
NAVAL TACTICAL DATA SYSTEM (NTDS)
technical note no. 244
AN/USQ·20 UNIT COMPUTER
CHARACTERISTICS

DIVISION OF SPERRY lAND CORPORATION

UNIVAC PAIK, ST. PAUL U, MINNESOTA.

NAVAL TACTICAL DATA SYSTEM
TECHNICAL NOTE

NO. 244

AN jUSQ-20 UNIT COMPUTER
CHARACTERISTICS

PX 1343-38

DIVISION. OF SPERRY RAND CORPORATION

UNIVAC PARK, ST. PAUL 16, MINNESOTA

NAVY DEPARTMENT

CONTRACT: NObsr 72769
BUREAU OF SHIPS

NTDS NO. U-6095
ELECTRONICS DIVISIONS

10 OCTOBER 1960

CONTENTS

Page

1. INTRODUCTION . . · 1

2. GENERAL. . 2

3. OPERATION .. . · 3

INPUT/OUTPUT SECTION . · . 6

STORAGE SECTION . . · 7

ARITHMETIC SECTION . · · 7

CONTROL SECTION . . · . · 8

4. CONSOLE CONTROL. . . · 9

5. OTHER FEATURES . 10

APPENDIX A - REPERTOIRE OF INSTRUCTIONS AND PROORAM
TIMING . • • • • • . A-I

APPENDIX B - INPUT/OUTPUT SPECIFICATION. . . . • • •• B-1

i

ii

Figure

Frontispiece

1.

2.

A-I.

B-1.

B-2.

B-3.

B-4.

B-5.

B-6.

Table

A-I.

A-2.

B-1.

ILLUSTRATIONS

AN/USQ-20 Unit Computer

Computer Cabinet Interior • • ;. .

Simplified Block Diagram, AN/USQ-20 Unit Computer

Bit Allocation of Instruction DeSignators. .

Cable Connections. •

Connections from Computer A to Computer B ...

Effect of Tolerances on Timing.

Timing of Input Signals •

Timing for Normal Output Signals

Timing for External Function Output.

TABLES

Instruction Repertoire - AN/USQ-20 Unit Computer.

Instruction Execution Times . . . •

Control Signals in Input and Output Cables. .

Page

4

5

A-3

B-2

B-4

B-5

B-6

B-7

B-8

A-4

A-5

B-2

TECHNICAL NOTE NO. 244

AN/USQ-20 UNIT COMPUTER CHARACTERISTICS

1. INTRODUCTION

The AN/USQ-20 Unit Computer, brain of the Naval Tactical Data System, is a general-purpose,

stored-program machine capable of processing very rapidly a large quantity of complex data.

Major features of the AN/USQ-20 Unit Computer include the following:

1) Internal high-speed storage with a cycle time of 8 microseconds and a capacity of

32,768 words (16,384 optional);

2) Repertoire of 62 instructions, most of which provide for conditional program

branches;

3) Average instruction execution time of 13 microseconds;

4) 30-bit word length;

5)' Optional operation with 15-bit half-words;

6) Internally stored program;

7) Programmed checking of data parity;

8) Parallel, ones' complement, subtractive ari-thmetic;

9) Single-address instructions with provision for address modification via seven

index registers;

10) Internal 7-tlay real-time clock for initiating operations at desired times;

11) 12 input and 12 output channels for rapid data exchanges with external equipment

without program attention;

12) 2 input and 2 output channels for intercomputer data transfer;

13) 16-word wired auxiliary memory, for storage of critical instructions and constants,

which provides facility for Automatic Recovery in event of program failure and for

automatic initial loading of programs.

1

2. GENERAL

The AN/USQ-20 Unit Computer emphasizes rapid communication with external devices and

large, randomly accessible internal storage.

Single-address instructions are employed and have an average execution time of 13 micro­

seconds. Instruction words are 30 bits; data words can be either 15 or 30 bits.

Internal storage of the Unit Computer consists of a 32,768-word ferrite core memory. Each

word may be interpreted as a single 30-bit word, or as two I5-bit words individually addressed.

Control, Arithmetic, and Input/Output sections of the computer each have access to the Stor­

age section. A complete cycle for storage of a 30-bit word received from one of the other

sections requires eight microseconds.

Arithmetic and logical operations are performed in the parallel binary mode. In most in­

stances, the result of an operation appears in a 30-bit accumulator register. Arithmetic is

ones' complement subtractive with a modulus (230_1).

Computer operation is controlled bya stored program capable of self-modification. Each

program instruction contains a function code (6 bits), instruction operand deSignator (15 bits),

and three execution modifiers (3 bits each). Execution modifiers provide for address incre­

mentation, operand interpretation, and branch-point designation. The operand may be in­

creased by the amount contained in anyone of seven index registers. The operand specified

by the execution address may be interpreted as a 30-bit quantity, or as a 15-bit half-word

with or without sign extension. The next sequential program step may be skipped; it is under

control of the content of the Accumulator or the Q-register.

Communication between the AN/USQ-20 Unit Computer and its associated external equipment

is normally handled by a block transfer of data, with timing under control of the.external

device. Operating asynchronously with the main computer program, such transfers of data

have independent access to storage.

A communication path is established by a sequence of request and response signals between

external equipment and computer. Such signals may originate in either the computer or the

external device. The main computer program is interrupted by external request signals and

a communications channel is established. Once the link has been created, the computer re­

turns to the main program sequence. Block transfer of input or output data then proceeds

without program reference until completed.

2

A total of 14 input and 14 output channels is provided in the computer; each channel consists

of 30 parallel lines. Two input and two output (special) channels are reserved for communi­

cation with other computers. The maxinlum possible transfer rate of input or output data

over a given channel is greater than 30,000 words per second.

Output channels carry External Function Words as well as data words to external equipment.

These specify the function desired of the external device. An External Function Word to a

tape control unit, for example, may specify Rewind Tape Unit 3.

The computer (see Frontispiece) is housed in a single cabinet, 33 inches deep, 37 inches wide,

65 inches high. Thirteen trays, eight trays of logic modules and five trays of memory mod­

ules, are horizontally arrayed within the cabinet (Figure 1). Logic modules consist of en­

capsulated printed-circuit cards which plug into the trays. Maintenance test points are

readily accessible at the front of the trays.

Computer cabinet doors, which are closed during normal operation, can be opened for main­

tenance. Inner surfaces of the doors contain maintenance control panels with register indi­

cators, set and clear pushbuttons, and operating switches. A separate operating and main­

tenance console would be supplied for special applications, as in a multicomputer installation.

Primary power is provided to the computer from a 60-cycle input,400-cycle output motor­

alternator which, in addition to converting frequency, serves to isolate the computer from

the main power source. Total power consumption is 2400 watts. For the installation planned

for the AN/USQ-20 Unit Computer forced-air cooling is used; supplementary need for a heat

exchanger is dictated by environment. Inter-equipment cabling enters the computer at the

top of the cabinet and is run through a false floor.

The computer is designed and constructed to withstand severe Shock and vibration. It may

easily be installed aboard ship or in a trailer without special modification.

3. OPERATION

A simplified block diagram of the AN/USQ-20 Unit Computer appears in Figure 2. For ex­

planatory purposes, the computer may be considered as comprised of four major sections:

Input/Output, storage, Arithmetic, and Control. Abbreviations on the diagram are explained

as operation of the various sections is discussed.

3

4

· .···_······G ~
' iIii .. iliiiw_"""ifI

Figure 1. Computer Cabinet Interior

rcONTROL SEcTiON - - - - - - -I
ISTORAGE SECTION - - - - - --, I INTERRUPT
I -I I • .REAL-T1ME CLOCK

I MAIN MEMORY H ADDRESS I--+_l..o....-.jJ S L -'--A-D-D

I 32,768 XLTR I I I " F- -,- U L }-

30- B IT WORDS. .. T

I U L AUX I I ~ R'
J..
ET+I

• .- MEMORY " I.--L-. ---L. 16 30 -BIT I I SET-I -
" ~ WORDS I ,+ 0,+ '.J +0,+1) NDRO I I

I~I ~T. II
I c-r RETURN 'JUMP I Z u U u Z L h ---r:=....:...:.:~I.;;.;.;.;.;.....,..I--+-..

: ~ ~ ~-i)--l~ 1-+-.....---1--. :

I Z - OUT BUS a ~ I
Z - IN BUS 1

.L~I
'i;,71

I

GATED
AMPL. -~

EO,+I.+2

~r-

I P

Zu

1
I Uu I

_a..-.

B's

BI

B2
I CONTROL I
l XLTR

B3

B4 + t t + J...---..... TO ALL
B5 CIRCUITS
86

87 REPEAT
-L""'--........ COUNT

8's

R

r-=lL-r--r
K I I- _____ ~ ~ _____ -.l

LEGEND:

D REGISTERS, 0 MODIFIER
AMPLIFIERS, NETWORKS
AND TRANSLATORS

Figure 2. Simplified Block Diagram, AN/USQ-20 Unit Computer

5

INPUT/OUTPUT SECTION

The Input/OutPUt section includes those data paths and control circuits used by the comp.lter

for communicating with external equipment. Main parts of the Input/Output section are 1) two

output registers (CO and C1) and their associated line drivers, 2) 14 sets of gated input ampli­

fiers, and 3) priority and access control circuits.

output Registers

The CO-register is used for transmissions to all external devices except other computers.

As illustrated in Figure 2, CO receives its input directly from the Storage section via gates

controlled by the priority and access circuits. Three sets of 30 line drivers branch from the

output of CO; each set drives four output channels. Gated registers located in the external

devices determine which channel is active during any particular transmission.

The Cl-register handles transmissions over the two special output channels - those used to

transmit data to other computers. Operation of C 1 is similar to that of CO: Words enter C 1

from storage via gates controlled by the priority and access circuits and are transmitted over

the active channel by a set of 30 line drivers.

Note that the output channels are numbered from 0 to 13. If two or more output transmissions

are Simultaneously requested, the channel with the highest number is granted priority; others

follow in order.

Input Amplifiers

A set of 30 gated amplifiers is provided for each of the 14 input channels. Gates are con­

trolled by the priority and access circuits, with the channel having the highest number being

given priority 'if two or more inputs are simultaneously requested. As in the case of the out­

put channels, Channels 0 and 1 are used for intercomputer communication, which consequently

receives the lowest priority.

This method of treating input data eliminates the need for input buffer registers and gives

external equipment direct access to the computer's internal memory.

Priority and Access Circuits

Some functions of the priority and access circuits (namely, gating input and output trans­

missions and assigning priorities to the channels) have been previously described. In addition,

6

these circuits accept and transmit the control and timing signals which must be exchanged

between the computer and equipment with which it communicates.

The circuits also include a means of testing various channels to determine whether they are

busy. This feature prevents the computer from attempting to communicate over a channel

already in use.

Main memory addresses referenced during a particular input or output transfer are deter­

mined by a special I/O control word. One such word is assigned to each channel. It is suf­

ficient at this point to note that a signal generated by the I/O control word is used by the

priority and access circuits to deactivate the channel after the proper number of words has

been transferred.

STORAGE SECTION

The Storage section consists of main memory, wired auxiliary memory, and associated ad­

dress, transfer, and control circuits.

The main memory, constructed of modular arrays of ferrite cores, has a capacity of 32,768

words of 30 bits each, is coincident-current driven, and is addressed via the address trans­

lator. Content of the referenced address is read into the 30-bit Z-register. Because of

optional use of 15-bit half-words, Z is split into two 15-bit sections termed Z-upper (Zu) and

Z-lower (ZL)'

The memory operates in the destructive read-out mode. Time required for the read/restore

cycle is eight microseconds.

During the restore portion of the cycle, the content of ZL or Zu may be increased by one, as

indicated by the +0, +1 modifier boxes. This provision allows for automatically increasing

the I/O control wordS, with the result that addresses referenced during a block transfer of

data are automatically advanced.

The comparator, Zu = ZL? , is used to detect coincidence between the two halves of the I/O

control word. When coincidence occurs, a signal is generated to terminate the I/O transfer.

ARITHMETIC SECTION

The Arithmetic section is that part of the computer which performs numeric and logical

7

calculations. Though greatly simplified, Figure 1 shows the important components of the

Arithmetic section: the A-, 0-, Q-, and X-registers and the add network.

The A-register (30 bits) may be thought of for programming purposes as a conventional ac­

cumulator. Because of the logic employed, however, the A-register is actually only the main

rank of the accumulator; the D-register serves as a second rank. This configuration, while

different from former and usual arrangements, permits the use of a much more reliable

building-block circuit.

The Add operation is typical of the relationship between the A- and D-registers: The augend

and addend are initially contained in A and D. As addition is performed, the sum is formed

in parallel by the add network and placed in the X-register. From X, the sum is transmitted

to A.

The Q-register (30 bits) is used principally during multiply and divide operations. The con­

tents of both A and Q may be shifted left or right, individually or as one double-length 60-bit

word.

CONTROL SECTION

The Control section consists of those registers and circuits necessary to procure; modify,

and execute instructions of the program.

The U-register (30 bits) is the program-control register. It holds the instruction word

during execution of an instruction. The function code and the various execution modifiers are

translated from appropriate sections of the register. The lower-order 15 bits of the U-regis­

ter have additiO~ properties, modulus 215
_1. If an address modification is required before

execution, contents of the appropriate B-register are added to contents of the lower-order

15 bits of the U-register before execution.

The R-register (15 bits) functions as a communication register for the B registers. All

internal transmissions to or from B-registers pass through the R-register. It also holds the

quantity used as increment during address modification. This register has counting pro­

visions for increasing contents of the B-register.

The K-register (6 bits) functions as a shift counter for all arithmetic operations that involve

shifts. The maximum shift count is 63. Multiply and divide operations are controlled by

pre-setting the K-register to ZERO and counting operational steps.

8

The S-1'egister (15 bits) holds the storage address during memory references. At the be­

ginning of a storage access period, the address is transferred to the S-register. The contents

of the S-register are then translated to activate the storage selection system.

4. CONSOLE CONTROL

Both the indicator/control panel in the doors (referred to as the in-door console) and the

separate (optional) operating cons~le include 1) indicator lamps that display a detailed report

of the internal status of the computer, and 2) controls that allow varied manually governed

operations. It is not necessary to monitor the consoles during normal operation.

REGISTERS

Each register is represented on a console by 1) a row of display lamps, each of which indi­

cates the content of a corresponding register stage; 2) a row of SET buttons, each of which

can be used to manually enter a one into the corresponding stage; and 3) a CLEAR button,

which can be used to manually enter zeros into all stages of the register. Many of the regis­

ters are involved in the mechanics of executing instructions, and are not directly accessible

to the program. (These registers are not discussed in this publication.)

SPECIAL MODES

Both the in-door console and the separate console are provided with manual controls that

permit the following special modes of operation:

1) Execution of one program instruction of a sequence for each depression of a switch.

2) Execution of consecutive program instructions at a low rate governed by a console

frequency control.

3) Execution of one master clock phase for each depression of a switch.

4) Execution of consecutive master clock phases at a low rate governed by a console

frequency control.

5) Operation that is normal except that the computer does not stop when it executes a

programmed stop instruction. (Such operation is called abnormal high-speed

operation.)

The consoles are also provided with a manual control that may be used to disable the real-

9

time clock. This option enables the operator to suspend normal operation temporarily without

affecting such operation when it is subsequently resumed. Such suspensions could include

stopping the computer or operating temporarily in one of the special modes listed previously.

PROGRAMMED STOPS

The consoles include a set of six JUMP and STOP switches that can, in normal comp.lter

operation, govern the execution of manual-jump instructions. H stop conditions are satisfied,

the computer stops and an indicator is litto show the value of j in the manual-jump or manual

return-jump instruction that stopped the computer. In abnormal high-speed operation, the

indicator is lit but the computer does not stop.

MASTER CLEAR

The consoles include a spring-return key that is used to clear all registers and control desig­

nators to zero.

5. OTHER FEATURES

The AN/USQ-20 Unit Computer is especially well suited to real-time control, data proceSSing,

and data reduction. Most basic features of the computer are described in previous sections.

A detailed account of how these features can be used is beyond the scope of this technical

note. This section, however, suggests uses of certain computer features in a few areas.

Features considered here are: 1) automatic programming, 2) floating-pOint arithmetic, 3) the

real-time clock, 4) masked comparison, 5) inclusion of operands in instruction words, 6) de­

tection of special faults, 7) program branChing, 8) search operations, 9) half-word and full­

word logic, 10) external and internal program interrupts, and 11) 16-word wired auxiliary

memory.

AUTOMATIC PROGRAMMING

Two phases of an extensive compiling system. have been completed and are currently in use.

*Additional references: 1) NTDS Technical Note No. 202, Compiling System CS-l.

10

2) Compiling System CS-l - Programmer's Reference Manual,
PX 1349.

2) Phase III Basic Input Language, PX 1478.

Early phases of the compiler allow for mnemonic expression of function codes and designators,

permit relative addressing, and provide for automatic storage allocation. Instructions and

addresses may be given alphanumeric names at the option of the programmer. There are, in
. -

addition, several operators which cause many instructions to be generated in the final program.

A subroutine mechanism facilitates compilation of subroutines in the final program.

A table-handling routine is included to enable efficient table search and modification. Items

in a table may be searched, extracted, or deleted.

Some important computational routines available are square root, sine, cosine, tangent,

arcsine, and arccosine. Both direct computation and table look-up and interpolation rou­

tines are available for evaluating functions. The table look-up procedure can often be used to

save considerable computation time, especially when adequate memory capacity is available.

A coordinate-conversion routine will convert polar coordinates to Cartesian coordinates and

vice-versa. This routine is especially useful in control problems. Number conversion rou­

tines permit conversion from octal to decimal and from decimal to octal notation.

Compiling, in early stages of program checkout, can be done with special debugging aids which

include post-mortem area and register dumps. A sampler routine provides for punching in­

termediate results during program operation; it does not require that the programmer provide

for sampling while writing his program.

The third phase of the compiling system is in the late stages of debugging. This phase is a

high-level language which allows programs to be written by means of powerful operators

totally divorced from machine code. The operators cause many computer instructions to be

generated in the final program. Some typical operators are Procedure, Vary, Find, If ,

Then, Go To, Set, Resume, Return, and Switch. Other operators make possible data defi­

nition into tables, sectors, items, fields, and subfields. Some operators are used to define

variables. Procedures involving algebraic computation can be set up in their actual mathe­

matical notation. In this unique approach to compiler development, all three phases will be

compatible and available for developing other phases. The compiler is "open-ended"; addi­

tional functions can easily be added for specialized problems.

FLOATING-POINT ARITHMETIC PROGRAM PACKAGE

The floating-paint format is based on a two-word information unit: one mantissa word

11

and one characteristic word. The length of the mantissa word is 28 bits; the length of the

characteristic word is 15 bits, including sign bit. It is a three-address system in which four

B registers are used to deSignate operand and operation code. The average instruction time'

for a floating-point operation (add, subtract, multiply, or divide) is 500 microseconds.

REAL-TIME 7-DAY CLOCK·

Among the features that suit the computer to real-time problems is the 7 -day clock which

contains an accurate record of time. The clock may be used to log the receipt times of a

periodic real-time input. Each message and its receipt time may be recorded together. An­

other use of the clock is to initiate periodic programmed operations without requiring more

than occasional attention of the main programe Since the clock recycles only once in 7 days,

it is suitable for use where the computer is used on an around-the-c~ock basis.

MASKED COMPARISON

Masked Comparison is used to compare all or any part of a word with the contents of the

accumulator. It also tests for equality, and rwn-equality, greater than, or less than con­

ditions. In all cases, the original content of the Accumulator is left unchanged.

INCLUSION OF OPERANDS IN INSTRUCTION WORDS

The lower half (15 bits) of an instruction word is commonly used as an operand address. Where

15-bit operands are acceptable, the lower half of the instruction word may itself serve as an

operand. This option of storing the operand as part of the instruction word is particularly

advantageous for certain applications. It reduces computation by eliminating a memory ref­

erence and provides twice the storage capacity, if 15 bits are adequate for the preciSion

required.

DETECTION OF SPECIAL FAULTS

Fault conditions may arise in the execution of a divide instruction: the divisor may be zero

or the quotient may exceed 30 bits (including sign). Either fault condition is detected by pro­

gramming the divide instruction with j = 3 (skip if Q is negative). When the instruction is

e~ecuted, a fault produces a skip. The instruction that follows the one that is skipped contains

a jump to a remedial subroutine. The instruction that immediately follows divide is pro­

grammed with j = 1 (unconditional skip) so that the remedial subroutine is avoided if no fault

is detected. The computer never stops because of a divide fault.

12

When a multiply instruction is performed, the product is formed in AQ. If it does not ex­

ceed 30 bits (including sign bit), it is contained entirely in Q. If it exceeds 30 bits, it extends

into A and is' called a double-length product. A method of detecting a double-length product

depends on these two facts:

1) During execution of a multiply instruction, both factors are arbitrarily represented

as positive numbers (sign bit = 0); correction of the sign bit of the product occurs

late in the program step.

2) Skip-condition evaluation takes place before sign correction.

The multiply instruction is programmed with j = 2 so that, if (Q29)= Qne before sign cor­

rection, a skip is performed. If (Q29) = zero, the test is inconclusive, and the next instruction

tests for (A) I: O. The second test is conclusive: if (A) I: 0, the product is double length; if

(A) = 0, it is not. The additional instruction that contains the second test is skipped unless

the first test is inconclusive. If the probable length of the product is known, the programmer

can select a variation of this method (such as reversing the order of the two tests) to reduce

the probability of having to execute an additional instruction.

PROGRAM BRANCHING

A convenient method of providing a branch in the program is to include a skip condition fol­

lowed by a jump instruction. The skip is performed unless the branch condition obtains, so

that the jump is not normally performed. If the branch condition obtains, however, the skip

is not performed. The jump then diverts the program to the branch. This method (which may

be used wherever optional use of an out-of-sequence address is desired) is advantageous

because the skip is ordinarily part of some other instruction. Since the skip requires no

separate instruction word, no execution time is spent on the branch condition except when

that condition is satisfied. This arrangement conserves not only execution time, but memory

capacity as well. Since the jump (like the skip) may be conditional, the arrangement simpli­

fies inclusion of compound branch conditions.

Another feature that facilitates preparation of branched programs is the presence of return­

jump instructions in the repertOire. When performance of a subroutine initiated by a main­

program return-jump is completed, main-program operation is automatically resumed at the

point at which it was interrupted.

13

SEARCH OPERATIONS

The computer can search internally stored files at very high speeds. The search identifier

is entered into the Accumulator, and a mask that identifies the key (a one at every key bit

position) is entered in Q. The search consists of a masked comparison that is performed

repeatedly at successive memory addresses until a find (or other terminal condition) is

detected.

HALF-WORD AND FULL-WORD LOGIC

All instructions that procure their operands from memory may select the upper 15 bits, the

lower 15 bits, or the entire 30 bits as the operand. For some purposes, half -word accuracy

is generally sufficient, and this feature can be used to reduce computation time and to double

the effective memory capacity.

EXTERNAL AND INTERNAL PROGRAM INTERRUPTS

Provision is made for the interruption of running programs by events which occur asynchro­

nously with the program •

. External devices may, by placing a Signal on one of 14 External Interrupt lines, interrupt the

normal computer program in the event of a failure in data transmission or even in case of

termination of some normal mode of operation (in case of a tape system, at end of rewind).

Appropriate action is taken by the computer's interrupt program and the normal program is

re-entered at the point at which it was left.

Moreover, interrupts are generated by the I/O section of the computer whenever a buffer,

which has been initiated previously with a monitor imposed upon it, terminates at the end of

the transfer of a given block of data. The interrupt program takes cognizance of the buffer

termination, and the main program is resumed.

16-WORD WIRED AUXILIARY MEMORY

In addition to .the large main memory, a 16-word auxiliary memory is also provided. It is a

wired memory and operates in the nondestructive read-out mode. The auxiliary memory is·

used to contain important instructions or constants. For example, a program-load routine

may be stored there to facilitate rapid changes in the main program and automatic program

recovery_

14

APPENDIX A

REPERTOIRE OF INSTRUCTIONS

AND

PROGRAM TIMING

1. INTRODUCTION

APPENDIX .A

REPERTOIRE OF INSTRUCTIONS

AND

PROGRAM TIMING

This portion of the technical note presents the instruction repertoire for the AN/USQ-20 Unit

Computer. Details presented are limited to the needs of the programmer and list only sym­

boIs, registers, terms, and instruction characteristics pertinent to programming the com­

puter.

As mentioned previously, the AN/USQ-20 Unit Computer is a self-modifying, one-address

computer. Although this means that one reference or address is provided for the execution

of an instruction, this reference can be modified automatically during a programmed sequence.

The references are modified by using the B (index) registers one through seven, which

contain any previously stored constants. To modify the address, the content of a selected

B-register is added to the Operand Designator, y.

A programmed address is coded using octal notation with each octal digit denoting three

binary digits. The instructions are read sequentially from Magnetic Core Storage except

after Jump or Skip instructions.

A-I

A. SYMBOL CONVENTIONS - The following symbols are used throughout the descriptive

material on instructions:

a

(a)

(a)i

(a)f

a n.
(a)n

f

j
~
J
k

~
b

y

Y

Y

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

a register (A, Q, Bn), a memory location Y, or a constant.

content of a.

initial content of a.

final content of a.

the nth bit of a.

the nth bit of the content of a.

Function Code Designator (i29 , ••• , i24)*.

Branch Condition Designator (i23 , ..• , i21)*.

Input/Output Channel Designator (i23 , .•. , i20)*.

Operand Interpretation Designator (i20 , .•. , i1S)*'

Operand Interpretation Designator (i19 , ... , i1S)*'

Index Designator (i
17

, i16 , i15)*.

Operand Designator (i14 , ••• , i
O

)*'

the Operand (regardless of source).
b

y + (B).

1) The operand or address of the operand for the Read portion of an in­

struction or

2) The destination address for the Store portion of an instruction.

(Y) = content of memory address Y.

L(Y)(Q) = bit-by-bit multiplication, logical multiply of Y ,and (Q) • n n

A = A-register or accumulator (30-bit arithmetic register).

B = seven B-registers (15 bits each). B-registers are address-modifying regis-

ters generally used for indexing loops in a program; in addition, B
7

serves

as a repeat counter. (The address modification does not alter the instruc­

tions as stored in memory.) A b or j designator specifies the B-register

, used.

Q = Q-register (30-bit arithmetic register).

U = U-register (30 bits). The U-register holds the instruction word during

execution of an· operation. If address modification is required before execu­

tion, the appropriate J3-register content is added to the lower-order 15 bits

of the U -register before execution.

* in is the nth bit poSition in an instruction.

A-2

P = P-register (15 bits). The P-register is the Program Address Register. This

register holds the address of the current instruction throughout the program

except for Jump instructions where the P-register is cleared and the new

program address is entered.

C = the 14D input/output channels (30 lines each). Channels consist of transmis-

sion lines, therefore they cannot be considered registers. The designator j'
specifies (in octal) the channel used.

Figure A-I illustrates bit configuration of instruction designators in two forms. Form I

pertains to input/output instructions; Form n pertains to all other instructions.

Form I - Input/Output Instructions

f j k b y

r_---.A-...... --___ '~~~,,---------.A-...... ------..,,

Form n - All Other Instructions

Note: J = Cn
input/output channel

Figure A-I. Bit Allocation of Instruction Designators

Table A-I is a list of the computer's entire repertoire of instructions; each instruction is

listed by its function code number and name.

Table A-2 indicates the time, in microseconds, required to execute each instruction.

A-3

TABLE A-I. INSTRUCTION REPERTOIRE - AN/USQ-20 UNIT COMPUTER

CODE FUNCTION NAME CODE FUNCTION NAME

00 (Fault Interrupt) 40 ENTER LOGICAL PRODUCT

01 RIGHT SHIFT Q 41 ADD LOGICAL PRODUCT

02 RIGHT SHIFT A 42 SUBTRACT LOGICAL PRODUCT

03 RIGHT SHIFT AQ 43 COMPARE MASKED

04 COMPARE 44 REPLACE LOGICAL PRODUCT

05 LEFT SHIFT Q 45 REPLACE A + LOGICAL PRODUCT

06 LEFT SHIFT A 46 REPLACE A - LOGICAL PRODUCT

07 LEFT SHIFT AQ 47 STORE LOGICAL PRODUCT

10 ENTER Q 50 SELECTIVE SET

11 ENTER A 51 SELECTIVE COMPLEMENT

12 ENTER Bn 52 SELECTIVE CLEAR

13 EXTERNAL FUNCTION ON Cn 53 SELECTIVE SUBSTITUTE

14 STORE Q 54 REPLACE SELECTIVE SET

15 STORE A 55 REPLACE SELECTIVE COMPLEMENT

16 STORE Bn 56 REPLACE SELECTIVE CLEAR

17 STORE Cn 57 REPLACE SELECTIVE SUBSTITUTE

20 ADD A 60 JUMP (Arithmetic)

21 SUBTRACT A 61 JUMP (Manual)

22 MULTIPLY 62 JUMP ON Cn ACTIVE INPUT BUFFER

23 DIVIDE 63 JUMP ON Cn ACTIVE OUTPUT BUFFER

24 REPLACE A + Y 64 RETURN JUMP (Arithmetic)

25 REPLACE A - Y 65 RETURN JUMP (Manual)

26 ADD Q 66 TERMINATE Cn INPUT BUFFER

27 SUBTRACT Q 67 TERMINATE Cn OUTPUT BUFFER

30 ENTER Y + Q 70 REPEAT

31 ENTER Y - Q 71 B SKIP ON Bn

32 STORE A + Q 72 B JUMP ON B
n

33 STORE A - Q 73 INPUT BUFFER ON Cn (without Monitor mode)

34 REPLACE Y + Q 74 OUTPUT BUFFER ON Cn (without Monitor mode)

35 REPLACE Y - Q 75 INPUT BUFFER ON Cn (with Monitor mode)

36 REPLACE Y + 1 76 OUTPUT BUFFER ON Cn (with Monitor mode)

37 REPLACE Y - 1 77 (Fault Interrupt)

A-4

f

01

02

03

04

05

06

07

10

11

12

13

S 14

S 15

S 16

S 17

20

21

22

23

R 24

R 25

26

27

>
I

U1

j =0, 1
NORMAL

k=0,4 k=7

9.6/12.8 11.2/14.4

9.6/12.8 11.2/14.4

11.2/16 11.2/16

12.8 11.2

9.6/12.8 9.6/12.8

9.6/12.8 9.6/12.8

11.2/16 11.2/16

11.2 9.6

11.2 9.6

8.0 9.6

12.8 -
12.8 -
.12.8 -
12.8 -
- -

11.2 9.6

11.2 9.6

- -
- -

12.8 11.2

12.8 11.2

k#),4,7 k=O,4

16

16

16/20.8

16 9.6

16

16

16/20.8

16 8.0

16 8.0

16 4.6

24

16 6.4

16 6.4

16 6.4

16

16 8.0

16 8.0

35.2 -112
I

112

24 -
24 -
16 9.6

16 9.6

j=O
REPEAT
k=7 k~0,4, 7

8.0 11.2

R

R

R

6.4 9.6 R

6.4 9.6

6.4 9.6

- 9.6

- 9.6

- 9.6

6.4 9.6

6.4 9.6

- 16

- 16

8.0 11.2

8.0 11.2

f

30

31

S 32

S 33

R 34

R 35

R 36

R 37

40

41

42

43

R 44

R 45

R 46

S 47

50

51

52

53

R 54

R 55

R 56

R 57

j =0,1
NORMAL

k=O,4 k=7

11.2 9.6

11.2 9.6

12.8 -
12.8 -
- -
- -
- -

- -

11.2 9.6

11.2 9.6

11.2 9.6

11.2 9.6

- -
- -
- -

12.8 -
12.8 11.2

12.8 11.2

12.8 11.2

12.8 11.2

- -
- -
- -
- -

k#),4,7

16

16

16

16

24

24

24

24

16

16

16

16

24

24

24

16

16

16

16

16

24

24

24

24

k=0,4

8

8

6.4

6.4

-
-
-

-

8

8

8

8

-
-
-

6.4

9.6

9.6

9.6

9.6

-
-
-
-

j=O
REPEAT

k=7

6.4

6.4

-
-
-
-
-

-

6.4

6.4

6.4

6.4

-
-
-

-

8.0

8.0

8.0

8.0

-
-
-
-

k#),4,7

9.6

9.6

9.6

9.6

16

16

16

16

9.6

9.6

9.6

9.6

16

16

16

9.6

11.2

11.2

11.2

11.2

16

16

16

16

f

60

61

62

63

64

65

66

67

70

71

72

73

74

75

76

77

k=O,4

8

8

8

8

12.8/19.2

12.8/19.2

8

8

8

9.6

8

16

16

16

16

-

j=O
NORMAL

k=7

9.6

9.6

11.2/17.6

11.2/17.6

-

-
9.6

11.2

9.6

-
-
-
-

-

S - STORE

R - REPLACE

Note:

k~0,4, 7

16

16

16

16

16/24

16/24

16

16

16

16

16

24

24

24

24

-

All times are in microseconds

B. FUNCTION CODE DESIGNATOR - f

The f designator (6 bits) appears in bit-positions 29 through 24 of the U-register, or an in­

struction, designating the function to be performed by that instruction. All values of f other

than 00 and 77 are defined in the instruction list. The two codes 00 and 77 are fault conditions

which, if executed, will cause a fault interrupt. This results in a jump to address 00014, the

Fault Entrance Register or address 00014 of wired memory depending on the Automatic Re­

covery Switch setting (see page A-IO).

C. BRANCH CONDITION DESIGNATOR - j

The j designator (3 bits) appears in bit-positions 23, 22, and 21 of the U -register, or an in­

struction; it is used in a majority of the instructions (see Figure A-1, Form II). There are

three primary categories of use: 1) for Jump and Skip determination, 2) for B-register

specification, and 3) for repeat status interpretation. Appropriate interpretations of the j

designator are listed either below or under the descriptions of the individual instructions.

For those instructions in which the j designator has no special interpretation, it specifies

the condition under which the next sequential instruction in the program will be skipped. This

provides for branching from a sequence without executing a Jump instruction, as would nor­

mally occur if a Skip condition were not satisfied.

Skip of the next sequential instruction is determined by the following rules in all instructions

except 04, 12, 13, 16, 17, 26, 27, 60 through 67, and 70 through 76.

j = 0:

j = 1:

j = 2:

j = 3:

j = 4:

j = 5:

j = 6:

j = 7:

Do not skip the next instruction.

Skip the next instruction.

Skip the next instruction if (Q) is positive.

Skip the next instruction if (.Q) is negative.

Skip the next instruction if (A) is zero. *
Skip the next instruction if (A) is nonzero.

Skip the next instruction if (A) is positive.

Skip the next instruction if (A) is negative.

When the branch (Skip or Jump) condition involves the sign of the quantity in A or Q, the

evaluation examines the Sign bit of these quantities; hence, a positive zero (all zeros) is

considered a positive quantity, and a negative zero (all ones) is considered a negative

quantity.

* Positive zero

A-6

D. INPUT/OUTPUT CHANNEL DESIGNATOR - J
The l' designator (4 bits) appears in bit-positions 23, 22, 21, and 20 of the U-register, or an

input/output instruction, specifying the C -channel for the instruction (see Figure A-I, Form I).

Bit 23 assumes a value of eight, bit 22 a value of four, bit 21 a value of two, and bit 20 a value

of one; thus the J designator provides accessibility to the 14 (decimal) input/output channels

numbered 0.15
8

,

Instructions 13, 17, 62, 63, 66, 67, 73, 74, 75, and 76 use the J designator configuration.

E. OPERAND INTERPRETATION DESIGNATOR - k or 'k
The k designator (3 bits) [or 'k designator (2 bits~ appears in bit-positions 20, 19, and 18 of

"" the U-register, or an instruction; a k designator appears only in bit-positions 19 and 18,

since bit 20 is a portion of the J designator. (See Figure A-I, Forms I and n.) Instructions

13, 17, 62, and 73 through 76 use the 'k deSignator configuration since they perform input/

output activities and require a J deSignator for channel specification.

1\
The k and k deSignators control operand interpretation. Those instructions which read an

operand but do not replace it after the arithmetic is performed are designated Read instruc­

tions. Those instructions which do not read an operand but store one are deSignated Store

instructions. Instructions which both read and store operands are classified as Replace

instructions.

1\ .
The various values of k or k affect the operand in the following list except where otherwise

noted under individual instruction descriptions.

1) Read instructions (01 through 13, 20 through 23, 26, 27, 30, 31, 40 through 43, 50

through 53, and 60 through 76):

1\
k or k :: 0: Y = OIS; YL = Y. u

1\
k or k ~ 1: Y = OIS; YL = (Y)L' u

1'\
Y L = (Y)u' k or k = 2: Y = OIS;

U
1'\

k or k = 3: Y= Y.

k = 4: Y = same bits as Y 14; YL = Y. u

k = 5: Y = same bits as Y 14; YL = (Y)L' u

k = 6: Y = same bits as Y 29 ; Y L = (Y)u' u

k = 7: Y= (A).

A-7

For instructions 23, 52, and 53, k = 7 is not used.
~

For instruction 13, only k = 3 is permitted.
~

For instructions 73 through 76, k = 2 is not used.

2) store instructions (14 through 16, 17, 32, 33, and 47):

. *
k = 0: store (A or BJ) in Q •

k = 1: store (AL , QL' or B
j
) in YL , leaving (Y)u undisturbed.

k = 2: Store (AL , QL' or B
j
) in Yu ' leaving (Y)L undisturbed.

k or ~ = 3: Store (A, Q, Cj
, or sJ) in Y.

k = 4: store (Q or Bj) in A**.

k = 5: store complement of (AL , QL' or B
j
) in Y L' leaving (Y)u

undisturbed.

k =6: store complement of (AL , QL' or B
j
) in Yu ' leaving (Y)L

undisturbed.

k = 7: store complement of (A, Q, or B
j
) in Y. (storing the complement

of Bj is the same complement as for a 30-bit register.)
A-

For instruction 17, only k= 3 is permitted.

3) Replace instructions (24, 25, 34 through 37, 44 through 46, and 54 through 57):

k = 0: Not used.

k = 1: Read portion - Yu = O's; YL = (Y)L.

store portion - stores (AL, QL' or B
j
) in YL' leaving (Y)u

undisturbed.

k = 2: Read portion - Y = O's; YL = (Y) • u u

Store portion - stores (AL , QL' or B
j
) in Yu' leaving (Y)u

undisturbed.

k = 3: Read portion - Y = Y.

Store portion - stores (A, Q, or B
j
) in Y.

k = 4: Not used.

k = 5: Read portion - Yu = same bits at Y 14; YL = (Y)L.

Store portion - stores (AL, QL' or ~) in YL' leaving (Y)u

undisturbed.

* A 14000 00000 instruction complements (Q).
** A 15040 00000 instruction complements (A).

A-8

k = 6: Read portion - Yu = same bits as Y29 ; YL = Yu•

Store portion - stores (AL , QL' or ~) in Yu ' leaving (Y)L

undisturbed.

k = 7: Not used.

The Repeat instruction requires special interpretation when followed by a Replace instruc­

tion. See details on page A-22, Instruction No. 70, REPEAT.

F. INDEX DESIGNATOR - b

The b designator (3 bits) appears in bit-positions 17, 16, and 15 of the U-register, or an in­

struction (see Figure A-I), specifying which of the B-registers, if any, will be used to modify.

the Operand Designator, y, to form Y = y + (Bb). This operation employs an additive ac-

. cumulator; hence, a quantity consisting of all zero cannot result unless the bits of both the
. b

Operand Designator, y, and (B) are all zeros.

Effect of the various values of b, the Index Designator, is summarized:

b = 0: Do not modify y.

b = 1:
1 Add (B) to y 15 (modulo 2 -1).

b = 2: Add (B2) to 15 y (modulo 2 -1).

b = 3: Add (B3) to 15 y (modulo 2 -1).

b = 4: Add (B4) to 15 y (modulo 2 -1).

b = 5: Add (B5) to 15 y (modulo 2 -1).

b = 6: Add (B6) to 15 y (modulo 2 -1).

b = 7:
7 Add (B) to y 15 (modulo 2 -1).

G. OPERAND DESIGNATOR - y

The y designator (15 bits) appears in bit-positions 14 through 0 of an instruction (see Figure

A-I). The operand or address of the operand, Y, is relative to y since Y = y + (Bb).

H. MAGNETIC CORE MEMORY ASSIGNMENT

The main Magnetic Core memory consists of 32,768 addressable storage locations. Seventy­

three of these locations are special-purpose and provide eight distinct functions:

A-9

1) The starting address from MASTER CLEAR

2) The Fault Entrance Register

3) The Real-Time Clock Register

4) External Interrupt Entrance Register for each channel

5) Internal Interrupt Entrance Register for each input channel

6) Internal Interrupt Entrance Register for each output channel

7) Input Buffer Control Register for each input channel

8) Output Buffer Control Register for each output channel.

Each of the other memory locations are used for:

1) Instruction word storage

2) Data storage.

I. WIRED MEMORY - The AN/USQ-20 Unit Computer contains 16Dwords of semipermanent

wired storage. Programming this memory area requires a process of wiring-in the desired

instructions. The semipermanent feature of these storage locations prevents accidental

destruction of program instructions contained therein since entries cannot be made via main

memory.

An Input Bootstrap routine occupies this memory, and its execution is controlled by the Auto­

matic Recovery Switch.

J. AUTOMATIC RECOVERY - In the event of a fault condition (encountering either a 00

or 77 function code), the Automatic Recovery Switch directs computer activity. This switch

has three positions: 1) DOWN, 2) NEUTRAL, and 3) UP. Action resulting from these posi­

tions is:

1) DOWN position - This causes manual execution of the Bootstrap routine. Computer

action begins at address 0 of Wired Memoryand executes the Bootstrap routine when

this switch is depressed. (A MASTER CLEAR should precede this operation.)

2) NEUTRAL pOSition - This causes an Interrupt to address 00014 of Main Memory

on a fault condition. Action continues as programmed.

3) UP pOSition - This causes an Interrupt to address 14 of Wired Memory on a fault

condition. This results in automatic execution of the Bootstrap routine.

A-10

K. BUFFER MODES - The ANjUSQ-20 Unit Computer provides two modes of bufferPtg:

1) with monitor and 2) without monitor.

Buffering with monitor transfers werds sequentially, starting at a given initial address

through a given terminal address, on the specified input or output channel. The computer

continues execution of program instructions during the buffer process. Completion of the

buffering process causes an Internal Monitor Interrupt to the Internal Interrupt Entrance

Register assigned to the input or output channel. (See subsection H, MAGNETIC CORE

* MEMORY ASSIGNMENT.) This register should contain a RETURN-JUMP instruction • (See

Instructions 75 and 76.)

Buffering without the monitor transfers words sequentially, starting at a given initial address

through a given terminal address, on a specified input or output channel. The computer con­

tinues execution of program instructions during the buffer process. No monitor interrupt will

occur. (See Instructions 73 and 74.)

2. LIST OF INSTRUCTIONS

This section lists the repertoire of instructions used with the ANjUSQ-20 Unit Computer.

Common usage of these instructions is also included; no attempt is made to indicate more

sophisticated use.

01 RIGHT SHIFT Q

This. instruction shifts (Q) to the right·y bit positions. The higher-order bits are re­

placed with the original sign bit as the word is shifted. Only the lower-order six bits

. of. Yare recognized for this instruction. The higher-order 24 bits are ignored.

Example of right shift in Q: Y = 2

Content of Q Content of Q

(Q). (positive) = o 1 0 1 (Q). (negative) = 1 010
1 1

First shift 001 0 First shift 1 101

Second shift 000 1 Second shift 1 1 1 0

02 RIGHT SHIFT A

This instruction shifts (A) to the right Y bit pOSitions. The higher-order bits are re­

placed with the original sign bit as the word is shifted. Only the lower-order six bits of

* Suggested instruction for the Internal Interrupt Register is:
650nn nnnnn - Exit to an Interrupt subroutine for remedial action. This subroutine ends

with a 601nn instruction which clears the Interrupt mode, then returns
control to the main routine.

A-II

Yare recognized for this instruction. The higher-order 24 bits are ignored. The over­

all operation is analogous to the example given in the foregoing instruction.

03 RIGHT SHIFT AQ

This instruction shifts (A) and (Q) as one 60-bit register. The shift is to the right Y bit

positions with the lower-order bits of A shifting into the higher-order bit positions of Q.

The higher-order bits of A are replaced with the original sign bit as the word is shifted.

Only the lower-order six bits of Yare recognized for this instruction. The higher­

order 24 bits are ignored.

Example of right shift in AQ: Y = 2

Content of AQ Content of AQ

(AQ). (positive) = 0 1 0 1 0 0 1 1 (AQ). (negative) = 10001010
1 1

First shift 00101001 First shift 1 1 000 101

Second shift 00010100 Second shift 1 1 1 000 1 0

04 COMPARE

This instruction compares the Signed value of Y with the signed value of (A) and/or (Q).

It does not alter either (A) or (Q). The Branch Condition DeSignator, j, is interpreted in

a special way for this instruction as listed below:

j = 0:

j = 1:

j = 2:

j = 3:

j = 4:

j = 5:

j = 6:

j = 7:

Do not skip the next instruction.

Skip the next instruction.

Skip the next instruction if Y is less than, or equal to, (Q).

Skip the next instruction if Y is greater than (Q).

Skip the next instruction if (Q) is greater than, or equal to Y, and Y is

greater than (A).

Skip the next instruction if Y is greater than (Q) or if Y is less than, or

equal to, (A).

Skip the next instruction if Y is less than, or equal to, (A).

Skip the next instruction if Y is greater than (A).
•

05 LEFT SHIFT Q

* This instruction shifts (Q) circularly to the left Y bit positions. The lower-order bits

* Maximum shift count permitted is 59D places.

A-12

are replaced with the higher-order bits as the word is shifted. Only the lower-order six

bits of Yare recognized for this instruction. The higher-order 24 bits are ignored.

Example of left circular shift in Q: (Y) = 2

Content of Q Content of Q

(Q). (positive) = 0011 (Q). (negative) = 1100
1 1

First shift o 11 0 First shift 100 1

Second shift 1100 Second shift 0011

06 LEFT SHIFT A

* This instruction shifts (A) circularly to the left Y bit positions. The lower-order bits

are replaced with the higher~order bits as the word is shifted. Only the lower-order six

bits of Yare recognized for this instruction. The higher-order 24 bits are ignored. The

over-all operation is analogous to the example given· in the foregOing instruction.

07 LEFT SHIFT AQ

This instruction shifts (A) and (Q) as one 60-bit register. The shift is circular to the

* left Y bit positions. The lower-order bits of A are replaced with the higher-order bits

of Q and the lower-order bits of Q are replaced with the higher-order bits of A. Only

the lower-order six bits of Yare recognized by this instruction. The higher-order 24

bits are ignored..

Example of left circular shift in AQ: Y = 2

Content of AQ

(AQ). (positive) = 0 1 0 1 0 0 1 1
1

First shift 10100110

Second shift 01001101

10 ENTER Q

Clear the Q-register. Then transmit Y to Q.

11 ENTER A

Clear A. Then transmit Y to A.

12 ENTER B
n

Content of AQ

(AQ). (negative) = 10001011
1

First shift 00010111

Second shift 00101110

Clear B-register j. Then transmit the lower-order 15 bits of· Y to B-register j. The

higher-order 15 bits of Yare ignored in this instruction. The Branch Condition Desig-

* Maximum shift count permitted is 59Dplaces.

A-13

nator, j, is used to specify the selected B-register for this instruction and is not avail­

able for its normal function.

13 EXTERNAL FUNCTION ON c!'
J = 0 or 1. Interrogate the two bits connected to the input-active deSignator (flip-flops)

on an interconnected computer. If the interconnected computer's input buffer is active,

skip the next instruction. If the interconnected computer's input buffer is not active,

execute the next instruction. There are no External Function lines on CO or C
1

. k = 3

is required for timing. When J f; 0 or 1, transmit Y, the External Function, over the

channel specified by t. Only k = 3 is permitted.

14 STORE Q

Store (Q) at storage address Y as directed by the Operand Interpretation Designator, k.

If k = 0, complement (Q). If k = 4, store in A.

15 STORE A

store (A) at storage address Y as directed by the Operand Interpretation Designator, k.

If k = 4, complement (A). If k = 0, store in Q.

16 STORE II'

Store a 30-bit quantity whose lower-order 15 bits correspond to the content of B-register

j and whose higher-order 15 bits are zero at storage address Y as directed by the

Operand Interpretation Designator, k. The Branch Condition Designator, j, is used to

specify the selected B-register for this instruction and is not available for its normal

function.

17 STORE d'

Store the content of the C-channel specified by J at storage address Y. An Input Acknowl­

edge Signal is then sent on the C -channel. Only 'k = 3 is permitted.

20 ADD A

Add Y to the previous content of the Accumulator.

21 SUBTRACT A

Subtract Y from the previous content of the Accumulator.

22 MULTIPLY

Multiply (Q) times Y leaving the double-length product in AQ. If the factors are con­

sidered as integers, the product is an integer in AQ.

A-14

The Branch Condition Designator, j, is interpreted prior to end correction permitting

sensing of a product with (A)f = O. If j equal 4, a skip of the next instruction is made

when (A)f = O. When (A)f F +0, a double-length product has been formed with significant

bit(s) in the Accumulator; however, if a Skip does occur for j = 4, the Multiply instruc­

tion can be re-executed with' the same operand and with j = 2 or 3 to determine if Q29

contains a significant bit (a on~ of the product.

In this instruction, k = 7 should not be used.

23 DIVIDE

Divide (AQ) by Y leaving the quotient in the Q-register and the remainder in the A

register. The remainder bear s the same sign as the quotient. In this instruction, k = 7

should not be used.

NOTE:

If a DIVIDE FAULT condition exists, no Maintenance Console indication is

given; however, by coding each Divide instruction with j = 3, a program

test for the DIVIDE FAULT is automatic. With this selection of j, a Skip

of the next instruction occurs if a DIVIDE FAULT exists. The Skip should

be made to a Jump instruction which provides a remedial means of noting

or correcting the error. Therefore, the instruction which follows the Divide

instruction should have its j = 1 in order to preclude the Jump instruction

whenever the "Divide Sequence" culminates in a correct answer.

A DIVIDE FAULT can also be detected if the Divide instruction is executed

with j = 2. In this case, a correct answer is indicated when a Skip occurs.

24 REPLACE A + Y

Add (Y) to the previous content of A. Store .(A) at storage address Y.

25 REPLACE A - Y

Subtract (Y) from the previous content of A. Then store (A) at storage address Y.

26 ADD Q

Interchange (A) and (Q). Then add Y to (A). Interchange (A) and (Q). The content of A

is undisturbed by this instruction. The Branch Condition Designator, j, has special

meaning in this instruction as in instruction 27.

27 SUBTRACT Q

Interchange (A) and (Q). Then subtract Y from (A). Interchange (A) and (Q). The con-

A-15

tent of A is undisturbed by this instruction~ The Branch Condition Designator, j, has

special meaning in this instruction as listed below.

NOTE:

In instructions 26 and 27 the Branch Condition Designator, j, has the

following meaning:

30 ENTER Y + Q

j = 0:

j = 1:

j = 2:

j = 3:

j = 4:

j = 5:

j = 6:

j = 7:

Do not skiP the next instruction.

SkiP the next instruction.

Skip the next instruction if (A) is positive.

SkiP the next instruction if (A) is negative.

SkiP the next instruction if (Q) is zero.

SkiP the next instruction if (Q) is nonzero.

SkiP the next instruction if (Q) is positive.

SkiP the next instruction if (Q) is negative.

Clear A. Then transmit (Q) to A. Then add y to (A).

31 ENTE~ Y - Q

Clear A. Then transmit (Q) to A. Then subtract Y from (A). Finally, complement (A).

32 STORE A + Q

Add (Q) to the previous content of A. Then store (A) at storage address Y as directed by

the Operand Interpretation Designator, k.

33 STORE A - Q

Subtract (Q) from the previous content of A. Then store (A) at storage address Yas

directed by the Operand Interpretation Designator, k.

34 REPLACE Y + Q

Clear A. Thentransmit (Q)toA. Then add (Y) to (A). Then store (A) at storage address Y.

35 REPLACE Y - Q

Clear A. Then transmit (Q) to A. Then subtract (Y) from (A). Then complement (A) and

store at storage address Y.

36 REPLACE Y + 1

Clear A. Then set (A) = 1. Then add (Y) to (A). Then store (A) at storage address Y.

A-16

37 REPLACE Y - 1

Clear A. Then set (A) = 1. Then subtract (Y) from (A). Then complement (A) and store

at storage address Y.

40 ENTER LOGICAL PRODUCT

Enter in A the bit-by-bit product of Y and (Q).

The j designator is interpreted in a special way for this instruction for the value j = 2

or 3. If j = 2, Skip if the parity of (A)f is even. If j = 3, Skip if the parity of (A)f is

odd.

NOTE:

Even parity = an even number of "ones" in the A-register.

Odd parity = an odd number of "ones" in the A-register.

41 ADD LOGICAL PRODUCT

Add to (A) the bit-by-bit product of Y and (Q).

42 SUBTRACT LOGICAL PRODUCT

Subtract from (A) the bit-by-bit product of Y and (Q).

43 COMPARE MASKED

Subtract from (A) the bit-by-bit product of Y and (Q), and perform the branch point

evaluation for Skip of next sequential instruction as directed by the Branch Condition

Designator, j.

This instruction results in no net change in the content of any operational register. It

provides, through the Branch Condition Designator, j, a comparison of a portion of Y with

(A).

44 REPLACE LOGICAL PRODUCT

Enter in A the bit-by-bit product of (Y) and (Q). Then store (A) at storage address Y.

The j deSignator is interpreted in a special way for this instruction for the values j = 2

or 3. If j = 2, Skip if the parity of (A)f is even. If j = 3, Skip if the parity of (A)f is

odd.

NOTE:

Even parity = an ev.en number of "ones" in the A-register.

Odd parity = an odd number of "ones" in the A-register.

A-17

45 REPLACE A + LOGICAL PRODUCT

Add to (A) the bit-by-bit product of (Y) and (Q). Then store (A) at storage address Y.

46 REPLACE A - LOGICAL PRODUCT

Subtract from (A) the bit-by-bit product of (Y) and (Q). Then store (A) at storage address

Y.

47 STORE LOGICAL PRODUCT

Store in address Y the bit-by-bit product of (A) and (Q) as directed by the Operand Inter­

pretation DeSignator, k.

50 SELECTIVE SET

Set the individual bits of A to one corresponding to ones in Y leaving the remaining

bits of A unaltered.

51 SELECTIVE COMPLEMENT

Complement the individual bits of A corresponding to ones in Y leaving the remaining

bits of A unaltered.

52 SELECTIVE CLEAR

Clear the individual bits of A corresponding to ones in Y leaving the remaining bits of

A unaltered.

In this instruction, k = 7 should not be used.

53 SELECTIVE SUBSTITUTE

'Set the individual bits of A with bits of Y corresponding to ones in Q leaving the remain­

ing bits of A unaltered.

In this instruction, k = 7 should not be used.

54 REPLACE SELECTIVE SET

Set the individual bits of A to one corresponding to ones in (Y) leaving the remaining

bits of A unaltered. Then store (A) at storage address Y.

55 REPLACE SELECTIVE COMPLEMENT

Complement the individual bits of A corresponding to ones in (Y) leaving the remaining

bits of A unaltered. Then store (A) at storage address Y.

A-18

56 REPLACE SELECTIVE CLEAR

Clear individual bits of A corresponding to ones in (Y) leaving the remaining bits of A

unaltered. Then store (A) at storage address Y.

57 REPLACE SELECTIVE SUBSTITUTE

Clear individual bits of A corresponding to ones in Q leaving the remaining bits of A

unaltered. Then form the bit-by-bit product of (Y) and (Q),and set ones of this product

in corresponding bits of A leaving the remaining bits of A unaltered. Then store (A) at

storage address Y.

60 JUMP (Arithmetic)

This instruction clears the Program Address Register, P, and enters a new program

address in P for certain conditions of either the A- or Q-register content. The Branch

Condition DeSignator, j, is interpreted in a special way for this instruction and thus

determines the conditions under which a Jump in program address occurs. If the Jump

condition is not satisfied, the next sequential instruction in the current sequence is exe­

cuted in a normal manner. If the Jump condition is satisfied, as listed below, then Y

becomes the address of the next instruction and the beginning of a new program sequence.

j = 0:

j = 1:

j = 2:

j = 3:

j = 4:

j = 5:

j = 6:

j = 7:

61 JUMP (Manual)

No jump. Set Interrupt Enable to remove interrupt lockout, thus

clearing Bootstrap and Interrupt modes. Continue with current pro­

gram sequence.

Execute jump. Set Interrupt Enable to remove· interrupt lockout,

thus clearing Bootstrap and Interrupt modes.

Execute jump if (Q) is positive.

Execute jump if (Q) is negative.

Execute jump if (A) is zero.

Execute jump is (A) is nonzero.

Execute jump if (A) is positive.

Execute jump if (A) is negative.

This instruction clears the Program Address Register, P, and enters a new program

address in P for certain conditions of manual JUMP key selections. The Branch Con­

dition DeSignator, j, is interpreted in a special way for this instruction and thus deter­

mines the conditions under which a jump in program address occurs. If the Jump condi­

tion is not satisfied, the next sequential instruction in the current sequence is executed

A-19

in a normal manner. H the Jump condition is satisfied, as listed below, then y becomes

the address of the next instruction and the beginning of a new program sequence.

Program execution may be stopped by certain STOP selections on execution of this in­

struction. The Branch Condition Designator, j, specifie s which key selections are eff ec -

tive.

j =
j =
j =
j =
j =
j =
j =
j =

0:

1:

2:

3:

4:

5:

6:

7:

Execute jump regardless of key selections.

Execute jump if JUMP 1 is selected.

Execute jump if JUMP 2 is selected.

Execute jump if JUMP 3 is selected.

Execute jump. Stop computation.

Execute jump. Stop computation if STOP 5 is selected.

Execute jump. Stop computation if STOP 6 is selected.

Execute jump. Stop computation if STOP 7 is selected.

62 JUMP ON d' ACTIVE INPUT BUFFER

This instruction clears the Program Address Register, P, and enters a new program ad­

dress in P for certain input buffer conditiO~S on the channel designated by J. H the buffer

is active, the Jump condition is satisfied; then Y becomes the address of the next in­

struction. H the buffer in inactive, the Jump condition is not satisfied. The next sequen-

" tial instruction in the current sequence is executed in the normal manner. k = 0, 1, 2, or

3 is permitted.

63 JUMP ON C
n

ACTIVE OUTPUT BUFFER

This instruction clears the Program Address Register, P, and enters a new address in P

for certain output buffer conditions on the channel designated by J'. H the buffer is active!

the Jump condition is satisfied; then Y becomes the address of the next instruction. H

the buffer is inactive, the Jump condition is not satisfied. The next sequential instruction
1\

in the current sequence is executed in the normal manner. k = 0, 1, 2, or 3 is permitted.

64 RETURN JUMP (Arithmetic)

This instruction executes a Return-Jump sequence for certain conditions of either the A­

or Q-register content. The Branch Condition Designator, j' is interpreted in a special

way for this instruction and determines the conditions under which the Return-Jump

sequence is executed. H the Return-Jump condition is not satisfied, the next sequential

instruction in the current sequence is executed in a normal manner. H the Return-Jump

condition is satisfied, as listed below, the following sequence is performed.

A-20

Store (P) + 1 in the lower half of memory address Y. Then jump to Y + 1.

j = 0:

j = 1:

j = 2:

j = 3:

j = 4:

j = 5:

j = 6:

j = 7:

No action; continue with the current program sequence.

Execute return jump.

Execute return jump if (Q) is positive.

Execute return jump if (Q) is negative.

Execute return jump if (A) is zero.

Execute return jump if (A) is nonzero.

Execute return jump if (A) is positive.

Execute return jump if (A) is negative.

65 RETURN JUMP (Manual)

This instruction executes a Return Jump sequence for certain conditions of manual key

selections. The Branch Condition DeSignator, j, is interpreted in a special way for

this instruction and determines the conditions under which the Return Jump sequence is

executed. H the Return Jump condition is not satisfied, the next sequential instruction in

the current sequence is executed in a normal manner. H the Return Jump condition is

satisfied, as listed below, the following sequence is performed.

Store (P) + 1 in the lower half of memory address Y. Then jump to Y + 1.

j = 0: Execute return jump regardless of key selections.

j = 1: Execute r~turn jump if JUMP 1 is selected.

j = 2: Execute return jump if JUMP 2 is selected.

j = 3: Execute return jump if JUMP 3 is selected.

j = 4: Execute return jump. Then stop computation.

j = 5: Execute return jump. Stop computation if STOP 5 is selected.

j = 6: Execute return jump. Stop computation if STOP 6 is selected.

j = 7: Execute return jump. Stop computation if STOP 7 is selected.

66 TERMINATE cf INPUT BUFFER

This instruction terminates the input buffer on channel J. No Input Buffer Monitor Inter­

rupt will occur.

The Operand Interpretation DeSignator, ~, the Index DeSignator, b, and the Operand

Designator, Y, bits are not translated for this instruction.

67 TERMINATE en OUTPUT BUFFER

This instruction terminates the output buffer on channel j. No Output Buffer Monitor

Interrupt will occur.

A-21

/'\
The Operand Interpretation Designator, k, the Index Designator, b, and the Operand

Designator, Y, bits are not translated for this instruction.

70 REPEAT

Clear B 7 and transmit the lower 15 bits of y to B 7. If Y is nonzero, transmit (j) to r

(designator register), thereby initiating the repeat mode. If Y is zero, skip the next

instruction.

REPEAT MODE - The repeat mode executes the instruction immediately following the

Repeat instruction y times; B 7 contains the number of executions remaining throughout

the repeat mode.

If no Skip condition is met for the repeated instruction, the repeat mode terminates. The

instruction following the repeated instruction is then executed. If the Skip condition for

the repeated instruction is met, the repeat mode terminates, and the instruction follow­

ing the repeated instruction is skipped.

7 Following the repeat mode termination, the count remains in B. In no way does the

repeat mode alter a repeated instruction as stored in memory.

The three lower-order bits of the rdesignator (from j of ~nstruction 70) affect operand

indexing as follows:

r = 0:

r = 1:

r = 2:

r = 3:

r = 4:

r = 5:

A-22

Do not modify the operand address of the repeated instruction after

each individual execution.

Increase the operand address of the repeated instruction by one after

each execution of the repeated instruction.

Decrease the operand address of the repeated instruction by one after

each execution of the repeated instruction.

Repeat the initial B-register modification of the repeated instruction

before each execution.

Do not modify the operand address of the repeated instruction after

each individual execution. If the repeated instruction is a Replace in­

struction, the operand address is incremented by (B6) for the store

portion of the Replace Instruction.

Increase the operand address of the repeated instruction by one after

each execution of the repeated instruction. If the repeated instruction

r = 6:

r = 7:

NOTE:

is a Replace instruction, the operand address is incremented by (B6)

for the store portion of the Replace instruction.

Decrease the operand address of the repeated instruction by one after

each execution of the repeated instruction. If the repeated instruction

is a Replace instruction, the operand address is incremented by (B6)

for the store portion of the Replace instruction.

Repeat the initial B-register modification of the repeated instruction

before each execution. If the repeated instruction is a Replace instruc­

tion, the operand address is incremented by (B6) for the store portion

of the Replac e instruction.

Instruction 70 j designator establishes the repeat mode r designator

since j is transmitted to r.

71 B SKIP ON B
n

If the content of B-register j is equal to Y, skip the next instruction in the current se­

quence and proceed to the instruction following. Clear B-register j.

If the content of B-register j is not equal to Y, proceed to the next instruction in the

sequence in a normal manner. Increase the content of B-register j by one.

The Branch Condition Designator, j, is used to deSignate the selected B-register in this

instruction and is not available for its normal function. Only the lower-order 15 bits of

Yare used in the comparison described in the preceding paragraph.

72 B JUMP ON II"
If the content of B-register j is nonzero execute a jump in program address to address

Y. Reduce the content of B-register j by one.

If the content of B-register j is zero, proceed to the next instruction in a normal manner.

Do not alter the content of B-register j.

The Branch Condition Designator, j, is used to designate the selected B-register in this

instruction and is not available for its normal function. If the Jump condition is satisfied,

then the lower-order 15 bits of Y become the address of the next instruction and the be­

ginning of the new program sequence. The higher-order 15 bits of (Y) cannot be used in

this instruction.

A-23

73 INPUT BUFFER ON C" (without MONITOR Mode)

This instruction establishes an input buffer via input buffer channel l' to Magnetic Core

Storage with an initial storage address Y. Subsequent to this instruction, individual trans­

fers will be executed at a rate determined by an external device. The storage address

initially established by this instruction will be advanced by one preceding each individual

transfer. The next current address will be maintained throughout the buffer process in

the lower-order 15 bits of Magnetic Core Storage address 00100 plus 1'. This mode will

continue until it is superseded by a subsequent initiation or termination of an input buffer

via the same input channel or until the higher-order half and the lower-order half of

storage address 00100 plus J contain equal quantities, whichever occurs first.

1\
This instruction is implemented as follows: If k = 3, store (Y) in storage location 00100

plus j. If ~ = 1, store the lower-order 15 bits of (Y) in the lower-order half of storage

location 00100 plus J leaving the higher-order half undisturbed. If ~ = 0, store Y in the

lower-order half of storage location 00100 plus J leaving the higher-order half undis-
1\

turbed. Proceed to the next instruction. k = 2 is not permitted.

74 OUTPUT BUFFER ON C" (without MONITOR Mode)

This instruction establishes an output buffer via output buffer channel J from initial

storage address Y in Magnetic Core Storage. Subsequent to this instruction, the individual

transfers will be executed at a rate determined by an external device. The storage ad­

dress initially established by this instruction will be advanced by one preceding each

individual transfer. The next current address will be maintained throughout the buffer

process in the lower-order 15 bits of Magnetic Core Storage address 00120 plus J. This

mode will continue until it is superseded by a subsequent initiation or termination of an

output buffer via the same output channel or until the higher-order half and the lower­

order half of storage address 00120 plus J contain equal quantities, whichever occurs

first.
1\

This instruction is implemented as follows: If k = 3, store (Y) in storage location 00120

plus J. If ~ = 1, store the lower-order 15 bits of (Y) in the lower-order half of storage

location 00120 plus l' leaving the higher-order half undisturbed. If ~ = 0, store Y in the

lower-order half of storage location 00120 plus t leaving the higher-order half undis-
1\

turbed. Proceed to the next instruction. k = 2 is not permitted.

75 INPUT BUFFER ON C" (with MONITOR Mode)

This instruction establishes an input buffer via input buffer channel l' to Magnetic Core

Storage with an initial storage address Y. Subsequent to this instruction, the individual

A-24

transfers will be executed at a rate determined by an external device. The storage ad­

dress initially established by this instruction will be advanced by one preceding each

individual transfer. The next current address will be maintained throughout the buffer

process in the lower-order 15 bits of Magnetic Core Storage address 00100 plus t This

mode will continue until it is superseded by a subsequent initiation or termination of an

input buffer via the same input channel or until the higher-order half and the lower-order

half of storage address 00100 plus t contain equal quantities, whichever occurs first.

Initiation of this input buffer selects the input channel t and establishes a buffer monitor

on input channel J. A Monitor Interrupt follows completion of the buffering operation:

(00100 + j)u = (00100 + j)L •

1\
This instruction is implemented as follows: If k = 3, store (Y) in storage location 00100

plus t If k' = 1, store the lower-order 15 bits of (Y) in the lower-order half of storage
1\

location 00100 plus J leaving the higher-order half undisturbed. If k = 0, store Y in the
1\

lower-order half of storage location 00100 plus t Proceed to the next instruction. k = 2

is not permitted.

76 OUTPUT BUFFER ON d" (with MONITOR Mode)

This instruction establishes an output buffer via output buffer channel J from initial

storage address Y in Magnetic Core Storage. Subsequent to this instruction, the individual

transfers will be executed at a rate determined by an e nal device. he storage in­

itially established by this instruction will be advance by one preceding each individual

transfer. The next current address will be maintai ed throughout the buffer process in

the lower-order 15 bits of Magnetic Core Storage a4dress 00120 plus J. This mode will

continue until it is superseded by a subsequent initiati~ termination of an output buffer

via the same output channel or until the higher-order half and the lower-order half of

storage address 00120 plus j contain equal quantities, whichever occurs first. Initiation

of this output buffer selects the output channel j and establishes a buffer monitor on out­

put channel j. A Monitor Interrupt follows the completion of the buffering operation:

(00120 + j)u = (00120 + j)L·

1\
This instruction is implemented as follows: If k = 3, store (Y) in storage location 00120

plus j. If ~ = 1, store the lower-order 15 bits of (Y) in the lower-order half of storage

location 00120 plus j leaving the higher-order half undisturbed. If 'k = 0, store Y in the

lower-order half of storage location 00120 plus j leaving the higher-order half undis-
1\

turbed. Proceed to the next instruction. k = 2 is not permitted.

A-25

APPENDIX B

INPUT/OUTPUT SPECIFICATION

FOR THE

AN/USQ-20 UNIT COMPUTER

1. INTRODUCTION

A. General

APPENDIX B

INPUT /OUTPUT SPECIFICATION

FOR THE

AN/USQ-20 UNIT COMPUTER

Communication with the AN/USQ-20 Unit Computer is carried on in a 30-bit parallel mode.

The Unit Computer is provided with 14 input channels, which are divided into 12 normal and

2 special input channels, and 14 output channels, which are divided into 12 normal and 2 special

output channels. External Function Codes are carried over the same 30 lines as are used

for output data, but the control signals used with External Function Codes are carried on dif­

ferent lines to indicate the nature of the signals on the 30 lines.

The two special input channels and two special output channels differ from the normal chan­

nels only in timing and control of data transfer. All input/output channels maintain the same

electrical specifications; minor modification makes the special input channels -identical to

the normal input channels. Peripheral equipment which incorporates the features necessary

for inter-computer data transfer may also use the special output channels.

Note that all references, in this Appendix of the technical note, to input or output are made

from the standpoint of the computer; that is, input is input to the computer and output is

output from the computer.

B. Control Communication

The AN/USQ-20 Unit Computer is designed to use a d-c level input/output system. Signals

are d-c levels which may be changed upon interchange of control information. Signals may

exist for microseconds or days, depending on the nature of the particular task.

It should be noted that the control lines are carried in the same cables as the data lines and

have the same voltage levels. Hence, delay times, rise and fall times, and storage times

are similar.

C. Data and Control Signals

Each input and each output channel has its own cable associated with it (28 cables in all).

Each cable has 30 data lines plus 3 of a possible 4 control lines, as listed in Table B-1.

B-1

TABLE B-1. CONTROL SIGNALS IN INPUT AND OUTPUT CABLES

NORMAL SPECIAL NORMAL SPECIAL
INPUT CABLE INPUT CABLE OUTPUT CABLE OUTPUT CABLE

Input Data Request Input Data Request Output Data Request Ready

Input Acknowledge Input Acknowledge Output Acknowledge Resume

Interrupt Interrupt (not used External Function (Not Used)
in inter-computer
communication)

(Not Used) Input Buffer Active (Not Used) Input Buffer
(used only in inter- Active
computer
communication)

Figure B-1 shows the Unit Computer receiving input from Equipment I and sending output to

Equipment II. Of course in most cases, both input and output cables will be used on the same

peripheral equipment. Only normal output channels are used for output to peripheral equip­

ment. Any input channel may be used for input from peripheral equipment. Note the direc­

tion of information flow. The Data Request signals are always sent from the peripheral

eqUipment to the computer. The Acknowledge signals are always sent from the computer to

the peripheral eqUipment. The third set of control signals, called Interrupt in the input cable

and External Function in the output cable is always sent in the same direction as data flow.

OUTPUT DATA_REQUEST LIN~ "",-INPUT DATA REQUEST LINE

" '\ - / '\

.. EXTERNAL FUNCTION LINE INTERRUPt LINE \ ... , , ...
I '. I \

PERIPH. OUTPUT I ACKNOWLEDGE LINE INPUT ACKNOWLEDGE LINE .. PERIPH .
EQUIP-

... , - I UNIT I I
..

EQUIP-
MENT

30 DATA LINES
COMPUTER I J ME NT

II - ""'- 30 DATA LINES I \ I ... \
14----\---~---- ~----+---f----
~---~\--f---- ~---_\- --/-----... \. / .. \. /_ "'_'

OUTPUT CABLE INPUT CABLE
(t OF 12 NORMAL CHANNELS) (I OF 14)

Figure B-1. Cable Connections

D. Sequence of Events

The sequence of events for each of four cases of communication between the AN/USQ-20 Unit

Computer and peripheral equipmeht follows:

B-2

1) Normal Input sequence for data transfer to Unit Computer from Equipment I (Buffer

mode):

a) Computer initiates input buffer for given channel.

b) Peripheral equipment places data word on 30 data lines.

c) Peripheral equipment sets the Input Data Request line to indicate that it has data

ready for transmission.

d) Computer detects the Input Data Request.

e) Computer samples the 30 data lines at its own convenience.

f) Computer sets the Input Acknowledge line, indicating that it has sampled the

data.

g) Peripheral equipment senses the Input Acknowledge line.

h) Peripheral equipment drops the data lines and the Input Data Request line.

Steps b) through h) of this sequence are repeated for every data word until the num­

ber of words specified in the input buffer have been transferred.

2) Sequence for Peripheral Equipment I when transmitting an Interrupt code to computer:

a) Peripheral equipment places the Interrupt code on the 30 data lines.

b) Peripheral equipment sets the Interrupt line.

c) Computer detects the Interrupt.

d) Computer samples the 30 data lines.

e) Computer sets the Input Acknowledge line, indicating that it has sampled the

data.

f) Peripheral equipment senses the Input Acknowledge line.

g) Peripheral equipment drops the Interrupt code from the data lines and the Inter­

rupt line.

Note that. the Input Acknowledge is the computer response to either an Input Data

Request or to an Interrupt. Thus it is not permissible for a peripheral equipment

to interrupt until its Input Data Request has been answered, since it would have no

way of knowing which signal was being acknowledged.

3) Normal output sequence for data transfer from Unit Computer to Equipment n
(Buffer mode):

a) Computer initiates output buffer for given channel.

b) Peripheral equipment sets the Output Data Request line indicating that it is in a

condition to accept data.

B-3

c) Computer detects Output Data Request at its convenience.

d) Computer places information on the 30 data lines.

e) Computer sets the Output Acknowledge line, indicating that data are ready for

sampling.

f) Peripheral equipment detects the Output Acknowledge.

g) Peripheral equipment may drop Output Data Request anytime after detecting

Output Acknowledge.

h) Peripheral equipment samples the 30 data lines.

i) Computer drops Output Acknowledge and data lines.

Steps b) through i) of this sequence are repeated for every data word until the num­

ber of words specified in the output buffer have been transferred.

4) Sequence for Unit Computer when transmitting an External Function Code to Equip­

ment II.

a) Computer places the External Function Code on the 30 data lines.

b) Computer sets the External Function line.

c) Peripheral equipment detects the External Function line.

d) Peripheral equipment samples the 30 data lines.

e) Computer drops External Function Code on the 30 data lines and the External

Function line.

E. Use of SPecial Output Channels

Communications between two computers take place using the two special output channels re­

served for this purpose. They are connected into a special input channel on the receiving

computer. Note that while either a normal or a special input channel may be used for input

from peripheral equipment, a special input channel is required for inter-computer communi­

cation.

- I INPUT BUFFER ACTIVE
.... I

READY I INPUT DATA REQUEST ..
:

r

COMPUTER RESUME INPUT ACKNOWLEDGE COMPUTER
A - I B

SPECIAL
I

SPECIAL
OUTPUT 30 DATA LINES .. INPUT

CHANNEL ---------~------------~ CHANNEL

~-------~-------------. ,

Figure B-2. Connections from Computer A to Computer B

Figure B-2 illustrates the connections for Computer A to transmit data to Computer B. Another

cable using a special output channel of Computer B and a special input channel of Computer A

B-4

would be necessary if Computer B were going to transmit data to Computer A.

Sequence of events for normal transfer of data from Computer A to Computer B (Buffer Mode):

a) Computer B sets Input Buffer Active Signal.

b) Computer A detects Input Buffer Active signal.

c) Computer A places data on 30 data lines.

d) Computer A sets Ready which becomes Input Data Request in Computer B.

e) Computer B detects Input Data Request.

f) Computer B samples 30 data lines.

g) Computer B sets Input Acknowledge line (returned to Computer A as Resume).

h) Computer A senses Resume line.

i) Computer A drops data lines and Ready line.

Steps c) through i) of this sequence are repeated for every data word. Input Buffer Active

remains energized durin~ e1'1tire transfer of block of words.

F. Timing

Data lines, when transmitting data from computer to equipment, must be stable before being

sampled. Hence, a 4.4-microsecond fixed time delay exists between the computer's loading

of an output register and energizing of the Acknowledge signal. Adverse tolerance build-up,

causing recognition of Acknowledge Signal less than a microsecond after data have reached

recognition state, is illustrated in Figure B-3.

+2

en 0
~ -2
o
2. -4
w
~ -6

~ -8
o
>-10

-12

-14

-16

TIME (,uSEC)

o 2 4 10

r---+----+----+-~:_:7jt::t~=:::c~==:! -I.OV

-13.0V IE---- 4.4,uSEC --..,)01

DATA SIGNAL INPUT
AMPLIFIER OUTPUT

ACKNOWLEDGE

10-90% DATA TRANSITION TIME

IS 6,uSEC

10-90% ACKNOWLEDGE TRANSITION
TIME IS 3,uSEC

*ACKNOWLEDGE DELAY
I,uSEC

ACKNOWLEDGE SIGNAL INPUT
AMPLIFIER
OUTPUT

*This delay is due to integration of the input amplifier which is 1.5 J.lsec ± 0.5/.lsec.

Figure B-3. Effect of Tolerances on Timing

B-5

1) Input Timing Considerations

The Input Data Request signal indicates to the Unit Computer that data have been

placed on the 30 data lines. The Input Data Request (or Interrupt) must be main­

tained on the lines until an Input Acknowledge is received. Note that there is no

maximum limit on the time the Input Data Request may stay up until being acknowl­

edged. The data lines must remain stable as long as the Input Data Request is up.

\'----J/

,',~~',~:~:: ~E~~S~ :N~ -V
(OR INTERRUPT LINE) :

1\ /
I 1

I

~fLSEC MINIMUM---.J
r-NO MAXIMUM ------,

UOfLSEC MINIMU.M-1
.- NO MAXIMUM--------'"

11111---------- _________ ...!... _,...--_____ ~
I I
I I

11011 INPUT ACKNOWLEDGE LINE
FROM COMPUTER

I :
I I
I I I
I I I

B-6

TIME ~

II I 9.2fLSEC I
14-"--14.8fLSEC --"'~~t--- MIN I MUM--+I

NOTE: ALL TRANSITION TIMES
ARE 3fLSEC MINIMUM,
6fLSEC MAXIMUM

Figure B-4. Timing of Input Signals

The Input Acknowledge indicates to peripheral equipment that its 30 data lines have

been sampled. The Input Acknowledge signal will be set for a fixed period of 14.8

microseconds. Peripheral equipment must be capable of detecting, as an Input

Acknowledge, a signal which may exist in a stable one state for as little as 8.8

microseconds, allowing for the maximum permissible rise time of 6 microseconds.

On sensing the Input Acknowledge, the Input Data Request (or Interrupt) may be

dropped to the zero state anytime, but it must be dropped to the zero state at least

10 microseconds before another Input Data Request can be initiated. Note that the

time relationships are such that peripheral equipment wishing to transmit data at a

maximum rate could legitimately reset the Input Data Request before the previous

Input Acknowledge had dropped to the zero state; however, the Input Acknowledge

will always be returned to the zero state before being reset to the one state. Mini­

mum time for which it will be dropped to the zero state is 9.2 microseconds. Allow­

ing for the maximum permissible fall time of 6 microseconds, this leaves 3.2 micro­

seconds minimum time in the zero state. These timing relationships are illustrated

in Figure B-4.

2) Output Timing Considerations (Normal Output)

Peripheral equipment must set the Output Data Request line, indicating that it is in a

condition to accept data from the Unit Computer. Data will be available to the periph­

eral equipment for a time interval which may be as short as 23:4 microseconds if

the computer is performing output operations at a maximum rate. Data lines need

not be cleared to the zero state before being reset to the one state. The time which

may elapse between the request and the data being placed on the line is not fixed, but

may vary from 16 microseconds upward, depending upon the computer program, the

priority of the particular channel, and the data rates of the other peripheral equip­

ment.

j.--- 101-'- SEC ----1
" " I MINIMUM I

I-~UT~UT I,....-------------~\ ill
"0" DATA , "

REQUEST II
LINE

L!.Sj.LSEC MINIMU_M ... J._.__--- 23.4uSEC ___ ~.I
1- NO MAXIMUM i r

I I MINIMUM :

::ol',~:A~A~::-------!1 1\11

I I '-----------

I I
I I

'- 4.4 ~J __ 14.8 _----+.1 4.2 J
').LSECl fLSEC, fLSEC~

"1"---- - ------- -- -~- :MINrIM~.~fLSEC--I
: : : MINIMUM I

"0" OUTPUT ACKNOWLEDGE LINE- I I

TIME-----+

I I I
I I I r- 8.8j.LSEC ·1· 9.2fLSEC~

MINIMUM MINIMUM

NOTE: ALL TRANSITION TIMES
ARE 3fLSEC MINIMUM,
SfLSEC MAXIMUM

Figure B-5. Timing for Normal Output Signals

The Unit Computer will put the Output Acknowledge on the line a nominal 4.4 micro­

seconds after placing the data on the line. Timing relationships of normal output

signals are illustrated in Figure B-5.

B-7

The peripheral equipment must sample the data lines within 14.8 microseconds after

the Output Acknowledge has been sent. The peripheral equipment must be capable of

recognizing, as an Output Acknowledge, a signal which may exist in the stable one

state for as little as 8.8 microseconds, allowing for a maximum permissible rise

time of 6 microseconds. In view of the future desirability of speeding up the output

cycle, it is recommended that all new equipment be designed to operate with an

Output Acknowledge of 10 microseconds duration which would exist in a stable one

state for a minimum of 4 microseconds.

The Unit Computer will maintain data on the lines for a minimum of 4.2 microseconds

after it starts to drop the Output Aclmowledge.

Output Data Request may be dropped anytime after senSing rise of the Output Ac­

knowledge; however, the Unit Computer will not recognize another Output Data Re­

quest unless the line is dropped to the zero state for at least 10 microseconds.

Notice that again, as in the case of input, the timing relationships allow peripheral

equipment wishing to transmit data at a maximum rate to reset the Output Data Re­

quest before the Output Acknowledge for the previous request has been dropped to the

zero state. In the worst case, Output Acknowledge will be dropped to the zero state

for a minimum of 9.2 microseconds, which, allowing for worst case fall time, gives

3.2 microseconds in the zero state before being reset.

I. 23.4j.LSEC -I
I MINIMUM I

':~::~XTERNAL FUNC~ON ---- V \ /
CODE (ON DATA LINES) I I '--__ ..J

I I
I I

~ 4.4 ..r-- 14.8fLSEC ----4·~I·_4S~cf
.. II r-fL SEC I IMfLlNIMUM 1---------------:-: i r-;~~~~I
"0" EXTERNAL FUNCTION LINE : : :

I I :

B-8

TIME -

I I I
~ 8.8fL SEC _~_L~ __ 9.2fLSEC __ -.I_I
~ MINIMUM r MINIMUM

NOTE: ALL TRANSITION TIMES
ARE 3fLSEC MINIMUM,
6fLSEC MAXIMUM

Figure B-6. Timing for External Function Output

3) Output Timing Considerations (External Function Output)

External Function output timing is singular in that no response is sent by the periph­

eral equipment. The Unit Computer places the External Function Code on the 30

data lines and follows 4.4 microseconds later with the External Function signal. The

External Function remains up for a period of 14.8 microseconds. The data lines re­

main energized a minimum of 4.2 microseconds beyond dropping of the External

Function. The External Function line will be dropped to the zero state for at least

9.2 microseconds before being reset. Allowing for the maximum permissible fall

time of 6 microseconds, this leaves a minimum of 3.2 microseconds in the zero_state.

Figure B-6 illustrates these timing relationships.

B-9

TECHNICAL NOTE NO. 244

DISTRIBUTION LIST

BuShips Code 687E

NEL Code 1800

NEL Code 2800

St. Paul Central File

San Diego Central File

A. P. Hendrickson

G. G. Chapin

L. D. Findley

C. W. Glewwe

R. A. Hileman

C. J. Homan

M. M. Koschmann

G. E. Pickering

J. A. Kershaw

F. E. McLeod

R. P. Fischer

H. K. Smead

T. O. Robinson

C. J. Haggerty

(100)

(20)

(6)

(250)

(50)

(2)

(2)

Contracts Department (2)

Bureau of Ships Technical Representative - St. Paul

'r7 'Lt" (\ -r- E- I j ~ '''-J
Approved: V,~ v}->-{./

F. E. McLeod
Asst. Department Manager
Computer Design

Itt
. A. Kershaw

Asst. Department Manager
Peripheral Equipment

Approved: ~ /J ~
G. G. Chapin

Approved: a (l. ~-,,--J
A. P. Hendrickson

Asst. Department Manager
Systems Development

Manager
Naval Tactical Data System

NTDS
ANjUSQ"-20

JP & RJP

UNIT COMPUTER
'1<eft~ ~ 11t4t1ut~

j -DESIGNATORS
i-DESIGNATORS

(4 bits)

JP RJP JP RJP
j 60 64 61 65

0 (No Jump)* (Uncond. Jump)

I (Uncond. Jump)* KEY I

2 o POS KEY 2

3 o NEG KEY 3

4 A ZERO STOP

5 A NOT Zero STOP ~

6 A POS STOP 6

7 A NEG STOP 7
'!' 62 j 63 j J

0-15g Cn ACTIVE IN Cn ACTIVE OUT

i· Occu pies 4 bit positions .and represents Cn where n may be 0 -15a
The instruction word assumes the format:

f j t b y

-01
~

k-DESIGNATORS
(2 bits)

A
EX-FCT STR-Cn JP IN- en • OUT - Cn

k 13 17 62 63 73 75 74 76

0 'not used' 'not used' , blank' , blank'

I
,
not used'

,
not used' L L

*60 Clears interrupt a bootstrap modes •• 2 'not used' 'not used' U
,
not used'

3 W W W W

* i-DESIGNATORS
COM-A,-O.-AO DIV ADD-O .SUB-O ENT-LP. RPL- LP RPT

j 04 23 26 27 40 44 70

0 (no skip) (no skip) (no skip) (no skip) (no mod.) ~ Y of N E = Y
I (unconditional skip) SKIP SKIP SKIP ADV ly of NE =Y+l

2 Y LESS I Y s (0) NO Over Flow A POS EVEN parity BACK :Yof NE=Y-I

3 Y MORE : Y > (Ol Over Flow A NEG ODD parity ADDB : Y of NE = Y + 8b

4 YIN :(O)~ Y and Y >(A) A ZERO o ZERO A ZERO Rpl.lnc. :Yof NE=Y[+86]

5 Y OUT :(0)< Y or Y s(A) A NOT Zero o NOT Zero A NOT Zero ADVR I Y of NE=Y+I [+86]

6 V.LESS : Y s (A) A POS o POS A POS BACK R : Y of NE = Y -1[+ 86]

.J

.J

.J
7 Y MORE: Y > (A) A NEG o NEG A NEG ADDBR IYof NE=Y+8b [+86l .J

.J 86 Increment If Nt is RPL class, Increments Y address for the store portion of the replace.
NE· - Next execution

NORMAL
j-DESIG~

(Not applicable on
* or ...)

j Skip Code
0 (no skip)

I SKIP
2 o POS

3 o NEG -4 A ZERO
5 A NOT Zero
6 A POS

7 A NEG

k
0
I

2
3
4

5
6

7

NORMAL
k-DESIGNATORS

READ STORE REPLACE

Code Origin Code Dest. Code Origin
'blank' UL 0 0 'not used' -

L Ml L ML L Ml
U Mu U Mu U Mu
W M W M W M

X XUL A A 'not used' -
LX XML CPL Cpl ML LX XML
UX XMu CPU Cpl Mu UX XMu

A A CPW Cpl M Inot used' -

Dest.

-
M,,:
Mu
M

-
ML
Mu

-

LEGEND
M - Memory word (30 bits)
ML- Lower half memory word
Mu- Upper half memory word
X - Sign bit extended
Cpl- Complement

A - A-register

o - O-register
U - U-register

NTDS
AN/USQ-20

01 Right SHift. Q •••••••••• Shift (a) Right by Y
02 Right SH itt • A •••• ~ ••••• Shift (A) Right by Y
03 Right SHift. AQ ••••••••• Shift (AO) Right by Y
04* COMpare • A,. Q, • AQ •••••• Sense (Hi (A)i = (Alf
05 left SH ift • Q. • • • • • • • • • • Shift (a) left by Y
06 left SH ift • A •••••••••• Shift (A) Left by Y
07 left SHift. AQ •••••••••• Shift (AO) Left by Y
10 ENTer· Q •• o. • 0 • • • • 0 • •• Y -. 9
II ENTer. A ••••• 0 •••• 0 • o. Y -. A .
12 ENTer. an • 0 0 • 0 0 0 •• 0 • •• Y -. BJ
13" EXternal - FunCTion .Cn •••• 0 • j~o or 1.(Y)-'CI.i=O or I. See Nate.
14 SToRe· Q .0 ••••• 0 ••••• 0 (a) -'Yi k=O.O'-.o
15 SToRe. A .0 •••••••• 0 ••• (A). -. Yi k=4. A'-'A
16 SToRe. an 0 • 0 0 0 •••••••• (B~-' Y
17" SToRe. C~ 0 •• 0 0 0 ••••••• (C)j Y
20 ADD. A 0 0 • •• • • • • • • • • • • (A) + Y -. A
21 SUBtract. Ao ••••••••••• (A) - Y ~ A
22 MUltiply ••••••••••••••• (a) Y -. AO
23* DIVide •••••••••••••••• (AO)/ Y -. O. R Af
24 RePlace • A+Y •••••••••• (A)+(Y)-+ ya A
25 RePlace • A -Yo ••••••••• (A) -(Y)-+ Y 8 A

UNIT

26: ADD. Q .: ••••••••••••• (a) ~ Y -+0. (A~i~(A)f} j interpretation
27 SUBtract Q ••••••••••• (a) Y O.(A). -(A)f reversed for AaO
30 ENTer • Y + Q. • • • • • • • • •• Y +(0) A.
31 ENTer. Y - Q. • • •• • • •• •• Y - (a) A
32 SToRe. A+ Q ••••••••••• (A) +(0) -. Y 8 A
33 SToRe. A- O ••••••••••• (A)-(O)-' Y a A -
34 RePlace. Y+Q •••••••••• (Y) +(0)-' Y 8 A
35 RePlace. Y - Q. • •• •• • • •• (Y) - (0) Y 8 A
36 RePlace. Y + I. • • • • • • • • • (y) + I -. Y a A
37 RePlace. Y -I • • • • • • • • • • (Y) - I Y 8 A
40* ENTer • lP** •••••••••• L[Y(0)] A;j=2.even pority.]=3.odd porlty
41 ADD. lP •••••••••••••• L[Y(O)]+(A) ~A
42 SUatract. LP ••••• 0 0 o ••• (A) - LfY(O)] A
43 COMpare • MASK •••••• 0 •• (A) - L Y(O)]sENSE ij),(A)+L[Y(O)j;(A)j=(A)f
44* RePLoce • lP 0 ••••• 0 .0 0 0 L(Y)(O)~Y aA. j=2,even parityd=3, odd parity
45 RePlace • A+LPo .0000000 L(Y)(0)+(A)+Y8A
46 RePlace • A -LPo • 0 0 0 0 • 0 0 (A) - L(Y)(O) + Y8A
47 SToRe • lP 0 0 0 0 0 •• 0 0 • o. UA)(O) -. Yi (A)i = (A)f
50 SELective • SET 0 0 0 0 0 0 o. SET (Aln FOR Y n = I
51 SElective • CpA * • 0 • • • •• COM PLEM ENT (Aln FOR Y n = I
52 SElective • CL* * • 0 0 0 0 • 0 CLEAR (A)n FOR Y n = I
53 SELective • SU** 0 00.000 Yn-+(AlnFOR (O)n=1

COMPUTER
;e~ tJ/ 'J~

54 Replace SElective • SET •• 0 • 0 SET (A)n FOR Mn = I, -+ Y 8 A
55 Replace SElective • CPo ••••• COMPLEMENT (A)n FOR (Y)n = I Y 8A
56 Replace SElective • CL ••• 0 • 0 CLEAR (A)n FOR (Y)n = I. -+ Y a A
57 RePlace SElective • SUo ••••• (Y)n'-' (Aln FOR (O)n =1. -+ Y
60 JumP (arithmetic). o ••••• 0 }Jump to Y if j-c~ditio.n is satisfied.
61 JumP (manual) 0 0 • o •• 0 0 •• (see JP 8 RJP· I -Designators)
62" dum P (if. en has ACTIVE Jump to Y If C l' input }

INput buffer) • 0 •••••• buffer active.;<\, (see JP 8 RJP
63" JumP (if - en has ACTIVE . Jump to Y if cj output j - Designators)

OUTput buffer) ••••••• buffer active
64 Return JumP (arithmetic) .0 •• }Jump to Y+I and P+I-'YL if j condition is
65 Return JumP (manual). • • • •• satisfied (see JP a RJP j - Designators)
66" TERMinate • en -INPUT •••••• Terminate input buffer on channel j
67" TERMinate - Cn - OUTPUT 0 ••• Terminate output buffer on channel j
70* RePeaT ••• 0 • 0 0 0 0 ••• 0 •••• Ex~cute N I Y times ..
71 aSKip. an ••••• 0 ••••• 0 •• (B)I =Y, skip NI and clear (B)', (B)' ~ Y.

Advance Bj and read N I '.
72 aJump. a~ ••••••••.•••• (B)i =0. read NI i (B)i ~ 0, (B)j-I and

jump to address Y n il' A ,..

73" INput. C (without monitor model. Buffer IN on CJi k =3. (Y) (00100 + j h
k = 1.(Y)~(OOIOo+j)li

A k =0, Y -. (00100+ j)l'
74" OUTput- c"(without monitor mode). Buffer OUT on C'i k = 3, (Y). (OOI20+j) i

E = I, (Y)L" (00120+ ill i
... k =0, Y (00120+j)l'

75" INput - ca (with-MONITOR mode). Buffer IN on C' with man.
k = 3. (Y) -'(00100+ n i
k = I, (Y)l (OOIOO+ ilLi
k =0, Y -+ (OOIOO+j)l'

~ mono inter. at 00040 + j
76" OUTputeCn(with-MONITOR mode). Buffer OUT an CJ with mono

k = 3, (Y) (00120+ j)i

- NO - OPeration •••••••••••••••••

k = I, (Y)L (00120+j)Li
k =0, Y ~(00120+j)L.
mon. inter. at 00060 + j

- Clear-A,-O,- s",or Y ••••••••••••
- Com Plement - A or - Q •••••••••••• } .

- Remove Interrupt lockout • • • • • • • • •• CS-I Mono - codes

- Remove Interrupt Lockout and JumP-Y ••
- TEST-CO or -CI ••••••••••••••••

**lP - Logical Product CP - Complement SU - Substitute Cl -Clear !} Special j a k Designators (see opposite side of card) Y - The operand. Y or (Y)

NOTE: Skip NI if other Computer (on channel 0 or I) ha~ input buffer active. Exec'Jte twice.

	0001
	0002
	0003
	001
	002
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	A-00
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	A-19
	A-20
	A-21
	A-22
	A-23
	A-24
	A-25
	B-00
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	C-01
	C-02

