus sign (subtraction)

* Asterisk (multiplication)

I Slash (division)

** Two asterisks (exponentiation)

• Characters Used in Editing

The characters used in editing are:

B Blank or space

0 Zero

+ Plus sign

Minus sign

• CR Credit

DB Debit

z Zero suppress

* Check protect

$ Currency sign

Comma (decimal point)

Period (decimal point)

I Stroke (virgule, slash)

•

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 2-4
1974 AMERICAN NATIONAL STANDARD COBOL

2.2. SEPARATORS

A separator is a string of one or more punctuation characters. The separators and the rules for their formation are as
follows:

1. Blank or space

a. Anywhere a space is used as a separator, more than one space may be used.

b. The space may precede all separators except:

• As specified by reference format rules (2.7)

• The separator closing quotation mark - In this case, a preceding space is considered as part of the
nonnumeric literal and not as a separator.

c. The space may follow any separator except the opening quotation mark. In this case, a following space is
considered as part of the nonnumeric literal and not as a separator.

2. Comma, semicolon, and period immediately followed by a space.

3.

These separators may appear in a COBOL source program only where explicitly permitted by the general
formats, by format punctuation rules (1 .3.3), by statement and sentence structure definitions (6.2), or by
reference format rules (2.7).

Right and left parentheses

Parentheses may appear only in balanced pairs of left and right parentheses delimiting subscripts, indexes,
arithmetic expressions, or conditions.

4. Quotation mark

An opening quotation mark must be immediately preceded by a space or left parenthesis; a closing quotation
mark must be immediately followed by one of the separators space, comma, semicolon, period, or right
parenthesis.

Quotation marks may appear only in balanced pairs delimiting nonnumeric literals except when the literal is
continued (2.7).

5. Pseudo-text delimiters

The delimiter consists of two contiguous equal signs. An opening pseudo-text delimiter must be immediately
preceded by a space; a closing pseudo-text delimiter must be immediately followed by one of the separators:
space, comma, semicolon, or period.

Pseudo-text delimiters may appear only in balanced pairs delimiting pseudo-text and may not be continued
across two lines.

Any punctuation character that appears as part of the specification of a PICTURE character-string or numeric literal
is not considered as a punctuation character, but rather as a symbol used in the specification of that PICTURE
character-string or numeric literal. PICTURE character-strings are delimited only by the separators space, comma,
semicolon, or period.

The rules established for the formation of separators do not apply to the characters that comprise the contents of
nonnumeric literals, comment-entries, or comment lines.

•

•

•

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 2-5
1974 AMERICAN NATIONAL STANDARD COBOL

• 2.3. CHARACTER-STRINGS

•

•

A character-string is a character or a sequence of contiguous characters that forms a COBOL word, a literal, a
PICTURE character-string, or a comment-entry. A character-string is delimited by separators.

2.3.1. COBOL Words

A COBOL word is a character-string of not more than 30 characters that forms a user-defined word, a system-name,
or a reserved word. Within a given source program, these classes form disjoint sets; a COBOL word may belong to
one and only one of these classes.

2.3.1.1. User-Defined Words

A user-defined word is a COBOL word that must be supplied by the user to satisfy the format of a clause or statement.
Each character of a user-defined word is selected from the set of characters A through Z, 0 through 9, and-, except
that the hyphen may not appear as the first or last character.

There are 15 types of user-defined words:

alphabet-name
cd-name
condition-name
data-name
file-name
index-name
level-number
library-name
mnemonic-name
paragraph-name
program-name
record-name
section-name
segment-number
text-name

With the exception of paragraph-name, section-name, level-number, and segment-number, all user-defined words
must contain at least one alphabetic character. Segment-numbers and level-numbers need not be unique; a given
specification of a segment-number or level-number may be identical to any other segment-number or level-number
and may even be identical to a paragraph-name or section-name.

The user-defined words condition-name, mnemonic-name, paragraph-name, and section-name are defined in the
following paragraphs. The definition for all other user-defined words may be found in the glossary.

• Condition-name

A condition-name is assigned to a specific value, set of values, or range of values within a complete set of
values that a data item may assume. The data item itself is called a conditional variable.

Condition-names may be defined in the data division or in the SPECIAL-NAMES paragraph within the
environment division where a condition-name must be assigned to the ON STATUS or OFF STATUS, or both, of
SYSSWCH[-n].

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 2-6
1974 AMERICAN NATIONAL STANDARD COBOL

A condition-name is used only in conditions as an abbreviation for the relation condition; this relation condition
posits that the associated conditional variable is equal to one of the set of values to which that condition-name
is assigned.

• Mnemonic-name

A mnemonic-name assigns a user-defined word to an implementor-name. These associations are established
in the SPECIAL-NAMES paragraph of the environment division.

• Paragraph-name

A paragraph-name names a paragraph in the procedure division. Paragraph-names are equivalent if, and only
if, they are composed of the same sequence of the same number of digits or characters.

• Section-name

A section-name names a section in the procedure division. Section-names are equivalent if, and only if, they
are composed of the same sequence of the same number of digits or characters.

2.3.1.2. System Names

A system name is a COBOL word used to communicate with the environment. There are two types of system names -
computer-name and implementor-name. These names are defined in the format or rules of the language element in
which they appear.

2.3.1.3. Reserved Words

A reserved word is one of a specified list of COBOL words that may be used in COBOL source programs but must not
appear in the programs as user-defined words or system names. Reserved words can only be used as specified in the
formats. (See Appendix I.)

There are six types of reserved words:

• Key Words

A key word is a word that is required when the format in which the word appears is used in a source program.
Within each format, such words are uppercase and underlined.

Key words are of three types:

1 . Verbs, such as ADD, READ, and WRITE

2. Required words that appear in statement and entry formats

3. Words with a specific functional meaning, such as NEGATIVE and SECTION

• Optional Words

Within each format, uppercase words that are not underlined are optional and may appear at the user's option
to improve readability. The presence or absence of an optional word does not alter the semantics ofthe COBOL
program in which it appears.

•

•

•

•

•

•

UP-8613 Rev. 2 SPERRY UNIV AC OS/3 2-7

•

1974 AMERICAN NATIONAL STANDARD COBOL

Connectives

There are three types of connectives:

1. Qualifier connectives that are used to associate a data-name, a condition-name, a text-name, or a
paragraph-name with its qualifier: OF, IN

2. Series connectives that link two or more consecutive operands: , (separator comma) or ; (separator
semicolon)

3. Logical connectives that are used in the formation of conditions: AND, OR

• Special Registers

Special registers are compiler-generated storage areas used to store information produced when using
specific COBOL features. These special registers are named with reserved words as follows: LINAGE
COUNTER (5.3.1.6), DEBUG-ITEM (12.2.1), WHEN-COMPILED (6.5.7), SORT-FILE-SIZE (9.2.2), and SORT
MODE-SIZE (9.2.2).

• Figurative Constants

Certain reserved words are used to name and reference specific constant values as explained in 2.2.

• Special-Character Words

The arithmetic operators and relation characters listed in 2.1 are reserved words .

2.3.2. Literals

A literal is a character-string whose value is implied by:

1. an ordered set of characters of which the literal is composed; or

2. specification of a reserved word that references a figurative constant.

,..----------.
Literals are nonnumeric, numeric, or:._h!~~~~~~~:

• Nonnumeric Literals

A nonnumeric literal is a character-string delimited on both ends by quotation marks and consisting of any
allowable character in the EBCDIC character set. The compiler allows for nonnumeric literals of 1 through 132
characters in length. The value of a nonnumeric literal in the object program is the string of characters itself,
except:

the delimiting quotation marks are excluded; and

each embedded pair of contiguous quotation marks represents a single quotation mark character .

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 2-8
1974 AMERICAN NATIONAL STANDARD COBOL

However, the double quote character (")appearing within a nonnumeric literal bounded by single quotes is
treated as part of the value of the nonnumeric literal rather than a separator.

Example:

Coding Result

'THIS IS "EDITED" OUTPUT' THIS IS "EDITED" OUTPUT

The single quote character(') appearing within a nonnumeric literal bounded by the double quote characters(")
is also treated as part of the nonnumeric literal.

Example:

Coding Result

'THIS IS 'EDITED' OUTPUT" THIS IS 'EDITED' OUTPUT

To represent a single quote character within a nonnumeric literal bounded by single quotes, two contiguous
single quotes must be used.

Example:

Coding Result

THIS IS "EDITED" OUTPUT' THIS IS 'EDITED' OUTPUT

To represent a double quote character within a nonnumeric literal bounded by double quotes, two contiguous
double quote characters must be used.

Example:

Coding Result

'THIS IS ""EDITED"" OUTPUT" THIS IS "EDITED" OUTPUT

All other punctuation characters are part of the value of the nonnumeric literal rather than separators; all
nonnumeric literals are category alphanumeric. (See 5.3.3.4, the PICTURE clause.)

• Numeric Literals

r--------,
There are two types of numeric literals - fixed-point and•floating-point.1

L---------'

1. Fixed-Point

A fixed-point literal is a character-string whose characters are selected from the digits 0 through 9. the
plus sign, the minus sign, and the decimal point. A fixed-point literal consists of 1 through 18 digits in
length. The rules for the formation of fixed-point literals are as follows:

a. A literal must contain at least one digit.

b. A literal must not contain more than one sign character. If a sign used, it must appear as the
leftmost character of the literal. If the literal is unsigned, the literal is positive.

•

•

•

•

•

•

UP-8613 Rev. 2

c.

SPERRY UNIVAC OS/3 2-9
1974 AMERICAN NATIONAL STANDARD COBOL

A literal must not contain more than one decimal point. The decimal point may appear anywhere
within the literal except as the rightmost character. If the literal contains no decimal point, the
literal is an integer.

If a literal conforms to the rules for the formation of numeric literals, but is enclosed in quotation
marks, it is a nonnumeric literal and it is treated as such by the compiler.

d. The value of a numeric literal is the algebraic quantity represented by the characters in the numeric
literal. Every numeric literal is category numeric. The size of a numeric literal in standard data
format characters is equal to the number of digits specified by the user.

r-------------------------------------~
I 2. Floating-Point

A floating-point literal is a numeric literal whose potential range of value is too great for fixed-point
representation.

A floating-point literal must have the following format:

[±]mantissa E [±] exponent

where:

±
The two plus or minus signs are optional.

mantissa
Consists of 1 to 16 digits with a required decimal point; the decimal point may appear in any
position.

exponent
Consists of the symbol E, followed by an optional sign, followed by one or two digits. (A zero
exponent may be written as 0 or 00.)

The literal must contain no spaces. The exponent must appear immediately to the right ofthe mantissa.

The signs are the only optional characters in the format. An unsigned mantissa or exponent is assumed
to be positive.

The value of the literal is the product of the mantissa and 10 raised to the power given by the exponent.

Example:

+ 1.5E - 2 = 1.5 x 10-2

The magnitude of the number represented by a floating-point literal must not exceed .72 x 1076 . The

L
smallest nonzero value that can be represented by a floating-point literal is ±5.4 x 10-79 .

------------------------------------~

UP-8613 Rev. 2 SPERRY UNIVAC OS/3
1974 AMERICAN NATIONAL STANDARD COBOL

2-10
Update C

r--~

• Hexadecimal Literals

A hexadecimal literal is a string of hexadecimal digits bounded by single or double quotation marks
and immediately preceded by an equal sign.

Examples:

="'023C ..

='023C'

The string may include any hexadecimal digits (0 through 9 and A through F). The length of a
hexadecimal literal ranges from 1 through 30 hexadecimal digits. If the literal consists of an odd
number of hexadecimal digits, a leading hexadecimal zero is provided by the compiler to make the

literal an even number of digits.

A hexadecimal literal may be used anywhere a nonnumeric literal is permitted. In this manual, a
hexadecimal literal is considered a nonnumeric literal.

A hexadecimal literal may be broken in such a way that part of it appears on a continuation line.
Continuation of a hexadecimal literal follows the rules for continuation of a COBOL word.

Example:

BAKER.
MOVE ='"13A
4 C 8 .. TO F I E L D • I

__ _J
L--- -- -- - - -

• Figurative Constant Values

Figurative constant values are generated by the compiler and referenced through the use of reserved words.
These words must not be bounded by quotation marks when used as figurative constants. The singular and
plural forms of figurative constants are equivalent and may be used interchangeably.

The figurative constant values and the reserved words used to reference them are as follows:

ZERO
ZEROS
ZEROES

SPACE

I SPACES I
HIGH-VALUE

I HIGH-VALUES I
LOW-VALUE

I LOW-VALUES I

QUOTE

I QUOTES I

Represents the value 0, or one or more of the character
0, depending on context

Represents one or more of the character space from the
computer character set

Represents one or more of the character that has the highest

ordinal position in the program collating sequence

Represents one or more of the character that has the lowest
ordinal position in the program collating sequence

Represents one or more of the character " (not the character '). The word
QUOTE or QUOTES cannot be used in place of a quotation mark
in a source program to bound a non numeric literal. Thus, QUOTE ABO QUOTE is
incorrect as a way of stating the nonnumeric literal "ABO".

•

•

•

•

•

•

UP-8613 Rev. 2

I ALL literal I

SPERRY UNIV AC OS/3 2-11
1974 AMERICAN NATIONAL STANDARD COBOL

Represents one or more of the string of characters compris-
ing the literal. The literal must be either a nonnumeric literal or a figurative
constant other than ALL literal. When a figurative constant is used, the word ALL
is redundant and is used for readability only.

When a figurative constant represents a string of one or more characters, the length ofthe string is determined
by the compiler from context according to the following rules:

1 . When a figurative constant is associated with another data item, as when the figurative constant is
moved to or compared with another data item, the string of characters specified by the figurative
constant is repeated, character by character on the right, until the size of the resultant string is equal to
the size in characters of the associated data item. This is done prior to and independent ofthe application
of any JUSTIFIED clause that may be associated with the data item.

2. When a figurative constant is not associated with another data item, as when the figurative constant
appears in a DISPLAY, STRING, STOP, or UNSTRING statement, the length ofthe string is one character.

A figurative constant may be used whenever a literal appears in a format, except that whenever the literal is
restricted to numeric characters, the only figurative constant permitted is ZERO (ZEROS, ZEROES).

When the figurative constants HIGH-VALUE(S) or LOW-VALUE(S) are used in the source program, the actual
character associated with each figurative constant depends upon the program collating sequence specified.
(See 4.3.2, the OBJECT-COMPUTER paragraph, and 4.3.3, the SPECIAL-NAMES paragraph.)

Each reserved word used to reference a figurative constant value is a distinct character-string with the
exception of the construction ALL literal, which is composed of two distinct character-strings.

2.3.3. PICTURE Character-String

A PICTURE character-string consists of certain combinations of characters in the COBOL character set used as
symbols. See 5.3.3.4, the PICTURE clause, for the discussion of the PICTURE character-string and for the rules that
govern its use.

Any punctuation character that appears as part of the specification of a PICTURE character-string is not considered
as a punctuation character, but rather as a symbol used in the specification of that PICTURE character-string.

2.3.4. Comment-Entries

A comment-entry is an entry in the identification division that may be any combination of characters from the

computer's character set.

2.4. CLASSES OF DATA

In COBOL, data is classified into three classes: numeric, alphabetic, and alphanumeric. The three classes are
further divided into five categories: numeric, alphabetic, numeric edited, alphanumeric edited, and alphanumeric
(without editing).

Every elementary item except the index data item belongs to one of the classes and to one of the categories. The
class of a group item is treated as alphanumeric regardless of the class of elementary items subordinate to the
group item. For further information on classes of data, refer to the PICTURE clause.

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 2-12
1974 AMERICAN NATIONAL STANDARD COBOL

2.5. STANDARD ALIGNMENT RULES

The standard rules for positioning data within an elementary item depend on the category of the receiving item.
These rules are:

1. If the receiving data item is described as numeric:

a. The data is aligned by decimal point and is moved to the receiving character positions with zero fill or
truncation on either end as required.

b. When an assumed decimal point is not explicitly specified, the data item is treated as if it had an
assumed decimal point immediately following its rightmost character and is aligned as in rule 1 a.

2. If the receiving data item is a numeric edited data item, the data moved to the edited data item is aligned by
decimal point with zero fill or truncation at either end as required within the receiving character positions
of the data item, except where editing requirements cause replacement of the leading zeros.

3. If the receiving data item is alphanumeric (other than a numeric edited data item), alphanumeric edited or
alphabetic, the sending data is moved to the receiving character positions and aligned at the leftmost
character position in the data item with space fill or truncation to the right, as required.

If the JUSTIFIED clause is specified for the receiving item, these standard rules are modified as described in
5.3.3.9, the JUSTIFIED clause.

2.6. UNIQUENESS OF REFERENCE

2.6.1. Qualification

Every user-defined name that specifies an element in a COBOL source program must be unique, either by having
no other name with the identical spelling and hyphenation, or by having the name within a hierarchy of names
such that references to the name can be made unique by mentioning one or more of the higher levels of the
hierarchy. The higher levels are called qualifiers and the process that specifies uniqueness is called qualification.
Enough qualification must be mentioned to make the name unique; however, it may not be necessary to mention
all levels of the hierarchy. Within the data division, all data-names used for qualification must be associated with
a level indicator or a level-number. Therefore, two identical data-names must not appear as entries subordinate
to a group item unless they are capable of being made unique through qualification. In the procedure division,
two identical paragraph-names must not appear in the same section.

In the hierarchy of qualification, names associated with a level indicator are the most significant, then those
names associated with level-number 01, then names associated with level-number 02, ... , 49. A section-name is
the highest (and the only) qualifier available for a paragraph-name. Thus, the most significant name in the
hierarchy must be unique and cannot be qualified. Subscripted or indexed data-names and conditional variables,
as well as procedure-names and data-names, may be made unique by qualification. The name of a conditional
variable can be used as a qualifier for any of its condition-names. Regardless of the available qualification, no

name can be both a data-name and procedure-name.

Qualification is performed by following a data-name, a condition-name, or a paragraph-name, by one or more
phrases composed of a qualifier preceded by IN or OF. IN and OF are logically equivalent.

•

•

•

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 2-13
1974 AMERICAN NATIONAL STANDARD COBOL

• The general formats for qualification are:

•

•

Format 1:

j d a t a - n am e - 1 l [j o
1

Nfl d a t a - n am e - 2] ...
1condition-name5 1 5

Format 2:

paragraph-name D~:~ sect ion-name]

The rules for qualification are as follows:

1. Each qualifier must be of a successively higher level and within the same hierarchy as the name it
qualifies.

2. The same name must not appear at two levels in a hierarchy.

3. If a data-name or a condition-name is assigned to more than one data item in a source program, the data
name or condition-name must be qualified each time it is referred to in the procedure, environment, and
data divisions (except in the REDEFINES clause, where qualification is unnecessary and must not be used).

4. A paragraph-name must not be duplicated within a section. When a paragraph-name is qualified by a
section-name, the word SECTION must not appear. A paragraph-name need not be qualified when
referenced within the same section.

5. A data-name cannot be subscripted when it is being used as a qualifier.

6. A name can be qualified even though it does not need qualifications; if there is more than one combination
of qualifiers that ensures uniqueness, then any such set can be used. The complete set of qualifiers for a
data-name must not be the same as any partial set of qualifiers for another data-name.

7. Qualified data-names may have any number of qualifiers up to a limit of five. However, for compatibility
with existing SPERRY UNIVAC compilers, this compiler will accept the use of up to 50 qualifiers.

8. If more than one COBOL library is available to the compiler during compilation, text-name must be
qualified each time it is referenced.

2.6.2. Subscripting

Subscripts are used to refer to individual elements within a list or table of like elements that have not been
assigned individual data-names. (Subscripting is described in detail in Section 7.)

2.6.3. Indexing

Indexing is a method of referring to elements within a table by using an index for a given level of a table. The
index is assigned by specifying the INDEXED BY phrase of the OCCURS clause. (Refer to Section 7 for a detailed
description of indexing.)

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 2-14
1974 AMERICAN NATIONAL STANDARD COBOL

2.6.4. Identifier

An identifier is a term used to reflect that a data-name, if not unique in a program, must be followed by a
syntactically correct combination of qualifiers, subscripts, or indexes necessary to ensure uniqueness.

Format 1:

data-name-1 D~~ f data-name-2l .. [(subscript-1 [.subscript-2 (.subscript-31])]

Format 2:

data-name-1 [SOft data-name-2J···[(Si~dex-name-l [{±} literal-2) t
H!H 111teral-l f

[
Sindex-name-2 [{±} literal-4Jt[,jindex-name-3 ({±) literal-6HJ])~
11iteral-3 f 11iteral-5 f 'J

Restrictions on qualification, subscripting, and indexing are:

1. A data-name must not itself be subscripted nor indexed when that data-name is being used as an index,
subscript, or qualifier.

2. Indexing is not permitted where subscripting is not permitted.

3. An index may be modified only by the SET, SEARCH, and PERFORM statements. Data items described by
the USAGE IS INDEX clause permit storage of the values associated with index-names as data. Such data
items are called index data items.

4. Literal-1, literal-3, literal-5 in the format must be positive numeric integers. Literal-2, literal-4, literal-6
must be unsigned numeric integers.

2.6.5. Condition-Name

Each condition-name must be unique or be made unique through qualification and/or indexing, or subscripting.

If qualification is used to make a condition-name unique, the associated conditional variable may be used as the
first qualifier. If qualification is used, the hierarchy of names associated with the conditional variable or the
conditional variable itself must be used to make the condition-name unique.

If references to a conditional variable require indexing or subscripting, then references to any of its condition
names also require the same combination of indexing or subscripting.

The format and restrictions on the combined use of qualification, subscripting, and indexing of condition-names
is exactly that of identifier (2.6.4) except that data-name-1 is replaced by condition-name-1.

In the formats, condition-name refers to a condition-name qualified, indexed, or subscripted, as necessary.

•

•

•

•

•

•

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 2-15
1974 AMERICAN NATIONAL STANDARD COBOL

2.7. REFERENCE FORMAT

The reference format, which provides a standard method for describing COBOL source programs, is described in
terms of character positions in a line on an input/output medium. A line consists of 72 character positions for
any input media. The COBOL compiler accepts source programs written in reference format and produces an
output listing of the source program input in reference format. Source programs written in reference format in
an 80-character card image containing user identification information in character positions 73 through 80 are
also accepted. The identification information has no significance except that it is printed as received on the
source listing.

The rules for spacing given in this discussion of the reference format take precedence over all other rules for
spacing.

The divisions of a source program must be ordered as follows: the identification division, the environment
division, the data division, then the procedure division. Each division must be written according to the rules for
the reference format.

• Format Representation

•

The reference format for a line is represented as follows:

Margin
L

I
Margin

c
Margin
A

Margin
B

l2l3l4l5lsl118191~1 l~l~I

Margin
R

I~ I ~
Sequence Number Area Area A Area B T----------- ----.__..

Indicator Area

Margin L is immediately to the IPft of the first character position of a line.

Margin C is between the sixth and seventh character positions of a line.

Margin A is between the seventh and eighth character positions of a line.

Margin B is between the eleventh and twelfth character positions of a line.

Margin R is immediately to the right of the seventy-second character position of a line.

The sequence number area occupies six character positions (1-6) and is between margin Land margin C.

The indicator area is the seventh character position of a line.

Area A occupies character positions 8, 9, 10, and 11 and is between margin A and margin B.

Area B occupies character positions 12 through 72. It begins immediately to the right of margin B and
terminates immediately to the left of margin R.

Sequence Numbers

A sequence number consisting of six digits in the sequence area may be used to label a source program
line.

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 2-16

•

1974 AMERICAN NATIONAL STANDARD COBOL

Continuation of Lines

Whenever a sentence, entry, phrase, or clause requires more than one line, it may be continued by starting
subsequent lines in area B. These subsequent lines are called the continuation lines. The line being
continued is called the continued line. Any word or literal may be broken in such a way that part of it
appears on a continuation line.

A hyphen in the indicator area of a line indicates that the first nonblank character in area B of the current
line is the successor of the last nonblank character of the preceding line without any intervening space.
However, if the continued line contains a nonnumeric literal without closing quotation mark, the first
nonblank character in area B on the continuation line must be a quotation mark, and the continuation
starts with the character immediately after that quotation mark. All spaces at the end of the continued line
are considered part of the literal. Area A of a continuation line must be blank.

If there is no hyphen in the indicator area of a line, it is assumed that the last character in the preceding
line is followed by a space.

An asterisk in the continuation indicator area of the line indicates a comment line. (See Comment Lines.)

• Blank Line

A blank line is one that is blank from margin C to margin R, inclusive. A blank line can appear anywhere in
the source program, except immediately preceding a continuation line that has a hyphen in column 7.

• Division and Section Headers

The division header and section header must start in area A.

A section consists of paragraphs in the environment and procedure divisions and data division entries in
the data division.

• Paragraph Header, Paragraph-Name, and Paragraph

A paragraph consists of a paragraph-name followed by a period and a space and by zero, one, or more
sentences, or a paragraph header followed by one or more entries. Comment entries may be included
within a paragraph as indicated in the discussion of Comment Lines. The paragraph header or paragraph
name starts in area A of any line following the first line of a division or a section.

The first sentence or entry in a paragraph begins either on the same line as the paragraph header or
paragraph-name or in area B of the next nonblank line that is not a comment line. Successive sentences or
entries either begin in area B of the same line as the preceding sentence or entry or in area B of the next
nonblank line that is not a comment line.

When the sentences or entries of a paragraph require more than one line, they may be continued as
described in the discussion of Continuation of Lines.

• Data Division Entries

Each data division entry begins with a level indicator or a level-number, followed by a space, followed by its
associated name, followed by a sequence of independent descriptive clauses. Each clause, except the last
clause of an entry, may be terminated by either the separator semicolon or the separator comma. The last
clause is always terminated by a period followed by a space.

•

•

•

•

•

•

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 2-17

1974 AMERICAN NATIONAL STANDARD COBOL

There are two types of data division entries: those that begin with a level indicator and those that begin

with a level-number.

1. Level Indicators

The level indicators are FD, SD, and CD.

In those data division entries that begin with a level indicator, the level indicator begins in area A
followed by a space and followed in area B with its associated name and appropriate descriptive
information.

2. Level Numbers

Those data division entries that begin with level-numbers are called data description entries.

A level-number has a value taken from the set of values 1 through 49, 66, 77, 88. Level-numbers in
the range 1 through 9 may be written either as a single digit or as a zero followed by a significant
digit. At least one space must separate a level-number from the word following the level-number.

In those data description entries that begin with a level-number 01 or 77, the level-number begins in area
A followed by a space and followed in area B by its associated record-name or item-name and appropriate
descriptive information.

All other level numbers, 02 through 49, and special level numbers 66 and 88 may begin in area A or B .

Successive data description entries may have the same format as the first or may be indented according to
level-number. Indentation does not affect the magnitude of a level-number; its primary use is to improve
readability.

When level-numbers are to be indented, each new level-number may begin any number of spaces to the
right of margin A. The extent of indentation to the right is determined only by the width of the physical
medium.

• Declaratives

The keyword DECLARATIVES and the key words END DECLARATIVES that precede and follow,
respectively, the declaratives portion of the procedure division must each appear on a line by itself. Each
must begin in area A and be followed by a period.

• Comment Lines

A comment line is any line with an asterisk in the continuation indicator area of the line. A comment line
can appear as any line in a source program after the identification division header. Any combination of
characters from the computer character set may be included in area A and area B of that line. The asterisk
and the characters in area A and area B are produced on the listing but serve as documentation only. A
special form of comment line represented by a stroke in the indicator area of the line causes page ejection
prior to printing the comment.

Successive comment lines are allowed. Continuation of comment lines is permitted, except that each
continuation line must contain an * in the indicator area .

•

•

•

•

•

•

UP-8613 Rev. 2 SPERRY UNIV AC OS/3 3-1
1974 AMERICAN NATIONAL STANDARD COBOL

3. Identification Division

3.1. GENERAL

The identification division identifies the source program and the resultant output listing. In addition, the user
may include the date the program is written and such other information as indicated in the format. The
identification division must be included in every COBOL source program.

3.2. STRUCTURE

Paragraph headers identify the type of information contained in the paragraph. The PROGRAM-ID paragraph
must be present. The other paragraphs are optional and may be specified at the user's discretion .

Format:

IDENTIFICATION DIVISION.

PROGRAM-ID. program-name.

[AU TH 0 R . [comm en t - e ~ t r y .] ...]

[INSTALLATION. [comment-entry.] ...]

[DATE-WRITTEN. [comment-entry.] ...]

![DATE-COMPILED. [comment-entry.] ...]1
[SEC UR I TY . [comment - en t r y .] ...]

Rules:

1. The identification division must begin with the reserved words IDENTIFICATION DIVISION followed
by a period and a space.

2. The division header must be followed by the PROGRAM-ID paragraph.

3. The program-name may contain 1 to 30 characters. It must consist of only letters and digits and must
begin with an alphabetic character.

4. The system uses only the first six characters of program-name as the identifying name of the object
program. Therefore, these characters should be unique for every name in a particular program
library .

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 3-2

5.

1974 AMERICAN NATIONAL STANDARD COBOL

If program-name is not supplied or not accepted because of an error, the compiler automatically
supplies the program-name COB.

6. The optional paragraphs that follow the PROGRAM-ID paragraph must be in the same order as given
in the format.

7. The comment-entry may be any combination of the characters from the computer character set and
must start in area B as designated in the reference format. Continuation of the comment-entry by
using the hyphen in the indicator area is not permitted; however, the comment-entry may be

contained on one or more lines.

8. The DATE-COMPILED paragraph name causes the current date to be inserted during program
compilation. If a DATE-COMPILED paragraph is present, it is replaced during compilation with a
paragraph of the form:

DATE-COMPILED. current date.

Example:

An example of an identification division is given in Figure 3-1 .

Seq
No A B

8 12

Text

001010 IDENTIFICATION DIVISION.
001020 PROGRAM-ID. PAY44.
001030 AUTHOR. JOHN SMITH.
001040 INSTALLATION. ABC COMPANY.
001050 DATE-WRITTEN. NOVEMBER 15, 1978.
001060 DATE-COMPILED. TODAY.
001070 SECURITY. PAYROLL DEPT ONLY.
001080*THIS PROGRAM ADDS COMMISSIONS TO SALARY GIVING
001090* TOTAL MONTHLY EARNINGS OF SALES PERSONNEL.

Figure 3-1. Sample Identification Division Entries

•

•

•

•
UP-8613 Rev. 2 SPERRY UNIV AC OS/3 4-1

1974 AMERICAN NATIONAL STANDARD COBOL

4. Environment Division

4.1. GENERAL

In the environment division of a COBOL source program, a relationship is established between the physical
requirements of the computing system on which the source program is compiled and the characteristics of the
computing system on which the object program is to run. In addition, this division assigns input-output devices
to the files used by the object program and indicates the techniques to be used in processing the files. This
division must be included in every COBOL source program.

4.2. STRUCTURE

• The environment division consists of two sections, each of which has a fixed name. They are:

•

CONFIGURATION SECTION.

INPUT-OUTPUT SECTION.

The configuration section identifies the source computer and object computer and relates system-oriented device
names to user-defined mnemonic names. The input-output section deals with the information needed to control
transmission and handling of data between external media and the object program.

Format:

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE-COMPUTER. source-computer-entry.

OBJECT-COMPUTER. object-computer-entry.

[SPECIAL-NAMES. special-names-entry.]

[INPUT-OUTPUT SECTION.

FILE-CONTROL. {file-control-entry.}

[1-0-CONTROL. input-output-control -entry.]

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 4-2
1974 AMERICAN NATIONAL STANDARD COBOL

Rules: •

1. The environment division begins with the reserved words ENVIRONMENT DIVISION followed by a
period and a space.

2. The sections and paragraphs of the environment division must be written in the order given in the
format.

Example:

An example of the environment division is given in Figure 4-1.

1

Seq.
No.

II II llJ llJ
111119211
1111111311
II II llJ 411
111119511
111119611
1111111711
1111111811
111119911
111111911
111111111
111111211
111111311

A B Text
8 12
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. UNIVAC-OS3.
OBJECT-COMPUTER. UNIVAC-OS3.
SPECIAL-NAMES.

SYSCONSOLE IS TYPEIT.
INPUT-OUTPUT SECTION.
Fl LE-CONTROL.

SELECT INPUTl ASSIGN TO TAPE-INPUT-F.
SELECT LIST ASSIGN TO PRINTER-Pll5-VC.
SELECT CDS ASSIGN TO DISK-Cl29-V.

1-0-CONTROL.
RERUN ON DISK-CKPT20-l EVERY 5000 RECORDS OF INPUTl.

Figure 4-1. Sample Environment Division Entries

4.3. CONFIGURATION SECTION

The configuration section specifies the operating system on which the program is to be compiled and run and
relates implementor-names to user-names.

Format:

CONFIGURATION SECTION.

SOURCE-COMPUTER. entry.

OBJECT-COMPUTER. entry.

[SPECIAL-NAMES. entry.]

•

•

•

•

•

UP-8613 Rev. 2 SPERRY UNIV AC OS/3
1974 AMERICAN NATIONAL STANDARD COBOL

4.3.1. SOURCE-COMPUTER Paragraph

Function:

4-3
Update F

The SOURCE-COMPUTER paragraph identifies the operating system that will compile the source
program and indicates whether the debugging sections and debugging lines are to be compiled.

Format:

Rules:

1. UNISYS-OS3, SPERRY-OS3, or UNIVAC-OS3 specifies that the source program is to be compiled ..,
under the OS/3 operating system.

2. The operating system name specified in the SOURCE-COMPUTER paragraph is for documentation
only.

3. If the WITH DEBUGGING MODE clause is specified, all USE FOR DEBUGGING statements and all
debugging lines are compiled (12.4).

4. If the WITH DEBUGGING MODE clause is not specified, all USE FOR DEBUGGING statements with
associated debugging sections and all debugging lines are compiled as if they were comment
lines.

5. The WITH DEBUGGING MODE clause has no effect on debugging packets (12.4.3.4).

4.3.2. OBJECT-COMPUTER Paragraph

Function:

The OBJECT-COMPUTER paragraph describes the operating system on which the object program is to
be run.

Format:

IUNISYS-OS3)
OBJECT-COMPUTER. SPERRY-OS3

UNIVAC-OS3

[

,MEMORY SIZE integer !CHARACTERS}]
MODULES
WORDS

[,PROGRAM COLLATING SEQUENCE IS alphabet-name]
IC,SEGMENT-LIMIT IS segment-number]! •

UP-8613 Rev. 2

Rules:

SPERRY UNIVAC OS/3
1974 AMERICAN NATIONAL STANDARD COBOL

4-4
Update F

• 1. UNISYS-OS3, SPERRY-OS3, or UNIVAC-OS3 specifies that the object program is to be executed

under the OS/3 operating system.

2. The MEMORY SIZE clause is for documentation only. A word is 4 characters; a module is 4096
characters.

3. If the PROGRAM COLLATING SEQUENCE clause is specified, the collating sequence associated with
alphabet-name (see 4.3.3, rule 8) is used to determine the truth value of any nonnumeric
comparisons:

a. Explicitly specified in relation conditions (See 6.4.1.1.)

I b. Explicitly specified in condition-name conditions (See 6.4.1.3.) I
4. If the PROGRAM COLLATING SEQUENCE clause is not specified, the EBCDIC collating sequence is

used.

5. If the PROGRAM COLLATING SEQUENCE clause is specified, the program collating sequence is the
collating sequence associated with the alphabet-name specified in that clause.

6. The PROGRAM COLLATING SEQUENCE clause is also applied to any nonnumeric merge or sort keys
unless the COLLATING SEQUENCE phrase of the respective MERGE or SORT statement is specified.
(See 6.6.19, the MERGE statement and 6.6.33, the SORT statement.)

7. The PROGRAM COLLATING SEQUENCE clause applies only to the program in which it is specified.

8. The segment-number in the SEGMENT-LIMIT clause must be an integer ranging in value from 1
through 49. (See 6.1.3 and Section 10.)

9. When the SEGMENT-LIMIT clause is specified, only those segments having segment-numbers from
0 up to, but not including, the segment-number designated as the segment-limit, are considered as
permanent segments of the object program.

10. Those segments having segment-numbers from the segment-limit through 49 are considered as
overlayable fixed segments.

11. When the SEGMENT-LIMIT clause is omitted, all segments having segment-numbers from 0 through
49 are considered as permanent segments of the object program.

4.3.3. SPECIAL-NAMES Paragraph

Function:

The SPECIAL-NAMES paragraph relates implementor-names to user-supplied mnemonic-names and
alphabet-names to character sets or collating sequences.

•

•

•

•

•

•

UP-8613 Rev. 2 SPERRY UNIVAC OS/3
1974 AMERICAN NATIONAL STANDARD COBOL

Format:

SPECIAL-NAMES.

[SYSIN ~ mnemonic-name-1]
[,SYSCONSOLE ~ mnemonic-name-2]
[,SYSLST ~ mnemonic-name-3]
[,SYS LOG ~ mnemonic-name-4]
[,SYSCHAN-n IS mnemonic-name-5]
[,SYSCOM ~ mnemonic-name-6]
[,SYSSCOPE .!_! mnemonic-oame-7]

[
,{SYSTERMINAL}.!..i mnemonic-name-SJ

SYSOUT

4-4a
Update F

•

•

•

•

•

•

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 4-5
Update C

Rules:

197 4 AMERICAN NATIONAL ST ANDA RD COBOL

'{SYSFORMAT}IS mnemonic-name-9
SYSWORK

f-ASSiGN-TOlfdname ________ l
: lONTROL AREA IS data-name] l
l [WITH FUNCTION-KEYS] l
I , I
1 [WITH CONNECT-FREE] 1

L-------------------------
{

, SYSSWCH [- n] }
SYSTEM-SHUTDOWN

IS mnemonic-name,ON STATUS IS condition-name

,OFF STATUS IS condition-name

!.§. mnemonic-name,OFF STATUS IS condition-name

,ON STATUS ~ condition-name

ON STATUS !.§. condition-name,OFF STATUS IS

condition-name

OFF STATUS ~;condition-name,ON STATUS IS

condition-name

,alphabet-name IS STANDARD-1

NATIVE

STANDARD-0

literal-1f{~UGH} literal-2]

LALSO literal-3 [,ALSO literal-4] .••

piterat-s[rHROUGH}Literal-6]]

L :~:~ literal-7;[,ALSO;literal-8] •••

[,CURRENCY SIGN IS literal-9)

[,DECIMAL-POINT~ COMMA].

1. The SPECIAL-NAMES paragraph is optional.

2. A comma may be used to separate each clause, and a period must follow the last clause.

3. Mnemonic-names associated with SYSIN, SYSCONSOLE, SYSCOM, SYSTERMINAL, SYSWORK,
SYSFORMAT, SYSSCOPE, SYSSWCH, and SYSTEM-SHUTDOWN may be used in the ACCEPT
statement. Mnemonic-names associated with SYSLST, SYSOUT, SYSLOG, SYSCONSOLE,
SYSCOM, SYSTERMINAL, SYSWORK, SYSFORMAT, SYSSCOPE, and SYSSWCH may be used
in the DISPLAY statement. The mnemonic-name associated with SYSCHAN-n may be used in the
WRITE statement.

• SYSIN refers to the job stream device.

• SYSCONSOLE refers to the system message lines of the workstation activating the task and
to the system log file. If the task is not activated from a workstation or the system does
not support a workstation, then SYSCONSOLE refers to the system console and the system
log file. Use SYSCONSOLE when a reply from the operator is required .

• SYSCOM refers to the 12-byte communications region within the job preamble. Note that
the twelfth byte of this region is the user program switch indicator (UPSI) byte.

t

t

UP-8613 Rev. 2

•

•

SPERRY UNIV AC OS/3
1974 AMERICAN NATIONAL STANDARD COBOL

4-6
Update B

SYSSWCH refers to the UPSI byte of the communications region. SYSSWCH is expanded
by the compiler to an 8-byte storage area; each byte represents a switch. When
condition-names are associated with SYSSWCH, the status is set:

On when any of the eight UPSI bytes are on

Off when all of the UPSI bytes are off

When the mnemonic-name associated with SYSSCH appears:

In an ACCEPT statement, character value 0 or 1 (hexadecimal FO or F 1) is returned for
each UPSI byte.

In a DISPLAY statement, the status of each corresponding UPSI byte is set on with
character value 1 (hexadecimal F 1) and off with character value 0 (hexadecimal FO).
Any other character leaves the status unchanged.

SYSSWCH-n refers to the individual switches within SYSSWCH. They are numbered from
left to right: SYSSWCH-0 through SYSSWCH-7.

NOTE:

SYSSWCH-0 is reserved for the COBOL object-time debugging switch. (See 12.2.3.)

The status of SYSSWCH-n is set on with any character other than hexadecimal FO and set
off with hexadecimal FO.

• SYSTEM-SHUTDOWN refers to an internal switch set on when the operator enters a
SHUTDOWN command through the console. When SYSTEM-SHUTDOWN status is on (with
hexadecimal value F 1), a program that detects this status should begin termination
procedures including closing all open files, displaying program information, and executing a
STOP RUN statement. The status of SYSTEM-SHUTDOWN is off with hexadecimal value
FO.

• SYSLST refers to the system log file.

• SYSLOG refers to the system message lines of the workstation activating the task and to
the system log file. If the task is not activated from a workstation or the system does not
support a workstation, then SYSLOG refers to the system console and the system log file.
Use SYSLOG when no reply from the operator is expected.

• SYSCHAN-n equates a particular channel (n) on the printer loop to mnemonic-name-5 .
Mnemonic-name-5 may appear only in a WRITE statement. SYSCHAN 1 and 7 are normally
used for form overflow and top-of-page, respectively.

• SYSSCOPE is treated as SYSCONSOLE. It is provided for compatibility with VS/9 COBOL 74
language.

• ' SYSTERMINAL or SYSOUT refers to system MESSAGE lines of the workstation initiating the
COBOL program task. If the task is not activated from a workstation or the system does not
support a workstation, then SYSTERMINAL or SYSOUT refers to the system console,
SYSCONSOLE, but not the system log file.

•

•

•

•

•

•

UP-8613 Rev. 2

•

SPERRY UNIV AC OS/3
1974 AMERICAN NATIONAL STANDARD COBOL

4-6a
Update C

SYSFORMAT refers to a workstation in data mode (attached to a program) that calls screen
format services. The lfdname in the required ASSIGN clause is a 1- to 8-character
alphanumeric name assigned to the workstation.

• SYSWORK refers to a workstation in data mode. The lfdname in the required ASSIGN clause is
a 1- to 8-character alphanumeric name assigned to the workstation.

Within the SPECIAL-NAMES paragraph, each SYSFORMAT, SYSWORK, or SYSTERMINAL clause
must be specified before any alphabet-name clauses.

If the run unit is divided into subprograms, a particular lfdname in the SYSFORMAT or
SYSWORK clause can be used in only one program.

The CONTROL AREA clause specifies a 40-character area that receives data describing
workstation activity. That area may be defined in the WORKING-STORAGE or LINKAGE section.
Its implicit description is:

05 WS- ID PIC 999.
05 FILLER PIC x.
05 WS-STATUS PIC xx.
05 FUNCTION-KEY PIC 99.
05 FORMAT-NAME PIC X(8).
05 NUMBER-CONNECTED PIC 99.
05 SIZE-OF-DATA-TRANSFER PIC 9(5).
05 FILLER PIC XC17).

•

•

•

•

•

•

UP-8613 Rev. 2 SPERRY UNIVAC OS/3
1974 AMERICAN NATIONAL STANDARD COBOL

4-7
Update F

Specification of a CONTROL AREA clause enables the COBOL program to be aware of the details
of interaction with a workstation, especially a multivolume workstation. When a workstation
mnemonic-name is declared with a CONTROL AREA clause, each ACCEPT or DISPLAY statement
to that workstation must include an ON EXCEPTION clause. Specification of the WITH
FUNCTION-KEYS phrase causes the COBOL program to report function key input in the control
area, and, unless overridden by response indicators, to cause activation of the ON EXCEPTION
clause after reception of function key data.

When the WITH FUNCTION-KEYS phrase is specified, ACCEPT and DISPLAY statements that
reference the workstation must appear within only one program.

Specification of the WITH CONNECT-FREE phrase causes the COBOL program to take an
exception path on an ACCEPT statement after a workstation connects to a multivolume
workstation or disconnects from it. In the absence of a CONTROL AREA clause, the COBOL
system defaults to minimal, but operationally effective, support for multivolume workstations.

The control area specified by the CONTROL AREA clause is a repository for data supplied by the
COBOL system. The content of each field is defined as follows:

• WS-ID identifies the particular device, which is part of a multivolume workstation
configuration, that participated in the most recently performed ACCEPT or DISPLAY statement
to the corresponding workstation file.

• WS-STATUS reports the 2-character error status for the most recently performed ACCEPT or
DISPLAY statement to the corresponding workstation file. Status key details are presented in
Table 4-1.

• FORMAT-NAME is the name of the screen format that is active on the workstation terminal
that was the object of the most recently performed ACCEPT or DISPLAY statement. This field is
for information purposes only. Thus, it is used as a read-only field. Altering the contents of the
FORMAT-NAME field never changes the screen format currently active on any terminal.

• FUNCTION-KEY holds the integer denoting the keyboard function key pressed prior to the most
recently performed ACCEPT statement. It is zero if no function key was pressed. The
FUNCTION-KEY field is maintained only if the WITH FUNCTION-KEYS phrase is specified.

• NUMBER-CONNECTED holds the number of terminals that are currently connected to the
workstation. If the workstation is not multivolume, this number will be either zero or one.

• SIZE-OF-DATA-TRANSFER holds the number of characters actually delivered to or received
from the workstation terminal screen. If a screen format is in effect, this number reflects the
number of characters required by that format. If a screen format is not in effect, this number,
after an ACCEPT statement, represents the number of characters entered by the workstation
operator but not exceeding the number requested .

t

UP-8613 Rev. 2 SPERRY UNIVAC OS/3
1974 AMERICAN NATIONAL STANDARD COBOL

Table 4-1. Status Key Values for Workstations

Status Key 1 Status Key 2

0 - Successful completion 0 - No further information

1 - At end 0 - Function key 15 received
6 - Only active terminal has

disconnected.
(Status keys 98 may take
precedence.)

2 - Invalid format 3 - Format not found
4 - Format constructed incorrectly

3 - Permanent error 0 - No further information

9 - Workstation exception 1 - Terminal not compatible
with format

2 - Statement not compatible
with format

3 - Data not compatible with
format

4 - Data area not large enough
for format

5 - Function key, no data
7 - New device connected, no

data
8 - Device disconnected (freed),

no data
9 - Device not connected

4-8
Update C

The WITH CONNECT-FREE phrase specifies that an exception path is to be taken whenever a
terminal connects to or disconnects from a multivclume workstation configuration. The details of
CONNECT-FREE reporting are in Table 4-2.

The WITH FUNCTION-KEYS phrase specifies that whenever function key input is received in an

ACCEPT statement, that function key value is to be reported in the control area specified by the

CONTROL AREA clause. If the active screen format converts the function key to an indicator, the
indicator portion of the accept data is returned to the COBOL program, and the ON EXCEPTION
clause is not activated; otherwise, the ON EXCEPTION clause is activated. A function key and
data (other than response indicators) are never returned at the same time. The details of function
key processing are in Table 4-3.

WS-ID has meaning only for multivolume workstations. It is the only field in the control area that the
COBOL program might reasonably alter. WS-ID identifies the particular terminal to which a DISPLAY
statement directs its data. Likewise, WS-ID identifies the particular terminal from which an ACCEPT
SPECIFIC statement will take its data. If a USING phrase is present on a general ACCEPT statement
(i.e .. not an ACCEPT SPECIFIC statement), the screen format that is named by the USING phrase is
selected only for the terminal indicated by WS-ID, not for all the terminals of the multivolume
workstation.

On each transaction with a workstation, the field WS-ID is updated with a number that identifies the
particular terminal, within a multivolume workstation, that participated in the transaction. The WS-ID
field does not need an initial value. Assignment of an initial value to the WS-ID field has no effect on
the behavior of the COBOL program. It is the responsibility of the COBOL program to ensure that the
WS-ID field contains a terminal number that is valid for the implicit workstation lfdname.

•

•

•

•

•

•

UP-8613 Rev. 2 SPERRY UNIV AC OS/3 4-9
1974 AMERICAN NATIONAL STANDARD COBOL

One way to guarantee that this will happen is never to alter the value of the WS-ID field. Another
way is not to provide a control area using the CONTROL AREA clause. The only reasons for changing
the WS-ID field are to display data to a particular terminal (DISPLAY statement) that is not the one
that most recently supplied input or to accept data (ACCEPT statement) from a specific terminal
rather than from the terminal that responded first.

Table 4-2. Effects of CONNECT-FREE Reporting

Workstation Response to CONNECT-FREE Phrase
Options

CONTROL AREA clause with Set status byte.
CONNECT-FREE phrase Set WS-ID field to report the device that was

connected or freed.
Update NUMBER-CONNECTED clause.
Activate the EXCEPTION clause.

CONTROL AREA clause Update NUMBER-CONNECTED clause.
without If NUMBER-CONNECTED = 0, set status for
CONNECT-FREE phrase end-of-file and execute the EXCEPTION

clause.
Otherwise, do not return control to the
COBOL program until data is received.

CONTROL AREA clause not If no terminal remains connected,
specified terminate the program abnormally.

Otherwise, do not return control to the
COBOL program until data is received.

Table 4-3. Effects of FUNCTION-KEYS Input

Response to FUNCTION-KEYS Input

Workstation
Options Response Indicator Set Response Indicators

by Function Key Absent or Unaffected

CONTROL AREA clause with Return indicators without Set FUNCTION-KEY clause.
FUNCTION-KEYS phrase screen data. Set Activate the EXCEPTION

FUNCTION-KEYS clause. clause.
Do not activate the
EXCEPTION clause.

CONTROL AREA clause Return indicators without Ignore the function
without screen data. key input.
FUNCTION-KEYS phrase Do not set FUNCTION-KEYS Do not return control

clause. to the COBOL program
Do not activate the until data is received.
EXCEPTION clause.

CONTROL AREA clause Return indicators without Ignore the function key
not specified screen data. input.

Do not return control to the
COBOL program until data
is received .

t

UP-8613 Rev. 2 SPERRY UNIV AC OS/3
1974 AMERICAN NATIONAL STANDARD COBOL

4-10
Update C

If the CONTROL AREA clause is omitted, multivolume workstation processing is restricted in the
following ways:

1. Each DISPLAY statement is always directed to the terminal that completed the most recent
ACCEPT statement.

2. Each ACCEPT SPECIFIC statement is always directed to the terminal that completed the most
recent ACCEPT statement.

3. An EXCEPTION path cannot be specified.

If a failure occurs during the first attempt to access a particular workstation, the WS-STATUS field is
set to 30 and the remainder of the control area (CONTROL AREA clause) is undefined.

For errors arising after the first access, the control area fields have these meanings:

• WS-ID - The ID of the terminal to respond to a general ACCEPT statement; or the valid ID given
in the WS-ID field upon execution of the statement; or, if 0 was given, then 1; otherwise, the
field is undefined.

• WS-STATUS - As defined in Table 4-1.

• FUNCTION-KEYS - Unchanged by a DISPLAY statement; or 00 for an ACCEPT statement not
receiving function key input; or the actual function key received by an ACCEPT statement.

A function key is never received at the same time data is received. However, for screen
formats having response indicators, receiving a function key is a sign that indicator data is

present.

Data is never present, however, when the ON EXCEPTION clause is activated.

• FORMAT-NAME - The name of the screen format that is defined for the workstation terminal
named in the WS-ID field; if no screen format is defined for that terminal, the field contains the
LOW-VALUE constant.

• NUMBER-CONNECTED - Always reports the number of terminals connected to the workstation.

• SIZE-OF-DATA-TRANSFER - Usually undefined in the presence of an error.

For status key 94, SIZE-OF-DATA-TRANSFER field is the smallest number of characters

required for the transaction.

When a terminal connects to a multivolume workstation declared with the WITH CONNECT-FREE
phrase, the connect event is reported to the COBOL program, in lieu of returning input data, in
response to the next ACCEPT statement (but not an ACCEPT SPECIFIC statement).

When a terminal frees from a multivolume workstation declared with the WITH CONNECT-FREE
phrase, the free event is reported to the COBOL program, in lieu of returning input data, in response
to the next ACCEPT statement (but not an ACCEPT SPECIFIC statement).

If a COBOL program uses screen format services for a multivolume workstation without specifying
the CONNECT-FREE phrase, an initial screen format must be supplied via job control language, and
this screen format must be input-only.

If a COBOL program uses screen format services via job control language for a SYSWORK
workstation, whether single-volume or multivolume, with or without specifying the CONNECT-FREE

phrase:

•

•

•

•

•

•

UP-8613 Rev. 2

•

SPERRY UNIVAC OS/3
1974 AMERICAN NATIONAL STANDARD COBOL

4-11
Update A

An initial screen format must be supplied via job control language. In addition, if the
workstation is multivolume and the CONNECT-FREE phrase is not specified, the screen format
furnished via job control language must be an input-only screen format.

• All ACCEPT and DISPLAY statements apply to the screen named by the initial screen
parameter.

• The USING clause cannot be used on any ACCEPT or DISPLAY statements to the SYSWORK
device.

• No data conversion may be implicit in the screen format; that is, all fields of the screen
format must be specified implicitly or explicitly as USAGE IS DISPLAY.

• Only one identifier may receive data in an ACCEPT statement.

• The ACCEPT SPECIFIC statement may not be used with SYSWORK workstations.

Additional information about screen format services is described in the screen format services
concepts and facilities, UP-8802 (current version).

4. In the SYSSWCH[-n] clause, at least one condition-name must be associated with a switch. The
status of a switch is specified by condition-names and interrogated by testing the condition-names.
(See 6.4.1.4.)

Example:

An individual switch can be interrogated by using condition-name in the ON/OFF STATUS option.
For instance, in the following example, control is transferred to procedure-name-1 if switch 5 is ON.

ENVIRONMENT DIVISION.

SPECIAL-NAMES.
SYSSWCH-5 ON STATUS IS FIVON, OFF STATUS IS FIVOFF.

PROCEDURE DIVISION.

IF FIVON GO TO procedure-name-1.

In essence, SYSSWCH-5 is a conditional variable with the condition-names FIVON and FIVOFF,
which are similar to level-88 entries.

The condition-names FIVON and FIVOFF are defined and equated with ON and OFF, respectively, by
the COBOL compiler and must not be defined elsewhere in the COBOL program .

5. The mnemonic-name associated with SYSCOM may be used in the UPON phrase of the DISPLAY
statement to effect the passing of information to other programs within the job or in the FROM
phrase of the ACCEPT statement to retrieve information from a program within the job.

UP-8613 Rev. 2 SPERRY UNIV AC OS/3 4-12
1974 AMERICAN NATIONAL STANDARD COBOL

There is only one communications region to store or retrieve information within a job. The entire
region will be overwritten if more than one DISPLAY statement referencing SYSCOM is executed.

Examples:

Proaram A

SYSCOM IS OUT-PARAM

77 PROG-MESSAGE PIC.X(l2) VALUE "317402SQlll".

DISPLAY PROG-MESSAGE UPON OUT-PARAM

Proaram B

SYSCOM IS INPUT-PARAM

77 PARAM-AREA PIC X(l2) VALUE ZEROS.

ACCEPT PARAM-AREA FROM INPUT-PARAM.

6. The mnemonic-name associated with SYSSWCH[-n) may be used in the FROM option of the ACCEPT
statement to gain access to the contents of SYSSWCH[-n], or in the UPON option of the DISPLAY
statement to set or change the contents of SYSSWCH[-n].

Example 1:

All 8 task switches can be interrogated by use of the ACCEPT verb. This is shown in the following
example, where procedure-name-1 is performed if the SYSSWCH-2, SYSSWCH-4, SYSSWCH-6, and
SYSSWCH-7 switches are ON and the others are OFF.

ENVIRONMENT DIVISION.
SPECIAL-NAMES.

SYSSWCH IS mnemonic-name-I.
DA TA DIV I SI ON.
WORKING-STORAGE SECTION.
81 identifier PICTURE X(8).

PROCEDURE DIVISION.
ACCEPT identifier FROM mnemonic-name-I.

I F i dent i f i e r = "88181811".
PERFORM procedure-name-I.

•

•

•

•

•

•

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 4-13
1974 AMERICAN NATIONAL STANDARD COBOL

Example 2:

To set or change the contents of SYSSWCH, the DISPLAY verb may be used as follows:

ENVIRONMENT DIVISION.

SPECIAL-NAMES.

SYSSWCH IS SWITCH.

SYS SWC H - 3 I S SW I TC H - 3 .

PROCEDURE DIVISION.

DISPLAY "11800100" UPON SWITCH (D
DISPLAY 1 UPON SWITCH-3.(2)

DISPLAY identifier UPON SWITCH.@

NOTES:

CD SYSSWCH will now contain "11000100".

@ SYSSWCH-3 will now contain 1; the other switches remain unchanged.

@ The 8 switches in SYSSWCH (0 through 7) are set ON or OFF, depending on the contents
of the 8-character identifier.

7. The mnemonic-names associated with SYSCHAN-n may be used in the WRITE statement.
SYSCHAN-n refers to a position in a printer vertical format buffer or form control loop; n ranges from
1 through 15, depending on the specific printer used. The SYSCHAN-n clause is accepted for
compatibility with existing SPERRY UNIVAC COBOL compilers.

8. The alphabet-name clause provides a means for relating a name to a specified character code set or
collating sequence. When alphabet-name is referenced in the PROGRAM COLLATING SEQUENCE
clause, or the COLLATING SEQUENCE phrase of a SORT or MERGE statement. the alphabet-name
clause specifies a collating sequence. When alphabet-name is referenced in a CODE-SET clause in a
file description entry, the alphabet-name clause specifies a character code set.

• If the STANDARD-1 phrase is specified, the character code set or collating sequence identified
is that defined in American National Standard Code for Information Interchange, X3.4-1968.
Each character of the standard character set is associated with its corresponding character in
the EBCDIC character set as specified in Appendix J.

• If the NATIVE phrase is specified, the character code set or collating sequence identified is
EBCDIC.

• If the STANDARD-0 phrase is specified, the character code set or collating sequence identified
is that defined by the International Standards Organization for the 8-bit Coded Character Set for
Information Interchange, IS 646 - 1973, International Reference Version. The collating
sequence of this code set is identical to STANDARD-1 .

t

UP~8613 Rev. 2

•

SPERRY UNIVAC OS/3
1974 AMERICAN NATIONAL STANDARD COBOL

4-14
Update B

If the literal phrase is specified, the alphabet-name may not be referenced in a CODE-SET
clause. The collating sequence identified is that defined according to the following rules:

a. The value of each literal specifies:

(1) The ordinal number of a character within the EBCDIC character set, if the literal is
numeric. The ordinal number of a character is always one greater than the binary
value of a character. For example, hexadecimal 00 is the first character (ordinal
position 1), and hexadecimal 01 is the second character (ordinal position 2).

(2) The actual character within the EBCDIC character set, if the literal is nonnumeric. If
the value of the nonnumeric literal contains multiple characters, each character in
the literal. starting with the leftmost character, is assigned successive ascending
positions in the collating sequence being specified.

b. The order in which the literals appear in the alphabet-name clause specifies, in ascending
sequence, the ordinal number of the character within the collating sequence being
specified.

c. Any characters within the EBCDIC collating sequence that are not explicitly specified in
the literal phrase assume a position, in the collating sequence being specified, greater
than any of the explicitly specified characters. The relative order within the set of these
unspecified characters is unchanged from the EBCDIC collating sequence.

d. If the THROUGH phrase is specified, the set of contiguous characters in the EBCDIC
character set. beginning with the character specified by the value of literal-1 and ending
with the character specified by the value of literal-2, is assigned a successive ascending
position in the collating sequence being specified. In addition, the set of contiguous
characters specified by a given THROUGH phrase may specify characters of the EBCDIC
character set in either ascending or descending sequence.

e. If the ALSO phrase is specified, the characters of the EBCDIC character set specified by
the value of literal-1, literal-3, literal-4, ... , are assigned to the same position in the
collating sequence being specified.

9. The literals in the literal phrase of the alphabet-name clause are specified as follows:

• If numeric, they must be unsigned integers and must have a value within the range of 1
through 256.

• If nonnumeric and associated with a THROUGH or ALSO phrase, they must each be one
character in length.

10. If the literal phrase of the alphabet-name clause is specified, a given character must not be specified
more than once in the alphabet-name clause.

11 . The words THAU and THROUGH are equivalent.

12. The character that has the highest ordinal position in the program collating sequence specified is
associated with the figurative constant HIGH-VALUE. If more than one character has the highest
position in the program collating sequence, the last character specified is associated with the
figurative constant HIGH-VALUE.

•

•

•

•

•

•

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 4-15
1974 AMERICAN NATIONAL STANDARD COBOL

13. The character that has the lowest ordinal position in the program collating sequence specified is
associated with the figurative constant LOW-VALUE. If more than one character has the lowest
position in the program collating sequence, the first character specified is associated with the
figurative constant LOW-VALUE.

14. The literal specified in the CURRENCY SIGN IS clause is used in the PICTURE clause to represent the
currency symbol. The literal is limited to a nonnumeric literal of one character and must not be one of
the following characters:

• Digits 0 through 9

• Alphabetic characters ABCDLPRSVXZ or space

• Special characters * + - , . ; () " I = [·J

If this clause is not present. only the currency sign is used in the PICTURE clause.

15. The clause DECIMAL-POINT IS COMMA means that the function of comma and period are
exchanged in the character-string of the PICTURE clause and in numeric literals.

4.4. INPUT-OUTPUT SECTION

The input-output section of the environment division is used to specify the input/output media for the files used
by the program and to provide information needed for most efficient transmission of data between external
media and the object program .

Format:

[

INPUT-OUTPUT SECTION. J
FILE-CONTROL. !entry.} ...
[1-0-CONTROL. entry.]

4.4.1. FILE-CONTROL Paragraph

Function:

The FILE-CONTROL paragraph names each file and allows specification of other file-related information. A
separate format is required for each type of file organization: sequential, relative, indexed, ISAM*: ISAM~I
and sort. - - - - - -

Refer to Section 8 for further information on sequential, relative, indexed, ISAM;:-1 and llSAM-;-lfiles, and to
Section 9 for a summary of the sort feature. - - - - - -

*Applies only to 90125, 90130, 90130 Band 90140 systems

UP-8613 Rev. 2 SPERRY UNIV AC OS/3
1974 AMERICAN NATIONAL STANDARD COBOL

Format 1 (Sequential Files):

FI LE-CONTROL.

SELECT,[OPTIONALJjtile-name

ASSIGN TO implementor-name-I [, implementor-name-2]

[
; R E S E RV E i n t e g e r - I [AR EA J]

AREAS

[;ORGANIZATION IS SEQUENTIAL]

[;ACCESS MODE IS SEQUENTIAL]

[;FILE STATUS IS da!a-name-I].

Format 2 (Relative Files):

FILE-CONTROL.

SELECT file-name

ASSIGN TO implementor-name-I (,implementor-name-2]

[
: R E S E R V E i n t e g e r - 1 [A R E A J]

AREAS

;ORGANIZATION IS RELATIVE

[

; AC CE SS M 0 DE I S l SEQUENT I A L [, R El AT I VE KEY I S d a t a - name - I] (]
jRANDOM l ,RELATIVE KEY IS data-name-1
1IDYNAMICj~

[;FILE STATUS IS data-name-2].

Format 3 (Indexed Files):

FI LE-CONTROL.

SELECT file-name

ASSIGN TO implementor-name-I [, implementor-name-2] ...

[:RESERVE integer-I [::~:sJ]j

;ORGANIZATION IS INDEXED

[

:ACCESS M 0 DE I S ~ SEQUENT I AL(]
RANDOM

IDYNAM I c I
;RECORD KEY IS data-name-I lli AL TE RNA TE RECO_R_D_K_E_Y_l_S_d_a -t a-_-n_a_m_e--_2 _[_W_l_T_H_D_U_P_L_l_C_A_T_E_S-=J].--.-.---.. I
[;FILE STATUS IS data-name-3].

4-16

•

•

•

•

•

•

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 4-17
197 4 AMERICAN NATIONAL ST ANDA RD COBOL

c------------------------1
I Format 4 (SAM* Files):

I
I
I
I
I
I
I

FILE-CONTROL.

SELECT [OPTIONAL] file-name

ASSIGN TO implementor-name-I [.implementor-name-2] ...

[
; RESERVE i n t e g e r - I [ARE A]]

AREAS

;ORGANIZATION IS SAM

[;ACCESS MODE IS SEQUENTIAL]

[;FILE STATUS IS data-name-I].

Format 5 (ISAM* Files):

Fl LE-CONTROL.

SELECT file-name

ASSIGN TO implementor-name-I [, implementor-name-2] ...

[
;RESERVE integer - I [AREA]]

AREAS

;ORGANIZATION IS ISAM

[

:ACCESS MODE IS lSEQUENTIALlJ
RANDOM
DYNAMIC

:RECORD KEY IS data-name-I

[;FILE STATUS IS data-name-2]. L _________________________ J

Format 6 (Sort or Merge Files):

FILE CONTROL.

SELECT file-name

ASSIGN TO implementor-name-I [, implementor-name-2]

Rules:

1. The SELECT clause must be specified first. The order of the remaining clauses is optional.

2. Each file described in the data division must be named once and only once as file-name in the FILE

CONTROL paragraph. Each file specified in the file control entry must have a file description entry or
sort/merge file description entry in the data division.

3. The ASSIGN clause specifies the association of the file referenced by file-name to a storage medium.

4. All files must be assigned to an implementor-name. Any implementor-name beyond the first for a file
is treated as comments.

5. Implementor-name is in the form of device-lfdname-mode .

*Applies only to 90125, 90130, 90130 8, and 90140 systems

UP-8613 Rev. 2 SPERRY UNIV AC OS/3
1974 AMERICAN NATIONAL STANDARD COBOL

The format and options for each file organization are presented as follows:

• Sequential Files

CARDREADER-lfdname-F

CARDPUNCH-1 fdname- ~~~

P R I N TE R - I f d n a.me - i ~ H
TAPE-lfd••m•-~,!~

i::~;i-11 tM
• Relative, Indexed, and: ISA~:: Files

s~ l - I f d name - Sl l
l Q.!.i!J l!~ 5

S~l-lfdname-~.f_ 1
lDISK5 V
~~ -rr

vc

• Sort and Merge Files

lDI SC~- I fdname- S!.t
DISK lyJ
TAPE

)

The implementor-name in the form of device-lfdname-mode has three subfields:

4-18
Update C

• The device field specifies the type of device associated with the file. The types of devices
supported are CARDPUNCH, CARDREADER, DISC (or DISK), PRINTER, and TAPE. DISC and
DISK are equivalent; TAPE refers to magnetic tape.

• Lfdname specifies the lfdname to the job control definition of the file. The lfdname is a 1-
to 8-character alphanumeric field. For programs using the sort/merge feature, lfdnames in
the form DMxx (xx=01, 02, ... ,08) or SMxx (xx=01, 02, ... ,06) should not be used because
the sort/merge feature uses these lfdnames for scratch work files.

If the run unit contains multiple implementor-names for the same lfdname, then only one file
associated with the lfdname can be opened at a time.

*Applies only to 90125, 90130, 90130 8, and 90140 systems

•

•

•

,---------

•

•

•

UP-8613 Rev. 2

•

SPERRY UNIV AC OS/3
1974 AMERICAN NATIONAL STANDARD COBOL

4-19
Update C

Mode is a 1- or 2-character field that specifies the format of the records in the file. It may be F,
FC, V, VC, U, or UC. The character C indicates the presence of a device-independent control
character for a printer-destined file. When FC, VC, or UC is specified for a printer-destined file,
the compiler appends a device-independent control character preceding the logical record.

Mode F indicates fixed-length records and can be specified only when each of the logical records in a
file has the same length. When F is specified, the following rules apply:

• Format 2 of the OCCURS clause must not be specified within any record description for the file.

• If the BLOCK CONTAINS clause is specified in the file description entry, it must contain a fixed
number of records.

• If more than one record description entry is specified for a file description, each record in the
file must have the same length.

• Record-length and block-descriptor fields are not present with fixed-length records.

• If the RECORD CONTAINS clause is specified, it must specify a fixed number of characters in
the record.

Mode V indicates variable-length records. When V is specified, the following rules apply:

• For tape, ;:§AM~]or @AM~]files, if the BLOCK CONTAINS clause is specified in the file
description entry, all the logical records comprising a block must be wholly contained within the
block .

• Each variable-length logical record is preceded by a control field containing the length of the
logical record. This field is generated by the compiler and is not available to the user.

Mode U indicates an undefined format and may be used for any combination of record descriptions,
either fixed or variable. U-mode is comparable to V-mode except that U-mode records may not be
blocked and have no preceding control field. When U is specified, the BLOCK CONTAINS clause in
the file description entry is not required.

The hyphens shown in the format must appear in this form of the implementor-name.

6. The RESERVE clause specifies the number of input/output buffer areas allocated for the file.

The value of integer-1 may be 1 or 2. For sequential files, two areas may be reserved. For
relative files, if the ACCESS MODE is sequential, two areas may be specified and if the ACCESS
MODE is dynamic or random, only one area may be specified. For indexed files, only one area is
permitted. For ~§-~-~-:_~n.~f!"s_~~*_Jtiles, two areas may be reserved.

If the value of integer-1 specifies two areas where the operating system permits only one area, the
compiler reserves only one area regardless of the value specified in the RESERVE clause.

If the RESERVE clause is not specified, the compiler supplies a default value compatible with the
operating system specifications. The compiler-supplied default value is shown in Table 4-4 .

*Applies only to 90125, 90130, 90130 8, and 90140 systems

t

UP-8613 Rev. 2 SPERRY UNIVAC OS/3
1974 AMERICAN NATIONAL STANDARD COBOL

Table 4-4. Compiler Default Value of the RESERVE Clause

File Organization Access Mode Default lnteger-1 Value

SEQUENTIAL All 2
RELATIVE SEQUENTIAL 2
RELATIVE RANDOM 1
RELATIVE DYNAMIC 1
INDEXED All 1
SAM All 2
ISAM All 2

4-20
Update A

7. When the FILE STATUS clause is specified, a value is moved by the operating system into the data
item specified by data-name after the execution of every statement that refers to the file either
explicitly or implicitly. This value indicates the status of execution of the statement. (See Section 8.)

8. The organization clause specifies the logical structure of a file. The file organization is established at
the time a file is created and, subsequently, cannot be changed.

NOTE:

Rules 9 through 14 pertain to sequential and!~~~:files only.

9. Data-name-1 must be defined in the data division as a 2-character alphanumeric data item and must
not be defined in the file section or the communication section.

10. Data-name-1 may be qualified.

11. In format 1, if the ORGANIZATION IS SEQUENTIAL clause is not specified, it is implied.

r-l~orm~4~h-;-ORGANIZATION ls SAM-;-claus;is" required. This cla~ specifie~h-;;;h-;-fii;"is to~
I be supported by disk sequential access method data management (disk SAM). If this clause is not I
Lspecifie~ORGANIZATION !_SEQUENTIAL .'.:_assumed.~e~·:2 _________ J

12. The OPTIONAL phrase may only be specified for input files that are not necessarily present each time
the object program is executed.

13. Records in the file are accessed in the sequence dictated by the file organization. This sequence is
specified by predecessor-successor record relationships established by the execution of WRITE
statements when the file is created or extended.

14. If the ACCESS MODE clause is not specified, the ACCESS MODE IS SEQUENTIAL clause is implied.

NOTE:

Rules 15 through 26 pertain to relative files only.

*Applies only to 90/25, 90/30, 90/30 8, and 90/40 systems

•

•

•

•

•

•

UP-8613 Rev. 2 SPERRY UNIVAC OS/3
1974 AMERICAN NATIONAL STANDARD COBOL

4-20a
Update A

15. Data-name-2 must be defined in the data division as a 2-character alphanumeric data item and must
not be defined in the file section or the communication section.

16. Data-name-1 and data-name-2 may be qualified.

17. If a relative file is to be referenced by a ST ART statement, the RELATIVE KEY phrase must be
specified for that file.

18. Data-name-1 must not be defined in a record description entry associated with that file-name.

19. The data item referenced by data-name-1 must be defined as an unsigned integer.

20. The ORGANIZATION clause is required. If the ORGANIZATION IS RELATIVE clause is not specified,
ORGANIZATION IS SEQUENTIAL is assumed.

21. When the access mode is sequential, records in the file are accessed in the sequence dictated by the
file organization. This sequence is the order of ascending relative record numbers of existing records
in the file.

22. If the access mode is random, the value of the RELATIVE KEY data item indicates the record to be
accessed.

23. When the access mode is dynamic, records in the file may be accessed either sequentially or
randomly or both. (See rules 22 and 24.)

•

•

•

----------~--~------

•

•

•

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 4-21
1974 AMERICAN NATIONAL STANDARD COBOL

24. If the ACCESS MODE clause is not specified, the ACCESS MODE IS SEQUENTIAL clause is implied.

25. All records stored in a relative file are uniquely identified by relative record numbers. The relative
record number of a given record specifies the logical ordinal position of the record in the file. The first
logical record has a relative record number of 1, and subsequent logical records have relative record

numbers of 2, 3, 4,

26. The data item specified by data-name-1 is used to communicate a relative record number between
the COBOL object program and the operating system.

NOTE:

Rules 27 through 40 pertain to indexed files only.

27. Data-name-1. ldata-name-2. land data-name-3 may be qualified.

28. The data items referenced by data-name-1 land data-name-21 must each be defined as a data item of
the category alphanumeric within a record description entry associated with that file-name.

29. The maximum size of the data item referenced by data-name-1 lor data-name-2 lmay not exceed 80
bytes. Neither data-name-1 I nor data-name-2 I can describe an item whose size is variable. (See
5.3.3.7.)

30. Data-name-2 cannot reference an item whose leftmost character pos1t1on corresponds to the
leftmost character position of an item referenced by data-name-1 or by any other data-name-2
associated with this file .

31. Data-name-3 must be defined in the data division as a 2-character alphanumeric data item and must
not be defined in the file section, or the communication section.

32. The ORGANIZATION IS INDEXED clause is required. If this clause is not specified, ORGANIZATION IS
SEQUENTIAL is assumed.

33. If the ACCESS MODE clause is not specified, the ACCESS MODE IS SEQUENTIAL clause is implied.

34. When the access mode is sequential, records in the file are accessed in the sequence dictated by the
file organization. For indexed files, this sequence is the order of ascending record key values within a
given key of reference.

35. If the access mode is random, the value of the record key data item indicates the record to be
accessed.

36. When the access mode is dynamic, records in the file may be accessed either sequentially or
randomly or both. (See rules 34 and 35.)

37. The RECORD KEY clause specifies the prime record key for the file. The values of the prime record
key must be unique among records of the file. This prime record key provides an access path to
records in an indexed file.

38. An ALTERNATE RECORD KEY clause specifies an alternate record key for the file. This alternate

record key provides an alternate access path to records in an indexed file. A maximum of four
alternate record keys may be specified for an indexed file .

UP-8613 Rev. 2 SPERRY UNIVAC OS/3
1974 AMERICAN NATIONAL STANDARD COBOL

4-22
Update A

39. The data descriptions of data-name-1 land data-name-2las well as their relative locations within a
record must be the same as those used when the file was created. The number of alternate keys for
the file must also be the same as that used when the file was created.

40. The DUPLICATES phrase specifies that the value of the associated alternate record key may be
duplicated within any of the records in the file. If the DUPLICATES phrase is not specified, the value
of the associated alternate record key must not be duplicated among any of the records in the file.

--------------------------------~
NOTE: I

Rules 41 through 51 pertain to /SAM* files only.

41. When ORGANIZATION IS ISAM is specified, the file is to be processed by the ISAM data
management.

42. When the access mode is sequential, records in the file are accessed in the sequence dictated by the
file organization. For ISAM files, this sequence is the order of ascending record key values within a
given key of reference.

43. If the access mode is random, the value of the record key data item indicates the record to be
accessed.

44. When the access mode is dynamic, records in the file may be accessed sequentially or randomly or

both. (See rules 41 and 42.)

45. If the ACCESS MODE clause is not specified, the ACCESS MODE IS SEQUENTIAL clause is implied .

46. The RECORD KEY clause specifies the record key for the file. The values of the record key must be
unique among records of the file. This record key provides the access path to records in an ISAM file.

47. Data-name-1 and data-name-2 may be qualified.

48. The data item referenced by data-name-1 must be defined as an alphanumeric data item within a
record description entry associated with that file-name.

49. The size of the data item referenced by data-name-1 must be greater than 2 and less than or equal to
249 bytes. Data-name-1 must not describe an item whose size is variable. (See 5.3.3.7.)

50. Data-name-2 must be defined in the data division as a 2-character alphanumeric data item and must
not be defined in the file section, or the communication section.

51. The data description of data-name-1 and its relative location within a record must be the same as
that used when the file was created.

NOTE:

Rule 52 pertains to sort or merge files only.

52. Only the ASSIGN clause is permitted to follow file-name in the FILE-CONTROL paragraph for a sort
or merge file.

*Applies only to 90/25, 90/30, 90/30 8, and 90/40 systems

•

•

•

•

•

•

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 4-23
1974 AMERICAN NATIONAL STANDARD COBOL

4.4.2. 1-0-CONTROL Paragraph

Function:

The 1-0-CONTROL paragraph specifies the points at which rerun is to be established and the main storage
area to be shared by different files. In addition, this paragraph specifies the location of files on a multiple
file reel for sequential file organization as well as special input/output techniques for file processing using
the APPLY clauses.

Format:

(1-0-CONTROL.

[

,RERUN ON ll~~j[""m'-lHl EVERY ;,,,,.,.1 RECORDS OF 1;1'~"m•·J· ..
l IT !_d_!! !_m_!!] ~

.--------.

[

RECORD J AREA FOR
SORT
SORT-MERGE

file-name-2{,file-name-3} ..] ...

[;MULTIPLE Ei..!J. TAPE CONTAINS fi le-name-4 [POSITION integer-2]
(,file-name-5 [POSITION integer-3]] ...] ...

rr-----------------------------1
1[:APPLY BLOCK-COUNT ON jfile-name-6 [file-name-7] ... t]... I
I 1TAPES f I
![;APPLY CYLINDER-INDEX AREA OF integer-4 INDICES ON file-name-8 I --. -- - I I [.file-name-9] ...] ...
I I
l(;APPLY CYLINDER-OVERFLOW AREA Q!. integer-5 PERCENT ON file-name-10 I
I [,file-name-11] ...] ... I
i[;APPLY VERIFY ON file-name-12 [,file-name-13] ...] l
I[;APPLY INDEX-AREA OF integer-6 CHARACTERS ON f i le-name-14 I
I--.------ - I

[,file-name-15] ...]]
L---------------- -----------'

Rules:

1. The 1-0-CONTROL paragraph is optional.

2. The RERUN clause specifies when and where the rerun information is recorded. The rerun
information is recorded on the device specified whenever integer-1 records of file-name-1 are
processed. File-name-1 may be any type of file with any organization or access except a sort or
merge file.

3. The value of integer-1 in the RERUN clause must be within the range of 1 to 8,388,607.

4. There are two forms of the implementor-name in the RERUN clause.

a. The form

~~:~~ i -1 fdname- HJ
hAPE \

specifies a dedicated rerun receiver.

• DISC, DISK, and TAPE are the types of devices supported for a user file dedicated for
receiving checkpoint records.

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 4-24

5.

•

1974 AMERICAN NATIONAL STANDARD COBOL

The lfdname field is a 1- to 8-character alphanumeric field. This field specifies the
lfdname of the dedicated receiver file.

• The field

is a 1-character field, where the value 1 indicates that all checkpoint records are to be
written consecutively on one dedicated receiver file, and the value 2 indicates that
checkpoint records are to be written alternately on two dedicated receiver files, each file
containing only the latest alternate checkpoint record. When two dedicated receiver files
are specified, the INIT parameter must be designated in the LFD job control statements for
both receiver files.

b. The form U £d~ ~m!}specifies the name of an output data file on which both data records and
checkpoint records are to be written. The name specified must be the lfdname of a standard
sequential EBCDIC tape tile described by an FD entry with standard system labels.

NOTE:

This form of the implementor-name is not supported in the mixed mode or consolidated data
management mode.

The filename of a dedicated rerun receiver file is generated by the compiler by using the lfdname
specified in the lfdname field of the RERUN clause.

If one dedicated receiver file is specified, the lfdname is used as the filename of the rerun receiver.

If two dedicated receiver files are specified, a suffix, A or B, is appended as the last character of a
given lfdname of seven or fewer characters, or the suffix replaces the last character of an 8-character
lfdname to form a unique file-name for each receiver file. The file-names for the two receiver files
are lfdnameA and lfdnameB.

Odd-numbered checkpoints are written on the file:

I fdnameA

Even-numbered checkpoints are written on the file:

lfdnameB

6. More than one RERUN clause may be specified, but no two of them may specify the same file-name-
1.

7. The SAME AREA clause specifies that two or more files that do not represent sort or merge files are
to use the same main storage area during processing. The area being shared includes all storage
area assigned to the files specified; therefore, only one file may be open at any given time. (See rule
9c.)

8. The SAME RECORD AREA clause specifies that two or more files are to use the same main storage
area for processing of the current logical record. All the files may be open at the same time. A logical
record in the SAME RECORD AREA is considered as: (1) a logical record of each opened output file
whose file-name appears in this SAME RECORD AREA clause and (2) a logical record of the most
recently read input file whose file-name appears in this SAME RECORD AREA clause. This is
equivalent to an implicit redefinition of the area; i.e .. records are aligned on the leftmost character
position.

•

•

•

•

•

•

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 4-25
Update F

9.

1974 AMERICAN NATIONAL STANDARD COBOL

More than one SAME clause may be included in a program; however, the following rules also apply:

a. A file-name must not appear in more than one SAME AREA clause.

b. A file-name must not appear in more than one SAME RECORD AREA clause.

c. If one or more file-names of a SAME AREA clause appear in a SAME RECORD AREA clause, all
the file-names in that SAME AREA clause must appear in the SAME RECORD AREA clause.
However, additional file-names not appearing in that SAME AREA clause may also appear in
that SAME RECORD AREA clause. The rule that only one of the files mentioned in a SAME
AREA clause can be open at any given time takes precedence over the rule that all files
mentioned in a SAME RECORD AREA clause can be open at any given time.

10. The files referenced in the SAME AREA or jsAME RECORD AREA lc1ause need not all have the same
organization or access.

11. The SAME SORT AREA or SAME SORT-MERGE AREA clause is for documentation only.

12. The MULTIPLE FILE clause applies to sequential files only and is required when two or more files
share the same physical reel of tape. Regardless of the number of files on a single reel, only those
files that are used in the object program need be specified. If all file-names are listed in consecutive
order, the POSITION clause need not be given. If any file in the sequence is not listed, the position
relative to the beginning of the tape must be given. Not more than one file on the same tape reel may
be open at one time.

13. All files sharing the same physical reel of tape must specify the LABEL RECORDS STANDARD or
data-name clause in the associated FD entries; the LABEL RECORDS OMITIED clause is not
permitted.

14. The REVERSE phrase of the OPEN statement must not be used for files sharing the same physical
reel of tape.

r:-:: -- - - - - --------- - ------------- -,
115. The APPLY BLOCK-COUNT clause is used only for tape files. For each file-name specified, this clause

1
inserts a 3-byte block number at the beginning of each block on tape. I

I I
I If the TAPES option is specified, all tape files present are affected. This clause must be specified for I
I all input tape files that contain a block count. I
I I
I 16. The APPLY CYLINDER-INDEX AREA clause is used only for ISAM files (ORGANIZATION IS I
I ISAM). The clause indicates that sufficient main storage area should be allocated to contain I
I integer-4 top index entries. I
I
I
!
I

The method for calculating the value of integer-4 is described in detail in the consolidated data :
management macroinstructions programming guide, UP-9979 (current version).

If the file already exists, use the following formula to determine the value of integer-4:

: n = b I (s+J) I
'---- - ------ - - - - - - --- - - - -- --- ____ J

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 4-26
Update F 1974 AMERICAN NATIONAL STANDARD COBOL

r-------
1 where:

--------------------,

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

n

b

s

NOTE:

Is integer-4 of the APPLY clause.

I
I
I
I
I

Signifies bytes that are required for main storage and that can be obtained from a display I
of VTOC. The number of bytes is shown under the heading: Bytes Required for Main I
Storage.

Signifies size of the record key.

If the remainder of the divide operation in the formula is not equal to zero, add 1 to the quotient (i.e.,
add 1 ton).

I :17. The APPLY CYLINDER-OVERFLOW AREA clause is used only for ISAM files. It indicates that
II
I
I
I
I
I
I
1
1a.

I
I
119.

I

integer-5 percent of each cylinder in the prime data area will be reserved for cylinder overflow.

If this clause is omitted, 20 percent of the cylinders specified as prime data area are
automatically allocated. If no cylinder overflow is desired, 0 percent should be specified. If no
overflow area exists, new records cannot be added to the file.

The APPLY VERIFY clause is used for any mass storage files. It requests verification of disk
records after they have been written (read after write). If this clause is omitted, no verification is
performed.

The APPLY INDEX-AREA clause is used only for indexed files (ORGANIZATION IS INDEXED). The
clause specifies the size of the index-area used by MIRAM data management during the loading I
and retrieving of indexed MIRAM files. The size of the index-area for file retrieval, therefore, must I
be the same as the size when the file was created. I

lnteger-6 must be a multiple of 256.
I
I

I
I
I
I
I If the clause is not specified, an index-area of 256 characters is provided for each indexed file I
L _ defined~n the ~le_section. __________________ J

•

•

•

•

•

•

UP-8613 Rev. 2 SPERRY UNIV AC OS/3 5-1
1974 AMERICAN NATIONAL STANDARD COBOL

5. Data Division

5.1. GENERAL

The data division describes the data that the object program is to accept as input and to manipulate, to create, or
to produce as output. Data to be processed falls into three categories:

1. That which is contained in files and enters or leaves main storage from a specified area or areas

2. That which is developed internally and placed into intermediate or working storage or placed into specific

format for output reporting purposes

3. Constants that are defined by the user

The data division must be included in every COBOL source program.

5.2. STRUCTURE

5.2.1. Heading and Sections

The data division begins with the reserved words DATA DIVISION followed by a period and a space and is
structured into file, working-storage, linkage, and communication sections. Each section is optional but, when
used, must be in the following order:

DATA DIVISION.

[
file-description-entry

{record-description-entry} ...

[

F I L E S E C T I 0 N .

[
sort-merge-file-description-entry

{record-description-entry} ...

L
ORKING-STORAGE SECTION.

[
7 7 - I e v e I - d es c r i p t i on - en t r y J
record-description-entry

L
INKAGE SECTION.

[
7 7 - I e v e I - de s c r i pt i on - en t r y J
record-description-entry

.]
.]

] ...]
] .. .

L
OMMUNICATION SECTION.

[
comm u n i cat i on - des c r i pt i on - en t r y

[record-description-entry] ...]

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 5-2
1974 AMERICAN NATIONAL STANDARD COBOL

The file section defines the structure of data files. Each file is defined by a file description (FD) or sort merge-file
description (SD) entry and is followed by one or more record descriptions. A record description describes all
named items of data in the record.

The working-storage section describes records and noncontiguous data items that are not part of external data
files but are developed and processed internally. It also describes data items whose values are assigned in the
source program and do not change during the execution of the object program.

The linkage section appears in called program and describes data items that are defined by the calling program
and referred to by the called program. Its structure is the same as the working-storage section.

The communication section describes the data items that name the interface areas between the message control
system and the object program. (See 5.6 and Section 14.)

5.2.2. Entries

Each data division entry begins with a level-indicator or a level-number, followed by one or more spaces, the
name of the data item, and sequence of clauses describing the data item. The last clause is always terminated by
a period followed by a space.

5.2.2.1. Level-Indicators

There are three types of level-indicators: FD, SD, and CD. FD indicates the start of a file description entry, SD
indicates the start of a sort-file description entry, and CD indicates the start of a communication description
entry.

5.2.2.2. Level-Numbers

Level-numbers are used to specify subdivisions of a logical record. The most basic subdivisions of a record, that
is, those not further subdivided, are called elementary items; consequently, a record is said to consist of a
sequence of elementary items, or the record itself may be an elementary item.

In order to refer to a set of elementary items, they are combined into groups. Each group consists of a named
sequence of one or more elementary items. Groups, in turn, may be combined into groups of two or more
groups, etc. Thus, an elementary item may belong to more than one group.

A system of level-numbers shows the organization of elementary items and group items. Since records are the
most inclusive data items, level-numbers for records start at 01. Less inclusive data items are assigned higher
(not necessarily successive) level-numbers not greater in value than 49.

A group includes all group and elementary items following it until a level-number less than or equal to the level
number of that group is encountered. All items that are immediately subordinate to a given group item must be
described using identical level-numbers greater than the level-number used to describe that group item. The
following example indicates how level-numbers may be used to indicate this structure in the description of the
record.

•

•

•

•

•

•

UP-8613 Rev. 2 SPERRY UNIV AC OS/3
1974 AMERICAN NATIONAL STANDARD COBOL

01 RECORD-A
05 GROUP-ITEM-1

07 GROUP-ITEM-2
08 GROUP-ITEM-3

10 ELEMENTARY-ITEM-1
10 ELEMENTARY-ITEM-2

08 ELEMENTARY-ITEM-3
07 GROUP-ITEM-4

08 ELEMENTARY-ITEM-4
08 ELEMENTARY-ITEM-5

05 ELEMENTARY-ITEM-6

5-3

In the preceding example, both GROUP-ITEM-3 and ELEMENTARY-ITEM-3 are part of GROUP-ITEM-2; and
GROUP-ITEM-2 and GROUP-ITEM-4 are part of GROUP-ITEM-1. Therefore, the level numbers assigned to both
GROUP-ITEM-3 and ELEMENTARY-ITEM-3 must be identical and must be greater than that assigned to GROUP
ITEM-2. Similarly, GROUP-ITEM-2 and GROUP-ITEM-4 must be assigned identical level numbers greater than
that assigned to GROUP-ITEM-1.

The principal rules for assigning level-numbers are listed as follows:

• The level-number 01 is reserved exclusively for identifying a logical record.

• Level-numbers range from 01 through 49.

• An item at any level may be an elementary item when no items are subordinate to it.

• An item is contained in the preceding group, if the following conditions are met:

The item has been assigned a numerically higher level-number than that of the preceding group.

The item directly follows the group of which it is a part.

5.2.2.3. Special Level-Numbers

Three types of entries exist for which there is no true concept of level and for which the special level-numbers
66, 77, and 88 are assigned. The three types of entries are as follows:

1. Level-number 66 introduces entries that specify elementary items or groups by means of RENAMES
clauses for the purpose of regrouping data items.

2. Level-number 77 introduces entries that specify noncontiguous data items but which are not subdivisions
of other items and are not themselves subdivided.

3. Level-number 88 introduces entries that specify condition-names to be associated with particular values of

a conditional variable .

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 5-4
1974 AMERICAN NATIONAL STANDARD COBOL

5.3. FILE SECTION

The file section begins with the reserved words FILE SECTION followed by a period and a space. The file section
contains file description, (FD) entries and sort-merge-file description (SD) entries, each one followed by its
associated record description entries.

In a COBOL program, an FD or SD entry represents the highest level of organization in the file section. The FD
entry provides information about the physical structure and identification of a file and gives the names of data
records associated with the file. The SD entry indicates the size and names of the data records associated with
the file to be sortedlor merged.!There are no label procedures that the user can control, and the rules for blocking
and storage are peculiar to the SORTiand MERGE !statements.

A record description consists of a set of data description entries that describe the characteristics of a particular
record. Each data description entry consists of a level-number followed by a data-name if required, followed by a
series of independent clauses as required. A record description has a hierarchical structure and, therefore, the
clauses used with an entry may vary considerably, depending upon whether it is followed by subordinate entries.

Format:

FILE SECTION.

[
f i I e - d e s c r i p t i o n - e n t r y J

{record-description-entry}

[
sort-merge-ti le-description-entry J

{record-description-entry)

5.3.1. File Description

Function:

A file description is written for each file processed in the program. The information contained therein
pertains to the physical aspects, identification, and record names of the file. A file description consists of a
level indicator (FD), a file-name, and a series of independent clauses that describe the physical and logical
characteristics of the file. The FD entry itself is terminated by a period.

The functions and usage of the file description entry clauses are summarized in Table 5-1. Sample
program entries are given in Figure 5-1.

Format:

FD file-name

[BLOCK CONTAINS j[integer-1 I.QI I i n t e g e r - 2 j REC 0 RDS lJ
1CHARACTERS5

[;RECORD CONTAINS [integer-3 IQ.I integer-4

;LABEL jRECORD IS l ~STANDARD ~
1RECORDS AREf OMITTED

[! a.=c~-:-_!1-_!_ "i_e .:.-1!.T _:::-~ ~ J

CHA RAC TE RS]

I S j I d ~ t a - name - 2 It] lJ 1 literal-2 5
IS jldata-name-1 It]

11iteral-l 5 [

VALUE OF {FILE-ID IS jJd~ta-name-lJt[PASSWORD
111teral-l 5

PASSWORD IS jldata-name-2lt[FILE-ID
1 literal-2 5

•

•

•

•

•

•

UP-8613 Rev. 2 SPERRY UNIVAC OS/3

Rules:

1974 AMERICAN NATIONAL STANDARD COBOL

[
;DATA SRECORD IS l data-name-3 [,data-name-4] ···]

lRECORDS ARE 5

[
;LINAGE IS S~ata-name-5t LINES

l integer-5 5

[
,WITH FOOTING AT S~ata-name-6t]

['LINES

['LINES

l1nteger-6 5
AT TOP S~ata-name-7t]

linteger-7 5

AT BOTTOM S~ata-name-Bt]]
l1nteger-8 f

~---------------------------~ I I
•;LINAGE IS SYSTEM LINES 1
I I

L---------------------------~
[;CODE-SET IS alphabet-name].

5-5

1. The level indicator FD identifies the beginning of a file description and must precede the file-name.

2. The clauses that follow the name of the file are optional except for LABEL RECORDS, and their order
of appearance is optional.

3 . One or more record description entries must follow the fil~ description entry.

Table 5-1. File Description Entry Clauses

Clause Usage
File

Function
Organization

BLOCK CONTAINS Optional* All Specifies block size or buffer size of a file

RECORD CONTAINS Optional All Specifies logical record size

LABEL RECORDS Required All Specifies whether labels are standard, omitted, or user's

VALUE OF Optional All Indicates values of standard label items

DATA RECORDS Optional All Specifies names of records in file

LINAGE Optional Sequential Defines the size of a logical page
or SAM

CODE-SET Optional Sequential Specifies character code set used to represent data in
sequential tape files

* Required in some instances. See rule 1 in 5.3.1.1 .

t

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 5-6
1974 AMERICAN NATIONAL STANDARD COBOL

Seq.

No.

A B

8 12 Text

3 811111 DATA DIVISION.

311112 II FI LE SECTION.

3 II II 3 II FD SAMPLE-FILE.

311114 II BLOCK CONTAINS 5 RECORDS,

3 II II 5 II RECORD CONTAINS 11111 CHARACTERS,

31111611 LABEL RECORD IS STANDARD,

311117 II VALUE OF FI LE - ID IS "SAMPLE FI LE" .

31111811 DATA.RECORD IS SAMPLE-RECORD-1, SAMPLE-RECORD-2.

3 II 911 II 1 SAMPLE-RECORD-1 PICTURE X(lllll).

3 11111 II 1 SAMPLE - REC 0 RD - 2 .

3 1111 II 2 NAME.

3 1 2 II 13 GIVEN PICTURE x (15) .

3 138 113 MIDDLE PICTURE x (15) .

3 14 II II 3 FAM I LY PICTURE x (2 II) .

3 15 II II 2 SEX PICTURE x.
3 16 II 88 MALE VALUE IS "M", ,, B" • .. I".

II 3 1 7 II 88 FEMALE VALUE IS " F" . .. G". ,, 2" .

3 1811 II 2 MARITAL-STATUS PICTURE X.

3 19 II 88 SINGLE VALUE "S" .

3 2 II II 88 MARRIED VALUE "M".

3 111111 88 DIVORCED VALUE .. D".

3111211 88 WIDOWED VALUE "W".

3111311 88 OTHER VALUE .. O".

3111411 II 2 ADDRESS.

3111511 113 SPECIAL PICTURE x (5) .

3111611 II 3 STREET PICTURE x (13) .

3111711 II 3 CI TY PICTURE x (13) .

3111811 113 STA TE PICTURE x (2) .

311198 II 3 COUNTRY PICTURE x (111) .

3111111 II 3 Z IP PICTURE x (5) .

Figure 5-1. Sample File Section Entries

5.3.1.1. BLOCK CONTAINS Clause

Function:

The BLOCK CONTAINS clause specifies the size of the physical record or block. For processing more
efficiently files in which the concept of grouping logical records into blocks is not applicable, this clause
may be used to specify the size of buffers.

Format:

BLOCK CONTAINS! [integer-I lQll integer-2 jCHARACTERSl
1 RECORDS l

•

•

•

•

•

•

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 5-7
1974 AMERICAN NATIONAL STANDARD COBOL

Rules:

1. This clause may be specified on any file but is only required when:

• the file is assigned to TAPE and the block (or physical record) contains more than one logical

record; or

• the file ORGANIZATION IS SAM* or ISAM* and the block contains more than one logical
record.

2. I lnteger-1.j if used, is for documentation only.

~. When the word RECORDS is used, integer-2 defines the block size in terms of the number of records
(using maximum 01 record size) in each block. When variable-length records are blocked, more than
integer-2 records may be grouped in a block due to some records being smaller than the maximum
01 record size.

4. When the word CHARACTERS is specified, integer-2 specifies the number of characters (bytes) per
block including all system control fields.

5. Files specified with device type CAR DREADER or CARDPUNCH may be directed to the diskette device
as a card substitute device. In this case, the BLOCK CONTAINS clause, if specified, indicates the size
of the buffer areas to be used for multisector access. Multisector access improves processing
efficiency because multiple records may be read or written with one physical input/output command
even though they are not grouped into blocks. The maximum buffer size for multisector access is
1024 bytes .

6. The MIRAM data management processes files specified with ORGANIZATION IS SEQUENTIAL and
assigned to disk, or with ORGANIZATION IS RELATIVE, or INDEXED; in MIRAM the concept of
grouping logical records does not apply. For these files, the BLOCK CONTAINS clause specifies the
size of the buffer areas. Larger buffers allow multiple records to be read or written with one physical
access.

7. If the BLOCK CONTAINS clause is not specified, BLOCK CONTAINS 1 RECORD is assumed.

Tables 5-2, 5-3, and 5-4 show the relationship between block size and record size .

*Applies only to 90125, 90130, 90130 8, and 90140 systems

UP-8613 Rev. 2 SPERRY UNIV AC OS/3
1974 AMERICAN NATIONAL STANDARD COBOL

Table 5-2. Block Size Calculations for Tape, Card Reader, Card Punch, and Printer Files

Device Type and Mode

Field Tape Card Card
Printer

Reader Punch

F v u FC vc UC F F v u FC vc

t PC (Printer Control) 0 0 0 1 1 1 0 0 0 0 1 1

BH (Block Header) 0 4* 0 0 4 0 0 0 0 0 0 4

RH (Record Header) 0 4 0 0 4 0 0 0 4 0 0 4

Multiple Records per y y N y y N y•• y•• y•• y•• N N
Block Permitted
(determines
blocking factor)

BLOCK SIZE (bytes) = (((01 RECORD SIZE) + RH + PC)* BLOCKING FACTOR) + BH

Example:

Assume a tape file with variable mode, 8 records per block, and a maximum 01 record size of
230 bytes.

BLOCK SIZE = (((230) + 4 + 0) * 8) + 4 = 1876

*O if CODE-SET is ST ANDARD-0 or ST ANDARD-1

**See 5.3. 1.1, rule 5.

LEGEND:

Y =Yes

N = No

UC

1

0

0

N

5-8
Update D

•

•

•

UP-8613 Rev. 2

•

•

•

SPERRY UNIVAC OS/3
1974 AMERICAN NATIONAL STANDARD COBOL

Table 5-3. Block Size Calculations for Mass Storage SAM and /SAM Files

File Organization and Mode

Field SAM ISAM*

F v FC vc F v

PC (Printer Control) 0 0 1 1 0 0

BH (Block Header) 0 4 0 4 2 2

RH (Record Header) 0 4 0 4 0 2

LF (Link Field) 0 0 0 0 5 5

BLOCK SIZE (bytes) = (((01 record size) + PC + RH + LF) * BLOCKING
FACTOR)+BH

Example:

Assume a SAM file with VC mode, ORGANIZATION SAM, BLOCK 10
RECORDS, and a maximum 01 record size of 200 bytes.

BLOCK SIZE = (((200) + 1 + 4 + 0) * 10) + 4 = 2054 bytes

*For ISAM files, the minimum block size is 256 bytes.

LEGEND:

Y =Yes

N =No

5-9
Update F

UP-8613 Rev. 2 SPERRY UNIVAC OS/3
1974 AMERICAN NATIONAL STANDARD COBOL

Table 5-4. Buffer Size Calc~lations for Mass Storage Sequential, Relative, and Indexed Files

File Organization and Mode

Field Sequential (Mass Storage) Relative Indexed

F v FC vc F v F v

PC (Printer Control) 0 0 1 1 0 0 0 0

RH (Record Header) 0 4 0 4 0 4 0 4

RCB (Record Control Byte) 1 ** 0 1 ** O* 1 O* 1 O*

BUFFER SIZE (as a number of 256-byte sectors) = (((((01 RECORD SIZE) + RH
+ PC + RCB) "BLOCKING FACTOR) + 255) /256) + 1 where the / operator is
an integer divide.

Example:

Assume a relative file with F mode, BLOCK 5 RECORDS, and the record size of
300 bytes.

BUFFER SIZE = (((((300) + 0 + 0 + 1) "5) + 255) /256) + 1 = 7
sectors of 256 bytes each.

NOTE:

Relative and indexed files always use the MIRAM record control byte feature. If a
language processor other than COBOL creates an IRAM or MIRAM file without
the record control byte feature, and no DELETE statement is issued for these
files, they can be processed by a COBOL program.

*For files with V or VC mode, the record control byte is contained in the record header.

**For compatibility, COBOL assumes the RCB to be present and allows for it in the block
size. However, sequential files created by COBOL do not have a RCB.

LEGEND:

Y =Yes

N =No

5.3.1.2. RECORD CONTAINS Clause

Function:

The RECORD CONTAINS clause specifies the size of data records.

Format:

RECORD CONTAINS [integer-1 TO] integer-2 CHARACTERS

5-10
Update F

•

•

•

UP-8613 Rev. 2 SPERRY UNIVAC OS/3
1974 AMERICAN NATIONAL STANDARD COBOL

5-11
Update D

• Rules:

•

•

1 . Since the size of each data record is defined within its respective record description entry, the
RECORD CONTAINS clause is optional.

2. lnteger-2 may not be used by itself unless the size of each data record in the file is the same. In
this case, integer-2 represents the exact number of characters in the data record.

Example:

RECORD CONTAINS 80 CHARACTERS

3. If integer-1 and integer-2 are both shown, they refer to the minimum number of characters in the
smallest size data record and the maximum number of characters in the largest size data record,
respectively.

Example:

RECORD CONTAINS 115 TO 165 CHARACTERS.

No record in the file is shorter than 115 characters nor longer than 165 characters. However, if
"115 TO" were deleted, each record would be exactly 165 characters long.

4. The size is specified in terms of the number of character positions (bytes) required to store the
logical record, regardless of the types of characters used to represent the items within the logical
record.

5. The length of a data record in the file section may not exceed 524,287 bytes.

6. The record size specified in a COBOL program, whether specified in a RECORD CONTAINS clause
or in the record description clause (the size of the 01 record). refers only to the logical data part
of the record and not to any OS/3 control fields appended to the record. The BLOCK CONTAINS
clause shows when control fields are present and how big they are. For more detailed
information, refer to tables 5-2, 5-3, and 5-4 of this section.

NOTE:

When the term "record size" is used in places other than a COBOL program, such as in a data
management manual or a VTOC print, the record size includes the control fields.

5.3.1.3. LABEL RECORDS Clause

Function:

The LABEL RECORDS clause specifies whether labels are present. If labels are present, this clause also
identifies the label.

Format:

t

UP-8613 Rev. 2 SPERRY UNIV AC OS/3 5-12
1974 AMERICAN NATIONAL STANDARD COBOL

Rules: •

1. This clause is required in every file description entry.

2. OMITIED specifies that no explicit labels exist for the file or the device to which the file is assigned.
OMITIED must be specified for files assigned to CARDREADER, CARDPUNCH, and PRINTER.

3. STANDARD specifies that standard system labels exist for the file or the device to which the file is
assigned and the labels conform to the standard system label specifications. STANDARD must be
specified for files assigned to mass storage devices.

~-----------------------------------~
4. Data-names may be specified for sequential tape files only. Data-names specify that both standard

I system labels and standard user labels exist for the file or the device to which the file is assigned.
I Standard user labels must conform to system specifications. Refer to the OS/3 data management

: user guide.

I
I
I
I
I

If LABEL RECORDS STANDARD is specified for the tape file, standard user labels may also be
present. However, standard user labels should not be checked on input files or written on output
files.

I 5. Data-names are names of standard user label records and must have record descriptions subordinate

I to the associated file description.

I
I 6. References to data-names specified in this clause, or to items subordinate to these data-names, must
IL appear within USE LABEL procedures. (See 6.6.41, the USE statement.)
----------------------------------~

5.3.1.4. VALUE OF Clause

Function:

The VALUE OF clause specifies the value of an item in the standard system file label record associated
with a file. This clause is for documentation only.

Format:

VALUE OF

{

FILE-ID IS jldata-name-lit[PASSWORD
l literal-1 5

PASSWORD IS jldata-name-2lt[.FILE-ID
lliteral-2 5

I S j I d a t a - name - 2 It] 1
l literal-2 5

IS jldata-name-llt]
lliteral-1 5

5.3.1.5. DATA RECORDS Clause

Function:

The DATA RECORDS clause only documents the names of data records in a given file.

Format:

DATA jRECORDS AREt data-name-1 [,data-name-2] ...
lRECORD IS 5

•

•

•

•

•

UP-8613 Rev. 2 SPERRY UNIV AC OS/3 5-13
1974 AMERICAN NATIONAL STANDARD COBOL

Rules:

1. Data-name-1 and data-name-2 are the names of data records and must have 01 level-number record
descriptions, with the same names, associated with them.

2. The presence of more than one data-name indicates that the file contains more than one type of data
record. These records may be of differing sizes and formats and can be listed in any order.

3. Conceptually, all data records within a file share the same area. This is in no way altered by the
presence of more than one type of data record within the file.

5.3.1.6. LINAGE Clause

Function:

The LINAGE clause specifies the size of a logical page in terms of number of lines. It also specifies the size
of the top and bottom margins on the logical page and the line number, within the page body, at which the
footing area begins. (See Figure 5-2.)

Format 1:

LINAGE IS !data-name-lt LINES
1integer-l f
F 0 0 T I N G A T ! ~ a t a - n a me - 2l]

11nteger-2 f

[
,LINES AT TOP !~ata-name-3t]

11nteger-3 5

[
,LINES AT BOTTOM !~ata-name-4t]

1integer-4 f

r. - - - -- ---------------...,
1Format 2: •
I i

: LINAGE IS SYSTEM LINES I

~---------------------'

Rules:

NOTE:

Rules 1 through 13 apply to format 1 only.

1 . The LINAGE clause may be used only for sequential files assigned to devices other than CARD

READER and CARDPUNCH.

2. When the LINAGE clause is specified, the character C must be specified in the mode field for an
implementor-name. (See 4.4.1, the ASSIGN clause.)

3. Data-name-1, data-name-2, data-name-3, and data-name-4 must reference elementary unsigned
numeric integer data items.

4 . The LINAGE clause expresses logical page size as the sum of the values referenced by each phrase
except the FOOTING phrase. If the LINES AT TOP or LINES AT BOTIOM phrase is not specified, the
value for this function is zero. If the FOOTING phrase is not specified, the assumed value is equal to
integer-1 or the contents of the data item referenced by data-name-1, whichever is specified.
Although the FOOTING value is assumed to be equal to the LINAGE value, when the FOOTING
phrase is not specified, there is no FOOTING area.

t

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 5-14

5.

1974 AMERICAN NATIONAL STANDARD COBOL

The value of integer-1 or the data item referenced by data-name-1 specifies the number of lines that
can be written or spaced on the logical page. The value must be greater than zero and must not
exceed 999. That part of the logical page in which these lines can be written or spaced is called the
page body.

6. The value of integer-3 or the data item referenced by data-name-3 specifies the number of lines that
comprise the top margin on the logical page. The value may be zero.

7. The value of integer-4 or the data item referenced by data-name-4 specifies the number of lines that
comprise the bottom margin on the logical page. The value may be zero.

8. The value of integer-2 or the data item referenced by data-name-2 specifies the line number within
the page body at which the footing area begins. The value must be greater than zero and not greater
than the value of integer-1 or the data item referenced by data-name-1.

The footing area comprises the area of the logical page between the line represented by the value of
integer-2 or the data item referenced by data-name-2 and the line represented by the value of
integer-1 or the data item referenced by data-name-1, inclusive.

9. The value of integer-1, integer-3, and integer-4. if specified, is used at the time the file is opened by
the execution of an OPEN statement with the OUTPUT phrase to specify the number of lines that
comprise each of the indicated sections of a logical page. The value of integer-2, if specified, is used
at that time to define the footing area. These values are used for all logical pages written for the file
during a given execution of the program.

10. The values of the data items referenced by data-name-1, data-name-3, and data-name-4, if specified,
are used as follows:

• When an OPEN statement with the OUTPUT phrase is executed for the file, they specify the
number of lines that are to comprise each of the indicated sections for the first logical page.

• When a WRITE statement with the ADVANCING PAGE phrase is executed or a page overflow
condition occurs, they are used to specify the number of lines that are to comprise each of the
indicated sections for the next logical page.

11. The value of the data item referenced by data-name-2. if specified, at the time an OPEN statement
with the OUTPUT phrase is executed for the file is used to define the footing area for the first logical
page. At the time a WRITE statement with the ADVANCING PAGE phrase is executed or a page
overflow condition occurs, it is used to define the footing area for the next logical page.

12. A LINAGE-COUNTER register is generated by the presence of a LINAGE clause. The value in the
LINAGE-COUNTER at any given time represents the line number at which the device is positioned
within the current page body. The rules governing the LINAGE-COUNTER are as follows:

a. A separate LINAGE-COUNTER is supplied for each file described in the file section having a file
description entry containing a LINAGE clause.

b. LINAGE-COUNTER may be referenced, but may not be modified, by procedure division
statements. Since more than one LINAGE-COUNTER may exist in a program, the user must
qualify LINAGE-COUNTER by file-name when necessary.

•

•

•

•

•

•

UP-8613 Rev. 2 SPERRY UNIV AC OS/3 5-15

c.

1974 AMERICAN NATIONAL STANDARD COBOL

LINAGE-COUNTER is automatically modified during the execution of a WRITE statement to an
associated file as follows:

(1) When the ADVANCING PAGE phrase of the WRITE statement is specified, the LINAGE
COUNTER is automatically reset to 1.

(2) When the ADVANCING identifier-2 or integer phrase of the WRITE statement is specified,
the LINAGE-COUNTER is incremented by integer or the value of the data item referenced
by identifier-2.

(3) When the ADVANCING phrase of the WRITE statement is not specified, the LINAGE
COUNTER is incremented by the value 1. (See 6.6.42, the WRITE statement.)

(4) The value of LINAGE-COUNTER is automatically reset to 1 when the device is
repositioned to the first line that can be written on for each of the succeeding logical
pages. (See 6.6.42, the WRITE statement.)

d. The value of LINAGE-COUNTER is automatically set to 1 at the time an OPEN statement is
executed for the associated file.

~3._Each ~gical page~ contiguous :h:ext with..:: addition~spaci~=ided. ____ -i +
11vOTE: I
I
I Rules 14 through 19 apply to format 2 only.

I
114. Format 2 of the LINAGE clause may be used only with files assigned to PRINTER. It may not be used

with printer-destined files assigned to other devices.
I
I 15.
I

Format 2 of the LINAGE clause specifies a logical page in which the first line of the page is defined by
the home-paper position in the printer file's vertical format buffer. This format of the LINAGE clause

I
I
I
I

also allows detection of an end-of-page condition based upon the overflow line position in the printer
file's vertical format buffer. See the job control programmer reference, UP-8217 (current version},
and data management user guide, UP-8068 (current version}, for information regarding vertical
format buffer specification and page overflow reporting.

16. The size of the logical page is undefined (no upper limit). The end of a logical page does not occur
until a WRITE statement with an ADVANCING PAGE phrase is executed.

17. The footing area comprises the area of the logical page beginning with the line on which the
operating system reports that the overflow line position in the vertical format buffer has been crossed
and ending at the end of the logical page.

18. Top and bottom margins are not part of the logical page processed by the COBOL program. However,
top and bottom margins may be created on the physical page by executing a WRITE statement with
an ADVANCING PAGE phrase. This positions the form to the next home-paper position.

19. A LINAGE-COUNTER register is generated by the presence of a LINAGE clause. The value in the I
LINAGE-COUNTER at any given time represents the line number at which the device is positioned I
within the current page body. The rules governing the LINAGE-COUNTER are as follows: I

a. A separate LINAGE-COUNTER is supplied for each file described in the file section having a file I
L __ ~sc_!!Pt~ ~rt.£0~n.!.!:!.9.!_L~~ ~~ ___________ _J

t

UP-8613 Rev. 2 SPERRY UNIVAC OS/3
1974 AMERICAN NATIONAL STANDARD COBOL

5-16
Update B

,---------------------------1
I b. LINAGE-COUNTER may be referenced, but may not be modified, by procedure division I

statements. Since more than one LINAGE-COUNTER may exist in a program, the user must
qualify LINAGE-COUNTER by file-name when necessary. I

c.

d.

I

LINAGE-COUNTER is automatically modified during the execution of a WRITE statement to an I
associated file as follows:

• When the ADVANCING PAGE phrase of the WRITE statement is specified, the LINAGE- I
COUNTER is automatically reset to 1.

I
• When the ADVANCING identifier-2 or integer phrase of the WRITE statement is specified,

•

the LINAGE-COUNTER is incremented by integer or the value of the data item referenced I
by identifier-2.

When the ADVANCING phrase of the WRITE statement is not specified, the LINAGE- I
COUNTER is incremented by the value 1. (See 6.6.42, the WRITE statement.)

I
When you specify the ADVANCING mnemonic-name phrase of the WRITE statement, I
the LINAGE-COUNTER is unchanged, but does not accurately reflect the device
position in the current page. The LINAGE-COUNTER remains inaccurate until an I
ADVANCING PAGE phrase is used.

The value of LINAGE-COUNTER is automatically set to 1 at the time an OPEN statement is I
executed for the associated file. I

I---- - - - -- - - ------ -- - _ _j

LOGICAL
PAGE

NOTES

~
mteger-3

T
integer'l

integer-4

___!__

TOP
MARGIN

PAGE
BODY

FOOTING
AREA

BOTIOM
MARGIN

_ - integer-2
(line-number)

Size of logical page in number of lines = the sum of integer-3. integer-1, and integer-4.

2. Size of FOOTING area in number of lines = integer-1 less integer-2 + 1

3 integer-1 must be > zero.
mteger-2 must be ~ integer-1
integer-3 may be ~ zero.
integer-4 may be ;;3 zero.

Figure 5-2. Logical Page Format for Format 1 LINAGE Clause

•

•

•

UP-8613 Rev. 2 SPERRY UNIV AC OS/3
1974 AMERICAN NATIONAL STANDARD COBOL

5-17
Update D

• 5.3.1.7. CODE-SET Clause

•

•

Function:

The CODE-SET clause specifies the character code set used to represent data on the external media.

Format:

CODE-SET IS alphabet-name

Rules:

1. When the CODE-SET clause is specified for a file, all data in that file must be described as USAGE IS
DISPLAY and any signed numeric data must be described with the SIGN IS SEPARATE clause.

2. The alphabet-name clause referenced by the CODE-SET clause must not specify the literal phrase.

3. The CODE-SET clause may only be specified for sequential tape files or files assigned to a
CARDREADERorCARDPUNCH.

4. If the CODE-SET clause is specified, alphabet-name specifies the character code convention used to
represent data on the external media. It also specifies the algorithm for converting the character
codes on the external media from/to the EBCDIC character codes. This code conversion occurs
during the execution of an input or output operation. (See the SPECIAL-NAMES paragraph.)

5. If the CODE-SET clause is not specified, the native character code set is assumed for data on the
external media.

6. For sequential tape files, if the alphabet-name is associated with ST ANDARD-1 in the
SPECIAL-NAMES parapraph, the tape must conform to the standards set forth in American
National Standard Magnetic Tape Labels for Information Interchange, X3.27-1969, at the level
supported by SAM data management. Fixed, variable, and undefined record formats are
permitted. However, the compiler assumes a buffer offset of zero. For an explanation of buffer
offset and ASCII tape file formats, see the Basic data management user guide, UP-8068 (current
version).

7. If the alphabet-name is associated with ST ANDARD-0, it is treated the same as ST ANDARD-1.

5.3.2. Sort/Merge File Description

The sort/merge file description furnishes information concerning the physical structure, identification, and
record names of the file to be sorted I or merged.I Sample sort file description entries are given in Figure 5-3.

Format:

SD file-name

[:RECORD CONTAINS [integer-1 TO] integer-2 CHARACTERS]

[
:DATA jRECORD IS tdata-name-1 (,data-name-2] ... J.

1RECORDS ARE5

t

UP-8613 Rev. 2 SPERRY UNIVAC OS/3
1974 AMERICAN NATIONAL STANDARD COBOL

5-18
Update D

Rules: •

1. The level indicator SD identifies the beginning of the sort/merge file description and must precede
the file-name.

2. The clauses that follow the name of the file are optional and their order of appearance is optional.

3. One or more record description entries must follow the sort/merge file description entry; however,
no input/output statements can be executed for this file.

4. The RECORD CONTAINS and DATA RECORDS clauses are described in 5.3.1.2 and 5.3.1.5,
respectively.

Seq.
No.

040010
040020
040030
040040
040050
040060
040070
040080
040090

A
8

SD

0 1

B Text
1 2

SORT-FILE
RECORD CONTAINS 50 TO 100 CHARACTERS
DATA RECORD IS SORT-RECORD.
SORT-RECORD.

02 ACCOUNT-NUMBER
02 NUMBER-OF-CUSTOMERS,

PICTURE 9(8).
USAGE IS COMPUTATIONAL,

PICTURE S9(4).
02 CUSTOMER-DESCRIPTION, OCCURS 4 TO 9 TIMES DEPENDING

ON NUMBER-OF-CUSTOMERS, PICTURE X(l0).

Figure 5-3. Sample Sort File Description Entries

5.3.3. Data Description

Function:

A data description entry specifies the characteristics of a specific data item.

Format 1:

level -number jdata-name-lf
1FILLER ~

[;REDEFINES data-name-2]

[;~~TUREf IS character-string]

:[USAGE IS] COMPUTATIONAL
COMP

loo UTA TIO NAl.-:-fl
ICOMP-1 I
:coMPUTATIONAL-2:
1COMP-2 1
ICOMPUTATIONAL-3 I
ICOMP-3 I
lcoMPUTATIONAL-4 l
[joM~ _ _-_! _____ J

DISPLAY
INDEX

•

•

•

•

•

UP-8613 Rev. 2 SPERRY UNIV AC OS/3 5-19

Format 2:

1974 AMERICAN NATIONAL STANDARD COBOL

[
;[SIGN ISJSLEADING l[SEPARATE CHARACTER]]

tTRAILING5

[

;OCCURS Sinteger-1 TO integer-2 TIMES DEPENDING ON data-name-3ll
finteger-2 TIMES 5

[
SASCENDING tKEY IS data-name-4 [,data-name-5] . ··]· ..
fDESCENDING5

[INDEXED BY index-name-I [, index-name-2] ...]

[
; S SYNCH R 0 N I ZED l [SL EFT l] J
tsYNC 5 1R I GHT5

[l~IFIED t RIGHT]

[; BLANK WHEN Z ER 0]

[;VALUE IS literal].

66 data-name-l;RENAMES data-name-2[1~~~~UGHt data-name-3].

Format 3:

88 condition-name;pALUE IS l
!VALUES ARE 5

literal-I

[l~UGH~ I iteral -2]

[' I i t e r a I - 3 D ~ ~ : ~ U G H t I i t e r a I - 4]J ..
Rules:

1. There are three formats for data description entries:

• Format 1 is used for record description entries in the file, working-storage, and linkage sections
and for data item description entries in the working-storage and linkage sections.

• format 2 is used to assign alternative names to existing data items or groups of items. (See
5.3.3.12.)

• Format 3 is used to assign a name to the values that an associated conditiona1 variable may
possess during object program execution. (See 5.3.3.11, format 2.)

2. In Level 1, the level-number in format 1 may be any number from 01 through 10 or 77.l In Level 2,
I the level-number in format 1 may be any number from 01 through 49 or 77]

3. The clauses may be written in any order with two exceptions: the data-name-1 or FILLER clause
must immediately follow the level-number; the REDEFINES clause, when used, must immediately
follow the data-name-1 clause.

4. The PICTURE clause must be specified for every elementary item except an index data item, for which
use of this clause is prohibited.

UP-8613 Rev. 2 SPERRY UNIV AC OS/3 5-20
1974 AMERICAN NATIONAL STANDARD. COBOL

5. The words THAU and THROUGH are equivalent.

6. The clauses SYNCHRONIZED, PICTURE, JUSTIFIED, and BLANK WHEN ZERO, must not be specified
except for an elementary data item.

7. Format 3 is used for each condition-name. Each condition-name requires a separate entry with level
number 88. Format 3 contains the name of the condition and the value, values, or range of values
associated with the condition-name. The condition-name entries for a particular conditional variable
must follow the entry describing the item with which the condition-name is associated. A condition
name can be associated with any data description entry that contains a level-number except the
following:

• Another condition-name

• A level 66 item

• A group containing items with descriptions including JUSTIFIED, SYNCHRONIZED, or USAGE
other than USAGE IS DISPLAY

• An index data item (see the USAGE IS INDEX clause)

Table 5-5 summarizes the functions of the clauses used in data description entries. The formats and functions of
these clauses are described in detail in the paragraphs that follow.

Clause

data-name or FILLER

REDEFINES

PICTURE

USAGE

SIGN

OCCURS

SYNCHRONIZED

JUSTIFIED

BLANK WHEN
ZERO

VALUE

RENAMES

Table 5-5. Data Description Entry Clauses

Function

Specifies the name of the data being described

Allows the programmer to give an alternate description of an area of computer storage

Indicates the size, class (alphabetic, numeric, or alphanumeric), and the editing requirements
for an elementary data item

Specifies the manner in which the data is stored in main storage

Specifies the position and mode of representation of the operational sign for numeric data

Indicates the number of elements contained in a table

Specifies the alignment of an elementary item on a natural boundary of the computer memory

Specifies that nonnumeric data is to be right-justified in a nonnumeric field

Specifies that an item is to be set to blanks whenever its value is zero

Defines the initial value of a working storage item or a value or range of values associated
with a condition-name

Permits alternate, possibly overlapping, groupings of elementary items

•

•

•

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 5-21
1974 AMERICAN NATIONAL STANDARD COBOL

• 5.3.3.1. Level-Number

•

•

Function:

The level-number shows the hierarchy of data within a logical record. In addition, it is used to identify
entries for working-storage items, linkage items, !Condition-names, and the RENAMES clause. I

Format:

level -number

Rules:

1. A level-number is required as the first element in each data description entry.

2. Data description entries subordinate to an FD, SD, or CD entry must have level-numbers with the
values 01 through 10 in Level 1; 101-49, 66, or 88 in Level 2.1

3. Data description entries in the working-storage section and linkage section must have level-numbers
with the values 01-10 or 77 in Level 1;j01-49, 66, 77, or 88 in Level 2.1

4. The level-number 01 identifies the first entry in each record description.

5. Special level-numbers are assigned to certain entries where there is no real concept of level:

• Level-number 77 is assigned to identify noncontiguous data items and can be used only as
described by format 1 .

• Level-number 66 is assigned to identify RENAMES entries and can be used only as described in
format 2.

• Level-number 88 is assigned to entries that define condition-names associated with a
conditional variable and can be used only as described in format 3.

6. Multiple level 01 entries subordinate to any given level indicator represent implicit redefinitions of
the same area.

5.3.3.2. Data-Name/FILLER Clause

Function:

A data-name specifies the name of the data being described. The word FILLER specifies an elementary
item of the logical record that cannot be referred to explicitly.

Format:

~data-namet
1FILLER 5

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 5-22

Rules:

1 .

2.

1974 AMERICAN NATIONAL STANDARD COBOL

In the file, working-storage, and linkage sections, a data-name or the key word FILLER must be the
first word following the level-number in each data description entry.

The key word FILLER may be used to name an elementary item in a record. Under no circumstances
can a FILLER item be referred to explicitly. However, the key word FILLER may be used as a
conditional variable because such use does not require explicit reference to the FILLER item, but to
its value.

5.3.3.3. REDEFINES Clause

Function:

The REDEFINES clause allows the same computer storage area to be described by different data
description entries.

Format:

level -number data-name-l;REDEFINES data-name-2

NOTE:

Level-number, data-name-1, I and the semicolon I are shown in the format to improve clarity. Level-number
and data-name-1 are not part of the REDEFINES clause.

Rules:

1. The REDEFINES clause, when specified, must immediately follow data-name-1.

2. The level-numbers of data-name-1 and data-name-2 must be identical.I but must not be 66 or 88.

3. This clause must not be used in level 01 entries in the file section, or the communication section.

4. No entry having a level-number numerically lower than the level-number of data-name-2 and data
name-1 may occur between the data description entries of data-name-2 and data-name-1.

5. Redefinition starts at data-name-2 and ends when a level-number less than or equal to that of data
name-2 is encountered.

6. When the level-number of data-name-1 is other than 01, it must specify the same number of
character positions that the data item referenced by data-name-2 contains. The REDEFINES clause
specifies the redefinition of a storage area, not of the data items occupying the area.

7. The data description entry for data-name-2 cannot contain a REDEFINES clause. In Level 1, data
name-2 cannot be subordinate to an entr that contains a REDEFINES clause.I In Level 2, data-name- I
2 ma be subordinate to an entry that contains a REDEFINES clause. The data description entry for
data-name-2 cannot contain an OCCURS clause. However, data-name-2 may be subordinate to an
item whose data description entry contains an OCCURS clause. In this case, the reference to data
name-2 in the REDEFINES clause may not be subscripted or indexed. Neither the original definition
nor the redefinition can include an item whose size is variable as defined in the OCCURS clause.

•

•

•

•

•

•

UP-8613 Rev. 2 SPERRY UNIV AC OS/3
1974 AMERICAN NATIONAL STANDARD COBOL

5-23
Update B

8. Multiple redefinitions of the same character positions are permitted. The entries giving the new
descriptions of the character positions must follow the entries defining the area being redefined

without intervening entries that define new character positions. Multiple redefinitions of the same
character positions must all use the data-name of the entry that originally defined the area.

Example:

02 A.
04 Al PICTURE X(3).
04 A2 PICTURE 99V99.

02 B REDEFINES A.
04 Bl PICTURE 9.
04 82 PICTURE A(4).
04 83 PICTURE XX.

02 C REDEFINES A PICTURE 9(4)V9(3).

9. The entries giving the new description of the character positions must not contain any VALUE
clauses!except in condition-name entries. I

10. Multiple level 01 entries subordinate to any given level indicator represent implicit redefinitions of
the same area.

5.3.3.4. PICTURE Clause

Function:

The PICTURE clause describes the general characteristics and editing requirements of an elementary
item.

See Appendix K for a tutorial description of the PICTURE clause and for additional examples.

Format:

~PICTUREt IS character-string
1 PI C ~

Rules:

1. A PICTURE clause can be specified only at elementary item level.

2. The maximum number of characters allowed in the character-string is 30.

3. PIC is an abbreviation for PICTURE.

4. J~~J.0'.!:!~E _£1~~~ ~~st be specified for every elementary item except an index data item~~<[~~
t!_n~e.!!'~ _!!~~~:PC?.!'::! _!!e_~ for which use of this clause is prohibited.

5. A character-string consists of certain allowable combinations of characters in the COBOL character
set used as symbols. The allowable combinations determine the category of the elementary item .

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 5-24
Update B

6.

1974 AMERICAN NATIONAL STANDARD COBOL

There are five categories of data that can be described with a PICTURE clause: alphabetic, numeric,
alphanumeric, alphanumeric edited, and numeric edited.

The five categories of data items are grouped into three classes: alphabetic, numeric, and
alphanumeric. For alphabetic and numeric, the class and the category are synonymous. The
alphanumeric class includes the categories of alphanumeric (without editing), alphanumeric edited,
and numeric edited.

Every elementary item except for an index data item belongs to one of the classes and to one of the
categories. The class of a group item is treated at object time as alphanumeric regardless of the class
of elementary items subordinate to that group item.

The relationship of the class and category for elementary and group data items is shown in Table
5-6.

Table 5-6. Class and Category of Elementary and Group Data Items

Level of Item Class Category

Elementary Alphabetic Alphabetic

Numeric Numeric

Alphanumeric Numeric edited
Alphanumeric edited
Alphanumeric

Group Alphanumeric Alphabetic
Numeric
Numeric edited
Alphanumeric edited
Alphanumeric

7. The maximum size of an elementary item is defined as follows:

Alphabetic
Numeric

Numeric edited
Alphanumeric edited
Alphanumeric

4092 bytes
Size in bytes is determined by the USAGE and SIGN clauses (see
5.3.3.5 and 5.3.3.6).
120 bytes
120 bytes
4092 bytes

8. To define an item as alphabetic:

• Its PICTURE character-string can only contain the symbols A and B.

• Its contents when represented in standard data format must be any combination of the 26
letters in the alphabet and the space.

9. To define an item as numeric:

• Fixed-Point Items

There are three types of fixed-point items: external decimal, binary, and~n~~~0!_Cim~IJ(See
5.3.3.5.)

•

•

•

•

•

•

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 5-25
1974 AMERICAN NATIONAL STANDARD COBOL

The PICTURE character-string of a fixed-point item can only contain the symbols 9, P, S, and V.
The number of digit positions that can be described by the PICTURE character-string must
range from 1 to 18 inclusive.

If unsigned, the contents of a data item represented in standard data format must be a
combination of the numerals 0 through 9; if signed, the item may also contain a +. -. or other
representation of an operational sign. (See 5.3.3.6.)

r--------- ----------------------~
1 • Floating-Point Items
I
I
I
I
I
I
I
I
I
I

The floating-point items define data having a potential range of value too great for fixed-point
presentation. The magnitude of the number represented by a floating-point item must be
greater than 5.4 x 10-79 but must not exceed 0.72 x 1076 .

There are two types of floating-point items: internal floating-point and external floating-point.

No PICTURE clause may be associated with an internal floating-point item. The USAGE clause
for an internal floating-point item is COMPUTATIONAL-1 or COMPUTATIONAL-2. (See 5.3.3.5.)

An external floating-point item has the USAGE of DISPLAY and a PICTURE character-string in
the following format:

{±}mantissa E {±} exponent

where:

{±}

A plus indicates that the data is positive if preceded by a plus or negative if
preceded by a minus.

A minus indicates that the data is positive if preceded by a space character or
negative if preceded by a minus.

The plus sign, the space character, or the minus sign occupies one byte of main
storage.

mantissa

E

Is represented by the symbols: 9 . or V. Each 9 represents a digit position and
occupies a byte of main storage. From one to sixteen 9's may be present in the
mantissa string.

The period represents an actual decimal point and occupies a byte of storage. The V
represents an assumed decimal point, which does not occupy any main storage.

One actual or assumed decimal point must be present in the mantissa as a leading,
embedded, or trailing symbol.

Indicates the exponent. It occupies a byte of main storage .

exponent
Specifies a power of 10 that is used as a multiplier. It is represented by two
consecutive 9's. Each 9 occupies a byte of main storage. I

I
I IL No VALUE clause may be associated with an external floating-point item.

--- ---- --------- --- -- ------- --- -- _ _J

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 5-26
1974 AMERICAN NATIONAL STANDARD COBOL

10. To define an item as alphanumeric:

• Its PICTURE character-string is restricted to certain combinations of the symbols A, X, and 9,
and the item is treated as if the character-string contained all X's. A PICTURE character-string
that contains all A's or all 9's does not define an alphanumeric item.

• Its contents, when represented in standard data format, are allowable characters in the
computer character set.

11. To define an item as alphanumeric edited:

• Its PICTURE character-string is restricted to certain combinations of the following symbols:

AX9BO/

As a minimum, it must contain:

at least one B, 0, or I and one X; or

at least one 0 or I and one A.

• The contents, when represented in standard data format, are allowable characters in the
computer character set.

12. To define an item as numeric edited:

• Its PICTURE character-string is restricted to certain combinations of the following symbols:

B I P V Z 0 9 , . * + - CR DB or currency symbol

The allowable combinations are determined from the order of precedence of symbols and
the editing rules.

The number of digit positions that can be represented in the PICTURE character-string
must range from 1 to 18 inclusive.

The character-string must contain at least one of the following symbols:

0 B I Z * + .. - CR DB or currency symbol

• The contents of the character positions of these symbols that are allowed to represent a digit in
standard data format must be one of the numerals.

13. An integer that is enclosed in parentheses following the symbols:

A , X 9 P Z * B I 0 + - or currency symbol

indicates the number of consecutive occurrences of the symbol. The following symbols may appear
only once in a given PICTURE:

S V. CR DBE

•

•

•

•

•

•

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 5-27
1974 AMERICAN NATIONAL STANDARD COBOL

14. The functions of the symbols used in a PICTURE character-string other than floating-point to describe
an elementary item are explained as follows:

Symbol

A

B

p

s

v

x

z

9

0 (zero)

Description

Represents a character position that contains only a letter of the alphabet or a space

Represents a character position into which the space character is to be inserted

Indicates an assumed decimal scaling position and specifies the location of an
assumed decimal point when the point is not within the number that appears in the
data item. The P is not counted in the size of the data item, but is counted in
determining the maximum number of digit positions (18) in numeric edited items or
numeric items. The P can appear only to the left or right as a continuous string of
P's within a PICTURE description. Since the P implies an assumed decimal point (to
the left of the P's if P's are leftmost PICTURE characters, and to the right if the P's
are rightmost PICTURE characters), the assumed decimal point symbol V is
redundant as either the leftmost or rightmost character within such a PICTURE
description.

The character P and the insertion character . (period) cannot both occur in the same
PICTURE character-string. If, in any operation involving conversion of data from one
form of internal representation to another, the data item being converted is
described with the PICTURE character P, each digit position described by a P is
considered to contain the value zero, and the size of the data item is considered to
include the digit positions so described .

Indicates the presence of an operational sign but not its representation nor,
necessarily, its position. It must be written as the leftmost character in the PICTURE
and is not counted in determining the size (in terms of standard data format
characters) of the elementary item unless the entry is subject to a SIGN clause that
specifies the optional SEPARATE CHARACTER phrase. (See the SIGN clause.)

Indicates the location of the assumed decimal point and may only appear once in a
character-string. The V does not represent a character position and, therefore, is not
counted in the size of the elementary item. When the assumed decimal point is to
the right of the rightmost symbol in the string, the V is redundant.

Represents a character position that contains any allowable character from the
computer character set

Represents a leading numeric character position. When that position contains a 0,
the O is replaced by a space character. Each Z is counted in the size of the item.

Represents a character position that contains a numeral and is counted in the size
of the item

Represents a character position into which the numeral 0 is to be inserted. The 0 is
counted in the size of the item.

I (stroke) Represents a character position into which the stroke character is to be inserted.
The I is counted in the size of the item .

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 5-28
1974 AMERICAN NATIONAL STANDARD COBOL

Symbol Description

, (comma) Represents a character pos1t1on into which a comma is to be inserted. This
character position is counted in the size of the item. The insertion character , must
not be the last character in the PICTURE character-string .

. (period) Is an editing symbol that represents the decimal point for alignment purposes and,
in addition, represents a character position into which a decimal point is to be
inserted. A period is counted in the size of the item. The functions of the period and
comma are exchanged if the clause DECIMAL-POINT IS COMMA is stated in the
SPECIAL-NAMES paragraph. In this exchange, the rules for the period apply to the
comma and the rules for the comma apply to the period wherever they appear in a
PICTURE clause. The insertion character period must not be the last character in the
PICTURE character-string.

+, -,
CR, DB

*

cs

Are used as editing sign control symbols. They represent the character position into
which the editing sign control symbol is placed. These symbols are mutually
exclusive in any one character-string and each character used in the symbol is
counted in determining the size of the data item.

Represents a leading numeric character position into which an asterisk is placed
when that position contains a zero. Each asterisk is counted in the size of the item.

Represents a character position into which a currency symbol is to be placed. The
currency symbol in a character-string is represented by either the currency sign ($)

or by the single character specified in the CURRENCY SIGN clause in the SPECIAL
NAMES paragraph. The currency symbol is counted in the size of the item.

15. There are two general methods of performing editing in the PICTURE clause; insertion or suppression
and replacement.

The four types of insertion editing are:

• Simple insertion

• Special insertion

• Fixed insertion

• Floating insertion

The two types of suppression and replacement editing are:

• Zero suppression and replacement with spaces

• Zero suppression and replacement with asterisks

16. The type of editing that may be performed upon an item is dependent upon the category to which the
item belongs. (See Table 5-7.)

•

•

•

•

•

•

UP-8613 Rev. 2 SPERRY UNIV AC OS/3
1974 AMERICAN NATIONAL STANDARD COBOL

5-29
Update A

17. Floating insertion editing and editing by zero suppression and replacement are mutually exclusive in
a PICTURE clause. Only one type of editing may be used in a PICTURE clause.

18. Insertion editing is described as follows:

• The simple insertion editing characters are:

, B 0 I

The insertion characters are counted in the size of the item and represent the position in the
item into which the character is to be inserted.

• The special insertion character is the . (period). When used as an actual decimal point, the
insertion character is counted in the size of the item. In addition, the period is used to represent
the decimal point for alignment purposes. The use of the assumed decimal point (represented
by the symbol V) and the actual decimal point (represented by the insertion character) in the
same PICTURE character-string is disallowed. The insertion character appears in the edited
item in the same position as shown in the character-string.

Table 5-7. Type of Editing Permissible for Each Data Category

Data Category Type of Editing

Alphabetic Simple insertion B only

Numeric None

Alphanumeric None

Alphanumeric edited Simple insertion , 0 B and I

Numeric edited All, subject to rule 17

• The fixed insertion editing characters are the currency symbol (cs) and the editing sign control
symbols:

•

+ - CR DB

Only one currency symbol and one editing sign control symbol can be used in a given PICTURE
character-string. When the symbols CR or DB are used, they represent two character positions
in determining the size of the item, and they must represent the rightmost character positions
that are counted in the size of the item. The symbol + or - must be either the leftmost or
rightmost character position to be counted in the size of the item. The currency symbol must be
the leftmost character position to be counted in the size of the item except that it can be
preceded by either a + or a - symbol. The insertion character occupies the same character
position in the edited item as it occupies in the PICTURE character-string. Editing sign control
symbols produce the results given in Table 5-8, depending upon the value of the data item.

The floating insertion editing characters are the currency symbol (cs) and the editing sign
control symbols + and -. The symbols are mutually exclusive in a given PICTURE character
string as floating insertion characters .

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 5-30
1974 AMERICAN NATIONAL STANDARD COBOL

Table 5-8. Results Produced by Editing Sign Control Symbols

Editing Symbol in
Result

Data Item Data Item
PICTURE Character-String

Positive or Zero Negative

+ + -

- Space -

CR 2 spaces CR

DB 2 spaces DB

Floating insertion editing is indicated in a PICTURE character-string by using a string of at least
two floating insertion characters. This string may contain any of the fixed insertion symbols or
have fixed insertion characters immediately to the right of this string. These simple insertion
characters are part of the floating string.

The leftmost character of the floating insertion string represents the leftmost limit of the
floating symbol in the data item. The rightmost character of the floating string represents the
rightmost limit of the floating symbols in the data item.

The second floating character from the left represents the leftmost limit of the numeric data
that can be stored in the data item. Nonzero numeric data replaces all the characters at or to
the right of this limit.

There are two ways of representing floating insertion editing. One way is to represent any or all
of the leading numeric character positions on the left of the decimal point by the insertion
character (examples 1 and 2). The other way is to represent all of the numeric character
positions in the PICTURE character-string by the insertion character (example 3).

If the insertion characters are only to the left of the decimal point. only a single floating
insertion character is placed into the character position immediately preceding either the
decimal point or the first nonzero digit in the data represented by the insertion symbol string,
whichever is farther to the left in the PICTURE character-string. The character positions
preceding the insertion character are replaced with spaces.

If all numeric character positions in the PICTURE character-string are represented by the
insertion character, the result depends upon the value of the data. If the value is zero, the
entire data item will contain spaces. If the value is not zero, the result is the same as when the
insertion character is only to the left of the decimal point (examples 4, 5, and 6).

To avoid truncation, the minimum size of the PICTURE character-string for the receiving data
item must be the number of characters in the sending data item, plus the number of
nonfloating insertion characters being edited into the receiving data item, plus one for the

floating insertion character.

•

•

•

•

•

•

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 5-31
1974 AMERICAN NATIONAL STANDARD COBOL

Examples:

PICTURE Data Edited Result

1. $$9.99 12 113 4 $12.34
2. $$,$$$.99 12341188 $1.234.00
3. $$$.$$ 12 113 4 $12.34
4. $$,$$$.$$ 0000 1100 (a I I spaces)
5. ++.+++.++ 0001 11 00 +l. 00
6. -- . - - . - -00001101 -. 01

19. In zero suppression editing, the suppression of leading O's in numeric character positions is indicated
by the use of the alphabetic character Z or the character * (asterisk) as suppression symbols in a
PICTURE character-string. These symbols are mutually exclusive in a given PICTURE character
string. Each suppression symbol is counted in determining the size of the item.

If Z is used, the replacement character is a space. If the asterisk is used, the replacement character is
* (asterisk).

Zero suppression and replacement is indicated in a PICTURE character-string in the following
manner. A string of one or more of the allowable symbols (* or Z) is used to represent leading
numeric character positions that are to be replaced when the associated character position in the
data contains a 0. Any of the simple insertion characters (. B 0 I) embedded in the string of symbols
or to the immediate right of this string are part of the string .

The two ways of representing zero suppression in a PICTURE character-string are:

• Any or all of the leading numeric character positions to the left of the decimal point are
represented by suppression symbols.

• All numeric character positions in the character string are represented by suppression symbols.

If the suppression symbols appear only to the left of the decimal point, any leading 0 in the data that
corresponds to a symbol in the string is replaced by the replacement character. Suppression
terminates at the first nonzero digit in the data represented by the suppression symbol string or at
the decimal point. whichever is encountered first.

If all numeric character positions in the PICTURE character-string are represented by suppression
symbols and the value of the data is not zero, the result is the same as if the suppression characters
were only to the left of the decimal point. If the value is zero and the suppression symbol is Z, the
entire data item will be spaces. If the value is zero and the suppression symbol is *.the data item will
be all * except for the actual decimal point.

Examples:

PICTURE

ZZ99.99
ZZZZ.99
zzzz.zz
•••• : 9 9

•,•••.•••.99BBCR

Data Item Edited Result

00.00
.00

(all spaces)

• • • • . e e

••••2.135.05 CR

t

UP-8613 Rev. 2 SPERRY UNIVAC OS/3
1974 AMERICAN NATIONAL STANDARD COBOL

5-32
Update B

20. The symbols + - * Z and the currency symbol, when used as floating replacement characters, are
mutually exclusive within a given character-string.

21. Table 5-9 shows the order of precedence when using characters as symbols in a character-string.

At least one of the symbols

AX Z 9 *

or at least two of the symbols

+ - cs (currency symbol)

must be present in a PICTURE character-string.

Nonfloating insertion symbols + and -, floating insertion symbols Z * + - and cs, and other symbol P
appear twice in the PICTURE character precedence chart, Table 5-9. The leftmost column and
uppermost row for each symbol represents its use to the left of the decimal point position. The
second appearance of the symbol in the chart represents its use to the right of the decimal point
position.

The PICTURE character precedence chart (Table 5-9) summarizes the preceding rules and
provides a quick check on the legal order of PICTURE symbols. For example, the chart shows
that picture string $ + 99 is illegal because the intersection of the column (nonfloating insertion
symbol cs) and row (nonfloating insertion symbol {±}Cb)) contains no X. This summarizes rule
18.

•

•

UP-8613 Rev. 2 SPERRY UNIV AC OS/3
1974 AMERICAN NATIONAL STANDARD COBOL

• Table 5-9. PICTURE Character Precedence Chart (Part 1 of 2)

First Symbol

Nonfloating Floating
Second Insertion Symbols Insertion Symbols
Symbol

B 0 I '
{~} {~} {~:} cs {!} {!} {~} {~} cs cs

© ® © ® © ® © ®
B x x x x x x x x x x x x x

0 x x x x x x x x x x x x x

I x x x x x x x x x x x x x

' JI!
x x x x x x x x x x x x x

"'.8 ·a E x x x x x x x x x
!~
; c

{~}© g~ -

zj

{~}® x x x x x x x x x x

{~:} x x x x x x x x x x

cs x

{~}© x x x x x x x

• {!}® x x x x x x x x x ..
j

'" E {~}© x x c ,.. x x x x
~ en
! c
- 0 ... ~

{~} ® j x x x x x x x x

cs © x x x x x x

cs ® x x x x x x x x

9 x x x x x x x x x x

{~} x x x

i
E ,.. s

Cll

; v x x x x x x x x x
5

p © x x x x x x x x x

p ® x x

LEGEND:

X Indicates that symbol at top of column may precede symbol at left of row.

{ f Indicates that symbols are mutually exclusive.

cs Indicates a currency symbol.

© Indicates the occurrence of the symbol to the left of the decimal point.

® Indicates the occurrence of the symbol to the right of the decimal point .

• NOTE:

~~~~~iriP~njPICTURE characters are not included in this chart. 

Other Symbols 

9 {~} s v 

x x x 

x x x 

x x x 

x x 

x 

x x 

x x 

x 

x 

x 

x x x x 

x x 

x x 

x x 

x x 

5-32a 
Update C 

p p 

© ® 
x 

x 

x 

x 

x x 

x x 

x 

x 

x 

x 

x 

x 

x 



• 

• 

• 



• 

• 

• 

UP-8613 Rev. 2 SPERRY UNIV AC OS/3 
1974 AMERICAN NATIONAL STANDARD COBOL 

5.3.3.5. USAGE Clause 

Function: 

The USAGE clause specifies the format of a data item in the computer storage. 

Format 1: 

[USAGE IS] COMPUTATIONAL 
COMP 

[C"OMPUTA fl ONAL-:-11 
iCOMP-1 I 
ICOMPUTATIONAL-2 I 
lcoMP-2 I 
lcoMPUTATIONAL-3: 
lcoMP- 3 
jcoMPUTATIONAL-4: 
~COMP-4 ____ _J 
DISPLAY 

Format 2: 

[USAGE IS] INDEX 

Rules: 

5-33 
Update B 

1 . The USAGE clause can be written at any level. If the USAGE clause is written at a group level, it 
applies to each elementary item in the group. The USAGE clause of an elementary item cannot 
contradict the USAGE clause of a group to which the item belongs. 

NOTE: 

Rules 2 through 13 apply to format 1 only. 

2. This clause specifies the manner in which a data item is represented in the storage of a computer. It 
does not affect the use of the data item, although the specifications for some statements in the 
procedure division may restrict the USAGE clause of the operands referred to. The USAGE clause 
may affect the radix or type of character representation of the item. 

3. If the USAGE clause is not specified for an elementary item, or for any group to which the item 
belongs, the usage is implicitly DISPLAY. 

4. The USAGE IS DISPLAY specifies that the item is stored in character form, one character per byte; it 

i~ ~e~ _!o~ ~~aE._e!!_c.!.... ~hanumeric, alphanumeric edited, numeric edited, external decimal, ~~J 
[!~~~ l_.!l~:!_n~~i~t _!,!~~·J 



t 

UP-8613 Rev. 2 SPERRY UNIV AC OS/3 5-34 
Update B 1974 AMERICAN NATIONAL STANDARD COBOL 

5. COMP, jcOMP-:-1-:-- COMP-°2.-COMP-:-3-:- ;nd -COMP4~re abbreviations for COMPUTATIONAL, 
[c:§MPU~I_IONAL-L _COMP_.Y!_A_!!ON~L-2~ ~OMPUTA!!ONAL~-:-_-and- co~ElJrA]ONAC~-:-J 

6. 

7. 

respectively. 

COMPUTATIONAL and~OMPUTATl~N~L-4 ~r~ syn;;-nymi~j 

1,----------------------------, 
A_ ~O~PUTATIONAL, t.f_QMP_.YTATION~-_l._ CO~PUTATIQ_NAL-2, _C_Q~~TATJ_ON~-~·- ~-' 
[c_Q~~TATIONAL-4}item is capable of representing a value to be used in computations and must be 

numeric. If the USAGE clause of a group item is specified with any of these options, only the 
elementary items within the group have the specified USAGE; the group item itself cannot be used in 
computations. 

8. The PICTURE character-string of a COMPUTATIONAL, ~Q_~!::!_TATIONAL-3, ;r C0~!'._UTATIQ_NA8 _J 
item can contain only 9's, the operational sign character S, the implied decimal point character V, or 
one or more P'S. (See the PICTURE clause.) 

9. No VALUE clause may be specified for items with descriptions that include the USAGE IS INDEX 
clause. 

r.---------------------------------, 
10. i!J~ PICTURE_:lause ~ay be ~ecified_!o~ a ~OMPUT ~IONAL-1 ~ ~OMPUTATIONAL-~tem.:..J 

11. COMPUTATIONAL or ~q_MPU}~@~Aj:-~specifies that the value of a data item is to be stored in 
binary format. 

Example: 

Description 

PICTURE S9999 
COMPUTATIONAL 

PICTURE S9999 

Value 

+6879 

-6879 

Internal Representation 

s 
0001 1010 1101 1111 
~ 

1 byte 

s 
1110 0101 0010 0001 
~ 

1 byte 

The number of digits (9 characters) specified in the PICTURE character string determines the size, 
in bytes, of a COMPUTATIONAL or COMPUTATIONAL-4 item. 

Number of Digits 

NOTE: 

1 to 4 
5 to 9 
10 to 18 

S indicates a sign bit. 

Size, in Bytes 

2 
4 

8 

• 

• 

• 



• 

• 

• 

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 
1974 AMERICAN NATIONAL STANDARD COBOL 

5-35 
Update B 

..-------------------------------------, 
112. COMPUTATIONAL-1 specifies that the value of a data item is to be stored in single precision floating-1 
I point format. COMPUTATIONAL-2 specifies that the value of a data item is to be stored in double I 
1 precision floating-point format. I 
L-----------------------------------~ 

Examples: 

COMP-1 H 
exponent ,\, mantissa 

"-.__. 
----------~ ~ 

bits 

COMPll, exponent ,I. mantissa ~ ~ 
"--. ---------..__.,/ ~ 

bits 
S = sign of mantissa 

11"'.-- - - --------------------------------1 
13. COMPUTATIONAL-3 specifies that the value of a data item is to be stored in internal decimal format L (packed decimal format). I 
---------------------------------------~ 

Example: 

Description 

9999 
S9999 
S9999 

Value 

6879 
+6879 
-6879 

Internal Representation 

06879F 
06879C 
068790 

The number of digits (9 characters) in the PICTURE character string determines the size, in bytes, 

of a COMPUTATIONAL-3 data item. 

Number of Digits Size, in Bytes 

2 to 3 2 

4 to 5 3 

6 to 7 4 

8 to 9 5 
10 to 11 6 
12 to 13 7 

14 to 15 8 
16 to 17 9 

18 10 

t 



t 

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 
1974 AMERICAN NATIONAL STANDARD COBOL 

NOTE: 

Rules 14 through 18 apply to format 2 only. 

5-36 
Update B 

14. An elementary item described with the USAGE IS INDEX clause is called an index data item and 
contains a value that must correspond to an occurrence number of a table element. The elementary 
item cannot be a conditional variable. If a group item is described with the USAGE IS INDEX clause 
the elementary items in the group are all index data items. The group itself is not an index data item 
and cannot be used in thel SEARCH or I SET statement or in a relation condition. 

15. An index data item defines a data item of eight characters in length and contains the binary 
representation of the character displacement of a table element occurrence within a table. An index 
data item does not require synchronization and is not aligned to any machine boundary other than a 
character or byte boundary. 

16. An index data item is a save area where the value of an index-name can be placed. Do not use it 
as a subscript or as an index to refer to an individual element within a table. Refer directly to an 
index data item only in a !SEARCH orjSET statement, a relational condition, the USING phrase of 
a procedure division header, or the USING phrase of a CALL statement. 

17. An index data item can be part of a group that is referred to in a MOVE or input/ output statement, in 
which case no conversion will take place. 

18. The SYNCHRONIZED, JUSTIFIED, PICTURE, VALUE, and BLANK WHEN ZERO clauses cannot be used 
to describe group or elementary items described with the USAGE IS INDEX clause. 

5.3.3.6. SIGN Clause 

Function: 

The SIGN clause specifies the position and the mode of representation of the operational sign when it is 
necessary to describe these properties explicitly. 

Format: 

[SIGN IS] ~LEADING t[SEPARATECHARACTER] 
lTRAILING~ 

• 

• 

• 



• 

• 

• 

UP-8613 Rev. 2 SPERRY UNIV AC OS/3 5-37 
1974 AMERICAN NATIONAL STANDARD COBOL 

Rules: 

1. The SIGN clause may be specified only for a numeric data description entry whose picture contains 
the character S, or a group item containing at least one such numeric data description entry. 

2. The numeric data description entries to which the SIGN clause applies must be described as usage is 
DISPLAY except for floating-point display. 

3. At most, one SIGN clause may apply to any given numeric data description entry. 

4. If the CODE-SET clause is specified, any signed numeric data description entries associated with that 
file description entry must be described with the SIGN IS SEPARATE clause. 

5. The optional SIGN clause specifies the position and the mode of representation of the operational 
sign for the numeric data description entry to which it applies, or for each numeric data description 
entry subordinate to the group to which it applies. The SIGN clause applies only to numeric data 
description entries whose PICTURE contains the character S; the S indicates the presence of, but 
neither the representation nor, necessarily, the position of the operational sign. 

6. A numeric data description entry whose PICTURE contains the character S, but to which no optional 
SIGN clause applies, has an operational sign. The sign is considered to be TRAILING, without the 
SEPARATE CHARACTER option. 

7. If the optional SEPARATE CHARACTER phrase is not present. then: 

• The operational sign is presumed to be associated with the leading or, respectively, trailing digit 
position of the elementary numeric data item. 

• The letter S in a PICTURE character-string is not counted in determining the size of the item (in 
terms of standard data format characters). 

• The valid signs for numeric data items occur in the zone portion of LEADING or TRAILING 
character position. The hexadecimal value C represents a positive sign, and the value D 
represents a negative sign. The hexadecimal value F is considered as a positive sign if the 
PICTURE character-string contains an S, and considered unsigned if the PICTURE character
string does not contain an S. 

8. If the optional SEPARATE CHARACTER phrase is present, then: 

• The operational sign is presumed to be the leading or, respectively, trailing character position of 
the elementary numeric data item; this character position is not a digit position. 

• The letter S in a PICTURE character-string is counted in determining the size of the item (in 

terms of standard data format characters). 

• The operational signs for positive and negative are the standard data format characters+ and -, 
respectively. 

9. Every numeric data description entry whose PICTURE contains the character S is a signed numeric 
data description entry. If a SIGN clause applies to such an entry and conversion is necessary for 
computation or comparisons, conversion is automatic . 



UP-8613 Rev. 2 SPERRY UNIVAC OS/3 5-38 
1974 AMERICAN NATIONAL STANDARD COBOL 

5.3.3.7. OCCURS Clause 

Function: 

The OCCURS clause eliminates the need for separate entries for repeated data items and supplies 
information required for the application of subscripts or indexes. 

Format 1: 

OCCURS integer-2 TIMES 

[
jASCENDING l KEY IS data-name-2 [ ,data-name-3] ... J ... 
1DESCENDING~ 

[INDEXED BY index-name-1 [, index-name-2] ... ] 

Format 2: 

OCCURS integer-I TO integer-2 TIMES DEPENDING ON data-name-1 

[
j ASCEND I NG l KEY I S d a t a - name - 2 [ , d a t a - name - 3 ] ... J ... 
1DESCENDING~ 

[INDEXED BY index-name-1 [, index-name-2] ... ] 

Rules: 

1 . The OCCURS clause is used in defining tables and other homogeneous sets of repeated data items. 
The data-name, which is the subject of the data description entry, must be either subscripted or 
indexed whenever it is referred to in a statement other than SEARCH or USE FOR DEBUGGING. 
Further, if the subject of this entry is the name of a group item, then all data-names belonging to the 
group must be subscripted or indexed whenever they are used as operands, except as the object of a 
REDEFINES clause. (See 2.6.2, subscripting; 2.6.3, indexing; 2.6.4, identifier.) 

2. The KEY IS phrase indicates that the repeated data is arranged in ascending or descending order 
according to the values contained in data-name-2, data-name-3, etc. The ascending or descending 
order is determined according to the rules for comparison of operands. (See 6.4.1.1.1 and 6.4.1.1.2.) 
The data-names are listed in their descending order of significance. 

3. An INDEXED BY phrase is required if the subject of this entry, or an entry subordinate to this entry, is 
to be referred to by indexing. The index-name identified by this clause is not defined elsewhere since 
its allocation and format are dependent on the hardware and, not being data, cannot be associated 

with any data hierarchy. 

4. The number of occurrences of the subject entry is defined as follows: 

• In format 1, the value of integer-2 represents the exact number of occurrences. 

• In format 2, the current value of the data item referenced by data-name-1 represents the 
number of occurrences. 

This format specifies that the subject of this entry has a variable number of occurrences. The 
value of integer-2 represents the maximum number of occurrences, and the value of integer-1 
represents the minimum number of occurrences. This does not imply that the length of the 
subject of the entry is variable, but that the number of occurrences is variable. 

• 

• 

• 



• 

• 

• 

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 5-39 

5. 

6. 

1974 AMERICAN NATIONAL STANDARD COBOL 

The value of the data item referenced by data-name-1 must fall within the range integer-1 
through integer-2. Reducing the value of the data item referenced by data-name-1 makes the 
contents of data items, whose occurrence numbers now exceed the value of the data item 
referenced by data-name-1 unpredictable. 

Except for the OCCURS clause itself, all data description clauses associated with an item whose 
description includes an OCCURS clause apply to each occurrence of the item described. (See rule 11 
of the VALUE clause.) 

The OCCURS clause cannot be specified in a data description entry that: 

• has a 01, 66, 77, or an 88 level-number; or 

• describes an item whose size is variable. The size of an item is variable if the data description of 
any subordinate item contains format 2 of the OCCURS clause. 

7. The length of a table element (i.e .. the size of the item containing an OCCURS clause) may not exceed 
32,767 bytes. The maximum number of occurrences of a table element (i.e .. the value of integer-2) 
may not exceed 65,535. 

Example 1: 

02 A PIC X(2) OCCURS 65000 TIMES. 

This entry is valid because the length of table element A is two bytes and the number of occurrences 
of A does not exceed 65,535. 

Example 2: 

02 X OCCURS 2 TIMES. 
04 Y PIC X(l000) OCCURS 40 TIMES. 

These entries are incorrect because the length of table element X is 40,000 bytes, which exceeds the 
maximum length permitted for a table element. 

8. In format 1, the value of integer-2 must be greater than 0 and less than 65,536. 

9. 

10. 

11 . 

12. 

13 . 

In format 2, the value of integer-1 may range from 0 through 65,534, and the value of integer-2 must 
be greater than the value of integer-1 and less than 65,536. 

The data description of data-name-1 must describe a positive integer. 

Data-name-1, data-name-2, data-name-3, ... may be qualified. 

Data-name-2 must either be the name of the entry containing the OCCURS clause or the name of an 
entry subordinate to the entry containing the OCCURS clause. 

Data-name-3, etc, must be the name of an entry subordinate to the group item that is the subject of 
this entry. 

lndex-name-1, index-name-2, ... must be unique words within the program. 



UP-8613 Rev. 2 SPERRY UNIVAC OS/3 5-40 
1974 AMERICAN NATIONAL STANDARD COBOL 

14. If data-name-2 is not the subject of this entry, then: 

• all the items identified by the data-names in the KEY IS phrase must be within the group item 
which is the subject of this entry; 

• items identified by the data-name in the KEY IS phrase must not contain an OCCURS clause; 
and 

• there must not be any entry that contains an OCCURS clause between the items identified by 
the data-names in the KEY IS phrase and the subject of this entry. 

15. A data description entry that contains format 2 of the OCCURS clause may only be followed, within 
that record description, by data description entries subordinate to it. 

16. When a group item with a subordinate entry that specifies format 2 of the OCCURS clause is 
referenced, only that part of the table area that is specified by the value of data-name-1 is used in the 
operation. 

17. In format 2, if the data item defined by data-name-1 appears in the same record as the table it 
controls, it must appear before that table. 

Example 1: 

01 EMPLOYEE-TABLE. 
02 DEPARTMENT. OCCURS 5 TIMES. 

03 EMPLOYEE. OCCURS 50 TIMES, PICTURE X(20). 

This example defines a table containing 50 entries for employees, grouped into five departments. The 
picture for each entry is X(20). This gives a total of 5 x 50 = 250 entries. 

Example 2: 

01 DATA-RECORD. 
02 FIXED-PORTION. 

03 MAIN-INFO PICTURE X(25). 
03 NR-OF-TRAILERS PICTURE S99 COMPUTATIONAL. 

02 VARIABLE-PORTION OCCURS 1 TO 10 TIMES 
DEPENDING ON NR-OF-TRAILERS. 
03 TRAILER 
03 TRAILER-2 

PICTURE X(l5). 
PICTURE X(5). 

In this example. format 2 of the OCCURS clause is used to describe variable-length records. The fixed 
portion of 27 bytes always appears in each record. The presence of trailer items in a record is dependent 
on the contents of the data item NA-OF-TRAILERS. When NA-OF-TRAILERS contains a value of O, the 
record length is 27 bytes; when the value is 1, record length is 47 bytes; when the value is 2, record length 
is 67; etc. 

Example 3: 

01 TABLE-A. 
02 ITEM-A PICTURE 99, OCCURS 5 TIMES 

INDEXED BY INDX-1. 
01 TABLE-B. 

02 ITEM-B PICTURE 99. OCCURS 5 TIMES. 

In a program containing these descriptions. INDX-1 cannot be used to refer to an element in TABLE-B. 

• 

• 

• 



• 

• 

• 

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 5-41 
1974 AMERICAN NATIONAL STANDARD COBOL 

5.3.3.8. SYNCHRONIZED Clause 

Function: 

The SYNCHRONIZED clause specifies that an elementary item is to be aligned on the proper boundary of 
the computer main storage for efficiency in using the elementary item. 

Format: 

Rules: 

1. The proper alignment boundary for the various types of elementary item formats as specified in the 
USAGE clause is given in Table 5-10. 

2. This clause may only appear with an elementary item. 

3. SYNC is an abbreviation for SYNCHRONIZED. 

Table 5-10. Alignment Boundaries for Various Type Elementary Items 

Item Item Length Alignment 
Format Boundary 

~r c_o_~i:_-, ~ 59 through 59(4) Half word 

Lc_q_~~-~J 59(5) through 59(18) Full word 

r-----, 
&O_M_P..:!J Full word 

r----, Double 
LC.9~~-~J word l l"NDEX ! 
~~o~t~J Bytes 

4. The LEFT and RIGHT options are treated as comments. 

5. Regardless of whether the SYNCHRONIZED clause is used, all 01 level entries are aligned by the 
compiler on double-word boundaries. 

6. Slack bytes (unused character positions) are inserted immediately preceding the elementary item to 
be synchronized. Although the length of the elementary item is not affected by the SYNCHRONIZED 
clause, the inserted slack bytes are included in: 

• the size of any group items to which the elementary item belongs; and 

• the character positions redefined when this data item is the object of a REDEFINES clause . 



UP-8613 Rev. 2 SPERRY UNIVAC OS/3 5-42 
1974 AMERICAN NATIONAL STANDARD COBOL 

Example: 

Bl REC. 

82 A. 

83 M. 

04 s PIC x. 
84 T PIC S9 COMP 

83 N USAGE COMP-2. 

82 B USAGE COMP-1. 

If the SYNCHRONIZED clause is not specified, the elementary items appear in the computer main 

storage as follows: 

s T N B 

0 1 2 3 10 11 14 

If the SYNCHRONIZED clause is specified for item T, one slack byte is inserted preceding item T to 
align T on a half-word boundary as follows: 

s 
L 
A s c T N B 
K 

0 1 2 3 4 11 12 15 

The inserted slack byte does not affect the size of the synchronized item T, but is included in the 
length of the group item M. 

If the SYNCHRONIZED clause is specified for elementary items T, N, and B, slack bytes are inserted 
as follows: 

s s 
L L 

s A 
T 

A 
N B c c 

K K 

0 1 2 3 4 7 8 15 16 19 

T is a COMP item and is aligned on a half-word boundary by the insertion of one slack byte. N is a 
IS:9_MP_::-~jitem that requires alignment on a double-word boundary that is provided by the insertion of 
four slack bytes. B is on a double-word boundary and requires no slack bytes. The size of group item, 
then. includes the five inserted slack bytes. 

The algorithm used by the compiler to determine the insertion of slack bytes is explained as follows: 

• As each item to be synchronized is encountered, the total number of bytes occupied by all the 
elementary items up to but not including this one is added to the total number of slack bytes 
already inserted. 

• 

• 

• 



• 

• 

• 

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 5-43 
1974 AMERICAN NATIONAL STANDARD COBOL 

• This total divided by x, where: 

x Item Length 

2 COMP 1 to 4 digits 
4 COMP 5 to 18 digits 

4 rco"Mp-:-;-1 i.:: ____ J 

8 
r:- - --, 
LC_9~~-~J 

• If there is no remainder for the division, no slack bytes are necessary. If there is a remainder, 
the number of slack bytes required is equal to x minus the remainder. 

For the example, the algorithm would be used as follows: 

• For the first synchronized item, T, the total number of bytes in the record so far is 1; x for this 
COMP item is 2; the remainder of the division is 1. Thus, x (2) minus 1 equals 1; therefore, 1 is 
the number of slack bytes required. 

• For N, a fQ~~~item, the storage already occupied is 1 (for S) + 1 (the first slack byte)+ 2 (for 
T), a total of 4. The value of x to be used is 8, and the remainder of the division is 4; therefore, x 
(8) minus 4 equals 4, so four slack bytes were inserted in positions 4 through 7 to align N. 

• When B is encountered, the total storage already occupied is 16; when this is divided by 4, the 
value of x for B, there is no remainder. No slack bytes were required. 

7. When the SYNCHRONIZED clause is specified in a data description entry that also contains an 
OCCURS clause, or in a data description entry subordinate to an entry that contains an OCCURS 

clause, then: 

• each occurrence of the data item is SYNCHRONIZED; and 

• any slack bytes generated for other data items within that same table are generated for each 

occurrence of those data items. 

Example: 

81 A. 
82 Al OCCURS 3 TIMES. 

83 Al A PIC X. 
83 AlB PIC S9 USAGE COMP SYNC. 

83 AlC USAGE COMP-1 SYNC. 
83 AlD PIC S9 USAGE COMP SYNC. 

One occurrence would be synchronized as: 

s ( 
A L A A 
1 A 1 A1C 1 
A c B D 

K 

0 1 2 3 4 7 8 9 10 



UP-8613 Rev. 2 SPERRY UNIV AC OS/3 5-44 
1974 AMERICAN NATIONAL STANDARD COBOL 

If the second occurrence began immediately with byte 10, slack bytes in the second occurrence 
would have to be as follows because A1 C must be aligned on a full-word boundary. 

s s I 
A L A L A 
1 A 1 A A1C 1 
A c B c D 

K K 
10 11 12 13 14 15 16 19 20 21 22 

The group cannot have different lengths with each occurrence; therefore, slack bytes are inserted at 
the end of each occurrence so that each occurrence has the same length and the proper alignment of 
elementary items. The actual storage use for the example is: 

s s s s s s 
A L A A A L A L A A A L A L A A A L 
1 A 1 1 1 A 1 A 1 1 1 A 1 A 1 1 1 A 
A c B Cl D c A c B c D c A c B c D c 

K K K K K K 

0 1 2 3 4 7 8 9 10 11 12 13 14 15 16 19 20 21 22 23 24 25 26 27 28 31 32 33 34 35 

The slack bytes are inserted in positions 10 and 11, in positions 22 and 23, and in positions 34 and 
35. The algorithm used is as follows: 

• The total number of bytes occupied by the group, including slack bytes, is divided by the largest 
value of x necessary in the group. 

• If there is no remainder, no slack bytes are inserted between groups. Otherwise, the number of 
slack bytes necessary is equal to x minus the remainder. 

For the example given, the process is: 

• The total number of bytes occupied in one occurrence of the group is 10 bytes. This is divided 
by 4, the x value for AlC, a@§~~-.!] item. 

• The remainder of the division is 2; x (4) minus 2 equals 2, so the number of slack bytes 
necessary for each occurrence is 2. 

5.3.3.9. JUSTIFIED Clause 

Function: 

The JUSTIFIED clause specifies nonstandard positioning of data within a receiving data item. 

Format: 

Rules: 

jJUSTIFIEDt RIGHT 
1JUST I 

1. The JUSTIFIED clause is used to override standard positioning of data within a receiving alphabetic or 
alphanumeric data item. Standard positioning for this type of data is left-justified with space fill on 
the right; when this clause is specified, the data is right-justified and the unused positions are space
filled. 

• 

• 

• 



• 

• 

• 

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 5-45 
1974 AMERICAN NATIONAL STANDARD COBOL 

2. The JUSTIFIED clause can be specified only at the elementary item level. 

3. JUST is an abbreviation for JUSTIFIED. 

4. The JUSTIFIED clause has no effect on the initialization of the VALUE clause. 

5. The JUSTIFIED clause cannot be specified for any data item described as numeric or for which 
editing is specified. 

When the sending data item is larger than the receiving data item described with the JUSTIFIED 
clause, the leftmost characters are truncated. When the receiving data item is larger than the 
sending data item, the data is aligned at the rightmost character position in the data item with space 
fill for the leftmost character positions. 

When the JUSTIFIED clause is omitted, the standard rules for aligning data within an elementary 
item apply. (See 2.5.) 

5.3.3.10. BLANK WHEN ZERO Clause 

Function: 

The BLANK WHEN ZERO clause permits the blanking of an item when its value is zero. 

Format: 

BLANK WHEN ZERO 

Rules: 

1. This clause can be specified only at the elementary item level, and can be used only with a numeric 
or numeric-edited item. When used with a numeric item, the category of the item is considered 

numeric-edited. 

2. The effect is not necessarily the same as zero suppression editing via the PICTURE clause because 

the item is affected only when its numeric value is 0. 

3. When the BLANK WHEN ZERO clause is used, the item will contain only spaces if the value of the 

item is zero. 

4. The BLANK WHEN ZERO clause and the zero suppression symbol * may not appear in the same 

entry. 

5. The BLANK WHEN ZERO clause has no effect on the initialization of the VALUE clause. 

5.3.3.11. VALUE Clause 

Function: 

The VALUE clause defines the value of constants, the initial value of working-storage items.land the values I 
!associated with a condition-name.I 

Format 1: 

VALUE IS I iteral 



UP-8613 Rev. 2 SPERRY UNIVAC OS/3 5-46 
1974 AMERICAN NATIONAL STANDARD COBOL 

Format 2: 

~~:~~~sl!REf I iteral -l[~~UGH~I iteral -2] 
['literal-3 [~~UGH literal-4f]]··· 

Rules: 

1. Format 1 is used to define the initial value of a working-storage item. Format 2 is used to specify a 
value or range of values associated with a condition-name. 

2. The words THRU and THROUGH are equivalent. 

3. The VALUE clause cannot be stated for any items having variable size. (See 5.3.3.7.) 

4. A signed numeric literal must have a signed numeric PICTURE character-string associated with it. 

5. All numeric literals in a VALUE clause of an item must have a value that is within the range of values 
indicated by the PICTURE clause and must not have a value that will require truncation of nonzero 
digits. Nonnumeric literals in a VALUE clause of an item must not exceed the size indicated by the 
PICTURE clause. 

6. The VALUE clause must not conflict with other clauses in the data description of the item or in the 
data description within the hierarchy of the item. The following rules apply: 

• If the category of the item is numeric, all literals in the VALUE clause must be numeric. If the 
literal defines the value of a working-storage item, the literal is aligned in the data item 
according to the standard alignment rules. 

~------------------------------~ 
, • If the literal is floating-point, the data item must be an internal floating-point item. 1 L-------------------------------

• If the category of the item is alphabetic, alphanumeric, alphanumeric edited or numeric edited, 
all literals in the VALUE clause must be nonnumeric literals. The literal is aligned in the data 
item as if the data item had been described as alphanumeric. (See 2.5, standard alignment 
rules.) Editing characters in the PICTURE clause are included in determining the size of the data 
item (5.3.3.4) but have no effect on initialization of the data item. Therefore, the VALUE for an 
edited item must be specified in an edited form. 

• Initialization takes ·place independent of any BLANK WHEN ZERO or JUSTIFIED clause that may 
be specified. 

7. A figurative constant may be substituted in both format 1 and format 2 wherever a literal is specified. 

8. In a condition-name entry, the VALUE clause is required. The VALUE clause and the condition-name 
itself are the only two clauses permitted in the entry. The characteristics of a condition-name are 
implicitly those of its conditional variable. 

9. Format 2 can be used only in connection with condition-names. (See 2.6.5, condition-name.) 
Wherever the THAU phrase is used, literal-1 must be less than literal-2, literal-3 less than literal-4, 
etc. 

• 

• 

• 



• 

• 

• 

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 5-47 
1974 AMERICAN NATIONAL STANDARD COBOL 

10. Rules governing the use of the VALUE clause differ with the respective sections of the data division: 

11 . 

12. 

13. 

14. 

• In Level 1, the VALUE clause cannot be used in the file section.I In the file section, the VALUE 
I clause may be used only in condition-name entries. I 

• In the working-storage section and the communication section,lthe VALUE clause must be used 
I in condition-name entries.IThe VALUE clause may also be used to specify the initial value of 
any other data item, in which case the clause causes the item to assume the specified value at 
the start of the object program. If the VALUE clause is not used in an item description, the 
initial value is undefined. 

• In Level 1, the VALUE clause cannot be used in the linkage section. In the linkage section,~ 
I VALUE clause may be used only in condition-name entries. I 

The VALUE must not be stated in a data description entry that contains an OCCURS clause or is 
subordinate to an entry containing an OCCURS clause.IThis rule does not apply to condition-name 

I entries.l(See 5.3.3.7.) 

The VALUE clause must not be stated in a data description entry that contains a REDEFINES clause, 
or is subordinate to an entry containing a REDEFINES clause.!This rule does not apply to condition

! name entries. I 

If the VALUE clause is used in an entry at the group level, the literal must be a figurative constant or 
a nonnumeric literal, and the group area is initialized without consideration for the individual 
elementary or group items contained within this group. The VALUE clause cannot be stated at the 
subordinate levels within this group . 

The VALUE clause must not be written for a group containing items with descriptions including 
JUSTIFIED, SYNCHRONIZED, USAGE INDEX, or any form of COMPUTATIONAL. 

!1~-The-VALUE~lause mus;-;,ot be --;pecifiedf;-externalfioating-point items~! 
------------------- - --- _________ .J 

Example 1: 

92 STATE-RATE PICTURE 9. 
88 TEXAS VALUE 1. 
88 CALIFORNIA VALUE 2. 
88 NEW YORK VALUE 5. 
88 PENNSYLVANIA VALUE 3. 

STATE-RATE is a conditional-variable; TEXAS, CALIFORNIA, NEW YORK, and PENNSYLVANIA are 
condition-names. If the statement IF PENNSYLVANIA GO TO NEXT-TEST were to appear in the procedure 
division, the value of the conditional variable STATE-RATE would be compared to the value 3; this 
statement would be equivalent to the statement IF STATE-RATE IS EQUAL TO 3 GO TO NEXT-TEST. 

Example 2: 

92 AGE PICTURE 99. 
88 TWENTIES VALUE 28 THRU 29. 
88 THIRTIES VALUE 39 THRU 39. 

If the statement IF TWENTIES ... were to appear in the procedure division, the value of the conditional 
variable AGE would be tested for not less than 20 and not greater than 29. 



UP-8613 Rev. 2 SPERRY UNIVAC OS/3 5-48 
1974 AMERICAN NATIONAL STANDARD COBOL 

5.3.3.12. RENAMES Clause 

Function: 

The RENAMES clause permits alternative, possibly overlapping, groupings of elementary items. 

Format: 

66 data-name-l;RENAMES data-name-2[~~~:~UGHf data-name-3] . 

NOTE: 

Level-number 66, data-name-1, and the semicolon, although not part of the RENAMES clause, are shown 
in the format to improve clarity. 

Rules: 

1. All RENAMES entries referring to data items within a given logical record must immediately follow 
the last data description entry of the associated record description entry. 

2. Data-name-2 and data-name-3 must be names of elementary items or groups of elementary items in 
the same logical record, and cannot be the same data-name. A 66 level entry cannot rename another 
66 level entry nor can it rename a 77, 88, or 01 level entry. 

3. Data-name-1 cannot be used as a qualifier, and can only be qualified by the names of the associated 
level 01, FD, or SD entries. Neither data-name-2 nor data-name-3 may have an OCCURS clause in its 
data description entry nor be subordinate to an item that has an OCCURS clause in its data 
description entry. (See 5.3.3.7.) 

4. The beginning of the area described by data-name-3 must not be to the left of the beginning of the 
area described by data-name-2. The end of the area described by data-name-3 must be to the right of 
the end of the area described by data-name-2. Data-name-3, therefore, cannot be subordinate to 
data-name-2. 

5. Data-name-2 and data-name-3 may be qualified. 

6. The words THRU and THROUGH are equivalent. 

7. None of the items within the range data-name-2 through data-name-3, if specified, can be an item 
whose size is variable as defined in the OCCURS clause. 

8. One or more RENAMES entries can be written for a logical record. 

9. When data-name-3 is specified, data-name-1 is a group item which includes all elementary items 
starting with data-name-2 (if data-name-2 is an elementary item) or the first elementary item in data
name-2 (if data-name-2 is a group item), and concluding with data-name-3 (if data-name-3 is an 
elementary item) or the last elementary item in data-name-3 (if data-name-3 is a group item). 

10. When data-name-3 is not specified, data-name-2 can be either a group or an elementary item. When 
data-name-2 is a group item, data-name-1 is treated as a group item, and when data-name-2 is an 
elementary item, data-name-1 is treated as an elementary item. 

• 

• 

• 

i 

i 



UP-8613 Rev. 2 SPERRY UNIV AC OS/3 5-49 
1974 AMERICAN NATIONAL STANDARD COBOL 

• Example: 

• 

• 

91 INPUT-RECORD. 
92 STATE-TAX-NJ. 

93 PER-CENT-ST 
93 PERCENT-CNTY 
93 PERCENT-LOC 

92 STATE-TAX-PA. 
93 PER-CENT-ST 
93 PER-CENT-CNTY 
93 PER-CENT-LOC 

92 STATE-TAX-DEL. 

PIC 99. 
PIC 99. 
PIC 99. 

PIC 99. 
PIC 99. 

PIC 99. 

93 PER-CENT-ST PIC 99. 
93 PER-CENT-CNTY PIC 99. 
93 PER-CENT-LOC PIC 99. 

66 TAX-NJ RENAMES STATE-TAX-NJ. 
66 TAX-Bl-STATES RENAMES STATE-TAX-NJ THRU STATE-TAX-PA. 
66 TAX-DEL-VAL RENAMES STATE-TAX-NJ THRU STATE-TAX-DEL. 

A reference to TAX-NJ accesses the group item STATE-TAX-NJ, a reference to TAX-Bl-STATES accesses 
the group items STATE-TAX-NJ and STATE-TAX-PA; and a reference to TAX-DEL-VAL accesses the items 
STATE-TAX-NJ. STATE-TAX-PA, and STATE-TAX-DEL. 

5.4. WORKING-STORAGE SECTION 

The working-storage section describes records and noncontiguous data items that are not part of external data 
files but are developed and processed internally. It also describes data items whose values are assigned in the 
source program and do not change during the execution of the object program. Sample working-storage section 
entries are provided in Figure 5-4. 

Format: 

WORKING-STORAGE SECTION: 

Rules: 

[
77-level-description-entry J 
record-description-entry 

1. The working-storage section is composed of the section header followed by data description entries 
for noncontiguous data items or record description entries. 

2. Each work-storage section record name and noncontiguous item name must be unique since it 
cannot be qualified. Subordinate data-names need not be unique if they can be made unique by 

qualification . 



UP-8613 Rev. 2 

l IHJl 0 
10020 
10030 
10040 
10050 
10060 
10070 
10080 
10090 
10100 
10110 
10120 
10130 
10140 
10150 

SPERRY UNIV AC OS/3 
1974 AMERICAN NATIONAL STANDARD COBOL 

WORKING-STORAGE SECTION. 
77 I. COMPUTATIONAL, PICTURE S9(8). 
77 J, COMPUTATIONAL, PICTURE S9(8). 
77 ADDED-TIME, COMPUTATIONAL-3, PICTURE S9(5)V9(4). 
01 DATA-CONVERSION-AREA. 

02 BINARY-WORK-AREA. 
0 3 TWO - BY TES . 

04 FILLER PICTURE X VALUE LOW-VALUE. 
04 ONE-BYTE-BINARY PICTURE X. 

03 TWO-BYTE-BINARY REDEFINES TWO-BYTES, 
USAGE IS COMPUTATIONAL, PICTURE S9(4). 

02 CPU-TIME-WORK-AREA. 
03 CPU-TIME-IN, COMPUTATIONAL-3. PICTURE S9(11). 
03 CPU-TIME OUT REDEFINES CPU-TIME-IN, 

USAGE IS COMPUTATIONAL-3, PICTURE S9(7)V9(4). 

Figure 5-4. Sample Working-Storage Section Entries 

5.4.1. 77-Level Description Entry 

Function: 

5-50 

Items and constants in working-storage that bear no hierarchical relationship to one another need not be 
grouped into records, provided they do not need to be further subdivided. Instead, they are classified and 
defined as noncontiguous elementary items. Each of these items is defined in a separate data description 
entry that begins with the special level-number, 77. 

Format: 

77 data-name: 
(data description clauses). 

Rules: 

1. The following are required in each data description entry: 

• 

• 

• 

level-number 77 

data-name 

r::---, r:---:i 
PICTURE clause or USAGE IS INDEX or USAGE~~~~!Jor ~~~~~-plause 

2. Other data description clauses are optional and can be used to complete the description of the item if 
necessary. 

3. The initial value of any item in the working-storage section except an index data item is specified by 

using the VALUE clause with the data item. The initial value of any index data item is unpredictable. 

4. Each independent entry must have a unique data-name. 

• 

• 

• 



• 

• 

• 

UP-8613 Rev. 2 SPERRY UNIV AC OS/3 5-51 
1974 AMERICAN NATIONAL STANDARD COBOL 

5.4.2. Record Description Entry 

Function: 

Data elements and constants in working storage that bear a definite hierarchic relationship to one another 
must be grouped into records according to the rules for formation of record descriptions. 

Format: 

01 record-name. 
(subordinate data items and clauses) 

Rules: 

1. Each record-name must be unique because it cannot be qualified by a file-name or section-name. 
Subordinate data-names need not be unique if they can be qualified. 

2. All clauses that are used in record descriptions in the file section (5.3.3) can be used in record 
descriptions in the working-storage section. 

· 3. The length of a level-01 record may not exceed 524,287 bytes. 

5.5. LINKAGE SECTION 

The linkage section describes data available through a calling program but is to be referred to in both the calling 
and called program. 

Format: 

LINKAGE SECTION. 

Rules: 

[
77-level-description-entry J 
record-description-entry 

1. The linkage section is meaningful if and only if the object program is to function under the control of 
a CALL statement containing a USING phrase in the calling program. 

2. The linkage section consists of a section header followed by data description entries for 
noncontiguous data items and/or record description entries. (See Figure 5-5.) 

3. No space is allocated in the program for data items referenced by data-names in the linkage section 
of that program. Procedure division references to these data items are resolved at object time by 
equating the reference in the called program to the location used in the calling program. In the case 
of index-names, no such correspondence is established. Index-names in the called and calling 
program always refer to separate indexes. 

4. Data items defined in the linkage section of the called program may be referenced within the 
procedure division of the called program only if they are specified as operands of the USING phrase 
of the procedure division header or are subordinate to such operands, and the object program is 
under the control of a CALL statement that specifies a USING phrase. 

5. Each linkage section record-name and noncontiguous item name must be unique within the called 
program since it cannot be qualified. 



UP-8613 Rev. 2 SPERRY UNIVAC OS/3 5-52 

6. 

1974 AMERICAN NATIONAL STANDARD COBOL 

Of those items defined in the linkage section only data-name-1, data-name-2, ... in the USING 
phrase of the procedure division header, data items subordinate to these data-names and condition
names, or index-names associated with such data-names or subordinate data items may be 
referenced in the procedure division. 

7. The VALUE clause must not be specified in the linkage section except in condition-name entries 
(level 88). 

15010 LINKAGE SECTION. 
15020 77 TYPE-OF-INPUT PICTURE X. 
15030 88 FIRST-INPUT VALUE "F". 

VALUE."C". 
VALUE."L". 

15040 
15050 

88 CONTINUATION 
88 LAST- INPUT 

15060 77 ERROR-INDICATOR PICTURE X. 
15070 Ill 

15080 
15898 
15100 
15110 
15120 
15130 

015140 
015158 

PAST-RECORD. 
02 SALES-HISTORY 

82 
82 

82 

83 MONTH, OCCURS 12 TIMES, PICTURE S9(7)V99, 
USAGE IS COMPUTATIONAL-3. 

PRODUCT 
THREE-MONTH-AVERAGE 

PICTURE X(3). 
PICTURE S9(7)V99, 

USAGE IS COMPUTATIONAL-3. 
TWELVE-MONTH-AVERAGE PICTURE S9(7)V99, 

USAGE IS COMPUTATIONAL-3. 

Figure 5-5. Sample Linkage Section Entries 

5.5.1. 77-Level Description Entry 

Function: 

Items in the linkage section that bear no hierarchic relationship to one another need not be grouped into 
records and are classified and defined as noncontiguous elementary items. Each of these data items is 
defined in a separate data description entry that begins with the special level-number 77. 

Format: 

77 data-name: 
(data description clauses). 

Rules: 

1. The following are required in each data description entry: 

2. 

• level-number 77 

• data-name 

• PICTURE clause or USAGE IS INDEX clause 

Other data description clauses are optional and can be used to complete the description of the item if 
necessary. 

• 

• 

• 



• 
UP-8613 Rev. 2 SPERRY UNIVAC OS/3 5-53 

1974 AMERICAN NATIONAL STANDARD COBOL 

5.5.2. Record Description Entry 

Function: 

Data elements in the linkage section that bear a definite hierarchic relationship to one another must be 
grouped into records according to the rules for formation of record descriptions. 

Format: 

91 record-name. 
(subordinate data items and clauses) 

Rules: 

1. All clauses that are used in record descriptions in the file section (5.3.3) can be used in record 
descriptions in the linkage section. 

2. Record description entries in the linkage section provide names and descriptions, but storage within 
the program is not reserved because the data exists elsewhere. 

3. The length of a level-01 record may not exceed 524,287 bytes. 

5.6. COMMUNICATION SECTION 

• Function: 

• 

The communication description specifies the interface area between the message control system (MCS) 
and a COBOL program. 

5.6.1. Input Communication Description 

Format: 

CD cd-name; 

FOR I[ INITIALJj INPUT 

Rules: 

[;SYMBOLIC QUEUE IS data-name-1] 
[;SYMBOLIC SUB-QUEUE-1 IS data-name-2] 
[;SYMBOLIC SUB-QUEUE-2 IS data-name-3] 
[;SYMBOLIC SUB-QUEUE-3 IS data-name-4] 
[;MESSAGE DATE IS date-name-5] 
[;MESSAGE TIME IS date-name-6] 
[;SYMBOLIC SOURCE IS date-name-7] 
[;TEXT LENGTH IS data-name-8] 
[;END KEY IS data-name-9] 
[;STATUS KEY IS data-name-19] 
[;MESSAGE COUNT IS data-name-11] 

[data-name-1. data-name-2, .... data-name-11] 

1 . A CD must appear only in the communication section. 

2. Within a single program, the INITIAL clause may be specified in only one CD. The INITIAL clause 
must not be used in a program that specifies the USING phrase of the procedure division header. 
(See 6.1.3.) 



UP-8613 Rev. 2 SPERRY UNIV AC OS/3 5-54 
1974 AMERICAN NATIONAL STANDARD COBOL 

3. I Except for the INITIAL clause. !the optional clauses may be written in any order. 

4. If neither option in the format is specified, a level 01 data description entry must follow the CD 
description entry. Either option may be followed by a level 01 data description entry. 

5. For each input CD, a record area of 87 contiguous standard data format characters is allocated. 
This record area is defined to the MCS as follows: 

• The SYMBOLIC QUEUE clause defines data-name-1 as the name of an elementary 
alphanumeric data item of 12 characters occupying positions 1-12 in the record. 

• The SYMBOLIC SUB-QUEUE-1 clause defines data-name-2 as the name of an elementary 
alphanumeric data item of 12 characters occupying positions 13-24 in the record. 

• The SYMBOLIC SUB-OUEUE-2 clause defines data-name-3 as the name of an elementary 
alphanumeric data item of 12 characters occupying positions 25-36 in the record. 

• The SYMBOLIC SUB-OUEUE-3 clause defines data-name-4 as the name of an elementary 
alphanumeric data item of 12 characters occupying positions 37-48 in the record. 

• The MESSAGE DATE clause defines data-name-5 as the name of a data item whose implicit 
description is that of an integer of six digits without an operational sign occupying character 
positions 49-54 in the record. 

• The MESSAGE TIME clause defines data-name-6 as the name of a data item whose implicit 
description is that of an integer of eight digits without an operational sign occupying 
character positions 55-62 in the record. 

• The SYMBOLIC SOURCE clause defines data-name-7 as the name of an elementary 
alphanumeric data item of 12 characters occupying positions 63-74 in the record. 

• The TEXT LENGTH clause defines data-name-8 as the name of an elementary data item 
whose implicit description is that of an integer of four digits without an operational sign 
occupying character positions 75-78 in the record. 

• The END KEY clause defines data-name-9 as the name of an elementary alphanumeric data 
item of one character occupying position 79 in the record. 

• The STATUS KEY clause defines data-name-10 as the name of an elementary alphanumeric 
data item of two characters occupying positions 80-81 in the record. 

• The MESSAGE COUNT clause defines data-name-11 as the name of an elementary data item 
whose implicit description is that of an integer of six digits without an operational sign 
occupying character positions 82-87 in the record. 

The listed clauses (see bulleted items in rule 5) may be replaced by a series of data-names (data
name-1, data-name-2, .... data-name-11) that correspond to the order of data-names defined by 
these clauses. 

NOTE: 

Specification of a series of data-names on a single source line results in an incorrect cross-reference 
listing. The preferred method of writing a series of data-names is to specify each data-name on a 
separate source line. 

• 

• 

• 



• 

• 

• 

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 5-55 
1974 AMERICAN NATIONAL STANDARD COBOL 

Use of either option results in a record whose implicit description is equivalent to the following: 

Implicit Description 

01 data-name-0 

02 data-name-1 
02 data-name-2 
02 data-name-3 
02 data-name-4 
02 data-name-5 
02 data-name-6 
02 data-name-7 
02 data-name-8 
02 data-name-9 
02 data-name-10 
02 data-name-11 

NOTE: 

PICTURE x ( 12) . 
PICTURE x ( 12) . 
PICTURE x ( 12) . 
PICTURE x ( 12) . 
PICTURE 9 ( 06). 
PICTURE 9 ( 0 8). 
PICTURE x ( 12) . 
PICTURE 9 ( 04). 
PICTURE x. 
PICTURE xx. 
PICTURE 9 ( 0 6). 

Comment 

SYMBOLIC QUEUE 
SYMBOLIC SUB-QUEUE-1 
SYMBOLIC SUB-QUEUE-2 
SYMBOLIC SUB-QUEUE-3 
MESSAGE DATE 
MESSAGE TIME 
SYMBOLIC SOURCE 
TEXT LENGTH 
END KEY 
STATUS KEY 
MESSAGE COUNT 

The comments are for clarification and are not part of the description. 

6. Record description entries following an input CD implicitly redefine this record and must describe a 
record of exactly 87 characters. Multiple redefinitions of this record are permitted, but only the first 
redefinition may contain VALUE clauses. However, the MCS always references the record 
according to the data descriptions defined in rule 5 . 

7. Data-name-1, data-name-2, ... , data-name-11 must be unique within the CD. Within this series, 
any data-name may be replaced by the reserved word FILLER. 

8. The input CD information constitutes the communication between the MCS and the program as 
information about the message being handled. This information does not come from the terminal as 
part of the message. 

9. The data items referenced by data-name-1, data-name-2, data-name-3, and data-name-4 
(SYMBOLIC QUEUE, SYMBOLIC SUB-OUEUE-1, SYMBOLIC SUB-OUEUE-2. and SYMBOLIC SUB
QUEUE-3) contain symblic names designating queues and subqueues. All symbolic names must 
follow the rules for the formation of system names and must have been defined previously to the 
MCS. 

10. The contents of the data items referenced by data-name-2, data-name-3, and data-name-4, when 
not being used, must contain spaces. 

11. A RECEIVE statement causes the serial return of the next message jor a portion of a messageltrom 
th.e queue as specified by the entries in the CD. 

When a RECEIVE statement is executed, the input CD area must contain, in the contents of data
name-1, the name of a symbolic queue. The data items specified by data-name-2, data-name-3, 
and data-name-4 may contain symbolic subqueue names or spaces. When a given level of the 
queue structure is specified, all higher levels must also be specified. If less than all the levels of the 
queue hierarchy are specified, the MCS determines the next messagelor portion of a messagelto be 
accessed within the queue or subqueue specified in the input CD . 

After the execution of a RECEIVE statement, the contents of the data items referenced by data
name-1 through data-name-4 contain the symblic names of all the levels of the queue structure. 



UP-8613 Rev. 2 SPERRY UNIVAC OS/3 5-56 
1974 AMERICAN NATIONAL STANDARD COBOL 

12. Whenever a program is scheduled by the MCS to process a message, the symbolic names of the 
queue structure that demanded this activity are placed in the data items referenced by data-name-1 
through data-name-4 of the CD associated with the INITIAL clause, as applicable. In all other cases, 
the contents of the data items referenced by data-name-1 through data-name-4 of the CD 
associated with the INITIAL clause are initialized to spaces. 

The symbolic names are inserted or the initialization to spaces is completed prior to the execution 
of the first procedure division statement. 

The execution of a subsequent RECEIVE statement naming the same contents of the data items 
referenced by data-name-1 through data-name-4 will return the actual message that caused the 
program to be scheduled. Only at that time will the remainder of the CD be updated. 

13. The contents of data-name-5 (MESSAGE DATE) has the format yymmdd (year, month, day). Its 
contents represent the date on which the MCS recognizes that the message is complete. 

1he contents of the data item referenced by data-name-5 are only updated by the MCS as part of 
the execution of a RECEIVE statement. 

14. The contents of data-name-6 (MESSAGE TIME) has the format hhmmsstt (hours. minutes, seconds, 
hundredths of a second) and its contents represent the time at which the MCS recognizes that the 
message is complete. 

The contents of the data item referenced by data-name-6 are only updated by the MCS as part of 
the execution of the RECEIVE statement. 

15. During the execution of a RECEIVE statement, the MCS provides, in the data item referenced by 
data-name-7 (SYMBOLIC SOURCE), the symbolic name of the communications terminal that is the 
source of the message being transferred. However, if the symbolic name of the communications 
terminal is not known to the MCS, the contents of the data item referenced by data-name-7 will 
contain spaces. 

16. The MCS indicates, via the contents of the data item referenced by data-name-8 (TEXT LENGTH), 
the number of character positions filled as a result of the execution of the RECEIVE statement. 

17. The contents of the data item referenced by data-name-9 (END KEY) are set only by the MCS as 
part of the execution of a RECEIVE statement according to the following rules: 

• When the RECEIVE MESSAGE phrase is specified: 

1 . If an end of group has been detected, the contents are set to 3. 

2. If an end of message has been detected, the contents are set to 2. 

3. If less than a message is transferred, the contents are set to 0. 

• When the RECEIVE SEGMENT phrase is specified: 

1. If an end of group has been detected, the contents are set to 3. 

2. If an end of message has been detected, the contents are set to 2. 

3. If an end of segment has been detected, the contents are set to 1. 

4. If less than a message segment is transferred, the contents are set to 0. 

• 

• 

• 



• 

• 

• 

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 5-57 

• 

1974 AMERICAN NATIONAL STANDARD COBOL 

When more than one of the above conditions is satisfied simultaneously, the rule first 
satisfied in the order listed determines the contents of the data item referenced by data
name-9. 

18. The contents of the data item referenced by data-name-10 (STATUS KEY) indicate the status 
condition of the previously executed RECEIVE, ACCEPT MESSAGE COUNT, ENABLE INPUT, or 
DISABLE INPUT statements. 

The actual association between the contents of the data item referenced by data-name-10 and the 
status condition itself is defined in Table 5-11 . 

19. The contents of the data item referenced by data-name-11 (MESSAGE COUNT) indicate the number 
of messages that exist in a queue, sub-queue-1, ... , sub-queue-3. The MCS updates the contents of 
the data item referenced by data-name-11 only as part of the execution of an ACCEPT statement 
with the COUNT phrase. 

5.6.2. Output Communication Description 

Format: 

CD cd-name; FOR OUTPUT 

Rules: 

[:DESTINATION COUNT IS data-name-11 
[:TEXT LENGTH IS data-name-21 
(;STATUS KEY IS data-name-31 
[:DESTINATION TABLE OCCURS integer-2 TIMES 

[:INDEXED BY index-name-1 [. index-name-21 ... II 
[:ERROR KEY IS data-name-41 
(;SYMBOLIC DESTINATION IS data-name-SI. 

1. A CD must appear only in the communication section. 

2. If none of the optional clauses of the CD is specified, a level 01 data description entry must follow 
the CD description entry. 

3. For each output CD, a record area of contiguous standard data format characters is allocated 
according to the following formula: (10 plus 13 times integer-2). 

• The DESTINATION COUNT clause defines data-name-1 as the name of a data item whose 
implicit description is that of an integer without an operational sign occupying character 
positions 1-4 in the record. 

• The TEXT LENGTH clause defines data-name-2 as the name of an elementary data item 
whose implicit description is that of an integer of four digits without an operational sign 
occupying character positions 5-8 in the record. 

• The STATUS KEY clause defines data-name-3 to be an elementary alphanumeric data item of 

two characters occupying positions 9 and 10 in the record . 



UP-8613 Rev. 2 SPERRY UNIV AC OS/3 5-58 

4. 

• 

1974 AMERICAN NATIONAL STANDARD COBOL 

Character positions 11-23 and every set of 13 characters thereafter will form table items of 
the following description: 

The ERROR KEY clause defines data-name-4 as the name of an elementary 
alphanumeric data item of one character. 

The SYMBOLIC DESTINATION clause defines data-name-5 as the name of an 
elementary alphanumeric data item of 12 characters. 

Use of these clauses results in a record whose implicit description is equivalent to the following: 

Implicit Description 

01 data-name-0. 
02 data-name-1 PICTURE 9(04). 
02 data-name-2 PICTURE 9(04). 
02 data-name-3 PICTURE xx. 
02 data-name OCCURS integer-2 TIMES. 

03 data-name-4 PICTURE x. 
03 data-name-5 PICTURE x ( 12) . 

NOTE: 

Comment 

DESTINATION COUNT 
TEXT LENGTH 
STATUS KEY 
DESTINATION TABLE 
ERROR KEY 
SYMBOLIC DESTINATION 

The comments are for clarification and are not part of the description. 

Record descriptions following an output CD implicitly redefine this record. Multiple redefinitions of 
this record are permitted; however, only the first redefinition may contain VALUE clauses. However, 
the MCS will always reference the record according to the data descriptions defined in rule 3. 

5. Data-name-1, data-name-2, .... data-name-5 must be unique within a CD. 

6. If the DESTINATION TABLE OCCURS clause is not specified, one ERROR KEY and one SYMBOLIC 
DESTINATION area are assumed. In this case, neither subscripting nor indexing is permitted when 
referencing these data items. 

7. If the DESTINATION TABLE OCCURS clause is specified, data-name-4 (ERROR KEY) and data
name-5 (SYMBOLIC DESTINATION) may be referenced only by subscripting or indexing. 

8. In level 1, the value of the data item referenced by data-name-1 (DESTINATION COUNT) and 
integer-2 must be 1. 

In level 2, the value of the data item referenced by data-name-1 and integer-2 may not exceed 
9999. 

9. Output CD information is not sent to the terminal, but constitutes the communication between the 
program and the MCS as information about the message being handled. 

• 

• 

• 



• 

• 

• 

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 5-59 
1974 AMERICAN NATIONAL STANDARD COBOL 

10. During the execution of a SEND, ENABLE OUTPUT, or DISABLE OUTPUT statement, the contents of 
the data item referenced by data-name-1 (DESTINATION COUNT) will indicate to the MCS the 
number of symbolic destinations that are to be used from the area referenced by data-name-5. 

The MCS finds the first symbolic destination in the first occurrence of the area referenced by data
name-5, the second symbolic destination in the second occurrence of the area referenced by data
name-5 ... , up to and including the occurrence of the area referenced by data-name-5 indicated by 
the contents of data-name-1. 

If during the execution of a SEND, ENABLE OUTPUT, or DISABLE OUTPUT statement the value of 
the data item referenced by data-name-1 is outside the range of 1 !through integer-2, I an error 
condition is indicated and the execution of the SEND, ENABLE OUTPUT, or DISABLE OUTPUT 
statement is terminated. 

11. It is the responsibility of the user to ensure that the value of the data item referenced by data
name-1 (DESTINATION COUNT) is valid at the time of execution of the SEND, ENABLE OUTPUT, or 
DISABLE OUTPUT statement. 

12. As part of the execution of a SEND statement, the MCS interprets the contents of the data item 
referenced by data-name-2 (TEXT LENGTH) to be the user's indication of the number of leftmost 
character positions of the data item referenced by the associated SEND identifier from which data 
is to be transferred. (See the SEND statement.) 

13. Each occurrence of the data item referenced by data-name-5 contains the name of a symbolic 
destination previously known to the MCS. These symbolic destination names must follow the rules 
for the formation of system-names . 

14. The contents of the data item referenced by data-name-3 (STATUS KEY) indicate the status 
condition of the previously executed SEND, ENABLE OUTPUT, or DISABLE OUTPUT statement. 

The actual association between the contents of the data item referenced by data-name-3 and the 
status condition itself is defined in Table 5-11. 

15. If, during the execution of a SEND, an ENABLE OUTPUT, or a DISABLE OUTPUT statement, the 
MCS determines that any specified destination is unknown, the contents of the data item 
referenced by data-name-3 and all occurrences of the data items referenced by data-name-4 
(ERROR KEY) are updated. 

The actual association between the contents of the data item referenced by data-name-3 and the 
status condition itself is defined in Table 5-12 . 



UP-8613 Rev. 2 SPERRY UNIVAC OS/3 5-60 
1974 AMERICAN NATIONAL STANDARD COBOL 

Table 5-11. Communication Status Key Condition (Part 1 of 2) • 
I-
z 
::::> 
0 
0 
w ::J ::J 

Cl> 
(!) <( <( I- ~ 
<( z ::J I-

I- ~ I- ::J ::::> 0 
I- - I- <( ::::> 0.. 0 !/) ::::> ::? 0.. ::::>::? ::::> <( Description 

!/) =>z I- 0.. ~ I-
w 0.. a: 0.. - 0.. a: ::::> > 

zw z::? ::::> Zw ~::? 0 w 
::? - I- - a: 0 - I- w a: :ii:: 

w I- w .. ww w w .. ...I w w !/) > ...I ::J ...I 
0.. ...I ::J ...I I- ...I Ill 0 Ill I- Ill ::::> w c w Ill 0 Ill .c Ill <( .c <( .c <( I-

0 z 0 <( :€ <( .t: <( !/) .t: !/) .t: !/) <( 
w w 0 z~ z~ z -~ -~ 0 I-
a: !/) <( W- W- w C- c_ !/) 

x x x x x x x x x 00 No error detected. Action completed. 

x 10 One or more destinations disabled. Action completed. (See 
Table 5-12.) 

x x x x x x 15 One or more queues or destinations already 
disabled/enabled. (See Table 5-12.) 

x x x 20 One or more destinations unknown. Action completed for 
known destinations. (See Table 5-12.) 

x x x x 20 One or more queues or subqueues unknown. No action 
taken. 

x x 20 Symbolic source unknown. No action taken. 

x 2A One or more destinations in destination table were not in the 
table when the first portion of the message was sent. (See • Table 5-12.) 

x x x 30 Destination count invalid. No action taken. 

x x x x x x 40 Password invalid. No action taken. 

x 50 Text length exceeds size of identifier-1. No action taken. 

x 60 Partial segment with zero text length or no identifier-1 
specified. No action taken. 

x 65 Output queue capacity exceeded. No action taken. 

x x x x x 80 A combination of at least two status key conditions 1 O. 15. 
and 20 occurred. 

91 ICAM NATTACH error. This error occurs during network 
initialization. The procedure division code of the program 
doesn't execute. Status code 91 appears only in an CE44 
error message. 

x 92 ICAM QDEPTH error. No action taken. 

x x x x 93 ICAM TRMREP error. No action taken. 

x x 94 ICAM QHOLD/QRELSE error. No action taken. 

x 95 ICAM GETCP error. No action taken. 

x 96 ICAM PUTCP error. No action taken. • x x x x x x x x x 99 Unrecoverable ICAM error. No action taken. 

--------------~-----------------



• 

• 

• 

UP-8613 Rev. 2 SPERRY UNIV AC OS/3 5-61 

1974 AMERICAN NATIONAL STANDARD COBOL 

Table 5-11. Communication Status Key Condition (Part 2 of 2) 

.... 
z 
:::> 
0 
(.) 

w ::::r ::::r 
<( <( Q) 

l!> .... 'O 
<( z ::::r .... .... ~ .... ::::r :::> 0 
IJ) .... - .... <( :::> :::> <( a. (.) 
IJ) :::> ~ :::> z a. :::> ~ a. z .... Description 

a. a: a. - .... a. a: :::> > w :::> ~~ ~ zw z~ Zw 0 w - .... - a: 0 - .... w a: ~ 
w w ... w 
2: .... w ... ww w ~:I ~w ~ IJ) a. ~:I ~ .... ~ Ill .... Ill :::> w 0 w Ill 0 Ill .t:. Ill Ill 0 

<( .;; <( .t:. <( .t:. <( .... 
(.) z (.) <( ... <( IJ) .!:: IJ) .!:: IJ) <( 
w w (.) z~ z ·- z -~ -~ .... 
a: IJ) <( W- w~ w o_ o_ 0 IJ) 

x x x x x x 9A Process file undefined. No action taken. 

x 9C Insufficient DTFs in CMCS to handle all output CDs. No action 
taken. 

LEGEND: 

X = Possible code for statement 

NOTE: 

Status codes 93, 94, 99, and 9A may also be reported as part of a CE44 error message. 

Table 5-12. Error Key Codes 

.... .... GI 
:::> 'O 

:::> a. 0 
a. .... (.) .... :::> > :::> 0 0 w 

w ~ Description w ~ 
~ Ill a: 

0 Ill <( 0 
z <( IJ) a: 
w z 0 a: 
IJ) w w 

x x x 0 No error 

x x x 1 Symbolic destination unknown 

x 2 Symbolic destination disabled 

x x 5 Symbolic destination already enabled/disabled 

x A Entries in destination table changed before message completion. SEND performed on original 
destinations. 

Figure 5-6 provides a sample communication section including: 

• An input communication description with certain optional clauses (lines 050100 through 050800), 
followed by an optional level 01 record description (lines 050900 through 051600). 

• An input communication description without optional clauses (line 051700), followed by a required level 
01 record description (lines 051800 through 052600). 

• An output communication description without optional clauses (line 052700), followed by a required level 
01 record description (lines 052800 through 053400). 



UP-8613 Rev. 2 

Seq. 
No. 
1 

8 58888 
858188 
858288 
858388 
858488 
858588 
858688 
858788 
858888 
858988 
851888 
851188 
851288 
851388 

514 8 

515 8 

516 
517 
518 
519 
528 
521 
522 
523 
524 
525 
526 
527 
528 
529 
538 
5 3188 
5 3288 
53 388 
53488 

SPERRY UNIVAC OS/3 
1974 AMERICAN NATIONAL STANDARD COBOL 

A B Text 

8 12 

COMMUNICATION SECTION. 
CD COM-A-IN FOR INPUT 

SYMBOLIC QUEUE IS QUEUE-A; 
MESSAGE DATE IS MSG-DATE-A; 
MESSAGE TIME IS MSG-TIME-A; 
SYMBOLIC SOURCE IS SYM-SRC-A; 
TEXT LENGTH IS TXT-LGTH-A; 
STATUS KEY IS STAT-KEY-A; 
MESSAGE COUNT IS QUEUE-CNT-A. 

81 COM-A-REC. 

CD 
81 

CD 
81 

82 FILLER 
82 END-KEY-A 

88 PART-SEG 
88 END-SEG 
88 END-MSG 

PIC 
PIC 

88 END-TRANS 
82 FILLER PIC 
COM-B-IN FOR INPUT. 
COM-B-REC. 
82 QUEUE-B PIC 
82 SUB-QUEUE-B PIC 
82 FILLER PIC 
82 SYM-SRC-B PIC 
82 TXT-LGTH-B PIC 
82 END-KEY-B PIC 
82 STAT-KEY-B PIC 
82 QUEUE-CNT-B PIC 
COM-OUT FOR OUTPUT. 
COM-OUT-REC. 
82 DEST-CNT PIC 
82 TXT-LGTH-OUT PIC 
82 STAT-KEY-OUT PIC 
82 DEST-TBL OCCURS 

84 ERR-KEY PIC 
84 SYM-DEST PIC 

x ( 78). 
X. 

VALUE "8". 
VALUE "l". 

VALUE "2". 
VALUE "3". 

x ( 8). 

x ( 12) . 
x ( 12) . 
x ( 3 8) . 
x ( 12) . 
9 ( 4). 
x. 
xx. 
9 ( 6). 

9 ( 4). 
9 ( 4). 
xx. 

18 TIMES. 
X. 
x ( 12) . 

Figure 5-6. Sample Communication Section Entries 

5-62 

• 

• 

• 



• 

• 

• 

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 6-1 
1974 AMERICAN NATIONAL STANDARD COBOL 

6. Procedure Division 

6.1. GENERAL 

The procedure division of a COBOL program contains the procedures needed to solve a data processing 
problem. These procedures are written in COBOL statements that may be combined to form sentences. Groups 
of sentences may form paragraphs, and paragraphs may be grouped to form sections. 

The procedure division is required for every COBOL source program. The division begins with the division 
header PROCEDURE DIVISION followed, optionally, by declaratives, which are followed by nondeclarative 
procedures. 

6 .1 .1 . Declaratives 

Declaratives specify those conditions that normally cannot be tested by the programmer and the associated 
procedures to be executed when the specified conditions occur. 

Declaratives consist of one or more sections grouped at the beginning of the procedure division. The 
declarative sections are preceded by the keyword DECLARATIVES and followed by the keywords END 
DECLARATIVES. A declarative section consists of a section header followed by a USE compiler-directing 
sentence followed by a set of zero, one, or more associated paragraphs (6.1 .3). 

6.1.2. Procedures 

A procedure is composed of a paragraph or group of successive paragraphs, or a section or group of successive 
sections within the procedure division. If one paragraph is in a section, then all paragraphs must be in 
sections. A procedure-name is a word used to refer to a paragraph or section in the source program in which it 
occurs. It consists of a paragraph-name, which may be qualified, or a section-name. 

The end of the procedure division and the physical end of the program is that physical position in a COBOL 
source program after which no further procedures appear. 

A section consists of a section header followed by zero, one, or more successive paragraphs. A section ends 
immediately before the next section or at the end of the procedure division or, in the declaratives portion of the 
procedure division, at the keywords END DECLARATIVES. 

A paragraph consists of a paragraph-name followed by a period and a space and by zero, one, or more 
successive sentences. A paragraph ends immediately before the next paragraph-name or section-name or at 
the end of the procedure division or, in the declaratives portion of the procedure division, at the keywords END 
DECLARATIVES. 



UP8613 Rev. 2 SPERRY UNIVAC OS/3 6-2 
1974 AMERICAN NATIONAL STANDARD COBOL 

A sentence consists of one or more statements and is terminated by a period followed by a space. 

A statement is a syntactically valid combination of words and symbols beginning with a COBOL verb. 

Execution begins with the first statement of the procedure division, excluding declaratives. Statements are 
then executed in the order in which they are presented for compilation, except where the rules indicate some 
other order. 

6.1.3. PROCEDURE DIVISION STRUCTURE 

6.1.3.1. Procedure Division Header 

The procedure division is identified by and must begin with the following header: 

PROCEDURE DIVISION [USING data-name-1 [,data-name-2) ... ]. 

Rules: 

1. The USING phrase is present if and only if the object program is to function under the control of a 
CALL statement and the CALL statement in the calling program contains a USING phrase. 

2. Each of the operands in the USING phrase of the procedure division header must be defined as a 
data item in the linkage section of the program in which this header occurs, and it must have a 01 
or 77 level-number. 

Within a called program, linkage section data items are processed according to their data 
descriptions given in the called program. 

3. When the USING phrase is present, the object program operates as if data-name-1 of the 

~~C!_dure division header in the called program and data-name-1,@entlf~~-:-- file-=-nameJ =O~ cd"J 
[~~e..: !] in the USING phrase of the CALL statement in the calling program refer to a single set of 
data that is equally available to both the called and calling programs. Their descriptions must define 
an equal number of character positions; however, they need not be the same name. In like manner, 
there is an equivalent relationship between data-name-2, ... , in the USING phrase of the called 

program and data-name-2, [d.in_0ier_}..:. !!J°i:~~..::..2~o_!.cd~a_!!l~-~.Jin the USING phrase of the 
CALL statement in the calling program. A data-name must not appear more than once in the 
USING phrase in the procedure division header of the called program; however, a given data-name, .. --------------, 

Li~ntif~r..:.Jile-name..!....o!.._ cd-~a!!'~may appear more than once in the same USING phrase of a CALL 
statement. 

4. If the USING phrase is specified, the INITIAL clause must not be present in any CD entry. 

• 

• 

• 



• 

• 

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 
1974 AMERICAN NATIONAL STANDARD COBOL 

6.1.3.2. Procedure Division Body 

The body of the procedure division must conform to one of the following formats: 

Format 1: 

[DECLARATIVES. 

(section-name SECTION [segment-number]. declarative-sentence 

[paragraph-name. [sentence] ... J ... l 

END DECLARATIVES.] 

(sect ion-name SECTION [segment-number]. 

[paragraph-name. [sentence] ... ] ... l 

Format 2: 

(paragraph-name. [sentence] ... l ... 

Rules: 

6-3 

1. The procedure division must be divided into sections when the program is to be segmented or 
when declaratives are present. 

2 . Format 2 is used when the entire procedure division is composed of paragraphs only. However, if 
one paragraph is in a section, then all paragraphs must be in sections. 

3. If sections are used, section-names must be unique within a program and paragraph-names must 
be unique within a section. 

If sections are not used, paragraph-names must be unique within a program. 

4. When program segmentation is used, sections are classified by segment-numbers. The segment
number must be an integer ranging in value from 0 through 99. 

All sections with the same segment-number constitute a program segment. In Level 1, sections 
with the same segment-number must be contiguous in the source program. 

In Level 2, sections with the same segment-number need not be physically contiguous in the 
source program. 

5. Segments with segment-numbers 0 through 49 belong to the fixed portion of the object program. In 
Level 1, all sections with segment-numbers 0 through 49 must be together in the same program. 

Segments with segment-numbers 50 through 99 are independent segments. 

6. If the segment-number is omitted from the section header, the segment-number is assumed to be 
0. 

7. Sections in the declaratives must contain segment-numbers less than 50. 

• Example: 

An example of the procedure division is given in Figure 6-1. 



UP-8613 Rev. 2 

Seq. 

No. 
1 

87101 
8 7 i 8 2 

87103 
87104 
87105 
87106 
87107 
87108 
87109 
87118 
8 7 111 
07112 
07113 
07114 
8 7 115 
8 7 116 
8 7 11 7 

07118 
7201 
7202 
7 28 3 
7204 

A 

8 

SPERRY UNIVAC OS/3 
1974 AMERICAN NATIONAL STANDARD COBOL 

B Text 

12 

PROCEDURE DIVISION. 
DECLARATIVES. 
ALPHA SECTION. USE AFTER STANDARD ERROR PROCEDURE ON FILE-A. 
A - 1 . 

ADD 1 TO ERROR-COUNT. 
IF ERROR-COUNT> 10 GO TO A-4. 
IF INDICATOR NOT EQUAL 1 GO TO A-3. 

A-2. 

A-3. 

A-4. 

DISPLAY "HAD A "TYPE-ERROR" ERROR. RECOVERED". 
GO TO A-5. 

DISPLAY "UNRECOVERABLE ERROR ON FILE-A" ERROR-TYPE. 
STOP RUN. 

DISPLAY "MORE THAN TEN ERRORS ON FILE-A. ,TERMINATING.". 
STOP RUN. 

A-5. EXIT. 
END DECLARATIVES. 
MAIN SECTION. 
HOUSEKEEPING. 

ACCEPT CURRENT-NAME FROM MSG-DEVICE. 
OPEN INPUT-FILE-A. 

7285 OPEN OUTPUT FILE-B. 
7206 MOVE "C" TO B-SWITCH. 
72078 BASIC-ROUTINE. 
72080 READ FILE-A, AT END GO TO END-ROUTINE. 
72898 MOVE CORRESPONDING RECORD-A TO RECORD-B. 
72100 ADD NUMBER-A TO HASH-TOTAL. 
72118 GO TO BASIC-ROUTINE. 
72120 END-ROUTINE. 
72138 DISPLAY "FINAL HASH TOTAL WAS "HASH-TOTAL"." 
72148 UPON MSG-DEVICE. 
72158 CLOSE FILE-A, FILE-B. 
72168 STOP RUN. 

Figure 6-1. Sample Procedure Division 

6.2. CATEGORIES OF STATEMENTS 

There are three types of statement: imperative. conditional, and compiler-directing. 

6.2.1. Imperative Statements 

6-4 

An imperative statement indicates a specific unconditional action to be taken by the object program. An 
imperative statement may consist of a sequence of imperative statements. 

• 

• 

• 



• 

• 

• 

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 6-5 
1974 AMERICAN NATIONAL STANDARD COBOL 

The COBOL verbs used in imperative statements are: 

ACCEPT MULTIPLY 
ADD OPEN 
ALTER PERFORM 
CALL READ 
CANCEL RECEIVE 
CLOSE RELEASE 
COMPUTE REWRITE 
DELETE SEND 
DISABLE SET 
DISPLAY SORT 
DIVIDE START 
ENABLE STOP 

rExH18iT' l!---~ STRING 
EXIT SUBSTRACT 
GO TO 

r,-------, 
1 TRACE 1 

INSPECT l_!~A!J¥.9B~J 
MERGE UNSTRING 
MOVE WRITE 

6.2.2. Conditional Statements 

A conditional statement specifies that the truth value of a condition is to be determined and that the subsequent 
action of the object program is dependent on this truth value. 

The COBOL verbs used in conditional statements are listed as follows. The optional phrase in parentheses, when 
included with the statement, causes otherwise imperative statements to become conditionals. 

ADD (SIZE ERROR) 
CALL (OVERFLOW) 
COMPUTE (SIZE ERROR) 
DELETE (INVALID KEY) 
DIVIDE (SIZE ERROR) 

[E°RH.is!! icE&i§~oJJ 
IF 
MULTIPLY (SIZE ERROR) 

'ON, L.:_:.J 
READ (END or INVALID KEY) 
RECEIVE (NO DAT A) 
RETURN 
REWRITE (INVALID KEY) 
SEARCH 
START (INVALID KEY) 
STRING (OVERFLOW) 
SUBTRACT (SIZE ERROR) 
UNSTRING (OVERFLOW) 
WRITE (INVALID KEY or END-OF-PAGE) 



UP-8613 Rev. 2 SPERRY UNIVAC OS/3 6-6 
1974 AMERICAN NATIONAL STANDARD COBOL 

6.2.3. Compiler-Directing Statements 

A compiler-directing statement causes the compiler to take a specific action during compilation. COBOL verbs 
used in compiler-directing statements are: 

COPY 
USE 
*DEBUG 

6.3. ARITHMETIC EXPRESSIONS 

Arithmetic expressions are used as operands of certain conditional and arithmetic statements. 

An arithmetic expression can consist of any of the following: 

• An identifier of a numeric elementary item 

• A numeric literal 

• A combination of item 1 and 2 identifiers and literals separated by arithmetic operators 

• Two arithmetic expressions separated by an arithmetic operator 

• An arithmetic expression enclosed in parentheses 

Any arithmetic expression may be preceded by a unary operator. The identifiers and literals appearing in an 
arithmetic expression must represent either numeric elementary items or numeric literals on which arithmetic 
may be performed. 

l 1n an arithmetic expression: 
I 
1. 
I 

if one of the two operands in a simple operation is a floating-point item. the intermediate resultant item is I 
floating point; or : 

I 
if an exponentiation is specified. the intermediate resultant item is floating point. I 

I 
: Floating-point operations preserve high-order digit accuracy but lose low-order digit precision. (See 6.5.1. 6.5.2. I 

1 
and Appendix G.) I 
-- ------------------ ---- - - -- - - - - - - - - _I 

6.3.1. Arithmetic Operators 

There are five binary arithmetic operators and two unary arithmetic operators that may be used in arithmetic 
expressions. They are represented by specific characters that must be preceded by a space and followed by a 
space. 

Binary Arithmetic 
Operators 

+ 

I 

Meaning 

Addition 
Subtraction 
Multiplication 
Division 
Exponentiation 

• 

• 

• 



• 

• 

• 

UP-8613 Rev. 2 

Unary Arithmetic 
Operators 

+ 

SPERRY UNIV AC OS/3 
1974 AMERICAN NATIONAL STANDARD COBOL 

Meaning 

The effect of multiplication 
by numeric literal +1 

The effect of multiplication 
by numeric literal -1 

6.3.2. Formation and Evaluation Rules 

6-7 

Parentheses may be used in arithmetic expressions to specify the order in which elements are to be evaluated. 
Expressions within parentheses are evaluated first; within nested parentheses, evaluation proceeds from the 
least inclusive set to the most inclusive set. When parentheses are not used or parenthesized expressions are at 
the same level of inclusiveness, the following hierarchical order of execution is implied: 

First - Unary plus and minus 
Second - Exponentiation 
Third - Multiplication and division 
Fourth - Addition and subtraction 

Parentheses are used either to eliminate ambiguities in logic where consecutive operations of the same 
hierarchical level appear or to modify the normal hierarchical sequence of execution in expressions where it is 
necessary to have some deviation from the normal precedence. When the sequence of execution is not specified 
by parentheses. the order of execution of consecutive operations of the same hierarchical level is from left to 
right. 

Example 1: 

In the expression 

A+B-C*D 

C and Dare multiplied first, A is then added to B, and the product of C * Dis subtracted from the result of A 
+ B. 

Example 2: 

In the expression 

A+ (B - C) * D 

C is first subtracted from B, (B - C) is then multiplied by D, and the total is added to A. 

Example 3: 

In the expression 

A + (B I C) + ((D * E) ** F) - G 

The order of evaluation is (1) division, (2) multiplication, (3) exponentiation, and (4) addition and subtraction 
from left to right. 

Operators, variables, and parentheses that may.,be combined in an arithmetic expression are summarized in 
Table 6-1. 



---------------------------------------------------. 

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 6-8 
1974 AMERICAN NATIONAL STANDARD COBOL 

An arithmetic expression may only begin with the symbol (. +, -, or a variable, and may only end with a ) or a 
variable. There must be a one-to-one correspondence between left and right parentheses of an arithmetic 
expression such that each left parenthesis is to the left of its corresponding right parenthesis. 

Arithmetic expressions allow the user to combine arithmetic operations without restrictions on composite of 
operand and/or receiving data items. (See 6.6.2, rule 3, and Appendix E.) 

Table 6-1. Permissible Symbol Combinations in Arithmetic Expressions 

First Second Symbol 

Symbol 
Variable */**-+ Unary+ or -

Variable - p -

*/**+- p - p 

Unary+ or - p - -

( p - p 

) - p -

LEGEND: 

P Indicates that the two symbols may appear consecutively 
Indicates that the two symbols may not appear consecutively 

Variable Represents an identifier or a literal 

6.4. CONDITIONAL EXPRESSIONS 

( 

-

p 

p 

p 

-

) 

p 

-

-

-

p 

Conditional expressions identify conditions that are tested to enable the object program to select between 
alternate paths of control depending upon the truth value of the condition. Conditional expressions are specified 
in the IF, PERFORM, and SEARCH statements. There are two categories of conditions associated with 
conditional expressions: simple conditions and complex conditions. Each may be enclosed within any number of 
paired parentheses, in which case its category is not changed. 

6.4.1. Simple Conditions 

The simple conditions are: 

• Relation condition 

• Class condition 

I • Condition-name condition 

• Switch-status condition 

I • Sign condition 

A simple condition has a truth value of true or false. The inclusion in parentheses of simple conditions does not 
change the simple truth value. 

• 

• 

• 



• 

• 

• 

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 6-9 

1974 AMERICAN NATIONAL STANDARD COBOL 

6.4.1.1. Relation Condition 

A relation condition causes a comparison of two operands, each of which may be the data item referenced by an 
identifier, a literal.lor the value resulting from an arithmetic expression.jA relation condition has a truth value of 
true if the relation exists between the operands. Comparison of two numeric operands is permitted regardless of 
the formats specified in their respective USAGE clauses. However, for all other comparisons the operands must 
have the same usage. If either of the operands is a group item, the nonnumeric comparison rules apply. See 
Table 6-2 for a summary of permissible comparisons. 

First Operand 

Table 6-2. Permissible Comparisons for Relation Conditions 

GR AL AN ANE NE 

Second Operand 

FcCD zR 
NNL NL 

ED Bl ID EF IF IN IOI 

1----------------+---+----t---+---+---+----+---+--+---+------1----1---1 
Group (GR) 

Alphabetic (AL) 

Alphanumeric (AN) 

Alphanumeric edited (ANE) 

Numeric edited (NE) 

Figurative constant ( FC) CD 
and nonnumeric literal (NNU 

Figurative constant ZERO (ZR) 
and numeric literal (NL) 

External decimal (ED) 

NN NN NN NN NN NN NN NN 

NN NN NN NN NN NN NN NN 

NN NN NN NN NN NN NN NN 

NN NN NN NN NN NN NN NN 

NN NN NN NN NN NN NN NN 

I 
l 
I 
l 
I 
l 

I 

NN 

NN 

NN 

NN 

NN 

NN NN NN NN NN NN I NN 

I 

NN NN NN NN NN NU NU ;NU NU 

I 

I 

I 
I 

I 

I 
I 
l. 

NU I IN@ 
I 
I 

NN NN NN NN NN NN NU NU NU INU NU NU l 1N@ 
..1 

Binary (Bl) NU NU NU I NU NU NU I IN@ 
t- - - - - - - - - - - _, - - -- -- - _, - I- - + -1-- - - ---1--+--+---t_J ___ _.__ 

I Internal decimal (ID) NU NU NU NU NU NU IN@: 
1-----------------+---+----+--+----+--l----+--+----+----+--+---+--~I---+---

t External floating point (EF) NN NN NN NN NN NN NU NU NU NU NU NU I 

: Internal floating point (IF) NU NU NU NU NU 
r- - - - - - - - - - - - __, - --f - - - - - --f - - - - - I- - I- -. + --+ -

Index name (IN) IN@ I~ IN® IN@ 

Index data item (IOI) 

NOTES: 

FC includes all figurative constants except ZERO. 
Valid only if the numeric item is an integer. 

LEGEND: 

NN comparison as described for nonnumeric operands 

NU comparison as described for numeric operands 
Tl comparison as described between two index-names 

IN 
ID 

comparison as described between index-name and numeric integer 
comparison as described between index data item and index-name or other index data item 

NU i 
f- -

Tl ID 

ID ID 



UP-8613 Rev. 2 SPERRY UNIVAC OS/3 6-10 
1974 AMERICAN NATIONAL STANDARD COBOL 

Format: 

r·"""" I~ 
IS [NOT I 

GREATER THAN~ ~ identifier-2 ! 
I i t e r a I - 1 IS [ !.Ql l LESS THAN literal-2 

la r it hme tic - expression - 11 IS [NOT I ~TO I a r i t hme tic - expression - 21 
IS [NOT I > 
IS [NOT I < 
IS [NOT I 

NOTE: 

The required relational characters > < and = are not underlined to avoid confusion with other symbols, 

such as ~ (greater than or equal to). 

The first operand is the subject of the condition; the second operand is the object of the condition. The subject 
and object may not both be literals. 

The relational operator specifies the type of comparison to be made in a relation condition. The relational 

operators and their meanings are as follows: 

Meaning 

Greater than or not greater than 

Less than or not less than 

Equal to or not equal to 

NOTE: 

Relational Operator 

IS [NOIJ GREATER THAN 

11s [tiQIJ >I 
IS [!iQIJ LESS THAN 

11s 1rilll1 < I 
IS [NOIJ EQUAL TO 

11sr~:r-

The required relational characters > < and = ere not underlined to avoid confusion with other symbols such as 
:;:, (greater than or equal to). 

A space must precede and follow each reserved word in the relational operator. When used, NOT and the next 
keyword or relation character form one relational operator that defines the comparison to be executed for truth 
value; e.g., NOT EQUAL is a truth test for an unequal comparison; NOT GREATER is a truth test for an equal or 
less comparison. 

6.4.1 .1.1. Comparison of Numeric Operands 

For numeric class operands, a comparison is made of the algebraic value of the operands. The length of the 
literal or I arithmetic expression operands.I in terms of number of digits represented, is not significant. Zero is 
considered a unique value regardless of the sign. 

Comparison of these operands is permitted regardless of the manner in which their usage is described. Unsigned 
numeric operands are considered positive for purposes of comparison. 

• 

• 

• 



• 

• 

• 

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 6-11 
1974 AMERICAN NATIONAL STANDARD COBOL 

6.4.1.1.2. Comparison of Nonnumeric Operands 

For nonnumeric operands, or one numeric and one nonnumeric operand, a comparison is made with respect to a 
specified collating sequence of characters (see 4.3.2, the OBJECT-COMPUTER paragraph). If one of the operands 
is specified as numeric, it must be an integer data item or an integer literal and: 

• If the nonnumeric operand is an elementary data item or a nonnumeric literal, the numeric operand is 
treated as though it were moved to an elementary alphanumeric data item of the same size as the numeric 
data item (in terms of standard data format characters), and the contents of this alphanumeric data item 
were then compared to the nonnumeric operand. (See 6.6.20, the MOVE statement, and 5.3.3.4. the 
PICTURE character P.) 

• If the nonnumeric operand is a group item, the numeric operand is treated as though it were moved to a 
group item of the same size as the numeric data item (in terms of standard data format characters). and the 
contents of this group item were then compared to the nonnumeric operand. (See 6.6.20. the MOVE 
statement. and 5.3.3.4, the PICTURE character P.) 

• A noninteger numeric operand cannot be compared to a nonnumeric operand. 

The size of an operand is the total number of standard data format characters in the operand. Numeric and 
nonnumeric operands may be compared only when their usage is the same. 

There are two cases to consider: operands of equal size andloperands of unequal size. I 

• Operands of equal size 

If the operands are of equal size, characters in corresponding character positions are compared starting 
from the high-order end and continuing until either a pair of unequal characters is encountered or the low
order end of the operand is reached, whichever comes first. The operands are determined to be equal if all 
pairs of characters compare equally through the last pair, when the low-order end is reached. 

The first encountered pair of unequal characters is compared to determine their relative position in the 
collating sequence. The operand that contains the character that is positioned higher in the collating 
sequence is considered to be the greater operand. 

• Operands of unequal size 

If the operands are of unequal size, comparison proceeds as though the shorter operand were extended on 
the right by sufficient spaces to make the operands of equal size. 

6.4.1.1.3. Comparisons Involving Index-Names or Index Data Items 

The comparison of two index-names is equivalent to the comparison of their corresponding occurrence numbers. 

The comparison of an index-name with a numeric item (data item or literal) is permitted if the numeric item is an 
integer. The numeric integer is treated as an occurrence number. 

In the comparison of an index data item with an index-name or with another index data item, the actual values 
are compared without conversion. 

Other comparisons involving an index-name or index data item are not allowed . 



UP-8613 Rev. 2 SPERRY UNIVAC OS/3 6-12 
1974 AMERICAN NATIONAL STANDARD COBOL 

6.4.1.2. Class Condition 

The class condition determines whether the operand is numeric (consists entirely of the characters 0 through 9. 
with or without the operational sign) or alphabetic (consists entirely of the characters A through Zand space). 

Format: 

identifier IS [NOT] jALPHABETICt 
1NUMERIC ~ 

~--------:; 

The USAGE of the operand must be described explicitly or implicitly as DISPLAY or tfQ._M.£'.~ ~T.!9~~:..?:J When 
used, NOT and the next keyword specify one class condition that defines the class test to be executed for truth 
value; e.g., NOT NUMERIC is a truth test for determining that an operand is nonnumeric. 

The ALPHABETIC test cannot be used with an item whose data description describes the item as numeric. The 
item being tested is determined to be alphabetic only if the contents consist of any combination of the alphabetic 
characters A through Z and the space. 

The NUMERIC test cannot be used with an item whose data description describes the item as alphabetic, as 

~~~~D'§~i~g~~~!;:l or as a group item composed of elementary items whose data descriptions indicate the 
presence of operational signs.

If the data description of the item being tested does not indicate the presence of an operational sign, the item
being tested is determined to be numeric only if the contents are numeric and the operational sign position
contains a hexadecimal value of F.

If the data description of the item does indicate the presence of an operational sign, the item being tested is
determined to be numeric only if the contents are numeric and a valid operational sign is present. Valid
operational signs for data items described with the SIGN IS SEPARATE clause are the standard data format
characters, +and-. Valid operational signs for data items not described with the SIGN IS SEPARATE clause are
the hexadecimal values C or F and D. (See 5.3.3.6, the SIGN clause.)

Examples:

Data-Item
PICTURE Data Is Considered

S99 X'F1 F2' NUMERIC
S99 X'F1 C2' NUMERIC
S99 X'F1D2' NUMERIC

99 X'F1 F2' NUMERIC
99 X'F1 C2' NOT NUMERIC
99 X'F1 D2' NOT NUMERIC

6.4.1.3. Condition-Name Condition

In a condition-name condition, a conditional variable is tested to determine whether its value is equal to one of
the values associated with a condition-name.

Format:

condition-name

•

•

•

•

•

•

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 6-13
1974 AMERICAN NATIONAL STANDARD COBOL

If the condition-name is associated with a range or ranges of values, the conditional variable is tested to
determine whether its value falls in this range, including the end values.

The rules for comparing a conditional variable with a condition-name value are the same as those specified for

relation conditions (6.4.1 .1).

The result of the test is true if one of the values corresponding to the condition-name equals the value of its

associated conditional variable.

6.4.1.4. Switch-Status Condition

A switch-status condition determines the on or off status of a system task switch. The switch name and the on
or off value associated with the condition are named in the SPECIAL-NAMES paragraph of the environment
division (4.3.3).

Format:

condition-name

The result of the test is true if the switch is set to the specified position corresponding to the condition-name.

6.4.1.5. Sign Condition

The sign condition determines whether the algebraic value of an arithmetic expression is less than. greater than,
or equal to zero.

Format:

arithmetic-expression IS [NOT] lPOSITIVE(
NEGATIVE
ZERO

The arithmetic expression must contain at least one reference to a variable.

An operand is positive if its value is greater than zero, negative if its value is less than zero, and zero if its value
is equal to zero.

When used, NOT and the next key word specify one sign condition that defines the algebraic test to be executed
for truth value; e.g., NOT ZERO is a truth test for a nonzero (positive or negative) value.

6.4.2. Complex Conditions

A complex condition is formed by combining simple conditions. combined conditions. or complex conditions. The
conditions are either connected logically with the logical operators AND or OR. or negated logically with the
logical operator NOT .

UP8613 Rev. 2 SPERRY UNIVAC OS/3 6-14
1974 AMERICAN NATIONAL STANDARD COBOL

The logical operators and their meanings are:

Logical Operator

AND

OR

NOT

Meaning

Logical conjunction; the truth value is true if both of the conjoined conditions
are true; false if one or both of the conjoined conditions is false.

Logical inclusive OR; the truth value is true if one or both of the included
conditions is true; false if both included conditions are false.

Logical negation or reversal of truth value; the truth value is true if the
condition is false; false if the condition is true.

The logical operators must be preceded by a space and followed by a space.

The truth value of a complex condition, whether parenthesized or not, is the truth value that results from: (1) the
interaction of all the stated logical operators on the individual truth values of simple conditions, or (2) the
intermediate truth values of conditions logically connected or logically negated.

Table 6-3 shows the relationship between the logical operators and simple conditions A and B.

Table 6-3. Logical Operators and the Resultant Values

Value Value NOTA AANDB
of A of B

AOR B NOT (A ANDBI NOT AAND B NOT (AOR Bl NOT A ORB

True True False True True False False False True

False True True False True True True False True

True False False False True True False False False

False False True False False True False True True

6.4.2.1. Negated Simple Conditions

A simple condition (6.4.1) is negated through the use of the logical operator NOT. The negated simple condition
effects the opposite truth value for a simple condition. Thus the truth value of a negated simple condition is true

if and only if the truth value of the simple condition is false; the truth value of a negated simple condition is false
if and only if the truth value of the simple condition is true. The inclusion in parentheses of a negated simple
condition does not change the truth value.

Format:

NOT simple-condition

•

•

•

•

•

•

UP~8613 Rev. 2 SPERRY UNIVAC OS/3 6-15
1974 AMERICAN NATIONAL STANDARD COBOL

6.4.2.2. Combined and Negated Combined Conditions

A combined condition results from connecting conditions with one of the logical operators AND or OR

Format:

condition ~l~~D~ condition~

The condition may be one of the following:

1. A simple condition

2. A negated simple condition

3. A combined condition

4. A negated combined condition, i.e., the NOT logical operator followed by a combined condition enclosed
within parentheses

5. Combinations of the first four conditions specified according to the rules summarized in Table 6-4

Although parentheses need never be used when either AND or OR (but not both) is used exclusively in a
combined condition, parentheses may be used to effect a final truth value when a mixture of AND, OR. and NOT
is used. (See Table 6-4, and paragraph 6.4.3.)

Table 6-4 indicates the ways in which conditions and logical operators may be combined and parenthesized.
There must be a one-to-one correspondence between left and right parentheses such that each left parenthesis
is to the left of its corresponding right parenthesis.

Thus, the element pair OR NOT is permissible while the pair NOT OR is not permissible; NOT (is permissible
while NOT NOT is not permissible.

Table 6-4. Combinations of Conditions, Logical Operators, and Parentheses

Location (left-to-right)

Element Intermediate Position

First Last Allowable Allowable
Preceding Elements Following Elements

c· Yes Yes OR, NOT, AND, (OR, AND,)

OR or AND No No C,) C, NOT, (

NOT Yes No OR, AND, (c. (

(Yes No OR, NOT, AND, (C, NOT, (

) No Yes C,) OR, AND,)

•c = simple-<:ondition

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 6-16
1974 AMERICAN NATIONAL STANDARD COBOL

6.4.2.3. Abbreviated Combined Relation Conditions

When simple or negated simple relation conditions are combined with logical connectives in a consecutive
sequence such that a succeeding relation condition contains a subject or subject and relational operator that is
common with the preceding relation condition, and no parentheses are used within such a consecutive
sequence, any relation condition except the first may be abbreviated by:

1 . the omission of the subject of the relation condition; or

2. the omission of the subject and relational operator of the relation condition.

Format:

relation-condition ~~~:ot [NOT] [relational-operator) object~···

Within a sequence of relation conditions, both forms of abbreviation may be used. The effect of using such
abbreviations is as if the last preceding stated subject were inserted in place of the omitted subject and the last
stated relational operator were inserted in place of the omitted relational operator. The result of such implied
insertion must comply with the rules of Table 6-4. This insertion of an omitted subject or omitted subject and
relational operator terminates once a complete simple condition is encountered within a complex condition.

The interpretation applied to the use of the word NOT in an abbreviated combined relation condition is as
follows:

1 . IF the word immediately following NOT is GREATER,>. LESS,<. EQUAL,=. then the NOT participates as
part of the relational operator; otherwise

2. The NOT is interpreted as a logical operand and, therefore, the implied insertion of subject or relational
operator results in a negated relation condition.

Some examples of abbreviated combined and negated combined relation conditions and expanded equivalents
follow.

Abbreviated Combined
Relation Condition

a > b AND NOT < c OR d

a NOT EQUAL b OR c

NOT a= b OR c

NOT (a GREATER b OR< c)

NOT (a NOT > b AND c AND NOT d)

Expanded Equivalent

((a > b) AND (a NOT <c)) OR (a NOT < d)

(a NOT EQUAL b) OR (a NOT EQUAL c)

(NOT (a = b)) OR (a = c)

NOT ((a GREATER b) OR (a< c))

NOT (((a NOT> b) AND (a NOT> c)) AND (NOT (a

NOT> d)))

•

•

•

•

•

•

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 6-17
1974 AMERICAN NATIONAL STANDARD COBOL

6.4.3. Condition Evaluation Rules

Parentheses may be used to specify the order in which individual conditions of complex condition are to be
evaluated when it is necessary to depart from the implied evaluation precedence. Conditions within parentheses
are evaluated first, and, within nested parentheses, evaluation proceeds from the least inclusive condition to the
most inclusive condition. When parentheses are not used, or parenthesized conditions are at the same level of
inclusiveness, the following hierarchical order of logical evaluation is implied until the final truth value is
determined:

1. Values are established for arithmetic expressions. (See 6.3.)

2. Truth values for simple conditions are established in the following order:

a. relation (following the expansion of any abbreviated relation condition)

b. class

c. condition-name

d. switch-status

e. sign

3. Truth values for negated simple conditions are established.

4 . Truth values for combined conditions are established - AND logical operators, followed by OR logical
operators.

5. Truth values for negated combined conditions are established.

6. When the sequence of evaluation is not completely specified by parentheses, the order of evaluation of
consecutive operations of the same hierarchical level is from left to right.

6.5. COMMON PHRASES AND GENERAL RULES FOR STATEMENT FORMATS

In the statement descriptions in 6.6, several phrases appear frequently: the ROUNDED phrase, the SIZE ERROR
phrase, and theiCORRESPONDING phrase.I

In the following discussion, a resultant-identifier is that identifier associated with a result of an arithmetic
operation.

6.5.1. The ROUNDED Phrase

If, after decimal point alignment. the number of places in the fraction of the result of an arithmetic operation is
greater than the number of places provided for the fraction of the resultant-identifier, truncation is relative to the
size provided for the resultant-identifier. When rounding is requested, the absolute value of the resultant
identifier is increased by 1 whenever the most significant digit of the excess is greater than or equal to 5.

When the low-order integer positions in a resultant-identifier are represented by the character P in the picture
for that resultant-identifier, rounding or truncation occurs relative to the rightmost integer position for which

storage is allocated.

r--------------------------1
1 The ROUNDED phrase is not applicable to a floating-point resultant-identifier. 1

L-------------------------~

UP 8613 Rr!v 2 SPERRY UNIVAC OS/3 6-18
1974 AMERICAN NATIONAL STANDARD COBOL

6.5.2. The SIZE ERROR Phrase

If. after decimal point alignment, the absolute value of a result exceeds the largest value that can be contained in
the associated resultant-identifier, a size error condition exits. Division by zero always causes a size error
condition. The size error condition applies only to the final results of an arithmetic operation and not to
intermediate rsults except for the MULTIPLY and DIVIDE statements. If the ROUNDED phrase is specified,
rounding takes place before checking for size error. When such a size error condition occurs, the subsequent
action depends on whether or not the SIZE ERROR phrase is specified.

• If the SIZE ERROR phrase is not specified and a size error condition occurs, the value of those resultant
identifiers affected is undefined. Values of resultant-identifiers for which no size error condition occurs are
unaffected by size errors that occur for other resultant-identifiers during execution of this operation.

• If the SIZE ERROR phrase is specified and a size error condition occurs, then the values of resultant
identifiers affected by the size errors are not altered. Values of resultant-identifiers for which no size error
condition occurs are unaffected by size errors that occur for other resultant-identifiers during execution of
this operation. After completion of the execution of this operation, the imperative statement in the SIZE
ERROR phrase is executed.

---------------------------------------.
:The SIZE ERROR phrase is not applicable to floating-point resultant-identifiers, except division by zero which 1

1 always causes a size error condition. 1

,_ - __J

If any of the individual operations of an ADD or SUBTRACT statement with the CORRESPONDING phrase
produces a size error condition, the imperative statement in the SIZE ERROR phrase is not executed until all of
the individual additions or subtractions are completed.

6.5.3. The CORRESPONDING Phrase

In the ADD, SUBTRACT, or MOVE statement with the CORRESPONDING phrase, both identifier-1 and identifier-
2 must refer to group items. In the following discussion, d, and d2 refer to identifier-1 and identifier-2,

respectively.

A data item from d, and one from d2 correspond under the following conditions:

• A data item in d 1 and a data item in d2 are not designated by the key word FILLER and have the same data
name and the same qualifiers up to, but not including, d, and d2.

• At least one of the data items is an elementary data item in the case of a MOVE statement with the
CORRESPONDING phrase; and both of the data items are elementary numeric data items in the case of the
ADD or SUBTRACT statement with the CORRESPONDING phrase.

• The description of d 1 and d 2 must not contain level-number 66, 77, or 88 or the USAGE IS INDEX clause.

• A data item that is subordinate to d, or d2 and contains a REDEFINES, RENAMES, OCCURS, or USAGE IS
INDEX clause is ignored, as well as those data items subordinate to the data item that contains the
REDEFINES, OCCURS, or USAGE IS INDEX clause. However, d, and d2 may have REDEFINES or OCCURS
clauses or be subordinate to data items with REDEFINES or OCCURS clauses. (See 5.3.3.7, the OCCURS
clause.)

•

•

•

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 6-19
1974 AMERICAN NATIONAL STANDARD COBOL

• Example:

SUBTRACT CORRESPONDING EMPLOYEE-RECORD FROM PAYROLL-CHECK

Data Division Entries:

0 1 EMP LOVE E - RECORD 01 PAYROLL-CHECK

02 EMPLOYEE-NUMBER 02 EMPLOYEE-NUMBER

03 FILLER 03 CLOCK-NUMBER

03 PLANT-LOCATION 03 FILLER

03 CLOCK-NUMBER 02 DEDUCTIONS

04 SHIFT-CODE 03 FICA-RATE

04 CONTROL-NUMBER 03 WITHHOLDING-TAX

02 INCOME 03 PERSONAL-LOANS

03 H 0 URS -WORK ED 02 INCOME

03 PAY-RATE 03 HOURS-WORKED

02 FICA-RATE 03 PAY-RATE

02 DEDUCTIONS 02 NET-PAY

02 EMPLOYEE-NAME

03 SHIFT-CODE

• In the example, the corresponding items are:

•

HOURS-WORKED

PAY-RATE

The following items are not corresponding in the example for the reasons stated:

Item

EMPLOYEE-NUMBER

FILLER

CLOCK-NUMBER
SHIFT-CODE

INCOME

FICA-RATE

DEDUCTIONS

Reason

Items not elementary

FILLER not considered corresponding items

Item not elementary in one group
Qualifications not identical

Items not elementary

Qualifications not identical

Item not elementary in one group

6.5.4. The Arithmetic Statements

The operands of the ADD.ICOMPUTE.IDIVIDE, MULTIPLY, and SUBTRACT statements have several common

features:

• The data descriptions of the operands need not be the same; any necessary conversion and decimal point

alignment is supplied throughout the calculation .

• The maximum size of each operand is 18 decimal digits. The composite of operands, which is hypothetical
data item resulting from the superimposition of specified operands in a statement aligned on their decimal

points, must not contain more than 18 decimal digits.

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 6-20
1974 AMERICAN NATIONAL STANDARD COBOL

6.5.5. Overlapping Operands

When a sending and a receiving item in an arithmetic statement or an INSPECT, MOVE, SET. !STRING, or I
I UNSTRING /statement share a part of their storage areas. the result of the execution of such a statement is
undefined.

6.5.6. Multiple Results in Arithmetic Statements

The ADD, COMPUTE. DIVIDE. MULTIPLY. and SUBTRACT statements may have multiple results. Such
statements behave as though they had been written in the following way:

1. A statement that performs all arithmetic necessary to arrive at the result to be stored in the receiving
items, and stores that result in a temporary storage location.

2. A sequence of statements transferring or combining the value of this temporary location with a single
result. These statements are considered to be written in the same left-to-right sequence that the multiple
results are listed.

The result of the statement

ADD a, b, c TO c, d (c), e

is equivalent to

ADD a, b, c GIVING temp

ADD temp TO c
ADD temp TO d (c)
ADD temp TO e

where temp is an intermediate result item provided by the compiler.

,-------------------------------,
16.5.7. WHEN-COMPILED Special Register 1
I I

I
I The reserved word WHEN-COMPILED is the name of a compiler-generated 17-byte alphanumeric field. It makes

1

I the date and time of the compilation available to the object program. The format of this field is 1

! yy/mm/dd6hh:mm:ss. I .__ _ -- -- - - ------ ____________________ _J

6.6. COBOL VERBS

The COBOL verbs listed in 6.2 are explained in detail in this paragraph. The verbs are presented alphabetically,
with formats and rules.

6.6.1. ACCEPT Statement

Function:

The ACCEPT statement causes low-volume data to be made available to the specified data item.

•

•

•

•

•

•

UP-8613 Rev. 2 SPERRY UNIV AC OS/3
1974 AMERICAN NATIONAL STANDARD COBOL

Format 1:

ACCEPT identif ierj[FROM mnemonic-name]]

Format 2:

ACCEPT identifier FROM lllii (DAY
TIME

Format 3:

ACCEPT cd-name MESSAGE COUNT

Format 4:

1.-------·------- --- ---,
1ACCEPT identifier-1 [,identifier-2] ...

1

: FROM [SPECIFIC] mnemonic-name I
I ruslNG{identifier-3}] I
I l literal I

LI [ON EXCEPTION imperative-statement] I ____________________ _]

Format 5:

,- -- --- - ------- - - -----,
1ACCEPT identifier-! FROM mnemonic-name 1

: [ON EXCEPTION~erative-statement] I
'---------·-- ----- - - - - _ _J

Rules:

1. The size of a data transfer is defined as follows:

6-21
Update C

SYSIN 80, 90, or 128 characters. If the length of a record is other than 80 or 96
characters, then 128 is used as the size of a data transfer. Records other
than 80 or 90 characters in length commonly occur when a job stream file
is created or updated by the general editor.

SYSCONSOLE
SYSCOM
SYSSWCH
SYSSWCH-n
SYSTEM-SHUTDOWN
SYSWORK
SYSFORMAT
SYSTERMINAL

60 characters
12 characters
8 characters
1 character
1 character
1 - 1920 characters
1 - 1920 characters
60 characters

If the size of the data being transferred exceeds the appropriate size of a data transfer, the excess

data is lost during a data transfer.

NOTE:

Rules 2 through 10 pertain to format 1 only .

2. The identifier must be defined implicitly or explicitly as USAGE IS DISPLAY.

t

UP-8613 Rev. 2 SPERRY UNIV AC OS/3 6-22
Update B

3.

1974 AMERICAN NATIONAL STANDARD COBOL

The mnemonic-name must also be specified in the SPECIAL-NAMES paragraph of the
environment division and must be associated with SYSIN, SYSCONSOLE, SYSCOM, SYSSWCH,
SYSTERMINAL, SYSSWCH-n, SYSTEM-SHUTDOWN, or SYSWORK.

4. The ACCEPT statement causes the transfer of data from a system logical device. This data replaces
the contents of the data item named by the identifier. No editing or error checking of the incoming
data is performed.

5. If the mnemonic-name is associated with SYSIN or SYSCONSOLE and:

a. If the length of the receiving data item is less than or equal to the appropriate size of a data
transfer, the transferred data is stored in the receiving data item left-aligned with space-fill or
truncation to the right when appropriate.

b. If the size of the receiving data item exceeds the appropriate size of a data transfer, the
transferred data is stored in the receiving data item left-aligned. Additional data is requested
and stored contiguously in the remaining portion of the receiving data item. When the size of
the remaining portion is less than or equal to the appropriate size of a data transfer, additional
data is requested once more. The transferred data is stored in the remaining portion with
space-fill or truncation to the right when appropriate.

6. If the mnemonic-name is associated with SYSCOM, the 12-byte information in the communications
region of the job preamble is moved to the 12-byte area described by the identifier.

7. If the mnemonic-name is associated with SYSSWCH, the information in the user program switch
indicator (UPSI) byte is expanded to eight bytes. Each byte represents an individual switch. If the
mnemonic-name is associated with SYSSWCH-n, the appropriate switch is expanded to one byte.

8. If the mnemonic name is associated with SYSTEM-SHUTDOWN, the shutdown indicator in the
system information block (SIB) is expanded to one byte, with a character value of O or 1
(hexadecimal FO or F 1). Hexadecimal F 1 indicates that the system operator entered a shutdown
command through the console and plans to terminate all system processing.

9. If theiFROM phraselis not specified, the system logical device SYSIN is assumed.

10. The j* is not accepted as an end statement into the program when accepting embedded data.

NOTE:

Rules 11 through 14 pertain to format 2 only.

11 . The ACCEPT statement causes the information requested to be transferred to the data item
specified by identifier according to the rules of the MOVE statement. DA TE, DAY, and TIME are
conceptual data items and, therefore, are not described in the COBOL program.

12. DATE is composed of the data elements year of century, month of year, and day of month. The
sequence of the data element codes shall be from high order to low order (left to right), year of
century, month of year, and day of month. Therefore, July 1, 1968 would be expressed as
680701. DATE, when accessed by a COBOL program, behaves as if it had been described in the
COBOL program as an unsigned elementary numeric integer data item six digits in length.

13. DAY is composed of the data elements year of century and day of year. The sequence of the
data element codes shall be from high order to low order (left to right) year of century, day of
year. Therefore, July 1, 1968 would be expressed as 68183. DAY, when accessed by a COBOL
program, behaves as if it had been described in a COBOL program as an unsigned elementary
numeric integer data item five digits in length.

•

•

•

•

•

•

UP-8613 Rev. 2 SPERRY UNIVAC OS/3
1974 AMERICAN NATIONAL STANDARD COBOL

6-22a
Update D

14. TIME is composed of the data elements hours, minutes, seconds, and hundredths of a second.
TIME is based on elapsed time after midnight on a 24-hour clock basis - thus, 2:41 p.m. would
be expressed as 14410000. TIME, when accessed by a COBOL program behaves as if it had
been described in a COBOL program as an unsigned elementary numeric integer data item eight
digits in length. The minimum value of TIME is 00000000; the maximum value of TIME is
23595999.

NOTE:

It is possible for the maximum number of hours to be 99 if the system generation parameter
TIMER is set to NO or MIN.

t

•

•

•

•

•

•

UP-8613 Rev. 2 SPERRY UNIV AC OS/3
1974 AMERICAN NATIONAL STANDARD COBOL

6-23
Update D

NOTE:

Rules 15 through 17 pertain to format 3 only.

15. Cd-name must reference an input CD.

16. The ACCEPT MESSAGE COUNT statement causes the MESSAGE COUNT field specified for
cd-name to be updated to indicate the number of messages that exist in a queue, sub-queue-1,
... , sub-queue-3.

17. Upon execution of the ACCEPT MESSAGE COUNT statement, the contents of the area specified
by a communication description entry must contain at least the name of the symbolic queue to
be tested. Testing the condition causes the contents of the data items referenced by
data-name-10 (ST A TUS KEY) and data-name-11 (MESSAGE COUNT) of the area associated with
the communication entry to be appropriately updated.

NOTE:

Rules 18 through 32 pertain to format 4 only.

,--------------------------------------.,
I 18. Format 4 is used to accept data from a workstation terminal that calls screen format services. I
I The FROM phrase must be specified. I
I I
I 19. The data description of identifier-1 or identifier-2, must not contain a subordinate entry that :

specifies an OCCURS DEPENDING clause. I

20. Mnemonic-name must also be specified in the SPECIAL-NAMES paragraph of the
division and must be associated with SYSFORMA T.

environment :

21 . The literal must be a nonnumeric literal.

I
I
I
I

22. The literal or the contents of identifier-3 is made up of a 1- to 8-character name of the screen I
format.

I
23. More than one receiving data item may be specified. ldentifier-1 or identifier-2 need not be J

described explicitly or implicitly as USAGE IS DISPLAY. If USAGE other than DISPLAY is I
specified, no data conversion is performed by the COBOL generated object code. If data I
conversion is required, it must be specified in the controlling screen format. I

24. The SPECIFIC phrase is meaningful only for a multivolume workstation. The SPECIFIC phrase
indicates that data is to be accepted from a particular workstation terminal; that is, the terminal
indicated in the WS-ID field, if the CONTROL AREA clause is specified with the mnemonic-name
in the SPECIAL-NAMES paragraph, or the terminal that participated in the most recently executed
ACCEPT or DISPLAY statement that references the same mnemonic-name.

25. The ON EXCEPTION phrase must be specified if the mnemonic-name is declared in the
SPECIAL-NAMES paragraph with the CONTROL AREA clause. The ON EXCEPTION phrase must
not be specified if the mnemonic-name is declared without the CONTROL AREA clause.

f 26.

I

The ON EXCEPTION phrase is executed when the execution of the ACCEPT statement is
unsuccessful. (See key code 1, 2, 3, or 9 in Status Key 1 in Table 4-1.)

L-----·------------

I
I
I

UP-8613 Rev. 2 SPERRY UNIV AC OS/3 6-24
Update C 1974 AMERICAN NATIONAL STANDARD COBOL

---------------------- - - - ---- --1
I 2 7. - A screen format must be specified for a given workstation before data can be accepted or
I displayed. A screen format may be specified via job control language or by the USING phrase of :
I an ACCEPT or DISPLAY statement. I
I I
I 28. When the USING phrase of an ACCEPT statement specifies a format different from the current I
I screen format on the last used terminal, the new format must be an input-only screen format. I
I 1

I 2s.
I
I
I

30.

31.

32.

Another way of specifying a different screen format is to use the DISPLAY statement with the I
USING phrase referencing the new input-only screen format. The new format is displayed on the I
terminal but no data is transmitted to the screen since it is an input-only format. :

For a multivolume workstation, the USING phrase of an ACCEPT statement that references a new :
screen format changes the screen only on one terminal; that is, the terminal indicated in the

1

WS-ID field if the CONTROL AREA clause is specified, or the terminal most recently accessed if I
the CONTROL AREA clause is not specified. I

I
For a multivolume workstation, the terminal that responds to an ACCEPT statement whose I
USING phrase references a new screen format could be different from the terminal whose screen :
format has been changed by the very same ACCEPT statement. I

After an ACCEPT statement referencing a screen format that is erased after input (that is, option :
3 of the ERASE/UNLOCK function was selected at screen format generation), the next ACCEPT I
or DISPLAY statement accessing the same terminal must include a USING phrase. I

NOTE:
I
I
I
I Rules 33 through 40 pertain to format 5 only.

I
33. Format 5 is used to accept data from a workstation terminal without using screen format I

services. I

I
34. ldentifier-1 must be specified explicitly or implicitly with the USAGE IS DISPLAY phrase. I

35. The data description of identifier-1 or identifier-2,
specifies an OCCURS DEPENDING clause.

I
must not contain a subordinate entry that I

I
I

36. The FROM phrase is required. Mnemonic-name must also be specified in the SPECIAL-NAMES I
paragraph of the environment division and must be associated with SYSWORK. I

I
37. The ON EXCEPTION phrase must be specified if the mnemonic-name is declared in the I

SPECIAL-NAMES paragraph with the CONTROL AREA clause. The ON EXCEPTION phrase must I
not be specified if the mnemonic-name is not described with the CONTROL AREA clause. I

I
38. The ON EXCEPTION phrase is executed when the execution of the ACCEPT statement is I

unsuccessful. (See key code 1, 2, 3, or 9 in Status Key 1 of Table 4-1.) I
I

39. If the length of the receiving data item (identifier-1) exceeds 1920 characters, the transferred I
data is stored in the receiving data item left-aligned and space-filled. No additional data is I
requested. If the length of the receiving data item is less than 1920 characters, the transferred I
data is stored in the receiving data item left-aligned with space-fill or truncation to the right when I
appropriate. I

I . I
I 40. After the execution of a format 5 ACCEPT statement, the cursor is positioned at the start of the I

L-~~iM~----------------------------J

•

•

•

•

•

•

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 6-25
1974 AMERICAN NATIONAL STANDARD COBOL

6.6.2. ADD Statement

Function:

The ADD statement causes two or more numeric operands to be summed and the result to be stored.

Format 1:

jidentifier-ll [,identifier-2]
11iteral-l S ,literal-2

lQ. identif ier-m [ROUNDED]

IC. i de n t i f i e r - n [R 0 UN DE D l] ... 1(: 0 N Ul!. ERROR imperative-statement]

Format 2:

j i dent i f i e r - 1 t j i dent i f i e r - 2 t [· i dent i f i e r - 3] ...
11iteral-l S11iteral-2 S .literal-3

~~~~~~~~~~~~~~~~ 

GIVING identifier-m [ROUNDED] 1c. identifier-n [ROUNDEDJ] ... 1 
[:ON Ul!. ERROR imperative-statement] 

Format 3: 

ADD jCORRESPONDINGt identif ier-1 lQ. identif ier-2 [ROUNDED] 
1CORR S 

[:ON i!ll ERROR imperative-statement] 

Rules: 

1. In formats 1 and 2, each identifier must refer to an elementary numeric item. except that in format 2 
each identifier following the word GIVING must refer to either an elementary numeric item or an 
elementary numeric edited item. pn format 3, each identifier must refer to a group item. I 

2. Each literal must be a numeric literal. 

3. The composite of fixed-point operands must not contain more than 18 digits. (See 6.5.4.) 

• In format 1, the composite of operands is determined by using all of the fixed-point operands in 

a given statement. 

• In format 2, the composite of operands is determined by using all of the fixed-point operands in 
a given statement excluding the data items that follow the word GIVING. 

• In format 3. the composite of operands is determined separately for each pair of corresponding 

data items. 

4. CORR is an abbreviation for CORRESPONDING . 



UP-8613 Rev. 2 SPERRY UNIVAC OS/3 6-26 
1974 AMERICAN NATIONAL STANDARD COBOL 

5. I See 6.5.1 ROUNDED phrase;j6.5.2, the SIZE ERROR phrase; 6.5.3, the CORRESPONDING phrase; 
6.5.4, arithmetic statements; 6.5.5, overlapping operands; and 16.5.6, multiple results in arithmetic I 
I statements. I 

6. If format 1 is used, the values of the operands preceding the word TO are added together, then the 
sum is added to the current value of identifier-m storing the result immediately into identifier-m,land I 

I repeating this process respectively for each operand following the word TO.I 

7. If format 2 is used, the values of the operands preceding the word GIVING are added together, then 
the sum is stored as the new value of leach I identifier-m, jidentifier-n ..... jthe resultant identifiers. 

8. If format 3 is used, data items in identifier-1 are added to and stored in corresponding data items in 
identifier-2. 

6.6.3. ALTER Statement 

Function: 

The ALTER statement modifies a predetermined sequence of operations. 

Format: 

ALTER procedure-name-! lQ [PROCEED lQ] procedure-name-2 
l!.procedure-name-3 !...Q [PROCEED !...QI procedure-name-4) ···I 

Rules: 

1. Each procedure-name-1,I procedure-name-3, 1--· is the name of a paragraph that contains a single 
sentence consisting of a GO TO statement without the DEPENDING phrase. 

2. Each procedure-name-2,jprocedure-name-4,I··· is the name of a paragraph or section in the procedure 
division. 

3. Execution of the ALTER statement modifies the GO TO statement in the paragraph named procedure
name-1, lprocedure-name-3, j ... so that subsequent execution of the modified GO TO statements cause 
transfer of control to procedure-name-2, I procedure-name-4, .. ., respectively. j Modified GO TO 
statements in independent segments may, under some circumstances, be returned to their initial states. 
(See 10.2.2.) 

A GO TO statement in a section whose segment-number is greater than or equal to 50 must not be 
referred to by an ALTER statement in a section with a different segment-number. 

All other uses of the ALTER statement are valid and are performed even if procedure-name-1, 
l procedure-name-3jis in an overlayable fixed segment. (See Section 10.) 

• 

• 

• 



• 

• 

• 

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 6-27 
Update F 1974 AMERICAN NATIONAL STANDARD COBOL 

6.6.4. CALL Statement 

Function: 

The CALL statement causes control to be transferred from one object program to another, within the run unit. 

Format: 

CALL l': ~ ~: ! : ~ ~ ~ r - ll ~ [US I NG t~~~~~~:~r-1_ 1 } [· 1r:~~;~~~;_: ~ '}] .. ·] 
- 1"d "f" 21 1"d "f" 31 

11 ent1 1er- 1 11 ent1 1er- I 
[lj_IJ!.:..."3!!!~lJ L!J._!_e_:_!!!_m_! -....? J 

~1[~;0-N~O-V~E-R_F_L_O_W~i~m~p~e-r_a_t_i_v_e ___ s_t_a~te-m~e-n_t__,) I 

Rules: 

1. Literal-1 must be a nonnumeric literal. 

I 2. ldentifier-1 must be defined as an alphanumeric data item. I 
3. The value of literal-1 I or identifier-1 I represents a 1- to 6-character load module name, or the .... 

value of literal-1 represents the name of the entry point if the called program is statically bound 
with the calling program. 

4. The USING phrase is included in the CALL statement only if there is a USING phrase in the procedure 
division header of the called program. The number of operands in each USING phrase must be identical. 

5. Each of the operands in the USING phrase must have been defined as a data item in the file section, 

r:w~r~j!_-Storag~ ~G_!!o~.~n~a~e~~t.!.?~ ~~ommunication section;~r~Sj ~~~~eln}h~ !rre~~~nJ 
L..9':..a~~~~e _!!l ..!!_l~c~mm~n~~i~ ~e_£t~n.:1Data-name-1, data-name-2, ... , may be qualified when they 

reference data items defined in the file section or the communication section. 

6. The program whose name is specified by the value of literal-1 lor identifier-1j is the called program; the 
program in which the CALL statement appears is the calling program. 

7. The execution of a CALL statement causes control to pass to the called program. 

8. A called program is in its initial state the firsttime it is called within a run unitlandthe first time it is called I 
I after a CANCEL to the called program.I On all other entries into the called program, the state of the 

program remains unchanged from its state when last exited. This includes all data fields, the status and 
positioning of all files, and all alterable switch settings. 

9. If, during the execution of a CALL statement, it is determined that the available portion of object time 
storage is incapable of accommodating the program specified in the CALL statement and the ON 
OVERFLOW phrase is specified, no action is taken and the imperative-statement is executed. If, in 
addition, the ON OVERFLOW phrase is not specified, the calling program is terminated and the 
disposition of the run unit is handled by the operating system. 

10. Called programs may contain CALL statements. However, a called program must not contain a CALL 
statement that directly or indirectly calls the calling program . 



t 

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 6-28 
Update F 1974 AMERICAN NATIONAL STANDARD COBOL 

11. The data-names specified by the USING phrase of the CALL statement indicate those data items 
available to a calling program that may be referred to in the called program. The order of appearance of 
the data-names in the USING phrase of the CALL statement and the USING phrase in the procedure 
division header is critical. Corresponding data-names refer to a single set of data that is available to the 
called and calling program. The correspondence is positional, not by name. In the case of index-names, 
no such correspondence is established. lndex··names in the called and calling program always refer to 
separate indexes. 

12. The CALL statement may appear anywhere within a segmented program. When a CALL 
statement appears in a section with a segment-number greater than or equal to 50, that segment 
is in its last used state when the EXIT PROGRAM statement returns control to the calling 
program. When using parameter CALLST=YES in a segmented program, the linkage editor 
commands must ensure that the called program can be accessed from the overlay that contains 
the CALL statement (see 10.5.4). 

13. I Literal-1 or the contents of the data item referenced by identifier-1 I are used to identify the called 
proqram. 

k----------------------------------------1 
1
14. When the called program is a COBOL program, each of the operands in the USING phrase of the 

1 

1 calling program must be defined as a data item in the file section, working-storage section, or linkage I 
I section. If the called program is written in a language other than COBOL, the operands of the USING I 
I clause may also be file-names and the address of the data management keyword attributes (DTF or I 

L RIB) is passed to the called program. I 
---------------------------------------~ 

15. Programs called by the literal-1 option exclusively may be either linked with the calling program or 
dynamically loaded. (Refer to Appendix A for the CALLST compiler option parameter.)IPrograms called by I 

j identifier-1 option are always dynamically loaded. I 

6.6.5. CANCEL Statement 

Function: 

The CANCEL statement releases the main storage areas occupied by the referenced program. 

Format: 

CANCEL jidentifier-q[,identifier-2] ... 
11iteral-l f ,literal-2 

Rules: 

1. Literal-1, literal-2, ... must each be a nonnumeric literal. 

2. ldentifer-1, identifier-2, ... must each be defined as an alphanumeric data item such that its value can be 
a program name. 

3. Refer to the CALL statement, 6.6.4, for a description of the value of identifier-1 and literal-1. 

4. Literal-1, literal-2, ... must refer to called programs that are dynamically loaded. (Refer to Appendix A tor 
the CALLST compiler option parameter.) 

5. Subsequent to the execution of a CANCEL statement, the program referenced therein ceases to have any 
logical relationship to the run unit in which the CANCEL statement appears. A subsequently executed 
CALL statement naming the same program will result in that program being initiated in its initial state. 
The main storage areas associated with the named programs are released so as to be made available for 
disposition by the operating system. 

• 

• 

• 



• 

• 

• 

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 6-29 

6. 

7. 

8. 

9. 

10. 

11 . 

12. 

197 4 AMERICAN NATIONAL ST ANDA RD COBOL 

A program named in the CANCEL statement must not refer to any program that has been called but has 

not yet executed an EXIT PROGRAM statement. 

A logical relationship to a canceled subprogram is established only by executing a subsequent CALL 
statement. 

A called program is canceled either by being referred to as the operand of a CANCEL statement or by the 
terminal of the run unit of which the program is a member. 

No action is taken when a CANCEL statement is executed naming a program that has not been called in 
this run unit or has been called and is at present canceled. Control passes to the next statement. 

A called subprogram must not contain a CANCEL statement that directly or indirectly cancels the calling 
program, or any other program higher than itself in the calling hierarchy. 

A program may CANCEL a program that it did not call. providing that in the calling hierarchy it is higher 
than or equal to the program it is canceling. 

Literal-1 or the contents of the data item referenced by identifier-1 are used to identify the canceled 
program. 

6.6.6. CLOSE Statement 

Function: 

The CLOSE statement terminates the processing of reels/units and files with optional rewind or lock or 
removal where applicable. 

Format 1 (Sequential and~~~~ Files): 

CLOSE Ii le-name-1 [jREELtJ[WITH NO REWIND] J 
1!!1!J...!5 FOR REMOVAL 

lWITH jNO REWINDt 
1LOCK 5 

[

. I i I e - n am e - 2 [HU.I.! l [W I T H N 0 R E W I ND]]~ ... 
1UNIT5 FOR REMOVAL 

WITH jNO REWINDl 
1LOCK ~ 

Format 2 (Relative, Indexed, and@>!"~:JFiles): 

CLOSE Ii le-name-1 [WITH LOCK] [,Ii le-name-2 [WITH LOCK] ] ... 

Rules: 

1. The REEL or UNIT phrase must only be used for sequential ~~§:]tiles. 

2. The files referenced in the CLOSE statement need not all have the same organization or access . 

*Applies only to 90125. 90130, 90130 8, and 90140 systems 



UP 8613 Rev. 2 SPERRY UNIVAC OS/3 6-30 

3. 

19 7 4 AMERICAN NATIONAL ST ANDA RD COBOL 

Except where otherwise stated, the terms reel and unit are synonymous and completely 
interchangeable in the CLOSE statement. Treatment of mass storage sequential'orSAM*ifiles is 

1....--- ;_i 
logically equivalent to the treatment of a file on tape or analogous sequential media. 

4. A CLOSE statement may only be executed for a file in an open mode. 

5. To show the effect of various types of CLOSE statements as applied to various storage media, all files 
are divided into the following categories: 

a. Non-reel/unit - A file whose input or output medium is such that the concepts of rewind and 
reels/units have no meaning. 

b. Sequential single reel/unit - A sequential~~~~~ file that is entirely contained on one 
reel/unit. 

c. Sequential multiple reel/unit - A sequential~~~~:jfile that is contained on more than one 
reel/unit. 

d. Nonsequential single/multiple reel/unit - A relative, indexed.~~l~~~file contained on one 
or more units. 

6. The results of executing each type of CLOSE statement for each category of files are given in Table 6-5. 

NOTE: 

The symbols used in Table 6-5 are defined in the text following the table. Definitions apply to all input, output, 
and input/ output files except where noted. 

Table 6-5. Relationship of Categories of Files and the Options of the CLOSE Statement 

File Category 

CLOSE 
Statement Sequential Sequential Nonsequential 

Format Non-Reel/Unit Single Multiple Single/Multiple 

Reel/Unit Reel/Unit Reel/Unit 

CLOSE c C,G C,G,A c 

CLOSE WITH LOCK C,E C,G,E C,G,E,A C,E 

CLOSE WITH NO REWIND x C,B C,B,A x 

CLOSE REEL/UNIT x x F,G x 

CLOSE REEL/UNIT x x F,D,G x 
FOR REMOVAL 

CLOSE REEL/UNIT x x F,B x 
WITH NO REWIND 

*Applies only to 90/25, 90/30, 90/30 8, and 90/40 systems 

• 

• 

• 



• 

• 

• 

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 6-31 
1974 AMERICAN NATIONAL STANDARD COBOL 

The symbols used in Table 6-5 are defined as follows: 

Symbol 

A 

B 

Definition 

Previous Reels/Units Unaffected 

• Input Files and Input/Output Files 

All reels/units in the file prior to the current reel/unit are processed according to the 
system standard reel/unit swap procedure, except those reels/units controlled by a 
prior CLOSE REEL/UNIT statement. If the current reel/unit is not the last in the file. the 
reels/units in the file following the current one are not processed. 

• Output Files 

All reels/units in the file prior to the current reel/unit are processed according to the 
system standard reel/unit swap procedure. except those reels/units controlled by a 
prior CLOSE REEL/UNIT statement. 

No Rewind of Current Reel 

The current reel/unit is left in its current position. 

C Close File 

D 

E 

• Input Files and Input/Output Files (Sequential Access Mode) 

If the file is positioned at its end and standard system label records are specified for 
the file, the system labels are processed according to the system standard label 
convention. Closing operations specified by the system are executed. If the file is 
positioned at its end and standard system label records are not specified for the file, 
label processing does not take place but other closing operations specified by the 
system are executed. If the file is positioned other than at its end, the closing 
operations specified by the system are executed, but there is no ending label 
processing. 

• Input Files and Input/Output Files (Random or Dynamic Access Mode); Output Files 
(Random, Dynamic, or Sequential Access Mode) 

If standard system label records are specified for the file, the labels are processed 
according to the system standard label convention. Closing system operations 
specified by the system are executed. If standard system label records are not 
specified for the file, label processing does not take place but other closing 
operations specified by the system are executed. 

Reel/Unit Removal 

The current reel or unit is rewound when applicable, and the operating system is notified that 
the reel or unit is logically removed from this run unit; however, the reel or unit may be 
accessed again, in its proper order of reels or units within the file, if a CLOSE statement 
without the REEL or UNIT phrase is subsequently executed for this file followed by the 
execution of an OPEN statement for the file . 

File Lock 

The operating system is notified to ensure that this file cannot be opened again during this 
execution of this run unit. 



UP-8613 Rev. 2 

Symbol 

F 

SPERRY UNIV AC OS/3 6-32 
1974 AMERICAN NATIONAL STANDARD COBOL 

Definition 

Close Reel/Unit 

• Input Files 

The following operations take place: 

A reel/unit swap 

The standard beginning reel/unit label procedure is executed. 

The next executed READ statement for that file makes available the next data record on 
the new reel/unit. 

• Output Files and Input/Output Files 

The following operations take place: 

For output files only- The standard ending reel/unit label procedure is executed. 

A reel/unit swap 

The standard beginning reel/unit label procedure is executed. 

For input/output files, the next executed READ statement that references that file makes the 
next logical data record on the next mass storage unit available. For output files, the next 
executed WRITE statement that references that file directs the next logical data record to the 
next reel/unit of the file. 

G Rewind 

x 

The current reel is positioned at its physical beginning. 

Illegal 

This is an illegal combination of a CLOSE option and a file category. The results at object time 
are undefined. 

7. If the file is in the open mode when a STOP RUN statement is executed, the file is to be closed by the 
compiler-generated object code. The result is unpredictable if a file that has been opened in a called 
program and not closed in that program prior to the execution of a CANCEL statement for that program. 

8. If the OPTIONAL phrase has been specified for the file in the FILE-CONTROL paragraph of the 
environment division and the file is not present, the standard end-of-file processing is not performed for 
that file. 

9. If a CLOSE statementlwithout the REEL or UNIT phrasejhas been executed for a file, no other statement 
(except the SORT statement with the USING or GIVING phrases) can be executed that references that 
file, either explicitly or implicitly, unless an intervening OPEN statement for that file is executed. 

• 

• 

• 



• 

• 

• 

UP-8613 Rev. 2 SPERRY UNIV AC OS/3 
1974 AMERICAN NATIONAL STANDARD COBOL 

6-33 
Update A 

10. The WITH NO REWIND and FOR REMOVAL phrases have no effect at object time if they do not apply to 
the storage media on which the file resides. 

11. Following the successful execution of a CLOSE statementlwithout the REEL or UNIT phrase.lthe record 
area associated with file-name is no longer available. The unsuccessful execution of such a CLOSE 
statement leaves the availability of the record area undefined. 

12. With the CLOSE WITH LOCK phrase, single reel tape files are rewound but are not unloaded. 

6.6.7. COMPUTE Statement 

Function: 

The COMPUTE statement assigns to one or more data items the value of arithmetic expression. 

Format: 

COMPUTE identifier-I [ROUNDED] [, identifier-2 [ROUNDED] ] ... 

=arithmetic-expression [;ON SIZE ERROR imperative-statement] 

Rules: 

1 . 

2. 

Identifiers that appear only to the left of = must refer to either an elementary numeric item or an 
elementary numeric edited item . 

See 6.5.1, ROUNDED phrase, 6.5.2, SIZE ERROR phrase; 6.5.4, arithmetic statements; 6.5.5, 
overlapping operands; and 6.5.6, multiple results in arithmetic statements. 

3. An arithmetic expression consisting of a sing le identifier or literal provides a method of setting the values 
of identifier-1, identifier-2, etc .. equal to the value of the single identifier or literal. (See 6.3.) 

4. If more than one identifier is specified for the result of the operation, that is, preceding=, the value of the 
arithmetic expression is computed, and then this value is stored as the new value of each of identifier-1, 
identifier-2, etc .. in turn. 

5. The COMPUTE statement allows the user to combine arithmetic operations without the restrictions on 
composite of operands or receiving data items imposed by the arithmetic statements ADD, SUBTRACT, 
MULTIPLY, and DIVIDE. (See Appendix E.) 

6.6.8. COPY Statement 

Function: 

The COPY statement incorporates text into a COBOL source program. 

Format: 

text-name [1~:~ library-name] 

lEPLACINGl,l==pseudo-text-1==1 BY l==pseudo-text-2==1} 
identifier-I identifier-2 
literal-I literal~2 

word-I word-2 



UP-8613 Rev. 2 SPERRY UNIVAC OS/3 6-34 
Update F 

Rules: 
1 . 

1974 AMERICAN NATIONAL STANDARD COBOL 

Text-name or library-name must follow the rules for formation of a user-defined word; however, only the 
first eight characters of a text-name or library-name are used by the operating system. A text-name is 
used to identify a COBOL I ibra ry text. A library-name is used as the LFD name to identify a COBOL I ibrary 
file. 

2. If more than one COBOL library is available during compilation, text-name can be qualified by the 
library-name identifying the COBOL library in which the text associated with text-name resides. 

If the library-name is not specified, the file-names given in the LIN parameter are used. (See 
Appendix A, Compiler Options.) 

If the library-name is omitted in the COPY statement and the LIN parameter is not given, the 
default name COPY$ is used as the library-name. 

3. The COPY statement must be preceded by a space and terminated by the separator period. 

4. A COPY statement may occur in the source program anywhere a character-string or a separator may 
occur except that a COPY statement must not occur within a COPY statement. The word COPY appearing 
in any comment entry is treated as a comment. 

5. Pseudo-text-1 must not be null, nor may it consist solely of the character space, spaces, or 
comment lines. 

6. Pseudo-text-2 may be null. 

7. Character-strings within pseudo-text-1 and pseudo-text-2 may be continued. However, both characters 
of a pseudo-text delimiter must be on the same line. (See 2.7 .) 

8. Word-1 or word-2 may be any single COBOL word. 

9. The compilation of a source program con ta in i ng COPY statements is log ica fly equivalent to processing a II 
COPY statements prior to the processing of the resulting source program. 

10. The effect of processing a COPY statement is that the library text associated with text-name is copied into 
the source program, logically replacing the entire COPY statement beginning with the reserved word 
COPY and ending with the punctuation character period, inclusively. 

11. I it the REPLACING phrase is not specified,j the library text is copied unchanged. 

If the REPLACING phrase is specified, the library text is copied and each properly matched 
occurrence of pseudo-text-1 , identifier-1, word-1, and literal-1 in the library text is replaced by 
the corresponding pseudo-text-2, identifier-2, word-2, or literal-2. Pseudo-text-1, identifier-1, 
word-1, and literal-1 must not be a prefix or a suffix. 

12. For purposes of matching, identifier-1, word-1, and literal-1 are treated as pseudo-text containing only 

identifier-1, word-1, or literal-1, respectively. 

• 

• 

• 



• 

• 

• 

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 6-35 
1974 AMERICAN NATIONAL STANDARD COBOL 

13. The comparison operation to determine text replacement occurs in the following manner: 

Any separator comma, semicolon. or space(s) preceding the leftmost library text-word is copied into the 
source program. Starting with the leftmost library text-word and the first pseudo-text-1, identifier-1, 

word-1, or literal-1 that was specified in the REPLACING phrase, the entire REPLACING phrase operand 
that precedes the reserved word BY is compared to an equivalent number of contiguous library text

words. 

Pseudo-text-1. identifier-1, word-1, or literal-1 match the library text if. and only if, the ordered sequence 
of text-words that forms pseudo-text-1. identifier-1, word-1, or literal-1 is equal, character for character, 
to the ordered sequence of library text-words. For purposes of matching, each occurrence of a separator 
comma or semicolon in pseudo-text-1 or in the library text is considered to be a single space except when 
pseudo-text-1 consists solely of either a separator comma or semicolon. in which case it participates in 
the match as a text-word. Each sequence of one or more space separators is considered to be a single 
space. 

If no match occurs, the comparison is repeated with each next successive pseudo-text-1, identifier-1. 
word-1, or literal-1, if any, in the REPLACING phrase until either a match is found or there is no next 
successive REPLACING operand. 

When all the REPLACING phrase operands have been compared and no match has occurred, the 
leftmost library text-word is copied into the source program. The next successive library text-word is then 
considered as the leftmost library text-word. and the comparison cycle starts again with the first pseudo
text-1, identifier-1, word-1, or literal-1 specified in the REPLACING phrase . 

Whenever a match occurs between pseudo-text-1. identifier-1, word-1, or literal-1 and the library text, 
the corresponding pseudo-text-2, identifier-2, word-2, or literal-2 is placed into the source program. The 
library text-word immediately following the rightmost text-word that participated in the match is then 
considered as the leftmost library text-word. The comparison cycle starts again with the first pseudo
text-1. identifier-1. word-1, or literal-1 specified in the REPLACING phrase. 

The comparison operation continues until the rightmost text-word in the library text has either 
participated in a match or been considered as a leftmost library text-word and participated in a complete 
comparison cycle. 

14. A comment line occuring in the library text and pseudo-text-1 is interpreted, for purposes of matching, as 
a single space. Comment lines appearing in pseudo-text-2 and library text are copied into the source 
program unchanged. 

15. Debugging lines are permitted within library text and pseudo-text-2. Debugging lines are not permitted 
within pseudo-text-1; text-words within a debugging line participate in the matching rules as if the 'D' 
did not appear in the indicator area. If a COPY statement is specified on a debugging line, then the text 

that is the result of the processing of the COPY statement will appear as though it were specified on 
debugging lines with the following exception: comment lines in library text will appear as comment lines 
in the resultant source program. 

16. The syntactic correctness of the library text cannot be independently determined. The syntactic 
correctness of the entire COBOL source program cannot be determined until all COPY statements have 
been completely processed. 

17. Library text must conform to the rules for COBOL reference format . 

18. Text-words after replacement are placed in the source program listing according to the rules for 
reference format. 



UP-8613 Rev. 2 SPERRY UNIVAC OS/3 6-36 
1974 AMERICAN NATIONAL STANDARD COBOL 

19. Comment lines immediately following a COPY statement are placed in the source program listing 
immediately following the COPY statement and then are followed by the copied library text. 

If the comment lines are intended to follow the copied library text, then a blank line should be placed 
in the source program between the COPY statement and the comment lines. 

6.6.9. DELETE Statement 

Function: 

The DELETE statement logically removes a record from a mass storage file. 

Format: 

DELETE file-name RECORD [:INVALID KEY imperative-statement] 

Rules: 

1. File-name must be the name of a relative or indexed file. 

2. The INVALID KEY phrase must not be specified for a DELETE statement that refers to a file in the 
sequential access mode. 

3. The INVALID KEY phrase must be specified for a DELETE statement that refers to a file not in sequential 
access mode and for which an applicable USE procedure is not specified. 

4. The associated file must be open in the 1-0 mode at the time of the execution of this statement. (See 
6.6.19, the OPEN statement.) 

5. For files in the sequential access mode, the last input/output statement executed for file-name prior to 
the execution of the DELETE statement must have been a successfully executed READ statement. The 
operating system logically removes from the file the record that was accessed by that READ statement. 

6. For a file in randomlor dynamicjaccess mode. the operating system logically removes from the file that 
record identified by the contents of the RELATIVE KEY or the prime record key data item associated with 
file-name. If the file does not contain the record specified by the key, an INVALID KEY condition exists. 
(See 8.2.5. the INVALID KEY condition.) 

7. After the successful execution of a DELETE statement. the identified record has been logically removed 
from the file and can no longer be accessed. 

8. The execution of a DELETE statement does not affect the contents of the record area associated with file
name. 

9. The current record pointer is not affected by the execution of a DELETE statement. 

10. The excecution of the DELETE statement causes the value of the specified FILE STATUS data item. if any, 
associated with file-name to be updated. (See 8.2.3, 1-0 status.) 

• 

• 

• 



• 

• 

• 

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 6-37 
1974 AMERICAN NATIONAL STANDARD COBOL 

6.6.10. DISABLE Statement 

Function: 

The DISABLE statement notifies the message control system (MCS) to inhibit data transfer between specified 
output qi.Jeues and destinations for output or between specified sources and input queues for input. 

Format: 

DISABLE ~INPUT lfTERMINALJlt cd-name WITH W ~identifier-It 
10UTPUT ~ 11 iteral -1 ~ 

Rules: 

1. Cd-name must reference an input CD when the INPUT phrase is specified. 

2. Cd-name must reference an output CD when the OUTPUT phrase is specified. 

3. Literal-1 or the data item referenced by identifier-1 must be defined as alphanumeric, and its length 
must not exceed 10 characters. 

4. 

5. 

6. 

The DISABLE statement provides a logical disconnection between the MCS and the specified sources or 
destinations. When this logical disconnection is already in existence, or is to be handled by some other 
means external to this program, the DISABLE statement is not required in this program. The logical path 
for the transfer of data between the COBOL programs and the MCS is not affected by the DISABLE 
statement. 

When the INPUT phrase with the optional word TERMINAL is specified, the logical path between the 
source and all queues and subqueues is deactivated. Only the contents of the data item referenced by 
data-name-7 (SYMBOLIC SOURCE) of the area referenced by cd-name are meaningful. 

When the INPUT phraselwithout the optional word TERMINALlis specified. the logical paths for all of the 
sources associated with the queues and subqueues specified by the contents of data-name-1 
(SYMBOLIC QUEUE) through data-name-4 (SYMBOLIC SUB-OUEUE-3) of the area referenced by cd
name are deactivated. 

7. When the OUTPUT phrase is specified, the logical path for destination.lor the logical paths for all 
I destinations.I specified by the contents of the data item referenced by data-name-5 (SYMBOLIC 

DESTINATION) of the area referenced by cd-name are deactivated. 

8. Literal-1 or the contents of the data item referenced by identifier-1 are matched with a password built 
into the system. The DISABLE statement is honored only if literal-1 or the contents and the size of the 
data item referenced by identifier-1 match the system password. When literal-1 or the contents and the 
size of the data item referenced by identifier-1 do not match the system password. the value of the 
STATUS KEY item in the area referenced by cd-name is updated. 

The length of a password ranges from 1 to 10 characters inclusive. 

9. The execution of a DISABLE statement causes the logical disconnection at the earliest time the source or 
destination is inactive. The execution of the DISABLE statement never causes the remaining portion of 
the message to be terminated during transmission to or from a terminal. 



UP-8613 Rev. 2 SPERRY UNIVAC OS/3 
1974 AMERICAN NATIONAL STANDARD COBOL 

6.6.11. DISPLAY Statement 

Function: 

6-38 
Update A 

The DISPLAY statement causes low-volume data to be transferred to an appropriate system logical device. 

Format 1: 

DISPLAY ~identifier-q[,identifier-2] ... l[UPON mnemonic-name] 
11iteral-l 5 ,literal-2 

Format 2: 

r------- - ----------, 
I D I S P l A Y J i d e n t i f i e r - 1 } [· i d e n t i f i e r - 2] .. . I 
I lliteral-1 ,literal-2 I 
I UPON mnemonic-name I 
I ruslNGJidentifier-3}] : 

l lliteral-3 I l ___ ~O~~C~P~~ ~pe~t~~~a~emen~J 
Format 3: 

r--- -- --- -------- - - - I 
I D I SP l A Y J i den t i f i e r - 1 } [· i den t i f i e r - 2] .. . I 
1 lliteral-1 ,literal-2 I 
l UPON mnemonic-name I 
I [ON EXCEPTION imperative-statement] I 
L __________________ _J 

Rules: 

NOTE: 

Rules 1 through 5 pertain to all formats. 

1. The DISPLAY statement causes the contents of each operand to be transferred to the device in the 
order listed. 

2. Each literal may be any figurative constant except ALL. 

3. If a figurative constant is specified as one of the operands, only one occurrence of the constant is 
displayed. 

4. If the literal is numeric, it must be an unsigned integer. 

5. The size of a data transfer is defined as follows: 

Logical Device 

SYSLST or SYSOUT 
SYS LOG 
SYSCONSOLE 
SYSTERMINAL 
SYSCOM 
SYSSWCH 
SYSSWCH-n 
SYSWORK 
SYSFORMAT 

Number of Characters 

120 
55 
55 
55 
12 
8 

1-1920 
1-1920 

• 

• 

• 



• 

• 

• 

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 
1974 AMERICAN NATIONAL STANDARD COBOL 

NOTE: 

Rules 6 through 14 pertain to format 1 only. 

6-39 
Update A 

6. Mnemonic name is associated with a system logical device in the SPECIAL-NAMES paragraph of the 
environment division and must be associated with SYSLST, SYSOUT, SYSLOG, SYSCONSOLE, 
SYSTERMINAL, SYSCOM, SYSSWCH, or SYSSWCH-n. 

7. If the UPON phrase is not specified, SYSLST is used. 

8. If mnemonic-name is associated with SYSCOM, SYSSWCH, or SYSSWCH-n, only one operand is 
permitted in the statement. 

9. If the mnemonic-name is associated with SYSLST or SYSOUT, and: 

a. if the length of the data item being transferred is less than or equal to 120 characters, the data 
is transferred to the associated system logical device. 

b. if the size of the data item being transferred exceeds 120 characters, the data, beginning with 
the leftmost character and up to the limit of 120 characters, is stored left-aligned in the 
associated system logical device. The remaining data is transferred sequentially in a like 
manner until all data is transferred. 

10. If the mnemonic-name is associated with SYS LOG or SYSCONSOLE, the length of data to be 
displayed is limited to 55 characters . 

11. If mnemonic-name is associated with SYSSWCH, eight characters are transferred. If mnemonic
name is associated with a single switch, SYSSWCH-n, one character is transferred. 

12. When a DISPLAY statement contains more than one operand, the size of the sending item is the sum 
of the sizes associated with the operands, and the values of the operands are transferred in the 
sequence in which the operands are encountered. 

13. If the identifiers are described implicitly or explicitly as USAGE other than DISPLAY, the contents of 
the data items, when transferred, are converted to DISPLAY format. 

14. For numeric data items described with an operational sign without the SIGN IS SEPARATE clause, 
the operational sign is displayed as a separate character immediately following the data. 

NOTE: 

Rules 15 through 23 pertain to format 2 only. 

r-------- ----------- ----- - - - - - ------ - - --..., 
I 15. Format 2 is used to display data on a workstation terminal calling screen format services. The UPON I 

I phrase must be specified. I 
I I 
I 16. Mnemonic-name must also be specified in the SPECIAL-NAMES paragraph of the environment ~ 
I division and must be associated with SYSFORMAT. I 
I I 
I 17. Literal-3 must be a nonnumeric literal. l 
I I 
I 18. Literal-3 or the content of identifier-3 is made up of a 1- to 8-character name of the screen format. i 
I I 

: 19. If identifier-1 or identifier-2, ... is a group item, the data description entry of any subordinate item in the I 
I group must not contain an OCCURS DEPENDING clause. . j 
----- - -- - - - --- - - -------- ---- -- - -----



- - ----------~------------------------------------

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 
1974 AMERICAN NATIONAL STANDARD COBOL 

6-40 
Update A 

~----------------------------------------
20. If identifier-1 or identifier-2 is described implicitly or explicitly as USAGE other than DISPLAY, no 

data conversion is performed by the COBOL generated object code. If data conversion is required, it 
must be specified in the controlling screen format. 

21. The ON EXCEPTION phrase must be specified if the mnemonic-name is declared in the SPECIAL
NAMES paragraph with the CONTROL AREA clause. The ON EXCEPTION phrase must not be 
specified if the mnemonic-name is not described with the CONTROL AREA clause. 

22. The ON EXCEPTION phrase is executed when the execution of the DISPLAY statement is 
unsuccessful. (See key code 1, 2, 3, or 9 in Status Key 1 of Table 4-1.) 

23. A screen format must be specified for a given workstation before data can be displayed. A screen 
format may be specified via job control language or by the USING phrase of a DISPLAY statement. 

NOTE: 

Rules 24 through 29 pertain to format 3 only. 

24. Format 3 is used to display data on a workstation terminal without using screen format services. The 
UPON phrase must be specified. 

25. Mnemonic-name must also be specified in the SPECIAL-NAMES paragraph of the environment 
division and must be associated with SYSWORK. 

26. If identifier-1 or identifier-2, ... is a group item, the data description entry of any subordinate item in the 
group must not contain an OCCURS DEPENDING clause. 

27. The ON EXCEPTION phrase must be specified if the mnemonic-name is declared in the SPECIAL
NAMES paragraph with the CONTROL AREA clause. The ON EXCEPTION phrase must not be 
specified if the mnemonic-name is declared without the CONTROL AREA clause. 

28. The ON EXCEPTION phrase is executed when the execution of the DISPLAY statement is 
unsuccessful. (See key code 1, 2, 3, or 9 in Status Key 1 of Table 4-1.) 

29. After the execution of a format 3 DISPLAY statement, the cursor is positioned at the start of the next 
line. 

--------------- ----- - ------------ .J 

--------------------------------

• 

• 

• 



• 

• 

• 

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 6-41 
1974 AMERICAN NATIONAL STANDARD COBOL 

6.6.12. DIVIDE Statement 

Function: 

The DIVIDE statement divides one numeric data item into others and sets the values of data items equal to the 

quotientJand remainder. j 

Format 1: 

DIVIDE jidentifier-It INTO identifier-2 [ROUNDED] 
tliteral-1 f 
[.identifier-3 [ROUNDED] J ... ,[;ON SIZE ERROR imperative-statement] 

Format 2: 

DIVIDE jidentifier-q INTO jidentifier-2l GIVING identifier-3 [ROUNDED] 
tliteral-1 f tliteral-2 f 
[.identifier-4 [ROUNDED] J ... ,[;ON U1J. ERROR imperative-statement] 

Format 3: 

DIVIDE jidentifier-q BY jidentifier-q GIVING identifier-3 [ROUNDED] 
/literal-1 f tliteral-2 f 
[.identilier-4 [ROUNDED] J ... ,[:ON SIZE ERROR imperative-statement] 

Format 4: 

DIVIDE jidentifier-q 
tliteral-1 f 

INTO jident if ier-2l GIVING ident if ier-3 [ROUNDED] 
tliteral-2 f 

REMAINDER ident if ier-4 [:ON SIZE ERROR imperative-statement] 



UP 86 13 R1?v 2 SPERRY UNIVAC OS/3 6-42 
1974 AMERICAN NATIONAL STANDARD COBOL 

Format 5: 

DIVIDE ~identifier-it~ ~identifier-2l GIVING identifier-3 [ROUNDED] 
lliteral-1 f liiteral-2 f 

REMAINDER identifier-4 [:ON Bl.I ERROR imperative-statement] 

Rules: 

1 . Each identifier must refer to an elementary numeric item. except that any identifier associated with the 
GIVING or REMAINDER phrase must refer to either an elementary numeric item or an elementary 

numeric edited item. 

2. Each literal must be a numeric literal. 

3. The composite of operands. which is the hypothetical data item resulting from the superimposition of all 

receiving data items (except the REMAINDER data item or any:!!_~t~1~-~o~Tiitems) of a given statement 
aligned on their decimal points. must not contain more than 18 digits. 

4. For a description of these functions. see 6.5.1. ROUNDED phrase; 6.5.2, SIZE ERROR phrase; 6.5.4, 

arithmetic statements; 6.5.5. overlapping operands; and 6.5.6. multiple results in arithmetic statements. 
See also rules 8 through 10 for a discussion of the ROUNDED phrase and the SIZE ERROR phrase as they 
pertain to formats 4 and 5. 

5. When format 1 is used, the value of identifier-1 or literal-1 is divided into the value of identifier-2. The 
value of the dividend (identifier-2) is replaced by this quotient;lsimilarly for identifier-1 or literal-1 and 

I identifier-3. etc. I 

6. When format 2 is used. the value of identifier-1 or literal-1 is divided into identifier-2 or literal-2 and the 

result is stored in identifier-3.I identifier-4. etc. I 

7. When format 3 is used. the value of identifier-1 or literal-1 is divided by the value of identifier-2 or literal-

2 and the result is stored in identifier-3. lidentifier-4. etc. I 
8. Formats 4 and 5 are used when a remainder from the division operation is desired, namely identifier-4. 

The remainder in COBOL is defined as the resu It of subtracting the product of the quotient (identifier-3) 
and the divisor from the dividend. If identifier-3 is defined as a numeric edited item. the quotient used to 

calculate the remainder is an intermediate field which contains the unedited quotient. If ROUNDED is 
used. the quotient used to calculate the remainder is an intermediate field which contains the quotient of 
the DIVIDE statement. truncated rather than rounded. When the REMAINDER phrase is specified. none 

of the operands may be floating-point. 

9. In formats 4 and 5, the accuracy of the REMAINDER data item (identifier-4) is defined by the calculation 
described in rule 8. Appropriate decimal alignment and truncation (not rounding) will be performed for 
the content of the data item referenced by identifier-4. as needed. 

10. When the ON SIZE ERROR phrase is used in formats 4 and 5. the following rules pertain: 

a. If the size error occurs on the quotient. no remainder calculation is meaningful. Thus. the contents 
of the data items referenced by both identifier-3 and identifier-4 will remain unchanged. 

b. If the size error occurs on the remainder. the contents of the data item referenced by identifier-4 
remains unchanged. However. as with other instances of multiple results of arithmetic 
statements. the user will have to determine which situation has actually occurred. 

• 

• 

• 



• 

• 

• 

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 6-43 
1974 AMERICAN NATIONAL STANDARD COBOL 

6.6.13. ENABLE Statement 

Function: 

The ENABLE statement notifies the message control system (MCS) to allow data transfer between specified 
output queues and destinations for output or between specified sources and input queues for input. 

Format: 

ENABLE ~INPUT [TffRMINALJlt cd-name WITH KEY 
)OUTPUT I 

~identifier-q 

)literal-1 I 

Rules: 

1. Cd-name must reference an input CD when the INPUT phrase is specified. 

2. Cd-name must reference an output CD when the OUTPUT phrase is specified. 

3. Literal-1 or the data item referenced by identifier-1 must be defined as alphanumeric. and its length 
must not exceed 10 characters. 

4. The ENABLE statement provides a logical connection between the MCS and the specified sources or 
destinations. When this logical connection is already in existence. or is to be handled by some other 
means external to this program, the ENABLE statement is not required in this program. The logical path 

for the transfer of data between the COBOL programs and the MCS is not affected by the ENABLE 
statement. 

5. When the INPUT phrase with the optional word TERMINAL is specified, the logical path between the 
source and all associated queues and subqueues which are already enabled is activated. Only the 
contents of the data item referenced by data-name-7 (SYMBOLIC SOURCE) of the area referenced by cd
name are meaningful to the MCS. 

6. When the INPUT phraselwithout the optional word TERMINALjis specified, the logical paths for all of the 
sources associated with the queue and subqueues specified by the contents of data-name-1 (SYMBOLIC 
QUEUE) through data-name-4 (SYMBOLIC SUB-QUEUE-3) of the area referenced by cd-name are 
activated. 

7. When the OUTPUT phrase is specified, the logical path for destination.I or the logical paths for all 
I destinations.I specified by the contents of the data item referenced by data-name-5 (SYMBOLIC 

DESTINATION) of the area referenced by cd-name are activated. 

8. Literal-1 or the contents of the data item referenced by identifier-1 are matched with a password built 

into the system. The ENABLE statement is honored only if litera 1-1 or the contents and the size of the data 

item referenced by identifier-1 match the system password. When literal-1 or the contents and the size 
of the data item referenced by identifier-1 do not match the system password, the value of the STATUS 
KEY item in the area referenced by cd-name is updated. 

The length of a password ranges from 1 to 10 characters inclusive . 



UP-8613 Rev. 2 SPERRY UNIVAC OS/3 6-44 
1974 AMERICAN NATIONAL STANDARD COBOL 

G----------------------------------~ 
6.6.14. EXHIBIT Statement 1 

Function: 

The EXHIBIT statement displays the current values of data items at selected points in the program. 

Format: 

EXHIBIT 

~
NAMED ~ ~identifier i 

lnonnumeric- I iteralf CHANGED NAMED 
CHANGED 

Rules: 

1 . An identifier length may not exceed 256 character positions. 

2. An identifier may not be an index-data-item. 

3. An EXHIBIT statement may appear anywhere in the procedure division or in a debugging packet. 

4. Variable-length identifiers are not permitted with the CHANGED or CHANGED NAMED options. 

5. The NAMED option displays the names of the identifiers specified with their current values and any 
nonnumeric literals specified. 

6. 

7. 

8. 

9. 

The CHANGED NAMED option displays the names of the identifiers specified with their current value 
only if the value has changed since the EXHIBIT statement was last encountered. Any nonnumeric 
literals are displayed on every encounter. 

The CHANGED option displays the value of the identifier specified, but only if the value has changed 
since the EXHIBIT statement was last encountered. Any nonnumeric literals are displayed on every 
encounter. 

The first time an EXHIBIT statement is executed, all identifier values are considered changed. 

Values of identifiers are displayed on SYSLST (4.3.3). 

I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 

10. If two EXHIBIT statements each specify either the CHANGED or CHANGED NAMED option and the I 
same identifier, the change in value of the identifier is associated independently with each of the two I 

L __ _:tatements. __________________________ J 

6.6.15. EXIT Statement 

Function: 

The EXIT statement provides a common end point for a series of procedures or marks the logical end of a 
called program. 

Format: 

EXIT [PROGRAM] 

• 

• 

• 



• 

• 

• 

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 6-45 
1974 AMERICAN NATIONAL STANDARD COBOL 

Rules: 

1. The EXIT statement must appear in a sentence by itself. It must be preceded by a paragraph-name 

and be the only sentence in the paragraph. 

2. An EXIT statement without the optional word PROGRAM serves only to enable the user to assign a 
procedure-name to a given point in a program. It has no other effect on the compilation or execution 

of the program. 

3. An execution of an EXIT PROGRAM statement in a called program causes control to be passed to the 

calling program. An EXIT PROGRAM statement in a program that is not called is executed like an 
EXIT statement without the PROGRAM phrase. 

6.6.16. GO TO Statement 

Function: 

The GO TO statement causes control to be transferred from one part of the procedure division to another. 

r-----------------------------~ 
1 A format 3 GO TO statement is used as a special exit from a USE LABEL procedure., 
'-----------------------------...J 

Format 1: 

GO TO [)procedure-name-1 [I] 

Format 2: 

GO TO procedure-name-1 [ ,procedure-name-2) 
DEPENDING ON identifier 

r;:- ---- - - -----, 

1 
Format 3: 

1 

I I 
I GO TO MORE-LABELS I 
L __ - __ ----- :_j 

Rules: 

. procedure-name-n 

1. Identifier is the name of a numeric elementary item described without any positions to the right of 
the assumed decimal point. 

2. A paragraph that is referenced by an ALTER statement must consist of only a paragraph header 
followed by a format 1 GO TO statement. 

3. A format 1 GO TO statement without procedure-name-1 must be the only statement in the 
paragraph. 

4. If a GO TO statement represented by format 1 appears in a consecutive sequence of imperative 
statements within a sentence, it must appear as the last statement in that sequence. 

5. When a GO TO statement represented by format 1 is executed, control is transferred to procedure
name-1 or to another procedure-name if the GO TO statement has been modified by an ALTER 
statement. 



UP 8613 Rev 2 SPERRY UNIVAC OS/3 6-46 

6. 

1974 AMERICAN NATIONAL STANDARD COBOL 

If procedure-name-1 is not specified in format 1. an ALTER statement referring to this GO TO 
statement must be executed prior to the execution of this GO TO statement. 

7. When a GO TO statement represented by format 2 is executed. control is transferred to procedure
name-1. procedure-name-2. etc., depending on the value of the identifier being 1. 2, .... n. If the value 
of the identifier is anything other than the positive or unsigned integers 1, 2 ..... n. then no transfer 
occurs and control passes to the next statement in the normal sequence for execution. 

·-----------------------------------, 
8. A format 3 GO TO statement can appear only within a USE LABEL procedure. I 

I 
9. When an input tape file is being processed. a format 3 GO TO statement is a request to the I 

input/output control system to make the next standard use label record available and return control I 
to the beginning of the same USE LABEL procedure for further checking of labels. The USE LABEL I 
procedure is reentered only if there is another standard use label to be processed. Hence. there need I 
not be a program path that flows through the last statement in the USE LABEL procedure. I 

I 
10. When an output tape file is being processed. a format 3 GO TO statement requests the input/output I 

control system to write the standard use label and return control to the beginning of the same USE I 
LABEL procedure for further label creation. After the last standard use label is created, a program I 

L 
path must be provided that flows through the last statement of the USE LABEL procedure. I ___________________________________ J 

6.6.17. IF Statement 

Function: 

The IF statement causes a condition to be evaluated.(See 6.4.) The subsequent action of the object program 
depends on whether the value of the condition is true or false. 

Format: 

Rules: 

ptatement-1 
1NEXT SENTENCE 

~:I..!..l! statement-2 
/:ELSE NEXT SENTENCE 

1. Statement-1 and s~atement-2 represent either an imperative statement or a conditional statement. 
and either may be followed by a conditional statement. 

2. The ELSE NEXT SENTENCE phrase may be omitted if it immediately precedes the terminal period of 
the sentence. 

3. When an IF statement is executed. the following transfers of control occur: 

a. If the condition is true, statement-1 is executed if specified. If statement-1 contains a procedure 
branching lor conditional! statement. control is explicitly transferred in accordance with the rules 
of that statement. If statement- 1 does not contain a procedure branching lor conditional 
statement, the ELSE phrase. if specified, is ignored and control passes to the next executable 
sentence. 

b. If the condition is true and the NEXT SENTENCE phrase is specified instead of statement- 1. the 
ELSE phrase. if specified, is ignored and control passes to the next executable sentence. 

• 

• 

• 



• 

• 

• 

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 6-47 
1974 AMERICAN NATIONAL STANDARD COBOL 

c. If the condition is false, statement-1 or its surrogate NEXT SENTENCE is ignored, and 
statement-2, if specified, is executed. If statement-2 contains a procedure branching@D 

[conditional I statement, control is explicitly transferred in accordance with the rules of that 
statement. If statement-2 does not contain a procedure branching orlconditionaljstatement 
control passes to the next executable sentence. If the ELSE statement-2 phrase is not specified, 
statement-1 is ignored and control passes to the next executable sentence. 

d. If the condition is false, and the ELSE NEXT SENTENCE phrase is specified, statement-1 is 
ignored, if specified, and control passes to the next executable sentence. 

4. IF statement-1 or statement-2 contains an IF statement the IF statement is said to be nested. 

5. IF statements within IF statements may be considered as paired IF and ELSE combinations. 
proceeding from left to right. Thus, any ELSE encountered is considered to apply to the immediately 
preceding IF that has not been already paired with an ELSE. 

6.6.18. INSPECT Statement 

Function: 

The INSPECT statement provides the capability to tally (format 1 ), replace (format 2). or tally and replace 
(format 3) occurrences of single characters I or groups of characters! in a data item. 

Format 1: 

INSPECT ident if ier-1 TALLYING 

.identifier-2 ill 

Format 2: 

·1JALL lJidentifier-3} 
\LEADING f\ I 1teral -1 

CHARACTERS 

[{ 
B EF 0 RE} I NI T I AL Ji dent i I i e r - 4 }n 
AFTER \literal-2 Ll 

INSPECT identif ier-1 REPLACING 

CHARACTERS BY {identifier-6}[{BEFORE} 
literal-4 !.fill 

INITIAL {identifier-7}] 
I i t e r a I · 5 

· 1lli l . { i d e n t i I i e r - 5 } !! J i d e n t i I i e r - 6 } 
LEADING literal-3 \literal-4 

FIRST 

[{
BEFORE}INITIAL {identifier-7}1 
AFTER I iteral-5 Ll 



UP-8613 Rev. 2 SPERRY UNIVAC OS/3 6-48 
1974 AMERICAN NATIONAL STANDARD COBOL 

Format 3: 

INSPECT identif ier-1 TALLYING 

,identifier-2 !..Q1! 
. {{ : ~ ~ D I N G } { : ~ ~ : : ~ : '. ~ r - J } } 

CHARACTERS 

D 

[{ 
B EF 0 RE} I N I T I AL { i dent i f i er - 4 }] 
AFTER I iteral-2 

REPLACING 

CHARACTERS!! {identifier-6}[{BEFORE}INITIAL{identifier-7}] 
literal-4 AFTER literal-5 

, IA LL } 
LEADING 

FIRST 

.{id en t i f i er - 5} !! {id en t i f i er - 6} 
literal-3 literal-4 

D 

[{ 
B EF 0 RE} I. N I T I AL { i d en t i f i e r · 7 

}] 

AFTER literal-5 

Rules: 

1 . ldentifier-1 must refer to either a group item or any category of elementary item described either 
implicitly or explicitly as USAGE IS DISPLAY. 

2. ldentifier-3 ... identifier-n must refer to either an elementary alphabetic, alphanumeric, or numeric 
item described either implicitly or explicitly as USAGE IS DISPLAY. 

3. Each literal must be nonnumeric and may be any figurative constant except ALL. 

4. Literal-1, literal-2, literal-3, literal-4 and literal-5, and the data items referenced by identifier-3, 
identifier-4, identifier-5, identifier-6, and identifier-7 must be one character in len th in Level 1. 
Except as specifically noted in the rules, this restriction on length does not apply to Level 2. 

5. ldentifier-2 must refer to an elementary numeric data item (formats 1 and 3). 

6. If either literal-1 or literal-2 is a figurative constant, the figurative constant refers to an implicit 1-

character data item (formats 1 and 3). 

7. The size of the data referenced by literal-4 or identifier-6 must be equal to the size of the data 
referenced by literal-3 or identifier-5. When a figurative constant is used as literal-4, the size of the 
figurative constant is equal to the size of literal-3 or the size of the data item referenced by identifier-
5 (formats 2 and 3). 

8. When the CHARACTERS phrase is used; literal-4 literal-5, or the size of the data item referenced by 
identifier-6, identifier-7 must be one character in length (formats 2 and 3). 

9. When a figurative constant is used as literal-3, the data referenced by literal-4 or identifier-6 must be 
one character in length (formats 2 and 3). 

10. Inspection, which includes the comparison cycle, the establishment of boundaries for the BEFORE or 
AFTER phrase. and the mechanism for tallying or replacing, begins at the leftmost character position 
of the data item referenced by identifier-1. regardless of its class, and proceeds from left to right to 
the rightmost character position as described in rules 13 through 15. 

• 

• 

• 



• 

• 

• 

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 6-49 
1974 AMERICAN NATIONAL STANDARD COBOL 

11. For use in the INSPECT statement. the contents of the data item referenced by identifier-1. identifier-

3. identifier-4, identifier-5. identifier-6, or identifier-7 are treated as follows: 

a. If an identifier is described as alphanumeric edited. the INSPECT statement treats the contents 
of the identifier as a character-string. 

b. If an identifier is described as alphanumeric edited. numeric edited, or unsigned numeric. the 
data item is inspected as though it had been redefined as alphanumeric (refer back to rule a) 
and the INSPECT statement had been written to reference the redefined data item. 

c. If an identifier is described as signed numeric, the data item is inspected as though it had been 

moved to an unsigned numeric data item of the same length and rule b had been applied. (See 

6.6.20. MOVE statement.) 

12. In rules 13 through 20. all references to literal-1 literal-2, literal-3. literal-4. and literal-5 apply 
equally to the contents of the data item referenced by identifier-3. identifier-4. identifier-5, identifier-
6, and identifier-7. respectively. 

13. During inspection of the contents of the data item referenced by identifier-1. each properly matched 
occurrence of literal-1 is tallied (formats 1 and 3) and each properly matched occurrence of literal-3 
is replaced by literal-4 (formats 2 and 3). 

14. The comparison operation to determine the occurrences of literal-1 to be tallied or occurrences of 
literal-3 to be replaced occurs as follows: 

a . The operands of the TALLYING and REPLACING phrases are considered in the order they are 
specified in the INSPECT statement from left to right The first literal-1. literal-3 is compared to 

an equal number of contiguous charcters. starting with the leftmost character position in the 
data item referenced by identifier-1. Literal-1. literal-3, and that portion of the contents of the 

data item referenced by identifier- 1 match if. and only if, they are equal. character for 

character. 

b. If no match occurs in the comparison of the first literal-1, literal-3. the comparison is repeated 
with each successive literal-1, literal-3. if any, until either a match is found or there is no next 
successive literal- 1. literal-3. When there is no next successive literal-1, literal-3. the character 
position in the data item referenced by identifier-1 immediately to the right of the leftmost 
character position considered in the last comparison cycle is considered as the leftmost 
character position, and the comparison cycle begins again with the first literal-1, literal-3. 

c. Whenever a match occurs. tallying or replacing takes place as described in rules 17 through 19. 
The character position in the data item referenced by identifier-1 immediately to the right of the 
rightmost character position that participated in the match is now considered to be the leftmost 
character position of the data item referenced by identifier-1. and the comparison cycle starts 
again with the first literal-1. literal-3. 

d. The comparison operation continues until the rightmost charcter position of the data item 

referenced by identifier-1 has participated in a match or has been considered as the leftmost 

character position. When this occurs. inspection is terminated. 

e. If the CHARACTERS phrase is specified, an implied 1-character operand participates in the 
cycle described in rules 14a through 14d, except that no comparison to the contents of the data 
item referenced by identifier-1 takes place. This implied charcter is considered always to match 
the leftmost character of the contents of the data item referenced by identifier- 1 participating in 
the current comparison cycle. 



UP 8613 RPv 2 SPERRY UNIVAC OS/3 6-50 
1974 AMERICAN NATIONAL STANDARD COBOL 

15. The comparison operation defined in rule 14 is affected by the BEFORE AND AFTER phrases as 
follows: 

a. If the BEFORE and AFTER phrase is not specified. literal-1. literal-3 or the implied operand of 

the CHARACTERS phrase participates in the comparison operation as described in rule 14. 

b. If the BEFORE phrase is specified, the associated literal-1. literal-3, or the implied operand of 

the CHARACTERS phrase participates only in those comparison cycles that involve that portion 
of the contents of the data item referenced by identifier- 1 from its leftmost character position 

up to. but not including. the first occurrence of literal-2. literal-5 within the contents of the data 
item referenced by identifier- 1. The position of this first occurrence is determined before the 
first cycle of the comparison operation described in rule 14 is begun. If, on any comparison 
cycle. literal- 1. literal-3, or the implied operand of the CHARACTERS phrase is not eligible to 
participate. it is considered not to match the contents of the data item referenced by identifier-
1. If there is no occurrence of literal-1. literal-5 within the contents of the data item referenced 
by identifier- 1. its associated literal- 1. literal-3, or the implied operand of the CHARACTERS 

phrase participates in the comparison operation as though the BEFORE phrase had not been 
specified. 

c. If the AFTER phrase is specified. the associated literal-1. literal-3. or the implied operand of the 
CHARACTERS phrase may participate only in those comparison cycles that involve that portion 
of the contents of the data item referenced by identifier- 1 from the character position 
immediately to the right of the rightmost character position of the first occurrence of literal-2. 
literal-5 within the contents of the data item referenced by identifier- 1 and the rightmost 

character position of the data item referenced by identifier- 1. The position of the first 

occurrence is determined before the first cycle of the comparison operation described in rule 14 

is begun. If, on any comparison cycle, literal- 1. literal-3 or the implied operand of the 
CHARACTERS phrase is not eligible to participate. it is considered not to match the contents of 
the data item referenced by identifier- 1. If there is no occurrence of literal-2. literal-5 within the 

contents of the data item referenced by identifier- 1. its associated literal- 1. literal-3. or the 
implied operand of the CHARACTERS phrase is never eligible to participate in the comparison 
operation. 

NOTE: 

Rules 16 and 17 pertain to format 1 only. 

16. The contents of the data item referenced by identifier-2 is not initialized by the execution of the 
INSPECT statement. 

1 7. The rules for tallying are as follows: 

a. If the ALL phrase is specified. the contents of the data item referenced by identifier-2 is 

incremented by 1 for each occurrence of literal- 1 matched within the contents of the data item 
referenced by identifier- 1. 

b. If the LEADING phrase is specified, the contents of the data item referenced by identifier-2 is 
incremented by 1 for each contiguous occurrence of literal- 1 matched within the contents of 
the data item referenced by identifier- 1. provided that the leftmost such occurrence is at the 
point where comparison began in the first comparison cycle in which literal- 1 was eligible to 
participate. 

c. If the CHARACTERS phrase is specified. the contents of the data item referenced by identifier-2 
is incremented by 1 for each character matched (rule 14e) within the contents of the data item 
referenced by identifier- 1. 

• 

• 

• 



• 

• 

• 

UP-8613 Rev 2 SPERRY UNIVAC OS/3 6-51 
1974 AMERICAN NATIONAL STANDARD COBOL 

NOTE: 

Rules 18 and 19 pertain to format 2 only. 

18. The required words ALL. LEADING, and FIRST are adjectiveslthat apply to each succeeding BY phrase I 
I until the next adjective appears. I 

19. The rules for replacement are as follows: 

a. When the CHARACTERS phrase is specified, each character matched (rule 14e) in the contents 
of the data item referenced by identifier-1 is replaced by literal-4. 

b. When the adjective ALL is specified, each occurrence of literal-3 matched in the contents of the 
data item referenced by identifier-1 is replaced by literal-4. 

c. When the adjective LEADING is specified, each contiguous occurrence of literal-3 matched in 
the contents of the data item referenced by identifier-1 is replaced by literal-4, provided that the 
leftmost occurrence is at the point where comparison began in the first comparison cycle in 
which literal-3 was eligible to participate. 

d. When the adjective FIRST is specified, the leftmost occurrence of literal-3 matched within the 
contents of the data item referenced by identifier-1 is replaced by literal-4. 

NOTE: 

Rule 20 pertains to format 3 only . 

20. A format 3 INSPECT statement is interpreted and executed as though two successive INSPECT 
statements specifying the same identifier-1 had been written with one statement being a format 1 
statement with TALLYING phrases identical to those specified in the format 3 statement. and the 
other statement being a format 2 statement with REPLACING phrases identical to those specified in 
the format 3 statement. The rules given for matching and counting apply to the format 1 statement 
and the rules given for matching and replacing apply to the format 2 statement. 

Example 1: 

INSPECT word TALLYING count for LEADING "L" BEFORE INITIAL "A", count-1 FOR LEADING "A" 
BEFORE INITIAL "L". 

where: 

word = LARGE. count = 1. count-1 = 0. 
word = ANALYST. count = 0. count- 1 = 1 . 



UP-8613 Rev 2 SPERRY UNIVAC OS/3 6-52 
1974 AMERICAN NATIONAL STANDARD COBOL 

Example 2: 

INSPECT word TALLYING count FOR ALL "L", REPLACING LEADING "A" BY "E" AFTER INITIAL "L". 

where: 

word = CALLAR, count = 2, word = CALLAR. 
word= SALAMI, count= 1, word= SALEMI. 
word = LA TIER. count = 1 , word = LEITER. 

Example 3: 

INSPECT word REPLACING ALL "A" BY "G" BEFORE INITIAL "X". 

where: 

word = ARXAX, word = GRXAX. 
word = HANDAX, word HGNDGX. 

Example 4: 

INSPECT word TALLYING count FOR CHARACTERS AFTER INITIAL "J" REPLACING ALL "A" BY "B". 

where: 

word = ADJECTIVE, count = 6, word = BDJECTIVE. 
word = JACK, count = 3, word = JBCK 
word = JUJMAB, count = 5, word = JUJMBB. 

Example 5: 

INSPECT word REPLACING ALL "X" BY "Y", "B" BY "Z", "W" BY "Q" AFTER INITIAL "R". 

where: 

word= RXXBQWY, word= RYYZQQY. 
word= YZACDWBR. word= YZACDWZR. 
word = RAWRXEB, word = RAQRYEZ. 

Example 6: 

INSPECT word REPLACING CHARACTERS BY "B" BEFORE INITIAL "A". 

where: 

word before: 
word after: 

12 XZABCD 
BBBBBABCD 

• 

• 

• 



• 

• 

• 

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 6-53 
197 4 AMERICAN NATIONAL ST ANDA RD COBOL 

6.6.19. MERGE Statement 

Function: 

The MERGE statement combines two or more identically sequenced files on a set of specified keys and. 
during the process. makes records available, in merge order, to an output procedure or to an output file. 

Format: 

MERGE file-name-1 ON ~ASCENDING l KEY data-name-1 [.data-name-2] .. 
/DESCENDING 5 

ON ~ASCENDING l KEY data-name-3 [,data-name-4) ... 
/DESCENDING5 

[COLLATING SEQUENCE IS alphabet-name) 

USING file-name-2, file-name-3[.file-name-4). 

{

OUTPUT PR 0 CED URE I S sec t i on - name - 1 [~~UGH ~ sec t i on - name - 2] l 
GIVING file-name-5 ~ 

Rules: 

1. File-name- 1 must be described in a sort/merge file description entry in the data division. 

2 . 

3. 

Section-name- 1 represents the name of an output procedure. 

File-name-2. file-name-3, file-name-4, and file-name-5 must be defined implicitly or explicitly as 
having sequential organization in the FILE-CONTROL paragraph and must be described in a file 
description entry, not in a sort/merge file description entry in the data division. The actual size of the 

logical records described for file-name-2. file-name-3, file-name-4. and file-name-5 must be equal to 

the actual size of the logical record described for file-name- 1. If the data descriptions of the 

elementary items that make up these records are not identical. it is the programmer's responsibility 
to describe the corresponding records in such a manner so as to cause an equal number of character 
positions to be allocated for the corresponding records. 

4. The words THRU and THROUGH are equivalent. 

5. Data-name- 1, data-name-2, data-name-3, and data-name-4 are KEY data-names and are subject to 
the following rules: 

• The data items identified by KEY data-names must be described in records associated with file

name-1. 

• KEY data-names may be qualified. 

• The data items identified by KEY data-names must not be variable-length items. 

• If file-name- 1 has more than one record description, the data items identified by KEY data
names need be described in only one of the record descriptions. 

• None of the data items identified by KEY data-names can be described by an entry that either 
contains an OCCURS clause or is subordinate to an entry containing an OCCURS clause. 



UP-8613 Rev. 2 SPERRY UNIVAC OS/3 6-54 
1974 AMERICAN NATIONAL STANDARD COBOL 

6. No more than one file-name from a multiple file reel can appear in the MERGE statement. 

7. File-names must not be repeated within the MERGE statement. The file-names specified in the 
USING phrase must not exceed 15. 

8. Merge statements may appear anywhere except in the declaratives portion of the procedure division 
or in an input or output procedure associated with a SORT or MERGE statement. 

9. The MERGE statement will merge all records cont~ined on file-name-2, file-name-3, and file-name-
4. The files referenced in the MERGE statement must not be open at the time the MERGE statement 
is executed. These files are automatically opened and closed by the merge operation with all implicit 
functions performed, such as the execution of any associated USE procedures. The terminating 
function for all files is performed as if a CLOSE statement without optional phrases had been 
executed for each file. 

10. The data-names following the word KEY are listed from left to right in the MERGE statement in order 
of decreasing significance disregarding how they are divided into KEY phrases. In the format, data
name-1 is the major key, data-name-2 is the next most significant key, etc. 

• When the ASCENDING phrase is specified, the merged sequence will be from the lowest value 
of the contents of the data items identified by the KEY data names to the highest value, 
according to the rules for comparison of operands in a relation condition. 

• When the DESCENDING phrase is specified, the merged sequence will be from the lowest 
value of the contents of the data items identified by the KEY data-names to the highest value, 
according to the rules for comparison of operands in a relation condition. 

11. The collating sequence that applies to the comparison of the nonnumeric key data items specified is 
determined in the following order of precedence: 

• First, the collating sequence established by the COLLATING SEQUENCE phrase, if specified, in 
that MERGE statement. 

• Second, the collating sequence established as the program collating sequence. 

12. The output procedure must consist of one or more sections that appear contiguously in a source 
program and do not form a part of any other procedure. In order to make merged records available for 
processing, the output procedure must include the execution of at least one RETURN state"lent. 
Control must not be passed to the output procedure except when a related SORT or MERGE 
statement is being executed. The output procedure may consist of any procedures needed to select, 
modify, or copy the records that are being returned one at a time in merged order from file-name-1. 
The rules for procedural statements within the output procedure are as follows: 

• The output procedure must not contain any transfers of control to points outside the output 
procedure; ALTER, GO TO, and PERFORM statements in the output procedure are not permitted 
to refer to procedure-names outside the output procedure. COBOL statements are allowed that 
will cause an implied transfer of control to declaratives. 

• The output procedures must not contain any SORT, !MERGE, lor CALL statements. 

• The remainder of the procedure division must not contain any transfers of control to points 
inside the output procedures; ALTER, GO TO, and PERFORM statements in the remainder of 
the procedure division are not permitted to refer to procedure-names within the output 
procedures. 

• 

• 

• 



• 

• 

• 

UP-8613 Rev. 2 SPERRY UNIV AC OS/3 6-55 
1974 AMERICAN NATIONAL STANDARD COBOL 

13. If an output procedure is specified, control passes to it during execution of the MERGE statement. 
The compiler inserts a return mechanism at the end of the last section in the output procedure. 
When control passes the last statement in the output procedure, the return mechanism provides for 
termination of the merge and then passes control to the next executable statement after the MERGE 
statement. Before entering the output procedure, the merge procedure reaches a point at which it 
can select the next record in merged order when requested. The RETURN statements in the output 
procedure are the requests for the next record. 

14. Segmentation (Section 11) can be applied to programs containing the MERGE statement under the 
following conditions: 

• If the MERGE statement appears in a ·section that is not in an independent segment. the output 
procedure referenced by that MERGE statement must appear: 

a. totally within nonindependent segments; or 

b. wholly contained in a single independent segment. 

• If a MERGE statement appears in an independent segment, then any output procedure 
referenced by that MERGE statement must be contained: 

a. totally within nonindependent segments; or 

b. wholly within the same independent segment as the MERGE statement . 

15. If the GIVING phrase is specified, all the merged records in file-name-1 are automatically written on 
file-name-5 as the implied output procedure for this MERGE statement. 

16. In the case of an equal compare (according to the rules for comparison of operands in a relation 
condition) on the contents of the data items identified by all the KEY data-names between records 
from two or more input files (file-name-2, file-name-3, file-name-4, ... ), the records are written on 
file-name-5 or returned to the output procedure, depending on the phrase specified, in the order that 
the associated input files are specified in the MERGE statement. 

17. The results of the merge operation are predictable only when the records in the files referenced by 
file-name-2, file-name-3, ... are ordered as described in the ASCENDING or DESCENDING KEY 
clause associated with the MERGE statement. 

18. The mode specified in the implementor-name of the ASSIGN clause for file-name-2, file-name-3, 
file-name-4, or file~name-5 must be the same as the mode specified for file-name-1 . 



UP-8613 Rev. 2 SPERRY UNIVAC OS/3 6-56 
1974 AMERICAN NATIONAL STANDARD COBOL 

6.6.20. MOVE Statement 

Function: 

The MOVE statement transfers data to one or more data areas in accordance with the rules of editing. 

Format 1: 

MOVE ~ i den t i f i e r - 1 l T 0 i den t i f i e r - 2 [ . i den t i f i e r - 3 ] ... 
lliteral ) 

Format 2: 

MOVE ~CORRESPONDINGt identifier-I TO identifier-2 
lCORR ) 

Rules: 

1. ldentifier-1 and literal represent the sending area; identifier-2, identifier-3, ... represent the receiving 
area. 

2. CORR is an abbreviation for CORRESPONDING. 

3. When the CORRESPONDING phrase is used, both identifiers must be group items. 

4. An index data item cannot appear as an operand of a MOVE statement. (See 5.3.3.5, USAGE clause.) 

5. If the CORRESPONDING phrase is used, selected items within identifier-1 are moved to selected 
items within identifier-2, according to the rules given in 6.5.3. The results are the same as if the user 
had referred to each pair of corresponding identifiers in separate MOVE statements. 

6. The data designated by the literal or identifier-1 is moved first to identifier-2, then to identifier-3, .... 
The rules referring to identifier-2 also apply to the other receiving area. 

7. Any MOVE operation in which the sending and receiving items are both elementary items is an 
elementary move. Every elementary item belongs to one of the following categories: numeric, 
alphabetic, alphanumeric, numeric edited, or alphanumeric edited (5.3.3.4). Numeric literals belong 
to the category numeric, and nonnumeric literals belong to the category alphanumeric. The figurative 
constant ZERO belongs to the category numeric. The figurative constant SPACE belongs to the 
category alphabetic. All other figurative constants belong to the category alphanumeric. 

The following rules apply to an elementary move between these categories: 

a. The figurative constant SPACE, a numeric edited, alphanumeric edited, or alphabetic data item 
must not be moved to a numeric or numeric edited data item. 

b. A numeric literal, the figurative constant ZERO, a numeric data item or a numeric edited data 
item must not be moved to an alphabetic data item. 

c. A noninteger numeric literal or a noninteger numeric data item must not be moved to an 
alphanumeric or alphanumeric edited data item. 

d. All other elementary moves are legal and are performed according to rule 8. 

• 

• 

• 



• 

• 

• 

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 6-57 

8. 

1974 AMERICAN NATIONAL STANDARD COBOL 

Any necessary conversion of data from one form of internal representation to another takes place 
during legal elementary moves, along with any editing specified for the receiving data item: 

a. When an alphanumeric edited or alphanumeric item is a receiving item, alignment and any 
necessary space filling takes place as defined in 2.5. If the size of the sending item is greater 
than the size of the receiving item, the excess characters are truncated on the right after the 
receiving item is filled. If the sending item is described as being signed numeric, the operational 
sign will not be moved; if the operational sign occupied a separate character position (5_.3.3.6), 
that character will not be moved and the size of the sending item will be considered to be one 
less than its actual size (in terms of standard data format characters). 

b. When a numeric or numeric edited item is the receiving item, alignment by decimal point and 
any necessary zero-filling takes place as defined in 2.5, except where zeroes are replaced 
because of editing requirements. 

c. 

• When a signed numeric item is the receiving item, the sign of the sending item is placed 
in the receiving item (5.3.3.6). The representation of the sign is converted as necessary. If 
the sending item is unsigned, a positive sign is generated for the receiving item. 

• When an unsigned numeric item is the receiving item, the absolute value of the sending 
item is moved and no operational sign is generated for the receiving item. 

• When a data item described as alphanumeric is the sending item, data is moved as if the 
sending item were described as an unsigned numeric integer. 

When a receiving field is described as alphabetic, justification and any necessary space-filling 
takes place (2.5). If the size of the sending item is greater than the size of the receiving item, 
the excess characters are truncated on the right. 

9. Any move that is not an elementary move is treated as an alphanumeric to alphanumeric elementary 
move, except that there is no conversion of data from one form of internal representation to another. 
In such a move, the receiving area will be filled without consideration for the individual elementary or 
group items contained within either the sending or receiving area, except as noted in rule 15 of the 
OCCURS clause (5.3.3.7). 

10. Table 6-6 summarizes the validity of the various types of MOVE statements. The notes indicate the 
rules that prohibit the move or describe the behavior of a legal move . 



UP 8613 R!~V 2 SPERRY UNIVAC OS/3 6-58 
1974 AMERICAN NATIONAL STANDARD COBOL 

Table 6-6. Permissible MOVE Statement Data Transfers • 
Receiving Field 

Source Field 
GR AL AN ED Bl NE ANE ID EF IF 

Group (GR) y y y .fD lfJ ID /D ID /D ID 
Alphabetic (AU y y y N N N y N N N 

Alphanumeric (AN) y y y y® ~ -,@ y -,@ -,@ -,@ 

External decimal (ED) ID N fl> y y y fl> y y y 

Binary (Bl) ID N fl> y y y ,p; y y y 

Numeric edited (NE) y N y N N N y N N N 

Alphanumeric 
edited (ANE) y y y N N N y N N N 

ZEROS (numeric or 
-PJ /j) /j) /j) /j) ,µ; alphanumeric) y N y y 

SPACES (AN) y y y N N N y N N N 

ALL "character" y y y -r® -,® -,® y -r® N N 

Numeric literal ID N /lJ y y y /!J y y y 

Nonnumeric literal y y y .,® .y® /ID y /ID N N • Internal decimal (ID) JD N jlJ y y y fl> y y y 

External 
/D floating-point ( EF) N N y y y N y y y 

Internal 
JD floating-point (IF) N N y y y N y y y 

Floating-point 
lfJ literal N N y y y N y y y 

LEGEND: 

Y - Denotes valid move 
N - Denotes invalid move 

NOTES: 

<D Move without conversion (like AN to AN) 
12) Only if the decimal point is at the right of the least significant digit 
@ Numeric move 
@ The alphanumeric field is treated as an ED (integer) field 
® The literal must consist only of numeric characters 

• 



• 

• 

• 

UP8613 Rev. 2 SPERRY UNIVAC OS/3 6-59 
1974 AMERICAN NATIONAL STANDARD COBOL 

6.6.21. MULTIPLY Statement 

Function: 

The MULTIPLY statement causes numeric data items to be multiplied and sets the values of data items 

equal to the results. 

Format 1: 

MULTIPLY ~identifier-lt !!, identifier-2 [ROUNDED] 
11iteral-l I 

l[.identifier-3 [ROUNDED]] ... ,[:ON till ERROR imperative-statement] 

Format 2: 

MU LT I PLY jidentifier-lt !! ~identifier-2t GIVING identifier-3 [ROUNDED) 
11iteral-l I 11iteral-2 5 

l[.identifier-4 [ROUNDED]] ... ,[:ON till ERROR imperative-statement) 

Rules: 

1. Each identifier must refer to a numeric elementary item. except that in format 2 each identifier 
following the word GIVING must refer to either an elementary numeric item or an elementary 
numeric edited item . 

2. Each literal must be a numeric literal. 

3. The composite of operands, which is that hypothetical data item resulting from the superimposition 
of all fixed-point receiving data items of a given statement aligned on their decimal points, must not 
contain more than 18 digits. 

4. See 6.5.1, ROUNDED phrase; 6.5.2, SIZE ERROR phrase; 6.5.4, arithmetic statements; 6.5.5, 
overlapping operands; land 6.5.6, multiple results in arithmetic statements. I 

5. When format 1 is used, the value of identifier-1 or literal-1 is multiplied by the value of identifier-2. 
The value of the multiplier (identifier-2) is replaced by this product;jsimilarly for identifier-1 or literal-

11 and identifier-3, etc. I 
6. When format 2 is used, the value of identifier-1 or literal-1 is muiltiplied by identifier-2 or literal-2 

and the result is stored in identifier-3, I identifier-4, etc. I 



UP-8613 Rev. 2 SPERRY UNIVAC OS/3 
1974 AMERICAN NATIONAL STANDARD COBOL 

16.6.22-:-oNStatement - - - - - - - - -- - - ------- - --, 

I 
I Function: 

I 
I The ON statement is a conditional statement that specifies both the condition to be met and the statements 
I to be executed. 

I I Format: 

I 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 

ON integer-! [AND EVERY integer-2) [!!.!!..!....!_! integer-3) 

!statement-! l [ELSE !statement-2 l]. 
1NEXT SENTENCEf 1NEXT SENTENCEf 

Rules: 

1. lnteger-1, integer-2, and integer-3 are positive numeric literals. 

2. Statement-1 and statement-2 represent imperative statements. 

3. The ELSE NEXT SENTENCE phrase may be omitted if it immediately precedes the terminal period of 

the sentence. 

4. A counter is associated with each ON statement. Each time the path of control reaches the ON 
statement. the counter is advanced by one and the count condition is evaluated. Statement-1 is 
executed when the value of the counter is equal to integer-1 or integer-1 + (m * integer-2). but less 
than integer-3 (where m is any positive integer or zero). If the counter is not equal, statement-2 is 

5. 

6. 

7. 

executed. 

If the ELSE phrase is omitted, or ELSE NEXT SENTENCE is specified and the counter is unequal. 
statement-1 is ignored and control passes to the sequence following the ON statement. 

When integer-3 is not specified, no upper limit is assumed. 

When integer-2 is omitted, but integer-3 is specified, integer-2 is assumed to have the value 1. 

I 8. When integer-2 and integer-3 are both omitted, statement-1 is executed only once. L ____________________________ _ _J 

6.6.23. OPEN Statement 

Function: 

The OPEN statement initiates the processing of files. It also performs checking and writing of labe1s and 
other input/ output operations. 

Format 1 (Sequential and !SAM* lFiles): L- __ __J 

OPEN~INPUT file-name-1 

OUTPUT f i le-name-3 
1-0 file-name-5 

EXTEND f i le-name-7 

[
REVERSED ][·fi le-name-2 [REVERSED ]] ... 
WITH NO REWIND WITH NO REWIND 

[WITH NO REWIND] [.file-name-4 [WITH NO REWINDJ] ... 
[.file-name-6) .. . 

[.file-name-8) .. . 

*Applies only to 90/25, 90/30, 90/30 8, and 90/40 systems 

• 

• 

• 



• 

• 

• 

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 6-61 
Update F 1974 AMERICAN NATIONAL STANDARD COBOL 

Format 2 (Relative, Indexed, and~~'5~!Files): 

OPEN ~INPUT file-name-1 [,file-name-2] ... f 
OUTPUT f i le-name-3 [ ,f 1 le-name-4] .. . 
!...::_Q_ file-name-5 [,file-name-6] ... 

Rules: 

1. The OPEN statement must not reference a sort or merge file. 

2. The successful execution of an OPEN statement determines the availability of the file and results in 
the file being in an open mode. 

3. The successful execution of an OPEN statement makes the associated record area available to the 
program, but does not obtain or release the first data record. 

4. 

5. 

Upon successful execution of an OPEN statement with the OUTPUT phrase specified, a file is 
created. At that time, the associated file contains no data records. 

I For ISAM files, the OPEN OUTPUT statement indicates that the file is loaded or extended. The I 
I creation of a file (LOAD) is assumed unless the file already exists, in which case file extension is I 
I implied. I 

An OPEN statement must be successfully executed before execution of any of the permissible 
input/output statements . 

6. Table 6-7 indicates the permissible input/output statements for each OPEN mode for the various 
file organizations and access modes. 

7. If standard system label records are specified for the file, the beginning labels are processed as 
follows: 

a. When the INPUT phrase is specified, the execution of the OPEN statement causes the 
system labels to be checked in accordance with the system-specified conventions for input 
label checking. 

b. When the OUTPUT phrase is specified, the execution of the OPEN statement causes the system 
labels to be written in accordance with the system-specified conventions for output label 
writing. 

8. For files being opened with the INPUT or 1-0 phrase, the OPEN statement sets the current record 
pointer to the first record currently existing within the file. For indexed files, the prime record key is 
established as the key of reference and is used to determine the first record to be accessed. 

If no records exist in the file, the current record pointer is set so the next executed format 1 or format 
2 READ statement for the file will result in an AT END condition. 

9. When the 1-0 phrase is specified and the LABEL RECORDS STANDARD clause is present. the 
execution of the OPEN statement includes the following steps: 

a . The system labels are checked in accordance with the system-specified conventions for 
input/output label checking. 

b. The new system labels are written in accordance with the system-specified conventions for 
input/output label writing. 

t 



UP-8613 Rev. 2 SPERRY UNIVAC OS/3 
1974 AMERICAN NATIONAL STANDARD COBOL 

Table 6-7. Permissible Input/Output Statement for Each OPEN Mode 

File File Access 
OPEN Mode 

Organization Mode 
Statement 

INPUT OUTPUT 1-0 EXTEND 

Sequential Sequential READ x x 
and WRITE x x 

15.AMl 
i....:--l REWRITE x 

Relative, READ x x 
Indexed, WRITE x 
and Sequential REWRITE x 

11SAM1 START x x L ___ J 
DELETE X* 

READ x x 
WRITE X* x 

Random REWRITE x 
START 
DELETE X* 

READ x x 
WRITE x x 

Dynamic REWRITE x 
START x x 
DELETE X* 

NOTE: 

Rules 10 through 26 pertain to sequential and[~~~J files only. 

10. ThelREVERSEDlandjNO REWINDlphrases apply only to single REEL/UNIT tape files. 

11. The !-0 phrase can be used only for mass storage files. 

6-62 
Update F 

12. The EXTEND phrase can be used only for sequential files assigned to tape or mass storage devices, 
and for SAM files. 

13. The EXTEND phrase must not be specified for multiple file reels. (See the 1-0-control paragraph, 
4.4.2) 

14. The files referenced in the OPEN statement need not all have the same organization or access. 

15. Prior to the successful execution of an OPEN statement for a given file, no statement (except a SORT 
statement with the USING or GIVING phrase) can be executed that references the file, either 
explicitly or implicitly. 

16. A file may be opened with the INPUT, OUTPUT, I EXTEND, land 1-0 phrases in the same program. 
Following the initial execution of an OPEN statement for a file, each subsequent OPEN statement 
execution for that same file must be preceded by the execution of a CLOSE statement, without the 
REEL, UNIT, lor LOCKlphrase, for that file. 

• 

• 

• 



• 

• 

• 

UP-8613 Rev. 2 SPERRY UNIVAC 05/3 6-63 

1974 AMERICAN NATIONAL STANDARD COBOL 

17. When the EXTEND phrase is specified and the LABEL RECORDS clause indicates label records are 
present, the execution of the OPEN statement includes the following steps: 

a. The beginning file labels are processed only in the case of a single reel/unit file. 

b. The beginning reel/unit labels on the last existing reel/unit are processed as though the file 
was being opened with the INPUT phrase. 

c. The existing ending file labels are processed as though the file is being opened with the INPUT 
phrase. These labels are then deleted. 

d. Processing then proceeds as though the file had been opened with the OUTPUT phrase. 

18. The 1-0 phrase permits the opening of a mass storage file for both input and output operations. Since 
this phrase implies the existence of the file, it cannot be used if the mass storage file is being initially 
created. 

19. The files referenced in the OPEN statement need not all have the same organization or access. 

20. The file description entry for file-name-1.lfile-name-2.lfile-name-5.lfile-name-6. file-name-7, or file-
1 name-Bl must be equivalent to that used when this file was created. 

21. If an input file is designated with the OPTIONAL phrase in its SELECT clause. the object program 
causes an interrogation for the presence or absence of this file. If the file is not present, the first 
READ statement for this file causes the AT END condition to occur. (See the READ statement, 
6.6.25.) 

22. The REVERSED phrase will be ignored if it does not apply to the storage media on which the file 
resides. 

23. If the storage medium for the file permits reverse processing, the following rules apply: 

a. I When neither the REVERSED nor the EXTEND phrase is specified.I execution of the OPEN 
statement causes the file to be positioned at its beginning. 

b. When the REVERSED phrase is specified, the file is positioned at its end by execution of the 
OPEN statement. 

24. When the REVERSED phrase is specified. the subsequent READ statements for the file make the data 
records of the file available in reversed order; that is, starting with the last record. 

25. When the EXTEND phrase is specified. the OPEN statement positions the file immediately following 
the last logical record of that file. Subsequent WRITE statements referencing the file will add records 
to the file as though the file had been opened with the OUTPUT phrase . 



UP-8613 Rev. 2 SPERRY UNIVAC OS/3 6-64 
1974 AMERICAN NATIONAL STANDARD COBOL 

NOTE: 

Rules 26 through 30 pertain to relative, indexed, and~~AE files. 

26. The files referenced in the OPEN statement need not all have the same organization or access. 

27. Prior to the successful execution of an OPEN statement for a given file, no statement can be 
executed that references that file. either explicitly or implicitly. 

28. A file may be opened with the INPUT. OUTPUT. and 1-0 phrases in the same program. Following 

the initial execution of an OPEN statement for a file. each subsequent OPEN statement execution 
for that same file must be preceded by the execution of a CLOSE statement. without the LOCK 
phrase. for that file. 

29. The file description entry for file-name-1, file-name-2, file-name-5. or file-name-6 must be 
equivalent to that used when this file was created. 

30. The 1-0 phrase permits the opening of a file for both input and output operations. Since this phrase 
implies the existence of the file, it cannot be used if the file is being initially created. 

6.6.24. PERFORM Statement 

Function: 

The PERFORM statement is used to transfer control explicitly to one or more procedures and to return 

control implicitly when execution of the specified procedure is complete. 

Format 1: 

PERFORM procedure-name-I [ l THROUGH f p r o c e du re - name - 2] 
THRU 

Format 2: 

PERFORM procedure-name-I [lTHROUGHf procedure-name-2] lidentifier-If TI MES 
THRU integer-I 

Format 3: 

PERFORM procedure-name-I [l THROUGH f procedure - name - 2] UNTIL condition-I 
THRU 

*Applies only to 90125. 90130. 90130 B. and 90140 systems 

• 

• 

• 



• 

• 

• 

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 6-65 
1974 AMERICAN NATIONAL STANDARD COBOL 

Format 4: 

PERFORM procedure-name-1 [l ~UGHl procedure-name-2] 

VARYING jidentifier-2t FROM 1identifier-3~ 
1index-name-H index-name-2 

I i t e r a I - l 

!!_ jidentifier-q UNTIL condition-1 
11iteral-2 ~ 

AFTER jidentifier-5l FROM 1identifier-6~ 
1index-name-3~ index-name-4 

I i t e r a I - 3 

!!_ jidentifier-7t lli!l condition-2 
11iteral-4 ~ 

~
FTER ~:~~:!'.~~;:::~FROM ~:~~:!'.~~;:::i] 

/literal-5 \ 

BY j1dent1f 1er-10l UNTIL cond1t1on-3 
111teral-6 ~ 

Rules: 

1. Each identifier represents a numeric elementary item described in the data division. In format 2, 
identifier-1 must be described as a numeric integer . 

2. Each literal represents a numeric literal. 

3. The words THRU and THROUGH are equivalent. 

4. If an index-name is specified in the VARYING or AFTER phrase, then: 

• the identifier in the associated FROM and BY phrase must be an integer data item; 

• the literal in the associated FROM phrase must be a positive integer; and 

• the literal in the associated BY phrase must be a nonzero integer. 

5. If an index-name is specified in the FROM phrase, then: 

6. 

7. 

8 

• the indentifier in the associated VARYING or AFTER phrase must be an integer data item; 

• the identifier in the associated BY phrase must be an integer data item; and 

• the literal in the associated BY phrase must be an integer. 

Literal in the BY phrase must not be zero. 

Condition-1, condition-2. condition-3 may be any conditional expression, as described in 6.4. 

Where procedure-name-1 and procedure-name-2 are both specified and either is the name of a 
procedure in the declarative section of the program then both must be procedure-names in the same 

declarative section. 



UP 8613 RPv 2 SPERRY UNIVAC OS/3 6-66 
1974 AMERICAN NATIONAL STANDARD COBOL 

9. The data items referenced by identifier-4. identifier-7, and identifier- 10 must not have a zero value. 

10. If an index-name is specified in the VARYING or AFTER phrase. and an identifier is specified in the 
associated FROM phrase. then the data item referenced by the identifier must have a positive value. 

1 1. When the PERFORM statement is executed, control is transferred to the first statement of the 
procedure named procedure-name- 1, except as indicated in rules 1 5, 1 6, and 1 7. This transfer of 
control occurs only once for each execution of a PERFORM statement. For those cases where a 
transfer of control to the named procedure does take place, an implicit transfer of control to the next 
executable statement following the PERFORM statement is established as follows: 

• If procedure-name- 1 is a paragraph-name and procedure-name-2 is not specified, then the 
return is after the last statement of procedure-name- 1. 

• If procedure-name- 1 is a section-name and procedure-name-2 is not specified, then the return 

is after the last statement of the last paragraph in procedure-name- 1. 

• If procedure-name-2 is specified and it is a paragraph-name. then the return is after the last 

statement of the paragraph. 

• If procedure-n~me-2 is specified and it is a section-name. then the return is after the last 
statement of the last paragraph in the section. 

12. There is no necessary relationship between procedure-name- 1 and procedure-name-2 except that a 
consecutive sequence of operations is to be executed beginning at the procedure named procedure
name-1 and ending with the execution of the procedure named procedure-name-2. In particular. GO 
TO and PERFORM statements may occur between procedure-name-1 and the end of procedure
name-2. If there are two or more logical paths to the return point. then procedure-name-2 may be the 
name of a paragraph consisting of the EXIT statement. to which all of these paths must lead. 

13. If control passes to the procedures mentioned in rule 1 2 by means other than a PERFORM statement. 
control will pass through the last statement of the procedure to the next executable statement as if 

no PERFORM statement mentioned these procedures. 

14. Format 1 is the basic PERFORM statement. A procedure referenced by this type of PERFORM 
statement is executed once and then control passes to the next executable statement following the 

PERFORM statement. 

15. Format 2 is the PERFORM ... TIMES. The procedures are performed the number of times specified by 
integer- 1 or by the initial value of the data item referenced by identifier- 1 for that execution. The 
value of integer-1 or the initial contents of identifier-1 may not exceed 32,767. If. at the time of 
execution of a PERFORM statement, the value of the data item referenced by identifier- 1 is equal to 
zero or is negative, control passes to the next executable statement following the PERFORM 
statement. Following the execution of the procedures the specified number of times. control is 
transferred to the next executable statement following the PERFORM statement. 

During execution of the PERFORM statement, references to identifier-1 cannot alter the number of 
times the procedures are to be executed from that which was indicated by the initial value of 
identifier-1. 

16. Format 3 is the PERFORM ... UNTIL. The specified procedures are performed until the condition 
specified by the UNTIL phrase is true. When the condition is true. control is transferred to the next 
executable statement after the PERFORM statement. If the condition is true when the PERFORM 
statement is entered, no transfer to procedure-name- 1 takes place. and control is passed to the next 
executable statement following the PERFORM statement 

• 

• 

• 



• 

• 

• 

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 6-67 
1974 AMERICAN NATIONAL STANDARD COBOL 

17. Format 4 is the PERFORM ... VARYING. This variation of the PERFORM statement is used to augment 
the values referenced by one or more identifiers or index-names in an orderly fashion during the 
execution of a PERFORM statement. In the following discussion, every reference to identifier as the 
object of the VARYING, AFTER, and FORM (current value) phrases also refers to index-names. When 
index-name appears in a VARYING or AFTER phrase, it is initialized and subsequently augmented 
according to the rules of the SET statement. When index-name appears in the FROM phrase. 
identifier, when it appears in an associated VARYING or AFTER phrase. is initialized according to the 
rules of the SET statement; subsequent augmentation is as described in the following paragraphs. 

a. In format 4, when one identifier is varied . Figure 6-2, identifier-2 is set to the value of literal-1 
or the current value of identifier-3 at the point of initial execution of the PERFORM statement; 
then. if the condition of the UNTIL phrase is false. the sequence of procedures. procedure
name-1 through procedure-name-2, is executed once. The value of identifier-2 is augmented by 
the specified increment or decrement value (the value of identifier-4 or literal-2) and condition-
1 is evaluated again. The cycle continues until this condition is true. at which point control is 
transferred to the next executable statement following the PERFORM statement. If condition-1 
is true at the beginning of execution of the PERFORM statement. control is transferred to the 
next executable statement. 

Entrance 

Set identifier-2 equal to 
current FROM value 

Condition-1 

False 

Execute procedure-name-1 
THRU procedure-name-2 

Augment identifier-2 with 
current BY value 

True 
Exit 

Figure 6-2. Flowchart for the VARYING Phrase Having One Condition 



UP·8613 Rev 2 

b. 

c. 

SPERRY UNIVAC OS/3 6-68 
1974 AMERICAN NATIONAL STANDARD COBOL 

In format 4. when two identifiers are varied (Figure 6-3), identifier-2 and identifier-5 are set to 
the current value of identifier-3 and identifier-6. respectively. After the identifiers have been 
set. condition-1 is evaluated; if true, control is transferred to the next executable statement; if 
false. condition-2 is evaluated. If condition-2 is false. procedure-name-1 through procedure
name-2 is executed once, then identifier-5 is augmented by identifier-7 or literal-4, and 
condition-2 is evaluated again. This cycle of evaluation and augmentation continues until this 
condition is true. When condition-2 is true, identifier-5 is set to the value of literal-3 or the 
current value of identifier-6, identifier-2 is augmented by identifier-4, and condition-1 is 
reevaluated. The PERFORM statement is completed if condition-1 is true; if not. the cycle 
continues until condition-1 is true. 

During the execution of the procedures associated with the PERFORM statement, any change. 
to the VARYING variable (identifier-2 and index-name-1), the BY variable (identifier-4). the 
AFTER variable (identifier-5 and index-name-3), or the FROM variable (identifier-3 and index
name-2) will be taken into consideration and will affect the operation of the PERFORM 
statement. 

At the termination of the PERFORM statement, identifier-5 contains the current value of 
identifier-6. ldentifier-2 has a value that exceeds the last used setting by an increment or 
decrement value. unless condition-1 was true when the PERFORM statement was entered, in 
which case identifier-2 contains the current value of identifier-3. 

When two identifiers are varied. identifier-5 goes through a complete cycle (FROM. BY. UNTIL) 
each time identifier-2 is varied. 

In format 4, when three identifiers are varied (Figure 6-4). the mechanism is the same as for 
two identifiers except that identifier-8 goes through a complete cycle each time that identifier-5 
is augmented by identifier-7 or literal-4. which in turn goes through a complete cycle each time 
identifier-2 is varied. 

After the completion of a format 4 PERFORM statement, identifier-5 and identifier-8 contain the 
current value of identifier-6 and identifier-9, respectively. ldentifier-2 has a value that exceeds its last 
used setting by one increment or decrement value, unless condition-1 is true when the PERFORM 
statement is entered, in which case identifier-2 contains the current value of identifier-3. 

• 

• 

• 



UP-8613 Rev. 2 

• 

• 

• 

SPERRY UNIVAC OS/3 
19 7 4 AMERICAN NATIONAL ST ANDA RD COBOL 

Entrance 

Set 1dent1fier-2 and ident1f1er-5 
to current FROM values 

Condition-1 

False 

Condition-2 

False 

Execute procedure-name-1 
THRU procedure-name-2 

Augment 1dent1f1er-5 with 
current BY value 

True 

True 

Exit 

Set 1dentif1er-5 to its 
current FROM value 

Augment 1dent1f1er-2 with 
current BY value 

Figure 6-3. Flowchart for the VARYING Phrase Having Two Conditions 

6-69 



UP 8613 R"v 2 SPERRY UNIVAC OS/3 6-70 
1974 AMERICAN NATIONAL STANDARD COBOL 

• Entrance 

l 
Set 1dent1fier-2. ident1f1er-5. 

and 1dentif1er-8 to 
current FROM values 

l 
True 

Condition-1 Exit 

lFalse 

True 
Condition-2 

lFalse 

True 
Condition-3 

JFalse • Execute procedure-name-1 Set identif1er-8 to Set identifier-5 to 
THRU procedure-name-2 its current FROM value its current FROM value 

l 
Augment 1dentif1er-8 Augment 1dent1f1er- 5 Augment 1dent1f1er-2 

'--- with current BY value with current BY value with current BY value 

Figure 6-4. Flowchart for the VARYING Phrase Having Three Conditions 

• 



• 

• 

UP 8613 Rev. 2 SPERRY UNIVAC OS/3 6-71 
1974 AMERICAN NATIONAL STANDARD COBOL 

18. If a sequence of statements referenced by a PERFORM statement includes another PERFORM 
statement, the sequence of procedures associated with the included PERFORM must itself either be 
totally included in, or totally excluded from, the logical sequence referred to by the first PERFORM. 
Thus, an active PERFORM statement whose execution point begins within the range of another 

active PERFORM statement must not allow control to pass to the exit of the other active PERFORM 

statement; furthermore, two or more such active PERFORM statements may not have a common exit. 

For example: 

Correct Incorrect 

x PERFORM a THRU m x PERFORM a THRU m 

a a 

d PERFORM f THRU j d PERFORM f THRU j 

m 

m 

x PERFORM a THRU j 

a 

d PERFORM f THRU j 

19. A PERFORM statement that appears in a section that is not in an independent segment can have 
within its range, in addition to any declarative sections whose execution is caused within that range, 
only one of the following: 

a. Sections or paragraphs wholly contained in one or more nonindependent segments 

b. Sections or paragraphs wholly contained in a single independent segment 

20. A PERFORM statement that appears in an independent segment can have within its range. in 
addition to any declarative sectioins whose execution is caused within that range, only one of the 
following: 

a. Sections or paragraphs wholly contained in one or more nonindependent segments 

b. Sections or paragraphs wholly contained in the same independent segment as that PERFORM 

statement 



UP-8613 Rev. 2 SPERRY UNIVAC OS/3 6-72 
1974 AMERICAN NATIONAL STANDARD COBOL 

6.6.25. READ Statement 

Function: 

The READ statement makes available the next logical or specified record from a file. 

Format 1 (Sequential and~F~jFiles): 

READ file-name RECORD [INTO identifier] [;AT END imperative-statement] 

Format 2 (Relative, Indexed, and f~°'A_MJ Files): 

READ file-name I[!!_!!)' RECORD [INTO identifier] (;AT END imperative-statement] 

Format 3 (Relative and f ~~J Files): 

READ file-name RECORD [INTO identifier] [;INVALID KEY imperative-statement) 

Format 4 (Indexed Files Only): 

R E A D f i I e - n a me R E C 0 R D [ I N T 0 i d e n t i f i e r 1 !1 ; !!.! I S d a t a - n a m e I I 
[;INVALID KEY imperative-statement] 

Rules: 

1 . 

2. 

3. 

4. 

5. 

The associated file must be open in the INPUT or 1-0 mode at the time the statement is executed. 
(See the OPEN statement, 6.6.23.) 

A record is available to the object program immediately after the execution of the READ statement. 

The execution of the READ statement causes the value of the FILE STATUS data item. if any. 
associated with file-name to be updated. (See 8.2.3.) 

The INTO phrase must not be used when the input file contains logical records of various sizes as 
indicated by their record descriptions. The storage area associated with identifier and the record area 
associated with file-name must not be the same storage area. 

When the logical records of a file are described with more than one record description. these records 
automatically share the same storage area; this is equivalent to an implicit redefinition of the area. 
The contents of any data items which lie beyond the range of the current data record are undefined 
at the completion of the execution of the READ statement. 

6. If the INTO phrase is specified. the record being read is moved from the record area to the area 
specified by identifier according to the rules specified for the MOVE statement without the 
CORRESPONDING phrase. The implied MOVE does not occur if the execution of the READ statement 
was unsuccessful. Any subscripting or indexing associated with identifier is evaluated after the 
record is read and immediately before it is moved to the data item. 

7. When the INTO phrase is used, the record being read is available in both the input record area and 
the data area associated with identifier. 

*Applies only to 90125, 90130. 90130 8, and 90140 systems 

• 

• 

• 



• 

• 

• 

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 

8. 

1974 AMERICAN NATIONAL STANDARD COBOL 

If. at the time of execution of a format 1 or format 2 READ statement. the position of current record 
pointer for that file is undefined, the execution of that READ statement is unsuccessful. 

9. If, at the time of the execution of a format 1 or format 2 READ statement. no next logical record exists 
in the file, the AT END condition occurs. and the execution of the READ statement is considered 
unsuccessful. (See 8.2.3. 1-0 status description.) 

10. When the AT END condition is recognized. the following actions are taken in the specified order: 

a. A value is placed into the FILE STATUS data item. if specified for this file. to indicate an AT END 
condition. (See 8.2.4.) 

b. If the AT END phrase is specified in the statement causing the condition. control is transferred 

to the AT END imperative-statement. Any format 1 USE procedure specified for this file is not 
executed. 

c. If the AT END phrase is not specified. a format 1 USE procedure must be specified. either 
explicitly or implicitly, for this file, and that procedure is executed. 

When the AT END condition occurs, execution of the input/output statement that caused the 
condition is unsuccessful. 

11. Following the unsuccessful execution of any READ statement. the contents of the associated record 
area and the position of the current record pointer are undefined. For indexed files. the key of 
reference is also undefined . 

NOTE: 

Rules 12 through 16 pertain to sequential and~~~~files only. 

12. The AT END phrase must be specified if no applicable format 1 USE procedure is specified for file
name. 

13. The record to be made available by the READ statement is determined as follows: 

a. If the current record pointer was positioned by the execution of the OPEN statement. the record 
pointed to by the current record pointer is made available. 

b. If the current record pointer was positioned by the execution of a previous READ statement. the 
pointer is advanced to the next record in the file and then that record is made available. 

14. If the end of a reel or unit is recognized during execution of a READ statement. and the logical end of 
the file has not been reached. the following operations are executed: 

a. The standard ending reel/unit label procedure 

b. A reel/unit swap 

c. The standard beginning reel/unit label procedure 

d. The first data record of the new reel/unit is made available . 

•Applies only to 90125. 90130. 90130 B. and 90140 systems 



UP 86 13 Rt~v 2 SPERRY UNIVAC OS/3 6-74 
19 7 4 AMERICAN NATIONAL STANDARD COBOL 

15. If a file described with the OPTIONAL phrase is not present at the time the file is opened, then at the 
time of execution of the first READ statement for the file, the AT END condition occurs and the 
execution of the READ statement is unsuccessful. The standard end-of-file procedures are not 
performed. (See 4.4.1, FILE-CONTROL paragraph; 6.6.23, OPEN statement; 6.6.41, USE statement; 
and 8.2.3, 1-0 status.) Execution of the program then proceeds as specified in rule 10. 

16. When the AT END condition is recognized, a READ statement for that file must not be executed until 
a successful CLOSE statement followed by a successful OPEN statement for that file is executed. 

17. Format 1 must be used for all files in sequential access mode. 

18. For printer-destined files (files assigned to PRINTER or defined with an FC. UC, or VC mode in the 

implementor-name of the ASSIGN clause), the READ statement referencing this file does not make 

available any record that contains only vertical positioning control information. (See 8.3.3.) 

NOTE: 

Rules 19 through 33 pertain to relative, indexed, and~S~~jtiles. 

19. Format 2 must be used for all files in sequential access mode. The NEXT phrase must be specified for 
files in dynamic access mode when records are to be retrieved sequentially. 

20. Format 3 is used for relative or ISAM* files in random access mode or inldynamic access modelwhen 
records are to be retrieved randomly. 

21. Format 4 is used for indexed files in random access mode or injdynamic access mod3 when records 
are to be retrieved randomly. 

22. The KEY phrase may be specified only for indexed files. Data-name must be the name of a data item 
specified as a record key associated with file-name. Data-name may be qualified. 

23. The INVALID KEY phrase or the AT END phrase must be specified if no applicable USE procedure is 
specified for file-name. 

24. The record to be made available by a format 2 READ statement is determined as follows: 

• For relative or ISAM* files: 

a. The record pointed to by the current record pointer (see 8.2.2) is made available if the 
current record pointer was positioned by the !START or !OPEN statement and the record is 
still accessible through the path indicated by the current record pointer. If the record is no 
longer accessible, possibly caused by the deletion of the record, the current record pointer 

is updated to point to the next existing record in the file and that record is then made 
available. 

• For indexed files: 

a. The record, pointed to by the current record pointer, is made available provided that the 
current record pointer was positioned by the! START orlOPEN statement and the record is 
still accessible through the path indicated by the current record pointer; if the record is no 
longer accessible, which may have been caused by the deletion of the recordlOr a change 
I in an alternate record key, jthe current record pointer is updated to point to the next 
existing record with in the established key of reference and that record is then made 
available. 

*Applies only to 90/25, 90/30, 90/30 8, and 90/40 systems 

• 

• 

• 



• 

• 

• 

UP-8613 Rev. 2 

b. 

SPERRY UNIVAC OS/3 6-75 
1974 AMERICAN NATIONAL STANDARD COBOL 

If the current record pointer was positioned by the execution of a previous READ 
statement. the current record pointer is updated to point to the next existing record in the 
file with the established key of reference and then that record is made available. 

25. When the AT END condition has been recognized, a format 2 READ statement for that file must not 
be executed without first executing one of the following: 

a. a successful CLOSE statement followed by the execution of a successful OPEN statement for 
that file; 

b. a successful START statement for that file; or 

c. a successful format 3 or format 4 READ statement for that file. 

26. For a file for which dynamic access mode is specified, a format 2 READ statement with the NEXT 
phrase specified causes the next logical record to be retrieved from the file as described in rule 24. 

27. If the RELATIVE KEY phrase is specified for a relative file, the execution of a format 2 READ 
statement updates the contents of the RELATIVE KEY data item such that it contains the relative 
record number of the record made available. 

28. For a relative file, the execution of a format 3 READ statement sets the current record pointer to, and 
makes available, the record whose relative record number is contained in the data item named in the 
RELATIVE KEY phrase for the file. If the file does not contain such a record, the INVALID KEY 
condition exists and execution of the READ statement is unsuccessful. (See 8.2.5, INVALID KEY 
condition.) 

29. For an indexed file being sequentially accessed, records having the same duplicate value in an 
alternate record key, which is the key of reference, are made available in the same order in which 
they are released by execution of WRITE statements, or by execution of REWRITE statements that 
create such duplicate values. 

30. For an indexed file, if the KEY phrase is specified in a format 4 READ statement, data-name is 
established as the key of reference for this retrieval. If the dynamic access mode is specified, this key 
of reference is also used for retrievals by any subsequent executions of format 2 READ statements 
for the file until a different key of reference is established for the file. 

31. If the KEY phrase is not specified in a format 4 READ statement, the prime record key is established 
as the key of reference for this retrieval. If the dynamic access mode is specified, this key of reference 
is also used for retrievals by any subsequent executions of format 2 READ statements for the file 
until a different key of reference is established for the file. 

32. Execution of a format 4 READ statement causes the value of the key of reference to be compared 
with the value contained in the corresponding data item of the stored records in the file, until the first 
record having an equal value is found. The current record pointer is positioned to this record, which 
is then made available. If no record can be so identified, the INVALID KEY condition exists and 
execution of the READ statement is unsuccessful. (See 8.2.5.) 

f33-:- For ,;-ISAM~l;,th;-execution -;;fa furmat 3 READ statement causes t~record key to be compared : 
I with the value contained in the corresponding data item of the stored records in the file, until the first I 
I record having an equal value is found. The current record pointer is positioned to this record which is I 
I then made available. If no record can be so identified, the INVALID KEY condition exists and I 
I execution of the READ statement is unsuccessful. (See 8.2.5, INVALID KEY condition.) I 

L-------------------·-------' 
·Applies only to 90125, 90130. 90130 B. and 90140 systems 



UP-8613 Rev. 2 SPERRY UNIVAC OS/3 6-76 
1974 AMERICAN NATIONAL STANDARD COBOL 

6.6.26. RECEIVE Statement 

Function: 

The RECEIVE statement makes available to the COBOL program a message.I message segment. or a portion I 
I of a message or segment. I and pertinent information about that data from a queue maintained by the 
message control system (MCS). The RECEIVE statement allows for a specific imperative statement when 
no data is available. 

Format: 

RECEIVE cd-name ~MESSAGE t INTO identifier-1 [;NO DATA imperative-statement] 
1jSEGMENTj~ 

Rules: 

1. Cd-name must reference an input CD. 

2. The contents of the data items specified by data-name-1 (SYMBOLIC QUEUE) through data-name-4 
(SYMBOLIC SUB-OUEUE-3) of the area referenced by cd-name designate the queue structure 
containing the message. (See 5.6.1.) 

3. The message. jmessage segment. or portion of a message or segmentjis transferred to the receiving 
character positions of the area referenced by identifier-1 aligned to the left without space fill. 

4. When. during the execution of a RECEIVE statement, the MCS makes data available in the data item 
referenced by identifier-1. control is transferred to the next executable statement. whether or not the 
NO DATA phrase is specified. 

5. When, during the execution of a RECEIVE statement. the MCS does not make data available in the 
data item referenced by identifier-1: 

a. If the NO DATA phrase is specified. the RECEIVE operation is terminated with the indication 
that action is complete (see rule 6). and the imperative statement in the NO DATA phrase is 
executed. 

b. If the NO DATA phrase is not specified. execution of the object program is suspended until data 
is made available in the data item referenced by identifier-1. 

c. If one or more queues or subqueues is unknown to the MCS. control passes to the next 
executable statement whether or not the NO DATA phrase is specified. (See Table 5-11 

6. The data items identified by the input CD (SYMBOLIC SOURCE. TEXT LENGTH, END KEY. STATUS 
KEY) are appropriately updated by the MCS at each execution of a RECEIVE statement. (See 5.6.1 .) 

7. A single execution of a RECEIVE statement never returns to the data item referenced by identifier-1 
more than a single message when the MESSAGE phrase is usedjor a single segment when the 
SEGMENT phrase is used. However. the MCS does not pass any portion of a message to the ob1ect 
program until the entire message is available in the input queue. even if the SEGMENT phrase of the 
RECEIVE statement is specified. 

• 

• 

• 



• 

• 

• 

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 6-77 

B. 

1974 AMERICAN NATIONAL STANDARD COBOL 

When the MESSAGE phrase is used, end-of-segment indicators are ignored, and the following rules 
apply to the data transfer: 

a. If a message is the same size as the area referenced by identifier-1, the message is stored in 
the area referenced by identifier-1. 

b. If a message size is less than the area referenced by identifier-1, the message is aligned to the 
leftmost character position of the area referenced by identifier-1 with no space fill. 

c. If a message size is greater than the area referenced by identifier-1, the message fills the area 
referenced by identifier-1 left to right starting with the leftmost character of the messa..2..e~ 
remainder of the message can be transferred to the area referenced by identifier-1 with 
subsequent RECEIVE statements referring to the same queue and subqueues. The remainder of 
the message, for the purposes of applying rules Ba. Bb. and Be. is treated as a new message. 

9. When the SEGMENT phrase is used, the following rules apply: 

a. If a segment is the same size as the area referenced by identifier-1, the segment is stored in 
the area referenced by identifier-1. 

b. If the segment size is less than the area referenced by identifier-1, the segment is aligned to 
the leftmost character position of the area referenced by identifier-1 with no space fill. 

c. If a segment size is greater than the area referenced by identifier-1, the segment fills the area 
referenced by identifier-1 left to right starting with the leftmost character of the segment. The 
remainder of the segment can be transferred to the area referenced by identifier-1 with 
subsequent RECEIVE statements calling out the same queue and subqueues. The remainder of 
the segment. for the purposes of applying rules 9a. 9b, and 9c, is treated as a new segment. 

d. If the text to be accessed by the RECEIVE statement has associated with it an end-of-message 
indicator or end-of-group indicator. the existence of an end-of-segment indicator associated 
with the test is implied and the text is treated as a message segment according to rule 9. 

10. Once the execution of a RECEIVE statement has returned a portion of a message, only subsequent 
execution of RECEIVE statements in that run unit can cause the remaining portion of the message to 
be returned. 

11. After the execution of a STOP RUN statement, the remaining portion of a message partially obtained 
in that run unit is lost. 

6.6.27. RELEASE Statement 

Function: 

The RELEASE statement transfers records to the initial phase of a SORT operation. 

Format: 

RELEASE record-name [FROM identifier] 



UP 8613 Rnv 2 SPERRY UNIVAC OS/3 6-78 

Rules: 

1. 

2. 

3. 

4. 

1974 AMERICAN NATIONAL STANDARD COBOL 

A RELEASE statement may only be used within the range of an input procedure associated with a 
SORT statement for a file whose (SD) entry contains record-name. (See 6.6.33, SORT statement.) 

Record-name must be the name of a logical record in the associated SD entry and may be qualified. 

Record-name and identifier must not refer to the same storage area. 

The execution of a RELEASE statement causes the record named by record-name to be released to 
the initial phase of a sort operation. 

5. If the FROM phrase is used, the contents of the identifier data area are moved to record-name, then 
the contents of record-name are released to the sort file. Moving takes place according to the rules 

specified for the MOVE statement without the CORRESPONDING, phrase. The information in the 
record area is no longer available, but the information in the data area associated with identifier is 
available. 

6. After the execution of the RELEASE statement, the logical record is no longer available in the record 
area unless the associated sort file is named in a SAME RECORD AREA clause. The logical record is 
also available to the program as a record of other files referenced in the same SAME RECORD AREA 
clause as the associated sort file, as well as to the file associated with record-name. When control 
passes from the input procedure, the file consists of all those records that were placed in it by the 
execution of RELEASE statements. 

6.6.28. RETURN Statement 

Function: 

The RETURN statement obtains either sorted records from the final phase of a SORT operationjor merged I 
records during a MERGE operation. 

Format: 

RETURN file-name RECORD [INTO identifier] :AT END imperative-statement 

Rules: 

1. File-name must be described by a sort/merge file description entry in the data division. 

2. A RETURN statement may only be used within the range of an output procedure associated with a 
SORTlor MERGElstatement for file-name. 

3. The INTO phrase must not be used when the input file contains logical records of various sizes as 
indicated by their record descriptions. The storage area associated with identifier and the record area 
associated with file-name must not be the same storage area. 

4. When the logical records of a file are described with more than one record description. these records 
automatically share the same storage area; this is equivalent to an implicit redefinition of the area. 
The contents of any data items which lie beyond the range of the current data record are undefined 
at the completion of the execution of the RETURN statement. 

• 

• 

• 



• 

• 

UP-86 13 Rev. 2 SPERRY UNIVAC OS/3 

5. 

19 7 4 AMERICAN NATIONAL ST ANDA RD COBOL 

The execution of the RETURN statement causes the next record, in the order specified by the keys 
listed in the SORT or MERGE statement. to be made available for processing in the record areas 
associated with the sort or merge file. 

6. If the INTO phrase is specified. the current record is moved from the input area to the area specified 
by identifier according to the rules for the MOVE statement without the CORRESPONDING phrase. 
The implied MOVE does not occur if there is an AT END condition. Any subscripting or indexing 
associated with identifier is evaluated after the record is returned and immediately before it is moved 
to the data item. 

7. When the INTO phrase is used, the data is available in both the input record area and the data area 
associated with identifier. 

8. If no next logical record exists for the file at the time of the execution of a RETURN statement. the AT 
END condition occurs. When the AT END condition occurs. the contents of the record areas 
associated with the file are undefined. After the execution of the imperative-statement in an AT END 
phrase. no RETURN statement may be executed as part of the current output procedure. 

6.6.29. REWRITE Statement 

Function: 

The REWRITE statement logically replaces a record existing in a mass storage file. 

r;:- -:i 
Format 1 (Sequential andt'~~~/iles): 

REWRITE record-name[~ identifier) 

Format 2 (Relative. Indexed, anilsAM_J;JFiles): 
L- -

Rules 

REWRITE record-name [FROM identifier] [:INVALID KEY imperative-statement) 

1. Record-name and identifier must not refer to the same storage area. 

2. Record-name is the name of a logical record in the file section of the data division and may be 
qualified. 

3. The file associated with record-name must be a mass storage file and must be open in the 1-0 mode 
at the time of execution of this statement. (See 6.6.23, OPEN statement.) 

4. The number of character positions in the record referenced by record-name must be equal to the 
number of character positions in the record being replaced. 

5. The logical record released by a successful execution of the REWRITE statement is no longer 
available in the record areajunless the associated file is named in a SAME RECORD AREA clause, in 
which case the logical record is available to the program as a record of other files appearing in the 
same SAME RECORD AREA clause as the associated 1-0 file, as well as to the file associated with 
record-name. 

•Applies only to 90125. 90130. 90130 B. and 90140 systems 



UP 8613 Rev 2 SPERRY UNIV AC OS/ 3 6 80 
1974 AMERICAN NATIONAL STANDARD COBOL 

6. The execution of a REWRITE statement with the FROM phrase is equivalent to the execution of: 

MOVE identifier TO record-name 

followed by the execution of the same REWRITE statement without the FROM phrase. The contents 
of the record area prior to the execution of the implicit MOVE statement have no effect on the 

execution of the REWRITE statement. 

7. The current record pointer is not affected by the execution of a REWRITE statement. 

8. The execution of the REWRITE statement causes the value of the FILE STATUS data item. if any. 
associated with the file to be updated. (See 8.2.3, 1-0 status description.) 

9. For sequential files. the last input/ output statement executed for the associated file prior to the 
execution of the REWRITE statement must have been a successfully executed READ statement. The 
operating system logically replaces the record that was accessed by the READ statement. 

NOTE: 

Rules 10 through 20 pertain to relative, indexed, and 1JSAM*_J:lfiles only. 
I...--

10. The INVALID KEY phrase must not be specified for a REWRITE statement that references a relative 

file in sequential access mode. 

11. The INVALID KEY phrase must be specified in the REWRITE statement for relative files in the random 
or dynamic mode and for indexed or ISAM* files in all access modes if an appropriate USE procedure 
is not specified for the file. 

12. For files in the sequential access mode, the last input/output statement executed for the associated 
file prior to the execution of the REWRITE statement must have been a successfully executed READ 
statement. The operating system logically replaces the record that was accessed by the READ 

statement. 

13. For a relative file accessed in either random or dynamic access mode, the operating system logically 
replaces the record specified by the contents of the RELATIVE KEY data item associated with the file. 
If the file does not contain the record specified by the key, the INVALID KEY condition exists. (See 
8.2.5.) The updating operation does not take place and the data in the record area is unaffected. 

14. For an indexed file in the sequential access mode, the record to be replaced is specified by the value 
contained in the prime record key. When the REWRITE statement is executed, the value contained in 

the prime record key data item of the record to be replaced must be equal to the value of the prime 
record key of the last record read from this file. 

15. For an indexed file in the random!or dynamiclaccess mode, the record to be replaced is specified by 
the prime record key data item. 

16. The contents of alternate record key data items of the record being rewritten may differ from those in 
the record being replaced. The MSCS utilizes the content of the record key data items during the 
execution of the REWRITE statement in such a way that subsequent access of the record may be 
made based upon any of those specified record keys. 

*Applies only to 90125, 90130, 90130 B. and 90140 systems 

• 

• 

• 



• 

• 

• 

UP 8613 Rf~V 2 SPERRY UNIVAC OS/3 6-81 
1974 AMERICAN NATIONAL STANDARD COBOL 

17. For an indexed file, the INVALID KEY condition exists when: 

a. the access mode is sequential and the value contained in the prime record key data item of the 
record to be replaced is not equal to the value of the prime record key of the last record read 
from this file; 

b. the value contained in the prime record key data item does not equal that of any record stored 
in the file; or 

c. the value contained in an alternate record key data item for which a DUPLICATES clause has 
not been specified is equal to that of a record already stored in the file. 

The updating operation does not take place and the data in the record area is unaffected. (See 8.2 5.) 

r-- -- ---- - - - -- -- - - - - - - - - -- -- -- - ...... 
I 18. For an ISAM* file in the sequential access mode, the record to be replaced is specified by the value 

I 
I 
I 
I 
I 19 

I 
I 
I 20. 
I 
I 
I 
I 
I 
I 
I 

contained in the record key. When the REWRITE statement is executed, the value contained in the 
record key data item of the record to be replaced must be equal to the value of the record key of the 

last record read from this file. 

For an ISAM* file in the random or dynamic access mode, the record to be replaced is specified by 

the record key data item. 

For an ISAM* file, the INVALID KEY condition exists when: 

a. 

b. 

the access mode is sequential and the value contained in the record key data item of the record 

to be replaced is not equal to the value of the record key of the last record read from this file; or 

the value contained in the record key data item does not equal that of any record stored in the 
file. 

IL The updating operation does not take place and the data in the record area is unaffected. (See 8.2.5.) 1 ---- ---------- ----- - ------------' 

6.6.30. SEARCH Statement 

Function: 

The SEARCH statement is used to search a table for a table element that satisfies the specified condition 
and to adjust the associated index-name to indicate that table element. 

Format 1 . 

SEARCH ident if ier·l [VARYING ii dent if ier-2 f] 
11ndex-name-d 

l:AT U!Q imperative-statement-1] 

: WHEN c on d i t i on - l j i mp e r a t i v e - s t a t em e n t - 2 I 
} NEXT SENTENCE 5 

[
:WHEN c on d i t i on - 2 \ i mp e r a t i v e - s t a t em e n t - 3 I ] 

} NEXT SENTENCE ~ 

"Applies only to 90. 25. 90 30. 90130 B. and 90140 systems 



UP 8613 Rnv 2 SPERRY UNIVAC OS/3 6-82 

1974 AMERICAN NATIONAL STANDARD COBOL 

Format 2: 

Rules 

SEARCH ALL identif ier-1 I :AT END 

: WHEN ~ d a t a - name - 1 l : ~ EQUAL 

imper at ive-statement-1] 

T 0 ~ ~ identifier-3 ~i 
I i t e r a I - 1 
a r it hme t i c - expression - 1 

[" 
lcond1t1on-name-l 

~data-name-2 l:~ EQUAL 

1cond1 t ion-name-2 

~imperative - statement - 2 t 
lNEXT SENTENCE ~ 

TOt ~identifier-4 ~1] ... 
~ I i t e r a I - 2 

ar ithmet ic-expression-2 

NOTE. 

The required relational character = is not underlined to avoid confusion with other symbols. 

1 . In both formats 1 and 2, identifier-1 must not be subscripted or indexed. but its description must 
contain an OCCURS clause and an INDEXED BY clause The description of identifier-1 in format 2 

must also contain the KEY IS phrase in its OCCURS clause. 

2. ldentifier-2, when specified. must be described as USAGE IS INDEX or as a numeric elementary item 
without any positions to the right of the assumed decimal point. 

3. In format 1. condition-1. condition-2. etc. may be any condition as described in 6.4. Refer to Figure 
6-5 for the logic of a SEARCH statement containing two WHEN phrases. 

4. In format 2. all referenced condition-names must be defined as having only a single value. The data
name associated with a condition-name must appear in the KEY clause of identifier-1. Each data
name-1. data-name-2 may be qualified. Each data-name-1. data-name-2 must be indexed by the first 
index-name associated with identifier-1 along with other indexes or literals as required. and must be 
referenced in the KEY clause of identifier-1. ldentifier-3. identifier-4. or identifiers specified in 
arithmetic-expression-1. arithmetic-expression-2 must not be referenced in the KEY clause of 

identifier-1 or be indexed by the first index-name associated with identifier-1. 

In format 2. when a data-name in the KEY clause of identifier-1 is referenced. or when a condition
name associated with a data-name in the KEY clause of identifier-1 is referenced. all preceding data
names in the KEY clause of identifier-1 or their associated condition-names must also be referenced. 

• 

• 

• 



• 

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 
1974 AMERICAN NATIONAL STANDARD COBOL 

imperative
statement-1 

imperative
statement-2 

imperative
statement-3 

G) These operations are options included only when specified in the SEARCH statement. 

@ Each of these control transfers is to the next executable sentence unless the 
imperative-statement ends with a GO TO statement. 

Figure 6-5. Flowchart for Format 1 Search Operation Containing Two WHEN Phrases 

6-83 



UP 86 1 3 Rt!V 2 SPERRY UNIVAC OS/3 6-84 

5. 

6. 

1974 AMERICAN NATIONAL ST ANDA RD COBOL 

If format 1 of the SEARCH is used, a serial type of search operation takes place, starting with the 

current index setting. 

a. If, at the start of execution of the SEARCH statement. the index-name associated with 
identifier-1 contains a value that corresponds to an occurrence number that is greater than the 
highest permissible occurrence number for identifier-1, the SEARCH is terminated 

immediately. (The number of occurrences of identifier-1, the last of which is the highest 
permissible, is discussed in the OCCURS clause (See 5 3.3 7. OCCURS clause) Then, if the AT 

END phrase is specified, imperative-statement-1 is executed; if the AT END phrase is not 

specified, control passes to the next executable sentence. 

b. If, at the start of execution of the SEARCH statement. the index-name associated with 

identifier-1 contains a value that corresponds to an occurrence number that is not greater than 

the highest permissible occurrence number for identifier-1 (as explained in 5 3.3. 7). the 

SEARCH statement evaluates the conditions in the order that they are written. making use of 

the index settings. wherever specified. to determine the occurrence of those items to be tested. 
If none of the conditions are satisfied, the index-name for identifier-1 is incremented to obtain 
reference to the next occurrence. The process is then repeated using the new index-name 
settings unless the new value of the index-name settings for identifier-1 corresponds to a table 

element outside the permissible range of occurrence values, in which case the search 

terminates as indicated in step a. If one of the conditions is satisfied upon its evaluation. the 
search terminates immediately and the imperative statement associated with that condition is 
executed; the index-name remains set at the occurrence which caused the condition to be 
satisfied. 

In a format 2 SEARCH, the results of the SEARCH ALL operation are predictable only when 

a. the data in the table is ordered in the same manner as described in the ASCENDING! 

DESCENDING KEY clause associated with the description of identifier-1; and 

b. the contents of the keys referenced in the WHEN clause are sufficient to identify a unique table 
element. 

7. If format 2 of the SEARCH statement is used. a binary search operation takes place. The initial setting 
of the index-name for identifier-1 is ignored and its setting 1s varied during the search operation so 
that it is never set to a value that exceeds the value corresponding to the last element of the table or 
is less than the value corresponding to the first element of the table. The length of the table 1s 
discussed in the OCCURS clause (5.3 3 7) If any of the conditions specified in the WHEN clause 

cannot be satisfied for any setting of the index within the permitted range. control 1s passed to 

imperative-statement-1 of the AT END phrase. when specified, or to the next executable sentence 

when this phrase is not specified; in either case the final setting of the index is not predictable If all 

the conditions can be satisfied. the index indicates an occurrence that allows the conditions to be 
satisfied, and control passes to imperative-statement-2 

8. After execution of an imperative-statement that does not terminate with a GO TO statement. control 
passes to the next executable sentence. 

9. In format 2, the index-name that is used for the search operation is the first (or only) index-name that 
appears in the INDEXED BY phrase of identifier-1 Any other index-names for identifier-1 remain 
unchanged. 

• 

• 

• 



• 

• 

• 

UP-8613 Rev 2 SPERRY UNIVAC OS/3 6-85 
19 7 4 AMERICAN NATIONAL ST ANDA RD COBOL 

10. In format 1, if the VARYING phrase is not used, the index-name that is used for the search operation 
is the first (or only) index-name that appears in the INDEXED BY phrase of identifier-1. Any other 
index-names for identifier-1 remain unchanged. 

11. In format 1, if the VARYING index-name-1 phrase is specified and if index-name-1 appears in the 
INDEXED BY phrase of identifier-1, that index-name is used for this search. If not, or if the VARYING 
identifier-2 phrase is specified, the first (or only) index-name given in the INDEXED BY phrase of 
identifier-1 is used for the search. In addition, the following operations will occur: 

a. If the VARYING index-name-1 phrase is used, and if index-name-1 appears in the INDEXED BY 
phrase of another table entry, the occurrence number represented by index-name-1 is 
incremented by the same amount as, and at the same time as, the occurrence number 
represented by the index-name associated with identifier-1 is incremented. 

b. If the VARYING identifier-2 phrase is specified and identifier-2 is an index data item, then the 
data item referenced by identifier-2 is incremented by the same amount as, and at the same 
time as, the index associated with identifier-1 is incremented_ If identifier-2 is not an index data 
item, the data item referenced by identifier-2· is incremented by 1 at the same time as the index 
referenced by the index-name associated with identifier-1 is incremented. 

12. If identifier-1 is a data item subordinate to a data item that contains an OCCURS clause (providing for 
a 2- or 3-dimensional table), an index-name must be associated with each dimension of the table 
through the INDEXED BY phrase of the OCCURS clause. Only the setting of the index-name 
associated with identifier-1 (and the data item identifier-2 or index-name-1, if present) is modified by 
the execution of the SEARCH statement. To search an entire 2 or 3-dimensional table, it is necessary 
to execute a SEARCH statement several times. Prior to each execution of a SEARCH statement, SET 
statements must be executed whenever index-names must be adjusted to appropriate settings. 

6.6.31. SEND Statement 

Function: 

The SEND statement causes a message, la message segment, or a portion of a message or segmentlto be 
released to onelor moreloutput queues maintained by the message control system (MCS). 

Format 1: 

l.tl!!Q cd-name FROM identif ier-1 I 
Format 2 

SEND cd-name [FROM identifier-1]1WITH identifier-2 l 
WITH W 

[

jBEFOREt ADVANCING 
hFTER S ~ 

j \ 1 dent i f i er - 3l [LINE J l ~] 
/11nteger S LINES S 

PAGE 



UP-8613 Rev. 2 SPERRY UNIVAC OS/3 6-86 

1974 AMERICAN NATIONAL STANDARD COBOL 

Rules: 

1. Cd-name must reference an output CD. 

2. 

3. 

ldentifier-2 must reference a 1-character integer without an operational sign. 

When identifier-3 is used in the ADVANCING phrase, it must be the name of an elementary integer 

item. 

4. Integer or the value of the data item referenced by identifier-3 may be zero. but may not exceed 255. 

5. When a receiving communication device (printer, display screen, teletypewriter terminal, etc.) is 

oriented to a fixed line size: 

6. 

a. each messagejor message segment rill begin at the leftmost character position of the physical 

line; 

b. a messagelor message segmentjthat is smaller than the physical line size is released so as to 
appear space-filled to the right; and 

c. excess characters of a message !or message segment !will not be truncated. Characters will be 
packed to a size equal to that of the physical line and then outputted to the device. The process 
continues on the next line with the excess characters. 

When a receiving communication device (another program, another computer, etc.) is oriented to 
handle variable-length messages, each message lor message segmentj will begin on the next 
available character position of the communications device. 

7. As part of the execution of a SEND statement. the MCS will interpret the contents of the data item 
referenced by data-name-2 (TEXT LENGTH) of the area referenced by cd-name to be the user's 
indication of the number of leftmost character positions of the data item referenced by identifier-1 

from which data is to be transferred. 

If the contents of the data item referenced by data-name-2 (TEXT LENGTH) of the area referenced by 
cd-name are zero, no characters of the data item referenced by identifier-1 are transferred. 

If the contents of the data item referenced by data-name-2 (TEXT LENGTH) of the area referenced by 
cd-name are outside the range of zero through the size of the data item referenced by identifier-1 
inclusive, an error is indicated by the value of the data item referenced by data-name-3 (STATUS 

KEY) of the area referenced by cd-name, and no data is transferred. (See Table 5-11.) 

8. As part of the execution of a SEND statement, the contents of the data item referenced by data
name-3 (STATUS KEY) of the area referenced by cd-name is updated by the MCS. (See 5.6.2.) 

9. The effect of having special control characters within the contents of the data item referenced by 
identifier-1 is the user's responsibility. 

10. A single execution of a SEND statement for format 1 releases only a single portion of a message or of 
a message segment to the MCS. 

A single execution of a SEND statement of format 2 never releases to the MCS more than a single 
message or a single message segment as indicatedlby the contents of the data item referenced by I 
identifier-2 or by the specified indicatorjESl.IEMI, or EGI. 

However, the MCS will not transmit any portion of a message to a communications device until the 
entire message is placed in the output queue. 

• 

• 

• 



• 

• 

• 

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 6-87 
1974 AMERICAN NATIONAL STANDARD COBOL 

11. During the execution of the run unit. a portion of a message not terminated by an EMI or EGI is not 
sent to a destination. since the message does not logically exist for the MCS. 

After the execution of a STOP RUN statement. any portion of a message transferred from the run unit 

via a SEND statement, but not terminated by an EMI or EGI. is purged from the system. Thus no 
portion of the message is sent. 

12. Once the execution of a SEND statement has released a portion of a message to the MCS, only 
subsequent execution of SEND statements in the same run unit can cause the remaining portion of 
the message to be released. 

~-----------------------------1 
I 13. When an incomplete message is sent (format 1 or format 2 with ESI). the output CD referenced by 
I the SEND statement can only be used to add to or complete the message. Until a message is I 
I completed, the contents of data-name-5 (SYMBOLIC DESTINATION table) cannot be changed. _JI 
L-------------------------------

NOTE: 

Rules 14 through 19 pertain to format 2 only. 

14. The contents of the data item referenced by identifier-2 indicate that the contents of the data item 
referenced by identifier-1 are to have associated with it an end-of-segment indicator, an end-of
message indicator. or an end-of-transmission indicator according to the following schedule. 

If the content of 
then the contents of 

identifier-1 have which means 
identifier-2 is 

associated with it 

0 no indicator no indicator 

1 ESI an end-of-segment indicator 

2 EMI an end-of-message indicator 

3 EGI 
l 

an end-of-group indicator treated as an EMI 

Any character other than 1. 2. or 3 will be interpreted as 0. 

If the content of the data item referenced by identifier-2 is other than 1. 2. or 3. and identifier-1 is not 
specified. then an error is indicated by the value in the data item referenced by data-name-3 
(STATUS KEY) of the area referenced by cd-name. and no data is transferred. 

15. jThe ESI indicates to the MCS that the message segment is complete !The EMI indicates to the MCS 

that the message is complete. 

The EGI is treated by the MCS as the equivalent of an EMI. 

The MCS recognizes these indications and maintains group, message.! and segmentjcontrol. 

16. The hierarchy of ending indicators is EGI. EMI. and ESI. An EGI need not be preceded by an IESI or 
EMI. An EMI need not be preceded by an ESI. 



UP 8613 R1~v 2 SPERRY UNIVAC OS/3 6-88 
1974 AMERICAN NATIONAL STANDARD COBOL 

17. The ADVANCING phrase allows control of the vertical pos1t1oning of each message or message 
segment on a communication device where vertical positioning is applicable. If vertical positioning is 
not applicable on the device. the MCS will ignore the vertical positioning specified or implied. 

18. If identifier-2 is specified and the content of the data item referenced by identifier-2 is zero, the 
ADVANCING phrase is ignored by the MCS. 

19. On a device where vertical positioning is applicable and the ADVANCING phrase is not specified, 
automatic advancing will be provided to act as if the user had specified AFTER ADVANCING 1 LINE. 

20. If the ADVANCING phrase is implicitly or explicitly specified and vertical positioning is applicable, the 
following rules apply: 

a. If identifier-3 or integer is specified, characters transmitted to the communication device will be 
repositioned vertically downward the number of lines equal to the value associated with the 
data item referenced by identifier-3 or integer. 

b. If the BEFORE phrase is used. the message lor message segment jis represented on the 
communication device before vertical repositioning. 

c. If the AFTER phrase is used, the message lor message segment lis represented on the 
communication device after vertical repositioning. 

d. If PAGE is specified. characters transmitted to the communication device will be represented on 
the device before or after (depending upon the phrase used) the device is repositioned to the 
next page. If PAGE is specified but page has no meaning in conjunction with a specific device. 
then advancing will be provided to act as if the user had specified BEFORE or AFTER 
(depending upon the phrase used) ADVANCING 1 LINE. 

6.6.32. SET Statement 

Function: 

The SET statement establishes reference points for table handling operations by setting index-names 
associated with table elements. 

Format 1: 

SET 

Format 2: 

~identifier-1 

1index-name·l 
[.identifier-21 
[. index-name-21 

~ index-name-4 [.index-name-SJ 

TO 1identifier-3f 
index-name-3 
integer - l 

j UP BY t 
1 DOWN BY\ 

jident if ier-4t 
linteger-2 I 

• 

• 

• 



• 

• 

• 

UP-8613 Rev. 2 SPERRY UNIV AC OS/ 3 6-89 
1974 AMERICAN NATIONAL STANDARD COBOL 

Rules: 

1. All references to index-name-1, identifier-1, and index-name-4 apply equally to index-name-2, 
identifier-2, and index-name-5, respectively. 

2. ldentifier-1 and identifier-3 must name either index data items or elementary items described as an 
integer. 

3. ldentifier-4 must be described as an elementary numeric integer. 

4. lnteger-1 and integer-2 may be signed. lnteger-1 must be positive. 

5. Index-names are considered related to a given table and are defined by being specified in the 
INDEXED BY phrase of the OCCURS clause. 

6. If index-name-3 is specified, the value of the index before the execution of the SET statement must 
correspond to an occurrence number of an element in the associated table. 

7 . 

If index-name-4, index-name-5 is specified, the value of the index both before and after the execution 
of the SET statement must correspond to an occurrence number of an element in the associated 
table. If index-name-1, index-name-2 is specified, the value of the index after the execution of the 
SET statement must correspond to an occurrence number of an element in the associated table. The 
value of the index associated with an index-name after the execution of a I SEARCH orl PERFORM 
statement may be undefined.j{See 6.6.30, SEARCH statement; andl 6.6.24, PERFORM statement.) 

In format 1, the following action occurs: 

a. lndex-name-1 is set to a value causing it to refer to the table element that corresponds in 
occurrence number to the table element referenced by index-name-3, identifier-3, or integer-1 
If identifier-3 is an index data item, or if index-name-3 is related to the same table as index
name-1, no conversion takes place. 

b. If identifier- 1 is an index data item, it may be set equal to either the contents of index-name-3 
or identifier-3, where identifier-3 is also an index data item; no conversion takes place in either 
case. 

c. If identifier- 1 is not an index data item. it may be set only to an occurrence number that 
corresponds to the value of index-name-3. Neither identifier-3 nor integer-1 can be used in this 
case. 

d. The process is repeated for index-name-2, identifier-2, etc .. if specified. Each time, the value of 
index-name-3 or identifier-3 is used as it was at the beginning of the execution of the 
statement. Any subscripting or indexing associated with identifier- 1, etc.. is evaluated 

immediately before the value of the respective data item is changed. 

8 In format 2, the contents of index-name-4 are incremented (UP BY) or decremented (DOWN BY) by a 
value that corresponds to the number of occurrences represented by the value of integer-2 or 
identifier-4; thereafter, the process is repeated for index-name-5, etc. Each time, the value of 
identifier-4 is used as it was at the beginning of the execution of the statement. 

9. Table 6-8 indicates the validity of various operand combinations in the SET statement and the 
applicable rule reference . 



UP-8613 Rev. 2 SPERRY UNIVAC OS/3 6-90 

1974 AMERICAN NATIONAL STANDARD COBOL 

Table 6-8. Vs/id Uses of the Format 1 SET Statement 

Receiving Item 
Sending Item 

Integer Data Item Index-name Index Data Item 

Integer I iteral No (rule 7c) Valid (rule 7a) No (rule 7b) 

Integer data item No (rule 7c) Valid (rule 7a) No (rule 7b) 

Index-name Valid (rule 7c) Valid (rule 7a) Valid (rule 7b)* 

Index data item No (rule 7c) Valid (rule 1a) • Valid (rule 7b) • 

*No conversion takes place 

6.6.33. SORT Statement 

Function: 

The SORT statement creates a sort file by executing input procedures or by transferring records from 
another file; sorts the records in the sort file on a set of specified keys; and in the final phase of the sort 

operation. makes available each record from the sort file, in sorted order, to some output procedures or to 
an output file. 

Format: 

SORT 

Rules: 

f i le-name-1 ON !ASCENDING l 
lDESCENDING5 

KEY data-name-1 [.data-name-2) 

[
ON !ASCENDING l KEY data-name-3 [.data-name-4) 

lDESCENDING5 

'[COLLATING SEQUENCE IS alphabet-name]! 

{

INPUT PROCEDURE IS section-name-I [l~~:~UGHf section-name-2J} 

!:!.1.!J!Q file-name-21(.file-name-3) ... j 

{

OUTPUT PROCEDURE IS section-name-3 D~~:~UGHf section-name-4J} 

GIVING Ii le-name-4 

1. File-name-1 must be described in a sort/merge file description entry in the data division. 

2. Section-name-1 represents the name of an input procedure. Section-name-3 represents the name of 
an output procedure. 

3. The file names specified in the USING phrase must not exceed 15. 

4. File-name-2. ffile-name-3. I and file-name-4 must be defined implicitly or explicitly as having 
sequential organization in the FILE-CONTROL paragraph and must be described in a file description 
entry, not in a sort/ merge file description entry, in the data division. The actual size of the logical 
records described for file-name-2. lfile-name-3.land file-name-4 must be equal to the actual size of 
the logical records described for file-name-1. If the data descriptions of the elementary items that 
make up these records are not identical. the programmer then must describe the corresponding 
records so that equal amounts of character positions are allocated for the corresponding records. 

• 

• 

• 



• 

• 

• 

UP-8613 Rev 2 SPERRY UNIVAC OS/3 6-91 

5. 

6. 

7. 

8. 

9. 

10. 

1974 AMERICAN NATIONAL STANDARD COBOL 

Data-name-1, data-name-2, data-name-3, and data-name-4 are KEY data-names and are subject to 
the following rules: 

a. The data items identified by KEY data-names must be described in records associated with file
name-1. 

b. KEY data-names may be qualified. 

c. The data items identified by KEY data-names must not be variable length items. 

d. If file-name-1 has more than one record description. the data items identified by KEY data
names need by described in only one of the record descriptions. 

e. None of the data items identified by KEY data-names can be described by an entry that either 
contains an OCCURS clause or is subordinate to an entry that contains an OCCURS clause. 

The words THRU and THROUGH are equivalent. 

SORT statements may appear anywhere except in the declaratives portion of the procedure division 
or in an input or output procedure associated with a SORT lor MERGE I statement. 

Only one file-name from a multiple file reel can appear in the SORT statement. 

In Level 1, the procedure division of a program contains one SORT statement and a STOP RUN 
statement in the first nondeclarative portion. Other sections consist of only the input and output 

procedures associated with the SORT statement. 

In Level 2. the procedure division may contain more than one SORT statement appearing anywhere 
except: 

a. in the declaratives portion; or 

b. in the input and output procedures associated with a SORT or MERGE statement. 

11. The data-names following the word KEY are listed from left to right in the SORT statement in order of 
decreasing significance without regard to how they are divided into KEY phrases. In the format. data
name-1 is the major key, data-name-2 is the next most significant key, etc. 

a. When the ASCENDING phrase is specified, the sorted sequence will be from the lowest value 
of the contents of the data items identified by the KEY data-names to the highest value. 
according to the rules for comparison of operands in a relation condition. 

b. When the DESCENDING phrase is specified, the sort sequence 1s from the highest value of the 
contents of the data items identified by the KEY data-names to the lowest value, according to 
the rules for comparison of operands 1n a relation condition. 

r--------------------------~ 
1 c. When the KEY data-names are described as DISPLAY floating-point items, the sort sequence 1s I 
I based on the rules for comparison of alphanumeric operands in a relation condition. _J 
L--------------------------



UP-8613 Rev. 2 SPERRY UNIV AC OS/3 6-92 
1974 AMERICAN NATIONAL STANDARD COBOL 

12. The collating sequence that applies to the comparison of the nonnumeric key data items specified is 
determined in the following order of precedence: 

a. First the collating sequence established by the COLLATING SEQUENCE phrase, if specified, in 

the SORT statement. 

b. Second, the collating sequence established as the program collating sequence. 

13. The input procedure must consist of one or more sections that appear contiguously in a source 
program and do not form a part of any output procedure. To transfer records to the file referenced by 
file-name-1, the input procedure must include the execution of at least one RELEASE statement. 
Control must not be passed to the input procedure except when a related SORT statement is being 
executed. The input procedure can include any procedures needed to select, create, or modify 
records. The restrictions on the procedural statements within the input procedure are as follows: 

a. The input procedure must not contain any SORT,IMERGE,lor CALL statements. 

b. The input procedure must not contain any explicit transfers of control to points outside the 
input procedure; ALTER, GO TO, and PERFORM statements in the input procedure are not 
permitted to refer to procedure-names outside the input procedure. COBOL statements are 
allowed that will cause an implied transfer of control to declaratives. 

c. The remainder of the procedure division must not contain any transfers of control to points 
inside the input procedure; ALTER GO TO and PERFORM statements in the remainder of the 
procedure division must not refer to procedure-names within the input procedure. 

14. If an input procedure is specified, control is passed to the input procedure before file-name-1 is 
sequenced by the SORT statement. The compiler inserts a return mechanism at the end of the last 
section in the input procedure and when control passes the last statement in the input procedure, the 
records that have been released to file-name-1 are sorted. 

15. The output procedure must consist of one or more sections that appear contiguously in a source 
program and do not form part of any input procedure. To make sorted records available for 
processing, the output procedure must include the execution of at least one RETURN statement. 
Control must not be passed to the output procedure except when a related SORT statement is being 
executed. The output procedure may consist of any procedures needed to select, modify, or copy the 
records that are being returned, one at a time in sorted order, from the sort file. The restrictions on 
the procedural statements within the output procedure are as follows: 

a. The output procedure must not contain any SORT,! MERGE, lor CALL statements. 

b. The output procedure must not contain any explicit transfers of control to points outside the 
output procedure; ALTER, GO TO, and PERFORM statements in the output procedure are not 
permitted to refer to procedure-names outside the output procedure. COBOL statements are 
allowed that will cause an implied transfer of control to declaratives. 

c. The remainder of the procedure division must not contain any transfers of control to points 
inside the output procedure; ALTER, GO TO and PERFORM statements in the remainder of the 
procedure division are not permitted to refer to procedure-names within the output procedure. 

• 

• 

• 



• 

• 

• 

UP-8613 Rev. 2 SPERRY UNIV AC OS/3 6-93 
1974 AMERICAN NATIONAL STANDARD COBOL 

16. If an output procedure is specified, control passes to it after file-name-1 is sequenced by the SORT 
statement. The compiler inserts a return mechanism at the end of the last statement in the output 
procedure, the return mechanism provides for termination of the sort and then passes control to the 
next executable statement after the SORT statement. Before entering the output procedure, the sort 
procedure reaches a point at which it can select the next record in sorted order when requested. The 
RETURN statements in the output procedure are the requests for the next record. 

17. Segmentation as defined in Section 10 can be applied to programs containing the SORT statement in 
accordance with the following rules. 

a. If a SORT statement appears in a section that is not in an independent segment, then any input 
procedures or output procedures referenced by that SORT statement must appear: 

• totally within nonindependent segments; or 

• wholly contained in a single independent segment. 

b. If a SORT statement appears in an independent segment, then any input procedures or output 
procedures referenced by that SORT statement must be contained: 

• totally within nonindependent segments; or 

• wholly within the same independent segment as that SORT statement. 

18. If the USING phrase is specified, all the records in file-name-2 land file-name-31 are transferred 
automatically to file-name-1. At the time of execution of the SORT statement, file-name-2land file- I 

l name-3 lmust not be open. The SORT statement automatically initiates the processing of, makes 
available the logical records for, and terminates the processing of file-name-2land file-name-3.IThese 
implicit functions are performed so that any associated USE procedures are executed. The 
terminating function for all files is performed as if a CLOSE statement, without optional phrases, had 
been executed for each file. The SORT statement also automatically performs the implicit functions of 
moving the records from the file area of file-name-2 land file-name-3 Ito the file area for file-name-1 
and the release of records to the initial phase of the sort operation. 

19. If the GIVING phrase is specified, all the sorted records in file-name-1 are automatically written on 
file-name-4 as the implied output procedure for this SORT statement. At the time of execution of the 
SORT statement, file-name-4 must not be open. The SORT statement automatically initiates the 
processing of, releases the logical records to, and termines the processing of file-name-4. These 
implicit functions are performed so that any associated USE procedures are executed. The 
terminating function is performed as if a CLOSE statement, without optional phrases, had been 
executed for the file. The SORT statement also automatically performs the implicit functions of the 
return of the sorted records from the final phase of the sort operation and the moving of the records 
from the file area for file-name-1 to the file area for file-name-4. 

20. The mode specified in the implementor-name of the ASSIGN clause for file-name-2, file-name-3, or 
file-name-4 must be the same as the mode specified for file-name-1 . 



UP-8613 Rev. 2 SPERRY UNIV AC OS/3 6-94 
1974 AMERICAN NATIONAL STANDARD COBOL 

6.6.34. START Statement 

Function: 

The START statement provides a basis for logical positioning within a relative, indexed, orIT~~jfile for 
subsequent sequential retrieval of records. 

Format 1 (Relative and Indexed Files): 

START file-name ;,.:·THAN l d•to-•omol 
NOT LESS THAN~ 
NOT < 

[;INVALID KEY imperative-statement] 

~-----------------------, 

Format 2 (ISAM Files): I 
I I 
I START file-name [KEY {IS EQUAL TO J data-name] I 

:I : ~ ;OT LE SS THAN Ill 

IS NOT< 
1 [;INVALID KEY imperative-statement] I 
L------~--------------~ 

NOTE: 

The required relational characters >. <. and = are not underlined to avoid confusion with other symbols, 
such as ~ (greater than or equal to). 

Rules: 

1. File-name must be the name of a file with sequential or dynamic access. 

2. Data-name may be qualified. 

3. File-name must be open in the INPUT or 1-0 mode at the time that the START statement is executed. 
(See 6.6.23, the OPEN statement.) 

4. The execution of the START statement causes the value of the FILE STATUS data item, if any, 
associated with file-name to be updated. (See 8.2.3, 1-0 status description.) 

5. The INVALID KEY phrase must be specified if no applicable format 1 USE procedure is specified for 
file-name. 

6. If the KEY phrase is not specified, the relational operator IS EQUAL TO is implied. 

*Applies only to 90125, 90130, 90130 8, and 90140 systems 

• 

• 

• 



• 

• 

• 

UP-8613 Rev. 2 SPERRY UNIV AC OS/3 6-95 
1974 AMERICAN NATIONAL STANDARD COBOL 

NOTE: 

Rules 7 through 10 pertain to relative files only. 

7. File-name must be the name of a relative file. 

8. Data-name, if specified, must be the data item specified in the RELATIVE KEY phrase of the 
associated file control entry. 

9. The type of comparison specified by the relational operator in the KEY phrase occurs betwen a key 
associated with a record in the file referenced by file-name and a data item as specified in rule 10. 

• The current record pointer is positioned to the first logical record currently existing in the file 
whose key satisfies the comparison. 

• If the comparison is not satisfied by any record in the file, an INVALID KEY condition exists, the 
execution of the START statement is unsuccessful, and the position of the current record 
pointer is undefined. (See 8.2.5, the INVALID KEY condition.) 

10. The comparison described in rule 9 uses the data item referenced by the RELATIVE KEY clause 
associated with file-name. 

NOTE: 

Rules 11 through 17 pertain to indexed files only . 

11. File-name must be the name of an indexed file. 

12. If the KEY phrase is specified, data-name may reference a data item specified as a record key 
associated with file-name. The data-name may also reference any alphanumeric data item subordinate 
to the data-name specified as a record key associated with file-name. However, when a data-name 
references a subordinate record key data item, the leftmost character position of the data-name must 
correspond to the leftmost character position of that record key data item. 

13. The type of comparison specified by the relational operator in the KEY phrase occurs between a key 
associated with a record in the file referenced by file-name and a data item as specified in rule 14. If 
file-name references an indexed file and the operands are of unequal size, comparison proceeds as 
though the longer one were truncated on the right such that its length is equal to that of the shorter. 
All other nonnumeric comparison rules apply except that the presence of the PROGRAM COLLATING 
SEQUENCE clause will have no effect on the comparison. (See 6.4.1.1 .2.) 

• The current record pointer is positioned to the first logical record currently existing in the file 
whose key satisfies the comparison. 

• If the comparison is not satisfied by any record in the file, an INVALID KEY condition exists, the 
execution of the START statement is unsuccessful, and the position of the current record 
pointer is undefined. (See 8.2.5.) 

14. If the KEY phrase is specified, the comparison described in rule 9 uses the data item referenced by 

data-name . 



UP-8613 Rev. 2 SPERRY UNIV AC OS/3 6-96 
1974 AMERICAN NATIONAL STANDARD COBOL 

15. If the KEY phrase is not specified, the comparison described in rule 9 uses the data item referenced 
in the RECORD KEY clause associated with file-name. 

16. Upon completion of the successful execution of the START statement, a key of reference is 
established and used in subsequent format 2 READ statements (6.6.25) as follows: 

• If the KEY phrase is not specified, the prime record key specified for file-name becomes the key 
of reference. 

• If the KEY phrase is specified, and data-name is specified as a record key for file-name, that 
record key becomes the key of reference. 

• If the KEY phrase is specified, the data-name is not specified as a record key for file-name, the 
record key whose leftmost character position corresponds to the leftmost character position of 
the data item specified by data-name becomes the key of reference. 

17. If the execution of the START statement is not successful, the key of reference is undefined. 

NOTE: 

Rules 18 through 20 pertain to(Z~&:]tiles only. 

~-------------------------------~ 
18. File-name must be the name of an ISAM file. I 

I 
19. Data-name, if specified, must be the data item specified in the RECORD KEY clause of the associated I 

file control entry. 

20. The type of comparison specified or implied occurs between a key associated with a record in the file 
referenced by file-name and the data item specified in the RECORD KEY clause of the associated file 
control entry. All nonnumeric comparison rules apply except that the presence of the PROGRAM 
COLLATING SEQUENCE clause will have no effect on the comparison. (See 6.4.1.1 for a description 
of the comparison of nonnumeric operands.) 

• The current record pointer is positioned to the first logical record currently existing in the file 
whose key satisfies the comparison. 

• If the comparison is not satisfied by any record in the file, an INVALID KEY condition exists, the 
execution of the START statement is unsuccessful, and the position of the current record 

L __ ~m~~~iM~~8.2~----------------~ 

6.6.35. STOP Statement 

Function: 

The STOP statement causes a permanent or temporary suspension of the execution of the object program. 

Format: 

STOP j RUN t 
111teral5 

*Applies only to 90125, 90130, 90130 8, and 90140 systems 

• 

• 

• 



• 

• 

• 

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 6-97 
1974 AMERICAN NATIONAL STANDARD COBOL 

Rules: 

1. The literal may be numeric or nonnumeric or may be any figurative constant except ALL. 

2. If the literal is numeric, then it must be an unsigned integer. 

3. If a STOP RUN statement appears in a consecutive sequence of imperative statements within a 
sentence, it must appear as the last statement in that sequence. 

4. If the RUN phrase is used, execution of the run unit is terminated and control is transferred to the 
operating system. 

5. If STOP literal is specified, the literal is communicated to the operator and execution is suspended. 
When the operator acknowledges the communication, execution resumes at the next executable 
statement in sequence. 

6.6.36. STRING Statement 

Function: 

The STRING statement provides juxtaposition of the partial or complete contents of two or more data items 
into a single data item. 

Format: 

STRING !identifier-ll[·identifier-2] ... DELIMITED BY lidentifier-3! 
11iteral-l 5 ,literal-2 literal-3 

SIZE 

Rules: 

[

, ~ i d e n t i f i e r - 4l 
11iteral-4 5 [

,identifier-5] ... DELIMITED BY 
, I i t e r a I - 5 

INTO identifier-7 [WITH POINTER identifier-8] 

[;ON OVERFLOW imperative-statement] 

l i dent i f i er - 6 !J ... 
literal-6 
SIZE 

1. Each literal may be any figurative constant without the optional word ALL. 

2. All literals must be described as nonnumeric literals, and all identifiers, except identifier-8, must be 
described implicitly or explicitly as usage is DISPLAY. 

3. ldentifier-7 must represent an elementary alphanumeric data item without editing symbols or the 
JUSTIFIED clause. 

4. ldentifier-8 must represent an elementary numeric integer data item of sufficient size to contain a 
value equal to the size plus 1 of the area referenced by identifier-7. The symbol P may not be used in 
the PICTURE character-string of identifier-8 . 



UP-8613 Rev. 2 SPERRY UNIVAC OS/3 6-98 

5. 

1974 AMERICAN NATIONAL STANDARD COBOL 

Where identifier-1, identifier-2, ... , or identifier-3 is an elementary numeric data item, it must be 
described as an integer without the symbol P in its PICTURE character-string. 

6. All references to identifier-1, identifier-2, identifier-3, literal-1, literal-2, literal-3 apply equally to 
identifier-4, identifier-5, identifier-6, literal-4, literal-5 and literal-6, respectively, and all recursions 
thereof. 

7. ldentifier-1, literal-1, identifier-2, literal-2, represent the sending items. ldentifier-7 represents the 
receiving item. 

8. Literal-3, identifier-3, indicate the characters delimiting the move. If the SIZE phrase is used, the 
complete data item defined by identifier-1, literal-1 identifier-2, literal-2, is moved. When a figurative 
constant is used as the delimiter, it stands for a single character nonnumeric literal. 

9. When a figurative constant is specified as literal-1, literal-2, literal-3, it refers to an implicit 1-
character data item whose usage is DISPLAY. 

10. When the STRING statement is executed, the transfer of data is governed by the following rules: 

a. Those characters from literal-1 , literal-2 or form the contents of the data item referenced by 
identifier-1, identifier-2, are transferred to the contents of identifier-7 in accordance with the 
rules for alphanumeric to alphanumeric moves, except that no space-filling will be provided. 
(See 6.6.20, the MOVE statement.) 

b. If the DELIMITED phrase is specified without the SIZE phrase, the contents of the data item 
referenced by identifier-1, identifier-2, or the value of literal-1, literal-2, are transferred to the 
receiving data item in the sequence specified in the STRING statement beginning with the 
leftmost character and continuing from left to right until the end of the data item is reached, or 
until the characters specified by literal-3, or by the contents of identifier-3 are encountered. 
The characters specified by literal-3 or by the data item referenced by identifier-3 are not 
transferred. 

c. If DELIMITED BY SIZE is specified, the entire contents of literal-1, literal-2, or the contents of 
the data item referenced by identifier-1, identifier-2, are transferred, in the sequence specified 
in the STRING statement. to the data item referenced by identifier-7 until all data has been 
transferred or the end of the data item referenced by identifier-7 has been reached. 

11. If the POINTER phrase is specified, identifier-8 is explicitly available to the programmer, who is 
responsible for setting its initial value. The initial value must not be less than 1. 

12. If the POINTER phrase is not specified, rules 13 through 16 apply as if the user had specified 
identifier-8 with an initial value of 1. 

13. When characters are transferred to the data item referenced by identifier-7, the moves behave has 
though the characters were moved one at a time from the source into the character position of the 
data item referenced by identifier-7 designated by the value associated with identifier-8, and then 
identifier-8 was increased by one prior to the move of the next character. The value associated with 
identifier-8 is changed during execution of the STRING statement only by the behavior specified. 

14. After execution of the STRING statement, only the portion of the data item referenced by identifier-7 
that was referenced during the execution of the STRING statement is changed. All other portions of 
the data item referenced by identifier-7 contain data that was present before this execution of the 
STRING statement. 

• 

• 

• 



• 

• 

• 

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 6-99 
1974 AMERICAN NATIONAL STANDARD COBOL 

15. If at any point at or after initialization of the STRING statement, but before execution of the STRING 
statement is completed, the value associated with identifier-8 is either less than 1 or exceeds the 
number of character positions in the data item referenced by identifier-7, no (further) data is 
transferred to the data item referenced by identifier-7, and the imperative statement in the ON 
OVERFLOW phrase is executed, if specified. 

16. If the ON OVERFLOW phrase is not specified when the conditions described in rule 15 are 
encountered, control is transferred to the next executable statement. 

6.6.37. SUBTRACT Statement 

Function: 

The SUBTRACT statement is used to subtract one, or the sum of two or more, numeric data items from one 
or more items, and set the values of one or more items equal to the results. 

Format 1: 

SUBTRACT jidentifier-q [,identifier-2] ... 

Format 2: 

FROM 

[;ON 

11iteral-l f ,literal-2 

identifier-m [ROUNDED] lr--:-[-.-i-de_n_t~if_i_e_r---n~[-R_O_U_N_D_E_D_J_]_.-.-.. I 
lil!. ERROR imperative-statement] 

SUBTRACT j i d en t i f i e r - l l [, i de n t i f i e r - 2 J . . . FR OM S i d en t i f i e r - m l 
11iteral-l f ,literal-2 11iteral-m f 

Format 3: 

GIVING identif ier-n [ROUNDED] I[. identifier-o [ROUNDED]]==:] 

[;ON §J1.! ERROR imperative-statement] 

SUBTRACT SCORRESPONDINGt identifier-I FROM identif ier-2 [ROUNDED] 
1CORR f 

[;ON lil!. ERROR imperative-statement] 

Rules: 

1. Each identifier must refer to a numeric elementary item except that: 

a. In format 2, each identifier following the word GIVING must refer to either an elementary 
numeric item or an elementary numeric edited item. 

b. In format 3, each identifier must refer to a group item. 

2. Each literal must be a numeric literal. 



UP-8613 Rev. 2 SPERRY UNIV AC OS/3 6-100 

3. 

1974 AMERICAN NATIONAL STANDARD COBOL 

The composite of operands must not contain more than 18 digits. (See 6.5.4, the arithmetic 
statements.) 

a. In format 1, the composite of operands is determined by using all the fixed-point operands in a 

given statement. 

b. In format 2, the composite of operands is determined by using all the fixed-point operands in a 
given statement, excluding the data items that follow the word GIVING. 

c. In format 3, the composite of operands is determined separately for each pair of corresponding 
data items. 

4. CORR is an abbreviation for CORRESPONDING. 

5. See 6.5.1, the ROUNDED phrase; 6.5.2, the SIZE ERROR phrase, 6.5.3, the CORRESPONDING 
phrase; 6.5.4, the arithmetic statements; 6.5.5, overlapping operands; and 6.5.6, multiple results in 
arithmetic statements. 

6. In format 1, all literals or identifiers preceding the word FROM are added together, and this total is 
subtracted from the current value of identifier-m storing the result immediately into identifier-m.lThis I 
I process is repeated for each operand following the word FROM.I 

7. In format 2, all literals or identifiers preceding the word FROM are added together, the sum is 
subtracted from literal-m or identifier-m, and the result of the subtraction is stored as the new value 
of identifier-n,jidentifier-o, etc. I 

8. If format 3 is used, data items in identifier-1 are subtracted from and stored into corresponding data 
items in identifier-2. 

1--------------------------------1 
16.6.38. TRACE Statement 
I 
I Function: 

I 
I 

The TRACE statement initiates or terminates the trace function. 

I Format: 

I 
I 
I 
I 

1READYl 
1RESEJ5 

TRACE 

I Rules: 

I 
I 
I 
I 
I 
I 
I 

1. 

2. 

3. 

The trace function displays, on SYSLST (4.3.3), the name and line number of a section or paragraph 
at the start of its execution. 

The statement READY TRACE initiates trace activity when the flow of program control passes to it. 

The RESET TRACE statement terminates trace activity. 

L 4. The TRACE statement may appear anywhere within the procedure division or the debugging packet. 1 ______________________________ ,__J 

• 

• 

• 



• 

• 

• 

UP-8613 Rev. 2 SPERRY UNIV AC OS/3 6-101 
1974 AMERICAN NATIONAL STANDARD COBOL 

:S.6.3g,- TRANSFORMStatement - - - -- - - - - - - - - - - - - -1 

I Function: 

I 
I 
I 

The TRANSFORM statement may be used to alter characters of an identifier according to a user-defined 
transformation rule or table. 

I Format 1: 

I 
I 
I 
I 
I 

TRANSFORM identifier-I [, identifier-2] ... CHARACTERS 

FROM lidentifier-3 ! TO lidentifier-4 ! -- -
nonnumeric-1 iteral-I nonnumeric- I iteral -2 
figurative-constant-I f igurat ive-constant-2 

I Format 2: 

I 
I 
I 
I 

TRANSFORM identifier-I [, identif ier-2] ... CHARACTERS 

I Rules: 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 

1 . 

2. 

3. 

4. 

5. 

6. 

7. 

identifier-5 

All identifiers must be described either explicitly or implicitly as USAGE IS DISPLAY. ldentifier-3, 
identifier-4, and identifier-5 may not be variable-length operands. 

In format 1, identifier-3 and identifier-4 must not exceed 256 characters in length. The length of 
identifier-4 must be either equal to the length of identifier-3 or have a length of one character. 

In format 1, all figurative constants are permitted except ALL nonnumeric literal. 

In format 1, a character must not be duplicated in identifier-3 or in nonnumeric-literal-1. 

In format 2, identifier-5 must have a length of 256 characters. 

The least significant digit position of a signed, decimal numeric display item without a SEPARATE 
SIGN clause is treated as a single character, not a signed digit. The most significant digit position of a 
signed decimal numeric display item with a SIGN IS LEADING CHARACTER clause is treated as a 
single character, not a signed digit. 

For format 1, the following rules, summarized in Table 6-9, describe the various FROM/TO 
combinations: 

• identifier-3 TO identifier-4 

identifier-3 TO nonnumeric-literal-2 

identifier-3 TO figurative-constant-2 

nonnumeric-literal-1 TO identifier-4 
I 
I 
I L ____ non~meric~teral.:2_ TO nonnum~ic-literal-~ ____________ _J 



UP-8613 Rev. 2 SPERRY UNIVAC OS/3 6-102 
197 4 AMERICAN NATIONAL ST ANDA RD COBOL 

r- - - - ~n~eric-literal-1 TO figurative~nstan~ - - - - - - - - - - - -1 

• 

If the FROM and the TO operands have the same length, any occurrence in identifier-1, 
identifier-2, etc, of a character (or the single character) in operand-1 is replaced by the 
character (or the single character) in the corresponding position of operand-2. 

If the FROM operand exceeds one character and the TO operand is only one character, 
any occurrence in identifier-1, identifier-2, etc. of any character in operand-1 is replaced 
by the single character in operand-2. 

figurative-constant-1 TO identifier-4 

figurative-constant-1 TO nonnumeric-literal-2 

figurative-constant-1 TO figurative-constant-2 

Length of operand-1 and operand 2 is one character. Any occurrence in identifier-1 of the 
single character in operand-1 is replaced by the single character in operand-2. 

8. For format 2, identifier-5 is a 0-255 binary-value positional translate table. Any character in 
identifier-1 with a binary value of 0 will be transformed to the character in the first position of 
identifier-5; any character in identifier-1 with a binary value of 1 will be transformed to the character 
in the second position of identifier-5, etc. 

Table 6-9. Combination of FROM and TO Options in a TRANSFORM Statement (Part 1 of 2) 

Operands Rule I dentifier-1 FROM TO ldentifier-1 
Before After 

FROM All occurrences of figurative-constant-1 in the 1 "2""3 QUOTE ZERO 102003 
figurative-constant-1 item represented by identifier-1 are replaced by 
TO figurative-eonstant-2. (Each operand must be a 
figurative-con stant-2 single character.) 

FROM All occurrences of figurative-constant-1 in the 1 MD.3 SPACE "7" 17273 
figurative-con stant-1 item represented by idnetifier-1 are replaced 
TO by nonnumeric-literal-2. (Each operand must 
nonnumeric-literal-2 be a single character.) 

FROM All occurrences of figurative-constant-1 in the 1 D.2 D.3 SPACE ALPHA 18283 
figurative-constant-1 item represented by identifier-1 are replaced by (current 
TO the item represented by identifier-2. (Each value of 
identifier-4 operand must be single character.) ALPHA~ 8) 

FROM All occurrences of any character of non numeric- A812X7P "1234567890" SPACE A8MXD.P 
nonnumeric-literal-1 literal-1 in the item represented by identifier-1 
TO are replaced by the single~haracter figurative-
figurative--constant-2 constant-2. 

FROM Nonnumeric-literal-1 and nonnumeric-literal-2 A8C012X "A8COEFGHIJ" "1234567890" 123412X 
non numeric-I iteral-1 must be equal in length. or non numeric-
TO literal-2 must be a single character. 
nonnumeric-literal-2 

If the operands are equal in length, any character 
in the item represented by identifier-1 that is 
replaced by the character in the corresponding 
position of nonnumeric-literal-2. 

If nonnumeric-literal-2 is a single character, then A821X73 "123456 7890" "L" A8LLXLL 
all occurrences of any character of nonnumeric-
literal-1 in the item represented by identifier-1 
are replaced by the single character in nonumeric-
literal-2. 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

L-----------------------------~ 

• 

• 

• 



• 

• 

• 

UP-8613 Rev. 2 SPERRY UNIV AC OS/3 6-103 
1974 AMERICAN NATIONAL STANDARD COBOL 

r--- - ---·- - - - ------------ ----1 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Table 6-9. Combination of FROM and TO Options in a TRANSFORM Statement (Part 2 of 2) I 

Operands Rule Identifier· 1 
Before 

FROM The two operands must be equal in length, or 1 L'.2!'.DEF 
nonnumeric-literal-1 identifier-4 must represent a single<haracter item. 
TO 
identifier-4 If the operands are equal in length, any character 

in the item represented by identifier-1 that is 
equal to a character in nonnumeric-literal-1 is 
replaced by the character in the corresponding 
position of the item represented by identifier-4. 

If identifier-4 is a single character, then all ABC 
occurrences of any character of nonnumeric-literal-1 
in the item represented by identifier-1 are replaced 
by the character represented by identifier-4. 

FROM All occurrences of any character of the item repre- A12B 
identifier-3 sented by identifier-3 in identifier-1 are replaced 

TO by the single character figurative-constant-2. 
figurative.constant-2 

FROM The two operands must be equal in length, or ABCD 
identifier-3 nonnumeric-literal-1 must be a single-character 
TO item. 
nonnumeric-literal-2 

If the operands are equal in length, any character in 
the item represented by identifier-1 that is equal to 
a character in the item represented by identifier-3 
is rpelaced by the character in the corresponding 
position of nonnumeric-literal-2. 

If nonnumeric-literal-2 is a single character, then ABCD 
all occurrences of any character of the item repre-
sented by identifier-3 in the item represented by 
identifier-1 are replaced by nonnumeric-literal-2. 

FROM Any character in the item represented by 1AB4 

identifier-3 identifier-1 that is equal to a character in the item 
TO represented by identifier-3 is replaced by the 
identifier-4 character in the corresponding position of the 

item represented by identifier-4. 

Both operands must be of equal length. Each 
of the operands may contain one or more 
characters. 

FROM 

"f\.12DEF" 

ADE 

GAMMA 
(current 
value of 
GAMMA = ABC.) 

ALPHA 
(current value 
of ALPHA= 
A12B) 

DELTA 
(current value 
of DELTA= 
ABCDEF) 

ITEM-A 
(current value 
of ITEM·A = 
1234) 

TO 

BETA 
(current value 
of BETA= 
FED21f\.) 

GAMMA 
(current value 
of GAMMA=1) 

QUOTE 

"DCBA" 

"6" 

ITEM·B 
(current value 
of ITEM-B = 
ABCD) 

ldentifier-1 
After 

EFDF21L'. 

1BC 

"12" 

DACD 

6666 

AABD 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

L _______________________________ J 

6.6.40. UNSTRING Statement 

Function: 

The UNSTRING statement causes contiguous data in a sending field to be separated and placed into 
multiple receiving fields. 

Format: 

UNSTRING identifier-I 

L
DELIMITED BY [All] ~identifier-2l] 

11iteral-l f 

[ 
0 R [ AL L I j i de n t i f i e r - 3 l] . 

11iteral-2 f 
INTO identifier-4 [,DELIMITER IN identifier-5] [,COUNT IN identifier-6] 
L.identifier-7 [,DELIMITER IN identifier-BJ [,COUNT IN identifier-91] 
[WITH POINTER ident if ier-10] [TALLYING IN identif ier-11] 
[;ON OVERFLOW imperative-statement] 



UP-8613 Rev. 2 SPERRY UNIV AC OS/3 6-104 

Rules: 

1. 

2. 

1974 AMERICAN NATIONAL STANDARD COBOL 

Each literal must be a nonnumeric literal, or any figurative constant without the optional word ALL. 

ldentifier-1, identifier-2, identifier-3, identfier-5, and identifier-8 must be described, implicitly or 
explicitly, as an alphanumeric data item. 

3. ldentifier-4 and identifier-7 may be described as either alphabetic (except that the symbol B may not 
be used in the PICTURE character-string), alphanumeric, or numeric (except that the symbol P may 
not be used in the PICTURE character-string) and must be described as usage is DISPLAY. 

4. ldentifier-6, identifier-9, identifier-10, and identifier-11 must be described as elementary numeric 
integer data items (except that the symbol P' may not be used in the PICTURE character-string). 

5. No identifier may name a level-88 entry. 

6. The DELIMITER IN phrase and the COUNT IN phrase may be specified only if the DELIMITED BY 
phrase is specified. 

7. All references to identifier-2, literal-1 identifier-4, identifier-5 and identifier-6, apply equally to 
identifier-3, literal-2, identifier-7, identifier-8 and identifier-9, respectively, and all recursions 
thereof. 

8. ldentifier-1 represents the sending area. 

9. ldentifier-4 represents the data receiving area. ldentifier-5 represents the receiving area for 
delimiters. 

10. Literal-1 or the data item referenced by identifier-2 specifies a delimiter. 

11. ldentifier-6 represents the count of the number of characters within the data item referenced by 
identifier-1 isolated by the delimiters for the move to identifier-4. This value does not include a count 
of the delimiter characters. 

12. The data item referenced by identifier-10 contains a value that indicates a relative character position 
within the area defined by identifier-1. 

13. The data item referenced by identifier-11 is a counter that records the number of data items acted 
upon during the execution of an UNSTRING statement. 

14. A figurative constant used as the delimiter represents a single-character nonnumeric literal. 

When the ALL phrase is specified, one occurrence or two or more contiguous occurrences of literal-1 
(figurative constant or not), or the contents of the data item referenced by identifier-2, are treated as 
only one occurrence. This occurrence is moved to the receiving data item according to rule 19d. 

15. When any examination encounters two contiguous delimiters, the current receiving area is either 
space-or zero-filled according to the description of the receiving area. 

16. Literal-1 or the contents of the data item referenced by identifier-2 can contain any character in the 
computer character set. 

• 

• 

• 



• 

• 

• 

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 6-105 
1974 AMERICAN NATIONAL STANDARD COBOL 

17. Each literal-1 or the data item referenced by identifier-2 represents one delimiter. When a delimiter 
contains two or more characters, all the characters must be present in contiguous positions of the 
sending item and in the order given to be recognized as a delimiter. 

18. When two or more delimiters are specified in the DELIMITED BY phrase, an OR condition exists 
between them. Each delimiter is compared to the sending field. If a match occurs, the characters in 
the sending field are considered to be a single delimiter. No characters in the sending field can be 
considered a part of more than one delimiter. 

Each delimiter is applied to the sending field in the sequence specified in the UNSTRING statement. 

19. When the UNSTRING statement is initiated, the current receiving area is the data item referenced by 
identifier-4. Data is transferred from the data item referenced by identifier-1 to the data item 
referenced by identifier-4 according to the following rules: 

a. If the POINTER phrase is specified, the string of characters referenced by identifier-1 is 
examined beginning with the relative character position indicated by the contents of the data 
item referenced by identifier-10. If the POINTER phrase is not specified, the string of characters 
is examined beginning with the leftmost character position. 

b. If the DELIMITED BY phrase is specified, the examination proceeds left to right until either a 
delimiter specified by the value of literal-1 or the data item referenced by identifier-2 is 
encountered. (See rule 17.) If the DELIMITED BY phrase is not specified, the number of 
characters examined is equal to the size of the current receiving area. However, if the sign of 
the receiving item is defined as occupying a separate character position, the number of 
characters examined is one less than the size of the current receiving area. 

If the end of the data item referenced by identifier-1 is encountered before the delimiting 
condition is met, the examination terminates with the last character examined. 

c. The characters thus examined (excluding the delimiting characters if any) treated as an 
elementary alphanumeric data item and are moved into the current receiving area according to 
the rules for the MOVE statement. 

d. If the DELIMITER IN phrase is specified, the delimiting characters are treated as an elementary 
alphanumeric data item and are moved into the data item referenced by identifier-5 according 
to the rules for the MOVE statement. If the delimiting condition is the end of the data item 
referenced by identifier-1, then the data item referenced by identifier-5 is space-filled. 

e. If the COUNT IN phrase is specified, a value equal to the number of characters thus examined 
(excluding the delimiter character if any) is moved into the area referenced by identifier-6 

according to the rules for an elementary move. 

f. If the DELIMITED BY phrase is specified, the string of characters is further examined beginning 
with the first character to the right of the delimiter. If the DELIMITED BY phrase is not specified, 
the string of characters is further examined beginning with the character to the right of the last 
character transferred. 

g. After data is transferred to the data referenced by identifier-4, the current receiving area is the 
data item referenced by identifier-7. The behavior described in rules 19b through 19f is 
repeated until either all the characters are exhausted in the data item referenced by identifier-1 
or until there are no more receiving areas. 



UP-8613 Rev. 2 SPERRY UNIVAC OS/3 6-106 
1974 AMERICAN NATIONAL STANDARD COBOL 

20. The initialization of the contents of the data items associated with the POINTER phrase or the 
TALLYING phrase is the responsibility of the user. 

21 . The contents of the data item referenced by identifier-10 will be incremented by 1 for each character 
examined in the data item referenced by identifier-1 . When the execution of an UNSTRING statement 
with a POINTER phrase is completed, the contents of the data item referenced by identifier-10 will 
contain a value equal to the initial value plus the number of characters examined in the data item 
referenced by identifier-1 . 

22. When the execution of an UNSTRING statement with a TALLYING phrase is completed, the contents 
of the data item referenced by identifier-11 contain a value equal to its initial value plus the number 
of data receiving items acted upon. 

23. Either of the following situations causes an overflow condition: 

a. An UNSTRING is initiated, and the value in the data item referenced by identifier-10 is less 
than 1 or greater than the size of the data item referenced by identifier-1. 

b. During execution of an UNSTRING statement, all data receiving areas have been acted upon, 
and the data item referenced by identifier-1 contains characters that have not been examined. 

24. When an overflow condition exists, the UNSTRING operation is terminated. If an ON OVERFLOW 
phrase has been specified, the imperative statement included in the ON OVERFLOW phrase is 
executed. If the ON OVERFLOW phrase is not specified, control is transferred to the next executable 
statement. 

25. The evaluation of subscripting and indexing for the identifiers is as follows: 

a. Any subscripting or indexing associated with identifier-1, identifier-10, or identifier-11 is 
evaluated only once, immediately before any data is transferred as the result of the execution of 
the UNSTRING statement. 

b. Any subscripting or indexing associated with identifier-2, identifier-3, identifier-4, identifier-5, 
identifier-6 is evaluated immediately before the transfer of data into the respective data item. 

6.6.41. USE Statement 

Function: 

• The USE ERROR PROCEDURE statement specifies procedures for input/output error handling that 
are in addition to the standard procedures provided by the input/output control system. 

• The USE FOR DEBUGGING statement identifies the user items that are to be monitored by the 
associated debugging section. 

1.- -- -- - --- - ----- - --- - - ----- --, 
• The LABEL PROCEDURE statement specifies procedures for input/output tape label handling that are I 

L_ in addition to the standard label procedures provided by the input/output control system. _J -----------------------------

• 

• 

• 



• 

• 

• 

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 
197 4 AMERICAN NATIONAL ST ANDA RD COBOL 

Format 1: 

USE AFTER STANDARD 5EXCEPTION l 
hRROR 5 

Format 2: 

PROCEDURE ON~file-name-ll[.file-name-2] 
INPUT 
OUTPUT 
I - 0 

!EXTEND I 

USE FOR DEBUGGING 0 Nl c d - n a m e - 1 
[8J..! REFERENCES OF] 

cd-name-2 

file-name-1 

procedure-name-I 

ALL PROCEDURES 

[ALL REFERENCES OF] identifier-2 

file-name-2 

procedure-name-2 

ALL PROCEDURES 

·-

-

I~ 

~-------------------------, 
I Format 3: I 

I 
II USE 5AFTER l STANDARD [BEGINNING] [f.!.!!.] I 

1BEFORE5 ENDING REEL I 
: LABEL PROCEDURE ON ~f i le-name-1[ ,f i le-name-2] .. -~· I 

INPUT I 
I OUTPUT I 
L-------------------------~ 

Rules: 

6-107 

1. A USE statement must immediately follow a section header in the declaratives section and must be 
followed by a period followed by a space. The remainder of the section must consist of zero, one, or 
more procedural paragrahs that define the procedures to be used. 

2. The USE statement itself is never executed; it merely defines the conditions calling for the execution 
of the USE procedures. 

3. Appearance of a file-name in a USE statement must not cause the simultaneous request for 
execution of more than one USE procedure. 

4. A sort or merge file may only be referenced in a format 2 USE statement. 

5. Within a USE procedure, there must not be any reference to any nondeclarative procedures. 

6. 

Conversely, in the nondeclarative portion, there must be no reference to procedure-names that 
appear in the declarative portion, except that PERFORM statements may refer to a format 1 or 3 USE 
statement or to the procedures associated with such a USE statement . 

Within a USE procedure, there must not be the execution of any statement that would cause the 
execution of a USE procedure that had previously been invoked and had not yet returned control to 
the invoking routine. 



UP-8613 Rev. 2 SPERRY UNIVAC OS/3 6-108 
1974 AMERICAN NATIONAL STANDARD COBOL 

NOTE: 

Rules 7 through 11 pertain to format 1 only. 

7. The words ERROR and EXCEPTION are synonymous and may be used interchangeably. 

8. The files implicitly or explicitly referenced in a USE statement need not all have the same 

organization or access. 

9. A file-name may not be explicitly referred to in more than one format 1 USE statement. 

10. The designated procedures are executed by the input/output system after completing the standard 
input/output error routine or upon recognition of the AT END or INVALID KEY condition when the AT 
END phrase or INVALID KEY phrase, respectively, has not been specified in the input/output 

statement. 

11. After execution of a USE procedure, control is returned to the invoking routine. 

NOTE: 

Rules 12 through 46 pertain to format 2 only. 

12. Debugging sections, if specified, must appear together immediately after the DECLARATIVES header. 

13. Except in the USE FOR DEBUGGING statement itself, there must be no reference to any 
nondeclarative procedure within the debugging section. 

14. Statements appearing outside the set of debugging sections must not reference procedure-names 
defined within the set of debugging sections. 

15. Except for the USE FOR DEBUGGING statement itself, statements appearing within a given 
debugging section may reference procedure-names defined within a different USE procedure only 
with a PERFORM statement. 

16. Procedure-names defined within debugging sections~r d~ugging_P~C~tS must not appear within 
USE FOR DEBUGGING statements. 

17. Any given I identifier, file-name, or I procedure-name may appear in only one USE FOR DEBUGGING 
statement and may appear only once in that statement. 

18. The ALL PROCEDURES phrase can appear only once in a program. 

19. When the ALL PROCEDURES phrase is specified, procedure-name-1, procedure-name-2, ... must not 
be specified in any USE FOR DEBUGGING statement. 

20. If the data description entry of the data item referenced by identifier-1, identifier-2, .... contains an 
OCCURS clause or is subordinate to a data description entry that contains an OCCURS clause, 
identifier-1, identifier-2, .... must be specified without the subscripting or indexing normally required. 

21. References to the special register DEBUG-ITEM are restricted to references from within a debugging 
section. 

22. Procedure-names defined within debugging packets must not appear within USE FOR DEBUGGING 
statements. 

• 

• 

• 



• 

• 

• 

UP-8613 Rev. 2 SPERRY UNIV AC OS/3 6-109 
1974 AMERICAN NATIONAL STANDARD COBOL 

23. In the following rules, all references to cd-name-1, identifier-1, procedure-name-1, and file-name-1 
apply equally to cd-name-2, identifier-2, procedure-name-2, and file-name-2, respectively. 

24. Automatic execution of a debugging section is not caused by a statement appearing in a debugging 
section. 

25. When file-name-1 is specified in a USE FOR DEBUGGING statement. that debugging section is 
executed: 

a. after the execution of any OPEN or CLOSE statement that references file-name-1; 

b. after the execution of any READ statement (after any other specified USE procedure) not 
resulting in the execution of an associated AT END or INVALID KEY imperative statement; and 

c. after the execution of any DELETE or START statement that references file-name-1. 

26. When procedure-name-1 is specified in a USE FOR DEBUGGING statement. that debugging section 
is executed: 

a. immediately before each execution of the named procedure; and 

b. immediately after the execution of an ALTER statement that references procedure-name-1. 

27. The ALL PROCEDURES phrase causes the effects described in rule 26 to occur for every procedure
name in the program, except those appearing within a debugging section . 

28. When the ALL REFERENCES OF identifier-1 phrase is specified, that debugging section is executed 
for every statement that explicitly references identifier-1 at each of the following times: 

a. Immediately before the execution of a WRITE or REWRITE statement after the execution of any 
implicit move resulting from the presence of the FROM phrase 

b. For a GO TO statement with a DEPENDING ON phrase, immediately before control is 
transferred and prior to the execution of any debugging section associated with the procedure
name to which control is to be transferred 

c. For a PERFORM statement in which a VARYING, AFTER, or UNTIL phrase references identifier-
1, immediately after each initialization, modification, or evaluation of the contents of the data 
item referenced by identifier-1 

d. For any other COBOL statement. immediately after execution of that statement 

If identifier-1 is specified in a phrase that is not executed or evaluated, the associated debugging 

section is not executed . 



UP-8613 Rev. 2 SPERRY UNIVAC OS/3 6-110 
1974 AMERICAN NATIONAL STANDARD COBOL 

29. When identifier-1 is specified without the ALL REFERENCES OF phrases, that debugging section is 
executed at each of the following times: 

a. For a WRITE or REWRITE statement that explicitly references identifier-1, immediately before 
the execution of the statement and after the execution of any implicit move resulting from the 
presence of the FROM phrase 

b. For a PERFORM statement in which a VARYING, AFTER, or UNTIL phrase references identifier-
1, immediately after each initialization, modification, or evaluation of the contents of the data 
item referenced by identifier-1 . 

c. Immediately after the execution of any other COBOL statement that explicitly references 
identifier-1 and causes the contents of the referenced data item to be changed. 

If identifier-1 is specified in a phrase that is not executed or evaluated, the associated debugging 
section is not executed. 

30. The associated debugging section is not executed for a specific operand more than once as a result of 
the execution of a single statement. regardless of the number of times that operand is explicitly 
specified. In the case of a PERFORM statement that causes iterative execution of a referenced 
procedure, the associated debugging section is executed once for each iteration. 

Within an imperative statement, each individual occurrence of an imperative verb identifies a 
separate statement for the purpose of debugging. 

31. A reference to lcd-name-1, file-name-1, identifier-1, lor procedure-name-1 as a qualifier does not 
constitute reference to that item for the debugging described in the preceding rules. 

32. Associated with each execution of a debugging section is the special register DEBUG-ITEM, which 
provides information about the conditions that caused the execution of a debugging section. DEBUG
ITEM has the following implicit description: 

01 DEBUG ITEM. 
02 DEBUG-LINE PICTURE IS X(6). 
02 FILLER PICTURE IS X VALUE SPACE. 
02 DEBUG-NAME PICTURE IS X(30). 
02 FILLER PICTURE IS X VALUE SPACE. 
02 DEBUG-SUB-1 PICTURE IS S9999 SIGN IS LEADING SEPARATE CHARACTER. 
02 FILLER PICTURE IS X VALUE SPACE. 
02 DEBUG-SUB-2 PICTURE IS S9999 SIGN IS LEADING SEPARATE CHARACTER. 
02 FILLER PICTURE IS X VALUE SPACE. 
02 DEBUG-SUB-3 PICTURE IS S9999 SIGN IS LEADING SEPARATE CHARACTER. 
02 FILLER PICTURE IS X VALUE SPACE. 
02 DEBUG-CONTENTS PICTURE IS X(n)*. 

*The size of DEBUG-CONTENTS ranges from 30 to 4096 characters depending on the size of the largest data item being 
monitored. 

• 

• 

• 



• 

• 

• 

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 6-111 
1974 AMERICAN NATIONAL STANDARD COBOL 

33. Prior to each execution of a debugging section, the contents of the data item referenced by DEBUG
ITEM are space-filled. The contents of data items subordinate to DEBUG-ITEM are then updated, 
according to rules 34 through 46, immediately before control is passed to that debugging section. The 
contents of any data item not specified in the rules remain spaces. 

Updating is accomplished in accordance with the rules for the MOVE statement, the sole exception 
being the move to DEBUG-CONTENTS when the move is treated as an alphanumeric-to
alphanumeric elementary move with no conversion of data from one form of internal representation 
to another. 

34. The contents of DEBUG-LINE is the compiler-generated line number that identifies a particular 
source statement. 

35. DEBUG-NAME contains the first 30 characters of the name that caused the debugging section to be 
executed. 

All qualifiers of the name are separated in DEBUG-NAME by the word IN or OF. Subscripts/indexes, 
if any, are not entered into DEBUG-NAME. 

36. If the reference to a data item that causes the debugging section to be executed is subscripted or 
indexed, the occurrence number of each level is entered in DEBUG-SUB-1, DEBUG-SUB-2, DEBUG
SUB-3 respectively as necessary. 

37. DEBUG-CONTENTS is a data item that is large enough to contain the data required by the following 
rules . 

38. If the first execution of the first nondeclarative procedure in the program causes the debugging 
section to be executed, the following conditions exist: 

a. DEBUG-LINE identifies the first statement of that procedure. 

b. DEBUG-NAME contains the name of that procedure. 

c. DEBUG-CONTENTS contains START PROGRAM. 

39. If a reference to procedure-name-1 in an ALTER statement causes the debugging section to be 
executed, the following conditions exist: 

a. DEBUG-LINE identifies the ALTER statement that references procedure-name-1. 

b. DEBUG-NAME contains the applicable procedure-name associated with the TO phrase of the 
ALTER statement. 

c. DEBUG-CONTENTS contains the applicable procedure-name associated with the TO phrase of 
the ALTER statement. 

40. If the transfer of control associated with the execution of a GO TO statement causes the debugging 
section to be executed, the following conditions exist: 

a. DEBUG-LINE identifies the GO TO statement whose execution transfers control to procedure

name-1 . 

b. DEBUG-NAME contains procedure-name-1. 



UP-8613 Rev. 2 SPERRY UNIVAC OS/3 6-112 

1974 AMERICAN NATIONAL STANDARD COBOL 

41. If reference to procedure-name-1 in the INPUT or OUTPUT phrase of a SORT statement causes the 
debugging section to be executed, the following conditions exist: 

a. DEBUG-LINE identifies the SORT statement that references procedure-name-1. 

b. DEBUG-NAME contains procedure-name-1. 

c. DEBUG-CONTENTS contains: 

• If the reference to procedure-name-1 is in the INPUT phrase of a SORT statement, SORT 

INPUT 

• If the reference to procedure-name-1 is in the OUTPUT phrase of a SORT statement, 
SORT OUTPUT 

42. If the transfer of control from the control mechanism associated with a PERFORM statement caused 
the debugging section associated with procedure-name-1 to be executed, the following conditions 

exist: 

a. DEBUG-LINE identifies the PERFORM statement that references procedure-name-1. 

b. DEBUG-NAME contains procedure-name-1. 

c. DEBUG-CONTENTS contains PERFORM LOOP. 

43. If procedure-name-1 is a USE procedure that is to be executed, the following conditions exist: 

a. DEBUG-LINE identifies the statement that causes execution of the USE procedure. 

b. DEBUG-NAME contains procedure-name-1. 

c. DEBUG-CONTENTS contains USE PROCEDURE. 

44. If an implicit transfer of control from the previous sequential paragraph to procedure-name-1 causes 
the debugging section to be executed, the following conditions exist: 

a. DEBUG-LINE identifies the previous statement. 

b. DEBUG-NAME contains procedure-name-1. 

c. DEBUG-CONTENTS contains FALL THROUGH. 

45. If references to file-name-1 cause the debugging section to be executed, then: 

a. DEBUG-LINE identifies the source statement that references file-name-1. 

b. DEBUG-NAME contains the name of file-name-1. 

c. For READ, DEBUG-CONTENTS contains the entire record read. 

d. For all other references to file-name-1, DEBUG-CONTENTS contains spaces. 

• 

• 

• 



• 

• 

• 

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 6-113 
1974 AMERICAN NATIONAL STANDARD COBOL 

46. If a reference to identifier-1 causes the debugging section to be executed, then: 

a. DEBUG-LINE identifies the source statement that references identifier-1; 

b. DEBUG-NAME contains the name of identifier-1; and 

c. DEBUG-CONTENTS contains the contents of the data item referenced by identifier-1 at the time 
that control passes to the debugging section (See rules 17 and 18). 

NOTE: 

Rules 47 through 55 pertain to format 3 only. 

47. The files implicitly or explicitly referenced in a format 3 USE statement must all be magnetic tape 
files. 

48. The same file-name can appear in a different specific arrangement of format 3. However, the 
appearance of a file-name in a USE statement must not cause simultaneous requests for execution 
of more than one USE procedure. 

49. If the file-name phrase is used, the file description entry for file-name-1, file-name-2, etc, must 
specify a LABEL RECORDS ARE data-name clause. 

50. If neither BEGINNING nor ENDING is specified, the designated procedures are executed for both 
beginning and ending labels . 

51. 

52. 

53. 

54. 

55. 

If neither REEL nor FILE is included, the designated procedures are executed for both reel and file 
labels. 

If the INPUT or OUTPUT phrase is specified, the USE procedures do not apply respectively to input or 
output files that are described with the LABEL RECORDS ARE OMITIED or STANDARD clause. 

The BEFORE phrase is not applicable to standard label procedures. If the BEFORE phrase is specified, 
it is treated as if the AFTER phrase were specified. 

For files opened for input, the designated USE procedure is executed if a standard user label is 
encountered after the standard system label processing is completed. If more than one standard user 
label exists, they can be accessed by a GO TO MORE-LABELS statement. (See 6.6.16.) The USE 
LABEL procedure is not reentered if there are no more standard user labels to be processed. 

For files opened for output, the designated USE procedure is executed after standard system label 
processing is completed. A standard user label is written after execution of the last statement in the 
associated USE procedure. A standard user label is also written upon execution of a GO TO MORE
LABELS statement. in which case, control is transferred to the beginning of the same USE procedure. 

Input/output statements and the STOP literal statement are not allowed in the USE LABEL 
procedures except for the ACCEPT statement (other than from SYSCONSOLE or SYSIN) and DISPLAY 

statement . 



UP-8613 Rev. 2 SPERRY UNIVAC OS/3 6-114 
1974 AMERICAN NATIONAL STANDARD COBOL 

6.6.42. WRITE Statement 

Function: 

The WRITE statement releases a logical record for an output or input/output file. It also provides control of 
the vertical positioning of each line on a page for sequential files. 

Format 1 (Sequential and ~AM] Files): 

WRITE record-name [FROM ident if ier-1] 

r
BEFOREt ADVANCING {sl~dentifier-2lt [LINE]}] 
AFTER 5 1 integer 5 LINES 

S Im n em o n i c - name l t 
1 PAGE 5 

[AT H~-OF-PAGEf imperative-statement] 

Format 2 (Relative. Indexed, and [s!-~]Files): 

WRITE record-name [FROM identifier] [;INVALID KEY imperative-statement] 

Rules: 

1 . 

2. 

Record-name and the identifier of the FROM phrase must not refer to the same storage area. 

The record-name is the name of a logical record in the file section of the data division and may be 
qualified. 

3. The logical record released by the execution of the WRITE statement is no longer available in the 
record area unlesslthe associated file is named in a SAME RECORD AREA clause odthe execution of 
the WRITE statement was unsuccessful due to a boundary violation or an INVALID KEY condition. 
The logical record is also available to the program as a record of other files referenced in the same 
SAME RECORD AREA clause as the associated output file, as well as to the file associated with 
record-name. 

4. The result of the execution of the WRITE statement with the FROM phrase is equivalent to the 
execution of: 

a. the statement: 

MOVE identifier TO record-name 

according to the rules specified for the MOVE statement, followed by: 

b. the same WRITE statement without the FROM phrase. 

The contents of the record area prior to the execution of the implicit MOVE statement have no effect 
on the execution of this WRITE statement. 

After execution of the WRITE statement is complete, the information in the area referenced by 
identifier is available, even though the information in the area referenced by record-name may not 
be. (See rule 3.) 

• 

• 

• 



• 

• 

• 

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 6-115 
Update B 1974 AMERICAN NATIONAL STANDARD COBOL 

5. The current record pointer is unaffected by the execution of a WRITE statement. 

6. The execution of the WRITE statement causes the value of the FILE STATUS data item, if any, 
associated with the file to be updated. (See 8.2.3, 1-0 status description.) 

7. The maximum record size for a file is established at the time the file is created and must not 
subsequently be changed. 

8. The number of character positions on a mass storage device required to store a logical record in a file 
may or may not be equal to the number of character positions defined by the logical description of 
that record in the program. 

9. The execution of the WRITE statement releases a logical record to the operating system. 

NOTE: 

Rules 10 through 21 pertain to sequential and:~AM~files only. 

10. When mnemonic-name is specified, the name is associated with a particular feature SYSCHAN-n 
and is defined in the SPECIAL-NAMES paragraph of the environment division. 

11. When identifier-2 is used in the ADVANCING phrase, it must be the name of an elementary integer 
data item. 

12. Integer or the value of the data item referenced by identifier-2 may be zero, but may not exceed 255 . 

13. If the END-OF-PAGE phrase is specified, the LINAGE clause must be specified in the file description 
entry for the associated file. 

14. The words END-OF-PAGE and EOP are equivalent. 

15. The ADVANCING mnemonic-name phrase cannot be specified when writing a record to a file 
r----- -----------, 

1w~~s~1file description entry contains any LINAGE clause, L_e!~:~~~~e-~~A_.9~~-S!~~~ _LIN~SJ 

~l~u~~·...J 

16. The associated file must be open in the OUTPUTlor EXTEND jmode at the time of the execution of this 
statement. (See 6.6.23, the OPEN statement.) 

17. I Bothjthe ADVANCING phrase land the END-OF-PAGE phraselallow control of the vertical positioning 
of each line on a representation of a printed page. If the ADVANCING phrase is not used, automatic 
advancing is provided as if the user had specified AFTER ADVANCING 1 LINE. If the ADVANCING 
phrase is used, advancing is provided as follows: 

a. If identifier-2 is specified, the representation of the printed page is advanced the number of 
lines equal to the current value associated with identifier-2. 

b. If integer is specified, the representation of the printed page is advanced the number of lines 
equal to the value of integer. 

c. If mnemonic-name is specified, the representation of the printed page is advanced to the line 
specified by SYSCHAN-n. (See 4.3.3, SPECIAL-NAMES paragraph.) 

d. If the BEFORE phrase is used, the line is presented before the representation of the printed 
page is advanced according to rules a, b, and c. 

*Applies only to 90125, 90130, 90130 8, and 90140 systems 



UP-8613 Rev. 2 

e. 

SPERRY UNIVAC OS/3 
1974 AMERICAN NATIONAL STANDARD COBOL 

6-116 
Update A 

If the AFTER phrase is used, the line is presented after the representation of the printed page is 
advanced according to rules a, b, and c. 

f. If PAGE is specified, the record is presented on the logical page before or after (depending on 
the phrase used) the device is repositioned to the next logical page. If the record to be written is 
associated with a file whose file description entry contains a LINAGE clause, the repositioning 
is to the first line that can be written on the next page as specified in the LINAGE clause. If the 
record to be written is associated with a file whose file description entry does not contain a 
LINAGE clause, the device is repositioned to the first line of the next page as defined by the 
operating system. If PAGE has no meaning in conjunction with a specific device, then the 
compiler-generated code advances the device as if the user had specified BEFORE or AFTER 
(depending on the phrase used) ADVANCING 1 LINE. 

18. If the logical end of the representation of the printed page is reached during the execution of a WRITE 
statement with the END-OF-PAGE phrase, the imperative-statement specified in the END-OF-PAGE 
phrase is executed. The logical end is specified in the LINAGE clause associated with record-name. 

19. An end-of-page condition is reached whenever the execution of a given WRITE statement with the 
END-OF-PAGE phrase causes printing or spacing within the footing area of a page body. This occurs 
when the execution of such a WRITE statement causes the LINAGE-COUNTER to equal or exceed the 
value specifi!:_d _E_y J:it~e_:.-~~he dat~tem _.!:eferenc~d _Ey_ data-n!_m~-~ of the~~~G.!:_ cla~s.:_. if 
SP_!:~f~<!Jif the SYSTEM LINES option of the LINAGE clause is specified, an end-of-page conditiolil 

fQccurs when the LINAGE-COUNTER equals or exceeds the line on which the oper~t~g_sys~~ 
!!:Ports that the overflow line position of the vertical format buffer has been crossedJln these cases, 
theWRITEstatement Ts executed;arid then theimperativestatement inthe END-OF-PAGE phrase is 
executed. 

An automatic page overflow condition is reached whenever the execution of a given WRITE 
statement (with or without an END-OF-PAGE phrase) cannot be fully accommodated within the ,------------- - ---------------::-"! 
c':!!:ren!._p~g!. bo~Y..:..rBY definition, the automatic page overflow condition cannot arise when the

1 
~~TE~ LINE~ option ~f_.!!l:_LINAGE ~l~s~s~p~cifiec:._(~~·~1.6 .. _!!l~LINAGE~l~se.) __ _J 

This occurs when a WRITE statement, if executed, would cause the LINAGE-COUNTER to exceed the 
value specified by integer-1 or the data item referenced by data-name-1 of the LINAGE clause. In this 
case, the record is presented on the logical page before or after (depending on the phrase used) the 
device is repositioned to the first line that can be written on the next logical page as specified in the 
LINAGE clause. The imperative statement in the END-OF-PAGE clause, if specified, is executed after 
the record is written and the device has been repositioned. 

If integer-2 or data-name-2 of the LINAGE clause is not specified, no end-of-page condition distinct 
from the page overflow condition is detected. In this case, the end-of-page condition and page 
overflow condition occur simultaneously. 

If integer-2 or data-name-2 of the LINAGE clause is specified, but the execution of a given WRITE 
statement would cause LINAGE-COUNTER to simultaneously exceed the value of both integer-2 or 
the data item referenced by data-name-2 and integer-1 or the data item referenced by data-name-1, 
then the operation proceeds as if integer-2 or data-name-2 had not been specified. 

20. For printer-destined files opened for output (files assigned to PRINTER or defined with mode FC, VC, 
or UC in the ASSIGN clause), a command to skip to the home-paper position is issued when the first 
WRITE statement is executed. If the first WRITE statement executed specifies an initial blank page, 
either by the AFTER PAGE phrase or by a record containing all blanks with the BEFORE PAGE 
phrase, that initial blank page is deleted from the output file (its function is accomplished by the 
command to skip to the home-paper position). 

• 

• 

• 



• 

• 

• 

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 6-117 
1974 AMERICAN NATIONAL STANDARD COBOL 

21. When an attempt is made to write beyond the externally defined boundaries of a sequential file, an 
exception condition exists, and the contents of the record area are unaffected. The following action 
takes place: 

a. The value of the FILE STATUS data item, if any, of the associated file is set to a value indicating 
a boundary violation. (See 8.2.3, 1-0 status description.) 

b. If a USE AFTER STANDARD EXCEPTION declarative is explicitly or implicitly specified for the 
file, that declarative procedure will then be executed. 

c. If a USE AFTER STANDARD EXCEPTION declarative is not explicitly or implicitly specified for 
the file, the result is undefined. 

22. At the end of a reel/unit of a multi-reel/unit output file, the WRITE statement performs the following 
operations: 

a. The standard ending reel/unit label procedure 

b. A reel/unit swap 

c. The standard beginning reel/unit label procedure 

NOTE: 

Rules 23 through 25 pertain to relative, indexed, andZ$_3'13~files . 

23. The INVALID KEY phrase must be specified if an applicable USE procedure is not specified for the 
associated file. 

24. The associated file must be open in the OUTPUT or 1-0 mode at the time of the execution of this 
statement. (See 6.6.23, the OPEN statement.) 

25. When the INVALID KEY condition is recognized, the execution of the WRITE statement is 
unsuccessful, the contents of the record area are unaffected, and the FILE STATUS data item, if any, 
associated with file-name of the associated file is set to a value indicating the cause of the condition. 
Execution of the program proceeds according to the rules stated, in 8.2.5, the INVALID KEY condition. 
(See 8.2.3, 1-0 status description.) 

NOTE: 

Rules 26 through 28 pertain to relative files only. 

26. When a relative file is opened in the output mode, records may be placed into the file by one of the 
following: 

a. If the access mode is sequential, the WRITE statement causes a record to be released to the 
operating system. The first record has a relative record number of 1 and subsequent record 
released have relative record numbers of 2, 3, 4, .... If the RELATIVE KEY data item has been 
specified in the file control entry for the associated file, the relative record number of the record 
just related, is placed into the RELATIVE KEY data item by the operating system during 
execution of the WRITE statement . 

*Applies only to 90125, 90130, 90130 8, and 90140 systems 



UP-8613 Rev. 2 

b. 

SPERRY UNIVAC OS/3 6-118 
1974 AMERICAN NATIONAL STANDARD COBOL 

If the access mode is random or dynamic, prior to the execution of the WRITE statement the 
value of the RELATIVE KEY data item must be initialized in the program with the relative record 
number to be associated with the record in the record area. That record is then released to the 
operating system by execution of the WRITE statement. 

27. When a relative file is opened in the 1-0 mode and the access mode is random or dynamic, records 
are to be inserted in the associated file. The value of the RELATIVE KEY data item must be initialized 
by the program with the relative record number to be associated with the record in the record area. 
Execution of a WRITE statement then causes the contents of the record area to be released to the 
operating system. 

28. The INVALID KEY condition exists: 

a. when the access mode is random or dynamic, and the RELATIVE KEY data item specifies a 
record that already exists in the file; or 

b. when an attempt is made to write beyond the externally defined boundaries of the file. 

NOTE: 

Rules 29 through 35 pertain to indexed files only. 

29. The execution of the WRITE statement causes the contents of the record area to be released. The 
operating system utilizes the content of the record keys in such a way that subsequent access of the 
record key may be made based upon any of those specified record keys. 

30. The value of the prime record key must be unique within the records in the file. 

31. The data item specified as the prime record key must be set by the program to the desired value prior 
to the execution of the WRITE statement. (See rule 4.) 

32. If sequential access mode is specified for the file, records must be released to the operating system in 
ascending order of prime record key values. 

33. If random lor dynamic I access mode is specified, records may be released to the operating system in 
any program-specified order. 

34. When the ALTERNATE RECORD KEY clause is specified in the file control entry for an indexed file, 
the value of the alternate record key may be nonunique only if the DUPLICATES phrase is specified 
for that data item. In this case, the operating system provides storage of records such that when 
records are accessed sequentially, the order of retrieval of those records is the order in which they 
are released to the operating system. 

35. The INVALID KEY condition exists under the following circumstances: 

• when sequential access mode is specified for a file opened in the output mode, and the value of 
the prime record key is not greater than the value of the prime record key of the previous 
record; 

• when the file is opened in the output or 1-0 mode, and the value of the prime record key is 
equal to the value of a prime record key of a record already existing in the file; 

• 

• 

• 



• 

• 

• 

UP-8613 Rev. 2 

• 

SPERRY UNIV AC OS/3 6-119 
1974 AMERICAN NATIONAL STANDARD COBOL 

when the file is opened in the output or 1-0 mode, and the value of an alternate record key for 
which duplicates are not allowed equals the corresponding data item of a record already 
existing in the file; or 

• when an attempt is made to write beyond the externally defined boundaries of the file. 

NOTE: 

Rules 36 through 40 pertain to~~'!:!~~files only. 

,---------------------------------, 
36. The value of the record key must be unique within the records in the file. I 

I I 
37. 

38. 

39. 

40. 

The data item specified as the record key must be set by the program to the desired value prior to the 
execution of the WRITE statement. (See rule 4.) 

When a file is being created, sequentiaijor dynamicjaccess mode must be specified. Records must be 
released to the operating system in ascending order of record key values, even if dynamic mode is 
specified. 

If randomlor dynamiclaccess mode is specified, records may be released to the operating system in 
any program-specified order. 

The INVALID KEY condition exists under the following circumstances: 

• 

• 

• 

when sequential §r dynamicjaccess mode is specified for a file opened in the output mode and 
the value of the record key is not greater than the value of the record key of the previous record; 

or 

when the file is opened in the output or 1-0 mode and the value of the record key is equal to the 
value of a record key of a record already existing in the file; or 

when an attempt is made to write beyond the externally defined boundaries of the file . 

6.6.43. *DEBUG Statement 

Function: 

The *DEBUG statement indicates the location of the program at which a debugging packet is to be 

executed. (See 12.4.3.4.) 

Format: 

*DEBUG procedure-name 

Rules: 

1 . The word *DEBUG must begin at margin L; however, procedure-name may appear anywhere 
between margin A and margin R. 

2. Procedure-name may be qualified. 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 3. Procedure-name may not appear within the group of debugging packets, nor may it appear in more I 

L 
than one *DEBUG statement. . , 

- --- -- -- --- ---- - ---- - -- --- --- - - _ ...... 
**Applies only to 90125, 90130, 90130 8, and 90140 systems 



UP-8613 Rev. 2 SPERRY UNIVAC OS/3 6-120 
1974 AMERICAN NATIONAL STANDARD COBOL 

r4. -A*DEBUG statement ~equired as ;heade--;f°o-;-;ach debugging packet. - - - -- - -1 
I I 
I 5. Debugging packets are placed immediately behind the last source statement in the procedure division I • 
I for compilation, but the debugging packets are executed at object time as though each packet I 
I appeared immediately following the referenced procedure-name in the program but before the I 
I source statements (procedure) associated with the procedure-name. I 

: 6. Stat~ments in the debugging packets must not refer to the DEBUG-ITEM of a USE FOR DEBUGGING : 

L _sect~. ________________________ _J 

• 

• 



• 

• 

• 

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 7-1 
1974 AMERICAN NATIONAL STANDARD COBOL 

7. Table Handling Summary 

7.1. GENERAL 

The table handling module provides a means of defining contiguous data items in a tabular form and accessing 
any item regardless of its position in the table. 

Table handling Level 1 provides a capability for accessing items in up to 3-dimensional, fixed-length tables. This 
level also provides series options and the capability to vary the contents of indexes by an increment or 
decrement. 

Table handling Level 2 provides a capability for accessing items in up to 3-dimensional, variable-length tables. 
This level also provides the additional facilities for specifying ascending or descending keys and for searching a 
dimension of a table for an item satisfying a specified condition. 

7.2. LANGUAGE CONCEPTS 

COBOL tables are defined structurally by including the OCCURS clause in the data description entries. The 
OCCURS clause specifies the number of times an item is to be repeated. An item described by an OCCURS 
clause is called a table element, and the name and description of the table element applies to each repetition or 
occurrence. 

Because the data-name is the same for each occurrence of a table element, a reference to a desired occurrence 
can be made only by specifying the data-name of the table element with the occurrence number of the desired 
table element. The occurrence number is specified by either subscripting or indexing. 

7.2.1. Table Definition 

To define a 1-dimensional table, an OCCURS clause is written as part of the data description of the table 
element. The OCCURS clause, however, must not appear in the description of group items that contain the table 
element. 

Example: 

01 TABLE-1. 
02 TABLE-ELEMENT OCCURS 28 TIMES. 

83 NAME ........ . 
83 ADDRESS ..... . 



UP-8613 Rev. 2 SPERRY UNIV AC OS/3 7-2 
1974 AMERICAN NATIONAL STANDARD COBOL 

Defining a 1-dimensional table within each occurrence of an element of another 1-dimensional table gives rise 
to a 2-dimensional table. To define a 2-dimensional table, then, an OCCURS clause must appear in the data 
description of the element of the table, and in the description of only one group item which contains that table 
element. To define a 3-dimensional table, the OCCURS clause should appear in the data description of the 
element of the table and in the description of two group items that contain the element. In COBOL, tables of up 
to three dimensions are permitted. 

Example: 

01 CORPORATION-TABLE. 
02 COMPANY-TABLE OCCURS 5 TIMES. 

04 COMPANY-NAME PIC X(l2). 
04 DIVISION-TABLE OCCURS 10 TIMES. 

06 DIVISION-CODE PIC X(4). 
06 DEPARTMENT-TABLE OCCURS 100 TIMES. 

08 DEPARTMENT-CODE PIC 9(3). 
08 EMPLOYEES PIC 9(4). 

This example defines a table of one dimension for COMPANY-NAME, two dimensions for DIVISION-CODE, and 
three dimensions for DEPARTMENT-CODE and EMPLOYEES. 

The table consists of 10,055 data items: 

5 for COMPANY-NAME 

50 for DIVISION-CODE 

5000 for DEPARTMENT-CODE 

5000 for EMPLOYEES 

Within the table there are 5 occurrences of COMPANY-NAME. Within each COMPANY-NAME there are 10 
occurrences of DIVISION-CODE, and within each DIVISION-CODE there are 100 occurrences of DEPARTMENT
CODE and EMPLOYEES. 

7.2.2. References to Table Items 

When referring to a table element, the reference must indicate the intended occurrence of the element. For 
access to a 1-dimensional table, the occurrence number of the desired element provides complete information. 
For access to tables of more than one dimension, an occurrence number must be supplied for each dimension of 
the table accessed. 

Occurrence numbers may be specified either by subscripting or by indexing. However, data-name subscript and 
index-name must not be mixed within a single reference to a table element that requires more than one 
occurrence number. 

• 

• 

• 



• 

• 

• 

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 7-3 
1974 AMERICAN NATIONAL STANDARD COBOL 

7.2.2.1. Subscripting 

Subscripts are used only to refer to an individual element within a table of like elements that have not been 
assigned individual data-names. 

Format: 

jdata-name t (subscript-1 [,subscript-2 [,subscript-3]]) 
lcondition-namef 

A subscript is an integer that identifies the occurrence number of a particular table element. The subscript can 
be represented either by a numeric literal that is an integer or by a data-name. The data-name must be a 
numeric elementary item that represents an integer. When the subscript is represented by a data-name, the 
data-name may be qualified but not subscripted. 

The subscript, or set of subscripts, is enclosed in parentheses and appears immediately following the space that 
terminates the data-name of the table element. When more than one subscript is specified within a pair of 
parentheses, each subscript must be separated from the next by a space, and the subscripts are written in the 
order of successively less inclusive dimensions of the data organization, that is, in the same order as the 
OCCURS clauses. 

The subscript may be signed and, if signed, it must be positive. The lowest possible subscript value is 1. This 
value points to the first element of the table. The next sequential elements of the table are pointed to by 
subscripts whose values are 2, 3, .... The highest permissible subscript value, in any particular case, is the 
maximum number of occurrences of the item as specified in the OCCURS clause . 

7 .2.2.2. Indexing 

References can be made to individual elements within a table of like elements by specifying indexing for that 
reference. An index is assigned to that level of the table by using the INDEXED BY phrase of the OCCURS clause 
in the definition of a table. A name given in the INDEXED BY phrase is known as an index-name and is used to 
refer to the assigned index. The value of an index corresponds to the occurrence number of an element in the 
associated table. An index-name must be initialized before it is used as a table reference. An index-name can be 
given an initial value by a SET. !SEARCH ALL, or format 4 PERFORM I statement. 

Format: 

jdata-name t 
lcondition-namef 

jindex-name-1 [{±}literal-2Jt 
lliteral-1 f 

[

jindex-name-2 [[±}literal-4H ] 
lliteral-3 f 

[,ji~dex-name-3 [{±}liter.al-6H] 
l11teral-5 f 

Direct indexing is specified by using an index-name like a subscript. Relative indexing is specified when the 
index-name is followed by the operator + or - and an unsigned integer numeric literal, all enclosed in 
parentheses following the space that terminates the data-name of the table element. The occurrence number 
resulting from relative indexing is determined by incrementing (+ operator) or decrementing (- operator), by the 
value of the literal, the occurrence number represented by the value of the index. When more than one index
name is required, they are written in the order of successively less inclusive dimensions of the data organization . 



t 

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 
1974 AMERICAN NATIONAL STANDARD COBOL 

7-4 
Update F 

At the time of execution of a statement that refers to an indexed table element, the value contained in the index 
referenced by the index-name associated with the table element must not correspond to a value less than 1 or 
greater than the highest permissible occurrence number of an element of the associated table. This restriction 
also applies to the value resultant from relative indexing. 

7 .2.2.3. Range Checking 

Normally the values of subscripts and indices are not checked to ensure that the table reference is within 
the limits of the OCCURS clause, and results are unpredictable if the subscript or index is out of range. If 
the compile time parameter SUBCK=YES is specified, subscripts and indices are checked for validity. An 
out-of-range condition results in an object program termination with a CE58 error message. Refer to 
Appendix A for a description of the SUBCK parameter. Refer to the system messages operations reference 
handbook, UP-8076, for an explanation of the CE58 error message. 

7.3. DATA DIVISION CONSIDERATIONS 

There are two table-handling clauses in the data division - the OCCURS clause and the USAGE IS INDEX clause. 

The OCCURS clause indicates the number of elements contained in a table, and also supplies information 
required for the application of subscripts or indexes. Format 1 of the OCCURS clause indicates the exact number 
of occurrences of a specified data-item. Format 2 of the OCCURS clause indicates that the item described by the 
OCCURS clause has a variable number of occurrences. This option gives the minimum and maximum number of 
occurrences and specifies the data item that controls the number of occurrences. 

The length of a table element may not exceed 32,767 bytes. The maximum number of occurrences of a table 
element may not exceed 65,535. 

The USAGE IS INDEX clause specifies that a data item is to be used as temporary storage for the values of an 
index. 

A detailed description of the OCCURS clause is given in 5.3.3.7 and of the USAGE IS INDEX clause in 5.3.3.5. 

7.4. PROCEDURE DIVISION CONSIDERATIONS 

7.4.1. Table Handling Statements 

The table handling statements for the procedure division consist of the jsEARCHj and SET statements. 

The SEARCH statement is used to search a table for a table element that satisfies a specified condition and to 
adjust the associated index-name to point to that table element. Format 1 of the SEARCH statement is used to 
perform a serial search of a table. Format 2 is used to perform a nonserial search of a large data table. 

The SET statement is used to change the value of an index-name or index data item, or to obtain the occurrence 
number which corresponds to the current value of an index-name. The index-names can then be used as 
reference points for table handling operations. Format 1 sets an integer data item, index-name, or index data 
item to a specified value. Format 2 increments or decrements the value of an index-name, to represent a new 
occurrence number. 

A detailed description of thej SEARCH! statement is given in 6.6.30 and of the SET statement in 6.6.32. 

• 

• 

• 



• 

• 

• 

UP"8613 Rev. 2 SPERRY UNIVAC OS/3 
1974 AMERICAN NATIONAL STANDARD COBOL 

7.4.2. Comparisons Involving Index-Name or Index Data Items 

Relation tests involving index-name or index data items may be made as explained in 6.4.1.1.3. 

7.4.3. Overlapping Operands in a SET Statement 

7-5 
Update F 

When a sending and a receiving item in a SET statement share a part of their storage areas, the result of the 
execution of such a statement is undefined . 



• 

• 

• 



• 

• 

• 

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 8-1 
1974 AMERICAN NATIONAL STANDARD COBOL 

8. File Processing Summary 

8.1. GENERAL 

The organization of a file specifies the logical structure of the file and determines the technique to be used for 
processing of the file. 

Files may be organized in a sequential form or in a nonsequential form. The organization of a file is established 
at the time the file is created and cannot subsequently be changed. 

8.2. LANGUAGE CONCEPTS 

8.2.1. File Organization and Access Methods 

There are five types of file organization available - sequential, relative, indexed,:SAM_j,or:IBAM*. j 

8.2.1.1. Sequential Organization 

A sequential file can only be accessed in the sequential mode. Records in such a file can be accessed in the 
sequence established as a result of writing the records to the file. A sequential mass storage file may be used for 
input and output at the same time. One file maintenance method made possible by this facility is to read a 
record, process it, and, if it is updated, return it, modified, to its previous position. 

Each record in a sequential file except the first has a unique predecessor record, and each record except the last 
has a unique successor record. These predecessor-successor relationships are established by the order of WRITE 
statements when the file is created. Once established, the predecessor-successor relationships do not change 
except in the case where records are added to the end of the file. 

8.2.1.2. Relative Organization 

A relative file is stored only on mass storage devices and is accessed sequentially, dynamically, or randomly. 
Each record in a relative file is uniquely identified by an integer value greater than zero that specifies the logical 
ordinal position of the re~d in the file. The file may be considered as composed of a serial string of areas, each 
capable of holding a logical record. Each area is denominated by a relative record number, and records are stored 
and retrieved based on this number . 

*Applies only to 90/25, 90/30, 90/30 B, and 90/40 systems 



UP-8613 Rev. 2 SPERRY UNIV AC OS/3 8-2 
1974 AMERICAN NATIONAL STANDARD COBOL 

In the sequential access mode, the sequence in which records are accessed is the ascending order of the relative 
record numbers of all currently existing records within the file. 

In the random access mode, the sequence in which records are accessed is controlled by the programmer. The 
desired record is accessed by placing its relative record number in a relative key data item. For example, the 
tenth record is the one addressed by relative record number 10 and is in the tenth record area, whether or not 
records have been written in the first nine record areas. 

In the dynamic access mode, the programmer may change at will from sequential access to random access using 
appropriate forms of input/output statements. 

8.2.1.3. Indexed Organization 

An indexed file is a mass storage file in which data records are identified by one or more keys within those 
records. The position of each logical record in the file is determined by indexes created and maintained by the 
operating system. The indexes are based on keys provided by the data items named in the RECORD KEY and 
ALTERNATE RECORD KEY clauses of the file control entry for that file. 

For inserting, updating, and deleting records in a file, each record is identified solely by the value of its prime 
record key. This value must. therefore, be unique and must not be changed when updating the record. For 
retrieval of records, the value of the prime record key provides a logical path to the data records. The values of 
alternate record keys, if specified, provide alternate access paths. The values of alternate record keys need not be 
unique if the DUPLICATE phrase is specified. 

An indexed file can be accessed sequentially, dynamically, or randomly. Sequential access provides access to the 
data records in the ascending order of the record key values. The order of retrieval of records within a set of 
records having duplicate record key values is the order in which the records were written into the set. 

In the random access mode, the sequence in which records are accessed is controlled by the programmer. The 
desired record is accessed by placing the value of its record key in a record key data item before accessing the 
record. 

In the dynamic access mode, the programmer may change at will from sequential access to random access by 
using appropriate forms of input/output statements. 

,-------------------------------~ 
1 8.2.1.4. SAM* Organization 1 

I I 
I A SAM file is a sequentially organized mass storage file supported by the OS/3 disk sequential access method I 
I (disk SAM). This file organization is a Sperry Univac extension to support user's existing sequential mass storage I 
I files created by the OS/3 disk SAM data management. I 
I I 
I In concept, a SAM file has all the characteristics of a mass storage file with sequential organization; however, I 
I the file structure of a SAM file on a mass storage device differs considerably from the file structure of a I 
I sequential mass storage file created by the OS/3 MIRAM (unkeyed) data management. By using the SAM file I 
~rganization, a compatibility with existing sequential mass storage files is achieved. _J 
-- -- ----- - ------------------

*Applies only to 90125, 90130, 90130 8, and 90140 systems 

• 

• 

• 



UP-8613 Rev. 2 SPERRY UNIVAC OS/3 
1974 AMERICAN NATIONAL STANDARD COBOL 

8-3 
Update F 

• 182. 1~.-ISAM Organization - - - - - -- - - - - - - - - - - - -1 .., 

• 

• 

The ISAM organization is a Sperry Univac extension to support the user's existing indexed sequential files 
created by the OS/3 indexed sequential access method (ISAM) data management. 

An ISAM file is a mass storage file in which data records are accessed based on a key field contained in each 
record. The position of each logical record in the file is determined by indexes created and maintained by the 
operating system. The indexes are based on keys provided by the data item named in the RECORD KEY clause of 
the file control entry for that file. 

For inserting and updating records in a file, each record is identified solely by the value of its record key. This 
value must, therefore, be unique and must not be changed when updating the record. 

In the sequential access mode, the sequence in which records are accessed is the ascending order of the record 
key values. 

In the random access mode, the sequence in which records are accessed is controlled by the programmer. The 
desired record is accessed by placing the value of its record key in a record key data item. 

In the dynamic access mode, the programmer may change at will from sequential access to random access using 
1 appropriate forms of input/output statements. _J 
I__ __________ -------------------

8.2.2. Current Record Pointer 

The current record pointer is a conceptual entity used to indicate the next record to be accessed within a file that 
is opened in the INPUT or 1/0 mode. The concept of the current record pointer has no meaning for a file opened 
in the output mode. The setting of the current record pointer is affected only by the OPEN.ISTART.land READ 
statements. 

8.2.3. 1/0 Status 

If the FILE STATUS clause (4.4.1) is specified, a value is placed by the operating system into the specified 2-
character data item to indicate to the COBOL program the status of that input/output operation. The value is 
placed in the FILE STATUS data item during the execution of an OPEN, CLOSE, READ, WRITE, REWRITE, 
DELETE, orjSTARTlstatement for that file and before the execution of any associated AT END/INVALID KEY 
imperative statement or any applicable format 1 USE procedure. 

The leftmost character position of the FILE STATUS data item is known as status key 1; the rightmost character 
position is known as status key 2. Status key 1 is set to indicate a specific condition; status key 2 provides further 
information, if any, about the input/output operation. Table 8-1 lists the status key values and their meanings 
for each type of file organization. The meanings for the key values are further described in the notes following 

the table . 



UP-8613 Rev. 2 SPERRY UNIVAC OS/3 
1974 AMERICAN NATIONAL STANDARD COBOL 

Table 8-1. Status Key Values and Meanings 

File 
Organization Status Key 1 Status Key 2 

Sequential 0 - Successful completion 0 - No further information 

and 1 - At end 0 - No further information 

iSAMI 3 - Permanent error 0 - No further information --- 4 - Boundary violation 

Relative 0 - Successful completion 0 - No further information 

1 - At end 0 - No further information 

2 - Invalid key 2 - Duplicate key 
3 - No record found 
4 - Boundary violation 

3 - Permanent error 0 - No further information 

Indexed 0 - Successful completion 0 - No further information 
2 - Duplicate key (indexed 

files only) 

and 1 - At end 0 - No further information 

I~~@ 2 - Invalid key 1 - Sequence error 
2 - Duplicate key 
3 - No record found 
4 - Boundary violation 

3 - Permanent error 0 - No further information 

NOTES: 

1. At end - A format 1 or format 2 READ statement is unsuccessful because no next 
logical record exists, or an OPTIONAL file is not available at OPEN time. 

2. Boundary violation - An attempt is made to write beyond the externally defined 
boundaries of a file. 

3. Duplicate key - An attempt is made tq_Y)!rite a record to a relative file, or to write 
or rewrite a record to an indexed or [S_!.~ file, which will create a duplicate key in 
the file. 

4. No record found - An attempt is made to access a record, identified by a key, and 
that record does not exist in the file. 

5. Permanent error - The 1/0 statement is unsuccessful because of an unrecoverable 
1/0 error, or a boundary violation for a sequential file. 

6. Sequence error - For a sequentially accessed indexed or[~~ file, the ascending 
sequence requirements for successive RECORD KEY values are violated, or the 
prime record key value of an indexed file, or the RECORD KEY value of anIT~_Mlfile 
is changed by the COBOL program between the successful execution of a READ 
statement and the execution of the next REWRITE statement for that file. 

8-4 
Update F 

• 

• 

• 



UP-8613 Rev. 2 SPERRY UNIV AC OS/3 8-5 
1974 AMERICAN NATIONAL STANDARD COBOL 

• 8.2.4. The AT END Condition 

• 

• 

The AT END condition can occur as a result of the execution of a format 1 or format 2 READ statement. For 
de!ails of the causes of the condition, see 6.6.25, the READ statement. 

8.2.5. The INVALID KEY Condition 

The INVALID KEY condition can occur as a result of the execution of a !START.I READ, WRITE, REWRITE, or 
DELETE statement for a relative, indexed, or ISAM file. For details of the causes of the condition, see 6.6.34,lthe I 

I START statement;l6.6.25, the READ statement; 6.6.42, the WRITE statement; 6.6.29, the REWRITE statement; 
and 6.6.9, the DELETE statement. 

When the INVALID KEY condition is recognized, the operating system takes these actions in the following order: 

1. A value is placed into the FILE STATUS data item, if specified for this file, to indicate an INVALID KEY 
condition. 

2. If the INVALID KEY phrase is specified in the statement causing the condition, control is transferred to the 
INVALID KEY imperative statement. Any USE procedure specified for this file is not executed. 

3. If the INVALID KEY phrase is not specified, but a USE procedure is specified for this file, either explicitly or 
implicitly, that procedure is executed. 

When the INVALID KEY condition occurs, execution of the input/output statement that recognized the condition 
is unsuccessful and the file is not affected. 

8.2.6. LINAGE-COUNTER 

The reserved word LINAGE-COUNTER is a name for a special register generated by the presence of a LINAGE 
clause in a file description entry for a sequential file. The maximum size of a logical page or the maximum value 
of LINAGE-COUNTER is 999. See 5.3.1.6, the LINAGE clause, for the rules governing the LINAGE-COUNTER. 

8.3. SEQUENTIAL FILE PROCESSING 

8.3.1. Level Characteristics 

Sequential 1/0 Level 1 does not provide full COBOL facilities for the FILE-CONTROL, 1/0 CONTROL, and FD 
entries as specified in the formats of this module. Within the procedure division, the sequential 1/0 Level 1 
provides limited capabilities for the CLOSE, OPEN, USE, and WRITE statements and full capabilities for the READ 
and REWRITE statements, as specified in the formats of this module. 

Sequential 1/0 Level 2 provides full facilities for the FILE-CONTROL 1-0-CONTROL, and FD entries as specified 
in the formats of this module. Within the procedure division, the sequential 1/0 Level 2 provides full capabilities 
for the CLOSE, OPEN, READ, REWRITE, USE, and WRITE statements, as specified in the formats of this module. 
The additional features available in Level 2 include: OPTIONAL files, the RESERVE clause, SAME RECORD 
AREA. MULTIPLE FILE tapes, REVERSED, EXTEND, and additional flexibility through series options . 



UP-8613 Rev. 2 SPERRY UNIV AC OS/3 8-6 
1974 AMERICAN NATIONAL STANDARD COBOL 

8.3.2. Clauses and Statements for Sequential File Processing 

The basic clauses and statements for sequential file processing are summarized in the following paragraphs. 

8.3.2.1. Environment Division 

• ASSIGN TO implementor-name 

• 

The ASSIGN clause specifies implementor-name in the form of device type-lfd name mode (record format). 
For files assigned to CARDREADER, CARDPUNCH, PRINTER, TAPE, DISC, or DISK, the record format may 
be F, V, U, FC, VC, or UC. 

RESERVE g ~AREAS 
The integer in the RESERVE clause can be only 1 or 2. If the clause is not specified, two areas are 
reserved. 

• ORGANIZATION IS SEQUENTIAL 

The ORGANIZATION IS SEQUENTIAL clause states that the file is organized in a sequential manner. 
Records are accessed one after another. If this clause is omitted, ORGANIZATION SEQUENTIAL is implied. 
Keys are not allowed with sequential files. 

Sequential files assigned to CARDREADER, CARDPUNCH, PRINTER, or TAPE are processed by the SAM 
data management. 

Files specified with the ORGANIZATION IS SEQUENTIAL clause and assigned to DISC or DISK are 
processed by MIRAM (unkeyed, no RCB) data management. 

• ACCESS MODE IS SEQUENTIAL 

This clause specifies the manner in which records are to be accessed. For sequential files, the access 
mode is always sequential. The clause, therefore, is optional. 

• FILE STATUS 

A value is placed by the operating system in the FILE STATUS data item to indicate the status of an 
input/output operation. 

8.3.2.2. Data Division 

• LABEL RECORDS 

For mass storage files, LABEL RECORDS STANDARD is required. For magnetic tape files, LABEL 
RECORDS OMITIED, STANDARD, or data-name is permissible. For card-reader, card-punch, and printer 
files, LABEL RECORDS OMITIED is required. 

• LINAGE 

The LINAGE clause defines the size of a logical page of a printer-destined file. If the LINAGE clause is 
specified, a LINAGE-COUNTER is provided and maintained by the compiler-generated code to indicate the 
line number within the current page body at any given time during the execution of the object program. 

• 

• 

• 



• 

• 

• 

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 8-7 
Update D 

• 

1974 AMERICAN NATIONAL STANDARD COBOL 

CODE-SET 

The CODE-SET clause may only be specified for tape files. This clause specifies the character code set 
used to represent data on a sequential tape file. When ST ANDARD-1 or ST ANDARD-0 is specified in 
the SPECIAL NAMES paragraph (4.3.3), all data must be described as usage is DISPLAY, and any 
signed numeric data must be described with the SIGN IS SEPARATE clause. The compiler assumes 
that the file has a buffer offset of zero. For an explanation of buffer offset and ASCII tape file formats, 
see the Basic data management user guide, UP-8068 (current version). Refer also to the PROGRAM 

COLLATING SEQUENCE clause (4.3.2). 

8.3.2.3. Procedure Division 

• OPEN INPUT 

The OPEN INPUT statement specifies that a file is accessed by READ statements only. The REVERSED and 
NO REWIND phrases apply only to single-reel files assigned to magnetic tape. 

• OPEN OUTPUT 

• 

• 

The OPEN OUTPUT statement specifies that the file is to be created by WRITE statements only. The NO 
REWIND phrase applies only to single-reel files assigned to magnetic tape. 

OPEN 1-0 

The OPEN 1-0 statement is for mass storage files only. It indicates that a file is to be updated by pairs of 
READ and REWRITE statements. 

OPEN EXTEND 

The OPEN EXTEND statement specifies that a file is to be extended by adding new records (with the WRITE 
statement) to the end of the file. The EXTEND phrase may only be specified for tape or mass storage files 
and must not be specified for files stored on MULTIPLE FILE TAPE. 

• CLOSE 

The CLOSE statement terminates the processing of a file. The LOCK phrase prevents the file from being 
opened again during the current execution of this run unit. The CLOSE WITH NO REWIND applies only to 
single-reel files assigned to magnetic tape. 

• READ 

The READ statement makes available the next logical record from a file. If the AT END phrase is not 
specified, an applicable USE ERROR procedure is required. 

• WRITE 

• 

The WRITE statement releases a logical record for an output file. The ADVANCING phrase is used for 
vertical positioning of lines within a logical page of a printer-destined file. 

REWRITE 

The REWRITE statement replaces a record previously read in a mass storage file. 



UP-8613 Rev. 2 SPERRY UNIVAC OS/3 8-8 
1974 AMERICAN NATIONAL STANDARD COBOL 

8.3.3. Printer-Destined Files 

Printer-destined files are files that are defined with a mode of FC, VC, or UC in the implementor-name of the 
ASSIGN clause. Each logical record of a printer-destined file is preceded by a device-independent control 
character. This control character, however, is not accessible to the COBOL programs. 

To accommodate vertical form positioning beyond the device-independent control character limit of 15 lines, 
records containing control character information are created for form positioning purposes only. These control 
records are not printed nor made available by a READ statement when the file is opened as INPUT. 

The presence of a control character must be considered in computing the block size for the file. (See 5.3.1.1, the 
BLOCK CONTAINS clause.) 

Files assigned to PRINTER are automatically printed. Printer-destined files assigned to devices other than 
PRINTER require a print routine for printing. 

8.3.4. Multivolume Sequential Files 

For multivolume mass storage sequential files, only one volume is mounted at a time. After one volume is 
processed, it must be dismounted, and then the next volume must be mounted before processing continues. 

For multireel tape sequential files, one or two reels are mounted at a time. When two reels are mounted, reel 
swapping is automatic. 

8.4. RELATIVE FILE PROCESSING 

8.4.1. Level Characteristics 

Relative 1/0 Level 1 does not provide full COBOL facilities for the FILE-CONTROL, 1/0-CONTROL, and FD entries 
as specified in the formats of this module. Within the procedure division, the relative 1/0 Level 1 provides limited 
capabilities for the READ and USE statements and full capabilities for the CLOSE, DELETE, OPEN, REWRITE, and 
WRITE statements, as specified in the formats of this module. 

Relative 1/0 Level 2 provides full facilities for the FILE-CONTROL, 1/0 CONTROL, and FD entries as specified in 
the formats of this module. Within the procedure division, the relative 1/0 Level 2 provides full capabilities for 
the CLOSE, DELETE, OPEN, READ, REWRITE, START, USE, and WRITE statements as specified in the formats of 
this module. The additional features available in Level 2 include the RESERVE clause, DYNAMIC accessing, 
SAME RECORD AREA. READ NEXT, and the entire START statement. 

8.4.2. Clauses and Statements for Relative File Processing 

The basic clauses and statements for relative file processing are summarized in the following paragraphs. 

8.4.2.1. Environment Division 

• ASSIGN TO implementor-name 

The ASSIGN clause specifies implementor-name in the form of device type-lfd-name mode (record format). 
The device type permitted is DISC or DISK, and the record format must be F or V. 

• 

• 

• 



• 

• 

• 

UP-8613 Rev. 2 SPERRY UNIV AC OS/3 8-9 
Update B 

• 

1974 AMERICAN NATIONAL STANDARD COBOL 

RESERVE g ~AREAS 
The integer in the RESERVE clause can be only 1 or 2. For relative files, if the ACCESS MODE is 
sequential, either one or two areas may be specified; if the ACCESS MODE is random or dynamic, only 
one area is allocated regardless of the value specified in the RESERVE clause. If this clause is not 
specified, two areas are allocated when the ACCESS MODE is sequential and one area is reserved when 
the ACCESS MODE is random or dynamic. 

• ORGANIZATION IS RELATIVE 

• 

The ORGANIZATION IS RELATIVE clause designates the file as relatively organized. Each record in the 
file is identified by a relative record number. This clause is required. If this clause is not specified, 
ORGANIZATION IS SEQUENTIAL is assumed. Relative files are processed by MIRAM (unkeyed, RCB) 

data management. 

ACCESS MODE IS ~SEQUENTIAL~ 
RANDOM 
DYNAMIC 

Sequential access processes the file in a sequential manner. Random access indicates that the sequence 
in which the records are accessed is based on the contents of the RELATIVE KEY data item provided by the 
COBOL program. 

Dynamic access indicates that the file may be processed sequentially, randomly, or both, depending on the 
appropriate input/output statements . 

If the ACCESS MODE clause is not specified, ACCESS IS SEQUENTIAL is implied. 

• RELATIVE KEY 

The value placed in the RELATIVE KEY data item by the COBOL program represents the logical ordinal 
position of the intended record. The RELATIVE KEY data item, therefore, must not be defined as a part of 
the data record of the file. For files accessed randomly, the RELATIVE KEY data item specifies the record to 
be processed. For files accessed sequentially, the record number processed is returned in the RELATIVE 
KEY data item. 

In the sequential access mode, the RELATIVE KEY phrase is optional; in the random or dynamic access 
mode, the phrase is required. 

• FILE STATUS 

A value is placed by the operating system in the FILE STATUS data item to indicate the status of an 

input/output operation. 

8.4.2.2. Data Division 

• LABEL RECORDS ARE STANDARD 

Standard labels are required for relative files . 



UP-8613 Rev. 2 SPERRY UNIVAC OS/3 8-10 
1974 AMERICAN NATIONAL STANDARD COBOL 

8.4.2.3. Procedure Division 

• OPEN INPUT 

The OPEN INPUT statement indicates that a file is to be accessed by the READ or START statement. and 
standard labels are checked by the operating system. 

• OPEN OUTPUT 

The OPEN OUTPUT statement indicates that a file is to be created by the WRITE statement either 
sequentially or randomly. Standard labels are written by the operating system. 

• OPEN 1-0 

The OPEN 1-0 statement indicates that a file to be processed for both input and output operations. 
Standard labels are checked by the operating system. 

• START 

The START statement pos1t1ons a file to the desired record for subsequent sequential retrieval. The 
INVALID KEY phrase is required if no applicable USE ERROR procedure is specified. 

• READ 

The READ statement makes available either the next logical record for sequential access or the specified 
record for random access. The NEXT phrase must be specified for sequential retrieval in the dynamic 
access mode. The AT END or INVALID KEY phrase is required if no applicable USE ERROR procedure is 
specified. 

• WRITE 

The WRITE statement releases a logical record for an output or input/output file. In the sequential access 
mode, the sequence in which records are released constitutes the logical ordinal positions of the records in 
the file. In the random or dynamic access mode, each record is placed in file according to the relative 
record number provided in the RELATIVE KEY data item by the COBOL program. The INVALID KEY phrase 
is required if no applicable USE ERROR procedure is specified. 

• REWRITE 

In the sequential access mode, a REWRITE statement replaces the last logical record read by a READ 
statement. In the random or dynamic access mode, a logical record is stored in the file based on the 
relative record number supplied by the COBOL in the RELATIVE KEY data item. The INVALID KEY phrase is 
required if no applicable USE ERROR procedure is specified. 

• DELETE 

In the sequential access mode, the last logical record read by a READ statement is deleted. In the random 
or dynamic mode, the logical record identified by the relative record number supplied by the COBOL 
program is logically removed. The INVALID KEY phrase is required if no applicable USE ERROR procedure 
is specified. 

• 

• 

• 



• 
UP-8613 Rev. 2 

• CLOSE 

SPERRY UNIV AC OS/3 
1974 AMERICAN NATIONAL STANDARD COBOL 

8-11 
Update B 

The CLOSE statement terminates the processing of a file. The LOCK phrase, if specified prevents the file 
from being opened again during the current execution of this run unit. Standard labels are processed by 
the operating system. 

8.5. INDEXED FILE PROCESSING 

8.5.1. Level Characteristics 

Indexed 1-0 Level 1 does not provide full COBOL facilities for the FILE-CONTROL, 1/0-CONTROL, and FD entries 
as specified in the formats of this module. Within the procedure division, the indexed 1/0 Level 1 provides 
limited capabilities for the READ and USE statements and full capabilities for the CLOSE, DELETE, OPEN, 
REWRITE, and WRITE statements, as specified in the formats for this module. 

Indexed 1/0 Level 2 provides full facilities for the FILE-CONTROL, 1/0-CONTROL, and FD entries as specified in 
the formats for this module. Within the procedure division, the indexed 1/0 Level 2 provides full capabilities for 
the CLOSE, DELETE, OPEN, READ, REWRITE, START, USE, and WRITE statements as specified in the formats for 
this module. The additional features available in Level 2 include: the RESERVE clause, DYNAMIC accessing, 
ALTERNATE KEYS, SAME RECORD AREA. READ NEXT, and the entire START statement. ' 

8.5.2. Clauses and Statements for Indexed File Processing 

• The basic clauses and statements for indexed file processing are summarized in the following paragraphs. 

• 

8.5.2.1. Environment Division 

• ASSIGN TO implementor-name 

• 

The ASSIGN clause specifies implementor-name in the form of device type-lfdname-mode (record format). 
The device type permitted is DISC or DISK. The record format must be F or V. 

RESERVE g ~AREAS 

Only one area is allocated regardless of the value specified in the RESERVE clause. If the clause is omitted, one 
area is reserved by the compiler. 

• ORGANIZATION IS INDEXED 

• 

The ORGANIZATION IS INDEXED clause is required to indicate that the file organization is indexed. If 
this clause is not specified, ORGANIZATION IS SEQUENTIAL is assumed. Indexed files are supported 

by MIRAM (keyed, RCB) data management. 

ACCESS MODE IS 1 SEQUENTIAL~ 
RANDOM 
DYNAMIC 

In the sequential access mode, the sequence in which records are accessed is the ascending order of the 
record key values. The order of retrieval of records within a set of records having duplicate record key 
values is the order in which the records were written into the set. 



UP-8613 Rev. 2 SPERRY UNIVAC OS/3 8-12 
1974 AMERICAN NATIONAL STANDARD COBOL 

In the random access mode, the sequence in which records are accessed is controlled by the programmer. 
The desired record is accessed by placing the value of its record key in a record key data item. 

In the dynamic access mode, the programmer may change at will from sequential access to random access 
using appropriate forms of input/output statements. 

• RECORD KEY 

The RECORD KEY clause is required. It specifies the prime record key for the file. The values of the prime 
record key must be unique among records of the file. The data item named in the RECORD KEY clause 
must be described in the record description of the file. 

• ALTERNATE RECORD KEY 

The ALTERNATE RECORD KEY clause is optional. It specifies a record key that is an alternate record key for 
the file. Up to four alternate record keys may be specified for the file. The values of alternate record keys 
need not be unique if the DUPLICATE phrase is specified. The data item named in an ALTERNATE RECORD 
KEY clause must be described in the record description of the file. 

• FILE STATUS 

A value is placed by the operating system in the FILE STATUS data item to indicate the status of an 
input/output operation. 

8.5.2.2. Data Division 

• LABEL RECORDS ARE STANDARD 

Standard system labels are required. 

8.5.2.3. Procedure Division 

• OPEN INPUT 

The OPEN INPUT statement indicates that a file is to be accessed by the READ or START statements. The 
standard labels are checked by the operating system. 

• OPEN OUTPUT 

The OPEN OUTPUT statement indicates that a new file is to be created by the WRITE statement either 
sequentially or randomly. Standard labels are written by the operating system. 

• OPEN 1/0 

The OPEN 1/0 statement indicates that a file is to be processed for both input and output operations. 
Standard labels are checked by the operating system. 

• START 

The START statement positions a file to the desired area for subsequent sequential retrieval. Any relational 
operator may be specified in the KEY phrase of this statement. 

• 

• 

• 



• 

• 

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 8-13 

• 

1974 AMERICAN NATIONAL STANDARD COBOL 

READ 

The READ statement makes available either the next logical record for sequential access or the next 
specified record for random access. The NEXT phrase must be specified for sequential retrieval in the 
dynamic access mode. The AT END or INVALID KEY phrase is required if no applicable USE ERROR 
procedure is specified. 

• WRITE 

The WRITE statement releases a logical record for an output or input/output file. In the sequential access 
mode, records are released in the ascending order of the record key values. In the random or dynamic 
access mode, records may be released in any program-specified order. The INVALID KEY phrase is required 
if no applicable USE ERROR procedure is specified. 

• REWRITE 

• 

• 

In the sequential access mode, a REWRITE statement replaces the logical record last read by a READ 
statement. In the random or dynamic access mode, the record to be released is specified by the key value 
in the RECORD KEY data item. The INVALID KEY phrase is required if no applicable USE ERROR procedure 
is specified. 

DELETE 

In the sequential access mode, the logical record last read by a READ statement is deleted. In the random 
or dynamic mode, the record identified by the contents of the RECORD KEY data item is deleted. The 
INVAllD KEY phrase is required if no applicable USE ERROR procedure is specified . 

CLOSE 

The CLOSE statement terminates the processing of a file. The LOCK phrase, if specified, prevents the file 
from being opened again during the current execution of this run unit. Standard labels are processed by 
the operating system. 

ls.6. -SAM* FILEPROCESSING - - - - - - - - - - - - - - ~ - - - --, 

The SAM file processing facility is provided for compatibility with files created by the disk sequential access 
method (disk SAM) of the OS/3 data management. 

The basic clauses and statements for SAM file processing are summarized in the following paragraphs. 

8.6.1. Environment Division 

• ASSIGN TO implementor-name 

The ASSIGN clause specifies implementor-name in the form of device type-lfdname-mode (record format). 

L SAM files must be assigned to DISC or DISK. The record format may be F, V, FC, or VC. ---- - ---- -- --------------------

*Applies only to 90125, 90130, 90130 B, and 90140 systems 



UP-8613 Rev. 2 SPERRY UNIVAC OS/3 8-14 
1974 AMERICAN NATIONAL STANDARD COBOL 

~RESERVE l;~AREAS --- - - - - - - - - -- -- -- - ---- - - --, 

I 
I 

The integer in the RESERVE clause can be only 1 or 2. If the clause is omitted, two areas are reserved. 

I • 
I 

ORGANIZATION IS SAM 

I 
I 

J 

The ORGANIZATION IS SAM clause specifies that the file will be supported by the disk sequential access 
method (disk SAM). If this clause is omitted, ORGANIZATION IS SEQUENTIAL (MIRAM unkeyed) is implied. 
Keys are not allowed with SAM files. 

• ACCESS MODE IS SEQUENTIAL 

This clause specifies the method used to access records. For SAM files, the access mode is always 
sequential. The clause, therefore, is optional. 

• FILE STATUS 

The operating system places a value in the FILE STATUS data item to indicate the status of an input/output 
operation. 

8.6.2. Data Division 

• LABEL RECORDS 

For SAM files, the LABEL RECORDS STANDARD clause is required. 

• LINAGE 

The LINAGE clause defines the size of a logical page of a printer-destined file. If the LINAGE clause is 
specified, a LINAGE-COUNTER is provided and maintained by the compiler-generated code to indicate the 
line number within the current page body at any given time during the execution of the object program. 

8.6.3. Procedure Division 

• OPEN INPUT 

The OPEN INPUT statement specifies that a file is accessed by READ statements only. Specification of this 
statement causes the operating system to check standard system labels. 

• OPEN OUTPUT 

The OPEN OUTPUT statement specifies that the file will be created by WRITE statements only. 
Specification of this statement causes the operating system to create system labels. 

• OPEN 1/0 

The OPEN 110 statement indicates that an existing file will be updated by pairs of READ and REWRITE 
statements. 

• OPEN EXTEND 

The OPEN EXTEND statement specifies that a file will be extended by adding new records (with the WRITE L statement) to the end of the file. _J ----------- ------ ------- --- -



UP-8613 Rev. 2 SPERRY UNIVAC OS/3 
1974 AMERICAN NATIONAL STANDARD COBOL 

8-15 
Update B 

!.-READ---- - -- - --- - -- ------ - --- -- -1 
.__, I 

The READ statement makes available the next logical record from a file. If the AT END phrase is not I 
specified, an applicable USE ERROR procedure is required. I 

• WRITE 

The WRITE statement releases a logical record for an output file. The ADVANCING phrase is used for 
vertical positioning of lines within a logical page of a printer-destined file. 

• REWRITE 

The REWRITE statement replaces a record previously read. 

• CLOSE 

The CLOSE statement terminates the processing of a file. The LOCK phrase prevents the file from being 
opened again during the current execution of this run unit. 

8.6.4. Multivolume SAM Files 

For multivolume mass storage SAM files, only one volume is mounted at a time. After one volume is processed, 
it must be dismounted, and then the next volume must be mounted before processing continues. 

8.7. ISAM* FILE PROCESSING 

The ISAM file processing facility is provided for compatibility with files created by the indexed sequential access 
method (ISAM) of the OS/3 operating system. 

The basic clauses and statements for ISAM file processing are summarized in the following paragraphs. 

8.7.1. Environment Division 

• ASSIGN TO implementor-name 

• 

• 

The ASSIGN clause specifies implementor-name in the form of device type-lfdname-mode (record format). 
The device types permitted are DISC and DISK. The record format must be F or V. 

RESERVE g f AREAS 

The integer in the RESERVE clause can be only 1 or 2. If the clause is not specified, two areas are 
reserved. 

ORGANIZATION IS ISAM 

l 

I 
I 
I 

The ORGANIZATION IS ISAM clause is required to indicate that the file organization is ISAM. ISAM I 
files are processed by ISAM data management. I 

I 
I 

------------------------------- _J 

*Applies only to 90125, 90130, 90130 B, and 90140 systems 



UP-8613 Rev. 2 SPERRY UNIVAC OS/3 8-16 
1974 AMERICAN NATIONAL STANDARD COBOL 

,--------------------------1 • 
ACCESS MODE IS ~SEQUENTIAL I 

RANDOM 
• 

DYNAMIC 

In the sequential access mode, records are accessed in the ascending order of the record key values. For 
random access, the desired record is accessed based on the value in the record key data item provided by 
the COBOL program. In the dynamic access mode, a file may be processed sequentially, randomly, or both, 
depending on the appropriate input/output statements. 

• RECORD KEY 

The RECORD KEY data item is the key field contained in each record. This is a required clause. The data 
item named in the RECORD KEY clauses must be described in the record description of the file. 

• FILE STATUS 

I 
I 

A value is placed by the operating system in the FILE STATUS data item to indicate the status of an 
input/output operation. 

I 8.7.2. Data Division 
I 
I • 
I 
I 
I 

LABEL RECORDS ARE STANDARD 

Standard labels are required for ISAM files. 

I 8.7.3. Procedure Division 
I 
I • 
I 
I 
I 
I • 
I 
I 
I 
I • 
I 
I 
I 
I 
I 
I 
I 
I 

I 

• 

OPEN INPUT 

The OPEN INPUT statement indicates that a file is to be accessed by the READ or START statements. The 
standard labels are checked by the operating system. 

OPEN OUTPUT 

The OPEN OUTPUT statement indicates that a new file is to be sequentially created by the WRITE 
statement. Standard labels are written by the operating system. 

OPEN 1-0 

The OPEN 1-0 statement indicates that a file is to be processed for both input and output operations. 
Standard labels are checked by the operating system. 

START 

The START statement positions a file to the desired area for subsequent sequential retrieval. For an ISAM 
file, the relational operators permitted in the KEY phrase are NOT LESS THAN or NOT<. and EQUAL TO or 
=. The INVALID KEY clause is required if no applicable USE ERROR procedure is specified. 

L---------------------------------~ 

• 

• 



• 

• 

• 

UP-8613 Rev. 2 SPERRY UNIV AC OS/3 8-17 
1974 AMERICAN NATIONAL STANDARD COBOL 

1------------------------I 
• READ I 

• 

• 

The READ statement makes available either the next logical record for sequential access or the next 
specified record for random access. The NEXT phrase must be specified for sequential retrieval in the 
dynamic access mode. The AT END or INVALID KEY phrase is required if no applicable USE ERROR 
procedure is specified. 

WRITE 

The WRITE statement releases a logical record for an output or input/output file. In the sequential access 
mode, records are released in the ascending order of the record key values. In the random access mode, 
records may be released in any program-specified order. In the dynamic access mode, if the file is opened as 
OUTPUT, records must be released in ascending order of the record key values. If the file is opened as 1-0, 
records may be released in any program-specified order. The INVALID KEY phrase is required if no applicable 
USE ERROR procedure is specified. 

REWRITE 

In the sequential access mode, a REWRITE statement replaces the logical record last read by a READ 
statement. In the random or dynamic access mode, the record to be released is specified by the key value 
in the RECORD KEY data item. The INVALID KEY phrase is required if no applicable USE ERROR procedure 
is specified. 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I. CLOSE I 
I I 
I The CLOSE statement terminates the processing of a file. The LOCK phrase, if specified, prevents the file I 
I from being opened again during the current execution of this run unit. Standard labels are processed by I 
L_ ~operating system. _______ ---------------- _J 



• 

• 

• 



, 

• 

• 

• 

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 9-1 
1974 AMERICAN NATIONAL STANDARD COBOL 

9. Sort/Merge Summary 

9.1. GENERAL 

The COBOL sort/merge facility provides the capability to order one or more files of records,lor to combine two or I 
I more identically ordered files of records,jaccording to a set of user-specified keys contained within each record. 
Optionally, a user may apply some special processing to each of the individual records by input or output 
procedures. This special processing may be applied before or after the records are ordered by the SORT 
statement lor after the records have been combined by the MERGE statement. I The standard system utility 
sort/merge subroutine is used to perform the sort and merge operations. 

In general, a sort operation proceeds as follows: 

1 . Control passes to a SORT statement. The SORT statement specifies the sort file to be created and the data 
keys that guide the sort operation. It either identifies the input procedure and output procedure or names 
the source of the unsorted input records and that file which is to receive the sorted output records. 

2. The input procedure, if named in the SORT statement, is executed. This input procedure must contain at 
least one RELEASE statement. If no input procedure is specified, the input file is named in the USING 
phrase of the SORT statement. The effect of either option is to make input records available to the sort 
operation. 

3. The records made available to the sort operation are sorted on a set of specified keys as shown in the KEY 
phrase according to the EBCDIC collating sequence, or a user-specified collating sequence. 

4. The SORT statement passes control to the output procedure, if one is named. The output procedure must 
contain at least one RETURN statement to return the sorted record from the sort file to the COBOL 
program. If no output procedure is used, the GIVING phrase must specify the output file. 

5. The execution of the SORT statement is terminated and control passes to the next statement in sequence. 

When the input or output procedure is in control, all transfers of control must refer to procedures contained 
within that input or output procedure. Conversely, control cannot be transferred into an input or output 
procedure from points in the procedure division outside the limits of the input or output procedure. Neither an 
input nor an output procedure may contain a SORTlor MERGElstatement. 

The process of a merge operation is similar to a sort operation except: 

• two or more files in identical sequence are merged into one output file; and 

• the input procedure is not permitted in a MERGE statement. Files to be merged must be specified in the 
USING phrase. 



UP-8613 Rev. 2 SPERRY UNIVAC OS/3 9-2 
1974 AMERICAN NATIONAL STANDARD COBOL 

Sort/merge Level 1 provides the facility for sorting a single file only once within a given execution of a COBOL 
program. Procedures for special handling of each record in the file before or after it has been sorted are also 
provided. 

Sort/merge Level 2 provides the facility for sorting one or more files, or combining two or more files, one or 
more times within a given execution of a COBOL program. 

9.2. LANGUAGE CONCEPTS 

9.2.1. Relationship with File Processing Facility 

The files specified in the USING and GIVING phrases of the SORTiand MERGE !statements must be described 
implicitly or explicitly in the FILE-CONTROL paragraph as having sequential :2r::};~@G organization. No 
input/output statement may be executed for the file named in the sort/merge file description. 

~---------------------------, 
I 9.2.2. Sort Special Registers I 

I Two sort special registers, SORT-FILE-SIZE and SORT-MODE-SIZE, provide a means of object time I 
I communication between the COBOL program and the sort/merge routine, and they aid in the efficiency of the I 
I sort operation. : 

I
I The registers may be referenced as operands of any statements where signed binary data items are permitted. I 

The information to be contained in the registers must be passed before the SORT statement is executed. The I 
I registers are data items generated by the compiler and initialized by the compiler to zeros, but are not reset after I 
I a sort operation is completed. I 

I• SORT-FILE-SIZE I 
I I 
I 
I 

The reserved word SORT-FILE-SIZE is the name of a binary data item whose PICTURE is S9(8). It is used I 
for the estimated number of records in the file to be sorted. I 

'· SORT-MODE-SIZE I 
I I 

I The reserved word SORT-MODE-SIZE is the name of a binary data item whose PICTURE is S9(4) It is used I 
I for variable-length records. If the length of most records in the file is significantly different from the I 
L average record length, performance is improved by specifying the most frequently occurring record length.J 
------------------ - ----------

9.3. ENVIRONMENT DIVISION CONSIDERATIONS 

SELECT clauses must be included for the following types of files: 

• Files used within input and output procedures 

• The sortjor mergej file 

• Files named in the USING and GIVING options of the SORTjor MERGEjstatement 

• 

• 

• 



• 

• 

• 

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 9-3 
1974 AMERICAN NATIONAL STANDARD COBOL 

9 .3 .1 . File Control Entry 

The file control entry names a sortlor mergeifile and specifies the association of the file to a storage medium. 

Format: 

SELECT file-name ASSIGN TO implementor-name-1[, implementor-name-2) ... 

Work files required by sort or merge operations may be assigned to WORK1, WORK2, ... WORKn; where n ranges 
from 1 through 8 for disks, or from 1 through 6 for tapes. 

Refer to the SELECT entry in 4.4.1 . 

9.3.2. 1-0-CONTROL Paragraph 

The 1-0-CONTROL paragraph specifies the main storage area to be shared by different files. 

Format: 

1-0-CONTROL. 

[
;SAME [~~~~RD ] AREA FOR file-name-1,file-name-2[,file-name-3] ... ]···. 

SORT-MERGE 

Refer to 4.4.2, the 1-0-CONTROL paragraph. 

9.4. DATA DIVISION CONSIDERATIONS 

The file section of the data division must include the following entries: 

• File description entries for all files used within input and output procedures 

• File description entries for files named in the USING and GIVING phrases of the SORT I or MERGE I 
statement 

• Sort/merge file description entries for the sortlor mergejfiles 

• Record description entries for all files 

A sort/merge file description gives information about the size and the names of the data records associated with 
the file to be sortedjor merged.!There are no label procedures that the user can control, and the rules for blocking 
and internal storage are peculiar to the SORTjand MERGE!statements. 

Format: 

SD file-name 

[;RECORD CONTAINS clause] 

[
;DATA jRECORD IS t clause] 

1RECORDS ARE) 

Refer to 5.3.2 for details concerning the sort/merge file description entry. 



UP-8613 Rev. 2 SPERRY UNIV AC OS/3 9-4 
1974 AMERICAN NATIONAL STANDARD COBOL 

9.5. PROCEDURE DIVISION CONSIDERATIONS 

The procedure division must contain a SORTjor MERGElstatement to control the sortingjor mergingloperation, 
and, optionally, may contain input and output procedures to process records before and after the sort.I or output I 
I procedure to make merged records available for processing. I 

An input procedure must include a RELEASE statement to release records to the sort file, and an output 
procedure must include a RETURN statement to obtain records from the sort or merge file. In addition, the EXIT 
statement may be used as a common end point for the input or output procedure used with the sort/merge 
feature. 

9.5.1. RELEASE Statement 

The RELEASE statement transfers records to the initial phase of a SORT operation. 

Format: 

RELEASE record-name [FROM identifier] 

Details for using this statement are given in 6.6.27. 

9.5.2. RETURN Statement 

The RETURN statement obtains sorted records from the final phase of a sort operation.lor merged records duringj 
I a merge operation. I 
Format: 

RETURN file-name RECORD [INTO identifier] ;AT END imperative-statement 

Details for using this statement are given in 6.6.28. 

9.5.3. SORT Statement 

The SORT statement creates a sort file by executing input procedures or by transferring records from another 
file, sorts the records in the sort file on a set of specified keys, and, in the final phase of the sort operation, 
makes available each record from the sort file, in sorted order, to some output procedures or to an output file. 

Format: 

f i le-name-1 ON SASCENDING l KEY 
1DESCENDINGf 

lrcoLLATING SEQUENCE JI phrase 

SINPUT PROCEDUREl phrase 
1USING f 

jOUTPUT PROCEDUREl phrase 
}GIVING f 

Details for use of this statement are given in 6.6.33. 

phrase 

• 

• 

• 



• 

• 

• 

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 
1974 AMERICAN NATIONAL STANDARD COBOL 

9-5 
Update D 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-. 

9.5.4. MERGE Statement

The MERGE statement combines two or more identically sequenced files on a set of specified keys and makes
merged records available to an output procedure or to an output file.

Format:

MERGE f i le-name-1 ON ~ASCENDING l KEY
/DESCENDING5

[COLLATING SEQUENCE] phrase

USING phrase

~OUTPUT PROCEDUREt
/GIVING 5

phrase

Details for use of this statement are given in 6.6.19.

phrase

9.6. OBJECT TIME SUBROUTINE SORT /MERGE MAIN STORAGE REQUIREMENTS

When a SORT or MERGE statement is included in a COBOL program, the object code generated by the compiler

dynamically invokes the OS/3 subroutine sort/merge to perform a sorting or merging operation.

The minimum main storage required by the subroutine sort/merge is 13.000 (32C816) bytes. This requirement is
dynamically requested within the job region by the COBOL run time interface subroutine via a DMEM macro .
Therefore. the user must include this main storage requirement in the size of the job region in the I I JOB job
control statement.

For sort/merge programs containing statically bound subprograms (compiler option CALLST=YES), the minimum
job region size is 13.000 bytes plus the size of the load module.

For sort/merge programs involving dynamic subprograms (compiler option CALLST=NO). the minimum job
region size is 13,000 bytes plus all active load modules at the time a sort or merge is in operation.

If main storage space more than the sort/merge minimum requirement is available in the job region, the
additional space is utilized in the sorting operation to improve efficiency.

Sort/merge is more efficient when 50,000 to 150,000 bytes of main storage are allocated .

•

•

•

•

•

•

UP-8613 Rev. 2 SPERRY UNIV AC OS/3 10-1
1974 AMERICAN NATIONAL STANDARD COBOL

10. Segmentation Summary

10.1. GENERAL

COBOL segmentation is a facility that enables the user to communicate with the compiler to specify object
program overlay requirements. COBOL segmentation deals only with segmentation of procedures. Only the
procedure division and the environment division are considered in determining segmentation requirements for
an object program.

When segmentation is used, the entire procedure division must be in sections. In addition, each section must be
classified as belonging either to the fixed portion or to one of the independent segments of the object program.

Under segmentation Level 1, users can specify permanent and independent segments. All sections with the
same segment-number must be contiguous in the source program. All segments specified as permanent
segments must be contiguous in the source program.

Under segmentation Level 2, users can intermix sections with different segment-numbers and the fixed portion
of the source program may contain segments that may be overlaid.

10.2. ORGANIZATION

10.2.1. Fixed Portion

The fixed portion is defined as part of the object program that is logically treated as if it were always in main
storage. This portion of the program is composed otjtwo types of segments:lfixed permanent segmentsland fixed I

I overlayable segments.j

A fixed permanent segment is a segment in the fixed portion that cannot be overlaid by any other part of the
programJ A fixed overlayable segment is a segment in the fixed portion that, although logically treated as if it
were always in main storage, can be overlaid by another segment to optimize main storage utilization. Variation
of the number of fixed permanent segments in the fixed portion can be accomplished by using a special facility
called the SEGMENT-LIMIT clause (see 4.3.2). Such a segment, if called for by the program, is always made
available in its last used state .

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 10-2
1974 AMERICAN NATIONAL STANDARD COBOL

10.2.2. Independent Segments

An independent segment is defined as part of the object program that can overlay, and can be overlaid by,leitherl
la fixed overlayable segment orlanother independent segment. An independent segment is in its initial state
whenever control is transferred (either implicitly or explicitly) to that segment for the first time during the
execution of a program. On subsequent transfers of control to the segment, an independent segment is also in
its initial state when:

1. Control is transferred to that segment as a result of the implicit transfer of control between consecutive
statements from a segment with a different segment number.

2. Control is transferred to that segment as the result of the implicit transfer of control between a SORT
statement, in a segment with a different number, and an associated input or output procedure in that
independent segment.

3. Control is transferred explicitly to that segment from a segment with a different segment number (with the
exception noted in item 2 in the following paragraph).

On subsequent transfer of control to the segment, an independent segment is in its last-used state when:

1. Control is transferred implicitly to that segment from a segment with a different segment number (except
as noted in 1 and 2 in the preceding paragraph).

2. Control is transferred explicitly to that segment as the result of the execution of an EXIT PROGRAM
statement.

10.3. SEGMENTATION CLASSIFICATION

Sections to be segmented are classified by means of a system of segment numbers using the following criteria:

• Logic Requirements

Sections that must be available for reference at all times or are referred to frequently are normally
classifed as belonging to one of the permanent segments; sections that are used less frequently are
normally classified as belonging I either to one of the overlayable fixed segments or I to one of the
independent segments, depending on logic requirements.

• Frequency of Use

Generally, the more frequently a section is referred to, the lower its segment number; the less frequently it
is referred to, the higher its segment number.

• Relationship to Other Sections

Sections that frequently communicate with one another should be given the same segment numbers.

•

•

•

•

•

•

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 10-3
1974 AMERICAN NATIONAL STANDARD COBOL

10.4. SEGMENTATION CONTROL

The logical sequence of the program is the same as the physical sequence except for specific transfers of control.
The compiler automatically provides transfers of control from one segment to another.

Control may be transferred within a source program to any paragraph in a section; that is. it is not mandatory to
transfer control to the beginning of a section.

10.5. STRUCTURE OF PROGRAM SEGMENTS

10.5.1. Segment Numbers

Section classification is accomplished via a system of segment numbers. The segment number is included in the
section header.

Format:

sect ion-name SECTION [segment-number]

Refer to 6.1.3.2 for details on using segment numbers.

10.5.2. SEGMENT-LIMIT Clause

Ideally, all program segments having segment numbers ranging from 0 through 49 should be specified as
permanent segments. However. when insufficient storage is available to contain all permanent segments plus
the largest overlayable segment, it becomes necessary to decrease the number of permanent segments. The
SEGMENT-LIMIT feature provides the user with a means by which he can reduce the number of permanent
segments in his program, while still retaining the logical properties of fixed portion segments (segment numbers
0 through 49).

Format:

[,SEGMENT-LIMIT] clause

Refer to 4.3.2 for details on using this clause.

10.5.3. Object Module Naming Conventions

For a segmented object program, two or more object modules are produced. The naming conventions for these
modules are explained here.

One module (the root phase) consists of the initialization code, data areas, and fixed permanent segments of the
procedure division code. The name of this module is taken from the first six characters of the program-name in
the PROGRAM-ID paragraph. If the program-name is less than six characters, the program-name is used.

One module (overlay) is produced for each fixed overlayable segment and for each independent segment. The
module name for each overlay is composed of eight characters: the first six characters of the root module (if the
name is less than six characters, zeros are added to the right to form six characters) and a 2-character numeric
suffix assigned consecutively from 01 to 99. For example, a segmented program named PAY4A in the
PROGRAM-ID paragraph would have object modules named PAY4A, PAY4A001, PAY4A002, etc.

t

UP-8613 Rev. 2 SPERRY UNIVAC OS/3
1974 AMERICAN NATIONAL STANDARD COBOL

10.5.4. Linkage Editor Control Statement Considerations

10-4
Update F

Each object module (except the last) produced for a segmented program contains embedded linkage editor
control statements that define an overlay point and include the next object module in the series of object
modules. For example, a segmented program object module named PAYA4002 would contain the embedded

control statements:

OVERLAY PAYA4###
INCLUDE PAY4ABB3.

An example of the linkage editor commands used to link a segmented program is:

LO ADM PA Y4A
INCLUDE PAY4A.

The proper overlay structure is automatically generated by the embedded linkage editor control statements.

When linking subprograms with a segmented program, the programmer must ensure that the linkage editor
control statements do not conflict with the compiler-generated linkage editor control statements embedded
in the object modules of the segmented program. In particular, the subprogram must not be included in an
overlay unless it is called only from the same overlay or the root. It is recommended that subprograms be
included in the root or in a linkage editor region so that they can be called from any overlay in the
segmented COBOL program.

The compiler-generated linkage editor control statements can be suppressed by specifying the compiler
option parameter LNKCON=NO. See Appendix A.

10.6. COBOL VERBS AFFECTED BY SEGMENTATION

When segmentation is used, the following restrictions are placed on the ALTER, PERFORM,jMERGE,land SORT
statements.

10.6.1. ALTER Statement

A GO TO statement in a section whose segment number is greater than or equal to 50 must not be referred to by
an ALTER statement in a section with a different segment number.

All other uses of the ALTER statement are valid and are performed even if the GO TO to which the ALTER refers
is in a fixed overlayable segment.

10.6.2. PERFORM Statement

A PERFORM statement in a section that is not in an independent segment can have within its range, in addition
to any declarative sections whose execution is caused within that range, only one of the following:

• Sections or paragraphs wholly contained in one or more nonindependent segments

• Sections or paragraphs wholly contained in a single independent segment

•

•

•

•

•

•

UP-8613 Rev. 2 SPERRY UNIVAC OS/3
1974 AMERICAN NATIONAL STANDARD COBOL

10-5
Update F

A PERFORM statement in an independent segment can have within its range, in addition to any declarative
sections whose execution is caused within that range, only one of the following:

• Sections or paragraphs wholly contained in one or more nonindependent segments

• Sections or paragraphs wholly contained in the same independent segment as that PERFORM statement

10.6.3. SORT Statement

If a SORT statement appears in a section that is not an independent segment, any input procedures or output
procedures referenced by that SORT statement must appear:

• totally within nonindependent segments; or

• wholly contained in a single independent segment.

If a SORT statement appears in an independent segment, any input procedures or output procedures referenced
by that SORT statement must be contained:

• totally within nonindependent segments; or

• wholly within the same independent segment as that SORT statement.

10.6.4. MERGE Statement

If the MERGE statement appears in a section that is not in an independent segment, then any output procedure
referenced by that MERGE statement must appear:

• totally within nonindependent segments; or

• wholly contained in a single independent segment.

If a MERGE statement appears in an independent segment, then any output procedure referenced by that
MERGE statement must be contained:

• totally within nonindependent segments; or

• wholly within the same independent segment as that MERGE statement.

•

•

•

•

•

•

UP-8613 Rev. 2 SPERRY UNIVAC OS/3
1974 AMERICAN NATIONAL STANDARD COBOL

11-1
Update C

11 . Library Summary

11.1. GENERAL

The library module provides a capability for specifying text that is to be copied from a library.

COBOL libraries contain library texts that are available to the compiler for copying at compile time. The
effect of the interpretation of the COPY statement is to insert text into the source program, where it will be
treated by the compiler as part of the source program.

The compilation summary listing shows the volume (VOL), label (LBL), and LFD information for all library _..,
files accessed by the compiler .

COBOL library text is placed on the OS/3 copy library by the system librarian routine (See OS/3 system
service programs user guide.)

Library Level 1 facilitates copying text from a single library into the source program. Text is copied from the
library without change.

Library Level 2 provides the additional capability of replacing all occurrences of a given literal, identifier, word, or
group of words in the library text with alternate text during the copying process. Level 2 also makes more than
one COBOL library available at compile time.

11.2. COPY STATEMENT

The COPY statement incorporates text into a COBOL source program.

Format:

D~~~ I ibrary-name] _____ __,
COPY text-name

[REPLACING phrase]

Details for using this statement are given in 6.6.8 .

UP-8613 Rev. 2 SPERRY UNIV AC OS/3 11-2
1974 AMERICAN NATIONAL STANDARD COBOL

11.3. SOURCE PROGRAM CORRECTIONS DURING COMPILATION

A complete source program to be compiled from a library via the IN parameter (Appendix A) may be corrected
temporarily during the compilation process using the SEQ, REC, and SKI system librarian control statements.
(See OS/3 system service program user guide.)

The correction deck is interchangeable between the compiler and the librarian except that the librarian uses the
added COR control statement. whereas the correction deck for the compilation always starts with the SEQ
control statement as the first card.

The correction deck must be included within the data delimiters, /$ and /*. If there are no data cards between
the data delimiters, no source correction is performed.

•

•

•

•

•

•

UP-8613 Rev. 2 SPERRY UNIV AC OS/3 12-1
1974 AMERICAN NATIONAL STANDARD COBOL

12. Debugging Language Summary

12.1. GENERAL

The debug module provides a means by which the user can describe a debugging algorithm and the conditions
under which data items or procedures are to be monitored during the execution of the object program.

The decisions of what to monitor and what information to display on the output device are explicitly in the
domain of the user. The COBOL debug facility simply provides a convenient access to pertinent information.

The user statements required to accomplish this monitoring are included in the source program and can be
compiled or not according to the presence or absence of one clause in the source program. Once compiled into
the program, these statements may be executed or ignored at run time according to the setting of a run-time
switch.

Debug Level 1 provides a basic debugging capability to specify selective or full procedure monitoring, and
optionally compiled debugging statements.

Debug Level 2 provides the additional COBOL debugging capability of specifying identifiers and file names for
monitoring by the USE FOR DEBUGGING statement . . -- -------- - ---- -- --,

2:he *DEBUG statement provides debugging packets. 1
- -- ---- - - -------- __ _J

12.2. LANGUAGE CONCEPTS

The features of the COBOL language that support the debug module are:

• A compile-time switch - WITH DEBUGGING MODE

• An object-time switch - bit 0 of the UPSI byte

• A USE FOR DEBUGGING statement

• A special register - DEBUG-ITEM

• Debugging lines

r-- ----- ---- - - --,
~ *DEBUG - debugging packet • - ------- ______ J

UP-8613 Rev. 2 SPERRY UNIV AC OS/3 12-2
1974 AMERICAN NATIONAL STANDARD COBOL

12.2.1. DEBUG-ITEM Register

The reserved word DEBUG-ITEM is the name for a special register generated automatically that supports the
debugging facility. Only one DEBUG-ITEM is allocated per program. The names of the subordinate data items in
DEBUG-ITEM are also reserved words. This register provides information about the conditions that cause the
execution of a debugging section. See Table 12-1.

12.2.2. Compile-Time Switch

The WITH DEBUGGING MODE clause is written as part of the SOURCE-COMPUTER paragraph. It serves as a
r---- - ---- -----:"1

~~m_pi~:..!_i~~ ~witch over the debugging statements written in the program.tp~uj!g~!;!_pac~e..!._s ~r~ ~~f~t~~
1 by the switch. 1
L - - -- ___ J

When the WITH DEBUGGING MODE clause is specified in a program, all debugging sections and all debugging
lines are compiled as specified in this section of the document. When the WITH DEBUGGING MODE clause is
not specified, all debugging lines and all debugging sections are compiled as if they were comment lines.

12.2.3. Object-Time Switch

An object-time switch dynamically activates the debugging code inserted by the compiler. This switch setting
should not be changed by the program; it is controlled outside the COBOL environment. If the switch is on, all
the effects of the standard debugging language written in the source program are permitted. If the switch is off,
all the effects described in 6.6.41, the USE FOR DEBUGGING statement, are inhibited. Recompilation of the
source program is not required to provide or take away this facility.

The object time switch is bit 0 of the UPSI byte and may be set with the job control statement:

I I SET UPSI,~~~

The object-time switch has no effect on the execution of the object program if the WITH DEBUGGING MODE
clause was not specified in the source program at compile time.

r---------------------------------1
1 The object time switch has no effect on the execution of the extended debugging facilities. 1
L ________ - -- -- -- -- ---- - - -- -- - - - ---- ___ J

12.3. ENVIRONMENT DIVISION CONSIDERATIONS

12.3.1. WITH DEBUGGING MODE Clause

The WITH DEBUGGING MODE clause indicates that all debugging sections and all debugging lines are to be
compiled. If this clause is not specified, all debugging lines and sections are compiled as if they were comment
lines.

Format:

SOURCE-COMPUTER: computer-name [WITH DEBUGGING MODE]:

Details for using this clause are given in 4.3.1.

•

•

•

•

•

•

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 12-3
1974 AMERICAN NATIONAL STANDARD COBOL

12.4. PROCEDURE DIVISION CONSIDERATIONS

12.4.1. USE FOR DEBUGGING Statement

The USE FOR DEBUGGING statement identifies the user items that are to be monitored by the associated

debugging section.

Format:

USE FOR DEBUGGING {identifier l
file-name
procedure-name
ALL PROCEDURES

Details for using this statement are given in 6.6.41.

12.4.2. Debugging Lines

phrase

A debugging line is any line with a D in the indicator area of the line. Any debugging line that consists solely of
spaces from margin A to margin R is considered the same as a blank line.

The contents of a debugging line must be such that a syntactically correct program is formed with or without the
debugging lines being considered as comment lines .

A debugging line is considered to have all the characteristics of a comment line if the WITH DEBUGGING MODE
clause is not specified in the SOURCE-COMPUTER paragraph.

Successive debugging lines are allowed. Continuation of debugging lines is permitted, except that each
continuation line must contain a D in the indicator area, and character strings may not be broken across two
lines.

A debugging line is only permitted in the program after the OBJECT-COMPUTER paragraph.

r:---- ----- - ------- --- - - - - - -- - -- -1
12.4.3. The Extended Debugging Facility

I

The extended debugging facility consists of the functions provided by ON, EXHIBIT, and TRACE statements andl
the debugging packets.

12.4.3.1. ON Statement

The ON conditional statement specifies when the statements it contains are to be executed.

Format:

Q1! integer-I [AND EVERY integer-2]

[UNTIL integer-3] jstatement-1 l
#NEXT SENTENC0

ELSE jstatement-2 l
1NEXT SENTENCE5

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 12-4
1974 AMERICAN NATIONAL STANDARD COBOL

'1--------------------------,
I 12.4.3.2. EXHIBIT Statement

I The EXHIBIT statement displays on SYSOUT the current values of data items at selected points in the program.
I
I Format:

I
I
I
I

EXHIBIT lNAMED !jidentifier i
CHANGED NAMED 1nonnumer1c-literalf
CHANGED

I Details for using this statement are given in 6.6.14.

12.4.3.3. TRACE Statement

The TRACE statement initiates or terminates the display, on SYSLST (4.3.3), of the name and line number of a
section or paragraph at the start of its execution.

Format:

jREADYi
1RESETf

TRACE

Details for using this statement are given in 6.6.38.

12.4.3.4. The Debugging Packet (*DEBUG)

The debugging packet consists of a set of testing statements for a specific procedure in a source program. It is
compiled at the end of the source program but is executed as though it were placed immediately following the
procedure-name but before the first statement of the source program procedure to be tested. The debugging
packet is headed by the *DEBUG statement that names the source procedure it is intended to debug.

Any procedure in the source program may include a debugging packet. All packets are grouped together and I
placed immediately following the last statement of the source program. I

Format:

*DEBUG procedure-name

I
I
I
I
I

~etails~r ~ing thi:._::tatemen~~ give~ 6.6.43. ________________ _J

•

•

•

UP-8613 Rev. 2 SPERRY UNIV AC OS/3 12-5
1974 AMERICAN NATIONAL STANDARD COBOL

• Table 12-1. Debug Conditions and Contents of DEBUG-item

Condition DEBUG-LINE DEBUG-NAME DEBUG-CONTENTS
Identifies Contains Contains

If debugging section is executed
because of:

1. First execution of the first First statement of that Name of that procedure 'START PROGRAM'
non-declarative procedure procedure

2. Reference to procedure-name-1 ALTER statement that Procedure-name-1 Applicable procedure-name
in an ALTER statement references procedure- associated with the TO ·

name-1 phrase of the ALTER
statement

3. Transfer of control associated GO TO statement that Procedure-name-1 Space
with the execution of a GO transfers control to
TO statement procedure-name-1

4. Refer to procedure-name-1 in SORT statement that Procedure-name-1 'SORT INPUT' for INPUT
INPUT or OUTPUT phrase of a references procedure- phrase
SORT statement name-1 'SORT OUTPUT' for OUTPUT

phrase

5. Transfer of control from the PERFORM statement that Procedure-name-1 'PERFORM LOOP'
control mechanism associated referenced procedure-
with a PERFORM statement name-1

6. Implicit transfer of control Previous statement Procedure-name-1 'FALL THROUGH'
from previous sequential • paragraph to procedure-name-1

7. References to file-name-1 Source statement that Name of file-name-1 1. Entire record read
references file-name-1 for READ

2. Spaces for all
other references
to file-name-1

8. Reference to identifier-1 Source statement that Name of identifier-1 Contents of data item
references identifier-1 referenced by identifier-1

at time control passes
to debugging section

If procedure-name-1 is a USE Statement that causes Proced u re-name-1 'USE PROCEDURE'
procedure to be executed and execution of USE
procedure-name-1 is referenced in a procedure
USE FOR DEBUGGING statement .

•

•

•

•

•

•

•

UP-8613 Rev. 2

13.1. GENERAL

SPERRY UNIV AC OS/3 13-1
1974 AMERICAN NATIONAL STANDARD COBOL

1 3. lnterprogram
Communication
Summary

The interprogram communication module provides a facility that enables a program to communicate with other
programs. This communication is provided by:

1. the ability to transfer control from one program to another within a run unit; and

2. the ability for both programs to have access to the same data items.

The interprogram communication facility is supported by the compiler in two ways. The first method makes use
of the dynamic loading and unloading system facility during program execution and supports full COBOL
language. The second method supports only Level 1 of the inter-program communication facility and makes use
of static binding of programs by the linkage editor. The second method is invoked by the compiler option
parameter CALLST=YES (Appendix A) in conjunction with the literal option of the CALL statement.

13 .1 .1 . Transfer of Control

The CALL statement initiates the transfer of control from one program to another within a run unit. A program
that is activated by a CALL statement may itself contain CALL statements. However, results are unpredictable
where circularity of control is initiated; i.e .. where program A calls program B, then program B calls program A or
another program that calls program A.

When control is passed to a called program, procedure statements are executed normally beginning with the first
nondeclarative statement. If control reaches a STOP RUN statement, this signals the logical end of the run unit.
If control reaches an EXIT PROGRAM statement, this signals the logical end of the called program only, and
control then reverts to the point immediately following the CALL statement in the calling program. The EXIT
PROGRAM statement terminates only the program in which it occurs, and the STOP RUN statement terminates
the entire run unit.

If the called program is not a COBOL program, the termination of the run unit or the return to the calling
program must be programmed in accordance with the language of the called program .

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 13-2
1974 AMERICAN NATIONAL STANDARD COBOL

13.1.2. Access to Data Items

In the calling program, the common data items are described along with all other data items in the file section,
working-storage section, communication section, or linkage section, and, at object time, main storage is
allocated for the entire data division. In the called program, common data items are described in the linkage
section, but, at object time, main storage space is not allocated for this section. Communication between the
called program and the common data items stored in the calling program is effected through USING clauses
contained in both programs.

The USING clause in the calling program is contained in the CALL statement and the operands are a list of
common data identifiers described in its data division. The USING clause in the called program follows the
procedure division header and the operands are a list of common data identifiers described in its linkage section.
The identifiers specified by the USING clause of the CALL statement indicate those data items available to a
calling program that may be referred to in the called program. The sequence of appearance of the identifiers in
the USING clause of the CALL statement and the USING clause in the procedure division header is significant.
Corresponding identifiers refer to a single set of data available to the calling program. The correspondence is
positional and not by name. While the called program is being executed, every reference to an operand whose
identifier appears in the called program USING clause is treated as a reference to the corresponding operand in
the USING clause of the active CALL statement.

After control leaves a called program, its state is maintained until a CANCEL is executed naming that program.
Therefore, initialization of the program in case of repetitive calls is not necessary.

Execution of the CANCEL statement allows the user to indicate that the main storage areas occupied by called
programs may be released. In addition, the CANCEL guarantees that the canceled program will be in its initial
state when called by a subsequent CALL statement.

13.1.3. Level Characteristics

lnterprogram communication Level 1 provides a capability to transfer control to one or more programs whose
names are known at compile time and for the sharing of data among such programs.

Additionally interprogram communication Level 2 provides the capability to transfer control to one or more
programs whose names are not known at compile time as well as the ability to determine the availability of
object time main storage for the program to which control is being passed.

13.2. DATA DIVISION CONSIDERATIONS

13.2.1. Noncontiguous Linkage Storage

Items in the linkage section that have no hierarchic relationship to one another need not be grouped into records
and are classified and defined as noncontiguous elementary items. Each of these data items is defined in a
separate data description entry that begins with the special level-number 77.

The following data clauses are required in each data description entry:

a. level-number 77

b. data-name

c. the PICTURE clause or the USAGE IS INDEX clause

Other data description clauses are optional and can be used to complete the description of the item if necessary.

•

•

•

•

•

•

UP-8613 Rev. 2 SPERRY UNIV AC OS/3 13-3
1974 AMERICAN NATIONAL STANDARD COBOL

13.2.2. Linkage Records

Data elements in the linkage section that have a hierarchic relationship must be grouped into records according
to the rules for formation of record descriptions. Any clause in an input or output record description can be used
in a linkage section.

13.2.3. Initial Values

The VALUE clause must not be specified in the linkage section except in condition-name entries (level 88).

13.3. PROCEDURE DIVISION CONSIDERATIONS

13.3.1. Procedure Division Header

Format:

PROCEDURE DIVISION [USING data-name-1 [,data-name-2] ...].

When the USING phrase is present, the object program operates as if data-name-1 of the procedure division
header in the called program and[~~~~~~~ in the USING phrase of the CALL statement in the calling program
refer to a single set of data that is equally available to both the called and calling programs. Their descriptions
must define an equal number of character positions; however, they need not be the same name. In like manner,
there is an equivalent relationship between data-name-2,. .. in the USING phrase of the called program and

r:- - -------,
L!_d~~t~i~r.:.~'.::J in the USING phrase of the CALL statement in the calling program. A data-name must not appear
more than once in the USING phrase in the procedure division header of the called program; however, a given r-----...,

•identifier• may appear more than once in the same USING phrase of a CALL statement. '--- ---.J
Details for using the header are given in 6.1.3.

13.3.2. CALL Statement

The CALL statement transfers control from one object program to another within the run unit.

Format:

CALL 11identifier-1llrus1NG phrase] l[ON OVERFLOW phraseJI

literal-1 \

Details for using the statement are given in 6.6.4.

13.3.3. CANCEL Statement

The CANCEL statement releases the main storage areas occupied by the referenced program.

Format:

C A N C El ~ i d e n t i f i e r - 1 l [· i d e n t i f i e r - 2 J
11iteral-1 5 ,literal-2

Details for using this statement are given in 6.6.5.

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 13-4
1974 AMERICAN NATIONAL STANDARD COBOL

13.3.4. EXIT PROGRAM Statement

The EXIT PROGRAM statement marks the logical end of a called program.

Format:

EXIT [PROGRAM].

Details for using this statement are given in 6.6.15.

13.4. OBJECT PROGRAM EXECUTION CONSIDERATIONS

A parameter in either SYSGEN or job control must be specified for the execution of a COBOL object program
containing code produced for a CALL statement referencing a called program that is to be dynamically loaded.

In SYSGEN, the ROLLOUT=YES parameter plus the size of the buffer and buffer table must be specified. In job
control, the DLOAD parameter of the SFT job control statement is included in the job stream. Refer to the current
versions of the OS/3 system installation user guide/programmer reference and the job control user guide.

•

•

•

•

•

•

UP-8613 Rev. 2 SPERRY UNIV AC OS/3 14-1
1974 AMERICAN NATIONAL STANDARD COBOL

14. Communication Summary

14.1. GENERAL

The communication facility provides the ability to access, process, and create messages or portions of messages.
It provides the ability to communicate through a message control system (MCS) with local and remote
communication devices.

Communication Level 1 does not provide the full COBOL facility for the CD entry as specified in the formats for
this module. In the procedure division, Level 1 provides limited capabilities for the ENABLE, DISABLE, RECEIVE,
and SEND statements, as specified in the formats of this module. There is also a provision for determining the
number of messages in an input queue .

Communication Level 2 provides full facility for the CD entry as specified in the formats of this module. Within
the procedure division, full capabilities are provided for the ENABLE, DISABLE, RECEIVE, and SEND statements,
as specified in the formats for this module. The additional features available in Level 2 include: partial messages,
segmented messages, multiple destination message processing, and program invocation by the MCS as specified
by the INITIAL CD.

14.2. MESSAGE CONTROL SYSTEM

The MCS consists of a COBOL message control system (CMCS) and the integrated communications access
method (ICAM). The MCS is present in the COBOL object program's operating environment.

The MCS is the logical interface to the operating system under which the COBOL object program operates. The
primary functions of the MCS are the following:

• To act as an interface between the COBOL object program and the network of communication devices, in
much the same manner as an operating system acts as an interface between the COBOL object program
and such devices as card readers, magnetic tape and mass storage devices, and printers.

• To perform line discipline, including such tasks as dial-up, polling, and synchronization.

• To perform device-dependent tasks, such as character translation and insertion of control characters, so
that the COBOL user can create device-independent programs .

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 14-2
1974 AMERICAN NATIONAL STANDARD COBOL

Messages from communication devices are placed in input queues by the MCS while awaiting disposition by the
COBOL object program. Output messages from the COBOL object program are placed in output queues by the
MCS while awaiting transmission to communication devices. The structures, formats, and symbolic names of the
queues are defined by the user to the MCS at some time prior to the execution of the COBOL object program.
Symbolic names for message sources and destinations are also defined at that time. The COBOL user must
specify in his COBOL program symbolic names that are known to the MCS.

During execution of a COBOL object program, the MCS performs all necessary actions to update the various
queues as required.

14.3. COBOL OBJECT PROGRAM

The COBOL object program interfaces with the MCS when it is necessary to send data, receive data, or to
interrogate the status and the various queues created and maintained by the MCS. In addition, the COBOL object
program may direct the MCS to establish or break the logical connection between the communication device and
a specified portion of the MCS queue structure. The method of handling the physical connection is a function of
the MCS.

14.4. RELATIONSHIP OF COBOL PROGRAM TO MCS AND COMMUNICATION
DEVICES

The interfaces that exist in a COBOL communication environment are established by the use of a CD and
associated clauses in the communication section of the data division. There are two such interfaces:

• the interface between the COBOL object program and the MCS; and

• the interface between the MCS and the communication devices.

The COBOL source program uses three statements to control the interface with the MCS:

• the RECEIVE statement, which causes data in a queue to be passed to the COBOL object program;

• the SEND statement. which causes data associated with the COBOL object program to be passed to one or
more queues; and

• the ACCEPT statement with the COUNT phrase, which causes the MCS to indicate to the COBOL object
program the number of complete messages in the specified queue structure.

The COBOL source program uses two statements to control the interface between the MCS and the
communication devices:

• the ENABLE statement, which establishes logical connection between the MCS and one or more given
communication devices; and

• the DISABLE statement, which breaks a logical connection between the MCS and one or more given

communication devices.

These relationships are shown in Figure 14-1.

•

•

•

•

•

•

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 14-3
1974 AMERICAN NATIONAL STANDARD COBOL

COBOL PROGRAM

RECEIVE

RECEIVE

SEND

SEND

0
~
(/)

z
0

~
a:
u
(/)
UJ
0
(/)

z
0

~
~
z
::>
::2:
::2:
0
u

COBOL/MCS
INTERFACE

MESSAGE CONTROL SYSTEM
(MCS)

OUTPUT QUEUES

COMMUNICATIONS
DEVICES

MCS/COMMUNICATIONS
DEVICE INTERFACE

Figure 14-1. COBOL Communication Environment

14.4.1. Invoking the COBOL Object Program

There are two methods of invoking a COBOL communication object program: scheduled initiation and IMCS I
invocation. Regardless of the method of invocation, the only operating difference between the two methods is
that MCS invocation causes the areas referenced by the symbolic queue and subqueue names in the specified
CD to be filled.

14.4.1 .1. Scheduled Initiation

A COBOL object program using the communication facility may be scheduled for execution through the normal
means available in the program's operating environment, such as job control language. In that case, the COBOL
program can use three methods to determine what messages, if any, are available in the input queues:

• the ACCEPT MESSAGE COUNT statement;

• the RECEIVE statement with a NO DATA phrase; and

• the RECEIVE statement without a NO DATA phrase (in which case a program wait is implied if no data is
available) .

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 14-4
1974 AMERICAN NATIONAL STANDARD COBOL

14.4.1.2. MCS Invocation

It is sometimes desirable to schedule a COBOL object communication program only when there is work available
for it to do. Such scheduling occurs if the MCS determines what COBOL object program is required to process
the available message and subsequently causes that program to be scheduled for execution. Prior to the
execution of the COBOL object program, the MCS places symbolic queue and subqueue names in the data items
of the CD that specifies the FOR INITIAL INPUT clause.

A subsequent RECEIVE statement directed to that CD will result in the available message being passed to the
COBOL object program.

14.4.1.3. Determining the Method of Invocation

A COBOL source program can be written so that its object program can operate with either of the two methods
of invocation. To determine which method was used to load the COBOL object program, the following is one
technique that may be used:

• One CD must contain a FOR INITIAL INPUT clause.

• The procedure division may contain statements to test the initial value of the symbolic queue name in that
CD. If it is space-filled, job control statements were used to schedule the COBOL object program. If not
space-filled, the MCS has invoked the COBOL object program and replaced the spaces with the symbolic
name of the queue containing the message to be processed.

14.5. CONCEPT OF MESSAGES AND MESSAGE SEGMENTS

A message consists of some arbitrary amount of information, usually character data, whose beginning and end
are defined or implied. As such, messages comprise the fundamental but not necessarily the most elementary
unit of data to be processed in a COBOL communication environment.

Messages may be logically subdivided into smaller units of data called message segments, which are delimited
within a message by means of end-of-segment indicators (ESI). A message consisting of one or more segments
is delimited from the next message by means of an end-of-message indicator (EMI). In a similar manner, a group
of several messages may be logically separated from succeeding messages by means of an end-of-group
indicator (EGI). When a message or message segment is received by the COBOL program, a communication
description interface area is updated by the MCS to indicate which, if any, delimiter was associated with the text
transferred during the execution of that RECEIVE statement. On output, the delimiter, if any, to be associated
with the text released to the MCS during execution of a SEND statement is specified or referenced in the SEND
statement. Thus, the presence of these logical indicators is recognized and specified both by the MCS and by the
COBOL object program; however, no indicators are included in the message text processed by COBOL programs.

A precedence relationship exists between the indicators EGI, EMI, and ESI. EGI is the most inclusive indicator
and ESI is the least inclusive indicator. The existence of an indicator associated with message text implies the
association of all less inclusive indicators with that text. For example, the existence of the EGI implies the
existence of EMI and ESI.

•

•

•

•

•

•

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 14-5
1974 AMERICAN NATIONAL STANDARD COBOL

14.6. CONCEPT OF QUEUES

Queues consist of one or more messages from or to one or more communication devices and, as such, form the
data buffers between the COBOL object program and the MCS. Input queues are logically separate from output
queues.

The MCS logically places in queues or removes from queues only complete messages. Portions of messages are
not logically placed in queues until the entire message is available to the MCS. That is, the MCS will not pass a
message segment to a COBOL object program unless all segments of that message are in the input queue, even
though the COBOL source program uses the SEGMENT phrase of the RECEIVE statement. For output messages,
the MCS will not transmit any segment of a message until all its segments are in the output queue. The number
of messages that exist in a given queue reflects only the number of complete messages that exist in the queue.

The process by which messages are placed into a queue is called enqueueing. The process by which messages
are removed from a queue is called dequeueing.

14.6 .1 . Enabling and Disabling logical Connectives

Usually, the MCS logically connects and disconnects sources and destinations based on the parameters specified
in the CMCS network definition. However, the COBOL program has the ability to perform these functions by
using the ENABLE and DISABLE statements.

A key is required in both statements in order to prevent indiscriminate use of the facility by a COBOL user who is
not aware of the total network environment. and who may therefore disrupt system functions by the untimely
issuance of ENABLE and DISABLE statements. However, this action never interrupts a transmission .

14.6.2. Enqueueing and Dequeueing Methods

It may be necessary that the user specify to the MCS, prior to execution of programs that reference these
facilities, the selection algorithm and other designated MCS functions to be used by the MCS in placing
messages in the various queues. A typical selection algorithm, for example, would specify that all messages from
a given source be placed in a given input queue, or that all messages to be sent to a given destination be placed
in a given output queue.

Dequeueing is always done on a first-in, first-out basis. Thus, messages dequeued from either an input or output
queue are those messages that have been in the queue for the longest period of time.

14.6.3. Queue Hierarchy

To control more explicitly the messages being enqueued and dequeued, it is possible to define in the MCS a
hierarchy of input queues, i.e., queues comprising queues. In COBOL, four levels of queues are available to the
user. In order of decreasing significance, the queue levels are named queue, sub-queue-1, sub-queue-2, and
sub-queue-3. The full queue structure is depicted in Figure 14-2, where queues and subqueues have been
named with the letters A through 0. Messages have been identified with a letter according to their source (X, Y,
or Z) and with a sequential number .

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 14-6
1974 AMERICAN NATIONAL STANDARD COBOL

~~~~~~~~~~~~~~~~~~~~ 

QUEUE l A 

SUBOUEUE (1) l B c 

SUBOUEUE (2) l D E F G 

SUBQUEUE (3) l H J K L M N 0 

MESSAGE l Z1 X3 X1 Z6 Y7 Y1 X6 Z2 
X2 X4 Y3 Z7 YB Y2 Z3 

X5 Y5 :!§ Z4 
Z5 Y4 

Figure 14-2. Hierarchy of Queues 

Let us assume that the MCS is operating under the following queueing algorithm: 

• Messages are placed in queues according to the contents of some specified data field in each message. 

• With the RECEIVE statement, if the user does not specify a given subqueue level, the MCS will choose the 
subqueue from that level in alphabetical order; e.g., if subqueue-1 is not specified by the user, the MCS 

will dequeue from subqueue-1 B. 

The following examples, using Figure 14-2, illustrate the effect of these algorithms: 

1 . The program executes a RECEIVE statement, specifying via the CD: 

Queue A 

MCS returns: Message Z1 

2. The program executes a RECEIVE statement, specifying via the CD: 

Queue A 
Subqueue-1 C 

MCS returns: Message Y7 

3. The program executes a RECEIVE statement, specifying via the CD: 

Queue A 
Subqueue-1 B 
Subqueue-2 E 

MCS returns: Message X1 

• 

• 

• 



• 

• 

• 

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 

4. 

1974 AMERICAN NATIONAL STANDARD COBOL 

The program executes a RECEIVE statement, specifying via the CD: 

Queue A 
Subqueue-1 C 
Subqueue-2 G 
Subqueue-3 N 

MCS returns: Message X6 

14-7 

If the COBOL programmer wishes to access the next message in a queue, regardless of which subqueue that 
message may be in, he specifies the queue name only. The MCS, when supplying the message, will return to the 
COBOL object program any applicable subqueue names via the data items in the associated CD. If, however, he 
desires the next message in a given subqueue, he must specify both the queue name and any applicable 
subqueue names. 

For output, the COBOL user specifies only the destination of the message, and the MCS places the message in 
the proper output queue structure. 

14.7. MESSAGE CONTROL SYSTEM GENERATION 

The MCS consists of a COBOL message control system (CMCS) and the integrated communications access 
method (ICAM). 

The ICAM network needs to be defined and generated. The ICAM system generation defines the lines, terminals, 
and queues to be used by the COBOL object program. It may also specify the queueing algorithms directing 
messages to various queues based on text content or terminal names. 

A CMCS module also must be generated. The CMCS module generation defines the relationship between the 
symbolic names of the source, destination, queue, subqueues, etc, specified in the COBOL program and the 
corresponding ICAM names. 

The CMCS module may be statically bound with the COBOL object program, or dynamically loaded at execution 
time. This option and the CMCS module name are specified by the CMCSST=YES/NO and CMCS=module-name 
parameters. (See Appendix A.) 

After the ICAM and CMCS have been generated, the COBOL object program may then be linked and executed. 

Detailed procedures for ICAM system generation and CMCS module generation are described in the OS/3 ICAM 
utilities user guide/programmer reference . 



• 

• 

• 



• 

• 

• 

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 A-1 
1974 AMERICAN NATIONAL STANDARD COBOL 

Appendix A. Compiler Options 

A.1. GENERAL 

The compiler provides a number of options, described in A.2, that the user may specify. The compiler options 
may be specified on two levels: SYSGEN specification, and compile-time parameters. The SYSGEN specification 
may be overridden by the compile-time parameters. The compiler performs a consistency check for all 
specifications. (See A.3.) If none of the compiler options are specified, the following default options are effected: 

1. Accept the highest level of the standard language supported and the OS/3 extensions. 

2. Produce a source listing with copied text, if any. 

3. Produce a diagnostic listing using a page width of 120 characters . 

4. Generate an object module that dynamically loads any called programs. 

A.2. COMPILER OPTION SPECIFICATION 

The SYSGEN specifications for compiler option parameters are entered at SYSGEN time by the COBGEN label 
card, followed by individual option specification cards and then by the END card. (See OS/3 system installation 
user guide/programmer reference, UP-8074 (current version) for more information about SYSGEN operations.) 

Example: 

10 

COBGEN 

OBJLST=YES.AXREF=YES 

END 



t 

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 A-2 
1974 AMERICAN NATIONAL STANDARD COBOL 

The compile-time parameters are specified by the PARAM job control statements. See OSl3 job control 
programmer reference, UP-8217 (current version). The format for the PARAM statements is: 

II PARAM option-l,option-2 ... 

where: 

option-1,option-2 ... 

Represents compiler option parameters. 

Example: 

11 PARAM CPYTXT=NO,IN=PAYROLLICOB3 
.1 I PARAM DIAGWN=NO,OBJLST=YES 

A parameter must be contained wholly on one PARAM card. Any number of PARAM cards are permitted. Within 
one card, parameters are separated from each other by commas, and the last parameter on the card is 
terminated by a space. 

The parameters used on PARAM statements are described in Table A-1. Compiler defaults are shaded as 

follows: I• 
Table A-1. Options of the PARAM Statement (Part 1 of 3) 

Parameter Function 

AXNON=l•~ Suppresses nonreferenced entries in alphabetically ordered cross-reference listing 

AXREF= lYE~f Specifies an alphabetically ordered cross-reference listing • 
CALLST= ~-f Specifies static CALL of subprograms referenced by the literal option. YES indicates 

that subprograms named by the literal option of the CALL statements are to be linked 
with the main program. NO indicates that subprograms named either by the literal or identifier 
option of the CALL statements are to be dynamically loaded when called. 

CDMIO=l!l 
YES specifies that consolidated data management will be used for all files 
except ISAM and SAM disk files. 
NO specifies that DTF interfaces will be used for all files except workstation files. 

Ml specifies that CMD interfaces will be used for MIRAM and workstation files only; 
DTF interfaces will be used for all other files. 

This parameter is applicable only for a Series 90 system that supports both COM and 
DTF interfaces. 

CMCS=name Specifies a 1- to 8-character module name of the COBOL communication control system. If 
this parameter is not specified for a COBOL communication program, a default name, 
consisting of six characters of the PROGRAM-ID name (left-justified and zero-filled, if 
necessary) and a suffix of two characters (CM), is used. 

CMCSST= laf YES indicates that the CMCS module is bound with the COBOL object program. 
NO indicates that the CMCS module will be dynamically loaded at execution time. 

CPYTXT= ~~f Includes COBOL library text in source listing 

DIAG= ~;~{ Specifies a diagnostic listing 

DIAGWN= r!'f Includes warning diagnostics in the diagnostic listing 

• 

• 

• 



UP-8613 Rev. 2 

• Parameter 

ERRFIL=module-name/ 
lfdname 

FIPS~l ~} 

• 
IMSCOD= l YE?t • REN 

IN=m-n/f-n 

LIN=filename/ 
filename/ 

• 
LIST= l:'1f 
LNKCON= 1~f 

LSTREF= ~!'f 

LSTWTH= nnn 

MAP= lmif 
MXNON= l YES f -
MXREF= P'E~t -OBJ=filename 

OBJLST= 1~t 

• OBJMOD= l~[f 

PAGOVF= ~~n 

SPERRY UNIVAC OS/3 
1974 AMERICAN NATIONAL STANDARD COBOL 

Table A-1. Options of the PARAM Statement (Part 2 of 3) 

Function 

Specifies generation of an error-file element of compile-time diagnostics. The 
module-name is the 1- to 8-character module name of the element. The lfdname is the 
1- to 8-character name of the MIRAM library where the element will be generated. 

The ERRFIL parameter is ignored unless the IN parameter is also specified. The error-
file element is used by the OS/3 editor error file processing facility (@EFP command). 

Specifies a FIPS PUB 21-1 flagging option. See Appendix D. 

A-3 
Update F 

Specifies IMS compatible code; i.e., COBOL programs are to be executed under control of 
IMS as action programs. When IMSCOD=YES or IMSCOD=REN is specified, the COBOL 
language elements restricted by IMS are flagged and deleted. YES indicates generation of 
a shared code action program. REN indicates generation of a reentrant action program. 

M-n is a 1- to 8-character source module name in the library. F-n is a 1- to 8-character LFD 
name identifying the file on which the source module resides. If f-n is omitted, the default 
name SYSSRC is used. 

. 
Filename is a 1- to 8-character LFD name identifying the file or files where the COPY 
library resides. A maximum of 10 LFD names can be specified, allowing multiple COPY 
libraries to be searched. If multiple LFD names are specified, they must be separated by 
stroke (/) characters. If the library-name is specified in the COPY statement (6.6.8), the 
library-name takes precedence. If the library-name is omitted in the COPY statement, the 
filename or filenames in the LIN parameter are used. Multiple file names are searched 
sequentially in the order specified on the LIN parameter. If the parameter is omitted, the 
name COPY$ is used as the default name of the LIN parameter. 

Specifies a source program listing 

Specifies generation or suppression of linker control statements in the object module 

Specifies a source listing with definition references 

Specifies the page width. nnn ranges from 120 through 160. Default value is 120 characters a 
line. 

Specifies an object program locator /map listing 

Suppresses nonreferenced entries in the map listing with cross-references 

Specifies a map listing with cross-references 

Filename is a 1- to 8-character LFD name of the file on which the generated object module is 
to be stored. If the parameter is not specified, the default name SYSRUN is used. 

Specifies an object program listing 

Specifies object module production 

YES provides automatic printer page eject feature in, the object program. NO indicates 
omission of the eject feature in the object program. PAGOVF=YES should not be specified if 
the LINAGE clause or the ADVANCING PAGE phrase is specified in the source program. 



~ 

t 

UP-8613 Rev. 2 

Parameter 

PROVER=~-~ 

SPRLST= ~-~ 

SPROUT=1~~ 

SUBCK= ~-S~ 

SYNCHK= ~-S~ 

TRNADR= ~~~~ 

TRUNC= m~~ 

SPERRY UNIVAC OS/3 
1974 AMERICAN NATIONAL STANDARD COBOL 

Table A-1. 'Options of the PARAM Statement (Part 3 of 3) 

Function 

YES specifies the production of a listing of procedure-names and verbs with associated source 
line numbers and object program relative addresses. NO indicates suppression of the listing. 

A-4 
Update F 

Suppresses all listings unconditionally. This parameter overrides all other listing parameters. 

Suppresses compiler output (except source listing, diagnostic listing, memory map and 
cross reference listings, and related options) when severity code level 1, 2, or 3 errors 
are encountered. 

YES specifies range checking of subscripts and indices. If a subscript or index exceeds 
the table size, a CE58 run-time error message is issued (see the system messages 
operations reference handbook, UP-8076). When NO is specified, the compiler does not 
generate range-checking code, and the results are unpredictable. 

Specifies syntax check only or normal compilation. When SYNCHK =YES is specified, 
only the FIPS and LSTWTH parameters may be specified. A source program listing and a 
diagnostic listing are produced automatically by the compiler. 

YES indicates generation of a transfer address in the object module. NO indicates 
suppression of a transfer address; in which case, the program cannot be executed unless it 
is called. 

YES indicates that data truncation on binary items is based on the decimal digits 
specified in the PICTURE character-string. NO indicates that data truncation is based on 
the actual storage size allocated to the items. In either case, SIZE ERROR detection is 
based on the decimal digit size specified in the PICTURE clause. 

A.3. COMPILER OPTION SPECIFICATION CONSISTENCY CHECK 

When SYSGEN specifications and the compile-time parameters are read, the compiler inspects the resulting 
values for consistencies. If inconsistent specifications exist. the compiler resets the values of certain options to 
make them logically consistent. The consistency check is performed in the order shown in the left-hand column 
of Table A-2, and the values of certain parameters are reset as shown in the right-hand column of Table A-2 . 

• 

• 

• 



UP-8613 Rev. 2 

• 
I 

• 

• 

SPERRY UNIVAC OS/3 
1974 AMERICAN NATIONAL STANDARD COBOL 

Table A-2. Parameter Consistency Checks 

User Specifications Compiler Actions 

Parameter Value Parameter Value 

LIST NO LSTREF NO 

LIST NO CPYTXT NO 

MXNON YES MXREF YES 

MXREF YES MAP YES 

AX NON YES AXREF YES 

IMSCOD YES CALLST YES 

IMSCOD REN CALLST YES 

OBJ MOD NO PROVER NO 

SYNCHK YES LIST YES 

SYNCHK YES DIAG YES 

SYNCHK YES OBJLST NO 

SYNCHK YES OBJ MOD NO 

SYNCHK YES MAP NO 

SYNCHK YES MXREF NO 

SYNCHK YES AXREF NO 

SYNCHK YES PROVER NO 

SYNCHK YES LNKCOM NO 

SYNCHK YES PAGOVF NO 

SYNCHK YES TRNADR NO 

SPRLST YES LIST NO 

SPRLST YES LSTREF NO 

SPRLST YES CPYTXT NO 

SPRLST YES OBJLST NO 

SPRLST YES MAP NO 

SPRLST YES MXREF NO 

SPRLST YES AXREF NO 

SPRLST YES DIAG NO 

I 

A-5 
Update D 



• 

• 

• 



• 

• 

• 

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 
1974 AMERICAN NATIONAL STANDARD COBOL 

B-1 
Update C 

Appendix B. Compiler Listings 

The compiler produces seven output listings directed to the SYSLST file. The listings, shown in the order in 
which they are produced by the compiler, are: 

Compilation SL'mmary 
Diagnostic 
Source 
Object code 
Locator I map 
Alphanumerically ordered cross-reference 
Object code map listing 

B.1. COMPILATION SUMMARY LISTING 

The compilation summary listing contains the volume (VOL), label (LBL), and LFD information for all library 
files accessed by the compiler. 

B.2. DIAGNOSTIC LISTING 

The diagnostic listing contains a diagnostic message for each source program error other than sequence number 
errors. Detailed information concerning diagnostic listings and messages is given in Appendix C. 

B.3. SOURCE LISTING 

The source listing shows the source program as it is compiled. 

Compiler-generated line numbers are displayed to the left of each line compiled, regardless of whether it came 
from the basic source or from a COPY statement. The compiler-generated line numbers are used in all diagnostic 
messages. 

The sequence numbers of the input source program are checked for proper order and any sequence errors are 
flagged with an S to the left of the source line in error. If a source line has spaces in columns 1 through 6, no 
sequence check is performed on that line. A line is considered to be in sequence if the nonblank value in 
columns 1 through 6 is higher (in terms of the EBCDIC alphanumeric collating sequence) than the previous 
nonblank value in columns 1 through 6 . 

Sequence checking of columns 1 through 6 is not done for text copied in via a COPY statement. 

When a COPY statement occurs in the main input source, the COPY statement is printed in its original form; the 
copied text of the library entry is then printed as it appears after any replacement specified in the COPY 
statement has taken place. The copied text is flagged with a C in the left-hand margin, or an R if the text has 
been modified by a REPLACING phrase. 

t 



UP-8613 Rev. 2 SPERRY UNIV AC OS/3 
1974 AMERICAN NATIONAL STANDARD COBOL 

B-2 
Update B 

If the SUPPRESS COPIED TEXT option is specified, the copied source is not listed but it is still assigned compiler 
line numbers. 

When the LSTREF option is specified, the source listing will also have, to the right of each line that references a 
data item or procedure, the compiler-generated line number of the definition of that item. 

8.4. OBJECT CODE LISTING 

The object code listing shows the compiler-generated line number with the corresponding object code. It also 
shows the local base register and displacement as well as an object program relative location counter. It shows 
the DTF expansion code, the machine language instruction or constant, object program relative operand 
addresses, and assembly language mnemonic corresponding to the machine language op code. It also shows a 
comments field that contains information useful in relating this portion of the object program to the source 
program. 

Explanatory comments in the fixed-code portion of the object module are especially important in helping the 
programmer understand the logic of control in the COBOL object program. 

8.5. LOCATOR/MAP/CROSS-REFERENCE LISTINGS 

The locator /map listing consists of the data division storage map and the procedure division storage map. If the 
MXREF parameter is specified, the MAP listings also contain the compiler-generated line numbers of the COBOL 
statements in which the data-name or procedure-name is referenced. 

• Data Division Storage Map 

The data division storage map shows the layout of the object program main storage for the data division. It 
shows the compiler-generated line number, the name, the level number or level indicator, the base register 
and displacement, the relative address, and the data type, size, and number of occurrences of the data 
item. It also shows any mnemonic-names defined in the SPECIAL-NAMES paragraph of the environment 
division. 

The base register field in the listing identifies a permanently assigned machine register (R5 through RB) or 
a 2-digit number that represents an entry in a table of base register values. This table is called the base 
address tags table and is shown on the first page of the data division storage map listing. 

The address field in the listing identifies the object program relative address of the data item or, for linkage 
section data items, the displacement within a level 01 record description. (The address of linkage section 
data items is determined only at object program execution time.) 

• Procedure Division Storage Map 

The procedure division storage map shows the layout of the object program main storage for the procedure 
division. It contains the compiler-generated line number of the procedure, and an indication as to whether 
the procedure is a section or paragraph, the segment number of the section, the starting address of the 
procedure, and indicators as to whether the procedure is referenced by GO TO or PERFORM statements or 
USE FOR DEBUGGING procedures. Paragraph-names are indented to show their inclusion within a 
section. The beginning and the end of the declaratives are indicated. The CSECT names of the segments in 
a segmented program are also shown. 

• 

• 

• 



• 

• 

• 

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 
1974 AMERICAN NATIONAL STANDARD COBOL 

B-3 
Update F 

The procedure division storage map also displays PERFORM statement exit bucket addresses. An exit 
bucket is a save area in main storage that holds return linkage information. The exit buckets are 
helpful in evaluating object program main storage dumps. 

Each procedure-name that is a PERFORM statement exit point is designated by a PX (perform exit 
point) or SX (sort input/output procedure exit point) on the procedure division storage map listing. 
Each PX or SX has an exit bucket associated with it. The address of the exit bucket is shown in 
parentheses next to the PX or SX designation. At the end of the storage map listing, the exit bucket 
addresses are listed in address order and next to each exit bucket address is the line-number of its 
associated procedure-name. In a reentrant action program, the address of the exit bucket is actually a 
displacement into the object program reentrancy control area (see G.4). 

Each exit bucket is eight bytes long and has an initial setting of binary zeros. When a PERFORM 
statement is executed, the return address (usually the address of the statement after the PERFORM 
statement) is stored in the first four bytes and the local cover register value for the PERFORM 
statement object code is stored in the next four bytes. When the end of a PERFORM range is reached 
and program execution returns to the point following the PERFORM statement, the first four bytes are 
reset to binary zeros. 

When an exit bucket statement is all binary zeros, no PERFORM statement was executed for that 
procedure. 

When the first four bytes are binary zeros and the next four are not, a PERFORM statement was 
executed for the procedure and the procedure reached its exit point . 

When all eight bytes are not binary zeros, a PERFORM statement was executed for the procedure and 
the procedure has not yet reached its exit point. The first four bytes identify the particular PERFORM 
statement that was executed. 

If the MXNON parameter is specified, nonreferenced names are not shown in the listing. 

B.6. ALPHABETICALLY ORDERED CROSS-REFERENCE LISTING 

The alphabetically ordered cross-reference listing shows the program special registers and user-defined names 
in ascending alphanumeric sequence by name. It also contains the compiler-generated line number on which 
the name is defined and the compiler-generated line numbers of COBOL statements in which the name is 
referenced. If the AXNON parameter is specified, nonreferenced names are not shown in the listing. 

B.7. OBJECT CODE MAP LISTING 

The object code map listing shows the compiler-generated symbols for each procedure, and each statement 
within a procedure, as well as the object program relative address assigned to each . 

t 



• 

• 

• 



• 

• 

• 

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 C-1 
1974 AMERICAN NATIONAL STANDARD COBOL 

Appendix C. Compiler Diagnostics 

C.1. GENERAL 

This appendix contains the compile-time diagnostic listing messages. The console and terminal messages 
relating to the compilation process and the run-time error messages are given in the OS/3 systems messages 
programmer/operator reference, UP-8076 (current version). 

C.2. DIAGNOSTIC LISTING 

The diagnostic listing contains a diagnostic message for each error encountered in the source program other 
than sequence number errors. Each diagnostic message contains the compiler-generated line number on which 
the error occurred, a diagnostic message number, a severity code associated with the type of error, and a 
diagnostic message text. 

There are four severity codes: 

Code Description 

0 This is for a precautionary or warning diagnostic. The source program contains a legal but 
potentially undesirable situation. 

2 

3 

This is for a conditional, or changed, diagnostic. An error has been encountered in the source 
program, but the compiler has been able to make a corrective assumption and continue 
processing. 

This is for a serious error for which the compiler is not able to make any corrective assumption. 
The statement containing the error has been deleted. 

A fatal error situation has been encountered. The compilation is continued for error checking 
purposes, but recompilation is necessary. 

The diagnostic text consists of a concise description of the error, including any possible compiler recovery action . 



UP-8613 Rev. 2 SPERRY UNIVAC OS/3 C-2 
1974 AMERICAN NATIONAL STANDARD COBOL 

At the end of the diagnostic listing, there is a summary report of the number of each type of diagnostic 
encountered and the number of source sequence errors detected. If there are no errors encountered, an explicit 
message is given. 

The following chart shows compile-time diagnostic messages, their message numbers, and severity codes. The 
chart also includes message explanations and recovery procedures. 

Message Severity 
Number Code 

0001 0 

0002 

0003 

0004 2 

0005 

0006 

Message/Explanation/ Action 

INPUT RECORD EXCEEDS 80 CHARACTERS. EXCESS CHARACTERS 
TRUNCATED. 

A source statement of over 80 characters was encountered. 

All characters past position 80 of the input record are deleted. 

NONBLANK CHARACTERS APPEAR IN AREA A OF A CONTINUATION LINE. 
CHARACTERS ACCEPTED. 

A nonblank character has been found in area A (columns 8 to 11) when continuation has 
been specified by a hyphen in column 7. 

The first nonblank character after column 7 is accepted as the beginning of continuation. 

ILLEGAL CHARACTER IN COLUMN 7. SPACE ASSUMED. 

An invalid character has been found in column 7. 

A space is assumed to have been found in column 7. 

COPY STATEMENT APPEARS IN COPIED TEXT. IMBEDDED WORD COPY 
IGNORED. 

Text encountered while processing a COPY statement includes the word COPY. 

The word COPY is ignored. 

NONNUMERIC LITERAL IN A CONTINUATION LINE NOT BEGIN WITH 
QUOTATION MARK. CONTINUATION STARTS WITH FIRST NONBLANK 
CHARACTER. 

The continued portion of a nonnumeric literal did not begin with a quote or apostrophe. 

Processing continues as if a quote or apostrophe occurred prior to the first nonblank 
character. 

CHARACTER char-string NOT PRECEDED BY A SPACE. A SPACE ASSUMED. 

A space that should be used to delimit two characters or character strings was not found. 

A space is assumed to precede the character. 

• 

• 

• 



UP-8613 Rev. 2 

• Message Severity 
Number Code 

0007 

0008 

0009 

0010 

• 
0011 

0012 2 

0013 0 

• 

SPERRY UNIVAC OS/3 C-3 
1974 AMERICAN NATIONAL STANDARD COBOL 

Message I Explanation I Action 

CHARACTER STRING char-string EXCEEDS PERMISSIBLE LENGTH. EXCESS 
CHARACTERS TRUNCATED. 

A character string that is greater than its maximum legal size has been detected. The first 
30 characters of the string are noted in the diagnostic. 

Processing continues after the excessive characters are discarded. 

INVALID CHARACTER char-string. CHARACTER IGNORED. 

A character in the COBOL character set was used incorrectly. 

The character is ignored. 

COLUMN number CONTAINS AN ILLEGAL CHARACTER char-string. CHARACTER 
IGNORED. 

A character not in the COBOL character set was encountered. 

The character is ignored. 

NONNUMERIC LITERAL OF ZERO LENGTH. A LITERAL OF ONE SPACE 
ASSUMED . 

Two quotes or apostrophes with no intervening characters were encountered. 

A nonnumeric literal of one space character is assumed. 

NONNUMERIC LITERAL NOT TERMINATED BY QUOTATION MARK NOR 
CONTINUED ON NEXT LINE. LITERAL TERMINATED AT LAST NONBLANK 
CHARACTER OF CURRENT LINE. 

There is no terminating quote or apostrophe on the source line and no hyphen in column 
7 of the next source line. 

The nonnumeric literal is terminated at the last nonblank character of the current line. 

language-element NOT IMPLEMENTED. LANGUAGE ELEMENT IGNORED. 

The COBOL language element encountered is not implemented. 

The language element is not processed. 

LANGUAGE ELEMENT xxx EXCEEDS SPECIFIED FIPS LEVEL. ELEMENT BELONGS 
TO LEVEL nnn. NO CORRECTIVE ACTION TAKEN. 

The language element used in the program exceeds the specified FIPS processing level. 

The language element is accepted . 



UP-8613 Rev. 2 

Message 
Number 

0014 

0015 

0016 

0017 

0018 

0019 

0020 

Severity 
Code 

2 

2 

SPERRY UNIVAC OS/3 C-4 
1974 AMERICAN NATIONAL STANDARD COBOL 

Message/Explanation/ Action 

OPTIONAL CLAUSE, DATA-NAME, OR A LEVEL 01 ENTRY NOT SPECIFIED WITH 
THE CD ENTRY. 

If the optional clauses or data-names are not specified in the CD entry, a level 01 data 
description must follow the CD entry. 

For input CD, an area of 87 characters with FILLER items is assumed. For output CD, an 
area of 23 characters with FILLER items is assumed. Source corrections and 
recompilation are required if the CD area is referenced in the program. 

SPECIFIED SEGMENT-LIMIT GREATER THAN 49. SEGMENT-LIMIT 49 ASSUMED. 

The value of integer specified in the SEGMENT-LIMIT clause must be within the range 
from 1 to 49. 

Segment-limit of 49 is assumed. 

ALPHABET-NAME OR CLASS-NAME SPECIFICATION ERROR. CLAUSE 
INCOMPLETE. 

An integer or literal may have been specified more than once. 

The remainder of this clause is ignored. 

THE OPTIONAL PHRASE SPECIFIED FOR ORGANIZATION OTHER THAN 
SEQUENTIAL OR SAM, OR FOR A DEVICE WHICH CANNOT BE OPENED INPUT. 
PHRASE IGNORED. 

The OPTIONAL phrase was specified for a file with relative, indexed, or ISAM 
organization, or for a device that cannot be opened i nut. 

The phrase is ignored. 

DEVICE NAME IN element CLAUSE NOT VALID. DISC-*DUMMY-V ASSUMED. 

The device type in the ASSIGN or RERUN clause is invalid. 

Processing continues with the assumed name. 

IMPLEMENTOR-NAME SPECIFIED IN ASSIGN CLAUSE INCOMPLETE. DISC-* 
DUMMY-V ASSUMED. 

The implementor-name format is device-lfdname-mode. The lfdname-mode was not 
specified. 

Processing continues with the assumed name. 

LINK NAME IN element CLAUSE EXCEEDS 8 CHARACTERS. FIRST 8 
CHARACTERS USED. 

The lfdname (same as linkname) may not exceed eight characters. 

Characters beyond the first eight are truncated. 

• 

• 

• 



• 

• 

• 

UP-8613 Rev. 2 

Message 
Number 

0021 

0022 

0023 

0024 

0025 

0026 

0027 

Severity 
Code 

0 

SPERRY UNIV AC OS/3 C-5 
1974 AMERICAN NATIONAL STANDARD COBOL 

Message/Explanation/ Action 

MODE INVALID OR NOT SPECIFIED IN ASSIGN CLAUSE. DISC-*DUMMY-V 
ASSUMED. 

The mode in the implementor-name of the ASSIGN clause is not specified or specified 
incorrectly. 

The values assumed are DISC for device, *DUMMY for lfdname, and V for mode. 

CLASS-NAME CLAUSE SPECIFIED WITH NO VALUE PHRASE OR SOURCE
ALPHABET CLAUSE. COBOL CHARACTER SET USED. 

When the VALUE phrase is omitted in the CLASS-NAME clause, the SOURCE-ALPHABET 
clause must be specified. 

The COBOL character set is used for the CLASS-NAME mnemonic-name test. 

ASSIGN CLAUSE NOT SPECIFIED IN SELECT SENTENCE. NO CORRECTIVE 
ACTION TAKEN. 

The ASSIGN clause is missing in the SELECT sentence. 

Processing continues as if an ASSIGN clause specifying a DISK device were encountered . 

INTEGER SPECIFIED IN RESERVE AREA CLAUSE GREATER THAN 2. TWO 
AREAS ASSUMED. 

The value of the integer in the RESERVE clause may not exceed 2. 

RESERVE 2 AREAS assumed. 

ILLEGAL ACCESS MODE SPECIFIED FOR SEQUENTIAL ORGANIZATION. 
SEQUENTIAL ACCESS ASSUMED. 

RANDOM or DYNAMIC ACCESS MODE was specified for a sequential file. 

Sequential access mode is assumed. 

SPECIFIED KEY(S) NOT VALID FOR THE FILE ORGANIZATION. ILLEGAL KEYS 
IGNORED. 

The key or keys specified for the file is not allowed for the file organization. 

Illegal key or keys ignored. 

RELATIVE KEY NOT SPECIFIED FOR RELATIVE FILE WITH RANDOM OR 
DYNAMIC ACCESS. NO CORRECTIVE ACTION TAKEN. 

The RELATIVE KEY clause must be specified for a relative file with random or dynamic 
access. 

Processing continues. 



UP-8613 Rev. 2 

Message Severity 
Number Code 

0028 2 

0029 2 

0030 2 

0031 2 

0032 

0033 2 

0034 

0035 

SPERRY UNIVAC OS/3 C-6 
1974 AMERICAN NATIONAL STANDARD COBOL 

Message/Explanation/ Action 

RECORD KEY NOT SPECIFIED FOR INDEXED OR ISAM FILE. NO CORRECTIVE 
ACTION TAKEN. 

The RECORD KEY clause must be specified for an INDEXED or ISAM file. 

Processing continues. 

NUMBER OF ALTERNATE KEYS SPECIFIED EXCEEDS LIMIT. THIS KEY IGNORED. 

Alternate keys for a file may not exceed 4. 

The key specified on the line indicated by the line number is ignored. 

OCCURS CLAUSE SPECIFIED IN LEVEL 01 OR 77 ENTRY. CLAUSE IGNORED. 

The OCCURS clause may not be specified for a level 01 or 77 entry. 

The OCCURS clause is ignored. 

INTEGER-1 OR INTEGER-2 IN OCCURS CLAUSE EXCEEDS LIMIT. IF INTEGER-1, 
IT IS SET TO 1; IF INTEGER-2, IT IS IGNORED. 

The value of integer-1 or integer-2 specified in the OCCURS clause exceeds limit. 

If integer-1 exceeds limit. it is set to 1. If integer-2 exceeds limit, it is ignored. 

integer NOT A VALID LEVEL NUMBER. LEVEL 49 ASSUMED. 

An invalid level number was encountered. 

Level number 49 is assumed. 

UNSIGNED NONZERO INTEGER EXPECTED WHERE xxx SPECIFIED IN element 
CLAUSE. CLAUSE IGNORED. 

An unsigned nonzero integer is expected in clause analysis. 

The clause is ignored. 

FILE-NAME xxx APPEARS MORE THAN ONCE IN element CLAUSE(S). FIRST 
SPECIFICATION USED. 

The file name appears more than once as a rerun controller, or in the SAME AREA or 
MULTIPLE FILE TAPE clause. 

Only the first specification is used. 

FILE-NAME xxx IN element CLAUSE NOT SPECIFIED IN SELECT CLAUSE. FILE
NAME IGNORED. 

The file name was not found in the SELECT clause. 

The file name is ignored. 

• 

• 

• 



• 

• 

• 

UP-8613 Rev. 2 

Message 
Number 

0036 

0037 

0038 

0039 

0040 

0041 

0042 

0043 

Severity 
Code 

2 

2 

2 

2 

SPERRY UNIV AC OS/3 C-7 
1974 AMERICAN NATIONAL STANDARD COBOL 

Message/Explanation/ Action 

FILE-NAME xxx ALREADY SPECIFIED IN A SELECT CLAUSE. CLAUSE DELETED. 

The same file name was specified in a previous SELECT clause. 

The SELECT clause is syntax-checked and ignored. 

PERIOD MISSING IN element. PERIOD ASSUMED. 

A character other than a period was found where a period was expected. 

A period is assumed. 

LINK-NAME IN RERUN CLAUSE DOES NOT MATCH ANY SELECT LINK-NAME. 
RERUN CLAUSE IGNORED. 

The lfdname (same as linkname) in the OS/3 RERUN ON lfdname option did not match 
with a lfdname in any of the SELECT clauses. 

The RERUN clause is ignored. 

RERUN RECEIVER NAME FORMAT ERROR. RERUN CLAUSE IGNORED . 

The implementor-name in the RERUN clause must be in the device-lfdname-option 
format. 

The RERUN clause is ignored. 

OPTION 1 OR 2 NOT SPECIFIED IN RERUN RECEIVER NAME. OPTION 1 
ASSUMED. 

The value 1 or 2 was not specified in the implementor-name of the RERUN clause. 

One dedicated receiver file is assumed. 

VALUE OF INTEGER IN RERUN CLAUSE EXCEEDS LIMIT. VALUE SET TO 5000. 

The value of integer in the RERUN clause may not exceed 8,388,607. 

The value of integer is set to 5000. 

VALUE OF INTEGER IN MULTIPLE FILE POSITION CLAUSE EXCEEDS 256. VALUE 
SET TO PREVIOUS POSITION PLUS 1. 

Self-explanatory. 

Processing continues as if a value equal to the previous position plus 1 were specified. 

FILE-NAME xxx IN MULTIPLE FILE CLAUSE NOT DEFINED AS TAPE FILE. FILE
NAME IGNORED . 

The file name in the MULTIPLE FILE TAPE clause was assigned to a device other than 
tape. 

The file name is ignored. 



UP-8613 Rev. 2 

Message 
Number 

0045 

0046 

0047 

0048 

0049 

0050 

Severity 
Code 

2 

2 

3 

2 

SPERRY UNIVAC OS/3 C-8 
1974 AMERICAN NATIONAL STANDARD COBOL 

Message/ Explanation/ Action 

ILLEGAL CHARACTER STRING char-string. CHARACTER STRING IGNORED. 

A set of characters that does not form any COBOL word or literal was encountered. 

The string is ignored. 

A FILE WITH ORGANIZATION SAM IS ASSIGNED TO A DEVICE OTHER THAN 
DISK. ORGANIZATION SEQUENTIAL ASSUMED. 

A file specified with ORGANIZATION IS SAM* clause must be assigned to a disk. 

ORGANIZATION SEQUENTIAL is assumed for the file. 

TEXT-NAME OR LIBRARY-NAME char-string EXCEEDS 8 CHARACTERS. FIRST 8 
CHARACTERS USED. 

A library or file name of a copy module is longer than eight characters. 

The first eight characters of the name provided are used. 

division-name DIVISION HEADER MISSING OR OUT OF SEQUENCE. NO 
CORRECTIVE ACTION TAKEN. 

A division header other than the next one in sequence was encountered. 

Processing continues with the division header encountered. 

type name CANNOT BE ACCESSED. COPY STATEMENT IGNORED. 

The text or library used in a COPY statement cannot be accessed. There was an 1/0 error 
while trying to open the library file or the text requested was not on the library file. 

The COPY statement is ignored. Scanning of the source program for other COPY 
statements and reference format errors is performed, after which compilation is 
terminated. 

FILE file-name IN APPLY CLAUSE NOT DEFINED AS xxx FILE. FILE-NAME 
IGNORED. 

1. File referenced in APPLY VERIFY clause was assigned to a device other than disk. 
2. File referenced in APPLY BLOCK-COUNT clause was assigned to a device other 

than tape. 
3. File referenced in APPLY CYLINDER-OVERFLOW, CYLINDER-INDEX, or INDEXED

AREA clause was specified with an organization other than ISAM*. 

The file-name in the APPLY clause or the clause itself is ignored. 

*Applies only to 90125, 90130, 90130 8, and 90140 systems 

• 

• 

• 



UP-8613 Rev. 2 

• Message Severity 
Number Code 

0051 2 

0052 2 

0053 

0054 

• 
0055 2 

0058 2 

0059 2 

• 

SPERRY UNIV AC OS/3 C-9 
1974 AMERICAN NATIONAL STANDARD COBOL 

Message/Explanation/ Action 

WORD xxx DOES NOT BEGIN ANY CLAUSE. PROCESSING CONTINUES WITH 
NEXT CLAUSE. 

A new clause was expected but the word encountered does not begin any clause. 

All words are ignored until a word that begins an appropriate clause is found. 

element CLAUSE NOT IMPLEMENTED. CLAUSE IGNORED. 

Report writer feature is not implemented. 

The language element is ignored. 

NUMERIC LITERAL nnnn EXCEEDS 18 DIGITS. TRUNCATED TO nnnn. 

A numeric literal may not exceed 18 digits. 

The litera I is truncated from the rig ht. 

NUMBER OF RECORDS IN LINKAGE SECTION NOT EQUAL TO NUMBER OF 
ARGUMENTS IN USING LIST. USING LIST ACCEPTED . 

The LINKAGE section should correspond to the arguments in the USING list. There are 
more records in one than the other. 

The USING list is accepted and compilation continues. Errors occur if items not 
mentioned in both lists are used. 

SERIOUS ERROR IN USE STATEMENT. item INVALID. SECTION section-name 
DELETED. 

The named item in the USE statement is invalid. 

The entire section for the USE statement is deleted. 

LEVEL 88 condition-name ENTRY NOT PRECEDED BY CONDITIONAL VARIABLE. 
LEVEL 01 FILLER ENTRY GENERATED. 

The level 88 entry is the first entry in the data division. 

The compiler creates a level 01 named FILLER, length 1, signed for the conditional 
variable. 

LEVEL 66 data-name ENTRY NOT AT END OF HIERARCHY. LEVEL 01 FILLER 
ENTRY GENERATED. 

The level 66 entry was not followed by one of the following: a level 01 entry, an FD or SD 
entry, a level 77 entry, a level 66 entry, or a PROCEDURE DIVISION header. 

A level 01 named FILLER is created to follow the level 66 entry. 



UP-8613 Rev. 2 

Message 
Number 

0061 

0062 

0063 

0064 

0065 

0066 

0067 

Severity 
Code 

2 

2 

0 

2 

2 

2 

2 

SPERRY UNIVAC OS/3 C-10 
1974 AMERICAN NATIONAL STANDARD COBOL 

Message/Explanation/ Action 

LEVEL number ENTRY NOT SUBORDINATE TO LEVEL 01 ENTRY. LEVEL 01 FILLER 
ENTRY GENERATED. 

A data entry with a level between 02 and 49 follows a level 77 or DATA DIVISION header. 

A level 01 named FILLER is created to precede the data entry. 

CONSISTENCY ERROR: element clause INVALID WHEN USED WITH element 
clause. FIRST CLAUSE DELETED. 

Conflict between description clauses of the data entry, i.e., USAGE COMP-3 and 
alphanumeric PICTURE. 

The first clause is ignored. 

GO TO DEPENDING STATEMENT CONTAINS ONLY ONE PROCEDURE-NAME. 
NO CORRECTIVE ACTION TAKEN. 

At least two procedure names are required in a GO TO statement with the DEPENDING 
option. 

Control is transferred to procedure name if value of identifier is 1. Otherwise, control is 
passed to the next sentence. 

PICTURE CLAUSE INVALID FOR GROUP ITEM data-name. PICTURE CLAUSE 
DELETED. 

The data entry was determined to be a group item from level number structure and a 
PICTURE clause conflicts with a group entry. 

The compiler deletes the PICTURE clause on the group item. 

IMS ENVIRONMENT PROHIBITS USE OF LANGUAGE ELEMENT xxx. ELEMENT 
DELETED. 

The specifying element is not allowed under IMS processing mode. 

The specified element is selected. 

PROCEDURE DIVISION USING REQUIRED IN IMS ENVIRONMENT. NO 
CORRECTIVE ACTION TAKEN. 

Procedure division USING must be present in the IMS/90 environment. 

No action is taken by the compiler. 

ALL PROCEDURES PHRASE SPECIFIED MORE THAN ONCE. EXCESS CLAUSE 
DELETED. 

The ALL PROCEDURES clause can appear only once in a program. 

No action is taken by the compiler. 

• 

• 

• 



UP-8613 Rev. 2 

• Message Severity 
Number Code 

0068 0 

0070 

0073 0 

• 
0074 

0075 2 

0076 2 

• 

SPERRY UNIVAC OS/3 
1974 AMERICAN NATIONAL STANDARD COBOL 

Message/Explanation/ Action 

LITERAL literal-string TRUNCATED AND MOVED TO element. 

C-11 
Update F 

The literal contains more character positions than the receiver or contains more digits 
than the receiver when it is aligned on the decimal point. 

The literal is truncated and moved. 

BLOCK OR RECORD SIZE FOR FILE file-name EXCEEDS 32, 767. SIZE SET TO 
32.767. 

The block size (buffer size for MIRAM files) or record size is larger than the OS/3 limit 
of 32, 767 bytes. OS/3 block length headers, variable record length headers, and 
physical 1/0 BCW data length fields use an unsigned half word to contain the length 
value (15 bits or a maximum length of 32,767). The actual permitted length is often 
less than 32,767 due to disk track capacities, multiplexer channel limits, etc. 

The size is set to 32, 767. 

SIZE OF LEVEL 01 REDEFINING AREA data-name UNEQUAL TO SIZE OF LEVEL 01 
REDEFINED AREA. 

The REDEFINES clause is valid. The size of each area conforms to the exact description of 
each entry. 

This message is for warning only. 

USAGE OF data-name CONFLICTS WITH USAGE OF GROUP. NO CORRECTIVE 
ACTION TAKEN. 

A data entry usage conflicts with the usage of one or more of the group entries that this 
data entry is subordinate to, or usage conflicts with a value on a group level. 

The compiler assumes group entry's usage as proper usage. 

OCCURS CLAUSE IN data-name ENTRY INVALID. 4 DIMENSION TABLE 
DESCRIBED. CLAUSE DELETED. 

A data entry with an OCCURS clause was encountered, which would cause more than 
three levels of subscripting. 

The compiler deletes the OCCURS clause on the data entry. 

FILE file-name HAS NO DATA RECORD. NO CORRECTIVE ACTION TAKEN. 

A level 01 data record was not encountered for this file. No action is taken by the 
compiler. 

t 



UP-8613 Rev. 2 

Message 
Number 

0077 

0078 

0079 

0080 

0081 

0083 

0084 

Severity 
Code 

2 

3 

SPERRY UNIVAC OS/3 
1974 AMl;RICAN NATIONAL STANDARD COBOL 

Message/Explanation/ Action 

C-12 
Update F 

PRINTER CONTROL CHARACTER SPECIFICATION INVALID FOR file-name. 
SPECIFICATION IGNORED. 

Printer control character may only be specified on file with sequential organization. 

Compiler ignores control character specification. 

ADDITIONAL MEMORY REQUIRED FOR PROCESSING LABEL RECORD 
DESCRIPTIONS. OBJECT MODULE NOT PRODUCED. 

There is not enough main storage available for holding all the label name definitions for 
this file. 

Compiler assumes that label name definitions that will not fit do not exist. Main storage is 
required to hold the SELECTS and label name definitions. To allow processing of more 
label names, allocate more main storage, shorten the size of the SELECT entries, or 
define fewer label names. 

BLOCK LENGTH FOR FILE file-name NOT A MULTIPLE OF RECORD LENGTH. 
BLOCK SHORTENED TO HOLD AN INTEGRAL NUMBER OF RECORDS. 

The block length is not evenly divisible by the record length for fixed mode tape, card 
reader, card punch, fixed mode SAM, or ISAM. 

The block is shortened to contain an integral number of records. 

FILE-NAME file-name NOT FOUND IN SELECT CLAUSES. A SELECT ENTRY 
ASSIGNED TO DISK ASSUMED. 

A file that does not have a SELECT entry (matched by file name) was encountered. 

Compiler assumes a SELECT entry defined with file name and assigned to disk device. 

INVALID MODE SPECIFIED FOR FILE file-name. MODE F ASSUMED. 

The mode specified is not permissible for this file. 

Mode F is assumed. 

BLOCK CONTAINS MORE THAN 1 RECORD NOT PERMITTED FOR FILE file-name. 
BLOCK CONTAINS 1 RECORD ASSUMED. 

A file assigned to U mode tape or printer with a BLOCK CONTAINS clause specifying 
more than one record was encountered. 

Compiler assumes block contains one record. 

LABEL RECORDS OMITTED REQUIRED FOR FILE file-name. OMITTED ASSUMED. 

A file assigned to a unit record device with other than LABEL RECORDS OMITIED was 
encountered. 

Compiler assumes labels to be omitted. 

• 

... 
• 

• 



UP-8613 Rev. 2 

• Message Severity 
Number Code 

0085 

• 

• 

SPERRY UNIV AC OS/3 
1974 AMERICAN NATIONAL STANDARD COBOL 

Message/Explanation/ Action 

C-12a 
Update F 

BLOCK SIZE SPECIFIED FOR FILE file-name INSUFFICIENT FOR MINIMUM 1/0 
BUFFER. MINIMUM SIZE ASSUMED. 

The BLOCK CONTAINS CHARACTERS clause specifies a buffer size insufficient for the 
minimum data management buffer. 

The minimum allowable buffer size is used . 



• 

• 

• 



• 

• 

• 

UP-8613 Rev. 2 

Message 
Number 

0087 

0089 

0091 

0092 

0093 

0094 

0095 

Severity 
Code 

2 

2 

3 

SPERRY UNIV AC OS/3 C-13 
1974 AMERICAN NATIONAL STANDARD COBOL 

Message/Explanation/ Action 

RECORD DESCRIPTION ENTRY FOR LABEL RECORD data-name NOT FOUND. NO 
CORRECTIVE ACTION TAKEN. 

A label name (from LABEL RECORDS ARE clause) with no 01 label description was 
encountered. 

The compiler assumes that the label name does not exist. 

LABEL RECORDS STANDARD REQUIRED FOR FILE file-name. STANDARD 
ASSUMED. 

A file assigned to mass storage device must specify LABEL RECORDS STANDARD clause. 

LABEL RECORDS STANDARD clause assumed. 

SYNTAX REQUIRES element, char-string INVALID. STATEMENT IGNORED. 

The character string encountered does not conform to the language element required by 
the COBOL syntax. 

Processing continues at the end of the statement. 

MEMORY INSUFFICIENT FOR element PROCESSING. OVERFLOW DETECTED ON 
char-string. OBJECT MODULE NOT PRODUCED. 

Processing of the language element could not continue due to insufficient storage. 

All previous processing of the language element is deleted and current processing of the 
character string is completed. 

LITERAL 0 INVALID FOR SIGN CONDITION TEST. FIGURATIVE CONSTANT ZERO 
ASSUMED. 

Literal 0 may not be specified in a sign condition test. 

Figurative constant ZERO substituted. 

CHARACTER IN CHARACTER POSITION integer INVALID FOR type PICTURE pic
string. PICTURE SET TO S9. 

An illegal PICTURE character, a PICTURE character inconsistent with the PICTURE type, 
or a violation of the PICTURE precedence rules has been detected. 

In order not to delete the data descriptor, the compiler sets the picture to S9. 

type PICTURE pie-string INCOMPLETE. PICTURE SET TO S9. 

As stated, the picture is incomplete and cannot be processed, e.g., SPPPP . 

In order not to delete the data descriptor, the compiler sets the picture to S9. 



UP-8613 Rev. 2 

Message Severity 
Number Code 

0097 

0098 

0099 

0100 

0101 

0102 

0105 

SPERRY UNIVAC OS/3 C-14 
1974 AMERICAN NATIONAL STANDARD COBOL 

Message/Explanation/ Action 

SIZE LIMIT OF integer BYTES EXCEEDED BY PICTURE pie-string. PICTURE SET TO 
S9. 

The PICTURE clause specifies more storage than the maximum allowed for the picture 
type. 

In order not to delete the data descriptor, the compiler sets its picture to 59. 

PICTURE pie-string EXCEEDS 18 DIGIT POSITIONS. PICTURE SET TO S9. 

The number of digit positions in the picture exceeds 18. 

In order not to delete the data descriptor, the compiler sets the picture to 59. 

VALUE OF INTEGER IN PARENTHESIS EQUALS ZERO OR GREATER THAN 4092 
IN PICTURE pie-string. INTEGER SET TO 1. 

A value contained within parentheses is either 0 or greater than 4092. 

The value within the parentheses is set to 1 and processing of the picture continues. 

INTEGER DOES NOT FOLLOW LEFT PARENTHESIS IN PICTURE pie-string. 
PICTURE SET TO S9. 

A left parenthesis within the PICTURE clause is not followed by a numeric integer. 

In order not to delete the data descriptor, the compiler sets the picture to 59. 

RIGHT PARENTHESIS MISSING FROM PICTURE pie-string. PICTURE SET TO S9. 

A right parenthesis does not follow a numeric integer preceded by a left parenthesis. 

In order not to delete the data descriptor, the compiler sets the picture to 59. 

BOTH LEADING AND TRAILING SIGN INSERTION SPECIFIED IN PICTURE pic
string. PICTURE SET TO S9. 

Two insertion sign characters have been encountered in the numeric edited picture. 

In order not to delete the data descriptor, the compiler sets the picture to 59. 

INITIAL VALUE EXCEEDS SIZE OF DATA ITEM. EXCESS CHARACTERS 
TRUNCATED. 

The value specified for the data item contains a greater number of characters than the 
data item, or is a numeric value that, when the decimal point is aligned, is larger than the 
maximum value the data item can contain. 

The excess characters are truncated. 

• 

• 

• 



UP-8613 Rev. 2 

• Message Severity 
Number Code 

0106 2 

0107 3 

0108 3 

• 0109 

0111 2 

0112 

• 

SPERRY UNIV AC OS/3 C-15 

1974 AMERICAN NATIONAL STANDARD COBOL 

Message/Explanation/ Action 

INVALID POSITIONING OF KEY data-name IN HIERARCHY. KEY CLAUSE 

IGNORED. 

There must not be any items with an OCCURS clause between the table item and its keys. 

The named key is processed as a regular data item, the key information is ignored. 

ADDITIONAL MEMORY REQUIRED TO PROCESS HIERARCHY CONTAINING 
data-name. OBJECT MODULE NOT PRODUCED. 

There is not enough main storage available to contain all entries subordinate to the 01 
data entry. There are too many entries for the 01 hierarchy for main storage allocated. 

The compiler will not process the data entries that are not contained in main storage. To 
compensate, shorten the hierarchy, shorten names in data entries, or assign more main 
storage to compiler. 

data-name EXCEEDS REDEFINES NESTING LIMIT. REDEFINES CLAUSE 
IGNORED. 

There are too many levels of redefinition. This data entry exceeds the limit of redefinition . 

The compiler assumes this entry does not have REDEFINES clause. 

data-name-1 HAS IMPROPER REDEFINES OBJECT data-name-2. OBJECT OF 
REDEFINES ASSUMED TO BE THE LAST DEFINED AREA. 

The redefined area is a redefining area; i.e., the object of the REDEFINES clause has or is 
subordinate to a REDEFINES clause. 

The compiler assumes the redefinition of the last defined area with the same level as the 
subject of the REDEFINES clause. 

DATA DESCRIPTION OF data-name NOT FOUND IN HIERARCHY. QUALIFIER 
IGNORED. 

The definition of the entry is not in the current hierarchy. 

The compiler assumes the qualifier name in error does not exist. 

RENAMES-OCCURS CONFLICT BETWEE!\I data-name-1 AND data-name-2. LAST 
ELEMENTARY ITEM ASSUMED AS OBJECT OF RENAMES. 

The object of the RENAMES clause on data-name-1 has or is subordinate to an OCCURS 
clause. 

The compiler assumes the last elementary item in the hierarchy is the object of the 
RENAMES clause . 



UP-8613 Rev. 2 

Message 
Number 

0113 

0114 

0115 

0116 

0117 

0118 

Severity 
Code 

SPERRY UNIVAC OS/3 
1974 AMERICAN NATIONAL STANDARD COBOL 

Message/Explanation/ Action 

C-16 
Update F 

SIZE OF REDEFINING AREA data-name UNEQUAL TO SIZE OF REDEFINED 
AREA. LARGER SIZE ASSUMED FOR THE AREA. 

The calculated length of the redefined area is not the same as the length of the 
redefining area. 

The larger size is used .for the area. 

SIZE OF ELEMENTARY ITEM data-name EXCEEDS LIMIT. SIZE SET TO LIMIT. 

An elementary item with a length larger than the maximum was encountered. 

The compiler assumes the length to be 4092 for the elementary item. 

SIZE OF GROUP ITEM data-name EXCEEDS LIMIT. SIZE OF GROUP ITEM SET 
TO 524,280. ENTIRE AREA SPECIFIED IS, HOWEVER, ALLOCATED. 

The calculated length of a group item exceeds maximum limit. 

The length of group item is set to 524,280. The entire area specified, however, is 
allocated. 

SIZE OF ITEM data-name CONTAINING AN OCCURS CLAUSE EXCEEDS LIMIT. 
ENTIRE AREA SPECIFIED IS ALLOCATED BUT SUBSCRIPTED REFERENCES TO 
THE TABLE MAY NOT GIVE CORRECT RESULTS. 

The length of a table element (i.e., the size of the item containing an OCCURS clause) 
exceeds the maximum limit of 32, 767 bytes. 

The compiler allocates the entire area for the table element; however, subscripted 
references to the table item may not work. 

INVALID LEVEL NUMBER STRUCTURE ENCOUNTERED AT data-name. NO 
CORRECTIVE ACTION TAKEN. 

A level number equal to the level of the data entry should have appeared in the 
hierarchy directly subordinate to the 01. 

The compiler assumes there was a level number on a data entry directly subordinate 
to the 01, e.g., a record with level number structure of 01 ... 05 ... 02 is processed as if 
it had level number structure of 01 ... 02 ... 05 ... 02. 

FIRST OBJECT OF LEVEL 66 ENTRY data-name ENDS AFTER SECOND 
OBJECT. SECOND OBJECT IGNORED. 

The first object of a RENAMES clause does not precede the area of the second object 
of the RENAMES clause. 

The compiler assumes the second object does not exist. 

• 

• 

• 



• 

• 

• 

UP-8613 Rev. 2 

Message 
Number 

0119 

0120 

0121 

0122 

0123 

0124 

0127 

Severity 
Code 

2 

SPERRY UNIVAC OS/3 C-17 
1974 AMERICAN NATIONAL STANDARD COBOL 

Message/Explanation/ Action 

SECOND OBJECT OF LEVEL 66 ENTRY data-name STARTS BEFORE FIRST 
OBJECT. ORDER OF OBJECTS ASSUMED REVERSED. 

The second object of a RENAMES clause does not precede the first object of the 
RENAMES clause. 

The compiler assumes the objects are reversed. (The first is the second and the second is 
the first.) 

USAGE INDEX CLAUSE INVALID FOR CONDITIONAL VARIABLE data-name. 
CLAUSE IGNORED. 

A condition name entry is defined for a data with a USAGE INDEX clause. 

The compiler assumes alphanumeric usage for the conditional variable. 

SIZE OF RECORD record-name UNEQUAL TO THAT OF OTHER RECORDS IN FILE 
SPECIFIED WITH MODE F. LARGER SIZE ASSUMED TO BE THE RECORD SIZE OF 
FILE. 

A file defined with fixed-length record format does not have data records of the same 
length . 

The compiler assumes the largest data record length for calculation of record length for 
the file. 

SIZE OF LABEL RECORD data-name NOT 80 CHARACTERS. 80 ASSUMED. 

A standard user label record description has a length of other than 80 characters. 

A length of 80 characters is assumed. 

SYNC CLAUSE SPECIFIED FOR data-name REQUIRES DIFFERENT 
SYNCHRONIZATION THAN OBJECT OF REDEFINES. SYNC CLAUSE IGNORED. 

Self-explanatory 

The SYNC clause is ignored. 

BLOCK CONTAINS INSUFFICIENT CHARACTERS TO HOLD ONE RECORD FOR 
FILE file-name. BLOCK SET TO CONTAIN ONE RECORD. 

The value in the BLOCK CONTAINS integer CHARACTERS clause is less than that needed 
to contain the largest record plus control bytes. 

The compiler assumes BLOCK CONTAINS 1 RECORD. 

RECORD CONTAINS SPECIFICATION NOT EQUAL TO SIZE OF LARGEST 
RECORD. LARGEST RECORD SIZE USED . 

The RECORD CONTAINS clause does not specify the length of the largest data record. 

The compiler assumes that the length of the largest data record is specified in the 
RECORD CONTAINS clause. 



UP-8613 Rev. 2 

Message 
Number 

0129 

0130 

0131 

0132 

0133 

0134 

0136 

Severity 
Code 

2 

2 

2 

2 

3 

SPERRY UNIVAC OS/3 C-18 
1974 AMERICAN NATIONAL STANDARD COBOL 

Message/Explanation/ Action 

REDEFINES CLAUSE NOT PERMITTED FOR LEVEL 01 ENTRY IN FILE OR 
COMMUNICATION SECTION. CLAUSE IGNORED. 

A level 01 entry with a REDEFINES clause was encountered in the file or communication 
section. 

The compiler assumes the REDEFINES clause does not exist. 

SUBJECT OF REDEFINES, data-name. NOT IN SAME SECTION AS OBJECT OF 
REDEFINES. REDEFINES CLAUSE IGNORED. 

The subject of a REDEFINES clause is not in same section as entry with REDEFINES. 

The compiler assumes the REDEFINES clause does not exist. 

OBJECT OF REDEFINES. data-name. WITHIN RANGE OF OCCURS. REDEFINES 
CLAUSE IGNORED. 

The object of a REDEFINES clause has or is subordinate to an OCCURS clause. 

The compiler assumes the REDEFINES clause does not exist. 

REDEFINES OBJECT, data-name. AND SUBJECT DATA NAME DO NOT HAVE 
IDENTICAL LEVEL NUMBERS. REDEFINES CLAUSE IGNORED. 

The object and subjects of the REDEFINES clause do not have the same level numbers. 

The compiler assumes the REDEFINES clause does not exist. 

INDEX NAME data-name EXCEEDS LIMIT. PREVIOUS INDEX NAMES 
ASSIGNMENT INVALIDATED. 

The current compiler limit of index names is 255. This entry is the 256 specified index 
name. 

The compiler starts index name storage assignment over and reassigns the storage to the 
index names being processed. 

NO LENGTH INDICATED IN ELEMENTARY ITEM data-name. LENGTH OF 1 
ASSUMED. 

An elementary item, determined from level number structure, with no length specified or 
assumed, was encountered. 

The compiler assumes a length of 1, signed was specified. 

OBJECT OF RENAMES data-name HAS ILLEGAL LEVEL NUMBER. LAST 
ELEMENTARY ITEM ASSUMED AS OBJECT. 

The object of the RENAMES clause has illegal level number. 

The compiler assumes the last elementary item as specified object of the RENAMES 
clause. 

• 

• 

• 



• 

• 

• 

UP-8613 Rev. 2 

Message 
Number 

0137 

0138 

0139 

0140 

0142 

0143 

0144 

Severity 
Code 

2 

2 

2 

2 

0 

SPERRY UNIV AC OS/3 C-19 
1974 AMERICAN NATIONAL STANDARD COBOL 

Message/Explanation/ Action 

OBJECT OF REDEFINES IN data-name ENTRY HAS ILLEGAL LEVEL NUMBER. 
REDEFINES CLAUSE IGNORED. 

The object of the REDEFINES clause is not a legal level for redefinition. 

The compiler assumes the REDEFINES clause does not exist. 

USE DEBUGGING SECTIONS NOT GROUPED TOGETHER AT BEGINNING OF 
DECLARATIVES. PROCESSED AS IF IN CORRECT SEQUENCE. 

All debugging sections must appear together immediately following the DECLARATIVES 
header. 

The debugging sections are processed as though they had appeared at the beginning of 
the DECLARATIVES. 

SEGMENT NUMBER INCORRECT OR OUT OF SEQUENCE. SEGMENT NUMBER 0 
ASSUMED. 

The value of segment number does not fall within range of 0 to 99. 

The segment number is set to 0 . 

NO EXIT PROGRAM STATEMENT IN PROCEDURE DIVISION SPECIFIED WITH 
USING PHRASE. NO CORRECTIVE ACTION TAKEN. 

No return mechanism to the calling program is provided. 

No corrective action is taken. 

NO PROCEDURE DIVISION USING PHRASE OR EXIT PROGRAM STATEMENT 
ASSOCIATED WITH LINKAGE SECTION. NO CORRECTIVE ACTION TAKEN. 

No mechanism provided for passing of arguments or exit to calling program. 

No corrective action is taken. 

UNPAIRED ELSE ENCOUNTERED IN IF STATEMENT. IF STATEMENT 
TERMINATED AT THIS POINT. 

ELSE encountered in IF statement with no preceding IF verb to match it with. 

The conditional statement is terminated at this point. 

STOP RUN STATEMENT NOT ENCOUNTERED. NO CORRECTIVE ACTION TAKEN. 

The STOP RUN statement was not encountered. 

No corrective action is taken . 



UP-8613 Rev. 2 

Message 
Number 

0145 

0146 

0147 

0148 

0149 

0150 

0151 

Severity 
Code 

2 

2 

2 

2 

SPERRY UNIVAC OS/3 C-20 
1974 AMERICAN NATIONAL STANDARD COBOL 

Message/Explanation/ Action 

EXIT STATEMENT NOT THE ONLY STATEMENT IN PARAGRAPH. NO 
CORRECTIVE ACTION TAKEN. 

The EXIT statement must be the only statement in a paragraph. 

No corrective action is taken. 

THE BEFORE OPTION OF THE USE STATEMENT IS NOT APPLICABLE. THE AFTER 
OPTION IS ASSUMED. 

The BEFORE option is not applicable to the operating system. 

The AFTER option is assumed. 

LENGTH OF PROGRAM NAME IN CALL STATEMENT EXCEEDS LIMIT. EXCESS 
CHARACTERS TRUNCATED. 

Program name exceeds 8 or 80 characters in length. 

The program name in CALL statement truncated to 8 or 80 characters. 

REFERENCE TO name CANNOT BE RESOLVED. STATEMENT DELETED. 

A definition of the listed name has not been encountered. 

The statement containing the reference is deleted. 

QUALIFIED REFERENCE TO name CANNOT BE RESOLVED. STATEMENT 
DELETED. 

A definition of the listed name has not been encountered under the specified qualifiers. 

The statement containing the reference is deleted. 

REFERENCE TO PROCEDURE name AMBIGUOUS. DEFINITION AT LINE number 
USED. 

A definition of the listed paragraph name has not been encountered within the section 
from which the reference is made, while multiple definitions exist outside the section of 
reference. 

The reference is resolved by the paragraph name at the listed line number. 

REFERENCE TO name OF name CANNOT BE RESOLVED DUE TO IMPROPER 
QUALIFIER AT LINE number. STATEMENT DELETED. 

The qualifier of a procedure reference is not a section name; or is found in the data 
division; or the qualifier of a data reference is found in the procedure division. 

The statement containing the reference is deleted. 

• 

• 

• 



• 

• 

• 

UP-8613 Rev. 2 

Message 
Number 

0152 

0153 

0154 

0155 

0156 

0157 

Severity 
Code 

0 

2 

0 

SPERRY UNIV AC OS/3 
1974 AMERICAN NATIONAL STANDARD COBOL 

Message/Explanation/ Action 

C-21 
Update F 

REFERENCE TO name AMBIGUOUS DUE TO DEFINITION AT LINE number. 
DEFINITION AT LINE number USED. 

Duplicate definition of the listed unqualified name has been encountered in the same 
division. 

The definition at listed line number is used. 

IMPROPER DEFINITION OF name AT LINE number IMPLIED BY MANNER OF 
REFERENCE. STATEMENT DELETED IF REFERENCE NOT RESOLVED. 

A duplicate definition of the listed unqualified name has been found in another division. 

If the reference cannot be resolved within the COBOL division corresponding to the 
reference type, the statement is deleted. 

name NOT UNIQUE. DUPLICATE DEFINITION FOUND AT LINE number. 
STATEMENT DELETED IF REFERENCE NOT RESOLVED. 

A duplicate definition has been found for the qualifier. 

If the reference cannot be resolved within the COBOL division corresponding to the 
reference type, the statement is deleted. 

IMPERATIVE STATEMENT NOT TERMINATED BY PERIOD AT END OF 
PARAGRAPH. PERIOD ASSUMED. 

Last sentence of a paragraph was not terminated by a period. A period is required for 
correct COBOL syntax, even though it does not affect execution of imperative 
statements. 

A period is assumed after the last statement in the paragraph. 

BOTH CD INITIAL AND PROCEDURE DIVISION USING SPECIFIED. USING 
PHRASE IGNORED. 

If the USING phrase is specified in the PROCEDURE DIVISION header. the INITIAL 
clause must not be present in any CD entry. 

The USING phrase is deleted. 

verb STATEMENT OPERAND name IMPROPERLY INDEXED. NO ACTION 
TAKEN. 

An index name used to address a table element is not associated with the table but is 
associated with another table that has the same element size. 

No action. Precautionary warning . 

t 



UP-8613 Rev. 2 

Message 
Number 

0158 

0159 

0160 

0161 

0162 

0163 

0164 

Severity 
Code 

0 

2 

2 

2 

2 

2 

SPERRY UNIVAC OS/3 
1974 AMERICAN NATIONAL STANDARD COBOL 

Message/Explanation/ Action 

C-22 
Update F 

verb STATEMENT REFERENCES WORKING-STORAGE ITEM data-name WHICH. 
IN IMS ENVIRONMENT. SHOULD NOT BE MODIFIED. NO ACTION TAKEN. 

Due to the shared nature of programs operating under IMS mode, errors could occur if 
working-storage items are modified at object time. 

No action. Precautionary warning. 

verb STATEMENT CONTAINS INVALID OPERAND data-name. STATEMENT 
DELETED. 

The specified data item does not satisfy the requirements for the designated verb; for 
example, an alphabetic operand in an ADD statement. 

The statement containing the listed operand is deleted. 

verb STATEMENT OPERAND data-name IMPROPERLY SUBSCRIPTED. 
STATEMENT DELETED. 

The data item contains too many, too few, or an improper type of subscript. 

The statement containing the subscript error is deleted. 

verb STATEMENT CONTAINS INCONSISTENT OPERAND data-name. 
STATEMENT DELETED. 

The combination of operands in the statement conflict in their usage; for example, 
moving a numeric item to an alphabetic operand. 

The statement containing the inconsistent operand is deleted. 

verb STATEMENT CONTAINS SIGNED LITERAL literal. SIGN DELETED. 

A signed literal has been encountered. 

The sign of the literal is deleted. 

COMPOSITE OF OPERANDS IN verb statement EXCEEDS 18 DIGITS. 
STATEMENT DELETED. 

The superimposition of all operands to the left of the word GIVING exceeds 18 digits. 

The statement containing the composite error is deleted. 

GO TO PRECEDES IMPERATIVE STATEMENTS. IMPERATIVE STATEMENTS 
DELETED. 

A GO TO statement is followed by other imperative statements. 

The statements between the GO TO and the ELSE, IF, or period are deleted. 

• 

• 

• 



UP-8613 Rev. 2 

• Message Severity 
Number Code 

0165 2 

0166 

0167 3 

• 

• 

SPERRY UNIVAC OS/3 
1974 AMERICAN NATIONAL STANDARD COBOL 

Message/Explanation/ Action 

C-22a 
Update F 

verb STATEMENT OPERAND data-name NOT DEFINED IN LINKAGE SECTION. 
STATEMENT DELETED. 

The referenced data-name has not been defined in the linkage section. 

The statement containing the listed operand is deleted. 

CONDITIONAL STATEMENT NOT TERMINATED BY PERIOD AT END OF 
PARAGRAPH. PERIOD ASSUMED. 

Last sentence of a paragraph containing a conditional statement was not terminated 
by a period. A period is required to indicate where conditional statement ends. This 
does affect execution of the program. 

A period is assumed after the last statement in the paragraph. 

ADDITIONAL MEMORY REQUIRED TO PROCESS STATEMENT CONTAINING 
data-name. OBJECT MODULE NOT PRODUCED. 

This statement exceeds the main storage area available to process statements with 
multiple operands . 

The statement is deleted. Additional main storage should be assigned to the compiler 
or the statement must be rewritten as multiple statements . 

t 



• 

• 

• 



• 

• 

• 

UP-8613 Rev. 2 

Message 
Number 

0168 

0169 

0170 

0171 

0172 

0173 

0174 

Severity 
Code 

2 

2 

2 

2 

0 

2 

2 

SPERRY UNIV AC OS/3 C-23 
1974 AMERICAN NATIONAL STANDARD COBOL 

Message I Explanation I Action 

verb STATEMENT EXCEEDS LIMIT OF INTERMEDIATE RESULT AREAS. 
STATEMENT DELETED. 

The maximum number of temporary arithmetic data areas has been exceeded. 

Reduce the complexity of the expression or reduce the number of expressions in the 
statement. 

verb STATEMENT OPERAND name NOT A RECORD OR FILE NAME. STATEMENT 
DELETED. 

The input/output statement does not reference a record name or file name. 

The statement in error is deleted. 

SENTENCE PRODUCES EXCESSIVE OBJECT CODE. NO CORRECTIVE ACTION 
TAKEN. 

The maximum size of the object code produced for one sentence may not exceed 2048 
bytes. Incorrect branching may occur during object program execution. 

Reduce the sentence size by rewriting it as several sentences or paragraphs . 

NEXT SENTENCE PHRASE NOT FOLLOWED BY A PERIOD OR WORD ELSE OR 
WHEN. PHRASE DELETED. 

NEXT SENTENCE must be followed by ELSE, period, or WHEN. 

The NEXT SENTENCE phrase is ignored. 

PERFORM STATEMENT IN DECLARATIVES REFERENCES A NON-DECLARATIVE 
PROCEDURE. NO ACTION TAKEN. 

A PERFORM within the declarative section referenced a procedure outside of the 
declarative section. 

No action. Precautionary warning. 

verb STATEMENT OPERAND name REFERS TO FILE RECORD AREA. STATEMENT 
DELETED. 

Both operands in the statement refer to the same storage area. 

The statement is deleted. 

verb STATEMENT RECORD-NAME name NOT DEFINED IN FILE SECTION. 
STATEMENT DELETED. 

The listed operand is not defined in the file section . 

The statement is deleted. 



UP-8613 Rev. 2 

Message Severity 
Number Code 

0175 0 

0176 2 

0177 2 

0178 2 

0179 2 

0180 2 

SPERRY UNIVAC OS/3 C-24 
1974 AMERICAN NATIONAL STANDARD COBOL 

Message/Explanation/ Action 

COMPARISON FOR EQUALITY INVOLVING A FLOATING-POINT OPERAND MAY 
NOT YIELD EXPECTED RESULTS. PRECAUTIONARY WARNING. 

A floating-point operand appears in an equal- or not-equal-relation condition. Because of 
the limited precision in a floating-point number, the values of the two operands may not 
compare as equal or not equal. 

No action. Precautionary warning. 

DESCRIPTIONS OF OPERANDS IN DIVIDE STATEMENT COULD PRODUCE ONLY 
ZERO RESULT. STATEMENT DELETED. 

The description of the operands in a DIVIDE statement is structured so that only zeros 
could result for the quotient in the specified receiver. 

The DIVIDE statement is deleted. 

verb STATEMENT CONFLICTS WITH SEGMENTATION RULES. STATEMENT 
DELETED. 

A branching verb is invalidly specified according to the rules of segmentation, or an 
ALTER statement refers to a paragraph that does not begin with a GO TO. 

The statement in error is deleted. 

verb STATEMENT INCOMPLETE OR CONTAINS INVALID OPERAND OR OPTION. 
STATEMENT DELETED. 

An operand conflicts with a specified option or with another operand, or an option that 
must be specified for a given statement was not encountered. For example, a WRITE 
statement to a mass storage device must contain an INVALID KEY clause. 

The statement is deleted. 

INTERNAL LABEL TABLE OVERFLOW. PROCESSING INCOMPLETE. 

Either a sentence requires more than 256 internal labels or more than 24 internal labels 
are active. 

Requirements for internal labels may be lowered by reducing the number of statements in 
a sentence. 

CLASS OF LITERAL CONFLICTS WITH CLASS OF data-name. MOVE OPERATION 
DELETED. 

A non numeric literal containing numeric characters is being moved to an alphabetic item, 
or a nonnumeric literal containing nonnumeric characters is being moved to a numeric 
item. 

The MOVE operation is deleted. 

• 

• 

• 



UP-8613 Rev. 2 SPERRY UNIV AC OS/3 C-25 
1974 AMERICAN NATIONAL STANDARD COBOL 

• Message Severity 
Number Code Message/Explanation/ Action 

0181 0 element-1 TRUNCATED AND MOVED TO element-2. 

The item being moved contains a greater number of character positions than the receiver, 
or, when decimal-point aligned, contains a greater number of digit positions than the 
receiver. 

The data name or intermediate result is truncated and moved. 

0182 2 COMPLETE TRUNCATION OF SIGNIFICANT DIGITS OF element-1. ZEROS MOVED 
TO element-2. 

Decimal point alignment is such that no portion of the item being moved can be contained 
in the receiving operand. 

Zeros moved to the receiving field or intermediate result. 

0183 0 REDUNDANT ROUND ON data-name. ROUNDING IGNORED. 

The numeric description of the arithmetic result is such that no excess digit positions are 
available for rounding into the listed operand. 

The round operation is deleted . • 0184 0 REDUNDANT SIZE ERROR ON data-name. 

The numeric description of the arithmetic result is such that its value could never exceed 
the largest value that can be contained in the listed operand. 

No action taken. 

0185 1 literal IN DISPLAY OR STOP STATEMENT NOT AN UNSIGNED INTEGER. NON-
INTEGER TRUNCATED OR SIGN REMOVED. 

A literal operand in a DISPLAY or STOP statement must be an unsigned integer. 

The literal is made unsigned or truncated to an integer. 

0186 1 VALUE OF INTEGER TIMES IN PERFORM STATEMENT EXCEEDS LIMIT. VALUE 
SET TO MAXIMUM LIMIT. 

The value of integer TIMES IN PERFORM statement exceeds maximum limit of 32,767. 

The value is set to 32,767. 

0187 1 VALUE OF INTEGER IN WRITE ADVANCING STATEMENT EXCEEDS LIMIT. VALUE 
SET TO 1. 

The integer specified in the WRITE ADVANCING statement exceeds limit of 255 . 

• The value of integer is set to 1. 



UP-8613 Rev. 2 

Message Severity 
Number Code 

0188 2 

0189 2 

0190 2 

0191 3 

0192 0 

0193 2 

0194 2 

SPERRY UNIVAC OS/3 C-26 
1974 AMERICAN NATIONAL STANDARD COBOL 

Message I Explanation I Action 

FILE ON LINE number HAS NO ASSOCIATED verb STATEMENT WITHIN 
PROGRAM. NO CORRECTIVE ACTION TAKEN. 

An OPEN or CLOSE statement has not been specified for the file or the OPEN statement 
is inconsistent with the activity associated with the file. 

Results during execution are unpredictable. 

verb STATEMENT NOT PERMITTED IN USE LABEL PROCEDURE. STATEMENT 
DELETED. 

The CALL, CANCEL, and all 1/0 statements except ACCEPT (from software devices) and 
DISPLAY are not allowed within a USE LABEL PROCEDURE. 

The statement is deleted. 

ADDITIONAL MEMORY REQUIRED TO PRODUCE OBJECT PROGRAM LISTING. 
LISTING NOT PRODUCED. 

The main storage assigned for the compiler is insufficient to generate the object program 
listing. The object module, however, is produced. 

To obtain the object program listing, a recompilation with more main storage assignment 
is required. 

ADDITIONAL MEMORY REQUIRED TO PRODUCE OBJECT PROGRAM. OBJECT 
MODULE NOT PRODUCED. 

The main storage assigned to the compiler is insufficient to generate the object module. 

A recompilation with more main storage assignment is necessary. 

TRUNCATION MAY OCCUR WHEN FLOATING-POINT ITEM element-1 IS MOVED 
TO element-2. MOVE PERFORMED. 

A floating-point item is being moved to a receiver which is not floating-point, and there 
may be a loss of significance. 

The move is performed. 

ON STATEMENT CONTAINS INVALID INTEGER integer. STATEMENT DELETED. 

The literal in an ON statement is negative. noninteger, or its value is greater than the 
allowable maximum (2147483648). 

The ON statement is deleted. 

ON STATEMENT CONTAINS INCONSISTENT INTEGER SPECIFICATIONS. 
STATEMENT DELETED. 

The values of the literals in the statement are inconsistent. The value of the literal in the 
ON phrase plus the value of the literal in the AND EVERY phrase, if present, is greater 
than the value of the literal in the UNTIL phrase. 

The ON statement is deleted. 

• 

• 

• 



UP-8613 Rev. 2 

• Message Severity 

t 
Number Code 

0195 2 

0196 

0197 

• 0198 2 

0199 2 

0200 2 

0201 

• 

SPERRY UNIVAC OS/3 
1974 AMERICAN NATIONAL STANDARD COBOL 

Message/Explanation/ Action 

C-27 
Update D 

verb STATEMENT REFERENCES WORKING-STORAGE ITEM data-name WHICH. 
IN A RE-ENTRANT IMS ENVIRONMENT, MUST NOT BE MODIFIED. 
STATEMENT DELETED. 

Due to the shared nature of programs operating under IMS reentrant mode, 
working-storage items cannot be modified at object time. 

The statement is deleted. 

CURRENCY SIGN SYMBOL symbol INVALID."$" USED. 

A character that may not be used as a currency sign was specified in the currency 
sign clause of SPECIAL-NAMES section. 

The symbol $ is used for the currency sign. 

MORE THAN ONE CHARACTER SPECIFIED FOR element LITERAL. FIRST 
CHARACTER USED. 

A currency sign literal or the second literal of a SOURCE-ALPHABET clause has more 
than one character . 

The first character of the string is used. 

INCORRECT DIVISION OR SECTION HEADER IN CONTROL DIVISION. 
PROCESSING CONTINUES WITH NEXT VALID CLAUSE. 

The CONTROL DIVISION or ALPHABET SECTION statement is specified incorrectly. 

Processing resumes at the SOURCE-ALPHABET or MESSAGES statement. 

INVALID LITERAL literal IN SOURCE ALPHABET CLAUSE. LITERAL IGNORED. 

The second literal of the SOURCE-ALPHABET clause is less than the first literal, or the 
literal is greater than 255. 

The literal is ignored. 

MULTIPLE ERRORS FOUND IN element CLAUSE. PROCESSING CONTINUES 
WITH NEXT VALID CLAUSE. 

Another error has been found during an error recovery processing of the first error. 

All words are ignored until a valid clause is found. 

EXTRANEOUS PERIOD SPECIFIED IN element CLAUSE. PERIOD IGNORED. 

A period precedes an expected element. 

The period is ignored. 



UP-8613 Rev. 2 

Message Severity 
Number Code 

0202 2 

0203 2 

0204 

0205 

0206 

0207 

0208 

0209 2 

SPERRY UNIVAC OS/3 
1974 AMERICAN NATIONAL STANDARD COBOL 

Message/ Explanation I Action 

C-28 
Update D 

A PERIOD TERMINATES AN INCOMPLETE element CLAUSE. CLAUSE IGNORED. 

A period is found instead of the expected element. and the expected element is not found 

immediately following the period. 

All words are ignored until a valid clause is found. 

element CLAUSE SPECIFIED OUT OF SEQUENCE. CLAUSE IGNORED. 

The clause is not in the proper paragraph or section or out of sequence within the 
paragraph, or has already been specified. 

The clause is ignored. 

CRITICAL RESERVED WORD MISSING WHERE xxx APPEARS IN element 
CLAUSE. CLAUSE IGNORED. 

The syntax analysis on this clause cannot be continued because of a missing reserved 
word critical to the syntax of a clause. 

The clause is ignored. 

RESERVED WORD MISSING WHERE xxx APPEARS IN element CLAUSE. MISSING 
WORD ASSUMED PRESENT. 

The missing reserved word is required in the format but not critical to syntax analysis. 

Processing continues as if the reserved word were specified. 

TERMINATING PERIOD MISSING FOR element CLAUSE. PERIOD ASSUMED. 

The clause is not terminated by a period. 

A terminating period is assumed. 

element CLAUSE SHOULD NOT BEGIN IN AREA B. AREA A ASSUMED. 

The first word of this clause starts in area B. 

The clause is assumed to have started in area A. 

element CLAUSE SHOULD NOT BEGIN IN AREA A. AREA B ASSUMED. 

The first word of this clause starts in area A. 

The clause is assumed to begin in area B. 

element CLAUSE MISSING OR OUT OF SEQUENCE. OUT OF SEQUENCE CLAUSE 
IGNORED. 

The processing of a paragraph, section, or division is completed but a mandatory clause 
was not encountered. 

If the missing clause is encountered later, it will be ignored. 

• 

• 

• 



UP-8613 Rev. 2 

• Message Severity 
Number Code 

0210 

0211 2 

0212 2 

0213 

• 
0215 

0216 

0217 

0218 

• 

SPERRY UNIV AC OS/3 C-29 
1974 AMERICAN NATIONAL STANDARD COBOL 

Message/Explanation/ Action 

RESERVED WORD EXPECTED WHERE xxx APPEARS IN element CLAUSE. 
RESERVED WORD ASSUMED MISSPELLED. 

A user-defined word was encountered where a noncritical reserved word was expected. 

The reserved word is assumed to be misspelled. 

LITERAL EXPECTED WHERE xxx APPEARS IN element CLAUSE. CLAUSE 
IGNORED. 

The missing literal is critical to syntax analysis for the clause. 

All words are ignored until a valid clause is encountered. 

USER-DEFINED WORD EXPECTED WHERE xxx APPEARS IN element CLAUSE. 
CLAUSE IGNORED. 

The expected user-defined word was not found. 

The clause is ignored. 

RESERVED WORD xxx USED AS USER-DEFINED WORD IN element CLAUSE. NO 
CORRECTIVE ACTION TAKEN . 

A reserved word was found where a user-defined word was expected. 

No corrective action taken. 

element CLAUSE SPECIFIED MORE THAN ONCE. CLAUSE IGNORED. 

The clause has already been specified in the program. 

The clause is ignored. 

INVALID DEVICE TYPE FOR SPECIFIED ORGANIZATION. DISK ASSUMED. 

The device type specified for the file conflicts with the file organization. 

The disk device is assumed. 

DUPLICATE VALUE OF CLAUSES SPECIFIED IN FD ENTRY. DUPLICATE CLAUSE 
IGNORED. 

The file-id or password appears more than once in the VALUE OF clause. 

The duplicate entry is ignored. 

TERMINATING PERIOD FOR A SEQUENCE OF CLAUSES MISSING. PERIOD 
ASSUMED . 

The expected terminating period was not found. If a COPY statement is the prior clause, a 
period is missing before the word COPY. 

A terminating period is assumed. 



UP-8613 Rev. 2 

Message Severity 
Number Code 

0220 

0221 2 

0222 2 

0223 2 

0224 2 

0225 

0226 

SPERRY UNIVAC OS/3 C-30 
1974 AMERICAN NATIONAL STANDARD COBOL 

Message/Explanation/ Action 

name MONITORED BY MORE THAN ONE USE FOR DEBUGGING PROCEDURE. 
FIRST MONITORING PROCEDURE USED. 

The indicated name is monitored by more than one USE FOR DEBUGGING statement. 

The first monitoring procedure encountered is used. 

USE FOR DEBUGGING PROCEDURE-NAME name MONITORED AT LINE number. 
STATEMENT IGNORED. 

Procedure names defined within debugging sections must not appear in a USE FOR 
DEBUGGING statement. 

The statement is ignored. 

ALL PROCEDURES PHRASE SPECIFIED IN USE FOR DEBUGGING AND 
PROCEDURE-NAME name ALSO MONITORED AT LINE number. STATEMENT FOR 
PROCEDURE-NAME IGNORED. 

When the ALL PROCEDURES phrase is specified, individual procedure names must not 
appear in USE FOR DEBUGGING statements. 

The statement referencing the procedure name is ignored. 

FIRST ENTRY IN xxx section NOT type ENTRY. A DUMMY type ENTRY 
GENERATED. 

The first entry in the file section or communication section was not an FD or a CD entry. 

The compiler generates a dummy level indicator entry. 

FIRST ENTRY SUBORDINATE TO type entry NOT A type entry. A DUMMY ENTRY 
GENERATED. 

The first entry subordinate to an FD entry was not a level 01 entry. 

The compiler generates a dummy level 01 entry. 

INTEGER-2 NOT GREATER THAN INTEGER-1 IN OCCURS CLAUSE. INTEGER-2 
IGNORED. 

lnteger-2 must be greater than integer-1 in the OCCURS clause. 

The greater value is used as maximum number of occurrences. 

FOOTING INTEGER GREATER THAN LINAGE INTEGER. SAME VALUE ASSUMED. 

The value of integer for FOOTING area must be less than or equal to the value of integer 
for the LINAGE clause. 

The FOOTING integer is assumed to have the same value as LINAGE. 

• 

• 

• 



• 

• 

• 

UP-8613 Rev. 2 

Message 
Number 

0227 

0228 

0229 

0230 

0231 

0232 

0233 

Severity 
Code 

2 

2 

2 

2 

SPERRY UNIV AC OS/3 C-31 
1974 AMERICAN NATIONAL STANDARD COBOL 

Message/Explanation/ Action 

element CLAUSE NOT PERMITTED IN IMS/90 ENVIRONMENT. CLAUSE 
IGNORED. 

The clause is not allowed when IMSCOD=YES is specified. 

The clause is ignored. 

data-name NOT SUBORDINATE TO ITEM WITH OCCURS DEPENDING ON 
CLAUSE. RESULTS ARE UNPREDICTABLE. 

A data entry that has an OCCURS DEPENDING ON clause may only be followed by data 
entries subordinate to it. 

No corrective action is taken. 

MULTIPLE OCCURS DEPENDING ON CLAUSES NOT ALLOWED IN HIERARCHY. 
RESULTS ARE UNPREDICTABLE. 

Only one OCCURS DEPENDING ON clause is allowed in a hierarchy. 

No corrective action is taken. 

LEVEL 77 NOT ALLOWED IN FILE OR COMMUNICATION SECTION. LEVEL 01 
ASSUMED. 

Self-explanatory 

The level number is changed to 01. 

INTEGER-2 NOT GREATER THAN INTEGER-1 IN RECORD CONTAINS CLAUSE. 
INTEGER-2 IGNORED. 

lnteger-2 must be greater than integer-1 in the RECORD CONTAINS clause. 

The greater value is used. 

xxx NOT VALID CHANNEL NUMBER IN SYSCHAN CLAUSE. SYSCHAN-1 
ASSUMED. 

The specified channel number is not valid for the associated operating system. 

Channel 1 is assumed. 

STANDARD-0 OR STANDARD-1 NOT VALID WHEN VARIABLE RECORD FORMAT 
FOR THE FILE INDICATED. CODE-SET CLAUSE IGNORED. 

Only fixed record format is permitted for a tape file specified with STANDARD-0 or 
STANDARD-1. 

The CODE-SET clause is ignored . 

t 



UP-8613 Rev. 2 

Message Severity 
Number Code 

0234 0 

t 
0235 0 

0236 

0237 

0238 

0239 2 

0240 

SPERRY UNIVAC OS/3 
1974 AMERICAN NATIONAL STANDARD COBOL 

Message/Explanation/ Action 

C-32 
Update F 

INTO PHRASE USED IN verb STATEMENT FOR name FILE WITH VARIABLE 
RECORD FORMAT. INTO OPERATION PERFORMED. 

The INTO phrase is used with a file containing logical records of variable sizes. 

The INTO phrase is performed. 

COMPARISON OF ALPHANUMERIC LITERAL TO NUMERIC EMBEDDED SIGN 
ITEM data-name MAY NOT PRODUCE EXPECTED RESULTS. 

ANSI COBOL rules require that the byte containing the embedded (overpunch) sign 
participate in the comparison but that the sign itself not participate. The required 
manipulation of the overpunch sign byte makes it unlikely that the comparison will 
work as intended. 

The comparison is performed. 

INITIAL CLAUSE APPEARS IN MORE THAN ONCE CD ENTRY. CLAUSE 
IGNORED. 

Only one input CD entry may contain the INITIAL clause. 

The clause is ignored. 

SIZE OF INPUT CD RECORD data-name NOT EQUAL TO 87 CHARACTERS. 
RECORD SIZE SET TO 87. 

The size of an input CD area must be exactly 87 characters. 

The size is set to 87 characters. 

element NOT SUPPORTED. ELEMENT CHANGED TO xxx. 

The indicated logical device name is not supported in this system. 

Logical device name is changed as indicated in the message. 

NUMBER OF INDEX-NAMES SPECIFIED IN DESTINATION TABLE EXCEEDS 
LIMIT. EXCESS IGNORED. 

The number of index names specified for one destination table may not exceed 10. 

The excess index names are ignored. 

CODE-SET CLAUSE SPECIFIED FOR NON-TAPE FILE. CLAUSE IGNORED. 

The CODE-SET clause may be specified only for tape files. 

The native character code-set is assumed. 

• 

• 

• 



UP-8613 Rev. 2 

• Message Severity 
Number Code 

0241 0 

0242 1 

• 

• 

SPERRY UNIVAC OS/3 
1974 AMERICAN NATIONAL STANDARD COBOL 

Message/ Explanation I Action 

MORE THAN ONE CLASS-NAME CLAUSE WITHOUT VALUE 
SPECIFIED. DEFAULT VALUE USED. 

Only one CLASS-NAME clause may be specified without the VALUE phrase. 

The character set specified in the SOURCE-ALPHABET clause is used. 

FORMAT ERROR ON BASIS CARD CONTAINING char-string. 

C-32a 
Update F 

PHRASE 

FIRST 8 
CHARACTERS OF SPECIFIED NAME USED. IF NAME MISSING "SOURCE" 
USED AS NAME. 

The BASIS card has format error. 

The first eight characters of the specified name are used. If the name is not specified, 
a default name "SOURCE" is used . 



• 

• 

• 



· UP-8613 Rev. 2 

• Message Severity 
Number Code 

0243 1 

0244 2 

0245 1 

0246 1 

• 
0247 1 

0248 2 

0249 2 

• 

SPERRY UNIVAC OS/3 
1974 AMERICAN NATIONAL STANDARD COBOL 

Message/Explanation/ Action 

C-33 
Update B 

KEY SPECIFIED IN verb STATEMENT EXCEEDS LIMIT. KEY TRUNCATED TO 10 
CHARACTERS. 

Password for ENABLE or DISABLE statement may not exceed 10 characters. 

The KEY is truncated to 10 characters. 

LINAGE-COUNTER MODIFIED BY verb STATEMENT. STATEMENT IGNORED. 

LINAGE-COUNTER may only be referenced but not modified. 

The statement is ignored. 

INTEGER SPECIFIED IN APPLY CYLINDER-OVERFLOW AREA CLAUSE EQUAL TO 
OR GREATER THAN 100. TWENTY PERCENT IS USED. 

A percent of 100 or greater was specified for cylinder overflow area. 

20 percent of each cylinder is used for overflow area. 

INTEGER IN APPLY CYLINDER-INDEX CLAUSE EXCEEDS THE LIMIT OF 32,767. 
THE LIMIT IS USED. 

The value of integer in the APPLY CYLINDER-INDEX clause may not exceed the limit of 
32,767. 

Value is assumed to be 32,767. 

ALPHABET-NAME REFERENCED IN CODE-SET CLAUSE DEFINED AS LITERAL. 
CODE-SET CLAUSE IGNORED. 

The alphabet-name referenced in a CODE-SET clause specifies the character code set of 
the file and must be defined by one of the reserved word phrases in the SPECIAL-NAMES 
paragraph. 

The native character code set is assumed. 

INVALID PSEUDO-TEXT IN COPY STATEMENT. PSEUDO-TEXT IGNORED. 

The pseudo-text preceding the reserved word BY is null or contains a debugging line 
or comments only. 

The pseudo-text is not processed. 

DATA-NAME REFERENCED IN KEY PHRASE OF READ OR START STATEMENT 
NOT SPECIFIED IN SELECT CLAUSE. STATEMENT DELETED. 

The data-name referenced in the KEY phrase of a random READ or in a START 
statement is not specified in the SELECT clause for that file. The READ or START 
function is deleted. Other parts of the statement, such as INTO and FROM moves, and 
error checking may be present. Execution of the statement yields unpredictable results . 

t 

• 



t 

UP-8613 Rev. 2 

Message Severity 
Number Code 

0250 0 

0251 0 

0252 2 

0253 

0254 0 

12** 3 

SPERRY UNIVAC OS/3 
1974 AMERICAN NATIONAL STANDARD COBOL 

Message/Explanation/ Action 

C-34 
Update F 

LANGUAGE ELEMENT xxx yyy EXCEEDS SPECIFIED FIPS LEVEL . ELEMENT 
BELONGS TO LEVEL nnn. NO CORRECTIVE ACTION TAKEN. 

The language element used in the program exceeds the specified FIPS processing 
level. 

The language eleme~t is accepted. 

ALTERNATE KEY SHARES LEFTMOST POSITION WITH OTHER KEYS IN SAME 
FILE. 

Although ANSI COBOL rules prohibit keys having the same ·leftmost position, OS/3 
COBOL permits it for compatibility with other OS/3 processors. 

The AL TERNA TE KEY clause is accepted. 

verb STATEMENT NOT ALLOWED IN DECLARATIVES. STATEMENT DELETED. 

Input/output verbs and sort or merge statements are not allowed in DECLARATIVES. 

The statement is ignored. 

SIZE OF INDEX-AREA IN APPLY CLAUSE NOT A MULTIPLE OF 256 OR 
EXCEEDS LIMIT OF 32,512. A SIZE OF nnnn CHARACTERS IS USED. 

lnteger-6 in APPLY INDEX-AREA clause is not a multiple of 256 or exceeds the limit. 

The value indicated in the message text is used. 

EXTRANEOUS PERIOD SPECIFIED PRIOR TO element CLAUSE. PERIOD 
IGNORED. 

A period should not appear before the clause. 

The period is ignored. 

COMPILER ERROR code. 

A compiler error occurred when processing the source program line indicated by the 
_ line number. 

Contact your local Sperry Univac representative. Correcting any source program error 
on or before the indicated line may avoid the compiler error. 

• 

• 

• 



• 

• 

• 

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 D-1 
1974 AMERICAN NATIONAL STANDARD COBOL 

Appendix D. Federal Information 
Processing Standard 
Flagging Facility 

D.1. FIPS PUB 21-1 COBOL LEVELS 

The Federal Information Processing Standard Publication 21-1 (FIPS PUB 21-1) identifies the Federal 
Standard COBOL by four levels: low, low-intermediate, high-intermediate, and high. The Federal Standard 
COBOL is a subset of American National Standard COBOL, X3.23-1974. Table D-1 identifies the COBOL 
modules that comprise each of the four federal levels. 

Table D-1. Federal Standard COBOL Levels 

Level 
Module 

Low low-Intermediate High-Intermediate High 

Nucleus 1 1 2 2 
Table handling 1 1 2 2 
Sequential 1-0 1 1 2 2 
Relative 1-0 - 1 2 2 
Indexed 1-0 - - - 2 
Sort-merge - - 1 2 
:1eport writer* - - - -
Segmentation - 1 1 2 
Library - 1 1 2 
Debug - 1 2 2 
Inter-program communications - 1 2 2 
Communication - - 2 2 

*The report writer is not required for any Federal Standard level. 



UP-8613 Rev. 2 SPERRY UNIVAC OS/3 D-2 
1974 AMERICAN NATIONAL STANDARD COBOL 

D.2. FLAGGING OPTIONS 

The compiler provides five options for monitoring a source program at compile time. Four options comprise the 
four levels of Federal Standard COBOL (Table 0-1 ); the fifth option is concerned with OS/3 extensions to the 
language: 

Option 

5 

4 

3 

2 

NOTE: 

Function 

Allows all language elements supported by the compiler, both standard and extended, without 
flags 

Flags all language elements beyond the high level of the Federal Standard COBOL, indicating 
those that are extensions 

Flags all language elements beyond the high-intermediate Federal level, indicating those that 
are extensions and those that belong to the high Federal Standard COBOL level 

Flags all language elements beyond low-intermediate level, indicating those that are extensions 
and those that belong to the high-intermediate or high level of the Federal Standard COBOL 

Flags all language elements beyond the low Federal level, indicating those that are extensions 
and those that belong to the higher levels 

The language elements pertaining to the file processing facilities that exceed the user-specified FIPS level are 
flagged on the ORGANIZA T/ON clause in the file control entry, but not on references to the file. 

The user may specify any of the five levels as a SYSGEN option or a compile-time parameter option. If none of 
the FIPS options is specified, compiler default option 5 is used. 

The flagged language elements, if syntactically correct, are retained for compilation. 

• 

• 

• 



• 

• 

• 

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 E-1 
1974 AMERICAN NATIONAL STANDARD COBOL 

Appendix E. Object Program Processing 
Considerations 

E.1. INTERMEDIATE RESULTS IN ARITHMETIC OPERATIONS 

The compiler reduces arithmetic statements to a series of one or more simple arithmetic operations, each 
producing an intermediate result. The intermediate result of an arithmetic operation may be used as an operand 
in subsequent arithmetic operations or may be used as the final result of a statement. 

Example: 

COMPUTE Y = A + 8 * C - D I E + F ** G 

where: 

Intermediate 
Operand 1 Operator Operand 2 Result (ir) 

F ** G ir1 

8 * c ir2 

D I E ir3 

A + ir2 ir4 

ir4 ir3 ir5 

ir5 + ir1 y 

The compiler provides a description for each intermediate result that is appropriate for use in the operation or 
series of operations for which it is intended. The description can be expressed as a numeric PICTURE; however, 
an intermediate result may contain as many as 30 digits. If the number of digits in an intermediate result is 
computed to exceed 30, the result is truncated to use the 30 least significant digits. 

A description of an intermediate result requires only a digit size and a point location. In terms of the PICTURE 
clause, the digit size is equivalent to the number of 9's in the PICTURE character-string and the point location is 
the number of digit places that the assumed decimal point is displaced from the least significant digit. 



UP-8613 Rev. 2 SPERRY UNIVAC OS/3 E-2 
1974 AMERICAN NATIONAL STANDARD COBOL 

Example: 

Digit Point 
PICTURE Size Location 

99V9 3 1 
PP999 3 5 
99PP 2 -2 

fE.~1~ Floating-Point Operands - - - - - ---- -- - - - -- -- -- i 
I 

: If at least one floating-point (COMP-1 or COMP-2), floating-point display, or floating-point literal operand is used, I 

~e ~ng~f~e~diate r~lt~ ±5.4*1Q-79 to ±7.2*1075. __________ _J 
NOTE: 

The following paragraphs apply only to non-floating-point operands. 

E.1.2. ADD and SUBTRACT Statements 

The description of the intermediate result area is determined by forming the composite of operands (6.6.2) and 
appending one additional digit in the most significant position to contain overflow when 10 or fewer operands 
immediately follow the verb, or two digits for more than 10 operands. 

E.1.3. MULTIPLY Statement 

The description of the intermediate result has a digit size equal to the sum of the digit sizes of the two operands 
being multiplied and has a point location equal to the sum of the point locations of the two operands. 

E.1.4. DIVIDE Statement 

The following abbreviations are used in the discus~ion of the DIVIDE statement: 

DD Dividend 
DR Divisor 
Q Quotient 
pl Point location 
ds Digit size 

The description of the quotient intermediate result has a point location equal to the point location of the 
composite of receiving operands. If the ROUNDED phrase is specified for any operand, the point location for that 
operand is increased by 1 to form the composite. The digit size for the description of the quotient intermediate 
result is computed as follows: 

quotient digit size = DDpl-DRpl+Opl+DDds 

• 

• 

• 



• 

• 

• 

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 E-3 
1974 AMERICAN NATIONAL STANDARD COBOL 

The point location and digit size for the description of the remainder intermediate result is computed as follows: 

A=O 
B = DDpl-Qpl-DRpl 

If B < 0 then 
A = absolute value of B, and 
B=O 

remainder point location = DDpl+A 
remainder digit size = DRds+B 

NOTE: 

The value of A represents the number of zero digits that must be padded on the /ow-order end of the 
dividend to produce the desired quotient described by the PICTURE character-string. 

The value of B represents the number of zero digits that must be padded on the low-order end of the divisor 
to produce the desired quotient described by the PICTURE character-string. 

E.2. EXPRESSIONS 

For arithmetic expressions the following abbreviations are used: 

L 

pl 

OP1 

OP2 

ir 

comp 

mag 

Length in mappable digits 

Point location, which is the number of places that the decimal point is displaced from the 
position it would occupy if the mappable digits were considered an integer. For example, for the 
PICTURE 99V9, pl = 1, because the decimal point has been displaced one position; for the 
PICTURE PP999, pl = 5. A negative value in pl indicates trailing P's in the associated PICTURE, 
e.g., for the PICTURE 99PP, pl = -2. 

First operand 

Second operand 

Intermediate result 

Composite of operands 

Magnitude = L - pl 

The maximum value that a variable can assume is 1Omag_10-pl_ 1 



UP-8613 Rev. 2 SPERRY UNIV AC OS/3 E-4 
1974 AMERICAN NATIONAL STANDARD COBOL 

When expressions are evaluated, a composite is formed of all operands except those immediately to the right of 
the exponentiation operator. The receiving data item, when present, is considered in determining the composite. 
The following rules apply: 

Operator Description 

+- plir =max (plOP1 ,plOP2) 

~r = max (magOP1 ,magOP2) + plir + 1 

* plir = pl0P1 + plOP2 

Lir = magOP1 + mag OP2 + plir 

I plir =pl comp 

Lir = plOP2 - plOP1 + LOP1 + plir 

** Intermediate result is floating point 
(E.1.1 ). 

NOTE: 

When an expression appears in a COMPUTE statement and the ROUNDED option is specified, one digit is added 
in the least significant position of the receiver description before the composite is formed. 

When application of the preceding rules produces an intermediate result length that is greater than 30, the 
description must be readjusted. In these cases, Lir = 30. 

• 

• 

• 



• 

• 

• 

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 F-1 
1974 AMERICAN NATIONAL STANDARD COBOL 

Appendix F. Non-English Language 
Feature 

~--------------------~ 
F.1. FUNCTION 1 

The non-English language feature supported by this compiler involves three aspects of a COBOL program: user- j 
defined words in source programs, compiler listing headings and diagnostics, and object program class test. I 

• 

• 

• 

User-defined words in source programs I 
Data-names, procedure names, and other user-defined words (except system-related words) may be I 
composed of characters specified via the source program. I 
The set of COBOL characters that may be used to form user-defined words may be extended by a user I 
program to include additional characters from the computer character set. I 
Compiler listing headings and diagnostics I 
A user program may specify that an alternate set of the compiler listing headings and diagnostics be used I 
during compilation. 

1 
Object program class test 

I 
A mnemonic-name may be associated with a user-generated set of computer characters. This name may I 
then be used in a class test to determine if the contents of a data item consist entirely of the specified 
characters. I 

F.2. LANGUAGE CONCEPTS I 
I 

F.2.1. Control Division I 
The control division identifies the character set from which user-defined words in the source program may be j 
formed. The control division also names the load module containing the alternate text of compiler listing 

~adings and diagnostics.__ __ __ __ __ __ __ __ __ __ __ __ __ -- ____ J 



UP-8613 Rev. 2 SPERRY UNIVAC OS/3 F-2 
1974 AMERICAN NATIONAL STANDARD COBOL 

'-------------------, 
F.2.2. CLASS-NAME Clause 

The CLASS-NAME clause in the SPECIAL-NAMES paragraph provides a means of specifying a mnemonic-name 
for class test purposes and relating it to a specified set of characters. 

F.2.3. Extended Class Condition 

The extended class condition determines if the operand consists entirely of the characters specified in the 
associated CLASS-NAME clause. 

F.3. COMPOSITE LANGUAGE FORMAT 

The following is the composite language format of the non-English language feature. 

The leftmost margin is equivalent to margin A in a COBOL source program. The first indentation after the 
leftmost margin is equivalent to margin B in a COBOL source program. 

Format: 

Margin 
A 

Margin 
B 

[CONTROL DIVISION. 
ALPHABET SECTION. 

[SOURCE-ALPHABET clause] 
[MESSAGES clause].] 

ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 

[SPECIAL NAMES. 

[CLASS-NAME clause] ... ] 

PROCEDURE DIVISION. 

L __ identifier IS [NOT] CLASS-NAME mnemonic-name - - __ _J 

• 

• 

• 



• 

• 

• 

UP-8613 Rev. 2 SPERRY UNIV AC OS/3 
1974 AMERICAN NATIONAL STANDARD COBOL 

F-3 
Update A 

r--- - - - -1 
I 
I 
I 
I 

I F.4. CONTROL DIVISION 

I 

I 

I 

Function: 

The control division identifies the character set from which user-defined words may be formed in the 
source program. It also names the load module containing the alternate text of compiler listing headings 
and diagnostics. 

Format: 

Margin 
A 

Margin 
B 

[CONTROL DIVISION. 
ALPHABET SECTION. 

[SOURCE-ALPHABET CHARACTERS ARE 

literal-1 D~UGH~ literal-2] 

Rules: 

[literal-3 [~~UGH~ literal-4]]···] 

[MESSAGES ARE alternate-text-module-name].] 

1. The control division follows the reference format rules of a COBOL source program. However, the 
control division, if present, must be the first division of a COBOL source program followed by the 
identification division, the environment division, the data division, and the procedure division. 

Within the control division, the format defines the order of presentation in the source program. 

2. The control division must begin with the reserved words CONTROL DIVISION followed by a period 
and a space. 

3. The alphabet section must begin with the reserved words ALPHABET SECTION followed by a period 
and a space. 

4. The SOURCE-ALPHABET clause defines the additional characters to extend the standard COBOL 
character set. These extended characters are used in the user-defined words in the source program. 

Example: 

If the SOURCE-ALPHABET clause is defined as: 

SOURCE-ALPHABET CHARACTERS ARE 124, 125. 

Then, the characters # and @ are used to form a data-name or procedure-name, such as: 

I 
I 
I 

L 

PARA#IB 
#@ 

AMOUNT 
I 

__ _J 



t 

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 F-4 
Update B 

5. 

1974 AMERICAN NATIONAL STANDARD COBOL 

The literals in the SOURCE-ALPHABET clause may be numeric or nonnumeric literals. 
-1 

• 

• 

A numeric literal specifies the decimal ordinal position ( 1 through 256) within the native I 
computer character set (EBCDIC) of valid source alphabets from which user-defined words I 
may be formed. This ordinal position is always one greater than the binary value of the I 
character. For example, hexadecimal 00 is the first character (ordinal position), and 
hexadecimal 01 is the second character (ordinal position 2). I 

A nonnumeric literal represents non-English alphabet characters. The bit configuration of each 
character in the native computer character set specified in the nonnumeric literal is included in 
the set of bit configurations for valid source alphabets from which user-defined words may be 
formed. 

I 

• When the THROUGH option is used, the nonnumeric literal must consist of only one character. 
All bit configurations within the range specified are included in the set of valid source 
alphabets. The range of bit configurations must indicate an ascending sequence of binary 
values. 

• The literals may not specify those characters in the standard COBOL character set that denote 
special meanings in the syntax of the COBOL language. 

6. The alternate-text-module-name is a user-defined system-related word. The first five characters are 
to be used as a unique name of the load module of the non-English listing headings and diagnostic 
message text. 

7. The control division is required only if the non-English language feature is invoked. 

8. The COPY statement may appear in the control division just as in any other division. 

9. The following user-defined system-related words must conform to the standard COBOL rules for 
formation of user-defined words: 

alternate-text-module-name 
library-name 
lfdname 
program-name 
text-name 
literal-1 in the CALL and CANCEL statements 
contents of identifier-1 in the CALL and CANCEL statements 

F.5. ENVIRONMENT DIVISION 

F.5.1. CLASS-NAME Clause 

I Function: 

I 
L 

The CLASS-NAME clause provides a means of specifying a mnemonic-name for class test purposes and 
relating it to a specified set of characters. 

-------- -- - --- --- ___ J 

• 

• 

• 



• 

• 

• 

UP-8613 Rev. 2 SPERRY UNIV AC OS/3 F-5 
Update B 1974 AMERICAN NATIONAL STANDARD COBOL 

~-----------------------~ I Format: 

Rules: 

B 
1 2 

[CLASS-NAME IS 

[VALUE IS 

[I i t e r a I -3 

mnemonic-name 

I i t e r a I - 1 [ J TH R 0 UGH l I i t e r a I - 2] 

1!..!!!.l! f 

D~~:~UGHf literal-4]]"]l" 

1. The CLASS-NAME clause has no relationship with a CODE-SET clause, the alphabet-name clause 
relating to a PROGRAM COLLATING SEQUENCE clause, or a COLLATING SEQUENCE phrase of a 
SORT or MERGE statement. 

2. The CLASS-NAME clause defines the complete set of characters used as data. Data fields containing 
these characters are tested by the extended class condition. 

Example 1: 

The following clause defines 10 characters as the complete set of characters used as data: 

CLASS-NAME IS ABC 

VALUE IS ="SS" THRU ="S9". 

Example 2: 

The following clause defines the first 10 characters of the computer character set and the alphabetic 
characters A through Z as the complete set of characters used as data: 

CLASS-NAME IS XYZ 

VALUE IS 

1 THRU lS 

="Cl" THRU ="C9" 

"J" THRU "R" 

"S" THRU "Z". 

3. If the VALUE phrase is omitted, the SOURCE-ALPHABET clause must be specified, and it is assumed 
that the same set of characters specified in the SOURCE-ALPHABET clause is to be associated with 
the mnemonic-name. 

Example: 

SOURCE-ALPHABET CHARACTERS ARE 124, 125. 
I 
I 
I 
I 

__ J I L __ _ CLASS-NAME IS DEF. ------ -- - - - - ---- -- --



UP-8613 Rev. 2 SPERRY UNIV AC OS/3 F-6 
1974 AMERICAN NATIONAL STANDARD COBOL 

,~ th-:-example, the VALUE phrase is omitted bee~ the ch~e~ used in~ CLASS~M;i 
test is the same character set defined in the SOURCE-ALPHABET clause. Therefore, the entire 
COBOL character set plus the characters # and @ are tested in the extended class condition. 

' I I 
I 
I 
I 

4. 

5. 

The standard COBOL class condition NUMERIC and ALPHABETIC maintain their standard COBOL 
definitions and cannot be redefined by the CLASS-NAME clause. 

More than one CLASS-NAME clause is permitted if the VALUE phrase is specified. Only one CLASS
NAME clause without the VALUE phrase can be used. 

J F.6. PROCEDURE DIVISION 

F.6.1. Extended Class Condition 

Function: 

The extended class condition determines if the operand consists entirely of the characters specified in the 
associated CLASS-NAME clause. 

Format: 

identifier IS [NOT] CLASS-NAME mnemonic-name 

• 

Rules: • 

1. The mnemonic-name must also be specified in the CLASS-NAME clause in the SPECIAL-NAMES 
paragraph of the environment division. 

2. The extended class condition has no bearing upon the standard COBOL NUMERIC test and 
ALPHABETIC test. The standard COBOL class condition maintains its definitions of NUMERIC and 
ALPHABETIC. 

F.7. NON-ENGLISH TEXT UTILITY PROGRAM 

The non-English text utility program accepts as input the alternate text for the compiler listing headings and 
diagnostics. It produces a source file containing the alternate text, which is assembled and linked into a load 

I module. Th~ad module is then loaded as the tex~ be used duri~ompilation. _ _ _ _ _ J 

• 



• 

• 

• 

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 
1974 AMERICAN NATIONAL STANDARD COBOL 

G-1 
Update D 

Appendix G. IMS Action Programs 

G.1. GENERAL 

COBOL programs to be executed under control of the SPERRY Information Management System (IMS) 
should be compiled using the IMSCOD =YES parameter for serially-reusable and shared-code action 
programs, or the IMSCOD=REN parameter for reentrant action programs. (See Appendix A.) 

G.2. ACTION PROGRAMS 

A COBOL program running under control of IMS is called an action program. Specify the IMSCOD=REN 
compiler parameter to generate reentrant action programs. To generate shared-code action programs, 
specify the IMSCOD= YES compiler parameter. To generate serially-reusable action programs, specify the 
IMSCOD=YES compiler parameter. The following rules and restrictions of COBOL action programs must be 
observed, when the IMSCOD=YES or IMSCOD=REN parameter is specified. 

Rules: 

1. The following COBOL verbs, clauses, and sections are illegal in the IMS environment and the 
compiler deletes them from the program. 

ACCEPT MESSAGE COUNT SEGMENT-LIMIT 
ALTER SEND 
CALL identifier SORT 
CANCEL START 
CLOSE STOP 
COMMUNICATION SECTION SYSCHAN-n 
DECLARATIVES SYSCONSOLE 
DELETE SYS FORMAT 
DISABLE SYSIN 
ENABLE SYS I PT 
EXHIBIT SYS LOG 
FILE SECTION SYSLST 
INPUT-OUTPUT SECTION SYS OPT 
MERGE SYS OUT 
OPEN SYSSCOPE 
READ SYSTEM-SHUTDO\NN 
RECEIVE SYSTERMINAL 
RELEASE SYS\NORK 
RETURN TRACE 
REWRITE \NRITE 

t 



t 

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 G-2 
Update D 1974 AMERICAN NATIONAL STANDARD COBOL 

2. The PROCEDURE DIVISION header must contain a USING clause. 

3. The IMS action program may invoke IMS functions via the CALL statement with the IMS function 
name expressed as a nonnumeric literal. For a list of IMS function names, refer to the Action 
programming in COBOL and BAL user guide, UP-9207 (current version). 

In a shared-code action program (IMSCOD=YES), IMS functions may not be invoked from 
linked-in subroutines; function calls must be coded in the main program. 

In reentrant action programs (IMSCOD=REN), the IMS functions RETURN or ACTIVATE, and the 
TIP/30 functions TIPDXC, TIPJUMP, TIPRTN, and TIPXCTL, should not be called from linked-in 
subroutines. COBOL generates special object code for these function names to deallocate the 
object program reentrancy control area in the IMS work area. Calls to these functions from 
linked-in subroutines deallocates the object program reentrancy control area for that linked-in 
subroutine. Reentrancy control areas allocated before this problem occurs are not affected. 
Control areas could be allocated after these inactive control areas (see G.4). Because of this, you 
may run out of space in the work area, which destroys program data areas and, possibly, 
abnormally terminates the action program. 

4. A segment number greater than or equal to 50 is diagnosed and changed to 0. 

5. In the SPECIAL-NAMES paragraph, only two implementor-names, SYSCOM and SYSSWCH[-n], 
may be defined. 

6. The following verbs should not have working-storage items as receiving operands: 

ACCEPT 
ADD 
COMPUTE 
DIVIDE 
INSPECT 
MOVE 
MULTIPLY 

PERFORM (varying) 
SEARCH (varying) 
SET 
STRING 
SUBTRACT 
TRANSFORM 
UNSTRING 

If IMSCOD=YES and the compiler detects a statement in a shared-code or serially-reusable 
action program that modifies working-storage, the compiler: 

• generates the object code for the statement; and 

• issues a precautionary diagnostic message. 

If IMSCOD=REN and the compiler detects a statement in a reentrant action program that 
modifies working-storage, the compiler deletes the statement and issues a serious diagnostic 
message. 

The contents of working-storage items in a COBOL action program should not be modified 
because a COBOL action program is potentially sharable or reentrant. If the contents were 
modified, the modified contents could have been modified again by a concurrent execution of the 
same action program. Therefore, the contents of the modified working-storage items at the time 
immediately before the interrupt could be different than those at the time immediately following 
the interrupt. 

NOTE: 

Index-names are not working-storage items and may be modified in IMS action programs. 

• 

• 

• 



• 

• 

• 

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 
1974 AMERICAN NATIONAL STANDARD COBOL 

G-3 
Update D 

7. In addition to invoking IMS functions with CALL statements, a COBOL action program may call 
subroutines. If the action program is shared or serially-reusable (compiled with IMSCOD= YES), 
compile all COBOL subroutines with the IMSCOD=YES parameter. If the subroutines are not 
written in COBOL, they should follow the conventions of an IMS environment (see Information 
management systems concepts and facilities, UP-9205 (current version)). If the action program is 
reentrant (compiled with IMSCOD=REN), compile all subroutines as reentrant, regardless of 
whether they are written in COBOL. 

All subroutines associated with a COBOL action program must be statically bound with the action 
program. (The CALLST=YES is assumed by the compiler when IMSCOD=YES or IMSCOD=REN 
is specified.) In this case, all CALL statements must specify subroutine names with nonnumeric 
literals. Do not use these subroutine names: ACTIVATE, RETURN, TIPDXC, TIPJUMP, TIPRTN, or 
TIPXCTL, because the compiler generates special object code for these names. This code 
deallocates the object program reentrancy control area in the IMS work area for the calling 
program (see G.4). 

The values of index-names in a reentrant COBOL subroutine are not saved between successive 
executions of the subroutine. Index names are part of the object program reentrancy control area, 
and are allocated in the IMS work area on each entry to the subroutine and deallocate it on each 
exit from the subroutine. 

8. For a COBOL shared-code object program to be reentrant at CALL interrupts (IMSCOD= YES), the 
volatile work area used by the program must be saved and restored by the IMS system. The size 
of the work area, which varies between programs, is displayed in decimal on the compilation 
summary listing. The message reads: 

SHARED CODE VOLATILE DATA AREA=nnn BYTES 

This size is used in computing the SHRDSIZE parameter in the IMS configurator. Refer to the IMS 
system support functions user guide/programmer reference, UP-8364 (current version). 

9. When you specify IMSCOD=REN, the COBOL compiler generates a reentrant object module. This 
is achieved by placing object program reentrancy control variables in the high order portion of the 
IMS work area. The compiler reports the additional work area required for object program 
reentrancy control in the compilation summary listing with the message: 

RE-ENTRANCY CONTROL = xxxxxx WORKAREA BYTES 

CNOT INCLUDING PROGRAM DEFINED DATA AREAS) 

Configure IMS with this work area size plus the size of the program-defined data areas on the 
WORKSIZE parameter. When the action program calls subroutines, WORKSIZE must be large 
enough to meet the maximum program data area requirements and the size of all the 
concurrently active object program reentrancy control areas. If you don't specify a large enough 
work area, program-defined data areas are destroyed, and the action program may be abnormally 

terminated. 

For more information, see IMS system support functions user guide, UP-8364 (current version). 
IMS action programming in COBOL and basic assembly language (BAL), UP-9207 (current 

version), and G.4 of this manual. 

t 



t 

UP-8613 Rev. 2 SPERRY UNIV AC OS/3 
1974 AMERICAN NATIONAL STANDARD COBOL 

G-4 
Update D 

10. Normally, execution time errors result in a CE error message and program termination. In an 
action program, execution time errors result in a program check interrupt, a snapshot dump with 
the address of the CE message in register 1, and termination of the action program. If there is 
insufficient work area available for the COBOL reentrancy control variables (IMSCOD=REN), the 
action program may terminate with a program check, with the program status word address in 
the dump pointing to the error message. 

11. The compiler does not diagnose the ACCEPT and DISPLAY statements that reference DA TE, 
DAY, TIME, SYSCOM, or SYSSWCH. These statements (ACCEPT and DISPLAY) cannot be used 
in an IMS action program, especially in a multithread environment. IMS provides date and time 
information as part of the action program's linkage section data. 

G.3. COMPILER PARAMETER SPECIFICATIONS AND IMS CONFIGURATION 
SPECIFICATIONS 

Table G-1 indicates which settings of the IMS configuration parameter are allowed for action programs 
compiled with the IMSCOD parameter settings. Compile serially-reusable action programs and subroutines 
with the IMSCOD=YES parameter. Shared-code action programs are not recommended. They are only 
supported to be compatible with earlier releases, and offer no advantages over reentrant action programs. 
Compile reentrant action programs with the IMSCOD=REN parameter. 

Table G-1. IMS Configuration 

IMS Action Program IMS Action Subroutine 

IMSCOD 
Serially Serially Parameter Shared Code Reentrant Reentrant 

Setting Reusable Reusable 

IMSCOD=NO Allowed 1 Not allowed Not allowed Allowed 1 Not allowed 

IMSCOD=YES Recommended Allowed Not allowed Recommended Not allowed 

IMSCOD=REN Allowed 2 Allowed 2•3 Recommended Allowed 2 Recommended 

NOTES: 

1. Because the compiler performs no validation against non-IMS system interfaces, adhere to the IMS 
environment programming rules (see IMS facilities and concepts, UP-9205 (current version)). 

2. The program allocates object program reentrancy control areas in the IMS work area, even though the 
program is not reentrant. Configure work area using rule 9 in G.2. 

3. Configure a volatile data area even though the compiler does not repon the volitile data area size. 

G.4. REENTRANT ACTION PROGRAM WORK AREA USAGE 

COBOL reentrant action programs use the high-order portion of the IMS work area for object program 
reentrancy control variables. A marker at the end of each object program reentrancy control area contains a 
6-byte character string, COBL74, and a 2-byte binary count of the number of bytes to the next marker. 
When an action program uses more than one COBOL reentrant object module, the areas are stacked from 
back to front, linked by these markers. 

• 

• 

• 



• 

• 

• 

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 
1974 AMERICAN NATIONAL STANDARD COBOL 

G-5 
Update D 

A new object program searches the work area from back to front, looking at these markers until it finds a 
marker that does not contain COBL74. The object program puts the character string COBL74 and the 
2-byte count (of the number of bytes to the next marker) in this marker and moves the object program 
control variables into the area preceding the marker. 

Because there is no way for the object program to determine where the program data area ends, the object 
program control variables may overwrite the program data area. If the marker search hits the beginning of 
the work area, the object program forces a program check of the action program. 

When an object program encounters an EXIT PROGRAM statement, or a CALL statement to ACTIVATE, 
RETURN, TIPDXC, TIPJUMP, TIPRTN, or TIPXCTL function, the object program zeros out the marker, 
freeing the control area for future object programs. Figure G-1 shows the use of the IMS work area. 

WORKAREA 

PROGRAM LOGIC 
VARIABLES 

0000000000000000 

object prog-3 SEARCH 

control area 

C 0 BL 7 4 dddd 1-

SEARCH object prog-2 
control area 

~ C 0 BL 7 4 dddd 

object prog-1 SEARCH 

control area 

C 0 BL 7 4 dddd 1-

Figure G-1. IMS Work Area Usage 



• 

• 

• 



• 

• 

• 

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 
1974 AMERICAN NATIONAL STANDARD COBOL 

H-1 
Update C 

Appendix H. Job Control Stream 
Requirements 

H.1. GENERAL 

There are two ways to invoke the COBL74 compiler: 

• provide the required job control statements in the job stream (see OS/3 job control user guide, UP-8065 
(current version)); or 

• use a single job control procedure call statement (jproc call) provided by Sperry Univac. 

A jproc call generates all the job control statements needed to execute the COBL74 compiler. By specifying the 
proper options for the keyword parameters of the jproc call, a desired job control stream is generated. The jproc 
calls provide the ability to compile, link-edit, and immediately execute this load module (COBL74LG). 

NOTE: 

The COBL74 compiler requires three disk scratch files, a printer file named PRNTR, and X'EOOO' bytes of ~ 
storage. 

H.2. PROCEDURE CALL STATEMENT 

Function: 

This procedure call statement generates the necessary job control statements to execute the COBOL 
language processor (COBL74). Optionally, it can generate the job control statements that specify the 
following: 

• Input source library 

• Output object library 

• Copy library 

• PARAM control statements that specify the compiler options 



t 

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 
1974 AMERICAN NATIONAL STANDARD COBOL 

Format: 

11 [ """ mod" I o-oomo] rnm:J['""1({~f'" I -rn-oo ])~ 

[ 

iN=1::::;:::.::· ''''' IJU[LIN=1::~n:~=~tb•ll1~ 
I RUN • I • b • I I u C * , label ) ~ 

. ( • , I a be I ) IEJI[}, ., ,.,, 

[

, LINn= 1::~~:::~=~:· l•bel )~· ·l [ OBJ=1: ::: : : ::: :t'' I )l~ 
( * label) , ( • , I ab e I ) 

' 117''''\rrrT'f f. - .... L ... &it_ I 
[ s c R i = { - - s e r - n o} J [' s c R 2 = { ··- s e r - n o }] [ s c R 3 ={al- s e r - n o }] 

,ALT LOO= (vol -ser-no, label) [ ,option=specif icat ion] 

(RES, label) 

(RUN, label) 

( • , I ab e I ) 

fi'tJ:I!~ i-~~;l\~ll\l 
Ei'lllr;;llolilll'.)i 

[ERRFIL=(vol-ser-no, label ,module-name)] 

where: 

source-module-name 

H-2 
Update C 

Specifies the 1- to 6-character source module name; only needed when the IN parameter is used. 

COBL74 
Specifies compilation of an ANSI 1974 COBOL source program. 

COBL74L 
Specifies compilation of an ANSI 1974 COBOL source program and link-edit of the object modules. 

COBL74LG 
Specifies compilation of an ANSI 1974 COBOL source program, link-edit of the object modules, and 

execution of the load module. 

NOTE: 

Device assignment sets must be specified prior to the jproc. 

PRNTR Keyword Parameter: 

Specifies the logical unit number of the printer. N specifies that the device assignment set for the 
printer is to be manually inserted in the control stream. 

• 

• 

• 



• 

• 

• 

UP-8613 Rev. 2 

IN Keyword Parameter: 

SPERRY UNIVAC OS/3 
1974 AMERICAN NATIONAL STANDARD COBOL 

H-3 
Update F 

This parameter specifies the input file definition and generates a PARAM IN control statement. The options 
are: 

IN=( vol -ser-no, label) 
Specifies the file identifier (label) and the volume serial number (vol-ser-no) where the source input 
is located. 

IN=( RES) 
Specifies that the source input is located on the SYSRES device in $Y$SRC. 

I N= ( RES , I ab e I ) 
This is used if the source input is located on the SYSRES device, but the file identifier (label) is of 
user-own specification, not $Y$SRC. 

I N= ( RUN , I a b e I ) 
Specifies that the source input is located on the job's $Y$RUN file, with the file identifier (label) of 
user-own specification. 

IN= ( • , I ab e I ) 
Specifies that the source input is located on a catalog file identified by the file identifier (label). 

If omitted, the source input is in the form of embedded data cards (/$,source deck,/*). 

LIN Keyword Parameter: 

LIN=(vol-ser-no, label) 
Defines the volume serial number (vol-ser-no) and the file identifier (label) where the copy modules 
are located. The LFD name is COPY$. 

L I N= ( R E S , I a b e I ) 
Specifies that the copy modules are located on the job's SYSRES device in the file identified by the 
file identifier (label). 

L I N= ( RUN , I a b e I ) 
Specifies that the copy modules are located on the job's $Y$RUN file, with the file identifier (label) 
specified by the user. 

L I N= ( • . I ab e I ) 
Specifies that the copy modules are located on a catalog file identified by the file identifier (label). 

If more than one copy library is present, the additional libraries are specified with the LINn parameter. 
The n value varies from a minimum of 1 to a maximum of 9. The compiler searches the libraries in the 

following order: LIN, LIN 1, LIN2, etc, through LIN9. 

NOTE: 

Use the L/Nn format only with JPROC calls, not in PARAM statements (see A.2 for the PARAM 
statement format). 

OBJ Keyword Parameter: 

This parameter specifies the output file definition and generates a PARAM OBJ control statement. The 
options are: 

t 



UP-8613 Rev. 2 

OBJ=( vol -ser-no. label) 

SPERRY UNIVAC OS/3 
1974 AMERICAN NATIONAL STANDARD COBOL 

H-4 
Update F 

Specifies the file identifier (label) and the volume serial number (vol-ser-no) where the object module 
is located. 

OBJ=( RES, I abe I) 
Specifies that the object module is located on the SYSRES device, with the file identifier specified by 
the label parameter. 

OBJ=( RUN, label) 

Specifies that the object module is located on the job's $Y$RUN file, with a file identifier (label) of 
user-own specification. 

OBJ=(•. label) 

Specifies that the object module is located on a catalog file identified by the file identifier (label). 

If omitted, the object module is located on the job's $Y$RUN file. 

NOTE: 

The OBJ keyword parameter must not be used with COBL74L or COBL74LG. 

SCR1 Keyword Parameter: 

s c R 1 = 5 tto;I;- s e r - n o l 
1 .. 1.1 5 

Specifies the volume serial number of the work file with an identifier of $SCR1. 

SCR2 Keyword Parameter: 

SC R 2 = 5 ~{~T!. - s e r - n o l 
1J£11J 5 

Specifies the volume serial number of the work file with an identifier of $SCR2. 

SCR3 Keyword Parameter: 

SCR3=~1--ser-nof 

Specifies the volume serial number of the work file with an identifier of $SCR3. 

AL TLOD Keyword Parameter: 

ALTLOD=(vol -ser-no, label) 
Specifies the location of the compiler to be used, if other than $Y$LOD. 

ALTLOD=(RES, label) 

Specifies that the alternate load library is located on the job's SYSRES device in the file identified by 
the file identifier (label). 

A l T l 0 D= ( RUN , I a b e I ) 

Specifies that the alternate load library is located on the job's $Y$RUN file, with the file identifier 
(label) specified by the user. 

ALTLOD=(·, label) 

Specifies that the alternate load library is located on a catalog file identified by the file identifier 
(label). 

If omitted, the compiler is loaded from $V$RUN for execution and $Y$LOD for compilation and linking. 

• 

• 

• 



UP-8613 Rev. 2 SPERRY UNIVAC OS/3 H-5 
1974 AMERICAN NATIONAL STANDARD COBOL 

• Option Keyword Parameter: 

• 

• 

option=specification 
Specifies the various compiler options parameters, such as LIST=YES, etc. (See Appendix A.) It 
cannot specify the IN, LIN, and OBJ parameters because these are job parameters that require job 
control language automatically generated by a JPROC. 

ERRFIL Keyword Parameter: 

ERRFIL=(vol -ser-no, label ,module-name)] 
Defines an error file for compile-time diagnostics and generates a PARAM ERRFIL control statement. 
The module name, volume serial number, and file identifier (label) must be specified. 

NOTE: 

The ERRFIL keyword parameter must not be specified unless the IN keyword parameter is also 
specified. 

Example 1a: 

1 . 
2. 
3. 
4. 
5. 
6. 
7. 

The following illustrates the use of the COBL74 procedure call statement in its basic form: 

10 16 72 

II JOB COBOLlA 
II COBL74 
1$ 

source deck 

I• 

Line Explanation 

Indicates that the name of the job is COBOL 1 A 

2 Indicates the name of the procedure being called (COBL74). There are no keyword parameters 
specifying special options for this compilation. 

3 Indicates start of data 

4-6 Represents the source deck to be compiled 

7 Indicates end of data 

As coded, this example can be the first step in a job to be followed by the link-edit jproc call, or it can be an 
entire job in itself by specifying a/& (end-of-job) statement and a I I FIN (terminate card reader operations) 
statement on lines 8 and 9, respectively. The latter case could be used to test-compile a new program or an 
updated version of an existing program . 



UP-8613 Rev. 2 SPERRY UNIV AC OS/3 H-6 
1974 AMERICAN NATIONAL STANDARD COBOL 

Example 1b: 

1 . 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 
10. 
11. 
1 2 . 
1 3 . 
14. 
1 5 . 
16. 
17. 

The basic form given in example 1 a generates the following control stream: 

10 16 72 

II JOB COBO LIA 
II DVC 201 II L FD PRNTR 
II DVC RES 
II EXT ST,C,3,CYL,l 
II LBL $SCR1 II LFD $SCR1 
II DVC RES 
II EXT ST,C,3,CYL,l 
II LBL $SCR2 II LFD $SCR2 
II DVC RUN 
II EXT ST,C,3,CYL,l 
II LBL $SCR3 II L FD $SCR3 
II EXEC COBL74 
1$ 

1· 

Line 

2 

3-5 

6-8 

9-11 

12 

13 

14-16 

17 

source deck 

Explanation 

Indicates that the name of the job is COBOL 1 A 

Indicates the default logical unit number and LFD name of the printer 

Indicates that the first work file needed for compiling is, by default, on the SYSRES device, has 
both a file identifier and LFD name of $SCR1, and uses the sequential access technique; that 
allocati:m is contiguous, with three cylinders allocated for the secondary increment and one 
cylinder of initial allocation. 

Identifies the second work file needed for compiling. The only difference between this work file 
and the first work file is that file identifier and LFD name are $SCR2 rather than $SCR1. 

Indicates that the third work file needed for compiling is, by default, on the device containing 
the job's SYSRUN file. Both the file identifier and the LFD name are $SCR3, and the file extent 
specification is the same as the first and second work files. 

Loads the COBL74 compiler from SYSLOD 

Indicates start of data 

Represents the source deck to be compiled 

Indicates end of data 

As with example 1 a, this example can be the first step in a job, or it can be the entire job in itself by 
specifying the /& statement and the I I FIN statement on lines 18 and 19, respectively. 

• 

• 

• 



UP-8613 Rev. 2 SPERRY UNIV AC OS/3 H-7 
1974 AMERICAN NATIONAL STANDARD COBOL 

• Example 2a: 

• 

• 

The following example illustrates the use of a COBL74 procedure call statement that defines many of the 
keyword parameters: 

10 16 

1. II JOB COBOL2A 
2. llPROGNM COBL74 PRNTR=21, IN=(RES,U$SRC), 
3. Ill OBJ=(DSC2,U$0BJ), 
4. 112 LIN=(DSCl,COPYLIBl), 
5. 113 SCRl=DSC4,SCR2=DSCl, 
6. 114 LSTREF=YES,OBJLST=NO,AXREF=YES, 
7. 115 PROVER=YES 
8. I& 
9. II FIN 

Line Explanation 

Indicates that the name of the job is COBOL2A 

72 

x 
x 
x 
x 
x 

2 Indicates the name of the procedure being called (COBL74). The source module name is 
PROGNM. The logical unit number of the printer is 21, and the input file is on the SYSRES 
device, with a file identifier of USSRC. 

3 Indicates that the output file volume serial number is DSC2, with a file identifier of USOBJ 

4 Indicates that the copy module volume serial number is DSCl, with a file identifier of 
COPYLIBl 

5 Indicates that the second work file needed for compiling is on the device with a volume serial 
number of DSC4, and the third work file is on the device with a volume serial number of DSCl. 
By default, the device for the first work file is the SYSRES device. 

6-7 Indicates the compiler options for this compilation: 

LSTREF=YES 
Specifies the generation of a source program listing including the definition line numbers 
of operands. 

OBJLST=NO 
Specifies not to generate an object code listing. 

AXREF=YES 
Specifies the generation of an alphabetically ordered cross-reference listing of procedure 
and data names. 

PROVER=YES 
Specifies the generation of an address map list of procedure names and verb statements. 

8 End of job 

9 Terminates card reader operations 

As written, this example is a 1-step job that compiles your source program. It produces a nonexecutable 
object module. Before your program could be executed, a job step would have to be inserted in the control 
stream that would link-edit the object module to produce an executable load module. 



UP-8613 Rev. 2 SPERRY UNIVAC OS/3 H-8 
1974 AMERICAN NATIONAL STANDARD COBOL 

Example 2b: 

Based on the keyword parameters specified in example 2a, the following control stream is generated: 

10 16 

1. II JOB COBOL2A 
2. II DVC 21 II LFD PRNTR 
3. II DVC RES 
4. II LBL U$SRC II LFD INCPUT 
5. II DVC 50 II VOL DSC2 
6. II LBL U$08J II LFD OUTCPUT 
7. II DVC 51 II VOL DSCl 
8. II LBL COPYLIBl II LFD COPY$ 
9. II DVC RES 
10. II EXT ST,C,3.CYL.1 
11. II LBL $SCR1 II LFD $SCR1 
12. II DVC 52 II VOL DSC4 
13. II EXT ST,C,3,CYL,l 
14. II LBL $SCR2 II LFD $SCR2 
15. II DVC 51 II VOL DSCl 
16. II EXT ST,C,3,CYL,l 
17. II LBL $SCR3 II LFD $SCR3 
18. II EXEC COBL74 
19. 11 PARAM I N=PROGNMI I NC PUT 
20. II PARAM OBJ=OUTCPUT 
21. II PARAM LSTREF=YES 
22. II PARAM OBJLST=NO 
23. II PARAM AXREF=YES 
24. II PARAM PROVER=YES 
2 5. I & 
26. II FIN 

Line Explanation 

Indicates that the name of the job is COBOL2A 

72 

2 Indicates that the printer is to be assigned to the logical unit number 21, with an LFD name of 
PRNTR. This was obtained from line 2 in example 2a. 

3 Indicates that the input file is on the device containing the SYSRES volume. This was obtained 
from the IN parameter on line 2 in example 2a. 

4 Indicates that the input file has a file identifier of USSRC, with an LFD name of INCPUT. This 
was obtained from the IN parameter on line 2 in example 2a. 

5 Indicates that the output file volume serial number is DSC2. This was obtained from the OBJ 
parameter on line 3 in example 2a. It is assigned to the device with a logical unit number of 50, 
which was the first available number in the range of 50-54. 

6 Indicates that the output file has a file identifier of USOBJ, with an LFD name of OUTCPUT. 

7 

This was obtained from the OBJ parameter on line 3 in example 2a. 

Indicates that the copy library has a volume serial number of DSC1. It is assigned to the device 
with a logical unit number of 51, which was the next available number in the range of 50-54 . 
Logical unit number 50 was already assigned to the device with a volume serial number of 
DSC2 (line 5), so the next available logical unit number is used. This was obtained from the LIN 
parameter on line 4 in example 2a. 

• 

• 

• 



• 

• 

• 

UP-8613 Rev. 2 

Line 

8 

9-11 

12-14 

15-17 

SPERRY UNIV AC OS/3 H-9 
1974 AMERICAN NATIONAL STANDARD COBOL 

Explanation 

Indicates that the copy library is labeled COPYLIB1, with an LFD name of COPY$. This was 
obtained from the LIN parameter on line 4 in example 2a. 

Indicates that the first work file needed for compiling is, by default, on the SYSRES device, has 
both a file identifier and LFD name of $SCR1, and uses the sequential access technique; and 
that allocation is contiguous, with three cylinders allocated for the secondary increment and 
one cylinder of initial allocation. 

Indicates that the second work file needed for compiling has a volume serial number of DSC4. 
This volume serial number has not been previously used in this job, so the next available logical 
unit number (52) is assigned to this device. This work file has both a file identifier and LFD 
name of $SCR2, and has the same file extent specification as the first work file. This was 
obtained from the SCR2 parameter on line 5 in example 2a. 

Indicates that the third work file needed for compiling has a volume serial number of DSC1. 
Since this volume serial number was already used, this work file uses the same device logical 
unit number of 51. This work file has both a file identifier and LFD name of $SCR3, and has the 
same file extent specification as the first and second work files. This was obtained from the 
SCR3 parameter on line 5 in example 2a. 

18 Loads the COBL74 compiler from SYSLOD 

19-24 PARAM control statements identify the processing options for the ANSI 1974 COBOL compiler 
(COBL74). These are generated in the following manner: 

Line 19 - The module name PROGNM is generated from the label field in line 2 of example 2a. 
The filename INCPUT is generated automatically when the IN parameter is specified. 

Line 20 - The filename OUTCPUT is generated automatically when the OBJ parameter is used. 

Lines 21-24 - Generated by the compiler options specifications of lines 6 and 7 in example 2a. 

25 End of job 

26 Terminates card reader operations 



UP-8613 Rev. 2 SPERRY UNIVAC OS/3 H-10 
1974 AMERICAN NATIONAL STANDARD COBOL 

Example 3a: 

The following example illustrates the use of the COBL74L procedure call statement: 

10 16 72 

1. II JOB MASTER 
2. II DVC 50 
3. II VOL DSCl 
4. II LBL U$LOD 
5. II LFD LNKLIB 
6. II COBL74 MXREF=YES,PROVER=YES 
7. 1$ 

8. COBOL source program 

9. 

10. 
11 . 
12. 
13. 
14. 
1 5 . 

I• 
1$ 

LINKOP OUT=LNKLIB 
LOADM ABC123 

r 
I& 
II FIN 

Line Explanation 

Indicates that the name of the job is MASTER 

2-5 Defines a file USLOD on volume DSC1 to be used to hold the linked object module 

6 Indicates the name of the procedure being called (COBL74L) and indicates the compiler options 
for this compilation 

7 Indicates start of data 

8 Indicates the COBOL source program 

9 Indicates end of data 

10 Indicates start of data 

11 Indicates that the linkage editor is to write the load module to the file with the lfdname LNKLIB 

12 Indicates that the name of the load module is ABC123 

13 Indicates end of data 

14 Indicates end of job 

15 Terminates card reader operations 

• 

• 

• 



UP-8613 Rev. 2 SPERRY UNIVAC OS/3 H-11 
1974 AMERICAN NATIONAL STANDARD COBOL 

• Example 3b: 

1. 

2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 

10. 

11 . 
1 2 . 
13. 
14. 
15 . 

• 16. 
1 7. 
18. 
19. 

• 

Based on the keyword parameters specified explicitly and implicitly in example 3a, the following control 
stream is generated: 

10 16 72 

II JOB MASTER 
II DVC 50 II VBL DSCl II LBL U$LOD II LFD LNKLIB 
II DVC 20 II LFD PRNTR 
II DVC RES II EXT ST,C,3,CYL,l II LBL $SCR1 II LFD $SCR1 
II DVC RES II EXT ST,C,3,CYL,l II LBL $SCR2 II LFD $SCR2 
II DVC RES II EXT ST,C,3,CYL,l II LBL $SCR3 II LFD $SCR3 
II EXEC COBL74 
II PARAM MXREF=YES,PROVER=YES 
1$ 

COBOL source program 

r 
II DVC RES II EXT ST,C,3,CYL,l II LBL $SCR1 II LFD $SCR1 
II EXEC LNKEDT 
1$ 

LINKOP OUT=LNKLIB 
LOADM ABC123 

I• 
& 

II FIN 

Line Explanation 

Indicates that the name of the job is MASTER 

2 Defines a file U$LOD on volume DSC1 to be used to hold the linked object module 

3 Indicates that the printer is to be assigned to logical unit number 20 with an lfdname of PRNTR 

4-6 Defines the three work files necessary for compiler execution 

7 Loads and executes the COBL74 compiler 

8 Indicates parameter options 

9 Indicates start of data 

10 Indicates the COBOL source program 

11 Indicates end of data 

12 Defines the work file necessary for LNKEDT execution 

13 Loads and executes the linkage editor 



UP-8613 Rev. 2 SPERRY UNIVAC OS/3 H-12 
1974 AMERICAN NATIONAL STANDARD COBOL 

14 Indicates start of data 

15 Indicates that the linkage editor is to write the load module to the file with the lfdname LNKLIB 

16 Indicates that the name of the load module is ABC123 

17 Indicates end of data 

18 Indicates end of job 

19 Terminate card reader operations 

Example 4a: 

The following example illustrates the use of the COBL74LG procedure call statement. The input file and 

the output listings for the compiler are defined. 

10 16 72 

1. // JOB MASTER 
2. // DVC ... // LFD 
3. //MASTER COBL74LG IN=(ABC123,PAYMAST) x 
4. I /1 LSTREF=YES,AXREF=YES,PROVER=YES 
5. /& 

6. // FIN 
7. data 
8. I• 

Line Explanation 

Indicates that the name of the job is MASTER 

2 Indicates the device assignment sets needed to execute the resulting load module 

3 Indicates that the name of the source module is MASTER and that the name of the procedure 
being called is COBL74LG. Therefore, this example compiles, link-edits, and executes the 
source program MASTER. The input file (source language) is on the device with a volume serial 

number of ABC123 and has a file identifier of PAYMAST. 

4 Indicates the compiler listing options 

5 End of job 

6 Terminates card reader operations 

7 Indicates the data for the program 

8 Indicates end of data 

• 

• 

• 



UP-8613 Rev. 2 SPERRY UNIVAC OS/3 H-13 
1974 AMERICAN NATIONAL STANDARD COBOL 

• Example 4b: 

1 . 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

1 3 . 

14. 

15. 

16. 

17. 

• 18. 

19. 

20. 

21. 

22. 

23. 

24. 

• 

Based on the keyword parameters specified explicitly and implicitly in example 4a, the following control 
stream is generated: 

10 16 72 

II JOB MASTER 

II DVC ... I I L FD 

II OPTION LINK.GO 

II DVC 20 II LFD PRNTR 

II DVC 50 II VOL ABC123 

II LBL PAYMAST II L FD INCPUT 

II DVC RES 

II EXT ST,C,3,CYL,l 

II LB L $SCR1 II LFD $SCR1 

II DVC RES 

II EXT ST,C,3,CYL,l 

II LBL $SCR2 II LFD $SCR2 

II DVC RUN 

II EXT ST,C,3,CYL,l 

II LBL $SCR3 II LFD $SCR3 

II EXEC COBL74 

II PA RAM IN=MASTERllNCPUT 

II PA RAM LSTREF=YES 

II PA RAM AXREF=YES 

II PA RAM PROVER=YES 

I& 
II FIN 

data 
I• 

Line Explanation 

Indicates that the name of the job is MASTER 

2 Indicates the device assignment sets needed to execute the resulting load module 

3 Indicates that the source program is to be link-edited and then executed after it has been 
compiled. This was obtained from COBL74LG specified on line 2 in example 4a. 

4 Indicates, by default, that the printer is to be assigned to the logical unit number 20, with an 
LFD name of PRNTR 

5 Indicates that the input file (source language) is on the device with the logical unit number of 
50 and has a volume serial number of ABC123. This was obtained from the IN parameter on 
line 2 in example 4a. 

6 Indicates that the input file (source language) has a file identifier of PAYMAST, with an LFD 
name of INCPUT. This was obtained from the IN parameter on line 2 in example 4a . 



UP-8613 Rev. 2 SPERRY UNIVAC OS/3 H-14 

7-9 

10-12 

13-15 

16 

17-20 

21 

22 

23 

24 

1974 AMERICAN NATIONAL STANDARD COBOL 

Indicates, by default, that the first work file needed for compiling is on the SYSRES device, has 
both a file identifier and LFD name of $SCR1, uses sequential access technique; that allocation 
is contiguous, with three cylinders allocated for the secondary increment and one cylinder of 

initial allocation. 

Indicates, by default, that the second work file needed for compiling is on the SYSRES device. 
This work file has both a file identifier and LFD name of $SCR2. It has the same file extent 
specification as the first work file. 

Indicates, by default. that the third work file needed for compiling is on the SYSRUN device. 
This work file has both a file identifier and LFD name of $SCR3. It has the same file extent 
specification as the first and second work file. 

Loads the COBL74 compiler from $Y$LOD 

PARAM control statements that identify the processing options for the COBL74 compiler. These 
are generated as follows: 

Line 16 - The module name MASTER is generated from the label field on line 2 of example 4a. 
The filename INCPUT is generated automatically when the IN parameter is specified. 

Lines 17-19 - Generated by the compiler options specifications of line 3 in example 4a. 

End of job 

Terminates card reader operations 

Indicates the data for the program 

Indicates end of data 

Any output from the compiler is temporarily stored on the $Y$RUN device. 

Implicit in the I I OPTION LINK.GO statement on line 2 of example 4b is the creation of a load module 
named LNKLOD by the linkage editor and the execution of that load module. This is performed after the 
source program has been compiled. 

Example 5: 

The following example shows a typical compilation from a workstation: 

10 16 72 

1 . LOG ON SYSPUBS,6944,DOIT 

2. I EDT 

: f COBOL source program 

@WR I TE 

@HALT 

3. RV JC$BU I LD 

job control stream 
4. RV COMP IL 

5. LOGO FF 

• 

• 

• 



• 

• 

• 

UP-8613 Rev. 2 SPERRY UNIV AC OS/3 H-15 
1974 AMERICAN NATIONAL STANDARD COBOL 

Line Explanation 

Identifies the user-id SYSPUBS, the account-number 6944, and the password DOIT 

2 Calls the system editor. The COBOL source program immediately follows /EDT command. After 
the last COBOL source statement, the @WRITE command is issued to save the source program 
in a library. The @HALT command ends the EDT session. 

3 Calls the system build command. This command writes the job control stream to the system job 
control stream library file ($Y$JCS). This job control stream defines the system resources the 
source program requires. 

4 Calls the control stream from $Y$JCS. This step compiles the source program. 

5 Ends the workstation session 

Example 6: 

The following example also shows compilation from a workstation: 

10 16 

1 . LOGON user-id 

2. I EDT 

:lCOBOL source program 

@WR I TE INPUTl 

II JOB COMPIL 

llCOBOLl COBL74, IN=INPUT1 

I& 
@WR I TE $Y$JCS 

@HALT 

3. RV COMP IL 

4. LOGO FF 

Line Explanation 

Connects the workstation terminal to the system and also identifies the user 

2 Calls the system editor (EDT) 

3 Compiles the program 

4 Disconnects the workstation terminal from the system 

H.3. COMPILER STATUS INDICATORS 

The compiler sets the following status indicators in the user program switch indicator (UPSI) byte. These 
indicators may be used in conjunction with the I I SKIP job control card: 

• Switch-0 (X'80') is set to 1 if the compiler does not create a complete object module. This condition might 
be caused by an "insufficient memory available" diagnostic or the SPROUT option. 



UP-8613 Rev. 2 SPERRY UNIV AC OS/3 H-16 
1974 AMERICAN NATIONAL STANDARD COBOL 

• Switch-1 (X'40') is set to 1 if the compiler issues any diagnostic message with severity code 2 or 3 . 

• Switch-2 (X'20') is set to 1 if the compiler issues any diagnostic messages with the severity code 1. 

H.4. DATA DEFINITION (DD) JOB CONTROL STATEMENT KEYWORD 
PARAMETERS 

The DD job control statement is used to change data management keywords at execution time. Instead of 
changing your COBOL source code, you can override data management keyword specifications when your 
COBOL object program is executing. The DD statement keyword parameters that may be specified are: 

ACCESS= EXC 
EXCR 
SRDO 
SRO 
SUPD 
SADD 

FILABL= {NO } 
NSTD 
STD 

LACE=n 

RCB= 

RECV= 
{

YES} 
FCE 

SIZE= 

TPMARK= NO 

UOS=n 

VSEC= 

When specifying these keyword parameters. extreme care must be used so that the effect of changing one 
parameter does not cause a conflict with another parameter. To avoid conflicts, the user should carefully 
examine the file usage specified in COBOL programs and the default parameters set by the compiler-generated 
data management specifications. 

The DD statement applies to basic data management users and consolidated data management users. For 
keyword parameter information, see the basic data management user guide, UP-8068 (current version), or the 
consolidated data management macroinstructions user guide, UP-8826 (current version). A complete description 
of the DD job control statement is explained in the job control user guide, UP-8065 (current version). 

• 

• 

• 



• 

• 

• 

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 
1974 AMERICAN NATIONAL STANDARD COBOL 

1-1 
Update B 

Appendix I. Reserved Words 

The following reserved words are part of the OS/3 COBOL language structure and cannot be used as user-
defined words or system-names. 

ACCEPT CH CYLINDER-INDEX 
ACCESS CHANGED CYLINDER-OVERFLOW 
ADD CHARACTER 
ADVANCING CHARACTERS DATA 
AFTER CLASS-NAME DATE 
ALL CLOCK-UNITS DATE-COMPILED 
ALPHABET CLOSE DATE-WRITIEN 
ALPHABETIC COBOL DAY 
ALSO CODE DE 
ALTER CODE-SET DEBUG-CONTENTS 
ALTERNATE COLLATING DEBUG-ITEM 
AND COLUMN DEBUG-LINE 
APPLY COMMA DEBUG-NAME 
ARE COMMUNICATION DEBUG-SUB-1 
AREA COMP DEBUG-SUB-2 
AREAS COMP-1 DEBUG-SUB-3 
ASCENDING COMP-2 DEBUGGING 
ASSIGN COMP-3 DECIMAL-POINT 
AT COMP-4 DE CLARA Trv'ES 
AUTHOR COMPUTATIONAL DELETE 

COMPUTATIONAL-1 DELIMITED 
BEFORE COMPUTATIONAL-2 DELIMITER 
BEGINNING COMPUTATIONAL-3 DEPENDING 
BLANK COMPUTATIONAL-4 DESCENDING 
BLOCK COMPUTE DESTINATION 
BLOCK-COUNT CONFIGURATION DETAIL 
BOTIOM CONNECT-FREE DISABLE 
BY CONTAINS DISPLAY 

CONTROL DIVIDE 
CALL CONTROLS DIVISION 
CANCEL COPY DOWN 
CD CORR DUPLICATES 

'-" CORRESPONDING DYNAMIC 
COUNT 
CURRENCY 



UP-8613 Rev. 2 

EGI 

ELSE 
EMI 
ENABLE 
END 
ENDING 

END-OF-PAGE 

...... ENTER 

ENVIRONMENT 

EOP 
EQUAL 
ERROR 
ESI 
EVERY 
EXCEPTION 
EXHIBIT 
EXIT 
EXTEND 

FD 
FILE 
FILE-CONTROL 
FILE-ID 
FILLER 
FINAL 
FIRST ...... FOOTING 
FOR 
FROM 

FUNCTION-KEYS 

GENERATE 
GIVING 

GO 
GREATER 
GROUP 

HEADING 

HIGH-VALUE 
HIGH-VALUES 

1-0 
1-0-CONTROL 
IDENTIFICATION 
IF 
IN 
INDEX 
INDEX-AREA 
INDEXED 
INDICATE 
INDICES 
INITIAL 
INITIATE 

SPERRY UNIVAC OS/3 
1974 AMERICAN NATIONAL STANDARD COBOL 

INPUT 

INPUT-OUTPUT 
INSPECT 
INSTALLATION 
INTO 
INVALID 
IS 

ISAM 

JUST 

JUSTIFIED 

KEY 

LABEL 
LAST 
LEADING 
LEFT 

LENGTH 

LESS 

LIMIT 
LIMITS 

LINAGE 

LINAGE-COUNTER 
LINE 

LINE-COUNTER 
LINES 

LINKAGE 

LOCK 
LOW-VALUE 
LOW-VALUES 

MEMORY 
MERGE 
MESSAGE 
MESSAGES 
MODE 

MODULES 

MORE-LABELS 
MOVE 

MULTIPLE 
MULTIPLY 

NAMED 

NATIVE 
NEGATIVE 
NEXT 
NO 
NOT 
NUMBER 
NUMERIC 

1-2 
Update B 

OBJECT-COMPUTER 

OCCURS 
OF 
OFF 

OMITTED 
ON 

OPEN 

OPTIONAL 

OR 

ORGANIZATION 

OUTPUT 

OVERFLOW 

PAGE 
PAGE-COUNTER 

PASSWORD 
PERCENT 
PERFORM 

PF 

PH 
PIC 
PICTURE 

PLUS 
POINTER 
POSITION 
POSITIVE 

PRINTING 

PROCEDURE 

PROCEDURES 

PROCEED 

PROGRAM 
PROGRAM-ID 

PRINTER 
QUEUE 
QUOTE 

QUOTES 

RANDOM 
RD 

READ 

READY 
RECEIVE 
RECORD 

RECORDS 
REDEFINES 
REEL 
REFERENCES 
RELATIVE 
RELEASE 
REMAINDER 
REMOVAL 

• 

• 

• 



UP-8613 Rev. 2 

• RENAMES 
REPLACING 
REPORT 
REPORTING 
REPORTS 
RERUN 
RESERVE 
RESET 
RETURN 
REVERSED 
REWIND 
REWRITE 
RF 
RH 
RIGHT 
ROUNDED 
RUN 

SAM 
SAME 
SD 
SEARCH 
SECTION 
SECURITY 
SEGMENT 

• SEGMENT-LIMIT 
SELECT 
SEND 
SENTENCE 
SEPARATE 
SEQUENCE 
SEQUENTIAL 

SET 
SIGN 
SIZE 
SORT 
SORT-FILE-SIZE 
SORT-MERGE 
SORT-MODE-SIZE 
SOURCE 
SOURCE-ALPHABET 
SOURCE-COMPUTER 
SPACE 
SPACES 
SPECIAL-NAMES 
SPECIFIC 

• 

SPERRY UNIVAC OS/3 
1974 AMERICAN NATIONAL STANDARD COBOL 

STANDARD 
STANDARD-0 
STANDARD-1 
START 
STATUS 
STOP 
STRING 
SUB-QUEUE-1 
SUB-QUEUE-2 
SUB-QUEUE-3 
SUBTRACT 
SUM 
SUPPRESS 

SYMBOLIC 
SYNC 
SYNCHRONIZED 

SYSCHAN-n (n= 1 thru 15) 
SYS COM 
SYSCONSOLE 
SYSFORMAT 
SYSIN 
SYS I PT 
SYS LOG 
SYSLST 
SYS OPT 
SYS OUT 
SYS SCOPE 
SYSSWCH 
SYSSWCH-n (n=O thru 31) 
SYSTEM 
SYSTEM-SHUTDOWN 

SYSTERMINAL 

SY SW ORK 

TABLE 
TALLYING 
TAPE 
TAPES 
TERMINAL 
TERMINATE 
TEXT 
THAN 
THEN 
THROUGH 
THRU 
TIME 

TIMES 
TO 
TOP 
TRACE 
TRAILING 
TRANSFORM 
TYPE 

UNIT 
UNSTRING 
UNTIL 
UP 
UPON 
USAGE 
USE 
USING 

VALUE 
VALUES 
VARYING 
VERIFY 

WHEN 

1-3 
Update F 

WHEN-COMPILED 
WITH 
WORDS 
WORKING-STORAGE 
WRITE 

ZERO 
ZEROES 
ZEROS 

*DEBUG 

+ 

* 
I 
** 

> 
< 

.. 



• 

• 

• 



• 

• 

• 

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 J-1 
1974 AMERICAN NATIONAL STANDARD COBOL 

Appendix J. Character Sets 

The Extended Binary Coded Decimal Interchange Code (EBCDIC) is the standard character set for OS/3. The 
EBCDIC character set is given in Table J-1. 

This table also provides the means for converting the American Standard Code for Information Interchange 
(ASCII) 8-bit code (ASCll-8) to EBCDIC . 



UP-8613 Rev. 2 SPERRY UNIV AC OS/3 J-2 
1974 AMERICAN NATIONAL STANDARD COBOL 

Table J-1. Correspondence between EBCDIC, ASC//-8, and Punched Card Codes (Part 1 of 3) • 
EBCDIC 

Character 
Symbol 

Card ASCll-8 

Dec. Hex. Name Punches (Hex.) 

EBCDIC 
Character 

Symbol 
Card ASCll-8 

Dec. Hex. Name Punches (Hex.) 

0 00 NUL 12-0-9-B-l 00 52 34 9-4 94 

I 01 SOH 12-9-1 01 S3 3S 9-S 9S 

2 02 STX 12-9-2 02 S4 36 9-6 96 

3 03 ETX 12-9-3 03 SS 37 EOT 9-7 04 

4 04 12-9-4 04 S6 3B 9-B 9B 
5 05 12-9-5 09 S7 39 9-B·l 99 

6 06 12-9-6 B6 5B 3A 9-B-2 9A 

7 07 DEL (Delete) 12·9·7 7F S9 3B 9-B-3 9B 

B OB 12-9-B 97 60 3C DC4 9-B-4 14 

9 09 12-9-B-1 BD 61 30 NAK 9-B-S lS 

10 QA 12·9·B·2 BE 62 3E 9·8-6 9E 

11 OB VT 12·9·B·3 OB 63 3F SUB 9-B-7 IA 

12 OC FF 12-9·B-4 OC 64 40 SP (Space) 20 

13 OD CR 12·9-B-5 OD 6S 41 12·0-9-1 AO 

14 OE so 12-9-B-6 OE 66 42 12-0-9·2 Al 

15 OF SI 12-9-B-7 OF 67 43 12-0-9-3 A2 

16 10 OLE 12-l 1·9·B·l 10 6B 44 12-0-9-4 A3 

17 11 DC! 11·9-l 11 69 4S 12-0-9·S A4 

IB 12 DC2 11-9·2 12 70 46 12·0-9-6 AS 

19 13 DC3 11·9·3 13 71 47 12-0-9-7 AG 

20 14 11-9-4 90 72 4B 12-0-9-B A7 

21 15 11-9·5 B5 
22 16 BS ll ·9-6 OB 
23 17 11·9-7 B7 

73 49 12·B-l AB 
74 4A Opening bracket [ 12-B-2 SB 
7S 4B Period. decimal 12-B·3 2E • 24 IB CAN 11-9-B IB 76 4C Less than < 12·B-4 3C 

25 19 EM 1 l-9·B-1 19 77 40 Opening parenthesis I 12-B-S 2B 

26 IA 11·9-B-2 92 7B 4E Plus sign + 12-B-6 2B 

27 IB 11-9-B-3 BF 79 4F Exclamation point I 12-B·7 21 

2B IC FS l l-9·B-4 IC BO 50 Ampersand & 12 26 

29 ID GS 11·9-B·S ID Bl 51 12-11-9·1 A9 

30 IE RS 11-9-B-6 IE B2 S2 12-11·9-2 AA 

31 IF us 11-9-B-7 IF B3 S3 12-11·9-3 AB 

32 20 11·0·9·B·l BO B4 54 12·11-9-4 AC 

33 21 0-9-1 Bl B5 S5 12·11-9-S AD 
34 22 0-9-2 B2 BG S6 12-11-9·6 AE 

3S 23 Q.9.3 B3 B7 S7 12-11-9-7 AF 

36 24 0-9-4 B4 BB 5B 12·11-9·B BO 

37 2S LF 0-9-S QA B9 59 11-B-1 Bl 

3B 26 ETB 0-9-6 17 
39 27 ESC 0-9·7 IB 

90 5A j;losing bracket I ll-B·2 50 
91 58 Dollar sign $ 11-B-3 24 

40 2B 0·9-B BB 92 SC Asterisk . 11-B-4 2A 
41 29 0-9-B-l B9 93 SD Closing Parenthesis ) 11-B-5 29 
42 2A 0-9-B-2 BA 94 5E Semicolon 11-B-6 3B 
43 2B 0-9-B-3 BB 95 5F Circumflex A. ll-B·7 5E 

44 2C 0-9-B-4 BC 96 60 Minus sign. hyphen - II 2D 
4S 20 ENQ 0-9-B-S OS 97 61 Slash, virgule. solidus I 0-1 2F 
46 2E ACK 0-9-B-6 06 9B 62 11-0-9-2 B2 
47 2F BEL 0-9-B-7 07 99 63 11-0-9·3 B3 

48 30 12 -11-0-9-8-1 90 100 64 11-0·9-4 B4 
49 31 9-1 91 
50 32 SYN 9-2 16 
51 33 9-3 93 

IOI 65 11-0-9-S BS 
102 66 11-0-9-6 B6 
103 67 11-0·9-7 B7 • 



UP-8613 Rev. 2 SPERRY UNIV AC OS/3 J-3 
1974 AMERICAN NATIONAL STANDARD COBOL 

• Table J-1. Correspondence between EBCDIC, ASCll-8, and Punched Card Codes (Part 2 of 3) 

EBCDIC 
Character Symbol Card ASCll-8 

Dec. Hex. Name Punches (Hex.) 

EBCDIC 
Character ASCll-8 Symbol Card 

Dec. Hex. Name Punches (Hex.) 

104 6B 11-0-9-B BB lSG 9C 12-11-B-4 CD 
!OS 69 O·B·I B9 !Sl 90 12·11-S·S CE 
106 6A Vertical line I 12-11 lC !SB 9E 12-ll·B-G CF 
IOl 6B Comma, cedilla O·B-3 2C 1S9 9F 12·1 l·B·l DO 

!OB 6C Percent sign o,o O-B-4 2S !GO AO 11-0-B-1 DI 
109 60 Underline - O·B-S SF lGl Al Overlme. tilde -- 11-0·1 lE 
110 6E Greater than > O·B·G 3E 162 A2 s s 11-0·2 13 
111 GF Question mark ) 0-B-l 3F 1G3 A3 t t 11-0-3 14 

112 lO 12-11·0 BA 1G4 A4 u u 11-0-4 lS 
113 ll 12-11-0·9·1 BB !GS AS v v 11-0-S 7G 
114 72 12-11·0·9·2 BC !GG A6 w w 11-0·G 77 
!IS 73 12·11-0·9·3 BO IG7 A7 x x l l·O·l lB 

JIG 14 12-11·0-9-4 BE !GB AB y y ll·O·B 19 
11 l 7S 12-11·0-9-S BF 169 A9 l l 11·0·9 lA 
llB 7G 12-11·0-9-G co 110 AA l l·O·S·2 02 
119 77 12·11·0·9-l Cl 171 AB l l·O·S·3 D3 

120 7B 12-ll-0·9·B C2 172 AC 11 ·0-S-4 04 
121 79 Grave accent S·l GO 173 AD ll·O·B-S DS 
122 lA Colon S-2 3A 174 AE ll·O·S-G DG 
123 7B Number sign, pound sign # S-3 23 17S AF I l·O·B·l Dl 

124 7C Commerical at symbol @ s 4 40 l 7G BO 12-ll·O·B·l OS 
12S 70 Apostrophe. acute accent B·S 27 177 Bl 12-11-0-1 09 • 12G 7E Equal sign - S-6 30 
121 7F Quotation mark. d1eres1s " S·l 22 

17B B2 12-11-0·2 DA 
179 B3 12-11-0·3 DB 

12B BO 12·0-S·l C3 IBO B4 12· 11-0-4 DC 
129 SI a a 12·0·1 GI 181 BS 12·1 l·O·S DD 
130 S2 b b 12·0·2 G2 IB2 BG 12-11-0·G DE 
131 S3 c c 12·0·3 G3 1S3 Bl 12-11-0·l OF 

132 S4 d d 12-0-4 G4 1S4 BS 12· 11 ·0·B ED 
133 SS e e 12-0-S GS !BS B9 12-11-0-9 El 
134 B6 f f 12-0-6 GG 1S6 BA 1211·0-S-2 E2 
13S 81 g g 12-0-l G7 !Bl BB 12·1 l-O·B·3 E3 

13G SS h h 12·0·S 6B 18B BC 12-11·0-B-4 E4 
137 89 I I 12·0·9 G9 189 BO 12-ll·O·B·S ES 
13B SA 12·0·S·2 C4 190 BE 12-ll·O·B·G EG 
139 BB 12·0·B·3 cs 191 BF 12-11-0·B·l El 

140 BC 12·0-B-4 CG 192 co Opening brace ' 12·0 lB ' 141 SD 12-0·S·S Cl 193 Cl A A 12·1 41 
142 SE 12-0-S·G cs 194 C2 B B 12·2 42 
143 BF 12-0·B·l C9 19S C3 c c 12-3 43 

144 90 12-1 l·S·l CA 19G C4 D D 12-4 44 
14S 91 I I 12-11·1 6A 191 cs E E 12-S 4S 
146 92 k k 12-11·2 6B 198 C6 F F 12·6 46 
141 93 I I 12-11·3 GC 199 Cl G G 12·1 41 

14B 94 m m 12-11-4 60 200 CB H H 12-B 4B 
149 9S n n 12-ll·S GE 201 C9 I I 12·9 49 
lSO 9G 0 0 12-11-G GF 202 CA 12·0·9-S-2 EB 
151 97 p p 12· l 1·7 70 203 CB 12-0-9-8 3 E9 

IS2 9S q q 12-ll·S 71 204 cc 12·0·9-S-4 EA 

• IS3 99 r r 12-11·9 72 
1S4 9A 12·11-B·2 CB 
!SS 9B 12·11-B-3 cc 

205 CD 12-0-9-S-S EB 
206 CE 12-0-9-B-6 EC 
207 CF 12·0·9-B-7 ED 



UP-8613 Rev. 2 SPERRY UNIVAC OS/3 J-4 
1974 AMERICAN NATIONAL STANDARD COBOL 

Table J-1. Correspondence between EBCDIC, ASC/1-8, and Punched Card Codes (Part 3 of 3) • EBCDIC Character Card ASCll-8 
Name Symbol Punches (Hex.) 

Dec. Hex. 

EBCDIC 
Character Card ASCll-8 

Name Symbol Punches (Hex.) 
Dec. Hex. 

208 DO Closing brace ' 11·0 7D ' 
232 E8 y y 0-8 S9 

209 DI J J 11·1 4A 233 E9 z z 0-9 SA 
210 02 K K 11-2 48 234 EA 11-0-9-8-2 F4 

211 03 L L 11-3 4C 23S EB 11-0-9-8-3 FS 

212 04 M M 11-4 40 236 EC 11-0-9-8-4 F6 
213 DS N N 11-S 4E 237 ED 11-0-9-8-S F7 
214 06 0 0 11-6 4F 238 EE 11-0-9-8-6 F8 
21S 07 p p 11-7 so 239 EF 11-0-9-8-7 F9 

216 08 Q Q 11-8 Sl 240 FO 0 0 0 30 
217 09 R R 11-9 S2 241 Fl l l l 31 
218 DA 12·11-9-8-2 EE 242 F2 2 2 2 32 
219 DB 12-11-9-8-3 EF 243 F3 3 3 3 33 

220 DC 12-11-9-8-4 FO 244 F4 4 4 4 34 
221 DD 12-11-9-8-S Fl 24S FS s s s 3S 
222 DE 12-11-9-8-6 F2 246 F6 6 6 6 36 
223 OF 12-11-9-8-7 F3 247 F7 7 7 7 37 

224 EO Reverse slash 0-8-2 SC 248 F8 8 8 8 38 
22S El 11-0-9-1 9F 249 F9 9 9 9 39 
226 E2 s s 0-2 S3 2SO FA 12-11-0-9-8-2 FA 
227 E3 T T 0-3 S4 2Sl FB 12-11-0-9-8-3 FB 

228 E4 u u 0-4 SS 2S2 FC 12-11-0-9-8-4 FC 
229 ES v v 0-S S6 2S3 FD 12-11-0-9-8-S FD 
230 E6 w w 0-6 S7 
231 E7 x x 0-7 S8 

2S4 FE 12-11-0-9-8-6 FE 
2SS FF EO (Eight ones) 12-11-0-9-8-7 FF • 

• 



• 

• 

• 

UP-8613 Rev. 2 SPERRY UNIV AC OS/3 
1974 AMERICAN NATIONAL STANDARD COBOL 

K-1 
Update B 

Appendix K. PICTURE Clause 

K.1. GENERAL 

This appendix is intended as a tutorial guide to using the PICTURE clause. It is not intended to replace the 
standard text that covers more detailed rules governing the PICTURE clause and its relation to other clauses 
in other divisions of a COBOL program. 

K.2. USE OF THE PICTURE CLAUSE AND ITS SYMBOLS 

The PICTURE clause describes the general characteristics and editing requirements of an elementary data 
item. It must be specified for every elementary item but is not allowed with an index data item, an internal 
floating-point data item, or a group item. 

The format of the PICTURE clause is: 

PICTURE IS character-string. 

A character-string in a PICTURE clause consists of certain allowable combinations of PICTURE symbols. The 
allowable combinations determine the category of the elementary item. The length of the character-string 

can be from 1 to 30 characters. 

The standard for COBOL defines three types of PICTURE symbols: data type, sign and assumed decimal 
point, and editing symbols: 

1. Data Type Symbols 

The data type symbols are: A, 9, and X. A defines alphabetic data; 9 defines numeric data; X defines 

alphanumeric data. 

2. Sign and Assumed Decimal Point Symbols 

These symbols are: S, V, and P. S describes the presence of an operational sign; V indicates the 
location of the assumed decimal point; and P specifies the location of the assumed decimal point 
when the point is not within or adjacent to the digits that appear in the data item. 

t 



UP-8613 Rev. 2 SPERRY UNIVAC OS/3 
1974 AMERICAN NATIONAL STANDARD COBOL 

3. Editing Symbols 

There are two types of editing symbols: 

Insertion editing symbols 

Zero suppression and replacement editing symbols 

K-2 
Update C 

The insertion editing symbols are: B 0 I , . + - $ (or alternate currency symbol), CR, and DB. Among 
these symbols, the CS, +, and - serve both as fixed insertion symbols and floating insertion symbols. 
The rstg are fixed insertion symbols. 

The zero suppression and replacement editing symbols are: Z and •. 

The following symbols can appear only once in one PICTURE character string: 

S V. CR DB 

The following symbols can appear more than once in one PICTURE character-string: 

A B p x z 9 0 I I + - * $ 

NOTE: 

The PICTURE symbols used to describe an external floating point data item are: +, -, 9, V, and E. Floating 
point data items are the OS/3 COBOL extensions to the standard COBOL. For more on the use and meaning 
of external floating point PICTURE character strings, see 5.3.3.4. 

K.3. DESCRIPTIONS AND EXAMPLES OF PICTURE CLAUSE SYMBOLS 

The following subparagraphs describe each of the standard COBOL PICTURE symbols. Examples are 
provided with each description. It is assumed in the following examples that the DECIMAL-POINT IS 
COMMA and CURRENCY SIGN IS literal clauses are not specified. 

Symbol Explanation 

A Each A in the character string represents a character position that contains a letter or a space. 
The symbol defines an alphabetic, alphanumeric, or alphanumeric edited data item and is counted 
in the size of the data item. 

Examples: 

PICTURE IS AC10). 
The data item is 10 bytes long and alphabetic. 

PICTURE IS AAA9999. 
The data item is seven bytes long and alphanumeric (because of the mixture of letters and 
numbers). It is equivalent to the PICTURE string X(7). 

• 

• 

• 



• 

• 

• 

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 
1974 AMERICAN NATIONAL STANDARD COBOL 

K-3 
Update B 

When you use the character A with any other PICTURE character except B, the data item 
becomes alphanumeric or alphanumeric edited. In these cases, PICTURE character A is the 
same as the PICTURE character X. 

PICTURE IS XX099BA. 
The data item is seven bytes long and alphanumeric edited. The largest elementary data 
item that can be moved to this item without truncation is five bytes (because the O and B 
are editing characters). This picture string is equivalent to the string XXOXXBX. 

Symbol Explanation 

9 Each 9 in the character string represents a character pos1t1on that contains a numeral. The 
symbol defines a numeric or numeric edited data item and is counted in the size of the item. It 
can also describe an alphanumeric or an alphanumeric edited item. 

Examples: 

PICTURE IS 999V99. 
The data item is five bytes long (unless a USAGE clause is specified) and numeric. The V 
indicates the position of the decimal point. 

PICTURE IS $999.99. 
The data item is seven bytes long and numeric edited. The largest numeric item that can be 
moved to this field without truncation has a PICTURE string of 999V99. Typical values for 
this data item are: $123.45, and $001.50 . 

PICTURE IS X99AA. 
The data item is five bytes long and alphanumeric. It is equivalent to the PICTURE string 
X(5). 

PICTURE IS AAAB999. 
The data item is seven bytes long and alphanumeric edited. It is equivalent to X(3)BX(3). 

Symbol Explanation 

X Each X in the character string represents a character position that contains any character from 
x·oo· through X'FF', defines an alphanumeric or alphanumeric edited item, and is counted in the 
size of the item. 

Examples: 

PICTURE IS XXX. 
The data item is three bytes long and alphanumeric. 

PICTURE IS XXBBXXX. 
The data item is seven bytes long and alphanumeric edited. The largest elementary data 
item that can be moved to this item without truncation is five bytes long (because of the 
two B editing characters). A typical value for this item is ABL,.L,.CDE. 

t 



t 

UP-8613 Rev. 2 

Symbol Explanation 

SPERRY UNIVAC OS/3 
1974 AMERICAN NATIONAL STANDARD COBOL 

K-4 
Update B 

S The symbol S in a character string indicates an operational sign in a numeric data item. It is 
written as the leftmost character in the PICTURE string. The symbol is not counted in the size of 
the item unless an associated SIGN clause specifies the SEP ARA TE CHARACTER option. 

Examples: 

PICTURE IS S999. 
The data item is three bytes long and numeric. In the absence of a SIGN clause, the sign is 
a trailing overpunch sign (i.e., an X'C' or X'D' in high order four bits of the last bytes). The 
value + 123 appears on this data item as X'FIF2C3'; the value -123 would appear as 
X'FIF2D3'. 

PICTURE IS S9(8)V99 SIGN IS LEADING SEPARATE CHARACTER. 
This data item is 11 bytes long and numeric. The value + 123.45 appears in this data item 
as the character string + 0000012345. 

Symbol Explanation 

V The symbol V indicates the location of the assumed decimal point and may appear only once in 
a character string. The V does not represent a character position and is not counted in the size 
of the item. When the assumed decimal point is to the right of the rightmost symbol in the 
string, the V is redundant. 

Examples: 

PICTURE IS 9(6)V9(2). 
The data item is eight bytes long and numeric. The position of the V indicates that the least 
significant two digits in this field are to the right of the decimal point. The value 1234 
appears as the character string 00123400; the value 789.5 appears as 00078950. 

PICTURE IS V9(5). 
The data item is five bytes long and numeric. The leading digit in the field is immediately to 
the right of the decimal point. The value .25 appears as the character string 25000. 

Symbol Explanation 

P Each P indicates an assumed decimal scaling position. The symbol is used to specify the location 
of an assumed decimal point where the point is not within the number that appears in the data 
item. The symbol P is not counted in the size of the item. However, it is counted in determining 
the maximum number of digit positions allowed for a numeric or numeric edited data item. The 
symbol P can appear only to the left or the right of 9's as a continuous string of Ps within a 
PICTURE description. 

Examples: 

PICTURE IS PP999. 
The data item is three bytes long, numeric, and the leading digit is two decimal positions to 
the right of the decimal point (i.e., the maximum value in this data item is .00999). The 
value .00125 appears in this item as 125. If the value .0123 were moved to this item, it 
would be truncated and appear as the character string 230 (having the value .0023). 

• 

• 

• 



• 

• 

• 

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 K-5 
Update C 1974 AMERICAN NATIONAL STANDARD COBOL 

PICTURE IS $$,$$$,$$$PPP. 
The data item is 10 bytes long, numeric edited, and the least significant digit is three 
decimal places to the left of the decimal point (i.e., the smallest nonzero value that can be 
held in this item is 1000). Such a PICTURE string might be useful for financial reports 
represented in thousands of dollars. The value 12345000 moved to this item results in the 
character string 666$12,345. 

Symbol Explanation 

8 Each B represents a character position where a space character is to appear. The symbol may 
appear in the character string to describe an alphanumeric edited data item. Each B is counted in 
the size of the data item. 

Examples: 

PICTURE IS AAA8999. 
The data item is seven bytes long and alphanumeric edited. It is equivalent to XXXBXXX. 

Sending Field Sending Field 
PICTURE Value Edited Result 

X(6) ABC123 ABC6123 
X(5) ABC12 ABC6126 
X(7) ABC1234 ABC6123 

PICTURE IS 99899899. 
The data item is eight bytes long, numeric edited, and holds six numeric digits. 

Sending Field Sending Field 
Edited Result 

PICTURE Value 

9(6) 123456 12t.34t.56 

9(7) 1234567 23t.45t.67 

9(5) 12345 01t.23t.45 

S9C6> +123456 12t.34t.56 

S9C6) -123456 12t.34t.56 

Symbol Explanation 

0 Each 0 in the character string represents a character position where the number 0 is inserted. 
The 0 is counted in the size of the item. The symbol may appear in the PICTURE character string 
to describe an alphanumeric edited or numeric data item. 

Examples: 

PICTURE IS X0AA0XX. 
The data item is seven bytes long and alphanumeric edited. 

Sending Field 
PICTURE 

XC5> 

Sending Field 
Value 

A8CDE 

Edited Result 

A08C0DE 



---- --------------------------------------------...., 

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 
1974 AMERICAN NATIONAL STANDARD COBOL 

PICTURE IS $99,999.00. 

K-6 
Update D 

The data item is 10 bytes long and numeric edited. The largest numeric field that can be 
moved to the item without truncation has the numeric PICTURE 9(5). 

Sending Field 
PICTURE 

Symbol Explanation 

9(5) 
9(6)V99 
S9(3)V99 

Sending Field 
Value 

1234 
123456.78 
-1.5 

Edited Result 

$01,234.00 
$23,456.00 
$00,001.00 

/ Each stroke (/) in the character string represents a character position where the stroke character 
will appear. The / is counted in the size of the item. The symbol may appear in the PICTURE 
character string to describe an alphanumeric edited or numeric edited data item. 

Examples: 

PICTURE IS XX/XX/XX. 
The data item is eight bytes long and alphanumeric edited. 

Sending Field 
PICTURE 

X(6) 
XC3) 
X{7) 

PICTURE IS 99/99/99. 

Sending Field 
Value 

ABCDEF 
ABC 
ABCDEFG 

Edited Result 

AB/CD/EF 
AB/Ch./M 
AB/CD/EF 

The data item is eight bytes long, numeric edited, and holds six numeric digits. 

Sending Field 
PICTURE 

Symbol Explanation 

9(6) 
9(5) 
S9<7>V9 

Sending Field 
Value 

830228 
12345 
-1234567.8 

Edited Result 

83/02/28 
01/23/45 
23/45/67 

Each comma (,) represents a character pos1t1on where the comma character will appear. The 
symbol is counted in the size of the data item. The symbol is used only to describe a numeric 
edited data item and must not be the last character in the string. 

• 

• 

• 



------------------- --

• 

• 

• 

UP-8613 Rev. 2 SPERRY UNIV AC OS/3 
1974 AMERICAN NATIONAL STANDARD COBOL 

Examples: 

PICTURE IS $9,999,999. 
The data item is 10 bytes long, numeric edited, and holds 7 numeric digits. 

Sending Field 
PICTURE 

Symbol Explanation 

9(7) 

S9(4) 
9(8)V99 

Sending Field 
Value 

1234567 
-1234 
12345678.90 

Edited Result 

$1,234,567 
$0,001,234 
$2,345,678 

K-7 
Update B 

The period (.) represents a character position where the period will appear. It also represents the 
decimal point for alignment purposes. The symbol is counted in the size of the item and must 
not be the last character in the string. When the DECIMAL-POINT IS COMMA clause is specified 
in the SPECIAL-NAMES paragraph, the functions of the period and the comma are exchanged. 

Examples: 

PICTURE IS 999.99. 
The data item is six bytes long, numeric edited, and holds five decimal digits . 

Sending Field 
PICTURE 

Symbol Explanation 

9(3)V99 
9(5) 

Sending Field 
Value 

123.45 
12345 

Edited Result 

123.45 
345.00 

+ - These symbols are used as editing sign control symbols. They represent the character position 
CR DB where the editing sign conrol ssymbol is placed. The symbols are mutually exclusive in any one 

character string. The symbol + or - must be specified either as the leftmost or rightmost 
character position and is counted in the size of the item. The symbol CR or DB must be specified 
as the rightmost character position in the character string. Each symbol represents the character 
position in determining the size of the data item. The symbol + indicates that a + or - character 
is used to represent the sign in the field. The symbols -, CR, and DB represent a negative value 
and space characters represent a positive or zero value. 

Examples: 

PICTURE IS +$99.99. 

Sending Field Sending Field Edited Result 
PICTURE Value 

99V99 12.34 +$12.34 
S999 -123 -$23.00 
9V9 1. 5 +$01. 50 

+ 



t 

UP-8613 Rev. 2 

PICTURE 

PICTURE 

PICTURE 

IS 999.99-. 

Sending Field 
PICTURE 

S9<3>V9C2> 
S9<3>V9(2) 

SPERRY UNIVAC OS/3 
1974 AMERICAN NATIONAL STANDARD COBOL 

Sending Field 
Value 

-123.45 
+123.45 

Edited Result 

123.45-
123.456 

IS $9(4).9C2>CR. 

Sending Field 
PICTURE 

S9(4)V9(2) 
S9(4)V9C2> 

IS $999.9908. 

Sending Field 
PICTURE 

S99V99 
S99V99 

Sending Field 
Value 

-123.45 
+123.45 

Sending Field 
Value 

-12.34 
+12.34 

Edited Result 

$0123.45CR 
$0123.45M 

Edited Result 

$0012.3408 
$0012.34M 

Symbol Explanation 

K-8 
Update B 

$ The $ (or alternate currency symbol) represents a character position where a currency symbol 
will appear. The currency symbol is represented by either the dollar sign or by the single 
character specified in the CURRENCY SIGN clause in the SPECIAL-NAMES paragraph. The 
currency symbol is counted in the size of the item. Unless it is preceded by a + or a - symbol, 
the currency sign must be in the leftmost character position in the character string. 

Examples: 

PICTURE IS $999.99. 

Sending Field 
PICTURE 

9(3)V99 

Sending Field 
Value 

123.45 

PICTURE IS -$9(5).99. 

Sending Field Sending Field 
PICTURE Value 

9(5) 123 
S9(6) -123456 
S9C2)V9(2) +12.34 

Edited Result 

$123.45 

Edited Result 

t.$00123.00 
-$23456.00 
t.$00012.34 

• 

• 

• 



• 

• 

• 

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 K-9 
Update B 1974 AMERICAN NATIONAL STANDARD COBOL 

Symbol Explanation 

Floating 
Insertion 
Editing 
+ - $ The + - and $ symbols are used either as fixed insertion characters or as floating insertion 

characters. Floating insertion editing is specified by using a string of at least two allowable 
floating insertion symbols in a PICTURE character string. The leftmost symbol of the floating 
insertion string represents the leftmost limit at which this character can appear in the data item. 
The rightmost floating insertion symbol represents the rightmost limit at which this character can 
appear. The second leftmost floating insertion symbol represents the leftmost limit at which 
numeric data can appear within the data item. Nonzero numeric data can replace all characters at 
or to the right of this limit. 

Examples: 

PICTURE IS ++.99. 

Sending Field 
PICTURE 

S99V999 
S9V99 
S9V99 
S9V99 

PICTURE IS -----.99. 

Sending Field 
PICTURE 

S9C4)V99 
S9C4)V99 
S9(5) 
S99V99 

PICTURE IS $$$$.99. 

Sending Field 
PICTURE 

9(4)V99 
9C4>V99 
S9(2) 

Sending Field 
Value 

+12.345 
-1. 23 
+0.12 
+0.01 

Sending Field 
Value 

-12.34 
-0.01 
-12345 
+1. 23 

Sending Field 
Value 

1234.56 
1.23 
-3 

Edited Result 

+2.34 
-1.23 
6+.12 
6+.01 

Edited Result 

M-12.34 
MM-.01 
-2345.00 
MM1.23 

Edited Result 

$234.56 
M$1.23 
M$3.00 

t 



UP-8613 Rev. 2 SPERRY UNIVAC OS/3 
1974 AMERICAN NATIONAL STANDARD COBOL 

K-10 
Update D 

Any fixed insertion symbols (8,0,/ .. ) within or to the right of the floating insertion string are 
considered part of the floating insertion string. 

Examples: 

PICTURE IS ++,+++,++9.00. 

Sending Field 
PICTURE 

S9(4) 
S9(4) 
S9(4)V99 
S9(7) 

Sending Field 
Value 

-1234 
0 
+ 1234.56 
+ 1234567 

PICTURE IS $(2),$(3),$$9.99. 

Sending Field 
PICTURE 

9(7)V99 
9(7)V99 
9C7)V99 
9(7)V99 

Sending Field 
Value 

1234567.89 
67.89 
0.89 
0 

Edited Result 

MM-1,234.00 
AAAAAAAA+0.00 
MM+1,234.00 
+1,234,567.00 

Edited Result 

$1,234,567.89 
MMAAA$6 7. 89 
MMAAAA$0. 89 
AAAAAAAA$0.00 

A second method of floating insertion editing is to represent all numeric character positions by 
the floating insertion symbol. When editing is performed, the result depends on the value of the 
data. If the value is zero, the entire data item contains spaces. If the value is nonzero, the result 
is the same as if the floating insertion character were used only to the left of the decimal point. 

Examples: 

PICTURE IS 

Sending Field Sending Field Edited Result 
PICTURE Value 

S9(3) +12 M12 
S9C3) -1 M-1 
S9(3) 0 MM 
S9C3)V99 -0.5 MM 
S9C3>V99 -1.5 M-1 

• 

• 

• 



• 

• 

• 

UP-8613 Rev. 2 SPERRY UNIV AC OS/3 K-11 
Update B 

PICTURE 

PICTURE 

1974 AMERICAN NATIONAL STANDARD COBOL 

IS ++,+++.++. 

Sending Field Sending Field 

PICTURE Value 

S9(4)V99 +123 
S9(4)V99 -0.01 
S9(4)V99 0 
S9(5)V99 +1234 
S9(5)V99 +10000 

IS $$,$$$.$$. 

Sending Field Sending Field 

PICTURE Value 

S9(4)V99 +123.45 
S9(4)V99 -123.45 
S9<4>V99 +0.01 
S9(4)V99 0 

Edited Result 

M+123.00 
MMA-.01 
AAAAAAAAA 

+1,234.00 
AAAAAAAAA 

Edited Result 

M.$123.45 
M.$123.45 
M:.MA$.01 
AAAAAAAAA 

Symbol Explanation 

z Each Z in a character string represents the leftmost leading numeric character positions that are 
replaced by a space character when the content of that character position is zero. Each Z is 

counted in the size of the item. 

Examples: 

PICTURE IS Z99.99+. 

Sending Field Sending Field 

PICTURE Value 

S999V99 +123.45 
S999V99 -1.2 
S999V99 0 

PICTURE IS $ZZ999.99. 

Sending Field Sending Field 

PICTURE Value 

9(5)V99 12345.67 
9(5)V99 1.23 
9(6) 1234 
9(6) 123456 

Edited Result 

123.45+ 
A01. 20-
A00.00+ 

Edited Result 

$12345.67 
$M001.23 
Sll1234.00 
$23456.00 



t 

UP-8613 Rev. 2 

Symbol Explanation 

SPERRY UNIVAC OS/3 
1974 AMERICAN NATIONAL STANDARD COBOL 

K-12 
Update B 

* Each asterisk (*) represents a character position where an asterisk is placed when the content of 
that position is zero. Each asterisk is counted in the size of the item. 

Examples: 

PICTURE IS -*99.99. 

Sending Field 
PICTURE 

S9(3)V99 
S9C3)V99 
S9(3)V99 

Sending Field 
Value 

+123.45 
+12.34 
-1.23 

PICTURE IS $**,***.99. 

Sending Field 
PICTURE 

9(5}V99 
9(5}V99 
9(5}V99 
9C5>V99 

Symbol Explanation 

Zero 
Suppression 
and 
Replacement 
Editing 

Sending Field 
Value 

12345.67 
345.67 
0.67 
0 

Edited Result 

A123.45 
A*12.34 
-*01.23 

Edited Result 

$12,345.67 
$***345.67 
$******.67 
$******.00 

z and * The symbols Z and * are used for zero suppression. These symbols are mutually exclusive in a 
PICTURE character string. Zero suppression and replacement editing is specified by using a string 
of one or more of the allowable symbols to represent leading numeric character positions. These 
positions are replaced with spaces (Z) or asterisks (*) when the associated character position in 

the data contains a zero. 

In a PICTURE character string, there are two ways to represent zero suppression and 
replacement editing. 

One way is to represent any or all of the leading numeric character positions to the left of the 
decimal point by suppression symbols. When editing is performed, any leading zeros in the data 
appearing in the same character position as a suppression symbol are replaced by the 
replacement character. Suppression terminates at the first nonzero digit in the data represented 
by the suppression symbol string or at the decimal point, whichever is encountered first. 

• 

• 

• 



• 

• 

• 

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 
1974 AMERICAN NATIONAL STANDARD COBOL 

K-13 
Update D 

The other way is to represent all numeric character pos1t1ons as suppression symbols in the 
PICTURE character string. When editing is performed and the value of the data is nonzero, the 
result is the same as if the suppression characters were only to the left of the decimal point. If 
the value is zero and the suppression symbol is Z, the entire data item contains spaces. If the 
value is zero and the suppression symbol is *, the entire data item except the actual decimal 
point contains asterisks. 

Examples: 

PICTURE IS $** *** ** ' . . 

Sending Field Sending Field 
PICTURE Value 

S9(5)V99 12345.67 
S9(5)V99 1.23 
S9(5)V99 0.01 
S9(5)V99 0 

PICTURE IS ZZ,ZZZ.ZZ. 

Sending Field Sending Field 
PICTURE Value 

S9(5)V99 12345.67 
S9(5)V99 1.67 
S9(5)V99 0.01 
S9(5)V99 0 

PICTURE 1s zz,zzz.zz+. 

Sending Field Sending Field 
PICTURE Value 

S9(5)V99 +12345.67 
S9(5)V99 -1.67 
S9(5)V99 +0.01 
S9(5)V99 0 

Edited Result 

$12,345.67 
$*****1.23 
$******.01 
*******·** 

Edited Result 

12,345.67 
6.M..At.1.67 
AAAAAA.01 
AA/1AAAAAA 

Edited Result 

12,345.67+ 
6.M..At.1 .67-
AAAAAA.01+ 
AAAAAAAAAA 

Any fixed insertion symbol (8,0,/ .. ) within or to the immediate right of the string of floating zero 
suppression symbols is considered part of the string . 



t 

UP-8613 Rev. 2 

Examples: 

PICTURE 

PICTURE 

SPERRY UNIVAC OS/3 
1974 AMERICAN NATIONAL STANDARD COBOL 

IS $**,***·**B-. 

Sending Field 
PICTURE 

S9(5)V99 
S9(5)V99 
S9<5>V99 
S9(5)V99 

IS ZZZ,999. 

Sending Field 
PICTURE 

9(6) 
9(6) 
9(6) 

9(6) 

Sending Field 
Value 

-12345.67 
+1.67 
-0.01 

0 

Sending Field 
Value 

123456 
1234 
123 

Edited Result 

$12,345.67~

$*****1.67M 
$******.01~-

*******·**** 

Edited Result 

123,456 
M1I234 
MM123 

MM001 

K-14 
Update D 

The Z * + - and $ symbols are mutually exclusive as floating replacement symbols in one 
PICTURE character string (for example, the PICTURE string $$$***.99 is illegal). The asterisk as 
zero suppression symbol and the BLANK WHEN ZERO clause must not be specified for the same 
entry. 

• 

• 

• 



• 

• 

• 

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 Glossary 1 
1974 AMERICAN NATIONAL STANDARD COBOL 

Glossary 

This glossary contains an alphabetically arranged collection of definitions of terms, abbreviations, acronyms, and 
symbols used in this document. The terms are defined in accordance with their meanings in COBOL and may not 
have the same meaning for other languages. 

Most of the definitions are brief and do not include detailed descriptions, because they are items in support of 
the text. 

A 

abbreviated combined relation condition 
The combined condition that results from the explicit omission of a common subject or a common subject 
and common relational operator in a consecutive sequence of relation conditions. 

access mode 
The manner in which records are to be operated upon within a file. 

actual decimal point 
The physical representation, using either of the decimal point characters period (.) or comma (.), of the 
decimal point position in a data item. 

alphabet-name 
A user-defined word in the SPECIAL-NAMES paragraph of the environment division that assigns a name to 
a specific character set and/or collating sequence. 

alphabetic character 
A character that belongs to the set of letters A through Z, and the space. 

alphanumeric character 
Any character in the EBCDIC character set. 

alternate record key 
A key, other than the prime record key, whose contents identify a record within an indexed file. 

arithmetic expression 
An identifier of a numeric elementary item, a numeric literal, such identifiers and literals separated by 
arithmetic operators, two arithmetic expressions separated by an arithmetic operator, or an arithmetic 
expression enclosed in parentheses. 



UP-8613 Rev. 2 SPERRY UNIV AC OS/3 Glossary 2 
1974 AMERICAN NATIONAL STANDARD COBOL 

arithmetic operator 
A single character or a fixed 2-character combination that belongs to the following set: 

+ addition 
subtraction 

* multiplication 
I division 
** exponentiation 

ascending key 
A key whose values determine the ordering of data (starting with the lowest value of key to the highest 
value of key) according to the rules for comparing data items. 

assumed decimal point 
A decimal point position that does not involve the existence of an actual character in a data item. The 
assumed decimal point has logical meaning but no physical representation. 

at end condition 

B 

A condition caused during the execution of: 

1. a READ statement for a sequentially accessed file; 

2. a RETURN statement, when no next logical record exists for the associated sort or merge file; or 

3. a SEARCH statement, when the search operation terminates without satisfying the condition 
specified in any of the associated WHEN phrases. 

block 

c 

A physical unit of data that is normally composed of one or more logical records. For mass storage files, a 
block may contain a portion of a logical record. The size of a block has no direct relationship to the size of 
the file within which the block is contained or to the size of the logical records that are either continued 
within the block or that overlap the block. The term is synonymous with physical record. 

called program 
A program that is the object of a CALL statement combined at object time with the calling program to 
produce a run unit. 

calling program 
A program that executes a CALL to another program. 

cd-name 
A user-defined word that names an MCS interface area described in a communication description entry 
within the communication section of the data division. 

• 

• 

• 



• 

• 

• 

UP-8613 Rev. 2 SPERRY UNIV AC OS/3 Glossary 3 
1974 AMERICAN NATIONAL STANDARD COBOL 

character 
The basic indivisible unit of the language. 

character position 
The amount of physical storage required to store a single standard data format character described as 
usage is DISPLAY. Further characteristics of the physical storage are defined by the implementor. 

character-string 
A sequence of contiguous characters that form a COBOL word, a literal, a PICTURE character-string, or a 
comment-entry. 

class condition 
The proposition, for which a truth value can be determined, that the content of an item is wholly alphabetic 
or is wholly numeric. 

clause 
An ordered set of consecutive COBOL character-strings whose purpose is to specify an attribute of an 
entry. 

CMCS 
See COBOL message control system. 

COBOL character set 
The complete set consisting of the following 51 characters: 

0-9 
A-Z 

+ 

* 
I 

$ 

> 
< 

digit 
letter 
space (blank) 
plus sign 
minus sign (hyphen) 
asterisk 
stroke (virgule, slash) 
equal sign 
currency sign 
comma (decimal point) 
semicolon 
period (decimal point) 
quotation mark 
left parenthesis 
right parenthesis 
greater than symbol 
less than symbol 

COBOL message control system 
A component of the message control system that interfaces the COBOL communication object program 
with the integrated communications access method. 

COBOL word 
See word. 

collating sequence 
The sequence in which the characters that are acceptable in a computer are ordered for purposes of 
sorting, merging, and comparing. 



UP-8613 Rev. 2 SPERRY UNIVAC OS/3 Glossary 4 
1974 AMERICAN NATIONAL STANDARD COBOL 

column 
A character position within a print line. The columns are numbered from 1, by 1, starting at the leftmost 
character position of the print line and extending to the rightmost position of the print line. 

combined condition 
A condition that is the result of connecting two or more conditions with the AND or the OR logical operator. 

comment-entry 
An entry in the identification division that may be any combination of characters from the computer 

character set. 

comment line 
A source program line represented by an asterisk in the indicator area of the line and any characters from 
the computer's character set in area A and area B of that line. The comment line serves only for 
documentation in a program. A special form of comment line represented by a stroke (/) in the indicator 
area of the line and any characters from the computer's character set in area A and area B of that line 
causes page ejection prior to printing the comment. 

communication description entry 
An entry in the communication section of the data division that is composed of the level indicator CD, 
followed by a cd-name, and then followed by a set of clauses as required. It describes the interface 
between the message control system (MCS) and the COBOL program. 

communication device 
A mechanism (hardware or hardware/software) capable of sending data to a queue and/or receiving data 
from a queue. This mechanism may be a computer or a peripheral device. One or more programs 
containing communication description entries and residing within the same computer define one or more 
of these mechanisms. 

communication section 
The section of the data division that describes the interface areas between the MCS and the program, 
composed of one or more CD description entries. 

compile time 
The time at which a COBOL compiler translates a COBOL source program to a COBOL object program. 

compiler directing statement 
A statement. beginning with a compiler directing verb, that causes the compiler to take a specific action 
during compilation. 

complex condition 
A condition in which one or more logical operators act upon one or more conditions. See also negated 
simple condition, combined condition, and negated combined condition. 

computer-name 
A system-name that identifies the computer upon which the program is to be compiled or run. 

condition 
A status of a program at execution time for which a truth value can be determined. Where the term 
'condition' (condition-1, condition-2, ... ) appears in these language specifications in or in reference to 
'condition' (condition-1, condition-2, ... ) of a general format, it is a conditional expression consisting of 
either a simple condition optionally parenthesized or a combined condition consisting of the syntactically 
correct combination of simple conditions, logical operators, and parentheses, for which a truth value can 
be determined. 

• 

• 

• 



UP-8613 Rev. 2 SPERRY UNIVAC OS/3 Glossary 5 
1974 AMERICAN NATIONAL STANDARD COBOL 

• condition-name 

• 

• 

A user-defined word assigned to a specific value, set of values, or range of values, within the complete set 
of values that a conditional variable may possess; or the user-defined word assigned to a status of an 
implementor-defined switch or device. 

condition-name condition 
The proposition, for which a truth value can be determined, that the value of a conditional variable is a 
member of the set of values attributed to a condition-name associated with the conditional variable. 

conditional expression 
A simple condition or a complex condition specified in an IF, PERFORM, or SEARCH statement. See also 
simple condition and complex condition. 

conditional statement 
Specifies that the truth value of a condition is to be determined and that the subsequent action of the 
object program is dependent on this truth value. 

conditional variable 
A data item that has a condition-name assigned to one or more of its values. 

configuration section 
A section of the environment division that describes overall specifications of source and object computers. 

connective 
A reserved word that is used to: 

1 . associate a data-name, paragraph-name, condition-name, or text-name with its qualifier; 

2. link two or more operands written in a series; and 

3. form conditions (logical connectives). See logical operator. 

contiguous items 
Items that are described by consecutive entries in the data division and have a definite hierarchic 
relationship to each other. 

counter 
A data item used for storing numbers or number representations in a manner that permits these numbers 
to be increased or decreased by the value of another number, or to be changed or reset to zero or to an 
arbitrary positive or negative value. 

currency sign 
The character $ of the COBOL character set. 

currency symbol 
The character defined by the CURRENCY SIGN clause in the SPECIAL-NAMES paragraph. If no CURRENCY 
SIGN clause is present in a COBOL source program, the currency symbol is identical to the currency sign. 

current record 
The record available in the record area associated with the file. 

current record pointer 
A conceptual entity that is used in the selection of the next record. 



UP-8613 Rev. 2 SPERRY UNIVAC OS/3 Glossary 6 
1974 AMERICAN NATIONAL STANDARD COBOL 

D 

data clause 
A clause appearing in a data description entry in the data division that describes a particular attribute of a 
data item. 

data description entry 
An entry in the data division that is composed of a level-number followed by a data-name, if required, and 
then followed by a set of data clauses, as required. 

data item 
A character or a set of contiguous characters (excluding literals) defined as a unit of data by the COBOL 
program. 

data-name 
A user-defined word that names a data item described in a data description entry in the data division. 
When used in the formats, represents a word that cannot be subscripted, indexed, or qualified unless 
specifically permitted by the rules for that format. 

debugging line 
Any line with D in the indicator area. 

debugging section 
A section that contains a USE FOR DEBUGGING statement. 

declarative-sentence 
A compiler-directing sentence consisting of a single USE statement terminated by the separator period. 

declaratives 
A set of one or more special-purpose sections, written at the beginning of the procedure division, the first 
of which is preceded by the key word DECLARATIVES and the last of which is followed by the key words 
END DECLARATIVES. A declarative is composed of a section header, followed by a USE compiler-directing 
sentence, followed by a set of zero, one, or more associated paragraphs. 

delimiter 
A character or a sequence of contiguous characters identifying the end of a string of characters and 
separating that string of characters from the following string of characters. A delimiter is not part of the 
string of characters that it delimits. 

descending key 
A key whose values arrange data in order starting with the highest value of key down to the lowest value 
of key, in accordance with the rules for comparing data items. 

destination 
The symbolic identification of the receiver of a transmission from a queue. 

digit position 
The amount of physical storage required to store a single digit. This amount may vary depending on the 
usage of the data item describing the digit position. Further characteristics of the physical storage are 
defined by the implementor. 

• 

• 

• 



• 

• 

• 

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 Glossary 7 
1974 AMERICAN NATIONAL STANDARD COBOL 

division 
A set of zero, one, or more sections of paragraphs, called the division body, that are formed and combined 
according to specific rules. There are four divisions in a COBOL program: identification, environment. data, 

and procedure. 

division header 
A combination of words followed by a period and a space indicating the beginning of a division. The 

division headers are: 

IDENTIFICATION DIVISION. 
ENVIRONMENT DIVISION. 
DATA DIVISION. 
PROCEDURE DIVISION [USING data-name-1 [data-name-2] ... ] . 

dynamic access 

E 

An access mode in which specific logical records can be obtained from or placed into a mass storage file in 
a nonsequential manner (see random access) and obtained from a file in a sequential manner (see 
sequential access), during the scope of the same OPEN statement. 

editing character 
A single character or a fixed 2-character combination belonging to the following set: 

B space 
0 zero 

+ plus 
minus 

CR credit 
DB debit 
z zero suppress 

* check protect 
$ currency sign 

comma (decimal point) 
period (decimal point) 

I stroke (virgule, slash) 

elementary item 
A data item that is described as not being further logically subdivided. 

end of procedure division 
The physical position in a COBOL source program after which no further procedures appear. 

entry 
An descriptive set of consecutive clauses terminated by a period and written in the identification division, 

environment division, or data division of a COBOL source program. 

environment clause 
A clause that appears as part of an environment division entry . 



UP-8613 Rev. 2 

execution time 
See object time. 

extend mode 

SPERRY UNIV AC OS/3 Glossary 8 
1974 AMERICAN NATIONAL STANDARD COBOL 

The state of a file after execution of an OPEN statement for that file, with the EXTEND phrase specified, 
and before the execution of a CLOSE statement for that file. 

F 

figurative constant 
A compiler-generated value referenced through the use of certain reserved words. 

file 
A collection of records. 

file clause 
A clause that appears as part of either of the following data division entries: 

File description (FD) 
Sort file description (SD) 

FILE-CONTROL 
The name of an environment division paragraph in which the data files for a given source program are 
declared. 

file description entry 
An entry in the file section of the data division that is composed of the level indicator FD, followed by a file
name, followed by a set of file clauses, as required. 

file-name 
A user-defined word that names a file described in a file description entry or a sort file description entry 
within the file section of the data division. 

file organization 
The permanent logical file structure established at the time a file is created. 

file section 
The section of the data division that contains file description and sort file description entries together with 
their associated record descriptions. 

format 
A specific arrangement of a set of data. 

G 

group item 
A named contiguous set of elementary or group items. 

• 

• 

• 



UP-8613 Rev. 2 SPERRY UNIV AC OS/3 Glossary 9 
1974 AMERICAN NATIONAL STANDARD COBOL 

• H 

• 

• 

hexadecimal literal 
A string of hexadecimal digits bounded by quotation marks and immediately preceded by an equal sign. The 
string may include any hexadecimal digits up to a maximum of 30 digits. 

high-order end 
The leftmost character of a string of characters. 

I 

ICAM 
See integrated communications access method. 

1-0-CONTROL 
The name of an environment division paragraph in which object program requirements are specified for 
specific input/output techniques, rerun points, sharing of same areas by several data files, and multiple 
file storage on a single input/output device. 

1-0 mode 
The state of a file after execution of an OPEN statement for that file, with the 1-0 phrase specified, and 
before the execution of a CLOSE statement for that file . 

identifier 
A data-name followed, as required, by the syntactically correct combination of qualifiers, subscripts, and 
indexes necessary to make unique reference to a data item. 

imperative statement 
A statement that begins with an imperative verb and specifies an unconditional action to be taken. An 
imperative statement may consist of a sequence of imperative statements. 

implementor-name 
A system-name that refers to a particular feature available on SPERRY UNIVAC systems. 

index 
A computer storage position or register, the contents of which represent the identification of a particular 
element in a table. 

INDEX-AREA 
The location in main storage in which index blocks are processed by MIRAM files during keyed operations 
on indexed files (ORGANIZATION IS INDEXED). 

index data item 
A data item in which the value associated with an index-name can be stored in a form specified by the 

implementor. 

index-name 
A user-defined word that names an index associated with a specific table . 



UP-8613 Rev. 2 SPERRY UNIVAC OS/3 Glossary 10 
1974 AMERICAN NATIONAL STANDARD COBOL 

indexed data-name 
An identifier composed of a data-name, followed by one or more index-names enclosed in parentheses. 

indexed file 
A file with indexed organization. 

indexed organization 
The permanent logical file structure in which each record is identified by the value of one or more keys 
within that record. 

indexed sequential access method 
An access method that uses record keys from an index file to access files randomly or sequentially. 

input file 
A file opened in the input mode. 

input mode 
The state of a file after execution of an OPEN statement for that file, with the INPUT phrase specified, and 
before the execution of a CLOSE statement for that file. 

input/ output file 
A file opened in the 1-0 mode. 

input-output section 
The section of the environment division that names the files and the external media required by an object 
program and that provides information required for transmission and handling of data during execution of 
the object program. 

input procedure 
A set of statements executed each time a record is released to the sort file. 

integer 
A numeric literal or a numeric data item that does not include any character positions to the right of the 
assumed decimal point. Where the term 'integer' appears in general formats, integer must not be a 
numeric data item, and must not be signed or zero unless explicitly allowed by the rules of that format. 

integrated communications access method 
A component of the message control system that is the communications subsystem of the OS/3 operating 
system. 

invalid key condition 
A condition at object time caused when a specific value of the key associated with an indexed or relative 
file is determined to be invalid. 

ISAM 
See indexed sequential access method. 

ISAM file 
A file with ISAM organization. 

ISAM organization 
The file structure supporting existing indexed sequential files created by the indexed sequential access 
method (ISAM) data management. 

• 

• 

• 



• 

• 

• 

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 Glossary 11 
1974 AMERICAN NATIONAL STANDARD COBOL 

K 

key 
A data item that identifies the location of a record, or a set of data items that identify the ordering of data. 

key of reference 
The key, either prime or alternate, currently being used to access records within an indexed file. 

key word 
A reserved word required when the format in which the word appears is used in a source program. 

L 

level indicator 
Two alphabetic characters that identify a specific type of file or a position in a hierarchy. 

level-number 
A user-defined word that indicates the position of a data item in the hierarchical structure of a logical 
record or that indicates special properties of a data description entry. A level-number is expressed as a 1-
or 2-digit number. Level-numbers in the range 1 through 49 indicate the position of a data item in the 
hierarchical structure of a logical record. Level-numbers in the range 1 through 9 may be written either as 
a single digit or as a zero followed by a significant digit. Level-numbers 66, 77, and 88 identify special 
properties of a data description entry. 

library-name 
A user-defined word that names a COBOL library that is to be used by the compiler for a given source 
program compilation. 

library text 
A sequence of character-strings and/or separators in a COBOL library. 

line number 
An integer that denotes the vertical position of a report line on a page. 

linkage section 
The section in the data division of the called program that describes data items available from the calling 
program. These data items may be referred to by both the calling and called program. 

literal 
A character-string whose value is implied by the ordered set of characters comprising the string. 

logical operator 
One of the reserved words AND, OR, or NOT. In the formation of a condition, AND, OR, or both can be used 
as logical connectives. NOT can be used for logical negation. 

logical record 
The most inclusive data item. The level-number for a record is 01. See report writer logical record . 

low-order end 
The rightmost character of a string of characters. 



UP-8613 Rev. 2 SPERRY UNIVAC OS/3 Glossary 12 
1974 AMERICAN NATIONAL STANDARD COBOL 

M 

mass storage 
A storage medium on which data may be organized and maintained in both a sequential and nonsequential 
manner. 

mass storage file 
A collection of records that is assigned to a mass storage medium. 

MCS 
See message control system. 

merge file 
A collection of records to be merged by a MERGE statement. The merge file is created and can be used 
only by the merge function. 

message 
Data associated with an end-of-message indicator or an end-of-group indicator. (See message indicators.) 

message control system 
A communication control system that supports the processing of messages. 

message count 
The count of the number of complete messages existing in the designated queue of messages. 

message indicators 
Conceptual indications that notify the MCS that a specific condition exists (end of group, end of message, 
or end of segment). The message indicators are EGI (end-of-group indicator), EMI (end-of-message 
indicator), and ESI (end-of-segment indicator). 

Within the hierarchy of EGI, EMI, and ESI, and EGI is conceptually equivalent to an ESI, EMI, and EGI. An 
EMI is conceptually equivalent to an ESI and EMI. Thus, a segment may be terminated by an ESI, EMI, or 
EGI. A message may be terminated by an EMI or EGI. 

message segment 
Data that forms a logical subdivision of a message normally associated with an end-of-segment indicator. 

mnemonic-name 
A user-defined word that is associated in the environment division with a specified implementor-name. 

N 

native character set 
The character set associated with the computer specified in the OBJECT-COMPUTER paragraph. 

native collating sequence 
The collating sequence associated with the computer specified in the OBJECT-COMPUTER paragraph. 

negated combined condition 
The NOT logical operator immediately followed by a parenthesized combined condition. 

• 

• 

• 



• 

• 

• 

UP-8613 Rev. 2 SPERRY UNIV AC OS/3 Glossary 13 
1974 AMERICAN NATIONAL STANDARD COBOL 

negated simple condition 
The NOT logical operator immediately followed by a simple condition. 

next executable sentence 
The next sentence to which control will be transferred after execution of the current statement is complete. 

next executable statement 
The next statement to which control will be transferred after execution of the current statement is 
complete. 

next record 
The record that logically follows the current record of a file. 

noncontiguous items 
Elementary data items, in the working-storage and linkage sections, that bear no hierarchic relationship to 
other data items. 

nonnumeric item 
A data item whose description permits its contents to be composed of any combination of characters taken 
from the computer's character set. Certain categories of nonnumeric items may be formed from more 
restricted character sets. 

nonnumeric literal 
A character-string bounded by quotation marks. The string of characters may include any character in the 
EBCDIC character set. To represent a single quotation mark character within a nonnumeric literal, two 
contiguous quotation marks must be used . 

numeric character 
A character that belongs to the set of digits 0 through 9. 

numeric item 
A data item whose description restricts its contents to a value represented by characters chosen from the 
digits 0 through 9; if signed, the item may also contain a +, -, or other representation of an operational 
sign. 

numeric literal 
There are two types of numeric literals: fixed-point and floating-point. 

A fixed-point literal is a string of characters chosen from the following set: 

0-9 
+(plus) 
- (minus) 
. (decimal) 

Fixed-point literals must be formed according to the following rules: 

1. The literal may contain 1 to 18 digits. 

2. The literal may contain only one sign character. If a sign is used, it must be the leftmost character of 

the literal. An unsigned literal is assumed to be positive . 

3. The literal may contain only one decimal point. The decimal point may appear anywhere in the literal 
except as the rightmost character. A decimal point designates an assumed decimal point location. 
(The assumed decimal point in any numeric literal or data item is where the compiler and the object 
program assume the decimal point to be, though no memory position is reserved for a separate 
decimal point character.) A literal with no decimal point is an integer. 



UP-8613 Rev. 2 SPERRY UNIVAC OS/3 Glossary 14 

0 

1974 AMERICAN NATIONAL STANDARD COBOL 

A floating-point literal is a data item whose potential range of value is too great for fixed-point 
representation. 

A floating-point literal must have the following format: 

{±}mantissa E {±} exponent 

where: 

± 
The two plus or minus signs are optional. 

mantissa 
Consists of 1 to 16 digits with a required decimal point; the decimal point may appear in any 
position. 

exponent 
Consists of the symbol E, followed by an optional sign, followed by one or two digits. (A zero 
exponent may be written as 0 or 00.) 

The literal must contain no spaces. The exponent must appear immediately to the right of the mantissa. 

The signs are the only optional characters in the format. An unsigned mantissa or exponent is assumed to 
be positive. 

The value of the literal is the product of the mantissa and 10 raised to the power given by the P.xponent. 

Example: 

+1.5E - 2 = 1.5 x 10-2 

The magnitude of the number represented by a floating-point literal must not exceed .72 x 1076 . 

OBJECT-COMPUTER 
The name of an environment division paragraph that describes the complete environment in which the 

object program is executed. 

object of entry 
A set of operands and reserved words within a data division entry that immediately follows the subject of 

the entry. 

object program 
A set or group of executable machine language instructions and other material designed to interact with 
data to provide problem solutions. In this context, an object program is generally the machine language 
result of the operation of a COBOL compiler on a source program. Where there is no danger of ambiguity, 
the word 'program' alone may be used in place of the phrase 'object program'. 

object time 
The time an object program is executed. 

• 

• 

• 



• 

• 

• 

JP-8613 Rev. 2 SPERRY UNIV AC OS/3 Glossary 15 
1974 AMERICAN NATIONAL STANDARD COBOL 

open mode 
The state of a file after execution of an OPEN statement for that file and before the execution of a CLOSE 
statement for that file. The particular open mode is specified in the OPEN statement as either INPUT, 
OUTPUT, 1-0, or EXTEND. 

operand 
Whereas the general definition of operand is 'that component which is operated upon', for the purposes of 
this publication, any lowercase word (or words) that appears in a statement or entry format may be 
considered to be an operand and, as such, is an implied reference to the data indicated by the operand. 

operational sign 
An algebraic sign, associated with a numeric data item or a numeric literal, to indicate whether its value is 
positive or negative. 

optional word 
A reserved word that is included in a specific format only to improve the readability of the language and 
whose presence is optional to the user when the format in which the word appears is used in a source 
program. 

output file 
A file that is opened in either the output mode or extend mode. 

output mode 
The state of a file after execution of an OPEN statement for that file, with the OUTPUT or EXTEND phrase 
specified, and before the execution of a CLOSE statement for that file . 

output procedure 

p 

A set of statements to which control is given during execution of a SORT statement after the sort function 
is completed, or during execution of a MERGE statement after the merge function has selected the next 
record in merged order. 

page 
A vertical division of a report representing a physical separation of report data, the separation being based 
on internal reporting requirements and/or external characteristics of the reporting medium. 

page body 
That part of the logical page in which lines can be written or spaced. 

paragraph 
In the procedure division, a paragraph-name followed by a period and a space and by zero, one, or more 
sentences. In the identification and environment divisions, a paragraph header followed by zero, one, or 
more entries . 



UP-8613 Rev. 2 SPERRY UNIV AC OS/3 Glossary 16 
1974 AMERICAN NATIONAL STANDARD COBOL 

paragraph header 
A reserved word, followed by a period and a space, that indicates the beginning of a paragraph in the 
identification and environment divisions. The permissible paragraph headers are: 

• Identification Division 
PROGRAM-ID. 
AUTHOR. 
INSTALLATION. 
DATE-WRITIEN. 
DATE-COMPILED. 
SECURITY. 

• Environment Division 
SOURCE-COMPUTER. 
OBJECT-COMPUTER. 
SPECIAL-NAMES. 
FILE-CONTROL. 
1-0-CONTROL. 

paragraph-name 
A user-defined word that identifies and begins a paragraph in the procedure division. 

phrase 
An ordered set of one or more consecutive COBOL character-strings that form a portion of a COBOL 
procedural statement or clause. 

physical record 
See block. 

prime record key 
A key whose contents uniquely identify a record within an indexed file. 

procedure 
A paragraph or group of logically successive paragraphs, or a section or group of logically successive 
sections within the procedure division. 

procedure-name 
A user-defined word used to name a paragraph or section in the procedure division. It consists of a 
paragraph-name (that may be qualified) or a section-name. 

program-name 
A user-defined word that identifies a COBOL source program. 

pseudo-text 
A sequence of character-strings or separators bounded by, but not including, pseudo-text delimiters. 

pseudo-text delimiter 
Two contiguous equal sign (=) characters used to delimit pseudo-text. 

• 

• 

• 



• 

• 

• 

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 
1974 AMERICAN NATIONAL STANDARD COBOL 

punctuation character 

Q 

A character that belongs to the following set: 

or 
r-, 

comma 
semicolon 
period 

~:J quotation mark 
left parenthesis 
right parenthesis 
space 
equal sign 

qualified data-name 

Glossary 17 

An identifier that is composed of a data-name followed by one or more sets of either of the connectives OF 
and IN followed by a data-name qualifier. 

qualifier 
1. A data-name used in a reference with another data name at a lower level in the same hierarchy. 

2. A section-name used in a reference with a paragraph-name specified in that section . 

3. A library-name used in a reference with a text-name associated with that library. 

queue 
A logical collection of messages awaiting transmission or processing. 

queue name 

R 

A symbolic name that indicates to the MCS the logical path by which a message or a portion of a 
completed message may be accessible in a queue. 

random access 
An access mode in which the program-specified value of a key data item identifies the logical record 
obtained from, deleted from, or placed into a relative or indexed file. 

record 
See logical record. 

record area 
A storage area allocated for the purpose of processing the record described in a record description entry in 
the file section. 

record description 
See record description entry. 

record description entry 
The total set of data description entries asociated with a particular record. 



t 

UP-8613 Rev. 2 SPERRY UNIV AC OS/3 
1974 AMERICAN NATIONAL STANDARD COBOL 

record key 
A key whose contents identify a record within an ISAM file. 

record-name 

Glossary 18 
Update D 

A user-defined word that names a record described in a record description entry in the data division. 

reentrant program 
A computer program that can be entered repeatedly and can be used simultaneously by more than 
one program, as long as its external program parameters and instructions are not modified during its 
execution. 

reference format 
A format that provides a standard method for describing COBOL source programs. 

relation 
See relational operator. 

relation character 
A character that belongs to the following set: 

> greater than 
< less than 

equal to 

relation condition 
The proposition, for which a truth value can be determined, that the value of an arithmetic expression or 
data item has a specific relationship to the value of another arithmetic expression or data item. See 
relational operator. 

relational operator 
A reserved word, a relation character, a group of consecutive reserved words, or a group of consecutive 
reserved words and relation characters used in the construction of a relation condition. The permissible 
operators and their meanings are: 

Relational Operator Meaning 

IS [NOT] GREATER THAN Greater than or not greater than 
IS [NOT]> 

IS [NOT] LESS THAN Less than or not less than 
IS [NOT]< 

IS [NOT] EQUAL TO Equal to or not equal to 
IS [NOT]= 

relative file 
A file with relative organization. 

relative key 
A key whose contents identify a logical record in a relative file. 

relative organization 
The permanent logical file structure in which each record is uniquely identified by an integer value greater 
than zero, which specifies the record's logical ordinal position in the file. 

• 

• 

• 



• 

• 

• 

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 Glossary 19 
Update D 1974 AMERICAN NATIONAL STANDARD COBOL 

reserved word 
A COBOL word, specified in the list of words, may be used in COBOL source programs, but which must not 
appear in the programs as user-defined words or system-names. 

run unit 
A set of one or more object programs that function at object time as a unit to provide problem solutions. 

s 
SAM 

See sequential access method 

SAM file 
A file with SAM organization. 

SAM organization 
The file structure supported by the sequential access method (SAM) data management. 

section 
A set of zero, one, or more paragraphs or entries, called a section body, the first of which is preceded by a 
section header. Each section consists of the section header and the related section body. 

section header 
A combination of words, followed by a period and a space, that indicates the beginning of a section in the 
environment, data, and procedure divisions. 

In the environment and data divisions, a section header is composed of reserved words followed by a 
period and a space. The permissible section headers are: 

• Environment Division 
CONFIGURATION SECTION. 
INPUT-OUTPUT SECTION. 

• Data Division 
FILE SECTION. 
WORKING-STORAGE SECTION. 
LINKAGE SECTION. 
COMMUNICATION SECTION. 

In the procedure division, a section header is composed of a section-name, followed by the reserved word 
SECTION, followed by a segment-number (optional), followed by a period and a space. 

section-name 
A user-defined word that names a section in the procedure division. 

segment-number 
A user-defined word that classifies sections in the procedure division for purposes of segmentation. 
Segment-numbers may contain only the characters O through 9. A segment-number may be expressed 
either as a 1- or 2-digit number . 



t 

UP-8613 Rev. 2 

sentence 

SPERRY UNIVAC OS/3 
1974 AMERICAN NATIONAL STANDARD COBOL 

Glossary 20 
Update D 

A sequence of one or more statements, the last of which is terminated by a period followed by a space. 

separator 
A punctuation character used to delimit character-strings. 

sequential access method 
An access method in which logical records are obtained from or placed into a file in a consecutive 
predecessor-to-successor logical record sequence determined by the order of records in the file. 

sequential file 
A file with sequential organization. 

sequential organization 
The permanent logical file structure in which a record is identified by a predecessor-successor 
relationship established when the record is placed into the file. 

serially-reusable program 
A program that lets only one user at a time access the action program. The program is not available 
to other users until the current user is finished with it. 

shared-code program 
A program that lets two or more users access an action program concurrently. Shared code programs 
are only partially shareable and must be COBOL action programs. 

sign condition 
The proposition, for which a truth value can be determined, that the algebraic value of a data item or an 
arithmetic expression is either less than, greater than, or equal to zero. 

simple condition 
Any single condition chosen from the set: 

relation condition 
class condition 
condition-name condition 
switch-status condition 
sign condition 
(simple-condition) 

slack byte 
An unused character position provided by the compiler for synchronization purposes. 

sort file 
A collection of records to be sorted by a SORT statement. The sort file is created and can be used by the 
sort function only. 

sort/merge file description entry 
An entry in the file section of the data division that is composed of the level indicator SD, followed by a file
name, followed by a set of file clauses, as required. 

source 
The symbolic identification of the originator of a transmission to a queue. 

• 

• 

• 



• 

• 

• 

UP-8613 Rev. 2 

SOURCE-COMPUTER 

SPERRY UNIVAC OS/3 
1974 AMERICAN NATIONAL STANDARD COBOL 

Glossary 20a 
Update D 

The name of an environment division paragraph that describes the computer environment in which the 
source program is compiled. 

source program 
Although it is recognized that a source program may be represented by other forms and symbols, in this 
document it always refers to a syntactically correct set of COBOL statements beginning with an 
identification division and ending with the end of the procedure division. In contexts where there is no 
danger of ambiguity, the word 'program' alone may be used in place of the phrase 'source program'. 



• 

• 

• 



• 

• 

• 

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 
1974 AMERICAN NATIONAL STANDARD COBOL 

special character 
A character that belongs to the following set: 

+ 

* 
I 

plus sign 
minus sign 
asterisk 
stroke (virgule, slash) 
equal sign 

$ currency sign 
comma (decimal point) 

( 

) 

> 
< 

semicolon 
period (decimal point) 
quotation mark 
left parenthesis 
right parenthesis 
greater than symbol 
less than symbol 

special-character word 
A reserved word that is an arithmetic operator or a relation character. 

SPECIAL-NAMES 

Glossary 21 

The name of the environment division paragraph in which implementor-names are related to user
specified mnemonic-names. 

special registers 
Compiler-generated storage areas primarily used to store information produced for use of specific COBOL 
features. 

standard data format 
The specification plan used to describe characteristics of data in a COBOL data division where 
characteristics or properties of data are expressed according to the appearance of the data on printed 
pages. 

statement 
A syntactically valid combination of words and symbols written in the procedure division and beginning 
with a verb. 

subject of entry 
An operand or reserved word that appears immediately following the level indicator or the level-number in 
a data division entry. 

subprogram 
See called program. 

subqueue 
A logical hierarchical division of a queue. 

subscript 
An integer whose value identifies a particular element in a table. 

subscripted data-name 
An identifier composed of a data-name followed by one or more subscripts enclosed in parentheses. 



UP-8613 Rev. 2 SPERRY UNIVAC OS/3 Glossary 22 
1974 AMERICAN NATIONAL STANDARD COBOL 

switch-status condition 
The proposition, for which a truth value can be determined, that an implementor-defined switch capable of 
being set to an on or off status has been set to a specific status. 

system-name 
A COBOL word used to communicate with the operating environment. 

T 

table 
A set of logically consecutive items of data that are defined in the data division by means of the OCCURS 
clause. 

table element 
A data item that belongs to the set of repeated items comprising a table. 

terminal 
The originator of a transmission to a queue, or the receiver of a transmission from a queue. 

text-name 
A user-defined word that identifies library text. 

text-word 
Any character-string or separator, except space, in a COBOL library or in pseudo text. 

truth value 
The representation of the result of the evaluation of a condition in terms of the values true and false. 

u 
unary operator 

unit 

A plus(+) or a minus(-) sign that precedes a variable or a left parenthesis in an arithmetic expression and 
has the effect of multiplying the expression of +1 or -1, respectively. 

A module of mass storage the dimensions of which are determined by each implementor. 

user-defined word 
A COBOL word that must be supplied by the user to satisfy the format of a clause or statement. 

• 

• 

• 



• 

• 

• 

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 Glossary 23 
1974 AMERICAN NATIONAL STANDARD COBOL 

v 
variable 

A data item whose value may be changed by execution of the object program. A variable used in an 
arithmetic expression must be a numeric elementary item. 

verb 
A word that expresses an action to be taken by a COBOL compiler or object program. 

w 
word 

A character-string of not more than 30 characters that forms a user-defined word, a system-name, or a 
reserved word. 

working-storage section 
The section of the data division that describes working-storage data items and is composed of either 
noncontiguous items or working-storage records, or both. 

77-level-description-entry 
A data description entry that describes a noncontiguous data item with the level-number 77 . 



----------------

• 

• 

• 



UP-8613 Rev. 2 SPERRY UNIV AC OS/3 Index 1 

1974 AMERICAN NATIONAL STANDARD COBOL 

• 
Index 

Term Reference Page Term Reference Page 

A Ascending sequence 
INSPECT statement 6.6.18 6-47 

ACCEPT statement 6.6.1 6-20 
MERGE statement 9.5.4 9-5 
SORT statement, rules 6.6.33 6-90 

Access methods 
indexed 8.2. l.3 8-2 
ISAM 8.2.l.4 8-2 
relative 8.2. l.2 8-1 

• sequential 8.2.1.l 8-1 B 
Action programs, IMS 

description G.l G-1 BLANK WHEN ZERO clause 5.3.3.10 5-45 

illegal COBOL verbs, clauses and BLOCK CONTAINS clause 
sections G.2 G-1 block size calculations, tape, 

ADD statement 
card, print Table 5-2 5-8 

description 6.6.2 6-25 
block size calculations, mass 

intermediate arithmetic results E.1.2 E-2 storage Table 5-3 5-9 
format and rules 5.3.1.l 5-6 

Alignment 
elementary item, boundaries Table 5-10 5-41 
standard rules 2.5 2-12 

Alphabet-name 2.3.l.l 2-5 c 
ALTER statement 

description 6.6.3 6-26 CALL statement 

segmentation effects 10.6.l 10-3 action programs G.2 G-1 

SORT statement rules 6.6.33 6-90 description 6.6.4 6-27 

Arithmetic expressions CANCEL statement 6.6.5 6-28 

evaluation rules 6.3.2 6-7 
operators 6.3.l 6-6 CD clause 5.6 5-53 

permissible symbol combinations Table 6-1 6-8 
Cd-name 

Arithmetic statements description 2.3.1.l 2-5 

description 6.5.4 6-19 input 5.6.1 5-53 

• multiple results 6.5.6 6-20 output 5.6.2 5-57 



UP-8613 Rev. 2 SPERRY UNIVAC OS/3 
1974 AMERICAN NATIONAL STANDARD COBOL 

Term Reference Page Term 

Character sets Appendix J Communication section 
2.1 2-1 CD clause 

DESTINATION COUNT clause 
Class condition DESTINATION TABLE OCCURS clause 

extended F.2.3 F-2 END-KEY clause 
F.6.1 F-6 ERROR KEY clause 

simple 6.4.1.2 6-12 error key codes 
INDEXED BY clause 

CLASS-NAME clause F.2.2 F-2 input communication description 
F.5.1 F-4 MESSAGE COUNT clause 

MESSAGE DATE clause 
CLOSE statement MESSAGE TIME clause 

description 6.6.6 6-29 output communication description 
statement options Table 6-5 6-30 STATUS KEY clause, input 

STATUS KEY clause, output 
COBOL SYMBOLIC DESTINATION clause 

character set 2.1 2-1 SYMBOLIC QUEUE clause 
extensions 1.2.2 1-3 SYMBOLIC SUB-QUEUE clauses 
language structure, modular 1.2 1-1 TEXT LENGTH clause, input 
literals 2.3.2 2-7 TEXT LENGTH clause, output 
object program, invoking 14.4.1 14-3 
PICTURE character-string 2.3.3 2-11 Comparison 
reserved words Appendix I index-names or index data items 
separators 2.2 2-4 nonnumeric operands 
source coding format rules 2.7 2-14 numeric operands 
words 2.3.1 2-5 

Compiler 
CODE-SET clause 5.3.1.7 5-17 compilation summary listing 

cross-reference listing 
Collating sequence, SORT statement diagnostic listing 

MERGE statement 9.5.4 9-5 
SORT statement 6.6.33 6-90 diagnostic messages 

locator /map/ cross-reference listing 
Combined and negated combined conditions object code listing 

format and rules 6.4.2.2 6-15 options 
permissible combinations Table 6-4 6-15 

options affecting compiler output 
Communication 

COBOL object program, invoking 14.4.1 14-3 options of PARAM statement 
COBOL object program, scheduled source listing 

initiation 14.4.1.l 14-3 
devices, relationship to COBOL programs 14.4 14-2 Complex conditions 
environment Fig. 14-1 14-3 
message control system 14.2 14-1 COMPUTATIONAL, USAGE clause 
messages and message segments 14.5 14-4 
queues 14.6 14-5 COMPUTE statement 

Communication, inter-program Condition-name 
CALL statement 13.3.2 13-3 
CANCEL statement 13.3.3 13-4 
control transfer 13.1.1 13-1 Condition-name condition 
data items, accessing 13.1.2 13-2 
EXIT PROGRAM statement 13.3.4 13-4 
linkage records 13.2.2 13-3 
noncontiguous linkage storage 13.2.l 13-2 
values, initial 13.2.3 13-3 

Index 2 
Update C 

Reference Page 

5.6.2 5-57 
5.6.2 .5-57 
5.6.2 5-58 
5.6.1 5-53 
5.6.2 5-57 
Table 5-11 5-60 
5.6.2 5-57 
5.6.1 5-53 
5.6.1 5-54 
5.6.l 5-54 
5.6.1 5-54 
5.6.2 5-57 
5.6.l 5-54 
5.6.2 5-57 
5.6.2 5-58 
5.6.1 5-54 
5.6.1 5-54 
5.6.1 5-54 
5.6.2 5-57 

6.4.1.1.3 6-11 
6.4.1.1.2 6-11 
6.4.1.1.1 6-10 

B.l B-1 
B.6 B-3 
B.2 B-1 
C.2 C-1 
Appendix C 
B.5 B-2 
B.4 B-2 
A.2 A-1 
Table A-1 A-2 
A.2 A-1 
A.3 A-4 
Table A-1 A-2 
B.3 8-1 

6.4.2 6-13 

5.3.3.5 5-33 

6.6.7 6-33 

2.3.1.1 2-5 
2.6.5 2-14 

6.4.l.3 6-12 

• 

• 

• 



--------------~------

UP-8613 Rev. 2 SPERRY UNIVAC OS/3 
1974 AMERICAN NATIONAL STANDARD COBOL 

Index 3 
Update A 



UP-8613 Rev. 2 SPERRY UNIVAC OS/3 Index 4 
1974 AMERICAN NATIONAL STANDARD COBOL 

Term Reference Page Term Reference Page • 
Description entry Environment division 

record, linkage section 5.5.2 5-53 configuration section 4.3 4-2 
record, working storage 5.4.2 5-51 debugging language 12.3 12-2 
77-level, linkage section 5.5.l 5-52 FILE-CONTROL paragraph 4.4.l 4-10 
77-level, working storage 5.4.l 5-50 indexed file processing 8.5.2.1 8-11 

input-output section 4.4 4-10 
DESTINATION COUNT clause 5.6.2 5-57 1-0-CONTROL paragraph 4.4.2 4-18 

ISAM file processing 8.7.l 8-15 
DESTINATION TABLE OCCURS clause 5.6.2 5-57 non-English language feature Appendix F 

OBJECT-COMPUTER paragraph 4.3.2 4-3 
DISABLE statement 6.6.10 6-36 relative file processing 8.4.2.1 8-8 

sequential file processing 8.3.2.l 8-6 
DISPLAY statement 6.6.11 6-38 sort programs 9.3 9-2 

SOURCE-COMPUTER paragraph 4.3.l 4-3 
DIVIDE statement SPECIAL-NAMES paragraph 4.3.3 4-4 

description 6.6.12 6-41 
intermediate arithmetic results E.1.4 E-2 Error codes Table 5-12 5-61 

Dynamic access mode ERROR KEY clause 5.6.2 5-57 
description 8.2.l.3 8-2 
indexed files, environment division 8.5.2.l 8-11 ESI 6.6.31 6-83 
READ statement, rules 6.6.25 6-72 
REWRITE statement, rules 6.6.29 6-79 EXHIBIT statement 6.6.14 6-44 

EXIT statement 6.6.15 6-44 

Extensions • Series 90 environment 1.2.2 1-3 
VS/9 COBOL 1.2.2 1-3 

E 

Editing, sign control symbol results Table 5-7 5-29 

EGI 6.6.31 6-85 F 

EMI 6.6.31 6-85 Federal information processing standard 
flagging facility 

ENABLE statement 6.6.13 6-43 flagging options D.2 D-2 
Table D-1 D-1 

End-of-group indicator 6.6.31 6-85 PUB 21-1 COBOL levels D.l D-1 

End-of-message indicator 6.6.31 6-85 Figurative constants • description 2.3.2 2-7 
End-of-segment indicator 6.6.31 6-85 TRANSFORM statement, rules 6.6.39 6-101 



UP-8613 Rev. 2 SPERRY UNIVAC OS/3 
1974 AMERICAN NATIONAL STANDARD COBOL 

• Term Reference Page Term 

FILE-CONTROL paragraph 
description 4.4.1 4-15 
Series 90 SAM files 4.4.1 4-17 

Identification division Series 90 !SAM files 4.4.1 4-17 

File-name 2.3.1.1 2-5 Identifier 

File organizations IF statement 
indexed 8.2.1.3 8-1 
!SAM 8.2.1.5 8-2 IMS parameter and 
relative 8.2.1.2 8-1 configuration specifications SAM 8.2.1.4 8-2 
sequential 8.2.1.1 8-1 

Index-name 
File section comparison 

data d esc ri ption 5.3.3 5-18 SET statement use 
file description 5.3.1 5-4 user-defined word 
sort/merge file description 5.3.2 5-17 

INDEXED BY clause 
FILLER clause 5.3.3.2 5-21 

FIPS Appendix D 
Indexed file processing 

Floating point Indexed 1-0 module 

• items 5.3.3.4 5-23 
numeric literals 2.3.2 2-7 Indexing 
operands E.1.1 E-2 

Indexed organization 
FUNCTION-KEYS phrase 4.3.3 4-5 Series 90, SAM 

Table 4-3 4-9 Series 90, !SAM 

Input-output section 

Insertion editing, types and characters 

INSPECT statement 

G 
Intermediate arithmetic results, object 

program processing 

GO TO statement 1-0 CONTROL paragraph 
description 6.6.16 6-44 environment division 
SORT statement, rules 6.6.33 6-90 

sort program 

1-0 status 

ISAM file processing 

• 

Index 5 
Update D 

Reference Page 

Section 3 

2.6.4 2-14 

6.6.17 6-46 

G.3 G-4 

6.4.1.1.3 6-11 
6.6.32 6-88 
2.3.1.1 2-5 

5.6.2 5-57 

8.5 8-11 

1.2 1-1 

2.6.3 2-13 

8.2.1.4 8-2 
8.2.1.5 8-3 

4.4 4-15 

5.3.3.4 5-25 
Table 5-6 5-24 

6.6.18 6-47 

E.1 E-1 

4.4.2 4-23 
9.3.2 9-3 

8.2.3 8-3 

8.6 8-13 



UP-8613 Rev. 2 SPERRY UNIVAC OS/3 Index 6 
1974 AMERICAN NATIONAL STANDARD COBOL 

Term Reference Page Term Reference Page • 
J Linkage section 

record description entry 5.5.2 5-53 

Job control stream 
77-level description entry 5.5.1 5-52 

requirements Appendix H Literals, rules 2.3.2 2-7 

JUSTIFIED clause 5.3.3.9 5-44 LOCK phrase 
CLOSE, use 6.6.6 6-29 

K OPEN, use 6.6.23 6-60 

Key 
Logical devices 

ACCEPT statement 6.6.1 6-20 INVALID KEY condition 8.2.5 8-5 DISPLAY statement 6.6.11 6-38 
INVALID KEY phrase, DELETE 

statement 6.6.9 6-36 
READ statement, INVALID KEY phrase 6.6.25 6-72 
RECORD KEY phrase 6.6.9 6-36 M 
REWRITE clause, INVALID KEY phrase 6.6.29 6-79 
START statement, KEY /INVALID KEY MCS See message 

phrase 6.6.34 6-90 control system. 
WITH KEY phrase, DISABLE statement 6.6.10 6-37 
WITH KEY phrase, ENABLE statement 6.6.13 6-43 MERGE verb 
WRITE statement, INVALID KEY phrase 6.6.42 6-114 description 6.6.19 6-53 

segmentation effects 10.6.3 10-5 
sort programs 9.5.4 9-5 

L • Message control system 
LABEL RECORDS clause 5.3.1.5 5-12 COBOL object program 14.3 14-2 

description 14.2 14-1 
Level characteristics generation 14.7 14-7 

indexed files 8.5.1 8-11 invocation 14.4.1.2 14-4 
inter-program communication 13.1.3 13-2 relationship to COBOL programs 14.4 14-2 
relative files 8.4.1 8-8 
sequential files 8.3.1 8-5 MESSAGE COUNT clause 

ACCEPT statement 6.6.1 6-20 
Level-indicators 5.2.2.1 5-2 description 5.6.1 5-53 

Level-numbers MESSAGE DATE clause 5.6.1 5-53 
regular 2.3.1.1 2-5 

5.2.2.2 5-2 MESSAGE TIME clause 5.6.1 5-53 
5.3.3.1 5-21 

special 5.2.2.3 5-3 Messages 
compiler diagnostic Appendix C 

Library, COPY statement 11.2 11-1 complete and segmented, handling 14.5 14-4 

Library-name 2.3.1.1 2-5 Mnemonic-name 2.3.1.1 2-5 

LINAGE clause 5.3.1.6 5-13 MOVE statement 
description 6.6.20 6-56 

LINAGE-COUNTER special register 8.2.6 8-5 permissible moves Table 6-6 6-58 

Linkage editor control statements 10.5.4 10-4 MULTIPLY statement 
description 6.6.21 6-59 
intermediate arithmetic results E.1.3 E-2 

Multivolume sequential files 8.3.4 8-8 • Multivolume SAM files 8.6.4 8-15 



UP-B613 Rev. 2 SPERRY UNIVAC OS/3 
1974 AMERICAN NATIONAL STANDARD COBOL 

.Term Reference Page Term 

N p 

Naming convention, object module 10.5.3 10-3 Page, logical 
format 

Non-English language feature size 
control division F.4 F-3 spacing, SEND statement 
description F.1 F-1 
environment division F.5 F-4 Page spacing 
format F.3 F-2 SEND statement 
procedure division F.6 F-6 WRITE statement 
text utility program F.7 F-6 

Nonnumeric literals, TRANSFORM 
Paragraph-name 

statement, rules 6.6.39 6-101 PARAM statement, options 

Nonnumeric operands, comparison 6.4.1.1.2 6-11 PERFORM statement 

Numeric operands, comparison 6.4.1.1.1 6-10 
description 
segmentation effects 
SORT statement, rules 

PICTURE clause 
character precedence chart 
function and format 
tutorial guide 

• 0 Pointer, current record 

OBJECT-COMPUTER paragraph 4.3.2 4-3 Printer-destined files 
description 

Object module naming convention 10.5.3 10-3 READ statement, rules 

Object program, COBOL Procedure division 
description 14.3 14-2 action programs 
execution considerations 13.4 13-4 arithmetic expressions 
expressions E.2 E-3 COBOL verbs 
intermediate results, arithmetic conditional expressions 

operations E.l E-1 debugging language 
invoking 14.4.1 14-3 format 
processing Appendix E indexed file processing 
scheduled initiation 14.4.1.1 14-3 inter-program communication 

ISAM file processing 
OCCURS clause 5.3.3.7 5-38 non-English language feature 

relative file processing 
ON statement 6.6.22 6-60 sequential file processing 

sort programs 
OPEN statement 

description 6.6.23 6-60 Program-name 
permissible 1/0 statements, OPEN mode Table 6-7 6-62 

Pseudo-text delimiters 
Operands, overlapping 6.5.5 6-20 

• 

Index 7 
Update B 

Reference Page 

Fig. 5-2 5-15 
5.3.1.6 5-13 
6.6.31 6-85 

6.6.31 6-85 
6.6.42 6-114 

2.3.1.l 2-6 

Table A-1 A-2 

6.6.24 6-64 
10.6.2 10-4 
6.6.33 6-90 

Table 5-9 5-32a 
5.3.3.4 5-23 
Appendix K 

8.2.2 8-3 

8.3.3 8-8 
6.6.25 6-72 

G.2 G-1 
6.3 6-6 
6.6 6-20 
6.4 6-8 
12.4 12-3 
6.1.3.2 6-3 
8.5.2.3 8-12 
13.3 13-3 
8.7 8-15 
F.6 F-6 
8.4.2.3 8-10 
8.3.2.3 8-7 
9.5 9-4 

2.3.1.1 2-5 

2.2 2-4 



UP-8613 Rev. 2 SPERRY UNIVAC OS/3 
1974 AMERICAN NATIONAL STANDARD COBOL 

Index 8 
Update F 



UP-8613 Rev. 2 SPERRY UNIV AC OS/3 
1974 AMERICAN NATIONAL STANDARD COBOL 

.Term Reference Page Term 

SORT programs SYMBOLIC QUEUE clause 

control entry 9.3.1 9-3 
1-0 CONTROL paragraph 9.3.2 9-3 SYMBOLIC SUB-QUEUE clause 

MERGE statement 9.5.4 9-5 
RELEASE statement 9.5.1 9-4 SYNCHRONIZED clause 
RETURN statement 9.5.2 9-4 
SORT statement 9.5.3 9-4 SYSCHAN-n 
special registers 9.2.2 9-2 

SYSCOM 
SORT statement ACCEPT statement 

description 6.6.33 6-90 DISPLAY statement 

segmentation effects 10.6.3 10-4 
SORT programs 9.5.3 9-4 SYSCONSOLE 

ACCEPT statement 
SOURCE-COMPUTER paragraph 4.3.1 4-3 DISPLAY statement 

SPECIAL-NAMES paragraph SYSFORMAT 
action programs G.2 G-1 ACCEPT statement 
environment division 4.3.3 4-4 DISPLAY statement 

SPECIAL NAMES paragraph 

Special registers, sort 9.2.2 9-2 
SYSIN 

START statement 6.6.34 6-94 ACCEPT statement 
DISPLAY statement 

Statements 

• compiler-directing 6.2.3 6-6 SYSLOG 
conditional 6.2.2 6-5 
continuation 2.7 2-16 SYSOUT 
imperative 6.2.l 6-4 

SYSSWCH 

Status key ACCEPT statement 

clause 5.6.1 5-53 DISPLAY statement 

5.6.2 5-57 
conditions 5.6.2 5-57 SYSSWCH-n 

values and meanings Table 8-1 8-4 ACCEPT statement 

workstations Table 4-1 4-8 DISPLAY statement 

STOP statement 6.6.35 6-96 SYSTEM-SHUTDOWN 

STRING statement 6.6.36 6-97 SYSTERMINAL 
ACCEPT statement 

Subscripting 2.6.2 2-13 DISPLAY statement 
SPECIAL NAMES paragraph 

SUBTRACT statement SYSWORK 
description 6.6.37 6-99 
intermediate arithmetic results E.1.2 E-2 ACCEPT statement 

DISPLAY statement 

Switch-status condition 6.4.1.4 6-13 SPECIAL NAMES paragraph 

SYMBOLIC DESTINATION clause 5.6.2 5-57 

• 

Index 9 
Update B 

Reference Page 

5.6.1 5-53 

5.6.1 5-53 

5.3.3.8 5-40 

4.3.3 4-4 

6.6.1 6-20 
6.6.11 6-38 

6.6.1 6-20 
6.6.11 6-38 

6.6.1 6-20 
6.6.11 6-38 
4.3.3 4-4 

6.6.1 6-20 
6.6.11 6-38 

6.6.11 6-38 

6.6.11 6-38 

6.6.1 6-20 
6.6.11 6-38 

6.6.1 6-20 
6.6.11 6-38 

4.3.3 4-6 

6.6.1 6-20 
6.6.11 6-38 
4.3.3 4-4 

6.6.1 6-22 
6.6.11 6-38 
4.3.3 4-6 



UP-8613 Rev. 2 SPERRY UNIVAC OS/3 
1974 AMERICAN NATIONAL STANDARD COBOL 

Term Reference Page Term 

T v 
Table handling VALUE clause 

comparisons, index-name or data item 7.4.2 7-5 
data division 7.3 7-4 VALUE OF clause 
definition 7.2.l 7-1 
indexing 7.2.2.2 7-3 VARYING phrase 

one condition, PERFORM statement procedure division 7.4 7-4 
SEARCH statement referencing items 7.2.2 7-2 
three conditions, PERFORM statement SET statement, overlapping operands 7.4.3 7-5 two conditions, PERFORM statement statements 7.4.l 7-4 

subscripting 7.2.2.l 7-3 Verbs, COBOL 
ACCEPT Tallying and/or replacing 
ADD 

INSPECT statement 6.6.18 6-47 ALTER 
UNSTRING statement 6.6.40 6-104 CALL 

CANCEL 
TEXT-LENGTH clause 

CLOSE input 5.6.1 5-53 COMPUTE output 5.6.2 5-57 COPY 
DELETE Text-name 2.3.1.1 2-6 DISABLE 
DISPLAY TIME 6.6.1 6-21 DIVIDE 
ENABLE TRACE statement 6.6.38 6-100 EXHIBIT 
EXIT TRANSFORM statement 
GO TO description 6.6.39 6-101 IF 

permissible FROM/TO options Table 6-9 6-102 INSPECT 
MERGE Truncation 5.3.3.4 5-23 MOVE 
MULTIPLY 
ON 
OPEN 
PERFORM 
READ 
RECEIVE 
RELEASE 
RETURN 
REWRITE 
SEARCH 
SEND 
SET 
SORT 
START 
STOP 
STRING u SUBTRACT 
TRACE 

U NSTRI NG statement 6.6.40 6-104 TRANSFORM 

USAGE clause 5.3.3.5 5-33 
UNSTRING 
USE 

USE statement 6.6.41 
WRITE 

6-106 DEBUG 

Index 10 
Update F 

Reference Page • 
5.3.3.11 5-45 

5.3.1.4 5-12 

Fig. 6-2 6-67 
6.6.30 6-81 
Fig. 6-4 6-70 
Fig. 6-3 6-69 

6.6.1 6-20 
6.6.2 6-25 
6.6.3 6-26 
6.6.4 6-27 
6.6.5 6-28 
6.6.6 6-29 
6.6.7 6-33 
6.6.8 6-33 
6.6.9 6-36 
6.6.10 6-37 
6.6.11 6-38 
6.6.12 6-41 
6.6.13 6-43. 
6.6.14 6-44 
6.6.15 6-44 
6.6.16 6-45 
6.6.17 6-46 
6.6.18 6-47 
6.6.19 6-53 
6.6.20 6-56 
6.6.21 6-59 
6.6.22 6-60 
6.6.23 6-60 
6.6.24 6-64 
6.6.25 6-72 
6.6.26 6-76 
6.6.27 6-77 
6.6.28 6-78 
6.6.29 6-79 
6.6.30 6-81 
6.6.31 6-85 
6.6.32 6-88 
6.6.33 6-90 
6.6.34 6-94 
6.6.35 6-96 
6.6.36 6-97 
6.6.37 6-99 
6.6.38 6-100 
6.6.39 6-101 
6.6.40 6-103 
6.6.41 6-106 
6.6.42 6-114. 
6.6.43 6-119 



UP-8613 Rev. 2 SPERRY UNIV AC OS/3 Index 11 
1974 AMERICAN NATIONAL STANDARD COBOL 

• Term Reference Page Term Reference Page 

w z 
WHEN COMPILED special register 6.5.7 6-20 Zero suppression, editing 5.3.3.4 5-25 

Words, COBOL 
reserved 2.3.1.3 2-6 
system names 2.3.1.2 2-6 
user-defined 2.3.1.1 2-5 

Working storage section 
record description entry 5.4.2 5-51 
77-level description entry 5.4.l 5-50 

Workstation status key values Table 4-1 4-8 

WRITE statement 6.6.42 6-114 

• 

• 



• 

• 

• 



• 

ai 
.!:: 
Cl 
c: 
0 • n; ... 
:l 
u 

• 

UNIVAC 

USER COMMENT SHEET 

Your comments concerning this document will be welcomed by Sperry Univac for use in improving 
subsequent editions. 

Please note: This form is not intended to be used as an order blank. 

(Document Title) 

(Document No.) (Revision No.) (Update No.) 

Comments: 

From: 

(Name of User) 

(Business Address) 

Fold on dotted lines, and mail. (No postage stamp is necessary if mailed in the U.S.A.) 
Thank you for your cooperation 



FOLD 

FOLD 

------------------------... 

111111 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 21 BLUE BELL, PA. 

POSTAGE WILL BE PAID BY ADDRESSEE 

SPERRY UNIVAC 

ATTN.: SYSTEMS PUBLICATIONS 

P.O. BOX 500 

BLUE BELL, PENNSYLVANIA 19424 

NO POSTAGE 
NECESSARY 
IF MAILED 

INTHE 
UNITED STATES 

• 

• 



CUT 

• 

• 

• 

USER COMMENT SHEET 

We will use your comments to improve subsequent editions. 

NOTE: Please do not use this form as an order blank. 

(Document Title) 

(Document No.) (Revision No.) (Update No.) 

Comments: 

From: 

(Name of User) 

(Business Address) 

Fold on dotted lines, and mail. (No postage stamp is necessary if mailed in the U.S.A.) 
Thank you for your cooperation 



FOLD_ 

BUSINESS REPL V MAIL 
FIRST CLASS PERMIT NO. 21 BLUE BELL, PA. 

POSTAGE WILL BE PAID BY ADDRESSEE 

SPERRY CORPORATION 

ATTN.: SOFTWARE SYSTEMS PUBLICATIONS 

P.O. BOX 500 
BLUE BELL, PENNSYLVANIA 19424 

FOLD 

NO POSTAGE 
NECESSARY 
IF MAILED 

INTHE 
UNITED STATES 

CUT 

• 

• 

• 



CUT . 

• 

• 

• 

USER COMMENT SHEET 

We will use your comments to improve subsequent editions. 

NOTE: Please do not use this form as an order blank. 

(Document Title) 

(Document No) (Revision No) (Update No) 

Comments: 

From: 

(Name of User) 

(Business Address) 

Fold on dotted lines, and mail. (No postage stamp is necessary if mailed in the U.S.A) 
Thank you for your cooperation 



FOLD - -

FOLD 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 21 BLUE BELL, PA. 

POSTAGE WILL BE PAID BY ADDRESSEE 

SPERRY CORPORATION 

ATTN.: SOFTWARE SYSTEMS PUBLICATIONS 

P.O. BOX 500 
BLUE BELL, PENNSYLVANIA 19424 

NO POSTAGE 
NECESSARY 
IF MAILED 

INTHE 
UNITED STATES 

______ ......, __ ---.... ---------.... --.... ------------------------~---·-

I 
·CUT 

• 

• 

• 



• 

• 

• 

.JLSPE~Y .,r 

USER COMMENTS 

We will use your comments to improve subsequent editions. 

NOTE: Please do not use this form as an order blank. 

(Document Title) 

(Document No.) (Revision No.) (Update Level) 

Comments: 

From: 

(Name of User) 

(Business Address) 

Fold on dotted lines, and mail. (No postage is necessary if mailed in the U.S.A.) 
Thank you for your cooperation 



FOLD 

FOLD 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 21 BLUE BELL, PA. 

POSTAGE WILL BE PAID BY ADDRESSEE 

SPERRY CORPORATION 

ATTN: Documentation Quality Control Group 
C/0 SYSTEM PUBLICATIONS 

P 0 BOX 500 
BLUE BELL. PENNSYLVANIA 19422-9990 

1 ••• 111.1 ... 1 .. 1 •• 1.1 •• 1.11.1 •• 1.1 .. 1.1 •• 11 •••• 1.1.1 

NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 

• 

• 



• 

• 

• 

• UNISYS 

USER COMMENTS 

We will use your comments to improve subsequent editions. 

NOTE: Please do not use this form as an order blank. 

(Document Title) 

(Document No.) (Revision No.) (Update Level) 

Comments: 

From: 

(Name of User) 

(Business Address) 

Fold on dotted lines. and mail. (No postage is necessary if mailed in the U.S.A.) 
Thank you for your cooperation 



FOLD 

FOLD 

II II 
BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 21 BLUE BELL, PA. 

POSTAGE WILL BE PAID BY ADDRESSEE 

Unisys Corporation 
E/MSG Product Information Development 
PO Box 500 Cl-NEG 
Blue Bell, PA 19422-9990 

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 

NO POSTAGE 
NECESSARY 
IF MAILED IN THE 
UNITED STATES 

_1 

• 

• 

• 



.I 
I 

I •1 

• UNISYS 

USER COMMENTS 

We will use your comments to improve subsequent editions. 

NOTE: Please do not use this form as an order blank. 

(Document Title) 

(Document No.) (Revision No.) (Update Level) 

Comments: 

From: 

(Name of User) 

(Business Address) 

Fold on dotted lines, and mail. (No postage is necessary if mailed in the U.S.A.) 
Thank you for your cooperation 



FOLD 

FOLD 

II II II 
BUSINESS REPLY MAIL 
ARST CLASS PERMIT NO. 21 BLUE BELL. FA. 

POSTAGE Will BE PAID BY ADDRESSEE 

Unisys Corporation 
E/MSG Product Information Development 
PO Box 500 - ES-114 
Blue Bell, PA 19422-9990 

1 ••• 111.1 ••• 1 •• 1 •• 1.1 •• 1.11.1 •• 1.1 •• 1.1 •• 11 •••• 1.1.1 

NO POSTAGE 
NECESSARY 
IF MAILED IN THE 
UNITED STATES 

I. 

_, 



• 

• 

• 




