














































































Example of right shift in AQ: Y = 2 

Content of AQ Content of AQ 

(AQ}j (positive) =01010011 (AQ)i (negative) = 10001010 
First shift 00101001 First shift 11000101 
Second shift 00010100 Second shift 11100010 

04 COMPARE 

This instruction compares the signed value of Y with the signed value of (A) and jor (Q). It does 
not alter either (A) or (Q). The Branch Condition Designator, j, is interpreted in a special way 
for this instruction as listed below: 

= 0: Execute the next instruction. 
j = 1: Skip the next instruction. 
j = 2: Skip the next instruction if Y is less than, or equal to, (Q). 
j = 3: Skip the next instruction if Y is greater than (Q). 
j = 4: Skip the next instruction if (Q) is greater than, or equal to Y, and Y is greater than (A). 
j = 5: Skip the next instruction if Y is greater than (Q) or if Y is less than, or equal to, (A). 
j = 6: Skip the next instruction if Y is less than, or equal to, (A). 
j = 7: Skip the next instruction if Y is greater than (A). 

05 LEFT SHIFT Q 

This instruction shifts (Q) circularly to the left Y bit positions*. The lower-order bits are replaced 
with the higher-order bits as the word is shifted. Only the lower-order six bits of Yare recognized 
for this instruction. The higher-order 24 bits are ignored. 

Example of left circular shift in Q: (Y) = 2 

Content of Q Content of Q 

(Q)i (positive) = 0011 (Q)i (negative) = 1100 
First shift 0110 First shift 100 1 
Second shift 1100 Second shift 0011 

06 LEFT SHIFT A 

This instruction shifts (A) circularly to the left Y bit positions. * The lower-order bits are replaced 
with the higher-order bits as the word is shifted. Only the lower-order six bits of Yare recognized 
for this instruction. The higher-order 24 bits are ignored. The over-all operation is analogous to 
the example given in the foregoing instruction. 

07 LEFT SHIFT AQ 

This instruction shifts (A) and (Q) as one 60-bit register. The shift is circular to the left Y bit 
positions. * The lower-order bits of A are replaced with the higher-order bits of Q and the lower­
order bits of Q are replaced with the higher-order bits of A. Only the lower-order six bits of Yare 
recognized by this instruction. The higher-order 24 bits are ignored. 

*Maximum shift count permitted is 59 places. 

A-8 



Example of left circular shift in AQ: Y = 2 

Content of AQ Content of AQ 

(AQ)i (positive) =01010011 (AQ)i (negative) = 10001011 
First shift 10100110 First shift 00010111 
Second shift 01001101 Second shift 00101110 

10 ENTER Q 
Clear the Q-register. Then transmit Y to Q. 

11 ENTER A 

Clear A. Then transmit Y to A. 

12 ENTER Bj 

Clear B-register j. Then transmit the lower-order 15 bits of Y to B-register j. The higher-order 
15 bits of Yare ignored in this instruction. The Branch Condition Designator, j, is used to specify 
the selected B-register for this instruction and is not available for its normal function. 

13 EXTERNAL FUNCTION ON cj 
t = 0 or 1. Interrogate the two bits connected to the input-active designator (flip-flops) on an 
interconnected computer. If the interconnected computer's input buffer is active, skip the next 
instruction. If the interconnected computer's input buffer is not active, execute the next instruction. 
There are no External Function lines on Co or Cl.~ = 3 is required for timing. When'f r!= 0 or 1, 
transmit Y, the External Function, over the channel specified by t Only ~ = 3 is permitted. 

14 STORE Q 
Store (Q) at storage address Y as directed by the Operand Interpretation Designator, k. If k = 0 
complement (Q). If k = 4, store in A. 

15 STORE A 

Store (A) at storage address Y as directed by the Operand Interpretation Designator, k. If k = 4, 
complement (A). If k = 0, store in Q. 

16 STORE Bj 

Store a 30-bit quantity whose lower-order 15 bits correspond to the content of B-register j and 
whose higher-order 15 bits are zero at storage address Y as directed by the Operand Interpretation 
Designator, k. The Branch Condition Designator, j, is used to specify the selected B-register for 
this instruction and is not available for its normal function. 

17 STORE Cj 

Store the content of the C-channel specified by tat storage address Y. An Input Acknowledge 
signal is then sent on the C-channel. Only~ = 3 is permitted. 

20 ADD A 

Add Y to the previous content of the Accumulator. 

*Instruction 17 is intended for use in the computer's reply to an interrupt. It is not synchronized with the input buffering 
process and cannot be used in the repeat mode. Successive iterations of instruction 17 must be programmed with a 
suitable time delay between iterations, e.g., a 12000 00000 instruction. 

A-9 



21 SUBTRACT A 

Subtract Y from the previous content of the Accumulator. 

22 MULTIPLY 

Multiply (Q) times Y leaving the double-length product in AQ. If the factors are considered as 
integers, the product is an integer in AQ. 

The Branch Condition Designator, j, is interpreted prior to sign correction * permitting sensing of 
a product with (A)r = o. If j equal 4, a skip of the next instruction is made when (A)f = O. When 
(A)f ~ +0, a double-length product has been formed with significant bites) in the Accumulator; 
however, if a Skip does occur for j =4, the Multiply instruction can be re-executed with the same 
operand and with j = 2 or 3 to determine if Q29 contains a significant bit (a one) of the product. 

In this instruction, k = 7 should not be used. 

23 DIVIDE 

Divide (AQ) by Y leaving the quotient in the Q-register and the remainder in the A register. The 
remainder bears the same sign as the quotient. In this instruction, k = 7 should not be used. 

NOTE: 

An overflow indicates that the answer is not correct. Overflow occurs upon division by positive or 
negative zero or when the quotient exceeds the Q-register (29 bits plus sign). 

In instruction 23 the Branch Condition Designator, j, has the following meaning: 

j = 0: Execute the next instruction. 
j = 1: Skip the next instruction unconditionally. 
j = 2: Skip the next instruction if overflow has not occurred. 
j = 3: Skip the next instruction if overflow has occurred. 
j = 4: Skip the next instruction if (A) is zero (no remainder). 
j = 5: Skip the next instruction if (A) is non-zero (remainder exists). 
j = 6 or 7 should not be used. 

24 REPLACE A+Y 

Add (A) to the previous content of A. Store (A) at storage address Y. 

25 REPLACE A - Y 

Subtract (Y) from the previous content of A. Then store (A) at storage address Y. 

26 ADD Q 
Interchange (A) and (Q). Then add Y to (A). Interchange (A) and (Q). The content of A is un­
disturbed by this instruction. The Branch Condition Designator, j, has special meaning in this 
instruction as in instruction 27. 

27 SUBTRACT Q 
Interchange (A) and (Q). Then subtract Y from (A). Interchange (A) and (Q). The content of A 
is undisturbed by this instruction. The Branch Condition Designator, j, has special meaning in 
this instruction as listed below. 

*The multiplication operation itself is always carried out with positive numbers; negative factors are automatically 
complemented and appropriate corrections are applied to the product. 

A-10 



In instructions 26 and 27 the Branch Condition Designator, j, has the following meaning: 

j = 0: Execute the next instruction. 
j = 1: Skip the next instruction unconditionally. 
j = 2: Skip the next instruction if (A) is positive. 
j = 3: Skip the next instruction if (A) is negative. 
j = 4: Skip the next instruction if (Q) is zero. 
j = 5: Skip the next instruction if (Q) is non-zero. 
j = 6: Skip the next instruction if (Q) is positive. 

= 7: Skip the next instruction if (Q) is negative. 

30 ENTER Y+Q 

Clear A. Then transmit (Q) to A. Then add Y to (A). 

31 ENTER Y-Q 

Clear A. Then transmit (Q) to A. Then subtract Y from (A). Finally, complement (A). 

32 STORE A+Q 

Add (Q) to the previous content of A. Then store (A) at storage address Y as directed by the 
Operand Interpretation Designator, k. 

33 STORE A-Q 

Subtract (Q) from the previous content of A. Then store (A) at storage address Y as directed by 
the Operand Interpretation Designator, k. 

34 REPLACE Y +Q 

Clear A. Then transmit (Q) to A. Then add (Y) to (A). Then store (A) at storage address Y. 

35 REPLACE Y-Q 

Clear A. Then transmit (Q) to A. Then subtract (Y) from (A). Then complement (A) and store 
at storage address Y. 

36 REPLACE Y+1 

Clear A. Then set (A) = 1. Then add (Y) to (A). Then store (A) at storage address Y. 

37 REPLACE Y-1 

Clear A. Then set (A) 
storage address Y. 

1. Then subtract (Y) from (A). Then complement (A) and store at 

40 ENTER LOGICAL PRODUCT 

Enter in A the bit-by-bit product of Y and (Q). 

The j designator is interpreted in a special way for this instruction for the value j = 2 or 3. If 
j = 2, Skip if the parity of (A)f is even. If j = 3, Skip if the parity of (A)f is odd. 

NOTE: 

Even parity means an even number of ONES in the A-register. 
Odd parity means an odd number of ONES in the A-register. 

A-II 



41 ADD LOGICAL PRODUCT 

Add to (A) the bit-by-bit product of Y and (Q). 

42 SUBTRACT LOGICAL PRODUCT 

Subtract from (A) the bit-by-bit product of Y and (Q). 

43 COMPARE MASKED 

Subtract from (A) the bit-by-bit product of Y and (Q), and perform the branch point evaluation 
for Skip of next sequential instruction as directed by the Branch Condition Designator, j. 

This instruction results in no net change in the content of any operational register. It provides, 
through the Branch Condition Designator, j, a comparison of a portion of Y with (A). 

44 REPLACE LOGICAL PRODUCT 

Enter in A the bit-by-bit product of (Y) and (Q). Then store (A) at storage address Y. 

The j designator is interpreted in a special way for this instruction for the values j = 2 or 3. If 
j = 2, Skip if the parity of (A)f is even. If j = 3, Skip if the parity of (A)f is odd. 

NOTE: 

Even parity means an even number of ONES in the A-register. 
Odd parity means an odd number of ONES in the A-register. 

45 REPLACE A+LOGICAL PRODUCT 

Add to (A) the bit-by-bit product of (Y) and (Q). Then store (A) at storage address Y. 

46 REPLACE A-LOGICAL PRODUCT 

Subtract from (A) the bit-by-bit product of (Y) and (Q). Then store (A) at storage address Y. 

47 STORE LOGICAL PRODUCT 

Store in address Y the bit-by-bit product of (A) and (Q) as directed by the Operand Interpretation 
Designator, k. 

50 SELECTIVE SET 

Set the individual bits of A to one corresponding to ones in Y leaving the remaining bits of A un­
altered. 

51 SELECTIVE COMPLEMENT 

Complement the individual bits of A corresponding to ones in Y leaving the remaining bits of A 
unaltered. 

52 SELECTIVE CLEAR 

Clear the individual bits of A corresponding to ones in Y leaving the remaining bits of A unaltered. 

In this instruction, k = 7 should not be used. 

53 SELECTIVE SUBSTITUTE 

A-12 

Set the individual bits of A with bits of Y corresponding to ones in Q leaving the remaining bits 
of A unaltered. 

In this instruction, k = 7 should not be used. If this instruction is to be repeated, k = 0 or k = 4 
should not be used. 



54 REPLACE SELECTIVE SET 

Set the individual bits of A to one corresponding to ones in (Y) leaving the remaining bits of A 
unaltered. Then store (A) at storage address Y. 

55 REPLACE SELECTIVE COMPLEMENT 

Complement the individual bits of A corresponding to ones in (Y) leaving the remaining bits of A 
unaltered. Then store (A) at storage address Y. 

56 REPLACE SELECTIVE CLEAR 

Clear individual bits of A corresponding to ones in (Y) leaving the remaining bits of A unaltered. 
Then store (A) at storage address Y. 

57 REPLACE SELECTIVE SUBSTITUTE 

Clear individual bits of A corresponding to ones in Q leaving the remaining bits of A unaltered. 
Then form the bit-by-bit product of (Y) and (Q), and set ones of this product in corresponding 
bits of A leaving the remaining bits of A unaltered. Then store (A) at storage address Y. 

60 JUMP (Arithmetic) 

This instruction clears the Program Address Register, P, and enters a new program address in P 
for certain conditions of either the A- or Q-register content. The Branch Condition Designator, j, 
is interpreted in a special way for this instruction and thus determines the conditions under which 
a Jump in program address occurs. If the Jump condition is not satisfied, the next sequential 
instruction in the current sequence is executed in a normal manner. If the Jump condition is 
satisfied, as listed below, then Y becomes the address of the next instruction and the beginning 
of a new program sequence. 

j = 0: No jump. Set Interrupt Enable to remove interrupt lockout, thus clearing Bootstrap 
and Interrupt modes. Continue with current program sequence. 

j = 1: Execute jump. Set Interrupt Enable to remove interrupt lockout, thus clearing Boot-
strap and Interrupt modes. 

j = 2: Execute jump if (Q) is positive. 
j = 3: Execute jump if (Q) is negative. 
j = 4: Execute jump if (A) is zero. 
j = 5: Execute jump if (A) is non-zero. 
j = 6: Execute jump if (A) is positive. 
j = 7: Execute jump if (A) is negative. 

61 JUMP (Manual) 

The instruction clears the Program Address Register, P, and enters a new program address in P 
for certain conditions of manual JUMP key selections. The Branch Condition Designator, j, is 
interpreted in a special way for this instruction and thus determines the conditions under which a 
jump in program address occurs. If the Jump condition is not satisfied, the next sequential instruc­
tion in the current sequence is executed in a normal manner. If the Jump condition is satisfied, as 
listed below, then Y becomes the address of the next instruction and the beginning of a new 
program sequence. 

Program execution may be stopped by certain STOP selections on execution of this instruction. 
The Branch Condition Designator, j, specifies which key selections are effective. 

A-13 



j = 0: Execute jump regardless of key selections. 
j = 1: Execute jump if JUMP 1 is selected. 
j = 2: Execute jump if JUMP 2 is selected. 
j = 3: Execute jump if JUMP 3 is selected. 
j = 4: Execute jump. Stop computation. 
j = 5: Execute jump. Stop computation if STOP 5 is selected. 
j = 6: Execute jump. Stop computation if STOP 6 is selected. 
j = 7: Execute jump. Stop computation if STOP 7 is selected. 

62 JUMP ON cj ACTIVE INPUT BUFFER 

This instruction clears the Program Address Register, P, and enters a new program address in P 
for certain input buffer conditions on the channel designated by~ If the buffer is active, the Jump 
condition is satisfied; then Y becomes the address of the next instruction. If the buffer is inactive, 
the Jump condition is not satisfied. The next sequential instruction in the current sequence is 
executed in the normal manner. ~ = 0, 1, 2, or 3 is permitted. 

63 JUMP ON Cj_ACTIVE OUTPUT BUFFER 

This instruction clears the Program Address Register, P, and enters a new address in P for certain 
output buffer conditions on the channel designated by't If the buffer is active, the Jump condition 
is satisfied; then Y becomes the address of the next instruction. If the buffer is inactive, the Jump 
condition is not satisfied. The next sequential instruction in the current sequence is executed in 
the normal manner. ~ = 0, 1, 2, or 3 is permitted. 

64 RETURN JUMP (Arithmetic) 

This instruction executes a Return-Jump sequence for certain conditions of either the A- or 
Q-register content. The Branch Condition Designator, j, is interpreted in a special way for this 
instruction and determines the conditions under which the Return-Jump sequence is executed. If 
the Return-Jump condition is not satisfied, the next sequential instruction in the current sequence 
is executed in a normal manner. If the Return-Jump condition is satisfied, as listed below, the 
following sequence is performed. 

Store (P) + p* in the lower half of memory address Y. Then jump to Y + 1. 

j = 0: No action; continue with the current program sequence. 
j = 1: Execute return jump. 
j = 2: Execute return jump if (Q) is positive. 
j = 3: Execute retu.rn jump if (Q) is negative. 
j = 4: Execute return jump if (A) is zero. 
j = 5: Execute return jump if (A) is non-zero. 
j = 6: Execute return jump if (A) is positive. 
j = 7: Execute return jump if (A) is negative. 

65 RETURN JUMP (Manual) 

This instruction executes a Return Jump sequence for certain conditions of manual key selections. 
The Branch Condition Designator, j, is interpreted in a special way for this instruction and deter­
mines the conditions under which the Return Jump sequence is executed. If the Return Jump 
condition is not satisfied, the next sequential instruction in the current sequence is executed in a 
normal manner. If the Return Jump condition is satisfied, as listed below, the following sequence 
is performed. 

A-14 



Store (P) + p* in the lower half of memory address Y. Then jump to Y + l. 
j = 0: Execute return jump regardless of key selections. 
j = 1: Execute return jump if JUMP 1 is selected. 
j = 2: Execute return jump if JUMP 2 is selected. 
j = 3: Execute return jump if JUMP 3 is selected. 
j = 4: Execute return jump. Then stop computation. 
j = 5: Execute return jump. Stop computation if STOP 5 is selected. 
j = 6: Execute return jump. Stop computation if STOP 6 is selected. 
j = 7: Execute return jump. Stop computation if STOP 7 is selected. 

66 TERMINATE Cj INPUT BUFFER 

This instruction terminates the input buffer on channel t No Input Buffer Monitor Interrupt 
will occur. 

The Operand Interpretation Designator,1', the Index Designator, b, and the Operand Designator, 
y, bits are not translated for this instruction. 

67 TERMINATE Cj OUTPUT BUFFER 

This instruction terminates the output buffer on channel ~ No Output Buffer Monitor Interrupt 
will occur. 

The Operand Interpretation Designator,1', the Index Designator, b, and the Operand Designator, 
y, bits are not translated for this instruction. 

70 REPEAT 

Clear B7 and transmit the lower 15 bits of Y to B7. If Y is non-zero, transmit (j) to r (designator 
register), thereby initiating the repeat mode. If Y is zero, skip the next instruction. 

REPEAT MODE-The repeat mode executes the instruction immediately following the Repeat 
instruction Y times; B7 contains the number of executions remaining throughout the repeat mode. 

If no Skip condition is met for the repeated instruction, the repeat mode terminates. The instruction 
following the repeated instruction is then executed. If the Skip condition for the repeated instruc­
tion is met, the repeat mode terminates, and the instruction following the repeated instruction is 
skipped. 

Following the repeat mode termination, the count remains in B7. In no way does the repeat mode 
alter the repeated instruction in core memory. 

The three lower-order bits of the r designator are set from j of instruction 70. It affects operand 
indexing of the repeated instruction as follows: 

r = 0: Do not modify the operand address of the repeated instruction after each individual 
execution. 

r = 1: Increase the operand address of the repeated instruction by one after each execution 
of the repeated instruction. 

r = 2: Decrease the operand address of the repeated instruction by one after each execution 
of the repeated instruction. 

r = 3: Repeat the initial B-register modification of the repeated instruction before each 
execution. 

r = 4: Do not modify the operand address of the repeated instruction after each individual 
execution. If the repeated instruction is a Replace instruction, the operand address is 
incremented by (B 6) for the store portion of the Replace Instruction. 

*The p-designator. Normally set to + 1, it is cleared during operation in the interrupt mode. 

A-15 



r 5: Increase the operand address of the repeated instruction by one after each execution 
of the repeated instruction. If the repeated instruction is a Replace instruction, the 
operand address is incremented by (B 6) for the store portion of the Replace 
instruction. 

r 6: Decrease the operand address of the repeated instruction by one after each execution 
of the repeated instruction. If the repeated instruction is a Replace instruction, the 
operand address is incremented by (B 6) for the store portion of the Replace instruction. 

r = 7: Repeat the initial B-register modification of the repeated instruction before each 
execution. If the repeated instruction is a Replace instruction, the operand address 
is incremented by (B6) for the store portion of the Replace instruction. 

NOTE: 

Instruction 70 j designator establishes the repeat mode r designator, since j is transmitted to r. 

71 B SKIP ON Bj 

If the content of B-register j is equal to Y, skip the next instruction in the current sequence and 
proceed to the instruction following. Clear B-register j. 

If the content of B-register j is not equal to Y, proceed to the next instruction in the sequence in a 
normal manner. Increase the content of B-register j by one. 

The Branch Condition Designator, j, is used to designate the selected B-register in this instruction 
and is not available for its normal function. Only the lower-order 15 bits of Yare used in the 
comparison described in the preceding paragraph. 

72 B JUMP ON Bj 

If the content of B-register j is non-zero execute a jump in program address to address Y. Reduce 
the content of B-register j by one. 

If the content of B-register j is zero, proceed to the next instruction in a normal manner. Do not 
alter the content of B-register j. 

The Branch Condition Designator, j, is used to designate the selected B-register in this instruction 
and is not available for its normal function. If the Jump condition is satisfied, then the lower-order 
15 bits of Y become the address of the next instruction and the beginning of the new program 
sequence. The higher-order 15 bits of (Y) cannot be used in this instruction. 

73 INPUT BUFFER ON Cj (without MONITOR Mode) 

This instruction establishes an input buffer via input buffer channel1'to Magnetic Core Storage 
with an initial storage address Y. Subsequent to this instruction, individual transfers will be 
executed at a rate determined by an external device. The storage address initially established by 
this instruction will be advanced by one preceding each individual transfer. The next current 
address will be maintained throughout the buffer process in the lower-order 15 bits of Magnetic 
Core Storage address 00100 plus't This mode will continue until it is superseded by a subsequent 
initiation or termination of an input buffer via the same in!.ut channel or until the higher-order 
half and the lower-order half of storage address 00100 plus j contain equal quantities, whichever 
occurs first. 

This instruction is implemented as follows: If~ = 3, store (Y) in storage location 00100 plus t If 
~ = 1, store the lower-order 15 bits of (Y) in the lower-order half of storage location 00100 plust 
leaving the higher-order half undisturbed. If ~ = 0, store Y in the lower-order half of storage 
location 00100 plus 'j'leaving the higher-order half undisturbed. Proceed to the next instruction. 
~ = 2 is not permitted. 

A-16 



74 OUTPUT BUFFER ON Cj (without MONITOR Mode) 

This instruction establishes an output buffer via output buffer channe(j'from initial storage address 
Y in Magnetic Core Storage. Subsequent to this instruction, the individual transfers will be 
executed at a rate determined by an external device. The storage address initially established by 
this instruction will be advanced by one preceding each individual transfer. The next current 
address will be maintained throughout the buffer process in the lower-order 15 bits of Magnetic 
Core Storage address 00120 plus't This mode will continue until it is superseded by a subsequent 
initiation or termination of an output buffer via the same output channel or until the higher-order 
half and the lower-order half of storage address 00120 plusi'contain equal quantities, whichever 
occurs first. 

This instruction is implemented as follows: If~ = 3, store (Y) in storage location 00120 plust If 
~ = 1, store the lower-order 15 bits of (Y) in the lower-order half of storage location 00120 plusi' 
leaving the higher-order half undisturbed. If ~ = 0, store Y in the lower-order half of storage 
location 00120 plus 'fleaving the higher-order half undisturbed. Proceed to the next instruction. 
~ = 2 is not permitted. 

75 INPUT BUFFER ON Cj (with MONITOR Mode) 

This instruction establishes an input buffer via input buffer channel i'to Magnetic Core Storage 
with an initial storage address Y. Subsequent to this instruction, the individual transfers will be 
executed at a rate determined by an external device. The storage address initially established by 
this instruction will be advanced by one preceding each individual transfer. The next current 
address will be maintained throughout the buffer process in the lower-order 15 bits of Magnetic 
Core Storage address 00100 plus't This mode will continue until it is superseded by a subsequent 
initiation or termination of an input buffer via the same input channel or until the higher-order half 
and the lower-order half of storage address 00100 plus'fcontain equal quantities, whichever occurs 
first. Initiation of this input buffer selects the input channel tand establishes a buffer monitor on 
input channel t A Monitor Interrupt follows completion of the buffer operation: (00100 + 'J')u 
= (00100 + t)L. 

This instruction is implemented as follows: If~ = 3, store (Y) in storage location 00100 plust If 
~ = 1, store the lower-order 15 bits of (Y) in the lower-order half of storage location 00100 plus'J' 
leaving the higher-order half undisturbed. If ~ = 0, store Y in the lower-order half of storage 
location 00100 plus t Proceed to the next instruction. ~ = 2 is not permitted. 

76 OUTPUT BUFFER ON Cj (with MONITOR Mode) 

This instruction establishes an output buffer via output buffer channeljfrom initial storage address 
Y in Magnetic Core Storage. Subsequent to this instruction, the individual transfers will be 
executed at a rate determined by an external device. The storage initially established by this 
instruction will be advanced by one preceding each individual transfer. The next current address 
will be maintained throughout the buffer process in the lower-order 15 bits of Magnetic Core 
Storage address 00120 plust This mode will continue until it is superseded by a subsequent initia­
tion or termination of an output buffer via the same output channel or until the higher-order half 
and the lower-order half of storage address 00120 plusi' contain equal quantities, whichever occurs 
first. Initiation of this output buffer selects the output channel tand establishes a buffer monitor 
on output channel t A Monitor Interrupt follows the completion of the buffer operation: (00120 
+ l')u = (00120 + i')L. 

This instruction is implemented as follows: If~ = 3, store (Y) in storage location 00120 plust If 
~ = 1, store the lower-order 15 bits of (Y) in the lower-order half of storage location 00120 plus'J' 
leaving the higher-order half undisturbed. If ~ = 0, store Y in the lower-order half of storage 
location 00120 plustleaving the higher-order half undisturbed. Proceed to the next instruction. 
~ = 2 is not permitted. 

A-17 



LABEL 

[label] 

[label) 

[label) 

[label) 

OPERATOR 

+ SYSTEM 
+ SYS-INDEX 
+SEL-DD 
+ SEL-PROC 
+ SEL-SYS 

+SYS-DD 
+ END-SYS-DD 

+ LINK 
+ END-LINK 

+ SYS-PROC 
+ LOC-DD 
+ TABLE 
+ SUB-TABLE 
+ FIELD 
+ ITEM-AREA 
+ END-TABLE 
+VRBL 
+VRBL 
+ SWITCH 
+ SWITCH 
+S 
+ END-SWITCH(4) 
+ END-LOC-DD 
+ DATA 

+ PROCEDURE 
+ LOC-INDEX 
+ SET 
+ GOTO 
+ GOTO 
+IF 
+IF 
+IF 

[label) + VARY 
+ RESUME 
+ END 

[label](7)+ FIND 

+IF 
+ RETURN 
+ RETURN 
+ [procedure name) 
+ P-SWITCH 

+P 
+END-P-SW 
+ [p-switch name) 
+ TYPE 
+ TYPE-TEXT 
+ PUNCH 
+ PUNCH-TEXT 
+ FORM 
+ FORM-TEXT 
+PRINT-BUF 
+ PRINT-TBL 
+ PUT-ADR 
+ COMMENT 
+ STOP 

+ 
+ 
+END-PROC 

Table A-4. CS-l Compiler - Phase Three 

PROBLEM-ORIENTED PROGRAMMING OPERATIONS 

OPERANDS 

• [programmer's name) • [date) 
• [B-register) • [data name](8) 
• [label of SYS-DD) 
• [label of SYS-PROC, key) • [label, key of each non-unique label) 
• [key) • [label, key of each non-unique label) 

• [programmer's name) • [date) 

• [programmer's name) • [date) 

• [name)(2) • H (or V) • [words/item) • [max. items) • [name maj. index)(l) 
• [name)(2) • [initial item no.) • [max. items) • [name maj. index)(l) 
• [name) • FXPOS (or FXWS, MW) • [word lac.) • [no. words or bit pas.) • [binary point](l) 
• [name] •••• 
• [name)(2) 
• [name] • FXW (or FXH, FXHPOS) • [binary point)(1) 
• [name] • FXL (or FXU, FXLPOS, FXUPOS) • [name of FXW variable) • [binary point](l) 
• [name] • [statement label (s») •••• 
• [name](4) 
• [statement label](4) 

• [name] 

• [constant], [binary point) •• 

• [name] • INPUT. [formal name(s») • OUTPUT. [formal name(s)] • EXIT. [formal name(s)] 
• [name) •••• 
• [data name]. TO (or EQ). [data name, canst., alg. exp.] •• SAVING. REMAINDER(1) •• DIVFLT. [label](l) •••• 
• [statement label] 
• [switch name] • [switch setting] 
• [data name] • [decider] (5) • [data name, canst., alg. exp.) • AND(l) •••• OR(l) •••• THEN •••• 
• DATA. VALID (or INVALID) • THEN •••• 
• [data name) • ODDP (or EVENP) • THEN(1) •••• 
• [data name) • [prepositional operand] (6) 

• [FIND or VARY label] 
• [VARY label] 
• [data name) • [decider)C5) • [data name, canst., alg. exp.) • VARYING(1)* • [prepositional operand](1)*, (6) 

• DATA. FOUND (or NOT FOUND) • THEN •••• 
• [formal statement label)C1) • STOP (or STOP 5, 6, 7)(1) 
• RIL(3) 
.INPUT(l) • [data name, canst., alg. exp.) • OUTPUT(l) • [data name(s) • EXIT(l) • [statement label(s») 
• [switch name] • INPUT. [formal name(s») • OUTPUT. [formal name(s») 
• [procedure name) 
• [switch name) 
• USING. [switch index) • INPUT. [data name, canst., alg. exp.) • OUTPUT. [data name] • THEN ••• 
• [data name) • [data name) •••• THEN(1) •••• 
• [text and flex commands) 
• [data name) • [data name] •••• THEN(1) •••• 
• [text and flex commands] 
• [buffer name) • [initial char. position) • [data name] • THEN(l) •••• 
• [buffer name] • [initial char. position) • [text) 
• [base addr.] • [jump cond.] 
• [data name) • [data name] • THENCl) •••• 
• [data name] • IN • [data or reg. name) • THEN(l) •••• 
• [message] 

• [name) 

LIST OF DECIDERS LIST OF PREPOSITIONAL OPERANDS 

CODE 

.EQ. 

.NOT. 
• LTEQ. 
• LT. 

MEANING 

Equal 
~ Not Equal 
~ Less Than or Equal To 
< Less Than 
> Greater Than 

CODE 

• FROM 
.THRU 
.BY 
• WITHIN • 

OBJECT FORMS PERMITTED 

Data Name, Alg. Exp., Constant, Index 
Data Name, Alg. Exp., Constant, Index 
Data Name, Alg. Exp., Constant, Index 
Table or Sub-Table Name 

OBJECT PRESCRIBES 

Starting Point 
Terminal Point 
Index Increment 
Table or Sub-Table Parameters 

• GT. 
.GTEQ. ~ Greater Than or Equal To 

(1) Use is optional 
(1)* Optional if varied throughout table 
(2) Limited to 5 alphanumeric characters 

A-18 

(3) Only 1 Return permitted in each interrupt procedure 
(4) Used in switch table design 
(5) See list of deciders 

(6) See list of prepositional operands 
(7) Required if return made by RESUME or GOTO 
(8) Reserves B-register for data unit throughout program 



LABEL 

[Label] .. .. .. .. .. 

SlJPPORT OPERATIONS 

COMPILER-CONTROL OPERATIONS 

OPERATOR OPERANDS 

C-CONTROL • [programmer's name] • [date] 
P-IGNORE • fprocedure namel • [procedure name] •• 
DEBUG-AIDS [ J 
OUTPUTS • [output no.] • [output no.] •••• 

CHAN-SET 

COMMENTS 

General Header for Compiler Control Operators 
Specifies procedures(of a procedure chain) not to be compiled 
Informs compiler that Debugging Aids are desired 
Informs compiler which outputs are desired in object program 

[label] .. [ inputloutput assignment] 
EXCHANGE 

Operator heading communications channel assignments 
Specifies desired communication channel assignments 
Operator heading element exchanges .. 

[ old designation] .. [new designation] Specifies new element designation for the old designation 

Operator heading normal allocation instructions 
BASE 
ENTRANCE 

.. .. .. .. .. .. .. .. 
ALLOCATION 
[absolute address] 
[primary procedure name or SiR labell 
[primary procedure or SiR label] 
[numeric allocation value, label, tag] 
[absolute address] 

Specifies Initial Address for compiler allocation of L4 object program 
Generates manual entrance at object program's base address 

S ENTRANCE 
[ label] 
DEBUG 
TABLE POOL 
[ label] 

[absolute address] 
DELETE 

Generates manual entrance at object program's base + 1 or RJP entrance at its base 
Direct allocation instruction format 
Specifies initial address for Debugging Package when not placed at 76000 
Specifies initial POOL address for table allocation 
Deletes indicated label from compliers allocation tables 

.. INDR-ALLOC Operator heading indirect allocation instructions 
[SIR label] .. [6 digit number, k and y ] Specifies memory cell (k-designator and address) containing initial address of subroutine 

[ label] 

[ label] 

.. REL-ALLOC 

.. [ increment alloc. value] 
OperatOl' heading relative allocation instructions 
Specifies increment to a given base address (place new base in B7 while loading) 

DEBUGGING OPERATIONS 

.. DEF-AREA • [area name] • [initial area tag, label, address] • [no, of wordS] 

.. CORE-IMAGE • [area name] • [initial image tag, label, address] • KEY 1 (or 2, 3)(1) 

.. TEST-IMAGE • [area name] • [area name] •••• KEY 1 (or 2, 3)(1) 

.. DUMP-REG • KEY 1 (or 2, 3)(lJ I 

.. DUMP-AREA • [area name] • [area name] • • •• KEY 1 (or 2, 3)( ) 

PROGRAM CORRECTION OPERATIONS 

(1) Use is optional 

[Ll ID. Ins No] 
.. CORRECT - Ll • [programmer's name] • [date] 

J6 
Operator heading list of program corrections 
Specifies LI-ID with insert number for insert position 
Indicates insert to be made 

[Ll 10] 

[label] 

.. [insert operation ] 
II 

.. DELETE (or Replacement Operation) 

LIBRARY UPDATING OPERATIONS 

.. LIBRARY 

Specifies LI-ID (or correction position 
Indicates correction to be made 

[label] 

LIBRARY LISTING OPERATIONS 

.. LIBRARY 

.. LIST-PROC. [label], [key] 

.. LIST-DIR 
.. INS-DO • [label]. [programmer's name] • [date] 
.. RPL-DD • [label] • [programmer's name] • [date] 
.. DEL-DO • [label] • [programmer's name] • [date] 
.. INS-PROC • [label] , [key] • [programmer's name] • [date] 
.. RPL-PROC • [label] , [key] • [programmer's name] • [date] 
.. DEL-PROC • [label], [key]. [programmer's name] • [date] 

.. LIST-DIR. [directory number] • [directory number] •• 

.. 1...IST-DD • LIBRARY 

.. LIST-PROC • LIBRARY 

.. LIST-DO • [label] 

.. LIST-DO • HISTORY 

TYPICAL INSTRUCTION WORDS 

The following example of machine coding is intended to illustrate the use of UNIVAC 1206 Instruction 
Repertoire. It represents a portion of a computer program; in octal notation, it specifies the contents 
of several successive core memory storage locations. 

STORAGE ADDRESS f jkb y 
02000 10 213 30000 } 02001 6 1 000 02020 a 
02002 11 000 00000 
02003 23 220 30010 

} b 02004 6 1 000 02020 
02005 14 030 30007 

Execution proceeds as follows: 

a) Enter the Q-register with the lower 15 bits of the word stored at memory address: 
300008 (plus the contents of B-register 3). If the operation makes the contents of the Q-register 
negative, jump to memory address 02020 8, if not, clear the A-register. 

b) Divide the number now stored in the Q-register by the entire 30-bits of the number stored at 
memory address 300108• If the operation results in an overflow, jump to memory address 
02020 8, if not, store the entire 30-bits of the Quotient at memory address 300078• 

A-19 



UNIVAC® 
OIVISION OF SPERRY RANO CORPORATION 

MILITARY OPERATIONS· UNIVAC PARK· ST. PAUL. MINN. 


