

Example of left circular shift in AQ: Y = 2

Content of AQ Content of AQ
(AQ); (positive) = 01010011 (AQ); (negative) =10001011
First shift 10100110 First shift 00010111
Second shift 01001101 Second shift 00101110
10 ENTER Q
Clear the Q-register. Then transmit Y to Q.
11 ENTER A
Clear A. Then transmit Y to A.
12 ENTER B’
Clear B-register j. Then transmit the lower-order 15 bits of Y to B-register j. The higher-order
15 bits of Y are ignored in this instruction. The Branch Condition Designator, j, is used to specify
the selected B-register for this instruction and is not available for its normal function.
13 EXTERNAL FUNCTION ON C’

14

15

16

17

20

/j\ = 0 or 1. Interrogate the two bits connected to the input-active designator (flip-flops) on an
interconnected computer. If the interconnected computer’s input buffer is active, skip the next
instruction. If the interconnected computer’s input buffer is not active, execute the next instruction.
There are no External Function lines on C° or CL.R = 3 is required for timing. When’§* > 0 or 1,
transmit Y, the External Function, over the channel specified by/j\. Only R = 3 is permitted.

STORE Q

Store (Q) at storage address Y as directed by the Operand Interpretation Designator, k. If k = 0
complement (Q). If k = 4, store in A.

STORE A

Store (A) at storage address Y as directed by the Operand Interpretation Designator, k. If k = 4,
complement (A). If k = 0, store in Q.

STORE B’

Store a 30-bit quantity whose lower-order 15 bits correspond to the content of B-register j and
whose higher-order 15 bits are zero at storage address Y as directed by the Operand Interpretation
Designator, k. The Branch Condition Designator, j, is used to specify the selected B-register for
this instruction and is not available for its normal function.

STORE C’°

Store the content of the C-channel speciﬁ}a{i by/j\at storage address Y. An Input Acknowledge
signal is then sent on the C-channel. Only’k = 3 is permitted.

ADD A

Add Y to the previous content of the Accumulator.

*Instruction 17 is intended for use in the computer’s reply to an interrupt. It is not synchronized with the input buffering
process and cannot be used in the repeat mode. Successive iterations of instruction 17 must be programmed with a
suitable time delay between iterations, e.g., a 12000 00000 instruction.

A9

21 SUBTRACT A

Subtract Y from the previous content of the Accumulator.

22 MULTIPLY

Multiply (Q) times Y leaving the double-length product in AQ. If the factors are considered as
integers, the product is an integer in AQ.

The Branch Condition Designator, j, is interpreted prior to sign correction* permitting sensing of
a product with (A); =0. If j equal 4, a skip of the next instruction is made when (A); =0. When
(A): # +0, a double-length product has been formed with significant bit(s) in the Accumulator;
however, if a Skip does occur for j =4, the Multiply instruction can be re-executed with the same
operand and with j = 2 or 3 to determine if Q. contains a significant bit (a one) of the product.

In this instruction, k = 7 should not be used.

23 DIVIDE

Divide (AQ) by Y leaving the quotient in the Q-register and the remainder in the A register. The
remainder bears the same sign as the quotient. In this instruction, k = 7 should not be used.

NOTE:

An overflow indicates that the answer is not correct. Overflow occurs upon division by positive or
negative zero or when the quotient exceeds the Q-register (29 bits plus sign).

In instruction 23 the Branch Condition Designator, j, has the following meaning:

= 0: Execute the next instruction.

Skip the next instruction unconditionally.

Skip the next instruction if overflow has not occurred.

Skip the next instruction if overflow has occurred.

Skip the next instruction if (A) is zero (no remainder).

Skip the next instruction if (A) is non-zero (remainder exists).
or 7 should not be used.

1:
2:
3:
4:
5:
6

Cate Comie Comie tamie Comie Comie Tamie
Il

24 REPLACE A+Y
Add (A) to the previous content of A. Store (A) at storage address Y.

25 REPLACE A-Y
Subtract (Y) from the previous content of A. Then store (A) at storage address Y.

26 ADD Q

Interchange (A) and (Q). Then add Y to (A). Interchange (A) and (Q). The content of A is un-
disturbed by this instruction. The Branch Condition Designator, j, has special meaning in this
instruction as in instruction 27.

27 SUBTRACT Q

Interchange (A) and (Q). Then subtract Y from (A). Interchange (A) and (Q). The content of A
is undisturbed by this instruction. The Branch Condition Designator, j, has special meaning in
this instruction as listed below.

*The multiplication operation itself is always carried out with positive numbers; negative factors are automatically
complemented and appropriate corrections are applied to the product.

A-10

30

31

32

33

34

35

36

37

40

In instructions 26 and 27 the Branch Condition Designator, j, has the following meaning:

: Execute the next instruction.

: Skip the next instruction unconditionally.
Skip the next instruction if (A) is positive.
: Skip the next instruction if (A) is negative.
: Skip the next instruection if (Q) is zero.
Skip the next instruction if (Q) is non-zero.
Skip the next instruction if (Q) is positive.
Skip the next instruction if (Q) is negative.

|
N DU AW O

Cmmte %o %mie Camie Camie tumis Cmnds Semde
Il

ENTER Y+Q
Clear A. Then transmit (Q) to A. Then add Y to (A).

ENTER Y —-Q
Clear A. Then transmit (Q) to A. Then subtract Y from (A). Finally, complement (A).

STORE A+Q

Add (Q) to the previous content of A. Then store (A) at storage address Y as directed by the
Operand Interpretation Designator, k.

STORE A—-Q

Subtract (Q) from the previous content of A. Then store (A) at storage address Y as directed by
the Operand Interpretation Designator, k.

REPLACE Y+Q
Clear A. Then transmit (Q) to A. Then add (Y) to (A). Then store (A) at storage address Y.

REPLACE Y —-Q

Clear A. Then transmit (Q) to A. Then subtract (Y) from (A). Then complement (A) and store
at storage address Y.

REPLACE Y +1
Clear A. Then set (A) = 1. Then add (Y) to (A). Then store (A) at storage address Y.

REPLACE Y —1

Clear A. Then set (A) = 1. Then subtract (Y) from (A). Then complement (A) and store at
storage address Y.

ENTER LOGICAL PRODUCT
Enter in A the bit-by-bit product of Y and (Q).

The j designator is interpreted in a special way for this instruction for the value j = 2 or 3. If
j = 2, Skip if the parity of (A)sis even. If j = 3, Skip if the parity of (A): is odd.

NOTE:

Even parity means an even number of ONES in the A-register.
Odd parity means an odd number of ONES in the A-register.

A-11

41

42

43

44

45

46

47

50

51

52

53

A-12

ADD LOGICAL PRODUCT
Add to (A) the bit-by-bit product of Y and (Q).

SUBTRACT LOGICAL PRODUCT
Subtract from (A) the bit-by-bit product of Y and (Q).

COMPARE MASKED

Subtract from (A) the bit-by-bit product of Y and (Q), and perform the branch point evaluation
for Skip of next sequential instruction as directed by the Branch Condition Designator, j.

This instruction results in no net change in the content of any operational register. It provides,
through the Branch Condition Designator, j, a comparison of a portion of Y with (A).

REPILACE LOGICAL PRODUCT
Enter in A the bit-by-bit product of (Y) and (Q). Then store (A) at storage address Y.

The j designator is interpreted in a special way for this instruction for the values j = 2 or 3. If
j = 2, Skip if the parity of (A); is even. If j = 3, Skip if the parity of (A); is odd.

NOTE:

Even parity means an even number of ONES in the A-register.
Odd parity means an odd number of ONES in the A-register.

REPLACE A+LOGICAL PRODUCT
Add to (A) the bit-by-bit product of (Y) and (Q). Then store (A) at storage address Y.

REPLACE A-LOGICAL PRODUCT
Subtract from (A) the bit-by-bit product of (Y) and (Q). Then store (A) at storage address Y.

STORE LOGICAL PRODUCT

Store in address Y the bit-by-bit product of (A) and (Q) as directed by the Operand Interpretation
Designator, k.

SELECTIVE SET

Set the individual bits of A to one corresponding to ones in Y leaving the remaining bits of A un-
altered.

SELECTIVE COMPLEMENT

Complement the individual bits of A corresponding to ones in Y leaving the remaining bits of A
unaltered.

SELECTIVE CLEAR

Clear the individual bits of A corresponding to ones in Y leaving the remaining bits of A unaltered.
In this instruction, k = 7 should not be used.

SELECTIVE SUBSTITUTE

Set the individual bits of A with bits of Y corresponding to ones in Q leaving the remaining bits
of A unaltered.

In this instruction, k = 7 should not be used. If this instruction is to be repeated, k = Oor k = 4
should not be used.

54

55

56

57

60

61

REPLACE SELECTIVE SET

Set the individual bits of A to one corresponding to omes in (Y) leaving the remaining bits of A
unaltered. Then store (A) at storage address Y.

REPLACE SELECTIVE COMPLEMENT

Complement the individual bits of A corresponding to ones in (Y) leaving the remaining bits of A
unaltered. Then store (A) at storage address Y.

REPLACE SELECTIVE CLEAR

Clear individual bits of A corresponding to ones in (Y) leaving the remaining bits of A unaltered.
Then store (A) at storage address Y.

REPLACE SELECTIVE SUBSTITUTE

Clear individual bits of A corresponding to ones in Q leaving the remaining bits of A unaltered.
Then form the bit-by-bit product of (Y) and (Q), and set ones of this product in corresponding
bits of A leaving the remaining bits of A unaltered. Then store (A) at storage address Y.

JUMP (Arithmetic)

This instruction clears the Program Address Register, P, and enters a new program address in P
for certain conditions of either the A- or Q-register content. The Branch Condition Designator, j,
is interpreted in a special way for this instruction and thus determines the conditions under which
a Jump in program address occurs. If the Jump condition is not satisfied, the next sequential
instruction in the current sequence is executed in a normal manner. If the Jump condition is
satisfied, as listed below, then Y becomes the address of the next instruction and the beginning
of a new program sequence.

0: No jump. Set Interrupt Enable to remove interrupt lockout, thus clearing Bootstrap
and Interrupt modes. Continue with current program sequence.

j = 1: Execute jump. Set Interrupt Enable to remove interrupt lockout, thus clearing Boot-
strap and Interrupt modes.

Execute jump if (Q) is positive.

Execute jump if (Q) is negative.

: Execute jump if (A) is zero.

: Execute jump if (A) is non-zero.

: Execute jump if (A) is positive.

: Execute jump if (A) is negative.

i

Camte Cute Comte tumte Comte Camte
|
N O U WY

JUMP (Manual)

The instruction clears the Program Address Register, P, and enters a new program address in P
for certain conditions of manual JUMP key selections. The Branch Condition Designator, j, is
interpreted in a special way for this instruction and thus determines the conditions under which a
jump in program address occurs. If the Jump condition is not satisfied, the next sequential instruc-
tion in the current sequence is executed in a normal manner. If the Jump condition is satisfied, as
listed below, then Y becomes the address of the next instruction and the beginning of a new
program sequence.

Program execution may be stopped by certain STOP selections on execution of this instruction.
The Branch Condition Designator, j, specifies which key selections are effective.

A-13

62

63

64

65

Execute jump regardless of key selections.

Execute jump if JUMP 1 is selected.

: Execute jump if JUMP 2 is selected.

: Execute jump if JUMP 3 is selected.

: Execute jump. Stop computation.

: Execute jump. Stop computation if STOP 5 is selected.
: Execute jump. Stop computation if STOP 6 is selected.
: Execute jump. Stop computation if STOP 7 is selected.

([

Il

[

e Gomte Gke toude Gode Cudo tunts Camde
(]|
SO WN O

JUMP ON C’ ACTIVE INPUT BUFFER

This instruction clears the Program Address Register, P, and enters a new program address in P
for certain input buffer conditions on the channel designated by’3: If the buffer is active, the J ump
condition is satisfied; then Y becomes the address of the next instruction. If the buffer is inactive,
the Jump condition is not satlsﬁed The next sequential instruction in the current sequence is
executed in the normal manner.’ R = 0, 1, 2, or 3 is permitted.

JUMP ON C’ ACTIVE OUTPUT BUFFER

This instruction clears the Program Address Register, P and enters a new address in P for certain
output buffer conditions on the channel designated by j. If the buffer is active, the Jump condition
is satisfied; then Y becomes the address of the next instruction. If the buffer is inactive, the Jump
condition is not satisfied. The next sequential instruction in the current sequence is executed in
the normal manner. R = 0, 1, 2, or 3 is permitted.

RETURN JUMP (Arithmetic)

This instruction executes a Return-Jump sequence for certain conditions of either the A- or
Q-register content. The Branch Condition Designator, j, is interpreted in a special way for this
instruction and determines the conditions under which the Return-Jump sequence is executed. If
the Return-Jump condition is not satisfied, the next sequential instruction in the current sequence
is executed in a normal manner. If the Return-Jump condition is satisfied, as listed below, the
following sequence is performed.

Store (P) + p* in the lower half of memory address Y. Then jump to Y + 1.

No action; continue with the current program sequence.
Execute return jump.

Execute return jump if (Q) is positive.

: Execute return jump if (Q) is negative.

Execute return jump if (A) is zero.

: Execute return jump if (A) is non-zero.

Execute return jump if (A) is positive.

: Execute return jump if (A) is negative.

I

Comte Cude Cmie Comie Cumte Gade Cude Camie
Il

!
NDURA N O

RETURN JUMP (Manual)

This instruction executes a Return Jump sequence for certain conditions of manual key selections.
The Branch Condition Designator, j, is interpreted in a special way for this instruction and deter-
mines the conditions under which the Return Jump sequence is executed. If the Return Jump
condition is not satisfied, the next sequential instruction in the current sequence is executed in a
normal manner. If the Return Jump condition is satisfied, as listed below, the following sequence
is performed.

A-14

66

67

70

Store (P) + p* in the lower half of memory address Y. Then jump to Y + 1.

Execute return jump regardless of key selections.

Execute return jump if JUMP 1 is selected.

Execute return jump if JUMP 2 is selected.

Execute return jump if JUMP 3 is selected.

Execute return jump. Then stop computation.

Execute return jump. Stop computation if STOP 5 is selected.
Execute return jump. Stop computation if STOP 6 is selected.
Execute return jump. Stop computation if STOP 7 is selected.

It

I

Ii
N OO WN O

Cmis Gumie Cte tamieo Camte Gamte Cumie Camio

TERMINATE C’ INPUT BUFFER

This instruction terminates the input buffer on channel/j\. No Input Buffer Monitor Interrupt
will oceur.

The Operand Interpretation Designator,’i?, the Index Designator, b, and the Operand Designator,
y, bits are not translated for this instruction.

TERMINATE C' OUTPUT BUFFER

This instruction terminates the output buffer on channel/j\. No Output Buffer Monitor Interrupt
will occur.

The Operand Interpretation Designator,’l?, the Index Designator, b, and the Operand Designator,
y, bits are not translated for this instruction.

REPEAT

Clear B7 and transmit the lower 15 bits of Y to B”. If Y is non-zero, transmit (j) to r (designator
register), thereby initiating the repeat mode. If Y is zero, skip the next instruction.

REPEAT MODE—The repeat mode executes the instruction immediately following the Repeat
instruction Y times; B7 contains the number of executions remaining throughout the repeat mode.

If no Skip condition is met for the repeated instruction, the repeat mode terminates. The instruction
following the repeated instruction is then executed. If the Skip condition for the repeated instruc-
tion is met, the repeat mode terminates, and the instruction following the repeated instruction is
skipped.

Following the repeat mode termination, the count remains in B?. In no way does the repeat mode
alter the repeated instruction in core memory.

The three lower-order bits of the r designator are set from j of instruction 70. It affects operand
indexing of the repeated instruction as follows:

r = 0: Do not modify the operand address of the repeated instruction after each individual
execution.

r = 1: Increase the operand address of the repeated instruction by one after each execution
of the repeated instruction.

r = 2: Decrease the operand address of the repeated instruction by one after each execution
of the repeated instruction.

r = 3: Repeat the initial B-register modification of the repeated instruction before each
execution.

r = 4: Do not modify the operand address of the repeated instruction after each individual
execution. If the repeated instruction is a Replace instruction, the operand address is
incremented by (Bf) for the store portion of the Replace Instruction.

*The p-designator. Normally set to +1, it is cleared during operation in the interrupt mode.

A-15

71

72

73

r = 5: Increase the operand address of the repeated instruction by one after each execution
of the repeated instruction. If the repeated instruction is a Replace instruction, the
operand address is incremented by (Bf) for the store portion of the Replace
instruction.

r = 6: Decrease the operand address of the repeated instruction by one after each execution
of the repeated instruction. If the repeated instruction is a Replace instruction, the
operand address is incremented by (B¢) for the store portion of the Replace instruction.

r = 7: Repeat the initial B-register modification of the repeated instruction before each
execution. If the repeated instruction is a Replace instruction, the operand address
is incremented by (B°®) for the store portion of the Replace instruction.

NOTE:

Instruction 70 j designator establishes the repeat mode r designator, since j is transmatted to r.

B SKIP ON B’

If the content of B-register j is equal to Y, skip the next instruction in the current sequence and
proceed to the instruction following. Clear B-register j.

If the content of B-register j is not equal to Y, proceed to the next instruction in the sequence in a
normal manner. Increase the content of B-register j by one.

The Branch Condition Designator, j, is used to designate the selected B-register in this instruction
and is not available for its normal function. Only the lower-order 15 bits of Y are used in the
comparison described in the preceding paragraph. '

B JUMP ON B’

If the content of B-register j is non-zero execute a jump in program address to address Y. Reduce
the content of B-register j by one.

If the content of B-register j is zero, proceed to the next instruction in a normal manner. Do not
alter the content of B-register j.

The Branch Condition Designator, j, is used to designate the selected B-register in this instruction
and is not available for its normal function. If the Jump condition is satisfied, then the lower-order
15 bits of Y become the address of the next instruction and the beginning of the new program
sequence. The higher-order 15 bits of (Y) cannot be used in this instruction.

INPUT BUFFER ON C’ (without MONITOR Mode)

This instruction establishes an input buffer via input buffer channel " to Magnetic Core Storage
with an initial storage address Y. Subsequent to this instruction, individual transfers will be
executed at a rate determined by an external device. The storage address initially established by
this instruction will be advanced by one preceding each individual transfer. The next current
address will be maintained throughout the buffer process in the lower-order 15 bits of Magnetic
Core Storage address 00100 plus’j® This mode will continue until it is superseded by a subsequent
initiation or termination of an input buffer via the same input channel or until the higher-order
half and the lower-order half of storage address 00100 plus‘j contain equal quantities, whichever
occurs first.

This instruction is implemented as follows: If = 3, store (Y) in storage location 00100 plus?® If

= 1, store the lower-order 15 bits of (Y) in the lower-order half of storage location 00100 plus§®

leaving the higher-order half undisturbed. If = 0, store Y in the lower-order half of storage
location 00100 plus’j\leaving the higher-order half undisturbed. Proceed to the next instruction.

& = 2 is not permitted.

A-16

74

75

76

OUTPUT BUFFER ON C’ (without MONITOR Mode)

This instruction establishes an output buffer via output buffer channel’j from initial storage address
Y in Magnetic Core Storage. Subsequent to this instruction, the individual transfers will be
executed at a rate determined by an external device. The storage address initially established by
this instruction will be advanced by one preceding each individual transfer. The next current
address will be maintained throughout the buffer process in the lower-order 15 bits of Magnetic
Core Storage address 00120 plus’]t This mode will continue until it is superseded by a subsequent
initiation or termination of an output buffer via the same output channel or until the higher-order
half and the lower-order half of storage address 00120 plus§*contain equal quantities, whichever
occurs first.

This instruction is implemented as follows: If L= 3, store (Y) in storage location 00120 plus§® j. If

= 1, store the lower-order 15 bits of (Y) in the lower-order half of storage location 00120 plus’§*

leavmg the higher-order half undisturbed. If &R = 0, store Y in the lower-order half of storage
location 00120 plus /j\leaving the higher-order half undisturbed. Proceed to the next instruction.
= 2 is not permitted.

INPUT BUFFER ON C’ (with MONITOR Mode)

This instruction establishes an input buffer via input buffer channel’j\ to Magnetic Core Storage
with an initial storage address Y. Subsequent to this instruction, the individual transfers will be
executed at a rate determined by an external device. The storage address initially established by
this instruction will be advanced by one preceding each individual transfer. The next current
address will be maintained throughout the buffer process in the lower-order 15 bits of Magnetic
Core Storage address 00100 plusj® This mode will continue until it is superseded by a subsequent
initiation or termination of an input buffer via the same input channel or until the higher-order half
and the lower-order half of storage address 00100 plus/]\contaln equal quantities, whichever occurs
first. In1t1at1on of this input buffer selects the input channel j and establishes a buffer momtor on
input channel "] A Monitor Interrupt follows completion of the buffer operation: (00100 +7j)U
= (00100 + L.

This instruction is implemented as follows: If R = 3, store (Y) in storage location 00100 plus/j\ If

= 1, store the lower-order 15 bits of (Y) in the lower-order half of storage location 00100 plus/\

leaving the higher-order half undisturbed. If R = 0, store Y in the lower-order half of storage
location 00100 plus/J\ Proceed to the next 1nstruct10n.'l? = 2 is not permitted.

OUTPUT BUFFER ON C’ (with MONITOR Mode)

This instruction establishes an output buffer via output buffer channel/j\from initial storage address
Y in Magnetic Core Storage. Subsequent to this instruction, the individual transfers will be
executed at a rate determined by an external device. The storage initially established by this
instruction will be advanced by one preceding each individual transfer. The next current address
will be maintained throughout the buffer process in the lower-order 15 bits of Magnetic Core
Storage address 00120 plus j. This mode will continue until it is superseded by a subsequent initia-
tion or termination of an output buffer via the same output channel or until the higher-order half
and the lower-order half of storage address 00120 plus j contain equal quantities, whichever occurs
first. Initiation of thlS output buffer selects the output channel’j 4*and establishes a buffer monitor
on output channel J A Monitor Interrupt follows the completion of the buffer operation: (00120
J)U = (00120 + J)L

This instruction is implemented as follows: If = 3, store (Y) in storage location 00120 plus j. If

R = 1, store the lower-order 15 bits of (Y) in the lower-order half of storage location 00120 plus j

leavmg the higher- order half undisturbed. If K = 0, store Y in the lower-order half of storage
locatlon 00120 plus’j leavmg the higher-order half undisturbed. Proceed to the next instruction.
R = 2is not permitted.

A-17

Table A-4. CS-1 Compiler — Phase Three

PROBLEM-ORIENTED PROGRAMMING OPERATIONS

LABEL OPERATOR OPERANDS
[label] =i SYSTEM o [programmer’s name] e [date]
mPp SYS-INDEX o [B-register] s [data name]®)
=) SEL-DD « [1abel of SYS-DD]
mp SEL-PROC o [label of SYS-PROC, key| e [label, key of each non-unique label]
=P SEL-SYS o [key] o [label, key of each non-unique label]
[label]} m» SYS-DD o [programmer’s name] o [date]
=) END-SYS-DD
=) LINK
mp END-LINK
{label] =¥ SYS-PROC o [programmer’s name] o [date]
= LOC-DD
mp TABLE o [name]@

1@ o H (or V) e [words/item] e [max. items] e [name maj. index](1)
=) SUB-TABLE o [name]® o [initial item no.] e [max. items] e [name maj. index]{V
mp FIELD o [name] e FXPOS (or FXWS, MW) e [word loc.] e [no. words or bit pos.] e [binary point](1)
) ITEM-AREA o[namele o o o
P END-TABLE o [name]®

mp VRBL o [name] ¢ FXW (or FXH, FXHPOS) e [binary point]())

mp VRBL o [name] o FXL (or FXU, FXLPOS, FXUPOS) e [name of FXW variable] e [binary point](l)
mp SWITCH o [name] o [statement label (s)] e & o o

mp SWITCH ® [name]4)

mp S o [statement label]4)

P END-SWITCH® o [name]
m» END-LOC-DD
[label] wp» DATA o [constant], [binary point] e e

=mp PROCEDURE o [name] o INPUT e [formal name(s)] « OUTPUT e [formal name(s)] ¢ EXIT e [formal name(s)]
mp LOC-INDEX e[nameje o o o

wp SET o [data name] # TO (or EQ) e [data name, const., alg. exp.] ¢ # SAVING ¢ REMAINDER®) ¢ ¢ DIVFLT e [label]l) o o o o
mp GOTO o [statement label]
mp GOTO o [switch name] o [switch setting]
mp IF o [data name] e [decider]® e [data name, const., alg. exp.] « AND() e s ¢ eOR(M e ¢ ¢ ¢« THEN @ @ ¢ o
mp IF ¢ DATA e VALID (or INVALID) ¢« THEN e ¢ ¢ o
mp IF o [data name] e ODDP (or EVENP) « THENM e o o o
{label] m» VARY o [data name] o [prepositional operand}(®
mp RESUME o [FIND or VARY label]
mp END o [VARY label]
{label]Vmp FIND o [data name] o [decider]®) e [data name, const., alg. exp.] ¢ VARYINGM)* e [prepositional operand](1)*, (6)
mp IF e DATA e FOUND (or NOT FOUND) ¢ THEN e o o ¢
mp RETURN o [formal statement label]1) o STOP (or STOP 5, 6, 7)(V
=) RETURN RIL®)
mP [procedure name] o INPUT() o [data name, const., alg. exp.] ¢ OUTPUT(®) e [data name(s) o EXIT() e [statement label(s)]
mp P-SWITCH o [switch name] ¢ INPUT e [formal name(s)] ® OUTPUT e [formal name(s)}
mp P o [procedure name]
mp END-P-SW o [switch name]
P [p-switch name] o USING e [switch index] o INPUT e [data name, const., alg. exp.] « OUTPUT e [data name] ¢« THEN o ¢ o
mp TYPE o [data name] o [data name]le o @« e THEN() o ¢ o @
mp TYPE-TEXT o [text and flex commands)]
mp PUNCH o [data name] o [data name]e o ¢ e THEN 6 0 o o
mPp PUNCH-TEXT e [text and flex commands)]
mp» FORM o [buffer name] e {initial char. position] e [data name] ¢« THEN() o o o o

mp FORM-TEXT o [buffer name] e [initial char. position] e [text]
mp PRINT-BUF o [base addr.] e [jump cond.]
=P PRINT-TBL o [data name] o [data name] ¢« THEN(D o o ¢ o

mp PUT-ADR o [data name] e IN e [data or reg. name] ¢ THEN(M o o o o
wmp COMMENT o [message|
m) STOP
=
=)
mp END-PROC o [name]
LIST OF DECIDERS LIST OF PREPOSITIONAL OPERANDS
CODE MEANING CODE OBJECT FORMS PERMITTED OBJECT PRESCRIBES
eEQe = Equal ¢« FROM e Data Name, Alg. Exp., Constant, Index Starting Point
eNOT o # Not Equal ¢ THRU e Data Name, Alg. Exp., Constant, Index Terminal Point
e LTEQ e < Less Than or Equal To «BY e Data Name, Alg. Exp., Constant, Index Index Increment
eLTe < Less Than e WITHIN ¢ Table or Sub-Table Name Table or Sub-Table Parameters
eGT e > Greater Than
eGTEQ e = Greater Than or Equal To
(1) Use is optional (3) Only 1 Return permitted in each interrupt procedure (6) See list of prepositional operands
(1)* Optional if varied throughout table (4) Used in switch table design (7) Required if return made by RESUME or GOTO
(2) Limited to 5 alphanumeric characters (5) See list of deciders (8) Reserves B-register for data unit throughout program

A-18

SUPPORT OPERATIONS

B
COMPILER-CONTROL OPERATIONS

LABEL OPERATOR OPERANDS COMMENTS
[Label]
mp C-CONTROL e [programmer's name] . [date] General Header for Compiler Control Operators
wp P-IGNORE e [procedure name] . [procedure name] e o Specifies procedures(of a procedure chain) not to be compiled
=p DEBUG-AIDS Informis compiler that Debugging Aids are desired
=p OUTPUTS L4 [output no.] . [output no.] LRI Informs compiler which outputs are desired in object program
a)p CHAN-SET Operator heading cc ications ch 1 assignments
{1abel] =P [input/output assignment] Specifies desired communication channel assignments
sp EXCHANGE Operator heading element exchanges
[old designation] sp [new designation] Specifies new element designation for the old designation
sp ALLOCATION Operator heading normal allocation instructions
BASE ap [absolute address] Specifies Initial Address for compiler allocation of L4 object program
ENTRANCE ap [primary procedure name or S/R label] Generates manual entrance at object program’s base address
S ENTRANCE @& [primary procedure or S/R label] Generates manual entrance at object program’s base + 1 or RJP entrance at its base
[1abel] =) [numeric allocation value, label, tag] Direct allocation instruction format
DEBUG ap [absolute address] Specifies initial address for Debugging Package when not placed at 76000
TABLE POOL wp [absolute address] Specifies initial POOL address for table allocation
[label] ap DELETE Deletes indicated label from compliers allocation tables
ap INDR-ALLOC Operator heading indirect allocation instructions
{S/R label] wp [6 digit number, k and y) Specifies memory cell (k-designator and address) containing initial address of subroutine
=p REL-ALLOC Operator heading relative allocation instructions
[1abel] sp [increment alloc. value] Specifies increment to a given base address (place new base in B while loading)
DEBUGGING OPERATIONS
=p DEF-AREA e [area name] e [initial area tag, label, address] e [no. of words]
mp CORE-IMAGE o [area name] e [initial image tag, label, address] ® KEY 1 (or 2, 3)(1)
a)p TEST-IMAGE ® [area name] [areaname] e e e ¢ KEY 1 (or 2, 3)(1
wp DUMP-REG e KEY 1 (or 2, 3)(1 (1)
sp DUMP-AREA ® [area name] o [areaname]e® ® @ e KEY 1 (or2,3) (1) Use is optional
PROGRAM CORRECTION OPERATIONS
[1abel] ap CORRECT - L; ¢ [programmer's name] * [date] Operator heading list of program corrections
[L; IDeInsNo] a2 Specifies Ly ~ID with insert number for insert position
= [insert operation] Indicates insert to be made
[L; D] Y 4 Specifies L;-ID for correction position
sp DELETE (or Replacement Operation) Indicates correction to be made
LIBRARY UPDATING OPERATIONS LIBRARY LISTING OPERATIONS
[1abel] =p LIBRARY [1abel] =) LIBRARY
wp INS-DD e [label] ® [programmer's name] e [date] wp LIST-PROC e [label], [key]
mdp RPL-DD ¢ [label] ® [programmer's name] ¢ [date) ap LIST-DIR
ap DEL-DD * [label] ¢ [programmer's name] ¢ [date] wp LIST-DIR e [directory number] e [directory number] o o
mp INS-PROC °® (label] , [key] ® [programmer's name] * (date] wp LIST-DD e LIBRARY
mp RPL-PROC ¢ [label], [key] ¢ [programmer's name] o [date] mp LIST-PROC e LIBRARY
wp DEL-PROC ¢ [label], [key] ® [programmer’s name] e [date] =) LIST-DD * [label]
mp LIST-DD e HISTORY

TYPICAL INSTRUCTION WORDS

The following example of machine coding is intended to illustrate the use of UNIVAC 1206 Instruction
Repertoire. It represents a portion of a computer program; in octal notation, it specifies the contents
of several successive core memory storage locations.

STORAGE ADDRESS f jkb y
02000 10213 30000
02001 6100002020 a
02002 1100000000
02003 2322030010
02004 61 00002020 b
02005 14 03030007

Execution proceeds as follows:

a) Enter the Q-register with the lower 15 bits of the word stored at memory address:
300005 (plus the contents of B-register 3). If the operation makes the contents of the Q-register
negative, jump to memory address 02020, if not, clear the A-register.

b) Divide the number now stored in the Q-register by the entire 30-bits of the number stored at
memory address 30010s. If the operation results in an overflow, jump to memory address
020205, if not, store the entire 30-bits of the Quotient at memory address 300075.

A-19

UNIVAC

DIVISION OF SPERRY RAND CORPORATION
MILITARY OPERATIONS - UNIVAC PARK - ST. PAUL, MINN.

REGIONAL OFFICES

WASHINGTON 7, D.C.

2121 WISCONSIN AVE. N.W.
P.0. BOX 3657
338-8510

DAYTON, OHIO

20 NORTH JEFFERSON
224-0755

COCOA BEACH, FLORIDA

CANAVERAL COMMERCIAL CENTER
1 WEST UNIVAC BLVD.
783-8461

LEXINGTON 73, MASS.

1776 MASSACHUSETTS AVE.
. 862-2650

GREAT NECK, LONG ISLAND, N.Y.

SPERRY GYROSCOPE BLDG.
574-3480

LOS ANGELES 45, CALIF.
SUITE 220
5316 W. IMPERIAL HIWAY
678-2531

