SPERRY==UNIVAC

COMPUTER SYSTEMS

Technical
® Bulletin

0S/3
Nome .o o e s e e e
t Bulletin #6__
Order No............... UP786Q5'6."R1.

0S/3 TECHNICAL BULLETIN

This document provides information on:
IMS 90 MULTI-THREAD

It defines the multi-thread concept, and contains information
relating to system control, record locks, file usage and ACTION
program design. The information is intended primarily for those
individuals within an organization who are responsible for the

f-\ implementation of a multi-thread IMS 90 system and the design
: of ACTION programs.

Request additional copies by submitting Sales Help Requisition

form (UD1-578) through your local Sperry Univac representative
EE2

CUSTOMER INFORMATION DISTRIBUTION CENTER (cIpC)
Sperry Univac
555 Henderson Road
King of Prussia, PA 19406

ﬁ Lists: Bulletin No.: Date:

185:39,20,21 75, 76,C7% 6 September, 1979
Revision 1

UD1-1428

\
-

- SYSTENM

N Y

*0S§/43

*0S/3

#0S/3

0573

0s/3

- 081743

0s/3

0S/3 Technical Bulletin #6,
Rev.

REL.#

4.3

‘.39500

ALL

b3

5.0,
Se2y
5e241
€0

5.2

1

0s/2

TECHNICAL BULLETIN SUMMARY

. S o) S . G W . S . A T G - G -

. The following Yechnicatl Butletins
Current items are fdentified with
ftews are fdentified with an *“=za®

DATE

1778

3778

4178

1478

7178

11778

5179

ORDERY

- . -

UrP-8605.1

UP-8605 «1-A

UP‘860502

UP-8605 .3

UP-8605.3~-R1

UP-8605 4

UP-B8605 .5

iii

are publ ¥shed for the 0573 systeme.
an "+ §n cotumn one; scheduled
in the date cotumn:

ITEM and DESCRIPTION

—— - G o

0S/3 Yechnical Butletin

#1 (This document presents
an overview of the UTS 400
support and gives some user
guidetines.)

0S/73 Technicat Butlttetin #1-A
{This update contatns page
reptacements to UP-8605.1.)

0S/73 Technical Bultetin #2
(This document provides

a tist of the options that
can atfect the performance
of an 0S/3 IFS 90 system.)

0872 Technical Bultletin #3
€This document is a User
6ufide for the UTS 400
LHARACTER PROTECTION NODE
available with re lease
4.3.)

08/3 Technical Bullet in
#3-R1 (Thés document
zontains updated guide-
A¥nes for the UTS 400

- LHARACTER PROTECYION MODE

avaitable with release
S5e06)

0S8 .3 Technical Bultetin #4
(This document contains
information on the use of
the 8413 DISKEYTE FILE
LREATION UTILITY.)

0873 Yechnicatl Bultietin #5
{This document contains
information on the use of
OATA UTILITIES for 0S/3
Release 5.2.)

September, 1979

0S73 ALL 12778 UP-5605 .6 0S/73 Yechnical Bultetin #é6
' (This document contafns
dntormation on the use of
IMS 90 Multi-Thread.)

20873 ALL 9479 UP—-860S «6-R" 0573 YTechntical Bullet in
(This document contains
information on the use of
InS 90 Multi-Thread and
supercedes the UP-8605.6
Buttetin dated December,
1978.)

0s23 ALL 3778 UP-E60S o7 0873 Technical Bultetin #7
(This document contatns
information concerning
techniques for processing
unordered IRAM files.)

0sS23 Se2l 5179 UP-8605 .8 0S/3 Yechnical Butlet in »8
Selel (This document contains
¢.0 information on the use of

CHARACTER PROTECYION MODE
UTILITY for the UTS 400;
this utitity is avatlable
with Releases 5.2/5.2.1
and 6.0.)
*0S73 ! SI79 UP-8605 o9 0873 Yechnical Bullet §n 29
: {Th¥s document contains
information on the use of
the IBM 3741 MED1A
COMPATABILITY UTILITY for
the UTS 400; this utitity
ts avatlable with Releases
Se2l%5e2.1 and 6.0.)

20873 ALL 7479 UP-8605.10 0573 Yechnicat Bulletin
: #10 (Yhis document
contains infermation
concerning 0S/3 FILE
CATALOGING,)

NOTE: Technicat Bulletins are issued as they become avaftlabte, and
83y or may not be issued in seqguent tal order. Please destroy
all copies of 0S/3 Technical Bulletins 3, 4, 5, 7, and -8
(UP-8605.3, UP-8605.3 Rev. 1, UP-8605.4, UP-8605.5, UP-8605.7,
and UP-8605,8); all the information contained in these bulletins
has been incorporated in the appropriate 0S/3 user documents.

0s/3 Technical Bulletin #6, iv ‘ September, 1979
Rev, 1

TABLE OF CONTENIS

1. IN ‘ROQUCTIQ& - - L 4 [3 - - [3
2. OVERVIEk - * - - L L 3 * L J
3. MULTI-THREAD IMS 90. e .
3«17 MULTI-THREAD IMS GO CO&CEPT .
2eTeT PMulti~tasking o« o« o
2e1.2 Overlapping of 1/0 Requests. o . .

. ® 2 »
[]
L2 BN AN 2N]

L I]

2«13 Concurrency cf Action Program Execution.

3elet StiCkiﬂg Power -
4« THREAD DEFINITION, COMPONENTS AND CONTROL

4.1 THREAD DEFINITION * - [3 - L d - - L 2 -*
4.‘2 ,’RREAO CQMPONE“?S - L 2 [- - - - - L]
Le2e1 Thread Control Block (THCB)e o . - o
4&2:2 Yerminal Control Table (ICT) ' . - .
hLeded A.ctivation Record (A/R) - . - . . .
beZeb User Action Programs « o -« % o . o
4,245 File 1/0 Areas . . . - - . . - S
4.3 THREAD CONTROL . « . « . = e e .
S« LOCK FEATURE OF MULTI- -THREAD IMS 90
5 1 LOGICAL LOCKS& - [- '-. - L 2 - L 3 - *
5761 fock~- for-update. - . .
5¢142 Llock-for-transaction « o o« o . .
5.2 CONTROL AND RELEASE OF INTERNAL LOCKS. . .
S5ece? ACTION Pljogram Control . . . - . .
5&2.2 Ivs 90 Internat tontrol . - - . - 4
6. FILE USAGE wlITH MULTI-THREAD IMS 90 . e o .
6.1 FILE SHA&ING L 3 L L J L] . [] L 3 L 2 - - [2
6.2 FILE LOCKSC - L 4 L J L] [L J R 2 [2 - - [
7« ACTIOK PROGRAM CONSIDERATIONS - ¢ e . . .
7¢1 ACTION PROGRAM DESIGK . - . PO c o .
7«1e? Type of Action Progra® « « « s o o
Tele2 ACTION Program S‘lze . - . . - . -
7¢13 /70 Kequests., . . . - -
7eteh HKumber of Files Accessede o o « s+ .
701&5 Locks o . . . - . - - - - - -
8‘. DEADLOCKS - [2 - - * [3 L L 3 L J - - - L
Bol CEADLOCK DEFINITION. . . e . . P .
8.2 DEADLOCK SITUATIONS.
8.2.1 Deadly Embrace - file Avai{abil1ty . =
Bece2 Deadiy Embrace - Program Avaitabitity .
€243 Peﬂd?ﬂg Ltocks - . . - -
g. Zeh Record Ltock . . - . - - . - . .
G¢ MULTI-THREAD 1IMS 90 MODULLES and General Flow P
9«1 MULTI THREAD IMS GO MODULES . . = e = .
9e1el Functional Area - STARTUP o o o .
90102 Fuﬂctiaﬂal Area - THREAD SCHEDULING . .
9«1e3 Functional Area - INTERNAL MESSAGE CONTROL (1
S«le4 Functional Area - BATCH PROCESSING . .
9«1e5 Functional Area - FILE MANAGEMENT. . .
Geleb Functional Area - DEFINED RECORD MANAGEMENT
917 Functional Areas SHUTDOKN ¢ o o o @
9«2 MULTITHREAD IMS SC GEHERAL FLOW. . « e .
Gelel Input ¥essage - - .

Gelel 6ET Request . s - - . -

0S/3 Technical Bulletin #6, v
Rev. 1

LI I I I I B A B N N

* 2 * 0 @

* o @

LA B R B DN I B I

L I D NN DN I N R R B B Y

-
L d
-

*® & o 9 0

LN I

LI A L A I 2 I I RN Y B)

® 8 0 o 0 " " 9 0 9 2 0

0 0 2 2 0 0 e 0 0 0 0

L N N N A R

e * 0 8 0 9 0

e ¢ 0 0 5 " P& s * 9 0

September, 1979

LN I I N 2 D DO D R Y RN RN DY Y N I R T R

® " e * s 0 9 4 ¢ 2 " a0

LA B B K BN IR B RN N R R

L 2 N I A 2 D I DY D DY R TN DR RN TR TR R S

LN I DN I B B B D D B R R B R

2 0 2 »

L BN B BN BN

’ * & 9 0

L I I I I D D DR R B B

[
>
 Lad
m

P ad ad wd cd od D wd wd o ok d d b D e b b D D wdh wh wh
COVCOLOONM gy NNOVNE BN WNNN OO0 OO OO O AW W R b

[C RV NVRVIRVN SRV SN VN NN U N
VBN LA A e O 00 O BN A wd b

-

9.2.3 Termination Processfng - . - - . - . - . - - ¢

TABLE 5-1: LOCK-ROLLBACK-INDICATOR (LRI) Values = (LOCK=TR)

TABLE 6‘1: LOCK=FOR-UPDATE . s - . . : : :z
TABLE 6~2: LOCKED-FOR~TRANSACTION o« o o o e + o & & o +« 14
FIGURE 3-1: Multi-Thread IFS 90 Tasking Structure. o« « o o o &
FIGURE 4-1: Multi-thread IMS 90 Activation Record Layout . e« =« 7
FIGURE &-2: NMulti-thread IMS 90 Memory Layout ¢« ¢ o o o ¢ o ¢
FIGURE 7-1: SIFMPLE TRANSACTION/ACTION/PROGRAM RELATIONSHIP. .. .« 16
FIGURE 7-2: COMPOUND TRAKNSACTION/ACTION/PROGRAM RELATXONSHIP « =« 16
FIGURE 9-1: GENEQAL FLOH - XNPUT "ESSAGE‘ - - - 3 - - . Y 3‘
FIGURE 9-2: GE“ERAL FLOH - GE? REQUESI [[3 - - - - s - L 35
FIGURE 9-3: GENERAL FLOCW - TERMINATION PROCESSINGe: <« o o o « 36
0S/3 Technical Bulletln H6 , vi September, 1979

. Rev. 1

PRE FACE

REVISION 1

This YTechnical Bultetin supersedes the UP-88605.6 buttetin dated
Pecesber, 1978, Please destroy copies of the previously issued
document. The “R1° flag §n the cutside margin of 2 page indicates
that techntcal content has been revised.

0S/3 Technical Bulletin #6, vii September, 1979
Rev., 1

1« INTRODUCTION

This document §s intended to give an Insight into multi-thread
IS 90 as imptemented ¥n 05/3. It defines the multéi-thread
-cencept, and contains information retating to system control,
record locks, file usage and ACTION program design. The
informaticn is intended primarily for those individuals within an
organization who are responsible for the implementation of a
nulti-thread INS 90 system and the design of ACYION prograss.

It ¥s assumed that the reader has a knowledge of the foltowing
Sperry Univac publications:

- IPS 90 Programmers Reference Manual UP-8083
- 0S/3 I™S 90 System Support functions, UpP-8364
- INS 90 Applications User Guide, UP-8614
0S/3 Technical Bulletin #6, 1 - September, 1979

Rev. 1

2.

OVERVIEW

The 0S/3 IMS 90 system ¥s available in both a single thread and
multi-thread version. Single-thread IMS 90 provides low volume
applications with low-memory serial message processing while
multi-thread IMS 90 provides the large volume application the
same consistent services as single thread with concurrent
transaction processing requiring a modest memory increase.

The obvious reason predicating any consideration toward use of
multi-thread IMS 90 is response time. For the new user, it may
be the apprehension that single-thread IMS 90 witl not be
sufficient to meet the response time required. For the
single-thread IMS 90 user this migration is usually apparent in
an increase in volume. As volume increases, the need for
consistent response times becomes a major concern.

With the decision to use multi-thread IMS 90, the user must be
conscious of the affect the application may have on IMS 60
performance.

This paper ¥s intended to assist the potentfal multi-thread IMS
9C user in attaining favorable results through extended
explanations of I1MS 90 facilitiese.

0S/3 Technical Bulletin #6, 2 September, 1979

Rev. 1

@ .

MULTI-THREAD IMS 90
RULTI'TRREAD IPMS 90 CORCEPT
Multi thread IMS 90 is, briefly, the processing of several user
requests concurrently, as opposed to serjally. Multi thread INMS
9C provides the capability to process input messages while
concurrently processing input/output requests for existing
threads and communication output requests for terminating
threads.

Bblti thread IMS 90 achieves its performance capabiiities via
four functions:

- multi tasking
-~ Overlap of 1/0 requests
- Concurrent execution of user action prograsms

- Sticking power

 Additional performance improvements are obtained by emptoying

methods that enable IMS 90 to optinize the available system
resources and share its own internal resourcese.

" Bulti thread IMS 90 is designed to naintain a swooth system

batance while processing large volumes of ¥nput, and still
maintain acceptable response times and provide increased system
throughput.

Tele1 HBulti-tasking

Multi-tasking provides multi~thread IMS 90iuith the ability to
concurrenlty schedule transactions for incoming messages, process

~ output messages for terminating actions/transactions and service

outstanding 1I/0 requests for existing threads (actions).

There are four subtasks which are always present in the
multi-thread IMS 90 system. The primary (job step) subtask is
used mainly for startup and shutdoun. The secondary subtask,
knowrn as the IMC task, is utilized exctusively by the Internal
Mmessage Control (IMC) routinesy, the ICAM interface for IMS 9(0.
The tertiary subtask, known as the Main Task, is employed for the
execution of maintine code of IMS 90: the scheduling and
terminating of transactions as well as the execution of user
action praogramse One or more additional subtasks may be

allocated, via the job card, to process 1/0 requests on behalf of
a user action programe

0S/3 Technical Bulletin #6, 3. September, 1979

Rev. 1

JOB STEP TASK

- — - - -

i INITIAL |}
| PHASE OF |
i i

I

STARTUP

- —— - - - e o - .. - - - - -

A - - -

e WD maen ST WD WIS SIS AN SN S R S

| INTERNAL | i | ! !
] meEsSa6E | I 1/0 | § 170 |
| CONTROL | | SUBTASK Jeeeel SUBTASK |}
| SUBTASK | i | i i
i i | i b i

MAIN | SUBTASK

I APPLICATIONS i
i MANAGEMENT i

FIGURE 3-1: Multi~-Thread IMS 90 Tasking Structure

0S8/3 Technical Bulletin #6 . 4 September, 1979
Rev. 1

3.1.2 Overlapping of I/0 Requests

. Because single—thread IMS 90 executes through a single TCB, IMS90
is waited until the conpletion of each 1/0 requests In
multi-thread IMS 90, a subtask is simply allocated from the
avai lable pool, whenever an action (thread) requests an 170
function be performed. After issuing the 1/0 order to data
management, IMS 90 may continue to service other requests from
the Main Task, the IMC Subtask or the other 1/0 Subtasks. Upon
cempletion of the 1/0 function, the thread will be gqueued for
subsequent execution by IMS 90. The number of subtasks specified
on the job card predicates the number of 1/0 subtasks available
during the online execution of IMS 90 (i.e, a value of 5 allowus
for 2 1/0 subtasks, 6 altlows for 3 1/0 subtasks etce) A value of
6 is usually sufficient.

31«3 (Concurrency of Action Program Execution

Multi-thread IMS 9C allows for 2 or more threads to access the
same action program concurrently. This feature not only
contributes to the efficiency of IMS 90 but also conserves
resources which may be employed toward scheduling and execution
of additional threads. Details of this feature will be described
in Section 7. ‘

. T.1.4 Sticking Power

undoubtedly the most transparent feature of sulti-thread IMS 90
is sticking power which allows an action progranm (non-resident)
to remain in main memory until that space is needed for
subsequent processing. When an action terminates, the space the
action program occupies §s essentially de-allocated, but not
re-used as long as there is available space in the storage pool
te continue the processing of incoming transactions. 1f this

action program is needed again, it can be scheduled without being
reloaded.

However, if an action program which is in memory has no potentiat
users, and the space it occupies in the storage pool becomes
critical toward the scheduling of a new thread, the action
program space will be returned to the storage pool and be
available for the scheduling of the new threade.

0S/3 Technical Bulletin #6
Rev. 1

September, 1979

4. THREAD DEFINITION, COMPONENTS AND CONTROL
4.1 THREAD DEFINITION

In multi-thread IMS 90, a thread, which for simplicity”s sake
will be defined as a unit of work within the IMS S0 environment,
censists of the following attributes: :

1. Thread Control Block (THCB)
2e Terminal Control Table (TCT)
3. Activation Record (A/R)

& . User Action Program

Se File 1I/C Areas

4.2 THREAD COMPONENTS

A thread can be associated with every input message and is active
only for the length of the actjon for which it is assigned.
Therefore, it is conceivable that several threads may be

allocated and deallocated during the span of a transactione.

4e2+1 Thread Cbntrol Block (TH(B)

The THCB contains all necessary information pertaining to an
actione It contains pointers to all areas of the activation
record as well as the action, programs and terminal controtl
entries which are active on behalf of a thread.

When a thread is created, it is fdentified as efither routine or
urgent in priority.

Threads are ordered in a tinked tist which are serviced on a
reund-robin basis. Each thread that is desfgnated as ready
receives control when its turn comes and retains control untit it
must wait on some facility. Subsequently, this action is marked
as busy and contreol is passed to the next thread that ¥s ready.
If nc action threads are marked as ready, control will be
transferred to the initial thread routine to determine if a new
thread can be createde.

beZe?2 Terminal Control Table (ICT)

Each terminal in the IMS 90 environment has a TCT. The TCT
serves as a Link between the terminal and the thread which ¥s
active on its behalf as well as providing constant terminal
status and accunulated message countse.

0s/3 Technical Bulletin #6, ¢ September, 1979
’ Rev. 1

&.2.3 Activation Record (A/R)

. Each thread is allccated 2 corresponding activation record. This
. §sy in essence, the users” area for any datea manipulation. Areas

within the activation record are altocated based on values
supplied in the ACTION section of the configurator. The A/R is
comprised of the Program Information Bleck (PIB), Input Message
Area (IMA), Work Area (WA), Output Message Area (OMA) and the
Continuity Data Area ((DA). The areas provide the user with
facitities for program status, reception of input messages,
temporary work areas, cutput reply messages to the termirials and
essentially a common data area for succeeding actions
respectively. An A/R is static for the length of the action for
shich ¥t exists. : :

Figure 4-1 graphically depicts the multi-thread IMS 90 A/R in
majn storage and parameter list at the time an action program is
g iven control.

ACTIVATION RECORD (A/R) Rele ADDR.

- G SEREN G G G . W R G I - . S o - . N - - - " e -

| PROGRAM INFORMATION BLOCK (PIB)| A

lourrut messaee arer omny) B |
FconTIuTTy sATA AReA ord)€)

@ leonmoom TR
et messaee anex amo | £ |
Vocrneo mecoms areA GoRm> 1 7|

'-.‘q—‘-‘-‘-—-—--—-—-------—--_-l-------‘

Rege 1 AT ACTION PROGRAM ENTRY
(PARAM LIST)

} PIB | A §
j-—j - i
I 1ma | E |
el R et |
i WA |} b i
jm———— e --}
| oma | B |
e i i
i con | € i
-}
I orRA | F }
| S i

. FIGURE 4-1: Multi-thread IMS 90 Activation Record Layout

0S/3 Technical Bulletin #6, 7 September, 1979
Rev. 1

R1
R1
1

Rl
Rl
L&

‘.‘2.‘

‘.2.5

4.3

User Retion Frogri-s

Action programs are lcaded upon request, #f not atready in
memory, or are specified as permanently restdent at configuration
tine. Non-resident action programs are tgaded randosly within
the IFS %90 main storage pool. Resident action pregrams are
loaded once at startur time and then permanently reside in the
main storage pool immediately ptreceding the IRMS 90 Input Staging
Area. :

File 140 Areas

File 1/0 areas are altocated for each ISAR/IRAR file an action
uwishes toc access before the thread §s schedutede. I1/0 areas are
allocated based upon informatign suppliied. in the FILES parameter
of the ACTION section of the IRS 90 configurator. 170 sreas are
shareable between threads, impilying simply that 4t an 170 area
already exists when a thread is finftiatizeds ¥t will be shared
with the exfsting thread. Dam Retative files are not buffered;
therefore, an 170 area is not atlocated when the thread iIs
scheduled. :

THREAD CONTROL

Pcst cf the resources employed by a thread sre unique and apart
from octher active threads in the mix. Theretfore, each thread
susty In some way, be unfquely identifiable from other act ive
threads in the system. 7T0 achieve this, IMS 90 utitizes the
unique date and tise stamp which ICAM provides uwith each ¥nput
message. 1f the fncoming message indfcates the #nitiation of a

. new transaction, the date and time stamp is placted ¥n the.

os/

Termirnal Control Table (YCT) anil corresponding Thiead fontrol
Block (IHCB). Thiés unfgue stamp rema ins throughout the tife of
the transaction regardless of the nusber of actions involved or
types of succession employed. Since IRS 90 manipulates the

date—-time stamp to guarantee uniqueness, the time stamp cannot be

used 23s 2 valid time of day. However, as of Release 6.0, 3 valid
date and time of Action Scheduled is made avatladtie in the PIB.

Subseguent to atlocation of the THCB and insertdon of the
date-time stamp, the user A/R #s allocated and corresponding
addresses are ptaced in the THCB, any required 1/0 arecas are
alldcated and thedr corresponding addresses placed ¥n the File
Cerntecl Jabte (FLT)y the user action progras is livaded (3f not
resident), the Program Control Table APCT) address #s placed ¥n
the THCB, the user fnput message ¥s edited ¥nto the IMA from the
Input Staging Area and control ¥s transferred to the user action
pregram at its designated entry point zdd;ess. '

3 Technical Bulletin #6, 8 September, 1979
Rev. 1 ’

figure 4-2 shous the sulti-thread IMS 90 memory layoute.
lPIEAIBLE. TCB s 4
JOPEN FILE VABLE ¢ EXTENT AREA g |
]--1--0--‘-—-—-“—'- - - i o e i . . i .t e n e i - |
1IRS SO0 LOAD MODULE 1
| :]
JCONTAINS 1) DATA RMANAGEMENT MODULES i
| -(sxttuosa IF SHARED DATA MEGT)]
:] 2) DVF”s, FCT1, FCT”s S1IB R |
' 3) TI1%s, TCT1°s 4
] 4) NAMEREC & AUDIT I/0 AREA]
g | 5) INS 90 CODE]
IMAIN STORAGE SUBPOOL £ |
1 g
!tcuiaxus FOR EACH ACTIVE THREAD |
(] 1) THREAD. CONTROL BLOCK (TH(B) i |
i 2) ACVIVATION RECORD (A/R} ‘ 8 |
i INCLUDES PIB, IMA, WORKy OMA, CDA & PRA i
] 3) ACYION PROGRAM (NON-RESIBENT) 1
1 &) FILE I/0 AREAS C(EXCEPT DAMR) i
4) FILE LOCKS, RECORD LOCKS , |
"‘“-‘“"‘-‘ - o - - .'._--w-‘--Q"*’-‘--""-.‘-"‘.--"--'
BTASK RELATED CONTROL ENTRIES - - S ¥ |
;'-----‘--—o-—--—-- - e - Y -t - o i ’ . ""{“,““'i‘"'"'..‘v‘
IRESIDENY AtTleﬂ PROGRAMS and SUBPROGRAMS : : [
. ’-o-——--* b b - e it e . O ey el i ;g *-——%—AO-”-‘--—vO.
| B : : ‘ |
cxuruv n;ssase STAGING AREA 8
\‘ ’ ‘t
L fem— e s o e . i o s - o i i
] o , ‘ M
JCONFIGURATION TABLES (Transaction #d table , Actor Control i
R _ - tabley Program Lontrol Tabte) i
, ----;---.i.s--------_--‘--.;.“ -~ o —-“‘—c.-—w.—---.“‘...— —-----i

FIGURE 4-2: Rulti-thread IFRS 90 Mempory tayout

0S/3 Technical Bulletin #6, ' 9 September, 1979

Rev. 1

5. LOCK FEATURE OF MULTI-THREAD IMS 90

5.1

5¢1e1

0s/3

LOGICAL LOCKS

The lock feature of multi-thread IMS 90 is provided to maintain
the integrity of the users” data files during ontine execution.
It s not the intent of this document to describe the lock
mechanism as this is done quite adequately in the IMS 90
Programmer Reference Manual UP-8083 and UP-8614 (as of release
S5e¢)e Instead, a description of when locks are imposed as well
as when they are releasedy s provided to enable users to detect,
eliminate and avoid both bottlenecks and deadlocks which may
ogccur in a multi-thread IMS 90 system.

gither of two togfcal tock options, lock-for-update or
leck-for-transacticn, may be selected for a Dam Relative, ISAM or
IRA® files in the File section at configuration time.

Lock-for-update

For Dam Relative files, the lock-for-update option causes a lock
tc be imposed for a logfical record when the record §s retrieved
via the GETUP function or added to the file via the INSERY
function. For ISA¥ fitles, the GETUP and INSERT functions will
impose a logical lock for the file being accessed. These Locks
prohibit access to the record (DAMR and IRAM) or file (ISAM) by
other transactions until this Llock ¥s released. It does not
prohibit further access to the same record or file by the same
transaction. These locks are released when one of the following
occurs within the transaction which imposed the lock:

1. For the GETUP, the record ¥s updated by means of a PUT or
DELETYE functicn. For an INSERT function, the lock is
released upon successful return from Data Managemente.

e The action in which the lock was imposed or a subsequent
action terminates with the TERMINATION-INDICATOR of the PIB
set to “N” (normal transaction termination) or “A°
(voluntary, abnormal transaction termination) or “S”° (sawme
as “A° with a reguest for snap) or the transaction
involuntarily, abnormally terminatese.

3. The Program in which the lLock was fmposed or a subsequent
Program terminates with the TERMINATION-INDICATOR set to “E”7
{external successor) or “0” (delayed internal successor).

The LOCK-ROLLBACK-INDICATOR of the PIB is not applicable for
files which have had the lock-for-update option specified since

I¥S 90, in this case, does not perform online recovery for those
files.

Technical Bulletin #6 10 September, 1979
Rev. 1

Se1e? chk-for-transaction

. The tock-for-transaction, with DAM Relative and IRAM files,

- causes a lock to be imposed for a logical record when the record
is retrieved VIA the GETUP function or added to the file via the
INSERY function. For ISAM files, the GETUP and INSERT will
impose a logical leck for the file as well as the record being
accessed. These locks prohibit access to the record or fite by
other transactions until this lock is released. It does not
prohibit further access by the same transaction. These locks are
retleased when one of the following occurs within the transaction
which imposed the lock:

1. The action in which the Lock was imposed or a subsequent

/ action terminates with the TERMINATION-INDICATOR set to "N,
“A° or “S” or the transaction ¥nvotluntarily, abnormally
terminates.

e The action which terminates with the TERMINATION-INDICATOR
set to efther “E” or “Dp° and the LOCK-ROLLBACK-INDICATOR set
to “H” with pending ltocks outstanding. 7The Logical fite
tock imposed by the GETUP §s released and a record lock is
imposed providing file access to concurrent threads.

1. The action in which the lock was imposed or a subseguent
, action terminates with the TERMINATION-INDICATOR set to “E°
or “p” and the LOCK-ROLLBACK-INDICATOR set to “R”. In this
' case, only thaose locks that have been fmposed wvia GETUP
~ function requests, and for which no corresponding PUT or
DELETE functicn requests have been issued, are released.

4o The action in which the lock was imposed or a subsequent
action terminates with the TERMINATION-INDICATOR set to
efther “N°y “E°y or “D” and the LOCK-ROLLBACK-INDICATOR set
to “0” to ctause a) the rottback of all updates performed by
this transaction to the previous rollback pointy, b) the
release of all locks active for this transaction, and ¢) to
cause a3 new rollback point to be established for this
transaction.

56 The action ¥n which the lock was imposed or a subsequent
action terminates with the TERMINATION-INDICATOR set to
efther “E” or “0” and the LOCK~ROLLBACK-INDICATOR set to “N”
will cause IMS 90 to establish a new rotlback point for the
transaction. Subsequent requests for file rottback will be
effective only to the new rolliback point. This assumes that
other roltback points are not established later in the
transaction by subsequent actions.

Finally, logical file locks imposed fbr 1SA¥ files cannot be
carried from action to action. Any file locks active at action
termination uwuill be retleased:

. 1. File and record locks will be released for pending updates
= if the LOCK-ROLLBACK-INDICATOR is set to “R”.

0S/3 Technical Bulletin #6, 1 September, 1979

Rev. 1

2. 1f a SETL was issued, an ESETL will be $ssued by IMS 90 if
it is not done by the actfon progras.

5«2 CONTROL AND RELEASE OF INTERNAL LOCKS
5¢2¢1T ACTION Program Control

The user action prcgram may, at its ouwn discretion, at action
termination specify subsequent lock discipline via the
LOCK-ROLLBACK—INDICATOR (LRI) of the PIB. tock discipline is
available only for those files which have specified
tock~-for—-transaction (LOCK=TR) in the FILE Section of the IMS 90
Configurator. Using Lock-for-update (LOCK=UP) does not provide
Lock carryover across succeeding actions. The defautt valtue for
the LRI #s "Ny which releases all locks previously imposed by
this action and establishes a new rotlback point.

The holding of locks across actions requires the spectification of
either “R° or “H”° for the LRI at action termination.

Specifying the value of “H” will cause IMS 90 to hold all locks
active for this action and any preceding actions within this)
transactione. The value “R” in the LR1 at action termination will
release any pending locks active for this action as well as any
pending locks active for previous actions within this transaction
which may have been held over. A pending lock ¥s defined as one
tor which a GETUP was issued but the corresponding PUT or DELETE
function was not issued.

1f during an action program execution the determination is made
that any previous updates are. void due to current circumstances;
these updates, for the existing action and any previous actions
for which tocks uwere held, may be rolled back, to the Last
rcttback point. Specification of “0° ¥n the LRI at action
termination will focrce all updates performed by this transaction,
or to the last established rollback point #f one has been
established since itnitialization of this transaction, to be
rciled back to their initfal stotus. Further, all ltocks active
for this transaction will be reteased and a new rollback point
established for this transaction, providing the \
Terminatton—-Indicator is not set to “N°. As previously stated,
the rollback facility is available only for files uhich have
lock-for-transaction specified.

Table 5-1 summarizes the function of each of the
LOCK-ROLLBACK-INDICATORS «

0S/ 3 Technical Bulletin #6,
Rev. 1

September, 1979

TABLE 5-1: LOCK-ROLLBACK~INDICATOR (LRI) Values - (LOCK=TR)

. A ———— A G A S - . G - G - - - - G G S . —— -~ -

P LRY |
JVALUE |

| e B et - e -

I R fRelease all pending tocks. Pending locks are
}incompleted function requests (§.e. GETUP w/o
§ jcorresponding PUT or DELETE function).
[SO S —— - o o i e o e Sl e i e S
I # |JHold att tocks. This includes pending and
i jcomplete function lockse.
jremrm e e - - -
] K JRetease atl locks active to this point imposed by this
| Itransactiono Establish a new rollback point for this
N | jtransaction.
R f—-
] 0 |roltback all updates active by this transaction to the
| Jtast rollback point. Establish a new rollback point for
| fthis transactione. :
i

———— Vo — . - . W G G - - U T W S G - —— . T . . Y — . .~ . -

5.2.2 1IMS 90

K¥henever
the date

. Further,

FUNCTION

- —— - ———— - - - - . o — —— -——

W W A e WA WO G e SR U G NN NN A IR S e

Internat Control

a lock is imposed by an action, the lock will reflect
and time stamp of the thread which imposed the locke.
a bit-map ¥n the TCT is updated to reflect the file for

which the lock was f¥mposed. Subsequent requests to retease locks

or noermal

transaction termination, causes this bit map in the 1C7

to be scrutinfzed to determine which files (FCT”s) should be
‘scanned in Llocating locks hetd by this transaction. When

scanning
assigned
and all

each files” tock Llist entries, the date-time stamp
to this transaction is used to identify and release any
ccks which may exist for the transaction in the list

being analyzed.

Upon succ
existing

message §
released.

essful action/ftransaction termination and releasing of

tlocks (if not held across actions) the user”s output

s scheduled for delivery and all allocated resocurces are
If the action has indicated a successor, the terminatl

repsains .in interactive-mode and the next incoming message will

not initi

0S/3 Technical
Rev. 1

ate a new transaction.

Bulletin #6, 13 ‘ ' September, 1979

6« FILE USAGE WITH MULTI-THREAD IMS 90

6.7 FILE SHARING

ALl data tfites are shareable within the IMS 90 environment thru
File Management. ISAN, IRAM, DAR Relative and SAM fites are
shareable among actions on a func tion-by-functfion basés. ISAM
‘and IRAM files may be altocated exclusively to an action for a
serfes of sequential file operations. Files are subsequently
dealliccated efther explicitly by the action or fmplicitiy at
action termination.

6.2 FILE LOCKS

Iailes 6=1 and 6-2 susmarize when locks are ¥mposed and retleased
v$a tunction catise.

TABLE 6-71: LOCK~FOR-UPDATE

- " g - - - e o

- O S e G e W - - -

t | SRELEASESRETRIEVESWILL NOT RE-§ NO §

!
i IFILE RECORDE FILE ! LOCKED JTRIEVE LOCK-f LOCKS |
1 fLOCK] LOCK | LOCK § RECORD [ED RECORD 1IMPOSED]
R St ot DAl DALt | - ——f et Sl e |
ISETL Ix (1)) ! o | 1 ! |
JESETL i t 1x(1) ¢ i !)
JGETUP IXC(3)F x€2) ¢ t i x]]
JINSERT $X€3)} x€2) #x¢(3)] ' |] s
§PUT/DELETE ¢} I X2) Ix(3) 4]]]
JGET (SEQNTL)E i ') X } | X i
ICGET C(RANDOM) | i ' 1 [x i X]
| SN SUUN SO, SIS AU SUSIUPNR JISII |
TABLE €-2: LOCKED-FOR-TRANSACTION
! i] . IRELEASEIREFRIEVEIVILL NOT RE-} NO
i ' JFILEIRECORD! FILE -1 LOCKED JTRIEVE LOCK-} LOCKS |
| 1LOCK | LOCK § LOCK t RECORD fED RECORD §ImPOSED
bttt bt DOl Rt bl Dt etk Dot ot t-- crfee—ene=i
ISETL 1IXC1)} ' t ' !]
JESETL] i IX€1) 4]] }
SGETUP EXA3)) X€2) ¢ g ! X t 3
L INSERT IX€3)) x(2) 1x(3)]] X] |
§PUT/DELETE |} § X€(2) 1x(3) t] ! !
§GET (SEGNTL)} i ' ! X f) § }
BGEY (RANDOM)}] t]] X t X]
| I SN S S, S I SN SIS |
1« ISAP and IRAM files
2« AtL files.
3« For 1SAm only. .
0S/3 Technical Bulletin #6, 14 September, 1979

Rev. 1

7. ACTION PﬁOERAﬂ CONSIDERATIONS

. 7.1 ACTION PROGRAM DESIGN

One of the prime factors predicating the overall performance and
memory size of multi-thread IMS 90 is the initial design of the
user action programs. It §s imperative that the design of the
user action prograss recefve the utmost attention in any system
design. The action program should never be construed as an
online batch-type jobe It §s in the better interests of response
times and overall availability of IMS 90 resources that action
programs abstain from extensive sequential searches on 1SAM or
IRA¥ files or extensive updating of any one or group of files in
a2 single action.

There are relatively few rules which should be consfdered when
designing an efficient multi-thread I®S 90 action program.
Several of the fotlowing points reflect response time
considerations; the remainder directly affect memory sizes which

could determine whether or not an extra thread can be scheduled
for execution.

' 0S/3 Technical Bulletin #6, 15 September, 1979
Rev. 1

k1

&1
K1
R1
R1
‘®1
k1
R1
R1
R1

711

0s/3

Figures 7-1 and 7-2 depict the relationships between a
Transaction, Action and Program in the IMS 90 environment.
Figure 7-1 indicates a simple relationship where a single action
program execution constitutes a transaction, action and programe
Figure 7-2 shows a compound relationship where several action
jterations make up the total transaction and in the final
sequencey multiple action program executions comprise the
resulting action.

INPUT MESSAGE § I |
PROCESSING fprogramlActionlitransaction
OUTPUT MESSAGE i | i
NORMAL TERMINATION]} i }

FIGURE 7-1: SIMPLE TRANSACTION/ACTION/PROGRAM RELATIONSHIP

INPUT PESSAGE i i i

PROCESSING i i i

EXTERNAL SUCCESSION IPROGRAM [ACTION |

{(Locks hetd - Ko Rollback Point)] i }

i

i

INPUT MESSAGE | i

PROCESSING i | i

DELAYED INTERNAL SUCCESSION {PROGRAM |ACTION |

(Nc Locks held - Logica(i i i

Rotiback Pointl i !)
JTRANSACTION

}

INPUT MESSAGE) | i

PROCESSING i { i

IMMEDIATE INTERNAL SUCCESS ION IPROGRAM | i

(Locks held - No Rotlback Point)|] i i

fACTION |

| i

PROCESSING : i i)

NORMAL TERMINATION |PROGRAM | i

CIMPLIED ROLLBACK POINT) } | i

' i

FIGURE 7-2: COMPOUND TRANSACTION/ACTION/PROGRAM RELATIONSHIP

Type of Action Program.

The most eftficient form of action programs in a multi-thread
environment is the re-entrant (BAL) or shareable (COBOL).

Re-entrant and shareable action programs can provide processing

of several concurrent threads. Serfally reusable actions cannot
provide this type of processing because they are self-modifying.

when possible and when there is a chofce of action program types

tc be used for an I®S 90 application, re—entrant or shared code
should be usede 1In any case, care should be exercised in the .
design of an IMS 9C application to remove the potential of

Technical Bulletin #6, 16 September, 1979
Rev. 1

®1 deadlocks (see Section 8. Deadlock).

‘I' RY Re-entrant and Shareable action programs altow multiple threads
Rt concurrent access. 1It, for exampte, thread 1 has progras—R and
-3] thread 2 also requests FProgrem—-A. Thread 2 will be gueued until
R pregras-A issues a function request to INS 90. At this time
RY thread 2 witi be given use of program-A. When thread 2 perforas
R1 a function request to IMS 90, thread 1 will be re-scheduled for
R1 progras-A and so one.

7.1.2 ACIION Program Size

Keep the size of action programs as minimal as possible. Never
design an action progras to do ¥t all. The larger the action
progran, the fewer number of concurrent threads that can be
scheduled. The cobject of mutti=-thread INS 90 §s to service as
meny requests as possible, concurrentiy. Large action prograns
tend to not only occupy more memory but also hamper concurrent
processing due to being efther CPU bound or imposing extended
Ltists of tocks for records and/or files which are also needed by
cther threads. These sttuatfons may also lead to extended
pertods of internal watting for resources to become avaitabtle.

7+7«3 170 Requests

. Poc as few I/0°s as possibles A rule 6f thumb to fotlow to
previde performance and etiminaté exteéended locking of fites and

recordsy s to timit action programs to seven 170°se Granted,
this witl not atuays be the case; but under no circumstances
should ¥t become the exception. tong sequential searches on
Indexed ftiles (SETL/ESETL) should be avoided at all costs., A
Linit of 100-200 1/0”s should be the maxfrum for sequentfal
search functions. Extended sequential functions tock cut the
file from atl users and cause not only increased response times
but alsoc deadlock sftuations. If sequential searthes are a
necessity, random SET s should be employed with the action
progran incrementing the key each time. 7This uitt el ininate file
locking and permit access to alt users.

7Toled Numbter of Files Accessed

Access as few files as possible. Before a thread can be
schedutled, all rescurces that uilt be needed for execution must
be securede This dncltudes 170 areas for each file. A tack of
avalttable resources will cause a threao to be gqueved and a
smaller thread to be schedulede If an 1/0 area needed for a
transaction being schedutled has been atlocated previously for an
exfisting thread, this 170 area will be shared betueen the two
threads. But this may not always be the case. For example, 1t a
~ thread to be scheduled needs four separate ISAM or IRAM files
. whese average blocksize §s 2K bytes; an extra 8K bytes of
cverhead wemory exists for this thread, 4f the fites requested

'0S/3 Technical Bulletin #6, 17 September, 1979
‘ Rev. 1

are not being used by current[y active threadse.

7«15 Locks

Ispose Locks only when necessary. The majority of deadlocks that .
occur in an established multi-thread IMS 90 environment originate
trom file tocks, record tocks and the use of serfally-reuseable
programs.

1f the user is performing simple interrogation of a file or a
selected group of records within a file, the random 6ET function
should be used instead of the GETUP or SETL sequences. The SETL
function will impose file locks for ISAM and IRAF files. The
GETUP function will impose file lLocks for ISAM and record locks
for IRAM and DAMR filese.

Providing for as many of the above points as possible when
designing action programs will assist greatly in attaining and
maintaining the desired through-put necessary for any
agplicatione.

0S/3 Technical Bulletin #6, 18 September, 1979
Rev. 1 :

8.
2.1

8.2

8.2.

8.2.2 bDeadly Embrace - Program Availability

DEADLOCKS
DEADLOCK DEFINITION

The deadlock situaton occurs when Multi-Thread IMS 90 detects an
uncorrectable situation within the transaction mix which will
indefinitely inhibit the processing of one or more threads due to
conflict in availability of necessary resources. bDeadlocks
result from inconsistencies in user design of the overall
appltication. Whenever a transaction is in design phases, the
user must alsc be cognizant of other transactions which may be
active concurrently within the IMS 90 system mix. The design of
& transaction should be done in such a way so as not to cause
direct confl ict with other transactions over available resources.

DEADLOCK SITUATIONS

The following sections arevexanpies which provide explanations of
feasible deadlock sftuations.

1 Deadly Embrace - File Avatlability

Thread 1 issues a GETUP (and imposes a lock) for FILE-A and a
subsequent GETUP for FILE B. Thread 2 which is executing
concurrently with thread 1, issues a GETUP (and imposes a tock)
on FILE-B and issues a subsequent GETUP to FILE-A.

Yhis is more commonly referred to as a deadly-embrace. ©Both
threads will be waited ¥indefinitely because Thread 1 holds the
teck for FILE-A which Thread 2 s waiting for, and Thread 1 will
be watted for FILE~B which thread 2 holds the lock for. The only
resolution ¥s for IMS 90 to cancel one or both threads and allow

terminat cperators to reenter the transactions.

In order to avoid this situation all action programs should
access all files in the same order and insure the PUT or DELETE
is issued as soon as possible after the GETUP is performed.

This situation can only occur with serfally~reuseable
{ron-shareable) action programs.

Thread 1 employs program-A which issues a GETUP (and imposes a
tock) for FILE-X. Subsequently, a PUT is issued (record s stili
locked) and succession (regardless of type) is done to program-B.

Program—A also elects to carry the record ltock over to program—B8.
Thread 2 has meanwhile been scheduled using program-8B which

fssues a GETUP to FILE-X requesting the same record thread 1 is
hcldinge.

This also is a deadly embrace. Thread 1 cannot continue because

19

08/3 Technical Bulletin #6 September, 1979

Rev..l

thread 2 has Program-B. Thread 2 has been queued because the
record requested is tocked by thread 1.

1f program-B were shareable or reentrant, thread 2 would be
queued for the reccrdy and thread 1 would proceed through
succession and execution of Program—B. When the record Lock is
released, thread 2 would continue normal processinge.

Be.203 Pending tocks

when using Immediate Internal Succession the user should exercise
great care not to teave pending locks when terminating the action
programe Ltock discipline is not interrogated during Immediate
Internal Succession and pending Locks normally imply file tocks
(except for DAMR files)e. 1f the user intends to performs
Ismediate Internal Succession an ESETLy PUT or Delete should be
issued for each outstanding SETL and GETUP respectively before
action prcgram termination. This will eliminate any unnecessary
waiting by other threads for the files being held by this action.

8.2.4 FRecord Lock

when a record is locked by a thread, regardless of filetype, atl
subsequent requests for access to that record will be queued.

The most common occurence of this sftuation ¥s when one or more .
transaction types update a control record for a file. This
should be avoided whenever possible.

These are the common causes of deadlocks. Care should be taken
to avoid these situations and thus etiminate any bottlenecks that
willt hamper processinge.

0S/3 Technical Bulletin #6, 20 September, 1979
Rev. 1 '

9. MULTI-THREAD IMS 90 MODULES and Generat Flowu
9.1 MULT] THREAD IMS 9 MODULES

The following sections give 2 brief description, by\functional
area, of each of the Multi thread IMS 90 modules.

0S/3 Technical Bulletin #6. . 21 September, 1979
Rev. 1

9«11 Functional Area - STARTUP

The START-UP modules prepare IMS 90 for on-line execution. .
M ODULE REQUIRED
NAME VSes OPTIONAL FUNCTIONS
1 %
ZBHS TART R 1« READS PARAM CARD
Ze¢ CALLS ZQWHSTARTY ,
3« ASSIGNS SECONDARY STORAGE KEY
4o ATIACHES SUBTASKS
5¢ ATTACHES MAIN SUBTASK STXIT
CODE
6« OPENS FILES
7« ESTABLISHES STORAGE POOL
8e LOADS RESIDENT ACTION PROGRAMS
9« CALLS ZIB#LOAD TO LOAD ON-LINE
PHASE
i
ZQESTART R 1. READS CONFIGURATION TABLES FROM
NAMEREC
2« PERFORMS NECESSARY LINKAGE
BETWEEN TABLES
2e ALLOCATES INPUT MESSAGE
STAGING BUFFER AREA .
3
ZCAMOP MY o R PERFORMS INTERNAL MESSAGE CONTROL
' ORIENTED START-UP PROCEDURES
T« LINK TO ICAM VYIA MOPEN SVC
e SEND “IMS READY” MESSAGE
TO APPROPRIATE TERMINALS
3¢ ATTACHES IMC SUBTASK,
be ACTIVATES STXIT AND OPCOM
STXIT CODE IF OPCOM=YES
3
ZCHIOPEN R EXECUTES ACTUAL ICAM MOPEN
s
ZCEBTCHA R PROCESSES /7 PARAM BA CARD
3 .
ZLABTC KX o 4] PERFORMS BATCH ORIENTED

INITIALIZATION PROCEDURES

1

FUNCTIONS 1 - & ARE EXECUTED UNDER JOB STEP TASK; 5 - 8 UNDER

MAIN SUBTASK.

2

0S/3 Technical Bulletin #6, 22
Rev., 1

September, 1979

EXECUTES UNDER JOB STEP TASK.

o :

EXECUTES UNDER IMC SUBTASK.

0S/3 Technical Bulletin #6, a3 September, 1979
Rev. 1

9.1.2 Functional Area - THREAD SCHEDULING

The THREAD-SCHEDULING modutes allocate and deallocate action .
related resources and control thread execut ion,.

MODULE
NAME

-

4
ZIETH

A.

ZTHIMC

ZBHALOAD

4
IAHAS

4

REGQUIRED
vSe OFTIOKAL

0S/3 Technical Bulletin #6

Rev. 1

1.
2e
3.
4.
5.
6.
7.
8e
9.

10.

AWAKES IMC SUBTASK FOR OUTPUT PROC .

FURKCTIONS

SCHEDULES THREADS AND 1/0 FOR
THREADS '
CREATES THREADS

TERMINATES THREADS

WAITS THREADS FOR INTERNAL
FACILITY

POSTS THREADS WHEN FACILITY
AVAILABLE

REQUESTS I/0 SUBTASK FOR THREAD
POSTS THREADS WHEN XI/0 COMPLETE
CONTAINS INTERRUPT TIMER STXIT
CODE

CONTAINS PROGRAM CHECK START
CODE

CONTAINS ABTERM STXIT CODE

LOADS 1IMS 90 PHASES

1.
2e
3.
4.
5
6o
T
g.

L
10.

11.

24

ALLOCATES MAIN STORAGE
RESOURCES FOR ACTION VIA
ISHMSH

CALLS ZCHRDMT TO BUILD IMA
CALLS ZJ#SCHED TO READ DDR AND
DETERMINE DRA SIZE

CREATES THREAD FOR ACTION

VIA ZTHTH |

CALLS ZA#LOADR TO LOAD PROGRAM
CALLS ZFHGEN2 TO READ CONDATA
SETS UP SECONDARY STORAGE
PROTECTION FOR USER
DEALLOCATES MAIN STORAGE
RESOURCES FOR TERMINATING
ACTION

CALLS ZFHGEN2 TO WRITE CONDATA
CALLS ZFH#GENZ TO PERFORM FILE
MANAGEMENT TERMINATION
PROCEDURES

REQUESTS OUTPUT PROCESSING

September, 1979

4
I SHMSK R

5
T ARLOADR R
Ze¥I0ONnNN R
where:
nnn=CONF1D
OF NETHWORK

SECTION IN
CONFIGURATOR

6
2 €£mIMS0 R

4 .
EXECUTES UNDER MAIN SUBTASK.

5

é

ALLOCATES AND DEALLOCATES
 (CONDITIONALLY OR UNCONDITIONALLY)
BLOCKS OF STORAGE FROM THE MAIN
STORAGE POOL

LOADS USER ACTION PROGRAMS

1.

e

CONTAINS THOSE TABLES REQUIRING
ASSEMBLY GENERATION

Ae IMS 90 AND USERR DATA FILE
DIFS
Be ICAM-IMS G0 SHARED TABLES

CONTAINS PREALLOCATED 1/0
AREAS FOR AUDFILE AND NAMEREC

SENDS ERROR MESSAGES TO CONSOLE
PRINTS SKAP FOR ABNORMALLY

TERMINATED ACTIONS

EXECUTES UNDER CONTROL OF AN J/0 SUBTASK.

EXECUTES UNDER CONTROL OF MAIN SUBTASK AND 1/0 SUBTASK.

0S/3 Technical Bulletin #6, 25

Rev. 1

September, 1979

Gelal

0s/3

Functional Area - INTERNAL MESSAGE CONTROL (IMC)

The IMC modules control the communications environment (i.e.,

terminal input and output).

MODULE REQUIRED
KAME VSe OPTIONAL
3
ZCHRIMCMT R
2
ICHTIIPMT R
3
ZCHRFKYNY 0
3
ZCHMTCRY R
7
ZCROPCOM 0
ICHICODE R
4
ZCHRDMT R
4
ZCHREDMY 0
Technical Bulletin #6,

Rev. 1

FUNCTIONS

1« DIRECTS PROCESSING OF INTERNAL
FESSAGE CONTROL C(IMC) MODULES

¢« CONTAINS ALL ENTRY POINTS FROM
ICAM AND DETERMINES SUCCESSIVE
PROCESSING

3. CONTAINS INTERFACE WITH
APPLICATION MANAGEMENT FOR
LQUTPUT PROCESSING

1« QUEUES INPUT MESSAGE. FOR
APPLICATION MANAGEMENT

2« PROCESSES REGULAR TERMIKNAL
COMMANDS

3« ALLOCATES AND DEALLOCATES
BUFFERS FROM THE INPUT MESSAGE
STAGING AREA FOR INPUT AND
OUTPUT MESSAGES

PROCESS FUNCTION KEYS
PROCESSES MASTER TERMINAL COMMANDS

ALLOWS SEVERAL MASTER TERMINAL
COMMANDS TO BE ENTERED FROM CONSOLE

SENDS AUTOMATIC STATUS MESSAGES ¥O
APPROPRIATE TERMINALS UNDER CONTROL
CF THE IMC INTERRUPT TIMER STXIY
CODE

DETERMINES SIZE OF IMA AND MOVES

USER-DESIRED INPUT MESSAGE INTO
IMA., PERFORMS NO EDIVING, GENERAL

EDITING AND/OR LOWER CASE
TRANSLATION AS SPECIFIED IN ACTION
SECTION

PERFORMS EXPANDED INPUT PROCESSING
ON IKPUT BASED ON EDIT RECORD

26 September, 1979

CREATED BY OFFLINE EDIT TABLE
GENERATOR (ZHHEDT)

3 .
Z0¥QUTNT R 1« CONTROLS OUTPUT MESSAGE PRO-
CESSING AT ACTION TERFINATION
d« CONTROLS OUTPUT MESSAGE PROC-
CESSING DURING ACTION VIA
SEND COMMAND BY DIRECTING
USE OF UNSOLICITED OUT-
PUT MODULE (ZOH#UNSMT)
3
ZOHUNSHY 0 1. PROCESSES CONTINUED RESPONSES
TO ORIGINATING TERMINAL
2« PROCESSES SWITCHED OUTPUT
(leEey OUTPUT TO OTHER THAN
ORIGINATING TERMINAL)
3. CONTROLS USE OF UNSOLICITED
OUTPUT INDICATOR
3
LO#CONRTY 0 Te VERIFIES AUXILIARY ODEVICE
' SPECIFICATION IK USER OUTIPUY
MESS AGE
2+ CONTROLS CONTINUOUS OUTPUT BY
HANDL ING DELIVERY NOTIFICATION
3. CONTROLS OUTPUT-FOR-INPUT
ZIIXTAB R SERVES AS TRANSLATE TABLE FROM
LOWER CASE TJ0O UPPER CASE
ZLRUArT 0 PROCESSES DOWN-LINE LOAD

REQUESTS TG A UTS400 TERMINAL.

7

EXECUTES UNDER CONTROL OF OPERATOR COMMUNICATIONS ISLAND CODE.

08/3 Technical Bulletin #6, 27

Rev. 1

September, 1979

Geleh Functional Area - BATCH PROCESSING

The BATCH PROCESSING modules control the processing of batch ‘
transactions through 1KS 90.
MODULE REQUIRED
RAME VS. OPTIONAL FUNCTIONS
3 o .
ZCKICANM R DECODES ICAM SVC REGUESTS FROM
OTHER IMC MODULES '
3 - |
ZCATZIBTH 0 PROCESSES ZIBTH MASTER TERMINAL
COMMAND
3 .
ZCH#B TCHC 0 DIRECTS THE PROCESSING OF BATCH
FUNCTIONS
3
2CHB THMT . 0 PERFORMS MULTI-THREAD DEPENDENT
OPERATIONS
ZCHBPRT2 0 CONTAINS A PRINTER OTF
3
2CH#BPRY o CONTAINS A PRINTER DOTYF
3
ZCHBPRTS 0 CONTAIKS A PRINTER DTF
3
ICHBPRTL 0 ' CONTAINS A PRINTER DTF
. . 28
0S/3 Technical Bulletin #6, September, 1979

Rev. 1

9.1e5 Functional Area - FILE MANAGEMENT

. FILE MANAGEMENT modules control the access to alt IMS 90 and user
data files.
RODULE ; REGUIRED
NAME VSe OPTIOKAL FUNCTIONS
'A
< I FHGEN? R 1« INTERCEPIS ALL REQUESTS FROW

ACTION PROGRAMS AND FRORM INMS G0
MODULES TO ACCESS/UPDATE FILES

€« VALIDATES PARAMETER '

3. SELECTS AND GIVES CONTROL TO
THE APPROPRIATE MODULE 70O
EFFECT THE REQUEST

4« MAKAGES RECORD LOCKS

5« PERFORMS FILE MANAGEMENT RE-
LATED TERMINATIONK PROCEDURES
AT ACTION END INCLUDING RE-
COVERY PROCEDURES AT ABNORMAL
TERMINATION

6 ‘
Z F#SIMR1 R : 1. PROCESSES REGUESTS FOR ACCESS
TO THE NAMED RECORD FILE
(I.E.y GET, GETC)
A 2+« MAINTAINS A MAIN STORAGE
. : SUBFILE OF THE MOST RECENTLY
B ACCESSED RECORD

& .

ZFHSIAMS R PROCESSES REQUESTS FOR ACCESS 10

THE CONDATA FILE (l.E.y GET, PUT)
]

ZFHALUD]ITY ¢ PROCESSES REQUESTS TO0 AUDITY FILE

(leEey GETy PUT)
6

ZFRISANM R PROCESSES THE FOLLOWING RANDOM AND
SEQUENTIAL REQUESTS 1O 1ISAM USER
DATA FILES
1. 6ET
2« GETUP
3. PUT
4. DELETE
5 INSERT
6. SETL
7« ESETL

6 :
Z FRD AMR 4] PROCESSES THE FOLLOWING REQUESTS TO
. DAM RELATIVE ORGANIZATION
(RELATIVE RECORD) USER DATA FILES
0S/3 Technical Bulletin #6, 29 September, 1979

Rev. 1 :

1« 6GET

Ze« GETUP

3. PUT

4. DELETE

Se INSERT .

¢
ZFHSEQ 0 PROCESSES PUT REQUESTS TO SEQUEN- ;
TIAL USER DATA FILES

6
ZFATRACE 0 WRITES BEFORE AND AFTER IMAGES YO
A JOURNAL TAPE FOR OFFLINE RECOVERY

1 FASEPRM 0 USER SUBPROGRAM INTERFACE

6
1FRT0k2 0 KRITES OUTPUT MESSAGE TO
TOMFILE WHENEVER A ROLLBACK
POINT IS ESTABLISHED.

4
ZGHSNAPM 0 EDITS SNAP OGUTPUT

6
ZFH0 PC2 ' 0 PROCESS OPEN/CLOSE OF
FILES IN RESPONSE TO 2Z0PN/ZZCLS

6
ZFRIRAM 0 PROCESS THE FOLLOWING RANDOM
AND SEQUENTIAL REQUESTS Y0
IRAM USER DATA FILES.

0S/3 Technical Bulletin #6 10 September, 1979
Rev. 1 '

9eteb functionakylrea -~ DEFINED RECORD MANAGEMENT

. DEFINED RECORD MANAGEMENT controls all requests to user defined
files.
MODULE REQUIRED
NAME VS. OPTIONAL ' FUNCTIONS
- 4
1 JESCHED R REQUESTS THE RETRIEVAL OF THE

APPROPRIATE DATA DEFINITION RECORD
AND DETERMINES THE SIZE OF THE
DEFINED RECORD AREA REQUIRED FOR
THIS DEFINED FILE
4 : '

Z3NDRRT7 0 INTERPRETS AND DIRECTS FUNCTION
CALLS FROM UNIGQUE AND USER ACTION
PROGRAMS WHICH INVOLVE A DEFINED
FILE. DEFINED RECORD MANAGEMENT
SUPPORTS RANDOM RETRIEVAL,
SEQUENTIAL RETRIEVAL, AND RAKNDONM

UPDATE OF DEFINED FILES FROM ONE
OR MORE LOGICAL FILES

0S/3 Technical Bulletin #6 31 September, 1979
Rev. 1

9.1.7 Functional Area - SHUTDOWN

SHUTDOWN pertforms those functions necessary toc terminate IMS 90. .
MODULE REQUIRED
NAME vse OFPTIONAL FUNCTIONS .
ZTIHSHDWUN R 1« WRITES RESTARY RECORDS TO ‘
KAMEREC

de CLOSES ALL FILES

0S/3 Technical Bulletin #6, 32 September, 1979
Rev. 1

9.2 MULTITHREAD IMS 90 GENERAL FLOM

Figures 9-1, 9-2 and 9-3 are provided to summarize the general,

internal procesing flow thru several of the functional areas of
gulti thread 185 90.

0S/3 Technical Bulletin #6, 33 September, 1979
Rev. 1 \ , :

$.2.1 1lnput Message

Figure 9-1 shows the general processing for an input message from .
receipt by IMS 90 to the scheduling and Loading of an ACTION

programe.
R —— cmwrme= (7)) | mececcccaccae-
I KERT IS LTI EER e I]
[1CAR |=-->|SuBTASK] ->|THREAD MGMT | .
—————— —— (3)] joeeremmreeee i
1 ->JACTION SCHED. |
! ->| - h<-
R et B
\NTERMINAL/ (&)) | GEN. REG.] }
\ / I | PrROC- I
————— T R 1S
=>|MAIN STORAGE | |
| MANAGEMENT |} }
e e B
el DL
i | AacTION| i<~
I IPrROGRANM] i
||
1. ICA® notifies Internal Message Control of an input message.

2. Internal Message (Control performs editing of the ¥tnput
messagey queues the action and awakes the main task.

L Thread Management schedules Action Scheduting to allocate
resources to process the input.

4 o Action Scheduling gives Main Storage Management Control to
allocate space for Control Blocksy Action Program and the
Activation Record.

S5e Once this has been done, Action Scheduling loads the Action
FProgram and moves the input message into the users Input
Message Area (IMA).

FIGURE 9-%: GENERAL FLOW -~ INPUT MESSAGE

34
0S/3 Technical Bulletin #6, September, 1979

Rev.1

Qefe? GET Request

' Figure 9-2 is provided to show the internal processing of an
. ACTION program GET request for a record in a user data fite.
MAIN TASK
. | THREAD MGMT {
|- | 1/70
¥ ; I ACTION SCHED | SUBTASK
' jom—m e 1) ————————
->} 6EN REQ PROC |==m==~ >} FILE i
P j€¢=mmmmm IMANAGEMENTI
M 4 l-—-—————_—————— Py Vo i
I IMAIN STORAGE 1
| 1| MANAGEMENT i I ()
T R] v
i I ACTION | ———eseoee-
->} PROGRAM] ! DATA }
| S 1 IMANAGEMENT]

1e User Action Program requests a record to be retrieved from a
‘ user data file.

2. General Request Processor gives control to the appropriate
File Panagement module.

3. File ranagement awakes an I/0 subtask which issues the
. request for the record from Data Management.

b The record s returned to the Action through File Management
and General Request Processore.

FIGURE 9-2: GENERAL FLOW - GET REQUEST

0S/3 Technical Bulletin #6, 35 September, 1979
" Rev. 1

9.2.3 Termination Processing

The general processing flow for termination from an ACTION
program is shown in Figure 9-3,

——————- e L+ T —

i i 4y | e | i .
I 1cCanm j<¢==--]IMC SUBTASK j—=—-= > [THREAD M6MT |<- ;
bk S j(5) -~} P 1)
I ()} |j-=m—m—mmmeee I | ;
i ->i j—
v ~=fACTION SCHED }<-
| j~—————- —————— | |
——————— | ! , I |
\TERMINAL/ (7)1 IGEN REQ PROC } |
\ / I e R et RS
————— =>|MAIN STORAGE | |
| MANAGEMENT |} |
| R e D S |
1 ACTION [|
| PROGRAM j--
§

1. User Action Program terminates itself and Action Schedul ing
deallocates the resources for this actione.

Ze Action scheduling then initiates output message processing.

2. Thread Fanagement issues a CAWAKE to the IMC taske .

4. The IMC subtask takes the output message and ¥ssues an
MWR ITE to ICAM,

5a Once the output message is passed to ICAM, the Internat
Message Control Task z2wakes the main taske.

& Thread Management notifies Action Scheduling to conptete
termination processing.

7« Action Scheduling gives control to Main Storage Management
to release the areas assigned to the Activation record,
Control Blocksy and Action Progras.

FIGURE 9-3: GENERAL FLOW - TERMINATION PROCESSING

0S/3 Technical Bulletin #6, 36 September, 1979
Rev.1 :

- /8

USER COMMENT SHEET

Your comments concerning this document will be weicomed by Sperry Univac for use in improving
subsequent editions.

Please note: This form is not intended to be used as an order blank.

{System) {Release) {Level)

{Document Title)

(Issue Number) (Revision Number) {UP- Number) (Revision Number)

Comments:

From:

(Name of User)

(Business Address)

Foid on dotted lines, and mail. (No postage stamp is necessary if mailed in the U.S.A.)
Thank you for your cooperation

I II |I | NO POSTAGE

NECESSARY
IF MAILED
IN THE
UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 21 BLUE BELL, PA.

POSTAGE WILL BE PAID BY

SPERRY UNIVAC

ATTN.: SERIES 90
SOFTWARE CONTROL

ind

P.0. BOX 500
BLUE BELL, PENNSYLVANIA 19424

