
A UP-7503.l Rev. l

This manual is published by the Univac Division of Sperry Rand Corporation
in loose leaf format. This format provides a rapid and complete means of
keeping recipients apprised of UNIV AC® Systems developments. The infor­
mation presented herein may not reflect the current status of the programming
effort. For the current status of the programming, contact your local Univac
Representative.

The Univac Division will issue updating packages, utilizing primarily a
page-for-page or unit replacement technique. Such issuance will provide
notification of software changes and refinements. The Univac Division re­
serves the right to make such additions, corrections, and/or deletions as,
in the judgment of the Univac Division, are required by the development of
its Systems.

UNIVAC is a registered trademark of Sperry Rand Corporation.

©1968 - SPERRY RAND CORPORATION PRINTED IN U.S.A. •

UP-7503.1
Rev. 1

•

•

•

CONTENTS

FUNDAMENTALS OF COBOL

L A N G U A G E

1. INTRODUCTION

1.1. WHAT IS COBOL

1.2. HISTORY AND BACKGROUND

1.3. BENEFITS DERIVED FROM USING COBOL

1.4. COBOL AND THE COMPUTER

L5. THE COBOL SYSTEM

1.6. COBOL MODULES AND LEVELS

1.7. SCOPE OF MANUAL

2. PROGRAM ORGANIZATION

2.1. GENERAL

2.2. DESCRIBING THE DATA
2.2.1. Items and Groups
2.2.2. Records
2.2.3. Files
2.2.4. Summary

2.3. STATING THE PROCEDURES FOR PROBLEM SOLUTION

2.4. IDENTIFYING THE PROGRAM

2.5. DESCRIBING THE EQUIPMENT

2.6. A SAMPLE APPLICATION
2.6.1. Definition of Application
2.6.2. Description of Data
2.6.3. Procedural Steps
2.6.4. Physical Environment Description
2.6.5. Program Identification

2.7. THE CODING FORM

2.8. SYMBOLS, RU LES, AND NOTATIONS USED IN THIS MANUAL

Contents

SECTION: PAGE:

CONTENTS

1 to 6

1-1to1-9

1-1

1-2

1-5

1-6

1-6

1-8

1-8

2-1 to 2-11

2-1

2-1
2-2
2-3
2-3
2-4

2-4

2-5

2-5

2-6
2-6
2-6
2-6
2-7
2-7

2-7

2-9

1

UP-7503.1
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E

3. DATA DESCRIPTION

3.1. GENERAL

3.2. CHARACTERS USED IN COBOL

3.3. TYPES OF DATA
3.3.1. User-Supplied Data
3.3.1.1. Data-Names
3.3.1.2. Condition-Names
3.3.1.3. Literal Data
3.3.2. Reserved Data-Names
3.3.2.1. Figurative Constants
3.3.2.2. Special Register
3.3.3. Qualification of Data

3.4. ORGANIZATION AND STRUCTURE OF THE DATA DIVISION

3.5. DESCRIBING A FILE
3.5.1. General
3.5.2. Complete Entry Format
3.5.3. File Description Clauses
3.5.3.1. BLOCK CONTAINS

3.5.3.2. RECORD CONTAINS

3.5.3.3. LABEL

3.5.3.4. DATA RECORDS

3.5.3.5. VALUE OF

3.5.4. Sample Problem

3.6. DESCRIBING A RECORD
3.6.1. General
3.6.2. Complete Entry Format
3.6.3. Record Organization
3.6.4. Record Description Clauses
3.6.4.1. LEVEL NUMBER

3.6.4.2. USAGE

3.6.4.3. PICTURE

3.6.4.4. JUSTIFIED

3.6.4.5. SYNCHRONIZED

3.6.4.6. VALUE IS

3.6.4.7. BLANK

3.6.4.8. REDEFINES

3.6.4.9. RENAMES

3.6.5. Sample Problem

3.7. DESCRIBING WORKING STORAGE AREAS
3.7.1. Organization and Structure
3.7.2. Single-Item Areas
3.7 .3. Record Areas
3.7 .4. Conditional-Item Areas
3.7 .5. lnitia I Values for Working-Storage Areas
3.7 .6. Sample Problem

Contents
SECTION: PAGE:

3-1 to3-50

3-1

3-2

3-2
3-3
3-3
3-4
3-5
3-6
3-6
3-7
3-8

3-9

3-11
3-11
3-12
3-12
3-13
3-14
3-15
3-16
3-17
3-18

3-19
3-19
3-20
3-21
3-24
3-25
3-26
3-27
3-37
3-38
3-39
3-40·
3-41
3-42
3-44

3-47
3-48
3-48
3-49
3-49
3-49
3-49

2

e

•

•

UP-7503.1
Rev. 1

e

•

FUNDAMENTALS OF COBOL

L A N G U A G E

4. PROCEDURES

4.1. GENERAL DESCRIPTION

4.2. EXPRESSIONS
4.2.1. Arithmetic Expressions
4.2.2. Cond itiona I Expressions
4.2.2.1. Rules of Comparison
4.2.2.2. Comparison of Numeric Items
4.2.2.3. Comparison of Nonnumeric Items
4.2.2.4. The Simple Conditional Expression
4.2.2.5. The Compound Conditional Expression
4.2.2.6. Implied Subjects
4.2.2.7. Implied Operators

4.3. STATEMENTS AND SENTENCES
4.3.1. Imperative
4.3.2. Conditional

4.4. PROCEDURE FORMATION

4.5. PARAGRAPHS

4.6. SECTIONS

4.7. PROCEDURAL VERBS
4.7 .1. Input/Output Verbs
4.7.1.1. OPEN

4.7 .1.2. READ

4.7.1.3. WRITE

4.7.1.4. CLOSE

4.7.1.5. ACCEPT

4.7 .1.6. DISPLAY

4.7 .2. Arithmetic Verbs
4.7.2.1. ADD

4.7 .2.2. SUBTRACT

4.7 .2.3. MULTIPLY

4.7 .2.4. DIVIDE

4.7.2.5. COMPUTE

4.7.3. Data Movement and Manipulation Verbs
4.7.3.1. MOVE

4.7.3.2. EXAMINE

4.7.4. Sequence Control Verbs
4.7.4.1. GO TO
4.7.4.2. ALTER

4.7.4.3. PERFORM

4.7 .4.4. STOP

4.7.5. Compiler-Directing Verbs
4.7 .5.1. EXIT

4.7 .5.2. NOTE

4.7 .5.3. ENTER

Contents
SECTION: PAGE:

4-1 to 4-58

4-1

4-1
4-1
4-4
4-4
4-4
4-5
4-5
4-8
4-10
4-10

4-10
4-11
4-11

4-12

4-12

4-12

4-13
4-14
4-14
4-16 .
4-18
4-20
4-22
4-23
4-24
4-26
4-28
4-30
4-31
4-33
4-34
4-34
4-37
4-39
4-39
4-41
4-42
4-48
4-49
4-49
4-51
4-52

3

UP-7503.l
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E

4.8. SAMPLE PROBLEM
4.8.1. Flow Chart
4.8.2. Interpretation of Flow Chart

5. DESCRIBING THE EQUIPMENT AND PHYSICAL ENVIRONMENT
.

5.1. GEN ERA L D ESC RI PT ION

5.2. ORGANIZATION AND STRUCTURE OF THE ENVIRONMENT DIVISION

5.3. CONFIGURATION SECTION
5.3.1. SOURCE-COMPUTER

5.3.2. OBJECT-COMPUTER

5.3.3 .. SPECIAL-NAMES

5.4. INPUT-OUTPUT SECTION
5.4.1. FILE-CONTROL

5.4.2. l·O·CONTROL

5.5. SAMPLE PROBLEM
5.5.1. Configuration Section
5.5.2. Input/Output Section

6. IDENTIFYING THE PROGRAM

6.1. GENERAL DESCRIPTION

6.2. ORGANIZATION AND STRUCTU-RE

~.3. SAM-PLE PROBLEM

7. COBOL REFERENCE FORMAT

7.1. GENERAL

7.2. PURPOSE OF REFERENCE FORMAT

7.3. USING THE REFERENCE FORMAT
7.3.1. The Reference Format Programming Form
7.3.1.1. Sequence Number
7.3.1.2. Continuation lndicat(}r
7.3.1.3. Text
7 .3.1.4. Identification
7.3.2. The Reference Format Divisions
7.3.2.1. Rules for the Identification Division
7.3.2.2. Rules for the Envirnnment Division
7.3.2.3. Rules for the Data Division
7 .3.2.4. Rules for the Procedure Division

8. SEGMENTATION

8.1. GENERAL

8.2. ORGANIZATION

8.2.1. Fixed Portion
8.2.2. Independent Segment
8.2.3. Segment Classification

Contents 4
SECTION: PAGE:

4-53
4-53
4-55

5-1to5-11

5-1

5-1

5-2
5-2
5-3
5-4

5-6
5-7
5-8

5-10
5-10
5-11

6-1 to 6-2

6-1

6-1 • 6-2

7-1 to 7-5

7-1

7-1

7-2
7-2
7-2
7-2
7-2
7-3
7-3
7-3
7-3
7-4
7-5

8-1 to 8-3

8-1

8-1

8-1
8-2
8-2

UP-7503.1 .
Rev. 1

·9

•

FUNDAMENTALS OF COBOL

L A N G U A G E

8.3. SEGMENTATION CONTROL

8.4. SEGMENT LIMIT
8.4.1. Restrictions

9. THE COBOL LIBRARY

9.1. INTRODUCTION
9.1.1. COPY

9.2. LIBRARY ENTRIES FOR THE ENVIRONMENT DIVISION

9.3. LIBRARY ENTRIES FOR THE DATA DIVISION

9.4. LIBRARY ENTRIES FOR THE PROCEDURE DIVISION

APPENDIX A. RESERVED WORDS

APPENDIX B. SUMMARY OF COBOL FORMATS

Bl. IDENHFICATION DIVISJON.
Bl.1. AUTHOR
Bl.2. DATE-COMPILED
Bl.3. DATE-WRITTEN
Bl.4. INSTALLATION
Bl.5. PROGRAM-ID
Bl.6. REMARKS
Bl.7. SECURITY

B2. ENVIRONMENT DIVISION.
B2.1. FILE-CONTROL
B2.2. 1-0-CONTROL
B2.3. OBJECT-COMPUTER
B2.4. SOURCE-COMPUTER
B2.5. SPECIAL-NAMES

B3. DATA DIVISION.
B3.l. BLANK
B3.2. BLOCK CONTAINS
B3.3. DATA RECORDS
B3.4. JUSTIFIED
B3.5. LABEL RECORDS
B3.6. LEVEL NUMBER
B3.7. PICTURE
B3.8. RECORD CONTAINS
B3.9. REDEFINES
B3.10. RENAMES
B3.ll. SYNCHRONIZED
B3.12. USAGE
B3.13. VALUE IS
B3.14. VALUE OF

Contents

SECTION:

8-2

8-2
8-3

PAGE:

9-1 to 9-4

9-1
9-1

9-2

9-2

9-4

A-1 to A-2

B-1 to B-9

B-1
B-1
B-1
B-1
B-1
B-1
B-1
B-1

B-2
B-2
B-2
B-2
B-2
B-2

B-3
B-3
B-3
B-3
B-3
B-3
B-3
B-3
B-3
B-3
B-3
B-3
B-4
B-4
B-4

5

UP-7503.l
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E

B4. PROCEDURE DIVISION.
B4.1. ACCEPT
B4.2. ADD
B4.3. ALTER
B4.4. CLOSE
B4.5. COMPUTE
B4.6. DISPLAY
B4.7. DIVIDE
B4.8. ENTER
B4.9. EXAMINE
B4.10. EXIT
B4.11. GO TO
B4.12. MOVE
B4.13. MULTIPLY
B4.14. NOTE
B4.15. OPEN
B4.16. PERFORM
B4.17. READ
B4.18. STOP
B4.19. SUBTRACT
B4.20. WRITE

APPENDIX C. SAMPLE PROBLEM

INDEX

FIGURES

1-1. COBOL Language Hierarchy

2-1. The COBOL Programming Form

4-1. Sample Inventory Problem Flow Chart Solution

TABLES

3-1. PICTURE Symbols

3-2. Master Inventory Record Format

3-3. Sample Master Inventory Records

3-4. Deta i I Transaction Record Format

3-5. Sample Detail Transaction Records

3-6. Reorder List Record Format

3-7. Sample Reorder List - Item Records

Contents

SECTION: PAGE:

B-4
B-4
B-4
B-5
B-5
B-5
B-5
B-6
B-7
B-7
B-7
B-7
B-7
B-8
B-8
B-8
B-8
B-8
B-9
B-9
B-9

C-1 to C-5

1 to 15

1-9

2-8

4-53

3-35

3-44

3-45

3-45

3-46

3-46

3-47

6

•

UP-7503.1
Rev. 1

•

FUNDAMENTALS OF COBOL

L A N G U A G E SECTION:

1
PAGE:

1. INTRODUCTION

1.1. WHAT IS COBOL?

In attempting to establish what COBOL is, it is important to first establish how and
why it came about. If any single word can be used to express its reason for being,
that word is "communication". The need for improved communication has long existed
between all elements concerned with the proper functioning of business, educational,
and governmental organizations. Frequently, these various organizations did not speak
the same language. Growth in complexity of these institutions has necessitated the
introduction of a new tool - the computer - to more adequately fulfill the needs of
each. The introduction of this device, though a valuable asset, added one more wall
to the communications barrier. Now, not only was management having difficulty under­
standing the technician, and the analyst understanding the accountant, statistician or
what have you, but all were having difficulty understanding the computer; or more to
the point, in applying computer techniques to their own individual specialties and pro­
ducing results that were meaningful to more than a select few.

Digital computers, as the name indicates, accept digital information and produce
digital results - hardly meaningful to most without annotation. COBOL, however, is
a coordinated effort to define a series of rules and procedures whereby problems can
be submitted and solutions can be framed in a language - stylized English - acceptable
to all those involved in a particular data processing application. Indeed, this COmmon
~usiness Q.riented ~anguage brings one close to having a computer language tailor­
made to one's own needs, since it permits identification of many program elements to
be made in English, and in a form readily understandable by the casual observer.

The "word" in COBOL is the basic language element. As in the English language,
COBOL contains many types of words with which meaningful thoughts are formed.
"Meaningful" is the key descriptor in this or any language. In human discourse, a
word is meaningful because, at some point in time, this word has been defined and
associated with a particular concept or object. In COBOL, a word is meaningful either
because the programmer has given it meaning by relating it to a specific quantity or
quantities, or because it is an inherent or built-in part of the language. The COBOL
language program employs many types of words. It uses nouns which are established
by the programmer to name the various data elements upon which the program operates.
It uses verbs which are supplied by the COBOL system to direct the manner in which
the data is treated. It also uses certain selected words to improve the readability of
the language or to complete the meaning of a sentence. For example, the following
sentence illustrates these various words:

SUBTRACT DEDUCTIONS FROM GROSS-PAY GIVING NET-PAY.

Here, DEDUCTIONS, GROSS-PAY, and NET-PAY are nouns assigned by the pro­
grammer to name specific quantities. SUBTRACT is a verb supplied by the COBOL

language to direct that particular arithmetic operation. FROM and GIVING are words
included in the COBOL language to complete the meaning of the sentence. Often,
such words as IS, ARE, and ON are included in statements to improve readability
and may be omitted. This manual explains the use of the various words and the
form they may take.

1

UP-7503.1
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E
SECTION:

1

In summary then, the COBOL language is one part of a system which provides a
method of stating computer problems and solutions in English. It comprises a basic
set of English words and symbols used to define and create a program. It further
permits the definition and naming of data according to the individual dictates of the
user rather than the peculiarities of the computer. It forms a functional language
that is largely independent of computer make or model.

1.2. HISTORY AND BACKGROUND

On May 28 and 29, 1959, a meeting was called in the Pentagon for the purpose of
considering both the desirability and feasibility of establishing a common language
for the programming of electronic computers in business data processing. Repre­
sentatives from users, government installations, computer manufacturers, and other
interested parties were present. There was almost unanimous agreement that the
project was both desirable and feasible at that time. The concept of three commit­
tees or task forces was agreed upon. They were called the Short Range, Inter­
mediate Range, and Long Range committees, with appropriate time scales. The
Short Range group was composed of six manufacturers and three government repre­
sentatives. This committee held its first meeting on June 23, 1959. At that time
it was decided that the tasks of the committee fell into four general areas. Working
groups were established as follows:

• Data Description

• Procedural Statements

• Application Survey

• Usage and Experience

PAGE:

The first two groups held frequent meetings and prepared proposals for consideration
by the full committee which met August 18-21 and August 24-25 for the purpose of
preparing a report to the Executive Committee. Materials developed as the result of
the. work of the other two groups were used later in the course of the development of
COBOL. The report to the Executive Committee, submitted in September 1959, stated
that the Short Range Committee felt it had prepared a framework upon which an effec­
tive common business language could be built. It was recognized that the report con­
tained rough spots and needed additions. It further requested that the Short Range
Committee be authorized to complete and publish the system by December 1959. It
also requested that the Short Range Committee continue beyond December in order to
monitor the implementation. Both these requests were approved.

The Committee held meetings between September 18 and November 7, 1959, and
proceeded steadily in its task of resolving problems and completing the language.
The name "COBOL'', a COmmon ~usiness Qriented !=anguage, was adopted.

The COBOL System was reviewed and approved by the Short Range Committee during
the week of November 16-20, 1959. Final editing and initial distribution of the report
to the Executive Committee was accomplished December 17, 1959.

2

•

•

UP-7503.1
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E SECTION:
1

PAGE:

After acceptance by the Executive Committee of CODASYL (COnference on DAta
SYstems ~anguages), the report was published April 1960 by the Government Printing

Office as

"COBOL - A report to the Conference on Data Systems Languages,
Including Initial Specifications for a Common Business Oriented
Language (COBOL) for Programming Electronic Digital Computers."

A Maintenance Committee was created by the Executive Committee of the CODASYL
group to be responsible for initiating and reviewing recommended changes to keep
COBOL up-to-date. This Maintenance Committee comprised user and manufacturer
groups. The Maintenance Committee considered and agreed on a number of revisions

to COBOL.

In order to devote concentrated attention to publishing a revised and updated "COBOL-
1960", the Executive Committee created a Special Task Group. The product of this
task group was the COBOL-1961 manual published in mid-1961. In mid-1963, the Main­
tenance Committee released COBOL-1961 Extended.

The organizations participating in the Maintenance Committee or the Special Task
Group were:

Air Materiel Command, United States Air Force
Allstate Insurance Company
Bendix Corporation, Computer Division
The Boeing Company
Burroughs Corporation
Chase Manhattan Bank
Control Data Corporation
David Taylor Model Basin, Bureau of Ships, U. S. Navy
DuPont Company
General Electric Company
General Motors Corporation
International Business Machines Corporation
Lockheed Aircraft Corporation
Minneapolis-Honeywell Regulator Company
National Cash Register Company
Owens-Illinois Incorporated
Philco Corporation
Radio Corporation of America
Royal McBee Corporation
Space Technology Laboratories, Incorporated
Southern Railway Company
Standard Oil Company (N .J.)
Sylvania Electric Products, Inc.
Univac Division of Sperry Rand Incorporated
United States Steel Corporation
Westinghouse Electric Corporation

In January 1964, the COBOL Maintenance Committee was reorganized to provide a
true industry group and to broaden its scope of activities. As the result of this reorgan­
ization, three subcommittees were established: the Language Subcommittee, the
Evaluation Subcommittee, and the Publication Subcommittee. All three subcommittees
report to the COBOL Committee.

3

UP-7503.1
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E
SECTION:

1

The Language Subcommittee took over the functions of the Maintenance Committee,
namely, the maintenance and further development of COBOL.

PAGE:

The Publication Subcommittee is charged with the production of offical COBOL
publications and with liaison with the United States of America Standards Institute
(USASI) as to the content of the COBOL Information Bulletin. The COBOL Information
Bulletin is a collection of material relating to COBOL which is distributed to the
COBOL community.

The Evaluation Subcommittee's task is the analysis and evaluation of compiler
implementations and user surveys. This subcommittee provides information to
the COBOL Committee regarding the use of COBOL.

In November 1965, the COBOL Committee released COBOL-Edition 1965.

In 1961, a portion of the Intermediate Range Committee was combined with the Long
Range Committee to form the Development Committee. This committee was comprised
of a Systems Group and a Language Structure Group. Although there were occasional
joint meetings of these two groups, it was concluded that it would be more fruitful to
operate these groups as two separate committees. Accordingly, the CODASYL Executive
Committee in April 1965, approved the reorganization of these two groups and designated
them as follows:

(a) The CODASYL Systems Committee (CSC) with the objective of developing a data
systems language which uses general, easily understood language as the medium
expression; is independent of machines; and can be used as a common language
for and between all digital computer systems as well as a medium for human
communication.

(b) The CODASYL Language Structures Committee (CLSC) with the objective of
developing a unifying structure for the specification of data processing systems
which places emphasis on the nature of the data processing results to be accom­
plished rather than on the sequence of steps required; results in a language that
is convenient to use by people concerned with a variety of d~ta processing problems
rather than with computer programming; and is readily implementable on data proces­
sing machines. In July 1965, CLSC was dissolved at its own request.

The American Standards Association (ASA) Sectional Committee X3 for Computers and
Information Processing was established in 1960 under the sponsorship of the Business
Equipment Manufacturers' Association (BEMA). ASA X3 in turn, established the X3.4
Sectional Subcommittee to work in the area of common programming language standards.
Subsequently, Working Group X3.4.4 for Processor Specifications and COBOL Standards
was formed with the primary goal of the group being the production of an American
COBOL standard.

On December 17, 1961, invitations to an organizational meeting of the X3.4.4 Working
Group were sent to manufacturer and user groups who might be interested in participating
in the development of an American COBOL standard. The first meeting of the X3.4.4
Working Group was held in New York City on January 15/16, 1963. In August 1966,
the ASA became the United States of America Standards Institute (USASI).

4

....-------------~------------

UP-7503.1
Rev. 1

•
FUNDAMENTALS OF COBOL

L A N G U A G E SECTION:

1 5
PAGE:

Since that first meeting back in January 1963, many meetings have been held and on
August 30, 1966, the X3.4.4 Working Group approved the content and format for a proposed
USASI standard COBOL. The resultant proposed standard is based upon the elements
contained in CODASYL COBOL-Edition 1965 and as such, represents a proper subset
of the total COBOL language as defined in that publication.

1.3. BENEFITS DERIVED FROM USING COBOL

The following are some of the many advantages in using COBOL:

• Demonstrated Compatibility

The capability of using a program run on one computer and, with minor modification,
running it on another of a different make or model, is a proven fact. This reduces the
reprogramming time considerably from the time required to recode applications written
in an equipment-oriented language.

• Increased Communication

Since COBOL uses English-like statements, the program is intelligible to all who
understand the application. This makes available to the programming effort, the
knowledge and efforts of many experts formerly excluded.

• Faster Programming

Since the programmer is freed from much of the clerical detail found in equipment­
oriented languages, the time required to program new or altered applications is
reduced. Emphasis is shifted from the programming effort involved in detailed
coding to problem definition and analysis.

• Increased Program Accuracy

COBOL uses built-in standard conventions based on extensive user and systems
experience to develop efficient coding techniques. Because these techniques are
automatically introduced into the program, greater coding efficiency is achieved.
The debugged coding segments at the user's command minimize the chance of
program error and simplify design.

• Reduced Training Time

New programming personnel can be trained to write productive programs in substan­
tially less time than it takes to train them in equipment-oriented languages. With
COBOL, it is not necessary to have a large staff of trained programmers. The more
complicated, time-consuming techniques of computer coding need be taught only to
those few people selected to become highly-skilled, career programmers.

• Reduced Programming Costs

The ability to program a problem faster, and for the most part more accurately,
reduces the cost of programming. Reprogramming costs are also reduced, since
programs produced for one system may be modified to run on other systems without
being entirely recoded.

These are just some of the benefits to be derived from the use of COBOL. As the user
becomes more familiar with COBOL, many other advantages of the system become
increasingly evident.

UP-7503.1
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E

1.4. COBOL AND THE COMPUTER

SECTION:

1
PAGE:

Digital computers will accept and act upon only a fixed set of instructions expressed
in a specific manner. However, though the number and sophistication of instructions
may vary from computer to computer, certain general concepts remain the same. Each
computer will have instructions to implement at least the following functions:

Data Movement
Arithmetic Operations
Decision Making
Input/Output Operations

Each of these functions may comprise many instructions and the format for their
specification varies with the myriad makes and models of computers presently avail­
able on the market. Unlike the various equipment-oriented languages (oriented to a
single computer or to a single family of computers) which cater to the peculiarities of
the individual computer instruction repertoire, COBOL operates at a functional level.
That is, it provides in English-language form, facilities for treating the above-stated
functions in terms of the problem to be solved rather than in terms of the computer to
be programmed.

Certainly, the COBOL language is not free-form English. It is stylized and, to that
extent, restricted. Unlike the human brain, the computer cannot accept nuances of
expression; it cannot discern vocal inflection; it cannot recognize physical gestures
meant for emphasis. Therefore, with built-in restrictions governed by what the computer
can and cannot accept, the COBOL language operates within certain well-defined
boundaries established by very definite rules of procedure. However, any language,
whether it is designed for computers or human beings, contains many rules for con­
struction and use. These rules enhance the usefulness of the language as a vehicle
for discourse and communication. The programmer must familiarize himself with the
basic rules and procedures inherent in the COBOL language to gain proficiency in
problem definition, analysis, and solution.

1.5. THE COBOL SYSTEM

The COBOL system actually comprises two main elements: the program and the program
processor (compiler).

When we refer to the program, we are actually referring to two programs as follows:

• The Source Program

That set of written entries and statements prepared by the programmer and designed
to perform the following functions:

- Describe the data.

Instruct the computer by a set of procedural steps on how to treat the data to
effect a logical solution to the problem.

Identify the program.

- Describe the equipment being used.

6

UP-7503.1
Rev. 1

•

•

FUNDAMENTALS OF COBOL

L A N G U A G E

• The Object Program

SECTION:

1
PAGE:

That set of coded instructions and data acceptable to the computer which carries
through the logic expressed in the source program, together with the storage assign­
ments for the data to be processed.

To translate a problem-oriented COBOL source program to a machine-oriented object
program written in a code form acceptable to the specific computer, a COBOL program
processor (compiler) is provided. The compiler is a program which analyzes the words
and characters of a COBOL-language program and produces a new program in a code
acceptable to the particular computer. From a single COBOL statement, the compiler
may produce many computer instructions. The compiler is entered into the computer
together with the source program. It then produces the object program to be run for
problem solution.

When translating the source program to object program, the program processor may
perform the following functions:

• Decoding

The intended meaning of individual characters or groups of characters written in
the source language are ascertained and conv€rted into computer-acceptable
instructions and data .

• Conversion

Numerical information is converted from one number base to another (i.e., decimal
to binary) and from fixed to floating point notation or vice versa, if required.

• Selection

A required routine may be selected from a library of routines.

• Generation

Required subroutines are generated from various parameters and skeletal coding
specified in the source program.

• Allocation

Actual storage locations are assigned in memory to the various program elements.

• Assembly

Subroutines (supplied, selected, or generated) are integrated into the program.

• Recording

Detailed information concerning the object program is recorded and may be printed.

7

UP-7503.1
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E

1.6. COBOL MODULES AND LEVELS

SECTION:

1
PAGE:

In order to more effectively implement the uses for which COBOL was designed, the
COBOL language has been revised to include nine functional processing modules.
The new organization is oriented toward the functional processing concept while still
retaining the old divisional structure (Identification, Environment, Data, and Procedure)
within each module. These modules are as follows:

• Nucleus

• Table Handling

• Sequential Access

• Random Access

• Sort

• Report Writer

• Segmentation

• Library

Each functional processing module is divided into two or more levels. These levels
provide a hierarchy within each functional processing module and in all cases, a
lower level constitutes a proper subset of the next higher level within the module.
This hierarchal modular structure, illustrated in Figure 1-1, enables the user to tailor
his COBOL compiler such that he obtains only as much computing power as he needs
for his particular application.

1.7. SCOPE OF MANUAL

This manual follows the structure of the language as defined by USASI and describes
the nucleus, sequential access, segmentation, and library modules as applied to tape,
card, and printer files (normally sequentially written and accessed files). (Table
Handling, Sorting, Mass Storage and Random Access, Report Writer, and Glossary
are described in the other manuals of this series.)

All discussions in this manual are oriented toward the highest level (level 2) which
provides the fullest implementation of the COBOL language.

8

•

UP-7503.1
Rev. 1

•

NUCLEUS

LEVEL 2

LEVEL 1

FUNDAMENTALS OF COBOL

L A N G U A G E

FUNCTIONAL PROCESSING MODULES

TABLE SEQUENTIAL
HANDLING ACCESS

LEVEL 3

LEVEL 2

LEVEL 2

LEVEL 1

LEVEL 1

RANDOM
ACCESS

LEVEL 2

LEVEL 1

NULL

SORT

LEVEL 2

LEVEL 1

NULL

REPORT
WRITER

LEVEL 2

LEVEL 1

NULL

SECTION:

SEGMEN­
TATION

LEVEL 2

LEVEL 1

NULL

1
PAGE:

LIBRARY

LEVEL 2

LEVEL 1

NULL

NOTE: Minimum COBOL System which can be implemented is Nucleus (Level 1) plus Table Handling (Level 1)
plus Sequential Access (Level 1)

Figure 1-1. COBOL Language Hierarchy

9

UP-7503.l
Rev. 1

•

FUNDAMENTALS OF COBOL

L A N G U A G E SECTION:
2

PAGE:

2. PROGRAM ORGANIZATION

2.1. GENERAL

A source program must contain four basic elements in order to solve a problem:

• A description of the data to be processed.

• A set of procedures or operations establishing how the data is to be treated.

• A description of the equipment to be used.

• Information that will l~bel and identify a particular application.

This chapter discusses these components of the source program and indicates the
relationship between them. It also illustrates the organization of a COBOL program
by providing a narrative English discussion of a sample application.

2.2. DESCRIBING THE DATA

The programmer must describe each element of data upon which the object program is
expected to operate. The following information must be included:

• The name by which the program is to identify a particular datum.

• The class of data (i.e., is it alphabetic, numeric, or alphanumeric?).

• The length of the datum in terms of characters.

• The location of special symbols such as the currency sign, comma, decimal point,
etc.

• The relative position of this datum with~n a record with respect to the other data
to be ope.rated upon.

When the programmer provides this information, he is stating that, at object time, he
will have an element of data to be processed and that the compiler should provide
storage space based upon the requisites he has expressed. For example, suppose a
programmer wishes to process data such as an employee's salary. First, he would
assign a name to the datum, such as SALARY. Then he would state that the field is
numeric (or alphanumeric if it contains characters other than digits), state the maximum
size of the field, and show the position of both currency sign and decimal point. He
would then show its relationship to the other data in the employee's record. The com­
piler, based on this information, would reserve a storage area for the data and, as the
salary for each employee was fed in at object time, it would be placed in this location
preparatory to being processed by the instructions in the program.

1

UP-7503.1
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E
SECTION:

2
PAGE:

The COBOL language provides specific rules and procedures for supplying this infor­
mation. Section 3 of this manual discusses them in detail.

The ensuing paragraphs describe the logical grouping and organization of data for a
COBOL program.

2.2.1. Items and Groups

The smallest unit of data is the elementary item. This is a datum which is not
further subdivided into smaller units when referenced in the program. The HOURLY­
RA TE field on an employee's weekly time card is an example of an elementary item;
it is not broken into smaller units.

EMPLOYEE-NO. EMPLOYEE-NAME

LAST FIRST MIDDLE

Group

HOURS HOURLY-RATE

Elementary
Item

2

•

On the same weekly time card, there is a field called EMPLOYEE-NAME. This
datum, however, is subdivided into smaller units called LAST, FIRST, MIDDLE. In
this case, we are no longer dealing with a single unit of data, but with a group of
data the individual components of which are elementary items relating to the entire e
group name EMPLOYEE-NAME.

When organizing data, it is also possible to have groups of groups, This is illus­
trated by the following example:

PORK

Grade 1

Grade 2

Grade 3

Assume that the XYZ MEAT COMPANY maintains an inventory stock for
the various ingredients necessary for the production of frankfurters and
sausages. The data pertaining to these ingredients might be organized in
the following manner:

SAUSAGES FRANKFURTERS
I I

BEEF SPICES FILLER PORK BEEF SPICES FILLER

Grade 1 Type A Type X Grade 1 Grade 1 Type A Type X

Grade 2 Type B Type Y Grade 2 Grade 2 Type B Type Y

Grade 3 Type C Type Z Grade 3 Grade 3 Type C Type Z

..

UP-7503.1
Rev. 1

•
FUNDAMENTALS OF COBOL

L A N G U A G E SECTION:

2
PAGE:

GRADE and TYPE are elementary items and each designates a single quantity of
the particular ingredient. However, PORK, BEEF, SPICES, and FILLER are groups
comprising several related items. SAUSAGES and FRANKFURTERS are also groups.
Instead of being groups of items, however, they are groups of groups.

To reiterate, elementary items are the smallest data units and are not further sub­
divided. Groups are larger data units comprising several elementary items or several
groups.

2.2.2. Records

Related elementary items and groups are combined to form records. In the time card
example, for instance, the card for each employee might constitute a single or logical
record. Though the record format would remain the same, the values of the various
elementary items would obviously change from employee to employee. The same holds
true for the example of the XYZ MEAT COMPANY. In that example, the entire series
of items and groups might be combined into one logical record called INVENTORY -
ON-HAND.

Information for processing is read into the computer in complete records. It is not
possible to read in only a part of a record. Similarly, only complete records may be
written; that is, made available for output on some form of external medium such as
magnetic tape or punched cards.

2.2.3. Files

A file is a set of records. Not all the records in a particular file need have the same
format. When a record is read in for processing, it replaces the previous record of
that file. If it is necessary to have more than one record of a particular file available
to the program at a specific time, the first record must be moved to an intermediate
work area before the second record may be read in. The exact method of doing this
is discussed in subsequent sections.

The word "file" is used in COBOL because of the similarity to the file cabinet used
in any office. For example, each drawer might be equated to a record in which is
contained various types of related data. The file cabinet would also be labeled in
some manner to indicate the contents. Similarly, a data processing file often has a
label record to provide identification. Usually there is one label record appearing at
the beginning of the file and another at the end. These label records serve as checking
devices to ensure that the proper data is being read and that the file has been com­
pleted. There is no direct relationship between the length of a tape file and a reel of
tape. A tape file may be contained on many reels of tape or a single tape may contain
many files. Other files, such as printer files and card files, have their own unique
characteristics.

3

UP-7503.1
Rev. 1

FUNDAMENTALS" OF COBOL

L A N G U A G E

2.2.4. Summary

SECTION:
2

PAGE:

The following diagram illustrates the hierarchal structure used in COBOL to describe
data.

FILE

fL
9 l I

~

RECORD RECORD RECORD

~ ~ T l
f~
-!/ l I

GROUP GROUP GROUP
OF GROUPS OF GROUPS OF GROUPS

:::: ~
~

~ i
-:/ I I

GROUP GROUP GROUP
OF ITEMS OF ITEMS OF ITEMS

::::: ~ ..Lt.
~ ~

9 I I
..

ELEM. ITEM I ELEM. ITEM I I ELEM. ITEM I
Each file consists of a set of records. There may be one type of record or several
types of records. Each type of record is usually described as a set of elementary
items; however, a record itself may be treated as an elementary item if it is not
further subdivided.

It is often convenient to group two or more elementary items. These groups may
then be further grouped into groups of groups, and so forth.

2.3. STATING THE PROCEDURES FOR PROBLEM SOLUTION

Once the data has been described and organized, the programmer may concentrate on
the various operations or procedures necessary to solve his problem using the four major
functions available to him:

• Data Movement

• Arithmetic

• Decision-Making

• Input/Output

4

UP-7503.1
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E SECTION:

2
PAGE:

In addition, the programmer has at his command Control functions which enable him to
alter the sequence of program operation or cause repetitive cyclings of certain program
steps. ·

When establishing the various procedures for problem execution, the programmer need
not be aware of the internal details of the specific computer concerned in his application.
He may concentrate fully on problem logic.

The various functions operate as follows:

• Input/output functions permit communication with the external media, such as
magnetic tapes or punched card equipment, to obtain the specific records that are
to be processed or to deliver final records to output.

• Decision-making capabilities permit comparisons of data to determine which of
several possible operations are to be performed.

• Arithmetic functions permit the necessary calculations to be made on the data.

• Control functions permit selected operations to be performed or repeated a specified
number of times.

• Data-movement instructions permit the movement or assembling of data into groupings
prior to producing them on some output medium or performing calculations.

When setting up these procedures, a complete knowledge of the capabilities of the
equipment is helpful from the standpoint of creating an efficient object program. The
extent of the programmer's familiarity with the characteristics of his particular equip­
ment is left to the discretion of the individual user, The specific rules and formats for
procedure formation are covered in Section 4 of this manual.

2.4. IDENTIFYING THE PROGRAM

Having described the data and established the procedures for problem execution, the
programmer will identify the particular application. He might wish to include such
things as the date the program was written, the programmer's name, the name of the
particular installation, and so forth. The mechanics by which this information is
entered into the COBOL program are covered in detail in Section 6.

2.5. DESCRIBING THE EQUIPMENT

A description of the equipment is necessary to the proper operation of a COBOL pro­
gram. Information such as the descriptions of the computers to be used for both compil­
ation and object running of the program must be provided. This could include memory
size and descriptions of the relationship between the logical records and their physical
format on the input/output media. Problem-oriented names may be assigned to specific
equipment to facilitate referencing in the program. This section, because it deals with
specifications of the equipment being used, is largely computer-dependent. Details for
providing this information are given in Section 5.

5

UP-7503.1
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E

2.6. A SAMPLE APPLICATION

SECTION:
2

PAGE:

A typical data processing problem is presented here using common English sentences
to provide the following information:

• A general definition of the problem or application.

• A general description of the data.

• A general description of the actions which will be performed on the data.

• A description of the manner in which the computing equipment is described.

Using this information as a guide, a parallel COBOL solution is developed throughout
the manual as the individual elements comprising the COBOL language are discussed.
The final solution is shown in full at the end of the manual. There are many ways of
approaching any data processing problem, and the following is not intended to represent
an optimum solution. The purpose of this problem is to illustrate the use of as many
basic COBOL facilities as is practical, while providing a comparison of the COBOL
compiler language to the English language.

2.6.1. Definition of Application

A sporting goods retailing chain updates its central warehouse inventory file on a
daily basis to assure an adequate supply of goods for its many local dealers.

Each change of stock level on a stock item is recorded on a punched card, called
a detail transaction. All detail transactions are then collected and sorted or ar­
ranged into order by stock item number and transaction code. This detail transaction
file is run against the existing master inventory file to build an updated master
inventory file.

As the updated master inventory file is created, a list is made of all stock items
that have fallen below their minimum stock levels, and of new stock items which
have been entered into the file on that particular update run. This list is called
the stock replenishment or stock reorder list.

2.6.2. Description of Data

Two input files and two output files are used: the input master inventory file, the
input detail transaction file, the output (updated) master inventory file, and the
output stock reorder list file. In addition to the input and output files, certain other
data items must be defined for intermediate arithmetic or logical results and for con­
stant information, such as page headings. Detailed descriptions and examples of this
information will be presented in the continuation of the sample problem discussion in
Section 3.

2.6.3. Procedural Steps

The data having been described, the actions to be taken at object time are specified.
The program begins by opening the files (i.e., initializing each file to prepare it for
releasing or accepting data). Then data is read in stock number sequence, and the
various manipulative, logical, and arithmetic operations performed. This done, the
files are closed and the run terminated.

6

UP-7503.1
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E SECTION:

2
PAGE:

A detailed description of the procedural steps, including a flow chart, is given at
the continuation of the sample problem discussion in Section 4.

2.6.4. Physical Environment Description

This section of the program describes those aspects of the total problem which
depend upon the characteristics of the computing equipment.

The following information must be considered:

(a) The computer on which the compilation will be performed.

(b) The computer on which the compiled object program will be executed.

(c) Special mnemonic names which will be defined as equivalent to standard hard­
ware names.

(d) Hardware assignments for the several files.

(e) Data transfer, including buffering, between the computer memory and the hardware
media.

This information is discussed in detail in the sample problem discussion in Section 5.

2.6.5. Program Identification

This section of the program identifies or labels the program. It may also contain any
other information desir~d as to authorship, date of writing or compiling, security, and
any other comments regarding the functional or peripheral aspects of the program.

Detailed information on program identification is given in the sample problem dis­
cussion in Section 6.

2.7. THE CODING FORM

Figure 2-1 shows the layout of a typical COBOL programming form. On this form the
programmer enters all information needed by the COBOL compiler, observing certain
rules of format and content as defined in this manual. Each line of written information
represents the information to be entered into one 80-column punched card. The .accom­
panying table explains the several divisions of the form.

7

CCBCL 72 80

PROGRAMMING FORM PROGRAM r.o.' I , . , • , , , I
PROGRAM PROGRAMMER DATE PAGE __ OF __ PAGES

n;CONTINUATION

SEQUENCE l A B TEXT _ .. IDENTIFICATION I NUMBER 6 T I 1112 20 30 -- "40 50 60 72 80

J_ J_ I j_ I ..l I

J_ J_ J_ .l J_ J_

l _l_ J_ J_ J_ ..l
J_ J J_ J_ J_ J_ J.

J_ J_ J_ J_ J_ J_

J_ ..l. J_ I ..l ..l

..l. ..l. l _l l J

..l ..l. l J l J_

J_ ..l. ..l ..l ..l ..l

.l .l l. J L J

.l ..L L J_ ..l J_

.l .l ..l ..l ..l ..l J.

.l J_ ..l. ..l. ..l ..L
L l ..L ..l J_ J_

.l J_ ..l. ..l. ..l. l.

.l .l L J_ _L .i. J. J_ J. J. ..L

J. J_ J_ J_ ..l ..l J_

..l .J. .l J_ J.i J. J. J. ..L

J_ J_ J_ J_ _l J_ i .l ..L

l .l J_ ..l. J_ .l

..l ..l .l .J. .l J. .l l J.

J_ ..l l J_ _l l J_

J. J_ .l J_ _l .J. J. J. J. l l
J_ J_ J_ l J_ J_

J_ ..l .l J_ J_ ..l
J_ J. J_ J_ J_ J. J. .J. .J..J.

J_ J_ l J. l _l J_ ..L

J_ J_ J_ J_ J_ J_ _l

..L J_ .l .l l J.

.J. l. J_ J_ J_ J_ J_

Figure 2-1. The COBOL Programming Form

-· e e

c:::
::t:1 'ti
(1) I

< -...]
• (,/1

0

- w -

"Tl
r c: z
l> g

3':: zm z
C) -i > r-c: V>

l> ~
C) n

0
OJ mo

111
Ill
0
-I

0
z

11
)>

GI
!')

r-

N

00

UP-7503.l
Rev. 1

•

FUNDAMENTALS OF COBOL

L A N G U A G E

COLUMNS DESIGNATION

1-6 SEQUENCE NUMBER

7 CONTINUATION

8-72 TEXT

73-80 IDENTIFICATION

2
SECTION:

CONTENTS

A numeric entry; used only by the programmer
(not the COBOL processor) to establish a
sequence among the various lines of coding
(optional).

A hyphen (-); used when an entry extending
past one line has a break occurring in the
middle of a word. The hyphen is written in
column 7 of the next contiguous line on which
the word is completed. A word may be inter­
rupted in any column, the rest of the line
space filled, and completed on the next line.
Parentheses are considered punctuation and
do not require a hyphen in column 7 when they
are split from the word they surround.

All COBOL-formatted information, in the form
of names, statements, information, instruc­
tions, etc., that is to be compiled into the
object program.

Note that two left-margin limits designated
"A" and "B" are shown. These are needed
for program alignment. Major definitive names
are begun at margin A (column 8). Margin B
(column 12) is used for subordinate items
and for continuations of entries from the last
preceding line.

Card deck information (optional).

A more complete explanation of the use of the form is presented in Section 7.

2.8. SYMBOLS, RULES, AND NOTATIONS USED IN THIS MANUAL

PAGE:

The various language elements that comprise a COBOL program must be written in
formats that adhere to fixed and precise rules of presentation. Before discussing
these individual formats, it is necessary to understand the various symbols, rules,
and notations used in describing them. Each format statement will indicate the
following information:

• The order of presentation.

• Those words that are requisite to the proper functioning of the statement.

• Those words that are optional and included at the discretion of the user .

• That information that must be supplied by the user.

• Those elements in the statement that involve a choice by the user.

• Those functions of the particular statement that are optional.

9

UP-7503.1
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E
SECTION:

2

In free form, the MULTIPLY statement might appear in the following manner:

Multiply a data name or a literal by another data name with the result
rounded; on size error execute an imperative statement.

This, of course, tells us something about the order of presentation, but very little
else about the rest of the format. Let us then establish the first rule of format
presentation.

PAGE:

(a) All words inherent or built into the COBOL language are specified as uppercase.

MULTIPLY a data name or a literal BY another data name with the
result ROUNDED; ON SIZE ERROR execute an imperative statement.

(b) All uppercase words which are underlined are required or key words. Those upper­
case words not underlined are optional and may be included at the user's discretion
to improve readability.

MULTIPLY a data name or a literal BY another data name with the
result ROUNDED; ON SIZE ERROR execute an imperative statement.

All uppercase words, whether underlined or not, are a part of the COBOL language
and must be spelled exactly as indicated.

(c) All lower case words in italics represent generic terms which must be supplied
by the user. In the sample statement, there are four such elements to be supplied
by the user: two data names (which shall be designated data-name-1 and data-name-2
in order of their appearance) or a literal, and an imperative-statement.

(d) Elements of a statement involving a choice are surrounded by braces l I.

{
data-name-1 }

MULTIPLY
1

.
1

BY data-name-2 with the result
----- itera -
ROUNDED; ON SIZE ERROR imperative-statement.

In some instances, the choice can be made by default. For example, in the statement:

l BLOCK CONTAINS [integer-1 TO] integer-2{ ~~;~~g~ERS }]
the programmer must choose either RECORDS or CHARACTERS. If RECORDS is
chosen, the word RECORDS must be written because it is a key word (indicated
by the underline). However, if CHARACTERS is the choice, CHARACTERS is
not a key word and the programmer may or may not write it at his discretion. When
the programmer writes a BLOCK CONTAINS entry and neither RECORDS nor CHAR­
ACTERS is written, the COBOL compiler assumes that CHARACTERS was chosen
and r,enerates machine code based on this assumption.

10

UP-7503.1
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E SECTION:

2
PAGE:

(e) Optional functions which may be included or omitted at the user's discretion are
surrounded by brackets [].

{
data-name-1}

MULTIPLY literal BY data-name-2 [ROUNDED]

[; ON SIZE ERROR imperative-statement.]

(f) In some statements, certain portions may be used as many times as needed by
the programmer. This repeatability is indicated by the ellipsis (...). Brackets
or braces are used as delimiters to indicate the portion of the statement which
is repeatable. From the foregoing, the following rule can be formed:

Given an ellipsis (...)in a statement, scan the statement from right to left
beginning at the bracket] or brace l immediately to the left of the ... until
the logically matching bracket [or brace \is found; the ... applies to the
words within the logically matched brackets or braces.

The following two examples illustrate the application of this rule.

Example 1:

ALTER procedure-name-1 TO [PROCEED TO] procedure-name-2
~rocedure-name-3 TO lPROCEED TO] procedure-name-4].

Scanning this example from right to left, starting at the bracket immediately to
the left of the ellipsis, it can be seen that the logically matching bracket is the
bracket preceding procedure-name-3. Thus, the entire second line of the statement
can be written as many times as the programmer chooses. The brackets surrounding
PROCEED TO in both lines of the statement perform their normal function, i.e.,
they indicate which portion of the statement is optional.

Example 2:

{
identifier-1 }

MOVE l"t 1 TO lidentifier-21 ••• ___ I era -

Once again, scanning from right to left, starting at the brace immediately to the
left of the ellipsis, the logically matching brace is the brace immediately preceding
identifier-2. The programmer may write as many different identifiers following the
word TO as he chooses. The first set of braces in the statement perform their
normal function; the programmer must choose either identifier-1 or literal.

The preceding illustrates the various elements of a COBOL statement. Certain language
elements used in the examples (data-name, literal, identifier, imperative-statement) are
discussed in later sections.

11

UP-7503.1
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E SECTION:

3
PAGE:

3. DATA DESCRIPTION

3.1. GENERAL

All data which is to be operated upon or generated by the object program must be
described in the section of the source program called the Data Division. This division
provides a standard format for the description of all data that will be input to, output

from, or internally stored in the object program.

In general, data to be processed fall into the following categories:

• Data contained in files stored on some external medium and that is either brought
into or sent out from object program processing.

• Data which is developed during object program processing and is placed in inter­
mediate or working storage.

• Data which is maintained in working storage at constant value during the execution

of the object program.

The exact method of writing these data descriptions, as well as the type and form of
data that may appear in a COBOL program, are the subjects of this section of the

manual.

1

UP-7503.1
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E

3.2. CHARACTERS USED IN COBOL

The complete COBOL character set consists of 51 characters:

0,1, ... , 9

A,B, ... , Z

Blank or space

+ Plus sign

- Minus sign or hyphen

* Asterisk

I Stroke (virgule, slash, or slant)

= Equal sign

$ Currency sign

, Comma

Period or decimal point

Semicolon

" Quotation mark (substitute character is the apostrophe')

Left parenthesis

) Right parenthesis

> Greater than symbol

< Less than symbol

3
SECTION: PAGE:

The character blank or space is not an allowable character within a word (except in
nonnumeric literals, explained in 3.3.1.3), but is used to separate words. Where a
blank or space is employed, more than one may be used, except for the restrictions in
the COBOL Reference Format (see Section 7).

3.3. TYPES OF DATA

Data to be manipulated by the main program may either be supplied by the user or
be an inherent part of the COBOL language with predetermined values. The ensuing
pages describe these two forms of data, their use, capabilities, restrictions, and
method of describing them to the COBOL compiler.

2

UP-7503.1
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E

3.3.1. User-Supplied Data

SECTION:

3
PAGE:

An element of data may be named or it may literally occur within the body of the
program with its value interpreted as being that of the characters comprising it. For
example, if the following were written:

ADD 125 TO A

the compiler would assume that "A" was the name of some datum and would expect
an adequate description of this datum with regard to its size, form, class (alphabetic,
numeric, or alphanumeric) and relationship with other data elements in the program.
It would further expect that at object time an appropriate value would be supplied
for this data-name. On the other hand, "125" needs no further description since it
is treated literally as the integer 125 by the compiler.

11
The following are the rules and procedures for forming and using both named data
and "literal" values in the source program.

3.3.1.1. Data-Names

All files, records, and elementary items used in a program must be named and
described to permit referencing. These names are constructed from the standard
COBOL character set and may contain any of the following characters:

0 through 9

A through Z

- (hyphen)

A data-name must contain at least one alphabetic character and may be no more
than 30 characters in length.

The hyphen is used in writing compound names such as:

INVENTORY-ON-HAND

or

EMPLOYEE-RECORD

The COBOL compiler regards these as single names provided the rules for name
construction are applied. They are as follows:

Hyphens may neither begin nor end a data-name. For example: the following two
data-names are not legitimate:

-GROSS-PAY

and

DEPARTMENT-

The last character of a name must be followed by a space, period, comma, right
parenthesis, or semicolon. When the last character is followed by any of these
other than a space, the punctuation character itself must be followed by a space.

3

UP-7503.1
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E
SECTION:

3
PAGE:

There must be no intervening space between a data-name and a following punctu­
ation character.

An identifier is a data-name followed by the qualifiers, subscripts, or indexes
needed to make the data-name unique.

3.3.1.2. Condition-Names

A data-name may represent not only a data entity for which various values are to
be supplied during the object running of the program, but it also may represent an
initially specified set of values. This data form is referred to as a conditional
variable. Each specific value associated with the conditional variable may also be
named to facilitate referencing. This name is called a condition-name.

For example, assume that an ad'tomobile supply dealer maintains his spare parts
inventory on punched cards and that each part is coded with a specific code number
in the following manner:

PART CODE NO.

Mufflers 00764
Carburetors 92486
Batteries 39635
Tail Pipes 42666
Sparkplugs 84980

On each inventory card there might be a field called PART-TYPE with a specific
code number appearing in it. To facilitate referencing and communication, names
might be assigned to each code number. For example:

CODE NO. CONDITION-NAME

00764 MUFF
92486 CARB
39635 BATT
42666 TAIL
84980 SPARK

PART-TYPE now becomes a conditional variable with a set of condition-names
associated with it. These assignments are made in the data description section
of the program, and thereafter, refer to the condition-names instead of the code
numbers. Thus, when a card is read, the specific value of the PART-TYPE field
is determined as follows:

IF MUFF GO TO

This statement would generate a test of the content of the PART-TYPE field
against the value 00764 and produce the same results as if the following were
written:

IF PART-TYPE EQUALS 00764 GO TO

The exact method of specifying condition-names, and assigning values to them,
will be discussed later in this chapter. Condition-names may only be specified
in a statement expressing an alternative course of action (a decision). This will
become more meaningful when these statements are discussed.

4

UP-7503.l
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E

3.3.1.3. Literal Data

SECTION:

3
PAGE:

A literal datum or a literal is a word whose value is that of the characters comprising
it. That is, the quantity that is written is to be taken "literally" by the compiler.
Literals may be alphabetic, numeric, or alphanumeric. Nonnumeric literals must be
bounded by quotation marks. For example:

DISPLAY "TOTAL CREDIT" UPON PRINTER
DISPLAY "COLUMN Al" UPON PRINTER

These two lines would cause TOTAL CREDIT and COLUMN Al to be printed out

5

on the printer. In nonnumeric literals, it is unnecessary to include connective hyphens
for the quantity to be treated as a single name as in the case of data-names. All the
information contained within the quotation marks, including spaces, is treated as a
single entity.

Numeric literals are created from the integers 0 through 9, a plus sign(+), a minus
sign(-), and a d~cimal point which may appear anywhere in the word except in the
rightmost position. For example:

ADD 128.50 TO TOTAL-DEDUCTIONS

This line of coding adds the quantity 128.50 to the content of a data field called
TOTAL-DEDUCTIONS.

Numeric literals bounded by quotation marks are treated by the compiler as non­
numeric. That is, no arithmetic operations may be performed with or on the literal.
For example:

ADD "128.50" TO TOTAL-DEDUCTIONS

is meaningless and would result in a diagnostic error since "128.50" is not
equivalent to 128.50.

The following rules pertain to the formation of literal constants:

• A nonnumeric literal may not exceed 120 characters (excluding quotation marks).

• Any word (even reserved words inherent in the COBOL language) may be used
as a nonnumeric literal.

• A numeric literal may not contain more than 18 digits.

• A numeric literal may contain only one sign and only one decimal point.

• The sign of a numeric literal, if present, must appear as the leftmost character.
If the literal is unsigned, it is considered to be positive.

• If a numeric literal contains no decimal point, it is treated as an integer.
Integral-value literals must be written in this fashion.

UP-7503.1
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E

3.3.2. Reserved Data-Names

SECTION:
3

PAGE:

Certain data-names are inherent in the structure of the COBOL language and need
no description. When employed, they must conform precisely to the rules established
for their use. When these names are encountered in a program, the compiler can
interpret them in only one way. Therefore, the programmer should make certain that
he does not specify in his program a problem-oriented name that is also a reserved
name. The only exception to this rule is the case of nonnumeric literals. The following
types of reserved data-names are inherent in the COBOL system:

• Figurative Constants

• Special Register TALLY

3.3.2.1. Figurative Constants

Certain commonly used functions and values have been assigned fixed names and
are called figurative constants. Unlike literals, which are actual values to be used,
figurative constants are words which name values". They also differ from nonnumeric
literals in that they are not enclosed in quotation marks. The figurative constants
in the COBOL language are as follows:

FIGURATIVE
CONSTANT

ZERO }
ZEROS
ZEROES

SPACE } SPACES

HIGH-VALUE
HIGH-VALUES

LOW-VALUE
LOW-VALUES

QUOTE }
QUOTES

}
}

ALL (any literal)

REPRESENTS

Represents the value 0, or a sequence of one or more
O's depending on the context of the statement.

Represents a sequence of one or more blank characters
or spaces depending on the context of the statement.

Represents one or more of the character that has the
highest value in the computer's collating sequence.

Represents one or more of the character that has the
lowest value in the computer's collating sequence.

Represents a sequence of quotation marks.

Calls for a sequence of the specified literal. The
length of the sequence is limited by the receiving
field.

The singular and plural forms of the constants are equivalent and may be used
interchangeably.

The following are examples of the use of figurative const~nts:

Assume that zeros are to be moved to a six-digit field called PART-NO. The
following might be written:

MOVE ZERO TO PART-NO

6

UP-7503.1
Rev. 1

•

•

FUNDAMENTALS OF COBOL

·L A N G U A G E SECTION:

3

PART-NO will than contain 000000. (ZEROS or ZEROES could just as easily

PAGE:

have been used.) Similarly if it were desired to move quotation marks to PART-NO,
the following might be written:

MOVE QUOTE TO PART-NO

PART-NO will then contain '""'""". The word QUOTE cannot be used instead
of quotation marks to enclose a literal. For example:

QUOTE NAME QUOTE

is not legitimate if "NAME" is intended. If it is desired to display the word
NAME on the printer, the following would be written:

DISPLAY "NAME" UPON PRINTER

If the statement

DISPLAY QUOTE "NAME" QUOTE UPON PRINTER

were written, the following would be printed:

"NAME"

If it is assumed that the letter A has the highest value in a particular computer's
collating sequence, and MODEL-NO is a six-character field, then the following
might be written:

MOVE HIGH-VALUE TO MODEL-NO

MODEL-NO will then contain AAAAAA.

Using a six-digit field called SCALE, an example of the ALL constant is:

MOVE ALL "4" TO SCALE.

The SCALE field would then contain 444444.

3.3.2.2. Special Register

TALLY is the name of a special register whose length is equivalent to a five­
decimal digit integer. Its primary use is to hold data produced by the EXAMINE
verb. TALLY is provided for in each compilation and need not be described by the
programmer.

The exact use of TALLY will become evident when the EXAMINE verb is con­
sidered .

7

UP-7503.1
Rev. 1

I FUNDAMENTALS OF COBOL

L A N G U A G E
SECTION:

3 l PAGE:

8

3.3.3. Qualification of Data

Every name used in a COBOL source program must be unique; either because no
other name has the identical spelling, or because the name exists within a hierarchy
of names and can be made unique by mentioning one or more of the higher levels of
the hierarchy. The higher levels are called qualifiers when used in this way, and the
process is called qualification. Sufficient qualification must be used to make a name
unique, but it is not necessary to mention all levels of the hierarchy unless needed.
A file-name, for example, is the highest level qualifier available for a data-name.
Thus, file-names must be unique in themselves and cannot be qualified.

Qualification in COBOL is performed by appending one or more prepositional phrases,
using IN or OF. The choice between IN or OF is based on readability since they are
logically equivalent. Names must appear in ascending order of hierarchy with either
of the words IN or OF separating them. The qualifiers are considered part of the no.me.
Thus, whenever a data item or procedure paragraph is referenced, any necessary
qualifiers must be written as part of the name.

Consider the organization of two records called MASTER and NEW-MASTER, with
the following partial data descriptions:

MASTER NEW-MASTER

CURRENT-DATE CURRENT-DATE

MONTH MONTH

DAY DAY

LAST-TRANSACTION-DATE LAST-TRANSACTION-DATE ...

MONTH MONTH

DAY DAY

YEAR YEAR

The MONTH contained in CURRENT-DATE of NEW-MASTER must be referred to as:

MONTH IN CURRENT-DATE OF NEW-MASTER

while the DAY of the LAST-TRANSACTION-DATE of the MASTER record must be
referred to as:

DAY OF LAST-TRANSACTION-DATE OF MASTER

The above examples required the mention of higher levels in the organization in
order to make the reference to month and day respectively unique.

UP-7503.1
Rev. 1

•

FUNDAMENTALS OF COBOL

L A N G U A G E SECTION:

3
PAGE:

This is analogous to the case where two men having the same name (John Jones),
live on streets with the same name (Main Street), but in different towns. There might
also be a John Jones living on 2nd Street in one town. To reference the appropriate
man, you would have to specify:

John Jones of Main Street in Oshkosh or

John Jones of Main Street in Middletown or

John Jones of 2nd Street in Middletown

Note that it is permissible to use IN or OF interchangeably.

The following additional rules must be obeyed in using qualification:

9

• A qualifier must be of a higher level and within the same hierarchy as the name it is
qualifying.

• The same name may not appear at two levels in a hierarchy so that it would appear
to qualify itself.

• If a data-name or condition-name is assigned to more than one data item in a
program, it must be qualified in all references to it in the program .

• Any data-name requiring qualification must be qualified every time it is referenced.
In the absence of qualification, the COBOL compiler cannot determine the logical
reference.

• A name can be qualified even though it does not need qualification. The use of
more names for qualification than are actually required for uniqueness is permitted.
If there is more than one combination of qualifiers which ensure uniqueness, then
any set can be used.

• The name of a conditional variable can be used as a qualifier for any of its
condition-names.

• A section-name is the highest and only qualifier for a paragraph-name. A paragraph­
name must not be duplicated within a section. When a paragraph-name is qualified
by a section-name, the word SECTION must not appear in the entry. A paragraph­
name need not be qualified when the reference to it is made from within the same
section.

• The length of a qualified data-name is set by the specific implementation (generally,
no more than 200 characters).

3.4. ORGANIZATION AND STRUCTURE OF THE DATA DIVISION

It is in the section of the program entitled DATA DIVISION that the various files,
records, and elementary items to be processed are described. Storage areas set aside
for holding intermediate results (or other temporarily-stored data) and constant data
are also described in this division.

UP-7503.1
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E

The Data Division consists of two sections headed as follows:

FILE SECTION.

WORKING-STORAGE SECTION.

SECTION:

The File Section contains two types of descriptive entries. They are:

• File description entries pertaining to each file handled by the program.

• Record description entries for each record in a given file.

3
PAGE:

The Working-Storage Section contains entries which describe areas of memory that may
hold both intermediate results of processing (or other temporarily-stored data) and
constant information at object time. Two types of entries may appear in the Working­
Storage Section:

• Entries that describe areas which are independent and unrelated to any other area
in working storage.

• Entries that describe record area or areas in which related sets of data are to
reside.

The Data Division is generally organized in the following manner:

A B

8 12

DATA DIVISION.

FI LE SECTION.

r-------------------------1
I Description of first file J
L-----------------------
r------------------------~

I Descriptions of all records associated with first file I
L_ _____________________ __.

,---------------------1
I Description of second file J L_ ____________________ _

r---------------------1
I Descriptions of all records associated with second file _J L_ ___________________ _

etc.

WORK ING-STORAGE SECTION.

r-------------------1
I Descriptions of memory areas containing unrelated data items
L_ __________________________ J

-------------------1
!Descriptions of memory area containing related sets of data I
l_'. _________ -----------

10

•

UP-7503.1
Rev. 1

•

FUNDAMENTALS OF COBOL

L A N G U A G E

3.5. DESCRIBING A FILE

SECTION:

3
PAGE:

The following pages discuss the general procedures for describing and defining a file
in the COBOL program. These procedures may vary somewhat from system to system.

3.5.1. General

A file description is written for each file processed in the program. The information
contained therein generally pertains to the physical aspects of the file. A file de­
scription consists of a mnemonic level indicator, a file-name, and a series of inde­
pendent clauses which describe the physical and logical characteristics of the file.

The mnemonic level indicator, FD, is used to indicate the start of a file description.
In this manner, the file description entries are distinguished from those pertaining
to in di vi dual records.

The various file description clauses generally include the following information and
are written in the following manner:

INFORMATION CLAUSE

11

(1) The size of the
physical record. [BLOCK CONT A INS [intege,-1 TO] integ.,-2{ ~ ~~~:~~ ERS}]

(2) The size of the
data record.

(3) The names and
values of the
label records
contained in the
file.

(4) The value of
some data con-
tained in a
label record.

(5) . The names of
the data records
comprising the
file.

[; RECORD CONTAINS [integer-3 TO] integer-4 CHARACTERS]

. LABEL{ RECORDS ARE}{ ~~~~~~~D}
I -- RECORD IS

data-name-1

~ {
data-name-3} YALU E OF data-name-2 IS
1

.
11 - ztera -

[{
data-name-5 }] J

, data-name-4 IS literal-2

{
RECORD IS }

; DA TA RECORDS ARE data-name-5 [, data-name-6] •

The following paragraphs discuss the various clauses in detail.

UP-7503.1
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E

3.5.2. Complete Entry Format

5£CTION:

3
PAGE;::

The organization and number of File Description clauses may vary somewhat from
system to system. The programmers reference manual for the specific computer should
be consulted. The following presents a general outline for clause organization:

A

8

B

12

FD me-name [; BL OCK CO NT Al NS [fo teg .,. J T 0] fot eg.,.2{ ~ ~~ ~~ g ERS } J
[;RECORD CONTAINS [integer-3 TO] integer-4 CHARACTERS]

·LABEL RECORDS ARE OMITTED
{ } {

STANDARD }
I RECORD IS

data-name-1 [, data-name-2] •••

[{
data-name-4} [; VALUE OF data-name-3 IS literal-I , data-name-5

IS { d~ta-name-6}] J
hteral-2 • • •

[{
RECORD IS } J ; DAT A RECORDS ARE data-name-5 [, data-name-6] • ••.

The level indicator FD identifies the beginning of the file description and it must
precede the file-name. It is not necessary that each clause begin a new line.

While the use of semicolons to separate clauses is optional, the last clause must
be followed by a period. The order of appearance of the optional clauses is immaterial.

If the file description exists in a standard library of routines then the following file
description may be written.

A B
8 12

FD file-name COPY library-name.

3.5.3. File Description Clauses

The following describes the general format and rules for usage for each of the
clauses that comprise the File Description Complete Entry Format.

12

UP-7503.1
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E

3.5.3.1. BLOCK CONTAINS

SECTION:

Format:

[; BLOCK CONT A INS [fotege,-1 TO] ;ntege,-2 { ~~~~~g~E RS}]

Description:

3
PAGE:

This clause specifies the size of the physical record or block on tape. The physical
grouping in no way affects the logic of the program; however, it may affect the
amount of magnetic tape needed to store data in a tape file. With this in mind, the
programmer should attempt to establish the most efficient correlation between the
physical and logical record. There must be at least one record per block. Blocks
may not contain partial records (i.e., records may not overlap blocks).

This clause is not required when one of the following conditions exists:

• A physical record contains only one complete logical record, e.g., one card.

• The hardware device assigned to the file has only one physical record size.

• A standard physical record size is established by the user regardless of optional
sizes permitted by the equipment. If logical records of various sizes are grouped
into a physical record, the end of each record must be clearly defined in the
individual record description entry.

When this clause is used, the following rules apply:

• lnteger-1 and integer-2 must be unsigned (positive) numeric literals.

• If only integer-2 is used, it represents the exact size of the physical record.
If both integer-1 and integer-2 are used, they indicate the minimum (integer-1)
and maximum (integer-2) size of the physical record.

For example, in the statement:

BLOCK CONTAINS 1 TO 3 RECORDS

each block contains at least one and no more than three records. However, if
"1 TO" were deleted, each block would contain three records.

• When the CHARACTERS option is selected, the physical record size is speci­
fied as the number of characters contained within the physical record regardless
of the types of characters used to represent the items within the physical record.

• Whenever logical records of varying size are grouped into one physical record,
the end of the logical record must be explicitly defined in the record description
entry except when the user's standard technique is used.

13

UP-7503.1
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E

3.5.3.2. RECORD CONTAINS

Format:

SECTION:

l RECORD CONTAINS [integer-1 TO] integer-2 CHARACTERS J
Description:

The RECORD CONTAINS clause specifies the size of the data record.

3
PAGE:

Since the size of each type of data record is completely defined within its respective
Record Description entry (by the PICTURE and FILLER clauses which describe each
elementary item), the RECORD CONTAINS clause is optional. When used, the fol­
lowing rules apply:

• Integer-1 and lnteger-2 must be unsigned (positive) numeric literals.

• When integer-1 and integer-2 are both used, integer-1 refers to the number of
characters in the smallest size data records, and integer-2 refers to the number
of characters in the largest size data records contained in that file.

• When only integer-2 is used, it represents the exact number of characters in
the data record.

For example, in the statement:

RECORD CONTAINS 115 TO 165 CHARACTERS.

Each record in the file is no shorter than 115 characters and no longer than 165
characters. However, if "115 TO" were deleted, each record would be exactly
165 characters long.

14

UP-7503.1
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E

3.5.3.3. LABEL

Format:

SECTION:

{ }{

STANDARD }
. LABEL RECORDS ARE OMITTED
I =-:.....:=-=-= RECORD IS data-name-1 [, data-name-2] • ••

Description:

3
PAGE:

Label records may be specified at both the beginning and end of a file. This
clause permits the identification of these label records. The LABEL clause must

appear for each file description.

If the user has a standard form for label records, then the STANDARD option may
be used. The OMITTED option specifies that no explicit labels exist for the file
or for the device to which the file is assigned. Data-name is the name of a label
record which must be the subject of a Record Description entry associated with
the file. The data-name must not appear in the DATA RECORDS clause of the File

Description.

15

UP-7503.1
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E

3.5.3.4. DATA RECORDS

Format:

I. DATA {RECORDS ARE }data-name-1 [, data-name-2] •• J L -- RECORD IS

Description:

3
SECTION: PAGE:

This clause enables the compiler to cross-reference the File Description entry
with the description of the particular logical record. Each data-name listed must
be a record name. This clause is optional and serves only to document the various
records in each file. These records may have different sizes and formats, and can
be listed in any order,

Qualification of these data names is not permitted since they are implicitly
qualified by the file-name of this entry. The data-names in this clause are the
names of the records described in the Record Description entries.

Examples of this statement may be seen in the sample problem.

16

UP-7503.1
Rev. 1

•

•

FUNDAMENTALS OF COBOL

L A N G U A G E

3.5.3.5. VALUE OF

Format:

[;VALUE OF {
data-name-2 } data-name-1 IS
literal-1

[, data-name-3 IS {
d~ta-name-4 }]
literal

Description:

3
SECTION:

...]
This clause specifies the value of an item in a la be 1 record. One possible use

PAGE:

of this clause is to permit the user to enter the name of the file about to be proces­
sed in the label record. Thus, a test as to whether or not the proper file is about
to be processed can be made before entering the processing stage.

Data-names 1, 3, etc., should be qualified where necessary but cannot be sub­
scripted or indexed. Figurative constants may be used in place of the literals
specified in the format. If label records are standard, then the supplied data-names
must be fixed names established by the individual implementor; data-names 2, 4,
etc., must be defined in the Working-Storage Section .

17

UP-7503.1
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E

3.5.4. Sample Problem

3
SECTION:

In the sample problem introduced in the previous section, two input files and two
output files are used: the input master inventory file, the input detail transaction
file, the output (updated) master inventory file, and the output stock reorder list
file.

PAGE:

Descriptions of the files are shown below, first in English prose and then in COBOL.
The records contained in these files are described in the next section.

• Master Inventory Files - (input and output)

The input and output master inventory files are identical in format, the latter
being an updated version of the former. For this reason, their file descriptions
are identical except for file-name. Each is physically stored on magnetic tape,
fifty master records to a physical block with a standard label that contains a
tape identifier, MSTINVTP. Both files contain a logical mas.ter record for each
individual stock item in the inventory.

003000 DATA DIVISION.
003100 FILE SECTION.
003200 FD OLD-MASTER-INVENTORY
003210 LABEL RECORD IS STANDARD
003250 VALUE OF ID IS •MSTINVP'
003300 BLOCK CONTAINS 50 RECORDS
003400 DATA RECORD IS MASTER-RECORD•

006100 FD
006110
006120
006130
006140

NEW-MASTER-INVENTORY
LABEL RECORD IS STANDARD
BLOCK CONTAINS 50 RECORDS
VALUE OF IO IS 'MSTINVP'
DATA RECORD IS MASTER-RECORD•

• Detail Transaction File - (input)

The detail transaction file consists of records contained on punched 80-column
cards, one record per card. Label records are not used.

004700 FD
004800

DETAIL-TRANSACTION-CARDS DATA RECORD JS TRANSACT¥ NS
LABEL RECORDS OMITTED.

• Stock Reorder-List File - (output)

The stock reorder-list file is printed during the object run. The record area is
called Replenish Stock Item, the elements of which are as shown in the next
section.

006500 FD
006600

REORDER-LIST LABEL RECORD IS OMITTED
DATA RECORD IS REPLENISH-STOCK-ITEM.

18

e

-

•

UP-7503.1
Rev. 1

•

•

•

FUNDAMENTALS OF COBOL

L A N G U A G E

3.6. DESCRIBING A RECORD

3
SECTION:

The following pages discuss the general procedures for describing a record in the
program.

3 .6.1. General

PAGE:

Each file description is followed by the descriptions of the various records compris­
ing that file. The record description describes all named items of data to the COBOL
compiler. Like the file description, the record description comprises a number of
independent clauses. These clauses may be used to describe data, or they may
describe intermediate work areas. (See 3.7 for the rules and procedures regarding
working-storage areas.)

Record Description clauses generally include the following information and are
written in the following manner:

INFORMATION

(1) The dominant usage of the data.

(2) The size, class (alphabetic,
numeric, alphanumeric), and
editing requirements for the
data.

(3) The justification of the data to
the rightmost position in the
field, or alignment by decimal
point.

(4) The positioning of items within
a computer word or words.

(5) The initial value of a working
storage area or the fixed value
of a condition-name or constant.

(6) The redefinition of an area so
it may be used for different data
at different times.

(7) Permits alternative, possibly
overlapping, groupings of
elementary items .

CLAUSE

{

COMPUTATIONAL }
USAGE IS COMP

DISPLAY

{
PICTURE} .
PIC IS character-string

{
JUSTIFIED} RIGHT
JUST

{
SYNCHRONIZED }{LEFT }
SYNC RIGHT

f VALUE IS } . . l VALUES ARE 11teral-l [THRU literal-2]

[, literal-3 [THRU literal-4]) , ••

data-name-1 REDEFINES data-name-2

data-name-1 RENAMES data-name-2
[TH RU data-name-3]

19

UP-7503.1
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E

3.6.2. Complete Entry Format

SECTION:

3
PAGE:

Though the organization of the Record Description clauses may vary somewhat from
system to system, the following presents the general method of organization:

A B
8 12

number{~~Lal~a~e-l}[; REDEFINES data-name-2] ; USAGE
level- [

{

COMPUTATIONAL} J
IS COMP

DISPLAY

f{SYNCHRONIZED}{LEFT }] [{PIC } . ~ l ~ R'IGHr ; PlCTURE character-strmgj

[{
JUST! FIED} J .

· JUST RIGHT [;VALUE IS Ztteral] [;BLANK WHEN ZERO].

When renaming an area or areas the following form is used with no additional clause
specifications (see 3.6.4.9).

A B
8 12

66 data-name-1 RENAMES data-name-2 [THRU data-name-3].

The meaning and use of level numbers are discussed in 3.6.3.

20

•

•

•

UP-7503.1
Rev. 1

•

FUNDAMENTALS OF COBOL

L A N G U A G E

3.6.3. Record Organization

SECTION:

•
3

PAGE:

In order to indicate to the compiler the manner in which the data is organized, COBOL
provides a system of level numbers or level indicators. Each data entry begins with
a level number to indicate its position relative to other data being processed. For
example, all records are assigned a level number of 01. Each subordinate entry
(group items, elementary items, etc.) then takes a higher level number. Therefore,
a record might be organized in the following manner:

01 (name and description of first record)

02 (name and description of first group)

03 (name and description of first item in first group)

03 (name and description of second item in first group)

03 (name and description of nth item in first group)

02 (name and description of second group)

etc.

01 (name and description of second record)

etc.

21

UP-7503.1
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E
SECTION:

3
PAGE:

Each group description must immediately follow the record of which it is a subset,
and each item description must be listed directly after the group of which it is a
part. Each datum described must be assigned a level number that is numerically
greater than the larger data grouping of which it is a part.

For example, assume the record called TIME-CARD is subdivided into groups and
items in the following manner:

Record

NAME

TIME-CARD

Items

-[

LAST
FIRST
MIDDLE

EMPLOYEE-NUMBER

DATE

HOURS

The record organization might appear as follows:

01 TIME CARD

02 NAME

03 LAST

03 FIRST

03 MIDDLE

02 EMPLOYEE-NUMBER

02 DATE

03 MONTH

03 DAY

03 YEAR

02 HOURS

-[

MONTH
DAY
YEAR

22

UP-7503.1
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E SECTION:
3

The organization of the data might also be written in the following manner:

01 TIME-CARD

06 NAME

10 LAST

10 FIRST

10 MIDDLE

06 EMPLOYEE-NUMBER

06 DATE

07 MONTH

07 DAY

07 YEAR

06 HOURS

PAGE:

For the sake of simplicity, only the level number and data-name of each entry have
been given in the above example. A complete description would have included the
various Record Description clauses.

A group includes all groups and elementary items described under it until a level
number less than or equal to the level number of that group is encountered. Thus,
in the above example, HOURS is not a part of the group called DATE. MONTH, DAY,
and YEAR are a part of the group called DATE, because they are described immedi­
ately under it and have a higher level number.

The principle rules for assigning level numbers are as follows:

• The level 01 is reserved exclusively for identifying a record.

• Level numbers range from 01 to 49.

• Any level may be an elementary item when no items are subordinate to it.

• An item is contained in the preceding group if the following conditions are met:

- The item has been assigned a numerically higher level number.

- The item name directly follows the group name of which it is a subset.

• Level numbers need not be assigned consecutively.

When an entry is given a numerically lower level number than the one immediately
preceding it, the level number must be at least that of the preceding group. Thus,
EMPLOYEE-NUMBER must be assigned at least a level 06, because that is the level
number assigned to the preceding group NAME.

Certain types of data exist for which there is no true concept of level; namely, un­
related working-storage areas and condition-names.

23

UP-7503.l
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E
SECTION:

3
PAGE:

The special level number 77 is used to describe unrelated work areas. If an entry
consists of one item which is not further subdivided, and which is not a part of any
larger item, then it is said to be independent. Similarly, a work area that is not
composed of several parts, and is not part of a larger work area, is called an in­
dependent work area. These areas need no hierarchy of level numbers to show their
relationship to other items, since they stand completely by themselves and are not
a part of any hierarchy. Level number 77 entries, when used, must appear as the
first entries in a description of a working storage area.

The second special level number 88 is used to identify condition-names. A condi­
tion-name is not the name of an item; it is the name of a value which a conditional
variable may assume. Thus, it is given the special level number 88. Condition-names
are assigned by writing an entry for the conditional variable itself, immediately
followed by an entry for each condition-name to be associated with it.

Example:

WORKING-STORAGE SECTION.
77 Data-name-1

77 YTD-PAY PICTURE IS 9(7).
88 FICA-MAX VALUE IS 0660000 THRU 9999999.

01 data-name-2

All 77 entries must appear before any 01 entries are written, and must be neither
subordinate to another entry nor have any subordinate items. In the example shown,
the 7-digit numeric item, YTD-PA Y, assumes an initial value of zero. The 88-level
(condition-name) entry FICA-MAX provides a simple way of determining the value
of YTD-PA Y with respect to the critical value 0660000.

The special level number 66 is used in connection with the RENAMES clause, as
will be explained later in this section.

3.6.4. Record Description Clauses

The following describes the general format and rules for usage for each Record
Description clause.

24

UP-7503.1
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E

3.6.4.1. LEVEL NUMBER

Format:

l l b {
data-name }

eve -num er FILLER

Description:

3
SECTION: PAGE:

There must be a level number for each elementary item, group, or record described.
Level numbers begin at 01 for records and get progressively higher for subsets of
records. The highest level number is 49 (except for the special level numbers 66,
77, and 88). The data-name must conform to all rules established in 3.3.1.1.

FILLER may be used in place of data-name to indicate a portion of a record that
is to contain no addressable data; e.g., a spacer between two data items that are
to be printed. This specification may never appear at a 01 level. The only other
clause that may be specified with FILLER in the File Section is PICTURE. In
effect, FI~LER may be considered a special name for data to which no data-name
has been assigned, and no direct reference to FILLER may be made in the program.
However, it may be referenced through the group or record of which it is a subset.

As an example, if the following were written:

03 LIFE-NO PICTURE IS 9(6)

03 FILLER PICTURE IS X(6)

03 NAME PICTURE IS A(24)

a nonaddressable 6-character field would be inserted into the record between
LIFE-NO and NAME.

25

UP-7503.l
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E

3.6.4.2. USAGE

Format:

[{

COMPUTATIONAL}]
; USAGE IS COMP

DISPLAY

Description:

3
SECTION:

The clause indicates to the compiler the most frequent use of the data being
described and thereby dictates the format of internal representation. Data may
be used in two ways:

(1) As an element in a computational procedure (COMPUTATIONAL or COMP)

(2) As an element in an operation in which the data is formatted for display
(DISPLAY)

PAGE:

In order to improve the efficiency of the object program, it is desirable to indicate
to the COBOL compiler just how data is going to be used.

The USAGE clause can be written at any level. When written at a group level it
applies to each item in the group; however, the gr<ilup itself is not COMPUTIONAL
and cannot be used in computations. The USAGE clause of an item may not contra­
dict the usage of a group to which the item belongs. Thus, an item cannot be
described as COMPUTATIONAL when it is part of a group item specified as
DISPLAY.

If the USAGE clause is not specified for an item, or for any group to which the
item belongs, it is assumed to be DISPLAY.

The usage specified in this clause does not restrict in any way the operation of
any verb on the data, except that COMPUTATIONAL implies numeric class.
However, it does affect the way in which the data is represented (e.g., the radix
may differ) inside the computer, and this will affect the efficiency of the object
program.

Example:

03 ON-HAND-UNITS PICTURE IS 9(4) USAGE IS COMPUTATIONAL.

This is an instance of correct use of the USAGE clause. However, if PICTURE
IS X(4) or A(4), the USAGE IS COMPUTATIONAL clause would be illegal. In the
above example, the abbreviation COMP could have been used in place of COM­
PUTATIONAL; they are logically equivalent.

Specifying one USAGE does not preclude an item from being used according to
the other. For example, COMPUTATIONAL usage might be specified for most
numeric items; this does not prevent their being displayed. The opposite is also
true.

A COMPUTATIONAL item may only be compared with a numeric item. A COMPU­
TATIONAL item may not be EXAMINEd. There are no other restrictions on the
use of a COMPUTATIONAL item as an operand in any statement. That is, such
an item may be DISPLAYed, MOVEd, ADDed, etc. Automatic conversion from one
usage to another is supplied by the compiler.

26

UP-7503.1
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E

3.6.4.3. PICTURE

Format:

[{
PICTURE} · . J ; PIC IS character-string

Description:

3
SECTION: PAGE:

This clause details precisely the characteristics of a particular elementary data
item. It also specifies any editing that may have to be done to the data. Through
this clause, the programmer may specify the class of the data item (alphabetic,
numeric, alphanumeric) and its size. He may also add, delete, or alter characters
thereby editing it (by means of a MOVE statement, see 4.3.7.1) into a form more
useful to his own application. PIC and PICTURE are logically equivalent.

PICTURE characters fall into three general categories, They are:

Data Character Symbols - These characters indicate whether the data item is
alphabetic, numeric, or alphanumeric.

Operational Symbols - These characters indicate the operational sign, the
assumed decimal position, and the assumed decimal scaling position of a numeric
value.

Editing Symbols - These characters indicate the editing to be done before
printing an elementary item. Two types of editing symbols or characters are
available.

(1) Replacement

(2) Fixed-Insertion

The replacement symbol specifies that some character in the data item (usually
zero) is to be suppressed and replaced by another character (usually the symbol
itself).

The fixed insertion character is inserted into the data item in addition to those
characters already present.

The use of editing symbols results in two additional classes of data: alphanumeric
edited and numeric edited. These classes are discussed later.

27

UP-7503.1
Rev. 1

FUNDAMENTALS OF COBOL

l .A N G U A G E
SECTION:

3
PAGE:

Below is a listing of all allowable PICTURE characters and the categories assoc­
iated with them:

Data Character Symbols

Operational Symbols

*
z

0

B

$

+

DB

CR

Editing Symbols

The maximum number of characters that can appear in a PICTURE description is
thirty {30). This does not limit the number of characters in the represented area,
which could be more than thirty.

An integer enclosed in parentheses can follow the symbols A X 9 P Z * $ B 0 - +
to indicate the number of consecutive occurrences of the symbol. (That is, A(10)X(2)
and AAAAAAAAAAXX are equivalent.) X(lOO) represents an area of 100 alphanumeric
characters.

Data Character Symbols:

A represents a character position to be occupied by any of the alphabetic
characters (A through Z) and the space character. For example, a five­
character, alphabetic item would be represented as

AAAAA or A(S)

X represents a character position to be occupied by any character in the
character set of the particular system. For example, the alphanumeric item
AB1234 could be represented by any of the following:

xxxxxx

AAXXXX

A(2)X(4)

X(6)

9 represents a character position occupied by a numeric character (0 through 9).
Thus, a PICTURE of 999 or 9(3) represents a three-digit field that contains a
group of three numeric characters.

28

UP-7503.1
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E

0 perational Symbols:

The following symbols may only be used for numeric items:

3
SECTION: PAGE:

S represents the position occupied by the sign of the data item. Except for
the symbol P, no character can appear to the left of S in a picture.

S999 or S9(3)

reIJresents a three-digit field that can contain a group of three numeric
characters with its associated operational sign.

V represents an assumed decimal point within a data item. Thus, S9V99 or
S9V9(2) represents a three character field which has an operational sign and
in which there is an assumed decimal point between the third and second
least significant digits. If the data item processed by the object program
were -10, it would be treated as -0.10. The use of V is redundant if P is
already present but V and P may appear in the same PICTURE.

P represents an assumed decimal point located outside of an item and, when
used, must be either the first or the last character or characters of a PIC­
TURE. One P is used for each assumed character position outside of the
field that precedes or follows the assumed decimal point.

PPPPS9999 or P(4)S9(4)

would represent (if +8735 is substituted as the data item for which the 9999
stands)

+.00008735

Note that the P's must precede the S in this type of PICTURE.

S9999PP or S9(4)P(2)

would represent (again using 8735)

+873500.

P's cannot appear as both the first and the last characters of a PICTURE.
The use of P is redundant if V is already present but P and V may appear
in the same PICTURE.

29

UP-7503.1
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E
SECTION:

3
PAGE:

Editing Symbols:

The following symbols associated with the editing functions are used when a data
item is to be printed and certain of the item characters are to be suppressed or
replaced, or other characters are to be inserted.

z

*

specifies that before the data item is printed, as many leading zeros as
there are Z's are to be suppressed (replaced by a blank or space). Thus,

PICTURE DATA ITEM PRINTED

zzzz 0000
zzzz 8730 8730
zzzz 0087 87
zzzz 8736 8736
ZZZ9 0087 87
ZZ99 0087 87
Z999 0087 087

specifies that before a data item is printed, asterisks should replace
leading zeros as dictated by the PICTURE clause. For example:

PICTURE DATA ITEM EDITED ITEM

**** 0000 ****
**** 8730 8730
**** 0087 **87
**** 8736 8736
***9 0087 **87
**99 0087 **87
*999 0087 *087

An asterisk may only be preceded by a B, a zero, a currency sign, a plus
sign, a minus sign, a decimal point or a comma. It can never appear in a
PICTURE with Z, A, X, or S or more than one currency, minus, or plus sign.

$ may be used as either a fixed insertion character or as a replacement
character. If only one $ is used in a PICTURE, then it is a fixed insertion
character and will occur in the specified position within the data item when
that item is printed. For example:

PICTURE

$9999
$ZZZ9
$ZZZZ

DATA ITEM

1234
0000
0000

EDITED ITEM

$1234
$ 0

30

e

UP-7503.1
Rev. 1

+or -

FUNDAMENTALS OF COBOL

L A N G U A G E
SECTION:

3
PAGE:

If more than one consecutive currency sign is used in the high-order end of
a PICTURE, the currency sign becomes a replacement symbol. It suppresses
all leading zeros as dictated by the PICTURE and inserts $ in place of the
rightmost zero suppressed. However, if the value of the data is zero, then the
edited item will contain spaces. For example:

PICTURE

$$$9999
$$$

$$$$$
$$99

DATA ITEM

001234
000

0008
123

EDITED ITEM

$1234

$8
$123

The currency sign may never appear in a PICTURE with A, X, or more than
one plus or minus sign.

may be used as either fixed insertion or replacement characters.

If the plus or minus sign is written as an insertion character in either the
first character or last character of a PICTURE, a displayed sign (as opposed
to an operational sign) is inserted into the indicated position.

When the minus sign is inserted, a minus sign will appear if the item is
negative; a blank will appear in the specified position if the item is positive
or unsigned. When the plus sign is used, a plus sign appears if the item is
positive; a minus sign appears if the item is negative. Unsigned items are
considered positive. For example:

DATA ITEM PICTURE EDITED ITEM

+33 -99 33
-33 99- 33-
-33 -99 -33

00 -99 00
+22 +99 +22
-22 +99 -22

20 99+ 20+

If either the minus or plus sign is used as a replacement symbol, it will
suppress leading zeros as dictated by the PICTURE. The rightmost zero
suppressed is replaced according to the following rules:

31

TP-7503.1
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E
SECTION:

3
PAGE:

(1) If a floating minus sign is used and the data item is negative, then a
minus sign will replace the rightmost zero suppressed. If the item is
positive or zero, a blank will replace it. For example:

PICTURE

--99
---99

DATA ITEM

123
012
000

EDITED ITEM

123
-12

(2) If a floating plus sign is used and the data item is positive, then a
plus sign will replace the rightmost zero suppressed. If the item is
negative then a minus sign will replace it. For example:

PICTURE DATA ITEM EDITED ITEM

++99 012 +12
+++9 006 -6
++++ 000
++99 123 +123

0 specifies that a zero is to be inserted in the item in the character position
corresponding to that of the 0 in the PICTURE.

PICTURE

990099
$999.00

DATA ITEM

8936
0736

PRINTED

890036
$736.00

B specifies that a blank or space is to be inserted in the item in the character
position corresponding to that of the B in the PICTURE.

'

PICTURE

99B9B9
9BB999

DATA ITEM

8736
8736

PRINTED

87 3 6
8 736

specifies a character position into which a comma is to be inserted unless
the preceding character has been suppressed. A comma cannot occur in a
PICTURE containing any A or X characters.

PICTURE DATA ITEM PRINTED

99,999 {87362 87,362
87000 87,000

{00873 873 zz,zzz
20000 20,000

32

e

~-----

UP-7503.1
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E
SECTION:

3
PAGE:

specifies a character position into which a decimal point is to be inserted
unless the succeeding character positions have been suppressed. It cannot
be used in a PICTURE containing any A, X, P or V characters.

PICTURE

$$$999.99

DATA ITEM

0087640
(defined LEFT 2

PLACES)

PRINTED

$876.40

CR specifies that two character positions of the item are to contain the characters
CR if the value of the data item is negative. CR can only occur as the last
characters (except for P) of a PICTURE. CR cannot be used in a PICTURE
containing A, X, -, +, Sor DB characters.

DB specifies that two character positions of the item are to contain the characters
DB if the value of the data item is negative. DB can only occur as the last
characters (except for P) of a PICTURE. DB cannot be used in a PICTURE
containing A, X, -, +, S or CR characters.

PICTURE

$$$$.99 CR
$$$$.99 CR

DATA ITEM

24567
00138

PRINTED

$245.67
$1.38 CR

Summarizing, the five categories of data described by a PICTURE clause are:
alphabetic, numeric, alphanumeric, alphanumeric edited, and numeric edited.

To define an item as alphabetic:

• Its PICTURE character-string may contain only the symbol A.

• Its contents may be any combination of the 26 letters of the alphabet and the space.

To define an item as numeric:

• Its PICTURE character-string may contain only the symbols 9, P, S, and V.

• Its contents may be a combination of the numerals 0 through 9 and may include
an operational sign.

To define an item as alphanumeric:

• Its PICTURE character-string is restricted to certain combinations of the symbols
A, X, and 9, but the item is treated as if the character-string contained all X's.
A PICTURE character-string that consists of all X's or all 9's does not define
an alphanumeric item.

• Its contents are the allowable characters in the computer's character set.

33

UP-7503.1
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E

To define an item as alphanumeric edited:

SECTION:

3
PAGE:

• Its PICTURE character-string is restricted to certain combinations of the symbols
A, X, 9, B, and 0 (zero); and must contain one of the following combinations of
symbols:

at least one B and at least one X; or

at least one 0 (zero) and at least one X; or

at least one 0 (zero) and at least one A.

• Its contents may be any allowable character in the computer's character set.

To define an item as numeric edited:

• Its PICTURE character-string is restricted to certain combinations of the
following symbols:

B

p

0

9

V + CR

Z DB

*
$ (or currency sign)

• The allowable combinations are determined from the order of symbol precedence
and the editing rules. A maximum of 18 digit positions may be represented in the
character-string.

• The contents of the character positions must consist of numerals.

An integer enclosed in parentheses following the symbols:

A p +

x z

0 * $ (or currency sign)

9 B

indicates the number of consecutive occurrences of the symbol. The following
symbols may appear only once in a given PICTURE:

S CR

V DB

The comma may appear more than once, but not directly adjacent to another comma.

Table 3-1 further summarizes the application of each PICTURE symbol.

34

UP-7503.l
Rev. 1

PICTURE

SYMBOL

A

x

Q

s

v

p

B

0

(period)

z

*

(comma)

FUNDAMENTALS OF COBOL

L A N G U A G E

REPRESENTS

An alphabetic character

An alphanumeric character

A numeric character

Indicates signed data

Indicates posit ion of
assumed decimal point
within data item

Indicates posit ion of an
assumed decimal point to
the left or right of the data
item. Each P represents
one position

Insert space

Insert zero

Insert point if following
positions have not been
blanked

Zero suppression; replace
leading zeros with blanks

Check protection; replace
leading zeros with aster is ks

Insert comma unless preceding
position has been blanked

CAN BE USED IN

COMBINATION WITH

X 9 B or 0

A 9 B or 0

Any other symbol

P V or 9

Any symbol except
A or X

Any symbol except
A or X

Any symbol except
S or more than one
$+or -

Any symbol except
s

Any symbol except
AX P VS or.

Any symbol except
A S X - or more
than one $ + or -

Any symbol except
Z AX Sor more
than one $ - or+

Any symbol except
A X S + or -

Table 3-1. PICTURE Symbols
(Part 1 of 2)

SECTION:

SPECIAL
PICTURE

POSITION

None

None

None

Leftmost

Must be within
PICTURE. Only
one V allowed

Either first
or last except
for S CR DB+
- or$

None

None

None

Preceded only by
V • $, + - or P

Preceded only by
+ V , $ or P

Leftmost

3 35
PAGE:

NOTES

2, 3

1, 2, 3. 4

3

1, 5

1, 4, 5

1, 5

2,4

4

4

4

4

UP-7503.1
Rev. 1

PICTURE

SYMBOL

$

or

$$$ ••• $

+

or

+++ ... +

or

... -

FUNDAMENTALS OF COBOL

L A N G U A G E

REPRESENTS

Insert currency symbol

Float currency symbol

Insert correct sign

FI oat correct sign

Insert space if value is

positive, minus sign if

value is negative

Float minus if value is
negative

CR Insert CR if value is
negative; two spaces if
positive

DB Insert DB if value is
negative; two spaces if
positive

NOTES:

CAN BE USED IN

COMBINATION WITH

Any symbol except
A X S + or -

Any symbol except
A X Z * or more
than one+ - CR
or DB

Any symbol except
A X S - CR or
DB

Any symbol except
A X - S CR DB
* Z or more than
one$

Any symbol except

A X + S CR or

DB

Any symbol except
A x + s CR DB *
z or more than one $

Any symbol except
A x + - s or DB

Any symbol except
A x + - s or CR

(1) PICTUREs for numeric items may contain only S V P and 9
(2) PICTURES for alphabetic items may contain only A and B

SPECIAL

PICTURE

POSITION

Leftmost

Leftmost

SECTION:

Rightmost or
leftmost

Leading

Rightmost or

leftmost except

for P

None

Rightmost

Rightmost

(3) PICTURES for nonedited alphanumeric items may contain only 9 A or X
(4) PICTUREs for edited items may contain 9 V Z $ + - CR DB OB* and ,
(5) S V and P are not counted in the item size

Table 3-1. PICTURE Symbols
(Part 2 of 2)

3 36
PAGE:

NOTES

4

4

4

4

4

4

UP-7503.1
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E

3.6.4.4. JUSTIFIED

Format:

[.{JUST lflED} RIGHT J
I JUST

Description:

3
S_§_CTJON:

This clause is used to right justify alphabetic or alphanumeric data within an area
set aside to hold that particular elementary item. Standard positioning for this type
of data is left justification. with space fill on the right. When this statement is used
the data is right justified and the unused positions are space filled. Left truncation
occurs when the receiving data area is smaller than the data being moved into it.
For example:

DATA ITEM

A9BQ7
MUTUAL

RECEIVING
AREA SIZE

7 characters
4 characters

"Li" indicates space

NORMAL
POSITIONING

A9BQ7i'ii'i
MUTU

JUSTIFIED RIGHT
POSITIONING

LiD..A9BQ7
TUAL

This clause may not be used with numeric data since such data is either aligned
by decimal point with zero fill on either end as required, or right justified in the
absence of a decimal point with zero fill on the left.

JUST and JUSTIFIED are logically equivalent.

37

UP-7503.1
Rev. 1

I
FUNDAMENTALS OF COBOL

L A N G U A G E
SECTION:

3 l PAGE:
38

3.6.4.5. SYNCHRONIZED

Format:

[{
SYNCHRONIZED} {LEFT }]
SYNC RIGHT

Description:

In many fixed word length computers, data is packed in order to conserve storage
space. As a result, the data must be unpacked before it can be used thereby increas­
ing the running time of the object program. The SYNCHRONIZED clause permits
unpacked data storage by placing each elementary item in the least number of
computer words required to contain it. Any unused portion of a word is filled with
zeros if the item is numeric; otherwise, it is space filled. Unused portions must
be accounted for in the PICTURE clause.

When SYNCHRONIZED LEFT is specified, the item starts at the leftmost boundary
of the computer word. Similarly, when SYNCHRONIZED RIGHT is specified, the
data is positioned so that it terminates at the rightmost boundary of the computer
word. The words SYNC and SYNCHRONIZED are logically equivalent.

Items specified at the 01 level are automatically synchronized (numeric items to
the right, alphabetic items to the left).

In the following examples, each computer word has a capacity of four characters,
and the word boundaries are indicated by the symbol !.

Consider three adjacent data items in a word with the following PICTURE des­
criptions:

9(5), A(2), 9.

If no synchronization is specified they are stored in packed form, i.e.,

j9999l9AA9!

However, if synchronization is specified for any or all of the items, they may be
represented in memory as follows:

9(5) A(2) 9 Memory

Synchrnn;zed {

Right Right Right I 0009\9999\ AAAA \0009\
Right Left N.S. \0009 \9999\AAAA \9000 I
N.S. Left Right I 9999 \ 9000 I AAAA I 0009 I
N.S. N.S. Right l9999l9AAA 100091

Notes: "N.S. 0 means "No Synchronization".

··d·' means space.

•

UP-7503.1
Rev. 1

FUNDAMEMTALS OF COBOL

L A N G U A G E

3.6.4.6. VALUE IS

Format: ·

3
SECTION:

, i ~~t~~Sl~RE \ literal-1 [TH RU literal-2] [literal-3 [TH RU literal-4]] ••.

Description:

This clause is used to either define the value of a condition-name or to specify

PAGE:

the initial value of a working storage area. The literal may be any numeric or non­
numeric literal or figurative constant. The VALUE clause may be used in the Work­
ing·Storage Section to either specify the value, or range of values, of a condition­
name or the value of an item to be contained therein. In the File Section, it may
only be used to define the value of a condition-name and any other use of this clause
in that section is for documentation purposes only. With the exception of a condition­
name entry, the VALUE IS clause must not be used in an entry that either contains
a REDEFINES clause or is subordinate to an entry containing a REDEFINES clause.
The VALUE clause must not contradict the PICTURE clause in either length or
class (numeric or nonnumeric). Further, when an item has editing symbols specified
by the PICTURE clause, the literal in the VALUE clause must be nonnumeric and
in edited form. A numeric literal used in this clause must have a value within the
range specified by the PICTURE clause. For example, if the PICTURE of a numeric
item is VPPP99, the literal specified in the VALUE clause must be within the
range .00000 to .00099.

If the VALUE clause is used at a group level within the Working-Storage Section,
it must not appear in the entries within the group. The group will be initialized
without regard to the individual items or other groups within that group.

When used in a conditional variable, one VALUE clause must be supplied for each
condition-name at an 88 level. No further entries need be specified. The form would
appear in the following manner:

level number data-name

88 condition-name-1 VALUE IS literal-1

88 condition-name-2 VALUE IS literal-2

88 condition-name-n VALUE IS literal-n

Example:

77 PAY PICTURE IS 9(8) USAGE IS COMPUTATIONAL.
88 FICA-MAX VALUE IS 00660000 THRU ALL 9.

The effect of this clause is that FICA-MAX is a condition-name, dependent upon
the value of PAY. If PAY is within the range of values described by the VALUE
clause, the condition-name FICA-MAX becomes "true".

39

UP-7503.1
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E

3.6.4.7. BLANK

Format:

[; BLANK WHEN ZERO]

Description:

3
SECTION: PAGE:

This clause is used to set an item to blanks when its value is zero. If the asterisk
is used as the zero suppression symbol and the BLANK WHEN ZERO clause appears
in the same entry, the zero suppression editing overrides the function of the BLANK
WHEN ZERO clause.

BLANK WHEN
PICTURE DATAITEM ZERO SPECIFIED? EDITED ITEM

$ZZZ9 0000 No $ 0
$ZZZ9 0000 Yes

**** 0000 No ****
**** 0000 Yes ****

40

UP-751>3.1
Rev. 1

FUHDAMENTALS OF COBOL

L A N G U A G E

3.6.4.8. REDE FINES

Format:

level-number data-name-1 REDEFINES data-name-2

Description:

3
SECTION: PAGE:

The REDEFINES clause allows the same computer storage area to contain different
data items at different times; i.e., to "overlay" items in storage. For example,
suppose a work area called MONTH-TABLE is needed in a program, and another
work area, MONTH-LOOK, is used later in the same program. Normally, each area
would be described separately in the Working-Storage Section, and each would
occupy different portions of storage. However, if the programmer knows that MONTH­
TABLE is never used when MONTH-LOOK is used, he may use the REDEFINES
clause enabling both items to occupy the same physical area in storage.

41

The REDEFINES clause must immediately follow the entries controlled by data-name-1
(i.e., the sublevel to data-name-1). This is the only descriptive clause which must

occur in a fixed place in an item description.

The level-numbers of data-name-1 and data-name-2 must be identical, and must not
be 66 or 88. Also, the REDEFINES clause must not appear in 01 level entries in
the File Section; implicit redefinition is provided by the DATA RECORDS clause
in the File Description entry.

When an area is redefined, all descriptions of the area remain in effect. If B and C
are two separate items sharing the same storage area, the procedure statements
MOVE X TO B or MOVE Y TO C could be executed at any point in the program. In
the first case, B would assume the value of X and take the form specified by the
description of B. In the second case, the same physical area would receive Y
according to the description of C. A redefinition does not cause any data to be
erased and does not supersede a previous description.

Example of the REDEFINES clause:

03 QUANTITY.
04 TONS PICTURE IS S9(4)V99 SYNCHRONIZED RIGHT.
04 BASE-BOXES PICTURE IS S9(5) SYNCHRONIZED RIGHT.
04 BASE-SYM REDEFINES BASE-BOXES.

05 FIRST-DIGIT PICTURE IS 9.
05 BASE-BOX-REST PICTURE IS S9(4).

In using the REDEFINES clause, the programmer must be extremely careful
especially when either the SYNCHRONIZED clause or the SIGNED option is used.
If the areas utilized by each of the data-names are not equal, program errors are

likely to occur.

Except for condition-name entries, the entry describing the new storage area must
not contain a VALUE clause.

UP-7503.1
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E

3.6.4.9. RENAMES

Format:

66 data-name-1; RENAMES data-name-2 (THRU data-name-3]

Description:

3
SECTION: PAGE:

The RENAMES option permits an item or items established by a record description
entry to be assigned a new name. Unlike REDEFINES, this clause does not redefine
existing data descriptions but merely allows data to be accessed and/or grouped
under alternative names while maintaining the previously defined data description.
For example, assume that a record is laid out in the following manner (this does not
constitute a complete record description):

01 A

02 B
03 G
03 H

02 c
03 I
03 J

02 D
02 E
02 F

This can be pictorially described as follows:

A

B c
D E

G H J

The items may be renamed as follows:

66 K RENAMES G Thru I.
66 M REN AMES B Thru C.
66 N RENAMES E.

F

42

UP-7503.l
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E SECTION:

3
PAGE:

In this case, any reference to K would access items G, H, and I. Groups B and C
would be accessed by a reference to M, and E would be referenced as N.

One or more RENAMES entries may be written for a record and must directly
follow the last data description entry of the specific record. Data-name-1, -2,
and -3 must be either elementary items or groups within the associated record
and may not be the same data-name. The RENAMES clause may not be used for
other 66-level entries nor can it be used for a 01, 77, or 88-level entry.

When data-name-3 is specified, data-name-1 is a group item which includes all
elementary items starting with data-name-2 and concluding with data-name-3
(if data-name-3 is an elementary item) or the last item in data-name-3 (if data-name-3

is a group item).

When data-name-3 is not specified, data-name-2 can be either a group item or an
elementary item; when data-name-2 is a group item, data-name-1 is treated as a
group item, and when data-name-2 is an elementary item, data-name-1 is treated
as an elementary item. Data-name-2 must precede data-name-3 in the Record
Description. Da ta-name-3 cannot be contained within data-name-2.

Data-name-1 cannot be used as a qualifier, and can only be qualified by names
at the 01-level or FD entries.

43

UP-7503.1
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E

3.6.5. Sample Problem

3
SECT10N:

Data records which comprise the files are described in detail below, first using
English descriptions and then the COBOL equivalent.

• Master Inventory File (input and output)

The input and output master inventory files are each described by the same
File Description; their record formats are also identical. Table 3-2 shows the
breakdown of the record format, including its mnemonic name in the program.

DATA ITEM MNEMONIC NAME DESCRIPTION PURPOSE
(Size and Type)

Stock item number SEQ-STOCK-NUMBER 6 alphanumeric Unique number for each stock

item to determine position in

file.

Vendor number NUMBER- 3 numeric Code number associated with

MANUFACTURER vendor.

Vendor catalogue MFR-CATALOG- 10 alphanumeric Order key specified to vendor.

number NUMBER

Item unit DESCRIPTION 30 alphanumeric Description of one order unit
description of the stock item.

Units on hand ON-HAND-UNITS 4 numeric Number of units in current

{
stock.

Price per unit COST-PER-UNIT 6 numeric Wholesale price of one unit in

dollars and cents.

Total wholesale TOTAL-WHOLESALE· 10 numeric Product of price per unit times
value VALUE units on hand. -----

Minimum unit MIN-STOCK-UNIT- 4 numeric Reorder I eve I.
quantity QUANTITY

Table 3-2. Master Inventory Record Format

PAGE:

The COBOL version is shown below. Note that the PICTURE clause appears in
each case.

MASTER-RECORD.
03 SEQ-STOCK-NUMBER PICTURE IS XC6>.
03 NUMBER-MANUFACTURER PICTURE IS 9(3).
03 MFR-CATALOG-NUMBER PICTURE IS XClO).

44

003500 01
003600
003700
003900
004000
004100
004300
004400
004500

03 DESCRIPTION PICTURE rs x<3o>. ~
03 ON-HAND-UNITS PICTURE IS 9(4) USAGE IS COMPUTATIONAL.W
03 COST-PER-UNIT PICTURE IS 9(4)V99.
03 TOTAL-WHOLESALE-VALUE PICTURE IS 9(8)V99.
03 MIN-STOCK•UNIT-QUANTITY PICTURE IS 9(4).

UP-7503.1
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E 3
SECTION: PAGE:

Table 3-3 illustrates how these records might typically appear.

STOCK VENDOR CATALOG ITEM UNIT UNITS PRICE TOTAL MIN.

NUMBER NUMBER NUMBER DESCRIPTION ON HAND UNIT WHOLESALE UNITS

c 0105 095 G16-264 Rifle, 264 Bolt Clip 0015 017025 0000255375 0010

c 0365 460 177-12GF Shotgun, Dbl., FM, 12G 0033 009550 0000315150 0020

G 1931 175 CZT 146 Water skis, 1 pair 004'5 002000 0000090000 0035

K 0023 984 S201 Sunglasses, men's 0300 000450 0000135000 0200

Table 3-3. Sample Master Inventory Records

• Detail Transaction Cards

DATA ITEM MNEMONIC NAME DESCRIPTION PURPOSE

Stock item number STOCK-CONTROL- 6 alphanumeric Unique number for each stock item

NUMBER to determine position in file.

Vendor number NO-TRANSACTOR 3 numeric Code number associated with vendor.

Vendor ca ta log ORDER-NUMBER 10 alphanumeric Order key specified to vendor.

Item unit DTL-DESCRIPTION 30 alphanumeric Description of one order unit of the
description stock item.

Transaction TYPE- 1 numeric Indicates shipment, receipt, or new
type TRANSACTION stock item to be inserted in file.

Quantity of QUANTITY 4. numeric Number of units shipped or received,

transaction or the minimum number of stock

items on a new stock item.

Price per unit UNIT-COST 6 numeric Wholesale pr ice of one unit in

do Ila rs and cents.

Table 3-4. Detaif Transaction Record Format

The COBOL description of this record is shown below.

TRANSACTIONS.
05 STOCK-CONTROL-NUMBER PICTURE IS X<&>.
05 NO-TRANSACTOR PICTURE IS 999.
05 ORDER-NUMBER PICTURE rs x<10>.
05 DTL-DESCRIPTION PICTURE IS X(30).

45

005000 01
005100
005110
005120
005200
005300
005500
005600
006010

05 TYPE-TRANSACTION PICTURE lS 9 USAGE IS COMPUTATIONAL•
05 QUANTITY PICTURE IS 9(4).
05 UNIT-COST PICTURE rs 9(4)V99.
05 FILLER PICTURE IS xc20>.

UP-7503.1
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E
SECTION:

3

Table 3-5 shows how detail transaction records might typically appear.

STOCK MFR. CATALOG TRANS COST PER
NUMBER NUMBER NUMBER

UNIT DESCRIPTION
CODE

QUANTITY
UNIT

c 0105 095 Gl6-264 Rifle, 264 Bolt Clip 0003 017025

c 0205 095 G88-22R Rifle, .22 Auto 0 0030 007000

c 0205 095 G88-22R Rifle, .22 Auto 3 0040 007000

G 1931 175 CZT 146 Water skis, 1 pair 0012 002000

G 1931 175 CZT 146 Water skis, 1 pair 2 0005 002000

K 0023 984 S201 Sunglasses, men's 0025 000450

K 0023 984 S201 Sunglasses, men's 0010 000450

Table 3-5. Sample Detail Transaction Records

• Reorder List File

DATA·ITEM MNEMONIC NAME DESCRIPTION PURPOSE

Stock item number STK-NUMBER- 6 alphanumeric Printed stock item number.

PRINT

Vendor number NO-MFR 3 numeric Printed code number associated

with vendor.

New stock flag FLAG-NEW- 1 alphabetic Printed "N" if a new stock item;

STOCK otherwise blank.

Vendor catalog MFR-ORDER- 10 alphanumeric Printed order key specified to vendor.

number NUMBER

Item unit ITEM- 30 alphanumeric Printed description of one order unit

description DESCRIPTION of the stock item.

Un its on hand UNITS-ON- 4 numeric Printed number of units in current

HAND stock.

Emergency reorder EMERGENCY- 3 alphabetic Printed EEE when an emergency

flag REORDER-FLAG stock shortage; otherwise blank.

Minimum unit MIN-UNITS 4 numeric Printed reorder level.

quantity

Pr ice per unit UNIT-COST 8 alphanumeric Wholesale price of one unit of stock

item in edited format.

NOTE: All of the above printed items are separated by spaces (filler) to enhance readability of the

report page.

Table 3-6. Reorder List Record Format

46
PAGE:.

UP-7503.1
Rev. 1

FUNDAMEt-. IALS OF COBOL

L A N G U A G E
SECTION:

3

The description of the record format would be written in COBOL as follows:

006700 01 RLPlf ;.J 1 Sf1-S TOCK-ITEM•
IJ067~){j 0 i) FI LLl:Y PICTlikE IS x (~).
uonaon (l 1:, s TK-r·JlY1[1fr{-Pf\ I ~ 1 T PTCTURE IS x (6).
00(>90U (1 h FILLER PI C TlJF·:f IS x (~) •
001000 O:J NO-·"H--f·' PiCTlJRE JS '<(3).

007100 0 ;J
'· FILLER PICTLJF<E IS x (7) •

007250 01' FLAl·-W·~ w-S TOC'< fJICTURE IS I\ •
007.500 ()[', FILL[R PI CTUf<E JS x (7) •
tlU7.3~0 Oh MFk-OHDEl<-r JU'f:Rt:"R PICTURE Jc; X(lO).

u07400 Od FILLEH PICTURE IS x (7).
U074'1U 0<\ I T[:vt-DESC P 1 PT I ')~.J PICTURE IS x (30) •
iJO 7~)00 Oh FILLE~ PlCTURE 15 x (5).
007~~)u n ~; LJiH 1 S-O"J-HMJU l'ICTUHE IS z7z9.
1)07~75 0 ~j FILLER PICTURE IS x (~) •
007600 on EMERGENCY-REORQfR-FLAG PICTURE IS XC:3>.
007700 Oci FILLER PICHHH:: IS x (5) •

007BOO () !~ ll.1l~J-UNIT:::, PICT\.IHE JS 7zz9.
t)07<JUO (1 -~ FILLER PICTURE IS x (5) •
UOdOOO Oh Ut~I T-COST rtt TttRt: TS 'ti'!.,'f'DZ. q9.
,JOH 10 D 0 >; •' FILLER PICTUl~E IS X(l?).

Table 3-7 illustrates how these records might typically appear.

PAGE:

STOCK MFR.
NEW

MFR.
UNIT DESCRIPTION

UNITS EMERG MIN PRICE PER

NUMBER NUMBER CATALOG ON HAND RE ORD UNITS UNIT

c 0205 095 N G88-22R Rifle, .22 Auto 40 30 $70.00

G 1931 175 CZT 146 Water skis, 1 pair 28 35 $20.00

K 0023 984 S201 Sunglasses, men's 170 200 $ 4.50

Table 3-7. Sample Reorder List- Item Records

3.7. DESCRIBING WORKING STORAGE AREAS

The Working-Storage Section is used to describe areas of memory which are to contain
intermediate results of processing and other temporarily-stored data at object running
time. These areas may be specified in any one of three ways:

• As single-item areas containing data that is unrelated to any other data contained
in the working-storage area.

.
• As record areas containing items of data that are interrelated and organized into

records.

• As conditional-item areas mapped to contain conditional variables and their associ­
ated condition-names.

47

UP-7503.1
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E

3.7.1. Organization and Structure

SECTION:

3
PAGE:

The Working-Storage Section begins with a section header followed by descriptions
of both the single-item areas and the conditional-item areas. The descriptions for
record areas then follow. The general format of the Working-Storage Section is as
follows:

WORKING-STORAGE SECTION.

77 (name and description of single-item areas)

77 (name and description of conditional variable)

88 (condition-name-1)

88 (condition-name-2)

01 (name and description for record area)

(Follows normal Record Description form.)

3 .7 .2. Single-Item Areas

These areas consist of single items which are not subdivided and are -not themselves
subdivisions of some other item. They are always assigned .the level number 77. Each
single-item area must be described in a separate data description entry consisting of
the following elements:

• The level number 77.

• A data-name.

• A PICTURE clause.

Other Record Description clauses are optional and can be used to complete the de­
scription of the item, if necessary. When writing the Working-Storage Section, entries
for all single items are placed before the entries describing record items.

These areas are frequently used for the temporary storage of intermediate results
pending completion of a calculation. For example, suppose the programmer wishes
to total several items in order to obtain an average, and he wishes to retain the total
for some further calculation. In this case, the total would have to be stored temporar­
ily. Unless it were to be used as part of a larger grouping of items, it would often be
convenient to store it in some single-item working storage area.

48

UP-7503.1
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E

3. 7.3. Record Areas

SECTION:
3

PAGE:

Data elements in working·storage which bear a definite relationship to one another
must be grouped into records according to the rules for formation of record descrip·
tions. All clauses which are used in normal input or output record descriptions, can
be used in a WORKING·STORAGE Record Description. Each working·storage record·
name (01-level) must be unique since it cannot be qualified by a file-name. Sub­
ordinate data-names need not be unique if they can be made unique by qualification.

3. 7.4. Conditional-Item Areas

Any working-storage item may constitute a conditional variable with which one or more
condition-names may be associated. Entries defining condition-names must immediate­
ly follow the item to which they relate. Both the conditional variable entry and the
associated condition-name entries may contain VALUE clauses.

3.7.5. Initial Values for Working-Storage Areas

The initial value of any item in the Working-Storage Section may be specified by using
the VALUE clause of the Record Description. If VALUE is not specified, the initial
value may be unpredictable. All the rules for the expression of literals and figurative
constants apply. The size of the literal which specifies the initial value can be equal
to or less than the size specified in the PICTURE clause of the associated data entry,
but it cannot be greater. When the size is less, normal rules for data positioning apply.

3. 7.6. Sample Problem

The working storage data shown below are used in the sample to support the per­
formance of various procedures.

Data Name

Dividend

Description and
Initial Value

6 numeric, zero

Purpose

To store intermediate arith­
metic results.

49

Percentage 4 numeric, zero To hold a developed percentage.

Switch

Line number

Replenish report
heading 1

1 numeric, zero

2 numeric, zero

Assumes the value 1 when
current input master is in
memory.

A line counter, to control
page eject.

First heading line of stock
reorder report, containing
the word PAGE and the
page number.

UP-7503.1
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E 3
SECTION: PAGE:

008200 WORKING-STORAGE SECTION•
DIVIDEND PICTURE IS 9(6) VALUE IS ZERO.
PERCENTAGE PICTURE IS 9999 VALUE IS 0000.
SWITCH PICTURE IS 9 VALUE IS ZERO USAGE IS
LINE-NO VALUE IS O PICTURE IS 99.
!-REPLENISH-REPORT-HEADING.

COMPUTATIONAL.

10 FILLER PICTURE IS X(ll6) VALUE SPACES.
10 PAGE.
1~ PAGEKON VALUE IS 'PAGE• PICTURE IS XC5>.
15 PAGE-NO PICTURE IS 999 VALUE ZERO.
1~ FILLER PICTURE IS x<a> VALUE SPACES.
2-REPLENISH-REPORT-HEADING.
02 ONE-THRU-SIXTY-ONE PICTURE
' MFR NEW CATALOG

X<61> VALUE IS '
!TE'•

STOCK

O~ SIXTY-TWO-THRU-132 PICTURE XC71> VALUE IS 'M - UNIT
MIN UNIT

so

••

008.300 77
008400 77
008500 77
008610 77
008700 01
008800
008900
009100
009110
009150
009300 01
009350
009400-
009450
009500-
009700 01
009750
009800-
009900
010000

UNITS EMERG
3-REPLENISH-REPORT-HEADING,
02 ONE-THRU-71 PICTURE XC71) VALUE IS ' NUMBER NUMBER
' STOCK NUMRER DESCRIPTION•.
02 SEVENTY-ONE-THRU-132 PICTURE X(61> VALUE
' ON HAND REORD UNITS COST•.

UP-7503.1
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E

4.1. GENERAL DESCRIPTION

4
SECTION: PAGE:

4. PROCEDURES

It is in the se.i::tion called the Procedure Division that the various instructions needed
to solve a given problem are written. These instructions, though not syntactically
identical to normal English, are sufficiently similar to English-language construction
to permit easy communication among technical and nontechnical personnel.

1

The basic unit of the Procedure Division is the sentence which consists of one or more
statements and/or expressions. A procedure is formed by combining one or more sentences
into a paragraph and one or more paragraphs into a section. A procedure, then is a
paragraph, a group of successive paragraphs, or a section within the Procedure Division.
Only sections and paragraphs may be named and, therefore, are the only elements with
which communication may be made.

The following pages present the various elements comprising procedures and the rules
governing their use.

4.2. EXPRESSIONS

An expression in the COBOL language may be defined as a meaningful combination
of data-names, literals, and operators which may be reduced to a single value. In
procedural statements, two types of expressions may be specified: the arithmetic
expression and the conditional expression.

4.2.1. Arithmetic Expressions

Arithmetic expressions are data-names, identifiers, or numeric literals or a series of
data-names, identifiers, and literals separated by arithmetic operators which define
or can be reduced to a single numeric value.

UP-7503.1
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E
SECTION:

4
PAGE:

The format of arithmetic expressions using arithmetic operators in a COBOL procedure
is as follows:

data-name

or

identifier

or

literal

or

{

data-name
literal
identifier

} {

data-name}
operator ~itera_I .

zdentther

or

{

data-name}
literal operator

identifier
{

data-name} { data-name }
literal operator operator literal

identifier identifier

Five arithmetic opel'ators are available for use in an arithmetic expression:

Operation Operator

Addition +
Subtraction

Multiplication *
Division I
Exponentiation **

When arithmetic expressions are evaluated by the COBOL compiler, each term is
examined and evaluated in a precise order of precedence established by the arith­
metic opera tors. Normal precedence from high to low is as follows:

(1) Exponentiation

(2) Multiplication and Division

(3) Addition and Subtraction

The following examples illustrate the effect this ordering has on the result of an
expression as opposed to a simple left to right evaluation. In these examples, let
A = 4, B = 6, C = 2, D = 3, and E = 12.

A + B * C ** D

A + B * C

E A I C

Left to Right

8000

20

4

COBOL Evaluation

52

16

10

Where operators are all on the same hierarchical level (i.e., multiplication arrd division
or addition and subtraction), evaluation occurs in left to right order.

2

UP-7503.1
Rev. 1

•

FUNDAMENTALS OF COBOL

L A N G U A G E SECTION:
4

PAGE:

There are instances where the rules of precedence are insufficient to represent the
precise meaning of an algebraic formula. For example:

A + B

A B

cannot be expressed as a COBOL expression according to the rules of precedence
established above. To write it as:

A+B/A-B

is incorrect since this represents the formula

A + B - B

A

Parentheses are used to alter the normal rules of precedence where these rules cause
ambiguities of logic in the presentation of an algebraic calculation. Parentheses are
defined as having a higher order of precedence than any operator. The example above
can now be accurately represented in the following manner:

(A + B) I (A - B)

Now A + B and A - B are defined as elemental factors of the division operation .

Operations within parentheses, therefore, have precedence over any other in a
calculation. In the following example, let A = 4, B = 3, and C = 6:

A +B*A-C/2

This produces 13 as a result, whereas

((A + B) * A - C) I 2

produces 11 as a result with the sequence of evaluation proceeding from the inner­
most parenthesized operation to the outermost, as follows:

1.A+B=7

~
2. 7 * A = 28

~
3. 28 - c = 22

~
4. 22 / 2 = 11 (Result)

3

UP-7503.1
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E
SECTION:

4

Double exponentiation is sometimes used in an algebraic expression, for example:

This may not be written as

It must be written as either

or as

whichever is intended.

b
A

c

A ** B ** C

(A ** B) ** C

A ** (B ** C)

In ensuing pages, it will be shown how arithmetic expressions may be used in a
conditional case to determine if the expression defines a specific value.

4.2.2. Conditional Expressions

PAGE:

Conditional expressions are used in situations where the outcome of a test will
determine the next logical steps to be performed. Like the arithmetic expression
which reduces to a single numeric value, the conditional expression may be thought
of as also reducing to a single value - in this case, "true" or "false". In general,
truth or falsity is determined by a relational test either between a data-name and a
literal, or among several data-names. For example, the expression

FICA-TO-DATE IS EQUAL TO 277.20

may or may not be true, depending upon the amount of FICA-TO-DATE accumulated
by a particular employee. The outcome of this test will determine the next program
steps to be executed.

Since the outcome of a relational test is used in a conditional expression to deter­
mine a course of action, and since this test is based on a comparison of characters,
it is significant to discuss, at this point, just how this comparison or evaluation
occurs.

4.2.2.1. Rules of Comparison

Characters are compared and evaluated on the basis of a computer collating
sequence in which the characters have a specified order of magnitude. This
order is "built into" the machine, and every character meaningful to the computer
has its position in this ordering. The result of a comparison depends on the
relative position of each character in the machine's collating sequence.

4.2.2.2. Comparison of Numeric Items

The comparison of numeric items is based on the respective values of the items
considered purely as algebraic values. The item length, in terms of the num her of
digits, is not itself significant. Zero represents a unique value regardless of
the length, sign, or implied decimal point location of an item.

4

UP-7503.1
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E SECTION:

4
PAGE:

For example, a comparison of a data-item which has a value of +000003 with a
data-item which has a value of +03 will result in an "equal" condition. Similarly,
the value of 000000 is equal to the value .tOOOO. Following the rules of algebra,
+01 is greater than -155.

4.2.2.3. Comparison of Nonnumeric Items

For two nonnumeric items, or one numeric and one nonnumeric item, a comparison
results in the determination that one of the items is LESS THAN, EQUAL TO, or
GREATER THAN the other with respect to the ordered character set. If a signed,
computational item is compared with a nonnumeric item, the sign is ignored. There
are two cases to consider: equal length items, and unequal length items. In a
comparison of two non numeric items, the character in an item is compared with
the corresponding character of the other item. The comparison begins with the
high-order (leftmost) character of each item. If these two characters are equal,
the next two are compared and so on. As soon as the unequal condition is noted,
the ·comparison stops and the result is recorded.

(a) Items of Equal Length

If the items are of equal length, comparison proceeds by comparing characters
in corresponding character positions starting from the high-order end and
continuing until either a pair of unequal characters is encountered or the low­
order low end of the item is reached. The items are determined to be EQUAL
when the low-order end is reached, and no unequal pair of characters was
detected.

5

The first encountered pair of unequal characters is compared for relative location
in the ordered character set. The item which contains the character which is
positioned higher in the ordered sequence is determined to be the GREATER item.

(b) Items of Unequal Length

If the items are of unequal length, comparison proceeds as described above.
If this process exhausts the characters of the shorter item without detection
of a difference, then the shorter item is LESS THAN the longer item unless
the remainder of the longer item consists solely of spaces.

4.2.2.4. The Simple Conditional Expression

A simple condition reducing to the value true of false may be expressed by any of
the following:

• a relation

• a condition-name

• a sign condition

• a class condition

• a switch-status condition.

Any of the above may be used in a decision-making operation to select different
paths of control in a program.

UP-7503.1
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E

• The Relational Condition

SECTION:

4
PAGE:

A relational condition causes a comparison of magnitude between two quantities
(or operands). Each quantity may be either an identifier, a literal, or an arithmetic
expression. The general form of the relational expression is as follows:

{

identifier-1 } { identifier-2
literal-1 operator literal-2
arithmetic-expression-I ' arithmetic-expression-2

}
The first quantity is called the subject of the condition. The second is referred to
as the object. The subject and object in a relational expression may not both be
literals.

The relational operators specify the type of comparison to be made between the
two quantities. A relational operator must be preceded and followed by a space.
The following is a list of the relational operators:

IS [NOT] GREATER THAN

IS [NOT]..2:,

IS [NOT] LESS THAN

IS [NOT]~

IS [NOT] EQUAL TO

IS [NOT]~

A relational expression may appear in the following manner:

AGE IS GREATER THAN 21

AGE IS NOT GREATER THAN 21

FICA-TO-DATE IS LESS THAN 277.20

REORDER-POINT IS EQUAL TO 450

GROSS IS =NET

The word NOT is provided to make the relational operator specify the exact
opposite of what it would normally specify. For example:

AGE IS GREATER THAN 21

AGE IS NOT GREATER THAN 21

are exact opposites of each other. The words IS and THAN are optional and may
be specified at the user's discretion without altering the meaning of the expression.
For example:

FICA-TO-DATE LESS 277.20

is equivalent to

FICA-TO-DATE IS LESS THAN 277.20

or to either of the following:

FICA-TO-DATE IS LESS 277.20

FICA-TO-DATE LESS THAN 277 .20

6

UP-7503.1
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E SECTION:

4
PAGE:

Arithmetic expressions may be operands in a relational condition. For example:

A + B IS EQUAL TO A + M

(A + B) ** 3 IS GREATER THAN VAR-A

• The Condition-Name Condition

A condition-name is a name assigned in the Data Division to one of the values
a conditional variable may assume. In a condition-name condition, the variable
is tested to determine whether or not its value is equal to a value associated
with a particular condition-name. If the condition-name is associated with a range
of values, the variable is tested to determine if the value falls within this range.
This includes both the upper and lower values. For example, the data description
of a particular conditional variable might appear as follows:

02 MARITAL-STATUS; PICTURE IS 9;

88 SINGLE VALUE IS 1.

88 MARRIED VALUE IS 2.

88 DIVORCED VALUE IS 3.

88 WIDOWED VALUE IS 4.

Using an IF statement, the test to determine marital status may appear as follows:

IF MARRIED•

which is equivalent to

IF MARITAL-STATUS IS EQUAL TO 2

Again, as in the relational condition, NOT is used to specify the opposite of
what the condition-name test would normally specify. So, for example,

IF NOT SINGLE .•....

is equivalent to

IF MARITAL-STATUS IS NOT EQUAL TO 1

• Sign Condition

This condition determines whether a numeric quantity is less than, equal to, or
greater than zero. The general format of this conditional expression is as follows:

l identifier I
arithmetic-expression

IS [NOT] {
POSITIVE }
NEGATIVE
ZERO

The identifier in a numeric status test must always represent a numeric value.

Any condition·that can be expressed in a numeric status test may also be ex­
pressed by a relational expression. For example,

A + B * C IS POSITIVE

may also be expressed in a relational expression as

A + B * C IS GREATER THAN 0

7

UP-7503.1
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E

• Class Condition

4
SECTION:

The class condition test determines whether a quantity is purely numeric or
purely alphabetic. The general format of this conditional expression is as
follows:

identifier IS [NOT] j NUMERIC l
f ALPHABETIC f

PAGE:

The test must be consistent with the data description of the item being tested.
That is, the NUMERIC test may only be used for data which has been described
as numeric and the ALPHABETIC test may be only used for data which has been
described as alphabetic. Either may be used for data described as being alpha­
numeric. The usage of identifier must be defined, either explicitly or implicitly,
as DISPLAY.

• The switch-status condition is used to determine whether a particular hardware
switch is off or on. The implementor-name and its associated ON or OFF value
must be named in the SPECIAL-NAMES paragraph of the Environment Division
(see 5.3). The result of the test is true when the switch is set to the specified
position corresponding to the condition-name.

4.2.2.5. The Compound Conditional Expression

If A is:

True

False

True

False

A conditional expression having a single condition is referred to as a simple
conditional expression. One containing more than one condition is referred to as
a compound conditional expression. The various conditions in a compound
expression are connected by the logical operators AND and OR and would appear
in the following format:

. d" .
1

. ~ AND [NOT] l
s1mple-con 1t10na -expresswn f OR [NOT] f simple-conditional-expression

The logical operators express a logical relationship between the conditions and
determine, according to rules for such operations, the truth or falsity of the entire
operation. The logical determination of true or false is based upon the rules de­
fined in the following table. Here, A and B represent simple conditions.

A AND B A ORB A AND NOT B A OR NOT B
and B is: will be: will be: will be: will be:

True True True False True

True False True False False

False False True True True

False False False False True

Two or more conditions may comprise a compound expression. Parentheses may
be employed to alter the sequence of evaluation. If they are not employed, the
conditions surrounding all ANDs are evaluated first, starting at the left of the
expression. All ORs are evaluated next, also proceeding from left to right. For
example,

8

UP-7503.1
Rev. 1

•

FUNDAMENTALS OF COBOL

L A N G U A G E SECTION:

4

A IS EQUAL TO B OR C IS LESS THAN D AND E IS GREATER
THAN F AND G IS POSITIVE

PAGE:

is evaluated in the following manner (here Vi represents the resultant value of an
opera ti on):

,,,------------------------...._ -----......,_
C IS LESS THAN D E IS GREATER THAN F

' - -- ,,.---------
v1 AND v2

G IS POSITIVE 1
~ANDV3

A IS EQUAL TO B l
~s

l
RESULT

If, however, the following were written:

(A IS EQUAL TO B OR C IS LESS THAN D) AND E IS GREATER
THAN F A ND G IS POSITIVE

Then the evaluation would occur as follows:

E IS GREATER THAN F G IS POSITIVE -1-- ~
.__ ___ ..,v

4
AND VS ,.,____J

i
v6 AND v3 i .

RESULT

9

UP~7503.1

Rev. 1
FUNDAMENTALS OF COBOL

L A N G U A G E

4.2.2.6. Implied Subjects

SECTION:
4

PAGE:

In a compound conditional expression, it is possible for several consecutive condi­
tions to have the same subject. For example,

AGE IS GREATER THAN 21 OR AGE IS LESS THAN 65

Both conditions contain the common subject AGE. Therefore, it is not necessary
to state it for each consecutive condition. In other words, the subject may be im­
plied. For example,

AGE IS GREATER THAN 21 OR LESS THAN 65

Subjects may only be implied in a series of consecutive relational expressions,
the first of which must contain a subject, operator, and object.

4.2.2. 7. Implied Operators

Operators, as well as subjects, may be implied in a compound condition consisting
of a consecutive series of relational expressions. For example,

DISTRICT IS EQUAL TO 25 OR EQUAL TO 66 OR EQUAL TO 85

may be written as,

DISTRICT IS EQUAL TO 25 OR 66 OR 85

Implied operators may only be used in expressions where the subjects are also
implied.

4.3. STATEMENTS AND SENTENCES

Statements form the basis functional components of COBOL procedures. Just as clauses
make up sentences in normal English-language construction, so statements make up
COBOL-language sentences. A sentence may contain one or more statements. There
are three basic types of statements and sentences permitted in COBOL:

• Imperative

• Conditional

• Compiler-directing (see 4.7.5).

The following rules govern the construction sentences:

• Each sentence may be made up of one or more statements.

• Each sentence is terminated by a period.

• Separators may be used to enhance readability. They are optional.

• The allowable separators in a COBOL sentence are:

"b (space)

; (semicolon)

, (comma)

10

UP-7503.1
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E

• Two contiguous separators are not permissible.

• Separators may be used in the following places:

Between statements.

SECTION:

Between a condition and statement-1 in a conditional sentence.

Between statement-1 and ELSE in a conditional statement.

4 .3 .1. Imperative

4

Imperative sentences and statements from explicit and direct commands to the
computer. Imperative sentences are specified in the following manner:

verb operand
verb operand [;] verb operand [;] verb operand

or

For example:

ADD TEMPl TO TEMP2.

PAGE:

MULTIPLY PAY-RATE BY HOURS-WORKED GIVING GROSS-PAY;
GO TO FICA-COMPUTATION.

ADD A TO B GIVING C; PERFORM 321 THRU 328.

MOVE 1050 TO REORDER-POINT.

After an imperative statement is executed, control is passed on to the next state­
ment in sequence unless a GO TO or STOP RUN verb is present. If either is used,
it must be the last statement in the sequence since control will be immediately
transferred.

4.3.2. Conditional

Conditional statements and sentences are vital to any data-processing problem. In
effect, they specify alternative courses of action depending upon the outcome of a
test or comparison.

The format of a conditional statement is as follows:

IF d . . ! statement-1 l j statement-2 l
- con ztwn; H:l.£.ll SENTENCE 5 ; ELSE 1NEXT SENTENCE5

Here, a conditional expression (either simple or compound) is evaluated and deter­
mined to be either true or false. If the condition is true, then statement-1 is executed
and control is transferred to the next sentence. If it is false then statement-2 is
executed and control is passed to the next sentence. If NEXT SENTENCE is specified
instead of statement-1, control passes to the next sentence if the statement is true.
If no false path is specified and the true side contains NEXT SENTENCE, for example

IF condition NEXT SENTENCE

then control passes to the next sentence regardless of whether the statement is true
or false thereby having the effect of a skip-to-next-instruction operation.

11

UP-7503.1
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E
SECTION:

4
PAGE:

Both statement-1 and statement-2 may either be imperative or conditional. If state­
ment-2 is conditional, it may, in turn, contain another conditional statement. The
conditional statement within the conditional statement is called "nesting" and may
be schematically shown in the following way:

IF a· . (statement-I) ELSE _con 1t10n; ~SENTENCE ; __ statemfnt-2

IF a· . (statement-3 } ELSE _ con 1t1on; NEXT SENTENCE ; __ statejent-4

_t:

. . (statement-5) ..!f cond1t10n; NEXT SENTENCE ; ELSE statement-6

etc.

Some examples of conditional statements are as follows:

IF A IS GREATER THAN B; GO TO PARA-1;
ELSE GO TO PARA-2.

IF MARRIED AND AGE GREATER THAN 21; GO
TO DEP-ROUT; ELSE NEXT SENTENCE.

IF A+ B ** C IS POSITIVE; MOVE 1 TO D; ELSE MOVE 2 TO D.

4.4. PROCEDURE FORMATION

Procedures are formed by combining one or more sentences into a paragraph and one
or more paragraphs into a section. Each paragraph or section must be preceded by a
procedure name. These names may be either numeric, alphabetic, or alphanumeric.
If numeric, leading zeros are significant (i.e., 23 is not the same as 023). All pro­
cedure names must start at position A (column 8) on the COBOL Programming Form,
be a maximum of 30 characters in length, and be followed by a period.

4.5. PARAGRAPHS

One or more sentences may be combined to form a paragraph. Essentially, a paragraph
expresses a single procedure to be carried through in the main program. Each program
contains many such paragraphs. Each paragraph must be preceded by a procedure-name
since reference may only be made to an entire paragraph and not to individual sentences
contained therein. If reference is to be made to a single sentence, that sentence must
be defined as a complete paragraph and must be preceded by a procedure-name.

4.6. SECTIONS

One or more paragraphs can be grouped into a section. The section is the largest unit
in COBOL to which a procedure-name may be assigned. This is done by writing a pro­
cedure-name, followed by the key word SECTION, followed by a period; the remainder
of the line on which it is written must be left blank. The Procedure Division need not
be broken into sections if the programmer does not find it convenient.

12

UP-7503.1
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E

4.7. PROCEDURAL VERBS

SECTION:

4
PAGE:

As in the English language, verbs specify actions to be performed. In COBOL, each
verb built into the system causes a specific series of events to occur at object time.
Each verb operates within the context of one or more fixed-format statements. The
formats indicate the arrangement of verb and operand and indicate the particular category
of procedure statement. The various verbs inherent in the COBOL language are
categorized and will be described in the following manner:

Input/Output

Arithmetic

Data Movement
and Manipulation

Sequence Control

Compiler Directing

OPEN
CLOSE
READ
WRITE
ACCEPT
DISPLAY

~
~~~TRACT 
MULTIPLY 
DIVIDE 
COMPUTE 

I MOVE 
EXAMINE 

~~~H~RM I STOP 

{

ENTER
NOTE
EXIT

13

UP-7503.1
Rev. 1

I
t-

FUNDAMENTALS OF COBOL

L A N G U A G E

4.7.1. Input/Output Verbs

4
SECTION:

In any data processing application, quantities of data pass between the central
storage facilities of the computer and external media such as card and tape
devices. Control and coordination of the main flow of data is achieved by four
input/output verbs - OPEN, CLOSE, READ, and WRITE. These verbs enable

PAGE:

the programmer to obtain records for processing and then send the processed
record to some external media. The remaining two verbs - ACCEPT and DISPLAY
permit small quantities of data to be either accepted from or produced upon some
external input/ output device. The following pages explain the formats and uses
of each of these verbs.

4.7.1.1. OPEN

Format:

OPEN [INPUT {file-name [
REVERSED]} l
WITH NO REW IND · · :J

(OUTPUT{file-name [WITH NO REWIND]} .. .]

Description:

The function of this verb is to initiate the processing of both input and output
files. Any FD entry (file) in the Data Division must be OPENed prior to the first
READ or WRITE instruction directed to that particular file. This applies to the
printer, card reader, and card punch as well as tape files.

The key word INPUT must be included for all input files, and the key word OUTPUT
must be stated for all output files. If INPUT has been specified, the execution of
an OPEN statement causes the checking of the label record if a label record has
been oefi.a-ed in the FD entry; similarly, if OUTPUT has been specified, the OPE.N
statement causes foe wr-itin,g of the label record upon the output file.

At least one option must be specified; however, there must be no more than one
instance of each option. For example, the following is permissible:

OPEN INPUT OLD-MASTER-INVENTORY, DETAIL-TRANSACTION-FILE.
OPEN INPUT OLD-MASTER-INVENTORY, OUTPUT REORDER LIST.

The following is illegal:

OPEN INPUT OLD-MASTER-INVENTORY, INPUT DETAIL-TRANSACTION-FILE.

The programmer has the facility to OPEN all input files at once or all output files
at once, or to OPEN them individually as the need arises. In either case, care must
be taken so that a file is not OPENed more than once unless an intervening CLOSE
has been directed to the specified file.

A file may b0 ~.:.peatedly OPENed and CLOS Ed, both for INPUT and OUTPUT, in
the same program.

The OPEN does not obtain or release the first data record. A READ or WRITE
respectively, must be executed to obtain or release the first data record.

14

UP-7503.1
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E
SECTION:

4

If an input file has been designated as OPTIONAL (see 5.4.1) the file may be
absent or present at object time.

When the external medium is •tape, the following rules apply:

• If neither REVERSED nor NO REWIND is specified, the file is repositioned to
its beginning point, i.e., the tape is rewound.

PAGE:

• If either REVERSED or NO REWIND is specified, no repositioning takes place.
When REVERSED is specified, the file must be at its end point and subsequent
READ statements cause the records to be read in reverse order. The file must be
at its beginning point whenever NO REWIND is specified.

Input files OPENed in the REVERSED mode must be single-reel files. The implementor
should provide a means of identifying the file to make certain that the correct tape
was mounted. The method of implementing this identification is up to the user. One
method, and it is probably the easiest to implement, would be to place a beginning­
of-file and an end-of-file label record at the beginning and end of each file. In this
way, regardless of the direction of tape movement, a label record is available for
checking and identification purposes.

The REVERSED and WITH NO REWIND options are only applicable to magnetic
tape files and they are meaningless when operating with card or printer files.

15

UP-7503.1
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E

4.7.1.2. READ

Format:

READ file-name RECORD [INTO identifier]

; AT END imperative-statement

Description:

4
SECTION: PAGE:

This verb makes available the next record from an input file and allows the execution
of a specified imperative-statement when the end-of-file is detected. File-name must
have an FD description in the Data Division.

An OPEN statement for a file must be executed before the first READ command is
given. The OPEN checks the label and positions the first data record for a READ.
Upon execution of the first READ, the first block is moved into the allocated area
of memory and the first logical record in the file-name becomes accessible in the
defined (DATA DIVISION) input area. Subsequent READ instructions advance the
next logical record. For example, if MASTER has been defined as having twenty
records per block, then a READ directed to MASTER will cause a record advance
(positioning of the logical record) to occur twenty times for each physical movement
(READ) of the tape.

When a file consists of more than one type of record, a READ delivers the next

16

record regardless of type; stated differently, all records of a given file share A
the memory area. Thus, if there is more than one 01 entry in a given FD, it is the W
programmer's responsibility to determine which record is present at any particular
instant. As an illustration, assume that HEADER and DETAIL are record descriptions
of MASTER, as follows:

01 HEADER.

02 IDENTITY PICTURE IS 9.

02 DESCRIPTION PICTURE IS X(34).

01 DETAIL.

02 IDENTITY PICTURE IS 9.

02 PART-CODE PICTURE IS 9(6).

02 PART-COST PICTURE IS 9(3)V99.

Since READ MASTER makes available the next record of MASTER, then IDENTITY
must be interrogated to determine whether the record is a HEADER or DETAIL
item. Control is then directed to a procedure that will reference only the data-name
of the record type that is available. If this is not done, then a command directed
to PART-CODE will, whenever a HEADER has been delivered, reference the first
six positions of DESCRIPTION in HEADER instead of PART-CODE in DETAIL
as intended.

UP-7503.1
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E SECTION:

4
PAGE:

When the INTO identifier option is used, the current record is read and then moved
to identifier. The names of identifier and the record cannot be the same: In this
instance, moving occurs according to the rules specified for the MOVE verb without
the CORRESPONDING option. Under this option, "file-name RECORD" is available
in the input record area as well as in the INTO area.

It is illegal to use the INTO option of the READ verb if the file that is READ has
more than one record description.

Upon recognition of an end-of-reel condition, the READ causes the following
operations.

• If labels are present (as defined in the FD), the standard end-of-reel label
subroutine is performed.

• A tape swap occurs. If only one tape is ASSIGNed, the program will have
to wait on rewind.

• If labels are present, the standard beginning reel label subroutine is executed.

• The next logical record of the file is made available.

When the logical end-of-file is reached and an attempt is made to READ the file,
the imperative-statement of the AT END phrase is executed. After the imperative­
statement is executed, an attempt to READ without first CLOSEing and then
OPENing the file will cause an error at object time.

It is illegal to substitute any other statement for the AT END phrase.

If the file-name has been specified as OPTIONAL in the Environment Division and
is not present at the object time, the imperative-statement in the AT END phrase
is executed whenever a READ for that file is encountered.

17

UP-7503.1
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E

4.7.1.3. WRITE

Format:

WRITE record-name [FROM identifier-1]

BEFORE ADVANCING integer LIN ES
AFTER [l ! l identifier-2 LINES !]

mnemonic-name

Description:

4
SECTION: PAGE:

The WRITE ver~ releases a unit record to an output file, and allows vertical position­
ing if the output medium is an online printer.

The area to be written (record-name) must be defined in the Data Division at the
01 level. The file associated with record-name must also be defined by an FD entry
in the Data Division. The file must be OPENed prior to the execution of the first
WRITE for that file.

When the WRITE is executed, record-name is released for the output file, and thus,
is no longer available.

The FROM identifier-1 option is similar to the INTO data-name option of the READ
verb. Use of this option, in essence, converts the WRITE to a MOVE and WRITE.
If the format of identifier-I differs from that of record-name, the data is moved in
accordance with the rules for the MOVE verb without the CORRESPONDING option.
While the information in record-name is no longer available, the data in identifier-1
continues to be accessible. The names of identifier-1 and record-name cannot be
the same.

The ADVANCING option allows control of the vertical positioning of each record
on the printed page. The following rules are pertinent to the option:

• When identifier-2 is used, it must have a positive integral value. The compiler
inserts a mechanism into the object program which positions the printer page
according to the current value of ide ntifier-2.

• When integer is used, it must be a positive integral literal. The compiler inserts
a mechanism into the object program which advances the printer page integer
lines.

• When mnemonic-name is used, it is associated with a particular feature specified
by the user and it must be defined in the SPECIAL-NAME paragraph of the
Environment Division.

• If mnemonic-name is specified, the printer is advanced according to the rules
specified by the user.

• BEFORE and AFTER ADVANCING can result in over printing. A matrix of the
print-space operation follows:

18

UP-7503.1
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E

Previous
Write w

w LINE-SPACING
THEN PRINT

WA.A. LINE-SPACING
THEN PRINT

WBA. SPACE THEN
m PRINT

LEGEND:

W =WRITE

Present Write

WA.A.
n

SPACE n
THEN PRINT

SPACE n
THEN PRINT

SPACE m + n
THEN PRINT

WAA =WRITE AFTER ADVANCING

WBA =WRITE BEFORE ADVANCING

m = Space information of data-name-2 or integer

n =Same as m

4
SECTION:

WBA.

OVER PRINT

OVER PRINT

SPACE
THEN PRINT

After recognition of end-of-reel, the WRITE performs the following operations:

• The standard end-of-reel label subroutine if labels are specified in the FD of
the file.

• A tape swap.

19
PAGE:

• The standard beginning-of-reel subroutine if labels are specified in the FD of the file.

UP-7503.1
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E

4.7.1.4. CLOSE

Format:

CLOSE file-name-1 [REEL] [WITH { ~~CRKEWIND}]

[· We-name-2 [REEL] [WITH { ~gCRKEWIND}]]

Description:

4
SECTION: PAGE:

The CLOSE verb terminates the processing of one or more input or one or more
output files or reels and provides optional rewinding and/or locking. Each file-name
refers to an FD description in the Data Division and an OPEN statement must be
executed prior to the CLOSE statement.

The CLOSE file-name option, as applied to the entire file rather than to individual
reels, initiates the final closing conventions for the file and releases the data area.
A file may be CLOSEd once, but not more than once, for each time the file is OPENed.

For an output file, the final closing conventions such as block padding, etc., for the
file are performed and the data area is released. Furthermore, for either an input or
an output file:

20

• If neither LOCK nor NO REWIND is specified, the current reel of the file is rewound e
and all other reels belonging to the file are rewound. However, this rule does not
apply to those reels controlled by a prior CLOSE REEL entry.

• If the NO REWIND option is specified, the current reel of the file remains in
whatever position it is in at the time the CLOSE is given.

• The REEL, NO REWIND, and LOCK options are only applicable to magnetic tape
files and they are meaningless when operating with card or printer files.

• If the LOCK option is specified, all reels belonging to the file are rewound with
interlock except for those reels controlled by a prior CLOSE REEL.

The CLOSE file-name REEL option may be used for input or output files. The LOCK
option may be used and the current reel will be rewound with interlock. The necessary
processing is performed.

UP-7503.1
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E SECTION:

4

When a CLOSE REEL is given, the locking and rewinding options of CLOSE
REEL, if used, take precedence for the current reel and only the current reel,
regardless of the options associated with a CLOSE of file. When a CLOSE
file-name is given, its options are executed wherever possible, for all mounted
reels of the file except for those reels which may have been closed by a
CLOSE REEL whose locking and rewinding options differ from those of the

CLO SE file-name.

PAGE:

If the file has been specified as OPTION AL (see 5 .4.1) the standard end-of-file
processing is not performed when this file is not present.

For multiple reel files, the opening and closing of individual reels is automatic.
However, the programmer must close the file when processing is to be terminated.
A CLOSE file-name-1 should be executed for each file that was OPENed.

The following example illustrates the use of the LOCK option in terminating a

run.

CLOSE EDITED-SHIPMENTS WITH LOCK, COST-OF-SALES-RATES
WITH LOCK, COSTED-SHIPMENTS WITH LOCK, NOT-COSTED­
ITEMS WITH LOCK, LOSS-ITEMS WITH LOCK, ERROR-LISTING
WITH LOCK.

21

UP-7503.l
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E

4.7.1.5. ACCEPT

Format:

ACCEPT identifier [FROM mnemonic-name]

Description:

4
SECTION: PAGE:

This verb is used to read low-volume data from the specified hardware device. The
hardware device associated with a mnemonic-name must be specified in the SPECIAL­
NAMES paragraph of the Environment Division when the FROM option is employed.

In many cases, a standard hardware device is used for a particular implementation
of COBOL, thereby making the FROM clause unnecessary. Also, a maximum size
for the data represented by identifier will be set. The individual supplement manuals
for a particular computer system should be consulted for this information. If the data
ACCEPTed is less than the maximum size for the particular system, it appears in the
leftmost positions of the input area with zero fill if the data is numeric and space fill
if alphabetic or alphanumeric.

For example:

DISPLAY "FURNISH DATE" UPON CONSOLE.
ACCEPT PRESENT-DATE FROM CONSOLE.

Previously, the console typewriter was designated as CONSOLE in the SPECIAL­
NAMES paragraph of the Environment Division. When the DISPLAY statement is
executed, FURNISH DATE appears on the console typewriter. Control passes to
the ACCEPT statement and the program waits for the operator to type in the current
date, after which the data accepted is stored in location PRESENT-DATE. Control

then passes to the statement following the ACCEPT statement.

22

UP-1563.1
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E

4.7.1.6. DISPLAY

Format:

DIS PLAY t~:~;f;/er-l} [{!~:~;:;i~r-2}] · · ·
[UPON mnemonic-name]
Description:

This verb displays low-volume data on an output device.

4
SECTION: PAGE:

The hardware device associated with a mnemonic-name must be specified in the
SPECIAL-NAMES paragraph of the Environment Division when the UPON option is
employed.

A specific peripheral unit may be designated as the standard display device thereby
making the UPON clause unnecessary. Maximum length for DISPLAYed data is set
by the implementor. Rules for positioning are the same as for the ACCEPT verb.

Literals and identifiers may be used in combination in a DISPLAY statement. Any
figurative constants, except ALL, may be used.

For example:

DISPLAY "TOTAL AMOUNT IS" TOTAL-AMOUNT

Assume TOTAL-AMOUNT has a value of 4800 at the time the DISPLAY statement
is executed. The information that appears on the display device is as follows:

TOTAL AMOUNT IS 4800.

Since "TOTAL AMOUNT IS" is a nonnumeric literal, it is displayed as is.

23

UP-7503.1
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E

4.7.2. Arithmetic Verbs

SECTION:

4
PAGE:

The arithmetic verbs permit basic calculations to be performed on the data. Four
verbs are provided in COBOL corresponding to the four basic arithmetic operations:
ADD, SUBTRACT, MULTIPLY, and DIVIDE. In addition, a fifth verb, COMPUTE,
allows the programmer to effect arithmetic calculations through the use of arithmetic
expressions.

The following general rules pertain to the arithmetic verbs:

(a) All identifiers used in arithmetic statements must represent numeric data defined
in the Data Division. The results are unpredictable if the identifiers contain other
than numeric data at object time.

(b) All literals used in arithmetic statements must be numeric.

(c) The maximum size of any operand (identifier or literal), intermediate result, or
receiving item is 18 digits.

(d) The formats (PICTURE) of multiple operands in an arithmetic statement may
differ from each other, Decimal point alignment is supplied automatically
throughout computations. Conversion of items with unlike usage is automatic.

(e) The format of any data item involved in computations (e.g., addends, subtrahends,
multipliers, etc,) cannot contain editing symbols. The compiler will indicate an
error by an appropriate message when the fields involved are defined in such a
way that they would contain editing symbols. Operational signs and implied
decimal points are not considered editing symbols. The identifiers in the GIVING
option represents data items which must not enter into computations if they contain
editing symbols.

(f) If the number of fractional places in a computed result (sum, difference, product,
or quotient) exceeds the number of fractional places in the format of the identifier
associated with the result (i.e., the identifier that is to take on the value of the
result), truncation occurs unless the ROUNDED option has been used.

Truncation is the dropping of excess digits; it is always determined by the PIC­
TURE of the identifier associated with the result. When ROUNDED is specified,
however, the least significant digit specified by the format of the result is increas­
ed by 1 whenever the most significant digit of the excess is greater than or equal
to 5. For example, with a receiving item PICTURE of 9(4)V9, the value 8250V96
becomes 8251 VO if the ROUNDED option is specified, and 8250V9 when ROUNDED
is not used.

24

UP-7503.1
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E SECTION:

4
PAGE:

(g) Whenever the number of integral places (i.e., those to the left of the decimal
point) in the calculated result exceeds the number of the integral places
associated with the resultant identifier, a size error condition arises. In the
event of a size error condition, one of two possibilities will occur, depending on
whether or not the ON SIZE ERROR option has been specified.

Use of ON SIZE ERROR must be carefully controlled. This clause does not
substitute for proper investigation and record design.

(1) The testing for the size error condition occurs only when the ON SIZE ERROR
option is specified in the verb format. In the event that ON SIZE ERROR is
not specified, and a size error condition arises, the results are unpredictable.

(2) If the ON SIZE ERROR option has been specified, and a size error condition
arises, then the value of the resultant identifier is not altered. The imperative­
statement associated with the ON SIZE ERROR option is executed after the
last resultant identifier is considered.

23

UP-7503.1
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E

4.7.2.1. ADD

Format:

Option 1:

ADD {i~entifier·l} [{ i~entifier-2}] •••
-- lzteral-1 ' Izteral-2

TO identifier-m [ROUNDED][, identifier-n [ROUNDED]]

[;ON SIZE ERROR imperative-statement]

Option 2:

ADD {i~entifier-1}
-- lzteral-1 {

identifier-2}
' literal-2

GIVING identifier-m [ROUNDED]

[{
i~entifier-3}]· ••

' Izteral-3

[;ON SIZE ERROR imperative-statement]

Option 3:

SECTION:

ADD { CORRESPONDING} .d .1. TO . ·i· [ROUNDED] CORR 1 entz zer-1 _ zden tz zer-2

(;ON SIZE ERROR imperative-statement]

Description:

4
PAGE:

This verb permits the addition of two or more data items, storing the result in the
last specified data item of the statement. This last data item may not be a literal.

When the TO option is used, the values of the data-names and literals to the left
of the word TO are added; the resulting sum is then added to the data-name to the
right of the word TO. The results of the addition are stored in the identifier(s) that
follows the word TO. For example, ADD A, B, C TO A is equivalent to ADD A, B,
C GIVING TEMP: ADD TEMP TO A.

When the GIVING option is used, the sum of the values of the identifiers or literals
preceding the word GIVING is placed in identifier-m. Since identifier-m is a receiving
item, it may be an edited item.

If the CORRESPONDING option is used, multiple ADD operations are performed.
The individual operations are each equivalent to ADD identifiers of numeric
elementary items subordinate in hierarchy to the identifier-I and identifier-2
written in the ADD CORRESPONDING statement. Identifiers match if they and all
their possible qualifiers up to, but not including identifier-I and identifier-2 are
the same. In determining which identifiers are CORRESPONDING, any identifier
subordinate to identifier-! or identifier-2 which have REDEFINES clauses are
ignored, as well as any identifiers which are subordinate to the REDEFINEd
identifiers. This restriction does not preclude identifier-! or identifier-2 themselves
from having REDEFINES clauses or from being subordinate to identifiers with
REDEFINES clauses. Identifier-! or identifier-2 cannot have a level number of
66, 77, or 88. Each individual operation defined by an ADD CORRESPONDING
statement is subject to the rules which apply to the ADD verb.

26

'bP-7503.1
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E SECTION:
4 27

PAGE:

To illustrate an Option 3 addition, assume that the following record descriptions
have been written in the Data Division of an accounting program:

01 MONTHLY-SALARY-EXPENSE
02 PLANT
02 OFFICE
02 SALARY
02 EXECUTIVE

01 TOTAL-SALARY-EXPENSE
02 PLANT
02 OFFICE
02 SALARY
02 EXECUTIVE

To update the TOTAL-SALARY-EXPENSE record, the programmer would write:

ADD CORR MONTHLY-SALARY-EXPENSE TO TOTAL-SALARY-EXPENSE.

When this instruction is executed, the value in each field of MONTHLY-SALARY­
EXPENSE would be added, respectively, to the value in the similarly named fields
of TOTAL-SALARY-EXPENSE. CORR and CORRESPONDING are logically equivalent.

Further exam pl es:

Statement

ADD A, B TO C.

ADD A, B, C TOD.

ADD A, B, C TOD.

ADD A, B, C GIVING D.

ADD 1, 5, C TO 7.

ADD A, 14 TO C
ROUNDED.

ADD A, B, 43.6 GIVING
D ON SIZE ERROR GO
TO 0-FLOW.

NOTE: x's show result format,

Result Field
PICTURE IS:

9999

$9999.99

S9999V99

$9999.99

99999

99V99

Calculation

A+B+C stored in C as xxxx

Error - operand may not contain
editing symbols except with
GIVING option.

A+B+C+D stored in D as + xxxxVxx

A+B+C stored in D as $xxxx.xx

Error - result cannot be stored in
literal.

A+14+C stored in C as

A+B+43.6 stored in D; if integer
result is greater than 2 digits,
SIZE ERROR occurs.

UP-7503.1
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E

4.7.2.2. SUBTRACT

Format:

Option 1:

SECTION:

SUBTRACT{~itera!-! } [{literal-2 }]
1dent1her-l ' identifier-2 • · '

FROM identifier-m [ROUNDED] (. identifier-n [ROUND ED]) •.•

[; ON SIZE ERROR imperative-statement]

Option 2:

SUBTRACT {/~~:t:~;!r-J [{~~:~;J;ier-2}]. •
FROM {literal-m }

· -- identifier-m

GIVING identifier-n [ROUNDED]

[;ON SIZE ERROR imperative-statement]

Option 3:

4

SUBTRACT {=ESPONDING} identifier-I FROM identifier-2 [ROUNDED]

[;ON SIZE ERROR imperative-statement]

Description:

This verb causes one numerjc data item or the sum of two or more numeric data
items, to be subtracted from a specified numeric data item. The result is stored
in the last specified data item of the statement. This last item must not be a
literal.

PAGE:

All previously stated rules regarding the ON SIZE ERROR option, the ROUNDED
option, the GIVING option, the CORRESPONDING option, truncation, the REDEFINEd
caution, and the editing of results apply to the SUBTRACT verb.

The individual SUBTRACT operations defined by the CORRESPONDING option
are each equivalent to SUBTRACT identifier-1 FROM identifier-2.

28

UP-7503.1
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E

Examples:

Statement

SUBTRACT 16, A, B
FROM D.

SUBTRACT A, B FROM D.

SUBTRACT A, B FROM 126.

Res ult Fie Id
PICTURE IS:

999

$$99.99

SUBTRACT A, B FROM 126 999
GIVING C.

NOTE: x's show result format.

4
SECTION:

Cal cu la ti on

D - (16 + A + B) stored in D
as xxx.

PAGE:

Error - operand may not contain
edit symbols unless GIVING
option is used.

Error - result cannot be stored
in literal.

126 - (A+ B) stored in C as xxx.

29

UP-7503.1
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E

4.7.2.3. MULTIPLY

For mat:

Option 1:

MULTIPLY { 11·~entilfier-l} BY identifier-2 [ROUNDED]
1tera -

[;ON SIZE ERROR imperative-statement]

Option 2:

MULTIPLY{i~entifier·l} BY
literal-1

GIVING identifier-3 [ROUNDED]

{
identifier-2}
literal-2

[; ON SIZE ERROR imperative-statement]

Description:

4
SECTION:

This verb multiplies two numeric data items and stores the resulting product in
the last data item specified in the statement.

PAGE:

When Option 1 is used, the value of identifier-1 or literal is multiplied by the value
of identifier-2. The value of identifier-2 is replaced by the product of the multi­
plication.

When Option 2 is used, identifier-3 contains the product of the multiplication.

All previously stated rules regarding the ON SIZE ERROR option, the ROUNDED
option, the GIVING option, truncation, the REDEFINEd caution, and the editing
of the results apply to the MULTIPLY verb. For MULTIPLY, the ON SIZE ERROR
option rules apply to the intermediate results as well as the final results of the
operation.

Examples:

Statement

MULTIPLY A BY B.

MULTIPLY HOURS BY 100.

MULTIPLY HOURS BY
100 GIVING GROSS.

MULTIPLY 12 BY B.

NOTE: x's show result format.

Result Field
PICTURE IS:

999

9999

$$9.99

Calculation

A x B stored in B as xxx.

Error - result cannot be stored
in literal.

HOURS x 100 stored in GROSS
as xxxx.

Error - no editing without GIVING
option.

30

UP-7503.1
Rev. 1

•

FUNDAMENTALS OF COBOL

L A N G U A G E

4.7.2.4. DIVIDE

Format:
Option 1:

DIVIDE {i~entifier-l} INTO identifier-2 (ROUNDED]
literal

(; ON SIZE ERROR imperative-statement]

Option 2:

4
SECTION:

DIVIDE {i~entifier·l} INTO {i~entifier-2 } GIVING identifier-3 (ROUNDED]
ltteral-1 -- literal-2

(;ON SIZE ERROR imperative-statement]

Option 3:

DIVIDE {i~entifier-1} BY {i~entifier-2} GIVING identifier-3 (ROUNDED]
literal-1 -- ltteral-2 j

(;ON SIZE ERROR imperative-statement]

Option 4:

DIVIDE {i~entifier-l} INTO { i~entifier-2} GIVING identifier-3
ltteral-1 -- literal-2

(ROUNDED] REMAINDER identifier-4

(;ON SIZE ERROR imperative-statement]

Option 5:

DIVIDE { i~entifier-1}
literal-1

BY {i~entifier-2} GIVING identifier-3
- literal-2

(ROUNDED] REMAINDER identifier-4

(;ON SIZE ERROR imperative-statement]

Description:

This verb divides one numeric data item by another and stores the resulting
quotient in the last data item specified in the statement.

In Option 1, identifier-1 is the divisor and identifier-2 the dividend. The value
of identifier-2 is replaced by the value of the quotient.

PAGE:

In Option 2, identifier-1 is the divisor, and identifier-2 is the dividend. The quotient
resulting from the division is identifier-3. This data name may be an edited item.

In Option 3, identifier-2 is the divisor, and identifier-1 is the dividend. The quotient
is placed in identifier-3. This data may be an edited item.

Options 4 and 5 are used when a remainder from the division operation is desired,
namely identifier-4. A remainder in COBOL is defined as a result of subtracting the
product of the quotient and the division from the dividend. If the ROUNDED option
is specified, the quotient is rounded after the remainder is determined.

31

UP-7503.1
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E
SECTION:

4
PAGE:

The identifiers used must reference numeric elementary items whose descriptions
appear in the Data Division of the program.

All previously stated rules regarding the ON SIZE ERROR option, the ROUNDED
option, the GIVING option, the REDEFINEd caution, truncation, and the editing
of results, apply to the DIVIDE verb. For DIVIDE, the ON SIZE ERROR option
rules apply to the intermediate results as well as the final results of the operation.

An error is indicated at compilation time if the data description for either identifier-!
or identifier-2 specifies the presence of editing symbols. Division by zero results in
a size error.

Examples:

Statement

DIVIDE A INTO B .

DIVIDE A INTO B.

DIVIDE A INTO B GIVING C.

DIVIDE A BY B GIVING C.

NOTE: x's show result format.

Result Field
PICTURE IS:

9(4)V9(2)

$$99.99

S999V99

9(5)

Ca I cu lation

B + A stored in B as xxxx.xx

Error - editing not permitted
except with GIVING option.

B + A stored in C as +xxxVxx

A + B stored in C as xxxxx

32

UP-7503.1
Rev. 1

•

FUNDAMENTALS OF COBOL

L A N G U A G E

4.7.2.5. COMPUTE

F ennat:

l
identifier-2 I

COMPUTE identifier-1 [ROUNDED].;:. lit~ral . .
arithmet1c-expres swn

[;ON SIZE ERROR imperative-statement]

Description:

4
SECTION: PAGE:

This verb causes one or more numeric data items (defined and established in the
Data Division) to assume a new value derived from either a named or literal numeric

data item or an arithmetic expression.

For example:

COMPUTE A= (B+C)/D-E)

COMPUTE FICA-ACCUM =TOT-FICA

COMPUTE NET- PAY = GROSS-DED

Only identifier-l_lllay contain editing symbols. Identifier-2 must be an elementary

numeric item .

33

UP-7503.1
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E

4.7.3. Data Movement and Manipulation Verbs

SECTION:
4

PAGE:

Several COBOL verbs have the ability to move or manipulate data in some manner.
However, this aspect is of secondary importance and only incidental to the specific
objective of the verb. For example, the arithmetic verbs may involve some data move­
ment and/or manipulation. This, however, is secondary to their main function of
effecting an arithmetic calculation. Two verbs are provided in COBOL for the specific
purpose of moving or manipulating data. They are the MOVE and EXAMINE verbs. The
primary purpose of the MOVE verb is to transmit data from one area of computer storage
to another. The EXAMINE verb, however, causes data to be examined and moved only
when certain factors are present.

4.7.3.1. MOVE

Format:

Option 1:

{
identifier-l} TO {identifier-2 l
literal - f

Option 2:

{
CORRESPONDING} identifier-1 TO identifier-2
CORR

Description:

The MOVE verb transfers information from one data area in memory to one or more
areas within the computer, in accordance with the rules of editing.

A simple MOVE causes the data represented by identifier-1, or the specified literal,
to be moved to. identifier-2. The data is also moved to identifier-3, identifier-4, etc.,
if these areas are specified.

The use of this verb does not destroy the contents of the source area (identifier-1
or literal) but the receiving area (identifier-2, identifier-3, etc.) is replaced by
the data of the source area.

If the CORRESPONDING option is used, selected items subordinate in hierarchy
to identifier-1 are moved, with any required editing, to selected items subordinate
in hierarchy to identifier-2. Items are selected on the basis of matching identifiers.
Identifiers match if they and all their possible qualifiers up to, but not including
identifier-1 and identifier-2 are the same. At least one of the pair of selected items
must be an elementary item. In determining which identifiers are CORRESPONDING,
any identifiers subordinate to identifier-1 or identifier-2 which have REDEFINEs
clauses are ignored, as well as any identifiers which are subordinate to the RE­
DEFINEd identifiers. This restriction does not preclude identifier-1 or identifier-2
themselves from having REDEFINEs clauses or from being subordinate to identifiers
with REDEFINEs clauses. Identifier-1 or identifier-2 cannot have a level number
of 66, 77, or 88.

Diagnostics are given for all syntactical errors in the CORRESPONDING statement.
An error diagnostic is also given if identifier-1 or identifier-2 is subscripted.

34

UP-7503.1
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E
SECTION:

4
PAGE:

It is illegal to MOVE a group item whose format is such that editing would be re­
quired on the elementary items in separate operations. If such a MOVE is desired,
each elementary item must be MOVEd and edited, individually, or the CORRESPOND­
ING option should be used.

When moving group items without the CORRESPONDING option, the move is from
left to right. If the item PICTURE or USAGE is not identical, a diagnostic message
is given. Truncation of low-order positions from the source item occurs if the
receiving area is smaller. Space fill of low-order positions of the receiving area
occurs if the source item is smaller. If the source group is computational and the
receiving group is not (or vice versa), a diagnostic message is given and the above
rule on size governs the results of the move.

When both the receiving and source areas are elementary items, editing, as specified
in the receiving area, is automatically performed for each MOVE command. The rules
governing this are:

• For Numeric Elementary Items

(a) If the source area is larger than the receiving area, truncation occurs. (Trunca­
tion is the dropping off of excessive digits.) If the receiving area is larger

35

than the source area, the unfilled positions a re zero filled. Data from the source
area is aligned with respect to the implied or actual decimal point in the receiv­
ing area, with truncation or zero fill occurring to either side of the decimal
point as illustrated below.

SOURCE AREA

Picture

9V9
9V999

Value

12
8765

Picture

99V99
V99

RECEIVING AREA

Value after Moving

0120
76

(b) Data is converted from the USAGE shown in the source area to the USAGE
of the receiving area (e.g., COMPUTATIONAL to DISPLAY, etc.).

(c) Insertion of a currency sign, a decimal point, commas, etc., with proper
alignment, is accomplished in accordance with the PICTURE of the receiving
area. If these latter characters are in a source area, the field(s) will be
nonnumeric and, thus, MOVEment must conform to the nonnumeric rules.

(d) If no decimal point has been specified, either assumed or actual, data is
right justified in the receiving area.

(e) A numeric edited, alphanumeric edited, or alphabetic data item must not be
MOVEd to a numeric or numeric edited data item.

(f) A numeric or numeric edited data item must not be MOVEd to an alphabetic
item.

(g) A numeric item whose assumed deeimal point is not to the extreme right
must not be MOVEd to an alphanumeric or alphanumeric edited data item.

UP-7503.1
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E

• For Nonnumeric Elementary Items

SECTION:

4
PAGE:

(a) Data from the source area is placed in the receiving area filling from left
to right unless specified otherwise (e.g., JUSTIFIED RIGHT).

(b) If the receiving area is larger than the source area, the unfilled low-order
positions are replaced with blanks (spaces).

36

(c) If the source area is greater in length than the receiving area, the MOVE
terminates when the receiving area is filled. A warning is given at compilation
time indicating this situation.

Examples:

MOVE A-FIELD TO COSTED-A-FIELD.

The contents of COSTED-A-FIELD are entirely replaced with the contents of
A-FIELD.

MOVE 128 TO CTR.

The numeric literal, 128, is moved to the field named CTR.

MOVE SPACE TO SIZE-CODE-SIGN IN ERRORS.

The field named SIZE-CODE-SIGN is entirely filled with spaces.

Further examples of the MOVE verb are given below.

SOURCE ·AREA RECEIVING AREA

Picture
Data in

Picture
Data in

source area receiving area

9999V99 567891 9999V99 567891
9999V99 567891 9999V9 56789
9V9 78 999V99 00780
xxx M8N xxxxx M8N
99V99 6789 999.99 067.89
AAAAAA WARREN AAA WAR
99V99 6789 $$$99.99 $67.89

UP-7503.1
Rev. 1

•

FUNDAMENTALS OF COBOL

L A N G U A G E

4.7.3.2. EXAMINE

Format:

Option 1:

4 37
SECTION: PAGE:

EXAMINE identifier TALL YING LEADING
{

ALL }
literal-1 [REPLACING BY Iiteral-2]

UNTIL FIRST

Option 2:

{

ALL }
EXAMINE identifier REPLACING LEADING

[UNTIL] FIRST
literal-1 BY literal-2

Description:

The EXAMINE verb replaces a given character or counts the number of times it
appears in a data item. The data-name being EXAMINEd cannot be COMPUTATIONAL.

Any literal used in an EXAMINE statement must consist of only one character
and it must be the same class as the identifier. Each literal may be any figurative
constant except ALL. The literal should be bounded by quote marks. If the descrip­
tion of the identifier in the Data Division specifies a CLASS that uses less than the
full character set (e.g., NUMERIC or ALPHABETIC), then each literal used in an
EXAMINE statement must be one of the characters in the restricted set. Thus, if
the CLASS of data-name is NUMERIC, each literal used in the statement must be a
numeric character.

When an EXAMINE statement is executed, the examination begins with the first
(i.e., the leftmost) character of the data item and proceeds to the right. Each
character in the item represented by data-name is examined in turn. If the data
item being examined is numeric and signed, examination excludes the operational
sign.

The TALLYING option creates an integral count (i.e., a tally) which replaces the
value of a special data location called TALLY. The count represents the number
of:

• Occurrences of literal-1 when the ALL option is used.

• Occurrences of literal-1 prior to encountering a character other than literal-1
when the LEADING option is used.

• Characters not equal to literal-1 encountered before the first occurrence of
literal-1 when the UNTIL FIRST option is used.

UP-7503.l
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E
SECTION:

4
PAGE:

When either of the REPLACING options is used (i.e., with or without TALLYING)
the replacement rules are as follows:

• When the ALL option is used, then literal-2 is substituted for each occurrence
of literal-1.

• When the LEADING option is used, the substitution of literal-2 terminates as
soon as a character other than literal-1 or the right-hand boundary of the data
item is encountered.

• When the UNTIL FIRST option is used, the substitution of literal-2 terminates
as soon as the first literal-1 or the right-hand boundary of the data item is
encountered.

• In Option 2, when the FIRST option is used, the first occurrence of literal-1
is replaced by li teral-2.

The length of the special register, TALLY, is five digits, and it may be used
anywhere in the program (i.e., ADD 3, TALLY). All literals must be single
character literals.

Example:

EXAMINE DOG TALLYING ALL "L" REPLACING BY "S"

DOG Resulting Value
Before After of TALLY

L3364 S3364 1
L3L4L6 S3S4S6 3
TYPE LL TYPESS 2

38

UP-7503.1
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E

4.7.4. Sequence Control Verbs

SECTION:

4
PAGE:

Normally, each statement in the Procedure Division is executed consecutively in
order of their appearance. This is also true of the execution of each paragraph and
section. However, it is often necessary to alter this normal sequence of operations
and to jump to a different point in the program to execute a number of lines of coding
before the next statement in sequence can logically be operated upon. Two verbs,
GO TO and PERFORM, are used to fulfill this function. In addition, two supplementary
control verbs are also provided: STOP and ALTER. The STOP verb controls the
termination of the program, whereas ALTER permits the GO TO statement to be
modified to permit control to be transferred to d-ifferent points in the program.

4.7.4.1. GO TO

Format:

Option 1:

GO TO [procedure-name]

Option 2:

GO TO procedure-name-1 [, procedure-name-2] •.. , procedure-name-n

DEPEND ING ON identifier

Description:

This verb permits a departure from the normal sequence of procedures by specifying
a transfer of control to another point in the program. If the GO TO statement is to be
ALTERed when using Option 1, the paragraph in which the GO TO statement is
contained must consist solely of the GO TO statement. The paragraph-name assign­
ed to the GO TO statement is referred to by the ALTER verb in order to modify the
sequence of the program.

In Option 2, ,the identifier must refer to a positive integral value. The branch will

39

be to the 1st, 2nd, ... , nth procedure-name, as the value of identifier is 1, 2, ... , n.
If the value of identifier is anything other than the integers 1, 2, ... ,n, then no
transfer is executed and control passes to the next statement in the normal sequence
for execution.

Example:

CALCULATE.
GO TO CK-FOR-TIN-WKS.

UP-7503.l
Rev. 1

/

FUNDAMENTALS OF COBOL

L A N G U A G E
SECTION:

4
PAGE:

The example shown is an unconditional transfer of control to CK-FOR-TIN-WKS.
Any GO TO statement which is a paragraph unto itself and is in the format of
Option 1, however, may be ALTERed.

CHANGE-CALC.
ALTER CALCULATE TO PROCEED TO CALCULATE-TONS.
GO TO CALCULATE-TONS.

40

The above instructions change CALCULATE (the paragraph-name of the GO TO
sentence in the first example) to GO TO CALCULATE-TONS, and then, unconditionally,
transfer control to the routine named CALCULATE-TONS. Thus, the next time
that CALCULATE is executed, control passes to CALCULATE-TONS.

The above operation could have been accomplished in another manner. At CAL­
CULATE, we could have had this sentence:

GO TO CK-FOR-TIN-WKS, CALCULATE-TONS DEPENDING
ON WKS-HIGHER-THAN-TIN.

WKS-HIGHER-THAN-TIN would be a Working-Storage area defined with a value
of 1 at compilation time. Each time this instruction was executed and WKS-HIGHER­
THAN-TIN contained a 1, control would pass to CK-FOR-TIN-WKS. If control should
pass to CALCULATE-TONS, a MOVE 2 TO WKS-HIGHER-THAN-TIN instruction
would effect such a transfer whenever CALCULATE was executed. A subsequent
MOVE 1 TO WKS-HIGHER-THAN-TIN would cause control once again to pass to
CK-FOR-TIN-WKS. If anything other than 1 or 2 was moved to WKS-HIGHER-THAN­
TIN, then control would "fall through" to the statement following CALCULATE.

UP-7503.1
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E

4.7.4.2. ALTER

Format:

SECTION:

ALTER procedure-name-1 TO [PROCEED TO] procedure-name-2

[procedure-name-3 TO [PROCEED TO] procedure-name-4], • -.- -
Description:

4
PAGE:

This verb modifies the effect of a GO TO statement thereby changing the predeter­
mined sequence of instructions.

Procedure-name-!, procedure-name-3, .. ., are names of paragraphs which each
contain a single sentence consisting of only a GO TO statement as defined under
Option 1 of the GO TO verb.

Examples:

EX-HDR.
GO TO SET-MON.

SET-MON.

EX-HDR-A.
GO TO EX-HDR-REST.

EX-HDR-REST.
ALTER EX-HDR-A TO PROCEED TO SET-UP-EX EX-HDR
TO PROCEED TO EX-HDR-MV.

The two GO TO paragraphs might have been switches originally set to fall through
to the next paragraph in sequence. After being AL TERed, EX-HDR-A will show GO
TO SET-UP-EX, causing control to pass to the procedure-name SET-UP-EX instead
of EX-HDR-REST. Upon completion of a specified routine, EX-HDR-A may then be
AL TERed back to its original status, or to some other operand by subsequent
ALTER verbs. Note that EX-HDR and EX-HDR-A are one sentence paragraphs
containing a GO TO statement.

Control is transferred to the next statement in sequence, following the execution of
the ALTER statement.

41

UP-7503.1
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E

4.7.4.3. PERFORM

Format:

Option 1:

PERFORM procedure-name-1 [THRU procedure-name-2]

Option 2:

PERFORM procedure-name-1 [THRU procedure-name-2]

{
i.dentifier} TIMES
integer

Option 3:

PERFORM procedure-name-1 [THRU procedure-name-2]

UNTIL condition

Option 4:

PERFORM procedure-name-1 [THRU procedure-name-2]

VARYING identifier-1 FROM {
literal-1 }
identifier-2

BY{literal-2 } UNTIL condition
- identifier-3

Description:

4
SECTION: PAGE:

This verb allows a temporary departure from the normal sequence of procedures in
order to execute one statement or a sequence of statements a specified number of
times or until a condition is satisfied and provides automatic return to normal
sequence.

The first statement of procedure-name-1 is the point to which control is transferred
by PERFORM. The return mechanism is automatically inserted as follows:

• If procedure-name-1 is a paragraph-name, and procedure-name-2 is not specified,
then the return mechanism is inserted after the last statement of the procedure­
name-1 paragraph.

• If procedure-name-1 is a section-name, and procedure-name-2 is not specified,

then the return mechanism is inserted after the last statement of the last para­
graph of the procedure-name-1 section.

• If procedure-name-2 is specified and is a paragraph-name, then the return mecha­
nism is inserted after the last statement of the procedure-name-2 paragraph.

• If procedure-name-2 is specified and is a section-name, then the return mechanism
is inserted after the last statement of the last paragraph of the procedure-name-2
section.

42

UP-7503.1
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E
SECTION:

4
PAGE:

When procedure-name-2 is specified, the required relationship between procedure­
name-1 and procedure-name-2 is that of logical sequence; i.e., execution sequence
must proceed from procedure-name-1 to the last statement of the procedure-name-2
paragraph or section. GO TO statem~nts and other PERFORM statements are per­
mitted between procedure-name-1 and the last statement of procedure-name-2,
provided the sequence ultimately returns to the final statement of procedure-name-2.
If the logic of a procedure requires a conditional exit prior to the final sentence,
the EXIT verb is used in order to comply with the foregoing requirements. In this
case, procedure-name-2 must be the name of a paragraph consisting solely of the
verb EXIT; all paths must lead to this point.

When ELSE NEXT SENTENCE appears in the last sentence (to be executed) control
returns to the statement following the PERFORM statement.

A procedure referenced by one PERFORM statement can be referenced by other
PERFORM statements.

PERFORM may reference a NOTE; no action is taken and the automatic return to
the proper line is generated.

In all cases, after the completion of a PERFORM, a bypass is automatically created
around the return mechanism which had been inserted after the last statement.
Therefore, when no related PERFORM is in progress, sequence control will pass
around the return mechanism to the following statement as if no PERFORM has
existed.

A simplified illustration of how the bypass works is presented below. For discussion
purposes, the bypass and the return mechanism are one and the same. Procedure-names
have been placed on the same line as procedural-sentences for brevity.

43

UP-7503.1
Rev. 1

1.

2.

3.

4.

5.

FUNDAMENTALS OF COBOL

L A N G U A G E

Procedure-Name

SUBROUTINE-1

SUBROUTINE-2

SUBROUTINE-3

22. MAIN-ROUTE

23.

56. GO-AGAIN

57.

58. ABLE

74.

Procedural-Sentence

READ.

MOVE.

MULTIPLY

GO TO SUBROUTINE-2

SUBTRACT

GO TO SUBROUTINE-3

WRITE

PERFORM SUBROUTINE-1.

ADD.

4
SECTION: PAGE:

BYPASS-1

BYPASS-2

PERFORM SUBROUTINE-1 THRU SUBROUTINE-2.

GO TO ...

MOVE

PERFORM SUBROUTINE-1 THRU SUBROUTINE-2.

At object time, BYPASS-1 is initially set to the next procedural statement (i.e.,
GO TO SUBROUTINE-2). The statements in italics are implied GO TO statements.
Upon execution of MAIN-ROUTE, the following steps occur:

/

• The line number of the statement following the PERFORM (i.e., line 23) is

placed in BYPASS-1.

• Control is transferred to SUBROUTINE-1.

• At the completion of SUBROUTINE-1 (lines 1 through 3), BYPASS-1 is reset to
its initial status after control has transferred to line 23.

Similarly, upon execution of GO-AGAIN, BYPASS-1 will retain its GO TO SUB­
ROUTINE-2 status, but BYPASS-2 will be changed, in effect, to GO TO line 57,
i.e., the statement immediately following GO-AGAIN. (The programmer does not
concern himself with these bypasses as they are automatically created by the
compiler.) At times, it is necessary to give a sentence a procedure-name in order
to control the number of instructions to be executed by a PERFORM sentence.

44

UP-7503.1
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E SECTION:
4

PAGE:

One important point should be noted in the use of the PERFORM verb: the last
statement referred to in procedure-name-1, procedure-name-2, etc., must not con­
tain a GO TO statement or unconditional (GO TO) transfers of control within
conditional (IF) statements. For example, if line 3 of the illustration had GO TO
ZILCH instead of MULTIPLY, then any attempt to PERFORM SUBROUTIN E-1
would not be successfully concluded since control would always be transferred
at line 3 to ZILCH; the bypass would never be entered and a return to the state­
ment following the PERFORM (i.e., line 23) could never be accomplished.

Essentially then, the programmer has the facility to use conditional (IF) statements

within a range of instructions referenced by a PERFORM verb. He must be governed
by the fact that the bypass is only reset (i.e., returned to its original status) after
the last sentence in the range has been executed. Therefore, if control is passed
from the routine and never returned back into the range, the bypass will not be reset,
but rather, will be set to transfer to the sentence following the last PERFORM that
affected the routine. By closing the routine containing such a condition, the proper
setting of the bypass can be assured.

Option 1:

In the previous example, MAIN-ROUTE and GO-AGAIN are examples of Option
1, the simple PERFORM. Briefly stated, a procedure referenced by the simple
PERFORM statement is executed once and then control passes to the next state­
ment after the PERFORM.

Example:

WR-EX.
WRITE EXCEPTIONS.

MV-1-EX-PG.

PERFORM WR-EX.

The PERFORM WR-EX causes paragraph WR-EX to be executed once and
control passes to the line after PERFORM WR-EX. All necessary program steps
to accomplish this are generated by the compiler.

Option 2:

The TIMES option provides a means of repeating a procedure a specified number
of times. The number of times, whether stated as integer or as identifier, must be
a positive integer and can be zero. If zero, no execution will occur. The PERFORIV
mechanism sets up a counter and tests it against the specified value before each
jump to procedure-name-1. The return mechanism after the last statement steps the
counter and then sends control to the test. The test cycles control to procedure­
name-1 the specified number of times, and after the last time sends control to the
statement following the PERFORM.

Example:

PERFORM INCREASE-WORKS 4 TIMES.
PERFORM INCREASE-WORKS CALCULATE T.IMES.

45

UP-7503.1
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E
SECTION:

4

Both of the above illustrations would give the same result assuming that
CALCULATE contained the value of four. The paragraph INCREASE-WORKS is
executed four times and then control passes to the statement following the
PERFORM.

Option 3:

PAGE:

The UNTIL option is essentially the same as the TIMES option, except that the
PERFORM evaluates a specified conditional expression instead of counting and
testing the count against a specified integer.

Condition may be any conditional statement; that is, the condition may involve
relations and tests. Condition is evaluated before execution of procedure-name-1.
If the condition is false, control passes to procedure-name-1, the procedure is
executed once, and control returns for another evaluation of condition. This is
repeated until the condition is satisfied (i.e., true), at which time control passes
to the sentence following the PERFORM. Should the conditional expression be
true when the PERFORM is entered, no transfer of control to procedure-name-1
takes place and control falls through the PERFORM instruction to the next
sequential sentence.

Example:

PERFORM READ-MASTER-ROUTINE UNTIL WORKS-CODE
OF MASTER IS EQUAL TO WORKS-CODE IN DETAIL.

READ-MASTER-ROUTINE will be performed until an equality is found between
the two designated WORKS, at which time control will pass to the sentence
following the PERFORM.

Option 4:

The VARYING option is used to PERFORM a procedure repetitively, increasing
or decreasing the value of identifier-1 for each repetition, until a specific condi­
tional expression (condition) is satisfied. Option 4 is arithmetic in nature and
the arithmetic rules apply.

The PERFORM mechanism first sets the value of identifier-1 equal to its starting
value (the FROM value), then evaluates the conditional expression (the UNTIL
condition) for truth or falsity. If the expression is true at this point, no execution
of the procedure takes place. Instead, control is transferred to the next statement
after the PERFORM. If the condition is false, procedure-name-1 through procedure­
name-2 are executed once, after which the PERFORM alters the value of identifier-I
by specified increment or decrement (the BY value) and again evaluates the condition
for truth or falsity.

This cycle continues until the conditional expression becomes true, at which
point control passes to the sentence following the PERFORM. The value of the
BY and FROM clauses must be numeric, but not necessarily integral (e.g., may
be 25 or V25 or .25). The initial value (FROM) must be positive or zero but the
BY value may be positive, negative, or zero. After the condition is found to be

"_ true, identifier-1 will be one increment (or decrement) greater (or less) than its
last used value unless the starting value (FROM value) is zero.

46

UP-7503.1
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E SECTION:

4
PAGE:

An extension of this option is discussed in "Fundamentals of COBOL - Table
Handling''.

"Nesting" (i.e., PERFORM statements appearing within a sequence of statements
referenced by another PERFORM) is permitted provided there is no improper over­
lapping. That is, the procedure associated with the included PERFORM must be
either totally included in, or entirely excluded from, the procedures related to the
outer PERFORM. Total inclusion requires that the entrance paragraphs be different
for the external and internal PERFORM, and that the exit paragraphs be different
paragraphs. The following illustrations depict correct and incorrect nesting.

Correct Nesting

26.
27. PERFORM 71 THRU 78.
28.

[29.
30.
31.
32.

71.

74. PERFORM 29 THRU 31.

78.

87. PERFORM 26 THRU 32.

102. PERFORM 119 THRU 121.

[[~~~:
121.
122.
123.

152. PERFORM 120 THRU 123.

Incorrect Nesting

27. PERFORM 29 THRU 31.
28.

[

26.

[~~:
31.
32.

64. PERFORM 26 THRU 30.

70.
71. PERFORM 72 THRU 75.

[

72.
73.
74.
75.

92. PERFORM 70 THRU 75.

110. PERFORM 72 THRU 75.

In the case of the incorrect nesting, the error lies in PERFORMing 29 thru 31
(Line 27) while in process of PERFORMing 26 thru 30 (Line 64). The inner
nested paragraphs 29 thru 31 will not be executed to completion, since the
Line 64 PERFORM has set an exit line following Line 30 (paragraph 30).
Consequently, control will pass at this point (end of 30) back to the line
following 64.

47

UP-7503.1
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E

4.7.4.4. STOP

Format:

STOP{ literal }
-- RUN

Description:

4
SECTION: PAGE:

The STOP verb terminates the object program either permanently or temporarily.
The format must specify a literal, or the key word RUN must be used with STOP.
(If a literal is employed it is displayed by the object program at the time STOP
occurs either on the console printer or a substitute medium, such as console
lights.) If the operator should elect, continuation of the object program begins
with the execution of the next statement in sequence.

STOP RUN automatically activates the standard ending routine of the Executive
Routine. Therefore, it should be used only as the final executable statement of the

program.

Some examples of the use of STOP are:

STOP 3.
STOP 127.
STOP "INPUT TAPE SHOULD BE DESCRIPTIONS".

STOP RUN.

Whenever a numeric literal is used, as in the first two examples, it is customary
to specify a different number for each STOP. These numbers are then catalogued
with their respective definitions, for use with the object program. The literal used
may be numeric or nonnumeric or any figurative constant except ALL.

48

UP-7503.1
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E

4.7.5. Compiler-Directing Verbs

SECTION:

4
PAGE:

Certain verbs direct the compiler to perform some specific action and do not directly
produce any object coding. These are called compiler-directing verbs. Two of the
verbs, ENTER and EXIT, only affect the object program indirectly, whereas the verb
NOTE has absolutely no effect on the object program.

4.7.5.1. EXIT

Format:

EXIT.

Description:

The EXIT verb provides an end point for a procedure being executed by a PERFORM
verb. EXIT must be the only word within a paragraph.

The EXIT verb is necessary only if there is more than one common ending point to
the subroutine; in this case, each of these points should come together at the EXIT
in order to provide one ending point path.

EXIT should contain a transfer of control to the first sentence of the paragraph
following the PERFORM paragraph. If the EXIT paragraph is referenced by some
procedure other than a PERFORM,. control passes through the EXIT point to the
first sentence of the paragraph following the EXIT paragraph.

49

UP-7503.1
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E

For example:

REORDER-STOCK.

4
SECTION:

WRITE REPLENISH-STOCK-ITEM BEFORE ADVANCING 3 LINES.

ADD 1 TO LINE-NO.

IF LINE-NO IS GREATER THAN 17 PERFORM HEADER-PRINT.

GO TO PARA EXIT.

HEADER-PRINT.

PARAEXIT.

EXIT.

PAGE:

PARAEXIT provides the needed common ending point for two alternate paths in
the program. If LINE-NO is not greater than 17, the end of the page has not been
reached, and the page heading is not required. Control falls through the IF state­
ment to the unconditional GO TO statement. Control is transferred to PARAEXIT
by the GO TO and HEADER-PRINT is not performed. If LINE-NO is greater than
17, a new page is needed, and HEADER-PRINT is performed. Control then trans­
fers back to the statement following the PERFORM, i.e., GO TO PARAEXIT.
Control now transfers to PARAEXIT and the program continues.

so

UP-7503.1
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E

4.7.5.2. NOTE

Format:

NOTE character-string.

Description:

4
SECTION:

This verb permits the programmer to insert comments in his source program for
reference purposes. These comments are printed out but have no effect on the

object program.

PAGE:

If a NOTE sentence is the first sentence of a paragraph (i.e., immediately following
a procedure-name), the entire paragraph is considered as commentary. If a NOTE
sentence appears as other than the first sentence of a paragraph, the commentary

ends with the appearance of a period.

Any characters from the COBOL character set may be used excluding the period

which is used to terminate the comment.

51

UP-7503.1
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E

4.7.5.3. ENTER

Format:

ENTER language-name [routine-name].

Description:

4
SECTION: PAGE:

This verb allows the inclusion of object code produced by some assembler or
compiler other than COBOL into the object program. The language-name may refer
to any other language allowable on that particular computer. The language state­
ments are executed in the object program as if they had been compiled immediately
following the ENTER statement.

If the statements of the entered language cannot be written in-line (incorporated
among the normal COBOL statements), a routine-name is specified to identify and
access a coded portion of the entered language and to execute this coding at the
desired point in the procedural sequence. The routine-name is a COBOL data- name
which may only be referenced in an ENTER statement.

If the entered·-language statements can be written in-line, the routine-name option
is not used. The sentence:

ENTER COBOL

must follow the last statement in the entered language code segment to indicate
to the compiler where a return to COBOL source language occurs.

The implementor must specify all details as to how the other languages are to be
written.

52

UP-7503.l
Rev. 1

•

FUNDAMENTALS OF COBOL

L A N G U A G E
SECTION:

4
PAGE:

4.8. SAMPLE PROBLEM

The data having been defined in a previous section, the actions to be taken at object
time are now specified. These actions begin with the opening of the several files
(i.e., initializing the files so as to make them capable of releasing or accepting data).
Data is then read in a specific sequence, with various manipulative, logical, and
arithmetic operations performed. This done, the files are closed and the run ter­
minated.

4.8.1. Flow Chart

(27)

A flow chart solution is shown in Figure 4-1.

An English prose interpretation of the flow chart is now presented, with the COBOL

version of the solution procedures shown section- by-section. The numbers in paren­
theses refer to the block keying numbers on the flow chart (see 4.8.2).

CLOSE

ALL

FILES

STOP

(2)

(5)

YES

(4)

(1)

TURN OFF

MASTER-IN

SWITCH

READ

A MASTER

INVENTORY

INPUT FILE

RECORD

PROCEDURE

DIVISION

INITIALIZE 1-0:

- OPEN FILES -

- PRINT FIRST
PAGE HEADER -

(14)

YES

NO

TURN ON

MASTER-IN

SWITCH

(24)

MOVE PERIODS

TO TRANSACTION

STOCK• FOR

AUTOMATIC COMPARE

Figure 4-1. Sample Inventory Problem Flow Chart Solution (Sheet 1 of 2)

,__ __ _, B

UPDATE

NUMBER OF

UNITS ON

HAND

1-----iA

53

UP-7503.1 FUNDAMENTALS .OF COBOL

Rev. 1 L A N G u A G E 4 54
SECTION: PAGE:

(18) -PUT OUT

c ERROR A

MESSAGE

(7) (9)

BUILD AND
CALCULATE

PRINT A YES
D TOTAL STOCK

REORDER
VALUE

LIST ITEM

(22)

EXECUTE
NO YES

HEADER E

PRINT

(10)

WRITE

NEW

INVENTORY

MASTER

(12) (13)

YES
TURN ON MOVE LAST

MASTER READ MASTER

SWITCH TD OUTPUT AREA

(19 (20) • BUILD NEW PLACE "N"
RECORD IN FLAG IN 0 OUTPUT MASTER REORDER

AREA REPORT FORM

Figure 4-1. Sample Inventory Problem Flow Chart Solution (Sheet 2 of 2)

UP-7503.1
Rev. 1

•
FUNDAMENTALS OF COBOL

L A N G U A G E SECTION:

4 55
PAGE:

4.8.2. Interpretation of Flow Chart

010200
010300
010400
010500
010700
010800
010900
020000
020100
020200
020300
020800
020900

300300
300400
300500
300510
300600
300610
300620
300630
300700

To initiate the run, all files are opened and the first page header is printed (1).

PROCEDURE DIVISION.
INITIALIZE.

OPEN INPUT OLD-MASTER-INVENTORY, DETAIL-TRANSACTION-CARDS.
OPEN OUTPUT NEW-MASTER-INVENTORY• REORDER-LIST.
PERFORM HEADER-PRINT.

GET-NEXT-TRANSACTION•
READ DETAIL-TRANSACTION-CARDS AT END GO TO SET-UP-END•RUN,

READ-INVENTORY-RECORD,
IF SWITCH IS EQUAL TO 1 GO TO RESET-SWITCH,
READ OLD-MASTER-INVENTORY INTO MASTER-RECORD OF
NEW-MASTER-INVENTORY AT END GO TO CLOSE-FILES.

RESET-SWITCH.
MOVE ZERO TO SWITCH•

Now the relationship of the current input master inventory record and the current
detail transaction is determined. When a detail transaction is read (2) (assuming
there are any remaining to be read) (20) the Master-In switch is tested (3).

The Master-In switch is ON, whenever the processing of the last read input master
has not yet been terminated and no new master is to be read. If OFF, a new input
master must be read (4) because the processing of the last input master read has
been terminated prior to the reading of the detail transaction. In either case the
Master-In switch is turned off (5) immediately after testing. It is turned on at other
points in the program when it develops that the master just read is not to be immedi­
ately terminated.

HEADER-PRINT.
ADD 1 TO PAGE-NO•
WRITE REPLENISH-STOCK-ITEM FROM 1-REPLENISH•REPORT-HEADING
AFTER ADVANCING NEW-PAGE LINES.
WRITE REPLENISH-STOCK-ITEM FROM 2-REPLENISH-REPORT-HEADING,
WRITE REPLENISH-STOCK-ITEM FROM 3-REPLENISH-REPORT-HEADING.
MOVE SPACES TO REPLENISH-STOCK-ITEM.
WRITE REPLENISH-STOCK-ITEM.
MOVE ZEROS TO LINE-NO.

If the stock number in the newly read detail transaction is greater than the input
master stock number (6) all detail transactions for this master (if any) have been
processed. Complete the processing of the master (D) as follows: compute the
total stock value (7) by multiplying the number of units on hand times the price
per unit. Check whether the number of units on hand has fallen below the reorder
level (8), and if so, write a list entry on the stock reorder report (9). Write the
updated master inventory record from the output area (10). If the output master
was constructed from a new stock item detail transaction (i.e., if new stock flag
contains "N") (11), set the Master-In switch ON (12) and move the input area copy
of the last input master inventory record to the output area (13). Branch to read the
next input master (B).

UP-7503.1
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E

030000 CHECK-STOCK-NUMBER.

4
SECTION: PAGE:

030100 IF STOCK-CONTROL-NUMBER GREATER THAN SEQ-STOCK-NUMBER
030200 OF NEW-MASTER-INVENTORY GO TO FINISH-MASTER.

060100 FINISH-MASTER.

56

060200 MULTIPLY ON-HAND-UNITS OF NEW-MASTER-INVENTORY BY COST-PER-UN
060300- IT OF NEW-MASTER-INVENTORY GIVING TOTAL-WHOLESALE-VALUE OF
060400 NEW-MASTER-INVENTORY ON SIZE ERROR DISPLAY 'OVERFLOW ON TOTAL
060410- ' WHOLESALE VALUE'•
060420 DISPLAY SEQ-STOCK-NUMBER OF MASTER-RECORD IN
060430 NEW-MASTER-INVENTORY.
060500 IF FLAG-NEW-STOCK rs EQUAL TO 'N' MOVE 1 To SWITCH.
060600 IF MIN-STOCK-UNIT-QUANTITY OF NEW-MASTER-INVENTORY IS GREATER
060700 THAN ON-HANP•UNITS IN NEW-MASTER-INVENTORY OR FLAG-NEW-STOCK
060800 IS EQUAL TO 'N' PERFORM REORDER-STOCK.
070100 PERFORM WRITE-NEW-INVENTORY.
070200 MOVE MASTER-RECORD OF OLD-MASTER-INVENTORY TO MASTER-RECORD
070210 OF NEW-MASTER-INVENTORY.
070300 GO TO READ-INVENTORY-RECORD·
070400 WRITE-NEW-INVENTORY.
070500 WRITE MASTER-RECORD OF NEW-MASTER-INVENTORY.

030300
030400
030500

040400
040600
040700
040800
050300
050,.00
050500
050600
050700
050800
050900
060000

Assuming the stock number on the detail transaction was not greater, turn the
Master-In switch ON (14) and test if the stock num~ers are equal (15). If so,
update the quantity on hand by the quantity of the shipment or receipt (16). Then
go to read the next detail transaction (A).

MOVE 1 TO SWITCH.
IF STOCK-CONTROL-NUMBER IS EQUAL SEQ-STOCK-NUMBER
OF NEW-MASTER-INVENTORY GO TO UPDATE.

UPDATE.
IF TYPE-TRANSACTION IS EQUAL TO 1 OR 2 GO TO SHIPMENT.
IF TYPE-TRANSACTION IS EQUAL TO 3 OR 4 GO TO RECEIPT.
GO TO ERROR-MESSAGE.

SHIPMENT•
SUBTRACT QUANTITY FROM ON-HAND-UNITS
IN NEW-MASTER-INVENTORY.
GO TO GET-NEXT-TRANSACTION.

RECEIPT.
ADD QUANTITY TO ON-HAND-UNITS IN
NEW-MASTER-INVENTORY.
GO TO GET-NEXT-TRANSACTION.

UP-7503.1
Rev. 1

030900
040000
040100
040200-
040300

100100
100500
100600
100700
100800
100900
200200
200300
200400
200600
200100
200800
200900
300000
300010
300100
300200

FUNDAMENTALS OF COBOL

L A N G U A G E 4
SECTION: PAGE:

If the detail stock number is less than the master stock number, test whether the
transaction is type 0 (17) (new stock item). If not, display an error message de­
scribing the transaction (18). If so, use the detail transaction to build a new master
inventory record (19) and set the new-stock-item flag (20) in the output area. In
either case, go to read the next transaction (A).

57

IF TYPE-TRANSACTION IS EQUAL TO ZERO GO TO NEW-STOCK-ITEM.
ERROR-MESSAGE,

DISPLAY STOCK-CONTROL-NUMBER '
• TYPE IS ' TYPE-TRANSACTION•
GO TO GET-NEXT-TRANSACTION.

NOT IN FILE• TRANSACTION

NEW-STOCK-ITEM.
MOVE SPACES TO MASTER-RECORD OF NEW-MASTER-INVENTORY.
MOVE STOCK-CONTROL-NUMBER TO SEQ-STOCK-NUMRER IN
NEW-MASTER-INVENTORY.
MOVE NO-TRANSACTOR TO NUMBER-MANUFACTURER IN
NEW-MASTER-INVENTORY.
MOVE ORDER-NUMBER TO MFR-CATALOG-NUMBER IN ,
NEW-MASTER-INVENTORY.
MOVE DTL-DESCRIPTION TO DESCRIPTION IN NEW-MASTER-INVENTORY.
MOVE ZEROS TO ON-HAND-UNITS OF NEW-MASTER-INVENTORY•
TOTAL-WHOLESALE-VALUE IN NEW-MASTER-INVENTORY.
MOVE UNIT-COST OF TRANSACTIONS TO COST-PER-UNIT IN
NEW-MASTER-INVENTORY.
MOVE QUANTITY TO MIN-STOCK-UNIT-QUANTITY IN
NEW-MASTER-INVENTORY.
MOVE 'N' TO FLAG-NEW•STOCK.
GO TO GET-NEXT-TRANSACTION.

A list, called the stock-reorder list, is printed to reflect newly added stock items,
and stock items on which the stock on hand falls below the minimum level. Infor­
mation pertinent to the current status of the stock is shown, including a flag to
indicate a newly added stock item and a flag to indicate when the stock level has
fallen below 60 percent of minimum. Following each line printed, a test is made to
determine whether a page eject has occurred (21). If so, the page counter is up­

dated and the report header printed.

UP-7503.1
Rev. 1

070700
080000
080050
080060
080070
080080
080100
080200
080300
080400
080500
080600
080700
080900
090000
090100
090200
090400
090500
090600
090610
090700
090800
090810
090900

FUNDAMENTALS OF COBOL

L A N G U A G E 4
SECTION: PAGE:

REORDER-STOCK.
MULTIPLY ON-HANO-UNITS OF NEW-MASTER-INVENTORY BY 100
GIVING DIVIDEND ON SIZE ERROR DISPLAY
'OVERFLOW ON MULTIPLICATION'•
DISPLAY SEQ-STOCK-NUMBER OF MASTER-RECORD IN
NEW-MASTER-INVENTORY.

58

DIVIDE MIN-STOCK-UNIT-QUANTITY OF NEW-MASTER-INVENTORY INTO
DIVIDEND GIVING PERCENTAGE ROUNDED.
IF PERCENTAGE rs LESS THAN 60 MOVE 'EEE' To
EMERGENCY-REORDER-FLAG.
MOVE SEQ-STOCK-NUMBER OF NEW-MASTER-INVENTORY TO
STK-NUMBER-PRHJT.
MOVE NUMBER-MANUFACTURER OF NEW-MASTER-INVENTORY TO NO-MFR.
MOVE MFR-CATALOG-NUMBER OF NEW-~ASTER-INVENTORY TO
MFR-ORDER-NUMBER OF REORDER-LIST.
MOVE DESCRIPTION IN NEW-MASTER-INVENTORY TO ITEM-DESCRIPTION.
MOVE ON-HAND-UNITS IN NEW-MASTER-INVENTORY TO UNITS-ON-HANO.
MOVE MIN-STOCK-UNIT-QUANTITY OF NEW-MASTER-INVENTORY TO
MIN-UNITS.
MOVE COST-PER-UNIT IN NEW-MASTER-INVENTORY TO UNIT-COST
OF REORDER-LIST.
WRITE REPLENISH-STOCK-ITEM BEFORE ADVANCING 3 LINES.
ADD 1 TO LINE-NO•
MOVE SPACES TO REPLENISH-STOCK-ITEM. ~
IF LINE-NO IS GREATER THAN 17 PERFORM HEADER-PRINT. ~

After all detail transactions have been read and processed (23), the detail trans­
action input area is modified so that all subsequent input master inventory records
to be read will have lower stock numbers than that shown in the detail transaction
field (24). Thus, all remaining input master inventory records will be automatically
transferred to the output master file without updating.

300900 SET-UP-END-RUN.
400000 MOVE '••••••' TO STOCK-CONTROL-NU~BER.
400100 GO TO READ-INVENTORY-RECORD•

400200
400300
400690
400700

When the end of the input master inventory file is reached and the last input master
record put on the output master inventory file (25), all files are closed (26) and the
object run is terminated (27).

CLOSE-FILES.
CLOSE OLD-MASTER-INVENTORY•
CLOSE NEW-MASTER-INVENTORY,
STOP RUN.

DETAIL-TRANSACTION-CARDS.
REORDER-LIST.

UP-7503.1
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E SECTION:
5 1

PAGE:

5. DESCRIBING THE EQUIPMENT
AND PHYSICAL ENVIRONMENT

5.1. GENERAL DESCRIPTION

In the section called the Environment Division of a COBOL source program a relation­
ship is established between the physical requirements of the computing system on which
the program will operate and the operations to be performed. That is, the Environment
Division describes the computing system on which the object program is to run so that
the succeeding divisions of the source program can be translated to an object program
for that computing system.

The Environment Division is completely machine oriented and must be rewritten whenever
a source program is to be translated to operate on a different computing system. It may be
advisable, or necessary, to rewrite this division for different configurations of the comput­
ing system for which the source program is to be translated.

5.2. ORGANIZATION AND STRUCTURE OF THE ENVIRONMENT DIVISION

The Environment Division comprises two sections, each of which has a fixed name. They
are:

CONFIGURATION SECTION.
INPUT-OUTPUT SECTION.

The following is a general outline of the sections and paragraphs contained in the En­
vironment Division and their order of presentation:

A B
8 12

ENV I RONMENT DIVISION.

CONFIGURATION SECTION.

S OURtE-COMPUTER

OBJECT-COMPUTER

SPEC I AL-NAMES

INPUT-OUTPUT SECTION.

FI LE -CONTROL. file-control entry

1- 0- CONTROL. input-output-control entry

The discussions that follow each of the Environment Division paragraphs are general
in nature. Information relating to the specifics of implementation can be found in the
programmers reference manual pertaining to the particular computer.

UP-7503.1
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E

5.3. CONFIGURATION SECTION

"5
SECTION: PAGE:

This section details the overall specifications for the computing systems involved in
a COBOL program. It comprises three paragraphs as follows:

(a) SOURCE-COMPUTER - Defines the computer on which the COBOL-language
program is to be compiled.

(b) OBJECT-COMPUTER - Defines the computer on which the compiled object
program is to be run.

(c) SPECIAL-NAMES - Defines problem-oriented names for specific pieces of equip­
ment.

5.3.1. SOURCE-COMPUTER

Format:

SOURCE-COMPUTER. computer-name.

Description:

This paragraph names the computer upon which the source program is to be compiled
and provides a means of communicating with the executive routine.

2

UP-7503.l
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E

5.3.2. OBJECT -COMPUTER

Format:

OBJECT -COMPUTER. computer-name

[{

WORDS }] MEMORY SIZE integer CHARACTERS
MODULES

Description:

5
SECTION: PAGE:

This paragraph describes the computer upon which the object program is to be run
and specifies the equipment configuration present during object running time.

Computer-name provides a means for describing equipment configuration. The
computer-name and its implied configuration are specified by each implementor.
If the configuration implied by computer-name comprises more or less equipment
than is actually needed by the object program, the descriptive clauses following
computer-name permit the specification of the actual subset of the configuration.
The configuration definition contains specific information concerning the

MEMORY SIZE.

The implementor should define what must be done if the configuration specified by
the user is less than the minimum configuration required to run the object program.

3

UP-7503.1
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E

5.3.3. SPECIAL-NAMES

Format:

SPECIAL-NAMES.

5
SECTION:

[1
~ mnemonic-name-1 [, ON ST A TUS IS condition-name-1

. / t IS mnemonic-name-2 [, OFF STATUSIS condition-name-3 mp emen or-name - . . -- -
ON ST A TUS IS condztwn-name-5
OFF STATUS~ condition-name-7

[,OFF STATUS IScondition-name-2]]}]
[, ON ST A TUS ~ condition-name-4]]
[, OFF ST A TUS ~ condition-name-6] · · ·
[, ON ST A.TUS LS_ condition-name-8]

[, CURRENCY SIGN IS literal] [, DECIMAL-POINT IS COMMA].

Description:

This paragraph provides a means of relating hardware device names (implementor­
name) to problem-oriented mnemonic names assigned by the user. This paragraph
is usually not required if the actual hardware names are used in the program. A
mnemonic-name may only be used in formats which specifically permit their use.

PAGE:

If the implementor-name is not a switch, the associated mnemonic-name may be used
in ACCEPT, DISPLAY, and WRITE statements.

If implementor-name is a switch, it must be assigned a mnemonic-name, a condition­
name, or both. The status of a switch is interrogated by testing the condition-name
assigned to it (see 4 .2 .2 .4).

The literal specified in the CURRENCY IS clause is used in PICTURE clauses to
represent the currency symbol. This literal must be a single character and it cannot
be any of the following:

• Digits: 0 through 9.

• Alphabetics: A, B, C, D, P, R, S, V, X, Z, or the space.

• Special characters:

*
+

(

)

"

When the CURRENCY IS clause is not present, only the currency symbol specified
by the implementor may be used in PICTURE clauses.

The DECIMAL-POINT IS COMMA clause interchanges the functions of the comma
and period in PICTURE clause character-strings and in numeric literals.

4

UP-7503.1
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E SECTION:

An example of the use of the SPECIAL-NAMES feature is as follows:

SPECIAL-NAMES. CARD-READER IS READER.

5
PAGE:

This paragraph, specified in the Environment Division, would permit reference to
the hardware device CARD-READER to be made in the program. in the following

manner:

ACCEPT RATE-CHANGE FROM READER.

The individual programmers reference manual must be consulted for both the permitted
use of mnemonic-names, as well as the standard hardware device names for that

computer.

5

UP-7503.1
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E

5.4. INPUT-OUTPUT SECTION

SECTION:
5

PAGE:

This section deals with the definition of the external media and provides information
needed to create the most efficient transmission of data between the media and the
object program. This section is divided into two paragraphs as follows:

(a) FILE-CONTROL - Names and associates the files with external media.

(b) 1-0-CONTROL - Defines special input/output techniques, rerun, and multiple­
file tapes.

6

UP-7503.1
Rev. 1

•

FUNDAMENTALS OF COBOL

L A N G U A G E

5.4.1. FILE-CONTROL

For1Rat:

SECTION:

FILE-CONTROL. {SELECT [OPTIONAL] We-name

ASSIGN TO [integer-1] implementor-name-I [, implementor-name-2]

Description:

5

This paragraph is used to name each file; identify the hardware medium which
contains it; permit specific hardware assignments for the program; and to specify
alternate input/output areas.

Each file selected by a FILE CONTROL entry must have a corresponding File
Description entry in the Data Division.

PAGE:

The keyword OPTIONAL is required for input files that may or may not be present
when the object program is run.

lnteger-1 indicates the number of input-output units assigned to a file-name. If
integer-1 is not specified, the compiler determines the number of units to be assigned .

All files employed in the program must be ASSIGNed to a specific input/output hard­
ware device (card reader, tape unit, printer, etc.). The exact name for each of these
units will be covered in the specific programmers reference manual. If a tape file is
to use more than one reel, the FOR MULTIPLE REEL option is specified.

The RESERVE clause allows the user to modify the number of input/output areas
allocated by the compiler. The option RESERVE 'integer ALTERNATE AREAS means
that integer additional areas are to be reserved for the file in addition to the minimum
area. The particular implementation specifies the minimum area and the additional
area~ for particular hardware. No additional areas are reserved for the file when the
NO option is selected.

7

UP-7503.1
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E

5.4.2. 1-0-CONTROL

Format:

1-0-CONTROL.

RERUN foN{!ile-name-1 }]
[- implementor-name

I \

1 {END OF REEL } OF file-name-2 (

EVERY integer-I RECORDS >
j integer-2 CLOCK-UN ITS I

\ condition-name
J

l
..__ -

SECTION:

[; SAME [RECORD] AREA FOR file-name-3 {, file-name-41 ...] ...

[;MULTIPLE FILE TAPE CONTAINS file-name-5 [POSITION integer-3]

[, file-name-6 [POSITION integer-4]] ...]

Description:

5
PAGE:

This paragraph, which is optional, permits the user to specify such things as input/
output techniques and points at which rerun is to be established.

When either the integer-1 RECORDS or integer-2 CLOCK-UNITS option is selected,
the implementor-name must be given in the RERUN option.

The RERUN clause specifies where the rerun information is recorded and when the
memory dump occurs. Memory dumps may be recorded in either of the following ways:

(a) The memory dump is written on each reel or unit of an output file with the specific
implementation specifying where, on the reel or file, the dump is to be recorded.

(b) The memory dump is written on a separate rerun tape or unit, as specified by the
hardware-device name of the RERUN option.

The SAME AREA clause specifies that two or more files are to use the same memory
area (including alternate areas) during processing. If the RECORD option is specified,
only one record can reside in the record area at any one time regardless of the number
of files that may be open (see diagram below). Since only one record can be in the
record area, it is the responsibility of the programmer to determine which record of
which file is in the record at any point in the program.

8

UP-7503.l
Rev. 1

•

FILEA

FILES

FILEC

FUNDAMENTALS OF COBOL

L A N G U A G E

TAPE

4TH 3RD 2ND
RECORD RECORD RECORD

TAPE

4TH 3RD 2ND
RECORD RECORD RECORD

TAPE

4TH 3RD 2ND
RECORD RECORD RECORD

5
SECTION: PAGE:

lST
RECORD

RECORD
lST AREA

RECORD IN
MEMORY

lST
RECORD

If the RECORD option is not specified in the SAME AREA clause, then the area being
shared includes all storage assigned to the files specified in the SAME AREA clause.
In this case, the programmer must make certain that no more than one file is open at
any point in the program.

Since more than one SAME AREA or SAME RECORD AREA clause can be written in
the I-0-CONTROL paragraph, certain restrictions are pla~ed on the use of the file­
names. These restrictions are as follows:

(1) A particular file- name cannot be specified in more than one SAME AREA clause
nor in more than one SAME RECORDS AREA clause.

(2) If one or more of the file- names specified in SAME AREA clause also appears
in the SAME RECORDS AREA clause, all file-names specified in the SAME
AREA clause must be listed in the SAME RECORDS AREA clause. However,
any dissimilar file- names specified in the SAME RECORDS AREA clause are
not be be listed in the SAME AREA clause. For example, assume that FILEA,
FILEG, and FILEL are to have the same area and that FILEA, FILE B, and
FILEZ are to have the same record area. The SAME AREA and SAME RECORD
AREA clauses must be written as follows:

SAME AREA FILEA, FILEG, FILEL
SAME RECORD AREA FILEA, FILEB, FILEG, FILEL, FILEZ

(3) If both a SAME AREA clause and a SAME RECORD AREA clause appear in an
I-0-CONTROL paragraph, only one file can be open at any point in the program.

The MULTIPLE FILE option is required when more than one file shares the same
physical reel of tape. Regardless of the number of files on a single reel, only those
files used in the object program need be specified. The POSITION option is not
required if all the files are listed in consecutive order. If any file on the tape is not
listed, the position relative to the beginning of the tape must be given for each file
listed.

9

UP-7S03.1
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E

S.S. SAMPLE PROBLEM

SECTION:

s
PAGE:

The Environment Division section of the program describes and centralizes those
aspects of the total problem which depend upon the characteristics of the computing
equipment; it links the logical concepts of data and records described in the Data
Division with the physical aspects of the files on which they are stored. The various
information will be shown first in English prose and then in COBOL. The header for
this division is:

001400 ENVIRONMENT DIVISION•

S.S.1. Configuration Section

001500 CONFIGURATION SECTION.

• Source-Computer

The source-computer (the computer on which the compiling operation will be per­
formed) is specified in a format reserved for that particular computer.

001600 SOURCE-COMPUTER. MARK-I.

• Object-Computer

The object-computer (the computer on which the compiled object program will be
executed) is specified, and its equipment configuration and operational mode is
described as follows.

- Name of Computer.

- Memory Size Used (20,000 words).

001700 OHJECT-COMPUTER. MARK-I•
001800 MlMORY SIZE 20000 WORDS.

• Special-Names

This paragraph specifies mnemonic names which may be equated to standard hard­
ware names or switches. In this case, TOP-OF-NEXT-PAGE could contain the
computer manufacturer's symbol which instructs the printer to advance to a new
page. The programmer has equated his name, NEW-PAGE, with the manufacturer's
name.

001850 SPECIAL-NAMES. NE~-PAGE IS TOP-OF-NEXT-PAGE.

10

UP-7503.1
J Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E
SECTION:

5
PAGE:

5.5.2. Input/Output Section

o0210U INPUT-OUTPUT SECTION•

002200
002300
002400
002600
002610

• File Control

Each file is named and is described a~ to medium and hardware assignment. The'
files assigned in this program are as follows:

- The old (input) master inventory file is assigned to a tape.

- The new (output) master inventory is assigned to a tape. This file is an
updated version of the old (input) master inventory, with an identical file
description and record description; therefore, the RENAMING clause may be
used, and it is not necessary that the two files be defined separately in the
Data Division.

- The detail transaction cards input file is assigned to the card reader.

- The stock reorder output list file is assigned to the printer.

FILE-CONTROL.
SELECT OLD-MASTER-INVENTORY ASSIGN TO MAGNETIC-TAPE-UNIT.
SELECT NEW-MASTER-INVENTORY ASSIGN TO MAGNETIC-TAPE-UNIT.
SELECT DETAIL-TRANSACTION-CARDS ASSIGN TO CAPO-READER.
SELECT REORDER-LIST ASSIGN TO PRINTEP.

• Input/Output Control

In this instance, the 1-0-CONTROL statement is used to obtain a memory dump
at the end of each reel of the NEW-MASTER-INVENTORY file. This information
is useful when restarting a program that has aborted during a run; the program
can be restarted at the last valid rerun point and there is no need to rerun the
entire program.

002640 I-a-CONTROL.
002650 RERUN EVERY ENO OF REEL OF NEW-MASTER-INVENTORY.

11

UP-7503.l
Rev. 1

•

FUNDAMENTALS OF COBOL

L A N G U A G E
SECTION:

6
PAGE:

S. IDENTIFYING THE PROGRAM

6.1. GENERAL DESCRIPTION

In the section called the Identification Division, the information identifying the source
program and the output of a compilation is provided. In this division, the user may
include such information as the name of the program, date of compilation, programmer's
name and so forth. Information provided in this division is listed on the printed output
of the compilation but has no effect upon the object program.

6.2. ORGANIZATION AND STRUCTURE

Fixed paragraph names identify the type of information provided in this division. The
name of the program, PROGRAM-ID, must be present. The other paragraphs are optional
and may be specified at the user's discretion. The format of presentation is as follows:

A B

8 12

IDENlj IF ICA T ION DIVISION.

PROG RAM- ID. program-name.

[AUTH OR. [comment-entry] • •.]

[INST A LLATION. [comment-entry]. •.]

[DATE -WRITTEN. [comment-entry] .•.]

[DATE -COMPILED. [comment-entry] ...]

[SECU RITY. [comment-entry] . ..]

[REMA RKS. [comment-entry] . ..]

A comment-entry may be made up of any combination of characters from the allowable
COBOL character set. The PROGRAM-ID must always appear as the first paragraph
following IDENTIFICATION DIVISION. This paragraph must be a single word. It is
used to identify the source program and may also identify the resulting object program.
The contents of the paragraph named DATE-COMPILED will be replaced by the current
date and a period.

1

UP-7503.1
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E
SECTION:

6
PAGE:

6.3. SAMPLE PROBLEM

000100
000200
000300
000350
000400
000450
000500
000600
000700
000800
000900
001000
001100
001200
001300

This section of the program identifies or labels the program. It may also contain any
other documentational information that is desired as to authorship, location of install­
ation, date of writing or compiling, security, and any other comments regarding the
functional or peripheral aspects of the program. Information that may be included is
shown below, first in English prose and then in the COBOL version:

• A Program Identification (required).

• Author.

• Installation.

• Date written.

• Date compiled.

• Security level of the program output.

• Remarks. A general functional description of the program.

IDENTIFICATION DIVISION•
PROGRAM-IO• MASTER-INVENTORY-UPDATE.
AUTHOR. AB. C. DEFGHI.
INSTALLATION• OSHKOSH.
DATE-WRITTEN• JUNE 7 1966.
DATE-COMPILED. JUNE 23 1966.
SECURITY. CLASS B COMPANY CONFIDENTIAL.
REMARKS. MASTER INVENTORY ON TAPE IS RUN AGAINST DETAIL

TRANSACTIONS FOR UPDATING TO CREATE A NEW MASTER
INVENTORY FILE. NEW STOCK ITEMS MAY BE ADDED BY
ZERO-TYPE DETAIL TRANSACTIONS,
STOCK ITEMS ON WHICH THE QUANTITY ON HAND HAS
FALLEN BELOW REORDER LEVEL WILL BE LISTED WITH
PURCHASING INFORMATION ON THE PRINTER• AS WILL
BE ALL NEW STOCK ITEMS.

2

•

UP-7503.1
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E
SECTION:

7
PAGE:

7. COBOL REFERENCE FORMAT

7.1. GENERAL

The standard COBOL Reference Format consists essentially of a basic format medium
within which the COBOL source program is constructed. This is necessary because the
COBOL language must be used very precisely at each level of organization. Extreme
care must be used to observe the rules stated in this manual.

In addition to observing the rules of sentence formats, a source program must be written
such that its various sections and divisions appear in a particular sequence at compila­
tion time.

The standard COBOL Reference Format prescribes the standards by which source pro­
gram information must be arranged and sequenced on the COBOL coding form for the
compiler to interpret the information and convert it to an object program that will per­
form the in tended functions.

This section will define the purposes of the Reference Format and the rules governing
its use in each of the four divisions of the COBOL source program. In doing this, the
various rules and principles previously stated in this manual will be summarized.

The description of the COBOL Reference Format contained in this section is
general. This is because certain differences may exist in any specific COBOL
implementation for particular equipment. It is intended as a basic reference
guide; however, when preparing to write a COBOL program for any specific
equipment, consult the COBOL programmers reference manual for the particular
system.

7.2. PURPOSE OF REFERENCE FORMAT

The Reference Format has three main purposes.

• It provides a convenient form for the programmer to use. The COBOL Programming
Form helps both the programmer and the person who punches cards from this format
to arrange the program in the proper form.

• It provides a medium by which the programmer may specify those items that the
compiler needs to create the object program.

• It provides a standard form for the printed listing of the source program which could
serve, with modification, as the input form to a COBOL compiler on another computer.

1

UP-7503.1
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E

7 .3. USING THE REFERENCE FORMAT

7
SECTION:

The rules that follow for the use of the Reference Format take precedence over any
other rules stated in this manual with respect to spacing of formats.

7.3.1. The Reference Format Programming Form

PAGE:

The layout of the Reference Format Programming Form is shown in Figure 2-1. Each
line of coding represents the information that is to be keypunched on one 80-column
card, as indicated in the following paragraphs.

7.3.1.1. Sequence Number

Columns 1 through 6 contain the sequence number. Sequence numbers are optional,
and are intended to aid the programmer in making corrections and changes in the
source program by establishing a linear card sequence.

7 .3.1.2. Continuation Indicator

Column 7 is used as a continuation indicator. Whenever a paragraph or entry requires
more than one line of coding, and the break in the line occurs in the middle of a
word or literal, the continuation is shown by a hyphen in column 7 of the line in
which the broken word or literal is completed.

If no hyphen appears at the start of any given line, the last word of the preceding
line is assumed to have ended. No space is required at the end of any line. If the
hyphen is used, the first character of the hyphenated line is considered a continu­
ation of the last word of the preceding line.

A word or numeric literal may be interrupted in any column (and the rest of the line
space filled) if there is a hyphen in column 7 of the next succeeding line.

If a nonnumeric literal extends beyond the end of a line, there must be a hyphen in
column 7 of the next line; also, the continuation of the nonnumeric literal must
start with a quotation mark. Until the final quotation mark terminates the nonnumeric
literal, it is assumed that each card column up to and including column 72 is part
of the literal.

7.3.1.3. Text

Columns 8 through 72 are used to contain text, i.e., the information from which the
data and instructions which comprise the object program are compiled. Two margins
are used to align this information: Margin A and Margin B. An item aligned with
Margin A has its first character in column 8; an item aligned with Margin B has its
first character in column 12.

Names of divisions, names of sections, names of paragraphs, and all main entries
of the Data Division (i.e., file descriptions and record descriptions) are placed at
Margin A. Division and section names must appear on a single line.

Subordinate items, continuations, and procedural statements are placed at Margin B.

2

UP-7503.1
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E

7 .3.1.4. Identification

SECTION:

7
PAGE:

Columns 73 through 80 are used for card deck identification at the discretion of the
programmer. The contents are shown in the source program listing, but do not
affect the compilation operation.

7.3.2. The Reference Format Divisions

There are four divisions to the Reference Format: the Identification Division, the
Environment Division, the Data Division, and the Procedure Division, appearing in
the Reference Format in that order. The remainder of this section explains the format
usage rules for these divisions. Sample formats may be seen in the sample program
which has been developed throughout the manual and is shown in full in Appendix C.

7 .3 .2.1. Rules for the Identification Division

The Identification Division provides a means of identifying or labeling a COBOL

source program. The only information required in this division is the PROGRAM-ID
paragraph. Other information follows a standard format, but its inclusion is optional.
Thus, the division may be composed of from one to seven paragraphs. The PRO­
GRAM-ID paragraph must always appear as the first paragraph. Thereafter, any or
all of the following fixed name paragraphs may appear:

AUTHOR.

DATE-WRITTEN.

SECURITY.

INSTALLATION.

DATE-COMPILED.

REMARKS.

The name of the division, and the names of the paragraphs within it, start under
Margin A. The first line of this division contains its name, followed by a period;
i.e.,

IDENTIFICATION DIVISION.

The text of each paragraph may start on the same line as the paragraph name, or
on the next line, as preferred. Any paragraph which occupies more than one line
must be continued by starting at Margin B on the next line.

7.3.2.2. Rules for the Environment Division

The Environment Division specifies those elements of a COBOL program that are
dependent upon physical aspects or limitations of the specific equipment.

The first line of the division consists of its name, followed by a period; i.e.,

ENVIRONMENT DIVISION.

The section-names CONFIGURATION SECTION and INPUT-OUTPUT SECTION
must also be single entries, each on a line by itself and followed by a period.

3

UP-7503.1
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E
SECTION:

7
PAGE:

Paragraph-names, like the division-name and section-name, must each start at
Margin A and must be followed by a period. However, the clauses which comprise
each paragraph may follow the paragraph immediately, on the same line. The
1-0-CONTROL and the FILE-CONTROL paragraphs may each be comprised of
several sentences, whereas the paragraphs of the CONFIGURATION section are
each composed of one sentence only.

7 .3.2.3. Rules for the Data Division

The basic unit in the Data Division is an entry. Each entry begins with a level
indicator or level num her; that is followed by a data-name, or the word FILLER
and then by a set of descriptive clauses.

The first line of the Data Division is the division-name, followed by a period; i.e.,

DAT A DIVISION.

The Data Division is separated into two distinct sections; the FILE SECTION and
the WORKING-STORAGE SECTION. Each section is begun with the appropriate
section-name; the section-name is on a line by itself followed by a period.

In the File Section, each file description is begun with its appropriate level indicator
at Margin A, followed by the file-name at Margin B. File-descriptive clauses may then
follow on the same line, and continue until a period ends the File Description entry.

All Record Description entries for label records or data records that pertain to a
given file must follow the File Description for that file.

After all the File Section entries are completed, the Working-Storage Section entries
are made. These entries must be preceded by the words: WORKING-STORAGE SEC­
TION on a line by themselves. The level~number of the entry is aligned with Margin
A, while the entry itself starts at Margin B. In the Working-Storage Section, all
77-level entries, and their subordinate 88-level condition-name entries, must precede
any record description entries.

In any section of the Data Division, various entries may be indented for the purpose
of displaying a hierarchal data structure within a given Record Description. The
choice between left-justification or indentation of entries according to level number
is left to the discretion of the programmer; under no circumstances does indentation
affect the magnitude of a level number or the result of a compilation operation.

The 01 level number which begins a record description is placed at Margin A, after
which the data-name for the record is placed at Margin B. All entires subordinate
to the record description are begun with the level number at Margin B, with the
data-name separated from the level number by one or more spaces. If a single entry
requires more than one line, the left margin limit for each line within the entry is
the same; i.e., the position under the first character of the data-nam~.

When level numbers are indented each new level number is placed four spaces to
the right of the starting position of the previous level number.

4

UP-7503.1
Rev. 1

•

FUNDAMENTALS OF COBOL

L A N G U A G E
SECTION:

7
PAGE:

7 .3.2.4. Rules for the Procedure Division

1

The first line of the division consists of its name, followed by a period, starting
at Margin A, as follows:

PROCEDURE DIVISION.

A section is designated as shown in the following examples:

SEQUENCE i A
NUMBER

6 7 8
B

11 12
TEXT~~~~~~~~~~~~-t..-~

20 30

A-LOOP SECTION.

B-LOOP SECTION 1 l .

The section-name is followed by a space, the word SECTION, and a period.
However, when the use of segmentation requires that a priority-number be included
(see Section 8), the word SECTION is followed by a space, the priority-number,
and a period. In either case, the remainder of the line is left blank.

A paragraph consists of one or more successive sentences, the first of which must
be preceded by a paragraph-name. The paragraph-name starts at Margin A and is
followed immediately by a period. A new paragraph is determined by the appearance
of another paragraph-name.

All lines in a paragraph which follow the paragraph-name must start at Margin B.
If a word or literal must be split over two lines, this will be indicated by placing
a hyphen in the seventh character position of the second line. If the user prefers

not to split a word or literal, he may leave the remainder of the line space filled
and then start the word or literal on the next line.

5

.-----

UP-7503.1
Rev. 1

•

FUNDAMENTALS OF COBOL

L A N G U A G E

8.1. GENERAL

8
SECTION: PAGE:

B. SEGMENTATION

COBOL segmentation is the facility by which object program overlay can be accomplished
through the compiler. This becomes necessary when an entire program cannot be contained
in memory at one time. Through this feature, the less frequently-used routines need not be
present in memory except when needed.

Because COBOL segmentation deals only with segmentation of procedures, not data, only
the Procedure Division and the Environment Division are considered in determining seg­

mentation requirements for an object program.

Proper use of segmentation is the responsibility of the programmer. The compiler has
no way of determining its need or application independently. Segmentation is needed
only when an entire program cannot be contained by the available memory. Normal
practice is to restrict the number of overlay segments to a minimum and then only to
infrequently used functions. In the extreme case, however, segmentation could be
used to overlay one program with another almost completely by assigning only a
small control function priority zero and assigning all other program functions differ­

ent priority numbers.

8.2. ORGANIZATION

The Procedure Division of a source program is usually written in sections. Each section
normally represents a set of closely related operations designed to perform a particular
function. Normally, sectional division is not mandatory; however, when segmentation is
used, the entire Procedure Division must be sectioned, and each section must be classi­
fied as either a "fixed" portion or an "independent", or "overlay" segment.

8.2.1. Fixed Portion

The fixed portion is that part of the object program which is logically treated as if it
were always in memory. This portion of the program may be composed of two types of
segments: permanent segments and overlayable fixed segments.

A permanent segment cannot be overlaid by any other part of the program. An over­
layable fixed segment, although logically treated as if it were always in memory,
can be overlaid, if necessary, by another segment to optimize memory utilization.
However, such a segment, if called for by the program, is always made available
in its last used state (see 8.4 for further explanation).

1

UP-7503.1
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E

8.2.2. Independent Segment

SECTION:

8
PAGE:

An independent segment is a part of the object program which can overlay, and be
overlaid by, either an overlayable fixed segment or another independent segment.
It differs from an overlayable fixed segment in that it is always considered to be
in its initial state each time it is made available to the program.

8.2.3. Segment Classification

Segment classification is accomplished by means of priority numbers in the section
header. The priority is written as follows:

section-name SECTION [priority-number].

The priority-number must be an integer in the range 0 through 99. If omitted, a
priority of zero (0) is assumed. Generally, the more often a segment is referred to,
the lower its priority-number.

Sections which must always be available or which are referenced very frequently,
will have a priority-number of 0. All segments with priority-number 0 through 49
belong to the fixed portion. Sections which frequently communicate with one
another should be given the same priority-number.

Sections which are to be independent overlay segments will have priority-number
50 through 99. All sections that have the same particular priority number constitute
a segment. Any two or more sections that communicate with each other must be
members of the same segment (i.e., have the same priority number).

8.3. SEGMENTATION CONTROL

The logical sequence of the program is the same as the physical sequence. The
compiler provides all necessary transfers of control from segment to segment, and
provides control necessary for a segment to operate when that segment is called upon
to be used. The segment under reference will be brought in before program continuation
unless it is already in memory.

8.4. SEGMENT LIMIT

The memory area reserved for containing independent overlay segments is equal to
the size of the largest overlay segment. However, when there is insufficient memory
to contain all permanent segments plus the largest independent overlay segment, it
is necessary to decrease the number of permanent segments. The SEGMENT-LIMIT
feature provides the user with a method of reducing the number of permanent segments,
while retaining the logical properties of fixed segments.

The SEGMENT-LIMIT clause appears in the OBJECT-COMPUTER paragraph and has
the following format:

[,SEGMENT-LIMIT IS priority-number]

2

UP-7S03.1
Rev. 1

•

•

FUNDAMENTALS OF COBOL

L A N G U A G E
SECTION:

8
PAGE:

Priority number is an integer in the range 1 through 49. When the SEGMENT-LIMIT
clause is specified, all fixed position segments with a priority number equal to, or
greater than, the segment limit are thus defined as overlayable fixed segments; all
fixed portion segments with priority number 0 up to, but not including, the segment
limit constitute the permanent segment. All sections with priority-number 0 must
always be part of the permanent segment. When the SEGMENT-LIMIT clause is not
specified, all segments with priority numbers under SO are permanent segments which
cannot be overlaid.

8.4 .1. Restrictions

When the SEGMENT-LIMIT feature is used, certain restrictions are placed on the
use of the ALTER and PERFORM statements.

• ALTER Statement - A GO TO statement in any fixed segment (priority number
49 or less) can be AL TERed by an ALTER statement located in any other
segment of the program. A GO TO statement in an overlayable or independent
segment (priority number SO or greater) can only be AL TERed by an ALTER
statement located in the same segment as the GO TO statement. (Sections
having the same priority number are considered to be in the same segment.)

• PERFORM Statement - The permissible range of a PERFORM statement is
dependent upon whether the segment priority number is less than the SEGMENT­
LIMIT, or equal to or greater than the SEGMENT-LIMIT .

- Less than SEGMENT-LIMIT: The range of a PERFORM statement located in
a fixed segment (priority number 49 or less) is restricted to the fixed portion
of the segmented program. If the PERFORM statement is located in an over­
layable or independent segment (priority number SO or greater), its range is
restricted to the segment in which it appears.

- Equal to or greater than SEGMENT-LIMIT: If the PERFORM statement is
located in a segment whose priority number is equal to or greater than the
SEGMENT-LIMIT, its range is restricted to the segment in which it appears
plus those segments having a priority number that is less than the SEGMENT
-LIMIT.

When a procedure- name in an overlay able or independent segment is referred
to from within a PERFORM statement in a segment with a different priority
number, the segment referred to is made available in its initial state for each
iteration of the PERFORM statement.

The SEGMENT-LIMIT feature is not available on all compilers. If not available, all
sections with priority numbers under SO must remain in memory continuously at object
time, since their effective priority-number would be zero (0).

3

tJP-7503.1
Rev. 1

•

•

FUNDAMENTALS OF COBOL

L A N G U A G E

9. THE COBOL

9.1. INTRODUCTION

9
SECTION: PAGE:

LIBRARY

The COBOL library contains entries available to a source program at compilation time
through the use of the COPY statement. The effect of the compilation of library entries
is the same as if the text were actually written as part of the source program.

The COBOL library may contain three types of entries as follows:

• Entries for the Environment Division consisting of equipment-oriented information.

• Entries for the Data Division consisting of information pertaining to file and data

description entries.

• Entries for the Procedure Division consisting of sequences of procedure paragraphs

and sections .

9.1.1. COPY

Format:

COPY library-name

REPLACING word-1 BY { ~a::t-~ier-1}
literal-1

[
' word-3 BY{~a::t-~ier-2}]

literal-2

Description:

The COPY statements permit the incorporation of existing library entries into the
Environment, Data, and Procedure Divisions. A library entry is a segment of COBOL
source language. By specifying the appropriate library-name within an appropriate
format, the programmer can cause an entry to be copied from the library during com­
pilation, and the result is the same as if the programmer had written the entry as

part of his source program.

In this format, word represents any of the following:

data-name
procedure-name
condition-name
mnemonic-name
file-name

1

UP-7503.1
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E
SECTION:

9
PAGE:

No other statement or clause may appear in the same entry as the COPY statement,
and the library text to be COPYed must not contain any COPY statements. The
COPYing process is terminated automatically when the end of the library text is
reached. The COBOL implementor must specify whether the COPY statement itself
or the statements of the library text to which it refers, or both, is to appear on the
output listing. When both are to be listed, the relationship between them must be
clearly indicated.

If the REPLACING option is used, each of the library words or identifiers specified
in the format are replaced by the stipulated word or identifier with which it is associ­
ated in the format. This replacement does not alter the material as it exists in the
library, and the entry may be called again in the same program with different replace­
ments. Words specified in the REPLACING option may be any COBOL word except
reserved words. The replacemeht of an identifier includes the replacement of all
associated qualifiers, subscripts, and indexes.

9.2. LIBRARY ENTRIES FOR THE ENVIRONMENT DIVISION

There are five types of entries in the library that may be associated with the Environ­
ment Division: entries for the Special-Names, Source-Computer, Object-Computer,
File-Control, and I-0-Control paragraphs.

To use an entry contained in the COBOL library, the COPY clause must follow the
appropriate paragraph-name and indicate the statement (library-name) of the entry to
be copied from the library. The formats are as follows:

For example:

SOURCE-COMPUTER. copy-statement.
OBJECT-COMPUTER. copy-statement.
SPECIAL-NAMES. copy-statement.
FI LE-CONTROL. copy-statement.
1-0-CONTROL. copy-statement.

I-0-CONTROL. COPY LIB-IOC9.

If this entry is used, the library must contain an I-0-Control paragraph with the name
LIB-IOC9.

9.3. LIBRARY ENTRIES FOR THE DATA DIVISION

Entries associated with the Data Division are of two types:

• Entries pertaining to the File Description portion of the Data Division.

• Entries pertaining to record descriptions in the Record Description or Working­
Storage portions of the Data Division.

Each File Description paragraph described in the COBOL Library must have a level
indicator associated with its first entry. This separates the information contained
within the individual File Descriptions from adjacent File Descriptions.

2

UP-7503.1
Rev. 1

•

•

FUNDAMENTALS OF COBOL

L A N G U A G E
SECTION:

9

This information may then be copied by use of the COPY option in the File Section
of the Data Division. The Record Description entry associated with the FD entries
is not copied from the library, however.

PAGE:

Data description entries differ from the File Description entries in that they are
associated with level numbers rather than level indicators. The first entry in each
set of contiguous data descriptions must carry level number 01; thus this set is

separated from adjacent sets. A COPY clause causes all entries subordinate to the
specified statement (library-name) to be copied from the library.

When copying a data description, the level number associated with the data description
in the library must be the same as the entry containing the COPY clause in the source
program.

In the File Section of the Data Division, the COPY clause takes the following formats:

FD file-name copy-statement •
.Ql_data-name copy-statement.

For example, suppose that the following FD entry exists in the library:

FD EDITED-SHIPMENTS LABEL RECORD IS ...

This entry could be called from the library by the COPY clause as follows:

FD MASTER-EDITED-SHIPMENTS COPY EDITED-SHIPMENTS.

Note that EDITED-SHIPMENTS is the statement (library-name) and MASTER-EDITED­
SHIPMENTS is the file-name given in the Data Division of the source program. The FD
entry would then be placed in the source program as follows:

FD MASTER-EDITED-SHIPMENTS LABEL RECORD IS.

Note also that the COPY clause copied only the File Description entry, not the
associated Record Description entries.

l

3

UP-7503.1
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E
SECTION:

9

The effect of the 01 data-name form of the COPY clause is to extract an entry or
series of entries from the library and insert that information into the source program
where the COPY clause appears. Thus the level- number and data-name are not re­
placed by the copied information.

For example:

01 SHIPMENTS-NOT-COSTED COPY DETAIL-SHIPMENTS.

PAGE:

In this case, the COBOL Library must contain a 01-level Record Description with the
name DETAIL-SHIPMENTS. All data description entries from that point on are inserted
into the source program in place of the COPY clause.

9.4. LIBRARY ENTRIES FOR THE PROCEDURE DIVISION

Each routine in the COBOL Library is composed of either one paragraph, identified by
a paragraph-name, or one section, identified by a section-name. For purposes of copy­
ing this routine from the library, the paragraph-name or section-name is called a
procedure-name.

4

Routines are retrieved from the library and copied into the source program through the
use of the COPY statement in the Procedure Division. Then, at compile time the
procedure- name that identifies the COPY statement replaces the library procedure-name
that identifies the library routine, and all references to the routine procedure-name as
it appears within the library routine are replaced by references to the procedure-name •
of the COPY statement. The format of a COPY clause written in the Procedure Division
is as follows:

procedure-name. copy-statement.

UP-7503.1
Rev. 1

•

FUNDAMENTALS OF COBOL

L A N G U A G E

APPENDIX A. RESERVED

Appendix A 1
SECTION: PAGE:

WORDS

The following is a lisi: of reserved words used in COBOL. These words should not be
used as names, or the results may be unpredictable.

ACCEPT DATA 1-0-CONTROL OBJECT-COMPUTER

ACCESS DATE-COMPILED IDENTIFICATION OCCURS

ACTUAL DATE-WRITTEN IF OF
ADD DE IN OFF
ADDRESS DECIMAL-POINT INDEX OMITTED
ADVANCING DECLARATIVES INDEXED ON
AFTER DEPENDING INDICATE OPEN
ALL DESCENDING INITIATE OPTIONAL
ALPHABETIC DETAIL INPUT OR
ALTER DISPLAY INPUT-OUTPUT OUTPUT
ALTERNATE DIVIDE INSTALLATION PAGE
AND DIVISION INTO PAGE-COUNTER
ARE DOWN INVALID PERFORM
AREA ELSE IS PF
AREAS END JUST PH
ASCENDING ENDING JUSTIFIED PIC
ASSIGN ENTER KEY PICTURE
AT ENVIRONMENT KEYS PLUS
AUTHOR EQUAL LABEL POSITION
BEFORE ERROR LAST POSITIVE
BEGINNING EVERY LEADING PROCEDURE
BLANK EXAMINE LEFT PROCEED
BLOCK EXIT LESS PROCESS
BY FD LIMIT PROCESSING
CF FILE LIMITS PROGRAM-ID
CH FILE-CONTROL LINE QUOTE
CHARACTERS FILE-LIMIT LINE-COUNTER QUOTES
CLOCK-UN ITS FILE-LIMITS LINES RANDOM
CLOSE FILLER LOCK RD
COBOL FINAL LOW-VALUE READ
CODE FIRST LOW-VALUES RECORD
COLUMN FOOTING MEMORY RECORDS
COMMA FOR MODE REDEFINES
COMP FROM MODULES REEL
COMPUTATIONAL GENERATE MOVE RELEASE
COMPUTE GIVING MULTIPLE REMARKS
CONFIGURATION GO MULTIPLY RENAMES
CONTAINS GREATER NEGATIVE REPLACING
CONTROL GROUP NEXT REPORT
CONTROLS HEADING NO REPORTING
COPY HIGH-VALUE NOT REP-ORTS
CORR HIGH-VALUES NOTE RERUN
CORRESPONDING HOLD NUMBER RESERVE
CURRENCY 1-0 NUMERIC RESET

UP-7503.1
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E

RETURN
REVERSED
REWIND
RF
RH
RIGHT
ROUNDED
RUN
SA
SAME
SD
SEARCH
SECTION
SECURITY
SEEK
SEGMENT-LIMIT

SELECT
SENTENCE
SEQUENTIAL
SET
SIGN
SIZE
SORT
SOURCE
SOURCE-COMPUTER
SPACE
SPACES
SPECIAL-NAMES
STANDARD
STATUS
STOP
SUBTRACT

SUM
SYNC
SYNCHRONIZED
TALLY
TALLYING
TAPE
TERMINATE
THAN
THROUGH} equivalent
THRU
TIMES
TO
TYPE
UNIT
UNTIL
UP

Appendix A 2
SECTION: PAGE:

UPON
USAGE
USE
USING
VALUE
VALUES
VARYING
WHEN
WITH
WORDS
WORK ING-STORAGE
WRITE
ZERO
ZEROES
Zt:ROS

•

-YP-7-5e-3.l
Rev. 1

•

Ft1NtlAMcNfALS OF COBOL

L A N G U A G E
Appendix B

SECTION: PAGE:

APPENDIX B. SUMMARY OF
COBOL FORMATS

This appendix provides an alphabetical listing of the formats for the various statements
and clauses available in the COBOL language. The list is in four parts, thus reflecting
the four divisions of the COBOL source program. It is intended as a compact reference
source to aid the programmer in observing specific rules of formatting. Since the COPY
statement can appear in more than one division, see Section 9 for the COPY statement

formats .

Bl. IDENTIFICATION DIVISION.

Bl.1. AUTHOR

[AUTHOR. [comment-entry) . ..)

Bl.2. DATE-COMPILED

[DATE-COMPILED. [comment-entry) . ..)

Bl.3. DATE-WRITTEN

[DATE-WRITTEN. [comment-entry) . . .)

Bl.4. INSTALLATION

[INSTALLATION. [comment-entry) • ..)

Bl.S. PROGRAM-ID

PROGRAM-ID. program-name.

Bl.6. REMARKS

[REMARKS. [comment-entry) • . .)

Bl.7. SECURITY

[SECURITY. [comment-entry). . .)

1

UP-7503.1
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E

B2. ENVIRONMENT DIVISION.

B2.1. FILE-CONTROL

Appendix B

SECTION: PAGE:

FILE-CONTROL. {SELECT [OPTIONAL] We-name

ASSIGN TO [integer-1] implementor-name-1 [,implementor-name-2] ...

[FOR MULTIPLE REEL] [.RESERVE {~~ege'-2 } AL TERNA TE [{ ~~~~S}] J l ·.
B2.2. I-0-CONTROL

1-0-CONTROL.

.-- -
RERUN [oN {~ile-name-1 }]

implementor-name

~
, { END OF REEL } . ~ •.•

. _1 RECORDS OF hle-name-2
EVERY integer

integer-2 CLOCK-UNITS
condition-name

L-- /-

[; SAME [RECORD] AREA FOR file-name-3 {,file-name-41 • .•] .••

[;MULTIPLE FILE TAPE CONTAINS file-name-5 [POSITION integer-3]

[,file-name-6 [POSITION integer-4]] . .•] ..•

B2.3. OBJECT-COMPUTER

OBJECT-COMPUTER. computer-name

[{
WORDS }] MEMORY SIZE integer CHARACTERS
MODULES

B2.4. SOURCE-COMPUTER

SOURCE-COMPUTER. computer-name.

B2.S. SPECIAL-NAMES

SPECIAL-NAMES.

[t
lS mnemonic-name-1 [,ON STATUS IS condition-name-1

. 1 ~ mnemonic-name-2 [, 0 FF ST A TUSlS condition-name-3
imp ementor-name ON STATUS IS a· . 5 _ _con 1t1on-name-

O FF STATUS~ condition-name-7

[,OFF STATUS IS condition-name-2]]1]
[, ON ST A TUS IS condition-name-4]] •..
[, 0 FF ST A TUS IS condition-name-6]
[, ON ST A TUS IS condition-name-8]
[,CURRENCY SiGN IS literal][, DECIMAL-POINT IS COMMA]. - -

2

.-- -

UP-7503.l
Rev. 1

•

Appendix B FUNDAMENTALS OF COBOL

L A N G U A G E SECTION: PAGE:

B3. DATA DIVISION.

B3.1. BLANK

[;BLANK WHEN ZERO]

B3.2. BLOCK CONTAINS

[; BLOCK CONTAINS [integer-1 TO] integer-21 ~~~~~g~E RS f J
B3.3. DATA RECORDS

[.DATA~ RECORDS ARE(data-name-1 [, data-name-2] ... J
I -- I RECORD IS \

B3.4. JUSTIFIED

[.~JUSTIFIED (RIGHT]
I I JUST \

B3.5. LABEL RECORDS

l ! {STANDARD }
· LABEL RECORDS ARE OMITTED
I RECORD IS

data-name-1 [, data-name-2] ...

B3.6. LEVEL NUMBER

I I b ~ data-name (
eve -num er (FILLER ~

B3.7. PICTURE

[l PICTURE { . J ; PIC ~IS character-string

B3.8. RECORD CONTAINS

[;RECORD CONTAINS (;ntege,-1 TO] fotege<-2 CHARACTERS J
B3.9. REDEFINES

lev.el-number data-name-1 ; REDE FINES data-name-2

B3.10. RENAMES

66 data-name-1; RENAMES data-name-2 [TH RU data-name-3]

B3.11. SYNCHRONIZED

[.~SYNCHRONIZED{~ LEFT t]
'(SYNC \/RIGHT\

3

UP-7503.1
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E Appendix B
SECTION:

83.12. USAGE

[{

COMPUTATIONAL }]
; USAGE IS COMP

DISPLAY

83.13. VALUE IS

' l ~ !t~~Sl~RE ~ literal-1 [THRU literal-21[, literal-3 [TH RU literal-4]] . ..

83.14. VALUE OF

[
; VALUE OF data-name-1 IS id~ta-name-2 (

11teral-l ~

[
, data-name-3 IS j d~ta-name-4 (J ... J l litera 1-2 ~

84. PROCEDURE DIVISION.

84.1. ACCEPT

ACCEPT identifier [FROM mnemonic-name]

84.2. ADD

Option 1:

ADD l :1t:~:i1~~er-1 I [, l ~1t:::i/!;r-21 J ...
TO identifier-m [ROUNDED][, identifier-n [ROUNDED]]

[; ON SIZE ERROR imperative-statement]

Option 2:

ADD I i~entifier-11, l i~entifier-2 l
-- literal-1 literal-2 ~

GIVING identifier-m [ROUNDED]

[' l i~entifier-3 l J ...
liter a 1-3 ~

[; ON SIZE ERROR imperative-statement]

Option 3:

ADD 1 ~g~~ESPONDING ~identifier-I TO identifier-2 [ROUNDED]

[; ON SIZE ERROR imperative-statement]

4
PAGE:

UP-7503.1
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E

B4.3. ALTER

Appendix B
SECTION:

ALTER procedure-name-1 TO [PROCEED TO] procedure-name-2

[procedure-name-3 TO [PROCEED TO] procedure-name-4] . ..

B4.4. CLOSE

CLOSE file-name-1 [REEL] [WITH

[, We-name-2 [REEL] [WITH

~ NO REWIND, { J
I LOCK ~

l NO REWIND { J]
LOCK \ ...

B4.5. COMPUTE

{

identifier-2 }
COMPUTE identifier-1 [ROUNDED]~ lit~ral . .

arzthmet1c-express1on

[;ON SIZE ERROR imperative-statement]

B4.6. DISPLAY

DISPLAY l ~~=~::;/er-l ! [, l !~:~;:;~r-2 I J · • •
[UPON mnemonic-name]

5
PAGE:

UP-7503.1
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E

B4.7. DIVIDE

Option 1:

DIVIDE l il~entiflier-l l INTO identifier-2 [ROUNDED]
ztera \ --

[; ON SIZE ERROR imperative-statement]

Option 2:

Appendix B
SECTION:

DIVIDE l i~entifier-l ! INTO l i~entifier-2 ! GIVING identifier-3 [ROUNDED]
lzteral-1 -- lzteral-2

/

[;ON SIZE ERROR imperative-statement]

Option 3:

DIV IDE l i~entifier-1
lzteral-1

l BY J 11·~entilfz2"er-2 l GIVING identifier-3 [ROUNDED]
\ - ztera - \

[; ON SIZE ERROR imperative-statement]

Option 4:

DIVIDE j i~entifier-1 l INTO l i~entifier-2 l GIVING identifier-3 l lzteral-1 \ -- lzteral-2 \

[ROUNDED] REMAINDER identifier-4

[; ON SIZE ERROR imperative-statement]

Option 5:

DIVIDE l i~entifier-l l BY l i~entifier-2 l GIVING identifier-3
lzteral-1 \ - lzteral-2 \

[ROUNDED] REMAINDER identifier-4

[;ON SIZE ERROR imperative-statement]

6
PAGE:

UP-7503.1
Rev. 1

•

FUNDAMENTALS OF COBOL

L A N G U A G E

B4.8. ENTER

ENTER language-name [routine-name].

B4.9. EXAMINE

Option 1:

Appendix B
SECTION: PAGE:

EXAMINE identifierTALLYING LEADING literal-1 [REPLACING BY literal-2]
{

ALL ~
UNTIL FIRS

Option 2:

{

ALL }
EXAMINE identifier REPLACING LEADING

[UNTIL] FIRST
literal-1 BY literal-2

B4.10. EXIT

EXIT.

B4.ll. GO TO

Option 1:

GO TO [procedure-name]

Option 2:

GO TO procedure-name-1 [, procedure-name-2] ..• , procedure-name-n

DEPENDING ON identifier

B4.12. MOVE

Option 1:

MOVE~ i~entifier-1 (TO~ identifier-2 l ... --1 literal \ l \
Option 2:

MOVE l CORRESPONDING l .d .f. TO . .f.
-- CORR ~ I ent1 ier-1 _1dent1 ier-2

7

UP-7503.1
Rev. 1

FUN DAM ENT ALS OF COBOL

L A N G U A G E

B4.13. MULTIPLY

Option 1:

Appendix B
SECTION:

MULTIPLY J 11·~entilfier-l l BY identifier-2 [ROUNDED]
1tera f -

[; ON SIZE ERROR imperative-statement]

Option 2:

MULTI PL y l identifier-1 l By l identifier-2 (
literal-1 f - literal-2 f

GIVING identifier-3 [ROUNDED]

[;ON SIZE ERROR imperative-statement]

B4.14. NOTE

NOTE character-string.

B4.15. OPEN

OPEN [INPUT l We-name [:~/HE~EgE"wiND] i · · J
[OUTPUT lfile-name [WITH NO REWIND] (.•. J

B4.16. PERFORM

Option 1:

PERFORM procedure-name-1 [TH RU procedure-name-2]

Option 2:

PE RF ORM procedure-name-1 [THRU procedure-name-2] l ~dentifier (TIMES
integer f

Option 3:

PERFORM procedure-name-1 [TH RU procedure-name-2] UNTIL condition

Option 4:

PER FORM procedure-name-1 [TH RU procedure-name-2]

VARYING identifier-1 FROM j ~ditera.lf-!
2
l -- l 1 ent1 1er- f

BY j literal-2 l UNTIL condition - l identifier-3 ~

B4.17. READ

READ file-name RECORD [INTO identifier]

; AT END imperative-statement

8
PAGE:

UP-7503.1
Rev. 1

/

•

FUNDAMENTALS OF COBOL

L A N G U A G E

B4.18. STOP

STOP) literal (
-- RUN \

B4.19. SUBTRACT

Option I:

l 1dent1her-I \ ' l zdentzfzer-2 \

Appendix B
SECTION:

SUBTRACT j ~itera.1-! ([j ~itera_I-? (] •..

FROM identifier-m [ROUND ED](, identifier-n [ROUN OED]] ...

[;ON SIZE ERROR imperative-statement]

Option 2:

SUBTRACT l !~~:;/1j~,-l I [• l !~::;;~:,_2 i] · · · FROM l !~~:;;~j~,-m i
GIVING identifier-n [ROUNDED]

[;ON SIZE ERROR imperative-statement]

Option 3:

SUBTRACT l ~i~~ESPONDING i identifier-I FROM identifier-2 [ROUNDED]

[; ON SIZE ERROR imperative-statement]

B4.20. WRITE

WRITE record-name [FROM identifier-I]

[l BEFORE I {identifier-2 LINES}]
AFTER ADVANCING integer ~INES

mnemonic-name

9
PAGE:

UP-7503.1
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E Appendix C
SECTION: PAGE:

APPENDIX C. SAMPLE PROBLEM

The sample inventory update problem introduced in Section 2 and developed throughout
the manual is shown in this section in its entirety.

000100
000200
000.300
000350
000400
000450
000500
000600
000700
000800
000900
001000
001100
001200
001300
001400
001500
001600
001700
001800
001850
002100
002200
002300
002400
002600
002610
002640
002650
003000
003100
003200
003210
003250
003300
003400
00.3500
00.3600
00.3700
o0.3900
004000
004100
()04.300
004400
004500
004700
004800

IDENTIFICATION OIVISION•
PROGRAM-IO. MASTER-INVENTORY-UPDATE.
AUTHOR. AB. C. DEFGHI.
INSTALLATION. OSHKOSH.
DATE-WRITTEN• JUNE 7 1966.
DATE-COMPILED. JUNE 23 1966.
SECURITY. CLASS B COMPANY CONFIDENTIAL.
RE~ARKS. MASTER INVENTORY ON TAPE IS RUN AGAINST DETAIL

TRANSACTIONS FOR UPDATING TO CREATE A NEW MASTER
INVENTORY FILE. NEW STOCK ITEMS MAY BE ADDED BY
ZERO-TYPE DETAIL TRANSACTIONS,
STOCK ITEMS ON WHICH THE QUANTITY ON HAND HAS
FALLEN BELOW REORDER LEVEL WILL BE LISTED WITH
PURCHASING INFORMATION ON THE PRINTER, AS WILL
BE ALL NEW STOCK ITEMS.

ENVIRONMENT DIVISION•
CONFIGURATION SECTION.
SOURCE-COMPUTER. MARK-J,
OGJECT-COMPUTER. MARK-I.

MEMORY SIZE 20000 WORDS.
SPECIAL-NAMES, NEW-PAGE IS TOP-OF-NEXT-PAGE.
INPUT-OUTPUT SECTION,
FILE-CONTROL.

SELECT OLD-MASTER-INVENTORY ASSIGN TO MAGNETIC-TAPE-UNIT•
SELECT NEW-MASTER-INVENTORY ASSIGN TO MAGNETIC-TAPE-UNIT.
SELECT DETAIL-TRANSACTION-CARDS ASSIGN TO CARD-READER,
SELECT REORDER-LIST ASSIGN TO PRINTER.

I-O-CONTROL.
RERUN EVERY END OF REEL OF NEW-MASTER-INVENTORY.
DATA DIVISION,
FILE SECTION•
FD OLD-MASTER-INVtNTORY

LABEL RECORD IS STANDARD
VALUE OF ID IS 'MSTINVP'
BLOCK CONTAINS 50 RECORDS
DATA RECORD IS MASTER-RECORD•

01 MASTER-RECORD·
03 SEG-STOCK-NUMBER PICTURE IS X<6>.
03 NUMBER-MANUFACTURER PICTURE IS 9(3),
03 MFR-CATALOG-NU~BER PICTURE IS X(lO).
03 DESCRIPTION PICTURE IS XC30),
03 ON-HANO-UNITS PICTURE IS 9(4) USAGE IS CO~PUTAT!ONAL•
03 COST-PER-UNIT PICTURE IS 9(4)V99.
03 TOTAL-WHOLESALE-VALUE PICTURE IS 9(8)V99.
03 MIN-STOCK-UNIT-QUANTITY PICTURE IS 9(4>.

FD DETAIL-TRANSACTION-CARDS DATA RECORD IS TRANSACTIO~S
LABEL RECOROS OMITTED.

1

UP-7503.1
Rev. 1

005000
005100
005110
005120
005200
005300
005500
005600
006010
006100
006110
006120
006130
006140
006150
006160
006170
006180
006190
006200
006210
006220
006230
006500
006600
006700
006750
006800
006900
001000
007100
007250
007300
007350
007400
007450
007500
007550
007575
007600
007700
007800
007900
008000
008100
008200
008300
008400
008500
008610

FUNDAMENTALS OF COBOL

L A N G U A G E

01 TRANSACTIONS.
05 STOCK-CONTROL-NUMBER PICTURE IS XC6),
05 NO-TRANSACTOR PICTURE IS 999.
05 ORDER-NUMBER PICTURE IS xc10>.
05 DTL-DESCRIPTION PICTURE IS XC30).

Appendix C
SECTION: PAGE:

05 TYPE-TRANSACTION PICTURE IS 9 USAGE IS CO~PUTATIONAL·
05 QUANTITY PICTURE IS 9(4).
05 UNIT-COST PICTURE IS 9(4)V99.
O~ FILLER PICTURE IS X(20),

FD NEW-MASTER-INVENTORY
LABEL RECORD IS STANDARD
BLOCK CONTAINS 50 RECORDS
VALUE OF ID IS 'MSTINVP'
DATA RECORD rs MASTER-RECORD·

01 MASTER-RECORD.
04 SEQ-STOCK-NUMBER PICTURE XC6).
04 NUMBER-MANUFACTURER PICTURE IS 9(3),
04 MFR-CATALOG-NUMBER PICTURE IS X(lQ),
04 DESCRIPTION PICTURE IS XC3o>.
04 ON-HAND-UNITS PICTURE IS 9(4) USAGE IS COMPUTATIONAL•
04 COST-PER-UNIT PICTURE IS 9(4)V99.
04 TOTAL-WHOLESALE-VALUE PICTURE 9(8)V99.
04 MIN-STOCK-UNIT-QUANTITY PICTURE 15 9(4),

FD REORDER-LIST LABEL RECORD IS OMITTED
DATA RECORD IS REPLENISH-STOCK-ITEM.

01 REPLENISH-STOCK-ITEM.
08 FILLER PICTURE IS X(5).
08 STK-NUMBER-PRINT PICTURE IS X(6).
08 FILLER PICTURE IS XC5>.
08 NO-MFR PICTURE IS 9(3},
08 FILLER PICTURE IS X(7).
08 FLAG-NEW-STOCK PICTURE IS A•
08 FILLER PICTURE IS X(7).
08 MFR-OROER•NUMBER PICTURE IS X<lO>.
08 FILLER PICTURE IS X<7>.
08 ITEM-DESCRIPTION PICTURE IS X(30).
08 FILLER PICTURE IS x<s>.
08 UNITS-ON-HAND PICTURE IS zzz9.
08 FILLER PICTURE IS X{5),
08 EMERGENCY-REORDER-FLAG PICTURE IS X(3).
08 FILLER PICTURE IS X(5),
08 MIN-UNITS PICTURE IS zzz9.
08 FILLER PICTURE IS x<s>.
08 UNIT-COST PICTURE IS $$$$Z.99.
08 FILLER PICTURE IS xc12>.

WORKING-STORAGE SECTION•
77 DIVIDEND PICTURE IS 9(6) VALUE IS ZERO.
77 PERCENTAGE PICTURE IS 9999 VALUE IS 0000.
77 SWITCH PICTURE IS 9 VALUE IS ZERO USAGE IS COMPUTATIONAL.
17 LINE-NO VALUE IS O PICTURE IS 99.

2

UP-7503.1
Rev. 1

•
FUNDAMENTALS OF COBOL

L A N G U A G E

1-REPLENISH-REPORT-HEAOING.
10 FILLER PICTURE IS X<116) VALUE SPACES.
10 PAGE.
15 PAGEKON VALUE IS 'PAGE• PICTURE IS x<s>.
15 PAGE-NO PICTURE IS 999 VALUE ZERO.
15 FILLER PICTURE IS x<a> VALUE SPACES.

Appendix C
SECTION: PAGE:

2-REPLENISH-REPORT-HEADING.
02 ONE-THRU-SIXTY-ONE PICTURE X(61) VALUE IS '

ITE' •
STOCK

' 'MFR NEW CATALOG
02 SIXTY-TWO-THRU-132 PICTURE XC71) VALUE JS 'M - UNIT
' UNITS EMERG MIN UNIT
3-REPLENISH-REPORT-HEAOING.

' .

008700 01
008800
008900
009100
009110
009150
009300 01
009350
009400-
009450
009500-
Q09700 01
009750
009800-
009900
010000
010200
010300
010400
010500
010700
010800
010900
020000
020100
020200
020300
020800
020900
030000
030100
030200
030300
030400
030500
030900
040000
040100
040200-
040300
040400
040600
040700
040800
050300
050400
050500
050600
050700
050800
050900
060000

02 ONE-THRU-71 PICTURE X(71) VALUE IS ' NUMBER NUMBER

•

STOCK NUMBER DESCRIPTION•.
02 SEVENTY-ONE-THRU-132 PICTURE XC61> VALUE
' ON HANO REORD UNITS COST'•

PROCEDURE DIVISION.
INITIALIZE.

OPEN INPUT OLD-MASTER-INVENTORY• DETAIL-TRANSACTION-CARDS.
OPEN OUTPUT NEW-MASTER-INVENTORY• REORDER-LIST.
PERFORM HEAUER-PRINT.

GET-NEXT-TRANSACTION•
READ DETAIL-TRANSACTION-CARDS AT END GO TO SET-UP-END-RUN •

READ-INVENTORY-RECORD.
IF SWITCH IS EQUAL TO 1 GO TO RESET-SWITCH.
READ OLD-MASTER-INVENTORY INTO MASTER-RECORD OF
NEW-MASTER-INVENTORY AT END Go TO CLOSE•FILES.

RESET-SWITCH•
MOVE ZERO TO SWITCH•

CHECK-STOCK-NUMBER.
IF STOCK-COt~TROL-NUMBER GREATER THAN SEQ-STOCK-NUM9ER
OF NEW-MASTER-INVENTORY GO TO FINISH-MASTER.
MOVE 1 TO SWITCH•
IF STOCK-CONTROL-~UMBER IS EQUAL SEQ-STOCK-NUMBER
OF NEW-MASTER-INVENTORY GO TO UPDATE.
IF TYPE-TRANSACTION IS EQUAL TO ZERO GO TO NEW-STOCK-ITEM.

ERROR-MESSAGE.
DISPLAY STOCK-CONTROL-NUMBER ' NOT IN FILE, TRANSACTION
• TYPE IS ' TYPE-TRANSACTION•
GO TO GET-NEXT-TRANSACTION.

UPDATE.
IF TYPE-TRANSACTION IS EQUAL TO 1 OR 2 GO TO SHIPMENT.
IF TYPE-TRANSACTION IS EQUAL TO 3 OR 4 GO TO RECEIPT.
GO TO ERROR-MESSAGE•

SHIPMENT.
SUBTRACT QUANTITY FROM ON-HAND-UNITS
IN NEW-MASTER-INVENTORY.
GO TO GET-NEXT-TRANSACTION.

RECEIPT.
ADD QUANTITY TO ON-HAND-UNITS IN
NEW-MASTER-INVENTORY.
GO TO GET-NEXT-TRANSACTION.

3

UP-7503.1
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E

060100 FINISH-MASTER.

Appendix C
SECTION: PAGE:

060200 MULTIPLY ON-HAND-UNITS OF NEW-MASTER-INVENTORY BY COST-PER-UN
060300- IT OF NEW-MASTER-INVENTORY GIVING TOTAL-WHOLESALE-VALUE OF
060400 NEW-MASTER-INVENTORY ON SIZE ERROR DISPLAY 'OVERFLOW ON TOTAL
060410- ' WHOLESALE VALUE'•
060420 DISPLAY SEQ-STOCK-NUMBER OF MASTER-RECORD IN
060430 N~W-MASTER-INVENTORY.
060500 IF FLAG-NEW-STOCK IS EQUAL TO 'N' MOVE 1 TO SWITCH.
060600 IF MIN-STOCK-UNIT-QUANTITY OF NEW-MASTER-INVENTORY IS GREATER
060700 THAN ON-HAND-UNITS IN NEW-MASTER-INVENTORY OR FLAG-NEW-STOCK
060800 IS EQUAL TO 'N' PERFORM REORDER-STOCK.
070100 PlRFORM WRITE-NEW-INVENTORY.
070200 ~OVE MASTER-RECORD OF OLD-MASTER-INVENTORY TO MASTER-RECORD
070210 OF NEW-MASTER-INVENTORY.
070300 GO TO READ-INVENTORY-RECORD·
070400 WRITE-NEW-INVENTORY.
070500 WRITE MASTER-RECORD OF NEW-MASTER-INVENTORY.
070700 REORDER-STOCK.
080000 MULTIPLY ON-HANO-UNITS OF NEW-MASTER-INVENTORY BY 100
080050 GIVING DIVIDEND ON SIZE ERROR DISPLAY
080060 'OVERFLOW ON MULTIPLICATION'•
080070 DISPLAY SEQ-STOCK-NUMBER OF MASTER-RECORD IN
080080 NEW-MASTER-INVENTORY.
080100 DIVIDE MIN-STOCK-UNIT-QUANTITY OF NEW-MASTER-INVENTORY INTO
080200 DIVIDEND GIVING PERCENTAGE ROUNDED.
080300 IF PERCENTAGE IS LESS THAN 60 MOVE 'EEE' TO
080400 E~ERGENCY-REOROER-FLAG·
080500 MOVE SEQ-STOCK-NUMBER OF NEW-MASTER-INVENTORY TO
080600 STK-NUMBER•PRINT•
080700 MOVE NUMBER-MANUFACTURER OF NEW-MASTER-INVENTORY TO NO-MFR.
080900 MOVE MFR-CATALOG-NUMBER OF NEW-MASTER-INVENTORY TO
090000 MFR-ORDER-NUMBER OF REORDER-LIST.
090100 MOVE DESCRIPTION IN NEW-MASTER-INVENTORY To ITEM-DESCRIPTION•
090200 MOVE ON-•iANO-UNITs IN NEW-MASTER-INVENTORY TO UNITS-ON-HANO.
090400 MOVE MIN-STOCK-UNIT-QUANTITY OF NEW-MASTER-INVENTORY TO
090500 MIN-UNITS.
090600 MOVE COST-PER-UNIT IN NEW-MASTER-INVENTORY TO UNIT-COST
090610 OF REORDER-LIST.
090700 WRITE REPLENISH-STOCK-ITEM BEFORE ADVANCING 3 LINES.
090800 ADD 1 TO LINE-NO•
090810 MOVE SPACES TO REPLENISH-STOCK-ITEM.
090900 IF LINE-NO IS GREATER THAN 17 PERFORM HEADER-PRINT.
100100 NEW-STOCK-ITEM.
100500 MOVE SPACES TO MASTER-RECORD OF NEW-MASTER-INVENTORY.
100600 MOVE STOCK-CONTROL-NUMBER TO SEQ-STOCK-NUMBER IN
100700 NEW-MASTER-INVENTORY.
100800 MOVE NO-TRANSACTOR TO NUMBER-MANUFACTURER IN
100900 NEW-MASTER-INVENTORY.
200200 MOVE ORDER-NUMBER TO MFR-CATALOG-NUMBER IN
200300 NEW-MASTER-INVENTORY.

4

UP-7503.1
Rev. 1

•

200400
200600
200100
200800
200900
300000
300010
300100
300200
300300
306400
300500
300510
300600
300610
300620
300630
300700
.300900
400000
400100
400200
400300
400690
400700

FUNDAMENTALS OF COBOL

L A N G U A G E Appendix C 5
SECTION: PAGE:

MOVE DTL-OESCRIPTION TO DESCRIPTION IN NEW-MASTER-INVENTORY.
MOVE ZEROS TO ON-HAND-UNITS OF NEW-MASTER-INVENTORY•
TOTAL-WHOLESALE-VALUE IN NEW-MASTER-INVENTORY.
MOVE UNIT-CoST OF TRANSACTIONS TO COST-PER-UNIT IN
NEW-MASTER-INVENTORY.
MOVE QUANTITY TO MIN-STOCK-UNIT-QUANTITY IN
NEW-MASTER-INVENTORY.
MOVE 'N' TO FLAG-NEW-STOCK.
GO TO GET-NEXT-TRANSACTION.

HEAOEH-PRINT.
ADD 1 TO PAGE-NO•
WRITE REPLENISH-STOCK-ITEM FROM 1-REPLENISH-REPORT-HEAOING
AFTER ADVANCING NEW-PAGE LINES.
WRITE REPLENISH-STOCK-ITEM FROM 2-REPLENISH-REPORT-HEAOING.
W~ITE_REPLENISH-STOCK-ITEM FROM 3-REPLENISH-REPORT-HEAOING.
MOVE SPACES TO REPLENISH-STOCK-ITEM.
WfUTE REPLENISH-STOCK-ITEM.
MOVE ZEROS TO LINE-NO •

SET-UP-END-RUN•
MOVE '••••••' TO STOCK-CONTROL-NUMBER.
GO TO READ-INVENTORY-RECORD•

CLOSE-FILES.
CLOSE OLD-MASTER-INVENTORY• DETAIL-TRANSACTION-CARDS.
CLOSE NEW-MASTER-INVENTORY• REORDER-LIST.
STOP RUN•

UP-7503.1
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E

Term Reference Page

A
ACCEPT,

categorization of 4.7. 4-13
description of 4.7 .1.5. 4-22
format of 4.7.1.5. 4-22
general function 4.7 .1. 4-14

Actual Decimal Point See Decimal Point,
Actual

ADD,
categorization of 4.7. 4-13
description of 4.7.2.1. 4-26
format of 4.7.2.L 4-26
in arithmetic expression 4.7.2.L 4-26

ADVANCING, with WRITE verb 4.7.1.3. 4-18

AFTER, with WRITE verb 4.7.1.3. 4-18

ALL,
in figurative constant 3.3.2.1. 3-6
with EXAMINE verb 4J.3.2. 4-37

Allocation 1.5. 1-7 • ALPHABETIC,
in data-class conditions 4.2.2.4. 4-8
in PICTURE editing 3.6.4.3. 3-27

ALPHANUMERIC, in PICTURE
editing 3.6.4.3. 3-27

ALTER,
categorization of 4.7. 4-13
description of 4.7.4.2. 4-41
effect on GO TO verb 4.7.4.1. 4-39
format of 4.7 .4.2. 4-41

ALTERNATE AREA(S) 5.4.1. 5-7

Alternative Names, with RENAMES
clause 3.6.4.9. 3-42

AND, in compound conditions 4.2.2.5. 4-8

Apostrophe, function of 3.2. 3-2

ARE,
in DATA RECORDS clause 3.5.3.4. 3-16
in LABEL clause 3.5.3.3. 3-15

•

Index 1
SECTION: PAGE:

INDEX
Term Reference Page

AREA(S) 5.4.1. 5-7

Area, Conditional-Item See Conditional-Item
Area

Area, Single-Item,
description of 3.7. 3-47
discussion of 3.7.2. 3-48
in working storage 3.7 .1. 3-48

Arithmetic Expression See Expression,
Arithmetic

Arithmetic Operator See Operator,
Arithmetic

Assembly 1.5. 1-7

ASSIGN 5.4.1. 5-7

Assumed Character Position,
in PICTURE editing 3.6.4.3. 3-27

Assumed Decimal Point See Decimal Point,
Assumed

Asterisk, in PICTURE editing 3.6.4.3. 3-30

AT END, with READ verb 4.7.L2. 4-16

AUTHOR,
in Identification Division 6.2. 6-1
specification 7 .3.2.1. 7-3

B
BEFORE, with WRITE verb 4.7.1.3. 4-18

BLANK,
in BLANK WHEN ZERO clause 3.6.4.7. 3-40
in data description 3.6.2. 3-20

BLOCK, in BLOCK CONTAINS
clause 3.5.3.1. 3-13

BLOCK CONTAINS,
in BLOCK CONTAINS clause 3.5.3.1. 3-13
in file description 3.5.L 3-11
in File Description Complete

Entry 3.5.2. 3-12

Braces 2.8. 2-10

Brackets 2.8. 2-10

UP-7503.1
__ Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E

Term

BY,
with EXAMINE verb
with REPLACING verb
with MULTIPLY verb
with PERFORM verb

Bypass, in performed routine

c
CHARACTERS,

in file description

Reference

4.7.3.2.
9.1.1.
4.7.2.3.
4.7 .4.3.

4.7.4.3.

3.5.1.
3.5.2.

Page

4-37
9-1
4-30
4-42 to
4-46

4-43

in OBJECT-COMPUTER 5.3.2.

3-11
3-12
5-3
3-14 in RECORD CONTAINS clause 3.5.3.2.

Character, Alphabetic

Character, Alphanumeric

Character, Editing

Character, Insertion

Character, Numeric

Character, Replacement,
in PICTURE editing

Character Set, COBOL,
definition of
use in data-names

Character String,
in PICTURE clause

Character, Zero Suppression,
in PICTURE editing

CLASS,
effect on EXAMINE verb
general description
specified in PICTURE clause

CLOSE,
categorization of
description of
format of
general function
relationship to READ verb

CLOSE REEL

See Alphabetic
Character

See ALPHANUMERIC

3.6.4.3.

3.6.4.3.

See NUMERIC

3.6.4.3.

3.2.
3.3.1.1.

3.6.1.

3.6.4.3.

4.7.3.2.
2.2.
3.6.4.3.

4.7.

4.7.1.4.
4.7.1.4.
4.7 .1.
4.7.1.2.

4.7.1.4.

3-27

3-27

3-27 to
3-34

3-2
3-3

3-19

3-31 to
3-33

4-37
2-1
3-27

4-13
4-20
4-20
4-14
4-17

4-20

Term

COBOL Library,
with COPY clause
definition of

COBOL Object Program

COBOL Processor

COBOL Programming Form,
description of
instructions for use
procedure format in

COBOL Record Form

COBOL Reference Format

COBOL Source Program

COBOL Word

Collating Sequence

COMMA,
in PICTURE editing

Compilation Time,
effect of library entries

Compi ler·Di recting Verbs

Compound Express ions

Compound Conditional
Expressions

Compound Names,
i II us tr a ti on of

COMPUTATIONAL,
effect on MOVE verb
in record description
in record description entry
in USAGE clause

Index 2

SECTION: PAGE:

Reference Page

9.2. 9-2
9.1. 9-1
See Object Program,

COBOL

See Processor,
COBOL

2.7.
7.2.
4.4.

2-7
7-1
4-12

See Record Form,
COBOL

See Reference Format,

See Source Program,
COBOL

See Word, COBOL

See Sequence,
Collating

3.6.4.3.

9.1.

4.7.5.

3-32

9-1

4-45

See Expression,
Compound

See Expression,
Compound
Conditional

3.3.1.1. 3-3

4.7.3.1. 4-35
3.6.1. 3-19
3.6.2. 3-20
3.6.4.2. 3-26

UP-7503.1
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E

Term Reference Page

Data Class Condition,
definition of 4,2.2.4. 4-8

Data Class Test,
definition of 4.2.2.4. 4-8

Data Description Entry 9.3. 9-3

DATA DIVISION,
coding rules 7 .3.1.3. 7-2

7.3.2.3. 7-4
definition of 3.1. 3-1
organization and structure 3.4. 3-9
use of COPY verb 9.1. 9-1

Data-Name,
definition of 3.3.1.1. 3-3
of single-item areas 3.7.2. 3-48

DATA RECORDS,
clause 3.5.2, 3-12
description of 3.5,3.4, 3-16
format of 3.5.3.4. 3-16
in file description 3.5.1. 3-11

DATE-COMPILED,
format rules 7,3.2. 7-3
in Identification Division 6.2. 6-1

DATE-WRITTEN,
format rules 7.3,2,L 7-3
in Identification Division 6.2. 6-1

Decimal Point,
in arithmetic operations 4.7.2. 4-24
in editing 3,6.4,3. 3-33
in I itera Is 3.3,1.3. 3-5
in MOVE operation 4.7,3.L 4-35

Decimal Point, Actual,
in MOVE operation 4,7 .3.1. 4-37

Decimal Point, Assumed,
in editing 3.6,4.3. 3-29
in MOVE operation 4.7.3.L 4-37

Decimal Point, Implied,
in arithmetic operation 4,7 .2. 4-24
in comparisons 4.2.2.2. 4-4
in MOVE operations 4.7.3.1. 4-35

Decode 1.5. 1-7

Defau It 2.8. 2-10

Index 4

SECTION: PAGE:

Term Reference Page

DE PENDING ON,
in GO TO form at 4.7.4,1. 4-39

Description, FD See FD

Description, Group,
in record organization 3.6.3. 3-21

DISPLAY,
categorization of 4.7. 4-13
description of 4.7.1.6. 4-23
format of 4J.L6, 4-23
general function of 4.7 .1. 4-14
in record description 3.6.1. 3-19
in record description entry 3.6.2. 3-20
in USAGE clause 3.6.4.2. 3-26

DIVIDE,
arithmetic verb 4.7.2. 4-24
categorization of 4.7. 4-13
description of 4.7,2.4. 4-31
format of 4. 7 .2,4. 4-31

DIVISION 7.3.2.3. 7-4

Division-Name, coding rules 7.3,1.3. 7-2
7.3.2. 7-3

E
Editing,

by PICTURE clause 3.6,L 3-19
3.6,4.3, 3-27

with ADD verb 4,7.2.1. 4-26
with MOVE verb 4,7.3,1. 4-34
with SUBTRACT verb 4.7 .2.2. 4-28

Editing Characters,
in PICTURE clause 3.6.4.3. 3-27 to

3-30

Editing Symbols,
in PICTURE clause 3.6.4.3. 3-27 to

3-30

UP-7503.1
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E

Term Reference Page

Elementary Item,
definition of 2.2.1. 2-2
described by PICTURE clause 3.6.4.3. 3-27
in MOVE CORRESPONDING 4.7.3ol. 4-34
in record organization 3.6.3. 3-21
position in hierarchy 2.2.4. 2-4
with BLANK WHEN ZERO clause 3.6.4.7. 3-40

Ellipsis 2.8. 2-11

ELSE 4.3.2. 4-11

End-of-File, function of READ verb 4.7 .1.2. 4-16

End-of-Reel,
function of l·O·CONTROL para- 5.4.2. 5-8

graph
function of READ verb 4.7.1.2. 4-17
function of WRITE verb 4.7.1.3. 4-19

ENTER,
categorization of 4.7. 4-13
description of 4.7.5.3. 4-52
format of 4.7.5.3. 4-52
processor-directing verb 4.7.5. 4-49

Entered Language 4.7.5.3. 4-52

Environment Division,
coding rules 7.3.2.2. 7-3
general description 5.1. 5-1
library 9.1. 9-1

9.2.1. 9-2
order of appearance 7.3.2. 7-3
segmentation 8.1. 8-1

EQUAL, in relationals 4.2.2.3. 4-5

EQUAL TO, in relationals 4.2.2.3. 4-5

EQUALS (=) 4.7.2.5. 4-33

EVERY 5.4.2. 5-8

EXAMINE,
categorization of 4.7. 4-13
data movement 4.7.3. 4-34
description of 4.7.3.2. 4-37
format of 4.7.3.2. 4-37
use of TALLY 3.3.2.2. 3-7

Executive Routine,
standard ending routine 4.7 .4.4. 4-48

Index 5
SECTION: PAGE:

Term Reference Page

EXIT,
categorization of 4.7. 4-13
compiler directing verb 4.7 .5.1. 4-49
description of 4.7.5. 4-49
format of 4.7.5.1. 4-49
with PERFORMed routines 4.7.4.3. 4-43

Exponentiation, symbol 4.2.1. 4-2

Expression, Arithmetic,
definition of 4.2. 4-1
discussion of 4.2.1. 4-1
in COMPUTE verb 4.7.2.5. 4-33
in conditional expression 4.2.2.4. 4-6

Expression, Compound 4.2.2.5. 4-8

Expression, Compound
Cond itiona I 4.2.2.5. 4-8

4.3.2. 4-11
Expression, Conditional,

definition of 4.2. 4-1
discussion of 4.2.2. 4-4
with IF statement 4.3.2. 4-11
with implied operators 4.2.2.7. 4-10
with implied subjects 4.2.2.6. 4-10
with PERFORM statement 4.7.4.3. 4-46

Expression, Simple 4.2.2.5. 4-8
Conditional 4.3.2. 4-11

F
FD,

Ii brary entry (COPY) 9.3. 9-3
placement of entry 3.5.2. 3-12
use of 3.5.1. 3-11
when required 4.7.1.1. 4-14

Figurative Constant, see Constant, Figurative

File,
definition of 2.2.3. 2-3
in file section 3.4. 3-9
position in hierarchy 2.2.4. 2-4

UP-7503.1
_Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E

Term Reference Page

L
LABEL RECORDS,

checking 4.7.1.1. 4-14
description of 3.5.3.3. 3-15
format of 3.5.3.3. 3-15
in file description 3.5.1. 3-11

3.5.2. 3-12

Language Na me 4.7 .5.3. 4-52

LEADING, in EXAMINE statement 4.7 .3.2. 4-37

Least Significant Digit 4.7.2. 4-24

LEFT,
in SYNCHRONIZED format and

rules 3.6.4.5. 3-38
placement in record description 3.6.2. 3-20
with SYNCHRONIZED clause 3.6.1. 3-19

Left Justification, definition of 3.6.4.4. 3-37

Level Indicator,
in COPY clause 9.2.1. 9-3
in file description 3.5.1. 3-10
in library entries 9.2. 9-2
in record organization 3.6.3. 3-21

Level Number,

coding rules 9.3. 9-2
description of 3.6.4.1. 3-25
format of 3.6.4.1. 3-25
in COPY clause 9.2. 9-2
in record description 3.6.2. 3-20
in record organization 3.6.3.3. 3-22
in working storage 3.7.2. 3-48
placement in format 7.3.2.3. 7-4

Library,
contents 9.1. 9-1
COPY clause description 9.1.1. 9-1

COPY clause format 9.1.1. 9-1

LIBRARY 9 .1. 9-1

Library-Name,
in COPY clause 9.1.1. 9-1
with FD COPY 3.5.2. 3-12

Library Routine,

with FD COPY 3.5.2. 3-12

Index 8

SECTION: PAGE:

Term Reference Page e
LINE(S),

in ADVANCING option of WRITE 4.7 .1.3. 4-18 to
4-19

Literal,
as initial value 3.7.5. 3-49
as language element 2.8. 2-10
continuation 7 .3.1.2. 7-2
definition of. 3.3.1.3. 3-5
illustration of 3.3.1.3. 3-5
in ADD statement 4.7.2.1. 4-26
in ADVANCING option of WRITE 4.7.1.3. 4-18
in COMPUTE statement 4.7.2.5. 4-33
in DISPLAY statement 4.7.1.6. 4-23
in EXAMINE statement 4.7.3.2. 4-37
in procedures 7.3.2.4. 7-5
in STOP statement 4.7.4.4. 4-48
in VALUE clause 3.6.4.6. 3-39

LOCK, in CLOSE statement 4.7.1.4. 4-20

Logica I Record,
definition of 2.2.2. 2-3
effect on BLOCK CONTAINS

clause 3.5.3.1. 3-13
named 3.5.3.4. 3-16

Low-Order End, • comparison rules 4.2.2.3. 4-5
rules for moving 4.7.3.1. 4-35

Low-Order Position See Low-Order End

M
Margin A,

application 7.3.2.2. 7-4
definition of 7.3.2.3. 7-4
for Data Division 7.3.2.3. 7-4
for Environment Division 7.3.2.2. 7-3
for Procedure Division 7.3.2.4. 7-5

Margin B,
application 7.3.2.4. 7-4
definition of 7.3.2.4. 7-4
for Data Division 7.3.2.3. 7-4
for Procedure Division 7.3.2.4. 7-4

MEMORY SIZE 5.3.2. 5-3

Memory Dump 5.4.2. 5-7

Minus, in PICTURE editing 3.6.4.3. 3-31

Mnemonic-Name,

in ACCEPT statement 4.7.1.5. 4-22
in DISPLAY statement 4. 7 .1.6. 4-23
in SPECIAL-NAMES paragraph 5.3.3. 5-4

UP-7503.1 FUNDAMENTALS OF COBOL

Rev. 1 L A N G u A G E
Index 9

SECTION: PAGEi

e
Term Reference Page Term Reference Page

MODULES, in OBJECT-COMPUTER 5.3.2. 5-3 Numeric,
comparison 4.2.2.2. 4-4

Most Significant Digit, arithmetic PICTURE symbol 3.6.4.3. 3-27
rules 4.7.2. 4-24

NUMERIC, status test condition 4.2.2.4. 4-8
MOVE,

categorization of 4.7. 4-13 Numeric Literal, definition of 3.3.1.3. 3-5
description of 4.7 .3.1. 4-34
format of 4.7.3.1. 4-34 Numeric Status Test Condition See Condition,

Numeric Status
MULTIPLE REEL, Test

in file-control paragraph 5.4.1. 5-7
Numeric Value,

MULTIPLY, in arithmetic expressions 4.2.1. 4-1
as arithmetic verb 4.7.2. 4-24
categorization of 4.7. 4-13
description of 4.7.2.3. 4-30 0
format of 4.7.2.3. 4-30 Object Code,

inclusion by ENTERing 4.7.5.3. 4-52
N
NEGATIVE 4.2.2.4. 4-7 OBJ ECT·COMPUTER,

Nesting, description of 5.3.2. 5-3

in conditional statement 4.3.2. 4-12 format of 5.3.2. 5-3

in PERFORM statements 4.7.4.3. 4-47 with SEGMENT-LIMIT clause 8.4. 8-2

NEXT SENTENCE, Object Program, COBOL,

• effect on PE RF ORM verb 4.7.4.3. 4-43 definition of 1.5. 1-7
effect of segmentation 8.1. 8-1

NO 5.4.1. 5-7 effect of source program 7 .1. 7-1
entering 4.7.5.3. 4-52

Nonnumeric Literal, termination 4.7.4.4. 4-48

definition of 3.3.1.3. 3-5
format of 3.3.1.3. 3-5 OF,

in VALUE clause 3.6.4.6. 3-39 in l·O·CONTROL paragraph 5.4.2. 5-8

in MOVE statement 4.7 .3.1. 4-34 used in qualification 3.3.3. 3-8

NO REWIND, in CLOSE option 4.7.1.4. 4-20 OMITTED,
in file description 3.5.2. 3-12

NOT, in IF statement 4.2.2.4. 4-7 in LABEL RECORD format 3.5.3.3. 3-15

NOTE, ON, in l·O·CONTROL paragraph 5.4.2. 5-8

categorization of 4.7. 4-13
description of 4.7.5.2. 4-51 ON SIZE ERROR,

effect of 4.7.5. 4-49 in ADD statement 4.7 .2.1. 4-26

format of 4.7.5.2. 4-51 in arithmetic verbs 4.7.2. 4-25
in COMPUTE statement 4.7.2.5. 4-33

Noun, definition of 1.1. 1-1 in DIVIDE statement 4.7.2.4. 4-31
in MULTIPLY statement 4.7.2.3. 4-30

Number, Sequence, in SUBTRACT statement 4.7.2.2. 4-28

definition of 7 .3.1.1. 7-2
on coding form 2.7. 2-9 OPEN,

categorization of 4.7. 4-13
description of 4.7.1.1. 4-14
format of 4.7.1.1. 4-14
general function 4.7 .1. 4-14
preceding a CLOSE verb 4.7 .1.4. 4-20
preceding a READ verb 4.7.1.2. 4-16

UP-7503.1
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E

Term Reference Page

Operand, in arithmetic expression 4.7.2. 4-24

Operational Sign,
in arithmetic expressions 4.7.2. 4-24
in PICTURE clause 3.6.4.3. 3-27

Operational Symbol, definition of 3.6.4.3. 3-27

Operator, Arithmetic 4.2.1. 4-1

Operator, Relational 4.2,2.4. 4-6

OPTIONAL,
in FILE-CONTROL paragraph 5.4.1. 5-7

OR, in compound conditional
expression 4.2.2.5. 4-8

Ordered Character Set See Sequence,
Collating

OUTPUT, in OPEN statement 4.7.1.1. 4-14

Overlay,
fixed segment 8.2.1. 8-1
independent segment 8.2.2. 8-2
object program 8.1. 8-1
segment classification 8.2.3. 8-2
SEGMENT-LIMIT clause 8.4. 8-2
with REDEFINES clause 3.6.4.8. 3-41

p

Packing, in SYNCHRONIZED clause 3.6.4.5. 3-38

Padding 4.7.1.4. 4-20

Paragraph,
coding specification 7.3.2.4. 7-5
definition of 4.1. 4-1
description of 4.5. 4-'-12
in I ibrary 9.2. 9-2
with segmentation 8.4. 8-2

Paragraph-Name,
in Environment Division 7.3.2.2. 7-4
in GO TO statement 4.7 .4.1. 4-39
in library 9.2. 9-2
margin alignment 7 .3.1.3. 7-2

Index 10
SECTION: PAGE:

Term Reference Paae

PERFORM,
categorization of 4.7. 4-13
description of 4.7 .4.3. 4-42
format of 4.7.4.3. 4-42
in sequence control 4.7.4. 4-39
with EXIT verb 4.7.5.1. 4-49

Physical Record, definition of 3.5.3.1. 3-13

PICTURE,
description of 3.6.4.3. 3-27
effect on arithmetic operations 4.7.2. 4-24
effect on moving 4.7.3.1. 4-35
format of 3.6.4.30 3-27
in FILLER 3.6.4.1. 3-25
in record description 3.6.1. 3-19
in record description format 3.6.2. 3-20
in single-item areas 3.7.2. 3-48
relationship with VALUE clause 3.6.4.6. 3-39

PICTURE IS,
description of 3.6.4.3. 3-27
format of 3.6.4.3. 3-27

Plus, in PICTURE editing 3.6.4.3. 3-31

POSITIVE, numeric status test 4.2,2.4. 4-7

Positive Integral Literal 4.7 .1.3. 4-18

Precedence 4.2.1. 4-2

Priority,
definition of 8.4. 8-3
effect on compilation 9.2.2. 9-4
in section-name 7.3.2.4. 7-5
in segment classification 8.2.3. 8-2
in SEGMENT-LIMIT clause 5.3.2. 5-3

P rocedu re·N ame,
in ALTER verb 4.7.4.2. 4-41
in section header 4.6. 4-12
syntax 4.4. 4-12

Procedure Division,
definition of 4.1. 4-1
format coding rules 7.3.2.4. 7-5
Ii brary entries 9 .1. 9-1

PROCEED TO, with ALTER verb 4.7.4.2. 4-41

Processor, COBOL, definition of 1.5. 1-6

•

UP-7503.l
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E

Term Reference Page

Processor-Directing Verbs,
definition of See Compiler -

Di rec ting Verbs

PROGRAM-ID,
coding rules 7 .3.2.1. 7-3
format of 6.2. 6-1

Program Processor, definition of 1.5. 1-7

Program Sheet, COBOL 7.2. 7-1

Q

Qualification,
definition of 3.3.3. 3-8
in record areas 3.7 .3. 3-49

Qualified Data-Name,
definition of 3.3.3. 3-9

Qua I ifier,
definition of 3.3.3. 3-8

Quotation Mark,
in character set 3.2. 3-2
in continuation 7 .3.1.2. 7-2

QUOTE(S), figurative constant 3.3.2.1. 3-6

R
Range of Values,

in condition-name condition 4.2.2.4. 4-7
in VALUE clause 3.6.4.6. 3-39

READ,
categorization of 4.7. 4-13
description of 4.7.1.2. 4-16

format of 4.7 .1.2. 4-16

relation to OPEN verb 4.7 .1. 4-14

Receiving Area 4.7.3.1. 4-34

Recording,
compiler information 1.5. 1-7
definition of 2.2.2. 2-3
naming 3.3.1.1. 3-3

RECORD,
in 1-0-CONTROL paragraph 5.4.2. 5-8
used in file description 3.5.1. 3-11

3.5.2. 3-12

Record Area,
discuss ion of 3.7.3. 3-49
in file section 3.4 3-9 •

Index 11
SECTION: PAGE:

Term Reference Page

RECORD CONTAINS,
description of 3.5.3.2. 3-14
format of 3.5.3.2. 3-14
in file description 3.5.1. 3-11

Re co rd Description,
definition of 3.6.1. 3-19
in I ibrary entries 9.3. 9-2
in record areas 3.7.3. 3-49
position in hierarchy 7.3.2.3. 7-4
with COPY clause 9.3. 9-3
with RECORD CONTAINS clause 3.5.3.2. 3-14

Record Description Entries,
in file section 3.4. 3-9

Record-Name 4. 7 .1.3. 4-18

Record, Physical See Physical
Record

RECORDS,
in 1·0-CONTROL clause 5.4.2. 5-8
used in file description 3.5.1. 3-11

REDEFINES,
description of 3.6.4.8. 3-41
distinguished from RENAMES 3.6.4.9. 3-42
effect on ADD function 4.7 .2.1. 4-26
effect on MOVE function 4.7.3.1. 4-34
format of 3.6.4.8. 3-41
in description of record 3.6.1. 3-19
in record descriptio11 format 3.6.2. 3-20

REEL,
in CLOSE statement 4.7.1.4. 4-20
in FILE-CONTROL clause 5.4.1. 5-7
in l·O·CONTROL clause 5.4.2. 5-8

Reel Label, checking 4.7.1.2. 4-17

Reference Format,
coding form 3.2. 3-2
COBOL, definition of 7 .1. 7-1
purpose 7.2. 7-1
rules for using 7.3. 7-2

Register, Special See TALLY

Relational Condition See Condition,
Relational

Relational Operators See Operator,
Relational

UP-7503.1
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E

Term Reference Page

Relational Test 4.2.2. 4-4

REMARKS,
IDENTIFICATION DIVISION
paragraph 7 .3.2.1. 7-3
in Identification Division 6.2. 6-1

RENAMES,
description of 3.6.4.9. 3-42
format of 3.6.4.9. 3-38
in description of data 3.6.1. 3-19
in record description 3.6.2. 3-20
with level 66 entries 3.6.3. 3-24

RENAMING 5.4.1. 5-7

Replacement, in editing 3.6.4.3. 3-27 to
3-30

REPLACING,
in EXAMINE statement 4.7.3.2. 4-38

RERUN 5.4.2. 5-8

RESERVE 5.4.1. 5-7

Reserve Data-Names 3.3.2. 3-6

REWIND, in CLOSE statement 4.7.1.4. 4-20

RIGHT,
in SYNCHRONIZED clause 3.6.1. 3-19

3.6.2. 3-20
in SYNCHRONIZED description 3.6.4.3. 3-38
in SYNCHRONIZED format 3.6.4.5. 3-38

Right Justified 3.6.4.4. 3-37

Rightmost Digit Position,
in literals 3.3.1.3. 3-5

ROUNDED,
in ADD statement 4.7.2.1. 4-26
in arithmetic verbs 4.7.2. 4-24
in COMPUTE statement 4.7.2.5. 4-33
in DIVIDE statement 4.7 .2.4. 4-31
in MULTIPLY statement 4.7.2.3. 4-30
in SUBTRACT statement 4.7.2.2. 4-28

Routine-Name 4.7.5.3. 4-52

RUN 4.7 .4.4. 4-48

s
SAME 5.4.2. 5-8

Index 12
SECTION: PAGE:

Term Reference Page

SAME AREA 5.4.2. 5-8

SECTION 4.6. 4-12

Section,
definition of 4.6. 4-12
in library 9.3. 9-3

SECTION, Fl LE See File Section

Section-Name,

in Data Division 7.3.2.3. 7-4
in Environment Division 7.3.2.2. 7-3
in Procedure Division 7.3.2.4. 7-5
placement on reference format 7 .3.1.3. 7-2

Section, Working-Storage See Working-Storage
Section

SECURITY,
coding rules 7 .3.2.1. 7-3
in Identification Division 6.2. 6-1

Segment, Fixed,
classification 8.2. 8-1
definition of 8.2.1. 8-1
overlayable See Segment, Overlayable Fi.
priority 8.4. 8-3

Segment, Independent,
classification 8.2. 8-1
definition of 8.2.2. 8-2
priority 8.2.3. 8-2

SEGMENT-LIMIT,
definition of 8.4. 8-2

Segment, Overlayable Fixed,

definition of 8.2.1. 8-1
difference from

independent fixed segment 8.2.2. 8-2

Segment, Permanent,
definition of 8.2.1. 8-1
format of 8.4. 8-2

Segmentation,
control 8.3. 8-2
general discussion 8.1. 8-1
in OBJECT-COMPUTER 5.3.2. 5-3
use of priority 7.3.2.4. 7-5

SELECT,
in FILE-CONTROL paragraph 5.4.1. 5-7

Sentence 4.1. 4-1

Separator 4.3. 4-10 •

UP-7503.1
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E

Term Reference Page

Sequence, Collating 4.2.2.3. 4-5

Sequence Control 4.7.4. 4-39

Sequence Number See Number,
Sequence

Sign, Floating, in editing 3.6.4.3. 3-32

Sign, Operational,
in arithmetic 4.7.2. 4-24
in editing 3.6.4.3. 3-28
in I iteral s 3.3.1.3. 3-5

Simple Condition 4.2.2.4. 4-5

Simple Conditional Expression See Express ion,
Simple Conditional

Simple Expressions 4.3.2. 4-11

SIZE ERROR See ON SIZE
ERROR

Source Atea 4.7.3.1. 4-34

SOURCE-COMPUTER,
description of 5.3.1. 5-2
format of 5.3.1. 5-2
placement in Environment Divis ion 5.4. 5-5
purpose 5.3. 5-2

Source Program, COBOL,
available library entries 9.1. 9-1
definition of 1.5. 1-6
purpose of Environment Division 5.1. 5-1
rules of reference format 7 .1. 7-1
using COPY clause 9.2.1. 9-2

SPACE(S),
figurative constant 3.3.2.1. 3-6

SPECIAL-NAMES,
description of 5.3.3. 5-4
format of 5.3.3. 5-4
genera I purpose 5.3. 5-2
placement in format 5.2. 5-1

Special Register See TALLY

STANDARD,
in LABEL RECORDS clause 3.5.2. 3-12
in LABEL RECORDS des er iption 3.5.3.3. 3-15
in LABEL RECORDS format 3.5.3.3. 3-15

Standard Beginning Reel Label 4.7.1.2. 4-17

Index 13
SECTION: PAGE:

Term Reference Page

Statement, definition of 4.3. 4-10

Statement, Conditional,
definition of 4.3.2. 4-11

with PERFORM verb 4.7 .4.3. 4-42

Statement, Imperative,
as I an guage element 2.8. 2-10
AT END option of READ option 4.7 .1.2. 4-17

categorization of 4.3. 4-10
definition of 4.3. 4-10

Statement, Compiler-Directing,
definition of 4.7.5. 4-49

Status Test 4.2.2.4. 4-7

STOP,
categorization of 4.7. 4-13

4.7.4.4. 4-48
format of 4.3.1. 4-11

4.7.4.4. 4-48

STOP RUN 4.3.1. 4-11

Subject of Condition 4.2.2.4. 4-6

Subordinate Data-Names,
in corresponding option 4.7.2.1. 4-26
in record areas 3.7.3. 3-49

Subordinate Entry,
in record organization 3.6.3. 3-21
placement in format 7 .3.1.3. 7-2

Subroutine, with PERFORM verb 4.7.4.3. 4-42

SUBTRACT,
categorization of 4.7. 4-13
description of 4.7.2.2. 4-28
format of 4.7.2.2. 4-28
general rules for arithmetic 4.7.2. 4-24

Symbol, Data Character,
in PICTURE clause 3.6.4.3. 3-27

UP-7503.1 FUNDAMENTALS OF COBOL Index 14
Rev. 1 L A N G u A G E

SECTION: PAGE:

Term Reference Page Term Reference Page e
Symbol, Editing, UNTIL,

in PICTURE clause 3.6.4.3. 3-27 to with EXAMINE verb 4.7.3.2. 4-37
3-30 with PERFORM verb 4.7.4.3. 4-42 to

4-46
Symbol, Operational,

in PICTURE clause 3.6.4.3. 3-29 UPON 4.7.1.6. 4-23

USAGE,
SYNCHRONIZED, description of 3.6.4.2. 3-26

description of 3.6.4.5. 3-38 form at of 3.6.4.2. 3-26
format of 3.6.4.5. 3-38 in description of record 3.6.1. 3-19
in record description 3.6.1. 3-19 in record description 3.6.2. 3-20

3.6.2. 3-20
T v
TALLY, Value, Initial,

definition of 3.3.2.2. 3-7 in VALUE clause 3.6.4.6. 3-39
in EXAMINE verb 4.7.3.2. 4-37 in working storage 3.7.5. 3-49
special register 3.3.2. 3-6

VALUE IS,
TALLYING, in EXAMINE verb 4.7.3.2. 4-37 description of 3.6.4.6. 3-39

format of 3.6.4.6. 3-39
Tape Swap, in data description 3.6.1. 3-19

end-of-reel on READ verb 4.7 .1.2. 4-17 in record description 3.6.2. 3-20
end-of-reel on WRITE verb 4.7.1.3. 4-19 in working storage 3.7.4. 3-49

Text, VALUE OF,
on coding form 2.7. 2-9 description of 3.5.3.5. 3-17
placement on coding form 7.3.1.3. 7-2 format of 3.5.3.5. 3-17

in description of file 3.5.1. 3-11
THROUGH See THRU in file description in entry 3.5.2. 3-12

THRU, VARYING,
in describing VALUE range 3.6.1. 3-19 with PERFORM verb 4.7.4.3. 4-42 to
in record description 3.6.2. 3-20 4-46
in RENAMES format 3.6.4.9. 3-42
in VALUE format 3.6.4.6. 3-39 Verb,
with PERFORM procedures 4.7.4.3. 4-42 categorization of 4.7. 4-13

definition of 1.1. 1-1
TIMES, with PERFORM verb 4.7.4.3. 4-42

TO, w
in ADD statement 4.7.2.1. 4-26 WHEN,
in GO TO statement 4.7 .4.1. 4-39 in BLANK WHEN ZERO clause 3.6.2. 3-20
in MOVE statement 4.7.3.1. 4-34 in BLANK WHEN ZERO descrip·
in RECORD CONTAINS clause 3.5.3.2. 3-14 ti on 3.6.4.7. 3-40
in record description 3.5.1. 3-11 in BLANK WHEN ZERO format 3.6.4.7. 3-40

3.5.2. 3-12
WITH 4.7 .1.4. 4-20

Transfer of Control 4.7.4. 4-39
Word,

Truth Value 4.2.2. 4-4 continuation of 7 .3.1.2. 7-2
definition of 1.1. 1-1
if SYNCHRONIZED 3.6.4.5. 3-38

u
Unpacked 3.6.4.5. 3-38 Word, COBOL, definition of 1.1. 1-1

UP-7503.l
Rev. 1

FUNDAMENTALS OF COBOL

L A N G U A G E

Term Reference Page

Word, Key, use in formats 2.8. 2-10

Word, Optional, use in formats 2.8. 2-10

Word, Reserved (required or 2.8. 2-10
key words)

WORDS 5.3.2. 5-3

Working-Storage Section,
con tents of 3.4. 3-10
difference from file section 7.3.2.3. 7-4

in library entries 9.3. 9-2

organization and structure 3.7 .1. 3-48

WRITE,
categorization of 4.7. 4-13

description of 4.7.1.3. 4-18

format of 4.7 .1.3. 4-18
relation to 1/0 verbs 4.7 .1. 4-14

•

Index 15
SECTION: PAGE:

Term Reference Page

z
ZERO,

figurative constant 3.3.2.1. 3-6

in BLANK clause 3.6.2. 3-20
in BLANK c I a use description 3.6.4.7. 3-40
in BLANK clause format 3.6.4.7. 3-40

ZEROES, figurative constant 3.3.2.1. 3-6

ZEROS, figurative constant 3.3.2.1. 3-6

ZERO SUPPRESS, in editing 3.6.4.3. 3-30

•

•

•

